
Université de Lille

École Doctorale des Sciences de l'Homme et de la Société N°473

STL – Savoirs, Textes, Langage UMR8163

Mind the Gap

A Historico-Philosophical Investigation of the Ontological

Status of Computer Programs

Une investigation historico-philosophique du statut

ontologique des programmes informatiques

Nick WIGGERSHAUS

Thèse de doctorat de Philosophie

Dirigée par Shahid RAHMAN

Et par Liesbeth DE MOL

Présentée et soutenue publiquement

le 08/01/2025

Devant un jury composé de :

Tarja KNUUTTILA, Professeure, Universität Wien, Examinatrice

Raymond TURNER, Professeur émérite, University of Essex, Rapporteur,

Giuseppe PRIMIERO, Professeur, Università degli Studi di Milano Statale,

Président

Julie JEBEILE, Maître de conférences, CNRS-Universität Bern, Rapporteure

This page intentionally left blank

To my Parents & Grandparents

Abstract

This thesis addresses the ontological status of computer programs. Previous

studies have placed computer programs in almost every ontological category

available and claimed that they have a ‘dual nature.’ My primary contribution to

the debate is offering an alternative framework emphasizing computational

implementation and its relata. I argue that we do not need to endorse the dual

nature view by suggesting that ‘program’ is a polyseme – an umbrella term

hosting various entities spanning the abstract-concrete dichotomy. The

advantage of this view is the avoidance of positing metaphysically dubious

entities. Instead, we can understand the ontology of programs as a network of

relations between abstracta and concreta that we bundle together through

implementation when using computing machines as epistemic tools.

To flash out and explore the claims of this alternative view, I first delve into

the philosophical literature on implementation and taxonomize its different

notions. In due course, I offer a unified theory of agential implementation, short

UTAI. Specifically, UTAI advocates developing a series of related clarificatory

case studies that track three different dependency relations between us and the

ontologically different constituents under the term program.

Accordingly, I discuss the implications of the first dependency relation

between programmers and programs as abstract objects. By adopting the

Problem of Creation – a well-known issue from the philosophy of art – I present

a fresh perspective on the metaphysical options that allow us to view programs

as abstract entities. Next, I focus on the second dependency relation between

human agents and physical computation. As a result, I provide a new argument

for understanding computational implementation as a three-place relation and

develop a suitable notion called Implementation-as (based on the DEKI account

of scientific representation). Lastly, I address the third dependency relation

between programmers and the material systems used for program execution. By

combining the insights of interventionism, technical artifacts, and neo-

mechanistic literature, I introduce the notion of ‘physical programmability.’

Keywords: Computer Programs, Ontology, Problem of Creation,

Implementation, Scientific Models, Programmability

Abstract

v

Résumé

Cette thèse examine le statut ontologique des programmes informatiques. De

précédentes études ont placé les programmes informatiques dans presque toutes

les catégories ontologiques disponibles et ont affirmé qu'ils avaient une « double

nature ». Ma principale contribution au débat consiste à proposer un cadre

alternatif mettant l’accent sur l’implémentation informatique et ses relata. Je

soutiens qu’il n’est pas nécessaire d'approuver le point de vue de la double

nature en suggérant que le terme « programme » est un polysème - un terme

générique abritant diverses entités couvrant la dichotomie abstrait-concret.

L’avantage de ce point de vue est qu’il évite de poser des entités

métaphysiquement douteuses. Au lieu de cela, nous pouvons comprendre

l’ontologie des programmes comme un réseau de relations entre abstracta et

concreta que nous rassemblons par la mise en œuvre lorsque nous utilisons des

machines informatiques comme outils épistémiques.

Pour mettre en évidence et explorer les revendications de ce point de vue

alternatif, je me plonge d’abord dans la littérature philosophique sur

l'implémentation et je taxinomise ses différentes notions. En temps voulu, je

propose une théorie unifiée de l’implémentation agentielle, l’UTAI. Plus

précisément, l’UTAI préconise le développement d'une série d'études de cas

clarificatrices connexes qui suivent trois relations de dépendance différentes

entre nous et les constituants ontologiquement différents sous le terme de

programme.

En conséquence, je discute des implications de la première relation de

dépendance entre les programmeurs et les programmes en tant qu’objets

abstraits. En adoptant le problème de la création - une question bien connue de

la philosophie de l’art - je présente une nouvelle perspective sur les options

métaphysiques qui nous permettent de considérer les programmes comme des

entités abstraites. Ensuite, je me concentre sur la seconde relation de dépendance

entre les agents humains et l’informatique physique. En conséquence, je fournis

un nouvel argument pour comprendre l’implémentation informatique comme

une relation à trois places et je développe une notion appropriée appelée

Implémentation-as (basée sur le compte DEKI de la représentation scientifique).

Enfin, j’aborde la troisième relation de dépendance entre les programmeurs et les

systèmes matériels utilisés pour l’exécution des programmes. En combinant les

idées de l’interventionnisme, des artefacts techniques et de la littérature néo-

mécaniste, j’introduis la notion de « programmabilité physique ».

Mots-clés: Programmes informatiques, le problème de la création, ontologie,

implémentation, modèles scientifiques, programmabilité

Acknowledgments

My fascination with computer programs, computing, and implementation

started late. I believe at some point in Spring 2018. Earlier that year, I had

successfully graduated from the History and Philosophy of Science Master in

Utrecht with a thesis about the ontological status of information in physics.

Investigating how so-called information measures such as Shannon information

and Kolmogorov Complexity feature in physics, I gained first familiarity with

concepts in the vicinity of computer science. My interest only seriously began

when I first learned about the alleged dual nature of programs. Intuitively, the

dual nature discourse had striking parallels with the dubious claims about the

simultaneously abstract and physical nature of information. To this day, I still

find such ideas utterly puzzling; how could programs both be abstract and

concrete at the same time? This dissertation project is an attempt to shed light on

this question and make sense of the ontological status of computer programs.

Little did I know what I had signed up for at the beginning of this endeavor.

Due to circumstances beyond my control, my PhD experience has not been

exactly the smoothest. From dealing with the challenges of COVID-19 that forced

me to work remotely for a significant part of the process, then the headache of

having to learn French (online), paired with working without a contract for more

than two years, to the absence of supervisor(s) due to health reasons when it came

time to write up my thesis. So, I can say with full confidence that I only made it

thus far because of my family, friends, and some of the colleagues I met along

this journey. I want to express my heartfelt gratitude and say thank you to

everyone who offered me support and assistance in various ways! Among these

people, certain individuals deserve to be singled out.

First, I want to thank my supervisors, Liesbeth De Mol and Shahid Rahman,

for their guidance and encouragement with this project. Liesbeth’s profound

understanding of the diverse aspects of computing not only allowed me to check

my philosophical reasoning against the backdrop of real-world examples but also

encouraged me to break free from narrow disciplinary boundaries and venture

into uncharted territories. Shahid, who co-supervised part of this thesis, is a well

of wisdom in philosophy and French bureaucracy. His sharp observations helped

me iron out some of the more questionable attempts in using formulae previously

contained in this thesis; in addition, he also helped me navigate the

idiosyncrasies of the French academic system. I am grateful for both their

patience and the trust they have put in me.

Additionally, I am indebted to PROGRAMme (Nicola Angius, Troy Astarte,

Arianna Borrelli, Selmer Bringsjord, Maarten Bullynck, Felice Cardone, Martin

Acknowledgments

vii

Carlé, Edgar Daylight, Liesbeth De Mol, Marie-José Durand-Richard, Endy

Hammache, Cliff Jones, Simone Martini, Baptiste Mélès, Lennart Melzer,

Elisabetta Mori, Pierre Mounier-Kuhn, Alberto Naibo, Maël Pégny, Tomas

Petricek, Mark Priestley, Giuseppe Primiero, Julian Rohrhuber, David

Schmudde, Henri Stephanou, Mate Szabo, and Raymond Turner), a truly

exceptional group of scholars with unmatched expertise in all aspects of

computing, who have welcomed me with open arms as one of their members. As

a junior researcher, this was truly a unique opportunity, and I profited

immeasurably from the stimulating intellectual environment of the project. I will

surely never forget all the long nights discussing all kinds of computing-related

topics in Bertinoro and Lille.

These last years have also been more enjoyable, thanks to Sam Rijken and

Noelia Iranzo Ribeira, with whom I had the pleasure of sharing the academic

journey first remotely and later in person. I am glad that our research interests

aligned, and we decided to organize the Fictions in Science and Metaphysics

symposium for BSPS21.

In due course, several other people have exchanged ideas by email or in

person, offered inspiring comments on various themes contained in this

manuscript, and read portions and/or offered helpful comments on various

themes contained in it. Worthy of mention in this regard are Edgar Daylight,

Mike Cuffaro, André Curtis-Trudel, Roman Frigg, Phillipos Papayannopoulos,

Alice Martin, Noelia Iranzo Ribeira, Ruward Mulders, Henri Stephanou and

Raymond Turner. In addition, I have presented material in this work to

audiences at various conferences and workshops, and I am grateful for all the

comments I have received – but of course, none of them is responsible for any

errors in my work.

I owe a special debt of gratitude to my loved ones outside of academia. Thanks

to Cecilia, the last two years were filled with so much warmth, affection, and an

incredible amount of emotional support. Grazie amore, for putting my academic

struggles into perspective and tolerating my silly antics about the MONIAC.

Finally, my family’s unconditional support, their patience (even though they had

no idea what I was doing), and their ability to listen enabled me to do all of this.

Without the privilege of having such great people in my life, I wouldn´t have

made it. Vielen Dank, ohne euch hätte ich das nicht geschafft!

Utrecht, the Netherlands

September 2024 Nick Wiggershaus

http://www.sphere.univ-paris-diderot.fr/spip.php?article90
https://cnrs.academia.edu/PierreMounierKuhn
https://univ-paris1.academia.edu/MaelPegny
http://tomasp.net/academic
http://tomasp.net/academic
http://www.ihpst.cnrs.fr/en/members/doctorants/salha-henri

Contents

viii

Contents
Abstract .. vi

Résumé .. vii

Acknowledgments .. viii

1 Introduction ... 1

1.1 Prologue ... 1

1.2 Concretizing the Problem: Preliminaries & Diagnosis ... 5

1.3 The Project’s Guiding Ideas ... 14

1.4 Outline .. 19

2 Towards a Unified Theory of Implementation ... 22

2.1 Introduction... 22

2.2 A Primer on Implementation in Computer Science .. 23

2.3 Type-(A) Implementation ... 26

2.4 Type-(B) Implementation .. 28

2.5 Juxtaposing (A) and (B) .. 33

2.5.1 Teleology .. 34

2.5.2 The Mapping Between Levels ... 36

2.6 A Unified Theory of Implementation .. 38

2.6.1 Material Models as a Remedy ... 39

2.6.2 UTAI and its Features ... 41

2.7 Conclusion ... 45

3 The Problem of Creation Meets Computer Programs ... 47

3.1 Introduction... 47

3.2 Setting the Stage ... 48

3.2.1 An Example as Conceptual Laboratory ... 49

3.2.2 A Brief Sketch of how Programs are Created .. 51

3.2.3 In what sense Programs are Abstract: The Physical Object Hypothesis 53

3.2.4 Taking Stock ... 55

3.3 The Problem of Creation .. 55

3.3.1 Platonism .. 57

Contents

ix

3.3.2 Nominalism .. 59

3.3.3 Creationism .. 62

3.3.4 Taking Stock ... 64

3.4 From Art to Computing .. 64

3.4.1 Are Programs Platonic Objects? .. 65

3.4.2 Nominalism about Programs? ... 67

3.4.3 Are Programs Abstract Artifacts? ... 70

3.5 Discussion & Conclusion .. 72

4 Implementation-as: From Art & Science to Computing 774

4.1 Introduction... 74

4.2 Scientific Representation Accounts in Computing .. 76

4.3 Scientific Representation, Representation-as, & DEKI .. 78

4.3.1 From Art to Science ... 78

4.3.2 The DEKI account ... 78

4.4 From Science to Computing: Implementation-as ... 81

4.4.1 Denotation .. 81

4.4.2 Exemplification .. 83

4.4.3 Encoding a Labeling Scheme ... 86

4.4.4 Imputation .. 88

4.4.5 Taking Stock ... 90

4.5 Case Study: The IAS-machine ... 91

4.5.1 Technicalities and Programming .. 91

4.5.2 Implementation-as at Work ... 93

4.6 Is Implementation-as a Good Theory of Implementation? 95

4.7 Discussion and Concluding Remarks ... 100

5 Physical Programmability ... 103

5.1 A Critical Overview of Programmability .. 104

5.1.1 Programmability as a trade-off principle ... 104

5.1.2 Programmability as the foundation of computation .. 105

5.1.3 Soft & Hard Programmability ... 106

5.1.4 Program Execution ≠ Programmability .. 108

5.1.5 Taking Stock ... 109

5.2 Material Automaton ... 110

Contents

x

5.2.1 Automata as Technical Artifacts ... 111

5.2.2 An Example: The Musa Flute Player .. 112

5.3 Selected Operation .. 114

5.3.1 Mechanisms.. 114

5.3.2 Input-Output Mechanisms .. 116

5.3.3 Selection .. 117

5.4 Reconfigured .. 118

5.4.1 The Formal Machinery of Interventionism .. 119

5.4.2 Control Through Mutual Manipulability .. 121

5.5 The Degree to Which ... 122

5.6 Concluding Remarks and Open Questions ... 126

6 Conclusion .. 1130

Appendix A An Overview of the Chimera of Programs 135

Appendix B Why We Should Think of Computational Implementation

 as a Three-Place Relation ..

Appendix C Synopsis détaillé en français .. 182

Bibliography ... 209

1 Introduction

1.1 Prologue

Imagine you are a young and curious intellectual property lawyer in the early

1970s. It´s the midst of the Cold War. The iron curtain divides Europe; in previous

years, Africa lived through a period of radical political change as some 30

countries gained independence; and China went through a massive sociocultural

movement. Paralleling these geopolitical events, there are significant

technological advancements – with information technologies spearheading

them. For you, the proliferation of new inventions is a blessing and secures your

job. Put roughly, it is one of the main tasks of lawyers like you to classify new

creations and inventions such as books, music, machines, and processes under

your country’s IP law. In a nutshell, there are three different kinds of categories

in which novel inventions like these must be placed: First, patents give inventors

the property right to a tangible technical or scientific invention or process.

Second, copyright claims are meant for the protection of an original expression

of an idea in a creative work – literary, dramatic, musical, or artistic work, and

movies (fixed in some tangible medium) typically fall under this scope. Third, if

something falls out of the scope of the first two categories, it cannot be legally

protected. Now, for a couple of years, you have received increasing requests to

grant IP protection to computer programs and software. How would you classify

them? What kind of things are programs?1

Pondering these questions, you are eagerly awaiting the result of the US

Supreme Court case of Gottschalk v. Benson (1972): the case is about the

patentability of a system created by Gary Benson and Arthur Tabbot at Bell

Telephone Laboratories that allowed the creation of a telephone network called

a private branch exchange (PBX). Crucially, their method relied on a

computational method that converted binary-coded decimal numerals into their

binary equivalent. Finally, on November 20, the Supreme Court issued its ruling.

The court proclaimed that Benson and Tabbot’s invention was ineligible for

patent protection because it stands at odds with the mental-step doctrine. 2

Traditionally, this doctrine has been used to reject those seeking patents for

‘inventions’ like algorithms – and the PBX was judged to be precisely that.

The decision irritates you. True, whilst one could ‘execute’ Benson and

Tabbot’s method in one’s head, isn’t the whole point that their method triggers

1 The game of make-believe is freely inspired by Gerardo Con Diaz’s (2019) book Software
Rights.
2 The mental-step doctrine holds that inventions that can be performed in the human mind or
by a human using a pen and paper are not eligible for patent protection.

1 Introduction

2

an automated physical process in an actual machine? Feeling somewhat uneasy

with the Supreme Court’s ruling, you continue your quest and tinker around

with a different classification strategy – the widely used software/hardware

distinction. On the face of it, the duality of the latter intuitively seems to

correspond to the copyright/patent dichotomy; you believe you’re onto

something. If true, you just solved future legal cases worth billions of dollars.

Case closed – you’re set for life. However, things are not that easy. With big

money involved your case better ought to be watertight, else industry will drown

you in endless legal battles. Scratching beyond the surface of your initial strategy,

you start getting doubts: Are computer programs software? What is the

software/hardware distinction actually supposed to demarcate from one

another? And what the heck are programs exactly?

In trying to answer these questions, you discover that your first classification

strategy is in danger of serious conflations. First, it is all but clear that all

computer programs can be considered as software. Doing your research about

the emergence of computing technology, you find that some of the first programs

(made before the appearance of the term ‘software’ and the emergence of

‘computer science’ as a subject)3 were often portrayed as circuits of switches

using relays or vacuum tubes: when setting up the first-generation electronic

digital computers like ENIAC (devices that filled entire rooms) resulted in

‘programs’ appearing to be tangible hardwired switch settings of machines

intended to perform a specific task. In fact, this materiality allowed some of your

colleagues to secure patent protection for programs developed at hardware

companies and industrial research labs (Con Diaz 2019, 3). So, can you conclude

that programs are indeed just physical entities that should be subject to patent

law? Generalizing from cases like these that point towards the techno-material

nature of programs seems to undermine the idea that programs are a type of

software considerably – at least to the extent that software is taken to be opposed

to hardware and hardware is supposed to be ‘hard,’ i.e., presumably made of

concrete, tangible components.

 So perhaps the crux lies with the software-hardware distinction itself. In fact,

shortly after the time you started pondering these questions, philosophically

inclined software engineer James Moor (1978) published his article ‘Three Myths

of Computer Science’ that confirmed your worries: One of the takeaways from

Moor’s article is that the software/hardware distinction is merely useful as a

3 According to Shapiro (2000), influential statistician John Tukey coined the term ‘software’ in
1958 in opposition to the term hardware (which was already in use). For further details on the
changing meaning of the term see Haigh (2002).

1 Introduction

3

pragmatic distinction and a relative notion. According to him, the prefixes ‘soft’

and ‘hard’ refer to a person’s ability to make changes:

“At one extreme if at the factory a person who replaces circuits in the
computer understands the activity as giving instructions, then for him a
considerable portion of the computer may be software. For the systems
programmer who programs the computer in machine language much of
the circuitry will be hardware” (Moor 1978, 215)

If this assessment is correct, then software could be a tangible good as long as

it is changeable. Yet others (albeit later), arrived at the puzzling conclusion that

software is hardware (Suber 1988) or that software doesn’t exist at all (Kittler

1993). (To avoid further conflations, I will avoid using the term ‘software’ in my

analysis from here on).4 You are at a loss – all of this is so confusing! Not only are

you unsure where programs fall into the software/hardware dichotomy; you

don’t even know whether your choice was a good categorization scheme to begin

with.

Worse, the longer you think about the matter, the more conceptions of how to

conceive programs pop up in your mind: Many programs are formulated in

special kinds of languages like ALGOL or FORTRAN, so aren’t they some special

kind of text?5 And where do mathematical abstraction and the algorithms from

Gottschalk v Benson fit into this picture? Determining the nature of programs

seems to be a tough nut to crack. What are the morals we can draw from this

story?

Let me pause here for a minute. Although the IP lawyer game of make-believe

is entirely fabricated, the events and considerations described in this episode are

not. From the mid-1960s onwards, the lack of IP protection for computer

programs became a growing concern. With the incentive to protect these costly

new inventions, the industry had a strong interest in settling the issue (in their

favor). However, like our imaginary IP lawyer, courts having to decide how to

legally protect software products struggled with determining its nature and

characteristics. As Con Diaz describes, the legal debate (in the US) became a

“doctrinal minefield” since no proposal for computer programs satisfied every

stakeholder involved (2019, 6). Legal outcomes in favor of patents or copyrights

hinged on whether the Patent Office and Courts judged programs to be

machines, texts, or algorithms (ibid., 100).

4 See Duncan (2014) for an extensive discussion (including the ‘implausibility’ of Moor’s and
Suber’s arguments) on whether the software-hardware distinction can be maintained after all.
5 In the US, the first deposit of a computer program for copyright registration of a program was
in November 1961 (North American Aviation submitted a tape containing a program). Perhaps
the first successful registration attempt was the FORTRAN program called ‘Gaze-2, A One-
Dimensional, Multigroup Neuron Diffusion Theory Code for the IBM-7090.’ Hollaar (2002, I.B.).

1 Introduction

4

 In fact, in the mid-1970s matters became so pressing that US Congress

installed a commission to settle the patent/copyright implications of information

technologies. Consequently, 1974 saw the formation of the Commission on New

Technological Uses of Copyrighted Works (CONTU). The commission was made

up of experts from all different strives of life (yet remarkably lacking expertise in

computing though) and took almost four years to submit their final report.

CONTU eventually reached the unanimous decision that computer programs are

entitled to legal protection, but alas “the unanimity has not extended to the

precise form that protection should take.” (CONTU, 12). While ultimately settling

with the recommendation that programs ought to be protectable under

copyrights, (leading to the Computer Software Right Act in 1980), the outcome

was controversial. Noteworthy, the final report contained sections of dissent

from one of its very own members: commissioners John Hersey.

Hersey, Pulitzer Prize winner and president of the Author’s League of

America stated that

“[t]he heart of the argument lies in what flows from the distinction […]
between the written and mechanical forms of computer programs:
admitting these devices to copyright would mark the first time copyright
had ever covered a means of communication, not with the human mind
and senses, but with machines.” (CONTU, 28)

In Con Diaz’s words, Hersey believed that computer programs thus had some

kind of ‘hybrid nature,’ for they seem to combine written and mechanical

elements at once.

Even years after the implementation of CONTU’s recommendation, the

outcome sparked remarkable dissent. Allen Newell, a pioneer in computer

science and cognitive psychology complained that the models that the law

experts came up with were broken. At the end of his critical essay, he concluded:

“I think fixing the [ontological] models is an important intellectual task. It will be
difficult. The concepts that are being jumbled together-methods, processes,
mental steps, abstraction, algorithms, procedures, determinism- ramify
throughout the social and economic fabric. I am not worried about how new and
refurbished models, if we could get them, will get back into the law. They will
migrate back by becoming part of legal arguments, or legislation or whatnot.
There are many different paths. The task is to get the new models. There is a fertile
field to be plowed here, to understand what models might work for the law. It is
a job for lawyers and, importantly, theoretical computer scientists. It could also
use some philosophers of computation, if we could ever grow some. It is not a job

for a committee or a commission. It will require sustained intellectual labor.”
(Newell 1986, 1035)

In this dissertation, I take up Newell’s suggestion and set out to shed light on the

puzzling nature of computer programs with a philosopher of computation’s hat

1 Introduction

5

on. More precisely, I shall do away with the legal battles and instead address

their underlying philosophical question

Main Research Question: What is the ontological status of computer

programs?

1.2 Concretizing the Problem: Preliminaries & Diagnosis

Before explaining the primary strategy and guiding idea of addressing my

research question, I need to make a few refinements. In the following, I will take

three steps to set the stage and clarify the problem related to my research topic.

First, I will discuss the overall relevance of this undertaking for philosophers and

computer scientists. Second and third, I will explain the two constituents -

ontology and computer programs - that define the main research question.

Relevancy Beyond Legal Controversies

Given that the Chimera of computer programs has riddled lawyers, computer

scientists, and (some) philosophers for more than 50 years, but there are no signs

of stoppage for the success of computing, what’s the relevancy of this thesis

project?

Despite the awareness of the problem, the contemporary literature on the

metaphysical nature of computer programs remains rather short-supplied.

Concerning other ‘scientific’ disciplines like Physics or the Life Sciences, the

Philosophy of Computer Science is comparably small-scale. This raises questions

about why we need such an endeavor in the first place and why inquiries about

the topic matter (besides legal issues). I believe there are two types of answers to

this.

On the one hand, there are answers justified from within philosophy. For

philosophers, an entity that seems to evade standard metaphysical categorization

is interesting. Just as metaphysicians pursue the study of what kind of things,

say, artworks or technological artifacts are, 6 they might consider the non-

straightforward case of computer programs, too. Studying programs might

unearth loopholes in given metaphysical frameworks and thus contribute to

some philosophical progress (especially within ontology and metaphysics).

On the other hand, properly characterizing computer programs has broader

implications beyond metaphysical inquiries. Today, the application of computer

programs is so pervasive that a clear understanding of their nature possibly

benefits virtually every domain using them. For instance, computer programs are

6 To briefly presage what’s to come, I will engage with both characterizations of artworks and
technological artifacts to shed light on the nature of programs.

1 Introduction

6

foundational for fields like AI, robotics, increasing ethical concerns, and (of

course) computer science. Without a clear philosophical underpinning, such

discourses are in danger of significant conflations and category mistakes (cf.

Daylight 2016, 14-16).

One of the most prominent of such category mistakes at large occurred

roughly a decade after CONTU submitted its report and US Congress

implemented its recommendations: In the early 1990s, a series of exchanges

between the philosopher James Fetzer and several computer scientists in the

prestigious Communication of the ACM unsettled many computing academics. At

its core, the dispute concerned the verification of the correctness of computer

programs. Commonly, correctness describes a special relationship between a

program and its specification: a proof in (formal) program verification aims to

verify that the program text (a set of instructions) matches the formal

specification. Fetzer (1988) argued that the notion of ‘program proof’ suffers from

a category mistake because it may only apply to idealized abstract machines but

not real-world systems. Executing a program on the latter is a physical process

that causally affects the behavior of material computing systems. A proof,

however, is a concept that applies to the formal, abstract realms of logic and

mathematics; it cannot establish the properties of a program as a causal entity

running on a real, physical machine.7

Considering the ferocity and prevalence of the debate, one may expect that

the dispute sparked a research program to settle the underlying issue. Yet,

despite the matter that there is a problem at stake, a systematic (philosophical)

explanation describing how to solve it did not emerge. Merely a handful of pages

in, we already encountered several potential conflations that obfuscate finding a

straightforward answer to a seemingly simple question. Differing conceptions

are still ‘jumbled together’ today, resulting in abounding conflations. To make a

long story short, the state of the art is scattered so that computer programs are

placed in nearly every available ontological category (see Appendix A).8

In short, some believe that programs are physical objects or processes, while

others view them as abstract logico-mathematical objects or special types of texts.

Yet others argue that programs are technical or abstract artifacts, while others

suggest that naturalized programs even constitute our minds. Despite the

abundance of views, there is currently no consensus on the metaphysical nature

of programs and how they should be classified. The problem, as we have seen in

7 For summaries and critical analyses of the debate see (Colburn 2000, 135; MacKenzie 2004,
210-218; Tedre 2015, Ch.4).
8 Since lengthy literature review sections are dull, I omitted many details for the sake of the
readability of the introduction. For those interested in an extended overview of the state of the
art, consult Appendix A.

1 Introduction

7

the debates about the patentability, and verification of programs, is that it is easy

to find counter-examples and inconsistencies such that no position seems to be

plausible. Instead, adopting the ‘dual nature view’ or hybrid perspectives is

popular, where programs have a plural or liminal nature. In the mid-1990s,

renowned computer scientist Michael Jackson epitomized this approach by

stating

“Because software seems to be an intangible intellectual product we can colour it
to suit our interests and prejudices. For some people the central product of
software development is the computation evoked. For some it is the social
consensus achieved in negotiating the specifications. For some it is a
mathematical edifice of axioms and theorems. Some people have been pleased to
have their programs described as logical poems. Some have advocated literate

programming. Some see software as an expression of business policy.” (Jackson
1995, 283)

I agree with Jackson that different communities and often even the same

computer scientists, programmers, and users ‘encounter’ programs in all these

guises in their practical work. However, per se, dualism or hybrid views do not

dissolve the ontological question. The problem is, that without further

explanation, these notions appear to be ad hoc answers that stand at odds with

contemporary metaphysical orthodoxy.

One crucial first aspect to rectify the situation is breaking down the criteria

that will license us to draw metaphysically sound conclusions. The next sub-

section will clarify and narrow down these criteria.

Traditional Metaphysics & Category Systems

Ontology and Metaphysics address a wide range of questions (van Inwagen et

al. 2023). Let me hence make more precise what this thesis is and is not about.

The way I will conduct my metaphysical investigations are largely in line with

contemporary analytical philosophy. For instance, according to Hofweber (2016,

8f), there are generally two main metaphysical questions – primary ontological

questions (POQ) and secondary ontological questions (SOQ). Fine (2017, 98) echoes

this characterization by maintaining that metaphysics can roughly be

distinguished between Ontology and Metaphysics proper. Following Fine, I will

keep referring to this practice as traditional metaphysics. By combining Hofweber’s

and Fine’s position, something like the following picture emerges:

(POQ): Ontology poses the question of what there is.

(SOQ): Metaphysics proper investigates the nature of what there is.

At first sight, it appears, that metaphysicians typically must explore what exists

before enquiring into its nature. Ontology seemingly precedes Metaphysics

1 Introduction

8

proper because what does not exist cannot be investigated philosophically in a

meaningful way.

Importantly, for the current undertaking the distinction between (POQ)

ontology on the one hand and (SOQ) metaphysics proper on the other raises the

following concern: Do we need to answer (POQ) about programs in the

affirmative before we can proceed with (SOQ). In other words, we need to

address the question ‘(POQ)Prog.: Are there computer programs?’

If the answer is ‘no,’ the issue would be settled straight away and there would

be no point in continuing the nature of programs if they don’t exist. The broader

implication would then ‘simply’ be that computer scientists (and lawyers) have

it all wrong and that the collective idea about computing and how it shapes

nearly every facet of our modern life is largely incorrect. If the answer is ‘yes’,

then I can carry on with wondering what programs are like.

Now, my strategy to tackle these issues with respect to computer programs is

to answer with ‘yes, there are computer programs’ and directly proceed with the

secondary ontological question of what they are like. Answering this way is not

meant to say that there are no deep-rooted philosophical issues at stake. On the

contrary, aiming to arrive at judgements about primary ontological questions

(e.g., are there numbers? Are there universals? Are there really everyday-objects

like tables and toaster?) is notoriously contentious in philosophy. However, this

is simply not the place to resolve these longstanding issues. Neither do I endorse

a specific well-founded framework that defends my answer against skeptical

metaphysicians nor do I want to engage with the daunting task to develop such

a framework.9

However, for the success of this thesis project, there is another crucial issue

we must reflect on: Specifying an ontological category system. Notwithstanding,

developing or choosing a universal ontological classification scheme is

challenging. The problem has its roots in Antiquity and persists until today –

Aristotle’s Categories, a seminal work in this field, has influenced numerous

philosophers, including Aquinas, Descartes, Spinoza, Leibniz, Locke, Berkeley,

Hume, Kant, Hegel, Brentano, and Heidegger (Studtmann 2024). Although these

9 For those not convinced by the way I bracket primary ontology questions, it might be
appeasing to know that it is not completely unwonted to engage with metaphysics proper first.
One might start determining what the object of inquiry would be like, if there is such thing, and
then use the result to answer the primary question in the negative (Hofweber 2016, Ch. 1.3).
Recently, Steven French (2020), for instance, followed this strategy and concluded that ‘there are
no such thing as (scientific) theories’. While (spoiler) I won’t reach such drastic conclusions, I
invite the skeptic to see my thesis under the conditional that programs exist – I believe the
content of this dissertation is informative and can be understood nevertheless. Interestingly, to
the best of my knowledge, the only source maintaining that programs don’t exist is Kittler
(1993).

1 Introduction

9

are only broad sketches, it is, not surprising that there is little agreement among

philosophers on a more than two-thousand-year-old debate on what precisely an

ontological category and a system thereof is. Despite enduring metaphysical

controversies, I will from here on assume that an ontological category is a kind of

being in which things might be claimed to exist (Lowe 2006, 20; cf. van Inwagen

et al. 2023, §2.2 for a similar characterization). At least for the current purpose,

this understanding of ‘category’ will be innocuous enough to proceed without

major quarrels.

Following this, an ontological category system is a structured classification

scheme of kinds of beings that ought to provide a complete inventory of what

exists. The advantage of a pre-conceived system is that it allows us to make

consistent metaphysical judgments about all kinds of entities under the scrutiny

of SOQ. By the same token, it becomes the thesis’ central motif to spell out the

membership of computer programs in one of the systems’ categories. Notably,

this view also clarifies what this thesis is not about – the identity criteria of

programs. Typically, identity concerns are one of the central features of

metaphysical discourse. One may think of well-known thought experiments like

‘Lumpy’ or the ‘Ship of Theseus.’ Although I believe that this topic deserves more

attention in some future research, I will, as much as possible, abstain from

engaging with questions such as ‘When are two programs the same? Does a small

change in one line of code create an entirely new program?’ and so on. 10

Attempting to place the notion of computer programs in a category system can

be treated independently of controversies of their identity.

There is another problem worth considering though – not everyone subscribes

to realism about category systems. Throughout the 20th century, many

philosophers expressed their skepticism about the pursuit to find a

fundamental/universal category system. In line with this thinking, it has become

popular to engage in what Thomasson (1999, 116) has called a ‘piecemeal

approach’, i.e., examining each purported type of entity separately and anew

again. Anyhow, even if one thinks that this development is misguided, it is left

open which category system should be the chosen one. As per Lowe (2006, §1.3

and §2; see also Thomasson (2022, §1.4)), there are various competing ontological

systems available. Given this diversity and the lack of consensus, we encounter

the following problem

Problem I: Selecting an appropriate category system; piecemeal or systematic

approach?

10 See White (2004), Cardone (2021), and Angius& Primiero (2018; 2023) for some recent
attempts.

1 Introduction

10

Before moving on, I want to mention one more caveat. Recently, the term

‘ontology’ has also gained popularity in computer and information science. In

this context, ‘ontology’ has a different, rather descriptive connotation and can be

understood as a taxonomy, i.e., a standardized framework that provides a set of

terms for consistent data description and annotation across different research

communities. Put differently, what distinguishes these ontologies from the

category systems in the metaphysical tradition is that they do not set out to

provide a fundamental category of being. Nevertheless, the resulting ontologies

have significant practical benefits, as they promote consistency in data

description and facilitate communication across disciplinary boundaries

(interoperability). Examples include ‘Gene Ontology,’ ‘Infectious Disease

Ontology,’ ‘Plant Ontology,’ and others (Arp et al. 2015, xxi).

A collaborative effort between philosophers, computer scientists, and

information scientists has created globally applicable ontologies across different

domains to keep up with these developments. Notable examples of this

interdisciplinary work are the Basic Formal Ontology (BFO; (Arp et al. 2015)) and

the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE;

(Gangemi et al. 2002)). I mention this development to steer away from potential

misunderstandings since this thesis deals with computer science broadly

construed, i.e., a field where these types of ontologies find widespread

application. Testimony to this is the information-scientific flavored approaches

that have also been applied to study the nature of computer programs (, Lando

et al. 2007, Duncan 2014, Wang et al. 2014a, Wang et al. 2014b).

What’s in a name?

When engaging in ‘computer program’-talk, we should try to mean the same as

the other participants in the debate, or miscommunication will occur. One helpful

method to get a grip on the matter is by elucidating the term’s etymology: The

word ‘program’ (or ‘programme’ in British spelling) has its roots in the Greek

word προγραφιν, consisting of προ (‘before,’ or ‘pre’) and γραφιν (‘to write’)

Grier (1996, 51). As such, it did not originate in a computing context but

underwent considerable transformations throughout history. De Mol & Bullynck

(2021) explain that the word was generically employed to refer to a planned series

of future actions or events. We still find common examples such as TV or radio

programs, political programs, research programs, or training programs that are

virtually used in the same vein today. Parallel to the description of a sequence of

scheduled events in everyday life, the meaning of ‘program’ shifted in multiple

engineering contexts where it began to designate different technological aspects.

For instance, in the 19th century, so-called ‘program clocks’ were used to

1 Introduction

11

automate time schedules in work environments or schools. In radio engineering,

‘program’ was also used to denote the electronic signals used to broadcast TV

and radio programs at least from the 1920s onwards (Grier).

Like many other ‘historical firsts,’ the first instances of the name ‘program’ in

a computing context are contentious. While some locate the origin within the

ENIAC project (Grier 1996; Haigh & Priestley 2016), others identified other

calculating machines of the late 1930s and early 1940s (e.g., the IBM

ASCC/Harvard Mark I) to be already entangled with the term (De Mol &

Bullynck 2021). Either way, the methods to plan sequences of computations for

the automatic control of computing devices frequently relied on prior established

technologies, like e.g., punched cards used for Jacquard looms and desk

calculators. In this context, the term originally referred to a great variety of

activities, designating how automatic control of computers could be organized

on different scales.

From the 1950s onwards computing developed towards reliability, mass

production, and standardization, and there were increasing attempts to

determine common practices and define basic terms like ‘program’ in glossaries

(De Mol & Bullynck 2022). One aspect that went hand in hand with this

development/early professionalization of the field was that the configuration of

computers became increasingly associated with formal languages closely related

to logic and linguistics (Nofre et al. 2014). Roughly put, the development of new

programming languages was gradually more detached from the details of

specific machines. The ensuing language metaphor enabled one to regard

programs as notations, strings of symbols, or special texts that could be studied

and reasoned about independently of the underlying circuit settings. As Vee

(2013) describes, for instance, this resulted in comparing programming to the

notion of ‘literacy’, emphasizing the importance, flexibility, and power of writing

with and for computers.

However, the characterization never fully stabilized and it would hence be a

mistake to simply consider programs as mere texts or linguistic entities. The

reason for that instability is that from the dawn of computing, the discipline’s

nature has been a matter of great concern. As many commentators have noted,

computer science draws knowledge and methods from many fields. Wegner

(1976), for instance, looked into separate characterizations of computer science as

branches of (i) mathematics, (ii) engineering, and (iii) empirical science. The

influential report ‘Computing as a Discipline’ by Denning et al. (1989),

investigating what constitutes computer science qua discipline, echoes the

tripartite distinction (i)-(iii). Today, partitions along essentially the same lines are

still highly influential for discourses regarding the historical discipline-building

1 Introduction

12

of computer science and how to give an adequate characterization of the

foundations of computer science (cf. Eden 2007, Tedre 2015, De Mol 2015,

Schiaffonati & Verdicchio 2014). The debate about the nature of the discipline and

its scope has persisted for decades and continues to this day.

Owing to this epistemic pluralism, many central notions in computing bear a

surprising amount of semantic ambiguity: Smith (1996, 73-74), for instance,

comes to the sobering conclusion that there is no distinct ontological category

that deserves to be called computation. More recently Pappayannopoulos (2023)

argued that there are at least two conceptually different notions of algorithms

identifiable in the literature. By the same token, the word ‘program’ is

semantically indeterminate, too. Although being a widespread entity/

phenomenon, no single rigorous definition has gained traction: None of the

usages of ‘program’ is universally accepted; available characterizations are not

entirely co-extensional. Even though this parallel use of the term is somewhat

unfortunate, it is well-established in the relevant literature and largely

unproblematic for practice.

When engaging in philosophical business, ambiguity and equivocation are

the sort of things one needs to avoid though. In fact, worries like these fuel

another form of ontological skepticism which threatens forming a coherent

metaphysical judgement of semantically indeterminate entities like programs:

Neo-Carnapianism. Simply put, Neo-Carnapianism maintains that a considerable

part of ontological problems reduces to verbal disputes. 11 According to this

deflationary stance, there is no serious or actual problem underpinning all sorts of

ontological questions. The idea is that epistemic agents from different linguistic,

or cultural communities merely disagree about what a given term refers to (and

not about what kind of being it is). Let’s take ‘football’ as a toy example. An

English-speaker from North-America would likely conclude that ‘footballs are

pointy,’ whereas an Englishmen may argue that ‘footballs are rather round.’12

Even though both speakers use the same word they mean different things (a ball

used in American football and a ball used in ‘soccer’). The North-American and

Englishmen come to different conclusions about the shape of footballs because

they maintain a different linguistic framework. Yet, once the equivocation of the

term ‘football’ is clarified, the argument about the properties of the objects and

activities referred to, resolves too.

The point is that comparable forms of semantic ambiguity are pervasive

beyond sports-vocabulary. Accordingly, dictionaries may classify countless

11 The original seminal paper is Carnap’s (1950). More recent versions of the idea that
ontological disputes are due to different language frameworks, especially different quantifiers.
12 The example is inspired by Effingham’s introductory textbook on Ontology (2013, 169).

1 Introduction

13

terms (from whichever domain) as lexically ambiguous. There are different types

of ambiguity Sennett (2023), but typically, linguists and philosophers distinguish

between two subspecies: While homonomy describes the accidental encoding of

multiple meanings in the same sign or term (e.g., in English ‘rock’ may denote a

‘stone’ or a music genre), polysemy refers to a linguistic expression with multiple,

albeit related, senses (Falkum & Vincente (2015), Sennett (2016), Carston (2021)) –

as we have seen in the case of ‘football.’13 Distinguishing the two species of

ambiguity is not always easy and several linguistic tests have been devised to

identify polysemic terms.

When applying such a test to ‘computer program,’ it becomes clear that the

term is an example of polysemy, too. For instance, we may help ourselves with

the following statement to uncover (part of) its polysemic nature:

“That program is well written/beautifully coded. It runs fast.”

Here, the pronoun it refers anaphorically to the physical object (particularly its

execution), whereas the sense of program in the previous sentence is used in a

textual sense. In fact, the semantic extension of ‘program’ entails several other,

but related meanings, including what I call the Physical View, the Mathematical

View, the Symbolic View, the Artifact View, and the Neural View (see Appendix

A). 14 Although this is not the time and place to deep dive into the overall

plausibility of the Neo-Carnapian rationale, the upshot of this brief discussion

should be clear: Since the term ‘computer program’ forms a polysemic web of

various ontologically different (but related) things, deflationary arguments and

linguistic confusion may also hamper this thesis’ undertaking.

There are a couple of ways to respond to this. Absent semantic identity, one

seemingly obvious possible future path for the community would be attempting

to converge towards one unique usage of ‘program.’ One may envision this to

work similarly to how Lakatos (1976) describes the progress of mathematics,

exemplified by rigorously characterizing the proof of the Euler characteristic

defined for the polyhedron.15 However, unlike Lakatos’ polyhedrons, the notion

of ‘program’ seems to undergo significantly faster changes than other disciplines’

13 Importantly, both phenomena need to be distinguished from ‘vagueness.’ Usually, the notion
is associated with the occurrence of borderline cases and the sorites paradox, e.g., ‘when is a
heap of sand no longer a heap of sand?’ (Hyde & Raffman 2018) and (Sorensen 2023).
14 Strictly speaking, the term ‘program’ also bears another form of polysemy, namely of cross-
categorical nature (in a grammatical sense): ‘program’ as noun, and as verb (as in, ‘to program a
machine’) with related senses across these grammatical categories. However, I won’t further
engage with this polysemic dimension.
15 Anecdotally, in one of the various workshops of the PROGRAMme research group, we tried
developing a comprehensive definition of ‘computer program’ in a brain storm session.
Culminating in ‘a layout of signs aimed at determining the behaviour of a machine.’

1 Introduction

14

central concepts. Due to its instability over time, we constantly try to define a

moving target and would, at best, only get a snapshot. Moreover, this

‘precisification approach’ would arguably fly in the face of computer science’s

current practice to successfully embrace epistemic pluralism. Therefore, I

consider trying to define the term ‘program’ as moot.

Given the lack of rigor, we thus confront another central issue

Problem II: Untangling the polysemic web of the term ‘program.’

The takeaway is that we must devise a strategy that blocks linguistic confusion

creeping into our metaphysical investigation or otherwise we may get as many

potential answers about the ontological status of computer programs as there are

different meanings hidden in this polysemic complex.

1.3 The Project’s Guiding Ideas

Let me summarize what I have discussed so far. I introduced the main research

question in the previous sections and explained its relevance. No consensus

about programs’ metaphysical nature has been reached; scholars of different

strives have characterized them in multiple, often contradictory, ways. By

construing the question’s main constituents – (i) ontological status and (ii)

computer programs – I provided some necessary background about

metaphysical investigations and clarified what kinds of things the term program

picks out. This diagnosis unearthed two primary problems:

1. Problem I: On the one hand, we must be open about choosing a suited

ontological category system.

2. Problem II: On the other hand, there is the polysemic nature of computer

programs. When pressed into service in different contexts, ‘program’

fragments into several ontologically distinct and more precise concepts,

each appropriate for its area of application.

What is the most comprehensive and effective response to these problems that

will allow us to proceed fruitfully?

The Guiding Idea

My strategy for remedying the situation is by embracing the polysemic web we

confront, head-on. Previously, I have said that polysemic terms bear at least two

related senses. In the case of ‘computer program,’ multiple related senses are

bundled together. What makes the case particularly urgent is that many of the

senses that are thus related have different ontological flavors. Without handling

this ambiguity well, we risk repeating past mistakes and are bound to commit

1 Introduction

15

category mistakes. But instead of trying to untangle the situation by developing

a rigorous definition, the general theme of my approach is different.

My guiding idea is to explicitly focus on the relations between all the

ontologically different relata hiding behind this polysemic web. To clarify, the

relata I am talking about are the ones that occurred in my previous analysis and

the literature review (cf. Appendix A), the ones deemed responsible for the

alleged duality/pluralism of programs: On the one hand, there is the domain of

abstract, formal, and mathematical objects. On the other hand, there is the

domain of the physical, of concrete systems, of events and processes unfolding

in space and time.

Specifically, I believe the notion of implementation is vital to understanding

how these entities connect. When I say ‘implementation,’ I refer (as a first stab)

to the relationship between different computational domains. In addition, my

thesis argues that agents play a critical role in mediating implementation. I will

elaborate on both ideas extensively in the following chapters (see also Appendix

B), but here is a graphic depicting the situation to get the gist of it (Fig. 1.1).

Whereas the file icon stands for program texts, the laptop icon typifies a physical

computer; both are related by the downward pointing black arrow (representing

computational implementation). Moreover, all three items critically depend on

epistemic agents (depicted by the black mannequin) and their practices.

Fig. 1.1: Schematic depiction of the guiding idea of this dissertation.

One promising way of ontologically characterizing this network of relata and

their relations is to establish an initial category system and make modifications

and refinements as needed along the way (in terms of the terminology I

previously used, one can regard this as a partial piece meal approach). This

1 Introduction

16

approach is particularly effective when developed against the backdrop of

widely recognized distinction between the ‘abstract’ and the ‘concrete’ the in

philosophy (Falguera et al., 2022). It is effective, because typically, the

abstract/concrete dichotomy is meant to be a simple but exhaustive two-category

system – accordingly, every entity must either be abstract or concrete.

Commonly, philosophers agree that objects like rocks, tables, or tigers are

concrete. In contrast, mathematical objects (e.g., numbers, pure sets, and perhaps

‘programs’) are typically thought of as abstract entities. Other entities standardly

considered to fall into the abstract side of the dichotomy are universals,

propositions, types (as opposed to tokens), and – more controversial – fictional

characters (e.g., Sherlock Holmes, or Donald Duck).

Arguably one of most common ways to characterize the abstract is then along

these lines:

Abstract: An object is abstract iff it has no spatiotemporal location and is

causally inefficacious.

The lesson learned from this ‘standard’ view is that entities like mathematical

objects are considered abstract objects, since they are none locatable in space-time

and cannot be integrated into the causal pathway (for instance, one cannot stump

their foot on √2). Similar considerations hold for other candidate abstract objects

such as universals and propositions. In his On the plurality of worlds David Lewis

(1986, 1.7 §) called this proposal of characterizing the abstract-concrete

dichotomy the ‘way of negation:’ In contrast to concrete objects, abstract objects

are construed by being non-spatiotemporal and acausal.

 However, to further deepen our understanding on how the abstract-concrete

distinction bears on the metaphysical nature of computer programs, it is

illuminating to take a closer look at one of Lewis’ other ways of drawing the

distinction – the way of abstraction.16 The reason for considering this notion is

because it resembles how abstraction is standardly used and talked about in

(computer) science. Arguably, it is here where conflations about different

conceptions of abstractness may happen most frequently, since this way of

characterizing abstraction seems to be the one most in line with historic use and

the etymological roots of the term.17 According to Lewis’ way of abstraction

16 In total, Lewis identified four methods to draw the line between the abstract and concrete; (i)
the way of example, (ii) the way of conflation, (iii) the way of negation, and (iv) the way of
abstraction. Today, (i)-(iv) are still often used to chart the different approaches of the abstract
(Falguera et al. 2022).
17 For the computing pioneer Dijkstra, for instance, a program is “[…] an abstract symbol
manipulator, which can be turned into a concrete one” (Dijkstra 1989, own italics). In contrast,
Colburn (1999) maintains that programs are “concrete abstractions.” Are they talking about the
same kind of abstractness?

1 Introduction

17

“abstract entities are abstractions from concrete entities. They result from
somehow subtracting specificity, so that an incomplete description of the
original concrete entity would be a complete description of the
abstraction.” (Lewis 1986, 84-85)

Under these circumstances, the ‘abstract object’ purports to hinge on the mental

process in which concepts are created by omitting properties of one or several

objects. Put differently, at least without further qualifications, the way of

abstraction stands at odds with the standard way of characterizing the abstract-

concrete distinction since the former requires some epistemic process, whereas the

latter can be characterized mind-independently. It is therefore doubtful to what

extent the way of abstraction can serve as an explanation of the origin of abstract

entities like mathematical objects on purely ontological grounds.

As an epistemic notion though it abounds in science: Here the process is

useful for the analysis of complex systems by reducing (irrelevant) properties or

information. Frequently, this epistemic operation is referred to as Aristotelian

Abstraction. Cartwright (1989, 197), for instance, portrays Aristotelian abstraction

as an act through which one “strip[s] away—in one’s imagination—all that is

irrelevant to the concerns of the moment in order to focus on a single property or

set of properties as if they were separate.” This way, scientists get a handle on

studying systems that would otherwise be too complicated.

‘Abstraction’ in computer science is a variant of (Aristotelian) abstraction, in

so far as it is the operation or process of omitting one or more features of a

complex object/system. A common story of how abstraction facilitates dealing

with complex computing systems goes like this: Suppose you must program a

first-generation digital stored computer. When configuring such a device,

programs and data were encoded in a notation that closely corresponded to the

given machine’s hardware. Setting up computational devices in binary or

machine code was cumbersome, error prone and required great ingenuity to

‘translate’ whichever problem was supposed to be solved computationally into

machine code. As we will see later in more detail, the late 1950s brought forward

types of encodings (nowadays widely referred to as programming languages)

that enabled the programmer to describe sequences of computations through

notations and formulas that were somewhat more decoupled from the underlying

circuitry. At a first pass, instructions formulated in high level programming

language have a higher degree of abstraction than logically equivalent machine

code instructions, because they reflect less hardware details. These more

‘abstract’ languages have several advantages – e.g., they avoid unnecessary

1 Introduction

18

machine dependence, and they are easier to read and write for the humans that

devised them.18

Notably, one may further abstract away from already made abstractions,

giving rise to different Levels of Abstraction (LoA). Beginning in the 1970s, such

levelism became a prominent feature in (philosophy of) science, especially in

connection to computing or disciplines where computational methods where

employed. For instance, in his well-known Vision Marr (1982) suggested three

levels of explanation for complex systems (such as our perceptual apparatus): (i)

a computational level; (ii) an algorithmic level; and (iii) the

implementation/hardware level. Importantly, such levels form a sort of

hierarchy that is often characterized by different degrees of abstraction.19 In other

words, by leaving out certain details, one may reach a level that is more suitable

for explaining the phenomenon of interest.

Throughout the history of computer science, the LoA concept has been

pervasive and evoked a great deal of level talk. Primiero (2016; 2020), building

on the work of Floridi (2008; 2011, Ch. 3), has arguably devised the most

comprehensive notion of LoA suitable for computing. I emphasize this because

Primiero’s account supposedly provides both an epistemological and an

ontological hierarchy. According to the latter, computational systems are

stratified or layered entities in the sense that they are composed of various LoA.

While I will go into more detail about this account in the following chapter, it is

paramount to note some things here for clarity’s sake.

While I am a proponent of the LoA view and its merits, it is crucial to exercise

caution when interpreting the ‘ontological hierarchy’ it presents. This hierarchy

should not be confused with a fundamental metaphysical one (one should

instead think about it along the lines of the descriptivist spirit of ontologies in

computer science I introduced earlier). Floridi, for instance, reminds us that LoA

generally do not give rise to ontological levelism. When discussing an example,

Floridi clarifies

18 Given its usefulness in making complex systems tractable, there are many more instances
where abstraction plays a role in computing. Data abstraction, the act of hiding irrelevant
details in a data set, is another example. Accordingly, Donald Knuth (1997, Ch. 2) explains how
abstraction enables us to systematically think about data structures (e.g., as a list, stack, or tree).
More recently, Kramer (2007) advocates that the skill of forming abstractions correlates with
being a successful software engineer. Colburn and Shute (2007) contrast the process with the
notion of abstraction employed in mathematics, arguing that the former relies on information
hiding, whereas the latter utilizes information neglect. Angius (2013) illuminates software
verification through the lenses of abstraction (and idealization), and recently, Turner (2021)
provided a more rigorous account by importing a modification of Frege’s approach to
abstraction into type-theory.
19 N.b., ‘abstraction’ is by no means the sole feature responsible for constituting different levels.
See Craver (2014) for a recent survey about different conceptions of levels.

1 Introduction

19

“I have shown how the analysis [of an example] may be conducted at
different levels of epistemological abstraction without assuming any
corresponding ontological levelism. Nature does not know about LoAs
either.” (Floridi 2008, 35)

The takeaway from concluding our discussion on epistemic/Aristotelian

abstraction and its associated concept of LoA is that relying solely on this

framework may not provide immediate answers about the ontological status of

computer programs.

In carrying out this research program, I will make several substantive claims.

Here is a brief selection of the most central ones:

• I will claim that at least two quite distinct notions of implementation

require integration/unification for understanding the ontological status of

computer programs.

• I will claim that, the garden variety of accounts of physical computation

do not work (straightforwardly) when applied to computer programs.

Especially naturalized accounts suffer from having turned a blind eye to

the metaphysical nature of implementation qua relation.

• I will claim that appropriating some of the major insights and conceptual

tools of scientific representation and modelling vindicate interpretational

or agential theories of implementation.

• I will claim that the abstractness of computer programs is best understood

through the so-called Problem of Creation and does not require sui generis

solutions.

• I will advance a novel notion of physical programmability, specifying the

conditions under which a system can be viewed as programmable.

1.4 Outline

From here on, the thesis contains four principal chapters, a conclusion, and three

appendices. Here is how they unfold:

In Chapter two I start off with providing the framework for the rest of the

thesis. I begin by considering two hitherto largely independently treated notions

of implementation. For the sake of better distinction, I will refer to them as type-

(A) and type-(B) implementation. The former is based on the normative notion

of function-ascription (with ‘A’ for ascription); the latter is named after the so-

called bridging problem (with ‘B’ for bridging) from the philosophy of applied

mathematics. Juxtaposing both notions shows that their scope overlaps at the

abstract physical interface and may mutually enrich each other. Specifically, I

submit that (A) and (B) can be unified by appealing to use-based accounts of

computation: The two notions can be combined by the conceptual machinery of

1 Introduction

20

the literature on scientific representation (particularly, when concerned with

material models). The result is sketch of a unified theory of agential

implementation (UTAI) with different dependency relations (labelled (a)-(c)),

where these relations give rise to the subsequent chapters.

The third chapter concerns dependency relation (a). I elucidate this relation

by comparing programs to so-called repeatable artworks. The similarities

between musical compositions and works of literature are especially instructive.

Like such artworks, programs have different representational modes (e.g.,

symbolically, mathematically, diagrammatic) and implementational media (e.g.,

ink on paper, chalk on a whiteboard, electrical signals, punched cards, etc.). As

such, they appear to be abstract objects that also suffer from the Problem of

Creation – a problem from the philosophy of art about art abstracta. By

appropriating the problem’s most promising solutions to the philosophy of

computing, I offer a novel metaphysical blueprint for future studies about the

ontological status of computer programs. The upshot is that the abstract nature

of programs does not require dubious sui generis solutions (e.g., a ‘dual nature’)

but can, in fact, be discussed in more familiar philosophical territories.

Thereafter, chapter four sheds light on dependency relation (b) of the UTAI

framework. Accordingly, I vindicate interpretational accounts of physical

computation. Specifically, recent agential approaches that couch implementation

in terms of scientific representation are corroborated. I strengthen such types by

the introduction of a novel notion: Implementation-as. Implementation-as is

theoretically underpinned by Frigg and Nguyen’s DEKI account, a formalized

account of scientific representation relying on Goodman’s and Elgin’s notion of

representation-as. The DEKI account is especially suited for this because it relies

on a material model – the MONIAC (a special-purpose hydraulic analog

computer). Accordingly, a formal characterization of implementation-as

emerges. I maintain that this result is a philosophically robust account, since it

satisfies the most important desiderata (objectivity, extensional adequacy,

explanation, miscomputation, taxonomy) for accounts of computation in

physical systems. The upshot is that physical computation occurs when agents

use material systems as epistemic tools to compute a function. Application of this

new framework is illustrated for the MONIAC (an analog device) and the IAS-

machine (a digital computer).

Chapter five illuminates dependency relation (c) through the notion of

programmability. The philosophical discourse regarding programmability is

scant and largely underdeveloped. In particular, reviewing the literature

uncovers that only a limited amount of scholarship has examined the physical

properties that enable a system to be programmed. This is a sorry condition, for

1 Introduction

21

we seem to be unable to fully answer such questions as: How are programs

integrated into the causal nexus? What does it mean for a physical system to be

programmable? In the interest of answering these questions, I develop the here

newly introduced notion of physical programmability.

Physical Programmability: The degree to which the selected operation of

an automaton can be reconfigured in a controlled way.

Subsequently, the strategy of my chapter is to explain the significance of the

variables in the above’s characterization. Accordingly, the function of (i)

automaton; (ii) selected operation; (iii) reconfigured in a controlled way (iv) the

degree to which, are discussed in detail.

Finally, I provide a conclusion (Chapter six). I begin by summarizing the

central findings of this dissertation in order to canvass how the results of different

chapters have informed us about the ontological status of computer programs.

2 Towards a Unified Theory of
Implementation

2.1. Introduction

It sounds like a cliché, but the implementation of computation is ubiquitous. Not

only are we surrounded by everyday devices such as laptops and smartphones

that run our software, but computation is also at the core of foundational

questions in computer science, robotics, AI, and cognitive science. Despite its

ubiquity in computer science and adjacent fields, implementation is typically left

informal. It is often associated with the realization, instantiation, or

concretization of a plan or idea, relating two objects or domains with one

another.20 Considering the rapid developments in theory, technology, and areas

of application of computing, various philosophical studies conceptually

reconstructed what constitutes the implementation of computation in their

respective fields. In light of this epistemic pluralism, different notions of

implementation, in fact, often have a significantly different intellectual heritage.

Confronted with a plurality of theories of implementation, the time is ripe to

taxonomize them, shed light on their relationship systematically, and attempt to

build bridges between them whenever possible.

To begin this task, I consider two of the most prominent clusters of

implementation of the last few decades. For tractability, I refer to these views as

type-(A) implementation (with ‘(A)’ for ascription/artifact) and type-(B)

implementation (with ‘(B)’ for bridging). Type-(A) implementation emerged from

(the philosophy of) computer science, particularly the concerns about the

verification and correctness of so-called computational artifacts like computer

programs.21 Much of the corresponding discourse is couched in terms of function

ascription (in the teleological sense) and pertains to the relation between different

abstract levels or structures. Type-(B) implementation, on the other hand,

emerged from the philosophy of mind (broadly construed) and concerns the

nature of computation qua physical process in material systems. This notion is

paramount to determining which systems compute and which don’t and is often

discussed regarding laptops, brains, and even the whole universe. Virtually all

20 Overall, there are various (pre-theoretic) understandings of ‘implementation,’ even occurring
in the domains of art, language, or other affairs (Rapaport 2005).
21 After the fiercely held verification debate in the late 1980s and 1990s in the communications of the
ACM, it was apparent that the field would benefit from a philosophical underpinning of the
notion of verification and correctness. For a collection of some of the key contributions to
verification, see Colburn et al. (1993). For a critical assessment of the debate, see McKenzie
(2004, 197-218).

2 Towards a Unified Theory of Implementation

23

(B)-accounts share the idea that the evolution of a physical, real-world system

maps to sequences of formal/abstract computational states. Until now, (A) and

(B) have mainly been discussed separately.

However, throughout this chapter, I argue that the philosophy of computing

would benefit from a novel theory of implementation that promotes greater

synergy between two conceptions. This motivates me to engage in a project with

the primary goal of comparing type-A and type-B implementation, clarifying

their differences, and proposing a unified theory of implementation.

Here is the roadmap: Section §2.2 provides some general remarks about

computational implementation. Subsequently, section §2.3 introduces type-(A)

implementation, while section §2.4 portrays type-(B). Section §2.5 juxtaposes

both implementation types by discussing their most prominent features

(teleological functions and the relation between levels). Although they appear to

apply to different computing domains and have different purposes at first, they

are conceptually compatible. In section §2.6, I take my undertaking to the next

level by suggesting that the unification of these two concepts can be achieved

through the conceptual tools of the literature on material models and scientific

representation. The resulting synthesis suggests that computational systems are

epistemic tools, i.e., material artifacts used by agents for computation. When using

material artifacts (akin to material scientific models) for computation, agents

impute mathematical functions and ascribe teleological functions to engage in a

form of object-based reasoning. I shall refer to this view as a unified theory of

agential implementation (UTAI). Lastly, I conclude (sect. §2.7).

2.2. A primer on Implementation in Computer Science

The Oxford Dictionary of Computer Science provides a useful characterization of

implementation to begin with

Implementation: “[t]he activity of proceeding from a given design of a system

to a working version (known also as an implementation) of that system, or the

specific way in which some part of a system is made to fulfil its function.”

The relation between design and its working version applies to various

computational formalisms. For having a common understanding of this

implementation relation, it is instructive to remind us about computational

formalisms. While they are definable in a large variety of ways, the computer

2 Towards a Unified Theory of Implementation

24

science literature typically features two main ways of presenting computational

formalisms (Turner 2018, 190):22

1. Programming languages, like C, Python, etc.

2. Machine Models, like Turing Machines (TM), Finite State Machines

(FSM), etc.

In the following, I use the term ‘model of computation’ Mc for both. Models of

computation are logico-mathematical formalisms that enable us to encode an

abstract sequence of computations through a programming language, a machine

table, a transition function, and so on. For instance, formally, the concept of a

Turing Machine can be characterized as a quadruple TM = (Q, ∑, m, δ), where Q

is a finite set of states q; ∑ is a finite set of symbols; m is the initial state m ∈ Q; δ

is a transition function that determines the next move δ: (Q × ∑)→(∑ × {𝐿, 𝑅} ×

Q). TM’s transition function δ maps from computational states to computational

states (De Mol 2021). Put differently, transition functions like δ, computer

programs written in a programming language, or any corresponding notions in

theoretically equivalent Mc allow for the encoding of a sequence of

computations.

In order for a system to compute, it has to implement a sequence of

computations encoded in a ‘program’/transition function specified by a given

Mc. In practice, computational formalisms are often embedded in a special sort

of computational hierarchy, composed of so-called Levels of Abstraction (LoA)

(Floridi 2008; Primiero 2016; Primiero 2020). Accordingly, the application of

implementation in computation is wide-ranging. Examples are ‘the

implementation of an algorithm in a high-level programming language’ or ‘the

implementation of machine code instructions in a real-world computer.’ Such

‘level-talk’ is frequent in computer science – a concrete textbook example of

various implementation stages of a program is pictured overleaf in Fig. 2.1 (a).

Instances like these may be generalized and accordingly culminate in a view as

depicted under label (b) in Fig. 2.1: a (stored-program digital) computing system

is typically composed of various LoA forming a computational hierarchy.23 At

the bottom of the hierarchy, one finds a physical system comprising various

material components and their specific arrangement (the hardware). If set up and

configured correctly, the system may execute a predetermined series of concrete

computations. At the top of the hierarchy, one may find the most abstract level,

22 The description of computational formalisms is inspired by a similar presentation in Rescorla
(2013). Notably, some unconventional models can compute incomputable functions for a
universal Turing machine. I will skip considering these types for now.
23 See Hennessy and Patterson (2014, Ch. 2) for a fully worked-out textbook example. See also
Scott (2009).

