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Résumé de la thèse

Introduction
Cette thèse aborde divers problèmes concernant l’analyse des séries temporelles fonctionnelles.
Comme son nom l’indique, cette discipline se trouve à l’intersection de deux autres, à
savoir l’analyse des données fonctionnelles, et celle des séries temporelles. En pratique,
de nombreuses données peuvent s’interpréter comme des fonctions ou des courbes, par
exemple la Figure 1 représente un échantillon issu d’une étude kinésiologique. Bien que le
développement des statistiques fonctionnelles ait été entamé par Karhunen (1947), il faut
attendre le développement informatique de ces dernières décennies pour voir apparâıtre
de véritables méthodes de traitement des données fonctionnelles. On considère alors un
échantillon X1, . . . , Xn, où l’on suppose que chaque observation Xt, est la réalisation d’une
certaine fonction aléatoire u 7→ Xt(u). Théoriquement, la principale difficulté est qu’on
dispose d’un nombre fini d’observations, à valeurs dans un espace de dimension infinie. En
pratique, on observe seulement une discrétisation de chaque courbe Xt(u1), . . . , Xt(uN ), donc
un vecteur, qu’il serait tentant de traiter comme en analyse multivariée. Or cette approche
s’avère inadéquate, car il ne s’agit pas de vecteurs aléatoires quelconques. Notamment la
continuité des courbes induit une forte corrélation entre deux évaluations voisines Xt(ui)
et Xt(ui+1). Aussi, les points d’échantillonnage ui ne sont pas nécessairement synchronisés
pour toutes les observations. Une véritable approche fonctionnelle est donc préférable.
Concrètement, on représente les observations dans une certaine base Xt(u) = ∑p

k=1 xt,kϕk(u),
pour tout u ∈ [0, 1]. Cette étape s’appelle le lissage, voir Figure 1, on travaille alors avec les
coefficients x1, . . . ,xn dans Rp, mais où p n’est pas fixé préalablement, comme en analyse
multivariée. Pour plus de détails sur le lissage des données fonctionnelles, on peut consulter
Ramsay et Silverman (2006).
Dans notre cas, on considère des phénomènes continus observés au cour du temps, qui ont été
segmentés. Par exemple si l’on observe des données de pollutions, il est naturel de segmenter
au niveau des jours, car il y a un certain nombre de phénomènes quotidients sous-jacents,
comme le trafic des voitures, idem pour un indice financier, voir Figures 2 et 3. On obtient
alors une série temporelle fonctionnelle (Xt)t∈Z, c’est–à–dire un processus stochastique discret
à valeurs dans un espace fonctionnel H. Le phénomène initial étant continu, on ne peut
pas supposer que les observations soient indépendantes entre elles, d’où la terminologie série
temporelle. Par la suite on supposera que H est un espace de Hilbert muni du produit scalaire
〈·, ·〉 et de la norme correspondante ‖ · ‖. Les notions usuelles de probabilités sont valables
dans les espaces de Hilbert, voir par exemple dans Bosq (2000). On supposera également
que (Xt)t∈Z est stationnaire, c’est–à–dire que (Xt1 , . . . , Xtk)

d= (Xt1+h, . . . , Xtk+h), pour tout
t1, . . . , tk, h ∈ Z et k ≥ 1. Si E‖Xt‖ < ∞ on supposera aussi que le processus est centré
c’est–à–dire que EX = 0. Pour une série stationnaire, on définit les opérateurs de covariances
par Ch = E[Xh ⊗ X0], où pour tout x, y ∈ H, on a x ⊗ y = x〈·, y〉. Un outil théorique
important est la représentation de Karhunen–Loève,

Xt =
∞∑
k=1
〈Xt, vk〉vk,
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Figure 1: Angle de la hanche pendant un cycle de pas chez 20 enfants, mesurés à 21 temps
réguliers. Données discrète initiales (gauche) et données lissées (droite).

où (vk)k≥1 est la base orthonormale de H, formée par les fonctions propres de l’opérateur
C0, associées aux valeurs propres λ1 ≥ λ2 ≥ · · · ≥ 0. Un ouvrage de référence sur l’inférence
pour les séries temporelles fonctionnelles est Horváth et Kokoszka (2012)

Normalité asymptotique de la transformée de Fourier
Dans un premier temps, nous nous sommes intéressés à l’analyse spectrale des séries tem-
porelles fonctionnelles. Il s’agit d’aborder ces processus temporels via le domaine des
fréquences. Pour ce faire, on définit la transformée de Fourier discrète

Xn(ω) = n−1/2
n∑
t=1

Xte
−itω, ω ∈ [0, π[,(0.1)

associée à un échantillon X1, . . . , Xn, ainsi que l’opérateur de densité spectrale

Fω :=
∑
h∈Z

Che
−ihω, ω ∈ [0, π[,(0.2)

associé à une série (Xt)t∈Z. Ce dernier contient la même information que l’ensemble des
opérateurs de covariances (Ch)h∈Z. Même si les observations sont réelles, on remarque qu’ici,
il est nécessaire de travailler dans un espace de Hilbert complexe, on suppose donc désormais
que H = H0 ⊕ iH0, où H0 est un espace de Hilbert réel. La principale différence étant la
caractérisation de la variance d’un élément aléatoire Z dans H. En effet, celle-ci nécessite deux
opérateurs: l’opérateur de variance Γ = E[Z ⊗ Z] et l’opérateur de relation R = E[Z ⊗ Z].
Par exemple, une variable Gaussienne dans H est caractérisée par sa moyenne µ = E[Z] et ces
deux opérateurs, et on note Z ∼ CNH (µ,Γ, R). Plus précisément, on étudie le comportement
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Figure 3: Indice de marché S&P

asymptotique de la transformée de Fourier discrète et l’objectif est de travailler dans un
cadre aussi général que possible. Par exemple, supposons que X1, . . . , Xn est un échantillon
Gaussien i.i.d. à valeurs réelles. On a sait que Xn(ω) ∼ CNH (0,Fω, 0). D’autre part si on
considère deux fréquences fondamentales, c’est–à–dire ω = 2π`/n et ω′ = 2π`′/n, pour des
entiers ` et `′, alors si ω 6= ±ω′, on a que

EXn(ω)⊗Xn(ω′) = 1
n

n∑
s,t=1

E[Xs ⊗Xt]e−i(sω−tω′) = E[X1 ⊗X1] 1
n

n∑
t=1

e−it(ω−ω′) = 0,

et de manière similaire, EXn(ω)⊗Xn(ω′) = E[X1 ⊗X1] 1
n

∑n
t=1 e

−it(ω+ω′) = 0. Autrement dit,
les variables complexes Xn(ω) et Xn(ω′) sont non–corrélées, et étant par ailleurs conjointement
Gaussiennes, elles sont donc indépendantes. On sait qu’en dimension finie, ces propriétés
sont valides asymptotiquement dans le cas non–Gaussien et non–i.i.d. Le premier résultat
de ce type pour les series fonctionnelles est dû à Panaretos et Tavakoli (2013a), or ces
derniers imposaient des conditions très restrictives, basées sur les cumulants à tout les ordres
et impliquant en particulier l’existence d’une infinité de moments. Nous avons suivit une
approche complètement différente, développée par Peligrad et Wu (2010) pour les séries
temporelles univariées. Celle-ci à l’avantage de s’appliquer à une très large classe de processus,
à savoir les processus ergodiques purement non-déterministes. Plus rigoureusement cette
dernière propriété signifie que

E[X0|G−∞] = 0 a.s.,(0.3)

où Gt = σ(Xt, Xt−1, . . .) et G−∞ = ⋂
t≥0 G−t. En particulier, cette méthode permet d’étendre

l’analyse spectrale à des séries temporelles fortement dépendantes. Notamment la sommabilité
des covariances n’est plus nécessaire, on verra ainsi qu’il est possible de définir l’opérateur de
densité spectrale de manière plus générale qu’avec (0.2). Nous avons pu généraliser leur résultat
aux séries fonctionnelle, sans restrictions. Plus précisément, pour toute série temporelle
fonctionnelle ergodique et purement non–déterministe (Xt)t∈Z, telle que E‖X0‖2 < ∞ et
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EX0 = 0, il existe pour presque toute fréquence ω ∈ [0, π[, un opérateur Fω, tel que

Xn(ω) d−→ CNH (0,Fω, 0) .

Comparé à Panaretos et Tavakoli (2013a), on remarque que ce résultat ne nécessite que
des moments d’ordre deux. On a également une expression analogue à (0.2), mais pour la
sommation de Cesàro et la convergence faible des opérateurs:

Var(Xn(ω)) =
∑
|h|<n

(
1− |h|

n

)
Che

−ihω w−→
n→∞

Fω

On obtient également la convergence conjointe de (Xn(ω`))`=1,...,q pour un nombre fini de
fréquences, et donc l’indépendance asymptotique évoquée plus haut.
La preuve de Peligrad et Wu (2010) repose essentiellement sur une approximation de Xn(ω)
par des martingales. Intuitivement, l’idée est de change l’ordre de sommation comme
suit. On définit d’abord les opérateurs de projection Pt := E[ · |Gt] − E[ · |Gt−1]. Il vient
Xt = PtXt + · · ·+ P1Xt + E[Xt|G0], puis

X1e
−iω

X2e
−i2ω

...
Xne

−inω

 =


P1(X1)e−iω+ E[X1|G0]e−iω

P2(X2)e−i2ω + P1(X2)e−i2ω+ E[X2|G0]e−i2ω

. .
. ...

...
...

Pn(Xn)e−inω · · · P2(Xn)e−inω+ P1(Xn)e−inθ+ E[Xn|G0]e−inω


Dans leur preuve, ils utilisent le Théorème de Carleson et une inégalité maximale de Hunt et
Young pour montrer que chaque colonne ci-dessus converge presque–sûrement et dans L2(Ω)
vers Zn(ω)e−inθ, . . . , Z1(ω)e−iω. En d’autres termes, on somme en colonne plutôt qu’en ligne.
Par construction (Zk(ω))k≥1 est une différence de martingale, et la propriété (0.3) permet
de montrer que Xn(ω) = n−1/2∑n

k=1 Zn(θ)e−ikθ + oL2(1). Dans notre situation, c’est–à–dire
en fonctionnel, il est juste possible de montrer que les colonnes converges dans un sens plus
faibles, à savoir dans l’espace L2([0, π[, L2(Ω)). C’est tout de même suffisant pour définir
presque sûrement l’opérateur de densité spectrale par Fω := Var(Z1(ω)). Puis, sous réserve
que Xn(ω) soit uniformément tendue, on sait qu’il existe une sous–suite qui converge en loi,
et l’unicité de cette limite peut se déduire du résultat univarié via des projections. Pour
conclure, on doit donc prouver que Xn(ω) est uniformément tendue, on procède comme suit.
Soit ε > 0, on considère des suites 0 < `k ↗∞ et 0 < Nk ↗∞. Puis, on définit

K =
∞⋂
k=1

{
x ∈ H :

∑
j>Nk

|〈vj, x〉|2 ≤ `−1
k

}
,

qui est un compact de H. Enfin, on a que

P (Xn(ω) ∈ K) ≥ 1−
∞∑
k=1

`k
∑
j>Nk

E|〈Xn(ω), vj〉|2(0.4)

Ensuite, on peut montrer que

sup
n

∑
j>m

E|〈Xn(ω), vj〉|2 = sup
n

∑
j>m

∑
|h|<n

(
1− |h|/n

)
〈Ch(vj), vj〉e−ihω −→

m→∞
0,
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en utilisant le faite que E‖Xn(ω)‖2 → Tr(Fω). Finalement, on aurait pu choisir (`k)k≥1 et
(Nk)k≥1 de telle sorte que le dernier terme dans (0.4) soit plus grand que 1− ε.
Même si ce résultat est très satisfaisant quant à sa généralité, il s’agit d’une résultat presque–
sûr, donc en pratique cela ne nous dit pas précisément pour quelle fréquence ω ∈ [0, π[ c’est
vrai. Nous avons donc travaillé sur un autre résultat similaire, mais qui lui, est valide pour
toute fréquence ω, qui vérifie les hypothèses suivantes :

(A1) Mn(ω) := ∑n
t=0P0(Xt)e−itω est une suite de Cauchy dans L2

H(Ω);

(A2) E
∥∥∥E[Xn(ω)|G0]

∥∥∥2
−→
n→∞

0.

Enfin, nous avons montré que ces hypothèses sont satisfaites dans de nombreux cas, par
exemple, pour les processus linéaires, les suites Lp–m–approximables. En particulier, on
peut en déduire un théorème central limite classique, pour ω = 0. Enfin, ce résultat a de
nombreuses applications possibles, par example, pour tester la présences de composantes
périodiques comme dans Hörmann et al. (2017), pour le bootstrap, voir Paparoditis (2016)
ou pour tester la stationnarité, voir Bagchi et al. (2018).

Un test de périodicité uniforme
Ensuite, nous avons étudié le comportement asymptotique du maximum de la norme de la
transformée de Fourier discrète d’une série temporelle fonctionnelle, prit sur l’ensemble des
fréquences. La motivation initiale de ce projet est la suivante, supposons qu’on observe

Xt = µ+mt + εt,

où µ ∈ H, m : Z → H est une fonction déterministe d–périodique et (εt)t∈Z est une
suite i.i.d. dans H. Pour détecter des composantes périodiques mt d’une fréquence connue
ω = 2π/d, Hörmann et al. (2017) ont proposé un test basé sur la norme de la transformée
de Fourier discrète Xn(ω) = n−1/2∑n

t=1Xte
−itω de (Xt)t∈Z. Dans le but d’adapter ce test

au cas où la fréquence n’est pas supposée connue d’avance, il est naturel de considérer la
statistique suivante Mn = maxj=1,...,q ‖Xn(ωj)‖2, et d’étudier son comportement asymptotique
sous H0, c’est–à–dire lorsque (Xt)t∈Z est i.i.d. Dans le cas univarié, le résultat de Davis et
Mikosch (1999) assure que Mn est dans le domaine d’attraction de la loi de Gumbel. Pour
comparer avec la partie précédente, il s’agit également d’étudier la distribution conjointe
de (Xn(ω`))`=1,...,q, mais lorsque q tend vers l’infini. Pour un entier p ≥ 1, on définit la
statistique tronquée Mp

n = maxj=1,...,q ‖X p
n (ωj)‖2, où X p

n (ω) est une approximation de Xn(ω)
obtenu avec la représentation de Karhunen–Loève. Nous avons montré successivement que
les trois statistiques suivantes Mp

n, Mpn
n (où pn est une suite d’entiers qui tend vers l’infini)

et Mn sont dans le domaine d’attraction de la loi de Gumbel. Le premier résultat généralise
en multivarié le résultat de Davis et Mikosch (1999), le second précise à quelle vitesse on
peut faire tendre la dimension p = pn vers l’infini, tandis que le troisième, qui nécessite des
contraintes supplémentaires sur la loi de Xt, fournit une véritable généralisation fonctionnelle.
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Pour obtenir ce dernier résultat, on procède comme suit. Soient (an)n≥1 et (bn)n≥1 des suites
de réels, on a que

a−1
n

(
MX

n − bn
)

= a−1
n

(
MX

n −MX,p
n

)
+ a−1

n

(
MX,p

n − bn
)
.(0.5)

Le premier terme converges vers zéro en probabilité si p crôıt suffisamment vite. Pour le
second terme, on calcule∣∣∣P (a−1

n (Mp
n − bn) ≤ x

)
− e−e−x

∣∣∣ ≤ ρn,p +
∣∣∣P (a−1

n (M̃p
n − bn) ≤ x

)
− e−e−x

∣∣∣
où M̃p

n est défini de manière analogue à Mp
n, mais à partir d’un échantillon Gaussien Y1, . . . , Yn

dans H de même opérateur de variance C que Xt, et ρn,p = supx∈R |P (Mp
n ≤ x)−P (M̃p

n ≤ x)|.
Pour prouver que le second terme converge, on remarque que pour un entier p ≥ 1 fixé,
‖X p

ω‖2 suit une loi hypo–exponentielle, or on sait déjà que cette loi appartient au domaine
d’attraction de la loi de Gumbel. Puis, nous avons montré que ceci tient toujours lorsque
p = o(n), an = λ1 et bn = λ1 log(n/2) − λ1

∑∞
j=2 log(1 − λj/λ1), où (λj)j≥1 sont les valeurs

propres C ordonnées de manière décroissantes.
Pour borner ρn,p, on a utilisé un résultat de Chernozhukov et al. (2017). Il s’agit d’une
approximation Gaussienne de P (n−1/2∑n

i=1 ξi ∈ A), où les ξ1, . . . , ξn sont des vecteurs
aléatoires i.i.d. et A parcours la classe des ensembles s–partiellement convexes de Rd, c’est–à–
dire des intersections d’ensembles dont les indicatrices dépendent au plus de s variables. Ce
résultat repose essentiellement sur une inégalité d’anti–concentration due à Chernozhukov et
al. (2017). Dans notre situation, on obtient

ρn,p ≤ κ · p
3 log(n)
λ

1/2
p n1/6

, pour une certaine constante κ > 0.

Dans le cas fonctionnel, on doit faire tendre p vers l’infini, et on a donc un terme supplémentaire
au dénominateur λp, qui tend vers zéro. En utilisant cette borne, on a montré qu’il existe
une suite d’entiers p = pn, telle que les deux termes dans (0.5) convergent, ceci sous des
hypothèses supplémentaires sur les moments de Xt. Plus précisément, le premier converge
vers zéro en probabilité et le second en loi vers une variable de Gumbel. On peut conclure
par le lemme de Slutzky.
Finalement, en dimension finie, nous avons également considéré le cas non–i.i.d. à savoir pour
des processus linéaires. Puis nous avons montré comment étendre le test de Hörmann et al.
(2017) lorsque la fréquence est inconnue.

Le modèle GARCH fonctionnel
Les processus GARCH univariés et multivariés modélisent la dynamique de la volatilité,
c’est–à–dire de la variance conditionnelle dans les séries financières, ce qui permet notamment
de mesurer le risque. Le modèle a été initiallement proposé par Engle (1982), il en existe
aujourd’hui de très nombreuses variantes et extensions, pour une présentation générale on
peut consulter Francq et Zaköıan (2011). A ce jour, les seules généralisations fonctionnelles
sont Hörmann et al. (2013) pour le modèle ARCH(1) et Aue et al. (2016) pour le modèle
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Figure 4: Le processus simulé yt est représenté en noir, la région {[−2σt(u), 2σt(u)] : u ∈ [0, 1]}
en gris et ±2σ̃t(θ̂)(u) en pointillé.

GARCH(1,1). Notre modèle est similaire à ce dernier, puis nous l’avons étendu aux processus
GARCH(p,q) pour p ou q > 1, et considéré une approche différente pour l’estimation. Soit
(ηt)t∈Z une suite i.i.d. dans L2[0, 1]. Un processus GARCH(1,1) fonctionnel (yt)t∈Z est définit
comme une solution stationnaire du système suivant

yt(u) = σt(u)ηt(u),(0.6)

σ2
t (u) = δ(u) +

∫ 1

0
Kα(u, v)y2

t−1(v)dv +
∫ 1

0
Kβ(u, v)σ2

t−1(v)dv,(0.7)

où δ(u) > 0, et Kα(u, v), Kβ(u, v) ≥ 0, pour tout u, v ∈ [0, 1]. On dit que α et β sont des
opérateurs positifs à noyaux. Les courbes de volatilité peuvent s’interpréter ponctuellement
car

P
(
|yt(u)| < σt(u) ·Qη(u)

1−α/2

∣∣∣ ys, s < t
)

= 1− α, ∀u ∈ [0, 1],

où QX
α est le quantile d’ordre α de la variable X.

Comme dans le cas univarié, le coefficient α, qui est un opérateur, est responsable de la
sensibilité aux chocs de la volatilité puisque il induit une dépendance entre la courbe de
volatilité σ2

t et le carré de la courbe de la veille y2
t−1. Tandis que l’opérateur β, est à l’origine

de la persistance de la volatilité puisqu’il induit l’auto–régression de celle-ci. On peut observer
ces phénomènes sur la Figure 4 où on a représenté des simulations d’un processus (0.6)–(0.7).
Le processus d’innovations est Gaussien avec la condition d’identifiabilité E[η2(u)] = 1 pour
tout u ∈ [0, 1], ce qui implique que Qη(u)

1−α/2 ≈ 2 pour le niveau α = 0.05. Nous avons ensuite
montré qu’une condition suffisante d’existence d’une solution stationnaire, non-anticipative
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et ergodique (yt)t∈Z à (0.6)–(0.7) est que γ < 0, où

γ = lim
t→∞

1
t

log ‖Ψt . . .Ψ0‖ et Ψt :

L2[0, 1] → L2[0, 1]
x 7→ α(x · η2

t ) + β(x).

Cette condition est plus générale que celle de Aue et al. (2016), à savoir que E log ‖Ψ0‖S < 0,
où ‖ · ‖S désigne la norme Hilbert–Schmidt. On appelle γ l’exposant de Lyapounov associée à
la suite d’opérateurs (Ψt)t∈Z. En dimension finie la définition ci-dessus est indépendante de
la norme matricielle utilisée. Ceci n’est pas forcément vrai en dimension infinie, on utilise ici
la norme d’opérateur ‖α‖ = sup‖x‖≤1 ‖α(x)‖ dans L2[0, 1].
Les méthodes d’estimation pour les données fonctionnelles sont généralement non–paramétriques,
et essentiellement basées sur la méthode des moments, voir par exemple Bosq (2000) ou
Horváth et Kokoszka (2012). La complexité du modèle GARCH rend cette approche com-
pliquée, notamment car l’écriture explicite d’une solution, σ2

t = δ+∑∞k=1 Ψt · · ·Ψt−k+1(σ2
t−k+1),

dépend non–linéairement des paramètres. Une possibilité est d’utiliser la représentation
suivante du modèle :

y2
t − (α+ β)(y2

t−1) = δ + ηt − β(ηt−1),(0.8)

où ηt = y2
t − σ2

t est une différence de martingale. Autrement dit, le processus des carrés
Xt = y2

t − (id − α − β)−1δ, est un modèle ARMA(1,1) fonctionnel. C’est la composante
MA(1), corresondant ici à l’opérateur β, qui pose problème. Nous avons donc essayé dans un
premier temps, de développer une méthode d’estimation purement fonctionnelle du modèle
MA(1). Les résultats obtenus dans cette direction n’ont pas été satisfaisant. De plus,
les méthodes d’estimation du modèle GARCH via la représentation (0.8) comportent de
nombreux inconvénients, notamment des moments trop élevés. Nous avons donc adopté une
paramétrisation du modèle comme dans Aue et al. (2016). C’est–à–dire que les paramètres
fonctionnels (δ,α,β) sont identifiés à un élément θ d’un compact Θ ⊂ Rd. Leur méthode
reposant sur les moindres carrés, la normalité asymptotique de l’estimateur nécessite des
moments d’ordre 8 ce qui n’est pas satisfaisant pour les processus GARCH. Nous avons
donc plutôt essayé de développer une approche qui se rapproche autant que possible du
quasi–maximum de vraisemblance, bien qu’il ne soit pas possible de définir véritablement la
fonction de vraisemblance en dimension infinie. Pour ce faire, on considère des fonctions à
valeurs positives ϕ1, . . . , ϕM in L2[0, 1] et on définit l’estimateur θ̂n comme le minimiseur du
critère suivant

Q̃n(θ) = 1
n

n∑
t=1

˜̀
t(θ), ˜̀

t(θ) =
M∑
m=1

{
〈y2
t , ϕm〉
〈σ̃2

t , ϕm〉
+ log〈σ̃2

t , ϕm〉
}
,

où la volatilité empirique σ̃2
t est définie récursivement via l’équation (0.7) pour des fonctions

initiales y0 et σ̃0 dans L2[0, 1]. Sous l’hypothèse forte que δ, α et β sont de rangs finis, on
peut mettre en relation notre modèle avec un processus multivarié auxiliaire, qui s’avère
être un CCC–GARCH semi–fort. Ce modèle multivarié est basé sur l’hypothèse que les
corrélations conditionnelles du processus sont constantes, voir Francq et Zaköıan (2011) pour
plus de détails, et semi–fort signifie que ses innovations ne sont pas i.i.d. Le cas semi–fort
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n’ayant encore jamais abordé pour les CCC–GARCH, nous avons étudié la convergence et la
normalité asymptotique de l’estimateur de quasi–maximum de vraisemblance dans ce cas.
Enfin, nous avons montré qu’on pouvait déduire la convergence et la normalité asymptotique
de notre estimateur θ̂n, de celle de ce processus auxiliaire.
D’un point de vue fonctionnel, l’hypothèse que δ, α et β soient de rangs finis n’est pas très
satisfaisante. Nous avons donc essayé d’adapter la méthode précédente au cas véritablement
fonctionnel. Il n’est alors plus possible de rapporter (yt)tZ à un processus auxiliaire multivariée.
Mais en supposant que Θ est un compact, par exemple de l’espace des suites de carrés
sommables `2, et que les paramètres fonctionnels δ, α et β sont en quelque sorte identifiables
par une famille de fonctions positives (ϕm)m≥1, on peut montrer que l’estimateur θ̂n est
toujours convergent. Pour fixer les idées, considérons l’exemple suivant, où les opérateurs
α et β sont considérablement simplifiés. Soit (ψk)k≥1 une base orthonormal de L2[0, 1], on
suppose que la volatilité vérifie l’équation suivante

σ2
t (u) = exp

( ∞∑
k=1

dkψk(u)
)

+ a
∫ 1

0
y2
t−1(v)dv + b

∫ 1

0
σ2
t−1(v)dv.(0.9)

Ici le paramètre θ = (a, b, d1, d2, . . . ) ∈ R2
+ × R∞. D’autre part, ce modèle permet une

interprétation intéressante de la fonction intercept δ, en effet, si Ey2
t (u) <∞, on a que

Eσ2
t (u) = Ey2

t (u) = δ(u) + a+ b

1− a− b

∫ 1

0
δ(v)dv.

On trouve donc que δ est proportionnelle au profil de la volatilité moyenne. On peut également
calculer explicitement l’exposant de Lyapounov, γ = E log(a

∫ 1
0 η

2
0(v)dv + b).

Finalement, nous avons testé cette méthode sur des simulations et on a pu constater son
avantage sur l’estimateur des moindres carrés de Aue et al. (2016). On l’a également appliqué
sur de vraies données et on a proposé une méthode de prédiction de la volatilité réalisée.
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Asymptotic inference in stationary
functional processes
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1 Introduction
Due to the leap in information technology within the last decades, recording and processing of
data has seen a huge and steady upsurge. The immense data flow demands for new statistical
methods which can help to extract useful information. One of the modern statistical
disciplines which is devoted to these new challenges is functional data analysis (FDA). As the
name indicates, its paradigm is to consider observations as realizations of random functions
u 7→ X(u). Typically it is assumed that a generic functional observation X belongs to a
specific space H of real valued functions defined on [0, 1], although its domain might be any
continuum.
The principal area of this dissertation is the study of functional time series (FTS). A FTS is
a stochastic process (Xt)t∈Z taking its values in some function space. Each observation is a
curve Xt(u). Since the data of interest are sampled sequentially in time we need to expect
dependence across curves. As in classical time series problems for real data, this requires
different methods than in statistics of random samples.
In this thesis we will study some inferential problems related to functional time series. These
require some novel asymptotic results, which constitute the main research contribution of
this account. In this section we briefly survey some background on FDA and FTS. Moreover,
we set up the mathematical framework and some basic notation. Finally, we will quickly
introduce the key results of this dissertation.

1.1 Discrete vs. functional data
It is a natural mathematical approach to consider the FDA framework when the underlying
data generating mechanism is a continuous time process. However, before the recent techno-
logical advances, related statistical methods had not much practical importance, as neither
relevant data could be recorded and stored, nor was there any hope to computationally process
the resulting ‘curves’ in a satisfactory manner. The situation has now changed. Functional
data analysis has been popularized, e.g. through the book of Ramsay and Silverman (2006)
and the related statistical software tools which allow to conveniently process such type of
data.
In practise, however, we cannot fully observe curves, but only a discretized record of the
data, on which some preprocessing is performed to get a functional representation. In Figure
1 we have respectively plotted a rough and smoothed sub–sample from a popular data set
introduced by Ramsay and Silverman (2006). It consists of measurements of the hip angles
of 39 children at 20 time points in a single gait cycle.
While working with raw data is in principle an option (then we are having a multivariate data
set), it is often ruled out by obvious disadvantages. First, the grid {ut,`, 1 ≤ ` ≤ Nt} on which
we observe Xt(ut,`) may vary across time t. Neither dimensions Nt, nor spacings ut,` − ut,`−1
need to match. A typical example are growth curves, where the height of children is measured
on irregular points in time and at different frequencies. Second, multivariate analysis makes
no use of the sequential order of the components and the underlying smoothness—typically
Xt(ut,`) and Xt(ut,`′) will be close if ut,` and ut,`′ are close. It is then advantageous to
approximate raw data by some curve, i.e. we approximate raw data Xt(ut,`) by some finite
dimensional curve ∑p

k=1 xt,kϕk(u). The most popular choices for the basis functions ϕk are
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Figure 5: Hip angles of 20 children at 21 time points in a single gait cycle. Discrete
observations (left panel) and smoothed sample (right panel).

Fourier basis, splines, wavelets and polynomials. A common algorithm to determine the
coefficients xt,k is by minimizing an expression of the form:

Nt∑
`=1

∣∣∣∣∣Xt(ut,`)−
p∑

k=1
xt,kϕk(ut,`)

∣∣∣∣∣
2

+ λ
∫ 1

0

∣∣∣∣∣
p∑

k=1
xt,kϕ

′′

k(u)
∣∣∣∣∣
2

du.(1.1)

In other words, a penalized regression is used. The penalty in (1.1) allows to control the
smoothness of the curves. The coefficient λ > 0, the so–called roughness penalty, has thus to
be tuned in order to make a trade-off between bias and variance. We refer again to Ramsay
and Silverman (2006) for basic information. Note that the resulting coefficients x1, . . . ,xn
form again a multivariate sample. However, a key difference with traditional multivariate
analysis is that the number p is not fixed and has to be tuned.
In this thesis we bypass the problem of fitting raw data by assuming fully observed curves.
This approach is quite common in FDA when the target is to derive theoretical results.

1.2 Mathematical framework
Once we have our data in fully functional form, we need to embed them in some appropriate
algebraical and topological framework. As it is common in FDA, we will assume throughout
this thesis that the observations belong to a separable real Hilbert space H. This setting,
which includes in particular L2[0, 1]—the space of square integrable functions on [0, 1]—is
mathematically very convenient due to the nice geometrical properties of Hilbert spaces.
Each such space H is endowed with a scalar product 〈·, ·〉 and induced norm ‖ · ‖ =

√
〈·, ·〉.

The separability ensures the existence of denumerable orthonormal basis. The projection
onto basis functions is very useful to make the link with a multivariate setting.
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Figure 6: PM10 (µg/m3) in Graz,
30–minutes resolution, 18–16/01/2010.
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Figure 7: S&P market index in one–minute
resolution, 15–29/01/1998.

Now that the space is fixed on which we will operate, we want to equip it with a few important
tools. In particular, our theoretical developments will heavily make use of linear operators.
Throughout this thesis we denote by L(H) the space of bounded linear operators in H, i.e.,
the set of continuous linear mappings α : H → H. For some α ∈ L(H) we define the
operator norm ‖α‖L = sup‖x‖≤1 ‖α(x)‖. A simple way to construct a linear operator is by
an outer product of two elements x, y ∈ H. Then x⊗ y : x 7→ x〈·, y〉. We define the adjoint
operator α∗, as the unique element in L(H) such that 〈x,α(y)〉 = 〈α(x), y〉 for all x, y ∈ H.
If, for all x ∈ H \ {0}, we have that 〈x,α(x)〉 ≥ 0, respectively 〈x,α(x)〉 > 0, we say that
α is non-negative, respectively non-negative definite. We say that an operator is compact if
the image of the unit ball has compact closure. If α is compact and self-adjoint, then by
the spectral theorem (see e.g. in Brezis (2010)) we know that there exists a sequence of real
numbers (λk)k≥1 and an orthonormal basis of H (vk)k≥1 such that

α =
∞∑
k=1

λkvk ⊗ vk.(1.2)

Moreover, if α is non-negative, then the λk’s are non-negative. Let (`k)k≥1 denote the singular
values of an operator α, i.e. the square roots of the eigenvalues of αα∗. We denote by SH
the space of Hilbert–Schmidt operators in H, i.e. operators whose Hilbert–Schmidt norm
‖α‖2

S = ∑∞
k=1 `

2
k is finite. Moreover, we let T (H) be the space of trace–class operators in

H, i.e. operators whose trace–class norm ‖α‖T = ∑∞
k=1 `k is finite. Both S(H) and T (H)

are Banach spaces with their corresponding norms. More precisely, S(H) is a Hilbert space
whose scalar product is given by 〈α,β〉S = ∑∞

k=1〈α(vk),β(vk)〉, and this sum is independent
the orthonormal basis (vk)k≥1. Note that Hilbert-Schmidt operators and trace-class operators
are compact. When H = L2[0, 1], we say that α ∈ L(H) is a kernel operator since there
exists a function Kα : [0, 1] × [0, 1] → R such that α(x)(u) =

∫ 1
0 Kα(u, v)x(v)dv. In this

situation, we have that α ∈ S(H) if and only if Kα ∈ L2([0, 1] × [0, 1]). For more details,
see.g. Bosq (2000).
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Up to here, we have only described the space H on which our functional data take there
realizations. As a matter of fact, the objective is to model functional data as random elements
in H. For the entire thesis we assume that all our random curves are defined on a rich enough
probability space (Ω,A, P ). Then a generic observation X is a measurable mapping X :
(Ω,A)→ (H,BH), where BH is the Borel sigma algebra of H, i.e. the σ-algebra generated
by the open sets in H. There is a well developed tool kit for probability theory on Banach
and Hilbert space. Excellent reference are Ledoux and Talagrand (1991) or Bosq (2000). In
particular the latter account is a key reference for our thesis, since it explores a functional
time series oriented approach. In general, the infinite dimensional nature of H complicates
some aspects when compared to the finite dimensional setup. For example, a common task
for a mathematical statistician is verification of weak convergence of some statistic of interest.
Depending on the problem at hand, verification of tightness can be quite challenging in the
infinite dimensional setup. We will meet such problems later in this thesis.
Another fundamental distinction with the finite dimensional setting is that there is no
equivalent to the probability density function of a random variable in H, and thus the
classical likelihood approaches—which are fundamental for statistical inference—do not exist.

