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Abstract 
 

This thesis addresses the ontological status of computer programs. Previous 

studies have placed computer programs in almost every ontological category 

available and claimed that they have a ‘dual nature.’ My primary contribution to 

the debate is offering an alternative framework emphasizing computational 

implementation and its relata. I argue that we do not need to endorse the dual 

nature view by suggesting that ‘program’ is a polyseme – an umbrella term 

hosting various entities spanning the abstract-concrete dichotomy. The 

advantage of this view is the avoidance of positing metaphysically dubious 

entities. Instead, we can understand the ontology of programs as a network of 

relations between abstracta and concreta that we bundle together through 

implementation when using computing machines as epistemic tools. 

To flash out and explore the claims of this alternative view, I first delve into 

the philosophical literature on implementation and taxonomize its different 

notions. In due course, I offer a unified theory of agential implementation, short 

UTAI. Specifically, UTAI advocates developing a series of related clarificatory 

case studies that track three different dependency relations between us and the 

ontologically different constituents under the term program.  

Accordingly, I discuss the implications of the first dependency relation 

between programmers and programs as abstract objects. By adopting the 

Problem of Creation – a well-known issue from the philosophy of art – I present 

a fresh perspective on the metaphysical options that allow us to view programs 

as abstract entities. Next, I focus on the second dependency relation between 

human agents and physical computation. As a result, I provide a new argument 

for understanding computational implementation as a three-place relation and 

develop a suitable notion called Implementation-as (based on the DEKI account 

of scientific representation). Lastly, I address the third dependency relation 

between programmers and the material systems used for program execution. By 

combining the insights of interventionism, technical artifacts, and neo-

mechanistic literature, I introduce the notion of ‘physical programmability.’ 

 

Keywords: Computer Programs, Ontology, Problem of Creation, 

Implementation, Scientific Models, Programmability 
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Résumé 
 

Cette thèse examine le statut ontologique des programmes informatiques. De 

précédentes études ont placé les programmes informatiques dans presque toutes 

les catégories ontologiques disponibles et ont affirmé qu'ils avaient une « double 

nature ». Ma principale contribution au débat consiste à proposer un cadre 

alternatif mettant l’accent sur l’implémentation informatique et ses relata. Je 

soutiens qu’il n’est pas nécessaire d'approuver le point de vue de la double 

nature en suggérant que le terme « programme » est un polysème - un terme 

générique abritant diverses entités couvrant la dichotomie abstrait-concret. 

L’avantage de ce point de vue est qu’il évite de poser des entités 

métaphysiquement douteuses. Au lieu de cela, nous pouvons comprendre 

l’ontologie des programmes comme un réseau de relations entre abstracta et 

concreta que nous rassemblons par la mise en œuvre lorsque nous utilisons des 

machines informatiques comme outils épistémiques. 

Pour mettre en évidence et explorer les revendications de ce point de vue 

alternatif, je me plonge d’abord dans la littérature philosophique sur 

l'implémentation et je taxinomise ses différentes notions. En temps voulu, je 

propose une théorie unifiée de l’implémentation agentielle, l’UTAI. Plus 

précisément, l’UTAI préconise le développement d'une série d'études de cas 

clarificatrices connexes qui suivent trois relations de dépendance différentes 

entre nous et les constituants ontologiquement différents sous le terme de 

programme.  

En conséquence, je discute des implications de la première relation de 

dépendance entre les programmeurs et les programmes en tant qu’objets 

abstraits. En adoptant le problème de la création - une question bien connue de 

la philosophie de l’art - je présente une nouvelle perspective sur les options 

métaphysiques qui nous permettent de considérer les programmes comme des 

entités abstraites. Ensuite, je me concentre sur la seconde relation de dépendance 

entre les agents humains et l’informatique physique. En conséquence, je fournis 

un nouvel argument pour comprendre l’implémentation informatique comme 

une relation à trois places et je développe une notion appropriée appelée 

Implémentation-as (basée sur le compte DEKI de la représentation scientifique). 

Enfin, j’aborde la troisième relation de dépendance entre les programmeurs et les 

systèmes matériels utilisés pour l’exécution des programmes. En combinant les 

idées de l’interventionnisme, des artefacts techniques et de la littérature néo-

mécaniste, j’introduis la notion de « programmabilité physique ». 

Mots-clés: Programmes informatiques, le problème de la création, ontologie, 

implémentation, modèles scientifiques, programmabilité
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1 Introduction 
 

1.1 Prologue 

Imagine you are a young and curious intellectual property lawyer in the early 

1970s. It´s the midst of the Cold War. The iron curtain divides Europe; in previous 

years, Africa lived through a period of radical political change as some 30 

countries gained independence; and China went through a massive sociocultural 

movement. Paralleling these geopolitical events, there are significant 

technological advancements – with information technologies spearheading 

them. For you, the proliferation of new inventions is a blessing and secures your 

job. Put roughly, it is one of the main tasks of lawyers like you to classify new 

creations and inventions such as books, music, machines, and processes under 

your country’s IP law. In a nutshell, there are three different kinds of categories 

in which novel inventions like these must be placed: First, patents give inventors 

the property right to a tangible technical or scientific invention or process. 

Second, copyright claims are meant for the protection of an original expression 

of an idea in a creative work – literary, dramatic, musical, or artistic work, and 

movies (fixed in some tangible medium) typically fall under this scope. Third, if 

something falls out of the scope of the first two categories, it cannot be legally 

protected. Now, for a couple of years, you have received increasing requests to 

grant IP protection to computer programs and software. How would you classify 

them? What kind of things are programs?1 

Pondering these questions, you are eagerly awaiting the result of the US 

Supreme Court case of Gottschalk v. Benson (1972): the case is about the 

patentability of a system created by Gary Benson and Arthur Tabbot at Bell 

Telephone Laboratories that allowed the creation of a telephone network called 

a private branch exchange (PBX). Crucially, their method relied on a 

computational method that converted binary-coded decimal numerals into their 

binary equivalent. Finally, on November 20, the Supreme Court issued its ruling. 

The court proclaimed that Benson and Tabbot’s invention was ineligible for 

patent protection because it stands at odds with the mental-step doctrine. 2 

Traditionally, this doctrine has been used to reject those seeking patents for 

‘inventions’ like algorithms – and the PBX was judged to be precisely that.   

The decision irritates you. True, whilst one could ‘execute’ Benson and 

Tabbot’s method in one’s head, isn’t the whole point that their method triggers 

 
1 The game of make-believe is freely inspired by Gerardo Con Diaz’s (2019) book Software 
Rights.   
2 The mental-step doctrine holds that inventions that can be performed in the human mind or 
by a human using a pen and paper are not eligible for patent protection. 
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an automated physical process in an actual machine? Feeling somewhat uneasy 

with the Supreme Court’s ruling, you continue your quest and tinker around 

with a different classification strategy – the widely used software/hardware 

distinction. On the face of it, the duality of the latter intuitively seems to 

correspond to the copyright/patent dichotomy; you believe you’re onto 

something. If true, you just solved future legal cases worth billions of dollars. 

Case closed – you’re set for life. However, things are not that easy. With big 

money involved your case better ought to be watertight, else industry will drown 

you in endless legal battles. Scratching beyond the surface of your initial strategy, 

you start getting doubts: Are computer programs software? What is the 

software/hardware distinction actually supposed to demarcate from one 

another? And what the heck are programs exactly? 

In trying to answer these questions, you discover that your first classification 

strategy is in danger of serious conflations. First, it is all but clear that all 

computer programs can be considered as software. Doing your research about 

the emergence of computing technology, you find that some of the first programs 

(made before the appearance of the term ‘software’ and the emergence of 

‘computer science’ as a subject)3 were often portrayed as circuits of switches 

using relays or vacuum tubes: when setting up the first-generation electronic 

digital computers like ENIAC (devices that filled entire rooms) resulted in 

‘programs’ appearing to be tangible hardwired switch settings of machines 

intended to perform a specific task. In fact, this materiality allowed some of your 

colleagues to secure patent protection for programs developed at hardware 

companies and industrial research labs (Con Diaz 2019, 3). So, can you conclude 

that programs are indeed just physical entities that should be subject to patent 

law? Generalizing from cases like these that point towards the techno-material 

nature of programs seems to undermine the idea that programs are a type of 

software considerably – at least to the extent that software is taken to be opposed 

to hardware and hardware is supposed to be ‘hard,’ i.e., presumably made of 

concrete, tangible components. 

 So perhaps the crux lies with the software-hardware distinction itself. In fact, 

shortly after the time you started pondering these questions, philosophically 

inclined software engineer James Moor (1978) published his article ‘Three Myths 

of Computer Science’ that confirmed your worries: One of the takeaways from 

Moor’s article is that the software/hardware distinction is merely useful as a 

 
3 According to Shapiro (2000), influential statistician John Tukey coined the term ‘software’ in 
1958 in opposition to the term hardware (which was already in use). For further details on the 
changing meaning of the term see Haigh (2002). 
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pragmatic distinction and a relative notion. According to him, the prefixes ‘soft’ 

and ‘hard’ refer to a person’s ability to make changes:  

“At one extreme if at the factory a person who replaces circuits in the 
computer understands the activity as giving instructions, then for him a 
considerable portion of the computer may be software. For the systems 
programmer who programs the computer in machine language much of 
the circuitry will be hardware” (Moor 1978, 215) 

If this assessment is correct, then software could be a tangible good as long as 

it is changeable. Yet others (albeit later), arrived at the puzzling conclusion that 

software is hardware (Suber 1988) or that software doesn’t exist at all (Kittler 

1993).  (To avoid further conflations, I will avoid using the term ‘software’ in my 

analysis from here on).4 You are at a loss – all of this is so confusing! Not only are 

you unsure where programs fall into the software/hardware dichotomy; you 

don’t even know whether your choice was a good categorization scheme to begin 

with.  

Worse, the longer you think about the matter, the more conceptions of how to 

conceive programs pop up in your mind: Many programs are formulated in 

special kinds of languages like ALGOL or FORTRAN, so aren’t they some special 

kind of text?5 And where do mathematical abstraction and the algorithms from 

Gottschalk v Benson fit into this picture? Determining the nature of programs 

seems to be a tough nut to crack. What are the morals we can draw from this 

story?  

Let me pause here for a minute. Although the IP lawyer game of make-believe 

is entirely fabricated, the events and considerations described in this episode are 

not. From the mid-1960s onwards, the lack of IP protection for computer 

programs became a growing concern. With the incentive to protect these costly 

new inventions, the industry had a strong interest in settling the issue (in their 

favor). However, like our imaginary IP lawyer, courts having to decide how to 

legally protect software products struggled with determining its nature and 

characteristics. As Con Diaz describes, the legal debate (in the US) became a 

“doctrinal minefield” since no proposal for computer programs satisfied every 

stakeholder involved (2019, 6). Legal outcomes in favor of patents or copyrights 

hinged on whether the Patent Office and Courts judged programs to be 

machines, texts, or algorithms (ibid., 100). 

 
4 See Duncan (2014) for an extensive discussion (including the ‘implausibility’ of Moor’s and 
Suber’s arguments) on whether the software-hardware distinction can be maintained after all. 
5 In the US, the first deposit of a computer program for copyright registration of a program was 
in November 1961 (North American Aviation submitted a tape containing a program). Perhaps 
the first successful registration attempt was the FORTRAN program called ‘Gaze-2, A One-
Dimensional, Multigroup Neuron Diffusion Theory Code for the IBM-7090.’ Hollaar (2002, I.B.). 
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 In fact, in the mid-1970s matters became so pressing that US Congress 

installed a commission to settle the patent/copyright implications of information 

technologies. Consequently, 1974 saw the formation of the Commission on New 

Technological Uses of Copyrighted Works (CONTU). The commission was made 

up of experts from all different strives of life (yet remarkably lacking expertise in 

computing though) and took almost four years to submit their final report. 

CONTU eventually reached the unanimous decision that computer programs are 

entitled to legal protection, but alas “the unanimity has not extended to the 

precise form that protection should take.” (CONTU, 12). While ultimately settling 

with the recommendation that programs ought to be protectable under 

copyrights, (leading to the Computer Software Right Act in 1980), the outcome 

was controversial.  Noteworthy, the final report contained sections of dissent 

from one of its very own members: commissioners John Hersey.   

Hersey, Pulitzer Prize winner and president of the Author’s League of 

America stated that 

“[t]he heart of the argument lies in what flows from the distinction […] 
between the written and mechanical forms of computer programs: 
admitting these devices to copyright would mark the first time copyright 
had ever covered a means of communication, not with the human mind 
and senses, but with machines.” (CONTU, 28) 

In Con Diaz’s words, Hersey believed that computer programs thus had some 

kind of ‘hybrid nature,’ for they seem to combine written and mechanical 

elements at once.  

Even years after the implementation of CONTU’s recommendation, the 

outcome sparked remarkable dissent. Allen Newell, a pioneer in computer 

science and cognitive psychology complained that the models that the law 

experts came up with were broken. At the end of his critical essay, he concluded:  

“I think fixing the [ontological] models is an important intellectual task. It will be 
difficult. The concepts that are being jumbled together-methods, processes, 
mental steps, abstraction, algorithms, procedures, determinism- ramify 
throughout the social and economic fabric. I am not worried about how new and 
refurbished models, if we could get them, will get back into the law. They will 
migrate back by becoming part of legal arguments, or legislation or whatnot. 
There are many different paths. The task is to get the new models. There is a fertile 
field to be plowed here, to understand what models might work for the law. It is 
a job for lawyers and, importantly, theoretical computer scientists. It could also 
use some philosophers of computation, if we could ever grow some. It is not a job 

for a committee or a commission. It will require sustained intellectual labor.” 
(Newell 1986, 1035) 

In this dissertation, I take up Newell’s suggestion and set out to shed light on the 

puzzling nature of computer programs with a philosopher of computation’s hat 
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on. More precisely, I shall do away with the legal battles and instead address 

their underlying philosophical question  

Main Research Question: What is the ontological status of computer 

programs?  

 

1.2 Concretizing the Problem: Preliminaries & Diagnosis 

Before explaining the primary strategy and guiding idea of addressing my 

research question, I need to make a few refinements. In the following, I will take 

three steps to set the stage and clarify the problem related to my research topic. 

First, I will discuss the overall relevance of this undertaking for philosophers and 

computer scientists. Second and third, I will explain the two constituents - 

ontology and computer programs - that define the main research question. 

 

Relevancy Beyond Legal Controversies 

Given that the Chimera of computer programs has riddled lawyers, computer 

scientists, and (some) philosophers for more than 50 years, but there are no signs 

of stoppage for the success of computing, what’s the relevancy of this thesis 

project?  

Despite the awareness of the problem, the contemporary literature on the 

metaphysical nature of computer programs remains rather short-supplied. 

Concerning other ‘scientific’ disciplines like Physics or the Life Sciences, the 

Philosophy of Computer Science is comparably small-scale. This raises questions 

about why we need such an endeavor in the first place and why inquiries about 

the topic matter (besides legal issues). I believe there are two types of answers to 

this. 

On the one hand, there are answers justified from within philosophy. For 

philosophers, an entity that seems to evade standard metaphysical categorization 

is interesting. Just as metaphysicians pursue the study of what kind of things, 

say, artworks or technological artifacts are, 6  they might consider the non-

straightforward case of computer programs, too. Studying programs might 

unearth loopholes in given metaphysical frameworks and thus contribute to 

some philosophical progress (especially within ontology and metaphysics). 

On the other hand, properly characterizing computer programs has broader 

implications beyond metaphysical inquiries. Today, the application of computer 

programs is so pervasive that a clear understanding of their nature possibly 

benefits virtually every domain using them. For instance, computer programs are 

 
6 To briefly presage what’s to come, I will engage with both characterizations of artworks and 
technological artifacts to shed light on the nature of programs.  



1 Introduction 
 

6 
 

foundational for fields like AI, robotics, increasing ethical concerns, and (of 

course) computer science. Without a clear philosophical underpinning, such 

discourses are in danger of significant conflations and category mistakes (cf. 

Daylight 2016, 14-16).  

One of the most prominent of such category mistakes at large occurred 

roughly a decade after CONTU submitted its report and US Congress 

implemented its recommendations: In the early 1990s, a series of exchanges 

between the philosopher James Fetzer and several computer scientists in the 

prestigious Communication of the ACM unsettled many computing academics. At 

its core, the dispute concerned the verification of the correctness of computer 

programs. Commonly, correctness describes a special relationship between a 

program and its specification: a proof in (formal) program verification aims to 

verify that the program text (a set of instructions) matches the formal 

specification. Fetzer (1988) argued that the notion of ‘program proof’ suffers from 

a category mistake because it may only apply to idealized abstract machines but 

not real-world systems. Executing a program on the latter is a physical process 

that causally affects the behavior of material computing systems. A proof, 

however, is a concept that applies to the formal, abstract realms of logic and 

mathematics; it cannot establish the properties of a program as a causal entity 

running on a real, physical machine.7  

Considering the ferocity and prevalence of the debate, one may expect that 

the dispute sparked a research program to settle the underlying issue. Yet, 

despite the matter that there is a problem at stake, a systematic (philosophical) 

explanation describing how to solve it did not emerge. Merely a handful of pages 

in, we already encountered several potential conflations that obfuscate finding a 

straightforward answer to a seemingly simple question. Differing conceptions 

are still ‘jumbled together’ today, resulting in abounding conflations. To make a 

long story short, the state of the art is scattered so that computer programs are 

placed in nearly every available ontological category (see Appendix A).8   

In short, some believe that programs are physical objects or processes, while 

others view them as abstract logico-mathematical objects or special types of texts. 

Yet others argue that programs are technical or abstract artifacts, while others 

suggest that naturalized programs even constitute our minds. Despite the 

abundance of views, there is currently no consensus on the metaphysical nature 

of programs and how they should be classified.  The problem, as we have seen in 

 
7 For summaries and critical analyses of the debate see (Colburn 2000, 135; MacKenzie 2004, 
210-218; Tedre 2015, Ch.4). 
8 Since lengthy literature review sections are dull, I omitted many details for the sake of the 
readability of the introduction. For those interested in an extended overview of the state of the 
art, consult Appendix A.  
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the debates about the patentability, and verification of programs, is that it is easy 

to find counter-examples and inconsistencies such that no position seems to be 

plausible. Instead, adopting the ‘dual nature view’ or hybrid perspectives is 

popular, where programs have a plural or liminal nature. In the mid-1990s, 

renowned computer scientist Michael Jackson epitomized this approach by 

stating   

“Because software seems to be an intangible intellectual product we can colour it 
to suit our interests and prejudices. For some people the central product of 
software development is the computation evoked. For some it is the social 
consensus achieved in negotiating the specifications. For some it is a 
mathematical edifice of axioms and theorems. Some people have been pleased to 
have their programs described as logical poems. Some have advocated literate 

programming. Some see software as an expression of business policy.”  (Jackson 
1995, 283) 

I agree with Jackson that different communities and often even the same 

computer scientists, programmers, and users ‘encounter’ programs in all these 

guises in their practical work. However, per se, dualism or hybrid views do not 

dissolve the ontological question. The problem is, that without further 

explanation, these notions appear to be ad hoc answers that stand at odds with 

contemporary metaphysical orthodoxy.  

One crucial first aspect to rectify the situation is breaking down the criteria 

that will license us to draw metaphysically sound conclusions. The next sub-

section will clarify and narrow down these criteria. 

 

Traditional Metaphysics & Category Systems 

Ontology and Metaphysics address a wide range of questions (van Inwagen et 

al. 2023). Let me hence make more precise what this thesis is and is not about. 

The way I will conduct my metaphysical investigations are largely in line with 

contemporary analytical philosophy.  For instance, according to Hofweber (2016, 

8f), there are generally two main metaphysical questions – primary ontological 

questions (POQ) and secondary ontological questions (SOQ). Fine (2017, 98) echoes 

this characterization by maintaining that metaphysics can roughly be 

distinguished between Ontology and Metaphysics proper. Following Fine, I will 

keep referring to this practice as traditional metaphysics. By combining Hofweber’s 

and Fine’s position, something like the following picture emerges:  

(POQ): Ontology poses the question of what there is. 

(SOQ): Metaphysics proper investigates the nature of what there is.  

At first sight, it appears, that metaphysicians typically must explore what exists 

before enquiring into its nature. Ontology seemingly precedes Metaphysics 



1 Introduction 
 

8 
 

proper because what does not exist cannot be investigated philosophically in a 

meaningful way. 

Importantly, for the current undertaking the distinction between (POQ) 

ontology on the one hand and (SOQ) metaphysics proper on the other raises the 

following concern: Do we need to answer (POQ) about programs in the 

affirmative before we can proceed with (SOQ). In other words, we need to 

address the question ‘(POQ)Prog.: Are there computer programs?’ 

If the answer is ‘no,’ the issue would be settled straight away and there would 

be no point in continuing the nature of programs if they don’t exist. The broader 

implication would then ‘simply’ be that computer scientists (and lawyers) have 

it all wrong and that the collective idea about computing and how it shapes 

nearly every facet of our modern life is largely incorrect. If the answer is ‘yes’, 

then I can carry on with wondering what programs are like. 

Now, my strategy to tackle these issues with respect to computer programs is 

to answer with ‘yes, there are computer programs’ and directly proceed with the 

secondary ontological question of what they are like. Answering this way is not 

meant to say that there are no deep-rooted philosophical issues at stake. On the 

contrary, aiming to arrive at judgements about primary ontological questions 

(e.g., are there numbers? Are there universals? Are there really everyday-objects 

like tables and toaster?) is notoriously contentious in philosophy. However, this 

is simply not the place to resolve these longstanding issues. Neither do I endorse 

a specific well-founded framework that defends my answer against skeptical 

metaphysicians nor do I want to engage with the daunting task to develop such 

a framework.9 

However, for the success of this thesis project, there is another crucial issue 

we must reflect on: Specifying an ontological category system. Notwithstanding, 

developing or choosing a universal ontological classification scheme is 

challenging. The problem has its roots in Antiquity and persists until today – 

Aristotle’s Categories, a seminal work in this field, has influenced numerous 

philosophers, including Aquinas, Descartes, Spinoza, Leibniz, Locke, Berkeley, 

Hume, Kant, Hegel, Brentano, and Heidegger (Studtmann 2024). Although these 

 
9  For those not convinced by the way I bracket primary ontology questions, it might be 
appeasing to know that it is not completely unwonted to engage with metaphysics proper first. 
One might start determining what the object of inquiry would be like, if there is such thing, and 
then use the result to answer the primary question in the negative (Hofweber 2016, Ch. 1.3). 
Recently, Steven French (2020), for instance, followed this strategy and concluded that ‘there are 
no such thing as (scientific) theories’. While (spoiler) I won’t reach such drastic conclusions, I 
invite the skeptic to see my thesis under the conditional that programs exist – I believe the 
content of this dissertation is informative and can be understood nevertheless. Interestingly, to 
the best of my knowledge, the only source maintaining that programs don’t exist is Kittler 
(1993). 
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are only broad sketches, it is, not surprising that there is little agreement among 

philosophers on a more than two-thousand-year-old debate on what precisely an 

ontological category and a system thereof is. Despite enduring metaphysical 

controversies, I will from here on assume that an ontological category is a kind of 

being in which things might be claimed to exist (Lowe 2006, 20; cf. van Inwagen  

et al. 2023, §2.2 for a similar characterization). At least for the current purpose, 

this understanding of ‘category’ will be innocuous enough to proceed without 

major quarrels.  

Following this, an ontological category system is a structured classification 

scheme of kinds of beings that ought to provide a complete inventory of what 

exists. The advantage of a pre-conceived system is that it allows us to make 

consistent metaphysical judgments about all kinds of entities under the scrutiny 

of SOQ. By the same token, it becomes the thesis’ central motif to spell out the 

membership of computer programs in one of the systems’ categories. Notably, 

this view also clarifies what this thesis is not about – the identity criteria of 

programs. Typically, identity concerns are one of the central features of 

metaphysical discourse. One may think of well-known thought experiments like 

‘Lumpy’ or the ‘Ship of Theseus.’ Although I believe that this topic deserves more 

attention in some future research, I will, as much as possible, abstain from 

engaging with questions such as ‘When are two programs the same? Does a small 

change in one line of code create an entirely new program?’ and so on. 10  

Attempting to place the notion of computer programs in a category system can 

be treated independently of controversies of their identity. 

There is another problem worth considering though – not everyone subscribes 

to realism about category systems. Throughout the 20th century, many 

philosophers expressed their skepticism about the pursuit to find a 

fundamental/universal category system. In line with this thinking, it has become 

popular to engage in what Thomasson (1999, 116) has called a ‘piecemeal 

approach’, i.e., examining each purported type of entity separately and anew 

again. Anyhow, even if one thinks that this development is misguided, it is left 

open which category system should be the chosen one.  As per Lowe (2006, §1.3 

and §2; see also Thomasson (2022, §1.4)), there are various competing ontological 

systems available. Given this diversity and the lack of consensus, we encounter 

the following problem  

Problem I: Selecting an appropriate category system; piecemeal or systematic 

approach? 

 
10  See White (2004), Cardone (2021), and Angius& Primiero (2018; 2023) for some recent 
attempts.  
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Before moving on, I want to mention one more caveat. Recently, the term 

‘ontology’ has also gained popularity in computer and information science. In 

this context, ‘ontology’ has a different, rather descriptive connotation and can be 

understood as a taxonomy, i.e., a standardized framework that provides a set of 

terms for consistent data description and annotation across different research 

communities. Put differently, what distinguishes these ontologies from the 

category systems in the metaphysical tradition is that they do not set out to 

provide a fundamental category of being. Nevertheless, the resulting ontologies 

have significant practical benefits, as they promote consistency in data 

description and facilitate communication across disciplinary boundaries 

(interoperability). Examples include ‘Gene Ontology,’ ‘Infectious Disease 

Ontology,’ ‘Plant Ontology,’ and others (Arp et al. 2015, xxi).  

A collaborative effort between philosophers, computer scientists, and 

information scientists has created globally applicable ontologies across different 

domains to keep up with these developments. Notable examples of this 

interdisciplinary work are the Basic Formal Ontology (BFO; (Arp et al. 2015)) and 

the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE; 

(Gangemi et al. 2002)). I mention this development to steer away from potential 

misunderstandings since this thesis deals with computer science broadly 

construed, i.e., a field where these types of ontologies find widespread 

application. Testimony to this is the information-scientific flavored approaches 

that have also been applied to study the nature of computer programs (, Lando 

et al. 2007, Duncan 2014, Wang et al. 2014a, Wang et al. 2014b). 

 

What’s in a name?  

When engaging in ‘computer program’-talk, we should try to mean the same as 

the other participants in the debate, or miscommunication will occur. One helpful 

method to get a grip on the matter is by elucidating the term’s etymology: The 

word ‘program’ (or ‘programme’ in British spelling) has its roots in the Greek 

word προγραφιν, consisting of προ (‘before,’ or ‘pre’) and γραφιν (‘to write’) 

Grier (1996, 51). As such, it did not originate in a computing context but 

underwent considerable transformations throughout history.  De Mol & Bullynck 

(2021) explain that the word was generically employed to refer to a planned series 

of future actions or events. We still find common examples such as TV or radio 

programs, political programs, research programs, or training programs that are 

virtually used in the same vein today. Parallel to the description of a sequence of 

scheduled events in everyday life, the meaning of ‘program’ shifted in multiple 

engineering contexts where it began to designate different technological aspects. 

For instance, in the 19th century, so-called ‘program clocks’ were used to 
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automate time schedules in work environments or schools. In radio engineering, 

‘program’ was also used to denote the electronic signals used to broadcast TV 

and radio programs at least from the 1920s onwards (Grier).  

Like many other ‘historical firsts,’ the first instances of the name ‘program’ in 

a computing context are contentious. While some locate the origin within the 

ENIAC project (Grier 1996; Haigh & Priestley 2016), others identified other 

calculating machines of the late 1930s and early 1940s (e.g., the IBM 

ASCC/Harvard Mark I) to be already entangled with the term (De Mol & 

Bullynck 2021). Either way, the methods to plan sequences of computations for 

the automatic control of computing devices frequently relied on prior established 

technologies, like e.g., punched cards used for Jacquard looms and desk 

calculators. In this context, the term originally referred to a great variety of 

activities, designating how automatic control of computers could be organized 

on different scales.  

From the 1950s onwards computing developed towards reliability, mass 

production, and standardization, and there were increasing attempts to 

determine common practices and define basic terms like ‘program’ in glossaries 

(De Mol & Bullynck 2022). One aspect that went hand in hand with this 

development/early professionalization of the field was that the configuration of 

computers became increasingly associated with formal languages closely related 

to logic and linguistics (Nofre et al. 2014). Roughly put, the development of new 

programming languages was gradually more detached from the details of 

specific machines. The ensuing language metaphor enabled one to regard 

programs as notations, strings of symbols, or special texts that could be studied 

and reasoned about independently of the underlying circuit settings. As Vee 

(2013) describes, for instance, this resulted in comparing programming to the 

notion of ‘literacy’, emphasizing the importance, flexibility, and power of writing 

with and for computers.  

However, the characterization never fully stabilized and it would hence be a 

mistake to simply consider programs as mere texts or linguistic entities. The 

reason for that instability is that from the dawn of computing, the discipline’s 

nature has been a matter of great concern. As many commentators have noted, 

computer science draws knowledge and methods from many fields. Wegner 

(1976), for instance, looked into separate characterizations of computer science as 

branches of (i) mathematics, (ii) engineering, and (iii) empirical science. The 

influential report ‘Computing as a Discipline’ by Denning et al. (1989), 

investigating what constitutes computer science qua discipline, echoes the 

tripartite distinction (i)-(iii). Today, partitions along essentially the same lines are 

still highly influential for discourses regarding the historical discipline-building 
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of computer science and how to give an adequate characterization of the 

foundations of computer science (cf. Eden 2007, Tedre 2015, De Mol 2015, 

Schiaffonati & Verdicchio 2014). The debate about the nature of the discipline and 

its scope has persisted for decades and continues to this day.  

Owing to this epistemic pluralism, many central notions in computing bear a 

surprising amount of semantic ambiguity: Smith (1996, 73-74), for instance, 

comes to the sobering conclusion that there is no distinct ontological category 

that deserves to be called computation.  More recently Pappayannopoulos (2023) 

argued that there are at least two conceptually different notions of algorithms 

identifiable in the literature.  By the same token, the word ‘program’ is 

semantically indeterminate, too. Although being a widespread entity/ 

phenomenon, no single rigorous definition has gained traction: None of the 

usages of ‘program’ is universally accepted; available characterizations are not 

entirely co-extensional. Even though this parallel use of the term is somewhat 

unfortunate, it is well-established in the relevant literature and largely 

unproblematic for practice.  

When engaging in philosophical business, ambiguity and equivocation are 

the sort of things one needs to avoid though. In fact, worries like these fuel 

another form of ontological skepticism which threatens forming a coherent 

metaphysical judgement of semantically indeterminate entities like programs: 

Neo-Carnapianism. Simply put, Neo-Carnapianism maintains that a considerable 

part of ontological problems reduces to verbal disputes. 11  According to this 

deflationary stance, there is no serious or actual problem underpinning all sorts of 

ontological questions. The idea is that epistemic agents from different linguistic, 

or cultural communities merely disagree about what a given term refers to (and 

not about what kind of being it is). Let’s take ‘football’ as a toy example. An 

English-speaker from North-America would likely conclude that ‘footballs are 

pointy,’ whereas an Englishmen may argue that ‘footballs are rather round.’12 

Even though both speakers use the same word they mean different things (a ball 

used in American football and a ball used in ‘soccer’). The North-American and 

Englishmen come to different conclusions about the shape of footballs because 

they maintain a different linguistic framework. Yet, once the equivocation of the 

term ‘football’ is clarified, the argument about the properties of the objects and 

activities referred to, resolves too. 

The point is that comparable forms of semantic ambiguity are pervasive 

beyond sports-vocabulary. Accordingly, dictionaries may classify countless 

 
11 The original seminal paper is Carnap’s (1950). More recent versions of the idea that 
ontological disputes are due to different language frameworks,  especially different quantifiers.  
12 The example is inspired by Effingham’s introductory textbook on Ontology (2013, 169). 
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terms (from whichever domain) as lexically ambiguous. There are different types 

of ambiguity Sennett (2023), but typically, linguists and philosophers distinguish 

between two subspecies:  While homonomy describes the accidental encoding of 

multiple meanings in the same sign or term (e.g., in English ‘rock’ may denote a 

‘stone’ or a music genre), polysemy refers to a linguistic expression with multiple, 

albeit related, senses (Falkum & Vincente (2015), Sennett (2016), Carston (2021)) – 

as we have seen in the case of ‘football.’13  Distinguishing the two species of 

ambiguity is not always easy and several linguistic tests have been devised to 

identify polysemic terms.  

When applying such a test to ‘computer program,’ it becomes clear that the 

term is an example of polysemy, too. For instance, we may help ourselves with 

the following statement to uncover (part of) its polysemic nature: 

“That program is well written/beautifully coded. It runs fast.” 

Here, the pronoun it refers anaphorically to the physical object (particularly its 

execution), whereas the sense of program in the previous sentence is used in a 

textual sense. In fact, the semantic extension of ‘program’ entails several other, 

but related meanings, including what I call the Physical View, the Mathematical 

View, the Symbolic View, the Artifact View, and the Neural View (see Appendix 

A). 14  Although this is not the time and place to deep dive into the overall 

plausibility of the Neo-Carnapian rationale, the upshot of this brief discussion 

should be clear:  Since the term ‘computer program’ forms a polysemic web of 

various ontologically different (but related) things, deflationary arguments and 

linguistic confusion may also hamper this thesis’ undertaking.  

There are a couple of ways to respond to this. Absent semantic identity, one 

seemingly obvious possible future path for the community would be attempting 

to converge towards one unique usage of ‘program.’ One may envision this to 

work similarly to how Lakatos (1976) describes the progress of mathematics, 

exemplified by rigorously characterizing the proof of the Euler characteristic 

defined for the polyhedron.15 However, unlike Lakatos’ polyhedrons, the notion 

of ‘program’ seems to undergo significantly faster changes than other disciplines’ 

 
13 Importantly, both phenomena need to be distinguished from ‘vagueness.’ Usually, the notion 
is associated with the occurrence of borderline cases and the sorites paradox, e.g., ‘when is a 
heap of sand no longer a heap of sand?’ (Hyde & Raffman 2018) and (Sorensen 2023). 
14 Strictly speaking, the term ‘program’ also bears another form of polysemy, namely of cross-
categorical nature (in a grammatical sense): ‘program’ as noun, and as verb (as in, ‘to program a 
machine’) with related senses across these grammatical categories. However, I won’t further 
engage with this polysemic dimension. 
15 Anecdotally, in one of the various workshops of the PROGRAMme research group, we tried 
developing a comprehensive definition of ‘computer program’ in a brain storm session. 
Culminating in ‘a layout of signs aimed at determining the behaviour of a machine.’  
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central concepts. Due to its instability over time, we constantly try to define a 

moving target and would, at best, only get a snapshot. Moreover, this 

‘precisification approach’ would arguably fly in the face of computer science’s 

current practice to successfully embrace epistemic pluralism. Therefore, I 

consider trying to define the term ‘program’ as moot.   

Given the lack of rigor, we thus confront another central issue 

Problem II: Untangling the polysemic web of the term ‘program.’ 

The takeaway is that we must devise a strategy that blocks linguistic confusion 

creeping into our metaphysical investigation or otherwise we may get as many 

potential answers about the ontological status of computer programs as there are 

different meanings hidden in this polysemic complex.  

 

1.3 The Project’s Guiding Ideas 

Let me summarize what I have discussed so far. I introduced the main research 

question in the previous sections and explained its relevance. No consensus 

about programs’ metaphysical nature has been reached; scholars of different 

strives have characterized them in multiple, often contradictory, ways. By 

construing the question’s main constituents – (i) ontological status and (ii) 

computer programs – I provided some necessary background about 

metaphysical investigations and clarified what kinds of things the term program 

picks out. This diagnosis unearthed two primary problems:  

1. Problem I: On the one hand, we must be open about choosing a suited 

ontological category system.  

2. Problem II: On the other hand, there is the polysemic nature of computer 

programs. When pressed into service in different contexts, ‘program’ 

fragments into several ontologically distinct and more precise concepts, 

each appropriate for its area of application.  

What is the most comprehensive and effective response to these problems that 

will allow us to proceed fruitfully? 

 

The Guiding Idea 

My strategy for remedying the situation is by embracing the polysemic web we 

confront, head-on. Previously, I have said that polysemic terms bear at least two 

related senses. In the case of ‘computer program,’ multiple related senses are 

bundled together. What makes the case particularly urgent is that many of the 

senses that are thus related have different ontological flavors. Without handling 

this ambiguity well, we risk repeating past mistakes and are bound to commit 
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category mistakes. But instead of trying to untangle the situation by developing 

a rigorous definition, the general theme of my approach is different.  

My guiding idea is to explicitly focus on the relations between all the 

ontologically different relata hiding behind this polysemic web. To clarify, the 

relata I am talking about are the ones that occurred in my previous analysis and 

the literature review (cf. Appendix A), the ones deemed responsible for the 

alleged duality/pluralism of programs: On the one hand, there is the domain of 

abstract, formal, and mathematical objects. On the other hand, there is the 

domain of the physical, of concrete systems, of events and processes unfolding 

in space and time. 

Specifically, I believe the notion of implementation is vital to understanding 

how these entities connect. When I say ‘implementation,’ I refer (as a first stab) 

to the relationship between different computational domains. In addition, my 

thesis argues that agents play a critical role in mediating implementation. I will 

elaborate on both ideas extensively in the following chapters (see also Appendix 

B), but here is a graphic depicting the situation to get the gist of it (Fig. 1.1). 

Whereas the file icon stands for program texts, the laptop icon typifies a physical 

computer; both are related by the downward pointing black arrow (representing 

computational implementation). Moreover, all three items critically depend on 

epistemic agents (depicted by the black mannequin) and their practices. 

