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General Abstract

Following the idea of separating two groups with a hypersurface, the convex

(C) frontier generated from the data envelopment analysis (DEA) method is em-

ployed as a separating hypersurface in classification. No assumption on the shape

of the separating hypersurface is required while using a DEA frontier. Moreover,

its reasoning of the membership is quite clear by referring to a benchmark obser-

vation. Despite these strengths, the DEA frontier-based classifier does not always

perform well in classification. Therefore, this thesis focuses on modifying the exist-

ing frontier-based classifiers and proposing novel frontier-based classifiers for the

ordinal classification problem.

In the classification literature, all axioms used to construct the C DEA frontier

are kept in generating a separating frontier, without arguing their correspondence

with the related background information. This motivates our work in Chapter 2

where the connections between the axioms and the background information are

explored. First, by reflecting on the monotonic relation, both input-type and

output-type characteristic variables are incorporated. Moreover, the minimize sum

of deviations model is proposed to detect the underlying monotonic relation if this

relation is not priori given. Second, a nonconvex (NC) frontier classifier is construc-

ted by relaxing the commonly used convexity assumption. Third, the directional

distance function (DDF) measure is introduced for providing further managerial

implications, although it does not change the classification results comparing to

the radial measure. The empirical results show that the NC frontier classifier has

the highest classification accuracy. A comparison with six classic classifiers also
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reveals the superiority of applying the NC frontier classifier.

While the relation of the characteristic variables often suggests consideration

of a monotonic relation, its parallel problem of considering a non-monotonic rela-

tion is rarely considered. In Chapter 3, a generalized disposal assumption which

limits the disposability within a value range is developed for characterizing the

non-monotonic relation. Instead of having a single separating frontier, a NC sep-

arating hull which consists of several frontiers is constructed to separate the groups.

By adding the convexity assumption, a C separating hull is then constructed. An

illustrative example is used to test the performance. The NC hull classifier out-

performs the C hull classifier. Moreover, a comparison with some existing frontier

classifiers also reveals the superiority of applying the proposed NC hull classifier.

Chapter 4 proposes novel frontier classifiers for accommodating different mixes

of classification information. To be specific, by reflecting on the monotonic relation,

a NC classifier is constructed. If there is a priori information of the substitution

relation, then a C classifier is generated. Both the NC and C classifiers generate

two frontiers where each envelops one group of observations. The intersection of

two frontiers is known as the overlap which may lead to misclassifications. The

overlap is reduced by allowing the two frontiers to shift inwards to the extent that

the total misclassification cost is minimized. The shifted cost-sensitive frontiers

are then used to separate the groups. The discriminant rules are also designed to

incorporate the cost information. The empirical results show that the NC classifier

provides a better separation than the C one does. Moreover, the proposed DDF

measure outperforms the commonly used radial measure in providing a reasonable

separation.

Keywords: Nonparametric Frontier; Nonconvex; Non-monotonicity; Cost-Sensitive;

Ordinal Classification
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Résumé Général

Classification ordinale

avec méthodes aux frontières non paramétriques :
Aperçu et nouvelles propositions

Suivant l’idée de séparer deux groupes par une hypersurface, la frontière con-

vexe (C) générée par la méthode d’analyse de l’enveloppe des données (DEA) est

utilisée pour la séparation dans la classification. Aucune hypothèse sur la forme

de l’hypersurface n’est nécessaire si l’on utilise une frontière DEA. De plus, son

raisonnement sur l’appartenance est très clair en se référant à une observation

de référence. Malgré ces points forts, le classificateur basé sur la frontière DEA

n’est pas toujours performant dans la classification. Par conséquent, cette thèse

vise à modifier les classificateurs frontaliers existants et à proposer de nouveaux

classificateurs frontaliers pour le problème de la classification ordinale.

Dans la littérature, tous les axiomes utilisés pour construire la frontière C

de la DEA sont conservés pour générer une frontière de séparation, sans argu-

menter leur correspondance avec les informations de base correspondantes. C’est

ce qui motive notre travail au chapitre 2, où les liens entre les axiomes et les

informations de base sont examinés. Tout d’abord, en réfléchissant à la relation

monotone, les variables caractéristiques du type d’entrée et du type de sortie sont

incorporées. En outre, le modèle de la somme minimale des écarts est proposé

pour détecter la relation monotone sous-jacente si cette relation n’est pas donnée
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a priori. Deuxièmement, un classificateur de frontière nonconvexe (NC) est con-

struit en assouplissant l’hypothèse de convexité. Troisièmement, la mesure de la

fonction de distance directionnelle (DDF) est introduite pour fournir des implica-

tions managériales, bien qu’elle ne modifie pas les résultats de la classification par

rapport à la mesure radiale. Les résultats empiriques montrent que le classific-

ateur à frontière NC a la plus grande précision de classification. Une comparaison

avec six classificateurs classiques révèle également la supériorité de l’application

du classificateur à frontière NC.

Alors que la relation des variables caractéristiques suggère souvent la prise

en compte d’une relation monotone, le problème parallèle de la prise en compte

d’une relation nonmonotone est rarement pris en compte. Au chapitre 3, une

hypothèse d’élimination généralisée qui limite l’élimination dans une fourchette de

valeurs est développée pour caractériser la relation non monotone. Au lieu d’avoir

une seule frontière de séparation, une coque de séparation NC qui se compose

de plusieurs frontières est construite. En ajoutant l’hypothèse de convexité, une

coque séparatrice C est alors construite. Un exemple illustratif montrent que le

classificateur de coques NC surpasse le classificateur C. En outre, une comparaison

avec certains classificateurs frontaliers existants révèle également la supériorité de

l’application du classificateur de coque NC.

Le chapitre 4 propose de nouveaux classificateurs frontaliers permettant de

prendre en compte différentes combinaisons d’informations de classification. En

réfléchissant à la relation monotone, un classificateur NC est construit. Si la rela-

tion de substitution existe, alors un classificateur C est généré. Les classificateurs

NC et C génèrent tous deux deux des frontières où chacun enveloppe un groupe.

L’intersection de deux frontières est connue sous le nom de chevauchement, ce qui

peut entraîner des classifications erronées. Le chevauchement est réduit en permet-
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tant aux deux frontières de se déplacer vers l’intérieur dans la mesure où le coût

total de la classification erronée est minimisé. Les frontières déplacées sensibles

aux coûts sont alors utilisées pour séparer les groupes. Les règles discriminantes

sont également conçues pour intégrer les informations sur les coûts. Les résultats

empiriques montrent que le classificateur NC assure une meilleure séparation que

le classificateur C. En outre, la mesure de la DDF proposée surpasse la mesure

radiale couramment utilisée en fournissant une séparation raisonnable.

Mots clés : Frontière Non-Paramétrique ; Non-Convexe ; Non-Monotonie ; Sens-

ible au Coût ; Classification Ordinale
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CHAPTER

1
General Introduction

Classification is fundamentally a data mining task whereby discriminant rules

are developed for assigning an observation to prior-known groups. In order to train

a classifier, the data is collected concerning observations with known group mem-

berships. This training data is then used to develop discriminant rules for future

classification of the observation whose group membership is unknown. Classic ex-

amples of classification applications include medical diagnosis (allocating patients

to certain disease classes based on symptoms and lab tests), and credit scoring

(accepting or rejecting some credit applications based on their application data).

Mathematical programming (MP) methods for classification emerged in the

1960s, gained popularity in the 1980s, and have been developing dramatically ever

since. Most of the MP-based classifiers are nonparametric, which has been cited

as an advantage over methods that require assumptions about the distribution of

the data (Stam (1997)). One of the earliest linear programming (LP) classifiers

was proposed by Mangasarian (1965) where a hyperplane is constructed to separ-

ate two groups of data. Studies of LP classifiers in the early 1980s were carried

out by Freed and Glover (1981), Stam and Ragsdale (1992) and Bajgier and Hill

(1982). Along with the development of the LP classifiers, nonlinear programming

classifiers are natural extensions for some of these LP models (Mangasarian (1996),

1



Stam and Joachimsthaler (1989), Mangasarian, Setiono, and Wolberg (1990) and

etc.). Various programming goals developed for deciding the best separation in-

clude minimizing the sum of deviations (MSD), minimizing the maximum devi-

ation (MMD), minimizing the sum of interior distances (MSID), the hybrid models

and their variants (Joachimsthaler and Stam (1990)). Having the programming

goal related to minimizing the number of misclassifications, the mixed-integer pro-

gramming (MIP) classifiers stand out. Intuitively, all MP-based classifiers have

a geometric interpretation where a hypersurface is constructed and expected to

provide an optimal separation between the groups. However, the functional form

which generates the separating hypersurface is explicitly assumed in the MP-based

classifiers. It is not impossible, but very difficult to prescribe a functional form to

fit for real applications. In this sense, a nonparametric classifier that provides a

data-based piecewise linear frontier receives increasing attention since no assump-

tion on the frontier shape is required.

The data-based nonparametric method refers to the Data Envelopment Ana-

lysis (DEA) method proposed by Charnes, Cooper, and Rhodes (1978) which is

originally developed for ranking a set of observations. The current application of

the DEA methods in classification could be categorized into three types.

In the first type, the efficiencies calculated from the DEA methods are used

to separate two groups of observations. Specifically, a cut-off efficiency calcu-

lated form the DEA methods is taken as the threshold value that differentiates

between two groups in MP-based classifiers, see Sueyoshi and Kirihara (1998),

Emel, Oral, Reisman, and Yolalan (2003), Pendharkar and Rodger (2003), Cheng,

Chiang, and Tang (2007), Min and Lee (2008), Premachandra, Bhabra, and Suey-

oshi (2009), Premachandra, Chen, and Watson (2011), Lu, Lee, and Zou (2012),

Paradi and Yang (2014), Malhotra and Tsetsekos (2016), etc. Subsequently, the
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layer technique instead of the cut-off efficiency is studied for classification, see

Paradi, Asmild, and Simak (2004), Avkiran and Cai (2014). Note that in this type

of DEA-based classifiers, groups of observations are assumed to be homogeneous

and thus to be evaluated with the same DEA model. To a certain extent, this

assumption on homogeneity ignores the essential differences between two groups.

The second type is known as the Data Envelopment Analysis-Discriminant

Analysis (DEA-DA) method firstly proposed by Sueyoshi (1999) and subsequently

developed by Sueyoshi (2001, 2004). This DEA-DA method is extended to allow

for various data types (Jahanshahloo, Lotfi, Balf, and Rezai (2007)); (Lotfi and

Mansouri (2008); Boudaghi and Saen (2018); and etc), and a multi-group setting

(Sueyoshi (2006)). Empirically, the applications cover the industry (Sueyoshi and

Goto (2009a); Sueyoshi and Goto (2009b); Sueyoshi and Goto (2012)), marketing

(Hwang, Lin, and Chuang (2007); Farzipoor Saen (2013); Tavassoli, Faramarzi,

and Farzipoor Saen (2014)), finance (Sueyoshi and Hwang (2004)) etc. The DEA-

DA method is claimed to incorporate a methodological strength of DEA into the

DA formulation. However, it is essentially based on the use of goal program-

ming. The geometric illustration for the DEA-DA methods is the same as that of

the LP-based classifiers. Rather than using an assumption-free frontier, a linear

hyperplane is generated from the DEA-DA methods to separate two groups of

observations.

The third type refers to the DEA frontier-based classifiers which are construc-

ted from the standard DEA methods proposed by Banker, Charnes, and Cooper

(1984). Troutt, Rai, and Zhang (1996) first propose to use the convex DEA fron-

tier as an acceptability frontier in credit applicant acceptance systems. Different

groups of observations are therefore located on the opposite sides of this convex

frontier. Without pre-specifying the exact shape of a separating hypersurface, this

3



convex frontier is piece-wise linear and bounds one group of observations closely.

The data-based nonparametric method emphasized in this study refers explicitly

to this type of frontier-based nonparametric methods.

Ever since the first application of the DEA frontier in classification proposed

by Troutt, Rai, and Zhang (1996), the idea of employing the convex DEA frontier

as a separating frontier has been well adapted by proposing alternative objective

functions (Seiford and Zhu (1998)), incorporating various data types (e.g., Leon

and Palacios (2009), Yan and Wei (2011)) and has been applied in different applic-

ation areas (e.g., Seiford and Zhu (1998), Pendharkar (2002), Pendharkar, Rodger,

and Yaverbaum (1999); Pendharkar, Khosrowpour, and Rodger (2000))).

One common thing in these single frontier classification literature is that the

separating frontier is assumed to be convex. To the best of our knowledge, none

of the current research has ever left out the convexity assumption. The assump-

tion of convexity is commonly kept in production analysis since it is common in

the economic theory. When it comes to the classification problem, the assump-

tion on convexity is accepted without arguing its correspondence with the related

background information in classification. This motivates our work in Chapter

2. The main objective of Chapter 2 is to relax this convexity assumption and

construct a nonconvex separating frontier. This nonconvex frontier is based on

the Free Disposal Hull (FDH) approach that has been initially proposed by De-

prins, Simar, and Tulkens (1984). It has a monotonous or staircase shape and

envelops the data tighter than the convex separating frontier does. Another ob-

jective is to develop the frontier-based classifier into a more general form. To be

specific, both characteristic variables with monotonically increasing relation and

those with monotonically decreasing relation are included. Moreover, a directional

distance function measure is introduced so that more managerial information could

4



be provided.

In the literature, following along the idea of using a single separating frontier,

Chang and Kuo (2008) propose to use a pair of DEA frontiers so that these two

frontiers each describes a set of observations. The intersection of two frontiers is

known as the data-based overlap. McLachlan (1992, p. 16) remarks that clas-

sification accuracy depends mostly on how well the discriminant rule can handle

observations in the overlap. Therefore, the majority of the subsequent work focus

on either eliminating the overlap in the training process (e.g., Kuo (2013)) or fur-

ther classifying the observations that are located in the overlap (e.g., (Pendharkar

(2012); Pendharkar and Troutt (2014); Pendharkar (2011); Pendharkar (2018)).

Although the idea of using the DEA frontier is extended from using a single

frontier to using double frontiers, the same axioms on constructing the separat-

ing frontier are retained, e.g., the convexity assumption. Therefore, Chapter 4

firstly intends to build a nonparametric frontier-based classifier which is capable

of generating either convex or nonconvex separating frontiers. Apart from relax-

ing some original assumptions of constructing the frontiers, a novel treatment of

overlap is proposed so that the total misclassification cost is minimized for the

training process. Specifically, this is achieved by allowing the two frontiers to shift

inwards to the extent of achieving a minimum misclassification cost. Furthermore,

the discriminant rules are also designed to incorporate the cost information.

In all the existing frontier-based classification literature, the background in-

formation on the relation between the characteristic variables and the group label

often suggests consideration of a monotonic relation. However, in many applica-

tions, the relation between the group label and the characteristic variables could

also show non-monotonicity. One example that illustrates the non-monotonic rela-

tion is the medical diagnoses, where both high values and low values may indicate
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symptoms of certain diseases. While the research on incorporating the monotonic

relation is increasing, its parallel problem of considering the non-monotonic rela-

tion is rarely taken into account in classification. To the best of our knowledge, the

research on dealing with the non-monotonicity in classification is quite limited and

not stable (Lam and Choo (1993)). Therefore, the primary interest of Chapter

3 is to incorporate the non-monotonic variables while developing a nonparametric

frontier-based classifier for the classification problem. To characterize the non-

monotonic variables, a generalized disposal assumption is developed following the

S-disposal assumption proposed by Briec, Kerstens, and Van de Woestyne (2016,

2018). This generalized disposal assumption limits the disposability of a variable

within a value range. Correspondingly, a separating hull which consists of several

frontiers is constructed to separate the groups of observations.

To sum up, the overarching objective of this thesis is to propose some novel

nonparametric frontier-based classifiers for achieving a better classification per-

formance and for more general classification problems. To be specific, the first

aim is to study the connections between the commonly used axioms in the DEA

methods and the background information in classification. Although the initial

inspiration of applying the DEA-based convex frontier is that it provides a tight

envelopment without any assumption on the shape of the frontier, it is now es-

sential to provide some theoretical basis so that the commonly used assumptions

can be relaxed depending on the specific classification problems. A second design

objective is to incorporate the cost information in constructing the nonparametric

frontier-based classifiers, not only in generating the separating frontiers but also

in designing the discriminant rules. That is, the proposed nonparametric frontier-

based classifiers are expected to be cost-sensitive. Finally, the non-monotonic

relation which is widely existed but not extensively studied is incorporated while

constructing the nonparametric frontier-based classifiers.
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CHAPTER

2

Ordinal Classification

with a Single

Nonparametric Frontier:

The Role of Nonconvexity

2.1 Introduction

The nonparametric frontier method -also known as Data Envelopment Analysis

(moniker DEA)- is commonly attributed to Charnes, Cooper, and Rhodes (1978).

This method provides a relative efficiency measure for each Decision Making Unit

(DMU) by comparing its relative performance to all observed DMUs. In addition

to generating a relative efficiency measure that accordingly ranks the DMUs, this

linear programming method floats a piecewise linear frontier that envelops all

observed DMUs. This frontier provides an extremal relation between a vector of

inputs and a vector of generated outputs.

This extremal relation implied by the nonparametric frontier has originally

been applied to estimate multiple inputs and multiple outputs production corres-
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pondences yielding efficiency measures and productivity indices of various kinds.

In production economics, the nonparametric frontier represents the extremal com-

binations of the outputs that can be produced from the combinations of available

inputs. Obviously, this extremal relation between inputs and outputs implied by

a nonparametric frontier formally complies with some standard axioms of pro-

duction required to obtain a valid production model. Thus, the nonparametric

frontier offers a reasonable approximation for the theoretical production frontier

in applied production analysis. Its envelopment is based on a minimum extrapol-

ation principle in that all empirical observations are used along with extensions of

these observations. The extensions are based on some simple axioms about what

is considered feasible. Hence, it provides a conservative estimate of theoretical

production frontiers.

The idea of empirically estimating production frontiers via these nonparametric

methods has been widely applied across economic sectors. In a rather recent survey

of the first 40 years of scholarly literature in DEA from the year 1978 till 2016,

Emrouznejad and Yang (2018) list about 10300 research articles.