1.3 Temporal dependence
As we have noted above, we are interested here in inference for functional time series.
Functional time series are often obtained from some continuous time process which can be
naturally chopped into units of a certain length. For example, if solar radiation is recorded,
then it is natural to analyse the diurnal variation and a 24h time interval is a natural
unit. Another example of this type are pollution level curves which are impacted by day-
to-day traffic routines. In Figure 6 we have plotted 8 curves representing the diurnal PM10
concentration. Raw data for this plot consist of 48 values per day. In Figure 7 we have
plotted 10 daily curves from the S&P market index, here 405 values per trading day are
recorded.
We will assume that the functional time series treated in this thesis are stationary, i.e. that
(Xt1 , . . . , Xtk)

d= (Xt1+h, . . . , Xtk+h), for all t1, . . . , tk, h ∈ Z and all k ≥ 1. However, unlike it
is typical in FDA context, we do not want to assume that the resulting observations are i.i.d.,
but rather expect temporal dependence across days. This dependence needs to be taken
into account for the statistical analysis. Thus, we will be required to update accordingly
the probabilistic toolbox for dealing with such data. For example, it is important to know
if we can still employ the law of large numbers or the central limit theorem—both being
fundamental ingredients for statistical inference. The answer to such questions relies very
much on the dependence structure which is underlying the data generating mechanism. For
example, under finite second order moments, i.e. if E‖X0‖2 <∞, the most basic dependence
measures of a stationary functional time series are the lagged auto-covariance operators,
defined as follows

Ch = E[(Xh − EX0)⊗ (X0 − EX0)], for all h ∈ Z.(1.3)
Note that Ch are Hilbert Schmidt operators and, in particular, C0 is a trace class, self-adjoint
and non-negative operator, such that ‖C0‖T = E‖X0‖2. It is quite easy to derive the weak
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law of large numbers by routine arguments from ‖Ch‖ → 0 for h → ∞. Under ergodicity
we can even derive the strong law of large numbers. To this end we recall that a stationary
process (Xt)t∈Z can be represented as a dynamical system. There exists a random element ξ
in H defined on a probability space (Ω̃, Ã, P̃ ) and a transformation T : Ω̃ → Ω̃ such that
P̃ ◦ T−1 = P̃ and Xt

d= ξ ◦ T t. We say that (Xt)t∈Z is ergodic if the T–invariant sets in Ω̃,
i.e. the sets A ∈ Ω̃ such that T−1(A) = A, have P̃–measure equal to zero or one. Then the
process satisfies the ergodic theorem, i.e.

1
n

n∑
t=1

ξ ◦ T t −→
n→∞

Eξ, P̃–almost surely,(1.4)

provided that
∫
Ω̃ ‖ξ‖dP̃ < ∞. Such results from ergodic theory are more commonly

stated for R–valued random processes, but it is easy to extend them to Hilbert spaces,
see e.g. Parthasarathy (1967).
A special class of ergodic processes is constituted by so-called Bernoulli shifts. A Bernoulli
shift is defined as

Xt = f(. . . , εt−1, εt, εt+1, εt+2, . . . ),(1.5)

where the εt’s are i.i.d. random variables in H. A causal Bernoulli shift has representation
Xt = f(εt, εt−1, εt−2, . . . ). Here f : H∞ → H is a B∞H –BH measurable function. Many
important time series models have such a Bernoulli shift representation, and we may conclude
that the strong law of large numbers is applicable.
The most important examples for FTS with a Bernoulli shift represenation are functional
autoregressive models and functional moving average models. These are defined as

Xt = Φ(Xt−1) + εt and Xt = Θ(εt−1) + εt,(1.6)

respectively, where (εt)t∈Z is an i.i.d. sequence in H and Φ,Θ ∈ LH . The autoregressive
model has been the focus of many publications (see e.g. Mas (2007); Kowal et al. (2016); Aue
et al. (2015); Guillas et al. (2011); Kargin and Onatski (2008)), whereas the moving average
has only been approached rarely (e.g. by Turbillon (2007) and Aue and Klepsch (2017a)).
Clearly, the functional MA process has the form (1.5). Under mild regularity assumptions on
Φ, also the functional AR process can be represented as a functional linear process in H, i.e.
there is a sequence of operators (Ψ`)`≥1 such that

Xt =
∑
`≥0

Ψ`(εt−`).(1.7)

Functional linear processes have been comprehensively explored in Bosq (2000). Many
important asymptotic results have been developed specifically for such linear time series.
In Chapter 4 we will explore functional GARCH, which is an example of a non–linear
functional time series model being also of the form (1.5). The functional GARCH is defined
as a stationary solution (yt)t∈Z of the following equations

yt = σt · ηt, and σ2
t = δ +α(y2

t−1) + β(σ2
t−1),(1.8)
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where δ ∈ H, α,β ∈ LH , and for all x, y ∈ H, we denote by x · y and x2, respectively the
pointwise product and square of functions, see e.g. Aue et al. (2016).
The class of Bernoulli-shifts (1.5) satisfies the law of large numbers, but is still too big to
immediately guarantee a broad range of useful properties, like for example the central limit
theorem. To overcome this difficulty we can either impose particular time series models
as the ones listed above, or we further strengthen assumptions in order narrow down this
class. For example, Hörmann and Kokoszka (2010) consider Bernoulli shifts which are Lp-m-
approximable. For p ≥ 1 we say that a process (Xt)t∈Z is Lp-m-approximable if E‖X0‖p <∞
and if ∑∞m=1(E‖X0 −X(m)

0 ‖p)1/p <∞, where

X
(m)
t := f

(
εt, εt−1, . . . , εt−m+1, ε

′
t−m, ε

′
t−m−1, . . .

)
,(1.9)

and (ε′t)t∈Z is an independent copy of (εt)t∈Z. For example, this property is satisfied if
(Xt)t∈Z is a functional linear process with E‖ε0‖p <∞ and ∑∞`=1 ` ‖Ψ`‖ <∞ (Hörmann and
Kokoszka (2010)) or if it is a functional GARCH with E‖y0‖p <∞ (Kokoszka et al. (2017)).
Within the class of Lp-m-approximable processes, a number of inferential problems can be
solved as it was shown in Hörmann and Kokoszka (2010). We will employ this property in
Section 2.3.3 and Section 3.3.1.

1.4 Inference for functional time series
The most relevant inferential problems in FTS are related to mean and autocovariance
operators. We have already noted above that the mean can be estimated consistently for
processes of type (1.5) by the ergodic theorem. The same holds true for the autocovariance
function (1.3). The variables Xt+h ⊗Xt inherit the Bernoulli shift representation and thus
consistent estimation of Ch by its empirical counterpart

Ĉh = n−1
n−h∑
t=1

(Xt+h −Xn)⊗ (Xt −Xn) for h ≥ 0 and Ĉh = Ĉ∗−h for h < 0,(1.10)

is again immediate from the ergodic theorem (provided second order moments of Xt exist).
It is known that convergence in the ergodic theorem can be arbitrarily slow and for statistical
purposes it is thus desirable to have qualitative results about the speed of convergence.
Under L2-m-approximability it can be shown (see Hörmann and Kokoszka (2010)) that
E‖X̄n − µ‖ = O

(
1/
√
n
)

(here µ = EX1 and X̄n = (X1 + · · ·+Xn)/n). Such a result holds
also for the lagged covariance operators defined in (1.3). By Lemma D.1 Hörmann et al.
(2017), if (Xt)t∈Z is L4–m–approximable, then E‖Ĉh − Ch‖S = O

(
1/
√
n
)
.

If we want to go a step further, we can ask if (Xt)t∈Z satisfies a CLT. For an i.i.d. sequence
in H with E‖X1‖2 < ∞ it is well known that n1/2(X̄n − µ) d→ Z, where Z is a Gaussian
random element in H. Hence Z is a random element such that for all v ∈ H, 〈Z, v〉 is a
Gaussian random variable. See for example Bosq (2000). As we already mentioned above, the
main step in the proof is the verification of tightness. In the i.i.d. setup this part is relatively
easy. Assume without loss of generality that µ = 0. Let ε > 0 and consider some sequences
0 < `k ↗∞ and 0 < Nk ↗∞. We then define

K =
∞⋂
k=1

{
x ∈ H :

∑
j>Nk

|〈vj, x〉|2 ≤ `−1
k

}
,
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with λj being the eigenvalues of C0 = Var(X1) and vj the corresponding eigenfunctions. It is
readily verified that this is a compact subset of H. Then we have that

P
(
n1/2X̄n ∈ K

)
≥ 1−

∞∑
k=1

`k
∑
j>Nk

E
∣∣∣〈n1/2X̄n, vj〉

∣∣∣2 = 1−
∞∑
k=1

`k
∑
j>Nk

λj.

We may always choose the sequences (`k)k≥1 and (Nk)k≥1 in such a way that the last term is
greater that 1− ε. Here we can see that tightness is closely related to the summability of
the eigenvalues λj of C0. In Chapter 2 we will give a very general extension of this result to
stationary time series.
One key tool in functional data analysis is the functional principal component analysis
(FPCA). Functional principal components are simply the eigenfunctions of C0. The expansion
of X along this basis yields the celebrated Karhunen–Loève expansion:

X =
∞∑
k=1
〈X, vk〉vk.(1.11)

When we expand along the first p ≥ 1 eigenfunctions only, we obtain a finite dimensional
approximation which is optimal in the sense that

E‖X −
p∑

k=1
〈X, vk〉vk‖2 ≤ E‖X −

p∑
k=1
〈X, bk〉bk‖2

for any p and any orthonormal basis (bk)k≥1. This suggests to project functional objects
of interest onto the space spanned by the first p eigenfunctions and to employ multivariate
tools in a first step. In a second step we let p increase with sample size. This tuning has
to be done very carefully and is one of the key difficulties of functional data inference. Let
us exemplify this approach in estimating Φ in functional autoregressive model (1.6). It can
be readily seen that C1 = ΦC0. This suggests Φ = C1C

−1
0 , however since C0 is a compact

operator, its inverse is not bounded. To avoid this problem, we can take the inverse on the
finite dimensional subspace of H spanned by the first principal components v1, . . . , vp, i.e. we
define

Ĉ−1
0 =

p∑
k=1

λ̂−1
k v̂k ⊗ v̂k,(1.12)

where λ̂k and v̂k are the eigenvalues and eigenfunction of the empirical covariance operator
Ĉ0 given in (1.10). Finally, we define the projection operator π̂p = ∑p

k=1 v̂k ⊗ v̂k and take
Φ̂ = πpĈ1Ĉ

−1
0 , which will converge almost surely to Φ in LH , under some technical assumptions

on the eigenvalues (λk)k≥1 and the sequence p = pn ↗∞, see e.g. Bosq (2000). Furthermore,
if H = L2[0, 1] and Φ is a kernel operator, then we have that

KΦ̂(x, y) = 1
n− 1

n−1∑
t=1

p∑
k=1

p∑
`=1

λ̂−1
k 〈v̂k, Xt〉〈v̂`, Xt+1〉v̂k(y)v̂`(x).

More details about inference for FTS can be found e.g. in Horváth and Kokoszka (2012).
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1.5 FTS in the frequency domain
Like in classical univariate and multivariate time series analysis, it is natural to also investigate
functional times series in the frequency domain. A variety of problems can be solved more
easily in the frequency rather than in the time domain. In frequency domain analysis, rather
than working on the sample X1, . . . , Xn, being indexed in time, we focus on its discrete
Fourier transform (DFT) defined as

Xn(ω) = n−1/2
n∑
t=1

Xte
−itω, ω ∈ (−π, π],(1.13)

which is indexed by frequencies. Then, the knowledge of Xn(ω) at all fundamental frequencies
ω = 2π`/n for ` = −b(n− 1)/2c, . . . , bn/2c is equivalent to that of (X1, . . . , Xn), in the sense
that one can be computed from the other. Similarly, the counterpart to the lagged covariance
operators is the spectral density operator, defined by

Fω :=
∑
h∈Z

Che
−ihω, ω ∈ (−π, π].(1.14)

If the above series converges, it can be shown that Fω is the asymptotic variance of Xn(ω).
The spectral density operator Fω is in turn equivalent to the auto–covariance functions.
Among the numerous applications of the spectral density operator, let us mention that the
representation (1.11), which only relies on the covariance at lag h = 0, and thus does not take
the dependence into account, has a dynamic equivalent which relies on the full knowledge of
Fω. See Hörmann et al. (2015a) and Panaretos and Tavakoli (2013b).
A typical estimator of it is

F̂ω =
∑
|h|<`n

(
1− |h|

`n

)
Ĉhe

−itω.(1.15)

Under technical assumptions, including L4–m–approximability, Hörmann et al. (2015a) show
that

sup
ω
E
∥∥∥F̂ω −Fω∥∥∥S −→n→∞ 0.(1.16)

To study Xn(ω) we need to work on complex Hilbert spaces. Let us assume that our functional
observation belong to a separable real Hilbert space H0 and define the complex version of it
as H = H0 ⊕ iH0. The covariance structure of a random element Z in H is characterized
by two operators: its complex covariance operator Γ = E[Z ⊗ Z] and its relation operator
C = E[Z ⊗ Z], where Z denotes the complex conjugate of Z. Two centred random elements
Z1 and Z2 in H are uncorrelated if both E[Z1 ⊗ Z2] and E[Z1 ⊗ Z2] are zero. For example,
the Gaussian distribution NH(µ,Γ, C) in H is characterized by µ ∈ H, Γ and C ∈ LH . The
particular case where µ = 0 and C = 0 corresponds to the so-called circular–symmetric
case. (In Appendix 5.1 we provide a more detailed presentation of complex normal random
elements.) Suppose that X1, . . . , Xn are i.i.d. NH(0,Γ, 0). Then Xn(ω) is distributed as
NH(0,Γ, 0), for all ω ∈ [0, π]. Moreover, consider two fundamental frequencies i.e. ω = 2π`/n
and ω′ = 2π`′/n, for some integers ` and `′, then if ω 6= ±ω′, we have that

EXn(ω)⊗Xn(ω′) = 1
n

n∑
s,t=1

E[Xs ⊗Xt]e−i(sω−tω′) = E[X1 ⊗X1] 1
n

n∑
t=1

e−it(ω−ω′) = 0,
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and similarly, EXn(ω)⊗ Xn(ω′) = E[X1 ⊗X1] 1
n

∑n
t=1 e

−it(ω+ω′) = 0. In other words, for all
distinct fundamental frequencies the discrete Fourier transforms are jointly Gaussian and
uncorrelated, thus, independent. We will see in Chapter 2 that this feature is asymptotically
valid for a broad class of stationary processes in H, namely for the class of purely non-
deterministic processes i.e. if

E[X0|G−∞] = 0 a.s.,(1.17)

where Gt = σ(Xt, Xt−1, . . .) and G−∞ = ⋂
t≥0 G−t.

1.6 Overview of the results
The infinite dimensional aspect of the topic was leading throughout the work to some
mathematical challenges, commonly encountered in FDA. Let us highlight three key difficulties:
(i) Verification of tightness of a sequence of random functions. (ii) Letting the dimension
p = pn after spectral truncation tend to infinity. (iii) Dealing with the non-existence of
likelihood function in infinite dimension. Problem (i) was mainly encountered in Chapter 2
and is closely related to the summability of the eigenvalues of the spectral density operator.
Problem (ii) is somehow omnipresent, but is particularly relevant in Chapter 3. The last
one, mainly occurs in estimation problems such as in Chapter 4. Our chapters are based
on three scientific papers. On the CLT for discrete Fourier transforms of functional time
series, with co–author Siegfried Hörmann, is accepted in Journal of Multivariate Analysis. A
uniform test of periodicity for functional time series with co–authors Vaidotas Characiejus
and Siegfried Hörmann, will be submitted soon. Whereas Functional GARCH models: the
quasi-likelihood approach and its applications with co–authors Christian Francq, Siegfried
Hörmann and Jean–Michel Zaköıan, is currently in the reviewing process.

Asymptotic normality of the discrete Fourier transform

In Chapter 2, we derive the asymptotic behaviour of the discrete Fourier transform Xn(ω)
under minimal assumptions. Note that this asymptotic behaviour is useful in many practical
problems, e.g. in the detection of periodic patterns, see e.g. Hörmann et al. (2017), for
bootstrapping of FTS, see e.g. Paparoditis (2016), or for testing stationarity of a FTS, see
e.g. Bagchi et al. (2018). In particular, our results improve upon Panaretos and Tavakoli
(2013a) who work under cumulant conditions, which require in particular infinitely many
moments. We follow a completely different approach, based on the results of Peligrad and
Wu (2010). We manage to generalize their univarite results to FTS. In particular, we show in
Theorem 1 that for every ergodic and and purely non–deterministic and stationary processes
(Xt)t∈Z (see (1.17)) in a separable complex Hilbert space H, with E‖X0‖2 <∞ and EX0 = 0,
there exists an operator Fω such that

Xn(ω) d−→ CNH (0,Fω, 0) ,

for almost all ω in (−π, π]. The result does not require more than two moments, nor the
summability of the covariance operators. Hence, the definition (1.14) for Fω cannot be
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directly used. Rather we have that

Var(Xn(ω)) =
∑
|h|<n

(
1− |h|

n

)
Che

−itω w−→
n→∞

Fω,(1.18)

i.e. Fω is the limit of a Cèsaro mean for the so–called weak operator convergence.
We consider as well the joint convergence of (Xn(ω`))`=1,...,q for a finite number of frequencies,
and show asymptotic independence for distinct frequencies. The main trick in the proof,
due to an idea in Peligrad and Wu (2010), is based on a change in the order of summation.
To this end, we define projection operators Pt := E[ · |Gt] − E[ · |Gt−1] and note that Xt =
PtXt + · · ·+ P1Xt + E[Xt|G0], and thus that

X1e
−iω

X2e
−i2ω

...
Xne

−inω

 =


P1(X1)e−iω+ E[X1|G0]e−iω

P2(X2)e−i2ω + P1(X2)e−i2ω+ E[X2|G0]e−i2ω

. .
. ...

...
...

Pn(Xn)e−inω · · · P2(Xn)e−inω+ P1(Xn)e−inθ+ E[Xn|G0]e−inω


We now sum over the columns, rather than rows, on the right hand side and denote the
column sums by Zk,n(ω)e−ikω. Roughly speaking we show that Zk,n(ω) converge in some
appropriate sense to a Zk(ω)e. By construction (Zk(ω))k≥1 is a stationary martingale
difference sequence. Using the purely non–deterministicness assumption, one can show that
Xn(ω) = n−1/2∑n

k=1 Zk(θ)e−ikθ +oL2(1). Then, define Fω := Var(Z1(ω)), which will be shown
to coincides with the limit in (1.18). Provided that Xn(ω) is tight in H, we deduce the
uniqueness of the weak limit by reducing to their scalar result through projections. Finally
we prove the tightness of Xn(ω), which mainly relies on the fact that E‖Xn(ω)‖2 → ‖Fω‖T ,
when n tends to infinity.
This result is very sharp and is based on almost no assumptions. However, it is not very
practical because we don’t know for which frequency ω it does not hold. (Only if we pick one
at random we can be sure that the CLT holds.) We thus provide a second result under slightly
less general assumptions, Theorem 2, and which is valid for any given ω. We also show that
this new assumption is still general enough, in order to be applicable for most of functional
times series appearing in the literature (Lp-m-approximable processes). In particular we
deduce from Theorem 2 the regular CLT (ω = 0) under new and very mild assumptions.

A uniform periodicity test

In Chapter 3, we investigate the asymptotic behaviour of the maximum, over all fundamental
frequencies, of the norm of the DFT. Let us first present a statistical problem that has
motivated our work. Consider a functional time series of the form

Xt = µ+ st + εt,

where µ ∈ H, st : Z→ H is a d–periodic deterministic sequence of functions in H, and where
(εt)t∈Z is a zero mean functional time series in H. If the period d is known, then Hörmann et
al. (2017) have developed some statistical tests for H0 : ‖st‖ = 0 for all t vs. H1 : ∃t such
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that ‖st‖ 6= 0. In some situation the period d may be unknown. In this case, a statistical
test needs to be based on all potential periods. In particular, it is natural to consider the
statistic Mn = maxj=1,...,q ‖Xn(ωj)‖2 with ωj = 2πj/n, for j = 1, . . . , q = b(n − 1)/2c, and
investigate its behaviour under the null, i.e. when (Xt)t∈Z is an i.i.d. sequence in H. This
problem is delicate. Note that the results of Chapter 2 are not applicable here, because MX

n

depends on an increasing number of frequencies. Here we somehow need to understand the
joint behaviour of (Xn(ω`))`=1,...,q when the number of frequencies q grows with the sample
size. Derivation of the asymptotic distribution of Mn is already quite delicate when (Xt)t∈Z
is an i.i.d. sequence in H. In the scalar case, one can prove that MX

n is in the domain of
attraction of the Gumbel distribution, see Davis and Mikosch (1999).
The purpose of Chapter 3 is to tackle this problem for functional data. Given the complexity of
the problem, we restrict to i.i.d. innovations (εt). Furthermore, we consider the approximated
statistic Mp

n = maxj=1,...,q ‖X p
n(ωj)‖2, where X p

n(ωj) is the p–dimensional approximation of
X p
n(ω) via the Karhunen–Loève expansion. We have showed successively that the three

following statistics: Mp
n, Mpn

n where p = pn ↗ +∞ and Mn are in the attration domain of
the Gumbel distribution. The first result generalises the result of Davis and Mikosch (1999)
in the multivariate setting, the second specify at which rate we can let the dimension p = pn
grow, and the third provides, under some further assumptions on the distribution of Xt, a
trully functional generalisation of Davis and Mikosch (1999). Let (an)n≥1 and (bn)n≥1 be
some normalising sequences (to be defined later). In the first part of the proof we will use
that

a−1
n (Mn − bn) = a−1

n (Mn −Mp
n) + a−1

n (Mp
n − bn) ,(1.19)

and show that the first term converges to zero in probability provided that p grows ”sufficiently”
fast. The growth rate of p depends on the decay rate of the eigenvalues of C = Var(X1). For
the second term, we proceed as follows: it trivially holds that∣∣∣P (a−1

n (Mp
n − bn) ≤ x

)
− e−e−x

∣∣∣ ≤ ρn,p +
∣∣∣P (a−1

n (M̃p
n − bn) ≤ x

)
− e−e−x

∣∣∣ ,
where M̃p

n is defined as Mp
n, but based on i.i.d. Gaussians elements Y1, . . . , Yn with same

covariance operator C as Xt, and ρn,p = supx∈R |P (Mp
n ≤ x)−P (M̃p

n ≤ x)|. To prove that the
second term converges to zero, we first remark that for a fixed p ≥ 1, ‖X p

n (ω)‖2 is distributed
as an hypoexponential random variable, which is already known to belong to the Gumbel
domain of attraction, see e.g. Kang and Serfolo (1999). We show in Lemma 13 that this still
holds when p = o(n) and for an = λ1 and bn = λ1 log(n/2)− λ1

∑∞
j=2 log(1− λj/λ1), where

(λj)j≥ are the decreasingly ordered eigenvalues of C.
In order to get a bound for ρn,p, we use a brilliant result from Chernozhukov et al. (2017).
They provide a Gaussian approximation of P (n−1/2∑n

i=1 ξi ∈ A), where ξ1, . . . , ξn are i.i.d.
random vectors, and A runs through the class of s–sparsely convex subsets of Rd. These
are intersections of sets whose indicator function depends on at most s–components. This
result mainly relies on a sharp anti–concentration inequality due to Nazarov (2003). In our
situation, we deduce that

ρn,p ≤ κ · p
3 log(n)
λ

1/2
p n1/6

, for some constant κ > 0.
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Note that the presence of λp in the denominator is only a problem in the functional setting,
i.e. when we let p go to infinity and thus, λp go to zero. Using this bound, we can show
that under some restrictions on the distribution of Xt, there exists a sequence of integers
p = pn, such that both terms in (1.19) converge, namely that the first one converges to zero
in probability whereas the second one converges in distribution to the Gumbel distribution.
Note that our results generalise the result of Davis and Mikosch (1999) for univariate time
series, to the multivariate and functional setting. In finite dimension, we also investigate the
non i.i.d. case, i.e. when (εt)t∈Z is a linear process. Finally, we describe how to extend the
test in Hörmann et al. (2017) using our results.

Functional GARCH

In Chapter 4, we propose a generalisation of the celebrated GARCH model to the functional
setting. Our model, shown already above in (1.8), is similar to the one of Hörmann et
al. (2013) for the ARCH(1) and Aue et al. (2016) for the GARCH(1,1). Moreover, we also
introduce higher ordered models, i.e. functional GARCH(p,q) for p ≥ 1 or q ≥ 1. Staying
for the moment in the GARCH(1,1) framework, we assume that the operators α and β are
kernel operators, and that

σ2
t (u) = δ(u) +

∫ 1

0
Kα(u, v)y2

t−1(v)dv +
∫ 1

0
Kβ(u, v)σ2

t−1(v)dv, ∀u ∈ [0, 1],(1.20)

where δ(u) > 0, and Kα(u, v), Kβ(u, v) ≥ 0, for all u, v ∈ [0, 1]. Recall that yt(u) = σt(u)ηt(u),
where the innovations process (ηt)t∈Z is an i.i.d. sequence in L2[0, 1], thus, the volatility curves
can be interpreted as the pointwise volatility since we have that

P
(
|yt(u)| < σt(u) ·Qη(u)

1−α/2

∣∣∣ ys, s < t
)

= 1− α, ∀u ∈ [0, 1].

Here QX
α is the α-quantile of the variable X.

Similarly as in the scalar GARCH, the coefficient (operator) α, induces the sensibility of the
volatility to shocks since it produces the dependence between the current volatility curve σ2

t

and the curve y2
t−1. The coefficient (operator) β induces persistence of the volatility, since

it represents the autoregressive dependence of the volatility process. We illustrate these
phenomenons on Figure 8, which displays a simulation of our model.
We use a Gaussian process for the innovations, and thus from the identifiability assumption,
i.e. E[η2(u)] = 1 for all u ∈ [0, 1], we get that Qη(u)

1−α/2 ≈ 2, for the level α = 0.05.
We then show that a sufficient condition for the existence of a non-anticipative ergodic and
strictly stationary solution (yt)t∈Z to (1.8), is that γ < 0, where

γ = lim
t→∞

1
t

log ‖Ψt . . .Ψ0‖ and Ψt :

L2[0, 1] → L2[0, 1]
x 7→ α(x · η2

t ) + β(x).

Our condition is milder than the one recently obtained in Aue et al. (2016), namely
E log ‖Ψ0‖S < 0. Note that in finite dimension, the definition of the so–called Lyapounov top
exponent γ associated to a sequence of random matrices (Ψt)t∈Z, is independent of the matrix
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Figure 8: Solid lines represent the simulated process yt, the shaded area is the region
{[−2σt(u), 2σt(u)] : u ∈ [0, 1]}. The dashed lines are estimators ±2σ̃t(θ̂)(u).

norm used. This is not the case in our situation, since norms are not necessarily equivalent
in L2[0, 1].
For the estimation, we have first attempted a method of moments approach, similar as the
one in Hörmann et al. (2013) for the functional ARCH. Note that from (1.8) we can deduce
that the squares of a functional GARCH satisfy

y2
t − (α+ β)(y2

t−1) = δ + ηt − β(ηt−1),(1.21)

where ηt = y2
t−σ2

t is a martingale difference sequence (MDS). In other words, we can transform
the estimation problem to the functional ARMA context, with MDS innovations. However,
estimation of functional ARMA models is still not tackled adequately in the literature and so
we first tried to develop a fully functional method to estimate the functional moving average
coefficient Θ in (1.6). Unfortunately this approach did not lead to satisfactory results and
seemed overly difficult, see in the Appendix 5.2. Note that recent results of Aue and Klepsch
(2017b) in functional MA estimation look promising and could lead to potential breakthrough
for this approach.
Still, in Chapter 4 we have decided to take an alternative route. We decided to parametrise
our model, i.e. we identify (δ,α,β) with an element θ in some compact space Θ. This is
also the approach in Aue et al. (2016). However, they used a least squares estimator whose
asymptotic normality necessitates eighth order moments and moreover, from classical GARCH
literature it is known that it cannot compete likelihood methods, which are commonly used in
this context. This is why we decided to pursue a quasi maximum likelihood approach. Clearly,
in the infinite dimensional setting we cannot (at least not in a straight forward manner) define
a likelihood function. To this end, we consider some instrumental non-negative functions
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ϕ1, . . . , ϕM in L2[0, 1], and define our estimator θ̂n as the minimiser over Θ of the following
criterion

Q̃n(θ) = 1
n

n∑
t=1

˜̀
t(θ), ˜̀

t(θ) =
M∑
m=1

{
〈y2
t , ϕm〉
〈σ̃2

t , ϕm〉
+ log〈σ̃2

t , ϕm〉
}
,

where the empirical volatility σ̃2
t is computed recursively through a similar equation such

as (1.20) and some initial values y0 and σ̃0 in L2[0, 1]. Under the strong assumption that the
parameters δ, α and β have finite rank, we show that our process can be related to some
multivariate semi–strong CCC-GARCH, i.e. a CCC-GARCH whose innovation process is not
i.i.d. but is rather an MDS. Using this we provide in Theorems 13 and 14 the consistency and
asymptotic normality of θ̂n. As a side result we prove in Theorem 15 and Theorem 16 the
consistency and asymptotic normality of the QML estimator for semi–strong CCC-GARCH
processes.
In a next step we have weakened our assumptions and showed in Proposition 7 that our
estimation method can be adapted to a truly functional setting, i.e. without assuming that
the parameters δ, α and β are of finite rank. Here we were not able to use some underlying
multivariate GARCH process, but we managed to prove the consistency directly by using an
infinite set of functions ϕm’s to identify the true parameter. Then, since the parameter space
Θ is compact, we were able to apply a technical result from Section 2 i.e. Lemma 6. Finally
we supported the relevance of our approach by simulations and illustrated it on some real
data.
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2 On the CLT for discrete Fourier transforms of func-
tional time series

Clément Cerovecki∗ and Siegfried Hörmann†

Abstract

Abstract. The purpose of this paper is to derive sharp conditions under which the
discrete Fourier transform

Xn(ω) := n−1/2
n∑
t=1

Xte
−itω, ω ∈ (−π, π],

of a functional time series (Xt)t∈Z is asymptotically normal. Assuming that the function
space is a Hilbert space we prove that a central limit theorem (CLT) holds for almost all
frequencies ω if the process (Xt)t∈Z is stationary, ergodic and purely non-deterministic.
Under slightly stronger assumptions we formulate versions which provide a CLT for
fixed frequencies as well as for Xn(ωn), when ωn → ω0 is a sequence of fundamental
frequencies. In particular we also deduce the regular CLT (ω = 0) under new and
very mild assumptions. We show that our results apply to the most commonly studied
functional time series.

Keywords: central limit theorem, functional time series, Fourier transform, periodogram,
stationarity

2.1 Introduction
Functional time series analysis is a branch of the emerging statistical field of functional data
analysis (FDA)—we refer to the monographs Ramsay and Silverman (2006); Ferraty and Vieu
(2006); Horváth and Kokoszka (2012); Hsing and Eubank (2012). A quickly accessable recent
overview is presented in Cuevas (2014). An excellent literature survey for recent developments
in FDA can be found in Goia and Vieu (2016). This paper serves as the introduction to a
special volume of JMVA which contains a number of new contributions to the field.
The need for functional time series (FTS) methodology is easily explained by the fact that
many functional data are sequentially sampled and serially correlated by their very nature.
A common situation is that a continuous time process is cut into natural segments, such
as days. Then there is not just dependence within the individual curves but also across
curves and we obtain a time series (Xt)t∈Z with realizations in some function space, i.e., every
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observation Xt is a random curve (Xt(τ) : τ ∈ U) with some continuous domain U . Despite
the fact that there exist a variety of recent results related to forecasting functional time
series data (e.g., Hyndman and Shang (2009); Aue et al. (2015); Ruiz-Medina et al. (2016);
Liebl (2013); Guillas et al. (2011); Kowal et al. (2016); Klepsch and Klüppelberg (2017)),
most of the available FDA methodology is devoted to i.i.d. samples. Functional time series
methodology in general has not yet received as much attention as one might expect. One
of the first and most seminal contributions is Bosq (2000). This monograph is formulating
the basic theoretical foundation for FTS. The book focuses on the analysis of functional
AR (FAR) processes, which are nowadays among the most popular and best studied FTS
models. A core reason for this is that these processes are very convenient for prediction (see
e.g. Kowal et al. (2016); Aue et al. (2015); Guillas et al. (2011); Kargin and Onatski (2008);
Didericksen et al. (2012)). Further refinements related to FAR modeling can e.g. be found in
Damon and Guillas (2005); Mas (2007).
The FAR setting also provides a structural dependence framework. For asymptotic inference
on time series data imposing a certain dependence assumption is crucial. Typically some form
of near-epoch dependence or mixing assumptions, like strong mixing or cumulant mixing, are
used for FTS in order establish large sample results (see e.g. Ferraty et al. (2002); Hörmann
and Kokoszka (2010); Panaretos and Tavakoli (2013a).) In this paper we will work with
so-called purely non-deterministic processes (see Assumption 1 below). This framework is
very general and includes many commonly employed weak-dependence frameworks.
In our paper, like in most other time series contributions, stationarity is a crucial assumption.
To verify this assumption for functional data we refer to Horváth et al. (2014), who propose
corresponding tests.
Lately, there have been some papers devoted to frequency domain analysis for FTS, e.g.,
Panaretos and Tavakoli (2013a); Hörmann et al. (2015a,b). In contrast to the time domain
analysis, which is based on analyzing the data sample and the auto-covariance function, the
frequency domain analysis is grounded on the discrete Fourier transform (DFT)

Xn(ω) = n−1/2
n∑
t=1

Xte
−itω, ω ∈ (−π, π]

of some FTS (Xt)t∈Z and its spectral density operator,

(2.1) Fω :=
∑
h∈Z

Che
−ihω.

