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Résumé
Contribution à l’économétrie spatiale et l’analyse de

données fonctionnelles
Ce mémoire de thèse touche deux champs de recherche importants en statistique inféren-
tielle, notamment l’économétrie spatiale et l’analyse de données fonctionnelles. Plus pré-
cisément, nous nous sommes intéressés à l’analyse de données réelles spatiales ou spatio-
fonctionnelles en étendant certaines méthodes inférentielles pour prendre en compte une
éventuelle dépendance spatiale.

Nous avons d’abord considéré l’estimation d’un modèle autorégressif spatiale (SAR) ayant
une variable dépendante fonctionnelle et une variable réponse réelle à l’aide d’observations
sur une unité géographique donnée. Il s’agit d’un modèle de régression avec la spécificité
que chaque observation de la variable indépendante collectée dans un emplacement géo-
graphique dépend d’observations de la même variable dans des emplacements voisines.
Cette relation entre voisins est généralement mesurée par une matrice carrée nommée ma-
trice de pondération spatiale et qui mesure l’effet d’interaction entre les unités spatiales
voisines. Cette matrice est supposée exogène c’est-à-dire la métrique utilisée pour la con-
struire ne dépend pas de mesure de la variable à expliquer du modèle. L’apport de cette
thèse sur ce modèle réside dans le fait que la variable explicative est de nature fonctionnelle,
à valeurs dans un espace de dimension infinie. Notre méthodologie d’estimation est basée
sur une réduction de la dimension de la variable explicative fonctionnelle, par l’analyse
en composantes principales fonctionnelles suivie d’une maximisation de la vraisemblance
tronquée du modèle. Des propriétés asymptotiques des estimateurs, des illustrations des
performances des estimateurs via une étude de Monte Carlo et une application à des
données réelles environnementales ont été considérées.

Dans la deuxième contribution, nous reprenons le modèle SAR fonctionnel étudié dans la
première partie en considérant une structure endogène de la matrice de pondération spa-
tiale. Au lieu de se baser sur un critère géographique pour calculer les dépendances entre
localisations voisines, nous calculons ces dernières via un processus endogène, c’est-à-dire
qui dépend des variables à expliquer. Nous appliquons la même approche d’estimation à
deux étapes décrite ci-dessus, nous étudions aussi les performances de l’estimateur proposé
pour des échantillons à taille finie et discutons le cadre asymptotique.

Dans la troisième partie de cette contribution, nous nous intéressons à l’hétéroscédasticité
dans les modèles partiellement linéaires pour variables exogènes réelles et variable réponse
binaire. Nous proposons un modèle Probit spatial contenant une partie non-paramétrique.
La dépendance spatiale est introduite au niveau des erreurs (perturbations) du modèle
considéré. L’estimation des parties paramétrique et non paramétrique du modèle est
récursive et consiste à fixer d’abord les composants paramétriques et à estimer la partie
non paramétrique à l’aide de la méthode de vraisemblance pondérée puis utiliser cette
dernière estimation pour construire un profil de la vraisemblance pour estimer la partie
paramétrique. La performance de la méthode proposée est étudiée via une étude Monte-
Carlo. La contribution finit par une étude empirique sur la relation entre la croissance
économique et la qualité environnementale au Suède à l’aide d’outils de l’économétrie
spatiale.

Mots-Clefs : Analyses de données fonctionnelles, Modèle linéaire fonctionnel, Proces-
sus auto-régressif spatial, Matrice de poids endogène, Quasi-maximum de vraisemblance,
Statistique non-paramétrique, Régression, Estimateur à Noyau, Processus spatial, Econo-
métrie spatiale, Estimateur semi-paramétrique, Hétéroscédasticité spatiale.
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Abstract
Contribution to spatial econometric and functional data

analysis.

This thesis covers two important fields of research in inferential statistics, namely spatial
econometrics and functional data analysis. More precisely, we have focused on the analysis
of real spatial or spatio-functional data by extending certain inferential methods to take
into account a possible spatial dependence.

We first considered the estimation of a spatial autoregressive model (SAR) with a func-
tional dependent variable and a real response variable using observations on a given ge-
ographical unit. This is a regression model with the specificity that each observation of
the independent variable collected in a geographical location depends on observations of
the same variable in neighboring locations. This relationship between neighbors is gen-
erally measured by a square matrix called the spatial weighting matrix, which measures
the interaction effect between neighboring spatial units. This matrix is assumed to be
exogenous, i.e. the metric used to construct it does not depend on the response variable of
the model. The contribution of this thesis to this model lies in the fact that the explana-
tory variable is of a functional nature, with values in a space of infinite dimension. Our
estimation methodology is based on a dimension reduction of the functional explanatory
variable through functional principal component analysis followed by maximization of the
truncated likelihood of the model. Asymptotic properties of the estimators, illustrations
of the performance of the estimators via a Monte Carlo study and an application to real
environmental data were considered.

In the second contribution, we use the functional SAR model studied in the first part
by considering an endogenous structure of the spatial weighting matrix. Instead of using
a geographical criterion to calculate the dependencies between neighboring locations, we
calculate them via an endogenous process, i.e. one that depends on response variables. We
apply the same two-step estimation approach described above and study the performance
of the proposed estimator for finite or infinite-tending samples.

In the third part of this thesis we focus on heteroskedasticity in partially linear models
for real exogenous variables and binary response variable. We propose a spatial Probit
model containing a non-parametric part. Spatial dependence is introduced at the level
of errors (perturbations) of the model considered. The estimation of the parametric and
non-parametric parts of the model is recursive and consists of first setting the parametric
parameters and estimating the non-parametric part using the weighted likelihood method
and then using the latter estimate to construct a likelihood profile to estimate the para-
metric part. The performance of the proposed method is investigated via a Monte-Carlo
study. An empirical study on the relationship between economic growth and environmen-
tal quality in Sweden using some spatial econometric tools finishes the document.

Keywords : Functional data analysis, Functional Linear Model, Spatial Autoregressive
Process, Endogenous spatial weight matrix, Quasi-maximum likelihood estimator, Non-
parametric statistics, Regression, Kernel estimate, Spatial process, Spatial econometrics,
Semi-parametric estimation, Spatial heteroskedasticity.
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Notations

N set of natural numbers: 0, 1, 2 . . .
N∗ set of non-zero natural numbers: 1, 2 . . .
Z set of integers: . . . ,−1, 0, 1, . . .
R set of real numbers: ]−∞,+∞[
R+ set of real positives numbers: [0,+∞[
Rd Euclidian space of dimension d
b·c integer part
| · | absolute value if the argument is number

or determinant if the argument is matrix
‖·‖ norm such that:

if the argument is a vector x ∈ Rd: ‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

p

if the argument is a matrix A: ‖A‖ =
√∑∑

a2
ij

if the argument is a function f : ‖f‖ = sup |f(x)|
x

′ or xT transpose of vector or matrix x
tr(·) trace of matrix
⊗ Kronecker product
Ā (or Ac) complement of set A
A ∪B union of A and B
A ⊂ B A is included in B
A ∩B intersection of A and B
A \B set of elements of A that are not included in B
Card(A) cardinality of A
∅ empty set
dist(A,B) Euclidian distance between A and B
I(·) ( or IA(·)) indicator function ( of set A)
L2(T ) space of square-integrable functions in interval T
σ(. . .) σ-algebra generated by (. . .)
(Ω,A, P ) probability space

Ω : nonempty set
A :σ-algebra of subset of Ω
P : probability measure on A

i.i.d independent and identically distributed
N (0, 1) standard normal distribution
un = O(vn) a constant c exists such that un ≤ cvn
un = o(vn) un

vn
→ 0 as n→∞

� end of a proof





Chapter 1
General introduction
The present chapter provides a short English introduction to the topic of this dissertation
and sums up its content. French readers are invited to read the summary in French at the
beginning of each chapter.

In many area such as economic activities, epidemiology, climatology, ecology, environmen-
tal health, ..., data are geographically referenced. Proximity in space introduces corre-
lations between the observations making standard statistical methods invalid. So taking
into account spatial dependency, heterogeneity in model inference becomes of great im-
portance and is a major interest of Spatial econometrics. This field of Econometrics has a
huge set of concerns going from description, modeling and estimation. Basically, spatial
data are observations of vector-valued variables at a finite number of points, but nowa-
days the technological progress produces tools capable of recording data with a fine grid
and/or with high frequency. The results is a spatial dataset with very high dimension
taking various forms like curves, shapes, images or a more complex mathematical object,
named functional data.

A dynamic research area is combining functional data analysis (FDA) and spatial statistics
to handle spatial data of functional nature. Various FDA methods to analyze curves
or functions recorded at different locations have been developed within the geostatistics
framework. Even if many potential applications are available in various domains, FDA
methods on data distributed in a regular lattice are less developed.

Econometrics still considered as a powerful tool for decision-making and policy-making,
in particular via the discrete choice models. It is mostly used technique to explain or
predict choice of an individual or an agent by maximizing the utility of this choice. But
the decision-makers can be inter-related based on spatial proximity, so decisions can be
influenced through these interactions. In such situation, space’s role become paramount.

This thesis cover some new features about outlined framework and it organized into 6
chapters, where the content is given as follows: Chapter 2 provides background information
about the subjects of interest, models and estimation methods needed for the rest of the
chapters. Our contribution starts by a spatial lag model with functional covariate given
in Chapter 3 with a spatial weight matrix assumed to exogenous, whereas in the following
Chapter 4 this assumption is relaxed to extend the model into a more general framework.
Chapter 5 addresses the class of binary models in particular the Probit model. Within
this framework, we propose a partially Probit spatial heteroskedasticity model. Chapter
6 consists of an empirical study applying some of the basic spatial econometric models to
relate environment and economic growth. The last Chapter 7 summarizes the thesis and
overviews futures works.
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Chapter 2
State of art and general concepts

Contents
2.1 Functional data analysis . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Generalized functional linear models . . . . . . . . . . . . . . . . 14
2.2 Spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Specification of the Spatial Weight Matrix . . . . . . . . . . . . 17
2.2.2 Spatial econometric models and their inference . . . . . . . . . . 19
2.2.3 Estimation of basic SAR models . . . . . . . . . . . . . . . . . . 21
2.2.4 Estimation of SAR with endogenous spatial weight matrix . . . 22

2.3 Semi-parametric modeling . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Quasi-likelihood estimation of semi-parametric models . . . . . . 23

This chapter offer a brief introduction of the fundamental concepts on which this thesis is
based namely; Spatial econometric, Functional data analysis (FDA), Spatial Probit model,
Partially linear model and Spatial heteroskedasticity.

2.1 Functional data analysis
For years, tools for data collection are in progress and for that there are a lot of fields
that produce samples at a fine grid, for instance; high frequency data from monitoring
equipment or optical tracking equipment (e.g handwriting data, but also for physiology,
motor control, ...), electrical measurements (EKG, EEG and others) and spectral mea-
surements (astronomy, materials, sciences). Therefore, it is obvious that these samples
must be observed on a continuum that is not necessary related to temporal even thought
it is usually the case. This kind of data can be classified within big dimensional data and
classical statistics tools have difficulties to deal with it.

Growing interests in this category of data and related statistical techniques that can
account for the infinite-dimensional nature of such data can be noted. Hence the emergence
of a new branch of statistics named Functional Data Analysis (FDA) dealing with the data
of high frequency but noisier and less frequent data can also be considered like weather
data (temperature, precipitation, ...). Generally, the issues that arise regularly in FDA
are data display and summarization, smoothing and interpolation, patterns in variability
(principal component analysis) and regression (with functional predictors, outcomes, or
both). This field was popularized by the monographies of Ramsay & Silverman (1997,
2005), Bosq (2000), Horváth & Kokoszka (2012) and Hsing & Eubank (2015). Various
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statistical tasks have been studied with functional data but the previous literature were
concentrated around parametric models and methods which we addressing in this thesis,
for the non-parametric models, one we refer to Ferraty & Vieu (2000, 2006).

Classical statistical methods for multivariate statistic have difficulties to deal with func-
tional dependent data with mainly two reasons: first, the infinite dimension of the func-
tional variables (curves, shapes, ...) to be handle in practice, the other reason is the
dependency between observations when considering time-series of spatial functional ob-
jects that may be difficult to manage in a non-costly way. So adapted techniques have been
proposed during the last two decades particularly in the parametric framework consider-
ing linear regression models. In the next section, we introduce the generalized functional
linear model, the baselines for our proposed model in Chapters 3 and 4 with a functional
co-variate.

2.1.1 Generalized functional linear models

The idea of functional linear models dates back to the 1990’s. There are three different
scenarios for the predictive relationships in a functional linear model:

1. Functional covariate, real-valued response;

2. Real-valued covariate, functional response;

3. Functional and non-functional covariates, functional response.

Various investigations focused on a functional response such as Ramsay & Silverman
(1997), Faraway (1997), Cardot et al. (1999) and Fan & Zhang (2000). For situations
where the response variable is real-valued and the predictor is functional, Hastie & Mal-
lows (1993) introduced the functional linear model with scalar response variable while
James & Hastie (2001) discussed performing regression where the response is binary and
the predictor is functional. More recently, Muller & Stadtmuller (2005) and Cardot &
Sarda (2005) proposed a generalized version of the functional linear model (GFLM) the
baseline of the functional models we propose. An application to GFLM was investigated
by James (2002).

Let (Yi, {Xi(t), t ∈ T }), i = 1, ..., n be a n sample of i.i.d observations from a scalar
response Y and a functional predictor X(t), t ∈ T that is a random curve, namely a
square integrable stochastic process on a real interval T ⊂ R taking values in X ⊂ L2(T ).

In the GFLM model of interest, the linear predictor is obtained by forming the scalar
product of the predictor function X(t) with a smooth parameter function β(·) which is
assumed to be squared integrable and belongs to L2(T ). Assuming a link function Φ(.)
that is monotone and twice continuously differentiable, the variance function σ2(·) related
to Φ(.) is strictly positive, let the linear predictor η be:

η = α+
∫
β(t)X(t)dt(t) (2.1)

with the conditional mean µ = Φ(η), where E (Y |Xi(t), t ∈ T ) = µ and
Var (Y |Xi(t), t ∈ T ) = σ̃2(η) for σ̃2(η) = σ2(µ) = σ2(Φ(η)).

The distribution of Y can be specified within the exponential family. Using the sample,
let:

Yi = Φ(ηi) + ei, i = 1, . . . , n, (2.2)
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where the errors ei are i.i.d, E(ei|Xi) = 0 and Var(ei|Xi) = σ̃2(ηi). It is more convenient
to work with standardized errors and we can define e′i = ei/σ(µ) = ei/σ̃(ηi), hence model
(2.2) can be rewritten as follows:

Yi = Φ(ηi) + e′iσ̃(ηi), i = 1, . . . , n, (2.3)

for which E(e′i|Xi) = 0, E(e′i) = 0 and E(ei′2) = 1.

Model (2.3) may be seen as the generalization of the GLM introduced by Nelder & Wed-
derburn (1972). Such models introduced in the non-functional literature are estimated
using different well known methods such as likelihood or quasi-likelihood methods. These
last are not directly applicable for GFLM because of the infinite dimensionality of the
predictors. Basis expansions are basically used to reduce the dimension of the functional
predictor (see Castro et al. (1986)). This expansion idea was used in several papers such
as Cardot et al. (2003) who used functional principal component analysis. Marx & Eilers
(1999) used a penalized P-spline approach while Cardot & Sarda (2005) used a penalized
method with B-Splines.

In our contribution, we adopt the following basis expansion truncation strategy of Muller
& Stadtmuller (2005) in the context of GFLM to reduce the dimension of the functional
explanatory variable X(.) and the corresponding parameter function β(.). Denote by
ϕj(t), j = 1, 2, . . . an orthonormal basis function of L2(T ) commonly chosen as the
Fourier or a basis formed by eingen-fucntions of the covariance operator of X(.). The
predictor process X(.) and parameter function β(.) can be expanded into:

X(t) =
∞∑
j=1

X†jϕj(t) and β(t) =
∞∑
j=1

β∗jϕj(t) for all t ∈ T,

with X†j and coefficients β∗j are given by X†j =
∫
T X(t)ϕj(t)dt and β∗j =

∫
T β(t)ϕj(t)dt,

respectively. Therefore from the orthonormality characteristic of the basis, it results that:
∫
T
X(t)β(t)dt =

∞∑
j=1

β∗jX
†
j (2.4)

For a positive sequence of integer pn, let the next decomposition:

∞∑
j=1

β∗jX
†
j =

pn∑
j=1

β∗jX
†
j +

∞∑
j=pn+1

β∗jX
†
j (2.5)

Then η in (2.1) can be expressed as:

η̃ = Upn + Vpn with Upn = α+
pn∑
j=1

β∗jX
†
j and Vpn =

∞∑
j=pn+1

β∗jX
†
j .

Note that E(Y |X) = Φ(Upn + Vpn), so by assuming that the term related to Vpn vanishes
asymptotically as pn 7−→ ∞, one may instead of (2.3) use the pn-truncated model defined
by:

Y
(pn)
i = Φ(η̃∗i ) + e′iσ̃(η̃∗i ), i = 1, . . . , n, (2.6)

where η̃∗i = α + ∑pn
j=1 β

∗
jX
†(i)
j , with X

†(i)
j =

∫
T Xi(t)ϕj(t)dt. Now fixing the truncation

level pn, one can estimate the unknown parameter vector θT = (α, β∗1 , . . . , β∗pn), where α
is the intercept.
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Let θ̂T = (α̂, β̂∗1 , . . . , β̂∗pn) be the estimator of θT , then an estimator of the parameter
function β is given by:

β̂(t) =
pn∑
j=1

β̂jϕj(t). (2.7)

A key point in the parameter vector θT estimation is the choice of the truncation pa-
rameter pn. Several initiatives have been proposed in the functional literature. A usual
one if Akaike information criterion (AIC) used by Muller & Stadtmuller (2005) in a con-
text of generalized functional linear models with a functional covariate and a real-valued
response. These authors also shown the consistency of AIC criterion under appropriate
assumptions and discussed the usefulness of this criterion. For more details on the choice
of the truncation parameter, we refer the reader to Muller & Stadtmuller (2005).

2.2 Spatial data
Statistics for spatial data was first studied in geology and meteorology fields during the
1960’s. A growing interest may be noted since the seminal works of Krige and Matheron on
spatial prediction. A main feature of spatial statistics is that, data are located in locations
of at least bivariate dimension with spatial dependency between observed data at different
locations. This kind of data is available in various fields such as urban systems, agriculture,
economics, environmental science and economics. Moreover, examining and modeling the
spatial patterns is an important task for statisticians, consequently a wide range of models
and methods have been developed to incorporate the spatial dependence structure basically
within the scope of geostatistics, lattice data and point patterns (see Cressie, 1993). In the
geostatistics framework, the correlation between locations are expressed as a continuous
function of distance (see Cressie, 1993, Chapter 2).

There are many case studies and techniques for such framework, particularly spatial para-
metric interpolation methods, namely kriging (e.g. Fedorov (1989), Berke (2004), Oliveros
et al. (2010), Giraldo et al. (2011) and Bohorquez & Mateu (2016) ) and non-parametric
regression or prediction (e.g. Cortes-D et al. (2016), Dabo-Niang et al. (2010), Giraldo
et al. (2010a) and Ternynck (2014)). In this framework, locations are in a continuous spa-
tial set, compare to many domains such as; remote sensing from satellites, image analysis,
weather patterns, agriculture among others, where data consist of counties or census tracts
or in general are observed at regular lattice (regular spaced points in R2). Basically statis-
tical models for such lattice data express the fact that observations are nearby when they
tend to be alike. Compare to geostatistical and lattice data, spatial point patterns occurs
when locations where data are available are random. It is not always easy to distinguish
these three types of data:

Geostatistical data

• The spatial set of interest
{
S ⊂ RN , N ≥ 2

}
is a fixed subset of the plane of positive

area (2-D) or volume (3-D).

• And a spatial process (collection of random variables observed at spatial points)
Y = {Y (s), s ∈ S} is of interest.

Lattice data

• The spatial process Y = {Y (s), s ∈ S} of interest is defined on a spatial fixed regular
or irregular lattice S of RN .
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• This type of processes includes extension to well known time-series processes.

Point patterns

• The spatial locations s ∈ S ⊂ RN where the process Y = {Y (s), s ∈ S} is defined
are random.

• This type of processes is an extension of usual point processes.

In this dissertation, we are interested in spatial lattice processes that are of great interest in
many domains such as econometrics, particularly one is interested to predict the behavior
of some locations knowing that of some neighbors. Such processes have some analogies
with time series where probabilistic models are used to describe the relation between future
and past values of the process for prediction purpose. However, times series models cannot
be directly applied to spatial data since the natural order in the time domain does not
exist in the spatial context. Differences and similarities between spatial and times series
data are highlighted in Tjøstheim (1987).

As other types of spatial processes, exploration of spatial correlation structure is the first
step in the lattice context. A basic correlation tool in spatial econometrics is the spatial
weight matrix which describe the connectivity between different locations. This matrix
takes different forms and play a crucial role in econometrics inference. Next, we provide
more details on the construction of the spatial weight matrix and its influence on spatial
models inference.

2.2.1 Specification of the Spatial Weight Matrix

In spatial econometrics literature, interdependence or/and interactions between spatial
units is defined via the spatial weight matrix, denoted Wn in the following, with n is
the sample size. The major weakness of spatial econometric models is that the spatial
weight matrix must be specified, hence the risk of misspecification of this matrix is often
arises. Furthermore, an incorrect specified structure could lead to wrong conclusion and
cause bias in model estimation. Many investigations pointed out the critical dependency
of econometrics model’s estimation on the spatial weighting matrix choice, see for instance
Mizruchi & Neuman (2008) and Farber et al. (2009).

Formally, Wn is a positive n× n matrix with zero on the diagonal:

Wn =



0 w1,2 · · · w1,j · · · w1, n
w2,1 0 · · · w2,j · · · w2, n
...

... . . . · · · · · · · · ·

wi,1 wi,2
... 0 · · · wi,n

...
...

...
... . . . · · ·

wn,1 wn,2
...

...
... 0


where wi,j is the spatial weights between locations i and j. There are mainly three different
ways of specifying the weights using either a binary or continuous or hybrid metrics,
depending on the nature of the data. The reader may refer to Pinkse & Slade (1998) for
these specifications, we remind some example afterwards.
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Binary: This form is usually used to specify whether spatial units share a common
border or not. So for a spatial unit i with a set of boundary denoted bnd(i), the elements
wij are defined by:

wij =
{

1, if bnd(i) ∩ bnd(j) 6= ∅
0, if bnd(i) ∩ bnd(j) = ∅

These weights are called queen contiguity weights and allow the possibility that spatial
units share only a boundary point. This definition may be set more restrictive to require
some positive portion of the boundary. Let lij denote the length of shared boundary
between locations i and j, then:

wij =
{

1, if lij > 0
0, if lij = 0

This is called a rook contiguity weight. Another binary form can be obtained using dis-
tances by assuming some threshold distance d such that beyond d there is no direct spatial
influence between location i and j. The corresponding weights are called radial distance
weights:

wij =
{

1, if 0 ≤ dij ≤ d, with dij being the distance between i and j
0, if dij > d

Continuous: In this category, the used metric is a function of the centroid distance1 dij
between each pair of spatial units (i, j). The elements of Wn are defined by the inverse
of distance wij = 1

dij
. If one suppose that there is a diminishing effect with the distance,

then one can assume that weights are negative power functions and defined as wij = d−αij ,
where α is a positive exponent. An alternative to the last, is the use of negative exponential
functions, with wij = e−αdij .

Hybrid: In many situations, binary and continuous relations may be combined. An
example is the one given by Cliff & Ord (1969) when studying Eire blood-group data,
they found that the best structure of Wn to capture spatial autocorrelation is to combine
power distance and boundary shares as:

wij =
lijd
−α
ij∑

k 6=i likd
−α
ik

where, α = 1 and lij is the portion of shared border between spatial unit i and j. The
number of neighbors of a spatial unit i may be fixed using the k-nearest neighbors method.
Let the distance between a unit i and all other units j 6= i be ranked as follows: dij(1) ≤
dij(2) ≤ · · · ≤ dij(n−1). Let the set Nk(i) = {j(1), j(2), · · · , j(k)} contains the k units
closest to i, then for k = 1, · · · , n− 1, the weight matrix is:

wij =
{

1, if j ∈ Nk(i)
0, otherwise

Numerical investigations (LeSage & Pace, 2014) confirm that inference results are usually
robust to the choice of k.

1In real data, this geographical distance could be a linear distance or a travel time distance, or a
combination of both to calculate a distance between two points (region’s centroid or other spatial units
such as cities).
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Other weight matrix specifications are available in the literature within these three groups.
In practice, it is common but not necessarily to row normalizeWn, this leads to 0 ≤ wij ≤ 1
and ∑i=1

∑n
i wij = 1, so each element wij can be then interpreted as the fraction of

influence on unit i attributable to j. Technically, in model inference, row normalization
avoids numerical issues related to different scaling of variables and permits to have an
intuitive interpretation of spatial autoregressive parameter in some autoregressive models
(SAR models) discussed in the following. Note that row-normalization does not affect the
relative weight neighbors effect on other units as much that it alters the magnitude of the
collective impact.

As mentioned before, misspecification of Wn may have important impacts on the model
inference. Then one may naturally ask "How can we specify correctly the spatial weight-
ing matrix ?". Several solutions are proposed in the literature. Kooijman (1976) pro-
posed a simple technique that select the spatial weight matrix that maximizes the well
known Moran’s coefficients. Another proposal by Holloway & Lapar (2007) relies on the
Bayesian marginal likelihood approach to select neighborhoods. Kostov (2010) suggests
using component-wise boosting algorithm to choose the appropriate spatial weighting ma-
trix amongst a set of predetermined alternatives, extended later by Kostov (2013) into a
two selection procedure. Recently, Ahrens & Bhattacharjee (2015) proposed a two-step
lasso selection.

Historically, the structure of the weight matrix is based on geographic criteria which
simplifies models inference. In this case, the weight matrix is assumed to be exogenous.
In fact, geographic distance is not always appropriate to all situations. Tobler (1970)
claimed that "the space is irregular and heterogeneous so the influence may be of any
type across space". Spatial interactions may not be necessarily defined in a geographical
point of view, sometimes economic or social metrics may be more realistic. This is in line
with the idea of allotopy principal stated by Ancot & Molle (1982): often what happens
in a location is related to other phenomena located in distinct and remote parts of the
space. Sometimes the spatial weighting matrix may involve socio-economic indicators that
entails endogeneity on the model of interest. As said by Anselin & Bera (1998) " weights
should be chosen with great care to ensure their exogeneity, unless their endogeneity is
considered explicitly in the model specification ". In case of spatial endogenous weighting,
basic inference approaches usually fail.

Compare to exogenous weight matrices, the literature on endogenous context is limited.
Baicker (2005) used the per capita income levels to define spatial weighting matrix to
estimate the degree of influence of a state spending on other neighboring states spending
levels. Ertur & Koch (2011) simply defined the weights wij as the average imports of
country i coming from country j. Moreover Ho et al. (2013) proposed a slow growth model
with a spatial autoregressive term and a spatial weighting matrix based on sum of trade
flows between countries to examine the international spillover effect of economic growth.
However, few attention is given to the problem of estimation when having endogenous
weight. The reader can refer to Kelejian & Piras (2014), who proposed a 2SLS estimator
for panel data with endogenous spatial matrix and Lee & Yu (2017), who estimate spatial
panel data with a weight matrix based on a control function.

2.2.2 Spatial econometric models and their inference

Let (Y,X) be a random vector observed at n locations {s1, . . . , sn} in an irregularly spaced,
countable lattice I ⊂ Rk, k ≥ 2 such that ||si − sj || ≥ d0, with d0 > 0. Suppose that
Yn = (Y1, . . . , Yn)T is the sample response and Xn the n × p matrix of explanatory
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variables observations with elements Xij , i = 1, . . . , n, j = 1, . . . , p. By using one of the
spatial matrices introduced earlier, three different types of interaction effects are mainly
considered:

• Endogenous interaction effects among dependent variables.

• Exogenous interaction effects among independent variables.

• Correlated effects, where similar unobserved characteristics result in similar behav-
iors.

Manski (1993) gathered these three interaction types into a full model defined by:

Yn = ρWnYn + Xnβ +WnXT
nη + µvn; µvn = λMnµ

v
n + εvn, εvn ∼ N(0, Iσ2) (2.8)

where µvn = (µ1, . . . , µn)T and εvn = (ε1, . . . , εn)T , 1 ≤ ρ ≤ 1 and 1 ≤ λ ≤ 1 are scalar
autoregressive parameters indicating the degree of spatial dependence and η is a p × 1
vector of parameters. Wn and Mn are spatial weighting matrices with element wij and
mij respectively reflecting the relative degree of connections between units i and j.

In practical point of view, a population that contains jointly these different interactions
is almost non-existent. In fact the interest of practitioners has been focused on modeling
one or two of these interaction effects so the general Manski model is typically not used.
An alternative is one of the particular cases of model (2.8) illustrated in Figure (2.1). If
the interaction effects are:

i. endogenous, if Yi at spatial units i depends on Yj at spatial units j, the corresponding
model is named spatial lag model or spatial autoregressive model (SAR) where the
interaction effect is denoted by the spatial lag WnYn,

ii. exogenous, if Yi at spatial units i depends depends on Xj at spatial units j,

iii. correlation effects, this means that the interaction is among the error terms and we
use spatial autoregressive error (SAE) model (or spatial error model; SEM) with the
interaction effects Wnµ

v
n.

Y = ρWY + Xβ +WXη + µ
µ = λMµ+ ε

Manski model

Kelejian-Prucha model
Y = ρWY + Xβ + µ
µ = λMµ+ ε

Y = ρWY + Xβ +WXη + ε

Spatial Durbin model
Y = Xβ +WXη + µ
µ = λMµ+ ε

Spatial Durbin error model

η = 0

η = 0

ρ = 0

Spatial lag model
Y = ρWY + Xβ + ε

Spatial error model
Y = Xβ + µ
µ = λMµ+ ε

λ = 0
ρ = 0

λ = 0

η = 0

OLS model
Y = Xβ + ε

ρ = 0
λ = 0

η = −ρβ

Figure 2.1: The relationships between different spatial dependence models.
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A large number of papers investigates these models and their inference method as the two
stage least squares (2SLS), the three stage least squares (3SLS), the maximum likelihood
(ML) and the generalized method of moments (GMM), see among others Anselin (1988),
Kelejian & Robinson (1993), Kelejian & Prucha (1998), LeSage & Pace (2009), Elhorst
(2010), Case (1991), Arbia & Baltagi (2010), ... A particular interest is dedicated to spatial
autoregressive model (SAR), useful in many domains such as econometrics ecology, social
networks, ... It extends time series autoregressive models and the basic regression model by
incorporating a spatial lag vector reflecting the average effect from neighboring locations
to explain variation across the spatial set of interest. Intuitively, the value of a variable
located at a given geographic point depends on the values of the same variable located
in neighboring points. A SAR model may be obtained by taking η = 0 and λ = 0 in
model (2.8). In this thesis, we are in some contributions interesting to SAR models and
its maximum likelihood inference.

2.2.3 Estimation of basic SAR models

Inference for SAR models in a real-valued data context has been extensively studied in
the literature. The first estimation method proposed was the maximum likelihood (ML)
method introduced by Ord (1975) but this last has a computationally weakness when more
than one spatial lag is used. Instrumental variable IV (or 2SLS) method (Anselin (1980)
and Kelejian & Prucha (1998, 1999)) and the generalized method of moments (GMM)
summarized by Lee (2007) and Lin & Lee (2010) are also proposed. It is obvious that
ML estimator is performant and consistent when the model disturbances are normally
distributed. When the disturbances are not normal, quasi-maximum likelihood method
(QML) is the alternative that we investigate in some contributions. The identification and
estimation of SAR models when using QML have not been studied enough. Lee (2004)
provided a QML estimator for SAR with real-valued data and gave asymptotic proprieties.
The next lines recall the principle of this method. Let the SAR model:

Yn = λWnYn + Xnβ + εvn, (2.9)

where εvn is an n×1 vector of i.i.d elements with mean zero and variance σ2. The parameter
of interest to be estimated are the k × 1 vector of regression β, the spatial parameter λ
and σ2. The logarithm of the quasi-likelihood function of (2.9) is:

Ln(θ) = −n
n
ln(2π)− π

2 ln(σ2) + ln|Sn(λ)| − 1
2σ2 ε

′
n(β, λ)εn(β, λ), (2.10)

where θ = (β′, λ, σ2)′, Sn(λ) = In − λWn with In is an n × n identity matrix, and
εn(β, λ) = Sn(λ)Yn −Xnβ. For a given λ, (2.10) is maximized at:

β̂n,λ =
(
X′nXn

)−1 X′nSn(λ)Yn

and

σ̂2
n,λ = 1

n

(
Sn(λ)Yn −Xβ̂n,λ

)′ (
Sn(λ)Yn −Xβ̂n,λ

)
(2.11)

= 1
n

Y′nS′n(λ)MnSn(λ)Yn, (2.12)

where, Mn = In −Xn (X′nXn)−1 X′n. By substituting β̂n,λ and σ̂2
n,λ into (2.10) one can

derive the concentrated log-quasi-likelihood function of λ as:

Lcn(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂
2
n,λ + ln|Sn(λ)|
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The value λ̂n which maximize Lcn(λ) is the estimator of λ, and thus the QMLEs of β and
σ2 are β̂n,λ̂n and σ̂2

n,λ̂n
, respectively.

Asymptotic results (consistency and asymptotic normality) may be found in Lee (2004)
under some conditions. In particular, he proved that the rate of convergence of the above
estimators is at

√
n and may be slower for some parameter if the degree of spatial de-

pendence grows with the sample size n. Note that a key condition to establish these
asymptotic results is that the spatial weight matrix is strictly exogenous.

2.2.4 Estimation of SAR with endogenous spatial weight matrix

Inference methods mentioned earlier are established under the basic assumption of exoge-
nous spatial weight matrix. As mentioned before, basic SAR inference methods cannot
be used directly when the weight matrix is endogenous due in particular to some techni-
cal complications. This is actually one of the several problems emphasized by Pinkse &
Slade (2010), waiting for good solutions. Recently Kelejian & Piras (2014) proposed to
instrumenting the endogenous spatial weight matrix in case of spatial panel data while Shi
& Lee (2018) proposed a QML estimator for spatial panel models with endogenous time
varying spatial weights matrices. Furthermore Han & Lee (2016) proposed a Bayesian
estimation approach accounting for endogenous spatial weight matrices. In a context of
cross-sectional SAR model, Qu & Lee (2015) considered the case of endogenous spatial
weight constructed by a univariate economic variable. Let us recall the estimating method
proposed by Qu & Lee (2015) the baseline of some of our contributions (see Chapter 4).

In the SAR model (2.9) the components of the spatial weight matrix are wij = h(dij),
with h(.) a bounded function and dij a metric of geographic distance between spatial unit
i and j. Instead of using geographic distance, one may use another metric in a endogenous
setting. Let Zn = (z1,n, . . . , zn,n)′ be an n × p matrix with zi,n = (z1,in, . . . , zp,in)′ with
p ∈ N:

Zn = UnΥ + υn, (2.13)

where Un is n × k matrix with elements {uin}, being bounded and deterministic, Υ is
a k × p matrix of coefficients and υn = (υ1,n, . . . , υn,n)′ is an n × p matrix of distur-
bances with υi,n = (υ1,in, . . . , υp,in)′. Thus in model (2.9) the elements of Wn, can be
constructed using Zn, that is wij,n = hij(Zn). To apply QML method with exogenous
weight matrix the covariance between εn, υn needs to be zero; Cov(εn, υn) = 0 but this is
not the case if wij,n = hij(Zn). Then, Qu & Lee (2015) proposed a solution by assum-
ing that the errors terms εn and υn have a joint distribution: (εin, υ′in) ∼ i.i.d(0,Σευ),

where Συε =
(
σ2
ε σ′ευ

σευ Συ

)
is a positive variance-covariance matrix, σ2

ε is a scalar variance,

σευ = (σευ1 , . . . , σευn)′ is a p dimensional covariance vector, and Συ is a p × p matrix.
Based on some conditional moments the outcome equation (2.9) becomes:

Yn = λYnWnXnβ + (Zn −UnΥ)δ + ξn, (2.14)

where ξn are i.i.d with E(ξi,n|υi,n) = 0 and E(ξ2
i,n|υi,n) = σ2

ξIn = σ2
ε − σ′ευΣ−1

υ σευ and
δ = Σ−1

υ . The term (Zn −UnΥ) is considered as a variable controlling the endogeneity of
Wn. The log likelihood function based on the normal joint distribution of υn and εn can
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be written as:

lnLn(θ) = −nln(2π)− n
2 lnσ2

ξ + ln|Sn(λ)| − n
2 ln|Σε|

−1
2
∑n
i=1(Z ′i − U ′iΥ)Σ−1

ε (Zi −Υ′Ui)

− 1
2σξ [Sn(λ)Yn − ψpnβ − (Zn −UnΥ)δ]′

×[Sn(λ)Yn − ψpnβ − (Zn −UnΥ)δ],

(2.15)

where Sn(λ) = In − λWn. The QMLE estimator is of θ is θ̂ = argmaxθ∈ΘlnLn(θ), where
θ = (λ, β′, vec(Υ)′, σ2

ξ , α
′, δ′)′ with δ = Σ−1

ε σευ, σ2
ξ = σ2

ε − σ′ευΣ−1
υ σευ and α being a

J-dimensional column vector of distinct elements in Σε. Qu & Lee (2015) established
the consistency and asymptotic normality of θ̂ under near-epoch dependence (NED), see
Jenish & Prucha (2012) for more details.