More recently, the utilization of nonparametric frontiers has also crossed discip-

linary boundaries to estimate similar extremal relations in finance. For instance,

a wide variety of frontier models have been proposed to obtain relative efficiencies

of mutual funds (see, Murthi, Choi, and Desai (1997) for a seminal article and

Basso and Funari (2016) for a recent survey): some models are directly transposed

from production theory, other models include traditional diversification effects re-

lated to the modern portfolio theory. In modern portfolio theory, the efficient

portfolio frontier is conceived as a set of optimal portfolios that simultaneously

yield the highest return for the lowest possible risk, eventually subject to some

additional constraints. This extremal relation between return and risk measures
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can be interpreted by considering the return measure as an output that needs to

be maximised and the risk measure as an input that needs to be minimised. Sen-

gupta (1989) is the first to introduce an efficiency measure into this mean-variance

quadratic (hence convex) optimisation problem. The article of Briec, Kerstens,

and Jokung (2007) is among the first to extend this mean-variance optimisation

problem towards the inclusion of skewness: this requires cubic (hence nonconvex)

optimisation problems. With the help of an appropriate efficiency measure, these

authors manage to simultaneously maximise return and skewness while minimising

the variance. An extension to the higher moment portfolio problem assuming in-

vestors comply with mixed risk-aversion behaviour (i.e., a positive preference for

odd moments and a negative preference for even moments) is developed in Briec

and Kerstens (2010).

When it comes to the ordinal classification problem, a classifier is trained via

learning from a number of labeled observations. This classifier is then expected to

correctly predict the group membership of a new observation to its maximum level.

The ordinal classification problem is important and quite common in practical

applications. Examples of this problem includes but are not limited to costumer

churn (e.g., De Caigny, Coussement, De Bock, and Lessmann (2019)), bankruptcy

prediction (e.g., De Bock (2017)), credit scoring (e.g., Lessmann, Baesens, Seow,

and Thomas (2015)), etc. For the mathematical programming (MP) approaches in

classification, intuitively the idea is to generate a separating hyperplane (or more

generally a separating hypersurface) to separate different groups of observations.

For every group, this separating hyperplane or hypersurface is conceived as an

envelopment of its observations.

Naturally, the nonparametric frontier method could be a candidate in estim-

ating a separating hyperplane or hypersurface. To the best of our knowledge, the
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idea of using a nonparametric frontier has been first introduced in Troutt, Rai, and

Zhang (1996). These authors employ a convex nonparametric frontier as an accept-

ability frontier in credit applicant acceptance systems. The acceptability frontier,

known as a separating frontier in this contribution, is generated by enveloping all

the accepted applicants. For a new applicant, if it is located within this accept-

ability frontier, then it is accepted, otherwise rejected. Seiford and Zhu (1998)

modify the method in Troutt, Rai, and Zhang (1996) by proposing an alternative

objective function. In Leon and Palacios (2009), the convex frontier method is

applied to the cases with non-discretionary characteristic variables. Variations in

the importance of characteristic variables have been handled by using a preference

cone in Yan and Wei (2011). Pendharkar and his coauthors conduct a series of

empirical and experimental studies in classification problems with nonparametric

frontiers (e.g., bankruptcy prediction (Pendharkar (2002)), mining breast cancer

patterns (Pendharkar, Rodger, and Yaverbaum (1999); Pendharkar, Khosrowpour,

and Rodger (2000)), etc.).

Despite our ignorance as to the real shape of a separating hypersurface, all

existing nonparametric frontier methods stick to the convexity assumption. Con-

vexity assumes that for any two points from one set, the linear combinations of

these two points belong to the same set. If the separating hypersurface derived

from any discriminant function happens to be convex, then the estimated con-

vex frontier offers a reasonable estimate. However, the estimated convex frontier

sometimes appears to be overtly optimistic. For instance, when analysing the

superior performance of neural networks over convex frontiers in mining breast

cancer patterns, Pendharkar, Rodger, and Yaverbaum (1999, p. 231) claim that

one of the reasons is that the frontier method assumes the convexity of acceptable

cases, while neural networks relax this assumption. Therefore, the main objective

of this contribution is to construct a nonconvex separating frontier to envelop a
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group of observations. This nonconvex frontier is based on the Free Disposal Hull

(FDH) approach that has been initially proposed by Deprins, Simar, and Tulkens

(1984). It has a monotonous or staircase shape and envelops the data tighter than

the convex separating frontier does.

Another assumption used for constructing a nonparametric frontier is the free

disposability. In the frontier classification literature, the observation is treated

as a DMU which has all the characteristic variables as inputs and has a single

output of value 1. In this sense, it is always assumed that the classification seeks

to select an observation with smaller characteristic values. While in applications,

some characteristic variables are favored with bigger values. By connecting the

assumption of free disposability with the monotonic relation in classification, this

contribution aims at extending the current frontier-based classifiers to a more

general form. Specifically, the characteristic variables are categorized into input-

type and output-type variables depending on their monotonic relation with the

group membership. Different from the logical inputs and outputs that are com-

monly used in production analysis, mathematical inputs and outputs are defined

to represent the characteristic variables with monotonically decreasing and mono-

tonically increasing relations, respectively. Furthermore, in the situation where the

monotonic relation is not explicitly given, the Minimize Sum of Deviations (MSD)

model proposed by Freed and Glover (1986) is applied to reflect the monotonic

relation.

To meet the above two objectives, this contribution is structured as follows.

Section 2.2 introduces the basic intuitions of applying a frontier method by using

geometrical illustrations. Then, the models and procedures used in constructing

nonparametric separating frontiers are presented in Section 2.3. In Section 2.4, two

empirical applications are used to show the eventual improvements of our nonpara-
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metric separating frontier methods relative to the use of six traditional classifiers

found in the literature. Finally, in Section 2.5 this contribution is concluded with

a summary of its achievements and a discussion of potential future research topics.

2.2 Basic Intuitions and Geometrical Illustration

In this contribution, an ordinal classification problem with two groups is investig-

ated. Prior information on the labeled observations exists such that they belong to

either the bad group (G1) or the good group (G2). In real-word scenarios, such as

the bankruptcy prediction, the natural ordering is quite clear. That is, bankruptcy

companies are labelled to be bad while non-bankruptcy ones are good.

We start with an illustrative example for explaining the general idea of the

MP classification methods. A two-dimensional example with two characteristic

variables Z1 and Z2 is visualized in Figure 2.1 to meet this end. The asterisks in

Figure 2.1 represent the training observations from G1, while the circles represent

those from G2. With the MP classification methods, a separating hyperplane

is expected to separate two groups of observations in a best way. Depending

on the assumptions made with regard to the discriminant functions, the derived

separating hyperplane can be a simple separating line (e.g., see Freed and Glover

(1986), Lam, Choo, and Moy (1996), Sueyoshi (2004), among others) or rather

a separating curve (e.g., see Silva and Stam (1994), Smaoui, Chabchoub, and

Aouni (2009), etc.). In Figure 2.1, the solid line stands for one possible separating

line. It is observed that most training observations from G1 are situated below

the separating line, while those from G2 are mainly situated above the separating

line. By learning from the position of the training observations relative to the

separating line, the widely used discriminant rule is determined as follows. For an
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observation, if it is situated below the separating line, then it is believed to belong

to the bad group G1. Otherwise, it is perceived to belong to the good group G2.

Figure 2.1: Illustration of a separating line in ordinal classification
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Similarly, applying a nonparametric frontier method in classification also aims

at finding a piecewise linear separating hypersurface which discriminates the train-

ing observations in some best way. Two groups of training observations are sup-

posed to be situated either below or above the piecewise linear separating hyper-

surface.

Comparing to the traditional MP classification methods mentioned above, there

are two modelling advantages by applying a nonparametric frontier method. First,

no specific assumption on the shape of the separating hypersurface is required.
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The separating hypersurface is a nonparametric frontier generated from available

observations and some combination of axioms about what is considered feasible.

It is a piece-wise linear frontier which envelops the training observations tightly.

Hence, it is expected to provide a better classification.

Second, the nonparametric frontier method is capable of considering the mono-

tonic relationship of the characteristic variables, which is a type of background in-

formation. Specifically, if the possibility of belonging to the good group increases

with the increase of a characteristic value (while the others are held constant), then

the monotonicity of this characteristic variable is increasing. On the contrary, any

characteristic variable whose decrease (while the others are held constant) leads to

the increase of the possibility of belonging to the good group has a monotonically

decreasing relation. For instance in the student admission, the admitting level

is monotonically increasing with respect to the student’s academic performance.

As for the numerical example in Figure 2.1, it is clear that the higher the two

characteristic variables are, the more likely an observation is located in the good

group. Hence, both characteristic variables here have a monotonically increasing

relation.

In the following, the general procedure of training a nonparametric frontier

classifier is illustrated. First we focus on constructing an attainable set to char-

acterize the base training group G1. With the same two-dimensional example in

Figure 2.1, both the nonconvex (NC) and convex (C) attainable sets of G1 are

discussed. The boundary of the attainable set is known as a separating frontier

which envelops one group of observations.

The NC attainable set is derived from the observations in G1 and the axiom

on free disposability. This NC attainable set describes all possible combinations

of characteristic values that corresponding observations are believed to belong to
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the bad group. In Figure 2.2, the asterisks represent the observations from G1.

First, if an observation has the same characteristic values as one observation from

G1, then it certainly belongs to the attainable set of G1. Then, with the observed

monotonicity, a free disposal area is formed and implies that all observations in

this area share the same group membership. Take the training observation E as

an example, the shaded area restricted to the third quadrant located below and to

the left of E represents the free disposal area of E. All observations located in this

area belong to the bad group just as the training observation E does. This is due

to the monotonically increasing relation between characteristic variables and group

membership in this example. It illustrates that the possibility of belonging to the

bad group will increase with the decreasing of two characteristic variables. Put is

differently, an observation remains in the bad group as long as its characteristic

values are no larger than that of an observation from G1. Finally, the union of all

these free disposal areas derived from the training observations in G1 constitutes

the NC attainable set of G1. In Figure 2.2, this is the area restricted to the third

quadrant located below and to the left of polyline O2DO3CO4BO5AO6 marked

with dotted lines.

In the literature, it is common to have a C attainable set which generates

a C frontier. Comparing to the above NC attainable set, the C set is derived by

having one additional axiom on convexity. Mathematically, the axiom on convexity

implies that for any two observations from one set, the linear combination of these

two observations belong to the same set. In classification, this convexity axiom

explains a substitution relation between two characteristic variables. When it gets

to our numerical example in Figure 2.2, since the observations B and D are in

the attainable set of G1, their linear combination F is also supposed to be in

the same attainable set. Note that there is no observation from G1 that directly

dominates F . Comparing to the observation B, the decreasing of Z2 increases the
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Figure 2.2: Nonconvex and convex attainable set of the bad group G1
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possibility of assigning the observation F to the bad group while the increasing

along Z1 decreases the possibility. However, the substitution relation implies that

the decreasing of Z2 perfectly offsets the increasing of Z1. Hence, the observation

F is supposed to have the same group membership as B does. In applications,

there may exist this type of substitution relation. Like in the student admission,

the disadvantage in GMAT scores can be compensated by the advantages in SAT

to a certain extent. Based on the observations from G1, a C attainable set of G1 is

obtained with the axioms on free disposability and convexity. In Figure 2.2, this is

the area restricted to the third quadrant located below and to the left of polyline

O2DBAO6 marked with solid lines. Comparing to the NC attainable set, two extra

areas, namely, AO5BA and BO4CO3DB, are added due to the convexity. The C
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attainable set also describes all possible combinations of characteristic values that

corresponding observations are believed to belong to the bad group.

The boundary of the attainable set is known as the frontier. As shown in Figure

2.2, the NC frontier marked by dotted lines has a staircase shape. It consists of

four observations, namely, A, B, C and D. The C frontier derived from the C

attainable set consists of three observations, namely A, B and D. The observation

C is perceived to be dominated by a series of virtual points on the line segment

BD, like F . These virtual points are derived from a convex combination of the

observations B and D. Clearly, the NC frontier provides a tighter envelopment of

the observations than the C one does.

Figure 2.3: Nonconvex and convex separating frontiers
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This derived frontier is then used as a separating frontier to separate two groups

of observations. For a new observation, if it is located within the separating

frontier, then it belongs to the bad group G1, otherwise it belongs to the good

group G2. As shown in Figure 2.3, the NC separating frontier gives a perfect

separation between two groups of observations. That is, the observations from G1

are situated within the NC separating frontier while those from G2 are situated

beyond the NC frontier. For the C case, although all observations from G1 are

situated within the C separating frontier, not all observations from G2 are correctly

situated beyond the C frontier. Three observations that are actually from G2 are

situated within the C separating frontier. These three misclassified observations

M1, M2 and M3 are marked with the faded rhombus in Figure 2.3. These extra

misclassifications imply that if there is no clear information on the substitution

relation between the characteristic variables, a NC separating frontier is preferred

in terms of its conservation comparing to the C frontier.

2.3 Nonparametric Frontier Approaches for Dis-

criminant Analysis

2.3.1 Basic Concepts

Consider an ordinal classification problem with a set of observations. These ob-

servations constitute the total sample G to be used for training a classifier. Prior

knowledge on the group membership is given such that the observations are ex-

haustively classified into two groups, namely, the bad group G1 and the good group

G2. Note that the group G1 together with the group G2 form a partition of G,

that is G1 ∪G2 = G and G1 ∩G2 = ∅.
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The observations Zj (j = 1, . . . , n) are characterized by K characteristic vari-

ables. That is, Zj = (z1,j, . . . , zk,j, . . . , zK,j). According to the background in-

formation on the relation between the group membership and the characteristic

variables, there are two types of monotonic relations.

Definition 2.3.1. The characteristic variable zk,j has a monotonically decreasing

relation, if the following holds true: Zj1 = (z1,j1 , . . . , zk,j1 , . . . , zK,j1) ∈ RK belongs

to the good group if there exists an observation Zj2 = (z1,j2 , . . . , zk,j2 , . . . , zK,j2) ∈

RK from the good group for which zk,j2 > zk,j1 and zl,j2 = zl,j1 for all l ∈

{1, . . . , K} \ {k}.

Definition 2.3.2. The characteristic variable zk,j has a monotonically increasing

relation, if the following holds true: Zj1 = (z1,j1 , . . . , zk,j1 , . . . , zK,j1) ∈ RK belongs

to the good group if there exists an observation Zj2 = (z1,j2 , . . . , zk,j2 , . . . , zK,j2) ∈

RK from the good group for which zk,j2 < zk,j1 and zl,j2 = zl,j1 for all l ∈

{1, . . . , K} \ {k}.

Accordingly, the characteristic variables are exclusively categorized into two

types. If the possibility of belonging to the good group increases (decreases) with

the decrease (increase) of a characteristic value, then it is a characteristic variable

with a monotonically decreasing relation, denoted by X ∈ Rm. Otherwise, if the

possibility of belonging to the good group increases (decreases) with the increase

(decrease) of a characteristic variable, then it is a characteristic variable with a

monotonically increasing relation, denoted by Y ∈ Rs. The observation Z is then

characterized by the characteristic variables X and Y : Z = (X, Y ) ∈ Rm+s. Note

that m+ s = K.

In situations where the monotonic relation exists but is not explicitly given,
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the MSD model is applied to differentiate the characteristic variables:

min
αk,s

+
1,j ,s

−
2,j

∑
j∈G1

s+
1,j +

∑
j∈G2

s−2,j

s.t.
K∑
k=1

αkzk,j + s+
1,j ≤ d− η j ∈ G1

K∑
k=1

αkzk,j − s−2,j ≥ d j ∈ G2

s+
1,j ≥ 0, s−2,j ≥ 0, d and αk are free

(2.3.1)

where d is a threshold value and αk(k = 1, . . . , K) are weights, both of which

are unknown and therefore to be determined. To avoid a trivial solution (where

αk = 0 for all k and d = 0) and to have a clear separation between two groups, a

small number η is introduced (Glover (1990)).

For the observations from the bad group G1, the weighted average of their char-

acteristic variables, which is ∑K
k=1 αkzk,j, is supposed to be below the threshold

value d. While the weighted average of the characteristic variables of the observa-

tions from the good group G2 is generally above the threshold value. Misclassific-

ations are allowed by having the slacks s+
1,j and surpluses s−2,j. If the optimal value

of the weight α∗k is negative, then the increase (decrease) of this characteristic vari-

able reduces (enlarges) the value ∑K
k=1 α

∗
kzk,j. Therefore, it decrease (increase) the

possibility of belonging to the good group. On the contrary, if the optimal value of

the weight α∗k is positive, then the increase (decrease) of this characteristic variable

increases (decreases) the possibility of belonging to the good group. To sum up,

by solving model (2.3.1), the following monotonic relation is defined by the sign

of α∗k:

(i) If α∗k < 0, then characteristic variable k has a monotonically decreasing

relation, denoted by x;
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(ii) If α∗k ≥ 0, then characteristic variable k has a monotonically increasing rela-

tion, denoted by y.

2.3.2 Acceptance Possibility Set

The bad group G1 is used as the base training group to construct the separating

frontier. That is, the attainable set is constructed based on the observations from

G1. It describes all possible combinations of characteristic values that correspond-

ing observations belong to the bad group.

In production analysis, a production possibility set (PPS) is used to describe

the attainable set in production. For all the combinations of the resources and the

products within the PPS, they are attainable (or say producible) under a certain

technology. Instead of discussing the attainability in producing, the attainable

set in classification describes the attainability in accepting an observation to the

bad group. Hence, an acceptance possibility set (APS) is used to describe the

attainable set in classification.

