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English summary 
This dissertation investigates rhythm as a foundational element of human functioning, and 
a substratum for interactions between individuals. Music serves as an exemplary 
demonstration of this dimension. In particular, ensemble performances showcase precise 
and flexible temporal coordination, resulting from the interplay between perceptual and 
motor processes. These dynamic interactions lead to the emergence of organic, 
structured, and dynamic musical performances, encompassing the very essence of 
rhythm's role in interpersonal coordination. However, the purpose of the dissertation 
extends beyond music, aiming to explore the dynamics underpinning interpersonal 
coordination and the organization of individual rhythms into collective behavior. These 
organizational principles are generalizable to all human interactions. 

Rooted in key theoretical concepts, such as the central role of perception in mediating the 
coupling between individuals and enabling their coordination, the dissertation unfolds 
within an overarching methodological framework. Novel experimental paradigms and 
signal processing techniques are developed with the goal of eliciting and quantifying the 
dynamics underlying dyadic behavior. From this approach, the multifaceted nature of 
perceptual coupling is illustrated, and its impact on coordination dynamics between 
individuals is investigated in depth. Throughout a series of studies, fundamental 
dimensions of informational coupling via sensory channels are identified and manipulated 
to assess their specific effect on the interaction. Starting from the direct comparison of 
visual and auditory couplings (Chapter 2), the investigation expands to subsidiary 
dimensions, such as their differential access to kinematic information (Chapter 3) and the 
role of perspective taking (Chapter 4). 

Alongside the assessment of dyadic behavior, the dissertation also delves into the neural 
dynamics underlying these interactions. By analyzing electroencephalographic (EEG) data 
recorded simultaneously from interacting participants, the interplay between behavioral 
and neural oscillators is investigated as a potential mechanism underpinning interpersonal 
synchronization (Chapter 5). To enhance this investigation, computer-generated auditory 
stimuli are utilized to induce and enable the measurement of neural entrainment, defined 
as the alignment of endogenous brain oscillations to environmental rhythms (Chapters 6 
and 7). 

Finally, building on the methodologies developed throughout the dissertation, an 
examination of rhythmic musical interactions in aging individuals with varying degrees of 
neurocognitive disorder is conducted. Two datasets collected by the PSITEC Laboratory 
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(University of Lille, FR), one involving a dyadic rhythmic task with a musical therapist, and 
another one featuring a synchronization task to isochronous and perturbated auditory 
stimuli, are analyzed. This contribution showcases how to overcome challenges related to 
data acquisition with this vulnerable population, thereby allowing maximal inference on 
their sensorimotor synchronization abilities (Chapter 8). 

The conclusion of this dissertation is the integration of concepts and methodologies that 
offer a comprehensive understanding of the role of rhythm in human interactions. The 
dissertation maintains a strong systemic perspective, considering the dyad as a coupled 
collective unit. It enriches theoretical and methodological dimensions across disciplines, 
paving the way for future research directions at the intersection of behavioral 
neuroscience, systematic musicology, and psychology. 
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Nederlandstalige samenvatting 
Dit proefschrift onderzoekt ritme als een fundamenteel element van menselijk 
functioneren en als substraat voor interacties tussen individuen. Muziek is hier een 
uitstekende demonstratie van. Met name ensemble-uitvoeringen laten een nauwkeurige 
en flexibele temporele coördinatie zien als resultaat van de wisselwerking tussen 
perceptuele en motorische processen. Deze dynamische interacties resulteren in het 
ontstaan van een organisch, gestructureerde, dynamische muzikale uitvoering, die de 
essentie van de rol van ritme in interpersoonlijke coördinatie tonen. Het doel van het 
proefschrift reikt echter verder dan muziek. Het doel van dit proefschrift is om de 
dynamiek die ten grondslag ligt aan interpersoonlijke coördinatie en de organisatie van 
individuele ritmes in collectief gedrag te onderzoeken. Dit is te generaliseren naar alle 
menselijke interacties. 

De dissertatie baseert zich op belangrijke theoretische concepten, zoals de centrale rol 
van perceptie in het bemiddelen van de koppeling tussen individuen en hun coördinatie, 
die binnen een overkoepelend methodologisch kader beschreven worden. Nieuwe 
experimentele paradigma's en signaalverwerkingstechnieken worden gepresenteerd die 
ontwikkeld zijn om de dynamiek van attractoren in dyadisch gedrag uit te lokken en te 
kwantificeren. Vanuit dit perspectief wordt de veelzijdige aard van perceptuele koppeling 
belicht en wordt de invloed ervan op de coördinatiedynamiek tussen individuen 
onderzocht. In een reeks studies worden verschillende fundamentele dimensies van 
informatie-uitwisseling via sensorische kanalen geïdentificeerd en gemanipuleerd om hun 
specifieke effect op de interactie te beoordelen. Beginnend met de directe vergelijking van 
visuele en auditieve koppelingen (hoofdstuk 2), breidt het onderzoek zich uit naar enkele 
aangrenzende dimensies, zoals de verschillende manieren van toegang tot kinematische 
informatie (hoofdstuk 3) en de rol van perspectief in een omgeving gemedieerd door 
virtual reality technologie (hoofdstuk 4). 

De neurale dynamiek onderliggend aan dyadisch gedrag wordt ook onderzocht. Door 
elektro-encefalografische (EEG) gegevens te analyseren die gelijktijdig bij beide 
participanten werd opgenomen terwijl zij met elkaar communiceren, wordt de 
wisselwerking tussen gedrags- en neurale oscillatoren onderzocht als een potentieel 
mechanisme dat ten grondslag ligt aan interpersoonlijke synchronisatie (Hoofdstuk 5). Om 
dit onderzoek te versterken worden computer gegenereerde auditieve stimuli gebruikt 
om neural entrainment te induceren en te meten, gedefinieerd als het aligneren van 
endogene hersenoscillaties met omgevingsritmes (hoofdstuk 6 en 7). 
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Tenslotte wordt, voortbouwend op de in het proefschrift ontwikkelde methoden, een 
onderzoek uitgevoerd naar ritmische muzikale interacties bij ouder wordende personen 
met verschillende niveaus van neurocognitieve stoornissen. Twee datasets die verzameld 
zijn door het PSITEC laboratorium (Universiteit van Lille, FR) worden geanalyseerd: één 
met een dyadische ritmische taak met een muzikale therapeut en een andere met een 
synchronisatietaak op isochrone en verstoorde auditieve stimuli. Deze bijdrage laat zien 
hoe men uitdagingen in verband met dataverzameling bij deze kwetsbare populatie kan 
overwinnen, waardoor de conclusies over hun sensomotorische 
synchronisatiecapaciteiten worden gemaximaliseerd (Hoofdstuk 8). 

De culminatie van dit proefschrift bevindt zich in de integratie van concepten en 
methodologieën ten behoeve van een uitgebreider begrip omtrent de rol van ritme in 
menselijke interacties. Het heeft een sterk systemisch perspectief, waarbij het duo wordt 
beschouwd als een gekoppelde collectieve eenheid. Als zodanig verrijkt het zowel de 
theoretische als de methodologische dimensies van dit veld en baant het de weg voor 
toekomstige onderzoeksrichtingen in de neurowetenschappen, systematische 
musicologie, en psychologie. 
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Résumé de la thèse 
Cette dissertation examine le rythme comme un élément fondamental du fonctionnement 
humain et un substrat pour les interactions entre individus. La musique sert comme 
démonstration exemplaire de cette dimension. En particulier, les performances en 
ensemble mettent en évidence une coordination temporelle précise et flexible, résultant 
de l'interaction entre les processus perceptifs et moteurs. Ces interactions dynamiques 
conduisent à l'émergence de performances musicales organiques, structurées et 
dynamiques, englobant l'essence même du rôle du rythme dans la coordination 
interpersonnelle. Cependant, le but de la dissertation va au-delà de la musique, visant à 
explorer la dynamique sous-tendant la coordination interpersonnelle et l'organisation des 
rythmes individuels en comportement collectif, en principe généralisable à toutes les 
interactions humaines. 

Enracinée dans des concepts théoriques clés, tels que le rôle central de la perception dans 
la médiation du couplage entre individus et leur coordination, la dissertation se déploie 
dans un cadre méthodologique global. De nouveaux paradigmes expérimentaux et des 
techniques de traitement du signal sont développés dans le but de susciter et de quantifier 
la dynamique sous-jacente au comportement dyadique. De ce point de vue, la nature 
multifacette du couplage perceptif est mise en évidence, et son impact sur la dynamique 
de coordination entre individus est étudié en profondeur. Tout au long d'une série 
d'études, différentes dimensions fondamentales du couplage informationnel par les 
canaux sensoriels sont identifiées et manipulées pour évaluer leur effet spécifique sur 
l'interaction. En partant de la comparaison directe des couplages visuels et auditifs 
(Chapitre 2), l'investigation s'étend à certaines dimensions subsidiaires, telles que leur 
accès différentiel aux informations cinématiques (Chapitre 3), et le rôle de la prise de 
perspective (Chapitre 4). 

Parallèlement à l'évaluation du comportement dyadique, la dissertation se penche 
également sur la dynamique neuronale sous-jacente à ces interactions. En analysant les 
données électroencéphalographiques (EEG) enregistrées simultanément chez des 
participants interagissant, l'interaction entre les oscillateurs comportementaux et 
neuronaux est étudiée comme un mécanisme potentiel sous-tendant la synchronisation 
interpersonnelle (Chapitre 5). Pour améliorer cette investigation, des stimuli auditifs sont 
utilisés pour induire et mesurer l'entrainement neural, à savoir l'alignement des 
oscillations cérébrales endogènes sur les rythmes environnementaux (Chapitres 6 et 7). 
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En fin, en s'appuyant sur les méthodologies développées tout au long de la thèse, une 
examination des interactions musicales rythmiques est menée chez des individus âgés 
présentant divers niveaux de troubles neurocognitifs. Deux jeux de données collectés par 
le laboratoire PSITEC (Université de Lille, FR) sont analysés : l'un impliquant une tâche 
rythmique dyadique avec un musicothérapeute, et un autre présentant une tâche de 
synchronisation à des stimuli auditifs isochrones et perturbés. Cette contribution met en 
évidence la surmonte des défis liés à l'acquisition de données avec cette population 
vulnérable, maximisant ainsi les inférences sur leurs capacités de synchronisation 
sensorimotrice (Chapitre 8). 

L'apogée de cette thèse est l'intégration de concepts et de méthodologies pour offrir une 
compréhension complète du rôle du rythme dans les interactions humaines. Elle maintient 
une perspective systémique forte, considérant la dyade comme une unité collective 
couplée. En tant que tel, il enrichit à la fois les dimensions théoriques et méthodologiques 
à travers les disciplines, ouvrant la voie à de futures directions de recherche à l'intersection 
des neurosciences comportementales, de la musicologie systématique, et de la 
psychologie. 
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 XIX 

Prologue 
This work is about human interaction, and the rhythms underneath.  

Think of the myriad of ways people communicate, move, engage in sports, play, work, 
perform, cook, love, and fight with one another. It's astounding how naturally they 
harmonize their movements over time. By gazing through the vast plethora of human 
action, one can see there is a rhythm to it, and that it is organized in emerging patterns. 

An underlying force appears to weave through our lives, pulling us together and pushing 
us apart in an oscillating dynamic between unity and individuality. It is as though we are 
one, then two, then one again, ceaselessly drawn into the ebb and flow of connection and 
separation. We cooperate, we compete, then we cooperate once again. Friendships bloom 
and wither, lovers navigate an endless cycle of attachment and detachment. How can 
incongruous desires for closeness and independence coexist within couples, as we 
perpetually strive for balance amidst turbulent fluctuations? It is almost as if we were 
magnets, attracting and repelling one another in a constant interplay of forces. 

Perhaps these metaphors evoke images that resonate with our lived experiences. And 
whilst that all may sound poetic, this work strives for scientific understanding. Both the 
metaphor in the poet’s eyes and the model in the scientist’s mind aim at capturing the 
essence of our complex shared experiences, like getting to the core of this magnetic dance. 
What is a metaphor if not a model, after all? What is a metaphor, if not a means of 
illustrating qualities that underlie the physical manifestations of a phenomenon? In 
scientific terms, we would claim that the interaction can be explained by a set of laws, 
which are there for the scientist to discover.  

This dissertation aims to explore human interactions at their most fundamental level. By 
peeling the outer layers of complex interactions, I aim to get at the lowest common 
denominator of the manifold manifestations of our relational dynamic. I will therefore 
focus on the rhythmic aspects, seeking to uncover the underlying principles and patterns 
that govern basic interactions with scientific rigor, while trying not to distort their essence. 
To achieve this, I will examine the conditions under which interpersonal interactions occur, 
as well as their dynamics and their underlying control mechanisms as they unfold over 
time. In this endeavor, I will investigate the neural underpinnings of rhythmic behavior, 
and try to bridge them to major theories of brain functioning in interaction with the 
environment and other human actors.  Moving on this fundamental level, I strive to 
unravel the complex tapestry of human connections, while acknowledging that the beauty 
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and richness of our interactions will never be encapsulated by a single metaphor nor by a 
model. Yet, we must accept that scientific endeavors come with the inevitable 
simplification of complex phenomena. 

After turning this page, the reader will pardon the temporary suspension of the poetic, for 
the sake of scientific writing. I hope you can still find some beauty in it, or at least some 
new insights. In any case, I hope you will enjoy the reading. 
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Major theoretical concepts 

The purpose of this dissertation is to unravel the dynamics that are at play when two 
humans coordinate with each other, and that allow their individual rhythms to give rise to 
organized forms of collective behavior. In this endeavor, the dissertation will balance its 
focus between individual and dyadic levels of analysis. Namely, it will be necessary to 
define rhythm and how a human interacts with it as a single organism, before investigating 
it as a mediator and substratum for interpersonal interactions.  

In what follows, we navigate major theoretical concepts, smoothly transitioning in and out 
of the social domain to provide a cohesive presentation of the topic of human rhythmic 
interactions. After illustrating the fundamentals, we will discuss how these relate to major 
theories dominating current debates in cognitive and social neurosciences. The theoretical 
introduction will be followed by the key methodological concepts that grounded and 
oriented the program of empirical research throughout this PhD project. In conclusion of 
this introductory chapter, as we lay out the structure of the dissertation in the chapters 
overview, we will present the research questions that will be addressed by each individual 
study. 

 

Rhythm 

At the backbone of human movement and interactions lies rhythm (P. E. Keller, Novembre, 
& Hove, 2014), the foundational element that structures events in time, a crucial 
dimension of action, life, and nature itself. Humankind has achieved a sublime feat in 
crafting the most sophisticated expression of temporal organization in the cultural artifact 
we call 'music,' artistically illustrating the progression and evolution of these sequences 
within compositions (Alperson, 1980). In this context, rhythmic patterns can be defined as 
recurrent sequences exhibiting temporal hierarchies (Lenc et al., 2021), with varying 
degrees of complexity and predictability in relation to an underlying regular pulse (Vuust, 
Heggli, Friston, & Kringelbach, 2022). Notably, the presence of music as a conserved 
cultural practice has been observed across all cultures throughout human history, globally, 
with rhythm as its fundamental element (Jacoby & McDermott, 2017; Polak, Jacoby, & 
Fischinger, 2018). 

Besides the evidence that humans are biologically predisposed to perceive and produce 
musical rhythms (Cannon & Patel, 2021; Lenc et al., 2021; Merchant, Grahn, Trainor, 
Rohrmeier, & Fitch, 2015; Niarchou et al., 2022), there is an inherently social aspect to this 
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natural inclination (P. E. Keller et al., 2014). Music making is a lively interactive practice, 
manifested in the traditional forms of solo or ensemble playing, dancing, shared listening, 
and in novel forms allowed by the technological development of extended musical spaces 
(Van Kerrebroeck, 2023). The rhythm in music offers humans an affordance for embodied 
interactions, engaging them in a process of alignment between body kinematics and 
acoustic structures (Marc Leman, 2016). The mapping between bodily (motoric) and sonic 
activation provides the basis for pragmatic communication among individuals via the 
encoding and decoding of intentional expressive gesturing (M. Leman & Godøy, 2010), and 
a rich substrate for cohesive group interactions. This is the reason why joint music making 
induces pro-social effects on individuals (Savage et al., 2020), whether they sing, dance, 
or attend concerts together (Onderdijk, 2022). Regardless of the particular musical context 
of activity, rhythm stands out as a key element for bonding individuals (Hove & Risen, 
2009; Marsh, Richardson, & Schmidt, 2009), thanks to a positive feedback loop between 
synchronization and socio-cognitive skills mediated by empathy (for a review, see Tzanaki, 
2022).   

By its nature, music provides the most articulated expression of meaningful temporal 
structuring, and can thus be considered the art of time at its finest (Alperson, 1980). 
Tracing back from this sophisticated human practice, we can observe simpler instances of 
temporal organization in action. It becomes evident that rhythm characterizes various 
other aspects of social life, such as verbal (Cummins, 2009b; Grabe & Low, 2013; Ramus, 
Nespor, & Mehler, 2000) and non-verbal communicative transactions (Greenfield, 1994a; 
Merker, Madison, & Eckerdal, 2009), as well as basic individual behaviors like walking 
(Styns, van Noorden, Moelants, & Leman, 2007).  

The normal execution of rhythmic behaviors is essential in daily life. This becomes evident 
when neuropathology impairs the neuroanatomical structures required for this 
functioning, heavily compromising quality of life (Grabli et al., 2012; Moumddjian, 2020). 
In these instances, leveraging the common rhythmic substratum between the movement 
in the body and the movement in the music has opened a promising avenue for music-
based interventions in neurorehabilitation (Bella, Benoit, Farrugia, Keller, & Obrig, 2017; 
Dotov, de Cock, Geny, Driss, & Garrigue, 2017; Koshimori & Thaut, 2018; Moumdjian, 
Moens, Maes, Van Nieuwenhoven, et al., 2019; Nombela et al., 2013) and well-being 
(Bardy, Hoffmann, Moens, Leman, & Dalla Bella, 2015; Buhmann, Moens, Van Dyck, Dotov, 
& Leman, 2018; Micheline Lesaffre, 2018; B. Moens, 2018; Van Dyck et al., 2015). 

Underneath the overt behavioral manifestations of bodily rhythms, zooming in on the 
underlying biological activity through the lens of electrophysiology, we can see that the 
activation of both central and autonomic nervous systems is inherently rhythmic. Heart 
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activity, respiration, digestion, and brain activity all exhibit repeated patterns, undergoing 
cycles which continually influence the state of organisms (Bardy et al., 2015; Bron & 
Furness, 2009; Buzsáki, Logothetis, & Singer, 2013; Shaffer, McCraty, & Zerr, 2014; Van 
Kerrebroeck & Maes, 2021). A particular state will in turn modulate ecological behavior, 
as different phases result in alternating instances of high and low excitability, determining 
individuals' disposition to act, perceive, and evaluate their environment (Criscuolo, 
Schwartze, & Kotz, 2022). These rhythmic modulations unfold across multiple timescales, 
from monthly hormonal cycles (Menaker & Menaker, 1959; Raible, Takekata, & Tessmar-
Raible, 2017), to daily circadian rhythms (Rivera & Huberman, 2020), multi-hour digestive 
processes (Bron & Furness, 2009), and sub-second fluctuations of attention span (Lakatos, 
Karmos, Mehta, Ulbert, & Schroeder, 2008) and perceptual cycles (Schroeder & Lakatos, 
2009; Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010). As we continue this 
journey from macro to micro, we can still observe that rhythm is fundamental to the 
functioning of every subcomponent, even down to the observation that unique classes of 
neurons discharge action potentials with their own intrinsic dynamics (Kepecs & Fishell, 
2014; Zeng & Sanes, 2017). 

We posit that understanding ecological human behavior from a brain-body-environment 
perspective hinges on the mechanisms that underpin interactions among rhythms, across 
multiple timescales. These interactions serve two main purposes: 1) they maintain a 
dynamic internal organization within the organism, and 2) they allow for adaptation to the 
ever-changing external environment. Internal rhythms are organized in an architecture of 
functional dependencies, as revealed by patterns of co-variation among signals from 
different parts of the human body (Criscuolo et al., 2022). This structure provides a 
substrate for functional coupling within the body and the brain, enabling a complex 
interplay that maintains homeostatic equilibrium and directs behavior through state- or 
task-specific configurations. 

Environmental rhythms, present in nature itself, occur at different timescales and levels 
of predictability. For instance, fluctuations of solar light and temperature throughout the 
day are highly predictable at different times of the year. In contrast, a piece of music can 
challenge the listener by varying rhythmic complexity from one moment to the next. 
(Matthews, Witek, Heggli, Penhune, & Vuust, 2019; Matthews, Witek, Lund, Vuust, & 
Penhune, 2020; Vuust, Dietz, Witek, & Kringelbach, 2018; Vuust & Witek, 2014; Witek, 
Clarke, Wallentin, Kringelbach, & Vuust, 2015). Social contexts add a layer of complexity, 
since predicting  others’ actions is hindered by their hidden intentional states and by the 
variability inherent to human movement (Stergiou & Decker, 2011). Despite their 
fundamental differences, these exemplary phenomena share a common feature: they 
tend to unfold in cycles, which interact with the cyclic processes internal to the perceiver. 
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For instance, consider our circadian rhythms that adapt to light among a variety of external 
time-keeping cues (Lazzerini Ospri, Prusky, & Hattar, 2017; Rivera & Huberman, 2020), or 
our predisposition to dance to music up to a certain level of predictability (Matthews et 
al., 2020; Stupacher, Hove, Novembre, Schütz-Bosbach, & Keller, 2013; Witek et al., 2015). 
Similarly, we can dance along with a partner in a silent process of mutual adaptation based 
on a shared common pulse (Lenc et al., 2021). 

In summary, the internal rhythmic organization provides humans with a flexible temporal 
scaffolding that enables interactions with environmental rhythms of varying predictability. 
Distilling the complexity of interactions between rhythmic processes is the work of a whole 
dissertation, not merely of a single page. Nevertheless, it is important to already introduce 
the concepts of entrainment and synchronization, as they are arguably the most basic of 
these mechanisms. Strictly speaking, entrainment is defined as the one-way 
synchronization of an oscillating system to an external rhythmic driving force (Lakatos, 
Gross, & Thut, 2019). Synchronization, a concept closely related to it, is the bidirectional 
process leading two systems to oscillate simultaneously or at regular temporal intervals 
(Pikovsky, Rosenblum, Kurths, & Synchronization, 2001). For example, in physics, when 
two oscillating pendula share a mechanical support, they synchronize through an 
adaptation process in which the swinging of one pendulum adjusts to match the rhythm 
of the other (Huygens, 1888). It is crucial to emphasize that entrainment is the process 
that leads to a synchronized state, and not the synchronized state itself. Throughout this 
work, we will maintain consistency in this terminology and adhere to the fundamental 
definitions of these physical phenomena. 

 

Coordination 

In order to understand the functioning of an organism from an ecological perspective, it is 
first necessary to distinguish the boundaries separating its internal organization from the 
external environment, and identify the mechanisms that enable interaction and 
navigation within environmental affordances. Across spatial and temporal scales, 
biological units form interconnected aggregates, each serving specific goals or functions. 
Neurons interact within networks, networks interact within the brain, the brain interacts 
with the entire body, and the body interacts with the environment (J. A. Scott Kelso, 
Dumas, & Tognoli, 2013). These sets of linked components or subsystems influence each 
other through spatial and temporal coordination, leading to the emergence of collective 
behaviors that serve specific biological functions (J. A. Scott Kelso, 2009).  
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Inspired by the physics of complex dynamical systems, the discipline of coordination 
dynamics approaches human behavior and cognition with a strong emphasis on the 
systemic properties emerging from the interaction between components. The seminal 
work of Scott Kelso (J. A. S. Kelso, 1995) was pivotal in laying the foundation for this 
discipline, focusing on the spatiotemporal relationships between units and elucidating the 
principles and control mechanisms underlying patterns of collective behavior. The 
relevance of this framework to this dissertation lies in its focus on interactions among 
rhythmic units at a higher level, where parsimonious descriptions of complexity generalize 
to human behavior.  Whilst inter-limb rhythmic coordination was the ‘workhorse’ of the 
early studies in this tradition, a core tenet of the framework is that the same dynamic 
principles apply to the coordination among different parts of an organism, between 
organisms themselves, and between organisms and their environment (J. A. S. Kelso, 1995; 
Kugler & Turvey, 2015). In its quest for level-independent principles, coordination 
dynamics proposes that if the dynamics describing the coordination within an organism 
are sufficiently general, they should also encompass basic interactions between humans 
(Tognoli, Zhang, Fuchs, Beetle, & Kelso, 2020). This perspective allowed the field to extend 
into the social domain, scaling the analysis up to the interpersonal level (Guillaume Dumas, 
de Guzman, Tognoli, & Kelso, 2014; Guillaume Dumas, Kelso, & Nadel, 2014; J. A. Scott 
Kelso et al., 2013; R. C. Schmidt, Carello, & Turvey, 1990; R. C. Schmidt & O’Brien, 1997; R. 
C. Schmidt & Turvey, 1994; Tognoli et al., 2020).  

Human behaviors unfold in ever-changing environments. These often include other 
individuals who produce actions in rhythmic and dynamic sequences which, in turn, 
provide affordances for interaction (Cummins, 2009a; Phillips-Silver, Aktipis, & Bryant, 
2010; Richardson, Dale, & Shockley, 2008; Richardson, Marsh, & Baron, 2007). Central to 
this is the fundamental human skill known as sensorimotor synchronization (SMS), which 
underlies various forms of behavioral alignment with environmental rhythms. Broadly 
speaking, SMS refers to the temporal coordination of an action with a repetitive and, to a 
certain extent, predictable external event (Bruno H. Repp, 2005). It is realized via three 
functional processes: 1) the perception of timing in a rhythmic stimulus, 2) the production 
of rhythmic movements, and 3) the multisensory integration of perceived rhythms with 
produced motor rhythms (Phillips-Silver et al., 2010). In social contexts, the engagement 
of such functional processes by different individuals can lead to interpersonal synchrony, 
a collective state that emerges when two or more individuals mutually adjust towards a 
stable temporal relationship. This state is reached through a process of dyadic 
entrainment (Clayton, Jakubowski, & Eerola, 2020; Clayton, Sager, & Will, 2005; Knoblich, 
Butterfill, & Sebanz, 2011; Phillips-Silver et al., 2010; Phillips-Silver & Keller, 2012; Rosso, 
Maes, & Leman, 2021).  



 

  8 

A view of joint-action informed by ecological psychology (Gibson, 2014; Marsh, 
Richardson, Baron, & Schmidt, 2006; Turvey, 1992) suggests a hierarchy of four 
mechanisms that facilitate social interaction. These range from the most basic, dyadic 
entrainment, to the more complex levels of intentional simulation, shared perception, and 
shared intentions (Knoblich & Sebanz, 2008). The hierarchy is structured such that basic 
interpersonal processes are embedded within more advanced functions that serve joint-
action and communication, with entrainment as the most fundamental mechanism. 
Musical ensemble performance serves as a prime example of temporal coordination, such 
as when musicians' rhythms organize into complex patterns by engaging all these 
functions (P. E. Keller et al., 2014; Sebanz, Bekkering, & Knoblich, 2006). However, 
entrainment always operates below the level of intentionality, spontaneously drawing 
performers towards a synchronized state (Clayton et al., 2005; Marc Leman, 2016). 

Empirical research has leveraged controlled experimental approaches to induce and study 
spontaneous forms of entrainment, including reduced tasks where participants are 
instructed to tap their finger while synchronizing with a rhythmic cue or with a human 
partner (for a review, see Bruno H. Repp & Su, 2013). Given such minimal forms of 
interaction, coordination dynamics has proven to be a valuable framework for 
understanding the underlying control mechanisms. These appear to be so general that 
dyadic entrainment manifests consistently across effectors and task contingencies 
(Issartel, Marin, & Cadopi, 2007; Miyata, Varlet, Miura, Kudo, & Keller, 2017, 2018; Oullier, 
de Guzman, Jantzen, Lagarde, & Kelso, 2008; Richardson, Marsh, Isenhower, Goodman, & 
Schmidt, 2007; Richardson, Marsh, & Schmidt, 2005; R. C. Schmidt et al., 1990; R. C. 
Schmidt & O’Brien, 1997). Traditionally investigated in the context of visuomotor 
coordination, the investigation of dyadic entrainment has subsequently expanded to 
interactions mediated by audition (Demos, Chaffin, Begosh, Daniels, & Marsh, 2012; Ole 
A. Heggli, Konvalinka, Kringelbach, & Vuust, 2019; Konvalinka, Vuust, Roepstorff, & Frith, 
2010; Miyata, Varlet, Miura, Kudo, & Keller, 2021; Néda, Ravasz, Brechet, Vicsek, & 
Barabási, 2000; Nessler & Gilliland, 2009; Thomson, Murphy, & Lukeman, 2018; Xenides, 
Vlachos, & Simos, 2008) and mechanical coupling (Crombé, Denys, & Maes, 2022; Cuijpers, 
Den Hartigh, Zaal, & de Poel, 2019; Harrison & Richardson, 2009; Nessler & Gilliland, 2009; 
Zivotofsky & Hausdorff, 2007). 

 

Informational coupling: a basis for social synergies 

Temporal alignment in coordinated behavior necessitates the rhythmic units of a system 
to exchange information. Every interaction is realized on top of an informational basis, 
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which provides a structure for information flow and a substratum for feedback loops 
between the system components. The establishment of informational coupling among 
these units is a necessary condition and a fundamental prerequisite for the emergence of 
systemic behavior. 

 

Intrapersonal coupling and bodily synergies  

At the intrapersonal level, coupling is relatively straightforward, as it is inherently given by 
the human body and nervous system. Consider an individual coordinating the timing of 
two limbs for activities such as drumming, walking, or any synergetic movement. The 
ability of individual body segments to operate in concert relies not only on the brain, as 
the control center, but also on the physical coupling between body parts. This 
configuration allows information to flow through the physical contiguity of the human 
body via muscles, bones, tendons, and nerves. This bodily informational structure is largely 
consistent across various activities and over time, aside from major changes due to 
accidents. It is also continuous and persists irrespective of attention focus and fluctuations 
(R. C. Schmidt et al., 1990). This setup of physical linkage leads to a set of anatomical and 
functional constraints, which aid in solving the coordination problem posed to systems 
with numerous degrees of freedom (Latash, 2010). In other words, even the most ordinary 
of human activities is extremely complex in its structural organization. For this reason, the 
high dimensional state spaces of human behaviors must be compressed into lower 
dimensional systems in order to make them controllable.  

The solution lies in the aggregation of individual variables into larger groupings known as 
synergies, which essentially are functional assemblies of structural elements (such as 
neurons, muscles, and joints), transiently bound to operate as a coordinated entity (J. A. 
Scott Kelso, 2009). During movement, the internal degrees of freedom are controlled 
indirectly, facilitated by anatomical and functional constraints which impose relatively 
fixed and autonomous relationships among the parts. This arrangement simplifies the 
system's control and sustains the integrity and stability of its behavior. At the same time, 
fluctuations are compensated by coordinated adjustments of its constituent parts in a 
function- or task-specific fashion (Latash, 2010). For instance, consider the act of walking: 
the control of individual muscles and the alternating pattern of the two legs can be 
delegated to the synergies of the locomotor apparatus, allowing the individual to 
consciously control only a few lower-dimensional parameters. Over-simplifying this 
concept, once the walking direction is set, gait control can be modeled as a single oscillator 
capable of adjusting its frequency to control the pace, potentially aligning itself with 
external oscillators like a musical beat (Bart Moens et al., 2014; Styns et al., 2007; van 
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Noorden & Moelants, 1999) or another walking individual (Zivotofsky & Hausdorff, 2007). 
The actual orchestration of all the muscles involved, and the postural adjustments in 
response to obstacles along the way, can be largely automatized and delegated to the 
synergy responsible for the locomotory function. 

 

Interpersonal coupling and social synergies  

The coordination problem becomes more complex in the case of interpersonal coupling, 
as individuals with independent nervous systems necessitate the exchange of information 
using one or more sensory channels (R. C. Schmidt et al., 1990). The two conditions 
satisfied for intrapersonal coordination of bodily synergies, namely the presence of a 
single control center (the brain) and a consistent informational structure (the body), do 
not exist at the interpersonal level.  Thus, even minimal forms of dyadic behavior 
necessitate the emergence of implicit strategies (Ole A. Heggli et al., 2019; Ole Adrian 
Heggli, Cabral, Konvalinka, Vuust, & Kringelbach, 2019; Konvalinka et al., 2010), or more 
explicit joint planning when actions require a higher level of complexity (Knoblich & 
Sebanz, 2008). While anatomical connections facilitate coupling within body parts, 
coupling between bodies depends on a more diverse and intricate set of contingencies. 
For example, the medium, physical obstructions, relative positioning of bodies in physical 
space, and levels of attention can all impact access to mutual information. These factors, 
in turn, influence the information content resulting from the units, feeding the continuous 
action-perception loop underpinning the interaction (Phillips-Silver et al., 2010; Tognoli et 
al., 2020).  

Dyadic entrainment can be seen as a dynamic mechanism through which information is 
shared between individuals (Hasson & Frith, 2016), where the spontaneous tendency of 
individuals in a group to mimic each other's actions promotes a basic spatiotemporal 
alignment among them. The coordinated duration, spacing, and phasing of movements  is 
realized through a continuous mutual adaptation process (Konvalinka et al., 2010), leading 
to synchronized behavior among participants. Intriguingly, this alignment process shares 
commonalities with the mechanism responsible for the flocking behavior (Belz, Pyritz, & 
Boos, 2013; Biro, Sumpter, Meade, & Guilford, 2006; Couzin, 2009; GrÜnbaum, 1998)  and 
the synchronous chorusing observed in a variety of animal species  (Backwell, Jennions, 
Passmore, & Christy, 1998; Greenfield, 1994a, 1994b). The collective alignment of units 
within these groups, strictly reliant on an external signal, is governed by a few simple rules 
such as following the direction of one's nearest neighbor or minimizing the time lag 
between acoustic signals. Notably, the very notion of synergy expands to dyads or groups 
of human individuals who, as long as they are coupled,  form a low-dimensional 
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reciprocally compensating system (Riley, Richardson, Shockley, & Ramenzoni, 2011). The 
emerging type of self-organized group behavior cannot be understood as a linear 
composition of its parts (Marsh et al., 2006), and can operate without the need for 
centralized control (Ballerini et al., 2008).  

This brings us to introduce a core idea in the present work: control structures emerge over 
informational structures (R. C. Schmidt et al., 1990). In other words, how individuals 
coordinate with one another largely depends on how they exchange, access, and process 
mutual information. We posit that the physical properties of the information perceived by 
individuals (action observables) and the access to such information (perceptual systems) 
are two distinct dimensions of interpersonal coupling, which can be manipulated 
independently within an experimental design. This means that even if a perceptual system 
is optimized to access certain features of a stimulus (Comstock, Hove, & 
Balasubramaniam, 2018), it does not necessarily imply that these features are conveyed 
by the other person's actions, or that the physical contingencies of the environment allow 
that particular system to access and process them. This presents a picture of interpersonal 
coupling where multiple variables and conditions interact to create a dyadic system. This 
dissertation strives to cover some fundamental aspects of its complexity, through a series 
of empirical studies presented in the subsequent chapters. 

  

Attractor dynamics  

Synthesizing the evidence across scales and species, one notion becomes clear. While 
central control is not always necessary for organized behavior up to a certain level of 
complexity, the presence of informational coupling is indispensable. Information 
exchange is a necessary condition for any interaction. Determining whether it is also a 
sufficient condition constitutes a key research question across this dissertation. 

The concept of attractor dynamics provides a foundational understanding of how 
rhythmic coordination functions at a systemic level. At the core of this understanding is 
the Haken-Kelso-Bunz (HKB) model, which frames rhythmic bimanual finger coordination 
as a system of coupled nonlinear oscillators, mutually attracted towards in-phase and anti-
phase synchronization (Haken, Kelso, & Bunz, 1985). Over time, the HKB model has 
become an essential formal construct for explaining the establishment of stable patterns 
in intrapersonal rhythmic movements (Beek, Peper, & Daffertshofer, 2002). The seminal 
works on inter-limb coordination by Kelso and colleagues have expanded the scope of HKB 
to encompass rhythmic coordination within the same class of effectors, between different 
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effectors, and crucially, between two individuals (R. C. Schmidt & Turvey, 1994; Richard C. 
Schmidt & Richardson, 2008). 

Central to this model is the concept of an attractor, a basic control structure underlying 
entrainment across rhythmic units (Marsh et al., 2009; R. C. Schmidt et al., 1990), which 
enables the system to self-organize spontaneously in a state where its trajectories 
converge and persist, maintaining stability (Tognoli & Kelso, 2014). In this stable state, the 
components settle on a common frequency, in a mode-locking defined by their phase 
relationship. Experimental procedures in coordination dynamics, some of which we 
expand upon in this work, aim to empirically define an attractor landscape (Schöner, 
Zanone, & Kelso, 1992; Tuller & Kelso, 1989, 1985; Yamanishi, Kawato, & Suzuki, 1980). 
This layout, operationalized by a collective variable expressing the temporal relationship 
between the components, presents a configuration of attractor points as preferred 
coordinative states of the system and quantifies their relative strength. Escaping one of 
these states or resisting its force in its proximity requires significant energy, an external 
perturbation, or intentional effortful control in humans. Nevertheless, the attractor 
landscape is not static: this can be reshaped and learned, offering a valuable framework 
for understanding how new motor skills can transition to automatic control through 
extended practice (Dhawale, Smith, & Ölveczky, 2017; Schöner et al., 1992). 

Research by Schmidt and colleagues (R. C. Schmidt et al., 1990; R. C. Schmidt & Turvey, 
1994) explored whether certain entrainment phenomena observed as within-person 
coordination also apply between persons, and whether the same general dynamical 
principles govern both instances. These studies, along with subsequent investigations, 
provided evidence that the basic control structure of an attractor underpins the frequency 
entrainment and phase locking between humans. As such, a dynamical interpretation of 
entrainment can be applied to the visually coordinated phasing of limbs between two 
individuals. The experiments confirmed the HKB prediction that a dyadic system would 
find stability in in-phase (aligned) and anti-phase (opposed) coordination patterns, with 
the former attractor being stronger than the latter. When the system is pushed to 
instability by increasing the movement's frequency beyond a certain threshold, the anti-
phase attractor loses traction in favor of the in-phase pattern.  

The existence of attractor dynamics governing dyadic entrainment implies that the 
principle of "control structures forming over informational structures" (R. C. Schmidt et 
al., 1990) can be translated into a specific working hypothesis: in informationally coupled 
human dyads, the attractor dynamics are dependent on how information is accessed and 
processed within the dyad. The systematic investigation of this idea will necessitate a 
method to quantify the strength of attractors and a strategy to manipulate informational 
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coupling between individuals. Both aspects will be addressed in the section 'Major 
methodological concepts' and will form a significant part of this dissertation. 

 

Major theories 

Coordination dynamics offers an elegant framework for understanding the execution of 
complex behavior in biological systems, including humans. However, it can be argued that 
its explanatory power is mainly confined to the descriptive level. In contrast, cognitive and 
social neurosciences aim to move beyond this level and provide explanatory accounts for 
human rhythmic interactions. Since there is no consensus yet on the nature of the 
underlying mechanism, we hereby introduce two major contemporary debates in the 
field, which will be revisited in the discussion of our empirical findings. 

 

Explaining synchronization: predictive coding vs dynamical systems 

The first debate prescinds the social aspect of interactions. It focuses instead on the 
principles of anticipatory mechanisms coming into play when humans synchronize with 
environmental rhythms. Anticipatory synchrony, a well-documented phenomenon in 
human SMS, is necessitated by the inherent delay in movement preparation (G. 
Aschersleben & Prinz, 1995, 1997; Gisa Aschersleben, 2002; Dunlap, 1910; Johnson, 1899; 
Bruno H. Repp, 2000). This delay compels the anticipation of future perceptual events, 
enabling a timely preparation and execution of movement to achieve synchronization 
(Palmer & Demos, 2022). Notably, even sensorimotor experts such as musicians exhibit 
the same phenomenon, albeit with a marginally improved accuracy (Bruno H. Repp & Su, 
2013). Furthermore, effective SMS requires a certain degree of predictability in the 
temporal structure of the stimulus, which in turn enables successful anticipatory 
alignment of movement with external rhythms. 

Predictive coding and dynamical systems theories emerge as the primary theoretical 
contenders in explaining anticipatory synchronization, and both of these frameworks 
adhere to the free energy minimization principle (Bruineberg, Kiverstein, & Rietveld, 
2018). This principle denotes the drive of adaptive living systems to minimize free-energy 
in their interactions with the environment (K. J. Friston & Stephan, 2007), essentially 
resisting the tendency towards disorder and entropy of sensory states (K. Friston, Kilner, 
& Harrison, 2006). This minimization process can be achieved in two ways: either by 
predicting or anticipating incoming sensory input, or by modifying the environment to 
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align with expected outcomes. To anticipate effectively, an organism must be well-
adapted to its ecological niche. This ensures that the interrelated dynamics between the 
organism and its environment stay within a limited range of states that support the 
organism's survival in its specific habitat (K. Friston, 2011).  

Although both theories share this principle as a common ground, they diverge in 
explaining its neural implementation. The Bayesian formulation of predictive coding 
postulates that neural activity is inherently predictive (K. J. Friston & Stephan, 2007; K. 
Friston & Kiebel, 2009). In this view, the brain is constantly generating top-down 
predictions about the environment, updating its model based on new bottom-up sensory 
evidence, and minimizing eventual mismatches (Clark, 2017; Hohwy, 2013). As per this 
perspective, free-energy essentially corresponds to the amount of prediction error (K. 
Friston & Kiebel, 2009). 

Contrarily, dynamical systems theory leverages self-organization principles within agent-
environment interactions, modelling synchronization behavior in terms of non-linearly 
coupled oscillators described by differential equations (Assisi, Jirsa, & Kelso, 2005; Fink, 
Foo, Jirsa, & Kelso, 2000; Schöner & Kelso, 1988; Torre & Balasubramaniam, 2009). This 
approach can notably explain anticipatory behavior in basic rhythmic interactions without 
referencing internal models (Demos, Layeghi, Wanderley, & Palmer, 2019; Roman, 
Washburn, Large, Chafe, & Fujioka, 2019; Stepp & Turvey, 2010). However, it often lacks 
clear definitions of its neural underpinnings (Palmer & Demos, 2022). Broadly speaking, 
dynamic systems theory posits that intrinsic neural oscillations entrain to periodicities in 
rhythmic environmental signals (Large & Jones, 1999; Large & Snyder, 2009), and holds 
that the physical properties intrinsic to the neural system account for anticipatory and 
more general forms of synchrony (Large & Snyder, 2009). Within this framework, the 
coupling between internal oscillations and environmental rhythms explain the accuracy 
and consistency of SMS (M. C. M. van der Steen & Keller, 2013). Simply put, the model 
defines the strength of the entrainment by a specific coupling term. 

To elucidate our stance in this debate, let us distill our perspective into a few key points: 

• We value the predictive coding theory for its ability to address the role of the brain 
in generating top-down predictions about the environment, adjusting its model 
based on new bottom-up sensory evidence. 
 

• Yet, we find the dynamical systems theory's approach compelling, for its ability to 
explain anticipatory behavior in basic rhythmic interactions without referencing 
internal models. 
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• Overall, our investigation leans towards the dynamical systems theory, due to its 
parsimonious explanations and the emphasis it places on agent-environment 
interactions rather than on brain-centric processes. 

 

In and out of the brain: where is the foundation of social cognition?  

A parallel debate in social neuroscience revolves around the fundamental question of how 
humans understand other minds during social interactions. Interactionists from the 
enactivist tradition assert that the foundation of social cognition rests in their coupling 
(Schönherr & Westra, 2019). To understand human social interactions, they argue, one 
must look beyond individual brains and their shared representations of the world, instead 
exploring the intrinsic properties of a higher-order dynamical system that emerges from 
the causal interdependencies of autonomous agents (De Jaegher, Di Paolo, & Gallagher, 
2010). This principle traces back to Gallagher's seminal critique of traditional social 
cognition theories such as the theory of mind and the simulation theory, which rely on 
cognitive abilities to explain and predict others' mental states and behaviors (Gallagher, 
2001). These perspectives typically employ observation paradigms that emphasize 
individual minds in social interactions. A growing consensus suggests that interaction 
theory and its corresponding methods, which approach social cognition at the collective 
level of group interactions, should be further developed to complement existing theories 
and foster a more comprehensive understanding of social cognition (Schönherr & Westra, 
2019).   

In this debate, our position can be summarized as follows: 

• We value the arguments of the enactivist tradition, asserting the foundation of 
social cognition in coupling and stressing the importance of exploring the intrinsic 
properties of higher-order dynamical systems. 
 

• However, we believe it is crucial to not disregard the role of the brain in this 
process. Even with the interactionist approach, there is an undeniable element of 
perceptual input processing happening at the central level. 
 

• Our stance is thus an attempt to merge these perspectives, acknowledging the 
need to examine agent-to-agent and agent-to-environment couplings, but also 
recognizing the mediating role of the brain in these interactions. 
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Our theoretical stance: a dynamic balance  

Where does this dissertation stand with regard to these debates? While there are sections 
in the following chapters in which we lean towards a specific theoretical stance, we stress 
here the importance of a balanced perspective when interpreting our empirical findings. 
In general, we value the deflationary and parsimonious nature of dynamical systems, and 
favor an enactive systemic approach when it comes to explaining dyadic interactions 
(Bruineberg et al., 2018; Schönherr & Westra, 2019). We reiterate that we employ a very 
low-level, general definition of interaction. In the empirical studies presented throughout 
the dissertation, humans interact with each other deploying all the specifics of the human 
body and nervous system. Yet, we consider interactions at a low level that prescinds 
intentionality, viewing humans as general rhythmic units in a coupled system. Other 
authors may use a more stringent definition, arguing that an intentional stance is 
necessary when discussing the concept (Schönherr & Westra, 2019). While we believe that 
our research has implications for higher-level social cognition, our main concern lies in 
explaining the fundamentals of interpersonal synchronization. 

We posit that shifting the focus outside of the brain, towards agent-to-agent and agent-
to-environment couplings, is a convenient approach for modelling human interactions. We 
propose that both dispositional factors (personality traits, sensorimotor abilities, 
attitudes, and intentions towards the partner and the interaction) and situational factors 
(similarity and liking for the partner, evaluation of the environment) can be modeled as 
modulators of the coupling between interacting units in a brain-body-environment 
system. However, we acknowledge that moving between 'in' and 'out of the brain' is a 
matter of levels of analysis. We cannot deny the role of the brain as a central controller at 
the individual organism scale, and hence its mediation of the interaction between human 
agents. Even the most radical embodied perspective would admit that some form of 
processing of perceptual inputs occurs at the central level. This is undeniable and is rooted 
in the neuroanatomy of sensorimotor pathways. What happens between perceptual input 
and motor output, is where major theories differ. 

 

More than oscillators  

We humans are clearly more than oscillators. Our nervous systems are capable of complex 
information processing, they hold internal representations of the world and can execute 
elaborate intentional planning. However, it is fascinating to observe how the emergent 
properties in minimal rhythmic behavior resemble those in physical systems. For instance, 
the replication of the classic Huygens' experiment (Huygens, 1888) with humans using 
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mechanical coupling (Crombé et al., 2022) affirms the framework's validity in describing 
how coupled rhythmic behavior results in spontaneous synchronization between 
individuals, and in explaining its basic mechanisms (Beek et al., 2002; de Poel, 2016; Haken 
et al., 1985; Lagarde, 2013).  

We assert that such a framework does not conflict with minimal forms of self-other 
internal representations. These have been effectively modeled as coupled action-
perception units within and between brains (Ole Adrian Heggli et al., 2019; Ole Adrian 
Heggli, Konvalinka, Kringelbach, & Vuust, 2021), and are mirrored in the topographical 
arrangement and functional connectivity of neural subsystems dedicated to representing 
the 'self' and the 'other' (Ole Adrian Heggli, Konvalinka, Cabral, et al., 2021). Let us 
consider the paradigmatic example of two individuals facing each other, while moving 
their index finger up and down (Tognoli et al., 2020). The spatial displacement of one 
finger over time is first registered onto the partner's retina. The resulting oscillatory 
retinotopic mapping propagates from peripheral receptors to central sensory areas and 
eventually feeds into the perceiver’s motor system, which in turn sends efferent signals to 
move their finger. We argue that this internal mapping constitutes a basic form of 
representation, with a clear segregation between information flows generated by the 'self' 
and the 'other'. The interaction between the streams results in motor interference solved 
by aligning in both temporal and spatial dimensions (J. M. Kilner, Paulignan, & Blakemore, 
2003). Besides their kinematic profile, the geometry and identity of bodily effectors are 
somatotopically represented in sensorimotor cortices. These representations constitute 
the fundamental elements for plastic representations of the bodily self (Tsakiris, 2010, 
2017), which can be dynamically updated based on situational contingencies and facilitate 
processing of self-other discrimination from the early stages of perceptual processing 
(Galigani et al., 2021). 

The point we aim to convey is that rejecting the notion of internal models to explain basic 
adaptive interactions with the environment and other human agents doesn't entail 
entirely rejecting representations. Our position may be defined representationalist in a 
broad sense. The basic observation of evoked-responses as changes in neuronal excitation 
in response to an event (M. X. Cohen, 2014; Luck, 2014), indicates that the brain processes 
sensory information, encodes it into neural patterns, and uses these patterns to form a 
neural representation of the environmental events. We argue that even a stream of 
passive bottom-up responses evoked by isochronous stimulation is, by definition, a neural 
representation of environmental rhythm, and a marker of the processing of low-level 
features of the stimulus (Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015; Novembre 
& Iannetti, 2018; Vialatte, Maurice, Dauwels, & Cichocki, 2010). Taking music as a 
paradigmatic case of a temporally structured perceptual stimulus, and considering rhythm 
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as a crucial dimension of it, it is not surprising that profound insights into representation 
and processing at the central level are found in music neuroscience (Vuust et al., 2022). 
The close connection between rhythmic structure in audio signals and neural signals has 
been highlighted from both fundamental and signal processing perspectives (Large & 
Snyder, 2009; Lenc et al., 2021; Nozaradan, Peretz, Missal, & Mouraux, 2011). Specifically, 
prominent periodicities and hierarchical structures can be mapped onto brain activity as 
recorded by magneto-electroencephalography (M/EEG), enhancing our understanding of 
how the brain centrally encodes and represents rhythmic structures.  

As discussed above, environmental and human rhythms are not passively represented. 
The internal organization of brain physiology is predisposed to adaptation, when coupled 
to changing environments through perception. Adaptive interactions necessitate 
underlying neural mechanisms capable of tracking changes and enabling flexible behavior 
(Criscuolo et al., 2022), guided by predictions which are thought to be encoded in the 
temporal scaffolding of frequency-specific oscillatory dynamics (Nobre & van Ede, 2018). 
This adaptation process is the reason why neural entrainment, namely the unidirectional 
synchronization of neural oscillations to an external rhythmic stimulus (Haegens & Zion 
Golumbic, 2018; Lakatos et al., 2019), is a process of substantial significance for the 
present work. We believe that explicitly modelling the interaction mechanisms between 
internal and external rhythms is key to the understanding of coupled behavior. From an 
embodied cognition perspective, the intrinsic physical properties of the nervous system 
cannot be neglected. In certain instances, their interaction with the environment can 
result in emergent properties which alone can explain behavioral phenomena (Large & 
Snyder, 2009). In other instances, it can provide a neural substratum to putative  
theoretical constructs (Heilbron & Chait, 2018). Either way, this level of analysis is an 
integral part of this dissertation, as the link between the theories and the underlying 
physiological processes. To summarize: 

• We adopt a representationalist position in a broad sense, acknowledging that our 
brains are not passive receivers of information but actively encode sensory inputs 
to form neural representations of environmental events. 
 

• We believe that representations do not necessarily require the assumption of 
complex internal models. Simple neural representations of environmental rhythms 
can provide a substratum for interaction mechanisms with intrinsic dynamics (e.g., 
via neural entrainment). 
 

• The explicit modeling of interaction mechanisms between neural and 
environmental rhythms is key to understand coupled behavior.  
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The picture of the brain emerging from our discussion is that of an intrinsically social 
instrument, whose overall functioning exhibits the property of adaptation to the 
environment. This adaptive property underscores the social nature of humans and 
suggests that basic sensorimotor processes, such as SMS, form a predisposition towards 
sociality. Our investigation into human rhythmic interactions operates within the context 
of this adaptation process. Its principles are to be found at the level of behavioral and 
neural collective dynamics and the conditions which enable and support these dynamics. 

In conclusion, this introduction has outlined the major theoretical concepts that will be 
explored in this dissertation. However, it is important to note that proving or disproving 
overarching theories of human brain and behavior falls beyond the scope of this work, 
given that the methodologies of our studies were not designed for such a purpose. 
Consequently, we abstain from favoring any specific theory in our interpretations unless 
the conclusions are firmly grounded in our data. 

 

Major methodological concepts 

Eliciting and quantifying dynamics 

The overarching rationale of the methodologies developed and used throughout this work 
is to elicit, quantify, and model the dynamics of human rhythmic interactions. Therefore, 
our primary focus is on the temporal structure and the changing nature of signals 
generated by rhythmic events of interest: stimuli, behavior, and neural activity. Not only 
must our methods be sensitive to these temporal features, but they must also capture the 
interactions across signals as they evolve over time. In the following chapters, these 
methods will be applied to dyadic and individual experiments. The former involves 
genuine interactions in the physical presence of a human partner, which is the primary 
subject of this work. The latter involves synchronization tasks performed in isolation, with 
dynamic computer-generated rhythmic cues. 

While the unpredictability of social interactions provides a valuable resource for the 
emergence of the phenomena in our interest, it carries the obvious limitation that we have 
limited experimental control over the unfolding of the interaction and over the stimuli 
when they are human-generated. In a dyadic interactive context, part of the stimulation 
for the participants consists of the partner's actions, which are largely variable, 
unpredictable, and beyond the experimenter’s control. Therefore, we believe that our 
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research needed to be supplemented with studies involving individual participants, 
undergoing more controlled procedures to help us gain further insight into the behavioral 
and neural entrainment to controlled dynamic stimuli. This complementary approach was 
designed to address general sensorimotor synchronization principles that prescind the 
social dimension. Regardless of this distinction, each of the experiments presented in this 
dissertation was informed by the following guiding principles: 

• Rhythmicity. The aim of stimulation in the context of a task is to induce rhythmic 
activation in the participant(s), measurable at both behavioral and neural levels. 
 

• Interactivity. Moving beyond traditional stimulus-response paradigms prevalent in 
experimental psychology, participants are engaged in a scenario where their bodily 
rhythmic activation continuously interacts with dynamic rhythmic stimulation. 
 

• Time-variance. The interaction between rhythms generates an emergent temporal 
structure, which changes as it unfolds over time. The dynamics underlying these 
changes are our primary object of analysis. 
 

• Systematicity. While our experiments are designed to allow for dynamics and 
variability within tasks, they also aim to uncover general processes underlying 
rhythmic interactions. Therefore, they were designed with the goal of enabling 
organized, methodical, and consistent measurements. Two key notions in this 
regard are: 
 

o Ground truth. This refers to the temporal structure of the stimuli, providing 
a clear picture of the system's expected behavior under ideal conditions and 
in the absence of noise. Numerically, this offers a reference point for 
assessing systematic variations in the system due to experimental 
manipulations. 
 

o Control parameter. This refers to an independent variable that is 
systematically manipulated to drive the behavior of the system under 
analysis. This will be presented in greater detail in the upcoming section (see 
‘Dyadic studies’). 

 

Given the need to induce the dynamics of interest in the behavioral and 
neurophysiological activation of the participants, it is necessary to have at one’s disposal 
a set of signal processing tools to quantify them. Due to the cyclical nature of the processes 
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under investigation, these can be approximated with reasonable accuracy within a 
framework of coupled oscillators. We define an oscillatory signal as a periodic, recurring 
time series defined by its amplitude, frequency, and phase. It can be modeled as a 
sinusoidal process using the following mathematical equation: 

 

𝑦 = 	𝐴 ∗ 	𝑠𝑖𝑛(2p	 ∗ 𝑓 ∗ 𝑡	 + 	𝜑) 

    

where: 

- Amplitude (𝐴)  quantifies the displacement of the waveform from its equilibrium 
point. It corresponds to the height of the wave’s peaks or the depth of its throughs, 
and determines the deviation of the oscillating system from its rest position. 
 

- Frequency (𝑓) quantifies the number of cycles or oscillations that a sinusoidal 
waveform completes in one second. It is expressed in hertz (Hz), where 1 Hz 
corresponds to one cycle per second. It determines the repetition rate of the 
sinusoidal process, with higher frequencies resulting in more cycles per second. It 
is the reciprocal of the period, which is the time taken to complete one full cycle. 
 

- Phase offset (𝜑) quantifies the initial position or angle of the sinusoidal waveform 
at time t=0, typically measured in degrees (°) or radians (rad). The phase 
determines the horizontal shift of the sinusoid relative to a reference point, such 
as the origin. A change in the phase can cause the waveform to start at a different 
point in its cycle, effectively changing the position of the peaks and troughs along 
the time axis. 
 

Given these basic elements for modelling the activation of rhythmic signals, we require a 
toolkit of analytical methods to quantify their interactions. Cross-frequency coupling is a 
term encompassing various co-variational phenomena in the dynamics of multiple signals 
oscillating at different frequencies, or within different oscillatory components of a 
broadband signal. Among the different instances of this interaction, we focus on 
amplitude modulation (AM) and frequency modulation (FM), where a low-frequency 
signal acts as the modulator and a high-frequency acts as the carrier signal undergoing 
modulation. These concepts will form the methodological backbone of Chapters 5, 6, and 
7, which delve into the neural mechanisms underlying behavioral entrainment. 
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Entrainment is not explicitly classified as a type of cross-frequency coupling. Although both 
phenomena involve interactions between oscillatory signals, and both can be observed in 
neural processes (Allen et al., 2011; Canolty et al., 2006; Lakatos et al., 2019), cross-
frequency coupling encompasses a broader range of interactions. Entrainment, on the 
other hand, specifically refers to a type of interaction where the phase of one oscillating 
signal aligns with another which acts as the driving rhythmic force, until their phases and 
frequencies lock over time (Lakatos et al., 2019). A state of phase-locking implies a 
relative-phase of 0 rad between two signals, whereas frequency-locking implies 
consistently maintaining the same frequencies and a fixed relative phase. When the two 
signals interacting via entrainment oscillate at different frequencies, the initial gap 
decreases until synchronization is achieved. This phenomenon was elegantly modeled by 
the Kuramoto in a set of differential equations which describe the collective behavior of a 
large number of interacting oscillators (S. H. Strogatz, 2000): 

 

q	̇ 1 = w1 +
𝐾
𝑁
4sin8q	1 − q:;
<

:=>

,							𝑖 = 1,…	, 𝑁	 

where: 

- Angular position (q1) quantifies the phase of the ith oscillator. It is typically 
measured in degrees (°) or radians (rad) and represents the state of the oscillator 
in its cycle.  q	̇ 1  is the first derivative of the phase and refers to its velocity or rate 
of change.  
 

- Natural frequency (w1) quantifies the intrinsic tendency of the ith oscillator to 

oscillate at a certain rate. 
 

- Coupling strength (K) quantifies the degree of interaction between the oscillators 
in the system. It determines the extent to which the oscillators influence each 
other's behavior. 
 

- Number of oscillators (N) represents the total count of oscillators in the system, as 
the model scales to an infinite number of interacting oscillators. The term serves 
to adjust the coupling strength for the total count. 
 

- Summation (∑) represents the sum of the sine of the phase differences between 
the ith oscillator and all other oscillators j in the system. This term captures the 
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influence of the other oscillators on the ith oscillator and is responsible for driving 
the synchronization process. 

