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Chapter 1: Introduction



CHAPTER 1

Introduction

1.1 Résumé

1.1.1 Résumé Général

Parmi l'intensification de la concurrence, avoir des relations solides avec les clients est
considéré comme un facteur clé pour maintenir un avantage concurrentiel. Ainsi, les en-
treprises ont investi de maniere significative dans le développement de stratégies de gestion
de la relation client (CRM) ces derniéres années (Dalla Pozza et al., 2018). Théorique-
ment, le CRM se compose de plusieurs initiatives différentes, chacune pouvant étre classée
en quatre dimensions distinctes (Kumar and Reinartz, 2006) : (i) l'alignement organi-
sationnel, (ii) la gestion des clients, (iii) la technologie et (iv) la mise en ceuvre de la
stratégie CRM. La premiere dimension, l'alignement organisationnel, se réfere a la re-
fonte et a l'alignement des processus existants, avec ’objectif ultime de placer les clients
au centre (Dalla Pozza et al., 2018). La deuxieéme dimension, la gestion des clients,
fonctionne selon le principe de traiter les clients de maniere différenciée, en s’adaptant
a leurs besoins, préférences et priorités (Reinartz et al., 2004). La troisieme dimension,
la technologie, englobe le degré auquel les applications CRM analytiques, opérationnelles
et collaboratives sont mises en ceuvre pour collecter des informations sur les clients a
travers les points de contact et pour faciliter la diffusion et I'analyse des informations
(Dalla Pozza et al., 2018). Enfin, la dimension de mise en ceuvre de la stratégie CRM né-
cessite une approche clairement orientée vers le client, incluant le soutien de la direction,
des métriques de performance orientées client et une vision globale du client a travers
toute 'organisation (Palmatier et al., 2007).

Une mise en ceuvre réussie des stratégies CRM aborde simultanément les quatre di-
mensions. Cependant, cette these se concentre fortement sur la dimension technologique.
Cette dimension offre 'opportunité d’exploiter des méthodes innovantes pour mieux com-
prendre le secteur des services financiers, les facteurs qui I'affectent, et des insights utiles
pour ses décideurs. En fin de compte, I'utilisation d’outils tels que des technologies in-
novantes et de nouvelles sources de données est proposée comme moyen d’obtenir une
compréhension plus approfondie du contexte dans lequel les prestataires de services fi-
nanciers interagissent avec leurs clients.

La figure 1.1 présente une illustration schématique des insights basés sur les données
qui peuvent étre utilisés pour une meilleure compréhension du contexte dans lequel les
prestataires de services financiers interagissent avec leurs clients. Plus précisément, les
insights provenant de facteurs externes peuvent étre utiles pour comprendre les fluctua-
tions du marché et les conditions économiques qui peuvent affecter a la fois les priorités
des clients et les opportunités de croissance d’un prestataire de services financiers. Les in-
sights provenant des prestataires eux-mémes, représentés par 'anneau central, se réferent
aux analyses des produits, services et offres disponibles, ainsi que des caractéristiques
qui peuvent différencier un prestataire de ses concurrents, telles que les canaux de com-
munication a la disposition de leurs clients, la qualité des services ou I’emplacement des
différentes agences, entre autres. Enfin, les insights provenant des clients incluent des
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Chapter 1 1.1. Résumé

informations sur leur comportement, leurs caractéristiques démographiques et I'intensité
de leur relation avec les prestataires, entre autres. Ainsi, ces perspectives de insights sont
modélisées comme des anneaux concentriques en raison de leur interdépendance. Dans
cette these, nous explorons des applications pour tous les différents insights basés sur
les données afin de mieux comprendre le secteur financier et de développer des applica-
tions innovantes qui peuvent étre exploitées pour continuer a renforcer les trois autres
dimensions du CRM.

Facteurs Externes

Prestataires de
Services

Figure 1.1. Illustration schématique des insights basés sur les données dans le
secteur des services financiers

La motivation derriere l'exploration des différentes sources de données est liée aux
avancées spectaculaires survenues ces dernieres années dans le secteur technologique. Ces
développements incluent la capacité de traiter de grands volumes de données grace a des
modeles améliorés pour les taches prédictives, tels que le deep learning (DL), ce qui offre
I'opportunité d’explorer des sources de données nouvelles et complexes.

Pour explorer comment l'intérét de la recherche autour de ces technologies a évolué,
nous examinons le domaine de la recherche sur les systémes de recommandation, choisi
pour étre un exemple populaire de publications liées au CRM, avec de fortes implications
managériales pour le secteur des services financiers. En effet, le nombre d’articles sur
les systémes de recommandation est bien plus élevé que pour d’autres taches prédictives
dans le CRM, telles que le churn, la segmentation des clients ou la prévision des ventes.

=== Tendance
5000 1

5000

4000

3000 4

No. d'Articles

2000

1000

2015 2016 2017 2018 2019 2020 2021 2022 2023
Annee

Figure 1.2. Nombre d’articles de recherche sur les systemes de recommandation
publiées par année
En utilisant Scopus pour entrer les mots-clés « systeme de recommandation », «
recommender system », « collaborative filtering », « content-based recommender » ou
« content-based recommendation », un total de 38 171 articles et communications de
conférences sont trouvés en anglais, publiés entre 2015 et 2023. L’intérét pour les systemes
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Chapter 1 1.1. Résumé

de recommandation n’a cessé d’augmenter, avec de plus en plus d’articles publiés chaque
année, comme illustré dans la Figure 1.2.

Ces documents peuvent étre segmentés en deux groupes : les études utilisant le deep
learning (DL) et celles se concentrant sur les systémes de recommandation traditionnels.
Le premier groupe, DL, inclut des publications trouvées grace a des mots-clés tirés de
Goodfellow et al. (2016), tels que « deep learning », « neural networks », « MLP », «
CNN », « LSTM », « RNN », « GRU », « GNN », « Boltzmann », « autoencoders », «
transformers » et « representation learning », entre autres. Le second groupe exclut les
publications du premier groupe ainsi que celles utilisant des approches hybrides. De ces
deux groupes, plusieurs conclusions peuvent étre tirées. Premierement, les études utilisant
les systemes traditionnels de recommandation (TR) restent trés populaires et leur volume
continue d’augmenter. Deuxiemement, I'intérét pour les nouvelles technologies a cri a un
rythme accéléré, comme le montre la Figure 1.3. En fait, 2023 est la premiere année ot
la recherche sur le DL appliqué aux systemes de recommandation a dépassé 1'utilisation
des TR.

Ces changements soulignent la nécessité pour les entreprises de se tenir a jour avec
I’évolution du paysage pour maintenir un avantage concurrentiel soutenu. Ainsi, cette
these contribue aux applications technologiques innovantes dans le secteur des services
financiers, en utilisant de nouvelles sources de données, en déployant des méthodolo-
gies de pointe pour la modélisation prédictive, et en mettant en ceuvre des techniques
avancées d’interprétabilité, avec un accent sur la fourniture d’insights quantitatifs pour
les décideurs.

3000 | ™= DL
TR
2500 1
2015 2016 2017 2018 2019 2020 2021 2022 2023

Annee

No. d'Articles
~

Bg

Q (=}

=

=1
=

=

Figure 1.3. Nombre d’articles de recherche utilisant des algorithmes DL et CF
par annee

La modélisation prédictive dans cette these se concentre sur 1'utilisation du deep learn-
ing (DL), souvent critiqué pour son opacité ou son statut de « boite noire ». Notamment,
la recherche a attiré I'attention sur le fait que les modeles de boite noire causent déja des
problémes dans des industries sensibles, telles que la santé et la justice pénale (Rudin,
2019). Cependant, beaucoup de ces probléemes, notamment le manque de transparence et
de responsabilité des modeles prédictifs, sont controlés en Europe gréace a des réglementa-
tions telles que le RGPD. Par exemple, I'article 15 du RGPD garantit la transparence et la
responsabilité des organisations en permettant aux individus de demander 'acces a leurs
données personnelles. Cette disposition permet également aux individus d’accéder aux
informations concernant les décisions automatisées, telles que le profilage ou le ciblage.
Ces informations doivent également inclure des explications sur la logique sous-jacente et
I'impact de ces traitements de données sur I'individu. Ainsi, les industries plus surveillées,
telles que le secteur des services financiers, peuvent étre plus hésitantes a adopter de tels
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Chapter 1 1.1. Résumé

modeles de boite noire.

Néanmoins, il est toujours utile de poursuivre la recherche sur ces modeles pour obtenir
une compréhension plus complete de leurs avantages et inconvénients. Par exemple, les
modeles de boite noire montrent souvent une performance supérieure, ce qui sert de
référence précieuse pour que les modeles de boite blanche les surpassent chaque fois que
possible. De plus, la recherche sur l'explicabilité a progressé depuis la publication de
Rudin (2019), avec un exemple étant la méthode neuron Shapley, qui améliore la trans-
parence et la granularité dans ’analyse DL (Ghorbani and Zou, 2020). Par conséquent,
les modeles de boite noire dépassent fréquemment les modeles de boite blanche dans
certaines applications, et les techniques d’explicabilité continuent d’étre affinées pour les
modeles plus opaques. En essence, les modeles de boite noire sont encore en développe-
ment, justifiant des efforts de recherche continus pour comprendre la valeur qu’ils peuvent
ajouter a différentes applications, que ce soit comme références pour les modeles de boite
blanche ou pour découvrir des insights supplémentaires basés sur les données.

Ces insights sont particulierement importants dans le secteur des services financiers,
car il est tres difficile d’attirer de nouveaux clients (Knott et al., 2002). En méme temps,
la fidélité des clients existants fluctue en raison de facteurs externes impactant leurs
préférences de consommation et priorités, tels que les événements géopolitiques, les ten-
dances du marché ou les changements dans leur vie (Mathur et al., 2008). Néanmoins, les
entreprises peuvent atténuer 'effet de ces facteurs externes en comprenant les préoccupa-

tions et intéréts de leurs propres clients, puis en prenant des actions marketing appropriées
(Jackson, 1985).

Une compréhension approfondie du comportement des clients peut aider une entreprise
a identifier plusieurs problémes qui détermineront les décisions d’achat futures. Cela peut
aider a comprendre si un client priorisera des préoccupations plus immédiates, comme un
prét a court terme, ou des enjeux a long terme, comme passer d’un produit a un autre au fil
du temps (Jackson, 1985). En raison des coiits de changement plus élevés pour les clients
qui priorisent les enjeux a long terme (Jackson, 1985), les facteurs externes auront un
impact moindre. Ainsi, la dimension temporelle est essentielle pour une compréhension
holistique a la fois du comportement des clients et de I'impact potentiel des actions
marketing, permettant aux marketeurs de concevoir des adaptations pour les clients le
long du spectre des préoccupations a court et a long terme (Jackson, 1985).

Par conséquent, la compréhension des clients et de leurs préférences dans le temps
permet une amélioration constante des relations client-entreprise (Roos and Gustafsson,
2007). Cela peut étre réalisé en surveillant et en analysant le comportement des clients et
en concevant des actions marketing spécialisées (Sin et al., 2005), permettant finalement
une allocation des ressources plus efficace en ciblant les clients les plus pertinents (Sin
et al., 2005).

Dans ce contexte, cette these explore différentes avenues de recherche appliquée, ex-
ploitant des données séquentielles variant dans le temps pour différentes taches : pré-
diction du prix du pétrole, prédiction d’événements de vie et systemes de recommanda-
tion. Trois contributions clés sont faites : incorporer de nouvelles sources de données
séquentielles pour améliorer la performance prédictive, appliquer des méthodologies de
pointe pour optimiser 'utilisation des données séquentielles et déployer des techniques
d’explicabilité pour explorer comment les données séquentielles contribuent a une tache
prédictive. Chacun des trois chapitres a venir contient une étude différente utilisant des
données séquentielles, tandis que le dernier chapitre conclut avec des conclusions générales
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Chapter 1 1.1. Résumé

et les limites de la recherche.

Les données séquentielles se réferent a des informations ordonnées qui aident un mod-
ele a détecter des motifs, pour résoudre des taches de différentes complexités. Plusieurs
des modeles précédemment listés comme mots-clés pour la Figure 1.7 ont été utilisés pour
apprendre a partir des données séquentielles. On peut dire que les données séquentielles
ont percé grace aux grands modeles de langage tels que ChatGPT. Ici, des séquences de
mots et de phrases sont utilisées pour entrainer de grands modeles, basés sur des architec-
tures DL, afin de trouver des solutions a différents problemes liés au texte. Néanmoins,
les données séquentielles existent dans plusieurs domaines, avec quelques exemples illus-
trés dans la Figure 1.8. Par exemple, une séquence d’ADN peut étre utilisée pour prédire
I’expression des génes (Ziga Avsec et al., 2021). De méme, une séquence d’actifs financiers
mensuels peut étre utilisée pour prédire des actifs futurs, le churn, le défaut de paiement
de préts ou d’autres taches liées a la classification des clients. Les données séquentielles
peuvent donc étre utilisées par des modeles tels que DL pour des taches prédictives per-
tinentes dans plusieurs industries, pour des problemes de classification et de régression.
Cette these se concentre spécifiquement sur 'utilisation de données chronologiquement
ordonnées provenant de I'industrie financiére pour la prédiction.

Phrase le » renard » brun »| rapide >
ADN A » T » G > A >
Actifs

Financiers 120K > 121K » 119K > 120K >
Mensuels

Figure 1.4. Exemples de données séquentielles

Le chapitre 2 utilise les prix du pétrole antérieurs et les données textuelles comme
entrée séquentielle pour prédire les prix du pétrole a venir. Le chapitre 3 utilise des
données démographiques et comportementales séquentielles des clients, fournies par un
prestataire de services financiers, pour prédire 10 différents événements de la vie. Le
chapitre 4 utilise des données démographiques des clients et 1'historique d’achats sous la
forme de caractéristiques RFM séquentielles.

En résumé, les trois études présentent des résultats dérivés de données réelles, incorpo-
rant de nouvelles sources de données séquentielles, mettant en ceuvre des méthodologies
de pointe pour évaluer 1'utilisation des données séquentielles susmentionnées et déployant
des techniques d’explicabilité pour analyser davantage les résultats. Chaque étude met
en avant une valeur académique et une pertinence commerciale notable, a travers les trois
contributions précédemment énumeérées.

Mots clés : Big data, gestion de la relation client, analyse marketing, machine learn-
ing, réseau de neurones, analyse textuelle, prix du pétrol, prédiction des moment de vie,
moteur de recommandation.



Chapter 1 1.1. Résumé

1.1.2 Résumé Détaillé

Cette section résume les trois articles contenus dans cette thése, en examinant comment
ils abordent les trois contributions générales précédemment décrites comme le fil conduc-
teur de cette these. Ces contributions sont : (i) I'incorporation de nouvelles sources de
données, (ii) I’évaluation de l'utilisation des données séquentielles, et (iii) le déploiement
de techniques d’explicabilité. Ces contributions sont en phase avec les défis posés par
le contexte actuel, faisant des trois études des exemples utiles d’approches innovantes
pour améliorer le processus de prise de décision dans l'industrie financiere. Ainsi, cette
section contextualise davantage ces études a travers les trois contributions générales et
I’état actuel de la recherche et de la littérature existante.

Cette these a été développée dans un contexte ou les modeles basés sur I'apprentissage
profond (DL) et les recherches connexes progressent a une vitesse incroyable. Par exem-
ple, ChatGPT change continuellement le paysage de I’analyse des données, car il a a la
fois accéléré la recherche autour des applications DL et multiplié les questions soulevées
par les régulateurs et le grand public (Cauffman and Goanta, 2021). Cette surveillance
ne se limite pas a ChatGPT et s’applique également aux algorithmes DL en général.
Cela souligne la pertinence commerciale de ’équilibre entre la performance du modele et
I'explicabilité, car des études existantes montrent que la perception de la sécurité, de la
vie privée et de la compatibilité avec les valeurs des consommateurs peut influencer la
décision d’adopter des applications et services innovants, en particulier dans l'industrie
financiere (Luo et al., 2010; Hoehle et al., 2012).

Il est donc essentiel de développer des applications explicables, quel que soit le modele
sélectionné, pour garantir la transparence des résultats du modele. Il est également
important de permettre a toutes les parties prenantes de comprendre rapidement les
informations fournies par un modele, tout en permettant aux chercheurs de vérifier la
valeur des sources de données complexes. En tant que telles, ces questions deviennent
une partie intégrante des stratégies globales de gestion de la relation client (CRM) et de
la recherche, dans le cadre d'un cadre d’analyse responsable (De Bock et al., 2023).

Nous postulons que les techniques d’explicabilité, combinées a ’utilisation de nouvelles
sources de données séquentielles, sont des outils puissants pour améliorer la transparence
des modeles innovants. De plus, ces techniques permettent une compréhension multidi-
mensionnelle du comportement des clients, ajoutant un facteur de variation temporelle a
I’analyse avec les mémes données déja utilisées dans les applications CRM existantes (De
Caigny et al., 2020; Bogaert et al., 2019). Cela signifie que des sources de données supplé-
mentaires, qui pourraient étre percues comme plus intrusives en termes de vie privée, ne
sont pas nécessaires pour améliorer encore les performances. Au lieu de cela, les données
historiques peuvent étre utilisées séquentiellement, permettant une compréhension plus
détaillée du comportement des clients. Cette approche respecte les directives de confi-
dentialité et les cadres réglementaires, sans sacrifier I'innovation ou les performances. Ce
contexte est exploré plus en détail en décrivant comment chaque étude s’aligne avec les
principales contributions de cette these.

Incorporation de nouvelles sources de données

Tout au long de cette these, nous résolvons différents problemes grace a l'utilisation de
nouvelles sources de données. En particulier, cela est réalisé de deux manieres différentes.
Premierement, en utilisant des données comme une séquence chronologiquement ordon-
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née, a comparer avec des données transversales, ce qui reste une zone sous-étudiée de la
littérature prédictive pour les applications CRM (Oskarsdéttir et al., 2018). Deuxiéme-
ment, en incorporant des sources de données qui n’ont pas été évaluées auparavant dans
la littérature pertinente.

En particulier, le chapitre 2 integre une nouvelle source de données textuelles, utilisée
séquentiellement comme entrée pour prédire les prix du pétrole a venir, ce qui aborde
les perspectives concernant les facteurs externes, comme le montre la Figure 1.1. Les
recherches utilisant des données textuelles pour la prédiction des prix du pétrole restent
rares (Beyer Diaz et al., 2023), bien qu’elles offrent encore des opportunités pour la
recherche prédictive dans le secteur financier (Huang et al., 2020). De plus, la source
spécifique des données textuelles utilisée, les tweets publiés par Donald Trump pendant
son mandat présidentiel, n’avait pas été étudiée auparavant (Beyer Diaz et al., 2023).
En outre, cette source de données est a la fois nouvelle et pertinente, car le prix du
pétrole est influencé par les événements géopolitiques mondiaux (Monge et al., 2017),
la politique et le sentiment du marché (Alvarez-Ramirez et al., 2003), et les annonces
publiques (Singleton, 2014). Enfin, plusieurs études dans le secteur financier prouvent que
'utilisation de données textuelles pour les prévisions est bénéfique (Kraus and Feuerriegel,
2017).

Le chapitre 3 utilise des données démographiques et comportementales des clients
fournies par un prestataire de services financiers, pour prédire 10 différents événements de
la vie pour les applications de gestion de la relation client (CRM). Les données originales
peuvent donc étre comprises comme contribuant a ’anneau intérieur des perspectives
basées sur les données de la Figure 1.1. Ces données sont longitudinales, mais elles sont
transformées par agrégation en données transversales pour étre comparées a l'utilisation
de données séquentielles comme entrée. La recherche sur les événements de la vie s’est
principalement concentrée sur des données transversales (De Caigny et al., 2020), ce qui
place I'utilisation de données séquentielles comme une nouveauté. De plus, les recherches
existantes pour les applications CRM soulignent I'importance des données longitudinales
des clients pour capturer le comportement dynamique (Oskarsdéttir et al., 2018) et garan-
tir la validité des résultats dans le temps (Boulding et al., 2005), positionnant cette étude
comme une contribution précieuse a la littérature sur les événements de la vie. Enfin,
cette étude propose également de nouveaux événements de la vie a prédire, a savoir I’achat
de résidence principale, I’achat de résidence secondaire et 1’achat de résidence en location,
ce qui signifie que les étiquettes cibles comprennent également des données nouvelles.

Le chapitre 4 analyse les données démographiques des clients et 1’historique des achats,
représentées sous forme de caractéristiques RFM longitudinales. Ces données, provenant
du méme prestataire de services financiers que dans le chapitre 3, sont utilisées pour
fournir des perspectives basées sur les données a la fois a partir des anneaux intermé-
diaires et intérieurs de la Figure 1.1. Les données sont utilisées pour développer divers
systemes de recommandation, y compris des systemes de recommandation traditionnels
(RS), des classificateurs multi-étiquettes basés sur ’apprentissage automatique (MLC) et
des modeles d’apprentissage profond (DL). Bien que les RS et MLC capturent le com-
portement des clients a travers des données transversales, négligeant les changements
temporels (You et al., 2019), les modeles DL offrent une alternative en exploitant les don-
nées séquentielles. Des applications réussies des modeles DL pour modéliser les actions
en ligne pour générer des recommandations ont été notées (Tan et al., 2016; You et al.,
2019). Le comportement des clients financiers peut également étre modélisé comme une
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série d’actions, qui menent finalement & un achat (Prinzie and Van den Poel, 2006). La
possession de produits passés et 'ordre d’acquisition des produits sont des prédicteurs
fiables pour les achats futurs dans le secteur des services financiers (Kamakura et al.,
1991). De plus, les caractéristiques RFM sont pertinentes pour générer des recomman-
dations (Bogaert et al., 2019) et excellent dans la capture des comportements d’achat
(Chen et al., 2016). Néanmoins, peu de recherches existent sur l'utilisation des données
séquentielles dans cette industrie, par rapport aux biens durables ou aux plateformes en
ligne (Prinzie and Van den Poel, 2006). De plus, les caractéristiques REM évoluent au fil
du temps et sont naturellement dynamiques, mais leur utilisation comme entrée séquen-
tielle pour des taches prédictives reste une zone de recherche peu développée (Mena et al.,
2023). Par conséquent, I'utilisation des entrées séquentielles pour les recommandations
reste une voie de recherche précieuse, car elle constitue une approche de données novatrice
dans le secteur des services financiers.

De plus, les chapitres 3 et 4 impliquent des données client sous forme séquentielle pour
les applications CRM, tout en fournissant des perspectives innovantes et exploitables pour
la stratégie de I'entreprise. Une tache clé dans l'industrie des services financiers est la
ciblage des clients pertinents (Geuens et al., 2018), car les clients existants sont plus
rentables que les nouveaux (Knott et al., 2002). Cela rend l'utilisation de nouvelles
sources de données tres importante car elle permet aux praticiens d’aller au-dela du profil
comportemental factuel et de I’historique des clients, pour développer des stratégies qui
font sentir au client qu’il est écouté (Crié and Micheaux, 2006).

En résumé, les trois études contenues dans cette these utilisent des sources de données
nouvelles et des approches pour leurs taches prédictives respectives. En outre, toutes les
études exploitent les données séquentielles comme moyen d’améliorer les performances, ce
qui reste une approche peu étudiée dans 'industrie financiere. Enfin, les nouvelles sources
de données sont un élément essentiel de la recherche, car elles permettent aux praticiens
de tirer de nouvelles informations du comportement de leurs clients pour construire des
stratégies CRM innovantes.

Evaluation de I'utilisation des données séquentielles

Au cours des dernieres années, les données séquentielles ont été exploitées pour réaliser
d’incroyables applications. En particulier, ChatGPT est souvent mentionné comme un
exemple réussi de formation d’'un modele sur des données séquentielles. Son architecture
est basée sur une forme de réseaux neuronaux (Brown et al., 2020), avec la capacité de
traiter des données séquentielles et de capturer des dépendances a long terme (Vaswani
et al., 2017). Le succes de ChatGPT a inévitablement suscité l'intérét pour I'exploration
et 'adaptation d’autres formes de données séquentielles pour différents domaines, éten-
dant leur utilité au-dela des taches liées au langage.

Par conséquent, cette these examine la valeur de 'utilisation de données séquentielles
pour évaluer son impact réel dans I'industrie des services financiers et pour apporter de
I'innovation basée sur les données dans le processus de prise de décision. Pour cela, dif-
férentes approches de travail avec des données séquentielles sont examinées, pour garantir
I’extraction d’informations utiles pour les taches prédictives est optimisée.

Plus précisément, 1’étude présentée dans le chapitre 2 utilise des données séquentielles
sous forme de prix du pétrole historiques et de publications sur les réseaux sociaux.
L’inclusion de ces publications est comparée a ’exclusion des données textuelles, pour
évaluer si la performance de la prédiction des prix du pétrole s’améliore ou non. De plus,
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différentes techniques de traitement des données textuelles sont explorées pour évaluer
laquelle fonctionne le mieux, y compris TF-IDF, Word2vec, Doc2Vec, GloVe et BERT.
Enfin, une analyse d’exclusion est déployée, confirmant davantage la valeur des données
textuelles lorsqu’elles sont utilisées séquentiellement.

Le chapitre 3 compare la performance des données caractérisées, transformant ainsi
les données longitudinales en données transversales, par rapport aux données séquen-
tielles. Les données caractérisées peuvent étre traitées par des classificateurs statistiques
et d’apprentissage automatique, tandis que les données séquentielles sont traitées par un
modele DL. Les résultats montrent que les modeles DL surpassent les autres approches
avec des différences de performance statistiquement significatives. Par conséquent, on
peut conclure que les données séquentielles ajoutent en effet de la valeur a la prédiction
des événements de la vie.

De méme, le chapitre 4 compare la performance des données transversales par rap-
port aux données séquentielles pour la production de recommandations. Les données
transversales sont traitées par des algorithmes RS et MLC, tandis que les données séquen-
tielles sont traitées par un modele DL. Le modele DL utilisant des données séquentielles
fonctionne mieux que les algorithmes RS et MLC, avec des différences de performance
statistiquement significatives pour les recommandations.

Dans ’ensemble, toutes les études montrent que les données séquentielles fournissent
des informations précieuses pour différentes taches prédictives. De plus, les chapitres 3 et
4 montrent que les données séquentielles a travers les modeles DL surpassent les autres
approches pour leurs taches respectives. Par conséquent, 1'utilisation de données client
longitudinales est particulierement précieuse pour les applications CRM, par opposition
a l'utilisation de données caractérisées, semblable a une approche transversale. Ces résul-
tats sont en accord avec des recherches existantes, qui soulignent la valeur des données
longitudinales.

Déploiement de techniques d’explicabilité pour les données séquentielles

Les réseaux neuronaux ont démontré un succes significatif dans diverses applications, dé-
passant fréquemment les capacités prédictives des modeles d’apprentissage automatique
conventionnels (Kraus et al., 2020). Notamment, la structure adaptable des architectures
DL permet la création de modeles pouvant manipuler différents types de données d’entrée,
en particulier les données séquentielles, avec peu de prétraitement (De Bock et al., 2023).
Cependant, ces modeles sont critiqués comme étant des boites noires, en raison de la com-
plexité impliquée lors de I'explication de la relation entre les données d’entrée et la sortie
(De Bock et al., 2023). Ceci devient un point de recherche particulierement pertinent
lorsque 1'on considere le contexte des réglementations changeantes, telles que le Regle-
ment général sur la protection des données (RGPD), la Loi sur les services numériques
(DSN) et la Loi sur les marchés numériques (DMN) (Cauffman and Goanta, 2021).

De plus, la montée de nouvelles technologies a conduit de nombreuses entreprises a col-
lecter de vastes volumes de données client, sans nécessairement en tirer parti (Aina Turil-
lazzi and Casolari, 2023). Ainsi, la conceptualisation et I’application de méthodes avancées
pour transformer les données en informations présentant des résultats performants, in-
terprétables et responsables dans le cadre réglementaire, sont essentielles pour améliorer
le processus de prise de décision (De Bock et al., 2023).

Dans cette theése, nous mettons en ceuvre des modeles DL en utilisant des don-
nées conformes au RGPD, pour développer des modeles innovants et performants dans

11



Chapter 1 1.1. Résumé

I'industrie financiere. Plus précisément, nous avons collaboré avec le service juridique
d’un prestataire de services financiers pour obtenir le consentement des clients, confor-
mément a 'article 15 du RGPD. Nous explorons différentes techniques d’explicabilité
pour tirer des informations des données, améliorer la transparence du modele et aider
davantage dans le processus de prise de décision.

Notamment, dans le chapitre 2, 'utilisation de I'analyse d’exclusion permet de cap-
turer 'impact sur le prix du pétrole de certains mots-clés ou sujets. Par exemple, une
analyse d’exclusion partielle, dans laquelle les mots-clés liés au pétrole sont supprimés
des données textuelles, révele une baisse des performances. De méme, une exclusion to-
tale, ou tous les tweets contenant ces mots-clés sont entierement supprimés, présente une
baisse plus drastique des performances. De plus, une analyse de changement structurel,
ou les données textuelles menant a une déviation dans les valeurs des prix du pétrole sont
examinées de pres, révele la présence de mots-clés liés a des événements géopolitiques et
des concepts. Ces résultats sont en accord avec la littérature existante, indiquant que le
prix du pétrole est influencé par des événements géopolitiques mondiaux, la politique et
le sentiment du marché, ainsi que les annonces publiques. Aucune de ces approches n’a
été utilisée auparavant dans la littérature sur la prédiction des prix du pétrole. Ainsi, ces
analyses éclairent davantage la source de la puissance prédictive pour la prédiction des
prix du pétrole a partir du modele DL mis en ceuvre.

Le chapitre 3 utilise la méthode d’attribution des gradients intégrés (IG) (Sundarara-
jan et al., 2017), qui n’avait pas été appliquée auparavant a la prédiction des événements
de la vie. Cette méthode quantifie la contribution de chaque entrée par rapport a la
sortie du modele, représentant ainsi la pertinence d’'une caractéristique pour la variable
cible. Les résultats révelent que (i) les mois les plus proches de la période de prédic-
tion ont un poids plus important en termes de performance prédictive, (ii) I'importance
des caractéristiques differe pour chaque événement de la vie, et (iii) les caractéristiques
disponibles séquentiellement ont une plus grande influence sur la prédiction des événe-
ments de la vie que les caractéristiques transversales. Du point de vue de la prise de
décision en marketing, le premier point concerne le moment optimal pour contacter les
clients, ce qui pourrait permettre une allocation plus efficace des ressources. Par exemple,
un client ayant une forte probabilité d’achat d’une résidence principale pourrait étre plus
réceptif lorsqu’il est contacté quelques mois seulement avant que I’événement de vie ne se
produise. Comme le révele également une recherche antérieure, I’allocation correcte et op-
portune des ressources marketing, reflétant une compréhension précise du comportement
dynamique du client, a un impact positif sur la fidélité du client. De plus, le deuxiéme
point permet aux décideurs d’utiliser les prédictions des événements de la vie comme un
outil pour améliorer la segmentation, personnaliser les services qu’ils offrent, détecter de
nouvelles opportunités de vente croisée et améliorer leurs recommandations de produits.
Enfin, le troisiéme point souligne la valeur des données longitudinales. Ainsi, ces résultats
mettent en évidence 'importance de transformer des données complexes en informations
exploitables.