2.3 Semi-parametric modeling

Semi-parametric models are alternatives to fully parametric or fully non-parametric mod-
els. They are more realistic in some situations and may characterize a non-linear relation
and maintains the natural behavioral interpretation of the linear regression. In this thesis,
we are interested in some contributions to model a relation between a response variable
Y and independent variables Z = (X,T ) when the conditional expected of Y given Z is
written as g(Xα + f(T )) where α is a vector of parameter, f(.) is an unknown smooth
function and g(.) is known link function. Hence, we are face with a semi-parametric model.

Several semi-parametric models have been proposed in the literature mainly for i.i.d data,
see for instance Green & Yandell (1985) that proposed an inference method for both para-
metric and non-parametric components using the penalized likelihood function. Hastie &
Tibshirani (1990) adopted the same approach, together with the "backfitting algorithm"
which gave proof of performance in the estimation of the purely non-parametric general-
ized additive model while Hunsberger (1994) used a weighted likelihood function. Severini
& Staniswalis (1994) proposed a quasi-likelihood estimation of a semi-parametric model
based on the generalized profile likelihood of Severini & Wong (1992). Non-linearity also
can be found in the field of spatial econometric but not too developed. For instance Gao
et al. (2006) proposed estimators for a spatial semi-parametric (partially linear) based on
an additive marginal integration projection on the set of additive functions, and Robinson
(2010) consider two different adaptive estimates for a spatial autoregressive model, con-
taining non-stochastic explanatory variables. More recently Hoshino (2018) proposed a
semi-parametric series generalized method of moments estimator for spatial autoregressive
models. More examples and details will be exhibiting in Chapter 5.

2.3.1 Quasi-likelihood estimation of semi-parametric models

Quasi-likelihood method is a flexible and robust alternative to maximum likelihood method
when exact information on the distribution is not available and only second moments are
available. In this section, we recall the main lines of the quasi-likelihood estimation method
to estimate the semi-parametric model proposed by Severini & Staniswalis (1994) and used
in Chapter 5.

Consider {Yi, Xi, Ti}, i = 1, . . . n, n ∈ N, a set of observations from a random vector
{Y,X, T}, where Y ⊂ R is a response variable, X ⊂ Rp, p > 1 are covariates and T takes
values in T ⊂ Rq, q > 1. Let now E(Y |X,T ) = µ(X,T ) and var(Y |X,T ) = σ2V (g(.)),
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where µ(X,T ) = g(f(T ) +Xα), f(.) is an unknown smooth function from Rq to R and α
is p× 1 unknown parameter that belong to a compact subset Θα ⊂ Rp. So we can define
the quasi-likelihood function by:

Q(g(.);Y ) =
∫ Y

g(.)

s− Y
V (s) ds.

For a fixed α, the estimation of f(.) is a non-parametric problem, the weight quasi-
likelihood of Severini & Staniswalis (1994) may be used. Assuming that K(.) is a kernel
on Rd to R+ with a sequence of bandwidth b > 0 depending on n, the estimator f̂(.) of
f(.), is the solution in η of:

n∑
i=1

K

(
t− Ti
b

)
∂

∂η
Q (g(η +Xiα);Yi) = 0. (2.16)

Given f̂(.), the estimator of α is a parametric problem and the estimate α̂ is obtained by
solving:

∂

∂α

n∑
i=1

Q(g(f̂(Ti) +Xiα);Yi) = 0. (2.17)

Then the final estimate of f(.) is obtained by solving (2.16) using α̂ instead of α. In
fact the estimator here suffers from high bias for t near the boundary of T but it can be
reduced using the "trimming" approach which consists of using in (2.17), only observation
Ti away from boundary. Hence, let Ii = 1, if Ti ∈ T0 and 0 otherwise, where T0 is a subset
of t away from boundary of T . Then α̂ can be obtained by solving:

∂

∂α

n∑
i=1

IiQ(g(f̂(Ti) +Xiα);Yi) = 0. (2.18)

Severini & Staniswalis (1994) give some examples where explicit forms of (2.16) and (2.18)
give a closed solution for α and f(.). In general, let us consider the next algorithm for
computing the estimates. Let

ψ1(η;α, t) =
∑
i

K

(
t− Ti
b

)
G(η +Xiα)(Yi − g(η +Xiα)) (2.19)

and

ψ2k(α, fα(.)) =
∑
i

IiG(fα(Ti) +Xiα)(Xjk + f ′kα(Ti))

×(Yi − g(fα(Ti) +Xiα)), k = 1, . . . p , (2.20)

where G(.) = g′(.)/V (g(.)), and fα(t) is an arbitrary function from Rq to R for each α.
Let the derivative function of α with respect to component αk be f ′kα = ∂fα/∂αk. The
estimation procedure of f and α follow the next steps:

1. For each t and α, obtain f̂α by solving ψ1(η;α, t) = 0 for η.

2. Solve ψ2k = 0 for α and let the solution be the estimate α̂.

3. Estimate again f̂ using ψ1(η; α̂, t).
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Since the estimate of α depends on fα, an iterative approach using Fisher’s scoring method
(McCullagh & Nelder, 1989) is applied. Let

Aij = E

{
d

dαi
ψ2i(α; fα)|T1, . . . , Tn;X1, . . . , Xn

}
, (2.21)

then an initial estimate α̃ can be updated to α̃† using:

α̃† = α̃− Â(α̃)−1B̂(α̃) (2.22)

this iteration can be continued until convergence, with Â(α̃) the p×p matrix with (i, j)’th
element of Aij and B̂ the p× 1 vector with k’th element given by ψ2k(α; f̂α). In the same
spirit, since the estimate f̂ depends on α, an iteration approach is needed to estimate f .
So for a fixed t and α an initial estimate η̃ can be updated to η̃† using:

η̃† = η̃ − ψ1(η;α, t)

E

{
d

dη
ψ1(η;α, t)|X1, . . . , Xn

} (2.23)

This iteration can be continued until convergence. The starting values α̃ and η̃ can be ob-
tained by applying the approach of McCullagh & Nelder (1989) (see Severini & Staniswalis
(1994) for more details).

Assuming some regularity conditions Severini & Staniswalis (1994) proved asymptotic
normality of the proposed estimators: Namely, let α0 and σ2

0 is the true parameters:
√
n(α̂− α0) −→ N(0, σ2

0Σ0) as n −→∞

Let f0 denote the true parameter and ||φ(t)|| = sups∈T0 |φ(s)|, then

||f̂α̂ − f0|| = op(n−1/4) and σ̂2 = σ2
0 + op(1) as n −→∞

where Σ0 is a p× p matrix such that Σ−1
0 has (i, j)’th value of:

E0

{
I1

∂2

∂αi∂αj
Q(g(f̂(T1) +X1α);Y1)

}

This approach presented in this subsection will be developed in Chapter 5 in the case
of discrete choice models with g(·) is the cumulative distribution function (CDF) of the
standard normal distribution.
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Résumé en français
Dans ce chapitre nous proposons un modèle linéaire spatial fonctionnel, il s’agit d’un mod-
èle autorégressif spatial (SAR) dont le prédicteur est de la forme fonctionnelle. Prenons
des n unités spatiales localisées dans une région Dn ⊂ D ⊂ RN , où D est un ensemble
dénombrable de type lattice. Dans chaque unité spatiale nous observons une variable de
réponse Y de type réel et une variable explicative {X(t), t ∈ T } qui prend des valeurs
dans un espace de dimension infinie X ⊂ L2(T ). La relation endogène entre Y et X(t)
selon le modèle SAR est donnée par :

Yi = λ0

n∑
j=1

wijnYj +
∫
T
Xi(t)θ∗(t)dt+ Ui, i = 1, . . . , n, n = 1, 2, . . . , (3.1)

où λ0 est le paramètre d’autocorrélation spatiale et θ∗(·) est une fonction de paramètre
à estimer. Les termes d’erreurs {Ui, i = 1, . . . , n, n = 1, 2, . . .} sont supposées centrées
indépendantes et identiquement distribuées avec E(U2

i ) = σ2
0.

L’ensemble {wijn, i, j = 1, . . . , n, n ∈ N} représente les éléments de la matrice de pondéra-
tion spatiale Wn qui détermine la grandeur de connectivité entre les entités spatiales.
Elle est une matrice déterministe qui est définie généralement en fonction de la distance
physique entre unité i et j (voir Pinkse & Slade (1998) pour des exemples). Dans le cadre
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de ce chapitre, cette matrice est supposée exogène contrairement au chapitre 4 où une
structure endogène est prise en considération lors de l’estimation.

Soient Yn et Un deux vecteurs de dimension n × 1 dont les éléments sont Yi et Ui, i =
1, . . . , n, le modèle (3.1) peut être récrit sous forme matricielle suivante :

SnYn = Xn(θ∗(.)) + Un , n = 1, 2, . . .

où Sn = (In−λ0Wn) avec In la matrice d’identité et Xn(θ∗(.)) est un vecteur (n×1) dont
le i-ème élément est

∫
T Xi(t)θ∗(t)dt. Pour estimer les paramètres d’intérêts λ0, σ2

0 et le
paramètre fonctionnel θ∗(.), nous chercherons les valeurs qui maximisent le logarithme de
la fonction de quasi vraisemblance conditionnelle suivante :

Ln(λ0, θ
∗(.), σ2

0) = −n2 lnσ
2
0 −

n

2 ln(2π) + ln|Sn(λ0)|

− 1
2σ2 [Sn(λ0)Yn −Xn(θ∗(.))]

′
[Sn(λ0)Yn −Xn(θ∗(.))] , (3.2)

avec Sn(λ0) = In − λ0Wn. Différentes méthodes d’estimation ont été proposées pour ce
type de modèles dans le cas où la variable explicative X est à valeurs réelles notamment
Lee (2004). Cet auteur a défini des estimateurs de quasi maximum de vraisemblance pour
λ0, le vecteur de paramètres θ∗ et σ2

0, en maximisant l’équivalent de (3.2). En revanche
dans le cadre fonctionnel, il y a au moins deux difficultés principales : premièrement, nous
n’observons pas la forme fonctionnelle de la covariable, deuxièmement la vraisemblance
n’est pas calculable car la fonction de paramètres β(.) et la covariable sont de dimension
infinie.

Afin de contourner ces problèmes, nous adoptons la même technique que Muller & Stadt-
muller (2005), en proposant des estimateurs à partir d’un modèle tronqué de (3.1). L’idée
de cette approche est de projeter la fonction explicative et le paramètre fonctionnel dans
un espace de fonctions engendré par une base de fonctions dont la dimension croit asymp-
totiquement avec la taille de l’échantillon n. Pour effectuer cette troncature, nous consid-
érons une base orthonormale {ϕj , j = 1, 2, . . .} définie dans L2(T ). On peut ainsi récrire
X(t) et θ∗(t) comme suit :

X(t) =
∑
j≥1

εjϕj(t) et θ∗(t) =
∑
j≥1

θ∗jϕj(t),

où les variables aléatoires réelles εj et les coefficients θ∗j sont définis par :

εj =
∫
T
X(t)ϕj(t)dt et θ∗j =

∫
T
θ∗(t)ϕj(t)dt.

Nous obtenons ainsi : ∫
T
X(t)θ∗(t)dt =

∑
j≥1

θ∗j εj . (3.3)

Pour une suite d’entiers naturels pn qui croît asymptotiquement avec la taille d’échantillon
n, Muller & Stadtmuller (2005) ont proposé une décomposition de la partie droite de (3.3)
comme suit : ∑

j≥1
θ∗j εj =

pn∑
j=1

θ∗j εj +
∞∑

j=pn+1
θ∗j εj . (3.4)

L’idée est d’approcher la somme infinie de la partie gauche de cette décomposition par
celle finie de la partie droite de (3.4). Cela est possible à condition que l’erreur disparaisse
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asymptotiquement, or cette erreur est contrôlée par le carré de l’espérance mathématique
du deuxième terme de la partie droite de cette décomposition :

E

 ∞∑
j=pn+1

θ∗j εj

2

=
∞∑

j=pn+1
θ∗jE(εj)2. (3.5)

En particulier, dans le cadre des bases orthonormales basées de fonctions propres, cette
erreur tend vers 0 car E(εj)2 = δj , avec δj sont des valeurs propres. Donc, au lieu
d’utiliser la variable explicative de dimension infinie, nous nous limiterons à une version
de dimension pn et le problème revient à estimer pn + 2 paramètres. Le logarithme de la
quasi vraisemblance conditionnelle tronquée au niveau pn est donc

L̃n(λ0, θ
∗, σ2

0) = −n2 lnσ
2
0 −

n

2 ln(2π) + ln|Sn(λ0)|

− 1
2σ2

0
[Sn(λ0)Yn − ξpnθ∗]

′
[Sn(λ0)Yn − ξpnθ∗] . (3.6)

où θ∗ ∈ Rpn est un vecteur de paramètres à estimer et ξpn est une n× pn matrice dont les
éléments sont

ξpnij =
∫
T
Xi(t)ϕj(t)dt , j = 1, . . . , pn, i = 1, . . . , n.

Pour un λ0 fixé, (3.6) est maximisée par :

θ̂n,λ0 = (ξ′
pnξpn)−1ξ

′
pnSn(λ0)Yn = (θ̂nj,λ)j=1,...,pn

et

σ̂2
n,λ0 = 1

n

(
Sn(λ0)Yn − ξpn θ̂n,λ0

)′ (
Sn(λ)Yn − ξpn θ̂n,λ

)
= 1

n
Y′
nS

′
n(λ0)MnSn(λ0)Yn,

où Mn = In − ξpn(ξ′
pnξpn)−1ξ

′
pn . Par conséquent, en considérant les estimateurs θ̂n,λ et

σ̂2
n,λ de θ∗ et σ2

0 respectivement, le logarithme de la quasi vraisemblance conditionnelle
tronquée, profilé par rapport à λ0 est défini par :

L̃n(λ0) = −n2 (ln(2π) + 1)− n

2 lnσ̂
2
n,λ + ln|Sn(λ0)|.

Ainsi, la valeur λ̂n qui maximise L̃n(λ0) est l’estimateur de λ0. On déduit ainsi un esti-
mateur θ̂n,λ̂n du paramètre fonctionnel θ∗(t) comme suit :

θ̂n(t) =
pn∑
j=1

θ̂nj,λ̂nϕj(t).

Dans la suite, nous établissons les propriétés asymptotiques de l’estimateur QMLE ci-
dessus proposé sous certaines conditions et hypothèses similaires à celles utilisés par Lee
(2004) et adaptées au cadre fonctionnel. Nous montrons tout d’abord que les paramètres
λ0, σ2

0 sont identifiables, consistant et vérifient√
n

hn
(λ̂n − λ0)→ N (0, s2

λ),
√
n(σ̂2

n,λ̂n
− σ2

0)→ N (0, s2
σ),



30 Chapter 3. Functional linear SAR models

avec

s2
λ = lim

n→∞
s2
nhn
n

{
hn
n

[
∆n + σ2

0tr(Gn(G′
n +Gn))

]}−2
; s2

σ = µ4−σ4
0+4s2

λ lim
n→∞

hn

[tr(Gn)
n

]2

où :

s2
n = σ2

0

[
θ∗

′Γpnθ∗ + σ2
0

]
tr
(
Gn(G′

n +Gn)
)

+
[
3σ2

0θ
∗′Γpnθ∗ + σ4

0 − µ4
] 1
n
tr2(Gn)

+
[
µ4 − 3σ4

0 − σ2
0θ
∗′Γpnθ∗

] n∑
i=1

G2
ii,

tel que Gn = S−1
n Wn, Γpn = E

(
1
nξ

′
pnξpn

)
, µ4 = E(U4), et θ∗ = (θ∗1, . . . , θ∗pn)′ . Nous en

déduisons par la suite que le paramètre fonctionnel θ∗(·), est également consistent et

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)
− pn

√
2pn

→ N (0, σ4
0) et

nd2
(
θ̂n(·), θ∗(·)

)
− pn

√
2pn

→ N (0, σ4
0)

où d(·, ·) est une métrique dans L2(T ) définie par :

d2 (f, g) =
∫ ∫

(f(t)− g(t))E(X(t)X(v)) (f(v)− g(v)) dtdv, f, g ∈ L2(T ).

Ces propriétés ainsi que le comportement pour échantillons à taille finie des estimateurs à
travers une étude de simulations ont été prouvées. En outre, les résultats d’une application
sur des données de concentration d’ozone au Sud-Est des États-Unis montrent la perfor-
mance du modèle proposé ainsi que l’utilité de prendre en considération la dépendance
spatiale.

Les résultats de ce chapitre sont en collaboration avec Laurence BROZE (Université de
Lille), Sophie DABO-NIANG (Université de Lille) et Mohamed-Salem AHMED (Univer-
sité de Lille). Ce travail est accepté pour publication en tant que chapitre de livre chez
Wiley.

3.1 Introduction
This work addresses two research areas: spatial statistics and functional data analysis.
Spatial functional random variables are becoming more common in statistical analyses
due to the availability of high-frequency spatial data and new mathematical strategies to
address such statistical objects.

Many fields, such as urban systems, agriculture, environmental science and economics,
often consider spatially dependent data. Therefore, modeling spatial dependency in sta-
tistical inferences (estimation of the spatial distribution, regression, prediction, . . . ) is a
significant feature of spatial data analysis. Spatial statistics provide tools to solve such
modelling. Various spatial models and methods have been proposed, particularly within
the scope of geostatistics or lattice data. Most of the spatial modeling methods are para-
metric and concern non-functional data.

Several types of functional linear models for independent data have been developed for
different purposes. The most studied model is perhaps the functional linear model for
scalar response, originally introduced by Hastie & Mallows (1993). Estimation and pre-
diction problems for this model and some of its generalizations have been reported mainly
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for independent data (see, e.g., Crambes et al. (2009), Comte & Johannes (2012), Cai &
Yuan (2012), Cuevas (2014)). Some research exists on functional spatial linear prediction
using kriging methods (see, e.g., Nerini et al. (2010), Giraldo et al. (2010b), Giraldo et al.
(2011), Horváth & Kokoszka (2012), Giraldo (2014), Bohorquez et al. (2016), Bohorquez
et al. (2017), ...), highlighting the interest in considering spatial linear functional models.

Complex issues arise in spatial econometrics (statistical techniques to address economic
modeling), many of which are neither clearly defined nor completely resolved but form the
basis for current research. Among the practical considerations that influence the available
techniques used in spatial data modeling, particularly in econometrics, is data dependency.
In fact, spatial data are often dependent, and a spatial model must be able to account for
this characteristic. Linear spatial models, which are common in geostatistical modeling,
generally impose a dependency structure model based on linear covariance relationships
between spatial locations. However, under many circumstances, the spatial index does not
vary continuously over a subset of RN , N ≥ 2 and may be of the lattice type, the baseline
of this current work. This is, for instance, the case in a number of problems. In images
analysis, remote sensing form satellites, agriculture and so one, data are often received as
regular lattice and identified as the centroids of square pixels, whereas a mapping forms
often an irregular lattice. Basically, statistical models for lattice data are linked to nearest
neighbors to express the fact that data are nearby.

We are concerned here about spatial functional models for lattice data. One of the well-
known spatial lattice models is the spatial autoregressive model (SAR) of Cliff & Ord
(1973), which extends regression in time series to spatial data. This model has been ex-
tensively studied and extended in several ways in the case of real-valued data, compared
to the functional framework. Ruiz-Medina (2011) and Ruiz-Medina (2012) considered a
spatial unilateral autoregressive Hilbertian (SARH(1)) processes where the autoregressive
part is given in terms of three functional random components located in three points
defining the boundary between some notions of past and future. Recently, Pineda-Ríos
& Giraldo (2016) studied a functional linear model with real-valued response and a func-
tional covariate, with SAR disturbances. Note that Tingting Huang (2019) considered
after the proposition of our model a similar work.

The structure of SAR model for real-valued data and its identification and estimation by
the two stage least squares (2SLS), the three stage least squares (3SLS), the maximum
likelihood (ML) and the generalized method of moments (GMM) estimation methods have
been developed and summarized by many authors, such as Anselin (1988), Case (1993),
Kelejian & Prucha (1998), Kelejian & Prucha (1999), Lee (2007), Lin & Lee (2010), Zheng
& Zhu (2012), Malikov & Sun (2017), Garthoff & Otto (2017), ... The identification and
estimation of such SAR models by the quasi-maximum likelihood (QML) are limited. Lee
(2004) and more recently Yang & Lee (2017), proposed the quasi-maximum likelihood
estimator for the SAR model with a spatial dependency structure based on a spatial
weights matrix. The quasi-maximum likelihood estimator (QMLE) is appropriate when
the disturbances in the considered model are not normally distributed. In the literature on
SARmodels for real-valued data, the QMLE and maximum likelihood estimator (MLE) are
proved to be computationally challenging, consistent with rates of convergence depending
on the spatial weights matrix of the considered model (Lee, 2004; Yang & Lee, 2017).
These last works considered real-valued random responses and deterministic or random
real-valued covariates and investigated the asymptotic properties of the QMLE estimator
under some disturbance specifications.

The present work considers an estimation of a spatial functional linear model with a
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random functional covariate and a real-valued response using spatial autoregression on the
response based on a weight matrix. We investigate parameter identification and asymptotic
properties of the QMLE estimator using the so-called increasing domain asymptotics.
We provide identification conditions combining identification in the classical SAR model
and identification in the functional linear model. Monte Carlo experiments illustrate the
performance of the QML estimation.

The rest of this chapter is organized as follows. In Section 3.2, we provide the functional
SAR (FSAR) and its quasi-likelihood estimator (QML). In Section 3.3, we state the con-
sistency and asymptotic normality of the estimator. To check the performance of the
estimator, numerical results are reported in Section 3.4 using different spatial scenarios,
where each unit is influenced by neighboring units. Proofs and technical lemmas are given
in the Appendix.

3.2 Model
We consider that at n spatial units located on In, a finite subset of cardinal n of a regular
or irregularly spaced, countable lattice I ⊂ RN , we observe a real-valued random variable
Y considered as the response variable and a functional covariate {X(t), t ∈ T }, a square-
integrable stochastic process on the interval T ⊂ R. Assume that the process {X(t), t ∈ T }
takes values in space X ⊂ L2(T ), where L2(T ) is the space of square-integrable functions
in T . The spatial dependency structure between these n spatial units is described by
an n × n non-stochastic spatial weights matrix Wn that depends on n. The elements
wij = wijn of this matrix are usually considered as inversely proportional to the distance
between spatial units i and j with respect to some metric; see Chapter 2 for more details.
Since the weight matrix changes with n, we consider these observations as triangular array
observations. This is required to conduct an asymptotic study of the following model that
describes the relationship between the response variable Y and the covariate function X(.)
(Robinson, 2011).

There are mainly three different types of interaction effects that may explain why an
observation associated with a specific location may be dependent on observations at other
locations:

• Endogenous interaction effects, where the variable Y at some spatial unit depends
on values of Y taken by other spatial units,

• Exogenous interaction effects, where the variable Y at some spatial unit depends on
independent explanatory variables at other spatial units.

• Correlated effects, where similar unobserved characteristics result in similar behav-
ior.

Here, we assume that the relationship between Y and X is modeled by the following
functional spatial autoregressive model (FSAR) with endogenous interactions:

Yi = λ0

n∑
j=1

wijYj +
∫
T
Xi(t)θ∗(t)dt+ Ui, i = 1, . . . , n, n = 1, 2, . . . (3.7)

where the autoregressive parameter λ0 is in compact space Λ, θ∗(·) is a parameter function
assumed to belong to the space of functions L2(T ), and (wij)j=1,...,n is the i-th row of Wn.
Assume that wij = O(h−1

n ) uniformly in all i, j, where the rate sequence hn can be bounded
or divergent, such as hn = o(n). This kind of matrix can be obtained by Nearest Neighbor
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weights. In most cases it is convenient to row normalize the spatial weight matrix. The
row-normalisation helps in the interpretation and the comparison of the parameters λ, it
allows −1 ≤ λ ≤ 1. In this way, the spatially-lagged variables are equal to a weighted
average of the neighboring values. In general, these matrices Wn can be classified into
three groups: Binary, Continuous and Hybrid, see Chapter 2.

The disturbances {Ui, i = 1, . . . , n, n = 1, 2, . . .} are assumed to be independent ran-
dom variables such that E(Ui) = 0, E(U2

i ) = σ2
0. They are also independent of

{Xi(t), t ∈ T , i = 1, . . . , n, n = 1, 2 . . .}. We are interested in estimating the unknown
true parameters λ0, θ∗(.) and σ2

0. Let Xn(θ∗(.)) be the n × 1 vector of i-th element∫
T Xi(t)θ∗(t)dt; then, one can rewrite (3.7) as

SnYn = Xn(θ∗(.)) + Un , n = 1, 2, . . .

where Sn = (In − λ0Wn), Yn and Un are two n × 1 vectors of elements Yi and Ui , i =
1, . . . , n respectively, and In denotes the n×n identity matrix. Let Sn(λ) = In−λWn, so the
conditional log-likelihood function of the vector Yn given {Xi(t), t ∈ T , i = 1, . . . , n, n =
1, 2 . . .} is given by:

Ln(λ, θ(.), σ2) = −n2 lnσ
2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn −Xn(θ(.))]

′
[Sn(λ)Yn −Xn(θ(.))] , (3.8)

where A′ denotes the transpose of matrix A.

The quasi-maximum likelihood estimates of λ0, θ
∗(·) and σ2

0 are the parameters λ, θ(·),
and σ2 that maximize (3.8). But this likelihood cannot be maximized without addressing
the difficulty produced by the infinite dimensionality of the explanatory random function.
To solve this problem we project, as usual, the functional explanatory variable and pa-
rameter function into the space of the functions generated by a basis of functions with
dimensions that increase asymptotically as the sample size tends to infinity. Several trun-
cation techniques exist. Cardot et al. (1999) proposed the estimated eigenbasis of the
sample; Cardot & Sarda (2005) considered a Spline basis, adding a penalty that controls
the degree of smoothness of the parameter function. Muller & Stadtmuller (2005) pro-
posed the use of any basis of functions that verifies some truncation criterion. We adapt
the alternative proposed by Muller & Stadtmuller (2005) to solve the infinite dimension
problem of the functional space. This method is denoted truncated conditional likelihood
method.

3.2.1 Truncated conditional likelihood method

Let {ϕj , j = 1, 2, . . .} be an orthonormal basis of the functional space L2(T ), usually a
Fourier or a Spline basis or a basis constructed by the eigenfunctions of the covariance
operator Γ, where the operator is defined by:

Γx(t) =
∫
T
E(X(t)X(s))x(s)ds , x ∈ X , t ∈ T . (3.9)

Using an expansion on this orthonormal basis, we can write X(.) and θ∗(.) in as follows:

X(t) =
∑
j≥1

εjϕj(t) and θ∗(t) =
∑
j≥1

θ∗jϕj(t) for all t ∈ T ,

where the real random variables εj and the coefficients θ∗j are given by

εj =
∫
T
X(t)ϕj(t)dt and θ∗j =

∫
T
θ∗(t)ϕj(t)dt.
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Let pn be a positive sequence of integers that increase asymptotically as n → ∞; by the
orthonormality of the basis {ϕj , j = 1, 2, . . .}, we can consider the following decomposition∫

T
X(t)θ∗(t)dt =

∞∑
j=1

θ∗j εj =
pn∑
j=1

θ∗j εj +
∞∑

j=pn+1
θ∗j εj . (3.10)

The truncation strategy introduced by Muller & Stadtmuller (2005) consists of approxi-
mating the left-hand side in (3.10) using only the first term of the right-hand side. This
is possible when the approximation error vanishes asymptotically, where this error is con-
trolled by a square expectation of the second term on the right-hand side of (3.10). In
particular, the approximation error vanishes asymptotically when one considers the eigen-
basis of the variance-covariance operator Γ by remarking that

E

 ∞∑
j=pn+1

θ∗j εj

2

=
∞∑

j=pn+1
θ∗

2
j E

(
ε2
j

)
=

∞∑
j=pn+1

θ∗
2
j δj

where δj , j = 1, 2 . . . are the eigenvalues. Under this truncation strategy, Xn(θ∗(.)) may
be approximated by ξpnθ∗, where θ∗ = (θ∗1, . . . , θ∗pn)′ and ξpn is an n × pn matrix of the
(i, j)-th element given by:

ε
(i)
j =

∫
T
Xi(t)ϕj(t)dt , i = 1, . . . , n j = 1, . . . , pn.

Now, the truncated conditional log-likelihood function can be obtained by replacing (3.8)
Xn(θ(.)) with ξpnθ for all θ(.) ∈ L2(T ) and θ ∈ Rpn . The corresponding and feasible log
conditional likelihood is:

L̃n(λ, θ, σ2) = −n2 lnσ
2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ] . (3.11)

For a fixed λ, (3.11) is maximized at:

θ̂n,λ = (ξ′
pnξpn)−1ξ

′
pnSn(λ)Yn = (θ̂nj,λ)j=1,...,pn

and

σ̂2
n,λ = 1

n

(
Sn(λ)Yn − ξpn θ̂n,λ

)′ (
Sn(λ)Yn − ξpn θ̂n,λ

)
= 1

n
Y′
nS

′
n(λ)MnSn(λ)Yn,

where Mn = In − ξpn(ξ′
pnξpn)−1ξ

′
pn .

The concentrated truncated conditional log-likelihood function of λ is:

L̃n(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂
2
n,λ + ln|Sn(λ)|.

Then the estimator of λ0 is λ̂n, which maximizes L̃n(λ), and those of the vector θ∗ and
variance σ2

0 are, respectively, θ̂n,λ̂n , σ̂
2
n,λ̂n

. The corresponding estimator of the function
parameter θ∗(.) is:

θ̂n(t) =
pn∑
j=1

θ̂nj,λ̂nϕj(t).

The estimation of the model is given, we focus on the asymptotic results in the next
section. For that purpose, we need to define some asymptotic method. There are two main
asymptotic methods in the spatial literature: increasing domain and infill asymptotic (see
Cressie, 1993, p. 480). In the following, we consider increasing domain asymptotic.
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3.3 Assumptions and results
Let us first state some combining condition assumptions related to the spatial dependency
structure and assumptions on the functional nature of the data.

Let In + λ0Gn = S−1
n where Gn = WnS

−1
n , Bn(λ) = Sn(λ)S−1

n = In + (λ0 − λ)Gn for all
λ ∈ Λ and An(λ) = B

′
n(λ)Bn(λ).

We assume that
Assumption 1

i. The matrix Sn, is nonsingular.
ii. The sequences of matrices {Wn} and {S−1

n } are uniformly bounded in both row
and column sums.

iii. The matrices {S−1
n (λ)} are uniformly bounded in either row or column sums

and uniformly bounded in λ in compact parameter space Λ. The true λ0 is in
the interior of Λ.

Assumption 2 The sequence pn satisfies pn →∞ and pnn−1/4 → 0 as n→∞, and
i. pn

∑
r1,r2>pn

E (εr1εr2) = o(1)

ii.
∑

r1,...,r4>pn

E (εr1 . . . εr4) = o(1)

iii.
√
n
pn∑
s=1

∑
r1,r2>pn

E (εsεr1)E (εsεr2) = o(1).

Remark 3.1. Assumption 1-i ensures that Yn has mean S−1
n Xn(θ∗(·)) and variance

σ2
0S
−1
n S

′−1
n . The uniform boundedness of Wn and S−1

n in Assumption 1-ii enables the
control of the degree of spatial correlation and plays an important role in the asymptotic
properties of the estimators. By easy computation, one can show under this assumption
that the matrix Gn = WnS

−1
n is uniformly bounded in both row and column sums together

with elements of order h−1
n . Consequently, the matrix An(λ) = B

′
n(λ)Bn(λ) has a trace

of order n uniformly in λ ∈ Λ by the compactness condition of Λ in Assumption 1-iii.
Assumption 1-iii makes it possible to address the nonlinearity of ln|Sn(λ)| as a function
of λ in (3.11). For more detail and a discussion of Assumption 1, see Lee (2004).
Assumption 2 considers the rate of convergence of pn with respect to n. Condition iii of
Assumption 2 is satisfied when one consider the eigenbasis, since in this case E(εrεs) = 0,
for s 6= r.
To obtain the identifiability of λ0, θ∗ = (θ∗1, . . . , θ∗pn)′ , and σ2

0 in the truncated model,
remark that

E
(
L̃n(λ, θ, σ2)

)
= −n2 lnσ

2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2E

(
[Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ]

)
.

We have
E
(
[Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ]

)
= E

(
[Bn(λ)Xn(θ∗(.))− ξpnθ]

′
[Bn(λ)Xn(θ∗(.))− ξpnθ]

)
+ σ2

0tr (An(λ))

= E
(
[Bn(λ)ξpnθ∗ − ξpnθ]

′
[Bn(λ)ξpnθ∗ − ξpnθ]

)
+ E

(
R

′
nAn(λ)Rn

)
+ σ2

0tr (An(λ)) + 2E
(
[Bn(λ)ξpnθ∗ − ξpnθ]

′
Bn(λ)Rn

)
,
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where Rn = (R1, . . . , Rn)′ with Ri = ∑
j>pn θ

∗
j ε

(i)
j . Let R denote the generic copy of

Ri, i = 1, . . . , n, where E(R) = 0.

We then have

E
(
θ∗

′
ξ

′
pnBn(λ)Rn

)
= tr (Bn(λ)) εn1, where εn1 =

pn∑
r=1

∑
s>pn

θrθ
∗
sE(εrεs),

E
(
θ

′
ξ

′
pnAn(λ)Rn

)
= tr (An(λ)) εn2, where εn2 =

pn∑
r=1

∑
s>pn

θ∗rθ
∗
sE(εrεs),

E
(
R′
nAn(λ)Rn

)
= tr(An(λ))εn3, where εn3 = E(R2).

Note that εn1, εn2 and εn3 are of order o(1) by Assumption 2, and they are independent
of λ. In addition, εn1 and εn2 are null if one uses the eigenbasis. Consequently,

E
(
L̃n(λ, θ, σ2)

)
= − 1

2σ2 E
(
(Bn(λ)ξpnθ∗ − ξpnθ)

′
(Bn(λ)ξpnθ∗ − ξpnθ)

)
+ln|Sn(λ)| − n

2
(
lnσ2 + ln2π

)
− σ2

0
2σ2 tr (An(λ))

+εn1tr (Bn(λ)) + εn4tr (An(λ)) , (3.12)

with εn4 := εn2 + εn3. Note that the terms that contain εn1 and εn4 are negligible with
respect to the others by Assumption 2.

For fixed λ, the expectation E
(
L̃n(λ, θ, σ2)

)
is maximum with respect to θ and σ2 at:

θ∗n,λ = 1
n

Γ−1
pn E

(
ξ

′
pnBn(λ)ξpn

)
θ∗

= θ∗ + (λ0 − λ)Γ−1
pn

1
n
E
(
ξ

′
pnGnξpn

)
θ∗ = θ∗ + (λ0 − λ)θ∗ 1

n
tr (Gn)

and

σ∗2n,λ = 1
n
E

([
Bn(λ)ξpnθ∗ − ξpnθ∗n,λ

]′ [
Bn(λ)ξpnθ∗ − ξpnθ∗n,λ

])
+ σ2

0
n
tr (An(λ))

= (λ0 − λ)2 1
n

∆n + σ2
0
n
tr (An(λ)) , (3.13)

with ∆n = n

(
tr
(
G

′
nGn
n

)
− tr2

(
Gn
n

))
θ∗

′Γpnθ∗ since

E
(
ξ

′
pnG

′
nGnξpn

)
= tr(G′

nGn)Γpn and E
(
ξ

′
pnGnξpn

)
= tr(Gn)Γpn ,

where Γpn = E
(

1
nξ

′
pnξpn

)
is assumed to be positive definite. This is the case when the

eigenbasis is considered in the truncation strategy.

