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Abstract

This thesis addresses the ontological status of computer programs. Previous
studies have placed computer programs in almost every ontological category
available and claimed that they have a ‘dual nature.” My primary contribution to
the debate is offering an alternative framework emphasizing computational
implementation and its relata. I argue that we do not need to endorse the dual
nature view by suggesting that “program’ is a polyseme - an umbrella term
hosting various entities spanning the abstract-concrete dichotomy. The
advantage of this view is the avoidance of positing metaphysically dubious
entities. Instead, we can understand the ontology of programs as a network of
relations between abstracta and concreta that we bundle together through
implementation when using computing machines as epistemic tools.

To flash out and explore the claims of this alternative view, I first delve into
the philosophical literature on implementation and taxonomize its different
notions. In due course, I offer a unified theory of agential implementation, short
UTAL Specifically, UTAI advocates developing a series of related clarificatory
case studies that track three different dependency relations between us and the
ontologically different constituents under the term program.

Accordingly, I discuss the implications of the first dependency relation
between programmers and programs as abstract objects. By adopting the
Problem of Creation - a well-known issue from the philosophy of art - I present
a fresh perspective on the metaphysical options that allow us to view programs
as abstract entities. Next, I focus on the second dependency relation between
human agents and physical computation. As a result, I provide a new argument
for understanding computational implementation as a three-place relation and
develop a suitable notion called Implementation-as (based on the DEKI account
of scientific representation). Lastly, I address the third dependency relation
between programmers and the material systems used for program execution. By
combining the insights of interventionism, technical artifacts, and neo-

mechanistic literature, I introduce the notion of “physical programmability.’

Keywords: Computer Programs, Ontology, Problem of Creation,
Implementation, Scientific Models, Programmability



Abstract

Résumé

Cette these examine le statut ontologique des programmes informatiques. De
précédentes études ont placé les programmes informatiques dans presque toutes
les catégories ontologiques disponibles et ont affirmé qu'ils avaient une « double
nature ». Ma principale contribution au débat consiste a proposer un cadre
alternatif mettant l'accent sur I'implémentation informatique et ses relata. Je
soutiens qu’il n'est pas nécessaire d'approuver le point de vue de la double
nature en suggérant que le terme « programme » est un polyséme - un terme
générique abritant diverses entités couvrant la dichotomie abstrait-concret.
L’avantage de ce point de vue est qu’il évite de poser des entités
métaphysiquement douteuses. Au lieu de cela, nous pouvons comprendre
I'ontologie des programmes comme un réseau de relations entre abstracta et
concreta que nous rassemblons par la mise en ceuvre lorsque nous utilisons des
machines informatiques comme outils épistémiques.

Pour mettre en évidence et explorer les revendications de ce point de vue
alternatif, je me plonge d’abord dans la littérature philosophique sur
lI'implémentation et je taxinomise ses différentes notions. En temps voulu, je
propose une théorie unifiée de l'implémentation agentielle, 'UTAI Plus
précisément, I'UTAI préconise le développement d'une série d'études de cas
clarificatrices connexes qui suivent trois relations de dépendance différentes
entre nous et les constituants ontologiquement différents sous le terme de
programme.

En conséquence, je discute des implications de la premiére relation de
dépendance entre les programmeurs et les programmes en tant qu’objets
abstraits. En adoptant le probleme de la création - une question bien connue de
la philosophie de I'art - je présente une nouvelle perspective sur les options
métaphysiques qui nous permettent de considérer les programmes comme des
entités abstraites. Ensuite, je me concentre sur la seconde relation de dépendance
entre les agents humains et 'informatique physique. En conséquence, je fournis
un nouvel argument pour comprendre I'implémentation informatique comme
une relation a trois places et je développe une notion appropriée appelée
Implémentation-as (basée sur le compte DEKI de la représentation scientifique).
Enfin, j’aborde la troisieme relation de dépendance entre les programmeurs et les
systemes matériels utilisés pour 1'exécution des programmes. En combinant les
idées de l'interventionnisme, des artefacts techniques et de la littérature néo-

mécaniste, j'introduis la notion de « programmabilité physique ».

Mots-clés: Programmes informatiques, le probleme de la création, ontologie,

implémentation, modéles scientifiques, programmabilité
\'
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1 Introduction

1.1 Prologue

Imagine you are a young and curious intellectual property lawyer in the early
1970s. It’s the midst of the Cold War. The iron curtain divides Europe; in previous
years, Africa lived through a period of radical political change as some 30
countries gained independence; and China went through a massive sociocultural
movement. Paralleling these geopolitical events, there are significant
technological advancements - with information technologies spearheading
them. For you, the proliferation of new inventions is a blessing and secures your
job. Put roughly, it is one of the main tasks of lawyers like you to classify new
creations and inventions such as books, music, machines, and processes under
your country’s IP law. In a nutshell, there are three different kinds of categories
in which novel inventions like these must be placed: First, patents give inventors
the property right to a tangible technical or scientific invention or process.
Second, copyright claims are meant for the protection of an original expression
of an idea in a creative work - literary, dramatic, musical, or artistic work, and
movies (fixed in some tangible medium) typically fall under this scope. Third, if
something falls out of the scope of the first two categories, it cannot be legally
protected. Now, for a couple of years, you have received increasing requests to
grant IP protection to computer programs and software. How would you classify
them? What kind of things are programs??

Pondering these questions, you are eagerly awaiting the result of the US
Supreme Court case of Gottschalk v. Benson (1972): the case is about the
patentability of a system created by Gary Benson and Arthur Tabbot at Bell
Telephone Laboratories that allowed the creation of a telephone network called
a private branch exchange (PBX). Crucially, their method relied on a
computational method that converted binary-coded decimal numerals into their
binary equivalent. Finally, on November 20, the Supreme Court issued its ruling.
The court proclaimed that Benson and Tabbot’s invention was ineligible for
patent protection because it stands at odds with the mental-step doctrine.?
Traditionally, this doctrine has been used to reject those seeking patents for
‘inventions’ like algorithms - and the PBX was judged to be precisely that.

The decision irritates you. True, whilst one could ‘execute’ Benson and
Tabbot’s method in one’s head, isn’t the whole point that their method triggers

1 The game of make-believe is freely inspired by Gerardo Con Diaz’s (2019) book Software
Rights.

2 The mental-step doctrine holds that inventions that can be performed in the human mind or
by a human using a pen and paper are not eligible for patent protection.



1 Introduction

an automated physical process in an actual machine? Feeling somewhat uneasy
with the Supreme Court’s ruling, you continue your quest and tinker around
with a different classification strategy - the widely used software/hardware
distinction. On the face of it, the duality of the latter intuitively seems to
correspond to the copyright/patent dichotomy; you believe you're onto
something. If true, you just solved future legal cases worth billions of dollars.
Case closed - you're set for life. However, things are not that easy. With big
money involved your case better ought to be watertight, else industry will drown
you in endless legal battles. Scratching beyond the surface of your initial strategy,
you start getting doubts: Are computer programs software? What is the
software/hardware distinction actually supposed to demarcate from one
another? And what the heck are programs exactly?

In trying to answer these questions, you discover that your first classification
strategy is in danger of serious conflations. First, it is all but clear that all
computer programs can be considered as software. Doing your research about
the emergence of computing technology, you find that some of the first programs
(made before the appearance of the term ‘software’ and the emergence of
‘computer science’” as a subject)3 were often portrayed as circuits of switches
using relays or vacuum tubes: when setting up the first-generation electronic
digital computers like ENIAC (devices that filled entire rooms) resulted in
‘programs’ appearing to be tangible hardwired switch settings of machines
intended to perform a specific task. In fact, this materiality allowed some of your
colleagues to secure patent protection for programs developed at hardware
companies and industrial research labs (Con Diaz 2019, 3). So, can you conclude
that programs are indeed just physical entities that should be subject to patent
law? Generalizing from cases like these that point towards the techno-material
nature of programs seems to undermine the idea that programs are a type of
software considerably - at least to the extent that software is taken to be opposed
to hardware and hardware is supposed to be ‘hard,” i.e., presumably made of
concrete, tangible components.

So perhaps the crux lies with the software-hardware distinction itself. In fact,
shortly after the time you started pondering these questions, philosophically
inclined software engineer James Moor (1978) published his article “Three Myths
of Computer Science’ that confirmed your worries: One of the takeaways from
Moor’s article is that the software/hardware distinction is merely useful as a

3 According to Shapiro (2000), influential statistician John Tukey coined the term ‘software” in
1958 in opposition to the term hardware (which was already in use). For further details on the
changing meaning of the term see Haigh (2002).

2
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pragmatic distinction and a relative notion. According to him, the prefixes ‘soft’

and ‘hard’ refer to a person’s ability to make changes:

“At one extreme if at the factory a person who replaces circuits in the

computer understands the activity as giving instructions, then for him a

considerable portion of the computer may be software. For the systems

programmer who programs the computer in machine language much of

the circuitry will be hardware” (Moor 1978, 215)

If this assessment is correct, then software could be a tangible good as long as
it is changeable. Yet others (albeit later), arrived at the puzzling conclusion that
software is hardware (Suber 1988) or that software doesn’t exist at all (Kittler
1993). (To avoid further conflations, I will avoid using the term ‘software” in my
analysis from here on).* You are at a loss - all of this is so confusing! Not only are
you unsure where programs fall into the software/hardware dichotomy; you
don’t even know whether your choice was a good categorization scheme to begin
with.

Worse, the longer you think about the matter, the more conceptions of how to
conceive programs pop up in your mind: Many programs are formulated in
special kinds of languages like ALGOL or FORTRAN, so aren’t they some special
kind of text?> And where do mathematical abstraction and the algorithms from
Gottschalk v Benson fit into this picture? Determining the nature of programs
seems to be a tough nut to crack. What are the morals we can draw from this
story?

Let me pause here for a minute. Although the IP lawyer game of make-believe
is entirely fabricated, the events and considerations described in this episode are
not. From the mid-1960s onwards, the lack of IP protection for computer
programs became a growing concern. With the incentive to protect these costly
new inventions, the industry had a strong interest in settling the issue (in their
tavor). However, like our imaginary IP lawyer, courts having to decide how to
legally protect software products struggled with determining its nature and
characteristics. As Con Diaz describes, the legal debate (in the US) became a
“doctrinal minefield” since no proposal for computer programs satisfied every
stakeholder involved (2019, 6). Legal outcomes in favor of patents or copyrights
hinged on whether the Patent Office and Courts judged programs to be

machines, texts, or algorithms (ibid., 100).

4 See Duncan (2014) for an extensive discussion (including the ‘implausibility” of Moor’s and

Suber’s arguments) on whether the software-hardware distinction can be maintained after all.

5 In the US, the first deposit of a computer program for copyright registration of a program was

in November 1961 (North American Aviation submitted a tape containing a program). Perhaps

the first successful registration attempt was the FORTRAN program called ‘Gaze-2, A One-

Dimensional, Multigroup Neuron Diffusion Theory Code for the IBM-7090.” Hollaar (2002, I.B.).
3
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In fact, in the mid-1970s matters became so pressing that US Congress
installed a commission to settle the patent/copyright implications of information
technologies. Consequently, 1974 saw the formation of the Commission on New
Technological Uses of Copyrighted Works (CONTU). The commission was made
up of experts from all different strives of life (yet remarkably lacking expertise in
computing though) and took almost four years to submit their final report.
CONTU eventually reached the unanimous decision that computer programs are
entitled to legal protection, but alas “the unanimity has not extended to the
precise form that protection should take.” (CONTU, 12). While ultimately settling
with the recommendation that programs ought to be protectable under
copyrights, (leading to the Computer Software Right Act in 1980), the outcome
was controversial. Noteworthy, the final report contained sections of dissent
from one of its very own members: commissioners John Hersey.

Hersey, Pulitzer Prize winner and president of the Author’s League of

America stated that

“[t]he heart of the argument lies in what flows from the distinction [...]
between the written and mechanical forms of computer programs:
admitting these devices to copyright would mark the first time copyright
had ever covered a means of communication, not with the human mind
and senses, but with machines.” (CONTU, 28)

In Con Diaz’s words, Hersey believed that computer programs thus had some
kind of ‘hybrid nature,” for they seem to combine written and mechanical
elements at once.

Even years after the implementation of CONTU’s recommendation, the
outcome sparked remarkable dissent. Allen Newell, a pioneer in computer
science and cognitive psychology complained that the models that the law

experts came up with were broken. At the end of his critical essay, he concluded:

“I think fixing the [ontological] models is an important intellectual task. It will be
difficult. The concepts that are being jumbled together-methods, processes,
mental steps, abstraction, algorithms, procedures, determinism- ramify
throughout the social and economic fabric. I am not worried about how new and
refurbished models, if we could get them, will get back into the law. They will
migrate back by becoming part of legal arguments, or legislation or whatnot.
There are many different paths. The task is to get the new models. There is a fertile
field to be plowed here, to understand what models might work for the law. It is
a job for lawyers and, importantly, theoretical computer scientists. It could also
use some philosophers of computation, if we could ever grow some. It is not a job
for a committee or a commission. It will require sustained intellectual labor.”

(Newell 1986, 1035)

In this dissertation, I take up Newell’s suggestion and set out to shed light on the

puzzling nature of computer programs with a philosopher of computation’s hat

4
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on. More precisely, I shall do away with the legal battles and instead address
their underlying philosophical question

Main Research Question: What is the ontological status of computer
programs?

1.2 Concretizing the Problem: Preliminaries & Diagnosis

Before explaining the primary strategy and guiding idea of addressing my
research question, I need to make a few refinements. In the following, I will take
three steps to set the stage and clarify the problem related to my research topic.
First, I will discuss the overall relevance of this undertaking for philosophers and
computer scientists. Second and third, I will explain the two constituents -

ontology and computer programs - that define the main research question.

Relevancy Beyond Legal Controversies

Given that the Chimera of computer programs has riddled lawyers, computer
scientists, and (some) philosophers for more than 50 years, but there are no signs
of stoppage for the success of computing, what’s the relevancy of this thesis
project?

Despite the awareness of the problem, the contemporary literature on the
metaphysical nature of computer programs remains rather short-supplied.
Concerning other “scientific’ disciplines like Physics or the Life Sciences, the
Philosophy of Computer Science is comparably small-scale. This raises questions
about why we need such an endeavor in the first place and why inquiries about
the topic matter (besides legal issues). I believe there are two types of answers to
this.

On the one hand, there are answers justified from within philosophy. For
philosophers, an entity that seems to evade standard metaphysical categorization
is interesting. Just as metaphysicians pursue the study of what kind of things,
say, artworks or technological artifacts are, ® they might consider the non-
straightforward case of computer programs, too. Studying programs might
unearth loopholes in given metaphysical frameworks and thus contribute to
some philosophical progress (especially within ontology and metaphysics).

On the other hand, properly characterizing computer programs has broader
implications beyond metaphysical inquiries. Today, the application of computer
programs is so pervasive that a clear understanding of their nature possibly

benefits virtually every domain using them. For instance, computer programs are

¢ To briefly presage what's to come, I will engage with both characterizations of artworks and
technological artifacts to shed light on the nature of programs.

5
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foundational for fields like Al, robotics, increasing ethical concerns, and (of
course) computer science. Without a clear philosophical underpinning, such
discourses are in danger of significant conflations and category mistakes (cf.
Daylight 2016, 14-16).

One of the most prominent of such category mistakes at large occurred
roughly a decade after CONTU submitted its report and US Congress
implemented its recommendations: In the early 1990s, a series of exchanges
between the philosopher James Fetzer and several computer scientists in the
prestigious Communication of the ACM unsettled many computing academics. At
its core, the dispute concerned the verification of the correctness of computer
programs. Commonly, correctness describes a special relationship between a
program and its specification: a proof in (formal) program verification aims to
verify that the program fext(a set of instructions) matches the formal
specification. Fetzer (1988) argued that the notion of “program proof” suffers from
a category mistake because it may only apply to idealized abstract machines but
not real-world systems. Executing a program on the latter is a physical process
that causally affects the behavior of material computing systems. A proof,
however, is a concept that applies to the formal, abstract realms of logic and
mathematics; it cannot establish the properties of a program as a causal entity
running on a real, physical machine.”

Considering the ferocity and prevalence of the debate, one may expect that
the dispute sparked a research program to settle the underlying issue. Yet,
despite the matter that there is a problem at stake, a systematic (philosophical)
explanation describing how to solve it did not emerge. Merely a handful of pages
in, we already encountered several potential conflations that obfuscate finding a
straightforward answer to a seemingly simple question. Differing conceptions
are still ‘jumbled together” today, resulting in abounding conflations. To make a
long story short, the state of the art is scattered so that computer programs are
placed in nearly every available ontological category (see Appendix A).8

In short, some believe that programs are physical objects or processes, while
others view them as abstract logico-mathematical objects or special types of texts.
Yet others argue that programs are technical or abstract artifacts, while others
suggest that naturalized programs even constitute our minds. Despite the
abundance of views, there is currently no consensus on the metaphysical nature
of programs and how they should be classified. The problem, as we have seen in

7 For summaries and critical analyses of the debate see (Colburn 2000, 135; MacKenzie 2004,
210-218; Tedre 2015, Ch.4).
8 Since lengthy literature review sections are dull, I omitted many details for the sake of the
readability of the introduction. For those interested in an extended overview of the state of the
art, consult Appendix A.
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the debates about the patentability, and verification of programs, is that it is easy
to find counter-examples and inconsistencies such that no position seems to be
plausible. Instead, adopting the ‘dual nature view’ or hybrid perspectives is
popular, where programs have a plural or liminal nature. In the mid-1990s,
renowned computer scientist Michael Jackson epitomized this approach by
stating

“Because software seems to be an intangible intellectual product we can colour it

to suit our interests and prejudices. For some people the central product of

software development is the computation evoked. For some it is the social

consensus achieved in negotiating the specifications. For some it is a

mathematical edifice of axioms and theorems. Some people have been pleased to

have their programs described as logical poems. Some have advocated literate
programming. Some see software as an expression of business policy.” (Jackson

1995, 283)
I agree with Jackson that different communities and often even the same
computer scientists, programmers, and users ‘encounter’ programs in all these
guises in their practical work. However, per se, dualism or hybrid views do not
dissolve the ontological question. The problem is, that without further
explanation, these notions appear to be ad hoc answers that stand at odds with
contemporary metaphysical orthodoxy.

One crucial first aspect to rectify the situation is breaking down the criteria
that will license us to draw metaphysically sound conclusions. The next sub-

section will clarify and narrow down these criteria.

Traditional Metaphysics & Category Systems

Ontology and Metaphysics address a wide range of questions (van Inwagen et
al. 2023). Let me hence make more precise what this thesis is and is not about.
The way I will conduct my metaphysical investigations are largely in line with
contemporary analytical philosophy. For instance, according to Hofweber (2016,
8f), there are generally two main metaphysical questions - primary ontological
questions (POQ) and secondary ontological questions (SOQ). Fine (2017, 98) echoes
this characterization by maintaining that metaphysics can roughly be
distinguished between Ontology and Metaphysics proper. Following Fine, I will
keep referring to this practice as traditional metaphysics. By combining Hofweber’s

and Fine’s position, something like the following picture emerges:
(POQ): Ontology poses the question of what there is.
(50Q): Metaphysics proper investigates the nature of what there is.

At first sight, it appears, that metaphysicians typically must explore what exists

before enquiring into its nature. Ontology seemingly precedes Metaphysics
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proper because what does not exist cannot be investigated philosophically in a
meaningful way.

Importantly, for the current undertaking the distinction between (POQ)
ontology on the one hand and (SOQ) metaphysics proper on the other raises the
following concern: Do we need to answer (POQ) about programs in the
affirmative before we can proceed with (SOQ). In other words, we need to
address the question ‘(POQ)prog.: Are there computer programs?’

If the answer is ‘no,” the issue would be settled straight away and there would
be no point in continuing the nature of programs if they don’t exist. The broader
implication would then “simply” be that computer scientists (and lawyers) have
it all wrong and that the collective idea about computing and how it shapes
nearly every facet of our modern life is largely incorrect. If the answer is “yes’,
then I can carry on with wondering what programs are like.

Now, my strategy to tackle these issues with respect to computer programs is
to answer with ‘yes, there are computer programs’ and directly proceed with the
secondary ontological question of what they are like. Answering this way is not
meant to say that there are no deep-rooted philosophical issues at stake. On the
contrary, aiming to arrive at judgements about primary ontological questions
(e.g., are there numbers? Are there universals? Are there really everyday-objects
like tables and toaster?) is notoriously contentious in philosophy. However, this
is simply not the place to resolve these longstanding issues. Neither do I endorse
a specific well-founded framework that defends my answer against skeptical
metaphysicians nor do I want to engage with the daunting task to develop such
a framework.?

However, for the success of this thesis project, there is another crucial issue
we must reflect on: Specifying an ontological category system. Notwithstanding,
developing or choosing a universal ontological classification scheme is
challenging. The problem has its roots in Antiquity and persists until today -
Aristotle’s Categories, a seminal work in this field, has influenced numerous
philosophers, including Aquinas, Descartes, Spinoza, Leibniz, Locke, Berkeley,
Hume, Kant, Hegel, Brentano, and Heidegger (Studtmann 2024). Although these

9 For those not convinced by the way I bracket primary ontology questions, it might be
appeasing to know that it is not completely unwonted to engage with metaphysics proper first.
One might start determining what the object of inquiry would be like, if there is such thing, and
then use the result to answer the primary question in the negative (Hofweber 2016, Ch. 1.3).
Recently, Steven French (2020), for instance, followed this strategy and concluded that “there are
no such thing as (scientific) theories’. While (spoiler) I won’t reach such drastic conclusions, I
invite the skeptic to see my thesis under the conditional that programs exist - I believe the
content of this dissertation is informative and can be understood nevertheless. Interestingly, to
the best of my knowledge, the only source maintaining that programs don’t exist is Kittler
(1993).
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are only broad sketches, it is, not surprising that there is little agreement among
philosophers on a more than two-thousand-year-old debate on what precisely an
ontological category and a system thereof is. Despite enduring metaphysical
controversies, I will from here on assume that an ontological category is a kind of
being in which things might be claimed to exist (Lowe 2006, 20; cf. van Inwagen
et al. 2023, §2.2 for a similar characterization). At least for the current purpose,
this understanding of ‘category” will be innocuous enough to proceed without
major quarrels.

Following this, an ontological category system is a structured classification
scheme of kinds of beings that ought to provide a complete inventory of what
exists. The advantage of a pre-conceived system is that it allows us to make
consistent metaphysical judgments about all kinds of entities under the scrutiny
of SOQ. By the same token, it becomes the thesis’ central motif to spell out the
membership of computer programs in one of the systems’ categories. Notably,
this view also clarifies what this thesis is not about - the identity criteria of
programs. Typically, identity concerns are one of the central features of
metaphysical discourse. One may think of well-known thought experiments like
‘Lumpy’ or the ‘Ship of Theseus.” Although I believe that this topic deserves more
attention in some future research, I will, as much as possible, abstain from
engaging with questions such as “When are two programs the same? Does a small
change in one line of code create an entirely new program?’ and so on.10
Attempting to place the notion of computer programs in a category system can
be treated independently of controversies of their identity.

There is another problem worth considering though - not everyone subscribes
to realism about category systems. Throughout the 20t century, many
philosophers expressed their skepticism about the pursuit to find a
fundamental/universal category system. In line with this thinking, it has become
popular to engage in what Thomasson (1999, 116) has called a ‘piecemeal
approach’, i.e., examining each purported type of entity separately and anew
again. Anyhow, even if one thinks that this development is misguided, it is left
open which category system should be the chosen one. As per Lowe (2006, §1.3
and §2; see also Thomasson (2022, §1.4)), there are various competing ontological
systems available. Given this diversity and the lack of consensus, we encounter
the following problem

Problem I: Selecting an appropriate category system; piecemeal or systematic
approach?

10 See White (2004), Cardone (2021), and Angius& Primiero (2018; 2023) for some recent
attempts.
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Before moving on, I want to mention one more caveat. Recently, the term
‘ontology’ has also gained popularity in computer and information science. In
this context, ‘ontology” has a different, rather descriptive connotation and can be
understood as a taxonomy, i.e., a standardized framework that provides a set of
terms for consistent data description and annotation across different research
communities. Put differently, what distinguishes these ontologies from the
category systems in the metaphysical tradition is that they do not set out to
provide a fundamental category of being. Nevertheless, the resulting ontologies
have significant practical benefits, as they promote consistency in data
description and facilitate communication across disciplinary boundaries
(interoperability). Examples include ‘Gene Ontology,” ‘Infectious Disease
Ontology,” ‘Plant Ontology,” and others (Arp et al. 2015, xxi).

A collaborative effort between philosophers, computer scientists, and
information scientists has created globally applicable ontologies across different
domains to keep up with these developments. Notable examples of this
interdisciplinary work are the Basic Formal Ontology (BFO; (Arp et al. 2015)) and
the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE;
(Gangemi et al. 2002)). I mention this development to steer away from potential
misunderstandings since this thesis deals with computer science broadly
construed, ie., a field where these types of ontologies find widespread
application. Testimony to this is the information-scientific flavored approaches
that have also been applied to study the nature of computer programs (, Lando
et al. 2007, Duncan 2014, Wang et al. 2014a, Wang et al. 2014b).

What's in a name?

When engaging in ‘computer program’-talk, we should try to mean the same as
the other participants in the debate, or miscommunication will occur. One helpful
method to get a grip on the matter is by elucidating the term’s etymology: The
word ‘program’ (or “programme’ in British spelling) has its roots in the Greek
word npoypaguv, consisting of ripo (‘before,” or “pre’) and ypagw (‘to write”)
Grier (1996, 51). As such, it did not originate in a computing context but
underwent considerable transformations throughout history. De Mol & Bullynck
(2021) explain that the word was generically employed to refer to a planned series
of future actions or events. We still find common examples such as TV or radio
programs, political programs, research programs, or training programs that are
virtually used in the same vein today. Parallel to the description of a sequence of
scheduled events in everyday life, the meaning of “program’ shifted in multiple
engineering contexts where it began to designate different technological aspects.

For instance, in the 19th century, so-called ‘“program clocks” were used to
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automate time schedules in work environments or schools. In radio engineering,
“program” was also used to denote the electronic signals used to broadcast TV
and radio programs at least from the 1920s onwards (Grier).

Like many other “historical firsts,” the first instances of the name “program’ in
a computing context are contentious. While some locate the origin within the
ENIAC project (Grier 1996, Haigh & Priestley 2016), others identified other
calculating machines of the late 1930s and early 1940s (e.g., the IBM
ASCC/Harvard Mark I) to be already entangled with the term (De Mol &
Bullynck 2021). Either way, the methods to plan sequences of computations for
the automatic control of computing devices frequently relied on prior established
technologies, like e.g., punched cards used for Jacquard looms and desk
calculators. In this context, the term originally referred to a great variety of
activities, designating how automatic control of computers could be organized
on different scales.

From the 1950s onwards computing developed towards reliability, mass
production, and standardization, and there were increasing attempts to
determine common practices and define basic terms like ‘program’ in glossaries
(De Mol & Bullynck 2022). One aspect that went hand in hand with this
development/early professionalization of the field was that the configuration of
computers became increasingly associated with formal languages closely related
to logic and linguistics (Nofre et al. 2014). Roughly put, the development of new
programming languages was gradually more detached from the details of
specific machines. The ensuing language metaphor enabled one to regard
programs as notations, strings of symbols, or special texts that could be studied
and reasoned about independently of the underlying circuit settings. As Vee
(2013) describes, for instance, this resulted in comparing programming to the
notion of ‘literacy’, emphasizing the importance, flexibility, and power of writing
with and for computers.

However, the characterization never fully stabilized and it would hence be a
mistake to simply consider programs as mere texts or linguistic entities. The
reason for that instability is that from the dawn of computing, the discipline’s
nature has been a matter of great concern. As many commentators have noted,
computer science draws knowledge and methods from many fields. Wegner
(1976), for instance, looked into separate characterizations of computer science as
branches of (i) mathematics, (ii) engineering, and (iii) empirical science. The
influential report ‘Computing as a Discipline’ by Denning et al. (1989),
investigating what constitutes computer science qua discipline, echoes the
tripartite distinction (i)-(iii). Today, partitions along essentially the same lines are

still highly influential for discourses regarding the historical discipline-building
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of computer science and how to give an adequate characterization of the
foundations of computer science (cf. Eden 2007, Tedre 2015, De Mol 2015,
Schiaffonati & Verdicchio 2014). The debate about the nature of the discipline and
its scope has persisted for decades and continues to this day.

Owing to this epistemic pluralism, many central notions in computing bear a
surprising amount of semantic ambiguity: Smith (1996, 73-74), for instance,
comes to the sobering conclusion that there is no distinct ontological category
that deserves to be called computation. More recently Pappayannopoulos (2023)
argued that there are at least two conceptually different notions of algorithms
identifiable in the literature. By the same token, the word ‘program’ is
semantically indeterminate, too. Although being a widespread entity/
phenomenon, no single rigorous definition has gained traction: None of the
usages of ‘program’ is universally accepted; available characterizations are not
entirely co-extensional. Even though this parallel use of the term is somewhat
unfortunate, it is well-established in the relevant literature and largely
unproblematic for practice.

When engaging in philosophical business, ambiguity and equivocation are
the sort of things one needs to avoid though. In fact, worries like these fuel
another form of ontological skepticism which threatens forming a coherent
metaphysical judgement of semantically indeterminate entities like programs:
Neo-Carnapianism. Simply put, Neo-Carnapianism maintains that a considerable
part of ontological problems reduces to verbal disputes.1l According to this
deflationary stance, there is no serious or actual problem underpinning all sorts of
ontological questions. The idea is that epistemic agents from different linguistic,
or cultural communities merely disagree about what a given term refers to (and
not about what kind of being it is). Let’s take ‘football’ as a toy example. An
English-speaker from North-America would likely conclude that ‘footballs are
pointy,” whereas an Englishmen may argue that “footballs are rather round.’1?
Even though both speakers use the same word they mean different things (a ball
used in American football and a ball used in “soccer’). The North-American and
Englishmen come to different conclusions about the shape of footballs because
they maintain a different linguistic framework. Yet, once the equivocation of the
term ‘football” is clarified, the argument about the properties of the objects and
activities referred to, resolves too.

The point is that comparable forms of semantic ambiguity are pervasive

beyond sports-vocabulary. Accordingly, dictionaries may classify countless

11 The original seminal paper is Carnap’s (1950). More recent versions of the idea that
ontological disputes are due to different language frameworks, especially different quantifiers.
12 The example is inspired by Effingham’s introductory textbook on Ontology (2013, 169).
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terms (from whichever domain) as lexically ambiguous. There are different types
of ambiguity Sennett (2023), but typically, linguists and philosophers distinguish
between two subspecies: While homonomy describes the accidental encoding of
multiple meanings in the same sign or term (e.g., in English ‘rock” may denote a
‘stone’ or a music genre), polysemy refers to a linguistic expression with multiple,
albeit related, senses (Falkum & Vincente (2015), Sennett (2016), Carston (2021)) -
as we have seen in the case of ‘football.”13 Distinguishing the two species of
ambiguity is not always easy and several linguistic tests have been devised to
identify polysemic terms.

When applying such a test to ‘computer program,” it becomes clear that the
term is an example of polysemy, too. For instance, we may help ourselves with
the following statement to uncover (part of) its polysemic nature:

“That program is well written/beautifully coded. It runs fast.”

Here, the pronoun it refers anaphorically to the physical object (particularly its
execution), whereas the sense of program in the previous sentence is used in a
textual sense. In fact, the semantic extension of ‘program’ entails several other,
but related meanings, including what I call the Physical View, the Mathematical
View, the Symbolic View, the Artifact View, and the Neural View (see Appendix
A).14 Although this is not the time and place to deep dive into the overall
plausibility of the Neo-Carnapian rationale, the upshot of this brief discussion
should be clear: Since the term ‘computer program’ forms a polysemic web of
various ontologically different (but related) things, deflationary arguments and
linguistic confusion may also hamper this thesis” undertaking.

There are a couple of ways to respond to this. Absent semantic identity, one
seemingly obvious possible future path for the community would be attempting
to converge towards one unique usage of ‘program.” One may envision this to
work similarly to how Lakatos (1976) describes the progress of mathematics,
exemplified by rigorously characterizing the proof of the Euler characteristic
defined for the polyhedron.’> However, unlike Lakatos” polyhedrons, the notion

of “‘program’ seems to undergo significantly faster changes than other disciplines’

13 Importantly, both phenomena need to be distinguished from ‘vagueness.” Usually, the notion
is associated with the occurrence of borderline cases and the sorites paradox, e.g., “‘when is a
heap of sand no longer a heap of sand?’ (Hyde & Raffman 2018) and (Sorensen 2023).

14 Strictly speaking, the term “program” also bears another form of polysemy, namely of cross-
categorical nature (in a grammatical sense): “program’ as noun, and as verb (as in, ‘to program a
machine’) with related senses across these grammatical categories. However, I won't further
engage with this polysemic dimension.

15 Anecdotally, in one of the various workshops of the PROGRAMme research group, we tried
developing a comprehensive definition of ‘computer program’ in a brain storm session.
Culminating in ‘a layout of signs aimed at determining the behaviour of a machine.”

13



1 Introduction

central concepts. Due to its instability over time, we constantly try to define a
moving target and would, at best, only get a snapshot. Moreover, this
“precisification approach” would arguably fly in the face of computer science’s
current practice to successfully embrace epistemic pluralism. Therefore, I
consider trying to define the term “program’ as moot.

Given the lack of rigor, we thus confront another central issue
Problem II: Untangling the polysemic web of the term ‘program.”

The takeaway is that we must devise a strategy that blocks linguistic confusion
creeping into our metaphysical investigation or otherwise we may get as many
potential answers about the ontological status of computer programs as there are

different meanings hidden in this polysemic complex.

1.3 The Project’s Guiding Ideas

Let me summarize what I have discussed so far. I introduced the main research
question in the previous sections and explained its relevance. No consensus
about programs’ metaphysical nature has been reached; scholars of different
strives have characterized them in multiple, often contradictory, ways. By
construing the question’s main constituents - (i) ontological status and (ii)
computer programs - I provided some necessary background about
metaphysical investigations and clarified what kinds of things the term program

picks out. This diagnosis unearthed two primary problems:

1. Problem I: On the one hand, we must be open about choosing a suited
ontological category system.

2. Problem II: On the other hand, there is the polysemic nature of computer
programs. When pressed into service in different contexts, “program’
fragments into several ontologically distinct and more precise concepts,

each appropriate for its area of application.

What is the most comprehensive and effective response to these problems that
will allow us to proceed fruitfully?

The Guiding Idea

My strategy for remedying the situation is by embracing the polysemic web we
confront, head-on. Previously, I have said that polysemic terms bear at least two
related senses. In the case of ‘computer program,” multiple related senses are
bundled together. What makes the case particularly urgent is that many of the
senses that are thus related have different ontological flavors. Without handling

this ambiguity well, we risk repeating past mistakes and are bound to commit
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category mistakes. But instead of trying to untangle the situation by developing
a rigorous definition, the general theme of my approach is different.

My guiding idea is to explicitly focus on the relations between all the
ontologically different relata hiding behind this polysemic web. To clarify, the
relata I am talking about are the ones that occurred in my previous analysis and
the literature review (cf. Appendix A), the ones deemed responsible for the
alleged duality/pluralism of programs: On the one hand, there is the domain of
abstract, formal, and mathematical objects. On the other hand, there is the
domain of the physical, of concrete systems, of events and processes unfolding
in space and time.

Specifically, I believe the notion of implementation is vital to understanding
how these entities connect. When I say ‘implementation,” I refer (as a first stab)
to the relationship between different computational domains. In addition, my
thesis argues that agents play a critical role in mediating implementation. I will
elaborate on both ideas extensively in the following chapters (see also Appendix
B), but here is a graphic depicting the situation to get the gist of it (Fig. 1.1).
Whereas the file icon stands for program texts, the laptop icon typifies a physical
computer; both are related by the downward pointing black arrow (representing
computational implementation). Moreover, all three items critically depend on

epistemic agents (depicted by the black mannequin) and their practices.

.
LA

Fig. 1.1: Schematic depiction of the guiding idea of this dissertation.

One promising way of ontologically characterizing this network of relata and
their relations is to establish an initial category system and make modifications
and refinements as needed along the way (in terms of the terminology I

previously used, one can regard this as a partial piece meal approach). This
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approach is particularly effective when developed against the backdrop of
widely recognized distinction between the ‘abstract’ and the ‘concrete” the in
philosophy (Falguera et al., 2022). It is effective, because typically, the
abstract/concrete dichotomy is meant to be a simple but exhaustive two-category
system - accordingly, every entity must either be abstract or concrete.
Commonly, philosophers agree that objects like rocks, tables, or tigers are
concrete. In contrast, mathematical objects (e.g., numbers, pure sets, and perhaps
‘programs’) are typically thought of as abstract entities. Other entities standardly
considered to fall into the abstract side of the dichotomy are universals,
propositions, types (as opposed to tokens), and - more controversial - fictional
characters (e.g., Sherlock Holmes, or Donald Duck).

Arguably one of most common ways to characterize the abstract is then along
these lines:

Abstract: An object is abstract iff it has no spatiotemporal location and is

causally inefficacious.

The lesson learned from this ‘standard” view is that entities like mathematical
objects are considered abstract objects, since they are none locatable in space-time
and cannot be integrated into the causal pathway (for instance, one cannot stump
their foot on V2). Similar considerations hold for other candidate abstract objects
such as universals and propositions. In his On the plurality of worlds David Lewis
(1986, 1.7 §) called this proposal of characterizing the abstract-concrete
dichotomy the ‘way of negation:” In contrast to concrete objects, abstract objects
are construed by being non-spatiotemporal and acausal.

However, to further deepen our understanding on how the abstract-concrete
distinction bears on the metaphysical nature of computer programs, it is
illuminating to take a closer look at one of Lewis’ other ways of drawing the
distinction - the way of abstraction.1® The reason for considering this notion is
because it resembles how abstraction is standardly used and talked about in
(computer) science. Arguably, it is here where conflations about different
conceptions of abstractness may happen most frequently, since this way of
characterizing abstraction seems to be the one most in line with historic use and
the etymological roots of the term.1” According to Lewis” way of abstraction

16 In total, Lewis identified four methods to draw the line between the abstract and concrete; (i)
the way of example, (ii) the way of conflation, (iii) the way of negation, and (iv) the way of
abstraction. Today, (i)-(iv) are still often used to chart the different approaches of the abstract
(Falguera et al. 2022).

17 For the computing pioneer Dijkstra, for instance, a program is “[...] an abstract symbol
manipulator, which can be turned into a concrete one” (Dijkstra 1989, own italics). In contrast,
Colburn (1999) maintains that programs are “concrete abstractions.” Are they talking about the
same kind of abstractness?
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“abstract entities are abstractions from concrete entities. They result from

somehow subtracting specificity, so that an incomplete description of the

original concrete entity would be a complete description of the

abstraction.” (Lewis 1986, 84-85)

Under these circumstances, the “abstract object” purports to hinge on the mental
process in which concepts are created by omitting properties of one or several
objects. Put differently, at least without further qualifications, the way of
abstraction stands at odds with the standard way of characterizing the abstract-
concrete distinction since the former requires some epistemic process, whereas the
latter can be characterized mind-independently. It is therefore doubtful to what
extent the way of abstraction can serve as an explanation of the origin of abstract
entities like mathematical objects on purely ontological grounds.

As an epistemic notion though it abounds in science: Here the process is
useful for the analysis of complex systems by reducing (irrelevant) properties or
information. Frequently, this epistemic operation is referred to as Aristotelian
Abstraction. Cartwright (1989, 197), for instance, portrays Aristotelian abstraction
as an act through which one “strip[s] away —in one’s imagination—all that is
irrelevant to the concerns of the moment in order to focus on a single property or
set of properties as if they were separate.” This way, scientists get a handle on
studying systems that would otherwise be too complicated.

‘Abstraction” in computer science is a variant of (Aristotelian) abstraction, in
so far as it is the operation or process of omitting one or more features of a
complex object/system. A common story of how abstraction facilitates dealing
with complex computing systems goes like this: Suppose you must program a
first-generation digital stored computer. When configuring such a device,
programs and data were encoded in a notation that closely corresponded to the
given machine’s hardware. Setting up computational devices in binary or
machine code was cumbersome, error prone and required great ingenuity to
‘translate” whichever problem was supposed to be solved computationally into
machine code. As we will see later in more detail, the late 1950s brought forward
types of encodings (nowadays widely referred to as programming languages)
that enabled the programmer to describe sequences of computations through
notations and formulas that were somewhat more decoupled from the underlying
circuitry. At a first pass, instructions formulated in high level programming
language have a higher degree of abstraction than logically equivalent machine
code instructions, because they reflect less hardware details. These more

‘abstract’ languages have several advantages - e.g., they avoid unnecessary
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machine dependence, and they are easier to read and write for the humans that
devised them.!®

Notably, one may further abstract away from already made abstractions,
giving rise to different Levels of Abstraction (LoA). Beginning in the 1970s, such
levelism became a prominent feature in (philosophy of) science, especially in
connection to computing or disciplines where computational methods where
employed. For instance, in his well-known Vision Marr (1982) suggested three
levels of explanation for complex systems (such as our perceptual apparatus): (i)
a computational level; (ii) an algorithmic level; and (iii) the
implementation/hardware level. Importantly, such levels form a sort of
hierarchy that is often characterized by different degrees of abstraction.1® In other
words, by leaving out certain details, one may reach a level that is more suitable
for explaining the phenomenon of interest.

Throughout the history of computer science, the LoA concept has been
pervasive and evoked a great deal of level talk. Primiero (2016; 2020), building
on the work of Floridi (2008; 2011, Ch. 3), has arguably devised the most
comprehensive notion of LoA suitable for computing. I emphasize this because
Primiero’s account supposedly provides both an epistemological and an
ontological hierarchy. According to the latter, computational systems are
stratified or layered entities in the sense that they are composed of various LoA.
While I will go into more detail about this account in the following chapter, it is
paramount to note some things here for clarity’s sake.

While I am a proponent of the LoA view and its merits, it is crucial to exercise
caution when interpreting the ‘ontological hierarchy’ it presents. This hierarchy
should not be confused with a fundamental metaphysical one (one should
instead think about it along the lines of the descriptivist spirit of ontologies in
computer science I introduced earlier). Floridi, for instance, reminds us that LoA
generally do not give rise to ontological levelism. When discussing an example,
Floridi clarifies

18 Given its usefulness in making complex systems tractable, there are many more instances
where abstraction plays a role in computing. Data abstraction, the act of hiding irrelevant
details in a data set, is another example. Accordingly, Donald Knuth (1997, Ch. 2) explains how
abstraction enables us to systematically think about data structures (e.g., as a list, stack, or tree).
More recently, Kramer (2007) advocates that the skill of forming abstractions correlates with
being a successful software engineer. Colburn and Shute (2007) contrast the process with the
notion of abstraction employed in mathematics, arguing that the former relies on information
hiding, whereas the latter utilizes information neglect. Angius (2013) illuminates software
verification through the lenses of abstraction (and idealization), and recently, Turner (2021)
provided a more rigorous account by importing a modification of Frege’s approach to
abstraction into type-theory.

19 N.b., “abstraction” is by no means the sole feature responsible for constituting different levels.
See Craver (2014) for a recent survey about different conceptions of levels.
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“I have shown how the analysis [of an example] may be conducted at
different levels of epistemological abstraction without assuming any
corresponding ontological levelism. Nature does not know about LoAs
either.” (Floridi 2008, 35)
The takeaway from concluding our discussion on epistemic/Aristotelian
abstraction and its associated concept of LoA is that relying solely on this
framework may not provide immediate answers about the ontological status of
computer programs.

In carrying out this research program, I will make several substantive claims.
Here is a brief selection of the most central ones:

e [ will claim that at least two quite distinct notions of implementation
require integration/unification for understanding the ontological status of
computer programs.

o [ will claim that, the garden variety of accounts of physical computation
do not work (straightforwardly) when applied to computer programs.
Especially naturalized accounts suffer from having turned a blind eye to
the metaphysical nature of implementation qua relation.

e [ will claim that appropriating some of the major insights and conceptual
tools of scientific representation and modelling vindicate interpretational
or agential theories of implementation.

e Iwill claim that the abstractness of computer programs is best understood
through the so-called Problem of Creation and does not require sui generis
solutions.

e [ will advance a novel notion of physical programmability, specifying the
conditions under which a system can be viewed as programmable.

1.4 Outline

From here on, the thesis contains four principal chapters, a conclusion, and three
appendices. Here is how they unfold:

In Chapter two I start off with providing the framework for the rest of the
thesis. I begin by considering two hitherto largely independently treated notions
of implementation. For the sake of better distinction, I will refer to them as type-
(A) and type-(B) implementation. The former is based on the normative notion
of function-ascription (with “A” for ascription); the latter is named after the so-
called bridging problem (with ‘B” for bridging) from the philosophy of applied
mathematics. Juxtaposing both notions shows that their scope overlaps at the
abstract physical interface and may mutually enrich each other. Specifically, I
submit that (A) and (B) can be unified by appealing to use-based accounts of

computation: The two notions can be combined by the conceptual machinery of
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the literature on scientific representation (particularly, when concerned with
material models). The result is sketch of a wunified theory of agential
implementation (UTAI) with different dependency relations (labelled (a)-(c)),
where these relations give rise to the subsequent chapters.

The third chapter concerns dependency relation (a). I elucidate this relation
by comparing programs to so-called repeatable artworks. The similarities
between musical compositions and works of literature are especially instructive.
Like such artworks, programs have different representational modes (e.g.,
symbolically, mathematically, diagrammatic) and implementational media (e.g.,
ink on paper, chalk on a whiteboard, electrical signals, punched cards, etc.). As
such, they appear to be abstract objects that also suffer from the Problem of
Creation - a problem from the philosophy of art about art abstracta. By
appropriating the problem’s most promising solutions to the philosophy of
computing, I offer a novel metaphysical blueprint for future studies about the
ontological status of computer programs. The upshot is that the abstract nature
of programs does not require dubious sui generis solutions (e.g., a ‘“dual nature”)
but can, in fact, be discussed in more familiar philosophical territories.

Thereafter, chapter four sheds light on dependency relation (b) of the UTAI
framework. Accordingly, I vindicate interpretational accounts of physical
computation. Specifically, recent agential approaches that couch implementation
in terms of scientific representation are corroborated. I strengthen such types by
the introduction of a novel notion: Implementation-as. Implementation-as is
theoretically underpinned by Frigg and Nguyen’s DEKI account, a formalized
account of scientific representation relying on Goodman’s and Elgin’s notion of
representation-as. The DEKI account is especially suited for this because it relies
on a material model - the MONIAC (a special-purpose hydraulic analog
computer). Accordingly, a formal characterization of implementation-as
emerges. I maintain that this result is a philosophically robust account, since it
satisfies the most important desiderata (objectivity, extensional adequacy,
explanation, miscomputation, taxonomy) for accounts of computation in
physical systems. The upshot is that physical computation occurs when agents
use material systems as epistemic tools to compute a function. Application of this
new framework is illustrated for the MONIAC (an analog device) and the IAS-
machine (a digital computer).

Chapter five illuminates dependency relation (c) through the notion of
programmability. The philosophical discourse regarding programmability is
scant and largely underdeveloped. In particular, reviewing the literature
uncovers that only a limited amount of scholarship has examined the physical

properties that enable a system to be programmed. This is a sorry condition, for
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we seem to be unable to fully answer such questions as: How are programs
integrated into the causal nexus? What does it mean for a physical system to be
programmable? In the interest of answering these questions, I develop the here

newly introduced notion of physical programmability.

Physical Programmability: The degree to which the selected operation of
an automaton can be reconfigured in a controlled way.

Subsequently, the strategy of my chapter is to explain the significance of the
variables in the above’s characterization. Accordingly, the function of (i)
automaton; (ii) selected operation; (iii) reconfigured in a controlled way (iv) the
degree to which, are discussed in detail.

Finally, I provide a conclusion (Chapter six). I begin by summarizing the
central findings of this dissertation in order to canvass how the results of different

chapters have informed us about the ontological status of computer programs.
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2 Towards a Unified Theory of
Implementation

2.1. Introduction

It sounds like a cliché, but the implementation of computation is ubiquitous. Not
only are we surrounded by everyday devices such as laptops and smartphones
that run our software, but computation is also at the core of foundational
questions in computer science, robotics, Al, and cognitive science. Despite its
ubiquity in computer science and adjacent fields, implementation is typically left
informal. It is often associated with the realization, instantiation, or
concretization of a plan or idea, relating two objects or domains with one
another.?0 Considering the rapid developments in theory, technology, and areas
of application of computing, various philosophical studies conceptually
reconstructed what constitutes the implementation of computation in their
respective fields. In light of this epistemic pluralism, different notions of
implementation, in fact, often have a significantly different intellectual heritage.
Confronted with a plurality of theories of implementation, the time is ripe to
taxonomize them, shed light on their relationship systematically, and attempt to
build bridges between them whenever possible.

To begin this task, I consider two of the most prominent clusters of
implementation of the last few decades. For tractability, I refer to these views as
type-(A) implementation (with ‘(A)” for ascription/artifact) and type-(B)
implementation (with “(B)” for bridging). Type-(A) implementation emerged from
(the philosophy of) computer science, particularly the concerns about the
verification and correctness of so-called computational artifacts like computer
programs.?! Much of the corresponding discourse is couched in terms of function
ascription (in the teleological sense) and pertains to the relation between different
abstract levels or structures. Type-(B) implementation, on the other hand,
emerged from the philosophy of mind (broadly construed) and concerns the
nature of computation qua physical process in material systems. This notion is
paramount to determining which systems compute and which don’t and is often

discussed regarding laptops, brains, and even the whole universe. Virtually all

20 Overall, there are various (pre-theoretic) understandings of ‘implementation,” even occurring
in the domains of art, language, or other affairs (Rapaport 2005).

21 After the fiercely held verification debate in the late 1980s and 1990s in the communications of the
ACM, it was apparent that the field would benefit from a philosophical underpinning of the
notion of verification and correctness. For a collection of some of the key contributions to
verification, see Colburn et al. (1993). For a critical assessment of the debate, see McKenzie
(2004, 197-218).
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(B)-accounts share the idea that the evolution of a physical, real-world system
maps to sequences of formal/abstract computational states. Until now, (A) and
(B) have mainly been discussed separately.

However, throughout this chapter, I argue that the philosophy of computing
would benefit from a novel theory of implementation that promotes greater
synergy between two conceptions. This motivates me to engage in a project with
the primary goal of comparing type-A and type-B implementation, clarifying
their differences, and proposing a unified theory of implementation.

Here is the roadmap: Section §2.2 provides some general remarks about
computational implementation. Subsequently, section §2.3 introduces type-(A)
implementation, while section §2.4 portrays type-(B). Section §2.5 juxtaposes
both implementation types by discussing their most prominent features
(teleological functions and the relation between levels). Although they appear to
apply to different computing domains and have different purposes at first, they
are conceptually compatible. In section §2.6, I take my undertaking to the next
level by suggesting that the unification of these two concepts can be achieved
through the conceptual tools of the literature on material models and scientific
representation. The resulting synthesis suggests that computational systems are
epistemic tools, i.e., material artifacts used by agents for computation. When using
material artifacts (akin to material scientific models) for computation, agents
impute mathematical functions and ascribe teleological functions to engage in a
form of object-based reasoning. I shall refer to this view as a unified theory of
agential implementation (UTAI). Lastly, I conclude (sect. §2.7).

2.2. A primer on Implementation in Computer Science
The Oxford Dictionary of Computer Science provides a useful characterization of

implementation to begin with

Implementation: “[t]he activity of proceeding from a given design of a system
to a working version (known also as an implementation) of that system, or the
specific way in which some part of a system is made to fulfil its function.”

The relation between design and its working version applies to various
computational formalisms. For having a common understanding of this
implementation relation, it is instructive to remind us about computational

formalisms. While they are definable in a large variety of ways, the computer
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science literature typically features two main ways of presenting computational
formalisms (Turner 2018, 190):22

1. Programming languages, like C, Python, etc.
2. Machine Models, like Turing Machines (TM), Finite State Machines
(FSM), etc.

In the following, I use the term ‘model of computation” Mc for both. Models of
computation are logico-mathematical formalisms that enable us to encode an
abstract sequence of computations through a programming language, a machine
table, a transition function, and so on. For instance, formally, the concept of a
Turing Machine can be characterized as a quadruple TM = (Q, ), m, 8), where Q
is a finite set of states g; ) is a finite set of symbols; m is the initial state m € Q; 6
is a transition function that determines the next move 6: (Q X ))—( ) x {L, R} X
Q). TM’s transition function 6 maps from computational states to computational
states (De Mol 2021). Put differently, transition functions like 8, computer
programs written in a programming language, or any corresponding notions in
theoretically equivalent Mc allow for the encoding of a sequence of
computations.

In order for a system to compute, it has to implement a sequence of
computations encoded in a “program’/transition function specified by a given
Mec. In practice, computational formalisms are often embedded in a special sort
of computational hierarchy, composed of so-called Levels of Abstraction (LoA)
(Floridi 2008; Primiero 2016; Primiero 2020). Accordingly, the application of
implementation in computation is wide-ranging. Examples are ‘the
implementation of an algorithm in a high-level programming language’ or “the
implementation of machine code instructions in a real-world computer.” Such
‘level-talk’ is frequent in computer science - a concrete textbook example of
various implementation stages of a program is pictured overleaf in Fig. 2.1 (a).
Instances like these may be generalized and accordingly culminate in a view as
depicted under label (b) in Fig. 2.1: a (stored-program digital) computing system
is typically composed of various LoA forming a computational hierarchy.? At
the bottom of the hierarchy, one finds a physical system comprising various
material components and their specific arrangement (the hardware). If set up and
configured correctly, the system may execute a predetermined series of concrete

computations. At the top of the hierarchy, one may find the most abstract level,

22 The description of computational formalisms is inspired by a similar presentation in Rescorla
(2013). Notably, some unconventional models can compute incomputable functions for a
universal Turing machine. I will skip considering these types for now.
23 See Hennessy and Patterson (2014, Ch. 2) for a fully worked-out textbook example. See also
Scott (2009).
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2 Towards a Unified Theory of Implementation

the program’s formal specification. As a first stab, we can understand
implementation as the relation between the different levels in such a hierarchy,

connecting an abstract level to a less abstract one.