 

In essence, the phase velocity of each oscillator is a sinusoidal function of the phase 
difference with all other oscillators in the system, scaled by the coupling term and adjusted 
for the total number of oscillators. Since sin8q	1 − q:; =	0 when  q	1 − q:  = 0 or when q	1 −
q:  = p, the in-phase and anti-phase states represent stable points where oscillators settle 
and maintain a common frequency.  

While the Kuramoto model will not be explicitly used to analyze data from our studies, it 
provides valuable insight. Specifically, it highlights the relationship between phase and 
frequency of the oscillators and implies that there are attractor dynamics driving towards 
phase- and frequency-locking. These are all core methodological concepts in this 
dissertation, which will be recurrent throughout the chapters. The model identifies in-
phase and anti-phase patterns as the states where oscillators settle their phase at a stable 
point and, consequently, synchronize their frequencies. Importantly, entrainment involves 
adjustments of the signal's phase, meaning that the oscillation would shift its phase to 
speed up or slow down until synchronization is achieved. It is noteworthy that altering the 
velocity of the phase is equivalent to changing its instantaneous frequency. 

These concepts will be discussed extensively and in greater detail in the studies dedicated 
to neural dynamics (Chapters 5-7). As a final note, when discussing neural entrainment, 
we should recognize that we are making specific assumptions about brain function. 
Primarily, we are assuming that brain oscillations are 'real'. That is, neural activity is 
characterized by ongoing, endogenous oscillatory activity that does not require to be 
triggered by external stimulation. Additionally, these oscillations should have the flexibility 
to adjust their frequency over time to synchronize with the stimulation. Therefore, the 
search space of our analysis is guided by these assumptions and is constrained within an 
oscillatory framework. 

 

Dyadic studies 

We now move on to the methodology encompassing a series of studies dedicated to 
dyadic interaction (Chapters 2-4). While most of these aspects will be revisited in the 
'Methods' sections of the individual studies, we take this opportunity to familiarize the 
reader with the rationale and the principles guiding the design of a cohesive series of 
experiments, and to highlight some nuances and implications that are not included in the 
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published manuscripts. What follows is the presentation of the building blocks of the 
dyadic studies: experimental setup, task, paradigm, and design. Each block is necessary 
for the next one in order to carry out the experiments. 

 

Experimental setup 

This block encompasses the set of physical conditions and constraints that enabled us to 
conduct the experiments. Here are the essential elements needed to investigate dyadic 
rhythmic interactions: 

a) Dual acquisition system. At the very least, two devices are needed to record the 
timing of behavioral responses from each partner in the dyad. Pressure sensors 
placed inside two pads and connected to the same voltage microcontroller 
represent a practical and portable solution, which we extensively adopted to 
detect the onsets of hitting time with sub-millisecond resolution. Motion capture 
offers a more sophisticated acquisition method to sample, at a fixed rate, the 
position of infrared reflective markers placed on body parts of interest. This 
technique offers advantages such as introducing the 3D spatial dimension in the 
analysis and the application of timeseries analysis without the need for 
interpolation. However, it also has drawbacks such as the dependency on a more 
sophisticated infrastructure, a more cumbersome setup, the need for additional 
data pre-processing, and potential incompatibility of sampling rates with other 
acquisition devices. In addition to behavior, we are interested in recording 
physiological responses from the participants while they are engaged in the 
experiment. Regardless of the specific parameter under investigation, it is crucial 
that the sampling rate of the recording device is high enough to capture the 
frequency of the dynamic phenomenon of interest. Electrophysiological tools can 
typically record fast-changing signals such as electrocardiogram (EKG), 
electrooculogram (EOG), or electroencephalography (EEG). In our setup, we 
integrated dual-EEG recordings to record brain activities from participants and 
quantify the neural dynamics underlying interpersonal coordination. The 
simultaneous acquisition of neuroimaging techniques is often referred to as 
'hyperscanning' in the literature (Zamm et al., 2023), and we will use this term 
throughout the text. 
 

b) Dual stimulation system. Unless the experiment explicitly requires participants to 
improvise an interaction or spontaneously produce and self-pace behavior, it is 
necessary to pace their behavior with rhythmic cues. It is preferable to provide 
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independent channels for the participants, which allows the flexibility to 
differentially manipulate the stimuli within the dyad. In practice, earplugs or 
earphones are preferred over speakers for auditory cues, while detached lights or 
separate headsets are preferred over a common monitor or projector for visual 
cues. While delivering stimuli to the participants, the stimulation system must keep 
logs of the data that generated the stimuli, particularly the timing of their 
presentation. These data will be used as the references for behavioral and neural 
timeseries. 
 

c) Synchronization system. Regardless of the specific method, all analyses deal with 
temporal relationships between incoming data. To account for these cross-
relationships among data streams, all devices need to be synchronized and 
maintain temporal alignment for the entire duration of the experiment. Six et al. 
(in preparation) are currently working on an extended technical discussion of all 
devices integrated into the ASIL infrastructure where all studies were carried out 
(Van Kets et al., 2021), the specific technical challenges of dealing with different 
sampling rates, and a general framework for tackling them. For the studies 
presented in present work, a simpler approach was tailored to the integration of 
the dual-EEG system in the facility, offering the advantage of portability across 
laboratories. The general synchronization schema is shown in Figure 1.1, with case-
specific details presented in the ‘Methods’ section of each study. 
 

d)  Coupling manipulation: Finally, having discussed how perceptual coupling 
between participants is foundational to the present work, we need a way to 
experimentally control and manipulate it. The basic manipulation, common to 
most studies, is to set the coupling to 1 (enabled) or 0 (disabled) levels. Regardless 
of the contingencies, we want the ability to enable and disable the exchange of 
information between the participants, so that we have at our disposal control 
conditions where individual behaviors are uncoupled and therefore not mutually 
affected. Uncoupled conditions are crucial in our experimental designs because 
they provide a baseline to assess the effect of enabling the coupling. Alongside this 
basic 'ON/OFF' switch, the manipulation of specific dimensions of informational 
coupling will complete the experimental design of the presented studies.  
 

Experimental task 

Joint finger-tapping was the main task for our investigation. This has been a widely used 
method in interpersonal coordination studies (Bruno H. Repp & Su, 2013) due to 
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fundamental and practical reasons. The fundamental advantage lies in its simplicity: it 
offers a minimal form of rhythmic behavior that enables the investigation of temporal 
coordination between individuals, while maintaining a high degree of experimental 
control and isolating rhythm from other dimensions. From a practical perspective, joint 
finger-tapping, compared to full-body movements, is relatively easy to perform, less 
reliant on individual differences in body size, shape, and mobility, and allows for larger 
amounts of data collection due to less fatigue and higher production rate (Kliger Amrani 
& Zion Golumbic, 2022; London, 2012). Notably, minimizing body movements enables the 
collection of reliable electrophysiological data with techniques that are extremely 
sensitive to motion artifacts, such as M/EEG (Vidal, Rosso, & Aguilera, 2021). While this 
choice comes at the expenses of some ecological validity, the benefits outweigh the 
drawbacks when feasibility and reliability are prioritized. This holds particularly well when 
the setting allows to isolate fundamental properties transversal to different classes of 
natural behavior. 

 

 

Figure 1. 1. Synchronization of devices in the setup. The Teensy 3.2 microcontroller, illustrated at the center of 
the diagram, serves as the primary serial/MIDI hub in the setup. From bottom to top, we have the following 
components. Stimulation computer: Ableton® Live 10 or Max/Msp were used as the main interface for presenting 
auditory stimuli to the participants. As the stimuli were generated based on MIDI signals, these could be 
dispatched to the Teensy for logging in a data stream synchronized with the pair of sensors used for collecting 
behavioral data. Microcontroller: Based on events of interest, the microcontroller dispatched TTL triggers via a 
BNC connector to mark events in the dual-EEG recording, facilitating offline alignment with the dual-stimulation 
and dual-acquisition systems. Triggering is represented with a red arrow. Dual-EEG Systems: Two eego™mylab 
systems were cascaded to simultaneously record 2x64 channels from two interacting subjects on the same 
acquisition computer. The same schema applies when scaling down the setup to a single participant. This scheme 
was previously presented at the ANT Neuro Meeting 2020 (Beune, FR) and the Sysmus 22 workshop (Ghent, BE). 
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Experimental paradigm 

A task itself isn't particularly useful unless embedded within an experimental paradigm, 
which we define as the set of conditions allowing the researcher to isolate and investigate 
a particular phenomenon of interest. In our case, we aim to set the conditions for the 
emergence of coordination dynamics between partners, necessitating real interactions in 
physical presence for a relatively extended period of time. Such a scenario poses 
methodological challenges as the participants' movements act as dynamic stimuli for each 
other, influencing behavior and feeding a dyadic action-perception loop during the task 
(Phillips-Silver et al., 2010). Despite the limited control over the stimuli and the limited 
predictability of the responses, the interaction in its complexity is precisely the 
phenomenon of interest, which is the reason why many researchers have called for a 2nd 

person approach to the neuroscience of human behavior (Gallagher, 2001; Schönherr & 
Westra, 2019). We faced a difficult tradeoff: how and to what extent could we set 
constraints for an interaction to unfold freely while still being capable of measuring its 
dynamics? 

Our solution was guided by dynamical system theory principles and inspired by early 
literature on coordination dynamics (J. A. S. Kelso, 1995; Tuller & Kelso, 1989). First, we 
identified a collective variable to quantify temporal relationships between partners, 
describe the dyad's collective behavior, and return a scalar value quantifying the degree 
of coordination within the system. This is known as the order parameter (F) (Tognoli et 
al., 2020). For instance, the relative phase between two rhythmic movements is a simple 
measure traditionally used to describe coordinated behavior. Throughout our studies, we 
will adopt a more complex yet related measure serving the same purpose. Second, as the 
dynamics of the interaction are our object of study, a global quantification of coordination 
was insufficient. We needed our collective variable to be time-variant, as information on 
dynamics is contained in its changes over time.  

In order to elicit predictable patterns of variance over time, we required a method to drive 
the dyadic system through a space of coordinative states in a systematic and controlled 
fashion. This required the implementation of what is known as a control parameter (Y)  
(S. Strogatz, Friedman, Mallinckrodt, & McKay, 1994), a continuously manipulated 
independent variable. Independent variables are often conceived of in categorical terms 
as multi-level factors. To elucidate the difference, consider the following metaphor: 
imagine a control room from where we run our experiments, manipulating our 
independent variables through buttons and switches. Some can be toggled between 0-1, 
acting as a binary switch to enable or disable the variable, while others allow a selection 
from multiple levels: 1, 2, 3, and so on. These factors operate as switches in this metaphor. 
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The control parameter, conversely, functions more like a dial that the experimenter can 
continuously adjust, fine-tuning the value on a continuous scale during the experiment. 
This allows the investigation of collective behavior as it shifts in response to changes in the 
control parameter over time. 

This dynamic approach forms the core of what we termed the drifting metronomes 
paradigm. During a joint-finger tapping task, each member of the dyad is assigned a 
metronome and instructed to synchronize with it. A minimal gap in the metronomes' 
frequencies results in a constant accumulation of phase lag. By setting the metronomes to 
start in-phase, their collective behavior results in a linear de-phasing pattern. Step by step, 
their relative phase increases from 0 to p and subsequently decreases from p to 0 before 
the cycle repeats. The pattern is illustrated in Figure 1.2, and an audio sample of the 
pattern is provided in the ‘Supplementary materials’ of Chapter 2. 

While partners cannot perceive the other's metronome, they are exposed to each other's 
movements under different conditions. Importantly, they are instructed to ignore the 
other person while maintaining synchronization with the assigned metronome. This 
results in a temporal mismatch between the assigned metronome and the partner’s 
movement, which varies systematically as the metronomes de-phase. The paradigm's 
rationale is that, in absence of mutual influence between the partners, the collective 
behavior would track the deterministic trajectory of the metronomes, plus some error due 
to human motion variability. On the other hand, any systematic deviation from this 
pattern can only be explained by mutual influence due to the informational coupling. 

The relative phase between the metronomes represents the control parameter of the 
drifting metronomes paradigm. It is mapped 1:1 onto time because we know the expected 
behavior of the system at every moment. In essence, this is what we previously described 
as ground-truth in the context of this paradigm. The emergence of consistent deviations 
from the ground-truth points at the influence of an attractor, whose position and strength 
are quantified via our procedure. The exploration of the whole space is expected to return 
the attractor landscape of every dyad (see Figure 1.3).  

We list here some fundamental implications of the paradigm that will recur throughout all 
studies:  

1) When dyadic entrainment occurs, it is spontaneous and against instructions and 
intentional attempts to ignore the partner. 
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2) When dyadic entrainment occurs, it is always at the expense of synchronization 
with the metronome. In other terms, the coupling strength is distributed across the 
metronome and the partner. 
 

3) Dyadic entrainment is characterized by a dynamic cooperation-competition 
balance, or metastable behavior (Ole Adrian Heggli, Konvalinka, Kringelbach, et al., 
2021; Tognoli & Kelso, 2014) where transitions from one state to another are 
promoted by attractors with opposite tendencies (Marsh et al., 2009). Note that 
the task is competitive in nature, as each individual actively tries to maintain the 
assigned rhythm. 
 

4) Recurrent temporal structures in collective behavior as a function of the control 
parameter reveal the attractor landscape of the dyad (Schöner et al., 1992; Tuller 
& Kelso, 1989, 1985; Yamanishi et al., 1980). 

These points hold provided the coupling between individuals is enabled, which brings us 
to the final building block of our methodology. 

 

Experimental design 

This is the stage dedicated to hypothesis testing. Under the overarching working 
hypothesis that the dynamics of attractors in coupled human dyads depend on how 
information is accessed and processed, each experiment is designed to manipulate 
different dimensions of informational coupling. With this foundation common to all dyadic 
studies presented in this dissertation, we now delve into the specifics of the experimental 
design.This is the stage where each study stands unique, setting the conditions to 
manipulate the independent variables of interest and assess their impact on the collective 
dependent variable. It is important to note that our dependent variable is time-variant, 
which must be considered and explicitly modeled in data analysis.  

Returning to our control room metaphor, having explained how we control the 'dial' of 
drifting metronomes, we now turn our attention to the 'switches'. The first switch controls 
the coupling, toggling it between ON/OFF states. To statistically affirm that deviations 
from the drifting metronomes are explained by the coupling, above the chance level of 
random fluctuations, it is crucial to have a control condition where participants undergo 
the same procedure without perceiving each other. This provides a baseline for dyadic 
behavior in the absence of coupling, which is expected to follow the linearly de-phasing 
trajectory while accounting for random errors in individual synchronization performances. 
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Statistically contrasting a coupled condition against this baseline is more elegant and 
informative than running permutation tests or contrasting against the ground-truth of the 
metronomes’ trajectory. 

In tandem with the ON/OFF manipulation, we operationalize a different fundamental 
aspect of informational coupling in every study, manipulating it across two levels. As a 
result, all studies presented in this work adopt 2 x 2 within-subjects factorial designs, 
wherein all participants belong to the same group (young, healthy, non-professional 
musicians) and experience the full range of experimental conditions resulting from the 
combination of factors' levels. The decision for balanced designs facilitated the use of 
parsimonious mixed-models, eliminated the need for post-hoc comparisons, and ensured 
unambiguous interpretation of results.  

We acknowledge that the variables investigated here are far from being exhaustive, and 
many more aspects of relevance are yet to be explored. Potential future directions will be 
addressed in the final chapter of this dissertation. 

 

 

Figure 1. 2. The drifting metronomes cycle. Conceptual representation of the two metronomes’ de-phasing 
pattern, over a full cycle. Note that the relative phase of the metronomes (Y) is mapped onto time, such that we 
know the expected state of the system at each point. In the actual implementation, it takes the metronomes 64 
steps to complete the cycle in 39 seconds. The cycle repeats through 10 consecutive iterations. 

   

time

0

π
2

3π
2

π

Y



Chapter 1 

 31 

 

 

 

 

Figure 1. 3. The attractor landscape. Conceptual representation of the attractor points’ layout, as returned by our 
experimental paradigm. The influence of attractor points is inferred by changes in the order parameter of the 
system (F) as the dyad transitions over the space of coordinative states, via manipulation of the control parameter 
(Y). The exploration of the space is guided by the drifting metronomes’ cycle. The order parameter expresses the 
degree of coordination in the system and is quantified in our studies via a collective measure which will be 
presented in detail later on. At this point, it is sufficient to highlight that higher scores on this measure correspond 
to a higher degree of coordination in the dyad. Two toy examples are depicted to illustrate the concept. The blue 
line represents a scenario where the in-phase point, visited at the extremes of the cycle, operates as the only 
attractor in the space, resulting in stronger coordination around these regions. The orange line, on the other hand, 
represents the ideal case of two participants perfectly synchronizing with the assigned metronome, while showing 
no mutual influence. The latter case corresponds to the ground-truth in the context of this paradigm, providing a 
baseline of the expected coordination in absence of coupling. 
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Research questions and overview 

 

 

 

Figure 1. 4. Chapters overview. Block diagram of the topics covered in each chapter, connected to the major 
construct under investigation. The blue blocks deal with different aspects of informational coupling, while the 
green blocks focus on neural dynamics. Both constructs are foundational to the coordination dynamics of dyadic 
interactions. The yellow block represents a methodological contribution to the research program of PSITEC 
laboratory, based on the analysis techniques developed throughout our studies. The illustration highlights the 
cohesive nature of the dissertation, built on a unified methodological framework and rooted in its core theoretical 
concepts. 

 

  

Kinematics
Chapter 3

Modality
Chapter 2

Perspective
Chapter 4

Informational coupling

Stability index
Chapter 6 ERFA

Chapter 7
Mutual β modulation

Chapter 5

PSITEC
Chapter 8

Neural dynamics

Coordination dynamics



Chapter 1 

 33 

In Chapter 1, we introduced this dissertation by drawing out key theoretical concepts and 
articulating their interconnections, focusing on the fundamental aspects of rhythm and its 
prevalence in nature and biological systems. We examined the coordination dynamics that 
govern these interactions, particularly in relation to the control mechanisms regulating 
complex organisms such as humans. The crucial role of informational structures was 
emphasized, as well as the multifaceted challenge of understanding how separate 
individuals can achieve stable coordinated states through perceptual coupling. We 
situated our work within the context of major theories concerning human rhythmic 
interactions, inside and outside the social domain, and within the ongoing debates about 
the nature of the underlying mechanisms. Finally, we offered an encompassing 
perspective on the methodological concepts that guide our empirical studies, 
underscoring the shared principles that unify this body of work. It is now time to explicitly 
address its overarching main research questions. 

 

Main research questions:  

What are the effects of informational coupling on interpersonal coordination dynamics? 

What are the neural dynamics underpinning coupled rhythmic behaviors? 

 

As discussed, informational coupling in dyadic interactions is a multidimensional 
construct. We point out that while the scientific literature broadly recognizes its relevance, 
it has not engaged in a systematic empirical investigation of its components. Therefore, 
we lack a comprehensive picture of these dimensions and their specific influence on the 
dynamics of dyadic interactions. The main contribution of the present work consists of 
filling that gap, developing a research project aimed at building this fundamental 
knowledge. Starting from a theoretical reflection on the construct, we operationalized it 
by breaking it down into its constitutional elements. By doing so, we tackled more specific 
questions in a systematic and progressive approach.  

Chapters 2, 3, and 4 consist of a series of studies where different dimensions of 
informational coupling were investigated. Starting from the most fundamental one and 
building up in complexity, we manipulated them as independent variables to assess their 
specific effect on the coordination dynamics of the interaction. Alongside the behavioral 
aspects, a major element of our investigation concerns the neural dynamics underpinning 
dyadic interaction. Specifically, Chapters 5, 6, and 7 are dedicated to identify the 
mechanisms deployed by the brain to couple its internal rhythms to external rhythms, 
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tracking their dynamics and enabling overt synchronization behavior. Chapter 8 consists 
of a separate methodological contribution in the context of the research performed at 
PSITEC laboratory, which builds on the principles of the dissertation to facilitate this line 
of research in normal and pathological aging.  

The structure of the dissertation is presented in Figure 1.4. The block diagram indicates 
the subject of every chapter, and how they connect to the major constructs under 
investigation. We conclude this section by listing the specific research questions addressed 
in every study, alongside a brief introduction to the content of each chapter. 

 

Question Chapter 2: are attractor dynamics dependent on sensory modality? 

In Chapter 2, the first of a series of three studies, we investigate the foundation of 
perceptual coupling and its impact on the temporal coordination of individuals' 
movements. The study focuses on the most fundamental dimension, namely which 
sensory modality mediates an interaction. Visual and auditory couplings are manipulated 
in a factorial design, to assess their differential contributions to the coordination dynamics 
within a dyadic system. The drifting metronomes paradigm for dyadic entrainment is 
presented here for the first time. 

 

Question Chapter 3: are attractor dynamics dependent on the access to kinematic 
information? 

In Chapter 3, we make a distinction between the nature of the information available in the 
interaction, and the constraints imposed by sensory modalities in accessing such 
information. Moving from the observation that vision has preferential access to the 
continuous kinematic profile of an action (spatial specialization), whereas audition 
typically samples discrete events with high temporal accuracy (temporal specialization), 
we expand on the previous study by balancing the access to continuous and discrete 
information across modalities. We expect that differences between attractor dynamics 
across modalities would cancel out, provided equal access to the continuous kinematic 
profile of the partner’s movement.  
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Question Chapter 4: are attractor dynamics modulated by embodied perspective taking? 

In Chapter 4, we focus exclusively on the visual modality, examining the dimension of 
spatial processing in interpersonal coordination. To do this, we deploy virtual reality (VR) 
technology to manipulate the visual perspective (1st and 2nd person) on the action of the 
partner, under the hypothesis that perceiving movements from a 1st person perspective 
would enhance interpersonal synchronization, potentially mediated by the embodiment 
of the partner's effector. 

 

Question Chapter 5: how are beta oscillations involved in interpersonal synchrony? 

In Chapter 5, we enter the part of the dissertation concerning the neural dynamics 
underpinning rhythmic interactions in the social domain. In analyzing the hyperscanning 
EEG dataset recorded during the first dyadic experiment (see Chapter 2), we choose to 
approach the investigation from a new angle. Rather than focusing on interbrain measures 
of connectivity across brains of interacting participants (Zamm et al., 2023), we explicitly 
model the mediation of the physical effectors on their neural activity, via perceptual 
coupling. This approach allows us to examine the modulation of oscillatory dynamics as a 
function of reciprocal movement cycles, showing how the interaction between behavioral 
and neural oscillators is a potential underpinning of interpersonal synchronization. 

 

Question Chapter 6: is the stability of entrained oscillations an index for auditory-motor 
coupling?  

In Chapter 6, we leave the social domain to specifically focus on neural entrainment and 
its relationship to overt sensorimotor synchronization to auditory rhythmic stimuli. The 
work is based on an EEG dataset recorded during the first dyadic experiment, in a 
condition of finger-tapping to isochronous auditory metronome in absence of 
interpersonal coupling (see Chapter 2). We develop a stability index for neural 
entrainment based on the fluctuations of instantaneous frequency of components 
attuned to the rhythmic stimulus. We further test its correlations with behavioral outcome 
measure of synchronization consistency and accuracy, to assess its validity as a neural 
outcome measure of auditory-motor coupling. 
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Question Chapter 7: does neural entrainment underpin sensorimotor synchronization to 
dynamic rhythmic stimuli? 

In Chapter 7, we build on the correlational evidence of Chapter 6, and develop a more 
sophisticated methodology to overcome some limitations and gain deeper insight on the 
dynamics of neural entrainment. Specifically, we propose event-related frequency 
adjustment (ERFA) as a paradigm to induce and measure neural entrainment in human 
participants, optimized for multivariate EEG datasets. Whereas our previous study 
developed an analysis pipeline on isochronous stimulation, here we apply phase and 
tempo perturbations to induce synchronization errors during a finger-tapping task. This 
allows us to zoom into adaptive changes in instantaneous frequency of entrained 
oscillatory components during error correction time windows. 

 

Question Chapter 8: how can we facilitate the investigation on SMS in healthy and 
pathological aging? 

In Chapter 8, we bring together the methodological concepts presented throughout the 
dissertation and develop analysis pipelines for two large datasets collected at PSITEC 
Laboratory (University of Lille, FR). Both studies investigate rhythmic musical interaction 
in healthy and pathological aging at different severity levels of cognitive disorder. The first 
dataset consists of force plate data recorded during a dyadic rhythmic task with a musical 
therapist (Ghilain et al., 2020), from which we compute three measures of varying 
complexity: 1) general quantity of motion, based on the body sway away from the center 
of gravity; 2) complex measures for temporal structure in these spatial patterns; 3) 
measures of coupling between the participants and the musician. The second dataset 
consists of finger-tapping data in a synchronization task to isochronous and tempo-
changing auditory stimuli (von Schnehen et al., in preparation). The methodology for these 
behavioral data is based on Chapters 6 and 7. For both studies, we have to deal with major 
constraints due to the vulnerable target population in task design and data acquisition, 
which implies tailoring the analyses to suit our objectives and maximize our inferences in 
spite of limitations. 

 

In Chapter 9, we draw general conclusions from the present work and address future 
directions to expand on the presented line of research.
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Introduction 

Humans are in remarkable ways influenced by what they hear and see, especially when 
they perceive other people moving. The exposure to rhythmic behaviors attracts 
individuals to fall in sync with one another, and the phenomenon can be observed at the 
level of dyads, small-groups and large crowds (Zhang, Kelso, & Tognoli, 2018). For instance, 
when two people walk or dance together, they show a natural tendency to synchronize 
their steps (Miyata et al., 2017; Nessler & Gilliland, 2010; van Ulzen, Lamoth, 
Daffertshofer, Semin, & Beek, 2008). When an audience applauds at the end of the 
concert, the auditory scene goes through intermittent periods of synchronized clapping 
(Néda et al., 2000). When marching bands cross each other on the street, it requires 
conscious effort for them to avoid getting rhythmically entrained (Clayton, Dueck, & 
Leante, 2013).  

Rhythmic joint coordination is ubiquitous in daily-life human activities, from the simplest 
form of unintentional synchronization (Richard C. Schmidt & Richardson, 2008) to complex 
tasks such as musical performance (P. Keller, 2014). The way different rhythms organize 
into orderly coordinated patterns over time implies co-regulated actions in response to 
rhythms produced by other agents. Characteristic for this co-regulation is that action 
patterns are often spontaneously attracted towards stable synchronization, via a process 
called entrainment (Phillips-Silver et al., 2010). Coordination dynamics has been proposed 
as a theoretical framework to understand the generic organizational principles that 
underlie the coordination of coupled rhythmic units (de Guzman & Tognoli, 2014; J. A. S. 
Kelso, 1995; Phillips-Silver et al., 2010; Richard C. Schmidt & Richardson, 2008; Schöner, 
1989). Central to the theory is that the coordination of multiple units over time is the result 
of a dynamic balance between keeping the own rhythm (competition) and moving 
together on the collective level (cooperation) (Scott Kelso, Engstrom, & Engstrom, 2006). 
Such idea resonates in earlier work by von Holst(Von Holst, 1973), who termed the 
‘maintenance effect’ versus the ‘magnet effect’ in his study of coordination in animal 
behavior. When intrinsic and external rhythms are incongruent, rhythmic units engage in 
a dynamic competition-cooperation process. 

When it comes to rhythmic interactions within a dyad, this dynamic balance can be 
influenced by manifold variables, such as preferred tempo (R. C. Schmidt & Turvey, 1994), 
empathy (Novembre, Mitsopoulos, & Keller, 2019) and social factors (Tschacher, Rees, & 
Ramseyer, 2014). However, among all possible sources of variability, informational 
coupling between individuals stands out as the most fundamental condition for 
interpersonal coordination. The essential minimal requirement for human interactions to 
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occur is that individuals mutually exchange information through one or more sensory 
channels. Although experimental interactive scenarios necessarily imply a determined 
sensory modality (Ole A. Heggli et al., 2019; Konvalinka et al., 2010; R. C. Schmidt et al., 
1990) and possibly cross-modal interactions (Miyata et al., 2017), the role of competing 
sensory modalities remains overlooked in the literature. To this date, whether and how 
coordination dynamics depend on the nature of available perceptual information requires 
further systematic investigation.   

The aim of the present study is to develop a dynamic experimental paradigm, and apply it 
for studying modality dependencies of competition-cooperation dynamics in dyadic 
entrainment. The paradigm involves a unimanual tapping task, where two individuals are 
exposed to minimally different tempi and reciprocally coupled in visual and auditory 
modalities across experimental conditions. The procedure implies a tension between 
competition and cooperation processes in the dyadic interaction, and is meant to return 
an empirical layout of its dynamics across sensory modalities. 

The core idea underlying the proposed experimental paradigm is to induce a competition 
between the intrinsic rhythm of an individual’s actions and the rhythm produced by 
another person. During a unimanual tapping task, two partners are exposed to two 
metronomes in different modalities (visual and auditory). The metronomes assigned to 
the partners slightly differ in frequency, resulting in a gradual increasing (0 to π rad) and 
decreasing (π to 0 rad) of absolute relative phase over multiple cycles. Accordingly, for 
each person, a corresponding cyclical de-phasing of the assigned metronome and 
partner’s metronome unfolds over time. With this simple expedient, we implemented a 
completely predictable system of two oscillators which deterministically revisits the same 
states throughout 10 consecutive cycles. An audio file showing metronomes’ behavior in 
available in the Supplementary materials. 

When the partners are informationally coupled, they are exposed to two competing 
rhythms. The first one is the intended rhythm: participants are explicitly instructed to 
synchronize to their assigned metronome. The second rhythm is the coupling rhythm, 
which is produced by the partner and perceived in another sensory modality. Thus, when 
the members of the dyad follow their own auditory metronome, they are exposed to visual 
information from the partner (visual coupling). Alternatively, when the members of the 
dyad follow their own visual metronome, they are exposed to auditory information from 
the partner (auditory coupling). The same task performed in absence of informational 
coupling provides the control conditions for each modality, and a baseline to assess the 
impact of coupling on spontaneous dyadic entrainment. In presence of informational 
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coupling, a cross-modal incongruency takes place between intended and coupling 
rhythms. The experimental design is schematized and described in Figure 2.1.  

 
Figure 2. 1. Experimental design. The study was designed in a Modality (Visual, Auditory) x Coupling (Coupled, 
Uncoupled) factorial structure, resulting in the following conditions. 1.Visually Coupled. Participants tapped along 
with an auditory metronome, while looking at the partner’s hand tapping. The view of their own hand was hidden 
by a screen placed on the table. They were explicitly asked to neglect the partner’s movements and focus on 
following their own metronome. 2.Visually Uncoupled (control). Participants tapped along with an auditory 
metronome, while looking at their own hand. The view of the partner’s hand is hidden by a screen placed on the 
table. 3.Auditorily Coupled. Participants tapped along with a flickering LED, while hearing the sonification of the 
partner’s tapping. The view of all the hands was hidden by screens placed on the table. They were informed that 
the sounds they would hear were produced by the partner, and were explicitly asked to neglect them and focus 
on following their own metronome. 4.Auditorily Uncoupled (control). Participants tapped along with a flickering 
LED, while hearing the sonification of their own tapping. The view of all the hands was hidden with screens placed 
on the table. The present figure was realized by Kevin Smink, and published with his consent.  
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In the framework of coordination dynamics, the concept of relative phase (ϕ) functions as 
a collective variable to describe co-regulation of timing. When competition dominates the 
interaction, rhythmic units may fully keep their own intrinsic frequency, whereas they may 
be fully attracted towards each other as cooperation prevails. The former case would 
typically result in an evenly spread distribution across ϕ (0 to 2π radians). In the latter 
case, the distribution would exhibit peaks over the so-called attractor regions, where 
rhythmic units are locked in temporally stable state. In human behavior, the intrinsic 
dynamics of the collective variable ϕ are well characterized by a layout of attractive and 
repelling fixed points, wherein in-phase (0 radians) and anti-phase (π radians) are the 
dominant stable modes of coordination. The Haken-Kelso-Bunz (HKB) model 
mathematically describes how phase transitions from one spatiotemporal pattern to 
another take place when the system is pushed beyond its equilibrium state (Haken et al., 
1985). The model points at the in-phase mode as the point where the system ultimately 
tends to reach stability. 

Crucially, the behavior of the ‘drifting metronomes’ recursively guided the dyads through 
the whole range of ϕ values – and over its respective attractor regions. Based on a joint 
recurrence analysis of the system’s dynamics (Marwan, Carmen Romano, Thiel, & Kurths, 
2007), we computed a recurrence score as a metric of dyadic coupling strength and 
tracked its evolution over time (for a visual representation of the processing pipeline, see 
Figures 2.2 & 2.3). By these means, we obtained an empirical attractor layout descriptive 
of the competition-cooperation dynamics within the dyads. The cooperation process (i.e., 
entrainment to the partner’s coupling rhythm) was expected to dominate the conflict 
around in-phase (0 radians) and anti-phase (π radians) points, leading to significantly 
higher recurrence score in presence of informational coupling and a significant modulation 
around attractor regions.  

Given the time-varying nature of the recurrence score as a response variable, we needed 
a method to model its local variations over the course of the metronomes’ cycles. We 
opted then for a statistical model which allowed us to assess the effects of our 
experimental manipulations over the entire unfolding of the interaction, and to avoid 
segmentation and multiple comparison while respecting the temporal structure of the 
data (Demos & Chaffin, 2017; Demos, Chaffin, & Logan, 2018). In addition to the inferences 
made possible by linear models based on intercepts, such as ANOVAs, our solution allowed 
to assess the effect of categorical predictors on the temporal profile of the response 
variable. In order to complement our observations at the dyadic level, we used the same 
framework to analyze the evolution of individual rhythmic behaviors over the course of 
the task.  
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Figure 2. 2. Analysis pipeline. The procedure is here presented as applied to the timeseries generated by the 
metronomes’ onsets, showing dyadic behavior under the ideal condition of perfect compliance with the task. A) 
Starting from discrete onsets, B) we interpolated each timeseries with a sine function to model the behavior as a 
system of coupled oscillators (Ole Adrian Heggli et al., 2019) and C) separately embed them in their respective 
phase-spaces for JRPs computation (Marwan et al., 2007). From the representation of one full cycle of the 
metronomes’ behavior, it is evident how the two oscillators smoothly de-phase and get back in-phase at the end 
of the cycle. D) JRPs were computed of each individual cycle and E) summed up, returning a 2-D matrix of the 
density of recurrence points over the trial structure. Finally, by looping over the column and summing all the rows 
of the matrix, F) we compressed the representation into a 1-D timeseries of the total count of recurrences over 
the cycle structure. The presence of diagonal lines dominating the JRPs is exactly the configuration expected by a 
deterministic system (Marwan et al., 2007), and when compressed in the timeseries format result in a flat 
horizontal line with small periodic fluctuations (due to the down-sampling performed on the sinewaves prior to 
embedding, which was necessary to make JRPs calculations computationally feasible). Applying the pipeline to 
human dyads allowed us to map the local variations of their coupling strength over the expected relative phase, 
resulting in the picture of the ‘attractor landscape’ (Tuller & Kelso, 1989). 
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Figure 2. 3. Recurrence score over average cycle. The sum of 10 JRPs from Visual Coupling and Visual Control 
conditions are compressed to a 1-D recurrence score timeseries. It is evident how visual coupling modulates the 
density of recurrence point and its distribution over the average cycle in this representative dyad (#5). Compared 
to the control condition, the recurrence score was higher on average and exhibited local maxima at the extremities 
of the cycle (i.e., in proximity of the in-phase attractor point). 
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Results 

Growth curve analysis (Mirman, 2017) was used to analyze the evolution of recurrence 
score over the course of the expected relative phase between partners (i.e., from 0 to 2π). 
The curves were calculated as the average of the 10 consecutive metronomes cycles in 
each experimental condition, and modeled with 2nd order orthogonal polynomials and 
fixed effects of Coupling and Modality on the polynomial terms. The uncoupled (control) 
conditions were treated as a baseline for contrasting the levels of the Coupling factor, and 
the audio conditions were treated as a baseline for the Modality factor.  

In the context of orthogonal polynomials, a flat line can be considered a pure intercept 
and a ‘zero-order’ polynomial, in the sense that it exhibits zero changes in any direction. 
If the recurrence score was time-invariant, it would appear as a flat line indicating 
complete dominance of the competition process between rhythmic units, which would 
pursue their individual intended rhythms. On the other hand, significant changes of 
direction would indicate that the interaction is systematically modulated by the temporal 
structure of the task: around attractor points, the cooperation process would take over 
and the rhythmic units would be attracted towards the coupling rhythm. Figure 2.4 shows 
how orthogonal polynomials are suited for modelling local variations of the response 
variable around attractor points.  

Orthogonal polynomials in the model were limited to the 2nd order: based on our 
hypotheses, we expected quadratic and quartic terms to capture the effects of in-phase 
and anti-phase attractor points. However, following data inspection and analysis of 
residuals, we concluded that the quadratic term alone was enough to capture the relevant 
effect of our experimental manipulation. Figure 2.5 shows the data with descriptive 
statistics across experimental conditions, and a comparison between 2nd order and 4th 
order models. Arguably, the better fit of the quartic term comes with a major cost in terms 
of model parsimony and interpretation. Our model also included random effects of Dyads 
on all polynomial terms, and their interactions with the factors: the random effects 
structure was maximized in order to minimize false alarm rates without substantial loss of 
power (Barr, Levy, Scheepers, & Tily, 2013).  

As expected, we found a significant main effect of Coupling (Estimate = 42.809, SE = 
18.142, p = 0.018) indicating an overall increase of the recurrence score in presence of 
informational coupling as compared to the uncoupled control conditions, independently 
from the sensory modality. We also report a significant interaction effect of Coupling and 
Modality on the orthogonal polynomial terms of Time (Linear: Estimate = -84.579, SE = 
30.867, p = 0.006; Quadratic: Estimate = 190.320, SE = 36.973, p < 0.001), meaning that 
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the parameter estimates in coupled conditions significantly differ across visual and 
auditory modalities.  Given the observed major variability in the Auditory level and 
following inspection of the residuals, we fitted the same model on the natural log-
transformed response variable for it provided a considerably better fit, and still found 
significant main effect of Coupling (Estimate = 0.237, SE = 0.117, p = 0.042) and interaction 
effects on the polynomial terms of Time (Linear: Estimate = -0.534, SE = 0.222, p = 0.016; 
Quadratic: Estimate = 1.257, SE = 0.299, p < 0.001). Table 2.1 shows the fixed effects 
parameter estimates and their standard errors for log-transformed recurrence score, 
along with p-values estimated using the normal approximation for the t-values. 

The same model was then fitted to the phase error of the individual participants. The 
response variable was computed as the absolute phase difference between the finger-
tapping and the metronomes timeseries, to quantify individual synchronization behavior. 
We found a significant main effect of Modality (Estimate = -0.230, SE = 0.080, p = 0.004), 
indicating that the assignment to visual metronomes resulted in higher phase error. 
Furthermore, the quasi-significant main effect of Coupling (Estimate = 0.156, SE = 0.080, 
p = 0.051) confirmed that informational coupling with the partner negatively affected the 
synchronization with the assigned metronome. When looking at the evolution of the 
phase error over time, the interaction effect of Coupling and Modality on the quadratic 
term of Time (Estimate = 1.058, SE = 0.373, p = 0.004) revealed that the temporal profile 
across conditions is coherent with the one observed for the recurrence score (see Figure 
2.6).  

In the context of growth curve analysis (Mirman, 2017), the parameter estimates provide 
a measure of effect size of straightforward interpretation for linear and non-linear changes 
over time as long as the order is not too high: above the 4th order, results become hardly 
interpretable and the risk of over-fitting the data increases. With the interaction effect of 
Coupling and Modality factors on the polynomial terms, we could quantify modality-
specific effects of informational coupling on the evolution of the recurrence score and the 
individual synchronization performances. The results strongly support our predictions of 
spontaneous dyadic entrainment in presence of informational coupling and, crucially, 
show that its temporal dynamics are modality-dependent. 
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 Recurrence score (N = 14) 
Predictors Estimates SE p 
    
Time -0.037 0.113 0.739 

 
Time2 -0.360 * 0.150 0.017 

 
Modality 0.155 0.117 0.184 

 
Coupling 0.237 * 0.117 0.042 

 
Time:Modality -0.021 0.157 0.893 

 
Time2:Modality 0.269 0.212 0.202 

 
Time:Coupling 0.011 0.157 0.942 

 
Time2:Coupling 0.055 0.212 0.793 

 
Modality:Coupling 0.118 0.165 0.475 

 
Time:Modality:Coupling -0.534 * 0.222 0.016 

 
Time2:Modality:Coupling 1.257 *** 0.299 < 0.001 
    

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

Table 2. 1. 1. Model's summary (dyadic behavior). All the significant effects are marked with an asterisk, and the 
associated p-values are highlighted in bold. We reported a significant main effect of Modality and significant 3-
way interactions with linear and quadratic functions of Time. In the framework of orthogonal polynomials, 
coefficient estimates represent a measure of effect size (Mirman, 2017): the intercept represents the average 
increase in the response variable contrasted to the baseline (i.e., the Uncoupled level), the slope of the linear term 
represents the change in the response variable per unit of time, and the quadratic term represents the steepness 
of the parabolic inflection. For the recurrence score, the natural exponential of the coefficient estimates should 
be used for interpretation purposes, given that the response variable was transformed to the log-scale. The 
significant correlation with the quadratic function of time was not discussed in the text, for it does not have 
relevance in the context of the experimental design. 
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 Phase error (N = 28) 
Predictors Estimates SE p 
    
Time -0.177 0.165 0.283 

 
Time2 -0.172 0.190 0.364 

 
Modality -0.230 ** 0.080 0.004 

 
Coupling 0.156  0.080 0.051 

 
Time:Modality 0.138 0.218 0.526 

 
Time2:Modality 0.027 0.264 0.917 

 
Time:Coupling 0.293 0.218 0.179 

 
Time2:Coupling 0.191 0.264 0.467 

 
Modality:Coupling 0.183 0.113 0.106 

 
Time:Modality:Coupling -0.404  0.309 0.190 

 
Time2:Modality:Coupling 1.058 ** 0.373 0.004 
    

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

Table 2. 1. 2. Model's summary (individual behavior) 
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Figure 2. 4. Orthogonal polynomials. The time-varying dimension of a response variable over the metronomes 
cycle can be modelled with higher-order polynomials. In our model, intercepts correspond to the overall average 
of the recurrence score: the main effects of categorical predictors indicate global differences across experimental 
conditions independently from the temporal profile of the response variable. On the other hand, effects of 
categorical predictors on the polynomial terms indicate the local effect of attractor points on the x-axis. For the 
linear component (1st order), the parameter estimate corresponds to the slope of the line; for the quadratic 
component (2nd order), it corresponds to the parabolic curvature; for the cubic and quartic components (3rd and 
4th order), it corresponds to the sharpness of the peaks on the inflexion points. The order of the polynomial is 
ideally chosen based on hypothesis and on the nature of the data, should be confirmed by the empirical data, and 
should be allow a straightforward interpretation of the effects (Mirman, 2017). In our case, orders from 2 to 4 
seem suited candidates for modelling different possible attractor landscapes, given the symmetric measure of the 
cycle and inflection points around in-phase and anti-phase regions. A full model based on orthogonal polynomials 
includes all terms up to the chosen order.  
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Figure 2. 5. Coupling strength as a function of the attractor landscape. A) Recurrence score (on the log-scale) over 
the average of 10 cycles, for 14 dyads (colored dots). Grand-average and error bars (standard error of the mean, 
SEM) are represented in black. The reader can visually appreciate the consistency of the “seagull-shaped” pattern 
in condition of visual coupling and the flat line in the respective control condition. The condition of auditory 
coupling shows a recurrence score higher on average but no clear pattern over the average cycle, and overall 
higher variability. B) Recurrence score predicted by our 2nd order polynomial model. The inflection of the parabolic 
term and the negative slope of the linear term successfully capture the influence of the in-phase attractor points 
in the visually coupled condition. Arguably, this is the most parsimonious model for our data in the framework of 
growth curve analysis (Mirman, 2017). C) Recurrence score predicted by our 4th order polynomial model. The 
quartic fit manages to capture more fine-grained modulations, particularly the local maxima on the inflection 
points at the extremes of the cycle. The profile recalls the typical ‘seagull-effect’ originally reported in (Tuller & 
Kelso, 1989) and discussed in (J. A. S. Kelso, 1995) in the context of bimanual coordination dynamics. However, for 
the sake of interpretation of parameter estimates, we opted for the simplest possible model: given the absence 
of a local maximum on the anti-phase point, a single parabolic inflection point was sufficient to explain the effect 
of visual coupling. D) Within-dyads comparison of the recurrence score over the average trial, across experimental 
conditions. Dots represent the empirical data, whereas continuous lines represent the full model (up to the 2nd 
order polynomial) fitted to the data. 
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Figure 2. 6. Individual synchronization as a function of the attractor landscape. A) Phase error over the average of 
10 cycles, for 28 participants (colored dots). Grand-average and error bars (SEM) are represented in black. The 
reader can visually appreciate how individual rhythmic behaviors track the course of the recurrence score, 
supporting the idea of a dynamic balance between cooperation and competition processes. As the coupling 
between partners dominates the interaction, the magnitude of the phase error increases accordingly. B) Phase 
error predicted by the 2nd order polynomial model. The "seagull-shaped" pattern observed in the visually coupled 
condition could be well modelled by the inflection of the parabolic term alone. Differently from the recurrence 
score, phase error exhibited a symmetric profile without significant interactions with the linear term.  
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Discussion 

The present study investigated the dynamics of dyadic entrainment, and more specifically 
how they depend on the sensory modality mediating informational coupling. An 
experimental paradigm was designed to dynamically manipulate the expected relative-
phase between participants, while informational coupling was manipulated in visual and 
auditory modalities across conditions. At the global level, we wanted to prove that when 
intended and coupling rhythms are at odds, a spontaneous co-regulation of timing occurs 
within the dyad at the expenses of the individual intended rhythms. At the local level, we 
wanted to infer the configuration of a dyadic basin of attraction, by modelling the dyadic 
cooperation process around attractor points (J. A. S. Kelso, 1995). Ultimately, it was 
possible to evidence a crucial modality-dependency of dyadic entrainment. 

In the first place, we reported that the mere presence of informational coupling led to 
spontaneous entrainment in dyads engaged in a rhythmic task. As long as two partners 
perceived each other, their rhythms were ‘attracted’ towards each other. The effect was 
quantified as a significant increase of the average recurrence score, compared to the 
baseline provided by the de-coupled conditions. Remarkably, such manifestation of self-
organizing behavior (J. A. S. Kelso, 1995; Tognoli et al., 2020) emerged in the context of a 
task where subjects were explicitly instructed to ignore each other’s actions, pursuing 
independent uncoupled behaviors cued by their own reference. Even though the 
observation of spontaneous dyadic entrainment was reported in self-paced (Konvalinka et 
al., 2010; Lorås, Aune, Ingvaldsen, & Pedersen, 2019), cued (Kimura, Ogata, & Miyake, 
2020; Okano, Shinya, & Kudo, 2017) and joint improvisation tasks (Noy, Dekel, & Alon, 
2011; Noy, Levit-Binun, & Golland, 2015; Varlet, Nozaradan, Nijhuis, & Keller, 2020), our 
procedure explicitly implemented rhythmic incongruency to investigate the competition-
cooperation dynamic balance latent to the system’s dynamics (Scott Kelso et al., 2006). 
When competition prevails, rhythmic units manage to keep the assigned (intended) 
rhythm, whereas when cooperation takes over, rhythmic units undergo a (spontaneous) 
co-regulation of timing and move together on a collective level of coordinated behavior. 
Overall, both visual and auditory coupling led to spontaneous dyadic entrainment despite 
the instruction of synchronizing with the assigned metronome. Moreover, the shift 
towards a cooperation process occurred at the expenses of the competing individual 
behaviors, as indicated by the significant increase of the average phase error in coupled 
conditions. 

Beyond a global measure of coupling, the continuous de-phasing implemented in the 
drifting metronomes paradigm allowed us to quantify local variations of recurrence score 
as a function of the expected relative phase between partners. The balance between 



Chapter 2 

 53 

cooperation and competition processes is expected to be dynamic, in the sense that it may 
vary over time and is constrained by the intrinsic dynamics of the system. Dyadic 
entrainment was expected to occur more strongly and more consistently around attractor 
regions, located around the in-phase and anti-phase points of the metronomes’ cycles 
(Haken et al., 1985). With our approach, we achieved to return an empirical attractor 
landscape (Tuller & Kelso, 1989) and to contrast it across conditions of visual and auditory 
coupling. Our findings strongly point towards a modality-dependency of dyadic 
entrainment (see Figure 2.5), which in turn is reflected in the individual synchronization 
with the metronomes (see Figure 2.6). The interaction effect of Coupling and Modality on 
the linear and quadratic terms of Time statistically confirms that the temporal modulation 
of the recurrence score is an exclusive property of visually-mediated coupling, with a 
remarkable consistency across dyads. In such condition, the recurrence score exhibits 
maximum values around the in-phase point at the start of the metronomes cycle, 
gradually decreases as the dyad leaves the attractor zone, reaches its minimum passed 
the anti-phase point, and finally increases towards maximum values as it enters the in-
phase zone at the end of the cycle. On the other hand, the individual phase error exhibits 
a more symmetrical parabolic modulation, with only interaction on the quadratic term of 
Time reaching significance.  

Selectively for the recurrence score, we report here an effect of directionality in the 
visually coupled condition: dyads slowly de-couple as they leave the in-phase point, 
whereas they couple more rapidly as they approach the same point. The negative slope of 
the linear term indicates that dyads tend to be more coupled in the first portion of the 
cycle, namely before passing the anti-phase point. The observation is suggestive of a 
hysteresis effect, which characterizes transitions from one attractor to another in 
dynamical systems (J. A. S. Kelso, 1995). In interlimb and interpersonal coordination, non-
linear transitions from anti-phase to in-phase coordinative modes are typically observed 
as the system is pushed towards instability (J. A. S. Kelso, Scholz, & Schöner, 1986; R. C. 
Schmidt et al., 1990; R. C. Schmidt & O’Brien, 1997). This can be experimentally induced 
in an experimental setting by increasing the frequency of the rhythmic units as control 
parameter. In our paradigm, we could appreciate that increasing the metronomes’ relative 
phase away from the in-phase point, the attractor exerted a long-lasting ‘pull-back’ effect. 
This was followed by a more abrupt ‘push-forward’ when transitioning over the anti-phase 
point, as the expected relative phase decreased. Even though the metronomes’ 
frequencies were not manipulated, their continuous de-phasing resulted in repeated 
transitions from in-phase to anti-phase regions and vice versa, as the dyad explored the 
attractor landscape.   
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In condition of auditory coupling, the recurrence score did not exhibit any significant 
variation over time: the measure was locally independent from the proximity of attractor 
points. Nevertheless, we still observed a significant global increase of recurrences 
compared to the baseline. Previous evidence shows that phase shifts in auditory 
sequences elicit a phase-correction response in participants instructed to tap in synchrony 
to isochronous sequence of flashing lights (Bruno H. Repp & Penel, 2002). Auditory-driven 
phase corrections are prone to occur even when shifts are highly irregular (Kato & Konishi, 
2006) and at different relative phases values, with overall high interindividual variability 
(Bruno H. Repp & Penel, 2004). Similarly, in the context of our paradigm, sounds generated 
by the partner exerted attraction on the self-generated taps over the whole course of the 
metronomes’ cycle, regardless of the expected relative-phase value.  

Finally, both control conditions resulted in a flat horizontal line below the average of the 
respective coupled conditions, as expected. It is worth noting the higher variability in 
Audio conditions, arguably due to the task of synchronizing to visual metronomes. From 
lower recurrence score in the control condition, we can conclude that dyads performed 
globally worse in synchronizing to visual cues as compared to auditory cues. This is in line 
with previous evidence on modality-dependent synchronization skills (Comstock et al., 
2018; Iversen, Patel, Nicodemus, & Emmorey, 2015), and backed by our concomitant 
observation of higher phase errors when visual metronomes were presented. Taken 
together, our findings support our hypothesis of modality-dependent dynamics, 
suggesting that auditorily-mediated entrainment is considerably less sensitive to the basin 
of attraction when compared to its visual counterpart. 

Although interpersonal coordination can be described at the collective level as a self-
organizing process (J. A. S. Kelso, 1995; Tognoli et al., 2020), humans ultimately entrain to 
each other via mutual adaptation of individual action-perception loops (Ole A. Heggli et 
al., 2019; Konvalinka et al., 2010). Therefore, an exhaustive account for dyadic 
entrainment should be capable of bridging the two levels, considering how coordination 
dynamics depend on the processing of information available in the interaction. Such link 
is foundational for translating dynamical control principles from intra- to inter-personal 
levels (R. C. Schmidt et al., 1990). Recently, predictive coding (K. Friston, 2005, 2010; K. 
Friston, Mattout, & Kilner, 2011) was put forward as a plausible theoretical account for 
coordination dynamics in dyadic behavior (Koban, Ramamoorthy, & Konvalinka, 2019). 
The theory states that the brain is constantly engaged in an optimization process based 
on Bayesian inference: information sampled from the environment is compared to prior 
evidence, and the optimization consists of minimizing prediction errors. In the context of 
interpersonal coordination, such a putative mechanism could underpin the overt 
manifestations of dyadic entrainment by engaging the action systems of the rhythmic 
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units involved. Let us consider the prediction error as the phase difference between 
executed and observed movements: as both units minimize the mismatch between the 
representations of observed and own motor behavior, the dyadic system tends towards a 
collective minimization of free energy in a stable attractor state (Koban et al., 2019). Such 
interpretation of the dyadic attractor is supported by our results in the context of visually-
mediated coupling: as the relative phase between partners increases, the cooperation 
process between rhythmic units loses strength in favor of competition. In other terms, the 
tendency of the partners to lock in a stable coordinative state depends on the energy 
required to correct for the prediction error. As the error increases, the correction becomes 
more effortful and it becomes easier for the units to pursue independent behaviors. 

Crucially, such explanation does not hold for auditorily-mediated coupling. As distinct 
sensory systems have their unique interface with motor and timing systems (Comstock et 
al., 2018; Hove, Fairhurst, Kotz, & Keller, 2013; Hove, Iversen, Zhang, & Repp, 2013), it is 
necessary to interpret the results in light of individual information processing. There is 
arguably a crucial difference in the nature of the perceptual information available to the 
partners across different modalities. When the coupling is visually mediated, a stream of 
kinematic information is continuously sampled from the partner's actions (James M. 
Kilner, Friston, & Frith, 2007), such that the predictive models can be constantly updated 
at every stage of movement execution. On the other hand, in case of auditory coupling 
the prediction of the partner's tap is solely based on temporal information about the 
previous taps, since partners do not have online access to the reciprocal kinematic 
information. In such condition, the cooperation process still dominates the interaction but 
no consistent pattern emerges in terms of dynamics as quantified by our method. We 
propose that the availability of kinematic information through informational coupling is a 
crucial discriminant that might explain the observed modality-dependence of dyadic 
entrainment. The idea that prior evidence is built differently across modalities depending 
on availability of sensory information is consistent with a predictive account for dyadic 
entrainment.  

A final question arises spontaneous: how would the dyad behave if kinematic information 
was embedded in a sound envelope, and conveyed to the partners via the auditory 
channel? One limitation of the current work is that we cannot conclude whether dyadic 
entrainment is modality-dependent in the strict sense or rather dependent on availability 
of kinematic information. Given the central role attributed to kinematics in predictive 
accounts for action perception (James M. Kilner et al., 2007), it is of particular interest to 
investigate whether continuous sonification of movement parameters (Maes, Buhmann, 
& Leman, 2016) would support the same dynamics observed in presence of visual 
coupling. Previous work shows that presenting visual stimuli in a way that indicates 
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movement over time, e.g., apparent hand motion (Hove & Keller, 2010; Hove, Spivey, & 
Krumhansl, 2010) or a bouncing ball (Gan, Huang, Zhou, Qian, & Wu, 2015; Hove, Iversen, 
et al., 2013; Iversen et al., 2015), behavioral outcomes of predictive entrainment are 
improved by the continuous stream of information. We hypothesize that a movement 
sonification strategy based on this principle could translate the kinematic advantage into 
auditorily-mediated dyadic interactions, resembling the dynamics here described in 
condition of visual coupling.  

The findings and the questions raised from the present study might have relevant 
implications for optimizing interventions aimed at rehabilitating, teaching or training 
sensorimotor functions. Fundamental knowledge about dyadic interactions is what will 
ultimately inform such optimization. The evidence from the present study points at the 
advantages of the physical presence of a teacher (or a therapist, or a trainer) for guiding 
rhythmic movements, possibly integrating kinematic information via sonification 
strategies (Maes et al., 2016). 

In conclusion, we want to highlight that the drifting metronomes procedure is meant as a 
methodological contribution for the investigation of interpersonal coordination, in the 
hope that the scientific community can build upon it with new research questions and 
experimental designs. We point at its adoption with simultaneous dual-
electroencephalography recordings (Liu et al., 2018), computational simulations (Ole 
Adrian Heggli et al., 2019) and replication on pathological populations (Dermody et al., 
2016; Marsh et al., 2013; Varlet, Marin, Raffard, et al., 2012) as potential sources of insight 
into the fundamentals of dyadic interactions. 

 

Methods 

Participants. Twenty-eight right handed participants took part in the study (18 females, 
10 males; mean age = 29.07 years, standard deviation = 5.73 years). They were randomly 
paired in fourteen (N = 14) gender-matched dyads, in order to control for any gender bias 
in the interaction. None of them had history of neurological, major medical or psychiatric 
disorders. All of them declared not to be professional musicians upon recruitment, 
although some of them had musical experience. With the exception of one dyad, all 
participants declared not to know the assigned partner from before the experiment. The 
experiment was approved by the Ethics Committee of Ghent University (Faculty of Arts 
and Philosophy) and informed written consent was obtained from each participant. A 15€ 
coupon was given to all participants as economic compensation for their time.  
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Experimental apparatus and procedure. The two partners were sitting across the same 
table, facing each other. Chairs were provided with an armrest in order to exclude any 
tactile or proprioceptive coupling due to the table’s vibrations. Each partner was assigned 
to one pad and instructed to tap on it with the right index finger synchronizing with a 
metronome. As represented and described in Figure 2.1, the metronome was either an 
auditory cue or a flickering light, depending on the experimental condition. Each partner 
was cued with a different tempo (1.67Hz and 1.64Hz). Aligning the start of the two tracks, 
the relative phase between the metronomes started at 0º and steadily increased in regular 
steps of 5.6º. A full cycle took 39 seconds to be completed. 10 consecutive cycles were 
performed in each experimental condition. In conditions of informational coupling, 
participants were instructed to ignore the partner and tap along with the assigned 
metronome. 

A M-Audio M-Track 8 soundcard was used to route independent audio channels to each 
participant via in-ear plugs. Ableton Live 10 was adopted as main interface for stimuli 
presentation, to sonify the participants’ finger-taps and to route them in real-time. The 
same MIDI tracks were used to control the metronomes across conditions, by either 
triggering an audio sample or a flickering LED. Volume was adapted to every participant 
before the start of the experiment, and pink noise was regulated up to the point of 
suppressing any sound other than the auditory stimulation presented via Ableton. 
Participants were monitored on-line by means of a USB-camera, to make sure they 
complied with the instructions. No dyad was excluded from the analyses.  

A Teensy 3.2 microcontroller was used as serial/MIDI hub in the setup. It was used to 
detect tapping onsets with 1 ms resolution, based on the analog input from strain gauge 
pressure sensors installed inside the pads. Every time a metronome onset was presented 
to a participant, a MIDI message was sent to the Teensy device to log the metronomes 
timeseries and to control the voltage of the LEDs when needed. 