Based on these results, it is clear that θ∗n,λ0
= θ∗ and σ∗2n,λ0

= σ2
0. Hence, the identifiability

of θ∗ and σ2
0 depends on that of λ0. Note that

Qn(λ) = E
(
L̃n
(
λ, θ∗λ, σ

∗2
n,λ

))
= ln|Sn(λ)| − n

2 lnσ
∗2
n,λ −

n

2 (1 + ln(2π)) + εn1tr (Bn(λ)) + εn4tr (An(λ)) .

Therefore, proving the identifiability of λ0 is equivalent to showing that λ0 maximizes
Qn(λ). This will be proved before addressing the consistency of the estimators. We will
need to compose some additional assumptions.
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Assumption 3 Let limn→∞
1
n∆n = c, where (a) c > 0; (b) c = 0. Under the latter

condition,

lim
n→∞

hn
n

{
ln
∣∣∣σ2

0S
−1
n S

′−1
n

∣∣∣− ln
∣∣∣σ2
n,λS

−1
n (λ)S′−1

n (λ)
∣∣∣} 6= 0,

whenever λ 6= λ0, with σ2
n,λ = σ2

0
n tr(An(λ)).

Assumption 4 Ui, i = 1, . . . , n in Un = (U1, . . . , Un)′ are i.i.d. with mean zero and
variance σ2

0. The moment E
(
|Ui|4+δ

)
exists for some δ > 0. Let µ4 = E(U4

i ).

Remark 3.2. Assumption 3 enables the identification of λ0 according to the boundless
of hn. It is similar to that used in Lee (2004) in the case of multivariate deterministic
covariates. This assumption ensures that tr2(Gn/n) is dominated by tr(G′

nGn/n), which
is the case when hn → ∞, as under Assumption 1, tr(G′

nGn) and tr(Gn) are of order
O(n/hn). Situation (b) is related to the existence of a unique variance of Yn. Assump-
tion 4 characterizes the properties of the disturbance term.

Under assumptions similar to those used in Lee (2004) but adapted to the functional
context, we show that the proposed QMLE estimator has the same asymptotic properties
as those in the context of independent data(see e.g. Muller & Stadtmuller, 2005) and the
spatial model with real-valued covariates (see e.g. Lee, 2004). The following theorems
give the identification, consistency and asymptotic normality results of the autoregressive,
functional and variance parameters estimates.

Theorem 3.1. Under Assumptions 1-4 and h4
n = O(n) for divergent hn, the QMLE

λ̂n derived from the maximization of L̃n(λ) is consistent and satisfies√
n

hn
(λ̂n − λ0)→ N (0, s2

λ),

with s2
λ = lim

n→∞
s2
nhn
n

{
hn
n

[
∆n + σ2

0tr(Gn(G′
n +Gn))

]}−2
, where

s2
n = σ2

0

[
θ∗

′Γpnθ∗ + σ2
0

]
tr
(
Gn(G′

n +Gn)
)

+
[
3σ2

0θ
∗′Γpnθ∗ + σ4

0 − µ4
] 1
n
tr2(Gn)

+
[
µ4 − 3σ4

0 − σ2
0θ
∗′Γpnθ∗

] n∑
i=1

G2
ii. (3.14)

Note that, when hn is divergent, the last two terms in (3.14) are negligible.

Theorem 3.2. Under assumptions of Theorem 3.1, σ̂2
n is a consistent estimator of σ2

0
and satisfies √

n(σ̂2
n,λ̂n
− σ2

0)→ N (0, s2
σ),

with

s2
σ = µ4 − σ4

0 + 4s2
λ lim
n→∞

hn

[ tr(Gn)
n

]2
.

When hn is divergent, s2
σ will be reduced to µ4 − σ4

0.

The following assumptions are needed to ensure the asymptotic property of the parameter
function estimator. They are similar to ones used in Muller & Stadtmuller (2005).
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Assumption 5 We have
pn∑

r1,r2,r3,r4=0
E (εr1εr2εr3εr4) νr1r2νr3r4 = o(n/p2

n),

where the νkl, k, l = 1, . . . , pn, are the elements of Γ−1
pn .

Assumption 6 We assume that
pn∑

r1,...,r8=0
E (εr1εr3εr5εr7)E (εr2εr4εr6εr8) νr1r2νr3r4νr5r6νr7r8 = o(n2p2

n).

The asymptotic normality of the parameter function estimator is given in the following
theorem.

Theorem 3.3. Under Assumptions 1-6, we have

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)
− pn

√
2pn

→ N (0, σ4
0).

Moreover, if ∑
j>pn

E
(
ε2
j

)(∫
T
θ∗(t)ϕj(t)dt

)2
= o(√pn/n), (3.15)

where here {ϕj , j = 1, 2, . . .} is the eigenbasis associated to the variance-covariance oper-
ator Γ, we have

nd2
(
θ̂n(·), θ∗(·)

)
− pn

√
2pn

→ N (0, σ4
0), (3.16)

where d2(·, ·) denotes the metric defined in L2(T ) through operator Γ, and defined by

d2(f, g) =
∫
T

∫
T

(f(t)− g(t))E(X(t)X(s)) (f(s)− g(s)) dtds,

for all f, g ∈ L2(T ).

Now that we have checked the theoretical behavior of the estimator, we study its practical
features through numerical results. We investigate the numerical performance of the pro-
posed methodology based on some simulations and an application to ozone concentrations.

3.4 Numerical experiments
In this section, we study the performance of the proposed model based on numerical
results that highlight the importance of truncation of the functional covariate and the
spatial nature of the data. We first describe the estimation procedure for the investigated
model.

Recall that the truncation strategy requires an appropriate selection of orthonormal basis.
This basis can be chosen to be a fixed orthonormal basis, such as the Fourier basis, or it can
be constructed by estimating the eigenfunctions of the covariance kernel (3.9) and applying
functional principal component analysis (FPCA) to the explanatory random functions Xi.
We use the eigenfunctions obtained from the FPCA to construct the expansion basis in this
numerical section. The eigenfunctions are those of the integral operator associated with
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the integral kernel defined by the variance-covariance function of X, which is estimated
for each t, v ∈ [0, 1] as follows:

K̂(t, v) = 1
n− 1

n∑
i=1

Xi(t)Xi(v). (3.17)

A key step is the choice of the number p of functions used in the truncation strategy; we
consider the average squared error (ASE),

ASE = 1
n

n∑
i=1

(Yi − Ŷi)2, (3.18)

the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The
choice of p using AIC is consistent in the setting of functional linear models, see Muller
& Stadtmuller (2005) for more details. Notice that we use a pre-selected p based on the
cumulative inertia. We focus on the selection of p from among those associated with
cumulative inertia values lower than some threshold (here 95%).

As measure of accuracy of the parameter function, (see M. Escabias & Valderrama, 2007)
the usual integrated mean square error,

IMSE =
∫ 1

0

(
θ∗(t)− θ̂n(t)

)2
dt, (3.19)

is considered to compare the three choice strategies for p, namely, ASE, AIC and BIC.

3.4.1 Monte Carlo simulations

The main objective of the Monte Carlo Simulation is to investigate the finite sample
behavior of the QMLEs of θ̂n(.), λ̂n and σ̂2

n. We consider two spatial scenarios (see Su,
2004) in a data grid with 60× 60 locations, where we randomly allocate n spatial units.

• Scenario 1: The spatial weight matrix Wn is constructed by taking the k neighbors
of each unit using kNN method (k nearest neighbors algorithm). Let us take k =
{4, 8}.

• Scenario 2: We consider a number of districts r (block or group) with m members
in each district, where the units of the same district have the same weight. As in
Case (1993), we can define the spatial weight matrix as block diagonalWn = Ir⊗Bm,
where ⊗ is the Kronecker product, Bm = (lml

′
m−Im)/(m−1), and lm is an m vector

of 1.

The simulations are performed based on the following data:

Yi = λ0

n∑
j=1

wijYj +
∫
T
Xi(t)θ∗(t)dt+ Ui (3.20)

where Ui ∼ N (0, σ2
0).

We generate the functional covariate as in Muller & Stadtmuller (2005) using the Fourier
orthonormal basis {ϕj(t) =

√
2 sin(jπt), t ∈ [0, 1], j = 1, 2, ...}. Let us use the first twenty

functions of this basis to generate the explanatory random function

X(t) =
20∑
j=1

εjϕj(t), (3.21)
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where εj ∼ N (0, 1/j) for j ≥ 1. We define the parameter function as θ∗(t) = ∑20
j=1 θ

∗
jϕj(t),

with θ∗j = 0 for j > 3, θ∗ = (θ∗1, θ∗2, θ∗3)′ = (1, 1/2, 1/3)′. With this parameter function
and σ2

0 = 1, different samples are generated using different values of the autoregressive
parameter λ0 = 0.2; 0.4; 0.6; and 0.8.

We apply the truncation strategy to reduce the infinite dimensionality of our model Yi =
λ0
∑n
j=1wijYj+ ∑pn

j=1 θ
∗
j ε

(i)
j +∑∞j=pn+1 θ

∗
j ε

(i)
j +Ui, i = 1, . . . , n, n = 1, 2, . . . to a pn−finite

linear approximation and compute the quasi-likelihood estimator. The parameters λ0, σ2
0

and θ∗1, ..., θ∗pn are estimated by solving the score equations defined in Section 3.3. Different
sample sizes, n = {100, 200, 400}, are tested for the first scenario; for the second, we take
r = {10, 20, 30} and m = {5, 10, 15}, with sample size n = m× r.

The studied models are replicated 200 times, and the results of Scenario 1 are presented
in Tables 3.1 and 3.2, respectively, for k = 4 and k = 8. For Scenario 2, the results are
reported in Tables 3.3 to 3.6. Each table represents a specific model. In each table, the
rows λ, σ2, IMSE and PCs give the averages over these replications (with the standard
deviation in brackets) of the autoregressive parameter estimate λ̂n, the standard deviation
parameter σ̂2

n, the associated IMSE defined in (3.19) and the number p of eigenfunctions
(used in the truncation), respectively. For the different models, the strategies used to select
p yield (on average) values close to the true parameter of p = 3, especially for ASE and
AIC and large sample sizes (see the columns titled PCs in Tables 3.1-3.6). The parameter
function estimates are in given in Figures 3.2-3.3. For all the models, the three methods
used to select p and two spatial scenarios, the performance of the parameter function and
the variance estimates varies with the sample size.

A larger IMSE (the smallest is in bold) of order 0.2 is noted for sample size n = 100
and k = 8. The methods using the ASE and AIC criteria outperform the other methods.
The spatial structure, namely, the number of neighbors k (Scenario 1) and the number of
observations m in each district (Scenario 2), has a slight impact on the performance of
the spatial parameter estimator λ̂n. Better results are obtained for lower values, namely,
k = 4 and m = 5, since the weights are more important in these cases. For a fixed value
of k or m, the performance varies with sample size.

In all the cases considered, AIC criterion outperforms. This is in adequacy with Muller &
Stadtmuller (2005)’s finite and large samples results.
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Table 3.1: Estimation of parameters with n = {100, 200, 400}, k = 4
n = 100 n = 200 n = 400
ASE AIC BIC ASE AIC BIC ASE AIC BIC

λ0 = 0.2 λ .1783 .1786 .1800 .2045 .2046 .2043 .1955 .1955 .1956
(.1150) (.1160) (.1144) (.0727) (.0727) (.0731) (.0493) (.0494) (.0495)

σ2 .9669 .9732 .9878 .9835 .9858 .9913 .9829 .9834 .9870
(.1438) (.1465) (.1511) (.1036) (.1040) (.1055) .0710 (.0711) (.0710)

IMSE .1584 .1996 .2595 .0796 .1141 .1489 .0337 .0478 .0860
(.1499) (.1332) (.1339) (.0654) (.0709) (.0747) (.0325) (.0476) (.0564)

PCs 2.920 2.170 1.715 2.965 2.445 2.115 2.990 2.785 2.415
(.2720) (.6349) (.3637) (.1842) (.5463) (.5226) (.0997) (.4119) (.5139)

λ0 = 0.4 λ .3952 .3969 .3979 .3992 .3996 .3997 .3945 .3947 .3947
(.0987) (.1428) (.0997) (.0581) (.0984) (.0580) (.0449) (.0447) (.0448)

σ2 .9573 .9609 .9786 .9786 .9798 .9865 .9885 .9888 .9929
(.1432) (.1428) (.1503) (.0983) (.0984) (.1002) (.0723) (.0725) (.0448)

IMSE .1778 .2063 .2786 .0880 .1067 .1536 .0399 .0507 .0977
(.1680) (.1574) (.1528) (.0830) (.0794) (.0908) (.0365) (.0464) (.0629)

PCs 2.850 2.285 1.720 2.865 2.520 2.125 2.950 2.790 2.360
(.3850 (.6753) (.6662) (.3426) (.5108) (.5926) (.2185) (.4083) (.5309)

λ0 = 0.6 λ .5859 .5877 .5884 .5975 .5990 .5988 .5979 .5984 .5985
(.0725) (.0722) (.0731) (.0452) (.0458) (.0455) (.0365) (.0366) (.0368)

σ2 .9623 .9605 .9773 .9872 .9835 .9916 .9981 .9970 1.0009
(.1357) (.1335) (.1387) (.0965) (.0947) (.0964) (.0743) (.0741) (.0744)

IMSE .1568 .1770 .2428 .1080 .1092 .1642 .0508 .0506 .0912
(.1248) (.1191) (.1272) (.0844) (.0747) (.0942) (.0497) (.0462) (.0527)

PCs 2.680 2.275 1.710 2.680 2.525 2.070 2.845 2.800 2.410
(.6160) (.6175) (.6387) (.5560) (.5393) (.5889) (.3764) (.4010) (.5032)

λ0 = 0.8 λ .7863 .7889 .7884 .7929 .7940 .7938 .7990 .7997 .7998
(.0468) (.0461) (.0470) (.0312) (.0312) (.0313) (.0192) (.0190) (.0191)

σ2 .9814 .9632 .9788 .9978 .9875 .9953 .9986 .9892 .9927
(.1519) (.1482) (.1536) (.0971) (.0952) (.0966) (.0741) (.0689) (.0696)

IMSE .2303 .1976 .2422 .1326 .1085 .1624 .0932 .0520 .0898
(.1469) (.1329) (.1281) (.1177) (.0809) (.0937) (.1007) (.0468) (.0520)

PCs 2.295 2.330 1.845 2.465 2.470 2.035 2.535 2.765 2.390
(.8007) (.6428) (.6581) (.7151) (.539) (.5525) (.6488) (.4251) (.4991)

3.4.2 Real data application

The goal is to forecast ground-level ozone concentrations using observations from stations
within the Southeastern and Southwestern of United States over a span of 48 hours in the
summer of 2015. The data are collected from monitoring stations (agencies) across the
United States and are available at https://www.epa.gov/outdoor-air-quality-data.
We are given the ozone concentration for 106 stations for every hour from 12am July 19
to 11pm July 20, 2015 (that is, 48 hours). We use linear interpolation to estimate the
missing values.

We organize the original space-time series into a set of daily functional data to apply
the functional methodology. Let us consider at each station a response variable Y as
the ozone concentration at 12pm on July 20 and a covariate function {X(t), t ∈ [0, 23]}
corresponding to the 24 records of ozone concentrations from 12pm on July 19 to 11am
July 20. Figure 3.4 presents the geographical positions of the 106 stations (red points) and
the curves of the ozone concentration from 12pm July 19 to 11am July 20. To highlight the
performance of the spatial FSARM model, we compare with the usual functional linear
model (FLM), that does not take into account any spatial structure in the estimation
procedure.

https://www.epa.gov/outdoor-air-quality-data
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Figure 3.1: Estimated parameter function θ̂n(·) with the different criteria and k = 4.
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Table 3.2: Estimation of parameters with n = {100, 200, 400}, k = 8
n=100 n=200 n=400
ASE AIC BIC ASE AIC BIC ASE AIC BIC

λ0 = 0.2 λ .1711 .1709 .1690 .1876 .1875 .1886 .1912 .1912 .1916
(.1604) (.1614) (.1439) (.1031) (.1037) (.1036) (.0800) (.0799) (.0801)

σ2 .9656 .9706 .9892 .9781 .9797 .9860 .9833 .9839 .9871
(.1364) (.1385) (.1439) (.0995) (.1000) (.1010) (.0687) (.0688) (.0690)

IMSE .1612 .1920 .2480 .0866 .1116 .1517 .0394 .0548 .0881
(.1731) (.1693) (.1560) (.0795) (.0840) (.0955) (.0409) (.0484) (.0476)

PCs 2.925 2.275 1.705 2.950 2.540 2.190 2.980 2.725 2.395
(.2641) (.6256) (.1496) (.2185) (.5290) (.5964) (.1404) (.4476) (.4901)

λ0 = 0.4 λ .3803 .3809 .3811 .3859 .3861 .3859 .3881 .3880 .3877
(.1416) (.1416) (.1413) (.0822) (.0822) (.0834) (.0705) (.0727) (.0710)

σ2 .9593 .9638 .9782 .9787 .9800 .9871 .9945 .0727 .9985
(.1438) (.1456) (.1501) (.1019) (.1024) (.1048) (.0725) (.0518) (.0724)

IMSE .1541 .1821 .2359 .0828 .1066 .1490 .0426 .0518 .0895
(.1111) (.1114) (.1274) (.0718) (.0801) (.0863) (.0389) (.0457) (.0556)

PCs 2.855 2.180 1.730 2.925 2.555 2.165 2.940 2.800 2.445
(.3669) (.6632) (.6237) (.2641) (.5554) (.1240) (.2381) (.4010) (.5180)

λ0 = 0.6 λ .5758 .5791 .5794 .5924 .5933 .5935 .5940 .5947 .5944
(.1061) (.1060) (.1072) (.0671) (.0672) (.0675) (.0496) (.0495) (.0494)

σ2 .9719 .9680 .9844 .9792 .9790 .9868 .9932 .9921 .9950
(.1419) (.1398) (.1072) (.0982) (.0994) (.1020) (.0757) (.0749) (.0494)

IMSE .2024 .2024 .2628 .0939 .1026 .1540 .0477 .0485 .9950
(.1581) (.1421) (.1414) (.0868) (.0739) (.0864) (.0476) (.0463) (.0755)

PCs 2.600 2.290 1.760 2.780 2.530 2.110 2.855 2.795 2.465
(.6497) (.6542) (.6743) (.4612) (.5201) (.0864) (.3669) (.4047) (.5000)

λ0 = 0.8 λ .7741 .7777 .7771 .7890 .7909 .7905 .7941 .7950 .7950
(.0630) (.0630) (.0633) (.0410) (.0411) (.0412) (.0321) (.0318) (.0321)

σ2 .9852 .9686 .9840 1.0069 .9984 1.0071 .9957 .9889 .9925
(.1439) (.1374) (.1403) (.1037) (.1022) (.1044) (.0745) (.0720) (.0536)

IMSE .2076 .1989 .2516 .1199 .1027 .1609 .0811 .0492 .0880
(.1378) (.1277) (.1403) (.1040) (.0695) (.0886) (.0970) (.0476) (.0536)

PCs 2.245 2.200 1.720 2.545 2.505 2.035 2.615 2.775 2.405
(.7798) (.6725) (.6509) (.6858) (.5398) (.5616) (.6315) (.4186) (.5022)

The observations ({Xi(t), t ∈ [0, 23]}, Yi), i = 1, . . . , 106, are then used to estimate, on
one hand, the parameter function and hypothetical intercept using the FLM methodology
and, on the other hand, the parameter function and the autoregressive parameter using the
FSARM methodology developed here. Even though the variance is estimated by the two
methods, we do present it here but focus on the covariate and autoregressive parameters.
We describe the spatial dependence between the stations using a 106× 106 spatial weight
matrix Wn. We follow the idea of Pinkse & Slade (1998) to define the elements of Wn by:

wij =


1

1 + dij
if dij < ρ

0 otherwise,

where dij is the euclidean distance between station i and station j, and ρ is some cut-off
distance chosen such that each station has at least four neighbors. Other weight matrices
have been tested, but we choose to present the results corresponding to this matrix.

Note that FPCA is used to smooth the curves before we reduce the spatial dimensions
of the functional covariate using the eigenbasis, as explained above (see Figure 3.5). The
AIC is used to select the number of eigenfunctions. For the two models, we have the same
optimal number of eigenfunctions p = 3. Table 3.7 and Figure 3.6 give the estimation
results of the FLM and FSARM. Note that the curves obtained by the two estimation
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Figure 3.2: Estimated parameter function θ̂n(·) with the different criteria and k = 8.
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Table 3.3: Estimation of parameters associated to scenario 2 with λ0 = 0.2.
m=5 m=10 m=15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .1457 .1474 .1483 .1828 .1842 .1838 .1734 .1734 .1746
(.1687) (.1700) (.1685) (.1466) (.1476) (.1468) (.1476) (.1479) (1483)

σ2 .9090 .9209 .9463 .9583 .9627 .9759 .9810 .9836 .9947
(.1897) (.1941) (.2047) (.1340) (.1353) (.1382) (.1076) (.1086) (.1108)

IMSE .3347 .3603 .3778 .1655 .1925 .2412 .1109 .1430 .1973
(.2848) (.2541) (.2267) (.1515) (.1328) (.1251) (.1076) (.1103) (.1115)

PCs 2.900 1.94 1.505 2.930 2.275 1.860 2.945 2.425 1.940
(.3170) (.7611) (.6497) (.2747) (.6010) (.6577) (.2286) (.5883) (.6232)

r = 20 λ .1794 .1796 .1788 .1850 .1851 .1853 .1917 .1919 .1914
(.0934) (.0938) (.0940) (.1079) (.1079) (.1073) (.1027) (.1023) (.1026)

σ2 .9413 .9450 .9602 .9748 .9768 .9841 .9832 .9840 .9892
(.1429) (.1436) (.1498) (.1014) (.1018) (.1045) (.0809) (.1023) (.0823)

IMSE .1767 .2133 .2686 .0725 .1032 .1507 .0528 .0709 .1164
(.1676) (.1620) (.1614) (.0666) (.0693) (.0874) (.0456) (.0561) (.0612)

PCs 2.920 2.285 1.805 2.970 2.545 2.140 2.9850 2.690 2.280
(.2720) (.6900) (.7138) (.1710) (.5092) (.5585) (.1219) (4637) (.5225)

r = 30 λ .1990 .1985 .1988 .1942 .1941 .1943 .1890 .1890 .1832
(.0853) (.0860) (.0869) (.0762) (.0816) (.0762) (.0867) (.0866) (.0867)

σ2 .9668 .9692 .9797 .9927 .9938 .9986 .9900 .9904 .9930
(.1152) (.1156) (.0869) (.0816) (.0816) (.0829) (.0639) (.0638) (.0643)

IMSE .1112 .1446 .1991 .0555 .0755 .1143 .0330 .0452 .0755
(.1047) (.1088) (.1130) (.0615) (.0651) (.0680) (.0298) (.0452) (.0643)

PCs 2.920 2.455 1.990 2.980 2.6500 2.2750 2.9900 2.8100 2.5150
(.2720) (.5653) (.6340) (.1404) (.4782) (.5299) (.0997) (.3933) (.5010)

Table 3.4: Estimation of parameters associated to scenario 2 with λ0 = 0.4.
m = 5 m = 10 m = 15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .3590 .3613 .3619 .3746 .3756 .3751 .3739 .3751 .3748
(.1106) (.1134) (.1130) (.1184) (.1190) (.1186) (.1107) (.1110) (.1117)

σ2 .9175 .9271 .9487 .9642 .9682 .9845 .9862 .9890 .9999
(.1891) (.1906) (.1943) (.1375) (.1399) (.1412) (.1245) (.1252) (.1276)

IMSE .3812 .4078 .4122 .1702 .2024 .2702 .1057 .1387 .1976
(.3904) (.3665) (.3247) (.1452) (.1443) (.1459) (.0883) (.0856) (.1102)

PCs 2.7300 1.9150 1.5150 2.8100 2.2200 1.7000 2.8950 2.3950 1.9300
(.5464) (.7816) (.3263) (.4414) (.6811) (.6650) (.3073) (.5750) (.6140)

r = 20 λ .3873 3.883 .3887 .3733 .3737 .3736 .3829 .3830 .3829
(.0749) (.0751) (.0749) (.0857) (.0861) (.0864) (.0777) (.0777 (.0775)

σ2 .9587 .9618 .9769 .9875 .9890 .9966 .9914 .9921 .9967
(.1353) (.1341) (.1402) (.1043) (.1047) (.1070) (.0868) (.0870) (.0881)

IMSE .1700 .1980 .2573 .0853 .1070 .1563 .0570 .0734 .1157
(.1368) (.1240) (.1271) (.0681) (.0696) (.0838) (.0455) (.0539) (.0699)

PCs 2.780 2.275 1.795 2.905 2.530 2.115 2.90 2.670 2.300
(.4825) (.6414) (.1271) (.1277) (.5296) (.5861) (.3008) (.4714) (.5582)

r = 30 λ .3943 3952 .3950 .3867 .3867 .3871 .3910 .3911 .3912
(.0670) (.0671) (.0676) (.0675) (.0675) (.0677) (.0647) (.0649) (.0654)

σ2 .9706 .9718 .9832 .9857 .9863 .9913 .9870 .9873 .9906
(.1178) (.1176) (.1228) (.0840) (.0843) (.0854) (.0674) (.0676) (.0680)

IMSE .1150 .1343 .1951 .0577 .0722 .1122 .0374 .0461 .0830
(.0903) (.0861) (.1100) (.0604) (.0687) (.0652) (.0343) (.0470) (.0512)

PCs 2.810 2.395 0.915 2.895 2.690 2.290 2.960 2.830 2.465
(.4181) (.5750) (.6162) (.3073) (.4848) (.5169) (.1965) (.3897) (.5100)
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Table 3.5: Estimation of parameters associated to scenario 2 with λ0 = 0.6.
m = 5 m = 10 m = 15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .5867 .5895 .5903 .5815 .5843 .5849 .5736 .5746 .5747
(.0746) (.0752) (.0744) (.0838) (.0840) (.0835) (.0998) (.1002) (.1009)

σ2 .9536 .9524 .9746 .9617 .9573 .9718 .9752 .9736 .9823
(.2158) (.2105) (.2150) (.1464) (.1463) (.1522) (.1121) (.1100) (.1115)

IMSE .3911 .4201 .4261 .1919 .2053 .2598 .1354 .1441 .1922
(.3470) (.3498) (.3227) (.1480) (.1489) (.1418) (.1075) (.0988) (.1142)

PCs 2.454 2.025 1.640 2.5750 2.2750 1.8150 2.6700 2.3700 1.9900
(.6558) (.7598) (.6948) (.6375) (.6256) (.6656) (.5501) (.5698) (.6179)

r = 20 λ .5875 .5899 .5899 .5865 .5884 .5887 .5851 .5860 .5860
(.0491) (.0493) (.0493) (.0571) (.0575) (.0574) (.0574) (.0580) (.0582)

σ2 .9666 .9580 .9732 .9838 .9784 .9866 .9810 .9785 .9829
(.1403) (.1323) (.1385) (.1053) (.1005) (.1019) (.0791) (.0772) (.0582)

IMSE .2148 .2138 .2629 .1129 .1074 .1615 .0723 .0685 .1062
(.1745) (.1755) (.1652) (.0932) (.0790) (.0893) (.0677) (.0517) (.0605)

PCs 2.495 2.300 1.800 2.640 2.5500 2.0950 2.7450 2.6800 2.3300
(.6873) (.6650) (.6725) (.5934) (.5375) (.5724) (.4911) (.4676) (.5220)

r = 30 λ .5948 .5964 .5958 .5879 .5885 .5883 .5886 .5888 .5888
(.0425) (.0421) (.0428) (.0443) (.0445) (.0444) (.0479) (.0479) (.0481)

σ2 .9846 .9798 .9899 .9965 .9953 1.0009 .9964 .9956 .9994
(.1100) (.1077) (.1102) (.0803) (.0806) (.0822) (.0682) (.0683) (.0481)

IMSE .1293 .1404 .1920 .0684 .0689 .1184 .0439 .0402 .0814
(.0988 (.0910) (.1035) (.0592) (.0555) (.0798) (.0538) (.0418) (.0527)

PCs 2.630 2.420 1.995 2.8050 2.7150 2.2900 2.8900 2.8850 2.4800
(.5698) (.5790) (.5802) (.3972) (.4525) (.5723) (.3442) (.3198) (.5009)

Table 3.6: Estimation of parameters associated to scenario 2 with λ0 = 0.8.
m = 5 m = 10 m = 15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .7883 .7905 .7900 .7921 .7941 .7941 .7834 .7857 .7856
(.0474) (.0468) (.0474) (.0407) (.0404) (.0405) (.0432) (.0430) (.0430)

σ2 .9461 .9349 .9596 .9682 .9549 .9703 .9917 .9782 .9883
(.2330) (.2326) (.2436) (.1353) (.1324) (.1379) (.1132) (.1073) (.1098)

IMSE .3333 .3607 .3814 .1946 .1890 .2367 .1635 .1405 .1928
(.2556) (.2545) (.2152) (.1303) (.1239) (.1224) (.1248) (.1028) (.1132)

PCs 2.265 1.950 1.515 2.340 2.275 1.785 2.415 2.420 1.975
(.7860) (.7749) (.6723) (.7464) (.6335) (.6088) (.7454) (.5703) (.6215)

r = 20 λ .7955 .7968 .7968 .7943 .7959 .7960 .7945 .7956 .7957
(.0297) (.0292) (.0296) (.0307) (.0302) (.0302) (.0285) (.0281) (.0280)

σ2 .9782 .9713 .9871 .9957 .9821 .9887 .9951 .9823 .9872
(.1512) (.1527) (.1575) (.1096) (.1025) (.1055) (.0890) (.0835) (.0848)

IMSE .1890 .1883 .2532 .1340 .1006 .1449 .1120 .0737 .1164
(.1541) (.1390) (.1445) (.1104) (.0645) (.0802) (.1114) (.0628) (.0676)

PCs 2.470 2.250 1.735 2.430 2.570 0 2.200 2.515 2.715 2.300
(.7153) (.6706) (.6534) (.7265) (.5162) (.5931) (.7158) (.4525) (.5399)

r = 30 λ .7938 .7947 .7946 .7948 .7957 .7957 .7951 .7959 .7959
(.0240) (.0238) (.0240) (.0214) (.0211) (.0212) (.0223) (.0224) (.0224)

σ2 .9946 .9838 .9949 1.0017 .9905 .9954 1.0027 .9932 .9965
(.1199) (.1149) (.1201) (.0873) (.0854) (.0866) (.0731) (.0700) (.0707)

IMSE .1572 .1310 .1909 .0962 .0638 .1074 .0871 .0489 .0869
(.1366) (.1056) (.1207) (.0982) (.0532) (.0630) (.0923) (.0442) (.0481)

PCs 24450 2.4400 1.9550 2.5500 2.7600 2.3450 2.5650 2.8100 2.4450
(.7414) (.5815) (.5956) (.6555) (.4397) (.5454) (.6307) (.3933) (.4982)
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methods are similar, with small differences around 12pm and 7pm. The FLM gives an
intercept estimate close to zero, while with FSARM, we have a spatial structure with an
estimated autoregressive parameter close to 0.2.

Now, let us consider the following problem of prediction. At a given station s0, we aim
to predict the ozone concentration every hour, from 12am to 11pm, on July 20, 2015. For
this aim, assume that at s0, we observe only the 24 records of ozone concentration from
12am to 11pm on July 19, 2015 and we would like to predict the ozone concentration of the
following day, that is, from 12am to 11pm on July 20, 2015. To obtain these predictions,
we proceed as follows.

1. For the prediction at 12am July 20, 2015, we estimate the parameters of FLM or
FSARM where the 105 observations (Xi, Yi) are: {Xi(t), t ∈ {0, . . . , 23}}, the ozone
concentrations from 12am to 11pm on July 19, and Yi is the ozone concentration at
12am, July 20, at station i. The obtained estimated model is used to predict the
ozone concentration at 12am July 20 at station s0 (not contained in the sample),
using the covariate {Xs0(t), t ∈ {0, . . . , 23}} composed of the ozone concentrations
from 12am to 11pm on July 20. Let Ŷ (1)

s0 denote this prediction.

2. For the prediction at 1am July 20, 2015, let Xi(t), t ∈ {0, . . . , 23} be the ozone concen-
trations from 1am July 19 to 12pm July 20 and Yi be the ozone concentration at 1am
July 20, 2015 at station i. Use these observations to estimate the parameters of FLM
or FSARM, and use them to predict the ozone concentration of station s0 at 1am
July 20 using Xs0(t), t ∈ {0, . . . , 23}, where the first 23 records are the real ozone
concentrations from 1am to 11pm July 20 and Xs0(23) = Ŷ

(1)
s0 . Let Ŷ (2)

s0 denote the
obtained prediction.

3. Repeat the above steps to obtain predictions from 2am to 11pm, July 20, 2015.

We randomly select 4 stations among the 106 and apply the prediction procedure. Fig-
ure 3.7 presents the prediction results; the true values are in black, while the predictions
are in red for the FSARM model and in blue for the FLM (with no spatial structure)
model. FSARM achieves some improvements, particularly around 12pm, when the ozone
concentration is higher.

Table 3.7: Estimated parameters for FLM and FSARLM.
PCs Autoregressive parameter Intercept

FSARLM 3 0.19
FLM 3 0.006

3.5 Conclusion
This chapter proposes a spatial functional linear regression function for functional random
field covariates. Our main theoretical contribution was to study the consistency and
asymptotic normality of the estimator. One can see the proposed methodology as an
extension of the real-valued SAR model to functional data. More precisely, it is apparent
that the proposed estimation approach based on a truncation technique is particularly
well adapted to spatial regression estimation for functional data in the presence of spatial
dependence. This good behavior is observed both from an asymptotic point of view and
from a numerical study. This work offers interesting perspectives for investigation. Future
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work will be tied to generalized functional linear spatial models (see, for instance Kelejian
& Prucha, 1998; Muller & Stadtmuller, 2005). Also, an adaptation of this method to
issues using different covariates (functional and non-functional) with or without a spatial
weight matrix with correlated errors could be developed. The application of the proposed
regression estimator to additional real data, will be investigated.

3.6 Appendix
We start by showing the identifiability of the parameter λ0 and the consistency of the
estimator λ̂n when the sequence hn is bounded or not bounded. This is given in the
following proposition

Proposition 3.1. Assume Assumptions 1-3.

(i) If the sequence {hn} is bounded, λ0 is identifiable and λ̂n is consistent.

(ii) If the sequence {hn} is divergent, λ0 is identifiable and λ̂n is consistent.

Proof of Proposition 3.1
Proof of (i). Let us first establish the identifiability. Proving identification of λ0 is
equivalent to showing that the concentrated likelihood function Qn(λ) is maximum at λ0.
This can be done by checking the following uniqueness condition:

for any ε > 0 lim sup
n→∞

max
λ∈N̄ε(λ0)

1
n
{Qn(λ)−Qn(λ0)} < 0

where N̄ε(λ0) is the complement of an open neighbourhood of λ0 in Λ with diameter ε.

Let us prove that Qn,0(λ)−Qn,0(λ0) ≤ 0, for all λ ∈ Λ,

where Qn,0(λ) = −n2 (ln(2π) + 1)− n

2 lnσ
2
n,λ + ln|Sn(λ)|,

with

σ2
n,λ = σ2

0
n
tr (An(λ)) = σ2

0

{
1 + 2(λ0 − λ) 1

n
tr(Gn) + (λ0 − λ)2 1

n
tr(GnG

′
n)
}
.

Recall that the log-likelihood function of an SAR process without covariate (θ∗(t) = 0,∀t ∈
T ), Yn = λ0WnYn + Un, Vn ∼ N (0, σ2

0In) is

Ln,0(λ, σ2) = n

2 (ln(2π) + 1)− n

2 lnσ
2 + ln|Sn(λ)| − 1

2σ2 Y′
nS

′
n(λ)Sn(λ)Yn.

It is easy to see that Qn,0(λ) = maxσ2 E0(Ln,0(λ, σ2)), where E0 is the expectation under
this SAR process. By Jensen’s inequality, Qn,0(λ) ≤ E0(Ln,0(λ0, σ

2
0)) = Qn,0(λ0) for all

λ. This implies that

Qn,0(λ)−Qn,0(λ0) ≤ 0, for all λ ∈ Λ.

Let us prove that 1
n(ln|Sn(λ2)| − ln|Sn(λ1)|) = O(1), for λ1 and λ2 in Λ.