2 Towards a Unified Theory of Implementation

25

the program’s formal specification. As a first stab, we can understand

implementation as the relation between the different levels in such a hierarchy,

connecting an abstract level to a less abstract one.

Fig. 2.1: Different depictions of the computational hierarchy. (a) A concrete
instance of the different LoA and stages of implementation of a program written
in C (example adapted from Patterson and Hennessy (2014, 15)). (b) Generalized
image of typical LoA of a computer program.

‘Abstract’, in this context, has a double meaning. On the one hand, it refers to

the degree to which language features are divorced from specific hardware

details (Scott 2009, 111). In this sense, higher LoA entail fewer details about the

underlying physical system. Based on that, we can understand abstraction as the

inverse process of implementation. On the other hand, the computational objects

corresponding to the different LoA may be abstract in a second sense. We may

refer to them as abstract objects – as opposed to being concrete, material, or

physical – since, as strings of symbols, they have no causal relations acting upon

them. From this perspective, algorithms, e.g., are typically regarded as abstract

objects.

Importantly, what follows from this brief discussion is this: Whereas the

implementation of higher LoA is in the business of relating abstract objects

(symbol structures), the last implementation stage is qualitatively different

because it must relate an abstract symbol structure to a material system. The

2 Towards a Unified Theory of Implementation

26

program written in C in Fig. 1 (a) is an instance of the former, for it is a particular

symbol structure that is translated into another one (i.e., compiled) into assembly

language.24 Analogously, when descending the computational hierarchy down

to machine code, implementation is still a relation obtaining between different

abstract strings of symbols. However, we require a different kind of relation at the

abstract-physical interface – one that relates abstracta with concrete states of the

putative physical system.

Today, two main approaches aim to cash out the requirements for connecting

such different types of levels: type-(A) and type-(B) implementation. Somewhat

surprisingly though, these two approaches are not in close contact with each

other. My aim here is to change that. In what follows, I take a closer look at the

philosophical characterizations of these implementation relations, beginning

with type-(A) implementation.

2.3 Type-(A) Implementation

Perhaps symptomatic for a more general tendency of computer science, type-(A)

implementation primarily focuses on the relation of upper LoA. Here, one central

aim is determining the correctness of the various implementation stages. Two

conditions are generally called for to meet the normative notion of correctness.

On the one hand, a formal specification for the program and, on the other hand, a

formal definition of the programming language’s semantics. A program is then

correct if there is a formal proof that the semantics of a program is consistent with

the program’s specification. Arguably, the first philosophical account of type-(A)

is due to Rapaport (1999). He describes implementation as semantic

interpretation (1999, 2005),

Implementation as semantic interpretation: An object is an
implementation of some syntactic domain A in medium M iff it is a
semantic interpretation of a model of A,

i.e., a relation between semantics and syntax of different LoA. Rapaport claims

that any correspondence between two domains where one is used to grasp the

other is ‘semantic correspondence.’

Rapaport’s approach aims to allow both mere ‘translations’ of one

programming language into another (symbolic implementation) and even for the

qualitatively different case at the abstract-physical interface (i.e., the relation

24 Alternatively, programs can also be translated through an interpreter, such that the source
code is directly executed (line by line) without previously having been compiled into machine
code.

javascript:void(0)

2 Towards a Unified Theory of Implementation

27

between the bottom layers of the computational hierarchy).25 While a program

written in a high-level programming language may not be immediately

implementable in a physical system, the so-called ‘correspondence continuum’

(i.e., roughly put, a notion of transitivity) is supposed to ensure their connection.

For that reason, the program must go through a series of translation processes,

where each time, a level that previously acted as a semantic domain turns into a

syntactic one for another level below. At last, the ‘implementation cascade’

bottoms out at the physical level, providing the semantic domain upon which the

semantics for all previous levels is built.

However, concerns were voiced about the way Rapaport employs his notion

of semantics as a given, raising questions about whether an independent

semantic account is required. 26 While the notion of semantic interpretation

adequately describes that implementation requires semantics, it lacks the rigor to

describe how these semantic features come about. The semantic approach does

not explain how the physical level obtains its semantic capacities as the bedrock

for the entire computational hierarchy. Therefore, philosophers of computer

science suggested two improved accounts.

First, to account for an independent and external account of semantics, Turner

considered the technical artifact literature and adopted the notion of function

ascription (2012, 2014, 2018, 2020). Originally, the conception of technical artifacts

and their functions should cover intentionally produced everyday objects like

screwdrivers, coffee-makers, and trains (Kroes 2012). They are said to have a

‘dual nature’: Next to their respective causal/structural properties, this class of

artifacts bears normative or teleological features. The function of a coffee maker

is to brew coffee; a broken or malfunctioning coffee maker does not work

correctly. Only when ‘the how’ (the structural properties) realizes ‘the what’

(functional properties) in the right way can one claim to have a properly working

coffee machine. By thus transposing the core insights of the technical artifacts

framework to computational entities, the conception of computational artifacts was

born (Turner 2018). Accordingly, computational artifacts like programs exhibit a

function-structure duality with

Implementation as function-structure relation: The relation between
specification (function) and the structure of the (computational-)artifact.

Importantly, artifact function here is an intentional notion derived from the use

plan formulated by designers. The functions are bestowed to artifacts based on

25 While Rapaport’s conception of implementation is thus ostensibly applicable to the abstract-
physical interface (the realm of type-(B) implementation), it does not consider its specific
problems, which will be discussed in the following section (§2.3).
26For a more detailed summary of these arguments, see (Primiero 2020, 207f) and (Turner &
Angius 2020).

2 Towards a Unified Theory of Implementation

28

the intentions and desires of human agents or an epistemic community. I will

come back to the role of teleological functions later. For now, it suffices to

acknowledge that a programmers’ specification (an intentional notion) provides

criteria for correctness and malfunction.

Second, following these developments, Primiero (2016; 2020) addressed issues

with both the implementation as semantic interpretation and implementation as

function-structure relation. The problem with both is that they merely provide

an account of implementation for any two neighboring levels rather than the

entire computational hierarchy. For instance, to eventually reach the bottom of

the hierarchy (the physical system), Turner’s version of the computational

artifact approach relies on repeatedly flipping the function-structure pair; the

process must be repeated for every level in the computational hierarchy.

Although the structure-function relation may ensure correctness between any

two LoA, Primiero argues that the view fails to establish the desired transitivity

of correctness throughout the entire computational hierarchy (i.e., between more

than just two LoA). The result is an impoverished characterization of

miscomputation.

For this reason, Primiero advanced a notion of implementation that considers

multiple LoA of the computational hierarchy (intention, algorithm, high-level

programming language, machine-code operation, execution), where an

epistemological construct and ontological domain constitute each LoA,

Implementation as the relation of LoA: An implementation I is a relation
of instantiation between pairs composed by an epistemological construct
E and an ontological domain O of a computational artefact.

The idea of the EO-pairs here is congruent to the function-structure relation, as

the epistemological levels provide “the structure to understand the behaviour of

the ontology” (Primiero 2020, 194). However, this view of implementation

enables a more fine-grained notion of correctness because it differentiates

between different layers/EO-pairs of the computational hierarchy.

Consequently, one may, e.g., define concepts such as functional correctness or

procedural correctness (related to different EO-pairs) and a corresponding detailed

taxonomy of miscomputation (cf. Fresco & Primiero (2013), Floridi et al. (2015),

Primiero (2020, 211-12)).

2.4 Type-(B) Implementation

Let me switch gears and examine our second implementation-framework. The

central concern of this discourse is the so-called Problem of Implementation. In

virtually all cases, physical computation is characterized in terms of the

mathematical theory of computation (cf. sect. §2) and a “mathematics first”

2 Towards a Unified Theory of Implementation

29

attitude (Curtis-Trudel 2022), according to which some computational formalism

of computability theory is the starting point for the definition of physical

computation. In due course, one must explain how to bridge the gap between

computational formalisms Mc and a physical system SC. Specifically, the main

idea is that formal abstract computational state transitions mi→ mi+1 need to

‘mirror’ the physical state transitions sj → sj+1 of the material system. Often, the

situation is depicted in a diagram, as seen in Fig. 2, where the upper horizontal

arrow denotes computational state transitions of Mc (specified by δ), the lower

horizontal arrow denotes physical state transitions of Sc, and f denotes the

mirroring (i.e., the ‘implementation’ function):27

Fig. 2.2: A typical depiction of the core idea underlying physical computation

 Subsequently, many scholars working on physical computation agreed that

there are at least two main issues, albeit related, concerning implementation: Not

only do they want to demarcate those systems that seemingly compute (e.g.,

laptops and brains) from those that don’t (rocks), they would also like to

determine which computation is executed rather than another. Closely following

suit with (Sprevak 2018 and Ritchie & Piccinini 2018), the problem of

implementation concerns:

COMP The conditions under which a physical system is computing.

IDENT The conditions that specify that a computational system

implements one computation rather than another.

On this view, implementing a specific computation is constituted by two

features. While COMP determines that a given physical system is computing,

IDENT concerns what it computes. COMP and IDENT are intertwined in a way

that makes it difficult to understand the latter without at least some preliminaries

of the former.

27 To the best of my knowledge, one of the first instances of this diagram in the philosophical
literature can be found in Cummins (1989).

2 Towards a Unified Theory of Implementation

30

 Virtually all potential answers attempt to solve the Problem of

Implementation by couching the mirroring or implementation relation between

Mc and SC as a relation between mathematical structure and physical system in

terms of a mapping f. This thought is reflected in the so-called simple mapping

account (SMA)28 and was, among others, articulated by Putnam (1988). The main

idea is based on a simple mapping between abstract formalism MC and a physical

system SC. Accordingly, the SMA postulates that a physical system SC

implements a computation iff:

Simple Mapping Account (SMA)

1. There is a mapping f from the states sj of SC to states mi of MC, such that

2. Under f, SC’s physical state transitions are morphic to MC’s formal state

transitions (specified by δ), such that if SC is in state s1 where f(s1)= m1,

then SC evolves into state s2 where f(s2)= m2.

The approach is elegant and straightforwardly captures what’s pictured in Fig.

2; the SMA has basically become the starting point to solving the problem of

implementation.

However, it is widely agreed that the SMA has two undesirable consequences.

First, the SMA is charged with trivializing the notion of concrete computation.

Given an open physical system SC, one may carve out its physical states in

whichever arbitrary way such that they are morphic to MC. In other words,

structure is too cheap to come by – any arbitrary computational description (like

a hello world program written in C) with a sequence of computational states m1→

m2 → …→ mi can be mapped on an arbitrary evolution of physical state transitions

(of, say, a rock). So, according to the SMA, every macroscopic object realizes all

kinds of computations, a position known as unlimited pancomputationalism.

Moreover, there is the issue of computational identity IDENT – the question

of which of the multitude of computational profiles that simultaneously apply to

a system is implemented.29 The claim goes: Even if there were somehow a unique

computational structure to begin with, structure alone would fail to deliver an

account of basic computational individuation, as one needs extra ingredients to

discern which computation is carried out. Such issues about computational

indeterminacy especially pertain to ‘bottom-up’ research like cognitive science,

the unconventional computing community, and reverse engineering. Roughly

put, these disciplines investigate natural or artificial computing systems in

empirical terms in which there is no a priori given MC that specifies what’s

supposed to be computed. Even if we were to successfully identify which

28 The term was introduced by Godfrey-Smith (2009) and made prominent by Piccinini (2015).
29 To the best of my knowledge, the problem was first mentioned by Shagrir (2001).

2 Towards a Unified Theory of Implementation

31

physical states count as computational vehicles (e.g., neuronal spikes or flow of

charge), we may have to choose between competing theories about what is

computed. The problem is that computational vehicles do not wear a label on

their sleeves. This gives rise to two sub problems grouping indeterminacy (how to

group different states together) and interpretative indeterminacy (how to label

states ones they are grouped). Frequently, the literature exemplifies the case (of

interpretative indeterminacy) with a system SC implementing logical duals, like

a logic gate with the following behavior:

InputA InputB Output

5V 5V 5V

5V 0V 0V

0V 5V 0V

0V 0V 0V

Table 2.1: Logic gate

Under the assignment 0V → F, 5V → T, the truth table (Table 1) of the logic gate

corresponds to an AND-gate. However, by flipping the labels (0V → T, 5V → F)

the same device implements an OR-gate. Now, the issue is that the same system

appears to simultaneously implement multiple computations (conjunction and

disjunction) at once. The phenomenon generalizes to many other gates and

computational systems. Fresco et al. (2021) recently called such physical systems

multiply specifiable if they possess at least two logically non-equivalent labeling

schemes when using the same labels (e.g., ‘F’ and ‘T’). Consequently, the question

arises, which of the two labeling schemes is the preferred one?

In response to the triviality arguments and computational indeterminacy

most physical computation/type-(B) implementation accounts have amended

the SMA by introducing additional features to address either one or both:

 Extended Mapping Account (EMA)

 SMA’s first and second clause + additional conditions constraining f.

Since the initial formulation of the SMA, a plethora of potential candidate

conditions have mushroomed, resulting in a fragmented physical computation

discourse.

One class of approaches, seeks to tackle (unlimited) pancomputationalism.

Often the common strategy has been to strengthen the conditional of SMA’s

second clause (‘if f(s1)=m1, then f(s2)=m2’) because it covers only one specific,

instead of all possible execution traces. For that reason, some argued that putative

computing systems need to have counterfactual state transitions (Copeland 1996).

Roughly put, the idea is that if the system SC had been in a physical state that

2 Towards a Unified Theory of Implementation

32

maps onto mi, it would have evolved into a state that maps onto mi+1. Others

formulated similar requirements in terms of a suited causal structure (Chalmers

(1996), Scheutz (1999)) or dispositional theories (Klein 2008). Counterfactual, causal,

and dispositional constraints ensure that the mapping f applies to all of MC’s

potential execution traces and not just, as previously the SMA, a single particular

one δ(m1, i) (where i is some input). As such, these types of constraints are a

typical feature of type-(B) implementation.

A second class of attempts addressed the problems associated with IDENT

(cf. Lee (2020) for an overview). Prominently featured here are to so-called

semantic theories of computation. In a nutshell, they state that content is essential

to computational states. Historically, this framework arguably developed

separately from the SMA and other EMAs. 30 The two primary reasons why

semantic accounts are widely accepted are as follows. First, the semantic account

is catered to the Computational Theory of Mind and various brain sciences,

which suggest that cognition (partially) relies on our brains performing

computations. As brain states are believed to have content and process

information, computational states must do the same. Consequently, according to

the semantic view, computational states must possess ‘aboutness’ and carry

external content or meaning. Second, the computational states of many

computing devices manipulate meaningful symbols, and the semantic view can

provide a solid foundation for understanding how these devices operate. In more

recent form, proponents of the semantic view like Shagrir (2001, 2022) and

Sprevak (2010), maintain that such semantic elements determine a privileged

labeling scheme and hence do away with computational indeterminacy.

Another prominent framework comprises mechanistic accounts of

computation (e.g., Milkowski (2013), Fresco (2014), Piccinini (2007, 2015)),

according to which computation must be implemented in specific computational

mechanisms.31 One merit of mechanistic accounts is their capability to draw from

the rich conceptual resources of the neo-mechanistic literature, especially on

mechanistic explanation. What’s more, as some formulations of the mechanistic

account adhere to teleological functions, they also incorporate functional features,

rendering computing systems as functional mechanisms that may fail to operate

correctly (i.e., they may miscompute). Since one can formulate the mechanistic

30 Fodor's statement can summarize the core idea of semantic accounts, “There is no
computation without representation.” (Fodor 1975; Pylyshyn 1984) is testimony to this
development.
31 N.b., in so far as mechanisms have a causal structure or are said to have counterfactual state
transitions, the mechanistic account can also be interpreted as a yet more refined version of the
previous EMAs, with the extra condition that putative computational states need to correspond
to material components.

2 Towards a Unified Theory of Implementation

33

account without normative considerations, this feature seems to be logically

independent of the mechanistic framework and could, in principle, apply to other

EMAs. In the same vein, although I am not aware of such developments, one

could combine mechanistic accounts with semantic elements or vice versa.

2.5 Juxtaposing (A) and (B)

What exactly is the relationship between type-(A) and (B) implementation? To

recap, while both implementation types provide bridges that connect an abstract

level to a less abstract one, they differ in initial purpose and scope: On the one

hand, type-(A) implementation allows us to evaluate the correctness of

computational artifacts’ levels by normative requirements (i.e., the specification)

of the stakeholders (programmers, users) involved. In this context, normative

judgments pivot on teleological function ascription and various LoA. Type-(B)

implementation, on the other hand, addresses one implementational stage only

– the abstract-concrete dichotomy (the lowest LoA). Its purpose is to characterize

physical computation in both natural and artificial systems formally. The

theoretical framework underpinning virtually all characterizations of concrete

computation is the idea that there is a mapping bridging the gap between abstract

computational formalism (e.g., symbolic machine code) and the dynamic

evolution of the physical states of the putative physical computing system.

 Given their scope, both implementation theories are not mutually exclusive,

for there is a juncture in (i) artificial computing systems at the (ii) abstract-

physical interface (see Fig. 3). From the perspective of type-(A) implementation,

the insights of type-(B) implementation are relevant

Fig. 2.3: A schematic Venn diagram of the intersection of type-(A) and (B)
implementation. Their domains of application overlap in (i) artificial
computing devices at (ii) the abstract-physical interface.

to address the implementation of a computational hierarchy at the abstract-

physical interface. Vice versa, from the type-(B)’s point of view, the knowledge

2 Towards a Unified Theory of Implementation

34

contained in the type-(A) discourse offers a nuanced picture about artificial

systems and computer scientists’ related concerns and practices.

However, despite the overlap, there has been only a limited exchange

between these two research domains. This separated development probably

concerns their origin from different research traditions. Remember, philosophers

developed type-B accounts as part of a broader project to articulate a version of

the CTM. While it was always assumed that the computations carried out by the

brain (at least, according to the classical, digital CTM) are the same as those

carried out by computers, the focus remained primarily on natural systems,

particularly the brain.32 As a result, a tendency remains to take designed systems

for granted and bracket higher-level programming practice as addressed by type-

(A).

So, to further advance our general understanding of implementation and

make it a cooperative endeavor, a more fine-tuned analysis of the relationship

between type (A) and (B) is desirable. For so doing, I juxtapose the two different

implementation types regarding their most salient features: (i) teleological

function-ascription and (ii) mappings between levels. The following subsections

elucidate these salient features across both approaches in more detail and pave

the way for presenting a unified approach in sect. §2.6.

2.5.1 Teleology

Let me begin the juxtaposition with the role of teleology in implementation.

Many theories of function emerged in the context of biological traits but have

subsequently inspired accounts of artifact functions. Unlike organisms that may

develop functions in evolutionary processes, artifacts are purposefully created

and must account for human intentions. Overall, the question is how to balance

intentional, evolutionary, and causal (non-intentional) parameters. 33 To date,

there is no consensus in the literature about teleological functions and whether

we should distinguish or opt for a unifying approach regarding natural and

artificial systems.

Many of these concerns affect our understanding of implementation. For

instance, as we have seen type-(A) accounts contain ingredients that allow us to

check whether a program (or any given sequence of computations) is

implemented and executed correctly at every LoA. The strategy was to address

32 Some strands of the mechanistic account of computation are an exception since they also shed
light on the subfield of computer architecture (Piccinini 2015, Ch. 8-11). Yet, this view still
shows little engagement with other relevant practices in computer science.
33 For a short survey of the debate, see, e.g., (Preston 2018, §2.3); for arguably the most detailed
account, consult Houke’s and Vermaas’ (2010) ICE-theory (incorporating elements from
intentional, causal-role, and evolutionist function theories).

2 Towards a Unified Theory of Implementation

35

correctness via an intentionally chosen function-structure pair. To give a concrete

example, I borrow the following case from Turner (2020,19-21): Suppose we want

to prove the correctness of a program P written in the WHILE programming

language to find the greatest common divisor (GCD) of two integers. Then, we

may only determine P’s correctness if we have some specification as a ‘normative

yardstick’ (the teleological function) telling us what the given program should

do. Subsequently, we may use the following expression

∀x : Num.∀y : Num · ∀z : Num · P (x, y, z) → Gcd(x, y, z)

as a correctness condition for the successful implementation of P. With this

formal expression at hand, we can establish correctness by a formal proof

showing that P’s input/output behavior agrees with the logical specification.

Albeit being a simple example, it illustrates a pattern of reasoning that underlies

most considerations about correctness of computational artifacts.

Contrast this intentional approach with the type-(B) camp, where remarkably

few studies have been designed to make any normative judgements of physical

computation to begin with. This is a severe shortcoming because it ignores some

of the central concerns of computer science: Absent a normative framework, we

cannot address miscomputation, the verificationist-debate or account for the

intricate correctness criteria of computer programs and software systems.

One of the few exceptions that allows for miscomputation is Piccinini’s (2015;

2020) functional version of the mechanistic account (cf. also Mollo 2018 and

Tucker 2018). In keeping with the functional-mechanistic account, physical

computation equals the transformation of some (medium-independent)

computational vehicle in accordance with a rule. 34 Similar to (formal)

specifications, rules determine what should be computed. Since they can be

violated, miscomputation occurs if the computational mechanism malfunctions

(i.e., violates the rule). In principle, this is a welcome feature, for it stabs in the

right direction for accommodating the concerns about correctness in computing

at the abstract-physical interface.

The crux is how these rules come about. According to Piccinini, the rule that

a computational mechanism should follow is determined by the so-called goal-

contribution account of teleological functions. On that account, “[a] teleological

function (generalized) is a stable contribution to a goal (either objective or

subjective) or organisms by either a trait or an artifact of the organism.” (Piccinini

2015, 116). Now, despite saying that subjective goals and artifacts are considered,

34 In line with Egan (2019), I take it that ‘rule-talk’ is just a different (normatively connotated)
way of referring to acting in accordance with a model of computation. See also my elucidations
on the mechanistic account in Appendix B.

2 Towards a Unified Theory of Implementation

36

most recent work on the functional-mechanistic account merely pays lip service

to them.35

Given its intellectual heritage, it is perhaps not surprising that the focus of the

mechanistic account almost exclusively lies on natural systems and how they

‘objectively’ can be the bearer of teleological functions. 36 The problem with

focusing on physical computation in terms of natural teleology is that it

overlooks the widely employed notion of correctness in computer science. Alas,

how human agents bestow artifactual functions to a material computing system

according to their desires, beliefs, and intentions to determine computational

correctness is virtually left unspecified. The upshot of this analysis is that there

is an imbalance regarding the assumptions underpinning the usage of

teleological functions in type-(A) and (B) implementation. Can we sidestep this

to glue the two different notions together?

2.5.2 The Mapping between levels

The second point of comparison concerns the different implementation relations

at the abstract physical interface. As we have seen, type-(A)’s approach is that a

higher LoA’s symbol structure must correctly translate into a symbol structure

corresponding to a lower LoA. The agreed-upon semantics determine what then

counts as viable implementation between abstract structures, else it remains

unclear how the different structures are supposed to correspond to one another.

While much more can be said about the precise characterization of the semantics,

what suffices for the present juxtaposition is that the provenience of the mapping

f essentially hinges on the stipulations and conventions regarding the semantics

made by the designers and programmers. Now, when it comes to the ‘bottom’ of

the computational hierarchy, type-(A)’s previous assumption to construe

implementation as a relation that links abstract objects to other abstract objects

or structures no longer holds. The reason is that the abstract-physical interface

requires a fundamentally different underlying equivalence relation – a cross-

categorical relation between abstract and physical objects.

This is where type-(B) enters the picture and could enrich our general

understanding of computational implementation in computer science. So, let us

look closer at how the implementation relation is conceived in this framework by

revisiting the SMA. According to its first clause, a mapping function f takes

35 Schweizer (2019) and Anderson (2019) are notable exceptions.
36 Typically, proponents of the teleo-mechanistic view of physical computation flash out natural
teleology by claiming that living organisms share a set of capacities (survival, development,
reproduction, and helping). These capacities are thought to give rise to a functional
organization, allowing them to pursue these capacities (Piccinini 2020, 68); see also Dewhurst
(2018) and Mollo (2018).

2 Towards a Unified Theory of Implementation

37

physical states and maps them onto computational states 𝑓: 𝑆𝐶 → 𝑀𝐶 . Two

qualifications are noteworthy about this relation: First, the mapping goes from

physical states to computational ones; if it were the other way around, we would

engage in computational modeling. Computability theory studies models of

computation that are distinct from computational models used in scientific

practice. The former models are used to explore computation in its proper sense,

while the latter models are used to simulate natural phenomena using

computational techniques (Milkowski 2014). Secondly, the mapping we are

concerned with is supposed to connect two different ontological domains.

In spite of the fact that the EMAs of type-(B) literature have brought forward

an impressive amount of literature with various constraints on the

implementation relation f, the metaphysical nature of the mapping relation does

typically not take center stage in the discourse of physical computation.

Exemplary is a statement by Chalmers, stating that

“[t]he definition of implementation does not appeal to any specific mapping
relation: rather, it quantifies over mapping relations, which can be any function
from physical states to formal states. I also do not know what it is for a relation
to have metaphysical commitments.” (Chalmers 2012, 231)

Similarly, Sprevak stresses that it is a “strategic error” to focus on the

metaphysical nature of f (Sprevak 2018, 176).

However, remaining silent about the metaphysical nature of the mapping

may, at least for the current project, come with the cost of an impoverished or

partially incomplete picture of how type-(A) and (B) implementation relate.

 To inspect the metaphysical nature of computational implementation more

closely, it is helpful to turn to similar cases. When realizing that we must link

physical objects to logico-mathematical ones, one notices that what we are

dealing with is a special instance of a much more general issue: the relation

between mathematical objects (of computability theory) and the physical world

– a relation raising notorious questions in the philosophy of science and applied

mathematics (Wigner 1960; Steiner 1998). Following Contessa, I refer to the

general issue as the bridging problem, “the problem of how to bridge the gap

between [abstract] models and the world” (Contessa 2010, 516). Put differently,

we need to explain the correspondence between two ontologically different

categories – viz., how mathematical objects relate to the physical.

Trying to solve the issue quickly leads to quite a technical territory that would

hamper the current discussion. For the sake of clarity, I opted to discuss the

general idea here and shift an in-depth discussion into Appendix B instead. Very

roughly put, the important point for now is that virtually all contemporary

solutions to the bridging problem appeal to a mapping between mathematical

and physical structures. However, one of the main issues with this ‘mapping

2 Towards a Unified Theory of Implementation

38

view’ 37 is that ordinary functions only obtain between the domains of set-

theoretic structures – yet physical objects are not set-theoretic structures. Thus,

without further qualifications, maintaining that morphisms obtain between

(abstract) mathematical structures and physical objects amounts to a category

mistake (e.g., Frigg 2006, 55; van Fraassen 2008, 237f; Vos 2022). To put a long

story short, a solution to the bridging problem requires an account of how

material systems can offer set-theoretical structures.

However, it is wide consensus that this task is all but straightforward. Bueno

and Colyvan, for instance, remind us

“Put simply, the world does not come equipped with a set of objects (or nodes or
positions) and sets of relations on those. These are either constructs of our theories
of the world or identified by our theories of the world. Even if there is some
privileged way of carving up the world into objects and relations […], such a
carving, it would seem, is delivered by our theories, not by the world itself. What
we require for the mapping account to get started is something like a pre-theoretic
structure of the world (or at least a pre-modeling structure of the world).” (Bueno
& Colyvan 2011, 347).

Can we overcome the structure generation problem concerning the levels

employed in type-(A) and (B) implementation?

2.6 A Unified Theory of Agential Implementation

After surveying the implementation landscape and providing an in-depth

analysis, two problematic instances still need to be addressed in aligning type-

(A) and type-(B) implementation. On the one hand, there needs to be more

consistency between the normative features determining correctness. On the

other hand, the bridging problem called the philosophical plausibility of a

naturalized implementation relation into question. In order to advance, we need

an explanation of how we can account for a physical system’s

mathematical/computational structure.

The remainder of the chapter proposes a remedy to this situation in the form

of a unified theory of implementation in two steps: First, I submit that (A) and

(B) can be unified by bringing them into conversation with the conceptual

machinery of the literature on material models and scientific representation.

Second, based on these insights, I sketch a use-based account of implementation.

Since the common denominator among these findings is the stipulations and

conventions of (human) agents, the novel framework traces different agential

37 Sometimes, when thinking of models and representations in terms of such a formal relation
between structures (e.g., a mapping), the issue is also referred to as the ‘mapping view’ (Pincock
2004, Batterman 2010, Bueno & Colyvan 2011).

2 Towards a Unified Theory of Implementation

39

involvements in terms of dependency relations. Accordingly, the result is a

Unified Theory of Agential Implementation (UTAI).

2.6.1 Material Models as a remedy

According to what Giere (1999) calls the representational conception, scientific

models are used by scientists for the purpose of representing some (real-world)

system, where the latter is commonly referred to as target system T. Scientists use

models and their representational capacities for drawing various sort of

conclusions about the target system (e.g., explanation, prediction, confirmation);

a practice known as surrogate reasoning (Swoyer 1991). Accordingly, scientific

representation is characterized as the relation f between a model M and its

dedicated target system T, such that 𝑓: 𝑀 → 𝑇.

The reason why I propose the representational conception as a remedy is

twofold: First, representations can be faulty and misrepresent the target. While

scientists may allow for minor deviations up to some previously defined

threshold, larger differences count as misrepresentation (the model does not do

what it should do). This aspect will be crucial to account for the analogous case

of miscomputation and correctness considerations discussed in §2.5.1. Second,

both models and targets come in various ‘ontological flavors.’ On the one hand,

one typically distinguishes between (i) material and (ii) theoretical models.38 On

the other hand, target systems are either (a) real-world systems or (b)

hypothetical scenarios.39 Consequently, various modeling scenarios result from

the possible combinations of (i)-(ii) and (a)-(b). As such, the modeling relation –

like the problem of implementation – may also be a special instance of the

bridging problem.40 More precisely, the crucial commonality between scientific

representation and implementation of computation is that both essentially

require a mapping that relates mathematical structures to a physical substrate.

Given these similarities, one may solve our previously identified issues

regarding teleological function ascription and the bridging problem by bringing

one domain (modeling) into conversation with another (computing). Put

differently, the idea is that what counts for scientific models, mutatis mutandis,

38 The term model denotes a heterogenous collection of things – models come in the form of
descriptions, as material objects, or as abstract (mathematical) objects; for an extended list of 120
types of models, see (Frigg 2022, Ch. 16).
39 Weisberg, for instance, investigates the case of hypothetical modeling (2013, 121-134), where
models may represent nonexistent targets, possibilities, or impossible targets (e.g., models
where the targets are perpetual motion machines or multiple sexes populations).
40 For instance, assuming that M is a theoretical model relying on mathematical structure as a
representational vehicle, one needs to specify how the parts of the structure are mapped to the
physical make-up of the target system. Put differently, the representational relation f needs to
bridge the abstract-concrete dichotomy.

2 Towards a Unified Theory of Implementation

40

applies to computing devices. In fact, in some cases, the distinction between what

counts as a scientific model and what counts as a computer is diminishingly

small. Take, for instance, Frigg & Nguyen’s (2018) example of the Philips-Newlyn

machine. The machine uses the flow of water through a specifically designed

pipe system to model the distribution of commodities in a national Keynesian

economy. However, also known as ‘MONIAC’ (Monetary National Income

Analogue Computer) the device can equally well be regarded as a special-

purpose liquid-based analog computer. Instead of representing a selected

economic scenario, the MONIAC can, in principle, be used to compute (a small

set of) differential equations.41

Of course, these similarities are not restricted to the flow of water. Overall,

many different physical properties can be used as representational- or

computational vehicles, respectively. For instance, when surveying the material

variety of such vehicles, Sterret notes that

“[…] electronic circuits were used as analogues of anything that could be
formalized as a solution of certain classes of differential equations, and ever more
sophisticated machines were developed to deal with ever larger classes of
differential equations and problems. Other examples of analogues used for
computation are mechanical analogues such as the geared devices built in the
seventeenth century, the soap bubble analogue computers invoking
minimization principles that were used to efficiently solve difficult mathematical
problems in the twentieth century and biological analogue computers of the
twenty-first century such as amoeba-based computing (ABC) analogue models.”
(Sterret 2017, 858)

Qua models, various physical systems may be employed as representational

vehicles for an explanation or prediction of a target system. Qua computer, one

may use physical systems as surrogates to read off the results of a sequence of

computation specified under a model of computation MC. The difference is that

instead of a real-world target system, one then simply reasons about a particular

‘hypothetical scenario,’ where the latter is characterizable by a transition function

δ that’s compatible with a model of computation MC.

But how does the modeling literature address the ‘structure generation

problem’ we encountered earlier? Generally speaking, philosophers of science

like Suárez (2003) and van Fraassen (2008) criticize naturalized attempts of

scientific representation, namely that the mapping f between model and target

reduces to a factual, mind-independent relation since it flies into the face of the

bridging problem. Without answering the structure generation problem, it is

highly contentious to defend a somehow naturally occurring mapping relation.

41 I will discuss this device and how it features in physical computation in much more detail in
Chapter 4.

2 Towards a Unified Theory of Implementation

41

Given that naturalized accounts about mappings fail to elucidate how and

when such a relation comes about without explaining the assumption of some

privileged preconceived structure, they are moot. Faced with the inadequacy of

naturalized accounts of representation, philosophers of science nowadays

commonly agree that scientific representation is contingent on human agents

establishing a mapping to the intended target. The upshot is that the relation

between model M and target T does not simply obtain ‘naturally,’ i.e., without

the decisions, conventions, and stipulations of some scientists. Often, this type of

correspondence is called a three-place relation because it entails (i) a model, (ii) a

target, and (iii) an epistemic agent. In consequence, van Fraassen, for instance,

emphasized the necessary involvement of human agents in formulating his

Hauptsatz of scientific representation, as “[t]here is no representation except in the

sense that some things are used, made, or taken to represent some things as thus or so.”

(van Fraassen 2008, 23).42

In recent years, several scholars have (independently) turned considerations

about scientific models and representation like these into an approach to physical

computation (e.g., Care 2010; Horseman et al. 2014; Fletcher 2018;

Papayannopoulos 2020) – something which will be scrutinized much more fully

in Chapter 4. For now, it suffices to say that this accumulation of research

suggests that material models and computers are (fine-tuned) physical objects

employed by human agents as epistemic tools for their specific context-dependent

purposes. In what follows, I will present the underlying assumptions and

features of this way of seeing things.

2.6.2 UTAI and its features

At last, let me introduce the theory that enables the unification of type-(A) and

(B) implementation: UTAI. Figure 2.4 provides a schematic depiction of UTAI

and its most important features – the implementation of a model of computation

MC at the abstract-physical interface through the execution of (one of the traces)

its corresponding transition function δ. In what follows, the various elements of

the graphic are discussed in detail.

First, the abstract-physical interface is illustrated by the dotted line

horizontally running through the diagram. In comparison to Fig. 1 (b), higher

LoA and the full computational hierarchy are implied to be represented in the

‘abstract realm’ (upper half above the dotted line), where one deals with symbolic

implementation (type-(A) implementation). In line with the SMA, the

equivalence between the state transitions of MC (specified by a transition function

42 Many of these conclusions drawn in the philosophy of science coincide with the technical
literature from the philosophy of applied mathematics (cf. Appendix B).

2 Towards a Unified Theory of Implementation

42

δ) and the evolution of physical states of a putative computing system SC is

pictured through a diagram as, e.g., found in Cummins (1989) or Ladyman (2009)

(cf. Fig. 2.2). The labels (1) – (3) correspond to the assumptions of scientific

representation/modeling-based theories of computation:43

Fig. 2.4: Schematic depiction of a unified theory of agential implementation

(UTAI).

Assumption (1) Implementation is based on a representation relation f between the

designated physical states of the putative computing system and the abstract

states transitions defined by δ of a computational formalism MC (cf. Ladyman

2009, Horseman et al. 2014, Fletcher 2018, Papayannopoulos 2020), such that

𝑓: 𝑆𝐶 → 𝑀𝐶 holds. Analogous to the case of material scientific models, where

certain features of the model act as a representational vehicle to represent

(features of) a target system, implementation comes about when certain

(selected) features of a putative computing system act as a computational vehicle

to compute a function. Note that this development is a departure from the EMA,

in as much as scientific representation/ implementation can no longer be deemed

a binary relation, but a ternary one, because it is only due to the use/stipulations

of some agent that the linkage between model and target arises in the first place.

Assumption (2) The starting state mi (i.e., the input state) of MC must be related

to some initial starting state of the material system sj. Likewise, the output state

mi+1 requires decoding it from sj+1 by reading it off or performing some type of

measurement. The rightwards-pointing black arrows in the diagram, labeled by

δ and SC respectively, stand for the transition of the computational states mi and

43 In as much as features (1)-(3) can already be found in the previous literature, UTAI is
indebted to their respective insights.

2 Towards a Unified Theory of Implementation

43

mi+1 and the temporal evolution of the computational vehicle/label bearers sj

(both represented by the grey circles).

Whilst maintaining that the act of encoding input-states and decoding output-

states after a computation has been argued for before (e.g., Churchland &

Sejnowski (1992, 63)), the here advocated view is different because the acts of

encoding and decoding are formulated in terms of scientific representation.

Importantly then, encoding and decoding are – in line with the notion of scientific

representation – directional (no longer isomorphisms) and require to be carried

out by some agent or epistemic community.

Assumption (3) Following the suggestion by Horsman and collaborators

(Horsman et al. 2014), I argue that the notion of scientific representation enables

us to address inaccuracy as a form of miscomputation.44 Simply put, the idea is

that one may introduce an acceptable margin of error ε between the output states

of MC and output states of the physical system. If the chosen computing system

is completely reliable (i.e., run without errors), each computation cycle yields

perfect equivalence between the state transitions of MC and the physical

evolution of the system; there is no inaccuracy. However, complete reliability is

a pipe dream. Real-world scenarios typically do not behave in a perfectly

preconceived idealized manner. As a result, the abstract series of computation

and the physical outcome only coincide up to ε.45 Depending on the chosen value

of error interval ε, the same process could count as correct computation in one

case and as miscomputation in another.

While I think that (1)-(3) of the previous accounts are primarily correct, UTAI

entails further features and more fine-grained factors. Specifically, UTAI needs

to elucidate the involvement of and dependency on human agents concerning

the imputation of mappings, the creation of structure, and the ascription of

teleological functions. To uncover the intricate interrelations between human

agents and the different, UTAI explicitly tracks these dependency relations,46

denoted by (a)-(c), between human agents (represented by the black mannequin)

and various elements in the implementation process. In the remainder of the

chapter, I explain the implications of these dependency relations in detail:

44 Philosophers of science commonly agree that there is at least a second type of
misrepresentation, viz., mistargeting. Transposing this view to computation amounts to the case
where users (accidentally) implement the wrong computational formalism. I will leave this
discussion out for now.
45 Once again, one can appropriate the discussion of scientific modeling, where philosophers of
science criticized the idea that scientific representation reduces to isomorphism because it
cannot make room for distortions.
46 ‘Dependence relation’, here, is understood as a relation between different entities, where one
entity is dependent on another.

2 Towards a Unified Theory of Implementation

44

Dependency relation (a) emphasizes the crucial involvement of human agents

in higher LoA. It is paramount for at least two reasons: First, following the

desires, intentions, and pragmatic concerns of the programmers, a

‘computational problem’ is formulated. In actual programming practice, this

typically leads to a (formal) specification, determining what is supposed to be

achieved. The specification acts as the normative yardstick to check correctness.

As discussed in the type-(A) implementation literature, the specification may be

seen as an ascribed teleological function. It is necessary to provide judgments

about correct execution and faulty behavior (miscomputation).

Furthermore, dependency relation (a) allows for illuminating a second crucial

involvement of human agents. After agreeing on a specification, practitioners

may then devise an algorithm. Next, the algorithm is typically formulated in a

suitable computational formalism MC (e.g., a programming language of your

choice). The process described here roughly corresponds to the construction of

the various LoA in the computational hierarchy (Fig. 1). The bottom line is that

specifications, the algorithms targeted at the specific problem, the ensuing source

code, and so on are all dependent on human ingenuity. Put differently, computer

programs appear not to be discovered; they seem to be created by human agents

for diverse practices such as scientific endeavors, business, entertainment, and

many more. Ignoring the agential dependence of computational artifacts bears

the danger of unreasonably rendering the implementation of computational

artifacts in naturalistic terms.

Dependency relation (b) concerns the mapping f that bridges the abstract-

physical interface. Implementation may occur when agents come up with a

structure-generating description (e.g., through information hiding) and a

suitable mapping relating the abstract and concrete realms. As argued at length

in sections §2.5.1 and §2.5.2 (see also Appendix B), naturalized approaches are ill-

suited to address the bridging problem adequately. Instead, we necessitate the

interpretational capacities of agents to overcome the structure generation

problem. Structure generation is contingent on agents because it demands that

specific properties/capacities of the system are selected and interpreted as

computational states or vehicles sj.

Furthermore, to bridge the gap between an abstract model of computation 𝑀𝐶

and a concrete computing system 𝑆𝐶 , a mapping relation between the two is

eventually needed. Such a relation calls for the stipulations of human agents.

Users impute their chosen computational formalism onto the putative physical

computing system. The material system can then be used as an epistemic tool,

i.e., as a surrogate to carry out the intended series of computations determined

by the previously created program.

2 Towards a Unified Theory of Implementation

45

Lastly, following these considerations, the implementation relation 𝑓: 𝑆𝐶 →

𝑀𝐶 bridging the abstract-physical interface (represented by the horizontal dotted

line) is no longer conceivable as a mere binary relation. Instead, f is a ternary

relation – because it necessarily depends on the stipulations of agents –

characterized by a representational quadruple 〈𝑚𝑖, 𝑓, 𝑠𝑗, Agent〉.

Dependency relation (c) characterizes the physical interactions of the human

agent(s) with the putative computing system as epistemic tool. Ideally, a

computing system is not only sufficiently reliable for repeated executions but

also reconfigurable. Physical reconfiguration is needed to reprogram the

computing system ultimately. The mere imputation of a different model of

computation 𝑀𝐶 onto the very same unchanged structure is insufficient for

implementation. The underlying physical setup from which the structure was

generated must also change; otherwise, it will result in a mismatch. So, what we

require from a programmable system is that a different starting state would have

led to a different but corresponding output state. Put differently, to be re-

programmed, thus calls for a counterfactual explanation.47

The notions of modeling and scientific representation that underpin UTAI

allow incorporating the crucial constraint that counterfactual claims about the

computing system hold. In the context of scientific modeling, Bokulich (2011, 39),

for instance reminds us that for a model M to effectively explain a given target

phenomenon T, it is essential that its counterfactual structure closely aligns with

that of T. In other words, the elements of the model should, in a loose sense,

‘reproduce’ the relevant features of the phenomenon being explained. Like in the

case of the EMA, the counter-factual condition rules out stipulative fiat, i.e., the

completely unconstrained usage of arbitrary systems for computation that would

collapse into interpretational pancomputationalism. In other words, while

interpretation is a necessary condition, it is insufficient because the

computational vehicles of the computing system need to behave suitably.

2.7 Conclusion

This chapter surveyed different notions of computational implementation whose

connection has been underexplored so far. While type-(A) implementation

concerns correctness criteria of (abstract) computational artifacts, type-(B)

implementation addresses physical computation. The main takeaways of this

chapter are threefold:

47 N.b., this insight is virtually similar to the ones of the counterfactual/causal/dispositional
EMAs).

2 Towards a Unified Theory of Implementation

46

(1) First, I clarified the implementation landscape: Despite having emerged

from different research traditions, I showed that the different implementation

types discussed in this chapter are not mutually exclusive. Instead, they partially

overlap under two conditions: considering (i) designed systems at (ii) the

abstract-physical interface.

(2) Second, based on a subsequent in-depth comparison, I argued that type-

(A) and (B) may mutually enrich each other regarding teleological function

ascription and bridging the abstract physical interface. This cross-fertilization is

vital to explain the implementation of computational artifacts like computer

programs in real-world machines. However, without further qualification, there

remain more considerable conceptual obstacles familiar from the philosophical

literature of teleological functions and applied mathematics.

 (3) Third, I provided a specific way of thinking about overcoming these

obstacles and thereby coherently aligning the two different implementation

theories. Particularly, by bringing the implementation literature in conversation

with the literature of scientific modeling and representation, I sketched a

unifying framework called UTAI (unified theory of agential implementation).

The reason why this is fruitful is that in both modeling and computing, agents

engage in the form of object-based reasoning, where artifactual functions are

externally attributed, and agents impute a mapping relation between concrete

system and abstract target/program. My analysis showed that accounts, like

UTAI, sketched in agential terms, offer the right resources to accommodate the

main underlying assumptions of both type-(A) and (B) implementation:

stipulated mappings, generated structures, and ascribed teleological functions.

In sum, UTAI has the explanatory virtue of facilitating cross-talk between so far

rather separated discourses and kinds of literature.

In the following chapters, I will continue this analysis by focusing on UTAI’s

three dependency relations between epistemic agents and ontologically different

aspects of computer programs.

3 The Problem of Creation meets
Computer Programs

The previous chapter laid the groundwork for a systematic study of the unified

theory of agential implementation (UTAI). This framework, which identifies

three distinct dependency relations in the implementation of computational

formalisms like computer programs, will be examined in detail in the following

three chapters. The idea is that tracking these relations will help us to make sense

of the connection between the different entities gathered under the polysemic

term ‘program.’ In this chapter, we will start by focusing on the first relation,

which is the connection between epistemic agents and programs as abstract

entities.

3.1. Introduction

According to a prominent view, computer programs do not appear to be concrete

objects, yet we commonly think of them as created entities that can be interacted

with. This is somewhat surprising since philosophical orthodoxy holds that

abstract objects are not integrated into the causal pathway and can, therefore, not

be created.48 Ergo, a pressing philosophical problem is creeping up:

‘In which way can these program qua abstract objects be the products of
our creation?’

Unfortunately, this issue has not fully received the attention it deserves until

now. In light of this problem, my goal in this chapter is to state more precisely in

what sense we can classify computer programs as abstract objects. My starting

point to unscramble the situation is to pick up the theme from the Prologue and

rethink how lawmakers of the 1970s struggled to come to terms with classifying

programs under patent law. Specifically, one episode sticks out: While some

argued that they should be conceived as physical switch settings or parts of real-

world machines, others suggested classifying them similarly to novels or musical

scores. Notably, reflection on the ontological status of (art)works has led to the

idea of thinking of them as abstract objects (Thomasson 2006; Sanfilippo 2021).

Throughout this chapter, I assimilate this reasoning, argue why it is a plausible

stance toward programs, and explore its ramifications.

48 The standard metaphysical view states that abstract objects exist eternally and cannot be
created. Most philosophers understand creation as a causal relationship between the creator
and their creation. However, abstract objects are causally inert and hence cannot enter such a
relationship, so it is unclear what kind of process the creation of an abstract object involves
(Mag Uidhir 2013, 11).

3 The Problem of Creation meets Computer Programs

48

In a nutshell, the underlying rationale is this: Many scholars from the

philosophy of art, metaphysics, librarianship, and literary studies consider their

corresponding (art)works abstract because they cannot be identified with a

concrete instance; they appear to (simultaneously) exist in different media

without being reducible to any specific token. Importantly, most participants of

the debate understand ‘abstract’ here in the same sense as the abstract-concrete

dichotomy (Falguera et al. 2022) that is relevant to us, i.e., as non-spatio temporal

entities, as appealed to in the Introduction and the previous chapter. On the face

of it, these so-called repeatable artworks thus face the same dilemma as programs:

The crux is that the premise about the existence of art-abstracta stands at odds

with the plausible assumption that these artworks, qua artifacts, are intentionally

being created by a specific human being at a specific time and place. Typically, the

conundrum is called the Problem of Creation (PoC). Albeit underappreciated in the

philosophy of computing so far, I will show that many of the philosophical

problems and solutions associated with this way of thinking about repeatable

artworks applies mutatis mutandis computer programs.

The main takeaway from my application of the (POC) to programs is twofold.

On the one hand, from the perspective of the philosophy of computer science,

my approach enables us to step outside the beaten paths of the metaphysical

inquiry in computing and offer a new angle on the ontology of programs. On the

other hand, from the perspective of contemporary metaphysics, my approach

steers the debate about the ontological status of computer programs towards

more established philosophical territory. Notably, it shows that the abstract

nature of programs does not require the postulation of complete sui generis

solutions (e.g., a ‘dual nature’) but must be couched along the axis of Platonsim,

Nominalism, and Creationism.

In what follows, this chapter is divided into five sections. Section §2 provides

some necessary preliminaries to apply the (PoC) to computer programs. Next,

section §3 introduces the (PoC) in more detail and outlines a taxonomy of its most

typical responses. Thereafter, in section §4, I discuss the implications of the

differing metaphysical frameworks when adopted to computing. Lastly, I

conclude (sect. §5).

3.2 Setting the Stage

Before we dive into the essential philosophical details of the (PoC), I want to

provide some initial clarifications about programs. If computer programs are to

be the subject of the (PoC), we must have a clear grasp of (i) what one exactly

means by ‘program,’ (ii) how they are created, and (iii) in what sense they are

abstract. Accordingly, in Section §2.1, I will introduce an example program that

3 The Problem of Creation meets Computer Programs

49

will be frequently referenced throughout this chapter. Following that, in Section

§2.2, I will briefly outline how programs are created. Lastly, in Section §2.3, I will

discuss the abstract nature of programs more formally.

3.2.1 An example as conceptual laboratory

Although relatively unproblematic in everyday life, it is a somewhat contested

question among philosophers of computing what exactly might be meant by the

concept of ‘program’ (Gemignani 1981; Lonati et al. 2022). With so many

variations in the understanding of programs – regarding them as abstract

entities, physical entities, or entities that span multiple ontological categories –

using the term unexplicated is potentially misleading.

However, in line with my arguments about the polysemic nature of the term

in this thesis’ introduction (Ch. 1), I will not define programs here. Instead, I only

rely on what I take to be a paradigm instance of a computer program written in

a high-level programming language, as depicted in Fig. 3.1. The source code is

written in C and, and the program uses a while-loop to find the greatest common

divisor (GCD) of two integers. Instead of relying on a rigorous characterization

of all computer programs, this example will act as my ‘conceptual laboratory’ in

due course.

To avoid any ambiguity, it is vital to note what I do (and do not) intend to

pick out with my example. As we have seen in the previous chapter, it is common

to think that computational systems are built in a hierarchical fashion (e.g.,

Primiero 2016; cf. Fig. 2.1). Accordingly, there are various interconnected levels

such as specification, algorithm, source code, machine code, hardware and so on.

Facing this ‘stratified ontology,’ we must specify on which level our example is

located. This task is relatively straightforward: Given that the code is written in

C, we can classify it as a well-formed set of high-level programming language

instructions, i.e., a symbolic (type-(A)) implementation of the proposed

algorithm in source code.

Importantly, this characterization allows us to distinguish our C program

from its neighboring upper and lower LoA. Regarding the former, the higher

LoA, it is important to distinguish our program from the GCD algorithm it

implements. Despite hinting at the difficulties of defining the term ‘algorithm’ in

the Introduction (see also Appendix A), I use ‘algorithm’ here in a sense similar

to Newell:

“An algorithm is more abstract than a program. Given an algorithm, it is possible
to code it up in any programming language. You might think that a program
should be something like an algorithm plus implementation details. Thus, you
examine the text of a purported algorithm-if you find an implementation detail,
you know it is a mere program.” (Newell 1986, 1029).

3 The Problem of Creation meets Computer Programs

50

On this view, the corresponding (GCD) algorithm could have thus

been implemented in an entirely different programming language, like Java or

Python.

#include<stdio.h>

void main()
{
 int a, b, gcd, remainder, numerator, denominator;

 printf("Enter two integers\n");
 scanf("%d %d", &a, &b);
 if (a > b)
 {
 numerator = a;
 denominator = b;
 }
 else
 {
 numerator = a;
 denominator = b;
 }
 remainder = numerator % denominator;
 while (remainder != 0)
 {
 numerator = denominator;
 denominator = remainder;
 remainder = numerator % denominator;
 }
 gcd = denominator;
 printf("GCD of %d and %d = %d\n", a, b, gcd);
}

Fig. 3.1: Example C program to find the GCD of two integers using a

While-loop.49

Regarding the lower LoA, we have to remember that source code in a high-

level language is rarely directly executed on a computer. It is typically translated

into machine code using interpreters or compilers. In each case, different

compilers, for instance, may further optimize the resulting machine code to the

underlying hardware. As a result, the original GCD program may fragment into

many different lower-level implementations in different computational

ecosystems (e.g., on a Thinkpad Carbon x1, Gen 5, with Ubuntu version 22.04

LTS as opposed to on an Apple MacBook Air macOS Sonoma).50

49 https://www.sanfoundry.com/c-program-gcd-two-numbers-recursive-euclid-algorithm/#c-
gcd-program-method-4
50 I thank Liesbeth De Mol for pressing me on the matter and suggesting these particular
example implementations.

3 The Problem of Creation meets Computer Programs

51

Moving forward, it is thus crucial to bear in mind that my investigation

throughout this chapter is exclusively limited to the symbolic level in which the

source code is written (this comes close to what I call the Notational View in

Appendix A).51

3.2.2 A brief sketch on how Programs are created

Philosophers standardly define ‘artifacts’ as objects made or produced for a

specific purpose (Hilpinen 2017). Typically, when creating a (material) artifact,

the makers intentionally modify one or more objects until it becomes the desired

end product (Hilpinen 1993, 165). General actions of artifact-making include

separation, reshaping, and assembly using different techniques or routines

(Hilpinen 2017). As programs are intentionally produced entities, we can

consider them sub-types of artifacts (see Appendix A). 52 However, since the

working assumption of this chapter is that it is plausible to assume that programs

are abstract objects, it is essential to take a closer look at their production process

and ask: How exactly are programs created?

Given the ubiquity and importance of programming in modern society,

accounts documenting the production of programs run the gamut – including,

but not limited to, historical accounts such as Grier’s (2013), pleas for various

programming styles like structured programming (Dijkstra 1968), hundreds of

textbooks that teach students basic programming techniques (Abelson et al.

1996), project managing frameworks from the realm of software engineering that

elucidate the do’s and don’ts of (large) labor-intensive projects (Brooks 1978),

and ethnographic studies (Button & Sherrok 1995).53

Commonly, the story about the creation of programs goes something like this:

At the start, the aim is to create a specific program. However, in the realm of

computer science, we cannot simply transfer our desires and intentions to our

computers. We must first translate them into a computational formalism that the

machine can execute. This typically involves writing source code in a high-level

programming language. The programming process is multi-step, error-prone,

and often laborious. To stay on course with our original goal, we ideally create a

specification. Specifications serve as the ‘blueprint’ for producing small and

complex large-scale computer programs. In other words, they define what the

51 Although I have only provided a small programs, I think that, without loss of generality,
many of this chapter’s results apply mutatis mutandis to larger or even large-scale programs.
52 As will become clear throughout the chapter, Platonists about programs (if there are any such
persons) may argue that assuming that programs are produced is to throw out the baby with
the bath water. Instead of creating programs, a Platonist would suggest that we somehow
‘discover’ them.
53 This list represents merely a fraction of the abundant sources available. However, I do believe
that it is enough to convey the general message of the current subsection.

3 The Problem of Creation meets Computer Programs

52

program is supposed to do (Primiero 2020, 208). Therefore, understanding

specifications is crucial for comprehending the process of creating programs. As

Turner (2011, 135) points out, ‘programming is not an aimless activity’.

At a first stab, we may turn to Cantwell Smith’s characterization of program

specification

“A specification: a formal description in some standard formal language,
specified in terms of the model, in which the desired behavior is described. [...]
[A]ll it has to do is to specify what proper behavior would be, independent of
how it is accomplished. For example, a specification for a milk-delivery system
might simply be: “make one milk delivery at each store, driving the shortest
possible distance in total”. That’s just a description of what has to happen. [...]
Specifications, to use some of the jargon of the field, are essentially declarative;
they are like indicative sentences or claims (Smith, 1985, 20).”

As rightly pointed out, specifications are often formally written; think of logical

notations like Z, B, and VDM. However, Cantwell Smith’s definition is too strict,

as it limits the notion of specification to a formal description of our original

problem. While a complete formalization of the specification is desirable, it is not

always practically achievable.54 In a more recent paper, Turner (2011) reminds us

that specifications can take several non-formal forms such as natural language

description or graphical representation. That is why Duran clarifies

 “Computational practice has shown us that specifications cannot be fully
formalized. Rather, they must be conceived as ‘semi-formal’ descriptions of the
behavior of a target system. By this I mean that formal as well as non-formal
descriptions coexist in the specification. In other words, mathematical and logical
formulae coexist with documentation, instructions, and other information
written in plain English.” (Duran 2018, 41)

Regarding my small exemplary program, one may imagine where its

specification was informally given as A program written in C to find the greatest

common divisor of two integers using a While-loop.55 Depending on one’s skill level,

it should be a simple routine for a trained programmer to transform this

rudimentary specification into something like our exemplary program.56

Although my example program is simple, its creation process exemplifies a

pattern that underlies many successful creations of programs written in (high-

level) programming languages, I take it as sufficient evidence to support this

chapter’s working hypothesis that programs are creatable.

54 My simple example program in Fig. 3.1 is an exception.
55 For a formal specification, see sect. §2.5.1 (Ch. 2).
56 For a more detailed discussion on the functional specification of a program implementing the
GCD, see (Turner 2018, 44-47).

3 The Problem of Creation meets Computer Programs

53

3.2.3. In what sense Programs are Abstract: The Physical Object Hypothesis

Why and in what sense can programs be conceived as abstract objects? In the

introduction to this chapter, I already informally discussed potential answers. I

wrote that ‘abstract’ refers to the metaphysical category determined by the

abstract-concrete distinction and (hence) signifies being none spatio-temporal.

Specifically, I invoked an argument from analogy based on repeatable artworks.

Researchers from various disciplines consider repeatable artworks abstract

because they cannot be plausibly identified with an individual copy. I will now

adopt this reasoning to computer programs.

To present these thoughts more precisely, it is helpful to frame them in a more

formal framework. In the philosophy of art, the problem at stake is frequently

discussed under the name of the Physical Object Hypothesis (POH). Adapted from

Mag Uidhur (2013, 8, fn. 4), the reasoning of the (POH) can be summarized as

follows,

Physical Object Hypothesis (POH):

(POH)1 There are such things as artworks.

(POH)2 Artworks are either repeatable or non-repeatable.

(POH)3 Repeatable artworks cannot be coherently construed as concreta.

(POH)4 So, if there are such type of artworks, then those artworks must be

abstract objects.

(POH)5 There are such artworks.

(POH)6 So, there are such things as artworks that are abstract objects.

In the philosophy of art, there seems to be general agreement that reasoning

along the lines (POH)1 to (POH)6 must be taken seriously.57

However, what exactly are repeatable artworks, and why can’t we construe

them as concrete objects? The common belief is that physical objects of the same

sort are different only if they do not occupy the same spatiotemporal location.

Now, when it comes to repeatable artworks however, the relevant identity

criteria are distinct for they can be in different spatiotemporal locations. As

Levinson summarizes,

 “Philosophers have long been puzzled about the identity or nature of the art
object in nonphysical arts, e.g., music and literature. In these arts—unlike
painting and sculpture—there is no particular physical ‘thing’ that one can
plausibly take to be the artwork itself.” (Levinson 1980, 5)

57 Wollheim (1968) and Wolterstorff (1980) are prominent examples; for an overview of the history

of the ontology of art, see Livingston (2008). For a survey of similar conclusions in other

disciplines, see Sanfilippo (2021).

3 The Problem of Creation meets Computer Programs

54

Put differently, unlike sculptures or paintings, repeatable artworks are

characterized by their inability to be singled out by specific/individual copies.

Not only can they survive changes in their material support, but they could also

have been made of different materials. Repeatable artworks are modally flexible

with respect to the matter they are made of. In the wake of these conclusions,

most scholars working on the ontology of artworks agree that the (POH) hence

calls for an investigation into the metaphysical nature of such art-abstracta.

Now, I submit that programs in the sense of the one introduced a few pages

ago (sect. §2.1) also violate the (POH) and must, therefore, also be understood as

abstract objects. Although programs undeniably differ from repeatable artworks

in many important ways, 58 they share the feature that’s crucial for the

applicability of the (POH) – repeatability. Let me unpack the reasoning behind

this claim to make sure that the argument holds; it essentially hinges on two

observations:

The first (and more straightforward observation) is that nothing in the logical

structure of the (POH)’s argument depends on ‘artworks’ per se. In principle, one

may plug in any other kind of entity ‘X’ as long as all of the six propositions

equally apply to the entity chosen. Importantly, in our case, we modify the (POH)

for our purposes and fill in the term ‘computer program.’ Second, in order to

assert that programs are abstract in the relevant sense, we need to make sure that

they indeed conflict with the modified (POH). For so doing, it is vital to look at

the second premise (POH)2, according to which programs are either repeatable

or non-repeatable. This leads us to the question – in what sense are programs

repeatable?

To answer this question, it is chief to note that ‘repeatability’ in this context is

the capacity of an entity to have multiple instances. Admittedly, ‘repeatability’

is not in the standard computer science vocabulary. Instead, it is customary in

the philosophy of (computer) science to speak of multi-realizability. ‘Multi

realizability’ is an influential notion in the philosophy of mind (Bickle 2020) and

is frequently employed in the discourse on physical computation (Milkowski

2016).59 In the context of computation, multi realizability then expresses the idea

that many distinct physical systems can implement the same sequence of

computations; they are so-to say, repeatable. As Duncan aptly summarizes

58 It is important not to misconstrue programs as artworks (though some programs might be).
59 In fact, as we have seen in my discussion on type-(B) implementation in the previous chapter,
it is the multi-realizability of physical computation that is thought to give rise to the so-called
triviality arguments. Since physical computation is not bound to a specific substrate, it can be
realized in many physical systems. Very roughly put, this versatility makes it difficult to draw
the boundaries between systems that compute and those that don’t (the problem of extensional
adequacy).

3 The Problem of Creation meets Computer Programs

55

“A software program, similar to a novel, is a generically dependent entity. A
particular software program does not depend on a particular independent entity
(such as a particular DVD or flash drive) in order to exist. Rather, a software
program exists as long as it is borne by some independent entity. For example, if
you destroy my DVD of Microsoft Word, Microsoft Word (the software program)

does not cease to exist.” (Duncan 2014, 38)

Now, none of this should strike us as controversial. After all, everything I said

so far is basically contemporary philosophical jargon for expressing that

programs – in the textual sense – are portable and frequently have copies. In fact,

one of the main points of developing high-level programming languages was to

develop a notational scheme decoupled from the underlying machines'

idiosyncrasies and make them portable (see Appendix A, Notational View). As

such, it does not make sense to speak of the location of a program. Just as there

can be many copies of the novel Sherlock Holmes, there can, e.g., be many

implementations of our textual example program.

3.2.4 Taking Stock

In order to apply the (PoC) to computer programs, we need to know what we

mean when we talk about programs and in what sense they are artifacts whilst

simultaneously thinking about them as abstracta. In line with these demands,

this section introduced a simple program as our conceptual laboratory (§2.1),

described how they are created, and discussed how the well-known (POH) from

the philosophy of art licensed us to think of programs as abstract (sect. §2.3).

So far, I have only introduced the (PoC) informally and in bypassing. In the

next section, I will flesh out the issue more rigorously.

3.3. The Problem of Creation

The Problem of Creation (PoC) is a philosophical problem from the philosophy

of art originally pertaining to works of literature, musical compositions, and

fictional characters (Deutsch 1991; Cameron 2008; Irmak 2020). In recent years,

the problem’s scope has successfully been extended to other metaphysically

puzzling entities, such as scientific theories (French & Vickers 2011; French 2020).

My goal in this section is to introduce the problem in general terms and provide

an overview of its potential answers. The purpose of this presentation is that it

will be helpful in eventually applying the (PoC) and its ramifications to the realm

of computing.

So here it is. When referring to the entity under scrutiny as X, the pattern of

reasoning of the (PoC) takes the following form:

3 The Problem of Creation meets Computer Programs

56

The Problem of Creation (PoC):

 X1: Xs are abstract objects (POH).