First, all n1 observations fromG1 are in the APS. Then, based on the monotonic

relation between the characteristic variables and the group membership, a free

disposal set denoted by Tj could be derived for every observation Zj j = (1, . . . , n1)

from G1. The monotonic relation says that comparing to an observation Zj =

(Xj, Yj) from G1, an observation with more X and less Y is also supposed to

belong to the bad group. That is, for Zj = (Xj, Yj), Tj = {(X, Y ) ∈ Rm+s | X ≥

Xj and Y ≤ Yj}. The union of all the free disposal sets of the observations from

G1 constitutes a NC attainable set denoted by TNC . Specifically, TNC depicts the
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observations belonging to the bad group as follows:

TNC =
n1⋃
j=1

Tj

=

(X, Y ) ∈ Rm+s |
n1∑
j=1

λjXj ≤ X,
n1∑
j=1

λjYj ≥ Y,
n1∑
j=1

λj = 1, λj ∈ {0, 1}

 .
(2.3.2)

Based on the above NC APS, having an additional axiom on convexity leads

to a C APS. As explained in Section 2.2, the convexity in classification implies

a substitution relation among characteristic variables. If the prior information of

such a substitution relation is provided, then a C APS is constructed as follows:

TC =

(X, Y ) ∈ Rm+s |
n1∑
j=1

λjXj ≤ X,
n1∑
j=1

λjYj ≥ Y,
n1∑
j=1

λj = 1, λj ≥ 0

 . (2.3.3)

For the NC case, an observation belongs to the bad group if and only if it is

located within the free disposal area of one observation from G1. While for the

C case, except for the above situation, if it is located within the free disposal

area of a convex combination of two or more observations originally from G1, this

observation is also believed to belong to the bad group. Obviously, TNC ⊆ TC : a

NC monotonic hull is a subset of a C monotonic hull. Put differently, the NC APS

provides a tighter envelopment of the training observations than the C one does.

In order to simplify the expressions, we use the following notation to stand for

the APS of G1 under the NC and C cases:

TΛ =

(X, Y ) ∈ Rm+s |
n1∑
j=1

λjXj ≤ X,
n1∑
j=1

λjYj ≥ Y,

n1∑
j=1

λj = 1, λj ∈ Λ, j = 1, . . . , n1

 , (2.3.4)
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where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

In the classification literature, all the papers adopt either an input-oriented

or an output-oriented radial measure. In this contribution, a directional distance

function (DDF) measure is proposed to gauge the relative distance to the fron-

tier. Following Chambers, Chung, and Färe (1998), TΛ can be represented by the

following DDF DΛ,g(Z):

DΛ,g(Z) = sup{δ ∈ R | Z + δg ∈ TΛ}. (2.3.5)

where g = (gX , gY ) ∈ Rm × Rs represents the projection direction. To be mean-

ingful, gxi
≤ 0 for all i ∈ {1, . . . ,m} and gyr ≥ 0 for all r ∈ {1, . . . , s}. In this way,

the characteristic variables X are non-increased and the characteristic variables Y

are non-decreased while increasing the value of δ, which is the favorable behavior.

The assumption on convexity differentiate the NC APS (TΛNC) from the C one

(TΛC). However, this does not change the definition of the DDF measure, only

the value of the DDF measure may be enlarged. That is, DΛNC,g(Z) ≤ DΛC,g(Z).

The value of DΛ,g(Z) serves as an indicator that positions the observations relative

to the boundary of the APS (TΛ). It is well-defined for all possible observations

Z = (X, Y ) ∈ Rm ×Rs. A non-negative DΛ,g(Z) means Z is in the interior of TΛ.

If an observation Z is located outside TΛ, then DΛ,g(Z) becomes negative and this

observation is projected onto the frontier in the direction opposite to g.

30



2.3.3 Separating Frontiers: Nonconvex and Convex

In this subsection, the separating frontiers are constructed for the nonconvex and

the convex cases, respectively. With the projecting direction g = (gX , gY ) where

gX ≤ 0 and gY ≥ 0, the following model is used to measure the relative distance

of the observation (X0, Y0) to the boundary of TΛ which depicts the bad group.

max
λj ,δΛ

δΛ

s.t.
n1∑
j=1

λjxi,j ≤ xi,0 + δΛgxi
∀i ∈ {1, . . . ,m}

n1∑
j=1

λjyr,j ≥ yr,0 + δΛgyr ∀r ∈ {1, . . . , s}

n1∑
j=1

λj = 1

λj ∈ Λ ∀j ∈ {1, . . . , n1}

(2.3.6)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

In the C case, model (2.3.6) is a linear programming (LP) problem, while it

involves solving a binary mixed integer program (BMIP) for the NC case. To

remedy the computational issue in the NC case, a fast implicit enumeration-based

method is proposed by Cherchye, Kuosmanen, and Post (2001) requiring only to

compute minima and maxima of lists of ratios. Instead of solving a BMIP model,

the following exact solution is obtained for model (2.3.6) under the NC case:

δ
∗
ΛNC = max

j=1,...,n1

(
min

i=1,...,m

(
xi,j − xi,0

gxi

)
, min
r=1,...,s

(
yr,j − yr,0

gyr

))
. (2.3.7)
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By solving model (2.3.6) for all observations from G1, a frontier set defined

by FSΛ is generated. FSΛ consists of the observations from G1 that has δ∗Λ = 0.

Normally, the set FSΛ under the NC case is different from that under the C case.

All frontier observations in FSΛC could be found in FSΛNC . However, not all

frontier observations in FSΛNC belong to FSΛC , since some frontier observations

generated under the NC case are dominated by some convex combinations of the

observations. Therefore, FSΛC j FSΛNC .

2.3.4 Separating Frontier based Discriminant Rules

The separating frontier represented by the observations in the frontier set FSΛ

is then used to determine the membership of a new observation. Specifically, the

following model is used to calculate the distance of the observation Z0 = (X0, Y0)

relative to the separating frontier:

max
λj ,δΛ

δΛ

s.t.
∑

j∈FSΛ

λjxi,j ≤ xi,0 + δΛgxi
∀i ∈ {1, . . . ,m}

∑
j∈FSΛ

λjyr,j ≥ yr,0 + δΛgyr ∀r ∈ {1, . . . , s}

∑
j∈FSΛ

λj = 1

λj ∈ Λ ∀j ∈ FSΛ

(2.3.8)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

For observation Z0 = (X0, Y0), the optimal distance measure calculated from
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model (2.3.8) is the same as that calculated from model (2.3.6). The difference

is that only the observations in the frontier set are used in the left hand side of

the inequalities in model (2.3.8). Although δ∗Λ = δ
∗
Λ always holds, the decrease in

sample size can save some computational time.

If δ∗Λ ≥ 0, then it indicates there exists a benchmark that dominates the

observation Z0 = (X0, Y0). This benchmark is generated from the left-hand

side of the inequality constraints in model (2.3.8) and is represented by Zb =

(∑j∈FSΛ λ
∗
jXj,

∑
j∈FSΛ λ

∗
jYj). It is either an observation from the NC frontier set

FSΛNC or a convex combination of the observations from FSΛC . In the case where

δ∗Λ ≥ 0, the following two inequalities hold: ∑j∈FSΛ λ
∗
jXj ≤ X0 and ∑j∈FSΛ λ

∗
jYj ≥

Y0. It is known that an observation is more likely to belong to the bad group with

the increase of variables X and the decrease of variables Y . Comparing to the

benchmark Zb which is from the bad group, the observation Z0 = (X0, Y0) has

more X and less Y . Obviously, it should be assigned to the bad group G1.

On the contrary if δ∗Λ < 0, then the observation Z0 dominates the benchmark

Zb. That is, ∑j∈FSΛ λ
∗
jXj > X0 and ∑

j∈FSΛ λ
∗
jYj < Y0. The benchmark is on

the boundary of the APS of the bad group and is about to leave the bad group.

Comparing to the benchmark Zb, the observation Z0 has less X and more Y .

Therefore, its possibility of belonging to the bad group is lower than that of the

benchmark. Hence, the observation Z0 is preferred to be assigned to the good

group if there is no further information.

To sum up, the membership of the observation Z0 is determined by the sign of

the optimal distance measure δ∗Λ calculated from model (2.3.8). The discriminant

rules are summarized as follows:

(Rule 1) If δ∗Λ ≥ 0, then Z0 belongs to the bad group;
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(Rule 2) If δ∗Λ < 0, then Z0 belongs to the good group;

Note that the membership is solely determined by the sign of the measure rather

than the value. Put it differently, the choice of the direction vector does not make

a difference in the classification results. In the literature, all the papers adopt

either an input-oriented or an output-oriented radial measure. If the direction

vector is g = (−X0,~0) where ~0 represents a zero vector and X0 is assumed to be

non-negative, then δΛ becomes an input-oriented radial measure. If the direction

vector is g = (~0, Y0) where and Y0 is assumed to be non-negative, then δΛ becomes

an output-oriented radial measure. No matter which direction vector is chosen,

the same classification results are obtained.

However, the choice of the direction vector makes a difference in obtaining an

applicable benchmark. Take the university admission as an example, the applic-

ant is classified into two categories, namely, admitted and not yet. The academic

performance and the language scores are two main characteristic variables to be

considered, among others. In the short term, the academic performance could not

be easily enhanced while it is more likely to increase the language scores. In this

sense, the applicant is interested in knowing a favorable language score to be ad-

mitted by universities while maintaining the current academic performance. This

could be easily achieved by setting the direction value of the academic performance

to be 0.
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2.4 Empirical Analysis

2.4.1 Test Setting and Evaluation Criteria

In this section, the performances of the proposed C and NC nonparametric frontier

classifiers are tested with two data sets. For the sake of replication, we choose two

secondary data sets. First, the performance is measured with a Japanese bank

data set which is balanced in the sample size, see Table 1 in Sueyoshi (2001) for

the detailed data. Second, an unbalanced data set on the corporate bankruptcy

in the US electric power industry is used, see Table 2 in Sueyoshi (2006) for the

detailed data.

In addition, the performances of applying the proposed frontier classifiers are

compared to that of applying six classic classifiers. Specifically, these classic clas-

sifiers are: Logit, Probit, Fisher’s linear classifier, Smith’s quadratic classifier,

neural networks, and decision tree. The detailed description of these six classifiers

is available in Sueyoshi (2001).

The hit rate results are reported to show the performance of all listed classifiers.

A hit results when an observation emanating from a certain group is assigned to

this group by means of the used classification rules. A hit rate is the proportion of

the observations that are correctly classified under the used classification rule (see

Huberty and Olejnik (2006) for definitions and variations). In this contribution,

the apparent hit rate which measures the classification accuracy is used. It is the

ratio of the correctly predicted observations to the total sample.

For the choice of the direction vector, we use g = (−X0, Y0) for the obser-

vation Z = (X0, Y0). This ensures that the DDF measure (DΛ,g(Z)) obtains a
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proportional interpretation (see Briec (1997)). Of course, such a percentage in-

terpretation is not indispensable in our classification context where the focus is

rather on the sign of the DDF measure. However, for convenience we stick to this

proportional distance function. In our classification context with potentially neg-

ative inputs and outputs, Kerstens and Van de Woestyne (2011) argue that one

can benefit from using a direction vector g = (−|X0|, |Y0|) for a given observation

Z = (X0, Y0) so as to preserve a proportional interpretation.

2.4.2 Balanced Data Set

The balanced data set of 100 observations originates in Sueyoshi (2001) and is

related to the Japanese banks. The group labels of these 100 Japanese banks are

known a priori. The bottom 50 banks constitute the bad group G1, while group G2

contains the remaining top 50 banks. Since group G1 represents the bad group of

the poorly performing banks, it is chosen as the base training group to construct

the separating frontier. The performance of banks is characterized by in total seven

characteristic variables. Details on the definitions of these characteristic variables

are provided in Sueyoshi (2001).

Table 2.1: Characteristic variables for the Japanese bank data set

X Y

Cost-profit ratio Return on total assets
Index Bad loan ratio Equity to total assets

Measures Loss ratio of bad loans Return on total domestic assets
Return on equity

The characteristic variables are differentiated into two categories, as shown

in Table 2.1. For the three index measures in the column of the characteristic

variables X, the performance of a bank is better when these indexes are lower. For
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example, a bank is believed to achieve better performance if it has less bad loans.

By contrast, higher values of indexes in the column of the characteristic variables

Y contribute to a better performance of the corresponding banks. For instance, the

return on total assets shows the profitability of the assets in generating revenue:

a higher value of this index implies a higher profitability and hence it indicates a

better performance.

Table 2.2: Classification accuracies of various classifiers: Japanese bank data set

Classifiers Apparent Accuracy

Frontier-based Frontier - C 90,00
Classifiers Frontier - NC 100,00

Logit 93,00
Probit 93,00

Classic Fisher’s linear classifier 91,00
Classifiers Smith’s quadratic classifier 85,00

Neural network 98,00
Decision tree 93,00

Table 2.2 shows the classification performances of applying all of the above

mentioned classifiers. The classification accuracies are reported in the last column.

Horizontally, the first block reports the results of the C and NC frontier-based

classifiers. The second block contains the results of six classic classifiers. These

results are copied from the ones reported in Sueyoshi (2006).

The comparison of the two frontier-based classifiers in Table 2.2 finds that the

classification performance is substantially improved by relaxing the convexity as-

sumption. For both C and NC situations, all observations from G1 are correctly

classified. For the C frontier method, 10 observations originally from G2 are mis-

classified into G1. This leads to a classification accuracy of 90% in applying the

C method. While the NC frontier method gives a classification accuracy of 100%.
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This 100% classification accuracy indicates that two groups of banks are perfectly

separated without any misclassification.

Comparing now the frontier-based classifiers with the classic classifiers yields

one additional finding. The highest classification accuracy reaches 100% by ap-

plying the NC frontier methods. While for the six classic classifiers, the highest

classification accuracy is 98% by applying the neural networks. There still leaves

two banks misclassified. All the listed classic classifiers fail to provide a perfect

separation between the two groups of banks. With respect to this bank data set,

the NC separating frontier achieves a better classification performance than the

classic classifiers.

In general, we find that the classification performance of the C frontier method

can be substantially improved by relaxing the convexity assumption. Among all

the listed methods in Table 2.2, the NC frontier classifier achieves the best separ-

ation between the two groups of banks.

2.4.3 Unbalanced Data Set

The second real data set used is an unbalanced data set related to the corporate

bankruptcy data in the US electric power industry. The data is described in

Sueyoshi (2006). In summary, it contains 22 default firms (G1) and 61 non-default

firms (G2). The cost of misclassifying a default firm into the non-default group

is relatively high, hence G1 is chosen as the base training group to construct the

separating frontier. The performance of all the firms is characterized by 13 financial

ratios. Details on the definitions of these characteristic variables are provided in

Sueyoshi (2006).

The characteristic variables are differentiated into two categories as shown in
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Table 2.3: Characteristic variables for the US electric power industry data set

X Y

Ratios

Long-term debt to total assets Cash to total assets
Return on equity Working capital to total assets
Beta Sales to total assets

Shareholder equity to total assets
Net income to total assets
Retained earning to total assets
Market to book ratio
Price over earnings
Earnings per share
Share price

Table 2.3. For the three ratios in the column of the characteristic variables X, the

probability of default is lower when these ratios are smaller. For example, more

long-term debt compared to its total assets implies a higher possibility of being

default. While for the ratios in the column of the characteristic variables Y , a

higher value contributes to a lower possibility of getting default. For instance, the

cash to total assets ratio is used to measure a firm’s liquidity or its ability to pay

its short-term obligations. The higher this ratio implies a smaller possibility of

obtaining a default.

The same apparent hit rate as above is used to measure the classification ac-

curacy. The accuracy results of various classifiers are listed in Table 2.4. The

structure of Table 2.4 is similar to that of the Table 2.2.

From the results in Table 2.4, the main findings are very much in line with

the above balanced data set. Although the classification accuracy of the C fron-

tier methods is as high as 98.80%, it could be further improved by relaxing the

assumption of convexity. Specifically, two groups of electric power firms are per-

fectly separated with the NC frontier methods.

39



Table 2.4: Classification accuracies of various classifiers: US electric power in-
dustry data set

Classifiers Apparent Accuracy

Frontier-based Frontier - C 98,80
Classifiers Frontier - NC 100,00

Logit 98,80
Probit 100,00

Classic Fisher’s linear classifier 96,38
Classifiers Smith’s quadratic classifier 98,80

Neural network 100,00
Decision tree 93,98

Both some of the classic classifiers and the NC frontier classifier achieve the

best classification accuracy of 100%. It shows that this data set of the electric

power industry is more separable than that of the Japanese banks, in spite of its

imbalanced sample size.

To sum up, we find that an imbalance in the relative sizes of groups within

the sample does not show significant influence when applying the frontier-based

classifiers. The NC frontier methods still achieve a perfect separation between two

groups of observations.

2.5 Conclusions

In most MP classification applications, the best functional form of the discriminant

function is unknown. The nonparametric frontier methods envelops all observa-

tions in a flexible way since its precise shape is determined by the strength of the

maintained axioms. In this sense, the piecewise linear envelopment frontier can

serve as a separating hypersurface. All observations within the separating frontier
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share the same group membership as those from the base training group, while

the observations outside this frontier is classified into the opposite group.

This contribution has innovated in two main ways. First, instead of sticking

to the convexity assumption, a NC frontier has been used and ends up with a

better envelopment of the training observations. Second, a more generalized form

of frontier-based classifier is introduced by incorporating characteristic variables

with both the monotonically increasing and the monotonically decreasing relations.

Moreover, the DDF measure is introduced to provide the alternative benchmark

with more flexibility.

The empirical comparison between the NC frontier classifier with the C frontier

classifier reveals that the NC frontier offers a tighter envelopment of observations

than the C frontier does. Therefore, a perfect separation is obtained by applying

a NC frontier for both the Japanese bank data set and the US electric company

data set. If there is no prior information on the substitution relation among

characteristic variables, then the NC frontier method is by far the best choice

among the frontier-based methods. This study also compares the proposed frontier

classifiers with six classic classifiers with respect to the same two real data sets.

The empirical results show that the NC frontier method outperforms the six listed

classifiers.

We end with developing some perspectives for potential future research. First,

it is an open question to which extent the existing single frontier methods could

be further enhanced for better discrimination by a further relaxation of some of

the axioms inherited from production theory. Just as relaxing convexity yields a

monotonous frontier instead of a convex piecewise linear frontier, one may wonder

whether it is possible to weaken the currently maintained axiom of strong disposal.