Enfin, le chapitre 4 déploie les valeurs SHapley Additive exPlanations (SHAP) pour
analyser davantage les différences d'importance des caractéristiques lors de la production
de recommandations. SHAP attribue une valeur d’importance a chaque entrée, identi-
fiant ainsi les caractéristiques fortement corrélées a la sortie d’'un modele. Les résultats
montrent que les caractéristiques séquentielles ont un impact plus important que les car-
actéristiques statiques dans toutes les catégories de produits. De plus, les caractéristiques
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liées aux produits d’assurance, en particulier les données de fréquence et monétaires, ont
un impact élevé dans toutes les catégories de produits. De plus, les schémas comporte-
mentaux different selon la catégorie de produit. Dans I’ensemble, ces résultats signalent
que les clients qui investissent dans les assurances sont de bons candidats a cibler pour
des initiatives de vente croisée, tandis que les campagnes marketing pourraient bénéficier
d’une adaptation au comportement des clients de maniere longitudinale.

D’autres techniques sont encore a 1’étude, car il est encore nécessaire d’évaluer I'impact
de différentes méthodes d’explicabilité, pour comparer leurs forces et leurs faiblesses dans
différentes applications. Par conséquent, les techniques déployées ne sont en aucun cas
exhaustives, mais elles contribuent a approfondir la recherche appliquée dans l'industrie
des services financiers, en utilisant des données réelles avec des informations exploitables
pour les décideurs.

Résumé des Contributions

En résumé, les trois études contenues dans cette these utilisent des sources de données
et des approches novatrices pour leurs taches prédictives respectives. De plus, toutes les
études montrent que les données séquentielles fournissent des informations précieuses pour
différentes taches prédictives. Enfin, les techniques d’explicabilité déployées élargissent la
recherche appliquée dans I'industrie financiére, en utilisant des données réelles avec des
informations exploitables pour les décideurs. Ces contributions sont approfondies dans
chaque article de recherche, résumé dans les paragraphes suivants.

Le chapitre 2 utilise les prix du pétrole antérieurs et les données textuelles comme
entrée séquentielle pour prédire les prix futurs du pétrole. Les contributions sont (i)
I'inclusion d'une nouvelle source de données textuelles pour la prédiction des prix du
pétrole, (ii) 'utilisation d’un large éventail de techniques de traitement du langage naturel
(NLP) pour extraire des informations contextuelles, et (iii) I'incorporation d’analyses
supplémentaires pour élucider davantage la sortie du modele. Les techniques de NLP
consistent en une approche basée sur 1’espace vectoriel, des modeles d’encastrement et une
technique basée sur les transformateurs, appelée Bidirectional Encoder Representations
from Transformers (BERT). Les résultats montrent que BERT est la technique supérieure
pour extraire des informations pertinentes des données textuelles pour la prédiction des
prix du pétrole. De plus, les techniques d’explicabilité révelent des mots-clés liés a des
événements géopolitiques lors de changements structurels dans les prix du pétrole, en
accord avec la littérature existante.

Le chapitre 3 utilise des données démographiques et comportementales des clients,
fournies par un prestataire de services financiers, pour prédire 10 événements de vie dif-
férents. Dans cette étude, les données séquentielles sont disponibles longitudinalement
sous forme de données comportementales des clients. Les contributions consistent en (i)
I'incorporation de nouveaux événements de vie pour la prédiction, (ii) la comparaison de
la performance prédictive des données séquentielles et transversales, et (iii) la fourniture
d’informations pour la prise de décision en marketing. Les résultats révelent que les don-
nées séquentielles sont plus performantes que les données transversales, avec des données
comportementales ayant un impact plus important sur la prédiction des événements de
vie que les caractéristiques démographiques. En général, les données les plus récentes de
I’entrée séquentielle ont une influence plus importante sur la prédiction du modele. Enfin,
I'occurrence d’un événement de vie a un impact clair sur les taux de rétention.

Le chapitre 4 utilise des données démographiques des clients et 1'historique des achats
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sous forme de caractéristiques RFM. Ici, les données séquentielles proviennent des car-
actéristiques RFM, disponibles longitudinalement. Ces données proviennent du méme
prestataire de services financiers et sont utilisées pour construire différents systemes de
recommandation. Les contributions sont (i) la comparaison d’algorithmes de recomman-
dation, y compris des modeles DL de pointe dans un scénario réel, (ii) la comparaison
des techniques de featurisation pour évaluer si I'incorporation de données longitudinales
améliore la performance des recommandations, (iii) 1’évaluation des données longitudi-
nales en tant qu’entrée séquentielle, grace a 'utilisation de modeles d’apprentissage en
profondeur, (iv) I'application de techniques d’explicabilité pour améliorer la compréhen-
sion des décideurs et des spécialistes du marketing lors du déploiement de systemes de
recommandation.
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1.2 Abstract

1.2.1 General Abstract

Amid rising competition intensity, having strong customer relationships is considered a
key driver for maintaining a competitive edge. Thus, companies have been investing
significantly in the development of customer relationship management (CRM) strategies
in recent years (Dalla Pozza et al., 2018). Theoretically, CRM consists of several differ-
ent initiatives, each of which can be classified into four different dimensions (Kumar and
Reinartz, 2006): (i) organizational alignment, (ii) customer management, (iii) technology,
and (iv) CRM strategy implementation. The first dimension, organizational alignment,
refers to the redesigning and aligning of existing processes, with the ultimate objective
of placing customers at the center (Dalla Pozza et al., 2018). The second dimension,
customer management, operates under the principle of treating customers differently, by
adapting to their needs, preferences, and priorities (Reinartz et al., 2004). The third
dimension, technology, encompasses the degree to which analytical, operative, and col-
laborative CRM applications are implemented to collect customer information across the
touch points and to facilitate information dissemination and analysis (Dalla Pozza et al.,
2018). Lastly, the CRM strategy implementation dimension requires a clear customer-
oriented approach, including top management support, customer-oriented performance
metrics, and a comprehensive view of the customer across the entire organization (Pal-
matier et al., 2007).

A successful implementation of CRM strategies addresses all four dimensions simul-
taneously. However, this thesis strongly focuses on the dimension of technology. This
dimensions offers the opportunity of harnessing innovative methods for a better under-
standing of the financial services industry, the factors affecting it, and insights useful for
its decision-makers. Ultimately, the use of tools such as innovative technology and novel
data sources are proposed as means to achieve a deeper understanding of the context in
which financial services providers interact with their customers.

Figure 1.5 displays a schematic illustration of data-driven insights that can be used for
a deeper understanding of the context in which financial services providers interact with
their customers. Specifically, insights from external factors can be useful to understand
market fluctuations and economic conditions that can affect both customer priorities and a
financial services provider’s growth opportunities. Insights from the providers themselves,
represented by the middle ring, refers to analyses about the products, services, and offers
available, as well as characteristics that may differentiate a provider from its competitors,
such as the communication channels at the disposal of their customers, the quality of the
services, or the location of different branches, among others. Finally, the insights from
customers includes information about their behavior, demographics, and intensity of the
relationship with the providers, among others. Thus, these perspectives of insights are
modeled as concentric rings due to their interdependence. In this thesis, we explore
applications for all different data-driven insights to better understand the financial sector
and develop innovative applications which may be harnessed to continue strengthening
the three other CRM dimensions.
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External factors

Service Providers

Figure 1.5. Schematic illustration of data-driven insights in the financial services
industry

The motivation behind exploring the different sources of data is related to the spec-
tacular advances that have occurred during the last few years in the technological sector.
These developments include the ability to process large volumes of data through improved
models for predictive tasks, such as deep learning (DL), which grants the opportunity to
explore novel and complex sources of data.

To explore how research interest around these technologies has evolved, we review
the area of recommendation systems research, chosen for being a popular example of
CRM-related publications, with strong managerial implications for the financial services
industry. In fact, the number of recommendation systems articles is far higher than other
predictive tasks in CRM, such as churn, customer segmentation, or sales forecasting.
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Figure 1.6. Number of recommendation systems studies published per year

Using Scopus to enter the keywords “recommender system”, “recommendation sys-
tem”, “collaborative filtering”, “content-based recommender”; or “content-based recom-
mendation”, a total of 38.171 articles and conference papers are found to be published in
English between 2015 and 2023. The interest in recommender systems has been steadily
increasing, with more articles being published every year, as illustrated on Figure 1.6.

These documents can further be segmented into studies that use DL and studies that
focus on traditional recommendation systems. The first group, DL, includes publications
found through keywords sourced from Goodfellow et al. (2016), such as “deep learning”,
“neural networks”, “MLP” “CNN” “LSTM”, “RNN”, “GRU”, “GNN”, “Boltzmann”,
“autoencoders”, “transformers”, and “representation learning”, among others. The sec-
ond group excludes publications both from the first group and that use hybrid approaches.
From these two groups, several conclusions can be drawn. Firstly, studies using tradi-
tional recommenders (TR) remain highly popular and the volume has continued to in-
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crease. Secondly, the interest in newer technologies has been growing at an accelerated
rate, as shown in Figure 1.7. In fact, 2023 is shown to be the first year where DL research
on recommendation systems has surpassed the use of TR.

These changes highlight the need for companies to keep up to date with the changing
landscape to maintain a sustained competitive advantage. As such, this thesis contributes
to innovative technology applications in the financial services industry, by using novel
sources of data, deploying state-of-the art methodologies for predictive modeling, and
implementing advanced interpretability techniques, with a focus on providing quantitative
insights for decision-makers.
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Figure 1.7. Number of studies using DL and CF algorithms per year
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The predictive modeling on this thesis focuses on the use of DL, which have been
frequently criticized for being opaque or black box models. Notably, research has called
attention to the fact that black box models are already causing problems in sensitive
industries, such as healthcare and criminal justice (Rudin, 2019). However, many of
these problems, namely lack of transparency and accountability of predictive models, are
being controlled in Europe through regulation such as the GDPR. For instance, Article 15
of the GDPR guarantees transparency and responsibility from organizations, by allowing
individuals to request access to their personal data. This provision also allows individuals
access to information regarding automated decision-making, such as profiling or targeting.
This information must also include explanations of the underlying logic and the impact
of such data processing on the individual. Thus, industries that are under more scrutiny,
such as the financial services industry, may be more hesitant to adopt such black box
models. Nonetheless, there is still merit in persisting with research on these models,
ultimately to gain a more comprehensive understanding of their pros and cons. For
instance, black box models often demonstrate superior performance, which serves as
a valuable benchmark for white box models to surpass whenever feasible. Moreover,
research on explainability has advanced since the publication of Rudin (2019), with an
example being the neuron Shapley method, which enhances transparency and granularity
in DL analysis (Ghorbani and Zou, 2020). Consequently, black box models frequently
outshine white box models in specific applications, and techniques for explainability are
still being refined for more opaque models. In essence, black box models are still being
developed, warranting ongoing research efforts to understand the value they can add to
different applications, whether as benchmarks for white box models or for uncovering
additional data-driven insights.

These insights are particularly important within the financial services industry, as it
is highly difficult to attract new clients (Knott et al., 2002). Simultaneously, the loy-
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alty of existing customers fluctuates from external factors impacting their consumption
preferences and priorities, such as geopolitical events, market trends, or changes in their
lives (Mathur et al., 2008). Nonetheless, companies can dampen the effect of these exter-
nal factors by understanding their own customers’ concerns and interests, to then take
appropriate marketing actions (Jackson, 1985).

A profound understanding of customer behavior can help a company identify multiple
issues that will determine future purchase decisions. It can help understand whether a
customer will prioritize more immediate concerns, like a short-term loan, or long-term
issues, like upgrading from one product to another over time (Jackson, 1985). Due to
the higher switching costs for customers that prioritize long-term issues (Jackson, 1985),
external factors will have a lower impact. Thus, the dimension of time is essential for
a holistic understanding of both the customer behavior as well as the potential impact
of marketing actions, allowing marketers to design adaptions for customers along the
short-term and long-term concerns spectrum (Jackson, 1985).

Therefore, the understanding of customers and their preferences in time allows for a
constant improvement of customer-firm relationships (Roos and Gustafsson, 2007). This
can be achieved by monitoring and analyzing customer behavior and designing specialized
marketing actions (Sin et al., 2005), ultimately allowing for a more efficient resource
allocation by targeting the most relevant customers (Sin et al., 2005).

In this context, this thesis explores different avenues of applied research, harnessing
time-varying sequential data for different tasks: oil price prediction, life event predic-
tion, and recommendation systems. Three key contributions are made: incorporating
novel sequential data sources to improve predictive performance, applying state-of-the-
art methodologies to optimize the use of sequential data, and deploying explainability
techniques to explore how sequential data contributes to a predictive task. Each of the
three upcoming chapters contains a different study using sequential data, while the last
chapter closes with general conclusions and research limitations.

Sequential data refers to ordered information that helps a model detect patterns, to
solve tasks of different complexities. Multiple of the models previously listed as keywords
for Figure 1.7 have been used to learn from sequential data. Arguably, sequential data
has had its breakthrough into celebrity status thanks to large language models such as
ChatGPT. Here, sequences of words and sentences are used to train huge models, based
on DL architectures, to find solutions for different problems related to text. Nonetheless,
sequential data exists across multiple fields, with some examples displayed on Figure 1.8.
For instance, a sequence of DNA can be used for predicting gene expression (Ziga Avsec
et al., 2021). Similarly, a sequence of monthly financial assets can be used for predicting
future assets, churn, loan default, or other tasks related to customer classification. Se-
quential data can thus be used through models such as DL for predictive tasks relevant
to several industries, for both classification and regression problems. This thesis specif-
ically focuses on the use of chronologically ordered data from the financial industry for
prediction.
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Figure 1.8. Examples of sequential data

Chapter 2 uses previous oil prices and textual data as a sequential input to predict
upcoming oil prices. Chapter 3 uses customer demographic and sequential behavioral
data, supplied by a financial services provider, to predict 10 different life events. Chapter
4 uses customer demographic data and purchase history in the form of sequential RFM
features.

In sum, all three studies present results derived from real-world data, incorporating
novel sequential data sources, implementing state-of-the-art methodologies for assessing
the use of the aforementioned sequential data, and deploying explainability techniques to
further analyze the results. Each study showcases academic value and notable business
relevance, through the three previously listed contributions.

Keywords: Big data, customer relationship management, marketing analysis, machine
learning, neural networks, text analysis, oil price, life event prediction, recommendation
system.

1.2.2 Detailed Abstract

This section summarizes all three papers contained in this thesis, examining how they
approach the three general contributions previously outlined as the common thread of
this thesis. These contributions are namely: (i) incorporating novel data sources, (ii)
assessing the use of sequential data, and (iii) deploying explainability techniques. These
contributions are in line with the challenges brought about by the current context, making
the three studies useful examples of innovative approaches for improving the decision-
making process within the financial industry. Thus, this section further contextualizes
these studies through the three general contributions and the current state of research
and existing literature.

This thesis has been developed in a context where models based on DL and related re-
search are advancing at incredible speed. For instance, ChatGPT is continually changing
the data analysis landscape, as it has both accelerated research around DL applications,
as well as multiplied the questions arising from regulators and the general public (Cauff-
man and Goanta, 2021). This scrutiny is not restricted to ChatGPT and, in fact, also
applies to DL algorithms in general. This points towards the business relevance of balanc-
ing model performance with explainability, as existing studies show that the perception
of security, privacy, and the compatibility with consumer values can impact the decision
to adopt innovative applications and services, particularly in the financial industry (Luo
et al., 2010; Hoehle et al., 2012).

Therefore, it is highly important to develop explainable applications, regardless of
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the model selected, to ensure the transparency of model output. It is also important
to allow for all stakeholders to achieve a rapid understanding of insights provided by a
model, while also allowing researchers to verify the value of complex data sources. As
such, these issues are becoming an integral part of overall CRM strategies and research,
as part of a responsible analytics framework (De Bock et al., 2023).

We posit that explainability techniques, combined with the use of novel and sequen-
tial data sources, are powerful tools for improving the transparency of innovative models.
Moreover, these techniques allow for a multi-dimensional understanding of customer be-
havior, adding a time-varying factor of analysis with the same data already used in
existing CRM applications (De Caigny et al., 2020; Bogaert et al., 2019). This means
that additional sources of data, which may be perceived as more privacy-invasive, are
not required for further improving performance. Instead, historical data can be used se-
quentially, achieving a more detailed understanding of customer behavior. This approach
respects privacy guidelines and regulatory frameworks, without sacrificing innovation or
performance. This context is further explored by detailing how each study aligns with
the main contributions of this thesis.

Incorporating novel data sources

Throughout this thesis, we solve different problems through the use of novel data sources.
In particular, this is achieved in two different ways. Firstly, by using data as a chronolog-
ically ordered sequence, to be compared against cross-sectional data, which remains an
under-researched area of predictive literature for CRM applications (Oskarsdéttir et al.,
2018). Secondly, by incorporating data sources that have not been previously evaluated
within relevant literature.

In particular, chapter 2 incorporates a novel textual data source, used sequentially
as input to predict upcoming oil prices, which addresses the insights regarding external
factors, as shown on Figure 1.5. Research leveraging textual data for oil price prediction
remains rare (Beyer Diaz et al., 2023), despite it still offering opportunities for predictive
research in the financial sector (Huang et al., 2020). Moreover, the specific source of
textual data used, tweets published by Donald Trump during his presidential term, had
not been studied before (Beyer Diaz et al., 2023). Further, this data source is both novel
and relevant, as oil price is influenced by global geopolitical events (Monge et al., 2017),
politics and market sentiment (Alvarez-Ramirez et al., 2003), and public announcements
(Singleton, 2014). Finally, multiple studies within the financial sector prove that using
textual data for forecasting is beneficial (Kraus and Feuerriegel, 2017).

Chapter 3 uses customer demographic and behavioral data from a financial services
provider, to predict 10 different life events for customer relation management (CRM)
applications. The original data thus can be understood as contributing to the innermost
data-driven insights ring from Figure 1.5. This data is longitudinal, but it is transformed
through aggregation into cross-sectional data to be compared against the usage of se-
quential data as input. Life event research has mainly focused on cross-sectional data
(De Caigny et al., 2020), which places the use of sequential data as a novelty. Further,
existing research for applications in CRM emphasize the importance of longitudinal cus-
tomer data to capture dynamic behavior (Oskarsdéttir et al., 2018) and to guarantee the
validity of results over time (Boulding et al., 2005), positioning this study as a valuable
contribution to life event literature. Lastly, this study also proposes new life events to
be predicted, i.e. primary residence purchase, secondary residence purchase, and rental
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residence purchase, which means the target labels also encompass novel data.

Chapter 4 analyzes customer demographic data and purchase history, represented as
longitudinal RFM features. This data, sourced from the same financial services provider
as in chapter 3, is used to provide data-driven insights from both the middle and the
innermost rings of Figure 1.5. The data is employed to develop various recommender
systems, including traditional recommender systems (RS), machine learning multi-label
classifiers (MLC), and deep learning (DL) models. While RS and MLC capture customer
behavior through cross-sectional data, neglecting temporal changes (You et al., 2019),
DL models offer an alternative by leveraging sequential data. Successful applications of
DL models in modeling online actions for generating recommendations have been noted
(Tan et al., 2016; You et al., 2019). Financial customer behavior can also be modeled as
a series of actions, which eventually lead to a purchase (Prinzie and Van den Poel, 2006).
Past product ownership and the order of product acquisition are reliable predictors for
future purchases in the financial services industry (Kamakura et al., 1991). Further, RFM
features are relevant for generating recommendations (Bogaert et al., 2019) and excel at
capturing purchasing behaviors (Chen et al., 2016). Nonetheless, limited research exists
on the use of sequential data in this industry, compared to consumer durable goods or
online platforms (Prinzie and Van den Poel, 2006). Additionally, REFM features evolve
over time and are naturally dynamic, but their use as sequential input for predictive tasks
remains an underdeveloped area of research (Mena et al., 2023). Consequently, the use of
sequential input for recommendations remains a valuable research path, as it constitutes
a novel data approach within the financial services industry.

Additionally, both chapters 3 and 4 involve customer data in sequential form for CRM
applications, while also providing innovative and actionable insights for company strategy.
A key task in the financial services industry is the targeting of relevant customers (Geuens
et al., 2018), as existing customers are more profitable than new ones (Knott et al., 2002).
This makes the use of novel data sources highly important as it enables practitioners to
go beyond the factual behavioral profile and customer history, to develop strategies which
make the customer feel like they are being listened to (Crié and Micheaux, 2006).

In sum, all three studies contained in this thesis employ novel data sources and ap-
proaches for their respective predictive tasks. Furthermore, all studies leverage sequential
data as a means of improving performance, which remains a scarcely researched approach
within the financial industry. Finally, novel data sources are an essential element of re-
search, as it enables practitioners to draw new insights from their customers’ behavior to
construct innovative CRM strategies.

Assessing the use of sequential data

In the last few years, sequential data has been harnessed to achieve incredible applications.
In particular, ChatGPT is often mentioned as a successful example of training a model
on sequential data. Its architecture is based on a form of neural networks (Brown et al.,
2020), with the ability to handle sequential data and capture long-range dependencies
(Vaswani et al., 2017). ChatGPT’s success inevitably lead to interest in exploring and
adapting other forms of sequential data for different domains, expanding their utility
beyond language-related tasks.

Therefore, this thesis examines the value of using sequential data to assess its real-
life impact within the financial services industry and bring about data-driven innovation
in the decision-making process. To achieve this, different approaches of working with
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sequential data are examined, to ensure the extraction of useful information for predictive
tasks is optimized.

Specifically, the study outlined in chapter 2 uses sequential data in the form of histor-
ical oil prices and social media posts. The inclusion of these posts are compared against
the exclusion of textual data, to assess whether the performance of oil price prediction
improves or not. Further, different techniques to process the textual data are explored,
to evaluate which one performs better, including TF-IDF, Word2vec, Doc2Vec, GloVe,
and BERT. Finally, exclusion analysis is deployed, further confirming the value of textual
data when used sequentially.

Chapter 3 compares the performance of featurized data, thus transforming longitu-
dinal data into cross-sectional data, against sequential data. Featurized data can be
processed by statistical and machine learning classifiers, while sequential data is pro-
cessed by a DL model. The results show that DL models outperform other approaches
with statistically significant performance differences. Therefore, it can be concluded that
sequential data does indeed add value for life event prediction.

Similarly, chapter 4 compares the performance of cross-sectional data against sequen-
tial data for producing recommendations. The cross-sectional data is processed by RS and
MLC algorithms, while the sequential data is processed by a DL model. The DL model
using sequential data performs better than RS and MLC algorithm, with statistically
significant differences for recommendations.

Overall, all studies show that sequential data does provide valuable information for
different predictive tasks. Moreover, both chapters 3 and 4 show that sequential data
through DL models outperform other approaches for their respective tasks. Therefore,
using longitudinal customer data is particularly valuable for CRM applications, as op-
posed to using featurized data, akin to a cross-sectional approach. These findings are in
line with existing research, which highlight the value of longitudinal data (Oskarsdéttir
et al., 2018).

Deploying explainability techniques for sequential data

Neural networks have demonstrated significant success across diverse applications, fre-
quently surpassing the predictive capabilities of conventional machine learning models
(Kraus et al., 2020). Notably, the adaptable structure of DL architectures enables the
creation of models that can handle different types of input data, particularly sequential
data, with little preprocessing (De Bock et al., 2023). However, these models are criti-
cized as being black boxes, due to the complexity involved when explaining the relation
between the input data and the output (De Bock et al., 2023). This becomes a partic-
ularly relevant point of research when considering the context of changing regulations,
such as the General Data Protection Regulation (GDPR), the Digital Services Act (DSA)
and the Digital Markets Act (DMA) (Cauffman and Goanta, 2021).

Additionally, the rise of new technologies has led many companies to collect vast
volumes of customer data, without necessarily leveraging their benefits (Aina Turillazzi
and Casolari, 2023). As such, the conceptualization and application of advanced methods
for transforming data into insights that exhibit high-performance, interpretable results,
and are responsible within the regulatory framework, is key to enhancing the decision-
making process (De Bock et al., 2023).

In this thesis, we implement DL models using data that follows GDPR requirements,
to develop innovative and high-performing models within the financial industry. Specif-
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ically, we have collaborated with the legal department of a financial services provider
to obtain consent from customers, following Article 15 of GDPR. We explore different
explainability techniques to derive insights from the data, improve model transparency,
and further aid in the decision-making process.

Namely, in chapter 2, the use of exclusion analysis allows to capture the impact on
the price of oil of certain keywords or topics. For instance, a partial exclusion analysis,
wherein oil-related keywords are removed from the textual data source, reveals a drop in
performance results. Similarly, full exclusion, where all tweets containing these keywords
are fully removed, exhibit a more drastic drop in performance. Further, a structural
change analysis, where the textual data leading up to a deviation in the oil price values
is closely examined, reveals the presence of keywords relevant to geopolitical events and
concepts. These findings are in line with existing literature, pointing towards oil price
being influenced by global geopolitical events (Monge et al., 2017), politics and market
sentiment (Alvarez-Ramirez et al., 2003), and public announcements (Singleton, 2014).
Neither of these approaches have been previously used within the oil price prediction
literature. Thus, these analyses further elucidate the source of predictive power for oil
price prediction from the implemented DL model.

Chapter 3 uses integrated gradients (IG) attribution method (Sundararajan et al.,
2017), which has not been previously applied to life event prediction. This method
quantifies the contribution of each input in relation to the output of the model, therefore
representing a feature’s relevance for the target variable. The results reveal that (i)
the months closer to the prediction period exert greater weight in terms of predictive
performance, (ii) the feature importance differs for each life event, and (iii) features
that are available sequentially have a larger influence on life event prediction than cross-
sectional features. From a marketing decision-making perspective, the first point relates
to the optimal moment to contact customers, which could enable more efficient resource
allocations. For example, a customer with a high probability of a primary residence
purchase may be most responsive when contacted just a few months before the life event
occurs. As previous research also reveals, the correct and timely allocation of marketing
resources, reflecting an accurate understanding of dynamic customer behavior, has a
positive impact on customer loyalty (Han and Anderson, 2022). Further, the second point
allows decision-makers to use life event predictions as a tool to improve segmentation,
to personalize the services they offer, detect new cross-selling opportunities, and improve
their product recommendations. Finally, the third point echos the value of longitudinal
data (Oskarsdéttir et al., 2018). Thus, these findings highlighting the importance of
transforming complex data into actionable insights (De Bock et al., 2023).

Finally, chapter 4 deploys SHapley Additive exPlanations (SHAP) values to further
analyze the differences in feature importance when producing recommendations. SHAP
assigns an importance value for each input, thus identifying features strongly correlated
with a model’s output (Notz and Pibernik, 2024). The results show that sequential
features have a higher impact than static features across product categories. Furthermore,
features related to Insurance products, particularly frequency and monetary data, have
a high impact across product categories. Moreover, behavioral patterns differ by product
category. Overall, these findings signal that customers that invest in insurance are good
candidates to target for cross-selling initiatives, while marketing campaigns could benefit
from adapting to customer behavior longitudinally.

Additional techniques are still being researched, as it is still required to assess the im-
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pact of various explainability methods, to compare their strengths and weaknesses across
different applications. Therefore, the deployed techniques are by no means exhaustive,
but they do contribute in furthering applied research in the financial services industry,
using real-life data with actionable insights for decision-makers.

Summary of Contributions

In sum, all three studies contained in this thesis employ novel data sources and approaches
for their respective predictive tasks. Moreover, all studies show that sequential data
does provide valuable information for different predictive tasks. Finally, the deployed
explainability techniques expand applied research in the financial industry, using real-life
data with actionable insights aimed at decision-makers. These contributions are further
deepened on each research article, summarized in the following paragraphs.

Chapter 2 uses previous oil prices and textual data as a sequential input to predict
upcoming oil prices. The contributions are (i) the inclusion of a novel text data source
for oil price prediction, (ii) the use of a wide array of natural language processing (NLP)
techniques for extracting contextual information, and (iii) the incorporation of additional
analyses to further elucidate the model’s output. The NLP techniques consist of a vector
space-based approach, embedding models, and a transformer-based technique, known as
Bidirectional Encoder Representations from Transformers (BERT). Results show BERT
is the superior technique to extract relevant information from textual data for oil price
prediction. Further, explainability techniques reveal keywords related to geopolitical
events during structural changes in oil prices, in line with existing literature.

Chapter 3 uses customer demographic and behavioral data, supplied by a financial ser-
vices provider, to predict 10 different life events. In this study, sequential data is available
longitudinally, in the form of customer behavioral data. The contributions consist of (i)
incorporating novel life events for prediction, (ii) comparing the predictive performance
of sequential and cross-sectional data, and (iii) delivering insights for decision-making in
marketing. The findings reveal that sequential data performs better than cross-sectional
data, with behavioral data impacting life event prediction more than demographic fea-
tures. In general, the more recent data from the sequential input has a heavier influence
on the model’s prediction. Lastly, the occurrence of a life event has a clear impact on
retention rates.

Chapter 4 uses customer demographic data and purchase history in the form of RFM
features. Here, the sequential data stems from RFM features, available as longitudinal
data. This data stems from the same financial services provider and is used to construct
different recommender systems. The contributions are (i) the comparison recommen-
dation algorithms, including state-of-the-art DL models in a real-life scenario, (ii) the
contrast of featurization techniques to assess if the incorporation of longitudinal data
improves the performance of recommendations, (iii) the evaluation of longitudinal data
as sequential input, through the use of deep learning models, (iv) the application of ex-
plainability techniques to improve the understanding of decision-makers and marketers
when deploying recommendation systems.

1.3 References

Aina Turillazzi, Mariarosaria Taddeo, L.F., Casolari, F., 2023. The digital services act: an analysis of
its ethical, legal, and social implications. Law, Innovation and Technology 15, 83-106. doi:10.1080/

24


http://dx.doi.org/10.1080/17579961.2023.2184136
http://dx.doi.org/10.1080/17579961.2023.2184136

Chapter 1 1.3. References

17579961.2023.2184136.

