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A B S T R A C T

We live in a world where data is considered one of the most valuable of all resources.
Data science is a domain of research that is focused on how to (a) collect useful and
meaningful data, (b) extract key features and variables contained within the recorded
data, and (c) interpret results within a given theoretical framework to give meaning
to the findings. My PhD work applied the logic of data science to the case study of
emotional body movements in the cognitive field of affective sciences. Emotions are
at the cornerstone of human societies; they bind humans together and exert a decisive
influence on all aspects of adaptive behavior. Emotions have the ability to modulate
heart rate or even voluntary motor actions by making us move faster or slower. Most
importantly, emotions change the way we move, offering non-verbal cues on our in-
ner affective states. After an introductory part on data science (Chapter 1), I present
an overview of the theoretical frameworks applicable to the concepts of emotion and
affect (Chapter 2). Chapter 3 is a methodological section offering a guideline to the
good methods in affective sciences. More specifically, I present a step-by-step tutorial
on how to collect good data in the study of emotional body experiences in young
healthy adults, sitting or moving (questionnaires, physiological measures, kinematic
data). The final part of my PhD manuscript presents three show cases. These show
cases demonstrate that emotional body experience can be studied from different
methodological perspectives but within a common theoretical framework. The first
show case (Chapter 4) is centered around the effects of odor molecules on physiolog-
ical and affective reactions. The analysis techniques used in this show case are heart
rate, heart-rate variability analyses, as well as questionnaires (Geneva Emotion and
Odor Scale, affect grid). The second show case (Chapter 5) is centered around a com-
plete description of the effects of emotions on whole-body movements in actors. This
show case uses kinematics (e.g., speed, jerk) and time-series analysis (cross-wavelet
coherence, auto-correlations) to account for the underlying evolutionary meaning of
emotional influence on kinematics. The third and final show case (Chapter 6) is cen-
tered around the prediction of the emotional state of an actor, solely based on its
kinematics. The main analysis technique of this show case is a deep convolutional
neural network. Finally, to conclude this PhD thesis, Chapter 7 will provide a gen-
eral discussion on the results and on the perspective offered by taking a data science
perspective to help tackle new theoretical challenges, in the field of emotions.
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R É S U M É

La donnée est l’or d’aujourd’hui. La science des données est un domaine de re-
cherche qui répond au besoin de (a) collecter des informations structurées, qualita-
tives et quantitatives, (b) analyser et extraire des indices clés qui peuvent évoluer au
cours du temps, et (c) interpréter les résultats vis-à-vis d’un cadre théorique spéci-
fique dans le but de donner du sens aux donnée collectées. Mon travail de thèse s’est
attaché à la question de comment récolter des données utiles et sensées pour carac-
tériser un comportement humain émotionnel, en appliquant la logique des sciences
des données à la psychologie. Les émotions sont au cœur des sociétés humaines;
elles sont le ciment qui relie les humains et elles exercent une influence certaine sur
les aspects adaptatifs du comportement. Les émotions ont la capacité de moduler
notre rythme cardiaque ou encore nos actions volontaires en nous faisant marcher
plus vite ou plus lentement. Plus important encore, nos émotions modifient la façon
dont nous bougeons, offrant ainsi des indices non-verbaux de nos état affectifs in-
terne. Après une introduction sur la science des données (Chapitre 1), je présente
un aperçu des cadres théoriques applicables aux concepts d’émotion et d’affect (Cha-
pitre 2). Le Chapitre 3 est une partie méthodologique, offrant des conseils pour une
bonne méthodologie en sciences affectives. Plus spécifiquement, je présente un tu-
toriel étape par étape sur comment collecter de bonnes données lorsque l’on sou-
haite étudier l’expérience émotionnelle corporelle chez de jeunes adultes sains, assis
ou en mouvement (questionnaires, mesures physiologiques, enregistrements ciné-
matique). La dernière partie du manuscrit de thèse présente trois cas d’études. Ces
trois études démontrent que l’expérience émotionnelle corporelle peut être étudiée à
partir de différentes perspectives méthodologiques, au sein d’un même cadre théo-
rique. Le premier cas d’étude (Chapitre 4) est centré sur les effets des odeurs sur
les réactions physiologiques et affectives. Les techniques d’analyse utilisées dans ce
cas d’étude sont l’analyse de la fréquence et de la variabilité cardiaque ainsi que
des questionnaires (Échelle des Odeurs et des Émotion de Genève, affect grid). Le se-
cond cas d’étude (Chapitre 5) est centré sur une description la plus complète possible
des effets des émotions sur des mouvements corps entier d’acteurs. Ce cas d’étude
utilise des analyses cinématiques (e.g., vitesse, jerk) et temporelles (ondelettes, auto-
corrélations) pour rendre compte de l’avantage évolutionniste offert par l’influence
des émotions sur la cinématique corporelle. Le troisième et dernier cas d’étude (Cha-
pitre 6) est centré autour de la prédiction de l’état émotionnel d’un acteur, de par la
modélisation de sa cinématique corporelle. La technique d’analyse principalement
utilisée dans ce cas d’étude est un réseau de neurones profond convolutionnel. Pour
conclure, le Chapitre 7 présente une discussion générale sur les résultats et les pers-
pectives offertes par une approche science des données dans le but de s’attaquer à
de nouveaux challenges théoriques et appliqués dans le domaine des émotions.

Mots-clefs: affect ; cinématique ; évolution ; classification ; physiologie ; odeurs
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Part I

I N T R O D U C T I O N





1
D ATA S C I E N C E

We live in a world were data is considered one of the most valuable of all resources.
Data is used everyday to help us avoid traffic on our daily commute, tailor the out-
put of a search query, or answer a research question. In order to use these kind of
information, data has to be produced. There are an almost infinite number of ways
humans generate data. Sending an email is producing data, as the servers sending
and receiving gather a large number of information about the sender, recipient, pro-
tocols used, and so on. The amount of data produced each day is gigantic (Vopson,
2021). To help the reader put things into perspective, in 2019 the number of emails
sent each day was estimated to be around 294 billion. The number of tweets sent
each day was around 500 million. And one connected car was producing around 4

TB of data (Visual Capitalist, 2019). With an estimated growth rate of data produc-
tion of 61%, the production seems far from decreasing. Therefore, to be able to help
us avoid traffic or answer research question, it is necessary to give meaning to this
vast amount of data. This is the ultimate goal of data science.

Data science is a relatively new field of research (Cao, 2018). Data science is at
the crossroad of statistics, computer science, and domain knowledge. Many different
definition exist of what data science really is. My definition of data science is that it
is a domain of research focused on giving meaning to data. In my opinion, there is a
data-science logic that can be applied to virtually every domain of research or work.
The data-science logic starts with data collection, zooming on how to collect useful
and meaningful data. Then, data analysis considers the question of how to extract
key features and variables contained within the recorded data. Afterwards, there is
the need to interpret results within a given theoretical framework to give meaning to
the findings. Finally, all these information need to be shared with other researchers,
stakeholders, or the general population and data science involves efficient commu-
nication of the findings (e.g., creating meaningful and insightful visualization). An
illustration of my personal view of a data scientist can be found in Figure 1. To sum-
marize my point of view, a data scientist is a super-hero whose superpowers are
mathematics, computer science, domain knowledge (cognitive science in this work),
and communication.

Data science has infiltrated many domains, both in research and the private sector.
This is why the definition of data science includes "domain knowledge", in addition
to the mathematics or computer science aspects. Because data science is fundamen-
tally adaptable to any domain, data science is evolving quickly. We already see the
emergence of a diversity of jobs related to data science, such as data analyst, data
engineer, data manager, data architect, and so on. Each job is designed for specialists
with their own area of expertise. Taken together, all these specialists improve the
field of data science and help other domain benefit from data science. In the case of
psychology, data science has been used but not so much in research. Large compa-
nies (e.g., Google, Apple, Facebook, Amazon or Microsoft) already apply some kind

3



4 data science

Figure 1
Personal View of Data Science

Note. A data scientist is a super-hero with skills in mathematics (top-left), computer
science (top-right), domain knowledge (e.g., cognitive science; bottom-right), and
communication (bottom-left).

of data science for a wide variety of tasks, such as filtering their possible candidates.
The companies usually rely on machine learning models to estimate how possible
candidate would fit with their current teams, both in term of hard and soft skills. The
companies use the output of coding tests for hard skills and psychological tests, such
as the Big Five, to test soft skills (John et al., 1991). When designed correctly, coding
tests can give companies a good idea of some technical skills of candidates. Psy-
chological tests, once administered, are expected by companies to provide the same
kind of information but for the personality of the candidates. Therefore, large firms
rely on these tests and on clustering, for example, to predict if a candidate might fit
in one of their team, in terms of work ethic, relationship with other employees, or
respect of the hierarchy to name a few.

Psychology developed during the first half of the XXth century with a behavioral
point of view (da Silva Neves, 2012). Behaviorism still exists today but is no longer
dominating the field. According to behaviorists, all thought mechanisms could be
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explained by a set of laws guiding and linking human behavior to context. However,
according to da Silva Neves (2012), behaviorism have failed to explain human prob-
lem solving and understanding abilities. Therefore, another school of thought has
emerged through the second half of the XXth century with the idea that the human
mind could be simulated within an artificial system (i.e., a computer). This school of
thought has given birth to cognitive psychology. Cognitive psychology relies on the
idea that cognitive processes are described as a set of processes where information
flows between them, guided by predefined rules.

To evolve from behaviorism to cognitivism, psychology has benefited from other
disciplines. At the end of the XIXth century, the recent development in physics
and biology has allowed scientists such as Paul Broca to understand that some
parts of the brain are mostly devoted to certain abilities (e.g., speech production;
Changeux, 1983). Physicians and chemists also helped psychologists understand
that neurons transmit information through electricity and neuro-transmitters (i.e.,
chemical molecules). With this knowledge, psychologists, physicians, chemists, and
biologists began developing neurosciences. Neuroscientists have, in turn, help psy-
chologists develop new theories about brain representation of cognitive processes.
Furthermore, the very fabric of cognitive psychology was born through the help of
mathematicians and computer engineers, such as Alan Turing and John Von Neu-
mann. Psychology has a long history of working with other disciplines to evolve and
explain human functioning. I believe that data science can help psychology evolve
its theories once again.

Psychology has recently suffered from a reproducibility crisis (Baker, 2016; Fanelli,
2018; Pashler & Wagenmakers, 2012). Therefore, we are seeing an increase in the
expected number of participants from one study to the next. Especially in order to
increase the reliability of the statistical tests performed (Lakens & Evers, 2014). There-
fore, researchers are facing the need to collect more data to get a wider picture of the
human experience. Data science can provide with some help and guidelines to plan
ahead how the data will be collected, stored, and analyzed. By carefully planning and
then writing computer code, analyzing 15 participants or 500 is done with a click of
the mouse. Even the tedious phase of data collection can be improved. In Chapter
3, section 3.4, and Appendix A, I provide an example of an innovative methodology
that we developed to be able to collect data from several participants at once using
psychological questionnaires and physiological responses. This innovative method-
ology was born through a data science perspective. Data science can also help psy-
chological researchers expand their way of thinking through trans-disciplinary edu-
cation. Data science is fundamentally multi-disciplinary. It forces data scientists to
look at a problem from various angles and draw from many disciplines to find the
right solution for the current issue. There is no one-size-fits-all solution for every
problem. By drawing from different disciplines, the probability that a solution is
found increases.

To conclude this section on data science and how it can be applied to psychology,
I would like to point out how my PhD work can make a valuable contribution in
helping data science reach psychology. In this work, I present three show cases in
which the data science logic was applied alongside psychology to help push theories
further. Chapter 3 is a methodological section offering a guideline to the good meth-
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ods in affective sciences. More specifically, I present a step-by-step tutorial on how
to collect good data in the study of emotional body experiences in young healthy
adults (questionnaires, physiological measures, kinematic data). The final part of the
PhD manuscript presents three show cases. These show cases will demonstrate that
emotional body experience can be studied from different methodological perspec-
tives but within a common theoretical framework. The first show case (Chapter 4)
is centered around the effects of odor molecules on physiological and affective reac-
tions. The analysis techniques used in this show case are heart-rate, heart-rate vari-
ability analyses, as well as questionnaires (Geneva Emotion and Odor Scale, affect
grid). The second show case (Chapter 5) is centered around a complete description
of the effects of emotions on whole-body movements in actors. This show case uses
kinematics (e.g., speed, jerk) and cross-wavelet coherence analysis to account for the
underlying evolutionary meaning of emotional influence on kinematics. The third
and final show case (Chapter 6) is centered around the prediction of the emotional
state of an actor, solely based on its kinematics. The main analysis technique of this
show case is a deep convolutional neural network. Finally, to conclude this PhD
manuscript, Chapter 7 will provide a general discussion on the results and on the
perspective offered by taking a data science perspective to help tackle new theoretical
challenges, in the field of emotions.



2
E M O T I O N R E S E A R C H I N T H E E R A O F A F F E C T I V I S M

In this chapter, I will describe the current major theoretical models of emotions and
explain how they can provide answers for other domains of research, willing to
integrate emotion in their own research field.

The XXth century has seen major advances in cognitive psychology. Drawing on
disciplines such as computer science and physics, psychologists have been able to
create computational models of cognitive processes and investigate the neural corre-
lates of these processes. Nonetheless, emotions were considered as some form of a
human bug, which needed to be suppressed by logic and reasoning. Research in hu-
man psychology was developing through the study of cold cognitive processes (i.e.,
without the emotional bias). However, and whether we like it or not, emotions play
a critical role in decision-making, performance, and overall well-being. It is impos-
sible, undesirable, and detrimental to stop people from experiencing them (Mauss
& Gross, 2004; Traue et al., 2016). Considering the role of human emotions has now
become vital in all aspects of society, going from the economic value of a worker to
the well-being of a child.

2.1 introduction

The XXIst century is the century of affectivism. Emotion as a topic is highly popular
in the business and management sectors (Fosslien & Duffy, 2020; Motro et al., 2019)
as well as in research, with nearly 30,000 papers published on the topic of emotions
in 2021 (and more than 500,000 from 1969 to 2022), according to a simple "emotion"
PubMed query. Scientific areas that are considering the impact of emotion in their
research include, but are not limited to, history (Broomhall et al., 2019), language
(Pritzker et al., 2019), and philosophy (Goldie, 2010). This trend in emotion research
has recently lead some of the major emotional theorists to consider how psychology
as whole will transition from cognitivism to affectivism (Dukes et al., 2021). Affec-
tivism is an emerging current in psychology that considers emotional processes as
an important modulator of cognitive processes. The goal of affectivism is to build on
the advances made in emotion research to incorporate emotion into other domains
of research in order to have a better understanding of human cognitive processes.
Only time can tell whether affectivism will be the next defining current in psychol-
ogy. However, we believe that the increased trend in emotion is an opportunity for
emotion research to draw on digital tools available today to continue evolving and
guide other disciplines in their integration of emotional concepts.

The XXIst century is also a digital century. Over the past 20 years, computing ca-
pacities together with available data sets have grown in importance. The amount
of data recorded and shared around the globe, both for research and business is
enormous. These data sets and analysis techniques are reaping benefits in artificial
intelligence or language processing modeling for instance. They could also be used

7
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to improve theoretical emotional framework. Having access to large-scale emotion
datasets could provide an opportunity to test and refine theoretical models. Higher
computing capacities could translate into easier development of computational mod-
els of emotions processes which would, in turn, further our understanding of human
emotional experiences. Sharing the codes produced to model these processes would
enable researchers from every corner of the world to work on the understanding of
these emotional processes.

The goal of this review is, first, to offer a description focused on the behavioral
aspects of the current theoretical frameworks used to model emotional processes.
Then, we will focus on the constructs of core affects and emotions, setting aside the
slower changing construct of mood. Finally, we will describe how the digital tools
available nowadays may help push the current boundaries of emotion research in
the era of affectivism.

2.2 affective models

Core affect is a neuro-physiological state consciously accessible as a simple primitive
non-reflective feeling most evident in mood and emotion (Russell & Feldman-Barrett,
2009). One of its differentiating characteristics from emotion is that it does not need
to be directed at anything (Russell & Barrett, 1999). Thus, it is a neuro-physiological
state that is always present and that can arise to consciousness to form the basis of
what we call an emotion. Its purpose is to orient the organism towards states that
will yield positive outcomes (Batson et al., 1992, p.298).

To react adequately to an upcoming stimulus, an organism must have some knowl-
edge about its current state. Furthermore, knowledge about the current state will
allow the organism to use it as a baseline reference to assess the contextual signifi-
cance of the upcoming stimulus. Scientific-based studies were developed to obtain
baseline measures to homogenize the experimental groups and gain reference data
to create the initial models of affective sciences in healthy adult individuals.

2.2.1 Modeling affective states

Core affect can take various forms. It can be seen as variations in heart-rate frequency
or changes in core body temperature. Core affect is a state of the body at a given
time. Its purpose is also to orient the organism towards states that will yield positive
outcomes (Batson et al., 1992). More recent theories in affective neurosciences even
claim that core affect is a signal allowing the brain to have a measure of its current
state and and to predict if this state is beneficial or harmful to the body (Barrett,
2017). Accordingly, core affect is a phenomenon that should be found in all species
as it provides the bases of evolutionary adaptation for species survival.

The model of core affect is today accepted by most researchers in the field of af-
fective sciences. In this model, core affect is defined as a state, not a trait (Russell,
2003; Russell & Barrett, 1999). It is valued in terms of valence (positive or negative)
and arousal (high or low). Over the years, a number of questionnaires have been
created to qualify and quantify core affect through the means of declarative state-
ments. Hence, the investigation of changes in core affect can be conducted through
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Figure 2
Affect Grid
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Note. Affect Grid representing two evaluations of two different states of core affect.
Black circle represents a negative state of high arousal (imagine hearing a gunshot
close to you). Black triangle represents a positive state of low arousal (imagine enjoy-
ing a relaxing massage). Adapted from Russell et al. (1989).

the use of validated tools. Four of such tools will be described below: the Affect Grid
(Russell et al., 1989), the Self Assessment Manikin (SAM; Bradley & Lang, 1994), the
Feeling Scale (FS; Hardy & Rejeski, 1989) and the Felt Arousal Scale (FAS; Svebak &
Murgatroyd, 1985).

The Affect Grid (Figure 2) is a two-dimensional grid that provides the means to
collect self-reported subjective indicators of affect with a single answer. Participants
are invited to draw a cross on the grid to report their feelings, both in terms of
valence (positive to negative) and arousal (high arousal to sleepiness). Valence is
often on the horizontal axis whereas arousal is commonly led on the vertical axis.
Recently, a numerical version of the affective grid was developed to promote the
measure of affective experiences in individuals performing leisure physical activity
(Batistatou et al., 2022).

To help participants familiarize themselves with the Affect Grid, Russell et al.
(1989) prepared a set of instructions and examples. Two opposite examples are as
follows: "Imagine hearing a gunshot close to you. How would you rate your feel-
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Figure 3
Self Assessment Manikin

Note. The Self Assessment Manikin (Bradley & Lang, 1994) is a three-dimensional
tool used to score valence, arousal, and dominance. The SAM is a tool consisting in
drawings depicting a character ranging from unhappy to happy for the valence di-
mension, from sleepy to aroused for the arousal dimension, and from non-dominant
to dominant for the dominance dimension.

ings? One possible answer would be the black circle in Figure 2. Now, imagine that
you are enjoying a relaxing massage. How would you rate your feelings now? One
possible answer would be the black triangle in Figure 2."

The SAM (Figure 3) is a three-dimensional tool, sharing its first two dimensions
with the Affect Grid. The third dimension codes for dominance. The SAM is a tool
consisting in drawings depicting a character ranging from unhappy to happy for
the valence dimension, from sleepy to aroused for the arousal dimension, and from
non-dominant to dominant for the dominance dimension. The participant is invited
to choose the drawing that corresponds best to their feelings, in each of the three
dimensions. Although the article introducing the SAM was entitled "Measuring emo-
tion: The self-assessment manikin and the semantic differential" (Bradley & Lang,
1994), the authors might have been referring to core affect rather than emotions. At
that time, it was common for authors to use emotion and affect as interchangeable
terms (Ekkekakis, 2013, p.33).

The FS and the FAS are both one-dimensional scales designed to measure one com-
ponent of core affect. The FS is used to measure perceived valence. It is composed
of an 11-point scale ranging from I feel very bad (-5) to I feel very good (+5). The FAS

is used to measure felt arousal (hence the name). It is composed of a 6-point scale
ranging from low arousal (1) to high arousal (6). The FS and FAS are the most used
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questionnaires in sport and exercise sciences as they provide a simple measure with
a clear distinction between the two dimensions (e.g., Carlier et al., 2017).

2.2.2 Examples of studies investigating core affect

An example of a study using measures of core affect is one conducted by Bird et al.
(2016). In this study, the effects of music, music-video, and no stimulation (control
condition) on core affect was investigated while participants were exercising on an
ergocycle at a pre-defined exercise intensity. The FS and the FAS were used to score
valence and arousal components of core affect. In the introduction of the paper, the
authors carefully defined the term of core affect to highlight the choice of the affec-
tive construct and physiological model. The authors also specified the scientific bases
of their choice of using FS and FAS tools. With the objective to assess the changes in
felt affect every two minutes during a 20-minute practice session, participants were
invited to indicate out loud the quadrant most representative of their state of the mo-
ment, on both scales. The scores obtained in each experimental condition (i.e., music,
music-video, control) were compared with the pre-task measures implemented as
covariates. Results showed that, when exercising with music or music-video, partic-
ipants felt better than when they were exercising without audio stimulation. Partici-
pants were also significantly more aroused as the exercise went on and more relaxed
immediately after the end of practice in the presence of a musical environment.

Another example of a study investigating changes in core affect is one conducted
by de Groot et al. (2018). Here, the Affect Grid was used as a validation tool to assess
the success of their procedure. The aim of the study was to investigate emotional
communications through body odors among Western Caucasians and East Asians.
To assess changes in core affect in their adult participants, the Affect Grid was used
(Russell et al., 1989). The study consisted in two phases. The first phase was to collect
body odors from "senders" who followed a procedure of emotional induction by
watching movie clips (e.g., horror or comedy movies). The second phase consisted in
recruiting another sample of participants. These receivers smelled the odor samples
of the "senders" and the Affect Grid was used to assess the impact of the odor stimuli
on felt affective states. Results showed that the Affect Grid was sensitive enough to
confirm that (a) the inductive procedure worked in the "senders" and (b) the affective
impact on the "senders" was transmitted through body odors and detectable by the
naive receivers.

2.2.2.1 Conclusion

Core affect is a widely investigated construct. This affective phenomena is being
studied in many different research fields, such as cognitive psychology, behavioral
neurosciences, and sport sciences. Studies are targeting core affect for different the-
oretical reasons, with the aid of various types of tools (e.g., paper and digital ques-
tionnaires, internet surveys). However, they all share a common set of features: (a)
use of a validated version of the measurement tools, (b) acceptance of the theoreti-
cal background and implications of the core affect model, and (c) knowledge of the
hypotheses justifying the choice of the measurement tools. Overall, core affect is the
model to adopt if one is seeking to study whether an element is good or bad for
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maintaining internal sensorial allostasis1. If a situation is bad, one will have the urge
to leave; if it is good, the urge will be to stay. The intensity of the trigger event will
code the force with which one will tend to move. Nevertheless, we will see in the
following section that the decision to move or not may be more complex than what
is proposed in the original core-affect models.

2.3 the cognitive models of emotion

Humans are complex organisms that have evolved to adapt to their environment.
Thanks to appraisal processes, individuals have the means to quantify the signifi-
cance of an upcoming stimulus for allostasis and prolonged well-being. With such
knowledge, humans can decide (albeit unconsciously most of the time) what course
of action to engage in. For example, a person can decide to approach or to avoid an-
other person that seems from a distance threatening (Cartaud et al., 2018).

With the evolution in the 90’s of scientific tools and methods, and specifically with
the arrival of brain imaging techniques, researchers were encouraged to investigate
the role of cognitive processing in the emergence of emotions. Through the years,
the cognitive theories developed a number of assumptions and in particular that
emotions arise from the synchronized changes over a number of functional compo-
nents (Sander et al., 2005; Scherer, 1984). An example of a cognitive component is
the relevance component that gives sense to a perceived stimulus. However, these
components do not need to be cognitive per se. An example of a non-cognitive com-
ponent is the coping component that triggers motor adjustments. In the following
paragraphs we will consider in more detail the commonalities that can be extracted
from the appraisal models.

2.3.1 The appraisal theories

The term appraisal appeared in 1960, with the release of a book titled Emotion and
Personality by Magda Arnold (1960). It is defined as a process that detects and as-
sesses the significance of the environment for well-being (Moors et al., 2013)2. Over
the last decades, many authors have written about appraisal and different theories
have been elaborated and tested. Overall, appraisal theories are theoretical constructs
that postulate that emotions are a serial combination of appraisals (Ellsworth &
Scherer, 2003). Accordingly, appraisal processes are necessary for an emotion to
emerge. Lazarus goes even further by stating that this is necessary and sufficient
(Lazarus, 1991; Smith et al., 1993). Models differ especially in the number and nature
of appraisal components. The work by Klaus Scherer (1984, 2005) and Nico Frijda
(1986, 2006) may be considered as key contributions.

1 Allostasis is the phenomenon that provides stability through change. It refers particularly to the idea
that parameters of most physiological-regulatory systems change to accommodate environmental de-
mands (Sterling, 2012)

2 Well-being can be defined here as the satisfaction or obstruction of concerns referring to an individual’s
needs, attachments, values, current goals, and beliefs (Moors et al., 2013)
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Figure 4
Component Process Model

Note. In the CPM, the emotions are seen as episodes emerging from the synchronized
changes of five organismic subsystems (Sander et al., 2005). The five organismic
subsystems - and their corresponding emotional components are: information pro-
cessing (cognitive component), support (peripheral efference component), executive
(motivational component), action (motor expression component), and monitor (sub-
jective feeling component). It is the coordination of these subsystems that give rise
to the emotional episodes. Adapted from Scherer (1984).