A recent theoretical attempt to do so is developed in Briec, Kerstens, and Van de
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Woestyne (2016) and empirically implemented in Briec, Kerstens, and Van de

Woestyne (2018). Second, one may equally wonder to which extent the same ideas

can be transposed in the limited literature employing double separating frontiers

in a classification setting (e.g, see Sueyoshi (2001), Sueyoshi (2006) and Chang

and Kuo (2008)). Third, while we have in this contribution compared the frontier

methods to a series of traditional classification methods, it could be interesting to

compare the best of the frontier methods to some of the best performing state of

the art classification methods (see Lessmann, Baesens, Seow, and Thomas (2015))

to check their relative classification and prediction accuracies.
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CHAPTER

3

Ordinal Classification

with a Nonparametric

Separating Hull:

The Role of Non-Monotonicity

and Nonconvexity

3.1 Introduction

Classification, as a widely discussed topic in the data mining literature, aims at

assigning an observation to a predefined group based on its characteristic variables.

It is normally achieved by training a classifier based on a set of training observa-

tions, then this classifier is able to classify future observations in an automated way.

In order to obtain a well-trained classifier, using background knowledge is of fun-

damental importance in the training process. A common type of such knowledge

concerns the monotone relation between the group labels and the characteristic

variables: higher values of characteristic variables increase the probability that an
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observation belongs to a certain group and vice versa. In student admission, for

instance, one would expect the probability of admission to increase with a better

academic performance. Since the monotonicity is frequently encountered in applic-

ations, several researchers became interested in the incorporation of monotonicity

constraints in different classification methods, such as neural networks, decision

trees and ensembles (see Cano, Gutiérrez, Krawczyk, Woźniak, and García (2019)

for a recent survey).

However, in many applications, the relation between the group labels and the

characteristic variables could also show non-monotonicity. Note that the non-

monotonicity discussed here is not the non-monotonic data that arises due to

noise, or the omission of important predictors (e.g., Feelders and Pardoel (2003);

Rademaker, De Baets, and De Meyer (2009)). The interest is on the natural non-

monotonic relation bounded with the application itself. For example, in medical

diagnoses, both high values and low values may indicate symptoms of certain

diseases. Similar example can be found in differentiating healthy firms from the

poor ones by debt-to-equity ratio. A firm is perceived to be poor while it has

either a very high or a very low debt-to-equity ratio. In such applications, the

relation between the characteristic variables and the group label is apparently

non-monotonic.

Although the research on incorporating the monotonic relation is increasing,

the parallel research question on how to properly reflect the non-monotonic relation

in classification remains valid. To the best of our knowledge, the research on deal-

ing with the non-monotonicity in classification is quite limited. In Lam and Choo

(1993), the non-monotonicity is treated by discretizing the non-monotonic vari-

ables into several partially monotonic variables. Specifically, each non-monotonic

variable is visualized into a one dimension diagram and then the diagram is used
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to decide the cut-off values. Different ways to discretize the non-monotonic vari-

ables may lead to different classification results. In this contribution, the primary

interest is to incorporate the non-monotonic variables while developing a nonpara-

metric classifier for the ordinal classification.

In the literature, the nonparametric classifier is built explicitly based on the

Data Envelopment Analysis (DEA) method. There are typically two types of DEA-

based classifiers. The first type is primarily based on the use of goal programming

(see Sueyoshi (1999, 2001, 2004) for the details) rather than the standard DEA

models. Banker, Chang, and Cooper (2002) have argued that researchers should

avoid calling goal programming models as DEA methods. The second type is based

on the traditional DEA models proposed by Banker, Charnes, and Cooper (1984)

which is originally served as a relative efficiency measure for ranking a sample of

observations. The DEA-based classifier discussed in this contribution explicitly

refers to the second type.

As a data-based method, DEA is widely applied in production analysis and

portfolio analysis (Emrouznejad and Yang (2018)), but it is not primarily de-

veloped for solving the classification problem. Troutt, Rai, and Zhang (1996) is

the first article that employs a DEA-based nonparametric frontier as an accept-

ability frontier in credit applicant acceptance systems. Following the pioneering

work of Troutt, Rai, and Zhang (1996), the DEA-based frontier has been adapted

to better represent a separating frontier that distinguishes between two groups of

observations (e.g., Seiford and Zhu (1998); Leon and Palacios (2009); Yan and Wei

(2011); Pendharkar, Rodger, and Yaverbaum (1999); Pendharkar, Khosrowpour,

and Rodger (2000); Pendharkar (2002, 2011) etc.). The idea of using the non-

parametric frontier in classification is in line with the general idea of locating a

separating hypersurface by mathematical programming (MP) methods. The ma-
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jority of the MP methods requires an assumption on the shape of the separating

hypersurface. It might be a simple linear separating hyperplane (e.g., see Freed

and Glover (1986), Lam, Choo, and Moy (1996), Sueyoshi (2004), among others)

or rather a separating hypersurface that is potentially nonlinear (e.g., see Silva

and Stam (1994), Smaoui, Chabchoub, and Aouni (2009), etc.). When it comes

to the DEA-based classifiers, they do not make any particular assumption on the

functional form of the hypersurface. In this sense, the DEA frontier methods are

more flexible in terms of closely enveloping the observations.

The DEA-based separating frontier is monotonic and convex. These two char-

acteristics correspond to two types of background information in classification.

One type of background information is the monotonic relation between the char-

acteristic variables and the group label. The monotonicity is described by the

axiom of free disposability on the monotonic variables. The other type of the

background information concerns the substitution relation among the character-

istic variables. This relation is reflected by the axiom of convexity. To extend the

nonparametric frontier classifier for a wider range of classification problems, the

main purpose of this contribution is to construct a nonparametric classifier where

some of the current axioms of the DEA classifier are adapted. Specifically, this

research is driven by the following two motivations.

First, we consider the standard axiom of free disposability in DEA methods in-

tuitively unappealing for describing the non-monotonic variables, since it amounts

to assume that the characteristic variables can be disposed off without any limit-

ation. We suggest to replace this free disposability assumption with a generalized

disposal assumption that makes the disposal of the non-monotonic variables only

possible within a limited value range. This is a direct extension of the S-disposal

assumption which describes the congestion in the input-space (see Briec, Kerstens,
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and Van de Woestyne (2016) for a theoretical treatment and see Briec, Kerstens,

and Van de Woestyne (2018) for an empirical application). The generalized dis-

posability assumption defined in this contribution is independent of defining a

input-type or a output-type variable. It is used to describe the non-monotonic

variable which is preferred within a value range rather than monotonically favor-

ing a higher or a lower value.

Second, the axiom of convexity which implies a substitution relation among

the characteristic variables is relaxed. If there is no prior information on the re-

lation between the characteristic variables, retaining an assumption of convexity

could degrade the classification performance while applying a nonparametric fron-

tier method. Pendharkar, Rodger, and Yaverbaum (1999, p. 231) already claim

that the convexity assumption embedded in the DEA-based classifier may be the

reason why neural networks outperform the frontier methods in mining breast

cancer patterns. However, to the best of our knowledge, all the current frontier

classifiers stick to this assumption on convexity. This calls for the development of

a nonconvex frontier classifier which is possible with the Free Disposal Hull (FDH)

method that has been initially proposed by Deprins, Simar, and Tulkens (1984).

This contribution unfolds as follows. Section 3.2 graphically illustrates the

shape of the separating hypersurface when the ordinal classification problem has

both monotonic and non-monotonic variables. Instead of having one separating

frontier generated from the nonparametric method, a separating hull consists of

several separating frontiers is derived to differentiate between the groups of obser-

vations. Then, the models and procedures used to construct the nonparametric

classifiers are presented in Section 3.3. Specifically, a generalized free disposability

assumption is proposed to capture the property of the non-monotonic variables.

Then, a dominance adapting directional distance function (DAD) that measures
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the distance to the corresponding frontier is defined to accommodate the general-

ized free disposability assumption. Finally, an algorithm is introduced to predict

the membership of an observation with the proposed separating hull. In Section

3.4, an illustrative example is available for comparing the proposed separating hull

method with some existing methods. Section 3.5 concludes, discusses limitations,

and offers directions for future research.

3.2 Basic Intuitions and Geometrical Illustration

An ordinal classification problem with two ordered groups of observations is in-

vestigated, namely, a bad group G1 and a good group G2. The observations

are characterized by both monotonic and non-monotonic characteristic variables.

Specifically, the possibility of belonging to the good group increases with the aug-

mentation of the monotonically increasing variable and with the reduction of the

monotonically decreasing variable. While for the non-monotonic characteristic

variables, an observation belongs to the good group if the corresponding value is

located within a certain value range. Both positive and negative deviations from

the value range indicate that the observation is more likely belonging to the bad

group. Based on the training observations whose membership is a priori known,

the nonparametric classifier is trained and expected to be capable of predicting

the membership of an observation.

A two-dimensional classification problem with two characteristic variables x

and w is illustrated to introduce the intuitive idea of our nonparametric classifier.

The characteristic variable x corresponds to a monotonically decreasing variable

and w corresponds to a non-monotonic characteristic variable. Thus, the smaller

the value of x is, the higher the possibility of classifying an observation to the good
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group G2 is. While for the value of w, the observation is classified into G2 if it is

within a preferred value range. In Figure 3.1, the training observations belonging

to G1 are marked by the asterisks and those from G2 are marked by the circles.

Clearly, these two groups are not easily linearly separable.

Figure 3.1: A classification example with both monotonic and non-monotonic
variables
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Based on the background knowledge on the monotonic and non-monotonic re-

lations between the characteristic variables and the group label, a nonconvex (NC)

attainable set can be constructed to describe all combinations of characteristic val-

ues whose corresponding observations belong to the good group G2. First, if an

observation has the same characteristic values as one training observation from G2,

then it certainly belongs to the attainable set of G2. Then, with the monotonicity
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defined for x, an observation belongs to G2 if its value of x is smaller comparing

to that of a training observation from G2. This generates all the horizontal dotted

lines to the left of the training observations in Figure 3.2. Vertically, take x with a

value of 4.5 as an example to illustrate the non-monotonicity constraint, the pre-

ferred value range of w is [1.5,4]. The lower limit of this value range is determined

by the training observation O1 while the upper limit is decided by point P1. The

point P1 is on the dotted line generated from the training observation O2. For

every possible value of x, the upper and lower value limits of the non-monotonic

characteristic variable w are generated accordingly. Thus, the area to the left of

the solid polylines in Figure 3.2 represents the nonconvex (NC) attainable set of

G2.

If an additional assumption on convexity is introduced, a convex (C) attainable

set is obtained which is lager or equal comparing to the NC one. The convexity

assumption corresponds to the background knowledge on the substitution relation

between the characteristic variables. When it gets to our numerical example in

Figure 3.2, since the training observations O3 and O4 are in the C attainable set

of G2, their linear combination P2 is also supposed to be in the same attainable

set. Note that there is no training observation from G2 that directly dominates

P2. Horizontally, the value of x of point P2 is larger than that of the training

observation O2 which has the same value of w. Vertically, the value of w of point

P2 is beyond the preferred value range of w determined solely by the training

observations. It is the assumed substitution relation that makes the point P2

acceptable for the attainable set. In Figure 3.2, this is the area restricted to the left

of the dashed lines. The C attainable set also describes all possible combinations

of characteristic values whose corresponding observations are believed to belong

to the good group G2. It is constructed by employing two types of background

knowledge: one is the monotonicity and non-monotonicity constraints, the other
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Figure 3.2: The nonconvex and convex attainable set with characteristic variables
x and w
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is the substitution relation.

The boundary of the attainable set is called the separation hull which could

be either NC or C depending on the assumptions made. Both the NC and the C

separating hulls are non-monotonic since there exists non-monotonic characteristic

variables. In Figure 3.3, the solid staircase lines represent the NC separating

hull and the dashed lines represent the C separating hull. It is observed that all

training observations from G2 which are marked by the circles are located within

the separating hull for both the NC and the C cases. For the training observations

from G1, all of them are located beyond the NC separating hull but three of them

are located within the C separating hull. That is, these three training observations
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marked with the faded rhombuses are misclassified while applying the C separating

hull. Clearly, the NC separating hull provides a better separation than the C

separating hull, since the NC one envelops the observations tighter.

Figure 3.3: The nonconvex and convex separating hulls
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As shown in Figure 3.3, predicting the membership of an observation is now

transformed into the problem of positioning this observation relative to the de-

rived separating hull. If it is within the separating hull, then it belongs to the

good group G2, otherwise it belongs to the bad group G1. In our non-parametric

classifier, the attainable set of G2 is represented as the intersection of some subsets.

Therefore, the above problem could be further simplified into the question whether

the observation is located within corresponding separating frontiers. These separ-

ating frontiers jointly determines the preferred value range of the non-monotonic
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variables as well as the limits of the monotonic variables.

Figure 3.4: The nonconvex subsets with regard to characteristic variables x and w
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Since there is only one non-monotonic variable w in this numerical example,

two separating frontiers are enough to decide the upper and lower value limits of w.

The NC case is explained in detail as an example in Figure 3.4. We start with the

attainable set of G2 which could be represented as the intersection of two subsets.

One subset is the area restricted to the third quadrant located below and to the

left of the dotted lines, and the other is the area restricted to the second quadrant

located above and to the left of the dashed lines. The boundary of the former

subset is called the separating frontier 1, and the latter one is called the separating

frontier 2. For an observation with an attainable value of x, the separating frontier

1 gives the upper value limit of its w and the separating frontier 2 determines its
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lower value limit. With regard to the attainable value of w, the upper value limit

of x is jointly decided by the separating frontier 1 and 2. An observation belongs

to G2 if and only if it is located within both separating frontiers. Note that an

observation is located within the separating frontier 1 if it is located below the

frontier. On the contrary, an observation that is located above the separating

frontier 2 is considered to be within the separating frontier 2.

3.3 Nonparametric Classifier for Cases with Non-

Monotonic Characteristic Variables

3.3.1 Basic Concepts

Consider an ordinal classification problem with a set of labelled training observa-

tions. These training observations constitute the training sample G to be used for

training a classifier. Every training observation is characterized by K character-

istic variables. Prior knowledge on the group label is given such that the training

observations are exhaustively classified into two groups, namely, the bad group G1

and the good group G2. The training observations from G1 are labelled 1 while

those from G2 are labelled 2. The ordered group label means that the observa-

tions with a larger value of the label is perceived to be better. Note that the group

G1 together with the group G2 form a partition of G. Thus, G1 ∪ G2 = G and

G1 ∩ G2 = ∅. A test observation is characterized by the same characteristic vari-

ables as the training observations do. The only difference is that the group label

of a test observation is unknown and must be predicted by the trained classifier.

With the background information on the relation between the group labels and

59



the characteristic variables, the K characteristic variables are categorized into two

categories and totally three types. The first category is the characteristic variables

which are monotonically related to the group labels. Specifically, if the value of the

group label increases (decreases) with the decreasing (increasing) of a characteristic

variable, then it is known as a monotonically decreasing characteristic variable,

denoted byX ∈ Rm. Otherwise, if the value of the group label increases (decreases)

with the increasing (decreasing) of a characteristic variable, then it is known as a

monotonically increasing characteristic variable, denoted by Y ∈ Rs. The second

category consists of the characteristic variables that are not monotonically related

to the group labels, denoted by W ∈ RD. The non-monotonicity is illustrated by

the fact that neither a very high nor a very low characteristic value contributes to

increasing the group label. Having the non-monotonic variables within a certain

value range, corresponding observations are most likely to be labelled 2. To sum

up, an observation is denoted by Z = (X, Y,W ) ∈ Rm × Rs × RD. Note that

m+ s+D = K.

A direction vector which consists of three components is defined to describe

the relation between the characteristic variables and the group label. Specifically,

the three components correspond to three types of characteristic variables. To

be meaningful, the monotonically decreasing relation of X is depicted by gxi
< 0

(i ∈ [m]), where [m] denotes the set {1, . . . ,m}. The monotonically increasing

relation of Y is depicted by gyr > 0 (r ∈ [s]), where [s] denotes the set {1, . . . , s}.

Finally for the direction vector gwd
(d ∈ [D]), it could be positive if a lower value

limit of wd is to be determined while being negative to have an upper value limit.

Remark that [D] denotes the set {1, . . . , D}. The direction vector is denoted by

gp = (gX , gY , gW,p) ∈ Rm × Rs × RD for all p ∈ [2D], where [2D] denotes the set

{1, . . . , 2D}. Take the case with Z = (X, Y,W ) ∈ R1 × R1 × R2 as an example,

four direction vectors are needed to describe the full relation: g1 = (−1, 1, 1, 1),
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g2 = (−1, 1, 1,−1), g3 = (−1, 1,−1, 1) and g4 = (−1, 1,−1,−1). Note that the

absolute value of the elements in gp does not necessarily need to be 1. In this

contribution, we use one so that gp only indicates the monotonic relation without

any influence on the value of the efficiency measure. With regard to the direction

vector, a positive value always stands for the monotonically increasing relation and

a negative one is assigned for describing the monotonically decreasing relation.

3.3.2 Acceptance Possibility Set

An acceptance possibility set (APS) is constructed to describe the attainable set

of the good group G2. It is constituted of all combinations of characteristic values

whose group label is no smaller than 2. In the binary case discussed here, the

group label of all observations within this APS is 2.

Based on the training observations from the good group G2, a NC APS is

constructed from the axiom of free disposability. For the monotonically decreasing

characteristic variable, the axiom of free disposability provides an upper value

limit for X. That is, comparing to a training observation Z = (X, Y,W ) which

is from G2, an observation Ẑ = (X̂, Y,W ) is also labelled 2 if X̂ ≤ X. For the

monotonically increasing characteristic variable, the axiom of free disposability

provides a lower value limit for Y . That is, comparing to a training observation

Z = (X, Y,W ) that is from G2, an observation Ẑ = (X, Ŷ ,W ) is also labelled

2 if Ŷ ≥ Y . Rather than requiring either an upper or a lower value limit, both

limits are needed to classify an observation based on its non-monotonic variable

W . Specifically, after fixing the value of X and Y , an observation is labelled 2 if

and only if every wd is within a preferred value range. For all wd (d ∈ [D]), the

preferred value range is bounded by an upper value limit and a lower value limit.

By assuming that wd has a monotonically decreasing relation with the group label,
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the upper value limit of wd is obtained. While a lower value limit of wd is calculated

by assuming that wd has a monotonically increasing relation. Different from the

monotonic characteristic variables, a generalized free disposability is defined for

the non-monotonic characteristic variables.

Before constructing the APS, we first define a generalized free disposability to

characterize both the monotonic and non-monotonic characteristic variables. 2[D]

denotes the set of all subsets of [D]. Remark that ∅ ∈ 2[D] by definition.