X2: Xs are created.

X3: Abstract objects cannot be created.

At first sight, there are good reasons to accept propositions (X1)-(X3) individually,

as all of them appear perfectly well-founded. The first proposition, (X1), hinges

on the validity of the (POH) that we previously discussed in sect. §2.3. In other

words, as long as the (POH) holds for whatever we plug in for X, X is an abstract

object in the sense that it is causally inefficacious. 60 Regarding the second

proposition, (X2), creation is typically regarded as a causal activity. On this view,

we are causing X’s existence. With this in mind, the last proposition, (X3), asserts

that abstract objects (i.e., objects lacking spatiotemporal location) cannot be

created, since it would require a causal process between an agent and a spatio-

temporal entity.

However, the three propositions are mutually inconsistent. This paradox has

sparked substantial debate for many years, leading to the question of which

proposition of (X1)-(X3) we are willing to reject. Accordingly, three major options

can be identified:

1. Platonism

2. Nominalism

3. Creationism

In a nutshell, each of these three positions is the result of rejecting one of the

(PoC)’s three propositions (X1)-(X3).

In what follows, it is vital to understand the metaphysical implications of each

of them because, as I will argue, they apply mutatis mutandis to computer

programs. Accordingly, each option will be mapped out in the separate

subsections (§3.1) to (§3.3). Since the following three positions can be discussed

on a general level (i.e., pertaining to a general metaphysical doctrine) and in

particular subdomains (mathematics, aesthetics, music, etc.), there is a

tremendous amount of literature to keep track of. To do justice to these different

options, it is worthwhile to illuminate the relevant details. While this may appear

as getting sidetracked too much into the philosophy of art, this ‘detour’ will turn

out to be helpful for identifying the corresponding notions for computer

programs.

60 The reasoning here is that most accounts of causation assume the relation between cause and
effect to be a spatiotemporal relation in the realm of concreta.

3 The Problem of Creation meets Computer Programs

57

3.3.1 Platonism

Platonism is the view that posits the existence of abstract objects, which are non-

physical and non-mental entities that exist outside of space and time. Under

contemporary Platonism, abstract objects are unchanging and entirely causally

inert, i.e., they cannot physically interact with other objects (Balaguer 2016).

Accordingly, abstract objects’ existence is deemed mind-independent and does

not crucially hinge on us. As such, Platonism is one of the potential answers to

the (PoC): In order to resolve the paradox, Platonists endorse that there are

abstract objects (X1) and that they cannot be created (X3), while denying, that X

is created (X2). Put differently, the view advocates that abstract objects are not

created but exist independently of us.

Philosophers have applied this metaphysical view to a wide array of things

that people have considered to be abstract objects: Logico-mathematical objects

like numbers, propositions, universals, words and sentences, fictional characters

like Donald Duck and Sherlock Holmes, and repeatable artworks like novels and

musical compositions. In principle, endorsing Platonism does not require one to

be a Platonist about this entire list of objects. In other words, one can follow a

piecemeal approach and be a mathematical Platonist but favor non-Platonist

proposals when it comes to fictional characters or computer programs.

Accordingly, there may be different reasons to maintain a Platonistic outlook

towards different entities X. For instance, some philosophers have defended

mathematical Platonism due to mathematics’ essential role in science. 61

Especially Putnam (1971) and Quine (1976) argued that we should believe in the

existence of abstract mathematical entities because of mathematics’

indispensability in the empirical science. In the literature, the argument is known

as the ‘Quine-Putnam indispensability argument’ (Colyvan 2001b; Liggins 2008;

Colyvan 2024).62

Besides that, some philosophers consider, e.g., works of music to be abstract

objects and endorse a form of musical Platonism (Kivy 1983; Dodd 2000; Dodd

2002; Dodd 2007; see Kania 2013, 198-205 for a summary of contemporary

musical Platonism).63 In this vein, Dodd, e.g., contends that musical works are

abstract eternal types, where the latter correspond to sound structures that we

can discover. Musical Platonism (and Platonism in general), hence denies musical

works (and many other abstract objects) the status of artifacts. As a response, the

composition of a musical work cannot be seen as an act of creation but instead

61 There are many different versions of mathematical Platonism (Bueno 2020, 92; Linnebo 2024).
62 Despite the name, the Quine-Putnam argument differs from Quine’s and Putnam’s individual
positions. I will not delve into the details and plausibility of the overall argument here.
63 Similarly, Richard Wollheim (1968) argues that literary works are types of which copies are
tokens.

3 The Problem of Creation meets Computer Programs

58

should be understood as a ‘creative discovery’ where composers bring to light

something already ‘there’ (Dodd 2000, 427-434). So, whenever someone (or

something) produces, say, a melody m, they produce a token of the type (i.e., a

‘melody m sound structure’). N.b. though, when considering non-mathematical

candidate abstract objects, we arguably lack any comparable indispensability

argument that would warrant ontological commitment to them. Musical

compositions or fictional characters are different from the kind of things that are

indispensable to our best scientific theories.

Moreover, unlike the discovery of mathematical proofs or theorems (which

can go wrong), Beethoven could not have made a mistake with his ‘discovery’ of

the Archduke Trio (Sharpe 2001). As French (2020, 102) remarks, musical

compositions thus seem to be conceptually dependent on their creative act in

such a way that the process could not lead to anything other than the work.

However, there is no such dependence when it comes to the discovery of

mathematical proofs. Put differently, while mathematicians can devise a flawed

mathematical proof, it is questionable whether a musical composition can be

wrong.

The point of contrasting these different forms of Platonism is that the view

may be corroborated – or argued against – by differing arguments pertaining to

specific entities. These considerations are essential to remember when turning

our attention to computer programs. Before moving on to the next answer of the

(PoC), I must still mention one of the main points of contention of all forms of

Platonism – the process of discovering abstract objects. While Platonists see it as

a benefit not having to account for the creation of abstract objects, the flip side is

that it poses a challenge of explaining how we can know of and discover these

objects.

In the philosophy of mathematics, some aspects of the issue are discussed

under the label of the Benacaref Problem. The problem is named after Paul

Benacerraf, who first presented it as a challenge for mathematical realism in his

‘Mathematical Truth’ (Benacarref 1973). The problem has been widely influential

and is thought to generalize to Platonism of other abstract objects (Clarke-Doane

2016). The argument concerns our lack of epistemic access to mathematical and

other abstract objects. Generally speaking, epistemic access arguments start with

the assumption that causal relations give rise to our cognitive apparatus. 64

64 Benacaref formulated the argument in terms of a causal theory of knowledge. Today’s
majority of philosophers deny that it holds in full generality. Many, therefore, resorted to
Field’s (1980) presentation of the problem that is couched independently of any theory of
knowledge. For the sake of the current somewhat coarse-grained presentation of the topic, I
omit the details for now; see, e.g., (Clarke-Doane 2016, 20-22) and (Cowling 2017, 135-138) for
more detailed discussion.

3 The Problem of Creation meets Computer Programs

59

Perception, for instance, crucially hinges on the causal interaction between agents

and the world. In so far as perception and other causal cognitive processes

furnish us with much of our knowledge, it is difficult to envision how we might

acquire knowledge or justified beliefs about some subject matter without

standing in a causal connections to it (Cowling 2017, 131). Absent any further

qualifications, this reasoning suggests that our ability to gain knowledge of

subject matters from which we are causally isolated is moot. As such, the

Platonist about any X should also address the epistemological challenge of how

we can have access to X as a causally efficacious entity.

3.3.2 Nominalism

Nominalism, sometimes dubbed ‘anti-realism,’ is the second main answer to the

(PoC). This metaphysical position rejects proposition (X1) by maintaining that a

candidate abstract object X does not exist or turns out not to be abstract after all.

In the latter case, we need to think of X in terms of some suitable concrete

replacement. Put briefly, there are thus two principal flavors of nominalism

(Kania 2013, 207-208), as one can reject the (PoC)’s first propositions in two

different ways:

(a) Eliminativism: According to eliminativist theories, entities/objects X do

not exist at all,

(b) Materialism: According to materialist theories, the objects X in question

do exist but not as abstract objects

As with Platonism, the scope of Nominalism can vary greatly (e.g., some may

wish to eliminate only specific entities from our ontology). One of the standard

appeals of these options is that they are thought to be metaphysically

parsimonious as they do not posit the existence of ‘mysterious’ abstract objects.

Although (a) and (b) bear some similarities in terms of motivation, it is helpful

for conceptual clarity to discuss them separately.

Option (a): Eliminativism

The distinguishing claim of option (a) – Eliminativist theories – is to deny the

existence of entity X (e.g., mathematical objects, universals, repeatable artworks,

and so on) wholesale.65 According to an all-encompassing form of Eliminativism,

there are only concrete objects (a shared commitment with option (b)), but none

of them are identifiable with the abstract object in question; according to

65 N.b., as with Platonism, one may choose a piecemeal approach and only endorse an
Eliminativist attitude for specific entities.

3 The Problem of Creation meets Computer Programs

60

particular forms of Eliminativism, we should only deny existence to specific

objects. What are some of the strategies to motivate this view?

One prominent line of reasoning in this regard is how mathematical

nominalists occasionally attempt to reconstruct the usage of mathematical

language (in science). Hartry Field’s rejection of the indispensability argument of

mathematics is a prominent case in point. Field (1980) argues that mathematics

is dispensable to science by exemplifying how we can avoid its usage in

Newtonian gravitation theory.66 Often, his and other’s approaches in this vein

are dubbed mathematical fictionalism since our mathematical statements do not

turn out to be true (due to their not being any corresponding mathematical

entities) (Balaguer 2023).

Outside the realm of mathematics, philosophers with an Eliminativist leaning

have employed similar strategies of avoiding reference to the to-be-eliminated

abstract objects. For example, while those who wish to eliminate works of music

from our ontology would admit that there are performances, recordings, creative

actions of the composers, etc., they would deny that any of these can be identified

with the musical work itself – ergo, there are no works of music.67 Note that as

earlier in the mathematical, this conclusion raises urgent questions; if works of

music do not exist then what exactly are we talking about when speaking of

musical compositions? The point is that similar pressing questions generalize to

all sorts of seemingly abstract entities X that are supposed to be eliminated from

our ontology.

One of the main strategies to answer these sorts of questions is paraphrasing.

The idea can be understood against the backdrop of Quine’s criterion of

ontological commitment defended in his influential article ‘On What There Is’

(Quine 1948). According to Quine, the usage of a statement containing a name or

singular term of the form ‘There is some X’ commits us to the existence of the

term X (or anything fitting that description).68 The idea of paraphrasing is to

rewrite our sentences in such a way that we can eschew reference to the particular

entity, and therefore avoid ontological commitment to it.

66 Another prominent series of objections against mathematical indispensability arguments can
be found in the work of Penelope Maddy; see, e.g., Maddy (1992).
67 As Kania (2013) clarifies in his overview of musical Nominalism, only a few have opted for
the elimination of musical works. Rudner’s (1950) is arguably the closest position in that regard
(though, according to Kania, it is possible to interpret his account as Materialist). Other
Examples are Cameron’s (2008) ‘There Are No Things that are Musical Works’ and Steven
French’s and Peter Vicker’s work based on it (French & Vickers 2011; French 2020).
68 Strictly speaking, Quine’s criterion only applies to theories (i.e., sets of sentences) formulated
in first-order predicate logic that contain existential and universal quantifiers. We thus need to
translate a sentence in question into first-order logic and then assess its ontological
commitments based on what the translation quantifies over (Bricker 2016).

3 The Problem of Creation meets Computer Programs

61

Exemplifying the procedure for musical works will clarify matters. According

to the proponent of the paraphrasing strategy, to talk about (abstract) works of

music is to merely ‘superficially’ talk about these abstract entities. While talking

about works of music might be very useful and common practice in everyday

life, it turns out the fundamental furniture of the world does not include such

works. This can be made sense of by claiming that sentences like ‘There are

musical works’ admit two systematically different kinds of uses (Dorr 2005;

2008). According to Dorr, we may use sentences in a superficial and fundamental

way. So, when we engage in everyday life talk about works of music in plain

English, we are said to merely talk about matters in a superficial way. What really

matters, though, is our ontological commitment when we speak about entities in

a fundamental way (sometimes philosophers call this fundamental language

Ontologese).

Despite the claims of Eliminativists that their view is ontologically simpler, it

requires a considerable amount of theoretical underpinning for accepting such

philosophically thorny concepts like ‘fundamentally’ and ‘Ontologese.’

Additionally, one may reasonably doubt that consistent and plausible

paraphrases can always be found for sentences involving the entity X that they

want to eliminate.69

Option (b): Materialism

According to option (b) – materialist theories – entity X is not actually an abstract

object but something concrete. In the case of musical works, candidate concrete

manifestations are score copies, performances, recordings, playing records of

musical performances, and so on (Tillman 2011, 15).70

Analogously to the previous metaphysical views presented so far, one may be a

materialist about some things while taking a different stance about other entities.

Tillman aptly captures some of the alleged merits of (musical) Materialism:

“Some of the advantages of any form of musical materialism are obvious […]: if
musical materialism is true, there is no mystery about how a musical work can be
created, temporally located, and hearable.” Tillman (2011, 28)

Note that Tillman’s explanation applies to Materialism in general (as opposed to

Materialism about musical compositions specifically) by erasing the adjective

69 For a short version of this argument, see (van Inwangen 1977, 303-304); for an in-depth
analysis of the problems associated with paraphrasing, see (Wetzel 2009, 53-92).
70 Matters are further complicated because most metaphysicians distinguish between
endurantism and perdurantism; see Appendix A, the Physical View. In line with this
distinction, Tillman maps out the different options (Tillman 2011).

3 The Problem of Creation meets Computer Programs

62

‘musical.’ While this sort of parsimony is generally regarded as one of the merits

of Materialism, it does not come without challenges.

 Most notably, Materialism typically flies in the face of our beliefs informed

by our practices. For instance, according to musical Materialism, a musical work

is a concrete object or event; likewise, mathematical objects like the number 3 or

√-17 would be physical. As explained earlier when introducing the (POH), the

decisive point is that many practitioners and philosophers of art consider (due to

their repeatability) their works to be abstract. Now, what is the reply to this

situation?

In defending musical Materialism, Caplan and Matheson (2006) supply an

answer that may be extended to other forms of Materialism. Given the (POH)’s

insights, they also reject that a musical composition is identical to an individual

concrete performance. Instead, the authors identify works of music with the

mereological sum of all the performances, scores, and other concrete particulars.

However, as Wollheim previously pointed out (Wollheim 1968, 6), considering a

work as the totality of all its copies potentially poses problems. Equating the

work with the class of its copies may be problematic since the former may be

finished, whereas the latter is not (since new copies are created or old ones

destroyed). Moreover, any proponent of such a fusion strategy needs to explain

the relation between the alleged copies of a class; put differently, one needs to

spell out what qualifies them as an appropriate member.

3.3.3 Creationism

The last alternative to solve the (PoC) is Creationism (sometimes also called

‘abstract creationism’). Creationism refers to those views according to which it is

possible to create abstract objects. In other words, creationist views embrace (X1)

and (X2) while rejecting (X3). Similarly to the previous options, the view is a

theoretical umbrella for a host of different proposals about different entities

(Friedell 2021). Rather than cataloging all of them, I canvass a few sources and

the most crucial features that typically underpin them. One of the main

motivations to be a creationist (about works of literature) is described by

Deutsch, who states that

“[…] authors do not literally discover their stories. Conan Doyle did not
somehow find out that the proposition that Sherlock Holmes is a detective is true
in the stories he set out to write down. On the contrary, he simply stipulated that
this proposition is to be true in the stories. Anyone who holds that literary
creation is not literal creation but rather literal discovery, has a great deal of
explaining to do.” Deutsch (1991, 212)

Deutsch’s doubts about the discovery of ‘stories’ may also apply to other kinds

of abstract entities. Many practitioners and philosophers alike believe that (at

3 The Problem of Creation meets Computer Programs

63

least some) abstract objects are the result of human creation. Popper (1978), for

instance, argued that next to the world of physical states and that of mental states,

there is a third ontological category (“World 3”) that contains abstract (cultural)

artifacts like the American Constitution, Beethoven’s Fifth Symphony or

Newton’s theory of gravitation. Similarly, in his ‘Creatures of Fiction,’ van

Inwangen (1977) argues that fictional characters require a placement in their own

ontological category (that enables them to be abstract yet created) and Searle

(1995) notes that many cultural and institutional entities can be brought into

existence (through the intentional act of merely representing them).

Arguably, one of the most sophisticated frameworks in this regard is Amie

Thomasson’s artifactual theory (Thomasson 1999). Rooted in the

phenomenological tradition and work of Roman Ingarden (1979), the artifactual

theory was initially developed to tackle the ontological status of fictional

characters. Roughly put, as per Thomasson, fictional entities are contingently

existing abstract objects – called abstract artifacts. The important thing is that

similarly metaphysically puzzling entities like works of literature, symphonies,

constitutions, money, and perhaps computer programs can all be characterized

as abstract artifacts, too (since they are all abstract, created, and may cease to

exist).

One standardly evoked objection against her or similar proposals is that

recognizing abstract artifacts requires an updated category system. The problem

is that abstract artifacts do not fit into the traditional abstract-concrete dichotomy.

Although abstract artifacts also lack spatial location, they are not timeless – they

were created at a particular time and place and may cease to exist. As such, they

do not fit into the realm of eternally unchanging platonic objects (Thomasson

1999, 37-38). Hence, the challenge for the creationist is to provide an adequate

category system (with at least one more category) for abstract objects that are

created.71 (Based on simplicity criteria, the admission of additional ontological

categories is too hard to stomach).

Another point of contention concerns the act of creation. The worry with

creating abstract objects is that there should be no causal interaction between the

abstract and concrete, as the concrete domain is typically considered causally

closed. In response, some abstract Creationists have suggested that the physical

can stand in a causal relation with the abstract or have challenged the idea that

creation is a causal process. For instance, Irmak (2020) argues that existential

dependence (featured in the artifactual theory) allows for the non-causal creation

71 The artifactual theory offers a theory of existential dependence, introducing varying degrees
of mental and material dependence and their relation to each other. According to Thomasson,
this idea eventually leads to a multi-dimensional ontology – a system of existential categories
that has much less trouble hosting previously metaphysically troublesome appearing entities.

3 The Problem of Creation meets Computer Programs

64

of abstract artifacts. While creation still involves causal interactions, the

interactions in question are between concrete objects and/or events but not

between the creator and the abstract object itself. All that the creation of abstract

objects involves is the manipulation of the entities and events on which the

existence of abstract artifacts depends.

3.3.4 Recapitulation

This section placed a magnifying glass over the (PoC) and sketched the three

main options to solve the issue. By doing so, I shed light on what kind of

philosophical issues we must think about and what sort of answers we can

expect. The upshot is that none of the three previously portrayed philosophical

positions is internally inconsistent or incoherent – each of them is a defensible

view. However, that said, each position also faces serious objections. Thinking

through these objections requires reflecting on broader, long-lasting

metaphysical puzzles regarding causation, the abstract-concrete dichotomy,

ontological parsimony, paraphrasing, and so on. The task now consists of sorting

out to what extent these issues carry over to the realm of computing.

3.4 From Art to Computing

The earlier sections have set the stage for understanding the ontological status of

computer programs under the (PoC) framework. Due to their multiple

realizability, it is reasonable to consider computer programs created in high-level

programming languages as abstract objects. Furthermore, I briefly mentioned

that our understanding of how programs are created is supported by a wealth of

literature on their production. Based on these initial findings, I submit that we

can also apply the (PoC) to computer programs:

The Problem of Creation (PoC) applied to Programs:

 P1: Programs are abstract objects (POH).

P2: Programs are created.

P3: Abstract objects cannot be created.

As I will now show, transposing the (PoC) to computing supplies us with an

updated, metaphysically sound range of answers to my initial question about

what kinds of (abstract) things programs could be. Having identified (i) a

Platonistic stance, (ii) a Nominalistic stance, and (iii) a Creationist view as the

main contenders, I now explore the plausibility of each of these options when

applied to programs.

3 The Problem of Creation meets Computer Programs

65

3.4.1 Are Programs Platonic objects?

One of the main options for viewing programs as abstract objects is under the

umbrella of Platonism. On this view, the source code of my example (GCD)

program turns out to be a non-physical and non-mental entity existing out of

space-time. Given the wealth of different Platonistic frameworks available today,

the claim may have different motivations. As far as I can tell, two approaches

have been sketched so far – an indirect and a direct one:

The first, the indirect one, stems from a mathematical outlook on computer

science and its objects. (I call this position indirect because it is primarily

informed by a certain stance on mathematical objects and not directly on

programs itself). Due to the pervasive employment of logico-mathematical

concepts in computer science, its practitioners may view programming as

essentially a mathematical activity.72 Although my previous survey about the

potential answers to the (PoC) revealed that there are nominalist alternatives

concerning mathematical objects, Mathematical Platonism remains a widely

embraced option.

In a recent critical review of Turner’s Computational Artifacts (Turner 2018),

Selmer Bringsjord essentially expressed a version of Mathematical Platonism

about programs when arguing, contra Turner, that

“I doubt very much that there are any artifacts of computer science. The reason is
that the core elements of computer science are logicist, and as such are
immaterial. As to computer engineering, well, yes, that might be a rather different
story, but it is one we ought to ignore: we are discussing not philosophy of
computer engineering, but of computer science.” (Bringsjord 2019, 340)

Although, Bringsjord appears to overlook the possibility that, as per abstract

creationism, artifacts can be abstract, his quote nicely encapsulates the fact that

computer programs are tightly interwoven with logic and mathematics that other

candidate abstract objects like works of literature and music are not. So, if you

believe that computer programs are some sort of logico-mathematical entities and

you simultaneously subscribe to Mathematical Platonism, then you are indirectly

committed to (your preferred version of) Platonism about programs.

The second approach, the direct one, suggests that computer programs are

Platonic objects (without necessarily claiming that they are also mathematical

objects). Seeing things this way comes close to having a Platonistic attitude

towards works of literature and music encountered earlier. This view, therefore,

lends itself to conceptual borrowing from non-mathematical theories of

Platonsim. One very recent case in point is the work of Begley (2024), which

advertises a realist metaphysics of software maintenance. In clarifying his

72 See my elucidation on the Mathematical View in Appendix A.

3 The Problem of Creation meets Computer Programs

66

understanding of ‘software’ in this context, he also discusses the ontological

status of computer programs:73 Based on Katz’s Realistic Rationalism (Katz 1998),

in which an ontology of composite objects is defended, Begley claims that we can

identify software “as being a set of sets of program types” (Begley 2024, 180; own

emphasis, where we should understand the latter as “made up of algorithms,

that is, generally, finite progressions of operation types.” (ibid.).

In particular, he compares algorithms to so-called discourse types (informed

by Katz’s theory of linguistic entities). Going into the intricate details of Katz’s

approach would lead us too far astray, but very roughly put, on this view,

algorithms are similar to novels, poems, and speeches since they are language

expressions, too. 74 Begley, therefore, seems to suggest a Platonistic stance

towards programs because of their similarities with these repeatable artworks;

he thus answers the (PoC) of computer programs with the Platonist option.

Methodologically, both the indirect and the direct Platonistic view in its

current form leave a couple of questions unaddressed. 75 First, as with any

Platonist theory, there is the drawback of epistemic access type arguments and

the unintuitive result that programs are not created and cannot be destroyed;

instead, they can be found and lost. Applied to my initial example program, one

must reconcile how our ordinary understanding of programming as a creative

activity is compatible with the notion that the source code depicted in Fig. 3.1

was ‘discovered.’76

Second, pertaining to the indirect view (that regards programs as

mathematical objects of some sort), it remains somewhat unclear which of

computer science’s entities in the computational hierarchy are supposed to be

Platonic objects. While I limited my focus on a particular LoA, namely the

program’s source code, the proponents of the indirect view might be better

advised to maintain their Platonic stance towards algorithms. On this view, one

could, for instance, maintain that the (GCD) algorithm implemented in our

exemplary C-program is a Platonic object, while the source code is not.

Lastly, regarding the direct view, providing a more precise distinction

between programs and algorithms would be beneficial. For instance, although

Begley informs the reader that his account is informed by the practices of

theoretical computer science (formal program verification and computational

73 In the following, I will only focus on his elucidations on programs to keep things simple.
74 This interpretation is possible because, as mentioned earlier in the Introduction (see also
Appendix A, the Mathematica. View), the concept of ‘algorithm’ is subject to many different
interpretations, too.
75 I stress ‘current form’ here, because both views have not been fully developed yet.
76 This is essentially the concern that Bringsjord expressed in his quote about computer
engineering.

3 The Problem of Creation meets Computer Programs

67

complexity are explicitly mentioned), his view not only seems to equate

programs and algorithms but also maintains that the latter are primarily

linguistic entities.

3.4.2 Nominalism about programs?

The second main line of answers denies the existence of programs qua abstract

objects. What exactly are the ramifications of the stance regarding programs?

From the perspective of (the philosophy of) computer science, such anti-realistic

attitudes are perhaps the most unexpected or implausible views. Not

surprisingly, the most motivating factor stems from broader metaphysical

principles, not computational ones. For example, one often-invoked argument to

reject abstract objects is Ockham’s razor. This principle advertises metaphysical

parsimony by stating that we should not unnecessarily introduce more (types of)

entities to our fundamental ontology than needed. As we have seen in the

previous section, there are two primary strategies to render the role of abstract

objects obsolete – the eliminativist and the materialist option. Let me treat them

in turn.

Eliminating programs

The eliminativist option seeks to deny the existence of abstract programs. Again,

at first glance, eliminating programs from our ontology may seem preposterous

as it completely runs against our intuition. (N.b., based on this intuition, I even

neglected what I called primary ontological questions (POQ) at the beginning of

my thesis and assumed that there, in fact, are programs). For instance, the very

fact that you are reading this was made possible by various computational aids

and computer programs. In light of these obstacles, the eliminativist thus has to

offer an argument that shows how our currently best theories in computer

science do not commit us to the existence of programs after all. How could such

an argument possibly look like?

One way to answer this question is to look elsewhere. For instance, despite

similar initial worries about other (ostensible) abstract objects, recently,

eliminativist-flavored approaches have gained currency both in the

philosophical discourse of art and science. Based on the work of Cameron (2008),

in which he defends a view that reconciles competing intuitions about the

existence of musical works by appealing to Ontologese (the language that only

refers to ‘fundamental’ entities), French & Vickers (2011) and French (2020) have

formulated an analogous proposal for scientific theories. Roughly put, Cameron

maintains that English sentences like ‘there are works of music’ are true despite

there not being actually such works. He relies on a meta-ontological view

3 The Problem of Creation meets Computer Programs

68

whereby ‘X exists’ can be true in English without committing us to an entity that

is X. Following suit, French and Vickers have amended Cameron’s theory to

accommodate scientific theories. Although, as far as I am aware, no one has

attempted to develop this particular way of thinking about programs, it seems

one of the most promising starting points. On this view, one would hence deny

the existence of abstract programs like my example C program. English sentences

about the abstract nature of programs would hence merely be a facon de parler

that can be paraphrased away.

However, given the absence of a fully worked-out eliminativist framework

for computer programs,77 it remains somewhat speculative which amendments

this view would have to make to accommodate programs. To start filling this

gap, I will briefly assess the situation after discussing the materialist option.

Materialism about programs

Despite everything I have said about the abstract nature of computer programs

in this chapter, the view that programs are material is not entirely unappealing,

as it could resolve many philosophical concerns pertaining to the metaphysically

troubling nature of programs. After all, many view computer programs as

physically executable entities that are involved in the causal pathway.

Perhaps the closest who expresses such a materialist position is Marcus

Rossberg. In his (Rossberg 2012), he discusses the destruction of works of art,

including computer art. In trying to supply an ontology for programs, he states

that

“A computer program itself is repeatable, of course; it can run on different
computers and at different times. In order not to jeopardize destructibility, we
can follow our now familiar method and opt for the plausible account of
programs (and operating systems) as equivalence classes of inscriptions. The
inscriptions will typically not be ink on paper but electronic and on some
computer storage device such as a hard drive, memory card, or old-school flopp
disk. Either way, such inscriptions will be concrete, physical objects” (Rossberg
2012, 73)

This orientation mirrors Caplan & Matheson’s (2006) fusion strategy we

encountered earlier. To recap, the authors maintained that musical works are not

abstract but the composite of all musical performances. To talk of abstract works

is to talk as if there were abstract entities (yet only such things as concrete

performances, score copies, and so on exist). Works reduce to linguistic items –

general names or descriptions – that serve as convenient tools to refer to certain

77 Kittler (1993) is an exception. However, his essay was arguably meant to be a polemic
commentary on how software products constrain the user instead of an attempt to eliminate
programs from our ontology.

3 The Problem of Creation meets Computer Programs

69

classes of concrete particulars (Goehr 1992, 16-17). In the case of a musical work,

works are no more than extensionally defined classes of performances.

Analogously, Rossberg suggests thinking of programs as equivalence classes

of inscriptions. However, alas, he, or anyone else for that matter, has not

provided the means to recognize the members of the corresponding equivalence

class. Similar to the (potential) eliminativist project about computer programs,

the materialist version remains, so far, in an infant stage.

In the wake of my explorative quest of charting the consequences of the (PoC),

let me point out some of the potential obstacles that both the here-developed

nominalist versions need to address to present themselves as viable alternatives.

One aspect that strikes me as worth discussing about Nominalism about

programs is whether it would leave our understanding of physical computation

intact. For instance, if one were to develop an eliminativist attitude towards

programs, it would stand at odds with today’s insights of the type-(B)

implementation literature (cf. Chapter 2), which necessitates a mapping between

abstract computational states and physical states. Dismissing the existence of

abstract programs not only renders the concept of mappings obsolete but also

raises questions about an alternative characterization of physical computation. 78

In so far as the problem of implementation is a special instance of the bridging

problem,79 the would-be eliminativist could be well-advised to take inspiration

from the debates about similar worries in the philosophy of mathematics.

Roughly put, nominalists face the challenge of explaining the astounding

applicability of mathematics in science, despite not being committed to these

entities. Since, on this view, mathematical objects do not exist, it becomes unclear

how referring to such entities can contribute to the empirical success of science.

Broadly construed, there are two different kinds of answers for the nominalist

(Bueno 2022): The first requires reformulating mathematical or scientific theories

to avoid commitment to mathematical objects, for instance, proposed by Field

(1980). The second one does not require the reformulation of theories; instead, it

explains how no commitment to mathematical objects is involved when using

these theories (e.g., suggested by Azzouni 2004). Going down either of those

roads would thus entail a complete revision of how most theoreticians have

thought about computational implementation until now. 80

78 As Curtis-Trudel (2022) recently pointed out, so-called unificationist theories of
implementation face serious objections in accounting for physical computation.
79 Typically, the applicability of mathematics is spelled out in ‘mapping accounts’ that establish
a correspondence between the mathematical and the physical (see Appendix B for an in-depth
discussion).
80 Of course, driven by ontological parsimony, nominalists can choose an anti-realist attitude
towards physical computation, so none of what I said would be their concern.

3 The Problem of Creation meets Computer Programs

70

Likewise, if one were to develop a materialist attitude about programs, one

would also have to revise the current solutions to the Problem of Implementation.

To recap, roughly put, the crux is how to differentiate physical systems that carry

out computations from those that do not. Again, the reason to rethink the issue

is that it is no longer sensible to couch the problem in terms of a mapping between

abstract computational states and physical states; according to the materialist,

our ontology does not entail the former but only the latter. Materialists, hence,

need to establish a criterion to define an equivalence class of inscriptions to

distinguish electronic inscriptions on computer storage devices, memory cards,

or old-school floppy disks from other random physical states. For example, they

likely do not want to include electronic states in appliances like toasters or rice

cookers to count as inscriptions of computer programs.

3.4.3. Are Programs Abstract Artifacts?

Viewing programs as artifacts has grown in popularity among philosophically

inclined scholars in recent years (Lando et al. 2007; Faulkner & Runde 2010; Irmak

2013; Duncan 2014; Turner 2011; 2014; 2018; Wang 2016; Sanfilippo 2021). 81

Today, these views arguably dominate the, albeit scattered, literature on the

ontological status of computer programs (see Appendix A). However, perhaps

reflecting the novelty and relatively fragmented state of the debate in general, a

consensus has yet to be formed about which theory of artifacts we ought to

subscribe to. Two popular conceptions stick out.

On the one hand, there is the Computational Artifact View (Lando et al. 2007;

Turner 2011; 2014; 2018). In the previous chapter, we encountered this view when

discussing the different notions of type-(A) implementation. Remember – the

takeaway was that the approach is based on the technical artifact literature. The

latter postulates a duality between structural and functional properties, where

the structural side is satisfied by the physical objects involved and the functional

side by intentionality (e.g., Kroes 2012). Although technical artifacts were initially

devised exclusively for physical systems and their causal structure, the novelty

about computational artifacts is that they supposedly also account for abstract

objects and their abstract structure. As Turner proposes, we can employ formal

languages to account for a computational artifact’s abstract structure:

“At both the functional and the structural level, computational artifacts employ
formal languages for the expression of their functional and structural properties.”
(Turner 2018, 29)

81 See Appendix A for a more detailed summary and comparison of the positions.

3 The Problem of Creation meets Computer Programs

71

So, while computational artifacts retain the structure-function duality, their

structure is no longer physical but symbolic in nature. It will be useful to bear this

last point in mind until after my discussion of the second main option.

 On the other hand, there is the view that programs are temporal abstracta

(Irmak 2012). In arguing that most philosophical explanations of software have

failed to recognize its artifactual yet abstract nature, Irmak started to develop such

a view. 82, 83 Interestingly, his account is directly informed by Thomasson’s (1999)

artifactual theory and, thus, a bona fide example of abstract Creationism. In

particular, he thus rejects the idea that programs are eternal mind-independent

objects. Instead he suggests that a program is an abstract artifact, i.e., a temporal,

nonspatial, repeatable, and a contingent entity that exist due to a certain

purposeful creative act by one or more human agents. As per Irmak, we should

therefore avoid regarding programs as types (which are typically seen as platonic

objects; cf. Begley’s (2024) position) and should not think of their implementation

in physical systems in terms of the type/token distinction.84

Although both views arrive at virtually the same conclusion – i.e., that

symbolic programs like my example (GCD) one written in C are best seen as

abstract objects that can be created – their different intellectual heritage reveals

some crucial philosophical differences: First, the notion of abstract artifacts

developed in the arts does not have its roots in the technical artifacts literature

and, hence, usually does not bear any additional normative function. Put

differently, they are not characterized in terms of the function-structure duality

that (according to the contemporary type-(A) implementation literature) is said

to be essential for the correctness criteria of computational artifacts. Second,

coming back to the nature of the symbolic structures mentioned above, notice

that the abstractness of computational artifacts hinges on the assumption that

these formal language expressions are abstract. While we have seen throughout

this chapter that this is a widely embraced view (particularly under Platonism

and Creationism), there are Nominalist alternatives undermining the idea.

Given both these shortcomings, future studies could try to merge the

computational artifact with the abstract artifact view. In addition, it is paramount

to note that both views have, so far, virtually remained silent about the standard

objections against Creationism: the problem of how abstract objects can be

82 In an email conversation, Irmak told me that ‘software’ may be used interchangeably with
‘program.’
83 The work by Wang et al. (2014a; 2014b) and Wang (2016) further refined Irmak’s original
proposal by focusing on the identity criteria of programs in the context of code changes. However,
as stated in the general Introduction (Ch. 1), I will abstain from delving into the debate on when
two programs are the same.
84 Unfortunately, no alternative approach for the implementation is suggested.

3 The Problem of Creation meets Computer Programs

72

created and the potential costs that come with an updated ontological category

system that is needed to accommodate abstract objects that may start and cease

to exist. For instance, in so far as we would endorse the abstract artifact view

about programs, we would have to adjust our standard abstract-concrete

distinction accordingly.

3.5 Discussion & Conclusion

Coming from the UTAI framework, I began this chapter with the quest to

illuminate how some entities under the umbrella term ‘computer program’ are

abstract objects. Conceiving programs as abstracta then led me to turn my

attention to the notorious Problem of Creation (PoC) from the philosophy of art.

Since the premises of the (PoC) are jointly inconsistent, philosophers have

developed three main lines to debug the case. Each line comes with its own

benefits and costs. While the (PoC) presents rich philosophical material, a

systematic overview of the tradeoffs involved in adopting Platonism,

Nominalism, and Creationism about programs has virtually been neglected in

the philosophy of computing. In this chapter, I address the issue directly and

argue that the concept from philosophy or art remains effective when applied to

computer programs. Prima facie, it is not obvious which standard options to reject

and which we ought to favor. If the philosophy of computing, particularly the

debate on the ontological status of computer programs, keeps growing into an

independent enterprise, then we can expect a hefty research program to flash out

these potentially defensible views for computer programs precisely in the coming

years.

Given that this reads more like the beginning than a conclusion to this

chapter’s question, I want to close by immediately responding to a possible

objections. Particularly, one may object something along the following lines:

‘Well, your presentation hasn’t solved anything – you didn’t answer the question

you posed initially (about creating programs). All you did was raise additional

questions. Even if all of this about the (PoC) is correct, you have now plagued us

with even more options we need to consider. Wouldn’t it be better to narrow,

rather than widen, the scope of options?’

I agree that a definitive answer would be preferable (like in most

philosophical puzzles). Yet, progress sometimes requires a step backward to

appreciate a topic from a clearer point of view. I strongly believe that this chapter

is a case in point. To defend this claim, let me briefly explain how embedding the

discourse of the ontological status of computer programs in the context of the

(PoC) can bring clarity to our discussions.

3 The Problem of Creation meets Computer Programs

73

Primarily, the tripartite distinction of Platonism, Nominalism, and

Creationism may act as a methodological blueprint for future studies within the

philosophy of computing. Although I very much sympathize with Abstract

Creationism about programs (mainly due to its descriptive adequacy of the

relevant practice), my analysis has shown that it would be philosophically

irresponsible to ignore the view’s vulnerability to broader metaphysical issues

(e.g., requiring an updated category system or explanation of how abstract

objects are creatable). In other words, the reason why I did not provide a clear

answer as to how programs qua abstract objects are created has to do with

metaphysics in general, not with computing in particular.85

Furthermore, by endorsing the (PoC), the philosophy of computing can

further mature through establishing a dialogue with contemporary metaphysical

debates. To paraphrase what Mag Uidhur (2013) expressed, albeit in the context

of the ontology of art – by pursuing this strategy, we can make the discourse

about the metaphysical nature of computer programs less insular and, therefore,

more attractive to new participants of the debate. For instance, seen through the

lenses of the (PoC), the sui generis dual nature of view of programs loses appeal.

Instead of positing metaphysically puzzling entities with a mixed ontology, my

proposal allows us to frame the debate about the ontological status of computer

programs in much more robust terms of existing debates on abstract objects. Like

in other metaphysical inquiries, where it is customary to distinguish between

types and tokens, universals and particulars, numbers and numerals, works and

their instantiation, we can now more clearly distinguish between programs, qua

abstract entities, and concrete manifestations. Importantly, this is not to say there

is no puzzle about how these abstract objects then bridge the abstract-concrete

dichotomy; this is, perhaps, still the significant puzzle that must be solved to fully

grasp the ontological status of computer programs.

As we transition to the next chapter, I will offer a novel account of the

relationship between these abstract objects and the physical systems that ‘realize’

them by devising a new theory of computational implementation.

85 In fact, some participants of the debate even believe that there is a sort of ‘stalemate’ between
the different positions. For instance, in his work on (mathematical) Platonism versus anti-
Platonism, Balaguer (1998). Grafton Cardwell (2020) and Friedell (2021) address the broader
philosophical commitments

4 Implementation-as: From Art & Science
to Computing

Following the UTAI framework outlined in Chapter 2, the previous chapter

systematically analyzed dependency relation (a)—how programs on an abstract

level are contingent on us. It is now time to explain how these programs are

implemented in physical systems. Put differently, we must examine what relates

the abstract and the physical. Here, dependency relation (b) becomes relevant.

How does the implementation rely on the epistemic agents who establish and

use these programs?

4.1 Introduction

Computability theory allows us to engage formally with computation in

mathematical terms. However, studying computation merely formally does not

provide any details about its physical implementation. The fundamental problem

that any account of physical computation must answer is how the two different

ontological domains of the formal and physical are related. In the literature, this

is known as the Problem of Implementation (Sprevak 2018; Ritchie & Piccinini 2018).

Solving the issue is essential for disciplines such as the foundation of computer

science, AI, robotics, and cognitive science. As a result, a vast literature of

potential candidate frameworks has been presented.86 Which of the proposals

truly captures the nature of physical computation?

In order to judge competing accounts, Piccinini (2007; 2015) presented a

convenient heuristic to evaluate them. Five desiderata were advanced:87

Desiderata of Physical Computation

(1) Objectivity: An account of physical computation should make it, at least in

part, a matter of fact whether a system is implementing a computational

function. The intention is to align computation with scientific practice and

scientific objectivity.

(2) Extensional Adequacy: An account of computation should avoid triviality;

in slogan form, it should proclaim that the right things compute (laptops

and perhaps brains) and the wrong things do not compute.

86 Some key sources that deal with (parts of) the Problem of Implementation are Putnam (1988),
Searle (1992), Copeland (1996), Chalmers (1996), Scheutz (1999), Klein (2008), Ladyman (2009),
Sprevak (2010), Milkowski (2013), Fresco (2014), Horsman et al. (2014), Rescorla (2014), Piccinini
(2007; 2015), Dewhurst (2018), Fletcher (2018), Mollo (2018).
87 I follow a slightly adjusted version of Duwell (2021) which merged “the right things
compute” and “the wrong things don’t compute” under “extensional adequacy.”

4 Implementation-as: From Art & Science to Computing

75

(3) Explanation: The computations performed by a material system should, at

least partly, explain its behavior and capacities

(4) Miscomputation: Sometimes, computation goes wrong. An account of

physical computation should account for faulty behavior.

(5) Taxonomy: An account of computation should be able to untangle the

different computational capacities of different systems (e.g., general

purpose or fixed purpose; analog, digital, or quantum).

Virtually all solutions propagate that there is an equivalence relation between the

computational formalisms of the mathematical theory of computation and the

putative computing system. Simply put, the idea is to establish a mapping f

between the sequence of states of an abstract model of computation MC and the

state transitions of a physical system S, such that 𝑓:SC→MC. However, to date, no

account of physical computation has championed all the others.88

This chapter contributes to the discourse by extending a promising recent line

of research. In a nutshell, the idea is that the metaphysics of implementation bears

notable similarities to scientific representation, as both relations rely on

mappings between the physical and the formal. However, as we will see shortly,

the idea still needs to be developed to its fullest. In this chapter, I respond to this

issue by developing the novel, more detailed implementation-as framework. What

sets this contribution apart from previous ones is that it relies on a specific notion

of scientific representation rather than a generic one. Implementation-as is

underpinned by the DEKI account (Frigg & Nguyen 2018), a formalized account

of scientific representation based on Goodman’s and Elgin’s representation as

originally developed in the philosophy of art. As I will show, the resulting

account squares well with the standard desiderata of physical computation and

is a viable alternative. Due to its agential involvement, it is especially suited for

computer science practice.

The chapter is organized into several sections: Section 4.2 describes the state

of the art of recent research to tackle the Problem of Implementation in terms of

scientific representation. In section 4.3, I introduce the DEKI account. To facilitate

discussion, I follow Frigg and Nguyen in introducing their account by appealing

to the MONIAC, a hydraulic analog computer. In section 4, I transpose the DEKI

account’s features to the computing realm, giving rise to Implementation-as.

Next, I evaluate this new theory of implementation against the five desiderata of

physical computation. Lastly, I close with a brief discussion and comparison of

Implementation-as to existing physical computation accounts.

88 Of course, it is a viable option to take a pluralistic stance concerning accounts of computation.

4 Implementation-as: From Art & Science to Computing

76

4.2 Scientific Representation Accounts in Computing

Scientific representations concern a wide array of phenomena. One may use

diagrams, mathematical equations, or material objects for representations in

science. Most generally, any representation that is the result of scientific practice

may be deemed a scientific representation. In this chapter, we are primarily

interested in the case of (material) scientific models and how they represent.

To recap, in Chapter 2 we already encountered these scientific instruments,

when proposing them as a remedy to link together type-(A) and type-(B)

implementation. Particularly, I described how scientists use models to represent

real-world or hypothetical systems for explanations, prediction, and

confirmation. As such, philosophers of science typically characterize scientific

representation as the relationship between a model M and its dedicated target

system T as 𝑓: 𝑀 → 𝑇. What’s crucial to remember for the current discussion is

the following: While one then may use computational methods to model or

simulate various real-world targets, philosophers of computing warned that one

should not confuse the ability to model a system computationally with thinking

that it also genuinely computes. At first sight, one is therefore well-advised to be

cautious about using modeling techniques to solve the Problem of

Implementation.

However, despite these worries, a new line of research proposed to couch

implementation in terms of scientific representation and modeling. Let’s call this

approach the Scientific Representation account (SRA). Although this research

cluster is still relatively scattered, it differs from traditional proposals of physical

computation because it argues that the mapping relation f explicitly needs to be

understood as a form of scientific representation. This perspective is based on a

combination of epistemological, metaphysical, and historical considerations.

For instance, when developing a model of computation called L-machines,

Ladyman (2009) suggests that physical computation might be contingent on

(scientific) representation. Another case in point is Care’s (2010) historical study

shedding light on the use-centric history of analog computing as modeling.

Likewise, but from a philosophical angle, Papayannopoulos (2020) highlighted

the conceptual commonalities between analog computers and analog models

(when developing a notion of analog computation). Arguably the technically

most detailed account in that vein today is the Abstraction/Representation (AR)

Theory introduced by Horsman, Stepney, Wagner, and Kendon (2014) and

developed further in several publications.89 Horsman and collaborators provide

sophisticated ‘commuting diagrams’ in virtue of the representational triple

89 Horsman (2015, 2017), Horsman Kendon, Stepney, (2017, 2018) and Horsman et al. (2017).

4 Implementation-as: From Art & Science to Computing

77

〈𝑚𝑖, 𝑓, 𝑠𝑗〉, where f is perceived as some general scientific representation account,

and mi and sj corresponding computational and physical states, respectively.

Subsequently, Fletcher (2018), Szangolies (2020), and Duwell (2021) critically

assessed (AR) Theory under philosophical considerations and concluded that the

approach is a viable contender if formulated in agential terms.

Importantly, these new SRAs reject the idea that something is physically

computing because we can model it computationally. What the SRAs are after

instead is the commonality of the metaphysical nature of the mappings involved

in scientific representation and computational implementation, respectively. In

both cases, we require a relation that links the physical and formal realms.

However, there remains a limitation with existing SRAs: So far, they merely

allude to scientific representation in vague or generic terms. This lack of clarity

is problematic since there is a wide range of scientific representation accounts,

with isomorphism accounts, similarity accounts, inferentialism, and fictionalism

being the most prominent options (Frigg & Nguyen 2021). Each option requires

us to adopt significantly different or opposing metaphysical and epistemological

assumptions. Utilizing differing notions of scientific representation can,

therefore, lead to substantially different SRAs and understandings of concrete

computation. For instance, if we used Suppes’ isomorphism account (2002),

according to which scientific representation is a two-place relation reducing to

isomorphisms between structures, the resulting account of physical computation

would be no different from some traditional mapping accounts in the physical

computation literature. If, on the other hand, one were to follow Cohen &

Callender's general Griceanism approach (2006), which suggests that anything

may represent anything else (by mere stipulation), then scientific representation-

based computation would be in danger of collapsing into (interpretational)

pancomputationalism. So, without answering ‘Which account of scientific

representation should we use to portray computational implementation?’ the

development of SRA remains unfinished.

I will set out to change this shortcoming in the course of this chapter. To do

so, I will acquaint us with the DEKI account in the next section. This brief

familiarization with the DEKI will be paramount for an improved SRA called

Implementation-as.

4 Implementation-as: From Art & Science to Computing

78

4.3 Scientific Representation, Representation-as, & DEKI

4.3.1 From Art to Science

Despite the seeming simplicity of scientific representation’s underlying idea,

precisely defining it is a contentious matter. One successful problem-solving

strategy has been to seek answers in the study of art and languages. A case in

point is the notion of representation-as, introduced by Nelson Goodman and

Catherine Elgin (Goodman 1976; Elgin 1983). According to their theory of

symbols, there are three fundamental ‘modes of reference’: (i) representation-of;

(ii) Z-representation; and (iii) representation-as. This tripartite distinction stems

from the observation that many representations represent an object as something

else. A common pictorial example is caricatures. Take for instance the depiction

of Winston Churchill as a bulldog. Letting ‘X’ stand for the representing thing (a

caricature); ‘Y’ for the thing represented (Winston Churchill); ‘Z’ stands for the

kind of representation (a bulldog). The caricature features all the relevant

distinctions of representation at once. First, the caricature is a representation-of

Churchill, because it denotes the former English Prime minister. Secondly, the

caricature is also a Z-representation, where here ‘Z=bulldog’ since it exemplifies

the features of a bulldog. Thirdly, the caricature represents Churchill as a

bulldog, because the bulldog features (such as being stubborn or resilient) are

imputed to him. In the remainder of the chapter, such XYZ-triplets with their

corresponding notions of denotation, exemplification and imputation will be

chief for understanding the notions of representation-as and implementation-as,

respectively.

Subsequently, philosophers such as Hughes (1997), Elgin (2010, 2017), and

van Fraassen (2008) appropriated the representation-as conception to the

scientific realm. In what follows, I introduce what arguably is the most

sophisticated of such accounts: Frigg and Nguyen’s DEKI account.

4.3.2 The DEKI Account

In a recent number of publications, Frigg & Nguyen (2017 2018, 2020, 2021)

introduced their so-called DEKI account, providing a full-fledged and

systematized account of scientific representation based on representation-as.

DEKI applies both to material models and non-concrete models.90 I follow suit

with the authors to discuss the account based on a material model – the Philips-

90 Importantly, the account has been developed independently of the Problem of
Implementation.

4 Implementation-as: From Art & Science to Computing

79

Newlyn machine (also known as MONIAC).91, 92 Standing about 2m tall, more

than 1m wide and almost 1m deep, the device comprises several see-through

plastic tanks and tubes filled with colored water. Attached to the tanks are

pulleys, sluices, gauges, and pens (used to plot graphs). The design of the

machine uses pumps and gravity to let water accumulate in different reservoirs

containing floats that drive the different components in the mechanism

depending on the water level.

Qua scientific model, the purpose of the machine is to model a national

economy by the circular flow of water – the flow of the water stands for the

exchange of commodities. Each of the machine’s tanks corresponds to different

features of an economy (national income, governmental spending, etc.).

Depending on the configuration of the mechanical components of the MONIAC,

different amounts of water accumulate in the different tanks, allowing the

modeling of various economic scenarios. Fig. 4.1 shows a simplified scheme of

these components and how they enable the device to work in connection with

the notion of representation-as.93

Frigg and Nguyen suggest formalizing these considerations through Elgin’s

and Goodman’s analysis of representation in the art world. In case of the

MONIAC, they explain that

“[…] the idea behind the machine is that hydraulic concepts are made to
correspond to economic concepts. This means that we turn system of pipes and
reservoirs into an economy-representation by interpreting certain selected X-
features as Z-features. The water in a certain reservoir is interpreted as money
being saved; the level of water in the reservoir is interpreted as a quantity of

money; and so on.” (Frigg & Nguyen 2020a, 166)

Since denotation, exemplification, and imputation constitute the core of

representation-as, they also find application in their full-fledged account of

scientific representation. To be informative in the scientific arena though, a fourth

element – the notion of a ‘key’ – is introduced. Keys are meant to adjust model

features to target features, because typically model features can rarely be

91 The name MONIAC (standing for ‘Monetary National Income Analog Computer’) is more
common in the US, where the coinage of the term was due to economist Abba Lerner “to
suggest money, the ENIAC, and something mechanical.” (‘The Moniac’ 1952, 101).
92 Multiple authors have provided technical descriptions of the machine, its underlying
economic theory, and its history (see e.g., Phillips 1950; Newlyn 1950; Barr 1988; Bissel 2007;
Morgan 2012, 172-216).
93 N.b., there is a difference when applying the XYZ-triplet to models like the MONIAC as
opposed to caricatures. Whereas the latter can rather straightforwardly be identified as, e.g., a
bulldog-representation, it is much less obvious how the MONIAC’s water-filled pipes and tanks
are supposedly an economy-representation. The problem is that the machine does not instantiate
actual economic features. For the sake of modeling, scientists hence need to translate the flow of
water into the ‘flow’ of commodities under an agreed-upon interpretation.

4 Implementation-as: From Art & Science to Computing

80

transferred unaltered to a target (e.g., one may need a scale factor or a conversion

of units). Together these four salient features form the acronym DEKI. In sum,

the following picture emerges:

Fig. 4.1: Schematic depiction of the MONIAC at work, representing an economy

through the flow of water. Applying the XYZ-triplet and the corresponding

notions of denotation, exemplification, and imputation to a scientific context

results in the notion of representation-as. Roughly put, X takes on the role of the

(material) model (e.g., a tank filled with water); Y takes on the role of the target

(e.g., an economy); Z takes on the role of the exemplified features of the

representing object.

DEKI-account

A model is defined as an ordered pair 𝑀 = 〈𝑋, 𝐼〉, where X is an object and I is an

interpretation. I is what turns a selected object X into a model. M represents Y as

such and so iff conditions (1)-(4) are met:

(1) An interpreted object X (the model M), like the MONIAC, denotes a target

Y (e.g., the British economy).

(2) M exemplifies Z-features. For instance, to be an economy representation,

the MONIAC needs to exemplify economy-features (Z-features).

However, often scientific models do not directly exemplify the required

Z-features. The MONIAC e.g., is nothing but a sophisticated collection of

pipes and tanks filled with water; it only has such-and-such dimensions,

weighs so and so many kg, has n-number of components, etc. It merely

instantiates the flow of water; it does not realize economic features such

as the exchange of commodities. To turn such a model’s features into the

required Z-features, we need to resort to the interpretational capacities of

the designers and users. Only under a specific agreed-upon interpretation

4 Implementation-as: From Art & Science to Computing

81

I are the scientists licensed to translate features of their model into Z-

features I :X → Z.

(3) There is a key K that systematically translates the exemplified Z-features

{Z1,…, Zn} of the model, into another set of Y-features (the features of the

target). In the case of the MONIAC, units of volumes of water (that are

interpreted as the flow of commodities) must be translated into units of a

specific currency. Furthermore, the time of the machine operating must be

translated into the time of economic cycles. Depending on the denoted

target, a key may associate one liter of water with e.g., 1 million pounds

or 5 million US dollars.

(4) M imputes at least one of the ‘keyed-up’ features to the target. If the users

of the MONIAC are interested in say, only tax revenue, they might only

impute one single feature (corresponding to tax revenue) to the target.

The result is an intentional conception of scientific representation, as all its

features (1)-(4) require different interpretations in the form of intersubjective

agreements of the scientists using them. Through the selection of an appropriate

material system, target phenomena are represented as something else. The

MONIAC for instance represents the flow of money as the flow of water.

What is interesting about the DEKI in combination with the MONIAC is that

under different assumptions, the very same device may be regarded as a special

purpose hydraulic analog computer instead of a scientific model. It thus serves as

an ideal gateway for establishing a link between scientific representation and

implementation.

4.4 From Science to Computing: Implementation-as

I will now transpose the DEKI framework to computational implementation. The

goal is to create a clear understanding of physical computation, especially an SRA

that utilizes a concrete concept of scientific representation. This results in the

introduction of implementation-as. The successful transposition requires a careful

adaptation of the original DEKI account to the computing domain. In the next

four subsections, I will show how the adaptation from the scientific arena to

computing plays out. The discussion unfolds along the most salient features of

the DEKI account, viz., denotation, exemplification, keying-up, and imputation.

4.4.1 Denotation

Generally, we need to think of denotation as the dyadic relation of a name (or

label) and a bearer it applies to. The relation is established by an interpretive act.

Elgin, for instance, states that “[r]epresentation- of— that is, denotation— can be

achieved by fiat. We simply stipulate: let x represent y and x thereby becomes a

4 Implementation-as: From Art & Science to Computing

82

representation of y.” (Elgin 2017, 253). Whilst originally a linguistic concept, she

argues that there is nothing intrinsic in the notion of denotation that would

restrict it to language only. Both symbols and what they denote can be of many

different types. Consequently, Goodman and Elgin both apply denotation to

other instances:

“Pictures, equations, graphs, charts, and maps represent their subjects by

denoting them. They are representations of the things that they denote. [...] It is
in this sense that scientific models represent their target systems: they denote

them.” Elgin (2010, 2; own italics)

In the scientific context, denotation is taken to establish a connection between a

model X and its intended target Y. Put differently, denotation establishes which

target is supposed to be represented. Now, I submit that denotation applies

mutatis mutandis to physical computation.

 At first, this may not strike one as surprising for denotation is also not an

unfamiliar notion in computing. For instance, the notion of denotational

semantics is paramount for computer scientists to formally determine the

meanings of programming languages. Likewise, when following popular

interpretations that computers are symbol manipulators, one may subscribe to

the view that the manipulated symbol structures denote information, data, etc.

In the literature of physical computation, the so-called semantic accounts turn such

a reading into a philosophical approach: as Fodor (in)famously proclaimed, there

is “no computation without representation.” (Fodor 1981, 180). The slogan

especially embraces the metaphysical assumptions underpinning those branches

of cognitive science that maintain that the brain computes. Exemplary of the

‘aboutness’ of neural computation is Marr’s hypothetical case of the apocryphal

grandmother cell (a cell that fires only when one’s grandmother is in sight) (Marr

2010, 15). Today, semantic accounts may come in vastly varying degrees of

commitment to what kind of processing of representations is essential for

computation. More recent versions, for instance, may share the most salient

constraints of some of the EMAs (e.g., causal, counterfactual, or disposition) but

call for the additional condition that computational states must be

representational (see Shagrir (2020) for an overview).

However, implementation-as should not be characterized as just another

semantic account. Importantly, when it comes to implementation-as the choice of

the potentially denoted target is restricted to the to-be-implemented sequence of

computations.94 So, in contrast to Marr’s example, denotation may not be used to

establish a dyadic relation to one’s grandmother or any other external events, etc.

94 In what follows, I will use expressions such as ‘sequence of computations’, ‘computational
formalism’, and ‘program’ interchangeably.

4 Implementation-as: From Art & Science to Computing

83

Here the notion is exclusively reserved for the relation between a material system

and a computational formalism P which specifies a sequence of computations.

Denotation: Establishing which computational formalism P is supposed to be

implemented in the putative material computing system.

As such, one of the key features of denotation (as a stipulative act) is that it

enables the programmers and users to specify which sequence of computations

ought to be implemented. Without denotation, we were not able to determine

which computational formalism or program P (instead of Q, R, S, …) is originally

intended to be run by the material device. What’s correct behavior in the

execution of P, may count as malfunctioning (miscomputation) of Q. And

without knowing what is supposed to be computed, we would be unable to judge

correct implementations from faulty ones. A prominent case from the

philosophical literature is captured by Kripke’s remark about Wittgenstein’s

hypothetical rule-following machines:

“How is it determined when a malfunction occurs? By reference to the program
of the machine, as intended by its designer, not simply by reference to the
machine itself. […] Whether a machine ever malfunctions and, if so, when, is not
a property of the machine itself as physical object but is well defined only in terms

of its program, as stipulated by its designer.” (Kripke 1982, 34f)

Assigning a physical system or device to perform a certain task rather than

another is not exclusively limited to computation but rather ubiquitous to

technology. In computing specifically though, we then assign the teleological

function to compute a specific mathematical/computational function P to a

material system; denotation is chief for specifying which computational function

P is supposed to be implemented. What makes function ascription (in the

teleological sense) a special case when it comes to computing is that we

exclusively assign the execution of a rule or mathematical/computational function

to a system. When assigning teleological functions like brewing coffee to a coffee

machine, driving screws into a wall to screwdrivers, etc., the assigned functions

concern physical properties and activities (e.g., pouring hot water onto ground

coffee) and not formal, mathematical, or computational ones. This raises the

question, how can concrete material systems exemplify computation?

4.4.2 Exemplification

Objects and systems can exemplify all sorts of properties in multiple ways. For

instance, caricatures can exemplify bulldogs by pictorial means. In everyday life,

properly working coffee machines exemplify concrete mechanisms that enable

them to brew coffee. In the scientific realm, models like the MONIAC require an

interpretative element since the hydraulic device, on its own, cannot exemplify

4 Implementation-as: From Art & Science to Computing

84

economic properties without our intentions. I submit that the same scenario

holds for computation: physical systems can exemplify computational properties

by turning selected features into computational states through interpretational

exemplification. Analogously to the modeling case, we can define

interpretational exemplification as

Interpretational Exemplification: I: X → ZC. Turning selected X-features into

computational states ZC through an interpretation.

Accordingly, this characterization enables physical systems, which would

otherwise merely be mechanical, hydraulic, or electronic, to act as computing

systems by turning selected features into computational states.

However, prima facie such unlimited interpretational freedom is problematic

as almost any object could count as a computing system by mere stipulation,

violating the extensional adequacy criterion. Therefore, pragmatical and

theoretical factors constrain potential exemplification, particularly the selection

of (i) suitable interpretations and (ii) adequate X-features. Combined, these

factors will determine why we take some physical systems to be computational

and others not.

The advantage of agential SRAs (in contrast to other interpretational theories

of computational implementation) is that they can establish a more rigorous

foundation for suitable interpretation by adhering to the theoretical insights of

how scientists use interpretations when engaging in scientific modeling. The

DEKI account, for instance, informs us

“[w]hile one is initially free to choose [X]-properties and Z-properties freely, once

a choice is made, representational content is constrained. […] Free choices, once

made, are highly constraining. This is why models are epistemically useful.”
(Frigg & Nguyen 2018, 214)

Thus, it is necessary to agree upon and subsequently hold fixed the selected X-

features and their interpretation as computational states under a one-to-one

relation. Choosing a different set of states X = {X1,…, Xn} requires a new

interpretational process for every new candidate set of computational vehicles.

While agreement and fixation are necessary to employ objects like the

MONIAC as a computational device, they do not suffice. Taking a rock or wall,

arbitrarily picking out some of their properties as X-features, and holding these

fixed, still does not turn them into useful computers. Here, additional pragmatic

and conceptual considerations come into play.

Similarly to the case of scientific models, there are additional pragmatic

factors that constrain the choice of X-features. One of these factors is successful

use. When selecting physical states as computational vehicles for usage, we

typically select programmable vehicles we can reliably configure according to

4 Implementation-as: From Art & Science to Computing

85

our desires. Put differently, we should be able to put the system into a specific

initial state (from a set of potential input states) to compute the output of our

chosen computational problem. Moreover, a particular physical device is useful

to us as a computer only when its salient states are distinguishable by us with

our measuring devices. Only when this condition is met can we extract the results

implied by the computational formalism we are interested in. Other practical

considerations may include the system’s reliability in repeating computations.

Conceptually, it is essential interpret only those physical states or carriers (X-

features) as computational vehicles that demonstrate a sufficient degree of

counterfactual state transitions. This demand aligns with the literature on

scientific representation and the overwhelming consensus of the various EMAs.

Therefore, it is paramount for agents to select (and usually construct) potential

computational vehicles that exhibit a reliable degree of counterfactual

dependence. Such counterfactual support is chief for using scientific models for

surrogate reasoning and turning computational devices into epistemically

fruitful instruments. To better understand this, consider the following two

quotes. Concerning scientific models, Bokulich for instance reminds us that

“[…] in order for a model M to explain a given phenomenon P, we require that
the counterfactual structure of M be isomorphic in the relevant respects to the
counterfactual structure P. That is, the elements of the model can, in a very loose
sense, be said to “reproduce” the relevant features of explanandum
phenomenon.” (Bokulich 2011, 39)

In the same vein, Piccinini provides a summary in his (2015, 19-25), showing that

it is wide consensus that the microphysical state transitions of a material

computing system require counterfactual support:

“In other words, the pure counterfactual account requires the mapping between
computational and microphysical descriptions to be such that the counterfactual
relations between the microphysical states are isomorphic to the counterfactual
relations between the computational states.” (Piccinini 2015, 19)

What this means in the case of the MONIAC is that different calibrations of the

knobs, valves and tanks filled with water need to bring out reliable changes in

behavior. ‘If the input/initial conditions had been different’ the output must be

different accordingly. Such counterfactual support is crucial for the

implementation of a computational function. Only if the X-features are chosen in

such a way that different set-ups yield different interpretable outputs can

material models/computers such as the MONIAC be used to model target

systems like an economy or a computational formalism. 95 Controlling these

95 These computational states correspond to a model of computation; in the case of the
MONIAC, the model of computation is characterized by a set of differential equations. Often,

4 Implementation-as: From Art & Science to Computing

86

counterfactual dependencies of computational devices is what enables to

physically program these machines and use them to compute functions.