Alvarez-Ramirez, J., Soriano, A., Cisneros, M., Suarez, R., 2003. Symmetry/anti-symmetry phase tran-
sitions in crude oil markets. Phys. A Stat. Mech. its Appl. 322, 583-596. doi:10.1016/S0378-437
1(02)01831-9.

Ziga Avsec, Agarwal, V., Visentin, D., Ledsam, J.R., Grabska-Barwinska, A., Taylor, K.R., Assael,
Y., Jumper, J., Kohli, P., Kelley, D.R., 2021. Effective gene expression prediction from sequence by
integrating long-range interactions. Nat. Methods 18, 1196-1203. doi:10.1038/s41592-021-01252-x.

Beyer Diaz, S., Coussement, K., De Caigny, A., Pérez, L.F., Creemers, S., 2023. Do the us president’s
tweets better predict oil prices? an empirical examination using long short-term memory networks.
Int. J. Prod. Res. 0, 1-18. doi:10.1080/00207543.2023.2217286.

Bogaert, M., Lootens, J., Van den Poel, D., Ballings, M., 2019. Evaluating multi-label classifiers and
recommender systems in the financial service sector. Eur. J. Oper. Res. 279, 620-634. doi:10.1016/
j.ejor.2019.05.037.

Boulding, W., Staelin, R., Ehret, M., Johnston, W.J.,; 2005. A customer relationship management
roadmap: What is known, potential pitfalls, and where to go. J. Mark. 69, 155-166. doi:10.1509/jm
kg.2005.69.4.155.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh,
A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess,
B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language
models are few-shot learners, in: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (Eds.),
Advances in Neural Information Processing Systems, Curran Associates, Inc.. pp. 1877-1901.

Cauffman, C., Goanta, C., 2021. A new order: The digital services act and consumer protection. Eur.
J. Risk Regul. 12, 758-774. doi:10.1017/err.2021.8.

Chen, Z.Y., Fan, Z.P., Sun, M., 2016. A multi-kernel support tensor machine for classification with
multitype multiway data and an application to cross-selling recommendations. Eur. J. Oper. Res. 255,
110-120. doi:doi.org/10.1016/j.ejor.2016.05.020.

Crié, D., Micheaux, A., 2006. From customer data to value: What is lacking in the information chain?
J. Database Mark. Cust. Strategy Manag. 13, 282-299. doi:10.1057/palgrave.dbm.3240306.

Dalla Pozza, 1., Goetz, O., Sahut, J.M., 2018. Implementation effects in the relationship between crm
and its performance. J. Bus. Res. 89, 391-403. do0i:10.1016/j. jbusres.2018.02.004.

De Bock, K.W., Coussement, K., Caigny, A.D., Stowinski, R., Baesens, B., Boute, R.N., Choi, T.M.,
Delen, D., Kraus, M., Lessmann, S., Maldonado, S., Martens, D., Oskarsdéttir, M., Vairetti, C.,
Verbeke, W., Weber, R., 2023. Explainable ai for operational research: A defining framework, methods,
applications, and a research agenda. Eur. J. Oper. Res. doi:10.1016/j.ejor.2023.09.026.

De Bock, K.W., Coussement, K., De Caigny, A., Slowiniski, R., Baesens, B., Boute, R.N., Choi, T.M.,
Delen, D., Kraus, M., Lessmann, S., et al., 2023. Explainable ai for operational research: A defining
framework, methods, applications, and a research agenda. Eur. J. Oper. Res. doi:10.1016/j.ejor.2
023.09.026.

De Caigny, A., Coussement, K., De Bock, K.W., 2020. Leveraging fine-grained transaction data for
customer life event predictions. Decis. Support Syst. 130, 113232. doi:10.1016/j.dss.2019.113232.

Geuens, S., Coussement, K., De Bock, K.W.; 2018. A framework for configuring collaborative filtering-
based recommendations derived from purchase data. Eur. J. Oper. Res. 265, 208-218. doi:10.1016/
j.ejor.2017.07.005.

25


http://dx.doi.org/10.1080/17579961.2023.2184136
http://dx.doi.org/10.1080/17579961.2023.2184136
http://dx.doi.org/10.1080/17579961.2023.2184136
http://dx.doi.org/10.1080/17579961.2023.2184136
http://dx.doi.org/10.1016/S0378-4371(02)01831-9
http://dx.doi.org/10.1016/S0378-4371(02)01831-9
http://dx.doi.org/10.1038/s41592-021-01252-x
http://dx.doi.org/10.1080/00207543.2023.2217286
http://dx.doi.org/10.1016/j.ejor.2019.05.037
http://dx.doi.org/10.1016/j.ejor.2019.05.037
http://dx.doi.org/10.1509/jmkg.2005.69.4.155
http://dx.doi.org/10.1509/jmkg.2005.69.4.155
http://dx.doi.org/10.1017/err.2021.8
http://dx.doi.org/doi.org/10.1016/j.ejor.2016.05.020
http://dx.doi.org/10.1057/palgrave.dbm.3240306
http://dx.doi.org/10.1016/j.jbusres.2018.02.004
http://dx.doi.org/10.1016/j.ejor.2023.09.026
http://dx.doi.org/10.1016/j.ejor.2023.09.026
http://dx.doi.org/10.1016/j.ejor.2023.09.026
http://dx.doi.org/10.1016/j.dss.2019.113232
http://dx.doi.org/10.1016/j.ejor.2017.07.005
http://dx.doi.org/10.1016/j.ejor.2017.07.005

Chapter 1 1.3. References

Ghorbani, A., Zou, J.Y., 2020. Neuron shapley: Discovering the responsible neurons, in: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (Eds.), Advances in Neural Information Processing
Systems, Curran Associates, Inc.. pp. 5922-5932. URL: https://proceedings.neurips.cc/paper
_files/paper/2020/file/41c542dfe6edfc3deb251d64cfbed2e4-Paper. pdf.

Goodfellow, 1., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press. http://www.deeplearning
book.org.

Han, S., Anderson, C.K., 2022. The dynamic customer engagement behaviors in the customer satisfaction
survey. Decis. Support Syst. 154, 113708. doi:10.1016/j.dss.2021.113708.

Hoehle, H., Scornavacca, E., Huff, S., 2012. Three decades of research on consumer adoption and
utilization of electronic banking channels: A literature analysis. Decis. Support Syst. 54, 122-132.
doi:10.1016/j.dss.2012.04.010

Huang, S., Potter, A., Eyers, D., 2020. Social media in operations and supply chain management: State-
of-the-art and research directions. Int. J. Prod. Res. 58, 1893-1925. do0i:10.1080/00207543.2019.17
02228.

Jackson, B.B., 1985. Build customer relationships that last. Harv. Bus. Rev. 63 (November-December),
120-128.

Kamakura, W.A., Ramaswami, S.N., Srivastava, R.K., 1991. Applying latent trait analysis in the
evaluation of prospects for cross-selling of financial services. Int. J. Res. Mark. 8, 329-349.
do0i:10.1016/0167-8116(91)90030-B.

Knott, A., Hayes, A., Neslin, S.A., 2002. Next-product-to-buy models for cross-selling applications. J.
Interact. Mark. 16, 59-75.

Kraus, M., Feuerriegel, S., 2017. Decision support from financial disclosures with deep neural networks
and transfer learning. Decis. Support Syst. 104, 38-48. do0i:10.1016/j.dss.2017.10.001.

Kraus, M., Feuerriegel, S., Oztekin, A., 2020. Deep learning in business analytics and operations research:
Models, applications and managerial implications. Eur. J. Oper. Res. 281, 628-641. doi:10.1016/j.
ejor.2019.09.018.

Kumar, V., Reinartz, W.J., 2006. Customer relationship management: A databased approach. Wiley
Hoboken.

Luo, X., Li, H., Zhang, J., Shim, J., 2010. Examining multi-dimensional trust and multi-faceted risk
in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decis.
Support Syst. 49, 222-234. doi:10.1016/j.dss.2010.02.008.

Mathur, A., Moschis, G.P., Lee, E., 2008. A longitudinal study of the effects of life status changes on
changes in consumer preferences. J. Acad. Mark. Sci. 36, 234—-246. doi:10.1007/s11747-007-002
1-9.

Mena, G., Coussement, K., De Bock, K., De Caigny, A., Lessmann, S., 2023. Exploiting time-varying
RFM measures for customer churn prediction with deep neural networks. Ann. Oper. Res. 53, 80-95.
doi:10.1007/s10479-023-05259-9.

Monge, M., Gil-Alana, L.A., Pérez de Gracia, F., 2017. Crude oil price behaviour before and after
military conflicts and geopolitical events. Energy 120, 79-91. doi:10.1016/j.energy.2016.12.102.

Notz, P.M., Pibernik, R., 2024. Explainable subgradient tree boosting for prescriptive analytics in
operations management. Eur. J. Oper. Res. 312, 1119-1133. doi:doi.org/10.1016/j.ejor.2023.08
.037.

Palmatier, R.W., Scheer, L.K., Houston, M.B., Evans, K.R., Gopalakrishna, S., 2007. Use of relationship
marketing programs in building customer—salesperson and customer—firm relationships: Differential
influences on financial outcomes. Int. J. Res. Mark. 24, 210-223.

26


https://proceedings.neurips.cc/paper_files/paper/2020/file/41c542dfe6e4fc3deb251d64cf6ed2e4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/41c542dfe6e4fc3deb251d64cf6ed2e4-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1016/j.dss.2021.113708
http://dx.doi.org/10.1016/j.dss.2012.04.010
http://dx.doi.org/10.1080/00207543.2019.1702228
http://dx.doi.org/10.1080/00207543.2019.1702228
http://dx.doi.org/10.1016/0167-8116(91)90030-B
http://dx.doi.org/10.1016/j.dss.2017.10.001
http://dx.doi.org/10.1016/j.ejor.2019.09.018
http://dx.doi.org/10.1016/j.ejor.2019.09.018
http://dx.doi.org/10.1016/j.dss.2010.02.008
http://dx.doi.org/10.1007/s11747-007-0021-9
http://dx.doi.org/10.1007/s11747-007-0021-9
http://dx.doi.org/10.1007/s10479-023-05259-9
http://dx.doi.org/10.1016/j.energy.2016.12.102
http://dx.doi.org/doi.org/10.1016/j.ejor.2023.08.037
http://dx.doi.org/doi.org/10.1016/j.ejor.2023.08.037

Chapter 1 1.3. References

Prinzie, A., Van den Poel, D., 2006. Investigating purchasing-sequence patterns for financial services using
markov, mtd and mtdg models. Eur. J. Oper. Res. 170, 710-734. doi:10.1016/j.ejor.2004.05.004.

Reinartz, W., Krafft, M., Hoyer, W.D., 2004. The customer relationship management process: Its
measurement and impact on performance. J. Mark. Res. 41, 293-305.

Roos, 1., Gustafsson, A., 2007. Understanding frequent switching patterns. Journal of Service Research
10, 93-108. doi:10.1177/1094670507303232.

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nat Mach Intell 1, 206-201. doi:10.1038/s42256-019-0048-x.

Sin, L., Tse, A., Yim, F., 2005. CRM: conceptualization and scale development. Eur. J. Mark. 39,
1264-1290. doi:10.1108/03090560510623253.

Singleton, K.J., 2014. Investor flows and the 2008 boom/bust in oil prices. Manage. Sci. 60, 300-318.
doi:10.1287/mnsc.2013.1756.

Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic attribution for deep networks, in: Proceedings of
the 34th International Conference on Machine Learning - Volume 70, PMLR. p. 3319-3328.

Tan, Y.K., Xu, X., Liu, Y., 2016. Improved recurrent neural networks for session-based recommendations,
in: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Association for
Computing Machinery, New York, NY, USA. p. 17-22. doi:10.1145/2988450.2988452.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, 1.,
2017. Attention is all you need, in: 31st Conference on Neural Information Processing Systems (NIPS
2017), Curran Associates Inc., New York, NY, USA. p. 6000-6010.

You, J., Wang, Y., Pal, A., Eksombatchai, P., Rosenburg, C., Leskovec, J., 2019. Hierarchical temporal
convolutional networks for dynamic recommender systems, in: The World Wide Web Conference,
Association for Computing Machinery, New York, NY, USA. p. 2236-2246. doi:10.1145/3308558.33
13747.

Oskarsdottir, M., Van Calster, T., Baesens, B., Lemahieu, W., Vanthienen, J., 2018. Time series for
early churn detection: Using similarity based classification for dynamic networks. Expert Syst. Appl.
106, 55-65. doi:10.1016/j.eswa.2018.04.003.

27


http://dx.doi.org/10.1016/j.ejor.2004.05.004
http://dx.doi.org/10.1177/1094670507303232
http://dx.doi.org/10.1038/s42256-019-0048-x
http://dx.doi.org/10.1108/03090560510623253
http://dx.doi.org/10.1287/mnsc.2013.1756
http://dx.doi.org/10.1145/2988450.2988452
http://dx.doi.org/10.1145/3308558.3313747
http://dx.doi.org/10.1145/3308558.3313747
http://dx.doi.org/10.1016/j.eswa.2018.04.003

Chapter 2: Do the US President’s

Tweets Better Predict Oil Prices? An
Empirical Examination Using Long

Short-Term Memory Networks

28



CHAPTER 2

Do the US President’s Tweets Better Predict Oil
Prices? An Empirical Examination Using Long
Short-Term Memory Networks

Abstract.

The price of oil is highly complex to predict as it is impacted by global demand and supply,
geopolitical events, and market sentiment. The accuracy of such predictions, however,
has far-reaching implications for supply chain performance, portfolio management, and
expected stock market returns. This paper contributes to the oil price prediction litera-
ture by evaluating the predictive impact of the US President’s communication on Twitter,
while benchmarking various Natural Language Processing (NLP) techniques, including
Term Frequency-Inverse Document Frequency (TF-IDF), Word2Vec, Doc2Vec, Global
Vectors for Word Representation (GloVe), and Bidirectional Encoder Representations
from Transformers (BERT). These techniques are combined with a deep neural network
Long Short-Term Memory (LSTM) architecture using a five-day lag for both the oil price
and the textual Twitter data. The data was collected during the term of US President
Donald Trump, resulting in 1,449 days of crude oil price prediction and a total of 16,457
tweets. The study is validated for Brent and West Texas Intermediate blends, using the
daily price of a barrel of crude oil as the target feature. The results confirm that in-
cluding the US President’s tweets significantly increases the predictive power of oil price
prediction models, and that an LSTM architecture with BERT as NLP technique has the
best performance.

Keywords: Analytics, Oil price prediction, LSTM, BERT, NLP, US President.
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2.1 Introduction

Oil price prediction is an important prediction task in operations management because of
its economical impact. Higher predicted oil prices often result in lower economic activity,
especially when the price increase is expected to persist (Heath, 2019). Higher oil prices
also upend the way companies manage their supply chain (Simchi-Levi et al., 2008b,a),
with oil spot trading being helpful for coordinating supply chains (Mendelson and Tunca,
2007). Crude oil prices also play an important role in stock returns (Sadorsky, 1999) as
they impact stock market expected returns and cash flows (Jones and Kaul, 1996). They
also can lead to financial losses across the business sector (Li et al., 2019¢) and provide
valuable information for predicting stock market volatility (Kim and Won, 2018). Oil
price forecasting is also important for operations related to oil and gas firms, portfolio
diversification, and portfolio management (Antonakakis et al., 2018).

However, oil prices are notoriously difficult to predict for a variety of reasons. First,
they show a high sensitivity to global demand and supply which might result in high short-
term volatility (Beckers and Beidas-Strom, 2015). Additionally, global geopolitical events
have a significant influence on the oil price (Monge et al., 2017), which is also strongly
affected by politics and market sentiment (Alvarez-Ramirez et al., 2003). To further un-
derstand oil prices, its volatility has been explored from different angles, with researchers
reporting findings such as volatility spillovers between oil prices and stock sector returns
(El Hedi Arouri et al., 2011), and a persistent lead-lag relationship between S&P500 in-
dex and expectations for crude oil (Kyrtsou et al., 2016). Finally, trading patterns of
investors learning about economic fundamentals, both from public announcements and
market prices, contribute to highly volatile oil prices (Singleton, 2014).

Methodologically, oil price prediction is part of financial time series forecasting, where
prediction models based on Recurrent Neural Networks (RNN) have emerged as the
dominant technique (see Sezer et al. (2020) for an overview). RNNs are easily adapted
to multiple forecasting problems and exhibit good prediction performance. However, oil
price prediction literature uses models that rely on structured, lagged oil price data.
A limited number of papers have considered textual data to predict oil prices (e.g., Li
et al. (2019c); as discussed in detail in Section 2.2), leaving a research gap for the use of
oil-relevant textual data through complex natural language processing (NLP) techniques.

We source textual content from the twitter communication of former US President
Donald Trump. In previous years, much has been discussed about the impact of his
tweets on oil prices. Trump himself claims responsibility for low oil prices, but the press
is divided on the subject. According to Bloomberg and Forbes, there is at least a short-
term drop in prices after an intervention of Trump. Yet CNBC claims oil prices rose after
Trump tweeted he “called up” OPEC and told them to bring down costs. A few examples
of notable tweets of former President Trump are included on Table 2.1. Regardless, there
is evidence that communication on Twitter (and on social media in general) can have a
significant impact. For instance, Schmidt et al. (2020) have shown that increased Twitter
activity after supply chain glitches is linked to stock market disruptions. Twitter data can
also predict stock market fluctuations (Bollen et al., 2011) and improve the performance
of supply chain metrics (Maheshwari et al., 2021). In addition, Ilk et al. (2020) use NLP
techniques to interpret chat textual data to improve the operational performance of a
contact center. Additionally, there is precedent in tweets by Elon Musk increasing Tesla’s
stock price by over six percent (Craig and Amernic, 2020). Lastly, according to the US
Energy Information Administration (EIA), the US is currently the biggest oil producer.
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As such, we assume the tweets of the US President may impact the price of oil. This
assumption is supported by studies that show world leaders have a significant causal
influence on the economy (Jones and Olken, 2005) and they matter for economic growth
(Berry and Fowler, 2021).

Table 2.1. Notable oil tweets by former President Trump

Date Text

September 20, 2018 We protect the countries of the Middle East, they would not be safe for
very long without us, and yet they continue to push for higher and higher
oil prices! We will remember. The OPEC monopoly must get prices down
now!

February 25, 2019 Oil prices getting too high. OPEC, please relax and take it easy. World
cannot take a price hike - fragile!

April 2, 2020 Just spoke to my friend MBS (Crown Prince) of Saudi Arabia, who spoke
with President Putin of Russia, & 1 expect & hope that they will be
cutting back approximately 10 Million Barrels, and maybe substantially
more which, if it happens, will be GREAT for the oil & gas industry!

This study seeks to confirm the predictive power of a US president’s tweets for oil prices
and to contribute to the overall methodology, by comparing several NLP techniques:

1. a wvector space-based approach due to its good performance across areas of research
(Coussement and Van den Poel, 2008),

2. embedding models for their effective adaptability to capture subtle semantic simi-
larities (Hirschberg and Manning, 2015), and

3. a transformer-based approach as this architecture is the current state-of-the art
technique (Borchert et al., 2022).

The vector space-based approach is implemented using Term Frequency-Inverse Docu-
ment Frequency (TF-IDF), while the embedding models used in this study are Word2Vec,
Doc2Vec, and Global Vectors for word representation (GloVe). The Bidirectional En-
coder Representations from Transformers (BERT) is the transformer-based technique
mentioned earlier. These techniques are combined with a Long Short-Term Memory
(LSTM) architecture. LSTM is able to learn efficiently while holding on to information
for long periods (Bengio et al., 1994). It can also be adapted to different tasks and has
been successfully applied in different areas of financial time series forecasting (Fischer and
Krauss, 2018; Flori and Regoli, 2021), particularly in cases too complex for traditional
forecasting methods (Shen and Sun, 2021). Predictive modeling with its time dimension
is a valuable actor in the digital space. This study uses a five day lag for both the oil
price and the textual Twitter data following the lag order selection criteria (Ivanov and
Kilian, 2005). The data includes the daily crude oil price over a period of almost four
years, or 1,449 days, plus a total of 16,457 tweets by the 45th US President. The study is
validated for Brent and West Texas Intermediate (WTI) blends, using the daily price of a
barrel of crude oil as the target feature. We conclude that the tweets of former President
Trump have significant predictive power, and that an LSTM architecture with BERT as
a NLP technique has the best performance.
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Therefore, the contributions of this study are the use of a novel text data source for oil
price prediction, the use of an exhaustive array of NLP techniques, including state-of-the-
art methodologies which are more powerful for extracting contextual information, plus the
incorporation of additional analyses to further elucidate the model’s output. Our results
show BERT is an excellent NLP technique for extracting relevant information for oil price
prediction. Additionally, we confirm previous findings in existing literature, which suggest
oil price is influenced by global geopolitical events (Monge et al., 2017), politics and
market sentiment (Alvarez-Ramirez et al., 2003), and public announcements (Singleton,
2014). Finally, we perform exclusion and structural break analysis to further back up
these conclusions, as well as contributing towards deep learning model explainability. We
structure this study through the following research questions (RQs):

RQ1: Can the tweets of the US President be used to better predict oil prices?
RQ2: What is the impact of different NLP techniques on prediction performance?

RQ3: Does LSTM outperform other benchmark forecasting models to predict oil
prices?

2.2 Related Work

This section reviews the literature for oil price prediction using deep learning models and
discusses the use of textual data with applications in the financial industry. Table 2.2
offers an overview of the type of oil price data, the methods, NLP techniques, the type
of textual data, and the evaluation metrics used in the respective studies.

The conclusions are the following. First, it is clear that the WTI and Brent crude oil
prices are the most popular oil price data sources. Second, the table lists several methods
that are able to handle sequential data (e.g., SVR, VMD, and the autoregressive-based
models). Third, only one study has incorporated text as a data source, leaving the impact
of various NLP techniques yet to be explored. Thus, textual data from social media still
offers opportunities for research in forecasting in the financial sector (Huang et al., 2020),
with applications in decision-making and operations management (Chan et al., 2017).
Further, other studies within the financial sector show evidence of the benefits of using
textual data through state-of-the-art NLP techniques for forecasting, for instance, stock
prices (Kraus and Feuerriegel, 2017), business failure (Borchert et al., 2022), and economic
trends (Buczkowski, 2017).

Moreover, Sezer et al. (2020) show that LSTM models have dominated the financial
time series forecasting area, and can incorporate textual data from financial news and
stock market data sources. On the other hand, Nguyen et al. (2022) suggest LSTM as an
advanced time series technique to continue improving upon forecasting accuracy. LSTM
has also been used in operations for complex tasks such as assembly sequence planning
(Wu et al., 2022) and product configuration (Wang et al., 2022), among others. This
shows LSTM is a flexible model that can be adapted to multiple tasks and remains a
viable opportunity for research, constituting the motivation for our study setup.

This study incorporates the use of a five-day lag, following the lag order selection
criteria (Ivanov and Kilian, 2005). However, there seems to be no consensus, as per our
literature review. Therefore, additional research remains to verify whether different lag
lengths will impact performance in a positive way.
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Figure 2.1. Schematic illustration of experimental setup

2.3 Experimental Setup

In this Section, we discuss the experimental setup that is used to: (1) show that the
tweets of former President Trump have significant predictive power when predicting WTT
and Brent oil prices, and (2) benchmark various models and NLP techniques. Figure
2.1 summarizes the experimental setup. In what follows, we briefly explain the different
aspects of the experiment. More details may be found in Appendix.

2.3.1 Data

The data consists of structured oil price data and textual tweet data starting from January
20, 2017, i.e., the beginning of the term of the 45th US President Donald Trump, and
ending with his ban from the social media platform, on January 8, 2021. This time span
contains trading and non-trading days. The structured data is represented by the daily
spot price of a barrel of crude oil on trading days, resulting in 1,006 Brent and 1,025 WTI
crude oil observations. Non-trading days are treated as missing values with the largest
gap of consecutive non-trading days being five days around Christmas 2018.

The textual data consists of every tweet the 45th US President has posted during the
observed time span, including deleted tweets, but excluding retweeted or reposted tweets
from his account @QrealDonaldTrump. This results in 16,457 tweets, amounting to an
average of 11 tweets per day.

The data is split in training, validation, and test sets, as shown in Figure 2.2. Training
data contains 60% of the data from January 2017 to early June 2019. Then, the validation
data spans an additional 20%, until March 2020. The test set contains the last 20% of the
data, until January 2021, remaining unused until final model evaluation and comparisons,
as recommended by Granger (1993).

The training and validation sets are used to optimize a given model using lagged oil
price data. The best performing model for each approach is then used on the test set,
once using only structured data and once concatenating structured and textual data. The
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Figure 2.2. Timeline showing how the data is split

results are compared using Root Mean Squared Error (RMSE), Mean Absolute Percentage
Error (MAPE), and a post-hoc test, further detailed in Section 2.3.5.

The different types of data can be used together because all NLP techniques transform
the text into numerical representations, which can then be concatenated to the structured
dataset. To match the number of observations, first the tweets are grouped per day as
part of data preprocessing. Each day can contain multiple tweets and is thus referred to
as a document henceforth.

2.3.2 NLP techniques

TF-IDF transforms the dataset of documents into a matrix summarizing the relative
frequency of each word, losing the order of each sentence contained in the documents. To
reduce the matrix size, Singular Value Decompostion (SVD) is implemented (Zhu and
Ghodsi, 2006).

GloVe and Word2Vec represent each word, or token, through a list of numbers, also
known as numerical vectors. These vectors can be used, for instance, to calculate simi-
larity between words. Using a similar technique as Word2Vec, Doc2Vec instead creates
numerical vectors for each document.

BERT uses wordpiece embeddings, preserving more information by further fragment-
ing a word to specify plurals or verb endings (Wu et al., 2016). BERT’s pre-trained
embeddings can be accessed and further tuned on a specific task, in this case oil price
prediction.

To prepare the data for these techniques, certain preprocessing steps are first per-
formed. Examples are raw text cleaning, case conversion, term filtering, and tokenization.
Although the preprocessing is very similar across NLP techniques, there are some differ-
ences depending on the dimensionality and contextual information that each approach
can handle. Further explanation of the preprocessing steps for each NLP technique is
included in Section 2.8.1 (Appendix A.2).
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2.3.3 LSTM

LSTM is a neural network which is particularly apt at using sequential data for predictive
tasks. LSTM requires passing a succession of ordered data as input, where each element
is the data of a given timestep. In this study, five consecutive days of data are used for
predicting the oil price of the sixth day, each day being a timestep. More details about
LSTM are included in Section 2.8.1 (Appendix A.3).

2.3.4 Benchmark Models

As benchmark models, we use Auto Regressive Integrated Moving Average (ARIMA),
a Vector Auto-Regression (VAR), and Support Vector Regression (SVR). ARIMA has
been shown to yield excellent performance when forecasting oil prices (Azevedo and Cam-
pos, 2016). It has also been used with exogenous features (ARIMAX) for oil price pre-
diction (Elshendy et al., 2018), where, in our case, the exogenous features correspond to
textual features. A non-seasonal ARIMA (p, d, ¢) model has parameters for the aspects
it accounts for, with p referring to the number of lagged observations included, d being
given by the differencing order between the observations, and ¢ by the size of the moving
average window (Hyndman and Khandakar, 2008). VAR is included as a benchmark,
because it yields accurate predictions of oil-related KPIs (Allegret et al., 2015) and has
been used before to leverage information both from textual and structured data (Nguyen
et al., 2022). Its ability to capture the relationships between multiple time series has
also been considered a strength, and it is a popular benchmark for oil price prediction
(Ramyar and Kianfar, 2019). SVR has also been successfully used as a benchmark in oil
price prediction (Ribeiro and dos Santos Coelho, 2020). Further details for each model
are included in Section 2.8.1.

2.3.5 Evaluation Metrics and Statistical Tests

Choosing the metric for evaluation is not a straightforward task, as all of them have
advantages and disadvantages. For example, MAE, being in the same unit as the target
variable, is straightforward to grasp and is robust against outliers. However, its failure
to penalize large errors proportionately to small ones might distort the model’s true
accuracy. Additionally, it is not differentiable at zero, posing challenges for optimization
with gradient-based methods like LSTM.

In contrast, MSE penalizes large errors more, offering a better reflection of a model’s
true accuracy. It’s differentiable across its domain, allowing for optimization with
gradient-based techniques. However, MSE’s drawbacks include sensitivity to outliers
and a unit mismatch with the target variable, making comparisons and interpretation
harder.

RMSE combines advantages from both MAE and MSE, such as sharing the target
variable’s unit and allowing gradient-based optimization. It penalizes large errors more
than MSE does, but it remains sensitive to outliers. Thus, RMSE strikes a balance
between the robustness of MAE and the accuracy reflection of MSE, making it a favorable
choice in many scenarios.

MAPE provides a percentage measure of how inaccurate the forecast is on average.
It gives an indication of the size of the error relative to the actual value being forecasted.
This makes it a widely used metric, due to its simplicity and intuitive interpretation, de-
spite not being a reliable accuracy indicator. In fact, among its limitations are that it can
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be heavily influenced by extreme values, particularly when the actual values are close to
zero. Additionally, MAPE cannot be used when actual values are zero or close to zero, as
it involves division by the actual value, leading to undefined or infinite values. Therefore,
we optimize for RMSE, adding MAPE as a complementary measure for analysis.

RMSE and MAPE have been frequently used to evaluate energy price forecasting
performance (Lu et al., 2021), and are selected due to their ease of interpretation. RMSE

is on the same units as the target feature and is prioritized when comparing results.
RMSE is calculated as:

1Y X
RMSE = $ 2~ )7
t=1
MAPE is expressed as a percentage and is defined as follows:
1 N

MAPE = —
v

Y — Ty
Yt

For both metrics, 4, and ¢; represent respectively the actual and the predicted values,
with IV being the number of predicted values.

The Diebold-Mariano (DM) test is used as a post-hoc test to confirm the results
(Diebold and Mariano, 2002). This test is frequently used to verify statistically significant
forecasting results (Zhao et al., 2017). It is also the best-known approach to establish
differences exist between forecasting method results (De Gooijer and Hyndman, 2006).