By the mean value theorem, 1
n(ln|Sn(λ2)| − ln|Sn(λ1)|) = 1

ntr(WnS
−1
n (λ̄n))(λ2 − λ1),

where λ̄n lies between λ1 and λ2. By the uniform boundedness of Assumption 1-iii,
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tr(WnS
−1
n (λ̄n)) = O(n/hn). Thus, 1

n ln|Sn(λ)| is uniformly equicontinuous in λ in Λ. As
Λ is a bounded set, 1

n(ln|Sn(λ2)| − ln|Sn(λ1)|) = O(1) uniformly on λ1 and λ2.

Let us prove that σ2
n,λ is uniformly bounded away from zero on Λ.

Suppose that σ2
n,λ is not uniformly bounded away from zero on Λ. Then there would exist

a sequence {λn} in Λ such that limn→∞ σ
2
n,λn

= 0. Since we have Qn,0(λ)−Qn,0(λ0) ≤ 0
for all λ and 1

n(ln|Sn(λ0)|− ln|Sn(λ)|) = O(1) uniformly on Λ, then −1
2 lnσ2

n,λ ≤ −
1
2 lnσ2

0−
1
n(ln|Sn(λ0)|−ln|Sn(λ)|) = O(1). That is, −1

2 lnσ2
n,λ is bounded, and this is a contradiction

with the previous statement. Therefore, σ2
n,λ must be bounded away from zero uniformly

on Λ.

Let us prove the uniform equicontinuity of Qn(λ).

We have to show that 1
nQn(λ) is uniformly equicontinuous on Λ. The parameter σ∗2n,λ (see

(3.13)) is uniformly bounded on Λ because it is a quadratic form of λ, and its compo-
nents 1

n∆n, 1
ntr(Gn) and 1

ntr(GnG
′
n) are bounded by Assumption 1 (i-ii). The uniform

continuity of lnσ∗2n,λ on Λ then follows because 1/σ∗2n,λ is uniformly bounded on Λ since
σ∗2n,λ ≥ σ2

n,λ for all λ ∈ Λ by Assumption 3. Hence, 1
nQn(λ) is uniformly equicontinuous.

Let us prove uniqueness of the maximum λ0. Remark that
1
n

(Qn(λ)−Qn(λ0))

= 1
n

(Qn,0(λ)−Qn,0(λ0))− 1
2
(
lnσ∗2n,λ − lnσ2

n,λ

)
+ o(1).

Now, assume that the uniqueness does not hold. Then, there would exist ε > 0 and a
sequence {λn} in N̄ε(λ0) such that

lim
n→∞

1
n
{Qn(λn)−Qn(λ0)} = 0.

Because N̄ε(λ0) is a compact set, there exists a convergent subsequence λnm of λn. Let
λ+ be the limit of this subsequence in Λ.

Now, as 1
nQn(λ) is uniformly equicontinuous in λ,

lim
nm→∞

1
nm
{Qnm(λ+)−Qnm(λ0)} = 0.

This is possible only if

lim
nm→∞

1
nm
{Qnm,0(λ+)−Qnm,0(λ0)} = 0 and lim

nm→∞
σ∗2nm,λ+ − σ

2
nm,λ+ = 0.

Since Qn,0(λ) − Qn,0(λ0) ≤ 0 and −(lnσ∗2n,λ − lnσ2
n,λ) ≤ 0 for all λ ∈ Λ, the fact

that limnm→∞ σ
∗2
nm,λ+

− σ2
nm,λ+

= 0 is in contradiction with the above statement
under Assumption 3(a). Under Assumption 3(b), the contradiction comes from
limn→∞

1
n {Qn,0(λ)−Qn,0(λ0)} = 0. Indeed, under Assumption 3(b), we have

lim
n→∞

{ 1
n

(ln |Sn(λ)| − ln |Sn|) + 1
2
(
lnσ2

n,λ − lnσ2
0

)}
= lim

n→∞
1
n
{Qn,0(λ)−Qn,0(λ0)} 6= 0 for all λ 6= λ0.

Now to finish the proof of (i), it remains to show the convergence in probability of L̃n(λ)
to Qn(λ) uniformly on λ in Λ.
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Let us prove that
sup
λ∈Λ

1
n

∣∣∣L̃n(λ)−Qn(λ)
∣∣∣ = op(1). (3.22)

By definition, for each λ ∈ Λ

1
n

(
L̃n(λ)−Qn(λ)

)
= −1

2
(
lnσ̂2

n,λ − lnσ∗2n,λ
)

+ o(1).

We will show that, for all λ ∈ Λ

σ̂2
n,λ − σ∗2n,λ = op(1). (3.23)

Equation (3.23) combined with the fact that σ∗2n,λ is bounded away from zero uniformly
on Λ implies that σ̂2

n,λ is bounded away from zero uniformly on Λ in probability. Hence,

lnσ̂2
n,λ − lnσ∗2n,λ = op(1), uniformly on Λ.

Let us prove in the following that σ̂2
n,λ − σ∗2n,λ = op(1).

Let

MnSn(λ)Yn = MnSn(λ)S−1
n (Xn(θ∗(·)) + Un))

= MnRn(θ∗(·)) + (λ0 − λ)MnGnξpnθ
∗ +MnSn(λ)S−1

n Un,

where Rn(θ∗(·)) = Bn(λ)Rn.

Note that

σ̂2
n,λ − σ∗2n,λ = 1

n
Y′
nS

′
n(λ)MnSn(λ)Yn − σ∗2n,λ

= (λ0 − λ)2Hn0 + 2(λ0 − λ)H1n(λ) +Hn2(λ)− σ2
n,λ

+Hn3(λ) +Hn4(λ), (3.24)

where

Hn0 = θ∗
′
{
ξ

′
pnG

′
nGnξpn
n

− tr
(
G

′
nGn
n

)
Γpn

}
θ∗

−θ∗′

ξ
′
pnG

′
nξpn
n

(
ξ

′
pnξpn
n

)−1
ξ

′
pnGnξpn
n

− tr2
(
Gn
n

)
Γpn

 θ∗,
and

Hn1(λ) = 1
n

(Gnξpnθ∗)
′
MnBn(λ)Un,

Hn2(λ) = 1
n

U′
nB

′
n(λ)MnBn(λ)Un,

Hn3(λ) = 2
n

R′
nB

′
n(λ)Mn (2(λ0 − λ)Gnξpnθ∗ +Bn(λ)Un) ,

Hn4(λ) = 1
n

R′
nB

′
n(λ)MnBn(λ)Rn.

Note that the parameter function θ∗(·) is square integrable; therefore, ‖θ∗‖2 <∞. Then,
by Lemma 3.1 and 3.2,

Hn0 = Op

(
pn

hn
√
n

)
. (3.25)
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Also, Lemma 3.3 implies that Hn3(λ) and Hn4(λ) are of order op(1) uniformly on λ in Λ.

In the following, we show that Hn1(λ) and Hn2(λ) − σ2
n,λ are all of order op(1) for all

λ ∈ Λ.

Proof of Hn1(λ):

Note that

E

(∥∥∥U′
nGnξpn

∥∥∥2
)

=
pn∑
r=1

E

 n∑
i=1

n∑
j=1

UiGijε
(j)
r

2

= σ2
0

n∑
i=1

n∑
j=1

G2
ij

pn∑
r=1

E
(
ε2
r

)
= O

(
‖Gn‖2

)
,

since ∑pn
r=1E

(
ε2
r

)
< E

(∫
X2(t)dt

)
<∞. Therefore,

ξ
′
pnUn = Op(

√
n) and U′

nGnξpn = Op

(√
n

hn

)
, (3.26)

by Assumption 1-ii. In addition, by Lemma 3.1, we have∣∣∣∣ξ′
pnG

′
nξpn

(
ξ

′
pnξpn

)−1
ξ

′
pnUn

∣∣∣∣ = Op

(
pn
√
n

hn

)
,

and ∣∣∣∣ξ′
pnG

′
nξpn

(
ξ

′
pnξpn

)−1
ξ

′
pnGnUn

∣∣∣∣ = Op

(
pn

√
n

h3
n

)
.

Then, for each λ ∈ Λ, we may conclude that

Hn1(λ) = 1
n

(Gnξpnθ∗)
′
MnUn + (λ0 − λ) 1

n
(Gnξpnθ∗)

′
MnGnUn

= Op

(
pn +

√
hn

hn
√
n

)
,

hence the results follows by Assumption 2.

�

Proof of Hn2(λ):

For each λ ∈ Λ, we have

Hn2(λ)− σ2
n,λ = 1

n
U′
nAn(λ)Un −

σ2
0
n
tr (An(λ))− Tn(λ),

with
Tn(λ) = 1

n
U′
nB

′
n(λ)ξpn

(
ξ

′
pnξpn

)−1
ξ

′
pnBn(λ)Un.

Similar to (3.26), we have

Tn(λ) = Op

(
pn‖Bn(λ)‖2

n2

)
= Op

(
pn
n

)
,

since ‖Bn(λ)‖2 = O(n) uniformly on λ. We have also,

E

( 1
n

U′
nAn(λ)Un

)
= σ2

n,λ
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and

Var
(
U′
nAn(λ)Un

)
= (µ4 − 3σ2

0)
n∑
i=1

A2
ii(λ) + σ4

0

[
‖An(λ)‖2 + tr(A2

n(λ))
]

= O
(
‖An(λ)‖2

)
,

with the symmetry of An(λ) = B
′
n(λ)Bn(λ). Consequently,

1
n

U′
nAn(λ)Un −

σ2
0
n
tr (An(λ)) = Op

(‖An(λ)‖
n

)
= Op(n−1/2),

since ‖An(λ)‖ = O(n1/2) uniformly on λ. This yields the proof of Hn2(λ) and therefore
that of (i).

�

Proof of (ii):

We start to show the following convergence

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= op(1).

Recall that,
L̃n(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂
2
n,λ + ln|Sn(λ)|,

σ̂2
n,λ = 1

n
Y′
nS

′
n(λ)MnSn(λ)Yn,

and

σ∗2n,λ = 1
n

(λ0 − λ)2∆n + σ2
0
n
tr (An(λ)) .

Then, we have

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= −hn2

{(
lnσ̂2

n,λ − lnσ∗2n,λ
)
−
(
lnσ̂2

n,λ0 − lnσ∗2n,λ0

)}
+ o(1),

= −hn2
∂
(
lnσ̂2

n,λn
− lnσ∗2n,λn

)
∂λ

(λ− λ0) + o(1),

since tr(Bn(λ)−Bn(λ0)) and tr(An(λ)−An(λ0)) are of order O( n
hn

), εn1, εn4 are of order
o(1), and λn lies between λ and λ0.

Note that
∂σ̂2

n,λ

∂λ
= − 2

n
Y′
nW

′
nMnSn(λ)Yn,

and
∂σ∗2n,λ
∂λ

= 2
n

[
(λ− λ0)∆n − σ2

0tr
(
G

′
nBn(λ)

)]
.
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This implies that

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= hn

n

1
σ̂2
n,λn

{
Y′
nW

′
nMnSn(λn)Yn

−
σ̂2
n,λn

σ∗2n,λn

[
(λ0 − λn)∆n + σ2

0tr
(
G

′
nBn(λn)

)]}

= hn
n

1
σ̂2
n,λn

{
Y′
nW

′
nMnSn(λ)Yn −

[
(λ0 − λn)∆n + σ2

0tr
(
G

′
nBn(λn)

)]
−
σ̂2
n,λn
− σ∗2n,λn

σ∗2n,λn

[
(λ0 − λn)∆n + σ2

0tr
(
G

′
nBn(λn)

)]}
(λ− λ0).

By noting that Bn(λ) = In + (λ0 − λ)Gn and let Vn = ξpnθ
∗, we have

Y′
nW

′
nMnSn(λ)Yn = (λ0 − λ) [Vn + Rn + Un]

′
G

′
nMnGn [Vn + Rn + Un]

+ [Vn + Rn + Un]
′
G

′
nMn [Rn + Un]

= (λ0 − λ)
[
V′
nG

′
nMnGn [Vn + 2Un] + U′

nG
′
nMnGnUn

]
+U′

nMnGn [Vn + Un] + R′
nMnGn [Vn + Rn + Un]

+2(λ0 − λ)R′
nG

′
nMnGn [Vn + Rn + Un] .

We have
hn
n

(
V′
nG

′
nMnGnVn −∆n

)
= hnHn0 = Op

(
pn√
n

)
. (3.27)

By the proof of Hn1(λ), we have√
hn
n

V′
nG

′
nMn [In + (λ0 − λ)Gn] Un = Op

(
1 + pn√

hn

)
. (3.28)

By the proof of Hn2(λ), we have√
hn
n

[
U′
nG

′
nMnUn − σ2

0tr(Gn)
]

= Op

(
1 + pn√

hn

)
and

√
hn
n

[
U′
nG

′
nMnGnUn − σ2

0tr(G′
nGn)

]
= Op

(
1 + pn√

hn

)
. (3.29)

Therefore, by Lemma 3.3, we may write√
hn
n

{
Y′
nW

′
nMnSn(λn)Yn − (λ0 − λn)∆n − σ2

0tr
(
G

′
nBn(λn)

)}
= Op

(
1 + pn√

hn

)
. (3.30)

Note that when hn is unbounded, we have

σ2
n,λ = σ2

0 + o(1),

since tr(Gn) and tr(G′
nGn) are of order O(n/hn). Thus, 1/σ∗2n,λ = O(1) uniformly in λ,

because σ∗2n,λ ≥ σ2
n,λ and σ2

0 > 0. However, we have also 1/σ̂2
n,λ = Op(1) by (3.23).
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Now, note that under Assumption 1 (ii-iii), ∆n and tr(G′
nBn(λ)) are of order O(n/hn)

and using (3.23) and (3.30), we conclude

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= op(1), (3.31)

uniformly in λ ∈ Λ, since p2
n = o(n) by Assumption 2.

Let us proof the uniform equicontinuity of hn
n

[Qn(λ)−Qn(λ0)].

Recall that
hn
n

[Qn(λ)−Qn(λ0)] = −hn2
(
lnσ∗2n,λ − lnσ2

0

)
+ hn

2 (ln|Sn(λ)| − ln|Sn|) + o(1).

Since tr(An(λ))− n = 2(λ0 − λ)tr(Gn) + (λ0 − λ)2tr(G′
nGn), we have

hn(σ∗2n,λ − σ2
0) = (λ0 − λ)2hn

n
∆n + σ2

2
hn
n

(tr(An(λ))− n)

= (λ0 − λ)2hn
n

∆n + 2σ2
2
hn
n

(λ0 − λ)tr(Gn)

+σ2
2
hn
n

(λ0 − λ)2tr(G′
nGn),

is uniformly equicontinuous in λ ∈ Λ by Assumption 1. By the mean value theorem,

hn
(
lnσ∗2n,λ − lnσ2

0

)
= hn
σ̃2
n,λ

(σ∗2n,λ − σ2
0),

where σ̃2
n,λ lies between σ2

0 and σ∗2n,λ. Consequently, it is uniformly bounded from above.
Hence, hn

(
lnσ∗2n,λ − lnσ2

0

)
is uniformly equicontinuous on Λ.

Then, the function
hn
n

(ln|Sn(λ)− ln|Sn|) = hn
n

tr(WnS
−1
n (λ̃n))(λ− λ0),

is uniformly equicontinuous on Λ because tr(WnS
−1
n (λ)) = O(n/hn) uniformly on λ by

Assumption 1.

In conclusion, hn
n

(Qn(λ)−Qn(λ0)) is uniformly equicontinuous on Λ.

Let us prove uniqueness of the maximum λ0.

Let
Dn(λ) = −hn2

(
lnσ2

n,λ − lnσ2
0

)
+ hn

n
(ln|Sn(λ)| − ln|Sn|) .

Then,
hn
n

(Qn(λ)−Qn(λ0)) = Dn(λ)− hn
2
(
lnσ∗2n,λ − lnσ2

n,λ

)
.

We have by the Taylor expansion,

hn
(
lnσ∗2n,λ − lnσ2

n,λ

)
=
σ∗2n,λ − σ2

n,λ

σ̃2
n,λ

= (λ− λ0)2

σ̃2
n,λ

hn
n

∆n,

where σ̃2
n,λ lies between σ∗2n,λ and σ2

n,λ. Since σ∗2n,λ ≥ σ2
n,λ for all λ ∈ Λ, it follows

hn
(
lnσ∗2n,λ − lnσ2

n,λ

)
≥ (λ− λ0)2

σ∗2n,λ

hn
n

∆n.
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As hn is unbounded and under Assumption 1, σ∗2n,λ−σ2
n,λ = o(1) uniformly on Λ. Thus,

limn→∞ σ
∗2
n,λ = σ2

0.

Therefore, under Assumption 3 (a),

− lim
n→∞

hn
(
lnσ∗2n,λ − lnσ2

n,λ

)
≤ − lim

n→∞
(λ− λ0)2

σ∗2n,λ

hn
n

∆n

= −(λ− λ0)2

σ2
0

lim
n→∞

hn
n

∆n < 0,

for any λ 6= λ0. Furthermore, under Assumption 3 (b), Dn(λ) < 0, if λ 6= λ0.

In conclusion, for a certain rank, we have hn
n (Qn(λ)−Qn(λ0)) < 0, when λ 6= λ0.

The proof of (ii) follows from the uniform convergence (3.31) and the identification unique-
ness condition.

�

Proof of Theorem 3.1
Identification and consistency of λ̂n are given by Proposition 3.1. Let us now focus on the
asymptotic normality of λ̂n.

Consider the first and second order derivatives of the concentrated log likelihood L̃n(λ):

∂L̃n(λ)
∂λ

= 1
σ̂2
n,λ

Y′
nW

′
nMnSn(λ)Yn − tr

(
WnS

−1
n (λ)

)
,

and
∂2L̃n(λ)
∂λ2 = 2

nσ̂4
n,λ

[
Y′
nW

′
nMnSn(λ)Yn

]2
− 1
σ̂2
n,λ

Y′
nW

′
nMnWnYn − tr

([
WnS

−1
n (λ)

]2)
.

By (3.28) and Lemma 3.3, we have
hn
n

Y′
nW

′
nMnWnYn = hn

n
V′
nG

′
nMnGnVn + hn

n
U′
nG

′
nMnGnUn + op(1), (3.32)

and
hn
n

Y′
nW

′
nMnSn(λ)Yn = hn

n
U′
nG

′
nMnUn + (λ0 − λ)hn

n
V′
nG

′
nMnGnVn

+(λ0 − λ)hn
n

U′
nG

′
nMnGnUn + op(1)

= Op(1),

by (3.30) and since under Assumption 1, ∆n and tr(GnBn(λ)) are of order Op(n/hn),
uniformly in λ.

From (3.23), we proved that σ̂2
n,λ = σ∗2n,λ + op(1). Thus, we have

hn
n

∂2L̃n(λ)
∂λ2 = − 1

σ∗2n,λ

[
hn
n

V′
nG

′
nMnGnVn + hn

n
U′
nG

′
nMnGnUn

]
−hn
n
tr
([
WnS

−1
n (λ)

]2)
+ op(1),
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uniformly on Λ. For any λ̃n that converges in probability to λ0, one can easily show that

σ∗2
n,λ̃n
− σ∗2n,λ0 = op(1),

and as σ∗2n,λ ≥ σ2
0 > 0 uniformly on Λ, we can conclude by the Taylor expansion

hn
n

[
∂2L̃n(λ̃n)
∂λ2 − ∂2L̃n(λ0)

∂λ2

]
= hn

n

[
tr
(
WnS

−1
n (λ̃n)

)2
− tr

(
G2
n

)]
+ op(1)

= −2(λ̃n − λ0)hn
n
tr
(
G3
n(λ̄n)

)
+ op(1)

= op(1),

as under Assumption 1, tr
(
G3
n(λ)

)
is of order O(n/hn) uniformly on Λ.

Finally, using (3.27), (3.29), and the fact that σ∗2n,λ0
= σ2

0, we have

hn
n

∂2L̃n(λ0)
∂λ2 = − 1

σ2
0

hn
n

∆n −
hn
n

[
tr(G′

nGn) + tr
(
G2
n

)]
+ op(1). (3.33)

Let us now prove the asymptotic normality of
√

hn
n
∂L̃n(λ0)
∂λ .

Using the results of Lemma 3.3, we have√
hn
n

Y′
nW

′
nMnSnYn =

√
hn
n

[
V′
n + U′

n

]
G

′
nMnUn + op(1), (3.34)

and
σ̂2
n,λ0 = 1

n
Y′
nS

′
nMnSnYn = 1

n
U′
nMnUn + op(1).

It follows that√
hn
n

∂L̃n(λ0)
∂λ

= 1
σ̂2
n,λ0

√
hn
n

[
V′
nG

′
nMnUn + U′

nC
′
nMnUn

]
+ op(1),

where Cn = Gn − tr(Gnn )In. Using (3.26), we have√
hn
n

U′
nC

′
nξpn(ξ′

pnξpn)−1ξ
′
pnUn = Op

(
pn√
n

)
, (3.35)

since under Assumption 1, the matrix Cn is uniformly bounded in both row and column
sums, and Cij = O(1/hn) uniformly in i and j.

Consider the following decomposition

ξ
′
pnG

′
nξpn(ξ′

pnξpn)−1ξ
′
pnUn =

[
ξ

′
pnG

′
nξpn
n

− tr
(
Gn
n

)
Γpn

] [
ξ

′
pnξpn
n

]−1

ξ
′
pnUn

−tr
(
Gn
n

)[
ξ

′
pnξpn
n
− Γpn

] [
ξ

′
pnξpn
n

]−1

ξ
′
pnUn + tr

(
Gn
n

)
ξ

′
pnUn

= tr
(
Gn
n

)
ξ

′
pnUn +Op

(
p2
n

hn

)
,
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by (3.26) and Lemma 3.1. Thus√
hn
n

V′
nG

′
nξpn(ξ′

pnξpn)−1ξ
′
pnUn =

√
hn
n

tr (Gn) V′
nUn√
n

+Op

(
p2
n√
nhn

)
. (3.36)

Consequently, (3.35) and (3.36) imply√
hn
n

∂L̃n(λ0)
∂λ

= 1
σ̂2
n,λ0

√
hn
n

[
V′
nD

′
nUn + U′

nC
′
nUn

]
+ op(1),

with Dn = Gn + tr(Gnn )In.

Let Gsn = (Gn+G
′
n)/2, Csn = (Cn+C

′
n)/2, and Ds

n = (Dn+D
′
n)/2. These matrices satisfy

Csij = Ds
ij = Gsij for all i 6= j.

Now, because tr(Cn) = 0, one can consider the decomposition

V′
nD

′
nUn + U′

nC
′
nUn =

n∑
i=1

Zni, (3.37)

with

Zni = DiiUiVi + Cii(U2
i − σ2

0) + 2Ui
i−1∑
j=1

GsijTj ,

where Ti = Vi + Ui, i = 1, . . . , n. It is easy to show that
n∑
i=1

E
(
Z2
ni

)
= σ2

0

[
E(V 2) + σ2

0

]
tr
(
Gn(G′

n +Gn)
)

+
[
3σ2

0E(V 2) + σ4
0 − µ4

] 1
n
tr2(Gn)

+
[
µ4 − 3σ4

0 − σ2
0E(V 2)

] n∑
i=1

G2
ii.

Finally, let

s2
Z = lim

n→∞
hn
n

n∑
i=1

E
(
Z2
ni

)
and Z̃ni =

√
hn
n

Zni
sZ

.

Note that condition C.1 in Lemma 3.5 implies that
{
Z̃ni, i = 1, . . . , n n = 1, 2, . . .

}
form

a triangular array of martingale differences sequences. According to Kelejian & Prucha
(Theorem A.1, 2001, p.240) and under conditions C.2 and C.3 in Lemma 3.5, we have√

hn
n

∂L̃n(λ0)
∂λ

= sZ
σ̂2
n,λ0

n∑
i=1

Z̃ni + op(1)→ N
(

0, s
2
Z

σ4
0

)
. (3.38)

Finally, using (3.33) and (3.38) we can conclude by the Taylor expansion, that√
n

hn
(λ̂n − λ0)→ N (0, s2

λ), (3.39)

where
s2
λ = lim

n→∞
s2
Z

{
hn
n

[
∆n + σ2

0tr(Gn(G′
n +Gn))

]}−2
.

This concludes the proof of Theorem 3.1.

�
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Proof of Theorem 3.2
Let us consider the decomposition Sn(λ̂n) = Sn + (λ0 − λ̂n)Wn and note that

σ̂2
n,λ̂n

= 1
n

Y′
nS

′
n(λ̂n)MnSn(λ̂n)Yn

= 1
n

Y′
nS

′
nMnSnYn + 2(λ0 − λ̂n) 1

n
Y′
nW

′
nMnSnYn

+(λ0 − λ̂n)2 1
n

Y′
nW

′
nMnWnYn.

Lemma 3.3 and (3.35) imply that

1
n

Y′
nS

′
nMnSnYn = 1

n
U′
nUn + op(1).

Thus
√
n(σ̂2

n,λ̂n
− σ2

0) =
√
n

hn
(λ0 − λ̂n)2

√
hn
n

Y′
nW

′
nMnWnYn

−2
√
n

hn
(λ̂n − λ0)

√
hn
n

Y′
nW

′
nMnSnYn + 1√

n
(U′

nUn − nσ2
0).

Note that (3.28), (3.34) and (3.35) imply
√
hn
n

Y′
nW

′
nMnSnYn =

√
hn
n

tr(Gn) + op(1) = Op

( 1√
hn

)
. (3.40)

By (3.27), (3.29) and (3.32), we have
√
hn
n

Y′
nW

′
nMnWnYn =

√
hn
n

∆n + σ2
0

√
hn
n

tr
(
GnG

′
n

)
+ op(1) = Op

( 1√
hn

)
.

Consequently, the asymptotic normality of λ̂n implies√
n

hn
(λ0 − λ̂n)2

√
hn
n

Y′
nW

′
nMnWnYn = op(1).

If limn→∞ hn =∞, (3.40) will be of order op(1). Hence

√
n(σ̂2

n,λ̂n
− σ2

0) = 1√
n

(U′
nUn − nσ2

0) + op(1)→ N (0, µ4 − σ4
0).

Otherwise, we have
√
n(σ̂2

n,λ̂n
− σ2

0) = 1√
n

(U′
nUn − nσ2

0)

−2
√
hn
n

tr(Gn)
√
n

hn
(λ̂n − λ0) + op(1). (3.41)

By the asymptotic normality proof of λ̂n (see (3.33) and (3.37)), one can conclude
√
n

hn
(λ̂n − λ0) = −δn

√
hn
n

n∑
i=1

Zni + op(1),

where
δn = n

hn

[
∆n + σ2

0tr
(
Gn(G′

n +Gn)
)]−1

.
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Therefore, on can rewrite (3.41) as

√
n(σ̂2

n,λ̂n
− σ2

0) = 2δn
√
hn
n

tr(Gn)
√
n

hn

n∑
i=1

Z†ni + op(1), (3.42)

where

Z†ni = DiiUiVi + C̃ii(U2
i − σ2

0) + 2Ui
i−1∑
j=1

GsijTj ,

where C̃ii = Cii + n
2δntr(Gn) , C̃ii is bounded uniformly in i, when hn is bounded.

It is easy to show that

n∑
i=1

E
(
Z†2ni

)
=

n∑
i=1

E
(
Z2
ni

)
+ n(µ4 − σ4

0)
[

n

2δntr(Gn)

]2
.

Let

s2
Z† = lim

n→∞
hn
n

n∑
i=1

E
(
Z†2ni

)
and Z̃†ni =

√
hn
n

Z†ni
sZ†

.

Note that conditions C.1-C.3 in Lemma 3.5 hold when Zni and Z̃ni are replaced by Z†ni
and Z̃†ni respectively. Therefore, Kelejian & Prucha (Theorem A.1, 2001, p.240) implies
that

n∑
i=1

Z̃†ni → N (0, 1). (3.43)

Finally, by (3.42) and (3.43), we have
√
n(σ̂2

n,λ̂n
− σ2

0)→ N (0, s2
σ),

where

s2
σ = lim

n→∞
hns

2
Z†

[2δntr(Gn)
n

]2
= µ4 − σ4

0 + 4s2
λ lim
n→∞

hn

[tr(Gn)
n

]2
.

This finishes the proof.

�

Proof of Theorem 3.3

Recall that Sn(λ)S−1
n = In + (λ0 − λ)G, for all λ ∈ Λ, and

θ̂n,λ̂n = (ξ′
pnξpn)−1ξ

′
pnSn(λ̂n)Yn. (3.44)

By Lemma 3.3, we have

√
n
(
θ̂n,λ̂n − θ

∗
)

=
√
n(λ0 − λ̂n)

(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnGnξpn
n

θ∗ +
ξ

′
pnGnUn

n

]

+
(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnUn√
n

]
+ op(1).
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By Lemma 3.1, we have(
ξ

′
pnξpn
n

)−1
ξ

′
pnGnξpn
n

=
(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn

]

−tr
(
Gn
n

)(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnξpn
n
− Γpn

]
+ tr

(
Gn
n

)
Ipn

= tr
(
Gn
n

)
Ipn +Op

(
p2
n

hn
√
n

)
.

The asymptotic normality result of λ̂n and (3.26), imply that

√
n(λ0 − λ̂n)

(
ξ

′
pnξpn
n

)−1
ξ

′
pnGnUn

n
= Op

(
pn√
nhn

)
.

Hence,

√
n
(
θ̂n,λ̂n − θ

∗
)

=
(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnUn√
n

]
+
√
n(λ0 − λ̂n)tr

(
Gn
n

)
θ∗ + op(1).

Therefore,

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)

=


(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnUn√
n

]
′

Γpn


(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnUn√
n

]
+ 2
√
n(λ0 − λ̂n)tr

(
Gn
n

)
θ∗

′Γpn

(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnUn√
n

]

+ n(λ0 − λ̂n)2tr2
(
Gn
n

)
θ∗

′Γpnθ∗ + op(1). (3.45)

Consider the last two terms in (3.45), we have by the asymptotic normality of λ̂n

n(λ0 − λ̂n)2tr2
(
Gn
n

)
θ∗

′Γpnθ∗ = Op

( 1
hn

)
. (3.46)

In addition, by (3.26) and Lemma 3.1, we have

√
n(λ0 − λ̂n)tr

(
Gn
n

)
θ∗

′Γpn

(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnUn√
n

]
= Op

( 1√
hn

)
. (3.47)

Let us now give the asymptotic distribution of the first term in (3.45). Let

Ψn = Γ
1
2

(
ξ

′
pnξpn
n

)−1

Γ
1
2 , Xn = Γ−

1
2

pn

ξ
′
pnŨn√
n

, with Ũn = σ−1
0 Un,

and consider the following decomposition
(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnŨn√
n

]
′

Γpn


(
ξ

′
pnξpn
n

)−1 [
ξ

′
pnŨn√
n

] = X ′
nΨ2

nXn

= X ′
nXn − 2X ′

n(Ipn −Ψn)Xn
+X ′

n(Ipn −Ψn)2Xn. (3.48)
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We have, by Assumptions 2, 5, 6 and Proposition 7.1 of Muller & Stadtmuller (2005),

X ′
nXn − pn√

2pn
→ N (0, 1).

Thus, we deduce by (3.26) and Lemma 3.4, that

X ′
n(Ipn −Ψn)Xn = op(

√
pn) and X ′

n(Ipn −Ψn)2Xn = op(
√
pn).

Therefore,

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)
− pn

√
2pn

= σ2
0
X ′
nXn − pn√

2pn
+Op

( 1√
hnpn

)
→ N (0, σ4

0),

by (3.45), (3.46) and (3.47). This yields (3.16) and completes the proof of Theorem 3.3.

�

Lemma 3.1. Assume that E
(
ε4
i

)
is finite, where εi =

∫
X(t)ϕi(t)dt. Under Assumption

1, we have
ξ

′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn = Op

(
pn +

√
hn

hn
√
n

)
,

and ∥∥∥∥∥ξ
′
pnGnξpn
n

∥∥∥∥∥ = Op

(
1
hn

[
1 + pn +

√
hn√

n

])
.

Proof of Lemma 3.1

Note that E (εrεs)2 ≤ E
(
ε2
r

)
E
(
ε2
s

)
, and E

(
ε2
s

)
is finite since X(·) is square integrable.

Since E
(
ε4
s

)
is finite, E

(
ε2
rε

2
s

)
is also finite.

Note that

E

(∥∥∥ξ′
pnGnξpn − E

(
ξ

′
pnGnξpn

)∥∥∥2
)

=
n∑

i1=1
j1=1

n∑
i2=1
j2=1

pn∑
r=1

pn∑
s=1

Gi1j1Gi2j2

[
E
(
ε(i1)
s ε(j1)

r ε(i2)
s ε(j2)

r

)

−E
(
ε(i1)
s ε(j1)

r

)
E
(
ε(i2)
s ε(j2)

r

)]
=

n∑
i=1

G2
ii

pn∑
r=1

pn∑
s=1

Cov
(
ε2
r , ε

2
s

)
+

n∑
i=1

n∑
j=1
j 6=i

G2
ij

pn∑
r=1

pn∑
s=1

E
(
ε2
s

)
E
(
ε2
r

)

+
n∑
i=1

n∑
j=1
j 6=i

GijGji

pn∑
r=1

pn∑
s=1

E (εsεr)E (εsεr)

= O

p2
n

n∑
i=1

G2
ii +

n∑
i=1

n∑
j=1
j 6=i

G2
ij +

n∑
i=1

n∑
j=1
j 6=i

GijGji


= O

(
p2
n

n

h2
n

+ ‖Gn‖2 +
∣∣∣tr (G2

n

)∣∣∣) = O

(
n

h2
n

(p2
n + hn)

)
,

since ‖Gn‖2 and
∣∣tr (G2

n

)∣∣ are of order O(n/hn) by Assumption 1-ii. This concludes the
proof.
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�

Lemma 3.2. Assume that E
(
ε4
i

)
is finite, where εi =

∫
X(t)ϕi(t)dt. Under Assumption

1, we have

ξ
′
pnG

′
nξpn
n

[
ξ

′
pnξpn
n

]−1
ξ

′
pnGnξpn
n

− tr2
(
Gn
n

)
Γpn = Op

(
pn

h2
n

√
n

[
1 + p2

n√
n

])
.

Proof of Lemma 3.2

Note that

ξ
′
pnG

′
nξpn
n

[
ξ

′
pnξpn
n

]−1
ξ

′
pnGnξpn
n

− tr2
(
Gn
n

)
Γpn

=
[
ξ

′
pnG

′
nξpn
n

− tr
(
Gn
n

)
Γpn

] [
ξ

′
pnξpn
n

]−1 [
ξ

′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn

]

+ 2tr
(
Gn
n

)
Γpn

[
ξ

′
pnξpn
n

]−1 [
ξ

′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn

]

+ tr2
(
Gn
n

)
Γpn

[
ξ

′
pnξpn
n

]−1 [
Γpn −

ξ
′
pnξpn
n

]

= Op

(
pn

h2
n

√
n

[
1 + p2

n√
n

])
,

by Lemma 3.1.

�

Lemma 3.3. Under Assumptions 1-2, we have√
hn
n

U′
nG

′
nMnGnRn = op(1), (3.49)√

hn
n

R′
nMnGnξpn = op(1), (3.50)√

hn
n

R′
nG

′
nMnGnRn = op(1). (3.51)

Proof of Lemma 3.3

Let

πn1 =
pn∑
r=1

E
(
R2ε2

r

)
and πn2 =

pn∑
r=1

E (Rεr)2 .

Consider (3.49), and note that by Assumption 1,

E

(∥∥∥R′
nGnξpn

∥∥∥2
)

= O

(
n

h2
n

[
hnE(R2) + πn1 + nπn2

])
, (3.52)

E

(∥∥∥R′
nξpn

∥∥∥2
)

= O (nπn1) , and E
([

R′
nUn

]2)
= O

(
nE(R2)

)
. (3.53)
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Thus

U′
nG

′
nMnGnRn = U′

nG
′
nGnRn −U′

nG
′
nξpn

(
ξ

′
pnξpn

)
ξ

′
pnGnRn

= op

(√
n

hn

)
+Op

(
pn
hn

√
hnE(R2) + πn1 + nπn2

)
,

by (3.26), (3.52), and (3.53).

Let us treat (3.50),

R′
nG

′
nMnGnξpn = R′

nG
′
nGnξpn −R′

nG
′
nξpn

(
ξ

′
pnξpn

)
ξ

′
pnGnξpn

= Op

(√
n

hn

[
1 + pn

hn

]√
hnE(R2) + πn1 + nπn2

)
.

Finally, considering (3.51), we have

R′
nG

′
nMnGnRn = R′

nG
′
nGnRn −R′

nG
′
nξpn

(
ξ

′
pnξpn

)
ξ

′
pnGnRn

= Op

(
pn
h2
n

[
hnE(R2) + πn1 + nπn2

])
.

Therefore the proof follows from Assumption 2.