Here Ch is the lag h covariance operator of the stationary functional time series—the precise
definition of Ch is given below in Section 2.2. The sample X1, . . . , Xn and (Ch)h∈Z are
equivalent to (Xn(2π`/n))`=−bn−1

2 c,...,b
n
2 c

and (Fω : ω ∈ (−π, π]), respectively, in the sense that
one can be obtained from the other. Depending on the nature of the problem, one or the other
approach may be simpler or more effective. For example, Panaretos and Tavakoli (2013b)
and Hörmann et al. (2015a) demonstrate that dimension reduction via principal components
is more effective (in fact optimal in a certain sense) when done in the frequency domain.
Like for scalar or multivariate time series, the DFT is the main building block for the
frequency domain analysis, and hence understanding its asymptotics is a fundamental
problem. Moreover, the DFT is of direct interest to statisticians since it is closely related to
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the periodogram which can, for example, be used to detect some underlying periodic behavior
of the time series. (See, e.g., Brockwell and Davis (1991).) In Hörmann et al. (2017) a variety
of test statistics which can be used to reveal a periodic trend in a FTS are proposed and
examined. Those tests involve in one or the other way the functional DFT as a building
block. It is demonstrated, for example, that a standard functional ANOVA test—which can
be used for this problem—is composed in such a way. Unless (Xt)t∈Z is a Gaussian process,
the exact distribution of the DFT is unreachable and hence, in order to derive critical values
for the tests, a Fourier CLT is needed. Let us also mention that very recently a bootstrap
procedure to approximate the distribution of Xn(ω) has been developed (Paparoditis (2016)).
Clearly, when ω = 0 we obtain the regular partial sums process, which is without any doubt
of fundamental importance for statistical inference. In Horváth et al. (2013) asymptotic
normality under L2–m-approximability (see Section 2.3.3) is derived and used to test for
equality in mean of two time series samples. This CLT is a special case of our Theorem 7
below.
In a seminal paper Panaretos and Tavakoli (2013a) have shown that under regularity assump-
tions Xn(ω) converges to a (complex) Gaussian random element with covariance operator
Fω. (The actual definition of Fω involves scaling by 1

2π , which we omit here.) Hence, Fω
can be interpreted as the asymptotic covariance operator of the discrete Fourier transform
(DFT). In Panaretos and Tavakoli (2013a) it is assumed that ∑h∈Z ‖Ch‖T <∞ (here ‖ · ‖T
denotes the trace norm—see Section 2.2) in order to assure convergence of the series in (2.1).
It follows that Fω is a nuclear operator, i.e., it has a finite trace. This is an important feature
when it comes to verifying tightness of (Xn(ω))n≥1. Regarding the dependence structure, a
cumulant type mixing condition for functional data is used. The nice feature of such mixing
conditions is that no specific time series model needs to be imposed. Still, this approach
requires to compute and bound functional cumulants of all orders, which is generally not an
easy task and necessitates moments of all orders. The main objective of this paper is then to
relax these conditions. All our theorems below hold assuming only finite second moments and
some very general form of weak dependence.
For real valued processes asymptotic normality for Xn(ω) has been obtained under several
dependence conditions. Here we only cite the early paper of Walker (1965) who considered
linear processes, a survey article of Kokoskza and Mikosch (2000) and the more recent
contributions of Wu (2004) and Peligrad and Wu (2010). The latter paper covers a variety of
special cases, including strong mixing sequences. It also contains a more detailed literature
survey. One of the main results of our article is an extension of the CLT of Peligrad
and Wu (2010) to functional data. We show the weak convergence of Xn(ω) for purely
non-deterministic processes. More precisely, letting Gt = σ(Xt, Xt−1, . . .)—the σ-algebra
generated by (Xs)s≤t—and G−∞ = ⋂

t≥0 G−t we impose the following assumption.

Assumption 1. The process (Xt)t∈Z is stationary and ergodic and satisfies E[X0|G−∞] = 0
a.s.

We remark that a conditional expectation for random elements in Hilbert spaces as just
stated is well defined if E‖X0‖ <∞ (see, e.g., (Bosq, 2000, p.29)). Besides the obligatory
existence of second order moments, Assumption 1 will be the only condition needed for the
CLT presented below in Theorem 1. Since we will not impose any further condition ensuring
summability of the Ch, a tricky part is the construction and definition of the spectral density
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operator. Our construction will be an indirect one based on a completeness argument in an
appropriate Hilbert space.
In Theorem 2 we will give a result which is slightly less general, but is more useful in
applications since it will allow for more explicit constructions of Fω. In our Theorem 3 we
consider the case ω = 0 and derive the CLT for regular partial sums. These main results
along with the precise technical setting are presented in Section 2.2. In Section 2.3 we
consider application of our theorems to so-called Bernoulli shifts. Within this framework
we can further refine the asymptotics and consider the weak convergence of Sn(ωn) when
(ωn)n≥1 is a convergent sequence of fundamental frequencies. We also show how the theorems
apply in some commonly employed dependence frameworks for functional time series models
and compare the required conditions to existing ones in the literature. Proofs are given in
Section 2.4.

2.2 Main results
We start by introducing further notation and stating the setup precisely.
The process (Xt)t∈Z is defined on some probability space (Ω,A, P ) and takes values in some
real separable Hilbert space H0. Although our observations are assumed to be real, the very
definition of Xn(ω) necessitates to adopt a complex setting. So we will henceforth consider
the complex Hilbert space H = H0 + iH0. Throughout u denotes a generic element in H.
Then u is of the form u = u0 + iu1 where u0, u1 denote generic elements in H0. We denote
u = u0 − iu1. The space H is equipped with inner product 〈·, ·〉 and norm ‖ · ‖ =

√
〈·, ·〉

which are induced from the inner product 〈·, ·〉H0 on H0, i.e., 〈u0 + iu1, v0 + iv1〉 = 〈u0, v0〉H0 +
〈u1, v1〉H0 + i

(
〈u1, v0〉H0 − 〈u0, v1〉H0

)
. We write X ∈ LpH(Ω) (short for X ∈ LpH(Ω,A, P )) to

indicate that E‖X‖p <∞. The space LpH(Ω) is a Banach space and for p = 2 again a Hilbert
space with inner product E〈X, Y 〉. The covariance operator Cov(X, Y ) on L2

H(Ω) is defined
as Cov(X, Y )(u) = E

[
(X − EX)〈u, Y − EY 〉

]
and Var(X) := Cov(X,X). We denote by

Ch = Cov(Xh, X0), h ∈ Z, the lag h autocovariance operator of the time series. Expectations
or other integrals for elements with values in Banach spaces are understood in the sense of
Bochner integrals, see, e.g., Mikusiński (1978).
In the following NH0(µ,Σ) denotes a Gaussian element in H0 with mean µ and covariance
operator Σ. Then X ∼ NH0(µ,Σ) if and only if the projection 〈X, u0〉 is normally distributed
with mean 〈µ, u0〉 and variance 〈Σ(u0), u0〉. A complex Z = Z0 + iZ1 ∈ H is said to
be Gaussian if (Z0, Z1) is a Gaussian element in H0 × H0. Define µi = EZi (i = 0, 1),
Vij = Cov(Zi, Zj) (i, j ∈ {0, 1}) and set µ = µ0 + iµ1. Moreover, set Γ = Var(Z) and let
C(u) = E

[
(Z − µ)〈u, Z − µ〉

]
be the relation operator of Z. By simple algebra Γ(u) =

V00(u) + V11(u) + i
(
V10(u)− V01(u)

)
and C(u) = V00(u)− V11(u) + i

(
V01(u) + V10(u)

)
. With

Re(Γ) := V00 + V11 and Im(Γ) := V10 − V01 and analogue definitions for Re(C) and Im(C) it
follows then that

(2.2)
(
Z0
Z1

)
∼ NH0×H0

((
µ0
µ1

)
,
1
2

[
Re(Γ + C) −Im(Γ− C)
Im(Γ + C) Re(Γ− C)

])
.

Relation (2.2) implies that the law of Z is determined by µ, Γ and C. We write Z ∼
CNH(µ,Γ, C). It can be readily shown that Z ∼ CNH(0,Γ, C), if and only if for any u ∈ H
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we have
〈Z, u〉 ∼ CN C

(
0, 〈Γ(u), u〉, 〈C(u), u〉

)
.

In this paper we are mainly dealing with the circularly-symmetric case of Gaussian elements,
i.e., when µ = 0 and C = 0 (see, e.g., (Brockwell and Davis, 1991, p. 444) for the multivariate
case). The other important special case is if Z is real (i.e., when Z1 = 0). This is equivalent
to say that Γ is real and equals C. Then we can either consider Z as element in H0 with
Z ∼ NH0(0,Γ) or view it as an element in H with Z ∼ CNH(0,Γ,Γ). We take the latter
point of view.
Below we will consider bounded linear, compact operators A : H → H. Recall that for
some orthonormal basis (ONB) (vj)j≥1 of H the Hilbert-Schmidt norm of A is ‖A‖S =(∑

j≥1 ‖A(vj)‖2
)1/2

and the Trace norm of A is ‖A‖T = ∑
j≥1〈(A∗A)1/2(vj), vj〉. Both norms

are independent of the choice of (vj : j ≥ 1). If ‖A‖S <∞ we say that A is Hilbert-Schmidt
and if ‖A‖T <∞ we say that A is trace class. We have ‖A‖S ≤ ‖A‖T . If A is self-adjoint
and non-negative definite then tr(A) = ‖A‖T = ∑

j≥1〈A(vj), vj〉. For a zero mean element
X ∈ L2

H(Ω) it holds that tr
(
Var(X)

)
= E‖X‖2. Finally we recall that a sequence of operators

An on H is said to converge in the weak operator topology to A if 〈An(u), v〉 → 〈A(u), v〉 for
all u, v ∈ H. Short we write An w−→ A.

Theorem 1. Let (Xt)t∈Z be a sequence in L2
H0(Ω) which satisfies Assumption 1. Then

for almost every ω ∈ (−π, π] there exists a linear operator Fω, which is self-adjoint and
non-negative definite such that

Xn(ω) d−→ CNH (0,Fω, 0) .

Moreover we have that

(I) Var
(
Xn(ω)

) w−→ Fω;

(II) E‖Xn(ω)‖2 = tr
(
Var

(
Xn(ω)

))
→ tr

(
Fω
)
<∞;

(III) Ch = 1
2π
∫ π
−π Fω eihωdω, ∀h ∈ Z;

(IV) for almost all (ω, ω′) ∈ (−π, π]2 the components of (Xn(ω),Xn(ω′)) are asymptotically
jointly Gaussian and independent.

We call Fω the spectral density operator of (Xt)t∈Z and remark that it is generally not
explicitly defined as in (2.1). In fact, the series in (2.1) may not be convergent under our
mild assumptions. Since

Fn;ω := Var
(
Xn(ω)

)
=

∑
|h|<n

(
1− |h|

n

)
Che

−ihω,

relation (I) implies solely that the Cesàro averages of (Che−ihω)h∈Z converge (in weak operator
topology).
For practical reasons it is useful to know for which frequencies Theorem 1 holds. For example,
ω = 0 is an important special case, but the theorem doesn’t say if this frequency is part
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of the exceptional null set or not. We will see that one of the delicate steps in the proof
of Theorem 1 is to guarantee existence of the operator Fω and to establish the related
convergence in (I) and (II). By the extremely mild assumptions we are imposing, we can
only assure this for almost every ω. Requiring Assumption 2 below allows us to establish the
same result for some fixed frequency ω0. To formulate this assumption we first introduce the
projection operator Pk := E[ · |Gk] − E[ · |Gk−1], k ∈ Z. It is elementary that Pk are linear
operators on L1

H(Ω). We note at at this point that a key property which we will need is
that Cov(Pk(X),P`(Y )) = 0 (the zero operator) for all X, Y ∈ L2

H(Ω) when k 6= `. That is,
projections are strongly orthogonal. (See Lemma 2.)

Assumption 2. The process (Xt)t∈Z is stationary and ergodic and for some ω0 ∈ (−π, π]
the following properties hold:

(A1) Zn(ω0) := ∑n
t=0P0(Xt)e−itω0 is a Cauchy sequence in L2

H(Ω);

(A2) E
∥∥∥E[Xn(ω0)|G0]

∥∥∥2
= o(1).

To get some intuition behind (A1) and (A2) and the general approach we introduce
Z(k)
n (ω) := ∑n

t=0Pk(Xt+k)e−itω and write

n1/2Xn(ω) = n1/2
n∑
k=1
Pk(Xn(ω)) + n1/2E[Xn(ω)|G0]

=
n∑
k=1

n∑
t=k
Pk(Xt)e−itω + n1/2E[Xn(ω)|G0]

=
n∑
k=1

Z
(k)
n−k(ω)e−ikω + n1/2E[Xn(ω)|G0].(2.3)

The variables Z(k)
n (ω), k ≥ 1, are strongly orthogonal and by Assumption (A1) they have a

limit Z(k)(ω) in L2
H(Ω) for ω = ω0. Moreover, it is easy to see that (Z(k)(ω))k≥1 is a stationary

martingale difference sequence. Together with (A2) this guarantees that n1/2Xn(ω) is close
to Tn(ω) := ∑n

k=1 Z
(k)(ω)e−ikω. The partial sum Tn(ω) is more handy when it comes to study

the CLT and to compute the covariance operator. We define

(2.4) Fω := Var
(
Tn(ω)/

√
n
)

= Var
(
Z(1)(ω)

)
.

Theorem 2. Let (Xt)t∈Z be a sequence in L2
H0(Ω) which satisfies Assumption 2 for some

ω0 ∈ (−π, π]. Then
Xn(ω0) d→ CNH

(
0,Fω0 , Cω0),

where Fω0 is defined as in (2.4) and where Cω0 = Fω0I{ω0 ∈ {0, π}}. Furthermore, the
conclusions (I) and (II) of Theorem 1 hold for frequency ω0. If Assumption 2 holds in
addition for some ω′0 6= ±ω0, then conclusion (IV) of Theorem 1 holds with (ω, ω′) = (ω0, ω

′
0).

As a corollary of this theorem, we obtain the CLT for regular partial sums. It can be phrased
as follows.
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Theorem 3. Suppose that (Xt : t ∈ Z) ∈ L2
H0(Ω). If Assumption 2 holds with ω0 = 0, then

(X1 + · · ·+Xn)/
√
n

d→ NH0(0,F0). We have that F0 is a non-negative definite, self-adjoint
and trace-class operator and that

∑
|h|<n

(
1− |h|

n

)
Ch

w→ F0.

We conclude this section with a third and again slightly stronger assumption. Here and in
the sequel νp(X) =

(
E‖X‖p

)1/p
, p ≥ 1.

Assumption 3. The process (Xt)t∈Z satisfies Assumption 1 and

(A3) ∑∞
t=0 ν2(P0(Xt)) <∞.

With this new assumption we can obtain the following useful implications.

Lemma 1. Assumption 3 implies that

(i) Assumption 2 holds for all ω ∈ (−π, π];

(ii) ∑
h∈Z ‖Ch‖S <∞;

(iii) Fω in (2.1) and (2.4) coincide.

The proof of Lemma 1 is given in Section 2.4.

2.3 Application to Bernoulli shifts
The typical framework we have in mind comprises processes (Xt)t∈Z which can be represented
as Bernoulli shifts, i.e.,

(2.5) Xt = f(εt, εt−1, . . .),

where (εt)t∈Z is a stationary and ergodic sequence of elements in some normed vector space
S and f : SN → H0 is measurable. Then (Xt)t∈Z is stationary and ergodic. We remark
that in this case we can use in our theorems the filtration (Gk)k∈Z with Gk = σ(εk, εk−1, . . .).
Representation (2.5) is very common to many time series models. In particular it applies
to the two dependence frameworks we are going to discuss below, namely linear processes
(possibly with dependent noise) and L2 −m–approximable processes. These two concepts
cover most of the functional time series models studied in the literature.
When (εt)t∈Z are i.i.d., then by Kolmogorov’s 0-1 law Assumption 1 applies to all such
processes. The following convenient condition thus implies Assumption 3.

Assumption 4. The process (Xt)t∈Z has representation (2.5) with i.i.d. innovations (εt)t∈Z
and satisfies (A3).

It should be stressed that (εt)t∈Z in (2.5) need not necessarily be independent in order to
yield Assumption 1. For example, if (εt)t∈Z are strongly mixing then the tail sigma algebra
G−∞ is again trivial (see (Bradley, 2005, p.10)).
For Bernoulli shifts, we can obtain the following refinement of our Theorem 2.
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Theorem 4. Suppose that (Xt)t∈Z are square integrable random elements satisfying Assump-
tion 4. Suppose that (ωn)n≥1 and (ω′n)n≥1 are two sequences of fundamental frequencies (i.e.,
ωn ∈ 2π

n
Z) with ωn → ω and ω′n → ω′. Assume further that for all n ≥ 1 it holds that

ωn 6= ±ω′n and ωn, ω′n 6∈ πZ. Then

(Xn(ωn),Xn(ω′n)) d−→ CNH×H

(
0,
[
Fω 0
0 Fω′

]
, 0
)
,

where Fω is defined as in (2.1).

Note that ωn and ω′n are allowed to converge to the same limit. The asymptotic Fourier
transforms will stay independent. We also stress that if ωn → ω ∈ {0, π}, then Xn(ωn) and
Xn(ω) have different asymptotics. While for the first we obtain a complex limiting law, the
distribution of Xn(ω) is real.
In the following subsections we explicitly work out three important types of process and verify
for each Assumption 4. We can thus deduce, that Theorems 1, 2, 3 and 4 are applicable for
these processes.

2.3.1 Linear processes

Consider a linear process Xt = ∑
k≥0 Ψk(εt−k) where (εt)t∈Z are i.i.d. and zero mean in some

Hilbert space H1 and Ψk : H1 → H0 are bounded linear operators. We denote by ‖Ψ‖L the
operator norm.

Theorem 5. If Xt ∈ L2
H0(Ω) then Theorem 1 holds. If in addition κ := ∑

k≥0 ‖Ψk‖L < ∞
and ε0 ∈ L2

H1(Ω) then Assumption 4 holds. Moreover,

Fω = Ψ(ω)VΨ(ω)∗,

where Ψ(ω) = ∑
k≥0 Ψke

−ikω and Ψ(ω)∗ is its adjoint operator and V = Var(ε0).

It is easy to see that ε0 ∈ L2
H1(Ω) implies that Xt ∈ L2

H0(Ω). Consequently, our Theorem 5
improves the corresponding result in Panaretos and Tavakoli (2013a), where it is required
that ε0 ∈ LkH0(Ω) for all k ≥ 1.
When ω = 0 we recover the ordinary CLT for the partial sums of (Xt)t∈Z as, e.g., proven
in Merlevède et al. (1997). While for scalar linear processes the CLT only requires square
summability of the coefficients, the latter authors prove that in infinite dimensional Hilbert
spaces assuming absolute summability is essentially sharp.

Proof. Note that P0(Xt) = Ψt(ε0). Hence, condition (A3) follows immediately and thus
Assumption 4 holds. The rest follows from the implications of Lemma 1.
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2.3.2 Linear processes with dependent errors

Consider once again a linear process Xt = ∑
k≥0 Ψk(δt−k), where now (δt)t∈Z has the Bernoulli

representation (2.5) δt = f(εt, εt−1, . . . ) with i.i.d. innovations (εt)t∈Z.

Theorem 6. Suppose that (Xt)t∈Z is a linear process as stated above, satisfying the summa-
bility condition ∑

k≥0 ‖Ψk‖L <∞, and further assume that the process (δt)t∈Z itself satisfies
condition (A3). Then Assumption 4 holds for (Xt)t∈Z.

For the regular partial sums process, this result compares to Račkauskas and Suquet (2010)
who have studied partial sums of linear processes in Banach spaces. They show that the CLT
for the innovations transfers to the linear process under summability of (‖Ψk‖L)k≥0.

Proof. We only have to prove condition (A3). It holds that∑
t≥0

ν2
(
P0(Xt)

)
≤
∑
t≥0

∑
k≥0

ν2
(
P0(Ψk(δt−k)

)
≤
∑
k≥0
‖Ψk‖L

∑
t≥0

ν2
(
P0(δt−k)

)
<∞.

2.3.3 L2 −m–approximable processes

Hörmann and Kokoszka (2010) have used the concept of Lp−m–approximability for analyzing
dependent functional data. Then a process (Xt)t∈Z is said to be Lp −m–approximable if Xt

has representation (2.5) with i.i.d. innovations and
∞∑
m=1

νp(X0 −X(m)
0 ) <∞,

where X(m)
0 = f(ε0, . . . , ε0−m+1, ε̃−m, ε̃−m−1, . . . ) for some independent copy (ε̃t : t ∈ Z) of

(εt)t∈Z. In Hörmann and Kokoszka (2010) it is shown that this concept applies to many
stationary and non-stationary functional time series models, including, for example, functional
ARCH. The concept is somewhat related to near epoch dependence (NED) often employed in
the econometrics literature. See, e.g., Pötscher and Prucha (1997). If this condition holds
with p > 2, then by a recent result of Berkes et al. (2013) a weak invariance principle for the
partial sums process holds. This result has been sharpened by Jirak (2013) who proved the
same invariance principle under p = 2 and also under a milder coupling condition.

Theorem 7. Suppose that (Xt)t∈Z is L2 −m–approximable. Then Assumption 4 holds.

Proof. We first note that under L2−m-approximability X(s)
s is independent of G0. First note

that the construction yields ν2
(
P0(Xs)

)
= E‖P0(Xs −X(s)

s )‖2. The right hand side can be
bounded by

2E
(
‖E[Xs −X(s)

s |G0]‖2 + ‖E[Xs −X(s)
s |G−1]‖2

)
≤ 4E‖X0 −X(s)

0 ‖2 = 4ν2
2

(
X0 −X(s)

0

)
.
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2.4 Proofs of Chapter 2
Some crucial ideas in our proofs come from Peligrad and Wu (2010). To extend these ideas
to the functional setup, several non-trivial steps need to be added. In particular, showing
existence of the spectral density operator is delicate. Here it arises as a limiting point in
some appropriate Hilbert space—see Lemma 10 and the discussion thereafter. Next, verifying
tightness requires extra efforts (Lemmas 4, 6, 7, 8). One step in our proofs is to apply Peligrad
and Wu (2010) to the projected Fourier transforms. For the proof of Theorem 1 we need to
deal with the fact that each projection will come with its own exceptional set of frequencies
where the CLT might fail and one difficulty is to make sure that the exceptional set for the
functional DFT is still a null-set (Proposition 1).

2.4.1 Preliminary lemmas

We start with a lemma that discusses basic properties of the projection operators Pk.

Lemma 2. Let X, Y ∈ L2
H(Ω).

(i) For integers k 6= ` we have the strong orthogonality relation

Cov
(
Pk(X),P`(Y )

)
= 0;

(ii) If X is G0-measurable, then X = ∑
t≥0P−t(X)+E[X|G−∞] almost surely and in L2

H0(Ω);

(iii) If X is G0-measurable then under Assumption 1∑
t≥0

E‖P−t(X)‖2 = E‖X‖2.

We notice that (iii) can be viewed as Parseval-type identity.

Proof. (i) We have to show that E
[
〈Pk(X), v〉〈P`(Y ), u〉

]
= 0 ∀u, v ∈ H. It holds that

〈Pk(X), v〉 = Pk(〈X, v〉) and hence it is enough to restrict to the scalar case. The result
follows then straight forwardly from elementary properties for conditional expectations of
real valued random variables.
(ii) Note that ∑n

t=0P−t(X) = X − E[X|G−n−1]. We consider the decaying sequence of σ-
algebras (G−k : k ≥ 0). For any integrable random variable X ∈ H the process (E[X|G−k] : k ≥
0) is a reverse martingale with values in H (see, e.g., Chatterji (1964)). It converges a.s. to
E[X|G−∞]. If X is square integrable then convergence also holds in L2

H0(Ω).
(iii) By Assumption 1 and (i) of this lemma it follows that∑

t≥0
E‖P−t(X)‖2 = lim

n→∞
E‖X − E[X|G−n]‖2 = E‖X‖2.
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Let G = L2
H(Ω) and consider the Hilbert space L2

G((−π, π],B, λ), with B and λ being the
Borel σ-field and the Lebesgue measure on (−π, π], respectively. For simplicity we write
L2
G((−π, π]). This space is equipped with inner product (V,W ) =

∫ π
−π E〈V (ω),W (ω)〉dω and

norm |||V ||| =
√

(V, V ).

Lemma 3. Define Zn = Zn(ω) := ∑n
t=0P0(Xt)e−itω. Then (Zn) is a Cauchy sequence in

L2
G((−π, π]), if and only if ∑t≥0E‖P0(Xt)‖2 <∞. Moreover, under Assumption 1 the latter

summability condition holds.

We remark that this lemma provides a slightly weaker version of Assumption 2, part 1.

Proof. Using stationarity and the orthogonality of the functions ω 7→ e−itω, ω ∈ (−π, π],
(t ∈ Z) we obtain for m < n

|||Zn − Zm|||2 =
∫ π

−π
E

∥∥∥∥∥
n∑

t=m+1
P0(Xt)e−itω

∥∥∥∥∥
2

dω = 2π
n∑

t=m+1
E‖P0(Xt)‖2

= 2π
n∑

t=m+1
E‖P−t(X0)‖2.

The result follows by point (iii) of Lemma 2.

It follows under Assumption 1 that there exists an element Z ∈ L2
G((−π, π]) with |||Zn − Z||| →

0. This in turn has some important implications.
(P1) Since

|||Z|||2 =
∫ π

−π
E‖Z(ω)‖2dω <∞,

we conclude that E‖Z(ω)‖2 < ∞ for all ω ∈ M0 = (−π, π]\N0 where λ(N0) = 0. Hence,
for all ω ∈ M0 the covariance operator Fω := Var

(
Z(ω)

)
is well defined, self-adjoint and

non-negative definite. The denotation Fω is intentional. As we will see later it is defining
the spectral density operator (compare to (2.4)). Since tr

(
Fω
)

= E‖Z(ω)‖2, this operator is
trace class. For ω ∈ N0 we set Fω = 0.
(P2) There exists a sequence (nk) such that E‖Znk(ω) − Z(ω)‖2 → 0 for all ω ∈ M1 :=
(−π, π]\N1, where λ(N1) = 0.
(P3) By construction the mapping ω 7→ Z(ω) ∈ G is measurable, and the mapping from
G→ S (the set of Hilbert-Schmidt operators on H) with Z(ω) 7→ Var

(
Z(ω)

)
, is continuous.

Hence, ω → Fω is measurable as a mapping from (−π, π] to the space S, which is known to
be a separable Hilbert space. Consequently the integral in (III) of Theorem 1 is well defined.
The next lemma will be used in the proof of tightness and implies part (II) of Theorem 1.

Lemma 4. Under Assumption 1 we have for all ω ∈M2 = (−π, π]\N2 with λ(N2) = 0 that

tr
(
Fn;ω

)
=

∑
|h|<n

(
1− |h|

n

)
E〈Xh, X0〉e−ihω → tr

(
Fω
)
<∞.

42



Proof. Set ch := (2π)−1 ∫ π
−π E‖Z(ω)‖2eihωdω. Using (i) we infer from the Fejér-Lebesgue

theorem that∑
|h|<n

(
1− |h|

n

)
che
−ihω → E‖Z(ω)‖2 = tr

(
Fω
)
<∞ for almost all ω.

We define M2 as the set of convergence points. We show now that ch = E〈Xh, X0〉. Using
Lemma 3 and continuity of ||| · |||, it can be readily shown that

ch = lim
n→∞

1
2π

∫ π

−π
E‖Zn(ω)‖2eihωdω.

Without loss of generality assume h ≥ 0. Using stationarity we deduce

1
2π

∫ π

−π
E‖Zn(ω)‖2eihωdω =

n∑
t=0

n∑
s=0

E〈P0(Xt),P0(Xs)〉
1

2π

∫ π

−π
e−i(t−s−h)ωdω

=
n∑
t=h

E〈P0(Xt),P0(Xt−h)〉 =
n∑
t=h

E〈P−t(X0),P−t(X−h)〉.

Since by Lemma 2 (i) the terms P−t(X0) and P−s(X−h) are orthogonal in L2
H0(Ω) for s 6= t,

it follows that
1

2π

∫ π

−π
E‖Zn(ω)‖2eihωdω = E

〈
n∑
t=h
P−t(X0),

n∑
s=h
P−s(X−h)

〉
.

By Assumption 1 and Lemma 2 (ii)

(2.6)
n∑
t=h
P−t(X0) =

n∑
t=h
P−t(E[X0|G−h])

L2
H0

(Ω)
−→ E[X0|G−h].

Similarly, ∑n
s=hP−s(X−h)

L2
H0

(Ω)
−→ E[X−h|G−h] = X−h. And hence, by continuity of the inner

product, ch = E
〈
E[X0|G−h], X−h

〉
= E〈Xh, X0〉.

The next lemma yields property (III) of Theorem 1.

Lemma 5. The operators Fω define the spectral density operators of (Xt : t ∈ Z) at frequency
ω. This is

Ch = 1
2π

∫ π

−π
Fω eihωdω, ∀h ∈ Z.

Proof. We have seen in (P3) that the mapping ω 7→ Fω is measurable. The integrand is
valued in the separable Hilbert space S. Since

∫ π
−π ‖Fω‖Sdω ≤

∫ π
−π tr

(
Fω
)
dω <∞ we know

that Fω is strongly integrable and hence we can define (in the sense of a Bochner integral)
I =

∫ π
−π Fω eihωdω. Let u, v ∈ H. Since Bochner integrals are interchangeable with bounded

linear operators we obtain

〈I(v), u〉 =
∫ π

−π
〈Fω(v), u〉eihωdω =

∫ π

−π
E
[
〈Z(ω), u〉〈Z(ω), v〉

]
eihωdω

= lim
n→∞

∫ π

−π
E
[
〈Zn(ω), u〉 〈Zn(ω), v〉

]
eihωdω.
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The last equality can be deduced from |||Zn − Z||| → 0. Assume now without loss of generality
that h ≥ 0. Similar arguments as in Lemma 4 lead to

1
2π 〈I(v), u〉 = lim

n→∞
E

[〈
n−h∑
t=0
P−t(Xh), u

〉 〈
v,

n−h∑
s=0
P−s(X0)

〉]
.

From (2.6) it follows that

1
2π 〈I(v), u〉 = E

[
〈E[Xh|G0], u〉 〈v,X0〉

]
= 〈Ch(v), u〉.

Since u and v are arbitrary in H, we can infer that I = 2πCh.

We show next that the projections 〈Xn(ω), u〉, u ∈ H, converge weakly to 〈S0(ω), u〉, where
S0(ω) ∼ CNH(0,Fω, 0) is the limiting complex Gaussian element and where Fω is defined as
in (P1). The first step towards this result is given by the following proposition.

Proposition 1. Under Assumption 1 there exists for all u ∈ H a set Ñ ⊂ (−π, π] with
λ(Ñ) = 0, such that on M̃ = (−π, π]\Ñ the following holds:

(a) limn→∞Var(〈Xn(ω), u〉) = limn→∞〈Fn;ω(u), u〉 = 〈Fω(u), u〉;

(b) 〈Xn(ω), u〉 d−→ CN C(0, 〈Fω(u), u〉, 0);

Proof. We first show that there exists for all u ∈ H a set Nu ⊂ (−π, π] with λ(Nu) = 0, such
that on Mu = (−π, π]\Nu (a) and (b) hold.
Let u ∈ and let Gk(u) be the filtration of the process (〈Xt, u〉 : t ∈ Z). From the results in
Peligrad and Wu (2010) we obtain that Var(〈Xn(ω), u〉) → fu(ω) for some function fu(ω)
which is finite on Mu. More precisely, slightly adapting the proofs of Lemmas 4.1. and 4.2. in
their article we obtain that the L2(Ω) limit

(2.7) Du(ω) := lim
n→∞

n∑
t=0
P0(〈Xt, u〉)e−itω = lim

n→∞
〈Zn(ω), u〉

exists on Mu and that fu(ω) = Var
(
Du(ω)

)
. (Directly using their arguments would require

to use the projection operator Pu0 (·) = E[ · |G0(u)]−E[ · |G−1(u)].) We assume without loss of
generality that M = M0 ∩M1 is a subset of Mu, otherwise replace Mu by Mu ∩M . We now
determine fu(ω). By result (P2) of Section 2.4.1 it follows that E(〈Znk(ω), u〉−〈Z(ω), u〉)2 →
0 for every u ∈ H and all ω ∈M1. Hence, by result (P1) in the same section, we get

Var
(
〈Znk(ω), u〉

)
→ 〈Fω(u), u〉 <∞,

for all ω ∈ M and all u ∈ H, which implies on Mu the relation fu(ω) = 〈Fω(u), u〉 < ∞.
This shows part (a) on Mu.
We have E[〈Xt, u〉|G−∞] = 〈E[Xt|G−∞], u〉 and by Assumption 1 this is equal to zero. The
tower property of conditional expectations implies E[〈Xt, u〉|G−∞(u)] = 0 and hence on Mu

(b) directly follows from Peligrad and Wu (2010). Let us note that their CLT result is stated
for real valued time series, but this requirement is not needed. Hence we can apply it for the
time series (〈Xt, u〉 : t ≥ 1) which takes values in C when u ∈ H.
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It remains to prove that for all u in H we can find a common exceptional set of Lebesgue
measure 0. To this end let H ′ be a dense and countable subset of H. We set M̃ = ∩u′∈H′Mu.
Then (−π, π]\M̃ has Lebesgue measure 0. Furthermore, for all u′ ∈ H ′ and ω ∈ M̃ (a) and
(b) hold. The objective is now to extend this result to all u ∈ H. For (a) we observe that∣∣∣〈Fn;ω(u), u〉 − 〈Fω(u), u〉

∣∣∣
≤
∣∣∣〈Fn;ω(u), u〉 − 〈Fn;ω(u′), u′〉

∣∣∣+ ∣∣∣〈Fω(u′), u′〉 − 〈Fω(u), u〉
∣∣∣

+
∣∣∣〈Fn;ω(u′), u′〉 − 〈Fω(u′), u′〉

∣∣∣
≤
[
tr
(
Fn;ω

)
+ tr

(
Fω
)]
×
[(
‖u‖+ ‖u′‖

)
× ‖u− u′‖

]
+
∣∣∣〈Fn;ω(u′), u′〉 − 〈Fω(u′), u′〉

∣∣∣.
Since we can assume without loss of generality that M2 ⊂ M̃ , it follows that for all ω ∈ M̃

lim sup
n→∞

∣∣∣〈Fn;ω(u), u〉 − 〈Fω(u), u〉
∣∣∣ ≤ 4ε(‖u‖+ 1) tr

(
Fω
)
,

if ‖u− u′‖ ≤ ε ≤ 1. Since ε can be chosen arbitrarily small result (a) follows.
The proof of part (b) follows along similar lines of arguments. Just compare the characteristic
functions of the real and complex part of 〈Xn(ω), u〉 to the corresponding normal ones.