(@

swap(int v[], int k) (b)

Program {int temp;
written in C temp = v[k];
(High-level VK] = vik+1];
Language) Vlk+1] = temp;
}
-

swap:

multi $2, $5,4 2 .
Program = Ssz, :4’52 High-Level Programming
written in w  $15,0(52) Language
Assembly Iw  $16,4($2)
laguage sw  $16,0(52)

sw  $15,4(52) Assembly Language

jr $31)

.
Machine Code

Programin ~ 00000000101000100000000100011000
Machine 00000000100000100001000000100001
Code 10001101111000100000000000000000 Computational System
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Fig. 2.1: Different depictions of the computational hierarchy. (a) A concrete
instance of the different LoA and stages of implementation of a program written
in C (example adapted from Patterson and Hennessy (2014, 15)). (b) Generalized
image of typical LoA of a computer program.

‘Abstract’, in this context, has a double meaning. On the one hand, it refers to
the degree to which language features are divorced from specific hardware
details (Scott 2009, 111). In this sense, higher LoA entail fewer details about the
underlying physical system. Based on that, we can understand abstraction as the
inverse process of implementation. On the other hand, the computational objects
corresponding to the different LoA may be abstract in a second sense. We may
refer to them as abstract objects - as opposed to being concrete, material, or
physical - since, as strings of symbols, they have no causal relations acting upon
them. From this perspective, algorithms, e.g., are typically regarded as abstract
objects.

Importantly, what follows from this brief discussion is this: Whereas the
implementation of higher LoA is in the business of relating abstract objects
(symbol structures), the last implementation stage is qualitatively different

because it must relate an abstract symbol structure to a material system. The
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2 Towards a Unified Theory of Implementation

program written in C in Fig. 1 (a) is an instance of the former, for it is a particular
symbol structure that is translated into another one (i.e., compiled) into assembly
language.?* Analogously, when descending the computational hierarchy down
to machine code, implementation is still a relation obtaining between different
abstract strings of symbols. However, we require a different kind of relation at the
abstract-physical interface - one that relates abstracta with concrete states of the
putative physical system.

Today, two main approaches aim to cash out the requirements for connecting
such different types of levels: type-(A) and type-(B) implementation. Somewhat
surprisingly though, these two approaches are not in close contact with each
other. My aim here is to change that. In what follows, I take a closer look at the
philosophical characterizations of these implementation relations, beginning

with type-(A) implementation.

2.3 Type-(A) Implementation

Perhaps symptomatic for a more general tendency of computer science, type-(A)
implementation primarily focuses on the relation of upper LoA. Here, one central
aim is determining the correctness of the various implementation stages. Two
conditions are generally called for to meet the normative notion of correctness.
On the one hand, a formal specification for the program and, on the other hand, a
formal definition of the programming language’s semantics. A program is then
correct if there is a formal proof that the semantics of a program is consistent with
the program’s specification. Arguably, the first philosophical account of type-(A)
is due to Rapaport (1999). He describes implementation as semantic
interpretation (1999, 2005),

Implementation as semantic interpretation: An object is an
implementation of some syntactic domain A in medium M iff it is a
semantic interpretation of a model of A,
i.e., a relation between semantics and syntax of different LoA. Rapaport claims
that any correspondence between two domains where one is used to grasp the
other is ‘semantic correspondence.’
Rapaport’s approach aims to allow both mere ‘translations” of one
programming language into another (symbolic implementation) and even for the
qualitatively different case at the abstract-physical interface (i.e., the relation

2 Alternatively, programs can also be translated through an interpreter, such that the source
code is directly executed (line by line) without previously having been compiled into machine
code.
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between the bottom layers of the computational hierarchy).?> While a program
written in a high-level programming language may not be immediately
implementable in a physical system, the so-called ‘correspondence continuum’
(i.e., roughly put, a notion of transitivity) is supposed to ensure their connection.
For that reason, the program must go through a series of translation processes,
where each time, a level that previously acted as a semantic domain turns into a
syntactic one for another level below. At last, the ‘implementation cascade’
bottoms out at the physical level, providing the semantic domain upon which the
semantics for all previous levels is built.

However, concerns were voiced about the way Rapaport employs his notion
of semantics as a given, raising questions about whether an independent
semantic account is required.26 While the notion of semantic interpretation
adequately describes that implementation requires semantics, it lacks the rigor to
describe how these semantic features come about. The semantic approach does
not explain how the physical level obtains its semantic capacities as the bedrock
for the entire computational hierarchy. Therefore, philosophers of computer
science suggested two improved accounts.

First, to account for an independent and external account of semantics, Turner
considered the technical artifact literature and adopted the notion of function
ascription (2012, 2014, 2018, 2020). Originally, the conception of technical artifacts
and their functions should cover intentionally produced everyday objects like
screwdrivers, coffee-makers, and trains (Kroes 2012). They are said to have a
‘dual nature’: Next to their respective causal/structural properties, this class of
artifacts bears normative or teleological features. The function of a coffee maker
is to brew coffee; a broken or malfunctioning coffee maker does not work
correctly. Only when “the how’ (the structural properties) realizes ‘the what’
(functional properties) in the right way can one claim to have a properly working
coffee machine. By thus transposing the core insights of the technical artifacts
framework to computational entities, the conception of computational artifacts was
born (Turner 2018). Accordingly, computational artifacts like programs exhibit a

function-structure duality with

Implementation as function-structure relation: The relation between
specification (function) and the structure of the (computational-)artifact.

Importantly, artifact function here is an intentional notion derived from the use
plan formulated by designers. The functions are bestowed to artifacts based on

2 While Rapaport’s conception of implementation is thus ostensibly applicable to the abstract-
physical interface (the realm of type-(B) implementation), it does not consider its specific
problems, which will be discussed in the following section (§2.3).
2For a more detailed summary of these arguments, see (Primiero 2020, 207f) and (Turner &
Angius 2020).
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the intentions and desires of human agents or an epistemic community. I will
come back to the role of teleological functions later. For now, it suffices to
acknowledge that a programmers’ specification (an intentional notion) provides
criteria for correctness and malfunction.

Second, following these developments, Primiero (2016; 2020) addressed issues
with both the implementation as semantic interpretation and implementation as
function-structure relation. The problem with both is that they merely provide
an account of implementation for any two neighboring levels rather than the
entire computational hierarchy. For instance, to eventually reach the bottom of
the hierarchy (the physical system), Turner’s version of the computational
artifact approach relies on repeatedly flipping the function-structure pair; the
process must be repeated for every level in the computational hierarchy.
Although the structure-function relation may ensure correctness between any
two LoA, Primiero argues that the view fails to establish the desired transitivity
of correctness throughout the entire computational hierarchy (i.e., between more
than just two LoA). The result is an impoverished characterization of
miscomputation.

For this reason, Primiero advanced a notion of implementation that considers
multiple LoA of the computational hierarchy (intention, algorithm, high-level
programming language, machine-code operation, execution), where an
epistemological construct and ontological domain constitute each LoA,

Implementation as the relation of LoA: An implementation I is a relation

of instantiation between pairs composed by an epistemological construct

E and an ontological domain O of a computational artefact.
The idea of the EO-pairs here is congruent to the function-structure relation, as
the epistemological levels provide “the structure to understand the behaviour of
the ontology” (Primiero 2020, 194). However, this view of implementation
enables a more fine-grained notion of correctness because it differentiates
between different layers/EO-pairs of the computational hierarchy.
Consequently, one may, e.g., define concepts such as functional correctness or
procedural correctness (related to different EO-pairs) and a corresponding detailed
taxonomy of miscomputation (cf. Fresco & Primiero (2013), Floridi et al. (2015),
Primiero (2020, 211-12)).

2.4 Type-(B) Implementation

Let me switch gears and examine our second implementation-framework. The
central concern of this discourse is the so-called Problem of Implementation. In
virtually all cases, physical computation is characterized in terms of the

mathematical theory of computation (cf. sect. §2) and a “mathematics first”
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attitude (Curtis-Trudel 2022), according to which some computational formalism
of computability theory is the starting point for the definition of physical
computation. In due course, one must explain how to bridge the gap between
computational formalisms Mc and a physical system Sc. Specifically, the main
idea is that formal abstract computational state transitions mi— mi+1 need to
“mirror’ the physical state transitions sj— sj+1 of the material system. Often, the
situation is depicted in a diagram, as seen in Fig. 2, where the upper horizontal
arrow denotes computational state transitions of Mc (specified by 0), the lower
horizontal arrow denotes physical state transitions of Sc, and f denotes the

mirroring (i.e., the ‘implementation” function):?

O—®

O

Fig. 2.2: A typical depiction of the core idea underlying physical computation

Subsequently, many scholars working on physical computation agreed that
there are at least two main issues, albeit related, concerning implementation: Not
only do they want to demarcate those systems that seemingly compute (e.g.,
laptops and brains) from those that don’t (rocks), they would also like to
determine which computation is executed rather than another. Closely following
suit with (Sprevak 2018 and Ritchie & Piccinini 2018), the problem of

implementation concerns:

COMP The conditions under which a physical system is computing.

IDENT The conditions that specify that a computational system

implements one computation rather than another.

On this view, implementing a specific computation is constituted by two
features. While COMP determines that a given physical system is computing,
IDENT concerns what it computes. COMP and IDENT are intertwined in a way
that makes it difficult to understand the latter without at least some preliminaries
of the former.

27 To the best of my knowledge, one of the first instances of this diagram in the philosophical
literature can be found in Cummins (1989).
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Virtually all potential answers attempt to solve the Problem of
Implementation by couching the mirroring or implementation relation between
Moc and Sc as a relation between mathematical structure and physical system in
terms of a mapping f. This thought is reflected in the so-called simple mapping
account (SMA)? and was, among others, articulated by Putnam (1988). The main
idea is based on a simple mapping between abstract formalism Mc and a physical
system Sc. Accordingly, the SMA postulates that a physical system Sc

implements a computation iff:
Simple Mapping Account (SMA)

1. There is a mapping f from the states sjof Scto states m; of Mc, such that
2. Under f, S¢’s physical state transitions are morphic to Mc’s formal state
transitions (specified by 0), such that if Sc is in state s1 where f(s1)= m3,

then Sc evolves into state s where f(s2)= mo.

The approach is elegant and straightforwardly captures what’s pictured in Fig.
2; the SMA has basically become the starting point to solving the problem of
implementation.

However, it is widely agreed that the SMA has two undesirable consequences.
First, the SMA is charged with trivializing the notion of concrete computation.
Given an open physical system Sc, one may carve out its physical states in
whichever arbitrary way such that they are morphic to Mc. In other words,
structure is too cheap to come by - any arbitrary computational description (like
a hello world program written in C) with a sequence of computational states m1—
ma = ...~ mjcan be mapped on an arbitrary evolution of physical state transitions
(of, say, a rock). So, according to the SMA, every macroscopic object realizes all
kinds of computations, a position known as unlimited pancomputationalism.

Moreover, there is the issue of computational identity IDENT - the question
of which of the multitude of computational profiles that simultaneously apply to
a system is implemented.?® The claim goes: Even if there were somehow a unique
computational structure to begin with, structure alone would fail to deliver an
account of basic computational individuation, as one needs extra ingredients to
discern which computation is carried out. Such issues about computational
indeterminacy especially pertain to ‘bottom-up” research like cognitive science,
the unconventional computing community, and reverse engineering. Roughly
put, these disciplines investigate natural or artificial computing systems in
empirical terms in which there is no a priori given Mc that specifies what's

supposed to be computed. Even if we were to successfully identify which

28 The term was introduced by Godfrey-Smith (2009) and made prominent by Piccinini (2015).
2 To the best of my knowledge, the problem was first mentioned by Shagrir (2001).
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physical states count as computational vehicles (e.g., neuronal spikes or flow of
charge), we may have to choose between competing theories about what is
computed. The problem is that computational vehicles do not wear a label on
their sleeves. This gives rise to two sub problems grouping indeterminacy (how to
group different states together) and interpretative indeterminacy (how to label
states ones they are grouped). Frequently, the literature exemplifies the case (of
interpretative indeterminacy) with a system Sc implementing logical duals, like

a logic gate with the following behavior:

Inputa Inputs Output
5V 5V 5V
5V ov ov
ov 5V ov
ov ov ov

Table 2.1: Logic gate

Under the assignment OV — F, 5V — T, the truth table (Table 1) of the logic gate
corresponds to an AND-gate. However, by flipping the labels (0V —» T, 5V — F)
the same device implements an OR-gate. Now, the issue is that the same system
appears to simultaneously implement multiple computations (conjunction and
disjunction) at once. The phenomenon generalizes to many other gates and
computational systems. Fresco et al. (2021) recently called such physical systems
multiply specifiable if they possess at least two logically non-equivalent labeling
schemes when using the same labels (e.g., ‘F’ and “T"). Consequently, the question
arises, which of the two labeling schemes is the preferred one?

In response to the triviality arguments and computational indeterminacy
most physical computation/type-(B) implementation accounts have amended
the SMA by introducing additional features to address either one or both:

Extended Mapping Account (EMA)
SMA'’s first and second clause + additional conditions constraining f.

Since the initial formulation of the SMA, a plethora of potential candidate
conditions have mushroomed, resulting in a fragmented physical computation
discourse.

One class of approaches, seeks to tackle (unlimited) pancomputationalism.
Often the common strategy has been to strengthen the conditional of SMA’s
second clause (‘if f(s1)=m1, then f(s2)=m2") because it covers only one specific,
instead of all possible execution traces. For that reason, some argued that putative
computing systems need to have counterfactual state transitions (Copeland 1996).
Roughly put, the idea is that if the system Sc had been in a physical state that
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maps onto m;, it would have evolved into a state that maps onto mi+1. Others
formulated similar requirements in terms of a suited causal structure (Chalmers
(1996), Scheutz (1999)) or dispositional theories (Klein 2008). Counterfactual, causal,
and dispositional constraints ensure that the mapping f applies to all of Mc's
potential execution traces and not just, as previously the SMA, a single particular
one &(ms, i) (Where i is some input). As such, these types of constraints are a
typical feature of type-(B) implementation.

A second class of attempts addressed the problems associated with IDENT
(cf. Lee (2020) for an overview). Prominently featured here are to so-called
semantic theories of computation. In a nutshell, they state that content is essential
to computational states. Historically, this framework arguably developed
separately from the SMA and other EMAs.30 The two primary reasons why
semantic accounts are widely accepted are as follows. First, the semantic account
is catered to the Computational Theory of Mind and various brain sciences,
which suggest that cognition (partially) relies on our brains performing
computations. As brain states are believed to have content and process
information, computational states must do the same. Consequently, according to
the semantic view, computational states must possess ‘aboutness’ and carry
external content or meaning. Second, the computational states of many
computing devices manipulate meaningful symbols, and the semantic view can
provide a solid foundation for understanding how these devices operate. In more
recent form, proponents of the semantic view like Shagrir (2001, 2022) and
Sprevak (2010), maintain that such semantic elements determine a privileged
labeling scheme and hence do away with computational indeterminacy.

Another prominent framework comprises mechanistic accounts of
computation (e.g.,, Milkowski (2013), Fresco (2014), Piccinini (2007, 2015)),
according to which computation must be implemented in specific computational
mechanisms.3! One merit of mechanistic accounts is their capability to draw from
the rich conceptual resources of the neo-mechanistic literature, especially on
mechanistic explanation. What's more, as some formulations of the mechanistic
account adhere to teleological functions, they also incorporate functional features,
rendering computing systems as functional mechanisms that may fail to operate
correctly (i.e., they may miscompute). Since one can formulate the mechanistic

30 Fodor's statement can summarize the core idea of semantic accounts, “There is no
computation without representation.” (Fodor 1975; Pylyshyn 1984) is testimony to this
development.

31 N.b., in so far as mechanisms have a causal structure or are said to have counterfactual state
transitions, the mechanistic account can also be interpreted as a yet more refined version of the
previous EMAs, with the extra condition that putative computational states need to correspond
to material components.
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account without normative considerations, this feature seems to be logically
independent of the mechanistic framework and could, in principle, apply to other
EMAs. In the same vein, although I am not aware of such developments, one

could combine mechanistic accounts with semantic elements or vice versa.

2.5 Juxtaposing (A) and (B)
What exactly is the relationship between type-(A) and (B) implementation? To
recap, while both implementation types provide bridges that connect an abstract
level to a less abstract one, they differ in initial purpose and scope: On the one
hand, type-(A) implementation allows us to evaluate the correctness of
computational artifacts’ levels by normative requirements (i.e., the specification)
of the stakeholders (programmers, users) involved. In this context, normative
judgments pivot on teleological function ascription and various LoA. Type-(B)
implementation, on the other hand, addresses one implementational stage only
- the abstract-concrete dichotomy (the lowest LoA). Its purpose is to characterize
physical computation in both natural and artificial systems formally. The
theoretical framework underpinning virtually all characterizations of concrete
computation is the idea that there is a mapping bridging the gap between abstract
computational formalism (e.g., symbolic machine code) and the dynamic
evolution of the physical states of the putative physical computing system.
Given their scope, both implementation theories are not mutually exclusive,
for there is a juncture in (i) artificial computing systems at the (ii) abstract-
physical interface (see Fig. 3). From the perspective of type-(A) implementation,
the insights of type-(B) implementation are relevant

Fig. 2.3: A schematic Venn diagram of the intersection of type-(A) and (B)
implementation. Their domains of application overlap in (i) artificial
computing devices at (ii) the abstract-physical interface.

to address the implementation of a computational hierarchy at the abstract-

physical interface. Vice versa, from the type-(B)’s point of view, the knowledge
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contained in the type-(A) discourse offers a nuanced picture about artificial
systems and computer scientists” related concerns and practices.

However, despite the overlap, there has been only a limited exchange
between these two research domains. This separated development probably
concerns their origin from different research traditions. Remember, philosophers
developed type-B accounts as part of a broader project to articulate a version of
the CTM. While it was always assumed that the computations carried out by the
brain (at least, according to the classical, digital CIM) are the same as those
carried out by computers, the focus remained primarily on natural systems,
particularly the brain.3? As a result, a tendency remains to take designed systems
for granted and bracket higher-level programming practice as addressed by type-
(A).

So, to further advance our general understanding of implementation and
make it a cooperative endeavor, a more fine-tuned analysis of the relationship
between type (A) and (B) is desirable. For so doing, I juxtapose the two different
implementation types regarding their most salient features: (i) teleological
function-ascription and (ii) mappings between levels. The following subsections
elucidate these salient features across both approaches in more detail and pave

the way for presenting a unified approach in sect. §2.6.

2.5.1 Teleology

Let me begin the juxtaposition with the role of teleology in implementation.
Many theories of function emerged in the context of biological traits but have
subsequently inspired accounts of artifact functions. Unlike organisms that may
develop functions in evolutionary processes, artifacts are purposefully created
and must account for human intentions. Overall, the question is how to balance
intentional, evolutionary, and causal (non-intentional) parameters.33 To date,
there is no consensus in the literature about teleological functions and whether
we should distinguish or opt for a unifying approach regarding natural and
artificial systems.

Many of these concerns affect our understanding of implementation. For
instance, as we have seen type-(A) accounts contain ingredients that allow us to
check whether a program (or any given sequence of computations) is
implemented and executed correctly at every LoA. The strategy was to address

32 Some strands of the mechanistic account of computation are an exception since they also shed
light on the subfield of computer architecture (Piccinini 2015, Ch. 8-11). Yet, this view still
shows little engagement with other relevant practices in computer science.

3 For a short survey of the debate, see, e.g., (Preston 2018, §2.3); for arguably the most detailed
account, consult Houke’s and Vermaas’ (2010) ICE-theory (incorporating elements from
intentional, causal-role, and evolutionist function theories).
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correctness via an intentionally chosen function-structure pair. To give a concrete
example, I borrow the following case from Turner (2020,19-21): Suppose we want
to prove the correctness of a program P written in the WHILE programming
language to find the greatest common divisor (GCD) of two integers. Then, we
may only determine P’s correctness if we have some specification as a ‘normative
yardstick” (the teleological function) telling us what the given program should

do. Subsequently, we may use the following expression
Vx : Num.Vy : Num -Vz:Num ‘P (x,y, z) = Ged(x, y, z)

as a correctness condition for the successful implementation of P. With this
formal expression at hand, we can establish correctness by a formal proof
showing that P’s input/output behavior agrees with the logical specification.
Albeit being a simple example, it illustrates a pattern of reasoning that underlies
most considerations about correctness of computational artifacts.

Contrast this intentional approach with the type-(B) camp, where remarkably
few studies have been designed to make any normative judgements of physical
computation to begin with. This is a severe shortcoming because it ignores some
of the central concerns of computer science: Absent a normative framework, we
cannot address miscomputation, the verificationist-debate or account for the
intricate correctness criteria of computer programs and software systems.

One of the few exceptions that allows for miscomputation is Piccinini’s (2015;
2020) functional version of the mechanistic account (cf. also Mollo 2018 and
Tucker 2018). In keeping with the functional-mechanistic account, physical
computation equals the transformation of some (medium-independent)
computational vehicle in accordance with a rule. 3 Similar to (formal)
specifications, rules determine what should be computed. Since they can be
violated, miscomputation occurs if the computational mechanism malfunctions
(i.e., violates the rule). In principle, this is a welcome feature, for it stabs in the
right direction for accommodating the concerns about correctness in computing
at the abstract-physical interface.

The crux is how these rules come about. According to Piccinini, the rule that
a computational mechanism should follow is determined by the so-called goal-
contribution account of teleological functions. On that account, “[a] teleological
function (generalized) is a stable contribution to a goal (either objective or
subjective) or organisms by either a trait or an artifact of the organism.” (Piccinini
2015, 116). Now, despite saying that subjective goals and artifacts are considered,

34 In line with Egan (2019), I take it that ‘rule-talk’ is just a different (normatively connotated)
way of referring to acting in accordance with a model of computation. See also my elucidations
on the mechanistic account in Appendix B.
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most recent work on the functional-mechanistic account merely pays lip service
to them.

Given its intellectual heritage, it is perhaps not surprising that the focus of the
mechanistic account almost exclusively lies on natural systems and how they
‘objectively’ can be the bearer of teleological functions.3¢ The problem with
focusing on physical computation in terms of natural teleology is that it
overlooks the widely employed notion of correctness in computer science. Alas,
how human agents bestow artifactual functions to a material computing system
according to their desires, beliefs, and intentions to determine computational
correctness is virtually left unspecified. The upshot of this analysis is that there
is an imbalance regarding the assumptions underpinning the usage of
teleological functions in type-(A) and (B) implementation. Can we sidestep this

to glue the two different notions together?

2.5.2 The Mapping between levels

The second point of comparison concerns the different implementation relations
at the abstract physical interface. As we have seen, type-(A)’s approach is that a
higher LoA’s symbol structure must correctly translate into a symbol structure
corresponding to a lower LoA. The agreed-upon semantics determine what then
counts as viable implementation between abstract structures, else it remains
unclear how the different structures are supposed to correspond to one another.
While much more can be said about the precise characterization of the semantics,
what suffices for the present juxtaposition is that the provenience of the mapping
f essentially hinges on the stipulations and conventions regarding the semantics
made by the designers and programmers. Now, when it comes to the ‘bottom” of
the computational hierarchy, type-(A)’s previous assumption to construe
implementation as a relation that links abstract objects to other abstract objects
or structures no longer holds. The reason is that the abstract-physical interface
requires a fundamentally different underlying equivalence relation - a cross-
categorical relation between abstract and physical objects.

This is where type-(B) enters the picture and could enrich our general
understanding of computational implementation in computer science. So, let us
look closer at how the implementation relation is conceived in this framework by
revisiting the SMA. According to its first clause, a mapping function f takes

% Schweizer (2019) and Anderson (2019) are notable exceptions.
36 Typically, proponents of the teleo-mechanistic view of physical computation flash out natural
teleology by claiming that living organisms share a set of capacities (survival, development,
reproduction, and helping). These capacities are thought to give rise to a functional
organization, allowing them to pursue these capacities (Piccinini 2020, 68); see also Dewhurst
(2018) and Mollo (2018).
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physical states and maps them onto computational states f:S; - M;. Two
qualifications are noteworthy about this relation: First, the mapping goes from
physical states to computational ones; if it were the other way around, we would
engage in computational modeling. Computability theory studies models of
computation that are distinct from computational models used in scientific
practice. The former models are used to explore computation in its proper sense,
while the latter models are used to simulate natural phenomena using
computational techniques (Milkowski 2014). Secondly, the mapping we are
concerned with is supposed to connect two different ontological domains.

In spite of the fact that the EMAs of type-(B) literature have brought forward
an impressive amount of literature with various constraints on the
implementation relation f, the metaphysical nature of the mapping relation does
typically not take center stage in the discourse of physical computation.
Exemplary is a statement by Chalmers, stating that

“[t]he definition of implementation does not appeal to any specific mapping

relation: rather, it quantifies over mapping relations, which can be any function

from physical states to formal states. I also do not know what it is for a relation
to have metaphysical commitments.” (Chalmers 2012, 231)

Similarly, Sprevak stresses that it is a “strategic error” to focus on the
metaphysical nature of f (Sprevak 2018, 176).

However, remaining silent about the metaphysical nature of the mapping
may, at least for the current project, come with the cost of an impoverished or
partially incomplete picture of how type-(A) and (B) implementation relate.

To inspect the metaphysical nature of computational implementation more
closely, it is helpful to turn to similar cases. When realizing that we must link
physical objects to logico-mathematical ones, one notices that what we are
dealing with is a special instance of a much more general issue: the relation
between mathematical objects (of computability theory) and the physical world
- a relation raising notorious questions in the philosophy of science and applied
mathematics (Wigner 1960; Steiner 1998). Following Contessa, I refer to the
general issue as the bridging problem, “the problem of how to bridge the gap
between [abstract] models and the world” (Contessa 2010, 516). Put differently,
we need to explain the correspondence between two ontologically different
categories - viz., how mathematical objects relate to the physical.

Trying to solve the issue quickly leads to quite a technical territory that would
hamper the current discussion. For the sake of clarity, I opted to discuss the
general idea here and shift an in-depth discussion into Appendix B instead. Very
roughly put, the important point for now is that virtually all contemporary
solutions to the bridging problem appeal to a mapping between mathematical

and physical structures. However, one of the main issues with this ‘mapping
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view’% is that ordinary functions only obtain between the domains of set-
theoretic structures - yet physical objects are not set-theoretic structures. Thus,
without further qualifications, maintaining that morphisms obtain between
(abstract) mathematical structures and physical objects amounts to a category
mistake (e.g., Frigg 2006, 55; van Fraassen 2008, 237f; Vos 2022). To put a long
story short, a solution to the bridging problem requires an account of how
material systems can offer set-theoretical structures.

However, it is wide consensus that this task is all but straightforward. Bueno
and Colyvan, for instance, remind us

“Put simply, the world does not come equipped with a set of objects (or nodes or

positions) and sets of relations on those. These are either constructs of our theories

of the world or identified by our theories of the world. Even if there is some

privileged way of carving up the world into objects and relations [...], such a

carving, it would seem, is delivered by our theories, not by the world itself. What

we require for the mapping account to get started is something like a pre-theoretic

structure of the world (or at least a pre-modeling structure of the world).” (Bueno
& Colyvan 2011, 347).

Can we overcome the structure generation problem concerning the levels
employed in type-(A) and (B) implementation?

2.6 A Unified Theory of Agential Implementation

After surveying the implementation landscape and providing an in-depth
analysis, two problematic instances still need to be addressed in aligning type-
(A) and type-(B) implementation. On the one hand, there needs to be more
consistency between the normative features determining correctness. On the
other hand, the bridging problem called the philosophical plausibility of a
naturalized implementation relation into question. In order to advance, we need
an explanation of how we can account for a physical system'’s
mathematical /computational structure.

The remainder of the chapter proposes a remedy to this situation in the form
of a unified theory of implementation in two steps: First, I submit that (A) and
(B) can be unified by bringing them into conversation with the conceptual
machinery of the literature on material models and scientific representation.
Second, based on these insights, I sketch a use-based account of implementation.
Since the common denominator among these findings is the stipulations and
conventions of (human) agents, the novel framework traces different agential

37 Sometimes, when thinking of models and representations in terms of such a formal relation
between structures (e.g., a mapping), the issue is also referred to as the ‘mapping view” (Pincock
2004, Batterman 2010, Bueno & Colyvan 2011).
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involvements in terms of dependency relations. Accordingly, the result is a
Unified Theory of Agential Implementation (UTAI).

2.6.1 Material Models as a remedy

According to what Giere (1999) calls the representational conception, scientific
models are used by scientists for the purpose of representing some (real-world)
system, where the latter is commonly referred to as target system T. Scientists use
models and their representational capacities for drawing various sort of
conclusions about the target system (e.g., explanation, prediction, confirmation);
a practice known as surrogate reasoning (Swoyer 1991). Accordingly, scientific
representation is characterized as the relation f between a model M and its
dedicated target system T, such that f:M — T.

The reason why I propose the representational conception as a remedy is
twofold: First, representations can be faulty and misrepresent the target. While
scientists may allow for minor deviations up to some previously defined
threshold, larger differences count as misrepresentation (the model does not do
what it should do). This aspect will be crucial to account for the analogous case
of miscomputation and correctness considerations discussed in §2.5.1. Second,
both models and targets come in various ‘ontological flavors.” On the one hand,
one typically distinguishes between (i) material and (ii) theoretical models.3¥ On
the other hand, target systems are either (a) real-world systems or (b)
hypothetical scenarios.?® Consequently, various modeling scenarios result from
the possible combinations of (i)-(ii) and (a)-(b). As such, the modeling relation -
like the problem of implementation - may also be a special instance of the
bridging problem.40 More precisely, the crucial commonality between scientific
representation and implementation of computation is that both essentially
require a mapping that relates mathematical structures to a physical substrate.

Given these similarities, one may solve our previously identified issues
regarding teleological function ascription and the bridging problem by bringing
one domain (modeling) into conversation with another (computing). Put

differently, the idea is that what counts for scientific models, mutatis mutandis,

3 The term model denotes a heterogenous collection of things - models come in the form of
descriptions, as material objects, or as abstract (mathematical) objects; for an extended list of 120
types of models, see (Frigg 2022, Ch. 16).

3 Weisberg, for instance, investigates the case of hypothetical modeling (2013, 121-134), where
models may represent nonexistent targets, possibilities, or impossible targets (e.g., models
where the targets are perpetual motion machines or multiple sexes populations).

40 For instance, assuming that M is a theoretical model relying on mathematical structure as a
representational vehicle, one needs to specify how the parts of the structure are mapped to the
physical make-up of the target system. Put differently, the representational relation f needs to
bridge the abstract-concrete dichotomy.
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applies to computing devices. In fact, in some cases, the distinction between what
counts as a scientific model and what counts as a computer is diminishingly
small. Take, for instance, Frigg & Nguyen’'s (2018) example of the Philips-Newlyn
machine. The machine uses the flow of water through a specifically designed
pipe system to model the distribution of commodities in a national Keynesian
economy. However, also known as ‘MONIAC" (Monetary National Income
Analogue Computer) the device can equally well be regarded as a special-
purpose liquid-based analog computer. Instead of representing a selected
economic scenario, the MONIAC can, in principle, be used to compute (a small
set of) differential equations.!

Of course, these similarities are not restricted to the flow of water. Overall,
many different physical properties can be used as representational- or
computational vehicles, respectively. For instance, when surveying the material
variety of such vehicles, Sterret notes that

“[...] electronic circuits were used as analogues of anything that could be

formalized as a solution of certain classes of differential equations, and ever more

sophisticated machines were developed to deal with ever larger classes of
differential equations and problems. Other examples of analogues used for
computation are mechanical analogues such as the geared devices built in the
seventeenth century, the soap bubble analogue computers invoking
minimization principles that were used to efficiently solve difficult mathematical
problems in the twentieth century and biological analogue computers of the
twenty-first century such as amoeba-based computing (ABC) analogue models.”

(Sterret 2017, 858)

Qua models, various physical systems may be employed as representational
vehicles for an explanation or prediction of a target system. Qua computer, one
may use physical systems as surrogates to read off the results of a sequence of
computation specified under a model of computation Mc. The difference is that
instead of a real-world target system, one then simply reasons about a particular
‘hypothetical scenario,” where the latter is characterizable by a transition function
0 that’s compatible with a model of computation Mc.

But how does the modeling literature address the ‘structure generation
problem” we encountered earlier? Generally speaking, philosophers of science
like Suarez (2003) and van Fraassen (2008) criticize naturalized attempts of
scientific representation, namely that the mapping f between model and target
reduces to a factual, mind-independent relation since it flies into the face of the
bridging problem. Without answering the structure generation problem, it is

highly contentious to defend a somehow naturally occurring mapping relation.

41T will discuss this device and how it features in physical computation in much more detail in
Chapter 4.
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Given that naturalized accounts about mappings fail to elucidate how and
when such a relation comes about without explaining the assumption of some
privileged preconceived structure, they are moot. Faced with the inadequacy of
naturalized accounts of representation, philosophers of science nowadays
commonly agree that scientific representation is contingent on human agents
establishing a mapping to the intended target. The upshot is that the relation
between model M and target T does not simply obtain ‘naturally,” i.e., without
the decisions, conventions, and stipulations of some scientists. Often, this type of
correspondence is called a three-place relation because it entails (i) a model, (ii) a
target, and (iii) an epistemic agent. In consequence, van Fraassen, for instance,
emphasized the necessary involvement of human agents in formulating his
Hauptsatz of scientific representation, as “[t]here is no representation except in the
sense that some things are used, made, or taken to represent some things as thus or so.”
(van Fraassen 2008, 23).42

In recent years, several scholars have (independently) turned considerations
about scientific models and representation like these into an approach to physical
computation (e.g., Care 2010; Horseman et al. 2014; Fletcher 2018;
Papayannopoulos 2020) - something which will be scrutinized much more fully
in Chapter 4. For now, it suffices to say that this accumulation of research
suggests that material models and computers are (fine-tuned) physical objects
employed by human agents as epistemic tools for their specific context-dependent
purposes. In what follows, I will present the underlying assumptions and
features of this way of seeing things.

2.6.2 UTAI and its features

At last, let me introduce the theory that enables the unification of type-(A) and
(B) implementation: UTAI. Figure 2.4 provides a schematic depiction of UTAI
and its most important features - the implementation of a model of computation
Mc at the abstract-physical interface through the execution of (one of the traces)
its corresponding transition function 6. In what follows, the various elements of
the graphic are discussed in detail.

First, the abstract-physical interface is illustrated by the dotted line
horizontally running through the diagram. In comparison to Fig. 1 (b), higher
LoA and the full computational hierarchy are implied to be represented in the
‘abstract realm’ (upper half above the dotted line), where one deals with symbolic
implementation (type-(A) implementation). In line with the SMA, the

equivalence between the state transitions of Mc (specified by a transition function

4 Many of these conclusions drawn in the philosophy of science coincide with the technical
literature from the philosophy of applied mathematics (cf. Appendix B).
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8) and the evolution of physical states of a putative computing system Sc is
pictured through a diagram as, e.g., found in Cummins (1989) or Ladyman (2009)
(cf. Fig. 2.2). The labels (1) - (3) correspond to the assumptions of scientific
representation/ modeling-based theories of computation:43
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Fig. 2.4: Schematic depiction of a unified theory of agential implementation
(UTAI).
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Assumption (1) Implementation is based on a representation relation f between the
designated physical states of the putative computing system and the abstract
states transitions defined by 6 of a computational formalism Mc (cf. Ladyman
2009, Horseman et al. 2014, Fletcher 2018, Papayannopoulos 2020), such that
f:S¢c = M holds. Analogous to the case of material scientific models, where
certain features of the model act as a representational vehicle to represent
(features of) a target system, implementation comes about when certain
(selected) features of a putative computing system act as a computational vehicle
to compute a function. Note that this development is a departure from the EMA,
in as much as scientific representation/ implementation can no longer be deemed
a binary relation, but a ternary one, because it is only due to the use/stipulations
of some agent that the linkage between model and target arises in the first place.

Assumption (2) The starting state m; (i.e., the input state) of Mc must be related
to some initial starting state of the material system s;. Likewise, the output state
mi+1 requires decoding it from sj+1 by reading it off or performing some type of
measurement. The rightwards-pointing black arrows in the diagram, labeled by

0 and Sc respectively, stand for the transition of the computational states m; and

4 In as much as features (1)-(3) can already be found in the previous literature, UTAI is
indebted to their respective insights.
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mi+1 and the temporal evolution of the computational vehicle/label bearers s;
(both represented by the grey circles).

Whilst maintaining that the act of encoding input-states and decoding output-
states after a computation has been argued for before (e.g., Churchland &
Sejnowski (1992, 63)), the here advocated view is different because the acts of
encoding and decoding are formulated in terms of scientific representation.
Importantly then, encoding and decoding are - in line with the notion of scientific
representation - directional (no longer isomorphisms) and require to be carried

out by some agent or epistemic community.

Assumption (3) Following the suggestion by Horsman and collaborators
(Horsman et al. 2014), I argue that the notion of scientific representation enables
us to address inaccuracy as a form of miscomputation.* Simply put, the idea is
that one may introduce an acceptable margin of error € between the output states
of Mc and output states of the physical system. If the chosen computing system
is completely reliable (i.e., run without errors), each computation cycle yields
perfect equivalence between the state transitions of Mc and the physical
evolution of the system; there is no inaccuracy. However, complete reliability is
a pipe dream. Real-world scenarios typically do not behave in a perfectly
preconceived idealized manner. As a result, the abstract series of computation
and the physical outcome only coincide up to .45 Depending on the chosen value
of error interval g, the same process could count as correct computation in one
case and as miscomputation in another.

While I think that (1)-(3) of the previous accounts are primarily correct, UTAI
entails further features and more fine-grained factors. Specifically, UTAI needs
to elucidate the involvement of and dependency on human agents concerning
the imputation of mappings, the creation of structure, and the ascription of
teleological functions. To uncover the intricate interrelations between human
agents and the different, UTAI explicitly tracks these dependency relations,4®
denoted by (a)-(c), between human agents (represented by the black mannequin)
and various elements in the implementation process. In the remainder of the

chapter, I explain the implications of these dependency relations in detail:

4 Philosophers of science commonly agree that there is at least a second type of
misrepresentation, viz., mistargeting. Transposing this view to computation amounts to the case
where users (accidentally) implement the wrong computational formalism. I will leave this
discussion out for now.

4 Once again, one can appropriate the discussion of scientific modeling, where philosophers of
science criticized the idea that scientific representation reduces to isomorphism because it
cannot make room for distortions.

4 ‘Dependence relation’, here, is understood as a relation between different entities, where one
entity is dependent on another.
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Dependency relation (a) emphasizes the crucial involvement of human agents
in higher LoA. It is paramount for at least two reasons: First, following the
desires, intentions, and pragmatic concerns of the programmers, a
‘computational problem” is formulated. In actual programming practice, this
typically leads to a (formal) specification, determining what is supposed to be
achieved. The specification acts as the normative yardstick to check correctness.
As discussed in the type-(A) implementation literature, the specification may be
seen as an ascribed teleological function. It is necessary to provide judgments
about correct execution and faulty behavior (miscomputation).

Furthermore, dependency relation (a) allows for illuminating a second crucial
involvement of human agents. After agreeing on a specification, practitioners
may then devise an algorithm. Next, the algorithm is typically formulated in a
suitable computational formalism Mc (e.g., a programming language of your
choice). The process described here roughly corresponds to the construction of
the various LoA in the computational hierarchy (Fig. 1). The bottom line is that
specifications, the algorithms targeted at the specific problem, the ensuing source
code, and so on are all dependent on human ingenuity. Put differently, computer
programs appear not to be discovered; they seem to be created by human agents
for diverse practices such as scientific endeavors, business, entertainment, and
many more. Ignoring the agential dependence of computational artifacts bears
the danger of unreasonably rendering the implementation of computational

artifacts in naturalistic term:s.

Dependency relation (b) concerns the mapping f that bridges the abstract-
physical interface. Implementation may occur when agents come up with a
structure-generating description (e.g., through information hiding) and a
suitable mapping relating the abstract and concrete realms. As argued at length
in sections §2.5.1 and §2.5.2 (see also Appendix B), naturalized approaches are ill-
suited to address the bridging problem adequately. Instead, we necessitate the
interpretational capacities of agents to overcome the structure generation
problem. Structure generation is contingent on agents because it demands that
specific properties/capacities of the system are selected and interpreted as
computational states or vehicles s;.

Furthermore, to bridge the gap between an abstract model of computation M,
and a concrete computing system S;, a mapping relation between the two is
eventually needed. Such a relation calls for the stipulations of human agents.
Users impute their chosen computational formalism onto the putative physical
computing system. The material system can then be used as an epistemic tool,
i.e., as a surrogate to carry out the intended series of computations determined

by the previously created program.
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Lastly, following these considerations, the implementation relation f:S; —
M. bridging the abstract-physical interface (represented by the horizontal dotted
line) is no longer conceivable as a mere binary relation. Instead, f is a ternary
relation - because it necessarily depends on the stipulations of agents -

characterized by a representational quadruple {m;, f, Sj Agent).

Dependency relation (c) characterizes the physical interactions of the human
agent(s) with the putative computing system as epistemic tool. Ideally, a
computing system is not only sufficiently reliable for repeated executions but
also reconfigurable. Physical reconfiguration is needed to reprogram the
computing system ultimately. The mere imputation of a different model of
computation M, onto the very same unchanged structure is insufficient for
implementation. The underlying physical setup from which the structure was
generated must also change; otherwise, it will result in a mismatch. So, what we
require from a programmable system is that a different starting state would have
led to a different but corresponding output state. Put differently, to be re-
programmed, thus calls for a counterfactual explanation.4”

The notions of modeling and scientific representation that underpin UTAI
allow incorporating the crucial constraint that counterfactual claims about the
computing system hold. In the context of scientific modeling, Bokulich (2011, 39),
for instance reminds us that for a model M to effectively explain a given target
phenomenon T, it is essential that its counterfactual structure closely aligns with
that of T. In other words, the elements of the model should, in a loose sense,
‘reproduce’ the relevant features of the phenomenon being explained. Like in the
case of the EMA, the counter-factual condition rules out stipulative fiat, i.e., the
completely unconstrained usage of arbitrary systems for computation that would
collapse into interpretational pancomputationalism. In other words, while
interpretation is a necessary condition, it is insufficient because the

computational vehicles of the computing system need to behave suitably.

2.7 Conclusion

This chapter surveyed different notions of computational implementation whose
connection has been underexplored so far. While type-(A) implementation
concerns correctness criteria of (abstract) computational artifacts, type-(B)
implementation addresses physical computation. The main takeaways of this
chapter are threefold:

47 N.b., this insight is virtually similar to the ones of the counterfactual/causal/dispositional
EMAs).
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(1) First, I clarified the implementation landscape: Despite having emerged
from different research traditions, I showed that the different implementation
types discussed in this chapter are not mutually exclusive. Instead, they partially
overlap under two conditions: considering (i) designed systems at (ii) the
abstract-physical interface.

(2) Second, based on a subsequent in-depth comparison, I argued that type-
(A) and (B) may mutually enrich each other regarding teleological function
ascription and bridging the abstract physical interface. This cross-fertilization is
vital to explain the implementation of computational artifacts like computer
programs in real-world machines. However, without further qualification, there
remain more considerable conceptual obstacles familiar from the philosophical
literature of teleological functions and applied mathematics.

(3) Third, I provided a specific way of thinking about overcoming these
obstacles and thereby coherently aligning the two different implementation
theories. Particularly, by bringing the implementation literature in conversation
with the literature of scientific modeling and representation, I sketched a
unifying framework called UTAI (unified theory of agential implementation).
The reason why this is fruitful is that in both modeling and computing, agents
engage in the form of object-based reasoning, where artifactual functions are
externally attributed, and agents impute a mapping relation between concrete
system and abstract target/program. My analysis showed that accounts, like
UTAI, sketched in agential terms, offer the right resources to accommodate the
main underlying assumptions of both type-(A) and (B) implementation:
stipulated mappings, generated structures, and ascribed teleological functions.
In sum, UTAI has the explanatory virtue of facilitating cross-talk between so far
rather separated discourses and kinds of literature.

In the following chapters, I will continue this analysis by focusing on UTAI’s
three dependency relations between epistemic agents and ontologically different
aspects of computer programs.
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3 The Problem of Creation meets
Computer Programs

The previous chapter laid the groundwork for a systematic study of the unified
theory of agential implementation (UTAI). This framework, which identifies
three distinct dependency relations in the implementation of computational
formalisms like computer programs, will be examined in detail in the following
three chapters. The idea is that tracking these relations will help us to make sense
of the connection between the different entities gathered under the polysemic
term ‘program.” In this chapter, we will start by focusing on the first relation,
which is the connection between epistemic agents and programs as abstract

entities.

3.1. Introduction

According to a prominent view, computer programs do not appear to be concrete
objects, yet we commonly think of them as created entities that can be interacted
with. This is somewhat surprising since philosophical orthodoxy holds that
abstract objects are not integrated into the causal pathway and can, therefore, not

be created.*8 Ergo, a pressing philosophical problem is creeping up:

‘In which way can these program qua abstract objects be the products of

our creation?’
Unfortunately, this issue has not fully received the attention it deserves until
now. In light of this problem, my goal in this chapter is to state more precisely in
what sense we can classify computer programs as abstract objects. My starting
point to unscramble the situation is to pick up the theme from the Prologue and
rethink how lawmakers of the 1970s struggled to come to terms with classifying
programs under patent law. Specifically, one episode sticks out: While some
argued that they should be conceived as physical switch settings or parts of real-
world machines, others suggested classifying them similarly to novels or musical
scores. Notably, reflection on the ontological status of (art)works has led to the
idea of thinking of them as abstract objects (Thomasson 2006; Sanfilippo 2021).
Throughout this chapter, I assimilate this reasoning, argue why it is a plausible
stance toward programs, and explore its ramifications.

48 The standard metaphysical view states that abstract objects exist eternally and cannot be
created. Most philosophers understand creation as a causal relationship between the creator
and their creation. However, abstract objects are causally inert and hence cannot enter such a
relationship, so it is unclear what kind of process the creation of an abstract object involves
(Mag Uidhir 2013, 11).
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In a nutshell, the underlying rationale is this: Many scholars from the
philosophy of art, metaphysics, librarianship, and literary studies consider their
corresponding (art)works abstract because they cannot be identified with a
concrete instance; they appear to (simultaneously) exist in different media
without being reducible to any specific token. Importantly, most participants of
the debate understand “abstract’ here in the same sense as the abstract-concrete
dichotomy (Falguera et al. 2022) that is relevant to us, i.e., as non-spatio temporal
entities, as appealed to in the Introduction and the previous chapter. On the face
of it, these so-called repeatable artworks thus face the same dilemma as programs:
The crux is that the premise about the existence of art-abstracta stands at odds
with the plausible assumption that these artworks, qua artifacts, are intentionally
being created by a specific human being at a specific time and place. Typically, the
conundrum is called the Problem of Creation (PoC). Albeit underappreciated in the
philosophy of computing so far, I will show that many of the philosophical
problems and solutions associated with this way of thinking about repeatable
artworks applies mutatis mutandis computer programs.

The main takeaway from my application of the (POC) to programs is twofold.
On the one hand, from the perspective of the philosophy of computer science,
my approach enables us to step outside the beaten paths of the metaphysical
inquiry in computing and offer a new angle on the ontology of programs. On the
other hand, from the perspective of contemporary metaphysics, my approach
steers the debate about the ontological status of computer programs towards
more established philosophical territory. Notably, it shows that the abstract
nature of programs does not require the postulation of complete sui generis
solutions (e.g., a “dual nature”) but must be couched along the axis of Platonsim,
Nominalism, and Creationism.

In what follows, this chapter is divided into five sections. Section §2 provides
some necessary preliminaries to apply the (PoC) to computer programs. Next,
section §3 introduces the (PoC) in more detail and outlines a taxonomy of its most
typical responses. Thereafter, in section §4, I discuss the implications of the
differing metaphysical frameworks when adopted to computing. Lastly, I

conclude (sect. §5).

3.2 Setting the Stage

Before we dive into the essential philosophical details of the (PoC), I want to
provide some initial clarifications about programs. If computer programs are to
be the subject of the (PoC), we must have a clear grasp of (i) what one exactly
means by ‘program,” (ii) how they are created, and (iii) in what sense they are

abstract. Accordingly, in Section §2.1, I will introduce an example program that
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will be frequently referenced throughout this chapter. Following that, in Section
§2.2, I will briefly outline how programs are created. Lastly, in Section §2.3, I will

discuss the abstract nature of programs more formally.

3.2.1 An example as conceptual laboratory

Although relatively unproblematic in everyday life, it is a somewhat contested
question among philosophers of computing what exactly might be meant by the
concept of ‘program’ (Gemignani 1981; Lonati et al. 2022). With so many
variations in the understanding of programs - regarding them as abstract
entities, physical entities, or entities that span multiple ontological categories -
using the term unexplicated is potentially misleading.

However, in line with my arguments about the polysemic nature of the term
in this thesis” introduction (Ch. 1), I will not define programs here. Instead, I only
rely on what I take to be a paradigm instance of a computer program written in
a high-level programming language, as depicted in Fig. 3.1. The source code is
written in C and, and the program uses a while-loop to find the greatest common
divisor (GCD) of two integers. Instead of relying on a rigorous characterization
of all computer programs, this example will act as my ‘conceptual laboratory” in
due course.

To avoid any ambiguity, it is vital to note what I do (and do not) intend to
pick out with my example. As we have seen in the previous chapter, it is common
to think that computational systems are built in a hierarchical fashion (e.g.,
Primiero 2016; cf. Fig. 2.1). Accordingly, there are various interconnected levels
such as specification, algorithm, source code, machine code, hardware and so on.
Facing this “stratified ontology,” we must specify on which level our example is
located. This task is relatively straightforward: Given that the code is written in
C, we can classify it as a well-formed set of high-level programming language
instructions, ie., a symbolic (type-(A)) implementation of the proposed
algorithm in source code.

Importantly, this characterization allows us to distinguish our C program
from its neighboring upper and lower LoA. Regarding the former, the higher
LoA, it is important to distinguish our program from the GCD algorithm it
implements. Despite hinting at the difficulties of defining the term “algorithm” in
the Introduction (see also Appendix A), I use “algorithm” here in a sense similar
to Newell:

“ An algorithm is more abstract than a program. Given an algorithm, it is possible

to code it up in any programming language. You might think that a program

should be something like an algorithm plus implementation details. Thus, you

examine the text of a purported algorithm-if you find an implementation detail,
you know it is a mere program.” (Newell 1986, 1029).
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On this view, the corresponding (GCD) algorithm could have thus
been implemented in an entirely different programming language, like Java or
Python.

#include<stdio.h>
void main()
{
int a, b, gcd, remainder, numerator, denominator;
printf("Enter two integers\n");
scanf("%d %d", &a, &b);
if (a > b)
{
numerator = a;
denominator = b;
}
else
{
numerator = a;
denominator = b;
}
remainder = numerator % denominator;
while (remainder != 0)
{
numerator = denominator;
denominator = remainder;
remainder = numerator % denominator;
}
gcd = denominator;
printf("GCD of %d and %d = %d\n", a, b, gcd);
}

Fig. 3.1: Example C program to find the GCD of two integers using a
While-loop.#°

Regarding the lower LoA, we have to remember that source code in a high-
level language is rarely directly executed on a computer. It is typically translated
into machine code using interpreters or compilers. In each case, different
compilers, for instance, may further optimize the resulting machine code to the
underlying hardware. As a result, the original GCD program may fragment into
many different lower-level implementations in different computational
ecosystems (e.g., on a Thinkpad Carbon x1, Gen 5, with Ubuntu version 22.04
LTS as opposed to on an Apple MacBook Air macOS Sonoma).>0

4 https:/ /www.sanfoundry.com/ c-program-gcd-two-numbers-recursive-euclid-algorithm / #c-
gcd-program-method-4

50T thank Liesbeth De Mol for pressing me on the matter and suggesting these particular
example implementations.
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Moving forward, it is thus crucial to bear in mind that my investigation
throughout this chapter is exclusively limited to the symbolic level in which the
source code is written (this comes close to what I call the Notational View in
Appendix A).>1

3.2.2 A brief sketch on how Programs are created

Philosophers standardly define ‘artifacts” as objects made or produced for a
specific purpose (Hilpinen 2017). Typically, when creating a (material) artifact,
the makers intentionally modify one or more objects until it becomes the desired
end product (Hilpinen 1993, 165). General actions of artifact-making include
separation, reshaping, and assembly using different techniques or routines
(Hilpinen 2017). As programs are intentionally produced entities, we can
consider them sub-types of artifacts (see Appendix A).52 However, since the
working assumption of this chapter is that it is plausible to assume that programs
are abstract objects, it is essential to take a closer look at their production process
and ask: How exactly are programs created?

Given the ubiquity and importance of programming in modern society,
accounts documenting the production of programs run the gamut - including,
but not limited to, historical accounts such as Grier’s (2013), pleas for various
programming styles like structured programming (Dijkstra 1968), hundreds of
textbooks that teach students basic programming techniques (Abelson et al.
1996), project managing frameworks from the realm of software engineering that
elucidate the do’s and don’ts of (large) labor-intensive projects (Brooks 1978),
and ethnographic studies (Button & Sherrok 1995).53

Commonly, the story about the creation of programs goes something like this:
At the start, the aim is to create a specific program. However, in the realm of
computer science, we cannot simply transfer our desires and intentions to our
computers. We must first translate them into a computational formalism that the
machine can execute. This typically involves writing source code in a high-level
programming language. The programming process is multi-step, error-prone,
and often laborious. To stay on course with our original goal, we ideally create a
specification. Specifications serve as the ‘blueprint’ for producing small and

complex large-scale computer programs. In other words, they define what the

51 Although I have only provided a small programs, I think that, without loss of generality,
many of this chapter’s results apply mutatis mutandis to larger or even large-scale programs.

>2 As will become clear throughout the chapter, Platonists about programs (if there are any such
persons) may argue that assuming that programs are produced is to throw out the baby with
the bath water. Instead of creating programs, a Platonist would suggest that we somehow
‘discover’ them.

>3 This list represents merely a fraction of the abundant sources available. However, I do believe
that it is enough to convey the general message of the current subsection.

51



3 The Problem of Creation meets Computer Programs

program is supposed to do (Primiero 2020, 208). Therefore, understanding
specifications is crucial for comprehending the process of creating programs. As
Turner (2011, 135) points out, ‘programming is not an aimless activity’.
At a first stab, we may turn to Cantwell Smith’s characterization of program
specification
“A specification: a formal description in some standard formal language,
specified in terms of the model, in which the desired behavior is described. [...]
[A]ll it has to do is to specify what proper behavior would be, independent of
how it is accomplished. For example, a specification for a milk-delivery system
might simply be: “make one milk delivery at each store, driving the shortest
possible distance in total”. That’s just a description of what has to happen. [...]