2.3.1.1 The Component Process Model

Scherer (1984) developed a model to describe specifically a possible mechanism ex-
plaining the emergence of an emotion in humans. The Component Process Model
(CPM, see Figure 4) describes an emotion as an episode of interrelated, synchronized
changes in the states of all, or most of the five organismic subsystems in response to
the evaluation of an external or internal stimulus event, as relevant to major concerns
of the organism (Sander et al., 2005). The subsystems are coordinated to trigger an
emotional experience.

The role of appraisal in the CPM is to code the relevance of an incoming stimulus
vis-a-vis each of the five emotional components/organismic subsystems. Hence, the
appraisal theory is based on the idea that there are continuous and recursive pro-
cesses evaluating each component successively (Sander et al., 2005). The five organ-
ismic subsystems - and their corresponding emotional components are: information
processing (cognitive component), support (peripheral efference component), execu-
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tive (motivational component), action (motor expression component), and monitor
(subjective feeling component).

Everything starts with a stimulus (i.e., an event). Figure 4 provides a detailed ex-
ample of the CPM mechanistic process. A stimulus is first appraised based on its
relevance (e.g., is it new or familiar? Is it pleasant?). Following this first appraisal,
changes might be observed in the peripheral efference, motivational, motor expres-
sion, or subjective feeling components. Once the first appraisal has been executed,
the following appraisal component can proceed, the implication (e.g., is it an ur-
gent stimulus that must be dealt with now?), the coping (e.g., can I control what
is happening?), and the normative significance of the stimulus (e.g., is the stimulus
compatible with my standards?). Each appraisal can trigger both the next appraisal
and the organismic subsystems serving the changes in autonomic physiology, action
tendencies, body posture, and affective states at a given moment. Hence, the CPM is
not an entirely linear model. Furthermore, once a component has been appraised, it
can be reappraised. Such reappraisal can happen because the incoming stimulus has
changed or because the effects of one appraisal has modified previous appraisals. In
addition, not all components need to be appraised for the emotion to emerge. That
being said, the more components are appraised, the more the emotion is differenti-
ated (i.e., the more it is specific in its expression).

One of the organismic subsystems of the CPM model is action tendency. This con-
cept of action tendency stems from the concept of action readiness, which is at the
heart of another appraisal model by Nico Frijda who developed the theory of action
readiness. This model postulates that emotions are necessary only to help humans re-
act to the world (Frijda, 1986, 2006). Emotions exist for the sake of signaling states of
the world that need to be responded to (Frijda, 2006). This cornerstone idea inspired
the writing of two major books: The Emotion to describe emotions (Frijda, 1986) and
The Laws of Emotions (Frijda, 2006) in which definitions of emotions, appraisal as well
as the concepts of action readiness and action tendencies for emotional reactions are
presented, defined, and discussed.

Frijda (2006) defines a total of eleven laws that guide human experiences of any
given emotion. These laws are defined to decode the causes, the nature, and prop-
erties of the experiences as well as the outcomes of the global emotional experience.
In this theoretical framework, emotions exist only to help humans act and react for
sustained well-being within an ever changing world. This is why the concepts of ac-
tion readiness and action tendency are here the corner stones of what is an emotion.
Action readiness is the readiness to achieve a particular aim. The aim that is evoked
here can be anything from avoiding walking in a dark alley at night to eating a juicy
fruit. Action tendencies are states of motor and cognitive preparation to achieve the
aims. Thus, action tendencies happen before action readiness. And these states of
action readiness are what is meant by emotions.

Action readiness arise through appraisal. Frijda, Scherer, and a great number of
emotion researchers consider that appraisal is necessary for an action readiness (and
an emotion) to emerge. In Frijda’s model 2006, the first law –the law of situational
meaning –states that emotions arise in response to patterns of information, and that
it is the meanings and the individual’s appraisals that count; not the stimuli or events
per se. Hence, a dark alley at night is not scary in itself. It is scary because one ap-
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praises it as scary, given that dark alley may be used by criminals to assault civilians.
This is an example of the second law –the law of concern. Here, emotions arise in
response to events that are important to an individual’s concerns. If one is a special
operations military, one might not appraise the dark alley as scary.

These first two laws offer a better view of how an emotion can emerge. Most
importantly, they offer an answer to the question why does an emotion emerge when
it does. The theory of Frijda inspired Scherer notably, but also Ridderinkhof who
developed more recently a dynamical model of emotion, presented in section 2.4.3
of this chapter.

2.3.2 Measurement tools

Psychologists sometimes ask participants to describe their feelings in their own
words. While this procedure may yield interesting insights, it is fraught with lim-
itations. For example, people differ with respect to their verbal ability and richness
of vocabulary. Hence, psychologists generally use forced-choice self-reports of emo-
tional experience. There are two major approaches: (a) the discrete emotion labels
approach and (b) the dimensional rating approach.

2.3.2.1 Discrete emotion labels

The discrete-emotion labels approach is based on the theoretical idea that there exists
a finite set of basic emotions. Thus, the measurement tools invite participants to rate
how they feel for each of the labeled emotion.

A good example of such a tool is the fourth version of the Differential Emotional
Scale (Izard et al., 1993). This tool consists of labels presenting 12 distinct emotions.
Participants are instructed to rate if they feel (or not) each of the twelve emotions. To
rate the intensity of the appraisal, a 5-point scale is presented ranging from 1 (rarely,
never, weak) to 5 (very often; strong).

2.3.2.2 Dimensional rating

The dimensional rating approach, on the other hand, is based on the theoretical idea
that emotional experience is supported by a number of dimensions (usually two or
three). The measurement tools based on this approach require participants to rate
how they feel in each dimension.

One of these measurement tool is the Geneva Emotion Wheel (GEW; Scherer, 2005,
see Figure 5). This tool consists of 20 emotion families arranged around a circle.
Participants are instructed to rate if they feel one, several, or none of the 20 emotional
categories and how intensely their experience is. Thus, the GEW enables researchers
to investigate three dimensions of emotional experience: valence, control/power, and
intensity. Valence is evaluated along the horizontal axis. Control/power is evaluated
along the vertical axis. Intensity is coded by the size of the selected circle.
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Figure 5
Geneva Emotion Wheel

Note. The Geneva Emotion Wheel offers the means to measure three dimensions
of emotional experience: valence, control/power, and intensity. Positive emotions
are presented on the right side of the GEW. Emotions with high control/power are
presented on the top. Intensity is coded by the size of the circles (the bigger the circle,
the more intense the perceived emotion). Adapted from Scherer (2005).
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2.3.3 Examples of studies investigating emotions

This section will explore examples of studies using the GEW and the Emotion and
Odor Scale (EOS) to investigate emotions in relation to art and odors.

The first study is one conducted by Tinio and Gartus (2018) at the Whitney Mu-
seum of American Art in New York City. Researchers wanted to investigate the emo-
tional responses of visitors to two exhibitions. The GEW was used as it provides
participants with a large choice of emotions (and the ability to report an absence of
emotion) but mainly because the theoretical framework was that of appraisal. Partici-
pants were recruited at the end of their tour in the museum. They were invited to an-
swer four questionnaires, with the GEW being the first. The experimenter correlated
the data with the time spent in the exhibitions and the number of art labels read. Re-
sults revealed that the more time the participants spent in the exhibitions, the more
they reported feeling involvement, interest, enjoyment, and pleasure. Concerning the
number of art labels read, the results were similar. The more labels participants read,
the more they reported feeling involvement, interest, enjoyment, and pleasure.

Another study investigating emotions is one conducted by Guillet et al. (2017).
This study focused on the impact of odors on customers in luxury hotels in Hong
Kong. Hotels that developed their own scented environments were chosen. The EOS

(Chrea et al., 2009; Ferdenzi et al., 2013a) was adopted within the theoretical context
of appraisal. The EOS is a list of emotions and participants were invited to rate on a
10 cm continuous scale how intense they feel each emotion word. The anchors are
not at all intense and extremely intense. Participants were asked to rate their perception
of the hotel scent using the EOS (Guillet et al., 2017). Results indicated that the hotel
scent elicited happiness, delight and sensuality. The scent was also rated as being of
a mild intensity (6.15 on a scale ranging from 1 to 10).

2.3.4 Conclusion

Emotions are today at the heart of virtually every scientific field of research. As with
affect, each study investigating emotion adopts a particular measurement tool, for a
specific reason. Hence, the importance of agreeing on a common set of theories and
methodological principles. Such a consensus has been reached for the physiological
aspect of affective states but has not yet been reached for emotions.

Definitions are rarely universally agreed. They cannot be proven (Scherer, 2005).
Thus, definitions must be considered universally as useful by a research community
in order to guide research and make research comparable across laboratories and
disciplines (Scherer, 2005, p.724). Mood, affect, and emotion are three constructs that
have been tentatively defined. Due to considerable convergence among scientific dis-
ciplines, a workable classification scheme has started to emerge and is being adopted
by an increasing number of researchers (Ekkekakis, 2013). Figure 6 illustrates the gen-
eral idea. Depending on the research question, one or other of the affective/emotion
branch will be used. The key point to bare in mind is that the choice of a method
must be guided by the theoretical model from which the method emerged.
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Figure 6
Structure of Core Affect and Emotion

Note. Adapted from Ekkekakis (2013).

2.4 emotional motor behavior

Affective responses can be generated without an antecedent cognitive appraisal. Rus-
sell (2003) emphasized that as consciously experienced, core affect is mental but not
cognitive or reflective. Hence, a bodily movement can in itself induce changes in
core affect (e.g., simply imagine running a 10 km race). But once an affective state
has emerged, sensorial consequences can be predicted, processed cognitively, and be-
come an emotion (Lazarus, 1991). Accordingly, thoughts alone are capable of produc-
ing emotions. For example Kunst-Wilson and Zajonc (1980) reported data indicating
that participants could form preferences for meaningless visual stimuli that were su-
perimposed on images of happy and angry faces, at a speed faster than the threshold
for conscious awareness. Hence, core affect may be a neuro-physiological state con-
sciously accessible as a simple primitive, a non-reflective feeling that can in a second
step, trigger or modulate an emotion that is available to consciousness when payed
attention to (Russell & Feldman-Barrett, 2009). This dynamical view of emotion is at
the heart of most recent models, which will be presented in the following section.
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2.4.1 Rooted from biological models

In an effort to bridge the gap between psychologists and neuro-biologists, Marc D.
Lewis (2005) proposed a theory of emotion based on Dynamic System (DS) model-
ing, which is used to describe and predict the interactions over time between multi-
ple components of a phenomenon that are viewed as a system (Irwin & Wang, 2017).
In this framework, an emotional episode is a system that arises from multiple inter-
acting components. This is consistent with the aforementioned models of emotions,
such as the CPM for which organismic subsystems are continuously and recursively
appraised to give rise to the emotional episode. This non-static consideration of emo-
tion has given birth to a new line of research that embraces the importance of assess-
ing changes over time. Whether stemming from the appraisal or the affective models,
current theories argue for a dynamic view of emotional human behavior, with a need
to embrace new technical tools and methodological approaches in experimental hu-
man sciences.

2.4.2 Rooted from affective models

Rooted from affective models, Lisa Feldman Barrett (2017) has developed a neuro-
biological theory of emotion based on predictive coding (Friston, 2005). The idea at
the heart of her Theory of Constructed Emotions (TCE) is that all humans (as every
living organisms) thrive to maintain allostasis (i.e., regulating the body by anticipat-
ing physiological needs and preparing to meet them before they arise; Barrett, 2017).
To achieve such a goal, organisms must run an internal model of their world (Barrett,
2017). Using this internal model, organisms can then predict the impact of their ac-
tions both on their inner and outer worlds. Thus, emotions may simply be a construct
used to label the emergence of attitudes that need to be perceived and recognized by
others. The recognition process would be reached trough cognitive mechanisms that
would compute the discrepancies between simulations and actual sensory inputs.

The complexity of the brain raises nevertheless the question of the selection process
that must undergo from real world elements and percepts to simulations. Following
the TCE model, the brain selects simulation candidates memorized from past experi-
ences, which are similar to incoming sensory inputs. Through bayesian probabilities,
a prediction error is calculated between simulation and actual input. Selection is then
made to minimize computed errors by contrasting or tweaking series of simulations.
Once this error is minimized, the simulation becomes a perception (i.e., an emo-
tional percept; Barrett, 2017). The percept becomes an emotion as soon as a human
observer calls it an emotion. Indeed, the brain does not give names to its simulations
and perceptions. Only humans – gifted with language abilities – can infer conceptual
categories. It is in this sense that Barrett believes that emotions are born the same
way as other perceptions. "Emotion categories are as real as any other conceptual cat-
egories that require a human perceiver for existence, such as money." (Barrett, 2017,
p.13).

The theory of constructed emotion challenges the cognitive-centered views of emo-
tion that emphasize the central role of appraisal processes. In Barrett’s words, mean-
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ing may simply be a resultant of action, whereas for the following authors, actions
stem from meaning.

2.4.3 Rooted from appraisal models: The IMPPACT model

Starting from a decidedly Frijdian perspective, Ridderinkhof developed a theoretical
model to explain and predict the links between emotions and actions (Ridderinkhof,
2014, 2017). The Impetus, Motivation, and Prediction in Perception–Action Coordina-
tion Theory (IMPPACT) was first designed to describe how humans coordinate their
actions, their perceptions and the interactions between action and perceptual pro-
cesses (Ridderinkhof, 2014). In 2017, the model evolved to include an emotional as-
pect of voluntary motor behaviors.

Emotions are percepts that signal the need for action, to maintain or retrieve one’s
well-being. However, an action does not always imply a movement. Sometimes it
might be best to produce the action of not moving, to avoid being hit by a car for
instance. Therefore, an emotional action, or rather an emotional act, is produced by
motives to alter the current state of the self and of the world so as to approximate a
more optimal state of being (Ridderinkhof, 2017). Another characteristic of an emo-
tional act is that it is determined by its ultimate or proximate end (Ridderinkhof,
2017). In simpler terms, an emotion is an act produced to achieve a certain end,
which is to maintain or retrieve a state of well-being. Take the following example:
Mary is returning home after a hard day of work, along with her daughter. While
walking towards the front door, she smells a strong odor of gas. The emotional act of
Mary would be to turn back and keep away from the house while calling the emer-
gency services. Only then will she be able to put words on what she felt. The act is
to keep away from the house and call the emergency services. The end goal of the
act is to regain safety both for here and for her daughter.

An illustration of the cognitive process that may have taken place in Mary’s brain
and body is presented in Figure 7. Following the IMPPACT logic, emotional actions
are produced by a six-step process: appraisal, pragmatic idea, incipient ideomotor
capture, changes in action readiness, valuation of action options, production of emo-
tional behavior.

The first step, appraisal, serves the purpose of determining the significance of a
stimulus with regards to the organism appraising the stimulus. Ridderinkhof (2017)
adds that an emotion needs an event to be elicited but that an emotional act needs an
event "as appraised" to be elicited. In other words, actions stem from an emotional
percept that contains meaning.

Once an event has been appraised, the formation of a "pragmatic idea" is required
to trigger an emotional act. More specifically, a pragmatic idea consists of images
of kinesthetic sensations associated with the action and its anticipated effects on the
world and one’s own body (Ridderinkhof, 2017). This pragmatic idea is the predic-
tion action effects, the anticipated consequences of a possible forthcoming action.
Note that this pragmatic idea is, most of the time, unconscious. The pragmatic idea
of Mary is that she and her daughter should be safe (effects on the body) and that
their house should not explode (effect on the world).
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Figure 7
IMPPACT Model
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Note. The Impetus, Motivation, and Prediction in Perception–Action Coordination
Theory model reproducing the schematic architecture for ideomotor action, supple-
mented with a forward model (i.e., turning action selection into an action–effect
prediction-and-valuation cycle). The forward model calculates the predicted action
effects (for exteroceptive, interoceptive and proprioceptive action effects); these pre-
dictions are fed into a comparator (symbolized by the central hexagon). Predicted ac-
tion effects are compared to actual action effects, giving rise (in case of discrepancy)
to a prediction error which is fed back into the forward model so as to optimize its
predictions. Predicted action effects are compared to desired action effects, in which
case a prediction error is used to reevaluate and adjust the chose action option, which
is then fed into the forward model in its turn; the cycle continues until the prediction
error is minimized and the appropriate action can be programmed (action readiness
module) and executed. Adapted from Ridderinkhof (2017).

The formation of a pragmatic idea does not lead directly to action. It leads to
the retrieval of a motor program that produces the desired effects, issued from the
pragmatic idea. Indeed, the ideomotor principle holds that any activation of the prag-
matic idea of an action’s effect may awaken the corresponding action (Ridderinkhof,
2017). Mary’s ideomotor actions are any action that achieves the goal of feeling safe
(e.g., running away to safety, shielding behind another house) and any action that
prevents her house from exploding (e.g., calling the emergency services, or running
inside the house to find the gas leak). The ideomotor action leads to a change in
action readiness. In this step, the organism gets ready (although not always con-
sciously) to engage in one of the ideomotor actions. Mary is now ready to engage in
either two of her four ideomotor actions: run or shield.

How can the organism select the right one? The various action alternatives differ
in their values with respect to both their cost and their benefit (Ridderinkhof, 2017).
Through the valuation of action options, the brain selects the action that has the
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lowest cost/benefit ratio for the individual. This cost/benefit ratio is specific to the
organism. This processing step might appear to be costly for the organism. If ratios
for virtually all actions had to be computed every time, it would indeed be too costly
for the organism. Fortunately, humans are a remarkably well designed machinery.
Through evolution and learning, most of human actions have a given cost/benefit
ratio (Ridderinkhof, 2014). These ratios are created, refined with experience, learn-
ing, and then anchored within the valuation module of the brain. Mary’s brain now
computes and compares the cost/benefit ratio for each of her four ideomotor actions,
within a split second.

It is only when the ratios for all possible actions are computed that the final action
processing step of the model is carried out. The brain now compares the predicted
effect of the optimal action (selected at the previous valuation processing step) to the
desired effect of the action. This comparison takes into account the true perceived
internal and external action effects to calculate a prediction error that is then used
by the brain to determine whether the selected action is the optimal one. If the
selected action is not optimal, then another action is selected and the forward model
loop is ran a second time. This internal loop process is repeated until the prediction
error is minimal. Only then is the corresponding motor program sent to the effectors
(i.e., muscles) in order to carry out the selected motor behavior. Mary’s brain has
computed and compared the different effects of her four ideomotor actions and has
selected the most adapted in reference to her past experiences. Mary now grabs her
daughter, runs to safety, and calls the emergency services. She and her daughter are
safe and their house has not exploded! All of these processing steps happened in a
fraction of a second, and without Mary even being aware of it.

A good theory is one that provides answers and means to test them. The IMPPACT

model is a well accepted model that stems from Frijda’s work on action readiness
(Frijda et al., 1989) and Wolpert’s work on forward modeling (Wolpert & Flanagan,
2001). Hence, it provides a trans-disciplinary approach of emotional motor behavior.
Most importantly, it offers a testable framework in the experimental fields of motor
behavior, cognitive psychology, and affective sciences. Humanoid robotic systems
can also be implemented with the proposed control loops, another meaningful way
to test experimentally the IMPPACT model. Nevertheless, questionnaires and scales
are not sufficient. Indeed, to take into account the recursive and dynamic aspect of
the model, derived paradigms are needed that take essence in new technologies.

2.5 emotion research in the era of affectivism

The COVID-19 pandemic has made humans realize how technology was changing
our way of communicating our emotions. Today, emotions are not limited to hu-
man–human contacts. We have built, through technology, human–human contacts
via computer screens for example. Video-conference tools allow to communicate but
only by displaying a static view of the world. Not being able to see the context or the
body of our interlocutor can impair our emotional recognition abilities (Meeren et
al., 2005). This change of communication medium is having an influence on various
cognitive processes, such as creativity (Brucks & Levav, 2022) for instance, not just
emotional processes. Furthermore, technological advances in robotics have lead to
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the development of highly developed robots. Humans have now been found to feel
emotions towards robots, objects or avatars (Hortensius et al., 2018). Considering
the recent development both in robotics and virtual reality, there is a high probabil-
ity of more artificial agents entering our lives. Therefore, emotion theories need to
continue evolving to account for and understand the changes that technology exert
on humans. Doing so will provide emotion research with the mean to guide other
disciplines wishing to integrate emotion in their research.

Emotion research has been continuously evolving. It has evolved from measur-
ing physiological reactions in sitting tasks (Droit-Volet et al., 2013; Nummenmaa et
al., 2006; Ruiz-Padial & Thayer, 2014) to measurements of emotions in whole-body
movements (Daoudi et al., 2017; Hicheur et al., 2013), due to technological advances.
Motion capture (MoCap) technologies have enabled researchers to investigate how the
whole-body was reacting to emotions, by placing reflective markers on participants.
Today, further advances in computer vision have offered the means to continue doing
so, without ever touching the participant. The markerless MoCap systems are now as
accurate as the traditional marker-based systems (Kanko et al., 2021a, 2021b). Emo-
tion research needs to continue its evolution and we believe that adopting a data
science perspective can help part of the evolution.

Data science is a relatively new field of research, fundamentally multi-disciplinary
(Cao, 2018). It promotes the integration of experts in various domains to help them
all grow and create new advances. Taking into consideration the impact of the emo-
tional content of a stimulus while controlling the affective state of a participant is
challenging. It requires that physiologists and cognitive psychologists work together.
Integrating the methodologies of several domains can be achieved through a data
science perspective. Furthermore, embracing a data science perspective might al-
low researchers to ask theoretical questions and design new experiments without
being blocked by technical limitations (e.g., synchronizing multiple equipment). To
be more specific, measuring emotional experience during whole-body movements
requires the synchronization of motor control measures and emotional perception
before, during and after the task. Hence, such synchronization would enable new
experimental designs to investigate the dynamics of emotional processes that might
be hard to investigate at the moment (Carlier et al., 2017). New avenues in emotion
research can be opened by removing technological barriers. A holistic data science
perspective can help achieve this goal.

2.6 conclusion

The rise of affectivism that is emerging in psychology is bringing emotion in all other
domains of research. Together with the extensive use of technology, it raises many
theoretical questions for emotion research. Embracing a data science perspective can
offer a holistic point of view. It can allow to remove many technical constraints on ex-
perimental designs, such as dealing with large amount of data, synchronizing equip-
ments, or measuring the dynamics of emotional processes. This holistic perspective
can help emotion research continue its evolution, as emotion research will have a
defining role in guiding other research domains in their integration of emotions. It is
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only by understanding emotional processes that it will be possible to integrate them
in other domains.



Part II
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M E A S U R I N G B O D I LY R E A C T I O N S T O E M O T I O N S

3.1 at a subjective level

Affect and emotions can trigger changes in the physiology, kinematics, and percep-
tion of a person. To get a complete understanding of these changes, it is necessary to
ask participants to report how they feel. To collect self-declared experiences, many
questionnaires have been developed. There are questionnaires where participants are
presented with emotional words and they need to select the words matching their
feelings (e.g., GEW; Scherer, 2005). There are also questionnaires with small characters
depicting different emotions and participants are asked to circle the ones matching
their feelings (e.g., SAM; Bradley & Lang, 1994). Each questionnaire is designed to
evaluate a specific construct, such as the emotion, the intensity of the emotion, the
affective state, or a combination of constructs. Hence, as is the case for all methodol-
ogy, the selection of a questionnaire must be made in accordance with the theoretical
framework in which the work is included. This is why during my PhD work, the af-
fect grid was selected to measure the affective responses of the participants (Russell
et al., 1989).

The affect grid is a two-dimensional grid designed to have a measure of both
valence and arousal with a single response from the participant. The measure is
based on the circumplex model of affect (Russell, 1980). This theoretical model posit
that affect can be measured in terms of valence (how positive is what I am feeling?)
and arousal (how intense is what I am feeling?). Both valence and arousal are scored
on a 9-point Likert scale, with valence on the horizontal axis and arousal on the
vertical. In the studies of my PhD work, I decided to add numbers to the original
affect grid so that participants would have an easier time at reporting their feelings
verbally (see Figure 8), during seating, walking, and cycling tasks.

3.1.1 Difficulties and limits

The choice of the affect grid was not straightforward and it led to some difficulties,
for which we managed to find solutions. When we first used the affect grid in one of
our studies, we were pre-testing an experiment where the participants were expected
to run at a low intensity on an electrical treadmill. We wanted to investigate how they
would react to the presence of an odor during their run. We had printed the affect
grid on an A0-poster format which was presented before, during, and after the run.
During the activity, we noticed that participants would try to point at the squares in
the affect grid to give their response and how this movement destabilized them. If
the speed was to be increased, their was a real risk of falling. I took a marker and
started adding numbers in the squares to help participants respond. We decided to
keep this version because it did not make a profound modification of the scale, and

27
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Figure 8
Adapted Version of the Affect Grid

Note. Adapted version of the affect grid (Russell et al., 1989). Numbers were added to
make verbal report of affect easier when participants perform the experimental tasks.
The bold numbers represent two of expected answer to the questions "how would
you describe your affective state in terms of valence and arousal if you were to hear
a gunshot close to you (number 11) or if you were enjoying a relaxing massage
(number 71)?"



3.2 at a physiological level 29

thus did not impair the scientific validity of the scale while making verbal responses
easier and safer in the case of exercise studies.

The second difficulty we faced was that, to us researchers, used to manipulating
the psychological concepts of affect, valence, and arousal, the affect grid is easy to
use. However, for participants, the use of a grid to describe unconscious and often
unnoticed affective states, was difficult and strange. No one has ever had to describe
their feelings in terms of valence or arousal outside a laboratory. First, it was neces-
sary to explain to our participants what we meant with valence and arousal. In our
words, valence describes how positive your affective state is. The more positive you
feel, the more you are expected to respond on the right-hand side of the affect grid
(toward the anchor Pleasant Feeling in Figure 8). Arousal describes how aroused, or
energized your affective state makes you feel. The more you feel aroused or ener-
gized, the more you are expected to respond on the top of the affect grid (toward the
anchor High Arousal in Figure 8). Depending on the participants, the explanations
could be repeated more than once. To further help participants familiarize with the
grid, Russell et al. (1989) developed two examples. The first one is "imagine hearing
a gunshot behind you, how would you describe your affective state in terms of va-
lence and arousal?" (this example is depicted with the bold number 11 in Figure 8).
The second one is "imagine enjoying a relaxing massage, how would you describe
your affective state in terms of valence and arousal?" (this is the bold number 71 in
Figure 8). These two examples are critical if we want to be sure that the participants
used the grid adequately.