 

 

Fig. 1.1: Schematic depiction of the guiding idea of this dissertation. 

 

One promising way of ontologically characterizing this network of relata and 

their relations is to establish an initial category system and make modifications 

and refinements as needed along the way (in terms of the terminology I 

previously used, one can regard this as a partial piece meal approach). This 
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approach is particularly effective when developed against the backdrop of 

widely recognized distinction between the ‘abstract’ and the ‘concrete’ the in 

philosophy (Falguera et al., 2022). It is effective, because typically, the 

abstract/concrete dichotomy is meant to be a simple but exhaustive two-category 

system – accordingly, every entity must either be abstract or concrete. 

Commonly, philosophers agree that objects like rocks, tables, or tigers are 

concrete. In contrast, mathematical objects (e.g., numbers, pure sets, and perhaps 

‘programs’) are typically thought of as abstract entities. Other entities standardly 

considered to fall into the abstract side of the dichotomy are universals, 

propositions, types (as opposed to tokens), and – more controversial – fictional 

characters (e.g., Sherlock Holmes, or Donald Duck).  

Arguably one of most common ways to characterize the abstract is then along 

these lines:  

Abstract: An object is abstract iff it has no spatiotemporal location and is 

causally inefficacious. 

The lesson learned from this ‘standard’ view is that entities like mathematical 

objects are considered abstract objects, since they are none locatable in space-time 

and cannot be integrated into the causal pathway (for instance, one cannot stump 

their foot on √2). Similar considerations hold for other candidate abstract objects 

such as universals and propositions. In his On the plurality of worlds David Lewis 

(1986, 1.7 §) called this proposal of characterizing the abstract-concrete 

dichotomy the ‘way of negation:’ In contrast to concrete objects, abstract objects 

are construed by being non-spatiotemporal and acausal.  

 However, to further deepen our understanding on how the abstract-concrete 

distinction bears on the metaphysical nature of computer programs, it is 

illuminating to take a closer look at one of Lewis’ other ways of drawing the 

distinction – the way of abstraction.16 The reason for considering this notion is 

because it resembles how abstraction is standardly used and talked about in 

(computer) science. Arguably, it is here where conflations about different 

conceptions of abstractness may happen most frequently, since this way of 

characterizing abstraction seems to be the one most in line with historic use and 

the etymological roots of the term.17 According to Lewis’ way of abstraction 

 
16 In total, Lewis identified four methods to draw the line between the abstract and concrete; (i) 
the way of example, (ii) the way of conflation, (iii) the way of negation, and (iv) the way of 
abstraction. Today, (i)-(iv) are still often used to chart the different approaches of the abstract 
(Falguera et al. 2022). 
17 For the computing pioneer Dijkstra, for instance, a program is “[…] an abstract symbol 
manipulator, which can be turned into a concrete one” (Dijkstra 1989, own italics). In contrast, 
Colburn (1999) maintains that programs are “concrete abstractions.” Are they talking about the 
same kind of abstractness? 
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“abstract entities are abstractions from concrete entities. They result from 
somehow subtracting specificity, so that an incomplete description of the 
original concrete entity would be a complete description of the 
abstraction.” (Lewis 1986, 84-85) 

Under these circumstances, the ‘abstract object’ purports to hinge on the mental 

process in which concepts are created by omitting properties of one or several 

objects. Put differently, at least without further qualifications, the way of 

abstraction stands at odds with the standard way of characterizing the abstract-

concrete distinction since the former requires some epistemic process, whereas the 

latter can be characterized mind-independently. It is therefore doubtful to what 

extent the way of abstraction can serve as an explanation of the origin of abstract 

entities like mathematical objects on purely ontological grounds.  

As an epistemic notion though it abounds in science: Here the process is 

useful for the analysis of complex systems by reducing (irrelevant) properties or 

information. Frequently, this epistemic operation is referred to as Aristotelian 

Abstraction. Cartwright (1989, 197), for instance, portrays Aristotelian abstraction 

as an act through which one “strip[s] away—in one’s imagination—all that is 

irrelevant to the concerns of the moment in order to focus on a single property or 

set of properties as if they were separate.” This way, scientists get a handle on 

studying systems that would otherwise be too complicated.  

‘Abstraction’ in computer science is a variant of (Aristotelian) abstraction, in 

so far as it is the operation or process of omitting one or more features of a 

complex object/system. A common story of how abstraction facilitates dealing 

with complex computing systems goes like this: Suppose you must program a 

first-generation digital stored computer. When configuring such a device, 

programs and data were encoded in a notation that closely corresponded to the 

given machine’s hardware. Setting up computational devices in binary or 

machine code was cumbersome, error prone and required great ingenuity to 

‘translate’ whichever problem was supposed to be solved computationally into 

machine code. As we will see later in more detail, the late 1950s brought forward 

types of encodings (nowadays widely referred to as programming languages) 

that enabled the programmer to describe sequences of computations through 

notations and formulas that were somewhat more decoupled from the underlying 

circuitry. At a first pass, instructions formulated in high level programming 

language have a higher degree of abstraction than logically equivalent machine 

code instructions, because they reflect less hardware details. These more 

‘abstract’ languages have several advantages – e.g., they avoid unnecessary 
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machine dependence, and they are easier to read and write for the humans that 

devised them.18  

Notably, one may further abstract away from already made abstractions, 

giving rise to different Levels of Abstraction (LoA).  Beginning in the 1970s, such 

levelism became a prominent feature in (philosophy of) science, especially in 

connection to computing or disciplines where computational methods where 

employed. For instance, in his well-known Vision Marr (1982) suggested three 

levels of explanation for complex systems (such as our perceptual apparatus): (i) 

a computational level; (ii) an algorithmic level; and (iii) the 

implementation/hardware level. Importantly, such levels form a sort of 

hierarchy that is often characterized by different degrees of abstraction.19 In other 

words, by leaving out certain details, one may reach a level that is more suitable 

for explaining the phenomenon of interest. 

Throughout the history of computer science, the LoA concept has been 

pervasive and evoked a great deal of level talk. Primiero (2016; 2020), building 

on the work of Floridi (2008; 2011, Ch. 3), has arguably devised the most 

comprehensive notion of LoA suitable for computing.  I emphasize this because 

Primiero’s account supposedly provides both an epistemological and an 

ontological hierarchy. According to the latter, computational systems are 

stratified or layered entities in the sense that they are composed of various LoA. 

While I will go into more detail about this account in the following chapter, it is 

paramount to note some things here for clarity’s sake. 

While I am a proponent of the LoA view and its merits, it is crucial to exercise 

caution when interpreting the ‘ontological hierarchy’ it presents. This hierarchy 

should not be confused with a fundamental metaphysical one (one should 

instead think about it along the lines of the descriptivist spirit of ontologies in 

computer science I introduced earlier). Floridi, for instance, reminds us that LoA 

generally do not give rise to ontological levelism. When discussing an example, 

Floridi clarifies 

 
18 Given its usefulness in making complex systems tractable, there are many more instances 
where abstraction plays a role in computing. Data abstraction, the act of hiding irrelevant 
details in a data set, is another example. Accordingly, Donald Knuth (1997, Ch. 2) explains how 
abstraction enables us to systematically think about data structures (e.g., as a list, stack, or tree). 
More recently, Kramer (2007) advocates that the skill of forming abstractions correlates with 
being a successful software engineer. Colburn and Shute (2007) contrast the process with the 
notion of abstraction employed in mathematics, arguing that the former relies on information 
hiding, whereas the latter utilizes information neglect. Angius (2013) illuminates software 
verification through the lenses of abstraction (and idealization), and recently, Turner (2021) 
provided a more rigorous account by importing a modification of Frege’s approach to 
abstraction into type-theory. 
19 N.b., ‘abstraction’ is by no means the sole feature responsible for constituting different levels. 
See Craver (2014) for a recent survey about different conceptions of levels.  
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“I have shown how the analysis [of an example] may be conducted at 
different levels of epistemological abstraction without assuming any 
corresponding ontological levelism. Nature does not know about LoAs 
either.” (Floridi 2008, 35) 

The takeaway from concluding our discussion on epistemic/Aristotelian 

abstraction and its associated concept of LoA is that relying solely on this 

framework may not provide immediate answers about the ontological status of 

computer programs. 

In carrying out this research program, I will make several substantive claims. 

Here is a brief selection of the most central ones:  

• I will claim that at least two quite distinct notions of implementation 

require integration/unification for understanding the ontological status of 

computer programs.  

• I will claim that, the garden variety of accounts of physical computation 

do not work (straightforwardly) when applied to computer programs. 

Especially naturalized accounts suffer from having turned a blind eye to 

the metaphysical nature of implementation qua relation.  

• I will claim that appropriating some of the major insights and conceptual 

tools of scientific representation and modelling vindicate interpretational 

or agential theories of implementation. 

• I will claim that the abstractness of computer programs is best understood 

through the so-called Problem of Creation and does not require sui generis 

solutions.  

• I will advance a novel notion of physical programmability, specifying the 

conditions under which a system can be viewed as programmable.  

 

1.4 Outline 

From here on, the thesis contains four principal chapters, a conclusion, and three 

appendices. Here is how they unfold:  

In Chapter two I start off with providing the framework for the rest of the 

thesis. I begin by considering two hitherto largely independently treated notions 

of implementation. For the sake of better distinction, I will refer to them as type-

(A) and type-(B) implementation. The former is based on the normative notion 

of function-ascription (with ‘A’ for ascription); the latter is named after the so-

called bridging problem (with ‘B’ for bridging) from the philosophy of applied 

mathematics. Juxtaposing both notions shows that their scope overlaps at the 

abstract physical interface and may mutually enrich each other. Specifically, I 

submit that (A) and (B) can be unified by appealing to use-based accounts of 

computation: The two notions can be combined by the conceptual machinery of 
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the literature on scientific representation (particularly, when concerned with 

material models). The result is sketch of a unified theory of agential 

implementation (UTAI) with different dependency relations (labelled (a)-(c)), 

where these relations give rise to the subsequent chapters. 

The third chapter concerns dependency relation (a). I elucidate this relation 

by comparing programs to so-called repeatable artworks. The similarities 

between musical compositions and works of literature are especially instructive. 

Like such artworks, programs have different representational modes (e.g., 

symbolically, mathematically, diagrammatic) and implementational media (e.g., 

ink on paper, chalk on a whiteboard, electrical signals, punched cards, etc.). As 

such, they appear to be abstract objects that also suffer from the Problem of 

Creation – a problem from the philosophy of art about art abstracta. By 

appropriating the problem’s most promising solutions to the philosophy of 

computing, I offer a novel metaphysical blueprint for future studies about the 

ontological status of computer programs. The upshot is that the abstract nature 

of programs does not require dubious sui generis solutions (e.g., a ‘dual nature’) 

but can, in fact, be discussed in more familiar philosophical territories. 

Thereafter, chapter four sheds light on dependency relation (b) of the UTAI 

framework. Accordingly, I vindicate interpretational accounts of physical 

computation. Specifically, recent agential approaches that couch implementation 

in terms of scientific representation are corroborated. I strengthen such types by 

the introduction of a novel notion: Implementation-as. Implementation-as is 

theoretically underpinned by Frigg and Nguyen’s DEKI account, a formalized 

account of scientific representation relying on Goodman’s and Elgin’s notion of 

representation-as. The DEKI account is especially suited for this because it relies 

on a material model – the MONIAC (a special-purpose hydraulic analog 

computer). Accordingly, a formal characterization of implementation-as 

emerges. I maintain that this result is a philosophically robust account, since it 

satisfies the most important desiderata (objectivity, extensional adequacy, 

explanation, miscomputation, taxonomy) for accounts of computation in 

physical systems. The upshot is that physical computation occurs when agents 

use material systems as epistemic tools to compute a function. Application of this 

new framework is illustrated for the MONIAC (an analog device) and the IAS-

machine (a digital computer). 

Chapter five illuminates dependency relation (c) through the notion of 

programmability. The philosophical discourse regarding programmability is 

scant and largely underdeveloped. In particular, reviewing the literature 

uncovers that only a limited amount of scholarship has examined the physical 

properties that enable a system to be programmed. This is a sorry condition, for 
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we seem to be unable to fully answer such questions as: How are programs 

integrated into the causal nexus? What does it mean for a physical system to be 

programmable? In the interest of answering these questions, I develop the here 

newly introduced notion of physical programmability. 

Physical Programmability: The degree to which the selected operation of 

an automaton can be reconfigured in a controlled way. 

Subsequently, the strategy of my chapter is to explain the significance of the 

variables in the above’s characterization. Accordingly, the function of (i) 

automaton; (ii) selected operation; (iii) reconfigured in a controlled way (iv) the 

degree to which, are discussed in detail. 

Finally, I provide a conclusion (Chapter six). I begin by summarizing the 

central findings of this dissertation in order to canvass how the results of different 

chapters have informed us about the ontological status of computer programs.  

 



 
 

 

2 Towards a Unified Theory of 
Implementation  
 

 

2.1. Introduction 

It sounds like a cliché, but the implementation of computation is ubiquitous. Not 

only are we surrounded by everyday devices such as laptops and smartphones 

that run our software, but computation is also at the core of foundational 

questions in computer science, robotics, AI, and cognitive science. Despite its 

ubiquity in computer science and adjacent fields, implementation is typically left 

informal. It is often associated with the realization, instantiation, or 

concretization of a plan or idea, relating two objects or domains with one 

another.20 Considering the rapid developments in theory, technology, and areas 

of application of computing, various philosophical studies conceptually 

reconstructed what constitutes the implementation of computation in their 

respective fields. In light of this epistemic pluralism, different notions of 

implementation, in fact, often have a significantly different intellectual heritage. 

Confronted with a plurality of theories of implementation, the time is ripe to 

taxonomize them, shed light on their relationship systematically, and attempt to 

build bridges between them whenever possible.  

To begin this task, I consider two of the most prominent clusters of 

implementation of the last few decades. For tractability, I refer to these views as 

type-(A) implementation (with ‘(A)’ for ascription/artifact) and type-(B) 

implementation (with ‘(B)’ for bridging). Type-(A) implementation emerged from 

(the philosophy of) computer science, particularly the concerns about the 

verification and correctness of so-called computational artifacts like computer 

programs.21 Much of the corresponding discourse is couched in terms of function 

ascription (in the teleological sense) and pertains to the relation between different 

abstract levels or structures. Type-(B) implementation, on the other hand, 

emerged from the philosophy of mind (broadly construed) and concerns the 

nature of computation qua physical process in material systems. This notion is 

paramount to determining which systems compute and which don’t and is often 

discussed regarding laptops, brains, and even the whole universe. Virtually all 

 
20 Overall, there are various (pre-theoretic) understandings of ‘implementation,’ even occurring 
in the domains of art, language, or other affairs (Rapaport 2005). 
21 After the fiercely held verification debate in the late 1980s and 1990s in the communications of the 
ACM, it was apparent that the field would benefit from a philosophical underpinning of the 
notion of verification and correctness. For a collection of some of the key contributions to 
verification, see Colburn et al. (1993). For a critical assessment of the debate, see McKenzie 
(2004, 197-218). 
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(B)-accounts share the idea that the evolution of a physical, real-world system 

maps to sequences of formal/abstract computational states. Until now, (A) and 

(B) have mainly been discussed separately.  

However, throughout this chapter, I argue that the philosophy of computing 

would benefit from a novel theory of implementation that promotes greater 

synergy between two conceptions. This motivates me to engage in a project with 

the primary goal of comparing type-A and type-B implementation, clarifying 

their differences, and proposing a unified theory of implementation. 

Here is the roadmap: Section §2.2 provides some general remarks about 

computational implementation. Subsequently, section §2.3 introduces type-(A) 

implementation, while section §2.4 portrays type-(B). Section §2.5 juxtaposes 

both implementation types by discussing their most prominent features 

(teleological functions and the relation between levels). Although they appear to 

apply to different computing domains and have different purposes at first, they 

are conceptually compatible. In section §2.6, I take my undertaking to the next 

level by suggesting that the unification of these two concepts can be achieved 

through the conceptual tools of the literature on material models and scientific 

representation.  The resulting synthesis suggests that computational systems are 

epistemic tools, i.e., material artifacts used by agents for computation. When using 

material artifacts (akin to material scientific models) for computation, agents 

impute mathematical functions and ascribe teleological functions to engage in a 

form of object-based reasoning. I shall refer to this view as a unified theory of 

agential implementation (UTAI). Lastly, I conclude (sect. §2.7). 

 

2.2. A primer on Implementation in Computer Science 

The Oxford Dictionary of Computer Science provides a useful characterization of 

implementation to begin with  

Implementation: “[t]he activity of proceeding from a given design of a system 

to a working version (known also as an implementation) of that system, or the 

specific way in which some part of a system is made to fulfil its function.” 

The relation between design and its working version applies to various 

computational formalisms. For having a common understanding of this 

implementation relation, it is instructive to remind us about computational 

formalisms. While they are definable in a large variety of ways, the computer 
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science literature typically features two main ways of presenting computational 

formalisms (Turner 2018, 190):22  

1. Programming languages, like C, Python, etc.  

2. Machine Models, like Turing Machines (TM), Finite State Machines 

(FSM), etc. 

In the following, I use the term ‘model of computation’ Mc for both. Models of 

computation are logico-mathematical formalisms that enable us to encode an 

abstract sequence of computations through a programming language, a machine 

table, a transition function, and so on. For instance, formally, the concept of a 

Turing Machine can be characterized as a quadruple TM = (Q, ∑, m, δ), where Q 

is a finite set of states q; ∑ is a finite set of symbols; m is the initial state m ∈ Q; δ 

is a transition function that determines the next move δ: (Q × ∑)→( ∑ × {𝐿, 𝑅} × 

Q ). TM’s transition function δ maps from computational states to computational 

states (De Mol 2021). Put differently, transition functions like δ, computer 

programs written in a programming language, or any corresponding notions in 

theoretically equivalent Mc allow for the encoding of a sequence of 

computations.  

In order for a system to compute, it has to implement a sequence of 

computations encoded in a ‘program’/transition function specified by a given 

Mc. In practice, computational formalisms are often embedded in a special sort 

of computational hierarchy, composed of so-called Levels of Abstraction (LoA) 

(Floridi 2008; Primiero 2016; Primiero 2020). Accordingly, the application of 

implementation in computation is wide-ranging. Examples are ‘the 

implementation of an algorithm in a high-level programming language’ or ‘the 

implementation of machine code instructions in a real-world computer.’ Such 

‘level-talk’ is frequent in computer science – a concrete textbook example of 

various implementation stages of a program is pictured overleaf in Fig. 2.1 (a). 

Instances like these may be generalized and accordingly culminate in a view as 

depicted under label (b) in Fig. 2.1: a (stored-program digital) computing system 

is typically composed of various LoA forming a computational hierarchy.23 At 

the bottom of the hierarchy, one finds a physical system comprising various 

material components and their specific arrangement (the hardware). If set up and 

configured correctly, the system may execute a predetermined series of concrete 

computations. At the top of the hierarchy, one may find the most abstract level, 

 
22 The description of computational formalisms is inspired by a similar presentation in Rescorla 
(2013). Notably, some unconventional models can compute incomputable functions for a 
universal Turing machine. I will skip considering these types for now. 
23 See Hennessy and Patterson (2014, Ch. 2) for a fully worked-out textbook example. See also 
Scott (2009).  
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the program’s formal specification. As a first stab, we can understand 

implementation as the relation between the different levels in such a hierarchy, 

connecting an abstract level to a less abstract one. 

 

 

 

Fig. 2.1: Different depictions of the computational hierarchy. (a) A concrete 
instance of the different LoA and stages of implementation of a program written 
in C (example adapted from Patterson and Hennessy (2014, 15)). (b) Generalized 
image of typical LoA of a computer program. 

 

‘Abstract’, in this context, has a double meaning. On the one hand, it refers to  

the degree to which language features are divorced from specific hardware 

details (Scott 2009, 111). In this sense, higher LoA entail fewer details about the 

underlying physical system. Based on that, we can understand abstraction as the 

inverse process of implementation. On the other hand, the computational objects 

corresponding to the different LoA may be abstract in a second sense. We may 

refer to them as abstract objects – as opposed to being concrete, material, or 

physical – since, as strings of symbols, they have no causal relations acting upon 

them. From this perspective, algorithms, e.g., are typically regarded as abstract 

objects.   

Importantly, what follows from this brief discussion is this: Whereas the 

implementation of higher LoA is in the business of relating abstract objects 

(symbol structures), the last implementation stage is qualitatively different 

because it must relate an abstract symbol structure to a material system.  The 
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program written in C in Fig. 1 (a) is an instance of the former, for it is a particular 

symbol structure that is translated into another one (i.e., compiled) into assembly 

language.24 Analogously, when descending the computational hierarchy down 

to machine code, implementation is still a relation obtaining between different 

abstract strings of symbols. However, we require a different kind of relation at the 

abstract-physical interface – one that relates abstracta with concrete states of the 

putative physical system.  

Today, two main approaches aim to cash out the requirements for connecting 

such different types of levels: type-(A) and type-(B) implementation. Somewhat 

surprisingly though, these two approaches are not in close contact with each 

other. My aim here is to change that. In what follows, I take a closer look at the 

philosophical characterizations of these implementation relations, beginning 

with type-(A) implementation. 

 

2.3 Type-(A) Implementation 

Perhaps symptomatic for a more general tendency of computer science, type-(A) 

implementation primarily focuses on the relation of upper LoA. Here, one central 

aim is determining the correctness of the various implementation stages. Two 

conditions are generally called for to meet the normative notion of correctness. 

On the one hand, a formal specification for the program and, on the other hand, a 

formal definition of the programming language’s semantics. A program is then 

correct if there is a formal proof that the semantics of a program is consistent with 

the program’s specification. Arguably, the first philosophical account of type-(A) 

is due to Rapaport (1999). He describes implementation as semantic 

interpretation (1999, 2005),  

Implementation as semantic interpretation: An object is an 
implementation of some syntactic domain A in medium M iff it is a 
semantic interpretation of a model of A, 

i.e., a relation between semantics and syntax of different LoA. Rapaport claims 

that any correspondence between two domains where one is used to grasp the 

other is ‘semantic correspondence.’  

Rapaport’s approach aims to allow both mere ‘translations’ of one 

programming language into another (symbolic implementation) and even for the 

qualitatively different case at the abstract-physical interface (i.e., the relation 

 
24 Alternatively, programs can also be translated through an interpreter, such that the source 
code is directly executed (line by line) without previously having been compiled into machine 
code.   

javascript:void(0)
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between the bottom layers of the computational hierarchy).25 While a program 

written in a high-level programming language may not be immediately 

implementable in a physical system, the so-called ‘correspondence continuum’ 

(i.e., roughly put, a notion of transitivity) is supposed to ensure their connection. 

For that reason, the program must go through a series of translation processes, 

where each time, a level that previously acted as a semantic domain turns into a 

syntactic one for another level below. At last, the ‘implementation cascade’ 

bottoms out at the physical level, providing the semantic domain upon which the 

semantics for all previous levels is built. 

However, concerns were voiced about the way Rapaport employs his notion 

of semantics as a given, raising questions about whether an independent 

semantic account is required. 26  While the notion of semantic interpretation 

adequately describes that implementation requires semantics, it lacks the rigor to 

describe how these semantic features come about. The semantic approach does 

not explain how the physical level obtains its semantic capacities as the bedrock 

for the entire computational hierarchy. Therefore, philosophers of computer 

science suggested two improved accounts.  

First, to account for an independent and external account of semantics, Turner 

considered the technical artifact literature and adopted the notion of function 

ascription (2012, 2014, 2018, 2020). Originally, the conception of technical artifacts 

and their functions should cover intentionally produced everyday objects like 

screwdrivers, coffee-makers, and trains (Kroes 2012). They are said to have a 

‘dual nature’: Next to their respective causal/structural properties, this class of 

artifacts bears normative or teleological features. The function of a coffee maker 

is to brew coffee; a broken or malfunctioning coffee maker does not work 

correctly. Only when ‘the how’ (the structural properties) realizes ‘the what’ 

(functional properties) in the right way can one claim to have a properly working 

coffee machine. By thus transposing the core insights of the technical artifacts 

framework to computational entities, the conception of computational artifacts was 

born (Turner 2018). Accordingly, computational artifacts like programs exhibit a 

function-structure duality with 

Implementation as function-structure relation: The relation between 
specification (function) and the structure of the (computational-)artifact.  

Importantly, artifact function here is an intentional notion derived from the use 

plan formulated by designers. The functions are bestowed to artifacts based on 

 
25 While Rapaport’s conception of implementation is thus ostensibly applicable to the abstract-
physical interface (the realm of type-(B) implementation), it does not consider its specific 
problems, which will be discussed in the following section (§2.3). 
26For a more detailed summary of these arguments, see (Primiero 2020, 207f) and (Turner & 
Angius 2020). 
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the intentions and desires of human agents or an epistemic community. I will 

come back to the role of teleological functions later. For now, it suffices to 

acknowledge that a programmers’ specification (an intentional notion) provides 

criteria for correctness and malfunction.  

Second, following these developments, Primiero (2016; 2020) addressed issues 

with both the implementation as semantic interpretation and implementation as 

function-structure relation. The problem with both is that they merely provide 

an account of implementation for any two neighboring levels rather than the 

entire computational hierarchy. For instance, to eventually reach the bottom of 

the hierarchy (the physical system), Turner’s version of the computational 

artifact approach relies on repeatedly flipping the function-structure pair; the 

process must be repeated for every level in the computational hierarchy. 

Although the structure-function relation may ensure correctness between any 

two LoA, Primiero argues that the view fails to establish the desired transitivity 

of correctness throughout the entire computational hierarchy (i.e., between more 

than just two LoA). The result is an impoverished characterization of 

miscomputation.  

For this reason, Primiero advanced a notion of implementation that considers 

multiple LoA of the computational hierarchy (intention, algorithm, high-level 

programming language, machine-code operation, execution), where an 

epistemological construct and ontological domain constitute each LoA,  

Implementation as the relation of LoA: An implementation I is a relation 
of instantiation between pairs composed by an epistemological construct 
E and an ontological domain O of a computational artefact. 

The idea of the EO-pairs here is congruent to the function-structure relation, as 

the epistemological levels provide “the structure to understand the behaviour of 

the ontology” (Primiero 2020, 194). However, this view of implementation 

enables a more fine-grained notion of correctness because it differentiates 

between different layers/EO-pairs of the computational hierarchy. 

Consequently, one may, e.g., define concepts such as functional correctness or 

procedural correctness (related to different EO-pairs) and a corresponding detailed 

taxonomy of miscomputation (cf. Fresco & Primiero (2013), Floridi et al. (2015), 

Primiero (2020, 211-12)).  

 

2.4 Type-(B) Implementation  

Let me switch gears and examine our second implementation-framework. The 

central concern of this discourse is the so-called Problem of Implementation. In 

virtually all cases, physical computation is characterized in terms of the 

mathematical theory of computation (cf. sect. §2) and a “mathematics first” 
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attitude (Curtis-Trudel 2022), according to which some computational formalism 

of computability theory is the starting point for the definition of physical 

computation. In due course, one must explain how to bridge the gap between 

computational formalisms Mc and a physical system SC.  Specifically, the main 

idea is that formal abstract computational state transitions mi→   mi+1 need to 

‘mirror’ the physical state transitions sj →  sj+1 of the material system. Often, the 

situation is depicted in a diagram, as seen in Fig. 2, where the upper horizontal 

arrow denotes computational state transitions of Mc (specified by δ), the lower 

horizontal arrow denotes physical state transitions of Sc, and f denotes the 

mirroring (i.e., the ‘implementation’ function):27 

 

Fig. 2.2: A typical depiction of the core idea underlying physical computation 
 

 Subsequently, many scholars working on physical computation agreed that 

there are at least two main issues, albeit related, concerning implementation: Not 

only do they want to demarcate those systems that seemingly compute (e.g., 

laptops and brains) from those that don’t (rocks), they would also like to 

determine which computation is executed rather than another. Closely following 

suit with (Sprevak 2018 and Ritchie & Piccinini 2018), the problem of 

implementation concerns:  

COMP The conditions under which a physical system is computing. 
 
IDENT The conditions that specify that a computational system 

implements one computation rather than another. 

On this view, implementing a specific computation is constituted by two 

features. While COMP determines that a given physical system is computing, 

IDENT concerns what it computes. COMP and IDENT are intertwined in a way 

that makes it difficult to understand the latter without at least some preliminaries 

of the former. 

 
27 To the best of my knowledge, one of the first instances of this diagram in the philosophical 
literature can be found in Cummins (1989). 



2 Towards a Unified Theory of Implementation 
 

30 
 

 Virtually all potential answers attempt to solve the Problem of 

Implementation by couching the mirroring or implementation relation between 

Mc and SC as a relation between mathematical structure and physical system in 

terms of a mapping f. This thought is reflected in the so-called simple mapping 

account (SMA)28 and was, among others, articulated by Putnam (1988). The main 

idea is based on a simple mapping between abstract formalism MC and a physical 

system SC. Accordingly, the SMA postulates that a physical system SC 

implements a computation iff:  

Simple Mapping Account (SMA) 

1. There is a mapping f from the states sj of SC to states mi of MC, such that 

2. Under f, SC’s physical state transitions are morphic to MC’s formal state 

transitions (specified by δ), such that if SC is in state s1 where f(s1)= m1, 

then SC evolves into state s2 where f(s2)= m2. 

The approach is elegant and straightforwardly captures what’s pictured in Fig. 

2; the SMA has basically become the starting point to solving the problem of 

implementation.  

However, it is widely agreed that the SMA has two undesirable consequences. 

First, the SMA is charged with trivializing the notion of concrete computation. 

Given an open physical system SC, one may carve out its physical states in 

whichever arbitrary way such that they are morphic to MC. In other words, 

structure is too cheap to come by – any arbitrary computational description (like 

a hello world program written in C) with a sequence of computational states m1→  

m2 → …→ mi can be mapped on an arbitrary evolution of physical state transitions 

(of, say, a rock). So, according to the SMA, every macroscopic object realizes all 

kinds of computations, a position known as unlimited pancomputationalism. 

Moreover, there is the issue of computational identity IDENT – the question 

of which of the multitude of computational profiles that simultaneously apply to 

a system is implemented.29 The claim goes: Even if there were somehow a unique 

computational structure to begin with, structure alone would fail to deliver an 

account of basic computational individuation, as one needs extra ingredients to 

discern which computation is carried out. Such issues about computational 

indeterminacy especially pertain to ‘bottom-up’ research like cognitive science, 

the unconventional computing community, and reverse engineering. Roughly 

put, these disciplines investigate natural or artificial computing systems in 

empirical terms in which there is no a priori given MC that specifies what’s 

supposed to be computed. Even if we were to successfully identify which 

 
28 The term was introduced by Godfrey-Smith (2009) and made prominent by Piccinini (2015). 
29 To the best of my knowledge, the problem was first mentioned by Shagrir (2001).  
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physical states count as computational vehicles (e.g., neuronal spikes or flow of 

charge), we may have to choose between competing theories about what is 

computed. The problem is that computational vehicles do not wear a label on 

their sleeves. This gives rise to two sub problems grouping indeterminacy (how to 

group different states together) and interpretative indeterminacy (how to label 

states ones they are grouped).  Frequently, the literature exemplifies the case (of 

interpretative indeterminacy) with a system SC implementing logical duals, like 

a logic gate with the following behavior: 

InputA InputB Output 

5V 5V 5V 

5V 0V 0V 

0V 5V 0V 

0V 0V 0V 

 

Table 2.1: Logic gate  

 

Under the assignment 0V → F, 5V → T, the truth table (Table 1) of the logic gate 

corresponds to an AND-gate. However, by flipping the labels (0V → T, 5V → F) 

the same device implements an OR-gate. Now, the issue is that the same system 

appears to simultaneously implement multiple computations (conjunction and 

disjunction) at once. The phenomenon generalizes to many other gates and 

computational systems. Fresco et al. (2021) recently called such physical systems 

multiply specifiable if they possess at least two logically non-equivalent labeling 

schemes when using the same labels (e.g., ‘F’ and ‘T’). Consequently, the question 

arises, which of the two labeling schemes is the preferred one? 

In response to the triviality arguments and computational indeterminacy 

most physical computation/type-(B) implementation accounts have amended 

the SMA by introducing additional features to address either one or both:  

  Extended Mapping Account (EMA) 

  SMA’s first and second clause + additional conditions constraining f. 

Since the initial formulation of the SMA, a plethora of potential candidate 

conditions have mushroomed, resulting in a fragmented physical computation 

discourse.  

One class of approaches, seeks to tackle (unlimited) pancomputationalism. 

Often the common strategy has been to strengthen the conditional of SMA’s 

second clause (‘if f(s1)=m1, then f(s2)=m2’) because it covers only one specific, 

instead of all possible execution traces. For that reason, some argued that putative 

computing systems need to have counterfactual state transitions (Copeland 1996). 

Roughly put, the idea is that if the system SC had been in a physical state that 
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maps onto mi, it would have evolved into a state that maps onto mi+1. Others 

formulated similar requirements in terms of a suited causal structure (Chalmers 

(1996), Scheutz (1999)) or dispositional theories (Klein 2008). Counterfactual, causal, 

and dispositional constraints ensure that the mapping f applies to all of MC’s 

potential execution traces and not just, as previously the SMA, a single particular 

one δ(m1, i) (where i is some input). As such, these types of constraints are a 

typical feature of type-(B) implementation. 

A second class of attempts addressed the problems associated with IDENT 

(cf. Lee (2020) for an overview). Prominently featured here are to so-called 

semantic theories of computation. In a nutshell, they state that content is essential 

to computational states. Historically, this framework arguably developed 

separately from the SMA and other EMAs. 30  The two primary reasons why 

semantic accounts are widely accepted are as follows. First, the semantic account 

is catered to the Computational Theory of Mind and various brain sciences, 

which suggest that cognition (partially) relies on our brains performing 

computations. As brain states are believed to have content and process 

information, computational states must do the same. Consequently, according to 

the semantic view, computational states must possess ‘aboutness’ and carry 

external content or meaning. Second, the computational states of many 

computing devices manipulate meaningful symbols, and the semantic view can 

provide a solid foundation for understanding how these devices operate. In more 

recent form, proponents of the semantic view like Shagrir (2001, 2022) and 

Sprevak (2010), maintain that such semantic elements determine a privileged 

labeling scheme and hence do away with computational indeterminacy. 

Another prominent framework comprises mechanistic accounts of 

computation (e.g., Milkowski (2013), Fresco (2014), Piccinini (2007, 2015)), 

according to which computation must be implemented in specific computational 

mechanisms.31 One merit of mechanistic accounts is their capability to draw from 

the rich conceptual resources of the neo-mechanistic literature, especially on 

mechanistic explanation. What’s more, as some formulations of the mechanistic 

account adhere to teleological functions, they also incorporate functional features, 

rendering computing systems as functional mechanisms that may fail to operate 

correctly (i.e., they may miscompute). Since one can formulate the mechanistic 

 
30 Fodor's statement can summarize the core idea of semantic accounts, “There is no 
computation without representation.” (Fodor 1975; Pylyshyn 1984) is testimony to this 
development. 
31 N.b., in so far as mechanisms have a causal structure or are said to have counterfactual state 
transitions, the mechanistic account can also be interpreted as a yet more refined version of the 
previous EMAs, with the extra condition that putative computational states need to correspond 
to material components. 
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account without normative considerations, this feature seems to be logically 

independent of the mechanistic framework and could, in principle, apply to other 

EMAs. In the same vein, although I am not aware of such developments, one 

could combine mechanistic accounts with semantic elements or vice versa.  

 

2.5 Juxtaposing (A) and (B)  

What exactly is the relationship between type-(A) and (B) implementation? To 

recap, while both implementation types provide bridges that connect an abstract 

level to a less abstract one, they differ in initial purpose and scope: On the one 

hand, type-(A) implementation allows us to evaluate the correctness of 

computational artifacts’ levels by normative requirements (i.e., the specification) 

of the stakeholders (programmers, users) involved. In this context, normative 

judgments pivot on teleological function ascription and various LoA. Type-(B) 

implementation, on the other hand, addresses one implementational stage only 

– the abstract-concrete dichotomy (the lowest LoA). Its purpose is to characterize 

physical computation in both natural and artificial systems formally. The 

theoretical framework underpinning virtually all characterizations of concrete 

computation is the idea that there is a mapping bridging the gap between abstract 

computational formalism (e.g., symbolic machine code) and the dynamic 

evolution of the physical states of the putative physical computing system.  

 Given their scope, both implementation theories are not mutually exclusive, 

for there is a juncture in (i) artificial computing systems at the (ii) abstract-

physical interface (see Fig. 3). From the perspective of type-(A) implementation, 

the insights of type-(B) implementation are relevant 

 

 

Fig. 2.3: A schematic Venn diagram of the intersection of type-(A) and (B) 
implementation. Their domains of application overlap in (i) artificial 
computing devices at (ii) the abstract-physical interface. 

 

to address the implementation of a computational hierarchy at the abstract-

physical interface. Vice versa, from the type-(B)’s point of view, the knowledge 
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contained in the type-(A) discourse offers a nuanced picture about artificial 

systems and computer scientists’ related concerns and practices. 

However, despite the overlap, there has been only a limited exchange 

between these two research domains. This separated development probably 

concerns their origin from different research traditions. Remember, philosophers 

developed type-B accounts as part of a broader project to articulate a version of 

the CTM. While it was always assumed that the computations carried out by the 

brain (at least, according to the classical, digital CTM) are the same as those 

carried out by computers, the focus remained primarily on natural systems, 

particularly the brain.32 As a result, a tendency remains to take designed systems 

for granted and bracket higher-level programming practice as addressed by type-

(A). 