Simultaneous EEG recordings were performed from both partners of the dyads during the 
whole experiment, but such data were not presented in the present paper. Additional data 
were collected prior and during the experiment. Prior to the experiment, demographical 
data were collected; the Edinburgh inventory (Oldfield, 1971) was administered to assess 
the right handedness of the participants; the Interpersonal Reactivity Index (IRI) was 
administered as self-report of empathy and its subscales (Davis & Others, 1980); the 
preferred spontaneous tempo was calculated via 30 seconds of self-paced finger-tapping 
on a dedicated smartphone app (www.beatsperminuteonline.com). During the breaks 
between experimental conditions, all participants provided subjective self-reports on 
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different aspects of the task by expressing agreement on a scale from 1 (“Completely 
disagree”) to 7 (“Completely agree”) with a custom-made battery of 11 Likert items. Data 
collected from the questionnaires were not presented in the present paper. 

 

Data Analysis  

Pre-processing. Our raw data consisted of timestamps logged from the Teensy controller 
with 1ms resolution for 10 consecutive metronome cycles (390 seconds in total), and an 
associated ID for each partner and each metronome. As only form of cleaning, we removed 
onsets occurring <350ms from the previous one: false positives could occasionally be 
recorded when a participant pushed the pad for too long or accidentally laid the hand on 
it. The cleaned timeseries were then interpolated with a sine function at 1kHz sampling 
rate, providing an estimate of the oscillators’ positions on its cycle with a temporal 
resolution of 1ms. Conceptually, the choice of sinusoidal interpolation was supported by 
recent work on modelling of systems of coupled oscillators in joint finger-tapping studies 
(Ole Adrian Heggli et al., 2019). Operationally, it guaranteed that all timeseries match in 
size without any loss of data, which was a requirement for the next steps of our analysis. 
Timeseries were finally down sampled by a factor of 40 to make the computation of RPs 
computationally feasible. Different orders of down sampling were tested to make sure 
that the results do not depend on this choice. 

 

Phase-space reconstruction. The optimal parameters for the time-delayed embedding 
were computed for each participant, for the time course of each single metronomes cycle 
in all experimental conditions. The resulting mean value across all participants was applied 
to all individual instances. The reason for this approach is that in order to compare the 
rate of recurrences across conditions at the group level, the embedding procedure must 
be consistent across participants (e.g., see Afsar, Tirnakli, & Marwan, 2018, for an example 
of parameter selections in a factorial design). We first selected the delay tau of the 
timeseries (τ) as the first local minimum mutual information index (Fraser & Swinney, 
1986) as a function of delay. This approach minimized the timeseries self-similarity, 
extracting nearly orthogonal components and preventing the attractor from folding over 
itself (Bradley & Kantz, 2015). The mean value of τ resulted to be 7. Next, we determined 
the number of embedding dimensions m with the method of false nearest neighbor 
(Rulkov, Sushchik, Tsimring, & Abarbanel, 1995): we progressively unfolded the time series 
into higher dimensions until the data points did not overlap spuriously, finding a mean m 
= 3. Finally, in order to determine a maximum threshold for counting two neighboring 
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points as recurrent, we selected a radius of 10% of the maximal phase-space diameter 
(Marwan et al., 2007).  

 

Joint Recurrence Plots (JRPs). Individual recurrence plots were computed as follows: 

 

𝑅1,:(𝜀) = 	Θ(𝜀 −	E𝑥1 − 	𝑥:E) 

 

where ε is the neighborhood threshold, ‖ ⋅ ‖ is the Euclidean norm, and Θ is the Heaviside 
step function. A square matrix was returned from each shadow-manifold in the phase-
space, containing 1s for all the instances where the distance ‖ · ‖ was smaller than the 
threshold ε, and 0s for the remaining elements. The distance was computed with the 
method of maximum norm. A joint recurrence plot (JRP) was computed for each dyad by 
overlapping the individual JRPs of the partners pair-wise, and keeping as 1 only the 
instances where both plots contained a recurrence. The computation of the JRPs was 
carried out with the crp toolbox for Matlab (Marwan et al., 2007). 

The 10 trials (i.e., the metronome cycles) of each experimental condition were aggregated 
by summing the respective JRPs such that every cell of the 2-D matrix contained the count 
of times that a recurrence occured in the same point of the cycle. Finally, we looped over 
the columns of the matrix summing all the counts contained in the rows, obtaining a 1-D 
vector recurrence scores which represented a density measure of the instances of coupled 
behavior over the course of the cycle. The scale of the recurrence score depends on the 
size of the JRPs and in turn on the embedding procedure, which maked it necessary to set 
the same parameters for the whole sample. In order to stabilize our response variable and 
avoid over-sampling in view of our statistical model, the resulting timeseries were divided 
in 64 segments averaging the recurrence score. For the division, we chose the intervals 
determined by the steps of the slower metronome, as they provided an intrinsic regular 
subdivision of the experimental runs. All the steps presented so far were carried out in 
Matlab (see Figure 2.2, for a schematic representation). Our approach was preferred over 
the “windowed” version for JRQA, for the latter would low-pass filter our timeseries and 
make it impossible to interpret our results. The resulting phase-shift would be dependent 
on the choice of the window size, hence not reliable for detecting attractor points over 
the landscape. 
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Individual rhythmic behavior. For every participant, phase angle timeseries were 
computed by linearly interpolating the finger-tapping onsets as a rampwave at 1kHz 
sampling rate, and scaling it by 2π. The same procedure was repeated for the 
metronomes’ onsets. Phase error was calculated as the absolute difference between the 
participants’ and the assigned metronomes’ timeseries, wrapped to π and averaged within 
64 bins like the recurrence score timeseries. This measure was used as response variable 
to assess the individual rhythmic behavior of the participants, complementing our findings 
at the level of collective behavior.  

 

Statistical models. The recurrence score was used as response variable in a mixed-effects 
model with Modality and Coupling as factors, and Time as a continuous predictor 
expressed with the indexes of the metronome’s steps (from 1 to 64). Given the non-linear 
time course observed in the 'Visual Coupling' condition, we adopted the method of 
orthogonal polynomials (Mirman, 2017) including linear and quadratic functions of Time 
into our model (see Figure 2.5). Dyads and interactions between Dyads and factors were 
modelled as random effects (Barr et al., 2013) to account for the individual variability in 
synchronization skills and individual susceptibility to coupling across the experimental 
manipulations. The formula of the full model (up to the 2nd polynomial order) is the 
following: 

 

𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	~	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O) ∗ 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝐷𝑦𝑎𝑑)
+	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝐷𝑦𝑎𝑑:𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦: 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔)	 

 

The same model was fitted to the phase error of individual participants. Here, Subjects 
and Dyads were modelled as random effects. 

 

𝐸𝑟𝑟𝑜𝑟	~	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O) ∗ 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡: 𝐷𝑦𝑎𝑑)
+	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡: 𝐷𝑦𝑎𝑑:𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦: 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔)	 

 

Statistical analyses were carried out in R (version 4.0.3); model fitting was performed with 
the lme4 package (Bates, Mächler, Bolker, & Walker, 2014). All methods were carried out 
in accordance with relevant guidelines and regulations, based on the references provided 
in the respective paragraphs.  
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Introduction 

In order to move and interact with their environments, humans have to process and 
integrate sensory inputs from different streams of information (Spence, 2011). When the 
source is represented by another human, the information encoded in their movement has 
the potential to guide mutual adaptation of behaviors and establish minimal forms of 
interaction (Phillips-Silver et al., 2010). It is self-evident that the processes of accessing 
and decoding information from perceived rhythmic behaviors differ across sensory 
modalities. When we listen to someone walking, clapping or drumming, we typically hear 
the footstep, the clap or the hit as discrete perceptual outcomes. In the auditory domain, 
this class of movements tend to be characterized by naturally mute phases (A. O. 
Effenberg, 2005). We are ‘blind’ to the moment-by-moment course of their execution… 
until we look at how it evolves over time. Once visual contact is established, visual coupling 
provides individuals with continuous access to kinematic and geometric properties of an 
action (R. C. Schmidt et al., 1990), defined in more general terms as its informational 
observables (Kugler & Turvey, 2015). 

Information is foundational to feed the action-perception loops underlying dyadic 
interactions (Tognoli et al., 2020), from the most basic level of spontaneous entrainment 
to more complex forms of planned joint action (Knoblich & Sebanz, 2008). Within any 
biological system across different scales, informational coupling is the minimal condition 
for individual components to behave as coordinated units. In the case of a dyadic system 
constituted by two coupled individuals having independent nervous systems, coupling is 
necessarily based on perception via one or multiple sensory channels, which sets the stage 
for the emergence of a dyadic control structure, formed over the informational structure 
of the system (Kugler & Turvey, 2015; R. C. Schmidt et al., 1990). In other words, 
perception enables the coordination between two individuals, and the dynamic 
configuration of emerging behavioral patterns depends on the specifics of the perceptual 
information available in the interaction. Understanding how humans access such 
information, and how they guide their actions accordingly, is paramount for an ecological 
perspective on action and perception (Gibson, 2014).  

In a previous study, we reported radically different attractor dynamics in dyads engaged 
in a joint finger-tapping task, depending on whether participants could see (visual 
coupling) or hear (auditory coupling) the actions of their partner (Rosso, Maes, et al., 
2021). An attractor is the dynamical entity underlying entrainment, a basic control 
structure (R. C. Schmidt et al., 1990) which organizes the system’s behavior in coordinated 
states. In this and other works (Rosso, Heggli, Maes, Vuust, & Leman, 2022; Rosso, Maes, 
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et al., 2021), the drifting metronomes paradigm for dyadic entrainment was used to drive 
the dyad through a space of coordinative states and detect the presence of attractor 
points based on the relative-phase between the partners’ finger-taps (from 0 to 2π 
radians). Despite the fact that dyadic entrainment occurred spontaneously in both sensory 
modalities, only in the case of visual coupling did we observe emergent coordination 
patterns consistently shaped by an attractor landscape (Tuller & Kelso, 1989; Yamanishi et 
al., 1980). More precisely, over the space explored by the drifting metronomes, the in-
phase point (0,2π) stabilized the interaction in recurrent synchronized states, promoting 
a cooperation process in the dyadic system. The anti-phase point (π) facilitated instead 
decoupled independent trajectories, promoting a competition process. In the case of 
auditory coupling, however, the cooperation process was dominant but spread over the 
whole attractor landscape, with no significant influence of clear attractor points, and 
higher inter-dyad variability in terms of a global measure of entrainment.  

Although our findings led us to conclude that attractor dynamics depend on the sensory 
modality mediating the coupling, we put forward the idea that the differences would 
attenuate or disappear if we could induce cross-modal correspondence between streams 
of information across visual and auditory couplings (Gallace & Spence, 2006; Marks, 2004; 
Parise & Spence, 2009; Spence, 2011), therefore balancing the access to movement 
kinematics. The observation that in everyday environments visual rhythms tend to be 
continuous and auditory rhythms tend to be discrete (Varlet, Marin, Issartel, Schmidt, & 
Bardy, 2012) biased the way we implemented the sonification of participants’ finger-taps 
in our previous study, so that they were presented to the partner as discrete sounds at 
the moment of impact (Rosso, Maes, et al., 2021). Conversely, visual coupling was 
naturally continuous, and therefore not directly comparable to the auditory counterpart 
in terms of stimulus property. This limitation made it impossible to disentangle the 
contribution the physical property of the stimulus (continuous/discrete) from the 
perceptual system accessing such information (visual/auditory). We argue that these 
constitute two distinct dimensions of informational coupling, which require a balanced 
factorial design to be independently manipulated (see Figure 3.1).  

While under ecological conditions the visual system exhibits preferential access to the 
observables of an action, continuously available in the optical structures it generates (R. 
C. Schmidt et al., 1990), sonification can be used as a means to convey kinematic 
information in the auditory domain (Agres et al., 2021; Bevilacqua et al., 2016; Alfred O. 
Effenberg, Fehse, Schmitz, Krueger, & Mechling, 2016). Auditorily coupling can be 
therefore artificially augmented by expanding motion acoustics to the naturally mute 
phases of movement (A. O. Effenberg, 2005). For finger-tapping, this would imply filling 
the mute inter-tap intervals by mapping movement parameters such as velocity, 
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acceleration, or position, onto sonic variables such as pitch, amplitude, or spatial location. 
Auditory presentation of continuous rhythmic cues has been shown to affect movement 
control in sensorimotor synchronization tasks, better guiding online trajectory, enhancing 
control between endpoints, and improving consistency of motor timing. This same 
research suggests that sensorimotor synchronization is thought to be subserved by 
different processes, depending on whether the synchronizer has to internally self-time the 
intervals or can rely on extrinsic information (Rodger & Craig, 2011). When directly 
comparing coordination with auditory and visual environmental rhythms, differences tend 
to vanish when they are presented as continuous (Varlet, Marin, Issartel, et al., 2012).  

Translating these principles to the interpersonal domain, we expect to replicate for 
auditory coupling the same coordination patterns observed under visual coupling. 
Provided a 1:1 mapping of visuo-kinematic information onto a continuous sound (Alfred 
O. Effenberg & Schmitz, 2018), the actions of the other can be anchored to patterns of 
dynamic change conveyed by the sonification, such that the inter-tap intervals do not have 
to be explicitly computed (Maes, Giacofci, & Leman, 2015). Conversely, in a condition of 
visual coupling, we would expect that occluding the continuous kinematic trajectory of the 
finger-tapping would result in a breakdown of the coordination pattern, given that 
participants would lose the advantage characterizing visual modality (R. C. Schmidt et al., 
1990). We refer to this scenario, wherein the patterns are explained by the access to the 
physical properties of motion, as the ‘kinematic hypothesis’.  

Alternatively, we may observe a scenario wherein these are explained by sensory modality 
alone. Vision and audition evolved ontogenetically and phylogenetically with their 
specifics strategies for sampling environmental rhythms, and developed specific interface 
with motor timing system of the perceiver (Comstock et al., 2018). Being these two the 
main perceptual systems mediating informational coupling, we may expect that they are 
optimized for subserving different aspects of dyadic interactions. In this case, these 
differences would be reflected in different coordination dynamics across modalities, 
regardless of the continuous/discrete nature of the information available to the perceiver. 
We refer to this alternative scenario as the ‘modality-dependent hypothesis’.  

The aim of the present work is to answer the question of whether interpersonal 
coordination relies on a supramodal processing of kinematic information (‘kinematic 
hypothesis’) or whether it depends on processing specific to the sensory modality and its 
unique interface with the motor system (‘modality-dependent hypothesis’). To 
differentiate between these two scenarios, we carefully disentangled the contribution of 
the specific perceptual system processing the information from the physical properties of 
the information itself. Figure 3.1 provides a visual representation of the experimental 
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design and the results we would expect from the two hypotheses. Whilst these are 
presented as the main expected outcomes, the design leaves room for intermediate 
scenarios and interactions between the two dimensions. 

 

Results 

As described in (Rosso et al., 2022; Rosso, Maes, et al., 2021), we conducted joint 
recurrence quantification analysis (JRQA) (Marwan et al., 2007) to compute a relational 
measure quantifying the degree of temporal coordination between the partners 
throughout the joint finger-tapping task (Marsh et al., 2009). The resulting recurrence 
score yielded a time-varying measure of coupling strength, quantifying instances of 
coordinated behavior (Marwan et al., 2007). This was used as response variable in our 
statistical model (see ‘Methods – Statistical model’). The score's evolution over the drifting 
metronomes' cycle, which depicted an attractor landscape (Tuller & Kelso, 1989; 
Yamanishi et al., 1980), was modeled using growth curve analysis (Mirman, 2017). For 
each dyad, curves were calculated as the average of 10 metronomes' cycles from 0 to 2π 
in every experimental condition and modeled with 2nd order orthogonal polynomials of 
Time. The 2-level factors, Modality (Visual, Auditory) and Kinematics (Continuous, 
Discrete), were modeled as fixed effects. Not having uncoupled conditions in the 
experimental design, effects were assessed by directly contrasting coupled conditions 
across levels of Modality and Kinematics. Auditory and Discrete were chosen as baseline 
levels for statistical comparisons, respectively.  

Against our prediction, the findings provide robust evidence in favor of the ‘modality-
dependent hypothesis’, decisively refuting the ‘kinematic hypothesis’. This is confirmed by 
the significant interactions between Modality and the linear (Estimate = -1049.894, SE = 
339.775, p = 0.002) and quadratic (Estimate = 1230.757, SE = 470.396, p = 0.008) terms of 
Time. Taken together, the effects indicate that visually coupled conditions resulted in the 
same asymmetrical parabolic modulation reported in (Rosso et al., 2022; Rosso, Maes, et 
al., 2021). The linear term of the model captures the asymmetry of the parabola, whereas 
the quadratic term captures the depth of the modulation. This effect was irrespective of 
levels of Kinematics. Furthermore, we reported a main effect of Modality (Estimate = -
532.994, SE = 207.089, p = 0.010), indicating that auditory coupling resulted in higher 
recurrence overall, in spite of the absence of modulation over the attractor landscape. 
This effect holds irrespective of the levels of Kinematics. Crucially, the absence of any 
other effect indicates that discrete or continuous access to the partner’s movements do 
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not differentiate across the observed attractor dynamics, nor across overall levels of 
recurrence.  

Figure 3.2 clearly shows that the grand-average curves of the recurrence score tend to 
overlap within the same Modality, and are not differentiated based on Kinematics. 
Whereas in both Auditory conditions they fluctuate around a higher offset, in Visual 
conditions they form a valley with global minimum after the anti-phase midpoint. 
Although visual inspection may suggest that the modulation is less deep in condition of 
visual occlusion, the 3-way interaction between Modality, Kinematics and either 
polynomial terms are not statistically significant (linear: Estimate = 238.964, SE = 480.515, 
p = 0.619; quadratic: Estimate = 615.946, SE = 665.241, p = 0.354). 

Table 3.1 presents the parameter estimates from the fixed effects model, their standard 
errors, and the associated p-values, with reference to the recurrence score. In this 
analytical framework, parameter estimates offer a measure of effect size with 
straightforward interpretation for linear and non-linear changes over time. By examining 
the interaction effect of Modality and Kinematics on the polynomial terms of Time, we 
could quantify the specific impact of access to movement kinematics on the evolution of 
the recurrence score across sensory modalities. 
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Figure 3. 1. Experimental design and hypotheses. A) Experimental design. The study was designed in a Modality 
(Visual, Auditory) x Kinematics (Continuous, Discrete) factorial structure. Each participant was equipped with a 
pad for recording their finger-tapping responses, earbuds for presentation of auditory stimuli, and a glove with an 
infrared reflective marker on the fingertip to continuously track the movement. A modular wooden screen with 
adjustable sliding windows was employed to manipulate visual coupling across conditions, allowing for various 
configurations (the figure serves as a conceptual representation of the manipulations and does not reflect 1:1 the 
physical placement of the screen and the participants). In all conditions, participants were always exposed to the 
partner’s movements in one modality and paced by a metronome in the other modality. They were instructed to 
neglect the partner and focus on following their own metronome at all times. The design resulted in the following 
experimental conditions. 1. Visually Coupled – Continuous: participants tapped along with an auditory metronome, 
while looking at the partner’s hand tapping. The hand of the partner was fully visible, while the view of their own 
hand was hidden by a component of the screen. 2. Visually Coupled – Discrete: participants tapped along with an 
auditory metronome, while looking at the partner’s hand tapping. The hand of the partner was hidden by a sliding 
window, adjusted so that only the fingertip was visible at the time of impact. The view of their own hand was 
hidden by a component of the screen. 3. Auditorily Coupled – Continuous: participants tapped along with a 
flickering LED, while hearing the sonification of the partner’s tapping. The sonification consisted of a continuous 
tone, modulated in frequency by the distance between the fingertip and the pad. A discrete ‘tick’ sound was 
triggered at the time of impact. The view of their own hand was hidden by a component of the screen. 4. Auditorily 
Coupled – Discrete: participants tapped along with a flickering LED, while hearing the sonification of the partner’s 
tapping. The sonification consisted of a discrete ‘tick’ sound triggered at the time of impact. The view of their own 
hand was hidden by a component of the screen.  B) Kinematic Hypothesis. This figure illustrates the expected 
outcomes of the joint finger-tapping task based on the ‘kinematic hypothesis’, wherein the coordination patterns 
are explained by the access to physical properties of motion (Continuous/Discrete) rather than the sensory 
modality (Visual/Auditory) itself. The depicted curves are purely illustrative, representing the dyad's coupling 
strength as a function of the attractor landscape, drawing on results from (Rosso, Maes, et al., 2021). According 
to this hypothesis, auditory coupling with continuous rhythmic cues would yield coordination patterns similar to 
those observed under continuous visual coupling, exhibiting a modulation of the interaction throughout the 
drifting metronomes' cycle. Conversely, visual coupling with an occluded kinematic trajectory would result in a 
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breakdown of the observed coordination patterns. C) Modality-dependent Hypothesis. This figure illustrates the 
results predicted by the complementary ‘modality-dependent’ hypothesis, in which coordination patterns are 
determined by the sensory modality (Visual/Auditory) rather than the physical properties of motion 
(Continuous/Discrete). Under this hypothesis, coordination patterns would differ across modalities, regardless of 
the continuous access to the kinematics of the partner’s movements. Both figures B and C illustrate ideal scenarios 
entirely explained by main effects. Intermediate scenarios may emerge from interaction effects across the factors. 

 

Figure 3. 2. Attractor landscape. The time series depicted in the figure represent the evolution of the recurrence 
score as a function of the drifting metronomes' cycle across experimental conditions. The grand average was 
computed over the entire sample of dyads (N=19), with each dyad's time series calculated as the average of 10 
consecutive cycles. The vertical bars represent the standard error of the mean (SEM) for each phase bin. The 
measure is interpreted as a proxy for coupling strength between partners, and its variation over the drifting 
metronomes' cycle aims to provide an overview of the attractor landscape underlying the interaction. For 
illustration and interpretation purposes, the black line in the plot shows the same analysis performed on the two 
metronomes' time series. This serves as a ground truth in the context of the paradigm, providing the reference 
recurrence score expected by a deterministic, decoupled system such as two linearly dephasing metronomes. A 
horizontal line lingering at the global minimum represents the expected pattern for two partners perfectly 
synchronizing with their assigned metronome without influencing each other. Unlike previous studies (Rosso et 
al., 2022; Rosso, Maes, et al., 2021), the current experimental design does not include uncoupled conditions. 
Therefore, having the metronomes' collective behavior as a ground truth is essential for interpretation purposes. 
The black line exhibits a negligible artifact at the extremes, due to the omission of the first and the last onsets in 
the metronomes' time series. This artifact does not affect participants' behavior. The blue time series represent 
visually coupled conditions (1 and 2), where each participant tapped while seeing their partner's hand in 
continuous and discrete motion, respectively. Both exhibit parabolic modulation as a function of the distance 
from the in-phase pattern at the extremes of the metronomes' cycle, reaching a global minimum after the anti-
phase midpoint. These patterns replicate the pattern previously observed in continuous visual coupling 
conditions, notably extending it to discrete visual coupling. While the latter suggests weaker coupling and less 
parabolic modulation, the effect was not statistically significant. The red time series represent auditorily coupled 
conditions (3 and 4), where each participant tapped while hearing the continuous and discrete sonification of 

* Visual Continuous
o Visual Discrete
* Auditory Continuous
o Auditory Discrete

o Ground-truth

Attractor landscape
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their partner's finger motion, respectively. Neither exhibited significant modulation as a function of the 
metronomes' cycles, but both were, on average, significantly higher than their visual counterparts. The finding 
replicates what was previously observed in discrete auditory coupling conditions and extends it to the case of 
continuous sonification based on FM. Overall, the results show that auditory coupling resulted in a higher degree 
of recurrence score and thus stronger coupling in the dyads. Notably, visual coupling resulted in the modulation 
of the recurrence score as a function of the attractor landscape. We conclude that access to continuous kinematic 
information, as implemented in the present experimental setup, did not significantly influence attractor 
dynamics, strongly supporting their dependency on the sensory modality. 

 

 Recurrence score (N = 19) 

Predictors Estimate SE p 
 
(Intercept) 
 

 
2387.152 

 
168.387 

 
0.000 

Time -155.326 265.929 0.559 
 
Time2 

 
217.347 

 
398.003 

 
0.585 

 
Modality 

 
-532.994* 

 
207.089 

 
0.010 

 
Kinematics 

 
-75.791 

 
207.089 

 
0.714 

 
Time:Modality 

 
-1049.894** 

 
339.775 

 
0.002 

 
Time2:Modality 

 
1230.757** 

 
470.396 

 
0.008 

 
Time:Kinematics 

 
-63.972 

 
339.775 

 
0.851 

 
Time2:Kinematics 

 
138.860 

 
470.396 

 
0.767 

 
Modality: Kinematics 

 
257.607 

 
292.868 

 
0.379 

 
Time: Modality: Kinematics 

 
238.964 

 
480.515 

 
0.619 

 
Time2: Modality: Kinematics 

 
615.946 

 
665.241 

 
0.354 

    

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

Table 3. 1. Recurrence score. Orthogonal polynomials model summary.  
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Discussion 

In the present work, we investigated the influence of kinematic information exchange 
between individuals on the dynamics of interpersonal synchronization, when processed in 
visual and auditory modalities. Our aim was to explain previous findings demonstrating 
that attractor dynamics depend on the sensory modality mediating informational coupling 
(Rosso, Maes, et al., 2021). We hypothesized that the differences could be explained by 
the preferential access of visual modality to continuous kinematic information conveyed 
by the partner’s movement. Specifically, we predicted that differences in coordination 
patterns across modalities would cancel out, provided a reliable cross-modal match in the 
information available in the dyads. In order to test this hypothesis, we balanced the access 
to kinematics across modalities by augmenting information in the auditory domain via 
sonification and reducing it in the visual domain via occlusion. In doing so, we disentangled 
the contribution of the specific perceptual system processing information from the 
physical properties of the information itself.  

Contrary to our hypothesis, the results suggested a genuine modality-dependency of 
attractor dynamics. Specifically, we found that the attractor landscape remained invariant 
to the kinematic properties of the partner's movement. As shown in Figure 3.2, the same 
pattern reported in conditions of visual coupling in Rosso et al., 2022; Rosso, Maes, et al., 
(2021) persisted even when occlusion impeded continuous access to kinematics. 
Conversely, the continuous sonification of movement did not modulate the interaction 
over time, resulting in high recurrence scores throughout the entire drifting metronomes' 
cycle (Rosso, Maes, et al., 2021). In summary, visually mediated interactions tended to 
result in periodic transitions between cooperation and competition processes modulated 
by opposing attractors (Marsh et al., 2009), whereas auditorily mediated interactions 
tended to result in constant cooperation throughout the task. We initially predicted that 
continuous sonification would enable participants to discern when their partner's effector 
was sufficiently distant from in-phase locking, allowing them to exploit the anti-phase 
region to decouple and pursue independent trajectories. Notably, this advantage was not 
exploited in the auditory modality. 

We must admit, it could be argued that the adopted sonification strategy was simply not 
effective in conveying a continuous representation of the fingertip position with respect 
to the target, and consequently encoding its kinematics over time. Whilst this is certainly 
a possibility, our choice of frequency modulation (FM) was carefully considered and well-
founded. From the perspective of the listener, the connection with low-level physical 
features is essential to effectively decode movement features from sound (Bresin, 
Mancini, Elblaus, & Frid, 2020). FM was preferred as sonification strategy over amplitude 
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modulation (AM) because it was proven effective in influencing auditory-motor 
coordination (Varlet, Marin, Issartel, et al., 2012). Whilst there seems to be no or very little 
difference across AM and FM in terms of stabilizing auditory-motor coordination (Rodger 
& Craig, 2011), FM resulted in better precision and rapidity when adopted in a 1-D 
guidance task (Parseihian, Gondre, Aramaki, Ystad, & Kronland-Martinet, 2016), and was 
proven to effectively mediate kinematic information to a perceiver when explicitly used 
to substitute visual information (Alfred O. Effenberg & Schmitz, 2018). Finally, pitch 
induces the best cross-modal correspondence with the visual dimensions of position and 
direction of movement along the vertical axis (Evans & Treisman, 2010; Maeda, Kanai, & 
Shimojo, 2004; Spence, 2011), which was the critical spatial dimension in our finger-
tapping task. The mapping between the distance from the pad and the pitch was inverted, 
so that an ascending pitch was perceived as the fingertip approached the target. In 
continuously frequency modulated sounds, the detection of peaks is systematically better 
as compared to the troughs (de Cheveigné, 2000; Demany & Clément, 1995, 1997; 
Demany & McAnally, 1994), which makes an ascending modulation more encoding motion 
leading to a discrete event. This choice was supported by extensive piloting, and is in line 
with the natural correspondence with Doppler effect, ecologically experienced as sound 
sources approach a target. We do not exclude that results might have changed if a more 
effective modulation had been implemented. We address future research to investigate 
the impact of different sonification strategies on interpersonal coordination dynamics. 

While augmenting auditory coupling through sonification offers a wide range of 
possibilities, there are limited approaches to visual occlusion, with the primary outcome 
being the obstruction of access to kinematics. Previous research has demonstrated that 
visuomotor synchronization significantly improves when synchronizing with moving 
periodic visual stimuli (Hove et al., 2010) by engaging error correction mechanisms (Hove 
& Keller, 2010; Hove et al., 2010). Introducing a variable velocity profile to the stimulus 
reduces variability in SMS tapping (Hove, Iversen, et al., 2013; Iversen et al., 2015), up to 
matching auditory SMS at moderate tempi (Gan et al., 2015). Given this evidence, we 
found it particularly surprising that visually occluding motion did not significantly disrupt 
the attractor pattern, nor resulted in overall weaker coupling among partners as 
compared to the continuous condition. Considering the invariance between continuous 
and discrete conditions, the distinctions may stem from the inherent characteristics of the 
two perceptual systems and their interactions with timing and motor mechanisms. 

Beyond the interpersonal domain, the primary source of divergence in synchronization 
performance is typically ascribed to the distinct specializations of visual and auditory 
modalities, which are associated with spatial and temporal processing, respectively 
(Comstock et al., 2018). The auditory system's advantage in timing is thought to stem from 
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its stronger coupling to the motor system, which is evident in greater activation in motor 
structures such as the SMA and premotor cortex (Jäncke, Loose, Lutz, Specht, & Shah, 
2000), as well as increased activation in the putamen (Grahn, Henry, & McAuley, 2011) 
independent of stimulus motion (Hove, Fairhurst, et al., 2013). Furthermore, auditory 
rhythms provide a selective benefit in pacing motor behavior when compensating for 
basal ganglia impairment in Parkinson's Disease (Ashoori, Eagleman, & Jankovic, 2015; de 
Dreu, van der Wilk, Poppe, Kwakkel, & van Wegen, 2012). The auditory dominance for 
timing is suggested to be rooted in the anatomo-functional connectivity rather than 
selective temporal dynamics of neural oscillations, which may not be strictly modality-
specific. While activity in the beta band has been traditionally linked to timing prediction 
in the auditory domain (T. Fujioka, Trainor, Large, & Ross, 2009; Takako Fujioka, Ross, & 
Trainor, 2015; Takako Fujioka, Trainor, Large, & Ross, 2012; Iversen, Repp, & Patel, 2009), 
recent research has also associated beta activity with timing predictions within the visual 
system in response to visual rhythms (Comstock et al., 2018), as well as in cortico-
kinematic coupling during real and imagined SMS (Nijhuis, Keller, Nozaradan, & Varlet, 
2021). In a dyadic setting, we observed modulation of beta power as a function of the 
partner's movement cycles during both visual and auditory couplings (Rosso et al., 2022), 
extending the notion of supramodality for this neural dynamic to the interpersonal 
domain.  

As for the visual system, despite the spatial dominance ascribed to it (Comstock et al., 
2018), visual cortex exhibits activation specific to interval timing (Shuler, 2016), duration 
perception (B. Zhou, Yang, Mao, & Han, 2014) and prediction of rhythmic onsets 
(Comstock & Balasubramaniam, 2018). Despite their timing processing capabilities, these 
structures face additional computational demand due to the complexity of spatial 
processing, which is inherent to the visual scene regardless of the continuity of the stimuli. 
Coupled with a weaker connection to the motor system, visual targets are less likely to 
elicit error correction mechanisms and drive adaptive behavior (Comstock et al., 2018). 
Considering these differences, when visual and auditory sequences directly compete in 
situations where stimuli are presented out of phase during instructed synchronization 
with flickering lights, the auditory sequence takes precedence over the visual one, rather 
than the other way around (Bruno H. Repp & Penel, 2002, 2004). Such multimodal 
competition is directly reflected in our dyadic paradigm, where whilst sounds produced by 
the partner entrain individual behaviors at all times, the weaker visual coupling loses 
traction as the drifting metronomes drive partners away from the in-phase attractor. The 
conclusion we take is that the cooperation process driving dyadic entrainment, when 
mediated by visual coupling, strongly relies on attractor dynamics to compensate for the 
timing disadvantage in this modality. 
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How do our findings align with major theories of interpersonal synchronization (Palmer & 
Demos, 2022)? Predictive accounts propose that rhythmic behavior is driven by the 
continuous updating of internal predictive models of the other, facilitating coupled 
individuals to converge towards a synchronized state, with the aim of minimizing energy 
via error correction (Koban et al., 2019). Within this framework, our ‘kinematic hypothesis’ 
anticipated that continuous and discrete access to informational observables from a 
partner’s movement would lead to divergent updates of predictive models. In the first 
scenario, the model can be updated continuously, matching the sampling rate of the 
specific perceptual system, thereby providing a fine-grained representation of the 
movement cycle. In contrast, the latter approach bases the estimation of the next tap on 
prior knowledge of the tapping rate, resulting in irregular, event-based updates depending 
on its actual occurrence. Contrary to a Bayesian account premised on supramodal 
updating (Fait, Pighin, Passerini, Pavani, & Tentori, 2023), our findings suggest that spatial 
and temporal information are differentially weighted according to the sensory input 
channel. For example, the ‘ventriloquist effect’ demonstrates the dominance of visual 
information in spatial processing (Alais & Burr, 2004; Radeau & Bertelson, 1974; Vroomen, 
Bertelson, & de Gelder, 2001), while the ‘flash-sound illusion’ highlights auditory 
supremacy in processing temporal structure (Bertelson & Aschersleben, 2003; Burr, Banks, 
& Morrone, 2009; Morein-Zamir, Soto-Faraco, & Kingstone, 2003; Shams, Kamitani, & 
Shimojo, 2000). Continuous availability of informational observables might be more 
heavily weighted when processed visually, as they convey information on the spatial 
positioning of the partner’s effector. The spatial processing of continuous sonification 
might be minimal, and hence, have a negligible impact on behavior.  

From a different perspective, within a dynamical systems framework (Demos et al., 2019; 
Ole Adrian Heggli et al., 2019; Stepp & Turvey, 2010), our ‘kinematic hypothesis’ predicted 
that continuous information would override the action of internal time-keepers (Richard 
B. Ivry & Richardson, 2002), driving behavior through simple sensorimotor interactions 
across modalities (Maes et al., 2015). However, the perception of oscillating objects (such 
as the partner’s hand) varies across sensory pathways. The spatial layout of these objects 
is mapped onto the retina and preserved throughout the visual pathway (Luo & Flanagan, 
2007; Triplett et al., 2009), whereas the receptor layout in the inner ear encodes the 
position of the target by combining localization and spectral cues (Middlebrooks & Green, 
1991; Salminen, Tiitinen, & May, 2012). These differences reasonably lead to varied 
information transfer from perceptual to motor oscillators (Ole Adrian Heggli et al., 2019), 
suggesting that the effector is driven by unique dynamics depending on the sensory input. 
Consequently, our findings imply that the intrinsic dynamics of sensory perception play a 
pivotal role in interpersonal synchronization. 
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In conclusion, our study enriches the existing body of literature on interpersonal 
coordination by emphasizing the nature and accessibility of information, comparing the 
effects of visual and auditory couplings on interpersonal coordination. A thorough 
understanding of these facets is critical for designing and optimizing motor training and 
rehabilitation protocols that involve interaction between an individual and a trainer or 
another partner. While sonification has proven its worth for bio-feedback applications 
centered on the individual, both in sports (Alfred O. Effenberg et al., 2016; Lorenzoni et 
al., 2018; Lorenzoni, Staley, et al., 2019; Lorenzoni, Van den Berghe, et al., 2019; Maes, 
Lorenzoni, & Six, 2019; Van den Berghe et al., 2021) and rehabilitation (Bevilacqua et al., 
2018; Maes et al., 2016; Moumdjian, Moens, Maes, Van Nieuwenhoven, et al., 2019; Van 
Kerrebroeck & Maes, 2021), its potential as a mediator and enhancer of dyadic coupling 
remains relatively unexplored. We urge further investigation into this area to broaden our 
understanding of the various dimensions of auditory coupling. It is essential to grasp its 
potential and limitations in supporting motor coordination, and to evaluate its validity for 
complementing visual input during dyadic interactions. 

 

Methods 

Participants. A total of 40 right-handed participants took part in the study, including 20 
females and 20 males. The mean age was 31.2 years, with a standard deviation of 6.8 
years. Participants were initially divided based on gender and subsequently randomly 
paired into 20 dyads. Upon recruitment, all participants reported not being professional 
musicians and having no history of neurological, major medical, or psychiatric disorders. 
With the exception of one dyad, participants indicated they were not familiat with their 
assigned partner. The experiment received approval from the Ethics Committee of Ghent 
University (Faculty of Arts and Philosophy), and informed written consent was obtained 
from each participant before commencing the experiment. Participants were 
compensated with a 20€ coupon for their time. 

Experimental Apparatus. Participants were seated across from each other at the same 
table, on chairs equipped with armrests. By resting their elbows on the armrests, 
participants were able to eliminate any potential tactile or proprioceptive coupling 
between them due to table vibrations. Each participant was assigned a pad and instructed 
to tap on it using their right index finger in synchronization with a metronome. Depending 
on the experimental condition, the metronome provided either an auditory cue or a 
flickering light. Two wooden screens were placed perpendicularly on the table to 
manipulate visual coupling between the partners. The frontal plane was equipped with 
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adjustable sliding windows to regulate visual access to the partner's hand movements 
based on height and position of the participant. Each participant had to wear a glove with 
an infrared reflective marker on the finger-tip, used to track the finger’s position during 
the task. A Qualisys Motion Capture system, consisting of 8 Miqus M3 cameras, 1 Miqus 
RGB camera and the ‘Qualisys Track Manager 2020’ software was used to track the 
position of the hand and tapping pads. 

A Focusrite RedNet 2 Dante Audio Interface was used to deliver independent audio 
channels to each participant through in-ear plugs, with Ableton Live 10 serving as the main 
interface for stimuli presentation, sonification of finger-taps, and real-time routing. The 
same MIDI tracks controlled the metronomes across conditions by triggering either an 
audio sample or a flickering LED. A Teensy 3.2 microcontroller functioned as a serial/MIDI 
hub in the setup, detecting tapping onsets with < 1 ms resolution based on analog input 
from strain gauge pressure sensors installed within the pads. Every time a metronome 
onset was presented to a participant, a MIDI message was sent to the Teensy device to log 
the metronome's time series and control the voltage of the LEDs when necessary. 
Participants were monitored from a control desk placed behind a curtain using the Miqus 
RGB camera to ensure compliance with instructions. The setup enabled the manipulation 
of experimental conditions, as illustrated and described in Figure 3.1. 

Procedure. Before participants arrived in the lab, the experimenters calibrated the motion 
capture system. Upon arrival in the lab, participants read all information related to the 
study and signed the informed consent form. Demographic data were collected with a 
questionnaire, and the Edinburgh inventory (Oldfield, 1971) was administered to assess 
participants' right-handedness. The Interpersonal Reactivity Index (IRI) (Davis & Others, 
1980) was administered as a self-report measure of empathy and its subscales. 
Participants' preferred spontaneous tempo was calculated through 30 seconds of self-
paced finger-tapping on a dedicated smartphone app (www.beatsperminuteonline.com). 
After wearing the glove for tracking the finger’s position, participants wore the earbuds. 
Volume levels were adjusted for each participant before the experiment, and pink noise 
was regulated to suppress any environmental sound. After instructing the participants on 
how to perform finger-taps in synchronization with the metronome, they underwent a 30-
seconds familiarization session. Subsequently, participants were asked to place their 
finger on the pad and then hold it at the highest point of their comfortable range of 
motion, while the experimenter recorded the positions on the software to normalize the 
motion range for continuous sonification. In visually coupled conditions, the lights of the 
room were lit at the minimum level and two diffused directional lights were oriented 
parallel to the table, to prevent the lights coming from the ceiling to cast the shadow of 
the moving hand on the pad. In condition of visual occlusion, the eight of the sliding 
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windows on the wooden screen was adjusted based on the height and position of the 
participants, so that only the fingertip of the partner was visible at the moment of impact 
with the pad. The importance of maintaining the position and the style of tapping was 
stressed in the instructions. All dyads confirmed during debriefing that the manipulation 
was successful. In either sensory modality (ticking auditory metronome or flickering visual 
metronome), each participant was cued with a different tempo (1.67 Hz and 1.64 Hz), such 
that the relative phase between the metronomes began at 0º, increasing regularly in 5.6º 
increments (Rosso, Maes, et al., 2021). A full cycle took 39 seconds to complete, with 10 
consecutive cycles performed in each experimental condition. Participants were clearly 
instructed to ignore their partner at all times, and tap along with their assigned 
metronome. During breaks between experimental conditions, participants provided 
subjective self-reports on various aspects of the task by expressing agreement on a scale 
from 1 ("Completely disagree") to 7 ("Completely agree") using a custom-made battery of 
12 Likert items. Data collected from the questionnaires are not presented in this paper. 

Motion capture and sonification. The real-time sonification of the finger-tapping motion 
was implemented as follows. Five reflective markers for infrared light were attached to 
the pad of each participant in different configurations, such that 2 rigid bodies were 
identified in the motion capture recording. One extra marker was placed in the center of 
the pads for the creation of rigid bodies, defined as virtual marker, and physically removed 
to define the origin of the XYZ space. The directions of the axes were relative to the 
participants’ bodies (X pointing outwards, Y pointing to the front, Z pointing to the upside). 
This way, two XY planes were defined as lying on the surface of each pad. Each participant 
performed the experiment wearing a glove equipped with a marker on the back of the 
middle phalanx of the index finger. During finger-tapping, we sonified the Euclidean 
distance of the marker from the XY plane of the assigned pad. This parameter was mapped 
onto the frequency of a sinusoidal waveform in Ableton, resulting in a continuous 
frequency modulation (FM) of the audio signal: upward movement away from the pad 
decreased the pitch, while downward movement towards the pad increased it. This 
sonification was implemented exclusively in Condition 3 (Auditory Coupling, Continuous) 
to fill the temporal gaps between tapping onsets. The time of impact was sonified as a 
discrete metronome sound in both conditions 3 (Auditory Coupling, Continuous) and 4 
(Auditory Coupling, Discrete). 
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Data analysis 

For the most part, the pipeline hereby described is a translation of the methods described 
in (Rosso et al., 2022; Rosso, Maes, et al., 2021), applied to the current experimental 
design. The content of this paragraph is adapted from the original work with the authors' 
consent. However, the values for the embedding dimension and delay differ from the 
original study as they were optimized for the current dataset. 

 

Pre-processing. Throughout the duration of 10 consecutive metronome cycles, each 
dyad's partners were expected to produce 650 and 640 tapping onsets, respectively, over 
a total period of 390 seconds. Onsets occurring less than 350 ms from the previous one 
were considered false positives and subsequently removed, as participants could 
occasionally press the pad for an extended duration or inadvertently rest their hand on it. 
From the entire sample, 89 false positives were eliminated, accounting for 0.086% of all 
data points. The refined time series were then interpolated using a sine function at a 1 kHz 
sampling rate, yielding an estimate of the oscillators' positions within the cycle at a 
temporal resolution of 1 ms. The tap prior to the first metronome onset and the final tap 
following the last metronome onset were incorporated into the interpolation. 
Subsequently, data points outside the metronomes' time series boundaries were 
discarded. This procedure ensured equally sized time series without data loss, a 
prerequisite for the implementation of joint recurrence quantification analysis (JRQA; see 
the following paragraph). The interpolation choice is conceptually supported by the 
modeling of coupled oscillator systems in the context of finger-tapping studies (Ole Adrian 
Heggli et al., 2019; Rosso et al., 2022; Rosso, Leman, & Moumdjian, 2021; Rosso, Maes, et 
al., 2021). Lastly, time series were down-sampled by a factor of 4 to render the 
computation of recurrence plots (RPs) more manageable. As demonstrated in our previous 
report, JRQA results are not sensitive to the choice of down-sampling factor. 

Dyad #15 was excluded from the analysis, because the Edinburgh Inventory revealed that 
one participant was effectively left-handed. Furthermore, the pad of one participant did 
not work for the whole duration of Condition #1, resulting in the loss of all data collected 
in that condition.  

 

Phase-space reconstruction. Following Takens' embedding theorem (Takens, 1981), we 
reassembled the phase space of individual finger-tapping behaviors. This involved utilizing 
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time-delayed copies of the input time series uk, while implementing an embedding 
dimension m and a time delay τ. 

 

x⃗(t)	=	x⃗i	=	(ui,	ui+τ,	…	,	ui+(m−1)τ),		 t	=	iΔt	

 

where x⃗(t) represents the vector of reconstructed states within the phase-space at time 
t. Optimal parameters for the time-delayed embedding were calculated for each 
participant, for the duration of each individual metronome cycle across all experimental 
conditions. The resulting average value of the parameters was applied to all individual 
instances. The reason is that to compare recurrence rates across conditions at a group 
level, the embedding procedure must remain consistent among participants (e.g., see 
(Afsar et al., 2018; Rosso, Maes, et al., 2021), for examples of parameter selections in a 
factorial design). Firstly, we chose the delay τ as the first local minimum of the mutual 
information index (Fraser & Swinney, 1986) in relation to the delay. This method 
minimized the time series self-similarity, extracting almost orthogonal components and 
preventing the attractor from folding onto itself (Bradley & Kantz, 2015). The mean delay 
value was determined to be τ = 7. Next, we identified the number of embedding 
dimensions using the false nearest neighbor method (Rulkov et al., 1995). Specifically, we 
incrementally unfolded the time series into higher dimensions until data points no longer 
overlapped spuriously, identifying an optimal mean embedding of m = 2. Lastly, in line 
with existing literature, the maximum threshold for considering two adjacent points as 
recurrent was set at 10% of the maximum phase-space diameter (Marwan et al., 2007). 

 

Joint recurrence plots (JRPs). A recurrence plot, denoted as 𝑅1,:, is a square array 
employed to represent and quantify the recurrence of states within a system's phase 
space (Eckmann, Kamphorst, Ruelle, & Others, 1995). For each point in the phase space 
trajectory: 

 

x⃗i		(i	=	1,	…,	N;	N	=	n	–	(m-1)	τ)	

 

the proximity to another trajectory point, x⃗j, was assessed based on a neighborhood 
threshold. Individual recurrence plots are computed using the following equation: 
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𝑅1,:(𝜀) = 	𝛩(𝜀 −	E𝑥1 −	𝑥:E) 

 

Here, ε represents the neighborhood threshold, ‖ ⋅ ‖ is the Euclidean norm (indicating the 
distance between two vectors), and Θ is the Heaviside step function. Each phase-space 
yields a square matrix with 1s where the distance ‖ ⋅ ‖ is less than the threshold ε, and 0s 
for other elements. 

A joint recurrence plot (JRP) was computed for each dyad by overlapping individual RPs 
pairwise, retaining 1s only where both plots exhibited recurrence. Each JRP was essentially 
the Hadamard product of the first and second participants' recurrence plots. The CRP 
Toolbox for Matlab® was used to compute JRPs (Marwan & Kurths, 2002). 

By aggregating the JRPs of the 10 trials (i.e., metronome cycles) for each experimental 
condition, a 2-D matrix was obtained, with each entry representing the recurrence count 
in the corresponding cycle region across all trials. A 1-D vector recurrence score was 
derived by summing the row counts for each matrix column. This vector signifies a density 
measure of coupled behavior instances throughout the metronomes' cycle. 

The recurrence score scale relies on the JRP size, which, in turn, depends on the 
embedding procedure. This necessitates setting consistent parameters across the entire 
sample. To enhance the signal-to-noise ratio and prevent oversampling, the resulting time 
series were reduced to 64 bins by averaging recurrence scores for equally sized, 
consecutive time periods. The interval size was determined by the slower metronome's 
increments, which provided a regular subdivision inherent to the experimental trials. 

All processing steps were conducted in Matlab®. Our approach was chosen over the 
moving window-based JRQA version to avoid low-pass filtering effects on the time series, 
which could impede result interpretation. Specifically, a moving window can introduce 
phase distortion in the time series based on window size, making it unreliable for detecting 
attractor points across the landscape. 

 

Statistical models. The recurrence score served as the response variable in a mixed-effects 
model, which included Coupling and Perspective as factors and Time as a continuous 
predictor, expressed through the indexes of the metronome steps (from 1 to 64). Due to 
the non-linear time course observed in coupled conditions, we employed the method of 
orthogonal polynomials (Mirman, 2017), incorporating linear and quadratic functions of 
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Time into our model. Dyads and interactions between Dyads and the factors were 
modeled as random effects on all polynomial terms to accommodate individual variability 
in synchronization abilities and individual susceptibility to coupling across experimental 
manipulations. The random effects structure was adopted to minimize false alarm rates 
without significant power loss (Barr et al., 2013). Guided by our prior study and the 
examination of empirical curves from the current dataset, we confined the polynomial 
model to the 2nd order as the most parsimonious solution. Within this analytical 
framework, the intercept is considered a 'zero-order' polynomial, as it displays zero 
changes in any direction. Significant changes in direction signify modulation by the task's 
temporal structure, enabling us to quantify the influence of attractor points as the dyad 
diverged from the horizontal trajectory while transitioning over anticipated critical 
regions. 
 
The full model's formula is as follows: 
 
𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	~	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O) ∗ 𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 ∗ 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠 + (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝐷𝑦𝑎𝑑)

+	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝐷𝑦𝑎𝑑:𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦: 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠)	 

 

Statistical analyses were carried out in R (version 4.0.3). The lme4 package (Bates et al., 
2014) was used for model fitting. 
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Introduction 

Humans exhibit a compelling tendency to synchronize rhythmic movements with one 
another (Crombé et al., 2022; Richardson, Marsh, & Baron, 2007; Richardson et al., 2005; 
R. C. Schmidt & O’Brien, 1997). As soon as two individuals exchange information via one 
or multiple sensory channels (R. C. Schmidt et al., 1990), such phenomenon may occur 
spontaneously and even against the intention to ignore the other (Rosso, Maes, et al., 
2021). Visually-mediated interactions, in particular, are governed by attractor dynamics (J. 
A. S. Kelso, 1995; Tognoli et al., 2020) which stabilize dyadic behavior in recurrent and 
stable coordinative patterns, and are characterized by a dynamic balance between the 
pursuit of individual behavioral trajectories (competition process) and the attraction into 
coupled behavior (cooperation processes) (Marsh et al., 2009; Rosso, Maes, et al., 2021).  

Ecological dyadic interactions take place in settings where individuals perceive each other 
from a face-to-face 2nd person perspective. However, embodied simulation accounts of 
social cognition posit that the mirroring of another person’s movements is enabled by 
neural representations based on a bodily format (Gallese & Sinigaglia, 2011), which 
require a visuospatial transformation to remap the observed movement into an egocentric 
frame of reference (Oh, Braun, Reggia, & Gentili, 2019). Despite broad evidence for such 
form of embodied perspective-taking (Graf, 1994; Keehner, Guerin, Miller, Turk, & 
Hegarty, 2006; K. Kessler, 2000; Klaus Kessler & Thomson, 2010; May, 2004; Wraga, 
Shephard, Church, Inati, & Kosslyn, 2005; Zacks & Michelon, 2005), the mechanism 
remains overlooked in the literature on dyadic interactions (Oh et al., 2019).  In the present 
work, we investigate the role of visual perspective in interpersonal temporal coordination, 
under the hypothesis that perceiving the movements of a partner from their 1st person 
perspective would promote their motor alignment, therefore strengthening and 
stabilizing their synchronization.  

Perspective-taking can nowadays be induced in an embodied bottom-up fashion, by 
experimentally transposing the visual scenes perceived by two individuals into the 
partner’s egocentric frame of reference (Petkova, Björnsdotter, et al., 2011). 
Manipulations of this kind tap into the plasticity of body schemas as represented in the 
central nervous system (Tsakiris, 2010, 2017), and effectively lead to experience 
embodiment (Botvinick & Cohen, 1998; K. Kilteni, Groten, & Slater, 2012; Slater, Perez-
Marcos, Ehrsson, & Sanchez-Vives, 2008, 2009) and agency (Kalckert & Ehrsson, 2012, 
2014) over effectors not belonging to one’s own body, as long as they are visually 
perceived in a configuration which is coherent with bodily constraints (Pavani, Spence, & 
Driver, 2000). The same principle, originally investigated by means of the rubber hand 
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illusion (Botvinick & Cohen, 1998), was extended to the more radical experience of full-
body (Maselli & Slater, 2013; Petkova, Björnsdotter, et al., 2011; Petkova, Khoshnevis, & 
Ehrsson, 2011; Serino et al., 2013; Slater et al., 2009) and out-of-body (Ehrsson, 2007; 
Guterstam & Ehrsson, 2012) illusions, where a person gets to experience ownership and 
agency over a humanoid virtual avatar in 1st person or dislocation respect to the position 
of the real body, respectively. Applied in a social setting, the same principles allow to 
induce a full body-swap between two real persons by immersing the streaming the 1st 
person view of one partner into the visual scene of the other (Petkova & Ehrsson, 2008).    

Konban et al. (Koban et al., 2019) proposed that dyadic synchronized behavior is guided 
by an optimization principle, aimed at minimizing prediction errors by correcting the 
temporal mismatch between movements executed by one self and movements executed 
by the other. In terms of brain-body-environment system, motor control is guided by 
environmental contingencies towards a reduction of computational cost (Clark, 1999). 
With these principles in mind, let us take the human hand as paradigmatic effector to 
investigate embodiment (Botvinick & Cohen, 1998), and joint finger-tapping as 
paradigmatic task to investigate interpersonal synchronization (Ole A. Heggli et al., 2019; 
Konvalinka et al., 2010; Rosso, Maes, et al., 2021). Provided the hand of a partner can be 
integrated in one’s own body schema when visually perceived in 1st person during joint 
finger-tapping (Dell’Anna et al., 2018), we expected temporal mismatches to carry more 
weight as compared to the ecological 2nd person perspective, which would lead the 
partners to engage in a stronger error-correction response via (dyadic) entrainment. This 
is because, in such scenario, the other’s hand is perceived as an embodied effector and 
therefore represented by the motor system in terms of motor potentiality for actions 
(Della Gatta et al., 2016; Gallese & Sinigaglia, 2010). When the visual feedback expected 
from a motor output is altered, resulting in a mismatch with the prediction of a forward-
model (S. J. Blakemore, Frith, & Wolpert, 1999; S.-J. Blakemore, 2017; Wolpert, Doya, & 
Kawato, 2003), humans spontaneously engage in motor adaptation to keep a consistent 
relationship between action and perception (Maes et al., 2015). This brings us to our 
central research questions. 1) Can we induce spontaneous interpersonal synchronization 
by visually coupling, in 1st person perspective, two individuals engaged in a joint-finger 
tapping task? 2) Can visual coupling in 1st person strengthen interpersonal 
synchronization, as compared to the ecological 2nd person perspective? 3) How do 
attractor dynamics compare across different visual perspectives?     

In order to answer these questions, we adopted the ‘drifting metronomes’ paradigm for 
dyadic entrainment (Rosso, Maes, et al., 2021) and manipulated the visual scenes 
perceived by the partners across experimental conditions. The paradigm consists of a joint 
finger-tapping task, where two partners are instructed to entrain with incongruent 
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auditory rhythms, while being visually coupled with one another. Despite the explicit 
instruction to ignore each other, recurrent patterns of spontaneous coordinated behavior 
emerge between individuals according to consistent temporal dynamics (Rosso, Maes, et 
al., 2021). The essential feature of the paradigm is a minimal gap in the frequencies of the 
two metronomes, such that when they are set to start at the same time, their relative 
phase systematically increases with every beat from 0 to π radians and subsequently 
decreases from π to 0. Cyclical repetitions of such pattern allow to identify regions of 
maximal attraction over the whole attractor landscape (Tuller & Kelso, 1989), capturing 
the time-varying nature of dyadic entrainment beyond a global measure of 
synchronization. The same task was performed under different conditions of body-swap. 
As illustrated in Figure 4.1, during the task participants were either seeing the other’s hand 
in 2nd person (1), their own hand in 1st person (2), the other’s hand in 1st person (3) or their 
own hand in 2nd person (4). The subjective feeling of embodiment was measured via a 
visuotactile stimulation procedure based on the principles of the rubber-hand illusion. 
Experimental design and procedures are described in detail in the Methods section.   

Finally, we tested the well-documented association between interpersonal 
synchronization and empathic traits (for a recent review, see Tzanaki, 2022), and with the 
self-reported sense of ownership over the other’s hand. At a higher cognitive level, a 
bottom-up driven experience of being ‘in the shoes of the other’ mitigates outgroup 
(Maister, Slater, Sanchez-Vives, & Tsakiris, 2015) and racial biases (Peck, Seinfeld, Aglioti, 
& Slater, 2013; Thériault, Olson, Krol, & Raz, 2021), attenuates gender stereotype threat 
(Peck, Doan, Bourne, & Good, 2018; Peck, Good, & Bourne, 2020), promotes perceived 
self-other similarity (Paladino, Mazzurega, Pavani, & Schubert, 2010; Tajadura-Jiménez, 
Grehl, & Tsakiris, 2012) and even the social acceptability of a humanoid robot (Ventre-
Dominey et al., 2019). Crucially, both empathy and synchronization activate embodied 
representations of observed actions in the brain (Gallese, 2019), while high trait empathy 
(Novembre, Ticini, Schütz-Bosbach, & Keller, 2012) and empathic perspective taking 
(Novembre et al., 2019) was shown to strengthen such representations. We therefore 
hypothesized that both high scores in cognitive perspective taking and subjective 
experience of embodiment would predict stronger entrainment with the partner, in 
particular when assuming their 1st person visual perspective.  
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Figure 4. 1. Experimental design. The study was designed in a Perspective (2P, 1P) x Coupling (Coupled, Uncoupled) 
factorial structure. Each participant was equipped with a headset providing full immersion in different visual 
scenes across experimental conditions. Visual scenes were captured and streamed in real-time by cameras placed 
either in front of the partner’s hand or above the participant’s shoulder, as illustrated in the detail boxes of the 
figure. The setup allowed for the crucial manipulation of swapping the visual scenes as captured by different 
angles, illustrated in the schema as ‘Swap On/Off’. The design resulted in the following experimental conditions. 
1) ‘2P Coupled’. Participants tapped along with an auditory metronome, while looking at the partner’s hand 
tapping. The partner’s hand was video-recorded from a frontal position and no swapping was performed, so that 
the hand was perceived from a 2nd person perspective. Participants were explicitly asked to neglect the partner’s 
movements and focus on following their own metronome. 2) ‘1P Uncoupled’ (control). Participants tapped along 
with an auditory metronome, while looking at their own hand. Their own hand was video-recorded from above 
their shoulder and no swapping was performed, so that the hand was perceived from a 1st person perspective. 3) 
‘1P Coupled’. Participants tapped along with an auditory metronome, while looking at the partner’s hand tapping. 
Their own hand was video-recorded from above their shoulder, but swapping was performed so that the partner’s 
hand was perceived from a 1st person perspective (as the partner would see oneself). Participants were explicitly 
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asked to neglect the partner’s movements and focus on following their own metronome. 4) ‘2P Uncoupled’ 
(control). Participants tapped along with an auditory metronome, while looking at their own hand. The partner’s 
hand was video-recorded from a frontal position, but swapping was performed so that the own hand was 
perceived from a 2nd person perspective (as oneself would be seen by the partner).  