2.4.2 Tightness

The following technical lemma will be crucial for showing tightness.

Lemma 6. Consider sequences (p(n)
j )j≥1, n ≥ 0, with the following properties: (a) p(n)

j ≥ 0 for
all j, n; (b) limn p

(n)
j = p

(0)
j ; (c) ∑j≥1 p

(0)
j = p <∞; (d) limn

∑
j≥1 p

(n)
j = p; (e) ∑j≥1 p

(n)
j <∞

for all n ≥ 1. Then
lim
m→∞

sup
n

∑
j>m

p
(n)
j = 0.

Proof. Fix an ε > 0. We have to show that for m ≥ m(ε) we have ∑j≥m p
(n)
j < ε for all

n ≥ 1.
By (c) we can choose m1 = m1(ε) such that ∑j≥m p

(0)
j < ε/3 for all m ≥ m1. Furthermore,

by (b) we can choose a large enough n1 = n1(ε) such that for all n ≥ n1 we have |∑m1
j=1 p

(0)
j −∑m1

j=1 p
(n)
j | < ε/3. Next, by possibly further enlarging n1 we deduce from (c) and (d) that

|∑j≥1 p
(n)
j −

∑
j≥1 p

(0)
j | < ε/3. Consequently, for n ≥ n1, we have

∑
j>m1

p
(n)
j =

∑
j≥1

p
(n)
j −

m1∑
j=1

p
(n)
j

≤ |
∑
j≥1

p
(n)
j −

∑
j≥1

p
(0)
j |+ |

∑
j≥1

p
(0)
j −

m1∑
j=1

p
(0)
j |+ |

m1∑
j=1

p
(0)
j −

m1∑
j=1

p
(n)
j |

< ε.
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Because of (a) this bound is still valid for all m ≥ m1. For the n1 just chosen, we can find an
m2 = m2(ε), such that ∑j>m2 p

(n)
j < ε for all n ≤ n1. This is because of (d) and (e) we know

that supn≥1
∑
j≥1 p

(n)
j <∞. And again, because of (a) we know also that ∑j>m p

(n)
j < ε for

all m ≥ m2 and n ≤ n1. Hence, set m(ε) = max{m1,m2}.

Lemma 7. Take some ONB (vj : j ≥ 1) of H. Lemma 6 applies with p
(n)
j = 〈Fn;ω(vj), vj〉,

p
(0)
j = 〈Fω(vj), vj〉 for all ω ∈ M̃ .

Proof. We can assume that (vj)j≥1 belongs to the dense subset H ′ which was defined in
Proposition 1. Relation (a) is trivial. Relation (b) follows from part (a) of Proposition 1.
Relation (c) holds because Fω is nuclear on M̃ . And similarly relation (e) holds because Fn;ω

is nuclear for any n. Finally note that (d) can be reformulated as tr
(
Fn;ω

)
→ tr

(
Fω
)
. By

Lemma 4 this holds for almost all ω ∈M2 ⊂ M̃ .

Lemma 8. Under Assumptions 1 the sequence (Xn(ω))n≥1 is tight for all ω ∈ M̃ .

Proof. Let ε > 0. We consider the sequences 0 < `k ↗∞ and 0 < Nk ↗∞ and define

K =
∞⋂
k=1

x ∈ H :
∑
j>Nk

|〈vj, x〉|2 ≤
1
`k

 .
Just as in Bosq (2000) (p. 52) we can see that it is a compact subset of H. We now have that

P (Xn(ω) ∈ K) ≥ 1−
∞∑
k=1

`k
∑
j>Nk

E
∣∣∣〈Xn(ω), vj〉

∣∣∣2
= 1−

∞∑
k=1

`k
∑
j>Nk

〈Fn;ω(vj), vj〉,

where we used the σ-subadditivity and the Markov inequality. By Lemma 7 we know that

sup
n

∑
j≥m
〈Fn;ω(vj), vj〉 → 0 (m→∞).

Therefore, for any ε > 0, we can choose increasing sequences (`k) and (Nk) such that

`k
∑
j>Nk

〈Fn;ω(vj), vj〉 ≤ ε2−k.

2.4.3 Proofs of Lemma 1 and Theorems 1, 2 and 4

Proof of Lemma 1. It is easy to see that (A3) implies (A1) for all ω ∈ (−π, π]. Now we
prove (A2). By part (iii) of Lemma 2 we have

E‖E[n1/2Xn(ω)|G0]‖2 = n
∑
j≥0

E‖P−j(E[Xn(ω)|G0])‖2 = n
∑
j≥0

E‖P−j(Xn(ω))‖2.
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Therefore we may conclude that

E‖E[n1/2Xn(ω)|G0]‖2 ≤
∞∑
j=0

E
n∑

s,t=1
|〈P−j(Xt),P−j(Xs)〉|

=
∞∑
j=0

n∑
s,t=1

E|〈P−j(Xt),P−j(Xs)〉|

≤
n∑
s=1

∞∑
j=0

( ∞∑
t=0

ν2(P0(Xt+j))
)
ν2(P0(Xs+j)) = o(n).

With the help of Lemma 2 we obtain

‖Ch‖S = ‖EXh ⊗X0‖S ≤
∞∑
k=0
‖EP−k(Xh)⊗ P−k(X0)‖S

≤
∞∑
k=0

ν2 (P0(Xh+k)) ν2 (P0(Xk)) .

Consequently
∞∑

h=−∞
‖Ch‖S ≤

( ∞∑
h=0

ν2 (P0(Xh))
)2

<∞.

This proves (ii) and implies that expression (2.1) is well defined and continuous.
Since now we know that Assumption 2 holds, we infer from Theorem 2 that the Cèsaro means
Fn;ω

w→ Fω, with Fω defined as in (2.4). But (ii) implies that also the regular partial sums∑
|h|<nChe

−ihω converge to the same limit.

Proof of Theorem 1. Parts (II) and (III) of Theorem 1 follow directly from Lemmas 4 and
5. Part (I) can be deduced from the polarization identity for self-adjoint operators Γ

〈Γ(x), y〉 = 1
4
[
〈Γ(x+ y), x+ y〉 − 〈Γ(x− y), x− y〉

+ i〈Γ(x+ iy), x+ iy〉 − i〈Γ(x− iy), x− iy〉
]
,

and from part (a) of Proposition 1. Next, the asymptotic normality of Xn(ω) for all ω ∈ M̃
follows from the corresponding convergence of the projections (Proposition 1, part (b)) and
the tightness shown in Lemma 8.
Finally, the asymptotic independence relation (IV) can be obtained by verifying that the
projections (〈Xn(ω), u〉, 〈Xn(ω′), u′〉) converge for any u and u′ in H to a bivariate complex
Gaussian vector with independent components. Similarly as remarked by Peligrad and Wu
(2010) this amounts to combining the scalar proof with a Wold argument. We sketch the
main steps:
Define σ2

1 = σ2
1(ω, u) = 〈Fω(u), u〉 and σ2

2 = σ2
2(ω′, u′) = 〈Fω′(u′), u′〉 and assume below that

u, u′ ∈ H and ω, ω′ ∈ M̃ (as defined in Proposition 1) with the additional constraints ω 6= ω′

and ω 6= −ω′ (which only exclude an additional null-set of (−π, π]2). We will prove that for
any such choice of u, u′, ω, ω′

(〈Xn(ω), u〉+ 〈Xn(ω′), u′〉)
√
n

d−→ CN C(0, σ2
1 + σ2

2, c),(2.8)
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where c :=
(
〈Fω(ū), u〉I

{
ω ∈ {0, π}

}
+ 〈Fω(ū), u〉I

{
ω′ ∈ {0, π}

})
. From this the asymptotic

independence and joint Gaussianity can be deduced.
From Proposition 1 and its proof we know that (〈Zn(ω), u〉 : n ≥ 1) given in (2.7) converges
in L2(Ω) to some variable Du(ω) with variance σ2

1(ω, u) <∞. This provides the ingredient
for the construction of the martingale approximation as given in (Peligrad and Wu, 2010, p.
11f.). Following their construction we obtain stationary and ergodic martingale difference
sequences (Du

k(ω) : k ≥ 1) such that Du
k(ω) d= Du(ω) and such that

〈n1/2Xn(ω), u〉 =
n∑
k=1

Du
k(ω)e−ikω +Rn and 〈n1/2Xn(ω′), u′〉 =

n∑
k=1

Du′

k (ω′)e−ikω′ +R′n,

where E|Rn|2 + E|R′n|2 = o(n). (See also the discussion after our Theorem 2.) For simplicity
we write henceforth Dk = Du′

k (ω′) and D′k = Du′
k (ω′) and set Yk := Dke

−ikω +D′ke
−ikω′ . Then∑n

k=1 Yk is itself a martingale to which we will apply a martingale CLT. Due to

Sn := 〈n1/2Xn(ω), u〉+ n1/2Xn(ω′), v〉 =
n∑
k=1

Yk +Rn +R′n

this CLT carries over to Sn. The Lindeberg condition for this martingale is easily checked.
As for the asymptotic variance we have

1
n

n∑
k=1

E[|Yk|2 |Gk−1] = 1
n

n∑
k=1

E[|Dk|2 |Gk−1] + 1
n

n∑
k=1

E[DkD′k |Gk−1]e−ik(ω−ω′)

+ 1
n

n∑
k=1

E[D′kDk |Gk−1]e−ik(θ′−θ) + 1
n

n∑
k=1

E[|D′k|2 |Gk−1]

a.s.−→ E|D1|2 + E|D′1|2 = σ2
1 + σ2

2,

where we applied the ergodic theorem and Lemma 5 in Wu (2004) for the middle terms. This
Lemma applies if ω 6= ω′. If ω + ω′ 6= 0 we obtain by the same lemma for the asymptotic
relation

1
n

n∑
k=1

E[Y 2
k |Gk−1] = 1

n

n∑
k=1

E[D2
k |Gk−1]e−2ikω

+ 1
n

n∑
k=1

E[2DkD
′
ke
−ik(ω+ω′) |Gk−1] + 1

n

n∑
k=1

E[(D′k)2 |Gk−1]e−2ikω′

a.s.−→ ED2
1I{ω ∈ {0, π}}+ E(D′1)2I{ω ∈ {0, π}} = c.

Proof of Theorem 2. Let ω0 ∈ (−π, π] be such that Assumption 2 is satisfied. For notational
convenience we use for the proof ω = ω0. Due to relation (2.3) and stationarity, we have that

E‖Xn(ω)‖2 = 1
n

n∑
k=1

E‖Z(k)
n−k(ω)‖2 + E

∥∥∥E[Xn(ω)|G0]
∥∥∥2

= E‖Z(1)(ω)‖2 + o(1),
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hence (II) holds. Moreover, we have

E|〈Xn(ω), u〉|2 = E|〈Z(1)(ω), u〉|2 + o(1)

and with the polarization identity this shows (I). The CLT for the projections 〈Xn(ω), u〉,
as well as its bivariate version when considering two frequencies, can be shown by the same
martingale approximation as in the proof of Theorem 1. Also the proof of tightness of Xn(ω)
doesn’t require any new ideas and can be shown along the same lines as in the proof of
Theorem 1.

Proof of Theorem 4. The first step is again to show that Xn(ωn) can be approximated by
a martingale just as in the case when the frequency is fixed. From Lemma 1 we know
that both conditions of Assumption 2 are satisfied for any frequency. We may thus de-
fine Z(k)(ω) := ∑∞

t=0Pk(Xk+t)e−itω (as a limit in L2
H(Ω)) and the variables X̃n(ωn) :=

n−1/2∑n
k=1 Z

(k)(ω)e−ikωn . Then

n1/2
(
Xn(ωn)− X̃n(ωn)

)
=

n∑
k=1

(
Pk(Sn(ωn))− Z(k)(ω)e−ikωn

)
+ E[n1/2Xn(ωn)|G0].

From the proof of Lemma 1 we infer that ‖E[n1/2Xn(ωn)|G0]‖ = o(n). Furthermore, using
orthogonality, we get

ν2
2

(
n∑
k=1

(
Pk(n1/2Xn(ωn))− Z(k)(ω)e−ikωn

))

=
n∑
k=1

ν2
2

(
n∑
t=k
Pk(Xt)e−itωn − Z(k)(ω)e−ikωn

)

=
n∑
k=1

ν2
2

(
Z

(k)
n−k(ωn)− Z(k)(ω)

)
.

It is easy to show that (A3) and ωn → ω imply that the last term is o(n).
Fix some arbitrary u, u′ ∈ H, define σ2

1 and σ2
2 as in the proof of Theorem 1. Moreover, we set

Dk := limn→∞〈Z(k)
n (ωn), u〉 and D′k = limn→∞〈Z(k)

n (ω′n), u′〉 and Y n
k := Dke

−ikωn +D′ke
−ikω′n .

We show that

(〈X̃n(ω), u〉+ 〈X̃n(ω′), u′〉) = 1√
n

n∑
k=1

Y n
k

d−→ CNC(0, σ2
1 + σ2

2, 0).

To this end we apply a martingale CLT to the array of martingale differences (Y n
k )1≤k≤n,

n ≥ 1. The Lindeberg condition is easily checked and it remains again to determine the
asymptotic variance and relation. In analogy to the proof of Theorem 1 we get

1
n

n∑
k=1

E[|Y n
k |2 |Gk−1] = 1

n

n∑
k=1

E[|Dk|2 |Gk−1] + 1
n

n∑
k=1

E[DkD′k |Gk−1]e−ik(ωn−ω′n)

+ 1
n

n∑
k=1

E[D′kDk |Gk−1]e−ik(ω′n−ωn) + 1
n

n∑
k=1

E[|D′k|2 |Gk−1],
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and by the exact same arguments the first and the last term converge to σ2
1 and σ2

2, respectively.
In order to deal with the middle term we set Uk := E[DkD′k |Gk−1] and our target is to prove
that

1
n

n∑
k=1

Uke
−ik(ωn−ω′n) P−→

n→∞
0.

The third term can be treated analogously. For some m ≥ 1 set Um
k = E[Uk|εk−1, . . . , εk−m−1].

Then (Um
k )k≥1 is a strictly stationary and m-dependent sequence which satisfies Um

k
L1
−→

E[Uk|εk−1, . . . ] = Uk (m → ∞). Thus, for any ε > 0 we can find a large enough m ≥ 1
such that E|U1 − Um

1 | ≤ ε2. Now we set αn := ωn − ω′n and note that by our assumptions∑n
k=1 e

−ikαn = 0. It follows that

P

(∣∣∣∣ 1n
n∑
k=1

Uke
−ikαn

∣∣∣∣ > ε

)

≤ P

(∣∣∣∣ 1n
n∑
k=1

(Uk − Um
k )e−ikαn

∣∣∣∣ > ε/2
)

+ P

(∣∣∣∣ 1n
n∑
k=1

Um
k e
−ikαn

∣∣∣∣ > ε/2
)

≤ E |U1 − Um
1 |

ε/2 + P

(∣∣∣∣ 1n
m∑
j=1

∑
1≤k≤n
m|(k−j)

(
Um
k − EUm

k

)
e−ikαn

∣∣∣∣ > ε/2
)

≤ ε/2 +
m∑
j=1

P

(∣∣∣∣ 1
n/m

∑
1≤k≤n
m|(k−j)

(
Um
k − EUm

k

)
e−ikαn

∣∣∣∣ > ε/2
)
.(2.9)

Here m|` signifies that m is a divisor of `. For k = j, j + m, j + 2m, . . . the terms Um
k are

i.i.d. Thus, we can apply the weighted law of large numbers in Pruitt (1966) to obtain that
for large enough n ≥ n0(ε,m) each of the probabilities in (2.9) is ≤ ε/(2m).
By the same kind of arguments it can be seen that the asymptotic relation is zero.
Finally, in order to show the tightness of Xn(ωn), we need to apply Lemma 6 with p

(n)
j =

E|〈Xn(ωn), vj〉|2, and p(0)
j = E|〈Fω(vj), vj〉| = E|〈Z(1)(ωω), vj〉|2, where (vj)j≥1 is an arbitrary

ONB. Using the previous approximation Xn(ωn) = X̃n(ω) + oL2(1), it is easy to check that
conditions (a)-(e) are satisfied. With this we can conclude along the lines of Section 2.4.2.
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3 On the maximal norm of the functional periodogram

Clément Cerovecki∗, Vaidotas Characiejus† and Siegfried Hörmann‡

Keywords: Functional time series, Gaussian approximation, Extreme value distribution,
Fourier transform

Abstract

We consider the periodgram of multivariate and functional data and derive the
limiting distribution of the maximal norm over fundamental frequencies. We provide
conditions which assure that this maximum is in the domain of attraction of the
Gumbel distribution. Our results generalize a theorem of Davis and Mikosch (1999)
to multivariate and functional data. We consider an application to testing for hidden
periodic patterns in functional time series.

3.1 Introduction
Consider some time series (Xt)t∈Z. Let i =

√
−1 and let

Xn(ω) = 1√
n

n∑
t=1

Xte
−itω

be the discrete Fourier transform (DFT) of the sample. Define

(3.1) In(ωj) := |Xn(ωj)|2, ωj = 2πj
n
, 1 ≤ j ≤ q :=

⌊
n− 1

2

⌋
.

Here |z|2 = zz̄ is the squared modulus of some complex number z. Then In(ωj) are the
periodogram ordinates of the sample X1, . . . , Xn on fundamental frequencies ωj . The
periodogram is a well known and important tool in time series analysis. It is the main
ingredient for estimation of the spectral density f(ω) :=

∑
k∈Z Cov(Xk, X0)e−ikω of the

series (Xt)t∈Z as well as the key statistic for detection of periodic signals in the data.
For example, if

Xt = µ0 + α cos(ωjt+ ϑ) + ξt,

and if ξ1, . . . , ξn
i.i.d.∼ N (0, σ2), then In(ωj) will diverge at rate n if α 6= 0, while the

In(ωk), k 6= j, will be i.i.d. exponential variables. See e.g. Brockwell and Davis (1991).
In the above situation, when ωj is an unknown frequency, it is natural to consider the

statisticMn = maxj=1,...,q In(ωj). Since under the null (α = 0) the In(ωj), 1 ≤ j ≤ q, are
∗Université libre de Bruxelles, Boulevard du Triomphe, CP210 B-1050 Brussels - Belgium Office: NO

O.9.211. E-Mail address: clement.cerovecki@ulb.ac.be
†Université libre de Bruxelles, Boulevard du Triomphe, CP210 B-1050 Brussels - Belgium Office: NO

O.9.211. E-Mail address: vaidotas.characiejus@ulb.ac.be
‡Université libre de Bruxelles, Boulevard du Triomphe, CP210 B-1050 Brussels - Belgium Office: NO

O.9.115 shormann@ulb.ac.be
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i.i.d. exponential variables, it follows immediately that Mn is in the domain of attraction
of a Gumbel distribution. A natural question is what happens if the noise variables
(ξt)t∈Z are no longer i.i.d. Gaussian. To this end, consider 0 < λ1 < · · · < λm < π and
fundamental frequencies ω`,n → λ` (n→∞). It is well known that for stationary time
series it holds under certain regularity assumptions that

(3.2)
(
In(ω1,n), . . . , In(ωm,n)

) d→
(
f(λ1)E1, . . . , f(λm)Em

)
,

where Ek
i.i.d.∼ Exp(1). Such a result has e.g. been obtained by Peligrad and Wu

(2010) under very sharp conditions. It suggests that for i.i.d. (ξt)t∈Z (in this case
f(λ) ≡ Var(ξ1)) the periodogram ordinates (In(ωj))j=1,...,q behave approximately like
i.i.d. exponential variables. Indeed, Davis and Mikosch (1999) have proven that the
asymptotic Gumbel distribution of Mn still holds if (ξt)t∈Z is an i.i.d. sequence with
s > 2 moments. This result has later been extended by Lin and Liu (2009) to a broad
class of stationary processes. However, the problem is quite delicate and it is important
to note that (3.2) cannot be directly applied since the statistic Mn depends on all
fundamental frequencies, while the result in (3.2) applies to a fixed and finite number
of frequencies.

The purpose of this article is to extend the result of Davis and Mikosch (1999) to
high dimensional data. We are primarily interested in functional data, i.e. when each
variable Xt takes values in some infinite dimensional function space H0. In passing, we
will also consider H0 = Rp, p ≥ 1. For the functional data, we restrict our attention
to observations with values in some separable Hilbert space, like the space of square
integrable functions on [0, 1]: H0 = L2([0, 1]). Since the p-dimensional Euclidian space
is also a separable Hilbert-space we usually don’t have to distinguish between functional
and multivariate in terms of notation. For example, the definition and notion of the
DFT for functional data is the same as above in the scalar setting. Before we go more
into details of our theory, let us first introduce some further notation which will be
used throughout this paper.

By its very definition Xn(ω) is an element in the complex Hilbert space H := H0⊕iH0.
The space H0 is equipped with some inner product 〈·, ·〉 and corresponding norm ‖ · ‖.
The space H inherits the Hilbert space structure from H0. The complex inner product
is defined as 〈u, v〉H0 = 〈u0, v0〉+ 〈u1, v1〉+i(〈u1, v0〉−〈u0, v1〉) for any u = u0 +iu1 and
v = v0 + iv1 in H. For a lighter notation we will henceforth consider H0 as a subspace
of H and then use 〈·, ·〉 for the real and the complex inner product. We do the same for
the norm and other definitions to come. We denote by L(H) the space of bounded linear
operators on H and equip it with the usual operator norm ‖α‖ = sup‖x‖=1 ‖α(x)‖. We
say that an operator α is Hilbert-Schmidt (trace-class) if its singular values (σk)k≥1 are
square summable (absolutely summable). We define the corresponding Hilbert-Schmidt
norm ‖α‖S =

(∑∞
k=1 σ

2
k

)1/2 and trace-class norm ‖α‖T =
∑∞
k=1 σk. We further define

the outer-product operators x⊗ y : u 7→ x〈u, y〉, for x, y ∈ H. In particular this gives
rise to the covariance operator Var(X) := E[(X −EX)⊗ (X −EX)]. We note that for
H0 = Rp this is the usual covariance matrix. For more details on random elements in
Hilbert spaces, we refer to Bosq (2000).

With this notation at hand, we can define the functional periodogram:

In(ωk) := Xn(ωk)⊗Xn(ωk), ωk = 2πk
n
, 1 ≤ k ≤ q :=

⌊
n− 1

2

⌋
.
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We refer to Panaretos and Tavakoli (2013a). In this article, we investigate the following
statistic

Mn = max
j=1,...,q

‖In(ωj)‖ = max
j=1,...,q

‖Xn(ωj)‖2.(3.3)

The main objective of this paper is to obtain the limiting distribution of Mn when
X1, X2, . . . is a functional random sample. To this end we first tackle the multivariate
case and show that if E‖X1‖s < ∞ for some s > 2 then Mn is in the domain of
attraction of the Gumbel distribution. To the best of our knowledge this result is the
first multivariate extension of Davis and Mikosch (1999). We also provide a further
extension to linear processes following the classical approach of Walker (1965). As
an application we show how to extend some of the tests for hidden periodic signals
proposed by Hörmann et al. (2017) to the case where the frequency is unknown.

In a second step we pass from multivariate to infinite dimensional data. We follow
a common approach in FDA, which is to project the functional data on the first
p = pn eigenfunctions (principal components) of Var(X1) and let p→∞. This step is
technically quite delicate. The main ingredient of our proof is based on a Gaussian
approximation result from Chernozhukov et al. (2017) which in turn relies on a powerful
anti-concentration inequality due to Nazarov (2003).

The rest of the paper is organized as follows, in Section 3.2 we formulate our main
theorems. We illustrate in Section 3.3 how to use these results for detecting a periodic
signal in functional time series at some unknown frequency. The proofs are given in
Section 3.4.

3.2 Main results
In the following we assume that X1, X2, . . . are i.i.d. functional data with covariance
operator C = Var(X1). We denote by v1, v2, . . . the eigenfunctions of C with corre-
sponding eigenvalues λ1 > λ2 > · · · . To simplify some arguments we assume throughout
distinct eigenspaces, which is a common assumption in functional data analysis. For
some integer p ≥ 1 we further define

X pn(ω) =
p∑

k=1

n∑
t=1

1√
n
〈Xt, vk〉vke−itω and Ipn(ω) = X pn(ω)⊗X pn(ω).(3.4)

In other words we consider Xn(ω) and In(ω) as defined in Section 3.1, but with Xt

replaced by P{span(v1,...,vp)}(Xt), i.e. the projection of Xt onto the space spanned by the
first p eigenfunctions of C. Obviously, if Xt ∈ Rp then X pn(ω) = Xn(ω).

We will now investigate the asymptotic behaviour of Mp
n = max1≤j≤q ‖X pn(ωj)‖2

when p is fixed. Later we will consider the case p→∞. To this end let us introduce
the following centering constants:

(3.5) bpn = λ1 log(nα1,p/2), where α1,p =
p∏
j=2

(1− λj/λ1)−1.

Theorem 8. If E‖X1‖s <∞, for some s > 2, we have that

(3.6) Mp
n − bpn
λ1

d→ G (n→∞),

where G follows a standard Gumbel distribution.
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The proof of Theorem 8 mainly relies on a Gaussian approximation due to Cher-
nozhukov et al. (2017). These authors provide high-dimensional uniform Berry-Esseen-
type bounds for the multivariate central limit theorem. We summarize this result
and provide the explicit bounds which we need in Section 3.4.3. After this Gaussian
approximation step, it will turn out that we can restrict our asymptotic investigation
to that of M̃p

n, where M̃p
n is just defined as Mp

n but with Xt replaced by some i.i.d.
Gaussian sequence (Zt)t∈Z with Var(Zt) = Var(Xt).

As it was already hinted above, Theorem 8 applies to the particular case when H
is the p-dimensional Euclidean space. To our knowledge, this is the first multivariate
generalization of Theorem 2.1 in Davis and Mikosch (1999). In Section 3.3.1 we will
further investigate this finite dimensional setting, in particular we will extend it to non
i.i.d. processes.

We now present a first extension of Theorem 8, when p = pn ↗∞.

Theorem 9. We assume that E‖X1‖4 <∞, and that there exists an k0 ≥ 2 such that

kλk ≥ (k + 1)λk+1, for all k ≥ k0.(3.7)

Then the conclusion of Theorem 8 still holds if p is replaced by an increasing sequence
of integers (pn)n≥1 which satisfies conditions

p3
n

λ
1/2
pn

= o

(
n1/6

log7/6(n)

)
and pn = O

(
nγ0
)
,(3.8)

with

γ0 < min
{

min
2≤k≤k0

1
k

(
λ1
λk
− 1

)
, 1
}
.(3.9)

Remark 1. Condition (3.7) is a very mild restriction. Indeed, since the eigenvalues
are positive, decreasing and summable, we already know that kλk → 0, when k → +∞.
The condition further requires that the sequence kλk is eventually decreasing.

If we let p grow to infinity, then we can choose a location sequence (bn)n≥1 in (3.6)
which is independent of p. This is implied by the following simple lemma.

Lemma 9. For any sequence of integers pn ↗∞, we have that

|bpnn − bn| −→ 0 (n→∞),(3.10)

where bn = λ1 log(n/2)− λ1
∑∞
j=2 log(1− λj/λ1). The latter series converges.

We now present our last main result which provides the asymptotic behaviour of
the fully functional statistic Mn. Not surprisingly, the necessary technical conditions
are intimately connected with the decay rate of the eigenvalues (λk)k≥1 of C.

Theorem 10. We suppose that E‖X1‖4 < ∞, and that there is a sequence (pn)n≥1
which satisfies conditions from Theorem 9. Consider some sequence (`k)k≥1 of positive
numbers such that

∑∞
k=1 `k = 1, some s > 2, and assume that

(3.11)
∑
k>pn

`
−s/2
k E |〈X1, vk〉|s = o(ns/2−1)
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and that

(3.12)
∑
k>pn

(λk/`k)s/2 = o(1/n),

Then λ−1
1 (Mn − bn) d→ G, where G follows a standard Gumbel distribution.

Note that since s/2− 1 > 0, a sufficient condition for (3.11) to hold is that

(3.13) sup
k≥1

E|〈X1, vk〉|s

λ
s/2
k

= C <∞.

For example, this condition is satisfied by Gaussian processes for arbitrarily large s.
For the sake of explicit conditions we will consider in the corollary below two special

cases. We let ak ∼ bk indicate that lim sup |ak/bk| <∞ and lim sup |bk/ak| <∞.

Corollary 1. Suppose that (3.7). Furthermore, assume that one of the conditions

λk ∼ ρk for some 0 < ρ < 1,(E1)
λk ∼ k−ν for some ν > 1,(E2)

is satisfied. Then under (E1) conditions (3.8), (3.11) and (3.12) hold if E‖X‖2(s−1) <
∞ with s > 6. Moreover, these conditions hold under (E2) if ν and s are such that
s > 2

ν−1 and

1
(ν − 1)s/2− 1 < min

{
s− 2

2 + s− ν
,

1
6 (ν/2 + 3) , min

2≤k≤k0

1
k

(
λ1
λk
− 1

)
, 1
}
.(3.14)

Consequently, Theorem 10 applies.

We remark that for big enough s, (3.14) can always be verified.

So far we have assumed that C and its eigenvalues (λk)k≥1 where known. In the
next lemma we show that our results remain valid if we replace λ1 and bpn by estimators
λ̂1 and b̂pn = λ̂1 log(nα̂1,p/2), where α̂1,p =

∏p
j=2(1− λ̂j/λ̂1)−1.

Lemma 10. Let X1, X2, . . . be an i.i.d. sequence with E‖X1‖4 < ∞. Let λ̂k be the
empirical eigenvalues, i.e. the eigenvalues of

Ĉ = 1
n

n∑
t=1

(Xt − X̄)⊗ (Xt − X̄).

If p = o
(
n1/2) and if Mp

n − bpn converges weakly, then

λ−1
1 (Mp

n − bpn)− λ̂−1
1 (Mp

n − b̂pn) P→ 0 (n→∞).(3.15)

3.3 Testing for hidden periodicities
In this section we present some statistical applications of Theorems 8 and 9. Similarly
as in Hörmann et al. (2017) our objective is to test the presence of a periodic component
in a functional times series. In contrast to the aforementioned authors, we do not
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assume that the frequency of the potential periodic signal is known. Our model is given
as follows.

Xt = µ+mt + εt(3.16)

where µ ∈ H, m : Z → H is a d–periodic deterministic function for some unknown
integer d ≥ 1, and (εt)t∈Z is a centered H-valued noise process. We impose the
identifiability constraint

∑d
t=1mt = 0 and then consider the following testing problem:{
H0 : m1 = · · · = md = 0,
H1 : max1≤t≤d ‖mt‖ > 0.

(3.17)

For the sake clarity we specify in this section the process on which our statistics
are defined in terms of superscript, e.g. XXn (ω) = n−1/2∑n

t=1Xte
−itω or X εn(ω) =

n−1/2∑n
t=1 εte

−itω. We have that

MX,p
n ≥ ‖XX,pn (2π/d)‖2 ≥ ‖Xm,pn (2π/d)‖2 − 2‖X ε,pn (2π/d)‖ · ‖Xm,pn (2π/d)‖.

Furthermore, we know that ‖X ε,pn (2π/d)‖ d→
√
U , where U is a hypo–exponential

random variable whose parameters are the p first eigenvalues of F2π/d. Under the
alternative we have for any n > d, that

x2
n := ‖Xm,pn (2π/d)‖2 = 1

n

p∑
k=1

∣∣∣∣∣
n∑
t=1
〈mt, vk〉e−

it2π
d

∣∣∣∣∣
2

≥ 1
n

⌊
n

d

⌋2 p∑
k=1

∣∣∣∣∣
d−1∑
t=0
〈mt, vk〉e−

it2π
d

∣∣∣∣∣
2

− 1
n

p∑
k=1

∣∣∣∣∣∣
n∑

t=n−dbn/dc+1
〈mt, vk〉e−

it2π
d

∣∣∣∣∣∣
2

.

This term tends to ∞ at rate proportional to n whenever there is at least one j ∈
{1, . . . , k} such that (〈m1, vj〉, . . . , 〈md, vj〉)′ is not orthogonal (e−

i2π
d , e−

i4π
d , . . . , e−

i2dπ
d )′.

Therefore, we get that ‖X ε,pn (2π/d)‖/xn = oP (1), which shows that under the alternative
Mp
n

P→∞.

We will first assume that

Assumption 5. The noise (εt)t∈Z is i.i.d. with E‖ε1‖4 <∞.

Remark 2. From Proposition 10 and Assumption 5 we know that all the results of this
section are valid if we replace an and bpn by their estimates. Moreover, the identifiability
constraints ensures that the estimator are still convergent under the alternative, e.g. we
have that

X = µ+ ε+ 1
n

n∑
t=n−dbn/dc+1

mt −→
n→∞

µ,

almost surely and in L1(Ω).

56



3.3.1 Projection approach

In practise functional data are only available through a finite dimensional representation
based on some appropriate smoothing method. It is thus natural to assume in a
first step, that there exists a set of orthonormal functions ϕ1, . . . , ϕp in H such that
Xt =

∑p
k=1〈Xt, ϕk〉ϕk for all t ∈ Z. Let Xt = (〈Xt, ϕ1〉, . . . , 〈Xt, ϕp〉)′, we consider the

following multivariate analogue of model (3.16)

Xt = µ+ mt + εt(3.18)

where µ ∈ Rp, m : Z → Rp is a d–periodic deterministic function for some integer
d ≥ 1, and (εt)t∈Z is a centered Rp-valued process.

The following result is a direct consequence of Theorem 8:

Test 1. Under Assumption 5, the test that rejects H0 if

λ̂−1
1 (MX

n − b̂pn) > QG1−α,(3.19)

has asymptotic level α.

Here QG1−α is the (1− α)–quantile of the Gumbel distribution.
Assuming i.i.d. innovations is certainly a restriction. We thus consider the following

generalization:

Assumption 6. The noise (εt)t∈Z is a linear process i.e. εt =
∑
k≥0 ΨkZt−k where

(Zt)t∈Z are i.i.d. innovations in Rp with E‖Z1‖4 <∞, Var(Z1) = Σ and

(3.20)
∞∑
k=0

k1/2‖Ψk‖ <∞ and c := sup
ω∈[0,π[

‖F−1
ω ‖ <∞,

where Fω, denotes the spectral density matrix of (εt)t∈Z (see hereafter). We will further
assume that for some estimator F̂ω we have

(3.21) max
1≤j≤q

‖F̂ωj − Fωj‖ = oP (n−1/4).