So, to further advance our general understanding of implementation and 

make it a cooperative endeavor, a more fine-tuned analysis of the relationship 

between type (A) and (B) is desirable. For so doing, I juxtapose the two different 

implementation types regarding their most salient features: (i) teleological 

function-ascription and (ii) mappings between levels. The following subsections 

elucidate these salient features across both approaches in more detail and pave 

the way for presenting a unified approach in sect. §2.6. 

 

2.5.1 Teleology  

Let me begin the juxtaposition with the role of teleology in implementation. 

Many theories of function emerged in the context of biological traits but have 

subsequently inspired accounts of artifact functions. Unlike organisms that may 

develop functions in evolutionary processes, artifacts are purposefully created 

and must account for human intentions. Overall, the question is how to balance 

intentional, evolutionary, and causal (non-intentional) parameters. 33  To date, 

there is no consensus in the literature about teleological functions and whether 

we should distinguish or opt for a unifying approach regarding natural and 

artificial systems.    

Many of these concerns affect our understanding of implementation. For 

instance, as we have seen type-(A) accounts contain ingredients that allow us to 

check whether a program (or any given sequence of computations) is 

implemented and executed correctly at every LoA. The strategy was to address 

 
32 Some strands of the mechanistic account of computation are an exception since they also shed 
light on the subfield of computer architecture (Piccinini 2015, Ch. 8-11). Yet, this view still 
shows little engagement with other relevant practices in computer science. 
33 For a short survey of the debate, see, e.g., (Preston 2018, §2.3); for arguably the most detailed 
account, consult Houke’s and Vermaas’ (2010) ICE-theory (incorporating elements from 
intentional, causal-role, and evolutionist function theories). 
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correctness via an intentionally chosen function-structure pair. To give a concrete 

example, I borrow the following case from Turner (2020,19-21): Suppose we want 

to prove the correctness of a program P written in the WHILE programming 

language to find the greatest common divisor (GCD) of two integers. Then, we 

may only determine P’s correctness if we have some specification as a ‘normative 

yardstick’ (the teleological function) telling us what the given program should 

do. Subsequently, we may use the following expression 

∀x : Num.∀y : Num · ∀z : Num · P (x, y, z) → Gcd(x, y, z) 

as a correctness condition for the successful implementation of P. With this 

formal expression at hand, we can establish correctness by a formal proof 

showing that P’s input/output behavior agrees with the logical specification. 

Albeit being a simple example, it illustrates a pattern of reasoning that underlies 

most considerations about correctness of computational artifacts.  

Contrast this intentional approach with the type-(B) camp, where remarkably 

few studies have been designed to make any normative judgements of physical 

computation to begin with. This is a severe shortcoming because it ignores some 

of the central concerns of computer science: Absent a normative framework, we 

cannot address miscomputation, the verificationist-debate or account for the 

intricate correctness criteria of computer programs and software systems.  

One of the few exceptions that allows for miscomputation is Piccinini’s (2015; 

2020) functional version of the mechanistic account (cf. also Mollo 2018 and 

Tucker 2018). In keeping with the functional-mechanistic account, physical 

computation equals the transformation of some (medium-independent) 

computational vehicle in accordance with a rule. 34  Similar to (formal) 

specifications, rules determine what should be computed. Since they can be 

violated, miscomputation occurs if the computational mechanism malfunctions 

(i.e., violates the rule). In principle, this is a welcome feature, for it stabs in the 

right direction for accommodating the concerns about correctness in computing 

at the abstract-physical interface.  

The crux is how these rules come about.  According to Piccinini, the rule that 

a computational mechanism should follow is determined by the so-called goal-

contribution account of teleological functions. On that account, “[a] teleological 

function (generalized) is a stable contribution to a goal (either objective or 

subjective) or organisms by either a trait or an artifact of the organism.” (Piccinini 

2015, 116). Now, despite saying that subjective goals and artifacts are considered, 

 
34 In line with Egan (2019), I take it that ‘rule-talk’ is just a different (normatively connotated) 
way of referring to acting in accordance with a model of computation. See also my elucidations 
on the mechanistic account in Appendix B. 
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most recent work on the functional-mechanistic account merely pays lip service 

to them.35  

Given its intellectual heritage, it is perhaps not surprising that the focus of the 

mechanistic account almost exclusively lies on natural systems and how they 

‘objectively’ can be the bearer of teleological functions. 36  The problem with 

focusing on physical computation in terms of natural teleology is that it 

overlooks the widely employed notion of correctness in computer science. Alas, 

how human agents bestow artifactual functions to a material computing system 

according to their desires, beliefs, and intentions to determine computational 

correctness is virtually left unspecified. The upshot of this analysis is that there 

is an imbalance regarding the assumptions underpinning the usage of 

teleological functions in type-(A) and (B) implementation. Can we sidestep this 

to glue the two different notions together? 

 

2.5.2 The Mapping between levels 

The second point of comparison concerns the different implementation relations 

at the abstract physical interface. As we have seen, type-(A)’s approach is that a 

higher LoA’s symbol structure must correctly translate into a symbol structure 

corresponding to a lower LoA.  The agreed-upon semantics determine what then 

counts as viable implementation between abstract structures, else it remains 

unclear how the different structures are supposed to correspond to one another. 

While much more can be said about the precise characterization of the semantics, 

what suffices for the present juxtaposition is that the provenience of the mapping 

f essentially hinges on the stipulations and conventions regarding the semantics 

made by the designers and programmers. Now, when it comes to the ‘bottom’ of 

the computational hierarchy, type-(A)’s previous assumption to construe 

implementation as a relation that links abstract objects to other abstract objects 

or structures no longer holds. The reason is that the abstract-physical interface 

requires a fundamentally different underlying equivalence relation – a cross-

categorical relation between abstract and physical objects.  

This is where type-(B) enters the picture and could enrich our general 

understanding of computational implementation in computer science. So, let us 

look closer at how the implementation relation is conceived in this framework by 

revisiting the SMA. According to its first clause, a mapping function f takes 

 
35 Schweizer (2019) and Anderson (2019) are notable exceptions. 
36 Typically, proponents of the teleo-mechanistic view of physical computation flash out natural 
teleology by claiming that living organisms share a set of capacities (survival, development, 
reproduction, and helping). These capacities are thought to give rise to a functional 
organization, allowing them to pursue these capacities (Piccinini 2020, 68); see also Dewhurst 
(2018) and Mollo (2018). 
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physical states and maps them onto computational states 𝑓: 𝑆𝐶 → 𝑀𝐶 . Two 

qualifications are noteworthy about this relation: First, the mapping goes from 

physical states to computational ones; if it were the other way around, we would 

engage in computational modeling. Computability theory studies models of 

computation that are distinct from computational models used in scientific 

practice. The former models are used to explore computation in its proper sense, 

while the latter models are used to simulate natural phenomena using 

computational techniques (Milkowski 2014). Secondly, the mapping we are 

concerned with is supposed to connect two different ontological domains.  

In spite of the fact that the EMAs of type-(B) literature have brought forward 

an impressive amount of literature with various constraints on the 

implementation relation f, the metaphysical nature of the mapping relation does 

typically not take center stage in the discourse of physical computation. 

Exemplary is a statement by Chalmers, stating that   

“[t]he definition of implementation does not appeal to any specific mapping 
relation: rather, it quantifies over mapping relations, which can be any function 
from physical states to formal states. I also do not know what it is for a relation 
to have metaphysical commitments.” (Chalmers 2012, 231) 

Similarly, Sprevak stresses that it is a “strategic error” to focus on the 

metaphysical nature of f (Sprevak 2018, 176).  

However, remaining silent about the metaphysical nature of the mapping 

may, at least for the current project, come with the cost of an impoverished or 

partially incomplete picture of how type-(A) and (B) implementation relate. 

 To inspect the metaphysical nature of computational implementation more 

closely, it is helpful to turn to similar cases. When realizing that we must link 

physical objects to logico-mathematical ones, one notices that what we are 

dealing with is a special instance of a much more general issue: the relation 

between mathematical objects (of computability theory) and the physical world 

– a relation raising notorious questions in the philosophy of science and applied 

mathematics (Wigner 1960; Steiner 1998). Following Contessa, I refer to the 

general issue as the bridging problem, “the problem of how to bridge the gap 

between [abstract] models and the world” (Contessa 2010, 516). Put differently, 

we need to explain the correspondence between two ontologically different 

categories – viz., how mathematical objects relate to the physical.  

Trying to solve the issue quickly leads to quite a technical territory that would 

hamper the current discussion. For the sake of clarity, I opted to discuss the 

general idea here and shift an in-depth discussion into Appendix B instead. Very 

roughly put, the important point for now is that virtually all contemporary 

solutions to the bridging problem appeal to a mapping between mathematical 

and physical structures. However, one of the main issues with this ‘mapping 
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view’ 37   is that ordinary functions only obtain between the domains of set-

theoretic structures – yet physical objects are not set-theoretic structures. Thus, 

without further qualifications, maintaining that morphisms obtain between 

(abstract) mathematical structures and physical objects amounts to a category 

mistake (e.g., Frigg 2006, 55; van Fraassen 2008, 237f; Vos 2022). To put a long 

story short, a solution to the bridging problem requires an account of how 

material systems can offer set-theoretical structures.  

However, it is wide consensus that this task is all but straightforward. Bueno 

and Colyvan, for instance, remind us  

“Put simply, the world does not come equipped with a set of objects (or nodes or 
positions) and sets of relations on those. These are either constructs of our theories 
of the world or identified by our theories of the world. Even if there is some 
privileged way of carving up the world into objects and relations […], such a 
carving, it would seem, is delivered by our theories, not by the world itself. What 
we require for the mapping account to get started is something like a pre-theoretic 
structure of the world (or at least a pre-modeling structure of the world).” (Bueno 
& Colyvan 2011, 347). 

Can we overcome the structure generation problem concerning the levels 

employed in type-(A) and (B) implementation? 

 

2.6 A Unified Theory of Agential Implementation 

After surveying the implementation landscape and providing an in-depth 

analysis, two problematic instances still need to be addressed in aligning type-

(A) and type-(B) implementation. On the one hand, there needs to be more 

consistency between the normative features determining correctness. On the 

other hand, the bridging problem called the philosophical plausibility of a 

naturalized implementation relation into question. In order to advance, we need 

an explanation of how we can account for a physical system’s 

mathematical/computational structure.  

The remainder of the chapter proposes a remedy to this situation in the form 

of a unified theory of implementation in two steps: First, I submit that (A) and 

(B) can be unified by bringing them into conversation with the conceptual 

machinery of the literature on material models and scientific representation. 

Second, based on these insights, I sketch a use-based account of implementation. 

Since the common denominator among these findings is the stipulations and 

conventions of (human) agents, the novel framework traces different agential 

 
37 Sometimes, when thinking of models and representations in terms of such a formal relation 
between structures (e.g., a mapping), the issue is also referred to as the ‘mapping view’ (Pincock 
2004, Batterman 2010, Bueno & Colyvan 2011). 
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involvements in terms of dependency relations. Accordingly, the result is a 

Unified Theory of Agential Implementation (UTAI). 

 

2.6.1 Material Models as a remedy 

According to what Giere (1999) calls the representational conception, scientific 

models are used by scientists for the purpose of representing some (real-world) 

system, where the latter is commonly referred to as target system T. Scientists use 

models and their representational capacities for drawing various sort of 

conclusions about the target system (e.g., explanation, prediction, confirmation); 

a practice known as surrogate reasoning (Swoyer 1991). Accordingly, scientific 

representation is characterized as the relation f between a model M and its 

dedicated target system T, such that 𝑓: 𝑀 → 𝑇.  

The reason why I propose the representational conception as a remedy is 

twofold: First, representations can be faulty and misrepresent the target. While 

scientists may allow for minor deviations up to some previously defined 

threshold, larger differences count as misrepresentation (the model does not do 

what it should do). This aspect will be crucial to account for the analogous case 

of miscomputation and correctness considerations discussed in §2.5.1. Second, 

both models and targets come in various ‘ontological flavors.’ On the one hand, 

one typically distinguishes between (i) material and (ii) theoretical models.38 On 

the other hand, target systems are either (a) real-world systems or (b) 

hypothetical scenarios.39 Consequently, various modeling scenarios result from 

the possible combinations of (i)-(ii) and (a)-(b). As such, the modeling relation – 

like the problem of implementation – may also be a special instance of the 

bridging problem.40 More precisely, the crucial commonality between scientific 

representation and implementation of computation is that both essentially 

require a mapping that relates mathematical structures to a physical substrate.  

Given these similarities, one may solve our previously identified issues 

regarding teleological function ascription and the bridging problem by bringing 

one domain (modeling) into conversation with another (computing). Put 

differently, the idea is that what counts for scientific models, mutatis mutandis, 

 
38 The term model denotes a heterogenous collection of things – models come in the form of 
descriptions, as material objects, or as abstract (mathematical) objects; for an extended list of 120 
types of models, see (Frigg 2022, Ch. 16). 
39 Weisberg, for instance, investigates the case of hypothetical modeling (2013, 121-134), where 
models may represent nonexistent targets, possibilities, or impossible targets (e.g., models 
where the targets are perpetual motion machines or multiple sexes populations). 
40 For instance, assuming that M is a theoretical model relying on mathematical structure as a 
representational vehicle, one needs to specify how the parts of the structure are mapped to the 
physical make-up of the target system. Put differently, the representational relation f needs to 
bridge the abstract-concrete dichotomy. 
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applies to computing devices. In fact, in some cases, the distinction between what 

counts as a scientific model and what counts as a computer is diminishingly 

small. Take, for instance, Frigg & Nguyen’s (2018) example of the Philips-Newlyn 

machine. The machine uses the flow of water through a specifically designed 

pipe system to model the distribution of commodities in a national Keynesian 

economy. However, also known as ‘MONIAC’ (Monetary National Income 

Analogue Computer) the device can equally well be regarded as a special-

purpose liquid-based analog computer. Instead of representing a selected 

economic scenario, the MONIAC can, in principle, be used to compute (a small 

set of) differential equations.41 

Of course, these similarities are not restricted to the flow of water. Overall, 

many different physical properties can be used as representational- or 

computational vehicles, respectively. For instance, when surveying the material 

variety of such vehicles, Sterret notes that  

“[…] electronic circuits were used as analogues of anything that could be 
formalized as a solution of certain classes of differential equations, and ever more 
sophisticated machines were developed to deal with ever larger classes of 
differential equations and problems. Other examples of analogues used for 
computation are mechanical analogues such as the geared devices built in the 
seventeenth century, the soap bubble analogue computers invoking 
minimization principles that were used to efficiently solve difficult mathematical 
problems in the twentieth century and biological analogue computers of the 
twenty-first century such as amoeba-based computing (ABC) analogue models.” 
(Sterret 2017, 858) 

Qua models, various physical systems may be employed as representational 

vehicles for an explanation or prediction of a target system. Qua computer, one 

may use physical systems as surrogates to read off the results of a sequence of 

computation specified under a model of computation MC. The difference is that 

instead of a real-world target system, one then simply reasons about a particular 

‘hypothetical scenario,’ where the latter is characterizable by a transition function 

δ that’s compatible with a model of computation MC.   

But how does the modeling literature address the ‘structure generation 

problem’ we encountered earlier? Generally speaking, philosophers of science 

like Suárez (2003) and van Fraassen (2008) criticize naturalized attempts of 

scientific representation, namely that the mapping f between model and target 

reduces to a factual, mind-independent relation since it flies into the face of the 

bridging problem. Without answering the structure generation problem, it is 

highly contentious to defend a somehow naturally occurring mapping relation.  

 
41 I will discuss this device and how it features in physical computation in much more detail in 
Chapter 4. 
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Given that naturalized accounts about mappings fail to elucidate how and 

when such a relation comes about without explaining the assumption of some 

privileged preconceived structure, they are moot. Faced with the inadequacy of 

naturalized accounts of representation, philosophers of science nowadays 

commonly agree that scientific representation is contingent on human agents 

establishing a mapping to the intended target. The upshot is that the relation 

between model M and target T does not simply obtain ‘naturally,’ i.e., without 

the decisions, conventions, and stipulations of some scientists. Often, this type of 

correspondence is called a three-place relation because it entails (i) a model, (ii) a 

target, and (iii) an epistemic agent. In consequence, van Fraassen, for instance, 

emphasized the necessary involvement of human agents in formulating his 

Hauptsatz of scientific representation, as “[t]here is no representation except in the 

sense that some things are used, made, or taken to represent some things as thus or so.” 

(van Fraassen 2008, 23).42  

In recent years, several scholars have (independently) turned considerations 

about scientific models and representation like these into an approach to physical 

computation (e.g., Care 2010; Horseman et al. 2014; Fletcher 2018;  

Papayannopoulos 2020) –  something which will be scrutinized much more fully 

in Chapter 4. For now, it suffices to say that this accumulation of research 

suggests that material models and computers are (fine-tuned) physical objects 

employed by human agents as epistemic tools for their specific context-dependent 

purposes. In what follows, I will present the underlying assumptions and 

features of this way of seeing things.  

 

2.6.2 UTAI and its features 

At last, let me introduce the theory that enables the unification of type-(A) and 

(B) implementation: UTAI.  Figure 2.4 provides a schematic depiction of UTAI 

and its most important features – the implementation of a model of computation 

MC at the abstract-physical interface through the execution of (one of the traces) 

its corresponding transition function δ.  In what follows, the various elements of 

the graphic are discussed in detail.  

First, the abstract-physical interface is illustrated by the dotted line 

horizontally running through the diagram. In comparison to Fig. 1 (b), higher 

LoA and the full computational hierarchy are implied to be represented in the 

‘abstract realm’ (upper half above the dotted line), where one deals with symbolic 

implementation (type-(A) implementation). In line with the SMA, the 

equivalence between the state transitions of MC (specified by a transition function 

 
42 Many of these conclusions drawn in the philosophy of science coincide with the technical 
literature from the philosophy of applied mathematics (cf. Appendix B). 



2 Towards a Unified Theory of Implementation 
 

42 
 

δ) and the evolution of physical states of a putative computing system SC is 

pictured through a diagram as, e.g., found in Cummins (1989) or Ladyman (2009) 

(cf. Fig. 2.2). The labels (1) – (3) correspond to the assumptions of scientific 

representation/modeling-based theories of computation:43 

 

Fig. 2.4: Schematic depiction of a unified theory of agential implementation 

(UTAI). 

Assumption (1) Implementation is based on a representation relation f between the 

designated physical states of the putative computing system and the abstract 

states transitions defined by δ of a computational formalism MC (cf. Ladyman 

2009, Horseman et al. 2014, Fletcher 2018, Papayannopoulos 2020), such that 

𝑓: 𝑆𝐶 → 𝑀𝐶  holds. Analogous to the case of material scientific models, where 

certain features of the model act as a representational vehicle to represent 

(features of) a target system, implementation comes about when certain 

(selected) features of a putative computing system act as a computational vehicle 

to compute a function. Note that this development is a departure from the EMA, 

in as much as scientific representation/ implementation can no longer be deemed 

a binary relation, but a ternary one, because it is only due to the use/stipulations 

of some agent that the linkage between model and target arises in the first place.  

Assumption (2) The starting state mi (i.e., the input state) of MC must be related 

to some initial starting state of the material system sj. Likewise, the output state 

mi+1 requires decoding it from sj+1 by reading it off or performing some type of 

measurement. The rightwards-pointing black arrows in the diagram, labeled by 

δ and SC respectively, stand for the transition of the computational states mi and 

 
43 In as much as features (1)-(3) can already be found in the previous literature, UTAI is 
indebted to their respective insights. 
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mi+1  and the temporal evolution of the computational vehicle/label bearers sj 

(both represented by the grey circles).   

Whilst maintaining that the act of encoding input-states and decoding output-

states after a computation has been argued for before (e.g., Churchland & 

Sejnowski (1992, 63)), the here advocated view is different because the acts of 

encoding and decoding are formulated in terms of scientific representation. 

Importantly then, encoding and decoding are – in line with the notion of scientific 

representation – directional (no longer isomorphisms) and require to be carried 

out by some agent or epistemic community.  

Assumption (3) Following the suggestion by Horsman and collaborators 

(Horsman et al. 2014), I argue that the notion of scientific representation enables 

us to address inaccuracy as a form of miscomputation.44 Simply put, the idea is 

that one may introduce an acceptable margin of error ε between the output states 

of MC and output states of the physical system. If the chosen computing system 

is completely reliable (i.e., run without errors), each computation cycle yields 

perfect equivalence between the state transitions of MC and the physical 

evolution of the system; there is no inaccuracy.  However, complete reliability is 

a pipe dream. Real-world scenarios typically do not behave in a perfectly 

preconceived idealized manner. As a result, the abstract series of computation 

and the physical outcome only coincide up to ε.45 Depending on the chosen value 

of error interval ε, the same process could count as correct computation in one 

case and as miscomputation in another.   

While I think that (1)-(3) of the previous accounts are primarily correct, UTAI 

entails further features and more fine-grained factors. Specifically, UTAI needs 

to elucidate the involvement of and dependency on human agents concerning 

the imputation of mappings, the creation of structure, and the ascription of 

teleological functions. To uncover the intricate interrelations between human 

agents and the different, UTAI explicitly tracks these dependency relations,46 

denoted by (a)-(c), between human agents (represented by the black mannequin) 

and various elements in the implementation process. In the remainder of the 

chapter, I explain the implications of these dependency relations in detail: 

 
44 Philosophers of science commonly agree that there is at least a second type of 
misrepresentation, viz., mistargeting. Transposing this view to computation amounts to the case 
where users (accidentally) implement the wrong computational formalism. I will leave this 
discussion out for now.    
45  Once again, one can appropriate the discussion of scientific modeling, where philosophers of 
science criticized the idea that scientific representation reduces to isomorphism because it 
cannot make room for distortions.  
46  ‘Dependence relation’, here, is understood as a relation between different entities, where one 
entity is dependent on another. 
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Dependency relation (a) emphasizes the crucial involvement of human agents 

in higher LoA. It is paramount for at least two reasons: First, following the 

desires, intentions, and pragmatic concerns of the programmers, a 

‘computational problem’ is formulated. In actual programming practice, this 

typically leads to a (formal) specification, determining what is supposed to be 

achieved. The specification acts as the normative yardstick to check correctness. 

As discussed in the type-(A) implementation literature, the specification may be 

seen as an ascribed teleological function. It is necessary to provide judgments 

about correct execution and faulty behavior (miscomputation).   

Furthermore, dependency relation (a) allows for illuminating a second crucial 

involvement of human agents. After agreeing on a specification, practitioners 

may then devise an algorithm. Next, the algorithm is typically formulated in a 

suitable computational formalism MC (e.g., a programming language of your 

choice). The process described here roughly corresponds to the construction of 

the various LoA in the computational hierarchy (Fig. 1). The bottom line is that 

specifications, the algorithms targeted at the specific problem, the ensuing source 

code, and so on are all dependent on human ingenuity. Put differently, computer 

programs appear not to be discovered; they seem to be created by human agents 

for diverse practices such as scientific endeavors, business, entertainment, and 

many more. Ignoring the agential dependence of computational artifacts bears 

the danger of unreasonably rendering the implementation of computational 

artifacts in naturalistic terms.  

Dependency relation (b) concerns the mapping f that bridges the abstract-

physical interface. Implementation may occur when agents come up with a 

structure-generating description (e.g., through information hiding) and a 

suitable mapping relating the abstract and concrete realms.  As argued at length 

in sections §2.5.1 and §2.5.2 (see also Appendix B), naturalized approaches are ill-

suited to address the bridging problem adequately. Instead, we necessitate the 

interpretational capacities of agents to overcome the structure generation 

problem. Structure generation is contingent on agents because it demands that 

specific properties/capacities of the system are selected and interpreted as 

computational states or vehicles sj.  

Furthermore, to bridge the gap between an abstract model of computation 𝑀𝐶   

and a concrete computing system 𝑆𝐶 , a mapping relation between the two is 

eventually needed. Such a relation calls for the stipulations of human agents. 

Users impute their chosen computational formalism onto the putative physical 

computing system. The material system can then be used as an epistemic tool, 

i.e., as a surrogate to carry out the intended series of computations determined 

by the previously created program.  
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Lastly, following these considerations, the implementation relation 𝑓: 𝑆𝐶 →

𝑀𝐶 bridging the abstract-physical interface (represented by the horizontal dotted 

line) is no longer conceivable as a mere binary relation. Instead, f is a ternary 

relation – because it necessarily depends on the stipulations of agents – 

characterized by a representational quadruple 〈𝑚𝑖, 𝑓, 𝑠𝑗, Agent〉.  

 

Dependency relation (c) characterizes the physical interactions of the human 

agent(s) with the putative computing system as epistemic tool. Ideally, a 

computing system is not only sufficiently reliable for repeated executions but 

also reconfigurable. Physical reconfiguration is needed to reprogram the 

computing system ultimately. The mere imputation of a different model of 

computation 𝑀𝐶  onto the very same unchanged structure is insufficient for 

implementation. The underlying physical setup from which the structure was 

generated must also change; otherwise, it will result in a mismatch. So, what we 

require from a programmable system is that a different starting state would have 

led to a different but corresponding output state. Put differently, to be re-

programmed, thus calls for a counterfactual explanation.47  

The notions of modeling and scientific representation that underpin UTAI 

allow incorporating the crucial constraint that counterfactual claims about the 

computing system hold. In the context of scientific modeling, Bokulich (2011, 39), 

for instance reminds us that for a model M to effectively explain a given target 

phenomenon T, it is essential that its counterfactual structure closely aligns with 

that of T. In other words, the elements of the model should, in a loose sense, 

‘reproduce’ the relevant features of the phenomenon being explained. Like in the 

case of the EMA, the counter-factual condition rules out stipulative fiat, i.e., the 

completely unconstrained usage of arbitrary systems for computation that would 

collapse into interpretational pancomputationalism. In other words, while 

interpretation is a necessary condition, it is insufficient because the 

computational vehicles of the computing system need to behave suitably.  

 

2.7 Conclusion 

This chapter surveyed different notions of computational implementation whose 

connection has been underexplored so far. While type-(A) implementation 

concerns correctness criteria of (abstract) computational artifacts, type-(B) 

implementation addresses physical computation. The main takeaways of this 

chapter are threefold: 

 
47 N.b., this insight is virtually similar to the ones of the counterfactual/causal/dispositional 
EMAs).    
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(1) First, I clarified the implementation landscape: Despite having emerged 

from different research traditions, I showed that the different implementation 

types discussed in this chapter are not mutually exclusive. Instead, they partially 

overlap under two conditions: considering (i) designed systems at (ii) the 

abstract-physical interface.  

(2) Second, based on a subsequent in-depth comparison, I argued that type-

(A) and (B) may mutually enrich each other regarding teleological function 

ascription and bridging the abstract physical interface. This cross-fertilization is 

vital to explain the implementation of computational artifacts like computer 

programs in real-world machines. However, without further qualification, there 

remain more considerable conceptual obstacles familiar from the philosophical 

literature of teleological functions and applied mathematics. 

 (3) Third, I provided a specific way of thinking about overcoming these 

obstacles and thereby coherently aligning the two different implementation 

theories. Particularly, by bringing the implementation literature in conversation 

with the literature of scientific modeling and representation, I sketched a 

unifying framework called UTAI (unified theory of agential implementation). 

The reason why this is fruitful is that in both modeling and computing, agents 

engage in the form of object-based reasoning, where artifactual functions are 

externally attributed, and agents impute a mapping relation between concrete 

system and abstract target/program. My analysis showed that accounts, like 

UTAI, sketched in agential terms, offer the right resources to accommodate the 

main underlying assumptions of both type-(A) and (B) implementation: 

stipulated mappings, generated structures, and ascribed teleological functions. 

In sum, UTAI has the explanatory virtue of facilitating cross-talk between so far 

rather separated discourses and kinds of literature. 

In the following chapters, I will continue this analysis by focusing on UTAI’s 

three dependency relations between epistemic agents and ontologically different 

aspects of computer programs.  

 

 

 



 
 

 

3 The Problem of Creation meets 
Computer Programs 
 
The previous chapter laid the groundwork for a systematic study of the unified 

theory of agential implementation (UTAI). This framework, which identifies 

three distinct dependency relations in the implementation of computational 

formalisms like computer programs, will be examined in detail in the following 

three chapters. The idea is that tracking these relations will help us to make sense 

of the connection between the different entities gathered under the polysemic 

term ‘program.’ In this chapter, we will start by focusing on the first relation, 

which is the connection between epistemic agents and programs as abstract 

entities. 

 

3.1. Introduction  

According to a prominent view, computer programs do not appear to be concrete 

objects, yet we commonly think of them as created entities that can be interacted 

with. This is somewhat surprising since philosophical orthodoxy holds that 

abstract objects are not integrated into the causal pathway and can, therefore, not 

be created.48 Ergo, a pressing philosophical problem is creeping up:  

‘In which way can these program qua abstract objects be the products of 
our creation?’  

Unfortunately, this issue has not fully received the attention it deserves until 

now. In light of this problem, my goal in this chapter is to state more precisely in 

what sense we can classify computer programs as abstract objects. My starting 

point to unscramble the situation is to pick up the theme from the Prologue and 

rethink how lawmakers of the 1970s struggled to come to terms with classifying 

programs under patent law. Specifically, one episode sticks out: While some 

argued that they should be conceived as physical switch settings or parts of real-

world machines, others suggested classifying them similarly to novels or musical 

scores. Notably, reflection on the ontological status of (art)works has led to the 

idea of thinking of them as abstract objects (Thomasson 2006; Sanfilippo 2021). 

Throughout this chapter, I assimilate this reasoning, argue why it is a plausible 

stance toward programs, and explore its ramifications. 

 
48 The standard metaphysical view states that abstract objects exist eternally and cannot be 
created. Most philosophers understand creation as a causal relationship between the creator 
and their creation. However, abstract objects are causally inert and hence cannot enter such a 
relationship, so it is unclear what kind of process the creation of an abstract object involves 
(Mag Uidhir 2013, 11). 
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In a nutshell, the underlying rationale is this: Many scholars from the 

philosophy of art, metaphysics, librarianship, and literary studies consider their 

corresponding (art)works abstract because they cannot be identified with a 

concrete instance; they appear to (simultaneously) exist in different media 

without being reducible to any specific token. Importantly, most participants of 

the debate understand ‘abstract’ here in the same sense as the abstract-concrete 

dichotomy (Falguera et al. 2022) that is relevant to us, i.e., as non-spatio temporal 

entities, as appealed to in the Introduction and the previous chapter. On the face 

of it, these so-called repeatable artworks thus face the same dilemma as programs: 

The crux is that the premise about the existence of art-abstracta stands at odds 

with the plausible assumption that these artworks, qua artifacts, are intentionally 

being created by a specific human being at a specific time and place. Typically, the 

conundrum is called the Problem of Creation (PoC). Albeit underappreciated in the 

philosophy of computing so far, I will show that many of the philosophical 

problems and solutions associated with this way of thinking about repeatable 

artworks applies mutatis mutandis computer programs.  

The main takeaway from my application of the (POC) to programs is twofold. 

On the one hand, from the perspective of the philosophy of computer science, 

my approach enables us to step outside the beaten paths of the metaphysical 

inquiry in computing and offer a new angle on the ontology of programs. On the 

other hand, from the perspective of contemporary metaphysics, my approach 

steers the debate about the ontological status of computer programs towards 

more established philosophical territory. Notably, it shows that the abstract 

nature of programs does not require the postulation of complete sui generis 

solutions (e.g., a ‘dual nature’) but must be couched along the axis of Platonsim, 

Nominalism, and Creationism.  

In what follows, this chapter is divided into five sections. Section §2 provides 

some necessary preliminaries to apply the (PoC) to computer programs. Next, 

section §3 introduces the (PoC) in more detail and outlines a taxonomy of its most 

typical responses. Thereafter, in section §4, I discuss the implications of the 

differing metaphysical frameworks when adopted to computing. Lastly, I 

conclude (sect. §5).  

 

3.2 Setting the Stage 

Before we dive into the essential philosophical details of the (PoC), I want to 

provide some initial clarifications about programs. If computer programs are to 

be the subject of the (PoC), we must have a clear grasp of (i) what one exactly 

means by ‘program,’ (ii) how they are created, and (iii) in what sense they are 

abstract. Accordingly, in Section §2.1, I will introduce an example program that 
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will be frequently referenced throughout this chapter. Following that, in Section 

§2.2, I will briefly outline how programs are created. Lastly, in Section §2.3, I will 

discuss the abstract nature of programs more formally. 

 

3.2.1 An example as conceptual laboratory 

Although relatively unproblematic in everyday life, it is a somewhat contested 

question among philosophers of computing what exactly might be meant by the 

concept of ‘program’ (Gemignani 1981; Lonati et al. 2022). With so many 

variations in the understanding of programs – regarding them as abstract 

entities, physical entities, or entities that span multiple ontological categories – 

using the term unexplicated is potentially misleading. 

However, in line with my arguments about the polysemic nature of the term 

in this thesis’ introduction (Ch. 1), I will not define programs here. Instead, I only 

rely on what I take to be a paradigm instance of a computer program written in 

a high-level programming language, as depicted in Fig. 3.1. The source code is 

written in C and, and the program uses a while-loop to find the greatest common 

divisor (GCD) of two integers. Instead of relying on a rigorous characterization 

of all computer programs, this example will act as my ‘conceptual laboratory’ in 

due course.  

To avoid any ambiguity, it is vital to note what I do (and do not) intend to 

pick out with my example. As we have seen in the previous chapter, it is common 

to think that computational systems are built in a hierarchical fashion (e.g., 

Primiero 2016; cf. Fig. 2.1). Accordingly, there are various interconnected levels 

such as specification, algorithm, source code, machine code, hardware and so on. 

Facing this ‘stratified ontology,’ we must specify on which level our example is 

located. This task is relatively straightforward: Given that the code is written in 

C, we can classify it as a well-formed set of high-level programming language 

instructions, i.e., a symbolic (type-(A)) implementation of the proposed 

algorithm in source code. 

Importantly, this characterization allows us to distinguish our C program 

from its neighboring upper and lower LoA. Regarding the former, the higher 

LoA, it is important to distinguish our program from the GCD algorithm it 

implements. Despite hinting at the difficulties of defining the term ‘algorithm’ in 

the Introduction (see also Appendix A), I use ‘algorithm’ here in a sense similar 

to Newell: 

“An algorithm is more abstract than a program. Given an algorithm, it is possible 
to code it up in any programming language. You might think that a program 
should be something like an algorithm plus implementation details. Thus, you 
examine the text of a purported algorithm-if you find an implementation detail, 
you know it is a mere program.” (Newell 1986, 1029). 
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On this view, the corresponding (GCD) algorithm could have thus 

been implemented in an entirely different programming language, like Java or 

Python.  

 

#include<stdio.h> 
  
void main() 
{ 
    int a, b, gcd, remainder, numerator, denominator; 
  
    printf("Enter two integers\n"); 
    scanf("%d %d", &a, &b); 
    if (a > b) 
    { 
        numerator = a; 
        denominator = b; 
    } 
    else 
    { 
        numerator = a; 
        denominator = b; 
    } 
    remainder = numerator % denominator; 
    while (remainder != 0) 
    { 
        numerator   = denominator; 
        denominator = remainder; 
        remainder   = numerator % denominator; 
    } 
    gcd = denominator; 
    printf("GCD of %d and %d = %d\n", a, b, gcd); 
} 
 

 

Fig. 3.1: Example C program to find the GCD of two integers using a 

While-loop.49 

 

Regarding the lower LoA, we have to remember that source code in a high-

level language is rarely directly executed on a computer. It is typically translated 

into machine code using interpreters  or compilers. In each case, different 

compilers, for instance, may further optimize the resulting machine code to the 

underlying hardware. As a result, the original GCD program may fragment into 

many different lower-level implementations in different computational 

ecosystems (e.g., on a Thinkpad Carbon x1, Gen 5, with Ubuntu version 22.04 

LTS as opposed to on an Apple MacBook Air macOS Sonoma).50 

 
49 https://www.sanfoundry.com/c-program-gcd-two-numbers-recursive-euclid-algorithm/#c-
gcd-program-method-4 
50 I thank Liesbeth De Mol for pressing me on the matter and suggesting these particular 
example implementations. 
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Moving forward, it is thus crucial to bear in mind that my investigation 

throughout this chapter is exclusively limited to the symbolic level in which the 

source code is written (this comes close to what I call the Notational View in 

Appendix A).51   

 

3.2.2 A brief sketch on how Programs are created 

Philosophers standardly define ‘artifacts’ as objects made or produced for a 

specific purpose (Hilpinen 2017). Typically, when creating a (material) artifact, 

the makers intentionally modify one or more objects until it becomes the desired 

end product (Hilpinen 1993, 165). General actions of artifact-making include 

separation, reshaping, and assembly using different techniques or routines 

(Hilpinen 2017). As programs are intentionally produced entities, we can 

consider them sub-types of artifacts (see Appendix A). 52  However, since the 

working assumption of this chapter is that it is plausible to assume that programs 

are abstract objects, it is essential to take a closer look at their production process 

and ask: How exactly are programs created?  

Given the ubiquity and importance of programming in modern society, 

accounts documenting the production of programs run the gamut –  including, 

but not limited to, historical accounts such as Grier’s (2013), pleas for various 

programming styles like structured programming (Dijkstra 1968), hundreds of 

textbooks that teach students basic programming techniques (Abelson et al. 