 

Results 

Taking dyadic behavior as unit of analysis, we replicated joint recurrence quantification 
analysis (JRQA) (Marwan et al., 2007) as presented in Rosso et al. (Rosso, Maes, et al., 
2021). The approach yielded a relational measure to quantify the degree of temporal 
coordination between the partners throughout the task (Marsh et al., 2009). A recurrence 
score was calculated as time-varying measure of coupling strength, quantifying the 
instances of coordinated behavior (Marwan et al., 2007). Its evolution over the drifting 
metronomes’ cycle, portraying an attractor landscape (Tuller & Kelso, 1989), was 
modelled by means of growth curve analysis (Mirman, 2017). For every dyad, curves were 
calculated as the average of 10 metronomes’ cycles from 0 to 2π in each experimental 
condition, and modeled with 2nd order orthogonal polynomials of Time. 2-level factors 
Coupling (Coupled, Uncoupled) and Perspective (1P, 2P) were modelled as fixed effects. 
Uncoupled (control) conditions were treated as baseline for contrasting levels of the 
Coupling factor, 2P conditions were treated as baseline for the Perspective factor.  

In line with our hypotheses, we found a significant main effect of Coupling (Estimate = 
436.278, SE = 73.777, p < 0.001) indicating an overall increase of the recurrence score in 
presence of informational coupling as compared to the uncoupled control conditions, 
independently from the manipulation of Perspective. We also found a significant 
interaction effect between Coupling and the quadratic term of Time (Estimate = 1201.669, 
SE = 166.386, p < 0.001), meaning that the modulation of the attractor landscape on the 
response variable resulted in a significant ‘valley’ around the anti-phase midpoint in 
coupled conditions. Crucially, we found a 3-way interaction between the linear 
component of Time, Coupling and Perspective (Estimate = 478.850, SE = 215.621, p = 
0.026), indicating that the linear coefficient in coupled conditions significantly differed 
across 1st person and 2nd person levels of Perspective. Such interaction captures the 
change in the asymmetry of the parabolic curves across the two Coupled conditions. 
Whilst in 2nd person the recurrence score lingers in the ‘valley’ into the second half of the 
drifting metronomes’ cycle, in 1st person it bottoms at the anti-phase point and grows 
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straight towards the in-phase point. Figure 4.2 shows the grand-average curves of the 
recurrence score across experimental conditions.  
Table 4.1 shows the fixed effects parameter estimates and their standard errors for 
recurrence score, along with associated p-values. In this analysis framework, parameter 
estimates provide a measure of effect size of straightforward interpretation for linear and 
non-linear changes over time, as long as the polynomial order is not too high (Mirman, 
2017). With the interaction effect of Coupling and Perspective factors on the polynomial 
terms, we could quantify the specific effects of visual perspective on the evolution of the 
recurrence score.  
Moving at the individual level of analysis, we tested whether the manipulation of visual 
perspectives induced significant changes in the experienced sense of ownership over the 
perceived hand. Aligned rank transform (ART) ANOVA (Wobbrock, Findlater, Gergle, & 
Higgins, 2011) revealed significant main effects of Coupling (Df residual = 147, F = 104.353, 
p < 0.001) and Perspective (Df residual = 147, F = 8.983, p < 0.01) on the self-reported 
ownership ratings. The former indicates that participants were capable of telling apart 
their own hand from the partner’s regardless of the visual perspective, whilst the latter 
indicates that perceiving a hand in 1st person generally resulted in a stronger sense of 
ownership. Crucially, the interaction effect between Coupling and Perspective (Df residual 
= 147, F = 5.232, p < 0.05) revealed that the increase in ownership relative to the 2nd person 
perspective was significantly stronger when participants were coupled. This means that 
the partner’s hand, normally recognized as belonging to somebody else, is perceived as 
belonging to one’s own to a significantly greater extent due to the manipulation of visual 
perspectives. The same model was fit to the ratings of sense of ownership and sense of 
agency as experienced during the joint finger-tapping task. In this case, we only found 
significant main effect of Coupling on both ownership (Df residual = 147, F = 459.467, p < 
0.001) and agency (Df residual = 147, F = 373.005, p < 0.001), indicating that in conditions 
of active movement participants correctly attributed the hand and its actions to their 
selves, and did not experience illusory attribution of the partner’s hand from any visual 
perspective. Median scores for self-reported ratings are shown in Figure 4.3. 
Finally, the perspective taking, empathic concern, fantasy and personal distress scores 
subscales of empathy (Davis & Others, 1980) had no significant effect on synchronization 
consistency, computed as the resultant vector length R of relative phase with the assigned 
metronome. However, the same model revealed a significant 2-way interaction between 
Coupling and Perspective (Estimate = -0.292, SE = 0.141, p < 0.05), indicating that the 
negative impact of coupling on individual synchronization performance with the 
metronome was strengthened by perception 1st person perspective. This corroborates the 
results from the dyadic analyses, which showed that attraction towards the in-phase point 
was stronger in such condition. As demonstrated in Rosso et al. (Rosso, Maes, et al., 2021), 
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a reduced synchronization with the metronome in Coupled conditions as contrasted to 
Uncoupled conditions is a valid proxy for the attraction towards the partner, at the 
expenses of the compliance with the task. 
The same models fitted on the subjective ratings of embodiment revealed a significant 2-
way interaction effect between empathic concern and Coupling (Estimate = -0.177, SE = 0. 
089, p = 0.05). This indicates that participants with higher empathic concern experienced 
a stronger sense of ownership over the partner’s hand. We also point out a trend towards 
3-way interaction with Coupling and Perspective (Estimate = 0.207, SE = 0.128, p = 0.11), 
showing that the effect tended to be stronger when the partner’s hand was perceived in 
1st person.  Models’ summaries for the Individual level of analysis are reported in Table 
4.2, 4.3 and 4.4. In all models, Uncoupled (factor Coupling) and 2P (factor Perspective) 
were set as 0-levels for statistical contrasts. 
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 Recurrence score (N = 19) 

Predictors Estimate SE p 
 
(Intercept) 
 

 
752.739 

 
56.693 

 
0.000 

Time -106.503 120.749 0.378 
 
Time2 

 
4.933 

 
127.602 

 
0.969 

 
Perspective 

 
-0.180 

 
73.777 

 
0.998 

 
Coupling 

 
436.278 *** 

 
73.777 

 
< 0.001 

 
Time:Perspective 

 
53.653 

 
152.467 

 
0.725 

 
Time2:Perspective 

 
49.110 

 
166.386 

 
0.768 

 
Time:Coupling 

 
-122.145 

 
152.467 

 
0.423 

 
Time2:Coupling 

 
1201.669 

*** 

 
166.386 

 
< 0.001 

 
Perspective:Coupling 

 
50.670 

 
104.337 

 
0.627 

 
Time:Perspective:Coupling 

 
478.850 * 

 
215.621 

 
0.026 

 
Time2:Perspective:Coupling 

 
7.047 

 
235.305 

 
0. 976 

    
 * p < 0.05  ** p < 0.01 *** p < 0.001 

 

Table 4. 1. Recurrence score. Orthogonal polynomials model summary. 
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Figure 4. 2. Attractor landscape. The timeseries depicted in the figure represent the evolution of the recurrence 
score as a function of the drifting metronomes’ cycle, across experimental conditions. The grand-average was 
computed over the whole sample of dyads (N=19), and for each dyad the timeseries was computed as the average 
of 10 consecutive cycles. For illustration and interpretation purposes, the black line in the plot shows the same 
analysis as performed on the two metronomes timeseries. This represents a ground-truth in the context of the 
paradigm, providing the reference recurrence score expected by a deterministic de-coupled system such as two 
linearly dephasing metronomes. A horizontal line lingering at the global minimum is the pattern expected from 
two partners when each of them is perfectly synchronizing with the assigned metronome, without influencing 
each other. The two timeseries just above the reference were computed from the uncoupled conditions (2 and 
4), where each participant was tapping while seeing their own hand from 1st and 2nd person perspectives, 
respectively, so that no information was exchanged with the partner. As expected, the recurrence scores closely 
tracked the reference in these conditions, with random fluctuations around the mean and spurious recurrences 
due to human movement variability. Due to absence of coupling between the partners and hence their ignorance 
of the drifting metronomes’ structure, it was feasible for them to follow the assigned metronomes. No significant 
difference was found between visual perspectives in uncoupled conditions. These control conditions provided a 
baseline for statistical contrasts, allowing us to assess the significance of eventual patterns deviating from the 
reference due to visual coupling. The two upper timeseries represent the coupled conditions (1 and 3), where 
each participant could see the hand of the partner from 2nd and 1st person perspectives, respectively. These are 
the critical conditions to focus on, in order to answer our main research question. When modelling empirical 
curves with orthogonal polynomials (Mirman, 2017), the intercepts of the fitted model were significantly greater 
than the uncoupled control conditions, capturing the main effect of Coupling. It is indeed clearly visible that both 
curves are on average above the respective controls. Focusing on the shape of the curves, it is also evident that 
both exhibit a parabolic curvature and a pronounced asymmetry. These two features were captured by the 
significant interaction effects of Coupling with the Quadratic and the Linear terms of Time, respectively. 

* 2P Coupled
o 1P Uncoupled
* 1P Coupled
o 2P Uncoupled

o Ground-truth

Attractor landscape
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Neither the average recurrence score nor the parabolic curvature significantly differed across levels of Perspective. 
However, we did find a significant interaction on the Linear term of Time, capturing a critical difference between 
the curves depending on visual perspective. Whilst in both coupled conditions the recurrence score reached a 
global minimum past the π midpoint, in 2nd person perspective it lingered on a longer horizontal trajectory into 
the second half of the cycle, before reaching the maximum with a steeper exponential growth. This resulted in a 
more prominent asymmetry which, as previously discussed (Rosso, Maes, et al., 2021), indicates hysteresis in the 
system (Marsh et al., 2009; Richardson, Marsh, & Baron, 2007) since the rate of change of the recurrence score is 
dependent on the direction of the de-phasing (i.e., from 0 to π and from π to 0). The same in-phase attractor 
exerted a stronger ‘pull-back’ on the dyad as it left the 0 point, followed by a steeper ‘push-forward’ as it 
approached the same point at the end of the cycle. The anti-phase point can be seen as a ‘competition attractor’ 
(Marsh et al., 2009), for it facilitates de-coupling among the partners and pursuing of independent trajectories. 
This interpretation is empirically supported by our reference timeseries (black line in the plot), showing that 
horizontal line at a minimum occur when a de-phasing pattern is taking place. Crucially, the competition attractor 
around the π point resulted to be weaker when partners were coupled in 1st person perspective, since they did 
not manage to keep dephasing for quite as long. The dynamic balance shifted in favor of the cooperation attractor, 
resulting in a steeper increase of recurrence score. From these observations, we conclude that visual coupling in 
1st person promotes the convergence of the dyadic system towards phase-alignment as compared to the 
ecological mode of interaction in 2nd person. 

 
 

 
 

Figure 4. 3. Sense of ownership over the perceived hand. Boxes indicate median values for the subjective ratings 
referring to the following constructs, across experimental conditions: (A) sense of ownership during visuotactile 
stimulation (scale 1-5), (B) sense of ownership during finger-tapping task (scale 1-7), (C) sense of agency during 
finger-tapping task (scale 1-7). Error bars indicate the 95% confidence interval of the median. The fact that in 
Uncoupled conditions participants systematically recognized the hand as their own resulted in a ceiling effect, 
which did not allow to compute error bars in such conditions. For all response variables (A, B, and C), we found a 
main effect of Coupling, whereas the interaction effect was significant only when sense of ownership was 
measured via visuotactile stimulation (A). Whilst the main effect is somewhat trivial, the interaction shows that 
the manipulation of visual perspectives was successful in inducing a subjective experience of embodiment over 
the partner’s hand, specifically when this was perceived from a 1st person visual perspective.  

Sense of ownership
(visuotactile)

A B C

Sense of agency
(finger-tapping)

Sense of ownership
(finger-tapping)

*** ******
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 Sense of ownership – visuotactile 
stimulation (N = 19) 

Predictors Df residual F value p 
 
Coupling 
 
Perspective 
 
Coupling:Perspective 
 

 
147 

 
147 

 
147 

 
104.353*** 

 
8.983** 

 
5.232* 

 
< 0.001 

 
0.003 

 
0.023 

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

 Sense of ownership – finger-tapping task 
(N = 19) 

Predictors Df residual F value p 
 
Coupling 
 
Perspective 
 
Coupling:Perspective 
 

 
147 

 
147 

 
147 

 
459.467*** 

 
2.356 

 
1.278 

 
< 0.001 

 
0.127 

 
0.260 

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

 Sense of agency – finger-tapping task  
(N = 19) 

Predictors Df residual F value p 
 
Coupling 
 
Perspective 
 
Coupling:Perspective 
 

 
147 

 
147 

 
147 

 
373.005*** 

 
0.063 

 
0.021 

 

 
< 0.001 

 
0.802 

 
0.886 

 
 * p < 0.05  ** p < 0.01 *** p < 0.001 

 

Table 4. 2. Sense of ownership. ART 2-way ANOVA models summaries.  
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 Vector length R (N = 38) 
Predictors Estimate SE p 
 
(Intercept) 
 
Empatic concern (EC) 
 
Coupling 
 
Perspective 
 
Coupling:Perspective 
 
EC:Coupling 
 
EC:Perspective 
 
EC:Coupling:Perspective 

 
0.815 

 
0.003 

 
-0.139 

 
-0.038 

 
-0.292* 

 
0.002 

 
0.005 

 
0.016 

 
0.101 

 
0.007 

 
0.098 

 
0.098 

 
0.140 

 
0.007 

 
0.007 

 
0.009 

 
0.000 

 
0.618 

 
0.160 

 
0.694 

 
0.041 

 
0.697 

 
0.486  

 
0.100 

 

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

Table 4. 3. Vector length R (synchronization with metronomes). Mixed-effects model summary. 
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 Sense of ownership (N = 37) 
Predictors Estimate SE p 
 
(Intercept) 
 
Empatic concern (EC) 
 
Coupling 
 
Perspective 
 
Coupling:Perspective 
 
EC:Coupling 
 
EC:Perspective 
 
EC:Coupling:Perspective 

 
4.768 

 
-0.013 

 
0.643 

 
-0.184 

 
-2.922 

 
-0.177 

 
0.025 

 
0.207 

 
1.016 

 
0.068 

 
1.333 

 
1.333 

 
1.908 

 
0.089 

 
0.089 

 
0.128 

 
0.000 

 
0.850 

 
0.6306 

 
0.890 

 
0.129 

 
0.050 

 
0.779 

 
0.110   

 

 * p < 0.05  ** p < 0.01 *** p < 0.001 
 

Table 4. 4. Sense of ownership. Mixed-effects model summary. 
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Discussion 
The present study investigated the role of visual perspective in spontaneous dyadic 
entrainment, which is considered to be the most minimal and fundamental level of 
rhythmic interpersonal coordination (Knoblich & Sebanz, 2008; Marsh et al., 2009; Sebanz 
& Knoblich, 2009). By inducing a hand-swap illusion between partners engaged in joint 
finger-tapping, we were able to quantify overall synchronization strength and local 
attractor dynamics when they could perceive each other’s hand in 1st person, and compare 
them to an ecological mode of interaction in 2nd person. The drifting metronomes 
paradigm was adopted to guide the partners through a systematic exploration of their 
attractor landscape, to detect attractor points over the whole space of coordinative states 
(Rosso, Maes, et al., 2021). As analysis framework, joint recurrence quantification analysis 
(JRQA) (Marwan et al., 2007) yielded a relational measure to quantify the degree of 
temporal coordination within the dyad throughout the task (Marsh et al., 2009).  

In the first place, we were able to replicate the results from our previous report (Rosso, 
Maes, et al., 2021). When participants were visually coupled in a 2nd person face-to-face 
interaction, a cooperation process dominated the interaction, resulting in recurrent states 
of coordinated behavior despite the active attempt of neglecting the partner’s rhythm and 
pursue individual trajectories. Crucially, the effect was not constant over the whole 
drifting metronomes’ cycle, but rather modulated by consistent attractor dynamics. As 
dyads were driven by the metronomes through the space of relative phase values, we 
could observe the recurrence score oscillating between global maxima and global minima 
in proximity of critical regions. High recurrence score indicates high degree of temporal 
coordination within the dyad, while low recurrence score indicates temporal 
independence. When the recurrence score lingers at baseline levels for a sustained period 
of time, it means that partners managed to ignore each other and maintain their own 
tempo, tracking the de-phasing pattern of the drifting metronomes. It is in the transitions 
over these critical regions that the dynamic balance between two opposite tendencies of 
the system can be observed, namely the ‘pull’ into temporally coordinated behavior and 
the ‘push’ towards de-coupled, independent behavior. The maxima and minima of the 
recurrence score were observed around the in-phase (0) and anti-phase (π) points, which 
operated as ‘cooperation attractor’ and ‘competition attractor’ (Richardson, Marsh, & 
Baron, 2007), respectively. Whilst the partners tended to move together at a collective 
level of coupled behavior in proximity of the cooperation attractor, it became easier for 
them to pursue independent de-coupled trajectories in proximity of the competition 
attractor. 
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Moving on to the present experimental design, the main effect of Coupling revealed that 
recurrence score was on average significantly higher in coupled conditions (global 
cooperation), while its 2-way interaction with the quadratic component of Time showed a 
significant modulation by attractor points over the course of the drifting metronomes’ 
cycle (local dynamics). More specifically, recurrence score grew as a parabolic function of 
the relative phase between metronomes, finding its maximum around the in-phase point 
and its minimum right after the middle anti-phase point. As showed in Figure 4.2, when 
participants were visually coupled, both 1st and 2nd person perspectives scored on average 
above the baseline levels of the uncoupled control conditions, and exhibited the same 
depth of the parabolic curvature. Crucially, although the mutual assumption of 1st person 
perspective did not affect the global level of recurrence, it resulted in a stronger attraction 
towards the cooperation attractor in the second half of the cycle. The effect was captured 
by the significant 3-way interaction between Coupling, Perspective, and the linear term of 
Time, which indicates that the asymmetry in the parabolic curve significantly changes 
depending on the levels of perspective. Due to the manipulation, the pull towards the in-
phase attractor began earlier on in the cycle, such that participants did not manage to take 
advantage of the π region to de-couple. In our paradigm, the relative phase between the 
metronomes was manipulated as control parameter (S. Strogatz et al., 1994) from 0 to π 
(ascending) and from π to 0 (descending) radians. In this scenario, dyads tended to slowly 
transition from cooperation to competition as the metronomes’ relative phase diverged 
from 0 to π, whereas they exhibited a more abrupt transition from competition to 
cooperation as metronomes converged from π to 0. The asymmetry, observed in condition 
of 2nd person and captured by the linear term of Time in the polynomial model, was 
previously reported in the paradigm (Rosso, Maes, et al., 2021) as manifestation of 
hysteresis, namely the dependency of the dyadic system on history and directionality of 
the interaction (Richardson, Marsh, & Baron, 2007). We therefore interpret a steeper 
growth of the recurrence curves as a sign of increased hysteresis and stronger cooperation 
attractor when participants were coupled in 1st person perspective (Marsh et al., 2009). 

When explaining our finding, we first have to rule out that any differences in coupling 
strength could be explained by varying amounts of information. In fact, except the fact 
that it was rotated by 180°, the physical features of the observed hand were held constant 
across conditions (see Figure 4.1). Given the hand orientation with respect to the 
observer’s body was the only discriminant, we should ground our explanation on how the 
brain represents a bodily effector when centered on egocentric frame of reference, and 
why this would facilitate motor adaptation to temporal mismatches between performed 
and observed actions, resulting in stronger entrainment as emergent property of dyadic 
behavior. We propose two possible explanations for this. The first one, based on social 
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cognition, frames interpersonal synchronization in terms of self-other integration (Sarah 
Jayne Blakemore & Frith, 2003; G. Dumas, Moreau, Tognoli, & Kelso, 2020; Farrer & Frith, 
2002; Ole Adrian Heggli et al., 2019; Ole Adrian Heggli, Konvalinka, Kringelbach, et al., 
2021; Huberth et al., 2019; Koban et al., 2019; Novembre, Sammler, & Keller, 2016; van 
der Meer, Groenewold, Nolen, Pijnenborg, & Aleman, 2011; Varlet et al., 2020), where 
distinct but overlapping brain networks (Farrer & Frith, 2002; C. D. Frith & Frith, 1999; 
Hasson & Frith, 2016; Mitchell, Banaji, & Macrae, 2005) process information related to 
movements produced by the self and information stemming from movements observed 
in the other. To account for dynamic development of dyadic rhythmic interactions, it was 
recently proposed that self-other integration and segregation are two metastable 
attractor states underlying coupled and de-coupled behaviors, respectively  (Ole Adrian 
Heggli, Konvalinka, Kringelbach, et al., 2021). Such metastability between 
integration/segregation states maps well onto the cooperation/competition attractors we 
discussed so far.  According to this view, transitions occur as the brain selects whether it 
is more efficient to integrate perceptual information in one merged model for self and 
other, or hold two segregated models to attribute the perceived action to one of the two 
agents. The visuospatial overlap between the other’s hand perceived in 1st person and 
one’s own hand would blur the difference between self and other, promoting the merging 
of two separate models into one, tightening action-perception loops between the 
partners, and ultimately strengthening the attraction towards a coupled sate.  

The second explanation is based on a purely sensorimotor account, it does not call into 
question the representation of the other, and is based on the fact that our manipulation 
set the conditions for the brain to represent the perceived effector as actually belonging 
to the bodily self (Botvinick & Cohen, 1998; Della Gatta et al., 2016; Kalckert & Ehrsson, 
2014; Slater et al., 2008, 2009; Tsakiris, 2010, 2017; Tsakiris & Haggard, 2005). The 
mapping between actions and their sensory consequences is learned throughout a lifetime 
of sensorimotor contingencies and action-perception dependencies (Shadmehr, Smith, & 
Krakauer, 2010). Among these, everybody learns by experience to expect a temporal 
match between a movement and its visual feedback as perceived in 1st person. This implies 
that the brain employs forward models (S. J. Blakemore et al., 1999; S.-J. Blakemore, 2017) 
for actions generated by the embodied hand, and would in turn engage in error correction 
when the observed movement does not temporally match the predicted outcome of the 
executed movement. Sensory prediction errors drive motor adaptation in terms of 
movement trajectory (Mazzoni & Krakauer, 2006), velocity (Smith, Ghazizadeh, & 
Shadmehr, 2006; Wagner & Smith, 2008), and timing (Furuya & Soechting, 2010; Maes et 
al., 2015). Interestingly, the mirror neurons system (Heyes & Catmur, 2022) literature 
supports the idea that activating inverse and/or forward models via action observation 



Chapter 4 

 103 

requires a visuospatial transformation process, to remap the movement into an egocentric 
frame of reference (Oh et al., 2019). This supports the idea that spatial perspective taking 
is an embodied cognitive process, in fact the internal emulation of a physical alignment of 
perspectives (Klaus Kessler & Thomson, 2010). Noteworthy, such transformation comes 
with a processing cost which is a function of the angular disparity between the observer 
and the actor (Graf, 1994; Keehner et al., 2006; K. Kessler, 2000; Klaus Kessler & Thomson, 
2010; May, 2004; Wraga et al., 2005; Zacks & Michelon, 2005), as if the observer was 
internally simulating a rotation into the other’s point of view. In a dyadic setting, such 
putative process can be bypassed with the technological means deployed in the present 
study.  

We point out that the sensorimotor account is more parsimonious as compared to the 
socio-cognitive one, and more conservative in its assumptions. Whereas general theories 
of brain functioning differ in the assumption that individuals mutually adapt their 
behaviors based on internal models of the other, they are unified by the shared principle 
of error minimization (Palmer & Demos, 2021). The validation of either theory is out of the 
scope of the present work, and we are far from providing conclusive evidence on this 
matter. Therefore, we lean in favor of the more parsimonious interpretation based on 
error correction as tenet shared principle. In doing so, we treat dyadic entrainment as 
property of collective behavior emerging from the interaction, and highlight the 
effectiveness of the manipulation in tightening the coupling between individuals.  

To complement the behavioral findings, we hereby discuss the subjective experiential 
correlates of mutual embodiment via body-swap. During the visuo-tactile stimulation 
procedure, participants were capable of systematically discriminating their own hand from 
the partner’s, and showed a general preference for either hand when viewed from a 1st 
person perspective. These results came with no surprise, since behavioral and 
neurophysiological evidence supports the existence of a bodily-self recognition 
mechanism reliant on visual and sensorimotor representations of the hand (Galigani et al., 
2021), while the hand orientation with respect to bodily coordinates is a crucial aspect to 
meet the conditions for embodiment (Pavani et al., 2000). The crucial finding is the 
interaction effect between factors, showing that the hand of a partner can in fact be 
integrated in the bodily representation of the self to a greater extent when visually 
presented in 1st person, as compared to the 2nd person perspective (see Figure 4.3A). 
These results confirm the success of our body-swap procedure in eliciting an experiential 
counterpart to our behavioral findings, suggesting that the putative overlap of self-other 
representations thought to underpin interpersonal synchronization (Ole Adrian Heggli, 
Konvalinka, Kringelbach, et al., 2021; Koban et al., 2019) may leverage on the plasticity of 
bodily representations (Tsakiris, 2010, 2017). In sum, the explicit measures based on self-
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reports are coherent with the implicit measures based on attractor dynamic within the 
dyad. Nevertheless, when asked about sense of ownership and sense of agency 
experienced during the joint finger-tapping task, participants could very well discriminate 
between their own’s and their partner’s hands regardless of the visual perspective (see 
Figures 4.3B and 4.3C). Sense of ownership subsists as long as sensorimotor congruency is 
maintained (Kalckert & Ehrsson, 2012; Konstantina Kilteni, Maselli, Kording, & Slater, 
2015; Petkova & Ehrsson, 2008), and sense of agency breaks down when the timing of 
sensory feedback does not match the prediction (Haggard, Clark, & Kalogeras, 2002; 
Kalckert & Ehrsson, 2012). However, temporal congruency was not constant throughout 
the task, but rather varying as a function of the drifting metronomes’ cycles, which likely 
led to the breakdown of both illusions of ownership and agency. We should point out that 
questionnaire items suffer the major flaw of referring to the task as a whole, whereas from 
our standpoint the most interesting behavioral findings came from an analysis of local 
dynamics over the course of the interaction.   

Finally, we did not find evidence for any association between empathic traits and the 
proneness to synchronize with the partner when coupled in any visual perspective. This 
was unexpected, since the link appears to be well documented in the literature (Tzanaki, 
2022) and resonates with the idea that attraction to coordinated states is to some extent 
informative of the most minimal socioemotional connectedness (Marsh et al., 2009). We 
propose that the negative finding may be attributed to the rigorous competitive nature of 
the drifting metronomes. Arguably, when task constraints are looser, there is more margin 
for more empathic participants to intentionally cooperate with each other. On the other 
hand, the observation that recurrence score systematically dropped as the partners got 
further away from the cooperation attractor region, shows that our participants 
consistently attempted to comply with the task and intentionally neglect the partner. We 
conclude that, when controlling for intention as mediator of dyadic entrainment, the task 
revealed a dissociation between low-level dyadic entrainment and high-level cognitive 
empathy. However, among the dimensions of empathy hereby considered (Davis & 
Others, 1980), empathic concern stood out as predictor for the subjective ratings of 
embodiment. Specifically, higher emotionality and concern for others predicted a stronger 
inclination to experience ownership over the hand of another person. This points at the 
interplay between empathy and the mechanisms underlying embodiment, transferring 
evidence for such associations from the VR literature (Peck et al., 2018, 2020, 2013; 
Thériault et al., 2021) to partial body-swap with a real human partner. This particular 
dimension of trait empathy should not be neglected when adopting the technology for 
real-world applications, since the evidence suggests it may be a personal variable relevant 
to the outcome of the manipulation. 
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Conclusions 
The main aim of the present work was to assess whether interpersonal coordination can 
be facilitated by experimentally inducing the 1st person view of a partner during a rhythmic 
interaction, as compared to the ecological mode of interaction in 2nd person. Our results 
support the idea that such manipulation strengthens the coupling between interacting 
individuals, promoting the cooperation process which facilitates the units of a dyadic 
system to move together at the collective level of behavior (Rosso, Maes, et al., 2021). 
From a socio-cognitive viewpoint, we put forward that the dynamic balance between 
cooperation and competition processes may be underpinned by metastable self-other 
integration and segregation processes taking place in individual brains during the 
interaction (Ole Adrian Heggli, Konvalinka, Kringelbach, et al., 2021). The induction of 
mutual embodiment would then facilitate transitions towards integration and cooperation 
within the dyad. Whilst this interpretation is plausible, the study does not provide 
conclusive evidence for a socio-cognitive account. We argue that an explanation based on 
sensory prediction and adaptation in motor control (Shadmehr et al., 2010) would be more 
conservative, for it does not make assumptions on the representation of the other in the 
brain, while accounting for error correction mechanisms leading to dyadic entrainment as 
emergent property of the interaction.   

The major fundamental contribution of our work lies in the observation that dyadic 
coordination dynamics are subject to the manipulation of visual perspective. Whatever 
the cognitive mechanism behind, our findings show that we can use it to steer social 
interactions, supporting joint action by enhancing interpersonal synchronization. Based 
on our findings, we propose that a technology informed by principles of body-swapping 
(Petkova & Ehrsson, 2008) has a considerable potential to facilitate interpersonal 
coordination across a broad range of applications, providing an unprecedented resource 
in motor training, sports, musical education, and rehabilitation protocols.  

 

Methods 
Participants. Forty (N = 40) right-handed participants took part in the study (28 females, 
12 males; mean age = 31.42 years, standard deviation = 7.49 years). In order to control for 
gender bias in the interaction, they were divided in two gender-matched groups and 
randomly paired in twenty (N = 20) dyads. One dyad was excluded from dyadic analyses 
due to failure to comply with the instructions. One participant was excluded from the 
analysis of self-reported ownership due to a technical problem in the video streaming 
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during the procedure. None of the participants had history of neurological, major medical 
or psychiatric disorders. All of them declared not to be professional musicians upon 
recruitment, although some of them had musical experience. None of the participants 
declared to know the assigned partner from before the experiment. The study was 
approved by the Ethics Committee of Ghent University (Faculty of Arts and Philosophy) 
and informed written consent was obtained from each participant, who received a 20€ 
coupon as compensation for their participation.  

 

Experimental apparatus and procedure. Partners were sitting across the same table, 
facing each other. During the preparation phase, they were assisted in wearing a black 
cloth over the whole body and a long red glove over the right hand, with the purpose of 
rendering the visual scene as neutral as possible and minimizing individual differences 
related to personal clothing and skin texture. Before proceeding further, each individual 
participant underwent a period of familiarization with the finger-tapping task. Specifically, 
an auditory metronome was presented via in-ear plugs and he/she was instructed to tap 
the right index finger on a circular pad placed on the table. The experimenter showed how 
tapping was supposed to be performed, so that both partners would adopt a common 
style during the task. Pink noise was played on the background of the metronomes, with 
volume adjusted so that each participant could clearly hear the metronome but not the 
feedback of their own tapping on the pad.  

Participants were then equipped with HTC Vive Pro 2 headsets for immersive virtual reality 
(VR) environments, and underwent the standard calibration procedure as implemented 
by the manufacturer. Each set was connected to a different computer, running a Unity 
executable which took video input from a Logitech Brio Ultra HD Pro Business webcam 
(USB 3.0) and streamed it to the head-mounted display. The setup allowed to present an 
immersive photorealistic view of the right hand up to the forearm. The hand could be seen 
in either 1st or 2nd person perspectives, and could either pertain to one’s own or to the 
partner, depending on the experimental condition. Before each condition had taken place, 
the factor Perspective was manipulated by placing 2 cameras above the shoulder of the 
participant (1P) or in front of the partner’s hand (2P). The factor Ownership was 
manipulated by simply swapping the USB connection of the cameras to the respective 
computers, so that participants would perceive their own (Self) or the partner’s (Other) 
hand. The resulting visual scenes can be seen in the details of Figure 4.1 from all levels of 
Perspective and Ownership across experimental conditions. Extensive testing prior to the 
beginning of the study resulted in an average video latency of 96ms for streaming 1080p 
video at a frame rate of 60Hz. Previous pilots and qualitative interviews with the 
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participants revealed that the delay was barely perceivable, and in most cases not noticed 
at all.  

In order to collect subjective reports of the sense of ownership over the visually perceived 
hand, we carried out the following procedure before starting each experimental condition. 
Both participants were asked to stay relaxed while the experimenter placed their right 
hand on a cardboard surface on the table, above the assigned tapping pad. They were 
instructed to watch for one minute the hand that would appear in the head-mounted 
display shortly thereafter, and to not move their own hand despite whatever would 
happen in the visual scene. From the moment the experimenter launched the video 
streaming, participants saw the hand lying still on a cardboard in front of them for 30 
seconds (which hand and from which perspective depended on the experimental 
condition, as illustrated in the details of Figure 4.1). For the following 30 seconds, the 
experimenter applied synchronous touches on the back of the hand of both participants. 
Next, the visual scene went blank, and the participants were verbally asked the following 
question: “On a scale from 1 to 5, how much did you feel like the hand that you were 
seeing belonged to you?”. The response was given in silence by raising the fingers of the 
left hand, in order not to bias the partner and to not induce motor activity in the 
stimulated hand.    

What follows is the description of the ‘drifting metronomes’ paradigm, as originally 
described in Rosso et al. (Rosso, Maes, et al., 2021). Each partner was assigned to one pad 
and instructed to tap on it with the right index finger, synchronizing with an auditory 
metronome. The two metronomes slightly differed in tempo (1.67Hz and 1.64Hz), 
whereas the timbre remained the same. With the start of the two metronomes’ tracks 
aligned, the relative phase between metronomes started at 0º and steadily increased in 
regular steps of 5.6º. A full cycle took 39.008 seconds to be completed (65 and 64 clicks of 
the faster and slower metronome, respectively). Ten consecutive cycles were performed 
in each experimental condition. In conditions of informational coupling, participants were 
instructed to ignore their partner and to tap along with the assigned metronome. 
Participant’s chairs were provided with an armrest, in order to exclude any tactile or 
proprioceptive coupling due to vibrations of the table resonating with finger taps. 

A M-Audio® M-Track 8 soundcard was used to route independent audio channels to each 
participant via in-ear plugs. The average audio latency from tapping pad to earplug was 17 
ms, with a standard deviation of 2 ms. Ableton Live 10 ® was used as main interface for 
stimuli presentation, with 2 separate MIDI tracks triggering the metronome’s audio 
sample. A Teensy 3.2 microcontroller was used as serial/MIDI hub in the setup: tapping 
onsets were detected with 1ms resolution using analog input of strain gauge sensors 
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installed inside the pads, while metronomes onsets were logged using MIDI messages 
originating from Ableton. Each class of events (metronomes 1 and 2, finger-taps from 
participants 1 and 2) was retrieved by means of a predefined ID number. Simultaneous 
EEG recordings were performed from both partners of the dyads during the whole 
experiment, but such data are not presented in the present paper. Additional data were 
collected prior and during the experiment. Prior to the experiment, demographical data 
were collected; the Edinburgh inventory (Oldfield, 1971) was administered to assess the 
right handedness of the participants; the 28-items version of the Interpersonal Reactivity 
Index (IRI) (Davis & Others, 1980) was administered as a self-report of empathy and its 
subscales. During the breaks between experimental conditions, all participants provided 
subjective self-reports on different aspects of the task by expressing agreement on a scale 
from 1 (“Completely disagree”) to 7 (“Completely agree”) with a custom-made battery of 
11 Likert items. Among these, the sense of ownership and sense of agency experienced 
during the task were measured by asking to rate the respective following items: “I felt like 
the hand that I was seeing belonged to me”, and “I felt like it was me moving the hand 
that I was seeing”. For the sake of conciseness, we reported the analyses of the ones 
related to the core research questions, namely sense of ownership and sense of agency.  

Participants were monitored by the experimenters from behind curtains, where the visual 
scene of their headsets was visible on two separate screens. Dyad #7 was excluded from 
the analysis, given that one participant was unable to comply with instructions during 
Condition #4.  

 

Data Analysis  

Pre-processing. Over the course of 10 consecutive metronomes’ cycles, 650 and 640 
tapping onsets were expected from the partners forming each dyad, for the total duration 
of 390 seconds. Onsets occurring <350ms from the previous one, were considered false 
positives and removed, since participants could occasionally push the pad for too long or 
accidentally lay their hand on it. Out of the whole sample, 59 false positive were removed, 
corresponding to 0.06% of all data points. The cleaned timeseries were then interpolated 
with a sine function at 1kHz sampling rate, providing an estimate of the oscillators’ 
positions on its cycle with a temporal resolution of 1ms. The tap preceding the first 
metronome onset and the last tap following the last metronome onset were included in 
the interpolation. Afterwards, data points outside the boundaries of the metronomes 
timeseries were removed. Operationally, the procedure guaranteed equally sized 
timeseries without loss of data, which was a requirement for the application of joint 
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recurrence quantification analysis (JRQA; see next paragraph). The modelling of systems 
of coupled oscillators in the context of joint finger-tapping studies conceptually supports 
the choice of interpolation (Ole Adrian Heggli et al., 2019; Rosso, Maes, et al., 2021). 
Finally, timeseries were down-sampled by a factor of 4 to make computation of recurrence 
plots (RPs) computationally feasible. As shown in our previous report, results of JRQA are 
robust to the choice of the down-sampling factor.  

 

Phase-space reconstruction. In accordance with Takens' embedding theorem (Takens, 
1981), we reconstructed the phase space of individual finger-tapping behaviors. This was 
done based on time-delayed copies of the input time series uk, applying an embedding 
dimension m and a time delay τ. 

 

x⃗(t)	=	x⃗i	=	(ui,	ui+τ,	…	,	ui+(m−1)τ),		 t	=	iΔt	

 

where x⃗(t) is the vector of reconstructed states in the phase-space at the time t. Optimal 
parameters for the time-delayed embedding were computed for each participant, for the 
time course of each single metronome’s cycle in all experimental conditions. The resulting 
mean value was applied to all individual instances. The reason for this approach is that in 
order to compare the rate of recurrences across conditions at the group level, the 
embedding procedure must be consistent across participants (e.g., see (Afsar et al., 2018), 
for an example of parameter selections in a factorial design). We first selected the delay τ 
as the first local minimum of mutual information index (Fraser & Swinney, 1986) in 
function of delay. This approach minimized the timeseries self-similarity, extracting nearly 
orthogonal components and preventing the attractor from folding over itself (Bradley & 
Kantz, 2015). Mean value of delay resulted to be τ = 7. Next, we determined the number 
of embedding dimensions with the method of false nearest neighbor (Rulkov et al., 1995). 
Specifically, we progressively unfolded the time series into higher dimensions until data 
points did not overlap spuriously, finding an optimal mean embedding of m = 2. Finally, in 
accordance with the literature, the maximum threshold for counting two neighboring 
points as recurrent was set at 10% of the maximal phase-space diameter (Marwan et al., 
2007).  
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Joint recurrence plots (JRPs). A recurrence plot 𝑅1,:	is a square array used to represent and 
quantify recurrences of states in the phase space of a system (Eckmann et al., 1995). For 
every point of the phase space trajectory:  

 

x⃗i		(i	=	1,	…,	N;	N	=	n	–	(m-1)	τ)	

 

we tested whether it was close to another point of the trajectory x⃗j based on a 
neighborhood threshold. Individual recurrence plots were computed as follows: 

 

𝑅1,:(𝜀) = 	𝛩(𝜀 −	E𝑥1 −	𝑥:E) 

  

where ε is the neighborhood threshold, ‖ ⋅ ‖ is the Euclidean norm, representing the 
distance between two vectors, and Θ is the Heaviside step function. A square matrix was 
returned from each phase-space, containing 1s for all the instances where the distance ‖ · 
‖ was smaller than the threshold ε, and 0s for remaining elements. A joint recurrence plot 
(JRP) was computed for each dyad by pair-wise overlapping partners’ individual RPs, and 
keeping 1s only the instances where both plots contain a recurrence. Each JRP is in fact 
the Hadamard product of the recurrence plot of the first participant and the recurrence 
plot of the second participant. Computation of JRPs was carried out using the crp toolbox 
for Matlab ® (Marwan et al., 2007). 

The 10 trials (i.e., the metronomes’ cycles) of each experimental condition were 
aggregated by summing the respective JRPs of each trial. This resulted in a 2-D matrix for 
which every entry contained the amount of recurrences occurring in the corresponding 
region of the cycle, across all trials. Finally, a 1-D vector recurrence scores was obtained 
by looping over the columns of the matrix and summing the counts contained in the rows. 
This vector represents a density measure of the instances of coupled behavior over the 
course of the metronomes’ cycle. The scale of these recurrence scores depend on the size 
of the JRPs and in turn on the embedding procedure, which makes it necessary to set the 
same parameters on the whole sample. In order to improve signal-to-noise ratio and avoid 
over-sampling in view of our statistical model, the resulting timeseries were reduced to 64 
bins by averaging the recurrence score for equally sized, consecutive time periods. For this 
segmentation, interval size was equal to the slower metronome’s increments, as they 
provided a regular subdivision intrinsic to the experimental trials. All processing steps 
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presented were carried out in Matlab ®. Our approach was preferred over the version for 
JRQA based on moving windows, for the latter would act as a low-pass filter on our 
timeseries and hinder the interpretation of our results. Specifically, a moving window 
result in a phase distortion of the timeseries dependent on window size, and is thus not 
reliable in detecting attractor points over the attractor landscape. Since the procedure 
hereby described reproduced exactly the steps in Rosso et al. (Rosso, Maes, et al., 2021), 
the content of the present paragraph is taken from the original work with the consent of 
the authors. Values for the embedding dimension and delay do differ from the original 
work, because they were optimized for the present dataset. 

 

Statistical models. The recurrence score was used as response variable in a mixed-effects 
model with Coupling and Perspective as factors, and Time as a continuous predictor 
expressed with the indexes of the metronome’s steps (from 1 to 64). Given the non-linear 
time-course observed in coupled conditions, we adopted the method of orthogonal 
polynomials (Mirman, 2017) including linear and quadratic functions of Time into our 
model. Dyads and interactions between Dyads and the factors were modelled as random 
effects on all polynomial terms, to account for the individual variability in synchronization 
skills and individual susceptibility to coupling across the experimental manipulations. The 
random effects structure was used in order to minimize false alarm rates without 
substantial loss of power (Barr et al., 2013). Informed by our previous study and by the 
inspection of empirical curves from the present dataset, we limited the polynomial model 
to the 2nd order as the most parsimonious solution. In this analysis framework, the 
intercept is considered a ‘zero-order’ polynomial, as it exhibits zero changes in any 
direction. Significant changes of direction indicate modulation by the temporal structure 
of the task. This allowed us to quantify the influence of attractor points, as the dyad 
deviated from the horizontal trajectory transitioning over expected critical regions. The 
formula of the full model is the following: 
 

𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	~	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O) ∗ 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ∗ 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 + (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝐷𝑦𝑎𝑑)
+	 (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝐷𝑦𝑎𝑑: 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔: 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒)	 

 

Aligned rank transform (ART) ANOVA (Wobbrock et al., 2011) was used to test the 2-way 
interaction between factors on the ratings of sense of ownership over the visually 
perceived hand, which as an ordinal response variable does not conform to the 
assumptions of a parametric factorial ANOVA. The same model was fit to the ratings of 
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sense of ownership and sense of agency referring to the joint finger tapping task. The 
formulas of the ART ANOVA models are the following: 

 

𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝	~	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ∗ 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒	 

𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝_𝑡𝑎𝑠𝑘	~	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ∗ 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 

𝐴𝑔𝑒𝑛𝑐𝑦_𝑡𝑎𝑠𝑘	~	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ∗ 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 

  

The 3-way interactions of the IRI empathy subscales (Davis & Others, 1980) with the 
factors were tested by fitting separate mixed-effects linear models for every subscale on 
the synchronization consistency (with the assigned metronome) and on the ratings of 
ownership. Subjects were modelled as random effects. The formulas of the two linear 
models are the following: 

 

𝑅	~	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ∗ 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 ∗ 𝐼𝑅𝐼stusvwxy + 	(1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡) 

𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝	~	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ∗ 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 ∗ 	𝐼𝑅𝐼stusvwxy + 	(1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡) 

 

Statistical analyses were carried out in R (version 4.0.3). lme4 (Bates et al., 2014) and 
ARTool (Kay, Kay, & Wobbrock, 2020) packages were used for model fitting.  

  



Chapter 4 

 113 

Data and code availability 

Data and code have been deposited at Mendeley and are publicly available as of the date 
of publication (https://data.mendeley.com/datasets/24njbrmyjj/1). 

DOI: 10.17632/24njbrmyjj.1 
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Introduction 

The capability of predicting each other’s actions is foundational to human interaction 
(Chris D. Frith, 2007). Without that, we might imagine a social world wherein individuals 
are doomed to act and react at the wrong time, making interpersonal synergies 
burdensome at best. In such a world, even common routines such as taking turns in a 
conversation would be extremely demanding. Playing music, sports or games together 
would be impossible. All these types of joint action crucially rely on prediction and 
anticipation, as reaction alone is insufficient to explain the vast spectrum of complexity 
covered by human interactions (Sebanz et al., 2006; Sebanz & Knoblich, 2009).  

Recently, important knowledge has been obtained from studies using minimalistic forms 
of joint action such as finger tapping (for a review, see Bruno H. Repp & Su, 2013). These 
types of reduced paradigms offer a highly controlled, yet informative, way of investigating 
motor control in minimal social interaction (Konvalinka et al., 2010; Novembre, Knoblich, 
Dunne, & Keller, 2017). Behavioral evidence from joint action experiments have led to the 
proposal that mutual predictions and shared predictive models may constitute the 
cognitive machinery behind interpersonal synchronization (Ole A. Heggli et al., 2019; 
Koban et al., 2019; Konvalinka et al., 2010; Pecenka & Keller, 2011; Rosso, Maes, et al., 
2021). Although the behavioral phenomenon could be explained from the perspective of 
dynamical systems, without assuming that individuals hold internal models of the 
environment (Demos et al., 2019; Roman et al., 2019; Stepp & Turvey, 2010; Washburn et 
al., 2017), its underlying neural mechanisms are yet to be mapped (Palmer & Demos, 
2021). To this date, this is a topic under active investigation and the main subject of the 
present work.  

A promising framework for investigating the neural mechanisms of interpersonal 
interactions comes from predictive accounts of brain functioning, which in the past 
decades have been establishing themselves as general theories of cognition (Clark, 2013; 
K. Friston, 2005, 2010; K. Friston et al., 2011). The influence of such framework has 
expanded from the study of the social brain (Chris D. Frith, 2007) to related fields such as 
interpersonal synchronization (Koban et al., 2019), speech processing (Rimmele, Morillon, 
Poeppel, & Arnal, 2018) and music cognition (Marc Leman, 2016; Vuust et al., 2018; Vuust 
& Witek, 2014). The body of evidence suggests that predictive processing underlies 
common low-level neurophysiological mechanisms across cognitive domains.  

One likely neuronal candidate for low-level interpersonal synchronization is beta 
oscillations of ~20 Hz, which are thought to encode prior representations of the 
environment (Betti, Della Penna, de Pasquale, & Corbetta, 2021). This narrow frequency 
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range exhibits functional specificity for top-down processes such as attentional gain (Lee, 
Whittington, & Kopell, 2013; Nobre & van Ede, 2018; Van Ede, De Lange, Jensen, & Maris, 
2011; van Ede, Jensen, & Maris, 2010) and predictions of causal events (van Pelt et al., 
2016). Beta power (i.e., the squared magnitude of beta oscillations) is an index of 
integration and global efficiency of the brain network as a whole, and its fluctuations 
reflect variations in the level of integration (de Pasquale, Corbetta, Betti, & Della Penna, 
2018; De Pasquale, Della Penna, Sporns, Romani, & Corbetta, 2016). These slow dynamics 
have been put forward as suitable candidate to represent the time-varying structure of 
external events (Betti et al., 2021). Crucially, it seems to play an important role in the 
interplay between sensory and motor systems, which ultimately allows us to move in an 
environment while adaptively responding to its stimuli (Crapse & Sommer, 2008). 

Compelling evidence points to beta dynamics as the potential cornerstone for intra- and 
inter-personal levels of motor control. When humans perform rhythmic behaviors such as 
finger-tapping, beta activation in sensorimotor regions is periodically modulated as a 
function of movement cycles (M. Seeber, Scherer, & Müller-Putz, 2016). A similar cyclical 
pattern of beta modulation has been observed in primary auditory areas in response to 
rhythmic auditory stimuli, under the condition that these are presented in a predictable 
temporal structure (T. Fujioka et al., 2009; Takako Fujioka et al., 2015). In the visual 
domain, beta amplitude in the primary motor cortex reflects the sensitivity to predictable 
visual stimuli relevant to a motor task (Saleh, Reimer, Penn, Ojakangas, & Hatsopoulos, 
2010). Furthermore, beta suppression is consistently observed in the primary 
sensorimotor cortex in anticipation of predictable tactile stimuli, and associated with 
faster behavioral responses to such stimulation (Van Ede et al., 2011). The mechanism is 
thought to reflect temporal orienting of attention, via a dynamic allocation of neural 
resources which facilitates perception (Nobre & van Ede, 2018). More recently, it was 
shown that beta power expresses cerebellar “clocking activity” (L. M. Andersen & Dalal, 
2021) which may serve to track environmental inputs and prepare the alignment of motor 
outputs when the context requires it. Beta dynamics based on power modulation appear 
to be a common denominator when it comes to predictions, since evidence converges 
towards a shared timing mechanism which the brain might use to pace behavior to 
rhythmic stimuli, via action-perception loops based on predictive control.  

In social environments, other humans represent exceptionally salient social stimuli, and a 
unique class of rhythmic affordances for the motor system (Phillips-Silver et al., 2010). 
Humans have a strong tendency to synchronize their movements with each other, often 
spontaneously (Oullier et al., 2008; Richardson, Marsh, Isenhower, et al., 2007; Shockley, 
Santana, & Fowler, 2003) or even against explicit instruction to ignore each other (Rosso, 
Maes, et al., 2021). Interestingly, the brain decodes the kinematics of visually perceived 
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movements via modulation of beta power (G. Zhou, Bourguignon, Parkkonen, & Hari, 
2016), and evidence from a dual-brain stimulation paradigm suggests that 20 Hz bursts 
over the motor cortex causally contribute in establishing and maintaining synchronous 
dyadic behavior (Novembre et al., 2017). 

In this study, we hypothesized that the human brain may rely on a shared mechanism 
based on beta modulation, both to track self-generated behavior and to predict the 
behavior performed by another individual. In order to test this hypothesis, we analyzed 
dual-EEG data recorded during an interpersonal synchronization task. In the ‘drifting 
metronomes’ paradigm (Rosso, Maes, et al., 2021), dyads of participants were cued with 
metronomes set at different frequencies, and depending on the condition they perceived 
each other visually or auditorily. In contrast to most dual-EEG experiments which focus on 
measures of interbrain synchronization, we here computed a beta power timeseries for 
each participant as an intrabrain measure (Hamilton, 2021), and coupled it to movement 
cycles produced by oneself (Self) and by the partner (Other). Whilst there is evidence that 
some interbrain coupling measures are genuinely related to aspects of social interaction, 
their interpretation is not always transparent, and their susceptibility to spurious 
correlations calls for extra caution (Burgess, 2013; Czeszumski et al., 2020). Given a 
minimalistic joint finger-tapping task and the control over the perceptual coupling 
between partners, we explicitly modelled the neural dynamic of interest as a function of 
overt behavior occurring in the interaction. In presence of mutual coupling, we expected 
to observe cyclical beta power modulation in each individual, corresponding to 
movements performed by Self and Other (Figure 5.1). 
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Figure 5. 1. Beta modulation by Self and by Other. The figure shows a schematic representation of two participants 
engaged in a joint finger-tapping task, while undergoing dual-EEG recording. For both of them, a high-frequency 
component of interest was extracted from the neural timeseries (the ‘carrier’, at ~20 Hz), and a low-frequency 
signal from the behavioral timeseries (the ‘modulator’, at the tapping frequency). The dashed arrows represent 
two instances of beta modulation operationalized in the same setting: the blue one represents modulation by self-
generated tapping cycles, whereas the red one represents modulation by other-generated tapping cycles. The 
plots on the bottom show the envelope of the neural signal as amplitude-modulated by both Self (blue) and Other 
(red). Whilst we expected to find a periodic modulation by Self due to the finger-tapping task per se, we expected 
to observe modulation by Other exclusively in conditions where the partners were able to perceive each other’s 
movement. The signals hereby represented are simulated and shown for illustrative purposes only. 
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Figure 5. 2. Experimental design. The experiment consisted of a 2 x 2 factorial structure: Modality (Visual, Auditory) 
x Coupling (Coupled, Uncoupled). The design resulted in the following conditions. 1. Visually Coupled. Participants 
were instructed to synchronize their finger-tapping with an auditory metronome, while looking at the partner’s 
hand. The view of their own hand was hidden by a screen placed on the table. 2. Visually Uncoupled (control). 
Participants were instructed to synchronize their finger-tapping with an auditory metronome, while looking at 
their own hand. The view of the partner’s hand is hidden by a screen placed on the table. 3. Auditorily Coupled. 
Participants were instructed to synchronize their finger-tapping with a flickering LED, while hearing the 
sonification of the partner’s tapping. The view of both participants’ hands was hidden by screens placed on the 
table. They were informed that the sounds they would hear were produced by the partner. 4. Auditorily Uncoupled 
(control). Participants were instructed to synchronize their finger-tapping with a flickering LED, while hearing the 
sonification of their own tapping. The view of both participants’ hands was hidden by screens placed on the table. 
They were informed that the sounds they would hear were produced by themselves. In coupled conditions (1 and 
3), participants were clearly instructed to neglect the movements produced by the partner and to synchronize 
with the assigned metronome at all times. The figure is adapted from (Rosso, Maes, et al., 2021), and includes the 
representation of the dual-EEG setup.  
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Materials and Methods 
1. Participants   

Twenty-eight (N = 28) participants took part in the study (18 females, 10 males; mean age 
= 29.07 years, std = 5.73 years). All of them were right-handed, without history 
of neurological or psychiatric disorders. None of them was a professional musician, 
although some had musical experience. Handedness was assessed by means of the 
Edinburgh Handedness Inventory (Oldfield, 1971). Upon recruitment, participants 
were divided by gender and randomly paired. The experiment was approved by the Ethics 
Committee of Ghent University (Faculty of Arts and Philosophy) and informed written 
consent was obtained from each participant. Participants received a 15€ voucher as 
economic compensation for their time.  

 

2. Behavioral Task  

The two partners forming a dyad were sitting at the same table facing each other. In order 
to avoid any tactile or proprioceptive coupling, they were asked to lay their elbow on an 
armrest at all times and avoid contact with the table. Each partner was assigned to one 
circular tapping pad and instructed to tap on it with the right index finger, with the goal of 
synchronizing with a metronome. Depending on the experimental condition, the 
metronome could either be auditory or visual, and the partner was always perceived in 
the complementary modality. Each partner was cued with a slightly different metronome 
tempo (100 BPM and 98.5 BPM, or 1.67 Hz and 1.64 Hz respectively in terms of 
frequencies), resulting in a pattern of continuous de-phasing. Hence, the metronomes’ 
relative phase gradually increased from 0 to π radians, and then decreased from π to 0 
radians over the course of 10 consecutive cycles, for a total duration of 390 seconds. 
Participants were always instructed to ignore the partner and tap along with the assigned 
metronome. For more details on the implementation and the rationale of the behavioral 
task, we refer to (Rosso, Maes, et al., 2021). Setup and experimental design are illustrated 
in Figure 5.2. 

Demographic data were collected before the experiment, along with the administration 
of the Edinburgh Inventory for handedness assessment and the Interpersonal Reactivity 
Index (IRI) (Davis & Others, 1980). After every experimental condition, participants 
provided self-reports on different aspects of the task by expressing agreement on a scale 
from 1 (“Completely disagree”) to 7 (“Completely agree”) with a custom-made battery of 
11 Likert items. The complete battery is provided as Supplementary material.  From the 
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whole battery, we analyzed two items which are relevant to the present study: “I found it 
difficult to keep the tempo of my metronome”, and “I felt in control over my own actions”.  

 

3. Experimental apparatus   

Each participant was provided with a circular pad containing a strain gauge pressure 
sensor, used to detect tapping onsets with a 1 ms resolution. This was connected to a 
Teensy 3.2 microcontroller, which worked as serial/MIDI hub to log the data and 
communicate with the other devices. A detailed description of the setup, behavioral data 
acquisition, stimuli generation and audio routing can be found in (Rosso, Maes, et al., 
2021). At the beginning of each metronomes’ cycle, a TTL trigger was sent from the Teensy 
microcontroller to the EEG amplifier via BNC connection, guaranteeing the synchrony of 
behavioral and neural timeseries. The EEG signals were recorded with an ANT-
Neuro eego™mylab system at a sampling rate of 1 kHz. Each participant was equipped 
with an EEG headset (64-channel waveguard™original with Ag/AgCl electrodes).  

 

4. Behavioral data processing   

Since participants could occasionally produce an artificial ‘double tap’ by pushing the pad 
for too long, we removed events whenever an onset followed the previous one by less 
than 350 ms. Subsequently, we calculated the phase time-series from every participant’s 
taps by interpolating the onsets as a ramp wave at 1 kHz sampling rate and scaled to 2π 
radians. Via this procedure, we explicitly modelled the participants as oscillators (Ole 
Adrian Heggli et al., 2019) and provided an estimate of their phase with a temporal 
resolution of 1 ms. Data processing was carried out in Matlab®.  

 

5. Dual-EEG data acquisition 

Each participant was equipped with a 64-channels waveguardTMoriginal EEG headset (10-
10 system, with Ag/AgCl electrodes). Two ANT-Neuro eegoTMmylab systems were 
connected in cascade to synchronize the recordings, which were performed at a sampling 
rate of 1 kHz. Each pair of headsets shared a common ground, and “CPz_partner1” was 
used as common reference electrode for both of the partners. Impedances were 
monitored in the eegoTM software environment and kept below 20 kΩ.  
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6. EEG pre-processing  

The pre-processing pipeline was written using functions from the Fieldtrip toolbox for 
Matlab (MathWorks Inc, USA). Bad channels were identified by visually inspecting the raw 
timeseries and the distribution of variance across channels. For every dyad, the 128-
channels recordings were divided in 2, and re-referenced to the electrodes 
“CPz_partner1” and “CPz_partner2”, respectively. Only after the rejection of bad 
channels, we re-referenced the two recordings to the average of all the respective 64 
electrodes, to avoid noise leakage into the common average. An average of 1.14 bad 
channels per participant were removed (std = 2.07). A high-pass sixth-order Butterworth 
filter with a 1 Hz cut-off was applied to the raw recordings to remove slow drifts, a 
conservative threshold given the length of the recordings. A low-pass sixth-order 
Butterworth filter with 45 Hz cut-off was applied to remove high-frequency muscular 
activity. A fourth-order notch filter centered at 50 Hz was applied to remove power-line 
noise up to the 3rd harmonic.   

Blinks and eye-movement artifacts were removed by means of visual inspection of 
topographical maps and component activation timeseries. For this purpose, we ran 
independent component analysis (ICA) using the ‘runica’ algorithm as implemented in 
Fieldtrip, excluding the reference ‘CPz’ and the bad channels’ timeseries from the input 
matrix. Only those components which exhibited the stereotypical frontal distribution 
generated by blinks and lateral eye movements were removed. The selection was limited 
to few unambiguous components for the sake of replicability. A minimum of 1 and a 
maximum of 3 components were removed for every participant. The dataset was 
inspected prior to ICA decomposition and the following ICA back-projection. Special 
attention was given to frontal clusters of electrodes, where the activation of the artifactual 
components was maximal. Rejected bad channels were reconstructed after artifact 
removal, by computing a weighted average of activity from neighboring electrodes.  No 
segmentation in epochs was performed on the recordings, so that every experimental 
condition was treated as a continuous experimental run. 