Definition 3.3.1. The APS of G2 satisfies the generalized disposal assumption if

the following holds true: if for every Ip ∈ 2[D] there exists a training observation

Z = (X, Y,W ) from G2 with X̂ ≤ X, Ŷ ≥ Y and Ŵ ≥p W , then the observation

Ẑ = (X̂, Ŷ , Ŵ ) also belongs to G2.

where

Ŵ ≥p W ⇐⇒


ŵd ≥ wd if d ∈ Ip;

ŵd ≤ wd else.
(3.3.1)

Note that Ip ∈ 2[D] exhausts the possible combinations of the monotonic rela-

tions with regard to the D non-monotonic characteristic variables. Take the case

with Z = (X, Y,W ) ∈ R1 × R1 × R2 as an example, Ip ∈ {{1, 2}, {1}, {2}, ∅}.

For every Ip ∈ 2[D], a sub-APS denoted by TNC,p can be derived corresponding

to the direction vector gp = (gX , gY , gW,p) ∈ Rm × Rs × RD:

TNC,p = {(X, Y,W ) ∈ Rm+s+D |
n2∑
j=1

λjXj ≥ X,
n2∑
j=1

λjYj ≤ Y,

n2∑
j=1

λjWj ≥p W,
n2∑
j=1

λj = 1, λj ∈ {0, 1}}.
(3.3.2)

The NC APS of G2 is the intersection of all sub-APS TNC,p generated from the
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possible gp p ∈ [2D]. That is,

TNC = ∩
p∈[2D]

TNC,p (3.3.3)

Based on the above NC APS of G2, having an additional axiom on convexity

leads to a C APS. As explained earlier, the convexity in classification implies a

substitution relation among characteristic variables. If the prior information of

such a substitution relation is provided, then a C APS is constructed as follows:

TC = ∩
p∈[2D]

TC,p (3.3.4)

where

TC,p = {(X, Y,W ) ∈ Rm+s+D |
n2∑
j=1

λjXj ≥ X,
n2∑
j=1

λjYj ≤ Y,

n2∑
j=1

λjWj ≥p W,
n2∑
j=1

λj = 1, λj ≥ 0}.
(3.3.5)

Obviously, TNC,p ⊆ TC,p: a NC monotonic hull is a subset of a C monotonic

hull. Furthermore, TNC ⊆ TC also holds. Put differently, the NC APS provides a

tighter envelopment of the training observations than the C one does.

In order to simplify the expressions, we use the following notation to stand for

the sub-APS under the NC and C cases:

TΛ,p = {(X, Y,W ) ∈ Rm+s+D |
n2∑
j=1

λjXj ≥ X,
n2∑
j=1

λjYj ≤ Y,

n2∑
j=1

λjWj ≥p W,
n2∑
j=1

λj = 1, λj ∈ Λ, j ∈ [n2]}.

(3.3.6)

63



where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

Then, TΛ stands for the APS of G2. Specifically, TΛNC = ∩
p∈[2D]

TΛNC,p corresponds

to the NC case while TΛC = ∩
p∈[2D]

TΛC,p corresponds to the C case .

Following Chambers, Chung, and Färe (1998), the frontier of the sub-APS

could be represented by the following dominance adapting directional distance

function (DAD) DΛ,p(Z):

DΛ,p(Z) = sup{δ ∈ R | Z + δ(−gp ◦ v) ∈ TΛ,p}. (3.3.7)

where ◦ represents the Hadamard product, also known as the element-wise product.

The projection direction vector −gp ◦ v is characterized by the direction vector

−gp and the scaling vector v which is non-negative. The projection direction is

opposite to gp = (gX , gY , gW,p) which represents the monotonic relations of the

characteristic variables. In this way, the monotonically decreasing characteristic

variables are increased and the monotonically increasing ones are reduced while

increasing the value of δ, which is the favorable behavior.

There are different choices possible for the scaling vector v in practical applica-

tions. In our classification context with potentially negative inputs and outputs, a

common choice is using v = (|X0|, |Y0|, |W0|) for an observation Z = (X0, Y0,W0).

This ensures that the DAD measure (DΛ,p(Z)) obtains a proportional interpreta-

tion (see Briec (1997) and Kerstens and Van de Woestyne (2011)). Of course, such

a percentage interpretation is not indispensable in our classification context where

the focus is rather on the sign of the DAD measure. However, for convenience we

stick to this proportional distance function.
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The assumption of convexity differentiates the sub-APS TΛNC,p from TΛC,p.

However, this does not change the definition of the DDF measure, only the value

of the DAD measure may be enlarged. That is, DΛNC,p(Z) ≤ DΛC,p(Z). DΛ,p(Z)

serves as an indicator that positions the observations relative to the boundary of

the sub-APS (TΛ,p). It is well-defined for all possible observations Z = (X, Y,W ) ∈

Rm × Rs × RD. A non-negative DΛ,p(Z) means z is in the interior of TΛ,p. If the

observation Z is located beyond TΛ,p, then DΛ,p(Z) becomes negative and it is

projected onto the frontier in the direction of gp.

Eventually, it is the boundary of the APS of G2 that constitutes the separating

frontier to differentiate between two groups of observations. Derived from the

relation between the APS and the sub-APS, the final DDF measure is calculated

by the following:

DΛ(Z) = min
p∈[2D]

DΛ,p(Z) (3.3.8)

3.3.3 Models for Calculating the Nonconvex and Convex

Separating Hulls

With respect to a specific gp = (gX , gY , gW,p) ∈ Rm×Rs×RD, the following model

is solved for the observation Z0 = (X0, Y0,W0). Note that gX < 0 and gY > 0

always hold while gW,p varies for different p.
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max
λj ,δΛ,p

δΛ,p

s.t.
n2∑
j=1

λjxi,j + s+
i = xi,0 + δΛ,p|xi,0| ∀i ∈ [m]

n2∑
j=1

λjyr,j − s−r = yr,0 − δΛ,p|yr,0| ∀r ∈ [s]

n2∑
j=1

λjwd,j − s−d = wd,0 − δΛ,p|wd,0| ∀d ∈ Ip

n2∑
j=1

λjwd,j + s+
d = wd,0 + δΛ,p|wd,0| ∀d ∈ [D] \ Ip

n2∑
j=1

λj = 1

λj ∈ Λ ∀j ∈ [n2]

(3.3.9)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

In the C case, model (3.3.9) is a linear programming (LP) problem, while it

involves solving a binary mixed integer program (BMIP) for the NC case. To

remedy the computational issue in the NC case, a fast implicit enumeration-based

method is proposed by Cherchye, Kuosmanen, and Post (2001) requiring only to

compute minima and maxima of lists of ratios. Instead of solving a BMIP model,

the following exact solution is obtained for model (3.3.9) under the NC case:

δ∗ΛNC,p = max
j∈[n2]

(
min
i∈[m]

(
xi,j − xi,0
|xi,0|

)
,min
r∈[s]

(
yr,0 − yr,j
|yr,0|

)
,

min
d∈Ip

(
wd,0 − wd,j
|wd,0|

)
, min
d∈[D]\Ip

(
wd,j − wd,0
|wd,0|

))
(3.3.10)

By solving model (3.3.9), the optimal values of δΛ,p are obtained. δ∗Λ,p measures
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the proportional distance of the observation Z0 = (X0, Y0,W0) to the boundary of

TΛ,p. The s+∗
i , s−∗r , s+∗

d and s−∗d are the slacks and surpluses. Only if δ∗Λ,p and all the

slacks and surpluses equal zero, then the observation Z0 = (X0, Y0,W0) is strongly

efficient. Otherwise if only δ∗Λ,p = 0 holds for the observation Z0 = (X0, Y0,W0),

it is considered to be weakly efficient. The possible situations for the distance

measure under a specific gp = (gX , gY , gW,p) ∈ Rm × Rs × RD are the following:

(s.1) If δ∗Λ,p > 0, then the observation is inefficient and located within TΛ,p;

(s.2) If δ∗Λ,p < 0, then the observation is super-efficient and located outside TΛ,p.

(s.3) If δ∗Λ,p = 0 and the slacks and surpluses satisfy s+∗
i = s−∗r = s+∗

d = s−∗d = 0,

then the observation is strongly efficient.

(s.4) If δ∗Λ,p = 0 and not all slacks and surpluses equals 0, then the observation is

weakly efficient.

By calculating δ∗Λ,p for the training observations fromG2, the separating frontier

p is represented by the set of the strongly efficient training observations which

satisfy (s.3). This frontier set of the separating frontier p is represented by FSΛ,p.

With the δΛ,p calculated for every possible gp where p ∈ [2D], the final distance

measure of the observation Z0 = (X0, Y0,W0) to the boundary of TΛ is derived

from:

δ∗Λ = min
p∈[2D]

δ∗Λ,p. (3.3.11)

The ultimate efficiency δ∗Λ measures the nearest proportional distance to the

boundary of TΛ. For the observation Z0 = (X0, Y0,W0), if its δ∗Λ is positive, then

for ∀p, it has δ∗Λ,p > 0. This observation is within the attainable set TΛ. If its δ∗Λ
is negative, then there exists at least one p ∈ [2D] that corresponds to a negative
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δ∗Λ,p. This observation Z0 = (X0, Y0,W0) is located outside the attainable set TΛ.

If δ∗Λ = 0, then for ∀p, it has at least one δ∗Λ,p = 0 and has other δ∗Λ,p being

positive. This observation Z0 = (X0, Y0,W0) is on the boundary of the attainable

set TΛ, also on the strongly efficient frontier of at least one TΛ,p. Note that if the

observation Z0 = (X0, Y0,W0) is on the weakly efficient frontier of one TΛ,p but

not the strongly efficient one, then it is not on the boundary of TΛ. To be specific,

if δ∗Λ,p = 0, then the observation Z0 = (X0, Y0,W0) is weakly efficient. For being

strongly efficient, all constraints have to be satisfied with equalities while model

(3.3.9) achieves the optimum for this observation.

By calculating δ∗Λ for the training observations from G2, the aggregate separ-

ating hypersurface can be represented by the set of the training observations with

δ∗Λ = 0. FSΛ is used to denote this frontier set. Note that FSΛ = ∪
p∈[2D]

FSΛ,p. That

is, the aggregate separating hypersurface is the boundary of the intersection of all

2D sub-APSs. If there exist only nonmonotonic characteristic variables, then the

aggregate separating hypersurface is a closed hull. Normally, the set FSΛ under

the NC case is different from that under the C case. All frontier observations in

FSΛC could be found in FSΛNC . However, not all frontier observations in FSΛNC

belongs to FSΛC , since some frontier observations generated under the NC case are

dominated by some convex combinations of the training observations. Therefore,

FSΛC j FSΛNC .

3.3.4 Separating Hull based Discriminant Rules

The aggregate separating hull represented by the training observations in FSΛ is

used to label an observation denoted by Z0 = (X0, Y0,W0). In this contribution,

the sign of the final distance measure matters more than the exact value (see

supra). Therefore, there is no need to solve model (3.3.9) for 2D times if a stop
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criterion is met. Before introducing the algorithm, the following model is used

to calculate the proportional distance of the observation Z0 = (X0, Y0,W0) to the

separating frontier p:

max
λj ,δ̂Λ,p

δ̂Λ,p

s.t.
∑

j∈FSΛ,p

λjxi,j + s+
i = xi,0 + δ̂Λ,p|xi,0| ∀i ∈ [m]

∑
j∈FSΛ,p

λjyr,j − s−r = yr,0 − δ̂Λ,p|yr,0| ∀r ∈ [s]

∑
j∈FSΛ,p

λjwd,j − s−d = wd,0 − δ̂Λ,p|wd,0| ∀d ∈ Ip

∑
j∈FSΛ,p

λjwd,j + s+
d = wd,0 + δ̂Λ,p|wd,0| ∀d ∈ [D] \ Ip

∑
j∈FSΛ,p

λj = 1

λj ∈ Λ ∀j ∈ FSΛ,p

(3.3.12)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

By solving model (3.3.12), the optimal distance measure δ̂∗Λ,p is derived. The

only difference between model (3.3.9) and model (3.3.12) is that less training obser-

vations from G2 are used in the left hand side of the inequalities. In particular, only

the frontier observations in FSΛ,p are used in model (3.3.12). Although δ∗Λ,p = δ̂∗Λ,p

always holds, the decrease in sample size can save some computational time.

In the following, the algorithm for labeling every test observation Z0 = (X0, Y0,W0)

is designed:
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Step 1: Initialize p as 1 and v0 as an empty vector.

Step 2: If p ≤ 2D, then go to Step 3, otherwise go to Step 6.

Step 3: Generate δ̂∗Λ,p, s+∗
i , s−∗r , s+∗

d and s−∗d by solving model (3.3.12).

Step 4: Set vp = vp−1 ∪ δ̂∗Λ,p,

(a) If δ̂∗Λ,p > 0, then go to Step 5.

(b) If δ̂∗Λ,p < 0, then go to Step 6.

(c) If δ̂∗Λ,p = 0 and all slacks and surpluses equal zeros, then go to Step

6.

(d) If δ̂∗Λ,p = 0 and not all slacks and surpluses equal zero, then go to

Step 5.

Step 5: Set p = p+ 1, then go to Step 2.

Step 6: δ̂∗Λ = min vp.

Step 7: Decide the group label based on the sign of δ̂∗Λ.

(a) If δ̂∗Λ ≥ 0, then the observation is labelled 2 and belongs to the good

group.

(b) If δ̂∗Λ < 0, then the observation is labelled 1 and belongs to the bad

group.

3.4 An Illustrative Example

The proposed frontier-based classifiers are applied to an illustrative example where

the characteristic variables are non-monotonic. For the sake of replication, we

choose a secondary data set provided by Pendharkar (2011).
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This data set is characterized by two characteristic variables. It is generated

from simulations of the normal distributions with means -1, 0 and 1. The standard

deviations for all distributions equal one. The examples that were generated from

normal distributions with means of -1 and 1 are labelled as belonging to group 1,

and the examples that were generated from normal distributions with means of 0

are labelled as belonging to group 2. In total 60 observations are generated and

30 each belong to either the training or the test sample. For both the training

and the test sample, 20 observations belong to group 1 and the other 10 are from

group 2. The detailed observations and their group labels are reported in Table 1

in Pendharkar (2011).

Figure 3.5: A plot of the training data set

-3 -2 -1 0 1 2 3

w
1

-4

-3

-2

-1

0

1

2

w
2

G
1

G
2

Figure 3.5 illustrates the plot of the training observations. The asterisks stands
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for the training observations from the bad group G1, and circles are the training

observations from the good group G2. It can be seen that the characteristic vari-

ables of the simulated data is non-monotonically related with the group labels.

Neither a too big value nor a too small value is favored by the observations from

G2. In addition, it is worth noting that this simulated data set contains observa-

tions with negative characteristic values and two groups are not linearly separable.

In Pendharkar (2011), a radial basis function is used to map a higher dimensional

space where the negative characteristic values are converted into non-negative ones

and the non-linearly separable data is transformed into a linearly separable data.

Specifically, the two-dimensional data set is transformed into a three-dimensional

one. However, there is no need for pretreatment of the original data set while

applying our frontier-based classifier.

The performance of applying the proposed frontier-based classifiers is compared

to that of applying the hybrid radial basis function network-data envelopment

analysis (RBFN-DEA) neural network listed in Pendharkar (2011). Depending

on the relative misclassification costs of Type I or II errors, three RBFN-DEA

methods are examined. Specifically, these three methods are called the no Type II

error DEA model (NTIIEM), the no Type I error DEA model (NTIEM) and the

nearest neighborhood DEA approach (NNA).

To compare the performance on the test sample, a series of measures based on

the confusion matrices are calculated for both the proposed frontier-based methods

and the methods displayed in Pendharkar (2011). The confusion matrix is defined

in Table 3.1. In this example, the observations from G2 are considered to be

the positive ones while those from G1 are the negative ones. The cell marked by

true negative (TN) records the number of correctly predicted observations from

G1. The cell marked by false positive (FP) records the number of the observations
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which are from G1 but are predicted to be in G2. The cell marked by false negative

(FN) records the number of the observations which are from G2 but are predicted

to be in G1. The cell marked by true positive (TP) records the number of correctly

predicted observations from G2.

Table 3.1: A confusion matrix

Predicted Group = 1 Predicted Group = 2

Actual Group = 1 TN FP
Actual Group = 2 FN TP

Table 3.2 summarizes the prediction performance from applying the five listed

classifiers. Among these methods, the first three are from Pendharkar (2011) and

the other two are proposed in this contribution. The first four columns report the

number of test observations under each situation. The overall accuracy is defined

by (TP+TN)/(TP+TN+FP+FN); it illustrates the percentage of correctly pre-

dicted observations regardless of the group. The precision is defined by calculating

TP/(TP+FP); this gives the proportion of the observations that are classified into

the good group G2 and are actually from G2. High precision relates to the low

false positive rate. The recall is defined by calculating TP/(TP+FN); it gives the

proportion of the observations that are actually from the good group G2 and are

correctly classified. High recall relates to the low false negative rate. The value

of F1 score is calculated by 2 × precision × recall ÷ (precision + recall); this F1

score takes both false positives and false negatives into account. The values of the

last four columns are reported in percentages. A high percentage indicates a good

performance.

The comparison of the five listed classifiers in Table 3.2 shows that the NC

frontier-based classifier outperforms the other four classifiers. It has the highest

overall accuracy, the highest precision and also the highest F1 measure. In addi-
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Table 3.2: A summary of the prediction performance on the test sample for all
listed classifiers

TP TN FP FN Accuracy Precision Recall F1

NTIIEM 10 3 17 0 43.33 37.04 100.00 54.05
NTIEM 4 16 4 6 66.67 50.00 40.00 44.44
NNA 7 13 7 3 66.67 50.00 70.00 58.33
Convex Hull 9 8 12 1 56.67 42.86 90.00 58.06
Nonconvex Hull 8 14 6 2 73.33 57.14 80.00 66.67

tion, its percentage of the recall measure is not bad. The highest recall percentage

of 100% is achieved by applying the NTIIEM. However, the results of the NTIIEM

show that although all positive observations are correctly predicted, most of the

negative observations are misclassified to be positive. If there is a skewed emphasis

on correctly predicting the positive cases, then this method could be a potential

choice. Other than that, the NC frontier-based classifier is the best choice based

on the test data.