Specifications, to use some of the jargon of the field, are essentially declarative;
they are like indicative sentences or claims (Smith, 1985, 20).”

As rightly pointed out, specifications are often formally written; think of logical
notations like Z, B, and VDM. However, Cantwell Smith’s definition is too strict,
as it limits the notion of specification to a formal description of our original
problem. While a complete formalization of the specification is desirable, it is not
always practically achievable.5* In a more recent paper, Turner (2011) reminds us
that specifications can take several non-formal forms such as natural language
description or graphical representation. That is why Duran clarifies
“Computational practice has shown us that specifications cannot be fully
formalized. Rather, they must be conceived as ‘semi-formal” descriptions of the
behavior of a target system. By this I mean that formal as well as non-formal
descriptions coexist in the specification. In other words, mathematical and logical

formulae coexist with documentation, instructions, and other information
written in plain English.” (Duran 2018, 41)

Regarding my small exemplary program, one may imagine where its
specification was informally given as A program written in C to find the greatest
common divisor of two integers using a While-loop.>> Depending on one’s skill level,
it should be a simple routine for a trained programmer to transform this
rudimentary specification into something like our exemplary program.>®
Although my example program is simple, its creation process exemplifies a
pattern that underlies many successful creations of programs written in (high-
level) programming languages, I take it as sufficient evidence to support this

chapter’s working hypothesis that programs are creatable.

** My simple example program in Fig. 3.1 is an exception.
> For a formal specification, see sect. §2.5.1 (Ch. 2).
% For a more detailed discussion on the functional specification of a program implementing the
GCD, see (Turner 2018, 44-47).
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3.2.3. In what sense Programs are Abstract: The Physical Object Hypothesis
Why and in what sense can programs be conceived as abstract objects? In the
introduction to this chapter, I already informally discussed potential answers. I
wrote that ‘abstract’ refers to the metaphysical category determined by the
abstract-concrete distinction and (hence) signifies being none spatio-temporal.
Specifically, I invoked an arqument from analogy based on repeatable artworks.
Researchers from various disciplines consider repeatable artworks abstract
because they cannot be plausibly identified with an individual copy. I will now
adopt this reasoning to computer programs.

To present these thoughts more precisely, it is helpful to frame them in a more
formal framework. In the philosophy of art, the problem at stake is frequently
discussed under the name of the Physical Object Hypothesis (POH). Adapted from
Mag Uidhur (2013, 8, fn. 4), the reasoning of the (POH) can be summarized as

follows,

Physical Object Hypothesis (POH):
(POH)1 There are such things as artworks.
(POH)2 Artworks are either repeatable or non-repeatable.
(POH)3 Repeatable artworks cannot be coherently construed as concreta.
(POH)4So, if there are such type of artworks, then those artworks must be
abstract objects.
(POH)5 There are such artworks.
(POH)6 So, there are such things as artworks that are abstract objects.

In the philosophy of art, there seems to be general agreement that reasoning
along the lines (POH)1 to (POH)s must be taken seriously.5”

However, what exactly are repeatable artworks, and why can’t we construe
them as concrete objects? The common belief is that physical objects of the same
sort are different only if they do not occupy the same spatiotemporal location.
Now, when it comes to repeatable artworks however, the relevant identity
criteria are distinct for they can be in different spatiotemporal locations. As
Levinson summarizes,

“Philosophers have long been puzzled about the identity or nature of the art

object in nonphysical arts, e.g.,, music and literature. In these arts—unlike

painting and sculpture—there is no particular physical ‘thing’ that one can
plausibly take to be the artwork itself.” (Levinson 1980, 5)

57 Wollheim (1968) and Wolterstorff (1980) are prominent examples; for an overview of the history
of the ontology of art, see Livingston (2008). For a survey of similar conclusions in other
disciplines, see Sanfilippo (2021).
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Put differently, unlike sculptures or paintings, repeatable artworks are
characterized by their inability to be singled out by specific/individual copies.
Not only can they survive changes in their material support, but they could also
have been made of different materials. Repeatable artworks are modally flexible
with respect to the matter they are made of. In the wake of these conclusions,
most scholars working on the ontology of artworks agree that the (POH) hence
calls for an investigation into the metaphysical nature of such art-abstracta.

Now, I submit that programs in the sense of the one introduced a few pages
ago (sect. §2.1) also violate the (POH) and must, therefore, also be understood as
abstract objects. Although programs undeniably differ from repeatable artworks
in many important ways, > they share the feature that’s crucial for the
applicability of the (POH) - repeatability. Let me unpack the reasoning behind
this claim to make sure that the argument holds; it essentially hinges on two
observations:

The first (and more straightforward observation) is that nothing in the logical
structure of the (POH)’s argument depends on ‘artworks’ per se. In principle, one
may plug in any other kind of entity ‘X" as long as all of the six propositions
equally apply to the entity chosen. Importantly, in our case, we modify the (POH)
for our purposes and fill in the term ‘computer program.” Second, in order to
assert that programs are abstract in the relevant sense, we need to make sure that
they indeed conflict with the modified (POH). For so doing, it is vital to look at
the second premise (POH)z, according to which programs are either repeatable
or non-repeatable. This leads us to the question - in what sense are programs
repeatable?

To answer this question, it is chief to note that ‘repeatability” in this context is
the capacity of an entity to have multiple instances. Admittedly, ‘repeatability’
is not in the standard computer science vocabulary. Instead, it is customary in
the philosophy of (computer) science to speak of multi-realizability. ‘Multi
realizability” is an influential notion in the philosophy of mind (Bickle 2020) and
is frequently employed in the discourse on physical computation (Milkowski
2016).° In the context of computation, multi realizability then expresses the idea
that many distinct physical systems can implement the same sequence of
computations; they are so-to say, repeatable. As Duncan aptly summarizes

58 [t is important not to misconstrue programs as artworks (though some programs might be).
% In fact, as we have seen in my discussion on type-(B) implementation in the previous chapter,
it is the multi-realizability of physical computation that is thought to give rise to the so-called
triviality arguments. Since physical computation is not bound to a specific substrate, it can be
realized in many physical systems. Very roughly put, this versatility makes it difficult to draw
the boundaries between systems that compute and those that don’t (the problem of extensional
adequacy).
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“A software program, similar to a novel, is a generically dependent entity. A

particular software program does not depend on a particular independent entity

(such as a particular DVD or flash drive) in order to exist. Rather, a software

program exists as long as it is borne by some independent entity. For example, if

you destroy my DVD of Microsoft Word, Microsoft Word (the software program)

does not cease to exist.” (Duncan 2014, 38)

Now, none of this should strike us as controversial. After all, everything I said
so far is basically contemporary philosophical jargon for expressing that
programs - in the textual sense - are portable and frequently have copies. In fact,
one of the main points of developing high-level programming languages was to
develop a notational scheme decoupled from the underlying machines'
idiosyncrasies and make them portable (see Appendix A, Notational View). As
such, it does not make sense to speak of the location of a program. Just as there
can be many copies of the novel Sherlock Holmes, there can, e.g., be many

implementations of our textual example program.

3.2.4 Taking Stock
In order to apply the (PoC) to computer programs, we need to know what we
mean when we talk about programs and in what sense they are artifacts whilst
simultaneously thinking about them as abstracta. In line with these demands,
this section introduced a simple program as our conceptual laboratory (§2.1),
described how they are created, and discussed how the well-known (POH) from
the philosophy of art licensed us to think of programs as abstract (sect. §2.3).

So far, I have only introduced the (PoC) informally and in bypassing. In the
next section, I will flesh out the issue more rigorously.

3.3. The Problem of Creation
The Problem of Creation (PoC) is a philosophical problem from the philosophy

of art originally pertaining to works of literature, musical compositions, and
fictional characters (Deutsch 1991; Cameron 2008; Irmak 2020). In recent years,
the problem’s scope has successfully been extended to other metaphysically
puzzling entities, such as scientific theories (French & Vickers 2011; French 2020).
My goal in this section is to introduce the problem in general terms and provide
an overview of its potential answers. The purpose of this presentation is that it
will be helpful in eventually applying the (PoC) and its ramifications to the realm
of computing.

So here it is. When referring to the entity under scrutiny as X, the pattern of

reasoning of the (PoC) takes the following form:
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The Problem of Creation (PoC):
X1: Xs are abstract objects (POH).
X2: Xs are created.

Xs: Abstract objects cannot be created.

At first sight, there are good reasons to accept propositions (X1)-(Xs) individually,
as all of them appear perfectly well-founded. The first proposition, (X1), hinges
on the validity of the (POH) that we previously discussed in sect. §2.3. In other
words, as long as the (POH) holds for whatever we plug in for X, X is an abstract
object in the sense that it is causally inefficacious.® Regarding the second
proposition, (Xz), creation is typically regarded as a causal activity. On this view,
we are causing X's existence. With this in mind, the last proposition, (X3), asserts
that abstract objects (i.e., objects lacking spatiotemporal location) cannot be
created, since it would require a causal process between an agent and a spatio-
temporal entity.

However, the three propositions are mutually inconsistent. This paradox has
sparked substantial debate for many years, leading to the question of which
proposition of (X1)-(X3) we are willing to reject. Accordingly, three major options
can be identified:

1. Platonism
2. Nominalism
3. Creationism

In a nutshell, each of these three positions is the result of rejecting one of the
(PoC)’s three propositions (X1)-(X3).

In what follows, it is vital to understand the metaphysical implications of each
of them because, as I will argue, they apply mutatis mutandis to computer
programs. Accordingly, each option will be mapped out in the separate
subsections (§3.1) to (§3.3). Since the following three positions can be discussed
on a general level (i.e., pertaining to a general metaphysical doctrine) and in
particular subdomains (mathematics, aesthetics, music, etc.), there is a
tremendous amount of literature to keep track of. To do justice to these different
options, it is worthwhile to illuminate the relevant details. While this may appear
as getting sidetracked too much into the philosophy of art, this ‘detour” will turn
out to be helpful for identifying the corresponding notions for computer

programs.

% The reasoning here is that most accounts of causation assume the relation between cause and
effect to be a spatiotemporal relation in the realm of concreta.
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3.3.1 Platonism

Platonism is the view that posits the existence of abstract objects, which are non-
physical and non-mental entities that exist outside of space and time. Under
contemporary Platonism, abstract objects are unchanging and entirely causally
inert, i.e., they cannot physically interact with other objects (Balaguer 2016).
Accordingly, abstract objects’ existence is deemed mind-independent and does
not crucially hinge on us. As such, Platonism is one of the potential answers to
the (PoC): In order to resolve the paradox, Platonists endorse that there are
abstract objects (X1) and that they cannot be created (X3), while denying, that X
is created (X2). Put differently, the view advocates that abstract objects are not
created but exist independently of us.

Philosophers have applied this metaphysical view to a wide array of things
that people have considered to be abstract objects: Logico-mathematical objects
like numbers, propositions, universals, words and sentences, fictional characters
like Donald Duck and Sherlock Holmes, and repeatable artworks like novels and
musical compositions. In principle, endorsing Platonism does not require one to
be a Platonist about this entire list of objects. In other words, one can follow a
piecemeal approach and be a mathematical Platonist but favor non-Platonist
proposals when it comes to fictional characters or computer programs.

Accordingly, there may be different reasons to maintain a Platonistic outlook
towards different entities X. For instance, some philosophers have defended
mathematical Platonism due to mathematics’ essential role in science. ¢!
Especially Putnam (1971) and Quine (1976) argued that we should believe in the
existence of abstract mathematical entities because of mathematics’
indispensability in the empirical science. In the literature, the argument is known
as the ‘Quine-Putnam indispensability argument” (Colyvan 2001b; Liggins 2008;
Colyvan 2024).62

Besides that, some philosophers consider, e.g., works of music to be abstract
objects and endorse a form of musical Platonism (Kivy 1983; Dodd 2000; Dodd
2002; Dodd 2007; see Kania 2013, 198-205 for a summary of contemporary
musical Platonism).®3 In this vein, Dodd, e.g., contends that musical works are
abstract eternal types, where the latter correspond to sound structures that we
can discover. Musical Platonism (and Platonism in general), hence denies musical
works (and many other abstract objects) the status of artifacts. As a response, the

composition of a musical work cannot be seen as an act of creation but instead

61 There are many different versions of mathematical Platonism (Bueno 2020, 92; Linnebo 2024).
62 Despite the name, the Quine-Putnam argument differs from Quine’s and Putnam’s individual
positions. I will not delve into the details and plausibility of the overall argument here.

63 Similarly, Richard Wollheim (1968) argues that literary works are types of which copies are
tokens.
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should be understood as a ‘creative discovery’” where composers bring to light
something already ‘there’ (Dodd 2000, 427-434). So, whenever someone (or
something) produces, say, a melody m, they produce a token of the type (i.e., a
‘melody m sound structure’). N.b. though, when considering non-mathematical
candidate abstract objects, we arguably lack any comparable indispensability
argument that would warrant ontological commitment to them. Musical
compositions or fictional characters are different from the kind of things that are
indispensable to our best scientific theories.

Moreover, unlike the discovery of mathematical proofs or theorems (which
can go wrong), Beethoven could not have made a mistake with his “discovery” of
the Archduke Trio (Sharpe 2001). As French (2020, 102) remarks, musical
compositions thus seem to be conceptually dependent on their creative act in
such a way that the process could not lead to anything other than the work.
However, there is no such dependence when it comes to the discovery of
mathematical proofs. Put differently, while mathematicians can devise a flawed
mathematical proof, it is questionable whether a musical composition can be
wrong.

The point of contrasting these different forms of Platonism is that the view
may be corroborated - or argued against - by differing arguments pertaining to
specific entities. These considerations are essential to remember when turning
our attention to computer programs. Before moving on to the next answer of the
(PoC), I must still mention one of the main points of contention of all forms of
Platonism - the process of discovering abstract objects. While Platonists see it as
a benefit not having to account for the creation of abstract objects, the flip side is
that it poses a challenge of explaining how we can know of and discover these
objects.

In the philosophy of mathematics, some aspects of the issue are discussed
under the label of the Benacaref Problem. The problem is named after Paul
Benacerraf, who first presented it as a challenge for mathematical realism in his
‘Mathematical Truth” (Benacarref 1973). The problem has been widely influential
and is thought to generalize to Platonism of other abstract objects (Clarke-Doane
2016). The argument concerns our lack of epistemic access to mathematical and
other abstract objects. Generally speaking, epistemic access arguments start with

the assumption that causal relations give rise to our cognitive apparatus. %

6 Benacaref formulated the argument in terms of a causal theory of knowledge. Today’s
majority of philosophers deny that it holds in full generality. Many, therefore, resorted to
Field’s (1980) presentation of the problem that is couched independently of any theory of
knowledge. For the sake of the current somewhat coarse-grained presentation of the topic, I
omit the details for now; see, e.g., (Clarke-Doane 2016, 20-22) and (Cowling 2017, 135-138) for
more detailed discussion.
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Perception, for instance, crucially hinges on the causal interaction between agents
and the world. In so far as perception and other causal cognitive processes
furnish us with much of our knowledge, it is difficult to envision how we might
acquire knowledge or justified beliefs about some subject matter without
standing in a causal connections to it (Cowling 2017, 131). Absent any further
qualifications, this reasoning suggests that our ability to gain knowledge of
subject matters from which we are causally isolated is moot. As such, the
Platonist about any X should also address the epistemological challenge of how

we can have access to X as a causally efficacious entity.

3.3.2 Nominalism

Nominalism, sometimes dubbed ‘anti-realism,” is the second main answer to the
(PoC). This metaphysical position rejects proposition (X1) by maintaining that a
candidate abstract object X does not exist or turns out not to be abstract after all.
In the latter case, we need to think of X in terms of some suitable concrete
replacement. Put briefly, there are thus two principal flavors of nominalism
(Kania 2013, 207-208), as one can reject the (PoC)’s first propositions in two

different ways:

(a) Eliminativism: According to eliminativist theories, entities/objects X do

not exist at all,

(b) Materialism: According to materialist theories, the objects X in question

do exist but not as abstract objects

As with Platonism, the scope of Nominalism can vary greatly (e.g., some may
wish to eliminate only specific entities from our ontology). One of the standard
appeals of these options is that they are thought to be metaphysically
parsimonious as they do not posit the existence of “mysterious’ abstract objects.
Although (a) and (b) bear some similarities in terms of motivation, it is helpful

for conceptual clarity to discuss them separately.

Option (a): Eliminativism

The distinguishing claim of option (a) - Eliminativist theories - is to deny the
existence of entity X (e.g., mathematical objects, universals, repeatable artworks,
and so on) wholesale.®®> According to an all-encompassing form of Eliminativism,
there are only concrete objects (a shared commitment with option (b)), but none
of them are identifiable with the abstract object in question; according to

% N.b., as with Platonism, one may choose a piecemeal approach and only endorse an
Eliminativist attitude for specific entities.
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particular forms of Eliminativism, we should only deny existence to specific
objects. What are some of the strategies to motivate this view?

One prominent line of reasoning in this regard is how mathematical
nominalists occasionally attempt to reconstruct the usage of mathematical
language (in science). Hartry Field’s rejection of the indispensability argument of
mathematics is a prominent case in point. Field (1980) argues that mathematics
is dispensable to science by exemplifying how we can avoid its usage in
Newtonian gravitation theory.®® Often, his and other’s approaches in this vein
are dubbed mathematical fictionalism since our mathematical statements do not
turn out to be true (due to their not being any corresponding mathematical
entities) (Balaguer 2023).

Outside the realm of mathematics, philosophers with an Eliminativist leaning
have employed similar strategies of avoiding reference to the to-be-eliminated
abstract objects. For example, while those who wish to eliminate works of music
from our ontology would admit that there are performances, recordings, creative
actions of the composers, etc., they would deny that any of these can be identified
with the musical work itself - ergo, there are no works of music.” Note that as
earlier in the mathematical, this conclusion raises urgent questions; if works of
music do not exist then what exactly are we talking about when speaking of
musical compositions? The point is that similar pressing questions generalize to
all sorts of seemingly abstract entities X that are supposed to be eliminated from
our ontology.

One of the main strategies to answer these sorts of questions is paraphrasing.
The idea can be understood against the backdrop of Quine’s criterion of
ontological commitment defended in his influential article ‘On What There Is’
(Quine 1948). According to Quine, the usage of a statement containing a name or
singular term of the form “There is some X’ commits us to the existence of the
term X (or anything fitting that description).®® The idea of paraphrasing is to
rewrite our sentences in such a way that we can eschew reference to the particular
entity, and therefore avoid ontological commitment to it.

% Another prominent series of objections against mathematical indispensability arguments can
be found in the work of Penelope Maddy; see, e.g., Maddy (1992).

¢ As Kania (2013) clarifies in his overview of musical Nominalism, only a few have opted for
the elimination of musical works. Rudner’s (1950) is arguably the closest position in that regard
(though, according to Kania, it is possible to interpret his account as Materialist). Other
Examples are Cameron’s (2008) “There Are No Things that are Musical Works” and Steven
French’s and Peter Vicker’s work based on it (French & Vickers 2011; French 2020).

88 Strictly speaking, Quine’s criterion only applies to theories (i.e., sets of sentences) formulated
in first-order predicate logic that contain existential and universal quantifiers. We thus need to
translate a sentence in question into first-order logic and then assess its ontological
commitments based on what the translation quantifies over (Bricker 2016).
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Exemplifying the procedure for musical works will clarify matters. According
to the proponent of the paraphrasing strategy, to talk about (abstract) works of
music is to merely ‘superficially” talk about these abstract entities. While talking
about works of music might be very useful and common practice in everyday
life, it turns out the fundamental furniture of the world does not include such
works. This can be made sense of by claiming that sentences like ‘There are
musical works” admit two systematically different kinds of uses (Dorr 2005;
2008). According to Dorr, we may use sentences in a superficial and fundamental
way. So, when we engage in everyday life talk about works of music in plain
English, we are said to merely talk about matters in a superficial way. What really
matters, though, is our ontological commitment when we speak about entities in
a fundamental way (sometimes philosophers call this fundamental language
Ontologese).

Despite the claims of Eliminativists that their view is ontologically simpler, it
requires a considerable amount of theoretical underpinning for accepting such
philosophically thorny concepts like ‘fundamentally’ and ‘Ontologese.’
Additionally, one may reasonably doubt that consistent and plausible
paraphrases can always be found for sentences involving the entity X that they
want to eliminate.®”

Option (b): Materialism

According to option (b) - materialist theories - entity X is not actually an abstract

object but something concrete. In the case of musical works, candidate concrete

manifestations are score copies, performances, recordings, playing records of

musical performances, and so on (Tillman 2011, 15).70

Analogously to the previous metaphysical views presented so far, one may be a

materialist about some things while taking a different stance about other entities.

Tillman aptly captures some of the alleged merits of (musical) Materialism:
“Some of the advantages of any form of musical materialism are obvious [...]: if

musical materialism is true, there is no mystery about how a musical work can be
created, temporally located, and hearable.” Tillman (2011, 28)

Note that Tillman’s explanation applies to Materialism in general (as opposed to

Materialism about musical compositions specifically) by erasing the adjective

% For a short version of this argument, see (van Inwangen 1977, 303-304); for an in-depth
analysis of the problems associated with paraphrasing, see (Wetzel 2009, 53-92).
0 Matters are further complicated because most metaphysicians distinguish between
endurantism and perdurantism; see Appendix A, the Physical View. In line with this
distinction, Tillman maps out the different options (Tillman 2011).
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‘musical.” While this sort of parsimony is generally regarded as one of the merits
of Materialism, it does not come without challenges.

Most notably, Materialism typically flies in the face of our beliefs informed
by our practices. For instance, according to musical Materialism, a musical work
is a concrete object or event; likewise, mathematical objects like the number 3 or
V-17 would be physical. As explained earlier when introducing the (POH), the
decisive point is that many practitioners and philosophers of art consider (due to
their repeatability) their works to be abstract. Now, what is the reply to this
situation?

In defending musical Materialism, Caplan and Matheson (2006) supply an
answer that may be extended to other forms of Materialism. Given the (POH)’s
insights, they also reject that a musical composition is identical to an individual
concrete performance. Instead, the authors identify works of music with the
mereological sum of all the performances, scores, and other concrete particulars.
However, as Wollheim previously pointed out (Wollheim 1968, 6), considering a
work as the totality of all its copies potentially poses problems. Equating the
work with the class of its copies may be problematic since the former may be
finished, whereas the latter is not (since new copies are created or old ones
destroyed). Moreover, any proponent of such a fusion strategy needs to explain
the relation between the alleged copies of a class; put differently, one needs to

spell out what qualifies them as an appropriate member.

3.3.3 Creationism
The last alternative to solve the (PoC) is Creationism (sometimes also called
‘abstract creationism’). Creationism refers to those views according to which it is
possible to create abstract objects. In other words, creationist views embrace (X1)
and (X2) while rejecting (X3). Similarly to the previous options, the view is a
theoretical umbrella for a host of different proposals about different entities
(Friedell 2021). Rather than cataloging all of them, I canvass a few sources and
the most crucial features that typically underpin them. One of the main
motivations to be a creationist (about works of literature) is described by
Deutsch, who states that
“[...] authors do not literally discover their stories. Conan Doyle did not
somehow find out that the proposition that Sherlock Holmes is a detective is true
in the stories he set out to write down. On the contrary, he simply stipulated that
this proposition is to be true in the stories. Anyone who holds that literary

creation is not literal creation but rather literal discovery, has a great deal of
explaining to do.” Deutsch (1991, 212)

Deutsch’s doubts about the discovery of ‘stories” may also apply to other kinds
of abstract entities. Many practitioners and philosophers alike believe that (at
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least some) abstract objects are the result of human creation. Popper (1978), for
instance, argued that next to the world of physical states and that of mental states,
there is a third ontological category (“World 3”) that contains abstract (cultural)
artifacts like the American Constitution, Beethoven’s Fifth Symphony or
Newton’s theory of gravitation. Similarly, in his ‘Creatures of Fiction,” van
Inwangen (1977) argues that fictional characters require a placement in their own
ontological category (that enables them to be abstract yet created) and Searle
(1995) notes that many cultural and institutional entities can be brought into
existence (through the intentional act of merely representing them).

Arguably, one of the most sophisticated frameworks in this regard is Amie
Thomasson’s  artifactual  theory (Thomasson 1999). Rooted in the
phenomenological tradition and work of Roman Ingarden (1979), the artifactual
theory was initially developed to tackle the ontological status of fictional
characters. Roughly put, as per Thomasson, fictional entities are contingently
existing abstract objects - called abstract artifacts. The important thing is that
similarly metaphysically puzzling entities like works of literature, symphonies,
constitutions, money, and perhaps computer programs can all be characterized
as abstract artifacts, too (since they are all abstract, created, and may cease to
exist).

One standardly evoked objection against her or similar proposals is that
recognizing abstract artifacts requires an updated category system. The problem
is that abstract artifacts do not fit into the traditional abstract-concrete dichotomy.
Although abstract artifacts also lack spatial location, they are not timeless - they
were created at a particular time and place and may cease to exist. As such, they
do not fit into the realm of eternally unchanging platonic objects (Thomasson
1999, 37-38). Hence, the challenge for the creationist is to provide an adequate
category system (with at least one more category) for abstract objects that are
created.”! (Based on simplicity criteria, the admission of additional ontological
categories is too hard to stomach).

Another point of contention concerns the act of creation. The worry with
creating abstract objects is that there should be no causal interaction between the
abstract and concrete, as the concrete domain is typically considered causally
closed. In response, some abstract Creationists have suggested that the physical
can stand in a causal relation with the abstract or have challenged the idea that
creation is a causal process. For instance, Irmak (2020) argues that existential

dependence (featured in the artifactual theory) allows for the non-causal creation

71 The artifactual theory offers a theory of existential dependence, introducing varying degrees
of mental and material dependence and their relation to each other. According to Thomasson,
this idea eventually leads to a multi-dimensional ontology - a system of existential categories
that has much less trouble hosting previously metaphysically troublesome appearing entities.
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of abstract artifacts. While creation still involves causal interactions, the
interactions in question are between concrete objects and/or events but not
between the creator and the abstract object itself. All that the creation of abstract
objects involves is the manipulation of the entities and events on which the

existence of abstract artifacts depends.

3.3.4 Recapitulation

This section placed a magnifying glass over the (PoC) and sketched the three
main options to solve the issue. By doing so, I shed light on what kind of
philosophical issues we must think about and what sort of answers we can
expect. The upshot is that none of the three previously portrayed philosophical
positions is internally inconsistent or incoherent - each of them is a defensible
view. However, that said, each position also faces serious objections. Thinking
through these objections requires reflecting on broader, long-lasting
metaphysical puzzles regarding causation, the abstract-concrete dichotomy,
ontological parsimony, paraphrasing, and so on. The task now consists of sorting

out to what extent these issues carry over to the realm of computing.

3.4 From Art to Computing

The earlier sections have set the stage for understanding the ontological status of
computer programs under the (PoC) framework. Due to their multiple
realizability, it is reasonable to consider computer programs created in high-level
programming languages as abstract objects. Furthermore, I briefly mentioned
that our understanding of how programs are created is supported by a wealth of
literature on their production. Based on these initial findings, I submit that we

can also apply the (PoC) to computer programs:

The Problem of Creation (PoC) applied to Programs:
Pi: Programs are abstract objects (POH).
P3: Programs are created.
P3: Abstract objects cannot be created.

As I will now show, transposing the (PoC) to computing supplies us with an
updated, metaphysically sound range of answers to my initial question about
what kinds of (abstract) things programs could be. Having identified (i) a
Platonistic stance, (ii) a Nominalistic stance, and (iii) a Creationist view as the
main contenders, I now explore the plausibility of each of these options when
applied to programs.
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3.4.1 Are Programs Platonic objects?

One of the main options for viewing programs as abstract objects is under the
umbrella of Platonism. On this view, the source code of my example (GCD)
program turns out to be a non-physical and non-mental entity existing out of
space-time. Given the wealth of different Platonistic frameworks available today,
the claim may have different motivations. As far as I can tell, two approaches
have been sketched so far - an indirect and a direct one:

The first, the indirect one, stems from a mathematical outlook on computer
science and its objects. (I call this position indirect because it is primarily
informed by a certain stance on mathematical objects and not directly on
programs itself). Due to the pervasive employment of logico-mathematical
concepts in computer science, its practitioners may view programming as
essentially a mathematical activity.”? Although my previous survey about the
potential answers to the (PoC) revealed that there are nominalist alternatives
concerning mathematical objects, Mathematical Platonism remains a widely
embraced option.

In a recent critical review of Turner’s Computational Artifacts (Turner 2018),
Selmer Bringsjord essentially expressed a version of Mathematical Platonism
about programs when arguing, contra Turner, that

“I doubt very much that there are any artifacts of computer science. The reason is

that the core elements of computer science are logicist, and as such are

immaterial. As to computer engineering, well, yes, that might be a rather different
story, but it is one we ought to ignore: we are discussing not philosophy of

computer engineering, but of computer science.” (Bringsjord 2019, 340)

Although, Bringsjord appears to overlook the possibility that, as per abstract
creationism, artifacts can be abstract, his quote nicely encapsulates the fact that
computer programs are tightly interwoven with logic and mathematics that other
candidate abstract objects like works of literature and music are not. So, if you
believe that computer programs are some sort of logico-mathematical entities and
you simultaneously subscribe to Mathematical Platonism, then you are indirectly
committed to (your preferred version of) Platonism about programs.

The second approach, the direct one, suggests that computer programs are
Platonic objects (without necessarily claiming that they are also mathematical
objects). Seeing things this way comes close to having a Platonistic attitude
towards works of literature and music encountered earlier. This view, therefore,
lends itself to conceptual borrowing from non-mathematical theories of
Platonsim. One very recent case in point is the work of Begley (2024), which

advertises a realist metaphysics of software maintenance. In clarifying his

72 See my elucidation on the Mathematical View in Appendix A.
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understanding of ‘software” in this context, he also discusses the ontological
status of computer programs:” Based on Katz's Realistic Rationalism (Katz 1998),
in which an ontology of composite objects is defended, Begley claims that we can
identify software “as being a set of sets of program types” (Begley 2024, 180; own
emphasis, where we should understand the latter as “made up of algorithms,
that is, generally, finite progressions of operation types.” (ibid.).

In particular, he compares algorithms to so-called discourse types (informed
by Katz’s theory of linguistic entities). Going into the intricate details of Katz’s
approach would lead us too far astray, but very roughly put, on this view,
algorithms are similar to novels, poems, and speeches since they are language
expressions, too.’* Begley, therefore, seems to suggest a Platonistic stance
towards programs because of their similarities with these repeatable artworks;
he thus answers the (PoC) of computer programs with the Platonist option.

Methodologically, both the indirect and the direct Platonistic view in its
current form leave a couple of questions unaddressed.”> First, as with any
Platonist theory, there is the drawback of epistemic access type arguments and
the unintuitive result that programs are not created and cannot be destroyed;
instead, they can be found and lost. Applied to my initial example program, one
must reconcile how our ordinary understanding of programming as a creative
activity is compatible with the notion that the source code depicted in Fig. 3.1
was “discovered.’”®

Second, pertaining to the indirect view (that regards programs as
mathematical objects of some sort), it remains somewhat unclear which of
computer science’s entities in the computational hierarchy are supposed to be
Platonic objects. While I limited my focus on a particular LoA, namely the
program’s source code, the proponents of the indirect view might be better
advised to maintain their Platonic stance towards algorithms. On this view, one
could, for instance, maintain that the (GCD) algorithm implemented in our
exemplary C-program is a Platonic object, while the source code is not.

Lastly, regarding the direct view, providing a more precise distinction
between programs and algorithms would be beneficial. For instance, although
Begley informs the reader that his account is informed by the practices of

theoretical computer science (formal program verification and computational

73 In the following, I will only focus on his elucidations on programs to keep things simple.
74 This interpretation is possible because, as mentioned earlier in the Introduction (see also
Appendix A, the Mathematica. View), the concept of ‘algorithm’ is subject to many different
interpretations, too.

751 stress ‘current form” here, because both views have not been fully developed yet.

76 This is essentially the concern that Bringsjord expressed in his quote about computer
engineering.
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complexity are explicitly mentioned), his view not only seems to equate
programs and algorithms but also maintains that the latter are primarily

linguistic entities.

3.4.2 Nominalism about programs?

The second main line of answers denies the existence of programs qua abstract
objects. What exactly are the ramifications of the stance regarding programs?
From the perspective of (the philosophy of) computer science, such anti-realistic
attitudes are perhaps the most unexpected or implausible views. Not
surprisingly, the most motivating factor stems from broader metaphysical
principles, not computational ones. For example, one often-invoked argument to
reject abstract objects is Ockham’s razor. This principle advertises metaphysical
parsimony by stating that we should not unnecessarily introduce more (types of)
entities to our fundamental ontology than needed. As we have seen in the
previous section, there are two primary strategies to render the role of abstract
objects obsolete - the eliminativist and the materialist option. Let me treat them

in turn.

Eliminating programs

The eliminativist option seeks to deny the existence of abstract programs. Again,
at first glance, eliminating programs from our ontology may seem preposterous
as it completely runs against our intuition. (N.b., based on this intuition, I even
neglected what I called primary ontological questions (POQ) at the beginning of
my thesis and assumed that there, in fact, are programs). For instance, the very
fact that you are reading this was made possible by various computational aids
and computer programs. In light of these obstacles, the eliminativist thus has to
offer an argument that shows how our currently best theories in computer
science do not commit us to the existence of programs after all. How could such
an argument possibly look like?

One way to answer this question is to look elsewhere. For instance, despite
similar initial worries about other (ostensible) abstract objects, recently,
eliminativist-flavored approaches have gained currency both in the
philosophical discourse of art and science. Based on the work of Cameron (2008),
in which he defends a view that reconciles competing intuitions about the
existence of musical works by appealing to Ontologese (the language that only
refers to ‘fundamental’ entities), French & Vickers (2011) and French (2020) have
formulated an analogous proposal for scientific theories. Roughly put, Cameron
maintains that English sentences like “there are works of music” are true despite

there not being actually such works. He relies on a meta-ontological view
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whereby ‘X exists” can be true in English without committing us to an entity that
is X. Following suit, French and Vickers have amended Cameron’s theory to
accommodate scientific theories. Although, as far as I am aware, no one has
attempted to develop this particular way of thinking about programs, it seems
one of the most promising starting points. On this view, one would hence deny
the existence of abstract programs like my example C program. English sentences
about the abstract nature of programs would hence merely be a facon de parler
that can be paraphrased away.

However, given the absence of a fully worked-out eliminativist framework
for computer programs,’” it remains somewhat speculative which amendments
this view would have to make to accommodate programs. To start filling this

gap, I will briefly assess the situation after discussing the materialist option.

Materialism about programs

Despite everything I have said about the abstract nature of computer programs
in this chapter, the view that programs are material is not entirely unappealing,
as it could resolve many philosophical concerns pertaining to the metaphysically
troubling nature of programs. After all, many view computer programs as
physically executable entities that are involved in the causal pathway.

Perhaps the closest who expresses such a materialist position is Marcus
Rossberg. In his (Rossberg 2012), he discusses the destruction of works of art,
including computer art. In trying to supply an ontology for programs, he states
that

“A computer program itself is repeatable, of course; it can run on different

computers and at different times. In order not to jeopardize destructibility, we

can follow our now familiar method and opt for the plausible account of
programs (and operating systems) as equivalence classes of inscriptions. The
inscriptions will typically not be ink on paper but electronic and on some
computer storage device such as a hard drive, memory card, or old-school flopp

disk. Either way, such inscriptions will be concrete, physical objects” (Rossberg
2012, 73)

This orientation mirrors Caplan & Matheson’s (2006) fusion strategy we
encountered earlier. To recap, the authors maintained that musical works are not
abstract but the composite of all musical performances. To talk of abstract works
is to talk as if there were abstract entities (yet only such things as concrete
performances, score copies, and so on exist). Works reduce to linguistic items -

general names or descriptions - that serve as convenient tools to refer to certain

T Kittler (1993) is an exception. However, his essay was arguably meant to be a polemic
commentary on how software products constrain the user instead of an attempt to eliminate
programs from our ontology.
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classes of concrete particulars (Goehr 1992, 16-17). In the case of a musical work,
works are no more than extensionally defined classes of performances.

Analogously, Rossberg suggests thinking of programs as equivalence classes
of inscriptions. However, alas, he, or anyone else for that matter, has not
provided the means to recognize the members of the corresponding equivalence
class. Similar to the (potential) eliminativist project about computer programs,
the materialist version remains, so far, in an infant stage.

In the wake of my explorative quest of charting the consequences of the (PoC),
let me point out some of the potential obstacles that both the here-developed
nominalist versions need to address to present themselves as viable alternatives.

One aspect that strikes me as worth discussing about Nominalism about
programs is whether it would leave our understanding of physical computation
intact. For instance, if one were to develop an eliminativist attitude towards
programs, it would stand at odds with today’s insights of the type-(B)
implementation literature (cf. Chapter 2), which necessitates a mapping between
abstract computational states and physical states. Dismissing the existence of
abstract programs not only renders the concept of mappings obsolete but also
raises questions about an alternative characterization of physical computation. 78

In so far as the problem of implementation is a special instance of the bridging
problem,” the would-be eliminativist could be well-advised to take inspiration
from the debates about similar worries in the philosophy of mathematics.
Roughly put, nominalists face the challenge of explaining the astounding
applicability of mathematics in science, despite not being committed to these
entities. Since, on this view, mathematical objects do not exist, it becomes unclear
how referring to such entities can contribute to the empirical success of science.
Broadly construed, there are two different kinds of answers for the nominalist
(Bueno 2022): The first requires reformulating mathematical or scientific theories
to avoid commitment to mathematical objects, for instance, proposed by Field
(1980). The second one does not require the reformulation of theories; instead, it
explains how no commitment to mathematical objects is involved when using
these theories (e.g., suggested by Azzouni 2004). Going down either of those
roads would thus entail a complete revision of how most theoreticians have
thought about computational implementation until now. 8

78 As Curtis-Trudel (2022) recently pointed out, so-called unificationist theories of
implementation face serious objections in accounting for physical computation.

7 Typically, the applicability of mathematics is spelled out in “mapping accounts’ that establish
a correspondence between the mathematical and the physical (see Appendix B for an in-depth
discussion).

80 Of course, driven by ontological parsimony, nominalists can choose an anti-realist attitude
towards physical computation, so none of what I said would be their concern.
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Likewise, if one were to develop a materialist attitude about programs, one
would also have to revise the current solutions to the Problem of Implementation.
To recap, roughly put, the crux is how to differentiate physical systems that carry
out computations from those that do not. Again, the reason to rethink the issue
is that it is no longer sensible to couch the problem in terms of a mapping between
abstract computational states and physical states; according to the materialist,
our ontology does not entail the former but only the latter. Materialists, hence,
need to establish a criterion to define an equivalence class of inscriptions to
distinguish electronic inscriptions on computer storage devices, memory cards,
or old-school floppy disks from other random physical states. For example, they
likely do not want to include electronic states in appliances like toasters or rice
cookers to count as inscriptions of computer programs.

3.4.3. Are Programs Abstract Artifacts?

Viewing programs as artifacts has grown in popularity among philosophically
inclined scholars in recent years (Lando et al. 2007; Faulkner & Runde 2010; Irmak
2013; Duncan 2014; Turner 2011; 2014; 2018; Wang 2016; Sanfilippo 2021).81
Today, these views arguably dominate the, albeit scattered, literature on the
ontological status of computer programs (see Appendix A). However, perhaps
reflecting the novelty and relatively fragmented state of the debate in general, a
consensus has yet to be formed about which theory of artifacts we ought to
subscribe to. Two popular conceptions stick out.

On the one hand, there is the Computational Artifact View (Lando et al. 2007;
Turner 2011; 2014; 2018). In the previous chapter, we encountered this view when
discussing the different notions of type-(A) implementation. Remember - the
takeaway was that the approach is based on the technical artifact literature. The
latter postulates a duality between structural and functional properties, where
the structural side is satisfied by the physical objects involved and the functional
side by intentionality (e.g., Kroes 2012). Although technical artifacts were initially
devised exclusively for physical systems and their causal structure, the novelty
about computational artifacts is that they supposedly also account for abstract
objects and their abstract structure. As Turner proposes, we can employ formal
languages to account for a computational artifact’s abstract structure:

“At both the functional and the structural level, computational artifacts employ

formal languages for the expression of their functional and structural properties.”
(Turner 2018, 29)

8 See Appendix A for a more detailed summary and comparison of the positions.
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So, while computational artifacts retain the structure-function duality, their
structure is no longer physical but symbolic in nature. It will be useful to bear this
last point in mind until after my discussion of the second main option.

On the other hand, there is the view that programs are temporal abstracta
(Irmak 2012). In arguing that most philosophical explanations of software have
failed to recognize its artifactual yet abstract nature, Irmak started to develop such
a view. 8, 8 Interestingly, his account is directly informed by Thomasson’s (1999)
artifactual theory and, thus, a bona fide example of abstract Creationism. In
particular, he thus rejects the idea that programs are eternal mind-independent
objects. Instead he suggests that a program is an abstract artifact, i.e., a temporal,
nonspatial, repeatable, and a contingent entity that exist due to a certain
purposeful creative act by one or more human agents. As per Irmak, we should
therefore avoid regarding programs as types (which are typically seen as platonic
objects; cf. Begley’s (2024) position) and should not think of their implementation
in physical systems in terms of the type/token distinction.8

Although both views arrive at virtually the same conclusion - i.e., that
symbolic programs like my example (GCD) one written in C are best seen as
abstract objects that can be created - their different intellectual heritage reveals
some crucial philosophical differences: First, the notion of abstract artifacts
developed in the arts does not have its roots in the technical artifacts literature
and, hence, usually does not bear any additional normative function. Put
differently, they are not characterized in terms of the function-structure duality
that (according to the contemporary type-(A) implementation literature) is said
to be essential for the correctness criteria of computational artifacts. Second,
coming back to the nature of the symbolic structures mentioned above, notice
that the abstractness of computational artifacts hinges on the assumption that
these formal language expressions are abstract. While we have seen throughout
this chapter that this is a widely embraced view (particularly under Platonism
and Creationism), there are Nominalist alternatives undermining the idea.

Given both these shortcomings, future studies could try to merge the
computational artifact with the abstract artifact view. In addition, it is paramount
to note that both views have, so far, virtually remained silent about the standard
objections against Creationism: the problem of how abstract objects can be

82 In an email conversation, Irmak told me that ‘software” may be used interchangeably with
‘program.”’

8 The work by Wang et al. (2014a; 2014b) and Wang (2016) further refined Irmak’s original
proposal by focusing on the identity criteria of programs in the context of code changes. However,
as stated in the general Introduction (Ch. 1), I will abstain from delving into the debate on when
two programs are the same.

84 Unfortunately, no alternative approach for the implementation is suggested.
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created and the potential costs that come with an updated ontological category
system that is needed to accommodate abstract objects that may start and cease
to exist. For instance, in so far as we would endorse the abstract artifact view
about programs, we would have to adjust our standard abstract-concrete

distinction accordingly.

3.5 Discussion & Conclusion

Coming from the UTAI framework, I began this chapter with the quest to
illuminate how some entities under the umbrella term ‘computer program’ are
abstract objects. Conceiving programs as abstracta then led me to turn my
attention to the notorious Problem of Creation (PoC) from the philosophy of art.
Since the premises of the (PoC) are jointly inconsistent, philosophers have
developed three main lines to debug the case. Each line comes with its own
benefits and costs. While the (PoC) presents rich philosophical material, a
systematic overview of the tradeoffs involved in adopting Platonism,
Nominalism, and Creationism about programs has virtually been neglected in
the philosophy of computing. In this chapter, I address the issue directly and
argue that the concept from philosophy or art remains effective when applied to
computer programs. Prima facie, it is not obvious which standard options to reject
and which we ought to favor. If the philosophy of computing, particularly the
debate on the ontological status of computer programs, keeps growing into an
independent enterprise, then we can expect a hefty research program to flash out
these potentially defensible views for computer programs precisely in the coming
years.

Given that this reads more like the beginning than a conclusion to this
chapter’s question, I want to close by immediately responding to a possible
objections. Particularly, one may object something along the following lines:
‘Well, your presentation hasn’t solved anything - you didn’t answer the question
you posed initially (about creating programs). All you did was raise additional
questions. Even if all of this about the (PoC) is correct, you have now plagued us
with even more options we need to consider. Wouldn’t it be better to narrow,
rather than widen, the scope of options?’

I agree that a definitive answer would be preferable (like in most
philosophical puzzles). Yet, progress sometimes requires a step backward to
appreciate a topic from a clearer point of view. I strongly believe that this chapter
is a case in point. To defend this claim, let me briefly explain how embedding the
discourse of the ontological status of computer programs in the context of the

(PoC) can bring clarity to our discussions.
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Primarily, the tripartite distinction of Platonism, Nominalism, and
Creationism may act as a methodological blueprint for future studies within the
philosophy of computing. Although I very much sympathize with Abstract
Creationism about programs (mainly due to its descriptive adequacy of the
relevant practice), my analysis has shown that it would be philosophically
irresponsible to ignore the view’s vulnerability to broader metaphysical issues
(e.g., requiring an updated category system or explanation of how abstract
objects are creatable). In other words, the reason why I did not provide a clear
answer as to how programs qua abstract objects are created has to do with
metaphysics in general, not with computing in particular.8

Furthermore, by endorsing the (PoC), the philosophy of computing can
further mature through establishing a dialogue with contemporary metaphysical
debates. To paraphrase what Mag Uidhur (2013) expressed, albeit in the context
of the ontology of art - by pursuing this strategy, we can make the discourse
about the metaphysical nature of computer programs less insular and, therefore,
more attractive to new participants of the debate. For instance, seen through the
lenses of the (PoC), the sui generis dual nature of view of programs loses appeal.
Instead of positing metaphysically puzzling entities with a mixed ontology, my
proposal allows us to frame the debate about the ontological status of computer
programs in much more robust terms of existing debates on abstract objects. Like
in other metaphysical inquiries, where it is customary to distinguish between
types and tokens, universals and particulars, numbers and numerals, works and
their instantiation, we can now more clearly distinguish between programs, qua
abstract entities, and concrete manifestations. Importantly, this is not to say there
is no puzzle about how these abstract objects then bridge the abstract-concrete
dichotomy; this is, perhaps, still the significant puzzle that must be solved to fully
grasp the ontological status of computer programs.

As we transition to the next chapter, I will offer a novel account of the
relationship between these abstract objects and the physical systems that ‘realize’
them by devising a new theory of computational implementation.

8 In fact, some participants of the debate even believe that there is a sort of ‘stalemate” between
the different positions. For instance, in his work on (mathematical) Platonism versus anti-
Platonism, Balaguer (1998). Grafton Cardwell (2020) and Friedell (2021) address the broader
philosophical commitments
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Following the UTAI framework outlined in Chapter 2, the previous chapter
systematically analyzed dependency relation (a) —how programs on an abstract
level are contingent on us. It is now time to explain how these programs are
implemented in physical systems. Put differently, we must examine what relates
the abstract and the physical. Here, dependency relation (b) becomes relevant.
How does the implementation rely on the epistemic agents who establish and
use these programs?

4.1 Introduction
Computability theory allows us to engage formally with computation in
mathematical terms. However, studying computation merely formally does not
provide any details about its physical implementation. The fundamental problem
that any account of physical computation must answer is how the two different
ontological domains of the formal and physical are related. In the literature, this
is known as the Problem of Implementation (Sprevak 2018; Ritchie & Piccinini 2018).
Solving the issue is essential for disciplines such as the foundation of computer
science, Al, robotics, and cognitive science. As a result, a vast literature of
potential candidate frameworks has been presented.8 Which of the proposals
truly captures the nature of physical computation?

In order to judge competing accounts, Piccinini (2007; 2015) presented a

convenient heuristic to evaluate them. Five desiderata were advanced:87
Desiderata of Physical Computation

(1) Objectivity: An account of physical computation should make it, at least in
part, a matter of fact whether a system is implementing a computational
function. The intention is to align computation with scientific practice and
scientific objectivity.

(2) Extensional Adequacy: An account of computation should avoid triviality;
in slogan form, it should proclaim that the right things compute (laptops
and perhaps brains) and the wrong things do not compute.

86 Some key sources that deal with (parts of) the Problem of Implementation are Putnam (1988),
Searle (1992), Copeland (1996), Chalmers (1996), Scheutz (1999), Klein (2008), Ladyman (2009),
Sprevak (2010), Milkowski (2013), Fresco (2014), Horsman et al. (2014), Rescorla (2014), Piccinini
(2007; 2015), Dewhurst (2018), Fletcher (2018), Mollo (2018).

87 I follow a slightly adjusted version of Duwell (2021) which merged “the right things
compute” and “the wrong things don’t compute” under “extensional adequacy.”
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(3) Explanation: The computations performed by a material system should, at
least partly, explain its behavior and capacities

(4) Miscomputation: Sometimes, computation goes wrong. An account of
physical computation should account for faulty behavior.

(5) Taxonomy: An account of computation should be able to untangle the
different computational capacities of different systems (e.g., general

purpose or fixed purpose; analog, digital, or quantum).

Virtually all solutions propagate that there is an equivalence relation between the
computational formalisms of the mathematical theory of computation and the
putative computing system. Simply put, the idea is to establish a mapping f
between the sequence of states of an abstract model of computation Mc and the
state transitions of a physical system S, such that f:Sc—Mc. However, to date, no
account of physical computation has championed all the others.58

This chapter contributes to the discourse by extending a promising recent line
of research. In a nutshell, the idea is that the metaphysics of implementation bears
notable similarities to scientific representation, as both relations rely on
mappings between the physical and the formal. However, as we will see shortly,
the idea still needs to be developed to its fullest. In this chapter, I respond to this
issue by developing the novel, more detailed implementation-as framework. What
sets this contribution apart from previous ones is that it relies on a specific notion
of scientific representation rather than a generic one. Implementation-as is
underpinned by the DEKI account (Frigg & Nguyen 2018), a formalized account
of scientific representation based on Goodman’s and Elgin’s representation as
originally developed in the philosophy of art. As I will show, the resulting
account squares well with the standard desiderata of physical computation and
is a viable alternative. Due to its agential involvement, it is especially suited for
computer science practice.

The chapter is organized into several sections: Section 4.2 describes the state
of the art of recent research to tackle the Problem of Implementation in terms of
scientific representation. In section 4.3, I introduce the DEKI account. To facilitate
discussion, I follow Frigg and Nguyen in introducing their account by appealing
to the MONIAGC, a hydraulic analog computer. In section 4, I transpose the DEKI
account’s features to the computing realm, giving rise to Implementation-as.
Next, I evaluate this new theory of implementation against the five desiderata of
physical computation. Lastly, I close with a brief discussion and comparison of

Implementation-as to existing physical computation accounts.

8 Of course, it is a viable option to take a pluralistic stance concerning accounts of computation.
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4.2 Scientific Representation Accounts in Computing

Scientific representations concern a wide array of phenomena. One may use
diagrams, mathematical equations, or material objects for representations in
science. Most generally, any representation that is the result of scientific practice
may be deemed a scientific representation. In this chapter, we are primarily
interested in the case of (material) scientific models and how they represent.

To recap, in Chapter 2 we already encountered these scientific instruments,
when proposing them as a remedy to link together type-(A) and type-(B)
implementation. Particularly, I described how scientists use models to represent
real-world or hypothetical systems for explanations, prediction, and
confirmation. As such, philosophers of science typically characterize scientific
representation as the relationship between a model M and its dedicated target
system T as f: M — T. What's crucial to remember for the current discussion is
the following: While one then may use computational methods to model or
simulate various real-world targets, philosophers of computing warned that one
should not confuse the ability to model a system computationally with thinking
that it also genuinely computes. At first sight, one is therefore well-advised to be
cautious about wusing modeling techniques to solve the Problem of
Implementation.

However, despite these worries, a new line of research proposed to couch
implementation in terms of scientific representation and modeling. Let’s call this
approach the Scientific Representation account (SRA). Although this research
cluster is still relatively scattered, it differs from traditional proposals of physical
computation because it argues that the mapping relation f explicitly needs to be
understood as a form of scientific representation. This perspective is based on a
combination of epistemological, metaphysical, and historical considerations.

For instance, when developing a model of computation called L-machines,
Ladyman (2009) suggests that physical computation might be contingent on
(scientific) representation. Another case in point is Care’s (2010) historical study
shedding light on the use-centric history of analog computing as modeling.
Likewise, but from a philosophical angle, Papayannopoulos (2020) highlighted
the conceptual commonalities between analog computers and analog models
(when developing a notion of analog computation). Arguably the technically
most detailed account in that vein today is the Abstraction/Representation (AR)
Theory introduced by Horsman, Stepney, Wagner, and Kendon (2014) and
developed further in several publications.? Horsman and collaborators provide

sophisticated ‘commuting diagrams’ in virtue of the representational triple

8 Horsman (2015, 2017), Horsman Kendon, Stepney, (2017, 2018) and Horsman et al. (2017).
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(m;, f, Sj), where fis perceived as some general scientific representation account,
and m; and sj corresponding computational and physical states, respectively.
Subsequently, Fletcher (2018), Szangolies (2020), and Duwell (2021) critically
assessed (AR) Theory under philosophical considerations and concluded that the
approach is a viable contender if formulated in agential terms.

Importantly, these new SRAs reject the idea that something is physically
computing because we can model it computationally. What the SRAs are after
instead is the commonality of the metaphysical nature of the mappings involved
in scientific representation and computational implementation, respectively. In
both cases, we require a relation that links the physical and formal realms.

However, there remains a limitation with existing SRAs: So far, they merely
allude to scientific representation in vague or generic terms. This lack of clarity
is problematic since there is a wide range of scientific representation accounts,
with isomorphism accounts, similarity accounts, inferentialism, and fictionalism
being the most prominent options (Frigg & Nguyen 2021). Each option requires
us to adopt significantly different or opposing metaphysical and epistemological
assumptions. Utilizing differing notions of scientific representation can,
therefore, lead to substantially different SRAs and understandings of concrete
computation. For instance, if we used Suppes’ isomorphism account (2002),
according to which scientific representation is a two-place relation reducing to
isomorphisms between structures, the resulting account of physical computation
would be no different from some traditional mapping accounts in the physical
computation literature. If, on the other hand, one were to follow Cohen &
Callender's general Griceanism approach (2006), which suggests that anything
may represent anything else (by mere stipulation), then scientific representation-
based computation would be in danger of collapsing into (interpretational)
pancomputationalism. So, without answering ‘Which account of scientific
representation should we use to portray computational implementation?’ the
development of SRA remains unfinished.