Together the conditions about interpretation (agreement and holding it fixed),

and selection of X-features, where some are of pragmatic nature

(programmability, distinguishability, reliability) and some of conceptual nature

(counterfactual state transitions), are jointly sufficient to restrict those things that

don’t compute. (I will talk more about this in sect. 5).

4.4.3 Encoding a Labeling Scheme

To recap, while denotation specified which computational formalism is

supposed to be implemented, interpretational-exemplification imposes which

properties of a putative computing system are taken to be as computational

states. So far, these two steps are insufficient for the implementation of

computations, for we only determined that something may act as a computer (not

what it actually computes). Scholars of physical computation widely agree

though that one needs to specify the conditions that a computational system

implements one computation rather than another (IDENT). Now, in order to

relate exemplified computational states to a specific model of computation, we

need to define for what kind of computations they are employed.

One crucial aspect for determining such a computational profile is to allude

to the notion of a key. According to DEKI, exemplified properties are ‘keyed up’

with properties that are supposed to be imputed to the target. While the name

‘keying-up’ is inherited from the DEKI account, I suggest resorting to the more

common terminology used in computing, where the discussion is usually framed

under the label of encoding or fixing a labeling scheme (cf. Copeland (1996)).

Encoding a labeling scheme: Relating the set of interpreted computational

vehicles ZC with a set P={P1,…, Pj} of states that are presumed to be imputed

to the targeted computational formalism.

In what follows, I introduce the arguably two most relevant types of encodings

for computing. 96 The two types roughly correspond to analog and digital

computers respectively.97

the seminal paper by Pour-El (1974) is taken as the theoretical basis for models of analog
computation. For a survey of such different models see Bournez & Pouley (2021).
96 Whether the two types of keys are exhaustive or not, such that there might be other kinds of
keys relevant for computing – for instance, in the case of quantum computing – is the subject of
future research.
97 In the context of computing, the digital/analog distinction is a vexed issue; simply put there
are two major camps: According to one view, analog computation is understood as an analogy
(the behavior of a damped spring-mass might be modeled by electronic components that
analogously showcase similar behavior); according to the second view, the operation of an
analog computer should be understood based on the manipulation of continuous values. An

4 Implementation-as: From Art & Science to Computing

87

The first type of encoding essentially hinges on the same idea as the keys

employed in material (scale) models. Certain physical magnitudes are selected to

scale with the chosen features of a target system. For example, Weisberg (2013)

and Pincock (2022) discuss this in detail, based on the San Francisco Bay-Delta

model and a scale model of Lituya Bay for modeling rockslide-generated tsunamis,

respectively. However, in most cases, the selected X-features cannot be directly

imputed to the target Y. In the case of the just mentioned scale models e.g., the

key is not simply equivalent to the scale factor, as fluid dynamics don’t scale

completely proportional. 98 Similar keys are necessary for scaling in analog

computers. Ulman, for instance, describes that machine units of a given analog

machine must be adjusted to the denoted computational problem (cf. Ulman

(2013, 55 and 123-14) and Ulman (2020, §2.1 and 58)).

Based on the work of Lewis (1971), Maley formalized this idea, developing

the so-called Maley-Lewis account that’s supposed to cover the case of analog

computation. Simply put the Maley-Lewis account captures the idea of scaling,

i.e., the more the representing physical magnitude ZC increases or decreases (in

a systematic way), the more the property that’s denoted in- or decreases. These

insights yield the formulation of the first type of encoding (cf. Maley (2011, 124)):

Type 1: Encoding (Scaling) by magnitude. As Z increases (or decreases)

by a margin d, Q increases as a linear function of X+d (or X-d); E:Z →P.

When it comes to the implementation of digital computation though, a digital

labeling- scheme is needed. As Maley explains, numbers are typically

represented by (i) a series of digits and (ii) a base. 99 A digit series is then

interpreted as the relative value of the digits. Translating this idea into a digital

version of a key, the second type of encoding is defined as:

Type 2: Encoding digitally (labeling scheme). A digital encoding E: Z →P

represents a number/symbol via its digits, where ‘digit’ means a symbol

(typically a numeral) in a specific place. In addition, we require a base,

which is used to interpret the relative value of digits.100

in-depth exorcism of the analog/digital distinction lies beyond the editorial scope of this
chapter.
98 And in the case of the MONIAC, we don’t even have a scale model of a Keynesian economy
at all, but an object where certain features are selected (X-features) such that their covariation
tells us something about the denoted target Y. Remember, physical quantities like ‘flow of
water’ must be related to ‘flow of money’ via a system of units.
99 By understanding ‘numbers’ in a loose sense, the method can be applied to symbols that are
part of an alphabet.
100 Formally, the digital representation of a number ‘𝑑𝑛 𝑑𝑛−1 … 𝑑1 𝑑0′ is captured by the formula
(𝑑𝑛 × 𝑏𝑛) + (𝑑𝑛−1 × 𝑏𝑛−1) + ⋯ + (𝑑1 × 𝑏1) + (𝑑0 × 𝑏0). In base 10 “sixty-five” e.g., is hence
represented as “65” (6*10)+(5*1).

4 Implementation-as: From Art & Science to Computing

88

Having elucidated how to determine a computational profile, implementation-

as requires a final step.

4.4.4 Imputation

Lastly, imputation is the final necessary component of the implementation-as

framework. As a first stab, “imputation can be analyzed in terms of property

ascription”, (Frigg and Ngyuen 2018, 217). Let me briefly return to the scientific

modeling context for the sake of clarifying what kind of properties are ascribed

to what. When scientists use a scientific model to reason about a target system,

they must be able to ascribe features of the former to the latter 𝑓: 𝑀 → 𝑇. Put

differently, we may thus say that the model imputes features to the target. The

MONIAC, a material model, imputes its exemplified (under an interpretation)

economic features to the dedicated target. I propose to appropriate this practice

to computing, such that material systems implement a computational formalism

(the analog to the target) by relying on imputation.

The reason why we appropriate imputation from representation-as to

computing is that we want to systematically relate the interpreted and encoded

computational vehicles of a material system to the denoted computational

formalism (cf. steps (1)-(3)). As such, imputation has a comparable function to

the mathematical notion of a morphism (relating physical states and abstract

computational states) evoked by the EMA.

Imputation: Ascribing encoded computational states to a computational

formalism.

But what are the ramifications of referring to the relation as an ‘imputation’

instead of a mapping? The philosophically relevant message is that the mapping

is stipulated by human agents: As an agential theory of implementation,

implementation-as relies on a, at least partly, mind-dependent notion of

computation – we use devices as an aid for our computational goals which

otherwise would need to be carried out by hand or in one’s head. Imputation can

be understood as the notion that relates the interpreted and encoded

computational vehicles of the surrogate system we use for computation with the

computational problem we wish to be solved. Implementation-as advocates for

a stipulated implementation-relation. Such a relation has two principal

advantages.

First, the advantage of a stipulated implementation relation is that it does not

stand at odds with the state-of-the-art insights of applied mathematics (see

Rescorla (2014, §4) for a similar remark in the context of computing). Called the

application- or bridging problem, philosophers of applied mathematics seek to

4 Implementation-as: From Art & Science to Computing

89

address the notorious issue of how the mathematical relates (or bridges) to the

physical. In a nutshell, the problem is that mere morphisms between physical

states and mathematical/states do not obtain, because strictly speaking functions

only obtain between set-theoretic structures (and physical substrates do not offer

such a unique structure (Psillos 2006, van Fraassen 2008)). In response, most

recently suggested solutions to the bridging problem state that the mappings

between the physical and mathematical are mind-dependent (Pincock 2004,

Batterman 2010, Bueno & Colyvan 2011, Nguyen & Frigg 2021). Put differently,

at least some stipulations of agents are needed to create a structure and hence

bridge the gap between abstract mathematical objects and concrete physical

states.

Now, in so far as theories of implementation need to spell out how logico-

mathematical models of computation relate to the physical, the problem of

implementation is a special instance of the application/bridging problem (see

Appendix B for a detailed discussion). Therefore, if not specified otherwise,

accounts of physical computation should preferably be in line with the insights

of the philosophy of applied mathematics. Imputation (a mind-dependent

notion) is explicitly compatible with this demand. Accordingly, computational

vehicles are associated with the logico-mathematical states of the implemented

computational formalism.101

The second advantage and essential feature of imputation is that it bears a

normative component – the pairing of exemplified features with features of the

computational formalism can be right or wrong, hence explaining

miscomputation. What’s right is determined by the denoted computational

formalism. Again, mere morphisms seem to fail the miscomputation-

desideratum.102 While the denotation-relation constitutes what is supposed to be

implemented, imputation is the relation that pairs exemplified computational

states and formal computational states (of the target). Only when imputation

matches all the elements of the physical computational states required for a series

of computations, then the denoted program P might be implemented correctly.

Strictly speaking, if there is a mismatch, the system may compute in a way it

should not; it is said to miscompute.103

101 The argument may pose a problem for naturalized or mind-independent theories of
implementation. The seriousness of this threat may be subject to future research.
102 For essentially the same argument against using morphisms in accounts of scientific
representation see (Suárez 2003).
103 There are various ways in which this computational norm can be broken. Fresco & Primiero
(2013), offer a detailed taxonomy of the miscomputation of software, stating that
miscomputation can occur at any level of abstraction, ranging from faulty specifications,
through the algorithmic level, down to the machine. At the abstract physical interface, errors
might be due to wear and tear or insufficient counterfactual support (Schweizer 2019, 38-40).

4 Implementation-as: From Art & Science to Computing

90

4.4.5 Taking Stock

Subsuming the various elements appropriated from the scientific representation

discourse results in an explicitly spelled out agential SRA:

Implementation-as

Let the ordered pair C=⟨X, I⟩ be a computational device, where X is a material

system and I an interpretation. Let P be the computational

formalism/program. C implements P as ZC iff all the following conditions are

satisfied:

(1) C denotes P.

(2) C exemplifies Z-properties Z1,…,Zn under an interpretation I :X → ZC.

(3) C comes with a computational encoding associating the set {Z1,…, Zn} with

a (possibly identical) set of properties {P1,…, Pm}. E{Zi}={Pj}

(4) C imputes at least one of the properties P1,…, P m to P.

The resulting framework is baptized implementation-as, acknowledging the

influence of representation-as from the philosophy of art and science. This

approach is methodologically different from previous accounts of physical

computation couched in generic terms of scientific representation like L-machines

or A/R-theory, because it builds on a specific scientific representation proposal.

Concretely, the framework deploys Frigg and Nguyen’s DEKI account of

scientific representation (of material models).

The takeaway is that analogously to how a material scientific model (based

on an interpreted object X) is used to represent a target system Y as thus-and-so,

the core idea of implementation-as is to use a physical system (based on an

interpreted object X) to implement a series of computations or a program P.

Simply put, the computational formalism is the target that is supposed to be

implemented. Both scientific representation and physical implementation are

instances of object-based reasoning. In the former case, we manipulate and

interpret a material model as a surrogate to reason about a target

system/phenomenon. Concerning the latter, we configure and alter (i.e.,

program) a physical computing system to obtain the result of a computational

function. As such, almost the entire DEKI-analysis of the MONIAC qua scientific

model equally applies to the machine when interpreted as an analog computer.

Having cashed out the main features of implementation-as, the remainder of the

chapter demonstrates how implementation-as applies to a case study (sect. 4)

before philosophically evaluating the novel theory (sect. 5) and concluding with

a discussion on how it relates to existing accounts (sect. 6).

4 Implementation-as: From Art & Science to Computing

91

4.5 Case Study: The IAS-machine

In this section, I will show how the concept of implementation-as is not just a

theoretical discussion or limited to an analog hydraulic computer but is also

applicable to a widely known and influential device called the IAS-machine.104

This machine embodies the architectural principles of the von Neumann

architecture, which is still commonly used today. First, I will portray the

components of the machine and how it was programmed in detail (section 4.1).

Next, I will demonstrate how implementation-as sheds light on how the machine

implements physical computation (section 4.2). As we will see, the application of

the implementation-as framework is relatively straightforward despite its, at

first, seemingly heavy formalism.

4.5.1 Technicalities and Programming

The IAS-machine was one of the first binary stored-program computers, storing

instructions and data in the same memory. For enabling these features, different

components need to act as different computational states. The designers relied

on vacuum tubes for the circuitry and Williams tubes (cathode ray tubes) for the

memory. These components then formed three basic units: 105

1. The main memory unit (M)

2. The Central Processing Unit (CPU): Containing Control-Unit (CU) and

Arithmetic-Logic Unit (ALU)

3. The Input/Output device (I/O)

Considering the functioning of these units and their underlying components in

detail further clarifies our understanding of how exemplification and encoding

work in the case of a stored program digital machine. So, let me briefly look at

each of these units in detail, starting with the memory.

104Many authors have provided technical descriptions of the IAS-machine, how it was
programmed, and its history (Burcks et al. 1946; Estrin 1952; Ware 1953; Bigelow 1980; Burcks
1980; Aspray 1990; Priestley 2018). It is a stored-program digital computer that was constructed
over the course of six years by a team of scientists and engineers under the leadership of von
Neumann at Princeton’s Institute of Advanced Studies (IAS). The machine was completed in
1952 and had a significant influence on future generations of computers in and outside of the
industry, both in the US and overseas e.g., ILLIAC, MANIAC (in Los Alamos), and the IBM 701
(Aspray 1990, 86-94).
105 These elements (or “main organs”) were mentioned in different forms by von Neumann
(1945), where they were called CA (central arithmetical), CC (central control), M (memory), I
and O (input and output devices) and R (some external recording medium).

4 Implementation-as: From Art & Science to Computing

92

The memory was of ‘Williams type’ and composed of 40 standard commercial

“off the shelf” (Bigelow 1980, 302) 5CP1A cathode ray tubes (relying on the

emission properties of cathode-ray-tube phosphor screens). It had 1024 storage

locations or memory addresses, called words. Each word is 40 bits long and may

contain (1) a number word or (2) an instruction word (see Fig. 2).

Fig. 4.2. Depiction of the two different types of words.

Instructions occupied two times 20 bits, where the first eight bits are opcode and

the remaining twelve bits indicate the address of a register. Overall, the

instruction set of the IAS machine contained 21 different instructions (Burks et al

1946, 42). A line of code of a program written for the machine then may look like

this 0000000100011111010000000101000111110101. The first eight bits (grey font)

are opcode and correspond to the instruction “[c]lear accumulator and add

number located at position x in the Selectron into it.” (Load M(xi)); the following

twelve bits correspond to a memory address x; the next eight bits (grey font) are

opcode and correspond to the instruction “[a]dd number located at position x in

the Selectrons into the Accumulator” (Add M(xj)). 106 It is sequences of bits like

these, composed of the machines’ specific instruction set that may comprise a

program P.107 As we will see, the reason why these details are relevant for the

application of implementation-as is that they warrant multiple, distinct instances

of interpretational exemplification.

Concerning the second main component, the CPU, the IAS-machine has seven

different registers (Accumulator, Arithmetic Register, Control Counter, Control

Register, Function Table Register, Memory Address Register, and Selectron

Register) of which only the Accumulator and the Arithmetic register are ‘visible’

to the programmer (both holding 40 bits).108 These registers utilized about 1700

106 For a more elaborate and detailed example see for instance Priestley (2018).
107 In the same vein, modern microprocessors are too compatible with specific ISAs (Instruction
set architecture), like x86, where “[t]he ISA serves as the boundary between the software and
hardware.”, (Hennessy & Patterson 2012, 11).
108 In today’s terminology the ‘Control Counter’ is known as Program Counter and has a 12-bit
width; the Control Register holds the instruction currently executing (20-bit width). The

4 Implementation-as: From Art & Science to Computing

93

to 2300 commercially available miniature double triodes, 109 where most of them

where of type 6J6 (other models used where 5670, 5687, and a few 6AL5 scattering

diodes). Like modern garden variety CPUs, it executes instructions of programs,

such as arithmetic (e.g., adding integers of above’s example program P), I/O

operations and logic controlling.

Lastly, the selected I/O components are an important element to consider.

They afford the interface through which the users can interact and program the

device. Without input mechanisms like punched cards, teletypewriters or

keyboards, programmers and users had virtually no reliable means to load

instructions or data into memory. In the same vein, the lack of an output medium

(e.g., some kind of screen) would render the computational system a black box.

It is these outputs however that ultimately need to be in tune with the denoted

computational formalism/program P. At first, the engineers of the machine

relied on perforated teletype tape which in late 1951 was replaced by IBM

punched cards (Bigelow 1980, 306).

What turned the IAS-machine into a digital one is that it was operated under

a digital encoding. This design choice both appealed to the intended logical

nature of the machine (‘being a yes-no system’) and facilitated the use of existing

electronic components (flip-flops), such that

“[o]ur fundamental unit of memory is naturally adapted to the binary
system since we don’t attempt to measure gradations of charge at a
particular point in the Selectron but are content to distinguish two states.
The flip-flop again is truly a binary device.” (Burks et al. 1946, 7).

In addition, the composition, or architecture, constituted by the three

interconnected units M, CPU, and I/O enabled the IAS-machine to store

instructions (and data) in memory. As such, the machine stands in contrast to

early digital machines like ENIAC or analog devices like the MONIAC that had

to be reprogrammed manually similar to plugboards or read instructions from

external tape.

4.5.2 Implementation-as at work

Equipped with some basic understanding of the inner workings of the IAS-

machine and how it was programmed, let me sketch how the most salient

features of implementation-as come to fruition. As explained throughout the

chapter, the core notion of implementation-as is that properties of the designated

Function Table Register holds the current opcode and is 8 bits wide, whereas the Memory
Address Register holds the current memory address and is 12 bits wide.
109 The precise number of triodes used in the machine diverge among different authors. Whilst
Estrin (1952) mentions 2300 triodes, Ware (1953) speaks of ca. 1700, and Bigelow (1980)
mentions about 2000.

4 Implementation-as: From Art & Science to Computing

94

computational vehicle are associated with the abstract computational states of a

computational formalism {P1, …, Pm} through a set of exemplified computational

states {Z1, …, Zn}. To implement a specific sequence of computations, the putative

computing system needs to undergo four steps: denotation, interpretational

exemplification, encoding, and imputation.

Here, we assume that the IAS-machine is our X, i.e., our vehicle of

computation. As discussed in the previous section, our X is composed of many

different components (e.g., cables, 6J6 triodes, …), forming three interconnected

units (M, CPU, and I/O). As such, it can be considered a computing system under

a series of fine-tuned interpretations I of some agent (typically the user of an

epistemic community who share the same conventions regarding a device).

Specifically, the IAS-machine then implements a computational formalism/

program P iff the following four steps apply:

(1) First, the device X denotes P. In the case of the IAS-machine, a typical

program P will look like a list of machine-code instructions each of 40-bit length

as just introduced in the previous section. As such, P acts as the normative

yardstick to evaluate executions between correct and faulty ones

(miscomputation). To eventually implement P correctly, different components

of the IAS-machine need to relate to different sections of the code.

(2) Second, given our agreed upon interpretation I, we note that the IAS-

machine exemplifies certain computational features {Z1, …, Zn}. According to the

general scheme outlined above, exemplification hinges on our interpretational

capacities I :X → Z. For instance, the previous discussion of the technicalities of

the IAS-machine showed that the following components play different roles in

exemplifying computational features: 5CP1A cathode ray tubes are employed for

holding data and instructions in memory; the CPU (with its seven registers) relies

on miniature triodes (mostly of type 6J6); the I/O used punched cards to program

the machine in order code.

(3) Third, one needs to choose an encoding or labeling scheme. Since the IAS-

machine was constructed as a binary digital computer, parting with the

“longstanding tradition of building digital machines in the decimal system”

(Burks et al. 1946, 7), it operates as a binary digital computer processing both

digital data and instructions in a binary format. Accordingly, we adopt a binary

digital encoding as described in sect. 3.3. Standardly, one then associates the

absence (considering a certain threshold) of the flow of charge as ‘0’ and the flow

of charge as ‘1’.

(4) Finally, the just encoded computational states {P1, …, Pm} are imputed to

our ‘targeted’ program P. Since computer scientists, programmers and users

4 Implementation-as: From Art & Science to Computing

95

usually opt for the correct implementation of computational artifacts, we ideally

require that the entire set {P1, …, Pm} is related to P.

To wrap up, the IAS-machine implements computations as the flow of charge.

The straightforward and successful application of implementation-as to the IAS-

machine suggests that this new agential theory of implementation can be applied

to other computers as well. Despite significant technical differences, many

modern computing machines still incorporate the basic architectural design

choices of this influential device. I believe that it is sufficiently complex and bears

enough similarities to the functioning of contemporary computers. Although

new technological advancements may lead to greater complexity, there is no

reason why implementation-as cannot be applied to these cases.

4.6 Is Implementation-as a good theory of computation?

At last, let me briefly evaluate the in this article developed theory of

implementation. The discussion proceeds along the lines of the desiderata of

physical computation introduced in the introduction (Sect. 1). As I will show,

implementation-as accommodates all the desiderata and should therefore be

considered a viable theory of physical computation.

(1) Objectivity. Nowadays, philosophers of science commonly agree that there

are considerable obstacles to cashing out theories of scientific representation in

naturalistic terms. That is why most approaches are formulated as intentional

conceptions (Frigg & Nguyen 2020a, 2020b). The DEKI account is a case in point,

for all its salient features hinge on scientists’ interpretational capacities. As

discussed at length, implementation-as inherited many of the key features – and

accordingly, it may be called an agential theory of implementation. Now, does

relying on interpretational features undermine the objectivity of implementation-

as?

The answer is nuanced. Reiss & Sprenger (2020) survey various conceptions

of scientific objectivity – as stated by Fletcher (2018) and Duwell (2021), theories

of physical computation based on agential notions of scientific representation

may only undermine an overly rigid notion of objectivity. Since implementation-

as appeals to agents and their stipulations, it may be incompatible with what

Duwell refers to as strong objectivity (i.e., an account of objectivity according to

whether a system is representational/computational is completely mind-

independent). However, relying on agential notions of scientific representation

does not undermine weak objectivity (Duwell 2021, 19). Accordingly, scientists

may reach intersubjective agreements if an object counts as a scientific model,

which parts of the world it is presumed to represent, and so on. Once such

4 Implementation-as: From Art & Science to Computing

96

intersubjective agreements are held fixed, practitioners may engage in scientific

reasoning without their personal preferences or any substantial personal biases.

Implementation-as adheres to standards of objectivity in these latter, less rigid

terms. Once the combined stipulative elements of denotation, interpretational-

exemplification, encoding, and imputation are agreed upon and held fixed,

computation under the regime of implementation-as is as objective as the

scientific practice of modeling and free of personal arbitrary beliefs, desires, and

intentions.

(2) Extensional Adequacy. A good theory of physical computation should

properly systematize paradigmatic computing systems (laptops, calculators,

smartphones) as computational; it should also judge instances of non-computing

systems as non-computational. The examples of the MONIAC and the successful

application to the IAS-machine show that implementation-as does not have

trouble classifying paradigmatic examples of computing systems as

computational. What works in the case of the IAS-machine, generalizes to other

real-world machines. In so far as the physical system exemplifies computational

properties that are keyed-up/encoded and imputed to states of a computational

formalism (which is denoted by the system), the system may implement the

formalism as such and so.

However, saying which systems do not compute proves more challenging.

The main concern is that without any restrictions on interpretation, any object

could be trivially turned into a computer by stipulative fiat. However, the

Implementation-as framework avoids this problem because it is a hybrid account

that relies both on interpretational aspects and mind-independent physical

features. In other words, it characterizes a computing system as C=⟨X, I⟩, where

X represents the physical features, and I represents the interpretation. As a result,

cases where neither condition applies ⟨0, 0⟩ are non-computational, as well as

cases where we bestow objects with an interpretation but where they lack

adequate physical features ⟨0, 1⟩ (such as Putnam’s rock or Searle’s wall).

Additionally, systems with sufficient counterfactual support ⟨1, 0⟩ but lacking

one or more of the four implementation-as features (denotation, interpretational

exemplification, encoding, imputation) are dismissed as being computational.110

According to implementation-as, physical computation only occurs when both

these elements come to pass simultaneously ⟨1, 1⟩. When visualizing the different

scenarios in a graph, the following picture emerges (Fig. 4.3):

110 One may call such kinds of systems ‘quasi-computational,’ because in many cases, it is still
desirable to analyze them in terms of computational.

4 Implementation-as: From Art & Science to Computing

97

Fig. 4.3: The ‘hybrid approach’ (having to rely on both interpretation and the right
degree of counterfactual support) ensures that implementation-as considers that
the right things compute and the wrong things don’t. Figure inspired by a similar
graphic in Artiga (2023) in a different context (teleological functions).

As can be seen, the extensional scope of the implementation-as framework is

smaller compared to those accounts that merely rely on counterfactual state

transitions (e.g., Chalmers 1996, Scheutz 1999). While such accounts need to bite

the bullet of limited pancomputationalism (because every counterfactual/causal

structure would compute some function), 111 my account does not suffer from this

defect because interpretational exemplification further limits what may count as

a computational vehicle. As previously explained, interpretations need to be

agreed upon and held fixed. Additionally, the selection of X-features needs to

follow practical considerations (programmability, distinguishability, reliability)

and rely on counterfactual state transitions.

(3) Explanation. According to the third desideratum, a good account of concrete

computation should be able to explain (at least some of) a system’s capacities

computationally. There are different ways to understand this requirement. On

the one hand, the computational properties of a system may be explained by

what it implements. For instance, the IAS-machine implementing our exemplary

program P explains why it adds integers the way it does, its efficiency, etc. Yet,

on the other hand, under implementation-as material systems may only

exemplify computational states if agents bestow them with the task to do so –

without the agent’s stipulations, the chosen vehicles are not computational. Does

111 This sort of pancomputationalism is limited, since, although it states that every object
computes, it does deny the much stronger thesis that these objects also implement every
possible computation.

4 Implementation-as: From Art & Science to Computing

98

this mean that computational explanations then merely reduce to agents’ desires

to use something as a computer? No, because as I have argued implementation-

as is a ‘hybrid’-account – the agents also need to choose suitable physical states

that may act as computational vehicles. That’s why the current framework must

additionally resort to the particular underlying scientific theories that describe

the behavior of the chosen vehicles. As such, the explanations offered by

implementation-as are no longer distinctively computational but may be

physical, chemical, or biological (cf. Duwell 2021, 37). In the case of the MONIAC

e.g., the flow of water is taken as a computational vehicle. To explain the behavior

of the machine, we must consult hydrodynamics and the scientific theories

describing the dynamics of the mechanical components.

(4) Miscomputation. One of the main advantages of interpretational accounts of

computation is the straightforward explanation of judging the (in)correctness of

a computational process. Unlike their naturalized counterparts, they do not have

to deal with the difficult issue of natural teleology. Instead, maintain that agents

bestow the computing system with teleological functions to compute. Therefore,

the philosophy of computer science borrowed some of the function ascription

frameworks from the philosophy of technology (Turner 2018, Anderson 2019).

As a result, an interpretational account of computation implementation-as can

accommodate different notions of miscomputation. Let me briefly discuss these

notions separately.

First, programmers and users may sometimes have disagreements about

which program is supposed to be implemented. Although it seems like an easily

avoidable mistake, denotation is crucial for determining (in)correct

computational implementation. This is because figuring out the precise

(teleological) function of a computing system is epistemically inaccessible and

cannot just be read off. Prominent computer scientist Weizenbaum brought up

this up in a thought experiment, stating that if one day in the distant future, a

highly advanced society would find one of our present-day computers, they

could never know with certainty to have gotten the alleged program P just right

(Weizenbaum 1976, 132ff.). Albeit a high degree of understanding might be

achievable through observing its output patterns, black-box testing and attempts

of reverse engineering, reclaiming absolute certainty of the computer’s

specification might be impossible. Likewise, Dennett (1990) comes to a similar

conclusion with a real-world example of a discovered ‘computer’ – the

Antikythera mechanism. The (teleological and mathematical) function of the

ancient Greek device was initially obscure, and today scholarship is still puzzled

by it.

4 Implementation-as: From Art & Science to Computing

99

Secondly, miscomputation may be caused by faulty imputations. As argued

above, faulty imputations may occur either through wear and tear or because of

insufficient counterfactual support. Both conditions lead to a mismatch between

the different execution traces of the denoted computational formalism MC and

the putative computing system.

(5) Taxonomy. Encoding a labeling scheme is crucial for determining for what

kind of computations a system may be used for. I described the encodings

corresponding to the arguably two most widespread instances of computing –

digital and analog. Accordingly, the encodings of the interpreted computational

vehicles enable us to discern two major kinds of computing systems and their

different capacities.

Furthermore, implementation-as does not need to allude to the ‘narrow’

notion of program execution only. When judging various accounts of physical

computation, Piccinini criticized some earlier approaches that would equate

physical computation with program execution, because this may raise trouble for

classifying systems that are said to compute by means other than running

programs. 112 Implementation-as does not need to appeal to the notion of

program execution in order to be applied successfully; nothing in its four salient

features hinges on program execution. Rather, whether a system can be classified

to compute by virtue of program execution depends on the denoted

computational formalism (and arguably on one’s definition of what a program

is).

In sum, the results of this brief evaluation showed that implementation-as

squares well with most of the desiderata. As such, it has the potential to apply to

two, traditionally separately discussed approaches of computational

implementation. On the one hand, it may retroactively apply to some of the

previously mentioned SRAs, specifically those that suggest a formulation in

agential terms (Fletcher 2018, Anderson 2019, Papayannopoulos 2020, Szangolies

2020, and Duwell 2021). On the other hand, the framework offers a modest

interpretational account of physical computation. Implementation-as is a modest

account because it draws on both interpretational and non-interpretational

features (e.g., requiring counterfactual state transitions). In contrast to previous

somewhat arbitrary interpretational accounts (according to which everything can

be regarded as computing through mere interpretation), the account presented

here clarifies how interpretational and non-interpretational features connect

abstract and physical computational states.

112 For instance, he argues that some neural networks compute by means other than program
execution (Piccinini2008). Another (potential) case in point is analog computers, where some
scholars believe that they compute despite not executing a program.

4 Implementation-as: From Art & Science to Computing

100

4.7 Discussion and Concluding Remarks

In recent years, transposing insights from the scientific representation discourse

into physical computation has resulted in a fruitful new perspective on

computational implementation: so-called SRAs. I have contributed to this trend

by providing a new rigorous description of a theory of implementation called

Implementation-as. What distinguishes my approach from previous SRAs is that

it relies on a concrete version of scientific representation rather than a general one

– the DEKI account of material models. The resulting account is a hybrid

approach because it depends on the users’ stipulative abilities and the physical

characteristics of the material system. The upshot is that implementation only

occurs when agents use the carefully chosen material object to model a desired

abstract computational formalism. In particular, agents may use a material

computing system as a computing device if they engage with denotation,

exemplification, encoding, and imputation. Combined, these four activities

portray the commonalities of physical computation as suggested by

implementation-as.

Importantly, my analysis showed that this new agential/interpretational SRA

makes the grade with many of the standardly evoked desiderata. For these

reasons, I submit that implementation-as is a promising alternative to existing

accounts of physical computation. To conclude I will briefly put my undertaking

into perspective, commenting on how my approach contrasts to prominent

existing accounts, in particular extended mapping accounts (EMA), semantic

accounts, and mechanistic accounts. But for reasons of editorial scope, I cannot

offer an in-depth comparison to the entire spectrum of currently available

approaches and refer the interested reader to full-fledged surveys.

It is widely accepted that simple mapping accounts (SMA) trivialize

computation due to unlimited pancomputationalism. This defect led to the

development of more sophisticated approaches: Counterfactual, causal, and

dispositional accounts extended the mapping account with restrictive conditions

that prevent too liberal mappings. In section 3.2, I discussed that implementation-

as also requires us to select suitable computational vehicles that can sufficiently

exhibit counterfactual state transitions.

Although implementation-as and ‘traditional’ EMAs share these similarities,

there is an essential difference between the two. Traditional EMAs assume that

the implementation relation is a naturalistic/mind-independently obtaining two-

place relation between physical and abstract computational states. In contrast,

SRAs generally advocate for an interpretation of the mapping by virtue of

scientific representation. This commitment is crucially different because many

available options of scientific representation are three-place relations obtaining

4 Implementation-as: From Art & Science to Computing

101

iff we allow agents and their intentional capacities into the picture. That is why

many SRA-proponents argued that they should be conceived as an agential

theory of implementation. The implementation-as framework makes this

explicit, and I argue that its successful application requires the mind-dependent

activities of denotation, exemplification, encoding, and imputation.

The semantic account further restricts EMAs by requiring that computational

states always carry meaning or semantic content. In a previous section (3.1), I

discussed the connection between my approach and semantic accounts. Both

SRAs and semantic accounts emphasize the importance of representation in

computation. However, there are notable differences how representation is used

and understood in both frameworks.

In the implementation-as framework, scientific representation is utilized to

bridge the gap between abstract computational states and physical states without

the need to commit to external content. In general, SRAs only have a minimal

requirement for content: physical states merely need to be the bearer of logico-

mathematical content (of the implemented model of computation). Any

additional semantic content or meaning the computational vehicles have, is

irrelevant to the successful application of SRAs and hence implementation-as.

(However, the user of the computing device may assign semantic content or

meaning to computations if needed). 113 In contrast, semantic accounts use

representation in a broader sense, where computational states may represent

external states of affairs (for example, grandmothers, when thinking of Marr’s

apocryphal grandmother cell). This sense of representation is more relevant to

cognitive science, which assumes that brain states are representational.

Regarding the relationship between Implementation-as and mechanistic

accounts, the question about their link is nuanced. Depending on which

mechanistic version one choses for comparison, there are different degrees of

shared commitments. Generally, mechanistic accounts state that functional

mechanisms are central to computing; computational vehicles need to be

components of a mechanism. In its current formulation, the implementation-as

framework does not specifically share that commitment. However, even though,

computational vehicles need not be part of a mechanism for the successful

application of implementation-as, nothing in the formulation of my account rules

out that computing systems C=⟨X, I⟩ cannot be mechanisms. In fact, both

previously discussed cases – the MONIAC and the IAS-machine – are bona fide

mechanisms. Future research should elucidate if this fact is accidental or whether

113 See Fletcher 2018, 452-53 for a similar discussion concerning AR-Theory.

4 Implementation-as: From Art & Science to Computing

102

a combination of the views might lead to an even more robust theory of physical

computation.

5 Physical Programmability

In line with the UTAI framework (cf. Chapter 2), the previous chapter introduced

a novel theory of computational implementation. As such, Implementation-as

illuminated how different features under the umbrella ‘program’ are connected

across the abstract-concrete dichotomy. This chapter sheds further light on the

physical side of things and scrutinizes the relationship between agents and the

physical system they program (dependency relation (c)).

Introduction & Motivation. How are programs integrated into the causal nexus?

What does it mean for a physical system to be programmable? Which of a

program’s features let it appear as physical entity? The strategy of conceiving

computation abstractly at a level of symbol manipulation and programs as sets

of instructions fails to account for the physical properties that render a system

programmable. For addressing these issues this chapter introduces the notion of

physical programmability. Physical programmability accommodates insights from

well-established research territories like (computational) mechanisms;

interventionism; human-machine interaction; theoretical computer science, and

is compatible with real-world examples. I propose that the ensuing

characterization of physical programmability

Physical Programmability: The degree to which the selected operations of an

automaton can be reconfigured in a controlled way.

Subsequently, the structure of this chapter unfolds like so: First (section §5.1),

I provide a critical overview of a handful of existing accounts concerned with the

programmability of sequence executing systems. Then, I introduce the novel

notion of physical programmability by presenting the various

elements/variables contained in its definition. Accordingly, I begin with

elucidating the conception of material automata (section §5.2). Thereafter (section

§5.3), I shed light on which kinds of operations are permissible to fall under the

scope of programmability by relying on the notion of mechanisms. Next (section

§5.4), I explain how ‘interventionism’ allows us to understand the

reconfiguration of programmable systems. Penultimately (section §5.5), I analyze

to what extent programmability comes in different degrees. Lastly (section §5.6),

I provide some concluding remarks and discuss various open questions.

5 Physical Programmability

104

5.1 A critical overview of Programmability

One way of thinking about programmability is in terms of the ability to change

the behavior of a sequence-operating system. We may program our VHS,

washing machine, or computer. Pre-theoretically, programmability is commonly

viewed as ‘the property of being programmable’ and applied to a wide variety

of different kinds of either virtual or concrete (computing) systems. However, a

characterization along these lines is circular and lacks rigor. Without further

analysis, such a definition of programmability remains uninformative at best.

Despite the importance of the notion (for computing), the literature on the

programmability of physical systems is scarce. To the best of my knowledge,

there are only a handful of sources that explicitly aim to elucidate the matter. To

get started, I will, therefore, conduct a thorough and critical assessment of the

proposals by Conrad, Zenil, Piccinini, and Haigh & Priestley. This in-depth

analysis will provide a comprehensive understanding of the existing literature.

As we will see, while differing significantly, these accounts coincidentally114

share four salient features of programmability: A specification of the type of

system programmability applies to (scope); the kind of operations it can perform;

the way in which re-programming is achieved; and a grading system according to

which programmability comes in different degrees. These four ingredients (cf.

table 1 at the end of this section) will subsequently serve as the kick off for my

refined physical programmability proposal.

5.1.1 Programmability as a trade-off principle

The formulation of a more rigorous notion of programmability was initially

attempted in The Price of Programmability (Conrad 1988). Conrad, a biophysicist

who studied biological computing systems, posits a trade-off principle that links

computing and evolution. He attributed three fundamental properties to these

systems: programmability, efficiency, and evolutionary adaptability. Inspired by

contemporary computing technology and the linguistic metaphor associated

with programming languages, Conrad characterizes programmability as the

“ability to prescriptively communicate a program to an actual system” (Conrad

1988, 286). By subsequent refinement, Conrad offers two more fine-grained

notions (that he deemed crucial for understanding the adaption of biological

systems): effective programmability and structural programmability.

Relying on the anthropomorphic notion of communication, a system is

effectively programmable “[…] if it is possible to communicate programs in an

exact manner, using a finite set of primitive operations and symbols, without

approximation.” (Conrad 1988, 287-88; own emphasis). Conrad contends that

114In fact, none of the illuminated approaches in this section cross-reference each other.

5 Physical Programmability

105

effective programmability is achievable in three ways: (a) by relying on an

interpreter, (b) by building a physical realization of the relied-upon model of

computation, and (c) by utilizing a compiler. Structural programmability builds

on effective programmability and bears the additional condition that “a program

is mapped by its structure” (ibid., 288). Put differently, some systems may be

effectively programmable but not structurally programmable. Conrad states that

only the first two ways, (a) using an interpreter or (b) building a physical

realization, suffice for structural programmability. The implication is that the

corresponding program of such merely effectively programmable systems would

not be mapped by their structure.

Despite capturing some intuitive notion of programmability, I have three

principal reservations about Conrad’s account: First, the definition of

(effective/structural) programmability fails to explain what kinds of

manipulations are permissible. Relying on the communication metaphor for

human-computer interaction obfuscates which physical properties are essential

for the device’s programmability.

Second, in the build-up of his argument, Conrad appears to rely on a dubious

understanding of the Church-Turing thesis, confusing computational modeling

with physical computation proper. 115 Since Conrad’s original publication in the

late 1980s, a rich literature on physical computation emerged, emphasizing that

computational modeling and concrete computation must not be confused, or else

one slips into trivial forms of pancomputationalism. However, it is only due to

this conflation that Conrad can apply programmability and his trade-off system

to all sorts of (biological) systems.

Third, the distinction between effective and structural programmability

remains somewhat opaque when it comes to the “mapped by its structure”

condition. According to the literature on physical computation, implementation

requires some mapping between the formal model of computation and physical

substratum (see Piccinini & Maley (2021) for an overview). Effective

programmability contradicts these research insights without clarifying what the

‘mapped by its structure’ condition is supposed to amount to.

5.1.2 Programmability as the foundation of computation

Independently of the previous account, Zenil introduced an approach to

programmability closely entangled with computation (Zenil 2010; Zenil 2012;

Zenil 2013; Zenil 2014; Zenil 2015). His view about programmability emerged

from his so-called behavioural standpoint – an approach to physical computation

claimed to part ways with the common approach of the so-called simple mapping

115 Conrad’s version is much closer to what Copeland (2024) has called the ‘Maximality Thesis.’

5 Physical Programmability

106

accounts. So, instead of relying on a mapping between an abstract model of

computation and a physical computing system, a compression-based metric is

advanced that acts as a ‘grading system’ of a material object’s ability to be (re-

)programmed. The ability to be programmed is regarded as a necessary condition

for physical computation.

Accordingly, physical computation cannot be separated from

programmability, where the latter is defined as “[…] the ability of a system to

change, to react to external stimuli (input) in order to alter its behaviour.” (Zenil

2015, 112). In fact, programmability is regarded as a condition sine qua non –

“[h]ence, we make the assumption that central to the claim that something

computes is the capability of a system to be reprogrammed.” (Zenil 2014, 111).

Only when a material system is said to be reprogrammable can it be considered

computing; the ability of physical computation reduces to programmability.

By connecting programmability to a general notion of ‘variability’ (defined by

a formal measure),116 Zenil aims to provide a theoretical basis to quantify the

degree of change due to some external input. Simply put, the variability measure

assigns values to outcomes (states of a system) depending on different initial

conditions.

While offering advantages in terms of a formal programmability measure,

Zenil’s account also presents certain concerns. Most notably his work does not

tell us how to differentiate genuine programming from other (arbitrary)

interactions with a material system. Without additional constraints, the account

may be trivialized, as any physical interaction could potentially be considered

programming. Although a normative condition is presented, indicating that the

system should behave as intended, it remains unclear whose intentions should

be the deciding factor.

5.1.3 Soft & Hard Programmability

A third attempt to define programmability emerged from Piccinini’s work about

the teleo-mechanistic account of computation (Piccinini 2008, Piccinini 2015). He

writes “[a]ny machine that can be easily modified to yield different output

pattern may be called ‘programmable’.” (Piccinini 2015, 184). Interestingly, his

notion does not exclusively apply to computing systems. Opposed to Conrad and

Zenil, his conception may apply to non-computing mechanisms as long as they

operate in sequence (such as weaving looms and juke boxes). Nevertheless,

Piccinini maintains that programmability is a gradual concept (though a non-

formalized one). He suggests framing it in phenomenological terms, i.e., the

116 Zenil employs Kolmogorov Complexity (aka Algorithmic Information) as the basis for his
formal variability measure.

5 Physical Programmability

107

easier one obtains different output patterns, the higher the amount of

programmability. Based on these preliminaries, his work offers a taxonomy of

four different cases of programmability:

(a): The first type of programmability corresponds to the configuration of non-

computing systems just presented. Piccinini does not pay much attention to this

type of programmability and I will hence skip its assessment for lack of

analyzable material.

(b): More attention is paid to the second type though: hard programmability.

Hard programmability refers to computing systems (n.b., non-computing

systems are no longer discussed) where components are mechanically modified:

In order to implement a specific computational function f(i), with input i, the

machine’s operators need to adjust the pattern in which the computing

components are “spatially joined together” (Piccinini 2015, 185).

(c) & (d): When systems are not (re)programmed mechanically, they are

considered soft programmable. Here, the “modification involves the supply of

appropriately arranged digits (instructions) to the relevant components of the

machine” (Piccinini 2015, 185). Two cases are distinguished, leading to his third

and fourth types of programmability, respectively: On the one hand, external soft

programmability is defined by the insertion of the instructions (encoded in a

string of digits) through an external medium (for instance punched cards). On

the other hand, internal soft programmability applies to devices that can store

programs (strings of digits) inside of them. The distinction between external and

internal soft programmability thus alludes to architectural features: external soft

programmability refers to devices without internal memory, internal soft

programmability applies to devices with internal storage.

As already mentioned earlier, it is paramount to emphasize that his taxonomy

is not categorized by which kind or how many (computational) functions can in

principle be implemented in a system though. Instead, Piccinini’s grading system

is based on the way in which a (computing) system is manipulated. Choosing to

spell out programmability in terms of how a device is set up, is supposed to

capture some of our everyday experiences of programming devices. Either

machines are programmed through cumbersome mechanical modification (hard

programmability), or by supplying instructions to computing components ex-

(external soft programmability) or internally (internal soft programmability).

While considering everyday experiences from a programmer’s perspective is

a welcome feature, at a closer look, the categorization scheme raises at least two

worries. First, the distinction between hard- and soft programmability is

somewhat reminiscent of the notorious software-hardware dichotomy. The

5 Physical Programmability

108

software-hardware distinction is ill-defined.117 I think that Piccinini’s distinction

is subject to similar criticism, i.e., hard and soft programmability appears to be

relative to some arbitrarily drawn line, since ultimately every programmable

system is changed ‘mechanically’ (at least, if understood in terms of mechanism;

cf. sect. §3).

Moreover, the formulation ‘to supply instructions’ is potentially misleading.

Such communication metaphors attribute cognitive capacities like

‘understanding instructions’ to (computing) machines. Anthropomorphizing

machines risks overlooking the underlying physical properties and mechanisms

that allow for programmability in the first place.

5.1.4 Program Execution ≠ Programmability

Lastly, Haigh & Priestley (2018) recently developed a notion of programmability

for historical discussion meant to classify COLOSSUS with respect to other well-

studied historical digital computing machines. 118 What distinguishes their

conception from the previous ones is that it does not appeal to computability

theory or any other formal apparatus. Instead, the authors state that two

conditions are necessary for a system to be programmable, viz.,

“[…] “programmability” as applied to a device requires not only that the

device carries out a sequence of distinct operations over time, i.e. that it

follows a program, but also that it allows a given user to define new

sequences of operations.” (Haigh & Priestley 2018, 18)

Their two necessary conditions are intertwined: On the one hand, a

programmable device needs the capacity to carry out a sequence of operations;

on the other hand, the sequence of operations must in principle be changeable by

the users. The authors rightly emphasize that the latter feature is dependent on

the former, as a system must be able to execute sequences of operations to enable

users to change them. As such, their notion of programmability is rather inclusive

– also allowing non-computing devices such as programmable washing

machines. Importantly, this definition allows COLOSSUS to be classified as a

program-executing device, despite being non-programmable in their terms.

117 Remember, for instance (Moor 1978), according to which the software-hardware distinction
is merely a pragmatic one, dependent on context and the skills of the programmers and users.
118 COLOSSUS was a British top-secret electronic codebreaking device built from 1943-1945.
Haigh & Priestley argue that the machine was not built to carry out numerical computations but
designed to decrypt teleprinter encryption of German communication during WWII. Despite
not being a (general-purpose) computer, the authors claim that the machine automatically
executed a program (i.e., implemented a specified series of discrete operations).
Notwithstanding, Haigh and Priestly state that COLOSSUS was not programmable since the
users could not fundamentally alter the program of operations performed by the machine.

5 Physical Programmability

109

Developed for a historical argument of only one particular device, their

characterization of programmability has a couple of weaknesses when applied to

other automata. Chief among them is that their approach does not elucidate

different degrees of programmability – according to their binary view a system

is either (completely) programmable or not. In addition, the authors stay silent

about which kinds of interactions ought to be considered as re-programming (as

opposed to arbitrary interactions).

5.1.5 Taking Stock

This brief overview showed a small and disconnected variety of philosophically

inclined attempts towards programmability of material (computing) systems.

The results are summarized in Table 5.1.

 Conrad Zenil Piccinini Haigh &

Priestley

Type of Material

System

Natural &

technical

Natural &

technical

Technical &

natural (?)

Technical

Operations Computation Computation Sequenceable

operations

Sequenceable

operations

Mode of

Reconfiguration

Instruction - Mechanical,

Instructions

-

Degree/

Grading System

Effective and

Structural

Quantitative

measure

(algorithmic

information)

Hard and soft -

Table 5.1: Overview/Comparison of the different features of the here presented

accounts of programmability.

Given that programmability is often overlooked in philosophical discourse, its

individual methods, scope, and aims can vary greatly. Nonetheless, some

commonalities have emerged in the accounts of programmability. Therefore, I

take it that a good account of programmability should specify the type of system

to which it applies, the operations that are considered, how configurations are

achieved, and in what sense it is a gradual notion.

With these requirements in mind, I submit an improved notion called physical

programmability: The degree to which the selected operations of an automaton can be

reconfigured in a controlled way. In the following sections, I will clarify how the

elements in my characterization of physical programmability - automaton,

5 Physical Programmability

110

selected operations, reconfigured in a controlled way, and the degree to which it

is achieved - are anchored in contemporary research traditions.

5.2 Material Automaton

Virtually any system’s behavior can be changed or manipulated in one way or

another, but not every change of arbitrary objects amounts to (re)programming.

For this reason, it is desirable to constrain programmability to specific systems

only. In this section, I explain how the material automaton variable contained in

my definition serves this purpose by restricting the scope of physical

programmability to real-world automata. In what follows, it is thus crucial to

specify what real-world automata are.

The term ‘automaton,’ originating from the Greek word αὐτόματα, means ‘self-

moving’. Historically speaking, material automata have existed since ancient

times and include mechanical clocks, automated musical instruments, looms,

and calculators (Ambrosetti 2010). They can perform operations like sound

production, weaving, or physical computation, based on varying degrees of

energy and control autonomy. (A more elaborate concrete example will be

discussed at the end of the section). Today, one may characterize an automaton

as

Automaton: System with the ability to execute a predetermined series of

operations (to some degree) autonomously.

Despite this precise characterization, the term ‘automaton’ bears some ambiguity

in common language and philosophical discourse. Depending on one’s

understanding of ‘system,’ the term ‘automaton’ may refer to two different

ontological domains. On the one hand, modern automata theory is the study of

abstract machines and an integral part of theoretical computer science.119 On the

other hand, there are those already mentioned tangible real-world automata –

these systems are particulars locatable in space-time.

Differentiating between abstract and concrete automata is crucial for avoiding

category mistakes. For instance, as per Sloman (2002), material automata display

energy autonomy and control autonomy. A device that depends on a human

operator to provide energy (e.g., by turning a knob) has low energy autonomy,

whereas a device with an integrated energy source, like an engine or battery, has

119 For instance, by defining different classes of abstract computing systems such as finite state
machines, pushdown automata, Turing machines, etc. we can study the theoretical limits of
computation (cf. Hopcraft et al 2001). A Turing machine, e.g., provides a formal procedure for
computing a function, yet the machine qua abstract object is not something physical at all. Often
programmability is discussed with these formal devices; Turing machines, for instance, are said
to have a higher programmability than FSM, as they compute more functions.

5 Physical Programmability

111

high energy autonomy. Similarly, a machine that necessitates frequent user

intervention to control its actions has low control autonomy (e.g., a car), while a

system where a predetermined set of actions can be executed without any

intervention on the control mechanism has high control autonomy. Now,

applying categories like energy and control autonomy to logico-mathematical

entities like Finite State Machines would be a fallacy because these abstract

formalisms cannot be driven by real-world motors. Importantly, physical

programmability is hence only intended for material automata.

5.2.1 Automata as technical artifacts

To further distinguish material automata from ordinary physical objects like

rocks, tables, and tigers, it is helpful to rely on the theoretical framework of

technical artifacts. Technical artifacts are special types of artifacts that are

characterized by their ‘dual nature’ - constituted by both mind-dependent

functional features and mind-independent structural features (cf. Baker 2006;

Kroes & Meijers 2006; Kroes 2012; Preston 2018, §2.3). Structure determines what

an artifact can do, while function is what the artifact is intended to be used for.

Due to this normativity, some researchers (Vermaas & Houkes 2003; Houkes &

Vermaas 2010) argued that technical functions require intentionality.

Accordingly, an agent or epistemic community intentionally ascribes a function

to an object for a specific purpose.

From this theoretical standpoint, material automata can be viewed as

technical artifacts because they are (i) intentionally created devices with (ii) the

ability to execute a predetermined sequence of operations. Let me briefly look at

these requirements separately.

The first necessary characteristic to be considered a material automaton is that

the system’s structure must be able to exhibit sequential behavior (e.g., through

a mechanism). However, this is a cheap property that many systems possess:

Given some interpretative flexibility, a wide range of systems appear to act in

sequence – the dynamical macroscopic behavior of systems like hurricanes or

rivers, for instance.120 That is why mere sequential behavior is insufficient to

qualify as an automaton qua technical artifact.

Therefore, we must adhere to the second fundamental trait of technical

artifacts - intentional function ascription. In the case of a designed program

120 Worse, one may even argue that prima facie seemingly static systems (like rocks and tables)
have an ability to operate in sequence. In a different context, philosophers like Putnam (1988) and
Searle (1990) have employed such reasoning to argue that objects like rocks and walls, seen at a
microscopic level, showcase an internal dynamical behavior (that is interpretable as a sequence of
operations). The reason for this is that the physical state of ordinary systems does in fact traverse
physical state space and is not completely static.

5 Physical Programmability

112

executing material automaton, one of the system’s function is to execute a

predetermined series of manipulable operations. It is important to note that the

‘predetermined’ clause requires an intentional sequence set up by an epistemic

agent or community. 121 Put differently, this requirement excludes natural

systems that can act in sequence as material automata because their course of

action is not intentionally predetermined by designers, programmers, or users.

Although we may describe dynamic systems like hurricanes and cells in terms of

theoretical automata, they should not be considered material automata defined

by technical artifacts.

5.2.2 An Example: The Musa flute player

So far, we primarily approached the topic of material automata theoretically. To

provide further clarification for the rest of the chapter, I discuss the relevant

concepts with a concrete, historical example: an ancient flute player. Albeit

seemingly simple at first, I shall occasionally return to this example to discuss

several philosophical issues relevant to the remainder of this chapter.

 One of the first audio automata or ‘music boxes’ that play melodies with

minimal human intervention originated in the ninth century CE, when three

scholarly brothers from Baghdad, known as the Banu Musa, built an automatic

flute player (Levaux 2017, §3.1). The device was powered by water and operated

using differences in air and hydraulic pressure, generated by a filled reservoir.

This structure generated wind for the creation of the sounds of the flute. By

additionally utilizing a cylindric rotating drum with teeth and small levers that

opened or closed the flute's nine holes depending on the size and positioning of

the raised pins, different melodies emerged (Koetsier 2001, 590-591). Fig. 1

illustrates the underlying mechanism responsible for the energy autonomy that

enables the automatic functioning of the device.

121 Ascribing teleological functions to arbitrary systems (with the ability to act in sequence) is
insufficient to turn it into a technical artifact. Mere function ascription leaves room for ready-
made artifacts or so-called object trouvés (meaning found objects – a concept from the art world).
If that were the case, one could simply promote natural objects, which can be utilized to serve
human purposes, into technical artifacts. A simple example is a rock that may be used as a
hammer. Similarly, one could turn systems like hurricanes or cells into a material automaton by
interpreting their dynamical behavior sequentially.

5 Physical Programmability

113

Importantly, the Musa flute player’s designers did likely not intend their

machines to be reprogrammable after construction (d’Udekem 2013, 177). Once

operational, the system was designed to perform a fixed melody (a sequence of

tones) and was not responsive to any external input. 122 The lack of a

programming mechanism or external interface made it impossible to control and

predetermine a (new) series of operations unless the machine was disassembled

or destroyed.123

Fig. 5.1: Depiction of the mechanism that constitutes the Musa flute player. The
teeth of the cylinder or ‘program barrel’ opened the organ-pipe via levers through
pallets. (Image taken from Farmer (1931, 101)).

The upshot of discussing this peculiar device is that not all sequence-

controlled automata are also programmable. To account for (more)

programmable types of automata, I will provide further conceptual resources

that elucidate how humans can intervene and control more complex devices.

Particularly, I will shed light on the notions of input, output, and interface,

facilitating our understanding of how human agents can intervene on the device’s

control structure/mechanism such that its operations change. Accordingly, the

122 As such, ‘programming’ (in a limited and basic sense) may only take place during the
construction phase of the device. The reason is that the mechanism responsible for producing
the flute player’s melody is internal to the system and completely hidden from its users. Since
the mechanism is not meant to be changeable, there is no need for external means of regulation
through an interface. Without a recognizable interface, re-programming is unfeasible.
123 As Simon (1996, 6) points out, designers may only ever achieve a ‘quasi-independence’ of
their technologies from the outside world. Biologists may have similar discussions concerning
the phenomenon of homeostasis of certain kinds of organisms (Glennan 2017,114-115). No item
can be entirely shielded from environmental influences, and the insulation of the flute player's
inner workings may break down due to strong vibrations, extreme temperatures, or exposure to
strong magnetic fields. Additionally, a skilled individual might be able to work around the
insulation and ‘hack’ into the system and access the control mechanism of the machine,
revealing unforeseen (non-intended) interfaces.

5 Physical Programmability

114

following section introduces how an automaton’s operations hinge on its

underlying mechanism.

5.3 Selected operation

In the 17th century, the term ‘mechanism’ surfaced by following Greek and Latin

terms of machine (Dijksterhuis 1956). In recent philosophical discourse,

mechanisms gained considerable traction with the so-called (neo-) mechanistic

turn around the beginning of the millennium.124 Since then, mechanistic talk in

philosophy of science mushroomed and has brought forward a rich literature

applied to large variety of research domains like physics, chemistry, biology,

cognitive science, economics to only name a few.

 I propose that programmable automata and the structure that enable their

operations are fruitfully describable in terms of mechanisms. In particular, the

mechanistic framework provides insights that deepen our understanding of

‘operation’ and how human agents may exercise control over a programmable

system. In this section, I explain how we can understand operations by virtue of

mechanisms. I will discuss the exercise of control afterward in sect. §4.

 At first, marrying mechanisms with automata may seem hardly original – the

very term ‘mechanism’ derives from ‘machine’ and has a technological

connotation. Yet, using the philosophical notion of mechanism to analyze

engineered systems is surprisingly scarce (van Eck 2017); arguably, most

mechanistic research applies to the life sciences. This is a pity, because the

mechanistic framework not only enables us to look at the physical components

responsible for the automaton’s operation but also allows for the integration of

further conceptual tools from the mechanistic literature that can act as a

philosophically robust bedrock for programmability.

5.3.1 Mechanisms

While I want to focus on mechanisms in programmable automata, it is chief that

we first grasp the most salient features of mechanisms in general.125 In what

follows, I will rely on the stabilized ‘consensus conception’ of Illari and

Williamson (2012), according to which a mechanism is defined as

124 For a more thorough (but still tractable) historical overview of the mechanistic turn see
Kästner (2017, Ch. 3).
125 There is a wide array of systematic work about the nature of mechanisms. Some of the most
influential accounts brought forward are Bechtel & Richardson (1993); Glennan (1996);
Machamer et al. (2000); Bechtel & Abrahamsen (2005); and Craver (2007b).

5 Physical Programmability

115

Mechanism: “A mechanism for a phenomenon consists of entities and

activities in such a way that they are responsible for the phenomenon.”,

(Illari & Williamson, 120).

It is widely accepted that the spatial, temporal, and active relations between

entities and activities (the micro-behaviors) are responsible for the mechanism’s

phenomenon (the macro-behavior). Characterizations along these lines appear to

imply some form of mechanistic hierarchy: There are at least two levels comprised

of acting entities (the parts) on the one hand, and an exhibited higher-level

phenomenon (the whole) on the other. Typically, the higher-level phenomenon

of some mechanism/system is referred to as S’s Ψ-ing, where S denotes the

system, and Ψ-ing its corresponding phenomenon. The mechanism’s entities are

referred to as Xi and their activities are denoted by {ϕ1, ϕ2, ..., ϕn} (cf. Craver

2007b). Figure 2 pictures two mechanistic levels with the aforementioned

elements.

Fig.5.2: Schematic representation of a mechanism. (cf. Krickel 2018; Craver 2007b)

Such a two-level image can be (and is in fact often) expanded into a multi-

level hierarchy. Every working entity Xi of a mechanism S can itself be subject to

further decomposition into a sub-mechanism; mechanisms can thus be ‘nested’

several times. When then ‘horizontally’ analyzing the relation of the components

Xi’s on a given level we are speaking of interlevel relationships; when referring to

‘vertical’ relations between levels we speak of intralevel relations.

The mechanistic level image advocates a localized approach to levels of

organization – the hierarchy applies relative to a given mechanism S and its lower-

level components. While the level metaphor is ubiquitous in (the philosophy of)

science, it is important to not conflate mechanistic levels with the other

prominent level views (Craver 2014; Eronen 2015).126

126 Particularly in the current context of computing, the conception of mechanistic levels does
not equate with LoA of computational artifacts. Though one certainly can apply the
methodology of LoA to mechanistic levels, there is one important difference: the mechanistic
framework is limited to spatio-temporal entities only. In contrast, the notion of LoA may also be

5 Physical Programmability

116

 What’s key about the mechanistic framework for our quest to define physical

programmability is that offers the right means to uncover the functioning of

material automata. Specifically, I submit that S’s Ψ-ing ought to be interpreted as

the automaton’s (sequential) operations; here S corresponds to the automaton

and Ψ-ing denotes its operations.

5.3.2 Input-Output mechanisms

An additional benefit of utilizing the neo-mechanistic framework for

characterizing physical programmability is that we can rely on the notion of what

Glennan calls input-output mechanisms (2017, 113-116; referred to as ‘I/O’ from

here on). I/O mechanisms are a subclass of the generic definition of

mechanisms. The focus is shifted to a phenomenal description, especially to the

patterns a mechanism’s phenomenon produces. As per Glennan, I/O

mechanisms are systems whose actions or outputs are responsive to inputs and

describable by a functional relation between input and output variables

f(i)=o,

where i denotes the input(s), o the output(s), and f their functional relation.

Reasoning along these lines allows for the threefold distinction between

mechanisms that bring about outputs as a result of inputs (the ‘regular’ I/O case);

mechanisms that produce outputs independently of inputs (no-input/output);127

and mechanisms that remain stable/provide a constant output when presented

with varying inputs (input/no-output) (Glennan 2017, 116).

Moreover, by conceptualizing the inputs and outputs of the I/O mechanism

as variables that can take on different values, we can easily use mathematical

representations to describe S’s Ψ-ing. Using a mathematical representation has

two primary advantages:

First, it allows us to flash out the possibility space of a material automaton’s

behavior in terms of (finite) automata theory.128 Especially the notion of finite

deterministic automata (FDA) and the corresponding state diagrams are useful

models to study the potential material automaton’s execution traces. 129 It is

applied to abstract/formal entities. Another crucial difference between LoA and the
mechanistic hierarchy is the intralevel relation between different levels. Whereas the former
relies on some form of leaving out selected details (abstraction), the mechanistic intralevel
relations are of a different nature. I shall return to the importance of levels in section §4.
127 The Musa flute player is a case in point.
128 It is important to note that while we should be cautious not to confuse abstract automata of
the logico-mathematical realm with concrete real-world machines, we can still use the
conceptual framework of automata theory to model actual material devices.
129 Theoretically, a FDA can be defined as a five tuple 𝐴 = (𝑄, Σ, δ, 𝑞0, 𝐹), where 𝑄 denotes a
finite set of states, Σ is the finite set of input symbols, δ is a transition function, 𝑞0 is the start state,
and 𝐹 a set of final states (Hopcroft et al. 2001, 46). Depending on the input label 𝑎 from the

5 Physical Programmability

117

handy for systems that execute a (predetermined) sequence of operations based

on external events (inputs): Vending machines, elevators, traffic lights, and

combination locks are typical examples of the textbook literature (see e.g.,

Mozgovoy 2010, 92-95). We may additionally draw state diagrams or

contingency trees that visualize different execution traces depending on different

inputs. As such, the concepts associated with automata theory allow us to

analyze the behavior of material automata, predict their behavior, and reason

about which series of operations are, in principle, executable.