1996), project managing frameworks from the realm of software engineering that 

elucidate the do’s and don’ts of (large) labor-intensive projects  (Brooks 1978), 

and ethnographic studies (Button & Sherrok 1995).53   

Commonly, the story about the creation of programs goes something like this:  

At the start, the aim is to create a specific program. However, in the realm of 

computer science, we cannot simply transfer our desires and intentions to our 

computers. We must first translate them into a computational formalism that the 

machine can execute. This typically involves writing source code in a high-level 

programming language. The programming process is multi-step, error-prone, 

and often laborious. To stay on course with our original goal, we ideally create a 

specification. Specifications serve as the ‘blueprint’ for producing small and 

complex large-scale computer programs. In other words, they define what the 

 
51 Although I have only provided a small programs, I think that, without loss of generality, 
many of this chapter’s results apply mutatis mutandis to larger or even large-scale programs. 
52 As will become clear throughout the chapter, Platonists about programs (if there are any such 
persons) may argue that assuming that programs are produced is to throw out the baby with 
the bath water. Instead of creating programs, a Platonist would suggest that we somehow 
‘discover’ them. 
53 This list represents merely a fraction of the abundant sources available. However, I do believe 
that it is enough to convey the general message of the current subsection. 
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program is supposed to do (Primiero 2020, 208). Therefore, understanding 

specifications is crucial for comprehending the process of creating programs. As 

Turner (2011, 135) points out, ‘programming is not an aimless activity’. 

At a first stab, we may turn to Cantwell Smith’s characterization of program 

specification   

“A specification: a formal description in some standard formal language, 
specified in terms of the model, in which the desired behavior is described. [...] 
[A]ll it has to do is to specify what proper behavior would be, independent of 
how it is accomplished. For example, a specification for a milk-delivery system 
might simply be: “make one milk delivery at each store, driving the shortest 
possible distance in total”. That’s just a description of what has to happen. [...] 
Specifications, to use some of the jargon of the field, are essentially declarative; 
they are like indicative sentences or claims (Smith, 1985, 20).” 

As rightly pointed out, specifications are often formally written; think of logical 

notations like Z, B, and VDM. However, Cantwell Smith’s definition is too strict, 

as it limits the notion of specification to a formal description of our original 

problem. While a complete formalization of the specification is desirable, it is not 

always practically achievable.54 In a more recent paper, Turner (2011) reminds us 

that specifications can take several non-formal forms such as natural language 

description or graphical representation. That is why Duran clarifies 

 “Computational practice has shown us that specifications cannot be fully 
formalized. Rather, they must be conceived as ‘semi-formal’ descriptions of the 
behavior of a target system. By this I mean that formal as well as non-formal 
descriptions coexist in the specification. In other words, mathematical and logical 
formulae coexist with documentation, instructions, and other information 
written in plain English.” (Duran 2018, 41) 

Regarding my small exemplary program, one may imagine where its 

specification was informally given as A program written in C to find the greatest 

common divisor of two integers using a While-loop.55 Depending on one’s skill level, 

it should be a simple routine for a trained programmer to transform this 

rudimentary specification into something like our exemplary program.56  

Although my example program is simple, its creation process exemplifies a 

pattern that underlies many successful creations of programs written in (high-

level) programming languages, I take it as sufficient evidence to support this 

chapter’s working hypothesis that programs are creatable. 

 

 

 

 
54 My simple example program in Fig. 3.1 is an exception.  
55 For a formal specification, see sect. §2.5.1 (Ch. 2). 
56 For a more detailed discussion on the functional specification of a program implementing the 
GCD, see (Turner 2018, 44-47). 
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3.2.3. In what sense Programs are Abstract: The Physical Object Hypothesis 

Why and in what sense can programs be conceived as abstract objects? In the 

introduction to this chapter, I already informally discussed potential answers. I 

wrote that ‘abstract’ refers to the metaphysical category determined by the 

abstract-concrete distinction and (hence) signifies being none spatio-temporal. 

Specifically, I invoked an argument from analogy based on repeatable artworks. 

Researchers from various disciplines consider repeatable artworks abstract 

because they cannot be plausibly identified with an individual copy. I will now 

adopt this reasoning to computer programs. 

To present these thoughts more precisely, it is helpful to frame them in a more 

formal framework. In the philosophy of art, the problem at stake is frequently 

discussed under the name of the Physical Object Hypothesis (POH). Adapted from 

Mag Uidhur (2013, 8, fn. 4), the reasoning of the (POH) can be summarized as 

follows,  

Physical Object Hypothesis (POH):  

(POH)1 There are such things as artworks.  

(POH)2 Artworks are either repeatable or non-repeatable.   

(POH)3 Repeatable artworks cannot be coherently construed as concreta.  

(POH)4 So, if there are such type of artworks, then those artworks must be                                           

abstract objects. 

(POH)5 There are such artworks.  

(POH)6 So, there are such things as artworks that are abstract objects.  

In the philosophy of art, there seems to be general agreement that reasoning 

along the lines (POH)1 to (POH)6 must be taken seriously.57  

However, what exactly are repeatable artworks, and why can’t we construe 

them as concrete objects? The common belief is that physical objects of the same 

sort are different only if they do not occupy the same spatiotemporal location. 

Now, when it comes to repeatable artworks however, the relevant identity 

criteria are distinct for they can be in different spatiotemporal locations. As 

Levinson summarizes, 

 “Philosophers have long been puzzled about the identity or nature of the art 
object in nonphysical arts, e.g., music and literature. In these arts—unlike 
painting and sculpture—there is no particular physical ‘thing’ that one can 
plausibly take to be the artwork itself.” (Levinson 1980, 5) 

 
57 Wollheim (1968) and Wolterstorff (1980) are prominent examples; for an overview of the history 

of the ontology of art, see Livingston (2008). For a survey of similar conclusions in other 

disciplines, see Sanfilippo (2021).  
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Put differently, unlike sculptures or paintings, repeatable artworks are 

characterized by their inability to be singled out by specific/individual copies. 

Not only can they survive changes in their material support, but they could also 

have been made of different materials. Repeatable artworks are modally flexible 

with respect to the matter they are made of. In the wake of these conclusions, 

most scholars working on the ontology of artworks agree that the (POH) hence 

calls for an investigation into the metaphysical nature of such art-abstracta.  

Now, I submit that programs in the sense of the one introduced a few pages 

ago (sect. §2.1) also violate the (POH) and must, therefore, also be understood as 

abstract objects. Although programs undeniably differ from repeatable artworks 

in many important ways, 58  they share the feature that’s crucial for the 

applicability of the (POH) – repeatability. Let me unpack the reasoning behind 

this claim to make sure that the argument holds; it essentially hinges on two 

observations:  

The first (and more straightforward observation) is that nothing in the logical 

structure of the (POH)’s argument depends on ‘artworks’ per se. In principle, one 

may plug in any other kind of entity ‘X’ as long as all of the six propositions 

equally apply to the entity chosen. Importantly, in our case, we modify the (POH) 

for our purposes and fill in the term ‘computer program.’ Second, in order to 

assert that programs are abstract in the relevant sense, we need to make sure that 

they indeed conflict with the modified (POH). For so doing, it is vital to look at 

the second premise (POH)2, according to which programs are either repeatable 

or non-repeatable.  This leads us to the question – in what sense are programs 

repeatable?  

To answer this question, it is chief to note that ‘repeatability’ in this context is 

the capacity of an entity to have multiple instances.  Admittedly, ‘repeatability’ 

is not in the standard computer science vocabulary. Instead, it is customary in 

the philosophy of (computer) science to speak of multi-realizability. ‘Multi 

realizability’ is an influential notion in the philosophy of mind (Bickle 2020) and 

is frequently employed in the discourse on physical computation (Milkowski 

2016).59 In the context of computation, multi realizability then expresses the idea 

that many distinct physical systems can implement the same sequence of 

computations; they are so-to say, repeatable. As Duncan aptly summarizes  

 
58 It is important not to misconstrue programs as artworks (though some programs might be). 
59 In fact, as we have seen in my discussion on type-(B) implementation in the previous chapter, 
it is the multi-realizability of physical computation that is thought to give rise to the so-called 
triviality arguments. Since physical computation is not bound to a specific substrate, it can be 
realized in many physical systems. Very roughly put, this versatility makes it difficult to draw 
the boundaries between systems that compute and those that don’t (the problem of extensional 
adequacy). 
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“A software program, similar to a novel, is a generically dependent entity. A 
particular software program does not depend on a particular independent entity 
(such as a particular DVD or flash drive) in order to exist. Rather, a software 
program exists as long as it is borne by some independent entity. For example, if 
you destroy my DVD of Microsoft Word, Microsoft Word (the software program) 

does not cease to exist.” (Duncan 2014, 38) 

Now, none of this should strike us as controversial. After all, everything I said 

so far is basically contemporary philosophical jargon for expressing that 

programs – in the textual sense – are portable and frequently have copies. In fact, 

one of the main points of developing high-level programming languages was to 

develop a notational scheme decoupled from the underlying machines' 

idiosyncrasies and make them portable (see Appendix A, Notational View). As 

such, it does not make sense to speak of the location of a program. Just as there 

can be many copies of the novel Sherlock Holmes, there can, e.g., be many 

implementations of our textual example program. 

 

3.2.4 Taking Stock 

In order to apply the (PoC) to computer programs, we need to know what we 

mean when we talk about programs and in what sense they are artifacts whilst 

simultaneously thinking about them as abstracta. In line with these demands, 

this section introduced a simple program as our conceptual laboratory (§2.1), 

described how they are created, and discussed how the well-known (POH) from 

the philosophy of art licensed us to think of programs as abstract (sect. §2.3). 

So far, I have only introduced the (PoC) informally and in bypassing. In the 

next section, I will flesh out the issue more rigorously. 

 

3.3. The Problem of Creation  

The Problem of Creation (PoC) is a philosophical problem from the philosophy 

of art originally pertaining to works of literature, musical compositions, and 

fictional characters (Deutsch 1991; Cameron 2008; Irmak 2020). In recent years, 

the problem’s scope has successfully been extended to other metaphysically 

puzzling entities, such as scientific theories (French & Vickers 2011; French 2020). 

My goal in this section is to introduce the problem in general terms and provide 

an overview of its potential answers. The purpose of this presentation is that it 

will be helpful in eventually applying the (PoC) and its ramifications to the realm 

of computing.   

So here it is. When referring to the entity under scrutiny as X, the pattern of 

reasoning of the (PoC) takes the following form:  
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The Problem of Creation (PoC):  

 X1: Xs are abstract objects (POH). 

X2: Xs are created. 

X3: Abstract objects cannot be created.  

At first sight, there are good reasons to accept propositions (X1)-(X3) individually, 

as all of them appear perfectly well-founded. The first proposition, (X1), hinges 

on the validity of the (POH) that we previously discussed in sect. §2.3. In other 

words, as long as the (POH) holds for whatever we plug in for X, X is an abstract 

object in the sense that it is causally inefficacious. 60  Regarding the second 

proposition, (X2), creation is typically regarded as a causal activity. On this view, 

we are causing X’s existence. With this in mind, the last proposition, (X3), asserts 

that abstract objects (i.e., objects lacking spatiotemporal location) cannot be 

created, since it would require a causal process between an agent and a spatio-

temporal entity. 

However, the three propositions are mutually inconsistent. This paradox has 

sparked substantial debate for many years, leading to the question of which 

proposition of (X1)-(X3) we are willing to reject. Accordingly, three major options 

can be identified:  

1. Platonism 

2. Nominalism 

3. Creationism 

In a nutshell, each of these three positions is the result of rejecting one of the 

(PoC)’s three propositions (X1)-(X3).  

In what follows, it is vital to understand the metaphysical implications of each 

of them because, as I will argue, they apply mutatis mutandis to computer 

programs. Accordingly, each option will be mapped out in the separate 

subsections (§3.1) to (§3.3). Since the following three positions can be discussed 

on a general level (i.e., pertaining to a general metaphysical doctrine) and in 

particular subdomains (mathematics, aesthetics, music, etc.), there is a 

tremendous amount of literature to keep track of. To do justice to these different 

options, it is worthwhile to illuminate the relevant details. While this may appear 

as getting sidetracked too much into the philosophy of art, this ‘detour’ will turn 

out to be helpful for identifying the corresponding notions for computer 

programs. 

 

 

 
60 The reasoning here is that most accounts of causation assume the relation between cause and 
effect to be a spatiotemporal relation in the realm of concreta. 
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3.3.1 Platonism  

Platonism is the view that posits the existence of abstract objects, which are non-

physical and non-mental entities that exist outside of space and time. Under 

contemporary Platonism, abstract objects are unchanging and entirely causally 

inert, i.e., they cannot physically interact with other objects (Balaguer 2016). 

Accordingly, abstract objects’ existence is deemed mind-independent and does 

not crucially hinge on us. As such, Platonism is one of the potential answers to 

the (PoC): In order to resolve the paradox, Platonists endorse that there are 

abstract objects (X1) and that they cannot be created (X3), while denying, that X 

is created (X2). Put differently, the view advocates that abstract objects are not 

created but exist independently of us.   

Philosophers have applied this metaphysical view to a wide array of things 

that people have considered to be abstract objects: Logico-mathematical objects 

like numbers, propositions, universals, words and sentences, fictional characters 

like Donald Duck and Sherlock Holmes, and repeatable artworks like novels and 

musical compositions. In principle, endorsing Platonism does not require one to 

be a Platonist about this entire list of objects. In other words, one can follow a 

piecemeal approach and be a mathematical Platonist but favor non-Platonist 

proposals when it comes to fictional characters or computer programs.  

Accordingly, there may be different reasons to maintain a Platonistic outlook 

towards different entities X. For instance, some philosophers have defended 

mathematical Platonism due to mathematics’ essential role in science. 61 

Especially Putnam (1971) and Quine (1976) argued that we should believe in the 

existence of abstract mathematical entities because of mathematics’ 

indispensability in the empirical science. In the literature, the argument is known 

as the ‘Quine-Putnam indispensability argument’ (Colyvan 2001b; Liggins 2008; 

Colyvan 2024).62 

Besides that, some philosophers consider, e.g., works of music to be abstract 

objects and endorse a form of musical Platonism (Kivy 1983; Dodd 2000; Dodd 

2002; Dodd 2007; see Kania 2013, 198-205 for a summary of contemporary 

musical Platonism).63 In this vein, Dodd, e.g., contends that musical works are 

abstract eternal types, where the latter correspond to sound structures that we 

can discover. Musical Platonism (and Platonism in general), hence denies musical 

works (and many other abstract objects) the status of artifacts. As a response, the 

composition of a musical work cannot be seen as an act of creation but instead 

 
61 There are many different versions of mathematical Platonism (Bueno 2020, 92; Linnebo 2024). 
62 Despite the name, the Quine-Putnam argument differs from Quine’s and Putnam’s individual 
positions. I will not delve into the details and plausibility of the overall argument here. 
63 Similarly, Richard Wollheim (1968) argues that literary works are types of which copies are 
tokens. 
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should be understood as a ‘creative discovery’ where composers bring to light 

something already ‘there’ (Dodd 2000, 427-434). So, whenever someone (or 

something) produces, say, a melody m, they produce a token of the type (i.e., a 

‘melody m sound structure’). N.b. though, when considering non-mathematical 

candidate abstract objects, we arguably lack any comparable indispensability 

argument that would warrant ontological commitment to them. Musical 

compositions or fictional characters are different from the kind of things that are 

indispensable to our best scientific theories. 

Moreover, unlike the discovery of mathematical proofs or theorems (which 

can go wrong), Beethoven could not have made a mistake with his ‘discovery’ of 

the Archduke Trio (Sharpe 2001). As French (2020, 102) remarks, musical 

compositions thus seem to be conceptually dependent on their creative act in 

such a way that the process could not lead to anything other than the work. 

However, there is no such dependence when it comes to the discovery of 

mathematical proofs. Put differently, while mathematicians can devise a flawed 

mathematical proof, it is questionable whether a musical composition can be 

wrong.  

The point of contrasting these different forms of Platonism is that the view 

may be corroborated – or argued against – by differing arguments pertaining to 

specific entities. These considerations are essential to remember when turning 

our attention to computer programs.  Before moving on to the next answer of the 

(PoC), I must still mention one of the main points of contention of all forms of 

Platonism – the process of discovering abstract objects. While Platonists see it as 

a benefit not having to account for the creation of abstract objects, the flip side is 

that it poses a challenge of explaining how we can know of and discover these 

objects.  

In the philosophy of mathematics, some aspects of the issue are discussed 

under the label of the Benacaref Problem. The problem is named after Paul 

Benacerraf, who first presented it as a challenge for mathematical realism in his 

‘Mathematical Truth’ (Benacarref 1973). The problem has been widely influential 

and is thought to generalize to Platonism of other abstract objects (Clarke-Doane 

2016). The argument concerns our lack of epistemic access to mathematical and 

other abstract objects. Generally speaking, epistemic access arguments start with 

the assumption that causal relations give rise to our cognitive apparatus. 64 

 
64 Benacaref formulated the argument in terms of a causal theory of knowledge. Today’s 
majority of philosophers deny that it holds in full generality. Many, therefore, resorted to 
Field’s (1980) presentation of the problem that is couched independently of any theory of 
knowledge. For the sake of the current somewhat coarse-grained presentation of the topic, I 
omit the details for now; see, e.g., (Clarke-Doane 2016, 20-22) and (Cowling 2017, 135-138) for 
more detailed discussion. 
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Perception, for instance, crucially hinges on the causal interaction between agents 

and the world. In so far as perception and other causal cognitive processes 

furnish us with much of our knowledge, it is difficult to envision how we might 

acquire knowledge or justified beliefs about some subject matter without 

standing in a causal connections to it (Cowling 2017, 131). Absent any further 

qualifications, this reasoning suggests that our ability to gain knowledge of 

subject matters from which we are causally isolated is moot. As such, the 

Platonist about any X should also address the epistemological challenge of how 

we can have access to X as a causally efficacious entity.  

 

3.3.2 Nominalism  

Nominalism, sometimes dubbed ‘anti-realism,’ is the second main answer to the 

(PoC). This metaphysical position rejects proposition (X1) by maintaining that a 

candidate abstract object X does not exist or turns out not to be abstract after all. 

In the latter case, we need to think of X in terms of some suitable concrete 

replacement. Put briefly, there are thus two principal flavors of nominalism 

(Kania 2013, 207-208), as one can reject the (PoC)’s first propositions in two 

different ways: 

(a)   Eliminativism: According to eliminativist theories, entities/objects X do 

not exist at all,  

(b)  Materialism: According to materialist theories, the objects X in question 

do exist but not as abstract objects 

As with Platonism, the scope of Nominalism can vary greatly (e.g., some may 

wish to eliminate only specific entities from our ontology). One of the standard 

appeals of these options is that they are thought to be metaphysically 

parsimonious as they do not posit the existence of ‘mysterious’ abstract objects. 

Although (a) and (b) bear some similarities in terms of motivation, it is helpful 

for conceptual clarity to discuss them separately. 

 

Option (a): Eliminativism 

The distinguishing claim of option (a) – Eliminativist theories – is to deny the 

existence of entity X (e.g., mathematical objects, universals, repeatable artworks, 

and so on) wholesale.65 According to an all-encompassing form of Eliminativism, 

there are only concrete objects (a shared commitment with option (b)), but none 

of them are identifiable with the abstract object in question; according to 

 
65 N.b., as with Platonism, one may choose a piecemeal approach and only endorse an 
Eliminativist attitude for specific entities. 
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particular forms of Eliminativism, we should only deny existence to specific 

objects. What are some of the strategies to motivate this view?  

One prominent line of reasoning in this regard is how mathematical 

nominalists occasionally attempt to reconstruct the usage of mathematical 

language (in science). Hartry Field’s rejection of the indispensability argument of 

mathematics is a prominent case in point. Field (1980) argues that mathematics 

is dispensable to science by exemplifying how we can avoid its usage in 

Newtonian gravitation theory.66  Often, his and other’s approaches in this vein 

are dubbed mathematical fictionalism since our mathematical statements do not 

turn out to be true (due to their not being any corresponding mathematical 

entities) (Balaguer 2023). 

Outside the realm of mathematics, philosophers with an Eliminativist leaning 

have employed similar strategies of avoiding reference to the to-be-eliminated 

abstract objects. For example, while those who wish to eliminate works of music 

from our ontology would admit that there are performances, recordings, creative 

actions of the composers, etc., they would deny that any of these can be identified 

with the musical work itself – ergo, there are no works of music.67 Note that as 

earlier in the mathematical, this conclusion raises urgent questions; if works of 

music do not exist then what exactly are we talking about when speaking of 

musical compositions? The point is that similar pressing questions generalize to 

all sorts of seemingly abstract entities X that are supposed to be eliminated from 

our ontology.  

One of the main strategies to answer these sorts of questions is paraphrasing. 

The idea can be understood against the backdrop of Quine’s criterion of 

ontological commitment defended in his influential article ‘On What There Is’ 

(Quine 1948). According to Quine, the usage of a statement containing a name or 

singular term of the form ‘There is some X’ commits us to the existence of the 

term X (or anything fitting that description).68 The idea of paraphrasing is to 

rewrite our sentences in such a way that we can eschew reference to the particular 

entity, and therefore avoid ontological commitment to it.  

 
66 Another prominent series of objections against mathematical indispensability arguments can 
be found in the work of Penelope Maddy; see, e.g., Maddy (1992). 
67 As Kania (2013) clarifies in his overview of musical Nominalism, only a few have opted for 
the elimination of musical works. Rudner’s (1950) is arguably the closest position in that regard 
(though, according to Kania, it is possible to interpret his account as Materialist). Other 
Examples are Cameron’s (2008) ‘There Are No Things that are Musical Works’ and Steven 
French’s and Peter Vicker’s work based on it (French & Vickers 2011; French 2020). 
68 Strictly speaking, Quine’s criterion only applies to theories (i.e., sets of sentences) formulated 
in first-order predicate logic that contain existential and universal quantifiers. We thus need to 
translate a sentence in question into first-order logic and then assess its ontological 
commitments based on what the translation quantifies over (Bricker 2016). 
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Exemplifying the procedure for musical works will clarify matters. According 

to the proponent of the paraphrasing strategy, to talk about (abstract) works of 

music is to merely ‘superficially’ talk about these abstract entities. While talking 

about works of music might be very useful and common practice in everyday 

life, it turns out the fundamental furniture of the world does not include such 

works. This can be made sense of by claiming that sentences like ‘There are 

musical works’ admit two systematically different kinds of uses (Dorr 2005; 

2008). According to Dorr, we may use sentences in a superficial and fundamental 

way. So, when we engage in everyday life talk about works of music in plain 

English, we are said to merely talk about matters in a superficial way. What really 

matters, though, is our ontological commitment when we speak about entities in 

a fundamental way (sometimes philosophers call this fundamental language 

Ontologese). 

Despite the claims of Eliminativists that their view is ontologically simpler, it 

requires a considerable amount of theoretical underpinning for accepting such 

philosophically thorny concepts like ‘fundamentally’ and ‘Ontologese.’ 

Additionally, one may reasonably doubt that consistent and plausible 

paraphrases can always be found for sentences involving the entity X that they 

want to eliminate.69  

 

Option (b): Materialism 

According to option (b) – materialist theories – entity X is not actually an abstract 

object but something concrete. In the case of musical works, candidate concrete 

manifestations are score copies, performances, recordings, playing records of 

musical performances, and so on (Tillman 2011, 15).70  

Analogously to the previous metaphysical views presented so far, one may be a 

materialist about some things while taking a different stance about other entities. 

Tillman aptly captures some of the alleged merits of (musical) Materialism: 

“Some of the advantages of any form of musical materialism are obvious […]: if 
musical materialism is true, there is no mystery about how a musical work can be 
created, temporally located, and hearable.” Tillman (2011, 28) 

 
Note that Tillman’s explanation applies to Materialism in general (as opposed to 

Materialism about musical compositions specifically) by erasing the adjective 

 
69 For a short version of this argument, see (van Inwangen 1977, 303-304); for an in-depth 
analysis of the problems associated with paraphrasing, see (Wetzel 2009, 53-92). 
70 Matters are further complicated because most metaphysicians distinguish between 
endurantism and perdurantism; see Appendix A, the Physical View. In line with this 
distinction, Tillman maps out the different options (Tillman 2011).  
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‘musical.’ While this sort of parsimony is generally regarded as one of the merits 

of Materialism, it does not come without challenges. 

 Most notably, Materialism typically flies in the face of our beliefs informed 

by our practices. For instance, according to musical Materialism, a musical work 

is a concrete object or event; likewise, mathematical objects like the number 3 or 

√-17 would be physical. As explained earlier when introducing the (POH), the 

decisive point is that many practitioners and philosophers of art consider (due to 

their repeatability) their works to be abstract. Now, what is the reply to this 

situation?  

In defending musical Materialism, Caplan and Matheson (2006) supply an 

answer that may be extended to other forms of Materialism. Given the (POH)’s 

insights, they also reject that a musical composition is identical to an individual 

concrete performance. Instead, the authors identify works of music with the 

mereological sum of all the performances, scores, and other concrete particulars. 

However, as Wollheim previously pointed out (Wollheim 1968, 6), considering a 

work as the totality of all its copies potentially poses problems. Equating the 

work with the class of its copies may be problematic since the former may be 

finished, whereas the latter is not (since new copies are created or old ones 

destroyed). Moreover, any proponent of such a fusion strategy needs to explain 

the relation between the alleged copies of a class; put differently, one needs to 

spell out what qualifies them as an appropriate member. 

 

3.3.3 Creationism 

The last alternative to solve the (PoC) is Creationism (sometimes also called 

‘abstract creationism’). Creationism refers to those views according to which it is 

possible to create abstract objects. In other words, creationist views embrace (X1) 

and (X2) while rejecting (X3). Similarly to the previous options, the view is a 

theoretical umbrella for a host of different proposals about different entities 

(Friedell 2021). Rather than cataloging all of them, I canvass a few sources and 

the most crucial features that typically underpin them.  One of the main 

motivations to be a creationist (about works of literature) is described by 

Deutsch, who states that   

“[…] authors do not literally discover their stories. Conan Doyle did not 
somehow find out that the proposition that Sherlock Holmes is a detective is true 
in the stories he set out to write down. On the contrary, he simply stipulated that 
this proposition is to be true in the stories. Anyone who holds that literary 
creation is not literal creation but rather literal discovery, has a great deal of 
explaining to do.” Deutsch (1991, 212) 

Deutsch’s doubts about the discovery of ‘stories’ may also apply to other kinds 

of abstract entities. Many practitioners and philosophers alike believe that (at 
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least some) abstract objects are the result of human creation. Popper (1978), for 

instance, argued that next to the world of physical states and that of mental states, 

there is a third ontological category (“World 3”) that contains abstract (cultural) 

artifacts like the American Constitution, Beethoven’s Fifth Symphony or 

Newton’s theory of gravitation. Similarly, in his ‘Creatures of Fiction,’ van 

Inwangen (1977) argues that fictional characters require a placement in their own 

ontological category (that enables them to be abstract yet created) and Searle 

(1995) notes that many cultural and institutional entities can be brought into 

existence (through the intentional act of merely representing them).  

Arguably, one of the most sophisticated frameworks in this regard is Amie 

Thomasson’s artifactual theory (Thomasson 1999). Rooted in the 

phenomenological tradition and work of Roman Ingarden (1979), the artifactual 

theory was initially developed to tackle the ontological status of fictional 

characters. Roughly put, as per Thomasson, fictional entities are contingently 

existing abstract objects – called abstract artifacts. The important thing is that 

similarly metaphysically puzzling entities like works of literature, symphonies, 

constitutions, money, and perhaps computer programs can all be characterized 

as abstract artifacts, too (since they are all abstract, created, and may cease to 

exist). 

One standardly evoked objection against her or similar proposals is that 

recognizing abstract artifacts requires an updated category system. The problem 

is that abstract artifacts do not fit into the traditional abstract-concrete dichotomy. 

Although abstract artifacts also lack spatial location, they are not timeless – they 

were created at a particular time and place and may cease to exist. As such, they 

do not fit into the realm of eternally unchanging platonic objects (Thomasson 

1999, 37-38). Hence, the challenge for the creationist is to provide an adequate 

category system (with at least one more category) for abstract objects that are 

created.71 (Based on simplicity criteria, the admission of additional ontological 

categories is too hard to stomach). 

Another point of contention concerns the act of creation. The worry with 

creating abstract objects is that there should be no causal interaction between the 

abstract and concrete, as the concrete domain is typically considered causally 

closed. In response, some abstract Creationists have suggested that the physical 

can stand in a causal relation with the abstract or have challenged the idea that 

creation is a causal process. For instance, Irmak (2020) argues that existential 

dependence (featured in the artifactual theory) allows for the non-causal creation 

 
71 The artifactual theory offers a theory of existential dependence, introducing varying degrees 
of mental and material dependence and their relation to each other. According to Thomasson, 
this idea eventually leads to a multi-dimensional ontology – a system of existential categories 
that has much less trouble hosting previously metaphysically troublesome appearing entities. 
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of abstract artifacts. While creation still involves causal interactions, the 

interactions in question are between concrete objects and/or events but not 

between the creator and the abstract object itself. All that the creation of abstract 

objects involves is the manipulation of the entities and events on which the 

existence of abstract artifacts depends. 

 

3.3.4 Recapitulation 

This section placed a magnifying glass over the (PoC) and sketched the three 

main options to solve the issue. By doing so, I shed light on what kind of 

philosophical issues we must think about and what sort of answers we can 

expect. The upshot is that none of the three previously portrayed philosophical 

positions is internally inconsistent or incoherent – each of them is a defensible 

view. However, that said, each position also faces serious objections. Thinking 

through these objections requires reflecting on broader, long-lasting 

metaphysical puzzles regarding causation, the abstract-concrete dichotomy, 

ontological parsimony, paraphrasing, and so on. The task now consists of sorting 

out to what extent these issues carry over to the realm of computing. 

 

3.4 From Art to Computing 

The earlier sections have set the stage for understanding the ontological status of 

computer programs under the (PoC) framework. Due to their multiple 

realizability, it is reasonable to consider computer programs created in high-level 

programming languages as abstract objects. Furthermore, I briefly mentioned 

that our understanding of how programs are created is supported by a wealth of 

literature on their production. Based on these initial findings, I submit that we 

can also apply the (PoC) to computer programs: 

The Problem of Creation (PoC) applied to Programs:  

 P1: Programs are abstract objects (POH). 

P2: Programs are created. 

P3: Abstract objects cannot be created.  

As I will now show, transposing the (PoC) to computing supplies us with an 

updated, metaphysically sound range of answers to my initial question about 

what kinds of (abstract) things programs could be. Having identified (i) a 

Platonistic stance, (ii) a Nominalistic stance, and (iii) a Creationist view as the 

main contenders, I now explore the plausibility of each of these options when 

applied to programs.  

 

 

 



3 The Problem of Creation meets Computer Programs 
 

65 
 

3.4.1 Are Programs Platonic objects? 

One of the main options for viewing programs as abstract objects is under the 

umbrella of Platonism. On this view, the source code of my example (GCD) 

program turns out to be a non-physical and non-mental entity existing out of 

space-time. Given the wealth of different Platonistic frameworks available today, 

the claim may have different motivations. As far as I can tell, two approaches 

have been sketched so far – an indirect and a direct one: 

The first, the indirect one, stems from a mathematical outlook on computer 

science and its objects. (I call this position indirect because it is primarily 

informed by a certain stance on mathematical objects and not directly on 

programs itself).  Due to the pervasive employment of logico-mathematical 

concepts in computer science, its practitioners may view programming as 

essentially a mathematical activity.72  Although my previous survey about the 

potential answers to the (PoC) revealed that there are nominalist alternatives 

concerning mathematical objects, Mathematical Platonism remains a widely 

embraced option.  

In a recent critical review of Turner’s Computational Artifacts (Turner 2018), 

Selmer Bringsjord essentially expressed a version of Mathematical Platonism 

about programs when arguing, contra Turner, that  

“I doubt very much that there are any artifacts of computer science. The reason is 
that the core elements of computer science are logicist, and as such are 
immaterial. As to computer engineering, well, yes, that might be a rather different 
story, but it is one we ought to ignore: we are discussing not philosophy of 
computer engineering, but of computer science.” (Bringsjord 2019, 340) 

Although, Bringsjord appears to overlook the possibility that, as per abstract 

creationism, artifacts can be abstract, his quote nicely encapsulates the fact that 

computer programs are tightly interwoven with logic and mathematics that other 

candidate abstract objects like works of literature and music are not. So, if you 

believe that computer programs are some sort of logico-mathematical entities and 

you simultaneously subscribe to Mathematical Platonism, then you are indirectly 

committed to (your preferred version of) Platonism about programs.  

The second approach, the direct one, suggests that computer programs are 

Platonic objects (without necessarily claiming that they are also mathematical 

objects). Seeing things this way comes close to having a Platonistic attitude 

towards works of literature and music encountered earlier. This view, therefore, 

lends itself to conceptual borrowing from non-mathematical theories of 

Platonsim.  One very recent case in point is the work of Begley (2024), which 

advertises a realist metaphysics of software maintenance. In clarifying his 

 
72 See my elucidation on the Mathematical View in Appendix A. 
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understanding of ‘software’ in this context, he also discusses the ontological 

status of computer programs:73 Based on Katz’s Realistic Rationalism (Katz 1998), 

in which an ontology of composite objects is defended, Begley claims that we can 

identify software “as being a set of sets of program types” (Begley 2024, 180; own 

emphasis, where we should understand the latter as “made up of algorithms, 

that is, generally, finite progressions of operation types.” (ibid.). 

In particular, he compares algorithms to so-called discourse types (informed 

by Katz’s theory of linguistic entities). Going into the intricate details of Katz’s 

approach would lead us too far astray, but very roughly put, on this view, 

algorithms are similar to novels, poems, and speeches since they are language 

expressions, too. 74  Begley, therefore, seems to suggest a Platonistic stance 

towards programs because of their similarities with these repeatable artworks; 

he thus answers the (PoC) of computer programs with the Platonist option. 

Methodologically, both the indirect and the direct Platonistic view in its 

current form leave a couple of questions unaddressed. 75  First, as with any 

Platonist theory, there is the drawback of epistemic access type arguments and 

the unintuitive result that programs are not created and cannot be destroyed; 

instead, they can be found and lost. Applied to my initial example program, one 

must reconcile how our ordinary understanding of programming as a creative 

activity is compatible with the notion that the source code depicted in Fig. 3.1 

was ‘discovered.’76 

Second, pertaining to the indirect view (that regards programs as 

mathematical objects of some sort), it remains somewhat unclear which of 

computer science’s entities in the computational hierarchy are supposed to be 

Platonic objects. While I limited my focus on a particular LoA, namely the 

program’s source code, the proponents of the indirect view might be better 

advised to maintain their Platonic stance towards algorithms. On this view, one 

could, for instance, maintain that the (GCD) algorithm implemented in our 

exemplary C-program is a Platonic object, while the source code is not.  

Lastly, regarding the direct view, providing a more precise distinction 

between programs and algorithms would be beneficial. For instance, although 

Begley informs the reader that his account is informed by the practices of 

theoretical computer science (formal program verification and computational 

 
73 In the following, I will only focus on his elucidations on programs to keep things simple. 
74 This interpretation is possible because, as mentioned earlier in the Introduction (see also 
Appendix A, the Mathematica. View), the concept of ‘algorithm’ is subject to many different 
interpretations, too. 
75 I stress ‘current form’ here, because both views have not been fully developed yet. 
76 This is essentially the concern that Bringsjord expressed in his quote about computer 
engineering. 
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complexity are explicitly mentioned), his view not only seems to equate 

programs and algorithms but also maintains that the latter are primarily 

linguistic entities. 

 

3.4.2 Nominalism about programs?  

The second main line of answers denies the existence of programs qua abstract 

objects. What exactly are the ramifications of the stance regarding programs? 

From the perspective of (the philosophy of) computer science, such anti-realistic 

attitudes are perhaps the most unexpected or implausible views. Not 

surprisingly, the most motivating factor stems from broader metaphysical 

principles, not computational ones. For example, one often-invoked argument to 

reject abstract objects is Ockham’s razor. This principle advertises metaphysical 

parsimony by stating that we should not unnecessarily introduce more (types of) 

entities to our fundamental ontology than needed. As we have seen in the 

previous section, there are two primary strategies to render the role of abstract 

objects obsolete – the eliminativist and the materialist option. Let me treat them 

in turn.  

 

Eliminating programs 

The eliminativist option seeks to deny the existence of abstract programs. Again, 

at first glance, eliminating programs from our ontology may seem preposterous 

as it completely runs against our intuition. (N.b., based on this intuition, I even 

neglected what I called primary ontological questions (POQ) at the beginning of 

my thesis and assumed that there, in fact, are programs). For instance, the very 

fact that you are reading this was made possible by various computational aids 

and computer programs. In light of these obstacles, the eliminativist thus has to 

offer an argument that shows how our currently best theories in computer 

science do not commit us to the existence of programs after all. How could such 

an argument possibly look like? 

One way to answer this question is to look elsewhere. For instance, despite 

similar initial worries about other (ostensible) abstract objects, recently, 

eliminativist-flavored approaches have gained currency both in the 

philosophical discourse of art and science. Based on the work of Cameron (2008), 

in which he defends a view that reconciles competing intuitions about the 

existence of musical works by appealing to Ontologese (the language that only 

refers to ‘fundamental’ entities), French & Vickers (2011) and French (2020) have 

formulated an analogous proposal for scientific theories. Roughly put, Cameron 

maintains that English sentences like ‘there are works of music’ are true despite 

there not being actually such works. He relies on a meta-ontological view 
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whereby ‘X exists’ can be true in English without committing us to an entity that 

is X. Following suit, French and Vickers have amended Cameron’s theory to 

accommodate scientific theories. Although, as far as I am aware, no one has 

attempted to develop this particular way of thinking about programs, it seems 

one of the most promising starting points.  On this view, one would hence deny 

the existence of abstract programs like my example C program. English sentences 

about the abstract nature of programs would hence merely be a facon de parler 

that can be paraphrased away.  

However, given the absence of a fully worked-out eliminativist framework 

for computer programs,77 it remains somewhat speculative which amendments 

this view would have to make to accommodate programs.  To start filling this 

gap, I will briefly assess the situation after discussing the materialist option. 

 

Materialism about programs 

Despite everything I have said about the abstract nature of computer programs 

in this chapter, the view that programs are material is not entirely unappealing, 

as it could resolve many philosophical concerns pertaining to the metaphysically 

troubling nature of programs. After all, many view computer programs as 

physically executable entities that are involved in the causal pathway. 