I will set out to change this shortcoming in the course of this chapter. To do
so, I will acquaint us with the DEKI account in the next section. This brief
familiarization with the DEKI will be paramount for an improved SRA called

Implementation-as.
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4.3 Scientific Representation, Representation-as, & DEKI

4.3.1 From Art to Science

Despite the seeming simplicity of scientific representation’s underlying idea,
precisely defining it is a contentious matter. One successful problem-solving
strategy has been to seek answers in the study of art and languages. A case in
point is the notion of representation-as, introduced by Nelson Goodman and
Catherine Elgin (Goodman 1976; Elgin 1983). According to their theory of
symbols, there are three fundamental ‘modes of reference’: (i) representation-of;
(ii) Z-representation; and (iii) representation-as. This tripartite distinction stems
from the observation that many representations represent an object as something
else. A common pictorial example is caricatures. Take for instance the depiction
of Winston Churchill as a bulldog. Letting ‘X’ stand for the representing thing (a
caricature); 'Y” for the thing represented (Winston Churchill); ‘Z” stands for the
kind of representation (a bulldog). The caricature features all the relevant
distinctions of representation at once. First, the caricature is a representation-of
Churchill, because it denotes the former English Prime minister. Secondly, the
caricature is also a Z-representation, where here ‘Z=bulldog’ since it exemplifies
the features of a bulldog. Thirdly, the caricature represents Churchill as a
bulldog, because the bulldog features (such as being stubborn or resilient) are
imputed to him. In the remainder of the chapter, such XYZ-triplets with their
corresponding notions of denotation, exemplification and imputation will be
chief for understanding the notions of representation-as and implementation-as,
respectively.

Subsequently, philosophers such as Hughes (1997), Elgin (2010, 2017), and
van Fraassen (2008) appropriated the representation-as conception to the
scientific realm. In what follows, I introduce what arguably is the most
sophisticated of such accounts: Frigg and Nguyen’s DEKI account.

4.3.2 The DEKI Account

In a recent number of publications, Frigg & Nguyen (2017 2018, 2020, 2021)
introduced their so-called DEKI account, providing a full-fledged and
systematized account of scientific representation based on representation-as.
DEKI applies both to material models and non-concrete models.?° I follow suit
with the authors to discuss the account based on a material model - the Philips-

% Importantly, the account has been developed independently of the Problem of
Implementation.
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Newlyn machine (also known as MONIAC).”1~ 92 Standing about 2m tall, more
than 1m wide and almost 1m deep, the device comprises several see-through
plastic tanks and tubes filled with colored water. Attached to the tanks are
pulleys, sluices, gauges, and pens (used to plot graphs). The design of the
machine uses pumps and gravity to let water accumulate in different reservoirs
containing floats that drive the different components in the mechanism
depending on the water level.

Qua scientific model, the purpose of the machine is to model a national
economy by the circular flow of water - the flow of the water stands for the
exchange of commodities. Each of the machine’s tanks corresponds to different
features of an economy (national income, governmental spending, etc.).
Depending on the configuration of the mechanical components of the MONIAC,
different amounts of water accumulate in the different tanks, allowing the
modeling of various economic scenarios. Fig. 4.1 shows a simplified scheme of
these components and how they enable the device to work in connection with
the notion of representation-as.?

Frigg and Nguyen suggest formalizing these considerations through Elgin’s
and Goodman’s analysis of representation in the art world. In case of the
MONIACG, they explain that

“[...] the idea behind the machine is that hydraulic concepts are made to
correspond to economic concepts. This means that we turn system of pipes and
reservoirs into an economy-representation by interpreting certain selected X-
features as Z-features. The water in a certain reservoir is interpreted as money
being saved; the level of water in the reservoir is interpreted as a quantity of
money; and so on.” (Frigg & Nguyen 2020a, 166)
Since denotation, exemplification, and imputation constitute the core of
representation-as, they also find application in their full-fledged account of
scientific representation. To be informative in the scientific arena though, a fourth
element - the notion of a ‘key’ - is introduced. Keys are meant to adjust model

features to target features, because typically model features can rarely be

91 The name MONIAC (standing for ‘"Monetary National Income Analog Computer’) is more
common in the US, where the coinage of the term was due to economist Abba Lerner “to
suggest money, the ENIAC, and something mechanical.” (“The Moniac’ 1952, 101).

92 Multiple authors have provided technical descriptions of the machine, its underlying
economic theory, and its history (see e.g., Phillips 1950; Newlyn 1950; Barr 1988; Bissel 2007;
Morgan 2012, 172-216).

% N.b., there is a difference when applying the XYZ-triplet to models like the MONIAC as
opposed to caricatures. Whereas the latter can rather straightforwardly be identified as, e.g., a
bulldog-representation, it is much less obvious how the MONIAC’s water-filled pipes and tanks
are supposedly an economy-representation. The problem is that the machine does not instantiate
actual economic features. For the sake of modeling, scientists hence need to translate the flow of
water into the “flow” of commodities under an agreed-upon interpretation.
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transferred unaltered to a target (e.g., one may need a scale factor or a conversion
of units). Together these four salient features form the acronym DEKI. In sum,
the following picture emerges:

Denotation

X (Model) /\ Y (Target)

Imputation

Fig. 4.1: Schematic depiction of the MONIAC at work, representing an economy
through the flow of water. Applying the XYZ-triplet and the corresponding
notions of denotation, exemplification, and imputation to a scientific context
results in the notion of representation-as. Roughly put, X takes on the role of the
(material) model (e.g., a tank filled with water); Y takes on the role of the target
(e.g., an economy); Z takes on the role of the exemplified features of the
representing object.

DEKI-account

A model is defined as an ordered pair M = (X, I), where X is an object and I is an
interpretation. I is what turns a selected object X into a model. M represents Y as
such and so iff conditions (1)-(4) are met:

(1) An interpreted object X (the model M), like the MONIACG, denotes a target
Y (e.g., the British economy).

(2) M exemplifies Z-features. For instance, to be an economy representation,
the MONIAC needs to exemplify economy-features (Z-features).
However, often scientific models do not directly exemplify the required
Z-features. The MONIAC e.g., is nothing but a sophisticated collection of
pipes and tanks filled with water; it only has such-and-such dimensions,
weighs so and so many kg, has n-number of components, etc. It merely
instantiates the flow of water; it does not realize economic features such
as the exchange of commodities. To turn such a model’s features into the
required Z-features, we need to resort to the interpretational capacities of

the designers and users. Only under a specific agreed-upon interpretation
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I are the scientists licensed to translate features of their model into Z-
features I :X — Z.

(3) There is a key K that systematically translates the exemplified Z-features
{Z1,..., Zn} of the model, into another set of Y-features (the features of the
target). In the case of the MONIAC, units of volumes of water (that are
interpreted as the flow of commodities) must be translated into units of a
specific currency. Furthermore, the time of the machine operating must be
translated into the time of economic cycles. Depending on the denoted
target, a key may associate one liter of water with e.g., 1 million pounds
or 5 million US dollars.

(4) M imputes at least one of the ‘keyed-up’ features to the target. If the users
of the MONIAC are interested in say, only tax revenue, they might only
impute one single feature (corresponding to tax revenue) to the target.

The result is an intentional conception of scientific representation, as all its
features (1)-(4) require different interpretations in the form of intersubjective
agreements of the scientists using them. Through the selection of an appropriate
material system, target phenomena are represented as something else. The
MONIAC for instance represents the flow of money as the flow of water.

What is interesting about the DEKI in combination with the MONIAC is that
under different assumptions, the very same device may be regarded as a special
purpose hydraulic analog computer instead of a scientific model. It thus serves as
an ideal gateway for establishing a link between scientific representation and

implementation.

4.4 From Science to Computing: Implementation-as

I will now transpose the DEKI framework to computational implementation. The
goal is to create a clear understanding of physical computation, especially an SRA
that utilizes a concrete concept of scientific representation. This results in the
introduction of implementation-as. The successful transposition requires a careful
adaptation of the original DEKI account to the computing domain. In the next
four subsections, I will show how the adaptation from the scientific arena to
computing plays out. The discussion unfolds along the most salient features of

the DEKI account, viz., denotation, exemplification, keying-up, and imputation.

4.4.1 Denotation

Generally, we need to think of denotation as the dyadic relation of a name (or
label) and a bearer it applies to. The relation is established by an interpretive act.
Elgin, for instance, states that “[r]epresentation- of — that is, denotation — can be

achieved by fiat. We simply stipulate: let x represent y and x thereby becomes a
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representation of y.” (Elgin 2017, 253). Whilst originally a linguistic concept, she
argues that there is nothing intrinsic in the notion of denotation that would
restrict it to language only. Both symbols and what they denote can be of many
different types. Consequently, Goodman and Elgin both apply denotation to
other instances:

“Pictures, equations, graphs, charts, and maps represent their subjects by

denoting them. They are representations of the things that they denote. [...] It is

in this sense that scientific models represent their target systems: they denote

them.” Elgin (2010, 2; own italics)

In the scientific context, denotation is taken to establish a connection between a
model X and its intended target Y. Put differently, denotation establishes which
target is supposed to be represented. Now, I submit that denotation applies
mutatis mutandis to physical computation.

At first, this may not strike one as surprising for denotation is also not an
unfamiliar notion in computing. For instance, the notion of denotational
semantics is paramount for computer scientists to formally determine the
meanings of programming languages. Likewise, when following popular
interpretations that computers are symbol manipulators, one may subscribe to
the view that the manipulated symbol structures denote information, data, etc.
In the literature of physical computation, the so-called semantic accounts turn such
areading into a philosophical approach: as Fodor (in)famously proclaimed, there
is “no computation without representation.” (Fodor 1981, 180). The slogan
especially embraces the metaphysical assumptions underpinning those branches
of cognitive science that maintain that the brain computes. Exemplary of the
‘aboutness’ of neural computation is Marr’s hypothetical case of the apocryphal
grandmother cell (a cell that fires only when one’s grandmother is in sight) (Marr
2010, 15). Today, semantic accounts may come in vastly varying degrees of
commitment to what kind of processing of representations is essential for
computation. More recent versions, for instance, may share the most salient
constraints of some of the EMAs (e.g., causal, counterfactual, or disposition) but
call for the additional condition that computational states must be
representational (see Shagrir (2020) for an overview).

However, implementation-as should not be characterized as just another
semantic account. Importantly, when it comes to implementation-as the choice of
the potentially denoted target is restricted to the to-be-implemented sequence of
computations.?* So, in contrast to Mart’s example, denotation may not be used to

establish a dyadic relation to one’s grandmother or any other external events, etc.

94 In what follows, I will use expressions such as ‘sequence of computations’, ‘computational
formalism’, and “program’ interchangeably.
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Here the notion is exclusively reserved for the relation between a material system

and a computational formalism P which specifies a sequence of computations.

Denotation: Establishing which computational formalism P is supposed to be

implemented in the putative material computing system.

As such, one of the key features of denotation (as a stipulative act) is that it
enables the programmers and users to specify which sequence of computations
ought to be implemented. Without denotation, we were not able to determine
which computational formalism or program P (instead of Q, R, S, ...) is originally
intended to be run by the material device. What's correct behavior in the
execution of P, may count as malfunctioning (miscomputation) of Q. And
without knowing what is supposed to be computed, we would be unable to judge
correct implementations from faulty ones. A prominent case from the
philosophical literature is captured by Kripke’s remark about Wittgenstein’s
hypothetical rule-following machines:

“How is it determined when a malfunction occurs? By reference to the program

of the machine, as intended by its designer, not simply by reference to the

machine itself. [...] Whether a machine ever malfunctions and, if so, when, is not

a property of the machine itself as physical object but is well defined only in terms

of its program, as stipulated by its designer.” (Kripke 1982, 34f)

Assigning a physical system or device to perform a certain task rather than
another is not exclusively limited to computation but rather ubiquitous to
technology. In computing specifically though, we then assign the teleological
function to compute a specific mathematical/computational function P to a
material system; denotation is chief for specifying which computational function
P is supposed to be implemented. What makes function ascription (in the
teleological sense) a special case when it comes to computing is that we
exclusively assign the execution of a rule or mathematical / computational function
to a system. When assigning teleological functions like brewing coffee to a coffee
machine, driving screws into a wall to screwdrivers, etc., the assigned functions
concern physical properties and activities (e.g., pouring hot water onto ground
coffee) and not formal, mathematical, or computational ones. This raises the
question, how can concrete material systems exemplify computation?

4.4.2 Exemplification

Objects and systems can exemplify all sorts of properties in multiple ways. For
instance, caricatures can exemplify bulldogs by pictorial means. In everyday life,
properly working coffee machines exemplify concrete mechanisms that enable
them to brew coffee. In the scientific realm, models like the MONIAC require an

interpretative element since the hydraulic device, on its own, cannot exemplify
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economic properties without our intentions. I submit that the same scenario
holds for computation: physical systems can exemplify computational properties
by turning selected features into computational states through interpretational
exemplification. Analogously to the modeling case, we can define

interpretational exemplification as

Interpretational Exemplification: I: X — Zc. Turning selected X-features into

computational states Zc¢ through an interpretation.

Accordingly, this characterization enables physical systems, which would
otherwise merely be mechanical, hydraulic, or electronic, to act as computing
systems by turning selected features into computational states.

However, prima facie such unlimited interpretational freedom is problematic
as almost any object could count as a computing system by mere stipulation,
violating the extensional adequacy criterion. Therefore, pragmatical and
theoretical factors constrain potential exemplification, particularly the selection
of (i) suitable interpretations and (ii) adequate X-features. Combined, these
factors will determine why we take some physical systems to be computational
and others not.

The advantage of agential SRAs (in contrast to other interpretational theories
of computational implementation) is that they can establish a more rigorous
foundation for suitable interpretation by adhering to the theoretical insights of
how scientists use interpretations when engaging in scientific modeling. The

DEKI account, for instance, informs us

“[w]hile one is initially free to choose [ X]-properties and Z-properties freely, once

a choice is made, representational content is constrained. [...] Free choices, once

made, are highly constraining. This is why models are epistemically useful.”

(Frigg & Nguyen 2018, 214)
Thus, it is necessary to agree upon and subsequently hold fixed the selected X-
features and their interpretation as computational states under a one-to-one
relation. Choosing a different set of states X = {Xj,..., Xu} requires a new
interpretational process for every new candidate set of computational vehicles.

While agreement and fixation are necessary to employ objects like the
MONIAC as a computational device, they do not suffice. Taking a rock or wall,
arbitrarily picking out some of their properties as X-features, and holding these
tixed, still does not turn them into useful computers. Here, additional pragmatic
and conceptual considerations come into play.

Similarly to the case of scientific models, there are additional pragmatic
factors that constrain the choice of X-features. One of these factors is successful
use. When selecting physical states as computational vehicles for usage, we

typically select programmable vehicles we can reliably configure according to
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our desires. Put differently, we should be able to put the system into a specific
initial state (from a set of potential input states) to compute the output of our
chosen computational problem. Moreover, a particular physical device is useful
to us as a computer only when its salient states are distinguishable by us with
our measuring devices. Only when this condition is met can we extract the results
implied by the computational formalism we are interested in. Other practical
considerations may include the system’s reliability in repeating computations.
Conceptually, it is essential interpret only those physical states or carriers (X-
features) as computational vehicles that demonstrate a sufficient degree of
counterfactual state transitions. This demand aligns with the literature on
scientific representation and the overwhelming consensus of the various EMAs.
Therefore, it is paramount for agents to select (and usually construct) potential
computational vehicles that exhibit a reliable degree of counterfactual
dependence. Such counterfactual support is chief for using scientific models for
surrogate reasoning and turning computational devices into epistemically
fruitful instruments. To better understand this, consider the following two
quotes. Concerning scientific models, Bokulich for instance reminds us that
“[...] in order for a model M to explain a given phenomenon P, we require that
the counterfactual structure of M be isomorphic in the relevant respects to the
counterfactual structure P. That is, the elements of the model can, in a very loose

sense, be said to “reproduce” the relevant features of explanandum
phenomenon.” (Bokulich 2011, 39)

In the same vein, Piccinini provides a summary in his (2015, 19-25), showing that
it is wide consensus that the microphysical state transitions of a material
computing system require counterfactual support:
“In other words, the pure counterfactual account requires the mapping between
computational and microphysical descriptions to be such that the counterfactual

relations between the microphysical states are isomorphic to the counterfactual
relations between the computational states.” (Piccinini 2015, 19)

What this means in the case of the MONIAC is that different calibrations of the
knobs, valves and tanks filled with water need to bring out reliable changes in
behavior. ‘If the input/initial conditions had been different” the output must be
different accordingly. Such counterfactual support is crucial for the
implementation of a computational function. Only if the X-features are chosen in
such a way that different set-ups yield different interpretable outputs can
material models/computers such as the MONIAC be used to model target
systems like an economy or a computational formalism.% Controlling these

% These computational states correspond to a model of computation; in the case of the
MONIAC, the model of computation is characterized by a set of differential equations. Often,
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counterfactual dependencies of computational devices is what enables to
physically program these machines and use them to compute functions.
Together the conditions about interpretation (agreement and holding it fixed),
and selection of X-features, where some are of pragmatic nature
(programmability, distinguishability, reliability) and some of conceptual nature
(counterfactual state transitions), are jointly sufficient to restrict those things that

don’t compute. (I will talk more about this in sect. 5).

4.4.3 Encoding a Labeling Scheme

To recap, while denotation specified which computational formalism is
supposed to be implemented, interpretational-exemplification imposes which
properties of a putative computing system are taken to be as computational
states. So far, these two steps are insufficient for the implementation of
computations, for we only determined that something may act as a computer (not
what it actually computes). Scholars of physical computation widely agree
though that one needs to specify the conditions that a computational system
implements one computation rather than another (IDENT). Now, in order to
relate exemplified computational states to a specific model of computation, we
need to define for what kind of computations they are employed.

One crucial aspect for determining such a computational profile is to allude
to the notion of a key. According to DEKI, exemplified properties are ‘keyed up’
with properties that are supposed to be imputed to the target. While the name
‘keying-up’ is inherited from the DEKI account, I suggest resorting to the more
common terminology used in computing, where the discussion is usually framed
under the label of encoding or fixing a labeling scheme (cf. Copeland (1996)).

Encoding a labeling scheme: Relating the set of interpreted computational
vehicles Zc with a set P={P;,..., Pj} of states that are presumed to be imputed

to the targeted computational formalism.

In what follows, I introduce the arguably two most relevant types of encodings
for computing. % The two types roughly correspond to analog and digital

computers respectively.”’

the seminal paper by Pour-El (1974) is taken as the theoretical basis for models of analog
computation. For a survey of such different models see Bournez & Pouley (2021).

% Whether the two types of keys are exhaustive or not, such that there might be other kinds of
keys relevant for computing - for instance, in the case of quantum computing - is the subject of
future research.

% In the context of computing, the digital/analog distinction is a vexed issue; simply put there
are two major camps: According to one view, analog computation is understood as an analogy
(the behavior of a damped spring-mass might be modeled by electronic components that
analogously showcase similar behavior); according to the second view, the operation of an
analog computer should be understood based on the manipulation of continuous values. An
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The first type of encoding essentially hinges on the same idea as the keys
employed in material (scale) models. Certain physical magnitudes are selected to
scale with the chosen features of a target system. For example, Weisberg (2013)
and Pincock (2022) discuss this in detail, based on the San Francisco Bay-Delta
model and a scale model of Lituya Bay for modeling rockslide-generated tsunamis,
respectively. However, in most cases, the selected X-features cannot be directly
imputed to the target Y. In the case of the just mentioned scale models e.g., the
key is not simply equivalent to the scale factor, as fluid dynamics don’t scale
completely proportional. % Similar keys are necessary for scaling in analog
computers. Ulman, for instance, describes that machine units of a given analog
machine must be adjusted to the denoted computational problem (cf. Ulman
(2013, 55 and 123-14) and Ulman (2020, §2.1 and 58)).

Based on the work of Lewis (1971), Maley formalized this idea, developing
the so-called Maley-Lewis account that’s supposed to cover the case of analog
computation. Simply put the Maley-Lewis account captures the idea of scaling,
i.e., the more the representing physical magnitude Zc increases or decreases (in
a systematic way), the more the property that’s denoted in- or decreases. These
insights yield the formulation of the first type of encoding (cf. Maley (2011, 124)):

Type 1: Encoding (Scaling) by magnitude. As Z increases (or decreases)
by a margin d, Q increases as a linear function of X+d (or X-d); E:Z —P.

When it comes to the implementation of digital computation though, a digital
labeling- scheme is needed. As Maley explains, numbers are typically
represented by (i) a series of digits and (ii) a base.? A digit series is then
interpreted as the relative value of the digits. Translating this idea into a digital

version of a key, the second type of encoding is defined as:

Type 2: Encoding digitally (labeling scheme). A digital encoding E: Z —P
represents a number/symbol via its digits, where “digit’ means a symbol
(typically a numeral) in a specific place. In addition, we require a base,
which is used to interpret the relative value of digits.1%

in-depth exorcism of the analog/digital distinction lies beyond the editorial scope of this
chapter.
% And in the case of the MONIAC, we don’t even have a scale model of a Keynesian economy
at all, but an object where certain features are selected (X-features) such that their covariation
tells us something about the denoted target Y. Remember, physical quantities like ‘flow of
water’ must be related to ‘flow of money’ via a system of units.
% By understanding ‘numbers’ in a loose sense, the method can be applied to symbols that are
part of an alphabet.
100 Formally, the digital representation of a number “d,, d,,_; ... d; d’ is captured by the formula
(dp X ™) + (dy_y X D™ 1) 4+ -+ (dy X b*) + (dy X b°). In base 10 “sixty-five” e.g., is hence
represented as “65” (6*10)+(5*1).
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Having elucidated how to determine a computational profile, implementation-

as requires a final step.

4.4.4 Imputation

Lastly, imputation is the final necessary component of the implementation-as
framework. As a first stab, “imputation can be analyzed in terms of property
ascription”, (Frigg and Ngyuen 2018, 217). Let me briefly return to the scientific
modeling context for the sake of clarifying what kind of properties are ascribed
to what. When scientists use a scientific model to reason about a target system,
they must be able to ascribe features of the former to the latter f: M — T. Put
differently, we may thus say that the model imputes features to the target. The
MONIAC, a material model, imputes its exemplified (under an interpretation)
economic features to the dedicated target. I propose to appropriate this practice
to computing, such that material systems implement a computational formalism
(the analog to the target) by relying on imputation.

The reason why we appropriate imputation from representation-as to
computing is that we want to systematically relate the interpreted and encoded
computational vehicles of a material system to the denoted computational
formalism (cf. steps (1)-(3)). As such, imputation has a comparable function to
the mathematical notion of a morphism (relating physical states and abstract
computational states) evoked by the EMA.

Imputation: Ascribing encoded computational states to a computational
formalism.

But what are the ramifications of referring to the relation as an ‘imputation’
instead of a mapping? The philosophically relevant message is that the mapping
is stipulated by human agents: As an agential theory of implementation,
implementation-as relies on a, at least partly, mind-dependent notion of
computation - we use devices as an aid for our computational goals which
otherwise would need to be carried out by hand or in one’s head. Imputation can
be understood as the notion that relates the interpreted and encoded
computational vehicles of the surrogate system we use for computation with the
computational problem we wish to be solved. Implementation-as advocates for
a stipulated implementation-relation. Such a relation has two principal
advantages.

First, the advantage of a stipulated implementation relation is that it does not
stand at odds with the state-of-the-art insights of applied mathematics (see
Rescorla (2014, §4) for a similar remark in the context of computing). Called the
application- or bridging problem, philosophers of applied mathematics seek to
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address the notorious issue of how the mathematical relates (or bridges) to the
physical. In a nutshell, the problem is that mere morphisms between physical
states and mathematical/states do not obtain, because strictly speaking functions
only obtain between set-theoretic structures (and physical substrates do not offer
such a unique structure (Psillos 2006, van Fraassen 2008)). In response, most
recently suggested solutions to the bridging problem state that the mappings
between the physical and mathematical are mind-dependent (Pincock 2004,
Batterman 2010, Bueno & Colyvan 2011, Nguyen & Frigg 2021). Put differently,
at least some stipulations of agents are needed to create a structure and hence
bridge the gap between abstract mathematical objects and concrete physical
states.

Now, in so far as theories of implementation need to spell out how logico-
mathematical models of computation relate to the physical, the problem of
implementation is a special instance of the application/bridging problem (see
Appendix B for a detailed discussion). Therefore, if not specified otherwise,
accounts of physical computation should preferably be in line with the insights
of the philosophy of applied mathematics. Imputation (a mind-dependent
notion) is explicitly compatible with this demand. Accordingly, computational
vehicles are associated with the logico-mathematical states of the implemented
computational formalism.101

The second advantage and essential feature of imputation is that it bears a
normative component - the pairing of exemplified features with features of the
computational formalism can be right or wrong, hence explaining
miscomputation. What's right is determined by the denoted computational
formalism. Again, mere morphisms seem to fail the miscomputation-
desideratum.192 While the denotation-relation constitutes what is supposed to be
implemented, imputation is the relation that pairs exemplified computational
states and formal computational states (of the target). Only when imputation
matches all the elements of the physical computational states required for a series
of computations, then the denoted program P might be implemented correctly.
Strictly speaking, if there is a mismatch, the system may compute in a way it

should not; it is said to miscompute.193

101 The argument may pose a problem for naturalized or mind-independent theories of
implementation. The seriousness of this threat may be subject to future research.

102 For essentially the same argument against using morphisms in accounts of scientific
representation see (Suarez 2003).

103 There are various ways in which this computational norm can be broken. Fresco & Primiero
(2013), offer a detailed taxonomy of the miscomputation of software, stating that
miscomputation can occur at any level of abstraction, ranging from faulty specifications,
through the algorithmic level, down to the machine. At the abstract physical interface, errors
might be due to wear and tear or insufficient counterfactual support (Schweizer 2019, 38-40).
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4.4.5 Taking Stock
Subsuming the various elements appropriated from the scientific representation

discourse results in an explicitly spelled out agential SRA:

Implementation-as

Let the ordered pair C=(X, I) be a computational device, where X is a material
system and [ an interpretation. Let P be the computational
formalism/program. C implements P as Zc iff all the following conditions are
satisfied:

(1) C denotes P.
(2) Cexemplifies Z-properties Z,...,Zn under an interpretation I :X = Zc.

(3) Ccomes with a computational encoding associating the set {Z3,..., Zn} with
a (possibly identical) set of properties {Px,..., Pm}. E{Zi}={P}}
(4) Cimputes at least one of the properties Py,..., Pm to P.

The resulting framework is baptized implementation-as, acknowledging the
influence of representation-as from the philosophy of art and science. This
approach is methodologically different from previous accounts of physical
computation couched in generic terms of scientific representation like L-machines
or A/R-theory, because it builds on a specific scientific representation proposal.
Concretely, the framework deploys Frigg and Nguyen’s DEKI account of
scientific representation (of material models).

The takeaway is that analogously to how a material scientific model (based
on an interpreted object X) is used to represent a target system Y as thus-and-so,
the core idea of implementation-as is to use a physical system (based on an
interpreted object X) to implement a series of computations or a program P.
Simply put, the computational formalism is the target that is supposed to be
implemented. Both scientific representation and physical implementation are
instances of object-based reasoning. In the former case, we manipulate and
interpret a material model as a surrogate to reason about a target
system/phenomenon. Concerning the latter, we configure and alter (ie.,
program) a physical computing system to obtain the result of a computational
function. As such, almost the entire DEKI-analysis of the MONIAC qua scientific
model equally applies to the machine when interpreted as an analog computer.
Having cashed out the main features of implementation-as, the remainder of the
chapter demonstrates how implementation-as applies to a case study (sect. 4)
before philosophically evaluating the novel theory (sect. 5) and concluding with

a discussion on how it relates to existing accounts (sect. 6).
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4.5 Case Study: The IAS-machine

In this section, I will show how the concept of implementation-as is not just a
theoretical discussion or limited to an analog hydraulic computer but is also
applicable to a widely known and influential device called the IAS-machine.1%4
This machine embodies the architectural principles of the wvon Neumann
architecture, which is still commonly used today. First, I will portray the
components of the machine and how it was programmed in detail (section 4.1).
Next, I will demonstrate how implementation-as sheds light on how the machine
implements physical computation (section 4.2). As we will see, the application of
the implementation-as framework is relatively straightforward despite its, at

tirst, seemingly heavy formalism.

4.5.1 Technicalities and Programming
The IAS-machine was one of the first binary stored-program computers, storing

instructions and data in the same memory. For enabling these features, different
components need to act as different computational states. The designers relied
on vacuum tubes for the circuitry and Williams tubes (cathode ray tubes) for the

memory. These components then formed three basic units: 19

1. The main memory unit (M)
The Central Processing Unit (CPU): Containing Control-Unit (CU) and
Arithmetic-Logic Unit (ALU)

3. The Input/Output device (I/O)

Considering the functioning of these units and their underlying components in
detail further clarifies our understanding of how exemplification and encoding
work in the case of a stored program digital machine. So, let me briefly look at
each of these units in detail, starting with the memory.

104Many authors have provided technical descriptions of the IAS-machine, how it was
programmed, and its history (Burcks et al. 1946; Estrin 1952; Ware 1953; Bigelow 1980; Burcks
1980; Aspray 1990; Priestley 2018). It is a stored-program digital computer that was constructed
over the course of six years by a team of scientists and engineers under the leadership of von
Neumann at Princeton’s Institute of Advanced Studies (IAS). The machine was completed in
1952 and had a significant influence on future generations of computers in and outside of the
industry, both in the US and overseas e.g., ILLIAC, MANIAC (in Los Alamos), and the IBM 701
(Aspray 1990, 86-94).

105 These elements (or “main organs”) were mentioned in different forms by von Neumann
(1945), where they were called CA (central arithmetical), CC (central control), M (memory), I
and O (input and output devices) and R (some external recording medium).
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The memory was of ‘Williams type” and composed of 40 standard commercial
“off the shelf” (Bigelow 1980, 302) 5CP1A cathode ray tubes (relying on the
emission properties of cathode-ray-tube phosphor screens). It had 1024 storage
locations or memory addresses, called words. Each word is 40 bits long and may

contain (1) a number word or (2) an instruction word (see Fig. 2).

01 39

(1) Number word

opcode address opcode address

(2) Instruction word
Fig. 4.2. Depiction of the two different types of words.

Instructions occupied two times 20 bits, where the first eight bits are opcode and
the remaining twelve bits indicate the address of a register. Overall, the
instruction set of the IAS machine contained 21 different instructions (Burks et al
1946, 42). A line of code of a program written for the machine then may look like
this 0000000100011111010000000101000111110101. The first eight bits (grey font)
are opcode and correspond to the instruction “[c]lear accumulator and add
number located at position x in the Selectron into it.” (Load M(xi)); the following
twelve bits correspond to a memory address x; the next eight bits (grey font) are
opcode and correspond to the instruction “[a]dd number located at position x in
the Selectrons into the Accumulator” (Add M(x;)). 19 It is sequences of bits like
these, composed of the machines’ specific instruction set that may comprise a
program P.197 As we will see, the reason why these details are relevant for the
application of implementation-as is that they warrant multiple, distinct instances
of interpretational exemplification.

Concerning the second main component, the CPU, the IAS-machine has seven
different registers (Accumulator, Arithmetic Register, Control Counter, Control
Register, Function Table Register, Memory Address Register, and Selectron
Register) of which only the Accumulator and the Arithmetic register are ‘visible’
to the programmer (both holding 40 bits).1% These registers utilized about 1700

106 For a more elaborate and detailed example see for instance Priestley (2018).
107 In the same vein, modern microprocessors are too compatible with specific ISAs (Instruction
set architecture), like x86, where “[t]he ISA serves as the boundary between the software and
hardware.”, (Hennessy & Patterson 2012, 11).
108 In today’s terminology the ‘Control Counter” is known as Program Counter and has a 12-bit
width; the Control Register holds the instruction currently executing (20-bit width). The
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to 2300 commercially available miniature double triodes, 1% where most of them
where of type 6]6 (other models used where 5670, 5687, and a few 6 AL5 scattering
diodes). Like modern garden variety CPUs, it executes instructions of programs,
such as arithmetic (e.g., adding integers of above’s example program P), I/O
operations and logic controlling.

Lastly, the selected I/O components are an important element to consider.
They afford the interface through which the users can interact and program the
device. Without input mechanisms like punched cards, teletypewriters or
keyboards, programmers and users had virtually no reliable means to load
instructions or data into memory. In the same vein, the lack of an output medium
(e.g., some kind of screen) would render the computational system a black box.
It is these outputs however that ultimately need to be in tune with the denoted
computational formalism/program P. At first, the engineers of the machine
relied on perforated teletype tape which in late 1951 was replaced by IBM
punched cards (Bigelow 1980, 306).

What turned the IAS-machine into a digital one is that it was operated under
a digital encoding. This design choice both appealed to the intended logical
nature of the machine (‘being a yes-no system’) and facilitated the use of existing

electronic components (flip-flops), such that

“[o]ur fundamental unit of memory is naturally adapted to the binary
system since we don’t attempt to measure gradations of charge at a
particular point in the Selectron but are content to distinguish two states.
The flip-flop again is truly a binary device.” (Burks et al. 1946, 7).
In addition, the composition, or architecture, constituted by the three
interconnected units M, CPU, and I/O enabled the IAS-machine to store
instructions (and data) in memory. As such, the machine stands in contrast to
early digital machines like ENIAC or analog devices like the MONIAC that had
to be reprogrammed manually similar to plugboards or read instructions from
external tape.

4.5.2 Implementation-as at work

Equipped with some basic understanding of the inner workings of the IAS-
machine and how it was programmed, let me sketch how the most salient
features of implementation-as come to fruition. As explained throughout the
chapter, the core notion of implementation-as is that properties of the designated

Function Table Register holds the current opcode and is 8 bits wide, whereas the Memory
Address Register holds the current memory address and is 12 bits wide.

109 The precise number of triodes used in the machine diverge among different authors. Whilst
Estrin (1952) mentions 2300 triodes, Ware (1953) speaks of ca. 1700, and Bigelow (1980)
mentions about 2000.
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computational vehicle are associated with the abstract computational states of a
computational formalism {Ps, ..., Pm} through a set of exemplified computational
states {Z1, ..., Zn}. To implement a specific sequence of computations, the putative
computing system needs to undergo four steps: denotation, interpretational
exemplification, encoding, and imputation.

Here, we assume that the IAS-machine is our X, i.e., our vehicle of
computation. As discussed in the previous section, our X is composed of many
different components (e.g., cables, 6J6 triodes, ...), forming three interconnected
units (M, CPU, and I/O). As such, it can be considered a computing system under
a series of fine-tuned interpretations I of some agent (typically the user of an
epistemic community who share the same conventions regarding a device).
Specifically, the IAS-machine then implements a computational formalism/
program P iff the following four steps apply:

(1) First, the device X denotes P. In the case of the IAS-machine, a typical
program P will look like a list of machine-code instructions each of 40-bit length
as just introduced in the previous section. As such, P acts as the normative
yardstick to evaluate executions between correct and faulty ones
(miscomputation). To eventually implement P correctly, different components
of the IAS-machine need to relate to different sections of the code.

(2) Second, given our agreed upon interpretation I, we note that the IAS-
machine exemplifies certain computational features {Zj, .., Zn}. According to the
general scheme outlined above, exemplification hinges on our interpretational
capacities I :X — Z. For instance, the previous discussion of the technicalities of
the IAS-machine showed that the following components play different roles in
exemplifying computational features: 5CP1A cathode ray tubes are employed for
holding data and instructions in memory; the CPU (with its seven registers) relies
on miniature triodes (mostly of type 6J6); the I/ O used punched cards to program
the machine in order code.

(3) Third, one needs to choose an encoding or labeling scheme. Since the IAS-
machine was constructed as a binary digital computer, parting with the
“longstanding tradition of building digital machines in the decimal system”
(Burks et al. 1946, 7), it operates as a binary digital computer processing both
digital data and instructions in a binary format. Accordingly, we adopt a binary
digital encoding as described in sect. 3.3. Standardly, one then associates the
absence (considering a certain threshold) of the flow of charge as ‘0" and the flow
of charge as “1".

(4) Finally, the just encoded computational states {P1, ..., Pm} are imputed to

our ‘targeted’ program P. Since computer scientists, programmers and users
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usually opt for the correct implementation of computational artifacts, we ideally
require that the entire set {Py, ..., Pm} is related to P.

To wrap up, the IAS-machine implements computations as the flow of charge.
The straightforward and successful application of implementation-as to the IAS-
machine suggests that this new agential theory of implementation can be applied
to other computers as well. Despite significant technical differences, many
modern computing machines still incorporate the basic architectural design
choices of this influential device. I believe that it is sufficiently complex and bears
enough similarities to the functioning of contemporary computers. Although
new technological advancements may lead to greater complexity, there is no

reason why implementation-as cannot be applied to these cases.

4.6 Is Implementation-as a good theory of computation?

At last, let me briefly evaluate the in this article developed theory of
implementation. The discussion proceeds along the lines of the desiderata of
physical computation introduced in the introduction (Sect. 1). As I will show,
implementation-as accommodates all the desiderata and should therefore be

considered a viable theory of physical computation.

(1) Objectivity. Nowadays, philosophers of science commonly agree that there
are considerable obstacles to cashing out theories of scientific representation in
naturalistic terms. That is why most approaches are formulated as intentional
conceptions (Frigg & Nguyen 2020a, 2020b). The DEKI account is a case in point,
for all its salient features hinge on scientists’ interpretational capacities. As
discussed at length, implementation-as inherited many of the key features - and
accordingly, it may be called an agential theory of implementation. Now, does
relying on interpretational features undermine the objectivity of implementation-
as?

The answer is nuanced. Reiss & Sprenger (2020) survey various conceptions
of scientific objectivity - as stated by Fletcher (2018) and Duwell (2021), theories
of physical computation based on agential notions of scientific representation
may only undermine an overly rigid notion of objectivity. Since implementation-
as appeals to agents and their stipulations, it may be incompatible with what
Duwell refers to as strong objectivity (i.e., an account of objectivity according to
whether a system is representational/computational is completely mind-
independent). However, relying on agential notions of scientific representation
does not undermine weak objectivity (Duwell 2021, 19). Accordingly, scientists
may reach intersubjective agreements if an object counts as a scientific model,

which parts of the world it is presumed to represent, and so on. Once such

95



4 Implementation-as: From Art & Science to Computing

intersubjective agreements are held fixed, practitioners may engage in scientific
reasoning without their personal preferences or any substantial personal biases.

Implementation-as adheres to standards of objectivity in these latter, less rigid
terms. Once the combined stipulative elements of denotation, interpretational-
exemplification, encoding, and imputation are agreed upon and held fixed,
computation under the regime of implementation-as is as objective as the
scientific practice of modeling and free of personal arbitrary beliefs, desires, and
intentions.

(2) Extensional Adequacy. A good theory of physical computation should
properly systematize paradigmatic computing systems (laptops, calculators,
smartphones) as computational; it should also judge instances of non-computing
systems as non-computational. The examples of the MONIAC and the successful
application to the IAS-machine show that implementation-as does not have
trouble classifying paradigmatic examples of computing systems as
computational. What works in the case of the IAS-machine, generalizes to other
real-world machines. In so far as the physical system exemplifies computational
properties that are keyed-up/encoded and imputed to states of a computational
formalism (which is denoted by the system), the system may implement the
formalism as such and so.

However, saying which systems do not compute proves more challenging.
The main concern is that without any restrictions on interpretation, any object
could be trivially turned into a computer by stipulative fiat. However, the
Implementation-as framework avoids this problem because it is a hybrid account
that relies both on interpretational aspects and mind-independent physical
features. In other words, it characterizes a computing system as C=(X, I), where
X represents the physical features, and I represents the interpretation. As a result,
cases where neither condition applies (0, 0) are non-computational, as well as
cases where we bestow objects with an interpretation but where they lack
adequate physical features (0, 1) (such as Putnam’s rock or Searle’s wall).
Additionally, systems with sufficient counterfactual support (1, 0) but lacking
one or more of the four implementation-as features (denotation, interpretational
exemplification, encoding, imputation) are dismissed as being computational.!1?
According to implementation-as, physical computation only occurs when both
these elements come to pass simultaneously (1, 1). When visualizing the different
scenarios in a graph, the following picture emerges (Fig. 4.3):

110 One may call such kinds of systems ‘quasi-computational,” because in many cases, it is still
desirable to analyze them in terms of computational.
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Fig. 4.3: The ‘hybrid approach’ (having to rely on both interpretation and the right
degree of counterfactual support) ensures that implementation-as considers that
the right things compute and the wrong things don’t. Figure inspired by a similar
graphic in Artiga (2023) in a different context (teleological functions).

As can be seen, the extensional scope of the implementation-as framework is
smaller compared to those accounts that merely rely on counterfactual state
transitions (e.g., Chalmers 1996, Scheutz 1999). While such accounts need to bite
the bullet of limited pancomputationalism (because every counterfactual/causal
structure would compute some function), 1! my account does not suffer from this
defect because interpretational exemplification further limits what may count as
a computational vehicle. As previously explained, interpretations need to be
agreed upon and held fixed. Additionally, the selection of X-features needs to
follow practical considerations (programmability, distinguishability, reliability)

and rely on counterfactual state transitions.

(3) Explanation. According to the third desideratum, a good account of concrete
computation should be able to explain (at least some of) a system’s capacities
computationally. There are different ways to understand this requirement. On
the one hand, the computational properties of a system may be explained by
what it implements. For instance, the IAS-machine implementing our exemplary
program P explains why it adds integers the way it does, its efficiency, etc. Yet,
on the other hand, under implementation-as material systems may only
exemplify computational states if agents bestow them with the task to do so -
without the agent’s stipulations, the chosen vehicles are not computational. Does

111 This sort of pancomputationalism is limited, since, although it states that every object
computes, it does deny the much stronger thesis that these objects also implement every
possible computation.
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this mean that computational explanations then merely reduce to agents” desires
to use something as a computer? No, because as I have argued implementation-
as is a ‘hybrid’-account - the agents also need to choose suitable physical states
that may act as computational vehicles. That’s why the current framework must
additionally resort to the particular underlying scientific theories that describe
the behavior of the chosen vehicles. As such, the explanations offered by
implementation-as are no longer distinctively computational but may be
physical, chemical, or biological (cf. Duwell 2021, 37). In the case of the MONIAC
e.g., the flow of water is taken as a computational vehicle. To explain the behavior
of the machine, we must consult hydrodynamics and the scientific theories

describing the dynamics of the mechanical components.

(4) Miscomputation. One of the main advantages of interpretational accounts of
computation is the straightforward explanation of judging the (in)correctness of
a computational process. Unlike their naturalized counterparts, they do not have
to deal with the difficult issue of natural teleology. Instead, maintain that agents
bestow the computing system with teleological functions to compute. Therefore,
the philosophy of computer science borrowed some of the function ascription
frameworks from the philosophy of technology (Turner 2018, Anderson 2019).
As a result, an interpretational account of computation implementation-as can
accommodate different notions of miscomputation. Let me briefly discuss these
notions separately.

First, programmers and users may sometimes have disagreements about
which program is supposed to be implemented. Although it seems like an easily
avoidable mistake, denotation is crucial for determining (in)correct
computational implementation. This is because figuring out the precise
(teleological) function of a computing system is epistemically inaccessible and
cannot just be read off. Prominent computer scientist Weizenbaum brought up
this up in a thought experiment, stating that if one day in the distant future, a
highly advanced society would find one of our present-day computers, they
could never know with certainty to have gotten the alleged program P just right
(Weizenbaum 1976, 132ff.). Albeit a high degree of understanding might be
achievable through observing its output patterns, black-box testing and attempts
of reverse engineering, reclaiming absolute certainty of the computer’s
specification might be impossible. Likewise, Dennett (1990) comes to a similar
conclusion with a real-world example of a discovered ‘computer’ - the
Antikythera mechanism. The (teleological and mathematical) function of the
ancient Greek device was initially obscure, and today scholarship is still puzzled

by it.
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Secondly, miscomputation may be caused by faulty imputations. As argued
above, faulty imputations may occur either through wear and tear or because of
insufficient counterfactual support. Both conditions lead to a mismatch between
the different execution traces of the denoted computational formalism Mc and

the putative computing system.

(5) Taxonomy. Encoding a labeling scheme is crucial for determining for what
kind of computations a system may be used for. I described the encodings
corresponding to the arguably two most widespread instances of computing -
digital and analog. Accordingly, the encodings of the interpreted computational
vehicles enable us to discern two major kinds of computing systems and their
different capacities.

Furthermore, implementation-as does not need to allude to the ‘narrow’
notion of program execution only. When judging various accounts of physical
computation, Piccinini criticized some earlier approaches that would equate
physical computation with program execution, because this may raise trouble for
classifying systems that are said to compute by means other than running
programs. 112 Implementation-as does not need to appeal to the notion of
program execution in order to be applied successfully; nothing in its four salient
features hinges on program execution. Rather, whether a system can be classified
to compute by virtue of program execution depends on the denoted
computational formalism (and arguably on one’s definition of what a program
is).

In sum, the results of this brief evaluation showed that implementation-as
squares well with most of the desiderata. As such, it has the potential to apply to
two, traditionally separately discussed approaches of computational
implementation. On the one hand, it may retroactively apply to some of the
previously mentioned SRAs, specifically those that suggest a formulation in
agential terms (Fletcher 2018, Anderson 2019, Papayannopoulos 2020, Szangolies
2020, and Duwell 2021). On the other hand, the framework offers a modest
interpretational account of physical computation. Implementation-as is a modest
account because it draws on both interpretational and non-interpretational
features (e.g., requiring counterfactual state transitions). In contrast to previous
somewhat arbitrary interpretational accounts (according to which everything can
be regarded as computing through mere interpretation), the account presented
here clarifies how interpretational and non-interpretational features connect

abstract and physical computational states.

112 For instance, he argues that some neural networks compute by means other than program
execution (Piccinini2008). Another (potential) case in point is analog computers, where some
scholars believe that they compute despite not executing a program.
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4.7 Discussion and Concluding Remarks

In recent years, transposing insights from the scientific representation discourse
into physical computation has resulted in a fruitful new perspective on
computational implementation: so-called SRAs. I have contributed to this trend
by providing a new rigorous description of a theory of implementation called
Implementation-as. What distinguishes my approach from previous SRAs is that
it relies on a concrete version of scientific representation rather than a general one
- the DEKI account of material models. The resulting account is a hybrid
approach because it depends on the users’ stipulative abilities and the physical
characteristics of the material system. The upshot is that implementation only
occurs when agents use the carefully chosen material object to model a desired
abstract computational formalism. In particular, agents may use a material
computing system as a computing device if they engage with denotation,
exemplification, encoding, and imputation. Combined, these four activities
portray the commonalities of physical computation as suggested by
implementation-as.

Importantly, my analysis showed that this new agential /interpretational SRA
makes the grade with many of the standardly evoked desiderata. For these
reasons, I submit that implementation-as is a promising alternative to existing
accounts of physical computation. To conclude I will briefly put my undertaking
into perspective, commenting on how my approach contrasts to prominent
existing accounts, in particular extended mapping accounts (EMA), semantic
accounts, and mechanistic accounts. But for reasons of editorial scope, I cannot
offer an in-depth comparison to the entire spectrum of currently available
approaches and refer the interested reader to full-fledged surveys.

It is widely accepted that simple mapping accounts (SMA) trivialize
computation due to unlimited pancomputationalism. This defect led to the
development of more sophisticated approaches: Counterfactual, causal, and
dispositional accounts extended the mapping account with restrictive conditions
that prevent too liberal mappings. In section 3.2, I discussed that implementation-
as also requires us to select suitable computational vehicles that can sufficiently
exhibit counterfactual state transitions.

Although implementation-as and ‘traditional’ EMAs share these similarities,
there is an essential difference between the two. Traditional EMAs assume that
the implementation relation is a naturalistic/ mind-independently obtaining two-
place relation between physical and abstract computational states. In contrast,
SRAs generally advocate for an interpretation of the mapping by virtue of
scientific representation. This commitment is crucially different because many

available options of scientific representation are three-place relations obtaining
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iff we allow agents and their intentional capacities into the picture. That is why
many SRA-proponents argued that they should be conceived as an agential
theory of implementation. The implementation-as framework makes this
explicit, and I argue that its successful application requires the mind-dependent
activities of denotation, exemplification, encoding, and imputation.

The semantic account further restricts EMAs by requiring that computational
states always carry meaning or semantic content. In a previous section (3.1), I
discussed the connection between my approach and semantic accounts. Both
SRAs and semantic accounts emphasize the importance of representation in
computation. However, there are notable differences how representation is used
and understood in both frameworks.

In the implementation-as framework, scientific representation is utilized to
bridge the gap between abstract computational states and physical states without
the need to commit to external content. In general, SRAs only have a minimal
requirement for content: physical states merely need to be the bearer of logico-
mathematical content (of the implemented model of computation). Any
additional semantic content or meaning the computational vehicles have, is
irrelevant to the successful application of SRAs and hence implementation-as.
(However, the user of the computing device may assign semantic content or
meaning to computations if needed). 3 In contrast, semantic accounts use
representation in a broader sense, where computational states may represent
external states of affairs (for example, grandmothers, when thinking of Marr’s
apocryphal grandmother cell). This sense of representation is more relevant to
cognitive science, which assumes that brain states are representational.

Regarding the relationship between Implementation-as and mechanistic
accounts, the question about their link is nuanced. Depending on which
mechanistic version one choses for comparison, there are different degrees of
shared commitments. Generally, mechanistic accounts state that functional
mechanisms are central to computing; computational vehicles need to be
components of a mechanism. In its current formulation, the implementation-as
framework does not specifically share that commitment. However, even though,
computational vehicles need not be part of a mechanism for the successful
application of implementation-as, nothing in the formulation of my account rules
out that computing systems C=(X, I) cannot be mechanisms. In fact, both
previously discussed cases - the MONIAC and the IAS-machine - are bona fide
mechanisms. Future research should elucidate if this fact is accidental or whether

113 See Fletcher 2018, 452-53 for a similar discussion concerning AR-Theory.
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a combination of the views might lead to an even more robust theory of physical

computation.
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In line with the UTAI framework (cf. Chapter 2), the previous chapter introduced
a novel theory of computational implementation. As such, Implementation-as
illuminated how different features under the umbrella “program” are connected
across the abstract-concrete dichotomy. This chapter sheds further light on the
physical side of things and scrutinizes the relationship between agents and the
physical system they program (dependency relation (c)).

Introduction & Motivation. How are programs integrated into the causal nexus?
What does it mean for a physical system to be programmable? Which of a
program’s features let it appear as physical entity? The strategy of conceiving
computation abstractly at a level of symbol manipulation and programs as sets
of instructions fails to account for the physical properties that render a system
programmable. For addressing these issues this chapter introduces the notion of
physical programmability. Physical programmability accommodates insights from
well-established research territories like (computational) mechanisms;
interventionism; human-machine interaction; theoretical computer science, and
is compatible with real-world examples. I propose that the ensuing

characterization of physical programmability

Physical Programmability: The degree to which the selected operations of an
automaton can be reconfigured in a controlled way.

Subsequently, the structure of this chapter unfolds like so: First (section §5.1),
I provide a critical overview of a handful of existing accounts concerned with the
programmability of sequence executing systems. Then, I introduce the novel
notion of physical programmability by presenting the various
elements/variables contained in its definition. Accordingly, I begin with
elucidating the conception of material automata (section §5.2). Thereafter (section
§5.3), I shed light on which kinds of operations are permissible to fall under the
scope of programmability by relying on the notion of mechanisms. Next (section
§5.4), 1 explain how ‘interventionism’ allows us to understand the
reconfiguration of programmable systems. Penultimately (section §5.5), [ analyze
to what extent programmability comes in different degrees. Lastly (section §5.6),
I provide some concluding remarks and discuss various open questions.
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5.1 A critical overview of Programmability
One way of thinking about programmability is in terms of the ability to change
the behavior of a sequence-operating system. We may program our VHS,
washing machine, or computer. Pre-theoretically, programmability is commonly
viewed as ‘the property of being programmable” and applied to a wide variety
of different kinds of either virtual or concrete (computing) systems. However, a
characterization along these lines is circular and lacks rigor. Without further
analysis, such a definition of programmability remains uninformative at best.
Despite the importance of the notion (for computing), the literature on the
programmability of physical systems is scarce. To the best of my knowledge,
there are only a handful of sources that explicitly aim to elucidate the matter. To
get started, I will, therefore, conduct a thorough and critical assessment of the
proposals by Conrad, Zenil, Piccinini, and Haigh & Priestley. This in-depth
analysis will provide a comprehensive understanding of the existing literature.
As we will see, while differing significantly, these accounts coincidentally 114
share four salient features of programmability: A specification of the type of
system programmability applies to (scope); the kind of operations it can perform;
the way in which re-programming is achieved; and a grading system according to
which programmability comes in different degrees. These four ingredients (cf.
table 1 at the end of this section) will subsequently serve as the kick off for my
refined physical programmability proposal.

5.1.1 Programmability as a trade-off principle
The formulation of a more rigorous notion of programmability was initially
attempted in The Price of Programmability (Conrad 1988). Conrad, a biophysicist
who studied biological computing systems, posits a trade-off principle that links
computing and evolution. He attributed three fundamental properties to these
systems: programmability, efficiency, and evolutionary adaptability. Inspired by
contemporary computing technology and the linguistic metaphor associated
with programming languages, Conrad characterizes programmability as the
“ability to prescriptively communicate a program to an actual system” (Conrad
1988, 286). By subsequent refinement, Conrad offers two more fine-grained
notions (that he deemed crucial for understanding the adaption of biological
systems): effective programmability and structural programmability.

Relying on the anthropomorphic notion of communication, a system is
effectively programmable “[...] if it is possible to communicate programs in an
exact manner, using a finite set of primitive operations and symbols, without

approximation.” (Conrad 1988, 287-88; own emphasis). Conrad contends that

114]n fact, none of the illuminated approaches in this section cross-reference each other.
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effective programmability is achievable in three ways: (a) by relying on an
interpreter, (b) by building a physical realization of the relied-upon model of
computation, and (c) by utilizing a compiler. Structural programmability builds
on effective programmability and bears the additional condition that “a program
is mapped by its structure” (ibid., 288). Put differently, some systems may be
effectively programmable but not structurally programmable. Conrad states that
only the first two ways, (a) using an interpreter or (b) building a physical
realization, suffice for structural programmability. The implication is that the
corresponding program of such merely effectively programmable systems would
not be mapped by their structure.