3.2 at a physiological level

The cardiac activity is one of the most vital organism in the human living being.
Therefore, understanding its functioning and being able to measure its activity is
crucial. However, the mechanism by which the heart sends blood throughout the
organism is complex and adapts as a function of the ongoing behavior. Hence, a
good methodology is key to modeling the human physiological system especially in
remote psychological testing.

The cardiovascular system is responsible for transporting nutrients and remov-
ing gaseous waste from the body. This system is comprised of the heart and the
circulatory system. Hence, heart rate (HR) and heart-rate variability (HRV) are the
physiological indicators that can be used to describe how the cardiovascular sys-
tem is regulated over time. HR, usually measured as the number of heart beats per
minute (BPM), reflects how the heart is responding to the current demand in blood
and oxygen of the body. When exercising, for example, the muscles are in need of
more energy and oxygen to accommodate the demand. Therefore, the heart beats
faster to increase the amount of oxygen sent via the blood vessels to the muscles.
This would be visible as an increase in the number of BPM within a couple of sec-
onds after the occurrence of an event. HRV is more subtle as it reflects the changes
in the interval of time between successive heartbeats (Shaffer & Ginsberg, 2017). HRV

is influenced by many core mechanisms of the human function (e.g., respiratory sys-
tem, circadian rhythms), and most notably by the autonomic nervous system (ANS).
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Broadly speaking, HRV is a measure of how good the heart is at adapting its func-
tioning to match bodily requirements.

Time-domain measurements of HRV reflect the variance in the amount of time be-
tween successive heartbeats. These measurements are easy to compute as they can
be calculated on short trials (< 5 min.). However, they do not provide a complete de-
scription of the underlying physiological mechanisms. Time-domain measurements
include, but are not limited to, the standard deviation of successive differences (SDSD)
and the root mean square of successive differences (RMSSD). The RMSSD is one of the
most reported metric in scientific literature and is used to estimate the vagally me-
diated changes reflected in HRV (Shaffer & Ginsberg, 2017). In my PhD work, we
were limited to trials of maximum 4-min in length, in individuals that were not im-
mobilized (possible occurrence of motion artifacts). Hence, the RMSSD, expressed in
milliseconds, was used to measure HRV. The RMSSD can be computed on most of the
physiological recordings, even those ranging from 30–60 s (referred to as ultra-short
recordings; Munoz et al., 2015).

Now that we knew which indicator of HRV would be computed, we could select a
recording device. The important thing to consider is the sampling frequency (i.e., the
number of recordings made per seconds). The higher the frequency, the more pre-
cise the analysis. The Nyquist-Shannon theorem states that the sampling frequency
must be at least two times superior to the frequency of what is measured. A healthy
human has a HR between 42 and 210 BPM (0.7–3.5 Hz; Opthof, 2000). Thus, to record
accurately the HR of a healthy human, it is necessary to have a sampling frequency
of at least 7 Hz. But to measure time differences in heart beats of the order of 10 ms
(100 Hz), one must use a sampling frequency of at least 200 Hz. This is why prior
studies on HRV have shown that the minimum sampling frequency of an HRV record-
ing device should be above 200 Hz without efficient pre-processing. Nevertheless, in
recent times, it has been shown that this limit can be tuned down to below 100 Hz
if a strong pre-processing approach is adopted to offer the means to mathematically
enhance the R-peak detection prior to HRV computation (Laborde et al., 2017).

A wide range of sensors are available to record cardiac activity. The most used and
most reliable of all is the electrocardiogram (ECG). With a high sampling frequency
of typically 1,000 Hz, the ECG is the optimal indicator from which to extract both
time- and frequency-domain measurements of HRV. The ECG measures the electrical
activity of the heart via electrodes positioned on the skin. The electrodes are wired
to the recorder, positioned within close proximity of the electrodes. However, when
using an ECG, the participants or patients are limited in their movements. When we
decided which recording device we were going to use in my PhD work, we tested
a wireless version of an ECG (Biopac, Biopac Systems, Goleta, CA), a commercial
smartwatch (Apple Watch Series 3, Apple, Cupertino, CA), a Polar V800 (Polar Elec-
tro, Kempele, Finland), and the Empatica E4 wristband (Empatica, Cambridge, MA).
Our criterion were to have the best device that could be used both inside and outside
the lab, so as to maximize the reusability of the algorithms we were going to develop.
The wireless ECG was the best in term of sampling frequency and signal quality, as
expected. However, even wirelessly, the participant needed to remain within several
meters from the recorder, which was quite heavy and connected to a computer. The
Apple Watch Series 3 satisfied our criterion to be used inside and outside the lab but
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only gave the values of HRV, without access to the raw signal. The Polar V800 also
satisfied our freedom of movement criterion and gave the R–R intervals, which can
be used to compute all time-domain measurements of HRV. The only downside of
the Polar V800 was that it used a chestband to monitor HR. The Empatica E4 wrist-
band is lightweight and records data via a photoplethysmographic (PPG) sensor, so
directly on the wrist of participants. It has a quite low sampling frequency of 64

Hz but gives access to the raw signal. Therefore, we chose the Empatica E4 wrist-
band because (a) it satisfied our freedom of movement criterion and (b) we could
use cutting-edge pre-processing algorithms on the raw signal to make up for the low
sampling frequency.

When we first looked at the data obtained in Chapter 4, we saw a high number
of motion artifacts for a task that required almost no movement (the participant was
seated and invited to smell odors as well as respond to scales on the computer).
Fortunately, the motion artifacts were not too big as we had positioned the wrist-
band on the non-dominant hand of the participant and asked them to avoid moving
their hand. To remove these artifacts, a visual inspection of the signal of every trial
of every participant was necessary. When the artifacts were too big, we followed
the guidelines of the scientific community and removed that portion of the signal
(Laborde et al., 2018). Then, a filter was applied to remove most of the artifacts. To
avoid removing potentially informative data, we set the bounds of the filter to 0.7–3.5
Hz (i.e., 42–210 BPM, the normal range of BPM in humans; Opthof, 2000). Only then
were we able to compute both the number of BPM and RMSSD. The full detail of the
procedure can be found in the submitted manuscript, in Appendix A.

In my PhD work, changes in either the number of BPM or RMSSD were interpreted
as reflecting the impact of a stimulus on the ability of the body to regulate itself. Stud-
ies have found that odors and induced emotions modulate physiological parameters
(Alaoui-Ismaili et al., 1997; Appelhans & Luecken, 2006; Vernet-Maury et al., 1999;
Wang et al., 2018). The direction of this influence is generally that positive odors and
emotions trigger a decrease in HR and an increase in HRV. This influence has been
interpreted in my PhD thesis as an evolutionary advantage provided by the stimulus.
If a positive stimulus decreases your HR, your heart will need less energy to main-
tain its functioning and you will need less energy intake. Furthermore, by increasing
your HRV, the positive stimulus will enhance the capacities of your body to regulate
itself to respond to the environmental demand. Therefore, your body will be able to
react faster and better, providing you with a significant evolutionary advantage.

3.2.1 Difficulties and limits

When I first looked at the data of Chapter 4, I was very satisfied with their quality
until I saw the data coming from the Empatica E4 wristband. Or some of it. For one
participant in particular, the data was not analyzable due to motion artifacts. For
most participant there were none but for others we could see minor but numerous
motion artifacts. Our participants were asked to sit on a chair, their head placed
on a chin rest, the wristband was positioned on their non-dominant hand, and they
were asked not to move their non-dominant hand. This is why I was quite surprised
to find even minor motion artifacts in the data. At least two reasons can explain
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these artifacts. The first is that, contrary to my belief, participants were not behaving
exactly as we expected them to. Even if asked not to move, participants still moved,
consciously or not. The second reason is that the wristband is using light to measure
cardiac activity. If there are other sources of light entering the receptor, then the
measure is not accurate. This is why we added a dark cloth around the wrist to
limit light infiltration. Furthermore, the position of the wristband must be made
very carefully to ensure data quality. If the wristband is displaced due to movement,
then this part of the recorded data might suffer from artifacts.

Wristband cardiac sensors provide a lot of benefits for out-of-the-lab research, no-
tably. Their utility could even be improved by enhancing the quality of the signal.
One possibility would be to use the data coming from the accelerometer of the wrist-
band and then perform some kind of source separation to remove part of the noise
in the signal. I had thought about using source separation over the course of my PhD.
However, doing so requires both time and advanced skills in signal processing. If I
had done source separation, I would not have been able to complete my PhD in three
years. Which is why we decided to acknowledge this problem, follow the guidelines
of the scientific community, and remove parts of the signal that were too noisy.

3.3 at a kinematics level

Kinematics is "the study of motion of the body or parts of the body in terms of limb
and joint position, velocity, and acceleration" (American Psychological Association,
n.d.). It is studied in itself and in a wide range of research domains such as psy-
chology for example. Kinematics data collection is conducted in various ways, using
MoCap technologies or electromyographs most notably. In my PhD work, I decided to
use MoCap technologies to record human kinematics because of its reliability, relative
ease of use, and because I had experience with this technology during my Master
thesis.

3.3.1 Recording kinematics

MoCap systems are a set of tools designed to record the kinematics of either humans
or animals. It is used to study the influence of a pathology on gait, to enhance the
performance of an athlete, or to model the interpretation of an actor in an Hollywood
movie. The underlying technologies can vary but the most used in research and
industry today are based on cameras. Optical MoCap can either be marker-based or
markerless.

Marker-based MoCap uses markers and infrared cameras to record in real-time the
location of each marker in space. The markers are usually positioned on major joints
of the body but can be placed on any surface, allowing to record the motion of manip-
ulable objects for instance. The markers can either be passive retro-reflective made of
plastic or active LEDs emitting light at specific intervals. The active markers are less
prone to occlusions but are much more expensive and complicated in their design
as they are made of tiny LEDs. Therefore, almost only passive markers are now in
use (both in research and industry). This technology is widely used in research as
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its measurement error (i.e., the difference between the measurement and the reality)
can drop even below 0.2 mm.

Markerless MoCap has been developed for several years, mostly in computer sci-
ence and especially in computer vision. The goal of markerless MoCap is to record
the kinematics without placing markers on the participant. The technology is now
accurate enough to be used in scientific research (for a validation of one system, see
Kanko et al., 2021a, 2021b). In my PhD, one markerless system was used, Theia3D
(Theia Markerless Inc., Kingston, ON), to record the emotional kinematics of lay-
men. Theia3D uses eight synchronized Qualisys (Qualisys AB, Gothenburg, Sweden)
video cameras to record different views of the participant. Then, the deep-learning
algorithms behind Theia3D identifies the participant, extracts its major joints posi-
tion, and computes the inverse kinematics to be able to infer the exact position of
each joint.

The advantages offered by markerless MoCap are numerous. Indeed, the time-
consuming phase of marker placement is no longer needed and participants are
free to be dressed however they desire, further increasing the possibility of ecologi-
cal research. Nevertheless, no system is perfect and markerless MoCap has its set of
drawbacks. First of all, it requires a large amount of storage on the recording com-
puter. As an illustration, in one of the studies of my PhD work, participants had to
walk for 1 min and 30 s, repeated 20 times. A total of 300 GB was necessary for each
participant. Thirty participants were recorded. Hence, this one study required 9 TB
of storage space. The second drawback is related to the computing power and time
necessary to process the data. Theia3D, as nearly all computer vision deep-learning
algorithms, rely on graphics processing unit (GPU) rather than traditional central pro-
cessing unit (CPU) to perform faster computations. GPUs can be costly but they pro-
vide a significant increase in computing power (around 2.5 times faster than CPUs;
Lee et al., 2010). Even with such added power, the markerless analysis is still time-
consuming. For the experiment mentioned above, with the minimal requirements of
Theia3D (NVIDIA RTX 2060 Super GPU, 32 GB RAM), it required 18 hours to extract
the 3D position for a single participant. Again, 30 participants were recruited which
led to 540 hours of data extraction to simply obtain the 3D positions of the markers.

3.3.2 Analyzing kinematics

The recording of the kinematics is only part of the study of human kinematics. Once
the data has been collected, it is necessary to analyze it to be able to confirm or reject
the research hypotheses. Traditional measurements of kinematics include velocity,
acceleration, jerk, and joint angles. These measurements are now easy to compute
yet convey sufficient information for a number of studies, including most of my PhD
work.

Velocity, acceleration, and jerk are all computed from the 3D position of the joints.
They are the 1st, 2nd, and 3rd derivative of the position, respectively. While velocity
and acceleration are concept familiar to virtually all researchers, jerk might need
more explanation. As the 3rd derivative of position and 1st derivative of acceleration,
the jerk is a measure of the instantaneous changes in acceleration. Therefore, it is a
measure of motion smoothness and is expressed in meter per second cubed (m/s3).
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The lower the jerk, the smoother the movement. However, 3D position can also be
used to compute more complex time-series measurements, such as autocorrelation
(AC) or cross-wavelet coherences (as was the case in Chapter 5). Furthermore, the 3D
position was also used to train a deep neural network in Chapter 6.

3.3.3 Difficulties and limits

Research on human kinematics can pose a lot of difficulties and my PhD work did
not differ in that regard. The first difficulty I faced at the beginning of my PhD
was with the use of marker-based MoCap. We had access to a shared experimental
room with shared Qualisys cameras. We had to compromise on their positioning.
During our pre-tests, we had too many marker loss and not enough space for our
participants to perform the tasks (e.g., walking around a 5-m diameter circle). We
had difficulties in finding the optimal solution to our problem. But then, COVID-19

came. Thankfully, it afforded us time to think and plan our solution. After many
discussions, online demos with manufacturers, and scientific article readings, we
decided to give a shot at markerless MoCap. Our lab also gave us another room to
perform our experiments. Naively, I believed that all my problems had vanished.

As was implied in the previous sections, markerless MoCap solves many of the
problems posed by marker-based systems while also posing new ones. First of all, I
had to learn how to connect the cameras to the recording computer. This step might
seem trivial. It is not. We had eight cameras recording at 120 Hz with a resolution
of 1280 × 720 pixels. We did not realize how much data each camera was producing
and simply chaining the cameras (as we did with the marker-based technology) lead
to some files having less data than other. It took me a few days to understand that
there was too much data flowing through the Ethernet cables and that the cables
could not safely carry everything. A phone call later with our camera provider and I
was ordering a new network card for the computer and a 10 Gb/s network router. It
took me a full hour to understand how to wire all the cameras to the router and then
to the computer. Basically, I could chain at most 4 cameras before the cables would
be overwhelmed. Once that was done, I again believed I had solved all problems.
Then I discovered that our computer needed slightly less than an hour (54 min, to
be precise) to extract the kinematics of a 1 min and 30 s recording. The only solution
to decrease the processing time would have been to buy a new computer. Therefore,
I put a schedule into place to collect the data then have one full day and night to
extract the kinematics before including the next participant.

The last two difficulties we had with the markerless system were the required disk
space and the data format. The format in which the system exported the kinematics
did not match what we used. I had to write a small code snippet to automatically
export the data to our format so that we could still use all our previous analysis
tools. It took me a full day to understand how to write this code because I had
never worked with Visual3D and it was the only format in which the markerless
system exported the data. Then came the problem of storage. As I have mentioned
in the previous sections, the amount of storage required for one participant was 300

GB. Our computer had 4 TB of available storage. Of which we could use less than
80% since the disks were solid state drives. Therefore, we bought two external 5TB
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hard drives to store the data. The data remained on the computer for processing
purposes only. Once the kinematics extraction was done, I would transfer the data
to the external drives. I also made a backup of the data to a cloud owned by the
University. All these difficulties are just the ebb and flow of research but they offered
me a better understanding of the markerless technology. It also confirmed the need
of computer science know-hows to include new technology in psychological human
testing.

3.4 synchronization of equipment

Over the course of my PhD, many different equipment were used. The necessity
rapidly came of finding a way to synchronize these various tools. I chose to run with
a program called lab streaming layer (LSL), used mainly in research experiments.

Imagine an experimental session for which the participant has to smell an odor,
then score the pleasantness of the odor while wearing a wristband monitoring their
cardiac frequency. How can the experimenter separate the cardiac frequency during
the smelling phase and during the scoring phase? Several possibilities exists. The
experimenter could record on a piece of paper the time at which the participant
started smelling and the time at which the participant stopped smelling the odor.
Afterwards, the experimenter would need to report these two events in the cardiac
frequency data. While theoretically feasible, this possibility is prone to errors. Scenar-
ios like this one are familiar to virtually all experimenters in psychology. LSL offers
another elegant solution. The program acts as a lightweight interface between the
computer sending the visual stimuli, receiving the input from the participant and
the wristband. When an event is sent to LSL (e.g., stimulus on-set, cardiac frequency
measurement), a timestamp is associated based on the computer clock. When the
experiment is completed, LSL saves all data to a single file, on a unified time series.

The COVID-19 pandemic caught everyone by surprise. From one day to the next,
the world stopped. We had data in our hands so we modified our schedules and
carried on with research, differently. When the world started to come back to normal,
restrictions were still in place to protect us all. Participants had to wear masks during
the experimental sessions, continuous ventilation of the room was done, and all
materials were disinfected. For some researchers it was only a minor setback. For
researchers working on olfaction, it posed a completely different problem. We had
to rethink our way of designing experiments. It was a hard but good time. During
this period, my coworkers and I developed a whole new way of experimenting with
odors. I imagined an experimental setup that allowed for remote data collection.

The setup was made of a recording computer, audio instructions, a wristband to
measure cardiac activity, a chin rest, and different vials containing the odors. The
wristband was connected to the computer and the instructions are programmed via
PyschoPy (Peirce et al., 2019). Everything was synchronized using LSL. The partici-
pant was equipped with an auditory headset and the instructions were recordings
of a unique person talking at a moderate, soft speaking voice. Audio tracks are now
used in most of our in-lab studies, to avoid possible bias in case the experimenters
are not always the same person. The recordings were made with the most neutral
voice tone possible. The odor vials were marked with numbers on top of them so
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that the participant knew which one to place in front of them. A chin-rest and an
vial holder were provided to ensure that the distance between the vial and the nose
of the participant remained constant from one trial to the next. Only the height of
the chair was adapted for each participant. The different psychological scales used
to record the perception of the participants were implemented on the computer. All
the answers were directly recorded and synchronized with the wristband data. At
the end of the experiment, the file was uploaded to a NextCloud server owned by
the University of Lille. Then, I developed a Python code to process and analyze the
relevant dependent variables. The output of the analysis scripts was also uploaded
to the NextCloud server, to safeguard against possible data loss. The analysis scripts
were ran whenever needed and without the need of having access to the recording
computer, since the data were stored on the NextCloud server. During the months of
2021, the access to our lab was somewhat difficult. This innovating procedure offered
us the means to collect data from other campuses while I was working remotely.

3.5 conclusion

In this section, we have seen how different tools such as MoCap and physiological sen-
sors can be used to measure the emotional body experience. The perfect tool does not
exist and each one of them has its own limitations and difficulties that I managed to
overcome thanks to a fruitful collaboration with the lab engineers. My background
in cognitive science and, albeit short, experience in the private sector allowed me to
develop a multi-disciplinary reflection to apply data science to a theoretical question:
how can we characterize the emotional body experience. In the following chapters, I
will present three experiments to showcase how the intersection of emotional percep-
tion, physiology, and movement has allowed us to witness the evolutionary nature
of emotional behavior as a whole.
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I N F L U E N C E O F O D O R D I L U T I O N O N P E R C E I V E D VA L E N C E

4.1 methodological interlude

Experimenting with odors in humans is not an easy feet. Humans have between 300

and 400 olfactory receptors (Glusman et al., 2000, 2001). Each one of them reacts to
one or several odor molecules but not every human reacts to the same molecules.
These differences lead to different olfactory perception among participants. Further-
more, the more complex a molecule is, the more likely participants are to experience
it as pleasurable (Kermen et al., 2011). However, this is only part of the problems
one might encounter when experimenting with odors. Some molecules can degrade
rapidly and should be kept in airtight, light-protected containers and stored in refrig-
erators for a limited amount of time (usually 24–48h when prepared). The prepara-
tion required before each experiment should be done by trained chemists to ensure
the quality of the samples. This is why, during my PhD work, we have collaborated
with the team of Professor Véronique Nardello-Rataj from the Unité de Catalyse et
Chimie du Solide (UMR CNRS 8181) lab at the University of Lille. The chemists
helped us prepare the samples that were presented to the participants. Each sample
was prepared at most 24h before the experiment. Olfaction is not like other sensorial
modalities, like vision for example. Experimenting with odors require careful selec-
tion, preparation, storage, and presentation of molecules to be confident in the data
collected.

Dealing with the odor molecules is not the only issue raised by olfaction research.
Since humans have some differences in their olfactory receptors, they also have
some differences in their perception of odors. Androstenone, for example, is a pig
pheromone that is perceived as unpleasant, even disgusting to an extent, for most
people (Araneda & Firestein, 2003). For the large majority of individuals, it smells
like urine or sweat. However, for some individuals, androstenone is perceived as
pleasant and adjectives to describe the odor have been reported to be in the family
of the following words: floral, pleasant, sweet. Researchers even reported that for
another small portion of the sample population, the androstenone pheromone pre-
sented no smell at all, as the participants were anosmic to the molecule. Therefore, to
study the perception of odors it is necessary to ask participants how the odor makes
them feel and assess their olfactory abilities. With this aim in mind, one particular
questionnaire has been developed by olfactory researchers: the EOS.

The EOS is a scale composed of 35 words describing emotional reactions to odors
(e.g., pleasant, revitalized, disgusted). The participants are expected to rate on a
linear scale how intensely they feel the emotional word (from not at all intense to
extremely intense). Because participants should respond to every word, the time taken
to answer the questionnaire can be long. Therefore, researchers have developed a
shorter version of the EOS, the Geneva Emotion and Odor Scale (GEOS; Porcherot et al.,
2010). This shorter version is using triplets of words, created by aggregating words
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from the EOS (e.g., happiness – well-being – pleasantly surprised). Again, participants
are expected to rate on a linear scale how intensely they feel the emotional word
(from not at all intense to extremely intense).

In the following study, we used the GEOS and the Affect Grid (Russell et al., 1989)
to have a complete description of the changes in the affective states induced by the
odors. Furthermore, we used an Empatica E4 wristband to understand the physiolog-
ical changes triggered by the odors. This work was submitted in Quarterly Journal of
Experimental Psychology and provides a description of the method used to measure
physiological responses. Only the section about the selection of the scales used was
left outside the paper as it is only of interest in this manuscript.

4.2 introduction

We live in a world full of odors. These odors are powerful signals to make humans
and animals move (Takahashi et al., 2005). However, not all odors are created equal
when it comes to making people act. Food odors, for example, have been shown to
elicit faster responses than other odors (Boesveldt et al., 2010). In the previously men-
tioned experiment, the authors contrasted between unpleasant and pleasant odors as
well as food and non-food odors. Only the unpleasant food odor (i.e., fish) elicited
faster reaction times compared to all other odors. From an evolutionary standpoint,
it makes sense that humans have evolved to react faster and stronger to unpleasant
food odors. Indeed, one single ingestion of a dangerous food can be enough to kill
an adult. Generally speaking, evolutionary meaningful negative stimuli have been
hypothesized to be signals of danger, at least in the olfactory (Boesveldt et al., 2010)
and visual system (Mineka & Öhman, 2002).

Putrescine, for example, an odor molecule produced by the decomposition of a
dead body, has been found to increase the walking speed of participants to escape the
odor (Wisman & Shrira, 2015). Furthermore, certain odor molecules have the ability
to modulate cognitive or physiological components of human functioning. Pepper-
mint essential oil (mostly constituted of menthol and eucalyptol) has been found to
increase cognitive abilities by reducing reaction times and increasing alertness (Lwin
et al., 2020; Mahachandra et al., 2015; Tang et al., 2020). On the other hand, rosemary
essential oil (mostly constituted of camphor and eucalyptol) has been found to raise
physiological arousal by reducing sleepiness and increasing energy levels of partic-
ipants (Moss et al., 2003; Nasiri & Boroomand, 2021). These modulations of human
functioning might be triggered by cognitive emotional processes arising after odor
perception.

The perception of an odor is created by the brain after the binding of odor molecule
on the olfactory receptors in the nose. Humans have between 300 and 400 olfactory
receptors (Glusman et al., 2000, 2001). Each odor molecule can bind to one or several
receptor and it is from their combined activation that the perception is created. One
might think of it as an organ, where the combined activation of multiple keys would
produce a delightful melody. This olfactory melody will be processed cognitively by
a mechanism called appraisal (Arnold, 1960). It is defined as a process that detects
and assesses the significance of the environment for well-being (Moors et al., 2013).
For example, the putrescine odor will be assessed as unpleasant and potentially dan-
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gerous for well-being. Therefore, the appraisal will trigger a set of reaction to protect
the organism (e.g., walk away faster). This appraisal mechanism is also thought to
be at the root of all emotional processes (Ellsworth & Scherer, 2003).

The component process model (Sander et al., 2005; Scherer, 1984) is the domi-
nant model of emotional appraisal. This model describes how an emotional stimulus
(e.g., an odor) can be appraised, give rise to an emotional processing, then modulate
physiological and behavioral responses. In the component process model, humans
appraise the stimulus based on a number of components (e.g., is it new to me? Is it
dangerous? Do I like it?), and each appraisal check can trigger a reaction. Based on
this, when an odor is appraised as being unpleasant and/or threatening, a physio-
logical reaction is triggered. This phenomenon, seen as a change in HR for example,
will then, and only then, spark the desire to move and the participant will have the
true experience of having the urge to move.