�

Lemma 3.4. Under Assumptions 2 and 5, we have

‖Ψn − Ipn‖2 = Op(p−1
n ).

For the proof of this lemma, see Muller & Stadtmuller ( Lemma 7.2, 2005, p.28).

�

The following lemma gives conditions under which a martingale central limit theorem can
be applicable to the triangular array of martingale difference sequences {Zni, 1 ≤ i ≤
n, n ∈ N}, for more of details see Kelejian & Prucha (Theorem A.1, 2001, p.240).

Lemma 3.5. Under assumptions of Theorem 3.1, we have

C.1. The random variables {Zni, 1 ≤ i ≤ n, n ∈ N} form a triangu-
lar array of martingale difference sequence w.r.t the filtration (Fn,i) =
σ
{
ε

(j)
r , Uj , 1 ≤ j ≤ i, 1 ≤ r ≤ pn

}
(1 ≤ i ≤ n, n ∈ N).

C.2. Conditional normalization condition:
n∑
i=1

E
(
Z̃2
ni

∣∣∣Fn,i−1
)
→ 1, in probability as n→∞.

C.3. There exists a constant δ > 0:
n∑
i=1

E

(∣∣∣Z̃ni∣∣∣2+δ
)
→ 0, n→∞.

(Lyapunov condition if δ = 2).
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Proof of Lemma 3.5

Proof of C.1 This is immediate, because E (Zni|Fn,i−1) = 0.

�

Proof of C.2

For each i = 1, . . . , n, let

Qni =
i−1∑
j=1

GsijTj .

We have
E
(
Z2
ni

∣∣∣Fn,i−1
)

= σ2
0E(V 2)D2

ii + (µ4 − σ4
0)C2

ii + 4σ2
0Q

2
ni,

hence

E

(
n∑
i=1

E
(
Z2
ni

∣∣∣Fn,i−1
))

= σ2
0E(V 2)

n∑
i=1

D2
ii + (µ4 − σ4

0)
n∑
i=1

C2
ii

+2σ2
0E(T 2)

n∑
i=1

i−1∑
j=1

Gs2ij .

By definition of Z̃ni,

E

(
n∑
i=1

E
(
Z̃2
ni

∣∣∣Fn,i−1
))

= 1 + o(1).

Remark that

Var
(

n∑
i=1

E
(
Z2
ni

∣∣∣Fn,i−1
))

= 16σ4
0Var

(
n∑
i=1

Q2
ni

)
, (3.54)

when Ui is normally distributed. Otherwise, result (3.57) remains valid.

Let us consider Var
(∑n

i=1Q
2
ni

)
. First, we have

n∑
i=1

E
(
Q2
ni

)
= E(T 2)

n∑
i=1

i−1∑
j=1

Gs2ij . (3.55)

Let for all 1 ≤ i ≤ j ≤ n,

E
(
Q2
niQ

2
nj

)
=

i−1∑
k1,k2=1

j−1∑
r1,r2=1

Gsik1G
s
ik2G

s
jr1G

s
jr2E (Tk1Tk2Tr1Tr2)

=
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i−1∑
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s
ik2G

s
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s
jr2E (Tk1Tk2Tr1Tr2)

+

 i−1∑
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Gsik1G
s
ik2E (Tk1Tk2)

×
 j−1∑
r1,r2=i

Gsjr1G
s
jr2E (Tr1Tr2)


= E

(
T 4
) i−1∑
k=1

Gs2ikG
s2
jk + E(T 2)2

i−1∑
k=1

j−1∑
r=i

Gs2ikG
s2
jr

+E(T 2)2
i−1∑

k 6=r=1

[
Gs2ikG

s2
jr + 2GsikGsirGsjkGsjr

]
.
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Then, we have

E

[ n∑
i=1

Q2
ni

]2
 = E

(
T 4
) n∑
i=1

i−1∑
k=1

Gs4ik + 3E(T 2)2
n∑
i=1

i−1∑
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Gs2ikG
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Gs2ikG
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jr + 2GsikGsirGsjkGsjr
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+2E
(
T 4
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j=1

j−1∑
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j−1∑
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We can rewrite (3.55) as

[
2E(T 2)2

]−1
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E

(
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Q2
ni
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=
n∑
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jk +

n∑
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+
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Gs2ikG
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Therefore, we have
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)
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n∑
i=1

i−1∑
k 6=r=1

Gs2ikG
s2
ir

+
[
2E

(
T 4
)
− 2E(T 2)2

] n∑
j=1

j−1∑
i=1

i−1∑
k=1

Gs2ikG
s2
jk

+4E(T 2)2
n∑
j=1

j−1∑
i=1

i−1∑
k 6=r=1

GsikG
s
irG

s
jkG

s
jr

= O

[
n

h2
n

(
E
(
T 4
)

+ hnE(T 2)2
)]
. (3.56)

Then, by (3.54) and (3.56), we have

Var
(

n∑
i=1

E
(
Z̃2
ni

∣∣∣Fn,i−1
))

= O

(
E
(
T 4) ,+hnE(T 2)2

n

)
= o(1) (3.57)

since E(T 4) = O(E(V 4)) = O(p2
n) and E(T 2) = O(E(V 2)) = O(1). Hence the result

follows.

�

Proof of C.3

For any positive constants p and q such that 1
p + 1

q = 1,

|Zni| ≤ |Dii||ViUi|+ |Cii||U2
i − σ2

0|+ 2|Ui|
i−1∑
j=1
|Gsij ||Tj |

≤ |Dii|
1
p |Dii|

1
q |ViUi|+ |Cii|

1
p |Cii|

1
q |U2

i − σ2
0|

+
i−1∑
j=1
|Gsij |

1
p |Gsij |

1
q 2|Tj ||Ui|.



66 Chapter 3. Functional linear SAR models

Holder’s inequality for inner products applied to the last term, implies that

|Zni|q ≤


(|Dii|

1
p )p + (|Cii|

1
p )p +

i−1∑
j=1

(|Gsij |
1
p )p
 1
p [

(|Dii|
1
q |ViUi|)q

+(|Cii|
1
q |U2

i − σ2
0|)q +

i−1∑
j=1

(|Gsij |
1
q 2|Tj ||Ui|)q

 1
q


q

=

|Dii|+ |Cii|+
i−1∑
j=1
|Gsij |


q
p
|Dii||ViUi|q + |Cii||U2

i − σ2
0|q + 2q|Ui|q

i−1∑
j=1
|Gsij ||Tj |q


= O

|Dii||ViUi|q + |Cii||U2
i − σ2

0|q + 2q|Ui|q
i−1∑
j=1
|Gsij ||Tj |q


since under Assumption 1, Dii and Cii are of order O(1/hn) andGn is uniformly bounded
in row sums.

Let q = 2 + δ, and note that

n∑
i=1

E

(∣∣∣Z̃ni∣∣∣2+δ
)

= O

h δ2n
n
δ
2

[
E
(
U4+2δ

)
+ hnE

(
|T |2+δ

)] . (3.58)

Let δ = 2, then (3.58) is of order O
(
h2
np

2
n

n

)
, since E(T 4) = O

(
p2
n

)
and E(U8) is finite.

This yields the proof as by assumption h4
n = O(n) (when hn is divergent) and p4

n = o(n).

�
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Figure 3.3: Estimated parameter function θ̂n(·) with the different criteria in Scenario 2
for different values of r and m.
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Resumé en français

Dans le Chapitre 3 nous avons proposé un estimateur de type quasi-vraisemblance pour
un modèle fonctionnel autorégressif spatial sous l’hypothèse que la matrice de pondération
nommée généralement Wn de dimension n×n est exogène contrairement à ce chapitre où
nous relaxons cette hypothèse.

Soit {(εl(i),n, υl(i),n); l(i) ∈ Dn, n ∈ N} un triangular double array de variables aléatoires
définies dans un espace de probabilité (Ω;F ;P ). Ici l(i) représente une unité spatiale
appartenant à l’ensemble d’index fini Dn ⊂ D où D ∈ Rd, d ≥ 1, avec Dn est de type
lattice. Pour soucis de simplicité, nous utilisons εi,n et υi,n pour faire référence à εl(i),n et
υl(i),n respectivement, et nous procéderons de même dans la suite. Supposons que dans
chaque unité spatiale l(i) nous observons sur Dn un processus linéaire Z en fonction d’une
certaine co-variable U . Ces observations sont définies par

Zn = UnΓ + εn, (4.1)



72
Chapter 4. Functional linear SAR models with endogenous weight

matrix

où Un est une matrice de dimension n×k d’éléments {uin; l(i) ∈ Dn, i = 1, . . . , n, n ∈ N}
déterministes et bornés en valeur absolue pour tous i et n, Γ est un vecteur de coefficients
de dimension k× p inconnu et εn = (ε1,n, . . . , εp,n)′ est une matrice de dimension n× p de
bruits blancs avec εi,n = (ε1,in, . . . εn,in)′ un vecteur de taille p. Ainsi, Zn = (z1,n, ..., zn,n)′
est une matrice de dimension n× p avec zi,n = (z1,in, . . . , zp,in)′.

Pour n observations spatiales d’une variable de réponse Y réelle et d’une co-variable fonc-
tionnelle {X(t), t ∈ T}, nous nous intéressons au modèle SAR fonctionnel ci-dessous :

Yi = λ
n∑
j=1

wijYj +
∫
T
Xi(t)β(t)dt+ υi, i = 1, . . . , n (4.2)

où λ est un scalaire dans un espace compact Λ, et {υi, i = 1, . . . , n, n = 1, 2, . . . } sont les
termes d’erreur. Nous supposons que {X(t), t ∈ T} est un processus stochastique qui prend
ses valeurs dans X ⊂ L2(T ), avec L2(T ) l’espace des fonctions carrées intégrables dans
l’intervalle T ⊂ R et β(.) est une fonction de paramètre qui appartient au même espace.
La matrice de pondération spatiale Wn = (wij,n) est de dimension n× n et supposée non
négative avec zéro au diagonale et avec wij,n = hij(Zn, dij) pour i, j = 1, ..., n; i 6= j où
h(.) est une fonction bornée. Soit Sn(λ) = In−λWn ainsi le modèle (4.2) peut se re-écrire
comme :

Yn = Sn(λ) (Xn (β(.)) + Vn) , n = 1, 2, ... (4.3)
où Xn(β(.)) est le vecteur (n×1) dont le ième élément est

∫
T Xi(t)β(t)dt, Y est le vecteur

de dimension n× 1 des éléments Yi et Vn = (υ1,n, . . . , υi,n)′.

Nous supposons maintenant que les termes υi,n et εi,n ont une distribution jointe

(υi,n, ε′i,n) ∼ i.i.d (0, Συε) où Συε =
(
σ2
υ σ′υε

συε Σε

)
est une matrice de covariance (définie

positive), σ2
υ est la variance de Vn, le vecteur de covariance συε = (συε1 , . . . , συεp)′ est de

dimension p. Supposons que Supi,nE|υi,n|4+ζ et supi,nE||εi,n||4+ζ existent pour un certain
ζ 6= 0. En outre, nous posons E(υi,n|εi,n) = ε′i,nΣ−1

ε συε et V ar(υi,n|εi,n) = σ2
υ −σ′υεΣ−1

ε συε
où Σε est une matrice de dimension p× p.

La corrélation entre υi,n et εi,n est la source directe de l’endogénéité de la matrice de
pondération spatiale Wn où réside l’originalité de ce travail. Dans le cas particulier où
συε = 0, Wn devient exogène comme dans le chapitre précédent. En se basant alors sur
les moments conditionnels présentés nous pouvons définir ξn = Vn− εnδ avec δ = Σ−1

ε σ′υε,
le modèle (4.3) se transforme en :

Yn = Sn(λ) (Xn (β(.)) + (Zn − UnΓ)δ + ξn) , n = 1, 2, ... (4.4)

où ξn sont des i.i.d avec E(ξi,n|εi,n) = 0 et E(ξ2
i,n|εi,n) = σ2

ξ avec σ2
ξ = σ2

υ−σ′υεΣ−1
ε συε. En

particulier ξn n’est pas corrélée avec εn, on peut donc considérer la variable (Zn − UnΓ)
comme variable de contrôle de l’endogénéité.

Selon White (1982), nous définissons pour le modèle (4.4) le logarithme de la fonction de
quasi-vraisemblance sous la spécification de la distribution normale comme suit :

lnLn(θ) = −nln(2π)− n
2 lnσξ + ln|Sn| − n

2 ln|Σε|

−1
2
∑n
i=1(z′i,n − u′inΓ)Σ−1

ε (zi,n − Γ′uin)

− 1
2σξ [Sn(λ)Yn −Xn(β(.))− (Zn − UnΓ)δ]′

×[Sn(λ)Yn −Xn(β(.))− (Zn − UnΓ)δ],

(4.5)
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où θ = (λ, β(.), vect(Γ), σ2
ξ , τ
′, δ′)T est l’ensemble des paramètres à estimer en maximisant

(4.5), τ est le vecteur de dimension notée J des éléments distincts de Σε, avec δ = Σ−1
ε συε

et σ2
ξ = σ2

υ − σ′υεΣ−1
ε συε. Les estimateurs QMLE de ces paramètres sont alors les valeurs

qui maximisent la précédente vraisemblance. Dans le cadre non-fonctionnel, Qu & Lee
(2015) ont défini des estimateurs de type quasi-maximum de vraisemblance pour θ en
maximisant l’équivalent de (4.5).

Pour le modèle fonctionnel (4.4) considéré, nous proposons une méthode d’estimation qui
étend le travail de Qu & Lee (2015) à l’aide d’une réduction de la dimension infinie de
l’espace de la variable explicative fonctionnelle X(.) en utilisant la technique de troncature
du Chapitre 3. Soit Φ = (φj(t))′, j > 1 une base orthonormale de L2(T ), habituellement la
base de Fourier est utilisée. La co-variable X(t) et la fonction de paramètre β(t) peuvent
être ré-écrites à l’aide de la base :

X(t) =
∞∑
j=1

ωjφj(t) and β(t) =
∞∑
j=1

βjφj(t) pour tout t ∈ T,

où les variables aléatoires ωj et les coefficients βj sont données par ωj =
∫
X(t)φj(t)dt et

βj =
∫
β(t)φj(t)dt, respectivement. Nous avons alors la décomposition suivante :∫

T
X(t)β(t)dt =

∞∑
j=1

βjωj =
pn∑
j=1

βjωj +
∞∑

j=pn+1
βjωj . (4.6)

De manière similaire au Chapitre 3, le modèle (4.4) est approché en remplaçant X(β(.))
dans (4.5) par ψpnβ?, avec β? = (β1, ..., βpn) et ψpn la matrice de dimension n × pn

d’éléments
{
ω

(i)
j =

∫
T Xiφj(t)dt, i = 1, ..., n j = 1, ..., pn

}
, afin d’obtenir la fonction de

quasi vraisemblance calculable suivante :

lnL̃n(θ) = −nln(2π)− n
2 lnσξ + ln|Sn| − n

2 ln|Σε|

−1
2
∑n
i=1(z′i,n − u′inΓ)Σ−1

ε (zi,n − Γ′uin)

− 1
2σξ [Sn(λ)Yn − ψpnβ? − (Zn − UnΓ)δ]′

×[Sn(λ)Yn − ψpnβ? − (Zn − UnΓ)δ].

(4.7)

Les éléments du vecteur θ̂ = (λ̂, β̂?′, vec(Γ̂)′, σ̂2
ξ , τ̂
′, δ̂′)T qui maximisent (4.7) donnent les

estimateurs des paramètres λ, β?, vec(Γ), σ2
ξ , τ et δ respectivement avec δ = Σ−1

ε σ′υε et
σ2
ξ = σ2

υ − σ′υεΣ−1
ε συε. L’estimateur du paramètre fonctionnel β(t) est défini par :

β̂(t) =
pn∑
j=1

β̂?φj(t) (4.8)

Le comportement pour échantillons à taille finie des estimateurs a été étudié à travers une
étude de type Monte-Carlo.

4.1 Introduction
The last decades have seen an extensive development of statistical tools able to manage
large quantities of data containing inherent spatial components. Spatial Functional Data
Analysis (FDA) is a field of statistics for modeling such data available in diverse disciplines
as environmental sciences, economics, agronomy, mining, forestry, among others.
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In this contribution, we are interested to spatial FDA in some econometric problems.
As said in the previous chapter, the term functional data analysis was popularized by
Ramsay (1982) and Ramsay & Dalzell (1991), even the concept is older and dates back to
Grenander (1950) and Rao (1958). FDA deals with the analysis of tightly spaced repeated
measurements on same individuals or discrete observations of a phenomena that can be
represented in a form of function such as curves, shapes, images. FDA spatial objects
are thought as smooth realizations of a stochastic spatial process (see Brumback & Rice
(1998)) and are widely present in many research areas e.g. chemiometrics (see Frank &
Friedman (1993)), meteorology, speech analysis (see Hastie et al. (1995)), environment,
biology among others (see e.g. Hastie & Mallows (1993)). An important FDA literature
has been developed for representation, exploration and modeling parametrically or non-
parametrically functional data, see for instance the monographs of Ramsay & Silverman
(2005), Ferraty & Vieu (2006) and Horváth & Kokoszka (2012), among others.

Spatial statistics (Cressie, 1993) embodies a suite of methods for analyzing spatial data
and for instance estimating the values of a property of interest at non-sampled locations,
from available sample data points using spatial correlation tools. Spatial data analysis
encompass various techniques for modeling correlation between observed variables located
in space. There are three main types of spatial data, namely geostatistics data, lattice
data and point patterns (see Cressie (1993)). Our main focus is the lattice context of
spatial autoregressive model (SAR), useful in spatial Econometrics. Earlier developments
in estimating and testing SAR models are established using the two stage least squares
(2SL), the three stage least squares (3SLS), the maximum likelihood estimation (MLE)
or quasi-maximum likelihood (QMLE) and the generalized method of moments (GMM)
methods have been summarized in: Anselin (1988), Cressie (1993), Kelejian & Prucha
(1998, 1999), Conley (1999), Lee (2004, 2007), Lin & Lee (2010), Zheng & Zhu (2012),
Malikov & Sun (2017), Garthoff & Otto (2017), Yang & Lee (2017) and among others.

SAR model permits interdependence between spatial units via a well known spatial weight
matrix (Wn) that can be defined in different ways. In fact, Wn is usually supposed to be
exogenous and based only on geography criteria or spatial arrangement of the observations.
For instance spatial units are considered neighbors when they share a border or when they
are within a given distance. However, in many empirical applications the assumption of
exogeneity may not be reasonable then elements of Wn may involve other distances, as
"economic distance" or "socio-economic distance" like Cohen & Morrison Paul (2004) who
used a weight matrix based on a technological proximity index or Conley & Ligon (2002)
where an economic definition based on transport costs was used.

Estimation methods mentioned earlier fails when Wn is endogenous because of technical
complications. This is one of the several problems emphasized by Pinkse & Slade (2010)
that still under investigation. So far, very few works relaxing the assumption of an exoge-
nous matrix exist; Kelejian & Piras (2014) proposed instrumenting the endogenous spatial
weight matrix in a context of spatial panel data. Qu & Lee (2015) considered the case
of endogenous spatial weight matrix constructed by some univariate economic variable.
Later on, Lee & Yu (2017) extend this idea to panel data. For the best of our knowledge,
in the context of spatial endogenous weight matrix, the data studied so far are real-valued.

Extending this context to FDA is the aim of this contribution. In fact, nowadays in many
applied domains as; economic, environmental, hydrology,.., spatially correlated functional
data are more and more available and there is a dynamic on developing statistical tools to
analysis such data. Generally, FDA is more developed in the scope of geostatistics. Some
limited works exist in the functional lattice context (see e.g Ruiz-Medina (2011), Ruiz-
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Medina (2012), Pineda-Ríos & Giraldo (2016) and the references in the previous chapter)
with exogenous weight matrices. The present work considers an estimation of the spatial
autoregressive model with a random functional covariate and a real-valued response using
spatial weight matrix assumed to be exogenous compare to Chapter 3.

The remainder of this chapter is organized as follow. In Section 4.2, we introduce the
model specification of the outcome equation, the structure of the spatial weight matrix and
give some motivations on the particular structure of the spatial weight matrix. Section
4.3 is devoted to the QMLE estimation method. In Section 4.4 we give the numerical
experiments; a Monte Carlo simulation are provided to investigate the finite behavior of
the estimator compared to the estimator under the exogenous assumption. The conclusion
in Section 4.5 ends the chapter.

4.2 The model

In this section, we give the specification of a SAR model, the structure of the proposed
spatial weight matrix and show how this induces endogeneity. We also motivate the use
of endogeneity assumption.

4.2.1 Model specification

Similar to Jenish & Prucha (2009, 2012), we consider a spatial process located on (possibly)
unevenly spaced lattice D ⊂ Rd with d ≥ 1. There are two main asymptotic methods
commonly used in the literature; increasing domain and infill asymptotic, see Cressie
(1993). The Infill asymptotic is analogical to the term "infill drilling", where extra core
samples are drilled between existing ones, so the sample region remains fixed and the
sample data growth by sampling points arbitrarily dense in the given region. Under
increasing domain asymptotic, more observations may be taken, so the sample region is
expanded, specifically this arises when lattice data have a fixed spacing between neighbors
(e.g., location of trees in a domain), it is more appropriate than infill asymptotic. Here we
employ the increasing domain asymptotic method as Qu & Lee (2015) which is ensured
by the next assumption.

Assumption 1. The lattice D ∈ Rd, d ≥ 1, is infinitely countable. The location l :
{1, ..., n} −→ Dn ⊂ D is a mapping of individual i to its location l(i) ∈ Dn ⊂ Rd.
All elements in D are located at distances of at least d0 > 0 from each other, i.e., for
∀l(i), l(j) ∈ D : dij ≥ d0 where dij is the distance between individual i and individual j;
w.l.o.g. we assume that d0 = 1.

Consider {(εl(i),n, υl(i),n); l(i) ∈ Dn, n ∈ N} a triangular double array of real random
variables defined on a probability space (Ω;F ;P ), where the index set Dn ⊂ D is a finite
set and satisfies Assumption 1. For simplicity, let εi,n and υi,n to refer to εl(i),n and υl(i),n
respectively and we do the same for the rest of variables. We assume that for each location
l(i), we observe two variables Z and U in Dn related with a linear process defined by:

Zn = UnΓ + εn (4.9)

where Un = (u1, ..., un)′ is an n × q matrix with its element {ui; l(i) ∈ Dn, i =
1, . . . , n, n ∈ N} being deterministic and bounded in absolute value for all i and n, Γ
is a q × d vector of coefficients to be estimated and εn is an i.i.d n × d matrix of dis-
turbances with variance Σε with the element εi = (ε1,i, . . . , εd,i)′ is a d-column vector.
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Zn = (Z1, ..., Zn)′ is an n × d matrix, where Zi = (Z1,i, . . . , Zd,i)′ may be a vector of
economic variables such as GDP, consumption or economic growth rate, influencing inter-
actions across spatial units.

Let Yn is an n × 1 response vector of variable and Xn(t) = {X1(t), ..., Xn(t) : t ∈ T} be
a random sample of observations or a sample paths of a functional variable X(t). The
following model gives the functional SAR model with endogenous reaction between the
response and the covariate:

Yi = λ
n∑
j=1

wijYj +
∫
T
Xi(t)β(t)dt+ υi, i = 1, . . . , n (4.10)

where λ is a scalar in a compact space Λ, β(.) is a functional parameter that belongs to
the space functions L2(T ), where L2(T ) is the space of square-integrable functions in T .
Assume that the process {X(t), t ∈ T} takes values in space X ⊂ L2(T ) and the errors
{υi, i = 1, . . . , n, n ∈ N} are i.i.d. The particularity of the model is that Wn = (wij,n)
is n × n non-negative matrix with zero diagonals where wij,n = hij(Zn, dij) for i, j =
1, ..., n; i 6= j: h(.) is a bounded function. Let Sn(λ) = In − λWn we can write (4.10) as:

Yn = Sn(λ) (Xn(β(.)) + Vn) (4.11)

where Xn(β(.)), Yn are the n×1 vectors of i-th element
∫
T Xi(t)β(t)dt and Yi, respectively

and Vn = (υ1, . . . , υn)′ is a n× 1 vector of i.i.d variables.

4.2.2 Motivation

On the conventional SAR model of Cliff & Ord (1973) the spatial linkage presented by
the weighted matrix is essentially physical based on geographic distance between spatial
units, so variable such as incomes, behavior, expenditure, ..., of an individual in location
l(i) that may influence the values of the same variables at some neighbor location l(j) are
not taken into account.

To account other type of spatial interactions, the concept of spatial weight was extended
to go beyond the geographical notion, then one can consider that locations are neighbors if
they are similar economically or demographically. For instance, Case et al. (1993) said that
spillovers effect may originate in locations that are not neighbors, for example expenditures
in education in one location (state) are likely to have the most impact on labor markets
of states with similar economic or demographic characteristics. So an alternative criteria
is defined in the literature and elements of a spatial weight matrix based on an known
function g(.) may take the form wij,n = g(Zi,n, Zj,n), where Zi,n and Zj,n are observations
on "meaningful" socio-economic characteristics, such as per capita income, or proportion
in a given racial group as in Case et al. (1993). In a migration context, Smith & C.
(2004) used migration flow while Crabbé & Vandenbussche (2008) in addition to physical
distance, they constructed a spatial weight matrix based on the inverse of the trade share
between states. Note that in this case Assumption 1 holds and one can replace easily
"physical distance" by economic one.

It is then not obvious to be limited to geographic proximity, an alternative may relies
on socio-economic characteristics or combination of socio-economic and geographic factor.
The spatial weight matrix W can be expressed as a simple weighting:

W = αW d + (1− α)W e
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where 0 ≤ α ≤ 1. W d andW e are respectively the weight matrix based on geographic and
socio-economic metrics. To generate W d, we may use one of the several existing methods.
Some of them are recalled in the following:

• k-Nearest Neighbor weights

wdij =
{

1 if j ∈ Nk(i)
0 Otherwise ,

where Nk(i) is the set of the k closest units or regions to i for k = 1, ..., (n− 1).

• Inverse Distance weights

wdij = 1/dij , dij is the euclidean distance between location i and j.

• Contiguity weights

wdij =
{

1 if i and j share borders
0 Otherwise

For W e we may consider one of the next cases:

• weij = 1/|Zi,n − Zj,n|,

• weij = 1/(Zi,n − Zj,n)2,

• weij = 1/[1 + log(Zi,n/Zj,n)],

where the Zi,n are observations of a socio-economic variable.

Such structure of W impose endogeneity on the model and a specific estimation method
must be carried out. In the next we show how this endogeneity is considered in the model.

4.2.3 Source of endogeneity

Assumption 2. The error terms υi,n and εi,n have a joint distribution: (υi,n, ε′i,n) ∼ i.i.d

(0, Συε) where Συε =
(
σ2
υ σ′υε

συε Σε

)
is a covariance matrix (positive and definite), σ2

υ is a

scalar variance of Vn, συε = (συε1 , . . . , συεp) is a covariance with p-dimensional vector and
Σε is a d × d matrix. The supi,nE|υi,n|4+ζ and supi,nE||εi,n||4+ζ exist for some ζ 6= 0. In
addition E(υi,n|εi,n) = ε′iΣ−1

ε συε and Var(υi,n|εi,n) = σ2
υ − σ′υεΣ−1

ε συε.

The correlation between υi,n and εi,n is the direct source of the endogeneity of the spatial
weight matrixWn. In case where συε = 0, Wn become strictly exogenous and conventional
estimator of functional spatial autoregressive model can be applied1, see previous chapter.

Based on the conditional moments presented in Assumption 2, let δ = Σ−1
ε συε, the scalar

σ2
ξ = σ2

υ − σ′υεΣ−1
ε συε and denote by ξn = Vn − εnδ. The outcome equation (4.11) can be

transformed into:

Yn = Sn(λ) (Xn(β(.) )+(Zn −UnΓ)δ + ξn) i = 1, ..., n, n = 1, 2, ..., (4.12)

where Xn(β(.)) be the n× 1 vector of i-th element
∫
T Xi(t)β(t)dt, Sn(λ) = In− λWn and

ξn are i.i.d with E(ξi,n|εi,n) = 0 and E(ξ2
i,n|εi,n) = σ2

ξ . In particular ξn are uncorrelated
1Quasi-maximum likelihood of Lee (2004)
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with εn in the case where (υi,n, εi,n) has a joint normal distribution. We can consider the
variable (Zn − UnΓ) as a control variable of the endogeneity of Wn, so our estimation
method will mainly rely on equation (4.12).

Note that Assumption 2 is a general case with no restriction on the nature of the distur-
bances, only conditional moments is matter.

4.3 Estimation methodology

Assuming the i.i.d disturbances (υi,n, ε′i,n) ∼ (0,Συε) with Συε =
(
σ2
υ σ′υε

συε Σε

)
and accord-

ing to White (1982), we can define the log quasi-likelihood function under the normal
distribution specification as follow:

lnLn(θ) = −nln(2π)− n
2 lnσ2

ξ + ln|Sn(λ)| − n
2 ln|Σε|

−1
2
∑n
i=1(Z ′i − U ′iΓ)Σ−1

ε (Zi − Γ′Ui)

− 1
2σξ [Sn(λ)Yn −Xn(β(.))− (Zn −UnΓ)δ]′

×[Sn(λ)Yn −Xn(β(.))− (Zn −UnΓ)δ],

(4.13)

where θ = (λ, β(.), vect(Γ)′, σ2
ξ , τ
′, δ)′ is the set of parameters to be estimated, by max-

imizing (4.13), with τ being a J-dimensional column vector of distinct elements in Σε,
δ = Σ−1

ε συε and σ2
ξ = σ2

υ − σ′υεΣ−1
ε συε. So the QMLE(θ) is

θ̂ = arg maxθ∈ΘlnLn(θ)

However, doing the maximization is not simple in practice, in fact we cannot handle
the functional form of the sample paths of the functional covariate Xn, as much we can
observe each of them in a finite set of discrete time points. In addition the parameter
β(.) is a function. In order to solve the first task, there are different proposals in the
literature that suggest to reconstruct the functional form of the sample paths by different
smoothing methods. Some works, both smooth the functional covariate and handle the
infinite dimension of the parameter, we refer among others to Cardot & Sarda (2005)
who worked on identifiability and estimation of functional regression models via B-splines
penalized likelihood. The idea is to express the functional explanatory vector of variables
Xn and the parameter function β(.) in a finite dimensional space belonging to the same
space of sample paths. Many truncation methods using eigenbasis, Splines or Fourier basis
can be considered, see e.g. Cardot et al. (1999), Cardot & Sarda (2005).

In this contribution, we use the method of Muller & Stadtmuller (2005) where one can
project Xn and β(t) in a finite dimensional space spanned by a basis of functions verifying
some criteria. This approach is used in Chapter 3 and to refresh the reader’s memory, we
give some details on this proposed technique.

Truncation strategies

The truncation is a approximation technique to reduce the infinite dimension of the func-
tional variables Xn and parameter function β(.) by projecting them in a finite dimensional
space generated by a basis of functions. The usual basis are trigonometric basis (Aguilera
et al. (1995)), cubic spline basis (Aguilera et al. (1996)), wavelets basis (Amato et al.
(2006)) and eigenfunctions basis used in the following.
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Denote by Φ = (φ1(t), ...φj(t))′, j > 1 a vector of basic functions of the space L2(T ), in
particular the eigenfunction basis of the covariance operator Ψ defined by:

ΨX(t) =
∫
T
E[X(t)X(s)]x(s)ds, x ∈ X , t ∈ T. (4.14)

Then the functional variable X(.) and the parameter function β(.) can be expanded into:

X(t) =
∞∑
j=1

ωjφj(t) and β(t) =
∞∑
j=1

βjφj(t) for all t ∈ T,

with w.r.’s ωj and coefficients βj are given by ωj =
∫
X(t)φj(t)dt and βj =

∫
β(t)φj(t)dt,

respectively. Therefore from the orthogonality characteristic of the basis, it results imme-
diately that: ∫

T
X(t)β(t)dt =

∞∑
j=1

βjωj (4.15)

Let us consider the decomposition:
∞∑
j=1

βjωj =
pn∑
j=1

βjωj +
∞∑

j=pn+1
βjωj . (4.16)

The idea is to approximate model (4.11) with another one where the functional predictor
is truncated at pn variables. Similar as Muller & Stadtmuller (2005) the left hand side of
(4.16) can be approximated only with the first term of the right hand side. A necessary
condition is that the error vanishes asymptotically, this is the case when considering the
eigenbasis of the variance-covariance operator Ψ:

E

 ∞∑
j=pn+1

βjωj

2

=
∞∑

j=pn+1
β2
jE(ω2

j ) =
∞∑

j=pn+1
β2
jκj , (4.17)

where κj , j = 1, 2... are the eigenvalues. Then we can express Xn(β(.)) by ψpnβ?, where
β? = (β1, ..., βpn) and ψpn is a n× pn matrix with (i, j) element given by

ω
(i)
j =

∫
T
Xiφj(t)dt, i = 1, ..., n j = 1, ..., pn (4.18)

Replacing Xn(β(.)) in (4.13) by ψpnβ? permit to have what we call a feasible log likelihood,
defined as:

lnL̃n(θ) = −nln(2π)− n
2 lnσ2

ξ + ln|Sn(λ)| − n
2 ln|Σε|

−1
2
∑n
i=1(Z ′i − U ′iΓ)Σ−1

ε (Zi − Γ′Ui)

− 1
2σξ [Sn(λ)Yn − ψpnβ? − (Zn −UnΓ)δ]′

×[Sn(λ)Yn − ψpnβ? − (Zn −UnΓ)δ],

(4.19)

θ̂ = (λ̂, β̂?′, vec(Γ̂)′, σ̂2
ξ , τ̂
′, δ̂′)′ are the estimator that maximize (4.19) respectively to λ, β?,

vec(Γ), σ2
ξ , τ and δ where δ = Σ−1

ε συε and σ2
ξ = σ2

υ − σ′υεΣ−1
ε συε. Finally the estimator of

the parameter function β(t) is defined by

β̂(t) =
pn∑
j=1

β̂?jφj(t) (4.20)

A necessary condition to obtain θ̂ is that ∂lnL̃n(θ)
∂θ = 0, the first derivatives are given in

Appendix A.
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4.4 Monte Carlo simulation

To evaluate numerically the finite behavior of the proposed QMLE estimator, a Monte
Carlo simulation was done using different parameters. Here we propose various endogene-
ity degree and different spatial interactions.

4.4.1 Data generating process

We start by generating a bivariate normal distribution variables (υi,n, εi,n) ∼

N

(
0,
(
συ ρ
ρ Σε

))
as disturbances used in the outcome equation and the spatial inter-

actions. Let συ = Σε = 1, so the data generating process (DGP) is:

Yi = λ
n∑
j=1

wijYj +
∫
T
Xi(t)β(t)dt+ Vi (4.21)

Like Muller & Stadtmuller (2005), X(t) = ∑20
j=1 ωjφj(t) is an explanatory random function

with ωj ∼ N(0, 1/j) for j ≥ 1 and (φj)j=1,...,20 are the first twenty functions of the Fourier
orthogonal basis defined by

{
φj(t) =

√
2sin(jπt), t ∈ [0, 1], j = 1, 2, ....

}
. We also define

the parameter function as β(t) = ∑20
j=1 βjφj(t) with βj = (1.2, 1.3, 1.5, 1.4, .5,−.4,−.4) for

j ≤ 7 and βj = 0 for j > 7.

The spatial endogenous matrix Wn is constructed as follow:

1. Build a weighted matrix W d
n based on geographic distance.

2. Construct W e
n as weij = 1/ |Zi − Zj | if i 6= j and weij = 0 if i = j, where elements

of Zi are generated by Zn = UnΓ + εn with Γ = (γ1, γ2) = (1, 0.8) is a vector of
parameters and Un = (u1, ..., un), ui = (u1

i , u
2
i ) where u1

i , u
2
i ∼ N(0, 1)

3. Wn = W d
n ◦W e

n where ◦ is the Hadamard product.

4. Row-normalize Wn.

To construct W d we generate a data grid with dimension D = 60×60 locations, where we
chose randomly n spatial units. Using those random locations, we construct W d by two
distinct scenarios:

• The first one is such that W d
ij is simply the inverse of euclidean distance between

location i and j: W d
ij = 1

dist(i,j) .

• For the second one, we use the nearest neighbors algorithm (kNN) with 3 neighbors
so each location i has at least 3 neighbors.