Despite capturing some intuitive notion of programmability, I have three
principal reservations about Conrad’s account: First, the definition of
(effective/structural) programmability fails to explain what kinds of
manipulations are permissible. Relying on the communication metaphor for
human-computer interaction obfuscates which physical properties are essential
for the device’s programmability.

Second, in the build-up of his argument, Conrad appears to rely on a dubious
understanding of the Church-Turing thesis, confusing computational modeling
with physical computation proper. 115 Since Conrad’s original publication in the
late 1980s, a rich literature on physical computation emerged, emphasizing that
computational modeling and concrete computation must not be confused, or else
one slips into trivial forms of pancomputationalism. However, it is only due to
this conflation that Conrad can apply programmability and his trade-off system
to all sorts of (biological) systems.

Third, the distinction between effective and structural programmability
remains somewhat opaque when it comes to the “mapped by its structure”
condition. According to the literature on physical computation, implementation
requires some mapping between the formal model of computation and physical
substratum (see Piccinini & Maley (2021) for an overview). Effective
programmability contradicts these research insights without clarifying what the

‘mapped by its structure” condition is supposed to amount to.

5.1.2 Programmability as the foundation of computation

Independently of the previous account, Zenil introduced an approach to
programmability closely entangled with computation (Zenil 2010; Zenil 2012;
Zenil 2013; Zenil 2014; Zenil 2015). His view about programmability emerged
from his so-called behavioural standpoint - an approach to physical computation

claimed to part ways with the common approach of the so-called simple mapping

115 Conrad’s version is much closer to what Copeland (2024) has called the “Maximality Thesis.”
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accounts. So, instead of relying on a mapping between an abstract model of
computation and a physical computing system, a compression-based metric is
advanced that acts as a ‘grading system’ of a material object’s ability to be (re-
)programmed. The ability to be programmed is regarded as a necessary condition
for physical computation.

Accordingly, physical computation cannot be separated from
programmability, where the latter is defined as “[...] the ability of a system to
change, to react to external stimuli (input) in order to alter its behaviour.” (Zenil
2015, 112). In fact, programmability is regarded as a condition sine qua non -
“Ih]ence, we make the assumption that central to the claim that something
computes is the capability of a system to be reprogrammed.” (Zenil 2014, 111).
Only when a material system is said to be reprogrammable can it be considered
computing; the ability of physical computation reduces to programmability.

By connecting programmability to a general notion of “variability” (defined by
a formal measure),1¢ Zenil aims to provide a theoretical basis to quantify the
degree of change due to some external input. Simply put, the variability measure
assigns values to outcomes (states of a system) depending on different initial
conditions.

While offering advantages in terms of a formal programmability measure,
Zenil’s account also presents certain concerns. Most notably his work does not
tell us how to differentiate genuine programming from other (arbitrary)
interactions with a material system. Without additional constraints, the account
may be trivialized, as any physical interaction could potentially be considered
programming. Although a normative condition is presented, indicating that the
system should behave as intended, it remains unclear whose intentions should
be the deciding factor.

5.1.3 Soft & Hard Programmability

A third attempt to define programmability emerged from Piccinini’s work about
the teleo-mechanistic account of computation (Piccinini 2008, Piccinini 2015). He
writes “[a]Jny machine that can be easily modified to yield different output
pattern may be called “programmable’.” (Piccinini 2015, 184). Interestingly, his
notion does not exclusively apply to computing systems. Opposed to Conrad and
Zenil, his conception may apply to non-computing mechanisms as long as they
operate in sequence (such as weaving looms and juke boxes). Nevertheless,
Piccinini maintains that programmability is a gradual concept (though a non-

formalized one). He suggests framing it in phenomenological terms, i.e., the

116 Zenil employs Kolmogorov Complexity (aka Algorithmic Information) as the basis for his
formal variability measure.
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easier one obtains different output patterns, the higher the amount of
programmability. Based on these preliminaries, his work offers a taxonomy of
four different cases of programmability:

(a): The first type of programmability corresponds to the configuration of non-
computing systems just presented. Piccinini does not pay much attention to this
type of programmability and I will hence skip its assessment for lack of
analyzable material.

(b): More attention is paid to the second type though: hard programmability.
Hard programmability refers to computing systems (n.b.,, non-computing
systems are no longer discussed) where components are mechanically modified:
In order to implement a specific computational function f(i), with input i, the
machine’s operators need to adjust the pattern in which the computing
components are “spatially joined together” (Piccinini 2015, 185).

(c) & (d): When systems are not (re)programmed mechanically, they are
considered soft programmable. Here, the “modification involves the supply of
appropriately arranged digits (instructions) to the relevant components of the
machine” (Piccinini 2015, 185). Two cases are distinguished, leading to his third
and fourth types of programmability, respectively: On the one hand, external soft
programmability is defined by the insertion of the instructions (encoded in a
string of digits) through an external medium (for instance punched cards). On
the other hand, internal soft programmability applies to devices that can store
programs (strings of digits) inside of them. The distinction between external and
internal soft programmability thus alludes to architectural features: external soft
programmability refers to devices without internal memory, internal soft
programmability applies to devices with internal storage.

As already mentioned earlier, it is paramount to emphasize that his taxonomy
is not categorized by which kind or how many (computational) functions can in
principle be implemented in a system though. Instead, Piccinini’s grading system
is based on the way in which a (computing) system is manipulated. Choosing to
spell out programmability in terms of how a device is set up, is supposed to
capture some of our everyday experiences of programming devices. Either
machines are programmed through cumbersome mechanical modification (hard
programmability), or by supplying instructions to computing components ex-
(external soft programmability) or internally (internal soft programmability).

While considering everyday experiences from a programmer’s perspective is
a welcome feature, at a closer look, the categorization scheme raises at least two
worries. First, the distinction between hard- and soft programmability is

somewhat reminiscent of the notorious software-hardware dichotomy. The
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software-hardware distinction is ill-defined.!1” I think that Piccinini’s distinction
is subject to similar criticism, i.e., hard and soft programmability appears to be
relative to some arbitrarily drawn line, since ultimately every programmable
system is changed ‘mechanically” (at least, if understood in terms of mechanism;
cf. sect. §3).

Moreover, the formulation “to supply instructions’ is potentially misleading.
Such communication metaphors attribute cognitive capacities like
‘“understanding instructions” to (computing) machines. Anthropomorphizing
machines risks overlooking the underlying physical properties and mechanisms

that allow for programmability in the first place.

5.1.4 Program Execution # Programmability
Lastly, Haigh & Priestley (2018) recently developed a notion of programmability

for historical discussion meant to classify COLOSSUS with respect to other well-
studied historical digital computing machines. 118 What distinguishes their
conception from the previous ones is that it does not appeal to computability
theory or any other formal apparatus. Instead, the authors state that two

conditions are necessary for a system to be programmable, viz.,

“[...] “programmability” as applied to a device requires not only that the
device carries out a sequence of distinct operations over time, i.e. that it
follows a program, but also that it allows a given user to define new
sequences of operations.” (Haigh & Priestley 2018, 18)

Their two necessary conditions are intertwined: On the one hand, a
programmable device needs the capacity to carry out a sequence of operations;
on the other hand, the sequence of operations must in principle be changeable by
the users. The authors rightly emphasize that the latter feature is dependent on
the former, as a system must be able to execute sequences of operations to enable
users to change them. As such, their notion of programmability is rather inclusive
- also allowing non-computing devices such as programmable washing
machines. Importantly, this definition allows COLOSSUS to be classified as a
program-executing device, despite being non-programmable in their terms.

117 Remember, for instance (Moor 1978), according to which the software-hardware distinction
is merely a pragmatic one, dependent on context and the skills of the programmers and users.
118 COLOSSUS was a British top-secret electronic codebreaking device built from 1943-1945.
Haigh & Priestley argue that the machine was not built to carry out numerical computations but
designed to decrypt teleprinter encryption of German communication during WWIL Despite
not being a (general-purpose) computer, the authors claim that the machine automatically
executed a program (i.e., implemented a specified series of discrete operations).
Notwithstanding, Haigh and Priestly state that COLOSSUS was not programmable since the
users could not fundamentally alter the program of operations performed by the machine.
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Developed for a historical argument of only one particular device, their
characterization of programmability has a couple of weaknesses when applied to
other automata. Chief among them is that their approach does not elucidate
different degrees of programmability - according to their binary view a system
is either (completely) programmable or not. In addition, the authors stay silent
about which kinds of interactions ought to be considered as re-programming (as

opposed to arbitrary interactions).

5.1.5 Taking Stock

This brief overview showed a small and disconnected variety of philosophically
inclined attempts towards programmability of material (computing) systems.
The results are summarized in Table 5.1.

Conrad Zenil Piccinini Haigh &
Priestley
Type of Material | Natural & Natural & Technical & Technical
System technical technical natural (?)
Operations Computation | Computation | Sequenceable | Sequenceable
operations operations
Mode of Instruction - Mechanical, -
Reconfiguration Instructions
Degree/ Effective and | Quantitative | Hard and soft -
Grading System | Structural measure
(algorithmic
information)

Table 5.1: Overview /Comparison of the different features of the here presented
accounts of programmability.

Given that programmability is often overlooked in philosophical discourse, its
individual methods, scope, and aims can vary greatly. Nonetheless, some
commonalities have emerged in the accounts of programmability. Therefore, I
take it that a good account of programmability should specify the type of system
to which it applies, the operations that are considered, how configurations are
achieved, and in what sense it is a gradual notion.

With these requirements in mind, I submit an improved notion called physical
programmability: The degree to which the selected operations of an automaton can be
reconfigured in a controlled way. In the following sections, I will clarify how the

elements in my characterization of physical programmability - automaton,
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selected operations, reconfigured in a controlled way, and the degree to which it

is achieved - are anchored in contemporary research traditions.

5.2 Material Automaton

Virtually any system’s behavior can be changed or manipulated in one way or
another, but not every change of arbitrary objects amounts to (re)programming.
For this reason, it is desirable to constrain programmability to specific systems
only. In this section, I explain how the material automaton variable contained in
my definition serves this purpose by restricting the scope of physical
programmability to real-world automata. In what follows, it is thus crucial to
specify what real-world automata are.

The term “automaton,” originating from the Greek word astépara, means “self-
moving’. Historically speaking, material automata have existed since ancient
times and include mechanical clocks, automated musical instruments, looms,
and calculators (Ambrosetti 2010). They can perform operations like sound
production, weaving, or physical computation, based on varying degrees of
energy and control autonomy. (A more elaborate concrete example will be
discussed at the end of the section). Today, one may characterize an automaton
as

Automaton: System with the ability to execute a predetermined series of

operations (to some degree) autonomously.

Despite this precise characterization, the term “automaton’ bears some ambiguity
in common language and philosophical discourse. Depending on one’s
understanding of ‘system,” the term ‘automaton’” may refer to two different
ontological domains. On the one hand, modern automata theory is the study of
abstract machines and an integral part of theoretical computer science.1” On the
other hand, there are those already mentioned tangible real-world automata -
these systems are particulars locatable in space-time.

Differentiating between abstract and concrete automata is crucial for avoiding
category mistakes. For instance, as per Sloman (2002), material automata display
energy autonomy and control autonomy. A device that depends on a human
operator to provide energy (e.g., by turning a knob) has low energy autonomy,

whereas a device with an integrated energy source, like an engine or battery, has

119 For instance, by defining different classes of abstract computing systems such as finite state
machines, pushdown automata, Turing machines, etc. we can study the theoretical limits of
computation (cf. Hopcraft et al 2001). A Turing machine, e.g., provides a formal procedure for
computing a function, yet the machine qua abstract object is not something physical at all. Often
programmability is discussed with these formal devices; Turing machines, for instance, are said
to have a higher programmability than FSM, as they compute more functions.
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high energy autonomy. Similarly, a machine that necessitates frequent user
intervention to control its actions has low control autonomy (e.g., a car), while a
system where a predetermined set of actions can be executed without any
intervention on the control mechanism has high control autonomy. Now,
applying categories like energy and control autonomy to logico-mathematical
entities like Finite State Machines would be a fallacy because these abstract
formalisms cannot be driven by real-world motors. Importantly, physical

programmability is hence only intended for material automata.

5.2.1 Automata as technical artifacts

To further distinguish material automata from ordinary physical objects like
rocks, tables, and tigers, it is helpful to rely on the theoretical framework of
technical artifacts. Technical artifacts are special types of artifacts that are
characterized by their ‘dual nature” - constituted by both mind-dependent
functional features and mind-independent structural features (cf. Baker 2006;
Kroes & Meijers 2006; Kroes 2012; Preston 2018, §2.3). Structure determines what
an artifact can do, while function is what the artifact is intended to be used for.
Due to this normativity, some researchers (Vermaas & Houkes 2003; Houkes &
Vermaas 2010) argued that technical functions require intentionality.
Accordingly, an agent or epistemic community intentionally ascribes a function
to an object for a specific purpose.

From this theoretical standpoint, material automata can be viewed as
technical artifacts because they are (i) intentionally created devices with (ii) the
ability to execute a predetermined sequence of operations. Let me briefly look at
these requirements separately.

The first necessary characteristic to be considered a material automaton is that
the system’s structure must be able to exhibit sequential behavior (e.g., through
a mechanism). However, this is a cheap property that many systems possess:
Given some interpretative flexibility, a wide range of systems appear to act in
sequence - the dynamical macroscopic behavior of systems like hurricanes or
rivers, for instance.’ That is why mere sequential behavior is insufficient to
qualify as an automaton qua technical artifact.

Therefore, we must adhere to the second fundamental trait of technical
artifacts - intentional function ascription. In the case of a designed program

120 Worse, one may even argue that prima facie seemingly static systems (like rocks and tables)
have an ability to operate in sequence. In a different context, philosophers like Putnam (1988) and
Searle (1990) have employed such reasoning to argue that objects like rocks and walls, seen at a
microscopic level, showcase an internal dynamical behavior (that is interpretable as a sequence of
operations). The reason for this is that the physical state of ordinary systems does in fact traverse
physical state space and is not completely static.
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executing material automaton, one of the system’s function is to execute a
predetermined series of manipulable operations. It is important to note that the
‘predetermined’ clause requires an intentional sequence set up by an epistemic
agent or community. 12! Put differently, this requirement excludes natural
systems that can act in sequence as material automata because their course of
action is not intentionally predetermined by designers, programmers, or users.
Although we may describe dynamic systems like hurricanes and cells in terms of
theoretical automata, they should not be considered material automata defined

by technical artifacts.

5.2.2 An Example: The Musa flute player

So far, we primarily approached the topic of material automata theoretically. To
provide further clarification for the rest of the chapter, I discuss the relevant
concepts with a concrete, historical example: an ancient flute player. Albeit
seemingly simple at first, I shall occasionally return to this example to discuss
several philosophical issues relevant to the remainder of this chapter.

One of the first audio automata or ‘music boxes’ that play melodies with
minimal human intervention originated in the ninth century CE, when three
scholarly brothers from Baghdad, known as the Banu Musa, built an automatic
flute player (Levaux 2017, §3.1). The device was powered by water and operated
using differences in air and hydraulic pressure, generated by a filled reservoir.
This structure generated wind for the creation of the sounds of the flute. By
additionally utilizing a cylindric rotating drum with teeth and small levers that
opened or closed the flute's nine holes depending on the size and positioning of
the raised pins, different melodies emerged (Koetsier 2001, 590-591). Fig. 1
illustrates the underlying mechanism responsible for the energy autonomy that
enables the automatic functioning of the device.

121 Ascribing teleological functions to arbitrary systems (with the ability to act in sequence) is
insufficient to turn it into a technical artifact. Mere function ascription leaves room for ready-
made artifacts or so-called object trouvés (meaning found objects - a concept from the art world).
If that were the case, one could simply promote natural objects, which can be utilized to serve
human purposes, into technical artifacts. A simple example is a rock that may be used as a
hammer. Similarly, one could turn systems like hurricanes or cells into a material automaton by
interpreting their dynamical behavior sequentially.
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Importantly, the Musa flute player’s designers did likely not intend their
machines to be reprogrammable after construction (d’'Udekem 2013, 177). Once
operational, the system was designed to perform a fixed melody (a sequence of
tones) and was not responsive to any external input. 122 The lack of a
programming mechanism or external interface made it impossible to control and
predetermine a (new) series of operations unless the machine was disassembled

or destroyed.1?

PALLET
ORGAN-PIPE

¢——————— PULL-DOWN

Fre. 9.~THE BANO MOSA AUTOMATIC HYDRAULIC
ORGAN. (Reconstructed.)

Showing the way in which the teeth of the cylinder or recording
barrel opened the holes of the horizontal organ-pipe by means
of pallets.

Fig. 5.1: Depiction of the mechanism that constitutes the Musa flute player. The
teeth of the cylinder or “program barrel” opened the organ-pipe via levers through
pallets. (Image taken from Farmer (1931, 101)).

The upshot of discussing this peculiar device is that not all sequence-
controlled automata are also programmable. To account for (more)
programmable types of automata, I will provide further conceptual resources
that elucidate how humans can intervene and control more complex devices.
Particularly, I will shed light on the notions of input, output, and interface,
facilitating our understanding of how human agents can intervene on the device’s

control structure/mechanism such that its operations change. Accordingly, the

122 As such, ‘programming’ (in a limited and basic sense) may only take place during the
construction phase of the device. The reason is that the mechanism responsible for producing
the flute player’s melody is internal to the system and completely hidden from its users. Since
the mechanism is not meant to be changeable, there is no need for external means of regulation
through an interface. Without a recognizable interface, re-programming is unfeasible.

123 As Simon (1996, 6) points out, designers may only ever achieve a ‘quasi-independence” of
their technologies from the outside world. Biologists may have similar discussions concerning
the phenomenon of homeostasis of certain kinds of organisms (Glennan 2017,114-115). No item
can be entirely shielded from environmental influences, and the insulation of the flute player's
inner workings may break down due to strong vibrations, extreme temperatures, or exposure to
strong magnetic fields. Additionally, a skilled individual might be able to work around the
insulation and “hack’ into the system and access the control mechanism of the machine,
revealing unforeseen (non-intended) interfaces.

113



5 Physical Programmability

following section introduces how an automaton’s operations hinge on its

underlying mechanism.

5.3 Selected operation

In the 17t century, the term “mechanism’ surfaced by following Greek and Latin
terms of machine (Dijksterhuis 1956). In recent philosophical discourse,
mechanisms gained considerable traction with the so-called (neo-) mechanistic
turn around the beginning of the millennium.?* Since then, mechanistic talk in
philosophy of science mushroomed and has brought forward a rich literature
applied to large variety of research domains like physics, chemistry, biology,
cognitive science, economics to only name a few.

I propose that programmable automata and the structure that enable their
operations are fruitfully describable in terms of mechanisms. In particular, the
mechanistic framework provides insights that deepen our understanding of
‘operation” and how human agents may exercise control over a programmable
system. In this section, I explain how we can understand operations by virtue of
mechanisms. I will discuss the exercise of control afterward in sect. §4.

At first, marrying mechanisms with automata may seem hardly original - the
very term ‘mechanism’ derives from ‘machine’ and has a technological
connotation. Yet, using the philosophical notion of mechanism to analyze
engineered systems is surprisingly scarce (van Eck 2017); arguably, most
mechanistic research applies to the life sciences. This is a pity, because the
mechanistic framework not only enables us to look at the physical components
responsible for the automaton’s operation but also allows for the integration of
further conceptual tools from the mechanistic literature that can act as a

philosophically robust bedrock for programmability.

5.3.1 Mechanisms

While I want to focus on mechanisms in programmable automata, it is chief that
we first grasp the most salient features of mechanisms in general.1?> In what
follows, I will rely on the stabilized ‘consensus conception” of Illari and
Williamson (2012), according to which a mechanism is defined as

124 For a more thorough (but still tractable) historical overview of the mechanistic turn see
Késtner (2017, Ch. 3).
125 There is a wide array of systematic work about the nature of mechanisms. Some of the most
influential accounts brought forward are Bechtel & Richardson (1993); Glennan (1996);
Machamer et al. (2000); Bechtel & Abrahamsen (2005); and Craver (2007b).
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Mechanism: “A mechanism for a phenomenon consists of entities and
activities in such a way that they are responsible for the phenomenon.”,
(Ilari & Williamson, 120).

It is widely accepted that the spatial, temporal, and active relations between
entities and activities (the micro-behaviors) are responsible for the mechanism’s
phenomenon (the macro-behavior). Characterizations along these lines appear to
imply some form of mechanistic hierarchy: There are at least two levels comprised
of acting entities (the parts) on the one hand, and an exhibited higher-level
phenomenon (the whole) on the other. Typically, the higher-level phenomenon
of some mechanism/system is referred to as S’s ¥-ing, where S denotes the
system, and W-ing its corresponding phenomenon. The mechanism’s entities are
referred to as Xi and their activities are denoted by {¢1, ¢2, ..., ¢} (cf. Craver
2007b). Figure 2 pictures two mechanistic levels with the aforementioned

elements.

Fig.5.2: Schematic representation of a mechanism. (cf. Krickel 2018; Craver 2007b)

Such a two-level image can be (and is in fact often) expanded into a multi-
level hierarchy. Every working entity Xiof a mechanism S can itself be subject to
further decomposition into a sub-mechanism; mechanisms can thus be ‘nested’
several times. When then “horizontally” analyzing the relation of the components
Xi's on a given level we are speaking of interlevel relationships; when referring to
‘vertical’ relations between levels we speak of intralevel relations.

The mechanistic level image advocates a localized approach to levels of
organization - the hierarchy applies relative to a given mechanism S and its lower-
level components. While the level metaphor is ubiquitous in (the philosophy of)
science, it is important to not conflate mechanistic levels with the other

prominent level views (Craver 2014; Eronen 2015).126

126 Particularly in the current context of computing, the conception of mechanistic levels does
not equate with LoA of computational artifacts. Though one certainly can apply the
methodology of LoA to mechanistic levels, there is one important difference: the mechanistic
framework is limited to spatio-temporal entities only. In contrast, the notion of LoA may also be
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What's key about the mechanistic framework for our quest to define physical
programmability is that offers the right means to uncover the functioning of
material automata. Specifically, I submit that S’s P-ing ought to be interpreted as
the automaton’s (sequential) operations; here S corresponds to the automaton

and ¥-ing denotes its operations.

5.3.2 Input-Output mechanisms

An additional benefit of utilizing the neo-mechanistic framework for
characterizing physical programmability is that we can rely on the notion of what
Glennan calls input-output mechanisms (2017, 113-116; referred to as ‘I/O’ from
here on). I/O mechanisms are a subclass of the generic definition of
mechanisms. The focus is shifted to a phenomenal description, especially to the
patterns a mechanism’s phenomenon produces. As per Glennan, I/O
mechanisms are systems whose actions or outputs are responsive to inputs and

describable by a functional relation between input and output variables

fl)=o,
where i denotes the input(s), o the output(s), and f their functional relation.
Reasoning along these lines allows for the threefold distinction between
mechanisms that bring about outputs as a result of inputs (the ‘regular’ I/ O case);
mechanisms that produce outputs independently of inputs (no-input/output);1?”
and mechanisms that remain stable/provide a constant output when presented
with varying inputs (input/no-output) (Glennan 2017, 116).

Moreover, by conceptualizing the inputs and outputs of the I/O mechanism
as variables that can take on different values, we can easily use mathematical
representations to describe S’s ¥-ing. Using a mathematical representation has
two primary advantages:

First, it allows us to flash out the possibility space of a material automaton’s
behavior in terms of (finite) automata theory.1?® Especially the notion of finite
deterministic automata (FDA) and the corresponding state diagrams are useful
models to study the potential material automaton’s execution traces.!? It is

applied to abstract/formal entities. Another crucial difference between LoA and the

mechanistic hierarchy is the intralevel relation between different levels. Whereas the former

relies on some form of leaving out selected details (abstraction), the mechanistic intralevel

relations are of a different nature. I shall return to the importance of levels in section §4.

127 The Musa flute player is a case in point.

128 It is important to note that while we should be cautious not to confuse abstract automata of

the logico-mathematical realm with concrete real-world machines, we can still use the

conceptual framework of automata theory to model actual material devices.

129 Theoretically, a FDA can be defined as a five tuple A = (Q,Z, §, qo, F), where Q denotes a

finite set of states, X is the finite set of input symbols, § is a transition function, q is the start state,

and F a set of final states (Hopcroft et al. 2001, 46). Depending on the input label a from the
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handy for systems that execute a (predetermined) sequence of operations based
on external events (inputs): Vending machines, elevators, traffic lights, and
combination locks are typical examples of the textbook literature (see e.g.,
Mozgovoy 2010, 92-95). We may additionally draw state diagrams or
contingency trees that visualize different execution traces depending on different
inputs. As such, the concepts associated with automata theory allow us to
analyze the behavior of material automata, predict their behavior, and reason
about which series of operations are, in principle, executable.

Secondly, as we will delve into in the next section (§4), the mathematical
representation of I/O mechanisms plays a crucial role in making the concept of
‘reconfiguration” understandable through causal modeling. This is possible
because that we can assign logical (Boolean), discrete, or continuous values to the
variables associated with a mechanism, and since the functional form of relations

between them can be characterized as linear, quadratic, logarithmic, etc.

5.3.3 Selection

I argued that the operations of an automaton are characterizable as a
‘phenomenon’ in terms of the mechanistic framework. However, without further
qualification, the threat of an underdetermination problem remains with this
view since a given system S may showcase multiple phenomena at once. When
we judge an item to bear a certain degree of programmability, we typically do so
with only one specific phenomenon (¥-ing) in mind. Physical programmability
only makes sense relative to a specifically selected series of operations -- yet some
systems may simultaneously exhibit multiple potential phenomena.

To exemplify the issue, consider the example of the flute player I previously
discussed in section (§2). The takeaway was that the device has virtually no
programmability since one cannot modify its sequence of operations in a
controlled manner. However, during our assessment, we glossed over the fact
that the ancient automaton simultaneously produces several phenomena (e.g.,
vibrations, sound, heat, etc.). Admittedly, most of these phenomena are just an
accidental byproduct. Nevertheless, the numerous different phenomena require
a specification or selection of a specific phenomenon, or else the notion of
programmability remains underdetermined (ie., the same
system/device/automaton may bear (different degrees of) programmability

concerning more than one type of phenomenon).

alphabet %, transitions 8(q, a) = p connect the states (e.g., ¢ and p). Multiple transition labels
may form a ‘word” w = a4, a,, ... a,, (i.e., a string over the alphabet X). A word is valid for a
given FDA if the sequence of transition labels leads from the initial state g, to a final one
contained in F. A string of inputs w that is compatible with the FDA can be interpreted as a
program describing an execution trace within the set of possible behaviors.
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To remedy the issue, I added the ‘selection’-clause in my characterization of
physical programmability. The idea of the selection clause is to guides/inform
us in the selection process of the material automaton’s operations and single out
a specific phenomenon, dependent on the interest of an individual or an
epistemic community. N.b., as such, the selection-clause works hand in hand
with the idea to restrict the applicability of physical programmability to designed
material automata only. What is particularly helpful in this regard is my previous
description that material automata are technical artifacts (cf. sect. §2.1). Due to
their function-structure duality, technical artifacts bear specifically ascribed
normative functions. In the case of the Musa flute player, for instance, its function
is to produce a pre-determined sequence of sounds. In other words, the
phenomenon physical programmability is supposed to capture usually coincides
with the intended operation the material automaton should carry out.

In the ensuing paragraphs, I will illuminate how these selected operations can

be altered in a controlled way.

5.4 Reconfigured

In the previous sections, I occasionally helped myself to the terms ‘manipulation’
or ‘intervention” only using these terms informally. It is high time to discuss these
concepts in more detail. Specifically, I submit that the main theoretical
underpinnings of physical programmability are so-called manipulability- or
agency theories of causation, which are a subset of causal interventionism. (cf.
Woodward (2023) for a survey of manipulability theories). In a nutshell,
manipulability theories aim to elucidate causal structures through

Difference-making: C is a cause of E (the effect) iff manipulating C in the

right way affects (makes a difference on) E.

The motivation to rely on such theories is threefold: First, utilizing a
manipulability-based approach allows us to straightforwardly account for how
programmers and users exercise control over a (computing) system through
(causal) interaction/manipulation:
“When a relationship is invariant under at least some interventions, it is
potentially usable for purposes of manipulation and control — potentially usable in the

sense that while it may not as a matter of fact be possible to carry out an
intervention on X it is nonetheless true that if an intervention on X were to occur,

this would be a way of manipulating or controlling the value of Y.” (Woodward
2002, S370; own emphasis).

As such, it is paramount to note that manipulability theories do not need to
employ any communication metaphor (as is arguably often the case in the context

of programming computers through instructions). That way, we can study
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human interaction with a programmable automaton without necessarily having
to appeal to programming languages or anthropomorphic metaphors that
distract us from what is happening during reconfiguration at the physical level.

Second, manipulability and agency theories typically rely on counterfactual
reasoning (if C would have been different, E would have been so-and-so). This
feature is advantageous because it allows for applying physical programmability
to physical computation. As we have seen in the previous chapters on physical
computation (Chapter 4 and Chapter 5), counterfactual support is essential for
implementing computations and determining which computations would have
occurred if the input had been different (cf. Piccinini 2015, Ch. 2).

Lastly, interventionism applies to various systems, including - crucially for
this undertaking - mechanisms. This compatibility allows to integrate physical
programmability in contemporary philosophical debates, facilitating the
exchange of ideas and fostering cross-fertilization. Put differently, the advantage
of the approach is that it enables the bringing together of diverse philosophical
concepts under the umbrella of physical programmability.

To Dbetter understand how interventionism’s features figure in
programmability, it is helpful to familiarize us with the details of its formal
machinery (sect. §4.1). This will be important to understand how the combination
of mechanisms with the interventionist account play out in the context of the so-
called Mutual Manipulability (MM) concept (sect. §4.2).

5.4.1 The Formal Machinery of Interventionism

Interventionism in its contemporary form (see, e.g., Woodward (2003) and Pearl
2009)) originated from combining features from causal modeling and
manipulability theories. This theory’s main achievement was to devise a formal
notion of ‘intervention’ that does not require human agency.? Based on so-
called structural models, causal relations (in science) can be precisely represented
through a rigorous formal framework, providing us with criteria to analyze
specific situations/systems to e.g., draw causal inferences without adhering to
human terms. Accordingly, we can portray causal relations either by directed
acyclic graphs (DAG) or structural equations.

130While manipulability theories capture the intuition of how to portray causal structure, earlier
versions of manipulability theories were long objected to for relying on the anthropocentric
notion of ‘manipulation.” Depicting causes C as vehicles for manipulating effects E, often (at least
in older versions) assigns central significance to human action. Adhering to human agency was
seen to fly in the face of the idea that causal relations are part of the mind-independent world.
Considered a bug in the original theory, it is a welcome and crucial feature of physical
programmability since it conceptually aligns with the required pre-determined set up of
automata by agents.
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The notion of structural equations enables us to translate talk about causal
relations into talk about relations between variables. These variables stand for
properties or events obtaining different values. Formally, a causal model is then
definable as (V,S), where V denotes a set of variables and S is a set of
corresponding structural equations (we have already seen an instance of this in
the discussion of I/O mechanisms in sect. §3).131

DAGs are best introduced by way of example. Consider therefore the
following case of Ohm’s law adopted from Hausman (2005). The corresponding

structural equation is the familiar formula I = %, (with U for voltage, R for

resistance, and I for current); the corresponding DAG is depicted in Fig. 3.

R

Fig. 5.3.: A directed acyclic graph (DAG) of Ohm’s Law with the structural
equation [=U/R (graphic adopted from (Hausman 2005)).

Analogous to what can be seen in (Fig. 3), variables are always represented as
nodes, and arrows are drawn from causes to their direct effects. Based on these
conventions, DAGs generally allow us to easily read off
dependencies. Importantly, each ‘parent-child” relationship in the causal graph
represents a stable physical dependency, allowing a surgical intervention on one
such relationship without changing the others. An intervention is called surgical
if no other causal relationships in the systems are affected. For instance, if a value
of U were to change (i.e., take on a different value) while maintaining the same
resistance R, we would see a change in the current I caused by that change.

131 Standardly, structural equations are defined as x; = f;(pa;, u;),i = 1, ..n, where pa; denote
the set of variables (the ‘parents’) that directly determine the value of X; and where U; stands for
errors or disturbances (see Pearl 2009, 27). Each of these structural equations corresponds to a
causal dependency relation. Changing the values of variables (of a given structural causal model)
under external interventions uncovers those causal dependencies. In this way, the intuitive
content of causal claims (C causes E) is preserved, yet concerns about the dependency of agents
are side-stepped.
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Wiggling on one of the parent variables U or R therefore enables us to directly
causes a change in the value of 1.132

I submit that making use of the insights of interventionism elucidate how we
can reconfigure real-world programmable automata. However, in order to fully
generalize interventionism’s conceptual resources and adjust them to
programmability, we need to apply them to the mechanisms of programmable
material automata. How exactly does the formal machinery of interventionism

apply to mechanisms?

5.4.2 Control through Mutual Manipulability
In recent years, there has been a growing interest in applying causal modeling to

higher-level phenomena, particularly in the interventionist framework and its
application to general types of mechanisms and their phenomena. I will now
demonstrate how applying interventionist concepts to I/ O mechanisms can help
us understand how to control programmable automata. Importantly, we can
change an automaton’s behavior by two conceptually different types of
interventions: First, we can wiggle on the inputs i of the corresponding I/O
mechanism f(i)=o. Changing the course of action this way brings about a
particular pre-determined execution trace due to providing different ‘data.’
Secondly, and more relevant to the current discussion, we can alter the
mechanism’s internal functional relation f between the inputs and outputs. This
second way of varying the system’s behavior in a controlled way amounts to
genuine reprogramming.

However, combining interventionism with mechanisms is a non-trivial
matter. While there is agreement that there is a philosophical problem, there is
less consensus on how to solve it. To understand the issues at hand, we need to
look at the intra-level relationship of mechanistic levels again (cf. sect. §3):
Whereas the relations among acting entities Xi are widely considered as causal
(black arrows in Fig. 3), the relations between any individual part and the
explanandum phenomenon S’s ¥-ing are up to debate (dotted vertical line in Fig.
3). Mechanistic philosophers typically distinguish between etiological (causal)
and constitutive relations (see e.g., (Ylikoski 2013)). Applying interventionism to
causal relations is unproblematic, as tracking causal dependencies is one of
interventionism’s main objectives. However, it is the second, non-causal

132 N.b., when employing this kind of thinking, we are engaging with modal reasoning,
“[c]ausal relationships between variables thus carry a hypothetical or counterfactual
commitment: they describe what the response of Y would be if a certain sort of change in the
value of X were to occur.” (Woodward 2003, 40) It is thus now generally accepted that
interventionism is a counterfactual theory (of causation); the notion of a surgical intervention
that unearths causal relationships requires counterfactuals.
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relationship between S’s W-ing and Xi's ¢-ing that requires substantial
philosophical caution.

In short, the issue is to determine which of the various entities Xj and their
properties constitute S's P-ing and what exactly the constitution is (Kaiser &
Krickel 2017). This puzzle is generally discussed under the name of constitutive
relevance. The most widely accepted proposed solution is Craver's so-called
mutual manipulability account (MM) (2007a, 2007b), which suggests that
constitutive relevance is defined by how scientists manipulate a mechanism’s
component in experimental research practice in order to study its behavior. As
Craver explains,

“a component is relevant to the behavior of a mechanism as a whole when one

can wiggle the behavior of the whole by wiggling the behavior of the component

and one can wiggle the behavior of the component by wiggling the behavior as a

whole. The two are related as part to whole and they are mutually manipulable.”,
(Craver 2007b, 153).

The idea is that some ideal intervention on a component Xi's ¢-ing alters the
phenomenon (S’s Y-ing) and vice versa, i.e., some ideal intervention on S’s P-ing
in turn also makes a difference for the component’s ¢-ing. While a
characterization along these lines essentially captures how we can intervene in
mechanisms to program them, I will briefly return to some recent philosophical

problems concerning these matters when closing this chapter.

5.5 The degree to which

Lastly, I need to clarify in which sense physical programmability is a gradual
property/notion. At a first stab, the gradual nature of programmability appears
to correlate with the variability of the potential behavior of the system under
scrutiny. Take, for instance, the apparatus with virtually no control autonomy we
encountered earlier - the ancient flute player of the Musa brothers. While the
flute player fulfills all the requirements to be conceived as a material automaton,
the device is not programmable. After construction, it always carries out the
same ‘program’ (i.e., it always plays the same melody). The only way to influence
S’s Y-ing, where S denotes the system at hand and W-ing its selected operation,
is by reassembling the device altogether.

Contrast the non-programmable flute player with a material automaton
designed to have (external) control features. In this case, a replaceable external
medium allows for controlled manipulation of the pre-determined sequence. So-
called Jacquard looms (as shown in Fig. 4) are a prominent example of automatic
sequence control (Randell 1994; Koetsier 2001). Jacquard looms were special

kinds of weaving looms that were (re-)configurable by a chain of punched cards
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to produce fabrics with a desired pattern. 133 The punched card’s pattern of holes
determined which of the loom’s levers was activated when pressed against a

dedicated control mechanism (e.g., some ‘read-out’ lever). Operators could

Fig. 5.4: 19t century engraving of a Jacquard loom. The desired weaving
pattern on the fabric could be controlled (by the operators) by inserting a
series punched cards (here, at the top) into the machine. Technologically
similar control mechanisms are also used in some musical automata and
even computing devices.

change the pattern of holes to alter or intervene, i.e., to ‘reprogram’ the machine’s
behavior according to their desires. Similar technological considerations found
application in more sophisticated musical automata controlled by pegged
cylinders. Reprogramming such devices as advanced music automata or looms
was possible after construction and without rebuilding the entire system.
Ostensibly, the Jacquard loom purports to have higher programmability than the
Musa flute player because it displays a higher variability among its potential
sequential behavior (which we can achieve in a controlled way). Notably, as
previously pointed out, the variability we are interested in concerns
manipulating the functional relation f with regards to an I/O mechanism f(i)=o.

Some historico-philosophically inclined scholars have tried to pack these
kinds of considerations about all sorts of programmable automata into a
theoretically more robust classification scheme. Koetsier (2001), for instance,
analyzes the different degrees of programmability of pre-20th century automata
like music automata, clocks, and looms, concluding that

133 Essentially the same control mechanism was also employed in many computing machines.
See Campbell-Kelly (1991) for a detailed treatment.
123



5 Physical Programmability

“[t]he earliest programmable machines were musical automata. Next came the
programmable drawloom. The first designs of programmable drawlooms are
from the 18th century. It is remarkable that the main predecessor of the
Jacquardloom was designed by De Vaucanson, the well-known 18th century
builder of music automata. Following the success of the Jacquardloom the idea of
a programme in the form of punched cards was used by Babbage in the 1830s in
his design of the first programmable computer. Later punched cards were also
used widely to programme music automata.” (Koetsier 2001, 602)

Similarly, D’'Udekem Gevers (2013) delves into the fascinating evolution of
automatic devices from the 12th to the 19th century. Her analysis provides a
detailed taxonomy of programs (in a broad sense) implemented in clocks,
musical instruments, looms, and early computers. Accordingly, we ought to
distinguish between material automata whose sequence is internally fixed,
externally modifiable/replaceable, and fully manageable by a stored program.

Others devised grading schemes that underscore the conceptual differences
between early music automata (similar to the Musa flute player), Jacquard looms,
and special-purpose calculators. As Brennecke (2000) explains, looms and music
boxes can only execute fixed sequences (after being programmed) since they are
all controlled by (a program held on) some read-only medium. On the other
hand, many special-purpose calculators and modern computers have additional
control structures that can use their output as input. This feedback enables the
influence or control of the original sequence of operations through iterations and
conditional branching. (I will shortly return to the importance of these features
below). Lastly, Copeland & Sammaruga (2021) developed a ‘hierarchy of
programming paradigms’ in which they exclusively focused on computing
machines of the 1930s and 40s involved in the emergence of the stored program
concept. Similarly to previous works, the authors suggest differentiating between
machines that require physical rewiring, have an external memory medium, and
contain stored programs.

What is the takeaway from these classification schemes of real-world
programmable automata? How does it help us to couch the gradual nature of
programmability? Although above’s proposals differ slightly in scope and
methodology, they all classify general-purpose computing machines as the ones
with the highest programmability. Simply put, general-purpose computers -
sometimes called universal machines - are said to be capable of implementing
virtually every computable function (as defined by computability theory). In other
words, the class of computable functions acts as an upper limit to the sequence of
operations a computing machine can carry out.!3* If we can set up a machine to

implement all these functions, it is fully programmable; machines that can

134 ] am ignoring hypercomputation, etc., for now.

124



5 Physical Programmability

implement only a smaller range of functions are therefore less programmable. In
sum, we can make sense of the degree to which a material automaton is

programmable as

The degree to which: The amount/share of the set of possible functions (in

the sense of the I/ O-mechanism f(i)=0) the system can implement.

However, despite the seeming plausibility, there are potential caveats to this

view that require clarification:

Caveat 1: There is no universal measure

First, it is vital to remember that the notion of general-purpose/universal
machines applies to computable functions only. However, since physical
programmability applies to a broad range of material automata, each with
operations other than computing, we also want our grading scheme to cover
these cases. The problem is that the label “general purpose’ as presented so far
merely makes sense regarding a specific phenomenon (namely, “physical
computation’). It can, hence, not be a benchmark for full programmability
concerning sequenceable operations that are different from physical
computation, like sound production or weaving. It is, therefore, questionable
how far our initial intuition of a universal measure of the degree of
programmability fits other kinds of material automata that lack a formal
theoretical underpinning and do not have a clearly defined class of all potentially
implementable functions (for instance, it strikes me as doubtful that there is
rigorously definable set of possible sequences of operations regarding melodies
or weaving). In light of these concerns, it seems wise to maintain a pluralist stance

and judge a system’s degree of programmability relative to a chosen operation.

Caveat 2: Relying on informal notions

Second, over the years, many researchers raised caution when using expressions
like “stored program concepts,” ‘general purpose machine,” and “universality’ (see
(Olley 2010) for an accessible survey of the relevant literature). The problem is
that (in textbooks) these terms are frequently used interchangeably, potentially
leading to misunderstandings when we try to make judgments about an
automaton’s degree of programmability. To clarify: Typically, the stored
program concept refers to internally storing instructions and data in the same
writable memory. The concept enables the manipulation of instructions based on
intermediate results, such that the machine can perform iterations and

conditional branching. These control structures are widely believed to render a
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machine Turing complete/universal. Given unlimited storage, the machine could
implement any computable function.13

However, this design choice is just one of many ways to achieve (quasi)
Turing completeness. Machines with different architectures that store data and
instructions in entirely different manners could also be Turing complete. Rojas,
for instance, discusses examples of achieving universal machines by other means
(Rojas 1996, Rojas 1998, Rojas 2023). In his (Rojas 1996), he proves that conditional
branching can be substituted by unconditional branching such that externally
stored looping programs using indirect addressing and no branches can be as
powerful as machines operating under the stored program paradigm. (This
requires simulating a branch by carrying out multiple paths of the branch and
negating any contributions from the path that a genuine branching would not
take.)

Now, the reason why this is relevant for the current discussion is that these
results can be transposed to machines that do not store programs and data in the
same medium. In particular, Rojas argued that Konrad Zuse’s Z3 (Rojas 1998)
and Z4 (Rojas 2023, 149-154) computing machines could, in principle, implement
the same range of computable functions as a device constructed under the stored
program principle. Interestingly, Rojas’s universality proof for the Z3 sparked a
host of similar works that showed that ancient computers, never designed to be
universal, are so in principle (Copeland & Sommaruga 2021, 88-89). The upshot
of the work of Rojas and others is that general-purpose machines can thus be
constructed by different designs (that do not store programs and data in the same
memory). Universality is achievable in many, though not immediately apparent,
architectures. Accordingly, it may turn out extremely challenging to determine
the range of computable functions some unconventional machines can
implement (Bromley 1983) and, in turn, judge their degree of programmability.
We thus should be careful with judgments about the degree to which some

systems are programmable.

5.6 Concluding remarks and Open Questions

Programs devised by human agents may consist of simple to highly complex
sequences of operations. The sequenced operations range from sound (music
boxes) and weaving (Jacquard looms) to computation. To execute any desired
sequence of operations, the chosen system must be configured appropriately,

requiring specific (physical) interactions: the machine needs to be programmable.

135 Jt is important to note that real-world machines are only potentially universal, as they cannot
be given unlimited storage. Therefore, today’s computing machines can only perform
computations that a TM with bounded tape can achieve.
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Unfortunately, philosophical discourse regarding programmability is scant and
largely underdeveloped. This contribution extended this area of investigation by

developing an original and robust notion of what I refer to as

Physical Programmability: The degree to which the selected
activity/function/operation/phenomenon on an automaton can be reconfigured in
a controlled way.

What distinguishes this novel notion is that it weaves together well-established
theoretical and philosophical discourses into a tailored framework that accounts
for how we set up our machines. Subsequently, I fleshed out the corresponding
variables in that characterization and explained how they are connected.
Accordingly, the main takeaways are fourfold: First, the domain of systems that
can be bestowed with the property of being physically programmable is limited
to ‘material automata.” Two, the selected operation of these material automata is
explained best through the neo-mechanistic framework. Third, I expanded the
understanding of ‘reconfiguration in a controlled way’ by establishing a
connection between mechanisms and manipulability theory (especially
Interventionism a la Woodward). Fourth, by discussing various examples of
automata, I showed that physical programmability is a gradual notion and comes
in different degrees.

Given the novelty of the subject, there remain open questions and prospects

for further development. Two issues are of particular importance.

Fathanded interventions
The ongoing debate in the mechanism discourse has resulted in the first open
question. It concerns the interplay between interventionist framework and
mechanisms. More concretely, in recent years experts have extensively
scrutinized the plausibility of MM Couch (2011), Leuridan (2012), Romero (2015),
and Kaéstner (2017). Whereas interventionism is an approach to causation,
constitutive relevance is deemed a non-causal relation. Accordingly,
interventions on mechanisms may violate the surgicality condition and are hence
called fat-handed ((Scheines 2005, 932) and (Woodward 2008, 209)) since they
make a difference in the mechanism and (at least some of) its acting entities.13¢
To date, the constitutive-relevance debate remains an active field of research

without consensus: Romero (2015), Baumgartner & Gebhartner (2016), and

136 A concise summary is given by Késtner and Anderson (2018, §3): “Since wholes cannot be
manipulated without affecting any of their parts, interventions into the whole will always be
non-surgical, that is, fat-handed, with respect to some part. Rather than intervening into X (the
whole) with respect to Y (the part), we actually intervene on X and Y simultaneously by
carrying out L.”
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Baumgartner & Casini (2017) propose to revise standard Interventionsim 4 la
Woodward (2003) and add different types of so-called fathandedness criteria to
MM. Yet Krickel (2018), raised doubts regarding fat-handedness-approaches,
proposing an alternative that is supposed to rescue the original version MM. The
challenge remains to create a coherent theoretical framework for interventionism
and mechanisms alike.13”

Although a considerable body of research has couched the debate primarily
on a technical level, less attention has been paid to the result of plugging in
specific phenomena for S’s Y-ing. Future research could therefore focus on
specific phenomena related to sequenced operations; particularly “physical
computation” and its connection to programmability appear to be a worthwhile
area of investigation. Despite there being a well-established theory of mechanistic
computation (see for instance, Piccinini 2015, Mollo 2018, Dewhurst 2018),
previous research has so far overlooked the challenges associated with

programmability and in particular interventionism.

Programmability and its relation with other computing paradigms

The second issue concerns the application of programmability to computing
systems. I argued that physical programmability should only be applied to
physical systems whose computationally individuated states can, in principle, be
intervened upon such that the implemented computational function can be
altered reliably. However, whether its application is compatible with non-digital
or interactive computing systems is somewhat unclear. While concerning
computing devices, this chapter exclusively focused on (sequential) digital
machines; it remains an open question to what extent physical programmability
can be successfully applied to natural, analog, or quantum computing instances.
Each of these cases bears their unique challenges: Natural computing systems
like the brain are often held to compute by means other than program execution
because they are not intentionally set up by human design choices. 38 The
absence of intentional function ascription casts doubt on the appropriateness to
speak of programmability (at least as devised here) with these systems. Analog
computers, in contrast, raise the issue that some consider them to compute ‘in

one go’, i.e., they do not compute in sequential steps. If this assessment is correct,

137 Despite the challenges, I agree with (Kédstner and Andersen 2018) that both interventionism
and MM have solid empirical foundations (see, for instance, Craver (2007b, 144-152) for some
details on the empirical grounding of experimentation on mechanisms). Thus, it is not necessary
to give up on the mechanistic framework or the idea that we can intervene on mechanisms.
Rather, the focus should be on construing the theoretical underpinnings of intervention-based
inquiry into mechanisms in a coherent way.

138 Analogously, one may also formulate the issue for ML systems because there we encounter
the similar worry that it is not the humans who predetermine and thus program the machine.
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then the application of physical programmability to analog devices may be in
jeopardy due to tensions with the demand of executing a sequential series of
operations. Quantum computers may require special treatment due to the non-
classical behavior of quantum states. For instance, the interaction and read-out of
quantum states to program a quantum computer may require care with
phenomena such as collapse or decoherence.

Furthermore, it remains unclear whether physical programmability and other
forms of interaction are compatible. Specifically, it would be worthwhile to
investigate whether this concept is consistent with the interactive computing
paradigm. Over the past few decades, laptops, smartphones, etc. have evolved
into interactive systems, in which programs accept (external) inputs from users
during runtime. Consequently, human-computer interaction raises several new
issues related to computability theory and accounts of physical computation,
where the course of computation is left unaltered (Martin et al. 2023). Currently,
there is no agreement on whether it is necessary to differentiate between a priori
programming and altering the course of computations during execution. Should

we only refer to the former as programming?
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My thesis, Mind the Gap, allows us to examine the ontological status of computer
programs from new perspectives. Throughout the manuscript, it became
apparent that the research topic is significant because, to this day, a consensus
remains elusive, and opinions diverge significantly. Therefore, one of the main
goals in writing this dissertation was to provide a cohesive and thorough
overview. The information available is mostly scattered across various discourses
- it is now consolidated into a single monograph, making it easier to access.!3?

To illustrate the complexity, I initiated the thesis with a hypothetical scenario
grounded in real-world events: A young IP lawyer in the early 1970s grappling
with the legal classification of software. This case revealed substantial
conceptual disharmony and ontological uncertainty surrounding computer
programs. When scouting the relevant literature beyond the legal one, we
learned that matters are similarly diffused today (cf. Appendix A). No single
conception of the nature of programs would be entirely satisfactory as mutually
exclusive characterizations such as texts, configurations of machines, or
algorithms all appear to be plausible options. What gives?

While previous studies interpreted this ambiguity as programs having a “dual
nature,” I think they needlessly complicated the debate due to being confused by
reflecting on the language they use, particularly the term ‘computer program.’
As a result, almost any discourse underpinned by the metaphysical nature of
computer programs (e.g., in the legal (Con Diaz 2019) and verificationist debate
(MacKenzie 2004; Tedre 2015)) remains inconclusive, at best. In order to
systematically unscramble things, Chapter 1 provided some necessary
terminological clarifications by taking a closer look at the origins of the
expression ‘computer program’ and what it is supposed to refer to. Arguably
influenced by the rampant epistemic pluralism of computer science, the
takeaway is that the notion lacks a clear, agreed-upon definition. While similar
observations have been made before (e.g., Eden 2007; Eden & Turner 2007), I

139 ] extensively drew from various philosophical literatures to grapple with the question of the
metaphysical nature of computer programs. From the Philosophy of Technology, I incorporated
the concept of artifacts and teleological functions, discussing them with examples of
(computing) devices such as the MONIAC, the IAS machine, music boxes, and Jacquard looms;
from the Philosophy of Science, I used the conceptions of (material) scientific models and
representation, interventionism, and mechanisms. From the Philosophy of Applied
Mathematics, I transposed the insights about the applicability of mathematics to computing.
From the Philosophy of Art, I put the so-called Problem of Creation into service, and from the
Philosophy of Language, I employed the concept of polysemy. Lastly, in the realm of the
Philosophy of Computing, I relied on the insights of the physical computation discourse.
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made them more precise and submitted that ‘computer program’ is a polyseme.
This insight may help us retroactively clarify (at least in parts) the legal and
verificationist debates. Although many of the debate’s participants employed the
same expression, ‘computer programs,” they either referred to ontologically
different things (e.g., abstract or concrete things) or had trouble stating the
programs’ ontological status precisely because they bundled ontologically
different things together. I coined the term “polysemic web’ to underscore that
‘computer program’ can refer to many ontologically different but related things.

Faced with potential linguistic quarrels, I avoided an even deeper semantic
analysis of the term program. Instead, I proposed to track/emphasize the
relations between the elements hiding behind the term in its web. In order to keep
things simple from a metaphysical point of view, I suggested starting to place
these elements across a simple two-category system - the abstract-concrete
distinction - and shed light on their connection. Specifically, I argued that the
concept of ‘computational implementation” from the philosophy of computing
could help clarify the situation. By making an abstract scenario concrete,
implementation can be seen as a connection between ontologically different
relata (abstract and concrete). To put further meat on this idea, I surveyed the
literature on implementation in Chapter 2. My first noteworthy discovery was
that two largely separated bodies of literature on computational implementation
exist. I henceforth called the corresponding notions type (A) and type (B)
implementation. Surprisingly, both notions have mainly developed
independently of one another. To remedy the situation, I juxtaposed the two
notions.

Next, in the wake of my conclusion, I created a framework based on the
conceptual tools of the philosophy of science literature suited to accommodate
them both. The upshot was that two understandings of implementation are
combinable when alluding to the conceptual tools of the material models and
scientific representation literature. This conceptual borrowing is productive
because, in both modeling and computing, agents engage in object-based
reasoning, where artificial functions are externally attributed, and agents
establish a mapping relation between a concrete system and an abstract
target/program. To highlight the central role of epistemic agents and the
framework’s ability to unify (A) and (B), I called it a Unified Theory of Agential
Implementation (UTALI).