Experimental studies with emotional stimuli use questionnaires to better under-
stand how participants feel when presented with the stimuli. Participants are usu-
ally asked to describe their feelings in terms of valence (how good is what I am
feeling) and arousal (how energizing is what I am feeling). Valence and arousal are
thought to be at the core of affective reactions (Russell, 1980). However, researchers
have argued that olfactory perception is a highly complex mechanism that can not be
accounted for simply by valence and arousal. This is why the GEOS has been devel-
oped, within the theoretical framework of appraisal (Chrea et al., 2008; Ferdenzi et
al., 2013b; Porcherot et al., 2010). This scale is composed of words or triplets of words.
Participants are asked to rate how intensely they feel the corresponding words. The
GEOS allows to have a more complete description of the emotional perception trig-
gered by smelling an odor molecule.

In this work, we used these scales, in combination with physiological measures to
test the effect of three different molecules on creating the urge to move in healthy
adults. These three molecules were chosen because findings suggest that they acti-
vate the cognitive (menthol), physiological (camphor), or motor (cadaverine) com-
ponents of human functioning. The following hypotheses were made: as cadaverine
has a molecular structure very close to putrescine, it should be rated as less pleasant
and more unpleasant than menthol and limonene (H1; Wisman & Shrira, 2015); cam-
phor and menthol have been shown to increase alertness and arousal, and should
be rated as more arousing than cadaverine (H2; Lwin et al., 2020; Mahachandra et
al., 2015; Moss et al., 2003; Nasiri & Boroomand, 2021; Tang et al., 2020); as being
more arousing, camphor and menthol should also increase the HR frequency of par-
ticipants when compared to cadaverine (H3); if the predictions of the component
process model are accurate for olfactory processing, we should observe a positive
correlation between physiological response (HR or HRV) and desire to move, while
observing no correlation between unpleasantness and desire to move (H4).
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Table 1
Odorant Molecule Description

Structure CAS
Number

Manufacturer Activates

cadaverine 95% 462-94-2 Sigma
Aldrich

Motor function (Wisman &
Shrira, 2015)

DL-menthol 98+% 89-78-1 N/A
Cognition (Lwin et al., 2020;

Mahachandra et al., 2015; Tang
et al., 2020)

(1R)-(+)-camphor 98% 464-49-3 Alfa
Aesar

Physiology (Moss et al., 2003;
Nasiri & Boroomand, 2021)

Note. Chemical structure, CAS number, manufacturer and human component acti-
vated for each of the three odorant stimuli used in the present work.

4.3 method

4.3.1 Participants

A total of 45 healthy adults took part in the experiment (all aged between 18 and
35; 27 women). The sense of smell of each participant was assessed using the Sniffin’
Sticks Screening 12 Test (Burghart; Wedel, Germany; Hummel et al., 1997). A score
below 11 was set as the cut-off threshold (Hummel et al., 2001). This led to the
rejection of 10 participant (6 women). Out of the remaining 35 participants, 4 were
removed due to a failure of the recording computer. Therefore, all the following
analyses were conducted on 31 participants.

4.3.2 Odorant stimuli

Three odorant stimuli were selected: cadaverine, camphor, and menthol (see Table
1 for more information on the molecules). These stimuli were chosen to activate ei-
ther the cognitive (menthol; Lwin et al., 2020; Mahachandra et al., 2015; Tang et al.,
2020), physiological (camphor; Moss et al., 2003; Nasiri & Boroomand, 2021), or mo-
tor (cadaverine; Wisman & Shrira, 2015) component of human functioning. Although
putrescine was used by Wisman and Shrira (2015), this molecule is dangerous to in-
hale. This is why, cadaverine was used in the present study as it has a similar chem-
ical structure to putrescine and should elicit the same response (Wisman & Shrira,
2015). Each odorant were single molecule rather than mixes of different molecules
(as essential oils for example; see Table 1 for details on the molecules).

Odors were presented to the participants in 30 mL glass vial: each vial contained a
1.5 cm × 1.5 cm square of chromatographic paper (Whatman 1CHR 3001-653, What-
man Article No. 28419181) on which had been dropped 0.15 mL of the odorant. The
samples were prepared (odorant dropped on the paper) at least 20 min and at most
24h before the test, to have a similar chemical composition of the headspace of the
flask (molecule evaporated from the paper to the air in the flask) for each participant.
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Each vial of odorant was coded with a random code. The vials were sorted by
molecule and stored in plastic containers to avoid contamination between molecules.

4.3.3 Measures

To collect an objective measure of the impact of odors concentrations on physiologi-
cal, emotional, and behavioral responses, the following equipment was used.

4.3.3.1 Circumplex model of affect to score arousal and valence

The changes in affective states of the participants was measured with two scales,
based on the circumplex model of affect (Russell, 1980). These two scales, one for
valence and one for arousal, are discrete and ranging from 1 (negative affect or low
arousal) to 9 (positive affect or high arousal). The valence scale was presented hori-
zontally, while the arousal scale was presented vertically to be as close as possible as
the affect grid (Russell et al., 1989).

4.3.3.2 Geneva Emotion and Odor Scale

The GEOS (Chrea et al., 2008; Porcherot et al., 2010) was used to record the changes
in emotional perception induced by the various odor concentrations. The scale is
composed of eight triplets of words. The participant was invited to rate, for each
triplet separately, the extent to which their feelings matched the triplet, on a linear
scale without anchoring. The order of presentation of the triplets was randomized to
avoid a possible learning of the order and avoid biases in the responses. The scale
was presented as a linear scale ranging from 0 to 200 and the value was hidden from
the participants.

4.3.3.3 Desire to move

The desire to move was measured by asking the participant to rate their desire to
stay or leave the room. To answer, the participant was provided with a linear scale
internally ranging from 0 to 200, whose anchors were stay and leave. The anchors
were randomly assigned to the left- or right-hand side of the scale. Using a similar
procedure as with the GEOS, the exact value of the response was hidden from the
participant. The participant was simply asked to indicate how strongly they desired
to either stay or leave the room after smelling the odor.

4.3.3.4 Empatica to measure heart rate

The Empatica E4 wristband (Empatica S.r.l, Milano, Italy) was used to record PPG

data and electrodermal activity. The PPG sensor records changes in blood volume
pulse and thus, is used to compute HR and HRV. The E4 was used in the present
study to measure changes in HR (in BPM) and HRV. HRV was computed through the
use of the RMSSD. The RMSSD is a time-domain measurement of HRV based on the
differences between successive heartbeats (Shaffer & Ginsberg, 2017). It is expressed
in milliseconds.
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4.3.4 Procedure

Each participant was tested on the three odors, repeated five times. Odor molecules
were not mixed, which means that all repetitions of one odors had to be completed
before moving to the next odor. The participant was not informed that each odor
was repeated five times. Each trial lasted approximately 3 min.

The participant was invited to sit in front of a desk. A computer and two boxes
were placed on the same desk, each box containing five glass vials. Prior to smelling
the odor, the participant was trained to perform a specific respiratory pattern (i.e.,
cued-sniffing procedure; Ischer et al., 2021). Each trial started with a countdown from
four to zero and the participant was invited to hold their breath until the number "1"
appeared on the screen, then they could breath normally. Afterwards, an instruction
on the computer invited the participant to remove the cap of the odor vial, close
their eyes and smell for 35 s. Then, the participant was asked to close the vial and
rest for 60 s. Following this period, the participant was invited to rate the odor using:
(a) a 9-point intensity scale, (b) a double-anchored leave or stay scale, (c) a 9-point
familiarity scale, (d) a 9-point valence scale, (e) a 9-point arousal scale, (f) the GEOS

(Porcherot et al., 2010). Finally, the participant was invited to repeat the procedure
for the next odor, as indicated by the computer. All vials were similar, except for a
number marked on the vial (ranging from one to five).

This whole procedure was performed without the experimenter being present in
the room. The experimenter was just outside the room to monitor and assist the
participant if needed. All the instructions were voice-recorded and everything was
automatized (see (Brossard & Delevoye-Turrell, 2022) for a full description of the
procedure).

4.3.5 Preprocessing

Before any preprocessing step, the Sniffin’ Sticks Screening 12 Test results were exam-
ined to reject participants not meeting the required criteria (i.e., a score < 10 for men
and < 11 for women). This procedure lead to the rejection of 10 participants. Another
4 participants were rejected due to a technical failure of the recording computer.

Raw data was filtered between 0.7 and 3.5 Hz with a 3rd order Butterworth band-
pass filter. Cut-off frequencies were chosen as they correspond to 42 and 210 BPM,
covering the normal range of heart rate found in humans (Opthof, 2000). Finally, the
photoplethysmographic data was filtered by the use of an outlier rejection pass (van
Gent et al., 2019). The chosen method was the quotient filter. This phase is designed
to automatically detect and remove R–R intervals that are unlikely to reflect parasym-
pathetic activity. Details about this procedure can be found in Section 4.4, page 44

of Piskorski and Guzik (2005). Once all R-R intervals were correctly annotated, the
BPM and RMSSD were computed. BPM was computed as the number of heartbeats per
minute. RMSSD was computed as the root mean square of successive R–R intervals.
All these phases were conducted using the Python HeartPy toolbox (van Gent et al.,
2019).
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4.3.6 Dependent variables

The dependent variables were computed as the difference between the value ob-
tained during baseline and the value obtained during 60 s after the end of the odor
presentation. The dependent variables were HR (∆ BPM), HRV (∆ RMSSD), pleasant
feeling, unpleasant feeling, valence, arousal, and desire to move. For each of the de-
pendent variables, an outlier rejection pass was ran using the interquartile range. A
lower and upper bounds were calculated as:

lower = Q1− (1.5× [Q3−Q1]) (1)

upper = Q3+ (1.5× [Q3−Q1]) (2)
With Q1 and Q3 being the 1st and 3rd quartile, respectively. All data points that
fell out of the lower and upper-bound ranges were considered outliers and removed
from further analyses.

4.3.7 Statistical analyses

Data normality assumption was assessed using Shapiro–Wilk test. Data sphericity
assumption was assessed using the Mauchly test. Greenhouse–Geiser corrections
were applied when sphericity assumption were violated.

A Kruskal–Wallis test was conducted with odor as the only factor (camphor, ca-
daverine, menthol) for each of the discrete dependent variable (valence and arousal).
Alpha level was set at .05 and Dunn post-hoc tests were conducted when necessary.
Partial eta squared (η2p) were calculated to report effect sizes.

A one-way repeated-measures analysis of variance (RM ANOVA) was conducted
with odor (camphor, cadaverine, menthol) as the only factor, for each of the contin-
uous dependent variable (HR, RMSSD, and desire to move). Alpha level was set at
.05 and t tests with Bonferroni correction for multiple comparisons were conducted
when necessary. Partial eta squared (η2p) were calculated to report effect sizes.

Pearson’s correlation coefficient was used to measure the linear correlations be-
tween ∆ BPM and desire to move, as well as between perceived unpleasantness and
desire to move. Alpha level was set at .05 and the normality of the distributions was
assessed by a visual inspection of the quantile-quantile plots. The magnitude of the
correlation was interpreted based on fixed criterion (r < 0.19,no correlation; 0.2 < r <
0.39, low correlation; 0.4 < r < 0.59, moderate correlation; 0.6 < r < 0.79, moderately
high correlation; r > 0.8, high correlation; Zhu, 2012).

4.4 results

4.4.1 ∆ BPM

The RM ANOVA showed a statistically significant main effect of odor, F(2, 285) =

8.00, p < .001,η2p = .05, with lower ∆ BPM for menthol (M = 2.50, SD = 3.95) than
for cadaverine (M = 4.03, SD = 4.62, p = .033, d = 0.35) and camphor (M = 4.82, SD =
3.66, p < .001, d = 0.61). Overall, the results indicated that camphor and cadaverine
increased the HR frequency more than menthol.



46 influence of odor dilution on perceived valence

4.4.2 Subjective ratings results

4.4.2.1 Perceived pleasantness

The RM ANOVA showed a statistically significant main effect of odor F(2, 296) =

31.79, p < .001,η2p = .18, with lower pleasantness ratings for cadaverine (M = 32.30,
SD = 39.44) than for camphor (M = 83.47, SD = 64.26, p < .001, d = 0.96) and men-
thol (M = 92.62, SD = 60.71, p < .001, d = 1.18). Overall, the results indicated that
cadaverine reduced the feeling of pleasantness compared to camphor and menthol.

4.4.2.2 Perceived unpleasantness

The RM ANOVA showed a statistically significant main effect of odor F(2, 297) =

57.32, p < .001,η2p = .28, with higher unpleasantness ratings for cadaverine (M =
120.87, SD = 63.78) than for camphor (M = 60.40, SD = 63.25, p < .001, d = 0.95) and
menthol (M = 33.59, SD = 42.56, p < .001, d = 1.61). Overall, the results indicated
that cadaverine increase the feeling of unpleasantness compared to camphor and
menthol.

4.4.2.3 Perceived arousal

The Kruskal–Wallis test showed a statistically significant main effect of odor χ2 =

50.95, df = 4, p < .001,η2p = .103, with lower arousal ratings for cadaverine (med = 4,
IQR = 3.5) than for camphor (med = 6, IQR = 2, p < .001, d = 1.05) and menthol (med
= 5, IQR = 2, p = .010, d = 0.55). Results also showed statistically significant lower
arousal ratings for menthol than for camphor (p = .005, d = 0.48). See Figure 9, panel
B for a visual description of the results.

4.4.2.4 Desire to move

The RM ANOVA showed a statistically significant main effect of odor F(2, 297) =

55.42, p < .001,η2p = .27, with higher desire to move for cadaverine (M = 141.94,
SD = 58.81) than for camphor (M = 86.45, SD = 63.88, p < .001, d = 0.90) and menthol
(M = 54.79, SD = 48.74, p < .001, d = 1.61). Post-hoc results also showed a higher
desire to move for camphor than for menthol (p < .001, d = 0.56). Overall, the results
indicated that cadaverine increased the desire to move compared to other odors. See
Figure 10 for a visual description of the results.

4.4.3 Correlations

To understand if a physiological reaction was needed to trigger the urge to move, the
linear correlation between ∆ BPM and desire to move was computed. The correlation
was not statistically significant (r = .10, t(293) = 1.70, p = .090, see Figure 11).

An additional Pearson’s correlation coefficient was computed between the per-
ceived unpleasantness and desire to move. The correlation was statistically signifi-
cant (r = .78, t(298) = 21.63, p < .001, see Figure 12). This correlation coefficient is
considered as a moderately high correlation (Zhu, 2012).



4.4 results 47

Figure 9
Perceived Valence and Arousal as a Function of Odor

Note. Perceived valence (panel A) and arousal (panel B) ratings as a function of
the odor presented. Error bars denote 95% confidence interval. The number of stars
denotes the statistical significance of the comparison. ∗∗p < .01, ∗∗∗p < .001.

Figure 10
Desire to Move as a Function of Odor

Note. Desire to move as a function of the odor presented. The larger the value, the
more the desire to move was felt.

4.4.4 Exploratory analyses

This section presents further analyses conducted on variables outside the primary
hypotheses but that can bring new insights in the understanding of the results.
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Figure 11
Linear Regression Between ∆ BPM and Desire to Move

Note. Pearson’s correlation coefficient was used to estimate the correlation between
the change in BPM and the desire to move. The correlation was not statistically sig-
nificant (r = .10, t(293) = 1.70, p = .090).

4.4.4.1 ∆ RMSSD

The RM ANOVA did not show a statistically significant main effect of odor F(2, 288) =
0.14, p = .867, η2p < .01.

4.4.4.2 Perceived valence

The Kruskal–Wallis test showed a statistically significant main effect of odor χ2 =

61.19, df = 2, p < .001,η2p = .20, with lower valence ratings for cadaverine (med = 3,
IQR = 3) than for camphor (med = 6, IQR = 3, p < .001, d = 0.93) and menthol (med
= 5, IQR = 3, p < .001, d = 1.38). See Figure 9, panel A for a visual description of the
results.

4.4.4.3 Correlations

To understand how the participants used both the GEOS and valence scale, the linear
correlation between valence and unpleasant feelings was computed. The correlation
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Figure 12
Linear Regression Between Unpleasantness and Desire to Move

Note. Pearson’s correlation coefficient was used to estimate the correlation between
the felt unpleasantness and the desire to move. The correlation was statistically sig-
nificant (r = .78, t(298) = 0.78, p < .001), with a moderately high coefficient (Zhu,
2012).

was statistically significant (r = −.68, t(298) = −16.19, p < .001; see Figure 13, right
panel). This correlation coefficient is considered as a moderately high correlation
(Zhu, 2012).

4.5 discussion

Odors are powerful stimuli to trigger behavioral changes. In this particular study, our
goal was to test the effect of three molecules on creating the urge to move among
healthy young adults. These three molecules are menthol, camphor, and cadaverine.
They were chosen as they have been shown to activate the cognitive (menthol; Lwin
et al., 2020; Mahachandra et al., 2015; Tang et al., 2020), physiological (camphor; Moss
et al., 2003; Nasiri & Boroomand, 2021), or motor (cadaverine; Wisman & Shrira, 2015)
component of human functioning. We used physiological analyses and psychological
scales to understand how each molecule was affecting the urge to move and whether
a change in physiology was a necessary condition to the desire to move. The results
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Figure 13
Linear Regressions Between Valence and Desire to Move or Unpleasant Feelings

Note. Left panel represents the linear regression between valence ratings and desire
to move. Right panel is the linear regression between valence ratings and unpleasant
feelings ratings.

have shown that cadaverine was rated as less pleasant and more unpleasant than
camphor and menthol, confirming H1. The results have also shown that menthol
and camphor have been perceived as more arousing than cadaverine, confirming
H2. However, cadaverine and camphor elevated the HR of the participants when
compared to menthol, contrary to H3. Furthermore, there was no correlation between
physiological response and desire to move, but there was a moderately high positive
correlation between felt unpleasantness and desire to move, contrary to H4.

The results on the emotional perception provoked by each odor were in line with
the hypotheses. Cadaverine, which is a molecule structurally close to putrescine (Wis-
man & Shrira, 2015), seems to have a similar effect as putrescine. It triggered highly
unpleasant feelings among all participants and made them want to leave the room.
This result was expected as it is a molecule produced by the decomposition of a dead
body. Thus, this molecule holds a powerful evolutionary meaning and it is possible
that the reaction to this smell has been shaped by evolution. All three odors were
rated in a similar manner for the GEOS and the valence scale. However, what is inter-
esting is that the correlation between the responses from the GEOS and valence is not
1 (r = −0.68; see Figure 13, right panel). This correlation coefficient is considered as
moderately high but only accounts for around 68% of the variance. This could mean
that a third of the participants used the two scales differently. One possible explana-
tion for this would be that they used the GEOS to describe how they perceived the
odor while using the valence scale to describe how the smell made them feel. Imag-
ine the smell of gasoline. For some people, this odor is perceived as rather pleasant.
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Figure 14
GEOS Results For Each Odor

Note. Results for each dimension of the Geneva Emotion and Odor Scale of all partic-
ipants and for each odor. For each of these dimensions, participants were presented
with a triplet of words and a linear scale (ranging from 0 to 200 and hidden from the
participants). Participants were asked to rate how much their feelings matched the
triplet of words. See Chrea et al. (2008) and Porcherot et al. (2010) for the complete
description and validation of the scale.

Nevertheless, gasoline odor can be detrimental for health (Sousa-Santos et al., 2020).
Therefore, it is possible to imagine that some participants would respond with high
ratings of pleasantness on the GEOS but low values with the valence when presented
with a gasoline odor. That being said, these results are only exploratory and more
investigations are needed to fully understand how participants use both scales and
what the possible theoretical implications would be.

The results obtained on the perceived arousing properties of the three molecules
were also in line with both the hypotheses and previous literature. Camphor and
menthol were found to increase arousal, alertness, reduce sleepiness, and reaction



52 influence of odor dilution on perceived valence

times (Lwin et al., 2020; Mahachandra et al., 2015; Moss et al., 2003; Nasiri & Bo-
roomand, 2021; Tang et al., 2020). Nevertheless, an increased perceived arousal does
not seem to be linked with physiological reactions to odors, contrary to our hypoth-
esis. Indeed, it was hypothesized that the level of perceived arousal would be linked
with physiological changes, such as an increase in BPM. However, only menthol re-
duced the increase in BPM observed across participants. This effect, while unantici-
pated, can be explained by the molecules themselves. All three molecules have been
found to stimulate the trigeminal nerve (Frasnelli & Manescu, 2017). Stimulation of
the trigeminal nerve is responsible for sensations of burning or stinging for exam-
ple. Four receptors are notably activated by odor molecules (TRPA1, TRPM8, TRPV3,
TRPV1). Both cadaverine and camphor have been found to activate receptor TRPV1,
mostly responsible for the perception of tingling (and even pain if the odor is very
intense; Frasnelli & Manescu, 2017). Menthol, on the other hand, has been found to
activate receptor TRPM8, mostly responsible for the perception of cooling, never be-
ing painful (Frasnelli & Manescu, 2017). Therefore, the defining factor in modifying
HR could be the type of trigeminal receptors stimulated by the odor. Furthermore, the
exploratory analyses have shown that HRV seems to not be affected by the molecule
in this study. This could be because the participants did not actually move. HRV is
a marker of regulation mechanisms (or of an influence of the parasympathetic ner-
vous system). However, there is very little to regulate in this experiment, since the
participants could not perform the action of leaving. Future studies should try to
investigate if similar effects arise when participants are offered to actually leave the
room for a minute if the smell is highly unpleasant.

Accounting for all these findings can prove to be complex. The component process
model, described in the introduction, seemed to indicate that for the desire to move
to arise, a physiological reaction due to appraisal was necessary. Nonetheless, there
was no correlation between ∆ BPM and desire to move, contrary to our hypothesis.
Furthermore, there was a moderately high correlation between perceived unpleasant-
ness and desire to move. These results seem to indicate that a physiological reaction
is not a necessary condition for the urge to move to arise, contrary to the predic-
tion made with the component process model. Therefore, another appraisal model
could help explain these results. The IMPPACT model (Ridderinkhof, 2017), is based
on the idea of motor control loops taking place after an appraisal phase, similar to
the component process model. If an odor is appraised as being unpleasant and/or
threatening, then the urge to move will be triggered by the prediction of the future
physiological and psychological consequences of staying close to the odor source.
In the current experiment, the participant was seated on a chair, presented with an
unpleasant odor and asked to rate his desire to move but without the possibility
to actually move. According to the IMPPACT model, the participant could wish to
move, even if he does not have a physiological response, because his brain would
not predict a physiological change since he can not really perform the movement.

4.5.1 Conclusion

This study has yielded the first bricks of knowledge towards an understanding of
how an odor can trigger the urge to move. However, it should be noted that further
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investigations are needed to (a) confirm that evolutionary negative odors (e.g., ca-
daverine) can trigger the urge to move, (b) find other molecules capable of triggering
the urge to move, and (c) test the influence of being able to perform a movement to
get away from an unpleasant odor. To conclude, it is not the sensation provoked by
the odor, but rather the perception of unpleasantness that triggers the urge to move.





5
S PAT I O T E M P O R A L C O R R E L AT I O N S O F W H O L E B O D Y
M O V E M E N T S

This article has been submitted for publication in Journal of Experimental Psychol-
ogy: General.

5.1 introduction

Adaptation is crucial for survival. Humans have developed protective and defensive
behavior to shield their bodies from outside threats (e.g., fight or flight response,
yelling for help; Blanchard et al., 2001). But threats can also come from within, e.g.,
overheating and undernourishment. Hence, individuals have also developed inter-
nal mechanisms to regulate body functioning and optimize energy consumption.
Allostasis is one of such internal mechanisms that provides stability through change
and refers particularly to the idea that parameters of most physiological regulatory
systems change to accommodate environmental demands. For this regulation system
to perform efficiently, a signaling mechanism is however vital. Affects and more gen-
erally emotions, have in the last decade been proposed to play such a role. Defined
in terms of valence (i.e., positive or negative) and arousal (i.e., energetic or sleepy),
core affect would reflect the sensory consequences of allostatic changes (Barrett, 2017,
p.9). Hence, core affect may be a powerful signal used to detect significant risks to
allostasis dysregulation throughout the course of a day, allowing the brain to main-
tain optimal functioning of the moving body in a constantly changing world (Barrett,
2017; Russell, 2003).

Emotions signal contrasting messages depending on the affective valence. Nega-
tive emotions are especially informative of allostasis dysregulation, increasing the
risks of cardiac diseases (Mostofsky et al., 2014), noncommunicable mental disor-
ders (Fowler et al., 2011; Klippel et al., 2021) and may be the cause of one of many
health issues of the 21st century (Bloom et al., 2012). But even without considering
these extreme cases, negative affective states modify body functioning. Frequent sit-
uations of anger or anxiety lead to increased levels of impulsive eating behaviors
(Macht, 1999) and an intensification of oxygen consumption (Dudley et al., 1964). In
the context of physical activity, and in cycle riders for example, Lane and collabora-
tors reported that the outbreak of a negative emotion increased oxygen consumption
by 10 to 20 liters per minute compared to that observed in the cycle riders experi-
encing positive emotions while performing the identical task of cycling for 2 hours,
at lactate threshold (Lane et al., 2011). Negative emotions would hence be the signal
that something threatening to the system is occurring and a change is required. As
a protective measure, the body would tense up leading to a general greater levels
of muscle co-contraction. Such overall high sets in muscle tone lead to an increase
in energy needs. Physiological modifications through food consumption and oxy-
gen intake would be the first mechanisms to regulate internal allostasis. However,
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when the internal resources are not sufficient, body movement is required in search
of solutions. Consequently, emotions would have the additional power of triggering
changes in body position and dynamics.