The original DM statistic was developed for comparing forecasts from two different
models (Diebold and Mariano, 2002). It is an asymptotic z-test, with the null hypothesis
being that the expected loss differential is zero (Diebold, 2015). Having a model i and a
model j for a time series {y;}7, this can be expressed as follows:

HO : E<dz]t) = E<€it — ejt) = O,

where d;j; is a series of loss differential at timestep ¢, e;; are residuals from forecast ¢, and
e;i are residuals from forecast j (Hyndman and Khandakar, 2008). From this, the sample

mean of the loss differential, d, can be denoted as:

Finally, the original DM statistic, proposed to test equal forecast accuracy as the null
hypothesis, is expressed as:

DM =

V(d)
where V corresponds to the asymptotically estimated variance for d. However, Harvey

et al. (1997) propose a modified DM statistic to account for small dataset sizes, that is
calculated as follows:

_ -1 _
e payJEE L= 204 (= 1)

DM :
¢

where h refers to the forecast horizon ahead. In this paper, we use Equation 2.3.5 for
all DM statistic results. Finally, sequential Holm-Bonferroni correction (Holm, 1979) is
applied for an overall family-wise error rate equal or lower to a threshold a.
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2.4 Results

The RMSE and MAPE of the LSTM models are summarized in Table 2.3. First, we
compare the LSTM model that only uses structured data as input (LSTMg¢uct) and the
LSTM models that incorporate structured and textual data (the subscripts refer to the
NLP technique used). We can observe that it is always beneficial to include textual data
if we consider the RMSE, regardless of the method that was used to represent textual
data, and for both Brent and WTTI oil prices. Also if we look at MAPE, this finding holds
and models that include textual data outperform the LSTM model without textual data.
We additionally follow Zhao et al. (2017), reaching the same conclusions using directional
accuracy (DA), as presented in Appendix B.

Table 2.3. Performance of LSTM models, comparing structured data to LSTM
models including both structured and textual data

Model Brent Oil Price WTI Oil Price
RMSE MAPE RMSE MAPE
LSTMstruct 5.389 2.516 4.132 3.528
LSTMrrpE 5.206 2.411 4.121 2.730
LSTMaiove 3.146 2.428 3.145 2.545
LSTMwov 3.041 2.435 3.020 2.594
LSTMpov 3.072 2.486 3.029 2.620
LSTMggRT 2.989 1.370 2.997 1.526

To verify whether the predictions of the different models differ significantly, we perform
a modified DM test. The results of this test are summarized in Table 2.4. For both Brent
and WTT oil prices, Table 2.4 lists the result of the modified DM test when comparing
model i and model j, with ¢, 7 € {BERT, W2V, D2V, GloVe, TFIDF} and i # j.

Table 2.4. Modified DM test p-values for LSTM models with structured and tex-

tual data
Model j

Oll Model i LSTMStruct LSTMTFIDF LSTMGIoVe LSTMDQV LSTMWQV

Brent LSTMggrr 0.000%** 0.000*** 0.000*** 0.000%** 0.000%**
LSTMwov 0.000%** 0.002** 0.002** 0.003** -
LSTMpoy 0.001%** 0.004** 0.004** - -
LSTMcaiove 0.038* 0.046* - - -
LSTMrpipr  0.008%* - - - -

WTI LSTMgBgRrT 0.004** 0.004** 0.000%*** 0.000*** 0.000%**
LSTMwov 0.006** 0.006** 0.000%*** 0.004** -
LSTMpoy 0.007** 0.007** 0.000%*** - -
LSTMcaiove 0.039%* 0.048* - - -

LSTMrpmpr  0.038%* - - - -
***p-value<.001, **p-value<.01, *p-value<.05.

For both Brent and WTT oil prices, Table 2.3 and Table 2.4 show that all LSTM models
incorporating NLP significantly outperform the LSTM model using only structured data.
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Hence, we can conclude that the tweets of US President Donald Trump help to better
predict the Brent and WTT oil prices.

Next, we compare the impact, on the predictive performance, of the five NLP tech-
niques with each other. The results show that LSTMpggrr performs significantly better
than all other LSTM models. Within models using text features, LSTMyyoy significantly
outperforms LSTMpoy, LSTMaiove, and LSTMrppr. LSTMpoy significantly performs
above LSTMgiove and LSTMrppr. LSTMaove only outperforms LSTMrgpr, suggest-
ing other techniques may capture more contextually valuable information for this task.
Lastly, the vector-space based approach (LSTMrgpr) consistently has the worse perfor-
mance, hinting that the order of words may add value to the predictive performance.

The best LSTM model is benchmarked against ARIMA(X), VAR, and SVR models.
The results of this benchmark are presented in Table 2.6. Table 2.5 provides an overview
of the predictive performance of the traditional forecasting benchmarks using only struc-
tured data (having subscript Struct) and structured combined with textual data (having
subscript Text). Furthermore, the LSTM model with significantly best performance,
LSTMggrT, is added as a reference. From Table 2.5 and Table 2.6, it can be seen that
among the benchmark models, SVR shows an improvement in performance when incor-
porating textual data as features, for both Brent and WTTI oil prices, which is in line
with our findings above. On the other hand, both autoregressive models, which include
ARIMA models and VAR, show a decrease in performance when adding textual features,
when compared to the use of only structured data. Overall, SVR including textual is
the best performing benchmark model, but all benchmark models are outperformed by
LSTMggrr, suggesting LSTM is better at extracting meaningful information for oil price
prediction from the concatenated textual and structured data.

Table 2.5. Performance of benchmark models & LSTMggrT

Model Brent Oil Price WTTI Oil Price
RMSE MAPE RMSE MAPE

ARIMAgt et 5.768 4.539 5.913 4.651
ARIMAX Text 5.962 4.672 5.989 4.962
VAR (et 5.789 4.678 5.981 4.794
VAR Text 5.936 4.764 5.983 4.731
SVRstruct 5.784 4.546 5.327 4.876
SVR Text 5.747 4.528 5.297 4.762
LSTMgERT 2.989 1.370 2.997 1.526

Table 2.6. Modified DM test p-values from comparing LSTMpggrT, the best per-
forming LSTM model, to the benchmark models

Model j
0Oil ARIMAStruCt ARIMAXText VARStruCt VARText SVRStruct SVRText
Brent  0.000%** 0.000*** 0.000%** 0.000*%**  0.000%** 0.000%**
WTI 0.000*** 0.000%** 0.000%** 0.000*%**  0.000%** 0.000%**

***p-value<.001, **p-value<.01, *p-value<.05.
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2.5 Discussion

This section further discusses additional insights regarding the impact of the textual data
through a brief review of oil-related keywords, as outlined by Hyne (2015). To assess the
impact of these keywords, the best performing model is reran twice, first after removing
oil-related keywords from the textual data (partial exclusion), and a second time after
excluding all tweets containing any oil-related keyword (full exclusion). The results are
displayed on Table 2.7.

Table 2.7. LSTMpggrr comparison with oil-related keyword exclusion

Text usage Brent Oil Price  WTT Oil Price

Full text 2.989 1.370 2.997 1.526
Partial exclusion 3.009 2.376 3.000 2.534
Full exclusion 3.198  2.507 3.158  2.546

Further, we perform a modified DM test to evaluate the significance of the results. The
results of this test are summarized in Table 2.8. The test reveals there are statistically
significant differences for both exclusion levels, with 95% confidence level. This is in
line with our previously discussed findings, regarding LSTMpgggrr being able to capture
relevant contextual information from the text documents included as data. Thus, the

Table 2.8. DM test p-values for comparing LSTMpggr with the full text against
different variations of oil-related keywords exclusion

Model j
Oil Partial Exclusion  Full Exclusion
Brent  0.049%* 0.043*
WTI 0.048* 0.041*

**povalue<.001, **p-value<.01, *p-value<.05.

results show exclusion does affect the model performance, with the removal of oil-related
keywords marginally affecting the results, while fully removing tweets with oil-related
keywords performs the lowest for both Brent and WTTI oil prices. Around 23% of tweets
contain oil-related keywords, with several being used multiple times. Examples are 62
uses of the word oil, 12 uses of OPEC, 35 uses of gas, 30 uses of Saudi Arabia, and 2 uses
of commodities. Although these frequencies are not enough to position these keywords
among the top tokens, displayed in Figure 2.3, the top tokens can also be described as
related to geopolitical events. Thus, the impact on performance likely can be explained
beyond the presence of oil-related keywords.

To further explore text beyond oil-related terms, we perform a structural change
analysis of both Brent and WTTI oil prices (Zeileis et al., 2002). The objective of this
analysis is to detect any deviations from a stable classical linear regression model. This
is implemented on the oil price data, by assuming it follows a classical linear regression
model (y; = x] 8+ ;). After a structural change, the coefficients for a linear regression
model change. Therefore, m structural changes results in m + 1 segments with stable
regression. Thus, for a segment j, the approach with the model can be rewritten as:

ylleTﬁ]jLuz (’i:ij_1+1,...,ij, j: 1,...,m+1),
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Figure 2.3. Top 10 token frequency from Donald Trump’s twitter account

with the number of structural changes being estimated by minimizing the residual sum
of squares (RSS) for the previous equation (Zeileis et al., 2002).

For each structural change, the top five words present in the previous five days are
examined; these words are expected to contribute most to the deviation from the linear
regression model. In our data, we detected structural change at several points in time
(also referred to as “breakpoints”). These breakpoints are displayed in Figure 2.4.

Brent daily oil price

usD

2017-09-04 2018-04-10 2018-11-09 2019-07-17 2020-03-05
WTI daily oil price

usD.

2017-1222 2018-11-07 20200304

Figure 2.4. Timeline of Brent and WTI oil prices with breakpoints resulting
from structural change analysis

In addition, Figure 2.5 displays the top five words for each of the detected breakpoints.
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Figure 2.5. Breakpoints from structural change analysis

Although the number of breakpoints is different for Brent and W'TT oil price datasets,
a similar pattern emerges regarding the presence of keywords relevant to geopolitical
events. Particular examples are the mention of taxes and tariffs, different countries,
and even the coronavirus. Certain first names and state names appear within the top
words as well, indicating the occurrence of political events such as elections or election
campaigns. These exploratory findings are in line with previous literature stating oil
price is influenced by global geopolitical events (Monge et al., 2017), politics and market
sentiment (Alvarez-Ramirez et al., 2003), and public announcements (Singleton, 2014).
Additional research, however, can still be done. For instance, it would be interesting to
see which text features are better at predicting the direction of oil price.

2.6 Conclusions and Future Research

Oil price prediction remains a challenging task and is an ongoing area of research. Extant
literature has investigated a variety of model architectures and combinations of structured
data, as discussed in Section 2.2. This study extends the oil price prediction field by in-
vestigating novel data enrichment possibilities through the incorporation of textual data.
In particular, we investigated the added value of tweets from the 45th US President for
predicting the daily barrel price of Brent and WTI crude oil. The use of global leaders’
voices as sources of forecasting data within the realm of financial-related deep learning
is still in its infancy. This study adds textual data into a LSTM model, while compar-
ing various NLP techniques including the vector-space approach (TF-IDF), embeddings
(Word2Vec, Doc2Vec, GloVe), and BERT as a transformer-based method to answer the
following RQs:

RQ1: Can the tweets of the US President be used to better predict oil prices?

RQ2: What is the impact of different NLP techniques on prediction performance?

RQ3: Does LSTM outperform other benchmark forecasting models to predict oil
prices?

Our results indicate that adding the US President’s tweets to the structured lagged
oil price data leads to superior oil price prediction performance. Furthermore, the LSTM
models outperform benchmark models like ARIMA, VAR, and SVR, thus being the most
accurate model for oil price prediction, both with and without the incorporation of textual
data. Finally, our results indicate that BERT is the best NLP technique for both Brent
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and W'TT crude oil price prediction.

Moreover, this study provides a framework to combine structured and textual data,
using different textual techniques. Possibilities for future research include the application
of this framework by examining additional sources of relevant textual data, such as the
information available in the OPEC press room website, containing news items, press
releases, and official speeches delivered by different members of the OPEC.

Lastly, this study also fosters model explainability by providing insights into what
textual features are important for oil price prediction. Specifically, we find that the
removal of oil-related keywords and tweets affect predictive performance. Furthermore,
exploratory research in the form of structural change analysis reveals the presence of
keywords related to geopolitical events before deviations from a stable classical linear
regression model.

Additional research can yet be accomplished through different ways. First, through
comparing different methods for explaining deep learning model results, such as attribu-
tion. Second, by incorporating an attention layer into the model architecture, for clearer
visualization of feature importance. Third, by altering the current oil price prediction
target into a binary feature, such as price direction, to clarify how textual data inter-
acts with oil prices. These changes may reveal complementary insights into how LSTM
enhances performance using text, in the context of oil price prediction.
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2.8 Appendix

2.8.1 Appendix A. Methodology

This section provides an overview of the methodology. Figure 2.6 visualizes the main
components of the focal model’s system design, which contains four subsequent steps,
i.e., (i) the raw data retrieval step for the structured and textual data (or tweets), (ii) the
preprocessing step, (iii) the incorporation of NLP techniques for the textual data, and
(iv) the modeling and evaluation step.

48


http://dx.doi.org/10.1016/j.ijforecast.2018.03.009
http://dx.doi.org/10.1016/j.ijforecast.2018.03.009
http://dx.doi.org/10.1016/j.eneco.2020.104790
http://dx.doi.org/10.1080/00207543.2021.1957508
http://dx.doi.org/10.48550/arXiv.1910.03771
http://dx.doi.org/10.1080/00207543.2021.1937748
http://dx.doi.org/10.48550/ARXIV.1609.08144
http://dx.doi.org/10.18637/jss.v007.i02
http://dx.doi.org/10.1016/j.eneco.2017.05.023
http://dx.doi.org/10.1016/j.csda.2005.09.010

Chapter 2 2.8. Appendix

1. Data Retrieval
Structured
Raw Data

2. Preprocessing

Textual
Raw Data

Raw text
cleaning

Raw text Raw text
cleaning cleaning
Case
conversion

Stemming

Term filtering
Term vector
weighting
rxom

Case
conversion

Case
conversion

Padding and
Truncating

v Term filtering

Missing value
i )

Padding and
Truncating

pxn rXp

3. Text Representation
Techniques

T
Nl

- — -
TEDF Word2Vec
% Doc2Vec BERT
+8VD GloVe

Y

Textual
Features

4. Modeling and
Evaluation

»| Concatenate

3-fold
cross-
validation

Optimal

models Evaluation Post-hoc test

Figure 2.6. System design showing four consecutive steps

Appendix A.1. Data Retrieval and Preprocessing. The data consists of structured oil price
data and textual data in the form of tweets. The structured data is represented by the
daily spot price of a barrel of crude oil on trading days as sourced from the EIA. Daily oil
prices for both Brent and WTI crude oil barrels are retrieved. Missing values occur for
the structured data during non-trading days. These are imputed using a Kalman filter
(Koopman, 1997), commonly used in forecasting due to its precision for missing value
estimations even when the precise nature of the modeled system is unknown.

For the textual data, tweets are downloaded from the Trump Twitter Archive website
(Brown), accessed on June 21, 2022. Multiple tweets can be posted on a certain date.
Therefore, tweets produced on the same day are grouped and ordered according to the
posting time to create one document per day. This results in an average length of 152
tokens (or words) per document, with the longest document having 933 tokens after data
cleaning by converting the text to lowercase and removing punctuation, special characters,
and numbers. There are 14 days without any tweets posted, none of which are consecutive,
which is around 1% of the total textual data. No imputation is implemented as days
with no tweets are coded as zero-vectors. Additional preprocessing steps are deployed
depending on the NLP technique following previous literature, as shown in Figure 2.6,
with further details listed below.
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o TF-IDF': raw text cleaning, by removing non-alphabetic characters; case conversion,
by transforming everything to lowercase; term filtering, by removing rare words,
stop words, and words with a length below 3 characters; stemming, by transforming
words to their root form; tokenization, by using spaces to split a document into
tokens; term-vector weighting, by assigning a weight to each token according to
their frequency. (Porter, 1980; Pedregosa et al., 2011)

o Word2Vec, Doc2Vec, and GloVe: raw text cleaning, case conversion, term filtering,
padding and truncating (where documents that are shorter than a given dimension
size are padded with zeroes, while those that are longer are truncated, ensuring the
same vector length for all representations), and tokenization. (Rehurek and Sojka,
2011)

« BERT: raw text cleaning, case conversion, padding and truncation, wordpiece tok-
enization (splitting words into their smallest possible unit), and indexing (assign-
ing an integer number to each token, to match to the corresponding embedding).
(Vaswani et al., 2017; Devlin et al., 2018; Wolf et al., 2019)

The differences in preprocessing are due to the different characteristics of each technique.
For example, stemming and term filtering are important for TF-IDF to reduce the di-
mensionality size of the resulting matrix, thus reducing sparsity. Further, BERT uses a
unique type of tokenization to capture more contextual information. For instance, using
word endings such as -s or -ing as separate tokens allow to represent plurals and verbs.

Appendix A.2. NLP techniques. All methods transform the corpus, i.e. the collection
of tweets, into different numerical representations which are then concatenated to the
structured data to be used by the LSTM model (see also step 4 in Figure 2.6).

First, the TF-IDF method is used as a vector space-based approach weighting each
token (or term) depending on how relevant the token is to a document relative to the cor-
pus (Salton and Buckley, 1988). TF-IDF results in a high-dimensional term-by-document
matrix where each cell in the matrix is the product of the term frequency (TF) and in-
verse document frequency (IDF) (Salton and Buckley, 1988). Following Pedregosa et al.
(2011), TEF-IDF is calculated for each token-document pair as:

1+n

TF-IDF(s,d) = TF(s,d) x log <1 DF(s) + 1) )
where TF(s,d) is the number of times token s is present in document d, DF(s) is the
number of documents in the corpus containing token s, and n is the total number of
documents in the corpus. This results in a sparse high-dimensional term by document
matrix. Latent Semantic Indexing (LSI) using truncated Singular Value Decompostion
(SVD) is implemented to reduce the dimensionality of this matrix with the optimal num-
ber of dimensions selected through profile log-likelihood as proposed by Zhu and Ghodsi
(2006).

Second, this study incorporates NLP techniques that generate word embeddings, i.e.,
Word2Vec, Doc2Vec, and GloVe. Word2Vec is a shallow neural network model trained
to learn linguistic word contexts as numerical vector representations (Mikolov et al.,
2013a). Its flexibility and performance are the reasons for including it in this study (Li
et al., 2019a). Two variations of Word2Vec exist, i.e., the Skip-gram and Continuous
Bag-Of-Words (CBOW) model, and both are included for comparison reasons.
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o The Skip-gram model is trained with the objective of learning word vector represen-
tations that are good at predicting nearby tokens. Following Mikolov et al. (2013b),
for a sequence of M training tokens sq, s, ..., sp7, Skip-gram seeks to maximize the
average log probability:

1 M
M Z Z lOgP<Sm+j|5m)a

m=1 —q<j<q,j#0
where s,, is the center token and ¢ is the number of neighbors.

o The CBOW training objective is to learn representations that are helpful for pre-
dicting a given token, using ¢ neighboring context tokens (Mikolov et al., 2013a).
The objective function seeks to maximize the average log probability of token s,,
occurring, given g neighboring tokens:

1 M

i Z LogP (Sim|Sm—qs s Sm—1, Sm+1, s Sm+q)-
m=1

Doc2Vec or Paragraph Vector is a generalization of Word2Vec and represents larger
pieces of text instead of tokens. This technique inherits Word2Vec parameters, but
learns fixed-length representations from variable-length pieces of texts, such as sentences,
paragraphs, and documents (Le and Mikolov, 2014). Similar to Word2Vec, two model
architectures are available, i.e.,; a Distributed Bag-Of-Words version of Paragraph Vec-
tor (PV-DBOW) and a Distributed Memory model of Paragraph Vector (PV-DM). Like
CBOW, PV-DM is trained with the objective to learn vectors that contribute to predicting
the next token in the document using the context tokens (Dai et al., 2015). PV-DBOW
ignores the order of context tokens in the input to predict tokens randomly sampled from
the document as output comparable to Skip-gram (Lau and Baldwin, 2016). GloVe
trains on global word co-occurrence counts within a corpus and therefore overcomes the
drawback of training on separate local context windows which might result in the model
poorly utilizing the statistics of the complete corpus (Pennington et al., 2014). Following
Pennington et al. (2014), a weighted least squares objective function minimizes the dif-
ference between the dot product of the vectors for two tokens and the logarithm of their
CO-OCCUITences: .
S (G (wlan + by + by — log(Ge))
k=1

where V' is the size of the vocabulary, Gj; is the number of times token j co-occurs
with token k, f(Gjx) is a weighting function to avoid overweighted rare and frequent
co-occurrences, w; and b; are respectively the vector and bias for token j, while w; and
by, are the vector and bias for context token k. The vectors result in a matrix of tokens,
where the number of dimensions is consistent for all word vectors. This matrix is used
to assign weights to the tokens present on each document through an embedding layer
(Chollet et al., 2015).

Third, BERT is included as a transformer-based approach, because it is the first un-
supervised deeply bidirectional system for pretraining NLP tasks, and it has achieved
great results in various language-related tasks, such as question-answering and compar-
ing semantic meaning similarity, among others (Devlin et al., 2019). Its architecture is
based on complex neural networks. BERT includes an encoder and decoder connected
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through an attention mechanism which reduces the required training time and makes
the model more parallelizable when compared to other models in the literature (Vaswani
et al., 2017). BERT was created to solve sequence-to-sequence NLP tasks and to learn
contextual relations between tokens in a text using attention mechanisms to handle long-
range dependencies (Vaswani et al., 2017). During training, a sequence of tokens is fed
into BERT with information learned from both the left and right side of a token incorpo-
rating context to learn general purpose language representations. For each input token,
an output sequence of vectors is returned, where the size of the vector depends on the
model used. The general pretrained model, BERT-Base, can be used effectively on new
applications without substantial task-specific architecture modifications (Devlin et al.,
2019).

TF-IDF and Doc2Vec allow new features to be extracted from text on a document
level, thus allowing for immediate concatenation with the structured data. For GloVe and
Word2Vec, an embedding layer is used with the vectors as the corresponding weights. This
allows to combine and reshaped the indices and weight matrices to allow concatenation
with the structured data. Similarly, BERT requires reshaping for concatenation.

Appendix A.3. Long Short-Term Memory Networks. LSTM networks were introduced to
learn long-term dependencies and to improve upon problems present in previous neural
networks, such as vanishing and exploding gradients (Hochreiter and Schmidhuber, 1997).
As if it were a network with multiple copies of itself, information persists in a chain-like
fashion from one copy to the next through different layers interacting between them.

The general structure of LSTM networks consists of an input layer, one or multiple
hidden layers, and an output layer. The input layer has the same number of neurons as
input features used, while the output layer of a single neuron represents the target feature
or the daily oil price in our study context. The hidden layers contain memory cells, each
with three gates to adjust the information in its cell state by using a sigmoid function
() and a point-wise multiplication operation (®) to produce an output between zero and
one.

At timestep ¢, the cell state (C;) can be thought of as the central part of a memory
cell, where information passes through, regulated by the forget gate (f;), the input gate
(i), and the output gate (o;), defined below:

1. Forget gate layer (f;): decides what information is discarded from the cell state by
looking at the previous hidden state (h;_1) and the current observation (z;).

fi=0(Wyiaze + Wiphey + by).

2. Input gate layer (i;): selects which values to update, and creates a vector of new
candidate values (C}) to update the cell state. The hyperbolic tangent function (tanh)
additionally distributes the gradients in order to prevent the vanishing or exploding of
gradients.

it = O'(VVZ'@SQ + Wi’hhtfl + bl)

é’t = tanh(Waw + Wé,hht—l + b@).

3. Update step: the previous cell state C;_; is updated into the new cell state C,
depending on the outputs of the previous gate layers defining the amount of earlier infor-
mation dropped and new information added.

Ci=f0C_,+i0C.
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4. Output gate layer (o;): the updated cell state value gets filtered by o and then fed
into a hyperbolic tangent function, defining if the information in the current cell state C}
is visible or not.

op = o(Woxp + Wy phyy + b,).

hi = oy © tanh(Cy).

The input data is a sequence of timesteps to predict the next trading day. At timestep
t, each gate will have a weight matrix W, a bias term b, the corresponding input element
xy, and the output of the previous timestep h;_q, if applicable. A memory cell, shown
schematically in Figure 2.7, is updated at every timestep ¢ (Graves, 2013).
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Figure 2.7. LSTM memory cell
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Appendix A.4. Model Architecture. The LSTM model architecture requires the concate-
nation of textual and structured data. The text is first converted to a numerical repre-
sentation, which differs per NLP technique. For TF-IDF, the SVD features are passed
as inputs similar to the structured features. For Word2Vec and GloVe, the text is first
tokenized and then turned into integer indices, which are then passed into an embedding
layer and weighted through the pertinent word vectors. Doc2Vec issues vectors weighted
by document, rather than by token, which are used similarly to TF-IDF values. These
vectors were previously prepared by training models on their corresponding integer in-
dices. These vectors are loaded into the LSTM architecture. For BERT, the pretrained
model is stacked onto the model architecture to fine-tune the language model for oil price
prediction, also using token indices as input.

The concatenated inputs are then fed into an LSTM layer that returns the full output
sequence to pass through another dropout layer. This output is passed into a second
LSTM layer that only returns the last output to be processed by a batch normalization
layer, a dropout layer, and a final dense layer with Rectified Linear Units (ReLLU) activa-
tion. Both batch normalization and dropout are useful to avoid overfitting and speeding
up the model training (Chollet et al., 2015).

Appendix A.5. Hyperparameter Tuning and Selection. Hyperparameter tuning and selec-
tion is performed through the combination of a grid search and a 3-fold cross-validation
method as proposed by Li et al. (2020). 3-fold cross-validation is applied on the training
set by re-splitting at fixed time intervals to create alternate training and validation sub-
sets as shown in Figure 2.8. For each fold, the validation observations occur at a later time
period than the training observations, with each training set being a combination of the
previous splits with no shuffling to ensure robust model creation (Bergmeir and Benitez,
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2012). The best hyperparameter combinations are selected according to the performance
on the validation subsets.

For the LSTM model, the validation set is used for early stopping Li et al. (2020).
This tracks the losses in the validation data set, optimizing models without overfitting
to in-sample data. Depending on the loss, the number of epochs for training is adjusted,
halting when the loss is no longer reducing after 10 consecutive epochs (Fischer and
Krauss, 2018). The best models are then scored out on the test sets.

Jan 2017 Jun 2019

Fold 1 | Training subset Validation subset |

Fold 2 | Training subset

Validation subset |

Fold 3 Training subset | Validation subset

Figure 2.8. 3-fold cross-validation on the original training set, or 60% of the data

LSTM hyperparameter values, shown in Table 2.9, are selected using grid search in line
with Li et al. (2020), for both Brent and WTT oil prices. These are the number of LSTM
layers, number of neurons (dimension of hidden state), forget bias (initial bias vector
of the LSTM layer), dropout rate (rate of randomly ignored outputs), kernel initializer
(initializer of the weight matrix of input features with the exception of the hidden state),
and kernel regularizer (regularization function applied to the weight matrix of input
features). Other values are fixed beforehand based on existing literature and therefore
not included in Table 2.9. Specifically, a minibatch size of 256 (Kraus et al., 2020), a
training duration of 500 epochs (Li et al., 2020; Zhao et al., 2017), and Adam with weight
decay as an optimizer (Kingma and Ba, 2014; Loshchilov and Hutter, 2017).

Different hyperparameters are fine-tuned for each NLP technique. For TF-IDF
(LSTMrripr), 9 dimensions are set before hyperparameter selection, following Zhu and
Ghodsi (2006). For GloVe (LSTMgove), pretrained word vectors with different numbers
of dimensions are used to compare performance. For Word2Vec (LSTMwyay) and Doc2Vec
(LSTMpay), the number of dimensions follow LSTMgeve, while the rest of the hyper-
parameters arise from Mikolov et al. (2013b) and Mikolov et al. (2013a). Finally, the
textual data for BERT (LSTMpgrr) obeys the base model requirements (Devlin et al.,
2019), being truncated at 512 tokens per document and 768 dimensions.

The optimized LSTM models are compared to a set of benchmark models, with hy-
perparameter values tuned through the same process as the LSTM models. For ARIMA,
the optimal order of (p,d,q) is selected based on structured data (ARIMAgyct), follow-
ing Elshendy et al. (2018). This order is retained when incorporating textual features
(ARIMAX eyt ). Similarly, VAR with only structured data (VARgguet) determines order
p under VAR lag order selection criteria (Ivanov and Kilian, 2005), keeping the same
value for textual features (VARrte). SVR is tuned for gamma, cost, and epsilon hy-
perparameters, following Maldonado et al. (2019) for the model using only structured
data (SVRgiruct)- Then, the different vectors from each NLP technique are incorporated
onto this optimized model, displaying only the results for the best performing version
(SVRrext). An augmented Dickey-Fuller test reveals non-stationary behavior with first-
order differencing for ARIMA, ARIMAX, and VAR, before model tuning. Features from
NLP are added depending on the optimal parameters selected, indicating the optimal lag
order. The hyperparameter values are displayed on Table 2.10.
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2.8.2 Appendix B. Additional Results

We include directional accuracy (DA) for complementary insights with our previously
displayed results. Following Zhao et al. (2017), DA is defined as:

1 N
Nz:: ) X 100%,

where N is the number of predictions, a(t) is 1 if (y(t + 1) — y(¢))(g(t + 1) — y(¢)) > 0,
else it is 0. As before, the results displayed on Table 2.11 show that the inclusion of
text outperforms LSTM without text, while BERT continues to be the superior NLP
technique.

Table 2.11. Directional accuracy of LSTM models

Model Brent Oil Price WTI Oil Price
LSTMgiruct 0.289 0.286
LSTMrripr 0.221 0.211
LSTMaiove 0.346 0.228
LSTMyyay 0.641 0.635
LSTMpov 0.572 0.586
LSTMEggRT 0.789 0.703
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CHAPTER 3

Improved Decision-Making Through Life Event
Prediction: A Case Study in the Financial Services
Industry

Abstract.