For different degree of endogeneity; weak, medium and strong are considered towards the
coefficient of correlation ρ = 0.2, 0.5 and 0.8. We set the spatial coefficient λ = 0.2
and 0.8 to look over the affects of the spatial correlation on the estimation. A number
of N = 300 replications was carried out for each setting considering with two different
sample sizes; n = 200, 400. Recall that we use an auxiliary parameters pn; for the strategy
to fit the parameters function β(t) and reduce the dimension of the functional covariate
and parameter. The eigenbasis based on functional principal components analysis is used
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for the truncation. The choice of pn has an importance in the estimation procedure. For
this choice, we consider three criteria, ASE, AIC and BIC defined respectively:

ASE = 1
n

n∑
i=1

(Yi − Ŷi)2

AIC = 2k − 2Ln(L)
BIC = −2Ln(L) + Ln(n)k

where k is the number of parameters, n is the sample size and L is the maximum of the
likelihood function. To evaluate the efficiency of the parameter function β̂(t) and measure
the accuracy of the candidates model considered by the choices strategies of pn, we use
the integrated mean squared error (IMSE) (M. Escabias & Valderrama, 2007):

IMSE =
∫

(β(t)− β̂(t))2dt (4.22)

We also perform a comparison between the proposed estimator and that of the functional
SAR model assuming Wn exogenous (the one considered in the previous chapter).

4.4.2 Results

The results are reported in Tables 4.1 to 4.6, where we return the mean of each estimator
(the empirical standard-deviation is between brackets) based on the 300 replication using
the two alternative form of Wn described in Section 4.4.1. EFSAR refer to the proposed
model of Section 4.2 and the functional autoregressive spatial model with the conventional
structure ofWn is named by FSAR. The last are estimated using the same truncation level
pn selected for EFSAR model regardless each time one of the criteria listed previously.

The combination of different values of the different parameters in addition to the two types
of physical matrix W d, we obtain 24 cases, almost in all of them we note small bias for
the parameters of the proposed method.

• For the true parameter λ = 0.2 with ρ = 0.2, the estimated spatial parameter λ̂ has
a bias of order 33% with small size sample when using kNN method for W d. A bias
with the same magnitude affect λ̂ in case of ρ = 0.5 andW d constructed by distance.

• The proposed method has difficulties to estimate ρ̂ in case of high spatial dependence
(λ = 0.8) using geographic distance for W d when ρ = 0.2 and n = 200.

The estimated parameter λ̂ with the conventional FSAR model suffers more with bias
than the proposed model in almost all situations particularly in case of high endogeneity
where the bias exceed a 100% of magnitude, see for instance the case with high spatial
dependency ρ = 0.8 and λ = 0.2 with W d defined as the inverse of distance between
spatial units.

Giving the empirical standard deviation of the estimators, we notice that for a fixed
degree of endogeneity the standard deviation decreases when spatial dependence increases.
Similarly, for a fixed degree of spatial dependence, the standard deviation decreases when
endogeneity increases.

The estimator of the functional parameter β̂(.) based on the criteria ASE, AIC and BIC
versus the true coefficient β(.) are given in Figures 4.1 to 4.4 using kNN and geographic
distance to construct W d. The integrated mean square errors (IMSE) show the good
quality of these functional parameter estimates. This quality increases with the sample
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size. We notice also that for the same degree of endogeneity, the IMSE is larger for high
spatial dependence. Even more, the IMSE decreases with endogeneity for a fixed spatial
parameter λ.

Comparing the tables, we notice that obtained proposed estimation procedure with the
different specifications of Wn leads to different empirical results. This is not surprising in
the literature since the choice of the spatial weight matrix is not guided by any known
economic theory, see among others Marbuah & Amuakwa-Mensah (2017).

4.5 Conclusion
The work proposed in this chapter is an extension of the functional spatial autoregressive
model given in Chapter 3, that overcome the issue of endogeneity of the spatial weight
matrix in cross-sectional FSAR model. It covers the case where the entry of the spa-
tial weight matrix are defined by a stochastic process. This process can depend of the
dependent variable in FSAR model through a present correlation between error in the
stochastic process and disturbance in the FSAR outcome equation. We employed the
quasi-maximum likelihood method to estimates parameters combined with a dimensional
reduction approach. We conducted also a Monte Carlo simulation to investigate the finite
sample of the proposed method. Results show that the proposed method in Chapter 3
under exogenous matrix produce bias when true weight matrix is endogenous specially
with high level of endogeneity. On the other hand our estimates have a good finite sam-
ples properties. For future researchers, we would like to applied this structure on a real
situation.
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Figure 4.1: Estimation of β̂(.) with W d based on distance and n = 200
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Figure 4.2: Estimation of β̂(.) with W d based on kNN with 3 neighbors and n = 200
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Table
4.1:

Estim
ation

w
ith

weak
endogeneity

(n=
200)

ρ
=

0.2
D
istance

kN
N

A
SE

A
IC

BIC
A
SE

BIC
BIC

λ
=

0.2
EFSA

R
FSA

R
EFSA

R
FSA

R
EFSA

R
FSA

R
EFSA

R
FSA

R
EFSA

R
FSA

R
EFSA

R
FSA

R
λ̂

0.1981
0.2214

0.1993
0.2226

0.199
0.2222

0.2604
0.2643

0.2618
0.2656

0.2618
0.2656

(0.0557)
(0.0584)

(0.0564)
(0.059)

(0.0575)
(0.06)

(0.0376)
(0.0385)

(0.0374)
(0.0383)

(0.0376)
(0.0383)

σ̂
υ

0.8964
0.8927

0.9008
0.8974

0.9129
0.9096

0.9209
0.9172

0.9244
0.9212

0.9373
0.9344

(0.0188)
(0.0186)

(0.0202)
(0.0201)

(0.0218)
(0.0216)

(0.0244)
(0.0246)

(0.0251)
(0.0254)

(0.0286)
(0.0289)

Σ̂
ε

0.9505
–

0.9505
–

0.9505
–

0.9059
–

0.9059
–

0.9058
–

(0.0002)
(0.0002)

(0.0218)
(0.0002)

(0.0002)
(0.0286)

σ̂
ξ

0.8487
–

0.8527
–

0.8648
–

0.8304
–

0.8332
–

0.8462
–

(0.018)
(0.019)

(0.0204)
(0.0224)

(0.0229)
(0.0266)

ρ̂
0.2125

–
0.2134

–
0.2133

–
0.286

–
0.2872

–
0.287

–
(0.0148)

(0.0148)
(0.0145)

(0.0137)
(0.014)

(0.0143)
γ̂

1
0.955

–
0.955

–
0.9548

–
1.0761

–
1.076

–
1.0762

–
(0.0032)

(0.0032)
(0.0033)

(0.0042)
(0.0041)

(0.0043)
γ̂

2
0.7431

–
0.743

–
0.7431

–
0.7925

–
0.7925

–
0.7922

–
(0.0035)

(0.0036)
(0.0036)

(0.0048)
(0.0049)

(0.0047)
δ̂

0.2235
–

0.2246
–

0.2245
–

0.3157
–

0.317
–

0.3168
–

(0.0156)
(0.0156)

(0.0153)
(0.0151)

(0.0154)
(0.0157)

PC
s

7
–

4
–

4
–

7
–

5
–

4
–

(0.8253)
(1.1406)

(0.6297)
(0.8384)

(1.0978)
(0.7378)

IM
SE

0.0465
0.0491

0.0482
0.0489

0.0414
0.0419

0.0561
0.0617

0.0549
0.0572

0.0469
0.0483

(0.0331)
(0.0347)

(0.0321)
(0.0333)

(0.0205)
(0.0209)

(0.0477)
(0.0517)

(0.0457)
(0.0493)

(0.0383)
(0.0409)

λ
=

0.8
λ̂

0.7789
0.7812

0.7824
0.7845

0.7822
0.7844

0.8097
0.8071

0.8126
0.8100

0.8127
0.8101

(0.0381)
(0.0374)

(0.0363)
(0.0356)

(0.0367)
(0.0359)

(0.0138)
(0.0137)

(0.0127)
(0.0127)

(0.0128)
(0.0128)

σ̂
υ

0.9467
0.9458

0.8869
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Figure 4.4: Estimation of β̂(.) with W d based on kNN with 3 neighbors and n = 400

Appendix

Appendix A.

A.1. The first derivatives of the log-likelihood function lnL̃ are:

• ∂lnL̃n(θ)
∂λ

= 1
σ2
ξ

(WnYn)′ξn(θ)− tr[WnS
−1
n ];

• ∂lnL̃(θ)
∂β?

= 1
σ2
ξ

ψpnξn(θ);

• ∂lnL̃(θ)
∂vec(Γ) = (Σ−1

ε ⊗ U ′n)vec(Zn − UnΓ)− 1
σ2
ξ

⊗ (U ′nξn(θ));

• ∂lnL̃(θ)
∂σ2

ξ

= − n

2σ2
ξ

+ 1
2σ4

ξ

ξn(θ)′ξn(θ);

• ∂lnL̃(θ)
∂δ

= 1
σ2
ξ

ξn(θ)′ξn(θ);

• ∂lnL̃(θ)
∂τ

= −n2
∂ln|Σε|
∂τ

− 1
2
∂

∂τ
tr[Σ−1

ε εn(Γ)′εn(Γ)],

where ξn(θ) = SnYn−ψpnβ?− εn(Γ) and εn(Γ) = Zn−UnΓ. Note that the J-dimensional
vector ∂ln|Σε|

∂τ has the j-element of tr(Σ−1
ε

∂Σε

τj
) and ∂

∂τ tr[Σ−1
ε εn(Γ)′εn(Γ)] has its jth ele-

ment −tr
(
Σ−1
ε

∂Σε
∂τj

Σ−1
ε εn(Γ)′εn(Γ)

)
for j = 1, . . . , J .
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The expectation of the log-likelihood of (4.19) presented in Section 4.3 is:

1
n
E
(
LnL̃n(θ)

)
= −ln(2π)− 1

2(σ2
ξ )−

1
n
ln|Σε|+

1
n
E(ln|Sn(λ)|)− 1

2tr(Σ
−1
ε Σε0)

− 1
2n

n∑
i=1

u′in(Γ0 − Γ)Σ−1
ε (Γ0 − Γ)′uin

− 1
2n

σ2
ξ0
σ2
ξ

E[tr(S−1
n
′Sn(λ)′Sn(λ)S−1

n )]

− 1
2σ2

ξ

(
(λ0 − λ), (β0 − β)′, ((Γ− Γ0)δ)′, (δ0 − δ)′

)
H1n

(
(λ0 − λ), (β0 − β)′,

(
(Γ− Γ0)δ

)
, (δ0 − δ)′

)′
where H1,n = 1

n
E

[(
Gn(ψpnβ0 + εnδ0), ψpn , Un, εn

)′(
Gn(ψpnβ0 + εnδ0), ψpn , Un, εn

)]
A.2 For the hessian matrix HL̃n(θ) we present the second derivatives of the lnL̃n(θ):

• ∂2lnL̃n(θ)
∂λ∂λ

= −tr[WnS
−1
n (λ)]2 − 1

σ2
ξ

(WnYn)′WnYn

• ∂2lnL̃n(θ)
∂λ∂β?

= − 1
σ2
ξ

ψ′pnWnYn

• ∂2lnL̃n(θ)
∂λ∂vec(Γ) = 1

σ2
ξ

δ ⊗ (U ′nWnYn)

• ∂2lnL̃n(θ)
∂λ∂σ2

ξ

= − 1
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ξ

(WnYn)′ξn(θ)

• ∂2lnL̃n(θ)
∂λ∂τ
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• ∂2lnL̃n(θ)
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ξ

εn(Γ)′(WnYn)

• ∂2lnL̃n(θ)
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ξ

ψ′pnψpn

• ∂2lnL̃n(θ)
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ξ

⊗ δ(U ′nψpn)

• ∂2lnL̃n(θ)
∂β∂σ2

ξ

= − 1
σ4
ξ

ψ′pnξn(θ)

• ∂2lnL̃n(θ)
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= 0

• ∂2lnL̃n(θ)
∂β?∂δ′

= − 1
σ2
ξ

ψ′pnεn(Γ)

• ∂2lnL̃n(θ)
∂vec(Γ)∂vec(Γ)′ = −Σ−1

ε ⊗ (U ′nUn)− 1
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ξ

δδ′ ⊗ (U ′nUn)
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• ∂2lnL̃n(θ)
∂vec(Γ)∂σ2

ξ

= 1
σ4
ξ

δ ⊗ (U ′nξn(θ))

• ∂2lnL̃n(θ)
∂vec(Γ)∂τ ′ = [Ip2 ⊗ (U ′nξn(θ))] ∂vec(Σ

−1
ε )

∂τ ′

• ∂2lnL̃n(θ)
∂δ∂vec(Γ)′ = − 1

σ2
ξ

Ip2 ⊗ (U ′nξn(θ)) + 1
σ2
ξ

δ ⊗ (U ′nεn(Γ))

• ∂2lnL̃n(θ)
∂σ2

ξσ
2
ξ

= n

2σ4
ξ

− 1
σ6
ξ

ξn(θ)′ξn(θ)

• ∂2lnL̃n(θ)
∂σ2

ξ∂τ
= 0

• ∂2lnL̃n(θ)
∂σ2

ξ∂δ
= − 1

σ2
ξ

ξn(θ)′ξn(θ)

• ∂2lnL̃n(θ)
∂τ∂τ ′

= −n2
∂2ln|Σε|
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− 1
2
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tr
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Σ−1
ε εn(Γ)′εn(Γ)
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• ∂2lnL̃n(θ)

∂τ∂δ′
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• ∂2lnL̃n(θ)
∂δ∂δ′

= − 1
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ξ

ξn(θ)′ξn(θ)

where ∂2ln|Σε|
∂τ∂τ ′

is a J × J matrix with the (j, k)th element of ∂2ln|Σε|
∂τj∂τk

=

−t
(

Σ−1
ε

∂Σε

∂τk
Σ−1
ε

∂Σε

∂τj

)
and the (j, k)th element of ∂2

∂τ∂τ ′
= −tr

[
Σ−1
ε εn(Γ)′εn(Γ)

]
is
∂2

∂τj∂τk
tr
[
Σ−1
ε εn(Γ)′εn(Γ)

]
= tr

(
Σ−1
ε

(
∂Σε

∂τk
Σ−1
ε

∂Σε

∂τj
+ ∂Σε

∂τj
Σ−1
ε

∂Σε

∂τk

)
× Σ−1

ε εn(Γ)′εn(Γ)
)

for j, k = 1, . . . , J .

Thereupon we can define the information matrix of the QMLE In = E

(
∂2lnL̃n(θ0)
∂θ∂θ′

)
as:

In =



Iλλ I ′λβ I ′λvec(Γ) −E[tr(Gn)] 0 I ′λδ
∗ ψ′pnψpn δ′0 ⊗ (ψpnU2n) 0 0 0
∗ ∗ Ivec(Γ)vec(Γ′) 0 0 0
∗ 0 0 − n

2σ2
ξ0

0 0

0 0 0 0 Iττ ′ 0
∗ 0 0 0 0 −nΣε0


with
Iλλ = −σ2

ξ0tr
[
E(G2

n +GnG
′
n)
]
− E [(ψpnβ0 + εnδ0)′G′n(ψpnβ0 + εnδ0)] ;

Iλβ = −ψpnE(Gnψpnβ0 +Gnεnδ0) ;
Iλvec(Γ) = δ0 ⊗ [U ′nE(Gnψpnβ0 +Gnεnδ0)]
Iλδ = −E [ε′nGn(ψpnβ0 + εnδ0)];
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Ivec(Γ)vec(Γ′) = −(σ2
ξ0Σ−1

ε + δ0δ
′
0)⊗ (U ′nUn) ;

Iττ
′ = −

nσ2
ξ0

2 tr

(
Σ−1
ε0
∂Σε0
∂τk

Σ−1
ε0
∂Σε0
∂τj

)
, for j, k = 1, . . . , J
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Résumé en français

Contrairement au Chapitres 3 et 4 où la dépendance spatiale est considérée au niveau de
la variable indépendante du modèle, dans ce chapitre nous incorporons cette dernière au
niveau de l’erreur afin de tenir compte d’une hétéroscédasticité spatiale entre les termes
d’erreurs. De plus, le modèle proposé est plus flexible car il contient une partie non linéaire
entre des variables explicatives et celle à expliquer. En effet, nous nous intéressons à un
modèle partialement linéaire à choix binaire avec hétéroscédasticité spatiale et proposons
une approche d’estimation récursive.

Nous supposons que nous disposons d’observations d’un vecteur aléatoire (Y,X,Z), col-
lectées en des localisations spatiales {s1, . . . , sn} (n ∈ N) appartenant à un treillis I ∈ RN
(N ≥ 2) et situées à une distance minimale ρ les unes des autres, c.-à-d. ∀ si, sj ∈ I,
‖si− sj‖ ≥ ρ avec ρ > 0. On suppose que X et Z sont des variables explicatives à valeurs
dans les sous-ensembles compacts X ⊂ Rp(p ≥ 1) et Z ⊂ Rd(d ≥ 1), respectivement, et
considérons un modèle partiellement linéaire de la variable indépendante latente Y ∗ liée à
Y :

Y ∗si = XT
siβ0 + g0(Zsi) + σ(si, λ0)εsi , i = 1, . . . , n (5.1)

avec
Ysi = I

(
Y ∗si ≥ 0

)
, 1 ≤ i ≤ n, (5.2)
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où I est la fonction indicatrice. Le vecteur de paramètres β0 (p× 1) appartient à un sous-
ensemble compact Θβ ⊂ Rp et g0(·) est une fonction inconnue à valeurs dans un espace de
fonctions G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
, avec C2(Z) est l’espace de fonctions

deux fois différentiables de Z à R et C est une constante positive. Les variables εsi sont
supposées indépendantes et identiquement distribuées, de distribution normale standard
qu’on note Φ(·). Par soucis de simplicité nous noterons dans la suite l’indice si par i, à la
place de Ysi , Xsi et Zsi , nous écrirons Yin, Xin et Zin, respectivement. La fonction σ(·, ·)
est strictement positive et décrit une éventuelle hétéroscédasticité spatiale à l’aide de λ0,
un vecteur de paramètre (q × 1, q ≥ 1) à estimer.

Notre objectif est d’estimer le modèle (5.1) avec l’approche de Severini & Staniswalis
(1994) qui décompose le problème en deux étapes : l’estimation paramétrique de β0 et λ0
et suivie de celle non paramétrique de g0(·). Pour ce faire, remarquons qu’à partir (5.2),
l’espérance de Yin, étant donné (Xin, Zin), est définie par :

E0 (Yi|Xin, Zin) = Φ
(
XT
inβ0 + g0(Zin)
σ(si, λ0)

)
, i = 1, . . . , n (5.3)

Ainsi pour chaque β ∈ Θβ, λ ∈ Θλ, z ∈ Z et η ∈ R, nous définissons l’espérance
conditionnelle par rapport à Zin du logarithme de la fonction de vraisemblance de Yin
(1 ≤ i ≤ n, n = 1, 2, . . .), comme :

H(η;β, λ, z) = E0

(
L
(

Φ
(
η +XT

inβ

σ(si, λ)

)
;Yin

)∣∣∣∣∣Zin = z

)
, (5.4)

avec L(u; v) = log
(
uv(1− u)1−v) et nous considérons que H(η;β, λ, z) est indépendante

de i et de n. Pour tout β ∈ Θβ, λ ∈ Θλ et z ∈ Z fixé, soit gβ,λ(z) la solution par rapport
à η de

∂

∂η
H(η;β, λ, z) = 0. (5.5)

En pratique, g0(·) n’est pas connue, on l’estime via la méthode de vraisemblance pondérée,
à l’aide de (5.5), pour θT = (βT , λ) fixé et z ∈ Z. Soit ĝθ(·) l’estimateur de gθ(·) ainsi
obtenu, solution par rapport à η de :

n∑
i=1

∂

∂η
L
(

Φ
(
η +XT

inβ

σ(si, λ)

)
;Yin

)
K

(
z − Zin
bn

)
= 0, (5.6)

où K(·) est un noyau de Rd à R+ et bn une fenêtre de lissage qui dépend de n.

Après avoir estimé la partie non-paramétrique, nous utilisons ĝθ(·) pour construire le profil
de vraisemblance afin d’estimer θT en maximisant :

Ln(θ | ĝθ) =
n∑
i=1

Yi log
(

Φ
(
XT
inβ + ĝθ(Zi)
σ(si, λ)

))
+ (1− Yi) log

(
1− Φ

(
XT
inβ + ĝθ(Zi)
σ(si, λ)

))
.

L’estimateur de θ0 est alors donné par :

θ̂ = argmaxθ∈ΘLn(θ | ĝθ). (5.7)

L’inconvénient de l’estimateur ĝθ(·) via (5.6) est que le biais est plus important pour un
z proche des limites de Z, ce qui peut avoir un impact sur la qualité de l’estimateur θ̂
obtenu par (5.7). Pour remédier à ce problème, nous utilisons les observations Zi éloignées
des bords de Z pour maximiser Ln(θ | ĝθ). On en déduit par la suite l’estimateur final
ĝ(·) = ĝθ̂(·). L’algorithme d’estimation est donné en Section 5.3.
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Après avoir défini les estimateurs, nous donnons des indications pour établir leur com-
portement asymptotique sous certaines conditions :

θ̂
P−→ θ0, ||ĝθ̂(·)− g0(·)|| = Op(n−1/4), avec n→∞ (5.8)

et
√
n(θ̂ − θ0)→ N(0, σ2

0Σ−1
0 ), où Σ0 = E0

{
∂2

∂θiθj
Ln(θ|ĝθ(·))

}
Une étude numérique est menée sur des données simulées en Section 5.4 pour étudier la
performance des estimateurs proposés pour échantillons de taille finie.

5.1 Introduction
When analyzing data in order to decide among a set of choices or even to classify objects,
some usual statistical techniques are discrete choice models or qualitative choice models.
Among these kind of models one may cite; binomial or multinomial choice models largely
studied in the econometric literature. These models are particular cases of regression
models where the response variable is qualitative and the model expressed as a linear
combination of explicative variables.

This kind of models is of interest in this contribution. Namely, we focus on estimating the
relationship between a qualitative dependent variable Y and a set of independent variables
X given a spatial random sample of same distribution as (Y,X). The particular model
considered is a spatial partial linear choice model with a non-linear component in the same
spirit as the generalized additive model of Hastie & Tibshirani (1990), considered and ex-
tended in several directions by Severini & Staniswalis (1994), Carroll et al. (1997),Ruppert
et al. (2003), Wong et al. (2014), among others.

A number of technical and practical investigations have been dedicated to handle spatial
heterogeneity (see Anselin (1988, 1990), McMillen (1992) among others), spatial depen-
dence or autocorrelation (Anselin (2002), Wang et al. (2013)) or spatial heteroskedasticity
(Anselin & Rey (1991), Baltagi et al. (2003)) issues in regression models. The case of
spatial heterogeneity in partial linear choice models is the baseline of this contribution.

Integrating spatial dependency in discrete choice models where agents must make decisions
or choices, is an active area of research with applications in various areas, such as; energy,
housing, agriculture, economics, environmental sciences, transportation, urban systems,
...

Several extensions of basic choice models and techniques are given in the literature since
non-spatial approaches yield inconsistent estimates especially when estimating spatially
correlated error terms discrete choice models. The case of binary discrete choice models
with spatial error dependency is the center of a vast literature. To the best of our knowl-
edge, the work of Case (1992) on neighbor influence on farmers attitude facing the use of
technological tools, first proposed a consistent maximum likelihood estimate of a Probit
model with spatial autoregressive errors (Spatial Error Probit model; SEPM). This model
was investigated by Pinkse & Slade (1998) who used the generalized method of moments
(GMM) estimation. The authors also gave a test to detect spatial correlation on the dis-
turbances. McMillen (1992) proposed two estimation approaches of Probit model with
spatial autocorrelation; the first one is based on EM algorithm while the second one uses
weighted least squares method. More recently, a particular attention has been paid to Pro-
bit models with spatial errors, see for instance Fleming (2004),Beron & Vijverberg (2004),
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Holloway & Lapar (2007), Bhat & Sener (2009), Chakir & Parent (2009), Martinetti &
Geniaux (2017) and among others.

In this chapter, we adopt the formulation of Harvey (1976) with a multiplicative het-
eroskedasticity function, to propose a partially linear Probit model (PLPSH) with a spatial
disturbance variance. The estimation methodology is similar to the approach of Severini
& Staniswalis (1994) based on the concept of "generalized profile likelihood" of Severini
& Wong (1992). It consists on fixing first the parametric components and estimating the
non-parametric one using "the weighted likelihood method" and then incorporating the
obtained estimator to construct a "profile likelihood" to estimate the parametric compo-
nents.

To this aims, the chapter is structured in the following way. We expose the proposed
model in Section 5.2 and the estimation procedure and discuss asymptotic properties of
the estimators whereas Section 5.3 gives the estimates computation steps. Section 5.4
yields the finite sample properties of the estimates.

5.2 Model

We consider that at n spatial locations {s1, s2, . . . , sn} drawn from lattice I ∈ RN (N ≥ 2)
and located at a minimum distance ρ from each other; i.e ∀ si, sj ∈ I, ‖si − sj‖ ≥ ρ
with ρ > 0, observations of a random vector (Y,X,Z) are available. Assume that these
observations follow the partially linear model of a latent dependent variable Y ∗:

Y ∗si = XT
siβ0 + g0(Zsi) + σ(si, λ0)εsi , i = 1, . . . , n, (5.9)

with
Ysi = I

(
Y ∗si ≥ 0

)
, 1 ≤ i ≤ n, (5.10)

where I(·) is the indicator function. Let X and Z be explanatory random variables
taking values in the two compact subsets X ⊂ Rp(p ≥ 1) and Z ⊂ Rd(d ≥ 1), re-
spectively. The vector of unknown parameters β0 (p × 1) belongs to a compact subset
Θβ ⊂ Rp; and g0(·) is an unknown smooth function valued in the space of functions
G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
, with C2(Z) the space of twice differentiable

functions from Z to R and C a positive constant. Let εsi , i = 1 . . . , n be i.i.d with
marginal standard normal distribution Φ(·) with E(ε2

si) = σ2
0 = 1. For simplicity, let us

note in the following si by i when no confusion arises. Then, we write Xin, Yin and Zin
for Xsi , Ysi and Zsi respectively.

Following Harvey (1976), the multiplicative function of the disturbances variance σ(·, ·) is
known as a non-zero positive function. This function describes the spatial heteroskedas-
ticity at each location with respect to λ0; a q×1 (q ≥ 1) vector to be estimated. We adopt
the functional form of σ(·, ·) of Messner et al. (2014) who considered an extended logistic
model. He suggested to use σ(z, δ) = exp(zT δ) where δ is a vector of parameters and z
is the vector of input variables. We consider that, in our subset of locations si, there is a
set of k specific locations bi ∈ I (as hot spots), B = {b1, . . . , bk} having impacts on the
choice of individuals, namely:

σ(si, λ0) = exp (λ0dist(si, B)) ,

where λ0 ∈ R. The exponential function is used here as a simple way to ensure positive
values for σ(·, ·).
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The model (5.9) can be seen as a general case of several models. If one take σ(·, ·) = In,
where In is an identity vector, the model becomes the generalized partially linear model
(e.g. Severini & Staniswalis, 1994) or the classical generalized additive model of (Hastie &
Tibshirani, 1990). If g0(·) = 0, we obtain the regression model with a general multiplicative
variance function presented in Harvey (1976). The model (5.9) is an alternative of the
previously cited models by including the particular spatial heteroskedasticity considered
or incorporating a non-linearity component for more flexibility. To estimate (5.9), we
adopt the estimation approach of Severini & Staniswalis (1994), based on the concept of
generalized profile likelihood (e.g Severini & Wong, 1992). That is a recursive approach
consisting first on fixing the parametric parameter θ = (βT , λT )T and non-parametrically
estimate g0(·) using the weighted likelihood method. This last estimate is then used to
construct a profile likelihood to estimate θ0 = (βT0 , λT0 )T .

In what follows, using the n observations (Xin, Yin, Zin), i = 1, ..., n, we give the parametric
estimators of β0, λ0 and the non-parametric estimator of the smooth function g0(·). To
this end, we assume that, for all n = 1, 2, . . . and 1 ≤ i ≤ n; {εin} is independent
of {Xin} and {Zin}, and {Xin} is independent of {Zin}. We give also asymptotic results
according to increasing domain asymptotic. This consists of a sampling structure whereby
new observations are added at the edges (boundary points) compare to infill asymptotic,
which consists of a sampling structure whereby new observations are added in-between
existing observations. A typical example of an increasing domain is lattice data. An infill
asymptotic is appropriate when the spatial locations are in a bounded domain.

5.2.1 Estimation Procedure

As said before, the estimate procedure is based on the concept of a "generalized profile
likelihood" (Severini & Staniswalis, 1994). The technique separates the estimating problem
into two parts, which is an advantageous point in this approach. By equation (5.10), the
conditional expectation value under the true parameters (i.e., β0, λ0 and g0(·)) of Yin given
(Xin, Zin) is defined by:

E0 (Yi|Xin, Zin) = Φ
(
XT
inβ + g0(Zin)
σ(si, λ0)

)
, i = 1, . . . , n (5.11)

Thus for each β ∈ Θβ, λ ∈ Θλ, z ∈ Z and η ∈ R, we define the conditional expectation
on Zin of the log-likelihood of (5.11), for 1 ≤ i ≤ n, n = 1, 2, . . ., as

H(η;β, λ, z) = E0

(
L
(

Φ
(
η +XT

inβ

σ(si, λ)

)
;Yi
)∣∣∣∣∣Zin = z

)
, (5.12)

with L(u; v) = log
(
uv(1− u)1−v). Note that H(η;β, λ, z) is assumed to be constant over

i (and n). For each fixed β ∈ Θβ, λ ∈ Θλ and z ∈ Z, gβ,λ(z) denotes the solution in η of

∂

∂η
H(η;β, λ, z) = 0. (5.13)

Since gθ(·) is not available in practice, we need to estimate it. Therefore by (5.13) and for
fixed θT = (βT , λT ) ∈ Θ, the weighted likelihood method can estimate gθ(z), for z ∈ Z by
ĝθ(z), the solution in η of

n∑
i=1

∂

∂η
L
(

Φ
(
η +XT

inβ

σ(si, λ)

)
;Yin

)
K

(
z − Zin
bn

)
= 0, (5.14)



100
Chapter 5. Partially linear Probit models with spatial

heteroskedasticity

where K(·) is a kernel from Rd to R+ and bn is a bandwidth parameter.

Now, using ĝθ(·), we construct the Profile likelihood estimates of β0 and λ0. This latter is
given by:

Ln(θ | ĝθ) =
n∑
i=1

Yi log
(

Φ
(
XT
inβ + ĝθ(Zi)
σ(si, λ)

))
+ (1− Yi) log

(
1− Φ

(
XT
inβ + ĝθ(Zi)
σ(si, λ)

))
.

Hence, the estimator of θ0 is given by

θ̂ = argmaxθ∈ΘLn(θ | ĝθ). (5.15)

The estimate of g0 is then ĝθ̂.

A basic inconvenience of the estimator ĝθ(z) proposed in (5.14) is that the bias of ĝθ(z) is
high for z near the boundary of Z. Of course, this bias will affect the estimator of θ given
in (5.15) when some of the observations Zin are near the boundary of Z. A local linear
method, or more generally the local polynomial method (Fan & Gijbels, 1996), can be used
to reduce this bias. Another alternative is to use trimming (Severini & Staniswalis, 1994),
in which the profile likelihood function Ln(θ | ĝθ) is computed using only observations
associated with Zin that are away from the boundary. The advantage of this approach is
that the theoretical results can be presented in a clear form, but it is less tractable from
a practical point of view, in particular, for small sample sizes.

We give some indications to investigate infinite sample size properties of the estimators θ̂
and ĝ0(·) based on the following assumptions.

Assumption A1. θT = (βT , λ) takes values in a compact and convex set Θ = Θβ×Θλ ⊂
Rp × Rq and θT0 = (βT0 , λ0) is in the interior of Θ.

Assumption A2. (Smoothing condition). For each fixed θ ∈ Θ and z ∈ Z, let gθ(z)
denote the unique solution with respect to η of

∂

∂η
H(η; θ, z) = 0.

For any ε > 0 and g ∈ G, there exists γ > 0 such that

sup
θ∈Θ,z∈Z

∣∣∣∣ ∂∂ηH(g(z); θ, z)
∣∣∣∣ ≤ γ =⇒ sup

θ∈Θ,z∈Z
|g(z)− gθ(z)| ≤ ε. (5.16)

Assumption A3. For θ ∈ Θ and z ∈ Z, the functions gθ(z) and ĝθ(z), the solutions of
(5.13) and (5.14) respectively, satisfy

1. for all i, j = 0, 1, 2, i+ j ≤ 2,

∂i+j

∂θil∂θ
j
r

gθ(z) and ∂i+j

∂θil∂θ
j
r

ĝθ(z) exist and are finite for all 1 ≤ l, r ≤ p+ 1.

2. sup
θ∈Θ
‖ĝθ − gθ‖, sup

θ∈Θ
max

j=1,...,p+1

∥∥∥∥∥ ∂

∂θj
(ĝθ − gθ)

∥∥∥∥∥ and sup
θ∈Θ

max
1≤i,j≤p+1

∥∥∥∥∥ ∂2

∂θi∂θj
(ĝθ − gθ)

∥∥∥∥∥,
are all of order op(1) as n→∞.

Assumption A4. (Local dependence). The density fin(·) of Zin exists, is continuous
on Z uniformly on i and n and satisfies

lim inf
n→∞

inf
z∈Z

1
n

n∑
i=1

fin(z) > 0. (5.17)
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The joint probability density fijn(., .) of (Zin, Zjn) exists and is bounded on Z × Z, uni-
formly on i 6= j and n.

Assumption A5. The kernel K satisfies
∫
K(u)du = 1. It is Lipshitzian, i.e there is a

positive constant C such that

|K(u)−K(v)| ≤ C‖u− v‖ for all u, v ∈ Rd.

Assumption A6. The bandwidth bn satisfies bn → 0 and nb3d+1
n →∞ as n→∞.

Assumption A7. The multiplicative function σ(si, λ) are twice continuous differentiable

functions with respect to λ and sup
λ∈Θλ

∣∣∣∣∣σ−1(si, λ) + d

dλ
σ(si, λ) + d2

dλ2σ(si, λ)
∣∣∣∣∣ < ∞, uni-

formly on i and n.

Assumption A1 is standard and provides compactness condition. Assumption A2 is sim-
ilar to the one given by Severini & Staniswalis (1994) to ensure smoothness of H(·, ·, ·)
around its extrema point gθ(·). Assumption A3 is the non-parametric condition on g0(·).
Similar to assumption A7 in Robinson (2011), Assumption A4 is a generalization of the
classical assumption, infz f(z) > 0 in case of estimation probability density function f(·)
with identically distributed or stationary random variables. Assumption A7 requires the
standard deviations of the errors to be uniformly bounded away from zero with bounded
derivatives.

With assumptions A1 to A7 in place, one can give asymptotic results using similar lines
as Severini & Wong (1992) and Ahmed (2017), Chapter 6;

||ĝθ̂(·)− g0(·)|| = Op(n−1/4), n→∞

with ||g|| = sups∈Z |g(s)|,

θ̂
P−→ θ0 as n→∞

√
n(θ̂ − θ0)→ N(0, σ2

0Σ−1
0 ),

where,

Σ0 = E0

{
∂2

∂θiθj
Ln(θ|ĝ(·))

}
,

Σ0 equal to the marginal Fisher information for θ.

5.3 Computation of the estimates

The aim of this section is to outline in detail how the regression parameters β, the spatial
auto-correlation parameter λ and the non-linear function gθ can be estimated. We begin
with the computation of ĝθ(z), which plays a crucial role in what follows. Let us first
recall the estimation algorithm steps:

1. For each z and θ, ĝθ is obtained by solving (5.14) in η.

2. Estimate θ by solving ∂

∂θj
Ln(θ|ĝθ).
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3. Estimate g0(·) by solving again (5.14) in η using θ̂.

4. Repeat steps 2 and 3 until convergence.

The details of steps 2 and 3 are given in the following sections.

5.3.1 Computation of the non-parametric component estimate

An iterative method is needed to compute ĝθ(z) solution of (5.14) for each fixed θ ∈ Θ
and z ∈ Z. For fixed θT = (βT , λT ) ∈ Θ and z ∈ Z, let ηθ = gθ(z) and ψ(η; θ, z) denote
the left-hand side of (5.14), which can be rewritten as

ψ(η; θ, z) =
n∑
i=1

[σ(si, λ)]−1 Λ (Gi(θ, η)) [Yin − Φ(Gi(θ, η))]K
(
z − Zin
bn

)
, (5.18)

where

Gi(θ, η) = XT
inβ + η

σ(si, λ) and Λ(·) = Φ′(·)
(1− Φ(·))Φ(·) .