We note that (3.21) can be obtained under mild assumptions. See e.g. Theorem 2.1
in Politis (2011). We recall that the spectral density matrix of a multivariate process
(Xt)t∈Z is defined as

Fω =
∑
h∈Z

Che
−itω ∀ω ∈ [−π, π],

where Ch = Cov(Xh,X0). A simple estimator of Fω, is given by

F̂ωj =
∑
|h|<`n

(
1− |h|

`n

)
Che

−itωj 1 ≤ j ≤ q,

for some appropriate sequence `n ↗∞. We tacitly assume in the following that `n is
such that the corresponding estimator is consistent, see e.g. Brillinger (1969) or Politis
(2011) for more details. Then we define the test statistic

LX
n := max

1≤j≤q
‖F̂−1/2

ωj X
X
n (ωj)‖2 = max

1≤j≤q
tr
(
F̂−1
ωj I

X
n (ωj)

)
,

where A∗ is the conjugate transpose of a matrix A. In order to get a test that is valid
under Assumption 6, we need the following result.
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Theorem 11. Let cpn = log(n/2) + (p − 1) log log(n/2) − log[(p − 1)!]. Then under
Assumption 6 and under H0 we have that LX

n − cpn
d→ G.

We note that in this theorem we do not require distinct eigenvalues of C. The
following result is now immediate:

Test 2. Under Assumption 6, the test that rejects H0 if

LX
n − cpn > QG1−α,(3.22)

has asymptotic level α.

Note that this test is not a generalization of Test 1. This new test attributes the
same importance to each eigenvector v1, . . . , vp of the covariance matrix C0 = Var(X).
Indeed, even under independence Fω = C0, we have that

‖F̂−1/2
ωj X

X
n (ωj)‖2 =

∥∥∥∥∥n−1/2
n∑
t=1

Ĉ−1/2
0 Xte

−itω
∥∥∥∥∥

2

6= ‖XX
n (ω)‖2,

so in general, LX
n 6= MX

n .

3.3.2 Functional test

Now we would like to take into account the infinite dimensional character of functional
data. Here we limit ourselves again to Assumption 5. Then the following results are
immediate applications of Theorems 9 and 10.

Test 3. Under Assumption 5, the test that rejects H0 if

λ̂−1
1 (MX,pn

n − b̂pnn ) > QG1−α,(3.23)

has asymptotic level α, for any sequence (pn)n≥1 that satisfies conditions (3.8).

Test 4. Under Assumption 5 and the assumptions of Theorem 10, the test that rejects
H0 if

λ̂−1
1 (MX

n − b̂n) > QG1−α,(3.24)

has asymptotic level α.

Remark 3. Note that we are interested in detecting large values of ‖X (ωj)‖2. This is
why we only consider the right tail of the Gumbel distribution in our tests.

3.4 Proofs of Chapter 3
3.4.1 Proofs of the main results

Proof of Lemma 9. Note that

bpn = λ1 log(n/2) − λ1

p∑
j=2

log(1− λj/λ1)

and log(1− λj/λ1) ≤ λj/λ1. The result follows from
∑
j≥1 λj = ‖C‖ <∞.
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Proof of Lemma 10. It is well known that

sup
j≥1
|λj − λ̂j | ≤ ‖C − Ĉ‖ = OP

(
n−1/2).(3.25)

In particular, (3.25) yiels that |1/λ1 − 1/λ̂1|
P→ 0. By elementary algebra we get

Mp
n − bpn
λ1

− Mp
n − b̂pn
λ̂1

= (Mp
n − bpn)

(
1
λ1
− 1
λ̂1

)
+ b̂pn − bpn

λ̂1
.

The weak convergence of Mp
n − bpn thus implies that the first term tends to zero in

probability. Next,

b̂pn − bpn = (λ̂1 − λ1) log(n/2) −
p∑
j=2

(
λ̂1 log(1− λ̂j/λ̂1)− λ1 log(1− λj/λ1)

)
(3.26)

From (3.25) it is immediate that (λ̂1 − λ1) log(n/2) → 0. For the summands in the
second term we apply the mean-value theorem term by term and use (3.25), λ1/λj > 1
when j ≥ 1, and p = o(n1/2).

Proof of Theorem 8. We assume that E‖X1‖s < ∞, for some s > 2. Here p ≥ 1 is
arbitrary but fixed. Let (Zt)t∈Z be an H-valued sequence of Gaussian variables with
Var(Z1) = Var(X1) and denote its DFT by X̃n(ω), its periodogram by Ĩn(ω), etc. By
basic properties of the Gaussian law we get{

‖X̃ pn(ωj)‖2, j = 1, . . . , q
}

d=
{ p∑
k=1

λkEkj , j = 1, . . . , q
}
,

where the Ekj are i.i.d. standard exponential variables. The variables Zpj :=
∑p
k=1 λkEkj

then follow a hypo-exponential distribution with parameters λ1, . . . , λp. Since we impose
λk > λk+1 for any k ≥ 1, we can get (see e.g. Kang and Serfolo (1999)) an explicit
expression for the distribution function

F (p)(x) = P (Zpj ≤ x) = 1−
p∑

k=1
αk,pe

−x/λk , where αk,p =
p∏
j=1
j 6=k

1
1− λj/λk

.

We deduce that

P
(
λ−1

1 (M̃p
n − bpn) ≤ x

)
= F (p)(λ1x+ bpn

)q
=

1−
p∑

k=1
αk,pe

− λ1
λk
x

(
2

nα1,p

) λ1
λk


q

=

1− 2
n


p∑

k=2
αk,p

(
e−x

α1,p

)λ1/λk ( 2
n

)λ1/λk−1
+ e−x


q .(3.27)

Clearly,

(3.28)
p∑

k=2
αk,p

(
e−x

α1,p

)λ1/λk ( 2
n

)λ1/λk−1
→ 0.
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Since q ∼ n/2 we can obtain indeed that (3.27) converge to the Gumbel distribution
function.

Next we want to transfer the result to our original data. Clearly, we have that∣∣∣P((Mp
n − bpn)/λ1 ≤ x

)
− e−e−x

∣∣∣ ≤ ρpn +
∣∣∣P((M̃p

n − bpn)/λ1 ≤ x
)
− e−e−x

∣∣∣ ,(3.29)

where

ρpn := sup
x∈R
|P (Mp

n ≤ x)− P (M̃p
n ≤ x)|.(3.30)

Under the stronger assumption that E‖X1‖4 <∞, we can deduce from Proposition 2
that ρpn → 0 when n→∞ for any fixed p ≥ 1.

In order to prove the result when E‖X1‖s <∞, for some s > 2, we use a truncation
argument that is detailed in Section 3.4.5. The proof then followed from Corollary 2.

Proof of Theorem 9. We may proceed as in the proof of Theorem 8. We need to verify
(3.28) with and (3.30) with pn instead of fixed p. As of (3.28) we refer to Lemma 13,
while for (3.30) we may still employ Proposition 2.

Proof of Theorem 10. We start by noting that

λ−1
1 (Mn − bn) = λ−1

1 (Mn −Mpn
n ) + λ−1

1 (Mpn
n − bpnn ) + λ−1

1 (bpnn − bn).

The third term converges to zero by Lemma 9, and the second term converges weakly to
a Gumbel random variable under the assumptions of Theorem 9. Hence, by Slutzky’s
lemma, weak convergence of λ−1

1 (Mn − bn) to a Gumbel distribution holds if we can
verify that the first term tends to zero in probability.

To this end, we define

δj = ‖Xn(ωj)‖2 − ‖X pn(ωj)‖2 =
∑
k>p

1
n

∣∣∣∣∣
n∑
t=1
〈Xt, vk〉e−itωj

∣∣∣∣∣
2

.

Then for any a > 0 we have

P (|Mn −Mp
n| > a) = P (Mn −Mp

n > a)

= P

(
max
j=1,...,q

{
‖X p(ωj)‖2 + δj

}
−Mp

n > a

)
≤ P

(
max
j=1,...,q

δj > a

)

≤
q∑
j=1

∑
k>p

P

 1
n

∣∣∣∣∣
n∑
t=1
〈Xt, vk〉 cos(tωj)

∣∣∣∣∣
2

> a`k/2


+

q∑
j=1

∑
k>p

P

 1
n

∣∣∣∣∣
n∑
t=1
〈Xt, vk〉 sin(tωj)

∣∣∣∣∣
2

> a`k/2

 .
Next we recall that if ξt are independent random variables with E|ξt|s for some s > 2
and if Eξt = 0, then by Rosenthal’s inequality (see e.g. Rosenthal (1970)) there is a
constant Cs depending only on s such that

E

∣∣∣∣∣
n∑
t=1

ξt

∣∣∣∣∣
s

≤ Cs

 n∑
t=1

E |ξt|s +
(

n∑
t=1

E |ξt|2
)s/2 .
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Applying this inequality to ξt = 〈Xt, vk〉 cos(tωj) in combination with the Markov
inequality, we deduce that

P

 1
n

∣∣∣∣∣
n∑
t=1
〈Xt, vk〉 cos(tωj)

∣∣∣∣∣
2

> a`k/2


≤ Cs (na`k/2)−s/2

 n∑
t=1

E |〈Xt, vk〉|s +
(

n∑
t=1

E |〈Xt, vk〉|2
)s/2

≤ Cs (na`k/2)−s/2
[
nE |〈X1, vk〉|s + (nλk)s/2

]
≤ Cs(2/a)s/2

[
n1−s/2`

−s/2
k E |〈X1, vk〉|s + (λk/`k)s/2

]
.

When ξt = 〈Xt, vk〉 sin(tωj) we use the same argument. Summation over j and k yields
the result due to the conditions (3.11) and (3.12).

Below we write an � bn to indicate that lim supn |an/bn| <∞.

Proof of Corollary 1. First remark that applying twice the Cauchy–Schwarz inequality,
we get that

E |〈X1, vk〉|s ≤ λ
1/2
k

(
E‖X1‖2(s−1)

)1/2
.

Thus, a sufficient condition for (3.12) to hold, is that

(3.31)
∑
k>pn

`
−s/2
k λ

1/2
k = o(ns/2−1)

We first consider setting (E1), i.e. λk ∼ ρk with 0 < ρ < 1. We choose `k proportional
to k−2. We show that we may choose pn = bc log(n)c. Indeed, for any ρ < ρ0 < 1, we
have that∑

k>pn

`
−s/2
k λ

1/2
k �

∑
k>pn

ks/2ρk/2 �
∑
k>pn

ρ
k/2
0 � ρ

pn/2
0 � n−

c
2 log

(
1/ρ0

)
= o(1),

so (3.31) is clearly satisfied without further restrictions. Similarly, we find that

∑
k>pn

(λk/`k)s/2 � ρ
spn/2
0 � n−

sc
2 log

(
1/ρ0

)
= o(1/n),

whenever c > 2/(s log(1/ρ)) and ρ0 is close enough to ρ.
Next we turn to condition (3.8). While the second part is obvious, we need for the

first part that
p3
n

λ
1/2
pn

� log3(n)n
c
2 log(1/ρ) = o

(
n1/6

log7/6(n)

)
,

which follows if c < 1/(3 log(1/ρ)). Thus, we need to choose c such that

2
s log(1/ρ) < c <

1
3 log(1/ρ) .

This is possible whenever s > 6.
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We now turn to the case (E2), i.e. λk ∼ k−ν with ν > 1. We choose `k proportional
to k−1 log−2(k) and show that we may set pn = bnβc, for some appropriate β > 0.
Indeed, for any 1 < ν̃ < ν, we have that∑

k>pn

λ
1/2
k /`

s/2
k �

∑
k>pn

k
s
2−

ν
2 logs(k)�

∑
k>pn

k
s
2−

ν̃
2 � nβ

(
s
2−

ν̃
2 +1

)
.

so (3.31) is satisfied whenever β < s−2
2+s−ν if s > ν + 2 or without further constraints if

s ≤ ν + 2. Similarly, we have that∑
k>pn

(λk/`k)s/2 �
∑
k>pn

k
s
2−

sν̃
2 � nβ

(
s
2−

sν̃
2 +1

)
.

This term is o(1/n) if ν̃ is chosen close enough to ν, s > 2
ν−1 and if β > 1

(ν−1)s/2−1 .
Then we turn to condition (3.8). The first part is satisfied if

p3
n

λ
1/2
pn

� nβ(3−ν/2) = o

(
n1/6

log7/6(n)

)
.

It requires β < 1
6 (ν/2+3) . For the second part we require β < min

{
mink≥2

1
k

(
λ1
λk
− 1

)
, 1
}

.
Thus, β must be such that

1
(ν − 1)s/2− 1 < β < min

{
s− 2

2 + s− ν
,

1
6 (ν/2 + 3) ,min

k≥2

1
k

(
λ1
λk
− 1

)
, 1
}
.

3.4.2 Normal approximation

A key step in our proof is to find a bound for ρpn, as defined in (3.30). This quantity
determines the distance between the distribution function of the statistic of interest
computed from our sample, and from the same statistic computed from a normal
random sample. To this end, we will apply a powerful result of Chernozhukov et al.
(2017). They provide a Gaussian approximation of P (SX

n ∈ A), where X1, . . . ,Xn are
i.i.d. random vectors, SX

n = n−1/2∑n
i=1 Xi, and A runs through the class Asp(s) of

s–sparsely convex subsets of RN , i.e. finite intersections of sets whose indicator function
depends on at most s–components. More precisely, they provide a bound for

ρn(Asp(s)) = sup
A∈Asp(s)

|P (SX
n ∈ A)− P (SY

n ∈ A)|,

where Y1, . . . ,Yn denotes a N variate i.i.d. Gaussian sequence with same variance as
X. They make the following assumptions (we use their numbering)

(M.1”) 1
n

n∑
t=1

E|u′Xt|2 ≥ b for all u ∈ SN−1 and ‖u‖0 ≤ s;

(M.2) 1
n

n∑
t=1

E|Xt,j |2+k ≤ Bk
n for all j = 1, . . . , d, k = 1, 2;

(E.1) E exp(|Xt,j |/Bn) ≤ 2, for all t = 1, . . . , n and j = 1, . . . , N ;
(E.2) E max

1≤j≤N
(|Xt,j |/Bn)4 ≤ 2, for all t = 1, . . . , n,
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where Bn ≥ 1 is a deterministic sequence, possibly converging to infinity. Under
conditions (M.1”) and (M.2), they show in their Proposition 3.2 that

(3.32) ρn(Asp(s)) ≤ C · B
1/3
n log7/6(N · n)

n1/6 , or ρn(Asp(s)) ≤ C ′ · B
2/3
n log7/6(N · n)

n1/6 ,

whether condition (E.1) or (E.2) is satisfied. The constants C and C ′, only depends
on b and s. This dependence is crucial for our application, however it is not explicitly
stated in Chernozhukov et al. (2017). We thus provide it in equation (3.47) at the end
of Section 3.4.3.

In the next proposition, we show how these results can be applied to our setting.
At this point, we only use the second bound from (3.32). Note that the first bound
necessitates moments of all order through condition (E.1). On the other hand, the
dependence on Bn is slightly milder, which will be useful in Section 3.4.5 where we will
consider a truncated process.

Proposition 2. Let ρpn be given as in (3.30). We suppose that E‖X1‖4 <∞, and set
B = E‖X1‖3 ∨ (E‖X1‖4)1/2. Then there exists a universal constant K such that

ρpn ≤ K ·B2/3 p
3 log7/6(pn2)
λ

1/2
p n1/6

.(3.33)

Proof of Proposition 2. We define

ξ
(p)
t = (〈Xt, v1〉, . . . , 〈Xt, vp〉)′,

W
(q)
t = (cos(tω1), sin(tω1), . . . , cos(tωq), sin(tω1))′

and
ξ

(p)
t ⊗W

(q)
t =

(
〈Xt, v1〉W (q)

t , . . . , 〈Xt, vp〉W (q)
t

)′
.

The vectors Xt := ξ
(p)
t ⊗W

(q)
t are independent random vectors in R2pq. Next we define

the partial sums Sξ⊗Wn = 1√
n

∑n
t=1 Xt and the sets Jk = J + 2k, where

J = {1, 2, 2q + 1, 2q + 2, . . . , 2(p− 1)q + 1, 2(p− 1)q + 2}

and k = 0, . . . , q − 1. We note that

P (Mp
n ≤ x) = P

(
‖X pn(ωj)‖2 ≤ x, j = 1, . . . , q

)
= P

(
‖(Sξ⊗Wn )j∈Jk‖

2 ≤ x, 0 ≤ k ≤ q − 1).

The sets of the form

A = {ω ∈ R2pq :
∑
j∈Jk

ω2
j ≤ x, 0 ≤ k ≤ q − 1}

are 2p-sparsely convex sets. We can thus apply (3.47) but where p is replaced by 2pq
and s by 2p. Indeed, since ‖Xt,j‖ ≤ ‖Xt‖ for all j = 1, . . . , 2pq, it is easy to see that
(E.2) and (M.2) are satisfied with Bn = B and condition (M.1”) follows from Lemma 11
hereafter.
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Lemma 11. We define Xt := ξ
(p)
t ⊗W

(2q)
t . We have that

λp
2 ≤ 1

n

n∑
t=1

E|u′Xt|2 ≤
λ1
2(3.34)

for all u ∈ S2pq−1, and in particular when ‖u‖0 ≤ 2p.

Proof of Lemma 11. We denote u = (u′1, . . . ,u′p)′ ∈ R2pq with u′k ∈ R2q. We have that

1
n

n∑
t=1

E|u′Xt|2 = 1
n

n∑
t=1

p∑
j,k=1

E〈Xt, vj〉〈Xt, vk〉u′jW
(q)
t u′kW

(q)
t

=
p∑
j=1

λju′j
1
n

n∑
t=1

W
(q)
t

(
W

(q)
t

)′uj .
Each coefficient of the matrix W = 1

n

∑n
t=1W

(q)
t ⊗W (q)

t have one of the following
forms

1
n

n∑
t=1

sin(tωk) cos(tω`) = 1
2n

n∑
t=1

(
sin(tωk + tω`) + sin(tωk − tω`)

)
,(3.35)

1
n

n∑
t=1

sin(tωk) sin(tω`) = 1
2n

n∑
t=1

(
cos(tωk − tω`)− cos(tωk + tω`)

)
,(3.36)

1
n

n∑
t=1

cos(tωk) cos(tω`) = 1
2n

n∑
t=1

(
cos(tωk − tω`) + cos(tωk + tω`)

)
,(3.37)

for some 1 ≤ k, ` ≤ b(n− 1)/2c. We see that (3.35) is always zero whereas both (3.36)
and (3.37) are equal to 1/2 if ωk ± ω` ∈ 2πZ (i.e. when k = `) and to zero if not. In
other words, W is just the identity matrix times 1/2. Thus,

1
n

n∑
t=1

E|u′Xt|2 = 1
2

p∑
j=1

λj‖uj‖2.(3.38)

The sum is maximized if ‖u1‖ = 1 and minimized if ‖up‖ = 1.

3.4.3 Explicit constants in the highdimensional CLT

The constants C and C ′ in (3.32) depends on the parameters b and s (in our setting,
this correspond to λp and 2p). If we want to let p grow to infinity, we need to make
this dependence explicit. This is the purpose of this section. The next Lemma is a
reformulation of Lemma A.1 in Chernozhukov et al. (2017) where we have made more
explicit the dependence on the variance lower bound. This anti-concentration inequality
is the key ingredient in Chernozhukov et al. (2017) and it is essentially due to Nazarov
(2003). For completeness we provide a detailed proof of it. The main arguments have
been kindly communicated to us by Kengo Kato.

Lemma 12. Let Y ∼ Np(0,Σ) be such that EY 2
j ≥ b, for all j = 1, . . . , p, for some

constant b > 0. Then for every y ∈ Rp and δ > 0, we have that

P (Y ≤ y + δ)− P (Y ≤ y) ≤ δ

b1/2

(√
2 log p+ 2

)
.(3.39)

The inequalities between vectors are coordinatewise.
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Proof of Lemma 12. Firstly, by considering X = Σ−1/2Y , we remark that it is equiva-
lent to prove that for all X ∼ Np(0, Ip), we have that

P (X ∈ K(δ) \K) ≤ δ
(√

2 log p+ 2
)
,(3.40)

where

K(δ) = {x ∈ Rp, a′jx ≤ bj + δ, ∀j = 1, . . . , p}, K = K(0).(3.41)

and aj ∈ Sp−1 and bj ∈ R, for j = 1, . . . , p. We now define G(t) = P (X ∈ K(t)), which
is in fact the cdf of the random variable max1≤j≤p{a′jX − bj}. Thus, we know that G
is absolutely continuous and hence is almost everywhere differentiable with

P (X ∈ K(t) \K) = G(δ)−G(0) =
∫ δ

0
G′+(t)dt,(3.42)

where G′+ denotes the right derivative of G. Actually we will show that it is everywhere
right differentiable and that G′+(t) ≤

√
2 log p + 2, for all t ∈ R, which according

to (3.42), would complete the proof the Lemma. Note that by replacing bj by bj + t,
we see that it is enough to prove that G is right differentiable at t = 0 and that
G′+(0) ≤

√
2 log p+ 2, i.e. that

Γp(K) = lim
δ↘0

P (X ∈ K(δ) \K)
δ

≤
√

2 log p+ 2.(3.43)

Note that Γp is the standard Gaussian surface measure. In order to prove (3.43), we
introduce some additional notations. For x ∈ Rp, PKx denotes the projection onto the
convex polyhedron K. For a face F of K, we define

NF = {x ∈ Rp \K, PKx ∈ relint(F )}, NF (δ) = NF ∩K(δ),

where relint(F ) denotes the relative interior of F . Note thatK(δ)\K =
⋃
F :face of K NF (δ).

Now, for any face F of K with dimension at most p− 2, we have that NF (δ) ⊂ {x ∈
Rp, dist(x, F ) ≤ Cδ}, where dist(x, F ) is the Euclidean distance between x and F , and
C is a constant that is proportional to √p. This shows that when computing (3.43),
we can restrict to the facet of K (i.e. face of dimension p− 1). Indeed, we have that

P (X ∈ K(δ) \K) = P
(
X ∈

⋃
F :facet of K

NF (δ)
)

+O(δ2).

Then, by similar arguments as in Nazarov (2003) we can show that for any facet F of
K,

Γp(K) = lim
δ↘0

P (X ∈ NF (δ))
δ

=
∫
F
ϕp(x)dσ(x) ≤ (dist(0, F ) + 1) · P (X ∈ NF ) ,(3.44)

where ϕp(x) = (2π)−p/2e−‖x‖2/2 and dσ denotes the standard surface measure. Intu-
itively (3.44) means that the points x ∈ ∂K whose tangent to K is close to the origin
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do not contribute much to the Gaussian surface of K. Finally we have that

lim
δ↘0

P (X ∈ K(δ) \K)
δ

=
∑

F : facet of K

∫
F
ϕp(x)dσ(x)

=
∑

dist(0,F )≤
√

2 log(p)

∫
F
ϕp(x)dσ(x) +

∑
dist(0,F )>

√
2 log(p)

∫
F
ϕp(x)dσ(x)

≤
(√

2 log p+ 1
) ∑
dist(0,F )≤

√
2 log(p)

P (X ∈ NF ) +
∑

dist(0,F )>
√

2 log(p)

∫
Rp−1

ϕp−1(y)dσ(y).

In the last inequality, we used (3.44) for the first term. Whereas for the second term,
we used the fact that all x ∈ F can be decompose as x = dist(0, F )v + x0, where
v is a unit normal vector to ∂K at F and x0 ∈ v⊥ ∼= Rp−1. We then have that
‖x‖2 = dist(0, F )2 + ‖x0‖2 > 2 log(p) + ‖x0‖2, which yields

ϕp(x) = (2π)−p/2e−‖x‖2/2 < p−1(2π)−1/2·(2π)−(p−1)/2e−‖x0‖2/2 = p−1(2π)−1/2·ϕp−1(y),

for some y ∈ Rp−1. To conclude, recall that from (3.41) we know that K has at most p
facets, and (2π)−1/2 ≤ 1.

In the sequel, we give explicit dependence in b of the bounds obtained in Lemma 5.1,
Corollary 5.1, Theorem 2.1, Corollary 5.1 and Proposition 2.1 in Chernozhukov
et al. (2017). We will basically add a factor b−1/2 in front of every terms that comes
out of Nazarov’s inequality i.e. Lemma 12 above. We will denote by Ki for i ≥ 1,
a genuine universal constant i.e. independent of n, p and b. On the other hand the
variables Bn, Are, Ln, Ln, Mn,X(φ), Mn(φ) and X̃ are defined as in Chernozhukov et
al. (2017). Furthermore in this section, X1, . . . ,Xn denotes a p variate sequence of
independent random vectors, that will actually correspond in our setting to ξ(p)

t ⊗W
(2q)
t

for t = 1, . . . , n. Then Y1, . . . ,Yn denotes a p variate i.i.d. Gaussian sequence with
same variance as X. The authors further assume condition (M.2) and

(M.1) 1
n

n∑
t=1

E|Xt,j |2 ≥ b for all j = 1, . . . , p.

A meticullous reading of Lemma 5.1’s proof in Chernozhukov et al. (2017) yields

%n = sup
y∈R,v∈[0,1]

|P (
√
vSX

n +
√

1− vSY
n ≤ y)− P (SY

n ≤ y)|

≤ K1

{
φ2 log2 p

n1/2

(
φLn%n + Ln

log1/2 p

b1/2
+ φMn(φ)

)
+ log1/2 p

φ b1/2

}
.

Then Corollary 5.1 provides the same result for arbitrary hyperrectangles except
that p must be replaced by 2p in the bound and by noting that M

n,X̃(φ) ≤Mn,X(2φ)
whenever p ≥ 2. To summarize we have that

%′n = sup
A∈Are,v∈[0,1]

|P (
√
vSX

n +
√

1− vSY
n ∈ A)− P (SY

n ∈ A)|

≤ K2

{
φ3 log2 p

n1/2 Ln%
′
n + φ2 log3/2(p)

b1/2n1/2 Ln + φ3 log2 p

n1/2 Mn(2φ) + log1/2 p

b1/2φ

}
.
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For Theorem 2.1 we apply Corollary 5.1 with φ = φn/2 = 1
2K2∨1

n1/6

L
1/3
n log2/3 p

and
get that

%′n ≤ K2

{
1

8(K2 ∨ 1)3
Ln

Ln
%′n + 1

4(K2 ∨ 1)2
Ln

L
2/3
n

log1/6(p)
b1/2n1/6

+ 1
8(K2 ∨ 1)3

Mn(φn)
Ln

+ 2(K2 ∨ 1) log7/6 pL
1/3
n

b1/2n1/6

}
.

Therefore we get that

ρn(Are) ≤ K3

Mn(φn)
Ln

+ log7/6 pL
1/3
n

b1/2 n1/6

 .
For Proposition 2.1 whether condition (E.1) or (E.2) is satisfied, we obtain that

ρn(Are) ≤ K4
B

1/3
n log7/6(pn)
b1/2 n1/6 or ρn(Are) ≤ K5

B
2/3
n log(pn)
b1/2 n1/6 .(3.45)

Let a, d > 0 be some constants. The authors defined Asi(a, d) the class of Borel
sets A in Rp such that there exists an m-generated convex set Am (i.e. an m convex
polytope) such that Am ⊂ A ⊂ Am,ε, where ε = a/n. (By m-polytope we mean that
Am can be written as

⋂
v∈V(Am){w ∈ Rp, 〈w, v〉 ≤ SA(v)} were V(Am) consists of m

unit vectors and SAm(v) := supw∈A〈w, v〉 is the support function of the convex Am. We
then define Am,ε :=

⋂
v{w ∈ Rp, 〈w, v〉 ≤ SA(v) + ε}.) Then Proposition 3.1 provides

that for all a, d > 0

ρn(Asi(a, d)) ≤ K6
B

1/3
n log7/6(pdnd+1)

b1/2 n1/6 or ρn(Asi(a, d)) ≤ K7
B

2/3
n log(pdnd+1)
b1/2 n1/6 .

(3.46)

whether condition (E.1) or (E.2) is satisfied.
We finally turn to the result we are interested in, that is Proposition 3.2. Let

Asp, be the class of s-sparsely convex sets in Rp. Recall that A =
⋂Q
q=1Aq, where only

s coordinate, say J(Aq), are needed to define the set Aq. In step 1 we get the same
bounds (3.46) but by replacing Bn by s3Bn. We can show that d ≤ s(4s+ 1) . 4s2. In
the first part of the second step of the proof we found that ‖Σs‖1/2S ≤ s1/4/b−1/2, where
Σs = Var(Xt,s∈J(Aq)). In this same step, we found that the bound coming from the
Berry-Essen theorem is s5/2Bn/n

1/2. To conclude we just have to add them up. The
second part of step 2 provides a similar bound as in step 1 and an additional use of
Nazarov’s inequality yields d log1/2(pn)b−1/2n−1, but this one is negligible. To conclude
we get that

ρn(Asp(s)) ≤ K8
s3B

1/3
n log7/6(pn)
b1/2 n1/6 or ρn(Asp(s)) ≤ K9

s3B
2/3
n log(pn)
b1/2 n1/6 ,(3.47)

whether condition (E.1) or (E.2) is satisfied.
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3.4.4 Gumbel domain of attraction

In this section, we show that (3.28) is still true when p = pn →∞. From the proof of
Theorem 8 it is immediate that λ−1

1 (Mp
n − bpn) d→ G provided that (3.28) tends to zero.

In the following lemma we provide a simple sufficient condition for this.

Lemma 13. Suppose that (3.7) holds. Then (3.28) tends to zero for any sequence
pn = O

(
nγ0
)
, where γ0 satisfies (3.9).

Proof of Lemma 13. Let us denote

ak,n := αk,p

(
e−x

α1,p

)λ1/λk ( 2
n

)λ1/λk−1
.

Let pn = O(nγ0), for some 0 < γ0 < 1, we want to show that
∑pn
k=2 ak,n → 0. We first

remark that

1
α1,p

=
p∏
j=2

(1− λj/λ1) ≤ (1− λp/λ1)p−1 ≤ 1.(3.48)

From assumption (3.7), we know that the sequence kλk is eventually decreasing.
We can thus, choose an k0 large enough such that λk

jλj
kλk
≥ 1, for all 1 ≤ j ≤ k − 1 and k ≥ k0.

Let then k1 ≥ k0 be such that λ1/λk − 1 ≥ k, for all k ≥ k1. Then we denote

An =
k1−1∑
k=2

ak,n and An =
pn∑
k=k1

ak,n.(3.49)

For k ≥ k1 we have

|αk,p| =
1∏k−1

j=1(λj/λk − 1)
∏p
j=k+1(1− λj/λk)

≤ 1∏k−1
j=1

k−j
j

∏p
j=k+1

j−k
j

=
(
p

k

)
≤
(
ep

k

)k
.

Using this, (3.48) and the fact that λ1/λk − 1 ≥ k, for k ≥ k1, we get that

|An| ≤ e−x
pn∑
k=k1

(
epn
k

)k (2e−x

n

)λ1/λk−1

≤ e−x
pn∑
k=k1

(
2e1−x

k

)k (
pn
n

)k

for n large enough, i.e. such that 2e−x/n < 1. For γ0 < 1, the general term of the last
series converges to zero when n→∞, for all k ≥ k1, and is dominated by the summable
term

(
2e1−x/k

)k we can thus conclude that An → 0.
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Next, for k < k1, set νk = 1∏k1−1
j=1,j 6=k |λj/λk−1|

. We have that

|αk,p| ≤
νk∏p

j=k1
(1− λj/λk)

≤ νk∏p
j=k1

j−k
j

= νk ·
p!(k0 − k − 1)!

(k1 − 1)!(p− k)!

≤ νk · pk ·
(k1 − k − 1)!

(k1 − 1)! .

Thus, we have

|An| ≤
k1∑
k=2

νk · pkn e−xλ1/λk · (k1 − k − 1)!
(k1 − 1)!

( 2
n

)λ1/λk−1
= O

(
max

2≤k≤k1

{
pkn

nλ1/λk−1

})
.

If we choose γ0 < min2≤k≤k1
1
k

(
λ1
λk
− 1

)
this term tends to zero as n→∞.

3.4.5 Truncation

In this section, we show that when p is fixed, we do not need finite fourth order moments
and can rather assume that E‖X1‖s <∞, for some s > 2. In particular, we recover the
scalar result of Davis and Mikosch (1999). To this end, we consider the truncated array

X̃t = Xt1‖Xt‖≤n1/s − E[Xt1‖Xt‖≤n1/s ].(3.50)

Thus, for all n ≥ 1, X̃t is bounded. The next Lemma ensures that we can replace MX,p
n

by M X̃,p
n in the proof of Theorem 8.

Lemma 14. Suppose E‖X1‖s <∞, for s > 2, then we have that

MX,p
n −M X̃,p

n −→
n→∞

0 a.s.

Proof of Lemma 14. The proof of Lemma 3.3 in Davis and Mikosch (1999) can be easily
adapted to our setting.

We can define similarly Ỹt and M Ỹ ,p
n , where as usual, Y1, . . . , Yn are i.i.d. Gaussian

elements with same variance as Xt. It is obvious that Lemma 14 applies as well to Ỹt.
We conclude this section with the analogue of Proposition 2 for

ρ̃n,p = sup
x∈R
|P (M X̃,p

n ≤ x)− P (M Ỹ ,p
n ≤ x)|.(3.51)

Proposition 3. Let ρ̃n,p be given as in (3.51). There exists a universal constant K ′
such that

ρ̃n,p ≤ K ′ ·B1/3
n

p3 log7/6(pn2)
λ̃

1/2
p n1/6

,(3.52)

where Bn = n1/s.
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Corollary 2. Let p ≥ 1 be a fixed integer. If E‖X1‖s <∞, for some s > 2 and λp > 0,
then we have that ρ̃n,p → 0, when n→ +∞.