Life event prediction is an important tool for customer relationship management (CRM),
because life events shift customers’ preferences towards different products and services.
Existing life event research mainly uses cross-sectional data, whereas in the CRM field,
incorporating longitudinal data is increasingly common. Because longitudinal data
can capture the dynamics of customer behavior, opportunities arise to benchmark the
power of longitudinal customer data for predictions of cross-sectional versus longitudinal
life events. Therefore, this study compares statistical and machine learning (SaML)
classifiers, such as logistic regression, random forest, and XGBoost, with long- and
short-term memory networks (LSTM), using data represented in both cross-sectional and
longitudinal setups for life event prediction. Through a real-life longitudinal customer
data set from a Furopean bank, the authors represent the longitudinal data in a
cross-sectional data format, using featurization in the form of aggregation. The available
data cover 42 end-of-month snapshots for 760,438 unique customers. For marketing
decision-making literature, this article (1) introduces three novel life events (i.e., primary,
secondary, and rental residence purchases) to life event predictions; (2) offers guidance
for how to leverage longitudinal customer data, according to the comparison of various
featurization approaches and benchmarking SaML classifiers against LSTM; and (3)
clarifies the importance of features and timing for improving marketing decision-making
dynamically. The results show that aggregating features over time is preferable as a
featurization approach for cross-sectional modeling using SaML classifiers. Furthermore,
LSTM can capture behavioral changes over time, unlike SaML classifiers. It also per-
forms significantly better than SaML classifiers on the area under curve and F1 metrics.
Insights into the uses of integrated gradients reveal that feature importance changes
over time. An integrated gradients method can assist decision-makers in their efforts
to plan effective communication with customers in advance, such as by allocating more
resources to customers who exhibit high probabilities of a particular life event occurrence.

Keywords: Life event prediction, decision-making, deep learning, LSTM, explainability.
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3.1 Introduction

Customer relationship management (CRM) is a critical factor for successful business
performance (Sin et al., 2005). Constant improvement of customer-firm relationships is
an important goal of CRM, which can be achieved by monitoring customer behavior (Sin
et al., 2005). However, customers’ needs change over time, making these relationships
challenging to maintain (De Caigny et al., 2020). Thus, firms seek to detect triggers that
indicate upcoming changes in customers’ behavior and needs, such as [life events, which
are important moments in every customer’s life (De Caigny et al., 2020).

Life event prediction contributes to marketing decision-making as it is linked with life-
cycle theory (De Caigny et al., 2020), which implies that customers change their behavior
in accordance to disruptions in their lives. Following lifecycle theory, customers behave
similarly when they are in the same stage, purchasing analogous products within the
financial services industry (Antonides and Van Raaij, 1999). Thus, managers have come
to understand that identifying consumption drivers can lead to cross-selling opportunities
(Verhoef and Donkers, 2001). Successful cross-selling in turn increases the profitability
of a customer (Knott et al., 2002), increased switching costs (Kumar et al., 2008), and
better retention rates (Kamakura et al., 2003). Therefore, life event prediction adds value
to CRM research by serving as an additional tool for improving customer segmentation
and targeting, more profound customer relations, and detecting potential cross-selling
opportunities in advance.

In particular, life events lead to a reevaluation of consumption priorities (Mathur
et al., 2008), alter preferences for different products and services (Sahoo et al., 2012),
usher people towards specific products, and foreshadow their future behavior (Malthouse,
2007). Research shows customer behavioral changes arise from moving, getting married
or divorced, starting a job, or having a child, among others (Andreasen, 1984). Further,
customers adjust their financial priorities according to their life events, such as focusing
on buying a home after marriage, covering different insurance needs after forming a
family, or investing after retirement (Kamakura et al., 1991). Thus, life event prediction
contributes to a better understanding of customer behavior and needs, which improves
firms’ retention efforts, their understanding of marketing segments (Andreasen, 1984),
and their efforts to develop highly personalized services over time. This places life event
prediction as a critical element in CRM strategies (Kumar et al., 2021).

Some of the life events we study have not been documented before, which might in-
spire marketers to pursue novel applications for their decision-making processes. These
novel life events are primary residence purchase, secondary residence purchase, and rental
residence purchase, which are closely related to specific financial services products and
thus are also highly relevant for decision-making. Previous literature shows that setting
up and confirming a new mortgage loan is a process prone to delays that can hinder a
company’s business opportunities (Brahma et al., 2021). This highlights how any im-
provement in managing this process, such as by accurately targeting relevant customers
in advance, can present an opportunity for developing a competitive advantage (Brahma
et al., 2021). In addition, customers will also exhibit varying financial goals and capa-
bilities depending on their different mortgage loans or housing situation (Bunnell et al.,
2020), requiring products and services tailored to their characteristics. For example, a
customer who is gearing towards the purchase of a primary residence may have finan-
cial goals more oriented towards managing debt (Bunnell et al., 2020). The purchase
of a secondary residence could be by a customer working towards financial independence
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(Bunnell et al., 2020). A rental residence purchase may be more aligned with broad finan-
cial legacy objectives, such as estate planning (Bunnell et al., 2020). Therefore, these life
events present distinct business applications, as well as valuable information for providing
highly personalized services within the CRM context.

From a methodological perspective, extant life event literature tends to focus on a
limited set of life events and rely mainly on cross-sectional modeling strategies, which
cannot reflect behavioral changes over time (Boulding et al., 2005). Predictive modeling
applications in CRM also emphasize the need to incorporate longitudinal customer data
to capture dynamic behavior (Oskarsdéttir et al., 2018) and ensure the validity of results
over time (Boulding et al., 2005). Longitudinal customer data might be transformed into
cross-sectional data through featurization. However, a research gap remains on whether
featurization is an effective approach for life event prediction.

To featurize longitudinal data, we aggregate customer data according to the mean,
standard deviation, coefficient of variation (CV), or sum, depending on the type of in-
formation (Gattermann-Itschert and Thonemann, 2021). As a baseline, we transpose
longitudinal customer data into a tabular data set (Chen et al., 2012). Both data sets al-
low conventional statistical and machine learning (SaML) classifiers to predict life events.
As a key contribution to extant literature, we evaluate the performance of these data
approaches for life event prediction.

Since the predictive power of longitudinal data also depends on the evolution of the
focal feature over time (Bagnall et al., 2017), we also model the data as a chronologically
ordered sequence of features, or sequential input. Deep neural networks (DNN), especially
recurrent neural networks, are excellent at extracting key information from sequential in-
put for prediction (Wang et al., 2021, 2023; Zhong et al., 2023). Long short-term memory
(LSTM) is well-suited for deriving predictions from longitudinal data, represented in a
sequential ordered input, and is particularly popular in the CRM field Cheng and Chen
(2022). We thus provide an initial evaluation of life event prediction modeling with lon-
gitudinal data, as sequential input for LSTM. Following the explosive growth of DNN
applications, attribute-based explanation methods also have been proposed to improve
understanding (Sundararajan et al., 2017). However, we do not find DNN or related tech-
niques in existing life event prediction literature. As such, we contribute an evaluation of
the LSTM model results through the use of attribute-based explainability techniques, in
the form of integrated gradients (IG).

Thus, we contribute to the life event prediction literature by incorporating novel life
events, offering a predictive performance comparison of longitudinal and cross-sectional
approaches through aggregation featurization, and investigating whether life event detec-
tion can be improved by using longitudinal data as sequential input for LSTM. Further,
we develop a framework that is generalizable for classification problems using consumer
data. Moreover, we apply a state-of-the-art interpretability technique to deliver insights
into how prediction drivers vary in time and by life event, which is relevant information
for decision-makers seeking to improve the personalization of their provided services.

To establish these contributions, we leverage a real-world data set from a large Eu-
ropean financial services firm that provided longitudinal data, in the form of 12 end-of-
month behavioral snapshots per customer and 10 life events, 3 of which are novel. The
data contain detailed information for a diverse pool of 760,438 customers, 10% of which
have experienced at least one life event occurrence. The customers are aged between
18 and 67 years and exhibit an overall average relationship length of 19 years; 80% of
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customers name this firm as their main financial services provider. We gather 245 cus-
tomer features, 169 of which are dynamic features from longitudinal data (e.g., number
of monthly credit card transactions, paid fees). These features then can be transposed for
our baseline featurization approaches or aggregated for our SaML classifiers. They also
provide the ordered input sequence for the LSTM model. The remaining 76 features are
static, and we obtain the latest customer information available as additional input (e.g.,
age, civil status).

Furthermore, our three main contributions reflect the motivation for this research,
which we summarize in the following research questions (RQ):

RQ1. Which featurization approach for representing longitudinal customer data im-
proves cross-sectional life event prediction performance for conventional SaML classifiers?

RQ2. Does LSTM improve life event prediction performance, relative to SaML clas-
sifiers, when longitudinal customer data are available?

RQ3. Is it possible to identify life event drivers that are useful for marketing decision-
making?

To answer RQ1, we compare the life event prediction performance of the aggregation
featurization approach against the transposed longitudinal data set, as baseline input for
SaML classifiers. We follow extant literature and deploy logistic regression (LR) (Hos-
mer Jr et al., 2013), random forest (RF) (Breiman, 2001), and XGBoost (XGB)(Friedman,
2001). All these SaML classifiers commonly inform CRM predictive tasks, due to their
stellar performance (Huang and Meng, 2019; Coussement and Benoit, 2021; Yi et al.,
2023). For RQ2, we compare the best performing combination of featurization approach
and SaML classifier against the performance of the LSTM model, which is particularly
well-suited for longitudinal, sequentially ordered input data Cheng and Chen (2022).
Finally, for RQ3, we specify the best performing approach for delivering interpretable,
actionable insights for different life events, according to feature type and time step.

Therefore, we compare the incorporation of longitudinal data for life event prediction
in multiple ways. First, we transform the data through aggregation, explored in RQ1
and chosen for being the most commonly used method for life event prediction within
previous research. Second, the longitudinal data is used as sequential input, therefore
without the need of aggregation. These two different approaches are compared against
each other on RQ2, ultimately evaluating whether or not longitudinal data, when used
sequentially through LSTM, is of value for life event prediction.

In the next section, we review extant life event prediction literature to identify some
research gaps. Section 3.3 introduces the LSTM model and featurization approaches for
longitudinal data. Then in Section 3.4, we present the experimental setup and zoom into
the data and data preprocessing steps, the LSTM architecture, and the hyperparameter
tuning process. After presenting the predictive performance results in Section 5, we offer
managerial insights in Section 3.6, as they pertain to marketing decision-making. Section
3.7 concludes.

3.2 Related Research

Life event prediction is an important task for improving CRM strategies and customer-
centered decision-making (De Caigny et al., 2020). Table 3.1 presents an overview of
extant life event prediction literature, in terms of life events that have been investigated
(Life Events) and the types of data they use (Data Usage). In addition to classifying
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whether they use cross-sectional (CSD) and/or longitudinal data (LD) to predict life
events, we note whether each study includes a prediction performance benchmark. We
also indicate the featurization approach (Feat.), if applicable. Finally, we examine the
modeling approach adopted by each study (Modelization). We evaluate the presence of
SaML classifiers and DNN models, as well as whether explainability techniques (Exp.)
provide further insights from the model’s results.

As Table 3.1 reveals, the literature on life event prediction offers several contributions.
First, the most researched life events are the start of a personal relationship (RelS) and
birth of a child (BoC), both of which appear in five previous studies. Moving (Mov) and
personal relationship end (RelE) are covered by two studies; job market entry (JobE)
and car purchase (CarP) are addressed by one study each. Some other life events, such
as primary residence purchase (PrimR), secondary residence purchase (SecR), or rental
residence purchase (RentR), have not been studied before. We seek to contribute to life
event prediction literature by considering their viability in our study.

Second, we review the data usage characteristics of the extant literature. Life events
are predicted with CSD, LD, or both. From Table 3.1, we conclude that CSD is the
more popular data type, yet we know of no comparison between the prediction perfor-
mance of CSD and LD. Furthermore, aggregation is the most common way to featurize
longitudinal data. Therefore, we investigate whether SaML classifiers benefit from aggre-
gating longitudinal customer data, compared with using the time-dependent information
directly, while also benchmarking the contributions of CSD and LD to total prediction
performance.

Third, we review the use of machine learning techniques for the purpose of life event
prediction. We find that Khodabakhsh et al. (2018) and De Caigny et al. (2020) apply
machine learning techniques, with other studies opting for analyzing Pearson correlation
between life events and a consumption variable. Further, DNN is also rare within life
event prediction literature, in spite of their high predictive performance, particularly when
using longitudinal data as a sequential input (Wang et al., 2021, 2023; Zhong et al., 2023).
In fact, within the reviewed studies, we find that only one applies a DNN (Khodabakhsh
et al., 2018). Two other studies include LD but no DNN, opting for transforming the data
through aggregation instead (Mathur et al., 2008; Koschate-Fischer et al., 2018). We also
find that any performance benchmark relative to cross-sectional SaML is rare. Thus, the
use of DNN, specifically in combination with sequential data, and its evaluation against
cross-sectional algorithms remains vastly unexplored in life event prediction.

Fourth, Table 3.1 reveals that no explainability techniques have been applied to life
event prediction, leaving a notable gap in extant research.

Briefly then, we contribute to the life event prediction literature by incorporating
novel life events, offering a predictive performance comparison of longitudinal and cross-
sectional approaches through aggregation featurization, and investigating whether life
event detection can be improved by using longitudinal data as sequential input for LSTM.
Further, we deliver insights into how life event prediction drivers can improve marketing
decision-making.
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Chapter 3 3.3. Methodology

3.3 Methodology

3.3.1 Long Short-Term Memory

We compare the predictive performance of the LSTM model against the best performing
SaML classifier to evaluate the beneficial impact of longitudinal data usage. For this
purpose, LSTM is particularly interesting, because it can handle longitudinal data as
sequences of chronologically ordered inputs (Cheng and Chen, 2022). It incorporates gate-
like structures to regulate the flow of information efficiently (Hochreiter and Schmidhuber,
1997). The structures include a forget gate, an input gate and an output gate, all of
which use a logistic sigmoid function to select the information preserved in the cell state
(Cy) (Hochreiter and Schmidhuber, 1997). The gate structures process the output of
the previous timestep (h;—;) and the input from the current timestep (x;), storing the
key information on C; before moving onto the next timestep, ¢t + 1. Therefore, the cell
state can be understood as the long-term memory capacity of an LSTM, which allows it to
adequately harness longitudinal data for prediction. The LSTM structure is schematically
depicted on Figure 3.1.

Forget Input | [Output
gate gate gate

ht—1 1 . ht

Tt

Figure 3.1. Schematic illustration of an LSTM layer

The performance of a standard LSTM model can generally be improved by incorporat-
ing attention mechanisms. In particular, attention is useful when working with complex
data sources, such as textual data (Wang et al., 2016) or time series data (Cheng and
Chen, 2022). Extant research also shows that attention assigns input sequence impor-
tance and improves LSTM prediction performance effectively, thus counterbalancing the
difficulties it has with regard to capturing long-term dependencies (Wang et al., 2021).
Therefore, we incorporate a self-attention layer into the LSTM architecture as an exper-
imental parameter. Attention improves the robustness of DNN models by adding more
weight to meaningful information from among a large number of features (Wang et al.,
2021). Following Vaswani et al. (2017), we express the attention mechanism as:

Attention(Q, K, V) = soft QKT
ention , V) = softmax
) /—dk

where (), K, and V represent matrices of a set of input vectors for queries, keys, and
values, respectively, and dj represents the dimensions for matrix K. In self-attention, the
input vectors are the output of the previous layer.

A multi-head attention mechanism of A heads linearly projects the queries, keys, and
values h times. Both queries and keys are linearly projected onto d; dimensions, and
values are projected onto d, dimensions. For each projection, we compute scaled dot-
product attention, expressed as follows:

head; = Attention(QWS, KWK vwY).
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The concatenated results get projected through a feed-forward layer, and the concatena-
tion of A heads is:

MultiHead(Q, K, V) = Concat;(head;)W°,

where W; and WO represent parameter matrices. The loss reflects the binary cross-
entropy function, which leads to faster training and better generalization for classification
tasks (Bishop, 2006). Multiple studies have combined LSTM with attention for different
applications (Wang et al., 2021, 2023; Zhong et al., 2023).

LSTM can capture temporal relationships present in the data (Wang et al., 2023),
with previous research showing its ability to harness chronologically ordered sequential
input data Cheng and Chen (2022). Furthermore, adding an attention layer improves the
robustness of LSTM and has successfully been used for various applications with different
types of data, such as for fraud detection (Wang et al., 2023), for cryptocurrency price
prediction(Zhong et al., 2023; Subramanian et al., 2024), and sales prediction (Lin et al.,
2023). These examples show that LSTM can be adapted to learn from different data
types, as well as capturing complex patterns of customer behavior for prediction (Lin
et al., 2023).

3.3.2 Featurization for Longitudinal Data

In this section, we zoom in on featurization approaches to represent longitudinal data.
Traditionally, longitudinal data contain static and dynamic features. The static features
remain unchanged for a long period, as with age. The latter vary constantly; to capture
these features, studies often take a monthly snapshot, showing the status of each customer
in the database, such as the number of credit card transactions. Depending on the
availability of static and dynamic features, life event prediction might follow a cross-
sectional approach using conventional SaML classifiers or a longitudinal approach using
LSTM. Two options exist to incorporate the longitudinal data into cross-sectional SaML
classifiers: using a transposed tabular format with monthly snapshots as independent
features in the model (baseline) or aggregating the monthly snapshot data (aggregation).
Both static and dynamic data is included into SaML and LSTM models.

Featurizing Longitudinal Data for SaML

Two options exist to featurize longitudinal data for SaML. In a baseline setup, the dy-
namic, monthly snapshot features represented in tabular data format are used directly in
the SaML classifiers. The most recent static features are concatenated, to represent the
final input data set. This approach represents the baseline. Alternatively, different aggre-
gations can be computed over the various monthly snapshots for each feature. Similar to
Gattermann-Itschert and Thonemann (2021), we use the mean, standard deviation, and
coefficient of variation (CV) for continuous features; the sum is used for ordinal features.
Once the data are aggregated, they can be concatenated to the static features and used
as input for the classification, to produce a probability of the occurrence of a given life
event, as depicted in Figure 3.2.
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Figure 3.2. Featurization for SaML classifiers. The aggregation approach
transforms continuous (F¢) and ordinal (F©) features differently.
The baseline approach transposes all features (F), resulting in a
column per month (Mj, ..., M15) for each feature.

Featurizing Longitudinal Data for LSTM

For LSTM, the dynamic features from longitudinal data are input in chronological order,
as a sequence of 12 monthly snapshots for each feature. Thus, the longitudinal data are
not transformed, but rather are reshaped, such that the LSTM can capture temporal
relationships present in the data (Wang et al., 2023). Once the relevant information has
been extracted by the standard LSTM and attention layers, the data is concatenated with
the static data to reveal the probability of a given life event, as summarized in Figure
3.3.

FI [ | — _

| N | —~—
F1 FN
N N I S e e T R e L]
= = : i e |
*| Dynamic > s LSTM i} Attention 1 UV b Life event
_ ' I 11 connected ! probability
e Sequential Input [ " i :

Static 1 connected ! Concatenated
i

-

Figure 3.3. Feature use for LSTM

LSTM can capture temporal relationships present in the data (Wang et al., 2023),
with previous research showing its ability to harness chronologically ordered sequential
input data Cheng and Chen (2022). Furthermore, adding an attention layer improves the
robustness of LSTM and has successfully been used for various applications with different
types of data, such as for fraud detection (Wang et al., 2023), for cryptocurrency price
prediction(Zhong et al., 2023; Subramanian et al., 2024), and sales prediction (Lin et al.,
2023). These examples show that LSTM can be adapted to learn from different data
types, as well as capturing complex patterns of customer behavior for prediction (Lin
et al., 2023).

3.3.3 Integrated Gradients

LSTM is a blackbox model, and as such we use the IG attribution method (Sundararajan
et al., 2017) for further clarity on its results. For our study context, the given function
F : R™ — [0,1] represents our LSTM model. The function’s input is represented by
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x € R™, while a baseline input is represented by 2’ € R"™. The value of this baseline varies
depending on the type of input data used. For example, a zero embedding vector could
serve as the baseline for text models, while a black image could be used for image networks
(Sundararajan et al., 2017). For our data, we follow missing value imputation guidelines
to define a baseline representing the absence of information for each data type (De Caigny
et al., 2020), operating under the assumption that absence of information would result
in a prediction value of zero, or no life event occurrence. Then, a straight-line path can
be drawn from baseline 2’ to the input x, from which the integral of gradients can be
computed. This integral represents the accumulated gradients of the model’s prediction
with respect to each input feature, measuring how the prediction changes as each feature
departs from its baseline value to the actual input value. By integrating these gradients
along the path, Integrated Gradients (IG) capture the cumulative effect of feature changes
on the model’s prediction. Formally, the IG along the #*h dimension for an input z and
baseline x’ are expressed as follows:

1 F(x' )
I1G;(x) == (g;i_x;)x/azoﬁ (x +Oé;< (z x»da

Where IG;(z) represents the Integrated Gradient for the i** feature of input x, z; repre-
sents the input value of the i feature, x/ represents the baseline value of the i feature,
F represents the model’s prediction function, % represents the partial derivative of the
model’s prediction with respect to the i** feature, o represents the interpolation param-
eter, varying from 0 to 1 along the integrated path. Therefore, this equation computes
the contribution from the i** feature to the model’s prediction by integrating the partial
derivative of the model’s prediction with respect to that feature along the straight-line
path from the baseline to the input. The difference (x; — x}) scales the contribution by
the change in the feature’s value from the baseline to the actual input. Integrating over
« ensures that the attributions capture the cumulative effect of feature changes along the
path. Computing this equation for each input feature provides a comprehensive under-
standing of feature attributions, helping to interpret and explain the model’s predictions.
In other words, IG are simple to interpret, as these attributions can be linked directly
to the target output, a property known as “completeness”, particularly in cases where
the baseline corresponds to a zero prediction value of zero (Sundararajan et al., 2017).
Thus, features with positive values have a positive influence on the prediction, while neg-
ative values indicate that an increase in that feature’s value contributes negatively to
the model’s prediction. Further, the magnitude of the IG value reflects the importance
or influence of the corresponding feature on the model’s prediction. A larger magnitude
indicates a stronger influence, while a smaller magnitude suggests a weaker influence.
In addition, IG require no modification to the original LSTM network and have been
tested with different types of data (Guidotti et al., 2018), including longitudinal data
(Turbé et al., 2023). Overall, IG provide a quantitative measure of feature importance
or contribution to the model’s prediction, aiding in the interpretation and explanation
of the model’s behavior, while producing robust results from longitudinal data (Turbé
et al., 2023). These values help identify which features are most influential in driving the
model’s decisions and can guide further analysis or model refinement.

To the best of our knowledge though, it has not been applied to life event prediction. In
doing so, we anticipate three relevant insights. First, we seek to establish the importance
of feature information throughout the 12-month time frame. Therefore, we calculate a
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normalized mean attribution value across all features by month to identify changes over
time. Second, the IG method can reveal the overall importance of features for predicting
life events. The normalized mean, applied for each feature, can indicate the 10 features
that contribute most to predictive model performance. Third, we can gain insights into
the overall contributions of dynamic and static features, analyzed as a percentage of the
total attributions.

3.4 Experimental Setup

Figure 3.4 depicts the experimental setup of this study. We first discuss the context, data
set, and data preprocessing, after which we elaborate on the featurization approaches.
Next, we detail the LSTM model architecture, the hyperparameter tuning and cross-
validation strategies used, and the evaluation metrics and statistical hypothesis tests
that we have implemented.

Data Preprocessing Modeling

— E Featurization
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| SaML: Aggregated approach
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each life event

Figure 3.4. Experimental setup

Concatenate

3.4.1 Data & Data Preprocessing

We obtained data from a large, European financial services firm. This data set supports
predictions of 10 life events and includes both static and dynamic features. The data
comprise 760,438 unique customers, at least 18 years of age, with an open account at the
time of the data dump.

The company delivers 42 monthly snapshots for each customer, of which it uses 12
snapshots to create the prediction features and then tracks, over the subsequent six
months, whether a life event occurs or not, resulting in a binary dependent variable.
Thus, with the overall data dump, we can construct three feature windows by rolling
forward through the data (Fischer and Krauss, 2018; Krauss et al., 2017), as illustrated
in Figure 3.5. These three 12-month sequences (i.e., S1, S2, and S3) are consolidated in
one data set.
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Figure 3.5. Rolling window design

The use of data in a rolling window manner, following existing literature (Fischer
and Krauss, 2018; Krauss et al., 2017), allows to avoid issues arising from seasonality
in a standard manner across all life events. In this study, we present the results from
a particular window of time, due to constraints from the availability, consistency, and
quality of the data. We propose the models to be retrained on a monthly basis, in line with
traditional marketing practices. Multiple methods of accounting for time-varying factors
exist, but these are out of the scope of this study, and we thus propose a comparative
framework as a possible avenue for future research.

In total, there are 245 features before data preprocessing De Caigny et al. (2020),
involving transaction data, customer demographics, and customer behavior features, as
well as relationship data, information related to client-firm communication, loyalty, and
relationship strength with the service provider. First, the transaction data include 46
features, all of which are dynamic, such as the monthly amount of business travel expenses,
the monthly number of credit-related transactions, or the monthly amount of credit- and
debit-related fees and charges. Second, we leverage 45 static demographic features, like
age, civil status, living situation, and socio-professional group. Third, 117 customer
behavior features relate to product ownership. Of these, 105 are dynamic features, such
as product-related RFM variables, the number of accounts or active products, and total
asset amounts. The remaining 12 features are static, such as the customer’s investment
risk profile. Fourth, relationship data include the communication channels used by a
customer, frequency of appointments and exchanges, and time spent on web and app
platforms, for a total of 37 features, 18 of which are dynamic. The static relationship
variables are aspects like opt-in information for email and phone and the type of agent
or advisor managing the customer’s assets.

We can plug the static features directly into the life event prediction models, without
needing to aggregate or sequence them. As noted, they are the most recent information
of a client. We transform categorical features into dummy variables.

The dynamic features require preprocessing, depending on the featurization approach
used for the 12 months of available customer data. The data are centered and scaled by
subtracting the mean from each customer value and dividing it by the standard deviation
for each feature (LeCun et al., 2012; Crone et al., 2006).

With regard to the life events, detected in the subsequent six months, we use the
definitions provided by the firm. If a customer fulfills the life event criteria during the
six months subsequent to the independent variable period, a binary variable for that life
event occurrence equals 1, and 0 otherwise. The life events definitions are displayed on
Table 3.2.

With these definitions, we divide the entire data set into subsets of unique customers
that are relevant for each life event, whether they experienced that event at the end of the
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Table 3.2. Life event definitions

Life Event

Label

Definition

Self-reported

Moving

Car Purchase

Primary Residence Purchase

Secondary Residence Purchase

Rental Residence Purchase

Relationship Start

Relationship End

Job Market Entry

Birth of a Child

Retirement

Mov

CarP

PrimR

SecR

RentR

RelS

RelE

JobE

BoC

Ret

The customer’s address has been modified
or added to their personal profile

The date of vehicle registration, which is
mandatory information for customers to
provide when applying for insurance or
auto loans

Loan or insurance application, where the
type of residence is mandatory information
and has been marked as a primary residence

Loan or insurance application, where the
type of residence is mandatory information
and has been marked as a secondary residence

Loan or insurance application, where the
type of residence is mandatory information
and has been marked as a rental residence

Civil status modified to civil union or marriage
Civil status modified to divorce or separation

A customer is aged between 18 and 30 years
and has been receiving salary payments on their
account for 4 or more months; the first payment
is considered the actual life event

A new date of birth is registered for the same
household

A customer starts receiving pension fund
payments into their account, or their economic
activity is self-reported as "retired”; only the
earliest such occurrence is considered

v
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independent variable period, or not. For example, to predict if a relationship will end, we
only include customers already in a relationship in that life event data set. Furthermore,
we apply age range restrictions per life event, creating customer subsets to be used in
the prediction of each life event. These age ranges are defined using robust estimators of
location and scale with z-scores as thresholds (Rousseeuw and Hubert, 2011). In other
words, different thresholds are calculated, following the age distribution of each life event.
The creation of these subsets allows to select customers within the relevant age groups
for each life event, which accounts for the low incidence and reduces the negative impact
on model performance of data imbalance (Coussement et al., 2017). Further, these subset
rules are already applied by the data provider, and as such, are based on both the business
know-how, as well as proven techniques for data preparation. Table 3.3 summarizes the
age subset rules applied by the data provider, along with the number of customers in the
life event data set and the incidences.

Table 3.3. Life event subset definitions

Life Event Subset Rules Customers Incidence
Mov Age 19-42 300K 7.67%
CarP Age 19-42 300K 6.40%
PrimR Age 19-42 300K 2.11%
SecR Age 19-42 300K 0.02%
RentR Age 19-42 300K 0.35%
RelS Age 25-45, civil status single 270K 1.72%
RelE Age 29-45, civil status in a relationship 220K 0.82%
JobE Age 19-28, not previously flagged as JobE 110K 4.52%
BoC Age 25-38 180K 0.30%
Ret Age 55-67, not previously flagged as retired 70K 12.12%

Following a responsible analytics framework (De Bock et al., 2023), this study com-
plies with legal, ethical, and financial requirements. The data is anonymized to ensure
customer privacy, with the financial services provider legal team having secured con-
sent for research purposes. GDPR guidelines are followed throughout the study and the
features are in line with previous CRM research in the financial services industry (Bo-
gaert et al., 2019; De Caigny et al., 2020; Idbenjra et al., 2024). The use of longitudinal
data presents the opportunity of time-varying analysis of the model results, allowing a
multi-dimensional understanding of customer behavior. This additional layer of analysis
improves the transparency of LSTM models and longitudinal data, which we consider
relevant for the growing literature of ethical considerations for analytical applications
(De Bock et al., 2023). Further, ethical issues are an essential point for companies to
reflect on, especially as they can negatively impact customer’s adoption of different prod-
ucts. For instance, existing studies show that the perception of security, privacy, and the
compatibility with consumer values can impact the decision to adopt innovative banking
applications and services (Luo et al., 2010; Hoehle et al., 2012). As such, our experimental
setup and data use follows responsible analytics since conception, to ensure organizations
eventually plan and manage the deployment of such projects ethically as well (De Bock
et al., 2023).

3.4.2 LSTM Architecture

We deploy LSTM with an [-H-O structure, denoting the number of input neurons (I),
neurons in hidden layers (H), and output neurons (O) (Krauss et al., 2017). The input
layer matches the number of features, while H is tested as an experimental parameter with
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values between 1 and 3. With multiple hidden layers, the first layer takes a size of 128
(Kim et al., 2020), which gets reduced by half for each subsequent layer, to introduce a
bottleneck that forces decreased dimensionality (Dixon et al., 2015). Per (Srivastava et al.,
2014), on each hidden layer output, we apply a 0.5 dropout rate to enable faster model
training and less overfitting (Chollet et al., 2015). We also introduce an attention layer as
an experimental parameter into the architecture, optimized during the hyperparameter
tuning process. This attention layer has eight heads (Vaswani et al., 2017). The final
layer produces the life event probabilities.