Consider the Fisher information:

Ψ(ηθ; θ, z) = E0

(
∂

∂η
ψ(η; θ, z)

∣∣∣∣
η=ηθ

∣∣∣∣∣ {(Xin, Zin), i = 1, . . . , n}
)

= −
n∑
i=1

[σ(si, λ)]−2 Λ (Gi(θ, ηθ)) Φ′ (Gi(θ, ηθ))K
(
z − Zin
bn

)
+

+
n∑
i=1

[σ(si, λ)]−2 Λ′ (Gi(θ, ηθ)) [Φ (Gi(θ0, η0)) −

Φ (Gi(θ, ηθ))]K
(
z − Zin
bn

)
(5.19)

Note that the second term in the right hand side of (5.19) is negligible when θ is near the
true parameter θ0. Because ψ(η; θ, z) = 0 when η = ĝθ(z), an initial estimate η̃ can be
updated to η† using Fisher’s scoring method:

η† = η̃ − ψ(η̃; θ, z)
Ψ(η̃; θ, z) . (5.20)

The iteration procedure (5.20) requests some starting value η̃ = η̃0 to ensure convergence
of the algorithm. To this end, let us adopt the approach of Severini & Staniswalis (1994),
which consists of supposing that for fixed θ ∈ Θ, there exists a η̃0 satisfying Gi(θ, η̃0) =
Φ−1(Yi) for i = 1, . . . , n. Knowing that Gi(θ, η̃0) = [σ(si, λ)]−1

(
XT
i β + η̃0

)
, we have

η̃0 +XT
i β = σ(si, λ)Φ−1(Yi), i = 1, ..., n. Then, (5.20) can be updated using the following

initial value:

η†0 = η̃0 −
ψ(η̃0; θ, z)
Ψ(η̃0; θ, z) =

∑n
i=1 [σ(si, λ)]−1 Λ(Ci)Φ′(Ci)

[
Ci − [σ(si, λ)]−1XT

i β
]
K
(
z−Zin
bn

)
∑n
i=1 [σ(si, λ)]−2 Λ(Ci)Φ′(Ci)K

(
z−Zin
bn

) ,

where Ci = Φ−1(Yi), i = 1, . . . , n, is computed using a slight adjustment because Yi ∈
{0, 1}. With this initial value, the algorithm iterates until convergence.
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Selection of the bandwidth

A critical step (in non- or semi-parametric models) is the choice of the bandwidth pa-
rameter bn, usually selected by applying some cross-validation approach. The latter was
adopted by Su (2012) in the case of a spatial semi-parametric model. Because cross-
validation may be very time consuming in some situations, as the partial linear model
considered, we adopt the following approach of Severini & Staniswalis (1994) for more
flexibility:

1. Consider the linear regression of Ci on Xi, i = 1, . . . , n, without an intercept term,
and let R1, . . . , Rn denote the corresponding residuals.

2. Since we expect E(Ri|Zin = z) to have similar smoothness properties as g0(·), the
optimal bandwidth bn is that of the non-parametric regression of the {Ri}i=1,...,n on
{Zin}i=1,··· ,n, chosen by applying any non-parametric regression bandwidth selec-
tion method. For this last regression bandwidth choice, we use the cross-validation
method of np R Package.

5.3.2 Computation of θ̂

Estimation of θ is a purely parametric problem for a given ĝθ, consisting to step 2 of the
previous Algorithm 5.3. For that, we give the gradient and hessian associated with the
maximization problem (5.15). The gradient is given by:

U(θ | gθ(·)) = ∂Ln
∂θ

(θ | ĝθ) + ∂Ln
∂g

(θ | ĝθ)
∂ĝθ
∂θ

, ∀ θ ∈ Θ. (5.21)

The first term in (5.21) is composed of the following partial derivatives with respect to β
and λ of the profile likelihood function Ln(· | ·):

∂Ln
∂β

(θ | ĝθ) =
n∑
i=1

[σ(si, λ)]−1 Λ (Gi(θ, ĝθ(Zi))) [Yi − Φ(Gi(θ, ĝθ(Zi)))]Xi, (5.22)

and

∂Ln
∂λ

(θ | ĝθ) = −
n∑
i=1

[σ(si, λ)]−1Gi(θ, ĝθ(Zi))Λ (Gi(θ, ĝθ(Zi)))×

[Yi − Φ(Gi(θ, ĝθ(Zi)))]
∂σ

∂λ
(si, λ). (5.23)

Concerning the second term in (5.21), the partial derivative with respect to g(·) of Ln(· | ·)
is given by:

∂Ln
∂g

(θ | ĝθ) =
n∑
i=1

[σ(si, λ)]−1Λ (Gi(θ, ĝθ(Zi))) [Yi − Φ(Gi(θ, ĝθ(Zi)))] . (5.24)

Let us now consider the derivative with respect to θ of the estimator ĝθ. Because
ψ(ĝθ(z); θ, z) = 0, if one differentiate the latter with respect to β and λ, then:

∂

∂β
ĝθ(z) = −

∑n
i=1 [σ(si, λ)]−2 ∆i(θ, z)XiK

(
z−Zin
bn

)
∑n
i=1 [σ(si, λ)]−2 ∆i(θ, z)K

(
z−Zin
bn

) ,
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and

∂

∂λ
ĝθ(z) =

∑n
i=1 [σ(si, λ)]−2 ∆i(θ, z) (Gi(θ, ĝθ(z)))K

(
z−Zin
bn

)
∂σ
∂λ (si, λ)∑n

i=1 [σ(si, λ)]−2 ∆i(θ, z)K
(
z−Zin
bn

)
+
∑n
i=1 [σ(si, λ)]−2 Λ (Gi(θ, ĝθ(z))) [Yi − Φ (Gi(θ, ĝθ(z)))]K

(
z−Zin
bn

)
∂σ
∂λ (si, λ)∑n

i=1 [σ(si, λ)]−2 ∆i(θ, z)K
(
z−Zin
bn

) ,

with

∆i(θ, z) = Λ′ (Gi(θ, ĝθ(z))) [Yi − Φ (Gi(θ, ĝθ(z)))]− Λ (Gi(θ, ĝθ(z))) Φ′ (Gi(θ, ĝθ(z))) .

Let us now define the (p + q) × (p + q) hessian matrix associated with the maximization
problem (5.15) by:

Γ(θ0 | gθ0(·)) = E0

(
d

dθ
U(θ | gθ(·))

∣∣∣∣
θ=θ0

∣∣∣∣∣ {(Xi, Zin), i = 1, . . . , n}
)

=

 Γ[p,p](θ0 | gθ0(·)) Γ[p,q](θ0 | gθ0(·))

ΓT[p,q](θ0 | gθ0(·)) Γ[q,q](θ0 | gθ0(·))

 ,
where the blocs matrices are given as follows. First the p× p matrix associated to differ-
entiation w.r.t β is:

Γ[p,p](θ0 | gθ0(·)) = E0

(
d2

dβdβT
Ln(θ | gθ(·))

∣∣∣∣∣
θ=θ0

∣∣∣∣∣ {(Xi, Zin), i = 1, . . . , n}
)

= −
n∑
i=1

ξ
(0)
i

{
Xi + ∂

∂β
gθ(Zi)

∣∣∣∣
θ=θ0

}{
Xi + ∂

∂β
gθ(Zi)

∣∣∣∣
θ=θ0

}T
,

where

ξ
(0)
i = [σ(si, λ0)]−2 Λ (Gi(θ0, g0(Zi))) Φ′(Gi(θ0, g0(Zi))), i = 1, . . . , n.

The p× q matrix associated to differentiation w.r.t β and λ is:

Γ[p,q](θ0 | gθ0(·)) = E0

(
d2

dβdλT
Ln(θ | gθ(·))

∣∣∣∣∣
θ=θ0

∣∣∣∣∣ {(Xi, Zin), i = 1, . . . , n}
)

= −
n∑
i=1

ξ
(0)
i

{
Xi + ∂

∂β
gθ(Zi)

∣∣∣∣
θ=θ0

}T

×
{
∂

∂λ
gθ(Zi)

∣∣∣∣
θ=θ0

−Gi(θ0, g0(Zi))
∂

∂λ
σ(si, λ)

∣∣∣∣
λ=λ0

}
.

The q × q matrix associated to differentiation w.r.t λ is:

Γ[q,q](θ0 | gθ0(·)) = E0

(
d2

dλdλT
Ln(θ | gθ(·))

∣∣∣∣∣
θ=θ0

∣∣∣∣∣ {(Xi, Zin), i = 1, . . . , n}
)

= −
n∑
i=1

ξ
(0)
i

{
∂

∂λ
gθ(Zi)

∣∣∣∣
θ=θ0

−Gi(θ0, g0(Zi))
∂

∂λ
σ(si, λ)

∣∣∣∣
λ=λ0

}T

×
{
∂

∂λ
gθ(Zi)

∣∣∣∣
θ=θ0

−Gi(θ0, g0(Zi))
∂

∂λ
σ(si, λ)

∣∣∣∣
λ=λ0

}
.

This hessian matrix then permits to give the parametric component estimate.
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5.4 Finite sample properties
In this section, we provide some simulation experiments to study the performance of the
proposed model, which highlights the importance of considering spatial dependence and
partial linearity. For that we use diverse schemes of parametrization to generate data using
the model of interest (PLPSH). We provide comparisons with other models: (i) the fully
linear Probit that accounts for some unknown heteroskedasticity (LPH), (ii) the partial
linear Probit without heteroskedasticity (PLP) and (iii) the ordinary linear Probit (LP).
GPLM R package is used to provide estimates for PLP model and for LPH model we use
the GLMX R package. In case of the basic Probit (LP), we use GLM function of STATS
R package.

The particularity of our model is that the dependency on the error terms counts on some
locations s1, . . . , sn, chosen here randomly in a 30 × 30 regular grid. We generate obser-
vations from the following spatial latent partial linear model:

Y ∗in = β1X
(1)
in + β2X

(2)
in + g0(Zin) + σ(si, λ0)εin,

Yin = I(Y ∗in > 0), i = 1, . . . , n (5.25)

where the (εin) are i.i.d standard Gaussian random variables. To describe the spatial
relation between errors, we generate a set B = 3 of spots in the 30 × 30 regular grid
and consider di as the minimum Euclidean distance between the location i and B spots,
thereby σ(si, λ0) = λ0× di. To account a partial linearity effect, we consider the following
three cases:

Case 1: The explanatory variables X(1) and X(2) are generated as pseudo N (0, 1) and
U [−2, 2], respectively, and the explanatory variable Z is equal to the sum of 48
independent random variables, each uniformly distributed over [−0.25, 0.25]. Here,
we use the non-linear function g(t) = t+ 2 cos(0.5πt).

Case 2: We consider the same variables as Case 2 and replace the non-linear function
by g(t) = cos(t).

Case 3: The explanatory variables X(1), X(2) and Z are generated as pseudo N (0, 1),
and we consider the linear function g(t) = 1 + 0.5t.

For all cases we take β1 = −1, β2 = 1 and different values of the spatial parameter λ, that
is, λ ∈ {0.2, 0.5, 0.9}. The bandwidth bn is selected using Severini & Staniswalis (1994)’s
approach detailed previously with Cni = Φ−1 (0.9Yni + 0.1(1− Yni)) , i = 1, . . . , n. The
Gaussian kernel is considered: K(t) = (2π−1/2) exp(−t2/2). The Monte Carlo simulation
is based on 200 replications where for each one we generate sample data with size 400 in
the different cases.

Tables 5.1 to 5.3 reports the results; the columns named Mean, Median and SD report
the average, the median, and the standards deviation, respectively of the replications.
Overall we notice that in all cases, the estimates procedures based on the proposed method
(PLPSH) of β1, β2 and λ outperform. However, the estimation of the heteroskedasticity
parameter is not very stable regarding the standard deviations in all cases. Therefore, in
all situations the proposed method gives performant non-parametric estimate presented
with blue line in Figure 5.1, compared to the estimate using PLP method given by green
line. The two models (PLP ignoring the spatial heteroskedasticity and PLPSH) estimates
(parametric and non-parametric) are similar in case of weak heteroskedasticity (λ = 0.2).
If λ increases the performance of PLP decreases which makes sense since this last ignore
the heteroskedasticity produced by σ(si, λ).
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However regarding the method of LPH that ignores the non-linear part and accounts some
unknown heteroskedasticity in the errors, the estimates of the parameters β1 and β1 are
inconsistent in particular for Case 1 with different spatial parameter λ because of its
non linear component. For Case 2 and Case 3 the parametric estimators have less bias
when λ = 0.2, small spatial heterogeneity compare to larger values of λ. When estimating
the data generated process Case 1 (with a non-linear function g(·)) by a ordinary Probit
modelization (PL), the parameters β1 and β2 are miss-estimated, compare to Case 1
where the function g(·) is slightly linear and Case 3 with a fully linear function g(·). As
for LPH, the estimates are improved when considering a small spatial heterogeneity on
the error terms.

Table 5.1: Case 1: g(t) = t+ 2 cos(0.5π × t), n = 400 and 200 replications.

λ Methods β1 = −1 β2 = 1 λ
Mean Median SD Mean Median SD Mean Median SD

0.2

PLPSH -1.00 -0.93 0.32 0.99 0.97 0.30 0.15 0.14 0.59
LPH -0.53 -0.53 0.08 0.52 0.52 0.06 - - -
PLP -1.01 -0.99 0.16 1.00 0.98 0.14 - - -
LP -0.50 -0.50 0.07 0.49 0.49 0.06 - - -

0.5

PLPSH -1.01 -0.93 0.36 0.99 0.94 0.33 0.44 0.43 0.61
LPH -0.48 -0.47 0.08 0.47 0.47 0.07 - - -
PLP -0.88 -0.88 0.16 0.87 0.86 0.14 - - -
LP -0.46 -0.46 0.08 0.45 0.44 0.07 - - -

0.9

PLPSH -1.03 -0.97 0.37 1.02 0.93 0.36 0.84 0.83 0.69
LPH -0.44 -0.44 0.09 0.44 0.44 0.07 - - -
PLP -0.74 -0.73 0.18 0.73 0.73 0.16 - - -
LP -0.43 -0.43 0.08 0.42 0.42 0.07 - - -

Table 5.2: Case 2: g(t) = cos(t), n = 400 and 200 replications.

λ Methods β1 = −1 β2 = 1 λ
Mean Median SD Mean Median SD Mean Median SD

0.2

PLPSH -1.05 -1.01 0.33 1.04 1.01 0.30 0.20 0.21 0.61
LPH -0.87 -0.87 0.12 0.86 0.87 0.10 - - -
PLP -0.98 -0.98 0.13 0.98 0.97 0.12 - - -
LP -0.86 -0.85 0.12 0.85 0.84 0.09 - - -

0.5

PLPSH -1.09 -1.02 0.41 1.10 1.01 0.42 0.55 0.54 0.61
LPH -0.76 -0.76 0.13 0.76 0.77 0.10 - - -
PLP -0.83 -0.83 0.14 0.84 0.83 0.12 - - -
LP -0.75 -0.75 0.12 0.75 0.76 0.10 - - -

0.9

PLPSH -1.07 -1.01 0.39 1.08 1.00 0.44 0.91 0.88 0.65
LPH -0.64 -0.65 0.15 0.65 0.65 0.12 - - -
PLP -0.69 -0.70 0.15 0.70 0.69 0.14 - - -
LP -0.64 -0.64 0.14 0.64 0.64 0.11 - - -

5.5 Conclusion
In this chapter, we propose a semi-parametric model for a binary outcome considering
heteroskedasticity. The proposed model can be considered as a framework for tools
where the outcome might be a policy, a decision, a transition, or otherwise binary out-
come with spatial heteroskedastic errors. For the model inference, we adopt the approach
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Table 5.3: Case 3: g(Z) = 1 + 0.5× t, n = 400 and 200 replications.

λ Methods β1 = −1 β2 = 1 λ
Mean Median SD Mean Median SD Mean Median SD

0.2

PLPSH -1.08 -1.04 0.34 1.08 1.01 0.36 0.25 0.21 0.61
LPH -0.86 -0.86 0.12 0.86 0.85 0.12 - - -
PLP -0.98 -0.98 0.15 0.98 0.97 0.15 - - -
LP -0.84 -0.84 0.10 0.84 0.83 0.11 - - -

0.5

PLPSH -1.08 -1.04 0.28 1.08 1.03 0.32 0.6 0.58 0.63
LPH -0.76 -0.76 0.11 0.76 0.75 0.13 - - -
PLP -0.85 -0.85 0.14 0.85 0.84 0.14 - - -
LP -0.75 -0.75 0.11 0.75 0.75 0.12 - - -

0.9

PLPSH -1.06 -1.01 0.38 1.06 1.04 0.39 0.98 0.97 0.66
LPH -0.64 -0.64 0.14 0.64 0.64 0.14 - - -
PLP -0.69 -0.68 0.16 0.69 0.69 0.15 - - -
LP -0.63 -0.63 0.13 0.63 0.62 0.13 - - -
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Figure 5.1: Top is the non-parametric estimate in Case 1, the middle is for Case 2 while
the bottom goes to Case 3.

of Severini & Staniswalis (1994) based on the concept of generalized profile likelihood.
One of the advantage of this technique is that estimation procedure is divided into two
problems; parametric and nonparametric parts. We outline some regularity conditions
presented by Severini & Wong (1992) and some baseline about consistency and asymp-
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tomatic normality of the estimators. Finite sample study compares the performance of the
proposed estimate to some existing techniques as the basic linear Probit, partially linear
probit and the linear probit with unknown heteroskedasticity. Results show that for weak
spatial heteroskedasticity, the proposed methodology and the partially linear method give
good results for parametric component estimates while for large spatial heteroskedastic-
ity the proposed methodology outperformed. This is not surprising since the non-spatial
partially linear model does not account the spatial dependence incorporated in the data
generated process compare to the proposed method. However the proposed heteroskedas-
ticity parameter estimate suffers from large standard deviations, probably caused by the
non-parametric estimation step that should be improved in a future work. Applications
to many real data situations may be investigated in a number of fields like economics,
political science, biostatistic, epidemiology, ...
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Résumé en français
Ce chapitre est de nature empirique et donne une application de certains modèles
économétriques spatiaux vus dans les chapitres précédents pour modéliser la relation entre
la qualité de l’environnement et le développement économique via la fameuse théorie de
la courbe de Kuznet. Nous nous intéressons en particulier à des données d’emission de
polluants et économiques sur les 290 municipalités de la Suède durant la période allant de
2005 à 2013. Ces données ont été traitées dans Marbuah & Amuakwa-Mensah (2017) qui
ont utilisé une approche basée sur des modèles de panel SAR, SEM, Durbin, ...

L’approche utilisée ici est similaire à celle de ces auteurs, la différence réside au fait que
nous avons utilisé en plus de la méthodologie de Marbuah & Amuakwa-Mensah (2017) une
réduction de la dimension des co-variablse du modèle pour faire face à la forte colinéar-
ité de ces variables. L’approche utilisé n’est pas fonctionnelle car les séries temporelles
des 290 municipalités sont de courte période à savoir 2005-2013. Les résultats obtenus
sont également comparés avec ceux trouvés par Marbuah & Amuakwa-Mensah (2017).
Cependant, le travail de ce chapitre est largement motivé par l’approche de réduction de
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dimension utilisée dans les Chapitres 3 et 4. Une perspective est d’étendre les approches
fonctionnelles développées dans cette thèse avec des données du type utilisées dans ce
chapitre sur une plus longue période.

6.1 Introduction

During the past decades, the remarkable economic development and the life quality im-
provement have not been without a dark side. In fact environmental degradation remains
intimately connected to economic growth. Many authors tried to give theoretical and em-
pirical evidence to the relation between economic growth and environmental degradation,
and one of the most dominant approach is the Environmental Kuznets Curve Hypothesis
(EKC). Seminal papers that studied on this relation were Grossman et al. (1991, 1993),
Grossman & Krueger (1995) and Torras & Boyce (1998) among others, even thought the
primary concept is from Kuznets (1955). The EKC’s hypothesis describes the relationship
between environmental quality (air quality, emissions, ...) and the income as an inverted
U-shape function, that is at lower level of income, environmental degradation increases
but once a threshold point of a high level of income is reached, improvement of the envi-
ronmental quality arises. In fact, good economic growth and technological progress may
offer great resources to finance investment in new technologies for a friendly environment.

As much as the EKC hypothesis was supported for many years, it received serious criticisms
in theoretical or econometrical point of view (see Stern (2004), Kijima et al. (2010), Kaika
& Zervas (2013), ...). The EKC approach is statistically not robust, and the U-shaped
relation cannot hold for all pollutants emission. This weakness was subsequently confirmed
by many authors. In addition, the approach is generally limited to single country studies,
while some studies founded that a number of pollutants peaked at an income level closed
to the world mean per capita income. This last implies that for a given country having
income more than the world mean per capita income will improve the environmental
quality, or the distribution of the income is very skewed to the left which means that this
improvement does not have a major affect.

In EKC theory, usually the conducted studies used only historical times series and focus
only on dependence in time but over-look the fact that pollutants emissions are spatially
correlated. Omitting spatial interaction effects in emission in a country of world level
may lead to inconsistent and insufficient estimates of the model of interest. Many authors
pointed out that considering spatial effects in evaluating the impact of economic growth
on environmental quality is strongly recommended (see among others Bockstael (1996),
Goodchild et al. (2000) Giacomini & Granger (2004), Halkos & Tzeremes (2011), ...).

The aim of this chapter is to asses the relationship between income and pollutant emissions
across all Sweden municipalities within the framework of spatial panel data using principal
component analysis to handle the high correlation between the economic and environmen-
tal covariates of interest. In fact, the methodology of this work is related to Marbuah &
Amuakwa-Mensah (2017), but is slightly different from a methodological point of view, in
particular we shed light on the problem of collinearity of covariates of the models by using
a dimension reduction method based on principal component analysis.

In Section 6.2, we give a state of art on the relationship between economic activity and
environment within the EKC theory in a spatial context. We then present in Section 6.3
the data and the methodology used in this contribution, whereas Section 6.4 reports the
model estimation results and compares them with those obtained by using Marbuah &
Amuakwa-Mensah (2017)’s methodology. A conclusion and some perspectives are given
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in Section 6.5.

6.2 Economic growth and environmental quality and spatial
econometrics

In this section, we give a brief survey of literature on the link between economic outcomes
and environment using the hypothesis of EKC in a context of spatial data analysis. In
a context of EKC hypothesis, many studies were in continuation with Grossman et al.
(1991, 1993) when estimating the income level that promotes air quality, usually called
the break point or the returning point. Grossman & Krueger (1995) founded a returning
point varies between 4, 772$ and 5, 965$ level income in 1990. Moreover List & Gallet
(1999) observed that reduction of the pollutants sulfur dioxide (SO2), nitrogen oxides
(NOx) starts at an income level close to 9, 000$ and 21, 000$, respectively in 1987 while
Dinda (2004) estimated that the turning point occur between 3, 000$ and 10, 000$ level
income per capita. Panayotou (2003) reported in a study that several air pollutants such
as sulfur dioxide (SO2), nitrogen oxides (NOx) and particulate matter (PM) have a turning
point income ranging between 3, 000$ and 5, 000$ per capita. One can refer to more recent
studies as Everett et al. (2010), Sulemana et al. (2017), among others.

Various researches doubted about the validity of the EKC hypothesis and the existence
of the U-shaped relationship between environment quality and economic growth. Shafik
(1994) showed that the curve of urban waste and carbon emission doesn’t decline at a
high income level but rises monotonically with income per capita. This was confirmed by
Bradford et al. (2005), who claimed that EKC holds only for six pollutants from fourteen
extracted from data used earlier by Grossman & Krueger (1995). Furthermore, Vin-
cent (1997) tested the environmental Kuznets curve within a developing country, namely
Malaysia and they founded that any of the six pollutants emission studied has decreased
at a certain high income level. More recently Stern (2017), critically reviewed the EKC
hypothesis and discussed a large game of innovative alternative approach.

We remark that studies which validated EKC hypothesis concerned mostly developed
countries, that may lead to investigate strategies which recompense somehow the degra-
dation of the environment quality. Cole (2004) claimed that in developing countries, high
pollution may be caused by exportation in direction to countries with higher income. This
can be a consequence of the EKC shape in developed countries since they export their pol-
lution to other countries. Within the same spirit, Stern (2002) and Dinda (2004) argued
that there is a leakage of dirty production from developed to developing countries.

All the works discussed above did not take into account some potential spatial interactions
on pollution and economic growth even if pollutants emissions are correlated in space not
only in time (Elsom, 1978; Deng et al., 2017; Wang et al., 2018). In fact, it is well know
that if there are spatial interactions, not taking them into account may lead to biased and
inconsistent models, as pointed out by Keene & Deller (2015), Rupasingha et al. (2004),
Maddison (2006), Burnett et al. (2013a,b), Aklin (2016), Halkos & Tzeremes (2011),...
The spatial econometrics modeling is then an alternative to basic EKC model when po-
tential spatial correlations exist, see the seminal papers of Maddison (2006), Burnett et al.
(2013a).

The basic technique of EKC model is to involve in the regression model with per capita
pollutant emissions as response and income per capita, its squared value and a time trend
as covariates. A more complex EKC model adds other covariates such as population
density, social capital, income inequality. Collinearity that may occur between predictor
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are always untold even it is crucial from the econometric point of view at least for three
major reasons:

• the coefficients may seem insignificant, even when a significant relationship exists
between the predictors and the response variable,

• the strongly correlated predictor coefficients vary considerably from one sample to
another,

• when variables of a model are highly correlated, the removal of one of them will have
a considerable impact on the estimated coefficients of the others. The coefficients of
strongly correlated terms may even have the wrong sign.

In this chapter, we attempt to model pollution-income relationship with the most popu-
lar emission; carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides (NOx), carbon
monoxide (CO), particulate matter (PM2.5 and PM10) and total suspended particulates
(TSP) by taking into account the correlation between covariates.

6.3 Spatial econometric models to model relation between
environmental quality and economic growth in Sweden
municipalities

6.3.1 Database

Database used in this study (provided by Marbuah & Amuakwa-Mensah (2017)) is in the
format of a balanced panel data for 290 municipalities (located by latitude and longitude)
in Sweden between 2005 and 2013. It contains 6 pollutants emission variables (SO2,
NOx, CO, PM2.5, PM10 and TSP ) and the greenhouse gas (CO2) measured in tonnes
provided by the Swedish national emissions database. In the following when using the
term pollutant emission, we mean one of these pollutants including CO2. In addition
we have population density expressed in square kilometer for each municipality and the
mean income per capita earned by residents aged 20 years and above in each municipality.
Density and income data are provided by Statistic Sweden website1 and used to calculate
the income per capita. Table 6.3.1 reports the descriptive statistics and the definition of
the variables.

6.3.2 Empirical methods

Recall that the objective of this work is to handle the correlation between economic and
social covariates when studying the spatial effect in the analysis of emissions. As a first step
one may plot the map of different emission variables to see if some clusters across space are
present or not. But rather than visualizing only clusters, we can also have a quantitative
spatial clustering measure. For that we can apply the famous spatial autocorrelation test
based on Moran’s I index. It was introduced first by Moran (1948, 1950) and later on
by Cliff & Ord (1973, 1981) who suggested a new comprehensive formula of Moran’s I
statistic which is bounded by 1 and −1 as the basis correlation coefficient of Pearson. A
positive Moran’s I statistic indicates a positive spatial autocorrelation, a negative value
means a negative spatial autocorrelation and if it tends to zero, there is absence of spatial
autocorrelation. An alternative test is based on the Geary’s C statistics of Geary (1954),
less robust than Moran’s I test. The results of the both tests are always interpreted in

1https://www.scb.se
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Table 6.1: Descriptive statistics
Variable Description Mean Std.dev Min Max N
CO2pc Carbon dioxide per capita (tonnes) 6.464 13.591 0.3807 236.184 2610
SO2pc Sulfur dioxide per capita (tonnes) 0.0049 0.0112 0.00005 0.1054 2610
NOxpc Nitrogen oxides per capita (tonnes) 0.0264 0.0251 0.0013 0.2671 2610
COpc Carbon monoxide per capita (tonnes) 0.0890 0.0417 0.0083 0.3057 2610
PM2.5pc Particulate matter per capita (< 2.5

micrometers; tonnes)
0.0043 0.0050 0.0002 0.0783 2610

PM10pc Particulate matter per capita (< 100
micrometers; tonnes)

0.0062 0.0059 0.0006 0.0837 2610

TSPpc Total suspended particulate mat-
ter per capita (< 100 micrometers;
tonnes)

0.0069 0.0069 0.0011 0.0974 2610

Incomepc Real per capita mean income earned
in municipality by residents aged 20
years and older (Swedish Krona, SEK
2014 prices)

17597 13900 308.7 86908 2610

Popdens Total population density per sq. km 135.0 464.7 0.200 4917 2610

the context of a null hypothesis which assumes in our case that the analyzed pollutant
emission is distributed randomly among different municipalities.

The Moran or Geary statistics is a global index of spatial autocorrelation in the sense
that it provides summary about the overall spatial relationship over all locations here
municipalities. Another useful visualization tools to asses how similar is an observation
to its neighbors is the Moran scatter plot, first outlined in Anselin (1996). In this plot,
the horizontal axis is the pollutant emission and the vertical axis is based on the average
pollutant emission of neighbors (or spatial lag). The slope of the least squared regression
line that best fits the obtained points in the Moran scatter plot is nothing than the
Moran’s I index. The Moran scatter plot is centred on point (0, 0) since it takes variables
as deviations from their means and points are distributed into four quadrants that portray
different spatial association between a location i (located by latitude and longitude) and
its neighbors. The upper-right and the lower-left quadrant represent a positive spatial
association and we refer to them as respectively, high-high HH clustering which means in
our case study that a municipality with high emission is surrounded by other municipalities
with high emission too and low-low LL clustering which mean that a municipality with
low emission is surrounded by other municipalities with low emission too. In contrast the
upper-left and the lower-right correspond to a negative spatial association and we refer to
them as respectively, low-high LH clustering which means that a municipality with low
emission is surrounded by municipalities with high emission and high-low HL clustering
meaning that a municipality with high emission is surrounded by municipalities with low
emission. Compared to Moran’s I index which is a clue of the global spatial dependence
present in the dataset, Moran scatter plot gives more precision about spatial interactions
between locations (here municipalities) by the classification of the spatial autocorrelation
into four types (HH, LL, HL and LH). This feature makes the transition between global
and local spatial autocorrelation. So we can consider that a local form of the global index
indicates where clusters are located. This is know as local indicator of spatial association
(LISA) or local Moran’s I. This local index provides a local measure of similarity between
a location and its neighbors and also permits to detect hot (cold) spots using Getis-Ord
Gi*.
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The Moran spatial dependency (auto-correlation) method and other dependence tech-
niques rely on the concept of neighboring as pointed out in the first chapters. As usual, in
our case study the spatial correlation of each municipality to its neighborhood is modeled
by a spatial weight matrix constructed usually by geographic metric. It generally let Wn

this weight matrix, it may be obtained in different ways as discussed in Chapter 2. The
basic weight matrices are those based on contiguity, the inverse distances between spatial
units or the one based on the k−nearest neighborhood algorithm (KNN). In this study, we
ignore the contiguity type since Sweden has an island and for the KNN method we consider
that each municipality has at least k = 5 neighbors (see Marbuah & Amuakwa-Mensah
(2017) where several number of nearest neighborhood have been used by).

Following the conventional approach of spatial analysis, firstly we start by the classical
ordinary least squares (OLS) and then testing for eventual spatial dependence among the
error terms or the dependent variable. Specification of the classical OLS model is:

Yit = α+Xitβ + εit, εit ∼ N(0, σ2
i ), i = 1, . . . , n and t = 1, . . . , T (6.1)

where i and t are the individual (municipality) and timed index respectively. Yit is an
(n×1) dependent vector of variables and Xit is the (n×k) matrix of explanatory variables.
The parameters of interest in (6.1) are the scalar α and the (k×1) vector β. The EKC curve
can be model via the model (6.1) by incorporating the squared of explanatory variables
and other socio/economic variables. The resulting model in our case study is given by:

lnE = α+ β1 × lnIncpc+ β2 × lnIncpc2 + β3 × lnPopdens+ ε (6.2)

where lnE is n × 1 response vector of variables corresponding to the logarithm of the
pollutant emission (CO2, SO2, NOx, CO, PM2.5, PM10 or TSP) with three (n×1) vectors
of independent variables; lnIncpc is the log of income per capita, lnIncpc2 is the square
of the log income per capita and lnPopdens is the log of population density. This model
has been estimated in Marbuah & Amuakwa-Mensah (2017) without taking into account
a potential collinearity between the independent variables. To avoid consequences in case
of multicollinearity, we apply principal component analysis (PCA) on the three covariates
(standardized) lnIncpc, lnIncp2 and lnPopdens and we create new factor variables formed
by a linear combination of variables and their principal component coordinates, we retain
only coordinates corresponds to high factor loading (correlation between variable and fac-
tors greater than 0.5). The results are two uncorrelated factors; Factor1 highly correlated
with lnIncpc and lnIncp2, and Factor2 highly correlated with lnPopdens. Thus model
(6.2) can be transformed into:

lnE = α+ β1 × Factor1 + β2 × Factor2 + ε (6.3)

Using the two spatial weight matrices discussed earlier, we apply the Lagrange multiplier
(LM) of Anselin (1988) and robust-Lm (RLM) of Anselin (1996) tests on the residuals
of the OLS model (6.3) to test the hypothesis absence of spatial spillover effects. If the
tests fail to accept the null hypothesis of no spatial dependence, one of the 2 alternative
hypotheses should be admitted:

1. Hypothesis 1a (Spatial lag hypothesis): value observed in a particular location is
determined by the spatially average of values in neighbors locations.

2. Hypothesis 1b (Spatial interaction in the error hypothesis): error associated with
any observation in a particular location is determined by the spatially average of the
errors in neighbors locations.
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Hypothesis 1a is covered by the spatial lag model or the spatial autoregressive model
(SAR) given by:

lnE = α+ λW × lnE + β1 × Factor1 + β2 × Factor2 + ε (6.4)

where λ is the autoregressive parameter. Whereas Hypothesis 1b is covered by the spatial
error model (SEM) given by:

lnE = α+ β1 × Factor1 + β2 × Factor2 + u, u = ρW × u+ ε, ε ∼ N(0, σ2) (6.5)

where ρ is the autoregressive parameter. In the two case α, β1 and β2 are the scalar
parameters and W = Wn is the spatial weight matrix. Estimation of these two models
(6.4) and (6.5) with OLS can lead to inconsistent estimates of the covariates parameters
due to the spatial lagged variable. Alternative techniques are instrumental variable (IV),
generalized method of moment (GMM), or the ML method which is more recommended
in case where the distribution of the error is not specified. Maddison (2006) proposed that
the SEM model can be approximated by SAR model with an additional spatial lag in the
dependent variable. As a result, model (6.4) can be extended to the spatial Durbin (SDM)
form which is written as:

lnE = α+ λW × lnE + β1 × Factor1 + β2 × Factor2 (6.6)
+θ1W × Factor1 + θ2W × Factor2 + ε

where the scalars θ1 and θ2 are two more parameters to estimate. SAR, SEM and SDM are
special cases of the general model of Manski (Manski, 1993) which model the three pos-
sible interaction effects at the same time (endogenous, exogenous and correlated effects).
Technically, using the general model of Manski is the best strategy to test the different
spatial dependence effects but due identification issue, LeSage & Pace (2009) suggested
that the best option is SDM, that is excluding the spatially autocorrelated error term from
the general model. Elhorst (2010) noted that one strength of SDM is that it produces un-
biased coefficient and correct standard errors or t-values of the coefficient estimates wether
the true data generation process is a spatial lag or spatial error model. Furthermore SDM
requires no prior restriction on the magnitude of potential spatial spillover effects.

SDM can be simplified to the SAR or SEM model by canceling either the exogenous
interaction effect and imposing θ = (θ1, θ2)′ = 0 or deleting the correlated effect and
imposing θ = −ρβ, where β = (β1, β2)′. If the LM test rejects the estimated OLS model
(6.3) in favor to the SAR, or the SEM or both models, then the SDM should be estimated
and Wald test may be performed to test H0 : θ = 0 and H0 : θ = −ρβ. If the test
couldn’t rejected, then SAR (Hypothesis 1a) or SEM (Hypothesis 1b) model fits better
the data than SDM. To test the hypothesis whether spillover effects exist or not we may
interpret directly the coefficient estimates but according to LeSage & Pace (2009) this
may lead to erroneous conclusions. A partial derivative interpretation of the impact of the
change of covariates on the dependent variable is more realistic for testing the spillover
effects. Note that the SDM model (6.6) can be rewritten into:

lnE = (In − λW )−1(ιnα+Xβ +WXθ + ε), (6.7)

where X = (Factor1, Factor2), β = (β1, β2)′, θ = (θ1, θ2)′ and In is an identity matrix of
order n. The partial derivatives of (6.7) with respect to the r’th explanatory variable is
given by:

∂lnE

∂x′r
= (In − λW )−1(Inβr +Wθr) (6.8)
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The derivative (6.8) have three important properties that can be interpreted in our case
study as follow: If an explanatory variable in municipality i changes, so will the emission
in other municipalities j (j 6= i). The first effect (change on i) is called a direct effect while
the second (changes on sites j 6= i) an indirect effect. the sum of these effects is denoted
the total effect.