Proof of Proposition 3. We proceed as in Proposition 2 except that we consider the
2pq-variate element X̃t = ξ̃

(p)
t ⊗ W

(2q)
t where ξ̃(p)

t = (〈X̃t, ṽ1〉, . . . , 〈X̃t, ṽp〉)′, and ṽj
denotes the eigenfunctions associated to the ordered eigenvalues λ̃j of Var(X̃1). We
also rather use the first bound in (3.47). We thus need to verify conditions (M.1) (M.2)
and (E.1). By applying Lemma 11 to X̃t we deduce that Condition (M.1”) holds with
b = λ̃p/2. Now suppose that k = 1, 2 and 2 ≤ s < 3. Since the series

∞∑
i=1

t−(2+k)/sE|Xtj |2+k
1‖Xt‖≤t1/s

converges provided that E|Xij |s <∞ for each t ≥ 1 and j = 1, . . . , d, we have that

n−(2+k)/s
n∑
t=1

E|Xtj |2+k
1‖Xt‖≤t1/s → 0

as n→∞ using Kronecker’s lemma. Hence,

n−1
n∑
t=1

E|Xtj |2+k
1‖Xtj‖≤t1/s = o(n(2+k)/s−1)

as n→∞. Let us observe that (2 + k)/s− 1 < k/2 if s > 2, and thus condition (M.2)
holds for Bn = n1/s. For condition (E.1), note that |X̃t,j |/Bn ≤ t1/s/n1/s ≤ 1. To
conclude it suffices to apply the first bound in (3.47) to this setting.

Proof of Corollary 2. From the definition (3.50) we have that

Var(X̃t) = EXt ⊗Xt1‖Xt‖≤n1/s → EXt ⊗Xt = Var(Xt) (n→∞).

Therefore, λ̃p → λp > 0 and it suffices to apply Proposition 3 with s > 2.

3.4.6 Finite dimensional setting

Proof of Theorem 11. Let p be a fixed integer and define the rescaled innovations
Z̃t = Σ−1/2Zt. It holds that∣∣∣∣P (M Z̃

n − cpn ≤ x
)
− e−e−x

∣∣∣∣ ≤ ρn,p +
∣∣∣P (MY

n − cpn ≤ x
)
− e−e−x

∣∣∣ ,(3.53)

where Y1, . . . ,Yn are i.i.d. Np(0, Ip). Furthermore, we have that{∥∥∥XY
n (ωj)

∥∥∥2
, j = 1, . . . , q

}
d=
{
ζ

(p)
j , j = 1, . . . , q

}
,

where the ζ(p)
j are i.i.d. Erlang(p, 1). Their cumulative distribution function is

F (p)(x) = 1−
p−1∑
k=0

xk

k! e
−x.
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Then, with the definition of cpn we get

P
(
MY
n − cpn ≤ x

)
=

1− e−x 2
n

(p− 1)!
logp−1(n/2)

p−1∑
k=0

(x+ cpn)k

k!

q .
By a routine argument one can show that this converges to the Gumbel distribution
function for every given x ∈ R and p ≥ 1, see e.g. in Kang and Serfolo (1999). Now the
result follows from Lemma 15 below.

The next lemma is a generalization of Theorem 3 in Walker (1965) for multivariate
linear processes, Xt =

∑∞
k=0 ΨkZt−k, with i.i.d. innovations (Zt)t∈Z in Rp.

Lemma 15. Under Assumption 6, we have that∣∣LX
n −MΣ−1/2Z

n

∣∣ P−→ 0.(3.54)

Proof of Lemma 15. First remark that Fω = ΨωΣΨ∗ω, where Ψω =
∑
k≥0 Ψke

ikω and
where A∗ is the conjugate transpose of a matrix A, and thus, we also have that
A⊗B = AB∗. Also recall that Z̃t = Σ−1/2Zt.

Next let us first notice that there exists a constant κ <∞, such that

E max
1≤j≤q

∥∥∥∥∥
r∑
t=1

Zte−itωj

∥∥∥∥∥
2

≤ κr3/2.(3.55)

This can be shown by first noting that∥∥∥∥∥
r∑
t=1

Zte−itωj

∥∥∥∥∥
2

=
∑
|h|<r

r−|h|∑
t=1
〈Zt+|h|,Zt〉e−ihωj ≤

∑
|h|<r

∣∣∣∣ r−|h|∑
t=1
〈Zt+|h|,Zt〉

∣∣∣∣.
Then, applying the Lyapunov’s inequality we get

E

∣∣∣∣ r−|h|∑
t=1
〈Zt+|h|,Zt〉

∣∣∣∣ ≤
r−|h|∑

t=1

r−|h|∑
s=1

E〈Zt+|h|,Zt〉〈Zs+|h|,Zs〉

1/2

≤
(
2(r − |h|)E‖Z1‖4

)1/2
.

Here we used the independence of the Zt’s. Finally, it holds that
∑
|h|<r(r − |h|)1/2 ≤

2r3/2.
Of course, (3.55) holds analogously with Zt replaced by Z̃t. Moreover, we can even
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extend this bound for the Fourier transform of Xt:

E max
1≤j≤q

∥∥∥∥∥
n∑
t=1

Xte
−itωj

∥∥∥∥∥
2

= E max
1≤j≤q

∥∥∥∥∥∥
∞∑
k=0

Ψk

 n−k∑
s=1−k

Zse−isωj

 e−ikωj

∥∥∥∥∥∥
2

≤ E max
1≤j≤q

 ∞∑
k=0
‖Ψk‖ ·

∥∥∥∥∥∥
n−k∑
t=1−k

Zte−itωj

∥∥∥∥∥∥
2

≤
∞∑

k,`=0
‖Ψk‖ ‖Ψ`‖ · E

[
max

1≤j≤q

∥∥∥∥∥∥
n−k∑
t=1−k

Zte−itωj

∥∥∥∥∥∥
∥∥∥∥∥∥
n−∑̀
t=1−`

Zte−itωj

∥∥∥∥∥∥
]

≤
( ∞∑
k=0
‖Ψk‖

)2

· E max
1≤j≤q

∥∥∥∥∥∥
n−k∑
t=1−k

Zte−itωj

∥∥∥∥∥∥
2

≤
( ∞∑
k=0
‖Ψk‖

)2

· E max
1≤j≤q

∥∥∥∥∥
n∑
t=1

Zte−itωj

∥∥∥∥∥
2

≤ κn3/2.

Next set L̃X
n := max1≤j≤q tr

(
F−1
ωj I

X
n (ωj)

)
and Aω = ΨωΣ1/2. Using tr(AB) ≤

‖A‖S‖B‖S we infer

|tr
(
L̃X
n − LX

n

)
| ≤ max

1≤j≤q
‖F−1

ωj − F̂−1
ωj ‖S × max

1≤j≤q
‖IXn (ωj)‖S .

With elementary matrix algebra we deduce that

F−1
ω − F̂−1

ω = F−1
ω (F̂ω − Fω)

(
I + F−1

ω (F̂ω − Fω)
)−1

F−1
ω ,

and thus

‖F−1
ω − F̂−1

ω ‖S ≤ ‖F−1
ω ‖2‖Fω − F̂ω‖

∥∥∥(I + F−1
ω (F̂ω − Fω)

)−1∥∥∥
S
.

From Assumptions (3.21) and (3.20) we infer that

‖F−1
ωj − F̂−1

ωj ‖S = oP (n−1/4)×
∥∥∥(I + F−1

ωj (F̂ωj − Fωj )
)−1∥∥∥

S
.

It is elementary that∥∥∥(I + F−1
ω (F̂−1

ω − F−1
ω )
)−1∥∥∥

S
≤
∑
k≥0

(
‖F−1

ω ‖‖F̂ω − Fω‖S
)k
.

By our assumptions max1≤j≤q ‖F̂ωj−Fωj‖S
P→ 0, thus we conclude that max1≤j≤q ‖F−1

ωj −
F̂−1
ωj ‖S = oP (n−1/4).

It remains then to show that
∣∣L̃X
n −M Z̃

n

∣∣ P→ 0. To this end we notice that∣∣L̃X
n −M Z̃

n

∣∣ ≤ max
1≤j≤q

∣∣∣∣tr(F−1
ωj I

X
n (ωj)− IZ̃

n (ωj)
)∣∣∣∣

= max
1≤j≤q

∣∣∣∣tr((AωjA∗ωj)−1
IX
n (ωj)− IZ̃

n (ωj)
)∣∣∣∣

= max
1≤j≤q

∣∣∣∣tr(A−1
ωj

(
IX
n (ωj)−AωjIZ̃

n (ωj)A∗ωj
)(
A∗ωj

)−1)∣∣∣∣
≤ max

1≤j≤q

∥∥F−1
ωj ‖S × max

1≤j≤q

∥∥∥IX
n (ωj)−AωjIZ̃

n (ωj)A∗ωj
∥∥∥
S
.
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In consequence of (3.20) it remains to show that

max
1≤j≤q

∥∥∥∥IX
n (ωj)−AωjIZ̃

n (ωj)A∗ωj
∥∥∥∥
S

P−→ 0.(3.56)

We have

IX
n (ωj)−AωjIZ̃

n (ωj)A∗ωj =
(
XX
n (ωj)−AωjX Z̃

n (ωj)
)(
XX
n (ωj)−AωjX Z̃

n (ωj)
)∗

+
(
XX
n (ωj)−AωjX Z̃(ωj)

)(
AωjX Z̃

n (ωj)
)∗

+AωjX Z̃
n (ωj)

(
XX
n (ωj)−AωjX Z̃

n (ωj)
)∗
.

Hence we deduce that

max
1≤j≤q

∥∥∥∥IX
n (ωj)−AωjIZ̃

n (ωj)A∗ωj
∥∥∥∥
S
≤ max

1≤j≤q

∥∥∥∥XX
n (ωj)−AωjX Z̃

n (ωj)
∥∥∥∥2

S

+2 max
1≤j≤q

∥∥∥∥AωjX Z̃
n (ωj)

∥∥∥∥
S
·
∥∥∥∥XX

n (ωj)−AωjX Z̃
n (ωj)

∥∥∥∥
S
.

Note that from AωX Z̃
n (ω) = ΨωXZ

n (ω) it follows that

XX
n (ω)−AωX Z̃

n (ω) = n−1/2
∞∑
k=0

Ψk∆n,k(ω)e−ikω,(3.57)

where ∆n,k(ω) =
∑n−k
s=1−k Zse−isω −

∑n
t=1 Zte−itω. Then, using (3.57) and (3.55) for

r = min{k, n} we deduce that Emax1≤j≤q ‖∆n,k(ωj)‖ ≤ 2κ1/2 (k ∧ n)3/4. We then
deduce that

E max
1≤j≤q

∥∥∥∥XX
n (ωj)−AωjX Z̃

n (ωj)
∥∥∥∥ ≤ n−1/2

∞∑
k=0
‖Ψk‖E max

1≤j≤q
‖∆n,k(ω)‖

≤ 2κ1/2n−1/2

n−1∑
k=0

k3/4‖Ψk‖+ n3/4 ∑
k≥n
‖Ψk‖


≤ 2κ1/2n−1/4

n−1∑
k=0

k1/2(k/n)1/4‖Ψk‖+
∑
k≥n

k1/2‖Ψk‖


= o(n−1/4).

Finally, from ‖ΨωXZ
n (ω)‖ ≤ ‖Ψω‖ · ‖XZ

n (ω)‖ and (3.55), we get that

E max
1≤j≤q

∥∥∥∥AωjX Z̃
n (ωj)

∥∥∥∥ ≤ max
1≤j≤q

∥∥∥Ψωj

∥∥∥n−1/2
(
E max

1≤j≤q

∥∥ n∑
t=1

Zte−itωj∥∥2
)1/2

≤ max
1≤j≤q

∥∥∥Ψωj

∥∥∥ 2κ1/2 n1/4.

To conclude, recall that all norms are equivalent in finite dimension.
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4 Functional GARCH models: the quasi-likelihood
approach and its applications

Clément Cerovecki∗, Christian Francq†,
Siegfried Hörmann‡ and Jean-Michel Zaköıan§

Abstract

The increasing availability of high frequency data has initiated many
new research areas in statistics. Functional data analysis (FDA) is one
of these disciplines. In FDA, densely observed data are transformed into
curves and then each (random) curve is considered as one data object. A
natural, but still relatively unexplored, context for FDA methods is related
to financial data, where high-frequency trading currently takes a significant
proportion of trading volumes. Recently, articles on functional versions of the
famous ARCH and GARCH models have appeared. Due to their technical
complexity, existing estimators of the underlying functional parameters are
moment based—an approach which is known to be relatively inefficient
in this context. In this paper, we promote an alternative quasi-likelihood
approach, for which we derive consistency and asymptotic normality results.
We support the relevance of our approach by simulations and illustrate its
use by forecasting realised volatility of the S&P100 Index.

JEL Classification: C13, C32 and C58.
Keywords: Functional time series, High-frequency volatility models, Intraday

returns, Functional QMLE, Stationarity of functional GARCH.

4.1 Introduction
Financial time series modelling is of great importance to monitor the evolution of prices,
stock indexes or exchange rates and to predict future developments, such as the risk
associated to certain asset allocations. Risk is very much related to the volatility of
the financial process and, hence, models for volatility are of special importance. A
milestone in volatility modelling has been set by Engle (1982), with the introduction
of the now-famous and widely-used ARCH model. Many extensions followed this
groundbreaking work, most notably the GARCH model by Bollerslev (1986) which
allows a more parsimonious fit in comparison to ARCH processes. The success of these
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models is founded on their mathematical feasibility and on their ability to feature many
of the stylized facts that researchers have been observing in empirical investigations of
financial data. In particular, the models are able to capture a non-constant conditional
variance of time series. For details on GARCH models, see e.g. Francq and Zakoian
(2011) and the references therein.

In practical applications, GARCH models and their variations are adequate for
daily or weekly return data. But, due to the availability of high-frequency financial
time series and their importance for the financial industry, it is desirable to provide
corresponding models and adequate statistical methodology for data that are given
at a higher resolution. In this paper, we adopt the theory of functional time series
to approach this challenge. A functional time series is a sequence of observations
(Xt : 1 ≤ t ≤ n), where each random object Xt is a curve (Xt(u) : u ∈ [0, 1]). The
interval [0, 1] is chosen for convenience and does not impose any restriction on generality.
In our context it represents intraday time. For example, Xt(u) might denote the
price of an asset on day t at intraday time u. If we then consider the log-returns
yt(u) = logXt(u) − logXt(u − τ) on some τ -interval or the intraday log-increments
ỹt(u) = logXt(u)− logXt(0), then it seems plausible that such common transformations
yield stationary functional processes (as processes in the discrete time t), in which case
a variety of tools can be employed for inference on the intraday pattern.

Functional time series methods have received increasing attention during the past
few years. To give a small sample of some very recent articles with many further
references we refer to the following papers: Hörmann and Kokoszka (2010) and Eichler
and van Delft (2017) for structural results, Horváth et al. (2014) and Aue and Klepsch
(2017a) for inferential procedures, Paparoditis (2017) and Zhu and Politis (2017) for
functional time series bootstrapping methods and Aue et al. (2015) and Klepsch and
Klüppelberg (2017)) for forecasting algorithms.

In this paper, we consider some adequate functional models to describe, for instance,
the functional time series (yt) or (ỹt) as defined above. The first attempt to generalise
GARCH models to functional time series was made in Hörmann et al. (2013), where a
functional version of the ARCH(1) was proposed. Later, this model was extended in Aue
et al. (2016) to a functional GARCH(1,1). Both models rely on recurrence equations
with unknown operators and curves. As for the estimation of these quantities, Hörmann
et al. (2013) proposed a moment-based estimator and showed its consistency. Their
approach allows to deal with a fully functional (and potentially infinite-dimensional)
parameter space. The situation is more complicated in the GARCH context. Aue et al.
(2016) proposed a least squares estimator based on the recursive empirical volatility.
This approach comes at a price: the authors have to reduce the functional model to a
multivariate model via some dimension reduction to a fixed finite dimension. Moreover,
it is know from scalar GARCH theory that the least-squares estimators lack efficiency.

In this paper, we propose an estimator inspired by the classical GARCH QML
(Quasi-Maximum Likelihood) method (Section 4.3). The definition of a QMLE is far
from straightforward in that context, because a likelihood cannot be written for curves.
Our estimator is based on the projection of the squared process onto a set of non-
negative valued instrumental functions. We give regularity conditions for consistency
and asymptotic normality. As a side result, we obtain the consistency and asymptotic
normality of a semi-strong (i.e. with non-iid innovations) multivariate CCC-GARCH.
We also obtain a sufficient condition for existence of stationary functional GARCH
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processes (Section 4.2.2) which generalises Aue et al. (2016). We use the top Lyapunov
exponent formulation, and our condition is very similar to the sufficient and necessary
condition that can be obtained in the finite dimensional case. Our results also extend to
higher order models, i.e. functional GARCH(p, q). In terms of application, we use our
model to predict realised volatility which is an important risk measure (Section 4.5.2).

The rest of the paper is organised as follows: in Section 4.2, we introduce the model
equations, some notations and discuss the stationarity. In Section 4.3, we introduce our
estimation procedure and detail its asymptotic properties. In Section 4.4, we extend
our consistency results to infinite-dimensional models. The subsequent sections deal
with practical aspects of the implementation and some empirical illustrations which
demonstrate the superiority of the QMLE compared to existing methods. Technical
results and most proofs are given in the Appendix.

4.2 Functional GARCH(p,q) model
4.2.1 Preliminaries

For convenience we first review notation. We denote by H the Hilbert space of square
integrable functions with domain [0, 1]. It will serve as the basic space on which the
functional observation, that is considered in this paper, is defined. The Hilbert space
is equipped with inner product 〈·, ·〉 and the resulting norm ‖ · ‖. If x and y are both
functions of H (respectively, vectors of Rd), then we denote by xy their point-wise (resp.
component-wise) product. We denote by L(H) the space of bounded linear operators on
H and use bold notation for its elements. Hence, for α ∈ L(H), x ∈ H and u ∈ [0, 1] we
have that α(x) is the image in H of α applied to x, whereas x(u) is the real-valued image
of the function x evaluated at u. Moreover, we use the standard convention for combining
operators, i.e. that αβ := α◦β and α2 := α◦α for α,β ∈ L(H). We recall that L(H),
equipped with the usual operator norm ‖α‖ := sup‖x‖≤1 ‖α(x)‖, is a Banach space.
This norm is sub-multiplicative, i.e. ‖αβ‖ ≤ ‖α‖ ‖β‖. In some places we also make use
of the supremum norm: ‖x‖∞ = inf{a > 0, |x(u)| < a, for λ–almost every u ∈ [0, 1]}.
For x, y ∈ H, we define the operator x⊗ y := x〈·, y〉.

We define the subspaces H+ = {x ∈ H : x(u) ≥ 0, for almost every u ∈ [0, 1]}
and H+

∗ = {x ∈ H : x(u) > 0, for almost every u ∈ [0, 1]}. Let K(H) denote the
space of kernel operators on H, i.e. if α ∈ K(H) then there exists a function Kα :
[0, 1]× [0, 1]→ R such that α(x)(u) =

∫
Kα(u, v)x(v)dv. For simplicity, we will often

write
∫

instead of
∫ 1

0 . Let L+(H) denote the space of operators which map H+ onto
H+ and note that an operator α ∈ K+(H) := L+(H) ∩ K(H), if and only if its kernel
Kα(·, ·) is non-negative.

For any integer k ≥ 2, the product space Hk = H × · · · × H naturally inherits
the Hilbert space structure by defining its scalar product as 〈x, y〉 =

∑k
i=1〈xi, yi〉,

for x, y ∈ Hk. In this context, it will be useful to represent elements and operators
as k-dimensional vectors with values in H and k × k matrices with values in L(H),
respectively. For example, if k = 2, we consider the operator

α : x 7−→
(
α11 α12
α21 α22

)(
x1
x2

)
:=
(
α11(x1) +α12(x2)
α21(x1) +α22(x2)

)

where x = (x1, x2)> ∈ H2 and α11, α12, α21 and α22 ∈ L(H).
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We are now ready to introduce our general model.

Definition 1. Let (ηt)t∈Z be a sequence of i.i.d. random elements of H. A functional
GARCH(p,q) process (yt)t∈Z is defined as a stationary solution of the equations

yt = σtηt,(4.1)

σ2
t = δ +

q∑
i=1
αi(y2

t−i) +
p∑
j=1
βj(σ2

t−j),(4.2)

where δ ∈ H+
∗ and α1, . . . ,αq,β1, . . . ,βp ∈ K+(H). Such a solution is called non-

anticipative if σt = σ(ηt−1, ηt−2, . . .) for some measurable function σ.

Under the assumption that E(ηt(u)) = 0 and E(η2
t (u)) = 1, the variable σ2

t (u) can
be interpreted as the volatility at day t and intraday time u, i.e. the variance of the
return yt(u) conditional upon the sigma algebra Ft generated by (ηs)s≤t. Note that this
volatility may depend on all past returns, not only on those corresponding to intraday
time u of the previous days. For instance, let p = 0, q = 1 (ARCH(1)), and suppose
that α is a kernel operator, with constant kernel Kα(u, v) := a, then the pattern of the
intraday volatility σ2

t (u) = δ(u)+a
∫
y2
t−1(v)dv is essentially given by that of δ. Moreover,

it depends on the previous day through the so-called ’integrated volatility’ given by
the integral. If now, the kernel has the form Kα(u, v) = aφ(u− v), where φ denotes a
density function with mode at zero, we have σ2

t (u) = δ(u) + a
∫
φ(u− v)y2

t−1(v)dv and
the volatility of intraday-time u is mainly driven by the volatility of the previous day
’around’ time u. It is, thus, clear that Model (4.1) allows for a great flexibility through
the choice of the operators α and β, and the pattern of the intercept δ.

A key feature of the GARCH model is that it captures well the dynamics of
volatility observed in financial data. In our functional setting, we propose the following
interpretation of the volatility curves. For any fixed u ∈ [0, 1], we have that

P (|yt(u)| < c | Ft−1) = P (|ηt(u)| < c/σt(u) | Ft−1) = 1− α,(4.3)

if we take c = σt(u)·Qη(u)
1−α/2. Consider, for example, a process with Gaussian innovations

(ηt) such that Var(ηt(u)) = 1 for all u ∈ [0, 1]. We can then interpret the region
{[−2σt(u), 2σt(u)] : u ∈ [0, 1]} as the prediction interval of yt(u) at (approximate) level
α = .05. We show these curves and their estimation in Figure 9 (in a setting that
will be described below) at two different scales: 7 and 100 days, respectively. The
data generating process is described in Example 2. On the first figure we observe the
sensibility to shocks of the volatility curves. On the second figure we can observe the
persistence of the volatility curves on a larger scale.

One interest of the functional GARCH model is that it allow for prediction of the
next day’s volatility curve. At the end of day t− 1, the whole volatility curve of day t
can be predicted. It is, thus, possible to predict the realised volatility

∑b1/τc
j=1 y2

t (jτ) for
some given time unit τ ∈ (0, 1), or any other realised measure of volatility. This will be
illustrated in Section 4.5.2.

4.2.2 Existence of stationary solutions

In light of Definition 1, an evident question concerns the existence of a strictly stationary
and non-anticipative solution to the functional GARCH equations. To respond to this
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Figure 9: Solid lines represent the simulated process yt, the shaded area is the region
{[−2σt(u), 2σt(u)] : u ∈ [0, 1]}. The dashed lines are estimators ±2σ̃t(θ̂)(u).
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problem, we first observe that our model equations can be conveniently summarised in
the following state-space form:

zt = bt + Ψt(zt−1),(4.4)

where bt, zt ∈ Hp+q and Ψt ∈ L(Hp+q) are defined as

bt =
(
η2
t δ, 0, . . . , 0, δ, 0, . . . , 0

)′
, zt =

(
y2
t , . . . , y

2
t−q+1, σ

2
t , . . . , σ

2
t−p+1

)′
,

and

Ψt =



Υtα1 . . . Υtαq−1 Υtαq Υtβ1 . . . Υtβp−1 Υtβp
IH · · · 0 0 0 · · · 0 0

0
. . . 0 0 0 · · · 0 0

0 · · · IH 0 0 · · · 0 0
α1 . . . αq−1 αq β1 . . . βp−1 βp
0 · · · 0 0 IH · · · 0 0

0 · · · 0 0 0
. . . 0 0

0 · · · 0 0 0 · · · IH 0


.

Here, the operator Υt is the pointwise multiplication by η2
t , i.e. H 3 x 7−→ xη2

t . All 0’s
in the definition of the matrix Ψt are meant to be zero-operators.

Now, we introduce a mild technical assumption which we impose for the rest of the
paper:

(4.5) E log+ ‖η2
0‖∞ <∞,

where log+(u) = log(max(1, u)). By this assumption, it follows that ‖η2
t ‖∞ < ∞ a.s.

and, hence, the linear operator Υt is almost surely bounded. Indeed, we have that

‖Υt(x)‖ = ‖xη2
t ‖ =

(∫
x2(u)η4

t (u)du
)1/2

≤ ‖η2
t ‖∞ ‖x‖, for any x ∈ H,

thus

(4.6) ‖Υt‖ ≤ ‖η2
t ‖∞.

For the sake of a light notation, we will now also use ‖ · ‖ for the norm on Hp+q as
well as for the operator norm of L(Hp+q). Its respective meaning will be clear from the
context. From assumption (4.5) it is easily deduced that E log+ ‖Ψ1‖ <∞. Moreover,
the sequence (Ψt) is i.i.d. and our norm on L(Hp+q) is sub-multiplicative. Hence,
according to Theorem 6 in Kingman (1973) we almost surely have that

γ := lim
t→∞

1
t
E(log ‖ΨtΨt−1 · · ·Ψ1‖) = inf

t≥1

1
t
E(log ‖ΨtΨt−1 · · ·Ψ1‖)(4.7)

= lim
t→∞

1
t

log ‖ΨtΨt−1 · · ·Ψ1‖.(4.8)

The coefficient γ ∈ [−∞,+∞) is called the top Lyapunov exponent of the sequence
(Ψt)t∈Z.
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Theorem 12. Under (4.5), a sufficient condition for the existence of a unique strictly
stationary and non-anticipative solution to (4.1)–(4.2) is γ < 0.

Proof. By iterating (4.4), we formally get that

zt = bt +
∞∑
k=1

ΨtΨt−1 · · ·Ψt−k+1(bt−k).(4.9)

The series converges almost surely, since using (4.8), we deduce that

lim sup
t→∞

1
t

log ‖ΨtΨt−1 · · ·Ψt−k+1(bt−k)‖ ≤ γ + lim sup
t→∞

1
t

log ‖bt−k‖, a.s.(4.10)

Since E log+ ‖bt−k‖ <∞ by (4.5), and ‖bt−k‖ ≥ ‖δ‖ > 0 the second summand is zero
and, thus, we can apply the Cauchy rule to show convergence. In addition, it is easy to
see that the q + 1-th component of zt defines a non-anticipative and stationary solution
of (4.2). The proof of the existence is complete.

It remains to prove that the solution is almost surely unique. To this end, let us
assume that z̃∗t is another solution. By iterating (4.4), we get that

z∗t = zNt + Ψt · · ·Ψt−N (z∗t−N−1), where zNt = bt +
N∑
k=1

Ψt · · ·Ψt−k+1(bt−k).

We then deduce that

‖z∗t − zt‖ ≤ ‖zNt − zt‖+ ‖ΨtΨt−1 · · ·Ψt−N‖ · ‖z∗t−N−1‖.(4.11)

We already know that since γ < 0, we have ‖zNt − zt‖ → 0 and ‖Ψt · · ·Ψt−N‖ → 0,
almost surely when N → ∞. Furthermore, the law of ‖z∗t−N−1‖ is independent of
N . Hence, the right-hand side of (4.11) tends to zero in probability. Therefore,
P (z∗t = zt) = 1.

Remark 4. Equations (4.7) and (4.8) are valid for any sub-multiplicative norm in
L(Hp+q), but the number γ will dependent on that choice (unless the norms are
equivalent). For example we could define the top Lyapounov exponent γp associated to
the following norm

‖α‖pp = sup
‖x‖Lp≤1

‖α(x)‖Lp, ∀ p ∈ [1,+∞].

Then we can show as in Theorem 12 that γp < 0 implies that a solution to (4.1)–(4.2)
exists, but in Lp[0, 1]. The case p = 1 might be interesting since it is more general than
the case p = 2, because L2[0, 1] ⊂ L1[0, 1]. On the other hand, the case p =∞ could be
interesting as well since it provides the existence of a bounded solution (moreover the
parameters might be chosen in such a way that the solution is continuous).
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Remark 5. It would be interesting to see if the condition γ < 0 is also necessary
for the existence of a strictly stationary solution to (4.1)–(4.2). The situation in the
functional context is more complicated when compared to multivariate analysis. In the
multivariate setup, one would argue that for some appropriately chosen matrix norm
‖ · ‖∗ we have that ‖ΨtΨt−1 · · ·Ψt−k+1(bt−k)‖∗ → 0 (which is, of course, necessary for
convergence of (4.9)) will imply ‖ΨtΨt−1 · · ·Ψt−k+1‖∗ → 0. In the infinite-dimensional
setup, however, norms are not equivalent, and choosing a different norm will also give a
different value for the exponent γ. In a second step, one uses contraction properties
of random matrices in order to conclude. To extend such results to linear operators is
beyond the scope of this paper.

In the next proposition, we specialise to the case of the functional GARCH(1,1)
process in order to obtain a slightly more explicit result.

Proposition 4. When p = q = 1, a sufficient condition for existence of a strictly
stationary and non-anticipative solution to (4.1)–(4.2) is that

E log
∥∥(αΥt−1 + β) · · · (αΥ1 + β)

∥∥ < 0, for some t ≥ 1.

Proof. First, note that

ΨtΨt−1 · · ·Ψ1 =
[
Υt

IH

] [
α β

] [Υt−1
IH

]
· · ·
[
α β

] [Υ1
IH

] [
α β

]
=
[
Υt

IH

]
(αΥt−1 + β) · · · (αΥ1 + β)

[
α β

]
,

from which we can deduce a bound for the top Lyapunov exponent:

γ ≤ lim
t→∞

1
t

{
E log(

∥∥∥η2
t

∥∥∥
∞

+ 1)1/2 + E log
∥∥(αΥt−1 + β) · · · (αΥ1 + β)

∥∥
+ E log

∥∥ [α β
] ∥∥}

= lim
t→∞

1
t
E log

∥∥(αΥt−1 + β) · · · (αΥ1 + β)
∥∥

= inf
t≥1

1
t
E log

∥∥(αΥt + β) · · · (αΥ1 + β)
∥∥.

The first inequality is in fact an equality since the two side terms are vanishing in the
limit and the last equality follows from the Fekete’s lemma.

In their recent paper, Aue et al. (2016) obtained the condition

(4.12) E log ‖αΥ0 + β‖S < 0

to guarantee a strictly stationary solution of functional GARCH(1,1) equations. Here,
‖γ0‖S is the Hilbert-Schmidt norm. Note that the Hilbert-Schmidt norm is dominating
the operator norm and, hence,

γ ≤ 1
t
E log

∥∥(αΥt + β) · · · (αΥ1 + β)
∥∥ ≤ E log

∥∥αΥ0 + β
∥∥ ≤ E log ‖αΥ0 + β‖S .
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This shows that our condition is milder than that of Aue et al. (2016).
In the next proposition, we provide a sufficient condition for E[y2

t (u)] < ∞ and
equivalently E[σ2

t (u)] <∞, for all u ∈ [0, 1]. We denote by ρ(A) the spectral radius of
the operator A.

Proposition 5. If γ < 0, then a sufficient condition for the existence of a pointwise
second-order stationary solution to (4.1)–(4.2) is that ρ(EΨ0) < 1.

Proof. Since γ < 0, we deduce from Theorem 12 that there exists a strictly stationary
and non-anticipative solution (yt)t∈Z to (4.1)–(4.2). Using stationarity and independence
we deduce

Ezt = Ebt +
∞∑
k=1

(EΨ0)k Eb0,(4.13)

which converges, since by assumption ρ(EΨ0) < 1. This implies that E[σ2
t (u)] < ∞

and E[y2
t (u)] <∞ for all u ∈ [0, 1].

We conclude this section with a result, which will be useful for statistical inference,
but it also has its own interest.

Proposition 6. Assume that E‖η2
0‖τ∞ < ∞ for some τ ∈ (0, 1), γ < 0 and that

(yt)t∈Z is a stationary solution to (4.1)–(4.2). Then there exists s ∈ (0, τ) such that
E‖y2

t ‖s <∞ and E‖σ2
t ‖s <∞.

Proof. Using (4.7), there exists an integer t0 such that E log ‖Ψt0Ψt0−1 · · ·Ψ1‖τ < 0.
Furthermore, we have that

E‖Ψt0Ψt0−1 · · ·Ψ1‖τ ≤ E‖Ψt0‖τ ‖Ψt0−1‖τ · · · ‖Ψ1‖τ = (E‖Ψ1‖τ )t0 ,

where we used the fact that (Ψt)t∈Z are i.i.d. in the last equality (see Lemma 17
in the appendix for more detail on independence of random operators). Note that
E‖Ψ1‖τ <∞ by (4.6). From Lemma 2.2 in Francq and Zakoian (2011), we then deduce
that there exists an 0 < s < τ such that ς := E‖ΨtΨt−1 · · ·Ψ1‖s < 1. From (4.9) we
get that

E‖zt‖s ≤ E‖b0‖s
{

1 +
∞∑
k=1

E‖ΨkΨk−1 · · ·Ψ1‖s
}

≤ E‖b0‖s
{

1 +
∞∑
k=0

ςk
t0∑
i=1

(E‖Ψ1‖s)i
}
.

Furthermore, we have that

E‖b0‖s ≤ E‖η2
0δ‖s + ‖δ‖s ≤

(
E‖η2

0‖s∞ + 1
)
‖δ‖s <∞.

Thus E‖zt‖s <∞ and the conclusion follows.
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4.3 Estimation
A difficulty in estimating FDA models is that the concept of likelihood does not exist.
For this reason, QML estimation cannot be straightforwardly defined in this framework.
We propose an estimator which, though it cannot be related to any likelihood for the
aforementioned reason, is directly inspired from the QMLE in the standard GARCH
model. As regards the latter, the functional QMLE will be shown to be consistent in a
semi-parametric framework in which the distribution of ηt does not need to be specified.

4.3.1 Parametrisation

From observations (yt)1≤t≤n of curves satisfying Model (4.1)–(4.2), we consider inference
on the parameters δ, α1, . . . ,αq and β1, . . . ,βp. In order to guarantee identifiability of
the model, we impose

(4.14) E[η2
0(u)] = 1, ∀u ∈ [0, 1].

An example of a stationary Gaussian process (η0(u))u∈[0,1] satisfying (4.14) is the
Ornstein-Uhlenbeck process given by η0(u) = e−u/2W0(eu), where W0(·) is the stan-
dard Brownian motion. This process has autocovariance function Cov(η0(u+v), η0(v)) =
e−u/2. In general, however, we do not require either Gaussianity or “intraday–stationarity”
of ηt.