3.4.3 Hyperparameter Tuning

In addition to LSTM, we test LR, RF, and XGB as SaML classifiers, considering their pop-
ularity and good performance across multiple domains (Hosmer Jr et al., 2013; Breiman,
2001; Chen and Guestrin, 2016). We use cost-sensitive versions for each classifier for
training, using balanced-class weights (Gattermann-Itschert and Thonemann, 2021). All
classifiers are tuned through a 5x2-fold cross-validation, using the hyperparameters and
candidate values displayed in Table 3.4. The data set is split in five folds, and each fold
contains a training and a holdout set (Pedregosa et al., 2011). The training set also
gets split in half, to create a validation set and obtain the best hyperparameter values
(Borchert et al., 2022). The best performing combination of hyperparameters from the
validation set is used to refit the model on the entire training set, then predict the hold-
out set (Dietterich, 1998). To obtain the reported evaluation metrics, we average the 10
values from the 5x2-fold cross-validation results on the holdout data for each life event.

For LSTM, we implement a binary cross-entropy loss function, with a weight assigned
to positive examples to account for the imbalanced data (Paszke et al., 2019). The num-
ber of input and output neurons correspond to the number of features and number of
classes, respectively, with a minibatch size of 256 (Kraus et al., 2020). The maximum
number of epochs is 100, with an early stop mechanism during training if no improvement
in validation loss occurs after 5 consecutive epochs (Kraus et al., 2020). The optimization
algorithm, AdamW, adds decoupled weight decay regularization to the Adam optimizer
(Kingma and Ba, 2015), which improves generalization performance (Loshchilov and Hut-
ter, 2018).

Table 3.4. Hyperparameter tuning summary

Model Hyperparameter Values Evaluated Reference
LR Penalty L2 regularization Gattermann-Itschert and Thonemann (2021)
Solver Liblinear Gattermann-Itschert and Thonemann (2021)
Regularization C 1075,...,102 Gattermann-Itschert and Thonemann (2021)
RF Estimators 50, 100, 150, 500 Gunnarsson et al. (2021)
Min. Samples Leaf 2 Gunnarsson et al. (2021)
Max. Depth 1,2,3,10 Gunnarsson et al. (2021)
XGB Estimators 50, 100, 150, 500 Gunnarsson et al. (2021)
Max. Tree Depth 1,2,3 Gunnarsson et al. (2021)
Learning Rate 0.30, 0.40 Gunnarsson et al. (2021)
Columns Sampled 0.60, 0.80 Gunnarsson et al. (2021)
Rows Sampled 0.50, 0.75, 1.00 Gunnarsson et al. (2021)
LSTM Hidden Layers 1,2,3 Kraus et al. (2020)

Learning Rate
Multi-head attention

0.001, 0.005, 0.01, 0.05
None, 8 heads

Kraus et al. (2020)
(Vaswani et al., 2017)
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For this study, we use the top decile lift (TDL), area under the receiver operating
characteristics curve (AUC), and F1 metric as evaluation criteria for the hyperparameter
tuning and final holdout set validation, in line with extant life event prediction literature
(De Caigny et al., 2020). To test for any significant differences across model results, we
use the non-parametric Wilcoxon signed-ranks test or Friedman test with Nemenyi post
hoc assessments (Demsar, 2006).

3.5 Results

The experimental results we report herein align with our three research questions. First,
we investigate which featurization approach to represent the longitudinal data improves
cross-sectional life event prediction for SaML classifiers (RQ1). We compare the life
event prediction performance of two featurization approaches: the baseline (BL) and ag-
gregation approach (AA), for all SaML classifiers under investigation. The comparative
predictive performance results per life event for the SaML classifiers across various eval-
uation metrics appear in Table 3.5 for TDL, Table 3.6 for AUC, and Table 3.7 for F1
scores. The values in bold represent the best performing approach per life event.

Several conclusions arise from Tables 3.5, 3.6, and 3.7. In particular, life event predic-
tion is feasible and helps building proactive marketing strategies. Most SaML classifiers
in both featurization approaches exceed the random benchmark values in terms of TDL,
AUC, and F1. Furthermore, the AA featurization strategy is superior to BL. With a
Wilcoxon signed-ranks test, in which we compare the B and AA approaches for a given
SaML classifier, we find that for XGB, the null hypothesis is rejected at a 99% confidence
level for the TDL, AUC, and F1 metric. For LR and RF, the null hypothesis is also
rejected with high significance with regard to TDL and AUC, with p <0.01 in both cases.
Therefore, in the following analyses, we rely on featurization of longitudinal data. Noting
the superiority of the AA approach, we also investigate which SaML classifier performs
best when the dynamic features from longitudinal data are represented by the aggregation
approach. Using a non-parametric Friedman test of the SaML classifiers, we test whether
significant differences exist across the SaML classifiers. It indicates significant differences
in AUC performance (x4 = 5.600, F'(2,18) = 3.500, p = 0.061 < 0.1) and F1 performance
(x% = 9.800, F(2,18) = 8.647,p = 0.007 < 0.01), but it reveals mixed results for TDL
(x% = 4.200, F(2,18) = 2.392,p = 0.122). The results of Nemenyi post hoc tests on
AUC and F1, as depicted in Figure 3.6 and Figure 3.7, respectively, reveal that SaML
classifiers with distances below the CD exhibit no significant differences and are joined
by a line. Figure 3.6 and Figure 3.7 also affirm the superior performance of XGB over
LR and RF, even if the difference is not statistically significant for the F1 metric.

3 2 1

RF w I XGB

Figure 3.6. Nemenyi post hoc test for SaML classifiers with featurized data, using
AUC. Notes: Classifiers that are not significantly different at p = 0.10
are connected.
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Table 3.5. TDL results for SaML classifiers
Life Event LR RF XGB
BL AA BL AA BL AA
Mov 1.529 2.653 1.578 2.866 1.497 3.406
CarP 1.137 2.623 1.205 3.007 1.062 3.224
PrimR 1.301 2.845 1.368 3.331 1.449 3.352
SecR 0.971 2.743 0.972 1.771 0.914 1.343
RentR 1.536 2.880 1.360 2.097 1.486 2.816
RelS 1.237 2.652 1.180 2.049 1.072 2.864
RelE 1.067 3.011 1.117 2.263 1.033 2.873
JobE 1.701 2.176 1.729 2.657 1.942 2.983
BoC 1.085 3.004 1.103 2.768 1.085 2.779
Ret 1.110 3.292 1.115 3.512 1.081 3.700
Table 3.6. AUC results for SaML classifiers
Life Event LR RF XGB
BL AA BL AA BL AA
Mov 56.232 60.387 56.380 61.700 52.631 66.730
CarP 51.952 60.662 51.997 61.378 50.107 62.178
PrimR 53.458 60.924 52.126 64.420 52.819 65.555
SecR 50.000 50.150 50.000 50.100 50.000 61.097
RentR 53.427 53.485 51.152 63.325 50.239 54.565
RelS 52.111 60.165 50.725 52.916 50.005 61.602
RelE 51.147 60.183 50.217 51.356 50.023 59.649
JobE 56.747 60.562 56.252 61.660 58.311 66.580
BoC 50.542 64.383 50.163 51.718 50.006 57.867
Ret 51.690 65.387 50.742 66.000 50.115 68.101
Table 3.7. F1 results for SaML classifiers
Life Event LR RF XGB
BL AA BL AA BL AA
Mov 45.094 50.003 50.071 57.203 52.282 53.331
CarP 41.510 51.001 48.747 55.486 49.644 55.625
PrimR 41.004 43.112 48.934 46.506 25.336 28.679
SecR 49.055 40.938 49.992 49.994 49.994 50.062
RentR 44.862 40.313 49.489 47.984 50.109 49.738
RelS 38.805 42.492 49.412 47.310 49.756 52.111
RelE 41.717 42.244 49.426 48.387 49.910 51.941
JobE 45.585 44.238 51.646 51.940 30.777 35.349
BoC 47.682 40.085 49.677 48.573 49.989 50.906
Ret 44.433 56.439 50.479 63.327 48.440 64.696
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Figure 3.7. Nemenyi post hoc test for SaML classifiers with featurized data, using
F1. Notes: Classifiers that are not significantly different at p = 0.10
are connected.

Thus, life event prediction delivers trustworthy input for proactive marketing deci-
sions. Our results establish the added value of representing longitudinal data through an
aggregation featurization approach and also identify XGB as the most preferred SaML
classifier.

Second, we investigate whether LSTM, which uses sequence-ordered customer input
directly, delivers superior performance relative to our best SaML, that is, XGB with
aggregated featurization (XGB-AA) (RQ2). Table 3.8 summarizes the predictive perfor-
mance results for each life event for both XGB-AA and LSTM, showing the best result
for each life event and evaluation metric in bold.

Table 3.8. Predictive performance results for XGB-AA and LSTM

Life Event TDL AUC F1

XGB-AA LSTM XGB-AA LSTM XGB-AA LSTM

Mov 3.406 3.958 66.730 67.581 53.331 61.818
CarP 3.224 2.368 62.178 66.436 55.625 57.692
PrimR 3.352 5.429 65.555 64.703 28.679 66.529
SecR 1.343 5.329 61.097 61.719 50.062 60.831
RentR 2.816 5.739 54.565 61.938 49.738 54.967
RelS 2.864 2.252 61.602 63.351 52.111 61.757
RelE 2.873 1.762 59.649 61.966 51.941 60.872
JobE 2.983 2.441 66.580 79.076 35.349 62.403
BoC 2.779 3.244 57.867 62.038 50.906 61.004
Ret 3.700 1.709 68.101 74.925 64.696 76.197

As Table 3.8 reveals, LSTM outperforms XGB-AA, with average performance gains
across the life events of 34% for TDL, 6% for AUC, and 33% for F1. For AUC and F1,
LSTM outperforms XGB-AA on all life events (cf. PrimR, where XGB-AA performs
better than LSTM on AUC); the TDL results are more mixed. Similarly, the Wilcoxon
signed-ranks tests only reveal significant differences at 95% confidence levels for AUC and
F1. These results confirm the beneficial impact of using sequentially ordered data with
an LSTM model over a cross-sectional SaML classifier with optimal featurization.

We also note that the metrics are in line with previous life event prediction literature,
as shown in De Caigny et al. (2020); Khodabakhsh et al. (2018). This also applies for other
popular classification problems within decision support literature in the financial services
industry, particularly under scenarios of high data imbalance, such as for bankruptcy
prediction (Kou et al., 2021) and fraud detection (Baesens et al., 2021). However, any
additional gains in model performance can strongly benefit a company’s profits, as finan-
cial services providers are firms with a large volume of customers. Table 3.9 displays the
p-values for all metrics and life events, using Wilcoxon Signed-Rank test to evaluate the
performance differences between a random classifier and the best performing model in our
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study, LSTM. LSTM outperforms these results by 241.15% for TDL, 32.68% for AUC,
and 24.75% for F1, when averaging across life events. Finally, the table shows the higher
performance from LSTM across all life events and metrics is statistically significant from
the random classifier.

Table 3.9. Wilcoxon Signed-Rank test results for random classifier against LSTM

Life Event TDL AUC F1
Mov .002%** .002%** .002%**
CarP .004*** L002%** .084*
PrimR .004%** .002%** .002%**
SecR .009*** L002%** .002%**
RentR .004%** .002%** .084*
RelS .002%** .002%** .002%**
RelE .002%** .002%** .002%**
JobE .002%** .002%** .002%**
BoC L002%** L002%** .002%**
Ret .002%** .002%** .002%**

***p-value<.01, **p-value<.05, *p-value<.10

We also investigate the drivers of LSTM, the best performing life event prediction
model, using the IG attribution method (Sundararajan et al., 2017). The objective is to
understand the importance of life event drivers to answer RQ3, particularly as additional
tools that may be useful for marketing decision-making. Among the many types of life
events, we focus on two in detail, according to their superior F1 values: Ret and PrimR.
Discussions of the other life events are available in 3.9.1 and 3.9.1. First, with regard to
the contributions of each time step to final life event prediction, Figure 3.8a displays the
mean attributions per time step for customers undergoing retirement (Ret); Figure 3.8b
contains the mean attributions for customers buying their first residence (PrimR); and
Figure 3.8c shows the attributions for customers without either life event. The Y-axis
represents the mean attribution value; the closer an attribution value is to 1, the higher
its contribution for predicting the given life event. The X-axis represents time steps,
where 1 is the closest and 12 is the furthest month relative to the prediction period.
In line with other life events, as exhibited in 3.9.1, attribution values increase for time
steps closer to the prediction period. In contrast, the absence of life events does not
establish a generalizable pattern. From a marketing decision-making perspective, such
results would reveal the optimal moment to contact customers, which could enable more
efficient resource allocations. The features to predict the purchase of a primary residence
have more weight the closer to the occurrence of the event. This suggests the possibility
of progressive changes in customer behavior. Previous research shows the correct and
timely allocation of marketing resources, through accurate understanding of dynamic
customer behavior, has a positive impact on customer loyalty (Han and Anderson, 2022).
Therefore, it may be of interest to evaluate customer response when using life event
predictions as a targeting tool.

Second, we consider the normalized mean attribution values. The 10 features with
the highest attribution values display different patterns for Ret and PrimR, as shown in
Figures 3.9a and 3.9b. In detail, the top Ret features suggest that an intense relation-
ship encourages the life event occurrence, as expressed in the main bank feature (main
bank [Y/N]), number of insurance-related accounts (insurance savings, housing savings
accounts), and payment amounts (online transfers, estimated recurring expenses). But
PrimR prediction assigns more importance to asset amounts (high risk credit, active
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Figure 3.8. Integrated gradients showing mean normalized attributions per time
step

credit), the demographic situation (married [Y/N], household members), and transaction
data (non-banking debit transactions, inbound credit transfers). With these insights,
marketing decision-makers can use their good life event predictions to personalize the
services they offer, detect new cross-selling opportunities, and improve their product rec-
ommendations.

Third, we present the mean attributions by static and dynamic features, to investigate
their respective importance. Overall, static and dynamic features respectively represent
around 30% and 70% of the total features, but for both life events, dynamic features
are over-represented compared with the average. That is, for Ret, dynamic features are
around 80% of the average attribution, and static features account for 20%. Similarly,
PrimR reveals that 78% of attributions stem from dynamic features, versus 22% from
static features. Thus, both static and dynamic features contribute to life event prediction,
but the dynamic features have a relatively greater impact.

dynamic s dynamic LS

static itk static el

% 0%  40% B0%  BO% % 0%  40% B0%  BO%
(a) Life Event: Ret (b) Life Event: PrimR

Figure 3.10. Integrated gradients showing the distribution of mean normalized
attributions per feature type (%)
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Figure 3.9. Integrated gradients showing mean normalized attributions for the top
10 features

3.6 Discussion

IG is a flexible technique, that allows for aggregation of different variables to uncover
which features drive a model’s prediction for particular life events. Furthermore, these
feature importances can be paired against retention rates for further managerial insights,
particularly in terms of establishing differences between customer behavior per life event
cohort. Thus, we propose that the observed differences in retention rates are further proof
of life events being a valuable source of information for CRM applications. In particular,
they suggest customers potentially need to be addressed differently, depending on the life
event experienced.

We present relative differences in retention rates, 12 months after our experimental
period as defined in Section 3.4. The retention rate for customers who did not experience
a life event is the baseline, shown as 0% in Figure 3.11.

20.00%
- - -
0.00% - . I

-10.00%

-20.00%

Mov CarP PrimR SecR RentR RelS RelE JobE BoC Ret

Figure 3.11. Retention rates per life event (%), using no life event occurrence as
a baseline (0%).

The occurrence of a life event reveals a higher retention rate than this baseline. Specif-
ically, life events such as CarP, JobE, PrimR, SecR, RentR, BoC, RelE, and Ret drive
loyalty and retention. However, customers who experience Mov or RelS are at risk of
attrition; their retention rates are lower than those of customers without life events for
the year after their life event occurrence. For managers, such life event predictions offer a
way to improve the overall customer experience and provide a better, more personalized
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service in a timely manner. In particular, life event prediction might inform real-time
adaptations of product recommendations offered through digital channels. Alternatively,
this information could be harnessed by a bank advisor, proactively proposing a meeting
with customers exhibiting a high life event probability in the upcoming months. Life event
prediction also opens up additional avenues of research, where life event occurrences can
be used to evaluate their impact or causality onto other tasks. For instance, life events
can be studied alongside the purchase of specific products, thus evaluating their impact
on cross-selling measures, uncovering possible causal relationships with purchase inten-
tion. Life events could also be evaluated as a complementary tool for churn prevention
measures, to ultimately assess whether churn rates can be decreased or whether customers
experiencing certain life events are more responsive to specific retention actions. Finally,
life events can also be developed as a tool to develop more complex customer segments,
to further personalize CRM initiatives.

3.7 Conclusions and Further Research

This study contributes to life event prediction literature by introducing novel life events
and analyzing their impact on relevant dimensions for decision-makers, on the basis of
data provided by a European financial service provider. Furthermore, we compare differ-
ent approaches for incorporating longitudinal customer data into a cross-sectional SaML
classification setup, and we implement a state-of-the-art LSTM. We structure this study,
and our discussion of its conclusions, according to our three central research questions.

RQ1. Which featurization approach for representing longitudinal customer data im-
proves cross-sectional life event prediction performance for conventional SaML classifiers?

We find aggregation as a featurization approach performs better than using monthly
snapshot data (baseline), for all SaML classifiers across all life events. Furthermore, XGB
with aggregated dynamic features offers the best predictive performance.

RQ2. Does LSTM improve life event prediction performance over SaML classifiers when
longitudinal customer data are available?

Our results establish that the LSTM model outperforms the best cross-sectional ap-
proach, namely, the XGB model with aggregated features.

RQ3. Is it possible to identify life event drivers that are useful for marketing decision-
making?

The months closer to the prediction period exert greater weight in terms of prediction
performance. We offer specific actionability insights for the top 10 performing drivers for
each life event. Dynamic features influence life event prediction more than static features.
In turn, life event prediction is an important tool for customer relationship management,
due to its notable effect on retention rates.

In addition to contributing to life event prediction literature, this study reveals various
paths for further research. First, we demonstrate the importance of explaining model out-
comes for decision-makers that rely on life event prediction model using an attribution
method. Yet, additional research is needed to determine the impacts of various attribu-
tion methods to further assist decision-makers with model explanations in the life event
prediction field. Second, tracking various customer behaviors across life events may help
marketers further improve their personalized marketing strategies, which should evoke
stronger customer engagement and customer responses (Han and Anderson, 2022). For
example, researchers might run A/B tests on highly personalized recommendations for
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customers approaching life events to gain a dynamic understanding of those behaviors (De
Caigny et al., 2020; Cheng and Chen, 2022). Third, we show that the dynamic features
derived from longitudinal data contain important information for life event prediction.
Hence, exploring longer periods of historical customer data might reveal additional in-
formation relevant for deploying marketing actions, especially when related to specific
life events farther in advance. Furthermore, applying our framework onto different data
sources from multiple companies or industries is an interesting future avenue of research,
to either strengthen the generalization of our findings or improve upon our conclusions.
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3.9 Appendix

3.9.1 Additional Experimental Results
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Time importance per life event
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CHAPTER 4

Longitudinal Data for Recommender Systems in the
Financial Services Industry

Abstract.

Recommender systems (RS) are highly relevant for multiple domains, allowing to
construct personalized suggestions for consumers. Previous studies have strongly
focused on collaborative filtering approaches, but the inclusion of longitudinal data
(LD) has received limited attention. To address this gap, we investigate the impact
of incorporating LD for recommendations, comparing traditional collaborative filtering
approaches, machine learning multi-label classifier (MLC) algorithms, and a deep
learning model (DL) in the form of gated recurrent units (GRU). Additional analysis for
the best performing model is provided through SHapley Additive exPlanations (SHAP),
to uncover relations between the different recommended products and features. Thus,
this article contributes to operational research literature by (1) comparing several MLC
techniques and RS, including state-of-the-art DL models in a real-life scenario, (2) the
comparison of various featurization techniques to assess the impact of incorporating LD
on MLC performance, (3) the evaluation of LD as sequential input through the use of
DL models, (4) offering interpretable model insights to improve the understanding of RS
with LD. The results uncover that DL models are capable of extracting information from
longitudinal features for overall higher and statistically significant performance. Further,
SHAP values reveal that LD has the higher impact on model output and managerial
relevant temporal patterns emerge across product categories.

Keywords: Analytics, Recommender Systems, Deep Learning, Longitudinal Data.
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4.1 Introduction

Recommender systems (RS) are a dynamic area of research with multiple applications.
They excel in offering personalized suggestions based on consumers’ needs, interests and
preferences. This enhances the decision-making process by optimizing resource alloca-
tion and targeting relevant customers (Geuens et al., 2018). This translates to increased
switching costs for customers (Kumar et al., 2008) and improved retention rates (Ka-
makura et al., 2003). This is crucial for the financial-services industry, as existing cus-
tomers are more profitable than new ones (Knott et al., 2002). Therefore, further RS
research adds value by improving customer relations and the effectiveness cross-selling
opportunities in advance.

Traditionally categorized into collaborative filtering, content-based, and hybrid models
(Khanal et al., 2020), RS rely on large matrices for similarity calculations. Collaborative
filtering computes recommendations based on past user behavior or ratings of available
items, content-based recommendations exploits item characteristics to identify similarities
with a user’s historical purchasing behavior; and hybrid models combine both approaches.

Personalized recommendations, extensively studied in retail, pose challenges in the
financial sector due to a lower product count, longer renewal cycles, and limited user
interactions (Musto et al., 2015). However, recent OR literature confirms that recom-
mendations can also be performed using machine learning multi-label classifiers (MLC).

MLC fall into two main categories: problem transformation methods (PT) and al-
gorithm adaptation methods (AA) (Bogaert et al., 2019). Within PT, there are binary
relevance (BR) and classifier chain (CC) algorithms. BR involves building a separate
model for each product label, while CC makes iterative predictions for each product,
incorporating new predictions into subsequent classifications. AA involves modifying al-
gorithms to suit the multi-label task, enabling them to output probabilities for all product
labels simultaneously.

Both RS and MLC capture a customer’s behavior using cross-sectional data, without
reflecting evolving interests in time (You et al., 2019). Customer behavior, however, is a
series of decisions leading to purchase sequences (Prinzie and Van den Poel, 2006). Thus,
exploring longitudinal data (LD) is a valuable research path to extend RS literature in
OR. Deep learning (DL) models are particularly effective in modeling customer behavior
as a sequence of actions or events (Tan et al., 2016; You et al., 2019). While this approach
has been applied to evaluate recommendation effectiveness over time (Zhang et al., 2020;
Ferraro et al., 2020), its performance in comparison to other recommendation methods
remains unexplored.

Our data is provided by a large European financial services provider. The data con-
tains product ownership data for 35 distinct products and their respective recency, fre-
quency, and monetary (RFM) information. Recency refers to the number of days since
the last product purchase, frequency considers the total number of distinct products, and
monetary reflects the overall income from product ownership and use.

Demographic data is also available for 384,859 customers. This data hase been previ-
ously cleaned to select relevant customers and products with low sparsity, using different
data combinations and recommendation approaches to find the best performing tech-
niques.

Previous research has shown that static RFM features are relevant for generating
recommendations (Bogaert et al., 2019). Moreover, RFM features evolve in time and
are naturally dynamic, but are excellent at capturing purchasing behaviors (Chen et al.,
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2016). Therefore, their use for predictive tasks remains an ongoing field of research (Mena
et al., 2023).

Literature shows that a research gap remains in comparing RS, MLC, and DL, es-
pecially in leveraging the benefits of LD. We extend Bogaert et al. (2019) by evaluating
the impact of incorporating LD, in the form of RFM features, on recommendation per-
formance. Furthermore, state-of-the-art DL algorithms are included in the benchmark
framework, to evaluate their performance using LD in the financial services sector. DL
models have the advantage of being able to process LD as a sequential input, without the
need of data aggregation, providing an advantage over alternatives like feature aggrega-
tion, as demonstrated in previous research (Mena et al., 2023).

Finally, we deploy SHapley Additive exPlanations (SHAP) to better understand the
output of our best performing models. SHAP assigns an importance value for each
feature and is adept at handling MLC algorithms (Lundberg and Lee, 2017). SHAP
is a popular feature-attribution mechanism for interpretable AI, with applications in
diverse operational research (OR) predictive tasks, such as credit scoring (Chen et al.,
2024), process monitoring (Stevens and De Smedt, 2023), and corporate default risk
(Sigrist and Leuenberger, 2023). Notably, SHAP maintains properties of local accuracy
and consistency, unlike other interpretability methods (Notz and Pibernik, 2024). Thus,
SHAP aids in identifying features strongly correlated with each product.

In sum, we perform an exhaustive benchmark to identify the best approach for cross-
sell analysis in the financial services sector. This is done by comparing MLC techniques
against RS through the comparison of different models, outlined in Section 4.3. Addition-
ally, we methodologically contribute to the RS literature in OR by using DL models to
handle longitudinal financial features, incorporating them into the benchmarking frame-
work.

Thus, the research questions we address in this paper are the following:

RQ1. Does the use of various RS methods lead to significantly distinct levels of
performance?

RQ2. Does the utilization of various featurization methods for longitudinal data yield
significantly different levels of performance?

RQ3. Does the incorporation of longitudinal data using state-of-the-art DL models
significantly outperform other recommendation approaches?

RQ4. Can we identify relevant features for product recommendations in the financial
services industry?

First, we follow previous research (Bogaert et al., 2019), by comparing traditional
RS approaches in the form of (i) item-based collaborative filtering (IBCF), (ii) user-
based collaborative filtering (UBCF), (iii) association rule-based recommender (AR), (iv)
popular items recommender (PR), and (v) random items recommender (RR). We also
implement post-hoc significance testing to confirm the best performing approach.

Secondly, we transform the data using different featurization methods to uncover
the best performing approach for MLC models, by comparing no data transformation
against singular value decomposition (SVD) and principal component analysis (PCA),
which are frequently used in recommendation settings (Geuens et al., 2018; Coussement
et al., 2022). These comparisons are performed using multiple algorithms under BR, CC,
and AA approaches. Both BR and CC include (i) adaboost (AB), (ii) shallow forward
neural network (FNN), (iii) naive Bayes (NB), (iv) random forest (RF), and (v) xgboost
(XGB). Algorithm adaptation includes (i) FNN, (ii) RF, and (iii) XGB. We also analyze
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whether significant differences in performance are found between AA, BR, and CC MLC
approaches.

Thirdly, we compare the top performing MLC and RS approaches against DL mod-
els which are capable of incorporating LD as sequential input, with no additional data
transformation. The DL models are gated recurrent units (GRU), which is capable of
producing multiple outputs, as are AA approaches. This allows us to assess whether the
use of DL adds value when generating recommendations in the financial services industry,
as well as uncovering the best approach and structure for the task at hand.

Fourth, we implement SHAP on our best performing model, to extract the features
with the highest impact on the recommendations. This has not been previously done for
recommendations in the financial services industry, constituting a novel application of
great interest for constructing managerial insights.

Therefore, our contributions are fourfold. First, the comparison of several MLC tech-
niques and RS, including state-of-the-art DL models in a real-life scenario. Second, the
comparison of various featurization techniques to assess if the incorporation of longitudi-
nal data improves MLC performance. Third, the evaluation of LD as a sequential input,
through the use of DL models. Fourth, the application of interpretability techniques to
improve the understanding of decision-makers and marketers when deploying RS. Over-
all, these contributions uncover a better understanding on how to pre-process data and
generate recommendations in the financial services sector.

4.2 Related Work

We evaluate MLC against traditional RS in the financial services sector, using LD for
cross-selling purposes. As such, this literature review covers two areas of OR research.
First, we review studies with cross-selling applications with real-world data from the
financial services industry in Section 4.2.1. Second, we analyze the use of LD for recom-
mendations in Section 4.2.2.

These algorithms produce multiple outputs. However, next-product-to-buy (NPTB)
models prioritize one product per customer (Knott et al., 2002; Prinzie and Van den
Poel, 2008). Therefore, they are an inadequate comparison against RS approaches and
are excluded from our literature review. Similarly, when examining session-based rec-
ommendations, which use a sequence of interactions from an online session, we exclude
studies that only predict the next event or interaction (Hidasi et al., 2015).

4.2.1 Recommendations for financial services

Several studies have explored different techniques regarding the best way to work with
financial services data to output recommendations. New clients have a lower profitability
than existing customers who continue to use existing products, as well as subscribing to
new ones (Knott et al., 2002). However, a big challenge lies in the low rate of customer
response to solicitations (Li et al., 2011). Thus, the inclusion of LD has proven essential
to detect changes in customer behavior in time (Li et al., 2011). This allows for a more
effective resource allocation for marketing actions by selecting customers with a higher
probability of responding to solicitations.

For instance, Li et al. (2005) assess changes in customer demand for different financial
products over time, finding different demographic characteristics affect the speed with
which financial needs evolve. They incorporate LD as input for a MLC algorithm and
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find that the ownership of multiple products drives the purchase of other additional
products. Musto et al. (2015) also use demographic characteristics, as well as financial
assets, and risk and investment profiles, to recommend a set of portfolios to a target user.
This data, in cross-sectional form, is used to calculate similarity between clients. They
compare multiple MLC algorithms, without using LD. Additionally, Bogaert et al. (2019)
compare several MLC techniques against collaborative filtering RS. Using cross-sectional
data, they output recommendations for multiple banking products. Their results show
MLC significantly outperforms RS, with adaboost being the best performing algorithm.
Boulenger et al. (2022) propose using DL models with attention mechanisms to process
product ownership as LD, as well as demographic information. They follow a MLC
approach, recommending multiple products such as debit, credit cards or term deposits.
Chou et al. (2022) extends the collaborative filtering framework (RS), incorporating LD
from historical transaction records as input for their model. Different relations from the
transactional data are represented through a graph structure, combined with DL, for
more efficient data usage, lower computational cost, and recommendation performance
improvements.

Table 4.1 summarizes the previously described studies to support our conclusions.
The first column contains the relevant study. The following columns use a check-mark
to respectively indicate if a study uses a traditional RS approach; if MLC algorithms are
included; if DL models are evaluated; if LD is incorporated as input; and if interpretability
techniques (IT) are used to analyze the model output.

From Table 4.1, we find a research gap remains with regards to recommendations
using LD in the financial services sector. This is an interesting area of research as previous
studies have shown LD can be used to capture a customer’s behavioral changes through
time (Li et al., 2011), while models that do not account for temporal ordering of products
tend to exhibit lower performances (Li et al., 2005).