Imagine walking down a calm street at mid-day. Without a worry in mind, the
spontaneous pace of walking is around 2 Hz, i.e., close to two meters per second
(Moelants, 2002). This pace is rather constant across ages and cultures (Bobin-Bègue
& Provasi, 2008; McAuley et al., 2006; Van Noorden & Moelants, 1999) probably be-
cause it is the pace at which the cognitive cost of motor adjustment is the lowest
(Delevoye-Turrell et al., 2014; Guérin et al., 2021a). It is also the pace at which the
metabolic energy cost of controlling body motion is minimal (Alexander, 2002). How-
ever, individuals can modulate their movement speed to facilitate smooth interaction
with others and objects. Slowing the hand movement to fit a key in a lock; run to
catch a train. Adaptive behavior emerges in the first years of life (Bobin-Bègue et
al., 2006) with the maturation of cortical networks required to control the ability to
modulate the spontaneous pace of movement as a function of contextual demands
(Guérin et al., 2021b). But the urge to walk faster can also be triggered by uncon-
scious affective sources signaling the need to move. Imagine now walking down the
same calm street but at night, alone, with the difficulty to step over trash and broken
bottles. If one is a war veteran with good defensive skills, one might not even notice
the potential threat. Nevertheless, if a civilian, one might adopt a protective pos-
ture: body tensed up, head low and hunched back in position for defense or attack.
This attitude is thought to emerge from past evolutionary experiences, providing the
means to adopt a rigid body, with the additional physical consequence of protecting
the throat from external threat. Walking pace may increase to limit the time spent in
the unpleasant environment; one could even break into a soft jog or a sprint depend-
ing on the intensity of the unpleasantness. The changes in body posture and walking
pace may be slightly different from one individual to another, especially depending
on the perceived nature of the life-taking threat and its associated risk. Nevertheless,
changes in body kinematics all originate from internal afferences, which signal that
action must be taken to maintain allostasis integrity and preserve the body from
external threat.

Internal afferences constitute a vital branch of the motor control loops (Wolpert &
Flanagan, 2001). When preparing to act, the brain predicts both the timing and the
content of the sensory afferences that will be experienced by the body as a direct
consequence of the execution of the planned motor command. Once the movement
is executed, the memory traces of the predicted afferences are compared to the true
sensory feedback that is received from the effectors. The discrepancy that may exist
is coded as a prediction error, which is then used, in a trial–error fashion, to modu-
late and adapt body tone, posture and movement patterns. The vital goal of the brain
is here to minimize the prediction error to maintain allostasis, i.e., avoid using too
much energy while producing the goal directed behavior. Control loops are efficient
as they are ingrained at various levels of the motor system. At a reflex level, reaffer-
ences can modulate muscle tone by facilitating motor co-contraction. At the cerebral
level, sensory and affective sources of information can modulate automatic motor
responses and trigger pre-cabled organized patterns of complex motor outputs. Ob-
viously, with activation of the cerebral brain areas, goal-directed motor actions can
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be initiated, inhibited and/or modulated as a function of more cognitive-based deci-
sions. It is the changes made to how a motor behavior is expressed through posture
and types of body gestures that is referred to as an emotional action. Indeed, in
classic motor control, body kinematics (e.g., position, acceleration, jerk) is studied in
reference to the goal of a voluntary body movement (e.g., move the hand to grasp a
cup). However, actions can be taken with the intention to trigger positive or negative
changes in the world (e.g., waving at a friend, signaling a pedestrian to stop crossing
the road). Motor behavior can also be modulated to change the inner pleasantness
state of the body (e.g., walk slower to avoid sweating vs. walk faster to be out of
harm’s way). Hence, what makes a motor action emotional is the fact that the action
is produced to achieve a desired affective effect on the world and on the body (Rid-
derinkhof, 2017). An emotional outbreak should thus have a visible impact on the
kinematics of an expressive body but only as a secondary signature ingrained within
the primary properties of the goal-directed movement.

In movement science, studies have reported the impact of emotional states on body
kinematics. A certain number of studies have described that anger and joy increase
the speed of execution of motor actions whereas sadness and fear decrease motion
speed. This effect has been reported in various actions, from simple arm movements
(Pollick et al., 2001) to more complex gait patterns (Crane & Gross, 2007; Roether
et al., 2009). Speed is not the only parameter to be influenced by emotions. The
jerkiness of the motion, for instance, is greater after inducing states of anger and
joy compared to the cases of contentment, neutral and sadness (Pollick et al., 2001).
Emotions also have the power to change body postures. Wamain et al. (2015) found
that when listening to emotional music, head position lowered by 3 degrees when
cycling for 30 s bouts of leisure exercise. Roether et al. (2009) had individuals imag-
ine emotional scenarios and reported that head position dropped with negative and
raised with positive memories. Even if small in absolute terms, these micro changes
in body postures and dynamics are sufficient for naive observers to categorize the
emotional state of the actor, simply by watching video clips of the motion, i.e., with-
out facial expressions (Atkinson et al., 2004; Pollick et al., 2001) or with point-light
displays (Roether et al., 2009). Recent studies have even quantified the performance
of human classifiers reporting over 72% of good classification when 5 emotional cate-
gories were presented under a force-choice procedure (Daoudi et al., 2017). However,
while these studies provide solid evidence that emotions impact the expression of
voluntary motor programs, the findings do not provide the means to map emotions
to kinematics on a one-to-one correspondence.

In the present work, we propose that emotional expression is a by-product of
body states and goal-directed body movements. Humans do not move to express
emotions - language has taken over for that purpose. Changes in body kinematics are
the consequences of inner variations in muscle tone and physiological activity that
translate as levels and intensities of unpleasantness, threatening allostasis integrity.

Following this idea, we applied time series analyses to decode the changes through
time of body tension and energy, in relation to the degree of unpleasantness of the
experience. Indeed, time series analysis is an important tool for medical diagnos-
tic purposes (Pascolo & Carniel, 2009) and thus, can be used to monitor the time
evolution of body control and tension (Zhipeng et al., 2014). Building on previous



58 spatiotemporal correlations of whole body movements

Table 2
General Demographics of the Eight Actors

Age Experience Height Weight

(years) (years) (m) (kg)

Women 27.0 ± 2.71 6.5 ± 2.65 1.63 ± 6.14 58.5 ± 5.69

Men 26.0 ± 1.14 5.6 ± 1.11 1.82 ± 8.12 66.8 ± 7.8
Note. General demographics for the eight actors participating in the study. An analy-
sis of variance indicated that Group differences reached significance for Height only
F(1, 6) = 14.672,p = 0.008.

lines of research (Dione & Delevoye-Turrell, 2015; Guérin et al., 2021a), we first ap-
plied serial auto-correlations on the interval between foot steps, to distinguish dif-
ferences in control strength between emotions with positive and negative valences.
More specifically, negative emotions that trigger an increase in control applied to the
body should be associated with significant negative auto-correlations. In a second
step, we decomposed the time series into time–frequency space to perform a cross-
wavelet analysis (Grinsted et al., 2004). This wavelet analysis provided the means to
determine localized variations of power across left-toe and right-wrist time series.
Statistical significance testing was included to contrast low and high energy levels as
a function of the affective states. More specifically, we hypothesized that high-energy
emotions (anger, joy) will be characterized by shorter and jerkier gait patterns com-
pared to that observed in low-energy emotions (sadness, fear, neutral; H1). Negative
emotions (anger, fear, sadness) will be characterized by lower head positions com-
pared to that observed in positive emotions (joy; H2). Control through time of rigid
body parts will be more visible for negative emotions and will be characterized by
negative auto-correlations (H3). Finally, the four categories of emotions will yield
specific wavelet 2D patterns when taking into account both tension and energy lev-
els across the time series of the left-toe and right-wrist parts of the moving body
(H4).

5.2 material and methods

5.2.1 Participants

Eight healthy, well-experienced professional actors (four males) were paid for their
participation in the experiment. They gave informed consent prior to inclusion in
the study. Experiments complied with the Declaration of Helsinki. The general de-
mographics for the actors are presented in Table 2, with the men being significantly
taller than the female actors.

5.2.2 Task

The actors were required to walk back and forth along a ten-meter lane under five
different emotional conditions: fear, sadness, anger, joy and neutral. Five trials for
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each emotion were recorded per participant. However, for some participants, only
two trials were exploitable due to marker loss. Therefore, a total of 156 trials were
used in the following analyses.

5.2.3 Inducing emotional states

Emotional induction is the most rigorous means of testing the causal influence of
affective states on the motor system. In the present study, an autobiographical re-
call technique was used to help actors summon personal emotional memories to
reactivate the original affective experience (Prkachin et al., 1999). In a preliminary
experiment, some actors started to run in the fear condition. Hence, in the specific
case of fear, participants were instructed to perform the task as if they were walking
down a dark and dangerous alley (for more details on the procedure, see Hicheur et
al., 2013). For each trial, participants were instructed to imagine a past experience to
feel the recalled emotion before initiating gait. The 3D recording of body movements
was initiated when the participant initiated the first step.

5.2.4 Equipment

Three-dimensional positions of light reflexive markers were recorded using an opto-
electronic Vicon V8 motion capture system wired to 24 cameras, running at a sam-
pling frequency of 120 Hz. The Vicon Plug in Gait model was used to reconstruct
gait dynamics (VICON, Oxford Metrics Limited, Oxford, United Kingdom) and data
were filtered with a 4th order Butterworth low-pass filter at 15 Hz.

Continuous 3D position data were encoded from the 18 points of the participant’s
body. (1) The two shoulder markers were located on left and right acromion; (2) The
two wrist markers were located on the external face of the lower arms; (3) Four mark-
ers were located on the pelvis with front markers placed on left and right anterior
superior iliac spines. (4) Left and right ankle markers were located on the lateral
malleolus and (5) the left and right toe markers were placed at the top of the foot
(participants were allowed to wear shoes), between toes 2 and 3; (6) the heel markers
were placed on the back of the heel, at the same height as the toe markers. Finally,
(7) four markers were directly placed on a pair of light glasses without lenses to
gain a better reliability of marker-placements across participants, without affecting
the quality of the data obtained from the head markers. An illustration of marker
placements is available in Figure 20. From these 18 physical markers, the Vicon Plug
in Gait model provides the means to create a set of 43 virtual markers that were used
to compute a certain number of indices.

The emotional gait patterns were analyzed in two steps. As classically reported,
the kinematics patterns of whole body movements are first presented. Time series are
then presented to reveal the specific effects of emotional induction on body control,
energy and rigidity.
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5.2.5 Data analysis of emotional gait: Kinematics

Prior to further computations, 3D data were translated to a new semi egocentric
frame of reference with the X-axis and Y-axis following body orientation pointing
forward and leftward from the body, respectively. The original vertical Z-axis set by
the 3D capture calibration was kept as it was defined as pointing upwards. The origin
of this new reference frame was anchored to the mean of the 3 pelvis-marker posi-
tions for the X and Y axes but the Z-axis was maintained at its origin. By keeping
the original direction and location for the Z component of the 3D data, informa-
tion about vertical position variations that could manifest during emotional walking
movements was retained. An example of such variation could be a bouncing walk
when excited. From these recalibrated data sets, a total of three dependent variables
were computed.

5.2.5.1 Cycle duration

The identification of the period of stance is typically done with force plates but in
their absence, kinematics data can be employed (Zeni et al., 2008). An automatic de-
tection algorithm was applied to determine when the marker of the right toe crossed
the anatomical frontal plane. The intervals between these events constituted the right-
step interval series. The cycle duration was computed as the median time of the
right-step intervals and is expressed in seconds (s).

5.2.5.2 Mean jerk

Motion smoothness was assessed through jerk of motion. Absolute jerk of the right
toe marker was obtained by taking the norm of the vector defined by the third time
derivative of the position of a marker on each axis. Mean value was obtained by aver-
aging the absolute jerk across the entire time series of a trial. Mean jerk is expressed
in meter per second cubed (m/s3).

5.2.5.3 Head angle

Head angle was computed from the 4 head markers placed on the pair of glasses.
It was defined with reference to the horizontal plane obtained during calibration of
the system. A negative angle coded for head drop, while a positive angle coded for
head raise. Head angle is expressed in degrees.

5.2.6 Data analysis of emotional gait: Time Series

Two types of time series analyses were applied to reveal (a) the level of control
exerted on the body and (b) the level of energy and rigidity existing between selected
joints.

5.2.6.1 Auto-correlation Function

The auto-correlation function is a mathematical tool used frequently in signal pro-
cessing for analysing functions or series of values. It is the cross-correlation of a
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signal with itself and offers an indication of how well a signal matches a time-shifted
version of itself. Auto-correlation is useful for finding repeating patterns in a signal.
In the case of psychological human sciences, we have used auto-correlations to re-
veal the use of predictive timing mechanisms in the control of sequential voluntary
movements (Dione & Delevoye-Turrell, 2015; Guérin et al., 2021a). In the present
study, the auto-correlation function at lag 1 (denoted as ACF(1)) was computed on
the detrended right-step interval time series.

5.2.6.2 Cross-Wavelet Transformation

The position vectors of the time series of the right toe and left wrist were processed
using a cross wavelet transformation (Grinsted et al., 2004), which provided the
means to reveal the regions in time frequency space for which the time series showed
high common power. For a given time scale and a specific point in time, the coher-
ence magnitudes and relative phases were denoted by the color and the orientation
of an arrow (pointing right: in phase; pointing left: anti phase). Finally, the group
average of these values at a period of 0.5 were extracted to compare between emo-
tions. This period of 0.5 was chosen as it corresponds to 2 Hz, i.e., the preferred pace
at which humans tend to perform spontaneous voluntary motor actions (Moelants,
2002).

5.2.7 Statistical analysis

An outlier-removal procedure was first conducted independently for each of the de-
pendent variables based on the interquartile range method. Lower and upper bounds
were calculated as:

lower = Q1− (1.5× (Q3−Q1)) (3)

upper = Q3+ (1.5× (Q3−Q1)) (4)
with Q1 and Q3 being the 1st and 3rd quartile, respectively. Data points that fell
outside the lower and upper-bound ranges were removed from further analysis.

To test H1, a one-way repeated-measures analysis of variance (Emotion [fear, sad-
ness, anger, joy, neutral]) was conducted on both the cycle duration and the mean jerk
of the right toe. Two trials were detected as outliers and removed from the analysis.

To test H2, two one-sided t tests against zero (i.e., < 0 for negative emotions, > 0

for positive emotions) were conducted on mean head angle. Two trials were detected
as outliers and removed from the analysis.

To test H3, a one-way repeated-measures analysis of variance (Emotion [fear, sad-
ness, anger, joy, neutral]) was conducted on the auto-correlation function at lag 1. A
one-sided t test against zero was conducted for significant results. Four trials were
detected as outliers and removed from the analysis.

To test H4, a one-way repeated-measures analysis of variance (Emotion [anger,
joy]) was conducted on the wavelet coherence. One trial was detected as outlier and
removed from the analysis.

Shapiro–Wilk’s test was used to assess data normality. Data sphericity assump-
tion was assessed using Mauchly’s test. Greenhouse–Geiser’s correction was applied
when sphericity assumption was violated. Alpha level was set at .05 and t tests with
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Bonferroni correction for multiple comparisons were conducted when necessary. Ef-
fect sizes were computed and reported as η2p for the repeated measures ANOVA and
as Cohen’s d for the t tests.

5.3 results

The results of the emotional gait patterns are presented following our two-step anal-
ysis outline. The kinematic patterns of whole body movements are first reported. The
findings for the auto-correlation and the wavelet coherence analyses are presented
in a second section.

5.3.1 Emotional gait kinematics

Results for cycle duration, jerk and head angle are reported in Figures 15, 16 and 17

and Table 3 for means and standard deviations, as a function of emotion.

5.3.1.1 Cycle duration

The RM ANOVA on mean cycle duration showed a significant main effect of emotion,
F(2.11, 12.69) = 18.98,p < .001,η2p = .76, with shorter cycle duration for anger (M =
0.87, SD = 0.09) than for joy (M = 1.14, SD = 0.20, p = .006,d = 2.68), neutral (M =
1.09, SD = 0.08, p < .001,d = 3.62), fear (M = 1.58, SD = 0.43, p = .002,d = 2.68) and
sadness (M = 1.52, SD = 0.28, p < .001,d = 3.48). Results also showed significantly
lower cycle duration for joy than for fear (p = .030,d = 1.91) and sadness (p =

.008,d = 2.30), as well as significantly lower cycle duration for neutral than for fear
(p = .030,d = 1.78) and sadness (p = .007,d = 2.14). Refer to Figure 15 and Table 3

for detailed results.

5.3.1.2 Mean jerk

The RM ANOVA on the mean jerk of the right toe indicated a significant main effect
of emotion, F(4, 20) = 61.14,p < .001,η2p = .92, with higher mean jerk for anger (M
= 471.15, SD = 111.04) than for joy (M = 264.45, SD = 109.13, p = .030,d = 1.78),
neutral (M = 252.90, SD = 64.51, p = .004,d = 2.69), fear (M = 112.11, SD = 89.34,
p < 0.001,d = 9.60) and sadness (M = 121.41, SD = 69.51, p < .001,d = 5.01). Results
also showed significantly higher mean jerk for joy than for fear and sadness, as well
as a higher mean jerk for neutral than for fear and sadness. Refer to Figure 16 and
Table 3 for detailed results on means and standard deviations.

5.3.1.3 Head angle

The one-sided t test against zero on mean head angle was significant for anger, t(5) =
−10.70,p < .001,d = 4.36, confirming a negative head angle (M = -13.77, SD = 9.49).
Similar findings were found for sadness : t(7) = −2.87,p = .012,d = 1.01, with
a significantly negative head angle (M = -14.68, SD = 14.80). The one-sided t test
against zero for fear was not significant.
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Figure 15
Cycle Duration as a Function of Induced Emotion

Note. The cycle duration in seconds is presented for the five emotions. Each point on
the figure corresponds to a trial. The number of stars denotes the statistical signifi-
cance of the comparison. ∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

The one-sided t test against zero on mean head angle was significant for joy, t(7) =
2.17,p = .033,d = 0.76, indicating a positive head angle (M = 5.83, SD = 9.28). The
one-sided t test against zero on mean head angle for neutral was not significant.

5.3.2 Emotional gait time series

Detailed results for means and standard deviations are presented in Table 4 for both
the auto-correlation and the wavelet coherence results. Figures 18 to 20 present illus-
trations of these findings.

5.3.2.1 Auto-correlations

The RM ANOVA on the auto-correlation at lag 1 of the series of right-step time inter-
vals showed a significant main effect of emotion, F(2.23, 8.92) = 9.93,p = .005,η2p =
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Figure 16
Mean Jerk as a Function of Induced Emotion

Note. The mean jerk in meter per seconds cubed is presented for the five emotions.
Each point on the figure corresponds to a trial. The number of stars denotes the
statistical significance of the comparison. ∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

Table 3
Descriptive Statistics of the Kinematics Variables

Cycle duration (s) Mean jerk (m/s3) Head angle (deg)

Emotion M SD M SD M SD

Anger 0.87 0.09 471.15 111.04 -13.77 9.49

Joy 1.14 0.20 264.45 109.13 5.83 9.28

Neutral 1.09 0.08 252.90 64.51 1.59 4.13

Fear 1.58 0.43 112.11 89.34 -0.85 10.82

Sadness 1.52 0.28 121.41 69.51 -14.68 14.80

Note. Group means and standard deviations for the five emotions and the three
kinematic dependent variables.
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Figure 17
Head Angle as a Function of Induced Emotion

Note. The mean head angle in degrees is reported for the five emotions. Each point
on the figure corresponds to a trial. The number of stars denotes the significance
when compared to zero. ∗p < .05. ∗∗∗p < .001.

.71. Results indicated more negative auto-correlations for anger (M = -0.31, SD =
0.22) than for neutral (M = 0.14, SD = 0.17, p = .007,d = 2.04) and sadness (M =
0.21, SD = 0.26, p = .01,d = 2.76). Results also showed significantly smaller val-
ues of auto-correlations for fear (M = 0.01, SD = 0.25) when compared to sadness
(p = .002,d = 5.83). The one-sided t test against zero confirmed significant negative
auto-correlation for anger only, t(5) = -5.04, p < .001, d = 1.78.

5.3.2.2 Cross-wavelet analysis of emotional spontaneous walking

The RM ANOVA on the cross-wavelet coherences between right toe and left wrist
showed a significant main effect of emotion, F(4, 12) = 12.17,p < .001,η2p = .80, with
smaller magnitudes of coherences for fear when compared to anger (p < .001,d =

5.69), joy (p < .001,d = 2.06), neutral (p < .001,d = 3.33) and sadness (p = .020,d =

2.05). Post hoc analysis also showed a significantly lower coherence for joy when
compared to anger (p = .020,d = 2.19).
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Figure 18
Auto-correlation as a Function of Induced Emotion

Note. The auto-correlation function at lag 1 is presented for the five emotions. Each
point on the figure corresponds to a trial. A negative auto-correlation implies that
the motion was under cognitive control. The more negative the auto-correlation, the
more controlled the movement. The number of stars denotes the significance when
compared to zero. ∗∗∗p < .001.

Table 4
Descriptive Statistics of the Time-Series Variables

Auto-correlation function (lag1) Wavelet coherence right toe - left wrist

Emotion M SD M SD

Anger -0.31 0.22 0.56 0.24

Joy -0.07 0.34 0.45 0.19

Neutral 0.14 0.17 0.48 0.22

Fear 0.01 0.25 0.33 0.10

Sadness 0.21 0.26 0.47 0.22

Note. Group means and standard deviations for all emotions and each of the two time
series dependent variables (i.e., auto-correlation at lag 1 and wavelet coherence).

5.4 discussion

Allostasis is the core mechanism used by the brain to control body functioning (Bar-
rett, 2017; Sterling, 2012). To optimize energy consumption, the brain modifies the
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Figure 19
Mean Magnitudes of the Cross-Wavelet Coherence Between Right Toe and Left Wrist

Note. Mean cross-wavelet coherence between the right toe and the left wrist, at a
period of 0.5 (i.e., 2Hz).

way the body operates as a function of needs and predicted resources. One of such
modification is done at the level of the 3D-joint kinematics, by controlling the style
and shape of body movement. The brain adapts notably the speed of movement,
and the amount of cognitive control exerted on the ongoing action. This strategy
would provide the possibility to interact with the ever-changing environment while
continuously regulating energy expenditure. The aim of the present study was to
use an in-lab experimental paradigm to report data plebisciting this evolutionary
perspective of emotional body movements. We report a study assessing how five in-
duced emotional states modulate the expression of a common gait motor program.
To achieve this, eight professional actors were asked to recall an autobiographical
memory tagged with an emotional component, before initiating a walking sequence
along a ten-meter lane.

To characterize the emotional side of walking, we computed a series of spatial
indices: cycle duration to quantify walking speed as an indicator of energy expendi-
ture, jerk to measure motion smoothness, and head angle to unravel the presence of
a protective tendency (openness vs. closeness). By applying spatio-temporal analysis
on gait cycle (Dione & Delevoye-Turrell, 2015), an index of the amount of cognitive
control applied to the ongoing movement was obtained. We observed specifically
when moving with anger, a significant negative auto-correlation suggesting greater
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Figure 20
Cross-wavelet Coherence as a Function of Emotion

Note. The cross-wavelet coherence is represented for one participant for each emo-
tional condition (fear, sadness, neutral, anger and joy). The red rectangles highlight
the period of interest (i.e., 0.5) that was used to compute the mean magnitudes of
coherence and conduct the statistical analyses.

cognitive control to exert tension and rigidity in the motor system. This information
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was finally used to map out wavelet coherence patterns to characterize the amount of
coordination existing between the upper- and lower-parts of a person when walking
in different states of emotion.

The main results of our work are here outlined. Anger and joy (i.e., high energy
emotions) were characterized by shorter cycles and jerkier gait patterns compared
to fear and sadness (i.e., low energy emotions), which confirm H1. These findings
replicate previous results on the matter (Crane & Gross, 2007; Roether et al., 2009).
Sad and angry negative emotions had a strong effect on head angle, with the head
bowing towards the ground within a few seconds whereas positive emotions had a
tendency to release head constraints. These results offer a partial confirmation of H2.
The findings from the time series analyses indicated that anger only increased the
amount of negative auto correlations, which partially confirm H3. The cross-wavelet
analyses indicated that anger yielded higher coherence between the right-bottom
side (toe) and the left top-side (wrist) of the body, when compared to joy. Fear yielded
the lowest coherence of all, offering contrasting degrees of body coherence, which
confirm H4.

5.4.1 Evolutionary advantage of emotions

Nonverbal expression and perception of emotions are based on multiple channels of
communication. Little research regarding the association between body movements
and basic human emotions has been conducted, as it is regarded as a weak channel
compared to other nonverbal communication such as facial expressions (Cowie &
Cornelius, 2003; Ekman, 1999; Izard, 1994). On the other hand, with the absence of
facial expressions (COVID-obliged mask use), we have discovered the importance
of emotional body postures to engage in natural social interactions. Because of the
numerous degrees of freedom, the 3D motion analysis of free movement is difficult.
We take advantage of the advances in data sciences to report a new understanding
of how and why emotions may influence motor behavior.

5.4.1.1 Positive emotions

Emotions are what ties humans together. Emotions provide many benefits and have
helped shape human evolution. Three major benefits can be highlighted from the
results of the present work. Positive emotions would increase openness to the sur-
rounding world and thus, optimize the likelihood of seeing positive stimulus (e.g.,
food, shelter, social contacts). In the present study, we showed that with joy, the
participants had the unconscious tendency to release the head, which triggered an
upward head-tilt to increase the line of sight. When looking up, one also tends to
grow taller. Hence, a second benefit to head release is a behavior entailing the search
of a suitable partner to transmit genes onto the next generation. The tendency to
bring the head up and appear taller might increase the attractiveness towards indi-
viduals of the opposite sex. It has been found that height is a defining factor when
searching for a mate, especially among women (Brewer & Riley, 2009; Courtiol et al.,
2010). In the present study, participants walked faster in joy than in neutral trials.
This increased speed could potentially be a signal of vigor and good health, which
would again reinforce the appearance of being a suitable partner to individuals of
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the opposite sex (Buss & Schmitt, 2019). Finally, the third major benefit of positive
emotions is a reduction of the control set upon the system. Mean jerk was lower
in joy than in anger; autocorrelations were null in joy and negative in anger trials.
Fluency of movement is elegant and consumes less energy. Hence, when moving in
a positive affective state, the system codes that there is an absence of (tension) stress
and thus, it can perform for longer periods of time without further energy intake.
Such reduction in stress would also lead to an increase in overall well-being and
feelings of pleasure (Delevoye-Turrell et al., 2014).