Since UTAI gives rise to three distinct dependency relations between
epistemic agents and (a) “abstract programs,” (b) computational implementation,
and (c) the physical computing system, I devoted the rest of my inquiry to shed
light on (a)-(c).
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When considering dependence relation (a) in Chapter 3 to shed light on
programs qua abstract objects, I utilized the well-known Problem of Creation
(PoC) from the Philosophy of Art literature. The crux of the (PoC) is that certain,
so-called repeatable artworks are deemed abstract since they have multiple
instantiations. However, since we typically assume that artworks are artifacts
(i.e., intentionally created objects) and also think abstract objects cannot be
created, we have a triplet of mutually inconsistent propositions. Very roughly
put, to resolve the paradox, one has to give up one of the prima facie plausible
propositions, and three major options emerge: Platonism, Nominalism, and
Creationism.

My motivation for appealing to the (PoC) was the similarities between
repeatable artworks, such as works of literature and musical compositions, on
the one hand, and the textual view on programs on the other. The key lies in
programs’ multi-realizability. Since programs written in standard high-level
programming languages are portable and can have many different copies, they
exhibit the same kind of ‘repeatability.” Provided that programs are thus subject
to the (PoC), we have a new and robust theoretical underpinning to refine the
ontological sorts of questions we can ask about programs in the future. The most
attractive feature of this research program is that it allows us to do so in
contemporary metaphysical terms. In other words, it enables us to foster
synergies with much more mature ontological debates and steer us away from
dubious dual nature talk.

Next, Chapter 4 tackled dependence relation (b), i.e., the way in which the
implementation relation hinges on the practice of human agents. Having framed
the Problem of Implementation in terms of the Bridging Problem of Applied
Mathematics in Ch. 2, I indicated that assuming a dyadic relation between
physical system and abstract logico-mathematical computational formalism is
metaphysically mysterious. As detailed in the supplementary material in
Appendix B, it is the consensus of philosophers of applied mathematics (e.g.,
Batterman 2010; Bueno & Colyvan 2011; Nguyen & Frigg 2021) that a third
relatum is crucial to make sense of the math-world relation.

Upon further exploring these considerations, I provide a new way to think
about interpretational accounts of physical computation, specifically recent
versions that couch implementation in terms of scientific representation.
Particularly, my novel notion called ‘Implementation-as’ extended recent
research in the philosophy of computing of so-called scientific representation
accounts (SRA). The underlying idea of all (SRA)s is that it holds promise to
couch computational implementation in terms of scientific representation since

both relations rely on mappings between the physical and the formal.

132



6 Conclusion

Implementation-as departs from the previous (SRA)s by fleshing out the idea for
the first time in terms of a specific notion of scientific representation - Frigg and
Nguyen’s DEKI account. (Frigg & Nguyen 2018). This new framework’s
application was illustrated in the MONIAC (an analog device) and the IAS-
machine (a digital computer). Subsequently, my analysis shows that the resulting
proposal provides a philosophically rigorous theory of computational
implementation, satisfying the most standardly evoked desiderata for theories of
implementation.

Lastly, I close by discussing the relation of Implementation-as to already
established accounts of physical computation. Traditionally, accounts with any
interpretational elements have been shunned in the literature, for they seem to
fly in the face of the Computational Theory of Mind and purport to paint physical
computation in an arbitrary light. Although future research needs to determine
whether the account is compatible with the cognitive science project,
Implementation-as” intricate constraints undermine any worries about
arbitrariness.

Finally, in Chapter 5, I devoted my attention to dependence relation (c) - the
relation between epistemic agents and the physical computing instrument that
enables them to implement a program. In a nutshell, the chapter’s main result
consists of delivering an account of what it is for a physical system to be
programmable. Despite its significance in computing and beyond, I showed that
today’s philosophical discourse on programmability is impoverished. My
contribution offers a definition of physical programmability as the degree to
which the selected operations of an automaton can be reconfigured in a
controlled way. The framework highlights several key insights: the constrained
applicability of physical programmability to material automata, the
characterization of selected operations within the neo-mechanistic framework,
the understanding of controlled reconfiguration through the causal theory of
interventionism, and the recognition of physical programmability as a gradual
notion. The account can be used to individuate programmable (computing)
systems and taxonomize concrete systems based on their programmability.

Big picture-wise, the most important takeaway is that the term 'program'is a
polyseme that denotes ontologically different, albeit related, things. In this thesis,
I have introduced the UTAI framework (inspired by the literature on material
scientific models) to track these relations. In sum, UTAI underscores the
involvement of human agents that use computers as epistemic tools. On this
view, particularly three dependency relations associated with three distinct
philosophical problems require our attention: The Problem of Creation, which

determines the abstract nature of programs; the question of physical
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programmability, which determines the physical side of things; and the Problem
of Implementation, which addresses how the two ontological domains of abstract
programs and the physical world relate.

On this note, I would like to close by addressing the following question: What
are the implications of this thesis for future studies in the philosophy of
computing and adjacent fields? I want to conclude with some programmatic
suggestions about what I believe to be the most pressing issues left unanswered
or raised by my thesis.

First, much work remains to be done concerning terminological clarifications,
rendering the expression ‘computer program’ and the relationship with its
cognates like “software” and “algorithm” more precise. Especially challenging in
this regard will be appreciating computer science’s epistemic pluralism and the
widespread use of computational terms in differing communities and research
traditions. Accordingly, it will be difficult to devise a definition that will satisfy
the majority of stakeholders involved.

Second, it is important to note that the computing landscape is constantly
evolving. During my dissertation project, we observed firsthand the rapid rise of
Al applications in the public sphere. However, the question of whether we
should consider deep neural networks, for example, as computer programs
remains open. While I believe that it is reasonable to classify them as
computational artifacts, future research needs to delve into the nuances of their
(dis)similarities with ‘classical” programs.

Lastly, it is worthwhile to advance some of the frameworks developed in this
thesis further in their own right, detached from the question about the ontological
status of computer programs. As already briefly mentioned in bypassing,
Implementation-as, for instance, may be a viable contender in the landscape of
contemporary theories of computational implementation independent of this
thesis’” main topic. Similarly, it would be interesting to explore further some of
the research trajectories enabled by the (PoC). A research program along these
lines would make the debate about the ontological status of computer programs
less insular and may put the discussion at the center of contemporary
metaphysics. Regarding Physical Programmability, it would be fascinating to
explore the possibility of developing a fully formalized programmability
measure similar to computability or complexity theory. On a different note, one
could merge some critical insights of Implementation-as and Physical
Programmability to address largely ignored phenomena such as interactive

computing.
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Appendix A: A Guide to the Chimera of
Programs

This appendix charts the varying views of the ontological status of computer
programs. It aims to illuminate how and why the nature of programs can be
understood in so many ways. For so doing, I have surveyed a rather large,
heterogeneous array of opinions about the nature of computer programs:
Philosophers, computer scientists, lawyers, and other investigators have placed
computer programs in nearly every available ontological category. Some
consider them physical objects, others abstract logico-mathematical objects,
special kinds of texts, etc. Accordingly, my survey is positioned at the crossroads
of rich and well-developed traditions in corresponding fields such as Philosophy
of Science, Mathematics, Technology, and Art.

Given that I engage with so many fields, the reader may wonder where this
work belongs and what it is good for. The material presented in the following
pages may be helpful in a couple of ways: First, in its own right, this part of the
appendix may serve as an extended and updated overview of the metaphysical
nature of computer programs.¥? This is needed to clarify implicit assumptions,
enable comparison, avoid further conflations, enhance philosophical rigor, and
help navigate a largely unstructured body of literature. Second, I hope it will
facilitate building bridges across the different debates mentioned here in future
research.

Methodologically, I proceed like this: Similar to a recent survey for
educational purposes about the different guises of programs (Lonati et al. 2022),
I provide different clusters containing views about the metaphysical nature of
programs. In presenting so many views across various fields, I do not intend to
show off how much I read. I attempted to summarize what I think are some of
the most important takeaways I distilled from humbly engaging with these
literatures. While so doing, I tried to make this appendix accessible to audiences
with varying backgrounds. Although I try to be systematic and thorough in my
review (e.g., each view branches into further specific positions), the resulting
taxonomy should be taken with a grain of salt. Even though many of the
following categorizations seemingly stand at odds with each other, they are
intertwined in a way that does not allow strict/sharp separation.14! I believe that

140 Generally speaking, few studies explicitly describe the ontological status of computer
programs; exceptions are Gemignani (1981) and Lonati et al. (2022).

141 For instance, as we will see, a case in point is the metaphysical understanding of programs
related to ‘programming languages’ sits at the border of the abstract mathematical objects and
notational artifacts.
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this is not a flaw of my taxonomy, but rather a symptom of the epistemically
heterogenous nature of computer science and the polysemic nature of the terms
“program’ I described in the introduction.142

In what follows, my overview is divided in five overarching sections: In A.1.,
I sum up the Physical View. A.2., contains an overview about the Mathematical
View. A.3., dubbed the Symbolic View, surveys material emphasizing the
symbolic nature of programs. Next, A.4., summarizes views according to which
programs are sorts of artifacts. In A.5., I present what I call the Neural View.
Lastly, in A.6., I cash out the State of the Art.

A.1 The Physical View

As seen in the prologue, considering programs as physical objects has been one
of IP lawyers” main strategies to secure programs’ patent protection (cf. Con Diaz
2019). According to this view, programs are a physical machine’s unique
configuration/switch setting. Analogously, my considerations in Chapter 5,
Physical Programmability, remind us that the physicality of programs raises
interesting philosophical questions related to the philosophical literature on
concrete technical artifacts, their underlying mechanisms, and how we can
intervene in them. Moreover, such a view emphasizes that programs appear to
be “executable entities” (Lonati et al. 2022) anchored in real-world ongoings.!43
In what follows, I refer to frameworks that advocate for some kind of physical
understanding of programs as the Physical View.

In order to unpack the notions gathered under the umbrella of the Physical
View, it is helpful to take a more extensive discussion of metaphysics into
account: the duality between continuants and occurrents (see, e.g., Simons 2000).
Typical examples for continuants are organisms (e.g., cats, and dogs); atoms and
stars; artifacts like chairs and tables; the quality of being red; and social entities
like countries or football clubs. The common denominator of continuants is that
they are objects that exist in time (“continuants persist by enduring” (Simons
2000, 59). In contrast, prime instances for occurrents are events, happenings, or
processes such as philosophy conferences, football matches, photosynthesis, and
subatomic particle collisions. Therefore, occurrents are characterizable as objects
in time with temporal parts.

Over the next two subsections, I show that this division is also reflected in

different metaphysical understandings about programs as physical entities.

142 ] adopted the expression ‘epistemically heterogenous’ for this context from (Imbert &
Ardourel 2023).
143 Another noteworthy case is the so-called verificationist debate I briefly touched upon in the
introductory chapter.
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Accordingly, I distinguish the physicality of programs between two different
cases, viz., a static and a dynamic reading.

Static

According to the static reading, programs may be considered part of a machine
(cf. Fig. A1). This idea was perhaps more apparent when using first-generation
computers like ENIAC, where switch settings were visible/tangible. The
machine had to be physically configured to execute the operations required for a
given computation in the correct sequence. ‘Programming’ the ENIAC thus
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Fig. A.1: Schematic depiction of an ENIAC ‘program.” (taken from
Bullynck & De Mol 2010, 140).

involved physically wiring the relevant units to the so-called program lines,
which connected all the machine units. Given this, it would not have been
practical or fruitful to write down a program for the ENIAC as a list of
commands. Instead, the scientists, employed wiring diagrams that showed the
connections that had to be made between functional units to ensure the correct
sequencing of operations. (Bullynck & De Mol 2010; Priestley 2011, 111-115).

Today, we typically no longer need to set switches manually since the process
is automated. Consequently, it is easy to forget the ‘old way’ of doing things (and
the static view). However, as Gemignani aptly put it in his survey article more
than 40 years ago, seeing programs as part of the machine (or a configuration of
it) appears to be necessary to make sense of the notion of ‘control’:

“If a program controls a computer in the same way that a distributor controls the
sequence of firing the sparkplugs in an internal combustion engine, then the
program can reasonably be viewed as an integral part of the computer itself. This
view is strengthened by the fact that a general purpose computer will not, indeed
cannot, carry out its appointed task until it has been properly programmed. The
programming sets the switches, in effect redesigns the internal structure of the
machine, becomes an inseparable part of the machine, if the machine is to perform
as the program was written to make it perform. The program may thus be viewed
as a machine part or as the completion of a previously incomplete machine.”
(Gemignani 1981, 187)
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Besides motivations stemming from the notion of control and machine
configurations, there is another way of identifying programs as “static’ (physical
objects). I cashed out this view in Chapter 3 when tracing the philosophically
viable answer to the so-called Problem of Creation. Accordingly, one may think of
programs as unique kinds of text and identify them with particular physical
tokens of their inscriptions (e.g., existing as files on disk or in memory until they
are executed). Typically, this sort of text (often called program script) contains
instructions in a human-readable format, which is then processed (e.g., by
automated compilation or interpretation) to be machine-readable. I will return to

this last point (“programs qua texts’) when considering the Symbolic View below
(8A.3).

Process/Dynamic

On the other hand, there is a pervasive view that programs bring about or
even are sorts of real-world processes (sometimes called program process).
Emphasizing the empirical side of things is, for instance, prominently
discussed in the literature about the nature of computer science as a discipline.
One of the earliest and most famous suggestions on computer science as an
empirical field dates back to a 1976 paper by Newell and Simon (Newell &
Simon 1976). In a nutshell, the idea is that the discipline exhibits scientific
potential in the form of experimentation like in the natural sciences. Put
differently, computing processes (such as program execution) are regarded as
entities that can be experimented with.

Subsequently, however, the question arose about whether computer
science qualifies as a science in the same sense as the natural sciences. As
succinctly stated by Mahoney, the issue is that

“There is nothing natural about software or any science of software. Programs

exist only because we write them, we write them only because we have built

computers on which to run them, and the programs we write ultimately reflect
the structures of those computers. Computers are artifacts, programs are artifacts,
and models of the Computers are artifacts, programs are artifacts, and models of
the world created by programs are artifacts. Hence, any science about any of these

must be a science of a world of our own making rather than of a world presented
to us by nature.” (Mahoney 2000, 25)

Later, I will discuss a few more specific aspects of these observations when
addressing the Artifact View (§A.4.). For now, I simply note that Mahoney’s
remarks warrant caution when comparing computing with disciplines like
physics or chemistry that investigate natural phenomena.

In recent years, some scholars, such as Tedre (2011) and Schiaffonati

&Verdicchio (2014), have critically assessed the implications of computer science
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as an empirical or experimental field. As Tedre (2011) summarized, the “pro-
science argument’ frequently asserts that although computer science is not a
natural science, it is nevertheless empirical or experimental. The idea is that
computer scientists still follow the scientific method, which involves exploring
and observing phenomena, forming hypotheses, and empirically testing those
hypotheses. Now, even though these sources admittedly do not seek to address
the ontological status of computer programs directly, their underlying
assumptions seem to suggest that computational processes (like program
execution) are physical processes that can be studied like other physical

phenomena.

What are some of the philosophical upshots of the Physical View? One
interesting discussion point is that the Physical View seems to equate programs
with the lowest level of the computational hierarchy. This way of viewing things
may have important implications for discriminating between different
programs. 144

For instance, consider the example of two compatible IBM computers from
the early 1960s - the 709 and the 7090.14> These devices are especially suitable for
discussion because the 7090 is a second-generation transistorized version of the
earlier tube-based 709. Despite using different electronic components, both
devices have the same logical layout.1¢ Therefore, they are entirely ‘software
compatible’ and can run the same source code and implement the identical
computational hierarchy (i.e., various of the same LoA; cf. Chapter 2), albeit (and
this is the crucial part) with different underlying components. Even though the
computational hierarchy is almost identical, the proponent of the static reading of
the physical view might still argue that the two machines implement different
programs since identity conditions solely depend on specific machine parts.147

Although the example is simple, it exemplifies a pattern of reasoning that
concerns others, if not all, implementations of the same source code in different
machines (which typically do not rely on the same logic diagram). Now, the
reason why this is worthy of mention is that Physical View’s way of discerning

144 T described the widespread view that (artificial) computing systems are composed of
different sorts of levels, forming a computational hierarchy, in Chapter 2.

145 Some philosophers have previously considered the two machines to discuss the issue of
multiple realization for computational systems (Wimsatt 2002; Milkowski 2013, Milkowski
2016).

146 The newer machine has different specifications than the older one. Due to smaller transistors,
it is 50% smaller, requires less ventilation, and consumes 70% less power; transistors also
operate faster than tubes (Milkowski 2016).

147 In a recent paper, Ritchie & Klein (2023) argue that the notion of multiple realizability may
prevent successful implementation of interactive programs with specific time requirements
(they discuss a video game as an example).
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different programs stands in stark contrast with our ordinary practice (where we
usually think that many programs can be implemented in multiple machines). It
thus raises the urgent question, whether the Physical View is compatible with the
intuitive view that programs are multiply realizable. As extensively discussed in
Chapter 3, this issue resembles a line of reasoning about the metaphysical nature
and identity conditions of so-called repeatable artworks like novels or works of
music; I refer the interested reader to the corresponding sections in Ch. 3.
Lastly, although the Physical View is only the first suggested interpretation of
the current subject matter, it already underscored the diverse ontological
understandings that fall under the term “program.” The question arises: Should
we consider “program’ to encompass both static and dynamic views, or should

we make a clear distinction between these interpretations?

A.2 The Mathematical View

Several influential figures in the computing world, such as Dijkstra, Floyd,
McCarthy, Naur, and Wirth, believed that taking a mathematical and rigorous
approach to program construction could enhance the quality of ‘software” and
programming. Hoare expressed an extreme stance, suggesting that all of
computing could be boiled down to mathematics. According to him, computers
function as mathematical machines, computer programs are mathematical
expressions, programming languages are mathematical theories, and

programming itself is a mathematical activity (Tedre 2015, 59):

“Computer programs are mathematical expressions. They describe, with
unprecedented precision and in the most minute detail, the behavior,
intended or unintended, of the computer on which they are executed.”
Hoare (1985, 1)

Accordingly, there is a widespread view that computing is closely related to
mathematics and that programming is a mathematical activity; let us call this the
Mathematical View. Today, different versions of this standpoint are still frequently
embraced (or, at least mentioned) to give an adequate characterization of
computing as a discipline (e.g., Denning et al. 1989, Eden 2007, Tedre 2015,
Bringsjord 2019, Primiero 2020).

If taken at face value, the Mathematical View commits us to see the entities
studied in computing as mathematical in nature. Consequently, entities like
programs may become the subject of philosophical considerations similar to
other mathematical objects like numbers, proofs, etc. Let me first consider a few
of the common tropes that seem to give credence to the Mathematical View
(computability theory, and algorithms) before closing with some of the most
common philosophical issues pertaining to mathematical objects.
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Computability theory

Computability theory is a subdomain of mathematical logic that studies and
classifies which mathematical problems are computable and which are not
(Davies et al. 1994).148 Until the beginning of the 20th century, the notion of
computation was an informal one and referred to an activity that was carried out
by human computors (and their instruments). Notwithstanding, the concept of
computation was tightly related to the formal notion of proof and calculations.
In principle, formal proofs can be validated, following rules of inference step-by-
step. Likewise, calculations were typically executed by human computors by
mechanically following rules, simply aided by pencil and paper.

The study of what’s formally computable gained considerable traction in the
1930s, when several mathematicians from different parts of the world came up
with precise, independent definitions of what it means to be computable: Alonzo
Church defined the Lambda calculus, Kurt Godel defined Recursive functions,
Stephen Kleene defined Formal systems, Markov defined what later became
known as Markov algorithms, and Emil Post and Alan Turing defined abstract
machines which are now called Post machines and Turing machines. What
motivated the quest to formally capture the nature of computation was Hilbert’s
program and to solve the Entscheidungsproblem.

Now, the reason why this is relevant concerning the ontological status of
computer programs is that one may view programs characterized in terms of one
of the formalisms of computability theory. For instance, in his recent monograph
On the Foundations of Computing, Primiero (2020, Def. 52) described this view for

the “‘configuration4° of Turing Machines:

“A set of configurations for a given Turing Machine is meant to fully and
exhaustively expresses the behaviour of that machine, i.e. to represent a
program:

[...]. The sequence of configurations of a TM says for each stage of the
computation what is on the tape at that stage, what is the state the machine
is in at that stage, and which square is being scanned and what the next
state is. The full set of configurations for a machine is also called its
program.” Primiero (2020, 46; own emphasis)

148 ] already provided a brief introduction to computability theory in Chapters 3 and 5 and will
keep myself brief here with regards to formalisms in order to avoid redundancy (for a more
formal introduction I refer the reader to these sections; else another entry to the topic can be
found in Primiero’s (2020) book).
149 TMs’ formalization doesn’t require us to adhere to actual components such as ‘tape” or ‘read-
write head” (even though, when considered with care, it admittedly remains a valuable
conceptual aid).
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Despite their suggestive name (containing ‘machine’), TMs are not actual real-
world devices but specific set-theoretic structures (De Mol 2021). Accordingly,
programs (qua configurations of abstract machines) also purport to be abstract
mathematical objects. (Of course, the same holds true for Post machines, the

lambda calculus and so on).

Algorithms
As expounded in the introduction, the usage of the term ‘program’ has been

subject to constant change and may obtain slightly different, yet non co-
extensive, meanings in different communities related to computing (it is a
polyseme). At the same time, other notions like software or algorithm are often
used interchangeably with the term (and may turn out to be hard to define,
t00).150 Although, disputes over what counts as ‘program” and ‘algorithm” may
be verbal unless we specify the relevant roles these notions (ought to) play in
practice, it is nevertheless instructive to try clarifying to what extent programs
and algorithms are related.

A good way to get started is to consult Chabert’s (1996) rich historical survey

on algorithms. Opening his book, he states:

“Algorithms have been around since the beginning of time and existed well
before a special word had been coined to describe them. Algorithms are simply a
set of step by step instructions, to be carried out quite mechanically, so as to
achieve some desired result. Given the discovery of a routine method for deriving
a solution to a problem, it is not surprising that the ‘recipe” was passed on for
others to use.” Chabert (1996, 1)

At first stab, the notion of algorithms seems to be both historically prior to the
development of formal notions of computing (and computer programs).1!
Moreover, it concerns a broader range of non-computing phenomena
(sometimes e.g. kitchen recipes are regarded as ‘algorithms’). Over the
centuries, the term algorithm has come to mean any systematic calculation
that could be carried out automatically. Nowadays, due to computing’s
influence, the idea of finiteness has shaped the meaning of algorithms, and
we usually distinguish between algorithms that are deterministic or non-
deterministic, parallel, interactive, quantum, etc. A typical view on the

150 Duncan (2014) provided an overview of 12 different criteria to define the term ‘software” in
his PhD thesis.

151 The word “algorithm” derives from al-Khwarizmi, a 9th-century central Asian
mathematician. His influential work on algebra provided an exhaustive account of solving
polynomial equations by reducing them to standard forms. In the 12th century, his work and
others were translated from Arabic into Latin, and his name became associated with the
methods contained in his writings.
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relationship between algorithms and programs is expressed by Newell, who
states
“ An algorithm is more abstract than a program. Given an algorithm, it is possible
to code it up in any programming language. You might think that a program
should be something like an algorithm plus implementation details. Thus, you

examine the text of a purported algorithm-if you find an implementation detail,
you know it is a mere program.” (Newell 1986, 1029)

In recent years, there has been some impetus to philosophically scrutinize the
nature of algorithms (and their relations to computing) more precisely (e.g.,
Vardi 2012; Dean 2016; Hill 2016; Angius & Primiero 2019; Primiero 2020, Ch.
6; Papayannopoulos 2023). The takeaway message is that many of the debates’
participants noted the existence of multiple notions of algorithms. While
Vardi speaks of an “algorithmic duality,” Angius and Primiero’s ontological
analysis suggests a three-fold distinction between algorithms as informal
specifications, as (linguistically construed) procedures, and as
(implementable) abstract machines.

Similarly, Papayannopoulos (2023) pointed out that the notion of
‘algorithm” has been conceptualized and used in contrasting ways. His
argument goes that moving from an initial informal idea to a more precise
formal concept typically involves moving through different stages of
conceptualization (from pre-theoretic to proto-theoretic to fully-theoretic).
However, when it came to sharpening algorithms” meaning, the last stage of
development culminated in two separate conceptions: On the one hand, the
‘abstract view’ (according to which algorithms are procedures over abstract
objects Moschovakis (2001), Gurevich (2012)), and on the other hand, the
‘symbolic view’ (algorithms are processes that necessarily hinge on some
given alphabet and notational system (Kolmogorov & Uspenski 1963).

Given the complex developments under the umbrellas of both “algorithm’
(even after focusing only on classical sequential algorithms) and ‘computer
program,” there is no obvious/unique answer to their relationship. The issue
is that there are many possibly different relationships due to the

combinatorics of the various conceptions of programs and algorithms.

Lastly, is there a philosophical takeaway, particularly concerning our

metaphysical understanding of computer programs, that follows from endorsing

the Mathematical View? To the best of my knowledge, no study has tackled the

issue systematically, i.e., having investigated how the plausibility differing

metaphysical frameworks of mathematics shape the views presented here. So,

depending on one’s general leaning regarding (notorious) metaphysical issues of
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mathematical objects, one may need to consider vastly different ontological and

epistemological issues. To name but a few problems:

(a) If, for instance, one were a mathematical Platonist (see (Linnebo 2024) for
an overview of the different positions under the umbrella ‘Platonism”)
about computer programs, then one would have to face the familiar
epistemological puzzle - Benacerraf’s identification problem - of how we
could possibly get to know/discover such mathematical objects (I discuss
this issue in more details in Chapter 3).

(b) If, however, one were to be a nominalist about mathematical objects, the
Mathematical View of computer programs would be in serious trouble (and
may collapse into specific readings of the Physical and/or Notational
View). Mathematical nominalism posits that mathematical entities do not
exist as abstract objects, lacking location in space-time or causal powers
(Bueno 2020).

(c) Philosophers of applied mathematics maintain that there are several so-
called application problems of mathematics (Steiner 1998; Fillion 2012). The
common theme of these problems is how supposedly abstract mathematical
entities relate to the physical world. Consequently, when computational
entities such as computer programs are considered mathematical entities,
these problems also pertain to computing. (I address one - the so-called
Bridging Problem, i.e., the metaphysical problem of how the mathematical

relates to the physical- in Appendix B.)

Besides these general themes from the philosophy of mathematics, one can
expect additional, more specific issues about computability theory, algorithms,
etc. For instance, despite my presentation of algorithms under the “‘Mathematical
View,” we may need to revise this interpretation. Dean (2016, 26) notes that we
typically think of mathematical objects as static. However, our usage of
operational terms in the specification of algorithms reflects our understanding
that executing an algorithm is to carry out a sequence of operations ordered in
time.

A.3 The Notational View

Regarding programs as sorts of texts is parasitic to the widespread use of modern
programming languages. According to this view, programs are constituted by a
well-formed sequence of symbols written in a programming language. This view
raises several questions regarding the nature of programming languages and,
consequently, programs qua texts written in such a ‘language.” As Lonati et al.

(2022, 155) aptly remarked recently
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“A program is a notational artifact, in the same sense way that a manuscript,
book, or music score is: it relies on a notation with a particular syntax, according
to some formal rules, linguistic notations and conventions.”

In the following, I call the view to conceive of programs as some symbolic
structure as the Notational View. It is instructive to provide some brief (historical)
background to better understand the Notational View and its philosophical
implications. How exactly became the notational view so pervasive? And what
exactly are programming languages?

Until the end of the 19th century, computations were essentially performed
by human clerks. Typically, these ‘computors’ relied on pencil, paper, and
possibly some (semi-automatic) calculating tools (see e.g., Campbell-Kelly et al.
2023, Ch. 1-3). Unless wholly carried out in one’s head, manual computation
involved the manipulation of different symbols according to rules of
arithmetic. In parallel, there was a long tradition of considering mathematics in
linguistic terms, such as the language of nature, the “grammar of science,” or, in
the 20th century, as a formal symbolic system (Nofre et al. 2014, 47).

The advent of various mechanical and later electronic (special-purpose)
computing machines increasingly enabled practitioners to carry out sequences of
computations automatically. Notably, the increasing speed and automatization
of electronic processing provided by the technological leaps in the 1940s required
program execution to rely less on repeated human intervention. For instance,
whereas the functioning of the Harvard Mark I required human operators to
manually change program tapes for conditional branching during runtime,
ENIAC featured fully automatic conditional branching (Bullynck & De Mol 2010;
Priestley 2011, 111-115). Although the ever-increasing automatization of
computing machines marked a significant development, it gave rise to a novel,
unexpected source of error: human programmers’ failure to fully anticipate the
effects of the given instructions accurately.

At first, practitioners would usually write programs directly in machine code
(i.e., referring to one’s device’s hardware components in binary notation). As
Valdez succinctly writes about the state of the art at the time,

“There was a very close correspondence between the structure of the program

and the structure of the machine itself. Consequently, programmers were

required to know every detail of the structure and working of the machine they
were programming and inevitably the focus in programming was on the

formulation of the problem to fit the structure of the machine; the logic of the
program was totally shaped by the structure of the machine.” (Valdez 1981, 4)

For successful programming, one had to be familiar with virtually every
hardware component and the entire architecture of the machine; this method was

tedious, made code difficult to read for humans, and the probability of
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accidentally making errors was high. Accordingly, from the late 1940s onwards,
programmers created a notation called assembly code to simplify the process of
writing machine code. Rather than writing down the binary digits for each
machine instruction, they used short words or abbreviations like ADD, SUB, or
MOVE. These words representing instructions were easier for humans to read
and remember than a series of 1s and Os.

In explaining why it became custom to see programming as a linguistic
activity, Nofre et al. (2014) remind us that computing specialists swiftly extended
the previously mentioned tradition of viewing mathematics in linguistic terms to
the mathematical /computational problems solved by the aid of machines. While
initially, the adaptation from assembly to machine code was done by hand, it was
soon realized that the process is automatable, too. Resultingly, programs called
assemblers emerged to perform the process. In this context, the transition from
mathematical problem to code was interpreted as an act of “translation.’

Importantly, it is possible to apply repeatedly, or ‘nest’ such translation
process to come up with new notational schemes beyond first (machine code)
and second-generation programming languages (assembly). Throughout the
1950s, this nesting strategy enabled practitioners to invent third-generation high-
level programming languages such as FORTRAN, ALGOL, or Lisp that were
more programmer-friendly and typically omitted even more hardware details
(Knuth & Pardo 1980; Wexelblat 1981). Slowly, this development separated
programmers from the intricate make-up and inner workings of the machine. As
such, the computing community increasingly distanced itself from thinking of
code as an attribute of individual computing devices and began to draw on
linguistics and symbolic logic. The reason for this conceptual borrowing is that
new notation schemes are similar to formal languages like first-order logic as
they have variables (to which we can assign values), predicates, and functions
(White 2004). Interestingly, every new ‘language” gives rise to a new model of the
machine: Although the hardware remains unchanged, the programmers can now
reason in terms of variables rather than memory cells or of algebraic formulas
rather than registers and adders. Furthermore, the development introduces the
notion of ‘machine independence,” meaning that a single program can eventually
run on many computers.

In the past seventy years, thousands of programming languages have
emerged, utilizing various approaches to writing programs. Some languages,
known as imperative languages, specify how a computation should be done,
while declarative languages focus on what the computer is supposed to do. There
are general-purpose languages as well as those developed for specific application

domains. For instance, C and C++ are typical in systems programming, SQL for
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writing queries for databases, and PostScript for describing the layout of printed
material. Innovations and applications often lead to the creation of new
languages. For example, the development of the Internet led to the creation of
Java for writing client/server applications and JavaScript and Flash for animating
web pages.152

Summarizing these developments, we can (broadly construed) understand a
programming language as an artificial notational formalism in which we can
express algorithms/computational problems (Gabbrielli & Martini 2010, 27).
Abstracting away from the machine allowed the arrival of notational schemes
pertinent to the (human) problems to be solved. As described in Chapter 2,
‘Notations - There is no Escape’ of the PROGRAMme book,153 notations are thus
frequently regarded as intermediaries between human programmers and

computing machines (Fig. A.2).

Human

Notation

Computing Machine

Fig. A.2: Schematic depiction of the relation between computing

machines, symbol structures, and humans.

Ultimately the common idea remains to exercise control over the underlying
device and use it for problem solving; programmers therefore must formulate or
program instructions in a notation that the machine can “understand.”'> To turn
the human-readable inscription into a machine-readable one, the high-level
inscription needs to undergo a translation process and be implemented in a
‘lower level.” In practice, we employ interpreters, compilers, and linkers (which
are all programs themselves) to go through the different translation stages

automatically.1%

152 ] emulated this paragraph based on (NRC 2004, 76f).
153 (https:/ /wiki.program-me.org/index.php/Notations:_There_is_no_escape)
154 N.b. that the term “understand’ is yet another linguistic (and anthropomorphic) metaphor.
1% These translation stages are frequently discussed under the name ‘implementation.” In
Chapter 2, I discuss the corresponding philosophical ramifications.
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Beyond textual notations

Next to a textual conception, one may employ other forms of notations.
Flowcharts represent another prominent notational scheme for computer
programming. In his article “The Multiple Meanings of a Flow Chart,” Ensmenger
(2016) illuminates the importance of flowcharts for representing the logical
structure of programs beginning in the 1940s. Their genesis can be traced back to
a series of reports authored by John von Neumann and Hermann Goldstine.
These reports introduced the conventions of the flow diagram notation,
intending to capture a program’s dynamic unfolding (the program process) by
pictorial means. One notable feature of this novel notation was the inclusion of
so-called assertion and substitution boxes connected by arrows. These notational
devices facilitated the manual conversion of a program to otherwise hardly
readable machine code.

Today, programmers still often rely on forms of software visualizations, like
Bachman or UML diagrams, to attempt to gain an overview of complex software
systems. As such, the purpose of flowcharts diverges from a program as text view
in so far as flowcharts are typically not apt to directly exercise control of the
machine. Rather, they act as specifications and fill the need to make a program

clear to those who want to understand it.

Overall, I have attempted to survey a relatively large area of computer science
in this subsection. Accordingly, there is a vast landscape of underlying theoretical
and philosophical issues. Let me now sketch some of the implications for the
metaphysical nature of computer programs in broad strokes.

The section started with a quote by Lonati et al. (2022), stating that programs
are notational artifacts like different kinds of texts or works of music. In fact, there
is extensive literature on the ontological status of such repeatable artifacts in the
philosophy of art and metaphysics. In so far as one can think of programs as
repeatable artifacts, the same conclusions about the ontological status of texts,
words and so on should also inform our reasoning in computing. (I extensively
discuss the issue and relevant literature in Chapter 3).

At the same time, the nature of programming languages itself raises
conceptual issues. Although there are thousands of programming languages
nowadays, most share common features when it comes to their semantics. The
three most typical styles are operational, denotational, or axiomatic (Jones &
Astarte 2018).156 In some of his work, Turner (2007; 2010; 2014) attempts to

1% An operational semantics allows us to interpret the meaning of a programming language
through an abstract machine. It involves translating expressions in the programming language
into instructions or programs for the abstract machine. Denotational semantics formalizes the
interpretation of programming languages in terms of mathematical structures (called
denotations) like sets or categories that describe the meanings of expressions from the
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unscramble how the underlying semantics may furnish potentially different
ontological commitments concerning programming languages. One critical
problem is that programming languages have an abstract guise we can reason
about mathematically but ultimately need to be implemented in a physical
medium. Often, this issue is discussed under the label the ‘dual nature view,” and
we will come back to it shortly in the last section of this appendix.

Another important issue pertains to the relation between programs as static
notations and the real-world ongoings in concrete computing devices. As I have
argued in Chapters 2, 4, and Appendix B, the relationship between these
symbolic structures and material systems is subject to the vexing issue of the

Problem of Implementation.

A.4 The Artifact View

In our everyday life, we are surrounded and constantly confronted with artifacts.
Typically, an artifact is defined as an object intentionally made or produced for a
specific purpose (Hilpinen 2017). Intuitively, many computer programs appear
to be artifacts because they are ‘creations of the mind’ (cf. Mahoney’s quote a
couple of pages ago). In due course, philosophers often distinguish between
different types of artifacts. Especially two conceptions turn out to be relevant for
classifying computer programs: Technical artifacts and abstract artifacts. In the
following, I will provide an entry into these notions (concerning computer

programs).

Technical Artifacts

Technical artifacts are considered an important subclass of artifacts in general (I
already briefly introduced them in Ch. 2 and Ch. 5). They are taken to include
mundane objects like tables, screwdrivers, and toasters to highly sophisticated
technologies like particle detectors or spacecraft. All technical artifacts have in
common that they are constituted by both material and intentional features.!> On
the one hand, technical artifacts can be described by their material structure, i.e.,
in terms of their physical or chemical capacities. On the other hand, they can be
couched teleologically with regards to goals and actions. The combination of both
structural and teleological (or material and intentional) aspects are required to

languages. The underlying idea is to map a language into some space of such mathematically
tractable structures. Lastly, an axiomatic semantics contains axioms and rules of inference that
describe computer programs in propositional logic. This approach is beneficial for proving the
correctness of programs (Hoare Logic is a prominent example).

157 The materiality delineates technical artifacts from socio-cultural artifacts like constitutions or
the law; intentional features render them distinct from naturally occurring material entities like
tigers and tornados.
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provide a complete picture of them (Kroes 2012). For that reason, technical
artifacts are often referred to as having a “dual nature’ (cf. Kroes & Meijers 2006;
Baker 2006).

Importantly, the material and intentional features are deemed to stand in a
special relationship: It is the artifact’s material structure which allows agents to
pursue their goals - only if there is the right correspondence between the two
may an artifact function correctly.15® Accordingly, philosophers of technology like
Houke and Vermaas concluded that “[...] the notion of ‘function’ is like a bridge
connecting the intentional, use-plan description of artefacts and a description of
their physicochemical capacities.” (Houke & Vermaas 2010, 138). As we will see
later on under the discussion of the ‘dual nature view of programs’, several
philosophers have suggested that such teleological function are suited to

conceptually connect the different clusters in this appendix.

Abstract Artifact
There is another prominent class of artifacts - abstract artifacts (see also the
material in Ch. 3). The prefix “abstract’ should be understood in the metaphysical
sense of lacking spatial features described previously in the introduction. Despite
lacking ordinary spatial features, abstract artifacts are nevertheless characterized
as creations of the mind. They are abstract objects that were created. Standard
examples often mentioned in the relevant literature are fictional characters
(Sherlock Holmes, Donald Duck) and other types of so-called repeatable
artworks like literature or musical works (Wollheim 1968, Levinson 1980,
Thomasson 2006). Even though these entities are typically inscribed in
tangible/physical media - a text printed on paper, for instance - many
philosophers deem these artifacts abstract. As expounded in Chapter 3, this is the
main conclusion of the so-called Physical Object Hypothesis about repeatable
artworks. Simply put, the idea is that repeatable entities/artworks are abstract
because they cannot be identified with a specific copy or token in which they are
inscribed. However, in contrast to a platonic conception of abstract objects (which
somehow exist independently of us and can be discovered), the artifactual view
maintains that (at least some) abstract objects depend on agency and can be
created.

Two angles render the abstract artifact view relevant to the study of computer
programs. First, and more superficially, one may associate abstract artifacts with

programs because the terms ‘abstract’” and “artifacts’” seem to resemble already

158 If there is a mismatch between intention and structure, an object may be inadequate for a
designated task - a wooden toothpick, for instance, likely won't be an adequate replacement for
one’s car key.
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familiar features. Secondly, and more substantially, one may take the analogy to
literary and musical works seriously (CONTU report, Faulkner & Runde 2010;
Irmak 2012). As we have already seen, both conceptions have been greatly
compared to computer programs (and in Chapter 3, I developed this idea more
formally through the so-called Problem of Creation). On the one hand, the
analogy of computer programs to literary works was one of the main features of
what I referred to as Symbolic View. On the other hand, the analogy of computer
programs to musical works has been used extensively by legal practitioners to
argue for the copyrightability of software (commissioner Hersey also used both
cases to express his dissent with the final CONTU report).

Note that this framing is not merely based on armchair philosophy but is well
anchored in the computing community. For instance, in his 1975 book The
Mythical Man-Month - a seminal text in software development - Frederick Brooks
observed that, like the poet, the programmer engages in a creative endeavor and
is

“only slightly removed from pure-thought stuff. He builds his castles in the air,

from air, creating by exertion of the imagination [...] One types the correct

incantation on a keyboard, and a display screen comes to life, showing things that

never were nor could be.” (Brooks 1975, 7)

And as noted by Tedre (2015, 157), it was a widespread opinion that computing
was a craft or art of making programs in the early days of computing. So if
programs are indeed pure creations of the mind and if their making is essentially
an art or craft, one may reasonably draw the conclusion that they seem to be some
kind of abstract artifacts.

Let me wrap up this section by mentioning the key metaphysical implications
of the Artifactual View. Given the different philosophical frameworks that
underpin the notions of technical and abstract artifacts, it is wise to discuss them
one by one. I start by looking at appropriation of technical artifacts into
computing.

As already mentioned previously, attempting to extend the technical artifacts
view to computing is welcome, for it takes the engineering perspective, as
expressed in Denning et al. (1989) or Tedre (2015) seriously. I will discuss some
of the details and potential caveats of this approach in the last subsection of this
appendix in connection with the work of Lando et al. (2007) and Turner (2014,
2018). Taking stock, we should keep the following points in mind:

a) Notably, the Artifact View is compatible with many of the other clusters
y P y

presented so far (technical artifacts are physical objects; depending on

one’s favored position with regards to the philosophy of mathematics, one

may think that mathematical objects are also abstract artifacts; the abstract
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artifacts view is complementary to the view that programs are symbol
structures).

(b) Accepting the Artifact View entails that programs stand in a particular
ontological dependence relation to humans (or other epistemic agents).
(see e.g., Duncan 2014)

(c) Depending on which framework of the Artifact View one subscribes to,
one may ‘inherit’ normative features (e.g., due to artifactual functions that
come with several conceptions of artifacts) that tell us when an artifact is
malfunctioning, and so on. In the realm of computing, normative features
are required to make sense of ‘miscomputation” (and that the execution
of programs can go wrong; see e.g., Fresco & Primiero (2013) and Tucker
(2018)).

A.5 The Neural View

There is a long and rich (philosophical) tradition to conceive of the mind as a
machine (Boden 2006). With the advent of electronic computing machines, it did
not take long until ideas about the computer and the brain became mutually
entangled. This shaped both the perception of what kinds of things computers
and brains are, thus having implications for the understanding of computer

programs. Let me elucidate two main developments.

The Computer as Brain
The first main development is about the public anthropomorphization of the
newly emerging electronic computing technology from the 1930s onwards.
Increasingly, new computing devices seemed to solve calculations which were
previously reserved to only the human mind. Accordingly, the new technology
became attributed with human qualities, especially with those of the mind and
brain. As Martin explains in her article “The Myth of the Awesome thinking
machine,” it was “[...] the press [who] consistently used exciting imagery and
metaphors to describe early computers.” (Martin 1993, 130). Analyzing
newspapers, she concludes that it was rather mainstream media journalists than
the early computing pioneers that spread the use of expressions like ‘electronic
brain” or “intelligent machine.”15

While using such sensational anthropomorphic labels occurred primarily in
the 1950s and 1960s and subsequently influenced large parts of the (American)
population, the myth of the awesome thinking machine lost its bite when

minicomputers started affecting a more widespread workforce (and users

159 Von Neumann, Turing, and Vanevar Bush were prominent exceptions. Whereas the Von
Neumann wrote of machine elements as neurons, Bush stated that machines performed
“repetitive thought” (Martin 1993).
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realized that they were not thinking by themselves). However, today, we live
through another public hype cycle fueled by recent developments in Al
applications. Especially deep neural networks (DNN)10 - as can already be
inferred from their name - are suggestive in resembling the neural structure of
the human brain.

Floridi's & Nobre’s (2024) recent article casts light on the general
anthropomorphization of machines. In particular, they argue that Al’s technical
vocabulary is deeply entangled with biological and human terms. Cases in point,
among others, are ‘machine learning,” “‘memory,” ‘synapses,” and ‘hallucinations.”
As such, these metaphors may influence our way of thinking about computing
machines since whenever technical terms are transferred between disciplines,
they carry additional baggage and implications due to their original context.161

The Brain as Computer
The second main development however is less superficial and arguably had
longer lasting philosophical influence. Roughly put, here the direction of
influence worked the other way around - the computational metaphor was
applied to the mind and brain. Contrary to the early widespread public
conception to see computers as brains, the view to see our neural apparatus as
some sort of computing system unfolded less straight forward. One of the first to
argue that cognition is the product of computation in the sense of the formal
notion of computability defined by logicians like Alan Turing were arguably
McCulloch & Pitts (1943).162 In his recent book on neural mechanisms, Piccinini
foreshadows some of the potentially far-reaching consequences of this theory for
our understanding of computation:
“McCulloch and Pitts’s theory was not the only source of modern computational
theories of cognition. But McCulloch and Pitts’s use of computation to describe
neural functions, together with their proposal to explain cognitive phenomena
directly in terms of neural computations, contributed to a large shift in the use of
computation that occurred around the middle of the twentieth century. Before
1943, computing was thought of as one human activity among others (e.g.,
cooking, walking, or talking). After 1943, computing could be thought of as, in a
sense, all that humans did. Under McCulloch and Pitts’s theory, any neural

network could be described as performing a computation. In the sense in which
McCulloch-Pitts nets compute, and to the extent that McCulloch-Pitts nets are a

160 Neural networks are an array of connected signal-processing units known as ‘neurons.’
Usually, they consist of (i) input units that receive signals from the environment, (ii) output
units that send outputs to the environment, and (iii) hidden units that communicate solely with
other units within the system.
161 Colburn & Shute (2008) provide a more in-depth analysis of how metaphors in computer
science offer a conceptual framework in which novel concepts can be embedded.
162 See Piccinini (2004; 2020, Ch.5) for some historico-philosophical assessment of McCulloch
and Pitt’s theory.
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good model of the brain, every neural activity is a computation. Given that

McCulloch and Pitts considered the computations of their nets to be explanations

of cognitive processes and human behavior, every cognitive process was turned

into a computation, and every behavior into the output of a computation.”

Piccinini (2020, 124)

While overtly highlighting the impact of ‘historical firsts” makes many
professional historians chuckle, it is true that the early 1950s saw a surge of
interest in formalisms that likened the mind to a computer. Following Penn
(2020), one may point out the examples of Herbert Simon’s development of
complex information processing and heuristic programming, John McCarthy
and Marvin Minsky’s development of artificial intelligence, and Frank
Rosenblatt’s development of machine learning. Although, as Penn argues, the
approaches to simulate aspects of cognition varied among these computing
pioneers, they should nevertheless be regarded as a single intellectual project of
reducing “epistemology to code.”

Besides, other disciplines picked up on the idea to couch the brain in
computational terms. Take, for instance, the seminal textbook Cognitive
Psychology by Neisser, which massively contributed to putting the same-named
field on the map as a discipline in its own right. In the introduction, he draws
parallels between humans and computers. He writes that the “task of a
psychologist trying to understand human cognition is analogous to that of a man
trying to discover how a computer has been programmed. In particular, if the
program seems to store and reuse information, he would like to know by what
‘routines’ or “procedures’ this is done.” (Neisser 1967, 6). Today, it is still common
practice in cognitive science and adjacent fields to view the internal states in the
cognitive system that provide information about the environment and guide
behavior as mental representations undergoing computations (ie.,
transformations that obey computational rules).

Parallel to the emergence of disciplines like artificial intelligence, cybernetics,
and Cognitive Psychology, the idea of viewing the brain as a computer also
gained traction in philosophical circles in a family of views nowadays referred to
as Computational Theory of Mind (CTM).163 In the 1960s, philosophers like Hilary
Putnam (1967) proposed a form of functionalism couched in computational terms
that was supposed to supersede its rivals, namely behaviorism and identity
theory.

While the first versions of the CIM maintained that minds perform
computations similarly to Turing Machines, subsequent proponents of the view,

like Fodor (1981), focused on the symbols manipulated under computational

163 See (Rescorla 2020) for an accessible survey.
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rules. (Fodor is sometimes said to have revived the ‘language of thought” idea).
In brief, the proposal argues that to fully understand cognitive abilities, we need
to consider how syntactic operations work on language-like symbolic structures
and the digital computational procedures that transform them.

In the 1980s, connectionism was revived as an alternative to the classical
CTM.164 This “Golden Age of Connectionism” (Buckner & Garson 2019) was
underpinned by a culmination of theoretical refinements, especially the notion of
back-propagation in artificial neural networks was paramount (Rummelhart et
al. 1986). In a nutshell, connectionism’s main difference is that it draws from
neurophysiology rather than computability theory. This paradigm relies on
computational models and neural networks that differ significantly from abstract

machines such as TMs.

Finally, I will shed some light on the philosophical impact of the Neural View
on our metaphysical understanding of computer programs. What are the most
vital implications?

First, the Neural View paves the way for naturalized conceptions of
computation beyond neural activity (‘Why stop with the brain?’). Taken to the
extreme, this pattern of reasoning opens the floodgates to so-called
pancomputationalism  (viz., the idea that everything computes).
Pancomputationalism is a conception that comes in various flavors!% and is often
considered to trivialize the notion of computation (this phenomenon is
frequently referred to as triviality arquments (Sprevak 2018)). However, since for
proponents of the CTM, it is a conditio sine qua non to have a mind-independent
notion of physical computation, a lot of ink has been spilled to work out the
nature of physical computation precisely. For the sake of brevity, I will not deep-
dive into the intricate details. Anyhow, to make a long story short, this
development brought forward philosophical debates about the nature of

physical computation!® and gave rise to a host of issues:

(a) Suppose computation is no longer just a human activity but a mind-
independent process occurring in various natural systems. In that case, we

may ask whether there are also ‘natural computer programs.’

164 The connectionist project started in the 1940s (including, e.g., McCulloch and Pitts” work)
and attracted considerable attention by the 1960s. However, major concerns about the
connectionist modeling techniques led to a decline in research interest and funding.

165 Pancomputationalist ideas, while often associated with the Neural View, are not limited to it.
For instance, computing pioneer Zuse (1969) proposed that all processes in the universe are
computational. Today, many philosophers of computing distinguish between limited,
unlimited, and ontic pancomputationalism, each with its own unique characteristics. For a
comprehensive analysis of these distinctions, see Anderson & Piccinini (2024).

166 | refer the interested reader to my second and fourth chapters and the following appendix to
learn more about the subject.
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(b) If one subscribes to some version of the CTM, then physical computation is
no longer based on cognition but the basis for cognition. This potentially raises
issues of circularity in the sense that the sequence of computations carried
out by the execution of humanly produced computer programs is

dependent on prior neural computation.

Second, to date, the Neural View has consequences on the way in which we
conduct our discussions within the various brain sciences, computing, and
computationally heavy fields (for instance ‘machine learning’). Moreover, the
‘Computer as Brain” and ‘Brain as Computer’ views arguably continue to exert a

reciprocal influence on each other.

A.6 State of the Art

At first stab, the list of clusters I just presented leaves us with a fragmented
picture of computer programs’ ontological status - such fragmentation results in
conceptual difficulties, mutual misunderstandings, and category mistakes.
Tensions arise, such as how qua abstract causally efficacious object programs are
simultaneously executable entities that do have real-world effects. Similarly, we
may wonder whether we should classify programs as (material) technical
artifacts or abstract ones (or whether there might even be naturalized programs).
What to make of these rival analyses of the ontological status of computer
programs? Are they all of these things, some of them, or a novel sui generis entity
that requires the revision of our standard metaphysical frameworks?

Some investigators have sketched approaches to answering questions like
these in a philosophically satisfying way. In this State of the Art section, I briefly
yet critically review them chronologically.

The dual nature view & linguistic refinements

In his article Three Myths of Computer Science, Moor (1978) provides one of the
earliest analyses of the situation by stating that computer programs can be
understood on physical and symbolic levels. As we will see, the duality theme
will reoccur for many subsequent authors. The way in which Moor tries to
explain the duality is by appealing to linguistic confusion. In particular, he writes
that extensionally inadequate definitions (being simultaneously too permissive
and too narrow) are the root of the problem. To remedy the situation, he proposes
a revised definition, viz., a computer program is a set of instructions that a
computer can follow to perform an activity. Unfortunately, Moor’s attempt at
linguistic reform does not completely clarify what kinds of things programs are

after all, either.
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Everything is a program

In a more radical attempt, Suber (1988) concludes that everything is software:16”
“Hardware, in short, is also software, but only because everything is.” Suber
(1988, 102). This verdict hinges on equating software with patterns per se and
assuming that all kinds of prima facie nonsensical patterns could, in principle,
retroactively be turned into programming languages. Overall, the idea to reduce
software to everything there is flies in the face of our shared beliefs that some
things implement computer programs and others don’t; Suber’s account is,
therefore, extensionally inadequate. Notably, his kind of reasoning bears striking
similarities to a family of pancomputationalist accounts (e.g., Searle 1990) and

ought to be rejected for the same reasons.168

A complete metaphysical overhaul

In Smith’s (1998) On the Origin of Objects, we find yet another far-reaching
stratagem on how to tackle the issue. His book is the summit of extensive
investigations on the metaphysical foundations of computer science, Al, and
cognitive science. As such, the first chapter contains a few pages on the
ontological status of programs. Similar to Moor, he first points towards linguistic
confusions by claiming that the vocabulary of computing is somewhat vague;
since computing as a discipline is relatively young, the field employed metaphors
and concepts from other disciplines:

“Given the intellectual origins of computer science, it is no surprise that much of

our present-day computational vocabulary was lifted from the study of logic,
mathematics, and formal languages.” (Smith 1998, 33)

He believes that the initial conceptual borrowing obscured the “true nature of the
computational situation” (ibid.). In his view, programs are best understood
through a tripartite distinction of a program text, a program process, and some
(external) subject matter the computation is about. (N.b. that Smith’s
conceptualization of the textual and process aspects essentially aligns with
Moor’s dual nature view). However, what is truly unique about the account is
that it calls for an alternative metaphysical framework beyond the realm of
computing (“it is not just the ontology of computation that is at stake; it is the nature
of ontology itself.” (Smith 1998, 42)). While these claims are potentially far
reaching, it is well beyond the scope of this survey section to give a fully-fledged
critique of Smith’s entire attempt (i.e., the ‘middle distance’ approach) to

overhaul the way we ought to conduct metaphysics.