 

7. EEG source separation  

In order to reduce the dimensionality of the data, we designed a spatial filter using 
generalized eigendecomposition (GED). The technique allowed us to perform a 
hypothesis-driven source separation on the multivariate EEG signal, guided by a certain 
criterion (Michael X. Cohen & Gulbinaite, 2017; Rosso, Leman, et al., 2021). In our case, 
we wanted to find the weighted combination of electrodes which best separated beta 
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activity (~20 Hz) from the broadband signal, so that we could disentangle spatial patterns 
of dominant beta band activation. The procedure hereby described was applied to all 
participants, separately for all experimental conditions.   

Whereas in its original formulation the technique makes no previous assumption on scalp 
sources (Michael X. Cohen & Gulbinaite, 2017), our target component was computed as 
the weighted average of the 37 channels located behind the frontocentral ‘FC’ line - 
mastoids excluded (see also (Rosso, Leman, et al., 2021)). The rationale for this macro-
selection was to have full coverage of centroparietal, temporal and occipital regions where 
beta modulation was expected to be maximal (G. Zhou et al., 2016). For consistency, 
analyses were replicated including electrodes from the whole scalp (mastoids excluded) 
and yielded the same final results on beta modulation. However, given the poor 
consistency of the spatial activation patterns observed across participants, we decided to 
optimize the source separation by setting a spatial constrain, in order to present here 
physiologically interpretable results. The improvement might be explained by residual 
noise in frontal channels caused by eye-related artifacts, or by more prominent beta 
activity in frontal generators for some of the participants. 

The vector of weights W was calculated by solving the following eigenequation:  

 

𝑅z>𝑆𝑊	 = 	Λ𝑊 

  

where S is the covariance matrix calculated from the narrow-band filtered signal; R is the 
reference covariance matrix calculated from the broad-band signal; Λ is a set of 
eigenvalues.  GED identifies eigenvectors W that best separate the signal (‘S’) covariance 
from the reference (‘R’) covariance matrix.  The eigenvector with the largest eigenvalue 
was used as spatial filter. Raw channel data were then multiplied by the eigenvector, to 
produce the single timeseries of our target beta component.   

The S (‘signal’) covariance matrix was computed from the narrow-band multivariate signal. 
Using the firls Matlab function, we designed a finite impulse response (FIR) filter, with a 
18-22 Hz range and 15% slope to avoid edge artifacts in the time domain. In order to 
minimize the bias towards the center frequency (20 Hz), we opted for a plateau-shaped 
filter to increasingly suppress frequencies as a linear function of the distance from the 
range boundaries, while leaving the central range unaffected. The filter resulted in 
maximum suppression below ~15 Hz and above ~25 Hz, providing good coverage for a big 
portion of the lower beta range (for a visual representation of the frequency response, see 
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Supplementary material 6.A). The multivariate signal was filtered in forward and reverse 
directions to achieve zero phase distortion. The R (‘reference’) covariance matrix was 
computed from the broadband multivariate signal, containing frequencies from 1 to 45 
Hz. In order to compute the respective covariance matrices from the broad- and narrow-
band signals, we used the onset timing of the finger-taps performed by the participant to 
define time-windows from -100 ms to 500 ms around the events. For every recording, 645 
covariance matrices were expected on average, and we removed the outliers whose 
Euclidean distance from the grand-average covariance matrix exceeded the 2.23 z-score 
(i.e., corresponding to a probability of 0.013). With this approach, grand-average S and R 
covariance matrices did not include occasional burst of artifactual activity occurring over 
the long recording. 

It should be noted that, in our experiment, stimulations of different nature were 
presented to the participants across different conditions. This fact represented for us a 
strong argument for computing the covariance matrices separately for each condition. 
Different percepts imply different perceptual processes and, in turn, different activation 
patterns should be expected in the participants’ brains. A clean separation of the beta 
component within every experimental condition is a necessary condition to observe the 
modulation of interest, and ultimately compare the effect across conditions. For 
consistency, we replicated the analyses by computing S and R covariance matrices 
including data from all conditions, before applying the resulting eigenvectors to the 
broadband data from each individual condition. The latter approach had a detrimental 
impact on our analyses, disrupting even the most trivial effects. As a note for the reader, 
we conclude that the selection and aggregation of data should always be informed by the 
particular experimental design when implementing a spatial filter via GED. 

 

8. Power-by-phase modulation  

The extracted component was filtered in the 18-22 Hz beta range and Hilbert-
transformed. Beta power was computed as the squared magnitude of the analytic signal, 
and extreme values deviating from the mean by more than 3 standard deviations were 
considered outliers and removed. For each participant, beta power modulation was 
computed as a function of the self-produced (‘Self’) and the partner’s (‘Other’) finger-
tapping cycles. Finger-tapping phase timeseries were divided into 36 bins (bin size = 10°) 
(G. Zhou et al., 2016) and the median power values falling within the same bins were 
computed. From this procedure, we obtained the beta power curves as a function of the 
movement cycles, computed over the total amount of finger-taps (645 events were 
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expected on average from each participant).  The whole processing pipeline is illustrated 
in Figure 5.3.  

 

9. Statistical model  

Our modelling was motivated by the observation that beta power modulation could be 
well approximated by a sinusoidal function of movement phase, bounded within the unit 
cycle across participants. The best fitting sinewave was estimated using 
the sineFit Matlab® function (Seibold, 2021), for each participant in each experimental 
condition, and the sine amplitude provided us with a measure of the beta modulation 
strength. Sine amplitudes were log-transformed for better model fitting, and used as 
response variable in the following mixed-effects model: 

 
Beta_modulation	~	Who*Coupling*Modality	+	(1	|	Subject:Dyad)	

 
where Who (Self, Other), Coupling (Coupled, Uncoupled) and Modality (Visual, Auditory) 
were modelled as 2-levels categorical fixed effects. Factors were releveled such that 
‘Other’ and ‘Uncoupled’ would provide the baseline intercept for the model: since the 
modulation by the other’s movements is expected to be null in absence of coupling 
between the partners, the curve was expected to result in a flat line. The interaction 
between individual Subjects and the respective dyad was modelled as random effect. 
As supplementary analysis, the same model was fit to alpha modulation, as a control 
frequency band to support the specificity of the effects for beta. Such frequency band was 
chosen in light of the importance traditionally attributed to in the context of perceptually-
mediated interpersonal coordination (Tognoli & Kelso, 2015; Tognoli, Lagarde, DeGuzman, 
& Kelso, 2007). The response variable was computed with the same procedure described 
up to this point, with the only difference that the broadband signal was filtered in the 8-
12 Hz range (slope = 15%) to extract the component of interest.  
 

Alpha_modulation	~	Who*Coupling*Modality	+	(1	|	Subject:Dyad)	
 
In order to gain further insight into our results, an ordinal logistic regression model was 
fitted to two 1-7 Likert items of interest, namely “I found it difficult to keep the tempo of 
my metronome” and “I felt in control over my own actions”: 
 

Perceived_Difficulty	~	Coupling	*	Modality	
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Sense_of_Control	~	Coupling	*	Modality	
 

 
Behavioral and EEG data analyses were entirely carried out in Matlab® (version R2019a). 
Statistical analyses were carried out in R (version 4.0.3). Data and scripts are available 
upon request to the authors with a formal data sharing agreement, in line with the 
conditions of the local ethics committee which approved the present study. 
 

Results 

The mixed effect model showed a significant main effect of Who (Estimate = 0.679; SE 
= 0.180; t = 3.768; p < 0.001), indicating that the modulation of beta power by self-
generated movements was significantly stronger compared to the modulation by the 
partner’s movements.   

We found a significant main effect of Coupling (Estimate = 0.398; SE = 0.180; t = 2.208; p 
< 0.05). This indicates that, when partners were coupled visually or auditorily, beta power 
was modulated to a greater extent by both the self-generated and the perceived 
movements, as compared to the uncoupled baseline conditions. We furthermore 
observed a close-to-significant interaction between Who and Coupling (Estimate = -0.462; 
SE = 0.255; t = -1.813; p = 0.07) suggesting that, when coupled, the modulation by the 
perceived movements increased more than the modulation by the self-generated 
movements. We found no significant effects of Modality, nor interactions with the other 
factors.  The model passed the Shapiro-Wilk test for normal distribution of the residuals 
(p = 0.25). The results are visually represented in Figure 5.4. 

In the questionnaires, we found significant main effects of Coupling (Estimate = 0.750; SE 
= 0.283; t = 2.650; p < 0.01) and Modality (Estimate = -1.342; SE = 0.297; t = -4.514; p < 
0.001) on the perceived Difficulty of the task, along with significant main effects of 
Coupling (Estimate = -0.848; SE = 0.283; t = -2.994; p < 0.01) and Modality (Estimate = 
0.833; SE = 0.298; t = 2.791; p < 0.01) on the perceived Sense of Control over the 
performed finger-tapping. Hence, whenever the partner was visually or auditorily 
perceived, participants perceived the task as more difficult and reported a reduced sense 
of control over their own movements. This was equally true in all conditions where 
participants where paced visually. All model summaries are reported in Table 5.1. 
No significant effects were found for alpha modulation, with the exception of the main 
effect of Who (Estimate = 0.360; SE = 0.128; t = 2.814; p < 0.01). This indicates that, whilst 
alpha power is significantly modulated by Self-generated movements, there is no evidence 



Chapter 5 

 129 

that Coupling between participants results in mutual alpha modulation. This further 
supports the evidence that the phenomenon hereby reported is specific to beta. Figures 
and table related to this supplementary analysis can be found in the Supplementary 
materials. 
Finally, by multiplying the selected eigenvector by the covariance matrix (wTS), we 
obtained an estimation of the underlying source projecting onto the electrodes (Michael 
X. Cohen, 2022). The resulting spatial patterns of our beta component were computed for 
every participant in every experimental condition. Figure 5.5 shows the grand-average 
pattern and the contrast between coupled and uncoupled conditions, separately for every 
sensory modality. In contrast with eigenvectors, spatial patterns are physiologically 
meaningful and can be visually interpreted with due caution.  
We mention here as a reminder that both the spatial patterns and the timeseries analyzed 
in the present work refer to the 1st component extracted via GED (i.e., via the eigenvector 
associated to the highest eigenvalue), which was meant to extract the most prominent 
beta activity. Whilst such choice represents a common practice, there is no certainty that 
the 1st component would be the most beta-modulated for all participants: beta power and 
beta power modulation are in principle dissociable, since high power does not imply 
strong modulation, and vice-versa. For the sake of completeness, we verified that the 
patterns of beta modulation across conditions are observable for 2nd and 3rd components 
at the group level, and included in the Supplementary materials the spatial patterns of the 
top 3 components for every participant in every experimental condition. 
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Figure 5. 3. Analyses pipeline. The present pipeline illustrates the steps which led to computing the beta 
modulation for each individual participant. The steps identified by numbers (on the left) refer to EEG data and 
start from the completion of pre-processing, whereas the steps identified by letters (on the right) refer to 
behavioral data and start from the completion of false positives removal. Although the following explanation starts 
from the processing of EEG data, the two modules may be run in parallel. Generalized eigendecomposition (GED) 
was performed on a broad set of regions of interest (ROIs) to best separate narrow-band ~20 Hz beta activity from 
broad-band activity. The vector of weights w associated with the highest eigenvalue was used as spatial filter: the 
dimensionality of the data was reduced to a single timeseries by computing the weighted average of the 37 
channels located behind the frontocentral line (1). The weights of the excluded channels were set to 0. The 
resulting beta component (2) was then narrow-band filtered with a plateau-shaped FIR filter centered at 20 Hz, in 
order to exclude the contribution of broad-band activity from the envelope (frequency range = 18-22 Hz; slope = 
15%). Finally, we Hilbert-transformed the filtered component (3) to produce the analytic signal (4), and computed 
the beta power timeseries as its magnitude squared (5). In parallel, we linearly interpolated the discrete finger-
tapping onsets (A) to produce an estimate of their phase-timeseries (B). Finger-tapping phase timeseries were 
divided into 36 bins (bin size = 10°) (G. Zhou et al., 2016), and the EEG power values falling within the same 
phase bins were averaged together. Beta power is represented as a function of the average finger-tapping cycle, 
computed for all participants from the totality of their tapping onsets. 
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Figure 5. 4. Beta modulation. A) The grand-average beta-power curve (N = 28) as a function of the tapping cycles 
is shown for each experimental condition. In order to highlight the modulation of interest, the y-axis range is 
normalized for the maximum and minimum values of the curves in each condition, and horizontal dashed lines 
intercept the average value of the curves. Blue curves represent the grand-average power as a function of Self-
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B)B)

A) 
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generated finger-tapping cycles, whereas the red curves represent the modulation by the Other. Whilst the former 
exhibits quasi-sinusoidal course around the intercept in all conditions, the latter does so in coupled conditions 
only (although to a lesser extent). The perception of the partner’s movements is necessary condition for beta 
power to be modulated. For visualization purposes, the curves were smoothed with a moving average (span = 7 
phase bins). Error bars represent the standard error of the mean (SEM). B) The amplitude of the best-fitting 
sinewave was used as a measure of modulation, and the grand-average is hereby shown. As confirmed by our 
statistical model, modulation by Self is consistently higher across experimental conditions (main effect of Who), 
and coupled conditions lead to a global increase of modulation (main effect of Coupling). The modulation by Self 
in the auditorily coupled condition represents an exception, although the decrease from the baseline was not 
strong enough to reach significance. In fact, we found no significant effect of Modality, nor interactions with the 
other factors. Ultimately, the figure highlights how coupling leads to a greater increase in the modulation by Other 
from the uncoupled baseline, as compared to the modulation by Self (interaction effect between Who and 
Coupling). Error bars represent the SEM. 

 

 
 Modulation amplitude (N = 28) 

Predictors Estimate SE t value p 
     
Who 0.679 *** 0.180 3.768 < 0.001 

 
Coupling 0.398 * 0.180 2.208 

 
0.027 

Modality 0.024 0.180 0.134 
 

0.893 

Who:Coupling -0.462 0.255 -1.813 
 

0.070 

Who:Modality -0.039 0.255 -0.153 
 

0.879 

Coupling:Modality -0.165 0.255 -0.649 
 

0.516 

Who:Coupling:Modality 0.260 0.360 0.723 
 

0.470 

     

 * p < 0.05  ** p < 0.01 *** p < 
0.001 
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 Perceived difficulty (N = 28) 
Predictors Estimate SE t value p 
     
Coupling 0.750 ** 0.283 2.650 

 
0.008 

Modality -1.342 
*** 

0.297 -4.515 
 

< 0.001 

Coupling:Modality -0.225 0.402 -0.560 
 

0.576 

     

 * p < 0.05  ** p < 0.01 *** p < 
0.001 

 

 

 

 Sense of control (N = 28) 

Predictors Estimate SE t value p 
     
Coupling -0.848 ** 0.283 -2.994 

 
0.003 

Modality 0.833 ** 0.298 2.791 
 

0.005 

Coupling:Modality 0.311 0.407 0.763 
 

0.445 

     

 * p < 0.05  ** p < 0.01 *** p < 
0.001 

 

 

Table 5. 1. Models' summaries All significant effects are marked with an asterisk, and the associated p-values are 
highlighted in bold. For the beta modulation amplitude, we reported a significant main effect of Who, a significant 
main effect of Coupling and a close-to-significant interaction effect between Who and Coupling. No significant 
effects of Modality were found. The directionality of the effects was assessed by setting ‘Other’ (Who) and 
‘Uncoupled’ (Coupling) as baselines for the contrasts across factors’ levels. The reason is that in uncoupled 
conditions, the modulation by the partner was expected to result in a flat line, providing the baseline level to test 
the significance of the modulation amplitude. For the ratings of perceived difficulty and sense of control, our 
ordinal logistic regression model revealed significant main effects of Coupling and Modality. The effect of Modality 
on the subjective ratings was not discussed in the main text, since it refers specifically to the nature of the stimuli 
and does not appear to have a relevant link with beta modulation.   
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Figure 5. 5. Beta component's spatial patterns. A) The beta activation coefficients were z-score normalized within 
every individual participant, and the grand-average (N = 28) was computed for every experimental condition. 
Bilateral temporal activation stands out as the common patterns across conditions (maximum at ‘T7’ and ‘T8’), 
whereas a left centro-parietal cluster emerged selectively in coupled conditions regardless of the sensory 
modality. B) The coupling-specific cluster is highlighted by subtracting the Uncoupled conditions maps from the 
Coupled condition maps (maximum at ‘CP5’ for visual coupling, at ‘C5’ for auditory coupling). As stated in the main 
text, we refrain from drawing conclusions on the neural networks underlying the activation observed at the 
sensor-level. Our discussion is limited to the evidence of the coupling-specific pattern, which is consistent across 
visual and auditory modalities.  
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Discussion  

With the present work, we provided evidence for a common neural mechanism used by 
the brain to control rhythmic behavior and to track the rhythmic behavior produced by a 
partner during interpersonal synchronization. Specifically, we uncovered brain dynamics 
of interest in a narrow beta range centered at 20 Hz, consistent with converging evidence 
of its pivotal role in motor control, timing and top-down predictive processing. Using a 
joint finger-tapping paradigm (Rosso, Maes, et al., 2021), our results showed sinusoidal 
modulation of beta power as a function of both self-generated and perceived finger-
tapping cycles. 

The observed modulation is consistent with the mutual prediction theory, which proposes 
that during a social interaction each individual utilizes brain systems to control their own 
behavior and systems to predict the behavior produced by another individual (Hamilton, 
2021). Our study shows that beta modulation may be a marker of this dual function in the 
context of joint tapping, indicating a common neural mechanism for controlling your own 
as well as predicting the partner’s behavior (Sebanz et al., 2006; Sebanz & Knoblich, 2009). 
While in animals subsets of neuronal populations are deployed for carrying out these two 
functions (Kingsbury et al., 2019), the human ‘social brain’ is thought to use dedicated 
structures for generating predictions during social interactions (Chris D. Frith, 2007). 

At the functional level, oscillations around 20 Hz exhibit some unique time-domain 
features which make them prone to couple to either internal or external events. Transient 
bursts of activity in the range occur as a spontaneous probabilistic phenomenon at rest 
(Feingold, Gibson, DePasquale, & Graybiel, 2015), and operate as a relay function of distal 
inputs in presence of stimulation (Sherman et al., 2016). The coexistence of sustained 
fluctuations and transient bursts within the same frequency range has led to a 
reconsideration of the functional roles of oscillatory activity, and to the proposal that 
bursting activity might enable transient communication between neuronal populations 
oscillating around the same center frequency (van Ede, Quinn, Woolrich, & Nobre, 2018). 
The ubiquity of beta dynamics in motor control is long-known (Bourguignon, Jousmäki, 
Dalal, Jerbi, & De Tiège, 2019; Neuper & Pfurtscheller, 2001; Pfurtscheller, 1981; Salenius, 
Schnitzler, Salmelin, Jousmäki, & Hari, 1997; Salmelin & Hari, 1994), which led us to 
hypothesize that its periodic modulation could play a critical role in action-perception 
loops underpinning overt synchronization behavior. Motoric sampling routines temporally 
structure the gathering of perceptual information (Schroeder et al., 2010) throughout the 
animal kingdom and across sensory modalities (Hatsopoulos & Suminski, 2011; Kleinfeld, 
Ahissar, & Diamond, 2006; Wachowiak, 2011)  by transiently modulating ongoing neural 
oscillations in sensory areas (Crapse & Sommer, 2008). The production of rhythmic 



 

  136 

behaviors results in dynamic fluctuations in network excitability, which operates as a 
rhythmic mode of attention towards incoming streams of perceptual events (Schroeder & 
Lakatos, 2009). Remarkably, it has been observed that beta oscillations originating in the 
primary sensorimotor cortex and directed towards auditory areas encode the temporal 
selection of relevant auditory features, while overt rhythmic behavior enhances the 
predictive efficacy of perceptual events (Morillon & Baillet, 2017). 

A dynamic attending perspective (Large & Jones, 1999) provides a broader framework for 
understanding our finding in terms of neural oscillations and their dynamics, offering a 
complementary view to predictive coding for explaining interpersonal synchronization. 
According to the theory, expectancies of future events are enabled by internal oscillations 
(attending rhythms) driven by distal events (external rhythms). The presence of a temporal 
structure in perceptual stimuli is crucial for the attender to generate accurate predictions 
of the upcoming events. Although originally formulated as entrainment in the strict sense 
(Large & Jones, 1999), dynamic attending could be based on a mechanism of amplitude 
modulation where the energy of high-frequency attending rhythms varies as a function of 
the phase of a low-frequency external rhythm. Figure 5.1 shows a schematic of how this 
putative mechanism could enable mutual predictions in an interacting dyad. The novelty 
of our approach consists of explicitly coupling beta power to Self-generated and Other-
generated movements in the context of the same dyadic task. Within our experimental 
design, we manipulated the presence and the sensory modality of informational coupling 
between partners: in absence of coupling, the modulation curve by Other was expected 
to result in a flat line, providing the baseline for our statistical model. The ‘drifting 
metronomes’ procedure guaranteed that the expected uniform distribution of relative 
phase between the partners would be uniform (Rosso, Maes, et al., 2021), controlling for 
spurious modulations on the curve shape. 

Our results showed that beta power was modulated to a greater extent by the Self-
produced finger-taps, as compared to Other-produced taps. In contrast with sustained 
beta suppression related to upregulation of primary motor cortex (Miller et al., 2007; 
Pfurtscheller & Lopes da Silva, 1999), frequency-specific phasic modulation is thought to 
reflect activity of sensorimotor networks dedicated to top-down control, prediction, and 
integration (M. Seeber et al., 2016). We found that coupling led to a significant general 
increase in beta modulation, as indicated by the main effect of Coupling in our statistical 
model. However, it should be noted that the interaction effect, while not statistically 
significant, strongly suggests a greater increase for Other as compared to Self (see Figure 
5.4B).  
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We propose that the general increase in modulation is due to the greater task demand for 
attentional resources, which are re-allocated to predict the movements of the perceived 
partner. In previous work(Rosso, Maes, et al., 2021), we have shown that the exposure to 
the partner’s competing rhythm systematically resulted in stable states of collective 
behavior, at the expenses of the individual synchronization performance. This is in line 
with the participants’ self-reports, who rated coupled conditions as significantly more 
difficult compared to the uncoupled counterparts. Interestingly, participants also reported 
a significantly reduced sense of control over their own actions. Taken together, the 
evidence supports that beta modulation is more than a mere perceptual effect, and may 
reflect how the sensorimotor system is actively tracking perceived movement during a 
rhythmic interaction.  

Our results fit well with the idea that ~20 Hz oscillations fulfill the function of attending 
rhythms, and that their power modulation reflects a dynamic allocation of neural 
resources (Nobre & van Ede, 2018)  distributed among production (Self) and prediction 
(Other) of rhythmic movements. The mere perception of participants’ taps required an 
additional deployment of attentional resources to comply with the task at hand, which 
could explain the increase of beta modulation by Self in condition of visual coupling, while 
the same component was significantly modulated by the unattended Other. Human 
rhythmic movement is known to convey exceptional salience, and as a privileged class of 
motor affordance (Phillips-Silver et al., 2010) it could compete with self-produced 
behavior for driving the attending rhythms. Furthermore, overt attention is not a 
necessary condition for the brain to perform efficient predictions, as beta modulation is 
partially independent from the attended sensory stream of information (van Ede et al., 
2010). Our results show that the phenomenon is supramodal, as it occurred regardless of 
whether the metronome and the partner were visually or auditorily perceived. This 
extends recent evidence from a multimodal finger-tapping task (Nijhuis et al., 2021) to the 
interpersonal domain, further supporting that beta dynamics are mainly driven by top-
down motor processes.  

The observation that mutual modulation does not occur in the alpha band supports the 
frequency-specificity of the phenomenon for beta, with relevant functional implications. 
Despite the importance traditionally attributed to alpha dynamics for interpersonal 
coordination among coupled individuals (Tognoli & Kelso, 2015; Tognoli et al., 2007), our 
results suggest that  a ‘rhythmic mode’ of attention is at play, rather than a  general 
attentional or inhibitory mechanism. Our findings are in line with previous evidence for 
oscillatory dynamics in the beta range, which under certain experimental conditions are 
shown to encode the temporal regularities of predictable stimuli and enable predictive 
synchronization behavior. In light of the rhythmic nature of our task, we argue that the 
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neural encoding of movement periodicities in the beta dynamics, which in turn enables 
mutual predictions, represents a parsimonious interpretation of our findings. On a 
cautionary note, we want to state that our experiment was not designed to either prove 
or disprove any general theory of brain functioning: our occasional references to 
predictive coding and dynamic attending theory are only meant to present alternative 
influential perspectives in the state of the art.  

The present work could not provide reliable information at the level of brain sources, due 
to the lack of co-registration of structural scans of the participants. However, the 
observation of systematic topographical features at the sensor level can guide some 
inferences on different brain networks involved across conditions. Figure 5.5A shows the 
grand-average spatial activation patterns for the ~ 20 Hz beta component as extracted via 
eigendecomposition. Focusing on the systematic differences and similarities across 
conditions, it is evident that the bilateral temporo-parietal activation systematically 
appears as the common pattern. In relation to the task, the only constant is the 
performance of finger-tapping paced by a rhythmic cue, whereas the nature of the cue 
and the coupling with the partner vary within the experimental design. However, when 
looking at the coupled conditions, an additional lateralized cluster emerges over left 
parietal regions. The subtraction of the activation coefficients (see Figure 5.5B) shows that 
the additional cluster is common across visual and auditory coupling modalities, pointing 
to the involvement of a supramodal network specific to the dyadic interaction.  

Without drawing conclusions on the specific brain structures involved, we want to 
highlight that the additional cluster suggests the involvement of a network selective to the 
interaction, on top of the one dedicated to the finger-tapping task. This is in line with the 
idea of brain structures selectively involved in predicting human behavior in social 
contexts (Chris D. Frith, 2007), here activated in coupled conditions. Future work should 
be carried out to provide conclusive results on the actual underlying brain networks, 
possibly taking advantage of magneto-encephalography and combining structural 
magnetic resonance imaging co-registration with EEG source localization algorithms 
(Chella et al., 2019). 

Our study is a novel investigation of coupling the brain activity of interacting participants 
to their reciprocal rhythmic behaviors. This approach uncovered a frequency-specific 
dynamic in the narrow frequency range around 20 Hz, which underpins individual 
production and mutual predictions of finger-tapping. By deploying dual-EEG recordings in 
an explicitly embodied approach to social neuroscience (Hamilton, 2021), we provided 
promising evidence for a common neural mechanism enabling interpersonal coordination. 
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Our focus on oscillatory dynamics should be integrated by future investigation at the level 
of brain networks, backed by complementary neuroimaging techniques. 
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Introduction 

Auditory stimuli such as music or metronomes can entrain human movement, and this 
phenomenon can be used for neurological rehabilitation purposes. Particularly, evidence 
has been established that auditory stimuli can facilitate walking in persons with 
Parkinson’s Disease (Ghai, Ghai, Schmitz, & Effenberg, 2018), stroke (Yoo & Kim, 2016) and 
multiple sclerosis (Moumdjian, Moens, Maes, Van Nieuwenhoven, et al., 2019). Auditory 
stimuli convey temporal structures that serve as affordances for the motor system to 
interact with (Marc Leman, 2016). In our previous work, we showed that auditory rhythms 
can entrain a person’s motor rhythms, thus affecting abilities for walking. The underlying 
mechanism can be explained in terms of sensorimotor phase-locking, prediction error 
minimization, and/or dynamical interactions (Marc Leman, 2016; Phillips-Silver et al., 
2010). The outcome of an entrainment process is typically a more stable state of 
synchronization (Marc Leman, 2016; Bart Moens et al., 2014). So far, the entrainment 
effect has been quantified by means of behavioral outcome measures, in particular 
temporal outcomes of the rhythmic auditory-motor coupling (Moumdjian, Buhmann, 
Willems, Feys, & Leman, 2018), which contributed to a better understanding of underlying 
mechanisms as a result of the interaction (Moumdjian et al., 2020; Moumdjian, Moens, 
Vanzeir, et al., 2019), and to the development of task-oriented training tools for walking 
in persons with the neurological disease of multiple sclerosis (Moumdjian, Moens, Maes, 
Van Geel, et al., 2019; Moumdjian, Moens, Maes, Van Nieuwenhoven, et al., 2019).  

Part of the variability in entrainment can be attributed to individual synchronization 
abilities. When presented with auditory stimuli and asked to walk to them, there are 
participants who spontaneously synchronize, and others who do not. This ability is not 
only limited to neurological populations, but also holds true for healthy participants (Van 
Dyck et al., 2015) where the percentage of spontaneous synchronizers versus non-
synchronizers is about 50%-50%. A number of factors contribute to the tendency to 
rhythmically entrain and synchronize (Wilson & Cook, 2016). The first factor is temporal 
perception and prediction. Studies on Parkinson’s Disease have concluded that those 
participants with higher perceptual sensorimotor synchronization abilities, quantified by 
behavioral sensorimotor tapping tasks involving finger tapping (Dalla Bella et al., 2017), 
had a better outcome on their walking parameters after being subjected to walk to 
auditory stimuli (Bella et al., 2017). The second factor is motor (e.g., physical capacity) 
and/or cognitive (e.g. attentive and pre-attentive) functions. For example, studies 
comparing spontaneous and instructed synchronization of walking (Leow, Waclawik, & 
Grahn, 2018; Moumdjian, Moens, Vanzeir, et al., 2019) and running (Van Dyck, Buhmann, 
& Lorenzoni, 2021) to music have been conclusive that explicit instructions to synchronize 
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resulted in a higher synchronization tendency, as compared to spontaneous 
synchronization. The former study also noted this difference across different motor 
thresholds which was provided as a result of walking to different tempi, starting from the 
natural comfortable tempo and up to +10%, in increments of 2% (Moumdjian, Moens, 
Maes, Van Nieuwenhoven, et al., 2019; Moumdjian, Moens, Vanzeir, et al., 2019). 

Up to now, most studies on neurological populations, investigating entrainment and 
synchronization during walking tasks, are based on empirical evidence using behavioral 
outcomes (Moumdjian et al., 2018). However, we believe that the development of 
complementary neurological outcomes could offer a further understanding of 
entrainment and synchronization, potentially leading to the development of more 
individualized and more fine-tuned rehabilitation approaches. 

The present study therefore aims at quantifying a neural outcome measure of 
entrainment and synchronization in combination with behavioral outcomes. We propose 
the use of electroencephalography (EEG) as a method to measure neural entrainment of 
the motor system to rhythmic stimuli. The novel outcome measure is based on a finger 
tapping task (M. L. Bavassi, Tagliazucchi, & Laje, 2013; López & Laje, 2019; McPherson, 
Berger, Alagapan, & Fröhlich, 2018). Figure 6.1 shows a graphical illustration of this study’s 
rationale and proposed contribution to the current state of the art.  

 

 

Figure 6. 1. Rationale of the study and contribution to the state of the art.  
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Our approach is based on Steady-State Evoked Potentials (SSEPs) (Norcia et al., 2015; 
Vialatte et al., 2010). Given a steady periodic stimulation, a series of subsequent evoked 
responses is elicited in the electrical brain activity, generating a periodic pattern of 
transients in the EEG signal. By transforming the signal to the frequency domain by means 
of Fast Fourier Transform (FFT), it can be observed that the EEG spectrum is dominated by 
a prominent peak at the stimulation frequency and its harmonics. Upon exposure to 
rhythmic auditory stimuli, patterns emerge in brain activity and match the dominant 
spectral features of the stimulation. Studies show that neural entrainment can be 
measured at different hierarchical levels of the stimulus temporal structure, or of its 
representation (Nozaradan et al., 2011). As the sound envelope of a musical stimulus 
exhibits a periodic low-frequency amplitude modulation in correspondence with the beat, 
it is possible to observe a match between the beat-related harmonics of the EEG spectrum 
and the sound spectrum (Lenc, Keller, Varlet, & Nozaradan, 2018). However, the observed 
entrained components are not always entirely driven by sensory stimulation. In fact, given 
the same energy in the stimulus, SSEP amplitude is modulated by attention (S. K. 
Andersen, Fuchs, & Müller, 2011; Kashiwase, Matsumiya, Kuriki, & Shioiri, 2012), internal 
representation of metric structure (Nozaradan, Peretz, & Mouraux, 2012), sensorimotor 
integration (Nozaradan, Zerouali, Peretz, & Mouraux, 2015) and interpersonal 
coordination (Varlet et al., 2020).  

The SSEP technique is relatively straightforward in modelling bottom-up and top-down 
components of rhythm perception in terms of Fourier coefficients. However, in order to 
link behavioral entrainment to a neural outcome measure, we believe that the signal 
phase should not be left out of the picture. Rajendran and Schnupp (Rajendran & Schnupp, 
2019) showed that shuffling the phase of a signal resulted in drastic differences in its time 
domain representation, whereas it remained invariant in the frequency domain. Although 
the analysis of peak amplitudes or z-scores in a static spectrum might convey information 
about the outcome of neural entrainment, it is arguably insensitive to its dynamics in the 
time domain. One should consider that oscillatory processes in the brain are hardly 
stationary (Michael X. Cohen, 2017) and the very definition of entrainment implies that an 
oscillator dynamically changes its frequency in order to achieve stable synchronization. 
This is precisely the phenomenon we intend to capture. Therefore, in order to quantify 
neural entrainment of rhythmic stimuli, we argue in favor of a time-varying measure based 
on the phase of the neural entrained component.  

With this study, we progress beyond the state of the art in the research on neural 
entrainment by optimizing the calculation of a neural outcome measure of auditory-motor 
coupling. We argue that such a measure can be used together with its behavioral 
counterparts. In combination, both the behavioral and neurological measures may unveil 
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a further layer of the underlying mechanisms of the rich dynamical processes during motor 
and auditory interactions. Our first aim is to extract from the EEG signal the component 
which is maximally entrained to a periodic stimulus. For that we compute a stability index 
to quantify frequency fluctuations over time. Our second aim is to validate the proposed 
index with a set of quantified behavioral outcome measures of auditory-motor coupling 
and entrainment (Moumdjian et al., 2018). In an auditory-motor coupling task, healthy 
participants were instructed to tap their index finger synchronizing to an auditory 
metronome (as illustrated in Figure 6.1). We hypothesized that our stability index would 
significantly correlate with the behavioral measures of entrainment. Specifically, a stable 
behavioral performance is expected to correlate with a stable entrained component, 
whereas a poor performance would result in wider frequency fluctuations over time. 

 

Materials and Methods 

Participants. Twenty-eight (N = 28) right handed participants took part in the study (18 
females, 10 males; mean age = 29.07 years, standard deviation = 5.73 years). None of them 
had a history of neurological, major medical or psychiatric disorders. All of them declared 
not to be professional musicians upon recruitment, although some of them had musical 
experience. Handedness was assessed by means of the Edinburgh Handedness Inventory 
(Oldfield, 1971). The experiment was approved by the Ethics Committee of Ghent 
University (Faculty of Arts and Philosophy) and informed written consent was obtained 
from each participant, who received a 15€ coupon as economic compensation for their 
participation.  

 

Experimental procedure. The experimental task consisted of a tapping synchronization 
paradigm, in a sitting position. Participants were provided with a custom-made pad 
containing piezo sensors to detect tapping onsets, and were instructed to tap their right 
index finger along with the assigned metronome during 390 seconds. During the task, 
participants were sitting on a comfortable chair equipped with armrests, so that their 
elbow could lay in a fixed position. Tapping movements were limited to wrist flexion in 
order to prevent movement-artifacts contamination of the EEG signal. Participants were 
monitored on-line and video-recorded by means of a USB-camera to verify their 
compliance with the instructions. The importance of avoiding head and trunk movements 
was stressed.  
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Auditory stimuli. Participants were presented with the stimuli via DefenderShield® air-
tube ear plugs. Ableton Live 10 ® was adopted as software for the metronome stimuli 
presentation. A periodic auditory cue was presented at a rate of 100 BPM to half of the 
participants, and 98.5 BPM to the other half (1.67Hz and 1.64Hz respectively). The reason 
of such minimal gap lies in the rationale of a larger experimental design in which the 
recordings were performed (Rosso, Maes, et al., 2021).  

 

Behavioral data acquisition. Finger tapping onsets were recorded with a Teensy 3.2 
microcontroller, operating as serial/MIDI hub in the setting. On the one hand, it received 
an analogic input from piezo sensors inside the pads and printed on the serial port of the 
stimulation computer a timestamp each time a finger-tap pushed the signal above a 
resting threshold. The threshold was conservative enough to prevent false positives due 
to signal bouncing. Every time a metronome beat onset was presented to a participant, a 
MIDI message was sent to the Teensy to log its timestamp on the serial port. All 
timestamps were rounded to 1ms resolution, which corresponds to 1kHz sampling rate. 
The same device triggered the start of the EEG recording by sending a TTL trigger via BNC 
connection. 

 

Outcome Measures 

Behavioral data and neurophysiological data were measured. These are outlined below. 

 

Behavioral data. The timestamps of finger-tapping and metronome beat onsets were 
imported in Matlab® and used to calculate a set of behavioral outcome measures of 
auditory-motor coupling and entrainment. Before doing so, we removed the finger-
tapping onsets following the previous one by less than 350ms, as false positives could 
occasionally be recorded when a participant pushed the pad for too long or accidentally 
laid the hand on it. On average, 0.4 false positives were removed for every participant 
(standard deviation = 0.8). From the finger-tapping and metronome beat onsets time-
series, we calculated the following measures: relative phase angle, resultant vector length, 
mean asynchrony and tempo matching. Below, details of the measures and the formulae 
used calculate these measures are outlined (Bart Moens et al., 2014; Moumdjian et al., 
2018): 
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Relative phase angle. This is an error measure of synchronization based on the phase 
difference between two oscillators (i.e., the participant tapping and the metronome beat 
onsets).  

 

𝜑 = 360 ∗ 	�
𝑇� −	𝐵�

𝐵(��>) − 	𝐵�
� 

 

Where 𝑇� is the participant’s tap onset n and 𝐵� is the onset of the closest metronome 
beat. A negative angle indicates that the participant is tapping ahead of the metronome, 
while a positive angle indicates that the participant’s tap is lagging behind. Alternatively, 
following recent work on modelling participants and periodic cues of systems of coupled 
oscillators in finger-tapping studies (Ole Adrian Heggli et al., 2019), we processed the 
phase time-series for participants and metronomes by interpolating the onsets as a ramp 
wave, wrapped from 0 to 2π radians at 1kHz sampling rate. Provided with an estimate of 
the oscillators’ positions on their cycle with a temporal resolution of 1ms, we subtracted 
each participant’s phase time-series from the respective metronome. Finally, the CircStats 
toolbox34 for Matlab® was used to calculate the mean angle from the resulting relative 
phase time-series (in radians). 

 

Resultant vector length. This expresses the stability of the relative phase angles over time. 
A unimodal distribution implies a high resultant vector length, whereas uniform and 
bipolar distributions result in a low resultant vector length. The measure was processed 
with the CircStats toolbox (Berens, 2009), using the relative phase time-series as input.  
The measure ranges from 0 to 1, where 1 indicates perfect synchronization over time at a 
given relative phase angle, and is calculated as follows: 

 

𝑅 = 	 �
1
𝑁
	4 𝑒1�� 
<

�=>

� 

 

Mean asynchrony. This consists of the mean difference between the participant’s tap 
onsets and the respective closest metronome’s beat onset expressed in milliseconds.  
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Tempo matching accuracy. This indicates to what extent the overall tempo of the 
participant’s tapping matches with the tempo of the metronome beats, based on inter-
onset-intervals (IOIs). Inter-beat deviation (IBD) is calculated as the standard deviation of 
a subject’s IOIs with respect to the metronome. 
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Neurophysiological data. In order to compute our proposed outcome measure of neural 
entrainment, the ‘stability index’, the following EEG processing pipeline was conducted. It 
consists of signal pre-processing, generalized eigendecomposition (GED) and computation 
of the stability index. The steps leading to the computation of our final measure are 
summarized in Figure 6.2: 

 

Data acquisition. Participants were equipped with a 64-channel waveguard™original EEG 
headset (10-10 system, with Ag/AgCl electrodes). Data were recorded with an ANT-Neuro 
eego™mylab system at 1kHz sampling rate. Impedances were monitored in the eego™ 
software environment and kept below 20kΩ. In comparison with stricter thresholds (e.g., 
5kΩ or 10kΩ), the choice made it feasible to maximize the homogeneity of impedance 
levels across electrodes, and in turn optimize the covariance matrices used in our source 
separation. A referential montage was adopted, with ‘CPz’ as the reference electrode.  

 

Pre-processing. Pre-processing was carried out with a pipeline integrating functions from 
the Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) for Matlab 
(MathWorks Inc, USA). Bad channels were identified by means of visual inspection of raw 
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timeseries and variance distribution across channels. The recordings were re-referenced 
to the average of all the electrodes after channel rejection, to avoid noise leakage into the 
average. A high-pass Butterworth filter with 1Hz cut-off was applied to the raw recordings 
to remove slow drifts. We preferred to choose this conservative threshold, given that 
occasional head movements and sweat potentials are more likely to occur over a long 
continuous recording. A low-pass Butterworth filter with 45Hz cut-off was applied to 
remove high-frequency muscular activity. A notch filter centered at 50Hz was applied to 
remove power-line noise up to the 3rd harmonic.  

Independent component analysis (ICA) was conducted on full rank data to remove blinks 
and eye-movement artifacts, by means of visual inspection of topographical maps and 
time-series of component activation. For this purpose, we run the ‘runica’ algorithm as 
implemented in Fieldtrip, excluding the reference ‘CPz’ and the bad channels timeseries 
from the input matrix. Only those components which exhibited the stereotyped frontal 
distribution generated by blinks and lateral eye movements were removed. Although 
other artifactual sources could have been identified, we limited the selection to a few 
unambiguous components for the sake of replicability. A minimum of 1 and a maximum 
of 3 components were removed for every participant. The dataset was inspected prior to 
ICA decomposition and following ICA back-projection. Special attention was given to the 
electrodes where the activation of the artifactual component was maximal, namely the F, 
AF, and Fp clusters. Rejected bad channels were finally reconstructed after artifact 
removal, by computing a weighted average of all neighbors as implemented in Fieldtrip.  

Recordings were treated as a continuous experimental run, without segmentation in 
epochs. This implies that no ‘bad trials’ were removed. Further in this section, we will 
present how we dealt with transient bursts of artifactual activity in the continuous 
recording. 

 

Generalized Eigendecomposition (GED). In order to avoid channel selection bias while 
optimizing the signal-to-noise ratio between the entrained component and the broadband 
neural activity, we applied GED as first described in the context of source separation for 
rhythmic entrainment (Michael X. Cohen & Gulbinaite, 2017). The technique consists of a 
spatial filter to reduce the multivariate dataset to one dimension, guided by some criteria: 
in this case, it was attunement to the stimulation frequency. This is achieved by computing 
the weighted average of a set of channels, where the vector of weights W was calculated 
by solving the following eigenequation: 
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𝑅z>𝑆𝑊	 = 	Λ𝑊 

 

where S is the covariance matrix calculated from the narrow-band filtered signal; R is the 
reference covariance matrix calculated from the broad-band signal; Λ is a set of 
eigenvalues.  GED identifies eigenvectors W that best separate the signal (‘S’) covariance 
from the reference (‘R’) covariance matrix.  The eigenvector associated with the largest 
eigenvalue was selected as spatial filter. That eigenvector is then used to multiply the raw 
channel data to produce the single time series of our target entrained component. In the 
present work, a subset of 37 channels located behind the frontocentral ‘FC’ line (mastoids 
excluded) was selected. By doing so, we intended to constrain the source separation and 
target a sensorimotor component entrained to the auditory stimulus. The excluded 
channels form the cluster which is typically expected from a purely auditory response at 
the scalp level (Nozaradan et al., 2011, 2015). The regions of interest (ROIs) selection is 
visually illustrated in Figure 6.2. 

Given we were explicitly looking for frequency fluctuations, our narrow-band filter needed 
to be large enough in order to leave room for fluctuations around the entrained frequency. 
We designed our filter as a Gaussian function in the frequency domain, with center at 
1.654 Hz and a width of 0.3 Hz at half of the maximum gain. Such parameter represents 
an optimal trade-off in our application, since it allows for fluctuations around the center 
frequency without overlapping with the high-pass band filter (cut-off = 1 Hz). We then 
filtered the signal on the whole subset of 37 channels by performing element-wise 
multiplication between the signal spectrum and the filter kernel. The resulting spectrum 
was eventually transformed with inverse Fast Fourier Transform back in the time domain. 
The frequency-domain representation of the filter kernel is provided in Supplementary 
Figure 6.A, along with additional information in the figure’s description. 

The reference R covariance matrix was here computed from the broadband multivariate 
signal. Our choice differs from the approach originally proposed by Cohen and Gulbinaite 
(Michael X. Cohen & Gulbinaite, 2017) in that they propose a use-case for higher frequency 
ranges, which allows to average the R matrices computed from two narrow-band Gaussian 
flankers neighboring the central filter on both sides. Their rationale is to minimize the 
contribution of intrinsic non-task related rhythms in frequency ranges far from the one of 
interest, while avoiding bias from upper and lower frequency neighbors. Given that we 
were dealing with low frequencies (< 2 Hz), it was not desirable for us to narrow-band 
filter the signal in a lower flanker, as we would have reached below the high-pass filter 
cut-off at 1 Hz (see Supplementary Figure 6.A). In case we adopted flankers, we would 
have had a bias to the right side of the spectrum.  
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In order to compute the respective covariance matrices from the broad- and narrow-band 
signals, we used the onset timing of the finger-taps performed by the participant to define 
time-windows from -100ms to 500ms around the events. The approach provided us with 
a considerable number of covariance matrices for each recording (645 finger-taps were 
expected on average), such that we could remove the ones whose Euclidean distance from 
the grand-average covariance matrix exceeded the 2.23 z-scores (i.e., corresponding to a 
probability of 0.013). The grand-average S and R covariance matrices where then 
calculated free from the occasional burst of artifactual activity over the long recording, 
compensating from the impossibility of performing a procedure of trial-removal during 
the preprocessing. The quality of our GED application was assessed by inspecting the 
eigenspectrum, the topographical activation map and the power spectrum of the 
extracted component (see Figure 6.3). 

 

Stability Index. Once the entrained component was computed, we applied on it the same 
Gaussian filter (center at 1.654 Hz and 0.3 Hz width at half maximum) in order to extract 
reliable phase time-series from the analytic signal. We calculated the analytic signal with 
the Hilbert transform and computed the instantaneous frequency time-series from the 
first derivative of the unwrapped phase angles time-series as indicated in (Michael X. 
Cohen, 2014). The instantaneous frequency of a dynamical oscillating system can be 
defined as the change in the phase per unit time (Boashash, 1992). The derivative can then 
be converted to Hz applying the following formula: 

 

𝐻𝑧£ = 	
𝑠(𝜙£ −	𝜙£z>)

2𝜋
 

 

where s indicates the data sampling rate and 𝜙£ indicates the (unwrapped) phase angle at 
time t. A sliding moving median with a window width of 400 samples was used to smooth 
the instantaneous frequency time-series, to remove occasional extreme bursts due to 
artifactual activity distorting phase time-series. Finally, we calculated the standard 
deviation of instantaneous frequency over the whole task as a global measure of 
frequency stability over time, which we named the ‘stability index’. A high standard 
deviation is thus indicative of wide instantaneous frequency fluctuations, and less overall 
stability of the entrained component. A standard deviation equal to 0 indicates a perfectly 
stable component, with the instantaneous frequency being a flat line at the constant value 
of the stimulus frequency.  
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Statistical analysis. In order to validate our neural outcome measure, we calculated the 
Spearman coefficient for the correlation between the stability index and the four 
behavioral outcome measures reported above. This technique assesses the strength and 
significance of monotonic relationships between variables, regardless of its linearity. The 
Spearman correlation coefficient computed on continuous variables is the equivalent of 
the Pearson correlation coefficient computed on their ranks: it is exempt from the 
assumption of normal distribution of the pair of variables, and robust to outliers and 
scaling effects. The following classification was used to categorize the correlation (Witz, 
Hinkle, Wiersma, & Jurs, 1990): .00-.30 ‘negligible correlation’, .30-.50 ‘low correlation’, 
.50-.70 ‘moderate correlation’, .70-.90 ‘high correlation’, .90-.100 ‘very high correlation’. 
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Figure 6. 2. EEG processing pipeline. The present pipeline illustrates the steps through which the proposed stability 
index was computed. Following the pre-processing, the vector of weights w associated with the highest eigenvalue 
was used as a spatial filter: by multiplying the data from the 35 channels behind the frontocentral line (1), we 
produced a single time series. The resulting entrained component (2) went through a cascade of computational 
steps: first, it was narrow-band filtered with a Gaussian filter centered at the stimulus frequency, in order to 
extract reliable phase timeseries unaffected by broad-band component (center = 1.65 Hz; width at half-maximum 
= 0.3 Hz). The filtered component (3) was then Hilbert-transformed to produce the analytic signal (4), from which 
we computed the phase angles timeseries (5). Finally, the phase was unwrapped, its first derivative was used to 
compute the instantaneous frequency (6), and a sliding moving median was applied in order to level out eventual 
artifactual peaks. The plot shows how the pipeline results in a time-varying measure of frequency over time, which 
fluctuates around the stimulation frequency (i.e., the thin horizontal line intercepting the y-axis at 1.65 Hz). The 
standard deviation of the instantaneous frequency provides a global measure of stability of the entrained 
component for a given time window, which in our case was the whole duration of the task. We named such global 
measure stability index, for it equals 0 in case of a flat horizontal line. Such scenario would be observed in the ideal 
case of a perfectly stable component oscillating like a simple sinewave.  
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Results  

Behavioral outcome measures  

On a group level, we report that participants anticipated their tapping onsets relative to 
the beat, with a mean relative phase angle of -1.050 ± 0.681 radians and a mean 
asynchrony of -77.472 ± 40.603 milliseconds. In addition, on a group level, they obtained 
a consistent synchronization with a relative vector length of 0.831 ± 0.156, and a 
consistent period measured by the inter-beat deviation of – 0.001 ± 0.01. The individual 
participant behavioral results of these outcomes are reported in Table 6.1.  

 

Neural outcome measure 

Generalized Eigendecomposition. The source separation successfully extracted the 
entrained neural component of interest, as assessed by its spectral features and its 
topographical map of activation. The component associated to the higher eigenvalue was 
selected for our analyses. Additionally, we verified that the component associated with 
the second eigenvalue was not related to the behavioral performance. More details about 
the second component are provided in the Supplementary material 6.B and 6.C. A detailed 
profile of the first component is provided in Figure 6.3, and its functional meaning will be 
further discussed in the next section.  

Stability Index. The stability index was computed as the standard deviation of the 
component’s instantaneous frequency, as described in the Methods section. On a group 
level, the stability index resulted in 0.062 ± 0.030 Hz. A stability index of 0 indicates a 
perfectly stable component, without any frequency fluctuation over time. The individual 
participant results of the stability index are reported in Table 6.1.  

 

Correlation analysis 

As shown in Figure 6.4, the Spearman correlation between the behavioral outcome 
measures of entrainment and the stability index revealed significant moderate negative 
correlations for relative phase angle, resultant vector length and mean asynchrony (r = -
0.566, p < .001; r = -0.652, p < .001; r = -0.523 p = .005 respectively). A non-significant 
negligible correlation was found for the inter-beat deviation (r = 0.107, p = .583).  
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Figure 6. 3. Group-level assessment of the source separation. The following criteria were used to assess the quality 
of our source separation via GED: A) Topography. The grand-average coefficients of activation are shown in the 
topographic plot: maximal activation was recorded at the left centroparietal ‘CP’ cluster and at left temporal 
electrodes (‘T7’ and ‘TP7’). It should be noted that we explicitly excluded from the spatial filter the channels 
located beyond the frontocentral line, for we intended to maximize an entrained response related to sensorimotor 
processing in the context of the task. B) SNR spectrum. The grand-average power spectrum is here represented in 
percentage signal-to-noise ratio between each data point and the mean power in the flanker bins (0.5 Hz), in order 
to remove the physiological 1/f component of the spectrum (Freeman, Holmes, Burke, & Vanhatalo, 2003). C) 
Eigenspectrum. The grand-average eigenvalues are sorted in descending order, showing an exponential decay with 
the vector of weights w used as spatial filter is the one associated with the highest eigenvalue l. Before averaging, 
eigenvalues where normalized and expressed as percentage of explained variance. All grand-averages were 
computed on the whole sample of participants (N = 28).  
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Figure 6. 4. Brain-behavior correlations. A) Results of the Spearman’s correlation analysis between the behavioral 
outcome measures and stability index, for all study participants. Data are represented on the original scale. B) 
Correlations between the ranks for the behavioral outcome measures and stability index of all study participants.  
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Participant 
ID 

Neural outcome measure of 
entrainment 

Behavioural outcome measures of entrainment 

Stability Index  

(frequency fluctuation - std) 

Relative phase 
angle (radians) 

Resultant 
vector 

length (0-1) 

Mean 
asynchrony 

(ms) 

Inter-beat 
deviation 

(ratio) 

1 0.033 -0.387 0.958 -37.259 0.000 

2 0.088 -2.332 0.647 -76.046 -0.003 

3 0.023 -0.436 0.952 -41.668 -0.006 

4 0.024 -0.464 0.975 -44.403 0.000 

5 0.057 0.078 0.939 7.412 -0.008 

6 0.138 -1.503 0.711 -122.858 0.008 

7 0.077 -0.867 0.787 -83.514 -0.002 

8 0.060 -0.772 0.803 -76.068 -0.003 

9 0.056 -2.543 0.298 -26.583 0.042 

10 0.061 -1.337 0.629 -114.613 0.001 

11 0.037 -0.547 0.898 -53.906 0.000 

12 0.086 -1.349 0.817 -120.805 0.000 

13 0.070 -2.358 0.500 -41.690 -0.002 

14 0.088 -1.273 0.800 -122.573 -0.024 

15 0.045 -0.790 0.872 -74.723 0.001 

16 0.125 -1.364 0.900 -130.310 0.001 

17 0.051 -1.621 0.843 -152.019 0.003 

18 0.028 -0.590 0.955 -57.088 -0.001 

19 0.030 -0.744 0.943 -72.028 -0.009 

20 0.074 -2.285 0.795 -156.864 0.001 

21 0.076 -0.301 0.820 -27.093 -0.020 

22 0.050 -0.574 0.943 -55.641 0.001 
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23 0.069 -1.223 0.824 -118.943 -0.004 

24 0.032 -0.937 0.871 -90.031 -0.001 

25 0.030 -0.674 0.960 -65.188 -0.001 

26 0.041 -0.519 0.963 -50.530 -0.002 

27 0.117 -1.018 0.931 -99.138 0.001 

28 0.062 -0.670 0.942 -65.033 -0.004 

 

Table 6. 1. Results of neural and behavioral outcome measures of entrainment, per participant. 
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Discussion  

The main contribution of the present work is methodological, motivated by the need to 
compute a neural outcome measure of neural entrainment in the context of auditory-
motor coupling and prospectively applying auditory-motor coupling paradigms for the 
purpose of neurological rehabilitation. We proposed a novel processing pipeline to 
compute the stability index, and validated this neural outcome measure by testing its 
correlation with a set of behavioral outcome measures in the context of a finger-tapping 
task. 

Behaviorally, participants exhibited the mean negative asynchrony typically reported in 
finger-tapping synchronization tasks performed by healthy participants (Gisa 
Aschersleben, 2002). The mean negative asynchrony and the negative relative phase 
angles confirmed that all participants but one tapped on average ahead of the 
metronome, anticipating the beat. Additionally, by looking at the resultant vector lengths, 
we also note that consistent synchronization was maintained throughout the task. Given 
these results, we can deduce that all subjects were engaged in the process of entraining 
their finger-taps to the auditory beats of the metronome.  

As for the data captured by the EEG, our GED implementation was effective in extracting 
the target component maximally entrained to the rhythmic stimulus. Figure 6.3 provides 
a quality-check for our source separation by combining the following three criteria at the 
group-level. The first, topography: the grand-average activation map of the selected 
component shows maximal activity in the left centroparietal cluster and in the left 
temporal electrodes. Such distribution strongly suggests the involvement of primary 
sensorimotor areas, given it is contralateral to the effector (i.e. the right hand). The same 
pattern was previously reported for movement-related SSEPs in the context of overt 
synchronized behavior (Nozaradan et al., 2015), and clearly differs from the frontocentral 
topography typical of auditory cortical responses in absence of movement (Nozaradan et 
al., 2012). Given our focus on sensorimotor dynamics underlying overt behavior, our 
spatial filter was constrained within the whole set of channels located behind the 
frontocentral line. Secondly, the power spectrum: a single major peak stands out at the 
metronome’s frequency, accompanied by harmonics whose power approximately follows 
a 1/f distribution. The dominance of the target frequency over the spectrum shows that 
the extracted component is effectively fine-tuned to the rhythmic stimulation. Thirdly, the 
eigenspectrum: by sorting the eigenvalues in descending order, it is evident how the first 
one eigenvalue stands out over the rest of the spectrum. Such condition is particularly 
desirable when the goal is to reduce the dimensionality of a multivariate dataset to one 
single component that satisfies a given criterion. The eigenvector associated with the 
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highest eigenvalue could then be reliably used to weight the electrodes average, and 
reduce the dimensionality of the dataset to one entrained component. 

Applying GED in the context of neural entrainment is an established method of optimizing 
source separation (Michael X. Cohen & Gulbinaite, 2017), avoiding major drawbacks of 
electrode selection. To elaborate, we chose this approach instead of selecting a time-
series based on single electrode or on a small cluster of electrodes in order avoid 
subjective judgment to some degree. Despite this drawback, electrode selection is a rather 
common practice in the SSEP literature (e.g., S. K. Andersen et al., 2011; S. K. Andersen, 
Müller, & Martinovic, 2012; Kashiwase et al., 2012; Keitel, Andersen, & Müller, 2010; 
Rossion, Prieto, Boremanse, Kuefner, & Van Belle, 2012). In addition, with our spatial filter, 
we A) decrease the risk of attenuating the response in some subjects due to individual 
variability, and B) are not confounded to exposure to noise which might selectively affect 
a single channel. Although it is true that computing a non-weighted average over the 
whole scalp is sometimes proposed as a practice to avoid selection bias (e.g., see 
Nozaradan, Peretz, & Keller, 2016), the entrained response would be heavily attenuated 
by broadband components unrelated to the task. On the other hand, a weighted average 
oriented by spectral criteria would clearly overcomes such issues. Most importantly, our 
methodology of GED application was optimal for single-trial analysis and provided us with 
a single time-series whose time-course and dynamics could be further analyzed. Such 
time-series represented the starting point of our pipeline towards the computation of the 
stability index (see Figure 6.2). It should also be noted that rhythmic motor acts such as 
finger-tapping (McAuley, 2010; Moelants, 2002) and walking (MacDougall & Moore, 2005) 
operate within the low delta frequency range (Morillon, Arnal, Schroeder, & Keitel, 2019), 
which implies that long trials are needed to measure the dynamics of slower oscillatory 
components.  