In sum, we conclude that personalized recommendations in the financial services in-
dustry have been evaluated with both MLC and RS approaches, although it remains rare
to find studies that compare both. Further, it remains unclear how DL models perform in
comparison to MLC and RS. Moreover, LD has been shown to be relevant for capturing
customer behavior changing through time (Li et al., 2005, 2011), but it remains to be
compared against cross-sectional approaches commonly used for RS and MLC (Bogaert
et al., 2019). Finally, no studies have incorporated interpretability techniques to further
elucidate a model’s results or to analyze the interactions between different features.

Table 4.1. Literature review for studies on RS for financial services

Study RS MLC DL LD IT
Li et al. (2005) v v

Musto et al. (2015) v

Bogaert et al. (2019) v v

Boulenger et al. (2022) v v

Chou et al. (2022) v v v

This study v v v v

4.2.2 Longitudinal data for recommendations

Research shows that customers change their purchasing behavior in time, depending on
their financial maturity (Li et al., 2005; Kamakura et al., 1991). Moreover, the use of LD
as input is particularly useful for capturing evolving customer interests and to provide
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highly personalized recommendations (Quadrana et al., 2018). As such, we review recent
studies that include LD for recommendation, to develop an adequate experimental setup.

Rendle et al. (2010) propose generating transition matrices for each user, applying
matrix factorization onto them to be used as input for Markov chains. The approach
adapts collaborative filtering, thus falling under a traditional RS setting, while Markov
chains use sequential input.

Tan et al. (2016) propose the use of recurrent neural networks (RNN) for session-based
recommendations (SBR). As an output, they produce a ranking over all the next items
that may occur in that session, with the top-k items being recommended. Therefore, their
study uses a DL model and sequential input, capable of producing multiple outputs, as
in a MLC setting.

You et al. (2019) also use DL models in the form of RNNs. As data, they use a sequence
of items and interactions by users from several sessions, to create recommendations that
adapt to users’ preferences in real-time. Thus, both the input and output are sequences
of data.

Zhang et al. (2020) evaluates the use of sequential data for collaborative filtering mod-
els, thus choosing a RS approach. Their approach is capable of producing a sequence of
outputs by iteratively rolling forward the relevant time window for each period. There-
fore, it can be considered an adaptation of the CC approach of MLC.

Ferraro et al. (2020) deploy several algorithms for SBR, including DL models such as
RNNs. Thus, their framework also considers sequences of data as input. Their algorithms
produce multiple outputs and, as such, are akin to MLC algorithms.

Chou et al. (2022) follow a collaborative filtering framework, but do not apply tradi-
tional RS. Instead, they opt for a BR approach (MLC), using transactional LD to be fed
into a graph-structured DL model. The results suggest that both static and longitudinal
features are necessary to capture customer behavior patterns and to achieve the best
performance.

Table 4.2 summarizes the aforementioned information. The table includes, respec-
tively, the cited study, followed by columns indicating if a RS is evaluated (RS); if a MLC
technique is included (MLC); if a DL model is proposed (DL); if their suggested method
uses a sequential input (SI); and if interpretability techniques (IT) are applied.

Table 4.2. Literature review for studies using longitudinal data

Study RS MLC DL ST 1T
Rendle et al. (2010) v v
Tan et al. (2016) v v v
You et al. (2019) v v v
Ferraro et al. (2020) v v v
Zhang et al. (2020) v v v
Chou et al. (2022) v v v
This study v v v v

Among the studies using LD for recommendations, DLs are frequently deployed, with
RNNs being the most popular type. Furthermore, sequences of events, with no additional
transformations, are typically used as input data. Several studies recognize limitations
when using DL models, in terms of output transparency. However, the incorporation of
interpretability techniques for recommendations remains rare.

Overall, the literature review reveals a research gap regarding the comparison between
RS and MLC techniques, particularly when LD is available. Further, DLs are frequently
employed with LD, with RNNs being the most popular approach. However, performance
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comparisons against other approaches reveal a research opportunity. The use of LD as
input, especially when used as a sequence of features, remains a scarcely explored area of
research. The same is true for deploying interpretability techniques for recommendations.

4.3 Methodology
4.3.1 Data

The data has been provided by an European financial services provider. This data con-
tains all available customer information between the start of May 2021 and the end of
April 2022, with their respective product acquisition between the start of June 2022 and
the end of April 2023. Therefore, our independent period ends on the last day of April
2022, while the following year is used as the dependent period. The data contains de-
mographic information for each customer, such as age, sex, and commune of residence.
These features are static, and reflect the last information available at the end of the in-
dependent period. Further, we include 13 different products from the company portfolio.
For each of these products, the RFM features are calculated for each customer on an
end-of-month basis. These features are sequential, as they consist of a chronologically
ordered sequence of 12 end-of-month snapshots, with the last one coinciding with the end
of the independent period.

Overall, 55 independent features are available, distributed in 16 static and 39 sequen-
tial features. Sequential features are used without featurization as input for DL models,
while only the last snapshot is usable for the remaining techniques. In particular, the
MLC techniques require features in the form of tabular data, while matrices summarizing
the products purchased by the users are created for the RS models. The independent
features are summarized on Table 4.3. These features are used to predict the acquisition
of new products during the dependent period, modeled as 13 binary labels, or one per
product.

Table 4.3. Definitions of available independent features

Feature Definition Type
Age Customer’s age Static
Commune Customer’s commune of residence Static
Sex Ind Indicates if customer is male Static
Owner_ Ind Indicates if customer owns property Static
Lib_ Ind Indicates if customer is independent Static
Use_ Email Indicates if customer provided a usable email address Static
Use__Mobile Indicates if customer provided a usable mobile phone number Static
Use_ Phone Indicates if customer provided a usable phone number Static
Optin_ Email Indicates if customer allows emailing from the company Static
Optin_ Phone Indicates if customer allows calls from the company Static
Main_ Ind Indicates if company is customer’s main financial service provider  Static
LOR__days Length of relationship in number of days Static
Employee_ Ind Indicates if customer is employed by the company Static
HDG_ Ind Indicates if customer has assets over €50K Static
Hb_ Ind Indicates if customer has access to home banking Static
Cz_ Ind Indicates if customer has activated customer zone Static
Recency (x13) Number of days since last purchase Sequential
Frequency (x13)  Number of products owned Sequential
Monetary (x13) Profit from product usage Sequential
Total available features: 55

RFM features are excellent at capturing historical customer behaviors, resulting in
an improved predictive performance when used within the financial services domain and
marketing applications (De Caigny et al., 2020; Mena et al., 2023). Moreover, RFM
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features contain highly relevant domain information, contributing to understandability,
justifiability, and actionability from model results (De Bock et al., 2023). Plus, these
features are naturally time-evolving, while offering considerable freedom when designing
an experimental setup (Mena et al., 2023). As such, we further study RFM features to
explore whether these same characteristics translate to RS, especially when used sequen-
tially.

The cutoff for the independent period and the dependent features are the same for
all models and approaches. Nonetheless, RS models can be understood as relying on the
frequency information derived from RFM, while ML.C models are able to include all RFM
features and additional static information. Lastly, DL models incorporate additional
information by processing RFM features sequentially. The independent period data setup
is schematically represented in Figure 4.1, outlining the difference between sequential
features and static features, i.e a chronologically ordered sequence of monthly snapshots
against the latest available snapshot, respectively.

Static
Features

—
Sequential
Features

Figure 4.1. Schematic representation of the features throughout the independent
period

Finally, data preprocessing steps are performed to ensure data quality, following ex-
isting research (Prinzie and Van den Poel, 2006; Bogaert et al., 2019). Only customers
active in the both the independent and dependent periods are included, meaning we select
non-deceased individuals aged over 18, with at least a checking account open with the
financial services provider. We also remove data from contracts that are delayed, blocked,
canceled, or generally unavailable to be used by a customer. Additionally, products with
a sparsity below 0.25% are discarded to avoid any issues during cross-validation, resulting
in the 13 products in the data. Customers who own products with high sparsity levels or
missing values are also excluded. Lastly, we remove customers with less than 5 distinct
products. This results in 384,859 customers being valid, in line with previous research
(Prinzie and Van den Poel, 2006; Bogaert et al., 2019).

Table 4.12 displays summary statistics on the distinct number of products owned,
before and after dropping those customers with less than 5 distinct products. The table
shows that with no restrictions, around 25% of customers would not receive relevant rec-
ommendations when using traditional RS. This is because their predictive stage generates
recommendations for customers based on g randomly given items. Therefore, selecting
customers with a distinct number of products larger than the number of items g allows
the recommended products can be compared to the products that the customers possess
(Bogaert et al., 2019). We use the largest value of g as a threshold, i.e. ownership of at
least 5 products.

Thus, dropping these observations is a way to mitigate the cold-start problem, where
the algorithms may have insufficient data to make accurate recommendations. These
decisions can thus improve overall model performances, as high sparsity observations
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often contain little information. High sparsity may not contribute significantly to model
training and could also introduce noise. Furthermore, reducing the dataset size leads to
faster training times and lower computational costs.

4.3.2 Featurization

Our data contains both static and sequential features. The sequential features are lon-
gitudinal, as they are available as a sequence of monthly snapshots on a customer level.
These features can also be transformed to be used cross-sectionally, as is the case for the
static data. LD is commonly available to financial services providers, making it important
to assess whether its use improves the performance of personalized recommendations.

LD has the advantage of preserving dynamic information which may help identify
ruptures in customer behavior (Sarkar and De Bruyn, 2021). However, MLC traditionally
requires the use of tabular data, for which the transformation of LD is necessary. As such,
we deploy different featurization techniques to transform the data in the most efficient
ways for information preservation.

Featurization has been shown to positively impact performance (Geuens et al., 2018;
Nilashi et al., 2018), but it is also used to reduce the size of large volumes of data, while
preserving valuable information, better scalability, and model efficiency (Nilashi et al.,
2018). The same has shown to be true when applying featurization onto LD (Rendle
et al., 2010).

Sequential Features

Product 1 Product 13

t-12 | | t-1 t-12 | | t-1

Y
Data Transformation

A ti
ggregation No

mean, gtd, cov, Aggregation
sSum, min, max

Y
Data Reduction

PCA SVD

Figure 4.2. Schematic representation of featurization process

We include common techniques for recommendations that are apt for our data, namely
PCA and SVD (Coussement et al., 2022; Geuens et al., 2018). We also construct a base-
line, using the latest available data and no featurization. We assess whether featurization
benefits from transforming the data beforehand through aggregation, using the mean,
standard deviation, coefficient of variation (CoV), sum, minimum, and maximum val-
ues for all sequential features (Gattermann-Itschert and Thonemann, 2021), available for
each product as a sequence of 12 monthly RFM snapshots. Thus, our featurization pro-
cess consists of two steps, schematically illustrated on Figure 4.2. The first step is Data
Transformation. For aggregation, the LD is transformed by calculating the mean, stan-
dard deviation, CoV, sum, minimum, and maximum across the 12 months per product
for each user. No aggregation results in the RFM snapshots per month for each product
being unchanged. The second step is Data Reduction, which decreases data dimensions,
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resulting in less features with either PCA or SVD.

4.3.3 Multi-label Classification Techniques

The MLC techniques applied are divided into PT methods and AA methods, through the
sklearn package on Python (Pedregosa et al., 2011). These techniques require the input
to be in the form of tabular data.

We focus on BR and CC algorithms for the PT method. For BR, we require a binary
classifier for each product, treating each label as a separate problem. For CC, each
previously predicted label is included as an additional feature for the following prediction,
modeling label dependencies through iteration. Therefore, when using CC, a given label
can only be predicted after the labels that precede it an iteration have been output. In
line with Bogaert et al. (2019), we include AB, FNN, NB, and RF, adding XGB because it
excels in a variety of analytics problems (Gunnarsson et al., 2021). We also contribute by
adding GRU to the comparison framework, as it is apt for incorporating LD as sequential
input for recommendations (Sun et al., 2019) as extracting information from financial
data (Shen et al., 2018), while being relatively fast to train (Chung et al., 2014). AA
methods require modifying an algorithm for implementing a MLC problem, in this case
implemented through multi-label random forest, multi-label FNN, and multi-label GRU.

Table 4.4 summarizes the models used and the respective hyperparameters evaluated
for each approach. The information is grouped by method, i.e. BR and CC for PT, plus
AA. The last column displays a check-mark if the input data is sequential.

Table 4.4. Hyperparameter tuning summary for MLC

Method Algorithm Hyperparameter Values Evaluated Sequential
Problem Transformation AB iterations 100
Binary Relevance max depth 15
FNN learning rate 0.05, 0.01, 0.1
NB var smoothing le—9,le—7,1e—5,1e — 3,0
RF mtry \/ features
N of trees 100
node size 5
XGB tree method exact, approx, hist
Problem Transformation AB iterations 100
Classifier Chains max depth 15
FNN learning rate 0.05, 0.01, 0.1
NB var smoothing le—9,le—7,1e—5,1e — 3,0
RF mtry \/ features
N of trees 100
node size 5
XGB tree method exact, approx, hist
Algorithm Adaptation FNN learning rate 0.05, 0.01, 0.1
GRU Epochs 25, 50, 100, 150, 200 v
Batch size 200, 500
Layers 1,3,5
Learning rate 0.05, 0.01, 0.1
Dropout 0, 0.2
Bidirectional True, False
RF mtry \/ features
N of trees 100
node size 5
XGB tree method exact, approx, hist

As evidenced in this table, GRU is the only model which can handle sequential data.
GRU are a type of RNN which have (i) successfully been used for recommendations (Sun
et al., 2019), and (ii) proven useful when extracting information from a vast array of
financial sequences of data (Shen et al., 2018). Further, GRU has been shown to perform
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as well as other more complex models, with the advantage of being faster to train (Chung
et al., 2014).

GRU is faster to train due to its simplified structure, which uses the same mechanism
to update and discard information, rather than a separate one for each task (Chung et al.,
2014). These mechanisms are referred to as a reset gate and an update gate, as illustrated
in Figure 4.3. Both gate mechanisms use the inputs from the current timestep (), as
well as the previous hidden state (h;_1), to update the weights used to learn a given task.

he—q he

Hidden
Reset Update state

gate ™ gate [® candid
ate
X ]

Figure 4.3. Schematic representation of a GRU layer

We use GRU layers to process sequential features, while static features are fed into a
dense layer. The outputs from these layers are concatenated to produce the probability
of acquiring each product per customer. The output follows the AA approach, running a
single model to produce a vector of probabilities as an output. BR and CC approaches
are excluded as computationally they are much more costly and time consuming. Figure
4.4 shows a schematic representation of how the GRU architecture has generally been
constructed.

Y

Concatenate

GRU layer

Y

OO OO

Figure 4.4. Schematic representation of GRU for recommendations

4.3.4 Traditional RS

The RS we deployed are item-based (IBCF) and user-based (UBCF) collaborative filter-
ing, association rules (AR), popular recommender (PR) method, and the random rec-
ommender (RR). The first approach recommends items similar to a user’s previously
purchased items, the second recommends items based on other similar users, the third
determines sets of items that are closely correlated in a transaction database (Aggarwal,
2016), the fourth simply recommends the most popular items, and the fifth recommends
random items.

The collaborative filtering methods require the use of the Jaccard index, apt for bi-
nary product purchase data, to calculate similarities on which to base recommendations
(Geuens et al., 2018). This measure seeks to match the positive events, or product pur-
chases, between user I and user J, rather than a rated preference. Thus, the Jaccard
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index is appropriate in a financial context. The measure is defined as:

) InJ
Sszaccard(]a J) = :I N J}

Finally, Table 4.5 summarizes the hyperparameter evaluated for each RS technique,
under a 5x2-fold cross-validation setup (Dietterich, 1998).

Table 4.5. Hyperparameter tuning summary for RS

Technique Hyperparameter Values Evaluated
AR g 2,3,4,5

n 2,3,4,5,6,7,8

s 0.01, 0.05, 0.1

c 0.6, 0.7, 0.8, 0.9
IBCF g 2,3,4,5

n 2,3,4,5,6,7,8

k 10, 20, 30, 40, 50
PR g 2,3,4,5

n 2,3,4,5,6,7,8
RR g 2,3,4,5

n 2,3,4,5,6,7,8
UBCF g 2,3,4,5

n 2,3,4,5,6,7,8

nn 25, 50, 75, 100

4.3.5 SHAP for Interpretable Results

SHAP is an approach based on game theory, created for interpreting a machine learning
model output. This approach is model agnostic, thus assigning an importance to each
feature used regardless of the model. These importance values will be positive for features
with a positive impact on a prediction, while those with negative values will have a
negative impact (Lundberg and Lee, 2017). A SHAP value is calculated as follows:

P o
¢ =% > (9 (Mj) —9g (x_j))

k=1

where g(z77;) is the prediction for x, with a random number of feature values.

The benefits of this technique are its ease of interpretability and flexibility. We take
advantage of these characteristics by aggregating the resulting SHAP values to implement
a generalizable analysis by product type. The products are grouped, as per the financial
services provider practices, into the following categories: credit, insurance, savings, and
services. Then, the absolute SHAP values for each feature can be summed to produce its
global importance within a product category. To account for the different category sizes,
the global importance for each category is divided by the number of products present.
The number of products per category is displayed on Table 4.6.

The features can either be static or sequential, the latter which can be further clas-
sified into recency, frequency, and monetary features for each product category. Further,
sequential features can also be examined by timesteps, revealing temporal patterns.
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Table 4.6. Product categories

Product category Product names Count
Credit C02, C07, C08, C09 4
Insurance A01, A02 2
Savings E02, E04, E05, E06 4
Services S01, S02, S03 3

Total products: 13

4.4 Experimental Setup

We perform an exhaustive comparison of different approaches for producing personalized
recommendations. These comparisons are structured, following the previously outlined
research questions, for which we (i) create matrices of items and users to use as fea-
tures for traditional RS approaches, (ii) contrast different featurization techniques, using
several MLC approaches with different configurations, (iii) evaluate the incorporation of
LD through DL state of the art models, and (iv) assess the interpretability of LD for
recommendations, from the best performing DL model.

All models are tuned using a 5x2-fold cross-validation setup (Dietterich, 1998). This
requires splitting the data set 5 different times into two non-overlapping halves, i.e. train-
ing and test data sets. This ensures all models are trained and tested over all observations.

Therefore, the reported evaluation metrics correspond to the mean out of the 10 values
from the 5x2-fold cross-validation, with the objective of ensuring the same training and
test samples are used across all models. Commonly used evaluation metrics, including
F1 and G-mean, are deployed for 5x2-fold cross-validated evaluation in line with Bogaert
et al. (2019).

Further, statistical significance tests are implemented to confirm the results, a non-
parametric Friedman test, a Bonferroni-Dunn post hoc test, and Wilcoxon signed ranks
test to compare different classifiers against the best performing algorithm (Demsar, 2006).

4.5 Results

4.5.1 Does the use of various RS methods lead to significantly distinct levels of perfor-
mance?

The previously defined RS approaches are compared, using user and item matrices as
input, by predicting new product acquisitions for the next year. The results are displayed
on Table 4.7, with their respective standard deviation values and the best performing
metrics in bold.

Table 4.7. 5x2 cross-validation mean results for traditional RS

Algorithm F1 G-mean

AR 39.784 + 0.015 41.553 £ 0.016
IBCF 40.824 + 0.057 42.648 + 0.061
PR 8.522 4+ 0.054 8.795 + 0.057
RR 5.564 + 0.089 5.791 + 0.096

UBCF 41.116 + 0.044 42.970 + 0.047

The results show that UBCF performs better on both F1 and G-mean metrics, sug-
gesting a better ability to identify items that are both relevant and correctly identified as
being likely purchases. IBCF and AR perform closely behind to UBCF, while PR and RR
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perform vastly lower. This suggests that popular items are unlikely to be repurchased, in
line with the financial services context.

To assess whether these differences are significant, a Friedman test is applied. The test
indicates significant differences across approaches for both F1 (y% = 40.000,p < 0.000)
and G-mean (x% = 40.000,p < 0.000). Thus, we proceed with a Bonferroni-Dunn post
hoc test, to assess whether all algorithms exhibit significantly different performances.
These results are available in Figure 4.5 for both F1 and G-mean, representing the average
rank for each RS approach across all cross-validation folds. Each plot displays the RS
approaches represented by a horizontal line, starting at their respective average ranking
value, with a length equal to the critical difference value at a 95% confidence value, or
2.498 for both metrics (Bogaert et al., 2019). Further, a vertical line on each plot indicates
the critical difference value added to the average ranking of the best performing model.
Thus, the vertical line serves as a threshold, where an average rank beyond this line differ
significantly from the best performing approach, UBCF. Further, horizontal lines that
overlap indicate no statistically significant differences in performance. The figures show
that the ranking of the algorithms is sustained across metrics. Moreover, UBCF performs
significantly different from PR, and RR, but not from IBCF or AR for both metrics.

UBCF UBCF ——————
IBCF _ IBCF _
AR _ AR _
PR _ PR _
RR RR
1 2 3 4 5 6 7 1 2 3 4 5 6 7
(a) F1 (b) G-mean

Figure 4.5. RS Bonferroni-Dunn post hoc tests, for a 95% confidence level

4.5.2 Does the utilization of various featurization methods for longitudinal data yield sig-
nificantly different levels of performance?

We employ different featurization techniques to uncover the best performing MLC models
under different configurations, including AA, BR, and CC methods. For each configura-
tion, the highest scoring model and featurization combination is selected to be compared
against baseline versions, which use the last available information with no additional
transformation. We exclude DL models for this research question, as they can incorpo-
rate LD as a sequential input with no featurization required.

We first display the results by metric and featurization approach, where Table 4.8
contains the F1 outcomes and Table 4.9 those for G-mean. Both tables summarize the
results by algorithm (Algo.), featurization approach (Feat.), and best MLC configuration,
i.e. AA, BR, or CC. Within Feat., we compare the use of previously aggregated data
against the use of data without aggregation. Therefore, with these results we evaluate
whether data transformation improves the predictive performance of featurization. Lastly,
the best performing results for each MLC are compared against a baseline on Table 4.10,
using the data without aggregation or featurzation as input. On all tables, the results
displayed are the mean from the 5x2 cross-validation approach, with the best results
shown in bold. For simplicity, the results are discussed using m s ,) as an abbreviation,
where m refers to the model name, f to the type of featurization used, and a to the
aggregation form. For instance, AB(pca, a) refers to an AB model with PCA featurization
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and aggregated data, while AB sy p n4) is an AB model with SVD featurization and no

aggregation.

Table 4.8. 5x2 cross-validation mean F1 results for MLC algorithms with featur-

ization

F1 (No Aggregation)

F1 (Aggregation)

Algo. Feat. AA BR CC AA BR CC

AB PCA - 53.522 +0.015 52.588 +0.014 - 53.540 +0.016  52.501 +0.022
FNN PCA 56.074 +0.009 - - 56.074 +£0.009 - -

NB PCA - 52.152 +0.015 53.078 +0.014 - 52.115 +0.014  53.021 +0.012
RF PCA 53.140 +0.010 52.388 +0.016 50.001 +0.010 53.213 +0.014 52.530 +0.010  49.775 40.020
XGB PCA 53.568 +0.014 53.568 4+0.014 52.359 40.008 53.609 +0.008 53.609 +0.008 52.373 +0.018
AB SVD - 53.657 +0.014 52.507 +0.015 - 54.715 +0.016 52.930 +0.014
FNN SVD 56.075 +0.009 - - 56.074 +£0.009 - -

NB SVD - 52.355 +0.017 53.080 +0.016 - 52.196 +0.018 52.939 +0.013
RF SVD 53.094 +0.017 52.442 40.022 49.922 +0.014 53.220 +0.013 52.572 +0.014 49.886 +0.012
XGB SVD 53.525 +0.018 53.505 +0.018 52.236 +0.010 53.652 +0.014 53.652 +0.014  52.324 +0.020

The F1 results show that the best performing model under AA configuration corre-
sponds to FNN gy p ya). This result is an exception as in general, MLC models under
AA configuration tend to perform better for both SVD and PCA when incorporating ag-
gregation. Under BR configuration, the best result is also achieved with SVD, but using
AB with aggregated data (AB(syp,4)). Further, NB performs better with no aggregation
for both SVD and PCA, although all other MLC models increase their performance with
aggregation. CC performs best for NB, again with SVD but with no aggregated data
(NB(svp,na)). Moreover, RF under CC performs better with no aggregation on both
featurization approaches, but the scores are lower than the previously analyzed configu-
rations, which indicates the possibility of overfitting. Similar conclusions can be drawn
for AB and XGB with CC possibly resulting in overfitting. NB consistently performs
better under CC and without aggregation. Lastly, FNN(syp ny4) results in the highest
overall F1 score.

Table 4.9. 5x2 cross-validation mean G-mean results for MLC algorithms

G-mean (No Aggregation) G-mean (Aggregation)

Algo. Feat. AA BR CC AA BR CC

AB PCA - 55.858 +0.015 55.150 +0.014 - 55.870 +0.016  55.064 +0.022
FNN PCA 58.421 +0.008 - - 58.421 +0.008 - -

NB PCA - 54.489 +0.014 55.725 +0.014 - 54.441 +0.014  55.647 +0.012
RF PCA 55.503 +£0.010 54.738 4+0.016 52.569 40.011 55.579 +0.014 54.875 +0.010  52.336 40.020
XGB PCA 55.913 +0.014 55.913 +0.014 54.994 +0.009 55.950 +£0.007 55.950 +0.007  55.007 +0.019
AB SVD - 55.988 +0.014 55.061 +0.015 - 57.027 +0.017 55.537 +0.014
FNN SVD 58.422 +0.008 - - 58.421 +0.008 - -

NB SVD - 54.691 +0.017 55.720 +0.016 - 54.521 +0.018 55.558 +0.013
RF SVD 55.451 4+0.016  54.797 +£0.022 52.487 +0.014 55.579 +£0.013 54.929 +0.014  52.455 +0.012
XGB SVD 55.866 +0.019 55.846 +0.018 54.861 +0.010 55.989 +0.014 55.990 +0.014  54.957 +0.022

Table 4.9 reveals that G-mean follows the same patterns as seen with F1, showing
that the results are stable across metrics. Therefore, once again the best result for AA
configuration is achieved by FNN gy p y4). Similarly, the best result for BR is also stable,
with AB(gvp,4) being the top performer. Lastly, the best CC result is still from NB
with no data aggregation, but with PCA instead of SVD featurization (NB(pca, na)).
Overall, when available, AA generally performs at least as well as BR, while CC shows a
propensity towards overfitting.
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To further examine the MLC performances, we apply a Friedman non-parametric
test. Significant differences are found among MLC models under AA configuration for
F1 (x% = 80.000,p < 0.000) and G-mean (x% = 80.000,p < 0.000), under BR for F1
(x% = 110.430,p < 0.000) and G-mean (x% = 109.920,p < 0.000), and under CC for
F1 (x% = 120.000,p < 0.000) and G-mean (x% = 118.830,p < 0.000). A Bonferroni-
Dunn test with a 95% confidence level is implemented for each configuration per metric,
with graphic representations available on 4.8.2. Under AA, FNN gy p y4) performs better
than other AA algorithms by 3.30% on average, while the Bonferroni-Dunn test reveals
statistically significant performance differences against RF and XGB for both metrics.
For BR configuration, AB(sy p, ) outperforms other BR algorithms by 3.10% on average,
while having statistically significant differences in performance for both metrics against
RF and NB, but not XGB. For CC, NB(pca,na) and NB(syp nay are tied in terms of
ranking for both metrics. However, both have statistically significant results against AB,
XGB and RF. Further, NB(pca na) performs better than other CC approaches by 2.18%
against 2.17% for NB(svp,na)-

For further analysis, the best performers for each configuration are compared against
their respective baseline versions. Specifically, FNN gy p n4) is used for AA configuration,
AB(svp,a) for BR configuration, and NB(pca nay for CC, while each baseline version
uses the unaltered data as input. These results are displayed on Table 4.10, with the
best scores per metric shown in bold. The remaining baseline results are available on
4.14. The results show that all configurations perform better with featurization across
metrics. On average, AA outperforms its baseline version by 1.99%, BR by 1.51%, and
CC by 7.08%. Further, a Friedman test confirms statistically significant differences in
performances for F1 (y% = 50.000,p < 0.000) and G-mean (x% = 50.000,p < 0.000),
when comparing featurized algorithms against the baseline versions.

Table 4.10. 5x2 cross-validation mean results for best MLC algorithms and base-
line versions

F1 G-mean
Config. Featurization  Featurized Baseline Featurized Baseline
AA FNN(syvp,na) 56.075 +0.009 54.960 +0.006  58.422 +0.008 57.307 +0.005
BR AB(sv D, 4) 54.715 +o0.016  53.891 +0.012  57.027 £0.017 56.192 +0.012

CC NB(pca,na) 53.078 +0.014 47.256 +0.074  55.725 +0.014 54.713 +o0.010

Additionally, Figure 4.6 shows the Bonferroni-Dunn test results for a 95% confidence
level, with a critical difference value is of 2.782 . The best performing approach, FNN
with featurization, is significantly different from all baseline approaches. Further, FNN
performs better than AB with featurization by 2.47% and by 5.24% against NB with
featurization, when averaging for both metrics.

FNN| — — Featurized NN —— — Featurized
AB _— A8 _
NB I — NB I —

FNN{ e FNN{ e

L= A8

NB s L
1 2 3 4 5 6 7 &8 29 1 2 3 4 5 6 71 8 9

(a) F1 (b) G-mean

Figure 4.6. MLC Bonferroni-Dunn post hoc tests, for a 95% confidence level
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From these results we draw several conclusions. First, we observe that SVD generally
performs better than PCA, particularly with no aggregation. Thus, further research can
further optimize the incorporation of longitudinal data into MLC algorithms. Second,
CC is a likely source of overfitting, as AA and BR consistently perform better, with the
exception of NB. Third, AA configuration with FNN consistently outperforms other MLC
algorithms. This is in line with previous research, where FNN achieves higher predictive
performance, with reduced bias on the input data (Borchert et al., 2022).

4.5.3 Does the incorporation of longitudinal data using state-of-the-art DL models signifi-
cantly outperform other recommendation approaches?

We compare a tuned DL model against the best performing algorithms from the previous
results, as displayed on Table 4.11. The DL model, in the form of GRU, is the only
one able to process sequential data. Further, we use an asterisk to indicate statistically
significant results, using a Wilcoxon signed ranks test at a 95% confidence level.