Perhaps the closest who expresses such a materialist position is Marcus 

Rossberg.  In his (Rossberg 2012), he discusses the destruction of works of art, 

including computer art. In trying to supply an ontology for programs, he states 

that  

“A computer program itself is repeatable, of course; it can run on different 
computers and at different times. In order not to jeopardize destructibility, we 
can follow our now familiar method and opt for the plausible account of 
programs (and operating systems) as equivalence classes of inscriptions. The 
inscriptions will typically not be ink on paper but electronic and on some 
computer storage device such as a hard drive, memory card, or old-school flopp 
disk. Either way, such inscriptions will be concrete, physical objects” (Rossberg 
2012, 73) 

This orientation mirrors Caplan & Matheson’s (2006) fusion strategy we 

encountered earlier. To recap, the authors maintained that musical works are not 

abstract but the composite of all musical performances. To talk of abstract works 

is to talk as if there were abstract entities (yet only such things as concrete 

performances, score copies, and so on exist). Works reduce to linguistic items – 

general names or descriptions – that serve as convenient tools to refer to certain 

 
77 Kittler (1993) is an exception. However, his essay was arguably meant to be a polemic 
commentary on how software products constrain the user instead of an attempt to eliminate 
programs from our ontology. 
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classes of concrete particulars (Goehr 1992, 16-17). In the case of a musical work, 

works are no more than extensionally defined classes of performances. 

Analogously, Rossberg suggests thinking of programs as equivalence classes 

of inscriptions. However, alas, he, or anyone else for that matter, has not 

provided the means to recognize the members of the corresponding equivalence 

class. Similar to the (potential) eliminativist project about computer programs, 

the materialist version remains, so far, in an infant stage.  

In the wake of my explorative quest of charting the consequences of the (PoC), 

let me point out some of the potential obstacles that both the here-developed 

nominalist versions need to address to present themselves as viable alternatives.   

One aspect that strikes me as worth discussing about Nominalism about 

programs is whether it would leave our understanding of physical computation 

intact. For instance, if one were to develop an eliminativist attitude towards 

programs, it would stand at odds with today’s insights of the type-(B) 

implementation literature (cf. Chapter 2), which necessitates a mapping between 

abstract computational states and physical states. Dismissing the existence of 

abstract programs not only renders the concept of mappings obsolete but also 

raises questions about an alternative characterization of physical computation. 78 

In so far as the problem of implementation is a special instance of the bridging 

problem,79 the would-be eliminativist could be well-advised to take inspiration 

from the debates about similar worries in the philosophy of mathematics. 

Roughly put, nominalists face the challenge of explaining the astounding 

applicability of mathematics in science, despite not being committed to these 

entities. Since, on this view, mathematical objects do not exist, it becomes unclear 

how referring to such entities can contribute to the empirical success of science. 

Broadly construed, there are two different kinds of answers for the nominalist 

(Bueno 2022): The first requires reformulating mathematical or scientific theories 

to avoid commitment to mathematical objects, for instance, proposed by Field 

(1980). The second one does not require the reformulation of theories; instead, it 

explains how no commitment to mathematical objects is involved when using 

these theories (e.g., suggested by Azzouni 2004). Going down either of those 

roads would thus entail a complete revision of how most theoreticians have 

thought about computational implementation until now. 80 

 
78 As Curtis-Trudel (2022) recently pointed out, so-called unificationist theories of 
implementation face serious objections in accounting for physical computation. 
79 Typically, the applicability of mathematics is spelled out in ‘mapping accounts’ that establish 
a correspondence between the mathematical and the physical (see Appendix B for an in-depth 
discussion). 
80 Of course, driven by ontological parsimony, nominalists can choose an anti-realist attitude 
towards physical computation, so none of what I said would be their concern. 
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Likewise, if one were to develop a materialist attitude about programs, one 

would also have to revise the current solutions to the Problem of Implementation. 

To recap, roughly put, the crux is how to differentiate physical systems that carry 

out computations from those that do not. Again, the reason to rethink the issue 

is that it is no longer sensible to couch the problem in terms of a mapping between 

abstract computational states and physical states; according to the materialist, 

our ontology does not entail the former but only the latter. Materialists, hence, 

need to establish a criterion to define an equivalence class of inscriptions to 

distinguish electronic inscriptions on computer storage devices, memory cards, 

or old-school floppy disks from other random physical states. For example, they 

likely do not want to include electronic states in appliances like toasters or rice 

cookers to count as inscriptions of computer programs.  

 

3.4.3. Are Programs Abstract Artifacts?  

Viewing programs as artifacts has grown in popularity among philosophically 

inclined scholars in recent years (Lando et al. 2007; Faulkner & Runde 2010; Irmak 

2013; Duncan 2014; Turner 2011; 2014; 2018; Wang 2016; Sanfilippo 2021). 81  

Today, these views arguably dominate the, albeit scattered, literature on the 

ontological status of computer programs (see Appendix A). However, perhaps 

reflecting the novelty and relatively fragmented state of the debate in general, a 

consensus has yet to be formed about which theory of artifacts we ought to 

subscribe to. Two popular conceptions stick out.  

On the one hand, there is the Computational Artifact View (Lando et al. 2007; 

Turner 2011; 2014; 2018). In the previous chapter, we encountered this view when 

discussing the different notions of type-(A) implementation. Remember – the 

takeaway was that the approach is based on the technical artifact literature. The 

latter postulates a duality between structural and functional properties, where 

the structural side is satisfied by the physical objects involved and the functional 

side by intentionality (e.g., Kroes 2012). Although technical artifacts were initially 

devised exclusively for physical systems and their causal structure, the novelty 

about computational artifacts is that they supposedly also account for abstract 

objects and their abstract structure. As Turner proposes, we can employ formal 

languages to account for a computational artifact’s abstract structure: 

“At both the functional and the structural level, computational artifacts employ 
formal languages for the expression of their functional and structural properties.” 
(Turner 2018, 29) 

 
81 See Appendix A for a more detailed summary and comparison of the positions. 
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So, while computational artifacts retain the structure-function duality, their 

structure is no longer physical but symbolic in nature. It will be useful to bear this 

last point in mind until after my discussion of the second main option. 

 On the other hand, there is the view that programs are temporal abstracta 

(Irmak 2012). In arguing that most philosophical explanations of software have 

failed to recognize its artifactual yet abstract nature, Irmak started to develop such 

a view. 82, 83 Interestingly, his account is directly informed by Thomasson’s (1999) 

artifactual theory and, thus, a bona fide example of abstract Creationism. In 

particular, he thus rejects the idea that programs are eternal mind-independent 

objects. Instead he suggests that a program is an abstract artifact, i.e., a temporal, 

nonspatial, repeatable, and a contingent entity that exist due to a certain 

purposeful creative act by one or more human agents.  As per Irmak, we should 

therefore avoid regarding programs as types (which are typically seen as platonic 

objects; cf. Begley’s (2024) position) and should not think of their implementation 

in physical systems in terms of the type/token distinction.84  

Although both views arrive at virtually the same conclusion – i.e., that 

symbolic programs like my example (GCD) one written in C are best seen as 

abstract objects that can be created – their different intellectual heritage reveals 

some crucial philosophical differences: First, the notion of abstract artifacts 

developed in the arts does not have its roots in the technical artifacts literature 

and, hence, usually does not bear any additional normative function. Put 

differently, they are not characterized in terms of the function-structure duality 

that (according to the contemporary type-(A) implementation literature) is said 

to be essential for the correctness criteria of computational artifacts. Second, 

coming back to the nature of the symbolic structures mentioned above, notice 

that the abstractness of computational artifacts hinges on the assumption that 

these formal language expressions are abstract. While we have seen throughout 

this chapter that this is a widely embraced view (particularly under Platonism 

and Creationism), there are Nominalist alternatives undermining the idea.   

Given both these shortcomings, future studies could try to merge the 

computational artifact with the abstract artifact view. In addition, it is paramount 

to note that both views have, so far, virtually remained silent about the standard 

objections against Creationism: the problem of how abstract objects can be 

 
82 In an email conversation, Irmak told me that ‘software’ may be used interchangeably with 
‘program.’  
83 The work by Wang et al. (2014a; 2014b) and Wang (2016) further refined Irmak’s original 
proposal by focusing on the identity criteria of programs in the context of code changes. However, 
as stated in the general Introduction (Ch. 1), I will abstain from delving into the debate on when 
two programs are the same.   
84 Unfortunately, no alternative approach for the implementation is suggested. 
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created and the potential costs that come with an updated ontological category 

system that is needed to accommodate abstract objects that may start and cease 

to exist. For instance, in so far as we would endorse the abstract artifact view 

about programs, we would have to adjust our standard abstract-concrete 

distinction accordingly.    

 

3.5 Discussion & Conclusion 

Coming from the UTAI framework, I began this chapter with the quest to 

illuminate how some entities under the umbrella term ‘computer program’ are 

abstract objects. Conceiving programs as abstracta then led me to turn my 

attention to the notorious Problem of Creation (PoC) from the philosophy of art. 

Since the premises of the (PoC) are jointly inconsistent, philosophers have 

developed three main lines to debug the case. Each line comes with its own 

benefits and costs. While the (PoC) presents rich philosophical material, a 

systematic overview of the tradeoffs involved in adopting Platonism, 

Nominalism, and Creationism about programs has virtually been neglected in 

the philosophy of computing. In this chapter, I address the issue directly and 

argue that the concept from philosophy or art remains effective when applied to 

computer programs. Prima facie, it is not obvious which standard options to reject 

and which we ought to favor. If the philosophy of computing, particularly the 

debate on the ontological status of computer programs, keeps growing into an 

independent enterprise, then we can expect a hefty research program to flash out 

these potentially defensible views for computer programs precisely in the coming 

years. 

Given that this reads more like the beginning than a conclusion to this 

chapter’s question, I want to close by immediately responding to a possible 

objections.  Particularly, one may object something along the following lines: 

‘Well, your presentation hasn’t solved anything – you didn’t answer the question 

you posed initially (about creating programs). All you did was raise additional 

questions. Even if all of this about the (PoC) is correct, you have now plagued us 

with even more options we need to consider. Wouldn’t it be better to narrow, 

rather than widen, the scope of options?’   

I agree that a definitive answer would be preferable (like in most 

philosophical puzzles). Yet, progress sometimes requires a step backward to 

appreciate a topic from a clearer point of view. I strongly believe that this chapter 

is a case in point. To defend this claim, let me briefly explain how embedding the 

discourse of the ontological status of computer programs in the context of the 

(PoC) can bring clarity to our discussions. 
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Primarily, the tripartite distinction of Platonism, Nominalism, and 

Creationism may act as a methodological blueprint for future studies within the 

philosophy of computing. Although I very much sympathize with Abstract 

Creationism about programs (mainly due to its descriptive adequacy of the 

relevant practice), my analysis has shown that it would be philosophically 

irresponsible to ignore the view’s vulnerability to broader metaphysical issues 

(e.g., requiring an updated category system or explanation of how abstract 

objects are creatable). In other words, the reason why I did not provide a clear 

answer as to how programs qua abstract objects are created has to do with 

metaphysics in general, not with computing in particular.85 

Furthermore, by endorsing the (PoC), the philosophy of computing can 

further mature through establishing a dialogue with contemporary metaphysical 

debates. To paraphrase what Mag Uidhur (2013) expressed, albeit in the context 

of the ontology of art – by pursuing this strategy, we can make the discourse 

about the metaphysical nature of computer programs less insular and, therefore, 

more attractive to new participants of the debate. For instance, seen through the 

lenses of the (PoC), the sui generis dual nature of view of programs loses appeal. 

Instead of positing metaphysically puzzling entities with a mixed ontology, my 

proposal allows us to frame the debate about the ontological status of computer 

programs in much more robust terms of existing debates on abstract objects. Like 

in other metaphysical inquiries, where it is customary to distinguish between 

types and tokens, universals and particulars, numbers and numerals, works and 

their instantiation, we can now more clearly distinguish between programs, qua 

abstract entities, and concrete manifestations. Importantly, this is not to say there 

is no puzzle about how these abstract objects then bridge the abstract-concrete 

dichotomy; this is, perhaps, still the significant puzzle that must be solved to fully 

grasp the ontological status of computer programs.  

As we transition to the next chapter, I will offer a novel account of the 

relationship between these abstract objects and the physical systems that ‘realize’ 

them by devising a new theory of computational implementation. 

 

 
85 In fact, some participants of the debate even believe that there is a sort of ‘stalemate’ between 
the different positions. For instance, in his work on (mathematical) Platonism versus anti-
Platonism, Balaguer (1998).  Grafton Cardwell (2020) and Friedell (2021) address the broader 
philosophical commitments 



 
 

 

4 Implementation-as: From Art & Science 
to Computing 

 
Following the UTAI framework outlined in Chapter 2, the previous chapter 

systematically analyzed dependency relation (a)—how programs on an abstract 

level are contingent on us. It is now time to explain how these programs are 

implemented in physical systems. Put differently, we must examine what relates 

the abstract and the physical. Here, dependency relation (b) becomes relevant. 

How does the implementation rely on the epistemic agents who establish and 

use these programs? 

 

4.1 Introduction 

Computability theory allows us to engage formally with computation in 

mathematical terms. However, studying computation merely formally does not 

provide any details about its physical implementation. The fundamental problem 

that any account of physical computation must answer is how the two different 

ontological domains of the formal and physical are related. In the literature, this 

is known as the Problem of Implementation (Sprevak 2018; Ritchie & Piccinini 2018). 

Solving the issue is essential for disciplines such as the foundation of computer 

science, AI, robotics, and cognitive science. As a result, a vast literature of 

potential candidate frameworks has been presented.86 Which of the proposals 

truly captures the nature of physical computation?   

In order to judge competing accounts, Piccinini (2007; 2015) presented a 

convenient heuristic to evaluate them. Five desiderata were advanced:87   

Desiderata of Physical Computation  

(1) Objectivity: An account of physical computation should make it, at least in 

part, a matter of fact whether a system is implementing a computational 

function. The intention is to align computation with scientific practice and 

scientific objectivity. 

(2) Extensional Adequacy: An account of computation should avoid triviality; 

in slogan form, it should proclaim that the right things compute (laptops 

and perhaps brains) and the wrong things do not compute.  

 
86 Some key sources that deal with (parts of) the Problem of Implementation are Putnam (1988), 
Searle (1992), Copeland (1996), Chalmers (1996), Scheutz (1999), Klein (2008), Ladyman (2009), 
Sprevak (2010), Milkowski (2013), Fresco (2014), Horsman et al. (2014), Rescorla (2014), Piccinini 
(2007; 2015), Dewhurst (2018), Fletcher (2018), Mollo (2018). 
87 I follow a slightly adjusted version of Duwell (2021) which merged “the right things 
compute” and “the wrong things don’t compute” under “extensional adequacy.”  
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(3) Explanation: The computations performed by a material system should, at 

least partly, explain its behavior and capacities 

(4) Miscomputation: Sometimes, computation goes wrong. An account of 

physical computation should account for faulty behavior.  

(5) Taxonomy: An account of computation should be able to untangle the 

different computational capacities of different systems (e.g., general 

purpose or fixed purpose; analog, digital, or quantum). 

Virtually all solutions propagate that there is an equivalence relation between the 

computational formalisms of the mathematical theory of computation and the 

putative computing system. Simply put, the idea is to establish a mapping f 

between the sequence of states of an abstract model of computation MC and the 

state transitions of a physical system S, such that 𝑓:SC→MC. However, to date, no 

account of physical computation has championed all the others.88  

This chapter contributes to the discourse by extending a promising recent line 

of research. In a nutshell, the idea is that the metaphysics of implementation bears 

notable similarities to scientific representation, as both relations rely on 

mappings between the physical and the formal. However, as we will see shortly, 

the idea still needs to be developed to its fullest. In this chapter, I respond to this 

issue by developing the novel, more detailed implementation-as framework. What 

sets this contribution apart from previous ones is that it relies on a specific notion 

of scientific representation rather than a generic one. Implementation-as is 

underpinned by the DEKI account (Frigg & Nguyen 2018), a formalized account 

of scientific representation based on Goodman’s and Elgin’s representation as 

originally developed in the philosophy of art. As I will show, the resulting 

account squares well with the standard desiderata of physical computation and 

is a viable alternative. Due to its agential involvement, it is especially suited for 

computer science practice.  

The chapter is organized into several sections: Section 4.2 describes the state 

of the art of recent research to tackle the Problem of Implementation in terms of 

scientific representation. In section 4.3, I introduce the DEKI account. To facilitate 

discussion, I follow Frigg and Nguyen in introducing their account by appealing 

to the MONIAC, a hydraulic analog computer. In section 4, I transpose the DEKI 

account’s features to the computing realm, giving rise to Implementation-as. 

Next, I evaluate this new theory of implementation against the five desiderata of 

physical computation. Lastly, I close with a brief discussion and comparison of 

Implementation-as to existing physical computation accounts. 

 

 
88 Of course, it is a viable option to take a pluralistic stance concerning accounts of computation. 
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4.2 Scientific Representation Accounts in Computing 

Scientific representations concern a wide array of phenomena. One may use 

diagrams, mathematical equations, or material objects for representations in 

science. Most generally, any representation that is the result of scientific practice 

may be deemed a scientific representation. In this chapter, we are primarily 

interested in the case of (material) scientific models and how they represent.  

To recap, in Chapter 2 we already encountered these scientific instruments, 

when proposing them as a remedy to link together type-(A) and type-(B) 

implementation. Particularly, I described how scientists use models to represent 

real-world or hypothetical systems for explanations, prediction, and 

confirmation. As such, philosophers of science typically characterize scientific 

representation as the relationship between a model M and its dedicated target 

system T as 𝑓: 𝑀 → 𝑇. What’s crucial to remember for the current discussion is 

the following: While one then may use computational methods to model or 

simulate various real-world targets, philosophers of computing warned that one 

should not confuse the ability to model a system computationally with thinking 

that it also genuinely computes. At first sight, one is therefore well-advised to be 

cautious about using modeling techniques to solve the Problem of 

Implementation. 

However, despite these worries, a new line of research proposed to couch 

implementation in terms of scientific representation and modeling. Let’s call this 

approach the Scientific Representation account (SRA). Although this research 

cluster is still relatively scattered, it differs from traditional proposals of physical 

computation because it argues that the mapping relation f explicitly needs to be 

understood as a form of scientific representation. This perspective is based on a 

combination of epistemological, metaphysical, and historical considerations. 

For instance, when developing a model of computation called L-machines, 

Ladyman (2009) suggests that physical computation might be contingent on 

(scientific) representation. Another case in point is Care’s (2010) historical study 

shedding light on the use-centric history of analog computing as modeling. 

Likewise, but from a philosophical angle, Papayannopoulos (2020) highlighted 

the conceptual commonalities between analog computers and analog models 

(when developing a notion of analog computation).  Arguably the technically 

most detailed account in that vein today is the Abstraction/Representation (AR) 

Theory introduced by Horsman, Stepney, Wagner, and Kendon (2014) and 

developed further in several publications.89 Horsman and collaborators provide 

sophisticated ‘commuting diagrams’ in virtue of the representational triple 

 
89 Horsman (2015, 2017), Horsman Kendon, Stepney, (2017, 2018) and Horsman et al. (2017). 
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〈𝑚𝑖, 𝑓, 𝑠𝑗〉, where f is perceived as some general scientific representation account, 

and mi and sj corresponding computational and physical states, respectively. 

Subsequently, Fletcher (2018), Szangolies (2020), and Duwell (2021) critically 

assessed (AR) Theory under philosophical considerations and concluded that the 

approach is a viable contender if formulated in agential terms.  

Importantly, these new SRAs reject the idea that something is physically 

computing because we can model it computationally. What the SRAs are after 

instead is the commonality of the metaphysical nature of the mappings involved 

in scientific representation and computational implementation, respectively. In 

both cases, we require a relation that links the physical and formal realms.  

However, there remains a limitation with existing SRAs: So far, they merely 

allude to scientific representation in vague or generic terms. This lack of clarity 

is problematic since there is a wide range of scientific representation accounts, 

with isomorphism accounts, similarity accounts, inferentialism, and fictionalism 

being the most prominent options (Frigg & Nguyen 2021).  Each option requires 

us to adopt significantly different or opposing metaphysical and epistemological 

assumptions. Utilizing differing notions of scientific representation can, 

therefore, lead to substantially different SRAs and understandings of concrete 

computation. For instance, if we used Suppes’ isomorphism account (2002), 

according to which scientific representation is a two-place relation reducing to 

isomorphisms between structures, the resulting account of physical computation 

would be no different from some traditional mapping accounts in the physical 

computation literature. If, on the other hand, one were to follow Cohen & 

Callender's general Griceanism approach (2006), which suggests that anything 

may represent anything else (by mere stipulation), then scientific representation-

based computation would be in danger of collapsing into (interpretational) 

pancomputationalism. So, without answering ‘Which account of scientific 

representation should we use to portray computational implementation?’ the 

development of SRA remains unfinished.  

I will set out to change this shortcoming in the course of this chapter. To do 

so, I will acquaint us with the DEKI account in the next section. This brief 

familiarization with the DEKI will be paramount for an improved SRA called 

Implementation-as. 
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4.3 Scientific Representation, Representation-as, & DEKI 

4.3.1 From Art to Science  

Despite the seeming simplicity of scientific representation’s underlying idea, 

precisely defining it is a contentious matter. One successful problem-solving 

strategy has been to seek answers in the study of art and languages. A case in 

point is the notion of representation-as, introduced by Nelson Goodman and 

Catherine Elgin (Goodman 1976; Elgin 1983). According to their theory of 

symbols, there are three fundamental ‘modes of reference’: (i) representation-of; 

(ii) Z-representation; and (iii) representation-as. This tripartite distinction stems 

from the observation that many representations represent an object as something 

else. A common pictorial example is caricatures. Take for instance the depiction 

of Winston Churchill as a bulldog.  Letting ‘X’ stand for the representing thing (a 

caricature); ‘Y’ for the thing represented (Winston Churchill); ‘Z’ stands for the 

kind of representation (a bulldog). The caricature features all the relevant 

distinctions of representation at once. First, the caricature is a representation-of 

Churchill, because it denotes the former English Prime minister. Secondly, the 

caricature is also a Z-representation, where here ‘Z=bulldog’ since it exemplifies 

the features of a bulldog. Thirdly, the caricature represents Churchill as a 

bulldog, because the bulldog features (such as being stubborn or resilient) are 

imputed to him. In the remainder of the chapter, such XYZ-triplets with their 

corresponding notions of denotation, exemplification and imputation will be 

chief for understanding the notions of representation-as and implementation-as, 

respectively.  

Subsequently, philosophers such as Hughes (1997), Elgin (2010, 2017), and 

van Fraassen (2008) appropriated the representation-as conception to the 

scientific realm. In what follows, I introduce what arguably is the most 

sophisticated of such accounts: Frigg and Nguyen’s DEKI account.  

 

4.3.2 The DEKI Account 

In a recent number of publications, Frigg & Nguyen (2017 2018, 2020, 2021) 

introduced their so-called DEKI account, providing a full-fledged and 

systematized account of scientific representation based on representation-as.  

DEKI applies both to material models and non-concrete models.90  I follow suit 

with the authors to discuss the account based on a material model – the Philips-

 
90 Importantly, the account has been developed independently of the Problem of 
Implementation. 
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Newlyn machine (also known as MONIAC).91,  92 Standing about 2m tall, more 

than 1m wide and almost 1m deep, the device comprises several see-through 

plastic tanks and tubes filled with colored water. Attached to the tanks are 

pulleys, sluices, gauges, and pens (used to plot graphs). The design of the 

machine uses pumps and gravity to let water accumulate in different reservoirs 

containing floats that drive the different components in the mechanism 

depending on the water level.  

Qua scientific model, the purpose of the machine is to model a national 

economy by the circular flow of water – the flow of the water stands for the 

exchange of commodities. Each of the machine’s tanks corresponds to different 

features of an economy (national income, governmental spending, etc.). 

Depending on the configuration of the mechanical components of the MONIAC, 

different amounts of water accumulate in the different tanks, allowing the 

modeling of various economic scenarios. Fig. 4.1 shows a simplified scheme of 

these components and how they enable the device to work in connection with 

the notion of representation-as.93  

Frigg and Nguyen suggest formalizing these considerations through Elgin’s 

and Goodman’s analysis of representation in the art world. In case of the 

MONIAC, they explain that 

“[…] the idea behind the machine is that hydraulic concepts are made to 
correspond to economic concepts. This means that we turn system of pipes and 
reservoirs into an economy-representation by interpreting certain selected X-
features as Z-features. The water in a certain reservoir is interpreted as money 
being saved; the level of water in the reservoir is interpreted as a quantity of 

money; and so on.” (Frigg & Nguyen 2020a, 166) 

Since denotation, exemplification, and imputation constitute the core of 

representation-as, they also find application in their full-fledged account of 

scientific representation. To be informative in the scientific arena though, a fourth 

element – the notion of a ‘key’ – is introduced. Keys are meant to adjust model 

features to target features, because typically model features can rarely be 

 
91 The name MONIAC (standing for ‘Monetary National Income Analog Computer’) is more 
common in the US, where the coinage of the term was due to economist Abba Lerner “to 
suggest money, the ENIAC, and something mechanical.” (‘The Moniac’ 1952, 101).  
92 Multiple authors have provided technical descriptions of the machine, its underlying 
economic theory, and its history (see e.g., Phillips 1950; Newlyn 1950; Barr 1988; Bissel 2007; 
Morgan 2012, 172-216).    
93  N.b., there is a difference when applying the XYZ-triplet to models like the MONIAC as 
opposed to caricatures. Whereas the latter can rather straightforwardly be identified as, e.g., a 
bulldog-representation, it is much less obvious how the MONIAC’s water-filled pipes and tanks 
are supposedly an economy-representation. The problem is that the machine does not instantiate 
actual economic features. For the sake of modeling, scientists hence need to translate the flow of 
water into the ‘flow’ of commodities under an agreed-upon interpretation. 
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transferred unaltered to a target (e.g., one may need a scale factor or a conversion 

of units). Together these four salient features form the acronym DEKI. In sum, 

the following picture emerges:  

 

 

Fig. 4.1: Schematic depiction of the MONIAC at work, representing an economy 

through the flow of water. Applying the XYZ-triplet and the corresponding 

notions of denotation, exemplification, and imputation to a scientific context 

results in the notion of representation-as. Roughly put, X takes on the role of the 

(material) model (e.g., a tank filled with water); Y takes on the role of the target 

(e.g., an economy); Z takes on the role of the exemplified features of the 

representing object.  

 

DEKI-account 

A model is defined as an ordered pair 𝑀 = 〈𝑋, 𝐼〉, where X is an object and I is an 

interpretation. I is what turns a selected object X into a model. M represents Y as 

such and so iff conditions (1)-(4) are met: 

(1) An interpreted object X (the model M), like the MONIAC, denotes a target 

Y (e.g., the British economy).  

(2) M exemplifies Z-features. For instance, to be an economy representation, 

the MONIAC needs to exemplify economy-features (Z-features). 

However, often scientific models do not directly exemplify the required 

Z-features. The MONIAC e.g., is nothing but a sophisticated collection of 

pipes and tanks filled with water; it only has such-and-such dimensions, 

weighs so and so many kg, has n-number of components, etc. It merely 

instantiates the flow of water; it does not realize economic features such 

as the exchange of commodities. To turn such a model’s features into the 

required Z-features, we need to resort to the interpretational capacities of 

the designers and users. Only under a specific agreed-upon interpretation 
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I are the scientists licensed to translate features of their model into Z-

features I :X → Z.  

(3) There is a key K that systematically translates the exemplified Z-features 

{Z1,…, Zn} of the model,  into another set of Y-features (the features of the 

target). In the case of the MONIAC, units of volumes of water (that are 

interpreted as the flow of commodities) must be translated into units of a 

specific currency. Furthermore, the time of the machine operating must be 

translated into the time of economic cycles. Depending on the denoted 

target, a key may associate one liter of water with e.g., 1 million pounds 

or 5 million US dollars.  

(4) M imputes at least one of the ‘keyed-up’ features to the target. If the users 

of the MONIAC are interested in say, only tax revenue, they might only 

impute one single feature (corresponding to tax revenue) to the target.  

The result is an intentional conception of scientific representation, as all its 

features (1)-(4) require different interpretations in the form of intersubjective 

agreements of the scientists using them. Through the selection of an appropriate 

material system, target phenomena are represented as something else. The 

MONIAC for instance represents the flow of money as the flow of water.   

What is interesting about the DEKI in combination with the MONIAC is that 

under different assumptions, the very same device may be regarded as a special 

purpose hydraulic analog computer instead of a scientific model. It thus serves as 

an ideal gateway for establishing a link between scientific representation and 

implementation. 

 

4.4 From Science to Computing: Implementation-as 

I will now transpose the DEKI framework to computational implementation. The 

goal is to create a clear understanding of physical computation, especially an SRA 

that utilizes a concrete concept of scientific representation. This results in the 

introduction of implementation-as. The successful transposition requires a careful 

adaptation of the original DEKI account to the computing domain. In the next 

four subsections, I will show how the adaptation from the scientific arena to 

computing plays out. The discussion unfolds along the most salient features of 

the DEKI account, viz., denotation, exemplification, keying-up, and imputation. 

 

4.4.1 Denotation  

Generally, we need to think of denotation as the dyadic relation of a name (or 

label) and a bearer it applies to. The relation is established by an interpretive act. 

Elgin, for instance, states that “[r]epresentation- of— that is, denotation— can be 

achieved by fiat. We simply stipulate: let x represent y and x thereby becomes a 
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representation of y.” (Elgin 2017, 253). Whilst originally a linguistic concept, she 

argues that there is nothing intrinsic in the notion of denotation that would 

restrict it to language only. Both symbols and what they denote can be of many 

different types. Consequently, Goodman and Elgin both apply denotation to 

other instances: 

“Pictures, equations, graphs, charts, and maps represent their subjects by 

denoting them. They are representations of the things that they denote. [...] It is 
in this sense that scientific models represent their target systems: they denote 

them.” Elgin (2010, 2; own italics) 

In the scientific context, denotation is taken to establish a connection between a 

model X and its intended target Y. Put differently, denotation establishes which 

target is supposed to be represented. Now, I submit that denotation applies 

mutatis mutandis to physical computation.  

  At first, this may not strike one as surprising for denotation is also not an 

unfamiliar notion in computing. For instance, the notion of denotational 

semantics is paramount for computer scientists to formally determine the 

meanings of programming languages. Likewise, when following popular 

interpretations that computers are symbol manipulators, one may subscribe to 

the view that the manipulated symbol structures denote information, data, etc. 

In the literature of physical computation, the so-called semantic accounts turn such 

a reading into a philosophical approach: as Fodor (in)famously proclaimed, there 

is “no computation without representation.” (Fodor 1981, 180). The slogan 

especially embraces the metaphysical assumptions underpinning those branches 

of cognitive science that maintain that the brain computes. Exemplary of the 

‘aboutness’ of neural computation is Marr’s hypothetical case of the apocryphal 

grandmother cell (a cell that fires only when one’s grandmother is in sight) (Marr 

2010, 15). Today, semantic accounts may come in vastly varying degrees of 

commitment to what kind of processing of representations is essential for 

computation. More recent versions, for instance, may share the most salient 

constraints of some of the EMAs (e.g., causal, counterfactual, or disposition) but 

call for the additional condition that computational states must be 

representational (see Shagrir (2020) for an overview). 

However, implementation-as should not be characterized as just another 

semantic account. Importantly, when it comes to implementation-as the choice of 

the potentially denoted target is restricted to the to-be-implemented sequence of 

computations.94 So, in contrast to Marr’s example, denotation may not be used to 

establish a dyadic relation to one’s grandmother or any other external events, etc. 

 
94 In what follows, I will use expressions such as ‘sequence of computations’, ‘computational 
formalism’, and ‘program’ interchangeably.  
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Here the notion is exclusively reserved for the relation between a material system 

and a computational formalism P which specifies a sequence of computations.  

Denotation: Establishing which computational formalism P is supposed to be 

implemented in the putative material computing system.  

As such, one of the key features of denotation (as a stipulative act) is that it 

enables the programmers and users to specify which sequence of computations 

ought to be implemented. Without denotation, we were not able to determine 

which computational formalism or program P (instead of Q, R, S, …) is originally 

intended to be run by the material device.  What’s correct behavior in the 

execution of P, may count as malfunctioning (miscomputation) of Q. And 

without knowing what is supposed to be computed, we would be unable to judge 

correct implementations from faulty ones. A prominent case from the 

philosophical literature is captured by Kripke’s remark about Wittgenstein’s 

hypothetical rule-following machines:  

“How is it determined when a malfunction occurs? By reference to the program 
of the machine, as intended by its designer, not simply by reference to the 
machine itself. […] Whether a machine ever malfunctions and, if so, when, is not 
a property of the machine itself as physical object but is well defined only in terms 

of its program, as stipulated by its designer.” (Kripke 1982, 34f)  

Assigning a physical system or device to perform a certain task rather than 

another is not exclusively limited to computation but rather ubiquitous to 

technology. In computing specifically though, we then assign the teleological 

function to compute a specific mathematical/computational function P to a 

material system; denotation is chief for specifying which computational function 

P is supposed to be implemented. What makes function ascription (in the 

teleological sense) a special case when it comes to computing is that we 

exclusively assign the execution of a rule or mathematical/computational function 

to a system. When assigning teleological functions like brewing coffee to a coffee 

machine, driving screws into a wall to screwdrivers, etc., the assigned functions 

concern physical properties and activities (e.g., pouring hot water onto ground 

coffee) and not formal, mathematical, or computational ones. This raises the 

question, how can concrete material systems exemplify computation?  

 

4.4.2 Exemplification  

Objects and systems can exemplify all sorts of properties in multiple ways. For 

instance, caricatures can exemplify bulldogs by pictorial means. In everyday life, 

properly working coffee machines exemplify concrete mechanisms that enable 

them to brew coffee. In the scientific realm, models like the MONIAC require an 

interpretative element since the hydraulic device, on its own, cannot exemplify 
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economic properties without our intentions. I submit that the same scenario 

holds for computation: physical systems can exemplify computational properties 

by turning selected features into computational states through interpretational 

exemplification. Analogously to the modeling case, we can define 

interpretational exemplification as   

Interpretational Exemplification: I: X → ZC. Turning selected X-features into 

computational states ZC through an interpretation.  

Accordingly, this characterization enables physical systems, which would 

otherwise merely be mechanical, hydraulic, or electronic, to act as computing 

systems by turning selected features into computational states.  

However, prima facie such unlimited interpretational freedom is problematic 

as almost any object could count as a computing system by mere stipulation, 

violating the extensional adequacy criterion. Therefore, pragmatical and 

theoretical factors constrain potential exemplification, particularly the selection 

of (i) suitable interpretations and (ii) adequate X-features. Combined, these 

factors will determine why we take some physical systems to be computational 

and others not. 

The advantage of agential SRAs (in contrast to other interpretational theories 

of computational implementation) is that they can establish a more rigorous 

foundation for suitable interpretation by adhering to the theoretical insights of 

how scientists use interpretations when engaging in scientific modeling. The 

DEKI account, for instance, informs us 

“[w]hile one is initially free to choose [X]-properties and Z-properties freely, once 

a choice is made, representational content is constrained. […]  Free choices, once 

made, are highly constraining. This is why models are epistemically useful.” 
(Frigg & Nguyen 2018, 214) 

Thus, it is necessary to agree upon and subsequently hold fixed the selected X-

features and their interpretation as computational states under a one-to-one 

relation. Choosing a different set of states X = {X1,…, Xn} requires a new 

interpretational process for every new candidate set of computational vehicles. 

While agreement and fixation are necessary to employ objects like the 

MONIAC as a computational device, they do not suffice. Taking a rock or wall, 

arbitrarily picking out some of their properties as X-features, and holding these 

fixed, still does not turn them into useful computers. Here, additional pragmatic 

and conceptual considerations come into play. 

Similarly to the case of scientific models, there are additional pragmatic 

factors that constrain the choice of X-features. One of these factors is successful 

use. When selecting physical states as computational vehicles for usage, we 

typically select programmable vehicles we can reliably configure according to 
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our desires. Put differently, we should be able to put the system into a specific 

initial state (from a set of potential input states) to compute the output of our 

chosen computational problem. Moreover, a particular physical device is useful 

to us as a computer only when its salient states are distinguishable by us with 

our measuring devices. Only when this condition is met can we extract the results 

implied by the computational formalism we are interested in. Other practical 

considerations may include the system’s reliability in repeating computations.  

Conceptually, it is essential interpret only those physical states or carriers (X-

features) as computational vehicles that demonstrate a sufficient degree of 

counterfactual state transitions. This demand aligns with the literature on 

scientific representation and the overwhelming consensus of the various EMAs. 

Therefore, it is paramount for agents to select (and usually construct) potential 

computational vehicles that exhibit a reliable degree of counterfactual 

dependence. Such counterfactual support is chief for using scientific models for 

surrogate reasoning and turning computational devices into epistemically 

fruitful instruments. To better understand this, consider the following two 

quotes. Concerning scientific models, Bokulich for instance reminds us that  

“[…] in order for a model M to explain a given phenomenon P, we require that 
the counterfactual structure of M be isomorphic in the relevant respects to the 
counterfactual structure P. That is, the elements of the model can, in a very loose 
sense, be said to “reproduce” the relevant features of explanandum 
phenomenon.” (Bokulich 2011, 39) 

In the same vein, Piccinini provides a summary in his (2015, 19-25), showing that 

it is wide consensus that the microphysical state transitions of a material 

computing system require counterfactual support: 

“In other words, the pure counterfactual account requires the mapping between 
computational and microphysical descriptions to be such that the counterfactual 
relations between the microphysical states are isomorphic to the counterfactual 
relations between the computational states.” (Piccinini 2015, 19) 

What this means in the case of the MONIAC is that different calibrations of the 

knobs, valves and tanks filled with water need to bring out reliable changes in 

behavior. ‘If the input/initial conditions had been different’ the output must be 

different accordingly. Such counterfactual support is crucial for the 

implementation of a computational function. Only if the X-features are chosen in 

such a way that different set-ups yield different interpretable outputs can 

material models/computers such as the MONIAC be used to model target 

systems like an economy or a computational formalism. 95  Controlling these 

 
95 These computational states correspond to a model of computation; in the case of the 
MONIAC, the model of computation is characterized by a set of differential equations. Often, 
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counterfactual dependencies of computational devices is what enables to 

physically program these machines and use them to compute functions.   