In addition, the classification accuracy of our frontier-based classifiers is com-

pared with that of the well known architectures of other neural networks used

to solve the classification problems. Among these neural networks are feed for-

ward neural network (FFNN) using error backpropagation learning algorithm

(Rumellhart (1986)), and a probabilistic neural network (PNN) proposed by Specht

(1990). The detailed experimental setting of these two methods can be traced in

Pendharkar (2011).

The best accuracy that the listed neural network method could achieve is 66.67

% while applying the NTIEM or the NNA. By applying the NC frontier-based clas-

sifier, the accuracy is improved by 6.66% (73.33 %-66.67 %). The results in Table

3.3 indicate that the NC frontier-based classifer performs well compared to the

listed neural network models. Moreover, the comparison between the results of
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Table 3.3: Accuracy results of different methods on the test sample

Accuracy

NTIIEM 43.33
NTIEM 66.67
NNA 66.67
FFNN 63.66
PNN 43.44
Convex Hull 56.67
Nonconvex Hull 73.33

the C and NC frontier-based classifiers implies that there is seemingly no substi-

tution relation existing in this example. This confirms that if there is no prior

information on the substitution relation among the characteristic variables, then

the NC frontier-based classifier is a conservative and a better choice than the C

frontier-based classifier.

3.5 Conclusions

While the background information on the relation between the characteristic vari-

ables and the group label often suggests the consideration of a monotonic relation,

its parallel problem of considering a non-monotonic relation is rarely taken into

account in classification. We consider the classification problem in a more general

formulation where both monotonic and non-monotonic relations are incorporated.

Different from the standard disposal assumption used for describing a monotonic

relation, a generalized disposal assumption which limits the disposability within a

value range is defined for characterizing the non-monotonic relation. Accordingly,

a dominance adapting directional distance (DAD) function which accommodates

the generalized disposability notion is developed for measuring the distance of an
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observation to the corresponding NC separating frontier. A NC separating hull

consists of these NC separating frontiers is used to predict the membership of a

new observation. If a new observation is located within this NC separating hull,

then it belongs to the good group, otherwise it belongs to the bad group. We

design an algorithm to simplify the procedures of predicting the membership of a

new observation.

We also analyze our nonparametric classifier in a commonly used C setting.

We argue that only if there exists the additional background information on the

substitution relation among the characteristic variables, then a C nonparametric

classifier is preferred. Otherwise, a NC classifier is more conservative and provides

better classification performance than the C classifier.

We have applied the proposed nonparametric classifiers to a nonlinearly separ-

able binary classification problem. The NC classifier outperforms the C classifier

in terms of the overall accuracy, the precision and the F1 measure. It confirms

our argument of applying a C classifier only after detecting a substitution rela-

tion. Moreover, the proposed NC classifier is shown to outperform some existing

DEA-based classifiers in terms of several commonly used criteria.

We end with developing some perspectives for potential future research. First,

the non-monotonic relation is also frequently encountered in performance evalu-

ation. For instance, an increase in age is efficiency-improving for relatively young

farmers, but is efficiency-impeding for relatively senior farmers. The effect of

considering this type of non-monotonic relation is explored by Wang (2002) in a

parametric setting. A straightforward extension is to modify the efficiency measure

defined in this contribution so that the non-monotonic relation can be examined

in a nonparametric setting. Second, the current separating hull classifier can be

extended to handle classification problems with multiple groups.
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CHAPTER

4

Ordinal Classification

with Double

Nonparametric Frontiers:

The Role of Nonconvexity and

Misclassification Costs

4.1 Introduction

A classification aims to determine whether an observation belongs to a particu-

lar group by evaluating a set of characteristic values. It is known as an ordinal

classification problem when the groups are ordered. As an important and widely

studied topic, its applications includes but are not limited to costumer churn (e.g.,

De Caigny, Coussement, De Bock, and Lessmann (2019)), bankruptcy prediction

(e.g., De Bock (2017)), credit scoring (e.g., Lessmann, Baesens, Seow, and Thomas

(2015)), etc. Numerous techniques and methods have been proposed, such as stat-

istical methods, support vector machines, artificial neural networks, decision trees

and ensemble classifiers. A comprehensive review of statistical and data mining
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techniques used for classification can be found in Kotsiantis, Zaharakis, and Pin-

telas (2007).

Fisher’s linear discriminant function (Fisher (1936)) and Smith’s quadratic

discriminant function (Smith (1946)) are popular statistical approaches to solve

the classification problem under the assumption of multivariate normality and

variance-covariance homogeneity. In case the above assumptions are violated, the

performance of mathematical programming (MP) methods has been proven super-

ior to the former methods for classification purposes in many studies (e.g., Bajgier

and Hill (1982), Freed and Glover (1986), Stam and Ragsdale (1992), Silva and

Stam (1994), Smaoui, Chabchoub, and Aouni (2009), etc.). In the MP classifiers,

one or several hypersurfaces which bound the groups of observations are used to

separate two groups of observations. In most applications, the nonlinear hypersur-

face which bounds the observations tighter provides a better separation than the

linear hypersurface does. However, the nonlinear MP classifier requires to specify

an assumption on the nonlinear functional form which eventually generates the

separating hypersurface. It is not impossible, but very difficult to prescribe such

a nonlinear function to fit for a real application. In this sense, a nonparametric

classifier which provides a data-based piecewise linear frontier may well receive

increasing attention since no assumption on the frontier shape is required.

In previous nonparametric studies on classification, there are typically two

types of classifiers which are related to the Data Envelopment Analysis (DEA)

models. The first type is essentially based on the use of goal programming (see

Sueyoshi (1999, 2001, 2004) for the details) rather than the standard DEA models.

It is known as the Data Envelopment Analysis-Discriminant Analysis (DEA-DA)

method and has been well developed by Sueyoshi (2006), Jahanshahloo, Lotfi,

Balf, and Rezai (2007), Lotfi and Mansouri (2008), Sueyoshi and Goto (2010), etc.
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Banker, Chang, and Cooper (2002) have argued researchers to avoid calling the

goal programming models standing in for the DEA methods. The second type is

based on the traditional DEA models proposed by Charnes, Cooper, and Rhodes

(1978) which is originally proposed for ranking a set of observations. The DEA-

based classifier discussed in the following explicitly refers to the second type which

generates a piece-wise linear frontier.

Troutt, Rai, and Zhang (1996) first propose to use the DEA frontier as an

acceptability frontier in credit applicant acceptance systems. The DEA fron-

tier provides a convex (C) envelopment of the given observations. Without pre-

specifying the exact shape of a separating hypersurface, the DEA frontier is piece-

wise linear and bounds the observations closely. Ever since the first application of

DEA methods in classification proposed by Troutt, Rai, and Zhang (1996), the idea

of employing the C DEA frontier as a separating frontier has been well adapted

by proposing alternative objective functions (Seiford and Zhu (1998)), incorpor-

ating various data types (e.g., Leon and Palacios (2009), Yan and Wei (2011))

and has been applied in different application areas (e.g., Seiford and Zhu (1998),

Pendharkar (2002), Pendharkar, Rodger, and Yaverbaum (1999); Pendharkar,

Khosrowpour, and Rodger (2000))). In the above methods, there is only one

single separating frontier trained from a certain group of observations and then

used to differentiate between two groups of observations. It works well when the

two groups of observations can be clearly separated.

However, groups of observations in most applications are found to have over-

laps. An observation located in the overlap indicates that there is no clear cut

way to determine the group in which the observation should be classified. In

order to capture the overlap which is the main source of misclassifications, the

idea of using double separating frontiers is proposed. In Chang and Kuo (2008),
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a pair of DEA frontiers is constructed to correspondingly envelop two groups of

observations. While the two frontiers each describes a set of observations, their

intersection is known as the data-based overlap area. After explicitly defining the

overlap, the question follows is to determine the membership of the observations

that are located in the overlap.

One potential way is to remove the overlap as early as in the training process.

This is achieved by using the stratified DEA method proposed by Zhu (2003)

where the separating frontiers could be shifted inwards layer by layer. In the

paper of Chang and Kuo (2008), the overlap is completely eliminated by removing

the same number of layers from both groups. In order to account for the uneven

misclassification costs, an asymmetric-stratified DEA method is proposed in Kuo

(2013) so that the number of layers removed from two groups could be different

and is determined by achieving the minimal total misclassification cost. In this

way, the overlap is completely eliminated. However, the cost is to potentially

misclassify the training observations located in the area of overlap.

Another alternative choice is to report the overlap as it is in the training pro-

cess. In the prediction process, further discriminant rules are designed to classify

the test observations located in the overlap. In this case, there is no misclas-

sification allowed in the training process, which is the opposite extreme of the

first case where the overlap is completely eliminated. Furthermore, none of the

existing research directly uses their radial efficiency results to determine the mem-

bership of the observations located in the overlap. After defining the overlap, the

membership is always decided by incorporating other methods, e.g., membership

functions (Pendharkar (2012)) or interaction or MSD method (Pendharkar and

Troutt (2014)). The asymmetric misclassification costs are also incorporated in

designing the discriminant rules, e.g., using a cost-sensitive nearest neighbourhood

84



approach (Pendharkar (2011)), using probabilistic DEA techniques (Pendharkar

(2018)), among others.

Regardless of various treatments on the overlap, one common thing in the

frontier classification literature is assuming that the separating frontier is convex.

To the best of our knowledge, none of the current research has ever questioned

and left out the convexity assumption. The only exception is that when analysing

the superior performance of neural networks over convex frontiers in mining breast

cancer patterns, Pendharkar, Rodger, and Yaverbaum (1999, p. 231) claim that

one of the reasons could be that the frontier method assumes the convexity of

acceptable cases, while neural networks relax this assumption. The assumption

of convexity is commonly kept in production analysis since it is common in the

economic theory. When it comes to the classification problem, the assumption on

convexity is accepted without arguing its correspondence with related background

knowledge in classification.

To address the above shortcomings, the overarching objective of this study is

to propose a novel nonparametric frontier-based classifier which aims at achieving

the minimal misclassification cost. It is developed based on two design goals that

overcome the shortcomings of the existing approaches. First, we intend to ex-

plore the connections between the axioms used in the nonparametric analysis and

the background information in ordinal classification. Although the initial inspira-

tion of applying the DEA-based C frontier is that it provides a tight envelopment

without any assumption on the shape of the frontier, it is now necessary to provide

some theoretical basis so that the commonly used assumptions could be relaxed

depending on the applications. A second design objective is to develop a nonpara-

metric frontier-based classifier which is cost-sensitive (CS) and inherently designed

to minimize the total misclassification cost.
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To this end, we present a new methodological framework for building the CS

frontier-based classifier that accommodates asymmetric misclassifications costs un-

der various mixes of prior-known background information. First, depending on the

prior-known background information, the nonparametric frontier-based classifier

is capable of generating either C or nonconvex (NC) separating frontiers. The

background information of a monotonic relation between the characteristic vari-

ables and the group membership corresponds to the axiom of free disposal. This

gives rise to the NC frontiers generated from the Free Disposal Hull (FDH) ap-

proach (Deprins, Simar, and Tulkens (1984)). The background information on the

substitution relation between the characteristic variables corresponds to the axiom

of convexity. Only if there are certainties about both the monotonicity and the

substitutability, it is then reasonable to apply the C frontiers generated from the

DEA-based classifier. Second, apart from exploring the theoretical basis for con-

structing the frontiers, the classifier is designed to be CS. The cost information is

involved both during the training process and in designing the discriminant rules.

Instead of eliminating the overlap completely in the training process, the overlap

is minimized to the extent that the total misclassification cost is minimized. In ad-

dition, the overlap is reduced by excluding the observations point by point rather

than removing the complete layer of frontier observations. In this case, partial

overlap is allowed if the additional shift could not reduce the total misclassifica-

tion cost any more. When it comes to the predicting process, the discriminant

rules are designed to incorporate the cost information as well. Moreover, it is

shown that the choice of the direction of the directional distance function (DDF)

matters when predicting the observations in the overlap. To illustrate the pro-

posed framework, a graduate admission example is used for graphically showing

the classification results.

This contribution is structured as follows. In Section 4.2, the groups of obser-

86



vations are characterized by the acceptance possibility sets (APSs) based on the

axioms corresponding to the background information. Both the NC and C APSs

are constructed. Rather than focusing on a single type of data like most papers

do, both input-type and output-type characteristic variables are incorporated in

our classifier. The constructions of the envelopment frontiers which bound the

corresponding APSs and the separating frontiers after shifting inwards are intro-

duced in Section 4.3. An algorithm is designed to shift the frontiers point by point

so that the total misclassification is minimized. A graduate admission example is

illustrated to show the differences between the C and NC frontiers as well as show-

ing the results of the shifting algorithm. In Section 4.4, the DDF measure based

discriminant rules which incorporates the asymmetric misclassification costs are

introduced. The drawbacks of the commonly used radial measure are illustrated

with the graduate admission example. Finally, in Section 4.5 this contribution is

concluded with a summary of its achievements and a discussion of potential future

research topics.

4.2 Acceptance Possibility Set

Consider a binary classification problem with a set of training observations which

are characterized by some characteristic variables. The training observations are

exhaustively classified into two groups based on the prior information on their

memberships. Meanwhile, those characteristic variables are expected to fully grasp

the property that could differentiate the observations from one group to another.

By learning from these two groups of training observations, a classifier is trained

and should be able to predict the membership of a test observation where the data

of the same characteristic variables is collected.
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For classification problems like differentiating between bankruptcy and non-

bankruptcy firms, or diagnosing patients from healthy people, there exists a natural

order between two groups. The naturally favored group, e.g., the group of non-

bankruptcy firms, is known as the good group, relatively the bankruptcy firms

which are unfavored belong to the bad group. In this contribution, the training

observations from the bad group constitute the bad training sample set which

is denoted by G1. Correspondingly, the good training sample set that consists

of the training observations from the good group is denoted by G2. Note that

G1 ∩G2 = ∅.

Except the prior information on the group membership, another common back-

ground information is about the monotonic relation of the characteristic variables.

That is, the K characteristic variables which characterize the observations are dif-

ferentiated into two types depending on their monotonic relation is increasing or

decreasing. Specifically, if the possibility of belonging to the good group increases

(decreases) with the abatement (augment) of a characteristic variable, then it is

known as a variable with the monotonic decreasing relation. The set of these

monotonically decreasing variables is denoted by X ∈ Rm. If the possibility of

belonging to the good group increases (decreases) with the augment (abatement)

of a characteristic variable, then it is defined as a variable with the monotonic

increasing relation. The set of these monotonically increasing variables is denoted

by Y ∈ Rs. To sum up, an observation Z ∈ RK is explicitly characterized by

Z = (X, Y ) ∈ Rm+s.

While applying a nonparametric frontier-based method, an acceptance possib-

ility set (APS) is introduced to describe the property of a certain group. It is a

concept derived from the production possibility set (PPS) which is well-known in

production analysis. A PPS contains all combinations of resources and products
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that are producible under certain technology. Correspondingly, an APS consist

of all combinations of characteristic values that corresponding observations are

presumed to belong to a certain group. Both the APS of the bad group and that

of the good group are constructed based on their training observations and some

axioms.

We start with constructing the APS of the bad group based on the n1 training

observations from G1 . The background information on the monotonic relation

corresponds to a frequently used dominance assumption on the training observa-

tions from G1. The monotonic relation states that the possibility of belonging to

the bad group increases with the augment of X and the abatement of Y . That is,

if an observation with more X and less Y than a training observation from G1, it

is then being dominated and believed to belong to the bad group. For a training

observation Zj = (Xj, Yj) ∈ G1, a free disposal set denoted by Tj,1 could then be

represented by Tj,1 = {(X, Y ) ∈ Rm+s | X ≥ Xj and Y ≤ Yj}. The union of all

the free disposal sets of the training observations from G1 constitutes a nonconvex

(NC) APS denoted by TNC,1. Specifically, TNC,1 depicts the observations belonging

to the bad group as follows:

TNC,1 =
n1⋃
j=1

Tj,1

=

(X, Y ) ∈ Rm+s |
n1∑
j=1

λjXj ≤ X,
n1∑
j=1

λjYj ≥ Y,
n1∑
j=1

λj = 1, λj ∈ {0, 1}

 .
(4.2.1)

Similarly, the APS of the good group could be constructed from the n2 training

observations from G2. However, the same background knowledge on the monotonic

relation indicates an opposite dominance relation comparing to that defined in G1.

The monotonic relation states that the possibility of belonging to the good group

increases with the abatement of X and the augment of Y . That is, a training
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observation from G2 remains in the good group if it starts decreasing its X and

increasing Y , since the observation after the change is being dominated. That is,

the corresponding free disposal set denoted by Tj,2 for the training observation

Zj = (Xj, Yj) ∈ G2 is represented by Tj,2 = {(X, Y ) ∈ Rm+s | X ≤ Xj and Y ≥

Yj}. The union of all these free disposal sets derived from the training observations

from G2 constitutes a NC APS denoted by TNC,2. Specifically, TNC,2 depicts the

observations belonging to the good group as follows:

TNC,2 =
n2⋃
j=1

Tj,2

=

(X, Y ) ∈ Rm+s |
n2∑
j=1

λjXj ≥ X,
n2∑
j=1

λjYj ≤ Y,
n2∑
j=1

λj = 1, λj ∈ {0, 1}

 .
(4.2.2)

Comparing to the set TNC,1 in (4.2.1), the inequity symbols are reversed in

set TNC,2 in (4.2.2). That is, the same monotonic relation of the characteristic

variables generates opposite axioms on free disposal for the bad group and the

good group. In this sense, the bad group is bounded by the best performed training

observations, while the good group is bounded by the worst performed training

observations.