5.4.1.2 Negative emotions

While negative emotions are generally avoided, they do serve crucial evolutionary
purposes and have also helped human survive through the course of evolution. The
first advantage of negative emotions, and especially negative emotions with high
energy (anger) is to escape from danger or appear more threatening to scare danger
away all together. The results on cycle duration showed an increase in walking speed
for anger when compared to other negative emotions. This increased walking speed
could provide the means to escape from a threatening situations. Brisk walking also
suggests vigor and energy, which could be a sign of strength to redirect threat to
other individuals (Blanchard et al., 2001). The second advantage of negative emotions
is to protect vulnerable parts of the body from an imminent danger. The results on
the head angle showed that when induced with anger or sadness, participants had
a tendency to lower the head. This behavior can be seen as a defensive posture
designed to protect the throat, which is a highly vulnerable part of the body. The
protection of the body might also be achieved by tensing the muscles to withstand
an attack. Auto-correlation results were significantly more negative for anger than
for any other emotion, confirming that with anger there were greater levels of control
applied during motor execution (Lemoine & Delignières, 2009), which would have
the benefit in addition to switch from one action to another to further withstand
attacks on the body.

It is not always possible to escape or fight an imminent threat. This is where neg-
ative emotions with low energy would come into play. Their role might be to make
humans seem nonthreatening and unnoticed. Bowing down when in fear or sadness
would be a sign of capitulation; it would also make a person appear smaller and less
threatening, therefore increasing the likelihood of the threat fading away. The same is
true for the results on cycle duration. The speed of gait was slow when participants
were walking in low negative states of emotion. This phenomenon could be seen as
an attitude similar to the freezing behavior displayed by rodents to suggest illness,
an attitude that has also been reported in humans (Blanchard et al., 2001). Slow move-
ments and released control would help reduce the energy consumption of the system
to a bare minimum. In the present study, we confirmed these changes in control set-
tings by reporting the auto-correlation values. Our findings confirmed more positive
auto-correlations for sadness than anger, indicating that during sadness there is a re-
lease in cognitive control exerted on the motor program, perhaps to further increase
the energy savings. However, maintaining a reduced energy consumption is detri-
mental to the overall functioning of the system and could explain why prolonged
feelings of negative emotions is dangerous for humans both for physical and mental
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health. Just like a too low regime on a motor might damage the engine of car, a too
low regime in the body might impair feelings of wellbeing.

5.4.2 Wavelet coherence

Wavelet coherence analysis is a time-domain analysis of two time series. It offers
the means to compute and investigate the changes in cross-correlations between
two time series, at different time scales (Grinsted et al., 2004). It was used in the
present work to understand how the upper- and lower-body parts are being coordi-
nated during spontaneous gait under different emotion inductions. The results on
the wavelet coherence between the right toe and the left wrist indicated a signifi-
cantly higher coherence for anger compared to all other emotions. This increased
coherence suggested that opposite body sides are highly synchronized in space and
time, i.e., planned by the brain to move as one. Such synchronization would suggest
an enhanced cognitive control applied to both upper- and lower-body parts. The fact
that only anger (a negative emotion with high energy) was found to significantly
increase the coherence, further supports the hypothesis that anger tenses the body
to prepare future direct threat. The absence of enhanced movement coherence in
negative emotions with low energy (fear and sadness) seems to further support the
idea that negative emotions with low energy reduce the energy consumption of the
system to a minimum, so as to keep low profile until the need arises.

5.4.3 Limitations and future directions

The present work presents certain limitations that are now considered. First, our
participants were trained professional actors. It is well-known that the work of ac-
tors is to exaggerate the expression of emotions to convey a story line to spectators.
It would be interesting to conduct a similar study with non-professional actors to
investigate whether these results are generalized to the general population. A full
study conducted in non-actor adults would also offer the opportunity to investigate
the differences that may exist in how people express their emotions as a function
of age and social-economical background. Current emotional theories (e.g., Barrett,
2017) posit that every human has its own way of expressing emotions. Consequently,
it would be of great interest to conduct a similar study with participants from differ-
ent cultures and investigate both the similarities and differences that might exist in
their emotional body expressions. Lastly, we report the findings for one positive emo-
tion (joy) only. Future work should include positive emotions with low energy, such
as contentment. This would allow to contrast and compare the relative evolution-
ary benefits provided by both high and low energy positive emotions. This added
condition would also offer the means to confirm that gait energy and cross wavelet
coherence are sufficient alone to decode the inner emotional states of a person while
spontaneously moving through space and time.
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5.4.4 Conclusion

Core affect may be a powerful signal used to detect significant risks to allostasis
dysregulation throughout the course of a day, allowing the brain to maintain opti-
mal functioning of the moving body in a constantly changing world (Barrett, 2017;
Russell, 2003).

An emotion is a complex state of feeling that results in physical and psychological
changes that influence the way a motor action is executed. Our work has confirmed
previously published results on the effects of high energy emotions (anger and joy)
in increasing the speed of motor execution. But it has in addition shown that con-
sidering the changes in control levels through space and time opens the window in
decoding between positive and negative states of emotion. Applying our methods
to different types of movements (cycling, running) would confirm that cross wavelet
analysis can capture the tension and energy in a moving body fostering the indices
for decoding the inner states of emotion in real-life activities.



6
D E E P - L E A R N I N G AT T H E S E RV I C E O F E M O T I O N A L
P S Y C H O L O G Y

6.1 methodological interlude

Training a deep-learning model might be seen as a straightforward task, where one
simply needs to give the data to a black-box that will output a result. This is, of
course, far from the reality of training a deep-learning model. An illustration of
a simplified training procedure can be found in Figure 21. Before diving into this
section, interested readers might need a fresh reminder on various methods and
terms that are considered "business as usual" among machine-learning specialists
and that are not thoroughly detailed in the present chapter. This section will cover
two of these methods: hyper-parameter tuning, or how to find the optimal set of
parameters for the network (e.g., how fast will it learn, how big will the network be),
and temperature scaling, or how to reduce the overconfidence of a network.

6.1.1 Lexicon

Objective The quantity to monitor during training (usually

either the loss or the accuracy)

Training set Selected portion of the data only used during the

training procedure

Validation set Selected portion of the data only used during the

optimization procedure

Testing set Remainder of the data, only used during the evaluation

of the model

Learning rate Size of the steps toward the objective, usually seen as

how fast the network will learn

Loss How bad the network was on average over the training

set; the goal is to minimize this quantity when set as the

objective

Accuracy How good the network was on average over the training

set; the goal is to maximize this quantity when set as the

objective

Epoch One pass across all training data

73
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Figure 21
Simplified Classifier Training Procedure

Note. Simplified illustration of a deep-learning classifier training procedure. The pre-
processing step is one of the most vital step when training a network. Some pre-
processing steps have been described in this illustration. However, other steps can be
conducted, depending on the task.

6.1.2 Hyper-parameter tuning

To ensure that the performance of a model is optimal, it is crucial to select the right
combination of parameter. A deep-learning model might contain a various param-
eters to optimize, such as the learning rate or the number of layers in the network.
These two parameters were optimized throughout this work, using a random-search
method. This method was selected as the search space (i.e., the number of parameter
combination) was quite high and our available computing power quite low. After
selecting the search space (i.e., the number of parameter combination), the tuning re-
quires to set two more values: the objective and maximum number of combinations
that should be tested. The objective guides the optimization by choosing a measure
to compare the combinations. In this case, the objective was to minimize the loss on
the validation data set. Finally, limiting the maximum number of combinations is
useful when the search space is vast.

In the case of random search, the search is conducted by randomly selecting one
value for each of the parameter; then the network is trained. At the end of the train-
ing, the final value of the objective (e.g., validation loss) is recorded and the train-
ing restarts with other values randomly selected. When all combination have been
exhausted or the maximum number of tested combination has been reached, the
search ends. At this phase, the combination yielding the best value with regards to
the objective are returned and the final model can be trained.

To help the reader put things into perspective, the tuning phase for two parameters
only took approximately eight hours to complete on a laptop computer running
with Ubuntu 18.04, powered by an Intel Core Xeon E2176M cadenced at 2.7 GHz.
However, it took 30 min to complete on a desktop computer running Windows 10,
powered by an NVIDIA RTX 2060 graphic card.
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6.1.3 Temperature scaling

When using deep-learning algorithms to make a prediction, one might believe that
the algorithm will return a single output. The network will instead return a prob-
ability associated with each of the possible outputs. In the case of a deep-learning
model designed to recognized emotions from kinematics, the possible outputs are
the emotions that the model should learn to recognize. If the model was trained on
seven emotions, for each trial it would return the probability internally associated to
each emotion category. If the model is faced with the kinematics of a happy person,
a possible output would be 1% sadness, 1% fear, 1.5% neutral, 85% happiness, 9.5%
anger, 1.5% surprise, and 0.5% disgust. The final prediction of the model will be the
output with the highest probability (i.e., happiness). However, how can one be sure
that the probabilities returned by the model are to be trusted?

Guo et al. (2017) showed that modern neural networks are poorly calibrated. These
neural networks tend to be overconfident in their returned probabilities. Coming
back to the previous example, in the case where 100,000 happiness trials are passed
on to a poorly calibrated emotional classifier, the computed prediction confidence
(e.g., 85%) would not represent the outcome of 85% of trials classified as happiness
over all the trials analyzed – it might actually predict that only 78% of them are
indeed happiness. Such overconfidence can lead to serious problems in applications
where predictions from deep-learning models are used to make important decisions
(e.g., self-driving cars, medical care).

To tackle this challenge, Guo et al. (2017) proposed various methods. One of the
simplest and most efficient one is called temperature scaling. This calibration method,
as many others, is done after the network has been trained. Temperature scaling does
not affect the accuracy of the model. If the previous emotional classifier predicted
happiness, it will still predict happiness but not with the same probability. Tempera-
ture scaling is computed on a validation set not used during training to reduce the
influence of possible biases. This method is conducted in two steps. First, one needs
to train the network and recover the values (called logits) that are fed to the final
layer of the network (i.e., a softmax layer in classification tasks). Then, one needs
to find the temperature value (i.e., T) that minimize the negative-log likelihood, us-
ing the logits as input to this optimization step. Once the optimization is complete,
calibrated probabilities are obtained by scaling them with a factor T.

6.2 introduction

Emotions are the fabric on which human relationships are woven. The study of facial-
expressions initiated the experimental approach to the better understanding of emo-
tion recognition. In 1969, Ekman et al. (1969) created short stories and asked Ameri-
can students to display facial-expressions of these emotions. They then asked other
American students to read the emotional stories and to select the facial-expressions
corresponding to the emotions of the stories. As they were issued from the same
cultural background, students found it easy to match the facial-expressions to the
stories. However, the researchers set out to Papua New Guinea to unravel the univer-
sality principle of facial emotional recognition. At that time, the Fore tribe members
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of Papua New Guinea had little exposure to the Western culture. Ekman and Friesen
(1971) had translators tell the stories to the Fore tribe members, who where then in-
vited to select the facial expression that corresponded best to the emotion contained
in the story. What they found was quite striking. The Fore tribe members selected
almost the same facial-expressions as the American students. Thus, it was concluded
that facial-expressions of emotions may be universal and that their recognition does
not result from social cultural experience.

The research and technological advances made today offer the possibility to train
a computer to recognize facial-expressions (for an up-to-date review on the available
methods, see e.g., Li & Deng, 2020). Such methods allow for a quick and accurate
recognition of emotional facial-expressions and can even be embedded into smart
devices such as smartphones, surveillance cameras, and robot carers for the elderly.
However, facial-expressions recognition software have three major drawbacks. First,
access to video recordings of the faces is required, which poses serious threats to a
person’s privacy as such recordings can be used to infer identity. The second limiting
factor is that facial-expression recognition software mostly rely on deep-learning
methods, which require vast amounts of computing power and data. Finally, the
abilities of deep-learning models are limited by the data they are trained on. Most
datasets used to train models of facial expression recognition fail to include sufficient
data for gender, race, and corpulence variety (Xu et al., 2020), which leads to ethical
issues. A third limiting factor that has recently appeared concerns the use of face
masks, which severely impairs the recognizing abilities of facial expression software,
as large areas of the face are covered. Fortunately, research on emotions has not been
limited to the study of facial-expressions and studies (e.g., in movement sciences)
have focused on other informative parts of whole-body behaviors.

Pollick et al. (2001) studied the perception of emotions from arm movements. Ac-
tors were instructed to perform two actions (drinking and knocking) and the 3D
movements of the upper joints were recorded. Later on, the point-light displays were
shown to naive participants (i.e., video clips with only major joints displayed) and
they were asked to categorize the affective state of the actor, simply by looking at
the point-light display. The authors reported that participants were able to recognize
correctly the emotion of the actor at a rate greater than three times chance level.

Atkinson et al. (2004) built on the findings of Pollick et al. (2001) and developed
a set of static and dynamic body expression of emotions. A total of 10 actors partici-
pated in the recording of the data set. Actors were told to play five different emotions
(disgust, sadness, happiness, fear, and anger). Their faces were blurred on the videos
to avoid emotion recognition from facial-expressions. Static- and dynamic-body ex-
pressions with blurred faces were created and presented to naive volunteers in an
emotional categorization task. Results showed that participants were able to achieve
close to 75% correct recognition on the least recognized emotion (i.e., disgust) and
81% for the best recognized emotion (i.e., happiness). The accuracy of the volun-
teers decreased when they were presented with still images of the body expressions,
but remained significantly above chance level. Overall, these results confirmed those
reported by Pollick et al. (2001).

Building on the previous research, Dael et al. (2012) extracted a list of 16 "behavior
variables" involved in emotion display (e.g., shoulder action, elbow action) which
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allowed further confirmation that emotions can be recognized from body dynamics.
In their work, they highlighted the importance of joint angles, and changes through
time when recognizing emotions from body expressions. A complexity difficult to
account for with comparative statistics. Consequently, there is a need for new algo-
rithmic strategies to capture the micro-variants of emotional body movements.

Related work on automatic recognition of emotions from body movements can be
found in the literature. Karg et al. (2010) used kinematics data of four portrayed emo-
tions (neutral, anger, sadness, happiness) to compare the performance of three types
of network (i.e., nearest neighbor, naive-Bayes, and support vector machine (SVM)).
They used data from 13 adult males wearing 35 markers across their bodies. From
these 35 markers, the authors were able to compute the stride length, cadence, ve-
locity, as well as minimum, mean, and maximum values of neck, shoulder, and tho-
rax angles. This wealth of data allowed them to perform dimensionality reduction
techniques (e.g., Principal Component Analysis) to select only the relevant features.
Their results showed that the best accuracy (69%) was achieved with the SVM algo-
rithm when all angles were fed to the classifier. Even greater accuracy was achieved
(95%) when taking into account the individual performance of each participant.

More recently, Daoudi et al. (2017) developed a new architecture to classify five por-
trayed emotions (neutral, anger, sadness, happiness, and fear). Their approach was
quite different from previous works. They created a prototype emotional movement
for each emotion category, from the kinematics. Then, for each trial to be classified,
the authors computed the distances between each prototype emotional movement
and the current trial. Thus, the classifier returned the emotion corresponding to the
shortest distance. Their architecture achieved an overall accuracy of 71% where hu-
mans achieved 74%. But the difficulty in these decoding methodologies is the fact
that, even if characterized by biological motion, human bodies come in different
shapes. Hence, classification algorithms need to focus on the motor-variants between
emotional states without needing to take into account the physical cues of the human
actors (i.e., body height, weight, and shape).

In this chapter, I describe Deep Recognition of Emotions from Kinematics (DeeREKt),
a novel model that was made to classify emotions solely using body kinematics. The
proposed model is efficient as it can be trained and ran on a simple laptop, without
requiring the use of a dedicated GPU. Additionally, the proposed model is embedded
with a so-called "discriminant head" to avoid relying upon physical cues for emotion
decoding. If informative cues have been well selected, our model should categorize
emotional states above chance level (H1). From an evolutionary standpoint, humans
have evolved to react vigorously to negative stimuli. Consequently, we hypothesize
that negatively valenced emotion (e.g., anger, fear) should be better recognized com-
pared to other emotions (e.g., surprise, happiness; H2). Finally, the discriminant head
will help the network both in its generalizing abilities and training time (H3).
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6.3 method

6.3.1 Dataset 1

Kinematics data coming from 22 actors (Zhang et al., 2020) were used to create and
train the DeeREKt model. Actors were instructed to perform emotional scenarios of
six emotions (happiness, sadness, anger, fear, disgust, surprise). A neutral condition
was also added. Actors had six seconds to perform the given scenario. An example of
a scenario for sadness and happiness are "Zhang’s father dies in a car accident" and
"Zhang’s favorite basketball team wins the NBA championship". Actors performed
between two to three repetitions of each scenario in a semi-random order, yielding a
total of 1,402 recordings across actors.

Data was sampled at 125 Hz and contained information about 58 joints, with a
majority targeting the hands. As the present work focused on emotion recognition
from whole-body kinematics, only the 21 joints representing body space were kept.

6.3.1.1 Preprocessing

. Before being able to feed the data to the model, a number of pre-processing steps
were needed.

referencing This first step consisted in computing the world coordinates of
the joints. The data was in the Biovision Hierarchy file format, which was used
to store both motion-capture data and joint hierarchy. The origin joint (called root)
was the hips. Then, each joint was defined with regards to the root and its parent-
joints. The root was a parent joint to all joints directly connected to it. Then, all
connected joints were parents to joints directly connected to them, and so forth. A
similar principle held for the coordinates of the joints, which were defined with
regards to the position of their parents. This was applied to the data through the
use of an offset and coordinates were thereafter referred to as local coordinates. To
compute the world coordinates of a joint, it was necessary to find all parents for that
joint, up until the root, as it required taking into account all offsets by adding them
to the local coordinates.

determining trial length . After computing the world coordinates, the length
of each trial was examined. As trials differed in length, not all trials were selected.
Only trials lasting for at least five seconds were kept for further analyses. Then, to
further improve consistency, the first five seconds of each trial were kept. Following
this selection phase, trials were resampled at 120 Hz. Finally, all trials were merged
into a single file for a given actor with the corresponding emotional label.

6.3.1.2 Partitioning

The construction of the two data sets used for training and testing of the model were
then created. The actors and trials in the training set were selected pseudo-randomly.
A total of 70% of the actor – emotion pairs were allocated to the training set and
the remaining 30% were reserved for the testing set. A rule was set specifying that,
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once an actor – emotion pair was selected to be part of the training set, this pair
could not be used in the testing set. This was done to avoid a learning bias by the
model training while insuring that all actors and trial types (actors × emotions) were
present in both sets.

6.3.2 Dataset 2

A second dataset was used to further test the predictive accuracies of the network.
This dataset was built by recording the 3D kinematics of eight professional actors,
who were instructed to portray five different emotional states (joy, fear, anger, neutral,
and sadness) while walking back and forth, across a ten-meter lane. Kinematics data
was recorded using 24 Vicon V8 motion-capture cameras, at a sampling frequency
of 120 Hz. The system recorded the position of 43 joints of the actors, using passive
reflective markers. Care was taken to lose as little markers as possible during data
collection. Nevertheless, the trials containing at least 6 s of exploitable recorded data
were kept, which led to the rejection of three trials, over a total of 160 trials.

6.3.2.1 Preprocessing

During each trial, the actor was asked to follow a line traced on the floor. The moment
at which the actor turned around was removed to avoid passing irrelevant emotional
information to the network. The turn-around was detected by finding the minimum
of the dot product of a vector spanning from the right to the left hip (

−−−−→
HRHL, Equation

5) with a unit vector (−→u , Equation 6), following Equation 7:

−−−−→
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xHR
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1

0

0
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−−−−→
HRHL · −→u =

∥∥∥−−−−→HRHL

∥∥∥×
∥∥−→u ∥∥× cos(

−−−−→
HRHL,−→u ) (7)

After detecting the moment of the turn-around, half a second was removed before
and after the vector interval. For some trials (approximately 20%), the recording was
started before the initiation of the movement. To detect the start of the motion, the
second derivative of the position of the right hip was computed over the first 4 s of
the recording. Then, the maximum of the second derivative, over this time window,
was taken as the initiation of the movement. Data was inspected by a human observer
to ensure that the trial contained relevant motion information. Finally, to augment
the number of trials, trials were partitioned in two. Three seconds of movement were
obtained from the beginning of the trial and three seconds were obtained before the
end. Therefore, the dataset contained 312 trials.

After selecting the relevant frames, the data was re-referenced. A new three dimen-
sional coordinate frame (xyz) was defined. The z axis was directed upwards along
the vertical plane but was kept as the original z axis. The y axis was oriented left-
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ward perpendicular to the z axis and computed by averaging the two markers from
the left pelvis. The x axis was aligned with walking direction and computed as the
cross product of the y and z axis. All markers were re-referenced to this new xyz
coordinate frame.

6.3.2.2 Partitioning

Close to 70% of the trials were kept for training and the remaining 30% were set
aside for testing. The training set contained the following amount of trials: 22 for
joy, 20 for fear, 20 for anger, 23 for neutral, and 25 for sadness. The partitioning
was also designed so that each actor was equally represented in both sets. The most
represented actor had 16 trials in the training set while the least represented actor
had 11 trials. This is because not all actors performed the same number of trials and
once an actor – emotion pair was in the training set, the same actor – emotion pair
could not be in the testing set.

6.3.3 DeeREKt model

The DeeREKt model is based on the Double-feature Double-motion Network (DD-Net;
Yang et al., 2019b). The DD-Net model has been designed to achieve action recognition
from skeleton-based data (i.e., kinematics data from major joints of a person in two
or three dimensions). The successfulness of the DD-Net lies both in the design of the
model and processing of the data. The principle is the following: First, the skeleton
data is used to compute the Euclidean distances between pairs of joints. The output
of this step is a symmetric matrix and only the lower half of the triangular matrix
is kept to "avoid redundancy", and especially to decrease data size and memory
consumption (Yang et al., 2019b, p.2). Second, the model computes the temporal dif-
ferences between frames. This allows the DD-Net to learn to differentiate between fast
and slow goal-directed motions. Last, once the temporal difference has been com-
puted, the network automatically captures the correlations between joints through
an embedding procedure. This is a key addition as in traditional action-recognition
models, these correlations are part of the input of the model. Since the DD-Net is
highly efficient and accurate in distinguishing action from motion, it forms the basis
of the DeeREKt model.

Every human body is different and the network should not rely on physical
cues to predict emotional states, otherwise it would have poor generalizing abilities.
Hence, on top of the DD-Net, a discriminant head was added based on the Domain-
Adversarial Training of Neural Networks (Ganin et al., 2016). The more this head
is able to recognize the actor, the more it disrupts the network. To do so, the head
reverses the gradient used to compute the training error. The gradient is a measure
of the performance of the network. Hence, if the head correctly identifies the actor,
the gradient should be small. By reversing the gradient, the head informs the net-
work that it should not rely on the actor to perform the task. A visualization of the
architecture of the model is presented in Figure 22.
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Figure 22
Architecture of the DeeREKt Model

Note. DeeREKt: Deep Recognition of Emotions from Kinematics. Architecture of the
DD-Net is based on (Yang et al., 2019b).

6.3.3.1 Training parameters

Several parameters were set in order for the model to learn how to recognize effi-
ciently the emotions. Only the two most crucial parameters were selected via random
search and will be described in the following section.

Hyperparameter optimization was done using Keras–Tuner library (O’Malley et
al., 2019). The first parameter to be optimized was the learning rate and it was set to
10−4. The greater this parameter, the faster the model learns. Possible values during
random search were 10−2, 10−3, and 10−4. The second parameter is referred to as
lambda, that controls the strength of the disruption caused by the discriminant head.
The greater the value, the more disruptive is the head. This parameter was set to 1.0.
Possible values for lambda during random search were 0.1, 1.0, and 10.0.
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6.3.3.2 Implementation details

The DeeREKt model uses Python (version 3.7) code from the original Github repository
of the DD-Net (Yang et al., 2019a). The discriminant head of the model was also coded
using Python (version 3.7). Training of the model was done on a laptop computer
running Ubuntu 18.04, powered by an Intel Core Xeon E2176M cadenced at 2.7 GHz.
Training time for each epoch was < 1 s, maintaining the performance of the original
DD-Net.

6.3.4 Comparison with simpler models

To contrast the performance of DeeREKt, two simple classifiers were trained and tested
on the same splits. These two classifiers were taken from the scikit-learn Python
library (v0.23.1; Pedregosa et al., 2011). The first one was the Gaussian Naive Bayes
classifier and the second was the Linear support vector machine classifier.

6.3.5 Ablation study

In order to test the influence of the discriminant head on the generalizing abilities of
DeeREKt, an ablation study was conducted. The ablated network consisted of the net-
work, without the discriminant head. The training procedure was conducted using
the exact same splits than for training DeeREKt.

6.4 results

6.4.1 Dataset 1

After training, DeeREKt achieved an accuracy score of 54.00% across the seven emo-
tions (see Figure 23 for the confusion matrix). Training time was around 76 ms/step.
The highest accuracy was reached in the neutral emotion, with a score of 85.59%.
The lowest accuracy was obtained in the surprise emotion, 29.87%. Concerning indi-
vidual emotions, anger was correctly recognized in 61.32% of the cases while disgust
was accurately identified in 55.07% of the cases. In fear and happiness emotions,
recognition rates were 57.55% and 53.28%, respectively. Finally, accuracy score for
the sadness emotion was 44.12%. See Table 5 for a comparison of the results with
other classifiers.

6.4.1.1 Comparison with simple classifiers

To compare the performance of DeeREKt, two simple classifiers were trained on the
same splits. Across the seven emotions, the Naive Bayes classifier (Figure 24, Panel
A) achieved an accuracy score of 19.32%. The highest accuracy was reached in the
surprise emotion, with a recognition rate of 68.4%. The lowest accuracy was obtained
in the disgust emotion with 0%. Concerning other emotions, anger was correctly
classified in 2.8% of the cases while fear was correctly recognized in 40.7% of the
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Figure 23
Confusion Matrix for DeeREKt Trained on the 1st Dataset

Note. DeeREKt: Deep Recognition of Emotions from Kinematics. Confusion matrix for
DeeREKt when trained on the 1

st dataset. Overall, DeeREKt achieved an accuracy of
54.00%.

cases. Regarding the happiness and neutral emotions, recognition rates were 25.0%
and 6.3%, respectively. Finally, accuracy score int the sadness emotion was 23.9%.