6.4 Results and discussions

Figure 6.1 is a mapping of the different emission pollutants in all municipalities. It is
clearer that for all emission pollutant (CO2, SO2, NOx, CO, PM2.5, PM10 or TSP) there
is spatial heterogeneity with high levels concentrated in municipalities located in the north
part of the country. A global spatial dependency is given by both Moran’s I and Geary’s C
indexes given in Table 6.2. The p−values between brackets show a significant positive spa-
tial autocorrelation for all pollutants independently of the spatial weight matrix, namely
5−KKN for the matrix based on 5 nearest neighbors and ID for the matrix constructed
by the inverse of the euclidean distance between municipalities. This implies that munici-
palities with similar level of emission tend to be spatially clustered than being distributed
randomly.

Table 6.2: Spatial autocorrelation tests, based on KNN (k=5) and inverse distance (ID)
Moran’s I stat. Geary’s C stat.

Variables/Weight matrix 5-KNN ID 5-KNN ID
lnCO2pc 0.2210(0000) 0.1976(0000) 0.7363(0000) 0.7811(0000)
lnSO2pc 0.1790(0000) 0.1476(0000) 0.7859(0000) 0.8365(0000)
lnNOxpc 0.3162(0000) 0.2563(0000) 0.6456(0000) 0.7243(0000)
lnCOpc 0.5964(0000) 0.5311(0000) 0.4292(0000) 0.4888(0000)
lnPM2.5pc 0.4394(0000) 0.4192(0000) 0.5496(0000) 0.5808(0000)
lnPM10pc 0.4424(0000) 0.3943(0000) 0.5488(0000) 0.6048(0000)
lnTSPpc 0.4568(0000) 0.4454(0000) 0.5096(0000) 0.5349(0000)
p-values are in parentheses.

These results are confirmed by a Moran scatter plot given in Figure 6.2. Examining this
figure shows that the majority of the spatial association falls in the first and the third
quadrants, this characterizes positive spatial autocorrelation. For additional analysis, we
display cluster maps for emission pollutants averaged over 2005−2013. Significant clusters
associated to the four quadrant in the scatter plot are given in Figure 6.3 where the local
Moran’s I is plotted. Cluster maps in Figure 6.4 with different signification level, indicate
patterns of spatial clustering for hot spots (HH clustering) and cold spots (LL clustering)
for each pollutant. We notice also that a significant particular cluster exist for the CO
and TSP pollutants in the north part of Sweden.

We now turn to the econometric analyses, starting by estimation the OLS model (6.3)
for each pollutants. Results are reported in Table 6.3. Factor covariates are statistically
significant for all pollutants except for the coefficient Factor1 that regroups the income per
capita and its square that are statistically insignificant for PM2.5, PM1.0 and TSP. This
coefficient could be biased or inconsistent probably because of the presence of the spatial
dependence then estimating a spatial lag model or error model would be an appropriate
choice. In order to determine which specification is suitable, we consider the classic LM
and robust-LM test on the least-squared residuals for the two spatial weight matrices. As
shown in Table 6.3, both tests are statistically significant at a level of 1%, concluding that
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Table 6.3: Pooled OLS regression and test for spatial dependency
Independent
varibale

Dependent variables:
lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

Intercept 9.006∗∗∗ 1.490∗∗∗ 3.349∗∗∗ 4.800∗∗∗ 1.990∗∗∗ 2.303∗∗∗ 2.545∗∗∗
(0.103) (0.103) (0.106) (0.045) (0.009) (0.081) (0.086)

Factor1 −0.001 −0.010∗∗∗ 0.002∗ 0.003∗∗∗ 0.000 0.001 −0.001
(0.001) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001)

Factor2 −0.252∗∗∗ −0.153∗∗∗ −0.238∗∗∗ −0.358∗∗∗ −0.394∗∗∗ −0.300∗∗∗ −0.382∗∗∗
(0.14) (0.014) (0.015) (0.006) (0.012) (0.011) (0.012)

Adjusted R2 0.156 0.056 0.159 0.714 0.395 0.438 0.384
F-Stat. 241.6∗∗∗ 78.5∗∗∗ 249.1∗∗∗ 3255∗∗∗ 853.9∗∗∗ 1017∗∗∗ 814.5∗∗∗

Spatial tests
5-KNN
Global Moran’s I 0.057∗∗∗ 0.157∗∗∗ 0.214∗∗∗ 0.138∗∗∗ 0.117∗∗∗ 0.104∗∗∗ 0.178∗∗∗
LM. no spatial error 23.924∗∗∗ 178.71∗∗∗ 331.01∗∗∗ 137.41∗∗∗ 99.537∗∗∗ 77.905∗∗∗ 229.070∗∗∗
LM. no spatial lag 60.512∗∗∗ 190.04∗∗∗ 324.69∗∗∗ 98.639∗∗∗ 160.290∗∗∗ 125.28∗∗∗ 274.310∗∗∗
RLM. no spatial error 91.100∗∗∗ 0.828 10.16∗∗∗ 45.295∗∗∗ 6.509∗ 2.819∗ 0.888
RLM. no spatial lag 127.69∗∗∗ 12.156∗∗∗ 3.839∗ 6.527∗ 67.261∗∗∗ 50.190∗∗∗ 46.134∗∗∗
ID
Global Moran’s I 0.066∗∗∗ 0.119∗∗∗ 0.181∗∗∗ 0.115∗∗∗ 0.170∗∗∗ 0.134∗∗∗ 0.209∗∗∗
LM. no spatial error 89.541∗∗∗ 293.28∗∗∗ 679.220∗∗∗ 274.660∗∗∗ 599.430∗∗∗ 369.65∗∗∗ 901.810∗∗∗
LM. no spatial lag 129.700∗∗∗ 328.730∗∗∗ 528.050∗∗∗ 140.530∗∗∗ 474.120∗∗∗ 241.600∗∗∗ 720.840∗∗∗
RLM. no spatial error 3.559∗ 8.7645∗∗∗ 152.760∗∗∗ 150.760∗∗∗ 153.330∗∗∗ 134.460∗∗∗ 222.850∗∗∗
RLM. no spatial lag 43.714∗∗∗ 44.214∗∗∗ 1.5840.2082 16.639∗∗∗ 28.019∗∗∗ 6.412∗∗∗ 41.889∗∗∗

Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01

OLS model must be rejected in favor to both SAR and SEM models.

As SAR and SEM models are specials case of the general model of Manski (1993), it will
be more reasonable to start with the most general model to test for spatial interaction.
Following the strategy of LeSage & Pace (2009), we proceed to estimate the SDM first for
panel data2. Estimation results are summarized on Table 6.6 for all pollutants. Note first
that the spatial autoregressive parameter λ are highly statistically significant, confirming
the presence of spatial dependence. The coefficients are around 0.227− 0.503 with 5-knn
weight matrix and slightly higher with ID matrix (0.253 − 0.704). After doing PCA, the
two news variables Factor1 and Factor2 have been calculated using the PCA scores, see
Table 6.4 for more details.

Table 6.4: PCA scores of variables and factor variables construction
Dim1 Dim2 Dim3

lnIncpc γ1 = 0.9673 0.2507 −0.0380
lnIncpc2 γ2 = 0.9690 0.2441 0.0381914445
lnPopdens −0.8020 γ3 = 0.5973 0.0003
Factor1 = γ1 × lnIncpc+ γ2 × LnIncpc2 + 0× lnPopdens.
Factor2 = 0× lnIncpc+ 0× LnIncpc2 + γ3 × lnPopdens

The variable Factor1 is a linear combination of lnIncpc and its square while Factor2 is
linked to lnPopdens. In almost all spatial models estimated with these factor variables,
the coefficient of the lag variable Factor2 (lag Factor2) is highly significant compare to
the coefficients of lnPopdens and Lag lnPopdens in model (6.2) used in Marbuah &
Amuakwa-Mensah (2017). The results are given in Table 6.7 using the proposed spatial

2in all models we account for municipality and year fixed effects
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weights matrices. We notice also that coefficients of lnIncomepc, lnIncomepc2 and their
lagged variables (lag lnIncomepc and lag lnIncomepc2) reported in the same Table 6.7 are
non-significant in many cases because perhaps of the high correlation between the variables
(see Table 6.5). Based on the significant lagged variables of Factor1 and Factor2, we may
consider that level of emission in a specific municipality affects the level of emission in
neighboring municipalities.

To cover all possible spatial interactions, we perform a Wald test to examine weather
the estimated nested SDM is reducible to SEM or SAR. Results are in Table 6.6 and
indicate that SDM is significantly more appropriate than SEM in all almost cases, SDM is
rejected in favor to SAR model in case of CO2, CO with the two structures of the spatial
weight matrix. Tables 6.8 and 6.9 report both SAR and SEM estimates for all cases. As
expected the spatial autoregressive parameters λ and ρ remain highly significant for all
pollutants and the SAR model coefficients are significant in the case of CO2 and CO. The
SDM model was rejected in favor of the SAR when using our methodology while when
estimating the usual model (6.2) of Marbuah & Amuakwa-Mensah (2017), the coefficients
of lnIncomepc, lnIncomepc2, Lag lnInocmepc and Lag lnIncomepc2 are non-significant
when the dependent variable is CO2 or CO. In this case, SDM model was rejected in
favor of the SAR based on the results of the Wald test in Table 6.7. When comparing
SEM, SAR and SDM, the coefficient of Factor2 is significant for all air emission pollutants
compare to that of Factor1 particularly in cases where SAR or SEM is rejected in favor
of SDM.

In basis OLS specification, the effect of a change in one of the covariates on the response
variable is equal to the coefficient estimate. This is not the case in spatial regression model
when testing spatial spillovers effects (LeSage & Pace, 2009). The correct interpretation
of the spatial autoregressive coefficient in a SDM is based on the partial derivatives or the
impact perspective. The advantages of this technique is that the spillover effects is break
down into direct and indirect effects (see LeSage & Pace (2009)). Table 6.12 displays the
direct, indirect and total effects through the SDM (6.7) for all air emissions. Significant
direct impact of the covariates are slightly different from the coefficient estimates because
of the feedback effects that reflect the impact through surrounding municipalities. We
note also that spillover effect of Factor2 is negative in all cases meaning if it is significant,
increasing in Factor2 (population density) in a specific municipality will decrease the
emission in surrounding municipality, vice versa. A deep look at Table 6.12 argues that
spillover effects exist for all covariates, namely population density, income and square of
per capita, at nearly 70%. These results confirm a large part of result founded by Marbuah
& Amuakwa-Mensah (2017), where direct effect was at most cases participate in more than
50% of the total effect. Even though that income and population have a greater impact
on emission in the specific municipality, consequences on other municipality cannot be
neglected.

6.5 Conclusion

This chapter considers impact of economic growth on environment using spatial economet-
ric tools to take into account the spatial dependence and spatial spillover effect induced
by neighboring. For that, we used panel data on seven different air emission per capita
in the 290 municipalities of Sweden over the period of 2005 − 2013. In order to detect
spatial regimes in emission, we undertake some preliminary investigations by deleting spa-
tial correlation between covariates and doing exploratory spatial analyses; global Moran’s
I, Geary’s C indexes and tests and local indicator of spatial association. The obtained
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results show clear evidence of spatial dependence and spatial spillover effect, so to em-
pirically validate these results we re-examine the relationship between emission, income
and population density using spatial models instead of the classical regression model in
basic EKC methodology. We start by testing weather an OLS model is rejected on favor
to the spatial lag model or spatial error model using the classic and robust LM test based
on the residuals of the OLS model. Both tests accept spatial models (SAR and SEM). A
more general model (SDM) was estimated first to consider the spillover effect with spa-
tially lag covariates. The results in combination with a Wald test reinforce the choice of
SDM model regarding the SEM model for the seven air emissions and the SAR model for
two emissions (CO2 and CO) independently of the used spatial weight matrix. Finally to
interpret correctly the estimates we analyze the impact of the covariates on the dependent
variable using the derivative form. The direct and indirect impact was highly significant
indicating the presence of the spillover effect between municipalities. The obtained results
are in line with that of Marbuah & Amuakwa-Mensah (2017) with some improvement in
reducing the colinearity of the coefficients thank to the factors variables based on principal
components loading that avoid the multicollinearity of the covariates.
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6.6 Appendix

Table 6.5: Correlation matrix of lnIncomepc, lnIncomepc2 and lnPopdens
lnIncomerpc lnIncomepc2 logPopdens

lnIncomepc 1 0.997 −0.609
logIncomepc2 0.997 1 −0.614
logPopdens −0.609 −0.614 1

Table 6.6: Parameters estimation of SDM and Wald test
Variable Dependent variable

lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

5-knn
λ 0.486∗∗∗ 0.518∗∗∗ 0.503∗∗∗ 0.227∗∗∗ 0.404∗∗∗ 0.398∗∗∗ 0.403∗∗∗

(0.021) (0.022) (0.021) (0.016) (0.020) (0.020) (0.020)
Factor1 −0.001 −0.008∗∗∗ 0.001 0.003∗∗∗ 0.000 −0.001 −0.001

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)
Factor2 −0.218∗∗∗ −0.125∗∗∗ −0.200∗∗∗ −0.335∗∗∗ −0.333∗∗∗ −0.331 −0.331∗∗∗

(0.013) (0.013) (0.014) (0.006) (0.012) (0.001) (0.012)
Lag Factor1 −0.002 −0.002 −0.004∗∗∗ −0.004 −0.002∗∗ −0.002 −0.002

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
Lag Factor2 −0.031∗∗ −0.061∗∗∗ −0.070∗∗∗ −0.013 −0.063∗∗∗ −0.054∗∗∗ −0.033∗∗

(0.017) (0.017) (0.018) (0.008) (0.015) (0.014) (0.015)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Wald test
SAR(H0) vs SDM 3.284 15.6∗∗∗ 15.348∗∗∗ 3.5102 20.883∗∗∗ 19.221∗∗∗ 5.224∗
SEM(H0) vs SDM 515.51∗∗∗ 587.15∗∗∗ 592.27∗∗∗ 195.16∗∗∗ 417.56∗∗∗ 428.44∗∗∗ 395.92∗∗∗

ID
λ 0.655∗∗∗ 0.704∗∗∗ 0.667∗∗ 0.253∗∗∗ 0.543∗∗∗ 0.535∗∗∗ 0.553∗∗∗

(0.025) (0.024) (0.024) (0.022) (0.024) (0.024) (0.024)
Factor1 −0.001∗ −0.008∗∗∗ 0.001 0.003∗∗∗ 0.000 0.001 −0.001

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)
Factor2 −0.224∗∗∗ −0.125∗∗∗ −0.205∗∗∗ −0.342 −0.337∗∗∗ −0.337∗∗∗ −0.334∗∗∗

(0.133) (0.013) (0.014) (0.006) (0.012) (0.011) (0.012)
Lag Factor1 0.005∗ −0.006∗∗ −0.008∗∗∗ 0.000 −0.008∗∗∗ −0.007∗∗∗ −0.008∗∗∗

(0.003) (0.003) (−0.008) (0.001) (0.002) (0.002) (0.002)
Lag Factor2 −0.053∗∗ −0.085∗∗∗ −0.104∗∗∗ −0.009 −0.107∗∗∗ −0.098∗∗∗ −0.082∗∗∗

(0.026) (0.026) (0.027) (0.012) (0.023) (0.021) (0.022)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Wald test
SAR(H0) vs SDM 4.136 12.478∗∗∗ 15.432∗∗∗ 0.9883 24.593∗∗∗ 24.682∗∗∗ 13.296∗∗∗
SEM(H0) vs SDM 709.8∗∗∗ 875.46∗∗∗ 791.29∗∗∗ 129.53∗∗∗ 513.85∗∗∗ 533.73∗∗∗ 529.85∗∗∗
Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01
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Figure 6.2: Moran’s I scatter plot for air pollution emission
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Table 6.7: Parameters estimation of SDM and Wald test with Marbuah & Amuakwa-
Mensah (2017) methodology

Variable Dependent variable
lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

5-knn
λ 0.486∗∗∗ 0.515∗∗∗ 0.506∗∗∗ 0.228∗∗∗ 0.407∗∗∗ 0.402∗∗∗ 0.405∗∗∗

(0.021) (0.022) (0.021) (0.016) (0.020) (0.020) (0.020)
lnIncomepc 0.035 0.316∗∗ 0.813∗∗∗ 0.096 0.700∗∗∗ 0.625∗∗∗ 0.322∗∗∗

(0.144) (0.144) (0.008) (0.067) (0.126) (0.116) (0.123)
lnIncomepc2 −0.003 −0.026∗∗∗ −0.044∗∗∗ −0.002 −0.038∗∗∗ −0.034∗∗∗ −0.019∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.006) (0.007)
lnPopdens −0.131∗∗∗ −0.078∗∗∗ −0.124 −0.201∗∗∗ −0.203∗∗∗ −0.201∗∗∗ −0.200∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.007) (0.007)
Lag lnIncomepc 0.111 0.694∗∗ 0.403 0.055 0.403∗ 0.250 0.284

(0.274) (0.273) (0.281) (0.127) (0.239) (0.220) (0.233)
Lag lnIncomepc2 −0.008 −0.040∗∗∗ −0.026∗ −0.003 −0.024∗ −0.015 −0.017

(0.015) (0.015) (0.015) (0.007) (0.013) (0.012) (0.013)
Lag lnPopdens −0.019∗ −0.036∗∗∗ −0.040∗∗∗ −0.007 −0.035∗∗∗ −0.030∗∗∗ −0.019∗∗

(0.010) (0.010) (0.011) (0.005) (0.009) (0.008) (0.009)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Wald test
SAR(H0) vs SDM 3.412 21.467∗∗∗ 15.793∗∗∗ 3.494 21.979∗∗∗ 18.866∗∗∗ 6.228
SEM(H0) vs SDM 516.05∗∗∗ 587.23∗∗∗ 606.96∗∗∗ 196.49∗∗∗ 431.18∗∗∗ 441.12∗∗∗ 402.62∗∗∗

ID
λ 0.660∗∗∗ 0.700∗∗∗ 0.677∗∗∗ 0.256∗∗∗ 0.553∗∗∗ 0.546∗∗∗ 0.558∗∗∗

(0.024) (0.024) (0.149) (0.022) (0.024) (0.023) (0.024)
lnIncomepc 0.241∗ 0.343∗∗ −0.053∗∗∗ 0.116 0.766∗∗∗ 0.699∗∗∗ 0.378∗∗∗

(0.145) (0.114) (0.149) (0.069) (0.127) (0.117) (0.124)
lnIncomepc2 −0.015∗ −0.028∗∗∗ −0.053∗∗∗ −0.003 −0.042∗∗∗ −0.038∗∗∗ −0.022∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.006) (0.007)
lnPopdens −0.137∗∗∗ −0.081∗∗∗ −0.130∗∗∗ −0.205∗∗∗ −0.207∗∗∗ −0.206∗∗∗ −0.203∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.007) (0.007)
Lag lnIncomepc 1.042∗∗ 2.257∗∗∗ 1.441∗∗∗ −0.153 1.184∗∗∗ 0.804∗∗ 1.091∗∗

(0.507) (0.503) (0.520) (0.239) (0.444) (0.409) (0.432)
Lag lnIncomepc2 −0.059∗∗ −0.124∗∗∗ −0.083∗∗∗ 0.008 −0.069∗∗∗ −0.050∗∗ −0.065∗∗∗

(0.027) (0.026) (0.027) (0.013) (0.023) (0.022) (0.023)
Lag lnPopdens −0.026 −0.039∗∗ −0.049∗∗∗ −0.005 −0.053∗∗∗ −0.050∗∗∗ −0.042∗∗∗

(0.016) (0.016) (0.016) (0.007) (0.014) (0.013) (0.013)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Wald test
SAR(H0) vs SDM 7.944∗∗ 31.686∗∗∗ 19.866∗∗∗ 1.179 27.851∗∗∗ 24.585∗∗∗ 18.317∗∗∗
SEM(H0) vs SDM 735.04∗∗∗ 880.72∗∗∗ 859.04∗∗∗ 132.62∗∗∗ 545.67∗∗∗ 570.49∗∗∗ 349.01∗∗∗
Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01
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Table 6.8: Parameters estimation of SAR and SEM model with spatial weight matrix
based on KNN (k = 5)

Variable Dependent variable
lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

Model: SAR
λ 0.486∗∗∗ 0.517∗∗∗ 0.505∗∗∗ 0.228∗∗∗ 0.408∗∗∗ 0.403∗∗∗ 0.405∗∗∗

(0.021) (0.024) (0.021) (0.016) (0.020) (0.020) (0.020)
Factor1 −0.002∗∗∗ −0.008∗∗∗ 0.001 0.003∗∗∗ 0.000 0.001 −0.001

(0.001) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001)
Factor2 −0.220∗∗∗ −0.128∗∗∗ −0.202∗∗∗ −0.336∗∗∗ −0.335∗∗∗ −0.333∗∗∗ −0.332∗∗∗

(0.013) (0.013) (0.0134) (0.006) (0.012) (0.011) (0.012)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Model: SEM
ρ 0.518∗∗∗ 0.717∗∗∗ 0.545∗∗∗ 0.524∗∗∗ 0.520∗∗∗ 0.537∗∗∗ 0.515∗∗∗

(0.022) (0.024) (0.022) (0.022) (0.022) (0.022) (0.022)
Factor1 −0.002∗∗ −0.010∗∗∗ 0.002∗∗ 0.003∗∗∗ 0.001 0.001 −0.001

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)
Factor2 −0.255∗∗∗ −0.144∗∗∗ −0.230∗∗∗ −0.364∗∗∗ −0.377∗∗∗ −0.377∗∗∗ −0.375∗∗∗

(0.014) (0.014) (0.015) (0.006) (0.012) (0.011) (0.012)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01

Table 6.9: Parameters estimation of SAR and SEM model with spatial weight matrix
based on inverse distance
Variable Dependent variable

lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

Model: SAR
λ 0.656∗∗∗ 0.704∗∗∗ 0.670∗∗∗ 0.254∗∗∗ 0.550∗∗∗ 0.542∗∗∗ 0.555∗∗∗

(0.245) (0.024) (0.024) (0.022) (0.024) (0.024) (0.024)
Factor1 −0.001∗ −0.008∗∗∗ 0.001 0.003∗∗∗ 0.000 0.001 −0.001

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)
Factor2 −0.226∗∗∗ −0.128∗∗∗ −0.208∗∗∗ −0.343∗∗∗ −0.340∗∗∗ −0.339∗∗∗ −0.336∗∗∗

(0.013) (0.013) (0.014) (0.006) (0.020) (0.011) (0.012)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Model: SEM
ρ 0.695∗∗∗ 0.717∗∗∗ 0.711∗∗∗ 0.680∗∗∗ 0.700∗∗∗ 0.717∗∗∗ 0.702∗∗∗

(0.026) (0.024) (0.025) (0.027) (0.025) (0.024) (0.025)
Factor1 −0.002∗∗ −0.010∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.001 0.001 0.000

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)
Factor2 −0.259∗∗∗ −0.144∗∗∗ −0.235∗∗∗ −0.367∗∗∗ −0.379∗∗∗ −0.381∗∗∗ −0.376∗∗∗

(0.014) (0.014) (0.015) (0.006) (0.012) (0.011) (0.012)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01
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Table 6.10: Parameters estimation of SAR and SEM model with spatial weight matrix
based on KNN (k = 5) (Marbuah & Amuakwa-Mensah (2017) Model)

Variable Dependent variable
lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

Model: SAR
λ 0.487∗∗∗ 0.517∗∗∗ 0.508∗∗∗ 0.229∗∗∗ 0.412∗∗∗ 0.406∗∗∗ 0.407∗∗∗

(0.021) (0.022) (0.021) (0.016) (0.020) (0.020) (0.020)
lnIncomepc 0.044 0.322∗∗ 0.828∗∗∗ 0.099 0.714∗∗∗ 0.639∗∗∗ 0.328∗∗∗

(0.144) (0.144) (0.148) (0.067) (0.126) (0.116) (0.123)
lnIncomepc2 −0.004 −0.026∗∗∗ −0.044∗∗∗ −0.003 −0.039∗∗∗ −0.034∗∗∗ −0.019∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.006) (0.007)
lnPopdens −0.131∗∗∗ −0.078∗∗∗ −0.125∗∗∗ −0.201∗∗∗ −0.203∗∗∗ −0.202∗∗∗ −0.199∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.006) (0.007)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Model: SEM
ρ 0.521∗∗∗ 0.527∗∗∗ 0.551∗∗∗ 0.523∗∗∗ 0.524∗∗∗ 0.540∗∗∗ 0.517∗∗∗

(0.022) (0.022) (0.021) (0.022) (0.022) (0.022) (0.022)
lnIncomepc 0.211 0.464∗∗∗ 1.041∗∗∗ 0.029 0.841∗∗∗ 0.723∗∗∗ 0.359∗∗∗

(0.163) (0.164) (0.167) (0.071) (0.139) (0.127) (0.135)
lnIncomepc2 −0.014 −0.035∗∗∗ −0.055∗∗∗ 0.001 −0.046∗∗∗ −0.039∗∗∗ −0.020∗∗∗

(0.009) (0.009) (0.009) (0.004) (0.008) (0.007) (0.008)
lnPopdens −0.153∗∗∗ −0.087∗∗∗ −0.141∗∗∗ −0.218∗∗∗ −0.228 −0.228∗∗∗ −0.225

(0.009) (0.009) (0.009) (0.004) (0.007) (0.007) (0.007)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01

Table 6.11: Parameters estimation of SAR and SEM model with spatial weight matrix
based on inverse distance (Marbuah & Amuakwa-Mensah (2017) Model)

Variable Dependent variable
lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

Model: SAR
λ 0.663∗∗∗ 0.704∗∗∗ 0.682∗∗∗ 0.258∗∗∗ 0.561∗∗∗ 0.554∗∗∗ 0.561∗∗∗

(0.024) (0.024) (0.023) (0.022) (0.024) (0.023) (0.024)
lnIncomepc 0.243∗ 0.336∗∗∗ 0.986∗∗∗ 0.123∗ 0.787∗∗∗ 0.724∗∗∗ 0.387∗∗∗

(0.144) (0.144) (0.148) (0.068) (0.127) (0.117) (0.123)
lnIncomepc2 −0.015∗ −0.027∗∗∗ −0.053∗∗∗ −0.004 −0.043∗∗∗ −0.039∗∗∗ −0.022∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.006) (0.007)
lnPopdens −0.136∗∗∗ −0.078∗∗∗ −0.128∗∗∗ −0.205∗ −0.206∗∗∗ −0.206∗∗∗ −0.202∗∗∗

(0.008) (0.008) (0.008) (0.004) (0.007) (0.007) (0.007)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Model: SEM
ρ 0.702∗∗∗ 0.719∗∗∗ 0.721∗ ∗ ∗ 0.680∗∗∗ 0.707∗∗∗ 0.723∗∗∗ 0.705∗∗∗

(0.025) (0.161) (0.024) (0.027) (0.025) (0.024) (0.025)
lnIncomepc 0.389∗∗ 0.496∗∗∗ 1.181∗∗∗ 0.086 0.890∗∗∗ 0.808∗∗∗ 0.400∗∗∗

(0.161) (0.161) (0.165) (0.071) (0.138) (0.126) (0.134)
lnIncomepc2 −0.023∗∗∗ −0.037∗∗∗ −0.063∗∗∗ −0.002 −0.049∗∗∗ −0.044∗∗∗ −0.023∗∗∗

(0.009) (0.009) (0.009) (0.004) (0.008) (0.007) (0.007)
lnPopdens −0.156∗∗∗ −0.088∗∗∗ −0.146∗∗∗ −0.220∗∗∗ −0.230∗∗∗ −0.231∗∗∗ −0.226∗∗∗

(0.009) (0.009) (0.009) (0.004) (0.007) (0.007) (0.007)
Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Standards errors are given between parentheses. ∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01
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Table 6.12: Impact analysis for SDM model.

Variable Dependent variable
lnCO2pc lnSO2pc lnNOxpc lnCOpc lnPM2.5pc lnPM1.0pc lnTSPpc

5-knn
Direct
Factor1 −0.001 −0.009∗∗∗ 0.001 0.003∗∗∗ 0.000 0.001 −0.001
Factor2 −0.230∗∗∗ −0.132∗∗∗ −0.211∗∗∗ −0.339∗∗∗ −0.344∗∗∗ −0.342∗∗∗ −0.341∗∗∗
Lag Factor1 −0.002 −0.002 −0.005∗∗∗ −0.000∗ −0.003∗ −0.002 −0.002
Lag Factor2 −0.033∗ −0.064∗∗∗ −0.074∗∗∗ −0.013∗ −0.065∗∗∗ −0.056∗∗∗ −0.035∗∗
Indirect
Factor1 −0.001 −0.008∗∗∗ 0.001 0.001∗∗∗ 0.000 0.000 −0.000
Factor2 −0.195∗∗∗ −0.126∗∗∗ −0.191∗∗∗ −0.095∗∗∗ −0.215∗∗∗ −0.209∗∗∗ −0.213∗∗∗
Lag Factor1 −0.002 −0.002 −0.004∗∗∗ −0.000∗ −0.002∗ 0.001 −0.001
Lag Factor2 −0.028∗ −0.061∗∗∗ −0.067∗∗∗ −0.004∗ −0.040∗∗∗ −0.034∗∗∗ −0.022∗∗
Total
Factor1 −0.002 −0.017∗∗∗ 0.002 0.004∗∗∗ 0.000 0.001 −0.001
Factor2 −0.425∗∗∗ −0.259∗∗∗ −0.403∗∗∗ −0.434∗∗∗ −0.558∗∗∗ −0.550∗∗∗ −0.554∗∗∗
Lag Factor1 −0.004 −0.006 −0.009∗∗∗ −0.001∗ −0.004∗ 0.003 −0.003
Lag Factor2 −0.061∗ −0.125∗∗∗ −0.141∗∗∗ −0.017∗ −0.105∗∗∗ −0.090∗∗∗ −0.056∗∗

ID
Direct
Factor1 −0.001 −0.009∗∗∗ 0.001 0.003∗∗∗ 0.000 0.001 −0.001
Factor2 −0.235∗∗∗ −0.132∗∗∗ −0.215∗∗∗ −0.344∗∗∗ −0.346∗∗∗ −0.345∗∗∗ −0.344∗∗∗
Lag Factor1 −0.005∗ −0.006∗∗ −0.009∗∗∗ −0.000 −0.008∗∗∗ −0.007∗∗∗ −0.008∗∗∗
Lag Factor2 −0.056∗∗ −0.090∗∗∗ −0.109∗∗∗ −0.009 −0.110∗∗∗ −0.100∗∗∗ −0.084∗∗∗
Indirect
Factor1 −0.002 −0.019∗∗∗ 0.002 0.001∗∗∗ 0.000 0.001 −0.001
Factor2 −0.416∗∗∗ −0.289∗∗∗ −0.400∗∗∗ −0.114∗∗∗ −0.392∗∗∗ −0.378∗∗∗ −0.404∗∗∗
Lag Factor1 −0.009∗ −0.014∗∗ −0.016∗∗∗ −0.000 −0.009∗∗∗ −0.008∗∗∗ −0.009∗∗∗
Lag Factor2 −0.099∗∗ −0.196∗∗∗ −0.202∗∗∗ −0.003 −0.125∗∗∗ −0.110∗∗∗ −0.099∗∗∗
Total
Factor1 −0.004 −0.028∗∗∗ 0.003 0.004∗∗∗ 0.000 0.001 −0.002
Factor2 −0.651∗∗∗ −0.421∗∗∗ −0.614∗∗∗ −0.458∗∗∗ −0.738∗∗∗ −0.723∗∗∗ −0.748∗∗∗
Lag Factor1 −0.014∗ −0.020∗∗ −0.025∗∗∗ −0.001 −0.017∗∗∗ −0.015∗∗∗ −0.017∗∗∗
Lag Factor2 −0.154∗∗ −0.286∗∗∗ −0.311∗∗∗ −0.013 −0.235∗∗∗ −0.2102∗∗∗ −0.183∗∗∗
∗ p < 0.1, ∗ ∗ p < 0.05 and ∗ ∗ ∗ p < 0.01



Chapter 7
General conclusion and perspectives

This thesis aims to contribute to spatial econometrics by proposing dedicated tools dealing
with real-valued and functional spatial data in particular two types of models: the first
is a spatial lag model with real-valued and functional covariate assuming both exogenous
and endogenous spatial weight matrices and the second is a partially linear Probit model
with spatial heteroskedasticity.

First, we propose a functional linear autoregressive spatial model able to describe and/or
predict some spatially inter-connected real-valued response variable according to a func-
tional covariate. We define the structure of the inter-dependence of the response variable
in two different ways. In the first contribution, we assume the classical form by assuming
an exogenous spatial weight matrix based on the notion of how geographic distance affects
dependency while in the second contribution we propose a composite structure combining
geographic distance and a linear process leading to an endogenous structure of the matrix.
In both models, estimation procedure of the parameters of interest is done with a two step
approach consisting of reducing the infinite dimension of the functional co-variate with
a truncation technique detailed in Chapter 2 and applying a maximum likelihood algo-
rithm. The consistency as well the asymptotic normality of the estimates are established
in the first contribution in addition to a Monte Carlo study and real-data application that
demonstrate the performance of the proposed models compared to the generalized func-
tional linear model. For the second contribution, Monte Carlo study was conducted, the
results highlight the performance of the proposed method compared to the first proposed
model which miss-specifies the endogenous weight matrix used in the simulations.

The third contribution in Chapter 5, is a generalization of the heteroskedasticity Probit
model proposed by Alvarez & Brehm (1995), in situations where assuming a constant
variance error model is not realistic. Then we propose a general Probit model with a
multiplicative function of the disturbance variances depending on spatial covariates. For
more flexibility, a semi-parametric model is considered. The estimation methodology
combines the weighted likelihood method to estimate the nonparametric component and
a profile likelihood for the parametric component. Finite sample behavior of the estimates
is given in addition to indications on how to extend the asymptotic results of Severini &
Wong (1992) to the proposed context.

Chapter 6 treats the problem of environment degradation and economic growth. In partic-
ular, we attempt to explain the behavior of some pollutants emissions according to income
per capita and population density in Sweden. This study is based on spatial econometric
tools given in the previous chapters. Firstly, we provide arguments about the presence
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of spatial dependence on the pollution data by exploratory spatial data analysis (ESDA)
and the local indicator spatial association (LISA), then we fit three spatial models to the
data; (i) the general Durbin model, (ii) the spatial lag model (iii) and the spatial error
model.

In the different contributions, some weak points may be the topics of future investigations.
In a theoretical point of view, regarding the functional SAR model of Chapter 3, one may
add some spatial lagged functional variable in order to explain some potential spillover
effect often present in spatial data. We can also investigate other functional covariates in-
cluding more complex features (e.g. correlated random functions). We could explore more
applications to other fields such as continuous tracking, monitoring of movements, health
data, continuously recorded climate data or financial space-time series data. Generalized
spatial functional linear models may also be source of future investigations.

It is well known in spatial analyses that the spatial weight matrix is a key element and has
been always imposed rather than estimated. Miss-specifying this matrix is a critical step
and may produce inconsistent estimates. In some situations, practitioners have enough
information to specify weighting matrices but this is not always possible. Then choosing
an adequate matrix that reflects the spatial relationship in the concerned dataset is crucial.
Alternative methods are the baseline of dynamic researches. Chapter 4 aims to contribute
to this task. In fact, we relax the assumption of exogenous matrix by using an endogenous
alternative. However, we use a parametric spatial matrix structure, this assumption may
be relaxed by using a nonparametric weight matrix. Few authors (Beenstock & Felsenstein,
2012; Sun, 2016) treated this topic and proposed non parametric spatial weight matrix.
Extending these works to the functional spatial lag model may be interesting. We have
also to apply some of our contributions to real data, namely many potential applications
may be considered within the FSAR model with endogenous spatial weight matrix and
the spatial Probit model in Chapter 5.

The empirical study of the Chapter 5 shows that the estimations performs for the para-
metric and non parametric components but we have weak estimation precision of the
spatial parameter. This requires further investigations to improve the estimates. Using
local polynomial for the non-parametric estimate or adequate instrumental variables may
be helpful.
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