Secondly, as we will delve into in the next section (§4), the mathematical

representation of I/O mechanisms plays a crucial role in making the concept of

‘reconfiguration’ understandable through causal modeling. This is possible

because that we can assign logical (Boolean), discrete, or continuous values to the

variables associated with a mechanism, and since the functional form of relations

between them can be characterized as linear, quadratic, logarithmic, etc.

5.3.3 Selection

I argued that the operations of an automaton are characterizable as a

‘phenomenon’ in terms of the mechanistic framework. However, without further

qualification, the threat of an underdetermination problem remains with this

view since a given system S may showcase multiple phenomena at once. When

we judge an item to bear a certain degree of programmability, we typically do so

with only one specific phenomenon (Ψ-ing) in mind. Physical programmability

only makes sense relative to a specifically selected series of operations -- yet some

systems may simultaneously exhibit multiple potential phenomena.

To exemplify the issue, consider the example of the flute player I previously

discussed in section (§2). The takeaway was that the device has virtually no

programmability since one cannot modify its sequence of operations in a

controlled manner. However, during our assessment, we glossed over the fact

that the ancient automaton simultaneously produces several phenomena (e.g.,

vibrations, sound, heat, etc.). Admittedly, most of these phenomena are just an

accidental byproduct. Nevertheless, the numerous different phenomena require

a specification or selection of a specific phenomenon, or else the notion of

programmability remains underdetermined (i.e., the same

system/device/automaton may bear (different degrees of) programmability

concerning more than one type of phenomenon).

alphabet Σ, transitions δ(𝑞, 𝑎) → 𝑝 connect the states (e.g., 𝑞 and 𝑝). Multiple transition labels
may form a ‘word’ 𝑤 = 𝑎1, 𝑎2, … 𝑎𝑛 , (i.e., a string over the alphabet Σ). A word is valid for a
given FDA if the sequence of transition labels leads from the initial state 𝑞0 to a final one
contained in 𝐹. A string of inputs 𝑤 that is compatible with the FDA can be interpreted as a
program describing an execution trace within the set of possible behaviors.

5 Physical Programmability

118

To remedy the issue, I added the ‘selection’-clause in my characterization of

physical programmability. The idea of the selection clause is to guides/inform

us in the selection process of the material automaton’s operations and single out

a specific phenomenon, dependent on the interest of an individual or an

epistemic community. N.b., as such, the selection-clause works hand in hand

with the idea to restrict the applicability of physical programmability to designed

material automata only. What is particularly helpful in this regard is my previous

description that material automata are technical artifacts (cf. sect. §2.1). Due to

their function-structure duality, technical artifacts bear specifically ascribed

normative functions. In the case of the Musa flute player, for instance, its function

is to produce a pre-determined sequence of sounds. In other words, the

phenomenon physical programmability is supposed to capture usually coincides

with the intended operation the material automaton should carry out.

In the ensuing paragraphs, I will illuminate how these selected operations can

be altered in a controlled way.

5.4 Reconfigured

In the previous sections, I occasionally helped myself to the terms ‘manipulation’

or ‘intervention’ only using these terms informally. It is high time to discuss these

concepts in more detail. Specifically, I submit that the main theoretical

underpinnings of physical programmability are so-called manipulability- or

agency theories of causation, which are a subset of causal interventionism. (cf.

Woodward (2023) for a survey of manipulability theories). In a nutshell,

manipulability theories aim to elucidate causal structures through

Difference-making: C is a cause of E (the effect) iff manipulating C in the

right way affects (makes a difference on) E.

The motivation to rely on such theories is threefold: First, utilizing a

manipulability-based approach allows us to straightforwardly account for how

programmers and users exercise control over a (computing) system through

(causal) interaction/manipulation:

“When a relationship is invariant under at least some interventions, it is
potentially usable for purposes of manipulation and control —potentially usable in the
sense that while it may not as a matter of fact be possible to carry out an
intervention on X it is nonetheless true that if an intervention on X were to occur,

this would be a way of manipulating or controlling the value of Y.” (Woodward
2002, S370; own emphasis).

As such, it is paramount to note that manipulability theories do not need to

employ any communication metaphor (as is arguably often the case in the context

of programming computers through instructions). That way, we can study

5 Physical Programmability

119

human interaction with a programmable automaton without necessarily having

to appeal to programming languages or anthropomorphic metaphors that

distract us from what is happening during reconfiguration at the physical level.

Second, manipulability and agency theories typically rely on counterfactual

reasoning (if C would have been different, E would have been so-and-so). This

feature is advantageous because it allows for applying physical programmability

to physical computation. As we have seen in the previous chapters on physical

computation (Chapter 4 and Chapter 5), counterfactual support is essential for

implementing computations and determining which computations would have

occurred if the input had been different (cf. Piccinini 2015, Ch. 2).

Lastly, interventionism applies to various systems, including – crucially for

this undertaking – mechanisms. This compatibility allows to integrate physical

programmability in contemporary philosophical debates, facilitating the

exchange of ideas and fostering cross-fertilization. Put differently, the advantage

of the approach is that it enables the bringing together of diverse philosophical

concepts under the umbrella of physical programmability.

To better understand how interventionism’s features figure in

programmability, it is helpful to familiarize us with the details of its formal

machinery (sect. §4.1). This will be important to understand how the combination

of mechanisms with the interventionist account play out in the context of the so-

called Mutual Manipulability (MM) concept (sect. §4.2).

5.4.1 The Formal Machinery of Interventionism

Interventionism in its contemporary form (see, e.g., Woodward (2003) and Pearl

2009)) originated from combining features from causal modeling and

manipulability theories. This theory’s main achievement was to devise a formal

notion of ‘intervention’ that does not require human agency.130 Based on so-

called structural models, causal relations (in science) can be precisely represented

through a rigorous formal framework, providing us with criteria to analyze

specific situations/systems to e.g., draw causal inferences without adhering to

human terms. Accordingly, we can portray causal relations either by directed

acyclic graphs (DAG) or structural equations.

130While manipulability theories capture the intuition of how to portray causal structure, earlier
versions of manipulability theories were long objected to for relying on the anthropocentric
notion of ‘manipulation.’ Depicting causes C as vehicles for manipulating effects E, often (at least
in older versions) assigns central significance to human action. Adhering to human agency was
seen to fly in the face of the idea that causal relations are part of the mind-independent world.
Considered a bug in the original theory, it is a welcome and crucial feature of physical
programmability since it conceptually aligns with the required pre-determined set up of
automata by agents.

5 Physical Programmability

120

The notion of structural equations enables us to translate talk about causal

relations into talk about relations between variables. These variables stand for

properties or events obtaining different values. Formally, a causal model is then

definable as 〈𝑉, 𝑆〉 , where V denotes a set of variables and S is a set of

corresponding structural equations (we have already seen an instance of this in

the discussion of I/O mechanisms in sect. §3).131

DAGs are best introduced by way of example. Consider therefore the

following case of Ohm’s law adopted from Hausman (2005). The corresponding

structural equation is the familiar formula 𝐼 =
𝑈

𝑅
, (with U for voltage, R for

resistance, and I for current); the corresponding DAG is depicted in Fig. 3.

Fig. 5.3.: A directed acyclic graph (DAG) of Ohm’s Law with the structural

equation I=U/R (graphic adopted from (Hausman 2005)).

Analogous to what can be seen in (Fig. 3), variables are always represented as

nodes, and arrows are drawn from causes to their direct effects. Based on these

conventions, DAGs generally allow us to easily read off

dependencies. Importantly, each ‘parent-child’ relationship in the causal graph

represents a stable physical dependency, allowing a surgical intervention on one

such relationship without changing the others. An intervention is called surgical

if no other causal relationships in the systems are affected. For instance, if a value

of U were to change (i.e., take on a different value) while maintaining the same

resistance R, we would see a change in the current I caused by that change.

131 Standardly, structural equations are defined as 𝑥𝑖 = 𝑓𝑖(𝑝𝑎𝑖 , 𝑢𝑖), 𝑖 = 1, … 𝑛, where 𝑝𝑎𝑖 denote
the set of variables (the ‘parents’) that directly determine the value of 𝑋𝑖 and where 𝑈𝑖 stands for
errors or disturbances (see Pearl 2009, 27). Each of these structural equations corresponds to a
causal dependency relation. Changing the values of variables (of a given structural causal model)
under external interventions uncovers those causal dependencies. In this way, the intuitive
content of causal claims (C causes E) is preserved, yet concerns about the dependency of agents
are side-stepped.

5 Physical Programmability

121

Wiggling on one of the parent variables U or R therefore enables us to directly

causes a change in the value of I.132

I submit that making use of the insights of interventionism elucidate how we

can reconfigure real-world programmable automata. However, in order to fully

generalize interventionism’s conceptual resources and adjust them to

programmability, we need to apply them to the mechanisms of programmable

material automata. How exactly does the formal machinery of interventionism

apply to mechanisms?

5.4.2 Control through Mutual Manipulability

In recent years, there has been a growing interest in applying causal modeling to

higher-level phenomena, particularly in the interventionist framework and its

application to general types of mechanisms and their phenomena. I will now

demonstrate how applying interventionist concepts to I/O mechanisms can help

us understand how to control programmable automata. Importantly, we can

change an automaton’s behavior by two conceptually different types of

interventions: First, we can wiggle on the inputs i of the corresponding I/O

mechanism f(i)=o. Changing the course of action this way brings about a

particular pre-determined execution trace due to providing different ‘data.’

Secondly, and more relevant to the current discussion, we can alter the

mechanism’s internal functional relation f between the inputs and outputs. This

second way of varying the system’s behavior in a controlled way amounts to

genuine reprogramming.

However, combining interventionism with mechanisms is a non-trivial

matter. While there is agreement that there is a philosophical problem, there is

less consensus on how to solve it. To understand the issues at hand, we need to

look at the intra-level relationship of mechanistic levels again (cf. sect. §3):

Whereas the relations among acting entities Xi are widely considered as causal

(black arrows in Fig. 3), the relations between any individual part and the

explanandum phenomenon S’s Ψ-ing are up to debate (dotted vertical line in Fig.

3). Mechanistic philosophers typically distinguish between etiological (causal)

and constitutive relations (see e.g., (Ylikoski 2013)). Applying interventionism to

causal relations is unproblematic, as tracking causal dependencies is one of

interventionism’s main objectives. However, it is the second, non-causal

132 N.b., when employing this kind of thinking, we are engaging with modal reasoning,
“[c]ausal relationships between variables thus carry a hypothetical or counterfactual
commitment: they describe what the response of Y would be if a certain sort of change in the
value of X were to occur.” (Woodward 2003, 40) It is thus now generally accepted that
interventionism is a counterfactual theory (of causation); the notion of a surgical intervention
that unearths causal relationships requires counterfactuals.

5 Physical Programmability

122

relationship between S’s Ψ-ing and Xi’s ϕ-ing that requires substantial

philosophical caution.

In short, the issue is to determine which of the various entities Xi and their

properties constitute S’s Ψ-ing and what exactly the constitution is (Kaiser &

Krickel 2017). This puzzle is generally discussed under the name of constitutive

relevance. The most widely accepted proposed solution is Craver's so-called

mutual manipulability account (MM) (2007a, 2007b), which suggests that

constitutive relevance is defined by how scientists manipulate a mechanism’s

component in experimental research practice in order to study its behavior. As

Craver explains,

“a component is relevant to the behavior of a mechanism as a whole when one
can wiggle the behavior of the whole by wiggling the behavior of the component
and one can wiggle the behavior of the component by wiggling the behavior as a
whole. The two are related as part to whole and they are mutually manipulable.”,
(Craver 2007b, 153).

The idea is that some ideal intervention on a component Xi’s ϕ-ing alters the

phenomenon (S’s Ψ-ing) and vice versa, i.e., some ideal intervention on S’s Ψ-ing

in turn also makes a difference for the component’s ϕ-ing. While a

characterization along these lines essentially captures how we can intervene in

mechanisms to program them, I will briefly return to some recent philosophical

problems concerning these matters when closing this chapter.

5.5 The degree to which

Lastly, I need to clarify in which sense physical programmability is a gradual

property/notion. At a first stab, the gradual nature of programmability appears

to correlate with the variability of the potential behavior of the system under

scrutiny. Take, for instance, the apparatus with virtually no control autonomy we

encountered earlier – the ancient flute player of the Musa brothers. While the

flute player fulfills all the requirements to be conceived as a material automaton,

the device is not programmable. After construction, it always carries out the

same ‘program’ (i.e., it always plays the same melody). The only way to influence

S’s Ψ-ing, where S denotes the system at hand and Ψ-ing its selected operation,

is by reassembling the device altogether.

Contrast the non-programmable flute player with a material automaton

designed to have (external) control features. In this case, a replaceable external

medium allows for controlled manipulation of the pre-determined sequence. So-

called Jacquard looms (as shown in Fig. 4) are a prominent example of automatic

sequence control (Randell 1994; Koetsier 2001). Jacquard looms were special

kinds of weaving looms that were (re-)configurable by a chain of punched cards

5 Physical Programmability

123

to produce fabrics with a desired pattern. 133 The punched card’s pattern of holes

determined which of the loom’s levers was activated when pressed against a

dedicated control mechanism (e.g., some ‘read-out’ lever). Operators could

Fig. 5.4: 19th century engraving of a Jacquard loom. The desired weaving

pattern on the fabric could be controlled (by the operators) by inserting a

series punched cards (here, at the top) into the machine. Technologically

similar control mechanisms are also used in some musical automata and

even computing devices.

change the pattern of holes to alter or intervene, i.e., to ‘reprogram’ the machine’s

behavior according to their desires. Similar technological considerations found

application in more sophisticated musical automata controlled by pegged

cylinders. Reprogramming such devices as advanced music automata or looms

was possible after construction and without rebuilding the entire system.

Ostensibly, the Jacquard loom purports to have higher programmability than the

Musa flute player because it displays a higher variability among its potential

sequential behavior (which we can achieve in a controlled way). Notably, as

previously pointed out, the variability we are interested in concerns

manipulating the functional relation f with regards to an I/O mechanism f(i)=o.

Some historico-philosophically inclined scholars have tried to pack these

kinds of considerations about all sorts of programmable automata into a

theoretically more robust classification scheme. Koetsier (2001), for instance,

analyzes the different degrees of programmability of pre-20th century automata

like music automata, clocks, and looms, concluding that

133 Essentially the same control mechanism was also employed in many computing machines.
See Campbell-Kelly (1991) for a detailed treatment.

5 Physical Programmability

124

“[t]he earliest programmable machines were musical automata. Next came the
programmable drawloom. The first designs of programmable drawlooms are
from the 18th century. It is remarkable that the main predecessor of the
Jacquardloom was designed by De Vaucanson, the well-known 18th century
builder of music automata. Following the success of the Jacquardloom the idea of
a programme in the form of punched cards was used by Babbage in the 1830s in
his design of the first programmable computer. Later punched cards were also
used widely to programme music automata.” (Koetsier 2001, 602)

Similarly, D’Udekem Gevers (2013) delves into the fascinating evolution of

automatic devices from the 12th to the 19th century. Her analysis provides a

detailed taxonomy of programs (in a broad sense) implemented in clocks,

musical instruments, looms, and early computers. Accordingly, we ought to

distinguish between material automata whose sequence is internally fixed,

externally modifiable/replaceable, and fully manageable by a stored program.

Others devised grading schemes that underscore the conceptual differences

between early music automata (similar to the Musa flute player), Jacquard looms,

and special-purpose calculators. As Brennecke (2000) explains, looms and music

boxes can only execute fixed sequences (after being programmed) since they are

all controlled by (a program held on) some read-only medium. On the other

hand, many special-purpose calculators and modern computers have additional

control structures that can use their output as input. This feedback enables the

influence or control of the original sequence of operations through iterations and

conditional branching. (I will shortly return to the importance of these features

below). Lastly, Copeland & Sammaruga (2021) developed a ‘hierarchy of

programming paradigms’ in which they exclusively focused on computing

machines of the 1930s and 40s involved in the emergence of the stored program

concept. Similarly to previous works, the authors suggest differentiating between

machines that require physical rewiring, have an external memory medium, and

contain stored programs.

What is the takeaway from these classification schemes of real-world

programmable automata? How does it help us to couch the gradual nature of

programmability? Although above’s proposals differ slightly in scope and

methodology, they all classify general-purpose computing machines as the ones

with the highest programmability. Simply put, general-purpose computers –

sometimes called universal machines – are said to be capable of implementing

virtually every computable function (as defined by computability theory). In other

words, the class of computable functions acts as an upper limit to the sequence of

operations a computing machine can carry out.134 If we can set up a machine to

implement all these functions, it is fully programmable; machines that can

134 I am ignoring hypercomputation, etc., for now.

5 Physical Programmability

125

implement only a smaller range of functions are therefore less programmable. In

sum, we can make sense of the degree to which a material automaton is

programmable as

The degree to which: The amount/share of the set of possible functions (in

the sense of the I/O-mechanism f(i)=o) the system can implement.

However, despite the seeming plausibility, there are potential caveats to this

view that require clarification:

Caveat 1: There is no universal measure

First, it is vital to remember that the notion of general-purpose/universal

machines applies to computable functions only. However, since physical

programmability applies to a broad range of material automata, each with

operations other than computing, we also want our grading scheme to cover

these cases. The problem is that the label ‘general purpose’ as presented so far

merely makes sense regarding a specific phenomenon (namely, ‘physical

computation’). It can, hence, not be a benchmark for full programmability

concerning sequenceable operations that are different from physical

computation, like sound production or weaving. It is, therefore, questionable

how far our initial intuition of a universal measure of the degree of

programmability fits other kinds of material automata that lack a formal

theoretical underpinning and do not have a clearly defined class of all potentially

implementable functions (for instance, it strikes me as doubtful that there is

rigorously definable set of possible sequences of operations regarding melodies

or weaving). In light of these concerns, it seems wise to maintain a pluralist stance

and judge a system’s degree of programmability relative to a chosen operation.

Caveat 2: Relying on informal notions

Second, over the years, many researchers raised caution when using expressions

like ‘stored program concepts,’ ‘general purpose machine,’ and ‘universality’ (see

(Olley 2010) for an accessible survey of the relevant literature). The problem is

that (in textbooks) these terms are frequently used interchangeably, potentially

leading to misunderstandings when we try to make judgments about an

automaton’s degree of programmability. To clarify: Typically, the stored

program concept refers to internally storing instructions and data in the same

writable memory. The concept enables the manipulation of instructions based on

intermediate results, such that the machine can perform iterations and

conditional branching. These control structures are widely believed to render a

5 Physical Programmability

126

machine Turing complete/universal. Given unlimited storage, the machine could

implement any computable function.135

However, this design choice is just one of many ways to achieve (quasi)

Turing completeness. Machines with different architectures that store data and

instructions in entirely different manners could also be Turing complete. Rojas,

for instance, discusses examples of achieving universal machines by other means

(Rojas 1996, Rojas 1998, Rojas 2023). In his (Rojas 1996), he proves that conditional

branching can be substituted by unconditional branching such that externally

stored looping programs using indirect addressing and no branches can be as

powerful as machines operating under the stored program paradigm. (This

requires simulating a branch by carrying out multiple paths of the branch and

negating any contributions from the path that a genuine branching would not

take.)

Now, the reason why this is relevant for the current discussion is that these

results can be transposed to machines that do not store programs and data in the

same medium. In particular, Rojas argued that Konrad Zuse’s Z3 (Rojas 1998)

and Z4 (Rojas 2023, 149-154) computing machines could, in principle, implement

the same range of computable functions as a device constructed under the stored

program principle. Interestingly, Rojas’s universality proof for the Z3 sparked a

host of similar works that showed that ancient computers, never designed to be

universal, are so in principle (Copeland & Sommaruga 2021, 88-89). The upshot

of the work of Rojas and others is that general-purpose machines can thus be

constructed by different designs (that do not store programs and data in the same

memory). Universality is achievable in many, though not immediately apparent,

architectures. Accordingly, it may turn out extremely challenging to determine

the range of computable functions some unconventional machines can

implement (Bromley 1983) and, in turn, judge their degree of programmability.

We thus should be careful with judgments about the degree to which some

systems are programmable.

5.6 Concluding remarks and Open Questions

Programs devised by human agents may consist of simple to highly complex

sequences of operations. The sequenced operations range from sound (music

boxes) and weaving (Jacquard looms) to computation. To execute any desired

sequence of operations, the chosen system must be configured appropriately,

requiring specific (physical) interactions: the machine needs to be programmable.

135 It is important to note that real-world machines are only potentially universal, as they cannot
be given unlimited storage. Therefore, today’s computing machines can only perform
computations that a TM with bounded tape can achieve.

5 Physical Programmability

127

Unfortunately, philosophical discourse regarding programmability is scant and

largely underdeveloped. This contribution extended this area of investigation by

developing an original and robust notion of what I refer to as

Physical Programmability: The degree to which the selected

activity/function/operation/phenomenon on an automaton can be reconfigured in

a controlled way.

What distinguishes this novel notion is that it weaves together well-established

theoretical and philosophical discourses into a tailored framework that accounts

for how we set up our machines. Subsequently, I fleshed out the corresponding

variables in that characterization and explained how they are connected.

Accordingly, the main takeaways are fourfold: First, the domain of systems that

can be bestowed with the property of being physically programmable is limited

to ‘material automata.’ Two, the selected operation of these material automata is

explained best through the neo-mechanistic framework. Third, I expanded the

understanding of ‘reconfiguration in a controlled way’ by establishing a

connection between mechanisms and manipulability theory (especially

Interventionism á la Woodward). Fourth, by discussing various examples of

automata, I showed that physical programmability is a gradual notion and comes

in different degrees.

Given the novelty of the subject, there remain open questions and prospects

for further development. Two issues are of particular importance.

Fathanded interventions

The ongoing debate in the mechanism discourse has resulted in the first open

question. It concerns the interplay between interventionist framework and

mechanisms. More concretely, in recent years experts have extensively

scrutinized the plausibility of MM Couch (2011), Leuridan (2012), Romero (2015),

and Kästner (2017). Whereas interventionism is an approach to causation,

constitutive relevance is deemed a non-causal relation. Accordingly,

interventions on mechanisms may violate the surgicality condition and are hence

called fat-handed ((Scheines 2005, 932) and (Woodward 2008, 209)) since they

make a difference in the mechanism and (at least some of) its acting entities.136

To date, the constitutive-relevance debate remains an active field of research

without consensus: Romero (2015), Baumgartner & Gebhartner (2016), and

136 A concise summary is given by Kästner and Anderson (2018, §3): “Since wholes cannot be
manipulated without affecting any of their parts, interventions into the whole will always be
non-surgical, that is, fat-handed, with respect to some part. Rather than intervening into X (the
whole) with respect to Y (the part), we actually intervene on X and Y simultaneously by
carrying out I.”

5 Physical Programmability

128

Baumgartner & Casini (2017) propose to revise standard Interventionsim á la

Woodward (2003) and add different types of so-called fathandedness criteria to

MM. Yet Krickel (2018), raised doubts regarding fat-handedness-approaches,

proposing an alternative that is supposed to rescue the original version MM. The

challenge remains to create a coherent theoretical framework for interventionism

and mechanisms alike.137

Although a considerable body of research has couched the debate primarily

on a technical level, less attention has been paid to the result of plugging in

specific phenomena for S’s Ψ-ing. Future research could therefore focus on

specific phenomena related to sequenced operations; particularly ‘physical

computation’ and its connection to programmability appear to be a worthwhile

area of investigation. Despite there being a well-established theory of mechanistic

computation (see for instance, Piccinini 2015, Mollo 2018, Dewhurst 2018),

previous research has so far overlooked the challenges associated with

programmability and in particular interventionism.

Programmability and its relation with other computing paradigms

The second issue concerns the application of programmability to computing

systems. I argued that physical programmability should only be applied to

physical systems whose computationally individuated states can, in principle, be

intervened upon such that the implemented computational function can be

altered reliably. However, whether its application is compatible with non-digital

or interactive computing systems is somewhat unclear. While concerning

computing devices, this chapter exclusively focused on (sequential) digital

machines; it remains an open question to what extent physical programmability

can be successfully applied to natural, analog, or quantum computing instances.

Each of these cases bears their unique challenges: Natural computing systems

like the brain are often held to compute by means other than program execution

because they are not intentionally set up by human design choices. 138 The

absence of intentional function ascription casts doubt on the appropriateness to

speak of programmability (at least as devised here) with these systems. Analog

computers, in contrast, raise the issue that some consider them to compute ‘in

one go’, i.e., they do not compute in sequential steps. If this assessment is correct,

137 Despite the challenges, I agree with (Kästner and Andersen 2018) that both interventionism
and MM have solid empirical foundations (see, for instance, Craver (2007b, 144-152) for some
details on the empirical grounding of experimentation on mechanisms). Thus, it is not necessary
to give up on the mechanistic framework or the idea that we can intervene on mechanisms.
Rather, the focus should be on construing the theoretical underpinnings of intervention-based
inquiry into mechanisms in a coherent way.
138 Analogously, one may also formulate the issue for ML systems because there we encounter
the similar worry that it is not the humans who predetermine and thus program the machine.

5 Physical Programmability

129

then the application of physical programmability to analog devices may be in

jeopardy due to tensions with the demand of executing a sequential series of

operations. Quantum computers may require special treatment due to the non-

classical behavior of quantum states. For instance, the interaction and read-out of

quantum states to program a quantum computer may require care with

phenomena such as collapse or decoherence.

Furthermore, it remains unclear whether physical programmability and other

forms of interaction are compatible. Specifically, it would be worthwhile to

investigate whether this concept is consistent with the interactive computing

paradigm. Over the past few decades, laptops, smartphones, etc. have evolved

into interactive systems, in which programs accept (external) inputs from users

during runtime. Consequently, human-computer interaction raises several new

issues related to computability theory and accounts of physical computation,

where the course of computation is left unaltered (Martin et al. 2023). Currently,

there is no agreement on whether it is necessary to differentiate between a priori

programming and altering the course of computations during execution. Should

we only refer to the former as programming?

6 Conclusion

My thesis, Mind the Gap, allows us to examine the ontological status of computer

programs from new perspectives. Throughout the manuscript, it became

apparent that the research topic is significant because, to this day, a consensus

remains elusive, and opinions diverge significantly. Therefore, one of the main

goals in writing this dissertation was to provide a cohesive and thorough

overview. The information available is mostly scattered across various discourses

– it is now consolidated into a single monograph, making it easier to access.139

To illustrate the complexity, I initiated the thesis with a hypothetical scenario

grounded in real-world events: A young IP lawyer in the early 1970s grappling

with the legal classification of software. This case revealed substantial

conceptual disharmony and ontological uncertainty surrounding computer

programs. When scouting the relevant literature beyond the legal one, we

learned that matters are similarly diffused today (cf. Appendix A). No single

conception of the nature of programs would be entirely satisfactory as mutually

exclusive characterizations such as texts, configurations of machines, or

algorithms all appear to be plausible options. What gives?

While previous studies interpreted this ambiguity as programs having a ‘dual

nature,’ I think they needlessly complicated the debate due to being confused by

reflecting on the language they use, particularly the term ‘computer program.’

As a result, almost any discourse underpinned by the metaphysical nature of

computer programs (e.g., in the legal (Con Diaz 2019) and verificationist debate

(MacKenzie 2004; Tedre 2015)) remains inconclusive, at best. In order to

systematically unscramble things, Chapter 1 provided some necessary

terminological clarifications by taking a closer look at the origins of the

expression ‘computer program’ and what it is supposed to refer to. Arguably

influenced by the rampant epistemic pluralism of computer science, the

takeaway is that the notion lacks a clear, agreed-upon definition. While similar

observations have been made before (e.g., Eden 2007; Eden & Turner 2007), I

139 I extensively drew from various philosophical literatures to grapple with the question of the
metaphysical nature of computer programs. From the Philosophy of Technology, I incorporated
the concept of artifacts and teleological functions, discussing them with examples of
(computing) devices such as the MONIAC, the IAS machine, music boxes, and Jacquard looms;
from the Philosophy of Science, I used the conceptions of (material) scientific models and
representation, interventionism, and mechanisms. From the Philosophy of Applied
Mathematics, I transposed the insights about the applicability of mathematics to computing.
From the Philosophy of Art, I put the so-called Problem of Creation into service, and from the
Philosophy of Language, I employed the concept of polysemy. Lastly, in the realm of the
Philosophy of Computing, I relied on the insights of the physical computation discourse.

6 Conclusion

131

made them more precise and submitted that ‘computer program’ is a polyseme.

This insight may help us retroactively clarify (at least in parts) the legal and

verificationist debates. Although many of the debate’s participants employed the

same expression, ‘computer programs,’ they either referred to ontologically

different things (e.g., abstract or concrete things) or had trouble stating the

programs’ ontological status precisely because they bundled ontologically

different things together. I coined the term ‘polysemic web’ to underscore that

‘computer program’ can refer to many ontologically different but related things.

Faced with potential linguistic quarrels, I avoided an even deeper semantic

analysis of the term program. Instead, I proposed to track/emphasize the

relations between the elements hiding behind the term in its web. In order to keep

things simple from a metaphysical point of view, I suggested starting to place

these elements across a simple two-category system – the abstract-concrete

distinction – and shed light on their connection. Specifically, I argued that the

concept of ‘computational implementation’ from the philosophy of computing

could help clarify the situation. By making an abstract scenario concrete,

implementation can be seen as a connection between ontologically different

relata (abstract and concrete). To put further meat on this idea, I surveyed the

literature on implementation in Chapter 2. My first noteworthy discovery was

that two largely separated bodies of literature on computational implementation

exist. I henceforth called the corresponding notions type (A) and type (B)

implementation. Surprisingly, both notions have mainly developed

independently of one another. To remedy the situation, I juxtaposed the two

notions.

Next, in the wake of my conclusion, I created a framework based on the

conceptual tools of the philosophy of science literature suited to accommodate

them both. The upshot was that two understandings of implementation are

combinable when alluding to the conceptual tools of the material models and

scientific representation literature. This conceptual borrowing is productive

because, in both modeling and computing, agents engage in object-based

reasoning, where artificial functions are externally attributed, and agents

establish a mapping relation between a concrete system and an abstract

target/program. To highlight the central role of epistemic agents and the

framework’s ability to unify (A) and (B), I called it a Unified Theory of Agential

Implementation (UTAI).

Since UTAI gives rise to three distinct dependency relations between

epistemic agents and (a) ‘abstract programs,’ (b) computational implementation,

and (c) the physical computing system, I devoted the rest of my inquiry to shed

light on (a)-(c).

6 Conclusion

132

When considering dependence relation (a) in Chapter 3 to shed light on

programs qua abstract objects, I utilized the well-known Problem of Creation

(PoC) from the Philosophy of Art literature. The crux of the (PoC) is that certain,

so-called repeatable artworks are deemed abstract since they have multiple

instantiations. However, since we typically assume that artworks are artifacts

(i.e., intentionally created objects) and also think abstract objects cannot be

created, we have a triplet of mutually inconsistent propositions. Very roughly

put, to resolve the paradox, one has to give up one of the prima facie plausible

propositions, and three major options emerge: Platonism, Nominalism, and

Creationism.

My motivation for appealing to the (PoC) was the similarities between

repeatable artworks, such as works of literature and musical compositions, on

the one hand, and the textual view on programs on the other. The key lies in

programs’ multi-realizability. Since programs written in standard high-level

programming languages are portable and can have many different copies, they

exhibit the same kind of ‘repeatability.’ Provided that programs are thus subject

to the (PoC), we have a new and robust theoretical underpinning to refine the

ontological sorts of questions we can ask about programs in the future. The most

attractive feature of this research program is that it allows us to do so in

contemporary metaphysical terms. In other words, it enables us to foster

synergies with much more mature ontological debates and steer us away from

dubious dual nature talk.

Next, Chapter 4 tackled dependence relation (b), i.e., the way in which the

implementation relation hinges on the practice of human agents. Having framed

the Problem of Implementation in terms of the Bridging Problem of Applied

Mathematics in Ch. 2, I indicated that assuming a dyadic relation between

physical system and abstract logico-mathematical computational formalism is

metaphysically mysterious. As detailed in the supplementary material in

Appendix B, it is the consensus of philosophers of applied mathematics (e.g.,

Batterman 2010; Bueno & Colyvan 2011; Nguyen & Frigg 2021) that a third

relatum is crucial to make sense of the math-world relation.

Upon further exploring these considerations, I provide a new way to think

about interpretational accounts of physical computation, specifically recent

versions that couch implementation in terms of scientific representation.

Particularly, my novel notion called ‘Implementation-as’ extended recent

research in the philosophy of computing of so-called scientific representation

accounts (SRA). The underlying idea of all (SRA)s is that it holds promise to

couch computational implementation in terms of scientific representation since

both relations rely on mappings between the physical and the formal.

6 Conclusion

133

Implementation-as departs from the previous (SRA)s by fleshing out the idea for

the first time in terms of a specific notion of scientific representation - Frigg and

Nguyen’s DEKI account. (Frigg & Nguyen 2018). This new framework’s

application was illustrated in the MONIAC (an analog device) and the IAS-

machine (a digital computer). Subsequently, my analysis shows that the resulting

proposal provides a philosophically rigorous theory of computational

implementation, satisfying the most standardly evoked desiderata for theories of

implementation.

 Lastly, I close by discussing the relation of Implementation-as to already

established accounts of physical computation. Traditionally, accounts with any

interpretational elements have been shunned in the literature, for they seem to

fly in the face of the Computational Theory of Mind and purport to paint physical

computation in an arbitrary light. Although future research needs to determine

whether the account is compatible with the cognitive science project,

Implementation-as’ intricate constraints undermine any worries about

arbitrariness.

 Finally, in Chapter 5, I devoted my attention to dependence relation (c) – the

relation between epistemic agents and the physical computing instrument that

enables them to implement a program. In a nutshell, the chapter’s main result

consists of delivering an account of what it is for a physical system to be

programmable. Despite its significance in computing and beyond, I showed that

today’s philosophical discourse on programmability is impoverished. My

contribution offers a definition of physical programmability as the degree to

which the selected operations of an automaton can be reconfigured in a

controlled way. The framework highlights several key insights: the constrained

applicability of physical programmability to material automata, the

characterization of selected operations within the neo-mechanistic framework,

the understanding of controlled reconfiguration through the causal theory of

interventionism, and the recognition of physical programmability as a gradual

notion. The account can be used to individuate programmable (computing)

systems and taxonomize concrete systems based on their programmability.

Big picture-wise, the most important takeaway is that the term 'program' is a

polyseme that denotes ontologically different, albeit related, things. In this thesis,

I have introduced the UTAI framework (inspired by the literature on material

scientific models) to track these relations. In sum, UTAI underscores the

involvement of human agents that use computers as epistemic tools. On this

view, particularly three dependency relations associated with three distinct

philosophical problems require our attention: The Problem of Creation, which

determines the abstract nature of programs; the question of physical

6 Conclusion

134

programmability, which determines the physical side of things; and the Problem

of Implementation, which addresses how the two ontological domains of abstract

programs and the physical world relate.

On this note, I would like to close by addressing the following question: What

are the implications of this thesis for future studies in the philosophy of

computing and adjacent fields? I want to conclude with some programmatic

suggestions about what I believe to be the most pressing issues left unanswered

or raised by my thesis.

First, much work remains to be done concerning terminological clarifications,

rendering the expression ‘computer program’ and the relationship with its

cognates like ‘software’ and ‘algorithm’ more precise. Especially challenging in

this regard will be appreciating computer science’s epistemic pluralism and the

widespread use of computational terms in differing communities and research

traditions. Accordingly, it will be difficult to devise a definition that will satisfy

the majority of stakeholders involved.

 Second, it is important to note that the computing landscape is constantly

evolving. During my dissertation project, we observed firsthand the rapid rise of

AI applications in the public sphere. However, the question of whether we

should consider deep neural networks, for example, as computer programs

remains open. While I believe that it is reasonable to classify them as

computational artifacts, future research needs to delve into the nuances of their

(dis)similarities with ‘classical’ programs.

Lastly, it is worthwhile to advance some of the frameworks developed in this

thesis further in their own right, detached from the question about the ontological

status of computer programs. As already briefly mentioned in bypassing,

Implementation-as, for instance, may be a viable contender in the landscape of

contemporary theories of computational implementation independent of this

thesis’ main topic. Similarly, it would be interesting to explore further some of

the research trajectories enabled by the (PoC). A research program along these

lines would make the debate about the ontological status of computer programs

less insular and may put the discussion at the center of contemporary

metaphysics. Regarding Physical Programmability, it would be fascinating to

explore the possibility of developing a fully formalized programmability

measure similar to computability or complexity theory. On a different note, one

could merge some critical insights of Implementation-as and Physical

Programmability to address largely ignored phenomena such as interactive

computing.

Appendix A: A Guide to the Chimera of
Programs

This appendix charts the varying views of the ontological status of computer

programs. It aims to illuminate how and why the nature of programs can be

understood in so many ways. For so doing, I have surveyed a rather large,

heterogeneous array of opinions about the nature of computer programs:

Philosophers, computer scientists, lawyers, and other investigators have placed

computer programs in nearly every available ontological category. Some

consider them physical objects, others abstract logico-mathematical objects,

special kinds of texts, etc. Accordingly, my survey is positioned at the crossroads

of rich and well-developed traditions in corresponding fields such as Philosophy

of Science, Mathematics, Technology, and Art.

Given that I engage with so many fields, the reader may wonder where this

work belongs and what it is good for. The material presented in the following

pages may be helpful in a couple of ways: First, in its own right, this part of the

appendix may serve as an extended and updated overview of the metaphysical

nature of computer programs.140 This is needed to clarify implicit assumptions,

enable comparison, avoid further conflations, enhance philosophical rigor, and

help navigate a largely unstructured body of literature. Second, I hope it will

facilitate building bridges across the different debates mentioned here in future

research.

Methodologically, I proceed like this: Similar to a recent survey for

educational purposes about the different guises of programs (Lonati et al. 2022),

I provide different clusters containing views about the metaphysical nature of

programs. In presenting so many views across various fields, I do not intend to

show off how much I read. I attempted to summarize what I think are some of

the most important takeaways I distilled from humbly engaging with these

literatures. While so doing, I tried to make this appendix accessible to audiences

with varying backgrounds. Although I try to be systematic and thorough in my

review (e.g., each view branches into further specific positions), the resulting

taxonomy should be taken with a grain of salt. Even though many of the

following categorizations seemingly stand at odds with each other, they are

intertwined in a way that does not allow strict/sharp separation.141 I believe that

140 Generally speaking, few studies explicitly describe the ontological status of computer
programs; exceptions are Gemignani (1981) and Lonati et al. (2022).
141 For instance, as we will see, a case in point is the metaphysical understanding of programs
related to ‘programming languages’ sits at the border of the abstract mathematical objects and
notational artifacts.

Appendix A: A Guide to the Chimera of Programs

136

this is not a flaw of my taxonomy, but rather a symptom of the epistemically

heterogenous nature of computer science and the polysemic nature of the terms

‘program’ I described in the introduction.142

In what follows, my overview is divided in five overarching sections: In A.1.,

I sum up the Physical View. A.2., contains an overview about the Mathematical

View. A.3., dubbed the Symbolic View, surveys material emphasizing the

symbolic nature of programs. Next, A.4., summarizes views according to which

programs are sorts of artifacts. In A.5., I present what I call the Neural View.

Lastly, in A.6., I cash out the State of the Art.

A.1 The Physical View

As seen in the prologue, considering programs as physical objects has been one

of IP lawyers’ main strategies to secure programs’ patent protection (cf. Con Díaz

2019). According to this view, programs are a physical machine’s unique

configuration/switch setting. Analogously, my considerations in Chapter 5,

Physical Programmability, remind us that the physicality of programs raises

interesting philosophical questions related to the philosophical literature on

concrete technical artifacts, their underlying mechanisms, and how we can

intervene in them. Moreover, such a view emphasizes that programs appear to

be “executable entities” (Lonati et al. 2022) anchored in real-world ongoings.143

In what follows, I refer to frameworks that advocate for some kind of physical

understanding of programs as the Physical View.

In order to unpack the notions gathered under the umbrella of the Physical

View, it is helpful to take a more extensive discussion of metaphysics into

account: the duality between continuants and occurrents (see, e.g., Simons 2000).

Typical examples for continuants are organisms (e.g., cats, and dogs); atoms and

stars; artifacts like chairs and tables; the quality of being red; and social entities

like countries or football clubs. The common denominator of continuants is that

they are objects that exist in time (“continuants persist by enduring” (Simons

2000, 59). In contrast, prime instances for occurrents are events, happenings, or

processes such as philosophy conferences, football matches, photosynthesis, and

subatomic particle collisions. Therefore, occurrents are characterizable as objects

in time with temporal parts.

Over the next two subsections, I show that this division is also reflected in

different metaphysical understandings about programs as physical entities.

142 I adopted the expression ‘epistemically heterogenous’ for this context from (Imbert &
Ardourel 2023).
143 Another noteworthy case is the so-called verificationist debate I briefly touched upon in the
introductory chapter.

Appendix A: A Guide to the Chimera of Programs

137

Accordingly, I distinguish the physicality of programs between two different

cases, viz., a static and a dynamic reading.

Static

According to the static reading, programs may be considered part of a machine

(cf. Fig. A1). This idea was perhaps more apparent when using first-generation

computers like ENIAC, where switch settings were visible/tangible. The

machine had to be physically configured to execute the operations required for a

given computation in the correct sequence. ‘Programming’ the ENIAC thus

Fig. A.1: Schematic depiction of an ENIAC ‘program.’ (taken from
Bullynck & De Mol 2010, 140).

involved physically wiring the relevant units to the so-called program lines,

which connected all the machine units. Given this, it would not have been

practical or fruitful to write down a program for the ENIAC as a list of

commands. Instead, the scientists, employed wiring diagrams that showed the

connections that had to be made between functional units to ensure the correct

sequencing of operations. (Bullynck & De Mol 2010; Priestley 2011, 111-115).

Today, we typically no longer need to set switches manually since the process

is automated. Consequently, it is easy to forget the ‘old way’ of doing things (and

the static view). However, as Gemignani aptly put it in his survey article more

than 40 years ago, seeing programs as part of the machine (or a configuration of

it) appears to be necessary to make sense of the notion of ‘control’:

“If a program controls a computer in the same way that a distributor controls the
sequence of firing the sparkplugs in an internal combustion engine, then the
program can reasonably be viewed as an integral part of the computer itself. This
view is strengthened by the fact that a general purpose computer will not, indeed
cannot, carry out its appointed task until it has been properly programmed. The
programming sets the switches, in effect redesigns the internal structure of the
machine, becomes an inseparable part of the machine, if the machine is to perform
as the program was written to make it perform. The program may thus be viewed

as a machine part or as the completion of a previously incomplete machine.”
(Gemignani 1981, 187)

Appendix A: A Guide to the Chimera of Programs

138

Besides motivations stemming from the notion of control and machine

configurations, there is another way of identifying programs as ‘static’ (physical

objects). I cashed out this view in Chapter 3 when tracing the philosophically

viable answer to the so-called Problem of Creation. Accordingly, one may think of

programs as unique kinds of text and identify them with particular physical

tokens of their inscriptions (e.g., existing as files on disk or in memory until they

are executed). Typically, this sort of text (often called program script) contains

instructions in a human-readable format, which is then processed (e.g., by

automated compilation or interpretation) to be machine-readable. I will return to

this last point (‘programs qua texts’) when considering the Symbolic View below

(§A.3).

Process/Dynamic

On the other hand, there is a pervasive view that programs bring about or

even are sorts of real-world processes (sometimes called program process).

Emphasizing the empirical side of things is, for instance, prominently

discussed in the literature about the nature of computer science as a discipline.

One of the earliest and most famous suggestions on computer science as an

empirical field dates back to a 1976 paper by Newell and Simon (Newell &

Simon 1976). In a nutshell, the idea is that the discipline exhibits scientific

potential in the form of experimentation like in the natural sciences. Put

differently, computing processes (such as program execution) are regarded as

entities that can be experimented with.

Subsequently, however, the question arose about whether computer

science qualifies as a science in the same sense as the natural sciences. As

succinctly stated by Mahoney, the issue is that

“There is nothing natural about software or any science of software. Programs
exist only because we write them, we write them only because we have built
computers on which to run them, and the programs we write ultimately reflect
the structures of those computers. Computers are artifacts, programs are artifacts,
and models of the Computers are artifacts, programs are artifacts, and models of
the world created by programs are artifacts. Hence, any science about any of these
must be a science of a world of our own making rather than of a world presented
to us by nature.” (Mahoney 2000, 25)

Later, I will discuss a few more specific aspects of these observations when

addressing the Artifact View (§A.4.). For now, I simply note that Mahoney’s

remarks warrant caution when comparing computing with disciplines like

physics or chemistry that investigate natural phenomena.

In recent years, some scholars, such as Tedre (2011) and Schiaffonati

&Verdicchio (2014), have critically assessed the implications of computer science

Appendix A: A Guide to the Chimera of Programs

139

as an empirical or experimental field. As Tedre (2011) summarized, the ‘pro-

science argument’ frequently asserts that although computer science is not a

natural science, it is nevertheless empirical or experimental. The idea is that

computer scientists still follow the scientific method, which involves exploring

and observing phenomena, forming hypotheses, and empirically testing those

hypotheses. Now, even though these sources admittedly do not seek to address

the ontological status of computer programs directly, their underlying

assumptions seem to suggest that computational processes (like program

execution) are physical processes that can be studied like other physical

phenomena.

What are some of the philosophical upshots of the Physical View? One

interesting discussion point is that the Physical View seems to equate programs

with the lowest level of the computational hierarchy. This way of viewing things

may have important implications for discriminating between different

programs.144

For instance, consider the example of two compatible IBM computers from

the early 1960s – the 709 and the 7090.145 These devices are especially suitable for

discussion because the 7090 is a second-generation transistorized version of the

earlier tube-based 709. Despite using different electronic components, both

devices have the same logical layout.146 Therefore, they are entirely ‘software

compatible’ and can run the same source code and implement the identical

computational hierarchy (i.e., various of the same LoA; cf. Chapter 2), albeit (and

this is the crucial part) with different underlying components. Even though the

computational hierarchy is almost identical, the proponent of the static reading of

the physical view might still argue that the two machines implement different

programs since identity conditions solely depend on specific machine parts.147

Although the example is simple, it exemplifies a pattern of reasoning that

concerns others, if not all, implementations of the same source code in different

machines (which typically do not rely on the same logic diagram). Now, the

reason why this is worthy of mention is that Physical View’s way of discerning

144 I described the widespread view that (artificial) computing systems are composed of
different sorts of levels, forming a computational hierarchy, in Chapter 2.
145 Some philosophers have previously considered the two machines to discuss the issue of
multiple realization for computational systems (Wimsatt 2002; Milkowski 2013, Milkowski
2016).
146 The newer machine has different specifications than the older one. Due to smaller transistors,

it is 50% smaller, requires less ventilation, and consumes 70% less power; transistors also

operate faster than tubes (Milkowski 2016).
147 In a recent paper, Ritchie & Klein (2023) argue that the notion of multiple realizability may
prevent successful implementation of interactive programs with specific time requirements
(they discuss a video game as an example).

Appendix A: A Guide to the Chimera of Programs

140

different programs stands in stark contrast with our ordinary practice (where we

usually think that many programs can be implemented in multiple machines). It

thus raises the urgent question, whether the Physical View is compatible with the

intuitive view that programs are multiply realizable. As extensively discussed in

Chapter 3, this issue resembles a line of reasoning about the metaphysical nature

and identity conditions of so-called repeatable artworks like novels or works of

music; I refer the interested reader to the corresponding sections in Ch. 3.

Lastly, although the Physical View is only the first suggested interpretation of

the current subject matter, it already underscored the diverse ontological

understandings that fall under the term ‘program.’ The question arises: Should

we consider ‘program’ to encompass both static and dynamic views, or should

we make a clear distinction between these interpretations?

A.2 The Mathematical View
Several influential figures in the computing world, such as Dijkstra, Floyd,

McCarthy, Naur, and Wirth, believed that taking a mathematical and rigorous

approach to program construction could enhance the quality of ‘software’ and

programming. Hoare expressed an extreme stance, suggesting that all of

computing could be boiled down to mathematics. According to him, computers

function as mathematical machines, computer programs are mathematical

expressions, programming languages are mathematical theories, and

programming itself is a mathematical activity (Tedre 2015, 59):

“Computer programs are mathematical expressions. They describe, with

unprecedented precision and in the most minute detail, the behavior,

intended or unintended, of the computer on which they are executed.”

Hoare (1985, 1)

Accordingly, there is a widespread view that computing is closely related to

mathematics and that programming is a mathematical activity; let us call this the

Mathematical View. Today, different versions of this standpoint are still frequently

embraced (or, at least mentioned) to give an adequate characterization of

computing as a discipline (e.g., Denning et al. 1989, Eden 2007, Tedre 2015,

Bringsjord 2019, Primiero 2020).

If taken at face value, the Mathematical View commits us to see the entities

studied in computing as mathematical in nature. Consequently, entities like

programs may become the subject of philosophical considerations similar to

other mathematical objects like numbers, proofs, etc. Let me first consider a few

of the common tropes that seem to give credence to the Mathematical View

(computability theory, and algorithms) before closing with some of the most

common philosophical issues pertaining to mathematical objects.

Appendix A: A Guide to the Chimera of Programs

141

Computability theory

Computability theory is a subdomain of mathematical logic that studies and

classifies which mathematical problems are computable and which are not

(Davies et al. 1994).148 Until the beginning of the 20th century, the notion of

computation was an informal one and referred to an activity that was carried out

by human computors (and their instruments). Notwithstanding, the concept of

computation was tightly related to the formal notion of proof and calculations.

In principle, formal proofs can be validated, following rules of inference step-by-

step. Likewise, calculations were typically executed by human computors by

mechanically following rules, simply aided by pencil and paper.

The study of what’s formally computable gained considerable traction in the

1930s, when several mathematicians from different parts of the world came up

with precise, independent definitions of what it means to be computable: Alonzo

Church defined the Lambda calculus, Kurt Gödel defined Recursive functions,

Stephen Kleene defined Formal systems, Markov defined what later became

known as Markov algorithms, and Emil Post and Alan Turing defined abstract

machines which are now called Post machines and Turing machines. What

motivated the quest to formally capture the nature of computation was Hilbert’s

program and to solve the Entscheidungsproblem.

Now, the reason why this is relevant concerning the ontological status of

computer programs is that one may view programs characterized in terms of one

of the formalisms of computability theory. For instance, in his recent monograph

On the Foundations of Computing, Primiero (2020, Def. 52) described this view for

the ‘configuration’149 of Turing Machines:

“A set of configurations for a given Turing Machine is meant to fully and
exhaustively expresses the behaviour of that machine, i.e. to represent a
program:

[…]. The sequence of configurations of a TM says for each stage of the
computation what is on the tape at that stage, what is the state the machine
is in at that stage, and which square is being scanned and what the next
state is. The full set of configurations for a machine is also called its
program.” Primiero (2020, 46; own emphasis)

148 I already provided a brief introduction to computability theory in Chapters 3 and 5 and will
keep myself brief here with regards to formalisms in order to avoid redundancy (for a more
formal introduction I refer the reader to these sections; else another entry to the topic can be
found in Primiero’s (2020) book).
149 TMs’ formalization doesn’t require us to adhere to actual components such as ‘tape’ or ‘read-
write head’ (even though, when considered with care, it admittedly remains a valuable
conceptual aid).

Appendix A: A Guide to the Chimera of Programs

142

Despite their suggestive name (containing ‘machine’), TMs are not actual real-

world devices but specific set-theoretic structures (De Mol 2021). Accordingly,

programs (qua configurations of abstract machines) also purport to be abstract

mathematical objects. (Of course, the same holds true for Post machines, the

lambda calculus and so on).

Algorithms

As expounded in the introduction, the usage of the term ‘program’ has been

subject to constant change and may obtain slightly different, yet non co-

extensive, meanings in different communities related to computing (it is a

polyseme). At the same time, other notions like software or algorithm are often

used interchangeably with the term (and may turn out to be hard to define,

too).150 Although, disputes over what counts as ‘program’ and ‘algorithm’ may

be verbal unless we specify the relevant roles these notions (ought to) play in

practice, it is nevertheless instructive to try clarifying to what extent programs

and algorithms are related.

A good way to get started is to consult Chabert’s (1996) rich historical survey

on algorithms. Opening his book, he states:

“Algorithms have been around since the beginning of time and existed well
before a special word had been coined to describe them. Algorithms are simply a
set of step by step instructions, to be carried out quite mechanically, so as to
achieve some desired result. Given the discovery of a routine method for deriving
a solution to a problem, it is not surprising that the ‘recipe’ was passed on for

others to use.” Chabert (1996, 1)

At first stab, the notion of algorithms seems to be both historically prior to the

development of formal notions of computing (and computer programs).151

Moreover, it concerns a broader range of non-computing phenomena

(sometimes e.g. kitchen recipes are regarded as ‘algorithms’). Over the

centuries, the term algorithm has come to mean any systematic calculation

that could be carried out automatically. Nowadays, due to computing’s

influence, the idea of finiteness has shaped the meaning of algorithms, and

we usually distinguish between algorithms that are deterministic or non-

deterministic, parallel, interactive, quantum, etc. A typical view on the

150 Duncan (2014) provided an overview of 12 different criteria to define the term ‘software’ in
his PhD thesis.
151 The word ‘algorithm’ derives from al-Khwarizmi, a 9th-century central Asian
mathematician. His influential work on algebra provided an exhaustive account of solving
polynomial equations by reducing them to standard forms. In the 12th century, his work and
others were translated from Arabic into Latin, and his name became associated with the
methods contained in his writings.

Appendix A: A Guide to the Chimera of Programs

143

relationship between algorithms and programs is expressed by Newell, who

states

“An algorithm is more abstract than a program. Given an algorithm, it is possible
to code it up in any programming language. You might think that a program
should be something like an algorithm plus implementation details. Thus, you
examine the text of a purported algorithm-if you find an implementation detail,
you know it is a mere program.” (Newell 1986, 1029)

In recent years, there has been some impetus to philosophically scrutinize the

nature of algorithms (and their relations to computing) more precisely (e.g.,

Vardi 2012; Dean 2016; Hill 2016; Angius & Primiero 2019; Primiero 2020, Ch.

6; Papayannopoulos 2023). The takeaway message is that many of the debates’

participants noted the existence of multiple notions of algorithms. While

Vardi speaks of an “algorithmic duality,” Angius and Primiero’s ontological

analysis suggests a three-fold distinction between algorithms as informal

specifications, as (linguistically construed) procedures, and as

(implementable) abstract machines.

Similarly, Papayannopoulos (2023) pointed out that the notion of

‘algorithm’ has been conceptualized and used in contrasting ways. His

argument goes that moving from an initial informal idea to a more precise

formal concept typically involves moving through different stages of

conceptualization (from pre-theoretic to proto-theoretic to fully-theoretic).

However, when it came to sharpening algorithms’ meaning, the last stage of

development culminated in two separate conceptions: On the one hand, the

‘abstract view’ (according to which algorithms are procedures over abstract

objects Moschovakis (2001), Gurevich (2012)), and on the other hand, the

‘symbolic view’ (algorithms are processes that necessarily hinge on some

given alphabet and notational system (Kolmogorov & Uspenski 1963).

Given the complex developments under the umbrellas of both ‘algorithm’

(even after focusing only on classical sequential algorithms) and ‘computer

program,’ there is no obvious/unique answer to their relationship. The issue

is that there are many possibly different relationships due to the

combinatorics of the various conceptions of programs and algorithms.

Lastly, is there a philosophical takeaway, particularly concerning our

metaphysical understanding of computer programs, that follows from endorsing

the Mathematical View? To the best of my knowledge, no study has tackled the

issue systematically, i.e., having investigated how the plausibility differing

metaphysical frameworks of mathematics shape the views presented here. So,

depending on one’s general leaning regarding (notorious) metaphysical issues of

Appendix A: A Guide to the Chimera of Programs

144

mathematical objects, one may need to consider vastly different ontological and

epistemological issues. To name but a few problems:

(a) If, for instance, one were a mathematical Platonist (see (Linnebo 2024) for

an overview of the different positions under the umbrella ‘Platonism’)

about computer programs, then one would have to face the familiar

epistemological puzzle – Benacerraf’s identification problem – of how we

could possibly get to know/discover such mathematical objects (I discuss

this issue in more details in Chapter 3).

(b) If, however, one were to be a nominalist about mathematical objects, the

Mathematical View of computer programs would be in serious trouble (and

may collapse into specific readings of the Physical and/or Notational

View). Mathematical nominalism posits that mathematical entities do not

exist as abstract objects, lacking location in space-time or causal powers

(Bueno 2020).

(c) Philosophers of applied mathematics maintain that there are several so-

called application problems of mathematics (Steiner 1998; Fillion 2012). The

common theme of these problems is how supposedly abstract mathematical

entities relate to the physical world. Consequently, when computational

entities such as computer programs are considered mathematical entities,

these problems also pertain to computing. (I address one – the so-called

Bridging Problem, i.e., the metaphysical problem of how the mathematical

relates to the physical– in Appendix B.)

Besides these general themes from the philosophy of mathematics, one can

expect additional, more specific issues about computability theory, algorithms,

etc. For instance, despite my presentation of algorithms under the ‘Mathematical

View,’ we may need to revise this interpretation. Dean (2016, 26) notes that we

typically think of mathematical objects as static. However, our usage of

operational terms in the specification of algorithms reflects our understanding

that executing an algorithm is to carry out a sequence of operations ordered in

time.

A.3 The Notational View

Regarding programs as sorts of texts is parasitic to the widespread use of modern

programming languages. According to this view, programs are constituted by a

well-formed sequence of symbols written in a programming language. This view

raises several questions regarding the nature of programming languages and,

consequently, programs qua texts written in such a ‘language.’ As Lonati et al.

(2022, 155) aptly remarked recently

Appendix A: A Guide to the Chimera of Programs

145

“A program is a notational artifact, in the same sense way that a manuscript,
book, or music score is: it relies on a notation with a particular syntax, according
to some formal rules, linguistic notations and conventions.”

In the following, I call the view to conceive of programs as some symbolic

structure as the Notational View. It is instructive to provide some brief (historical)

background to better understand the Notational View and its philosophical

implications. How exactly became the notational view so pervasive? And what

exactly are programming languages?

Until the end of the 19th century, computations were essentially performed

by human clerks. Typically, these ‘computors’ relied on pencil, paper, and

possibly some (semi-automatic) calculating tools (see e.g., Campbell-Kelly et al.

2023, Ch. 1-3). Unless wholly carried out in one’s head, manual computation

involved the manipulation of different symbols according to rules of

arithmetic. In parallel, there was a long tradition of considering mathematics in

linguistic terms, such as the language of nature, the “grammar of science,” or, in

the 20th century, as a formal symbolic system (Nofre et al. 2014, 47).

The advent of various mechanical and later electronic (special-purpose)

computing machines increasingly enabled practitioners to carry out sequences of

computations automatically. Notably, the increasing speed and automatization

of electronic processing provided by the technological leaps in the 1940s required

program execution to rely less on repeated human intervention. For instance,

whereas the functioning of the Harvard Mark I required human operators to

manually change program tapes for conditional branching during runtime,

ENIAC featured fully automatic conditional branching (Bullynck & De Mol 2010;

Priestley 2011, 111-115). Although the ever-increasing automatization of

computing machines marked a significant development, it gave rise to a novel,

unexpected source of error: human programmers’ failure to fully anticipate the

effects of the given instructions accurately.

At first, practitioners would usually write programs directly in machine code

(i.e., referring to one’s device’s hardware components in binary notation). As

Valdez succinctly writes about the state of the art at the time,

“There was a very close correspondence between the structure of the program
and the structure of the machine itself. Consequently, programmers were
required to know every detail of the structure and working of the machine they
were programming and inevitably the focus in programming was on the
formulation of the problem to fit the structure of the machine; the logic of the
program was totally shaped by the structure of the machine.” (Valdez 1981, 4)

For successful programming, one had to be familiar with virtually every

hardware component and the entire architecture of the machine; this method was

tedious, made code difficult to read for humans, and the probability of

Appendix A: A Guide to the Chimera of Programs

146

accidentally making errors was high. Accordingly, from the late 1940s onwards,

programmers created a notation called assembly code to simplify the process of

writing machine code. Rather than writing down the binary digits for each

machine instruction, they used short words or abbreviations like ADD, SUB, or

MOVE. These words representing instructions were easier for humans to read

and remember than a series of 1s and 0s.

In explaining why it became custom to see programming as a linguistic

activity, Nofre et al. (2014) remind us that computing specialists swiftly extended

the previously mentioned tradition of viewing mathematics in linguistic terms to

the mathematical/computational problems solved by the aid of machines. While

initially, the adaptation from assembly to machine code was done by hand, it was

soon realized that the process is automatable, too. Resultingly, programs called

assemblers emerged to perform the process. In this context, the transition from

mathematical problem to code was interpreted as an act of ‘translation.’

Importantly, it is possible to apply repeatedly, or ‘nest’ such translation

process to come up with new notational schemes beyond first (machine code)

and second-generation programming languages (assembly). Throughout the

1950s, this nesting strategy enabled practitioners to invent third-generation high-

level programming languages such as FORTRAN, ALGOL, or Lisp that were

more programmer-friendly and typically omitted even more hardware details

(Knuth & Pardo 1980; Wexelblat 1981). Slowly, this development separated

programmers from the intricate make-up and inner workings of the machine. As

such, the computing community increasingly distanced itself from thinking of

code as an attribute of individual computing devices and began to draw on

linguistics and symbolic logic. The reason for this conceptual borrowing is that

new notation schemes are similar to formal languages like first-order logic as

they have variables (to which we can assign values), predicates, and functions

(White 2004). Interestingly, every new ‘language’ gives rise to a new model of the

machine: Although the hardware remains unchanged, the programmers can now

reason in terms of variables rather than memory cells or of algebraic formulas

rather than registers and adders. Furthermore, the development introduces the

notion of ‘machine independence,’ meaning that a single program can eventually

run on many computers.

In the past seventy years, thousands of programming languages have

emerged, utilizing various approaches to writing programs. Some languages,

known as imperative languages, specify how a computation should be done,

while declarative languages focus on what the computer is supposed to do. There

are general-purpose languages as well as those developed for specific application

domains. For instance, C and C++ are typical in systems programming, SQL for

Appendix A: A Guide to the Chimera of Programs

147

writing queries for databases, and PostScript for describing the layout of printed

material. Innovations and applications often lead to the creation of new

languages. For example, the development of the Internet led to the creation of

Java for writing client/server applications and JavaScript and Flash for animating

web pages.152

Summarizing these developments, we can (broadly construed) understand a

programming language as an artificial notational formalism in which we can

express algorithms/computational problems (Gabbrielli & Martini 2010, 27).

Abstracting away from the machine allowed the arrival of notational schemes

pertinent to the (human) problems to be solved. As described in Chapter 2,

‘Notations – There is no Escape’ of the PROGRAMme book,153 notations are thus

frequently regarded as intermediaries between human programmers and

computing machines (Fig. A.2).

Fig. A.2: Schematic depiction of the relation between computing

machines, symbol structures, and humans.

Ultimately the common idea remains to exercise control over the underlying

device and use it for problem solving; programmers therefore must formulate or

program instructions in a notation that the machine can ‘understand.’154 To turn

the human-readable inscription into a machine-readable one, the high-level

inscription needs to undergo a translation process and be implemented in a

‘lower level.’ In practice, we employ interpreters, compilers, and linkers (which

are all programs themselves) to go through the different translation stages

automatically.155

152 I emulated this paragraph based on (NRC 2004, 76f).
153 (https://wiki.program-me.org/index.php/Notations:_There_is_no_escape)
154 N.b. that the term ‘understand’ is yet another linguistic (and anthropomorphic) metaphor.
155 These translation stages are frequently discussed under the name ‘implementation.’ In
Chapter 2, I discuss the corresponding philosophical ramifications.

Appendix A: A Guide to the Chimera of Programs

148

Beyond textual notations

Next to a textual conception, one may employ other forms of notations.

Flowcharts represent another prominent notational scheme for computer

programming. In his article ‘The Multiple Meanings of a Flow Chart,’ Ensmenger

(2016) illuminates the importance of flowcharts for representing the logical

structure of programs beginning in the 1940s. Their genesis can be traced back to

a series of reports authored by John von Neumann and Hermann Goldstine.