Table 4.11. 5x2 cross-validation mean results for GRU and best performing MLC
and RS algorithms

Approach Algorithm Featurization F1 G-mean

DL (AA) GRU None 57.218* +o0.021 59.707* +0.020
MLC (AA) FNN SVD 56.075% £0.009 58.422* +0.008
RS UBCF None 41.116* 40.044 42.970% +0.047

By performing parwise comparisons for all algorithms, we find statistically significant
differences for both metrics between GRU and FNN, as well as between GRU and UBCF.
Thus, UBCF is outperformed by both GRU and FNN with statistically significant dif-
ferences in performance. This is expected, due to the complexity of financial services
purchase patterns and the additional data processed by MLC and DL models. Addition-
ally, GRU also outperforms FNN, thus showing GRU is able to harness sequences of data
to achieve optimal performance. A possible reason for this is that GRU, unlike other rec-
ommender algorithms used, has been particularly developed for learning from sequences
of data. On the other hand, the featurization algorithms used were developed for data
reduction without the consideration of temporal patterns, which could explain a loss of
additional predictive information. Furthermore, consumer behavior within the financial
industry is relatively sparse, with the purchase of new products remaining relatively rare.
As such, the incorporation of time-dependent data may pose a larger challenge when ex-
tracting relevant information for MLC algorithms than for GRU. Specifically, the ability
of GRUs to maintain a hidden state that can capture long-term dependencies in the data
allows them to carry information across timesteps (Chung et al., 2014), information which
is not taken into consideration by MLCs.

Finally, we retrain the same GRU model to produce recommendations on a monthly
basis, using the same training data as before. Figure 4.7 contains plots for F1 and G-mean,
showing the respective 5x2 CV scores per month, where month 1 is the first timestep of
the dependent period. A horizontal line indicates the best-performing values from Table
4.11, where bars with a superior performance are displayed in blue, with the objective of
analyzing the performance changes in time. The plots show that monthly performance
is often lower than the scores previously reported. However, between months 6 and 8,
the performance improves. This suggests that recommendations produced in a sequential
manner may have an optimal length, which we propose as a future avenue of research.
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Figure 4.7. Mean absolute SHAP values by product category

In sum, we find that GRU provides the best performing recommendations, for both F1
and G-mean, with statistically significant differences. Therefore, the DL model outper-
forms both MLC and RS approaches. Moreover, we explore the use of GRU to produce
sequential recommendations, which points towards the possibility of an optimal length.
This requires further research, as sequential recommendations have been reported to suffer
from decreased diversity (Zhang et al., 2020).

4.5.4 Can relevant features be identified for product recommendations in the financial
services industry?

We examine the features using SHAP values and the top performing model. We group the
products by type, as defined on Section 4.3.5, for generalizable conclusions. The original
SHAP plots before aggregation are displayed on 4.8.2.

First, the absolute SHAP values for all features are added. For a fair comparison, the
mean is calculated over the number of distinct products per category. Then, the SHAP
values are grouped, as shown on Figure 4.8, into (i) static and sequential type features, to
assess the impact from each feature type, and (ii) timestep, to uncover temporal patterns
within the sequential features.

Figure 4.8a shows the same pattern emerges across all product categories, with se-
quential features far surpassing the overall impact of static features. Static features show
similar magnitude in their impact across product categories, close to 0.04 out of a maxi-
mum of 1. For sequential features, the impact is higher for Insurance products, followed
by Services, Credit, and Savings. Product categories with a higher sum of absolute val-
ues, such as Insurance, can be explained by more features impacting both the purchase
and non-purchase of a product, resulting in a higher overall magnitude.

Figure 4.8b shows different temporal patterns for each product category. For example,
Insurance products show a relatively stable impact across timesteps. Both Credit and
Savings products evidence higher values around the middle timesteps. Finally, Services
shows a trend of increasing impact for more recent timesteps. These patterns show
customer behavior shifts in time, captured by RFM features, depending on the product
suscribed. This suggests action is taken by customers before a new product purchase and
may be worth considering when implementing marketing campaigns.
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Figure 4.8. Mean absolute SHAP values by product category

To further identify the features producing an impact towards recommendations of
a particular product category, we examine the top contributors per type, i.e. static
and sequential. Since sequential features reflect the historical RFM values for the same
products as the output, we apply the same grouping strategy. Thus, we analyze the
relation between the different product categories in terms of magnitude. Nonetheless,
additional details regarding the directional impact are available on 4.8.2.

Credit products, depicted in Figure 4.9a, are primarily influenced by the recency and
frequency of Savings products, followed by the frequency, monetary, and recency features
for Insurance products. Monetary features for Savings, Services, and Credit have the
least impact as sequential features. Thus, the quantity of Savings products exhibits
a stronger correlation with Credit products than any monetary values across different
product categories. The length of the relationship and the age contribute the most
among all static features, although they are all less impactful than sequential features.
Consequently, ownership of Savings products may be crucial information when targeting
customers for Credit solicitations.

Similarly, sequential features have a bigger impact than all static features for Insur-
ance products, on Figure 4.9b. These are mostly impacted by the monetary value and
frequency of other Insurance products, followed by the frequency of Savings products.
The lowest impact from sequential features is exhibited by the monetary features from all
other product categories. This suggests that customers already in possession of Insurance
products, particularly those with may be noteworthy targets.
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Figure 4.9. Mean Absolute SHAP Values

Insurance products also are among the most effective for recommendations of both
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Savings and Services, seen on 4.10. In particular, Insurance frequency and monetary
features appear as the most impactful for Savings products. In the case of Services
products, monetary features for Insurance products and recency for Savings products are
at the top.
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Figure 4.10. Mean Absolute SHAP Values

In sum, all sequential features have a higher impact than static features, across prod-
uct categories. Furthermore, Insurance products features, particularly frequency and
monetary data, have a high impact across product categories. Finally, behavioral pat-
terns differ by product category. Overall, these findings signal that customers that invest
in insurance are good candidates to target for cross-selling initiatives, while marketing
campaigns could benefit from taking into account customer behavior longitudinally.

4.6 Conclusions and Future Research

We incorporate data from the financial industry to evaluate different RS. The results
show that longitudinal data does improve performance when using a DL model. In
addition, SHAP values reveal that sequential features far outweigh static features in terms
of model output impact, across product categories. Moreover, different temporal patterns
emerge per product category, confirming sequential features indeed contribute valuable
information for recommendations. Finally, we find Insurance product ownership has a
strong impact on other product category recommendations, which reveals interesting
information for marketers and decision-makers, especially for resource allocation and
customer targeting.

Therefore, we offer novel contributions, valuable for both the financial services indus-
try and RS research. First, the comparison of several MLC techniques and RS, including
state of the art DL models, in a real life scenario. Second, the comparison of different
featurization techniques to assess if the incorporation of LD improves MLC performance.
Third, the evaluation of LD as sequential input, through the use of DL models. Fourth,
the use of interpretability techniques for managerial insights. Overall, these contribu-
tions uncover a better understanding on how to preprocess sequences of historical data
for recommendations in the financial services industry.

We also describe limitations that may be of interest for future research. Firstly,
other avenues for incorporating LD are yet to be explored, for instance through the use
of additional featurization approaches or incorporating diverse DL models. Secondly, a
broader array of predictor features could have resulted in better perfoming MLC models
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and additional managerial insights. As examples, the incorporation of marketing actions
by the financial services provider, as well as customer responses, could further enrich
the model results and overall analysis. This data is particularly relevant to consider
longitudinally, especially to improve the tailoring of campaigns to each user in time.
Thirdly, the incorporation of textual data related to product descriptions could have
allowed for a content-based RS and the evaluation of different methodologies for text
embeddings. Examples of textual data include brief product descriptions, such as that
found on a provider’s website, or longer textual information, such as that from a contract.
The performance of content-based RS is still uncertain within financial services, but it
is worth researching to further uncover insights for cross-selling strategies. Fourthly, an
empirical experiment, where the DL model results are used to serve the actual clientele
of the financial services provider, would assess its ability to improve cross-selling efficacy,
as well as prove its broader generalizability. Finally, previous research has reported
that recommendations eventually result in a decrease in the diversity of items proposed
(Zhang et al., 2020; Ferraro et al., 2020; Quadrana et al., 2017). Thus, a pending avenue
of research would be to assess the impact of the aforementioned data sources on improving
the diversity of recommendations, or of uncovering an optimal length of recommendations.
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4.8 Appendix
4.8.1 Appendix A. Additional Data

Appendix A.1. Summary Statistics Table 4.12 contains summary statistics on the distinct
number of products owned. The first row, no restrictions, shows product ownership
information for all customers. The second row summarizes ownership for clients with 5
or more distinct products. The table shows that with no restrictions, close to 25% of
customers would not receive relevant recommendations when using traditional RS.

Table 4.12. Summary statistics for distinct number of products owned per cus-
tomer

Distinct products Min Q1 Median Mean Q3 Max

No restriction 1.00 5.00 7.00 6.89 9.00 18.00
>5 5.00 6.00 7.00 7.79 9.00 18.00

4.8.2 Appendix B. Additional Results

Table 4.13. Summary for dimensionality reduction

Distinct products Min Q1 Median Mean Q3 Max

No restriction 1.00 5.00 7.00 6.89 9.00 18.00
>5 5.00 6.00 7.00 7.79 9.00 18.00

Appendix B.1. PCA and SVD dimensionality

Appendix B.2. MLC Bonferroni-Dunn tests This section displays graphic representations
for the Bonferroni-Dunn test with 95% confidence level for MLC algorithms for both
metric on a configuration level. As before, a vertical line on each plot indicates the critical
difference value added to the average ranking of the best performing model. For each
configuration, the comparison includes algorithms using different featurization methods.

Figure 4.11 shows that for each model, no significant differences in performance are
detected among the featurization approaches for both metrics. However, XGB and RF,
regardless of the featurization approach, are performing significantly different from the
best performing FNN, which is SVD with no aggregation for F1 (FNN gy p n4)), and FNN
with PCA and aggregation under G-mean (FNNpca 4y). However, FNN gy p ya) better
than all other AA approaches by 3.30% on average, compared to 3.29% for FNNpca a).
As such, we continue further analysis using FNN gy p v 4).
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Figure 4.11. Bonferroni-Dunn test for AA configuration

Figure 4.12 reveals that in general there are no significant differences in BR perfor-
mance between AB and XGB. Nonetheless, RF and NB exhibit statistically significant
differences in performances from the best approach, which is AB with SVD and aggrega-
tion for both metrics. This model outperforms other BR approaches by 3.10% on average
and we continue its use for additional insights.
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Figure 4.12. Bonferroni-Dunn test for BR configuration

Figure 4.13 reveals that in general there are no significant differences in CC perfor-
mance between NB with different featurization approaches. Additionally, NB with SVD is
tied in terms of top ranking with NB with PCA. Nonetheless, AB, XGB, and RF exhibit
statistically significant differences in performances from both of these models for both
metrics. However, when calculating average difference in results, NB with PCA performs
higher by 2.18%, compared to 2.17% for NB with SVD. Thus, further analysis is per-
formed using NB with PCA. Finally, the overall ranking for NB under CC configuration
improves vastly when compared to NB under BR, which suggests that the dependence of
labels modeled in CC positively contributes to NB performance, while negatively affecting

AB, RF, and XGB.
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Figure 4.13. Bonferroni-Dunn test for CC configuration

Overall, the top algorithms under AA and CC configurations exhibit statistically sig-
nificant performance differences from other algorithms, with the exception of BR. Further,
results are consistent across metrics, with some minor differences in the ranking order.
However, no clear patterns within featurization emerge.
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Appendix B.3. MLC Baseline Results This section contains baseline results for all MLC,
displayed on Table 4.14 algorithms. These are obtained from using the data without
aggregation or featurization, using each monthly snapshot as an additional feature. As
before, the results stem from the 5x2 CV mean values, with the best performance per
metric and configuration shown in bold text.

Table 4.14. 5x2 cross-validation mean results for ML.C algorithms without featur-

ization
F1 G-mean
Algo. AA BR CC AA BR CC
AB - 53.891 +0.012 52.085 +0.010 - 56.192 +0.012 54.713 +0.010
FNN 54.960 +0.006 - - 57.307 +0.005 - -
NB - 47.254 +0.074  47.256 +0.074 - 49.573 +0.075  49.575 +0.075

RF 52.046 +0.013  51.597 4+0.011  49.260 +0.008 54.411 +0.013  53.928 +0.011  51.827 +0.007
XGB 52.133 £0.009  52.133 +£0.009  50.887 +0.012 54.484 +0.009 54.484 +0.009  53.507 +0.012

Appendix B.4. SHAP Values per Product This section contains summary plots for SHAP
values per product, for the best performing GRU model. First, we present one figure
for static features and one figure for sequential features for each product. Each figure
contains the top 10 features with most impact on the model output. Second, we include
one figure showing the total SHAP values per product, for each of the 12 timesteps, where
1 is the most recent timestep. This allows a visual understanding of the changes in time,
from the sequential features impacting the model output. For all plots the values are
displayed in descending order, showing the most impactful features at the top. These
values can be aggregated to construct the figures presented in Section 4.5.4.

o
lor_days - e ot TR e e frequency_A09 —— 4 - et —— -
age . -+~ frequency_E03 -~—-+ P ° i
commune ~-———+——- - monetary_A02 -~~—-—4~ j -. ) B
use_phone —’- frequency_C09 . ---——.—-- ) - —— -
sex_ind —’—- recency_E05 .._+_. 5 - o et G —— -
owner_ind -.— frequency_A12 - --—+_ .. 2 e T 2
optin_email —+ monetary_AOL = = _-_._.....- .. B e T R =+ &
.ind c——f— frequency_E02 ——— - © - e e -
n B e A
lib_ind —’—- frequency_E04 .. -—.—--- - , -
hdlg_ind — recancy_C09 e — s K ‘. -
—0.100-0.075-0.050—0.025 0.000 0.025 0050 0075 0100 -08 -06 -04 -02 0.0 04 06 08 -0.4 -02 00 02 04 Lo
SHAP value (impact on model output) SHAP value (impact on model output) SHAP value (impact on model output)
(a) Static features (b) Sequential features (¢) Timesteps

Figure 4.14. SHAP values for insurance product A0O1

sex_ind -“—- monetary_A02 - ~-*—-- - - 6 - —e— -
commune -—-—+—-— monetary_A09 . ----—-‘— . 10 : —‘_“”
lor_days  + =+ —+—- . frequency_E03 -*—- . z . ) - ._"
use_phone '—.— frequency_C02 "-———’—~ - R e —— .
age  * --—+—--— frequency_E0S . ._*_...... 2 . s L H
owner_ind e recency_£04 ———— u ———-
coi. i - recency 501 e e ——. :
use_email —.—-—-— recency_s02 +—- 7 et e
hdg_ind . -—.— frequency_E£02 - —+—- ° —.—'_. .
ind ——— - . ) ,"_.
-0.06 -0.04 -0.02 000 0.02 0.04 006 008 —0.6 —0.4 -0.2 0.0 0.2 04 06 -04 -02 00 02 04 06 Lo
SHAP value (impact on model output) SHAP value (impact on model output) SHAP value (impact on model output)
(a) Static features (b) Sequential features (¢) Timesteps

Figure 4.15. SHAP values for insurance product A02
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Figure 4.18. SHAP values for credit product C08
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Figure 4.21. SHAP values for savings product E04
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Figure 4.26. SHAP values for services product S03
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CHAPTER D

Conclusions

5.1 Conclusions

5.1.1 Conclusions générales

L’objectif principal de recherche de cette thése est de réaliser des innovations axées sur les données dans
le secteur des services financiers. Trois principales voies d’innovation ont été exposées dans le chapitre
1: (i) incorporation de nouvelles sources de données, (ii) l'application de méthodologies de pointe, et
(iii) lapplication de techniques d’explicabilité. La recherche se compose de trois études, trouvées des
chapitres 2 a 4, qui contribuent a ces voies.

Innovation a travers des sources de données novatrices. Les trois études utilisent des sources de don-
nées novatrices et emploient des techniques d’explicabilité pour mieux comprendre leur impact. Globale-
ment, chaque source de données est sélectionnée pour fournir des perspectives différentes de I'industrie
financiere, comme représenté dans la Figure 1, déployant ainsi des applications sous différents angles.
La nouveauté réside également dans I'utilisation de données comme entrée séquentielle avec des modeles
robustes pour différentes taches prédictives. La premiére étude prédit les prix du pétrole en incorporant
des données textuelles provenant des tweets de Donald Trump pendant sa présidence. La deuxiéme
étude utilise des informations démographiques et comportementales des clients, sous forme de données
transactionnelles, pour prédire 10 événements de vie distincts, dont certains n’ont pas été précédemment
étudiés. La troisieme étude introduit une nouveauté dans 'industrie des services financiers en utilisant
des informations sur les produits longitudinales sous forme de caractéristiques RFM pour construire un
systéme de recommandation.

Innovation a travers la méthodologie. Cette theése explore trois taches prédictives, en employant des
modeles d’apprentissage profond (DL) sous forme de RNN pour leur efficacité dans le traitement de
données longitudinales en tant qu’entrée séquentielle. Les chapitres 2 et 3 utilisent LSTM, tandis que
le chapitre 4 emploie GRU. Bien que la sélection de modele suive la littérature existante, I'innovation
réside dans les architectures globales, capables de traiter plusieurs sources de données et qui n’ont pas
été précédemment appliquées a leurs domaines respectifs. Dans le chapitre 2, LSTM traite a la fois des
données textuelles et numériques, le chapitre 3 applique LSTM aux données statiques et séquentielles, et
le chapitre 4 utilise GRU, également pour des entrées statiques et séquentielles.

Innovation a travers l'explicabilité. L’utilisation de nouvelles sources de données de maniere séquen-
tielle en entrée pour les modeles DL pose un défi pour obtenir des résultats explicables et transmettre
des informations exploitables a diverses parties prenantes. Chaque chapitre emploie des techniques dis-
tinctes alignées sur son objectif spécifique. Par exemple, le chapitre 2 utilise une analyse des ruptures
structurelles pour repérer I’émergence de mots-clés lors de moments critiques dans les variations des prix
du pétrole, indépendamment de la direction. Dans le chapitre 3, les gradients intégrés mettent en lumiere
les changements dans le comportement des clients précédant les événements de vie. Le chapitre 4 utilise
les valeurs SHAP pour mettre en évidence les changements dans le comportement des clients au fil du
temps, agrégeant par catégorie de produit pour des insights plus généralisables.

En résumé, la recherche incluse dans cette theése est trés pertinente d’un point de vue décisionnel
et managérial. Les implications managériales spécifiques pour chaque étude ont déja été discutées dans
leurs chapitres respectifs. Cependant, des conclusions générales supplémentaires peuvent étre tirées.

Premierement, toutes les recherches ont été réalisées sur des données réelles, ce qui signifie que les
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méthodologies peuvent étre transférées a d’autres applications commerciales. Deuxiemement, les défis
présents dans 'industrie des services financiers, tels que ’allocation des ressources et la gestion efficace
de la relation client, peuvent étre abordés grace aux méthodologies déployées dans ces études. Ainsi, les
décideurs et les gestionnaires devraient envisager d’ajouter la modélisation DL, les données séquentielles
et les techniques d’explicabilité comme outils supplémentaires pour améliorer continuellement le ciblage
de leur clientele. Troisiemement, les chapitres 3 et 4 utilisent des données provenant de la méme source
pour la prédiction des événements de vie et les systémes de recommandation, respectivement. En tant
que tel, les gestionnaires peuvent combiner les deux approches pour améliorer encore le ciblage des clients,
I’allocation des ressources et les services personnalisés, surtout au bon moment, afin de renforcer leurs
stratégies de CRM globales.

5.1.2 Limitations et perspectives de recherche future

Tout au long de cette these, nous avons clairement énoncé les contributions de notre travail a I'innovation
axée sur les données dans l'industrie des services financiers. Chaque chapitre contient déja une section
breve sur les limitations pour une étude particuliere. Cependant, pour des raisons de complétude, cette
section discute des lacunes et des opportunités pour des recherches supplémentaires a travers les trois
études différentes.

Le chapitre 2 utilise des données textuelles des médias sociaux et des prix du pétrole retardés dans
LSTM pour prédire les prix futurs. Des insights ont été tirés a I'aide d’une analyse des ruptures struc-
turelles, mais une meilleure compréhension peut étre obtenue par différents moyens. Premierement,
différents modeles DL peuvent étre évalués, ainsi que 'utilisation de méthodes d’attribution pour des in-
sights plus détaillés. Deuxiemement, I’amélioration de I'architecture générale avec une couche d’attention
peut fournir une visualisation plus claire de I'importance des caractéristiques. Troisiemement, la trans-
formation de la cible de prédiction des prix du pétrole en une variable binaire, comme la direction des
prix, pourrait clarifier I'interaction entre les données textuelles et les prix du pétrole. Enfin, I'utilisation
d’un horizon de données historiques plus long, englobant les tweets de tous les présidents américains
précédents, peut offrir des insights généralisables sur I'impact du leadership. Ces modifications peuvent
révéler des insights complémentaires sur la maniere dont LSTM exploite le texte pour améliorer les per-
formances de prédiction des prix du pétrole, si les différences de leadership sont capturées a travers le
texte et comment elles affectent les changements de prix du pétrole.

Le chapitre 3 contribue a la littérature sur la prédiction des événements de vie, mais révele égale-
ment diverses voies pour des recherches supplémentaires. Premierement, des études supplémentaires
sont nécessaires pour évaluer les impacts de différentes méthodes d’attribution, aidant les décideurs a
comprendre les explications du modele pour la prédiction des événements de vie. Deuxiemement, le suivi
de divers comportements des clients pendant les événements de vie peut améliorer les stratégies person-
nalisées des spécialistes du marketing, favorisant un engagement client plus fort et des réponses (Han
and Anderson, 2022). Par exemple, mener des tests A/B sur des recommandations tres personnalisées
pour les clients approchant des événements de vie peut fournir des insights dynamiques sur leurs com-
portements (De Caigny et al., 2020; Cheng and Chen, 2022). Troisitmement, ’exploration de périodes
de données client historiques plus longues peut révéler des insights sur les moments clés pour déployer
des actions marketing bien a l’avance.

Le chapitre 4 contribue a la recherche sur les systemes de recommandation dans I’industrie des services
financiers, mais comporte également des limitations pour de futures considérations. Premiérement, un
éventail plus large de caractéristiques prédictrices aurait pu conduire au développement de modeles
MLC plus performants. Par exemple, des données socio-démographiques plus complexes (par exemple,
revenu, taille du ménage et niveau d’éducation), des détails de consommation plus complets (par exemple,

allocation des dépenses, canaux de distribution des ventes) et des indicateurs de satisfaction client (par
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exemple, données textuelles des plaintes des clients) pourraient enrichir davantage les résultats du modele.
Deuxiemement, les spécifications détaillées des produits, telles que les descriptions de produits sur le
site Web, auraient pu faciliter le déploiement d'un systéme de recommandation basé sur le contenu.
Malgré la performance incertaine d’un systéme de recommandation basé sur le contenu dans le cadre
des services financiers, son exploration présente un mérite substantiel, notamment dans le domaine de
la vente croisée. Il peut également étre intégré, en conjonction avec le filtrage collaboratif, dans le
cadre d’une approche hybride. De plus, 'utilisation d’approches hybrides permet également d’explorer
le probléme du démarrage & froid (Fernandes et al., 2023).

Pour les chapitres 3 et 4, une voie de recherche a venir consiste en une expérience empirique ou le
modele DL est appliqué a la clientele réelle du fournisseur de services financiers. Cette approche vise a
corroborer si les modeles envisagés améliorent V'efficacité de la vente croisée. De telles expériences sont
tres complexes, car elles nécessitent des initiatives marketing judicieuses et une durée de test adéquate.
Cependant, des résultats réussis présenteraient un avantage clé, car on peut en déduire que nos résultats
ont une plus grande généralisabilité, et peuvent également étre pertinents pour développer des métriques
de profit importantes.

De méme, des horizons de données longitudinales plus longs et des informations sur les offres des
concurrents exposeraient le modele aux changements des conditions du marché, des cycles économiques
et des taux d’intérét qui ont également une plus grande généralisabilité. Les informations internes, telles
que les sollicitations ou les campagnes marketing, pourraient impacter 'utilisation du compte, le solde, la
rétention, et sont donc des informations intéressantes a ajouter a la recherche sur les services financiers.

Dans I'ensemble, 'inclusion de données supplémentaires pour des recherches futures conduit égale-
ment a une autre étude en suspens : la scalabilité de ces approches. Par conséquent, une derniére voie
de recherche que nous suggérons est la construction d’'un cadre clair, en fonction des contraintes de

ressources, de la disponibilité des données et de la taille de la clientéle.
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5.2 Conclusions

5.2.1 General conclusions

The main research objective of this thesis is to achieve data-driven innovations in the financial services
sector. Three main pathways to innovation were outlined in Chapter 1: (i) the incorporation of novel data
sources, (ii) the application of state-of-the-art methodologies, and (iii) the application of explainability
techniques. The research consists of three studies, found from Chapters 2 to 4, that contribute to these

pathways.

Innovation through novel data sources. All three studies use novel data sources and employ explain-
ability techniques to better comprehend their impact. Overall, each data source is selected to provide
different data-driven insights from the financial industry, as represented on Figure 1.5, thus deploying
applications from different perspectives. The novelty also lies in utilizing data as a sequential input with
robust models for diverse predictive tasks. The first study predicts oil prices by incorporating textual
data from Donald Trump’s tweets during his presidency. The second study utilizes customer demo-
graphic and behavioral information, in the form of transactional data, to predict 10 distinct life events,
some of which have not been previously researched. The third study introduces novelty in the financial
services industry by using longitudinal product information in the form of RFM features to construct a

recommendation system.

Innovation through methodology. This thesis explores three predictive tasks, employing deep learning
(DL) models in the form of RNNs for their proficiency in handling longitudinal data as sequential input.
Chapters 2 and 3 utilize LSTM, while Chapter 4 employs GRU. Although model selection follows existing
literature, innovation lies in the overarching architectures, which are capable of processing multiple data
sources and have not been previously applied to their respective domains. In Chapter 2, LSTM processes
both textual and numerical data, Chapter 3 applies LSTM to static and sequential data, and Chapter 4
utilizes GRU, also for static and sequential inputs.

Innovation through explainability. Utilizing novel data sources sequentially as input for DL models
poses a challenge for obtaining explainable results and conveying actionable insights to various stakehold-
ers. Each chapter employs distinct techniques aligned with its specific objective. For instance, Chapter
2 employs structural break analysis to pinpoint keywords’ emergence during critical moments in oil price
shifts, irrespective of direction. In Chapter 3, integrated gradients spotlight changes in customer behav-
ior preceding life events. Chapter 4 utilizes SHAP values to highlight shifts in customer behavior over

time, aggregating per product category for more generalizable insights.

In sum, the research included in this thesis is highly relevant from a decision-maker and managerial
perspective. The specific managerial implications for each study have already been discussed in their
respective chapters. However, additional general conclusions can further be drawn. First, all research
was performed on real-world data, meaning the methodologies can be transferred to other business
applications. Second, the challenges present in the financial services industry, of resource allocation and
effective customer relationship management, can be addressed through the methodologies deployed in
these studies. Thus, decision-makers and managers should consider adding DL modeling, sequential data,
and explainability techniques as additional tools to continually improve their customer targeting. Third,
Chapters 3 and 4 use data from the same source for life event prediction and recommender systems,
respectively. As such, managers can combine both approaches to further improve customer targeting,
resource allocation, and personalized services, especially at the right moment in time, to strengthen their

overall CRM strategies.
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5.2.2 Limitations and future research

Throughout this thesis, we have clearly stated the contributions of our work towards data-driven in-
novation in the financial services industry. Each chapter already contains a brief section of limitations
for a particular study. However, for the sake of completeness, this section discusses shortcomings and
opportunities for additional research across the three different studies.

Chapter 2 employs social media textual data and lagged oil prices in LSTM to predict future prices.
Insights were drawn using structural break analysis, but further understanding may be achieved through
different ways. Firstly, different DL models can be evaluated, as well as using attribution methods for
more detailed insights. Secondly, enhancing the overall architecture with an attention layer may provide
clearer visualization of feature importance. Thirdly, transforming the oil price prediction target into a
binary variable, such as price direction, could clarify the interaction between textual data and oil prices.
Lastly, using a longer historical data horizon, encompassing tweets from all previous US presidents, may
offer generalizable insights into the impact of leadership. These modifications may uncover comple-
mentary insights into how LSTM leverages text for improved oil price prediction performance, whether
leadership differences are captured through text, and how they affect oil price changes.

Chapter 3 contributes to life event prediction literature, but also reveals various paths for further
research. Firstly, additional studies are needed to assess the impacts of various attribution methods,
aiding decision-makers in understanding model explanations for life event prediction. Secondly, tracking
diverse customer behaviors during life events can enhance marketers’ personalized strategies, fostering
stronger customer engagement and responses (Han and Anderson, 2022). For instance, conducting A/B
tests on highly personalized recommendations for customers approaching life events can provide dynamic
insights into their behaviors (De Caigny et al., 2020; Cheng and Chen, 2022). Thirdly, exploring longer
historical customer data periods may unveil insights into key moments for deploying marketing actions
well in advance.

Chapter 4 contributes to research on recommendation systems in the financial services industry, but
also contains limitations for future consideration. Firstly, a broader array of predictor features could have
led to the development of more proficient MLC models. For instance, more intricate socio-demographic
data (e.g., income, household size, and educational attainment), more comprehensive consumption details
(e.g., allocation of expenditures, sales distribution channels), and indicators of customer satisfaction (e.g.
textual data from customer complaints) could further enrich the model results. Secondly, detailed product
specifications, such as website product descriptions, could have facilitated the deployment of a content-
based recommender system. Despite the uncertain performance of a content-based recommender system
within the ambit of financial services, its exploration holds substantive merit, particularly in the domain
of cross-selling. It may also be integrated, in conjunction with collaborative filtering, as part of a hybrid
approach. Moreover, the use of hybrid approaches also allow the opportunity to further research the
cold-start problem (Fernandes et al., 2023).

For both Chapters 3 and 4, a subsequent avenue for upcoming research entails the execution of an
empirical experiment wherein the DL model is applied to the actual clientele of the financial services
provider. This approach seeks to corroborate whether the envisioned models improve the cross-selling
efficacy. Such experiments are highly complex, as they require judicious marketing initiatives and an
adequate length of testing horizon. However, successful results would pose a key advantage, as it may
be inferred that our results bear broader generalizability, and may also be relevant to develop important
profit metrics.

Similarly, longer longitudinal data horizons and information from competitors’ offers would expose
the model to changes in market conditions, economic cycles, and interest rates that also bear broader
generalizability. Inner information, such as solicitations or marketing campaigns, could impact account

usage, balance, retention, and as such are interesting information to add to financial services research.
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Overall, the inclusion of additional data for future research also inevitably leads to another pending
study: the scalability of these approaches. Therefore, a final avenue of research we suggest is the
construction of a clear framework, depending on resource constraints, data availability, and size of the
clientele.
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