In order to validate our neural outcome measure of auditory-motor coupling, we ran 
correlation analyses with a set of behavioral measures of synchronization accuracy and 
stability in the context of a finger-tapping task to a metronome’s beats. The stability index 
exhibited moderate negative correlations with the relative phase angles, the mean 
asynchrony and the resultant vector length. To explain our results, we first provide an 
explanation of the pattern we observed in the context of the stability of the frequency 
fluctuations, which are used to quantify the stability index. We observed less stability in 
the frequency fluctuations of the neural entrained component when the finger-taps were 
further away and with a wider distribution relative to the beats as reported by the relative 
phase angles and resultant vector length, respectively. Conversely, when the finger taps 
were closer to and in anticipation of the beat, with a narrow distribution, we observed 
that the entrained neural component stabilized its frequency fluctuations. The results 
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confirmed the hypothesis that these frequency fluctuations, as quantified by the stability 
index, correlated with the behavioral outcome measures of entrainment.  

With our results, we also observed that the stability index was selectively correlated with 
measures of phase error correction mechanisms, and not with those of period error 
correction. This is consistent with the fact that the stability index was not correlated to 
the inter-beat deviations, which is a measure for quantifying tempo matching (Moumdjian 
et al., 2018). In turn, tempo matching is an outcome which describes error correction in 
period. With the above explanations, our results are suggestive that the stability index 
quantifies neural entrainment, yet limited to corrections in phase. However, we do not 
rule out the possibility that we did not find any significant correlation due to the very low 
individual variability in inter-beat deviations, which resulted in a small slope of the 
regression line. The result indicates that participants were very accurate in matching the 
period of the metronome over the whole duration of the task.  

The selectivity of these correlations further supports the relevance of temporal dynamics 
at the micro-timing scale. By picking up on the notion of “neural entrainment to the beat”, 
which is traditionally inferred from the Fourier coefficients of a “static” spectrum, we 
developed it towards a phase-based measure to make it sensitive to the temporal 
structure of the stimulus (Rajendran & Schnupp, 2019) and to behavioral dynamics. From 
our standpoint, in order to entrain to the beat a neural component should not only be 
tuned to the stimulus frequency, but it should dynamically attune depending on the 
ongoing entrained behavior. The stability index proposed in this context shows how 
frequency fluctuates over time as a function of the distance from in-phase synchronization 
(the phase angles and asynchrony) and consistency of the established relative-phase 
during the course of the task (resultant vector length). Previous work provided evidence 
on correlation between cortical entrainment and overt sensorimotor synchronization 
(Nozaradan et al., 2016), recording brain activity by the means of the EEG during a passive 
listening task and subsequently performing the behavioral task. The authors detected 
entrained cortical activity on the frontocentral cluster of electrodes where auditory 
responses are typically detected, hypothesizing that SSEPs amplitudes would predict 
behavioral measures of overt entrainment. Interestingly enough, a dissociation emerged 
in the correlations between their measure of neural entrainment and behavioral accuracy, 
when compared to behavioral consistency. Specifically, the amplitude of SSEPs was 
related to mean asynchrony (accuracy) rather than to the resultant vector length 
(consistency), suggesting that the two are supported by distinct neural mechanisms when 
processing the beat of an auditory rhythm. In the scenario we proposed, with the goal of 
relating neural entrainment to ‘online’ dynamics of behavior, we identified a lateralized 
component plausibly related to primary sensorimotor areas, whose stability index 
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happens to be related to both behavioral accuracy and consistency. Our finding is arguably 
not in contradiction with previous evidence, but rather complementary.  

One may argue that the correlation we found between the stability index and the resultant 
vector length could be spurious, a sort of epiphenomenon entirely explainable by afferent 
proprioceptive feedback. Following this argument, stable rhythmic behavior could 
produce steady responses in primary somatosensory areas (Bourguignon, Piitulainen, De 
Tiège, Jousmäki, & Hari, 2015; Piitulainen, Bourguignon, De Tiège, Hari, & Jousmäki, 2013). 
Our task cannot exclude the possibility that such afferent components lead to a spurious 
correlation between the stability index and resultant vector length, which quantifies 
behavioral consistency. Nevertheless, such interpretation cannot explain our crucial 
finding that the stability index also correlated with behavioral accuracy. A more stable 
entrained component was associated with smaller synchronization errors, as quantified 
by measures of asynchrony and relative phase. We argue that our results rather align with 
evidence that motor cortices play a critical role in supporting auditory perception and 
prediction (Assaneo, Rimmele, Sanz Perl, & Poeppel, 2021; Takako Fujioka et al., 2012; 
Morillon & Baillet, 2017), since we showed that the more stable the entrained component 
is, the smaller the error relative to the beat. Within the limits of our auditory-motor task, 
we pick up on the notion of active sampling (Morillon et al., 2019), to propose that 
entrainment dynamics driven by the motor system seems to play an active role in the 
predictive mechanism of error minimization underpinning auditory-motor coupling (Vuust 
& Witek, 2014). However, with the current experimental design, we cannot rule out that 
distinct motor, sensory and cognitive processes were to some extent mixed in the 
entrained component. This represents an important limitation of the present study. A finer 
disentanglement of the neural processes underlying entrainment should be addressed by 
future work, with dedicated experimental designs.  

With our work, we thus contributed methodologically to the investigation on neural 
entrainment. Our method consists of extracting the oscillatory component in the EEG 
signal which is maximally entrained to a rhythmic auditory stimulus, and subsequently 
quantifying the stability of fluctuations over time. The impact of this contribution has 
valuable prospects within the domain of neurological rehabilitation. In previous work, we 
have investigated motor and auditory entrainment in participants with multiple sclerosis 
and healthy controls. Specifically, previous studies have analyzed behavioral time-series 
by means of detrended fluctuation analysis (DFA) (Moumdjian et al., 2020). Differences in 
gait dynamics were attributed to the process of error-correction minimization, which are 
required to dynamically interact with continuous and discrete auditory structures typically 
present in music and metronomes, respectively. Although clinically relevant, 
complementing such studies with neural outcome measures such as the stability index 
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would allow to explain the process of error-correction minimization further, at the level of 
neural dynamics. Such prospect has a strong indication to optimize the individualized 
rehabilitation procedure.  

In conclusion, our approach can be used for better understanding the dynamics of an 
entrained system over time. While the stability index provides a global neural outcome 
measure correlated with the overall synchronization performance, the instantaneous 
frequency time-series can offer a more fine-grained picture on the dynamics of neural 
entrainment. Neural and behavioral measurements can be complemented within a 
comparative setting between heathy population and neuropathological models, offering 
the possibility to dissociate neural mechanisms based on a mapping of selective lesions. 
Such neuropathological models can be recruited through studies conducted on 
participants with neurological diseases, where components of cognitive, motor or 
perceptual functions can be isolated. For instance, cerebellar lesions cover particular 
interest given the role of cerebellum in encoding the timing of events at the micro-timing 
scale (R. B. Ivry & Keele, 1989; R. B. Ivry, Keele, & Diener, 1988; Richard B. Ivry & Schlerf, 
2008), and given that their neural entrainment to auditory rhythms is selectively 
compromised at faster tempi (Nozaradan, Schwartze, Obermeier, & Kotz, 2017). 
Respectively, this unfolding of observations would expand the knowledge of the complex 
dynamic interaction when entraining motor and auditory systems to one another. In turn, 
it would pave ways towards the development of state-of-the-art approaches within the 
domain of neurological rehabilitation.   
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Introduction 

Humans exhibit a natural inclination to synchronize their movement with rhythmic signals 
in the environment. The phenomenon can be observed across a range of contexts such as 
music playing and dance (Clayton et al., 2020; Marc Leman, 2016), sports (E. E. A. Cohen, 
Ejsmond-Frey, Knight, & Dunbar, 2010), joint rhythmic tasks (Rosso et al., 2022; Rosso, 
Maes, et al., 2021) and verbal communication (Richardson et al., 2008; Shockley et al., 
2003). How does the human brain represent an external rhythm, how does it track it over 
time, and how does it temporally match motor behavior to it? These questions cover 
nowadays exceptional interest in neuroscience. Evidence converges towards 
sensorimotor entrainment, namely the alignment of motor and sensory rhythms at the 
neural level, as a plausible answer.   

Neural entrainment is defined as unidirectional synchronization of neural oscillations to 
an external rhythmic stimulus (Haegens & Zion Golumbic, 2018; Lakatos et al., 2019), and 
comes with the assumption of endogenous oscillatory activity in the brain which can be 
driven towards a state of phase- and frequency-locking. From the viewpoint of perception, 
oscillations reflect changes in the weight of sensory inputs via rhythmic fluctuations in 
neuronal excitability (Buzsáki & Draguhn, 2004; Fries, 2005; Lakatos et al., 2005). Their 
entrainment to rhythmic events is thought to subserve the selection of relevant 
information and to reduce the interference of competing input streams (Lakatos et al., 
2019). Perceptual representations are enhanced via low-frequency rhythmic fluctuations 
of sensory gain (Obleser & Kayser, 2019), resulting in what is considered to be a ‘rhythmic 
mode’ of attention (Obleser, Henry, & Lakatos, 2017; Rosso et al., 2022; Schroeder & 
Lakatos, 2009; Schroeder et al., 2010; Zoefel & VanRullen, 2015). Noteworthy, low-
frequency oscillations originating from cortical motor areas (Morillon & Baillet, 2017; 
Morillon, Hackett, Kajikawa, & Schroeder, 2015; Morillon, Schroeder, & Wyart, 2014) are 
thought to guide selection of environmental information and active sampling 
implemented in motoric routines (Schroeder & Lakatos, 2009), which leads to perceptual 
enhancement of attended stimuli (Chemin, Mouraux, & Nozaradan, 2014; Morillon et al., 
2014; Park, Ince, Schyns, Thut, & Gross, 2015; Rimmele et al., 2018; Schroeder et al., 2010). 
Thus, the engagement of the motor system enhances and stabilizes the internal 
representation of environmental rhythms (Kliger Amrani & Zion Golumbic, 2022) by 
scaffolding the prediction of incoming sensory events (Arnal & Giraud, 2012; Morillon et 
al., 2019, 2015, 2014; Morillon & Baillet, 2017; Rimmele et al., 2018; Rosso et al., 2022). A 
network of cortical and subcortical motor areas was recently put forward as responsible 
for beat-based time-keeping, by dynamically tracking the phase of the stimulus cycle and 
enabling overt motor alignment (Cannon & Patel, 2021).  
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The rationale of current state-of-the-art approaches to quantify neural entrainment is that 
the frequencies of a rhythmic stimulation can be tagged in the power spectrum of 
electrophysiological timeseries (Nozaradan et al., 2011). In practice, ‘frequency tagging’ 
transforms the brain signal into the frequency domain, quantifying the power of stimulus-
related frequencies over the whole spectrum. The observation that target frequencies 
dominate the spectrum has been commonly taken as evidence for the underlying 
entrainment of neural oscillations (e.g., (Lenc et al., 2018; Nozaradan et al., 2011, 2012)), 
which is not exempt from critiques. The most evident of these highlights that periodic 
stimulation elicits a train of time-locked transient responses in the brain, resulting in 
prominent peaks in the power spectrum at the related frequencies (Novembre & Iannetti, 
2018). Furthermore, allocating attentional resources to a predictable stimulus results in 
top-down modulation of the evoked response amplitude (Breska & Deouell, 2017; Legrain, 
Iannetti, Plaghki, & Mouraux, 2011; Nobre & van Ede, 2018) and, in turn, of power at the 
related frequency. Periodic evoked responses hinder the measurement of real neural 
entrainment, represent a critical confound for the empirical investigation with non-
invasive electrophysiology, and pose a major methodological challenge for the researchers 
in the field (Haegens & Zion Golumbic, 2018). 

Fundamentally, the entrainment of two oscillatory signals cannot be described by their 
spectral profile alone, because this is not a test for the underlying oscillatory process 
(Obleser & Kayser, 2019). Given that the temporal structure of a signal strictly depends on 
the phase of its oscillatory components (Rajendran & Schnupp, 2019), it is not possible to 
make inferences on local oscillatory dynamics of the signal if phase information is 
neglected. Neural entrainment is just one possible process leading to the match of two 
spectral profiles, and therefore frequency tagging is not a sensitive method to its 
realization. Entrainment in the strict sense is based on the phase of the signal, and is in 
principle dissociated from its amplitude. Therefore, the process should be defined in terms 
of changes in frequency over time (Rosenblum, Pikovsky, Kurths, Schäfer, & Tass, 2001) 
rather than being inferred by the power spectrum. It is the unidirectional process that 
leads to a state of phase-locking with a driving force (Lakatos et al., 2019), not the phase-
locked state itself (Rosenblum et al., 2001).  

Motivated by these limitations, we previously proposed the Stability Index (SI) as a 
measure to quantify neural entrainment from electroenchephalograpy (EEG) recordings 
of healthy participants engaged in finger-tapping to a steady auditory metronome (Rosso, 
Leman, et al., 2021). In our work, we extracted from the EEG signal a component attuned 
to the stimulation frequency, and computed the SI based on the fluctuations of the 
component’s frequency over time. Critically, we reported significant correlations between 
the SI and behavioral measures of synchronization: the more stable the neural 
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component, the more stable and more accurate the synchronization performance. We 
argued that, in contrast to previous amplitude-based approaches, the measure explicitly 
captures the dynamic phase-adjustment of entrained neural oscillations. The putative 
entrained component would adaptively speed up and slow down, fluctuating around the 
target center frequency to reach stable synchronization over time (Rosso, Leman, et al., 
2021). However, one main limitation of our previous work is that we could only provide a 
global measure of these fluctuations for a given time window, and correlate it to the global 
behavioral performance. Further inferences on the dynamics of the frequency adjustment 
over time were not possible, due to the fact that we did not have an experimental 
paradigm to induce them in a controlled fashion. 

With these limitations in mind, we hereby present the ‘event-related frequency 
adjustment’ (ERFA) as a novel experimental paradigm for investigating neural and 
behavioral entrainment with auditory rhythmic stimuli. A way to induce controlled 
frequency adjustment is to manipulate the frequency of an auditory metronome while 
experimental subjects are attempting to synchronize their finger-taps to it. The event 
discloses a post-perturbation window wherein the entrained component is expected to 
adjust its frequency according to the stimulus dynamics, and correct the error to return to 
a stable state. In finger-tapping studies, error-correction is traditionally investigated with 
tempo-changes and phase-shifts, in both positive and negative directions (for a review, 
see (Bruno H. Repp & Su, 2013). We implemented the former as a step change of +/- 10% 
from the baseline frequency (1.67 Hz), and the letter as a +/- 90° shift of the metronome 
beat along its cycle. Given that control mechanisms are thought to underpin error 
correction depending on the nature and the direction of perturbations (L. Bavassi, 
Kamienkowski, Sigman, & Laje, 2017; Jantzen, Ratcliff, & Jantzen, 2018; Praamstra, 
Turgeon, Hesse, Wing, & Perryer, 2003; B. H. Repp, 2001b, 2001a),  these variables were 
expected to reveal different underlying oscillatory dynamics.     

The ERFA curves, which constitute the neural measure within our experimental paradigm, 
are computed in three main blocks: 1) attunement: from the continuous multivariate EEG 
signal, a single component maximally attuned to the metronome’s frequency is extracted 
via spatial filtering (Michael X. Cohen & Gulbinaite, 2017; Rosso, Leman, et al., 2021); 2) 
instantaneous frequency: changes in frequency over time are computed based on the rate 
of change of the component’s phase (Michael X. Cohen, 2014; Rosenblum et al., 2001); 3) 
event-based segmentation: instantaneous frequency responses are time-locked to the 
perturbations, and aggregated by perturbation type and direction. The attunement block 
is carried out separately on two perturbation-free periods, while actively listening to the 
stimuli or tapping along, which allows to untangle a perceptual and a sensorimotor 
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entrained component within the same rhythmic task, and assess their relative 
contributions in adjusting to perturbations. 

Our aim was to use ERFA to track neural entrainment dynamics within the post-
perturbation windows, and to model them as a function of time. We hypothesized that 
the instantaneous frequency response would track the stimulus dynamics across 
perturbation types and directions, and that the active engagement in the behavioral task 
would boost the entrainment of the sensorimotor component in the brain signal as 
compared to the perceptual component. Figure 7.1 provides a graphical representation of 
paradigm, trial structure and expected results. Procedures are explained in detail in the 
Materials and methods section. 
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Figure 7. 1. ERFA paradigm workflow. Orange boxes provide a context of experimental tasks, blue boxes represent 
data processing. The approach started with an attunement phase, where participants were exposed to a 
perturbation-free auditory metronome during one minute. The purpose was to induce a stable oscillation attuned 
to the stimulation frequency, facilitating its separation from the broadband multivariate EEG signal via generalized 
eigendecomposition (GED) (Michael X. Cohen, 2022; Michael X. Cohen & Gulbinaite, 2017). Participants 
underwent this period of steady stimulation under distinct conditions of active listening and finger-tapping: using 
these two datasets, we designed for every participant two different spatial filters to extract a purely perceptual 
(without movement) and a sensorimotor (with movement) entrained components, respectively. After 60 seconds 
of finger-tapping, metronomes started to be perturbated by introducing unpredictable tempo-changes or phase-
shifts during 405 seconds, depending on the experimental condition. During these perturbation tasks, participants 
were instructed to synchronize their finger-taps to the metronome, therefore following the stimulus dynamics. 
The spatial filters designed based on the attunement phase were applied to the EEG signal recorded during the 
tasks, allowing us to track the dynamic changes in the frequency of both perceptual and sensorimotor oscillatory 
components. Examples of negative (red) and positive (green) perturbation windows are represented for tempo-
changes and phase-shifts, illustrating how the metronomes’ onset were manipulated and how neural components 
and finger-taps were expected to entrain. These figures are presented as conceptual examples for illustrative 
purposes only and are not meant to be realistic. In order to provide a measure for the neural and behavioral 
adjustments, the following processing pipeline based on Rosso et al. (Rosso, Leman, et al., 2021) was applied. 
Entrained components were narrow-band filtered around the metronome’s center frequency and Hilbert-
transformed to produce analytic signals and extract phase timeseries. These were then unwrapped to prevent 
phase resets, differenced and scaled to Hz to produce instantaneous frequency timeseries, namely an estimate of 
the oscillation’s frequency at every timepoint. The processing up to this stage was performed on the continuous 
EEG recording. Instantaneous frequency timeseries were eventually segmented based on perturbation windows, 
and aggregated by perturbation type and direction. The average of the event-based segments provided the event-
related frequency adjustment (ERFA) curves as our outcome of interest, which were expected to follow the 
stimulus dynamics as expressed in terms of instantaneous frequency. In the rightmost boxes of the figure, we 
show how we hypothesized the ERFA curves would look like. We expected a gradual and sustained response to 
tempo-changes (top box) and a transient response to phase-shifts (bottom box), tracking the stimulus dynamic 
and direction (represented as dashed lines). 
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Materials and Methods 

1. Participants 

Twenty (N = 20) right-handed healthy participants took part in the experiment (11 females, 
9 males; mean age = 32.8 years, std = 6.2 years). All participants had normal hearing and 
normal or corrected-to-normal vision; none reported any history of major medical, 
psychiatric or neurological conditions; none reported to be a professional musician. Upon 
arrival in the laboratory, they received extensive briefing of the experimental procedure 
and signed the informed consent form. Following the administration of the Edinburgh 
Handedness Inventory (Oldfield, 1971) and a questionnaire to collect information on 
demographics and musical training, the experimenter proceeded to prepare the EEG 
equipment.  

The study was approved by the Ethics Committee of Ghent University (Faculty of Arts and 
Philosophy) and informed written consent was obtained from each participant. A 20€ 
coupon was given to all participants as economic compensation for their time. 

 

2. Experimental tasks  

The experiment consisted of one listening task without perturbations and two finger-
tapping tasks with perturbations, performed in a fully-randomized order. Two different 
perturbation types were used as separate experimental conditions, these were tempo-
changes and phase-shifts (see Figure 7.1). The listening task lasted 60 seconds, while both 
finger-tapping tasks lasted 465 seconds, of which the first 60 seconds were free of 
perturbations and the following 405 seconds contained perturbations.  

The listening task was used to collect EEG data in absence of movement and design a 
spatial filter, to extract the perceptual component maximally attuned to the auditory 
stimulus. Stimulation consisted of a metronome set at 100 Bpm (1.67 Hz), which was 
chosen as optimal rate for sensorimotor synchronization (Kliger Amrani & Zion Golumbic, 
2022; London, 2012; Zalta, Petkoski, & Morillon, 2020). To verify that participants were 
actively listening, they were instructed that the regular rhythm could be disrupted by a 
phase-shift at any moment, and they would have to tap their finger on the pad as fast as 
possible upon detection. One single perturbation was presented after 60 seconds of 
steady rhythm, at a random moment within a 5 second time window, and was successfully 
detected by all participants but one. The importance of not moving any body part during 
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the listening was stressed, as well as staring at a black dot on the center of the pad to 
minimize eye-movement artifacts in the EEG recordings.  

In finger-tapping tasks, participants were instructed to synchronize their finger-taps to the 
metronome all the time, and to keep trying to synchronize even in case they would find 
themselves out of sync. The importance of minimizing body and head movements during 
the task was stressed, as well as staring at a black spot (i.e. a fixation point) painted on the 
tapping pad. Both measures were taken to minimize contamination of EEG recordings. 
Immediately before the start of the experiment, participants were given a simple 
demonstration by the experimenter and familiarized themselves with the finger-tapping 
to the non-perturbated metronome until they felt confident with the procedure. 

Each finger-tapping task lasted a total of 465 seconds, the first 60 of which were free from 
perturbations. Such steady period was used to design a spatial filter to extract the 
sensorimotor component maximally attuned to the metronome, based on EEG data 
collected in condition of overt movement. From that moment onwards, perturbations 
were presented at random times every 5 to 15 seconds: perturbation onsets were 
therefore unpredictable while participants had enough time to re-stabilize behavioral and 
neural responses. A total of 20 negative perturbations, 20 positive perturbations, and 40 
perturbation-free windows were available to analyze per participant within a time frame 
of 405 seconds. The order of perturbations’ direction was randomized within finger-
tapping condition, whilst tempo-change and phase-shift were presented in separate 
experimental conditions. Tempo-changes consisted of a +/- 10% step change with respect 
to the baseline tempo (100 bpm, 1.667 Hz), sustained for 3 seconds before a second step 
change back to the baseline. Phase-shifts consisted of a discrete +/- 90° shift on the beat 
cycle, perceived as a shorter or a longer inter-beat interval, respectively (see Figure 7.1). 
The order of the individual conditions (60 seconds of perturbation-free listening, 465 
seconds of finger-tapping with tempo-changes, 465 seconds of finger-tapping with phase-
shifts) was fully randomized across participants. 

Besides the experimental conditions hereby presented, participants also performed the 
same tasks with different kinds of ecological musical stimuli. However, such extra 
conditions were meant to answer research questions not relevant to the present paper, 
hence will be addressed in future work. 

 

3. Experimental apparatus 

Participants were sitting on a comfortable armrest chair, and a circular pad was placed on 
the table in front of them for recording finger-tapping responses. Stimuli were presented 
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via DefenderShield® air-tube earplugs. Volume was adjusted before the beginning of the 
experiment, to make sure that stimuli were clearly audible without creating any 
discomfort. A circular tapping pad, containing a strain gauge pressure sensor, was used to 
detect finger-tapping onsets with a 1 ms resolution. A folded towel was placed underneath 
the pad, so that no auditory feedback from the finger-taps was perceivable. The pressure 
sensor was connected to a Teensy 3.2 microcontroller, which worked as serial/MIDI hub 
for data logging and communication between the stimulation computer and the EEG 
recording computer. Upon occurrence of events of interest (i.e., perturbations), a TTL 
trigger was sent from the Teensy microcontroller to the EEG amplifier via BNC connection, 
granting the alignment between behavioral and neural timeseries. The EEG signals were 
recorded with an ANT-Neuro eego™mylab system at a sampling rate of 1 kHz. Each 
participant was equipped with an EEG headset (64-channel waveguard™original with 
Ag/AgCl electrodes). Recordings were performed with a referential montage, with ‘CPz’ 
being the reference for all electrodes. 

The stimuli sequence was played back by specifically designed software developed in Max 
MSP 8 (Cycling '74, USA), running on the stimulation computer (Windows 10, Intel core i7 
8th gen, Focusrite Rednet PCIExpress ASIO low-latency soundcard). Prior to each trial, a 
randomized balanced list of perturbations was generated and inspected by the 
experimenter. A pre-generated .wav file, containing a non-perturbed sequence of 
metronome ticks at 1.667 Hz (600ms inter-beat intervals), was played back and 
manipulated in real-time based on the perturbations list and timing configuration (i.e., 
initial perturbation-free period and minimum and maximum time between perturbations). 
MIDI events were generated when a beat was perceived by the listener and when a 
perturbation occurred.  These MIDI events were logged using the Teensy 3.2 
microcontroller, along with the finger-tapping timestamps.  

 

4. Data analysis  

The data processing pipelines were implemented in Matlab 2019a (MathWorks Inc., USA). 
Statistical modelling was carried out in R Studio version 4.0.3 (R Core Team), using the 
lme4 package (Bates et al., 2014) for model fitting. Participant #6 was excluded from the 
analysis, due to a technical issue during data acquisition resulted in the loss of EEG data. 

 

4.1. Behavioral data processing 
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Finger-taps were processed in order to return timeseries aligned to the neural ERFA, 
expressed in the same unit of measure (i.e., Hz over ms). Whenever a timestamp was 
followed by a second timestamp with < 350ms interval, it was considered as a false 
positive and therefore removed (false positives could occasionally be recorded when a 
participant pushed the tapping pad for too long or accidentally laid the hand on it). The 
intervals between the remaining timestamps were then linearly interpolated from 0 to 1 
at 1 kHz sampling rate; the resulting ramp wave was scaled to 2π, providing an estimate 
of the finger-taps phase with a temporal resolution of 1 ms. Instantaneous frequency 
timeseries were computed as the first derivative of the unwrapped phase angles time 
series (Boashash, 1992), and converted in Hz as indicated in (Michael X. Cohen, 2014): 

 

𝐻𝑧£ = 	
𝑠(𝜙£ −	𝜙£z>)

2𝜋
 

 

where s indicates the data sampling rate and 𝜙£ indicates the (unwrapped) phase angle at 
time t. Unwrapping was necessary in order to remove discontinuities in the timeseries 
caused by phase resets. 

 

4.2. Neural data processing 

4.2.1. Pre-processing 

The pre-processing pipeline was realized integrating functions from the Fieldtrip toolbox 
(Oostenveld et al., 2011) for Matlab. Bad channels were identified by visually inspecting 
the raw timeseries in combination with the distribution of variance across channels. The 
recording was re-referenced to the average of all electrodes after rejection, to avoid noise 
leakage into the common average. 3.23 bad channels per participant were removed on 
average (std = 1.95). A sixth-order Butterworth high-pass filter with 1 Hz cut-off was 
applied to the raw recordings to remove slow drifts. We show in Supplementary material 
7. A that, for these parameters, the high-pass filter does not influence the oscillatory 
dynamics of interest in the present work.  A low-pass sixth-order Butterworth filter with 
40 Hz cut-off was applied to remove high-frequency muscular activity. A fourth-order 
notch filter centered at 50 Hz was applied to remove power-line noise up to the 3rd 
harmonic.    
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Subsequently, independent component analysis (ICA) was conducted and used to remove 
stereotyped artifacts by means of visual inspection of topographical maps and timeseries 
of component activation, as implemented in the ‘runica’ Fieldtrip algorithm. The reference 
‘CPz’ and the bad channels’ timeseries were excluded from the input matrix. Under 
optimal conditions, removal was limited to those components which exhibited the 
stereotypical frontal distribution generated by blinks and lateral eye movements, or 
bilateral temporo-mastoidal distribution with periodic peaks in the activation timeseries 
plausibly generated by heart beats. Extra components were removed in instances where 
recurrent artifacts with clearly abnormal amplitude were detected. 5.03 artifactual 
components per participant were identified and removed on average (std = 4.36). The 
dataset was inspected prior to ICA decomposition and following ICA back-projection to 
assess the quality of the artifact removal. Special attention was given to the frontal 
clusters of electrodes maximally contaminated by eye-related artifacts. Rejected bad 
channels were reconstructed after artifact removal, by computing the average of activity 
from neighboring electrodes indicated by the template provided by ANT-Neuro for 64-
channel waveguard™original caps. No segmentation in epochs was performed up to this 
point, since continuous recording was needed for performing source separation. 

 

4.2.2. Source separation  

Generalized eigendecomposition (GED) (Michael X. Cohen, 2022) was used to extract a 
perceptual and the sensorimotor components attuned to the stimulation frequency. The 
procedure described below is the same for both components, with the only difference that 
the respective inputs were 60 seconds of data recorded during the listening task, and 60 
seconds of data recorded during the 60 seconds of finger-tapping in absence of 
perturbations. This allowed to design two separate spatial filters, which were 
subsequently applied to the data recorded during the 465 seconds of finger-tapping in 
presence of perturbations (see Figure 7.1). 

As first described in the context of source separation for rhythmic entrainment (Michael 
X. Cohen & Gulbinaite, 2017), GED allows to avoid channel selection bias while optimizing 
the signal-to-noise ratio between the entrained component and the broadband neural 
activity. The technique consists of a spatial filter to separate sources and reduce data 
dimensionality, guided by some criteria. In this case, the criterion is the attunement to the 
stimulation frequency. Dimensionality was reduced by computing the weighted average 
of the timeseries from all 64 channels, where the set of vectors W (weights) was calculated 
by solving the following equation: 
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𝑅𝑊Λ	 = 	𝑆𝑊 

 

where S is the covariance matrix of the narrow-band signal; R is the reference covariance 
matrix of the broad-band signal; Λ is the set of eigenvalues.  GED identifies eigenvectors 
W that best separate the signal (‘S’) covariance from the reference (‘R’) covariance matrix.  
The eigenvector associated to the largest eigenvalue was taken as a spatial filter, 
transposed and multiplied by the broadband data matrix to reconstruct the time series of 
our target entrained component. 

Given we were explicitly looking for frequency fluctuations, our narrow-band filter needed 
to be wide enough to leave room for fluctuations around the target frequency. We 
designed our filter as a gaussian function in the frequency domain, with center at 1.667 
Hz and a width of 0.3 Hz at half of the maximum gain (Rosso, Leman, et al., 2021). We then 
filtered the broadband data at all channels via spectral multiplication between broadband 
signal and wavelet kernel in the frequency domain, and transformed the resulting narrow-
band signal back in the time domain with inverse fast Fourier transform. 

The S covariance matrix was computed from the narrowband signal, the R covariance 
matrix was here computed from the broadband multivariate signal. In this regard, the 
choice aligns with the approach presented in (Rosso, Leman, et al., 2021) rather than 
(Michael X. Cohen & Gulbinaite, 2017), because the former is optimized for low target 
frequencies < 2 Hz. Covariance matrices were computed within 600 ms time windows 
locked to the finger-taps onsets, and grand-average S and R covariance matrices were 
computed. Matrices whose z-normalized Euclidean distance from the grand-average 
exceeded the 2.23 z-scores (corresponding to a probability of 0.01) where removed, and 
the grand-average S and R recalculated free of transient artifactual activity. 1% 
regularization was applied to R. 

In previous work (Rosso et al., 2022; Rosso, Leman, et al., 2021), we implemented an 
optimization of GED based on a macro-selection of regions of interest, justified by 
experimental design and some prior assumptions. In this study, however, we made no 
prior assumptions on scalp distribution and therefore inputted timeseries from all 
channels, allowing the data collected to drive the source separation in the different 
conditions (‘listening’ and ‘finger-tapping’).  
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4.2.3. Instantaneous frequency 

The same Gaussian filter used for GED was applied to the perceptual and to the 
sensorimotor components (center at 1.667 Hz and 0.3 Hz width at half maximum) to 
extract reliable phase timeseries from the analytic signal (Rosenblum et al., 2001). These 
were extracted by means of Hilbert transform. In order to remove discontinuities caused 
by phase resets, the timeseries were unwrapped, differenced and finally converted to Hz 
(Michael X. Cohen, 2014):  

 

𝐻𝑧£ = 	
𝑠(𝜙£ −	𝜙£z>)

2𝜋
 

 

The resulting instantaneous frequency timeseries were smoothed with a sliding moving 
median (window width of 400 samples), to remove transient artifactual activity that may 
distort the phase timeseries (Michael X. Cohen, 2014).  

It should be to pointed out that, in electrophysiological data, the estimation of 
instantaneous frequency of oscillatory activity is sensitive to the aperiodic 1/f component 
of the spectrum (Donoghue et al., 2020). This feature can result in bias towards lower 
frequencies under certain conditions. Samaha and Cohen (Samaha & Cohen, 2022) 
demonstrated that a low periodic/aperiodic spectral power ratio, in combination with 
broad filter width, is problematic for reliable estimations. We highlight that our spatial 
filter application was specifically aimed at maximizing the target narrowband energy 
relative to the broadband energy (Michael X. Cohen & Gulbinaite, 2017; Haufe, Dähne, & 
Nikulin, 2014; Rosso, Leman, et al., 2021), resulting in outstanding spectral peaks 
indicating prominent oscillatory activity (see Figure 7.2). This, along with our conservative 
choice of a narrow filter, complies with the good practices to reducing the slope of the 1/f, 
and therefore increases the reliability of the estimated instantaneous frequency (Samaha 
& Cohen, 2022).         

 

4.2.4. Event-related frequency adjustment (ERFA) 

In order to analyze neural and behavioral responses to perturbations within the same 
framework, the following procedure was applied to all instantaneous frequency timeseries 
to compute the related instances of ERFAs: one for the finger-tapping (behavioral), one 
for the EEG perceptual component (neural) and one for the EEG sensorimotor component 
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(neural). The approach was inspired by event-related potentials (ERPs) (Luck, 2014) and 
shares with it most of the features presented in this paragraph. The crucial difference is 
that ERFAs express frequency (y-axis) over time (x-axis), whilst ERPs express amplitude (y-
axis) over time (x-axis). Furthermore, the pre-stimulus baseline of ERFAs requires steady 
rhythmic stimulation to provide a stable baseline frequency level.   

Perturbation onsets were identified in the instantaneous frequency timeseries based on 
the timestamp logs. Time windows were defined as the time span from -500 to +3000 ms 
with respect to the perturbation onset, aggregated per perturbation type and direction, 
baseline-normalized and averaged. Baseline normalization was performed by subtracting 
the average of the 500 to 0 ms interval from the rest of the ERFA, dividing by the target 
stimulation frequency (i.e., 1.667 Hz) and multiplied by 100. The resulting ERFA is 
expressed in percent change respect to the baseline stimulation frequency. For every 
participant, 19 ERFA curves were aggregated per perturbation type and direction, and the 
average response was computed. The responses to negative perturbations were sign-
flipped in order to avoid trivial results at statistical comparisons with positive 
perturbations (Jantzen et al., 2018). Finally, the ERFA computation was repeated shifting 
all time-windows by -400 ms along the instantaneous frequency timeseries, namely into 
perturbation-free periods. This provided for every participant a baseline for further 
statistical comparisons.   

 

5. Statistical modelling 

ERFAs to tempo-change perturbations were modelled via polynomial fitting to the curves, 
down-sampled by a factor of 10 for computational feasibility. For phase-shifts, the discrete 
integral of the ERFA from 0 to 1500 ms interval was computed via trapezoidal method with 
unit spacing, using the trapz() Matlab function. This returned signed areas under the 
curves, which we interpreted as a measure of entity of the error correction sensitive to 
the direction of the corrective response. Baseline normalization is crucial in order to obtain 
signed areas, as data need to be zero-centered.  

For behavioral ERFAs only, reaction times were computed as the x-coordinate of the 
inflexion point of sigmoid function which best fitted the ERFA from 0 to 800 ms. The fitting 
was performed with the sigm_fit() Matlab function, defining no fixed parameters. For the 
neural ERFAs, the effects on the response variables of interest were tested in 3x2 factorial 
designs with Direction (Negative, Null, Positive) and Component (Perceptual, 
Sensorimotor) as factors. For the behavioral ERFAs, the effects on the response variables 
of interest were tested in 3x1 factorial design with Direction (Negative, Null, Positive) as 
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the only factor. When pairwise comparisons between Negative and Positive directions 
were performed after omnibus tests, Bonferonni correction was applied for a significance 
level of α = 0.05. 

 

5.1. Orthogonal polynomials (for tempo-change) 

For tempo-changes, growth curve analysis (Mirman, 2017; Rosso, Maes, et al., 2021) was 
used to model the change in instantaneous frequency of the neural entrained components 
(i.e., the ERFAs) within 3-seconds perturbated windows (i.e., metronomes at +/- 10% of 
the baseline frequency). Parameters of categorical predictors were estimated relative to 
Null Direction and Perceptual component, respectively. The rationale of such factor 
leveling is that no systematic change in instantaneous frequency was expected in Null 
trials, resulting in the flattening of random fluctuations when averaging over trials. As for 
the Component, we intended to test the significance of additive motor processing in the 
Sensorimotor component during entrainment, with respect to purely Perceptual 
processing. 

The order of the polynomial is ideally chosen based on hypothesis and on the nature of 
the data, should be confirmed by the empirical data, and should allow a straightforward 
interpretation of the effects (Mirman, 2017). A full model based on orthogonal 
polynomials includes all terms up to the chosen order, which in this case was 2: a linear 
and a quadratic term were sufficient to capture the effect of our manipulation. In a 
framework of polynomial fitting, a flat line can be considered a pure intercept and a ‘zero-
order’ polynomial, in the sense that it exhibits zero-change in any direction. When 
instantaneous frequency is time-invariant, it indicates a steady oscillation within a given 
time window (e.g., the behavior of a non-perturbated metronome). The intercept of our 
model provides hence valuable information on the average frequency within the 
perturbated window, and how it changes across the factors’ levels: significant main effects 
of categorical predictors indicate global differences across experimental conditions, 
independently from the temporal profile of the response variable. On the other hand, 
significant interaction effects on the polynomial terms indicate that instantaneous 
frequency in systematically modulated by the temporal dynamics of the perturbation. The 
parameter estimate of the linear component (1st order) corresponds to the slope of the 
line and the consequent shift in the vertex for the parabola, while the quadratic 
component (2nd order) corresponds to the parabolic curvature. In sum, intercepts 
indicate average frequency; polynomial terms of Time are used to model instantaneous 
changes in frequency. Our model also included random effects of Subject on all polynomial 
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terms, and their interactions with the factors: the random effects structure was maximized 
in order to minimize false alarm rates without substantial loss of power (Barr et al., 2013).  

Here, the formulas for the models fitted to neural and behavioral ERFAs, respectively (in 
R syntax):  

 

𝑛𝐸𝑅𝐹𝐴	~	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O) ∗ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡)
+	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡: 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡:𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)	 

  

𝑏𝐸𝑅𝐹𝐴	~	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O) ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + (𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡)
+	(𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒O	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡: 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)	 

 

 

5.2. Integrals (for phase-shifts) 

For phase shifts, we deemed a model based on integrals to bemore suited and 
parsimonious as compared to polynomials. This was motivated by the observation that a 
parabolic curve did not provide a good fit for transient responses elicited by phase shifts. 
We therefore opted for a method insensitive to the particular curve-shape, quantifying 
instead the area under the curve within a shorter time window (1500 ms) following the 
perturbation onset. The adoption of integrals in the context of event-related neural 
responses was validated in the ERP literature (Luck, 2014), and in principle equally valid in 
the context of these ERFAs given the comparable post-stimulus window sizes and a 
response more localized in time, in contrast to the more sustained responses to tempo-
changes.   

The integrals provided us with a measure of ERFA magnitude, which is sensitive to the 
direction of the response since the areas are signed with respect to the 0% change 
baseline. Noteworthy, we verified on the data logged from the metronomes that the 
expected absolute area underneath positive and negative phase-shifts were equal 
irrespective of the difference in shape. Here are the formulas for the models fitted to 
neural and behavioral ERFAs, respectively, plus the behavioral reaction times (in R syntax):  

 

𝑛𝐸𝑅𝐹𝐴_𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙	~	𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + (1	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡)	 
 

𝑏𝐸𝑅𝐹𝐴_𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙	~	𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + (1	|	𝑆𝑢𝑏𝑗𝑒𝑐𝑡)	 
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𝑏𝐸𝑅𝐹𝐴_𝑟𝑡	~	𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + (1	|	𝑆𝑢𝑏𝑗𝑐𝑡) 

 
Data and scripts are available upon request to the authors with a formal data sharing 
agreement, in line with the conditions of the local ethics committee which approved the 
present study. 
 

Results 

Event-related frequency adjustments (ERFAs), computed as the instantaneous frequency 
response within the post-perturbation window, are the object of our analyses. Neural and 
behavioral ERFAs were computed from EEG and finger-tapping timeseries, respectively. 
Two distinct approaches were used to model the ERFAs in response to the tempo-change 
and phase-shift perturbations. For both neural and behavioral responses, orthogonal 
polynomials (Mirman, 2017) were used to model tempo-change, and integrals (Luck, 2014) 
were used to quantify the entity of phase-shifts. ERFAs in response to all negative 
perturbations were sign-flipped, in order to make the responses directly comparable with 
the positive counterparts (Jantzen et al., 2018). Whereas in the literature stimulus rates 
are often expressed in milliseconds to describe the duration of inter-stimulus intervals, 
ERFAs will be consistently expressed in Hz, or % change with respect to a baseline 
frequency. Therefore, increasing values indicate that the oscillatory component is 
speeding up, and decreasing values indicate that the oscillatory component is slowing 
down.  

Below, an assessment of the EEG source separation is provided, followed by the results of 
our models presented per perturbation type.  

 

1. EEG source separation 

A perceptual and a sensorimotor component were extracted from the multivariate signal 
from separate experimental conditions (see Figure 7.1). This represented the attunement 
phase of our approach, where spatial filters were designed to target the perceptual and 
sensorimotor components maximally entrained to the metronome. We hereby provide 
the results of the qualitative assessment of the GED according to three criteria: (a) spatial 
activation pattern, (b) spectral profile, and (c) eigenspectrum. These results are shown and 
described in detail in Figure 7.2.   
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Figure 7. 2. GED source separation. The criteria for the assessment of source separation via GED are here shown 
at the group level (N = 19). The spatial pattern of the perceptual component did not exhibit the centro-frontal 
activation expected from EEG auditory evoked responses (Nozaradan et al., 2011, 2012, 2015), whereas the 
activation of the sensorimotor component exhibited both frontal negativity and a peak of activation over left 
centroparietal regions as previously reported during finger-tapping task performed with the contralateral hand 
(Rosso, Leman, et al., 2021). The SNR spectrum of both components was dominated by a prominent peak at the 
stimulation frequency (i.e., 1.67 Hz) and harmonics, indicating that our filter successfully separated from the 
broad-band signal a component oscillating around the center frequency of the metronome. Spectra were 
computed over the whole finger-tapping session, and normalized to signal-to-noise ratio (SNR) units with respect 
to the neighboring bins to remove the 1/f component. The eigenspectrum showed that the weights associated to 
the largest eigenvalue explained considerably more variance than the others, hence was chosen as spatial filter to 
for our sensor data. We observed a general additive effect of the sensorimotor component on all 3 criteria: overt 
movement resulted in stronger spatial activation, finer attunement to the stimulation frequency and more 
explained variance in the reconstructed sources. Taken together, these criteria support that the source separation 
successfully extracted two components attuned to the metronome’s frequency during listening (perceptual 
component) and finger-tapping (sensorimotor component), with the latter being more effectively separated from 
the broadband signal. The dynamic frequency adjustment of the two components in response to perturbations 
was further operationalized as event-related frequency adjustment (ERFA).    
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2. Tempo-change perturbations 

The ERFA response curves of the tempo-change conditions were modelled with 2nd order 
orthogonal polynomials, as the timeseries followed parabolic growth-and-decay, tracking 
the direction of the perturbation (see Figure 7.3A-B-C). This parabolic term was capable of 
capturing the most prominent effect in the model. Fixed effects of Direction (Negative, 
Null, Positive) and Component (Perceptual, Sensorimotor) on the polynomial terms were 
tested. The Null level (i.e., perturbation-free windows) was treated as a baseline for 
contrasting Negative and Positive levels of Direction, while the Perceptual level was 
treated as a baseline for contrasting the Sensorimotor level of Component. Model 
parameters were estimated with respect to the levels defined as baseline. The same 
polynomial model was fitted to the behavioral ERFA curves, with the exception that the 
Component factor was removed. The specifics of our statistical modelling are explained in 
detail in the Materials and methods section.  

 

2.1. Neural ERFA 

The orthogonal polynomial model revealed a significant main effect of Positive Direction 
(Estimate = 1.689, SE = 0.450, p < 0.001) and a significant two-way interaction between 
Positive Direction and the quadratic term of Time (Estimate = -8.049, SE = 4.039, p = 
0.046). The former indicates that both Perceptual and Sensorimotor components 
oscillated on average significantly faster within Positive perturbated windows, the latter 
indicates that the higher average was accompanied by more parabolic modulation of the 
ERFA (i.e., inverse U-shape). Whilst the main effect of Negative Direction reached 
significance (Estimate = 1.160, SE = 0.450, p = 0.010), no significant two-way interaction 
with the polynomial terms was found for Negative Direction. Taken together, these effects 
suggest that oscillations are generally biased to follow positive frequency changes, as 
quantified by the ERFAs of both perceptual and sensorimotor components.    

The nature of the Component becomes relevant for Negative Direction, as indicated by 
the significant two-way interaction (Estimate = 1.461, SE = 0.636, p = 0.022): the oscillation 
was on average significantly slower within Negative perturbated windows, but only for the 
Sensorimotor type. In contrast, in response to Positive perturbations, both Component 
types exhibited significantly faster oscillations.   

A significant three-way interaction was found between quadratic term of Time, 
Component and Direction (Positive: Estimate = -19.129, SE = 5.711, p < 0.001; Negative: 
Estimate = -20.266, SE = 5.711, p < 0.001). These effects indicate that the Sensorimotor 
Component significantly boosted the parabolic modulation of the ERFA as compared to 
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the Perceptual Component, regardless of whether the metronome was speeding up or 
slowing down. This additive effect can be seen in Figure 7.3A and B. Results from the 
statistical model are reported in Table 7.1. 

 

2.2. Behavioral ERFA 

The orthogonal polynomial model revealed significant main effects of both Positive 
(Estimate = 8.816, SE = 0.567, p < 0.001) and Negative (Estimate = 9.276, SE = 0.567, p < 
0.001) Directions, indicating that both signs resulted in an average frequency offset in the 
expected direction. The dynamic is captured by the significant interaction of the quadratic 
term and Direction (Positive: Estimate = -92.034, SE = 4.562, p < 0.001; Negative: 
Estimate = -85.739, SE = 4.562, p < 0.001), in line with the patterns of the neural ERFAs. 
When testing for the interaction between Direction and the linear term of the model, 
which indicates the position of the vertex of the parabolic curve (see(Rosso, Maes, et al., 
2021), for application and interpretation of orthogonal polynomials fitted to asymmetric 
curves), we did not find an asymmetry across levels of Direction at our significance level 
alpha = 0.05, only a trend (Estimate = 9.293, SE = 4.971, p = 0.061). The behavioral ERFA to 
tempo-changes is represented in Figure 7.3C. 

No significant difference was found at post-hoc comparisons when testing for Positive 
against Negative directions, neither for the main effect nor for the interaction on the 
quadratic terms. Results from the statistical model are reported in Table 7.2. Note that, 
since the Null level was set as a reference for both Positive and Negative in the model, 
effects of Direction are reported pairwise.  
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N = 19  

Predictors Estimate SE t value p 

 
(Intercept) 
 

 
-0.441 

 
0.318 

 
-1.388 

 
0.165 

Time -0.814 2.665 -0.305 0.760 
 

Time2 0.011 2.978 0.003 
 

0.996 
 

Component (SM) 0.475 0.450 1.057 
 

0.291 

Direction (-) 1.160* 0.450 2.580 
 

0.010 

Direction (+) 1.689*** 0.450 3.754 
 

< 0.001 

Time:Component 1.407 3.623 0.388 
 

0.698 

Time2:Component 
 
Time:Direction (-) 

1.540 
 

-1.255 

4.038 
 

3.623 

0.381 
 

-0.346 

0.703 
 

0.729 
 
Time:Direction (+) 
 
Time2:Direction (-) 
 
Time2:Direction (+) 
 
Component:Direction (-) 
 
Component:Direction (+) 
 
Time:Comp:Dir (-) 
 
Time:Comp:Dir (+) 
 
Time2:Comp:Dir (-) 
 
Time2:Comp:Dir (+) 
 

 
-1.936 

 
-6.141 

 
-8.049* 

 
1.461* 

 
0.743 

 
-3.250 

 
1.413 

 
-20.266*** 

 
-19.129*** 

 
3.623 

 
4.039 

 
4.039 

 
0.636 

 
0.636 

 
5.124 

 
5.124 

 
5.711 

 
5.711 

 
-0.534 

 
-1.520 

 
-1.993 

 
2.296 

 
1.167 

 
-0.634 

 
0.275 

 
-3.548 

 
-3.349 

 
0.593 

 
0.128 

 
0.046 

 
0.022 

 
0.243 

 
0.526 

 
0.783 

 
< 0.001 

 
< 0.001 

    * p < 0.05 
** p < 0.01 
*** p < 0.001 
 

 

Table 7. 1. Neural ERFA: tempo-change. 
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N = 19  

Predictors Estimate SE t value p 

 
(Intercept) 

 
-0.709 

 
0.560 

 
-1.267 

 
0.205 

     

Time -1.018 4.834 -0.211 0.833 
 

Time2 3.957 3.871 1.022 
 

0.307 
 

Direction (-) 9.276*** 0.567 16.345 
 

< 0.001 
 

Direction (+) 8.816*** 0.567 15.534 
 

< 0.001 
 

Time:Direction (-) 
 
Time:Direction (+) 
 
Time2:Direction (-) 
 
Time2:Direction (+) 
 

9.293 
 

0.830 
 

-85.739*** 
 

-92.034*** 

4.971 
 

4.971 
 

4.562 
 

4.562 

1.869 
 

0.167 
 

-18.794 
 

-20.174 

0.061 
 

0.867 
 

< 0.001 
 

< 0.001 
 

    * p < 0.05 
** p < 0.01 
*** p < 0.001 
 

 

Table 7. 2. Behavioral ERFA: tempo-change. 

 

3. Phase-shift perturbations 

The signed area (i.e., discrete integrals) under the ERFA curves was computed as response 
variable, and a 3x2 factorial model was fitted:  Direction (Negative, Null, Positive) x 
Component (Perceptual, Sensorimotor). In this context, integrals provided a measure of 
entity of the shift in instantaneous frequency regardless of the curve shape, while being 
sensitive to the direction of the shift. This sensitivity is due to the fact that the area is 
signed, returning positive or negative values for portions above or below the x-axis, 
respectively. In addition, for behavioral ERFAs, reaction times were computed as the 
intersection of the curve’s inflection point with the time x-axis. The specifics of our 
statistical modelling are explained in detail in the Materials and methods section.  
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3.1. Neural ERFA 

We found a significant two-way interaction between Component and Positive Direction 
(Estimate = 1763.756, SE = 781.745, p < 0.024), indicating that phase-shifts in such 
direction elicited significant ERFAs only when the component was Sensorimotor. The 
difference between components can be seen in Figure 7.3D and E, where a flat grand-
average ERFA is observed for the Perceptual component due to the absence of systematic 
changes in instantaneous frequency across participants. It is noteworthy that the ERFA of 
the Sensorimotor component in Negative Direction did not mirror its Positive counterpart: 
rather than dropping below the baseline frequency before re-stabilizing, the curve 
underwent a later transition and stabilization at a higher frequency (Figure 7.3E). This 
resulted in a very small area under the ERFA in the defined post-stimulus window, and a 
non-significant effect in our model. Results from the statistical model are reported in Table 
7.3. 

 

3.2. Behavioral ERFA 

A significant main effect of Direction respect to the Null level (Positive: 
Estimate = 9197.843, SE = 2506.882, p < 0.001; Negative: Estimate = 10920.459, 
SE = 2506.882, p < 0.001) was found. A post-hoc comparison between Positive and 
Negative levels did not yield a significant effect of Direction. This indicates that there were 
no differences in magnitude of error adjustments across perturbation directions. 
However, a t-test revealed a significant difference between reaction times to Positive and 
Negative perturbations (Estimate = 49.316, SE = 11.143, p < 0.001), indicating that 
participants corrected the errors significantly faster in response to Negative phase-shifts. 
The behavioral ERFA to phase-shifts is represented in Figure 7.3C. Results from the 
statistical model are reported in Table 7.4 and 7.5.  
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N = 19  

Predictors Estimate SE t value p 

 
(Intercept) 
 

 
557.929 

 
413.656 

 
1.349 

 
0.177 

Component (SM) -617.651 552.777 -1.117 
 

0.264 

Direction (-) -775.485 552.777 -1.403 
 

0.161 

Direction (+) 
 
Component:Direction (-) 
 
Component:Direction (+) 
 

297.630 
 

-24.904 
 

1763.756* 

552.777 
 

781.745 
 

781.745 

0.538 
 

-0.032 
 

2.256 

0.590 
 

0.974 
 

0.024 

    * p < 0.05 
** p < 0.01 
*** p < 0.001 
 

Table 7. 3. Neural ERFA: phase-shift. 

N = 19  

Predictors Estimate SE t value p 

 
(Intercept) 
 
Direction (-) 
 
Direction (+) 

 
-372.017 

 
10920.459*** 

 
9197.843*** 

 
1772.633 

 
2506.882 

 
2506.882 

 
-0.210 

 
4.356 

 
3.670 

 
0.834 

 
< 0.001 

 
< 0.001 

 

    * p < 0.05 
** p < 0.01 
*** p < 0.001 
 

Table 7. 4. Behavioral ERFA: phase-shift. 

N = 19  

Predictors Estimate SE t value p 

 
(Intercept) 
 
Direction (+) 

 
490.789 

 
49.316*** 

 
7.879 

 
11.143 

 
62.290 

 
4.426 

 
< 0.001 

 
< 0.001 

 

    * p < 0.05 
** p < 0.01 
*** p < 0.001 
 

Table 7. 5. Reaction times: phase-shift. 
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Figure 7. 3. ERFA curves. Results are here represented as grand-averages across ERFA types and perturbation types 
(N = 19; 19 trials per participant for every perturbation type), and expressed in percentage change with respect 
to the pre-perturbation stimulation frequency. Positive and negative perturbations are color-coded in green and 
red, respectively. For more visual clarity, the average curves are always represented as a black continuous line, 
whereas the contour representing the standard error of the mean (SEM) is color-coded according to the direction 
of the perturbation. The black continuous line without contour, approximately flat, represents the average 
frequency change in a sample of 19 non-perturbated time windows, where the frequency of the metronomes was 
stable. Dashed lines represent the instantaneous frequency timeseries of the metronome. Due to different 
magnitude of neural and behavioral responses, these are shown on different scales to better visualize the dynamic. 
Labels correspond to the following: A- neural ERFA (perceptual component, tempo-change); B- neural ERFA 
(sensorimotor component, tempo-change); C- behavioral ERFA (tempo-change); D- neural ERFA (perceptual 
component, phase-shift); E- neural ERFA (sensorimotor component, phase-shift); F- behavioral ERFA (phase-shift).  
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Discussion  

The aim of the present work was to present a paradigm and a measure capable of 
quantifying neural entrainment from an electrophysiological brain signal, rigorously 
informed by the fundamental definition of the process (Lakatos et al., 2019; Novembre & 
Iannetti, 2018; Rajendran & Schnupp, 2019). To tackle this methodological challenge 
(Haegens & Zion Golumbic, 2018), we moved away from a frequency-domain 
representation of oscillatory components in the EEG signal. Instead, we modelled their 
frequency adjustment as a function of time, provided a controlled manipulation of the 
stimulus dynamics. In the context of a finger-tapping synchronization task to perturbated 
auditory metronomes, event-related frequency adjustments (ERFAs) revealed how 
oscillatory components entrain to the stimulus by speeding up and slowing down, tracking 
dynamic rhythmic changes within critical time windows.  

Crucially, our experimental design allowed us to disentangle in the brain signal a 
perceptual and a sensorimotor component, separately attuned to the auditory 
metronome via GED (Michael X. Cohen, 2022), and to statistically compare their ERFAs 
(see Figure 7.1). The results showed that sensorimotor processing is critical for neural 
entrainment, if not a necessary condition for it to take place. When compared to 
perceptual ERFAs, sensorimotor ERFAs exhibited a significantly stronger modulation, 
congruent with the direction of the perturbation (Figure 7.3). It should be noted that, 
whilst with tempo-changes the effect was observed when either speeding up or slowing 
down the stimulus by 10% of its frequency, only phase-shifts of 90° in the positive direction 
(perceived as a shorter inter-beat interval) were tracked following the stimulus dynamics 
(Figure 7.3B and E). These patterns resemble a more smoothed version of the behavioral 
ERFAs computed from finger-tapping data (Figure 7.3C and F). On the other hand, negative 
phase-shifts (perceived as a longer inter-beat interval) elicited a sensorimotor ERFA 
qualitatively different than expected, deviating from both stimulus and behavioral 
dynamics. Specifically, we observed in this case an initial destabilization followed by a 
gradual increase in frequency, suggestive of a dissociation between the observed 
behavioral adjustments and their underlying neural mechanisms (Figure 7.3E and F). 

Although in EEG data it is not possible to fully disentangle the entrainment of endogenous 
oscillations from regularly evoked responses which are time-locked to the stimulus, we 
highlight how our approach contributes to tackle this hard problem in the investigation of 
neural entrainment (Haegens & Zion Golumbic, 2018). We propose that identifying and 
statistically contrasting the perceptual and sensorimotor components serve as an initial 
progression towards better understanding the interplay of the mechanisms involved. 
Noteworthy, whilst the perceptual ERFAs can in principle be driven by changes in the 
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stimulation rate, the additional modulation observed in the sensorimotor ERFAs cannot 
be explained by a bottom-up processing alone. This is because the only difference across 
the two components is the engagement of the motor system, while the stimulation 
remains constant. Furthermore, our results reveal some features in the ERFAs which are 
not fully explainable by changes in the physical stimuli, calling into question the 
functioning of endogenous sensory rhythms in the brain and their own intrinsic dynamics. 
To elaborate, we reported asymmetries across positive and negative directions for both 
perceptual and sensorimotor ERFAs. For tempo-changes, the perceptual component 
exhibited a moderate frequency adjustment expected for the positive tempo change, but 
not for the negative tempo change (Figure 7.3A). If the perceptual ERFA were entirely 
driven bottom-up, we would expect positive and negative responses to mirror each other, 
because the absolute magnitude of the tempo-change was the same in both directions. 
However, the involvement of sensorimotor processing resulted in a significantly more 
prominent slowing down of the oscillation in response to negative tempo-change 
(compare the depth of the red curves in Figures 7.3A and B). Taken together, we argue 
that this evidence points to a general bias towards speeding up, which suggests the 
presence of intrinsic oscillatory dynamics at play. Following this argument, we propose 
that adjusting the frequency to the slowing metronome requires an extra deployment of 
neural resources, which are recruited by engaging the motor system to a greater extent 
(Kliger Amrani & Zion Golumbic, 2022) and therefore reflected in the enhanced 
sensorimotor ERFA.  

We put forward two putative mechanisms to explain the interaction between perceptual 
and sensorimotor components. The first possibility (A) is that auditory rhythms do not 
entrain at all, and instead pure evoked responses are generated in sensory areas. The 
function of these periodic responses may be to form an amplitude-based representation 
of the external rhythm at the cortical level, so that endogenous motor rhythms (Morillon 
& Baillet, 2017; Morillon et al., 2015, 2014) can entrain by dynamically adapting their 
frequency via phase-based alignment. Alternatively (B), endogenous auditory rhythms 
might be effectively entraining to the metronome (Lakatos et al., 2016; Lakatos, Chen, 
O’Connell, Mills, & Schroeder, 2007; Lakatos et al., 2008, 2013, 2009), and in turn drive 
the alignment of endogenous motor rhythms. We argue that the evidence hereby 
presented leans in favor of the latter mechanism, which is also more coherent with recent 
neurophysiological models proposing that neural firing rates encode an abstract 
representation of stimulus and movement cycles’, enabling both beat perception and 
overt synchronization to the beat (Cannon & Patel, 2021). Backed by evidence from 
monkeys (Cadena-Valencia, García-Garibay, Merchant, Jazayeri, & de Lafuente, 2018; 
Gámez, Mendoza, Prado, Betancourt, & Merchant, 2019) and humans (Bengtsson et al., 
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2009; Chen, Penhune, & Zatorre, 2008; Grahn & Brett, 2007; Teki, Grube, Kumar, & 
Griffiths, 2011), the authors proposed that the supplementary motor area (SMA) is the key 
structure responsible for this cyclic sensorimotor process, working as interface between 
auditory pathways and motor areas.  