When it comes to the axiom on convexity, it does not make a difference between

two groups. The convexity in classification implies a substitution relation among

the characteristic variables. Note that a convex (C) APS is only preferred if

the prior information of such a substitution relation is provided. By adding this

additional axiom, the above NC APSs are transformed into the following C ones :

TC,1 =

(X, Y ) ∈ Rm+s |
n1∑
j=1

λjXj ≤ X,
n1∑
j=1

λjYj ≥ Y,
n1∑
j=1

λj = 1, λj ≥ 0

 .
(4.2.3)
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TC,2 =

(X, Y ) ∈ Rm+s |
n2∑
j=1

λjXj ≥ X,
n2∑
j=1

λjYj ≤ Y,
n2∑
j=1

λj = 1, λj ≥ 0

 .
(4.2.4)

In order to simplify the expressions, we use the following notation to stand for

the APS of the bad group and the APS of the good group under both the NC and

C cases:

TΛ,1 =

(X, Y ) ∈ Rm × Rs |
n1∑
j=1

λjXj ≤ X,
n1∑
j=1

λjYj ≥ Y,

n1∑
j=1

λj = 1, λj ∈ Λ, j = 1, . . . , n1

 , (4.2.5)

TΛ,2 =

(X, Y ) ∈ Rm × Rs |
n2∑
j=1

λjXj ≥ X,
n2∑
j=1

λjYj ≤ Y,

n2∑
j=1

λj = 1, λj ∈ Λ, j = 1, . . . , n2

 , (4.2.6)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

Following Chambers, Chung, and Färe (1998), TΛ,1 and TΛ,2 can be represented

using the following directional distance function (DDF), respectively:

DΛ,g1(Z) = sup{δ ∈ R | Z + δg1 ∈ TΛ,1}. (4.2.7)

DΛ,g2(Z) = sup{δ ∈ R | Z + δg2 ∈ TΛ,2}. (4.2.8)

where g1 = (gX,1, gY,1) and g2 = (gX,2, gY,2) represents the projection directions of
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the bad group and that of the good group, respectively.

The value of the DDF measure illustrates that a training observation from

G1 (G2) remains to belong to the bad group (the good group) after it changes

its characteristic variables along the direction of g1 (g2) by δ. Obviously, the

projection direction of the group is in accordance with its own dominance relation

defined. To be meaningful, gxi,1 < 0 for all i ∈ [m] and gyr,1 > 0 for all r ∈ [s],

where [m] denotes the set {1, . . . ,m} and [s] denotes the set {1, . . . , s}. In this

way, the characteristic variables X are reduced and the characteristic variables

Y are increased while increasing the value of δ, which is the favorable behavior

for characterizing the bad group. On the contrary, gxi,2 > 0 for all i ∈ [m] and

gyr,2 < 0 for all r ∈ [s] which is the favorable behavior for characterizing the good

group.

The assumption on convexity differentiates the NC APS from the C one. How-

ever, this does not change the definition of the DDF measure, only the value of

the DDF measure may be enlarged. That is, DΛNC,1(Z) ≤ DΛC,1(Z). Likewise,

DΛNC,2(Z) ≤ DΛC,2(Z). The DDF measure serves as an indicator that positions

the observations relative to the boundary of corresponding APS. It is well-defined

for all possible observations Z = (X, Y ) ∈ Rm×Rs. A non-negative DDF measure

means the observation Z is in the interior of the APS. If the observation Z is loc-

ated beyond the APS, then its DDF measure becomes negative and it is projected

onto the frontier in the direction opposite to its defined g1 or g2.
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4.3 Models for Generating Double Separating Fron-

tiers

4.3.1 Nonparametric Models for Generating the Envelop-

ment Frontiers

In the C frontier classification literature, a pair of piece-wise hypersurfaces are

generated to best separate the observations. These hypersuefaces are the envel-

opment frontiers of two groups of training observations. In this subsection, the

construction of both the C and NC envelopment frontiers are introduced.

With the projecting direction g1 ∈ Rm
− × Rs

+, the following model is used to

measure the distance of the observation Z0 = (X0, Y0) to the boundary of TΛ,1

which depicts the bad group:

max
λj,1,δ̂Λ,1

δ̂Λ,1

s.t.
n1∑
j=1

λj,1xi,j ≤ xi,0 + δ̂Λ,1gxi,1 ∀i ∈ [m]

n1∑
j=1

λj,1yr,j ≥ yr,0 + δ̂Λ,1gyr,1 ∀r ∈ [s]

n1∑
j=1

λj,1 = 1

λj,1 ∈ Λ ∀j ∈ [n1]

(4.3.1)

where

(i) Λ ≡ ΛC = {λj,1 ≥ 0} , or (ii) Λ ≡ ΛNC = {λj,1 ∈ {0, 1}} .
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In the C case, model (4.3.1) is a linear programming (LP) problem, while it

involves solving a binary mixed integer program (BMIP) for the NC case. To

remedy the computational issue in the NC case, a fast implicit enumeration-based

method is proposed by Cherchye, Kuosmanen, and Post (2001) requiring only to

compute minima of lists of ratios. Instead of solving a BMIP model, the following

exact solution is obtained for model (4.3.1) under the NC case:

δ̂∗ΛNC,1 = max
j=1,...,n1

(
min

i=1,...,m

(
xi,j − xi,0
gxi,1

)
, min
r=1,...,s

(
yr,j − yr,0
gyr,1

))
. (4.3.2)

By solving model (4.3.1) for all the training observations from G1, a frontier

set defined by F̂SΛ,1 is generated. Specifically, F̂SΛ,1 = {j ∈ G1|δ̂∗Λ,1 = 0}.

Normally, the set F̂SΛ,1 under the NC case is different from that under the C case.

All frontier observations in F̂SΛC,1 could be found in F̂SΛNC,1. However, not all

frontier observations in F̂SΛNC,1 belong to F̂SΛC,1, since some frontier observations

generated under the NC case are dominated by some convex combinations of the

training observations. Therefore, F̂SΛC,1 j F̂SΛNC,1.

The training observations in this frontier set F̂SΛ,1 dominate all other possible

observations that belong to the bad group. The envelopment frontier formed by

F̂SΛ,1 bounds TΛ,1. All training observations from G1 are located within this

envelopment frontier.

Similarly, with the projecting direction g2 ∈ Rm
+ × Rs

−, the following model is

employed to measure the distance of the observation Z0 = (X0, Y0) to the boundary

of TΛ,2 which depicts the good group:
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max
λj,2,δ̂Λ,2

δ̂Λ,2

s.t.
n2∑
j=1

λj,2xi,j ≥ xi,0 + δ̂Λ,2gxi,2 ∀i ∈ [m]

n2∑
j=1

λj,2yr,j ≤ yr,0 + δ̂Λ,2gyr,2 ∀r ∈ [s]

n2∑
j=1

λj,2 = 1

λj,2 ∈ Λ ∀j ∈ [n2]

(4.3.3)

where

(i) Λ ≡ ΛC = {λj,2 ≥ 0} , or (ii) Λ ≡ ΛNC = {λj,2 ∈ {0, 1}} .

Note that under the NC case, the solution for model (4.3.3) is as follows:

δ̂∗ΛNC,2 = max
j=1,...,n1

(
min

i=1,...,m

(
xi,j − xi,0
gxi,2

)
, min
r=1,...,s

(
yr,j − yr,0
gyr,2

))
. (4.3.4)

By solving model (4.3.3) for all the training observations from G2, a frontier

set defined by F̂SΛ,2 is generated. That is, F̂SΛ,2 = {j ∈ G2|δ̂∗Λ,2 = 0}. Likewise,

F̂SΛC,2 j F̂SΛNC,2. The training observations in F̂SΛ,2 dominate all other possible

observations that belong to the good group. Corresponding envelopment frontier

bounds TΛ,2. Therefore, all training observations from G2 are located within this

envelopment frontier.

In an ideal situation where observations are well characterized, these two en-

velopment frontiers are expected to completely separate two groups of training

observations. That is, all training observations from G2 should be located beyond

the envelopment frontier 1. Similarly, all training observations from G1 should be
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located beyond the envelopment frontier 2.

However, in real applications, there often arises the situation where some ob-

servations are located within both envelopment frontiers. Put is differently, these

observations are located in the intersection of two APSs which is TΛ,1 ∩ TΛ,2. By

solving model (4.3.3) for the training observation Zj ∈ G1, if it has δ̂∗Λ,2 ≥ 0,

then it is a training observation located in the overlap. The set of the training

observations which are from G1 but are situated in the overlap is represented by

ÔΛ,1 = {j ∈ G1|δ̂∗Λ,2 ≥ 0}. Similarly, the training observation Zj ∈ G2 which has

δ̂∗Λ,1 ≥ 0 is also located in the overlap. The set of these training observations is

represented by ÔΛ,2 = {j ∈ G2|δ̂∗Λ,1 ≥ 0}. Note that ÔΛ,1 ∪ ÔΛ,2 ⊂ TΛ,1 ∩ TΛ,2.

The larger the overlap is, normally the worse the classification ability of a clas-

sifier has. The NC APS is mathematically smaller than the C one, correspondingly

its NC frontier provides a tighter envelopment of the training observations than

the C one does. In this sense, the NC frontier is naturally perceived to have a

better performance in separating two groups of observations.

4.3.2 Case Study and Double Envelopment Frontiers

In this subsection, we illustrate how the envelopment frontiers are constructed from

the training observations by using a simple example. This illustrative example

concerns the graduate business school admission decision-making from a large

university in the Eastern US. For the ease of illustration and visualization, two

characteristic variables are used. One is the standardized graduate management

admission test (GMAT) which matches the property of a monotonically increasing

variable. In order to have a representative of a monotonically decreasing variable,

the other characteristic value is chosen to be the difference between 4 and the value
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of the undergraduate grade point average (GPA). Table 4.1 gives the detailed data

which is derived from the original admission data in Pendharkar (2012). The

13 rejected training observations from G1 are used to construct the envelopment

frontier that bounds TΛ,1. G2 which consists of 16 accepted training observations

is used to generate the envelopment frontier that bounds TΛ,2.

Table 4.1: The graduate admissions decision data

Obs.
Number

GMAT 4-GPA Decision Obs.
Number

GMAT 4-GPA Decision

1 640 0.98 Accepted 17 310 1.3 Rejected
2 550 0.91 Accepted 18 350 1.5 Rejected
3 510 1.33 Accepted 19 400 1.3 Rejected
4 420 1.46 Accepted 20 370 1.2 Rejected
5 560 0.25 Accepted 21 450 1.3 Rejected
6 550 0.4 Accepted 22 500 1.5 Rejected
7 580 1.13 Accepted 23 520 1.4 Rejected
8 420 0.8 Accepted 24 550 1.7 Rejected
9 450 0.23 Accepted 25 570 1.5 Rejected
10 520 1.33 Accepted 26 450 1.1 Rejected
11 440 1.67 Accepted 27 320 1.4 Rejected
12 480 1.04 Accepted 28 400 1.4 Rejected
13 520 0.87 Accepted 29 310 0.9 Rejected
14 570 0.74 Accepted
15 400 1.05 Accepted
16 580 1.8 Accepted

The frontier set is generated by solving model (4.3.1) for 13 rejected training

observations. In the NC case, four training observations have the result of δ̂∗Λ,1 = 0.

That is, F̂SΛNC,1 = {23, 25, 26, 29}. In the C case, observation 23 is dominated by

the convex combination of observation 25 and observation 26. Therefore, the C

frontier set F̂SΛC,1 consists of only three training observations. That is, F̂SΛC,1 =

{25, 26, 29}. Then, by solving model (4.3.3) for 16 accepted training observations,

the frontier set F̂SΛ,2 could be generated. Both the NC and C frontier sets consist
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of four accepted training observations: namely 4,11,15 and 16.

In Figure 4.1 and Figure 4.2, the envelopment frontiers formed by the derived

frontier sets are displayed. The training observations from G1 are marked with

asterisks while those from G2 are marked with circles. The envelopment frontier

formed by F̂SΛ,1 is labelled frontier 1 and marked by solid lines. And the en-

velopment frontier formed by F̂SΛ,2 is labelled frontier 2 and marked by dashed

lines. The training observations that are located in the overlap are marked with

the faded rhombus. These observations are located both above the frontier 1 and

below the frontier 2.

Figure 4.1: Double convex envelopment frontiers

300 350 400 450 500 550 600 650 700

GMAT

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4-
G

P
A

25

26

29

4

11

15

16

G
1

G
2

Frontier 1
Frontier 2

In the C case which is displayed in Figure 4.1, there are totally 10 training
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Figure 4.2: Double nonconvex envelopment frontiers
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observations located in the overlap. Specifically, the numbers of observations from

G1 and G2 that are located in the overlap are n(ÔΛC,1) = 6 and n(ÔΛC,2) = 4,

respectively. Note that n(. . . ) represents the cardinality of a vector. While for

the NC case in Figure 4.2, 7 training observations are located in the overlap,

consisting of 2 originally accepted observations and 5 originally rejected ones.

That is, n(ÔΛNC,1) = 5 and n(ÔΛNC,2) = 2. Obviously, less training observations

are located in the overlap under the NC case than that under the C case.
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4.3.3 Double Cost-Sensitive Separating Frontiers

Since the existence of overlap is doomed to cause ambiguity in classification, the

researchers tried various methods to eliminate the overlap. One common way is by

removing the first several layers of frontiers so that the intersection is completely

removed (e.g., Chang and Kuo (2008), Kuo (2013)). This is realized by using the

stratified DEA model proposed by Zhu (2003). Instead of removing a complete

layer of frontier points, the above envelopment frontiers are proposed to be adjusted

point by point so as to achieve a minimum misclassification cost.

Typically, there exist two types of misclassifications. The confusion matrix of

the graduate admission example is displayed in Table 4.2 as a detailed illustration

of the misclassifications. One type of the misclassifications is the false positive

(FP) which means that an accepted observation is predicted to be rejected. The

other is known as the false negative (FN) where a case is accepted which should

have been rejected.

Table 4.2: The confusion matrix for the graduate admission example

Predicted Rejected Predicted Accepted

Actual Rejected True Positive False Negative
Actual Accepted False Positive True Negative

The costs of misclassifications are prior-known information or decided by the

decision makers. The relative cost of having a FP and a FN are represented

by cFP and cFN , respectively. In the graduate admission example, the costs of

having a FP and a FN are about the same. However, in empirical situations like

issuing a loan, the costs of having a FP or a FN could be quite unequal. The

misclassification of FN could be potentially costly (since, e.g., this customer may

default on his/her loan) while FP implies an opportunity cost. Therefore, it is
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more reasonable to minimize the total misclassification cost than minimizing the

number of misclassified observations.

As long as there exists an overlap which means ÔΛ,1 ∪ ÔΛ,2 6= ∅, the total

misclassification cost might be further reduced by shifting the original envelopment

frontiers. Before introducing the algorithm to generate the modified frontiers, a

general model is introduced to calculate the relative distance of an observation

Z0 = (X0, Y0) to a pair of frontiers:

max
λj,1,λj,2,δ̄Λ,1,δ̄Λ,2

δ̄Λ,1 + δ̄Λ,2

s.t.
∑
j∈J1

λj,1xi,j ≤ xi,0 + δ̄Λ,1gxi,1 ∀i ∈ [m]

∑
j∈J1

λj,1yr,j ≥ yr,0 + δ̄Λ,1gyr,1 ∀r ∈ [s]

∑
j∈J1

λj,1 = 1

∑
j∈J2

λj,2xi,j ≥ xi,0 + δ̄Λ,2gxi,2 ∀i ∈ [m]

∑
j∈J2

λj,2yr,j ≤ yr,0 + δ̄Λ,2gyr,2 ∀r ∈ [s]

∑
j∈J2

λj,2 = 1

λj,1 ∈ Λ ∀j ∈ J1

λj,2 ∈ Λ ∀j ∈ J2

(4.3.5)

where

(i) Λ ≡ ΛC = {λj,1 ≥ 0, λj,2 ≥ 0} , or (ii) Λ ≡ ΛNC = {λj,1 ∈ {0, 1}, λj,2 ∈ {0, 1}} .

In model (4.3.5), the pair of frontiers is formed by the observations in J1 and
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J2, respectively. By solving model (4.3.5) for all the training observations from G1,

the following exclusive sets are derived which accounts for potential three types of

misclassifications:

OΛ,1 = {j ∈ G1|δ̄∗Λ,1 ≥ 0 and δ̄∗Λ,2 ≥ 0} (4.3.6)

MisΛ,1 = {j ∈ G1|δ̄∗Λ,1 < 0 and δ̄∗Λ,2 ≥ 0} (4.3.7)

GapΛ,1 = {j ∈ G1|δ̄∗Λ,1 < 0 and δ̄∗Λ,2 < 0} (4.3.8)

where OΛ,1 represents the set of the training observations from G1 that are located

in the overlap. TheMisΛ,1 consists of the training observations originally from G1

but are predicted to belong to the good group. Finally, the training observations

in GapΛ,1 are those located beyond both frontiers, hence it is recorded as the gap

area.

Similarly, by solving (4.3.5) for all training observations from G2, three corres-

ponding sets are derived and are also mutually exclusive:

OΛ,2 = {j ∈ G2|δ̄∗Λ,1 ≥ 0 and δ̄∗Λ,2 ≥ 0} (4.3.9)

MisΛ,2 = {j ∈ G2|δ̄∗Λ,1 ≥ 0 and δ̄∗Λ,2 < 0} (4.3.10)

GapΛ,2 = {j ∈ G2|δ̄∗Λ,1 < 0 and δ̄∗Λ,2 < 0} (4.3.11)

After illustrating the potential types of misclassifications, the total misclassi-

fication cost could be detailed into the following:

CΛ = COΛ + CMΛ + CGΛ

= cFN × n(OΛ,1) + cFP × n(OΛ,2)

+ cFN × n(MisΛ,1) + cFP × n(MisΛ,2)

+ cFN × n(GapΛ,1) + cFP × n(GapΛ,2)

(4.3.12)
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where COΛ, CMΛ and CGΛ represent the total cost of having observations in

the overlap, having misclassified observations and having observations in the gap,

respectively.

While having J1 = F̂SΛ,1 and J2 = F̂SΛ,2, solving model (4.3.5) is equivalent

to solving the model (4.3.1) and model (4.3.3). That is, the derived optimal

δ̄∗Λ,1 is equal to δ̂∗Λ,1 and likewise δ̄∗Λ,2 = δ̂∗Λ,2. Note that in this case, there only

exists the possibility of having training observations located in the overlap. The

training observations which are not located in the overlap are correctly classified

with the double envelopment frontiers. The total cost is then represented by

ĈΛ = ĈOΛ = cFN × n(ÔΛ,1) + cFP × n(ÔΛ,2).