167 Suber uses ‘software” and ‘computer program’ interchangeably (Suber 1988, 94).
168 As previously mentioned, so-called triviality arguments typically render
pancomputationalist positions unplausible; see Anderson & Piccinini (2024) for an in-depth
analysis of the topic.
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Embracing the Dual Nature View: Concrete Abstractions
At the end of the millennium, Colburn (1999) also picked up the dual nature
theme: According to him, programs are comprised of what he calls a medium of
description (which is usually text) and a medium of execution (which is typically a
switch setting). However, instead of trying to overcome the issue through
linguistic reform (like Moor), he tried to embrace the seemingly opposing
features, arguing that together they form concrete abstractions.1®

As such, “the duality inherent in a ‘concrete abstraction” crosses metaphysical
categories” (Colburn 1999, 10). To make sense of the ontological status of concrete
abstractions, he appeals to the mind/body problem as an analogy. Notably, he
employs this strategy not because he believes programs are like persons/minds,
but for the taxonomy of solutions, this philosophical discourse offers on
overcoming an apparent ontological mismatch. Going through the solution
space, he contends that

“[...] the pre-established harmony thesis is well suited for explaining the high

correlation between computational processes described abstractly in formal

language and machine processes bouncing electrons around in a semiconducting

medium.” (ibid., 17)
Colburn suggests that, in the absence of a divine entity, programmers can play a
role in establishing a harmonic correspondence between the abstract and the
concrete. 170 However, his conclusion is rather superficial; what exactly this
relation between such ontologically distinct categories amounts to remains vague
at best.171

The dual nature view & linguistic refinement - attempt no. 2

Like their predecessors, Eden & Turner (2007) start from the dual nature
assumption about the metaphysical nature of programs. In particular, they
identify two sub-categories of the term ‘program,” viz., program-script and
program-process. As such, their distinction resembles that of Smith and differs
from the one employed by Moor and Colburn. While the latter appeals to the
static sub-branch of the Physical View, Eden and Turner mention the dynamic
one (i.e., because the program-process is the execution of the program script).

Moreover, the authors attempt to unscramble the situation by introducing a

169 Colburn adopted the notion of ‘concrete abstractions” from an undergraduate textbook
(Hailperin et al. 1999).

170 The idea of pre-established harmony goes back to Leibniz, which is, roughly, the thesis that
there is no causal mind-body interaction but just a relationship of harmony or parallelism
(Kulstad & Carlin 2020).

171 Throughout my thesis, I argue that we should understand this relation as computational
implementation.
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refined definition of program script as a well-formed expression based on a
Turing-complete programming language.

However, despite these differences, it is paramount to highlight that the
authors also appeal to a concretization relation (similar to Colburn’s ‘pre-
established harmony thesis’) that is supposed to link the program-script to the
corresponding program process. In particular, the authors describe
concretization as “a process during which an entity or entities of one category are
synthesized (come into being) from entities of a more abstract category.”
Although this notion is intriguing and already has more substance than
Colburn’s ‘pre-established harmony thesis,” it does not fully clarify the nature of

this relationship.

Clarifying definitions and the dual nature through Formal Ontologies

Lando et al. (2007) developed a new domain-specific ontology of programs and
software called COPS (Core Ontology of Programs and Software) using high-
level formal ontologies as a template.1”2 COPS classifies computer programs as
abstract documents to enable a computing system to process information. More
concretely, computer programs are said to have a dual nature with two elements,
branching into static entities and their execution (similar to Eden & Turner
(2007)). As previous participants in the debate, the authors shed light on the
relation between these elements (of the duality) and suggest further refinements
of the term "program.’

When examining the relation between these elements, the authors identify
artefactual functions (cf. Artifact View) as their linkage. Specifically, they define
such a function as the ability of an instrument to perform an activity (assigned
by agents to endurants) in a perdurant.!”® This conceptualization characterizes an
artifact as an endurant with an assigned function and gives rise to the notion of
computer programs as Artefacts of Computation. I will return to potential issues
with this conception when discussing a very similar approach in the work of
Turner shortly. When further considering the static side of programs, they
suggest distinguishing files (inscribed in a medium), computer language
expressions (expressed in a Turing-complete language), data types, and
algorithms (conceptualizations representing the semantics of programs). In sum,

172 The authors” work is underpinned by the DOLCE and 1&DA core ontology. DOLCE, a
‘foundational” ontology, comprises abstract concepts that generalize ideas in different
knowledge domains. Under philosophically grounded principles, DOLCE’s domain - that of
Particulars - splits into four subdomains.

173 In context of the here employed framework ‘endurants’ can be understood as entities that are
wholly present at any time at which they exist; “perdurants’ can be understood as entities that
happen in time, e.g., events or actions.
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programs are thus both computer language expressions and ‘artefacts of

. 7
computation.

Programs as Abstract Artifacts

In his article Software is an Abstract Artifact Irmak (2012) rejects the dual nature
view and suggests that programs are abstract artifacts.1’# In a nutshell, he
identifies programs as notational entities and argues that they are subject to the
same considerations as works of literature and musical works (i.e., so-called
repeatable artworks; cf. Notational and Artifact View): Although programs lack
spatial properties (as they cannot be identified with any particular
implementation), they have temporal properties. As a ‘creation of the mind,’
programs are artifacts; they are the end product of a laborious process and start
to exist at some point in time. Due to their temporality, they can cease to exist
when all their copies are destroyed (or nobody is around to remember the
underlying source code and algorithms).

While Irmak’s innovative idea to draw the analogy to the ontology of art
opened up a new avenue to investigate the metaphysical nature, his account is
partially incomplete. The crux is that his work remains silent about the way in
which programs qua abstract artifacts relate to real-world systems (i.e., it does

not tell us anything about computational implementation).

Unscrambling the Software/Hardware distinction through Formal Ontologies
Similarly to the work of Lando et al., Duncan (2014) employed a ready-made
formal ontology (the so-called Basic Formal Ontology (BFO)) in his dissertation
to elucidate computational notions such as ‘software,” ‘hardware,” and “artifacts.’
In due course, he argues that we can wunscramble the notorious
software/hardware dichotomy (i.e., in this case, the dual nature view)17> by
thinking of programs as ontologically dependent entities, while computational
hardware is ontologically independent artifact.176- 177 Regarding software, he

states

“A software program, similar to a novel, is a generically dependent entity. A
particular software program does not depend on a particular independent entity

174 Irmak told me, in private communication, that he used “software” and “programs’
interchangeably.
175 ]t is paramount to note that one should be cautious to simply equate the software/hardware
dichotomy with the dual nature view. While in this case, the two overlap, a different
understanding of 'software' may change the situation.
176 Like many authors, Duncan uses ‘software’” and ‘program’ interchangeably.
177 Following the BFO-framework (Arp et al. 2015), Duncan differs between two types of
dependent entities: specifically dependent and generically dependent ones. While the former depend
upon a particular bearer to exist (and only as long as that particular entity exists), the latter exist
as long as they are borne by some entity (i.e., they do not depend upon a specific bearer).
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(such as a particular DVD or flash drive) in order to exist. Rather, a software
program exists as long as it is borne by some independent entity. For example, if
you destroy my DVD of Microsoft Word, Microsoft Word (the software program)
does not cease to exist.” (Duncan 2014, 38)

Engaging in conceptual engineering, one can find, among others, such
ambitious novel concepts like programming language expression, computational
requirement specification, computational information entity, and computational plan
specification (where each is rigorously defined in terms of his upper-level
ontology). To cut a long story short, a software program is then defined as “a
computational plan specification in which the instructions are specified using
programming language expressions.” (ibid., 133).

When explaining how to relate these entities to hardware, Duncan appeals to
a tool function (the notion strongly resembles the characterizations of teleological
function endorsed by many philosophers of technology; noteworthily, he also
introduced the notion of computational artifact (ibid., 140)). Accordingly,
hardware ‘concretizes’ programs when the former bears the (teleological)
function that is realized in some computational planned process (ibid., 136-140).
(Alas, this characterization couches the concretization relation in the unanalyzed
terms of ‘bearing’ and ‘realizing’).

Ultimately, the success of such linguistic reform and conceptual adaptation in
such a heterogeneous field as computing is somewhat doubtful (to the best of my

knowledge, the novel concepts have yet to be widely adopted).

A requirement engineering perspective: An abstract information artifact view
Wang et al. (2014a; 2014b)17® and Wang (2016) aim to refine further the abstract
artifact proposal about programs (made by Irmak (2012)). Specifically, their work
sheds light on programs’ identity criteria against the backdrop of software
changes (i.e., code changes). In a nutshell, the question is how specific programs
can keep their identity despite code changes. By methodologically relying on the
DOLCE ontology (similar to Lando et al. 2007), the authors identify and precisify
programs as abstract information artifacts. Generally speaking, there is a wide
variety of abstract information artifacts; see e.g. (Sanfilippo 2021) for a survey.
However, in contrast to other information artifacts, which

“[...] directly refer to the objects in the world (so that executing a recipe or
a law implies a manipulation of objects in the world), software programs
refer to virtual variables in a machine, whose manipulation inside the
machine affects the outside world in an indirect way” Wang (2016, 63)

178 Although the two papers have different names and are published in different venues, the
content (i.e., the overall argument) is essentially the same.
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To then further distill what is peculiar about programs, they draw from software
engineering and requirements engineering literature. This strategy allows them
to distinguish between software and hardware (i.e., the dual nature view), the
underlying hardware, and different ‘software artifact’ features (code, program,
software system, and software product).

Programs are Computational Artifacts

By transposing the conception of ‘technical artifact’ to computing, Raymond
Turner popularized the term computational artifact.17° As arguably one of the most
prolific investigators in the philosophy of computer science, the development of
‘computational artifacts’ is the culmination of a longer lasting research program
into various central notions of computing (Turner 2011; Turner 2014; Turner
2018). Arguably, Turner’s concept borrowing was supposed to kill multiple birds
with one stone:

1. First, the manoeuver accounts for software engineering. As per Turner,
programs are artifacts because they are intentionally created objects.

2. Second, the notion is arguably supposed to explain away the longstanding
issue of the dual-nature view of programs. In brief, the idea is that we can
couch the dual-nature view in terms of the function-structure pair
ingrained in the notion of technical artifacts. This move resembles the idea
of framing implementation in terms of artifactual functions we have seen
in (Lando et al. 2007) and (Duncan 2014).

3. Third, it allows us to account for the normative dimensions of computing.
Previously, I already mentioned the verificationist debate and the
importance of miscomputation. Having teleological functions at our

disposal facilitates normative judgments about computational systems.

Given the scope and different problems Turner’s computational artifact proposal
is able to address, it is undoubtedly one of the most sophisticated accounts on the
market.

However, there is one potentially serious caveat with appropriating technical
artifacts to the realm of computer science; the issue is expressed in Kroes’s
monograph Technical Artefacts: Creations of Mind and Matter, where he warns us
that

179 One should not mistake Turner’s computational artifacts with Suchman’s notion of
computational artifacts presented in (Suchman 1987). Remarkably, Tuner and Lando et al.
(2007)’s notion of “Artefacts of Computation” and the idea of using artifactual functions to
bridge the gap of the dual nature view seems to have been developed independently. As far as I
can tell, Lando et al. only referenced some of Turner’s work that preceded the development of
his computational artifacts notion. Likewise, I did not find a reference to Lando et al. in Turner’s
(2014; 2018).
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“”

[...] software programs fall outside the scope of this book. I consider software
programs to be ‘incomplete’ technical artefacts; only in combination with the
appropriate hardware that executes software programs are they able to fulfil their
technical function.” Kroes (2012, fn. 4)

When further developing Kroes” worries, we may pose the question of
whether the dual nature view of programs (i.e.,, the abstract-concrete
dichotomy) adequately is accounted for by the function-structure duality of
technical artifacts.180 The crux of the matter is that Turner’s account presumes
that the notion of physical structure can also be understood in the abstract
(like a set-theoretic one).181

A Phenomenological Perspective

In his 2019 dissertation, Geisse (2019) takes a phenomenological approach,
drawing on Kant's Critique of Pure Reason and Husserl’s phenomenological
perspective to define the term ‘program’ based on human experience.
Subsequently, he examines programs through the properties assigned to them in
perception processes. This method results in a multi-dimensional
characterization of programs, distinguishing them as (i) physical, (ii) syntactic
entities, (iii) semantic entities, and (iv) embedded entities dependent on other
entities. Geisse argues that this differentiation of object forms (i)-(iv) allows for
greater precision in using the term and elucidating their interrelationships.
However, since the focus of his work is primarily on phenomenological aspects
of programs -- and not on their metaphysical nature -- dissolving the dual nature
view (or, in fact, the occurrence of four categories (i)-(iv)) is not the primary
concern. Accordingly, there is no worked-out solution to the problem of

implementation.

Programs have a stratified ontology

In several of his works, Primiero picks up the themes of computational artifacts
and the corresponding idea of using a function-structure pair to characterize
them. However, instead of appealing to the standardly evoked dual ontology of
technical /computational artifacts, his work advocates an even more fine-grained
classification - a so-called layered or stratified ontology Primiero (2016; 2020).
What is the motivation for this move?

180 In an online session of the Histoire et Philosophie de I'informatique (HEPIC) seminar (a joint
seminar of the University of Lille and University of Paris 1) I attended on October 30, 2022,
Maarten Fraanssen (a member of the Dutch research group that developed the notion of
“technical artifacts” in the early 2000s) re-iterated the concern that the dual nature of view of
technical artifacts does not transpose to the dual nature view of computer programs.
181 N.b., similar kinds of worries would apply to other accounts (e.g., by Lando et al. (2007) or
Duncan 2014)) that also make use of the notion of teleological function.
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As described in the introduction (cf. Ch. 1, especially the section on epistemic
abstraction), level-views have been pervasive throughout the history of
computer science. In the section on the Notational View, for instance, we have seen
that abstracting away from the machine licensed programmers to develop new
programming environments that omitted cumbersome machine details. As per

Primiero, computational artifacts are, therefore, subject to a form of levelism:

i. Intention: the request of epistemic agents (typically, the customers, users,
and other stakeholders involved in software development projects) to
define and solve a specific computational problem.

ii.  Specification: the formal version of the request to solve the computational
problem; it provides (formal) constraints on the programs’ operations.

iii. =~ Algorithm: the procedure providing a solution to the proposed
computational problem in line with the specification requirements.

iv.  High-level programming language instructions: a symbolic
implementation of the proposed algorithm in a high-level language (the
source code).

v. Assembly/machine code operations: typically, the machine cannot
directly execute the source code; it is translated (e.g., by a compiler) into
assembly code and subsequently assembled in machine code operations.

vi.  Execution: the physical level (the execution LoA) is where the program
runs, i.e., where the computer architecture executes the instructions.

While such a level view is certainly not entirely new in computing, what is
paramount to note about Primiero’s proposal (and what distinguishes it from
previous versions) is the claim that it has ontological commitments. Drawing on
the notion of levels of abstraction (LoA) developed by Floridi (2008; 2011, Ch. 3),
Primiero argues that each LoA contains a corresponding pair of epistemological
and ontological domains (a so-called EO-construct). Accordingly, computational
artifacts are ontologically stratified or layered entities in the sense that they are
composed of various LoA with different degrees of abstractness. This view, in
other words, diverges from the traditional abstract-concrete dichotomy since it
requires us to buy into a metaphysical framework that allows for multiple

different notions of what it means to be “abstract.’
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Appendix B: Why we should think of
computational implementation as a three-
place relation

In the main body of the text, I occasionally consider an issue related to
implementation which I keep referring to as Bridging Problem. So far, the relevant
literature on physical computation has discussed the Bridging Problem!82 and the
Problem of Implementation 18 separately. This appendix clarifies how the
Bridging Problem affects our understanding of the metaphysical assumptions
underpinning computational implementation.

While the Bridging Problem deals with the unexpected accurate applicability
of mathematics to the physical world, the Problem of Implementation seeks to
provide an account of physical computation by establishing an adequate
correspondence between abstract logico-mathematical states and physical states.
As I will demonstrate, the Problem of Implementation is not just a problem in its
own right but an instance of the Bridging Problem. This view has potentially far-
reaching implications for our understanding of physical computation because it
allows us to apply insights from the philosophy of applied mathematics to
computing that were hitherto neglected.

The most significant upshot of this framing is that we should no longer think
of implementation as a simple dyadic relation between an abstract model of
computation and a physical computing system. The problem with the dyadic-
view (i.e., a mind independent one-to-one relation) is that it stands at odds with
most approaches to solving the Bridging Problem, which suggest that the math-
world relation does not hold by itself but requires a third element - the
stipulations and descriptive practices of epistemic agents. Ergo, we should also
understand the implementation relation as a three-place relation, where the
relata are abstract computational states, physical states, and epistemic agents and
their stipulations. This ‘three-place conclusion,” which diverges from many of the
most prominent accounts of physical computation, redefines our traditional

182 Wigner (1960), Steiner (1998), French (2000), Wilson (2000), Colyvan (2001), Grattan-Guiness
(2008), Pincock 2004, 2009, 2012, Batterman (2010), Fillion (2012), Bueno & Colyvan (2011),
Nguyen & Frigg (2021), Vos (2022).
183 Some key sources that deal with (parts of) the Problem of Implementation are Putnam (1989),
Searle (1990), Churchland & Sejnowski (1992), Chalmers (1996), Copeland (1996), Scheutz
(1999), Shagrir (2001; 2018; 2022), Klein (2008), Piccinini (2007; 2015), Ladyman (2009),
Milkowski (2013), Fresco (2014), Horseman et al. (2014), Fletcher (2018), Dewhurst (2018), Mollo
(2018), Sprevak (2010), Rescorla (2013; 2014), Lee (2020), Curtis-Trudel (2022).
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understanding of implementation as a completely naturalized phenomenon
hinging on a two-place relation.

The structure of the appendix is as follows. In Section 1, I briefly remind us
about the main issues underlying the Bridging Problem, which serves as the
starting point of our discussion. In Section 2, I shift gears, introducing the
Problem of Implementation from the discourse of physical computation and
sketch its most prominent solutions. In Section 3, I introduce the Bridging
Problem of Applied Mathematics and its candidate solutions in more detail. In
Section 4, I adapt the Problem of Implementation to the context of applied
mathematics and argue that it is a particular instance of the Bridging Problem.

Lastly, in Section 5, I offer some discussion and concluding remarks.

B.1 The Bridging Problem

One of the central questions of (the philosophy of) mathematics has been the
seemingly miraculous accurate applicability of mathematics to the empirical
sciences. This question, which has captivated scholars for centuries, was perhaps
most notably revived by Wigner (1960) when he challenged us to explain the
remarkable usefulness of mathematics in science. Considering its long history,
the issue is known under many names (e.g., Application Problem) and may
comprise several different (albeit related) problems under the same umbrella
(Steiner 1998, Fillion 2012).

For instance, some investigators picked up Wigner’s theme and tried to
demystify the ‘unreasonableness’ of mathematics” applicability. Grattan-Guiness
(2008), for example, suggests that mathematics is so useful for science because
many of its formalisms has been motivated by science. In a different manner,
Wenmakers (2016) argues that the phenomenon is due to selection effects such as
a selection bias that overtly focuses on the rare success of applications but not
their ubiquitous failures. Yet others pointed out a semantic problem about “mixed
statements” (Steiner 1998, 13-23, Colyvan 2001, fn.4, Pincock 2004, Fillion 2012).
Here, one may wonder about the truth conditions for statements like “there are
seven apples on the table” (Steiner 1998, 16) or “the gravitational acceleration is
9.81 m/s?” (Pincock 2004, 137), where mathematical and physical terminology is
mixed (i.e., they occur in the same sentence). While indeed interesting, the
semantic problem of applying mathematics will not be the central topic of this
appendix.

Instead, I will focus on another issue that has to do with the widespread
mathematization of modern science. Given that so many mathematical
formalisms accurately describe, explain, and predict empirical phenomena, we

suspect an underlying coupling (a math-world relation) that enables such
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knowledge gaining. It is widely accepted that here we confront a metaphysical
problem of applications stemming “from a gap between mathematics and the
world” (Steiner 1998, 19). Intuitively, the mathematical universe shares structural
similarities with certain parts of the physical world.

To avoid potential conflations and misunderstandings with the different
issues associated with the application of mathematics, I decided to employ the
name ‘Bridging Problem’” (BP) throughout my thesis.84 This choice, while a
matter of taste, highlights the crux of the matter best - the metaphysical problem
of bridging the gap between the two fundamentally different ontological
domains of abstract mathematical entities and physical objects. At a first stab, we

thus may narrow down the problem statement to
BP: How does the mathematical relate to the physical?

Solving the ‘Bridging Problem’ is paramount to understanding the ‘model-world
relation” featured in the discourse about scientific representation and adjacent
tields as the philosophical literature on computer simulations. As I will show,
attempting to answer the problem is not only central to many of today’s

philosophical debates but also besets the physical computation discourse.

B.2 The Problem of Implementation

Let me briefly remind us about the Problem of Implementation (which I already
presented more formally in Chapter 2) by describing it in general terms.
Subsequently, I introduce the approaches that emerged from trying to solve the
issue and argue that all the leading contenders (mapping accounts, semantic
accounts, mechanistic accounts) are descendants of the so-called simple mapping
account (SMA). This result will be key for framing computational
implementation in terms of the BP.

B.2.1 The Main Rationale

Computation is methodologically divided (Curtis-Trudel 2022). On the one hand,
we may study computation in the abstract realm of logico-mathematical
formalism like Turing Machines (TM), recursive functions, etc. In general, such
computational formalisms are definable in a large variety of ways. In Chapter 2,
I explained that the computer science literature’s two main kinds of
computational formalisms are (i) programming languages and (ii) abstract
machine models. Following my earlier convention, I use the term ‘model of
computation” Mc for both. To put a long story short, such models of computation

are logico-mathematical formalisms that encode an abstract sequence of

184 The particular name ‘Bridging Problem” was coined by Contessa (2010b).
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computations through a programming language, a machine table, a transition
function, and so on.

On the other hand, computations take place in the real world. While the
formal theory of computation is a well-established branch of
mathematics/theoretical computer science, developing an account that specifies
when a physical system implements computations proves challenging. Even
though many models of computation allude to a machine metaphor, these
theoretical models are divorced from the ongoings in real-world devices, i.e.,
they do not tell us which real-world systems perform which computations. What
makes an abstract Mc stand in relation to genuine physical computing systems -
and not to other systems like rocks or hurricanes - is an open question and is
commonly referred to as the Problem of Implementation.

Roughly put, the common idea of solving the issue is by alluding to a special
kind of correspondence or mapping that bridges the gap between abstract
computational and physical states. As we have seen, translating this seemingly
simple idea into formal terms resulted in the Simple Mapping Account (SMA)
(see Chapter 2, sect. §2.3). However, many philosophers have claimed that under
the regime of the SMA implementing physical computation would be trivial since
virtually any physical computation turns out to implement computations. For
most philosophers, such unlimited pancomputationalism is unplausible.
Henceforth, the quest began for devising a theory of computational
implementation equipped with extensional adequacy concerning paradigmatic

computing systems (like computers and brains).

B.2.2 Further Refinements: The Physical Computation Landscape

Providing an answer to the Problem of Implementation - and thus developing
an account of physical computation - is paramount for such disciplines as the
foundation of computer science, Al, robotics, and cognitive science. Accordingly,
solving this issue has received considerable attention and brought forward a host
of accounts of physical computation (see Piccinini & Maley (2021) for an
overview). Although the resulting options purport to look like a wide range of
options on the surface, the physical computation landscape is somewhat
deceiving since all accounts are a species of the SMA. In what follows, I will
untangle this genealogy by analyzing the three most prominent candidate
solutions - extended mapping accounts, semantic accounts, and mechanistic
accounts. Mainly, I will show that, despite their different branding, these three
leading contenders still adhere to the SMA’s strategy of defining physical
computation as the relation between two relata (a model of computation and a

putative physical computing system).
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i. Extended mapping accounts

The threat of unlimited pancomputationalism/triviality arguments has raised
concerns about the limitations of the simple mapping account (SMA) in
distinguishing genuine from overly permissive mappings. So-called extended
mapping accounts (EMAs) seek to address this issue by a common strategy.
EMAs aim to filter out spurious mappings by using different forms of counter-
factual dependencies to differentiate between the abstract domain of model
computation and the physical domain (Chalmers (1995), Copeland (1996),
Scheutz (1999), Klein (2008)).185 For instance, Chalmers states

“A physical system implements a given computation when there exists a
grouping of physical states of the system into state-types and a one-to-one
mapping from formal states of the computation to physical state-types, such that
formal states related by an abstract state-transition relation are mapped onto
physical state-types related by a corresponding causal state-transition function.”
Chalmers (1995, 392; emphasis added)
This approach requires that the formal set-theoretic structure of Mc only maps to
the causal/counterfactual structure of a physical system P. Instead of merely
considering one execution trace, implementation occurs if counterfactual
computations are satisfied. However, importantly EMAs still maintain the
fundamental idea of SMA (i.e., a mapping between the abstract domain of the

model of computation and the physical domain).

ii. Semantic accounts

Historically, so-called semantic accounts emerged separately from the
considerations of the SMA and EMAs. Fodor’s slogan “There is no computation
without representation.” (Fodor 1975; Pylyshyn 1984), captures the essence of
semantic accounts. There are two common reasons for embracing semantic
accounts: First, the semantic account is consistent with the views of various brain
sciences and the Computational Theory of Mind, which suggests that cognition
relies on our brains performing computations (Rescorla 2020). Since brain states
are believed to have content and process information, computational states must
do the same. The semantic view turns this into a doctrine, and accordingly,
computational states must have ‘aboutness’ and carry external content or
meaning. Additionally, the computational states of our computing devices often
manipulate meaningful symbols.

185 This view is extrapolated from the causal, dispositional, and counterfactual views. Since on
most accounts of causality causal claims support counterfactuals, one may simply lump all
these different views together under the label of EMAs. See Piccinini (2015, Ch. 2) for a similar
line of reasoning.
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It is worth noting that simply having meaning attached to a physical state is
not sufficient for a theory of implementation. Otherwise, any random symbol
manipulation - like a dog chewing on a newspaper - could be seen as executing
computations (Milkowski 2013, 42). Therefore, for semantic accounts to be
extensionally adequate, they must incorporate some rule-following that typically
boils down to following the the EMAs’ specifications. This includes the mapping
between physical processes and abstract computational states, as well as the
ability of the mapping to support counterfactual state transitions.

The second important reason for embracing the semantic account is of more
recent origin. Shagrir (2020; 2022) refers to this as the master argument for the
semantic account. Accordingly, philosophers of computing like Shagrir (2001),
Sprevak (2010) have argued that semantic properties circumvent computational
indeterminacy. Philosophers often discuss the issue using the example of logical
duals such as AND- or OR-gates (e.g., Papayannopoulos et al. 2022). In cases
where more than one mapping between physical and logical structure is possible,
the SMA or an EMA alone cannot determine which computation is implemented.
Put simply the claim of the master argument goes that an EMA with a semantic
condition mounted on top does not suffer from this defect. Notably,

contemporary semantic accounts thus also rely on structural mappings.

iii. = Mechanistic accounts
Lastly, the mechanistic accounts result from espousing neo-mechanist
conceptions and applying them to computation. According to the ‘consensus

/i

conception,” “a mechanism for a phenomenon consists of entities and activities
in such a way that they are responsible for the phenomenon.”, (Illari and
Williamson 2012, 120). This view has been put into action by philosophers such
as Piccinini (2007; 2015), Milkowski (2013), Mollo (2018), and Dewhurst (2018)
when characterizing physical computing systems as (functional) mechanisms.
Piccinini’s influential account, for instance, states that physical computation
is the processing of vehicles by a teleo-functional mechanism according to
medium-independent rules (cf. Piccinini 2015, 120-21). The notion of teleological
function emphasizes that systems may only execute computations if it is their
function. ‘Function” here should be understood in the sense of aim or purpose
and not in the formal mathematical sense. Specifically, it is a computing system’s
function to manipulate vehicles following a rule, i.e., computing a mathematical
function mapping from inputs (and possibly internal states of P) to outputs
(Piccinini 2015, 121).18 The term ‘vehicle” denotes a variable or a state that can

186 Importantly, a rule that is mapping input to outputs should not be conflated with mapping f
between the abstract computational and physical domain, as depicted in Fig. 1. Rather, the
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take different values and change over time. This term is simply another
expression for what I previously referred to as grouped-together physical state(s)
(cf. quote by Chalmers). Moreover, since computational descriptions/the rules of
physical computing systems are abstract, they can define computation
independently of the media that implement them - they are ‘medium
independent.’

Upon first glance, the terminology and concepts used by computational
mechanists such as Piccinini to explain physical computation may seem different
from the SMA, EMA, and semantic accounts, which could lead to interpretative
difficulties. However, once familiar with the terminology, it becomes clear that
the mechanistic account also relies on the main idea underlying SMA. So, to
better understand how it works, let me break down Piccinini’s reasoning into

three steps:

1. Selection: To show how a concrete mechanism may perform computations
(say, of a TM), computational mechanists first need to find concrete
counterparts to the formal notions of a finite set of states g that are part of a
finite set of symbols 2 (Piccinini 2015, 127). In Piccinini’s account, the thus
selected concrete counterparts are called ‘digits.’

2. Labeling: Subsequently, “[o]nce microstates are grouped into digits, they
can be given abstract labels such as ‘0" and “1".” (Piccinini 2015, 128). The
purpose of the labeling operation is to prepare the mechanism’s concrete
components to align with the standard nomenclature of set
symbols/alphabet ~ of our Mc.

3. Imputation to a computational rule: Lastly, one may generalize the
previous step, such that “[g]iven their special functional characteristics,
digits can be labeled by letters and strings of digits by strings of letters. As a
consequence, the same formal operations and rules that define
mathematically defined computations over strings of letters can be used to
characterize concrete computations over strings of digits.”, (Piccinini 2015,
132). This imputation process to a computational rule is a crucial aspect of
understanding physical computation mechanistically, for it glues together

the abstract Mc with a concrete counterpart.

Digits (i.e., physical state types pi) have been labeled with symbols - presumably,
letters contained in the alphabet of the model of computation Mc of our choice -
so that the mathematical rule/function 6 can be used to characterize the concrete
computations performed by the system P. The labeling scheme thus establishes

mechanistic framework’s notion of rule can be understood as the transitions leading from one
computational state to another (the horizontal arrows in the top-span of the picture).

171



Appendix B: Why we should think of computational implementation as a three-place relation

a reference (builds a bridge) to a specific abstract model of
computation/computational formalism.

However, together steps 1 to 3 are just a different way of saying that physical
states correspond to computational states specified by a computational rule. In
other words, the correspondence established by the labeling process still boils
down to a mapping relation advocated by the SMA and its descendants. That is
why, despite the different terminology/emphasis, mechanistic accounts are
descendants of the SMA and also rely on mappings.

Taking stock of this section, we need to keep in mind that although many
physical computation accounts are conceptually much richer than the SMA (and
sometimes employ different terminology), they still depend on dyadic mappings
between a material system and mathematical structures defined by a model of
computation. Therefore, all the physical computation accounts discussed above
are outgrowths or extensions of the SMA rather than offering a conceptual
alternative wholesale. The result that virtually all theories of implementation
hinge on mappings is significant because it licenses us to transpose the insights
from the BP debate in the philosophy of applied mathematics to how we flesh
out computational implementation. In order to turn this conceptual borrowing
into a fruitful maneuver, we need to familiarize ourselves with the relevant
insights of BP.

B.3 Charting the landscape of the Bridging Problem’s Solutions

At the beginning of this Appendix, I briefly introduced the BP by stating that it
concerns the relation between mathematics and the physical world. However, 1
have yet to discuss how philosophers of applied mathematics have tried to make
sense of this relation. Hence, this section overviews today’s most widely
embraced answers. Although they may differ considerably on certain aspects,
they all maintain that epistemic agents are necessary for the solution. What is the
underlying reason for this commonality? I will start depicting the core idea (§3.1)
before canvassing the landscape of more fine-grained solutions (§3.2).

B.3.1 The Core Idea: The Mapping Account

With the advent of structuralism in the 20th century (e.g., Balzer et al. 1987),
potential solutions to BP, typically, started to follow a particular strategy: most
of the contemporary approaches (re)formulate the issue in terms of structures
and the relations between them. On this construal, there is a structural mapping

(i.e., a morphism) between the mathematical structure and parts of the physical
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world. Due to the central notion of mappings, Pincock (2004) dubbed this the
Mapping Account,18”

Mapping Account: The gap between the mathematical M and the physical P is
bridged by a structure-preserving mapping f: Sp—Sm between two corresponding
structures Sm and Sp.

The purported advantage of this view is that both ‘structure” S and ‘mapping’ f
are understood as precisely definable mathematical objects. To further
understand the merits and limitations of the Mapping Account, it is therefore
instructive to consider what philosophers of mathematics intend to convey by
these terms.

On the one hand, we can understand a mathematical structure as a composite
of a family of objects, nodes, or positions (in a domain D) and a set of relations R;
among them. This definition is widely accepted and has, for instance, been
discussed in works by Resnik (1997) and Shapiro (1997). Expressed more
formally, we can define S as S = (D, Ry, R,, ... ). Mappings between structures f:
Sp—Sm, on the other hand, may come in various flavors and can be understood
as an isomorphism (van Fraassen 1980; Suppes 2002), partial isomorphism (Da
Costa and French 2003) homomorphism, etc. between mathematical structures.
Although it is interesting to ponder the (dis)advantages of each option, the
crucial point for this chapter’s argument is how these mappings come about (and
not which one will be the preferred one in this or that scenario). Importantly, all
these mapping conceptions require the physical system to display a particular
structure to establish any math-world correspondence.

To give an brief example, we may state, for instance that two structures S =
(D, R{,R,,... Yand S* =(D*, Ri,R;,... ) are isomorphic iff there is a function f
from the domain D of S to the domain D* of S* that is total, one-one, and onto
and such that for any relation R; in S and R; in S* and for all x4, ...,x, in D,
R;(xq, oo, x) iff R (f (x1), ..., f (%)) (Pincock 2012, 27).

However, there is a fundamental problem with the mapping account: Physical
systems must have structures for morphisms to be well defined as
“[i]somorphism is a relation that holds between two structures and not between
a structure and a piece of the real world per se.” Frigg (2006, 55). The issue is that
physical systems are concrete entities existing in physical reality, not
mathematical structures. Recently, Vos (2022) aptly called this discrepancy the
ontological-mismatch problem. Claiming that a set-theoretic structure is

187 Interestingly, the Mapping Account bears a strikingly similar name to the Simple Mapping
Account (SMA) in the physical computation discourse- a happenstance (?) that already seems to
hint at a deeper connection.
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isomorphic to a physical object f: P—Suy, thus leads to committing a category
mistake. Without accounting for how a physical system P obtains a unique
structure Sp, the idea underlying the mapping account remains in jeopardy. What
is thus required to solve BP is an account of how physical systems obtain a unique
structure.

B.3.2 The Proposals on how Physical Systems obtain structure

In this section, I will review existing accounts and attempt to make sense of the
mapping account in light of the call for structure. As we will see, providing a
definitive answer is not easy to come by and I won’t try to solve this daunting
task myself. Instead, I will merely rule out the most implausible candidate
solutions and demonstrate that the remaining contenders are unified in their
advocacy for a three-place relation. Accordingly, they necessitate the stipulations

and descriptive practices to explain how physical systems obtain a structure Sp.

i. The world is fundamentally mathematical

One way to address the ontological mismatch problem is by arguing that it does
not actually exist. There are generally two approaches to this.18 Philosophers
who claim that the world is fundamentally mathematical adopt one of them.
Tegmark (2008), for instance, maintains his so-called Mathematical Universe
Hypothesis, according to which our physical worlds turns out to be an abstract
mathematical structure. If this were correct, the ontological mismatch would
seemingly dissolve.

However, as discussed by Nguyen and Frigg (2021, 5949f), whether or not the
world is fundamentally mathematical is irrelevant since we are more often than not
interested in the math-world relation beyond the fundamental level. So, even if
Tegmark’s account was correct at the fundamental level, it fails to address how
to identify structures at the non-fundamental level of, say, four apples on a table.

For all that, there is a related but less radical-sounding proposal that suggests
that the physical world somehow exhibits some unique structure S. The
seemingly intuitive idea that physical systems somehow just bear or instantiate

a unique structure is highly contentious for two reasons. First, there are multiple

188 Another way to respond to the ontological mismatch problem lies in the opposite spectrum
of the previous proposal: Nominalism. According to nominalists, mathematical objects,
relations, and structures either do not exist at all or at least do not exist as abstract objects
(Bueno 2020). As a result, there is no ontological mismatch (and hence no problem) because
there are no mathematical objects to begin with, or at least not the kind that would require
bridging across different ontological domains. As argued by Colyvan (2001) (see also Pincock
(2004, 139-140)), BP appears to be independent of any particular philosophy of mathematics.
Despite trying to do away with mathematical objects, nominalism faces the challenge of
explaining why using mathematics in scientific practice is so effective.

174



Appendix B: Why we should think of computational implementation as a three-place relation

ways of picking out a set of objects to form the domain of a structure of a system.
As Bueno & Colyvan (2011, 347) aptly remind us, “the world does not come
equipped with a set of objects (or nodes or positions)” that constitute a
domain. Second, even if we manage to establish the objects in D, the relations Ri
are not fixed, possibly yielding different structures. As Psillo’s aptly puts it,
“[...] the structure of a domain is a relative notion. It depends on, and varies with,
the properties and relations that characterize the domain. A domain has no
inherent structure unless some properties and relations are imposed on it. Or, two
classes A and B may be structured by relations R and R’ respectively in such a
way that they are isomorphic, but they R may be structured by relations Q and
Q’ in such a way that they are not isomorphic.” (Psillos 2006, 562)
These considerations - that there is not ‘the’ structure of a system are not new -
are often referred to as Newman’s Objection.18% According to this objection, the
mapping between a set-theoretic structure and a physical object might be
trivialized since the latter fails to display a unique or privileged structure. The
claim goes that one can always gerrymander the domain D and the relations R;
in such a way that they match an arbitrary structure S. For given there are enough
n basic objects xi,..., xy in the system (such that the cardinality of the
corresponding domain is sufficiently large), then “[...] a system of relations
between its members can be found having any assigned structure compatible
with the cardinal number of [S]”, (Newman 1928, 140), where S is an arbitrary
structure.1%0
To summarize, mathematical-universe-style proposals - according to which
the physical world boils down to mathematical structure - and adjacent realist
stances about unique structure-bearing systems do not adequately solve BP. In a
nutshell, scientists wishing to link a mathematical formalism with a concrete
system encounter significant underdetermination problems. That is why the
dyadic view fails. In order to generate a suited structure, we need to engage in
two tasks. First, we must specify the domain D of objects xi; second, we must
determine the relations Ri between these objects.

ii. Inferentialist proposal
Having recognized the challenges associated with a “pure structuralist’” solution,
Bueno & Colyvan (2011) put forth a proposal that amends the mapping account.
While their approach is still partially structural, it also accounts for practical and
context-sensitive factors when utilizing mathematics. Particularly, their

inferentialist conception of applied mathematics requires three steps:

189 See Ainsworth (2009) for a more in-depth problem analysis and potential answers.
19 Note that this is essentially what the SMA was criticized for by Copeland (1996).
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1. Immersion: Bueno and Colyvan’s first step in their process is called
immersion. It involves creating a connection between the real-world
scenario and a mathematical structure that is convenient to work with.

2. Derivation: The second step, derivation, involves deriving consequences
from the mathematical structure obtained in the immersion step.

3. Interpretation: The third step is referred to as interpretation. To establish
an interpretation, a mapping from the mathematical structure to the initial
empirical setup is necessary. N.b., this procedure goes in the opposite
direction of the immersion step, but the authors claim that this mapping
does not have to be simply the inverse of the mapping used in the
immersion step, though it may be in some cases. Using a mapping
different from the one used in the immersion steps is unproblematic as

long as the mappings in question are definable for appropriate domains.

The takeaway is that the inferentialist proposal is a mind-dependent notions

because it amends the original mapping account by alluding to epistemic agents.

iii. = Abstraction based proposal

According to the abstraction-based proposal, the required structure Sp is
generated through epistemic abstraction. Nguyen and Frigg (2021) formalized
this idea in their ‘extensional abstraction account.” Simply put, the idea is this:
Given a physical system P, one may obtain a unique structure through some
structure-generating description, a so-called extensional description. These
extensional descriptions can be created by hiding specific physical information
about P such that it no longer explicitly refers to physical magnitudes.

Expressed formally, epistemic agents must decide on a domain D and their
respective elements to generate a structure S of a physical object. Next, they need
to determine the relations between those elements. Once certain choices about
the elements in domain D and their relations Ri are agreed upon and held fixed,
the extensional description that is thus generated gives rise to a purely set-
theoretical structure Sp.

To render the idea less theoretical, it is helpful to consider an example from
Frigg (2006, 57-58), where he demonstrates how to generate a structure of a
methane molecule (CH4). To obtain a structure that aligns with our previous
definition, we need a domain D of objects and relations Ri that are abstracted
from the molecule. One way to obtain a structure is to ‘abstract away’ the physical
properties of the atoms and solely focus on the molecule’s shape. Since the four
hydrogen atoms of the molecule form a regular tetrahedron (with the carbon
atom in the center), it would be one choice to pick the edges as objects and the
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vertices as relations. This way, one obtains a unique structure with four objects
(the tetrahedron’s edges) and six relations (the connections between the edges).
Although the example is simple, it exemplifies a pattern of reasoning that
underlies all abstraction-based structure generation accounts. Worthy of mention
in this regard is that structure generation is parasitic on human agents making
certain choices about a suitable domain and its relations, typically informed by
our scientific practice. (we could have swapped the tetrahedron’s vertices and
edges with respect to objects and relations and thus obtained a different

structure).

In sum, my brief review has shown that there is a genuine philosophical
problem associated with the applicability of mathematics. As we have seen, the
critical issue of BP is the ontological mismatch between mathematical and
physical properties. Most recent accounts adhere to variants of structuralism to
bridge the gap between these different domains. However, since more than
‘pure’ structuralism is needed to solve the problem, various amended schemata
have been brought forward. They are all contingent on human activity and as
such, they are adherents of mind-dependent three-place views. As far as my
research has revealed, the broader implications of this three-place insight on
theories of computational implementation have not been previously explored. It

is now high time to bring the different results of the previous sections together.

B. 4 Synthesizing the Problems: A new perspective

Although the literature on physical computation has brought forward an
impressive number of contributions, the focus on the metaphysical nature of the
implementation relation has usually taken the backseat. To change that, I will
now propose a way to think about the issue more deeply from a newfangled
perspective. In particular, it will become evident that the Problem of
Implementation is a species of the BP. Given that employing computational
concepts thus falls under the broader practice of applying mathematics, we can
anticipate analogous rationales to apply in the realm of computation. 1!

To recap, since the methodology of computing is bifurcated, it faces the issue
of an ontological mismatch (the Problem of Implementation). In response,
today’s most prominent theories of implementation (SMA, EMA, semantic
accounts, mechanistic accounts) rest on the assumption that there is a mapping

between an empirical setup and some abstract logic-mathematical model of

191 Admittedly, one can already find traces of this reasoning (i.e., structuralism about physical
computation) in the literature (Milkowski 2011, 360), Rescorla (2013; 2014), Doherty & Dewhurst
(2022), Curtis-Trudel (2022). However, to the best of my knowledge, the conclusion to view
physical computation as a three-placed based on BP has not been drawn before based on this
framing; the current proposal thus goes beyond the proposals above.
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computation Mec. Similarly, albeit more globally, the philosophy of applied
mathematics also confronts an ontological mismatch - the BP. Here, the most
plausible proposals regarding BP likewise rest on the assumption that a mapping
constitutes the math-world relation. These parallels are not mere coincidences
but the result of a systematic relationship. Uncovering this conjunction requires
a closer look into the differences in the frameworks’ scopes.

Whereas proposals to solve BP are designed to be generally applicable,
solutions to the Problem of Implementation are limited to the applicability of
computability theory. Based on this comparison, we can deduce that the Problem
of Implementation is a specific instance of the Bridging problem. Accepting this
conclusion hinges on accepting that the implementation relation is a unique
species of the math-world relation. In fact, I have already discussed an instance
of this: As we have previously seen in section §2, we can understand TMs as bona
fide mathematical entities, defined as a four tuple TM = (Q, %, m, 6). Importantly,
how this mathematical /computational formalism applies to parts of the physical
realm is the same metaphysical problem of the ontological mismatch between the
mathematical and the physical, investigators like Steiner, Pincock, and others
have pointed out (cf. Sect. §B.1).

While both lines of research propose that the ontological mismatch can be
overcome by adhering to structure-preserving mappings, most solutions to the
Problem of Implementation typically do not further elucidate the metaphysical
nature of the mappings they employ.

It is here where my framing of the Problem of Implementation in terms of the
solutions of BP becomes a unique selling point because, in contrast, the literature
on the application of mathematics has thoroughly explored the metaphysical
commitments that are needed for a mapping view. We can thus enrich our
current understanding of computational implementation by appealing to the
insights of the philosophical literature on applied mathematics.

Although no solution to BP has emerged as the definitive one, they pull in the
same direction: All corresponding analyses share the idea that the mapping
relation is not a brute fact. Instead, the math-world relation necessitates a third
relatum - an agent responsible for establishing the mapping f and determining
which set-theoretic structures are supposed to be related. On this three-place
relation view, physical computation is thus a mind-dependent conception
because a system may only be computing due to human activity. The reason is
that, strictly speaking, the implementation relation is not reducible to f alone.
Despite being a necessary component, f is insufficient, for we also require at least
some minimal stipulations by an epistemic agent or community.
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While extended investigation is required to determine which solution(s)
is/are the correct one(s), I do not need to endorse any particular proposals for
enriching our wunderstanding of the metaphysical nature of physical
computation. The result that the BP’s most promising solutions reject dyadic
relations and instead advocate a three-place relation, is a novel and significant
contribution to today’s physical computation landscape. In sum, my four-step
argument thus leads to an upgraded view of computational implementation, as
shown in Fig. B.2.

& — @
® f f

;l\_
®— @

Fig. B.2: The upgraded view three-place view of computational implementation (cf.
nomenclature to standard view depicted in Fig. 2.1 in Chapter 2). Accordingly,
physical computation is not reducible to f as it necessitates an agential
component.

As such, the conclusion that computational implementation should be seen as a
three-place relation is a considerable advancement of the state of the art that may

ignite a hefty research program, inspiring further exploration and discovery in
the field.

B.5 Discussion and Conclusion

I argued that computational implementation is an instance of the more general
metaphysical problem of how mathematics applies to the physical world
(namely, the Bridging Problem). Based on a four-step argument, I have argued
that computing systems do not implement computations all by themselves but
that implementation should be thought of as a three-place relation. Having
introduced the BP as a metaphysical issue of applied mathematics (1), I argued
that the Problem of Implementation is of the same species (2). (3) Since most
contemporary solutions to the BP advocate for a three-place relation, solutions to
the Problem of Implementation should follow suit. Accordingly (4), the
designers’ or users’ intentions and descriptive practices are indispensable for
relating physical states to abstract computational states. The takeaway is that we

should couch computational implementation as a three-place relation.
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Now, why does the here-advocated “three-place result’ matter? Is all of this,
not mere pedantry? Several important lessons can be learned from subsuming
the Problem of Implementation under BP. First, if my reasoning above is correct,
the face of discussion about physical computation will have to change towards
focusing on the metaphysical nature of the implementation relation. (One may
add this criterion to the list of desiderata for a good theory of computational
implementation). Those who presume that computational implementation is a
one-to-one correspondence between physical states and the computational states
as described by its model must, in defense of their view, explain how this
correspondence comes about. Absent such an explanation, the claim that
computational implementation is a mind-independent phenomenon remains at
odds with today’s dominant solutions to BP on the market. The onus is thus on
the advocates of naturalizable accounts of physical computation to respond to
these tensions. Until such time, it would be wise to assume that computational
implementation is a mind-dependent three-place relation. This is a pressing
matter because naturalized accounts of computation are deemed essential for the
cognitive science project; if computational implementation is a three-place
relation, it cannot be the basis for cognition.

Second, I want to clarify that the viewpoint I defended should not be
misconstrued as support for overly liberal interpretational theories of
implementation. The sticking point has been that some interpretational accounts
claim that one can transform arbitrary objects into computers through mere
stipulation. However, we do not need to endorse such a conclusion. My
argument does not deny or negate that mind-independent requirements are
paramount for successful implementation. Here, it is worth noting to similar
conclusions in the literature of scientific representation, where philosophers
suggest that informational and functional theories are complementary (see e.g.,
Chakravartty 2010). For instance, computers are useful because of specific causal
regularities and counterfactual dependencies. What I contest is the notion that
the implementation relation can be wholly naturalized. If correct, this result has
potentially far-reaching consequences for our understanding of physical
computation.

Lastly (and related to the previous point), this line of research may pave the
way to foster synergies between the philosophical discourses on physical
computing and scientific models. Recall that philosophers of science have
successfully integrated the structuralist insights surrounding BP into
characterizations of model-world relations (viz., suggesting that it is a three-place
relation). Facing related problems holds the promise of similar solutions. For

instance, one promising line of future research could try to frame the
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implementation relation in terms of scientific representation accounts (see

Chapter 4 for such an account).
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Il s’agit d’un résumé d’environ 10 % de ma these, « Mind the Gap », qui explore
le statut ontologique des programmes informatiques. Les pages suivantes

résument la structure argumentative et les conclusions des chapitres de ma these.

Chapitre 1 - Introduction

L’introduction (chapitre 1) prépare le terrain en motivant le sujet, en fournissant
des préliminaires méthodologiques et en attirant 1’attention sur les obstacles
conceptuels potentiels. L’affirmation principale est que la notion de
« programme informatique » renvoie a de nombreuses choses liées et
(historiquement) instables - il s’agit d'un polyseme (un mot avec de multiples
significations liées). C’est pourquoi, en I’absence d"une caractérisation stable, les
études précédentes ont placé les programmes informatiques dans presque toutes
les catégories ontologiques disponibles. Afin d’éviter les erreurs précédentes, la
thése poursuit une stratégie indirecte : 'approche méthodologique principale
consiste a élucider les relations entre les différents éléments identifiés par le
terme « programme » dans le contexte de 1’ontologie la plus ‘modeste” et la plus
répandue sur le marché : la distinction abstrait-concret (un systeme a deux
catégories). Plus concretement, la these vise a élucider ce qui peut étre placé dans

le systéme a deux catégories et comment les entités qui s’y trouvent sont liées.

1.1 Prologue

Ma these commence par un scénario hypothétique basé sur des événements réels
et demande au lecteur d’imaginer qu’il est un jeune avocat spécialisé dans les
brevets au début des années 1970. Au cours des années précédentes, les
entreprises de logiciels sont apparues comme une industrie de plus en plus
puissante. Par la suite, les années 70 ont été le théatre d’une série de proces
novateurs concernant la protection juridique des « logiciels ». Les programmes
informatiques devaient-ils étre soumis au droit des brevets ou au droit d’auteur
? La question s’est avérée si délicate que le gouvernement américain a méme créé
une commission spéciale (CONTU) pour trancher le débat (Con Diaz 2019).
Cependant, méme apres quatre ans, les spécialistes ne sont pas parvenus a un
consensus. J’ai utilisé cet exemple partiellement fictif comme point de départ, car
ces questions juridiques sont sous-tendues par des questions

ontologiques/métaphysiques.
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1.2 Concrétisation du probléme : préliminaires et diagnostic

Dans la section §1.2. j'affine et je précise ma question de recherche initiale. En
particulier, je prends trois mesures pour planter le décor et clarifier le probleme
lié a mon sujet de recherche. Premierement, je discute de la pertinence globale de
cette entreprise pour les philosophes et les informaticiens. Deuxiémement et
troisiémement, j'explique les deux éléments constitutifs - 1'ontologie et les
programmes informatiques - qui définissent la question principale de la
recherche.

En ce qui concerne la pertinence, j’affirme que mon sujet de recherche est
important pour les raisons suivantes : d'une part, il y a une motivation
philosophique/métaphysique. A premiére vue, les programmes sont des entités
déroutantes qui semblent échapper aux caractérisations standard et qui peuvent
donc soulever des questions métaphysiques intéressantes. D’autre part, la
clarification de leur statut ontologique pourrait avoir des conséquences pour
I'informatique (les praticiens pourraient éviter des erreurs de catégorie).

En ce qui concerne l'ontologie, je partaique ce que des métaphysiciens
contemporains (anglophones) comme Fine (2017) et Hofweber (2016) appellent
la «métaphysique traditionnelle ». Notamment, je distingue les questions
ontologiques primaires (POQ) et les questions ontologiques secondaires (SOQ),
c'est-a-dire,

(POQ) : L’ontologie pose la question de ce qui existe.
(SOQ) : La métaphysique proprement dite étudie la nature de ce qui existe.

A la suite de ces considérations, nous devons spécifier un systéme de catégories
ontologiques (c’est-a-dire un systeme de classification structuré des types d’étres
qui devrait fournir un inventaire complet de ce qui existe). L’avantage d'un
systeme préconcu est qu’il nous permet de porter des jugements métaphysiques
cohérents sur toutes les sortes d’entités sous I'examen de la SOQ. De méme, il
devient le motif central de la these de préciser 1’appartenance des programmes
informatiques a I'une des catégories du systéme.

Cependant, il existe plusieurs systemes ontologiques concurrents. Compte
tenu de cette diversité et de 1’absence de consensus, nous sommes confrontés au
probleme suivant

Probleme I : Sélection d’'un systéme de catégories approprié: approche
fragmentaire ou systématique ?

Enfin, en ce qui concerne le terme « programme informatique », il est essentiel

que nous ayons la méme signification que les autres participants au débat (sous
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peine de malentendus). Afin d’affiner le type d'entités désignées par le terme
« programme informatique », je me penche sur la Begriffgeschichte du terme. Le
mot « program » (ou « programme » en orthographe britannique) trouve ses
racines dans le mot grec mpoypagtv, composé de rpo (« avant » ou « pré ») et de
ypaguv (« écrire ») Grier (1996, 51). En tant que tel, le terme n’est pas né dans un
contexte informatique, mais a subi des transformations considérables tout au
long de l'histoire. De Mol & Bullynck (2021, 36) expliquent que le mot était
employé de maniere générique pour désigner une série planifiée d'actions ou
d'événements futurs. (Aujourd'hui, nous utilisons encore des expressions telles
que programmes de télévision, de théatre ou de radio).

Comme beaucoup d'autres premieres occurrences historiques, les premieres
occurrences de « programme » dans un contexte informatique sont
controversées. Toutefois, a partir des années 1950, I'informatique a évolué vers la
fiabilité, la production de masse et la normalisation, et les tentatives se sont
multipliées pour déterminer des pratiques normalisées et définir des termes de
base tels que « programme » dans des glossaires (De Mol & Bullynck 2022). Un
aspect qui allait de pair avec ce développement et cette professionnalisation
précoce du domaine était que la configuration des ordinateurs était de plus en
plus associée a des langages formels étroitement liés a la logique et a la
linguistique (Nofre et al. 2014).