These reports introduced the conventions of the flow diagram notation,

intending to capture a program’s dynamic unfolding (the program process) by

pictorial means. One notable feature of this novel notation was the inclusion of

so-called assertion and substitution boxes connected by arrows. These notational

devices facilitated the manual conversion of a program to otherwise hardly

readable machine code.

Today, programmers still often rely on forms of software visualizations, like

Bachman or UML diagrams, to attempt to gain an overview of complex software

systems. As such, the purpose of flowcharts diverges from a program as text view

in so far as flowcharts are typically not apt to directly exercise control of the

machine. Rather, they act as specifications and fill the need to make a program

clear to those who want to understand it.

Overall, I have attempted to survey a relatively large area of computer science

in this subsection. Accordingly, there is a vast landscape of underlying theoretical

and philosophical issues. Let me now sketch some of the implications for the

metaphysical nature of computer programs in broad strokes.

The section started with a quote by Lonati et al. (2022), stating that programs

are notational artifacts like different kinds of texts or works of music. In fact, there

is extensive literature on the ontological status of such repeatable artifacts in the

philosophy of art and metaphysics. In so far as one can think of programs as

repeatable artifacts, the same conclusions about the ontological status of texts,

words and so on should also inform our reasoning in computing. (I extensively

discuss the issue and relevant literature in Chapter 3).

At the same time, the nature of programming languages itself raises

conceptual issues. Although there are thousands of programming languages

nowadays, most share common features when it comes to their semantics. The

three most typical styles are operational, denotational, or axiomatic (Jones &

Astarte 2018). 156 In some of his work, Turner (2007; 2010; 2014) attempts to

156 An operational semantics allows us to interpret the meaning of a programming language
through an abstract machine. It involves translating expressions in the programming language
into instructions or programs for the abstract machine. Denotational semantics formalizes the
interpretation of programming languages in terms of mathematical structures (called
denotations) like sets or categories that describe the meanings of expressions from the

Appendix A: A Guide to the Chimera of Programs

149

unscramble how the underlying semantics may furnish potentially different

ontological commitments concerning programming languages. One critical

problem is that programming languages have an abstract guise we can reason

about mathematically but ultimately need to be implemented in a physical

medium. Often, this issue is discussed under the label the ‘dual nature view,’ and

we will come back to it shortly in the last section of this appendix.

Another important issue pertains to the relation between programs as static

notations and the real-world ongoings in concrete computing devices. As I have

argued in Chapters 2, 4, and Appendix B, the relationship between these

symbolic structures and material systems is subject to the vexing issue of the

Problem of Implementation.

A.4 The Artifact View

In our everyday life, we are surrounded and constantly confronted with artifacts.

Typically, an artifact is defined as an object intentionally made or produced for a

specific purpose (Hilpinen 2017). Intuitively, many computer programs appear

to be artifacts because they are ‘creations of the mind’ (cf. Mahoney’s quote a

couple of pages ago). In due course, philosophers often distinguish between

different types of artifacts. Especially two conceptions turn out to be relevant for

classifying computer programs: Technical artifacts and abstract artifacts. In the

following, I will provide an entry into these notions (concerning computer

programs).

Technical Artifacts

Technical artifacts are considered an important subclass of artifacts in general (I

already briefly introduced them in Ch. 2 and Ch. 5). They are taken to include

mundane objects like tables, screwdrivers, and toasters to highly sophisticated

technologies like particle detectors or spacecraft. All technical artifacts have in

common that they are constituted by both material and intentional features.157 On

the one hand, technical artifacts can be described by their material structure, i.e.,

in terms of their physical or chemical capacities. On the other hand, they can be

couched teleologically with regards to goals and actions. The combination of both

structural and teleological (or material and intentional) aspects are required to

languages. The underlying idea is to map a language into some space of such mathematically
tractable structures. Lastly, an axiomatic semantics contains axioms and rules of inference that
describe computer programs in propositional logic. This approach is beneficial for proving the
correctness of programs (Hoare Logic is a prominent example).
157 The materiality delineates technical artifacts from socio-cultural artifacts like constitutions or
the law; intentional features render them distinct from naturally occurring material entities like
tigers and tornados.

Appendix A: A Guide to the Chimera of Programs

150

provide a complete picture of them (Kroes 2012). For that reason, technical

artifacts are often referred to as having a ‘dual nature’ (cf. Kroes & Meijers 2006;

Baker 2006).

Importantly, the material and intentional features are deemed to stand in a

special relationship: It is the artifact’s material structure which allows agents to

pursue their goals – only if there is the right correspondence between the two

may an artifact function correctly.158 Accordingly, philosophers of technology like

Houke and Vermaas concluded that “[…] the notion of ‘function’ is like a bridge

connecting the intentional, use-plan description of artefacts and a description of

their physicochemical capacities.” (Houke & Vermaas 2010, 138). As we will see

later on under the discussion of the ‘dual nature view of programs’, several

philosophers have suggested that such teleological function are suited to

conceptually connect the different clusters in this appendix.

Abstract Artifact

There is another prominent class of artifacts – abstract artifacts (see also the

material in Ch. 3). The prefix ‘abstract’ should be understood in the metaphysical

sense of lacking spatial features described previously in the introduction. Despite

lacking ordinary spatial features, abstract artifacts are nevertheless characterized

as creations of the mind. They are abstract objects that were created. Standard

examples often mentioned in the relevant literature are fictional characters

(Sherlock Holmes, Donald Duck) and other types of so-called repeatable

artworks like literature or musical works (Wollheim 1968, Levinson 1980,

Thomasson 2006). Even though these entities are typically inscribed in

tangible/physical media – a text printed on paper, for instance – many

philosophers deem these artifacts abstract. As expounded in Chapter 3, this is the

main conclusion of the so-called Physical Object Hypothesis about repeatable

artworks. Simply put, the idea is that repeatable entities/artworks are abstract

because they cannot be identified with a specific copy or token in which they are

inscribed. However, in contrast to a platonic conception of abstract objects (which

somehow exist independently of us and can be discovered), the artifactual view

maintains that (at least some) abstract objects depend on agency and can be

created.

Two angles render the abstract artifact view relevant to the study of computer

programs. First, and more superficially, one may associate abstract artifacts with

programs because the terms ‘abstract’ and ‘artifacts’ seem to resemble already

158 If there is a mismatch between intention and structure, an object may be inadequate for a
designated task – a wooden toothpick, for instance, likely won’t be an adequate replacement for
one’s car key.

Appendix A: A Guide to the Chimera of Programs

151

familiar features. Secondly, and more substantially, one may take the analogy to

literary and musical works seriously (CONTU report, Faulkner & Runde 2010;

Irmak 2012). As we have already seen, both conceptions have been greatly

compared to computer programs (and in Chapter 3, I developed this idea more

formally through the so-called Problem of Creation). On the one hand, the

analogy of computer programs to literary works was one of the main features of

what I referred to as Symbolic View. On the other hand, the analogy of computer

programs to musical works has been used extensively by legal practitioners to

argue for the copyrightability of software (commissioner Hersey also used both

cases to express his dissent with the final CONTU report).

Note that this framing is not merely based on armchair philosophy but is well

anchored in the computing community. For instance, in his 1975 book The

Mythical Man-Month – a seminal text in software development – Frederick Brooks

observed that, like the poet, the programmer engages in a creative endeavor and

is

“only slightly removed from pure-thought stuff. He builds his castles in the air,
from air, creating by exertion of the imagination […] One types the correct
incantation on a keyboard, and a display screen comes to life, showing things that

never were nor could be.” (Brooks 1975, 7)

And as noted by Tedre (2015, 157), it was a widespread opinion that computing

was a craft or art of making programs in the early days of computing. So if

programs are indeed pure creations of the mind and if their making is essentially

an art or craft, one may reasonably draw the conclusion that they seem to be some

kind of abstract artifacts.

Let me wrap up this section by mentioning the key metaphysical implications

of the Artifactual View. Given the different philosophical frameworks that

underpin the notions of technical and abstract artifacts, it is wise to discuss them

one by one. I start by looking at appropriation of technical artifacts into

computing.

As already mentioned previously, attempting to extend the technical artifacts

view to computing is welcome, for it takes the engineering perspective, as

expressed in Denning et al. (1989) or Tedre (2015) seriously. I will discuss some

of the details and potential caveats of this approach in the last subsection of this

appendix in connection with the work of Lando et al. (2007) and Turner (2014,

2018). Taking stock, we should keep the following points in mind:

(a) Notably, the Artifact View is compatible with many of the other clusters

presented so far (technical artifacts are physical objects; depending on

one’s favored position with regards to the philosophy of mathematics, one

may think that mathematical objects are also abstract artifacts; the abstract

Appendix A: A Guide to the Chimera of Programs

152

artifacts view is complementary to the view that programs are symbol

structures).

(b) Accepting the Artifact View entails that programs stand in a particular

ontological dependence relation to humans (or other epistemic agents).

(see e.g., Duncan 2014)

(c) Depending on which framework of the Artifact View one subscribes to,

one may ‘inherit’ normative features (e.g., due to artifactual functions that

come with several conceptions of artifacts) that tell us when an artifact is

malfunctioning, and so on. In the realm of computing, normative features

are required to make sense of ‘miscomputation’ (and that the execution

of programs can go wrong; see e.g., Fresco & Primiero (2013) and Tucker

(2018)).

A.5 The Neural View
There is a long and rich (philosophical) tradition to conceive of the mind as a

machine (Boden 2006). With the advent of electronic computing machines, it did

not take long until ideas about the computer and the brain became mutually

entangled. This shaped both the perception of what kinds of things computers

and brains are, thus having implications for the understanding of computer

programs. Let me elucidate two main developments.

The Computer as Brain

The first main development is about the public anthropomorphization of the

newly emerging electronic computing technology from the 1930s onwards.

Increasingly, new computing devices seemed to solve calculations which were

previously reserved to only the human mind. Accordingly, the new technology

became attributed with human qualities, especially with those of the mind and

brain. As Martin explains in her article ‘The Myth of the Awesome thinking

machine,’ it was “[…] the press [who] consistently used exciting imagery and

metaphors to describe early computers.” (Martin 1993, 130). Analyzing

newspapers, she concludes that it was rather mainstream media journalists than

the early computing pioneers that spread the use of expressions like ‘electronic

brain’ or ‘intelligent machine.’159

While using such sensational anthropomorphic labels occurred primarily in

the 1950s and 1960s and subsequently influenced large parts of the (American)

population, the myth of the awesome thinking machine lost its bite when

minicomputers started affecting a more widespread workforce (and users

159 Von Neumann, Turing, and Vanevar Bush were prominent exceptions. Whereas the Von
Neumann wrote of machine elements as neurons, Bush stated that machines performed
“repetitive thought” (Martin 1993).

Appendix A: A Guide to the Chimera of Programs

153

realized that they were not thinking by themselves). However, today, we live

through another public hype cycle fueled by recent developments in AI

applications. Especially deep neural networks (DNN) 160 – as can already be

inferred from their name – are suggestive in resembling the neural structure of

the human brain.

Floridi’s & Nobre’s (2024) recent article casts light on the general

anthropomorphization of machines. In particular, they argue that AI’s technical

vocabulary is deeply entangled with biological and human terms. Cases in point,

among others, are ‘machine learning,’ ‘memory,’ ‘synapses,’ and ‘hallucinations.’

As such, these metaphors may influence our way of thinking about computing

machines since whenever technical terms are transferred between disciplines,

they carry additional baggage and implications due to their original context.161

The Brain as Computer

The second main development however is less superficial and arguably had

longer lasting philosophical influence. Roughly put, here the direction of

influence worked the other way around – the computational metaphor was

applied to the mind and brain. Contrary to the early widespread public

conception to see computers as brains, the view to see our neural apparatus as

some sort of computing system unfolded less straight forward. One of the first to

argue that cognition is the product of computation in the sense of the formal

notion of computability defined by logicians like Alan Turing were arguably

McCulloch & Pitts (1943).162 In his recent book on neural mechanisms, Piccinini

foreshadows some of the potentially far-reaching consequences of this theory for

our understanding of computation:

“McCulloch and Pitts’s theory was not the only source of modern computational
theories of cognition. But McCulloch and Pitts’s use of computation to describe
neural functions, together with their proposal to explain cognitive phenomena
directly in terms of neural computations, contributed to a large shift in the use of
computation that occurred around the middle of the twentieth century. Before
1943, computing was thought of as one human activity among others (e.g.,
cooking, walking, or talking). After 1943, computing could be thought of as, in a
sense, all that humans did. Under McCulloch and Pitts’s theory, any neural
network could be described as performing a computation. In the sense in which
McCulloch–Pitts nets compute, and to the extent that McCulloch–Pitts nets are a

160 Neural networks are an array of connected signal-processing units known as ‘neurons.’
Usually, they consist of (i) input units that receive signals from the environment, (ii) output
units that send outputs to the environment, and (iii) hidden units that communicate solely with
other units within the system.
161 Colburn & Shute (2008) provide a more in-depth analysis of how metaphors in computer
science offer a conceptual framework in which novel concepts can be embedded.
162 See Piccinini (2004; 2020, Ch.5) for some historico-philosophical assessment of McCulloch
and Pitt’s theory.

Appendix A: A Guide to the Chimera of Programs

154

good model of the brain, every neural activity is a computation. Given that
McCulloch and Pitts considered the computations of their nets to be explanations
of cognitive processes and human behavior, every cognitive process was turned
into a computation, and every behavior into the output of a computation.”
Piccinini (2020, 124)

While overtly highlighting the impact of ‘historical firsts’ makes many

professional historians chuckle, it is true that the early 1950s saw a surge of

interest in formalisms that likened the mind to a computer. Following Penn

(2020), one may point out the examples of Herbert Simon’s development of

complex information processing and heuristic programming, John McCarthy

and Marvin Minsky’s development of artificial intelligence, and Frank

Rosenblatt’s development of machine learning. Although, as Penn argues, the

approaches to simulate aspects of cognition varied among these computing

pioneers, they should nevertheless be regarded as a single intellectual project of

reducing “epistemology to code.”

Besides, other disciplines picked up on the idea to couch the brain in

computational terms. Take, for instance, the seminal textbook Cognitive

Psychology by Neisser, which massively contributed to putting the same-named

field on the map as a discipline in its own right. In the introduction, he draws

parallels between humans and computers. He writes that the “task of a

psychologist trying to understand human cognition is analogous to that of a man

trying to discover how a computer has been programmed. In particular, if the

program seems to store and reuse information, he would like to know by what

‘routines’ or ‘procedures’ this is done.” (Neisser 1967, 6). Today, it is still common

practice in cognitive science and adjacent fields to view the internal states in the

cognitive system that provide information about the environment and guide

behavior as mental representations undergoing computations (i.e.,

transformations that obey computational rules).

Parallel to the emergence of disciplines like artificial intelligence, cybernetics,

and Cognitive Psychology, the idea of viewing the brain as a computer also

gained traction in philosophical circles in a family of views nowadays referred to

as Computational Theory of Mind (CTM).163 In the 1960s, philosophers like Hilary

Putnam (1967) proposed a form of functionalism couched in computational terms

that was supposed to supersede its rivals, namely behaviorism and identity

theory.

While the first versions of the CTM maintained that minds perform

computations similarly to Turing Machines, subsequent proponents of the view,

like Fodor (1981), focused on the symbols manipulated under computational

163 See (Rescorla 2020) for an accessible survey.

Appendix A: A Guide to the Chimera of Programs

155

rules. (Fodor is sometimes said to have revived the ‘language of thought’ idea).

In brief, the proposal argues that to fully understand cognitive abilities, we need

to consider how syntactic operations work on language-like symbolic structures

and the digital computational procedures that transform them.

In the 1980s, connectionism was revived as an alternative to the classical

CTM.164 This “Golden Age of Connectionism” (Buckner & Garson 2019) was

underpinned by a culmination of theoretical refinements, especially the notion of

back-propagation in artificial neural networks was paramount (Rummelhart et

al. 1986). In a nutshell, connectionism’s main difference is that it draws from

neurophysiology rather than computability theory. This paradigm relies on

computational models and neural networks that differ significantly from abstract

machines such as TMs.

Finally, I will shed some light on the philosophical impact of the Neural View

on our metaphysical understanding of computer programs. What are the most

vital implications?

First, the Neural View paves the way for naturalized conceptions of

computation beyond neural activity (‘Why stop with the brain?’). Taken to the

extreme, this pattern of reasoning opens the floodgates to so-called

pancomputationalism (viz., the idea that everything computes).

Pancomputationalism is a conception that comes in various flavors165 and is often

considered to trivialize the notion of computation (this phenomenon is

frequently referred to as triviality arguments (Sprevak 2018)). However, since for

proponents of the CTM, it is a conditio sine qua non to have a mind-independent

notion of physical computation, a lot of ink has been spilled to work out the

nature of physical computation precisely. For the sake of brevity, I will not deep-

dive into the intricate details. Anyhow, to make a long story short, this

development brought forward philosophical debates about the nature of

physical computation166 and gave rise to a host of issues:

(a) Suppose computation is no longer just a human activity but a mind-

independent process occurring in various natural systems. In that case, we

may ask whether there are also ‘natural computer programs.’

164 The connectionist project started in the 1940s (including, e.g., McCulloch and Pitts’ work)
and attracted considerable attention by the 1960s. However, major concerns about the
connectionist modeling techniques led to a decline in research interest and funding.
165 Pancomputationalist ideas, while often associated with the Neural View, are not limited to it.
For instance, computing pioneer Zuse (1969) proposed that all processes in the universe are
computational. Today, many philosophers of computing distinguish between limited,
unlimited, and ontic pancomputationalism, each with its own unique characteristics. For a
comprehensive analysis of these distinctions, see Anderson & Piccinini (2024).
166 I refer the interested reader to my second and fourth chapters and the following appendix to
learn more about the subject.

Appendix A: A Guide to the Chimera of Programs

156

(b) If one subscribes to some version of the CTM, then physical computation is

no longer based on cognition but the basis for cognition. This potentially raises

issues of circularity in the sense that the sequence of computations carried

out by the execution of humanly produced computer programs is

dependent on prior neural computation.

Second, to date, the Neural View has consequences on the way in which we

conduct our discussions within the various brain sciences, computing, and

computationally heavy fields (for instance ‘machine learning’). Moreover, the

‘Computer as Brain’ and ‘Brain as Computer’ views arguably continue to exert a

reciprocal influence on each other.

A.6 State of the Art
At first stab, the list of clusters I just presented leaves us with a fragmented

picture of computer programs’ ontological status – such fragmentation results in

conceptual difficulties, mutual misunderstandings, and category mistakes.

Tensions arise, such as how qua abstract causally efficacious object programs are

simultaneously executable entities that do have real-world effects. Similarly, we

may wonder whether we should classify programs as (material) technical

artifacts or abstract ones (or whether there might even be naturalized programs).

What to make of these rival analyses of the ontological status of computer

programs? Are they all of these things, some of them, or a novel sui generis entity

that requires the revision of our standard metaphysical frameworks?

Some investigators have sketched approaches to answering questions like

these in a philosophically satisfying way. In this State of the Art section, I briefly

yet critically review them chronologically.

The dual nature view & linguistic refinements

In his article Three Myths of Computer Science, Moor (1978) provides one of the

earliest analyses of the situation by stating that computer programs can be

understood on physical and symbolic levels. As we will see, the duality theme

will reoccur for many subsequent authors. The way in which Moor tries to

explain the duality is by appealing to linguistic confusion. In particular, he writes

that extensionally inadequate definitions (being simultaneously too permissive

and too narrow) are the root of the problem. To remedy the situation, he proposes

a revised definition, viz., a computer program is a set of instructions that a

computer can follow to perform an activity. Unfortunately, Moor’s attempt at

linguistic reform does not completely clarify what kinds of things programs are

after all, either.

Appendix A: A Guide to the Chimera of Programs

157

Everything is a program

In a more radical attempt, Suber (1988) concludes that everything is software:167

“Hardware, in short, is also software, but only because everything is.” Suber

(1988, 102). This verdict hinges on equating software with patterns per se and

assuming that all kinds of prima facie nonsensical patterns could, in principle,

retroactively be turned into programming languages. Overall, the idea to reduce

software to everything there is flies in the face of our shared beliefs that some

things implement computer programs and others don’t; Suber’s account is,

therefore, extensionally inadequate. Notably, his kind of reasoning bears striking

similarities to a family of pancomputationalist accounts (e.g., Searle 1990) and

ought to be rejected for the same reasons.168

A complete metaphysical overhaul

In Smith’s (1998) On the Origin of Objects, we find yet another far-reaching

stratagem on how to tackle the issue. His book is the summit of extensive

investigations on the metaphysical foundations of computer science, AI, and

cognitive science. As such, the first chapter contains a few pages on the

ontological status of programs. Similar to Moor, he first points towards linguistic

confusions by claiming that the vocabulary of computing is somewhat vague;

since computing as a discipline is relatively young, the field employed metaphors

and concepts from other disciplines:

“Given the intellectual origins of computer science, it is no surprise that much of
our present-day computational vocabulary was lifted from the study of logic,
mathematics, and formal languages.” (Smith 1998, 33)

He believes that the initial conceptual borrowing obscured the “true nature of the

computational situation” (ibid.). In his view, programs are best understood

through a tripartite distinction of a program text, a program process, and some

(external) subject matter the computation is about. (N.b. that Smith’s

conceptualization of the textual and process aspects essentially aligns with

Moor’s dual nature view). However, what is truly unique about the account is

that it calls for an alternative metaphysical framework beyond the realm of

computing (“it is not just the ontology of computation that is at stake; it is the nature

of ontology itself.” (Smith 1998, 42)). While these claims are potentially far

reaching, it is well beyond the scope of this survey section to give a fully-fledged

critique of Smith’s entire attempt (i.e., the ‘middle distance’ approach) to

overhaul the way we ought to conduct metaphysics.

167 Suber uses ‘software’ and ‘computer program’ interchangeably (Suber 1988, 94).
168 As previously mentioned, so-called triviality arguments typically render
pancomputationalist positions unplausible; see Anderson & Piccinini (2024) for an in-depth
analysis of the topic.

Appendix A: A Guide to the Chimera of Programs

158

Embracing the Dual Nature View: Concrete Abstractions

At the end of the millennium, Colburn (1999) also picked up the dual nature

theme: According to him, programs are comprised of what he calls a medium of

description (which is usually text) and a medium of execution (which is typically a

switch setting). However, instead of trying to overcome the issue through

linguistic reform (like Moor), he tried to embrace the seemingly opposing

features, arguing that together they form concrete abstractions.169

As such, “the duality inherent in a ‘concrete abstraction’ crosses metaphysical

categories” (Colburn 1999, 10). To make sense of the ontological status of concrete

abstractions, he appeals to the mind/body problem as an analogy. Notably, he

employs this strategy not because he believes programs are like persons/minds,

but for the taxonomy of solutions, this philosophical discourse offers on

overcoming an apparent ontological mismatch. Going through the solution

space, he contends that

“[…] the pre-established harmony thesis is well suited for explaining the high
correlation between computational processes described abstractly in formal
language and machine processes bouncing electrons around in a semiconducting
medium.” (ibid., 17)

Colburn suggests that, in the absence of a divine entity, programmers can play a

role in establishing a harmonic correspondence between the abstract and the

concrete. 170 However, his conclusion is rather superficial; what exactly this

relation between such ontologically distinct categories amounts to remains vague

at best.171

The dual nature view & linguistic refinement – attempt no. 2

Like their predecessors, Eden & Turner (2007) start from the dual nature

assumption about the metaphysical nature of programs. In particular, they

identify two sub-categories of the term ‘program,’ viz., program-script and

program-process. As such, their distinction resembles that of Smith and differs

from the one employed by Moor and Colburn. While the latter appeals to the

static sub-branch of the Physical View, Eden and Turner mention the dynamic

one (i.e., because the program-process is the execution of the program script).

Moreover, the authors attempt to unscramble the situation by introducing a

169 Colburn adopted the notion of ‘concrete abstractions’ from an undergraduate textbook
(Hailperin et al. 1999).
170 The idea of pre-established harmony goes back to Leibniz, which is, roughly, the thesis that
there is no causal mind-body interaction but just a relationship of harmony or parallelism
(Kulstad & Carlin 2020).
171 Throughout my thesis, I argue that we should understand this relation as computational
implementation.

Appendix A: A Guide to the Chimera of Programs

159

refined definition of program script as a well-formed expression based on a

Turing-complete programming language.

However, despite these differences, it is paramount to highlight that the

authors also appeal to a concretization relation (similar to Colburn’s ‘pre-

established harmony thesis’) that is supposed to link the program-script to the

corresponding program process. In particular, the authors describe

concretization as “a process during which an entity or entities of one category are

synthesized (come into being) from entities of a more abstract category.”

Although this notion is intriguing and already has more substance than

Colburn’s ‘pre-established harmony thesis,’ it does not fully clarify the nature of

this relationship.

Clarifying definitions and the dual nature through Formal Ontologies

Lando et al. (2007) developed a new domain-specific ontology of programs and

software called COPS (Core Ontology of Programs and Software) using high-

level formal ontologies as a template.172 COPS classifies computer programs as

abstract documents to enable a computing system to process information. More

concretely, computer programs are said to have a dual nature with two elements,

branching into static entities and their execution (similar to Eden & Turner

(2007)). As previous participants in the debate, the authors shed light on the

relation between these elements (of the duality) and suggest further refinements

of the term ’program.’

When examining the relation between these elements, the authors identify

artefactual functions (cf. Artifact View) as their linkage. Specifically, they define

such a function as the ability of an instrument to perform an activity (assigned

by agents to endurants) in a perdurant.173 This conceptualization characterizes an

artifact as an endurant with an assigned function and gives rise to the notion of

computer programs as Artefacts of Computation. I will return to potential issues

with this conception when discussing a very similar approach in the work of

Turner shortly. When further considering the static side of programs, they

suggest distinguishing files (inscribed in a medium), computer language

expressions (expressed in a Turing-complete language), data types, and

algorithms (conceptualizations representing the semantics of programs). In sum,

172 The authors’ work is underpinned by the DOLCE and I&DA core ontology. DOLCE, a
‘foundational’ ontology, comprises abstract concepts that generalize ideas in different
knowledge domains. Under philosophically grounded principles, DOLCE’s domain – that of
Particulars – splits into four subdomains.
173 In context of the here employed framework ‘endurants’ can be understood as entities that are
wholly present at any time at which they exist; ‘perdurants’ can be understood as entities that
happen in time, e.g., events or actions.

Appendix A: A Guide to the Chimera of Programs

160

programs are thus both computer language expressions and ‘artefacts of

computation.’

Programs as Abstract Artifacts

In his article Software is an Abstract Artifact Irmak (2012) rejects the dual nature

view and suggests that programs are abstract artifacts. 174 In a nutshell, he

identifies programs as notational entities and argues that they are subject to the

same considerations as works of literature and musical works (i.e., so-called

repeatable artworks; cf. Notational and Artifact View): Although programs lack

spatial properties (as they cannot be identified with any particular

implementation), they have temporal properties. As a ‘creation of the mind,’

programs are artifacts; they are the end product of a laborious process and start

to exist at some point in time. Due to their temporality, they can cease to exist

when all their copies are destroyed (or nobody is around to remember the

underlying source code and algorithms).

While Irmak’s innovative idea to draw the analogy to the ontology of art

opened up a new avenue to investigate the metaphysical nature, his account is

partially incomplete. The crux is that his work remains silent about the way in

which programs qua abstract artifacts relate to real-world systems (i.e., it does

not tell us anything about computational implementation).

Unscrambling the Software/Hardware distinction through Formal Ontologies

Similarly to the work of Lando et al., Duncan (2014) employed a ready-made

formal ontology (the so-called Basic Formal Ontology (BFO)) in his dissertation

to elucidate computational notions such as ‘software,’ ‘hardware,’ and ‘artifacts.’

In due course, he argues that we can unscramble the notorious

software/hardware dichotomy (i.e., in this case, the dual nature view) 175 by

thinking of programs as ontologically dependent entities, while computational

hardware is ontologically independent artifact. 176 , 177 Regarding software, he

states

“A software program, similar to a novel, is a generically dependent entity. A
particular software program does not depend on a particular independent entity

174 Irmak told me, in private communication, that he used ‘software’ and ‘programs’
interchangeably.
175 It is paramount to note that one should be cautious to simply equate the software/hardware
dichotomy with the dual nature view. While in this case, the two overlap, a different
understanding of 'software' may change the situation.
176 Like many authors, Duncan uses ‘software’ and ‘program’ interchangeably.
177 Following the BFO-framework (Arp et al. 2015), Duncan differs between two types of
dependent entities: specifically dependent and generically dependent ones. While the former depend
upon a particular bearer to exist (and only as long as that particular entity exists), the latter exist
as long as they are borne by some entity (i.e., they do not depend upon a specific bearer).

Appendix A: A Guide to the Chimera of Programs

161

(such as a particular DVD or flash drive) in order to exist. Rather, a software
program exists as long as it is borne by some independent entity. For example, if
you destroy my DVD of Microsoft Word, Microsoft Word (the software program)

does not cease to exist.” (Duncan 2014, 38)

Engaging in conceptual engineering, one can find, among others, such

ambitious novel concepts like programming language expression, computational

requirement specification, computational information entity, and computational plan

specification (where each is rigorously defined in terms of his upper-level

ontology). To cut a long story short, a software program is then defined as “a

computational plan specification in which the instructions are specified using

programming language expressions.” (ibid., 133).

When explaining how to relate these entities to hardware, Duncan appeals to

a tool function (the notion strongly resembles the characterizations of teleological

function endorsed by many philosophers of technology; noteworthily, he also

introduced the notion of computational artifact (ibid., 140)). Accordingly,

hardware ‘concretizes’ programs when the former bears the (teleological)

function that is realized in some computational planned process (ibid., 136-140).

(Alas, this characterization couches the concretization relation in the unanalyzed

terms of ‘bearing’ and ‘realizing’).

Ultimately, the success of such linguistic reform and conceptual adaptation in

such a heterogeneous field as computing is somewhat doubtful (to the best of my

knowledge, the novel concepts have yet to be widely adopted).

A requirement engineering perspective: An abstract information artifact view

Wang et al. (2014a; 2014b)178 and Wang (2016) aim to refine further the abstract

artifact proposal about programs (made by Irmak (2012)). Specifically, their work

sheds light on programs’ identity criteria against the backdrop of software

changes (i.e., code changes). In a nutshell, the question is how specific programs

can keep their identity despite code changes. By methodologically relying on the

DOLCE ontology (similar to Lando et al. 2007), the authors identify and precisify

programs as abstract information artifacts. Generally speaking, there is a wide

variety of abstract information artifacts; see e.g. (Sanfilippo 2021) for a survey.

However, in contrast to other information artifacts, which

“[…] directly refer to the objects in the world (so that executing a recipe or
a law implies a manipulation of objects in the world), software programs
refer to virtual variables in a machine, whose manipulation inside the
machine affects the outside world in an indirect way” Wang (2016, 63)

178 Although the two papers have different names and are published in different venues, the
content (i.e., the overall argument) is essentially the same.

Appendix A: A Guide to the Chimera of Programs

162

To then further distill what is peculiar about programs, they draw from software

engineering and requirements engineering literature. This strategy allows them

to distinguish between software and hardware (i.e., the dual nature view), the

underlying hardware, and different ‘software artifact’ features (code, program,

software system, and software product).

Programs are Computational Artifacts

By transposing the conception of ‘technical artifact’ to computing, Raymond

Turner popularized the term computational artifact.179 As arguably one of the most

prolific investigators in the philosophy of computer science, the development of

‘computational artifacts’ is the culmination of a longer lasting research program

into various central notions of computing (Turner 2011; Turner 2014; Turner

2018). Arguably, Turner’s concept borrowing was supposed to kill multiple birds

with one stone:

1. First, the manoeuver accounts for software engineering. As per Turner,

programs are artifacts because they are intentionally created objects.

2. Second, the notion is arguably supposed to explain away the longstanding

issue of the dual-nature view of programs. In brief, the idea is that we can

couch the dual-nature view in terms of the function-structure pair

ingrained in the notion of technical artifacts. This move resembles the idea

of framing implementation in terms of artifactual functions we have seen

in (Lando et al. 2007) and (Duncan 2014).

3. Third, it allows us to account for the normative dimensions of computing.

Previously, I already mentioned the verificationist debate and the

importance of miscomputation. Having teleological functions at our

disposal facilitates normative judgments about computational systems.

Given the scope and different problems Turner’s computational artifact proposal

is able to address, it is undoubtedly one of the most sophisticated accounts on the

market.

However, there is one potentially serious caveat with appropriating technical

artifacts to the realm of computer science; the issue is expressed in Kroes’s

monograph Technical Artefacts: Creations of Mind and Matter, where he warns us

that

179 One should not mistake Turner’s computational artifacts with Suchman’s notion of
computational artifacts presented in (Suchman 1987). Remarkably, Tuner and Lando et al.
(2007)’s notion of ‘Artefacts of Computation’ and the idea of using artifactual functions to
bridge the gap of the dual nature view seems to have been developed independently. As far as I
can tell, Lando et al. only referenced some of Turner’s work that preceded the development of
his computational artifacts notion. Likewise, I did not find a reference to Lando et al. in Turner’s
(2014; 2018).

Appendix A: A Guide to the Chimera of Programs

163

“ […] software programs fall outside the scope of this book. I consider software
programs to be ‘incomplete’ technical artefacts; only in combination with the
appropriate hardware that executes software programs are they able to fulfil their
technical function.” Kroes (2012, fn. 4)

When further developing Kroes’ worries, we may pose the question of

whether the dual nature view of programs (i.e., the abstract-concrete

dichotomy) adequately is accounted for by the function-structure duality of

technical artifacts.180 The crux of the matter is that Turner’s account presumes

that the notion of physical structure can also be understood in the abstract

(like a set-theoretic one).181

A Phenomenological Perspective

In his 2019 dissertation, Geisse (2019) takes a phenomenological approach,

drawing on Kant’s Critique of Pure Reason and Husserl’s phenomenological

perspective to define the term ‘program’ based on human experience.

Subsequently, he examines programs through the properties assigned to them in

perception processes. This method results in a multi-dimensional

characterization of programs, distinguishing them as (i) physical, (ii) syntactic

entities, (iii) semantic entities, and (iv) embedded entities dependent on other

entities. Geisse argues that this differentiation of object forms (i)-(iv) allows for

greater precision in using the term and elucidating their interrelationships.

However, since the focus of his work is primarily on phenomenological aspects

of programs -- and not on their metaphysical nature -- dissolving the dual nature

view (or, in fact, the occurrence of four categories (i)-(iv)) is not the primary

concern. Accordingly, there is no worked-out solution to the problem of

implementation.

Programs have a stratified ontology

In several of his works, Primiero picks up the themes of computational artifacts

and the corresponding idea of using a function-structure pair to characterize

them. However, instead of appealing to the standardly evoked dual ontology of

technical/computational artifacts, his work advocates an even more fine-grained

classification – a so-called layered or stratified ontology Primiero (2016; 2020).

What is the motivation for this move?

180 In an online session of the Histoire et Philosophie de l'informatique (HEPIC) seminar (a joint
seminar of the University of Lille and University of Paris 1) I attended on October 30, 2022,
Maarten Fraanssen (a member of the Dutch research group that developed the notion of
‘technical artifacts’ in the early 2000s) re-iterated the concern that the dual nature of view of
technical artifacts does not transpose to the dual nature view of computer programs.
181 N.b., similar kinds of worries would apply to other accounts (e.g., by Lando et al. (2007) or
Duncan 2014)) that also make use of the notion of teleological function.

Appendix A: A Guide to the Chimera of Programs

164

As described in the introduction (cf. Ch. 1, especially the section on epistemic

abstraction), level-views have been pervasive throughout the history of

computer science. In the section on the Notational View, for instance, we have seen

that abstracting away from the machine licensed programmers to develop new

programming environments that omitted cumbersome machine details. As per

Primiero, computational artifacts are, therefore, subject to a form of levelism:

i. Intention: the request of epistemic agents (typically, the customers, users,

and other stakeholders involved in software development projects) to

define and solve a specific computational problem.

ii. Specification: the formal version of the request to solve the computational

problem; it provides (formal) constraints on the programs’ operations.

iii. Algorithm: the procedure providing a solution to the proposed

computational problem in line with the specification requirements.

iv. High-level programming language instructions: a symbolic

implementation of the proposed algorithm in a high-level language (the

source code).

v. Assembly/machine code operations: typically, the machine cannot

directly execute the source code; it is translated (e.g., by a compiler) into

assembly code and subsequently assembled in machine code operations.

vi. Execution: the physical level (the execution LoA) is where the program

runs, i.e., where the computer architecture executes the instructions.

While such a level view is certainly not entirely new in computing, what is

paramount to note about Primiero’s proposal (and what distinguishes it from

previous versions) is the claim that it has ontological commitments. Drawing on

the notion of levels of abstraction (LoA) developed by Floridi (2008; 2011, Ch. 3),

Primiero argues that each LoA contains a corresponding pair of epistemological

and ontological domains (a so-called EO-construct). Accordingly, computational

artifacts are ontologically stratified or layered entities in the sense that they are

composed of various LoA with different degrees of abstractness. This view, in

other words, diverges from the traditional abstract-concrete dichotomy since it

requires us to buy into a metaphysical framework that allows for multiple

different notions of what it means to be ‘abstract.’

Appendix B: Why we should think of computational implementation as a three-place relation

165

Appendix B: Why we should think of
computational implementation as a three-
place relation

In the main body of the text, I occasionally consider an issue related to

implementation which I keep referring to as Bridging Problem. So far, the relevant

literature on physical computation has discussed the Bridging Problem182 and the

Problem of Implementation 183 separately. This appendix clarifies how the

Bridging Problem affects our understanding of the metaphysical assumptions

underpinning computational implementation.

While the Bridging Problem deals with the unexpected accurate applicability

of mathematics to the physical world, the Problem of Implementation seeks to

provide an account of physical computation by establishing an adequate

correspondence between abstract logico-mathematical states and physical states.

As I will demonstrate, the Problem of Implementation is not just a problem in its

own right but an instance of the Bridging Problem. This view has potentially far-

reaching implications for our understanding of physical computation because it

allows us to apply insights from the philosophy of applied mathematics to

computing that were hitherto neglected.

The most significant upshot of this framing is that we should no longer think

of implementation as a simple dyadic relation between an abstract model of

computation and a physical computing system. The problem with the dyadic-

view (i.e., a mind independent one-to-one relation) is that it stands at odds with

most approaches to solving the Bridging Problem, which suggest that the math-

world relation does not hold by itself but requires a third element – the

stipulations and descriptive practices of epistemic agents. Ergo, we should also

understand the implementation relation as a three-place relation, where the

relata are abstract computational states, physical states, and epistemic agents and

their stipulations. This ‘three-place conclusion,’ which diverges from many of the

most prominent accounts of physical computation, redefines our traditional

182 Wigner (1960), Steiner (1998), French (2000), Wilson (2000), Colyvan (2001), Grattan-Guiness
(2008), Pincock 2004, 2009, 2012, Batterman (2010), Fillion (2012), Bueno & Colyvan (2011),
Nguyen & Frigg (2021), Vos (2022).
183 Some key sources that deal with (parts of) the Problem of Implementation are Putnam (1989),
Searle (1990), Churchland & Sejnowski (1992), Chalmers (1996), Copeland (1996), Scheutz
(1999), Shagrir (2001; 2018; 2022), Klein (2008), Piccinini (2007; 2015), Ladyman (2009),
Milkowski (2013), Fresco (2014), Horseman et al. (2014), Fletcher (2018), Dewhurst (2018), Mollo
(2018), Sprevak (2010), Rescorla (2013; 2014), Lee (2020), Curtis-Trudel (2022).

Appendix B: Why we should think of computational implementation as a three-place relation

166

understanding of implementation as a completely naturalized phenomenon

hinging on a two-place relation.

The structure of the appendix is as follows. In Section 1, I briefly remind us

about the main issues underlying the Bridging Problem, which serves as the

starting point of our discussion. In Section 2, I shift gears, introducing the

Problem of Implementation from the discourse of physical computation and

sketch its most prominent solutions. In Section 3, I introduce the Bridging

Problem of Applied Mathematics and its candidate solutions in more detail. In

Section 4, I adapt the Problem of Implementation to the context of applied

mathematics and argue that it is a particular instance of the Bridging Problem.

Lastly, in Section 5, I offer some discussion and concluding remarks.

B.1 The Bridging Problem

One of the central questions of (the philosophy of) mathematics has been the

seemingly miraculous accurate applicability of mathematics to the empirical

sciences. This question, which has captivated scholars for centuries, was perhaps

most notably revived by Wigner (1960) when he challenged us to explain the

remarkable usefulness of mathematics in science. Considering its long history,

the issue is known under many names (e.g., Application Problem) and may

comprise several different (albeit related) problems under the same umbrella

(Steiner 1998, Fillion 2012).

For instance, some investigators picked up Wigner’s theme and tried to

demystify the ‘unreasonableness’ of mathematics’ applicability. Grattan-Guiness

(2008), for example, suggests that mathematics is so useful for science because

many of its formalisms has been motivated by science. In a different manner,

Wenmakers (2016) argues that the phenomenon is due to selection effects such as

a selection bias that overtly focuses on the rare success of applications but not

their ubiquitous failures. Yet others pointed out a semantic problem about ‘mixed

statements’ (Steiner 1998, 13-23, Colyvan 2001, fn.4, Pincock 2004, Fillion 2012).

Here, one may wonder about the truth conditions for statements like “there are

seven apples on the table” (Steiner 1998, 16) or “the gravitational acceleration is

9.81 m/s2” (Pincock 2004, 137), where mathematical and physical terminology is

mixed (i.e., they occur in the same sentence). While indeed interesting, the

semantic problem of applying mathematics will not be the central topic of this

appendix.

Instead, I will focus on another issue that has to do with the widespread

mathematization of modern science. Given that so many mathematical

formalisms accurately describe, explain, and predict empirical phenomena, we

suspect an underlying coupling (a math-world relation) that enables such

Appendix B: Why we should think of computational implementation as a three-place relation

167

knowledge gaining. It is widely accepted that here we confront a metaphysical

problem of applications stemming “from a gap between mathematics and the

world” (Steiner 1998, 19). Intuitively, the mathematical universe shares structural

similarities with certain parts of the physical world.

To avoid potential conflations and misunderstandings with the different

issues associated with the application of mathematics, I decided to employ the

name ‘Bridging Problem’ (BP) throughout my thesis. 184 This choice, while a

matter of taste, highlights the crux of the matter best – the metaphysical problem

of bridging the gap between the two fundamentally different ontological

domains of abstract mathematical entities and physical objects. At a first stab, we

thus may narrow down the problem statement to

BP: How does the mathematical relate to the physical?

Solving the ‘Bridging Problem’ is paramount to understanding the ‘model-world

relation’ featured in the discourse about scientific representation and adjacent

fields as the philosophical literature on computer simulations. As I will show,

attempting to answer the problem is not only central to many of today’s

philosophical debates but also besets the physical computation discourse.

B.2 The Problem of Implementation

Let me briefly remind us about the Problem of Implementation (which I already

presented more formally in Chapter 2) by describing it in general terms.

Subsequently, I introduce the approaches that emerged from trying to solve the

issue and argue that all the leading contenders (mapping accounts, semantic

accounts, mechanistic accounts) are descendants of the so-called simple mapping

account (SMA). This result will be key for framing computational

implementation in terms of the BP.

B.2.1 The Main Rationale

Computation is methodologically divided (Curtis-Trudel 2022). On the one hand,

we may study computation in the abstract realm of logico-mathematical

formalism like Turing Machines (TM), recursive functions, etc. In general, such

computational formalisms are definable in a large variety of ways. In Chapter 2,

I explained that the computer science literature’s two main kinds of

computational formalisms are (i) programming languages and (ii) abstract

machine models. Following my earlier convention, I use the term ‘model of

computation’ Mc for both. To put a long story short, such models of computation

are logico-mathematical formalisms that encode an abstract sequence of

184 The particular name ‘Bridging Problem’ was coined by Contessa (2010b).

Appendix B: Why we should think of computational implementation as a three-place relation

168

computations through a programming language, a machine table, a transition

function, and so on.

On the other hand, computations take place in the real world. While the

formal theory of computation is a well-established branch of

mathematics/theoretical computer science, developing an account that specifies

when a physical system implements computations proves challenging. Even

though many models of computation allude to a machine metaphor, these

theoretical models are divorced from the ongoings in real-world devices, i.e.,

they do not tell us which real-world systems perform which computations. What

makes an abstract MC stand in relation to genuine physical computing systems –

and not to other systems like rocks or hurricanes – is an open question and is

commonly referred to as the Problem of Implementation.

Roughly put, the common idea of solving the issue is by alluding to a special

kind of correspondence or mapping that bridges the gap between abstract

computational and physical states. As we have seen, translating this seemingly

simple idea into formal terms resulted in the Simple Mapping Account (SMA)

(see Chapter 2, sect. §2.3). However, many philosophers have claimed that under

the regime of the SMA implementing physical computation would be trivial since

virtually any physical computation turns out to implement computations. For

most philosophers, such unlimited pancomputationalism is unplausible.

Henceforth, the quest began for devising a theory of computational

implementation equipped with extensional adequacy concerning paradigmatic

computing systems (like computers and brains).

B.2.2 Further Refinements: The Physical Computation Landscape

Providing an answer to the Problem of Implementation – and thus developing

an account of physical computation – is paramount for such disciplines as the

foundation of computer science, AI, robotics, and cognitive science. Accordingly,

solving this issue has received considerable attention and brought forward a host

of accounts of physical computation (see Piccinini & Maley (2021) for an

overview). Although the resulting options purport to look like a wide range of

options on the surface, the physical computation landscape is somewhat

deceiving since all accounts are a species of the SMA. In what follows, I will

untangle this genealogy by analyzing the three most prominent candidate

solutions – extended mapping accounts, semantic accounts, and mechanistic

accounts. Mainly, I will show that, despite their different branding, these three

leading contenders still adhere to the SMA’s strategy of defining physical

computation as the relation between two relata (a model of computation and a

putative physical computing system).

Appendix B: Why we should think of computational implementation as a three-place relation

169

i. Extended mapping accounts

The threat of unlimited pancomputationalism/triviality arguments has raised

concerns about the limitations of the simple mapping account (SMA) in

distinguishing genuine from overly permissive mappings. So-called extended

mapping accounts (EMAs) seek to address this issue by a common strategy.

EMAs aim to filter out spurious mappings by using different forms of counter-

factual dependencies to differentiate between the abstract domain of model

computation and the physical domain (Chalmers (1995), Copeland (1996),

Scheutz (1999), Klein (2008)).185 For instance, Chalmers states

“A physical system implements a given computation when there exists a
grouping of physical states of the system into state-types and a one-to-one
mapping from formal states of the computation to physical state-types, such that
formal states related by an abstract state-transition relation are mapped onto
physical state-types related by a corresponding causal state-transition function.”
Chalmers (1995, 392; emphasis added)

This approach requires that the formal set-theoretic structure of MC only maps to

the causal/counterfactual structure of a physical system P. Instead of merely

considering one execution trace, implementation occurs if counterfactual

computations are satisfied. However, importantly EMAs still maintain the

fundamental idea of SMA (i.e., a mapping between the abstract domain of the

model of computation and the physical domain).

ii. Semantic accounts

Historically, so-called semantic accounts emerged separately from the

considerations of the SMA and EMAs. Fodor’s slogan “There is no computation

without representation.” (Fodor 1975; Pylyshyn 1984), captures the essence of

semantic accounts. There are two common reasons for embracing semantic

accounts: First, the semantic account is consistent with the views of various brain

sciences and the Computational Theory of Mind, which suggests that cognition

relies on our brains performing computations (Rescorla 2020). Since brain states

are believed to have content and process information, computational states must

do the same. The semantic view turns this into a doctrine, and accordingly,

computational states must have ‘aboutness’ and carry external content or

meaning. Additionally, the computational states of our computing devices often

manipulate meaningful symbols.

185 This view is extrapolated from the causal, dispositional, and counterfactual views. Since on
most accounts of causality causal claims support counterfactuals, one may simply lump all
these different views together under the label of EMAs. See Piccinini (2015, Ch. 2) for a similar
line of reasoning.

Appendix B: Why we should think of computational implementation as a three-place relation

170

It is worth noting that simply having meaning attached to a physical state is

not sufficient for a theory of implementation. Otherwise, any random symbol

manipulation - like a dog chewing on a newspaper - could be seen as executing

computations (Milkowski 2013, 42). Therefore, for semantic accounts to be

extensionally adequate, they must incorporate some rule-following that typically

boils down to following the the EMAs’ specifications. This includes the mapping

between physical processes and abstract computational states, as well as the

ability of the mapping to support counterfactual state transitions.

The second important reason for embracing the semantic account is of more

recent origin. Shagrir (2020; 2022) refers to this as the master argument for the

semantic account. Accordingly, philosophers of computing like Shagrir (2001),

Sprevak (2010) have argued that semantic properties circumvent computational

indeterminacy. Philosophers often discuss the issue using the example of logical

duals such as AND- or OR-gates (e.g., Papayannopoulos et al. 2022). In cases

where more than one mapping between physical and logical structure is possible,

the SMA or an EMA alone cannot determine which computation is implemented.

Put simply the claim of the master argument goes that an EMA with a semantic

condition mounted on top does not suffer from this defect. Notably,

contemporary semantic accounts thus also rely on structural mappings.

iii. Mechanistic accounts

Lastly, the mechanistic accounts result from espousing neo-mechanist

conceptions and applying them to computation. According to the ‘consensus

conception,’ “a mechanism for a phenomenon consists of entities and activities

in such a way that they are responsible for the phenomenon.”, (Illari and

Williamson 2012, 120). This view has been put into action by philosophers such

as Piccinini (2007; 2015), Milkowski (2013), Mollo (2018), and Dewhurst (2018)

when characterizing physical computing systems as (functional) mechanisms.

Piccinini’s influential account, for instance, states that physical computation

is the processing of vehicles by a teleo-functional mechanism according to

medium-independent rules (cf. Piccinini 2015, 120-21). The notion of teleological

function emphasizes that systems may only execute computations if it is their

function. ‘Function’ here should be understood in the sense of aim or purpose

and not in the formal mathematical sense. Specifically, it is a computing system’s

function to manipulate vehicles following a rule, i.e., computing a mathematical

function mapping from inputs (and possibly internal states of P) to outputs

(Piccinini 2015, 121).186 The term ‘vehicle’ denotes a variable or a state that can

186 Importantly, a rule that is mapping input to outputs should not be conflated with mapping f
between the abstract computational and physical domain, as depicted in Fig. 1. Rather, the

Appendix B: Why we should think of computational implementation as a three-place relation

171

take different values and change over time. This term is simply another

expression for what I previously referred to as grouped-together physical state(s)

(cf. quote by Chalmers). Moreover, since computational descriptions/the rules of

physical computing systems are abstract, they can define computation

independently of the media that implement them – they are ‘medium

independent.’

Upon first glance, the terminology and concepts used by computational

mechanists such as Piccinini to explain physical computation may seem different

from the SMA, EMA, and semantic accounts, which could lead to interpretative

difficulties. However, once familiar with the terminology, it becomes clear that

the mechanistic account also relies on the main idea underlying SMA. So, to

better understand how it works, let me break down Piccinini’s reasoning into

three steps:

1. Selection: To show how a concrete mechanism may perform computations

(say, of a TM), computational mechanists first need to find concrete

counterparts to the formal notions of a finite set of states q that are part of a

finite set of symbols Σ (Piccinini 2015, 127). In Piccinini’s account, the thus

selected concrete counterparts are called ‘digits.’

2. Labeling: Subsequently, “[o]nce microstates are grouped into digits, they

can be given abstract labels such as ‘0’ and ‘1’.” (Piccinini 2015, 128). The

purpose of the labeling operation is to prepare the mechanism’s concrete

components to align with the standard nomenclature of set

symbols/alphabet Σ of our MC.

3. Imputation to a computational rule: Lastly, one may generalize the

previous step, such that “[g]iven their special functional characteristics,

digits can be labeled by letters and strings of digits by strings of letters. As a

consequence, the same formal operations and rules that define

mathematically defined computations over strings of letters can be used to

characterize concrete computations over strings of digits.”, (Piccinini 2015,

132). This imputation process to a computational rule is a crucial aspect of

understanding physical computation mechanistically, for it glues together

the abstract MC with a concrete counterpart.

Digits (i.e., physical state types pi) have been labeled with symbols – presumably,

letters contained in the alphabet of the model of computation MC of our choice –

so that the mathematical rule/function δ can be used to characterize the concrete

computations performed by the system P. The labeling scheme thus establishes

mechanistic framework’s notion of rule can be understood as the transitions leading from one
computational state to another (the horizontal arrows in the top-span of the picture).

Appendix B: Why we should think of computational implementation as a three-place relation

172

a reference (builds a bridge) to a specific abstract model of

computation/computational formalism.

However, together steps 1 to 3 are just a different way of saying that physical

states correspond to computational states specified by a computational rule. In

other words, the correspondence established by the labeling process still boils

down to a mapping relation advocated by the SMA and its descendants. That is

why, despite the different terminology/emphasis, mechanistic accounts are

descendants of the SMA and also rely on mappings.

Taking stock of this section, we need to keep in mind that although many

physical computation accounts are conceptually much richer than the SMA (and

sometimes employ different terminology), they still depend on dyadic mappings

between a material system and mathematical structures defined by a model of

computation. Therefore, all the physical computation accounts discussed above

are outgrowths or extensions of the SMA rather than offering a conceptual

alternative wholesale. The result that virtually all theories of implementation

hinge on mappings is significant because it licenses us to transpose the insights

from the BP debate in the philosophy of applied mathematics to how we flesh

out computational implementation. In order to turn this conceptual borrowing

into a fruitful maneuver, we need to familiarize ourselves with the relevant

insights of BP.

B.3 Charting the landscape of the Bridging Problem’s Solutions

At the beginning of this Appendix, I briefly introduced the BP by stating that it

concerns the relation between mathematics and the physical world. However, I

have yet to discuss how philosophers of applied mathematics have tried to make

sense of this relation. Hence, this section overviews today’s most widely

embraced answers. Although they may differ considerably on certain aspects,

they all maintain that epistemic agents are necessary for the solution. What is the

underlying reason for this commonality? I will start depicting the core idea (§3.1)

before canvassing the landscape of more fine-grained solutions (§3.2).

B.3.1 The Core Idea: The Mapping Account

With the advent of structuralism in the 20th century (e.g., Balzer et al. 1987),

potential solutions to BP, typically, started to follow a particular strategy: most

of the contemporary approaches (re)formulate the issue in terms of structures

and the relations between them. On this construal, there is a structural mapping

(i.e., a morphism) between the mathematical structure and parts of the physical

Appendix B: Why we should think of computational implementation as a three-place relation

173

world. Due to the central notion of mappings, Pincock (2004) dubbed this the

Mapping Account,187

Mapping Account: The gap between the mathematical M and the physical P is

bridged by a structure-preserving mapping f: SP→SM between two corresponding

structures SM and SP.

The purported advantage of this view is that both ‘structure’ S and ‘mapping’ f

are understood as precisely definable mathematical objects. To further

understand the merits and limitations of the Mapping Account, it is therefore

instructive to consider what philosophers of mathematics intend to convey by

these terms.

 On the one hand, we can understand a mathematical structure as a composite

of a family of objects, nodes, or positions (in a domain D) and a set of relations Ri

among them. This definition is widely accepted and has, for instance, been

discussed in works by Resnik (1997) and Shapiro (1997). Expressed more

formally, we can define S as 𝑆 = 〈𝐷, 𝑅1, 𝑅2, … 〉. Mappings between structures f:

SP→SM, on the other hand, may come in various flavors and can be understood

as an isomorphism (van Fraassen 1980; Suppes 2002), partial isomorphism (Da

Costa and French 2003) homomorphism, etc. between mathematical structures.

Although it is interesting to ponder the (dis)advantages of each option, the

crucial point for this chapter’s argument is how these mappings come about (and

not which one will be the preferred one in this or that scenario). Importantly, all

these mapping conceptions require the physical system to display a particular

structure to establish any math-world correspondence.

To give an brief example, we may state, for instance that two structures 𝑆 =

〈𝐷, 𝑅1, 𝑅2, … 〉 and 𝑆∗ = 〈𝐷∗, 𝑅1
∗, 𝑅2

∗, … 〉 are isomorphic iff there is a function f

from the domain 𝐷 of 𝑆 to the domain 𝐷∗ of 𝑆∗ that is total, one-one, and onto

and such that for any relation 𝑅𝑖 in 𝑆 and 𝑅𝑖
∗ in 𝑆∗ and for all 𝑥1, … , 𝑥𝑛 in 𝐷 ,

𝑅𝑖(𝑥1, … , 𝑥𝑛) iff 𝑅𝑖
∗(𝑓(𝑥1), … , 𝑓(𝑥𝑛)) (Pincock 2012, 27).

However, there is a fundamental problem with the mapping account: Physical

systems must have structures for morphisms to be well defined as

“[i]somorphism is a relation that holds between two structures and not between

a structure and a piece of the real world per se.” Frigg (2006, 55). The issue is that

physical systems are concrete entities existing in physical reality, not

mathematical structures. Recently, Vos (2022) aptly called this discrepancy the

ontological-mismatch problem. Claiming that a set-theoretic structure is

187 Interestingly, the Mapping Account bears a strikingly similar name to the Simple Mapping
Account (SMA) in the physical computation discourse– a happenstance (?) that already seems to
hint at a deeper connection.

Appendix B: Why we should think of computational implementation as a three-place relation

174

isomorphic to a physical object f: P→SM, thus leads to committing a category

mistake. Without accounting for how a physical system P obtains a unique

structure SP, the idea underlying the mapping account remains in jeopardy. What

is thus required to solve BP is an account of how physical systems obtain a unique

structure.

B.3.2 The Proposals on how Physical Systems obtain structure

In this section, I will review existing accounts and attempt to make sense of the

mapping account in light of the call for structure. As we will see, providing a

definitive answer is not easy to come by and I won’t try to solve this daunting

task myself. Instead, I will merely rule out the most implausible candidate

solutions and demonstrate that the remaining contenders are unified in their

advocacy for a three-place relation. Accordingly, they necessitate the stipulations

and descriptive practices to explain how physical systems obtain a structure SP.

i. The world is fundamentally mathematical

One way to address the ontological mismatch problem is by arguing that it does

not actually exist. There are generally two approaches to this.188 Philosophers

who claim that the world is fundamentally mathematical adopt one of them.

Tegmark (2008), for instance, maintains his so-called Mathematical Universe

Hypothesis, according to which our physical worlds turns out to be an abstract

mathematical structure. If this were correct, the ontological mismatch would

seemingly dissolve.

However, as discussed by Nguyen and Frigg (2021, 5949f), whether or not the

world is fundamentally mathematical is irrelevant since we are more often than not

interested in the math-world relation beyond the fundamental level. So, even if

Tegmark’s account was correct at the fundamental level, it fails to address how

to identify structures at the non-fundamental level of, say, four apples on a table.

For all that, there is a related but less radical-sounding proposal that suggests

that the physical world somehow exhibits some unique structure S. The

seemingly intuitive idea that physical systems somehow just bear or instantiate

a unique structure is highly contentious for two reasons. First, there are multiple

188 Another way to respond to the ontological mismatch problem lies in the opposite spectrum
of the previous proposal: Nominalism. According to nominalists, mathematical objects,
relations, and structures either do not exist at all or at least do not exist as abstract objects
(Bueno 2020). As a result, there is no ontological mismatch (and hence no problem) because
there are no mathematical objects to begin with, or at least not the kind that would require
bridging across different ontological domains. As argued by Colyvan (2001) (see also Pincock
(2004, 139-140)), BP appears to be independent of any particular philosophy of mathematics.
Despite trying to do away with mathematical objects, nominalism faces the challenge of
explaining why using mathematics in scientific practice is so effective.

Appendix B: Why we should think of computational implementation as a three-place relation

175

ways of picking out a set of objects to form the domain of a structure of a system.

As Bueno & Colyvan (2011, 347) aptly remind us, “the world does not come

equipped with a set of objects (or nodes or positions)” that constitute a

domain. Second, even if we manage to establish the objects in D, the relations Ri

are not fixed, possibly yielding different structures. As Psillo’s aptly puts it,

“[…] the structure of a domain is a relative notion. It depends on, and varies with,
the properties and relations that characterize the domain. A domain has no
inherent structure unless some properties and relations are imposed on it. Or, two
classes A and B may be structured by relations R and R’ respectively in such a
way that they are isomorphic, but they R may be structured by relations Q and

Q’ in such a way that they are not isomorphic.” (Psillos 2006, 562)

These considerations – that there is not ‘the’ structure of a system are not new –

are often referred to as Newman’s Objection.189 According to this objection, the

mapping between a set-theoretic structure and a physical object might be

trivialized since the latter fails to display a unique or privileged structure. The

claim goes that one can always gerrymander the domain D and the relations Ri

in such a way that they match an arbitrary structure S. For given there are enough

n basic objects x1,…, xn in the system (such that the cardinality of the

corresponding domain is sufficiently large), then “[…] a system of relations

between its members can be found having any assigned structure compatible

with the cardinal number of [S]”, (Newman 1928, 140), where S is an arbitrary

structure.190

To summarize, mathematical-universe-style proposals – according to which

the physical world boils down to mathematical structure – and adjacent realist

stances about unique structure-bearing systems do not adequately solve BP. In a

nutshell, scientists wishing to link a mathematical formalism with a concrete

system encounter significant underdetermination problems. That is why the

dyadic view fails. In order to generate a suited structure, we need to engage in

two tasks. First, we must specify the domain D of objects xi; second, we must

determine the relations Ri between these objects.

ii. Inferentialist proposal

Having recognized the challenges associated with a ‘pure structuralist’ solution,

Bueno & Colyvan (2011) put forth a proposal that amends the mapping account.

While their approach is still partially structural, it also accounts for practical and

context-sensitive factors when utilizing mathematics. Particularly, their

inferentialist conception of applied mathematics requires three steps:

189 See Ainsworth (2009) for a more in-depth problem analysis and potential answers.
190 Note that this is essentially what the SMA was criticized for by Copeland (1996).

Appendix B: Why we should think of computational implementation as a three-place relation

176

1. Immersion: Bueno and Colyvan’s first step in their process is called

immersion. It involves creating a connection between the real-world

scenario and a mathematical structure that is convenient to work with.

2. Derivation: The second step, derivation, involves deriving consequences

from the mathematical structure obtained in the immersion step.

3. Interpretation: The third step is referred to as interpretation. To establish

an interpretation, a mapping from the mathematical structure to the initial

empirical setup is necessary. N.b., this procedure goes in the opposite

direction of the immersion step, but the authors claim that this mapping

does not have to be simply the inverse of the mapping used in the

immersion step, though it may be in some cases. Using a mapping

different from the one used in the immersion steps is unproblematic as

long as the mappings in question are definable for appropriate domains.

The takeaway is that the inferentialist proposal is a mind-dependent notions

because it amends the original mapping account by alluding to epistemic agents.

iii. Abstraction based proposal

According to the abstraction-based proposal, the required structure SP is

generated through epistemic abstraction. Nguyen and Frigg (2021) formalized

this idea in their ‘extensional abstraction account.’ Simply put, the idea is this:

Given a physical system P, one may obtain a unique structure through some

structure-generating description, a so-called extensional description. These

extensional descriptions can be created by hiding specific physical information

about P such that it no longer explicitly refers to physical magnitudes.

 Expressed formally, epistemic agents must decide on a domain D and their

respective elements to generate a structure S of a physical object. Next, they need

to determine the relations between those elements. Once certain choices about

the elements in domain D and their relations Ri are agreed upon and held fixed,

the extensional description that is thus generated gives rise to a purely set-

theoretical structure SP.