Together the conditions about interpretation (agreement and holding it fixed), 

and selection of X-features, where some are of pragmatic nature 

(programmability, distinguishability, reliability) and some of conceptual nature 

(counterfactual state transitions), are jointly sufficient to restrict those things that 

don’t compute. (I will talk more about this in sect. 5). 

 

4.4.3 Encoding a Labeling Scheme 

To recap, while denotation specified which computational formalism is 

supposed to be implemented, interpretational-exemplification imposes which 

properties of a putative computing system are taken to be as computational 

states. So far, these two steps are insufficient for the implementation of 

computations, for we only determined that something may act as a computer (not 

what it actually computes). Scholars of physical computation widely agree 

though that one needs to specify the conditions that a computational system 

implements one computation rather than another (IDENT). Now, in order to 

relate exemplified computational states to a specific model of computation, we 

need to define for what kind of computations they are employed.  

One crucial aspect for determining such a computational profile is to allude 

to the notion of a key. According to DEKI, exemplified properties are ‘keyed up’ 

with properties that are supposed to be imputed to the target. While the name 

‘keying-up’ is inherited from the DEKI account, I suggest resorting to the more 

common terminology used in computing, where the discussion is usually framed 

under the label of encoding or fixing a labeling scheme (cf. Copeland (1996)).  

Encoding a labeling scheme: Relating the set of interpreted computational 

vehicles ZC with a set P={P1,…, Pj} of states that are presumed to be imputed 

to the targeted computational formalism. 

In what follows, I introduce the arguably two most relevant types of encodings 

for computing. 96  The two types roughly correspond to analog and digital 

computers respectively.97  

 
the seminal paper by Pour-El (1974) is taken as the theoretical basis for models of analog 
computation. For a survey of such different models see Bournez & Pouley (2021).  
96 Whether the two types of keys are exhaustive or not, such that there might be other kinds of 
keys relevant for computing – for instance, in the case of quantum computing – is the subject of 
future research. 
97 In the context of computing, the digital/analog distinction is a vexed issue; simply put there 
are two major camps: According to one view, analog computation is understood as an analogy 
(the behavior of a damped spring-mass might be modeled by electronic components that 
analogously showcase similar behavior); according to the second view, the operation of an 
analog computer should be understood based on the manipulation of continuous values.  An 
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The first type of encoding essentially hinges on the same idea as the keys 

employed in material (scale) models. Certain physical magnitudes are selected to 

scale with the chosen features of a target system. For example, Weisberg (2013) 

and Pincock (2022) discuss this in detail, based on the San Francisco Bay-Delta 

model and a scale model of Lituya Bay for modeling rockslide-generated tsunamis, 

respectively.  However, in most cases, the selected X-features cannot be directly 

imputed to the target Y. In the case of the just mentioned scale models e.g., the 

key is not simply equivalent to the scale factor, as fluid dynamics don’t scale 

completely proportional. 98  Similar keys are necessary for scaling in analog 

computers. Ulman, for instance, describes that machine units of a given analog 

machine must be adjusted to the denoted computational problem (cf. Ulman 

(2013, 55 and 123-14) and Ulman (2020, §2.1 and 58)).  

Based on the work of Lewis (1971), Maley formalized this idea, developing 

the so-called Maley-Lewis account that’s supposed to cover the case of analog 

computation. Simply put the Maley-Lewis account captures the idea of scaling, 

i.e., the more the representing physical magnitude ZC increases or decreases (in 

a systematic way), the more the property that’s denoted in- or decreases. These 

insights yield the formulation of the first type of encoding (cf. Maley (2011, 124)): 

Type 1: Encoding (Scaling) by magnitude. As Z increases (or decreases) 

by a margin d, Q increases as a linear function of X+d (or X-d); E:Z →P. 

When it comes to the implementation of digital computation though, a digital 

labeling- scheme is needed. As Maley explains, numbers are typically 

represented by (i) a series of digits and (ii) a base. 99  A digit series is then 

interpreted as the relative value of the digits.  Translating this idea into a digital 

version of a key, the second type of encoding is defined as:  

Type 2: Encoding digitally (labeling scheme). A digital encoding E: Z →P 

represents a number/symbol via its digits, where ‘digit’ means a symbol 

(typically a numeral) in a specific place. In addition, we require a base, 

which is used to interpret the relative value of digits.100  

 
in-depth exorcism of the analog/digital distinction lies beyond the editorial scope of this 
chapter.  
98 And in the case of the MONIAC, we don’t even have a scale model of a Keynesian economy 
at all, but an object where certain features are selected (X-features) such that their covariation 
tells us something about the denoted target Y. Remember, physical quantities like ‘flow of 
water’ must be related to ‘flow of money’ via a system of units. 
99 By understanding ‘numbers’ in a loose sense, the method can be applied to symbols that are 
part of an alphabet.  
100 Formally, the digital representation of a number ‘𝑑𝑛 𝑑𝑛−1 … 𝑑1 𝑑0′ is captured by the formula 
(𝑑𝑛 × 𝑏𝑛) + (𝑑𝑛−1 × 𝑏𝑛−1) + ⋯ + (𝑑1 × 𝑏1) + (𝑑0 × 𝑏0). In base 10 “sixty-five” e.g., is hence 
represented as “65” (6*10)+(5*1).  
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Having elucidated how to determine a computational profile, implementation-

as requires a final step.  

 

4.4.4 Imputation  

Lastly, imputation is the final necessary component of the implementation-as 

framework. As a first stab, “imputation can be analyzed in terms of property 

ascription”, (Frigg and Ngyuen 2018, 217). Let me briefly return to the scientific 

modeling context for the sake of clarifying what kind of properties are ascribed 

to what. When scientists use a scientific model to reason about a target system, 

they must be able to ascribe features of the former to the latter 𝑓: 𝑀 → 𝑇. Put 

differently, we may thus say that the model imputes features to the target. The 

MONIAC, a material model, imputes its exemplified (under an interpretation) 

economic features to the dedicated target. I propose to appropriate this practice 

to computing, such that material systems implement a computational formalism 

(the analog to the target) by relying on imputation. 

The reason why we appropriate imputation from representation-as to 

computing is that we want to systematically relate the interpreted and encoded 

computational vehicles of a material system to the denoted computational 

formalism (cf. steps (1)-(3)). As such, imputation has a comparable function to 

the mathematical notion of a morphism (relating physical states and abstract 

computational states) evoked by the EMA.  

Imputation: Ascribing encoded computational states to a computational 

formalism.  

But what are the ramifications of referring to the relation as an ‘imputation’ 

instead of a mapping? The philosophically relevant message is that the mapping 

is stipulated by human agents: As an agential theory of implementation, 

implementation-as relies on a, at least partly, mind-dependent notion of 

computation – we use devices as an aid for our computational goals which 

otherwise would need to be carried out by hand or in one’s head. Imputation can 

be understood as the notion that relates the interpreted and encoded 

computational vehicles of the surrogate system we use for computation with the 

computational problem we wish to be solved. Implementation-as advocates for 

a stipulated implementation-relation. Such a relation has two principal 

advantages.  

First, the advantage of a stipulated implementation relation is that it does not 

stand at odds with the state-of-the-art insights of applied mathematics (see 

Rescorla (2014, §4) for a similar remark in the context of computing). Called the 

application- or bridging problem, philosophers of applied mathematics seek to 
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address the notorious issue of how the mathematical relates (or bridges) to the 

physical. In a nutshell, the problem is that mere morphisms between physical 

states and mathematical/states do not obtain, because strictly speaking functions 

only obtain between set-theoretic structures (and physical substrates do not offer 

such a unique structure (Psillos 2006, van Fraassen 2008)). In response, most 

recently suggested solutions to the bridging problem state that the mappings 

between the physical and mathematical are mind-dependent (Pincock 2004, 

Batterman 2010, Bueno & Colyvan 2011, Nguyen & Frigg 2021). Put differently, 

at least some stipulations of agents are needed to create a structure and hence 

bridge the gap between abstract mathematical objects and concrete physical 

states.  

Now, in so far as theories of implementation need to spell out how logico-

mathematical models of computation relate to the physical, the problem of 

implementation is a special instance of the application/bridging problem (see 

Appendix B for a detailed discussion). Therefore, if not specified otherwise, 

accounts of physical computation should preferably be in line with the insights 

of the philosophy of applied mathematics. Imputation (a mind-dependent 

notion) is explicitly compatible with this demand. Accordingly, computational 

vehicles are associated with the logico-mathematical states of the implemented 

computational formalism.101 

The second advantage and essential feature of imputation is that it bears a 

normative component – the pairing of exemplified features with features of the 

computational formalism can be right or wrong, hence explaining 

miscomputation. What’s right is determined by the denoted computational 

formalism. Again, mere morphisms seem to fail the miscomputation-

desideratum.102 While the denotation-relation constitutes what is supposed to be 

implemented, imputation is the relation that pairs exemplified computational 

states and formal computational states (of the target). Only when imputation 

matches all the elements of the physical computational states required for a series 

of computations, then the denoted program P might be implemented correctly. 

Strictly speaking, if there is a mismatch, the system may compute in a way it 

should not; it is said to miscompute.103  

 
101 The argument may pose a problem for naturalized or mind-independent theories of 
implementation. The seriousness of this threat may be subject to future research.  
102  For essentially the same argument against using morphisms in accounts of scientific 
representation see (Suárez 2003). 
103 There are various ways in which this computational norm can be broken. Fresco & Primiero 
(2013), offer a detailed taxonomy of the miscomputation of software, stating that 
miscomputation can occur at any level of abstraction, ranging from faulty specifications, 
through the algorithmic level, down to the machine. At the abstract physical interface, errors 
might be due to wear and tear or insufficient counterfactual support (Schweizer 2019, 38-40). 



4 Implementation-as: From Art & Science to Computing 
 

90 
 

4.4.5 Taking Stock 

Subsuming the various elements appropriated from the scientific representation 

discourse results in an explicitly spelled out agential SRA: 

Implementation-as 

Let the ordered pair C=⟨X, I⟩ be a computational device, where X is a material 

system and I an interpretation. Let P be the computational 

formalism/program. C implements P as ZC iff all the following conditions are 

satisfied: 

(1) C denotes P.  

(2) C exemplifies Z-properties Z1,…,Zn under an interpretation I :X → ZC.  

(3) C comes with a computational encoding associating the set {Z1,…, Zn} with 

a (possibly identical) set of properties {P1,…, Pm}. E{Zi}={Pj} 

(4) C imputes at least one of the properties P1,…, P m to P. 

The resulting framework is baptized implementation-as, acknowledging the 

influence of representation-as from the philosophy of art and science. This 

approach is methodologically different from previous accounts of physical 

computation couched in generic terms of scientific representation like L-machines 

or A/R-theory, because it builds on a specific scientific representation proposal. 

Concretely, the framework deploys Frigg and Nguyen’s DEKI account of 

scientific representation (of material models).  

The takeaway is that analogously to how a material scientific model (based 

on an interpreted object X) is used to represent a target system Y as thus-and-so, 

the core idea of implementation-as is to use a physical system (based on an 

interpreted object X) to implement a series of computations or a program P. 

Simply put, the computational formalism is the target that is supposed to be 

implemented. Both scientific representation and physical implementation are 

instances of object-based reasoning. In the former case, we manipulate and 

interpret a material model as a surrogate to reason about a target 

system/phenomenon. Concerning the latter, we configure and alter (i.e., 

program) a physical computing system to obtain the result of a computational 

function. As such, almost the entire DEKI-analysis of the MONIAC qua scientific 

model equally applies to the machine when interpreted as an analog computer.  

Having cashed out the main features of implementation-as, the remainder of the 

chapter demonstrates how implementation-as applies to a case study (sect. 4) 

before philosophically evaluating the novel theory (sect. 5) and concluding with 

a discussion on how it relates to existing accounts (sect. 6). 
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4.5 Case Study: The IAS-machine  

In this section, I will show how the concept of implementation-as is not just a 

theoretical discussion or limited to an analog hydraulic computer but is also 

applicable to a widely known and influential device called the IAS-machine.104 

This machine embodies the architectural principles of the von Neumann 

architecture, which is still commonly used today. First, I will portray the 

components of the machine and how it was programmed in detail (section 4.1). 

Next, I will demonstrate how implementation-as sheds light on how the machine 

implements physical computation (section 4.2). As we will see, the application of 

the implementation-as framework is relatively straightforward despite its, at 

first, seemingly heavy formalism. 

 

4.5.1 Technicalities and Programming 

The IAS-machine was one of the first binary stored-program computers, storing 

instructions and data in the same memory. For enabling these features, different 

components need to act as different computational states. The designers relied 

on vacuum tubes for the circuitry and Williams tubes (cathode ray tubes) for the 

memory. These components then formed three basic units: 105    

1. The main memory unit (M) 

2. The Central Processing Unit (CPU): Containing Control-Unit (CU) and 

Arithmetic-Logic Unit (ALU)  

3. The Input/Output device (I/O)  

Considering the functioning of these units and their underlying components in 

detail further clarifies our understanding of how exemplification and encoding 

work in the case of a stored program digital machine. So, let me briefly look at 

each of these units in detail, starting with the memory.  

 
104Many authors have provided technical descriptions of the IAS-machine, how it was 
programmed, and its history (Burcks et al. 1946; Estrin 1952; Ware 1953; Bigelow 1980; Burcks 
1980; Aspray 1990; Priestley 2018). It is a stored-program digital computer that was constructed 
over the course of six years by a team of scientists and engineers under the leadership of von 
Neumann at Princeton’s Institute of Advanced Studies (IAS). The machine was completed in 
1952 and had a significant influence on future generations of computers in and outside of the 
industry, both in the US and overseas e.g., ILLIAC, MANIAC (in Los Alamos), and the IBM 701 
(Aspray 1990, 86-94).  
105 These elements (or “main organs”) were mentioned in different forms by von Neumann 
(1945), where they were called CA (central arithmetical), CC (central control), M (memory), I 
and O (input and output devices) and R (some external recording medium).  
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The memory was of ‘Williams type’ and composed of 40 standard commercial 

“off the shelf” (Bigelow 1980, 302) 5CP1A cathode ray tubes (relying on the 

emission properties of cathode-ray-tube phosphor screens). It had 1024 storage 

locations or memory addresses, called words. Each word is 40 bits long and may 

contain (1) a number word or (2) an instruction word (see Fig. 2).  

 

Fig. 4.2. Depiction of the two different types of words.  

 

Instructions occupied two times 20 bits, where the first eight bits are opcode and 

the remaining twelve bits indicate the address of a register. Overall, the 

instruction set of the IAS machine contained 21 different instructions (Burks et al 

1946, 42). A line of code of a program written for the machine then may look like 

this 0000000100011111010000000101000111110101. The first eight bits (grey font) 

are opcode and correspond to the instruction “[c]lear accumulator and add 

number located at position x in the Selectron into it.” (Load M(xi)); the following 

twelve bits correspond to a memory address x; the next eight bits (grey font) are 

opcode and correspond to the instruction “[a]dd number located at position x in 

the Selectrons into the Accumulator” (Add M(xj)). 106  It is sequences of bits like 

these, composed of the machines’ specific instruction set that may comprise a 

program P.107 As we will see, the reason why these details are relevant for the 

application of implementation-as is that they warrant multiple, distinct instances 

of interpretational exemplification.  

Concerning the second main component, the CPU, the IAS-machine has seven 

different registers (Accumulator, Arithmetic Register, Control Counter, Control 

Register, Function Table Register, Memory Address Register, and Selectron 

Register) of which only the Accumulator and the Arithmetic register are ‘visible’ 

to the programmer (both holding 40 bits).108 These registers utilized about 1700 

 
106 For a more elaborate and detailed example see for instance Priestley (2018). 
107 In the same vein, modern microprocessors are too compatible with specific ISAs (Instruction 
set architecture), like x86, where “[t]he ISA serves as the boundary between the software and 
hardware.”, (Hennessy & Patterson 2012, 11).  
108 In today’s terminology the ‘Control Counter’ is known as Program Counter and has a 12-bit 
width; the Control Register holds the instruction currently executing (20-bit width). The 
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to 2300 commercially available miniature double triodes, 109 where most of them 

where of type 6J6 (other models used where 5670, 5687, and a few 6AL5 scattering 

diodes). Like modern garden variety CPUs, it executes instructions of programs, 

such as arithmetic (e.g., adding integers of above’s example program P), I/O 

operations and logic controlling.   

Lastly, the selected I/O components are an important element to consider.  

They afford the interface through which the users can interact and program the 

device. Without input mechanisms like punched cards, teletypewriters or 

keyboards, programmers and users had virtually no reliable means to load 

instructions or data into memory. In the same vein, the lack of an output medium 

(e.g., some kind of screen) would render the computational system a black box. 

It is these outputs however that ultimately need to be in tune with the denoted 

computational formalism/program P. At first, the engineers of the machine 

relied on perforated teletype tape which in late 1951 was replaced by IBM 

punched cards (Bigelow 1980, 306).  

What turned the IAS-machine into a digital one is that it was operated under 

a digital encoding. This design choice both appealed to the intended logical 

nature of the machine (‘being a yes-no system’) and facilitated the use of existing 

electronic components (flip-flops), such that 

“[o]ur fundamental unit of memory is naturally adapted to the binary 
system since we don’t attempt to measure gradations of charge at a 
particular point in the Selectron but are content to distinguish two states. 
The flip-flop again is truly a binary device.” (Burks et al. 1946, 7).  

In addition, the composition, or architecture, constituted by the three 

interconnected units M, CPU, and I/O enabled the IAS-machine to store 

instructions (and data) in memory. As such, the machine stands in contrast to 

early digital machines like ENIAC or analog devices like the MONIAC that had 

to be reprogrammed manually similar to plugboards or read instructions from 

external tape.  

 

4.5.2 Implementation-as at work 

Equipped with some basic understanding of the inner workings of the IAS-

machine and how it was programmed, let me sketch how the most salient 

features of implementation-as come to fruition. As explained throughout the 

chapter, the core notion of implementation-as is that properties of the designated 

 
Function Table Register holds the current opcode and is 8 bits wide, whereas the Memory 
Address Register holds the current memory address and is 12 bits wide. 
109 The precise number of triodes used in the machine diverge among different authors. Whilst 
Estrin (1952) mentions 2300 triodes, Ware (1953) speaks of ca. 1700, and Bigelow (1980) 
mentions about 2000. 
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computational vehicle are associated with the abstract computational states of a 

computational formalism {P1, …, Pm} through a set of exemplified computational 

states {Z1, …, Zn}. To implement a specific sequence of computations, the putative 

computing system needs to undergo four steps: denotation, interpretational 

exemplification, encoding, and imputation. 

Here, we assume that the IAS-machine is our X, i.e., our vehicle of 

computation. As discussed in the previous section, our X is composed of many 

different components (e.g., cables, 6J6 triodes, …), forming three interconnected 

units (M, CPU, and I/O). As such, it can be considered a computing system under 

a series of fine-tuned interpretations I of some agent (typically the user of an 

epistemic community who share the same conventions regarding a device). 

Specifically, the IAS-machine then implements a computational formalism/ 

program P iff the following four steps apply:  

(1) First, the device X denotes P.  In the case of the IAS-machine, a typical 

program P will look like a list of machine-code instructions each of 40-bit length 

as just introduced in the previous section. As such, P acts as the normative 

yardstick to evaluate executions between correct and faulty ones 

(miscomputation).  To eventually implement P correctly, different components 

of the IAS-machine need to relate to different sections of the code.  

(2) Second, given our agreed upon interpretation I, we note that the IAS-

machine exemplifies certain computational features {Z1, …, Zn}. According to the 

general scheme outlined above, exemplification hinges on our interpretational 

capacities I :X → Z. For instance, the previous discussion of the technicalities of 

the IAS-machine showed that the following components play different roles in 

exemplifying computational features: 5CP1A cathode ray tubes are employed for 

holding data and instructions in memory; the CPU (with its seven registers) relies 

on miniature triodes (mostly of type 6J6); the I/O used punched cards to program 

the machine in order code. 

(3) Third, one needs to choose an encoding or labeling scheme. Since the IAS-

machine was constructed as a binary digital computer, parting with the 

“longstanding tradition of building digital machines in the decimal system” 

(Burks et al. 1946, 7), it operates as a binary digital computer processing both 

digital data and instructions in a binary format. Accordingly, we adopt a binary 

digital encoding as described in sect. 3.3. Standardly, one then associates the 

absence (considering a certain threshold) of the flow of charge as ‘0’ and the flow 

of charge as ‘1’.  

(4) Finally, the just encoded computational states {P1, …, Pm} are imputed to 

our ‘targeted’ program P. Since computer scientists, programmers and users 
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usually opt for the correct implementation of computational artifacts, we ideally 

require that the entire set {P1, …, Pm} is related to P. 

To wrap up, the IAS-machine implements computations as the flow of charge. 

The straightforward and successful application of implementation-as to the IAS-

machine suggests that this new agential theory of implementation can be applied 

to other computers as well. Despite significant technical differences, many 

modern computing machines still incorporate the basic architectural design 

choices of this influential device. I believe that it is sufficiently complex and bears 

enough similarities to the functioning of contemporary computers.  Although 

new technological advancements may lead to greater complexity, there is no 

reason why implementation-as cannot be applied to these cases.  

 

4.6 Is Implementation-as a good theory of computation? 

At last, let me briefly evaluate the in this article developed theory of 

implementation. The discussion proceeds along the lines of the desiderata of 

physical computation introduced in the introduction (Sect. 1). As I will show, 

implementation-as accommodates all the desiderata and should therefore be 

considered a viable theory of physical computation. 

(1) Objectivity. Nowadays, philosophers of science commonly agree that there 

are considerable obstacles to cashing out theories of scientific representation in 

naturalistic terms. That is why most approaches are formulated as intentional 

conceptions (Frigg & Nguyen 2020a, 2020b). The DEKI account is a case in point, 

for all its salient features hinge on scientists’ interpretational capacities. As 

discussed at length, implementation-as inherited many of the key features – and 

accordingly, it may be called an agential theory of implementation. Now, does 

relying on interpretational features undermine the objectivity of implementation-

as?  

The answer is nuanced. Reiss & Sprenger (2020) survey various conceptions 

of scientific objectivity – as stated by Fletcher (2018) and Duwell (2021), theories 

of physical computation based on agential notions of scientific representation 

may only undermine an overly rigid notion of objectivity. Since implementation-

as appeals to agents and their stipulations, it may be incompatible with what 

Duwell refers to as strong objectivity (i.e., an account of objectivity according to 

whether a system is representational/computational is completely mind-

independent). However, relying on agential notions of scientific representation 

does not undermine weak objectivity (Duwell 2021, 19). Accordingly, scientists 

may reach intersubjective agreements if an object counts as a scientific model, 

which parts of the world it is presumed to represent, and so on. Once such 
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intersubjective agreements are held fixed, practitioners may engage in scientific 

reasoning without their personal preferences or any substantial personal biases.  

Implementation-as adheres to standards of objectivity in these latter, less rigid 

terms. Once the combined stipulative elements of denotation, interpretational-

exemplification, encoding, and imputation are agreed upon and held fixed, 

computation under the regime of implementation-as is as objective as the 

scientific practice of modeling and free of personal arbitrary beliefs, desires, and 

intentions.  

(2) Extensional Adequacy. A good theory of physical computation should 

properly systematize paradigmatic computing systems (laptops, calculators, 

smartphones) as computational; it should also judge instances of non-computing 

systems as non-computational. The examples of the MONIAC and the successful 

application to the IAS-machine show that implementation-as does not have 

trouble classifying paradigmatic examples of computing systems as 

computational. What works in the case of the IAS-machine, generalizes to other 

real-world machines. In so far as the physical system exemplifies computational 

properties that are keyed-up/encoded and imputed to states of a computational 

formalism (which is denoted by the system), the system may implement the 

formalism as such and so.  

However, saying which systems do not compute proves more challenging. 

The main concern is that without any restrictions on interpretation, any object 

could be trivially turned into a computer by stipulative fiat. However, the 

Implementation-as framework avoids this problem because it is a hybrid account 

that relies both on interpretational aspects and mind-independent physical 

features. In other words, it characterizes a computing system as C=⟨X, I⟩, where 

X represents the physical features, and I represents the interpretation. As a result, 

cases where neither condition applies ⟨0, 0⟩ are non-computational, as well as 

cases where we bestow objects with an interpretation but where they lack 

adequate physical features ⟨0, 1⟩ (such as Putnam’s rock or Searle’s wall). 

Additionally, systems with sufficient counterfactual support ⟨1, 0⟩ but lacking 

one or more of the four implementation-as features (denotation, interpretational 

exemplification, encoding, imputation) are dismissed as being computational.110 

According to implementation-as, physical computation only occurs when both 

these elements come to pass simultaneously ⟨1, 1⟩. When visualizing the different 

scenarios in a graph, the following picture emerges (Fig. 4.3): 

 
110 One may call such kinds of systems ‘quasi-computational,’ because in many cases, it is still 
desirable to analyze them in terms of computational. 
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Fig. 4.3: The ‘hybrid approach’ (having to rely on both interpretation and the right 
degree of counterfactual support) ensures that implementation-as considers that 
the right things compute and the wrong things don’t. Figure inspired by a similar 
graphic in Artiga (2023) in a different context (teleological functions). 

 

As can be seen, the extensional scope of the implementation-as framework is 

smaller compared to those accounts that merely rely on counterfactual state 

transitions (e.g., Chalmers 1996, Scheutz 1999). While such accounts need to bite 

the bullet of limited pancomputationalism (because every counterfactual/causal 

structure would compute some function), 111 my account does not suffer from this 

defect because interpretational exemplification further limits what may count as 

a computational vehicle. As previously explained, interpretations need to be 

agreed upon and held fixed. Additionally, the selection of X-features needs to 

follow practical considerations (programmability, distinguishability, reliability) 

and rely on counterfactual state transitions. 

 
(3) Explanation. According to the third desideratum, a good account of concrete 

computation should be able to explain (at least some of) a system’s capacities 

computationally. There are different ways to understand this requirement. On 

the one hand, the computational properties of a system may be explained by 

what it implements. For instance, the IAS-machine implementing our exemplary 

program P explains why it adds integers the way it does, its efficiency, etc. Yet, 

on the other hand, under implementation-as material systems may only 

exemplify computational states if agents bestow them with the task to do so – 

without the agent’s stipulations, the chosen vehicles are not computational. Does 

 
111 This sort of pancomputationalism is limited, since, although it states that every object 
computes, it does deny the much stronger thesis that these objects also implement every 
possible computation. 
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this mean that computational explanations then merely reduce to agents’ desires 

to use something as a computer? No, because as I have argued implementation-

as is a ‘hybrid’-account – the agents also need to choose suitable physical states 

that may act as computational vehicles. That’s why the current framework must 

additionally resort to the particular underlying scientific theories that describe 

the behavior of the chosen vehicles. As such, the explanations offered by 

implementation-as are no longer distinctively computational but may be 

physical, chemical, or biological (cf. Duwell 2021, 37). In the case of the MONIAC 

e.g., the flow of water is taken as a computational vehicle. To explain the behavior 

of the machine, we must consult hydrodynamics and the scientific theories 

describing the dynamics of the mechanical components. 

(4) Miscomputation. One of the main advantages of interpretational accounts of 

computation is the straightforward explanation of judging the (in)correctness of 

a computational process. Unlike their naturalized counterparts, they do not have 

to deal with the difficult issue of natural teleology. Instead, maintain that agents 

bestow the computing system with teleological functions to compute. Therefore, 

the philosophy of computer science borrowed some of the function ascription 

frameworks from the philosophy of technology (Turner 2018, Anderson 2019). 

As a result, an interpretational account of computation implementation-as can 

accommodate different notions of miscomputation. Let me briefly discuss these 

notions separately.  

First, programmers and users may sometimes have disagreements about 

which program is supposed to be implemented. Although it seems like an easily 

avoidable mistake, denotation is crucial for determining (in)correct 

computational implementation. This is because figuring out the precise 

(teleological) function of a computing system is epistemically inaccessible and 

cannot just be read off. Prominent computer scientist Weizenbaum brought up 

this up in a thought experiment, stating that if one day in the distant future, a 

highly advanced society would find one of our present-day computers, they 

could never know with certainty to have gotten the alleged program P just right 

(Weizenbaum 1976, 132ff.). Albeit a high degree of understanding might be 

achievable through observing its output patterns, black-box testing and attempts 

of reverse engineering, reclaiming absolute certainty of the computer’s 

specification might be impossible. Likewise, Dennett (1990) comes to a similar 

conclusion with a real-world example of a discovered ‘computer’ – the 

Antikythera mechanism. The (teleological and mathematical) function of the 

ancient Greek device was initially obscure, and today scholarship is still puzzled 

by it. 
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Secondly, miscomputation may be caused by faulty imputations. As argued 

above, faulty imputations may occur either through wear and tear or because of 

insufficient counterfactual support. Both conditions lead to a mismatch between 

the different execution traces of the denoted computational formalism MC and 

the putative computing system. 

(5) Taxonomy. Encoding a labeling scheme is crucial for determining for what 

kind of computations a system may be used for. I described the encodings 

corresponding to the arguably two most widespread instances of computing – 

digital and analog. Accordingly, the encodings of the interpreted computational 

vehicles enable us to discern two major kinds of computing systems and their 

different capacities.  

Furthermore, implementation-as does not need to allude to the ‘narrow’ 

notion of program execution only. When judging various accounts of physical 

computation, Piccinini criticized some earlier approaches that would equate 

physical computation with program execution, because this may raise trouble for 

classifying systems that are said to compute by means other than running 

programs. 112  Implementation-as does not need to appeal to the notion of 

program execution in order to be applied successfully; nothing in its four salient 

features hinges on program execution.  Rather, whether a system can be classified 

to compute by virtue of program execution depends on the denoted 

computational formalism (and arguably on one’s definition of what a program 

is).   

In sum, the results of this brief evaluation showed that implementation-as 

squares well with most of the desiderata. As such, it has the potential to apply to 

two, traditionally separately discussed approaches of computational 

implementation. On the one hand, it may retroactively apply to some of the 

previously mentioned SRAs, specifically those that suggest a formulation in 

agential terms (Fletcher 2018, Anderson 2019, Papayannopoulos 2020, Szangolies 

2020, and Duwell 2021). On the other hand, the framework offers a modest 

interpretational account of physical computation. Implementation-as is a modest 

account because it draws on both interpretational and non-interpretational 

features (e.g., requiring counterfactual state transitions). In contrast to previous 

somewhat arbitrary interpretational accounts (according to which everything can 

be regarded as computing through mere interpretation), the account presented 

here clarifies how interpretational and non-interpretational features connect 

abstract and physical computational states. 

 
112 For instance, he argues that some neural networks compute by means other than program 
execution (Piccinini2008). Another (potential) case in point is analog computers, where some 
scholars believe that they compute despite not executing a program.  
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4.7 Discussion and Concluding Remarks 

In recent years, transposing insights from the scientific representation discourse 

into physical computation has resulted in a fruitful new perspective on 

computational implementation: so-called SRAs. I have contributed to this trend 

by providing a new rigorous description of a theory of implementation called 

Implementation-as. What distinguishes my approach from previous SRAs is that 

it relies on a concrete version of scientific representation rather than a general one 

– the DEKI account of material models. The resulting account is a hybrid 

approach because it depends on the users’ stipulative abilities and the physical 

characteristics of the material system. The upshot is that implementation only 

occurs when agents use the carefully chosen material object to model a desired 

abstract computational formalism. In particular, agents may use a material 

computing system as a computing device if they engage with denotation, 

exemplification, encoding, and imputation. Combined, these four activities 

portray the commonalities of physical computation as suggested by 

implementation-as.  

Importantly, my analysis showed that this new agential/interpretational SRA 

makes the grade with many of the standardly evoked desiderata. For these 

reasons, I submit that implementation-as is a promising alternative to existing 

accounts of physical computation. To conclude I will briefly put my undertaking 

into perspective, commenting on how my approach contrasts to prominent 

existing accounts, in particular extended mapping accounts (EMA), semantic 

accounts, and mechanistic accounts. But for reasons of editorial scope, I cannot 

offer an in-depth comparison to the entire spectrum of currently available 

approaches and refer the interested reader to full-fledged surveys. 

It is widely accepted that simple mapping accounts (SMA) trivialize 

computation due to unlimited pancomputationalism. This defect led to the 

development of more sophisticated approaches: Counterfactual, causal, and 

dispositional accounts extended the mapping account with restrictive conditions 

that prevent too liberal mappings. In section 3.2, I discussed that implementation-

as also requires us to select suitable computational vehicles that can sufficiently 

exhibit counterfactual state transitions.  

Although implementation-as and ‘traditional’ EMAs share these similarities, 

there is an essential difference between the two. Traditional EMAs assume that 

the implementation relation is a naturalistic/mind-independently obtaining two-

place relation between physical and abstract computational states. In contrast, 

SRAs generally advocate for an interpretation of the mapping by virtue of 

scientific representation. This commitment is crucially different because many 

available options of scientific representation are three-place relations obtaining 
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iff we allow agents and their intentional capacities into the picture. That is why 

many SRA-proponents argued that they should be conceived as an agential 

theory of implementation. The implementation-as framework makes this 

explicit, and I argue that its successful application requires the mind-dependent 

activities of denotation, exemplification, encoding, and imputation.  

The semantic account further restricts EMAs by requiring that computational 

states always carry meaning or semantic content. In a previous section (3.1), I 

discussed the connection between my approach and semantic accounts. Both 

SRAs and semantic accounts emphasize the importance of representation in 

computation. However, there are notable differences how representation is used 

and understood in both frameworks.  

In the implementation-as framework, scientific representation is utilized to 

bridge the gap between abstract computational states and physical states without 

the need to commit to external content. In general, SRAs only have a minimal 

requirement for content:  physical states merely need to be the bearer of logico-

mathematical content (of the implemented model of computation). Any 

additional semantic content or meaning the computational vehicles have, is 

irrelevant to the successful application of SRAs and hence implementation-as. 

(However, the user of the computing device may assign semantic content or 

meaning to computations if needed). 113  In contrast, semantic accounts use 

representation in a broader sense, where computational states may represent 

external states of affairs (for example, grandmothers, when thinking of Marr’s 

apocryphal grandmother cell). This sense of representation is more relevant to 

cognitive science, which assumes that brain states are representational. 

Regarding the relationship between Implementation-as and mechanistic 

accounts, the question about their link is nuanced. Depending on which 

mechanistic version one choses for comparison, there are different degrees of 

shared commitments. Generally, mechanistic accounts state that functional 

mechanisms are central to computing; computational vehicles need to be 

components of a mechanism. In its current formulation, the implementation-as 

framework does not specifically share that commitment. However, even though, 

computational vehicles need not be part of a mechanism for the successful 

application of implementation-as, nothing in the formulation of my account rules 

out that computing systems C=⟨X, I⟩ cannot be mechanisms. In fact, both 

previously discussed cases – the MONIAC and the IAS-machine – are bona fide 

mechanisms. Future research should elucidate if this fact is accidental or whether 

 
113 See Fletcher 2018, 452-53 for a similar discussion concerning AR-Theory. 
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a combination of the views might lead to an even more robust theory of physical 

computation. 



 
 

 

5 Physical Programmability  
 

 

In line with the UTAI framework (cf. Chapter 2), the previous chapter introduced 

a novel theory of computational implementation. As such, Implementation-as 

illuminated how different features under the umbrella ‘program’ are connected 

across the abstract-concrete dichotomy. This chapter sheds further light on the 

physical side of things and scrutinizes the relationship between agents and the 

physical system they program (dependency relation (c)). 

 

Introduction & Motivation. How are programs integrated into the causal nexus? 

What does it mean for a physical system to be programmable? Which of a 

program’s features let it appear as physical entity? The strategy of conceiving 

computation abstractly at a level of symbol manipulation and programs as sets 

of instructions fails to account for the physical properties that render a system 

programmable. For addressing these issues this chapter introduces the notion of 

physical programmability. Physical programmability accommodates insights from 

well-established research territories like (computational) mechanisms; 

interventionism; human-machine interaction; theoretical computer science, and 

is compatible with real-world examples. I propose that the ensuing 

characterization of physical programmability  

Physical Programmability: The degree to which the selected operations of an 

automaton can be reconfigured in a controlled way. 

Subsequently, the structure of this chapter unfolds like so: First (section §5.1), 

I provide a critical overview of a handful of existing accounts concerned with the 

programmability of sequence executing systems. Then, I introduce the novel 

notion of physical programmability by presenting the various 

elements/variables contained in its definition. Accordingly, I begin with 

elucidating the conception of material automata (section §5.2). Thereafter (section 

§5.3), I shed light on which kinds of operations are permissible to fall under the 

scope of programmability by relying on the notion of mechanisms. Next (section 

§5.4), I explain how ‘interventionism’ allows us to understand the 

reconfiguration of programmable systems. Penultimately (section §5.5), I analyze 

to what extent programmability comes in different degrees. Lastly (section §5.6), 

I provide some concluding remarks and discuss various open questions.  
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5.1 A critical overview of Programmability 

One way of thinking about programmability is in terms of the ability to change 

the behavior of a sequence-operating system. We may program our VHS, 

washing machine, or computer. Pre-theoretically, programmability is commonly 

viewed as ‘the property of being programmable’ and applied to a wide variety 

of different kinds of either virtual or concrete (computing) systems. However, a 

characterization along these lines is circular and lacks rigor. Without further 

analysis, such a definition of programmability remains uninformative at best.  