Cependant, pour faire court, la caractérisation ne s’est jamais completement
stabilisée et il serait donc erroné de considérer les programmes comme de
simples textes ou entités linguistiques. En raison du pluralisme épistémique de
I'informatique, de nombreuses notions centrales de l'informatique présentent
une ambiguité sémantique surprenante. Plus précisément, le terme
« programme » est un polyséme qui, a I'instar d"une toile, recouvre plusieurs sens
différents (bien que liés). Le probleme est que nous devons concevoir une
stratégie qui empéche la confusion linguistique de s’insinuer dans notre enquéte
métaphysique, faute de quoi nous pourrions obtenir autant de réponses
potentielles sur le statut ontologique des programmes informatiques qu’il y a de

significations différentes cachées dans ce complexe polysémique.
Probléme II : déméler I'écheveau polysémique du terme « programme ».
1.3 Les idées directrices du projet
Ma stratégie pour répondre aux problemes I et II est de me concentrer

explicitement sur les relations entre toutes les relata ontologiquement différentes

qui se cachent derriere ce réseau polysémique. Pour clarifier, les relations dont je
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parle sont celles qui sont apparues dans mon analyse précédente et dans la revue
de la littérature, celles qui sont considérées comme responsables de la dualité/du
pluralisme présumé des programmes : D’une part, il y a le domaine des objets
abstraits, formels et mathématiques. D’autre part, il y a le domaine du physique,
des systémes concrets, des événements et des processus qui se déroulent dans
'espace et le temps.

Plus précisément, je pense que la notion de I'implémentation est essentielle
pour comprendre comment ces entités se connectent. Lorsque je parle de
« 'implémentation », je me réfere (dans un premier temps) a la relation entre
différents domaines informatiques. En outre, ma these soutient que les agents
jouent un role essentiel dans la médiation de I'implémentation. Je développerai
ces deux idées en détail dans les chapitres suivants, mais voici un graphique

décrivant la situation pour en saisir 1'essentiel (Fig. C.1).

.
LA

Fig. C.1: Représentation schématique de I'idée directrice de cette these.

Chapitre 2 - Vers une théorie unifiée de I'implémentation

Le chapitre 2 identifie « 'implémentation » comme le candidat le plus prometteur
pour considérer la relation entre les éléments du programme et s'en sert comme
motivation pour étudier les différentes notions disponibles. En résumé, le
chapitre esquisse un cadre unificateur qui intégre deux approches jusqu’ici
traitées de maniere largement indépendante : le type-(A), qui traite de la notion
de correction par l'attribution de fonctions téléologiques a des « artefacts
informatiques » a différents niveaux d’abstraction (LoA) ; et le type-(B), qui
s’attache a combler la dichotomie abstrait/concret pour rendre compte de
l'informatique concrete. Bien que je montre que leur champ d’application se
chevauche au niveau de linterface abstrait-physique, peu de recherches
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systématiques ont été menées sur leur relation. Compte tenu des
développements récents dans les discours respectifs, je soutiens que les deux
comptes peuvent s’enrichir mutuellement de maniére considérable en s"unifiant.
Plus précisément, je soutiens que (A) et (B) peuvent étre unifiés en les mettant en
relation avec la machinerie conceptuelle des modeles matériels et de la
représentation scientifique. Dans cette optique, les agents utilisent des systémes
informatiques putatifs comme outils épistémiques en leur imputant des fonctions
mathématiques et en leur attribuant des fonctions téléologiques.

Voici comment cette entreprise se déroule en détail : Aprés avoir formulé
quelques remarques générales sur l'implémentation dans l'introduction du
chapitre (2.1.), je donne plus de détails sur l'utilisation de la notion en
informatique dans la section 2.2. En particulier, pour avoir une compréhension
commune de cette relation d"implémentation, il est instructif de nous rappeler les
formalismes informatiques. Bien qu’ils puissent étre définis d'une grande variété
de facons, la littérature informatique présente généralement deux facons

principales de présenter les formalismes informatiques (Turner 2018, 190) :
1. Langages de programmation, tels que C, Python, etc.

2. Modeles de machines, comme les machines de Turing (TM), les machines a
états finis (FSM), etc.

Tout au long de la these, j’utilise le terme « modele de calcul » pour les deux. Les
modeles de calcul sont des formalismes logico-mathématiques qui nous
permettent d’encoder une séquence abstraite de calculs par le biais d"un langage
de programmation, d'une table de machine, d’une fonction de transition, etc. Par
exemple, formellement, le concept de machine de Turing peut étre caractérisé
comme un quadruple TM = (Q, Z, m, 0), ot Q est un ensemble fini d"états g ; = est
un ensemble fini de symboles ; m est I'état initial m € Q ; 6 est une fonction de
transition qui détermine le prochain mouvement 6 : (Q x 2)—(Z X{L,R}* Q). La
fonction de transition ¢ de la TM permet de passer d'états de calcul a des états de
calcul (De Mol 2021). En d’autres termes, les fonctions de transition comme 0, les
programmes informatiques écrits dans un langage de programmation, ou toute
autre notion correspondante dans un Mc théoriquement équivalent, permettent
I'encodage d’une séquence de calculs. Pour qu'un systéme calcule, il doit mettre
en oeuvre une séquence de calculs codée dans un programme/une fonction de
transition spécifié(e) par un Mc donné. En pratique, les formalismes de calcul
sont souvent intégrés dans une hiérarchie de calcul spéciale composée de ce que
I'on appelle des niveaux d’abstraction (« Levels of Abstraction » ; LoA) (Floridi
2008 ; Primiero 2020). En conséquence, l'application de l'implémentation en

informatique est trés variée. Des exemples sont «l'implémentation d'un
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algorithme dans un langage de programmation de haut niveau» ou
« I'implémentation d'instructions de code machine dans un ordinateur du monde
réel ». Parler de différents « level » est une pratique courante dans les sciences du
comptage.

Historiquement, cependant, deux notions de l'implémentation largement
séparées ont été développées afin de préciser les exigences relatives a la
connexion de ces différents types de niveaux : Pour faciliter la discussion, je les
ai appelées I'implémentation de type (A) et I'implémentation de type (B). Il est
surprenant de constater que ces deux approches ne sont pas en contact étroit
I'une avec l'autre. Dans ce qui suit, je discute des détails de ces deux types

d’implémentation.

2.3 Type-A
En ce qui concerne l'implémentation de type (A), on peut identifier trois

approches différentes : La premiere est due a Rapaport (1999, 2005)

Implémentation en tant qu’interprétation sémantique : Un objet est une
implémentation d’un domaine syntaxique A dans un support M s’il est une

interprétation sémantique d’'un modele de A,

Rapaport présente I'implémentation comme une interprétation sémantique. Son
récit a été critiqué parce qu’il tenait la sémantique pour acquise. Turner (2018) a

développé la seconde notion et a suggéré de considérer la conception suivante :

L'implémentation en tant que relation fonction-structure : La relation

entre la spécification (fonction) et la structure de I'artefact (informatique).
Enfin, Primiero (2020) a lui suggéré I'acception suivante :

L’implémentation en tant que relation de LoA : Une I'implémentation I
est une relation d’instanciation entre des paires composées d’une
construction épistémologique E et d'un domaine ontologique O d'un
artefact informatique.

2.4 Type -B

L’implémentation de type (B) est caractérisée par le probleme de l'implémentation.
Des philosophes comme Sprevak (2018) et Ritchie & Piccinini (2018) soutiennent
que deux sous-problemes, a savoir le probleme de l'implémentation et le

probléme de l'application, sont a I’origine de I'implémentation.
COMP Conditions de calcul d"un systeme physique.

IDENT Conditions qui spécifient qu'un systeme de calcul implément un

calcul plutét qu'un autre.
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doivent étre abordés pour répondre au probleme de I'implémentation. L'une des
premieéres catégories de comptes congues (par exemple, Putnam 1987) pour

résoudre ce probleme est aujourd’hui appelée « Simple Mapping Account ».

Simple Mapping Account (SMA)

1. II existe une correspondance f entre les états s; de Sc et les états mi de Mc,
telle que

2. Sous f, les transitions d'état physique de Sc sont morphiques aux
transitions d'état formel de Mc (spécifiées par 0) , de sorte que si Sc est

dans 1'état s1 ot f(s1)= 11, alors Sc évolue dans 1'état s2 ot f(s2 )=ms2 .

L’idée qui sous-tend le SMA est que les transitions d’état d'un MC doivent d'une
maniere ou d'une autre refléter la dynamique (transitions d'état physique) du
systeme matériel.

Bien que le SMA soit apparemment élégant et simple, il est largement admis
qu'il entralne des conséquences indésirables, généralement qualifiées
d'arquments de trivialité. En conséquence, le calcul physique serait banalisé
puisque chaque systeme implémente toutes sortes de calculs.

En réponse aux arguments de trivialité et d’indétermination
computationnelle, la plupart des comptes de l'implémentation de calcul
physique/type (B) ont modifié le SMA en introduisant des caractéristiques
supplémentaires pour traiter I'un ou l'autre, ou les deux, ainsi que ses

descendants (causal/dispositionnel/contrefactuel ; mécaniste).

2.5 Juxtaposition

Apres une analyse détaillée de la portée de I'implémentation des types (A) et (B),
nous pouvons conclure qu’ils ne s’excluent pas mutuellement. Il existe un point
de jonction dans (i) les systémes informatiques artificiels a (ii) "interface abstrait-
physique (voir Fig. C.2). Du point de vue du type-(A), les idées du type-(B) sont
pertinentes pour la mise en ceuvre de programmes informatiques a l'interface
abstrait-physique. A l'inverse, du point de vue du type-(B), les connaissances
contenues dans le discours du type-(A) offrent une image nuancée des systémes
artificiels et des préoccupations et pratiques des informaticiens en la matiere.
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Fig. C.2: Diagramme de Venn schématique de I'intersection
I'implémentation des types (A) et (B). Leurs domaines d’application se
chevauchent dans (i) les dispositifs informatiques artificiels et (ii)
l'interface abstraite-physique.

Cependant, malgré ce chevauchement, il n'y a eu, a ma connaissance, qu'un
échange limité entre ces deux domaines de recherche. Pour faire progresser notre
compréhension générale I'implémentation et en faire un effort de coopération,
juxtaposons les deux différents types des implémentations en ce qui concerne
leurs caractéristiques les plus saillantes : (i) la description téléologique des
fonctions et (ii) les correspondances entre les niveaux. En résumé, voici ce qu’il
faut retenir :

1. Téléologie : Il existe un décalage entre les hypotheéses qui sous-tendent
I"utilisation des fonctions téléologiques dans I'implémentation des types
(A) et (B).

2. Relation de correspondance : Différentes relations de correspondance
sont en jeu : d'une part, il existe des correspondances entre structures
abstraites et, d'autre part, une correspondance (au niveau de l'interface
abstrait-concret) entre une structure abstraite et un systéme physique.

2.6 UTAI

Pour remédier a cette situation, j’ai esquissé un nouveau cadre vers une théorie
unifiée de I'implémentation agentielle, en abrégé UTAI Une grande partie de ce
nouveau cadre est basée sur les idées théoriques de la littérature sur les modéles
scientifiques matériels. L'un des principaux principes de ce point de vue est qu’il
permet de surmonter les différences entre les implémentations de type (A) et (B)
en ce qui concerne leurs caractéristiques téléologiques et les relations de mise en
correspondance. En effet, le discours sur les modéles matériels a déja abordé avec
succes les questions relatives aux correspondances entre les structures abstraites
et les systemes physiques, ainsi que les cas ot les modeéles en tant qu’artefacts ne

fonctionnent pas correctement. La principale contribution de 1'UTAI est le
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développement d'une série d'études de cas clarificatrices qui suivent trois
relations de dépendance différentes :

1. La relation de dépendance (a) met 1'accent sur l'implication cruciale des
agents humains dans la LoA supérieure. En tant que telle, elle rend compte
des désirs, des intentions et des préoccupations pragmatiques des
programmeurs et de la maniére dont ils formulent leur probléme
informatique dans un formalisme informatique approprié.

2. La relation de dépendance (b) concerne le mappage f qui relie l'interface
abstraite et physique. L'implémentation peut avoir lieu lorsque les agents
proposent une description génératrice de structure (par exemple, par le
biais de la « dissimulation d'informations ») et un mappage approprié
reliant les domaines abstrait et concret.

3. Larelation de dépendance (c) caractérise les interactions physiques du ou des
agents humains avec le systeme informatique supposé. Idéalement, un
systeme informatique est non seulement suffisamment fiable pour des

exécutions répétées, mais aussi reconfigurable.

Chapitre 3 - Le probléme de la création rencontre les programmes

informatiques

3.1 Introduction

Selon un point de vue trés répandu, les programmes informatiques ne semblent
pas étre des objets concrets, mais nous les considérons généralement comme des
entités créées avec lesquelles il est possible d’interagir. Cela est quelque peu
surprenant puisque 1’orthodoxie philosophique considere que les objets abstraits
ne sont pas intégrés dans la voie causale et ne peuvent pas étre créés.12 Par

conséquent, un probleme philosophique pressant se profile a I'horizon :

En quoi ces programmes en tant qu'objets abstraits peuvent-ils étre les
produits de notre création ?

Malheureusement, cette question n’a pas regu toute l'attention qu’elle mérite
jusqu’a présent. A la lumiere de ce probleme, mon objectif dans ce chapitre est
d'indiquer plus précisément dans quel sens nous pouvons classer les
programmes informatiques en tant qu’objets abstraits. Pour ce faire, ma stratégie

192 Le point de vue métaphysique standard stipule que les objets abstraits existent éternellement
et ne peuvent pas étre créés. La plupart des philosophes congoivent la création comme une
relation de cause a effet entre le créateur et sa création. Cependant, les objets abstraits sont
inertes sur le plan causal et ne peuvent donc pas entrer dans une telle relation, de sorte que I’on
ne sait pas exactement quel type de processus implique la création d"un objet abstrait (Mag
Uidhir 2013, 11).
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consiste a adopter ce que l'on appelle le Problem of Creation (PoC) de la

philosophie de I'art a I'informatique.

3.2 Préparer le terrain

Avant de nous plonger dans les détails philosophiques essentiels du (PoC), je
souhaite apporter quelques clarifications initiales sur les programmes. Si les
programmes informatiques doivent étre le sujet du (PoC), nous devons avoir une
idée claire (i) de ce que I'on entend exactement par « programme », (ii) de la

maniére dont ils sont créés, et (iii) du sens dans lequel ils sont abstraits :

(i) Conformément a mes arguments sur la nature polysémique du terme dans
l'introduction de cette these (Ch. 1), je ne définirai pas les programmes ici. Au
lieu de cela, je m’appuierai uniquement sur ce que je considere comme un
exemple paradigmatique de programme informatique écrit dans un langage de
programmation de haut niveau, tel qu'illustré a la figure 3.1. Le code source est
écrit en C et, et le programme utilise un while-loop pour trouver le plus grand
diviseur commun (GCD) de deux entiers. Au lieu de s’appuyer sur une
caractérisation rigoureuse de fous les programmes informatiques, cet exemple me

servira de « laboratoire conceptuel » en temps voulu.

(ii) En général, I'histoire de la création des programmes se déroule comme suit :
Au départ, I'objectif est de créer un programme spécifique. Cependant, dans le
domaine de l'informatique, nous ne pouvons pas simplement transférer nos
désirs et nos intentions a nos ordinateurs. Nous devons d’abord les traduire dans
un formalisme informatique que la machine peut exécuter. Cela implique
généralement d’écrire le code source dans un langage de programmation de haut
niveau. Le processus de programmation comporte plusieurs étapes, est sujet aux
erreurs et est souvent laborieux. Pour ne pas perdre de vue notre objectif initial,
nous créons idéalement une spécification. Les spécifications servent de « plan »
pour la production de programmes informatiques a grande échelle, qu’ils soient
petits ou complexes. En d’autres termes, elles définissent ce que le programme
est censé faire (Primiero 2020, 208). Il est donc essentiel de comprendre les

spécifications pour comprendre le processus de création des programmes.

(iii) Pourquoi et en quoi les programmes peuvent-ils étre congus comme des
objets abstraits ? Pour répondre plus précisément a cette question, je les encadre
d’une maniere plus formelle. En philosophie de I'art, le probleme en jeu est
fréquemment discuté sous le nom de Physical Object Hypothesis (POH). Adapté de
Mag Uidhur (2013, 8, fn. 4), le raisonnement de la (POH) peut étre résumé comme
suit,
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Hypothése de 1’objet physique (POH) :
(POH): 11 existe des oeuvres d’art.
(POH)2 Les oeuvres d’art peuvent étre répétées ou non.
(POH)3 Les oeuvres d’art répétables ne peuvent étre interprétées de
maniere cohérente comme des oeuvres concretes.
(POH)4 Dong, s'il existe de tels types d’oeuvres d’art, ces oeuvres
d’art doivent étre des objets abstraits.
(POH)s 11 existe de telles oeuvres d’art.
(POH)s 11 existe donc des oeuvres d’art qui sont des objets abstraits.

Qu’entend-on exactement par « oeuvres d’art reproductibles » ? Comme le décrit
Levinson (1980), les philosophes débattent depuis longtemps de I'identité ou de
la nature des oeuvres d’art reproductibles (par exemple, la musique et la
littérature). Contrairement aux peintures et aux sculptures, ces oeuvres d’art ne
peuvent pas étre identififes de maniére plausible a wune copie
spécifique/individuelle. Non seulement elles peuvent survivre a des
changements de leur support matériel, mais elles peuvent aussi avoir été réalisées
avec des matériaux différents. Les oeuvres d’art répétables sont modalement
flexibles en ce qui concerne la matiére dont elles sont faites.

Par la suite, je soutiens qu'un raisonnement similaire s'applique aux
programmes. En philosophie de I'informatique, il est habituel de parler de multi-
réalisabilité. La « multiréalisabilité » est une notion influente dans la philosophie
de l'esprit (Bickle 2020) et est fréquemment employée dans le discours sur
I'informatique physique (Milkowski 2016). Dans le contexte du calcul, la
multiréalisabilité exprime 'idée que de nombreux systemes physiques distincts

peuvent mettre en oeuvre les mémes séquences de calcul.

3.3 Le probleme de la création

Le probleme de la création (PoC) est un probleme philosophique de la
philosophie de l'art qui concerne a l'origine les oeuvres littéraires, les
compositions musicales et les personnages de fiction (Deutsch 1991 ; Cameron
2008 ; Irmak 2020). Pour résumer, voici comment cela se présente : Lorsque
'entité examinée est appelée X, le modele de raisonnement du (PoC) prend la
forme suivante :

Le probleme de la création (PoC) :
X1: Les X sont des objets abstraits (POH).
X2 : Des X sont créés.

X3 : Les objets abstraits ne peuvent pas étre créés.
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A premiere vue, il y a de bonnes raisons d’accepter les propositions (X1)-(X3)
individuellement, car elles semblent toutes parfaitement fondées. Cependant, les
trois propositions sont mutuellement incohérentes. Ce paradoxe a suscité un débat
important pendant de nombreuses années, conduisant a la question de savoir
quelle proposition de (X1)-(X3) nous sommes préts a rejeter. En conséquence, trois

options majeures peuvent étre identifiées :

1. Platonisme
2. Nominalisme
3. Créationnisme

En résumé, chacune de ces trois positions résulte du rejet d’une des trois
propositions (X1)-(Xs) du (PoC). Je présente ci-apres chacune d’entre elles en

détail. Tres schématiquement, les différentes positions se résument a :

(1) Platonisme : Le platonisme est le point de vue qui postule I’existence d’objets
abstraits, c’est-a-dire d’entités non physiques et non mentales qui existent en
dehors de l'espace et du temps. Selon le platonisme contemporain, les objets
abstraits sont immuables et entiérement inertes sur le plan causal, c’est-a-dire
qu’ils ne peuvent pas interagir physiquement avec d’autres objets (Balaguer
2016).

(2) Nominalisme : Cette position métaphysique rejette la proposition (X1) en
soutenant qu'un objet abstrait candidat X n’existe pas ou s’avere ne pas étre
abstrait du tout. En tant que tel, le nominalisme se divise en deux points de vue

différents : le matérialisme et 1’éliminativisme.

(3) Le créationnisme abstrait : Ce point de vue soutient qu’il est possible de créer
des objets abstraits. En d’autres termes, le créationnisme adopte les points de vue

(X1) et (X2) tout en rejetant le point de vue (Xs).

Le résultat de mon analyse est qu’aucune des trois positions philosophiques
décrites précédemment n’est incohérente ou incohérente sur le plan interne -
chacune d’entre elles est un point de vue défendable. Cela dit, chaque position se
heurte a de sérieuses objections. L'examen de ces objections nécessite une
réflexion sur des énigmes métaphysiques plus larges et plus anciennes
concernant la causalité, la dichotomie abstrait-concret, la parcimonie
ontologique, la paraphrase, etc. La tache consiste maintenant a déterminer dans

quelle mesure ces questions s’appliquent au domaine de 'informatique.
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3.4 De l'art a l'informatique
Sur la base de mes premieres conclusions, japplique le (PoC) aux programmes
informatiques et j’examine les différentes options (1)-(3) en ce qui concerne les

programmes informatiques.

(1) Platonisme sur les programmes informatiques

Selon ce point de vue, les programmes sont des objets abstraits éternels que nous
découvrons. Il existe différentes raisons de souscrire a ce point de vue. Selon le
« point de vue indirect », on peut en venir a considérer les programmes comme
des objets platoniques parce qu'on est un platonicien mathématique et qu'on
pense que les programmes sont essentiellement des sortes d'objets
mathématiques. Selon le «point de vue direct», on peut penser que les
programmes sont des objets platoniques parce que 1’on souscrit a des positions

similaires concernant des entités linguistiques telles que les romans, etc.

(2) Nominalisme sur les programmes informatiques

Comme dans le cas général évoqué précédemment, on peut présenter le
nominalisme sur les programmes sous deux formes principales, 'une
éliminativiste et 'autre matérialiste. Cependant, jusqu’a présent, personne ne
semble avoir développé ces points de vue. En conséquence, j’esquisse brievement

certains des obstacles potentiels des deux positions.

(3)Le créationnisme en matiére de programmes informatiques
Considérer les programmes comme des artefacts (abstraits) a gagné en popularité
parmi les chercheurs a tendance philosophique ces dernieres années (Lando et
al. 2007 ; Faulkner & Runde 2010 ; Irmak 2013 ; Duncan 2014 ; Turner 2011 ; 2014
; 2018 ; Wang 2016 ; Sanfilippo 2021). Aujourd’hui, ces points de vue dominent
sans doute la littérature, bien que dispersée, sur le statut ontologique des
programmes informatiques. Deux conceptions populaires se distinguent.

D’une part, il y a le point de vue des artefacts informatiques (Lando et al. 2008
; Turner 2011 ; 2014 ; 2018). D’autre part, il y a le point de vue selon lequel les
programmes sont des abstractions temporelles, c’est-a-dire des artefacts abstraits
(Irmak 2013).

3.5 Conclusion

Le principal enseignement de mon application du (POC) aux programmes est
double. D’une part, du point de vue de la philosophie de l'informatique, mon
approche nous permet de sortir des sentiers battus de la recherche métaphysique

en informatique et d’offrir un nouvel angle de vue sur 1'ontologie des
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programmes. D’autre part, du point de vue de la métaphysique contemporaine,
mon approche oriente le débat sur le statut ontologique des programmes
informatiques vers un territoire philosophique plus établi. Elle montre
notamment que la nature abstraite des programmes ne nécessite pas la
postulation de solutions sui generis completes (par exemple, une «double
nature »), mais doit étre formulée selon 1’axe du platonisme, du nominalisme et
du créationnisme. Les recherches futures devront montrer si I'un d'entre eux

prendra le dessus.

Chapitre 4 - L'implémentation-as : De I'art et de la science a I'informatique

Le chapitre 4 porte sur la relation de dépendance entre les agents humains et
I'informatique physique. Ce faisant, ce chapitre présente une nouvelle approche
de la compréhension de l'informatique physique, appelée implementation-as.
D’une maniere générale, ma nouvelle approche est redevable a une nouvelle
ligne de recherche qui a proposé de formuler I'implémentation en termes de
représentation et de modélisation scientifiques. Bien que ce groupe de recherche
soit encore relativement dispersé, il differe des EMA traditionnels parce qu’il
soutient que la relation de mise en correspondance f doit explicitement étre
comprise comme une forme de représentation scientifique. Cette perspective
repose sur des considérations épistémologiques, métaphysiques et historiques.
Plus précisément, mon cadre s’appuie sur le compte DEKI (Frigg & Nguyen
2018), un compte formalisé de la représentation scientifique fondé sur la notion

de représentation en tant que de Goodman et Elgin.

4.2 Représentation scientifique et representation-as
Pour fournir le contexte nécessaire, je présente d’abord la notion de
représentation de Goodman et Elgin - comme dans la philosophie de I’art (sect.
§4.2). Dans leurs travaux sur la représentation et la modélisation scientifiques,
Frigg et Nguyen se sont approprié les notions de «dénotation», d’
« exemplification » et d’ « imputation » de Goodman et Elgin et les ont
introduites dans l'aréne scientifique. En s’appuyant sur la dénotation,
'exemplification et I'imputation, et en ajoutant une quatrieme exigence, qu’ils
appellent « keying up », leur compte DEKI est né (le nom est un acronyme pour
les quatre notions sur lesquelles il s’appuie).

Pour démontrer le bien-fondé du fonctionnement pratique de leur compte, ils
utilisent un exemple concret : le MONIAC. Le nom MONIAC signifie « Monetary
National Income Analog Computer » (au Royaume-Uni, la machine est

également connue sous le nom de « Philips-Newlyn machine »), et il s’agit d'un
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ordinateur hydraulique analogique a usage spécial utilisé pour représenter une
économie nationale.

Le MONIAC étant un cas limite entre un modele scientifique matériel et un
ordinateur analogique, il constitue une passerelle idéale pour établir un lien entre

la représentation scientifique et I'implémentation informatique.

4.3 De la science a l'informatique

Apres ces considérations préliminaires, je me concentre sur le calcul physique
(sect. §4.3). Ainsi, en utilisant les différents éléments du compte DEKI, je propose
une nouvelle approche du calcul physique qui utilise un concept concret de

représentation scientifique. Les résultats peuvent étre résumés comme suit :

Implementation-as
La paire ordonnée C=(X, I) est un dispositif de calcul, ott X est un systeme
matériel et I une interprétation. Soit P le formalisme/programme de calcul. C
implémente P en tant que Zc si toutes les conditions suivantes sont remplies :
(1) C désigne P.
(2) C exemplifie les propriétés Z1 ,...,Zn sous une interprétation I :X— Zc .
(3) C est accompagné d"un codage informatique associant 1’ensemble {Zj,...,
Zn} a un ensemble (éventuellement identique) de propriétés {Pi,..., Pm}.
E(Zij=(P})
(4) C attribue au moins une des propriétés P1,..., Pna P.

Le cadre qui en résulte est baptisé implementation-as, en reconnaissance de
'influence de la représentation-as de la philosophie de I'art et de la science. Cette
approche est méthodologiquement différente des précédents récits de calcul
physique formulés en termes génériques de représentation scientifique, comme
les L-machines (Ladyman 2009) ou la théorie A/R (Horsman et al. 2014), parce
qu’elle s"appuie sur une proposition de représentation scientifique spécifique.

4.4 Etude de cas : Machine IAS

En discutant des éléments de I'implementation-as, j ai suivi Frigg et Nguyen et j'ai
utilisé le MONIAC comme exemple de jouet. Cependant, pour démontrer I"utilité
du nouveau compte de l'implementation-as au-dela de I'informatique analogique,
je vais montrer comment l'appliquer au cas d'une machine informatique
numérique : la machine IAS (un ordinateur numérique a programme enregistré
qui a été construit entre la fin des années 1940 et le début des années 1950 a
Princeton, a I'Institute of Advanced Studies). Si, a premiére vue, ce dispositif peut
sembler un choix arbitraire, deux raisons principales en font une excellente étude
de cas : premierement, l'architecture de la machine a été tres influente ; il

N

s’agissait de I'un des premiers ordinateurs a programme stocké binaire, qui
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stockait les instructions et les données dans la méme mémoire. En tant que telle,
elle incarne les principes architecturaux de 1'architecture de von Neumann, qui est
encore couramment utilisée aujourd'hui. L'idée est que ce qui vaut pour cette
machine peut aussi valoir pour des machines similaires. Deuxiemement, bien
qu’elle posseéde toutes les caractéristiques principales des ordinateurs
numériques modernes, la machine IAS est moins complexe et plus facile a

analyser.

4.5 Discussion
Il est important de noter que mon analyse a montré que ce nouveau SRA
agentiel /interprétatif répondait aux criteres standards évoqués (Piccinini 2015,
Duwell 2021) :

Desiderata du calcul physique

(1) L'objectivité : La prise en compte du calcul physique doit permettre, au
moins en partie, de savoir si un systeme implémente une fonction de calcul.
(2) Adéquation extensionnelle : une description adéquate du calcul devrait
permettre de renvoyer correctement aux objets qui calculent sans inclure les
objets qui ne calculent pas.

(3) Explication : Les calculs effectués par un systeme matériel doivent, au
moins en partie, expliquer son comportement et ses capacités.

(4) Calculs erronés : Une conception du calcul doit permettre de rendre compte
des cas de calculs erronnés..

(5) Taxonomie : Une description de I'informatique doit permettre de déméler

les différentes capacités de calcul des différents systémes.

Pour faire court, I'implémentation est une bonne théorie de I'implémentation
informatique parce qu’elle répond aux criteres (1)-(6) de maniére adéquate.
Comment cette nouvelle théorie de I'implémentation informatique s’accorde-
t-elle avec les autres ? Bien que I'implémentation en tant que telle et les EMA
« traditionnels » partagent ces similitudes, il existe une différence essentielle
entre les deux. Les EMA traditionnelles partent du principe que la relation
d’implémentation est une relation a deux places entre des états physiques et des
états abstraits de calcul, obtenue de maniere naturaliste et indépendante de
I'esprit. En revanche, les SRA plaident généralement en faveur d’'une
interprétation de la mise en correspondance en vertu de la représentation
scientifique. Cet engagement est trés différent car de nombreuses options de
représentation scientifique sont des relations a trois places qui s’ obtiennent si 1'on
prend en compte les agents et leurs capacités intentionnelles. C’est la raison pour

laquelle de nombreux partisans de I'SRA ont soutenu qu’ils devaient étre congus

197



Appendix C : Synopsis détaillé en francais

comme une théorie agentielle de I'implémentation. Le cadre 1'implémentation-
as rend cela explicite, et je soutiens que son application réussie nécessite les
activités de dénotation, d’exemplification, d’encodage et d’imputation qui
dépendent de I'esprit.

Le compte sémantique restreint encore les EMA en exigeant que les états de
calcul soient toujours porteurs de sens ou de contenu sémantique. Dans une
section précédente (3.1), j’ai discuté du lien entre mon approche et les approaches
sémantiques. Les SRA et les comptes sémantiques soulignent tous deux
I'importance de la représentation dans le calcul. Cependant, il existe des
différences notables dans la maniere dont la représentation est utilisée et
comprise dans les deux cadres.

Dans le cadre de l'implémentation en tant que telle, la représentation
scientifique est utilisée pour combler le fossé entre les états de calcul abstraits et
les états physiques sans qu’il soit nécessaire de s’engager sur un contenu externe.
En général, les SRA n’ont qu'une exigence minimale en matiére de contenu : les
états physiques doivent simplement étre porteurs d’un contenu logico-
mathématique (du modele de calcul implémenté). Tout contenu sémantique
supplémentaire ou toute signification des véhicules de calcul n’est pas pertinent
pour l'application réussie des accords de reconnaissance mutuelle et donc de
I'implémentation. (Toutefois, l'utilisateur du dispositif informatique peut, si
nécessaire, attribuer un contenu sémantique ou une signification aux calculs). En
revanche, les comptes sémantiques utilisent la représentation dans un sens plus
large, ou les états informatiques peuvent représenter des états de fait externes.
Ce sens de la représentation est plus pertinent pour les sciences cognitives, qui
partent du principe que les états du cerveau sont représentatifs.

En ce qui concerne la relation entre les conceptions de l'implémentation-as et
les conceptions mécanistes, la question de leur lien est nuancée. Selon la version
mécaniste que 1'on choisit pour la comparaison, il y a différents degrés
d’engagements partagés. En général, les approaches mécanistes affirment que les
mécanismes fonctionnels sont au coeur de l'informatique ; les véhicules
informatiques doivent étre des composants d’'un mécanisme. Dans sa
formulation actuelle, le cadre implementation-as ne partage pas spécifiquement cet
engagement. Cependant, méme si les véhicules informatiques ne doivent pas
nécessairement faire partie d'un mécanisme pour une application réussie de
I'approche implementation-as, rien dans la formulation de mon compte n’exclut
que les systemes informatiques C=(X, I) ne puissent pas étre des mécanismes. En
fait, les deux cas discutés précédemment - le MONIAC et la machine IAS - sont

de véritables mécanismes. Les recherches futures devraient élucider si ce fait est
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accidentel ou si une combinaison des points de vue pourrait conduire a une
théorie encore plus robuste du calcul physique.

Chapitre 5 - Programmabilité physique
Ce chapitre concerne la relation de dépendance entre les programmeurs et les
systemes matériels utilisés pour l'exécution des programmes (relation de
dépendance (c)). A ce titre, il présente une nouvelle notion appelée
Programmabilité physique : Le degré auquel lactivité/fonction/
opération/phénomene sélectionné(e) sur un automate peut étre
reconfiguré(e) de maniere controlée.
Dans l'ensemble, les programmes concus par des agents humains peuvent
consister en un simple séquencage ou en des séquences tres complexes
d’opérations sur un support physique. Les opérations séquencées vont du son
(boites a musique) au calcul en passant par le tissage (métiers a tisser Jacquard).
Pour exécuter toute séquence d’opérations souhaitée, le systéme choisi doit étre
configuré de maniere appropriée, ce qui nécessite des interactions (physiques)
spécifiques : la machine doit étre programmable. Malheureusement, le discours
philosophique sur la programmabilité est peu abondant et largement sous-
développé.

5.1 Apercu critique de la programmabilité

Afin de développer une théorie adéquate, je commence (§5.1.) par passer en
revue les quelques approches existantes de la programmabilité dues a Conrad
(1988), Zenil (2010 ; 2012 ; 2013 ; 2014 ; 2015), Piccinini (2008 ; 2015), et Haigh &
Priestley (2018). Bien que je soutienne que chacune d’entre elles a ses propres
limites, il existe quelques points communs (voir le tableau C.1).

Sur la base de ces observations, je présente ma nouvelle alternative rigoureuse
(programmabilité physique). Ensuite, je me penche sur les détails des variables
contenues dans cette définition, a savoir (i) les automates matériels, (ii) les
opérations sélectionnées, (iii) la reconfiguration, et (iv) le degré de
programmation, et je les relie aux discours fondateurs établis dans la philosophie
des sciences.
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Conrad Zenil Piccinini Haigh &
Priestley
Type de systeme | Naturel et Naturel et Technique et | Technique
physique technique technique naturel ( ?)
Opérations Computation | Computation | Opérations Opérations
séquentielles | séquentielles

Mode de Instruction - Mécanique, -
reconfiguration Instructions

Efficace et Mesure Hard et soft -
Systéme de | structurel quantitative
classement (information

algorithmique)

Tableau C.1: Comparaison des différentes caractéristiques des comptes de

programmabilité présentés ici.

5.2 Automate matériel
Je suggere que le fait d’étre physiquement programmable se limite aux

« automates matériels ». On peut caractériser un automate comme

Automate : Systéme ayant la capacité d'exécuter une série d’opérations

prédéterminées (dans une certaine mesure) de maniéere autonome.

Il est important de ne pas confondre ces automates avec des entités logico-
mathématiques abstraites telles que les machines de Turing. Ces derniéres sont
de véritables objets mathématiques et ne sont pas sujettes a la programmabilité
physique. Les automates matériels sont plutot des artefacts techniques.

Les artefacts techniques sont des types particuliers d'artefacts qui se
caractérisent par leur « double nature » - constituée a la fois de caractéristiques
fonctionnelles dépendant de l'esprit et de caractéristiques structurelles
indépendantes de 1'esprit (cf. Baker 2006 ; Kroes & Meijers 2006 ; Kroes 2012 ;
Preston 2018, §2.3). La structure détermine ce qu’un artefact peut faire, tandis que
la fonction est ce pour quoi l'artefact est censé étre utilisé. En raison de cette
normativité, certains chercheurs (Vermaas & Houkes 2003 ; Houkes & Vermaas
2010) ont soutenu que les fonctions techniques nécessitent une intentionnalité. En
conséquence, un agent ou une communauté épistémique attribue
intentionnellement une fonction a un objet dans un but spécifique.

De ce point de vue théorique, les automates matériels peuvent étre considérés
comme des artefacts techniques parce qu’ils sont (i) des dispositifs créés
intentionnellement avec (ii) la capacité d'exécuter une séquence prédéterminée
d'opérations.
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5.3 Opération sélectionnée
Le fonctionnement sélectionné de ces automates matériels s’explique mieux par

le cadre néo-mécaniste et sa notion de

Mécanisme : « Le mécanisme d'un phénomene est constitué d’entités et
d’activités telles qu’elles sont responsables du phénomene. » (Illari et
Williamson 2012)
Généralement, le phénomene de niveau supérieur d"un mécanisme/systéme est
appelé W-ing de S, ou S désigne le systeme, et Y-ing le phénomene
correspondant. Les entités du mécanisme sont appelées X; et leurs activités sont
désignées par {¢1, ¢z, ..., du } (cf. Craver 2007 ; voir Fig. C.3).

En outre, on peut définir les mécanismes d’” « Input/Output » (Glennan 2017,
113-116 ; ci-aprés dénommés «I/O ») comme une sous-classe de la définition
générique des mécanismes. Selon Glennan, les mécanismes I/O sont des
systemes dont les actions ou les sorties réagissent aux entrées et peuvent étre
décrits par une relation fonctionnelle entre les variables d'entrée et de sortie
f(i)=0, ot i désigne les entrées, o les sorties et f leur relation fonctionnelle.

Un systéme S donné peut présenter plusieurs phénomenes a la fois. Lorsque
nous jugeons qu'un objet présente un certain degré de programmabilité, nous le
faisons généralement en ayant a l'esprit un seul phénomeéne spécifique (¥-ing).
La programmabilité physique n’a de sens que par rapport a des séries
d'opérations spécifiquement sélectionnées. Pour remédier a ce probléme, j'ai
ajouté la clause de « sélection » dans ma caractérisation de la programmabilité
physique. L’idée de la clause de sélection est de nous guider/informer dans le
processus de sélection des opérations de l'automate matériel et d’isoler un
phénomeéne spécifique, en fonction de l'intérét d'un individu ou d’une
communauté épistémique. N.b., en tant que telle, la clause de sélection va de pair
avec l'idée de restreindre 'applicabilité de la programmabilité physique aux

seuls automates matériels congus.

Fig. C.3 : Représentation schématique d"un mécanisme.
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5.4 Reconfiguré

Notre compréhension de la «reconfiguration controlée » est facilitée par les
théories de la causalité dites de manipulabilité ou d’agence, un sous-ensemble de
l'interventionnisme causal (cf. Woodward (2023) pour une étude). En bref, les
théories de la manipulabilité visent a élucider les structures causales par les

moyens suivants

« Difference Making » : C est une cause de E (I'effet) si la manipulation de

C de la bonne maniere affecte (fait une différence sur) E.

L’interventionnisme sous sa forme contemporaine (voir, par exemple,
(Woodward 2003) et (Pearl 2009) est né de la combinaison de caractéristiques
issues de la modélisation causale et des théories de la manipulabilité. La
principale réalisation de cette théorie a été de concevoir une notion formelle d’
« intervention » basée sur des modeles dits structurels, nous permettant de
représenter les relations causales (en science) a travers un cadre formel rigoureux.

En tant que telles, les idées de l'interventionnisme élucident la maniere dont
nous pouvons reconfigurer et controler les automates programmables du monde
réel. En nous appuyant sur ce cadre formel, nous pouvons expliquer la
programmabilité sans 1’anthropomorphisation typiquement évoquée des
ordinateurs («ils comprennent les instructions »). L’application de concepts
interventionnistes aux mécanismes d’I/O nous permet de comprendre comment
controdler les automates programmables. En particulier, je suggere que le controle
humain des machines programmables est rendu plausible par le critere dit de
« Manipulabilité Mutuelle » (MM).

5.5 Le degré de programmabilité d'un automate

En examinant divers exemples d’automates, j'ai montré que la programmabilité
physique est une notion graduelle et qu’elle existe a différents degrés.
Intuitivement, nous pouvons caractériser cette caractéristique comme la
variabilité du comportement potentiel du systéme. Certains chercheurs de
tendance historico-philosophique ont tenté de rassembler ce type de
considérations sur toutes sortes d’automates programmables dans un systéme de
classification théoriquement plus robuste (Brennecke 2000 ; Koetsier 2001 ;
D'Udekem Gevers 2013 ; et Copeland & Sommaruga 2021).

Que faut-il retenir de ces schémas de classification des automates
programmables du monde réel ? Ils classent tous les machines informatiques a
usage général comme étant celles qui présentent la plus grande programmabilité.
En d’autres termes, les ordinateurs a usage général - parfois appelés machines

universelles - sont censés étre capables implémente pratiquement toutes les
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fonctions calculables (telles que définies par la théorie de la calculabilité). En
d’autres termes, la classe des fonctions calculables agit comme une Iimite
supérieure d la séquence d’opérations qu'une machine informatique peut
effectuer. Si nous pouvons configurer une machine pour implémente toutes ces
fonctions, elle est entierement programmable ; les machines qui ne peuvent
implémenter qu’'un éventail plus restreint de fonctions sont donc moins

programmables. En résumé, ces considérations conduisent a la notion suivante

Le degré auquel : La quantité/part de '’ensemble des fonctions possibles
(au sens du mécanisme d’I/O f(i)=0) que le systeme peut implémenter.

5.6 Remarques finales et questions ouvertes

La conclusion clot mon chapitre en énongant les avantages de la
« programmabilité physique » et en énumérant les problemes en suspens. L'un
des principaux enseignements de ce nouveau concept est sa capacité a expliquer
la programmabilité sans faire appel a la métaphore du langage («I'ordinateur
comprend les instructions ») mais en termes d’interventions sur le mécanisme
d’I/O congu.

Les recherches futures pourraient porter sur deux problémes en suspens :
Premiérement, les questions relatives a la « manipulabilité mutuelle » (MM)
persistent (Couch (2011), Leuridan (2012), Romero (2015) et Késtner (2017)). Dans
la littérature contemporaine sur les mécanismes, il y a un débat permanent sur la
plausibilité de la MM parce que les interventions semblent étre maitrisées (c’est-
a-dire qu’elles font une différence dans le mécanisme et (au moins certaines) de
ses entités agissantes).

Deuxiéemement, jusqu'a présent, jai simplement discuté de 1la
programmabilité physique en relation avec des automates fonctionnant en
séquence et de maniere largement autonome. Cependant, en particulier en ce qui
concerne l'informatique, il existe d’autres modes d’opérations/paradigmes
importants (naturel, analogique et quantique). En outre, il serait intéressant de
clarifier la relation entre la programmabilité et les paradigmes informatiques
interactifs.

Chapitre 6 - Conclusion

Enfin, le chapitre 6 résume les principales conclusions de la these et fournit
des indications pour les recherches futures sur le sujet. En résumé, les points
a retenir sont les suivants : Le terme « programme » est un polyseme. Il
désigne donc des choses ontologiquement différentes. Dans cette theése, j'ai

fourni un cadre sur la facon dont ils sont liés : UTAI Selon cette notion, nous
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devons accorder une attention particuliere a trois problemes philosophiques :
le probleme de la création (qui détermine la nature abstraite des programmes)
; la question de savoir comment déterminer la programmabilité physique (qui
détermine l'aspect physique des choses) ; et le probléme de I'implémentation.

(qui traite de la maniere dont les programmes abstraits se rapportent a la

physique).

Annexe A - Vue d’ensemble de la chimere des programmes

A1 La vue physique

Je me réfere aux cadres qui préconisent une certaine forme de compréhension
physique des programmes en tant que vision physique. Afin de décortiquer les
notions regroupées sous 1'égide de la vision physique, il est utile de prendre en
compte une discussion plus approfondie de la métaphysique : la dualité entre les
continuités et les occurrences (voir, par exemple, Simons 2000). Cette division se
reflete également dans les différentes conceptions métaphysiques des
programmes en tant qu'entités physiques. En conséquence, je distingue la
physicalité des programmes en deux cas différents, a savoir une lecture statique
et une lecture dynamique.

D’une part, les programmes peuvent étre considérés comme faisant partie
d’une machine. Cette idée était peut-étre plus évidente lors de l'utilisation
d’ordinateurs de premiere génération comme 1'ENIAC, ou les réglages des
commutateurs étaient visibles/tangibles. La machine devait étre physiquement
configurée pour exécuter les opérations requises pour un calcul donné dans la
séquence correcte. D’autre part, il existe un point de vue trés répandu selon
lequel les programmes provoquent ou méme sont des sortes de processus du
monde réel (parfois appelé processus de programme). L’accent mis sur 'aspect
empirique des choses est, par exemple, largement discuté dans la littérature sur
la nature de l'informatique en tant que discipline.

A2 Le point de vue mathématique

Plusieurs personnalités influentes du monde de l'informatique, telles que
Dijkstra, Floyd, McCarthy, Naur et Wirth, pensaient que 1’adoption d’'une
approche mathématique et rigoureuse de la construction des programmes
pouvait améliorer la qualité des «logiciels » et de la programmation. Hoare a
exprimé une position extréme, suggérant que toute l'informatique pouvait se
résumer aux mathématiques. Selon lui, les ordinateurs fonctionnent comme des

machines mathématiques, les programmes informatiques sont des expressions
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mathématiques, les langages de programmation sont des théories

mathématiques et la programmation elle-méme est une activité mathématique.

A3 Le point de vue notationnel

Considérer les programmes comme des sortes de textes est un parasite pour
l"utilisation répandue des langages de programmation modernes. Selon ce point
de vue, les programmes sont constitués d"une séquence bien formée de symboles
écrits dans un langage de programmation. Cette vision souleve plusieurs
questions quant a la nature des langages de programmation et, par conséquent,
des programmes en tant que textes écrits dans un tel «langage ». Pour mieux
cerner la question, un bref apercu de I'évolution historique des langages de

programmation est fourni.

A4 Le point de vue de l'artefact

Dans notre vie quotidienne, nous sommes entourés et constamment confrontés a
des artefacts. Généralement, un artefact est défini comme un objet fabriqué ou
produit intentionnellement dans un but spécifique (Hilpinen 2017).
Intuitivement, de nombreux programmes informatiques semblent étre des
artefacts parce qu’ils sont des «créations de l'esprit ». En temps voulu, les
philosophes font souvent la distinction entre différents types d’artefacts. Deux
conceptions en particulier s’averent pertinentes pour classer les programmes
informatiques : les artefacts techniques et les artefacts abstraits. En termes
simples, les artefacts techniques sont des objets matériels congus
intentionnellement et caractérisés par une dualité fonction-structure. Les
artefacts abstraits sont des objets abstraits créés intentionnellement qui ne

peuvent étre identifiés par une instanciation unique.

A5 Le point de vue neuronal

Il existe une longue et riche tradition (philosophique) qui consiste a concevoir
I'esprit comme une machine (Boden 2006). Avec I'avenement des machines a
calculer électroniques, il n'a pas fallu longtemps pour que les idées sur
I'ordinateur et le cerveau s’enchevétrent mutuellement. Cela a faconné a la fois
la perception des types d’objets que sont les ordinateurs et les cerveaux, ce qui a
eu des conséquences sur la compréhension des programmes informatiques. En
conséquence, j'élucide comment nous pouvons considérer 1'ordinateur comme
un cerveau et, vice versa, comment nous pouvons considérer le cerveau comme

un ordinateur.
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A6 « State of the Art »
Dans cette section, je passe en revue les différents points de vue sur le statut
ontologique des programmes informatiques sur le marché.

Tout d’abord, je passe en revue 1'article classique de Moor (1978) dans lequel
il examine le point de vue de la double nature des programmes et propose des
raffinements linguistiques. Je procéde ensuite a une évaluation critique de la
proposition de Suber (1988) selon laquelle tout est un programme. Ensuite, je
discute de la proposition de Smith (1998) pour une révision métaphysique
complete. Apres quoi, je passe au crible les « abstractions concretes » de Colburn
(1999) (dans lesquelles il adopte le point de vue de la double nature). Puis, je fais
la lumiere sur l'article d'Eden et Turner (2007) dans lequel ils discutent de
certaines implications du point de vue de la double nature et proposent d'autres
raffinements linguistiques du terme « programme ». Lando et al. (2007)
proposent une autre fagon de clarifier les définitions et la double nature ; la
nouveauté de leur récit est 'appel aux ontologies formelles. Je décris ensuite
I'idée d'Irmak (2012) de considérer les programmes comme des artefacts
abstraits. Ceci est suivi par une breve analyse de Duncan (2014) dans laquelle il
tente de déméler la distinction logiciel/matériel par le biais d'ontologies
formelles. Je traite aussi des travaux de Wang et al. (2014a ; 2014b) et de Wang
(2016) qui développent une perspective d'ingénierie des exigences selon laquelle
les programmes sont des artefacts d’information abstraits. Ensuite, j'examine
minutieusement la notion de Turner (2011 ; 2014 ; 2018) selon laquelle les
programmes sont des artefacts informatiques. De plus, je mets en lumiére la these
de Geisse (2019) dans laquelle il fournit une perspective phénoménologique sur
les programmes. Enfin, je passe en revue la these de Primiero (2016 ; 2020) que

les programmes ont une ontologie stratifiée.

Annexe B - Pourquoi nous devrions considérer I'implémentation informatique
comme une relation a trois places

B.1 Probleme de liaison

L'une des questions centrales de la (philosophie des) mathématiques a été
I'applicabilité apparemment miraculeuse des mathématiques aux sciences
empiriques. Cette question, qui a captivé les chercheurs pendant des siecles, a
peut-étre été ravivée par Wigner (1960) lorsqu’il nous a mis au défi d’expliquer
"utilité remarquable des mathématiques dans la science. Compte tenu de sa
longue histoire, la question est connue sous de nombreux noms (par exemple, le
probleme de I'application) et peut comprendre plusieurs problemes différents

(bien que liés) sous le méme chapeau (Steiner 1998, Fillion 2012). Le probléeme
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particulier sur lequel je me concentre concerne 1'inadéquation ontologique entre

les mathématiques et le monde (ci-apreés dénommé « Bridging Problem » (BP)) :
BP : Quel est le lien entre les mathématiques et la physique ?

B.2 Le probléeme de I'implémentation

Le calcul est méthodologiquement divisé (Curtis-Trudel 2022). D’une part, nous
pouvons étudier le calcul dans le domaine abstrait du formalisme logico-
mathématique comme les machines de Turing (MT), les fonctions récursives, etc.
D'autre part, les calculs ont lieu dans le monde réel. Alors que la théorie formelle
du calcul est une branche bien établie des mathématiques et de l'informatique
théorique, l'élaboration d'un compte rendu précisant quand un systéme
physique implémente des calculs s’avere difficile. En termes simples, la question
de savoir comment relier ces deux domaines est appelée le probléeme de

'implémentation.

B.3 Tracer le paysage des solutions au « Bridging Problem »

L'idée centrale de toutes les solutions contemporaines est sans doute influencée
par le structuralisme : En raison de la notion centrale de cartographies
structurelles, Pincock (2004) a baptisé cette proposition « Mapping Account »
(compte de cartographie).

Mapping Account : Le fossé entre le M mathématique et le P physique est
comblé par un mappage préservant la structure f: Sp—Swm entre deux
structures correspondantes Su et Sp.

Cependant, le compte de correspondance pose un probleme fondamental :
Les systéemes physiques doivent avoir des structures pour que les morphismes
soient bien définis, car « le morphisme est une relation qui existe entre deux
structures et non entre une structure et un élément du monde réel en soi ». Frigg
(2006, 55). Le probleme est que les systemes physiques sont des entités concrétes
existant dans la réalité physique, et non des structures mathématiques. Ce qu’il
faut donc pour résoudre le probleme de la BP, c’est expliquer comment les
systemes physiques obtiennent une structure unique. Trois solutions principales
sont disponibles :

1. Le monde est fondamentalement mathématique (Tegmark 2008)

Cette idée est sujette a I'objection de Newman.

2. Proposition inférentialiste (Bueno & Colyvan 2011)

3. Proposition basée sur 1’abstraction. Nguyen et Frigg (2021) ont formalisé

cette idée dans leur « compte d'abstraction extensionnelle ».

En résumé, toutes ces propositions dépendent de I’activité humaine et, a ce titre,

sont des adeptes de la théorie des trois lieux dépendants de l'esprit.
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B.4 Synthése des problemes : Une nouvelle perspective

Bien que la littérature sur le calcul physique ait apporté un nombre
impressionnant de contributions, I'accent mis sur la nature métaphysique de la
relation de I'implémentation a généralement été relégué au second plan. Alors
que les propositions de résolution du BP sont congues pour étre généralement
applicables, les solutions au probleme de l'implémentation sont limitées a
l'applicabilité de la théorie de la calculabilité. Sur la base de cette comparaison,
nous pouvons déduire que le probleme de I'implémentation est une instance
spécifique du probleme du rapprochement.

Alors que les deux lignes de recherche proposent que le décalage ontologique
puisse étre surmonté en adhérant a des mappings préservant la structure, la
plupart des solutions au probleme de la mise en ceuvre n’élucident généralement
pas davantage la nature métaphysique des mappings qu’elles emploient. Bien
qu'aucune solution au probléme de la mise en ceuvre ne se soit imposée comme
définitive, elles vont dans le méme sens : Toutes les analyses correspondantes
partagent 1'idée que la relation de mise en correspondance n'est pas un fait brut.
Au lieu de cela, la relation des mathématiques au monde nécessite un troisieme
relatum - un agent responsable de I’établissement de la correspondance fet de la
détermination des structures de la théorie des ensembles qui sont censées étre
reliées. Selon ce point de vue de la relation a trois places, le calcul physique est
donc une conception dépendante de l'esprit, car un systeme ne peut calculer
qu’en raison de l'activité humaine.
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