For the sake of completeness, we provide as Supplementary material 7.B the grand-
average activation timeseries for perceptual and sensorimotor components during tempo-
changes, to give a visual impression of the evoked responses in the signal from which 
ERFAs were computed. Although our task was not designed for ERPs, it is still noteworthy 
to see that there is no visible pattern of evoked responses expected by the stimulation 
rates. Additionally, we compared in a series of simulations ERFAs produced by an 
oscillatory model and ERFAs produced by an alternative model of evoked responses (see 
Supplementary material 7.C). Overall, the ERFAs computed from oscillations appear to be 
more robust to varying levels of noise and are still reliable in conditions of poor signal-to-
noise ratio, which better approximates the reality of signals recorded with EEG. Given all 
the above, we argue that the parabolic ERFAs observed in Figures 7.3A and B are better 
explained by an oscillatory model, as compared to evoked responses passively tracking 
changes in stimulation rate. 

For phase-shifts, the asymmetry across directions was more radical: in response to 
negative perturbations, the sensorimotor ERFA showed a gradual transition towards 
higher frequency (Figure 7.3E). Given this class of perturbation was more localized in time 
and more prominent than a sustained -10% tempo-change, it may be less demanding for 
the brain to gradually speed up an entrained oscillation and catch up with the beat over 
some cycles, rather than suddenly slowing down to track the dynamic of a phase-shift. 
Evidence from neuropathology supports the idea that a bias for faster tempi is a feature 
in healthy adult population, which can be impaired by lesions in the cerebellum. When 
such structure, critical for event-based timing (Schwartze, Keller, & Kotz, 2016), is 
compromised, high stimulation rate becomes detrimental for the neural tracking of the 
beat as quantified by frequency tagging (Nozaradan et al., 2017), while a case study 
suggests that behavioral synchronization improves when stimulation rate is below the 
spontaneous rate of movement (Moumdjian et al., 2022). Another observation in favor of 
the entrainment of sensory rhythms is the fact that, whilst perceptual ERFAs to tempo-
changes exhibit a certain degree of curvature (Figure 7.3A), they are flat in response to 
phase-shifts (Figure 7.3D). Endogenous oscillations would in fact need several cycles to 
entrain, a condition that is met with sustained tempo-changes.  

Finally, the topography of the perceptual component (Figure 7.2) does not resemble the 
fronto-central cluster expected from auditory evoked responses (Nozaradan et al., 2011, 
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2012, 2015). We observed instead a more distributed pattern, whose activation was 
considerably weak compared to the sensorimotor component. Active motor engagement 
resulted once again in an additive effect, with maximal left centro-parietal activation as 
previously reported during finger-tapping performed with the right hand (Rosso, Leman, 
et al., 2021). Although, in line with recent research (Cheng, Creel, & Iversen, 2022; Kliger 
Amrani & Zion Golumbic, 2022), the evidence hereby provided points at a special influence 
of the motor system on neural entrainment, we cannot rule out that the differences 
observed across components may be partly explained by improved signal-to-noise ratio in 
the sensorimotor component. Furthermore, we do not know whether the same neural 
adjustments would have been observed in the absence of the motor requirement of the 
finger-tapping task, and to what degree. We emphasize the need for future research to 
expand on the present experimental design and better address the role of motor 
involvement in neural entrainment. 

Alongside the neural ERFAs discussed so far, we also analyzed behavioral ERFAs as the 
change in the instantaneous frequency of finger-tapping during overt error-correction 
responses to perturbations. We observed highly consistent dynamics at the group level, 
but also some degree of interindividual variability in response to phase-shifts, showing 
that some participants adopted different strategies to correct the synchronization error 
by deviating from the stimulus dynamic. The systematic classification of such strategies is 
out of the scope of this paper. Adaptation to tempo-changes accurately tracked the 
stimulus dynamics, and results were consistent with the reported neural responses: a 
significant difference in average frequency and parabolic curvature was found in both 
positive and negative perturbations as compared to the baseline. When testing the two 
directions at post-hoc comparisons, no significant differences were found in the dynamics 
of the behavioral responses. As for the adaptation to phase-shifts, participants adapted as 
expected in both directions. Although no significant difference in the entity of the 
correction across directions was found, a test on the reaction times reveled that 
participants were significantly faster in adapting to negative phase-shifts (perceived as a 
longer inter-beat interval).  

A strength of ERFA to be highlighted is that it provides an overarching analysis framework 
for signals of different nature. The temporal dynamics of rhythmic stimulation, behavioral 
responses and electrophysiological signals were all processed in terms of instantaneous 
frequency, allowing direct comparisons across different measurements. In the particular 
case of finger-tapping, data were processed modelling rhythmic behavior as an oscillator 
(Ole Adrian Heggli et al., 2019; Rosso, Maes, et al., 2021), congruently with a neural 
oscillatory framework. ERFAs were also comparable across perturbation types, namely 
tempo-changes and phase-shifts. Despite the discussion on different cognitive 
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mechanisms underlying phase and tempo corrections (B. H. Repp, 2001b; Bruno H. Repp 
& Keller, 2004), from a signal processing perspective they can be operationalized as the 
same phenomenon on different timescales, expressed in the same unit of measure. 
Instantaneous frequency was in fact computed entirely based on the rate of change of an 
oscillation’s phase, and its expression in Hz units is just a matter of re-scaling (Michael X. 
Cohen, 2014). Phase information is needed for estimating changes in frequency, and is a 
necessary condition for operationalizing entrainment according to its fundamental 
definition (Rajendran & Schnupp, 2019). 

Our work was mainly focused on oscillatory dynamics recorded with EEG. Despite the 
constraints of the poor spatial resolution and low signal-to-noise ratio characterizing the 
technique, we address the importance of applying our experimental paradigm and metric 
in populations affected by neurological deficits, to generate testable predictions on the 
functional role of neuroanatomical structures compromised by the pathology (Cannon & 
Patel, 2021). Furthermore, future research may deploy the paradigm with 
magnetoencephalography or intracranial recordings, to investigate entrained activity in 
cortical and subcortical anatomical structure during sensorimotor synchronization.  

 

Conclusions 

The major methodological contribution of our work consisted of a paradigm and a 
measure for investigating neural entrainment in human participants, optimized for non-
invasive electrophysiological recordings. By perturbating isochronous auditory 
metronomes in tempo and phase during a finger-tapping task, we induced behavioral 
synchronization errors and showed that oscillatory neural components dynamically 
adjusted their frequency to stimulus changes during error-correction responses. By means 
of spatial filters design, we were able to disentangle perceptual and sensorimotor 
oscillatory components from the multivariate EEG signal, revealing that active 
engagement of the motor system enhanced neural entrainment. This evidence, along with 
clues of intrinsic brain dynamics not explicable by bottom-up processing of the stimuli, 
strongly suggests that actual neural entrainment underlies tracking and sensorimotor 
synchronization to dynamic auditory rhythms. In addition to these fundamental findings, 
ERFA proved to be a sensitive measure of neural entrainment, reflecting an oscillatory 
model of brain functioning while mitigating the influence of bottom-up evoked responses.  
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Introduction 

This Chapter represents a corpus of methodological contributions in the context of an 
ongoing collaboration between IPEM - Institute for systematic musicology (Ghent 
University, Belgium) and PSITEC Laboratory - Psychologie: Interactions, Temps, Emotions, 
Cognition (University of Lille, France). Historically, the joint effort of the two research 
groups has been focused on investigating the potential of music-based interventions for 
elderly people affected by neuro-cognitive disorders (NCDs) (Desmet, Lesaffre, Six, Ehrlé, 
& Samson, 2017; Ghilain et al., 2020; Ghilain, Schiaratura, Singh, Lesaffre, & Samson, 2019; 
Hobeika et al., 2021; M. Lesaffre, Moens, & Desmet, 2017). This diagnosis was introduced 
in the DSM-5 to refer to different classes of dementia, including Alzheimer Disease. 
Moreover, NCDs are classified as ‘major’ or ‘mild’ based on the severity of the cognitive 
decline in respect to a level of performance previous to the onset of the pathology.  

What is it about music that makes it a potential tool in the rehabilitation of cognitive and 
social functions in elderly people with NCDs? To this date, research has left open questions 
as to whether these provide specific benefits as compared to non-pharmacological 
interventions consisting of other pleasant activities (Baird & Samson, 2015; Palisson et al., 
2015; Samson, Clément, Narme, Schiaratura, & Ehrlé, 2015). The case for music-based 
interventions is made based on the sensitivity and emotional responsiveness of patients 
with dementia to music (Sihvonen et al., 2017; J. T. van der Steen et al., 2018), with larger 
benefits when they are actively engaged in singing and/or moving along with a musical 
beat (Sakamoto, Ando, & Tsutou, 2013). This clinical scenario fits well within the 
framework of the dissertation, where the social component of a human interaction is 
brought in by the physical presence of a music therapist, and mediated by the rhythms of 
musical stimuli and bodily motion.  

This sort of musical tasks leverages on the relatively spared sensorimotor synchronization 
(SMS) to musical rhythms up to a certain stage of disease progression (Ferreri et al., 2016; 
Goldman, Baty, Buckles, Sahrmann, & Morris, 1999). Crucially, when tapping along to 
either metronomes or familiar songs, no significant differences in SMS accuracy and 
consistency are found across cognitively impaired patients and age-matched controls 
(Ghilain et al., 2020). However, the differences emerge when accounting for the severity 
of the disease. Patients categorized as affected by major neurocognitive disorder (Major 
NCD) perform less accurate and less consistent finger-taps when synchronizing to 
metronomes, in comparison with Minor NCD and No NCD groups, and consistency 
decreases with higher MMSE scores (Hobeika et al., 2022). When tapping to music, and in 
physical presence of a musician tapping along with the patient, the performance of this 
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group is comparable to the No NCD group. These studies highlight that the presence of a 
human model, be it physical or tele-mediated (Ghilain et al., 2020), provides a visual 
support that is crucial for a better execution of a rhythmic task. For advanced stages of the 
disease, the physical presence becomes more important (Hobeika et al., 2022). In 
dynamical terms, the informational basis of the interaction (R. C. Schmidt et al., 1990) is 
maximized by combining visual and auditory coupling, to take advantage of their specific 
properties (see Chapters 2-4).  

SMS is thought to be the core function driving interactive music-based interventions, as 
its stimulation is foundational to their effectiveness (see (von Schnehen, Hobeika, Huvent-
Grelle, & Samson, 2022), for an updated review on the topic). To thoroughly comprehend 
its role, it's vital to examine how motor, expressive, and empathic processes connect to 
this basic function during a rhythmic interaction. This is because activating brain networks 
associated with movement can modulate emotion and stimulate cognition (Zatorre, Chen, 
& Penhune, 2007). Major NCD patients demonstrate reduced motor and socio-emotional 
engagement, as evidenced by diminished overall body motion and emotional facial 
expression, as well as gaze direction during the finger-tapping task (Hobeika et al., 2021). 
The findings suggest that these measures could be indicative markers of disease 
progression. For a comprehensive understanding of how patients with neurocognitive 
impairments respond to music at various levels, it is crucial to employ multimodal non-
invasive monitoring technology within the framework of musical interaction (M. Lesaffre 
et al., 2017). Comprehending how disease progression impacts the mechanisms 
underpinning music interactions is crucial for informing and tailoring music-based 
rehabilitations. However, years of experience have revealed significant limitations that 
must be considered when designing experiments involving this particularly vulnerable 
population (Hobeika et al., 2022). To elucidate further, some of these limitations include: 

 
- The application of sensors or measurement devices, which are generally well-

tolerated by young healthy adults, can be perceived as overly invasive by 
individuals with NCDs, potentially inducing stress and fear responses (Desmet 
et al., 2017). The impracticality of using electrophysiological measurements like 
EEG, due to their long preparation time, perceived invasiveness, and physical 
discomfort, limits the feasibility of exploring neural dynamics using such tools. 
This constraint necessitates a greater focus on optimizing behavioral 
measurements within a comfortable and familiar setup. 

 
- The tolerance of these patients for long experimental sessions is notably 

limited, especially when the procedure is prolonged, repetitive, and requires 
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continuous movement. Tolerance and compliance are further influenced by age 
progression, disease severity, and associated cognitive capacity and mobility. 
This imposes strict limitations on the amount of data collected, which 
challenges the generalizability of the findings and the reliability of techniques 
susceptible to low signal-to-noise ratio (SNR) and high behavioral variability. 

 
- In terms of auditory stimuli selection, a bias towards pleasant and familiar ones 

is often required to ensure the task remains comfortable, enjoyable, and 
capable of maintaining a suitable level of sustained attention. Although 
metronomes conveniently control for preference, familiarity, and complexity in 
the stimulus, they fall obviously on the other extreme end of this spectrum. 

 
- Lastly, maintaining participant engagement throughout the task necessitates 

the active presence of an experimenter, a therapist, a music teacher, or some 
form of human guide. While this setup may be convenient when explicitly 
studying collaborative or imitative behaviors, it can be problematic when 
requiring unguided control conditions or spontaneous, uninstructed 
synchronization. While the combination of auditory and visual couplings may 
be beneficial for rehabilitation, it is not possible to manipulate them 
independently when a human guide has to be present, making it challenging to 
discern the individual contributions of sensory inputs to the dynamics of the 
interaction. 

 

In summary, experimental procedures for this population must prioritize non-
invasiveness, brevity, minimal repetition, engagement, human support in a familiar 
environment, and a large number of participants to compensate for the limited data 
collected in individual sessions.  

It becomes evident that paradigms designed for young, healthy adults, such as drifting 
metronomes for dyadic entrainment (Chapters 2-4) and event-related frequency 
adjustment (ERFA) for error-correction in SMS (Chapter 7), are not feasible in their original 
forms. Moreover, the necessary adaptations could significantly alter these paradigms, 
compromising their intended purposes or yielding insufficient data at the expense of the 
analyses. In balancing methodological precision and feasibility, research involving this 
population must prioritize the latter. PSITEC has successfully achieved this by collecting 
substantial datasets from patients across French healthcare structures in the intervals 
between clinical sessions, day hospitals, or neuropsychological assessments. 
Consequently, this collaboration is focused on working with extensive pre-collected 
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datasets, guided by the methodological principles presented in this dissertation. Moving 
from these limitations, this Chapter aims to maximize inference through data analysis, 
developing approaches centered on the behavioral dynamics of rhythmic interactions 
involving patients with NCDs. 

 

Methodological contribution 

The general experimental design of the studies conducted at PSITEC involves a mixed 
factorial design where the Group is treated as a between-subjects factor, with levels 
referring to the severity of neurocognitive disorders (No NCD, Minor NCD, Major NCD). 
Complementarily, neuropsychological tests such as the mini mental state examination 
(MMSE) (Tombaugh & McIntyre, 1992) enable the treatment of disease severity as 
continuous predictor, distinguishing its contribution from the component of impairment 
attributable solely to aging (Hobeika et al., 2022). Stimuli (Metronomes, Music) and Social 
(Live, video) factors are manipulated within-subject. In keeping with the experimental 
design of the collected datasets, the contribution of this Chapter lies in processing 
timeseries data to yield new outcome measures.  

The same 3x2x2 mixed-ANOVA models based on the factorial structure (Group x Stimuli x 
Social) will be fitted to the response variables returned by our analyses. Importantly, these 
new outcome measures aim to provide more comprehensive information on the dynamics 
of timeseries data captured from musical interactions, complementing the average-based 
measures used thus far. Maintaining the dual focus on social and individual dimensions of 
rhythmic interactions throughout this dissertation, we present two separate 
methodological contributions based on two datasets recorded from healthy and 
cognitively impaired elderly participants at Bateliers Day Hospital (Lille University Medical 
Center, Lille, France). After presenting the analyses, we will present the results in the form 
of descriptive statistics. While these data will be further subjected to the above-
mentioned statistical models, such exploration lies beyond the scope of the present 
discussion and the author's direct influence. All analyses were implemented in Matlab 
2019a (MathWorks Inc., USA). 
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Dataset #1 – Spatiotemporal dynamics of body-sway (Ghilain et al., 2020; 

Hobeika et al., 2021) 

 

The first dataset was collected in a study that investigated the natural movement 
responses to music in individuals with dementia (Ghilain et al., 2020), specifically focusing 
on the activation of weight sensors from a force plate (Hobeika et al., 2021). The research 
aimed to explore the potential of music-based interventions as non-pharmacological 
approaches to enhance emotional, social, and cognitive functioning in patients with 
neurodegenerative diseases, such as Alzheimer's Disease (AD). A key objective of the study 
was to understand how motor involvement could increase the benefits of these 
interventions. Participants (N = 194) were asked to tap in synchrony with musical rhythms 
while a musician tapped along with them. The study compared the musician’s live 
performance to a pre-recorded video of the performance, in terms of the impact on the 
participants' sensorimotor abilities. In this context, measuring full-body motion by means 
of the force plate provides valuable insights into one aspect of the participants' 
engagement in the musical interaction (Desmet et al., 2017; M. Lesaffre et al., 2017). This 
contributes to a comprehensive understanding of SMS and its interplay with the motor, 
social, and emotional components of the overall engagement. 

For the most part, the methodologies presented in previous Chapters of this dissertation 
have focused exclusively on the temporal dynamics of human rhythmic movement and 
brain activity, while the spatial component was minimized and held constant across 
studies and experimental conditions. In particular, behavioral measures were based on 
finger-tapping, which involved unidimensional movement along the vertical axis. Here, the 
multivariate recordings provided by the four sensors, combined with information on their 
topographical arrangement, allowed us to introduce a spatial dimension to the behavioral 
data, enabling us to examine the spatiotemporal dynamics of body motion during a 
rhythmic interaction. In incremental levels of complexity, the analysis pipeline developed 
for this dataset will yield: 1) a measure of quantity of motion (QoM) based on the work of 
Desmet et al. (Desmet et al., 2017); 2) a set of measures from recurrence quantification 
analysis (RQA) (Afsar et al., 2018; Demos & Chaffin, 2017; Demos et al., 2018); 3) a set of 
measures from joint recurrence quantification analysis (JRQA) (Demos & Chaffin, 2017). 
These techniques aim to answer the following questions: 

1) "How much motion is in the data?";  
2) "Is there temporal structure in such motion?"; 
3) "How much of that structure is explained by the interaction with the musician?". 
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Experimental apparatus 

The recording device was composed of a square wooden force plate (90 x 90 cm) situated 
on a frame with four calibrated weight sensors, one at each corner in a squared 
configuration. These delivered weight measurements and were individually read by an 
Arduino® Due open-source prototyping platform, which facilitated the calculation of 
movement direction and magnitude. A software application was created to read multiple 
force plates simultaneously, and to collect data from various measuring devices, such as 
pressure sensors, audio, and video recording. The experimental arrangement included 
two force plates designed by IPEM at Ghent University, each with a chair attached, one 
for the patient and the other for the musician. The force plates featured four sensors (one 
at each corner) to assess the movements of the person seated in the chair. A small table 
was affixed to each chair, offering a convenient position for tapping in time with the music. 
A microphone was positioned beneath the table to capture the tapping sounds of the 
participants as audio signals. Two webcams were set up to record videos of both balance 
boards during the experiment. In addition, a projection screen with a projector behind it 
was situated at the back of the experimenter's board to allow for prerecorded video 
projections required for the video aspects of the experiment. The setup was overall non-
invasive and suited for use in an ecological setting. For a population where mobility is often 
heavily hindered by age and/or the progression of the disease, it provided a feasible 
solution for multimodal acquisition, complementing SMS as measured by finger-tapping 
with a capture of full-body movement from a comfortable position. The force plate system 
was developed aiming at providing a balance between functionality for the patient, 
sensitivity for measuring smaller movements, and data reliability. A more detailed 
technical description is provided in (M. Lesaffre et al., 2017). 
 
Test datasets 

In order to test our analysis before applying it to the patients' dataset, we simulated and 
recorded data from the recording device under controlled conditions. Test datasets 
included a set of stereotyped behaviors exhibiting clearly identifiable spatiotemporal 
features. We will refer to the simulated data and the data recorded by the experimenter 
under controlled conditions as 'simulated data' and 'mock data,' respectively. While both 
serve as placeholders for real data, providing a ground truth for each step of the process 
as they are fed into the analysis pipeline, each set comes with its unique advantages.  

Simulated data allowed us to have simulated scenarios of ideal behavior, with the 
possibility to systematically and independently manipulate parameters of interest. For 
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instance, this enabled us to test the robustness of our analyses to different SNR levels, 
different levels of variance and noise in the signal across channels due to unbalanced 
calibration, and different levels of variability across parameters of behavior. Mock data, 
on the other hand, contain the empirical information on the actual SNR and calibration 
levels of the device, while recording stereotyped behavior from a real human being. Both 
placeholders were necessary to properly test our methods, accounting for both 
generalizability and the contingencies brought in by a particular device used in a particular 
experimental context. 

 

Stereotyped behaviors. 

A representative sample of behaviors was chosen based on spatiotemporal features of 
interest. As for the time dimension, we were interested in assessing our analyses in 
conditions of synchronous and asynchronous movement with respect to an isochronous 
auditory cue. As for the space dimension, it was crucial to assess whether results are 
invariant to differences in spatial patterns. The behaviors analyzed were defined as 
follows: 

1. Sitting (no movement). The participant sits without moving. This accounts 
for the baseline activity of the sensors, reflecting the participant's weight in 
the absence of movement. Simulated as uniform white noise. 

 
2. Random movement (asynchronous). The participant moves randomly, 

without a recognizable pattern. Simulated with pink noise added to each 
channel, on top of the baseline white noise. Pink noise is suitable for 
simulating autocorrelation structure in human movement. 
 

3. Bouncing (synchronous). The participant bounces on the chair by pressing 
uniformly on all sensors, synchronizing with a rhythmic auditory stimulus. 
Simulated as four zero-phase sine waves oscillating at the stimulus 
frequency, plus uniform white noise. 
 

4. Circular motion (synchronous rotation, clockwise). The participant shifts 
their weight from one sensor to another in a clockwise circular motion, 
paced by an auditory rhythmic stimulus. Simulated as four sine waves with 
π/2 phase offsets, oscillating at 1/4 of the stimulus frequency, plus uniform 
white noise. 
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5. Back and forth (synchronous). The participant shifts their weight back and 
forth between the two pairs of sensors placed at the front and the back of 
the plate, paced by an auditory rhythmic stimulus. Simulated as two pairs 
of sine waves divided by the longitudinal plane, with π phase offset, 
oscillating at 1/2 of the stimulus frequency, plus uniform white noise. 
 

6. Left and right (synchronous). The participant shifts their weight left and right 
between the two pairs of sensors placed at the sides of the plate, paced by 
an auditory rhythmic stimulus. Simulated as two pairs of sine waves divided 
by the frontal plane, with π phase offset, oscillating at 1/2 of the stimulus 
frequency, plus uniform white noise. 
 

7. Left and right (asynchronous). The participant shifts their weight left and 
right between the two pairs of sensors placed at the sides of the plate, 
ignoring the auditory rhythmic stimulus. Simulated as two pairs of sine 
waves divided by the frontal plane, with π phase offset, oscillating at 1/2 of 
the stimulus frequency, plus uniform white noise. 
 

8. Back and forth / left and right (synchronous, with transition). The participant 
alternates between behaviors 5 and 6 every 10 seconds, based on a visual 
timer. Simulated as behaviors 5 and 6, with the pairs of sensors undergoing 
the phase offset changed every 10 seconds. 

 

Simulated data were simulated over a time period of 60 seconds at a sampling rate of 500 
Hz. White noise was added to the timeseries (SNR = 10). Mock data were recorded and 
stored as .wav files with seven aligned tracks sampled at an audio rate of 44.1 kHz, later 
down sampled by a factor of 88 to match the simulated timeseries. The tracks contained 
the following data: audio signal (metronome or music), tapping timeseries, an empty 
track, front-left sensor, front-right sensor, back-right sensor, and back-left sensor. Sensor 
activations over a period of 20 seconds are shown in Figure 8.1 and Figure 8.2 for 
simulated and mock data. Offsets on the y-axis are introduced for visualization purpose.  
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Figure 8. 1. Simulated data for stereotyped behaviors. 

 

 

Figure 8. 2. Mock data for stereotyped behaviors. 
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Data cleaning via Independent Component Analysis (ICA) 

Upon visual inspection of the force plate timeseries recorded in (Ghilain et al., 2020), a 
systematic artifact caught our attention. The artifact manifested as recurrent series of 
sharp transient activity, which overlaid nicely with data recorded from finger-tapping 
timeseries acquired separately with a dedicated sensor. Furthermore, it was evident that 
the artifact was systematically more prominent in the top-right sensor, due to its 
placement near a support stand. This represents a serious issue for our analyses, as it is 
reasonable to expect that differences in rate and amplitude of the finger-tapping could 
significantly explain differences in the QoM, while their temporal structure could be 
mistaken for temporal structure in body sway. For these reasons, our pipeline had to start 
by separating and removing the source of artifactual activity from the data.  

In order to that, wed leveraged the following facts: 1) a multivariate dataset, such as our 
force plate, allows for source separation, which can be used for artifact removal; 2) finger-
tapping timeseries were recorded by a separate device, providing a ground-truth source 
for the estimation of artifactual activity; 3) the artifact was empirically identified as being 
generated by a specific behavior, which, with respect to body sway, represents an 
independent source in a conceptual, statistical, and mathematical sense. Taken together, 
these reasons point to Independent Component Analysis (ICA) as the tool of choice for 
artifact removal. The method is widely adopted in EEG literature for the removal of 
stereotyped artifacts such as eye-blinks (optionally recorded with EOG to provide a 
ground-truth) (M. X. Cohen, 2014; Luck, 2014), it was adopted in the EEG studies 
presented in this dissertation (Chapters 5-7), and expanded upon in a separate 
methodological work (Vidal et al., 2021). To the best of our knowledge, this is the first 
application to force plate data for source separation. 

To test the ICA approach, we separately recorded 60 seconds of finger-tapping behavior 
synchronized with a metronome on the finger-tapping sensor. We then imported this 
data, replicated the timeseries in a matrix of the same size as the force plate mock data, 
scaled to give more weight to the top-right sensor and less weight to the bottom-left 
sensor, and finally added them to the data to generate a mixed data matrix. The goal of 
our test was to un-mix the matrix to retrieve (estimate) the artifact and remove its 
contribution to the data, returning to the mock data as they were before the mixing. We 
opted to adopt the JADE algorithm (Rutledge & Jouan-Rimbaud Bouveresse, 2013). Like 
many others, the algorithm is based on the kurtosis operator, but unlike many others is 
deterministic, meaning that every iteration would result in the same independent 
component estimations. Moving from the assumption that signal is different from noise 
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due to non-normal distribution, the algorithm identifies independent components by 
maximizing their kurtosis. 

The output of JADE is a matrix of eigenvectors (in the columns), which we multiplied by 
the mixed data matrix to produce independent component (IC) scores or activation 
timeseries. The forward model, which maps the projection of the sources onto the data in 
sensor space, is calculated as the inverse matrix of the eigenvectors’ matrix. It is useful to 
visualize the topography of such model to verify that the weights map onto the sensors as 
expected. In our case, they should closely match the distribution of weights used to scale 
the artifact before mixing with the mock data (see Figure 8.3A). After estimating the IC 
scores, the artifactual component was identified as the one having the highest Pearson's 
correlation coefficient with the finger-tapping timeseries. To clean the data from the 
contribution of the artifact, we zeroed the column of weights associated with the target 
component in the projection (forward model) matrix, and back-projected the components 
onto the data via matrix multiplication. Alternatively, one may use a subset of the desired 
columns for performing matrix multiplication, or calculate the contribution of the 
artifactual component to each channel and then subtract that contribution from the 
original data. The operation returned the original mock data, without the contribution of 
the artifact (see Figure 8.3B). The test, successfully replicated on all mock recordings, 
showed that the approach is reliable for cleaning force plate data from the tapping artifact.   

 

1. Quantity of Motion Analysis (body-sway) 

Building on the methods proposed by (Desmet et al., 2017), we implemented a calculation 
of QoM based on the embedding of sensor data in a 2-dimensional Cartesian 
representation. The rationale behind this approach is to transition from a multivariate 
representation of the data in the time domain to a representation of movement 
trajectories, based on changes in the center of gravity over the squared surface of the 
force plate. By representing the data in terms of relative changes in activation across 
sensors, the data points can be interpreted as deviations from the origin of the Cartesian 
space or, in other words, as deviations from the center of the force plate. 

Data were centered around 0 by de-meaning every channel. Next, an 'angles' matrix of the 
same size as the data matrix was computed, consisting of repetitions of the [0°, 90°, 180°, 
270°] row. The X and Y components of the Cartesian representation of the data were 
computed by element-wise multiplying the data matrix with the cosine and sine of the 
angles, respectively. Data were further centered in Cartesian space by subtracting the 
means of each quadrant from all data points. Data points exceeding the overall mean by 
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more than 3 standard deviations were considered outliers and removed. Subsequently, 
Cartesian coordinates were converted to polar coordinates by computing the angle (θ) 
and magnitude (ρ) of each (x, y) vector. QoM was finally calculated as the average ρ, 
indicating the average magnitude of the 2-dimensional vectors away from the center of 
the space. 

Simulated data are particularly useful to visually assess the validity of the approach, define 
the ranges of QoM expected under ideal conditions, and see how they compare across 
different types of motion. Figure 8.4 shows the simulated data as represented in Cartesian 
and Polar coordinates, along with the associated QoM. It is interesting to note that the 
expected QoM for sitting and bouncing behaviors (#1 and #3) falls within a very close 
range, despite the apparent difference in variance, and tends to zero in the absence of 
noise. This demonstrates that QoM is not sensitive to the variance in sensor activation as 
long as participants do not move away from the center of gravity. For this reason, we can 
conclude that the measure is selectively quantifying body sway, rather than motion in 
general. Furthermore, behaviors #4, #5, #6, #7, and #8 cluster in a narrow range greater 
than zero, indicating that QoM is not sensitive to the direction, periodicity, or transitions 
of body sway. 

Mock data, on the other hand, are useful for examining how variability and 
autocorrelations in real human motion, along with sensor calibration and mechanical 
coupling of the setup, can bias the distribution of data in Cartesian and polar spaces. Figure 
8.5 shows the mock data as represented in Cartesian and Polar coordinates, accompanied 
by the associated QoM. When comparing simulated and mock data, it becomes apparent 
that while the empirical patterns are consistent with the simulations, some differences 
emerge. The most noticeable of these are the observations that the ranges of QoM appear 
to depend on the direction of movement, suggesting an unbalanced calibration of the 
sensors, and that mechanical coupling biases the distribution of data points towards the 
origin of the space. For instance, examining the extreme case of circular motion (#4), it 
becomes evident that it is not possible to produce a hollow circle due to the spatial 
dependency imposing covariance on the sensors. It is important to emphasize that the 
patterns of stereotyped motion presented here will never be replicated by real 
participants, especially not by NCD patients. However, this is arguably a crucial step in 
gaining insight into the nuances of the measure we intend to adopt and, most importantly, 
to ensure that it quantifies what it is supposed to quantify. 

The analysis hereby presented was applied to the recordings of 164 patients (N = 164) out 
of the total of 194 included in the original dataset. For 30 participants, two or more 
conditions were either missing or exhibited major issues in the recording, which made the 
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analyses unfeasible. Figure 8.6 shows the average values of QoM in the different 
experimental conditions. Mean and standard deviation are reported in Table 8.1.  
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Figure 8. 3. Assessment of the ICA performance for artifact removal. A) Forward model. The topography of the 
forward model reflects maximum projection of the tapping data to the front-right sensor, and minimum projection 
to the back-left sensor. This spatial pattern was empirically observed in real data. B) Artifact removal. The mixed 
data (blue line, tapping timeseries added to the sensors activation) reflect the spatial distribution of the forward 
model. When comparing the clean data (red line, after ICA removal) with the ground-truth (black line, mock data 
before adding the artifact contribution), it is evident that the two lines overlap. This shows that the approach is 
effective in automatically identifying and removing the target artifactual component from the force plate sensor 
data. 
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Figure 8. 4. Simulated data in Cartesian and polar coordinates. For each behavior, data points are represented in 
Cartesian (to the left) and polar (to the right) coordinates. In Cartesian coordinates, the time dimension is color-
mapped from blue to red, to verify that the spatial distribution reflects the sensors’ activation over time (see 
Figure 8.1). QoM is reported for each behavior, as computed from polar coordinates. 
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Figure 8. 5. Mock data in Cartesian and polar coordinates. For each behavior, data points are represented in 
Cartesian (to the left) and polar (to the right) coordinates. In Cartesian coordinates, the time dimension is color-
mapped from blue to red, to verify that the spatial distribution reflects the sensors’ activation over time (see 
Figure 8.2). QoM is reported for each behavior, as computed from polar coordinates. 
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Figure 8. 6. Average quantity of motion (QoM) and standard errors of the mean (SEM). A first visual inspection 
suggests that Music conditions resulted in greater QoM, and that Metronome condition were more susceptible to 
the physical presence of the musician. In other words, participants exhibited more body sway when synchronizing 
with music as compared to metronomes, regardless of the physical presence of the musician. When synchronizing 
with metronomes, the video performance of the musician may have induced more movement as compared to the 
live performance. We address a 2 x 2 ANOVA as first statistical test to assess the significance of main and 
interaction effects of Stimulus and Social factors, followed by the inclusion of MMSE, age, and other 
demographical variables as additional predictors. 
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2. Recurrence quantification analysis (RQA) 

Dimensionality reduction via PCA 

In reference to the introduction of Independent Component Analysis (ICA), having a 
multivariate dataset allows for the application of multivariate methodologies. Our 
objective at this stage was to extract meaningful spatiotemporal behavioral patterns from 
the sensors data, while concurrently reducing the dataset's dimensionality. Principal 
Component Analysis (PCA) is an appropriate strategy for our goal. The idea was to 
reconstruct behavior as a source of data variance, based on covariance patterns in sensor 
activation over time. The anticipated result of the analysis is to derive one or two single 
timeseries that could account for the majority of the data variance, which could then be 
used as input for subsequent stages of the analysis pipeline (specifically, RQA and JRQA). 

We implemented PCA on simulated and mock datasets of stereotyped behaviors with the 
following objectives: 

1. Assess whether a single behavioral pattern can be adequately represented by a 
single component. 
 

2. Evaluate the invariance of source separation to temporal consistency, spatial 
patterns, and transitions within the behavior. 
 

3. Explore dependencies on specific features inherent to the device and actual human 
behavior. 
 

We initiated by centering the input sensor data. Subsequently, a channel-by-channel 
covariance matrix (C) was computed. The eigenvectors (W) and eigenvalues (L) were 
determined via eigendecomposition of the covariance matrix. The following eigenvalue 
equation was solved for the weights: 

 

𝑊L	 = 𝐶𝑊	 

 

Subsequent to this, the eigenvectors (W) were sorted in descending order based on the 
magnitude of their corresponding eigenvalues (L). The data matrix (X) was then multiplied 
by the first of the sorted eigenvectors to derive the principal components (PCs) scores, 
also known as activation timeseries (Y).  
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𝑌 = 	𝑤�𝑋 

 

Additionally, the activation maps or spatial patterns of the PCs were computed as the 
inverse of the eigenvectors matrix (W-1). 

Ultimately, to eliminate the dependence on the data scale, we normalized the eigenvalues 
into percentage units representing explained variance. This normalization enables the 
evaluation and comparison of the PCA quality across different datasets and experimental 
conditions. Besides visually inspecting the PC scores over time, the formal evaluation of 
PCA is based on the eigenspectrum, which is the distribution of variance explained by each 
PC. As mentioned earlier, our goal was for the first component's eigenvalue to explain the 
majority of the data matrix's variance. This would allow us to confidently compress the 
data to the single associated PC for subsequent analysis. Figure 8.5 illustrates the data in 
sensor and PC space, along with the PC distributions and eigenspectrum, for both 
simulated and mock data. 

Assessing PCA on stereotyped behaviors recorded by a four-sensor force plate yielded the 
following insights: 
 

1. When sensor data comprise a single behavioral pattern (behaviors #3, #5, #6, #7), 
this is suitably explained by a single PC in both simulated and mock data. Exceptions 
include circular motion (behavior #4) and transitions across orthogonal spatial axes 
(behavior #8), where two components prominently appear in the eigenspectrum. 
In these cases, a state-space defined by these orthogonal dimensions would offer 
a more accurate representation as compared to PC activation over time. Behaviors 
#1 and #2 (white and pink noise, respectively) exhibited uniform or near-uniform 
eigenspectra, with the latter revealing some decay due to its autocorrelation 
structure. 
 

2. If a single pattern is consistently dominant in the data, source separation is 
invariant to both spatial distribution and temporal consistency. Remarkably, it 
makes no difference whether periodic pressure affects all sensors simultaneously 
(behavior #3) or pairs of sensors in back-and-forth (behavior #5) or left-to-right 
motion (behavior #6). Even the temporal stability of the pattern does not influence 
the result, as long as the covariance across sensors remains consistent over time 
(behavior #7). Systematic transitions from one spatial pattern to another, however, 
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lead to the extraction of two components with equivalent explanatory power, 
whose relative activations are timed with the transitions (behavior #8). 
 

3. The comparison of simulated and mock data reveals a remarkable similarity in the 
effectiveness of PCA when motion follows a distinct pattern (behaviors #3 to #8). 
However, it becomes clear that noise at rest is to some extent correlated across 
sensors, resulting in a less uniform eigenspectrum for mock data compared to 
simulated data (behavior #1). It is plausible that the experimenter's micro-
movements contributed to this while attempting to sit still, introducing further 
correlation across sensors. Notably, the comparison produced a steeper decay of 
the eigenspectrum in the case of random motion (behavior #2). Real human motion 
not only implies an autocorrelation structure (at each time point, the value of each 
sensor is dependent on previous data points), but the physical constraints due to 
the mechanical coupling of the experimental setup and the human body impose a 
correlational structure across sensors, which is reflected in the covariance matrix. 
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Figure 8. 7. Principal components (PCs) scores and eigenspectra of simulated data.  
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Figure 8. 8. Principal components (PCs) scores and eigenspectra of mock data. 
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Complexity measures from recurrence plots (RPs) 

Once the data are reduced to a single timeseries, it becomes feasible to conduct timeseries 
analysis. In this study, we elected to use Recurrence Quantification Analysis (RQA) to 
investigate the recurrences in patients' body sway during musical interaction (Demos & 
Chaffin, 2017; Demos, Chaffin, & Kant, 2014; Demos et al., 2018). As discussed in Chapters 
2-4, RQA is based on the embedding of timeseries in phase space and subsequent 
computation of Recurrence Plots (RPs). These square matrices quantify the recurrence of 
states in a dynamical system, based on its trajectory in phase space (Eckmann et al., 1995). 
For the mathematical formulation of time-delayed embedding (Takens, 1981) and the 
computation of RPs, we refer back to those Chapters. In this section, we will present the 
two complexity measures computed via RQA that we deemed most relevant to this study. 
These measures allow to move beyond the visual interpretations provided by RPs by 
quantifying the small-scale structures embedded in the timeseries.  

These measures constitute RQA in the strict sense (Marwan et al., 2007), and are derived 
from the density of recurrence points and the diagonal and vertical line structures within 
the RP (Marwan, Wessel, Meyerfeldt, Schirdewan, & Kurths, 2002; Webber & Zbilut, 1994; 
Zbilut & Webber, 1992). The vertical structures in the RP are connected with intermittent 
and laminar states of a system, while the diagonal lines relate to its predictability. The 
most straightforward measure within RQA is the recurrence rate (RR), also known as 
percent recurrences: 

 

𝑅𝑅(𝜀) = 	
1
𝑁O 	 4 𝑅1,:(𝜀)

<

1,:=>

 

 

RR quantifies the density of recurrence points within the RP, consisting of the proportion 
of time a system spends either locked in or revisiting a particular state within the 
boundaries of a threshold ε, defined as the radius of the phase space. Furthermore, it 
offers an estimation of the likelihood that a system's state will recur in the future. 

The second measure in this analysis is the determinism of the system (DET), and is derived 
from the histogram P (ε, l) of diagonal lines of a given length l.  
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Uncorrelated or weakly correlated processes, whether stochastic or chaotic in nature, 
result in few or very short diagonals, while deterministic processes result in longer 
diagonals and fewer isolated or vertically aligned recurrence points (Marwan et al., 2007). 
Therefore, the ratio of recurrence points forming diagonal structures (of at least length 
lmin) to all recurrence points provides a measure of determinism in the system. The 
threshold lmin excludes the diagonal lines formed by the tangential motion of the phase 
space trajectory. It is important to note that both RR and DET are proportions, and they 
are normalized on a scale ranging from 0 to 1. 

These measures offer insights that align with the linear and circular methods 
conventionally employed for SMS quantification. For instance, a high RR may suggest high 
autocorrelation in the timeseries, and a high DET relates to a high vector length, since 
consistent synchronization with an isochronous stimulus results in deterministic behavior. 
However, while these measures may intersect in certain aspects, RQA provides additional 
insights into system dynamics that linear methods may overlook, especially in instances 
where assumptions of stationarity and linear relationships are violated. The approach is 
explicitly designed to capture nonlinear dynamics and intricate data patterns.  

We hereby present RR and DET calculations based on 164 participants (N = 164), because 
30 participants had missing conditions or exhibited major issues in the recording which 
made the analyses unfeasible. The activation timeseries of the first principal component 
(PC) was used as input for the analysis, after down sampling by a factor of 10 for 
computational feasibility. The parameters for time-delayed embedding: delay τ = 12.635, 
dimensions m = 5.141, and radius ε = 10% of the phase space diameter, were adjusted 
according to the same criteria outlined in Chapters 2-4. The only difference is that for this 
dataset, parameters were individually optimized for each participant by averaging values 
resulting from the four experimental conditions. This decision was informed by the 
observation that using the same average parameters on different patients led to extreme 
floor and ceiling effects for both measures. This was mostly due to the different 
sensitivities to the threshold of the radius ε in the phase space. 

It is plausible that this sensitivity difference is due to the high variability in the population 
of interest. Factors such as responsiveness to auditory stimuli, interaction with the 
musician, and mobility could influence this, especially considering that full body 
movement was not instructed during the SMS task. However, we also observed that 
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recording clusters conducted in different timeframes exhibited distinct SNRs. The factors 
underlying these differences remain unknown to the data analyst, but are likely to 
influence the parameter tuning. Adjusting the parameters for each participant is not 
inherently problematic, as long as they are kept consistent across experimental 
conditions. However, this necessitates treating participants as random effects in the 
statistical models, given that the intercept will vary in line with the parameters. Figure 8.9 
shows the average values of RR and DET in the different experimental conditions. Mean 
and standard deviation are reported in Table 8.1.  

The bar plots suggest that participants exhibited higher DET in Music conditions, as 
compared to Metronome conditions. This indicates that spontaneous body sway becomes 
more predictable when the SMS task is paced by a musical piece rather than an 
isochronous metronome. This is particularly interesting, given that metronomes have 
repeatedly shown to better facilitate consistency in SMS in this population. Our inspection 
suggests a dissociation between the mechanisms underlying intentional finger-tapping 
and spontaneous body sway with respect to the rhythmic stimulus, which points to the 
involvement of distinct but possibly overlapping systems.  Differences in RR across 
conditions are less evident upon visual inspection.  

Like in the case of QoM, we address a 2 x 2 ANOVA as first statistical test to assess the 
significance of main and interaction effects of Stimulus and Social factors, for both RQA 
measures. This first tests should be followed by the inclusion of MMSE, age, and other 
demographical variables as additional predictors. 

 

 

Figure 8. 9. Average recurrence quantification analysis (RQA) measures and SEM. 
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3. Joint Recurrence quantification analysis (JRQA) 

RQA can be expanded to a dyadic setting, encompassing the mirroring between 
participant’s and musician's body movements during the interaction, resulting in the co-
occurrence of spatiotemporal patterns. JRQA consists of computing the same RQA 
measures from Joint Recurrence Plots (JRPs), although it should be noted that some 
interpretations might not translate directly in the dyadic version.  

The extension of RQA to multiple musical performances can be declined into two 
approaches: Cross Recurrence Quantification Analysis (CRQA) and Joint Recurrence 
Quantification Analysis (JRQA), each answering a distinct query (Demos & Chaffin, 2017). 
CRQA seeks to identify whether a specific pattern is repeated across two performances, 
disregarding the location within the piece. Conversely, JRQA investigates if certain 
patterns are replicated at the same time in both individual behaviors, thus focusing on the 
co-occurrence of patterns in time. Since it is based on the co-occurrence, while 
disregarding the particular pattern taking place, JRQA is in principle blind to the layout of 
the force plate sensors. In practice, JRQA overlays two (or more) RQA plots, pinpointing 
when recurrence occur in the same entry of both RPs. In other words, it is computed as 
the Hadamard product between two RPs. The overlaying recurrent points might reflect 
distinct movements, but they indicate that the performer executed a recurrent action at 
the same point in each performance. This results in a new plot that shows where both RPs 
exhibit recurrent patterns. Therefore, JRQA offers a solution to identifying similarities in 
recurrence across performances, rather than similarities in the movements themselves. 
We argue that this is a more informative approach, because it is sensitive to coordination 
in time while being tolerant to spatial differences between individual movements. We can 
expect these to be considerable, given that we are comparing an elderly NCD population 
to a young healthy musician. 

It should be kept in mind that both CRQA and JRQA require the performances being 
analyzed together to operate on the same time scale. In addition to starting with 
timeseries of equal size, the embedding parameters τ and m must be consistently 
employed to ensure that the resulting phase spaces and RPs are also of the same size. For 
each participant in our study, the activation timeseries of the first principal component 
(PC), extracted from the force plate data, was used as the first input. The same parameters 
as the individual RQA were applied. The corresponding PC of the musician served as the 
second input. The embedding parameters applied to the participant were also applied to 
the musician to maintain consistency. It is important to note that force plate data for the 
musician were only available in Live conditions. Therefore, conducting JRQA in Video 
conditions was not feasible in this particular study.  
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Even for JRQA, results suggest that the co-occurrence of recurrences produced higher DET 
in the Music Live conditions as compared to Metronome Live. This indicates that the 
dyadic system formed by the participant and the musician becomes more predictable 
when their live interaction is mediated by a musical piece.  We address once again the 
same statistical tests pointed out for previous measures.  

RQA and JRQA measures were computed with the CRP Toolbox for Matlab (Marwan & 
Kurths, 2002). The descriptive statistics used to generate the bar plots for this dataset are 
reported in Table 8.1.  

 

Figure 8. 10. Average joint recurrence quantification analysis (JRQA) measures and SEM. 
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Metronomes Music 

Video Live Video Live 

        

Mean 

QoM 0,1062 0,1021 0,1167 0,1183 

RQA_RR 0,5818 0,5818 0,5906 0,589 

RQA_DET 0,8227 0,8198 0,8476 0,8482 

JRQA_RR N.A. 0,4555 N.A. 0,4674 

JRQA_DET N.A. 0,8168 N.A. 0,8526 

            

Standard Deviation 

QoM 0,1420 0,1406 0,1408 0,143 

RQA_RR 0,2863 0,2898 0,2907 0,2902 

RQA_DET 0,2271 0,2323 0,2176 0,2131 

JRQA_RR N.A. 0,3317 N.A. 0,3325 

JRQA_DET N.A. 0,2068 N.A. 0,184 

 

Table 8. 1. Descriptive statistics for QoM, RQA, and JRQA.  
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Dataset #2 – Dynamic adaptation to tempo-changes (von Schnehen et al., 

in preparation)  

An ongoing study by von Scheenen et al. (in preparation) aims to investigate the effects of 
NCDs on sensory motor synchronization, specifically the ability to coordinate motor 
rhythms with external rhythms at different levels of complexity in their temporal 
structure. Inducing synchronization errors with perturbations aimed at eliciting error-
correction responses provides a great opportunity to zoom-in into the dynamics of 
patients' adaptive responses to the new tempo within critical time windows. As 
highlighted in the major methodological principles of Chapter 1, such an approach is key 
to investigate the dynamics and the control mechanisms underlying SMS. Because error 
correction is a crucial component of minimizing asynchrony with a rhythmic stimulus, 
systematically perturbing isochrony is a valuable approach to induce errors and study 
corrective responses (Jantzen et al., 2018; Praamstra et al., 2003; B. H. Repp, 2001a, 
2001b; Bruno H. Repp, 2000; Bruno H. Repp & Keller, 2004), providing insight into the 
underlying timing mechanisms. In turn, this knowledge is necessary to understand the 
potential mechanisms underlying the effectiveness of music-based interventions on NCD 
(von Schnehen et al., 2022). Based on neuropsychological assessment, the sample of 
participants was divided into No NCD, Minor NCD, and Major NCD groups, which allowed 
for the assessment of the degeneration of dynamics throughout the stages of the disease. 

The perturbation-based approach in this study is not dissimilar to the tempo-change 
perturbations implemented with young, healthy participants in Chapter 7, albeit adapted 
to the population of interest. However, we argue that to maximize the inferences drawn 
from the data, it is essential to utilize analysis methods that align with the methodological 
rationale of eliciting dynamics. Specifically, it is crucial to move beyond global measures 
of central tendency and dispersion of SMS, which form the basis of descriptive circular 
statistics (Berens, 2009; Fisher, 1995). Given the temporal structure of the task, the 
dataset is suitable for processing as a behavioral Event-Related Frequency Adjustment 
(ERFA) to model the frequency change in finger-tapping behavior in response to 
perturbations (see Chapter 7). Instantaneous frequency timeseries were estimated from 
the onsets of the finger-taps and modeled with a set of non-linear functions that best 
capture the behavior observed in empirical curves. The next section provides a synthesis 
of the methods currently adopted in the ongoing study, followed by two data analysis 
approaches developed in our new analysis framework, along with their respective 
preliminary results. 
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Study design 

Participants 

The study recruited a sample of 51 older patients (N = 51; mean age = 81.15 years, std = 
6.97) who visited a geriatric hospital for a multi-disciplinary evaluation. Following the 
evaluation, the patients were given a diagnosis, which the experimenter was blind to at 
the time of testing. The participants were further divided into two groups based on their 
Mini-Mental State Examination (MMSE) score, with scores of 25 and above indicating 
healthy aging and scores below 25 suggesting early dementia. 

 

Stimuli and Task 

The study aimed to investigate the impact of neurocognitive disorders on SMS with stable 
and perturbated rhythmic sequences. The experiment employed a paradigm that involved 
participants tapping to the rhythm of a musical piece or a metronome. Each participant 
underwent eight trials with different conditions: four types of temporal structure 
(constant tempo at 89 BPM, constant tempo at 81 BPM, shifting between the two tempi 
starting from 89BPM, shifting between the two tempi starting from 81 BPM), and two 
types of auditory context (musical piece or metronome). The trials consisted of 75-second-
long stimuli, with sudden accelerations or decelerations every 15 seconds for the shifting 
tempo conditions. The task was designed to accommodate individuals with moderate to 
severe dementia by having them seated across a life-sized screen, displaying another 
person performing the task with them. This approach aimed to motivate the participants 
and encourage them to engage with the task consistently. 

 

Experimental design 

The study aims at examining several within-subject dependent variables, including the 
type of auditory context (music or metronome), tempo (89 or 81 BPM), presence or 
absence of tempo changes, and the effect of interval (performance differences at the 
beginning of the trial versus later). Between-subject variables included diagnosis (No NCD, 
Minor NCD, Major NCD) and a continuous MMSE score. The dependent variable was 
tapping consistency, defined as the variability of the timing difference between taps and 
pacing stimuli or taps and beats. Consistency was expressed as a number between one 
and zero, with one indicating optimal performance and zero representing random tapping 
with no relation to the stimulus.  
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Data analysis 

The subsequent analyses were performed on the onset data extracted from the finger-
tapping timeseries recorded during the experimental sessions. The first step involves the 
computation of instantaneous frequency. Following this, the analyses diverged into two 
distinct approaches. 

 

Processing: Instantaneous frequency computation 

The intervals between finger-tapping onsets were linearly interpolated from 0 to 2π at a 
sampling rate of 1 kHz, yielding an estimate of the finger-taps phase with a millisecond 
temporal resolution. Instantaneous frequency timeseries were then computed as the first 
derivative of the unwrapped phase angles timeseries, and converted to Hz in order to 
express frequency over time: 

𝐻𝑧£ = 	
𝑠(𝜙£ −	𝜙£z>)

2𝜋
 

 

where s indicates the data sampling rate, and 𝜙£ indicates the (unwrapped) phase angle 
at time t.  

The presence of missed taps in the timeseries poses a significant challenge, particularly 
with this population when the task is executed over an extended period. While the use of 
circular statistics has been suggested to be robust to this issue (Ghilain et al., 2020), this 
claim is debatable. Similar to linear measures of asynchrony, circular measures based on 
relative phase are calculated as the difference between the taps and the reference 
stimulus sequence. Rescaling and normalizing to radians do not alter the fact that some 
onsets may be absent in the dataset. Therefore, this problem must be addressed during 
the data processing phase. As in all previous chapters, we tackled this issue by employing 
linear interpolation of the onsets timeseries at a defined sampling rate, which ensures 
alignment across both behavioral and stimulation timeseries. With our approach, we 
should bear in mind that eventual missed taps would result in a drop of instantaneous 
frequency. At the group level, these are presumed to occur at random times during the 
task and would therefore cancel out when performing averages and curve fitting.  

Related to this, a critical point of divergence between this approach and others previously 
proposed pertains to the handling and definition of outliers. The calculation of relative 
phase between finger-taps and beats implies a sort of pre-selection of the best pairs 
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because, in instances of omissions or double-taps within beats, the nearest neighbor to 
the 'correct' tap is chosen. While this can be viewed as a form of data cleaning, it comes 
at the cost of losing information about the actual behavior, introducing a bias that neglects 
dynamics causing abnormalities. In contrast, instantaneous frequency is reference-free in 
the sense that it isn't defined based on the stimulation timeseries. A participant who 
misses a tap or unexpectedly taps twice in-between beats will produce a dynamic in the 
timeseries. In the not unlikely scenario of a participant consistently tapping to harmonics 
or sub-harmonics of the stimulation frequency, an offset will be produced in the 
timeseries. Although these situations may be challenging to manage, they provide 
valuable information that should not be ignored at this stage of processing. This 
information can be compensated for later through normalization procedures or 
alternative procedures for outlier removal. As demonstrated in the following paragraphs, 
in absence of a singular criterion for identifying outliers based on instantaneous frequency 
alone, all timeseries were modeled using the approaches presented below. Outliers will 
be defined later on, based on the distribution of the models’ parameters. 

 

Approach #1: Global frequency modulation 

The perturbation task used in this study was tailored for the NCD population. 
Consequently, unlike the ERFA study discussed in Chapter 7, we could not rely on a high 
number of critical events to optimize the signal-to-noise ratio (SNR) by averaging 
numerous responses to individual events. However, tempo changes occurred here in 
evenly spaced, lengthy steps. This temporal structure resulted in an expected periodic 
modulation of the instantaneous frequency timeseries over 15-second periods. Figure 
8.11 illustrates how the empirical timeseries effectively tracked the expected pattern. 
Specifically, in 'Fast' and 'Slow' steady tempo conditions, the instantaneous frequency 
fluctuates around the stimulation frequency. In contrast, in 'W' and 'M' tempo-change 
conditions, it traces the changes in mirrored patterns depending on the initial tempo. 
Given the consistency of this pattern over the macro-temporal structure, we propose an 
analysis approach applied to the longitudinal format of the data. This approach 
compensates for the limited number of critical events of interest occurring during the trial. 
A visual inspection of the data suggested that fitting a sine wave to the instantaneous 
frequency curves could be an effective method to model the data, given the oscillating 
changes in frequency following periodic tempo changes. 

The sine wave function was defined by the following equation, previously introduced in 
Chapter 1: 
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𝑦(𝑡) = 	𝐴 ∗ 	𝑠𝑖𝑛(2p	 ∗ 𝑓 ∗ 𝑡	 + 	𝜑) + 𝐶 

    

This yielded four parameters for estimation: amplitude (A), frequency (ω), phase (φ), and 
offset (C). Utilizing the sineFit() function in Matlab (Seibold, 2021), we fitted the curves 
through an optimization process that aimed to minimize the sum of squared errors 
between the fitted sine wave and the data. The initial 15 seconds were omitted from the 
fit, as no critical event was occurring during this period, and it gave participants some time 
to synchronize their behavior. Fitted curves are depicted in Figure 8.12, and grand-
averages are shown in Figure 8.13. Vertical lines represent the onset of tempo changes, 
while horizontal dashed lines represent the expected 10% range spanned by tempo-
changes. 

As seen in tempo-change conditions, the best fitting sine wave consistently exhibits 
periodic fluctuations that track the expected pattern of perturbations. Conversely, in 
steady conditions, where random fluctuations due to tapping variability are not expected 
to be periodic, the best fitting sine wave has a consistent offset at the average expected 
tempo. In these instances, in absence of major artifacts, inherent noise in the movement 
should result in random frequency and phase, along with a small amplitude. Given the 
context of the task, we propose the following interpretations for the parameters that 
define these curves: 

 

- Amplitude (A). This represents the magnitude of adaptation to the periodic 
tempo change and indicates the size of the effect. We expected a 10% change 
with respect to the steady tempo. 

- Frequency (f): This represents the rate of tempo change and indicates the 
presence of the effect. Given one tempo change every 15 seconds, we expected 
a frequency of 0.0333 Hz. 

- Phase (φ): This represents an offset along the time axis and indicates overall 
reactivity to perturbations. We interpret a phase of 0 rad as perfect synchrony 
with the tempo change. 

- Offset (C): This represents the average value of the sine wave and indicates the 
average tempo maintained throughout the task. The expected offset would be 
1.483 Hz for Fast steady tempo, 1.350 Hz for Slow steady tempo, and 1.417 Hz 
for both tempo-change conditions (as the average of Fast and Slow). 
 



 

  236 

 
Importantly, while the information gathered during the entire duration of the task is 
condensed into individual values, these values remain sensitive to specific aspects related 
to the adaptive behavioral dynamics of the task's temporal structure. We can illustrate 
how the sinusoidal fit compares to circular statistics and associated angular measures by 
considering some hypothetical scenarios. For instance, because adaptation takes some 
time to occur, the perturbation would invariably reduce synchronization during critical 
time windows, which would then affect the global measure. Observing lower 
synchronization consistency in tempo-changing conditions wouldn't necessarily indicate 
that the participant wasn't adapting to the change, only that synchronization was 
temporarily destabilized. The same holds true for the mean relative-phase angle, given 
that a systematic lag is anticipated in response to periodic perturbations. Consequently, 
lower accuracy and consistency wouldn't necessarily indicate a lack of adaptation. 
On the other hand, the four parameters of the sinusoidal fit provide insight into specific 
temporal dimensions that directly correspond to the pattern of tempo change. The 
distributions of these parameters across experimental conditions are depicted in Figure 
8.14. We identified 10 participants deviating by more than 3 standard deviations from the 
mean values of either offset or amplitude parameters. These were considered outliers and 
removed. 
As anticipated, in steady conditions, frequency and phase are uniformly distributed 
because no periodic changes are involved, amplitude is consistently low, and the mean 
offset corresponds to the stimulation tempo. This indicates that participants were overall 
synchronizing to the steady stimulus. In the tempo-change conditions, frequency is 
densely clustered around the rate of tempo change, phase offset is concentrated around 
a specific lag (depending on the 'M' or 'W' pattern), amplitude is consistently high, and the 
offset is situated around the average of the two alternating tempos.  
For subsequent statistical analyses, the parameter estimates from steady tempo 
conditions will be used as baselines to evaluate the systematicity of variations resulting 
from the temporal pattern of tempo changes. These calculated measures enable statistical 
comparisons across metronome and music conditions, as well as across participant 
groups. These statistical analyses lie beyond the scope of this Chapter. The descriptive 
statistics of the sine parameters’ distributions are reported in Table 8.2. 
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Figure 8. 11. Instantaneous frequency timeseries (finger-tapping).  
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Figure 8. 12. Instantaneous frequency timeseries (sine curves fitted to the data).  
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Figure 8. 13. Grand-average instantaneous frequency timeseries (sine curves fitted to the data). 