The SVM classifier (Figure 24, Panel B) achieved an accuracy score of 26.71% across
the seven emotions. The highest accuracy was reached in the surprise emotion, at
26.1%. The lowest accuracy was obtained in the disgust emotion, at 2.5%. Concern-
ing other emotions, anger was correctly classified in 5.6% of the cases while fear was
correctly recognized in 47.5% of the cases. Regarding the happiness and sadness emo-
tions, recognition rates were 15.3% and 26.1%, respectively. Finally, accuracy score in
the neutral emotion was 31.7%.

6.4.1.2 Ablation study

The same pattern of accuracy can be seen on both the ablated network and DeeREKt

(Figure 25). Concerning the performance of the ablated network, it reached an accu-
racy of 54.51% across all seven emotions. The highest accuracy of the ablated network
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Figure 24
Confusion Matrices for Naive Bayes and SVC on the 1st Dataset

Note. Confusion matrices for Naive Bayes classifier (Panel A) and Support Vector
Classifier (Panel B).

was reached in the neutral emotion, at 88.45%. The lowest accuracy was obtained in
the surprise emotion, at 32.19%. Concerning other emotions, anger was correctly
classified in 59.57% of the cases while disgust was correctly recognized in 57.64% of
the cases. Regarding the fear and happiness emotions, recognition rates were 57.45%
and 52.24%, respectively. Finally, accuracy score in the sadness emotion was 44.82%.

Table 5
Results For All Networks And All Emotions on Dataset 1

Network Anger Disgust Fear Happiness Neutral Sadness Surprise All

NB 2.80 0.00 40.70 25.00 6.30 23.9 68.40 19.32

SVM 5.60 2.50 47.50 15.30 31.70 26.10 26.10 26.71

Ablation 59.57 57.64 57.45 52.24 88.45 44.82 32.19 54.51

DeeREKt 61.32 55.07 57.55 53.28 85.59 44.12 29.87 54.00

Note. NB: naive-Bayes; SVM: Support Vector Machine. Accuracies are expressed
in percentage. Bold numbers represent the maximum accuracy for each column.
DeeREKt: Deep Recognition of Emotions from Kinematics

6.4.2 Dataset 2

When trained on the 2
nd dataset, DeeREKt achieved an accuracy score of 84.80%

across the five emotions (see Figure 26 for the confusion matrix). The highest accu-
racy was reached in the anger emotion, with a score of 100.00%. The lowest accuracy
was obtained in the sadness emotion, 75.00%. Concerning other emotions, joy was
correctly recognized in 88.89% of the cases while fear was accurately identified in
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Figure 25
Confusion Matrix for the Ablated Network on the 1st Dataset

Note. DeeREKt: Deep Recognition of Emotions from Kinematics. The ablated network
is DeeREKt without the discriminant head. The training was performed with the
exact same splits as for the training of the full network. Overall accuracy was 54.51%.

77.78% of the cases. Finally, accuracy score for the neutral emotion was 81.25%. See
Table 6 for a comparison of the results with other classifiers.

6.4.2.1 Comparison with simple classifiers

To compare the performance of DeeREKt, two simple classifiers were trained on the
same splits. Across the five emotions, the naive-Bayes classifier (Figure 27, Panel A)
achieved an accuracy score of 27.17%. The highest accuracy was reached in the joy
emotion, with a recognition rate of 44.44%. The lowest accuracy was obtained in the
sadness emotion, 5.00%. Concerning other emotions, anger was correctly classified
in 40.00% of the cases while fear was correctly recognized in 22.22% of the cases.
Finally, accuracy score in the neutral emotion was 25.00%.

The SVM classifier (Figure 27, Panel B) achieved an accuracy score of 50.00% across
the five emotions. The highest accuracy was reached in the joy emotion, at 66.67%.
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Figure 26
Confusion Matrix for DeeREKt on 2nd Dataset

Note. DeeREKt: Deep Recognition of Emotions from Kinematics. Overall accuracy was
84.80%.

The lowest accuracy was obtained in the sadness emotion, at 35.00%. Concerning
other emotions, anger was correctly classified in 60.00% of the cases while fear was
correctly recognized in 38.89% of the cases. Finally, accuracy score in the neutral
emotion was 50.00%.

6.4.2.2 Ablation study

The ablated network achieved an accuracy of 67.39% across the five emotions (see
Figure 28). The highest accuracy was reached in the joy emotion, with a score of
88.89%. The lowest accuracy was obtained in the fear emotion with 44.44%. Con-
cerning other emotions, anger was correctly recognized in 65.00% of the cases while
neutral was accurately identified in 56.25% of the cases. Finally, accuracy score for
the sadness emotion was 80.00%.

6.5 discussion

The objective of the reported study was to test the accuracy of a lightweight emo-
tional classification algorithm. We combined knowledge from psychology and com-
puter science to achieve the project of using a relatively small dataset for a deep-
learning task (22 and 8 human bodies only, for two datasets). DeeREKt achieves better
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Figure 27
Confusion Matrices for Naive Bayes and SVC on 2nd Dataset

Note. Confusion matrices for naive-Bayes classifier (Panel A) and Support Vector Clas-
sifier (Panel B). Both networks were trained on the same splits as Deep Recognition
of Emotions from Kinematics, for the 2

nd dataset. Overall accuracies were 27.17%
and 50.00% for naive-Bayes and SVC, respectively.

Table 6
Results For All Networks And All Emotions on Dataset 2

Network Anger Fear Happiness Neutral Sadness All

NB 40.00 22.22 44.44 25.00 35.00 27.17

SVM 60.00 38.89 66.67 50.00 26.10 50.00

Ablation 65.00 44.44 88.89 56.25 80.00 54.51

DeeREKt 100 77.78 88.89 81.25 75.00 84.80
Note. NB: naive-Bayes; SVM: Support Vector Machine. Accuracies are expressed in
percentage. Bold numbers represented the maximum accuracy for each column.

performance accuracy than naive classifiers and is best when fed with emotional rel-
evant body markers. Our results suggest that DeeREKt can categorize the emotional
states of spontaneous human motor behavior at a rate greater than twice chance level.
This is similar to that found in human classifiers of facial-expressions and provides
first evidence for the power of machine learning in classifying emotional states even
in individuals wearing face masks.

The results obtained from the two datasets confirm that the first hypothesis has
been corroborated. To have an estimate of the performance of DeeREKt, the propor-
tion of the most represented emotion was used as a baseline. For the first dataset,
given that there were 941 examples in the training set and that the most represented
emotion had 168 examples, the baseline score was approximately 17.85%. The worst
classification score was 29.87% for surprise. When considering the results presented
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Figure 28
Confusion Matrices for the Ablated Network on 2nd Dataset

Note. DeeREKt: Deep Recognition of Emotions from Kinematics. The ablated network
is DeeREKt without the discriminant head. The training was performed with the exact
same splits as for the training of the full network. Overall accuracy was 67.39%.

in Table 5, it is possible to conclude that all emotions were classified at a rate slightly
below two times chance level. Concerning the second dataset, there were 110 training
examples and the most represented emotion had 25 examples. Hence, the baseline
score was 22.73%. The worst classification score was 75.00%, when classifying sad-
ness. Therefore, all emotions were classified at a rate, at least, three times above
chance level. These results are similar to that reported in the literature from facial-
expressions of emotion. In addition, our results confirm the hypothesis that body
kinematics alone are sufficient to train a deep classifier to recognize emotions.

The performance comparison with more naive classifiers points toward the fact
that the abilities of DeeREKt are not due to random variations. The accuracy for the
naive-Bayes classifier on the surprise emotion was not expected (19.32%). The naive-
Bayes classifier predicted surprise only, explaining the poor accuracy across other
emotions. These more naive classifiers still seem to be able to recognize some emo-
tions, most notably surprise and neutral. They do not reach very high recognition
rate or when they do, it comes at a price of high variability and their accuracies
are far below those of DeeREKt. This comes as a confirmation that the recognition of
emotions from kinematics is a complex task. To achieve such a task, it is necessary
to have a deep understanding of both the psychological factors behind emotional
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recognition and a deep understanding of neural network to be able to design and
use complex networks.

Existing classification algorithm have been used to decode body language. Indeed,
in most reported studies, scenarios were used to induce different motor actions de-
pending on the emotional category (e.g., closed fist for anger, arms up for joy). Never-
theless, in everyday situations, one can perceive the affective state of a person simply
by observing the way that person is moving (Pollick et al., 2001). Daoudi et al. (2017)
first reported the possibility to classify emotional state from actors when performing
a simple walking task. However, their algorithm was quite complex and required
large computing capacities. Hence, another approach was selected to conduct the
present work. In a previous work, we have demonstrated that emotions modulate
the spatio-temporal coordination of participants (Brossard et al., 2022). This modu-
lation is hypothesized to emerge from evolution as it may have provided significant
advantages for survival (e.g., demonstrate that one is dangerous and should not be
trifled with when in anger).

The performance for the anger emotion was expected as anger is an important
emotion from an evolutionary standpoint and is often expressed in a distinctive
manner. The two top scores were achieved for neutral and anger (85.60% and 61.30%,
respectively). Therefore, the second hypothesis was validated. That being said, the
performance for the neutral condition was not expected. Nonetheless, it can be ac-
counted for by the fact that the scenarios used by the actors to express the neutral
emotion has limited room for variability. One of those scenario for neutral was "imag-
ine that you are taking a key to open a door". Humans tend to express their emotions
with a certain degree of variability in their movements but when it comes to open-
ing a door, humans tend to perform the same gestures. Therefore this would help
DeeREKt in classifying these trials which were stereotyped. Karg et al. (2010) showed
that taking into account the individual characteristics of the participants led to a
drastic increase in classifying performances. This issue was addressed in this work
by adding the discriminant head and trying to force the network not to rely on these
cues. Adding more variability in the training data could also be of a great help to
create more ethical and trans-cultural emotional classifiers.

Finally, the last hypothesis is partially corroborated. In the first dataset, the ablated
network (i.e., without the discriminant head) outperformed DeeREKt. In the second
dataset, however, DeeREKt outperformed the ablated network. These results indicates
that the benefit offered by the addition of the discriminant head might be situational.
The explanation for this effect might be that, in the first dataset, the emotional infor-
mation contained in the kinematics is sufficient in itself to achieve the classification
task. Indeed, the data was recorded from actors given a complete liberty of move-
ment. Their actions were exaggerated compared to those of the actors of the second
dataset. In the second dataset, the actors had to portray the emotions but also to
walk back and forth along a ten meter lane. This task imposed a restriction on the
movements that actors could perform which in turn imposed a limitation on their
emotional display. Consequently, in the first dataset, the emotional information con-
tained within the kinematics was so present that any physical differences between
the bodies of the actors would not improve the classification task. The use of the



90 deep-learning at the service of emotional psychology

discriminant head may be only relevant if the training data contains task-irrelevant
signals. Future studies should be designed to test such a possibility.

The use of the two datasets has demonstrated that DeeREKt can be trained to recog-
nize emotions from different scenarios. However, the two datasets are quite different,
both in terms of actions performed and data structure (e.g., 21 vs. 43 markers, dif-
ferent joints available). Future directions should focus on bridging the gap between
different datasets and create a deep-learning model that would be transferable to be-
haviors of diverse nature. Such approach would offer the possibility to of achieving a
dataset-agnostic model, for a better understanding of human emotions in laboratory
and also in real-world situations.



Part IV

G E N E R A L D I S C U S S I O N





7
D I S C U S S I O N

This final chapter will shed light on the questions about how and why evolution has
provided us with emotions. Then, I will describe a theoretical model that can account
for the results available in the scientific literature. Finally, I will close this work by
focusing on what data science can bring to a better understanding of the psychology
of emotional body experience.

7.1 emotional modulation of human behavior

Emotions are powerful modulator of human behavior. In Chapter 4, we saw that
cadaverine (a molecule produced by the decomposition of dead tissues) elevates
heart rate (HR), provokes strong unpleasant reactions, and makes participants want
to move (i.e., go away). On the contrary, I highlighted that menthol reduces the
HR elevation, provokes strong pleasant reactions, and makes participants want to
stay in the room. Furthermore, the urge to move was triggered by the emotional
perception of the participant and not the modulation of physiological parameters. In
other words, it is not necessary that an odor elevates HR to trigger the urge to move.

The desire to move is not the only thing modulated by emotions. Indeed, in Chap-
ter 6, we have replicated previous results of the literature and showed that emotions
could be recognized and predicted simply from body kinematics. Our results high-
lighted that not all emotions are recognized with the same accuracy. Anger had the
highest accuracy score. So high that the network did not make a single mistake in
classifying this emotion. Furthermore, I showed that emotions are recognized and
predicted without relying on physical characteristics of the participants. This finding
would tend to suggest that humans may have developed a common mechanism to
display their emotions to others. But how? Through which features?

In Chapter 5, I reported that emotions modulate the speed of walking, head angle,
and motor coordination of participants. Anger increased the walking speed, lowered
the angle of the head, and stiffened the body. On the contrary, joy elevated the angle
of the head and relaxed the body, while also increasing the walking speed. Sadness
was found to reduce walking speed and lower the angle of the head. Fear was found
to also reduce walking speed, did not change the angle of the head, and greatly re-
duced the constraints imposed on the movement. Overall, from these results, we can
motivate a distinction between the four dimensions of valence and arousal. Anger,
fear, and sadness displayed different patterns of movements while being all negative
emotions. However, they differed in terms of arousal. My kinematics data confirmed
that anger is a high arousal emotion while fear and sadness are low arousal emo-
tions. Joy displayed different patterns from the negative emotions. Joy is a positive
emotions with high arousal. In future studies, it would be interesting to perform
the same study with a positive emotion of low arousal to investigate how it would
modulate the kinematics.

93
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As showed in the present work and previous scientific literature, emotions are
able to modulate all aspects of human behavior. Nevertheless, the question remains
of understanding why emotions trigger these modulations. Why do humans seem to
react strongly to an unpleasant odor? Is there a reason so important that all humans
seem to display emotions through their kinematics following a similar pattern? I will
try to offer possible explanations to these questions in the next section.

7.2 evolutionary reasons for emotional modulation of human be-
havior

Humans and all living creatures have evolved to be adapted to their environment.
This idea, now well recognized and accepted, stems from the seminal work of Charles
Darwin, On the Origin of Species (Darwin, 1909). This theory of evolution has lead to
major advances in the understanding of evolutionary trajectories of all species. It has
also lead to major advances in the understanding of how the connections between
our neurons developed (Whitacre & Bender, 2010). Most importantly for my PhD
work, it has lead to major advances in the understanding of emotions are created
(Barrett, 2017). Hence, during my PhD thesis, I thought about how and why evolu-
tion has provided us with emotions.

From an evolutionary perspective, the results presented in the previous sections
are sensible. A dead and decomposing body on the ground is highly unlikely to be
a good thing. It is even more unlikely that it will favor one’s own survival. A dead
body can be a signal of a killer lurking in the area. It can be a signal of the presence
of a deadly airborne pathogen. Or it can mean that another human had a heart attack
and died without anyone noticing, suggesting an asocial environment. Of these three
cases, only one leads to survival. Hence, some people will walk away from the body
and some will try to get close to it, eventually to find an identification and warn
the authorities. If the first two scenarios were true, then only the individuals who
stayed away survived and got the opportunity to pass their genes onto the next gen-
eration. Now, imagine being brought back 13,000 years ago. Agriculture just arrived.
It is possible to imagine that a dead body back then was even more dangerous and
detrimental for survival than it is now. Therefore, from an evolutionary perspective,
it is understandable that only the individuals who managed to survive, passing their
genes, education, and way of life to the next generation were the ones who tended
to walk away from dead bodies.

Today, science does not know how cadaverine makes some people go away but not
other. Maybe the individuals who tended to walk away had specific olfactory recep-
tors to the molecule of cadaverine. Cadaverine is structurally similar to putrescine
and probably stimulates one of our trigeminal receptors responsible for a sensation
of tingling and burning (Frasnelli & Manescu, 2017; Wisman & Shrira, 2015). Perhaps
these receptors were once the key that triggered spontaneous behaviors to walk away
from dead bodies to spur survival. In Chapter 4, I showed that menthol triggered
the desire to stay. It is probable that this effect is linked to the fact that menthol is
fresh and found in food and dishes. Smelling good food is usually a worthy signal
of survival. More generally, one can expect that evolutionary relevant negative odors
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will trigger the urge to move while evolutionary relevant positive odors will trigger
the desire to stay.

Dead bodies lying on the ground are not the only danger that humans can face.
Sometimes individuals are dangerous to each other. Therefore, knowing how others
are feeling is vital to survive. If one sees an angry person walking towards them, one
probably needs to avoid that individual. The advantage for the angry individual to
display its anger is that it might help them to avoid danger and direct confrontation,
for which a win is not certain. Our results showed that anger also seemed to tense
the body. This could be seen as a protection of the body to withstand any incom-
ing danger, a sort of evolutionary "brace for impact" maneuver. Indeed, the lowering
of the head can protect the throat, one of the most vulnerable part of the body. The
increased body tension can prevent a fall and damages to internal organs. Human so-
cieties have emerged because humans realized that social contacts are key to survival
(Dunbar, 2003). Expressing emotions through micro variants of body kinematics may
have emerged as a necessity to survive in dense populated areas.

All humans have evolved to become part of a society because it made survival
easier. Emotions could have also helped cement societies. Low-arousal negative emo-
tions (e.g., fear, sadness) might have helped fostering social bonding by making peo-
ple seek social contacts (Rimé, 2009). Social bonding is a vital aspect of survival and,
in that sense, it is possible that negative emotions with low arousal have helped hu-
mans develop specific neurobiological circuits to facilitate such bonding (Carter &
Keverne, 2002). The social advantage provided by positive emotions (regardless of
arousal) might be seen as straightforward. I do believe that joy, for example, facili-
tates social bonding. However, I also believe that joy can provide many more ben-
efits. As showed in Chapter 5, joy had the tendency to increase the walking speed,
bring the head up, and release motor coordination. This pattern of emotional display
could have fostered social bonding by optimizing eye contact probability. It could
have also facilitated mate selection. Bringing the head up may make individuals ap-
pear taller and the increased walking speed may make them appear more vigorous.
Furthermore, it has been shown that height is a defining factor when searching for a
suitable mate (Brewer & Riley, 2009; Courtiol et al., 2010), which further support this
hypothesis.

My studies were conducted on French participants, mostly well-educated. It would
be of great interest to perform similar studies with participants from different cul-
tures and backgrounds to understand the differences that may exist. Not all cultures
have evolved the same way, simply because the adaptation required to survive in
Australia 8,000 years ago was not the same than that in France (e.g., due to weather or
local fauna). Therefore, differences are expected to be present if the same experiments
are conducted within different cultures. Theses differences could be found in how in-
dividuals express their emotions. Nevertheless, social sharing of emotions would be
universal across gender and culture, and I believe that the evolutionary advantages
provided by emotions would also be universal (see Barrett, 2013; Rimé, 2009). Fur-
thermore, it is not the emotions that are universals but rather the core mechanisms of
emotional expression (Gendron et al., 2015, 2014). Studying and understanding this
core mechanism requires a theoretical model, which will be described in the next
section.
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7.3 a theoretical model of the core mechanisms of emotion

Emotion research, as psychology in general, has undergone many developments.
Fifty years ago, Ekman and Friesen (1971) published their seminal article that lead
many to believe that there were basic emotions universal across cultures. The scien-
tific community now has enough evidence pointing to the fact that these results do
not show that emotions are universal, but rather that humans construct their emo-
tions (Gendron et al., 2015, 2014). As I have mentioned in the previous section, this
explanation seems plausible from an evolutionary perspective. Why would Japanese
individuals express their emotions the same way than Americans do, when their
cultures, societies, and countries are so diametrically contrasted? The study of emo-
tions is now transitioning from psychological science to societal questions. Such is-
sues are constraining affective science to embrace new paradigms and innovating
theoretical frameworks. The XXIst century is the century of affectivism. Many fields
of research are trying to investigate how emotions impact their own fields (e.g., lan-
guage, philosophy; Goldie, 2010; Pritzker et al., 2019). Major emotional theorists have
even reflected on a possible transition for psychology from cognitivism to affectivism
(Dukes et al., 2021). This is a golden opportunity for emotion researchers to study
emotions with a societal context.

Combining knowledge from other domains of research with emotions will provide
answers for many open questions (Barrett et al., 2007; Lindquist, 2021). For example,
how do humans create emotional language? Does the fact of learning emotional
words increase the emotional abilities of children? Only a solid theoretical framework
will allow to foster answers to such questions. In Chapter 2, I described the major
theoretical models of emotion. No theoretical model is perfect but the one I find most
appealing is the Theory of Constructed Emotions (TCE) from Barrett (2017).

The TCE is based on the core idea that the only goal of the brain is making certain
that the body functions correctly. A faster walk will require that more oxygen, blood,
and nutrients are sent to the muscles. The brain will regulate this situation by draw-
ing from its reserves to assert that the body will function correctly. This regulation
mechanism is called allostasis (Sterling, 2012). However, the brain will try not to react
to the demand. It will try to predict all changes that are going to happen and meet
the needs before they arise (Barrett, 2017).

To predict, the brain needs the sensory inputs from the body and memory of
all past experiences. Every time the brain makes a prediction (i.e., all the time), it
compares its sensory inputs to past knowledge and computes a prediction error. By
minimizing this error, the brain is able to effectively regulate body functioning. These
sensory inputs are called affect (Barrett, 2017; Russell, 1980). Affective states are an
evolutionary advantage designed to orient the organism towards positive outcomes
(Batson et al., 1992). Emotions are born from a cognitive appraisal applied to affect
(Ekkekakis, 2013). The TCE is able to account for most of the results available in the
literature, including the ones defended in my PhD work.

Since all healthy humans have similar brains, all humans are able to express, per-
ceive, and predict emotions. The cultural differences of emotions could then stem
from different past experiences that construct different brain predictions. However,
the TCE is not perfect. This theory is based on predictive coding (Friston, 2005). To



7.4 using data science to unravel the emotional body experience 97

make its predictions, the brain is hypothesized to use some kind of Bayesian infer-
ence. Nonetheless, it has been issued that the computational demands of a predictive
brain would be too high for the capacities of the human brain (Kwisthout & van Rooij,
2020). Another limitation of the TCE and predictive coding principle is the difficulty
to test it experimentally (Kogo & Trengove, 2015).

7.4 using data science to unravel the emotional body experience

Experimentally testing predictive coding is difficult when applying classic psycho-
logical paradigms. Measuring a couple of responses (e.g., reaction times, eye move-
ments) is not sufficient to model the affective experience of a person. Questionnaires
alone can not objectify an emotional experience. Innovation is required. A paradigm
shift that I propose is one offered by computer and cognitive sciences with cluster-
ing tools. For example, deep-learning models might provide one possible way to test
predictive coding and the TCE. Deep-learning could afford the possibility to create
lighter versions of a human brain to test some of its core functionalities. The Human
Brain Project, for example, aims at recreating a network similar to the human brain.
Initiatives such as the Human Brain Project are highly demanding and challenging
but they might yield some long-awaited answers into the functioning of the human
brain.

Future research to test the TCE could also draw from recent advances made in
diffusion models, with networks such as DALL-e (Ramesh et al., 2022). DALL-e 2 is
a deep-learning model that is able to generate realistic images, simply from a textual
description of the image to generate. Perhaps such models could be developed to
generate emotional body postures based on a given set of sensorial inputs (e.g., by
providing values of blood pressure, BPM, glucose). Then it would be possible to test
some of the TCE hypotheses. For example, based on a fixed set of sensory inputs, the
TCE predicts that many different body postures could be generated. Indeed, there
is no one-to-one relationship between sensory inputs and emotional body posture.
Furthermore, it has been shown that emotions are able to create a motor signature
in human movements (Lozano-Goupil et al., 2021). This emotional motor signature
is not the same for everyone but the fear signature is always different from the joy
signature. Therefore, it might be possible to extract these statistical regularities to
create a prototypical emotional behavior (that would never exist in the real world)
and understand its consequences.

Science is fundamentally transdisciplinary. Science is not conducted by lone, se-
cluded scientists. Science is conducted by teams of researchers working together to
unravel the mysteries of our world. Over the course of my PhD work, I worked
in a multi-disciplinary team where each of us had our own area of expertise with
some overlapping skills and a common theoretical framework. I also searched for col-
laborators outside the research team of my supervisor, to help find answers to our
theoretical questions. This is why I worked with Doctor Thomas Peel (GSK, Belgium)
in Chapter 6, in order to use new advances in computer science to answer psycho-
logical questions. This is also why my supervisors developed an I-Site project with
the team of Professor Véronique Nardello-Rataj (UCCS, CNRS UMR 8181), in order
to manipulate odor molecules, understand how an odor can modulate the emotional



98 discussion

body experience, and ultimately trigger the urge to move (Chapter 4). This transdis-
ciplinary approach stems from my data science background, where we search for
experts in each domain to channel the knowledge into solving one problem. During
my PhD work, I tried to apply this data science perspective to emotion research in
order to study emotional processes in their context, not in isolated paradigms.

The fundamentally transdisciplinary aspect of data science is particularly relevant
today, where the core of experimental psychology is in fact the data we gather. Man-
aging digital environments is challenging. It is of vital importance to protect your
data against loss, theft, or corruption. Then researchers need to analyze the data to be
able to draw conclusions. The skills necessary to perform these steps are not taught
during a classical psychology curriculum. Which is why researchers in psychology
either need to enlist the help of data specialists or learn how to perform these steps.
During my PhD, I implemented thorough procedures to safeguard against any kind
of data loss, theft, or corruption. I set-up my computer so that every end of week,
it would backup the content of my hard drive and take a snapshot of the current
state of my operating system. At one time over those three years of PhD, I tried to
reboot my computer but it refused to restart. I still do not know the reason behind
that. Fortunately, it was a Monday morning and my backups are made on Fridays.
It took me less than 10 minutes to revert to the previous state of the machine and
everything went back to normal. Thus, one important aspect of my PhD work was
to help the team of my supervisor to develop good practices in terms of data health
and security.