We begin by assuming a specific parametrisation for Model (4.1)–(4.2). Let
ϕ1, . . . , ϕM be linearly independent functions in H+. We assume that there exists
a non-negative valued vector d = (d1, . . . , dM )′ in RM , and non-negative valued matri-
ces Ai = (a(i)

k,`) and Bj = (b(j)k,`) in RM×M such that

δ =
M∑
k=1

dkϕk, αi =
M∑

k,`=1
a

(i)
k,` ϕk ⊗ ϕ` and βj =

M∑
k,`=1

b
(j)
k,` ϕk ⊗ ϕ`,(4.15)

for i = 1, . . . q, j = 1, . . . p. Note that αi and βj belong to K+
H .5 We define the

parameter

θ = vec
(
d,A1, . . . , Aq, B1, . . . , Bp

)
∈ RM+(p+q)M2

.(4.16)

The model (4.1)–(4.2) is obtained for the value θ0. By convention, we index by zero
all quantities evaluated at θ0. It is clear that the parametrisation is one-to-one in the
sense that

θ 6= θ0 =⇒ (δ,α1, . . . ,αp,β1, . . . ,βq) 6= (δ0,α01, . . . ,α0p,β01, . . . ,β0q),

for i = 1, . . . q, j = 1, . . . p. To avoid confusion with the parameter θ we refer to δ,
α1, . . . ,αq,β1, . . . ,βp as the functional parameters of the model. We assume that θ0

belongs to a compact subset Θ of RM+(p+q)M2

+ , for a further discussion on the positivity
of the functional parameters, see Section 5.3.3.

5Note that Kαi(u, v) =
∑M

k,`=1 a
(i)
k,`ϕk(u)ϕ`(v) and Kβi

(u, v) =
∑M

k,`=1 b
(i)
k,`ϕk(u)ϕ`(v).
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Remark 6. The implication of equation (4.15) is that the volatility process (σ2
t )t∈Z

belongs to the M -dimensional subspace of H spanned by ϕ1, . . . , ϕK . This is also
assumed in Aue et al. (2016). An alternative nonparametric approach will be developed
in Section 4.4.

Our estimator is defined as follows:

(4.17) θ̂n := argmin
θ∈Θ

Q̃n(θ),

where

Q̃n(θ) = 1
n

n∑
t=1

˜̀
t(θ), ˜̀

t(θ) =
M∑
m=1

{
〈y2
t , ϕm〉
〈σ̃2
t , ϕm〉

+ log〈σ̃2
t , ϕm〉

}
,(4.18)

and where the empirical volatility σ̃2
t is computed recursively as

σ̃2
t = σ̃2

t (θ) = δ +
q∑
i=1
αi(y2

t−i) +
p∑
j=1
βj(σ̃2

t−j), for t = 1, . . . , n(4.19)

with some initial values y0, . . . , y−q+1 and σ̃0, . . . , σ̃−p+1 in H. Note that the positivity
of the baseline functions ϕk ensures that the scalar products in (4.18) are positive
and thus Q̃n(θ) is well defined and reaches its minimum on the compact set Θ. This
estimator is clearly inspired by the QMLE for standard GARCH models, and thus, we
will refer to θ̂n as the QML estimator.

4.3.2 Asymptotic results

Under (4.15), Model (4.1)-(4.2) admits a multivariate representation. More precisely,
under the invertibility Assumption A5 below, we define the process (ht(θ))t∈Z as the
stationary and ergodic solution of the following equation

ht(θ) = d +
q∑
i=1

AiY
<2>
t−i +

p∑
j=1

Bjht−j(θ),(4.20)

where Y <2>
t = (〈y2

t , ϕ1〉, . . . 〈y2
t , ϕM 〉)′, d = Φd and for i = 1, . . . , q and j = 1, . . . , p,

Ai = ΦAi and Bj = ΦBj with Φ = (〈ϕi, ϕj〉)) being the Gram-matrix of the functions
ϕ1, . . . , ϕM . Note that ht(θ0) = (〈σ2

t , ϕ1〉, . . . , 〈σ2
t , ϕM 〉)′.

We are able to deduce our main asymptotic results under the following assumptions:
A1 θ0 ∈ Θ, Θ is a compact set.
A2 E‖η2

0‖τ∞ < ∞ for some τ ∈ (0, 1), (yt)t∈Z is a strictly stationary and non-
anticipative solution of Model (4.1)-(4.2).

A3 For any function ψ ∈ H and any non-random constant κ,

〈η2
t , ψ〉 = κ a.s. ⇒ ψ ≡ 0 and κ = 0.

A4 If p > 0, A0(z) =
∑q
i=1 ΦA0iz

i and B0(z) = IM −
∑p
j=1 ΦB0iz

i, are left co-primes
and [A0q, B0p] has full rank M .
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A5 infθ∈Θ d > 0 componentwise, and for all θ ∈ Θ, the matrix B(z) = IM−
∑p
j=1 ΦBizi

is invertible for |z| ≤ 1.
Theorem 13. Under (4.14)–(4.15) and Assumptions A1-A5, the QMLE of θ0 is
strongly consistent, i.e. we have θ̂n → θ0 almost surely.

In order to derive the asymptotic law of our estimator we make the following
assumptions:

A6 θ0 ∈ Int(Θ).
A7 E‖η0‖4∞ <∞.

Letting NK(µ,Σ) denote a K-variate normal random vector with mean µ and
covariance matrix Σ, we get the following asymptotic normality result. Define `t(θ) by
replacing 〈σ̃2

t , ϕm〉 by ht,m (the m-th component of ht(θ)) in ˜̀
t(θ).

Theorem 14. Under (4.14)–(4.15) and Assumptions A1-A7 we have that
√
n(θ̂n − θ0) d−→ NM+(p+q)M2

(
0, J−1IJ−1

)
,(4.21)

where I = Var
(
∂`t(θ0)
∂θ

)
and

J = E

[
∂2`t(θ0)
∂θ∂θ′

]
=

M∑
m=1

E

[
1

h2
t,m

∂ht,m
∂θ

∂ht,m
∂θ′

(θ0)
]
.(4.22)

We remark that, unlike in the scalar case, it is not possible to factorise the matrix I
in the asymptotic variance of Theorem 14. However, we have that

I =
M∑

m,m′=1
E

[(∫∫
E[η2

t (u)η2
t (v)] σ2

t (u)σ2
t (v)

ht,m(θ0)ht,m′(θ0)ϕm(u)ϕm′(v)dudv − 1
)

× 1
ht,mht,m′

∂ht,m
∂θ

∂ht,m′

∂θ′
(θ0)

]
.

Using this, we can obtain estimates of J and I, as follows.

Ĵ = 1
n

M∑
m=1

n∑
t=1

[
1

h̃t,m(θ̂n)h̃t,m′(θ̂n)
∂h̃t,m(θ̂n)

∂θ

∂h̃t,m′(θ̂n)
∂θ′

]
and

Î = 1
n

M∑
m,m′=1

n∑
t=1

[(∫∫
K̂η2

0
(u, v) σ̃

2
t (θ̂n)(u) σ̃2

t (θ̂n)(v)
h̃t,m(θ̂n)h̃t,m′(θ̂n)

ϕm(u)ϕm′(v)dudv − 1
)

× 1
h̃t,m(θ̂n)h̃t,m′(θ̂n)

∂h̃t,m(θ̂n)
∂θ

∂h̃t,m′(θ̂n)
∂θ′

]
,

where the vector h̃t(θ̂n) and its derivatives are computed recursively by using equa-
tion (4.20),

σ̃2
t (θ̂n)(u) =

M∑
m=1

(Φ−1h̃t(θ̂n))mϕm(u),

and
K̂η2

0
(u, v) = 1

n

n∑
t=1

y2
t (u)/σ̃2

t (θ̂n)(u) · y2
t (v)/σ̃2

t (θ̂n)(v).
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4.3.3 Choice of instrumental functions

The instrumental functions ϕ1, . . . , ϕM must satisfy the positivity constraints. We can
consider any family of non-negative and linearly independent functions in H, such as
the power basis 1, u, u2, . . . the exponential basis eu, e2u, . . . or some polynomial basis
that is non-negative on [0, 1], for example the popular B-splines bases. Since the latter
are thought to perform well with functional data, we will consider them in our empirical
study. More precisely, we will use the Bernstein polynomials. For more details on the
use of B-splines and smoothing methods for functional data see Ramsay and Silverman
(2006).

In order to avoid using a specific set of instrumental functions, we propose a heuristic
data-driven method. Direct use of functional PCA (which is by far the most common
practice in many applications) is not possible in this framework, due to the positivity
constraints. Under the further assumption that E‖yt‖4 <∞, we represent the squared
process through its functional principal components, i.e.

y2
t (u) = µ(u) +

∞∑
j=1
〈y2
t − µ, ψj〉ψj(u),

where µ(u) = E[y2
t (u)] and (ψj)j≥1 are the eigenfunctions of the covariance operator

of y2
t (see, e.g. Horváth and Kokoszka (2012) for more details on functional principal

components). Then, since σ2
t = E[y2

t |Ft−1] and in view of (4.2), it seems natural to
assume that δ, αi and βj are spanned by the finite set of functions µ, ψ1, . . . , ψM−2.
However, these functions are not non-negative. We, thus, propose to modify them
according to the following routine. Take ϕ1(u) = 1, ϕ2(u) = µ(u), which is necessarily
non-negative, and shift the other principal components, if necessary:

ϕm(u) := ψm−2(u)− inf
u∈[0,1]

ψm−2(u) ∧ 0, for all m = 3, . . . ,M.(4.23)

We have observed in our simulations (see Example 2) that this empirical choice performs
relatively well, even when we compare it to the settings where the true (but unknown)
basis functions in the data-generating process were used.

4.4 Extension to infinite-dimensional parameter space
Assuming a finite-dimensional parametrisation (4.15) may appear to be not entirely
satisfactory from the theoretical standpoint. In this section, we show that the QML
estimator remains strongly consistent in a more general setting, permitting an infinite-
dimensional specification. For simplicity, we only consider the case when p = q = 1. We
assume that δ, α and β can be parametrised by some infinite-dimensional parameter
θ ∈ Θ, in other words we let M =∞ in (4.15). This parameter space is assumed to be
a compact subset of l2 (the set of square summable sequences).

Our new estimator is defined as
θ̂Nn := argmin

θ∈ΘN
Q̃n(θ),

where ΘN ⊂ Θ is the subspace of all sequences with zero entries in components k > N .
Furthermore, Q̃n(θ) is defined as in (4.18) and we set

˜̀
t(θ) =

∞∑
m=1

wm

{
〈y2
t , ϕm〉

〈σ̃2
t (θ), ϕm〉

+ log〈σ̃2
t (θ), ϕm〉

}
,(4.24)
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where (wm)m≥1 is a non-negative and summable sequence of numerical weights.

Let α∗ denote the adjoint operator of α, i.e. the unique operator such that
〈α∗(x), y〉 = 〈x,α(y)〉 for all x, y ∈ H. The following technical assumptions will
be used.
A8 Identifiability. For all m ≥ 1 and θ ∈ Θ we have that

(a) 〈δ0, ϕm〉 = 〈δ, ϕm〉 implies δ = δ0.

(b) α∗0(ϕm) = α∗(ϕm) implies α = α0.

(c) (α∗0 ◦ β∗0)(ϕm) = (α∗0 ◦ β∗)(ϕm) implies β = β0.

A9 There exists a sequence (am)m≥1 such that wm/a
2
m is summable and am ≤∫

|ϕm(u)|du ≤ ‖ϕm‖ ≤ 1 for all m ≥ 1. Furthermore, for all θ ∈ Θ, the function
δθ is uniformly bounded from below by some constant c > 0.

Remark 7. Note that, if M <∞, p = q = 1, and A0 is invertible then (4.15) implies
A8. See Lemma 18 in the appendix for more details.

Proposition 7. Under (4.14) and assumptions A1−A3, and A8 −A9, the QMLE of
θ0 is strongly consistent: θ̂Nnn → θ0 almost surely in l2, for any sequence Nn ↗∞.

To illustrate this result, we present an example of a functional GARCH process
which is not included in the multivariate and linearly parametrised setting of Section 4.3.

Let (ψk)k≥1 be an orthonormal basis of H. We assume that the volatility recursion
is of the form

σ2
t (u) = exp

( ∞∑
k=1

dkψk(u)
)

+ a

∫
y2
t−1(v)dv + b

∫
σ2
t−1(v)dv.(4.25)

Here, the parameter is θ = (a, b, d1, d2, . . . ) ∈ R2
+ × R∞. The exponential function is

used to guarantee a positive intercept, but other positive valued functions could be used
instead of it. This model provides a very simple interpretation of the function δ. Indeed,
we can show that the curve of δ parallels that of the expected intraday-volatility. More
precisely, if Ey2

t (u) <∞, then we have that

Eσ2
t (u) = Ey2

t (u) = δ(u) + a+ b

1− a− b

∫
δ(v)dv.

We can also compute explicitly the top Lyapunov exponent which only depends on a, b
and the law of η0:

γ = lim
t→∞

1
t
E log

∥∥∥(αΥt−1 + β) · · · (αΥ1 + β)
∥∥∥

= lim
t→∞

1
t
E log sup

‖x‖≤1

t−1∏
s=2

(a
∫
η2
s(v)dv + b)

∫
(aη2

1(v) + b)x(v)dv

= E log
(
a

∫
η2

0(v)dv + b

)
.

Finally, Proposition 7 can be applied to model (4.25). Indeed, we can easily choose a
compact subset Θ of `2 and an innovation process (ηt)t∈Z such that Assumptions A1−A3
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d a b
sd 2.4e-05 0.01 0.031

bias 1.6e-05 0.0041 0.011

Table 1: Performance of LSE.

d a b
sd 7.7e-06 0.0051 0.0093

bias 3.1e-06 0.0017 0.0036

Table 2: Performance of QMLE.

are satisfied. Let (ϕm)m≥1 be any family of non-negative functions spanning H. If we
further assume that (dk)k≥1 is absolutely summable and that κ = supk≥1 ‖ψk‖∞ <∞,
then we get that δ(u) = exp (

∑∞
k=1 dkψk(u)) ≥ exp (−κ

∑∞
k=1 |dk|) > 0. Now, since

α = α∗ and β = β∗, it easy to see that A8 (b) is satisfied as well as A8 (c), provided
that a0 6= 0. Assumption A8 (a) follows from the fact that (ϕm)m≥1 is a basis of
the space H. Then, for any weight sequence (wm)m≥1 which satisfies A9 we get by
Proposition 7 that the QMLE of model (4.25) is strongly consistent.

4.5 Empirical results
4.5.1 Simulations

We will first compare the Least Squares Estimator (LSE) of Aue et al. (2016) and our
QMLE that is defined in (4.17). We will next compare the QML with given instrumental
functions ϕm to the data-driven procedure described in Section 4.3.3 (we then refer to
QMLE*).

Example 1.

The first setup is taken from Aue et al. (2016). They consider a GARCH(1,1) model
with

δ(u) = .01, Kα(u, v) = Kβ(u, v) = 12u(1− u)v(1− v),(4.26)

for u, v ∈ [0, 1]. For the innovations, Ornstein-Uhlenbeck processes are chosen. They
are defined as η0(u) = e−u/2W0(eu), where (W0(u))u∈[0,1] is a Brownian motion.

The recursion starts at initial value σ2
0 := δ, and the first 1000 curves are discarded.

Aue et al. (2016) project on one basis function ϕ1(u) =
√

30u(1−u), u ∈ [0, 1]. It follows
that Kα(u, v) = aϕ1(u)ϕ1(v), with a = 0.4 and Kβ(u, v) = b ϕ1(u)ϕ1(v), with b = 0.4.
Note that δ is not spanned by ϕ1(u) and that d = 〈δ, ϕ1〉 ≈ .009. It is assumed that ϕ1
is known and we estimate d, a and b. For the LSE we impose |b| ≤ .99, whereas, for the
QMLE we impose that a ≥ 0 and 0 ≤ b ≤ .99. In order to compare the performance of the
two procedures, we consider 100 Monte-Carlo replications of our estimation experiment.
The results of our simulations are displayed in Tables 1–2 and in Figure 10. We see that
standard deviation and bias differ by a factor of 2 to 3 in favour of the QMLE methods.

Example 2.

We now illustrate our estimator in a slightly more complex example. We consider a
functional GARCH(1,1) model with δ(u) = (u− .5)2 + .1,

Kα(u, v) = (u− .5)2 + (v − .5)2 + .2, and Kβ(u, v) = (u− .5)2 + (v − .5)2 + .4.
(4.27)
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Figure 10: Estimates of a and b, with ∗ LSE and ◦ QMLE, and + indicates the true values.

As in the previous example, we take for the innovations an i.i.d. sequence of Ornstein-
Uhlenbeck processes, the recursion starts at initial value σ2

0 := δ, and the first 1000
curves are discarded.

For the instrumental functions ϕ1, . . . , ϕM we consider the following families:
1. QMLE: Bernstein polynomials, which are a special case of B-spline functions defined

by ϕk(u) =
(M−1
k−1

)
uk−1(1− u)M−k, for k = 1, . . . ,M and u ∈ [0, 1].

2. QMLE*: The functions defined in Section 4.3.3.
We fix M = 4, then the subspace spanned by the Bernstein polynomials (of order 3)
contains the true parameters defined in (4.27). We have constrained the parameters
as follows: dk ≥ 10−5, ak` ≥ 0 and to avoid an explosive solution, 0 ≤ bk` ≤ (M ·
max1≤m≤M ‖ϕm‖)−1, for all k, ` = 1, . . . ,M .

We have represented the functional parameters δ and α (its kernel Kα) in Figure 11
together with their QMLE. In order to compare the performance of the two procedures,
we ran N = 100 Monte-Carlo replications of our estimation experiment with sample
size n = 1000. The results of our simulations are displayed in Table 3. We show the
relative mean squared deviations, defined as

1
N1/2‖δ‖

(
N∑
ν=1
‖δ̂(ν) − δ‖2

)1/2

,
1

N1/2‖α‖

(
N∑
ν=1
‖α̂(ν) −α‖2

)1/2

,

and analogously for β. As aforementioned in Section 4.3.3 it is interesting that both
procedures perform similarly, despite the fact that QMLE* doesn’t require prior knowledge
of instrumental functions.
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Figure 11: From left to right: the intercept function δ (solid line) compared to its estimation
δ̂ (dashed line), the theoretical kernel Kα(u, v) and the estimated kernel Kα̂(u, v).
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δ α β
QMLE 0.45 0.46 0.55
QMLE* 0.51 0.33 0.44

Table 3: Relative mean squared deviations for the corresponding functional parameters.

4.5.2 Real data illustration

We applied our estimators to the minutely recorded S&P100 Index for a ten-year period
between 1997 and 2007. The return series is displayed in Figure 12. The functional

1998 2000 2002 2004 2006

40
0

60
0

80
0

Figure 12: Raw data for S&P 100 index between 1997 and 2007.

GARCH model has been implemented on two different types of return data. Denoting
by Xt(u) the price at time u of the day t, we considered the τ -minute returns yt(u) and
the intraday returns ỹt(u) defined by

yt(u) = logXt(u)− logXt(u− τ), and ỹt(u) = logXt(u)− logXt(0).(4.28)

For yt(u) we used τ = 20 min. For the instrumental functions we used, as in Example 2
the Bernstein polynomials with M = 4. We computed the LSE estimator to get an
initial value of the parameter in the optimisation routine. The resulting empirical
volatility curves are displayed in Figures 13 and 14 for yt and in Figures 15 and 16 for
ỹt. In light of (4.3) and the related discussion, we plotted the curves σ̃t(θ̂n)(u) · Q̂η̂(u)

1−α/2.
The required quantiles were estimated from the residuals η̂t(u) := yt(u)/σ̃t(θ̂n)(u),
for t = 1, . . . , n. On both processes we can observe the sensitivity to shocks of the
volatility process and its persistence. The persistence seems stronger in Figure 16 than
in Figure 14, whereas the rise of the volatility after a shock is more evident Figure 13
than in Figure 14. This is in line with a large value of ‖β̂‖ for ỹt (see Table 4).
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‖δ̂‖ ‖α̂‖ ‖β̂‖
y 1e-06 0.46 0.46
ỹ 5e-06 0.15 0.89

Table 4: Norms of the estimated parameters.
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Figure 13: Predicted volatility (shaded area) for yt (8 days)

Realised volatility

Practitioners often use the so-called realised volatility as a measure of the daily risk.
Typically, it is defined as follows:

RVt =
b1/τc∑
j=1
| logXt(jτ)− logXt(jτ − τ)|2.(4.29)

If we choose the same τ as in the definition of yt in (4.28) we remark that

RVt =
b1/τc∑
j=1
|y2
t (jτ)| =

b1/τc∑
j=1

σ2
t (jτ)η2

t (jτ).

At time t− 1, the optimal predictor of RVt is

E[RVt|Ft−1] =
b1/τc∑
j=1

σ2
t (jτ),

which can be estimated by

R̃Vt =
b1/τc∑
j=1

σ̃2
t (θ̂)(jτ),(4.30)
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Figure 14: Predicted volatility (shaded area) for yt (31 days).

where θ̂ is the QMLE computed with the sub-sample y1, . . . , yt−1. In Figure 17, we have
plotted 41 one-day ahead predictions of R̃Vt against RVt.
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Figure 15: Predicted volatility (shaded area) for ỹt (8 days).
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Figure 16: Predicted volatility (shaded area) for ỹt (61 days).
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Figure 17: Predicted (+) and true realised volatility (o).
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4.6 Proofs of Chapter 4
We start to show asymptotic results for CCC GARCH models which will be used to
prove Theorems 13 and 14. Similar results exist in the literature but with independent
innovations. The convergence and asymptotic properties of semi-strong GARCH models
has been considered by Escanciano (2009) in the scalar case. We provide a multivariate
generalisation of this result to semi-strong CCC-GARCH models.

4.6.1 Asymptotics of semi-strong CCC-GARCH models

We recall the definition of a CCC-GARCH(p, q) process. It is an RM -valued process
(εt)t∈Z with εt = (εt,1, . . . , εt,M ) which satisfies the following equations:

εt = H
1/2
t νt,(4.31)

Ht = DtRDt with Dt =
(
diag(ht)

)1/2
,(4.32)

ht = d +
q∑
i=1

Aiε
[2]
t−i +

p∑
j=1

Bjht−j ,(4.33)

where ε[2]
t = (ε2t,1, . . . , ε2t,M ). Here R is an M ×M correlation matrix, Ai and Bj are

M ×M matrices with positive elements, the components of the M -vector d are strictly
positive. We set

ξ =
(
vec′

(
d,A1, . . . ,Aq,B1, . . . ,Bp

)
, r′
)′
,

where r is the vector of the subdiagonal elements of R. The QMLE ξ̂n of ξ0 is defined
by

ξ̂n = arg min
ξ∈Ξ

1
n

n∑
t=1

˜̀
t(ξ), ˜̀

t(ξ) = ε′tH̃
−1
t εt + log |det(H̃t)|,(4.34)

where H̃t is defined recursively using (4.33) and some initial values.
We define the matrix-valued polynomials A(z) =

∑q
i=1 Aiz

i and B(z) = IM −∑p
j=1 Bjz

j , for z ∈ C and any ξ belonging to a compact parameter set Ξ. Let (Ft)t∈Z
be some filtration. The following technical assumptions are needed:

A∗0 E‖ε[2]
t ‖s <∞, for some s > 0.

A∗1 ξ0 ∈ Ξ, where Ξ is a compact set.
A∗2 (εt) is a strictly stationary and ergodic solution of Model (4.31)-(4.33), with

εt ∈ Ft.
A∗3 (νt)t∈Z is an ergodic, stationary martingale difference sequence with respect to

(Ft)t∈Z such that E[νtν ′t|Ft−1] = IM . There exists no vector x 6= 0 ∈ RM such
that x′ε[2]

t is Ft−1-measurable.
A∗4 If q > 0, A0(z) and B0(z), are left co-primes and [A0q,B0p] has full rank M .
A∗5 infξ∈Ξ d > 0 componentwise; B(z) is invertible for |z| ≤ 1, for all ξ ∈ Ξ; R is a

positive definite correlation matrix for all ξ ∈ Ξ.
A∗6 ξ0 ∈ Int(Ξ).
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A∗7 E‖νtν ′t‖2(1+w) <∞, for some w > 0.
Let `t(ξ) = ε′tH

−1
t (ξ)εt + log | det(Ht(ξ))|.

Theorem 15. Under Assumptions A∗0–A∗5 the QMLE of ξ0 as defined in (4.34) is
strongly consistent, i.e. ξ̂n → ξ0 a.s.

Theorem 16. Under Assumptions A∗0–A∗7, we have that
√
n(ξ̂n − ξ0) d−→ NM+(p+q)M2+M(M−1)/2

(
0, J−1IJ−1

)
(4.35)

where I = Var
(
∂`t(ξ0)
∂ξ

)
and J = E

[
∂2`t(ξ0)
∂ξ∂ξ′

]
.

Proof of Theorem 15. A close look into the proof of Theorem 11.7 in Francq and
Zakoian (2011) shows that independence of the innovations is only needed to show the
existence of some small order moments and for the identifiability. The existence of
moments is now imposed in A∗0. To show the identifiability, we have to prove that if
there exists a matrix P1 ∈ RM×M such that P1ε

[2]
t = Zt−1, a.s. where the vector Zt−1 is

Ft−1 measurable, then P1 = 0. Using the second part of our assumption A∗3 we may
conclude.

Proof of Theorem 16. As one can see in the proof of Theorem 11.8 in Francq and
Zakoian (2011), the independence of the innovations is only used to show the existence
of moments of the theoretical criterion `t, or of its derivative at ξ0 or at a neighbourhood
of it. For example, in order to prove the existence of I, we first compute for i ≤ s :=
M + (p+ q)M2,

∂`t(ξ0)
∂ξi

= −Tr
{

(εtε′tD−1
t R−1 +R−1D−1

t εtε
′
t)D−1

t

∂Dt(ξ0)
∂ξi

D−1
t

}
+ 2Tr

{
D−1
t

∂Dt(ξ0)
∂ξi

}
= Tr

{
(IM −R−1/2νtν

′
tR

1/2)∂Dt(ξ0)
∂ξi

D−1
t + (IM −R1/2νtν

′
tR
−1/2)D−1

t

∂Dt(ξ0)
∂ξi

}
.

When independence between νt and the past holds, the existence of the second-order
moments of these derivatives only requires E‖νt‖4 <∞. Under our martingale difference
assumption A∗3, the moment condition on νt has to be strengthened as in A∗7. More
precisely, for i, j ≤ s, we use Hölder’s inequality to get that

E

∣∣∣∣∣∂`t(ξ0)
∂ξi

∂`t(ξ0)
∂ξj

∣∣∣∣∣ ≤ cst ·
(
1 + E‖νtν ′t‖2(1+w)

) 1
1+w

E ∥∥∥∥∥D−1
t

∂Dt(ξ0)
∂ξi

∂Dt(ξ0)
∂ξj

D−1
t

∥∥∥∥∥
1+w
w


w

1+w

≤ cst ·

E ∥∥∥∥D−1
t

∂Dt(ξ0)
∂ξi

∥∥∥∥
2(1+w)
w

E

∥∥∥∥∥D−1
t

∂Dt(ξ0)
∂ξj

∥∥∥∥∥
2(1+w)
w


w

2(1+w)

<∞.

The case i > s, i.e. when deriving with respect to the coefficients of the matrix R,
is actually much simpler. The remainder of the proof works as in the classical CCC-
GARCH by similar arguments.
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4.7 Proofs of the results of Section 4.3
In view of representation (4.20), we build a sequence (εt) satisfying the CCC-GARCH
model of the previous section. Let (rt)t∈Z be an i.i.d. sequence of M -dimensional vectors,
whose components are independent Rademacher variables. Let εt = {diag(Y <2>

t )}1/2rt
and let Ft the σ-field generated by (rt, {ηt−u, u ≥ 0}). Let Dt = {diag(〈σ2

t , ϕm〉)}1/2

and let νt = D−1
t εt. Note that ε[2]

t = (ε2t,1, . . . , ε2t,M ) = Y <2>
t . It follows that equations

(4.31)-(4.33) hold with R = IM . Let

ξ = vec
(
d,A1, . . . ,Aq,B1, . . . ,Bp

)
= (I1+M(p+q) ⊗ Φ)θ,

where ⊗ denotes the usual Kronecker product of matrices. Since Φ is non-singular (this
follows from the linear independence of the functions ϕ1, . . . , ϕM ), the transformation T
which maps θ to ξ is bijective. By choosing Ξ = T (Θ), the QML estimator ξ̂n defined in
(4.34) satisfies ξ̂n = T (θ̂n). Clearly, Theorems 15-16 can be straightforwardly adapted
when R = I is not estimated. It, therefore suffices, to verify that the assumptions of
these theorems are satisfied.

Proof of Theorem 13. We start by verifying that the multivariate process (εt)t∈Z defined
by εt = {diag(Y <2>

t )}1/2rt satisfies assumptions A∗0–A∗5.

Assumption A∗0 follows from Proposition 6, noting that

‖ε[2]
t ‖ =

(
M∑
m=1
|〈y2

t , ϕm〉|2
)1/2

≤ ‖y2
t ‖
(

M∑
m=1
‖ϕm‖2

)1/2

,

where ‖.‖ denotes the euclidean norm. Assumption A∗1 is obviously satisfied. By
construction εt ∈ Ft and satisfies (4.31)-(4.33). The stationarity and ergodicity of εt
readily follows from A2. Thus A∗2 holds. The first part of A∗3 is obtained by noting
that E(〈y2

t , ϕm〉1/2rt,m|Ft−1) = 0 and E(〈y2
t , ϕm〉|Ft−1) = 〈σ2

t , ϕm〉. For the second
part of A∗3 we suppose that there exists an x ∈ RM , such that x′ε[2]

t is Ft−1-measurable.
Then, conditionally on Ft−1 we have that

x′ε
[2]
t =

M∑
m=1

xm〈y2
t , ϕm〉 = 〈η2

t , σ
2
t

M∑
m=1

xmϕm〉 = const, a.s.

Assumption A3 implies that the constant must be zero and that σ2
t (u)

∑M
m=1 xmϕm(u) =

0, a.s. Furthermore, since σ2
t (u) ≥ δ0(u) > 0, for all u ∈ [0, 1] and the function

ϕ1, . . . , ϕM are linearly independent, we can conclude that x = 0. The remaining
assumptions A∗4 and A∗5 are obviously satisfied.

Hence, we can apply Theorem 15 to the process (εt)t∈Z and, thus, we get that
ξ̂n → ξ0, a.s. To conclude, the continuity of T−1 implies that θ̂n → θ0, a.s.

Proof of Theorem 14. Since T is a bijection, it is obvious that assumption A6 implies
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that A∗6. Next, we have

E‖νtν ′t‖2 ≤
M∑

k,m=1
Eν2

t,kν
2
t,m

≤
M∑

k,m=1

(
Eν4

t,kEν
4
t,m

)1/2

=
M∑

k,m=1

(
E
[
E[〈σ2

t η
2
t , ϕk〉2|Ft−1]/〈σ2

t , ϕk〉2
]
E
[
E[〈σ2

t η
2
t , ϕm〉2|Ft−1]/〈σ2

t , ϕm〉2
])1/2

≤M2E‖ηt‖4∞,

where we used Hölder’s inequality in the last step. By assumption A7 we obtain that
E‖νtν ′t‖2 <∞. This is slightly weaker than assumption A∗7, which would require more
than fourth order moments for the innovations process. However, in our situation we
can avoid this further assumption and the use of Hölder’s inequality as in Theorem 16.
For example, to prove that

E

∥∥∥∥∂`t(θ0)
∂θ

∂`t(θ0)
∂θ′

∥∥∥∥ <∞ and E

∥∥∥∥∥∂2`t(θ0)
∂θ∂θ′

∥∥∥∥∥ <∞,(4.36)

we compute

∂`t(θ)
∂θ

=
M∑
m=1

(
1−

Y <2>
t,m

ht,m

)
1

ht,m

∂ht,m
∂θ

,(4.37)

∂2`t(θ)
∂θ∂θ′

=
M∑
m=1

(
1−

Y <2>
t,m

ht,m

)
1

ht,m

∂2ht,m
∂θ∂θ′

+
M∑
m=1

(
2
Y <2>
t,m

ht,m
− 1

)
1

h2
t,m

∂ht,m
∂θ

∂ht,m
∂θ′

.(4.38)

Since, at the true value of the parameter θ = θ0, we have that
Y <2>
t,m

ht,m0
= 〈y

2
t , ϕm〉
〈σ2
t , ϕm〉

=
∫
σ2
t (u)η2

t (u)ϕm(u)du∫
σ2
t (u)ϕm(u)du

≤ sup
u∈[0,1]

η2
t (u) = ‖η2

t ‖∞.(4.39)

This last quantity is independent of Ft−1, which readily implies that (4.36) reduces to
prove that

E

∣∣∣∣∣ 1
ht,m

∂ht,m
∂θi

∣∣∣∣∣
2

<∞,

for all m = 1, . . . ,M and i = 1, . . . ,M + (p + q)M2. This can be established with
Proposition 6.

Proof of Proposition 7. We first prove that θ̂n → θ0 almost surely, where θ̂n denotes
the minimiser of Q̂n over the whole space Θ. Let `t(θ) denote the theoretical criterion
(involving the infinite past of yt), defined as ˜̀

t(θ), but with σ̃2
t (θ) replaced by σ2

t (θ)
given by the model recursion. Note that under (4.14) we have that

E
[
〈y2
t , ϕm〉 | Ft−1

]
= 〈σ2

t , ϕm〉.(4.40)

To show θ̂n → θ0 by standard arguments it suffices to verify the following:
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(i) supθ∈Θ |Qn(θ)− Q̃n(θ)| −→
n→∞

0 a.s.