  

Music 

Metronome
s 



 

  240 

 
 
 
 

 
 

Figure 8. 14. Sine parameters distributions (sine curves fitted to the data). 
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Figure 8. 15. Sine parameters distributions (sine curves fitted to the data). 
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Music Metronomes 

Slow Fast 
Change 

'W' 
Change 

'M' Slow Fast 
Change 

'W' 
Change 

'M' 

                

Mean 

Offset 1,472 1,357 1,41 1,433 1,492 1,351 1,398 1,408 

Amplitude 0,086 0,073 0,115 0,103 0,061 0,05 0,108 0,127 

Frequency 0,38 0,342 0,053 0,069 0,474 0,403 0,046 0,036 

Phase 2,753 2,85 2,761 4,755 2,83 3,183 2,454 5,236 

                    

Std 

Offset 0,056 0,049 0,081 0,138 0,069 0,018 0,097 0,202 

Amplitude 0,069 0,045 0,073 0,052 0,064 0,022 0,084 0,124 

Frequency 0,238 0,186 0,049 0,124 0,189 0,174 0,07 0,023 

Phase 1,965 2,078 1,333 1,649 1,827 1,809 0,711 1,058 

 

Table 8. 2. Descriptive statistics for sine parameters. 
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Approach #2: Event-related frequency adjustment (ERFA) 

This second approach replicates the behavioral Event-Related Frequency Adjustment 
(ERFA) presented in Chapter 7. Instead of considering the data in its longitudinal format, 
here we identified the perturbation onsets and divided the time into 3-second post-
perturbation time windows. To maximize the limited number of events, we aggregated 
the responses from slow-to-fast and fast-to-slow across the M and W conditions, resulting 
in a total of 4 responses per direction. For every participant, these 4 trials were averaged.  

Despite the suboptimal signal-to-noise ratio resulting from the limited trials factored into 
the average, the responses consistently transition from one frequency level to the new 
one following the tempo change in both accelerating ('ERFA +') and decelerating ('ERFA -
') conditions. These responses can be contrasted with the baseline levels of stable tempo 
conditions ('Fast' and 'Slow'). Given these observations, we identified the sigmoid function 
as a suitable candidate for modeling the transition with a few informative parameters. This 
is expressed in the following equation: 

 

𝑓(𝑥) 	= 		
𝐿	 + 	(𝑀	 − 	𝐿)
1	 +	𝑒zu(­	z	v)

 

 

We emphasize that this function is optimal for capturing the transition from one stable 
tempo to another, in both directions of change. In the context of the perturbations, we 
propose the following interpretations for the parameters: 

- range (M - L): given by the difference between the maximum and the minimum 
value, it indicates the magnitude of the adaptation to the step change 
(expected: 10% change with respect to the initial tempo); 

- midpoint (c): it is the inflection point of the curve along the time x-axis, 
indicating how quickly the participant responds to the perturbation (providing 
a quantification of reaction time); 

- slope (b): represents how quickly the curve transitions from one tempo to the 
other (the steeper the curve, the more abrupt the transition around the 
midpoint). 
 

The parameters were estimated by optimizing the fit with the sigmoid_fit() function in 
Matlab, and the fitted curves are shown in Figure 8.15. The distributions of the parameters 
are depicted in Figure 8.16. We identified 3 participants deviating by more than 3 standard 
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deviations from the mean values of either midpoint or slope parameters in the ERFA – 
(decelerating). These were considered outliers and removed. The descriptive statistics of 
the sigmoid parameters’ distributions are reported in Table 8.3. 

The first notable difference from the plot of the sigmoid fits is that they exhibit a very 
sharp step. This is because the instantaneous frequency timeseries were produced by 
interpolating discrete data, and averaging just four trials was not sufficient to significantly 
smooth the curves. Due to the discrete nature of the data, the temporal resolution is 
compromised, which would be compensated for by averaging the responses to a larger 
number of events. However, we could still extract some valuable information from the 
estimated parameters. 

The range fell within the expected range corresponding to a 10% step size: from 1.350 Hz 
to 1.483 Hz for ‘ERFA +’, and from 1.483 Hz to 1.350 Hz for ‘ERFA –’, indicating that 
participants were generally adapting to the tempo change in the expected direction. The 
transition midpoint exhibits more variability, suggesting that there might be significant 
differences across individuals and across stimulus types and the direction of the change. 
The slope is possibly the least informative parameter, arguably because most of the fits 
result in a curve very close to a step change. It's reasonable to expect that this issue could 
be mitigated by employing a system that tracks finger position at a stable sampling rate 
(like the motion capture discussed in Chapters 1 and 4), or by using a greater number of 
trials (like the task presented in Chapter 7). Unfortunately, both options are challenging to 
implement with the target population. 
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Figure 8. 16. Sigmoid fit to the empirical event-related frequency adjustments (ERFAs). 
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Figure 8. 17. Sigmoid parameters distributions. 

  



Chapter 8 

 247 

Conclusion 

The primary contribution of this chapter is to offer tools to enhance our understanding of 
the spatiotemporal dynamics of body motion and SMS, moving from the limitations 
encountered during data acquisition from NCD populations.  

Musical interventions often revolve around SMS, due to the relative preservation of this 
functionality until the later stages of dementia. This is likely because cortical atrophy tends 
to spare motor structures in the early stages of the disease (Jacobsen et al., 2015), or 
because of compensatory rewiring reflecting attempts to compensate for their 
degeneration (Agosta et al., 2010; Ferreri et al., 2016). Either way, music is a rich 
communicative medium (Vuust et al., 2022) that involves the activation of a broad motor 
network (Grahn & Brett, 2007; Toiviainen, Burunat, Brattico, Vuust, & Alluri, 2020), with 
rhythm serving as the backbone supporting interaction with a music therapist. Given the 
potential of behavioral synchrony to mediate the rehabilitation of social and 
communicative skills (Cirelli, 2018; Tzanaki, 2022), it merits a thorough investigation of its 
underlying dynamics in order to optimize clinical interventions in the future.  

This research implies a particular focus on how these dynamics change with disease 
progression and varying environmental contingencies, such as the level of presence of a 
music therapist and the nature of the auditory stimuli (Hobeika et al., 2021, 2022; von 
Schnehen et al., 2022). In the bigger picture of the research carried out at PSITEC, these 
methods serve to maximize and synthesize information in stage of data processing and 
modelling, providing informative outcome measures to complement central tendency and 
dispersion provided by circular statistics (Berens, 2009; Fisher, 1995).  

For dataset #1 (Ghilain et al., 2020), force plate data were used to represent the change 
in spatial patterns of body sway over time, during a rhythmic task with auditory stimuli in 
presence of a musician. QoM was computed as overall amount of movement, or changes 
in the center of gravity; RQA served to extract indicators of temporal dynamics of such 
motion, such as recurrence rate (RR) and determinism (DET); JRQA was performed to 
relate the temporal structure of motion to the mirroring of the musician’s movements. A 
preliminary inspection of the results suggested a dissociation between the mechanisms 
underlying intentional SMS and the spontaneous motor activation of the whole body. 
While the original study reported an advantage for metronomic sequences in terms of 
SMS accuracy and consistency, our analysis on the force place data showed a major effect 
of ecological musical stimuli on motor engagement. Not only did we observe more 
movement elicited by music as quantified by QoM: we also reported that this movement 
was temporally organized to a greater extent by the musical stimulus (as quantified by 
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RQA), and by the interaction with the musician (as quantified by JRQA). It should be 
mentioned that the latter effect might have been mediated by the stimulus, working as a 
confounder which caused co-variance in the movement of the participant and the 
musician. The experimental design does not allow to draw final conclusions on the causal 
role of the interpersonal interaction.  

Although the focus of this Chapter is methodological, we highlight that this opens a 
discussion on the interplay of different mechanisms participating to SMS. While it has 
been extensively discussed that auditory-motor interactions lead to synchronization, 
measuring different aspects of the phenomenon with a broad set of instruments is 
essential to complete the picture of the processes gravitating around pure SMS. Knowing 
how the population of interest interacts with different layers of the musical stimulus in an 
interactive context, it will be easier to leverage on the right musical features of musical 
stimulus for rehabilitation purposes. The relative ease of tapping along with isochronous 
metronomes may come at the expenses of the engagement of socioemotional and 
predictive mechanisms, which require emotional connotation and an optimal balance of 
temporal dynamics in the stimulus (Vuust et al., 2022).  

In dataset #2, we employed two modelling approaches to capture the temporal dynamics 
of patients participating in a finger-tapping task with recurrent tempo changes. This task 
was designed to induce and measure adaptive behavior as patients recovered from 
synchronization errors (von Schnehen et al., in preparation). The first approach capitalized 
on the periodic nature of tempo changes in the macro temporal structure of the trials. We 
modelled the changes in the tapping frequency over time using sine functions, which 
allowed us to quantify the overall magnitude, consistency, and responsiveness of the 
adaptations to periodic perturbations. The second approach zoomed in on the transitions 
from one tempo to another, in critical time windows immediately following the 
perturbations. Despite the limitations imposed by the limited number of events available, 
this approach provided valuable information about the patients' responsiveness. Both 
approaches were based on the calculation of instantaneous frequency, which 
conveniently represents finger-tapping behavior in terms of tempo change. Each method 
presented here yields a single value which quantifies one particular aspect of the temporal 
dynamics of finger-tapping. 

To the best of our knowledge, the techniques presented in this Chapter constitute the first 
application in the context of interactive musical tasks in clinical settings. The systematic 
tests on simulated, mock and real data offered a deeper understanding of the techniques, 
which can be adopted and adapted by other researchers in this domain. All outcome 
measures developed in this chapter are meant to be introduced as response variables in 
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the same statistical models previously developed by PSITEC for average-based measures 
or circular descriptive statistics, within the context of their respective experimental 
designs. We believe that our approach will contribute to a deeper understanding of this 
challenging line of research, maximizing the inference on behavioral dynamics during 
rhythmic interactions. The potential of music-based interventions aimed at improving the 
quality of life of elderly patients affected by NCD is considerable, and continues to 
motivate the development of methodologies for understanding their uniqueness and 
efficacy.  
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General discussion 
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Coordination dynamics 

The aim of this dissertation was to unravel the dynamics at play when humans coordinate 
with each other, showing how individual rhythms can combine into organized forms of 
collective behavior. Conducted with a balance between individual and dyadic levels of 
analysis, we highlighted rhythm as a crucial element in interactions between humans and 
their environment. Considering such factor as a cardinal substratum for these interactions, 
we probed its role as a mediator and cornerstone for interpersonal coordination (P. E. 
Keller et al., 2014), allowing us to delve into underlying behavioral and neural mechanisms. 

With the drifting metronomes paradigm at its backbone, we outlined an overarching 
methodological framework to induce the emergence of interpersonal coordination 
dynamics and facilitate their quantification, fulfilling our central objective. This approach 
enabled us to conduct a cohesive series of studies, in which we consistently observed that 
interpersonal synchronization emerged spontaneously, against explicit instructions to 
ignore the partner. Importantly, the instructions extended beyond the verbal domain: an 
intentional competition process was implemented via the incongruity between assigned 
rhythms, which participants actively attempted to maintain. However, we noted that a 
reciprocal cooperation process systematically began to dominate the interaction, 
effectively claiming a larger share of the coupling in the dyadic system, pushing the 
balance in favor of co-regulation at the expense of independency. This is significant, as we 
have not found other methods in existing literature that possess the properties of evenly 
spreading the coupling strength between the cue and the partner, controlling for 
intentional synchronization, and implementing an authentically competitive nature (for a 
detailed discussion on the properties of the drifting metronomes, see Chapter 1).  

The primary focus here is the principle of an attractor, which operates as a dynamical 
structure latent to the interaction by driving the system towards a stable state (Marsh et 
al., 2009; R. C. Schmidt et al., 1990; R. C. Schmidt & O’Brien, 1997; Tognoli & Kelso, 2014; 
Tognoli et al., 2020). Instead of merely inferring this construct from observed behavior, 
we showed how the force of this attractor interacts with the intentional actions of the 
individual entities within the dyad. To put it another way, even when at odds with 
deliberate efforts to avoid any mutual influence, humans naturally show a tendency 
towards interpersonal coordination. Importantly, it was observed that dyads did not 
maintain a synchronized state at all times. When applying our analytical tools on a more 
granular level, it became evident that the attractor bounded the interaction according to 
consistent dynamics.  
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This is arguably the most interesting level of analysis, but what are exactly the dynamics 
we are discussing here? We specifically refer to a form of systemic behavior where 
integrative and segregative tendencies coexist among individuals (Ole Adrian Heggli, 
Konvalinka, Kringelbach, et al., 2021), giving rise to a temporally structured pattern in 
which periods of dwells in a coordinated state are broken by instances of divergence, or 
escape behaviors. This property is referred to as metastability, a concept widely used in 
the literature to point at a latent dynamical structure of the system, which facilitates both 
permanence within and transitions across states (Ole Adrian Heggli, Konvalinka, 
Kringelbach, et al., 2021; J. A. S. Kelso, 1995; J. A. S. Kelso, DelColle, & Schöner, 2018; J. A. 
S. Kelso & Tognoli, 2009; Tognoli & Kelso, 2014). The divergence of trajectories 
implemented in the drifting metronomes was explicitly designed as a scanning procedure, 
a tool for systematically exploring the metastable structure latent to the system. The 
layout of this hidden construct revealed an attractor landscape (Schöner et al., 1992; 
Tuller & Kelso, 1989; Yamanishi et al., 1980), which covers a variety of states that promote 
either one of the two opposing tendencies. Using the recurrence score as a proxy measure 
for the coupling between the partners (Marwan et al., 2007), we showed that dyads tend 
to oscillate between cooperation and competition as a function of the attractor landscape. 
Specifically, while transitioning over the in-phase region resulted in a long-lasting 
attraction on a stable collective state, the proximity anti-phase point facilitated decoupling 
among the partners and the pursuing of independent trajectories.  

Without a doubt, the most solid finding of this entire dissertation is the empirical layout 
of this attractor landscape, replicated across the three studies presented in Chapters 2-4. 
All these studies tested conditions of face-to-face, visually mediated coupling, providing 
the base case for dyadic interactions (Richardson, Marsh, Isenhower, et al., 2007; 
Richardson et al., 2005; R. C. Schmidt et al., 1990; R. C. Schmidt & O’Brien, 1997). The 
consistent findings not only underscore the inherent human tendency towards 
coordination, revealing the dynamics governing the balance between cooperative and 
competitive tendencies within a dyad: it also validates our methodological approach. Our 
expansion on earlier literature strengthens the understanding of the attractor as a latent 
construct (Tognoli & Kelso, 2014), its landscape (Schöner et al., 1992; Tuller & Kelso, 1989; 
Yamanishi et al., 1980), and, most importantly, extends this concept to the interpersonal 
domain (Marsh et al., 2006, 2009; R. C. Schmidt & Turvey, 1994). As Scott Kelso stated in 
his influential book Dynamic Patterns, “one's belief in the scientific method is enhanced 
when a given set of findings is confirmed or replicated by others, especially if it happens 
to be in a slightly different paradigm” (Kelso, 1995, p. 104). 



Chapter 9 

 255 

 

Informational coupling 
Having covered coordination dynamics, we now pivot to the other key aspect of our 
discussion: informational coupling. Noting that temporal coordination between 
individuals is mediated by information exchange via sensory channels (R. C. Schmidt et al., 
1990), we highlighted the multifaceted nature of its basis. Given that this exchange 
establishes interpersonal action-perception loops, which lay the groundwork for 
coordinated behavior (Phillips-Silver et al., 2010; Tognoli et al., 2020), we put forward the 
working hypothesis that the attractor layout latent to the dyadic system is dependent on 
how individuals exchange, access, and process mutual information. This hypothesis was 
tested throughout a series of studies where different dimensions of informational basis 
were manipulated as independent variables, to assess their effect on the dyadic attractor 
layout. Starting from the most discernible source of variability, namely which sensory 
channel mediates the coupling, and building on subsidiary dimensions, each study was 
designed to tackle specific research questions individually.  

 

Question Chapter 2: are attractor dynamics dependent on sensory modality? 

Here, we explored the role of sensory modalities in mediating informational coupling, 
within the context of spontaneous dyadic entrainment, comparing the attractor landscape 
returned by the drifting metronomes procedure in visual and auditory coupling. We found 
that visually-mediated entrainment was governed by a highly consistent layout across 
dyads, expressing the opposing tendencies described above. In contrast, entrainment 
mediated by auditory coupling led to more variable profiles, with strong tendency to 
synchronize with the partner at all times, regardless of the states being visited. This 
suggests that the coordination dynamics differ depending on which perceptual system 
samples information from the other individual. While visual coupling loses traction when 
the dyad is far enough from the influence of the in-phase attractor, auditory coupling 
consistently leads to the convergence of individual rhythms. 

Ultimately, the structure of the interaction was clearly governed by dynamics that varied 
depending on the sensory modality in play. However, the study left an open question. Due 
to the design of the stimuli, we could not rule out that differences could be explained by 
the availability of kinematic information. To clarify, while visual coupling enabled 
participants to continuously sample the entire phasing of the partner’s movement, with 
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auditory coupling they had to rely on a discrete and irregular sampling of the partner’s 
taps at the moment of impact. This made the experimental design unbalanced with 
respect to this ancillary dimension, calling for additional investigation to control for the 
role of kinematic information. 

 

Question Chapter 3: are attractor dynamics dependent on the access to kinematic 
information? 

Building on the previous study, we put forward the hypothesis that differences across 
modalities would fade, or at least attenuate, when balancing the access to movement 
kinematics across visual and auditory coupling. Arguing that the physical property of the 
stimulus and the perceptual system accessing such information constitute two distinct 
dimensions of informational coupling, we designed an experiment to assess their relative 
contributions to the interaction. This was achieved by expanding on previous experimental 
conditions, augmenting auditory coupling via continuous sonification of the partners’ 
motion, and discretizing visual coupling via its occlusion. 

Our results showed that attractor dynamics are invariant to the continuous or discrete 
access to kinematic information, thereby confirming their dependence on sensory 
modality. This led us to conclude that differences are not a matter of access to kinematics, 
but should be explained based on the unique interface of each sensory systems with motor 
and timing systems (Comstock et al., 2018). We put forward that, due to the temporal 
specialization of the auditory system, the attraction was so strong that it did not allow 
individuals to decouple at any time. On the contrary, while dominant in proximity of the 
cooperation attractor point, visual coupling enabled individuals to segregate the 
information and pursue individual rhythms, taking advantage of the competition attractor 
promoting divergent behavior. 

This work suffers from the limitation of relying on only one sonification strategy. Future 
work should explore alternative approaches which may be more effective in conveying 
kinematic information in the auditory domain, which may result in a more effective 
assimilation of visually- and auditorily- mediated dynamics. 

 

Question Chapter 4: are attractor dynamics modulated by embodied perspective taking? 

This work was explicitly situated at the intersection between fundamental research on 
interpersonal coordination, and the deployment of technology for guiding and supporting 
human rhythmic interactions. A critical aspect of virtual reality (VR) technologies is the 
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embodiment of the user, whose sensorimotor processes can be modulated by these 
technologies at various levels of immersion (Maes et al., under review). By implementing 
a body-swap illusion (Petkova & Ehrsson, 2008; Petkova, Khoshnevis, et al., 2011), we 
explored the potential of manipulating visual perspectives for modulating synchronization 
during joint actions. The investigation was circumscribed to the visual domain, of which 
perspective was treated as subsidiary dimension. 

On the fundamental side, we observed that dyadic coordination dynamics are subject to 
the manipulation of visual perspective. Participants in 1st person coupling were less 
effective at maintaining decoupled trajectories around the competition attractor, as 
compared to those in 2nd person coupling. These results suggest that visual perspective 
influences coordination dynamics in dyadic interactions, engaging error-correction 
mechanisms in individual brains (Maes et al., 2015; Mazzoni & Krakauer, 2006; Smith et 
al., 2006; Wagner & Smith, 2008) as they integrate the partner's hand into their body 
representation (Maister et al., 2015; Tajadura-Jiménez et al., 2012; Tsakiris, 2010, 2017). 
On the application side, we demonstrated that VR technology can be used to influence 
social interactions at the lowest level of coordination dynamics, thereby supporting joint 
action through enhanced interpersonal synchronization. We propose that a technology 
informed by principles of body-swapping has considerable potential for facilitating 
interpersonal coordination across a wide range of applications, including motor training, 
sports, musical education, and rehabilitation protocols. 

 

Formalizing a framework 

Taking all this evidence together, we hereby propose to capture in an equation the 
cooperation / competition balance, as it was investigated across studies with the drifting 
metronomes paradigm.  The following is not meant to be a rigorous mathematical 
formula, but rather a high-level, descriptive expression to synthesize the concept of this 
series of studies and integrate the experimental designs in an organic fashion. It should be 
stressed that its validity is limited to the drifting metronomes paradigm in dyads, and 
should not be generalized to ecological interactions in its current form.   

 

𝛷 = 𝐶 ∗ ¯	°b± + b
>
𝛹 + bO𝛹

O	³ : �
𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦
𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠
𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒

�	´ + 	ℰ	 

 
 



 

  258 

Where: 
- 𝛷 is the order parameter of the system, namely a variable which 

captures the temporal relations among individuals within the dyad. In 
our studies, a recurrence score (Marwan et al., 2007) was used to 
quantify the degree of temporal coordination between the partners, 
and interpreted as an indicator for coupling strength. 
 

- C indicates the presence of coupling, manipulated in the studies as a 
dichotomic independent variable. It can assume 0 and 1 values, 
reflecting OFF and ON states, respectively. Note that, when set to 0, the 
coupling is disabled and the whole term inside square brackets equals 
01.  

 
- 𝛹 is the control parameter, operationalized here as the relative phase 

between the metronomes and used to drive the dyad through the space 
of coordinative states. It maps onto the time dimension of the trials. Due 
to its circularity, the in-phase point is visited at the extremes of the trials, 
whereas the anti-phase point is in the middle. This symmetrical 
structure motivated polynomial modelling in the coefficients b.  
 

- b are the coefficients of the 2nd order polynomial used to model the 
changes of the order parameter as a function of the control parameter. 
b± is the intercept and represents the average level of coordination 
between individuals; b> is the linear term and affects the shift of the 
parabolic modulation vertex and relates to the hysteresis of the system; 
bO is the parabolic term and expresses the depth of the modulation as a 
function of the attractor landscape. 
 

- |   | contains the factors tested in each individual study, which have both 
main effects on the order parameter and interaction effects with the 
attractor dynamics expressed in the polynomial model. The factors can 
be arranged in a nested hierarchical structure, which are not illustrated 
here for simplicity. For example, we postulated modality and kinematics 
to be orthogonal dimensions, and manipulated them as such in our 

                                                   

1 The operator ‘ * ’ is used here as arithmetical operator. The operator ‘ : ’ is reserved to indicate interaction 
effects in a statistical model. 
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experimental design. Conversely, perspective was operationalized 
within the visual domain and therefore considered subordinate to 
modality. This is the level where future studies can bring their 
contribution in this model by including new factors in their experimental 
designs. Expanding this set of dimensions would then allow to better 
outline their relationships.  
 

- ℰ is the error term, explained by variability inherent to the individuals’ 
motion. When C is set to zero, this term entirely accounts for spurious 
patterns observed in 𝛷. 

 

As final remark on our behavioral findings, we want to mention where they find their place 
as a whole with respect to the major theories currently debating interpersonal synchrony 
(Palmer & Demos, 2022). Since none of the studies were designed to explicitly test 
predictive accounts against dynamical systems theory, a balanced discussion from both 
angles was provided in the discussion of every Chapter.  

Nevertheless, we should mention that the findings of Chapters 2-3 are quite compatible 
with a parsimonious oscillatory framework, where perceptual and motor oscillators 
mutually interact (Ole Adrian Heggli et al., 2019) and a coupling term is modulated by the 
factors at play and by the attractor layout. Chapter 4, conversely, is hardly explainable 
without involving some form of internal models, since the effects of our body-swap 
manipulation seem to be necessarily mediated by a transient change in the representation 
of the bodily self (Tsakiris, 2010) or by a modulation of internal models for motor control 
(S. J. Blakemore et al., 1999; S.-J. Blakemore, 2017; Wolpert et al., 2003).  

We believe that the explanation provided by the dynamical system theory is the preferred 
solution in terms of parsimony, but reaches a limit when dealing with a level of cognition 
that calls for more elaborated central representations. However, we do not see these 
theoretical contenders as mutually exclusive. Just like fundamental mechanisms at the 
lowest level of basic dyadic interaction can serve more high-level functions underpinning 
complex forms (Knoblich & Sebanz, 2008), informational coupling may be subject to a 
hierarchy of nested cognitive functions. In building up this first corpus of studies, we 
explored the dimensions of this multifaced construct in increasing complexity, probing the 
explanatory extent of the theories at every step. 
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Neural dynamics 

A second series of works was dedicated to the investigation of the neural underpinnings 
of human rhythmic interactions. By means of individual and dual EEG recordings, we 
aimed at unveiling different mechanisms by which means the brain tracks the dynamics of 
environmental and human rhythms, enabling overt synchronization behavior. Building on 
the concepts of cross-frequency coupling and entrainment, considered essential forms of 
interaction between neural and environmental oscillatory processes (Allen et al., 2011; 
Canolty et al., 2006; Michael X. Cohen, 2008; Lakatos et al., 2019), we targeted neural 
dynamics at the level of interaction between internal and external rhythms. 

Intrinsic to the organization of brain physiology is its adaptability, predisposing the brain 
to dynamically interact with changing environments. This suggests that adaptive 
responses necessitate proficiency in tracking these changes to facilitate flexible behavior 
(Criscuolo et al., 2022). Such adaptability is thought to be underpinned by the coupling of 
internal and environmental rhythms (Large & Jones, 1999), and by predictions encoded in 
the temporal scaffolding of frequency-specific oscillatory dynamics (Nobre & van Ede, 
2018). 

Proving the causality of neural processes by means of non-invasive electrophysiological 
recordings is an extremely hard endeavor (Novembre & Iannetti, 2021). While none of 
these studies achieved this feat, we provided a solid corpus of correlational evidence, 
along with a wide range of innovative techniques whose design was carefully tailored to 
capture specific dynamics elicited during the task. In answering the following research 
questions, we contribute to further grounding the discussion of brain theories on the 
underlying physiological processes (Palmer & Demos, 2022). 

 

Question Chapter 5: how are beta oscillations involved in interpersonal synchrony? 

Hyperscanning EEG recordings were performed in the study presented in Chapter 2. In 
analyzing them, we proposed a method to overcome a criticality of traditional measures 
based on interbrain synchrony, which typically fail to account for the elements of action 
and perception that lead to its observation. We argued that, in order to foster the 
interpretation of interbrain dynamics, one should explicitly model the involvement of the 
effectors as bodily oscillators in the setting. Because the effectors in action represent the 
observables accessed by two independent nervous systems via perceptual coupling (R. C. 
Schmidt et al., 1990), they necessarily mediate brain dynamics relevant to the interaction. 
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By extracting an oscillatory component in the beta range (∼20 Hz) and quantifying its 
modulation as a function of finger-tapping cycles, we found that this was significantly 
modulated by both self-generated and other-generated movements. In conditions where 
partners perceived each other, we observed periodic fluctuations of beta power 
corresponding to reciprocal movement cycles. This modulation occurred in both visually 
and auditorily coupled conditions and was accompanied by recurrent periods of dyadic 
synchronized behavior. 

Our study provides evidence that the brain employs a shared oscillatory mechanism to 
orchestrate self-generated rhythmic movements and to track those produced by a 
partner. This dual function is proposed to be simultaneously represented in an oscillatory 
expression of the common coding theory (W. Prinz, 1990; Wolfgang Prinz, 2013), a 
principle understood as crucial for facilitating temporal coordination among individuals (P. 
E. Keller et al., 2014). These findings bridge two bodies of evidence: one supporting the 
general role of beta oscillations in encoding rhythmic sequences (T. Fujioka et al., 2009; 
Takako Fujioka et al., 2015, 2012), and another substantiating its specific contribution in 
encoding movement timing and kinematics (Nijhuis et al., 2021; Novembre et al., 2017; G. 
Zhou et al., 2016). Thus, mutual modulation of beta power emerges as a potential 
mechanism underpinning the real-time integration of self-generated and externally 
observed actions. 

 

Question Chapter 6: is the stability of entrained oscillations an index for auditory-motor 
coupling?  

Here, we sought to further explore the interaction between auditory and motor systems 
and their influence on rhythmic behavior (Morillon et al., 2019, 2014; Morillon & Baillet, 
2017). This interaction was investigated at the level of entrainment, as a putative 
mechanism of alignment between endogenous brain oscillations and external auditory 
rhythms. This understanding is particularly beneficial in the realm of neurological 
rehabilitation, especially in improving locomotive capabilities (Ashoori et al., 2015; de 
Dreu et al., 2012; Moumdjian et al., 2018; Moumdjian, Moens, Maes, Van Nieuwenhoven, 
et al., 2019). For this reason, this work was originally motivated by the need for an 
outcome measure to quantify the stability of auditory-motor coupling during a rhythmic 
interaction with auditory cues, complementing behavioral measures traditionally used in 
clinical research (Moumdjian et al., 2018). 

Our study involved young healthy participants engaging in a basic finger-tapping task, who 
were instructed to synchronize with an isochronous auditory metronome. We employed 
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a novel computational method to extract a neural measure from the EEG signals recorded 
during this task. Our focus was to identify and isolate an oscillatory component from the 
broadband brain activity, maximally attuned to the stimulation frequency (Michael X. 
Cohen & Gulbinaite, 2017), and quantify the degree of fluctuation in this frequency over 
time (Michael X. Cohen, 2014). Our procedure resulted in a stability index. This measure 
is interpreted as an indicator of the brain's ability to maintain stable entrained neural 
oscillations in response to a steady auditory rhythm. 

We validated our neural measure by correlating it with several indicators of the 
participants' performance in the synchronization task. We found that the smaller the 
stability index (with 0 indicating a perfectly stable oscillation), the better the participants 
performed in terms of behavioral accuracy and consistency. Our findings underscore a 
correlation between the stability of attuned neural oscillations and effective behavioral 
synchronization, indicating its potential as a proxy measure for neural auditory-motor 
coupling. This could have practical implications for neurological rehabilitation, such as 
using the stability index as an outcome measure to evaluate the effectiveness of 
rehabilitation protocols in populations with compromised sensorimotor abilities due to an 
underlying pathological condition.  

However, in terms of fundamental insights on neural entrainment, the study was limited 
by the lack of systematic manipulation of stimuli to elicit predictable dynamics. Given 
these limitations, it was necessary to further investigate this mechanism under more 
controlled conditions, which brings us to the next study. 

 

Question Chapter 7: does neural entrainment underpin sensorimotor synchronization to 
dynamic rhythmic stimuli? 

Despite a surge in empirical studies and discussions (Lakatos et al., 2019), validating the 
premise of neural entrainment in humans has been considerably difficult. While the 
concept is theoretically straightforward, capturing its dynamic underpinnings through 
non-invasive electrophysiology has been elusive (Haegens & Zion Golumbic, 2018; 
Novembre & Iannetti, 2018; Rajendran & Schnupp, 2019). Our research method evolved 
from the approach presented in Chapter 6, and involved the manipulation of dynamic 
rhythmic stimuli as essential means to induce and observe the hypothesized mechanism 
in action. The design of spatial filters (Michael X. Cohen, 2022; Michael X. Cohen & 
Gulbinaite, 2017) enabled us to isolate perceptual and sensorimotor oscillatory 
components attuned to the stimulation frequency from multivariate EEG signals. Notably, 
by implementing perturbations in the rhythmic stimuli, both types of components 
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demonstrated their adaptability by adjusting their frequency in response, aligning their 
oscillations over time to match the changing stimulus dynamics. This controlled approach 
allowed us to draw inferences about the nature of neural entrainment, as we observed 
sensorimotor processing to enhance the entrained response, thereby strengthening the 
notion that the active engagement of the motor system contributes to processing 
rhythmic stimuli (Haegens & Zion Golumbic, 2018; Morillon & Baillet, 2017; Morillon et al., 
2015, 2014; Rimmele et al., 2018).  

With the novel use of event-related frequency adjustment (ERFA), we have progressed 
towards a more precise quantification of neural entrainment via non-invasive 
electrophysiology. Our findings lend compelling support to the idea that this putative 
mechanism effectively underlies overt sensorimotor synchronization. By moving beyond 
amplitude-based quantification of neural responses (Lenc et al., 2018; Nozaradan et al., 
2011, 2015), we explicitly focused on the phase dynamics of oscillatory components, 
contributing to the current discourse in the field (Rajendran & Schnupp, 2019). 

Our empirical findings are further supported by a series of computational simulations, 
where we contrasted our oscillatory model, grounded in endogenous neural oscillations, 
against an alternative model of evoked responses which does not assume ongoing 
oscillatory activity (Novembre & Iannetti, 2018). Our results favor the oscillatory model, 
suggesting that entrainment is not merely an evoked response passively tracking changes 
in stimulation rate, but indeed a process of active alignment of neural oscillations to 
external rhythmic stimuli. 

In sum, we've made considerable strides in addressing one of the most pressing challenges 
in human neuroscience (Haegens & Zion Golumbic, 2018). While not able to definitely rule 
out the contribution of evoked responses to our measure, our results provide compelling 
evidence for neural entrainment as an underlying mechanism for overt behavioral 
alignment to dynamic stimuli, marking another significant step forward in the journey to 
understand the underpinnings of sensorimotor synchronization. 
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A toolkit for analyzing rhythmic interactions in 
vulnerable populations 

On a dedicated Chapter, we circumscribed a set of methodological contributions in the 
framework of a collaboration between IPEM - Institute for systematic musicology (Ghent 
University, BE) and PSITEC Laboratory (University of Lille, FR). Here, we navigated the 
challenges of conducting research within vulnerable populations suffering from 
neurocognitive disorders (NCDs). These challenges often limit data acquisition, but the 
work detailed here has strived to overcome these hurdles and maximize the inferences on 
sensorimotor synchronization in these patients, thus making a significant contribution to 
the primary objectives of this thesis. 

 

Question Chapter 8: how can we facilitate the investigation on SMS in healthy and 
pathological aging? 

The study of SMS is central to understand the effectiveness of music-based interventions 
on patients suffering from neurocognitive disorders (NCDs) (von Schnehen et al., 2022). In 
this endeavor, it is of outmost relevance to understand how motor, expressive, and 
empathic processes are tied to this basic function during musical interactions (Hobeika et 
al., 2021, 2022). Despite the potential benefits, working with NCD patients poses some 
unique challenges. For instance, the application of invasive recording devices may not be 
well tolerated and cause physical discomfort or fear responses. These patients also have 
limited tolerance for long, repetitive experimental sessions that require continuous 
movement, influencing the data collected and making it less generalizable. 

To overcome these challenges, the experimental procedures for this population need to 
prioritize non-invasiveness, brevity, minimal repetition, engagement, and human support 
in a familiar environment. The chapter proposed to analyze these datasets using the 
principles established in the dissertation, providing a deeper understanding of 
spatiotemporal dynamics from musical interactions tailored to NCD patients. Ultimately, 
the tools developed here attempted to maximize the use of available timeseries data at 
the stage of processing and modelling, thus seeking to enhance our understanding of how 
healthy and pathologically aging individuals respond to musical interventions.  

The expansion of dynamical principles previously applied to young healthy participants 
proved to be a precious resource in this domain. In particular, source-separation methods 
applied to force plate data (Desmet et al., 2017), in combination with recurrence 
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quantification analysis (RQA)  (Demos & Chaffin, 2017; Demos et al., 2018; Marwan et al., 
2007, 2002) allowed to move beyond the mere quantification of motion and extract 
complexity measures related to the temporal structure of body motion. Preliminary data 
inspection suggested a dissociation between the mechanisms underlying intentional SMS 
and the spontaneous activation of the whole body. Specifically, it was observed that 
ecological musical stimuli had a major impact on motor engagement, in contrast with 
previous findings of improved SMS with metronomes (Ghilain et al., 2020). This motivates 
to further delve into the interplay between different socio-emotional mechanism and 
SMS, backed by the newly introduced analytical tools. Moreover, new approaches built on 
the concept of ERFA allowed to model the temporal dynamics of adaptive synchronization 
behavior of patients, which is a crucial aspect of SMS (von Schnehen et al., in preparation). 
This methodology unraveled the patients' responsiveness to tempo changes, enabling to 
parametrize several dimensions of the temporal dynamics underlying error correction. 

Through these findings, we contributed to a deeper understanding of behavioral dynamics 
during musical interactions, paving the way for the development of music-based 
interventions to improve the quality of life of elderly patients affected by NCD. The 
proposed analysis toolkit is expected to facilitate further developments of this delicate line 
of research. 

 

Future directions 

Why invest such substantial effort in refining an experimental paradigm? Why place such 
emphasis on it? The answers lie in our overarching aim throughout this dissertation: to 
provide a methodological framework and a comprehensive corpus of both behavioral and 
neurophysiological evidence. By doing so, we hoped to lay a solid foundation for an 
expanding line of research in the domain of interpersonal coordination, a platform from 
which fellow researchers could design their experiments and pursue their unique research 
questions. Furthermore, the analytical tools we introduced or refined, including innovative 
EEG methods such as mutual beta modulation, stability index, and ERFA, are not fixed in 
their current form. We hope to see these tools adopted, adapted, improved and built 
upon, facilitating a dynamic evolution that aligns with the demands of this field. 

The strength of this work lies not only in its results but also in its potential for growth and 
expansion. By acknowledging both its merits and limitations, we have attempted to 
establish a pragmatic, transparent, and reproducible starting point for future 
investigations. The limitations, in particular, should be viewed as open doors leading to 
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still unexplored paths. We hope they will inspire future studies, driven by new questions 
and hypotheses. We therefore conclude this dissertation by addressing some relevant 
lines of inquiry and possible directions that future research may take, illustrating the 
broader scope and potential of the perspective we outlined. 

 

Expanding experimental designs 

Through a first series studies, we managed to disentangle some fundamental dimensions 
of perceptual coupling and assess their effects on the dynamics of interpersonal 
synchronization. However, this work only scratches the surface, with many aspects yet to 
be explored. An immediate extension of our work involves identifying additional relevant 
dimensions, and directly build on our methodological framework by manipulating new 
independent variables of interest in within-subjects designs. Alternatively, different 
populations of interest can be tested under the same conditions using a between-subject 
design. We suggest some straightforward extensions for future studies below: 

• Spatial dimension and classes of movement. We point out that the spatial 
dimension was not manipulated in our dyadic studies but controlled by 
constraining the finger-tapping movements along the vertical axis. It would be of 
interest to introduce the spatial dimension as an experimental variable in the 
design, by manipulating spatial congruency in the movements along orthogonal 
axes. Seminal work by Kilner et al. (J. M. Kilner et al., 2003) shows that, when 
movements are incongruent, mirroring another individual causes motor 
interference and spontaneous spatial alignment. It would be of interest to 
investigate how congruency interacts with temporal dynamics, and specifically 
whether cooperation and competition tendencies are facilitated by congruent and 
incongruent movements, respectively.  
Within the same paradigm, it would also be possible to enable different classes of 
movements and effectors, increasing the ecological validity of our findings beyond 
the limits of a finger-tapping task. 
 

• Personal variables. Another straightforward extension would consist of including 
between-subject manipulations, to investigate the effect of personal variables on 
coordination dynamics. Whilst in our works musical expertise was controlled and 
matched across participants, one may explicitly include in the design a group of 
experts in different musical instruments and genres. For instance, dyads of expert 
drummers are capable of segregating information from the other and carrying out 
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synchronization tasks with minimal mutual influence (Ole A. Heggli et al., 2019), 
which makes them an ideal model of sensorimotor experts2. Alternatively, different 
configurations of dyads can be formed according to social variables, whereas in our 
studies dyads were gender balanced and the participant’s ethnicity was randomly 
sampled. This could turn out to be an informative means to test attractor dynamics 
as implicit measure of pro-social affiliation (Marsh et al., 2009; Tzanaki, 2022). 
 

• Pathological models. Additional between-subjects designs, involving groups of 
patients affected by sensorimotor deficits, would be extremely valuable in 
delineating neuropsychological models of interpersonal coordination. As relevant 
groups, we suggest pathologies selectively involving the cerebellum and the basal 
ganglia, which have been proposed to serve dissociable functions in SMS (Cannon 
& Patel, 2021; Doya, 2000; Nozaradan et al., 2017; Schwartze et al., 2016). While 
these functions are often investigated by means of rhythmic cues, a dyadic setting 
may offer insights into the role of specific brain structures in interpersonal 
coordination. Persons affected by autistic spectrum disorder (ASD) represent 
another population of interest. Given the reported challenges in ASD with 
processing low-level information during interaction they offer a window into 
neurodivergence in social interaction (Ansuini, Podda, Battaglia, Veneselli, & 
Becchio, 2018; Montobbio et al., 2022; von der Lühe et al., 2016). Further 
investigation in this group may enhance our understanding of such dynamics in the 
neurotypical population across the lifespan. 

• Pre-test / post-test designs. In a test-retest longitudinal design, the drifting 
metronomes procedure can be utilized as a reference point to gauge modifications 
in interpersonal coordination following. One application could be to scrutinize 
changes in attractor dynamics following interventions aimed at improving dyadic 
cohesion and affiliation, such as a joint musical activity. Alternatively, this method 
could be used to investigate the plasticity of the attractor landscape in a dyadic 
system (Schöner et al., 1992): via either implicit or explicit learning, specific action 
patterns can be trained or reinforced such that they would consolidate as new 
attractors, reshaping the whole layout (Dhawale et al., 2017; Schöner et al., 1992). 
The effectiveness of such strategies could be tested through the following 
workflow: 1) initial scan of the entire attractor layout of a dyad, to establish a 

                                                   

2 This principle was previously outlined in the Master’s thesis of the author, titled “Music as a framework, the 
musician as a model. Inferences on the bodily self”.  
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baseline profile of preferred patterns; 2) intervention in the dyad, or train a specific 
coordinative pattern (e.g., π/2); 3) repeat the scanning procedure following the 
intervention, to determine the extent of long-term plastic changes compared to 
the baseline. 

 

Scaling to groups 

In the ongoing development of this research, we are currently working on a substantial 
expansion of the dyadic paradigm to encompass the dynamics of larger groups, striving to 
incorporate further dimensions of social cognition into our investigation. We assert that 
the foundation of our paradigm, combined with the manipulation of diverse group 
configurations based on the social variables of experimental participants, can provide a 
controlled platform for the emergence of insightful ingroup/outgroup dynamics. Within a 
framework where the mutual attraction to synchronized behavior serves as an implicit 
behavioral indicator for cooperation (Marsh et al., 2009; Tzanaki, 2022), we ask whether 
and how coordination dynamics are related to facets of group affiliation, structure, 
relations, and identity3.  

Scaling to the group level brings an additional layer of complexity to our perspective and 
methodological approach. By focusing on the balance between cooperation and 
competition processes, we aim to explore how this operates with respect to ingroup-
outgroup dynamics, as expressed in rhythmic configurations of coordinative patterns. 
Within this larger-scale approach, the field of ethnomusicology provides valuable 
background and a conceptual lens for interpreting these dynamics. For instance, cohesive 
adherence to a common rhythm can serve as a powerful means to affirm, separate, and 
preserve a group’s identity (Lucas, Clayton, & Leante, 2011). Ethnographic research (Lucas, 
2002b, 2002a, 2005) shows that for participants to music rituals, the preservation of 
boundaries between different groups often relies on maintaining distinct rhythmic 
patterns. Given the natural human inclination towards synchronization with others, 
resisting this drive becomes a powerful demonstration of a group’s spiritual fortitude, 
expressed through its musical cohesion and competence at the rhythmic level. Therefore, 
when different communities come together in a ritual context, there is a compelling 
imperative to resist entrainment, further reinforcing group boundaries and identities. As 

                                                   

3 This exploration forms the central theme of an upcoming project foreseen by the author of this dissertation. 
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we approach the commence of this group-level exploration, we anticipate that these 
insights will shed new light on the interplay of rhythmic patterns in social dynamics. 

 

Computational modelling  

Building on the substantial empirical groundwork presented throughout this dissertation, 
and possibly on its future expansion, we propose that the next leap forward involves 
further leveraging on computational modelling. Thus far, our work has primarily unfolded 
at a descriptive level, yielding behavioral observations under controlled conditions, from 
which we could infer the effect of variables of interest on the dynamics at play. By 
integrating this research with simulations of dyadic interactions, we can provide 
explanatory accounts for the phenomena we have reported. The main advantage of 
modelling is that it allows us to explicitly test the explanatory reach of the theoretical 
contenders we've outlined in this dissertation. With such an approach, we can generate 
and evaluate predictions starting from different stances and conclude which one better 
fits the empirical findings. 

Transitioning our understanding from descriptive to predictive we can refine our existing 
data interpretations. Preliminary simulations, based on the setup of the drifting 
metronomes studies, are showing that leveraging the properties of the paradigm can 
provide unique insights into the mechanisms governing the system's dynamics. While this 
endeavor starts from a dyadic setup, it is meant to be easily scalable to any number of 
participants and multi-group configurations. This scalability goes in hand with the proposal 
of expanding our investigation to group dynamics, where simulations can inform and focus 
the experiments involving large number of participants. Our current efforts focus on 
extensions of the Kuramoto model, an ideal starting point given its relative simplicity and 
existing applications to human dyadic systems (Ole Adrian Heggli et al., 2019). We envision 
these improvements to function as a bridge between empirical observations and 
theoretical explanation. This will mark a decisive leap in improving our understanding of 
the mechanisms underlying interpersonal coordination. 

 

Neurophysiology 

In our explorations of neurophysiology, we have merely begun to scratch the surface, and 
the hyperscanning setup presents a wealth of analysis methods that remain largely 
untapped. Our argument has strongly advocated for a more interaction-centric approach 



 

  270 

to modelling, coupling participants' effectors to oscillatory brain activity in a framework of 
cross-frequency coupling (M. Seeber et al., 2016; Martin Seeber, Scherer, Wagner, Solis-
Escalante, & Müller-Putz, 2014; G. Zhou et al., 2016). Yet, there is merit in exploring the 
relationships between our methodology and more traditional hyperscanning analysis 
methods based on interbrain synchrony (Zamm et al., 2023).  

Moreover, the non-dyadic experiments conducted so far have paved the way for the 
development of an analytical approach to neural entrainment. The ERFA protocol, as 
described in Chapter 7, is currently being tested in several studies on patients affected by 
multiple sclerosis and cerebellar lesions. This represents a first test for the replicability of 
our results, and a contribution to neuropsychological models of sensorimotor 
synchronization informed by neuroanatomical lesions. A next step for the application of 
this technique would consist of applying it to the hyperscanning setup, to investigate the 
dyadic interaction in terms of mutual frequency adjustment of neural components across 
participants. Adding another layer to our research, we propose to investigate the 
modulation of the proposed neural measures in relation to the attractor landscape4.  
Finally, our upcoming research on group dynamics will further expand on this, as it is 
prepared to scale the hyperscanning setup to incorporate small groups of participants 
(Astolfi et al., 2010). 

 

 

 

 

 

 

 

 

                                                   

4 These suggestions are already set to be applied to an EEG hyperscanning dataset collected during the body-
swap study detailed in Chapter 4. 
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Epilogue  
The completion of this dissertation marks the culmination of nearly five years of dedicated 
research, a journey that crossed the fields of Arts Science and Psychology as part of a joint 
PhD program. The topic of rhythm is the cornerstone where the two domains converge. 

The multi-dimensional nature of music, both as a form of joint action and as a cultural and 
emotional touchstone, makes it an extraordinary research domain for inferring more 
general principles of human interaction (P. E. Keller et al., 2014). Performance, dance, 
improvisation, playing in ensemble, are all social activities which require a delicate balance 
of precision and adaptability, making music a rich ecological context for studying rhythmic 
interpersonal coordination. This perspective delves into the psychological processes and 
neurophysiological mechanisms at play during a social interaction, exploring sensorimotor 
and cognitive processes, the representation and integration of self and other-related 
actions within and between individuals' brains, and the relationships between 
coordination and socio-cognitive constructs.  

The current PhD dissertation moved from a complementary angle and tracked a different 
trajectory, originating in the most fundamental aspects of human interaction and 
streaming into the specific domain of systematic musicology (Marc Leman, 2007, 2016). It 
carves out a niche at the intersection of psychology and behavioral neuroscience, 
providing a multidisciplinary view on musical rhythm as a mediator for rich embodied 
interactions. In the spirit of art sciences, this dissertation embraces the bidirectionality of 
scientific discovery. Just as we learn about psychology and interaction from studying 
music, our understanding of human nature reciprocally enriches our comprehension and 
appreciation of music as a profound facet of human culture and sociality. This endeavor 
embodies the essence of a joint-PhD, reflecting the spirit of interdisciplinarity. 

Dissecting complex human phenomena is not an easy task, and the path towards 
knowledge is a long, non-linear journey. Constantly oscillating back-and-forth between the 
analysis and the synthesis of its components, at times it feels like walking in circles. At 
times it feels out of balance. While the work of the past five years has been heavily 
analytical, these last few months have been a first attempt at synthesizing all my work 
together. 

The pursuit of fundamental knowledge is a noble purpose. Yet, in the grand scheme of 
things, the true hope is that this work will find its place in the cross-pollination of scientific 
disciplines and practices, that neighboring fields can assimilate these insights, and that 
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applications will integrate them to make a meaningful impact. May fields such as music 
education, rehabilitation, artistic practices, and sports science all be informed by the bits 
of knowledge provided here, and by its future prospects. 

With this wish for the future and the baggage of this experience, I am personally looking 
forward to starting a new cycle. 
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Appendix A  

Supplementary materials 
 

Chapter 2 

All supplementary materials, including the audio file of the drifting metronomes, are 
downloadable on the website of Scientific Reports. Below, the full reference to the paper, 
accessible online in open access. Files can be found in the section ‘Supplementary 
information’. 

Rosso, M., Maes, P.J. & Leman, M. Modality-specific attractor dynamics in dyadic 
entrainment. Sci Rep 11, 18355 (2021). https://doi.org/10.1038/s41598-021-96054-8. 

 

Chapter 5 

All supplementary materials are downloadable on the website of Neuroimage. Below, the 
full reference to the paper, accessible online in open access. Files can be found in the 
section ‘Appendix. Supplementary materials.’. 

 

Rosso, M., Heggli, O. A., Maes, P. J., Vuust, P., & Leman, M. (2022). Mutual beta power 
modulation in dyadic entrainment. NeuroImage, 257, 
119326.https://doi.org/10.1016/j.neuroimage.2022.119326 
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Chapter 6 

 

 

Supplementary Material 6.  A Narrow-band filter kernel for GED. The figure shows the wavelet kernel in the 
frequency domain, centered on the target frequency of 1.65 Hz. In order to set the width of the Gaussian, we 
opted for a filter that would allow some extent of fluctuations around the centered frequency, without overlapping 
with the high-pass band filter (cut-off = 1 Hz). We found an optimal trade-off by setting the Gaussian width at half-
maximum at 0.3 Hz. It is important to note that the correlations with the behavioral measures reported in the 
present work are invariant to such parameter. However, one should be aware that the scale of the stability index 
is inversely proportional to the width of the narrow-band filter. This is due to the fact that a wider filter allows for 
wider frequency fluctuations. Finally, the scale of the stability index is also affected by the filter shape. It was 
previously proposed that symmetric plateau-shaped filters should be preferred over a Gaussian when investigating 
frequency shifts, since the latter is biased towards the center frequency (Michael X. Cohen, 2014).  However, we 
found that the correlations are invariant when comparing plateau-shaped FIR and Gaussian-shaped, as long as 
both are symmetrical. After verifying the invariance of the results, we opted for a Gaussian filter for the sake of 
parsimony and replicability: given that that the center frequency is constrained by the rate of the stimulation, the 
width is the only parameter to be defined by the data analyst.  

Center frequency = 1.65 Hz ; Width at half-maximum = 0.3 Hz
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Supplementary Material 6.  B. Component #2. As it can be evicted by the right-most plot, the second eigenvalue 
detaches to some extent in the eigenspectrum. We present here the activation map and the power spectrum 
(normalized to signal-to-noise ratio) of the component associated with the second eigenvalue. The spectral profile 
is clearly characterized by dominant peaks at entrained frequency and harmonics, which is to be expected given 
the spectral criterion adopted for the GED. It is noteworthy that the signal-to-noise ratio is considerably lower as 
compared to the first component. Critically, no meaningful pattern emerged from the topographical activation 
map. 
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Supplementary Material 6.  C. Component #2 (correlations with behavioral outcome measures). The stability index 
was computed from the second component, and its correlations with the behavioral outcome measures were 
tested. Correlations were considerably weaker than the ones for the component associated with the highest 
eigenvalue, as quantified by the Spearman correlation coefficients. Results are showed in the original scale and 
transformed to ranks.    This evidence suggests that the first component alone is related to neural entrainment in 
the context of the experimental task. Acknowledging that we still cannot completely rule out the merging of 
different neural processes across components, the approach hereby proposed has proved to be valid in extracting 
one single component related to auditory-motor coupling.  
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Chapter 7 

 

 

  

- 10 % (No HP) +  0 % (No HP) + 10 % (No HP)

- 10 % (HP) +  0 % (HP) + 10 % (HP)

A.

B.

- 10 % (No HP) +  0 % (No HP) + 10 % (No HP)

- 10 % (HP) +  0 % (HP) + 10 % (HP)

A.

B.



 

 279 

Supplementary Material 7.  A. Simulated oscillations. A) Simulation with and without high-pass filter. The figure 
shows a comparison of a simulated oscillatory signal (1.667 Hz) entraining in three conditions of tempo change 
(+10%, 0%, -10%). The two upper subplots represent the signal activation, while the lowest subplot represents the 
ERFAs computed from the respective timeseries. In all subplots, continuous lines represent the signal and 
respective ERFAs without the high-pass filter, while dashed lines represent the same timeseries with the zero-
phase high-pass filter (Butterworth, cutoff = 1 Hz; 6th order). In both cases, a narrow-band Gaussian filter (center 
= 1.67 Hz, full width at half-maximum = 0.3 Hz) was applied. The overlap between the dashed and continuous lines 
demonstrates that the 1 Hz high-pass filter does not influence the frequency activity at the target metronome 
frequency in the time windows of interest, leaving the ERFAs unbiased. Note that ERFAs from both scenarios are 
plotted together, but the dashed one is barely visible because of the overlap. B) Simulation with and without high-
pass filter, with noise. The same timeseries are shown in the presence of noise (SNR white noise = 0.5; pink noise 
level = 0.3, exponential decay = 10). The overlap between the timeseries, even at lower signal-to-noise ratios, 
shows that the high-pass filter does not introduce any systematic bias in the analyzed time windows. The absence 
of distortion is further supported by the ERFA computed from our data during perturbation-free stimulation (black 
line in Figure 3 of the manuscript), which, being flat as expected at the reference frequency, serves as a valid 
baseline for assessing the effects of the perturbations.  
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Supplementary Material 7.  B. Activation timeseries of perceptual and sensorimotor components. A) The figure 
shows the grand-average timeseries (N = 19) of the 'perceptual' and 'sensorimotor' components as extracted by 
GED. The ERFAs shown in Figure 3A and B in the main manuscript were computed from these timeseries. If evoked 
responses were prominent and passively followed the stimulation, they would be expected to track the tempo 
changes in the three levels of direction (+10%, 0%, -10%). However, no visible pattern of evoked responses 
corresponding to the tempo changes is observed, suggesting that the evoked responses are not a significant factor 
in the extracted components. It should be noted, however, that the task was not optimized for ERPs, finger-tapping 
was performed throughout its entire duration with no periods for baseline at rest, and the presented time window 
is particularly long for ERP standards. B) A sliding moving-average (30 ms window size) was applied to the same 
timeseries to facilitate the visibility of potential evoked response patterns. Even with smoothing, no evoked 
responses consistent with the stimulation pattern are observed. 
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A) Oscillations 

 

B) Evoked responses 

 

 

Supplementary Material 7.  C. Comparison of alternative models underlying ERFAs. The figures show two simulated 
scenarios based on Novembre and Iannetti (2018) tailored to our experimental design. The purpose of the 
simulation is to compare ERFAs as explained by alternative models for the underlying dynamics. In both scenarios, 
the upper subplot represents the simulated signal, while the lower subplot represents the ERFAs computed from 
the simulated timeseries. A) Oscillations: phase alignment, steady (+0%), speed-up (+10), and slow down (-10%) 
with respect to the original frequency. B) Evoked responses: passively following the corresponding changes in 
stimulation rate (+10%, +0%, -10%). For both models, we introduced varying levels of noise to assess the reliability 
of ERFAs with respect to the expected dynamics and the empirical evidence from experimental data.  
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1. No noise. 
2. SNR (white noise) = 0.5; pink noise level = 0.3, exponential decay = 10. 
3. SNR (white noise) = 0.2; pink noise level = 0.3, exponential decay = 10. 
4. SNR (white noise) = 0.1; pink noise level = 0.3, exponential decay = 10. 

 

In the absence of noise, both models A and B produce comparable expected ERFAs, suggesting that both models 
can explain the parabolic ERFA pattern under ideal conditions. As noise levels increase, however, model B (evoked 
responses) begins to degenerate and becomes dramatically distorted at lower SNRs, indicating that the model is 
less robust in less ideal scenarios which better approximates the reality of EEG signals. In contrast, the ERFAs 
generated by model A (oscillations) demonstrate remarkable robustness, maintaining consistency across all four 
noise levels. Furthermore, the ERFAs from model A closely resemble Figure 3B from the main manuscript 
(experimental data), providing evidence that an oscillatory model better explains the observed ERFAs in our study. 

These findings support the conclusion that the oscillatory model (model A) is a more plausible explanation for the 
observed ERFAs in our data, as it demonstrates greater robustness to noise and closely aligns with the 
experimental findings presented in Figure 3B of the main manuscript. 
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Appendix B  

List of acronyms 
 

Concepts 

HKB = Haken-Kelso-Buntz (model) 

SMS = sensorimotor synchronization 

 

Methods 

ANOVA = analysis of variance 

ART = aligned rank transform 

DET = determinism 

ERP = event-related potential 

ERFA = event-related frequency adjustment 

GED = generalized eigendecomposition 

ICA = independent component analysis 

JRQA = joint recurrence quantification analysis 

PCA = principal component analysis 

QoM = quantity of motion 

RR = recurrence rate 

RQA = recurrence quantification analysis 

SEM = standard error of the mean 

  



 

  284 

Tools 

EEG = electroencephalography 

EKG = electrocardiogram  

EOG = electrooculogram 

MIDI = musical instrument digital interface 

MMSE = mini-mental state examination 

VR = virtual reality 

 

Institutions  

ASIL = art science interaction lab 

IPEM = Institute for Psychoacoustic and Electronic Music 

PSITEC = Psychologie : Interactions, Temps, Emotions, Cognition 
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