This aspect of data health and security is even more relevant when the size of the
gathered data increases or when data is collected remotely. Over the course of my
PhD, I collected over 10 Tb of data. These 10 Tb can not fit in the storage of my com-
puter and are split across three external hard drives. Fortunately, the procedures we
had developed to store lightweight data sets were scalable. Therefore, the only thing
we needed was bigger hard drives, which we bought. We are now in the process of
rendering these large data sets available for other researchers, to foster open-science
practices, and replicability. Furthermore, the methodology we developed, described
in Chapter 3, section 3.4, and Appendix A allows to carry on with traditional experi-
mental psychology outside the lab and with multiple participants at once.

How can you assert that the data are properly anonymized, protected while re-
maining accessible for analyses? All the computers were encrypted and the data
were sent to a secured cloud storage, owned by the University and whose servers
are located in France. Only the experimenters and the principal investigator had
access to the data. Automated analyses scripts were triggered either automatically
or by myself to process the data when we reached our desired number of partici-
pants. All the code produced to that end was saved to a Gitlab instance, also owned
and managed by the University. I developed automated pipelines to assert that each
modification in the code was not breaking everything or that the code was properly
written and understandable by other humans. Finally, we are now entering discus-
sions with relevant organs of the University to assess the patentability of our work,
so that other researchers or companies may benefit from it.

Working with specialists from different fields of research allowed me to help
change the perception that I had and that some have of psychology. For some re-
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searchers or students, psychology is seen as an old and very conservative field of
research. This could not be farther away from reality. Psychology as a discipline has
drawn from biology, neuroscience, computer science, and mathematics to be where
it is now. Psychology is constantly evolving. However, this is not always reflected in
the education provided to students. During my PhD, I had the opportunity to teach
for around 64 h, to cognitive science and psychology students (undergraduate and
masters). I mostly taught courses about data analysis, managing big data sets, and
data science in general. I tried to change the perception of psychology to include
the need of transdisciplinary work and management of digital environment. I made
this effort because I strongly believe that education is the key to help psychology
continue its evolution towards affectivism.

7.5 conclusion

The growing interest in emotions is visible within society. Every startup and personal
coach are now aiming at selling emotional training, development, and books to help
their clients "harness the power of their emotions". An internet query on "harness
the power of you emotions" yielded nearly 4,000,000 results in only 0.61 s. Of all
these results, surely there are some good resources backed-up by the latest findings
in emotion research. However, the positive outcome that I am seeing is that people
are getting interested in emotions and they want to know more about and under-
stand their own emotions. This is an golden opportunity for emotion researchers to
share their knowledge and disseminate what science currently knows about emo-
tions. Lisa Feldman Barrett is trying to change how we all understand emotions.
She has published books for researchers, the general population, and presented her
findings during TED talks (Barrett, 2018a; Barrett, 2018b). Changing the mind of the
general population and researchers takes time. We are only at the first quarter of
the XXIst century. Who knows what the future holds for emotion. I look forward
to seeing the next theoretical advances and I hope to see the day where science will
have found the answers to how, why, and what are human emotions.
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This article has been submitted for publication to IEEE Transactions on Affective Com-
puting.

a.1 introduction

The cardiac activity is one of the most vital organism in the human living being.
Therefore, understanding its functioning and being able to measure its activity is
crucial. However, the mechanism by which the heart sends blood throughout the
organism is complex and adapts as a function of the ongoing behavior. Hence, a
good methodology is key to modeling the human physiological system especially in
remote psychological testing.

The heart generates an electrical signal, which has been described since the early
1900’s (Bowen, 1904). Multiple methods have been developed to measure such ac-
tivity, in particular for medical reasons (Task Force of the European Society of Car-
diology and the North American Society of Pacing and Electrophysiology, 1996).
However, academic work has also developed the need to measure physiological re-
sponses during experimental manipulations. More specifically, HR and HRV are used
to demonstrate the influence of external stimulations on the brain and body. Hu-
man studies in cognitive neurosciences have reported possible functional associa-
tions between emotion and HR (Appelhans & Luecken, 2006). In pathological cases,
depression, anxiety, and stress impact more specifically the adaptive properties of
HR and perturb the patterns of HRV. In the fields of human psychology, studies have
reported how both HR and HRV are sensitive to sensorial modalities such as odors
(Alaoui-Ismaili et al., 1997; He et al., 2014), music (Karageorghis et al., 2006), and
touch (Manzotti et al., 2020). Finally, in the new tech age, HR is being used to ver-
ify the quality of a signal. This is the case of studies using functional near-infrared
spectroscopy to measure changes in cerebral hemodynamics during physical activity
(Guérin et al., 2021b). But the question remains how to select the best method for a
given use of HR and HRV, as physiological indicators of adaptive human behavior.

The present contribution aims to offer a step-by-step guidance to collect good
physiological measures in active individuals using a remote setting. It is aimed at
engineers and researchers who are in need to optimize the selection, analysis, and
interpretation of physiological heart measurements in adult individuals who are
engaged in a behavioral short-lasting task (a few minutes) without the presence of
the data analyst. A point-to-point guide is presented with available Python code to
perform the data processing for optimal computation of HR and HRV.
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a.1.1 Heart functions in context

The cardiovascular system is responsible for transporting nutrients and removing
gaseous waste from the body. This system is comprised of the heart and the circula-
tory system. Hence, HR and HRV are the physiological indicators that can be used to
describe how the cardiovascular system is regulated over time. HR, usually measured
as the number of heart beats per minute (BPM), reflects how the heart is responding to
the current demand in blood and oxygen of the body. When exercising, for example,
the muscles are in need of more energy and oxygen to accommodate the demand.
Therefore, the heart beats faster to increase the amount of oxygen sent via the blood
vessels to the muscles. This would be visible as an increase in the number of BPM

within a couple of seconds after the occurrence of an event. HRV is more subtle as it
reflects the changes in the interval of time between successive heartbeats (Shaffer &
Ginsberg, 2017). HRV is influenced by many core mechanisms of the human function
(e.g., respiratory system, circadian rhythms) and most notably by the ANS. Broadly
speaking, HRV is a measure of how good the heart is at adapting its functioning to
match bodily requirements.

It might seem like a daunting task to find its way through the vast amount of
existing literature on HR and HRV (a PubMed query on "heart rate OR heart rate vari-
ability" returns over 380,000 articles). Adding the wealth of technologies available to
measure cardiac activity, the task is even harder. Every smartwatch now has a way
of recording either HR, HRV, or both, giving the impression that their measurements
are straight forward, and that their physiological correlates are easy to understand.
Designing a correct experiment is essential in order to record, compute, and interpret
valid complex physiological data. First, one needs to define the conditions in which
HR and HRV will be recorded especially in remote testing protocols (will the partic-
ipants be performing a seated reaction-time task or will they be walking around a
city?). Then, one needs to select the appropriate measurement to answer the research
question. If the question concerns the level of arousal or physical effort, HR may be
sufficient; if it is a question of regulation abilities (which is often the case), then HRV

will be needed. Knowing the experimental settings and which measurements will be
used will, in turn, guide the selection of the recording device and the length of trials
needed to perform the computations. Only then will one be able to actually record,
pre-process, and analyze the data to obtain usable information.

This report aims to provide the necessary methodological tools to start choosing a
measurement, recording, pre-processing, and computing HR and HRV across different
use cases.

a.1.2 Selecting an indicator of physiological regulation

HRV notably reflects the amount of regulation exerted by the ANS. Many different
types of approaches have been reported in the literature in studies aiming to measure
HRV (for a review, see Shaffer & Ginsberg, 2017). The approaches can be divided in
two categories: frequency- and time-domain measurements.

In the frequency-domain, the measurements are divided into four frequency bands,
each reflecting a particular physiological response These frequency bands have been
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defined by an international task force working on HRV (Task Force of the European
Society of Cardiology and the North American Society of Pacing and Electrophysiol-
ogy, 1996). The high-frequency band (0.15-0.4 Hz) reflects the influence of the respi-
ratory system on HRV. The low-frequency band (0.04-0.15 Hz) reflects the influence
of the brain on HRV, via the vagus nerve and baroreceptors. The very-low-frequency
band (0.033-0.04 Hz) reflects the intrinsic activity of the heart. Finally, the ultra-low-
frequency band (< 0.033 Hz) reflects the influence of longer physiological regulation
mechanisms, such as body temperature and circadian rhythms (Shaffer et al., 2014).
These measurements must be computed on long cardiac recordings, that is, at least
three minutes to extract high and low frequencies, and 24 h to obtain ultra-low-
frequencies.

Time-domain measurements reflect the variance in the amount of time between
successive heartbeats. These measurements are easier to compute than frequency-
domain measurements as they can be calculated on shorter trials. However, they
do not provide a complete description of the underlying physiological mechanisms.
Time-domain measurements include, but are not limited to, the SDSD and RMSSD.
The RMSSD is one of the most reported metric in scientific literature and is used to
estimate the vagally mediated changes reflected in HRV (Shaffer & Ginsberg, 2017).
In the following case studies, we were limited to trials of maximum 4-min length,
in individuals that were not immobilized (possible occurrence of motion artifacts).
Hence, we focused on the development of a rigorous method to pre-process the data
collected remotely before computing the RMSSD metric that are expressed in millisec-
onds. Our approach can be applied to recordings ranging from 30-60 s (referred to
as ultra-short recordings; Munoz et al., 2015) to five minutes.

a.1.3 Selecting a recording device

When selecting a recording device, it is of critical importance to verify the sampling
frequency of the device. The sampling frequency is the number of recordings per
seconds that a device can make. The higher the frequency, the more precise the
analysis can be. The Nyquist–Shannon theorem states that the sampling frequency
must be at least two times superior to the frequency of what is measured. A healthy
human has a HR between 42 and 210 BPM ( 0.7–3.5 Hz; Opthof, 2000). Thus, to record
accurately the HR of a healthy human, it is necessary to have a sampling frequency of
at least 7 Hz. But to measure time differences in heartbeats of the order of 10 ms (100

Hz), one must use a sampling frequency of at least 200 Hz. This is why prior studies
on HRV have shown that the minimum sampling frequency of an HRV recording
device should be > 200 Hz especially if coupled with sub-efficient pre-processing.
Nevertheless, in recent times, it has been shown that this limit can be tuned down
to below 100 Hz if a strong pre-processing approach is adopted to offer the means
to mathematically enhance the R-peak detection prior to HRV computation (Laborde
et al., 2017).

A wide range of sensors are available to record cardiac activity. The most used
and most reliable of all is the ECG. With a high sampling frequency of typically 1000

Hz, the ECG is the optimal indicator from which to extract both time- and frequency-
domain measurements of HRV. The ECG measures the electrical activity of the heart
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via electrodes positioned on the skin. It is a non-invasive method to record cardiac ac-
tivity but requires the electrodes to be positioned correctly and connected to an ECG

machine. Therefore, this measure is mainly used in hospitals for clinical reading, and
in laboratories collecting physiological data during seated activities. Interpretation
of ECG can be done by trained investigators only. The gold standard in ECG research
is the Biopac wireless system (Biopac Systems, Inc., Goleta, CA, USA).

PPG sensors have been developed to measure cardiac activity quickly, easily and in
virtually any setting. PPG sensors work on the principle of reflective pulse oxymetry
(Sinex, 1999). These sensors have a built-in light emitter and receiver. The emitter
sends light through the skin and the receiver measures the amount of light returned.
The basic principle is that oxygenated blood absorbs more light than non-oxygenated
blood. Therefore, when a heartbeat sends oxygenated blood through the body, the
PPG sensor measures a change in the light absorbed and detects the presence of a
heartbeat. PPG sensors are now widely used in medical and in laboratory settings,
as well as in commercial applications (most smartwatch now include some form of
a PPG sensor). However, the difficulty is to chose a sensor that is accurate, reliable,
and resistant to environmental artifacts. The data presented in this report have been
collected using the available PPG sensor included in the Empatica E4 wristband.

The Empatica E4 wristband (Empatica S.r.l, Milano, Italy) is a medical device
that can record PPG data, electrodermal activity, and skin temperature. The E4 is
a lightweight wristband that can record data for up to 32 h and can be used in build-
ings but also outside, which affords more ecological opportunities. Its PPG sensor
records data at a sampling frequency of 64 Hz using two light sources, green and
red, and one light receiver. The green light is used to detect the heartbeats, while
the red light is used to measure the amount of light present. This reference amount
of light provides the mean to remove motion artifacts. The E4 has a low sampling
frequency compared to the Biopac for example. Therefore, it is important to acknowl-
edge this and apply an efficient pre-processing step to remove small motion artifacts,
noise, and enhance the validity of the cardiac peak signals before computing HRV.

a.1.4 Data pre-processing

All signals contain noise, which can take on many forms and can originate from
many sources. Movement can provoke displacements of the wristband; the skin tis-
sues might move slightly and induce noise as motion artifacts in the measurement.
PPG sensors are highly sensitive to motion-induced noise. Separating the signal from
the noise is the goal of the data pre-processing step. The theoretical and ideal wave-
form of the blood volume pulse (BVP) signal consists of three parts: a systolic peak,
sometimes followed by a dicrotic notch, and finally the diastolic peak (see Figure 29).
This waveform is the signal one should seek in a BVP recording. Note that only small
motion artifacts are easily removable. In case of a large motion artifacts, the best
method is to remove the concerned part of the signal from further analyses (Laborde
et al., 2018).
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Figure 29
Schematic of the Waveform of the BVP Signal

Note. Characteristics of the waveform are highlighted with black dots (systolic peak,
dicrotic notch, and diastolic peak).

a.2 visual inspection

Before attempting to compute either HR or HRV, it is necessary to inspect the raw
signal and identify which parts are noise and which parts are meaningful data. Fig-
ure 30, Panel A shows an expected blood volume pulse (BVP) signal recorded from a
BVP wristband. In this example, the presence of noise is very limited and the systolic
peak can be clearly identified. Figure 30, Panel B shows a BVP signal with a large and
long motion artifact that would be difficult to remove. Hence, this section of the trial
would probably need to be removed from further analysis.

a.2.1 Filtering

A filter is only a tool that must be guided by reason. First, one should keep in mind
what is considered noise and what is considered data. Several methods exist but one
possible approach is to define a range of acceptable BPM (e.g., 42–210) and consider
that everything outside this range is noise. This method can be considered valid,
as the normal range of BPM found in humans is between 42 and 210 BPM (Opthof,
2000). Then, one can convert these values to Hz (0.7–3.5) and design a bandpass filter
that will remove values outside this range only. The range of BPM can be narrowed,
depending on the task performed by the participants. For an endurance runner, stud-
ies have found that HR can rise up to 184 BPM while during walking HR only rises
up to around 159 BPM (Karvonen & Vuorimaa, 1988). For a seated participant, as is
the case for many psycho-physiological experiments, one could consider a range of
54–150 BPM. Indeed, for a healthy adult at rest, having a heart rate below 54 BPM or
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Figure 30
Example of Different Artifacts in a BVP Signal

Note. Examples of different raw signals. Panel A shows the expected BVP output
when the wristband is correctly positioned and without motion artifact. Panel B
shows a BVP signal with a big and long motion artifact (∼3 s). Panel C shows a zoom
on the BVP section of Panel B, without the motion artifact. Panel D shows a BVP

signal that contains only noise, usually happening when the wristband is loosely
positioned on the wrist of the participant.

above 150 BPM is unusual (Bernstein, 2011; Levine, 1997). An example of such filter-
ing can be found in Figure 31. However, using this type of filters can result in small
disturbances in the signal, which could potentially influence the computation of the
measures. Therefore, a filter is to be used only when the signal is very noisy.
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Figure 31
Example of a Raw and Filtered BVP Signal

Note. The filter used here is a 3rd order Butterworth bandpass filter, with cut-off
frequencies set between [0.9, 2.5] Hz (54–150 BPM). The participant was presented
with a pleasant odor while being seated. BVP: blood volume pulse.

a.3 data processing

After selecting an HRV measurement and cleaning the signal, it is now time to com-
pute both HR and HRV. Many scientific analysis toolboxes have been developed to
compute time-domain measures of HRV, mostly relying on MATLAB, R, or Python.
This guide will only focus on one of them, HeartPy, an open-source Python toolbox
developed to be a noise-resistant algorithm that handles PPG data well (van Gent
et al., 2019, p. 1). The computation of the RMSSD (and generally of all time-domain
measurements of HRV) relies on the accurate calculation of the time interval between
two heartbeats. Missing or time-tampered beats can lead to dramatic increases in the
computed values. Therefore, it is vital to perform a correct detection of cardiac beats
to confirm the validity of the BVP signal.
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a.3.1 Peak detection

The goal of the peak detection process in HeartPy is to detect the systolic peak in
the BVP waveform (see Figure 29). HeartPy detects cardiac peaks in the signal in
a three step process. First of all, a moving average is computed with a window of
0.75 s. Then, the regions of interest are highlighted where (a) the amplitude of the
signal is higher than the moving average and (b) between two points of intersection.
Finally, the peaks are selected at the maximum value within the region of interest
(van Gent et al., 2019). The moving average can be scaled to refine the peak detection,
and in such case, the best scaling factor is determined by minimizing the SDSD and
computing a likely BPM value. For example, if the SDSD is minimal but the BPM is 210,
then the peaks would not be correctly identified.

After these processing steps, the R–R intervals between time series of peaks are
computed. However, not all detected peaks represent cardiac pulses accurately. There-
fore, it is necessary to run an outlier rejection pass to refine the peak selection and
to be able to compute a valid RMSSD value. HeartPy implements a technique called
quotient filtering (Piskorski & Guzik, 2005). The idea behind this filter is that if a
RR–interval is too short (e.g., < 300 ms) or too long (e.g., > 2,000 ms) then it might
be an artifact or an incorrectly identified peak. These thresholds can be adapted; 300

and 2,000 ms are values based well above physiological time between heart beats
observed in healthy individuals (de la Cruz Torres et al., 2008; Piskorski & Guzik,
2005). A visualization of the result of such peak detection algorithm, and selection
procedure is presented in Figure 32.

a.3.2 Computing HR and HRV

Once the peaks are correctly labeled, the RR–intervals can be recomputed. These in-
tervals are the basis of the computation of HR and of all time-domain measurements
of HRV.

The BPM are calculated as:

BPM =
60000

1
n

∑n
i=1 RRi

(8)

The RMSSD is calculated as follows:

RMSSD =

√√√√ 1

N− 1
(

N−1∑
i=1

(RR)i+1 − (RR)i)2) (9)

In the following section, we report a case study for which our method was used
to collect data remotely. Individuals were invited to wear the Empatica E4 wrist-
band and were instructed to smell a series of odors. In addition to their subjective
self-rating responses, physiological reactions to the odorant stimuli were recorded,
uploaded through a secured cloud storage before the automatic computing of HR

and HRV was completed.
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Figure 32
Example of Peak Detection and Fitting

Note. Data used come from the same seated trial as Figure 31. Green dots represent
peaks classified as correct while red dots represent incorrect peaks. During this 60 s
trial, the HR and RMSSD of the participant were 67.99 BPM and 50.88 ms, respectively.

a.4 case study : evaluating the impact of odors on physiological re-
sponses

The COVID-19 pandemic caught everyone by surprise. From one day to the next, the
world stopped. The collection of experimental data was halted and when the world
activities started up again, restrictions were maintained for individual protection.
For some fields of researcher, safety measures were only a minor setback. For those
working in human sciences, data collection became difficult. To be able to conduct
our ongoing work on olfaction, we developed an experimental protocol to bench-
mark odors that required no human–human contact. The odor vials were placed on
a rack in a disinfected and ventilated room. Each participant entered the room and
followed the on-screen and audio instructions.
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a.4.1 Innovative methodology

The setup was made of a recording computer, a wristband to measure cardiac activ-
ity (i.e., Empatica E4), a chin rest, and closed vials containing the odor molecules.
Participants were instructed to place the wristband on the non-dominant hand to
reduce motion artifacts. A short video illustrated the steps to follow. All instructions
were audio recorded with a male neutral voice tone at a moderate slow speed of
speech (120 words per minute).

The wristband was connected to the computer and the instructions were pro-
grammed via PyschoPy (Peirce et al., 2019). All instruments were synchronized using
the software LSL, that acts as a lightweight interface between the computer that sends
the instructions and triggers the stimuli onsets, and that receives the inputs from the
participant (questionnaire responses, signals from wireless equipment). When an
event is sent to LSL (e.g., stimulus on-set, cardiac input), a timestamp is associated
to the event based on the computer clock. When the experiment is completed, LSL

saves the data to a single file that contains data points from all recording devices on
a unified time series.

At the beginning of each trial, participants were asked to place the odor vial num-
ber X (i.e., ranging from 1 to 10) on a holder in front of them. They were told that
during this period they could move freely. The odor vials were marked with num-
bers on top of them so that the participant knew which one to place in front of them.
The chin-rest and vial holder were provided to ensure that the distance between the
vial and the nose of the participant was always the same. Each participant was only
free to change the height of the chair for optimal comfort. Once the vial was posi-
tioned, the participants were asked to avoid moving their non-dominant hand (on
which was placed the wristband).

All the answers were directly recorded and synchronized with the wristband data.
The different psychological scales collecting the self-evaluation of affective changes
during each trial were implemented directly on the computer. The participant was
invited to respond using the mouse key with their dominant hand. At the end of the
session, data files were automatically uploaded to a NextCloud server owned by the
University of Lille to safeguard against data loss and to follow the European rules
set by the National Data Protection Commission (CNIL).

Then, the Python codes were applied to the Empatica E4 data to process and
analyze the relevant dependent variables that included BPM and RMSSD. Raw and
processed data were finally logged to the NextCloud server, to safeguard against
possible data loss. In the initial study, the Empatica E4 wristband only was used.
Nevertheless, the setup enables today the use of additional quantification tools (e.g.,
eye tracking, EMG band strips) to characterize remotely the human experience of
multi-sensory environments that include odors and sounds.

a.4.2 Experimental proof-of-concept

Our innovative methodology was used to investigate how odors would modulate
both the HR and HRV of a total of 45 participants (27 female participants). Their
sense of smell was assessed using the Sniffin’ Sticks Screening 12 Test (Burghart;
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Wedel, Germany; Hummel et al., 1997). Threshold was set as a score below 10 for
men and below 11 for women. This led to the rejection of 10 participants. Two odor
molecules were used: eucalyptol (1,8-cineole 99%, CAS number 470-82-6) and cam-
phor ([1R]-[+]-camphor 98%, CAS number 464-49-3). Both were single molecules and
concentrated at 10% in ethanol.

These two molecules were selected as they both hold an evolutionary value (i.e.,
easily found in nature) and are pleasant (eucalyptol; Frasnelli et al., 2011; Müschenich
et al., 2020) and somewhat unpleasant (camphor; Alaoui-Ismaili et al., 1997; Vernet-
Maury et al., 1999). Positive odors have been found to decrease HR and increase HRV,
while the opposite was observed for negative odors (He et al., 2014). Therefore, in this
proof-of-concept we expect HR to be lower when smelling eucalyptol than camphor.
Conversely, we expect HRV to be higher when smelling eucalyptol than camphor.

BVP data from the wristband was filtered with a 3rd order bandpass Butterworth
filter between [0.9, 2.5] Hz after the removal of discrete motion artifacts. No trials
were excluded for large time intervals of motion artifacts. Two dependent variables
were computed: BPM to characterize physiological arousal and RMSSD as an indicator
of the effects of odors on vagal tone. Both were computed as a difference between
the baseline (i.e., 30 s before each odor) and 60 s after odor presentation. These differ-
ences were computed to offer a more accurate index of the influence of each molecule
on the reactivity of HRV (Laborde et al., 2018). In the following, we conducted a one-
way RM ANOVA (Odor [eucalyptol, camphor]) on each dependent variable (∆ BPM

and ∆ RMSSD) to demonstrate the effect of odor on HR functioning in a remote phys-
iological experiment.

The RM ANOVA on ∆ BPM showed a significant main effect of odor, F(1, 27) =

8.44, p = .007,η2p = .24, with higher BPM differences for camphor (M = 5.56, SD = 3.20)
than for eucalyptol (M = 2.45, SD = 1.42, p = .007, d = 1.26). The RM ANOVA on RMSSD

differences showed a significant main effect of odor, F(1, 32) = 4.44, p = .043,η2p = .12,
with lower RMSSD differences for camphor (M = -6.37, SD = 19.51) than for eucalyptol
(M = 6.47, SD = 12.73, p = .043, d = 0.78).

This study served as a proof-of-concept to illustrate the possibility of bench mark-
ing odor stimuli through physiological remote data collection. Our work also demon-
strates that the physiological responses can be measured and analyzed with a wrist-
band PPG sensor. Future work can include other quantification devices to characterize
the user experience in remote real, virtual, and augmented virtual reality experi-
ments.

a.5 conclusion

With the technological offer available today, it is possible to record good quality heart
signal outside the laboratory. This wealth of techniques offer researchers unique op-
portunities to study psycho-physiological processes in active moving individuals.
However, the technique must be guided with theory and methodological rigor. Re-
searchers should keep in mind why the measurement of HR or HRV is needed. When
coming back to the research question and constraints, it will then be possible to de-
sign a good experiment to collect meaningful data. With the correct recording time,
the optimal choice in recording tool, the corresponding HRV will be computed, with
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a proper pipeline process for data analyzes. Only then will experimental science be
able to offer valid data to gain a better understanding of the influence of environ-
mental, physiological, and psychological factors on HR and HRV in active men and
women. The innovative methodology presented in this work will allow researchers
to use lightweight PPG sensors to efficiently record HR and HRV measurements in
remote settings. The Python codes are made available to foster better transparency
and repeatability of physiological data reported in a wide range of psychological
sciences.
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