(ii) 〈σ2
t (θ), ϕm〉 = 〈σ2

t , ϕm〉 a.s. for all m ≥ 1 implies θ = θ0;
(iii) E`t(θ) exists for all θ ∈ Θ, and is finite for θ = θ0, and E`t(θ) > E`t(θ0), for

θ 6= θ0;
(iv) ∀θ 6= θ0, there exists a neighbourhood Vθ such that lim infn infθ′∈Vθ Q̃n(θ′) >

E`t(θ0), a.s.
Relation (iv) can be proven in the same way as in the univariate case. In order to

prove (i), we recall that for all θ ∈ Θ, σ2
t (θ) ≥ δ. Hence, the non-negativity of the ϕm’s

and A9 implies that there is a strictly positive constant c, such that 〈σ2
t (θ), ϕm〉 ≥ cam

for all m ≥ 1. Furthermore, we have that ‖σ2
t (θ) − σ̃2

t (θ)‖ ≤ Kρt, where ρ is the
supremum of ‖βθ‖ over θ ∈ Θ and K is a random constant. The compactness of Θ
implies that ρ < 1. We then compute

sup
θ∈Θ
|Qn(θ)− Q̃n(θ)|

≤ 1
n

n∑
t=1

∞∑
m=1

wm sup
θ∈Θ

{∣∣∣〈σ2
t (θ), ϕm〉 − 〈σ̃2

t (θ), ϕm〉
〈σ̃2
t (θ), ϕm〉〈σ2

t (θ), ϕm〉

∣∣∣〈y2
t , ϕm〉 − log 〈σ̃(θ)2

t , ϕm〉
〈σ2
t (θ), ϕm〉

}

≤
∞∑
m=1

wmK

(
sup
θ∈Θ

1
〈δθ, ϕm〉2

)
1
n

n∑
t=1

ρt〈y2
t , ϕm〉+

∞∑
m=1

wmK

(
sup
θ∈Θ

1
〈δθ, ϕm〉

)
1
n

n∑
i=1

ρt

≤ Kc−2
∞∑
m=1

wm
a2
m

1
n

〈 n∑
t=1

ρty2
t , ϕm

〉
+Kc−1

∞∑
m=1

wm
am

1
n

n∑
t=1

ρt

Consider the random function Y = lim
n→∞

↑
∑n
t=1 ρ

ty2
t . The existence of moment of order

s for y2
t and its stationarity implies that E‖Y ‖s ≤

∑∞
t=1 ρ

tsE‖y2
t ‖s < ∞, and, thus,

that Y is almost surely finite. We thus have that

sup
θ∈Θ
|Qn(θ)− Q̃n(θ)| ≤ K‖Y ‖

nc2

∞∑
m=1

wm
a2
m

+ K

nc(1− ρ)

∞∑
m=1

wm
am

a.s.−→
n→∞

0.

We now turn to (iii). Although `t(θ) is not necessarily integrable, it is well defined
in R ∪ {∞}, since

E`t(θ) ≥ E
∞∑
m=1

wm log〈σ2
t (θ), ϕm〉 ≥

∞∑
m=1

wm(log c+ log am)

≥ const−
∞∑
m=1

wm log
( 1
am

)
> −∞,

and at the true value of the parameter θ = θ0, we have that

E `t(θ0) =
∞∑
m=1

wmE
{
E
[ 〈y2

t , ϕm〉
〈σ2
t , ϕm〉

∣∣Ft−1
]

+ log〈σ2
t , ϕm〉

}
=
∞∑
m=1

wm
(
1 + E log〈σ2

t , ϕm〉
)
≤
∞∑
m=1

wm
(
1 + E log ‖σ2

t ‖
)
<∞.

100



We now have that

E[`t(θ)]− E[`t(θ0)] =
∞∑
m=1

wmE

{
〈σ2
t , ϕm〉

〈σ2
t (θ), ϕm〉

− 1 + log 〈σ
2
t (θ), ϕm〉
〈σ2
t , ϕm〉

}
≥ 0,

with equality if and only if for all m ≥ 1

(4.41) 〈σ2
t (θ), ϕm〉 = 〈σ2

t , ϕm〉, a.s.

The proof of (iii) will be completed using (ii). To show (ii) we suppose that (4.40) holds
true. We then have, for all m ≥ 1,

〈δ0, ϕm〉+ 〈α0(y2
t−1), ϕm〉+ 〈β0(σ2

t−1), ϕm〉
= 〈δθ, ϕm〉+ 〈αθ(y2

t−1), ϕm〉+ 〈βθ(σ2
t−1(θ)), ϕm〉 a.s.(4.42)

We have,

〈αθ(y2
t−1), ϕm〉 = 〈σ2

t−1η
2
t−1,α

∗
θ(ϕm)〉 = 〈η2

t−1, σ
2
t−1α

∗
θ(ϕm)〉.

In view of (4.42) we have

〈η2
t−1, σ

2
t−1[α∗0(ϕm)−α∗θ(ϕm)]〉 = Kt−2 a.s.,

where Kt−2 ∈ Ft−2. It follows immediately that Kt−2 must be constant and from A3,
that

α∗0(ϕm) = α∗θ(ϕm), ∀m ≥ 1.

By A8 (b) we deduce that αθ = α0. From Equation (4.42) we have, moreover, that

〈δ0, ϕm〉+ 〈β0(σ2
t−1(θ)), ϕm〉 = 〈δθ, ϕm〉+ 〈βθ(σ2

t−1), ϕm〉 a.s.

or, equivalently, that

〈δ0, ϕm〉+ 〈σ2
t−1,β

∗
0(ϕm)〉 = 〈δθ, ϕm〉+ 〈σ2

t−1(θ),β∗θ(ϕm)〉 a.s.

It follows that

〈δ0, ϕm〉+ 〈δθ0 +α0(y2
t−2) + βθ0(σ2

t−2),β∗0(ϕm)〉
= 〈δθ, ϕm〉+ 〈δθ +αθ(y2

t−2) + βθ(σ2
t−2(θ)),β∗θ(ϕm)〉 a.s.

Because αθ = α0 we deduce, with obvious notation, that

〈α0(y2
t−2), [β∗0(ϕm)− β∗θ(ϕm)]〉 = Kt−3, a.s.

or, equivalently, that

〈η2
t−2, σ

2
t−2(α∗0 ◦ β∗0)(ϕm)〉 = 〈η2

t−2, σ
2
t−2(α∗0 ◦ β∗θ)(ϕm)〉+Kt−3, a.s.

With similar arguments as in the above we, thus, obtain (α∗0 ◦β∗0)(ϕm) = (α∗0 ◦β)(ϕm),
for all m ≥ 1. By A8 (c), this entails βθ = β0. Finally, equation (4.42) reduces to
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〈δ0, ϕm〉 = 〈δθ, ϕm〉, which, by A8 (a), implies that δ = δ0. We can conclude that
θ = θ0.

Recall that θ̂n denotes the minimiser of Q̂n over the whole space Θ which is not
computable in practise due to our assumption that Θ is infinite dimensional. Let us
denote ‖x‖ the `2-norm of some square summable sequence x = (x1, x2, . . .). We have
that

‖θ̂Nnn − θ0‖ ≤ ‖θ̂Nnn − θ̂n|ΘNn‖+ ‖θ̂n|ΘNn − θ̂n‖+ ‖θ̂n − θ0‖,(4.43)

where |ΘN denotes the projection x 7→ (x1, . . . , xN ). Up to now, we showed that
the third term of (4.43) converges almost surely to zero. The second term is equal
to
∑
j>Nn θ̂n,j where θ̂n,j simply denotes the j-th term of the sequence θ̂n which is

supposed to be in `2. We can further bound this quantity by sup`≥1
∑
j>Nn θ̂`,j . To

show that this converges to zero we apply the tighness Lemma 14 in Cerovecki and
Hörmann (2017) with p

(n)
j = θ̂n,j and p

(0)
j = θ0,j . Finally, from the compactness of Θ

we know that there exists a subsequence (θ̂Nn`n` )`≥1 that converges in `2 to x, say, and
observe that by definition

Q̃n`(θ̂
Nn`
n` ) ≤ Q̃n`(θ̂n` |ΘNn` ), for all ` ≥ 1.

Now, we have already shown that θ̂n` |ΘNn` → θ0 a.s. when `→∞. Since Q̃n(θ)→ Q(θ)
a.s. and uniformly in θ, we obtain that Q(x) ≤ Q(θ0), a.s. This shows that x = θ0 and,
thus, that the first term on the right-hand side of (4.43) converges a.s. to zero.
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5 Appendix
5.1 Random elements in complex Hilbert spaces
In this section we present a framework for studying random elements in complex Hilbert
spaces, which is analogue to the complex multivariate one, see e.g. Brockwell and Davis
(1991) or Picinbono (1996). We assume that H is a separable complex Hilbert space
and that there exists a separable real Hilbert space H0, such that H is isomorphic
as a vector space to H0 ⊕ iH0, i.e. every element u ∈ H as a unique representation
u = u1 + u2, where u1 ∈ H0 and u2 ∈ iH0. In this framework, one can define explicitly
the complex conjugate as u := u1 − u2. A random element in H is a measurable
mapping Z : (Ω,A, P ) −→ (H,BH). We usually denote its real and imaginary part by
X = ReZ and Y = ImZ. When there is no further specification 〈·, ·〉 denotes the inner
product of H.

The variance structure of a complex random variable U , i.e. a random element in
C, can be summarized by its complex variance γ = E|U |2 together with its relation
c = EU2. This is just a complex formulation of the variance matrix from the bivariate
random vector (Re(U), Im(U))′, the which can be obtain by

Σ = 1
2

(
γ + Re(c) Im(c)

Im(c) γ − Re(c)

)
.(5.1)

In the functional setting, we define Γ = EZ ⊗ Z and C = EZ ⊗ Z. One can easily
obtain that

Γ = EX ⊗X + EY ⊗ Y + i(EY ⊗X − EX ⊗ Y ),
C = EX ⊗X − EY ⊗ Y + i(EY ⊗X + EX ⊗ Y ).

We define Re Γ := EX ⊗X +EY ⊗Y , Im Γ := EY ⊗X −EX ⊗Y , ReC := EX ⊗X −
EY ⊗Y , and ImC := EY ⊗X+EX⊗Y . We say that Z is a Gaussian random variable
in the complex Hilbert space H if ReZ and ImZ are jointly Gaussian in H0 ×H0 and
write Z ∼ CNH (0,Γ, C), where Γ and C are defined as above. The next proposition
gives different characterization of Gaussianity in H and ensures that Γ and C indeed
determine the distribution of Z.

Proposition 8. Let Z be a random element in H with zero mean. The following
assertions are equivalents.

(i) (ReZn, ImZn)′ ∼ NH0×H0 (0,Σ), for some Σ ∈ LH0×H0.
(ii) For every w ∈ H0 ×H0, 〈w, (ReZ, ImZ)〉H0×H0 ∼ NR(0, σ2

w), for some σ2
w > 0.

(iii) Z ∼ CNH (0,Γ, C), for some Γ and C ∈ LH .
(iv) For every u ∈ H, 〈Z, u〉 ∼ CNC(0, γu, cu) for some γu > 0 and cu ∈ C.

The corresponding result when µ = EZ 6= 0, can be deduced straightforwardly. Further-
more, we have that σ2

w = 〈Σw,w〉H0×H0, γu = 〈Γu, u〉, cu = 〈Cu, u〉, and

Σ = 1
2

(
Re Γ + ReC −Im Γ + ImC
Im Γ + ImC Re Γ− ReC

)
.
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Proof. It is quite clear that (ii) ⇐⇒ (i) def.⇐⇒ (iii) =⇒ (iv). We thus assume that (iv)
holds. In other words, we have that(

Re〈Z, u〉
Im〈Z, u〉

)
∼ NR2

(
0 , 1

2

(
γu + Re(cu) Im(cu)

Im(cu) γu − Re(cu)

))
.

Therefore any linear combination of this is a univariate Gaussian variable. We define
u = u0 + iu1, then for all s, t ∈ R we have

sRe〈Z, u〉+ tIm〈Z, u〉 = [su0 − tu1, su1 + tu0]
(

ReZ
ImZ

)
.

It is now very clear that Re(Z) and Im(Z) are jointly Gaussian, and thus Z ∼
CNH (0,Γ, C), where Γ = EZ ⊗ Z and C = EZ ⊗ Z. To conclude, we check that

γu = E|〈Z, u〉|2 = E〈Z, u〉〈u, Z〉 = E〈Z〈u, Z〉, u〉 = 〈Γu, u〉,

and similarly

cu = E〈Z, u〉2 = E〈Z〈Z, u〉, u〉 = E〈Z〈u, Z〉, u〉 = 〈Cu, u〉.

Moreover, to see that Γ and C are well determined by so to say, their diagonal values
〈Γu, u〉 and 〈Cu, u〉, one can use the following polarization identities

〈Γu, v〉 = 1
4
[
〈Γ(u+ v), u+ v〉 − 〈Γ(u− v), u− v〉+ i〈Γ(u+ iv), u+ iv〉 − i〈Γ(u− iv), u− iv〉

](5.2)

〈Cu, v〉 = 1
4
[
〈C(u+ v), u+ v〉 − 〈C(u− v), u− v〉+ i〈C(u+ iv), u+ iv〉 − i〈C(u− iv), u− iv〉

]
,

for all u, v ∈ H. Note that the variance Γ is self adjoint operator i.e. 〈Γu, v〉 = 〈u,Γv〉,
whereas the relation operator C satisfies 〈Cu, v〉 = 〈u,Cv〉.

Similarly, we can show that Z1 and Z2 are non correlated if and only if both EZ1⊗Z2
and EZ1 ⊗ Z2 are the zero operator. We deduce the following complex version of the
CLT for martingale difference sequences (MDS).

Theorem 17. Let (Zt)t≥1 be complex valued MDS with E|Z1|2 < ∞. We further
assume that there exists constants γ > 0 and c ∈ C, such that

1
n

n∑
t=1

E
[
|Zt|2|Ft−1

]
P−→ γ, and 1

n

n∑
t=1

E
[
Z2
t |Ft−1

]
P−→ c,(5.3)

and

1
n

n∑
t=1

E
[
|Zt|21|Zt|2>ε√n

]
−→ γ, for all ε > 0.(5.4)

We then have that

1√
n

n∑
t=1

Zt
d−→ CNC(0, γ, c).(5.5)
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Proof. It is enough to apply for each λ and µ in R, the classical result, e.g. in Billingsley
(1971), to the real MDS: Dt = λXt + µYt. We would deduce from the Cramér Wold
Theorem a bivariate CLT:

1√
n

n∑
t=1

(
Xt

Yt

)
d−→ NR2(0,Σ).(5.6)

To show that Dt satisfies the lindeberg condition i.e. (5.4) we first remark that |Dt| ≤√
2 max(µ, λ)|Zk|. We set M =

√
2 max(µ, λ), it follows that

n∑
t=1

E
[
D2
t 1|Zt|2>ε

√
n

]
≤

n∑
t=1

E
[
D2
t 1|Zt|2>ε

√
n

]
+ E

[
D2
t 1|Zt|2>ε

√
n

]
≤

The entries of Σ can be deduced from the limiting variance of Dn for all λ and µ,

1
n

n∑
t=1

E
[
D2
t |Ft−1

]
P−→ σ2(λ, µ) = (λ µ)Σ

(
λ
µ

)
.

In other words, we have that

λ2

n

n∑
t=1

E
[
X2
t |Ft−1

]
+ λµ

n

n∑
t=1

E [XtYt|Ft−1] + µ2

n

n∑
t=1

E
[
Y 2
t |Ft−1

]
P−→ σ2(λ, µ),

and those three limits can be deduced from (5.3) by using (5.1).

The next proposition provides a complex version of Cramér Wold Theorem, under
the hypothesis of tightness, the which is needed since H has infinite dimension.

Proposition 9. Let (Zt)t∈Z be a tight sequence of random elements in the complex
Hilbert space H. The following statements are equivalents:

(i) Zn
d−→ CNH(0,Γ, C),

(ii) (ReZn, ImZn) d−→ NH0×H0(0,Σ),
(iii) for all w = u+ iv ∈ H, we have that

Re〈Zn, w〉
d−→ NR (0, 〈Σw̃, w̃〉H0×H0) , where w̃ = (u, v)′ ∈ H0 ×H0.

(iv) for all w ∈ H, we have that

〈Zn, w〉
d−→ CNC (0, 〈Γw,w〉, 〈Cw,w〉) .

If furthermore, supn≥1 ‖Zn‖ <∞, the statements (iii) and (iv) can be relaxed, i.e. it is
enough to consider all w in some dense subset H̃ of H.

Proof. (i) and (ii) are equivalent by definition and both imply (iii) and (iv). the
tightness provides the existence of a weak convergent subsequence, i.e. Znk

d−→ Z. Let
w = u+iv ∈ H. We have that Re〈Zn, w〉 = 〈Xn, w〉+〈Yn, w〉, and thus (iii) implies that
the weak limit Z is Gaussian and determined by its real covariance operator Σ, hence it
is unique. Assertion (iv) is just a reformulation of (iii). Note that the limiting complex
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variance and relation are indeed that of 〈Z,w〉, since E|〈Z,w〉|2 = 〈EZ〈w,Z〉, w〉 and
E|〈Z,w〉|2 = 〈EZ〈w,Z〉, w〉. The existence (and uniqueness) of theses operators follow
from the polarization identities (5.2). We now assume that supn≥1 ‖Zn‖ < ∞ and
consider some dense subset H̃ of H such that (iii) is satisfied. let ε > 0, w ∈ H and h
be a bounded Lipschitz function on H. There exists an w′ ∈ H̃ such that ‖w − w̃‖ ≤ ε.
It follows that

|Eh(Re〈Zn, w〉)− Eh(Re〈Z,w〉)| ≤ |Eh(Re〈Zn, w〉)− h(Re〈Zn, w′〉)|
+ |Eh(Re〈Zn, w′〉)− Eh(Re〈Z,w′〉)|+ |Eh(Re〈Z,w′〉)− h(Re〈Z,w〉)|
≤ ‖h‖∞‖w − w′‖ (E‖Zn‖+ E‖Z‖) +

∣∣Eh(Re〈Zn, w〉)− h(Re〈Zn, w′〉)
∣∣

≤ ‖h‖∞ ε
(

sup
n≥1
‖Zn‖+ ‖Z‖

)
+ ε,

for some n large enough. The case of (iv) is similar.

5.2 Functional moving average
In this section, we present a moments method to estimate the functional moving average
parameter Θ defined in (1.6). We denote by Σ the variance operator of its innovations
(εt)t∈Z. If we further assume that ‖Θ‖ < 1, then (Xt)t∈Z is invertible with respect to
the innovations (εt)t∈Z. Indeed, we have that

Xt = εt + Θ(Xt−1)−Θ2(Xt−2) + Θ3(Xt−3)± . . .

Then for some integer p ≥ 2, there exists an H-valued stationary time series (Yt)t∈Z
such that

Yt = εt + Θ(Yt−1)−Θ2(Yt−2)± · · · −Θp(Yt−p).(5.7)

This process is actually a functional AR(p) with parameter ψ = (Θ,−Θ2, . . . ,−Θp),
our idea is to estimate Θ through this model. To this end, We further define Ck =
E(Xk ⊗X0), Dk = E(Yk ⊗ Y0),

C =


C0 C1 C2 · · · Cp−1
C−1 C0 C1 · · · Cp−2
...

...
...

. . .
...

C1−p C2−p C3−p · · · C0


andD analogously with Ck replaced by Dk. The corresponding estimates from X sample
and the (unobserved) Y sample are denoted by Ĉ and D̂. All these are linear operators
on Hp. If v = (v1, . . . , vp)′ ∈ Hp is a vector of functions and w = (w1, . . . , wp) ∈ Hp

we equip this space with inner product 〈v,w〉 =
∑d
k=1〈vk, wk〉. This gives rise to a new

Hilbert space with norm ‖v‖2 =
∑p
k=1 ‖vk‖2. All norms and inner products will be

denoted in the same way, independent of the space. It will be clear from the context
which one we mean. Note that

C(v) =

p−1∑
k=0

Ck(vk+1),
p−1∑
k=0

Ck−1(vk+1), . . . ,
p−1∑
k=0

Ck−p+1(vk+1)

′ .
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Let then d = (D1, D2, . . . , Dp) and c = (C1, C2, . . . , Cp). We denote the corresponding
estimates d̂ and ĉ. The so–called Yule–Walker equations for the model (5.7) model are

D1(v1) = Θ(D0(v1)) −Θ2(D−1(v1)) ± · · · −Θp(D1−p(v1))
D2(v2) = Θ(D1(v2)) −Θ2(D0(v2)) ± · · · −Θp(D2−p(v2))
· · · = · · ·

Dp(vp) = Θ(Dp−1(vp))−Θ2(Dp−2(vp))± · · · −Θp(D0(vp))

and thus

d(v) :=
p∑
j=1

Dj(vj) = ψ(D(v)).(5.8)

Recall that ψ = (Θ,−Θ2, . . . ,Θp) : Hp → H is the true parameter of the AR(p)
model (5.7). Let vk be the k-th eigenfunction of D and δk be the corresponding
eigenvalue. Then (5.8) implies that d(vk)

δk
= ψ(vk), we thus define the estimator

ψ̂(x) :=
K∑
k=1

ĉ(v̂k)
δ̂k
〈x, v̂k〉.(5.9)

From which we deduce two possible estimators for the moving average parameter:

Θ̂1 = ψ̂1, and Θ̂2 = −
( p∑
k=0

ψ̂
∗
kΣ̂−1ψ̂k

)−1
p−1∑
k=0

ψ̂
∗
kΣ̂−1ψ̂k+1

 , ψ̂0 := id.

(5.10)

The second is inspired by the Durbin estimator of the scalar moving average, see Durbin
(1959), note that the inverses should be define on some finite dimensional subspace
of H as in (1.12). The motivation comes from heuristic arguments that shows that
this estimator has asymptotically the same variance as the MLE. We have not been
able to prove the consistency of neither of them. Indeed, let x ∈ H and recall that
vk = (vk,1, . . . , vk,p) ∈ Hp, for all k ≥ 1, then we have

‖ψ̂1(x)−Θ(x)‖ ≤
∥∥∥∥∥
K∑
k=1

(
1
δ̂k
− 1
δk

)
ĉ(v̂k)〈x, v̂k,1〉〉

∥∥∥∥∥+
∥∥∥∥∥
K∑
k=1

1
δk
〈x, v̂k,1〉 (ĉ(v̂k)− d(v̂k))

∥∥∥∥∥
+
∥∥∥∥∥
K∑
k=1

1
δk
〈x, v̂k,1〉d(v̂k − vk)

∥∥∥∥∥
+
∥∥∥∥∥
K∑
k=1

1
δk
〈x, v̂k − vk,1〉d(vk)

∥∥∥∥∥+
∥∥∥∥∥
K∑
k=1

d(vk)
δk
〈x, vk,1〉 −Θ(x)

∥∥∥∥∥ .
Let then K = Kn, be a sequence that converges to +∞. Under similar assumption than
in Bosq (2000)[Chap. 8] and using Lemma 16 we can show that the first four terms
converges to zero in probability. For the last term, we have that
K∑
k=1

d(vk)
δk
〈x, vk,1〉 =

K∑
k=1

p∑
j=1

(−1)j−1Θj(vk,j)〈x, vk,1〉 =
p∑
j=1

(−1)j−1Θj

(
K∑
k=1

vk,j〈x, vk,1〉
)
.

But we are not able to say something else. Although (vk)k≥1 is an orthonormal basis
of Hp, for each j, (vk,j)k≥1 are neither orthonormal nor basis of H.
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Lemma 16. If ‖Θ‖ < 1 and p = pn ↗ +∞, we have that ‖Xt − Yt‖ = OP (n−1).

Proof of Lemma 16. For simplicity, we assume that p is even. Note that (Yt)t∈Z has
the following functional MA(∞) representation

Yt = εt + Θ(Zt−1) +
∑
k≥1

(−1)k
(
Θk(p+1)(εt−k(p+1)) + Θk(p+1)+1(εt−k(p+1)−1)

)
.

and since Xt = εt + Θ(Zt−1), we get that

‖Yt −Xt‖ ≤
∑
k≥1
‖Θ‖k(p+1)‖εt−k(p+1)‖+

∑
k≥1
‖Θ‖k(p+1)+1‖Zt−k(p+1)−1‖,

where∑
k≥1
‖Θ‖k(p+1)‖εt−k(p+1)‖ = ‖Θ‖p+1 ∑

k≥1

(
‖Θ‖(p+1)

)k−1
‖εt−k(p+1)‖ = OP

(
‖Θ‖p+1).

5.3 Appendix to Chapter 4
5.3.1 Independence of random operators

In Proposition 5, we used the fact that the expectation of the product of independent
operators factorizes. Since this simple fact and other basic properties of the expectation
of random operators are usually not discussed in details, we provided it in the next
lemma.

Lemma 17. Let X and Y be two independent random elements of L(H) such that
E‖X‖ <∞ and E‖Y ‖ <∞. We have that:

(i) E[X](φ) = E[X(φ)], for all φ ∈ H;
(ii) E[X∗] = E[X]∗;

(iii) E[XY ] = E[X]E[Y ].

Proof. Recall that L(H) is a Banach space for the operator norm. Therefore, for any
random operator X such that E‖X‖ < ∞ there exists a unique operator denoted
by E[X] that satisfies E[ξ(X)] = ξ(E[X]) for all ξ ∈ L(H)∗, for more details see
e.g. Bosq (2000). Note that x 7→ 〈x(φ), ψ〉 belongs to L(H)∗. The definition of
E[X] thus imply that 〈E[X](φ), ψ〉 = E〈X(φ), ψ〉 and by definition of E[X(φ)] we
have that 〈E[X(φ)], ψ〉 = E〈X(φ), ψ〉. Since it holds for all ψ ∈ H we can deduce (i).
Similarly, the definition of E[X] and E[X∗] provides that 〈E[X](φ), ψ〉 = E〈X(φ), ψ〉 =
E〈φ,X∗(ψ)〉 = 〈φ,E[X∗](ψ)〉, this shows (ii). Using (i) and (ii) we get that

〈E[X]E[Y ](φ), ψ〉 = 〈E[Y ](φ), E[X]∗(ψ)〉 = 〈E[Y (φ)], E[X∗(ψ)]〉 = E〈Y (φ),X∗(ψ)〉,

where in the equality we used the fact that X(φ) and Y (ψ) are independent random
elements in H. To conclude we use the definition of E[XY ] to get that 〈E[XY ](φ), ψ〉 =
E〈XY (φ), ψ〉. It then holds that 〈E[X]E[Y ](φ), ψ〉 = 〈E[XY ](φ), ψ〉 for all φ and ψ
in H, which proves (iii).
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5.3.2 Sufficient condition

The next lemma shows the relation between assumptions (4.15) and Assumption A8.
Lemma 18. If M <∞, p = q = 1, and A0 is invertible then (4.15) implies A8.

Proof. For any element u ∈ span{ϕm, 1 ≤ m ≤M} we define it’s coefficient vector u
such that u =

∑M
m=1 umϕm and the vector of scalar products u = (〈u, ϕ1〉, . . . 〈u, ϕM 〉)>.

Similarly, for any operator in γ ∈ span{ϕm ⊗ ϕm′ , 1 ≤ m,m′ ≤ M} we define the
matrices γ and γ as follows

γ =
M∑

m,m′=1
γ
m,m′

ϕm ⊗ ϕm′ and γ =


〈γ(ϕ1), ϕ1〉 . . . 〈γ(ϕM ), ϕ1〉

...
. . .

〈γ(ϕ1), ϕM 〉 〈γ(ϕM ), ϕM 〉

 .
Actually we can prove that

δθ ∈ span{ϕm, 1 ≤ m ≤M} =⇒ A8(a)
αθ ∈ span{ϕm ⊗ ϕm′ , 1 ≤ m,m′ ≤M} =⇒ A8(b)

α0,βθ ∈ span{ϕm ⊗ ϕm′ , 1 ≤ m,m′ ≤M}, α0 ∈ GL(RM ) =⇒ A8(c).
To this end, first note that u = Φu, γ = ΦγΦ, and γ1 ◦ γ2 = γ1Φγ2, where Φ
is the Gram-matrix of the instrument functions the which can be assumed to be
linearly independent, and thus Φ is invertible. Now if we take u = δ0 − δθ with
δ0, δθ ∈ span{ϕm, 1 ≤ m ≤ M}, it is clear that u = 0 implies that u = 0 and
the first implication is proved. Similarly, if we take γ = α∗0 − α∗θ with α0,αθ ∈
span{ϕm ⊗ ϕm′ , 1 ≤ m,m′ ≤ M}, it is clear that γ = 0 implies that γ = 0 and
the second implication is proved. Finally to prove the third implication, we take
γ = α∗0 ◦ (β∗0 − β∗θ), then γ = Φα∗0Φ(β∗0 − β∗θ)Φ, to conclude we need that α0 is
invertible. This follows from the assumption since α0 = Φ−1α0 and α0 = A0.

5.3.3 Discussion on positivity constraints

To prove Theorems 13 and 14 we only need the following positivity constraints
δθ ∈ H+

∗ , αi,βj ∈ L+(H), ∀θ ∈ Θ,(5.11)
and that, componentwise

d = Φd > 0, Ai = ΦAi ≥ 0, and Bj = ΦBj ≥ 0,(5.12)
for i = 1, . . . , q and j = 1, . . . , p. Condition (5.11) is needed to define our functional
GARCH model (4.1)–(4.2) and condition (5.12) is needed when we use the auxiliary
CCC-GARCH process defined in the proofs of Theorems 13 and 14. However, equa-
tion (5.11) is not explicit and cannot be used in practice. Note that since the functions
ϕ1, . . . , ϕM are non-negative, the assumption that d ≥ 0, Ai ≥ 0 and Bj ≥ 0 in (4.15)
is stronger than (5.11). In other words, the parameter space used in Section 4.3.1 is too
small. On the other hand equation (5.12) alone does not imply (5.11), i.e. there is some
non-negative d, Ai and Bj for which the corresponding δ is not in H+

∗ , αi or βj is not
in L+(H), and thus, equation (5.12) does not define a proper parameter space, it’s too
big. However, since θ̂n converges to the true value of the parameter, which satisfies
both positivity constraints (5.11) and (5.12), we might still enlarge the parameter space
by only imposing (5.12).
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Conclusion

In the first two chapters, we have obtained asymptotic results for the spectral analysis
of functional time series. In Chapter 2, we have provided a CLT for the discrete
Fourier transform of a functional time series under very general conditions. Whereas
in Chapter 3, we have shown that the maximum over all fundamental frequencies of
the norm of the discrete Fourier transform is in the attraction domain of the Gumbel
distribution. This last result can be used to construct various tests, for detecting
periodic patterns in a functional or multivariate time series. In Section 3.3.1, we have
considered such a test for a non i.i.d. multivariate process. It would be interesting to
extend this test to the functional setting. In a second step, we might also extend it to a
much more general notion of dependence, such as the ones we considered in Chapter 2.

In Chapter 4 we have generalized the GARCH(p,q) model to the functional setting.
We have provided a sharp sufficient condition for the existence of a stationary functional
GARCH process with given coefficients. So far we do not know if this condition is
necessary, this could be interesting to investigate this question, in order e.g. to make
inference on the model. We have proposed an estimation method inspired by the
quasi–maximum likelihood method. As we mentioned in Section 5.3.3, one drawback
of this method is related to the positivity constraints of our model, which are not
straightforward when using projecting functional data. To solve this problem, an
alternative model without positivity constraints on the coefficients, such as the log–
GARCH, could be investigated. It might also be interesting to investigate more precisely
the role played by choice of the functions ϕ1, . . . , ϕM used in our procedure. Various
extensions of the model could be considered, e.g. multivariate model for modelling
several functional GARCH processes jointly, or Markov–switching GARCH models.
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Inférence asymptotique pour des processus stationnaires
fonctionnels

Mots–clés : Données fonctionnelles, Modèles conditionnellement hétéroscédastiques,
Quasi-maximum de vraisemblance, Séries temporelles, Statistiques des extrêmes, Test
de périodicité, Théorème central limite, Transformée de Fourier.

Nous abordons divers problèmes concernant les séries temporelles fonctionnelles.
Il s’agit de processus stochastiques discrets à valeurs dans un espace fonctionnel. La
principale motivation provient de l’interprétation séquentielle d’un phénomène continu.
Si par exemple on observe des données météorologiques au cours du temps de manière
continue, il est naturel de segmenter ce processus en une série temporelle fonctionnelle
indexée par les jours. Chaque terme de la série représente la courbe journalière. Dans
un premier temps, nous nous sommes intéressés à l’analyse spectrale. Plus précisément
nous avons montré que sous des hypothèses très générales, la transformée de Fourier
discrète d’une telle série est asymptotiquement normale et a pour variance l’opérateur
de densité spectrale. Une application possible de ce résultat est de tester la présence de
composantes périodiques dans une série fonctionnelle. Nous avons développé un test
valable pour une fréquence arbitraire. Pour ce faire, nous avons étudié le comportement
asymptotique du maximum de la norme de la transformée de Fourier. Enfin, nous avons
travaillé sur la généralisation fonctionnelle du modèle GARCH. Ce modèle permet de
décrire la dynamique de la volatilité, c’est-à-dire de la variance conditionnelle, dans
les données financières. Nous avons proposé une méthode d’estimation des paramètres
du modèle, inspirée de l’estimateur de quasi-maximum de vraisemblance. Nous avons
montré que cet estimateur est convergent et asymptotiquement normal, puis nous
l’avons évalué sur des simulations et appliqué à des données réelles.

Asymptotic inference in stationary functional processes
Keywords: Central limit theorem, Conditional heteroscedastic models, Functional

data analysis, Fourier transform, Periodicity test, Quasi–maximum likelihood, Statistics
for extreme values, Time series.

In this thesis we address some issues related to functional time series, which consists
in a discrete stochastic process valued in a functional space. The main motivation comes
from a sequential approach of a continuous phenomenon. For example, if we observe
some meteorological data continuously over time, then it is natural to segment this
process into a functional series indexed by days, each term representing the daily curve.
The first part is devoted to spectral analysis, more precisely we study the asymptotic
behavior of the discrete Fourier transform. We show that, under very general conditions,
the latter is asymptotically normal, with variance equal to the spectral density operator.
An application of this result is the detection of periodic patterns in a functional time
series. We develop a test to detect such patterns, which is valid for an arbitrary
frequency. We show that the asymptotic distribution of the norm of the discrete Fourier
transform belongs to the attraction domain of the Gumbel distribution. In a second
part, we work on the functional generalization of the GARCH model. This model is
used to describe the dynamics of volatility, i.e. conditional variance, in financial data.
We propose an estimation method inspired by the quasi-maximum likelihood estimator,
although the proper likelihood function does not exist in infinite dimension. We show
that this estimator is convergent, asymptotic normal and we evaluate its performances
on simulated and real data.
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