To render the idea less theoretical, it is helpful to consider an example from

Frigg (2006, 57-58), where he demonstrates how to generate a structure of a

methane molecule (CH4). To obtain a structure that aligns with our previous

definition, we need a domain D of objects and relations Ri that are abstracted

from the molecule. One way to obtain a structure is to ‘abstract away’ the physical

properties of the atoms and solely focus on the molecule’s shape. Since the four

hydrogen atoms of the molecule form a regular tetrahedron (with the carbon

atom in the center), it would be one choice to pick the edges as objects and the

Appendix B: Why we should think of computational implementation as a three-place relation

177

vertices as relations. This way, one obtains a unique structure with four objects

(the tetrahedron’s edges) and six relations (the connections between the edges).

Although the example is simple, it exemplifies a pattern of reasoning that

underlies all abstraction-based structure generation accounts. Worthy of mention

in this regard is that structure generation is parasitic on human agents making

certain choices about a suitable domain and its relations, typically informed by

our scientific practice. (we could have swapped the tetrahedron’s vertices and

edges with respect to objects and relations and thus obtained a different

structure).

In sum, my brief review has shown that there is a genuine philosophical

problem associated with the applicability of mathematics. As we have seen, the

critical issue of BP is the ontological mismatch between mathematical and

physical properties. Most recent accounts adhere to variants of structuralism to

bridge the gap between these different domains. However, since more than

‘pure’ structuralism is needed to solve the problem, various amended schemata

have been brought forward. They are all contingent on human activity and as

such, they are adherents of mind-dependent three-place views. As far as my

research has revealed, the broader implications of this three-place insight on

theories of computational implementation have not been previously explored. It

is now high time to bring the different results of the previous sections together.

B. 4 Synthesizing the Problems: A new perspective

Although the literature on physical computation has brought forward an

impressive number of contributions, the focus on the metaphysical nature of the

implementation relation has usually taken the backseat. To change that, I will

now propose a way to think about the issue more deeply from a newfangled

perspective. In particular, it will become evident that the Problem of

Implementation is a species of the BP. Given that employing computational

concepts thus falls under the broader practice of applying mathematics, we can

anticipate analogous rationales to apply in the realm of computation. 191

To recap, since the methodology of computing is bifurcated, it faces the issue

of an ontological mismatch (the Problem of Implementation). In response,

today’s most prominent theories of implementation (SMA, EMA, semantic

accounts, mechanistic accounts) rest on the assumption that there is a mapping

between an empirical setup and some abstract logic-mathematical model of

191 Admittedly, one can already find traces of this reasoning (i.e., structuralism about physical
computation) in the literature (Milkowski 2011, 360), Rescorla (2013; 2014), Doherty & Dewhurst
(2022), Curtis-Trudel (2022). However, to the best of my knowledge, the conclusion to view
physical computation as a three-placed based on BP has not been drawn before based on this
framing; the current proposal thus goes beyond the proposals above.

Appendix B: Why we should think of computational implementation as a three-place relation

178

computation Mc. Similarly, albeit more globally, the philosophy of applied

mathematics also confronts an ontological mismatch – the BP. Here, the most

plausible proposals regarding BP likewise rest on the assumption that a mapping

constitutes the math-world relation. These parallels are not mere coincidences

but the result of a systematic relationship. Uncovering this conjunction requires

a closer look into the differences in the frameworks’ scopes.

Whereas proposals to solve BP are designed to be generally applicable,

solutions to the Problem of Implementation are limited to the applicability of

computability theory. Based on this comparison, we can deduce that the Problem

of Implementation is a specific instance of the Bridging problem. Accepting this

conclusion hinges on accepting that the implementation relation is a unique

species of the math-world relation. In fact, I have already discussed an instance

of this: As we have previously seen in section §2, we can understand TMs as bona

fide mathematical entities, defined as a four tuple TM = (Q, Σ, m, δ). Importantly,

how this mathematical/computational formalism applies to parts of the physical

realm is the same metaphysical problem of the ontological mismatch between the

mathematical and the physical, investigators like Steiner, Pincock, and others

have pointed out (cf. Sect. §B.1).

While both lines of research propose that the ontological mismatch can be

overcome by adhering to structure-preserving mappings, most solutions to the

Problem of Implementation typically do not further elucidate the metaphysical

nature of the mappings they employ.

It is here where my framing of the Problem of Implementation in terms of the

solutions of BP becomes a unique selling point because, in contrast, the literature

on the application of mathematics has thoroughly explored the metaphysical

commitments that are needed for a mapping view. We can thus enrich our

current understanding of computational implementation by appealing to the

insights of the philosophical literature on applied mathematics.

Although no solution to BP has emerged as the definitive one, they pull in the

same direction: All corresponding analyses share the idea that the mapping

relation is not a brute fact. Instead, the math-world relation necessitates a third

relatum – an agent responsible for establishing the mapping f and determining

which set-theoretic structures are supposed to be related. On this three-place

relation view, physical computation is thus a mind-dependent conception

because a system may only be computing due to human activity. The reason is

that, strictly speaking, the implementation relation is not reducible to f alone.

Despite being a necessary component, f is insufficient, for we also require at least

some minimal stipulations by an epistemic agent or community.

Appendix B: Why we should think of computational implementation as a three-place relation

179

While extended investigation is required to determine which solution(s)

is/are the correct one(s), I do not need to endorse any particular proposals for

enriching our understanding of the metaphysical nature of physical

computation. The result that the BP’s most promising solutions reject dyadic

relations and instead advocate a three-place relation, is a novel and significant

contribution to today’s physical computation landscape. In sum, my four-step

argument thus leads to an upgraded view of computational implementation, as

shown in Fig. B.2.

Fig. B.2: The upgraded view three-place view of computational implementation (cf.
nomenclature to standard view depicted in Fig. 2.1 in Chapter 2). Accordingly,
physical computation is not reducible to f as it necessitates an agential
component.

As such, the conclusion that computational implementation should be seen as a

three-place relation is a considerable advancement of the state of the art that may

ignite a hefty research program, inspiring further exploration and discovery in

the field.

 B.5 Discussion and Conclusion

I argued that computational implementation is an instance of the more general

metaphysical problem of how mathematics applies to the physical world

(namely, the Bridging Problem). Based on a four-step argument, I have argued

that computing systems do not implement computations all by themselves but

that implementation should be thought of as a three-place relation. Having

introduced the BP as a metaphysical issue of applied mathematics (1), I argued

that the Problem of Implementation is of the same species (2). (3) Since most

contemporary solutions to the BP advocate for a three-place relation, solutions to

the Problem of Implementation should follow suit. Accordingly (4), the

designers’ or users’ intentions and descriptive practices are indispensable for

relating physical states to abstract computational states. The takeaway is that we

should couch computational implementation as a three-place relation.

Appendix B: Why we should think of computational implementation as a three-place relation

180

Now, why does the here-advocated ‘three-place result’ matter? Is all of this,

not mere pedantry? Several important lessons can be learned from subsuming

the Problem of Implementation under BP. First, if my reasoning above is correct,

the face of discussion about physical computation will have to change towards

focusing on the metaphysical nature of the implementation relation. (One may

add this criterion to the list of desiderata for a good theory of computational

implementation). Those who presume that computational implementation is a

one-to-one correspondence between physical states and the computational states

as described by its model must, in defense of their view, explain how this

correspondence comes about. Absent such an explanation, the claim that

computational implementation is a mind-independent phenomenon remains at

odds with today’s dominant solutions to BP on the market. The onus is thus on

the advocates of naturalizable accounts of physical computation to respond to

these tensions. Until such time, it would be wise to assume that computational

implementation is a mind-dependent three-place relation. This is a pressing

matter because naturalized accounts of computation are deemed essential for the

cognitive science project; if computational implementation is a three-place

relation, it cannot be the basis for cognition.

Second, I want to clarify that the viewpoint I defended should not be

misconstrued as support for overly liberal interpretational theories of

implementation. The sticking point has been that some interpretational accounts

claim that one can transform arbitrary objects into computers through mere

stipulation. However, we do not need to endorse such a conclusion. My

argument does not deny or negate that mind-independent requirements are

paramount for successful implementation. Here, it is worth noting to similar

conclusions in the literature of scientific representation, where philosophers

suggest that informational and functional theories are complementary (see e.g.,

Chakravartty 2010). For instance, computers are useful because of specific causal

regularities and counterfactual dependencies. What I contest is the notion that

the implementation relation can be wholly naturalized. If correct, this result has

potentially far-reaching consequences for our understanding of physical

computation.

Lastly (and related to the previous point), this line of research may pave the

way to foster synergies between the philosophical discourses on physical

computing and scientific models. Recall that philosophers of science have

successfully integrated the structuralist insights surrounding BP into

characterizations of model-world relations (viz., suggesting that it is a three-place

relation). Facing related problems holds the promise of similar solutions. For

instance, one promising line of future research could try to frame the

Appendix B: Why we should think of computational implementation as a three-place relation

181

implementation relation in terms of scientific representation accounts (see

Chapter 4 for such an account).

Appendix C : Synopsis détaillé en
français

 Il s’agit d’un résumé d’environ 10 % de ma thèse, « Mind the Gap », qui explore

le statut ontologique des programmes informatiques. Les pages suivantes

résument la structure argumentative et les conclusions des chapitres de ma thèse.

Chapitre 1 - Introduction

L’introduction (chapitre 1) prépare le terrain en motivant le sujet, en fournissant

des préliminaires méthodologiques et en attirant l’attention sur les obstacles

conceptuels potentiels. L’affirmation principale est que la notion de

« programme informatique » renvoie à de nombreuses choses liées et

(historiquement) instables - il s’agit d’un polysème (un mot avec de multiples

significations liées). C’est pourquoi, en l’absence d’une caractérisation stable, les

études précédentes ont placé les programmes informatiques dans presque toutes

les catégories ontologiques disponibles. Afin d’éviter les erreurs précédentes, la

thèse poursuit une stratégie indirecte : l’approche méthodologique principale

consiste à élucider les relations entre les différents éléments identifiés par le

terme « programme » dans le contexte de l’ontologie la plus ‘modeste’ et la plus

répandue sur le marché : la distinction abstrait-concret (un système à deux

catégories). Plus concrètement, la thèse vise à élucider ce qui peut être placé dans

le système à deux catégories et comment les entités qui s’y trouvent sont liées.

1.1 Prologue

Ma thèse commence par un scénario hypothétique basé sur des événements réels

et demande au lecteur d’imaginer qu’il est un jeune avocat spécialisé dans les

brevets au début des années 1970. Au cours des années précédentes, les

entreprises de logiciels sont apparues comme une industrie de plus en plus

puissante. Par la suite, les années 70 ont été le théâtre d’une série de procès

novateurs concernant la protection juridique des « logiciels ». Les programmes

informatiques devaient-ils être soumis au droit des brevets ou au droit d’auteur

? La question s’est avérée si délicate que le gouvernement américain a même créé

une commission spéciale (CONTU) pour trancher le débat (Con Diaz 2019).

Cependant, même après quatre ans, les spécialistes ne sont pas parvenus à un

consensus. J’ai utilisé cet exemple partiellement fictif comme point de départ, car

ces questions juridiques sont sous-tendues par des questions

ontologiques/métaphysiques.

Appendix C : Synopsis détaillé en français

183

1.2 Concrétisation du problème : préliminaires et diagnostic

Dans la section §1.2. j’affine et je précise ma question de recherche initiale. En

particulier, je prends trois mesures pour planter le décor et clarifier le problème

lié à mon sujet de recherche. Premièrement, je discute de la pertinence globale de

cette entreprise pour les philosophes et les informaticiens. Deuxièmement et

troisièmement, j’explique les deux éléments constitutifs – l’ontologie et les

programmes informatiques - qui définissent la question principale de la

recherche.

En ce qui concerne la pertinence, j’affirme que mon sujet de recherche est

important pour les raisons suivantes : d’une part, il y a une motivation

philosophique/métaphysique. À première vue, les programmes sont des entités

déroutantes qui semblent échapper aux caractérisations standard et qui peuvent

donc soulever des questions métaphysiques intéressantes. D’autre part, la

clarification de leur statut ontologique pourrait avoir des conséquences pour

l’informatique (les praticiens pourraient éviter des erreurs de catégorie).

En ce qui concerne l’ontologie, je partaique ce que des métaphysiciens

contemporains (anglophones) comme Fine (2017) et Hofweber (2016) appellent

la « métaphysique traditionnelle ». Notamment, je distingue les questions

ontologiques primaires (POQ) et les questions ontologiques secondaires (SOQ),

c'est-à-dire,

(POQ) : L’ontologie pose la question de ce qui existe.

(SOQ) : La métaphysique proprement dite étudie la nature de ce qui existe.

À la suite de ces considérations, nous devons spécifier un système de catégories

ontologiques (c’est-à-dire un système de classification structuré des types d’êtres

qui devrait fournir un inventaire complet de ce qui existe). L’avantage d'un

système préconçu est qu’il nous permet de porter des jugements métaphysiques

cohérents sur toutes les sortes d’entités sous l’examen de la SOQ. De même, il

devient le motif central de la thèse de préciser l’appartenance des programmes

informatiques à l’une des catégories du système.

Cependant, il existe plusieurs systèmes ontologiques concurrents. Compte

tenu de cette diversité et de l’absence de consensus, nous sommes confrontés au

problème suivant

Problème I : Sélection d’un système de catégories approprié : approche

fragmentaire ou systématique ?

Enfin, en ce qui concerne le terme « programme informatique », il est essentiel

que nous ayons la même signification que les autres participants au débat (sous

Appendix C : Synopsis détaillé en français

184

peine de malentendus). Afin d’affiner le type d'entités désignées par le terme

« programme informatique », je me penche sur la Begriffgeschichte du terme. Le

mot « program » (ou « programme » en orthographe britannique) trouve ses

racines dans le mot grec προγραφιν, composé de προ (« avant » ou « pré ») et de

γραφιν (« écrire ») Grier (1996, 51). En tant que tel, le terme n’est pas né dans un

contexte informatique, mais a subi des transformations considérables tout au

long de l'histoire. De Mol & Bullynck (2021, 36) expliquent que le mot était

employé de manière générique pour désigner une série planifiée d'actions ou

d'événements futurs. (Aujourd'hui, nous utilisons encore des expressions telles

que programmes de télévision, de théâtre ou de radio).

Comme beaucoup d'autres premières occurrences historiques, les premières

occurrences de « programme » dans un contexte informatique sont

controversées. Toutefois, à partir des années 1950, l'informatique a évolué vers la

fiabilité, la production de masse et la normalisation, et les tentatives se sont

multipliées pour déterminer des pratiques normalisées et définir des termes de

base tels que « programme » dans des glossaires (De Mol & Bullynck 2022). Un

aspect qui allait de pair avec ce développement et cette professionnalisation

précoce du domaine était que la configuration des ordinateurs était de plus en

plus associée à des langages formels étroitement liés à la logique et à la

linguistique (Nofre et al. 2014).

Cependant, pour faire court, la caractérisation ne s’est jamais complètement

stabilisée et il serait donc erroné de considérer les programmes comme de

simples textes ou entités linguistiques. En raison du pluralisme épistémique de

l’informatique, de nombreuses notions centrales de l’informatique présentent

une ambiguïté sémantique surprenante. Plus précisément, le terme

« programme » est un polysème qui, à l’instar d’une toile, recouvre plusieurs sens

différents (bien que liés). Le problème est que nous devons concevoir une

stratégie qui empêche la confusion linguistique de s’insinuer dans notre enquête

métaphysique, faute de quoi nous pourrions obtenir autant de réponses

potentielles sur le statut ontologique des programmes informatiques qu’il y a de

significations différentes cachées dans ce complexe polysémique.

Problème II : démêler l'écheveau polysémique du terme « programme ».

1.3 Les idées directrices du projet

Ma stratégie pour répondre aux problèmes I et II est de me concentrer

explicitement sur les relations entre toutes les relata ontologiquement différentes

qui se cachent derrière ce réseau polysémique. Pour clarifier, les relations dont je

Appendix C : Synopsis détaillé en français

185

parle sont celles qui sont apparues dans mon analyse précédente et dans la revue

de la littérature, celles qui sont considérées comme responsables de la dualité/du

pluralisme présumé des programmes : D’une part, il y a le domaine des objets

abstraits, formels et mathématiques. D’autre part, il y a le domaine du physique,

des systèmes concrets, des événements et des processus qui se déroulent dans

l’espace et le temps.

Plus précisément, je pense que la notion de l’implémentation est essentielle

pour comprendre comment ces entités se connectent. Lorsque je parle de

« l’implémentation », je me réfère (dans un premier temps) à la relation entre

différents domaines informatiques. En outre, ma thèse soutient que les agents

jouent un rôle essentiel dans la médiation de l’implémentation. Je développerai

ces deux idées en détail dans les chapitres suivants, mais voici un graphique

décrivant la situation pour en saisir l’essentiel (Fig. C.1).

Fig. C.1 : Représentation schématique de l’idée directrice de cette thèse.

Chapitre 2 - Vers une théorie unifiée de l’implémentation

Le chapitre 2 identifie « l’implémentation » comme le candidat le plus prometteur

pour considérer la relation entre les éléments du programme et s'en sert comme

motivation pour étudier les différentes notions disponibles. En résumé, le

chapitre esquisse un cadre unificateur qui intègre deux approches jusqu’ici

traitées de manière largement indépendante : le type-(A), qui traite de la notion

de correction par l’attribution de fonctions téléologiques à des « artefacts

informatiques » à différents niveaux d’abstraction (LoA) ; et le type-(B), qui

s’attache à combler la dichotomie abstrait/concret pour rendre compte de

l'informatique concrète. Bien que je montre que leur champ d’application se

chevauche au niveau de l’interface abstrait-physique, peu de recherches

Appendix C : Synopsis détaillé en français

186

systématiques ont été menées sur leur relation. Compte tenu des

développements récents dans les discours respectifs, je soutiens que les deux

comptes peuvent s’enrichir mutuellement de manière considérable en s’unifiant.

Plus précisément, je soutiens que (A) et (B) peuvent être unifiés en les mettant en

relation avec la machinerie conceptuelle des modèles matériels et de la

représentation scientifique. Dans cette optique, les agents utilisent des systèmes

informatiques putatifs comme outils épistémiques en leur imputant des fonctions

mathématiques et en leur attribuant des fonctions téléologiques.

Voici comment cette entreprise se déroule en détail : Après avoir formulé

quelques remarques générales sur l’implémentation dans l'introduction du

chapitre (2.1.), je donne plus de détails sur l’utilisation de la notion en

informatique dans la section 2.2. En particulier, pour avoir une compréhension

commune de cette relation d’implémentation, il est instructif de nous rappeler les

formalismes informatiques. Bien qu’ils puissent être définis d'une grande variété

de façons, la littérature informatique présente généralement deux façons

principales de présenter les formalismes informatiques (Turner 2018, 190) :

1. Langages de programmation, tels que C, Python, etc.

2. Modèles de machines, comme les machines de Turing (TM), les machines à

états finis (FSM), etc.

Tout au long de la thèse, j’utilise le terme « modèle de calcul » pour les deux. Les

modèles de calcul sont des formalismes logico-mathématiques qui nous

permettent d’encoder une séquence abstraite de calculs par le biais d’un langage

de programmation, d’une table de machine, d’une fonction de transition, etc. Par

exemple, formellement, le concept de machine de Turing peut être caractérisé

comme un quadruple TM = (Q, Σ, m, δ), où Q est un ensemble fini d’états q ; Σ est

un ensemble fini de symboles ; m est l'état initial m ∈ Q ; δ est une fonction de

transition qui détermine le prochain mouvement δ : (Q × Σ)→(Σ ×{𝐿,𝑅}× Q). La

fonction de transition δ de la TM permet de passer d'états de calcul à des états de

calcul (De Mol 2021). En d’autres termes, les fonctions de transition comme δ, les

programmes informatiques écrits dans un langage de programmation, ou toute

autre notion correspondante dans un Mc théoriquement équivalent, permettent

l’encodage d’une séquence de calculs. Pour qu’un système calcule, il doit mettre

en oeuvre une séquence de calculs codée dans un programme/une fonction de

transition spécifié(e) par un Mc donné. En pratique, les formalismes de calcul

sont souvent intégrés dans une hiérarchie de calcul spéciale composée de ce que

l’on appelle des niveaux d’abstraction (« Levels of Abstraction » ; LoA) (Floridi

2008 ; Primiero 2020). En conséquence, l’application de l’implémentation en

informatique est très variée. Des exemples sont « l’implémentation d’un

Appendix C : Synopsis détaillé en français

187

algorithme dans un langage de programmation de haut niveau » ou

« l'implémentation d’instructions de code machine dans un ordinateur du monde

réel ». Parler de différents « level » est une pratique courante dans les sciences du

comptage.

Historiquement, cependant, deux notions de l’implémentation largement

séparées ont été développées afin de préciser les exigences relatives à la

connexion de ces différents types de niveaux : Pour faciliter la discussion, je les

ai appelées l’implémentation de type (A) et l’implémentation de type (B). Il est

surprenant de constater que ces deux approches ne sont pas en contact étroit

l’une avec l’autre. Dans ce qui suit, je discute des détails de ces deux types

d’implémentation.

2.3 Type-A

En ce qui concerne l’implémentation de type (A), on peut identifier trois

approches différentes : La première est due à Rapaport (1999, 2005)

Implémentation en tant qu’interprétation sémantique : Un objet est une

implémentation d’un domaine syntaxique A dans un support M s’il est une

interprétation sémantique d’un modèle de A,

Rapaport présente l’implémentation comme une interprétation sémantique. Son

récit a été critiqué parce qu’il tenait la sémantique pour acquise. Turner (2018) a

développé la seconde notion et a suggéré de considérer la conception suivante :

L’implémentation en tant que relation fonction-structure : La relation

entre la spécification (fonction) et la structure de l’artefact (informatique).

Enfin, Primiero (2020) a lui suggéré l’acception suivante :

L’implémentation en tant que relation de LoA : Une l’implémentation I

est une relation d’instanciation entre des paires composées d’une

construction épistémologique E et d’un domaine ontologique O d’un

artefact informatique.

2.4 Type -B

L’implémentation de type (B) est caractérisée par le problème de l’implémentation.

Des philosophes comme Sprevak (2018) et Ritchie & Piccinini (2018) soutiennent

que deux sous-problèmes, à savoir le problème de l’implémentation et le

problème de l’application, sont à l’origine de l’implémentation.

COMP Conditions de calcul d’un système physique.

IDENT Conditions qui spécifient qu'un système de calcul implément un

calcul plutôt qu’un autre.

Appendix C : Synopsis détaillé en français

188

doivent être abordés pour répondre au problème de l’implémentation. L’une des

premières catégories de comptes conçues (par exemple, Putnam 1987) pour

résoudre ce problème est aujourd’hui appelée « Simple Mapping Account ».

Simple Mapping Account (SMA)

1. Il existe une correspondance f entre les états sj de SC et les états mi de MC,

telle que

2. Sous f, les transitions d'état physique de SC sont morphiques aux

transitions d'état formel de MC (spécifiées par δ) , de sorte que si SC est

dans l'état s1 où f(s1)= m1 , alors SC évolue dans l'état s2 où f(s2)= m2 .

L’idée qui sous-tend le SMA est que les transitions d’état d'un MC doivent d’une

manière ou d'une autre refléter la dynamique (transitions d'état physique) du

système matériel.

Bien que le SMA soit apparemment élégant et simple, il est largement admis

qu'il entraîne des conséquences indésirables, généralement qualifiées

d'arguments de trivialité. En conséquence, le calcul physique serait banalisé

puisque chaque système implémente toutes sortes de calculs.

En réponse aux arguments de trivialité et d’indétermination

computationnelle, la plupart des comptes de l’implémentation de calcul

physique/type (B) ont modifié le SMA en introduisant des caractéristiques

supplémentaires pour traiter l’un ou l’autre, ou les deux, ainsi que ses

descendants (causal/dispositionnel/contrefactuel ; mécaniste).

2.5 Juxtaposition

Après une analyse détaillée de la portée de l’implémentation des types (A) et (B),

nous pouvons conclure qu’ils ne s’excluent pas mutuellement. Il existe un point

de jonction dans (i) les systèmes informatiques artificiels à (ii) l’interface abstrait-

physique (voir Fig. C.2). Du point de vue du type-(A), les idées du type-(B) sont

pertinentes pour la mise en œuvre de programmes informatiques à l'interface

abstrait-physique. A l’inverse, du point de vue du type-(B), les connaissances

contenues dans le discours du type-(A) offrent une image nuancée des systèmes

artificiels et des préoccupations et pratiques des informaticiens en la matière.

Appendix C : Synopsis détaillé en français

189

Fig. C.2: Diagramme de Venn schématique de l’intersection
l’implémentation des types (A) et (B). Leurs domaines d’application se
chevauchent dans (i) les dispositifs informatiques artificiels et (ii)
l’interface abstraite-physique.

Cependant, malgré ce chevauchement, il n’y a eu, à ma connaissance, qu’un

échange limité entre ces deux domaines de recherche. Pour faire progresser notre

compréhension générale l’implémentation et en faire un effort de coopération,

juxtaposons les deux différents types des implémentations en ce qui concerne

leurs caractéristiques les plus saillantes : (i) la description téléologique des

fonctions et (ii) les correspondances entre les niveaux. En résumé, voici ce qu’il

faut retenir :

1. Téléologie : Il existe un décalage entre les hypothèses qui sous-tendent

l’utilisation des fonctions téléologiques dans l’implémentation des types

(A) et (B).

2. Relation de correspondance : Différentes relations de correspondance

sont en jeu : d'une part, il existe des correspondances entre structures

abstraites et, d'autre part, une correspondance (au niveau de l’interface

abstrait-concret) entre une structure abstraite et un système physique.

2.6 UTAI

Pour remédier à cette situation, j’ai esquissé un nouveau cadre vers une théorie

unifiée de l’implémentation agentielle, en abrégé UTAI. Une grande partie de ce

nouveau cadre est basée sur les idées théoriques de la littérature sur les modèles

scientifiques matériels. L’un des principaux principes de ce point de vue est qu’il

permet de surmonter les différences entre les implémentations de type (A) et (B)

en ce qui concerne leurs caractéristiques téléologiques et les relations de mise en

correspondance. En effet, le discours sur les modèles matériels a déjà abordé avec

succès les questions relatives aux correspondances entre les structures abstraites

et les systèmes physiques, ainsi que les cas où les modèles en tant qu’artefacts ne

fonctionnent pas correctement. La principale contribution de l’UTAI est le

Appendix C : Synopsis détaillé en français

190

développement d’une série d'études de cas clarificatrices qui suivent trois

relations de dépendance différentes :

1. La relation de dépendance (a) met l’accent sur l'implication cruciale des

agents humains dans la LoA supérieure. En tant que telle, elle rend compte

des désirs, des intentions et des préoccupations pragmatiques des

programmeurs et de la manière dont ils formulent leur problème

informatique dans un formalisme informatique approprié.

2. La relation de dépendance (b) concerne le mappage f qui relie l’interface

abstraite et physique. L’implémentation peut avoir lieu lorsque les agents

proposent une description génératrice de structure (par exemple, par le

biais de la « dissimulation d'informations ») et un mappage approprié

reliant les domaines abstrait et concret.

3. La relation de dépendance (c) caractérise les interactions physiques du ou des

agents humains avec le système informatique supposé. Idéalement, un

système informatique est non seulement suffisamment fiable pour des

exécutions répétées, mais aussi reconfigurable.

Chapitre 3 - Le problème de la création rencontre les programmes

informatiques

3.1 Introduction

Selon un point de vue très répandu, les programmes informatiques ne semblent

pas être des objets concrets, mais nous les considérons généralement comme des

entités créées avec lesquelles il est possible d’interagir. Cela est quelque peu

surprenant puisque l’orthodoxie philosophique considère que les objets abstraits

ne sont pas intégrés dans la voie causale et ne peuvent pas être créés.192 Par

conséquent, un problème philosophique pressant se profile à l'horizon :

En quoi ces programmes en tant qu'objets abstraits peuvent-ils être les

produits de notre création ?

Malheureusement, cette question n’a pas reçu toute l’attention qu’elle mérite

jusqu’à présent. À la lumière de ce problème, mon objectif dans ce chapitre est

d’indiquer plus précisément dans quel sens nous pouvons classer les

programmes informatiques en tant qu’objets abstraits. Pour ce faire, ma stratégie

192 Le point de vue métaphysique standard stipule que les objets abstraits existent éternellement
et ne peuvent pas être créés. La plupart des philosophes conçoivent la création comme une
relation de cause à effet entre le créateur et sa création. Cependant, les objets abstraits sont
inertes sur le plan causal et ne peuvent donc pas entrer dans une telle relation, de sorte que l’on
ne sait pas exactement quel type de processus implique la création d’un objet abstrait (Mag
Uidhir 2013, 11).

Appendix C : Synopsis détaillé en français

191

consiste à adopter ce que l’on appelle le Problem of Creation (PoC) de la

philosophie de l’art à l’informatique.

3.2 Préparer le terrain

Avant de nous plonger dans les détails philosophiques essentiels du (PoC), je

souhaite apporter quelques clarifications initiales sur les programmes. Si les

programmes informatiques doivent être le sujet du (PoC), nous devons avoir une

idée claire (i) de ce que l’on entend exactement par « programme », (ii) de la

manière dont ils sont créés, et (iii) du sens dans lequel ils sont abstraits :

(i) Conformément à mes arguments sur la nature polysémique du terme dans

l'introduction de cette thèse (Ch. 1), je ne définirai pas les programmes ici. Au

lieu de cela, je m’appuierai uniquement sur ce que je considère comme un

exemple paradigmatique de programme informatique écrit dans un langage de

programmation de haut niveau, tel qu’illustré à la figure 3.1. Le code source est

écrit en C et, et le programme utilise un while-loop pour trouver le plus grand

diviseur commun (GCD) de deux entiers. Au lieu de s’appuyer sur une

caractérisation rigoureuse de tous les programmes informatiques, cet exemple me

servira de « laboratoire conceptuel » en temps voulu.

(ii) En général, l’histoire de la création des programmes se déroule comme suit :

Au départ, l’objectif est de créer un programme spécifique. Cependant, dans le

domaine de l’informatique, nous ne pouvons pas simplement transférer nos

désirs et nos intentions à nos ordinateurs. Nous devons d’abord les traduire dans

un formalisme informatique que la machine peut exécuter. Cela implique

généralement d’écrire le code source dans un langage de programmation de haut

niveau. Le processus de programmation comporte plusieurs étapes, est sujet aux

erreurs et est souvent laborieux. Pour ne pas perdre de vue notre objectif initial,

nous créons idéalement une spécification. Les spécifications servent de « plan »

pour la production de programmes informatiques à grande échelle, qu’ils soient

petits ou complexes. En d’autres termes, elles définissent ce que le programme

est censé faire (Primiero 2020, 208). Il est donc essentiel de comprendre les

spécifications pour comprendre le processus de création des programmes.

(iii) Pourquoi et en quoi les programmes peuvent-ils être conçus comme des

objets abstraits ? Pour répondre plus précisément à cette question, je les encadre

d’une manière plus formelle. En philosophie de l’art, le problème en jeu est

fréquemment discuté sous le nom de Physical Object Hypothesis (POH). Adapté de

Mag Uidhur (2013, 8, fn. 4), le raisonnement de la (POH) peut être résumé comme

suit,

Appendix C : Synopsis détaillé en français

192

Hypothèse de l’objet physique (POH) :

(POH)1 Il existe des oeuvres d’art.

(POH)2 Les oeuvres d’art peuvent être répétées ou non.

(POH)3 Les oeuvres d’art répétables ne peuvent être interprétées de

manière cohérente comme des oeuvres concrètes.

(POH)4 Donc, s’il existe de tels types d’oeuvres d’art, ces oeuvres

d’art doivent être des objets abstraits.

(POH)5 Il existe de telles oeuvres d’art.

(POH)6 Il existe donc des oeuvres d’art qui sont des objets abstraits.

Qu’entend-on exactement par « oeuvres d’art reproductibles » ? Comme le décrit

Levinson (1980), les philosophes débattent depuis longtemps de l’identité ou de

la nature des oeuvres d’art reproductibles (par exemple, la musique et la

littérature). Contrairement aux peintures et aux sculptures, ces oeuvres d’art ne

peuvent pas être identifiées de manière plausible à une copie

spécifique/individuelle. Non seulement elles peuvent survivre à des

changements de leur support matériel, mais elles peuvent aussi avoir été réalisées

avec des matériaux différents. Les oeuvres d’art répétables sont modalement

flexibles en ce qui concerne la matière dont elles sont faites.

Par la suite, je soutiens qu'un raisonnement similaire s'applique aux

programmes. En philosophie de l'informatique, il est habituel de parler de multi-

réalisabilité. La « multiréalisabilité » est une notion influente dans la philosophie

de l'esprit (Bickle 2020) et est fréquemment employée dans le discours sur

l’informatique physique (Milkowski 2016). Dans le contexte du calcul, la

multiréalisabilité exprime l’idée que de nombreux systèmes physiques distincts

peuvent mettre en oeuvre les mêmes séquences de calcul.

3.3 Le problème de la création

Le problème de la création (PoC) est un problème philosophique de la

philosophie de l’art qui concerne à l’origine les oeuvres littéraires, les

compositions musicales et les personnages de fiction (Deutsch 1991 ; Cameron

2008 ; Irmak 2020). Pour résumer, voici comment cela se présente : Lorsque

l’entité examinée est appelée X, le modèle de raisonnement du (PoC) prend la

forme suivante :

Le problème de la création (PoC) :

X1 : Les X sont des objets abstraits (POH).

X2 : Des X sont créés.

X3 : Les objets abstraits ne peuvent pas être créés.

Appendix C : Synopsis détaillé en français

193

A première vue, il y a de bonnes raisons d’accepter les propositions (X1)-(X3)

individuellement, car elles semblent toutes parfaitement fondées. Cependant, les

trois propositions sont mutuellement incohérentes. Ce paradoxe a suscité un débat

important pendant de nombreuses années, conduisant à la question de savoir

quelle proposition de (X1)-(X3) nous sommes prêts à rejeter. En conséquence, trois

options majeures peuvent être identifiées :

1. Platonisme

2. Nominalisme

3. Créationnisme

En résumé, chacune de ces trois positions résulte du rejet d’une des trois

propositions (X1)-(X3) du (PoC). Je présente ci-après chacune d’entre elles en

détail. Très schématiquement, les différentes positions se résument à :

(1) Platonisme : Le platonisme est le point de vue qui postule l’existence d’objets

abstraits, c’est-à-dire d’entités non physiques et non mentales qui existent en

dehors de l’espace et du temps. Selon le platonisme contemporain, les objets

abstraits sont immuables et entièrement inertes sur le plan causal, c’est-à-dire

qu’ils ne peuvent pas interagir physiquement avec d’autres objets (Balaguer

2016).

(2) Nominalisme : Cette position métaphysique rejette la proposition (X1) en

soutenant qu'un objet abstrait candidat X n’existe pas ou s’avère ne pas être

abstrait du tout. En tant que tel, le nominalisme se divise en deux points de vue

différents : le matérialisme et l’éliminativisme.

(3) Le créationnisme abstrait : Ce point de vue soutient qu’il est possible de créer

des objets abstraits. En d’autres termes, le créationnisme adopte les points de vue

(X1) et (X2) tout en rejetant le point de vue (X3).

Le résultat de mon analyse est qu’aucune des trois positions philosophiques

décrites précédemment n’est incohérente ou incohérente sur le plan interne -

chacune d’entre elles est un point de vue défendable. Cela dit, chaque position se

heurte à de sérieuses objections. L’examen de ces objections nécessite une

réflexion sur des énigmes métaphysiques plus larges et plus anciennes

concernant la causalité, la dichotomie abstrait-concret, la parcimonie

ontologique, la paraphrase, etc. La tâche consiste maintenant à déterminer dans

quelle mesure ces questions s’appliquent au domaine de l’informatique.

Appendix C : Synopsis détaillé en français

194

3.4 De l'art à l'informatique

Sur la base de mes premières conclusions, j’applique le (PoC) aux programmes

informatiques et j’examine les différentes options (1)-(3) en ce qui concerne les

programmes informatiques.

(1) Platonisme sur les programmes informatiques

Selon ce point de vue, les programmes sont des objets abstraits éternels que nous

découvrons. Il existe différentes raisons de souscrire à ce point de vue. Selon le

« point de vue indirect », on peut en venir à considérer les programmes comme

des objets platoniques parce qu’on est un platonicien mathématique et qu’on

pense que les programmes sont essentiellement des sortes d'objets

mathématiques. Selon le « point de vue direct », on peut penser que les

programmes sont des objets platoniques parce que l’on souscrit à des positions

similaires concernant des entités linguistiques telles que les romans, etc.

(2) Nominalisme sur les programmes informatiques

Comme dans le cas général évoqué précédemment, on peut présenter le

nominalisme sur les programmes sous deux formes principales, l’une

éliminativiste et l’autre matérialiste. Cependant, jusqu’à présent, personne ne

semble avoir développé ces points de vue. En conséquence, j’esquisse brièvement

certains des obstacles potentiels des deux positions.

(3)Le créationnisme en matière de programmes informatiques

Considérer les programmes comme des artefacts (abstraits) a gagné en popularité

parmi les chercheurs à tendance philosophique ces dernières années (Lando et

al. 2007 ; Faulkner & Runde 2010 ; Irmak 2013 ; Duncan 2014 ; Turner 2011 ; 2014

; 2018 ; Wang 2016 ; Sanfilippo 2021). Aujourd’hui, ces points de vue dominent

sans doute la littérature, bien que dispersée, sur le statut ontologique des

programmes informatiques. Deux conceptions populaires se distinguent.

D’une part, il y a le point de vue des artefacts informatiques (Lando et al. 2008

; Turner 2011 ; 2014 ; 2018). D’autre part, il y a le point de vue selon lequel les

programmes sont des abstractions temporelles, c’est-à-dire des artefacts abstraits

(Irmak 2013).

3.5 Conclusion

Le principal enseignement de mon application du (POC) aux programmes est

double. D’une part, du point de vue de la philosophie de l’informatique, mon

approche nous permet de sortir des sentiers battus de la recherche métaphysique

en informatique et d’offrir un nouvel angle de vue sur l’ontologie des

Appendix C : Synopsis détaillé en français

195

programmes. D’autre part, du point de vue de la métaphysique contemporaine,

mon approche oriente le débat sur le statut ontologique des programmes

informatiques vers un territoire philosophique plus établi. Elle montre

notamment que la nature abstraite des programmes ne nécessite pas la

postulation de solutions sui generis complètes (par exemple, une « double

nature »), mais doit être formulée selon l’axe du platonisme, du nominalisme et

du créationnisme. Les recherches futures devront montrer si l’un d'entre eux

prendra le dessus.

Chapitre 4 - L’implémentation-as : De l’art et de la science à l’informatique

Le chapitre 4 porte sur la relation de dépendance entre les agents humains et

l’informatique physique. Ce faisant, ce chapitre présente une nouvelle approche

de la compréhension de l’informatique physique, appelée implementation-as.

D’une manière générale, ma nouvelle approche est redevable à une nouvelle

ligne de recherche qui a proposé de formuler l’implémentation en termes de

représentation et de modélisation scientifiques. Bien que ce groupe de recherche

soit encore relativement dispersé, il diffère des EMA traditionnels parce qu’il

soutient que la relation de mise en correspondance f doit explicitement être

comprise comme une forme de représentation scientifique. Cette perspective

repose sur des considérations épistémologiques, métaphysiques et historiques.

Plus précisément, mon cadre s’appuie sur le compte DEKI (Frigg & Nguyen

2018), un compte formalisé de la représentation scientifique fondé sur la notion

de représentation en tant que de Goodman et Elgin.

4.2 Représentation scientifique et representation-as

Pour fournir le contexte nécessaire, je présente d’abord la notion de

représentation de Goodman et Elgin - comme dans la philosophie de l’art (sect.

§4.2). Dans leurs travaux sur la représentation et la modélisation scientifiques,

Frigg et Nguyen se sont approprié les notions de « dénotation » , d’

« exemplification » et d’ « imputation » de Goodman et Elgin et les ont

introduites dans l'arène scientifique. En s’appuyant sur la dénotation,

l’exemplification et l’imputation, et en ajoutant une quatrième exigence, qu’ils

appellent « keying up », leur compte DEKI est né (le nom est un acronyme pour

les quatre notions sur lesquelles il s’appuie).

Pour démontrer le bien-fondé du fonctionnement pratique de leur compte, ils

utilisent un exemple concret : le MONIAC. Le nom MONIAC signifie « Monetary

National Income Analog Computer » (au Royaume-Uni, la machine est

également connue sous le nom de « Philips-Newlyn machine »), et il s’agit d’un

Appendix C : Synopsis détaillé en français

196

ordinateur hydraulique analogique à usage spécial utilisé pour représenter une

économie nationale.

Le MONIAC étant un cas limite entre un modèle scientifique matériel et un

ordinateur analogique, il constitue une passerelle idéale pour établir un lien entre

la représentation scientifique et l’implémentation informatique.

4.3 De la science à l'informatique

Après ces considérations préliminaires, je me concentre sur le calcul physique

(sect. §4.3). Ainsi, en utilisant les différents éléments du compte DEKI, je propose

une nouvelle approche du calcul physique qui utilise un concept concret de

représentation scientifique. Les résultats peuvent être résumés comme suit :

Implementation-as

La paire ordonnée C=⟨X, I⟩ est un dispositif de calcul, où X est un système

matériel et I une interprétation. Soit P le formalisme/programme de calcul. C

implémente P en tant que ZC si toutes les conditions suivantes sont remplies :

(1) C désigne P.

(2) C exemplifie les propriétés Z1 ,...,Zn sous une interprétation I :X→ ZC .

(3) C est accompagné d’un codage informatique associant l’ensemble {Z1,…,

Zn} à un ensemble (éventuellement identique) de propriétés {P1,…, Pm}.

E{Zi}={Pj}

(4) C attribue au moins une des propriétés P1 ,..., Pm à P.

Le cadre qui en résulte est baptisé implementation-as, en reconnaissance de

l’influence de la représentation-as de la philosophie de l’art et de la science. Cette

approche est méthodologiquement différente des précédents récits de calcul

physique formulés en termes génériques de représentation scientifique, comme

les L-machines (Ladyman 2009) ou la théorie A/R (Horsman et al. 2014), parce

qu’elle s’appuie sur une proposition de représentation scientifique spécifique.

4.4 Étude de cas : Machine IAS

En discutant des éléments de l’implementation-as, j’ai suivi Frigg et Nguyen et j’ai

utilisé le MONIAC comme exemple de jouet. Cependant, pour démontrer l’utilité

du nouveau compte de l’implementation-as au-delà de l’informatique analogique,

je vais montrer comment l’appliquer au cas d’une machine informatique

numérique : la machine IAS (un ordinateur numérique à programme enregistré

qui a été construit entre la fin des années 1940 et le début des années 1950 à

Princeton, à l’Institute of Advanced Studies). Si, à première vue, ce dispositif peut

sembler un choix arbitraire, deux raisons principales en font une excellente étude

de cas : premièrement, l’architecture de la machine a été très influente ; il

s’agissait de l’un des premiers ordinateurs à programme stocké binaire, qui

Appendix C : Synopsis détaillé en français

197

stockait les instructions et les données dans la même mémoire. En tant que telle,

elle incarne les principes architecturaux de l'architecture de von Neumann, qui est

encore couramment utilisée aujourd'hui. L’idée est que ce qui vaut pour cette

machine peut aussi valoir pour des machines similaires. Deuxièmement, bien

qu’elle possède toutes les caractéristiques principales des ordinateurs

numériques modernes, la machine IAS est moins complexe et plus facile à

analyser.

4.5 Discussion

Il est important de noter que mon analyse a montré que ce nouveau SRA

agentiel/interprétatif répondait aux critères standards évoqués (Piccinini 2015,

Duwell 2021) :

Desiderata du calcul physique

(1) L’objectivité : La prise en compte du calcul physique doit permettre, au

moins en partie, de savoir si un système implémente une fonction de calcul.

(2) Adéquation extensionnelle : une description adéquate du calcul devrait

permettre de renvoyer correctement aux objets qui calculent sans inclure les

objets qui ne calculent pas.

(3) Explication : Les calculs effectués par un système matériel doivent, au

moins en partie, expliquer son comportement et ses capacités.

(4) Calculs erronés : Une conception du calcul doit permettre de rendre compte

des cas de calculs erronnés..

(5) Taxonomie : Une description de l’informatique doit permettre de démêler

les différentes capacités de calcul des différents systèmes.

Pour faire court, l’implémentation est une bonne théorie de l’implémentation

informatique parce qu’elle répond aux critères (1)-(6) de manière adéquate.

Comment cette nouvelle théorie de l’implémentation informatique s’accorde-

t-elle avec les autres ? Bien que l’implémentation en tant que telle et les EMA

« traditionnels » partagent ces similitudes, il existe une différence essentielle

entre les deux. Les EMA traditionnelles partent du principe que la relation

d’implémentation est une relation à deux places entre des états physiques et des

états abstraits de calcul, obtenue de manière naturaliste et indépendante de

l’esprit. En revanche, les SRA plaident généralement en faveur d’une

interprétation de la mise en correspondance en vertu de la représentation

scientifique. Cet engagement est très différent car de nombreuses options de

représentation scientifique sont des relations à trois places qui s’obtiennent si l'on

prend en compte les agents et leurs capacités intentionnelles. C’est la raison pour

laquelle de nombreux partisans de l’SRA ont soutenu qu’ils devaient être conçus

Appendix C : Synopsis détaillé en français

198

comme une théorie agentielle de l’implémentation. Le cadre l’implémentation-

as rend cela explicite, et je soutiens que son application réussie nécessite les

activités de dénotation, d’exemplification, d’encodage et d’imputation qui

dépendent de l’esprit.

Le compte sémantique restreint encore les EMA en exigeant que les états de

calcul soient toujours porteurs de sens ou de contenu sémantique. Dans une

section précédente (3.1), j’ai discuté du lien entre mon approche et les approaches

sémantiques. Les SRA et les comptes sémantiques soulignent tous deux

l’importance de la représentation dans le calcul. Cependant, il existe des

différences notables dans la manière dont la représentation est utilisée et

comprise dans les deux cadres.

Dans le cadre de l’implémentation en tant que telle, la représentation

scientifique est utilisée pour combler le fossé entre les états de calcul abstraits et

les états physiques sans qu’il soit nécessaire de s’engager sur un contenu externe.

En général, les SRA n’ont qu’une exigence minimale en matière de contenu : les

états physiques doivent simplement être porteurs d’un contenu logico-

mathématique (du modèle de calcul implémenté). Tout contenu sémantique

supplémentaire ou toute signification des véhicules de calcul n’est pas pertinent

pour l’application réussie des accords de reconnaissance mutuelle et donc de

l’implémentation. (Toutefois, l’utilisateur du dispositif informatique peut, si

nécessaire, attribuer un contenu sémantique ou une signification aux calculs). En

revanche, les comptes sémantiques utilisent la représentation dans un sens plus

large, où les états informatiques peuvent représenter des états de fait externes.

Ce sens de la représentation est plus pertinent pour les sciences cognitives, qui

partent du principe que les états du cerveau sont représentatifs.

En ce qui concerne la relation entre les conceptions de l’implémentation-as et

les conceptions mécanistes, la question de leur lien est nuancée. Selon la version

mécaniste que l’on choisit pour la comparaison, il y a différents degrés

d’engagements partagés. En général, les approaches mécanistes affirment que les

mécanismes fonctionnels sont au coeur de l’informatique ; les véhicules

informatiques doivent être des composants d’un mécanisme. Dans sa

formulation actuelle, le cadre implementation-as ne partage pas spécifiquement cet

engagement. Cependant, même si les véhicules informatiques ne doivent pas

nécessairement faire partie d’un mécanisme pour une application réussie de

l’approche implementation-as, rien dans la formulation de mon compte n’exclut

que les systèmes informatiques C=⟨X, I⟩ ne puissent pas être des mécanismes. En

fait, les deux cas discutés précédemment - le MONIAC et la machine IAS - sont

de véritables mécanismes. Les recherches futures devraient élucider si ce fait est

Appendix C : Synopsis détaillé en français

199

accidentel ou si une combinaison des points de vue pourrait conduire à une

théorie encore plus robuste du calcul physique.

Chapitre 5 - Programmabilité physique

Ce chapitre concerne la relation de dépendance entre les programmeurs et les

systèmes matériels utilisés pour l’exécution des programmes (relation de

dépendance (c)). A ce titre, il présente une nouvelle notion appelée

Programmabilité physique : Le degré auquel l’activité/fonction/
opération/phénomène sélectionné(e) sur un automate peut être
reconfiguré(e) de manière contrôlée.

Dans l’ensemble, les programmes conçus par des agents humains peuvent

consister en un simple séquençage ou en des séquences très complexes

d’opérations sur un support physique. Les opérations séquencées vont du son

(boîtes à musique) au calcul en passant par le tissage (métiers à tisser Jacquard).

Pour exécuter toute séquence d’opérations souhaitée, le système choisi doit être

configuré de manière appropriée, ce qui nécessite des interactions (physiques)

spécifiques : la machine doit être programmable. Malheureusement, le discours

philosophique sur la programmabilité est peu abondant et largement sous-

développé.

5.1 Aperçu critique de la programmabilité

Afin de développer une théorie adéquate, je commence (§5.1.) par passer en

revue les quelques approches existantes de la programmabilité dues à Conrad

(1988), Zenil (2010 ; 2012 ; 2013 ; 2014 ; 2015), Piccinini (2008 ; 2015), et Haigh &

Priestley (2018). Bien que je soutienne que chacune d’entre elles a ses propres

limites, il existe quelques points communs (voir le tableau C.1).

Sur la base de ces observations, je présente ma nouvelle alternative rigoureuse

(programmabilité physique). Ensuite, je me penche sur les détails des variables

contenues dans cette définition, à savoir (i) les automates matériels, (ii) les

opérations sélectionnées, (iii) la reconfiguration, et (iv) le degré de

programmation, et je les relie aux discours fondateurs établis dans la philosophie

des sciences.

Appendix C : Synopsis détaillé en français

200

Tableau C.1: Comparaison des différentes caractéristiques des comptes de

programmabilité présentés ici.

5.2 Automate matériel

Je suggère que le fait d’être physiquement programmable se limite aux

« automates matériels ». On peut caractériser un automate comme

Automate : Système ayant la capacité d'exécuter une série d’opérations
prédéterminées (dans une certaine mesure) de manière autonome.

Il est important de ne pas confondre ces automates avec des entités logico-

mathématiques abstraites telles que les machines de Turing. Ces dernières sont

de véritables objets mathématiques et ne sont pas sujettes à la programmabilité

physique. Les automates matériels sont plutôt des artefacts techniques.

Les artefacts techniques sont des types particuliers d'artefacts qui se

caractérisent par leur « double nature » - constituée à la fois de caractéristiques

fonctionnelles dépendant de l'esprit et de caractéristiques structurelles

indépendantes de l'esprit (cf. Baker 2006 ; Kroes & Meijers 2006 ; Kroes 2012 ;

Preston 2018, §2.3). La structure détermine ce qu’un artefact peut faire, tandis que

la fonction est ce pour quoi l’artefact est censé être utilisé. En raison de cette

normativité, certains chercheurs (Vermaas & Houkes 2003 ; Houkes & Vermaas

2010) ont soutenu que les fonctions techniques nécessitent une intentionnalité. En

conséquence, un agent ou une communauté épistémique attribue

intentionnellement une fonction à un objet dans un but spécifique.

De ce point de vue théorique, les automates matériels peuvent être considérés

comme des artefacts techniques parce qu’ils sont (i) des dispositifs créés

intentionnellement avec (ii) la capacité d'exécuter une séquence prédéterminée

d'opérations.

 Conrad Zenil Piccinini Haigh &

Priestley

Type de système

physique

Naturel et

technique

Naturel et

technique

Technique et

naturel (?)

Technique

Opérations Computation Computation Opérations

séquentielles

Opérations

séquentielles

Mode de

reconfiguration

Instruction - Mécanique,

Instructions

-

Système de

classement

Efficace et

structurel

Mesure

quantitative

(information

algorithmique)

Hard et soft -

Appendix C : Synopsis détaillé en français

201

5.3 Opération sélectionnée

Le fonctionnement sélectionné de ces automates matériels s’explique mieux par

le cadre néo-mécaniste et sa notion de

Mécanisme : « Le mécanisme d’un phénomène est constitué d’entités et
d’activités telles qu’elles sont responsables du phénomène. » (Illari et
Williamson 2012)

Généralement, le phénomène de niveau supérieur d’un mécanisme/système est

appelé Ψ-ing de S, où S désigne le système, et Ψ-ing le phénomène

correspondant. Les entités du mécanisme sont appelées Xi et leurs activités sont

désignées par {ϕ1 , ϕ2 , ..., ϕn } (cf. Craver 2007 ; voir Fig. C.3).

En outre, on peut définir les mécanismes d’ « Input/Output » (Glennan 2017,

113-116 ; ci-après dénommés « I/O ») comme une sous-classe de la définition

générique des mécanismes. Selon Glennan, les mécanismes I/O sont des

systèmes dont les actions ou les sorties réagissent aux entrées et peuvent être

décrits par une relation fonctionnelle entre les variables d'entrée et de sortie

f(i)=o, où i désigne les entrées, o les sorties et f leur relation fonctionnelle.

Un système S donné peut présenter plusieurs phénomènes à la fois. Lorsque

nous jugeons qu’un objet présente un certain degré de programmabilité, nous le

faisons généralement en ayant à l'esprit un seul phénomène spécifique (Ψ-ing).

La programmabilité physique n’a de sens que par rapport à des séries

d'opérations spécifiquement sélectionnées. Pour remédier à ce problème, j’ai

ajouté la clause de « sélection » dans ma caractérisation de la programmabilité

physique. L’idée de la clause de sélection est de nous guider/informer dans le

processus de sélection des opérations de l’automate matériel et d’isoler un

phénomène spécifique, en fonction de l’intérêt d'un individu ou d’une

communauté épistémique. N.b., en tant que telle, la clause de sélection va de pair

avec l’idée de restreindre l’applicabilité de la programmabilité physique aux

seuls automates matériels conçus.

Fig. C.3 : Représentation schématique d’un mécanisme.

Appendix C : Synopsis détaillé en français

202

5.4 Reconfiguré

Notre compréhension de la « reconfiguration contrôlée » est facilitée par les

théories de la causalité dites de manipulabilité ou d’agence, un sous-ensemble de

l’interventionnisme causal (cf. Woodward (2023) pour une étude). En bref, les

théories de la manipulabilité visent à élucider les structures causales par les

moyens suivants

« Difference Making » : C est une cause de E (l’effet) si la manipulation de

C de la bonne manière affecte (fait une différence sur) E.

L’interventionnisme sous sa forme contemporaine (voir, par exemple,

(Woodward 2003) et (Pearl 2009) est né de la combinaison de caractéristiques

issues de la modélisation causale et des théories de la manipulabilité. La

principale réalisation de cette théorie a été de concevoir une notion formelle d’

« intervention » basée sur des modèles dits structurels, nous permettant de

représenter les relations causales (en science) à travers un cadre formel rigoureux.

En tant que telles, les idées de l’interventionnisme élucident la manière dont

nous pouvons reconfigurer et contrôler les automates programmables du monde

réel. En nous appuyant sur ce cadre formel, nous pouvons expliquer la

programmabilité sans l’anthropomorphisation typiquement évoquée des

ordinateurs (« ils comprennent les instructions »). L’application de concepts

interventionnistes aux mécanismes d’I/O nous permet de comprendre comment

contrôler les automates programmables. En particulier, je suggère que le contrôle

humain des machines programmables est rendu plausible par le critère dit de

« Manipulabilité Mutuelle » (MM).

5.5 Le degré de programmabilité d’un automate

En examinant divers exemples d’automates, j’ai montré que la programmabilité

physique est une notion graduelle et qu’elle existe à différents degrés.

Intuitivement, nous pouvons caractériser cette caractéristique comme la

variabilité du comportement potentiel du système. Certains chercheurs de

tendance historico-philosophique ont tenté de rassembler ce type de

considérations sur toutes sortes d’automates programmables dans un système de

classification théoriquement plus robuste (Brennecke 2000 ; Koetsier 2001 ;

D'Udekem Gevers 2013 ; et Copeland & Sommaruga 2021).

Que faut-il retenir de ces schémas de classification des automates

programmables du monde réel ? Ils classent tous les machines informatiques à

usage général comme étant celles qui présentent la plus grande programmabilité.

En d’autres termes, les ordinateurs à usage général - parfois appelés machines

universelles - sont censés être capables implémente pratiquement toutes les

Appendix C : Synopsis détaillé en français

203

fonctions calculables (telles que définies par la théorie de la calculabilité). En

d’autres termes, la classe des fonctions calculables agit comme une limite

supérieure à la séquence d’opérations qu’une machine informatique peut

effectuer. Si nous pouvons configurer une machine pour implémente toutes ces

fonctions, elle est entièrement programmable ; les machines qui ne peuvent

implémenter qu’un éventail plus restreint de fonctions sont donc moins

programmables. En résumé, ces considérations conduisent à la notion suivante

Le degré auquel : La quantité/part de l’ensemble des fonctions possibles
(au sens du mécanisme d’I/O f(i)=o) que le système peut implémenter.

5.6 Remarques finales et questions ouvertes

La conclusion clôt mon chapitre en énonçant les avantages de la

« programmabilité physique » et en énumérant les problèmes en suspens. L’un

des principaux enseignements de ce nouveau concept est sa capacité à expliquer

la programmabilité sans faire appel à la métaphore du langage (« l'ordinateur

comprend les instructions ») mais en termes d’interventions sur le mécanisme

d’I/O conçu.

Les recherches futures pourraient porter sur deux problèmes en suspens :

Premièrement, les questions relatives à la « manipulabilité mutuelle » (MM)

persistent (Couch (2011), Leuridan (2012), Romero (2015) et Kästner (2017)). Dans

la littérature contemporaine sur les mécanismes, il y a un débat permanent sur la

plausibilité de la MM parce que les interventions semblent être maîtrisées (c’est-

à-dire qu’elles font une différence dans le mécanisme et (au moins certaines) de

ses entités agissantes).

Deuxièmement, jusqu’à présent, j’ai simplement discuté de la

programmabilité physique en relation avec des automates fonctionnant en

séquence et de manière largement autonome. Cependant, en particulier en ce qui

concerne l’informatique, il existe d’autres modes d’opérations/paradigmes

importants (naturel, analogique et quantique). En outre, il serait intéressant de

clarifier la relation entre la programmabilité et les paradigmes informatiques

interactifs.

Chapitre 6 - Conclusion

Enfin, le chapitre 6 résume les principales conclusions de la thèse et fournit

des indications pour les recherches futures sur le sujet. En résumé, les points

à retenir sont les suivants : Le terme « programme » est un polysème. Il

désigne donc des choses ontologiquement différentes. Dans cette thèse, j'ai

fourni un cadre sur la façon dont ils sont liés : UTAI. Selon cette notion, nous

Appendix C : Synopsis détaillé en français

204

devons accorder une attention particulière à trois problèmes philosophiques :

le problème de la création (qui détermine la nature abstraite des programmes)

; la question de savoir comment déterminer la programmabilité physique (qui

détermine l'aspect physique des choses) ; et le problème de l’implémentation.

(qui traite de la manière dont les programmes abstraits se rapportent à la

physique).

Annexe A - Vue d’ensemble de la chimère des programmes

A1 La vue physique

Je me réfère aux cadres qui préconisent une certaine forme de compréhension

physique des programmes en tant que vision physique. Afin de décortiquer les

notions regroupées sous l’égide de la vision physique, il est utile de prendre en

compte une discussion plus approfondie de la métaphysique : la dualité entre les

continuités et les occurrences (voir, par exemple, Simons 2000). Cette division se

reflète également dans les différentes conceptions métaphysiques des

programmes en tant qu'entités physiques. En conséquence, je distingue la

physicalité des programmes en deux cas différents, à savoir une lecture statique

et une lecture dynamique.

D’une part, les programmes peuvent être considérés comme faisant partie

d’une machine. Cette idée était peut-être plus évidente lors de l’utilisation

d’ordinateurs de première génération comme l’ENIAC, où les réglages des

commutateurs étaient visibles/tangibles. La machine devait être physiquement

configurée pour exécuter les opérations requises pour un calcul donné dans la

séquence correcte. D’autre part, il existe un point de vue très répandu selon

lequel les programmes provoquent ou même sont des sortes de processus du

monde réel (parfois appelé processus de programme). L’accent mis sur l’aspect

empirique des choses est, par exemple, largement discuté dans la littérature sur

la nature de l’informatique en tant que discipline.

A2 Le point de vue mathématique

Plusieurs personnalités influentes du monde de l’informatique, telles que

Dijkstra, Floyd, McCarthy, Naur et Wirth, pensaient que l’adoption d’une

approche mathématique et rigoureuse de la construction des programmes

pouvait améliorer la qualité des « logiciels » et de la programmation. Hoare a

exprimé une position extrême, suggérant que toute l’informatique pouvait se

résumer aux mathématiques. Selon lui, les ordinateurs fonctionnent comme des

machines mathématiques, les programmes informatiques sont des expressions

Appendix C : Synopsis détaillé en français

205

mathématiques, les langages de programmation sont des théories

mathématiques et la programmation elle-même est une activité mathématique.

A3 Le point de vue notationnel

Considérer les programmes comme des sortes de textes est un parasite pour

l’utilisation répandue des langages de programmation modernes. Selon ce point

de vue, les programmes sont constitués d’une séquence bien formée de symboles

écrits dans un langage de programmation. Cette vision soulève plusieurs

questions quant à la nature des langages de programmation et, par conséquent,

des programmes en tant que textes écrits dans un tel « langage ». Pour mieux

cerner la question, un bref aperçu de l’évolution historique des langages de

programmation est fourni.

A4 Le point de vue de l’artefact

Dans notre vie quotidienne, nous sommes entourés et constamment confrontés à

des artefacts. Généralement, un artefact est défini comme un objet fabriqué ou

produit intentionnellement dans un but spécifique (Hilpinen 2017).

Intuitivement, de nombreux programmes informatiques semblent être des

artefacts parce qu’ils sont des « créations de l’esprit ». En temps voulu, les

philosophes font souvent la distinction entre différents types d’artefacts. Deux

conceptions en particulier s’avèrent pertinentes pour classer les programmes

informatiques : les artefacts techniques et les artefacts abstraits. En termes

simples, les artefacts techniques sont des objets matériels conçus

intentionnellement et caractérisés par une dualité fonction-structure. Les

artefacts abstraits sont des objets abstraits créés intentionnellement qui ne

peuvent être identifiés par une instanciation unique.

A5 Le point de vue neuronal

Il existe une longue et riche tradition (philosophique) qui consiste à concevoir

l’esprit comme une machine (Boden 2006). Avec l’avènement des machines à

calculer électroniques, il n’a pas fallu longtemps pour que les idées sur

l’ordinateur et le cerveau s’enchevêtrent mutuellement. Cela a façonné à la fois

la perception des types d’objets que sont les ordinateurs et les cerveaux, ce qui a

eu des conséquences sur la compréhension des programmes informatiques. En

conséquence, j’élucide comment nous pouvons considérer l’ordinateur comme

un cerveau et, vice versa, comment nous pouvons considérer le cerveau comme

un ordinateur.

Appendix C : Synopsis détaillé en français

206

A6 « State of the Art »

Dans cette section, je passe en revue les différents points de vue sur le statut

ontologique des programmes informatiques sur le marché.

Tout d’abord, je passe en revue l'article classique de Moor (1978) dans lequel

il examine le point de vue de la double nature des programmes et propose des

raffinements linguistiques. Je procède ensuite à une évaluation critique de la

proposition de Suber (1988) selon laquelle tout est un programme. Ensuite, je

discute de la proposition de Smith (1998) pour une révision métaphysique

complète. Après quoi, je passe au crible les « abstractions concrètes » de Colburn

(1999) (dans lesquelles il adopte le point de vue de la double nature). Puis, je fais

la lumière sur l’article d'Eden et Turner (2007) dans lequel ils discutent de

certaines implications du point de vue de la double nature et proposent d'autres

raffinements linguistiques du terme « programme ». Lando et al. (2007)

proposent une autre façon de clarifier les définitions et la double nature ; la

nouveauté de leur récit est l'appel aux ontologies formelles. Je décris ensuite

l’idée d’Irmak (2012) de considérer les programmes comme des artefacts

abstraits. Ceci est suivi par une brève analyse de Duncan (2014) dans laquelle il

tente de démêler la distinction logiciel/matériel par le biais d'ontologies

formelles. Je traite aussi des travaux de Wang et al. (2014a ; 2014b) et de Wang

(2016) qui développent une perspective d’ingénierie des exigences selon laquelle

les programmes sont des artefacts d’information abstraits. Ensuite, j’examine

minutieusement la notion de Turner (2011 ; 2014 ; 2018) selon laquelle les

programmes sont des artefacts informatiques. De plus, je mets en lumière la thèse

de Geisse (2019) dans laquelle il fournit une perspective phénoménologique sur

les programmes. Enfin, je passe en revue la thèse de Primiero (2016 ; 2020) que

les programmes ont une ontologie stratifiée.