Despite the importance of the notion (for computing), the literature on the 

programmability of physical systems is scarce. To the best of my knowledge, 

there are only a handful of sources that explicitly aim to elucidate the matter. To 

get started, I will, therefore, conduct a thorough and critical assessment of the 

proposals by Conrad, Zenil, Piccinini, and Haigh & Priestley. This in-depth 

analysis will provide a comprehensive understanding of the existing literature. 

As we will see, while differing significantly, these accounts coincidentally114 

share four salient features of programmability: A specification of the type of 

system programmability applies to (scope); the kind of operations it can perform; 

the way in which re-programming is achieved; and a grading system according to 

which programmability comes in different degrees. These four ingredients (cf. 

table 1 at the end of this section) will subsequently serve as the kick off for my 

refined physical programmability proposal.  

 

5.1.1 Programmability as a trade-off principle 

The formulation of a more rigorous notion of programmability was initially 

attempted in The Price of Programmability (Conrad 1988). Conrad, a biophysicist 

who studied biological computing systems, posits a trade-off principle that links 

computing and evolution. He attributed three fundamental properties to these 

systems: programmability, efficiency, and evolutionary adaptability. Inspired by 

contemporary computing technology and the linguistic metaphor associated 

with programming languages, Conrad characterizes programmability as the 

“ability to prescriptively communicate a program to an actual system” (Conrad 

1988, 286). By subsequent refinement, Conrad offers two more fine-grained 

notions (that he deemed crucial for understanding the adaption of biological 

systems): effective programmability and structural programmability.  

Relying on the anthropomorphic notion of communication, a system is 

effectively programmable “[…] if it is possible to communicate programs in an 

exact manner, using a finite set of primitive operations and symbols, without 

approximation.” (Conrad 1988, 287-88; own emphasis). Conrad contends that 

 
114In fact, none of the illuminated approaches in this section cross-reference each other. 
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effective programmability is achievable in three ways: (a) by relying on an 

interpreter, (b) by building a physical realization of the relied-upon model of 

computation, and (c) by utilizing a compiler. Structural programmability builds 

on effective programmability and bears the additional condition that “a program 

is mapped by its structure” (ibid., 288).  Put differently, some systems may be 

effectively programmable but not structurally programmable. Conrad states that 

only the first two ways, (a) using an interpreter or (b) building a physical 

realization, suffice for structural programmability. The implication is that the 

corresponding program of such merely effectively programmable systems would 

not be mapped by their structure.  

Despite capturing some intuitive notion of programmability, I have three 

principal reservations about Conrad’s account: First, the definition of 

(effective/structural) programmability fails to explain what kinds of 

manipulations are permissible. Relying on the communication metaphor for 

human-computer interaction obfuscates which physical properties are essential 

for the device’s programmability.  

Second, in the build-up of his argument, Conrad appears to rely on a dubious 

understanding of the Church-Turing thesis, confusing computational modeling 

with physical computation proper. 115 Since Conrad’s original publication in the 

late 1980s, a rich literature on physical computation emerged, emphasizing that 

computational modeling and concrete computation must not be confused, or else 

one slips into trivial forms of pancomputationalism. However, it is only due to 

this conflation that Conrad can apply programmability and his trade-off system 

to all sorts of (biological) systems. 

Third, the distinction between effective and structural programmability 

remains somewhat opaque when it comes to the “mapped by its structure” 

condition. According to the literature on physical computation, implementation 

requires some mapping between the formal model of computation and physical 

substratum (see Piccinini & Maley (2021) for an overview). Effective 

programmability contradicts these research insights without clarifying what the 

‘mapped by its structure’ condition is supposed to amount to.  

 

5.1.2 Programmability as the foundation of computation 

Independently of the previous account, Zenil introduced an approach to 

programmability closely entangled with computation (Zenil 2010; Zenil 2012; 

Zenil 2013; Zenil 2014; Zenil 2015). His view about programmability emerged 

from his so-called behavioural standpoint – an approach to physical computation 

claimed to part ways with the common approach of the so-called simple mapping 

 
115 Conrad’s version is much closer to what Copeland (2024) has called the ‘Maximality Thesis.’ 
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accounts. So, instead of relying on a mapping between an abstract model of 

computation and a physical computing system, a compression-based metric is 

advanced that acts as a ‘grading system’ of a material object’s ability to be (re-

)programmed. The ability to be programmed is regarded as a necessary condition 

for physical computation.  

Accordingly, physical computation cannot be separated from 

programmability, where the latter is defined as “[…] the ability of a system to 

change, to react to external stimuli (input) in order to alter its behaviour.” (Zenil 

2015, 112).  In fact, programmability is regarded as a condition sine qua non – 

“[h]ence, we make the assumption that central to the claim that something 

computes is the capability of a system to be reprogrammed.” (Zenil 2014, 111). 

Only when a material system is said to be reprogrammable can it be considered 

computing; the ability of physical computation reduces to programmability.  

By connecting programmability to a general notion of ‘variability’ (defined by 

a formal measure),116 Zenil aims to provide a theoretical basis to quantify the 

degree of change due to some external input. Simply put, the variability measure 

assigns values to outcomes (states of a system) depending on different initial 

conditions.  

While offering advantages in terms of a formal programmability measure, 

Zenil’s account also presents certain concerns. Most notably his work does not 

tell us how to differentiate genuine programming from other (arbitrary) 

interactions with a material system. Without additional constraints, the account 

may be trivialized, as any physical interaction could potentially be considered 

programming. Although a normative condition is presented, indicating that the 

system should behave as intended, it remains unclear whose intentions should 

be the deciding factor. 

 

5.1.3 Soft & Hard Programmability 

A third attempt to define programmability emerged from Piccinini’s work about 

the teleo-mechanistic account of computation (Piccinini 2008, Piccinini 2015). He 

writes “[a]ny machine that can be easily modified to yield different output 

pattern may be called ‘programmable’.” (Piccinini 2015, 184). Interestingly, his 

notion does not exclusively apply to computing systems. Opposed to Conrad and 

Zenil, his conception may apply to non-computing mechanisms as long as they 

operate in sequence (such as weaving looms and juke boxes). Nevertheless, 

Piccinini maintains that programmability is a gradual concept (though a non-

formalized one). He suggests framing it in phenomenological terms, i.e., the 

 
116 Zenil employs Kolmogorov Complexity (aka Algorithmic Information) as the basis for his 
formal variability measure.  
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easier one obtains different output patterns, the higher the amount of 

programmability. Based on these preliminaries, his work offers a taxonomy of 

four different cases of programmability:  

(a): The first type of programmability corresponds to the configuration of non-

computing systems just presented. Piccinini does not pay much attention to this 

type of programmability and I will hence skip its assessment for lack of 

analyzable material.  

(b): More attention is paid to the second type though: hard programmability. 

Hard programmability refers to computing systems (n.b., non-computing 

systems are no longer discussed) where components are mechanically modified: 

In order to implement a specific computational function f(i), with input i, the 

machine’s operators need to adjust the pattern in which the computing 

components are “spatially joined together” (Piccinini 2015, 185).  

(c) & (d): When systems are not (re)programmed mechanically, they are 

considered soft programmable. Here, the “modification involves the supply of 

appropriately arranged digits (instructions) to the relevant components of the 

machine” (Piccinini 2015, 185). Two cases are distinguished, leading to his third 

and fourth types of programmability, respectively: On the one hand, external soft 

programmability is defined by the insertion of the instructions (encoded in a 

string of digits) through an external medium (for instance punched cards). On 

the other hand, internal soft programmability applies to devices that can store 

programs (strings of digits) inside of them. The distinction between external and 

internal soft programmability thus alludes to architectural features: external soft 

programmability refers to devices without internal memory, internal soft 

programmability applies to devices with internal storage. 

As already mentioned earlier, it is paramount to emphasize that his taxonomy 

is not categorized by which kind or how many (computational) functions can in 

principle be implemented in a system though. Instead, Piccinini’s grading system 

is based on the way in which a (computing) system is manipulated.  Choosing to 

spell out programmability in terms of how a device is set up, is supposed to 

capture some of our everyday experiences of programming devices. Either 

machines are programmed through cumbersome mechanical modification (hard 

programmability), or by supplying instructions to computing components ex- 

(external soft programmability) or internally (internal soft programmability). 

While considering everyday experiences from a programmer’s perspective is 

a welcome feature, at a closer look, the categorization scheme raises at least two 

worries. First, the distinction between hard- and soft programmability is 

somewhat reminiscent of the notorious software-hardware dichotomy. The 
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software-hardware distinction is ill-defined.117 I think that Piccinini’s distinction 

is subject to similar criticism, i.e., hard and soft programmability appears to be 

relative to some arbitrarily drawn line, since ultimately every programmable 

system is changed ‘mechanically’ (at least, if understood in terms of mechanism; 

cf. sect. §3). 

Moreover, the formulation ‘to supply instructions’ is potentially misleading. 

Such communication metaphors attribute cognitive capacities like 

‘understanding instructions’ to (computing) machines. Anthropomorphizing 

machines risks overlooking the underlying physical properties and mechanisms 

that allow for programmability in the first place. 

 

5.1.4 Program Execution ≠ Programmability  

Lastly, Haigh & Priestley (2018) recently developed a notion of programmability 

for historical discussion meant to classify COLOSSUS with respect to other well-

studied historical digital computing machines. 118  What distinguishes their 

conception from the previous ones is that it does not appeal to computability 

theory or any other formal apparatus. Instead, the authors state that two 

conditions are necessary for a system to be programmable, viz., 

“[…] “programmability” as applied to a device requires not only that the 

device carries out a sequence of distinct operations over time, i.e. that it 

follows a program, but also that it allows a given user to define new 

sequences of operations.” (Haigh & Priestley 2018, 18) 

Their two necessary conditions are intertwined: On the one hand, a 

programmable device needs the capacity to carry out a sequence of operations; 

on the other hand, the sequence of operations must in principle be changeable by 

the users. The authors rightly emphasize that the latter feature is dependent on 

the former, as a system must be able to execute sequences of operations to enable 

users to change them. As such, their notion of programmability is rather inclusive 

– also allowing non-computing devices such as programmable washing 

machines. Importantly, this definition allows COLOSSUS to be classified as a 

program-executing device, despite being non-programmable in their terms. 

 
117 Remember, for instance (Moor 1978), according to which the software-hardware distinction 
is merely a pragmatic one, dependent on context and the skills of the programmers and users. 
118 COLOSSUS was a British top-secret electronic codebreaking device built from 1943-1945. 
Haigh & Priestley argue that the machine was not built to carry out numerical computations but 
designed to decrypt teleprinter encryption of German communication during WWII. Despite 
not being a (general-purpose) computer, the authors claim that the machine automatically 
executed a program (i.e., implemented a specified series of discrete operations). 
Notwithstanding, Haigh and Priestly state that COLOSSUS was not programmable since the 
users could not fundamentally alter the program of operations performed by the machine. 
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Developed for a historical argument of only one particular device, their 

characterization of programmability has a couple of weaknesses when applied to 

other automata.  Chief among them is that their approach does not elucidate 

different degrees of programmability – according to their binary view a system 

is either (completely) programmable or not. In addition, the authors stay silent 

about which kinds of interactions ought to be considered as re-programming (as 

opposed to arbitrary interactions). 

 

5.1.5 Taking Stock 

This brief overview showed a small and disconnected variety of philosophically 

inclined attempts towards programmability of material (computing) systems. 

The results are summarized in Table 5.1.  

 

 Conrad Zenil Piccinini Haigh & 

Priestley 

Type of Material 

System 

Natural & 

technical 

Natural & 

technical 

Technical & 

natural (?) 

Technical 

Operations Computation Computation Sequenceable 

operations 

Sequenceable 

operations 

Mode of 

Reconfiguration 

Instruction - Mechanical, 

Instructions 

- 

Degree/ 

Grading System 

Effective and 

Structural  

Quantitative 

measure 

(algorithmic 

information) 

Hard and soft  - 

 

Table 5.1: Overview/Comparison of the different features of the here presented 

accounts of programmability. 

 

Given that programmability is often overlooked in philosophical discourse, its 

individual methods, scope, and aims can vary greatly. Nonetheless, some 

commonalities have emerged in the accounts of programmability.  Therefore, I 

take it that a good account of programmability should specify the type of system 

to which it applies, the operations that are considered, how configurations are 

achieved, and in what sense it is a gradual notion.  

With these requirements in mind, I submit an improved notion called physical 

programmability: The degree to which the selected operations of an automaton can be 

reconfigured in a controlled way. In the following sections, I will clarify how the 

elements in my characterization of physical programmability - automaton, 
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selected operations, reconfigured in a controlled way, and the degree to which it 

is achieved - are anchored in contemporary research traditions. 

 

5.2 Material Automaton 

Virtually any system’s behavior can be changed or manipulated in one way or 

another, but not every change of arbitrary objects amounts to (re)programming. 

For this reason, it is desirable to constrain programmability to specific systems 

only. In this section, I explain how the material automaton variable contained in 

my definition serves this purpose by restricting the scope of physical 

programmability to real-world automata. In what follows, it is thus crucial to 

specify what real-world automata are. 

The term ‘automaton,’ originating from the Greek word αὐτόματα, means ‘self-

moving’. Historically speaking, material automata have existed since ancient 

times and include mechanical clocks, automated musical instruments, looms, 

and calculators (Ambrosetti 2010). They can perform operations like sound 

production, weaving, or physical computation, based on varying degrees of 

energy and control autonomy. (A more elaborate concrete example will be 

discussed at the end of the section). Today, one may characterize an automaton 

as  

Automaton: System with the ability to execute a predetermined series of 

operations (to some degree) autonomously.  

Despite this precise characterization, the term ‘automaton’ bears some ambiguity 

in common language and philosophical discourse. Depending on one’s 

understanding of ‘system,’ the term ‘automaton’ may refer to two different 

ontological domains. On the one hand, modern automata theory is the study of 

abstract machines and an integral part of theoretical computer science.119 On the 

other hand, there are those already mentioned tangible real-world automata – 

these systems are particulars locatable in space-time.  

Differentiating between abstract and concrete automata is crucial for avoiding 

category mistakes. For instance, as per Sloman (2002), material automata display 

energy autonomy and control autonomy. A device that depends on a human 

operator to provide energy (e.g., by turning a knob) has low energy autonomy, 

whereas a device with an integrated energy source, like an engine or battery, has 

 
119 For instance, by defining different classes of abstract computing systems such as finite state 
machines, pushdown automata, Turing machines, etc. we can study the theoretical limits of 
computation (cf. Hopcraft et al 2001). A Turing machine, e.g., provides a formal procedure for 
computing a function, yet the machine qua abstract object is not something physical at all. Often 
programmability is discussed with these formal devices; Turing machines, for instance, are said 
to have a higher programmability than FSM, as they compute more functions. 
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high energy autonomy. Similarly, a machine that necessitates frequent user 

intervention to control its actions has low control autonomy (e.g., a car), while a 

system where a predetermined set of actions can be executed without any 

intervention on the control mechanism has high control autonomy. Now, 

applying categories like energy and control autonomy to logico-mathematical 

entities like Finite State Machines would be a fallacy because these abstract 

formalisms cannot be driven by real-world motors. Importantly, physical 

programmability is hence only intended for material automata. 

 

5.2.1 Automata as technical artifacts 

To further distinguish material automata from ordinary physical objects like 

rocks, tables, and tigers, it is helpful to rely on the theoretical framework of 

technical artifacts. Technical artifacts are special types of artifacts that are 

characterized by their ‘dual nature’ - constituted by both mind-dependent 

functional features and mind-independent structural features (cf. Baker 2006; 

Kroes & Meijers 2006; Kroes 2012; Preston 2018, §2.3).  Structure determines what 

an artifact can do, while function is what the artifact is intended to be used for. 

Due to this normativity, some researchers (Vermaas & Houkes 2003; Houkes & 

Vermaas 2010) argued that technical functions require intentionality. 

Accordingly, an agent or epistemic community intentionally ascribes a function 

to an object for a specific purpose. 

From this theoretical standpoint, material automata can be viewed as 

technical artifacts because they are (i) intentionally created devices with (ii) the 

ability to execute a predetermined sequence of operations. Let me briefly look at 

these requirements separately.  

The first necessary characteristic to be considered a material automaton is that 

the system’s structure must be able to exhibit sequential behavior (e.g., through 

a mechanism). However, this is a cheap property that many systems possess: 

Given some interpretative flexibility, a wide range of systems appear to act in 

sequence – the dynamical macroscopic behavior of systems like hurricanes or 

rivers, for instance.120 That is why mere sequential behavior is insufficient to 

qualify as an automaton qua technical artifact. 

Therefore, we must adhere to the second fundamental trait of technical 

artifacts - intentional function ascription. In the case of a designed program 

 
120 Worse, one may even argue that prima facie seemingly static systems (like rocks and tables) 
have an ability to operate in sequence. In a different context, philosophers like Putnam (1988) and 
Searle (1990) have employed such reasoning to argue that objects like rocks and walls, seen at a 
microscopic level, showcase an internal dynamical behavior (that is interpretable as a sequence of 
operations). The reason for this is that the physical state of ordinary systems does in fact traverse 
physical state space and is not completely static. 
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executing material automaton, one of the system’s function is to execute a 

predetermined series of manipulable operations. It is important to note that the 

‘predetermined’ clause requires an intentional sequence set up by an epistemic 

agent or community. 121  Put differently, this requirement excludes natural 

systems that can act in sequence as material automata because their course of 

action is not intentionally predetermined by designers, programmers, or users. 

Although we may describe dynamic systems like hurricanes and cells in terms of 

theoretical automata, they should not be considered material automata defined 

by technical artifacts. 

 

5.2.2 An Example: The Musa flute player  

So far, we primarily approached the topic of material automata theoretically. To 

provide further clarification for the rest of the chapter, I discuss the relevant 

concepts with a concrete, historical example: an ancient flute player. Albeit 

seemingly simple at first, I shall occasionally return to this example to discuss 

several philosophical issues relevant to the remainder of this chapter. 

 One of the first audio automata or ‘music boxes’ that play melodies with 

minimal human intervention originated in the ninth century CE, when three 

scholarly brothers from Baghdad, known as the Banu Musa, built an automatic 

flute player (Levaux 2017, §3.1). The device was powered by water and operated 

using differences in air and hydraulic pressure, generated by a filled reservoir. 

This structure generated wind for the creation of the sounds of the flute.  By 

additionally utilizing a cylindric rotating drum with teeth and small levers that 

opened or closed the flute's nine holes depending on the size and positioning of 

the raised pins, different melodies emerged (Koetsier 2001, 590-591). Fig. 1 

illustrates the underlying mechanism responsible for the energy autonomy that 

enables the automatic functioning of the device.  

 
121 Ascribing teleological functions to arbitrary systems (with the ability to act in sequence) is 
insufficient to turn it into a technical artifact. Mere function ascription leaves room for ready-
made artifacts or so-called object trouvés (meaning found objects – a concept from the art world). 
If that were the case, one could simply promote natural objects, which can be utilized to serve 
human purposes, into technical artifacts.  A simple example is a rock that may be used as a 
hammer. Similarly, one could turn systems like hurricanes or cells into a material automaton by 
interpreting their dynamical behavior sequentially.   
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Importantly, the Musa flute player’s designers did likely not intend their 

machines to be reprogrammable after construction (d’Udekem 2013, 177). Once 

operational, the system was designed to perform a fixed melody (a sequence of 

tones) and was not responsive to any external input. 122  The lack of a 

programming mechanism or external interface made it impossible to control and 

predetermine a (new) series of operations unless the machine was disassembled 

or destroyed.123 

 

Fig. 5.1: Depiction of the mechanism that constitutes the Musa flute player. The 
teeth of the cylinder or ‘program barrel’ opened the organ-pipe via levers through 
pallets. (Image taken from Farmer (1931, 101)). 

 

The upshot of discussing this peculiar device is that not all sequence-

controlled automata are also programmable. To account for (more) 

programmable types of automata, I will provide further conceptual resources 

that elucidate how humans can intervene and control more complex devices. 

Particularly, I will shed light on the notions of input, output, and interface, 

facilitating our understanding of how human agents can intervene on the device’s 

control structure/mechanism such that its operations change. Accordingly, the 

 
122 As such, ‘programming’ (in a limited and basic sense) may only take place during the 
construction phase of the device. The reason is that the mechanism responsible for producing 
the flute player’s melody is internal to the system and completely hidden from its users. Since 
the mechanism is not meant to be changeable, there is no need for external means of regulation 
through an interface. Without a recognizable interface, re-programming is unfeasible. 
123 As Simon (1996, 6) points out, designers may only ever achieve a ‘quasi-independence’ of 
their technologies from the outside world. Biologists may have similar discussions concerning 
the phenomenon of homeostasis of certain kinds of organisms (Glennan 2017,114-115). No item 
can be entirely shielded from environmental influences, and the insulation of the flute player's 
inner workings may break down due to strong vibrations, extreme temperatures, or exposure to 
strong magnetic fields. Additionally, a skilled individual might be able to work around the 
insulation and ‘hack’ into the system and access the control mechanism of the machine, 
revealing unforeseen (non-intended) interfaces. 
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following section introduces how an automaton’s operations hinge on its 

underlying mechanism.  

 

5.3 Selected operation 

In the 17th century, the term ‘mechanism’ surfaced by following Greek and Latin 

terms of machine (Dijksterhuis 1956). In recent philosophical discourse, 

mechanisms gained considerable traction with the so-called (neo-) mechanistic 

turn around the beginning of the millennium.124 Since then, mechanistic talk in 

philosophy of science mushroomed and has brought forward a rich literature 

applied to large variety of research domains like physics, chemistry, biology, 

cognitive science, economics to only name a few. 

 I propose that programmable automata and the structure that enable their 

operations are fruitfully describable in terms of mechanisms. In particular, the 

mechanistic framework provides insights that deepen our understanding of 

‘operation’ and how human agents may exercise control over a programmable 

system. In this section, I explain how we can understand operations by virtue of 

mechanisms. I will discuss the exercise of control afterward in sect. §4. 

 At first, marrying mechanisms with automata may seem hardly original – the 

very term ‘mechanism’ derives from ‘machine’ and has a technological 

connotation. Yet, using the philosophical notion of mechanism to analyze 

engineered systems is surprisingly scarce (van Eck 2017); arguably, most 

mechanistic research applies to the life sciences. This is a pity, because the 

mechanistic framework not only enables us to look at the physical components 

responsible for the automaton’s operation but also allows for the integration of 

further conceptual tools from the mechanistic literature that can act as a 

philosophically robust bedrock for programmability.   

 

5.3.1 Mechanisms 

While I want to focus on mechanisms in programmable automata, it is chief that 

we first grasp the most salient features of mechanisms in general.125 In what 

follows, I will rely on the stabilized ‘consensus conception’ of Illari and 

Williamson (2012), according to which a mechanism is defined as  

 
124 For a more thorough (but still tractable) historical overview of the mechanistic turn see 
Kästner (2017, Ch. 3).  
125 There is a wide array of systematic work about the nature of mechanisms. Some of the most 
influential accounts brought forward are Bechtel & Richardson (1993); Glennan (1996); 
Machamer et al. (2000); Bechtel & Abrahamsen (2005); and Craver (2007b). 
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Mechanism: “A mechanism for a phenomenon consists of entities and 

activities in such a way that they are responsible for the phenomenon.”, 

(Illari & Williamson, 120). 

It is widely accepted that the spatial, temporal, and active relations between 

entities and activities (the micro-behaviors) are responsible for the mechanism’s 

phenomenon (the macro-behavior). Characterizations along these lines appear to 

imply some form of mechanistic hierarchy: There are at least two levels comprised 

of acting entities (the parts) on the one hand, and an exhibited higher-level 

phenomenon (the whole) on the other. Typically, the higher-level phenomenon 

of some mechanism/system is referred to as S’s Ψ-ing, where S denotes the 

system, and Ψ-ing its corresponding phenomenon. The mechanism’s entities are 

referred to as Xi and their activities are denoted by {ϕ1, ϕ2, ..., ϕn} (cf. Craver 

2007b). Figure 2 pictures two mechanistic levels with the aforementioned 

elements.  

 

Fig.5.2: Schematic representation of a mechanism. (cf. Krickel 2018; Craver 2007b) 

Such a two-level image can be (and is in fact often) expanded into a multi-

level hierarchy. Every working entity Xi of a mechanism S can itself be subject to 

further decomposition into a sub-mechanism; mechanisms can thus be ‘nested’ 

several times. When then ‘horizontally’ analyzing the relation of the components 

Xi’s on a given level we are speaking of interlevel relationships; when referring to 

‘vertical’ relations between levels we speak of intralevel relations.   

The mechanistic level image advocates a localized approach to levels of 

organization – the hierarchy applies relative to a given mechanism S and its lower-

level components. While the level metaphor is ubiquitous in (the philosophy of) 

science, it is important to not conflate mechanistic levels with the other 

prominent level views (Craver 2014; Eronen 2015).126   

 
126 Particularly in the current context of computing, the conception of mechanistic levels does 
not equate with LoA of computational artifacts. Though one certainly can apply the 
methodology of LoA to mechanistic levels, there is one important difference: the mechanistic 
framework is limited to spatio-temporal entities only. In contrast, the notion of LoA may also be 
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 What’s key about the mechanistic framework for our quest to define physical 

programmability is that offers the right means to uncover the functioning of 

material automata. Specifically, I submit that S’s Ψ-ing ought to be interpreted as 

the automaton’s (sequential) operations; here S corresponds to the automaton 

and Ψ-ing denotes its operations.  

 

5.3.2 Input-Output mechanisms 

An additional benefit of utilizing the neo-mechanistic framework for 

characterizing physical programmability is that we can rely on the notion of what 

Glennan calls input-output mechanisms (2017, 113-116; referred to as ‘I/O’ from 

here on).   I/O mechanisms are a subclass of the generic definition of 

mechanisms. The focus is shifted to a phenomenal description, especially to the 

patterns a mechanism’s phenomenon produces. As per Glennan, I/O 

mechanisms are systems whose actions or outputs are responsive to inputs and 

describable by a functional relation between input and output variables  

f(i)=o, 

where i denotes the input(s), o the output(s), and f their functional relation. 

Reasoning along these lines allows for the threefold distinction between 

mechanisms that bring about outputs as a result of inputs (the ‘regular’ I/O case); 

mechanisms that produce outputs independently of inputs (no-input/output);127 

and mechanisms that remain stable/provide a constant output when presented 

with varying inputs (input/no-output) (Glennan 2017, 116).  

Moreover, by conceptualizing the inputs and outputs of the I/O mechanism 

as variables that can take on different values, we can easily use mathematical 

representations to describe S’s Ψ-ing. Using a mathematical representation has 

two primary advantages:  

First, it allows us to flash out the possibility space of a material automaton’s 

behavior in terms of (finite) automata theory.128 Especially the notion of finite 

deterministic automata (FDA) and the corresponding state diagrams are useful 

models to study the potential material automaton’s execution traces. 129  It is 

 
applied to abstract/formal entities. Another crucial difference between LoA and the 
mechanistic hierarchy is the intralevel relation between different levels. Whereas the former 
relies on some form of leaving out selected details (abstraction), the mechanistic intralevel 
relations are of a different nature. I shall return to the importance of levels in section §4. 
127 The Musa flute player is a case in point.  
128 It is important to note that while we should be cautious not to confuse abstract automata of 
the logico-mathematical realm with concrete real-world machines, we can still use the 
conceptual framework of automata theory to model actual material devices. 
129 Theoretically, a FDA can be defined as a five tuple 𝐴 = (𝑄, Σ, δ, 𝑞0, 𝐹), where 𝑄 denotes a 
finite set of states, Σ is the finite set of input symbols, δ is a transition function, 𝑞0 is the start state, 
and 𝐹 a set of final states (Hopcroft et al. 2001, 46). Depending on the input label 𝑎 from the 
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handy for systems that execute a (predetermined) sequence of operations based 

on external events (inputs): Vending machines, elevators, traffic lights, and 

combination locks are typical examples of the textbook literature (see e.g., 

Mozgovoy 2010, 92-95). We may additionally draw state diagrams or 

contingency trees that visualize different execution traces depending on different 

inputs. As such, the concepts associated with automata theory allow us to 

analyze the behavior of material automata, predict their behavior, and reason 

about which series of operations are, in principle, executable.  

Secondly, as we will delve into in the next section (§4), the mathematical 

representation of I/O mechanisms plays a crucial role in making the concept of 

‘reconfiguration’ understandable through causal modeling. This is possible 

because that we can assign logical (Boolean), discrete, or continuous values to the 

variables associated with a mechanism, and since the functional form of relations 

between them can be characterized as linear, quadratic, logarithmic, etc.  

 

5.3.3 Selection 

I argued that the operations of an automaton are characterizable as a 

‘phenomenon’ in terms of the mechanistic framework. However, without further 

qualification, the threat of an underdetermination problem remains with this 

view since a given system S may showcase multiple phenomena at once. When 

we judge an item to bear a certain degree of programmability, we typically do so 

with only one specific phenomenon (Ψ-ing) in mind. Physical programmability 

only makes sense relative to a specifically selected series of operations -- yet some 

systems may simultaneously exhibit multiple potential phenomena.  

To exemplify the issue, consider the example of the flute player I previously 

discussed in section (§2). The takeaway was that the device has virtually no 

programmability since one cannot modify its sequence of operations in a 

controlled manner. However, during our assessment, we glossed over the fact 

that the ancient automaton simultaneously produces several phenomena (e.g., 

vibrations, sound, heat, etc.). Admittedly, most of these phenomena are just an 

accidental byproduct. Nevertheless, the numerous different phenomena require 

a specification or selection of a specific phenomenon, or else the notion of 

programmability remains underdetermined (i.e., the same 

system/device/automaton may bear (different degrees of) programmability 

concerning more than one type of phenomenon). 

 
alphabet Σ, transitions δ(𝑞, 𝑎) → 𝑝 connect the states (e.g., 𝑞 and 𝑝). Multiple transition labels 
may form a ‘word’ 𝑤 = 𝑎1, 𝑎2, … 𝑎𝑛 , (i.e., a string over the alphabet Σ). A word is valid for a 
given FDA if the sequence of transition labels leads from the initial state 𝑞0 to a final one 
contained in 𝐹. A string of inputs 𝑤 that is compatible with the FDA can be interpreted as a 
program describing an execution trace within the set of possible behaviors. 
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To remedy the issue, I added the ‘selection’-clause in my characterization of 

physical programmability. The idea of the selection clause is to guides/inform 

us in the selection process of the material automaton’s operations and single out 

a specific phenomenon, dependent on the interest of an individual or an 

epistemic community. N.b., as such, the selection-clause works hand in hand 

with the idea to restrict the applicability of physical programmability to designed 

material automata only. What is particularly helpful in this regard is my previous 

description that material automata are technical artifacts (cf. sect. §2.1).  Due to 

their function-structure duality, technical artifacts bear specifically ascribed 

normative functions. In the case of the Musa flute player, for instance, its function 

is to produce a pre-determined sequence of sounds. In other words, the 

phenomenon physical programmability is supposed to capture usually coincides 

with the intended operation the material automaton should carry out. 

In the ensuing paragraphs, I will illuminate how these selected operations can 

be altered in a controlled way.  

 

5.4 Reconfigured 

In the previous sections, I occasionally helped myself to the terms ‘manipulation’ 

or ‘intervention’ only using these terms informally. It is high time to discuss these 

concepts in more detail. Specifically, I submit that the main theoretical 

underpinnings of physical programmability are so-called manipulability- or 

agency theories of causation, which are a subset of causal interventionism. (cf. 

Woodward (2023) for a survey of manipulability theories). In a nutshell, 

manipulability theories aim to elucidate causal structures through  

Difference-making: C is a cause of E (the effect) iff manipulating C in the 

right way affects (makes a difference on) E.  

The motivation to rely on such theories is threefold: First, utilizing a 

manipulability-based approach allows us to straightforwardly account for how 

programmers and users exercise control over a (computing) system through 

(causal) interaction/manipulation: 

“When a relationship is invariant under at least some interventions, it is 
potentially usable for purposes of manipulation and control —potentially usable in the 
sense that while it may not as a matter of fact be possible to carry out an 
intervention on X it is nonetheless true that if an intervention on X were to occur, 

this would be a way of manipulating or controlling the value of Y.” (Woodward 
2002, S370; own emphasis). 

As such, it is paramount to note that manipulability theories do not need to 

employ any communication metaphor (as is arguably often the case in the context 

of programming computers through instructions). That way, we can study 
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human interaction with a programmable automaton without necessarily having 

to appeal to programming languages or anthropomorphic metaphors that 

distract us from what is happening during reconfiguration at the physical level.   

Second, manipulability and agency theories typically rely on counterfactual 

reasoning (if C would have been different, E would have been so-and-so). This 

feature is advantageous because it allows for applying physical programmability 

to physical computation. As we have seen in the previous chapters on physical 

computation (Chapter 4 and Chapter 5), counterfactual support is essential for 

implementing computations and determining which computations would have 

occurred if the input had been different (cf. Piccinini 2015, Ch. 2). 

Lastly, interventionism applies to various systems, including – crucially for 

this undertaking – mechanisms. This compatibility allows to integrate physical 

programmability in contemporary philosophical debates, facilitating the 

exchange of ideas and fostering cross-fertilization. Put differently, the advantage 

of the approach is that it enables the bringing together of diverse philosophical 

concepts under the umbrella of physical programmability. 

To better understand how interventionism’s features figure in 

programmability, it is helpful to familiarize us with the details of its formal 

machinery (sect. §4.1). This will be important to understand how the combination 

of mechanisms with the interventionist account play out in the context of the so-

called Mutual Manipulability (MM) concept (sect. §4.2). 

 

5.4.1 The Formal Machinery of Interventionism 

Interventionism in its contemporary form (see, e.g., Woodward (2003) and Pearl 

2009)) originated from combining features from causal modeling and 

manipulability theories. This theory’s main achievement was to devise a formal 

notion of ‘intervention’ that does not require human agency.130  Based on so-

called structural models, causal relations (in science) can be precisely represented 

through a rigorous formal framework, providing us with criteria to analyze 

specific situations/systems to e.g., draw causal inferences without adhering to 

human terms. Accordingly, we can portray causal relations either by directed 

acyclic graphs (DAG) or structural equations.  

 
130While manipulability theories capture the intuition of how to portray causal structure, earlier 
versions of manipulability theories were long objected to for relying on the anthropocentric 
notion of ‘manipulation.’ Depicting causes C as vehicles for manipulating effects E, often (at least 
in older versions) assigns central significance to human action. Adhering to human agency was 
seen to fly in the face of the idea that causal relations are part of the mind-independent world. 
Considered a bug in the original theory, it is a welcome and crucial feature of physical 
programmability since it conceptually aligns with the required pre-determined set up of 
automata by agents.  
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The notion of structural equations enables us to translate talk about causal 

relations into talk about relations between variables. These variables stand for 

properties or events obtaining different values. Formally, a causal model is then 

definable as 〈𝑉, 𝑆〉 , where V denotes a set of variables and S is a set of 

corresponding structural equations (we have already seen an instance of this in 

the discussion of I/O mechanisms in sect. §3).131  

DAGs are best introduced by way of example. Consider therefore the 

following case of Ohm’s law adopted from Hausman (2005).  The corresponding 

structural equation is the familiar formula 𝐼 =
𝑈

𝑅
, (with U for voltage, R for 

resistance, and I for current); the corresponding DAG is depicted in Fig. 3.  

 

Fig. 5.3.: A directed acyclic graph (DAG) of Ohm’s Law with the structural 

equation I=U/R (graphic adopted from (Hausman 2005)). 

 

Analogous to what can be seen in (Fig. 3), variables are always represented as 

nodes, and arrows are drawn from causes to their direct effects. Based on these 

conventions, DAGs generally allow us to easily read off 

dependencies.  Importantly, each ‘parent-child’ relationship in the causal graph 

represents a stable physical dependency, allowing a surgical intervention on one 

such relationship without changing the others. An intervention is called surgical 

if no other causal relationships in the systems are affected. For instance, if a value 

of U were to change (i.e., take on a different value) while maintaining the same 

resistance R, we would see a change in the current I caused by that change. 

 
131 Standardly, structural equations are defined as 𝑥𝑖 = 𝑓𝑖(𝑝𝑎𝑖 , 𝑢𝑖), 𝑖 = 1, … 𝑛, where  𝑝𝑎𝑖  denote 
the set of variables (the ‘parents’) that directly determine the value of 𝑋𝑖 and where 𝑈𝑖 stands for 
errors or disturbances (see Pearl 2009, 27). Each of these structural equations corresponds to a 
causal dependency relation. Changing the values of variables (of a given structural causal model) 
under external interventions uncovers those causal dependencies.  In this way, the intuitive 
content of causal claims (C causes E) is preserved, yet concerns about the dependency of agents 
are side-stepped. 
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Wiggling on one of the parent variables U or R therefore enables us to directly 

causes a change in the value of I.132 

I submit that making use of the insights of interventionism elucidate how we 

can reconfigure real-world programmable automata. However, in order to fully 

generalize interventionism’s conceptual resources and adjust them to 

programmability, we need to apply them to the mechanisms of programmable 

material automata. How exactly does the formal machinery of interventionism 

apply to mechanisms? 

5.4.2 Control through Mutual Manipulability  

In recent years, there has been a growing interest in applying causal modeling to 

higher-level phenomena, particularly in the interventionist framework and its 

application to general types of mechanisms and their phenomena. I will now 

demonstrate how applying interventionist concepts to I/O mechanisms can help 

us understand how to control programmable automata. Importantly, we can 

change an automaton’s behavior by two conceptually different types of 

interventions: First, we can wiggle on the inputs i of the corresponding I/O 

mechanism f(i)=o.  Changing the course of action this way brings about a 

particular pre-determined execution trace due to providing different ‘data.’ 