The following algorithm is designed to generate the CS separating frontiers

which minimizes the misclassification cost of the training observations.

Step 1: Initialize d1 = 1, d2 = 1,FSΛ,1 = F̂SΛ,1, FSΛ,2 = F̂SΛ,2, and CΛ = ĈΛ.

Step 2: If d1 > n(FSΛ,1), then go to Step 3, otherwise d2 = d2 − 1 and go to Step

4.

Step 3: If d2 > n(FSΛ,2), then go to Step 10, otherwise go to Step 5.

Step 4: If n(FSΛ,1) = 1, then J1 = G1 \ FSΛ,1, J2 = FSΛ,2 and go to Step 6,

otherwise J1 = FSΛ,1 \ {FSΛ,1(d1)}, J2 = FSΛ,2 and go to Step 6.

Step 5: If n(FSΛ,2) = 1, then J1 = FSΛ,1 and J2 = G2 \ FSΛ,2, otherwise J1 =

FSΛ,1 and J2 = FSΛ,2 \ {FSΛ,2(d2)}.

Step 6: Solve model (4.3.5) for the training observations in G1 ∪G2 and calculate

the total misclassification cost CΛ.

Step 7: If CΛ < CΛ, then set CΛ = CΛ, FSΛ,1 = J1, FSΛ,2 = J2 and go to Step 8,

otherwise go to Step 9.
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Step 8: If COΛ = 0, then go to Step 10, otherwise set d1 = d2 = 1 and go to Step

2.

Step 9: Set d1 = d1 + 1 and d2 = d2 + 1, then go to Step 2.

Step 10: End.

The algorithm will check the frontier observations point by point to see if

the exclusion of one frontier observation contributes to the reduction of the total

misclassification cost. The algorithm stops if the total misclassification cost of

the training sample reaches the minimum or if there is no more overlap existed.

By running the above algorithm, two final frontier sets are derived to form the

CS separating frontier, namely FSΛ,1 and FSΛ,2. The CS separating frontiers are

then used to predict the membership of a new observation.

The same graduate admission example is applied to show the final CS separ-

ating frontier derived by running the above algorithm. The costs of having a FP

and a FN are set to be the same, which is 1. In Table 4.3, the detailed procedures

for generating the NC frontiers is displayed.

The final NC cs separating frontiers are showed in Figure 4.3. It is observed

that by allowing the training observations 4 and 11 to be misclassified, the overlap

is completely eliminated. Except these two frontier observations, all other training

observations are situated on the opposite sides of the CS separating frontiers. The

total misclassification cost is reduced from 7 to 2.

For the convex case, the total misclassification cost which is originally 10 could

also be further reduced by running the proposed algorithm. The exclusion of obser-

vations 4, 11 and 26 contributes to a total misclassification cost of 5. The overlap

could not be fully eliminated. Comparing to the NC case, the total misclassifica-

tion cost is still higher although being significantly reduced.
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Table 4.3: Specific procedures of running the algorithm for generating the NC
frontiers

Steps d1 d2 J1 J2 FSΛNC,1 FSΛNC,2 CΛNC

1 1 1 {23,25,26,29} {4,11,15,16} 7
2-4-6-7 1 0 {25,26,29} {4,11,15,16}
9 2 1
2-4-6-7 2 0 {23,26,29} {4,11,15,16}
9 3 1
2-4-6-7 3 0 {23,25,29} {4,11,15,16}
9 4 1
2-4-6-7 4 0 {23,25,26} {4,11,15,16}
9 5 1
2-3-5-6-7 5 1 {23,25,26,29} {11,15,16}
9 6 2
2-3-5-6-7 6 2 {23,25,26,29} {4,15,16} {23,25,26,29} {4,15,16} 5
8 1 1
2-4-6-7 1 0 {25,26,29} {4,15,16}
9 2 1
2-4-6-7 2 0 {23,26,29} {4,15,16}
9 3 1
2-4-6-7 3 0 {23,25,29} {4,15,16}
9 4 1
2-4-6-7 4 0 {23,25,26} {4,15,16}
9 5 1
2-3-5-6-7-8-10 5 1 {23,25,26,29} {3,15,16} {23,25,26,29} {15,16} 2

Figure 4.3: Shifted nonconvex frontiers by excluding some frontier observations
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Figure 4.4: Shifted convex frontiers by excluding some frontier observations
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4.4 Double-Frontier Based Discriminant Rules

The above CS separating frontiers are then used to predict the membership of a

test observation which is characterized by the same characteristic variables. Spe-

cifically, these two separating frontiers are formed by the training observations in

FSΛ,1 and FSΛ,2. The following model is used to calculate the distance of the

observation Z0 = (X0, Y0) relative to two separating frontiers:
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max
λj,1,λj,2,δΛ,1,δΛ,2

δΛ,1 + δΛ,2

s.t.
∑

j∈FSΛ,1

λj,1xi,j ≤ xi,0 + δΛ,1gxi,1 ∀i ∈ [m]

∑
j∈FSΛ,1

λj,1yr,j ≥ yr,0 + δΛ,1gyr,1 ∀r ∈ [s]

∑
j∈FSΛ,1

λj,1 = 1

∑
j∈FSΛ,2

λj,2xi,j ≥ xi,0 + δΛ,2gxi,2 ∀i ∈ [m]

∑
j∈FSΛ,2

λj,2yr,j ≤ yr,0 + δΛ,2gyr,2 ∀r ∈ [s]

∑
j∈FSΛ,2

λj,2 = 1

λj,1 ∈ Λ ∀j ∈ FSΛ,1

λj,2 ∈ Λ ∀j ∈ FSΛ,2

(4.4.1)

where

(i) Λ ≡ ΛC = {λj,1 ≥ 0, λj,2 ≥ 0} , or (ii) Λ ≡ ΛNC = {λj,1 ∈ {0, 1}, λj,2 ∈ {0, 1}} .

There are four possible combinations of δ∗Λ,1 and δ∗Λ,2 which imply different

membership information.

(s.1) If δ∗Λ,1 ≥ 0 and δ∗Λ,2 < 0, then the observation Z0 belongs to the bad group;

(s.2) If δ∗Λ,1 < 0 and δ∗Λ,2 ≥ 0, then the observation Z0 belongs to the good group;

(s.3) If δ∗Λ,1 < 0 and δ∗Λ,2 < 0, then the observation Z0 is in the gap area;

(s.4) If δ∗Λ,1 ≥ 0 and δ∗Λ,2 ≥ 0, then the observation Z0 is in the overlap area.
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The first two situations are quite clear. In situation 1, the observation Z0

is located within the separating frontier 1 and beyond the separating frontier 2.

Therefore, the only valid membership information supports it to be belonging to

the bad group. In situation 2, the observation Z0 is located within the separ-

ating frontier 2 and beyond the separating frontier 1. Therefore, the only valid

membership information supports it to be belonging to the good group. However,

for situation 3 and 4, the currently information is not enough for determine its

membership clearly.

For the ambiguous situation 3 and 4, a conservative and honest way is to report

the situation as it is. Alternatively, the membership of the observations in such

ambiguous situations could be inferred by comparing the relative distance values.

For the observation that satisfies the situation 3, the closer the test observation

is located to a separating frontier, the more similarities it is supposed to share

with the corresponding group. Hence, it is perceived to belong to the group whose

separating frontier is closer to the test observation. Furthermore, by incorporating

the misclassification costs, if 0 > δ∗Λ,1/cFN ≥ δ∗Λ,2/cFP holds, then this observation

belongs to the bad group. On the contrary, if δ∗Λ,1/cFN < δ∗Λ,2/cFP < 0 holds,

then this observation belongs to the good group. For the observation that satisfies

the situation 4, the opposite rule is assumed. The closer the test observation is

located to a separating frontier, the higher possibility that this observation is going

to leave the corresponding group. Therefore, it should be classified into the group

whose separating frontier is farther away. That is, if δ∗Λ,1 × cFN ≥ δ∗Λ,2 × cFP ≥ 0

holds, then this observation belongs to the bad group. On the contrary, if 0 ≤

δ∗Λ,1 × cFN < δ∗Λ,2 × cFP holds, then this observation belongs to the good group.

Apparently, for the situation 1 and situation 2, the membership is predicted

simply by the sign of the distance measure. While for the two ambiguous situ-
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ations which are situation 3 and situation 4, the value of the distance measure

which measures the closeness to the separating frontier is particularly important

for predicting the membership. This implies that the choice of the direction vectors

is of vital importance while applying the double frontier methods.

In all the C frontier classification literature, either an input-oriented or an

output-oriented radial measure is applied. That is, for the test observation Z0 =

(X0, Y0), the two direction vectors under the input-oriented radial case are g1 =

(−|X0|,0) and g2 = (|X0|,0), respectively. Note that 0 represents a vector whose

components are all zeros. This direction vector allows the test observation to reach

the separating frontiers by changing its input-type characteristic variables. While

for the output-oriented radial case, the two direction vectors are g1 = (0, |Y0|)

and g2 = (0,−|Y0|), respectively. In this case, the test observation is only allowed

to change its output-type characteristic variables in order to reach the separating

frontiers.

With the graduate admission example, we show that the commonly used radial

measures are not the best choice for the classification. Take the input-oriented case

as an example, the allowed changes are increasing or decreasing along the vertical

axis in Figure 4.5 and Figure 4.6. The vertical axis represents the characteristic

variable of 4-GPA which is the smaller the better. In both figures, the solid lines

represent the separating frontier 1 which bounds the bad group, while the dashed

lines represent the separating frontier 2 which bounds the good group. By applying

the input-oriented radial measure, the bad group is represented by the shaded area

which is located above and to the left of the dotted lines. Correspondingly, the

area restricted to the fourth quadrant located below and to the right of the dotted

lines represents the good group. There is no doubt that the observations located

above the separating frontier 1 belong to the bad group. The observations located
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below the separating frontier 2 belong to the bad group. The area worths further

investigating are the gap and overlap.

Figure 4.5: The diagram of the separating frontiers with a radial measure under
the NC case
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We first look into the NC case which is displayed in Figure 4.5. There is no

overlap for this illustrative example under the NC case. P1 and P2 which are

marked by the pentagrams are two observations located in the gap area. With the

input-oriented measure, the distance of the observations relative to the separating

frontier is measured by vertically projecting to the frontier. For observation P1, the

vertical distance to the separating frontier 1 is finite while that to the separating

frontier 2 is infinite. It is therefore considered to belong to the bad group, although

it is located just next to the separating frontier 2. For observation P2, its vertical

110



distance to the separating frontier 1 is larger than that to the separating frontier

2. Hence, it is predicted to belong to the good group while it is located just next

to the separating frontier 1.

Figure 4.6: The diagram of the separating frontiers with a radial measure under
the C case
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Under the C case of this illustrative example in Figure 4.6, there also exist

unreasonable predictions for the observations located in the gap and overlap. We

focus on the observations that are located in the overlap. Observation P3, for

example, is located vertically closer to the separating frontier 2 comparing to

separating frontier 1. However, it is actually situating next to the separating

frontier 1. If there is prior information on that only the input-type characteristic

variables are adjustable, then this input-oriented measure makes sense. Otherwise,
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the choice of this measure may give rise to unreasonable situations like observations

P1, P2 and P3.

Among the various choices possible for the direction vector in practical applic-

ations, the DDF measure which obtains a proportional interpretation (see Briec

(1997)) is used in this contribution. To be specific, g1 = (−|X0|, |Y0|) is used for

projecting Z0 = (X0, Y0) to the separating frontier 1 while g2 = (|X0|,−|Y0|) is

used for projecting it to the separating frontier 2. Note that in the classification

context with potentially negative characteristic variables, the absolute value is

used for preserving a proportional interpretation (Kerstens and Van de Woestyne

(2011)).

Figure 4.7: The diagram of the separating frontiers with a proportional DDF
measure under the NC case
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Figure 4.8: The diagram of the separating frontiers with a proportional DDF
measure under the C case
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With the proportional direction distance measure, the membership of the ob-

servations located in the overlap and gap are more properly defined. The results

of the graduate admission example are displayed in Figure 4.7 and Figure 4.8. The

same marks are used as those in Figure 4.5 and Figure 4.6. The observation P1

is now predicted to belong to the good group and the observation P2 belongs to

the bad group. For the observation P3 located in the overlap, it is now believed to

belong to the good group.

From the comparison between the input-oriented radial measure and the pro-

portional DDF measure, the latter is apparently more reasonable. Thus, the values

of the directional DDF measure are used to predict the membership of an obser-
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vation Z0. To sum up, the following classification rules which incorporate the

misclassification costs are used:

(R.1) If δ∗Λ,1 ≥ 0 and δ∗Λ,2 < 0, then Z0 belongs to the bad group;

(R.2) If δ∗Λ,1 < 0 and δ∗Λ,2 ≥ 0, then Z0 belongs to the good group;

(R.3) If 0 > δ∗Λ,1/cFN ≥ δ∗Λ,2/cFP , then Z0 belongs to the bad group;

(R.4) If δ∗Λ,1/cFN < δ∗Λ,2/cFP < 0, then Z0 belongs to the good group;

(R.5) If δ∗Λ,1 × cFN ≥ δ∗Λ,2 × cFP ≥ 0, then Z0 belongs to the bad group;

(R.6) If 0 ≤ δ∗Λ,1 × cFN < δ∗Λ,2 × cFP , then Z0 belongs to the good group;

4.5 Conclusions

The nonparametric frontier-based classifier is a good choice in estimating the sep-

arating hypersurfaces whose shape is mostly unspecified in applications. However,

in the DEA-based classification literature, the assumptions made to construct an

efficient frontier are blindly copied to estimate the separating frontier. There is

a lack of correspondence between the axioms implied by a nonparametric frontier

and the background information known for characterizing a separating frontier.

This leads to a need for building the connection between the commonly used as-

sumptions and the prior known background knowledge information.

This study proposes a novel method for accommodating different mixes of

background knowledge information and asymmetric misclassification costs. By re-

flecting the background information on the monotonic relation, a NC classifier is

constructed with the assumption on free disposability. If there is prior information
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on the substitution relation, then a C classifier is generated with an additional as-

sumption on convexity. The graduate admission data shows that the NC classifier

has a tighter envelopment than the C one does. The overlap under the NC case

is therefore smaller than the C one does. Then, a moderate way is proposed to

shift the frontier inwards so that the misclassification cost which is generated by

minimizing the overlaps. Furthermore, the discriminant rules are also designed to

incorporate the cost information. With the graduate admission data, it is shown

that the choice of the measure matters while applying a double frontier method.

Specifically, the proposed proportional DDF measure outperforms the commonly

used radial measure in providing a reasonable separation.

Several limitations can be identified relating to the presented approach. First,

the empirical validation shows that the choice of the direction vector matters in

improving the classification performance. In this study, a proportional direction

measure is proved to be more favorable than a radial measure. A further work could

be investigating the choice of the direction vector and explore the best projection

direction. Second, there is a clear overlap and gap area defined under the double-

frontier methods which essentially indicates further information needed. In this

study, the observations located in the overlap and gap are further classified by

comparing their distances to the frontiers. The alternative choices could be the

nearest neighbourhood approach like Pendharkar (2011) did. Third, both the NC

and C classifiers proposed could be extended from two groups to multiple groups

(see Pendharkar and Troutt (2011), Wu, An, and Liang (2011)).
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CHAPTER

5
General Conclusion

This thesis has been aiming at modifying some existing nonparametric frontier

classifiers. It was done by building the connections between the axioms applied

in the nonparametric methods and the background information in classification so

that some commonly used axioms could be relaxed depending on the applications.

Furthermore, we aimed at proposing novel nonparametric frontier classifiers by in-

corporating some essential background information into the classification, e.g., the

cost information and the non-monotonic relation between characteristic variables.

In what follows, we highlight some results and the main contributions.

Chapter 2 has innovated in two main ways. First, the convex frontier-based

classifier is modified into a more generalized form by the inclusion of both the

characteristic variables with a monotonically increasing relation and those with a

monotonically decreasing relation. If the monotonic relation is not priori given, a

linear discriminant analysis model named the Minimize Sum of Deviations model

is applied to reflect the relation based on the observations. Apart from the con-

sideration of the monotonic relations, the directional distance function measure is

introduced to give further information on alternative improvements. Second, in-
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stead of sticking to the convexity assumption, a nonconvex frontier has been used

and ends up with a better envelopment of the training observations.

The classification problem was explored in a more general formulation inChapter

3 where both monotonic and non-monotonic relations were incorporated. Different

from the standard disposal assumption used for describing the monotonic relation,

a general disposal assumption which limits the disposability within a value range

was defined for characterizing the non-monotonic relation. Accordingly, a domin-

ance adapting directional distance (DAD) function was developed for measuring

the distance of an observation to the separating frontier. A separating hull consists

of these dominance adapting separating frontiers was used to predict the member-

ship of a new observation. We designed an algorithm to simplify the procedures

of predicting the membership of a new observation. Both the convex and the

nonconvex classifiers were introduced in this setting. We argue that only if there

exists the additional background knowledge on the substitution relation among

the characteristic variables, then a convex nonparametric classifier is preferred.

Otherwise, a nonconvex classifier is more conservative and provides better classi-

fication performance than the C classifier. The proposed nonparametric classifiers

were examined with a nonlinearly separable binary classification problem. The NC

classifier outperformed the C classifier in terms of the overall accuracy, the pre-

cision and the F1 measure. It confirmed our argument of applying a C classifier

only after detecting a substitution relation. Moreover, the proposed NC classifier

was shown to outperform some existing DEA-based methods in terms of several

commonly used criteria.

The nonparametric classifiers proposed in Chapter 4 consisted of two separ-

ating frontiers which explicitly described the overlap. The two separating fron-

tiers were adjustable so that the total misclassification cost could be minimized.
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Furthermore, the discriminant rules were also designed to incorporate the cost

information. Similarly, both the convex and nonconvex classifiers were proposed.

The graduate admission data showed that the NC classifier has a tighter envelop-

ment than the C one does. The overlap under the NC case was therefore smaller

than the C one does. With the same graduate admission data, it was shown that

the choice of the measure matters while applying a double frontier method. Spe-

cifically, the proposed proportional DDF measure outperforms the commonly used

radial measure in providing a reasonable separation.
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