Annexe B - Pourquoi nous devrions considérer l’implémentation informatique

comme une relation à trois places

B.1 Problème de liaison

L’une des questions centrales de la (philosophie des) mathématiques a été

l’applicabilité apparemment miraculeuse des mathématiques aux sciences

empiriques. Cette question, qui a captivé les chercheurs pendant des siècles, a

peut-être été ravivée par Wigner (1960) lorsqu’il nous a mis au défi d’expliquer

l’utilité remarquable des mathématiques dans la science. Compte tenu de sa

longue histoire, la question est connue sous de nombreux noms (par exemple, le

problème de l’application) et peut comprendre plusieurs problèmes différents

(bien que liés) sous le même chapeau (Steiner 1998, Fillion 2012). Le problème

Appendix C : Synopsis détaillé en français

207

particulier sur lequel je me concentre concerne l’inadéquation ontologique entre

les mathématiques et le monde (ci-après dénommé « Bridging Problem » (BP)) :

BP : Quel est le lien entre les mathématiques et la physique ?

B.2 Le problème de l’implémentation

Le calcul est méthodologiquement divisé (Curtis-Trudel 2022). D’une part, nous

pouvons étudier le calcul dans le domaine abstrait du formalisme logico-

mathématique comme les machines de Turing (MT), les fonctions récursives, etc.

D'autre part, les calculs ont lieu dans le monde réel. Alors que la théorie formelle

du calcul est une branche bien établie des mathématiques et de l'informatique

théorique, l’élaboration d'un compte rendu précisant quand un système

physique implémente des calculs s’avère difficile. En termes simples, la question

de savoir comment relier ces deux domaines est appelée le problème de

l’implémentation.

B.3 Tracer le paysage des solutions au « Bridging Problem »

L'idée centrale de toutes les solutions contemporaines est sans doute influencée

par le structuralisme : En raison de la notion centrale de cartographies

structurelles, Pincock (2004) a baptisé cette proposition « Mapping Account »

(compte de cartographie).

Mapping Account : Le fossé entre le M mathématique et le P physique est
comblé par un mappage préservant la structure f: SP→SM entre deux
structures correspondantes SM et SP.

Cependant, le compte de correspondance pose un problème fondamental :

Les systèmes physiques doivent avoir des structures pour que les morphismes

soient bien définis, car « le morphisme est une relation qui existe entre deux

structures et non entre une structure et un élément du monde réel en soi ». Frigg

(2006, 55). Le problème est que les systèmes physiques sont des entités concrètes

existant dans la réalité physique, et non des structures mathématiques. Ce qu’il

faut donc pour résoudre le problème de la BP, c’est expliquer comment les

systèmes physiques obtiennent une structure unique. Trois solutions principales

sont disponibles :

1. Le monde est fondamentalement mathématique (Tegmark 2008)

Cette idée est sujette à l’objection de Newman.

2. Proposition inférentialiste (Bueno & Colyvan 2011)

3. Proposition basée sur l’abstraction. Nguyen et Frigg (2021) ont formalisé

cette idée dans leur « compte d'abstraction extensionnelle ».

En résumé, toutes ces propositions dépendent de l’activité humaine et, à ce titre,

sont des adeptes de la théorie des trois lieux dépendants de l'esprit.

Appendix C : Synopsis détaillé en français

208

B.4 Synthèse des problèmes : Une nouvelle perspective

Bien que la littérature sur le calcul physique ait apporté un nombre

impressionnant de contributions, l’accent mis sur la nature métaphysique de la

relation de l’implémentation a généralement été relégué au second plan. Alors

que les propositions de résolution du BP sont conçues pour être généralement

applicables, les solutions au problème de l’implémentation sont limitées à

l'applicabilité de la théorie de la calculabilité. Sur la base de cette comparaison,

nous pouvons déduire que le problème de l’implémentation est une instance

spécifique du problème du rapprochement.

Alors que les deux lignes de recherche proposent que le décalage ontologique

puisse être surmonté en adhérant à des mappings préservant la structure, la

plupart des solutions au problème de la mise en œuvre n’élucident généralement

pas davantage la nature métaphysique des mappings qu’elles emploient. Bien

qu'aucune solution au problème de la mise en œuvre ne se soit imposée comme

définitive, elles vont dans le même sens : Toutes les analyses correspondantes

partagent l’idée que la relation de mise en correspondance n'est pas un fait brut.

Au lieu de cela, la relation des mathématiques au monde nécessite un troisième

relatum - un agent responsable de l’établissement de la correspondance f et de la

détermination des structures de la théorie des ensembles qui sont censées être

reliées. Selon ce point de vue de la relation à trois places, le calcul physique est

donc une conception dépendante de l'esprit, car un système ne peut calculer

qu’en raison de l’activité humaine.

Bibliography

Abelson, H., Sussman, G. J. and Sussman, J. (1996). Structure and Interpretation

 of Computer Programs. MIT Press.

Ainsworth, P. (2009) ‘Newman’s Objection.’ The British journal for the Philosophy

 of Science, 60 (1): 135–171.

Ambrosetti, N. (2011). Cultural Roots of Technology: An Interdisciplinary Study of

 Automated Systems From the Antiquity to the Renaissance. PhD. diss.,

 University of Milano.

Anderson, N. G. and Piccinini, G. (2024). The physical signature of computation: A

 robust mapping account. Oxford University Press.

Anderson, N. G. 2019. ‘Information Processing Artifacts.’ Minds and Machines 29

 (2): 193–225.

Angius, N. (2013). ‘Abstraction and Idealization in the Formal Verification of

 Software Systems.’ Minds and Machines 23 (2): 211–226.

Angius, N., and Primiero, G. (2018). ‘The logic of identity and copy for

 computational artefacts.’ Journal of Logic and Computation 28 (6): 1293–

 1322.

Angius, N. and Primiero, G. (2019). ‘Infringing software property rights:

 Ontological, methodological, and ethical questions.’ Philosophy &

 Technology 33, 283-308.

Angius, N., and Primiero, G. (2023). ‘Copying safety and liveness properties of

 computational artefacts.’ Journal of Logic and Computation 33 (5): 1089–

 1117.

Arp, R., Smith B., and D. Spear, A. D. (2015) Building ontologies with basic formal

 ontology. MIT Press.

Antigua, M. (2023). ‘A Dual-Aspect Theory of Artifact Function.’ Erkenntnis 88

 (4): 1533-1554.

Aspray, W. (1990). John von Neumann and the origins of modern computing. History

 of computing. MIT Press.

Azzouni, J. (2004). Deflating Existential Consequence: A Case for Nominalism.

 Oxford University Press, Oxford, England.

Baker, L. R. (2006). ‘On the twofold nature of artefacts.’ Studies in History and

 Philosophy of Science Part A, 37(1): 132–136.

Bibliography

210

Balaguer, M. (1998). Platonism and anti-Platonism in mathematics. Oxford

 University Press.

Balaguer, M. (2016). ‘Platonism in Metaphysics.’ In The Stanford Encyclopedia of

 Philosophy, edited by Edward N. Zalta, Spring 2016. Metaphysics

 Research Lab, Stanford University.

Balaguer, M. (2023). ‘Fictionalism in the Philosophy of Mathematics.’ In The

 Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Spring

 2023. Metaphysics Research Lab, Stanford University.

Balzer, W., Moulines, C. U., and Sneed, J. D. (1987). An Architectonic for Science:

 The Structuralist Program. Springer.

Barr, N. (1988) ‘The Phillips Machine’ LSE Quarterly, 2(4): 305-337.

Batterman, R. W. (2010). ‘On the explanatory role of mathematics in empirical

 science.’ The British journal for the Philosophy of Science, 61(1):1–25.

Baumgartner, M. and Casini, L. (2017) ‘An Abductive Theory of Constitution.’

 Philosophy of Science 84 (2): 214-233.

Baumgartner, M., and Gebharter, A. (2016). ‘Constitutive Relevance, Mutual

 Manipulability, and Fat-Handedness.’ The British Journal for the Philosophy

 of Science 67 (3): 731–756.

Bechtel, W, and Abrahamsen, A. (2005). ‘Explanation: A Mechanist Alternative.’

 Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):

 421–441.

Bechtel, W., and Richardson, R. C. (1993). Discovering complexity: Decomposition

 and localization as strategies in scientific research. MIT Press.

Begley, K. (2024). Towards a realist metaphysics of software maintenance. In M.

 T. Young, and M. Coeckelbergh (eds.), Maintenance and Philosophy of

 Technology, 162-183. Routledge.

Benacerraf, P. (1973). ‘Mathematical Truth.’ Journal of Philosophy 70 (19):

 661–679.

Bickle, J. (2020). ‘Multiple Realizability.’ In The Stanford Encyclopedia of

 Philosophy, edited by Edward N. Zalta, Summer 2020. Metaphysics

 Research Lab, Stanford University.

Bigelow, J. (1980). ‘Computer Development for the Institute of Advanced

 Studies’ In G. C. Rota, N. Metropolis, J. Howlett (eds.), A History of

 Computing in the Twentieth Century: A Collection of Papers, 291–310.

 Academic Press, Inc.

Bissell, C. (2007). ‘Historical perspectives – The Moniac A Hydromechanical

 Analog Computer of the 1950s’ IEEE Control Systems Magazine, 27(1):

 59-64.

Bibliography

211

Boden, M. A. (2006). Mind as Machine: A History of Cognitive Science. Oxford

 University Press.

Bokulich, A. (2011). ‘How Scientific Models Can Explain.’ Synthese 180 (1):

 33–45.

Bournez, O., and Pouly, A. (2021). ‘A Survey on Analog Models of

 Computation.’ In V. Brattka and P. Hertling (eds.) Handbook of

 Computability and Complexity in Analysis, 173–226. Springer

Brennecke, A. (2000). ‘A Classification Scheme for Program Controlled

 Calculators.’ In R. Rojas and U. Hashagen (eds.) The First Computers,

 53–68. MIT Press.

Bricker, P. (2016). ‘Ontological commitment.’ In The Stanford Encyclopedia of

 Philosophy, edited by E. N. Zalta, Winter 2016. Metaphysics Research Lab,

 Stanford University.

Bringsjord, S. (2019). ‘Computer science as immaterial formal logic.’ Philosophy

 & Technology 33, 339–347.

Bromley, A. G. (1983). ‘What Defines a “General-Purpose” Computer?’ Annals of

 the History of Computing 5 (3): 303-305.

Brooks, F. P. (1978). The Mythical Man-Month: Essays on Software Engineering.

 Addison-Wesley Longman Publishing.

Buckner, C. and Garson, J. (2019). ‘Connectionism and post-connectionist

 models.’ In M. Sprevak and M. Colombo (eds.) The Routledge handbook of

 the computational mind, 76–90. Routledge.

Bueno, O. (2020a) ‘Nominalism in the philosophy of mathematics.’ In Zalta, E.

 N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research

 Lab, Stanford University, spring 2020 edition.

Bueno, O. (2020b). ‘Contingent Abstract Objects,’ In Abstract Objects, edited by

 J. L. Falguera and C. Martínez-Vidal. 91–109 Springer.

Bueno, O. and Colyvan, M. (2011). ‘An inferential conception of the application

 of mathematics.’ Noûs, 45 (2): 345–374.

Bullynck, M. and De Mol, L. (2010). ‘Setting-up early computer programs: D. H.

 Lehmer’s ENIAC computation.’ Archive for Mathematical Logic, 49 (2):

 123–146.

Burks, Arthur W. (1980). ‘From ENIAC to the Stored-Program Computer: Two

 Revolutions in Computers’. In A History of Computing in the Twentieth

 Century: A Collection of Papers (311–344), edited by G.C. Rota, N.

 Metropolis, J. Howlett. Academic Press, Inc.

Burks, A. W., Goldstine, H. H., and von Neumann, J. (1946). Preliminary

 Discussion of the Logical Design of an Electronic Computing Instrument.

Bibliography

212

Butterfield, A., Ngondi, G. E and Kerr, A. (2016). A Dictionary of Computer

 Science. Oxford University Press.

Button, G and Sharrock, W. (1995). ‘The Mundane Work of Writing and

 Reading Computer Programs.’ In P. T. Have and G. Psathas (eds.),

 Situated Order: Studies in the Social Organization of Talk and Embodied

 Activities, 231–258. University Press of America.

Callender, C., and Cohen, J. (2006). ‘There is no special problem about scientific

 representation. Theoria.’ Revista de teoría, historia y fundamentos de la

 ciencia 21 (1): 67–85.

Cameron, Ross P. (2008). ‘There Are No Things That Are Musical Works.’

 British Journal of Aesthetics 48 (3): 295–314.

Campbell-Kelly, M. (1991). ‘Punched-Card Machinery’ In W. Aspray et al. (eds.)

 Computing Before Computers, 122-155. Iowa State University Press.

Campbell-Kelly, M., Aspray, W. F., Yost, J. R., Tinn, H., and Con Díaz, G. (2023).

 Computer: A history of the information machine. Routledge.

Cardone, F. (2021). ‘Games, Full Abstraction and Full Completeness. In E. N.

 Zalta (ed.) The Stanford Encyclopedia of Philosophy, Spring 2021.

 Metaphysics Research Lab, Stanford University.

Care, C. (2010). Technology for Modelling. Electrical Analogies, Engineering

 Practice, and the Development of Analogue Computing. Springer.

Carnap, R. (1950). ‘Empiricism, Semantics and Ontology.’ Revue

 Internationale de Philosophie 4 (11): 20–40.

Carston, R. (2021). ‘Polysemy: Pragmatics and sense conventions.’ Mind &

 Language, 36(1): 108–133.

Cartwright, Nancy. (1989). Nature’s Capacities and Their Measurement. Oxford

 University Press.

Chabert, J.-L., editor (1999). A History of Algorithms: From the Pebble to the

 Microchip. Springer.

Chaitin, Gregory. (1966). ‘On The Length of Programs for Computing Finite

 Binary Sequences.’ Journal of the ACM 13 (4): 547–569.

Chakravartty, A. (2010). ‘Informational versus functional theories of scientific

 representation’ Synthese 172: 197-213.

Chalmers, David J. (1995). ‘On Implementing a Computation.’ Minds and

 Machines (4): 391-402.

Chalmers, D. J. (1996). ‘Does a rock implement every finite state automaton?’

 Synthese, 108(3): 309–333.

Chalmers, D. (2012). ‘The varieties of computation: A reply.’ Journal of Cognitive

 Science 13(3): 211–248.

Bibliography

213

Churchland, P. and T. Sejnowski. (1992) The Computational Brain. MIT Press.

Clarke-Doane, J. (2016). ‘What is the benacerraf problem?’ In Truth, objects,

 infinity: New perspectives on the philosophy of Paul Benacerraf, edited by

 F. Pataut. 17–43. Springer

Colburn, T. R. (1999). ‘Software, abstraction, and ontology.’ The Monist 82 (1):

 3–19.

Colburn, T.R. (2000). Philosophy and Computer Science. Routledge.

Colburn, T. R., and Shute, G. (2007). ‘Abstraction in computer science.’ Minds

 and Machines 17 (2): 169–184.

Colburn, T. R., and Shute, G. M. (2008). ‘Metaphor in computer science.’ Journal

 of Applied Logic 6 (4): 526-533.

Colburn, T. R., T. L. Rankin, and J. H. Fetzer (eds.). (1993). Program Verification:

 Fundamental Issues in Computer Science. Springer.

Colyvan, M. (2001a). ‘The miracle of applied mathematics.’ Synthese, 127: 265–

 278.

Colyvan, M. (2001b). The indispensability of mathematics. Oxford University Press.

Colyvan, M. (2024). ‘Indispensability Arguments in the Philosophy of

 Mathematics.’ In The Stanford Encyclopedia of Philosophy, edited by

 Edward N. Zalta, Summer 2024. Metaphysics Research Lab, Stanford

 University.

Con Díaz, G. (2019). Software Rights. Yale University Press.

Conrad, M. (1988). ‘The price of programmability.’ In A half- century survey on

 The Universal Turing Machine. 285–307. Oxford University Press

Contessa, G. (2010). ‘Empiricist structuralism, metaphysical realism, and the

 bridging problem.’ Analysis, 70(3).

Commission on New Technological Uses of Copyrighted Works (CONTU)

 (1978). Final report of the national commission on new technological uses of

 copyrighted works.

Copeland, J. B. (1996). ‘What is computation?’ Synthese 108 (3): 335–359.

Copeland, J. B. (2024). The Church-Turing Thesis. In E. N. Zalta (ed.) The

 Stanford Encyclopedia of Philosophy, Spring 2024 Edition. Metaphysics

 Research Lab, Stanford University.

Copeland, J. B. and Sommaruga, G. (2021). ‘The stored-program universal

 computer: did Zuse anticipate Turing and von Neumann?’. In Turing’s

 revolution: the impact of his ideas about computability. G. Sommaruga and T.

 Strahm (eds.). 43-101. Springer.

Bibliography

214

Costa, N. C. A. D. and French, S. (2003). Science and Partial Truth: A Unitary

 Approach to Models and Scientific Reasoning. Oxford University Press USA,

 New York, US.

Couch, Mark B. (2011). ‘Mechanisms and constitutive relevance.’ Synthese 183

 (3): 375–388.

Cowling, S. (2017). Abstract Entities. Routledge.

Craver, C. F. (2007a). ‘Constitutive explanatory relevance.’ Journal of

 Philosophical Research 32:3–20.

Craver, C. F. (2007b). Explaining the Brain. Oxford University Press.

Craver, C. F. (2015). ‘Levels.’ In Metzinger T. and J. M. Windt (eds.) Open

 MIND, 1-26. MIND Group.

Cummins, R. (1989). Meaning and Mental Representation. MIT Press.

Curtis-Trudel, A. (2022). ‘Why do we need a theory of implementation?’ The

 British Journal for the Philosophy of Science, 73(4): 1067– 1091.

d’Udekem-Gevers, M. (2013). ‘Telling the Long and Beautiful (Hi)Story of

 Automation!’. In Making the History of Computing Relevant. HC 2013.

 Tatnall, A., Blyth, T., Johnson, R. (eds). 173-195. Springer.

Davis, M., Sigal, R., and Weyuker, E. J. (1994). Computability, complexity, and

 languages: fundamentals of theoretical computer science. Elsevier.

Daylight, E. G., Boute, R. and Fleck, A.C. (2016). Turing Tales. Lonely Scholar.

De Mol, L. (2015). ‘Some reflections on mathematics and its relation to

 computer science.’ Automata, Universality, Computation: Tribute to Maurice

 Margenstern, 75-101.

De Mol, L. (2021). ‘Turing machines.’ In Zalta, E. N., editor, The Stanford

 Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

 University, winter 2021 edition.

De Mol, L., Bullynck, M. (2021). ‘Roots of ‘Program’ Revisited’. Commun. ACM,

 64 (4): 35–37.

De Mol, L., and Bullynck, M. (2022). ‘What’s in a name? Origins, transpositions

 and transformations of the triptych Algorithm —Code—Program.’ In J.

 Abbate & S. Dick (Eds.), Abstractions and embodiments: New histories of

 computing and society, 146-168. Johns Hopkins University Press.

Dean, W. H. (2007). What algorithms could not be. PhD thesis, Rutgers

 University-Graduate School-New Brunswick.

Dean, W. H. (2016). ‘Algorithms and the mathematical foundations of computer

 science.’ In L. Horsten, P. Welch (eds.), Gödel’s disjunction: The scope and

 limits of mathematical knowledge, 19–66.

Bibliography

215

Dennett, D. C. (1990). ‘The interpretation of texts, people and other artifacts.’

 Philosophy and phenomenological research 50:177–194.

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J.,

 and Young, P. R. (1989). ‘Computing as a discipline.’ Commun. ACM, 32

 (1): 9–23.

Deutsch, H. (1991). ‘The creation problem.’ Topoi, 10(2): 209–225.

Dewhurst, J. (2018). Computing mechanisms without proper functions. Minds

 and Machines, 28(3): 569–588.

Dijksterhuis, E. J. (1956). Die Mechanisierung des Weltbildes. Springer.

Dijkstra, E. W. (1968). ‘Letters to the editor: go to statement considered

 harmful.’ Communications of the ACM 11(3): 147–148.

Dijkstra, E. W. (1989). ‘On the Cruelty of Really Teaching Computing Science.’

 Communication of the ACM 32, 1398–1404.

Dodd, J. (2000). ‘Musical Works as Eternal Types.’ British Journal of Aesthetics 40

 (4): 424–440.

Dodd, J. (2002). ‘Defending Musical Platonism.’ British Journal of Aesthetics 42

 (4): 380–402.

Dodd, J. (2007). Works of Music: An Essay in Ontology. Oxford University Press.

Doherty, F. and Dewhurst, J. (2022). ‘Structuralism, indiscernibility, and

 physical computation.’ Synthese, 200(3): 189.

Dorr, C. (2005). ‘What we disagree about when we disagree about ontology.’ In

 M. E. Kalderon (ed.), Fictionalism in Metaphysics, 234– 286. Oxford

 University Press.

Dorr, C. (2008). There Are No Abstract Objects. In T. Sider, J. Hawthorne, and

 D. W. Zimmerman (eds.) Contemporary Debates in Metaphysics, 32-64.

 Blackwell.

Duncan, W. P. (2014). The Ontology of Computational Artifacts. PhD thesis,

 University of Buffalo.

Durán, J. M. (2018). Computer Simulations in Science and Engineering. Concept,

 Practices, Perspectives. Springer.

Duwell, A. (2021). Physics and Computation. Cambridge University Press.

Eden, A. H. (2007). ‘Three paradigms of computer science.’ Minds and machines,

 17(2):135–167.

Eden, A. H. and Turner, R. (2007). ‘Problems in the ontology of computer

 programs.’ Applied Ontology, 2(1): 13–36.

Effingham, N. (2013). An Introduction to Ontology. Polity.

Bibliography

216

Egan, F. (2019). ‘Defending the Mapping Account of Physical Computation’.

 APA Newsletter 19 (1): 24–25. 2

Elgin, C. Z. (1983). With Reference to Reference. Hacket Publishing Company.

Elgin, C. Z. (2010). in ‘Telling Instances’. In Beyond Mimesis and Convention:

 Representation in Art and Science (1–17), edited by Mathew Hunter Roman

 Frigg. Springer.

Elgin, C. Z. 2017. True Enough. Cambridge: MIT Press.

Ensmenger, N. (2016). ‘The multiple meanings of a flowchart.’ Information &

 Culture, 51(3): 321–351.

Eronen, M. I. (2015). ‘Levels of Organization: A Deflationary Account.’ Biology

 and Philosophy 30 (1): 39–58.

Estrin, G. (1952). A Description of the Electronic Computer at the Institute for

 Advanced Studies. Proceedings of the 1952 ACM National Meeting

 (Toronto), ACM ’52. New York, NY, USA: Association for Computing

 Machinery, 95–109.

Falguera, J. L., Martínez-Vidal, C., and Rosen G. (2022). ‘Abstract Objects’. In

 The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta,

 Summer 2022. Metaphysics Research Lab, Stanford University.

Falkum, I. L. and Augustin, V. (2015). ‘Polysemy: Current perspectives and

 approaches.’ Lingua 157, 10–16.

Farmer, Henry G. (1931). The Organ of the Ancients from Eastern Sources From

 Eastern Sources (Hebrew, Syriac, Arabic). William Reeves Bookseller.

Faulkner, P. and Runde, J. (2010). ‘The social, the material, and the ontology of

 non-material technological objects.’ Draft.

Fetzer, J. H. (1988). ‘Program verification: the very idea.’ Communications of the

 ACM 31 (9): 1048–1063.

Field, H. H. (1980). Science Without Numbers: A Defence of Nominalism. Princeton

 University Press.

Fillion, N. (2012). The reasonable effectiveness of mathematics in the natural sciences.

 PhD thesis, The University of Western Ontario (Canada).

Fine, Kit. (2017). ‘Naive Metaphysics.’ Philosophical Issues 27: 98–113.

Fletcher, S. C. (2018). ‘Computers in Abstraction/ Representation Theory.’

 Minds and Machines 28 (3): 445–463.

Floridi, L. and Nobre, A. C. (2024). ‘Anthropomorphising machines and

 computerising minds: The crosswiring of languages between artificial

 intelligence and brain & cognitive sciences.’ Minds and Machines, 34(1):

 1–9.

Bibliography

217

Floridi, L. (2008). ‘The method of levels of abstraction.’ Minds and Machines,

 18(3): 303–329.

Floridi, L. (2011). The Philosophy of Information. Oxford University Press

Floridi, L, Fresco, N. and Primiero, G. (2015). ‘On malfunctioning software.’

 Synthese 192 (4): 1199–1220.

Fodor, J. A. (1975). The Language of Thought. Harvard University Press.

Fodor, J. A. (1981). ‘The mind-body problem.’ Scientific American, 244(1): 114–

 123.

French, S. (2000). ‘The reasonable effectiveness of mathematics: Partial

 structures and the application of group theory to physics.’ Synthese, 125:

 103–120.

French, S. (2020). There Are No Such Things as Theories. New York, NY,

 United States of America: Oxford University Press.

French, S, and Vickers, P. (2011). ‘Are There No Things That Are Scientific

 Theories?’ British Journal for the Philosophy of Science 62 (4): 771–804.

Fresco, N. (2014). Physical computation and cognitive science. Springer.

Fresco, N., and Primiero, G. (2013). ‘Miscomputation’. Philosophy & Technology

 26 (3): 253–272.

Fresco, N., B. Jack Copeland, and Wolf, M. J. (2021). ‘The Indeterminacy of

 Computation.’ Synthese 199 (5-6): 12753–12775.

Friedell, D. (2021). Creating abstract objects. Philosophy Compass, 16(10): e12783.

Frigg, R. (2006). ‘Scientific representation and the semantic view of theories.’

 Theoria, 55: 49–65.

Frigg, R., and Nguyen, J. (2017). ‘Scientific Representation Is Representation-

 As.’ In H.-K. Chao and J. Reiss (eds.) Philosophy of Science in Practice:

 Nancy Cartwright and the Nature of Scientific Reasoning, 149–179, Springer.

Frigg, R., and Nguyen, J. (2018). ‘The turn of the valve: representing with

 material models.’ European Journal for Philosophy of Science 8 (2): 205– 224.

Frigg, R., and Nguyen, J. (2020). Modelling nature: An opinionated introduction to

 scientific representation. Springer.

Frigg, R., and Nguyen, J. (2021). ‘Scientific Representation’. In E. N. Zalta (ed.)

 The Stanford Encyclopedia of Philosophy, Winter 2021. Metaphysics

 Research Lab, Stanford University.

Frigg, R. (2022). Models and Theories: A Philosophical Inquiry. Routledge

M. Gabbrielli and Martini, S. (2010). Programming Languages: Principles and

 Paradigms. Springer.

Bibliography

218

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A. and Schneider, L. (2002).

 ‘Sweetening ontologies with DOLCE.’ In International conference on

 knowledge engineering and knowledge management, 166-181 Springer.

Geisse, J. (2019). Das Computerprogramm als Erfahrungsgegenstand. PhD thesis,

 Technische Universität Darmstadt (Germany).

Gemignani, M. (1981). ‘What is a computer program?’ The American

 Mathematical Monthly, 88(3): 185–188.

Giere, R. N. (1999). ‘Using models to represent reality.’ In L. Magnani, N.

 Nersessian, and P. Thagard (eds.). Model-based reasoning in scientific

 discovery, 41–57. Springer.

Glennan, S. S. (1996). ‘Mechanisms and the nature of causation.’ Erkenntnis 44

 (1): 49–71.

Glennan, Stuart. (2017). The new mechanical philosophy. Oxford University Press.

Godfrey-Smith, P. (2009). ‘Triviality arguments against functionalism’.

 Philosophical Studies 145 (2): 273–295 (Aug).

Goehr, L. (1992). The imaginary museum of musical works: an essay in the philosophy

 of music. Oxford University Press.

Goodman, N. (1976). Languages of Art: An Approach to a Theory of Symbols.

 Hackett Publishing Company.

Grattan-Guinness, I. (2008). ‘Solving Wigner’s mystery: The reasonable (though

 perhaps limited) effectiveness of mathematics in the natural sciences.’

 The Mathematical Intelligencer, 30: 7–17.

Grier, D. A. (1996). ‘The ENIAC, the Verb “to program” and the Emergence of

 Digital Computers.’ IEEE Annals of the History of Computing 18 (1): 51–55.

Grier, A. D. (2013). When Computers Were Human. Princeton University Press.

Gurevich, Y. (2012). ‘What is an algorithm.’ In M. Bieliková et al. (eds.),

 SOFSEM 2012: Theory and Practice of Computer Science, 31–42. Springer.

Haigh, T. (2002). ‘Software in the 1960s as concept, service, and product’. IEEE

 Annals of the History of Computing 24 (1): 5–13.

Haigh, T., and Priestley, M. (2016). ‘Where Code Comes From: Architecture of

 Automatic Control from Babbage to Algol.’ Communications of the ACM

 59(1): 39-44.

Haigh, T., and Priestley, M. (2018). ‘Colossus and Programmability.’ IEEE

 Annals of the History of Computing 40 (4): 5–27.

Hailperin, M. and Kaiser, B. K. K. (1999). Concrete Abstractions: An Introduction

 to Computer Science. PWS publishing.

Bibliography

219

Hausman, D. M. (2005). ‘Causal Relata: Tokens, Types, or Variables?’ Erkenntnis

 63 (1): 33–54.

Hennessy, J. L., and Patterson, D. A. (2012). Computer architecture: a quantitative

 approach. 5. Elsevier.

Hill, R. K. (2016). ‘What an algorithm is.’ Philosophy & Technology, 29(1): 35–59.

Hilpinen, R. (1993). ‘X*–Authors and Artifacts.’ Proceedings of the Aristotelian

 Society, 93(1): 155–178.

Hilpinen, R. (2017). ‘Artifact.’ In E. N. Zalta, and U. Nodelman, (eds.), The

 Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

 University, Fall 2017 edition.

Hoare, C. (1985). ‘The mathematics of programming.’ In S.N. Maheshwari, (ed.)

 Foundations of Software Technology and Theoretical Computer Science, 1-18.

 Springer.

Hofweber, T. (2016). Ontology and the Ambitions of Metaphysics. Oxford

 University Press.

Hollaar, L. A. (2002). Legal protection of digital information. Bureau of National

 Affairs.

Hopcroft, J. E., Motwani, R., and Ullman J. D. (2001) Introduction to Automata

 Theory, Languages, and Computation, 2nd Edition. Addision-Wesley.

Horsman, D. (2015). Abstraction/representation theory for heterotic physical

 computing. Philosophical Transactions of the Royal Society A: Mathematical,

 Physical and Engineering Sciences 373 (2046): 20140224.

Horsman, D. (2017). ‘The representation of computation in physical

 systems.’ In M. Massimi, J. Romeijn, and G. Schurz (eds.), EPSA15

 selected papers., 191–204. Springer.

Horsman, D., Stepney, S., Wagner, R. C., and Kendon, V. (2014). ‘When does a

 physical system compute?’ Proceedings of the Royal Society A:

 Mathematical, Physical and Engineering Sciences 470 (2169): 20140182.

Horsman, D, Kendon, V., Stepney, S., and Young, J. P. W. (2017). ‘Abstraction

 and representation in living organisms: when does a biological system

 compute?’ In G. Dodig-Crnkovic and R. Goivagnoli (eds.), Representation

 and reality in humans, other living organisms and intelligent machines, 91-116.

 Springer.

Horsman, D, Kendon, V., and Stepney, S. (2017). ‘The Natural Science of

 Computing.’ Commun. ACM 60 (8): 31-34 (July).

Bibliography

220

Horsman, D., Kendon, V., and Stepney, S. (2018). ‘Abstraction/ Representation

 Theory and the Natural Science of Computation.’ In M. E. Cuffaro and

 S. C. Fletcher (eds.) Physical Perspectives on Computation, Computational

 Perspectives on Physics, 127–150. Cambridge University Press.

Houkes, W. and Vermaas, P. E. (2010). Technical functions: On the use and design

 of artefacts. Springer.

Hughes, R. (1997). ‘Models and Representation’. Philosophy of Science 64 (4): 336.

Hyde, D. and Raffman, D. (2018). ‘Sorites Paradox.’ In E. N. Zalta (ed.) The

 Stanford Encyclopedia of Philosophy, Summer 2018. Metaphysics

 Research Lab, Stanford University.

Illari, P. M. and Williamson, J. (2012). ‘What is a mechanism? thinking about

 mechanisms across the sciences.’ European Journal for Philosophy of Science,

 2: 119–135.

Imbert, C. and Ardourel, V. (2023). ‘Formal verification, scientific code, and the

 epistemological heterogeneity of computational science.’ Philosophy of

 Science, 90(2): 376–394.

Ingarden, R. (1979). The Literary Work of Art. North Western University

 Press.

Irmak, N. (2012). ‘Software is an abstract artifact.’ Grazer Philosophische Studien,

 86(1): 55-72.

Irmak, N. (2020). ‘The Problem of Creation and Abstract Artifacts.’ Synthese 198,

 9695–9708.

Jackson, M. (1995). ‘The world and the machine.’ In 1995 17th International

 Conference on Software Engineering, 283–292.

Jones, C. B. and Astarte, T. K. (2018). ‘Challenges for semantic description:

 comparing responses from the main approaches.’ In Bowen, J. and Liu,

 Z. (eds.), 3rd School on Engineering Trustworthy Software Systems, 176–217.

 Springer.

Kaiser, M. I., and Krickel, B. (2017). ‘The Metaphysics of Constitutive

 Mechanistic Phenomena.’ The British Journal for the Philosophy of Science 68

 (3): 745-779.

Kania, A. (2013). ‘Platonism Vs. Nominalism in Contemporary Musical

 Ontology.’ In C. Mag Uidhir (ed.), Art and Abstract Objects, 197-219.

 Oxford University Press.

Kästner, L. 2017. Philosophy of Cognitive Neuroscience: Causal Explanations,

 Mechanisms and Experimental Manipulations. Boston: De Gruyter.

Kästner, L, and Andersen, L. M. (2018). ‘Intervening Into Mechanisms:

 Prospects and Challenges.’ Philosophy Compass 13 (11): e12546.

Bibliography

221

Katz, J. J. (1998). Realistic Rationalism. MIT Press.

Kittler, F. (1993). ‘Es gibt keine Software.’ In Draculas Vermächtnis. Technische

 Schriften. 225-242. Reclam.

Kivy, P. (1983). ‘Platonism in Music.’ Grazer Philosophische Studien 19 (1): 109–

 129.

Klein, C. (2008). Dispositional implementation solves the superfluous structure

 problem. Synthese, 165(1): 141–153.

Knuth, D. E. and Pardo, L. T. (1980). ‘The early development of programming

 languages.’ In N. Metropolis, J. Howlett, and G. Rota (eds.) A history of

 computing in the twentieth century, 197–273. Academic Press.

Knuth, D. (1997). The Art of Computer Programming. 3rd ed. Addison Wesley.

Koetsier, T. (2001). ‘On the prehistory of programmable machines: musical

 automata, looms, calculators.’ Mechanism and Machine Theory 36 (5): 589–

 603.

Kolmogorov, A. N. and Uspenskii, V. A. (1958 [In Russian; translation Amer.

 Math. Soc. Transl. (2) 29 217-245 (1963)]). ‘On the definition of algorithm.’

 Uspekhi Mat. Nauk 13 (4). In Russian.

Kolmogorov, A. N. (1965). ‘Three approaches to the quantitative definition of

 information.’ Problemy Peredachi Informatsii 1 (1): 3–11.

Kramer, J. 2007. ‘Is Abstraction the Key to Computing?’ Commun. ACM 50 (4):

 36–42 (April).

Krickel, B. (2018). The Mechanical World: The Metaphysical Commitments of the New

 Mechanistic Approach. Springer

Kripke, S. A. (1982). Wittgenstein on rules and private language: An elementary

 exposition. Harvard University Press.

Kroes, P. and Meijers, A. (2006). ‘The dual nature of technical artefacts.’ Studies

 in History and Philosophy of Science Part A, 37(1): 1–4.

Kroes, P. (2012). Technical artefacts: Creations of mind and matter: A philosophy of

 engineering design. Springer.

Kulstad, M. and Carlin, L. (2020). ‘Leibniz’s Philosophy of Mind.’ In Zalta, E. N.

 (ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

 Stanford University, Winter 2020 edition.

Ladyman, J. (2009) ‘What does it mean to say that a physical system

 implements a computation?’ Theoretical Computer Science 410: 376–383.

Lakatos, I. (1976). Proofs and Refutation. Cambridge University Press.

Bibliography

222

Lando, P., Lapujade, A., Kassel, G., and Fürst, F. (2007). ‘Towards a general

 ontology of computer programs.’ In J. Filipe, M. Helfert, B. Shishkov

 (eds.), Proceedings of the Second International Conference on Software and

 Data Technologies, 163-170. Springer.

Lee, J. (2020). ‘Mechanisms, wide functions, and content: Towards a

 computational pluralism.’The British Journal for the Philosophy of Science

 72 (1): 221-244.

Leuridan, B. (2012). ‘Three problems for the mutual manipulability account of

 constitutive relevance in mechanisms.’ The British Journal for the

 Philosophy of Science 62 (2): 399-427.

Levaux, C. (2017). ‘The Forgotten History of Repetitive Audio Technologies.’

 Organised Sound 22 (2): 187-194.

Levinson, J. (1980). ‘What a musical work is.’ Journal of Philosophy, 77(1): 5–28.

Lewis, D. K. (1971). ‘Analog and Digital’. Noûs 5 (3): 321–327.

Lewis, D. K. (1986). On the Plurality of Worlds. Malden, Mass.: Wiley-Blackwell.

Liggins, D. (2008). ‘Quine, Putnam, and the ‘Quine–Putnam?

 Indispensability Argument.’ Erkenntnis 68 (1): 113–127.

Linnebo, Ø. (2024). Platonism in the Philosophy of Mathematics. In E. N. Zalta

 and U. Nodelman (eds.) The Stanford Encyclopedia of Philosophy, edited by,

 Summer 2024. Metaphysics Research Lab, Stanford University.

Livingston, P. (2021). ‘History of the Ontology of Art.’ In E. N. Zalta (ed.) The

 Stanford Encyclopedia of Philosophy, edited by, Fall 2021.

 Metaphysics Research Lab, Stanford University.

Lonati, V., Brodnik, A., Bell, T., Csizmadia, A. P., De Mol, L., Hickman, H.,

 Keane, T., Mirolo, C., and Monga, M. (2022). ‘What we talk about when

 we talk about programs.’ In Proceedings of the 2022 Working Group

 Reports on Innovation and Technology in Computer Science Education,

 ITiCSE-WGR ’22, 117–164. Association for Computing Machinery.

Lowe, E. J. (2006). The Four-Category Ontology: A Metaphysical Foundation for

 Natural Science. Clarendon Press.

Machamer, P, Darden, L., and Craver, C. F. (2000). ‘Thinking about

 mechanisms.’ Philosophy of science 67 (1): 1–25.

MacKenzie, D. A. (2004). Mechanizing proof: computing, risk, and trust. MIT

 Press.

Maddy, P. (1992). ‘Indispensability and practice.’ Journal of Philosophy, 89(6):

 275–289.

Bibliography

223

Mahoney, M. S. (2000). ‘Software as science - science as software.’ In U.

 Hashagen, R. Keil-Slawik, and A. L. Norberg (eds.), History of Computing:

 Software Issues, 25–48. Springer.

Maley, C. J. (2011). ‘Analog and Digital, Continuous and Discrete.’ Philosophical

 Studies 155 (1): 117–131.

Maroney, O. J. E., and Timpson, C. G. (2018). ‘How is There a Physics of

 Information? On Characterizing Physical Evolution as Information

 Processing.’ In Physical Perspectives on Computation, Computational

 Perspectives on Physics, 103-126. Cambridge University Press

Marr, D. (2010). Vision: A computational investigation into the human

 representation and processing of visual information. MIT press.

Martin, C. D. (1993). ‘The myth of the awesome thinking machine.’ Commun.

 ACM, 36(4): 120–133.

Martin, A., Magnaudet, M. and Conversy, S. (2023). ‘Computers as Interactive

 Machines: Can We Build an Explanatory Abstraction?’ Minds and

 Machines 33 (1): 83–112.

McCulloch, W. S. and Pitts, W. (1943). ‘A logical calculus of the ideas immanent

 in nervous activity.’ The bulletin of mathematical biophysics, 5: 115–133.

Miłkowski, M. (2011). ‘Beyond formal structure: A mechanistic perspective on

 computation and implementation.’ Journal of Cognitive Science 12(4): 359–

 379.

Miłkowski, M. (2013). Explaining the computational mind. MIT Press.

Miłkowski, M. (2014). ‘Computational Mechanisms and Models of

 Computation.’ Philosophia Scientiæ, 18 (3): 215-228.

Miłkowski, M. (2016). ‘Computation and multiple realizability.’ In Müller, V. C.,

 (ed.), Fundamental Issues of Artificial Intelligence, 29–41. Springer.

Mollo, D. C. (2017). ‘Functional individuation, mechanistic implementation: the

 proper way of seeing the mechanistic view of concrete computation’.

 Synthese 195: 3477–3497.

Mollo, D. C. (2018). ‘Functional individuation, mechanistic implementation: The

 proper way of seeing the mechanistic view of concrete computation.’

 Synthese, 195(8):3477–3497.

Moor, J. H. (1978). ‘Three myths of computer science.’ The British Journal for the

 Philosophy of Science, 29(3): 213–222.

Morgan, M. S. (2012) The World in the Model. Cambridge University Press.

Moschovakis, Y. N. (2001). ‘What is an algorithm?’ In B. Engquist & W. Schmid

 (eds.), Mathematics unlimited–2001 and beyond, 919–936. Springer.

Bibliography

224

Mozgovoy, Maxim. (2009). Algorithms, Languages, Automata, and Compilers: A

 Practical Approach. Jones Bertlett Learning.

Neisser, U. (1967). Cognitive Psychology. Appleton-Century- Crofts.

Newell, A. and Simon, H. (1976). ‘Computer science as empirical inquiry:

 symbols and search.’ Communications of the ACM, 19(3):113–126.

Newell, A. (1986). ‘Response: The models are broken, the models are broken.’

 University of Pittsburgh Law Review 47(4): 1023–1031.

Newlyn, W. T. (1950). ‘The Phillips/Newlyn Hydraulic Model’ Yorkshire

 Bulletin of Economics 17: 282–305.

Newman, M. H. A. (1928). ‘Mr. Russell’s Causal Theory of Perception.’ Mind 37

 (146): 26–43.

Nguyen, J. and Frigg, R. (2021). ‘Mathematics is not the only language in the

 book of nature.’ Synthese 198, 5941–5962.

Nofre, D., Priestley, M., and Alberts, G. (2014). ‘When technology became

 language: The origins of the linguistic conception of computer

 programming, 1950–1960.’ Technology and culture 55(1): 40–75.

National Research Council (NRC) (2004). Computer Science: Reflections on the

 Field, Reflections from the Field. The National Academies Press,

 Washington, DC.

Olley, A. (2010). ‘Existence Precedes Essence – Meaning of the Stored-Program

 Concept.’ History of Computing. Learning from the Past, 169-178. Springer

Papayannopoulos, P. (2020). ‘Computing and modelling: Analog vs.

 Analogue.’ Studies in History and Philosophy of Science Part A 83:103–120.

Papayannopoulos, P. (2023). ‘On algorithms, effective procedures, and their

 definitions.’ Philosophia Mathematica, 31(3): 291– 329.

Papayannopoulos, P., Fresco, N., and Shagrir, O. (2022). ‘On two different kinds

 of computational indeterminacy.’ The Monist, 105(2): 229-246.

Patterson, D. A., and Hennessy, J. L. (2014). Computer Organization and Design -

 The Hardware /Software Interface (Revised 5th Edition). The Morgan

 Kaufmann Series in Computer Architecture and Design. Academic Press.

Pearl, J. 2009. Causality. Cambridge University Press.

Penn, J. (2020). Inventing Intelligence: On the History of Complex Information

 Processing and Artificial Intelligence in the United States in the Mid-Twentieth

 Century. PhD thesis, University of Cambridge (UK).

Phillips, Alban W. H. 1950. ‘Mechanical Models in Economy Dynamics’

 Economia 18 (67): 283–305.

Bibliography

225

Piccinini, G. and C. Maley. (2021) ‘Computation in Physical Systems.’ The

 Stanford Encyclopedia of Philosophy (Summer 2021 Edition), E. N. Zalta

 (ed.).

Piccinini, G. (2004). ‘The first computational theory of mind and brain: A close

 look at McCulloch and Pitts’ Logical Calculus of Ideas Immanent in

 Nervous Activity.’ Synthese 141 (2):175-215.

Piccinini, G. (2007). ‘Computing mechanisms.’ Philosophy of Science, 74(4):501–

 526.

Piccinini, G. (2008). ‘Computers’ Pacific Philosophical Quarterly 89 (1): 32–73.

Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford

 University Press.

Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition.

 Oxford University Press.

Pincock, C. (2004). ‘A new perspective on the problem of applying

 mathematics.’ Philosophia Mathematica, 12(2): 135–161.

Pincock, C. (2012). Mathematics and scientific representation. Oxford University

 Press.

Pincock, C. 2022. ‘Concrete Scale Models, Essential Idealization, and Causal

 Explanation’. British Journal for the Philosophy of Science 73 (2): 299–323.

Plebani, M. (2018). ‘The Indispensability Argument and the Nature of

 Mathematical Objects.’ Theoria: An International Journal for Theory, History

 and Fundations of Science 33 (2): 249–263.

Popper, K. (1978). ‘Three Worlds: The Tanner Lectures on Human Values.’

 Utah: University Press of Utah.

Pour-El, M. B. (1974). ‘Abstract Computability and Its Relation to the General

 Purpose Analog Computer (Some Connections Between Logic,

 Differential Equations and Analog Computers)’. Transactions of the

 American Mathematical Society 199:1–28.

Preston, B. (2018). ‘Artifact’. In The Stanford Encyclopedia of Philosophy, edited by

 E. N. Zalta, Fall 2018. Metaphysics Research Lab, Stanford University.

Priestley, M. (2011). A science of operations: machines, logic and the invention of

 programming. Springer.

Priestley, M. (2018). Routines of Substitution: John von Neumann’s Work on

 Software Development, 1945–1948. Springer.

Primiero, G. (2016). ‘Information in the philosophy of computer science.’ In L.

 Floridi (ed.), The Routledge Handbook of Philosophy of Information. 90–106.

 Routledge

Primiero, G. (2020). On the Foundations of Computing. Oxford University Press.

Bibliography

226

PROGRAMme (forthcoming). What is a Computer Program?

Psillos, S. (2006). ‘The Structure, the Whole Structure, and Nothing but the

 Structure?’ Philosophy of Science 73(5): 560–570.

Putnam, H. (1967). ‘Psychological predicates.’ In Capitan, W. and Merrill, D.,

 editors, Art, Mind, and Religion, pages 37–48. University of Pittsburgh

 Press.

Putnam, H. (1971). Philosophy of Logic. Routledge.

Putnam, H. (1988). Representation and Reality. MIT Press.

Pylyshyn, Z. W. (1984). Computation and Cognition. MIT Press.

Quine, W. V. O. (1948). ‘On what there is.’ Review of Metaphysics, 2(5): 21–38.

Quine, W. V. O. (1976). ‘Carnap and Logical Truth’ reprinted in The Ways of

 Paradox and Other Essays, revised edition, 107–132. Harvard University

 Press

Randell, B. 1994. ‘The Origins of Computer Programming.’ IEEE Annals of the

 History of Computing 16(4): 6-14.

Rapaport, W. J. (1999). ‘Implementation is Semantic Interpretation’. The Monist

 82 (1): 109–130.

Rapaport, W. J. (2005). ‘Implementation is semantic interpretation: further

 thoughts.’ Journal of Experimental & Theoretical Artificial Intelligence 17 (4):

 385–417.

Reiss, J., and Sprenger, J. (2020). ‘Scientific Objectivity.’ In E. N. Zalta (ed.), The

 Stanford Encyclopedia of Philosophy, Winter 2020. Metaphysics Research

 Lab, Stanford University.

Rescorla, M. (2013) ‘Against Structuralist Theories of Computational

 Implementation.’ The British journal for the Philosophy of Science 64 (4):

 681-707.

Rescorla, M. (2014). ‘A theory of computational implementation.’ Synthese 191

 (6): 1277–1307.

Rescorla, M. (2020). ‘The Computational Theory of Mind.’ In Zalta, E. N., editor,

 The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

 Stanford University, Fall 2020 edition.

Resnik, M. D. (1997). Mathematics as a Science of Patterns. Oxford University

 Press.

Ritchie, J. B. and Klein, C. (2023). ‘Computing in the nick of time.’ Ratio, 36(3):

 169–179.

Bibliography

227

Ritchie, J. B, and Piccinini, G. (2018). ‘Computational implementation’. In The

 Routledge Handbook of the Computational Mind. (192–204), edited by M.

 Sprevak and M. Colombo. Routledge.

Rojas, R. (1996). ‘Conditional Branching is not Necessary for Universal

 Computation in von Neumann Computers’ Journal of Universal Computer

 Science 11 (2): 756-768.

Rojas, R. (1998). ‘How to make Zuse’s Z3 a universal computer.’ IEEE Annals of

 the History of Computing 20(3): 51-54.

Rojas, R. (2023). Konrad Zuse’s Early Computers: The Quest for the Computer in

 Germany. Springer.

Romero, F. (2015). ‘Why there isn’t inter-level causation in mechanisms.’

 Synthese 192 (11): 3731–3755.

Rossberg, M. (2013). ‘Destroying Artworks.’ In Christy Mag Uidhir (ed.), Art &

 Abstract Objects, 62–83. Oxford University Press.

Rudner, R. (1950). ‘The Ontological Status of the Esthetic Object.’ Philosophy and

 Phenomenological Research 10 (3): 380–388.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). ‘Learning

 representations by back-propagating errors.’ Nature 323(6088): 533–536.

Sanfilippo, E. M. (2021). ‘Ontologies for information entities: State of the art and

 open challenges.’ Applied ontology, 16(2): 111–135.

Scheines, R. (2005). ‘The Similarity of Causal Inference in Experimental and

 Non-Experimental Studies.’ Philosophy of Science 72 (5): 927–940.

Scheutz, M. (1999). ‘When physical systems realize functions...’ Minds and

 Machines, 9(2): 161–196.

Schiaffonati, V. and Verdicchio, M. (2014). ‘Computing and experiments: A

 methodological view on the debate on the scientific nature of

 computing.’ Philosophy and Technology, 27(3): 359–376.

Schweizer, P. (2019). ‘Computation in physical systems: A normative mapping

 account.’ In On the cognitive, ethical, and scientific dimensions of artificial

 intelligence, 27–47. Springer.

Scott, M. L. (2009). Programming Language Pragmatics. Morgan Kaufmann

 Publishers Inc.

Searle, J. R. (1990). ‘Is the brain a digital computer?’ In Proceedings and addresses

 of the American Philosophical Association, 64 (3): 21–37.

Searle, J. R. (1996). The Construction of Social Reality. Pinguin Books Limited.

Sennet, A. (2016). ‘Polysemy.’ In The Oxford Handbook of Topics in Philosophy.

 Oxford University Press.

Bibliography

228

Sennet, A. (2023). ‘Ambiguity.’ In E. N. Zalta and U. Nodelman (eds.), The

 Stanford Encyclopedia of Philosophy, Summer 2023. Metaphysics Research

 Lab, Stanford University.

Shagrir, O. (2001). ‘Content, computation and externalism.’ Mind, 110 (438):

 369–400.

Shagrir, O. (2018). ‘In defense of the semantic view of computation.’ Synthese

 197(9): 4083–4108.

Shagrir, O. 2020. ‘In Defense of the Semantic account’ Synthese 197 (9):

 4083–4108.

Shagrir, O. (2022). The Nature of Physical Computation. Oxford studies in

philosophy of science. Oxford University Press.

Shapiro, S. (1997). Philosophy of Mathematics: Structure and Ontology. Oxford

 University Press.

Shapiro, F. A. (2000). ‘Origin of the Term Software: Evidence from the JSTOR

 Electronic Journal Archive.’ IEEE Annals of the History of Computing 22 (2):

 69–71

Sharpe, R. A. (2001). ‘Could Beethoven have ’Discovered’ the Archduke Trio?’

 British Journal of Aesthetics, 41(3): 325–327.

Simon, H. A. (1996). The Sciences of the Artificial. MIT Press.

Simons, P. (2000). ‘Continuants and occurrents.’ Aristotelian Society

 Supplementary 74(1): 59–75.

Sloman, A. (2002). ‘The irrelevance of Turing machines to artificial intelligence.’

 In Computationalism: new directions. Matthias Scheutz (ed.). 87– 127. MIT

 Press.

Smith, B. C. (1985). ‘The limits of correctness.’ ACM SIGCAS Computers and

 Society, 14(1): 18–26.

Smith, B. C. (1996). On the Origin of Objects. MIT Press.

Solomonoff, R. J. (1964). ‘A Formal Theory of Inductive Inference Part I & II.’

 Information and Control 7 (1):1–22, 224–254.

Sorensen, R. (2023). ‘Vagueness.’ In E. N. Zalta and U. Nodelman (eds.), The

 Stanford Encyclopedia of Philosophy, Winter 2023. Metaphysics Research

 Lab, Stanford University.

Sprevak, M. (2010). ‘Computation, individuation, and the received view on

 representation.’ Studies in History and Philosophy of Science Part A, 41 (3):

 260–270.

Sprevak, M. (2018). ‘Triviality arguments about computational

 implementation.’ In M. Sprevak and M. Colombo (eds.) The Routledge

 Handbook of the Computational Mind, 175–191. Routledge.

Bibliography

229

Steiner, M. (1998). The Applicability of Mathematics as a Philosophical Problem.

 Harvard University Press.

Sterrett, S. G. (2017). ‘Experimentation on analogue models.’ In Springer

 handbook of model-based science, 857–878. Springer.

Studtmann, P. (2024). ‘Aristotle’s Categories.’ In E. N. Zalta and U. Nodelman

 (eds.) The Stanford Encyclopedia of Philosophy, Spring 2024. Metaphysics

 Research Lab, Stanford University.

Suárez, M. (2003). ‘Scientific Representation: Against Similarity and

 Isomorphism.’ International Studies in the Philosophy of Science 17 (3): 225–

 244.

Suber, P. (1988). ‘What is software?’ The Journal of Speculative Philosophy, 2(2):

 89–119.

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine

 communication. Cambridge university press.

Suppes, P. (2002). Representation and Invariance of Scientific Structures. CSLI

 Publications (distributed by Chicago University Press).

Swoyer, Chris. (1991). ‘Structural Representation and Surrogative Reasoning’.

 Synthese 87 (3): 449–508.

Szangolies, J. 2020. ‘The Abstraction/ Representation Account of Computation

 and Subjective Experience.’ Minds and Machines 30 (2): 259–299.

Tedre, M. (2011). ‘Computing as a science: A survey of competing

 viewpoints.’ Minds and Machines (2011) 21: 361–387.

Tedre, M. (2015). The science of computing: shaping a discipline. CRC Press.

Tegmark, M. (2007). ‘The mathematical universe.’ Foundations of Physics, 38(2):

 101–150.

‘The Moniac.’ (1952). Fortune March 1952, 101.

Thomasson, A. L. (1999). Fiction and Metaphysics. Cambridge University Press.

Thomasson, A. L. (2006). ‘Debates About the Ontology of Art: What Are We

 Doing Here?’ Philosophy Compass 1 (3):245–255.

Thomasson, A. L. (2022). ‘Categories.’ In E. N. Zalta and U. Nodelman (eds.),

 The Stanford Encyclopedia of Philosophy, edited by, Winter 2022.

 Metaphysics Research Lab, Stanford University.

Tillman, C. (2011). ‘Musical materialism.’ British Journal of Aesthetics, 51(1):

 13–29.

Tucker, C. (2018). ‘How to explain miscomputation.’ Philosophers’ Imprint, 18:

 1–17.

Bibliography

230

Turner, R. (2007). ‘Understanding programming languages.’ Minds and

 Machines, 17(2): 203–216.

Turner, R. (2010). ‘Programming languages as mathematical theories.’ In J.

 Vallverdú (ed.) Thinking Machines and the Philosophy of Computer Science:

 Concepts and Principles, 66–82. IGI Global.

Turner, R. (2011). ‘Specification.’ Minds and Machines, 21(2):135–152.

Turner, R. (2012). ‘Machines.’In Hector Zenil (ed.), A Computable Universe, 63–

 76. World Scientific.

Turner, R. (2014). ‘Programming languages as technical artifacts.’ Philosophy &

 Technology, 27(3): 377–397.

Turner, R. (2018). Computational Artifacts. Springer.

Turner, R. (2020). ‘Computational Inention’ Studies in Logic, Grammar and

 Rheothoric 63 (76): 19–30.

Turner, R. (2021). ‘Computational Abstraction.’ Entropy 23 (2): 213

Turner, R., and Angius, N. (2020). ‘The Philosophy of Computer Science.’ In E.

 N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Winter 2020.

 Metaphysics Research Lab, Stanford University.

Uidhir, C. M., (ed.) (2013). Art & Abstract Objects. Oxford University Press.

Ulmann, B. (2013). Analog Computing. Oldenburg Verlag.

Ulmann, B. (2020). Analog and hybrid computer programming. Walter de Gruyter

 GmbH & Co KG.

Valdez, M. E. P. (1981). A Gift from Pandora’s Box: The Sofware Crisis. PhD thesis,

 University of Edinburgh (Germany).

van Eck, D. (2017). ‘Mechanisms and engineering science’. In The Routledge

 Handbook of Mechanisms and Mechanical Philosophy. S. Glennan and P.

 Illari (eds). 447–461. Routledge.

Van Fraassen, B. C. (1980). The Scientific Image. Oxford University Press, New

 York.

van Fraassen, B. C. (2008). Scientific Representation: Paradoxes of Perspective.

 Oxford University Press.

van Inwagen, P. (1977). ‘Creatures of Fiction.’ American Philosophical Quarterly

 14 (4): 299–308.

van Inwagen, P., Sullivan, M., and Bernstein, S. (2023). ‘Metaphysics.’ In The

 Stanford Encyclopedia of Philosophy, edited by E. N. Zalta and U.

 Nodelman, Summer 2023. Metaphysics Research Lab, Stanford

 University.

Vardi, M. Y. (2012). ‘What is an algorithm?’ Commun. ACM, 55(3): 5.

Bibliography

231

Vee, A. (2013). ‘Understanding computer programming as a literacy.’

 Literacy in Composition Studies, 1(2): 42–64.

Vermaas, P., and Houkes, W. (2003). ‘Ascribing functions to technical artefacts:

 A challenge to etiological accounts of functions’ British Journal for the

 Philosophy of Science 54 (2): 261-289.

von Neumann, J. (1945). First Draft of a Report on the EDVAC

Vos, B. (2022). ‘Structuralism and the quest for lost reality.’ Journal for General

 Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie, 53 (4):

 519–538.

Walter, W. (1973). ‘Die gespeicherten Programme des Heron von

 Alexandria/Heron’s of Alexandria stored programs.’ Information

 Technology 15 (1-6): 113–118.

Wang, X. (2016). Towards an Ontology of Software. PhD thesis, University of

Trento

Wang, X., Guarino, N., Guizzardi, G., and Mylopoulos, J. (2014a). ‘Software as a

 social artifact: A management and evolution perspective.’ In E. Yu, G.

 Dobbie, M. Jarke, and Purao, S., (eds.), Conceptual Modeling, 321–334.

 Springer.

Wang, X., Guarino, N., Guizzardi, G., and Mylopoulos, J. (2014b). ‘Towards an

 ontology of software: a requirements engineering perspective.’ In O.

 Kutz and P. Garbacz (eds.), Formal Ontology in Information Systems, 317–

 329. IOS Press.

Ware, W. H. (1953). ‘The History and Development of the Electronic Computer

 Project at the Institute for Advanced Study.’ Santa Monica, CA: RAND

 Corporation.

Wegner, P. 1976. ‘Research paradigms in computer science.’ In Proceedings of

 the 2nd international Conference on Software Engineering, 322–330.

Weisberg, M. 2013. Simulation and similarity: Using models to understand the

 world. Oxford University Press.

Weizenbaum, J. (1976). Computer Power and Human Reason: From Judgment to

 Calculation. USA: W. H. Freeman Co.

Wenmackers, S. (2016). ‘Children of the Cosmos. Presenting a Toy Model of

 Science with a Supporting Cast of Infinitesimals.’ In A. Aguirre, B. Foster

 and Z. Merali (eds.), Trick or Truth? The Mysterious Connection Between

 Physics and Mathematics, 5–20 Springer.

Wetzel, L. (2009). Types and tokens: on abstract objects. MIT Press.

Wexelblatt, R. L. (1981). History of Programming Languages. Academic Press.

Bibliography

232

White, G. (2004). ‘The philosophy of computer languages.’ In Floridi, L. (ed.),

 The Blackwell Guide to the Philosophy of Computing and Information, 237–247.

 Blackwell.

Wigner, E. (1960). ‘The Unreasonable Effectiveness of Mathematics in the

 Natural Sciences.’ Communications in Pure and Applied Mathematics 13:

 1–14.

Wilson, M. (2000). ‘The unreasonable uncooperativeness of mathematics in the

 natural sciences.’ The Monist, 83(2): 296–314.

Wimsatt, W. (2002). ‘Functional organization, analogy, and inference. ’In A.

 Ariew, R. Cummins, and M. Perlman, (eds.), Functions: New Essays in the

 Philosophy of Psychology and Biology, 173–221. Oxford University

 Press.

Wollheim, R. (1968). Art and its Objects. Cambridge University Press.

Wolterstorff, N. 1980. Works and Worlds of Art. New York: Oxford University

 Press

Woodward, J. (2002). What is a mechanism? A counterfactual account.

 Proceedings of the Philosophy of Science Association 2002 (3) S366–S377.

Woodward, J. (2003). Making things happen: A theory of causal explanation.

 Oxford University Press.

Woodward, J. (2008). ‘Invariance, modularity, and all that.’ In Nancy

 Cartwright's philosophy of science. S. Hartman, C Hoefer, and L. Bovens

 (eds.). 198-237. Routledge.

Woodward, J. (2023). ‘Causation and Manipulability.’ In The Stanford

 Encyclopedia of Philosophy, edited by E. N. Zalta, Summer 2023.

 Metaphysics Research Lab, Stanford University.

Ylikoski, P. (2013). ‘Causal and Constitutive Explanation Compared.’ Erkenntnis

 78 (2): 277–297.

Zenil, H. (2010). Compression-based investigation of the dynamical properties

 of cellular automata and other systems. Complex Systems, 19(1), 1–28.

Zenil, H. (2012). ‘On the dynamic qualitative behavior of universal

 computation.’ Complex Systems 20 (3), 265–278.

Zenil, H. (2013). ‘Nature-like computation and a measure of computability.’ In

 G. Dodig-Crnkovic and R. Giovagnoli (eds.), Natural computing

 /unconventional computing and its philosophical significance, 87–113.

 Springer.

Zenil, H. (2014). ‘What is nature-like computation? A behavioural approach

 and a notion of programmability.’ Philosophy &Technology 27 (3): 399–421.

Bibliography

233

Zenil, H. (2015). ‘Algorithmicity and programmability in natural computing

with the Game of Life as in silico case study.’ Journal of Experimental & Theoretical

Artificial Intelligence 27:(1): 109–121.

Zuse, K. (1969). Rechnender Raum (calculating space). Vieweg +Teubner Verlag.