Secondly, and more relevant to the current discussion, we can alter the 

mechanism’s internal functional relation f between the inputs and outputs. This 

second way of varying the system’s behavior in a controlled way amounts to 

genuine reprogramming.  

However, combining interventionism with mechanisms is a non-trivial 

matter. While there is agreement that there is a philosophical problem, there is 

less consensus on how to solve it. To understand the issues at hand, we need to 

look at the intra-level relationship of mechanistic levels again (cf. sect. §3): 

Whereas the relations among acting entities Xi are widely considered as causal 

(black arrows in Fig. 3), the relations between any individual part and the 

explanandum phenomenon S’s Ψ-ing are up to debate (dotted vertical line in Fig. 

3). Mechanistic philosophers typically distinguish between etiological (causal) 

and constitutive relations (see e.g., (Ylikoski 2013)). Applying interventionism to 

causal relations is unproblematic, as tracking causal dependencies is one of 

interventionism’s main objectives. However, it is the second, non-causal 

 
132 N.b., when employing this kind of thinking, we are engaging with modal reasoning, 
“[c]ausal relationships between variables thus carry a hypothetical or counterfactual 
commitment: they describe what the response of Y would be if a certain sort of change in the 
value of X were to occur.” (Woodward 2003, 40) It is thus now generally accepted that 
interventionism is a counterfactual theory (of causation); the notion of a surgical intervention 
that unearths causal relationships requires counterfactuals. 
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relationship between S’s Ψ-ing and Xi’s ϕ-ing that requires substantial 

philosophical caution. 

In short, the issue is to determine which of the various entities Xi and their 

properties constitute S’s Ψ-ing and what exactly the constitution is (Kaiser & 

Krickel 2017). This puzzle is generally discussed under the name of constitutive 

relevance. The most widely accepted proposed solution is Craver's so-called 

mutual manipulability account (MM) (2007a, 2007b), which suggests that 

constitutive relevance is defined by how scientists manipulate a mechanism’s 

component in experimental research practice in order to study its behavior. As 

Craver explains, 

“a component is relevant to the behavior of a mechanism as a whole when one 
can wiggle the behavior of the whole by wiggling the behavior of the component 
and one can wiggle the behavior of the component by wiggling the behavior as a 
whole. The two are related as part to whole and they are mutually manipulable.”, 
(Craver 2007b, 153).  

The idea is that some ideal intervention on a component Xi’s ϕ-ing alters the 

phenomenon (S’s Ψ-ing) and vice versa, i.e., some ideal intervention on S’s Ψ-ing 

in turn also makes a difference for the component’s ϕ-ing. While a 

characterization along these lines essentially captures how we can intervene in 

mechanisms to program them, I will briefly return to some recent philosophical 

problems concerning these matters when closing this chapter. 

 

5.5 The degree to which 

Lastly, I need to clarify in which sense physical programmability is a gradual 

property/notion. At a first stab, the gradual nature of programmability appears 

to correlate with the variability of the potential behavior of the system under 

scrutiny. Take, for instance, the apparatus with virtually no control autonomy we 

encountered earlier –  the ancient flute player of the Musa brothers. While the 

flute player fulfills all the requirements to be conceived as a material automaton, 

the device is not programmable.  After construction, it always carries out the 

same ‘program’ (i.e., it always plays the same melody). The only way to influence 

S’s Ψ-ing, where S denotes the system at hand and Ψ-ing its selected operation, 

is by reassembling the device altogether.  

Contrast the non-programmable flute player with a material automaton 

designed to have (external) control features. In this case, a replaceable external 

medium allows for controlled manipulation of the pre-determined sequence. So-

called Jacquard looms (as shown in Fig. 4) are a prominent example of automatic 

sequence control (Randell 1994; Koetsier 2001). Jacquard looms were special 

kinds of weaving looms that were (re-)configurable by a chain of punched cards 
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to produce fabrics with a desired pattern. 133 The punched card’s pattern of holes 

determined which of the loom’s levers was activated when pressed against a 

dedicated control mechanism (e.g., some ‘read-out’ lever). Operators could  

 

Fig. 5.4: 19th century engraving of a Jacquard loom. The desired weaving 

pattern on the fabric could be controlled (by the operators) by inserting a 

series punched cards (here, at the top) into the machine. Technologically 

similar control mechanisms are also used in some musical automata and 

even computing devices. 

 

change the pattern of holes to alter or intervene, i.e., to ‘reprogram’ the machine’s 

behavior according to their desires. Similar technological considerations found 

application in more sophisticated musical automata controlled by pegged 

cylinders. Reprogramming such devices as advanced music automata or looms 

was possible after construction and without rebuilding the entire system. 

Ostensibly, the Jacquard loom purports to have higher programmability than the 

Musa flute player because it displays a higher variability among its potential 

sequential behavior (which we can achieve in a controlled way). Notably, as 

previously pointed out, the variability we are interested in concerns 

manipulating the functional relation f with regards to an I/O mechanism f(i)=o.  

Some historico-philosophically inclined scholars have tried to pack these 

kinds of considerations about all sorts of programmable automata into a 

theoretically more robust classification scheme. Koetsier (2001), for instance, 

analyzes the different degrees of programmability of pre-20th century automata 

like music automata, clocks, and looms, concluding that 

 
133 Essentially the same control mechanism was also employed in many computing machines. 
See Campbell-Kelly (1991) for a detailed treatment.  
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“[t]he earliest programmable machines were musical automata. Next came the 
programmable drawloom. The first designs of programmable drawlooms are 
from the 18th century. It is remarkable that the main predecessor of the 
Jacquardloom was designed by De Vaucanson, the well-known 18th century 
builder of music automata. Following the success of the Jacquardloom the idea of 
a programme in the form of punched cards was used by Babbage in the 1830s in 
his design of the first programmable computer. Later punched cards were also 
used widely to programme music automata.” (Koetsier 2001, 602) 

Similarly, D’Udekem Gevers (2013) delves into the fascinating evolution of 

automatic devices from the 12th to the 19th century. Her analysis provides a 

detailed taxonomy of programs (in a broad sense) implemented in clocks, 

musical instruments, looms, and early computers. Accordingly, we ought to 

distinguish between material automata whose sequence is internally fixed, 

externally modifiable/replaceable, and fully manageable by a stored program. 

Others devised grading schemes that underscore the conceptual differences 

between early music automata (similar to the Musa flute player), Jacquard looms, 

and special-purpose calculators. As Brennecke (2000) explains, looms and music 

boxes can only execute fixed sequences (after being programmed) since they are 

all controlled by (a program held on) some read-only medium. On the other 

hand, many special-purpose calculators and modern computers have additional 

control structures that can use their output as input. This feedback enables the 

influence or control of the original sequence of operations through iterations and 

conditional branching. (I will shortly return to the importance of these features 

below). Lastly, Copeland & Sammaruga (2021) developed a ‘hierarchy of 

programming paradigms’ in which they exclusively focused on computing 

machines of the 1930s and 40s involved in the emergence of the stored program 

concept. Similarly to previous works, the authors suggest differentiating between 

machines that require physical rewiring, have an external memory medium, and 

contain stored programs.  

What is the takeaway from these classification schemes of real-world 

programmable automata? How does it help us to couch the gradual nature of 

programmability? Although above’s proposals differ slightly in scope and 

methodology, they all classify general-purpose computing machines as the ones 

with the highest programmability. Simply put, general-purpose computers – 

sometimes called universal machines – are said to be capable of implementing 

virtually every computable function (as defined by computability theory). In other 

words, the class of computable functions acts as an upper limit to the sequence of 

operations a computing machine can carry out.134 If we can set up a machine to 

implement all these functions, it is fully programmable; machines that can 

 
134 I am ignoring hypercomputation, etc., for now. 
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implement only a smaller range of functions are therefore less programmable. In 

sum, we can make sense of the degree to which a material automaton is 

programmable as  

The degree to which: The amount/share of the set of possible functions (in 

the sense of the I/O-mechanism f(i)=o) the system can implement. 

However, despite the seeming plausibility, there are potential caveats to this 

view that require clarification: 

Caveat 1: There is no universal measure 

First, it is vital to remember that the notion of general-purpose/universal 

machines applies to computable functions only. However, since physical 

programmability applies to a broad range of material automata, each with  

operations other than computing, we also want our grading scheme to cover 

these cases. The problem is that the label ‘general purpose’ as presented so far 

merely makes sense regarding a specific phenomenon (namely, ‘physical 

computation’). It can, hence, not be a benchmark for full programmability 

concerning sequenceable operations that are different from physical 

computation, like sound production or weaving. It is, therefore, questionable 

how far our initial intuition of a universal measure of the degree of 

programmability fits other kinds of material automata that lack a formal 

theoretical underpinning and do not have a clearly defined class of all potentially 

implementable functions (for instance, it strikes me as doubtful that there is 

rigorously definable set of possible sequences of operations regarding melodies 

or weaving). In light of these concerns, it seems wise to maintain a pluralist stance 

and judge a system’s degree of programmability relative to a chosen operation.  

Caveat 2: Relying on informal notions 

Second, over the years, many researchers raised caution when using expressions 

like ‘stored program concepts,’ ‘general purpose machine,’ and ‘universality’ (see 

(Olley 2010) for an accessible survey of the relevant literature). The problem is 

that (in textbooks) these terms are frequently used interchangeably, potentially 

leading to misunderstandings when we try to make judgments about an 

automaton’s degree of programmability. To clarify: Typically, the stored 

program concept refers to internally storing instructions and data in the same 

writable memory. The concept enables the manipulation of instructions based on 

intermediate results, such that the machine can perform iterations and 

conditional branching. These control structures are widely believed to render a 
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machine Turing complete/universal. Given unlimited storage, the machine could 

implement any computable function.135 

However, this design choice is just one of many ways to achieve (quasi) 

Turing completeness. Machines with different architectures that store data and 

instructions in entirely different manners could also be Turing complete. Rojas, 

for instance, discusses examples of achieving universal machines by other means 

(Rojas 1996, Rojas 1998, Rojas 2023). In his (Rojas 1996), he proves that conditional 

branching can be substituted by unconditional branching such that externally 

stored looping programs using indirect addressing and no branches can be as 

powerful as machines operating under the stored program paradigm. (This 

requires simulating a branch by carrying out multiple paths of the branch and 

negating any contributions from the path that a genuine branching would not 

take.) 

Now, the reason why this is relevant for the current discussion is that these 

results can be transposed to machines that do not store programs and data in the 

same medium. In particular, Rojas argued that Konrad Zuse’s Z3 (Rojas 1998) 

and Z4 (Rojas 2023, 149-154) computing machines could, in principle, implement 

the same range of computable functions as a device constructed under the stored 

program principle. Interestingly, Rojas’s universality proof for the Z3 sparked a 

host of similar works that showed that ancient computers, never designed to be 

universal, are so in principle (Copeland & Sommaruga 2021, 88-89). The upshot 

of the work of Rojas and others is that general-purpose machines can thus be 

constructed by different designs (that do not store programs and data in the same 

memory). Universality is achievable in many, though not immediately apparent, 

architectures. Accordingly, it may turn out extremely challenging to determine 

the range of computable functions some unconventional machines can 

implement (Bromley 1983) and, in turn, judge their degree of programmability. 

We thus should be careful with judgments about the degree to which some 

systems are programmable. 

 

5.6 Concluding remarks and Open Questions  

Programs devised by human agents may consist of simple to highly complex 

sequences of operations. The sequenced operations range from sound (music 

boxes) and weaving (Jacquard looms) to computation. To execute any desired 

sequence of operations, the chosen system must be configured appropriately, 

requiring specific (physical) interactions: the machine needs to be programmable. 

 
135 It is important to note that real-world machines are only potentially universal, as they cannot 
be given unlimited storage. Therefore, today’s computing machines can only perform 
computations that a TM with bounded tape can achieve. 
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Unfortunately, philosophical discourse regarding programmability is scant and 

largely underdeveloped. This contribution extended this area of investigation by 

developing an original and robust notion of what I refer to as 

Physical Programmability: The degree to which the selected 

activity/function/operation/phenomenon on an automaton can be reconfigured in 

a controlled way.  

What distinguishes this novel notion is that it weaves together well-established 

theoretical and philosophical discourses into a tailored framework that accounts 

for how we set up our machines. Subsequently, I fleshed out the corresponding 

variables in that characterization and explained how they are connected. 

Accordingly, the main takeaways are fourfold: First, the domain of systems that 

can be bestowed with the property of being physically programmable is limited 

to ‘material automata.’ Two, the selected operation of these material automata is 

explained best through the neo-mechanistic framework. Third, I expanded the 

understanding of ‘reconfiguration in a controlled way’ by establishing a 

connection between mechanisms and manipulability theory (especially 

Interventionism á la Woodward). Fourth, by discussing various examples of 

automata, I showed that physical programmability is a gradual notion and comes 

in different degrees.   

Given the novelty of the subject, there remain open questions and prospects 

for further development. Two issues are of particular importance. 

 

Fathanded interventions  

The ongoing debate in the mechanism discourse has resulted in the first open 

question. It concerns the interplay between interventionist framework and 

mechanisms. More concretely, in recent years experts have extensively 

scrutinized the plausibility of MM Couch (2011), Leuridan (2012), Romero (2015), 

and Kästner (2017). Whereas interventionism is an approach to causation, 

constitutive relevance is deemed a non-causal relation. Accordingly, 

interventions on mechanisms may violate the surgicality condition and are hence 

called fat-handed ((Scheines 2005, 932) and (Woodward 2008, 209)) since they 

make a difference in the mechanism and (at least some of) its acting entities.136  

To date, the constitutive-relevance debate remains an active field of research 

without consensus: Romero (2015), Baumgartner & Gebhartner (2016), and 

 
136 A concise summary is given by Kästner and Anderson (2018, §3): “Since wholes cannot be 
manipulated without affecting any of their parts, interventions into the whole will always be 
non-surgical, that is, fat-handed, with respect to some part. Rather than intervening into X (the 
whole) with respect to Y (the part), we actually intervene on X and Y simultaneously by 
carrying out I.” 
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Baumgartner & Casini (2017) propose to revise standard Interventionsim á la 

Woodward (2003) and add different types of so-called fathandedness criteria to 

MM. Yet Krickel (2018), raised doubts regarding fat-handedness-approaches, 

proposing an alternative that is supposed to rescue the original version MM. The 

challenge remains to create a coherent theoretical framework for interventionism 

and mechanisms alike.137  

Although a considerable body of research has couched the debate primarily 

on a technical level, less attention has been paid to the result of plugging in 

specific phenomena for S’s Ψ-ing. Future research could therefore focus on 

specific phenomena related to sequenced operations; particularly ‘physical 

computation’ and its connection to programmability appear to be a worthwhile 

area of investigation. Despite there being a well-established theory of mechanistic 

computation (see for instance, Piccinini 2015, Mollo 2018, Dewhurst 2018), 

previous research has so far overlooked the challenges associated with 

programmability and in particular interventionism. 

 

Programmability and its relation with other computing paradigms 

The second issue concerns the application of programmability to computing 

systems. I argued that physical programmability should only be applied to 

physical systems whose computationally individuated states can, in principle, be 

intervened upon such that the implemented computational function can be 

altered reliably. However, whether its application is compatible with non-digital 

or interactive computing systems is somewhat unclear.  While concerning 

computing devices, this chapter exclusively focused on (sequential) digital 

machines; it remains an open question to what extent physical programmability 

can be successfully applied to natural, analog, or quantum computing instances. 

Each of these cases bears their unique challenges: Natural computing systems 

like the brain are often held to compute by means other than program execution 

because they are not intentionally set up by human design choices. 138  The 

absence of intentional function ascription casts doubt on the appropriateness to 

speak of programmability (at least as devised here) with these systems. Analog 

computers, in contrast, raise the issue that some consider them to compute ‘in 

one go’, i.e., they do not compute in sequential steps. If this assessment is correct, 

 
137 Despite the challenges, I agree with (Kästner and Andersen 2018) that both interventionism 
and MM have solid empirical foundations (see, for instance, Craver (2007b, 144-152) for some 
details on the empirical grounding of experimentation on mechanisms). Thus, it is not necessary 
to give up on the mechanistic framework or the idea that we can intervene on mechanisms. 
Rather, the focus should be on construing the theoretical underpinnings of intervention-based 
inquiry into mechanisms in a coherent way. 
138 Analogously, one may also formulate the issue for ML systems because there we encounter 
the similar worry that it is not the humans who predetermine and thus program the machine.  
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then the application of physical programmability to analog devices may be in 

jeopardy due to tensions with the demand of executing a sequential series of 

operations. Quantum computers may require special treatment due to the non-

classical behavior of quantum states. For instance, the interaction and read-out of 

quantum states to program a quantum computer may require care with 

phenomena such as collapse or decoherence.  

Furthermore, it remains unclear whether physical programmability and other 

forms of interaction are compatible. Specifically, it would be worthwhile to 

investigate whether this concept is consistent with the interactive computing 

paradigm. Over the past few decades, laptops, smartphones, etc. have evolved 

into interactive systems, in which programs accept (external) inputs from users 

during runtime. Consequently, human-computer interaction raises several new 

issues related to computability theory and accounts of physical computation, 

where the course of computation is left unaltered (Martin et al. 2023). Currently, 

there is no agreement on whether it is necessary to differentiate between a priori 

programming and altering the course of computations during execution. Should 

we only refer to the former as programming? 



 
 

 

6 Conclusion  
 

My thesis, Mind the Gap, allows us to examine the ontological status of computer 

programs from new perspectives. Throughout the manuscript, it became 

apparent that the research topic is significant because, to this day, a consensus 

remains elusive, and opinions diverge significantly. Therefore, one of the main 

goals in writing this dissertation was to provide a cohesive and thorough 

overview. The information available is mostly scattered across various discourses 

– it is now consolidated into a single monograph, making it easier to access.139  

To illustrate the complexity, I initiated the thesis with a hypothetical scenario 

grounded in real-world events: A young IP lawyer in the early 1970s grappling 

with the legal classification of software.  This case revealed substantial 

conceptual disharmony and ontological uncertainty surrounding computer 

programs. When scouting the relevant literature beyond the legal one, we 

learned that matters are similarly diffused today (cf. Appendix A). No single 

conception of the nature of programs would be entirely satisfactory as mutually 

exclusive characterizations such as texts, configurations of machines, or 

algorithms all appear to be plausible options. What gives? 

While previous studies interpreted this ambiguity as programs having a ‘dual 

nature,’ I think they needlessly complicated the debate due to being confused by 

reflecting on the language they use, particularly the term ‘computer program.’ 

As a result, almost any discourse underpinned by the metaphysical nature of 

computer programs (e.g., in the legal (Con Diaz 2019) and verificationist debate 

(MacKenzie 2004; Tedre 2015)) remains inconclusive, at best. In order to 

systematically unscramble things, Chapter 1 provided some necessary 

terminological clarifications by taking a closer look at the origins of the 

expression ‘computer program’ and what it is supposed to refer to. Arguably 

influenced by the rampant epistemic pluralism of computer science, the 

takeaway is that the notion lacks a clear, agreed-upon definition. While similar 

observations have been made before (e.g., Eden 2007; Eden & Turner 2007), I 

 
139 I extensively drew from various philosophical literatures to grapple with the question of the 
metaphysical nature of computer programs. From the Philosophy of Technology, I incorporated 
the concept of artifacts and teleological functions, discussing them with examples of 
(computing) devices such as the MONIAC, the IAS machine, music boxes, and Jacquard looms; 
from the Philosophy of Science, I used the conceptions of (material) scientific models and 
representation, interventionism, and mechanisms. From the Philosophy of Applied 
Mathematics, I transposed the insights about the applicability of mathematics to computing. 
From the Philosophy of Art, I put the so-called Problem of Creation into service, and from the 
Philosophy of Language, I employed the concept of polysemy. Lastly, in the realm of the 
Philosophy of Computing, I relied on the insights of the physical computation discourse.  
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made them more precise and submitted that ‘computer program’ is a polyseme. 

This insight may help us retroactively clarify (at least in parts) the legal and 

verificationist debates. Although many of the debate’s participants employed the 

same expression, ‘computer programs,’ they either referred to ontologically 

different things (e.g., abstract or concrete things) or had trouble stating the 

programs’ ontological status precisely because they bundled ontologically 

different things together. I coined the term ‘polysemic web’ to underscore that 

‘computer program’ can refer to many ontologically different but related things. 

Faced with potential linguistic quarrels, I avoided an even deeper semantic 

analysis of the term program. Instead, I proposed to track/emphasize the 

relations between the elements hiding behind the term in its web. In order to keep 

things simple from a metaphysical point of view, I suggested starting to place 

these elements across a simple two-category system – the abstract-concrete 

distinction – and shed light on their connection. Specifically, I argued that the 

concept of ‘computational implementation’ from the philosophy of computing 

could help clarify the situation. By making an abstract scenario concrete, 

implementation can be seen as a connection between ontologically different 

relata (abstract and concrete). To put further meat on this idea, I surveyed the 

literature on implementation in Chapter 2. My first noteworthy discovery was 

that two largely separated bodies of literature on computational implementation 

exist. I henceforth called the corresponding notions type (A) and type (B) 

implementation. Surprisingly, both notions have mainly developed 

independently of one another. To remedy the situation, I juxtaposed the two 

notions.  

Next, in the wake of my conclusion, I created a framework based on the 

conceptual tools of the philosophy of science literature suited to accommodate 

them both. The upshot was that two understandings of implementation are 

combinable when alluding to the conceptual tools of the material models and 

scientific representation literature. This conceptual borrowing is productive 

because, in both modeling and computing, agents engage in object-based 

reasoning, where artificial functions are externally attributed, and agents 

establish a mapping relation between a concrete system and an abstract 

target/program. To highlight the central role of epistemic agents and the 

framework’s ability to unify (A) and (B), I called it a Unified Theory of Agential 

Implementation (UTAI). 

Since UTAI gives rise to three distinct dependency relations between 

epistemic agents and (a) ‘abstract programs,’ (b) computational implementation, 

and (c) the physical computing system, I devoted the rest of my inquiry to shed 

light on (a)-(c). 
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When considering dependence relation (a) in Chapter 3 to shed light on 

programs qua abstract objects, I utilized the well-known Problem of Creation 

(PoC) from the Philosophy of Art literature. The crux of the (PoC) is that certain, 

so-called repeatable artworks are deemed abstract since they have multiple 

instantiations. However, since we typically assume that artworks are artifacts 

(i.e., intentionally created objects) and also think abstract objects cannot be 

created, we have a triplet of mutually inconsistent propositions. Very roughly 

put, to resolve the paradox, one has to give up one of the prima facie plausible 

propositions, and three major options emerge: Platonism, Nominalism, and 

Creationism.  

My motivation for appealing to the (PoC) was the similarities between 

repeatable artworks, such as works of literature and musical compositions, on 

the one hand, and the textual view on programs on the other. The key lies in 

programs’ multi-realizability. Since programs written in standard high-level 

programming languages are portable and can have many different copies, they 

exhibit the same kind of ‘repeatability.’  Provided that programs are thus subject 

to the (PoC), we have a new and robust theoretical underpinning to refine the 

ontological sorts of questions we can ask about programs in the future. The most 

attractive feature of this research program is that it allows us to do so in 

contemporary metaphysical terms. In other words, it enables us to foster 

synergies with much more mature ontological debates and steer us away from 

dubious dual nature talk.  

Next, Chapter 4 tackled dependence relation (b), i.e., the way in which the 

implementation relation hinges on the practice of human agents. Having framed 

the Problem of Implementation in terms of the Bridging Problem of Applied 

Mathematics in Ch. 2, I indicated that assuming a dyadic relation between 

physical system and abstract logico-mathematical computational formalism is 

metaphysically mysterious. As detailed in the supplementary material in 

Appendix B, it is the consensus of philosophers of applied mathematics (e.g., 

Batterman 2010; Bueno & Colyvan 2011; Nguyen & Frigg 2021) that a third 

relatum is crucial to make sense of the math-world relation. 

Upon further exploring these considerations, I provide a new way to think 

about interpretational accounts of physical computation, specifically recent 

versions that couch implementation in terms of scientific representation. 

Particularly, my novel notion called ‘Implementation-as’ extended recent 

research in the philosophy of computing of so-called scientific representation 

accounts (SRA). The underlying idea of all (SRA)s is that it holds promise to 

couch computational implementation in terms of scientific representation since 

both relations rely on mappings between the physical and the formal. 
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Implementation-as departs from the previous (SRA)s by fleshing out the idea for 

the first time in terms of a specific notion of scientific representation - Frigg and 

Nguyen’s DEKI account. (Frigg & Nguyen 2018). This new framework’s 

application was illustrated in the MONIAC (an analog device) and the IAS-

machine (a digital computer). Subsequently, my analysis shows that the resulting 

proposal provides a philosophically rigorous theory of computational 

implementation, satisfying the most standardly evoked desiderata for theories of 

implementation. 

 Lastly, I close by discussing the relation of Implementation-as to already 

established accounts of physical computation. Traditionally, accounts with any 

interpretational elements have been shunned in the literature, for they seem to 

fly in the face of the Computational Theory of Mind and purport to paint physical 

computation in an arbitrary light. Although future research needs to determine 

whether the account is compatible with the cognitive science project, 

Implementation-as’ intricate constraints undermine any worries about 

arbitrariness. 

 Finally, in Chapter 5, I devoted my attention to dependence relation (c) – the 

relation between epistemic agents and the physical computing instrument that 

enables them to implement a program. In a nutshell, the chapter’s main result 

consists of delivering an account of what it is for a physical system to be 

programmable. Despite its significance in computing and beyond, I showed that 

today’s philosophical discourse on programmability is impoverished. My 

contribution offers a definition of physical programmability as the degree to 

which the selected operations of an automaton can be reconfigured in a 

controlled way. The framework highlights several key insights: the constrained 

applicability of physical programmability to material automata, the 

characterization of selected operations within the neo-mechanistic framework, 

the understanding of controlled reconfiguration through the causal theory of 

interventionism, and the recognition of physical programmability as a gradual 

notion. The account can be used to individuate programmable (computing) 

systems and taxonomize concrete systems based on their programmability. 

Big picture-wise, the most important takeaway is that the term 'program' is a 

polyseme that denotes ontologically different, albeit related, things. In this thesis, 

I have introduced the UTAI framework (inspired by the literature on material 

scientific models) to track these relations. In sum, UTAI underscores the 

involvement of human agents that use computers as epistemic tools. On this 

view, particularly three dependency relations associated with three distinct 

philosophical problems require our attention: The Problem of Creation, which 

determines the abstract nature of programs; the question of physical 
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programmability, which determines the physical side of things; and the Problem 

of Implementation, which addresses how the two ontological domains of abstract 

programs and the physical world relate.  

On this note, I would like to close by addressing the following question: What 

are the implications of this thesis for future studies in the philosophy of 

computing and adjacent fields? I want to conclude with some programmatic 

suggestions about what I believe to be the most pressing issues left unanswered 

or raised by my thesis. 

First, much work remains to be done concerning terminological clarifications, 

rendering the expression ‘computer program’ and the relationship with its 

cognates like ‘software’ and ‘algorithm’ more precise. Especially challenging in 

this regard will be appreciating computer science’s epistemic pluralism and the 

widespread use of computational terms in differing communities and research 

traditions. Accordingly, it will be difficult to devise a definition that will satisfy 

the majority of stakeholders involved. 

 Second, it is important to note that the computing landscape is constantly 

evolving. During my dissertation project, we observed firsthand the rapid rise of 

AI applications in the public sphere. However, the question of whether we 

should consider deep neural networks, for example, as computer programs 

remains open. While I believe that it is reasonable to classify them as 

computational artifacts, future research needs to delve into the nuances of their 

(dis)similarities with ‘classical’ programs.  

Lastly, it is worthwhile to advance some of the frameworks developed in this 

thesis further in their own right, detached from the question about the ontological 

status of computer programs. As already briefly mentioned in bypassing, 

Implementation-as, for instance, may be a viable contender in the landscape of 

contemporary theories of computational implementation independent of this 

thesis’ main topic. Similarly, it would be interesting to explore further some of 

the research trajectories enabled by the (PoC). A research program along these 

lines would make the debate about the ontological status of computer programs 

less insular and may put the discussion at the center of contemporary 

metaphysics. Regarding Physical Programmability, it would be fascinating to 

explore the possibility of developing a fully formalized programmability 

measure similar to computability or complexity theory. On a different note, one 

could merge some critical insights of Implementation-as and Physical 

Programmability to address largely ignored phenomena such as interactive 

computing.



 
 

 

Appendix A: A Guide to the Chimera of 
Programs  
 

This appendix charts the varying views of the ontological status of computer 

programs. It aims to illuminate how and why the nature of programs can be 

understood in so many ways. For so doing, I have surveyed a rather large, 

heterogeneous array of opinions about the nature of computer programs: 

Philosophers, computer scientists, lawyers, and other investigators have placed 

computer programs in nearly every available ontological category. Some 

consider them physical objects, others abstract logico-mathematical objects, 

special kinds of texts, etc. Accordingly, my survey is positioned at the crossroads 

of rich and well-developed traditions in corresponding fields such as Philosophy 

of Science, Mathematics, Technology, and Art. 

Given that I engage with so many fields, the reader may wonder where this 

work belongs and what it is good for. The material presented in the following 

pages may be helpful in a couple of ways: First, in its own right, this part of the 

appendix may serve as an extended and updated overview of the metaphysical 

nature of computer programs.140  This is needed to clarify implicit assumptions, 

enable comparison, avoid further conflations, enhance philosophical rigor, and 

help navigate a largely unstructured body of literature. Second, I hope it will 

facilitate building bridges across the different debates mentioned here in future 

research. 

Methodologically, I proceed like this: Similar to a recent survey for 

educational purposes about the different guises of programs (Lonati et al. 2022), 

I provide different clusters containing views about the metaphysical nature of 

programs. In presenting so many views across various fields, I do not intend to 

show off how much I read. I attempted to summarize what I think are some of 

the most important takeaways I distilled from humbly engaging with these 

literatures. While so doing, I tried to make this appendix accessible to audiences 

with varying backgrounds. Although I try to be systematic and thorough in my 

review (e.g., each view branches into further specific positions), the resulting 

taxonomy should be taken with a grain of salt. Even though many of the 

following categorizations seemingly stand at odds with each other, they are 

intertwined in a way that does not allow strict/sharp separation.141 I believe that 

 
140 Generally speaking, few studies explicitly describe the ontological status of computer 
programs; exceptions are Gemignani (1981) and Lonati et al. (2022). 
141 For instance, as we will see, a case in point is the metaphysical understanding of programs 
related to ‘programming languages’ sits at the border of the abstract mathematical objects and 
notational artifacts. 
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this is not a flaw of my taxonomy, but rather a symptom of the epistemically 

heterogenous nature of computer science and the polysemic nature of the terms 

‘program’ I described in the introduction.142 

In what follows, my overview is divided in five overarching sections: In A.1., 

I sum up the Physical View. A.2., contains an overview about the Mathematical 

View. A.3., dubbed the Symbolic View, surveys material emphasizing the 

symbolic nature of programs. Next, A.4., summarizes views according to which 

programs are sorts of artifacts. In A.5., I present what I call the Neural View. 

Lastly, in A.6., I cash out the State of the Art. 

 

A.1 The Physical View 

As seen in the prologue, considering programs as physical objects has been one 

of IP lawyers’ main strategies to secure programs’ patent protection (cf. Con Díaz 

2019). According to this view, programs are a physical machine’s unique 

configuration/switch setting. Analogously, my considerations in Chapter 5, 

Physical Programmability, remind us that the physicality of programs raises 

interesting philosophical questions related to the philosophical literature on 

concrete technical artifacts, their underlying mechanisms, and how we can 

intervene in them. Moreover, such a view emphasizes that programs appear to 

be “executable entities” (Lonati et al. 2022) anchored in real-world ongoings.143 

In what follows, I refer to frameworks that advocate for some kind of physical 

understanding of programs as the Physical View.  

In order to unpack the notions gathered under the umbrella of the Physical 

View, it is helpful to take a more extensive discussion of metaphysics into 

account: the duality between continuants and occurrents (see, e.g., Simons 2000). 

Typical examples for continuants are organisms (e.g., cats, and dogs); atoms and 

stars; artifacts like chairs and tables; the quality of being red; and social entities 

like countries or football clubs. The common denominator of continuants is that 

they are objects that exist in time (“continuants persist by enduring” (Simons 

2000, 59). In contrast, prime instances for occurrents are events, happenings, or 

processes such as philosophy conferences, football matches, photosynthesis, and 

subatomic particle collisions. Therefore, occurrents are characterizable as objects 

in time with temporal parts.  

Over the next two subsections, I show that this division is also reflected in 

different metaphysical understandings about programs as physical entities. 

 
142 I adopted the expression ‘epistemically heterogenous’ for this context from (Imbert & 
Ardourel 2023). 
143 Another noteworthy case is the so-called verificationist debate I briefly touched upon in the 
introductory chapter. 
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Accordingly, I distinguish the physicality of programs between two different 

cases, viz., a static and a dynamic reading. 

 

Static 

According to the static reading, programs may be considered part of a machine 

(cf. Fig. A1). This idea was perhaps more apparent when using first-generation 

computers like ENIAC, where switch settings were visible/tangible. The 

machine had to be physically configured to execute the operations required for a 

given computation in the correct sequence. ‘Programming’ the ENIAC thus  

 

Fig. A.1: Schematic depiction of an ENIAC ‘program.’ (taken from 
Bullynck & De Mol 2010, 140). 

 

involved physically wiring the relevant units to the so-called program lines, 

which connected all the machine units. Given this, it would not have been 

practical or fruitful to write down a program for the ENIAC as a list of 

commands. Instead, the scientists, employed wiring diagrams that showed the 

connections that had to be made between functional units to ensure the correct 

sequencing of operations. (Bullynck & De Mol 2010; Priestley 2011, 111-115).   

Today, we typically no longer need to set switches manually since the process 

is automated. Consequently, it is easy to forget the ‘old way’ of doing things (and 

the static view). However, as Gemignani aptly put it in his survey article more 

than 40 years ago, seeing programs as part of the machine (or a configuration of 

it) appears to be necessary to make sense of the notion of ‘control’:    

“If a program controls a computer in the same way that a distributor controls the 
sequence of firing the sparkplugs in an internal combustion engine, then the 
program can reasonably be viewed as an integral part of the computer itself. This 
view is strengthened by the fact that a general purpose computer will not, indeed 
cannot, carry out its appointed task until it has been properly programmed. The 
programming sets the switches, in effect redesigns the internal structure of the 
machine, becomes an inseparable part of the machine, if the machine is to perform 
as the program was written to make it perform. The program may thus be viewed 

as a machine part or as the completion of a previously incomplete machine.” 
(Gemignani 1981, 187) 
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Besides motivations stemming from the notion of control and machine 

configurations, there is another way of identifying programs as ‘static’ (physical 

objects). I cashed out this view in Chapter 3 when tracing the philosophically 

viable answer to the so-called Problem of Creation. Accordingly, one may think of 

programs as unique kinds of text and identify them with particular physical 

tokens of their inscriptions (e.g., existing as files on disk or in memory until they 

are executed). Typically, this sort of text (often called program script) contains 

instructions in a human-readable format, which is then processed (e.g., by 

automated compilation or interpretation) to be machine-readable. I will return to 

this last point (‘programs qua texts’) when considering the Symbolic View below 

(§A.3). 

 

Process/Dynamic 

On the other hand, there is a pervasive view that programs bring about or 

even are sorts of real-world processes (sometimes called program process).  

Emphasizing the empirical side of things is, for instance, prominently 

discussed in the literature about the nature of computer science as a discipline. 

One of the earliest and most famous suggestions on computer science as an 

empirical field dates back to a 1976 paper by Newell and Simon (Newell & 

Simon 1976). In a nutshell, the idea is that the discipline exhibits scientific 

potential in the form of experimentation like in the natural sciences. Put 

differently, computing processes (such as program execution) are regarded as 

entities that can be experimented with.  

Subsequently, however, the question arose about whether computer 

science qualifies as a science in the same sense as the natural sciences. As 

succinctly stated by Mahoney, the issue is that 

“There is nothing natural about software or any science of software. Programs 
exist only because we write them, we write them only because we have built 
computers on which to run them, and the programs we write ultimately reflect 
the structures of those computers. Computers are artifacts, programs are artifacts, 
and models of the Computers are artifacts, programs are artifacts, and models of 
the world created by programs are artifacts. Hence, any science about any of these 
must be a science of a world of our own making rather than of a world presented 
to us by nature.” (Mahoney 2000, 25) 

Later, I will discuss a few more specific aspects of these observations when 

addressing the Artifact View (§A.4.). For now, I simply note that Mahoney’s 

remarks warrant caution when comparing computing with disciplines like 

physics or chemistry that investigate natural phenomena.  

In recent years, some scholars, such as Tedre (2011) and Schiaffonati 

&Verdicchio (2014), have critically assessed the implications of computer science 
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as an empirical or experimental field. As Tedre (2011) summarized, the ‘pro-

science argument’ frequently asserts that although computer science is not a 

natural science, it is nevertheless empirical or experimental. The idea is that 

computer scientists still follow the scientific method, which involves exploring 

and observing phenomena, forming hypotheses, and empirically testing those 

hypotheses. Now, even though these sources admittedly do not seek to address 

the ontological status of computer programs directly, their underlying 

assumptions seem to suggest that computational processes (like program 

execution) are physical processes that can be studied like other physical 

phenomena.  

What are some of the philosophical upshots of the Physical View? One 

interesting discussion point is that the Physical View seems to equate programs 

with the lowest level of the computational hierarchy. This way of viewing things 

may have important implications for discriminating between different 

programs.144  

For instance, consider the example of two compatible IBM computers from 

the early 1960s – the 709 and the 7090.145 These devices are especially suitable for 

discussion because the 7090 is a second-generation transistorized version of the 

earlier tube-based 709. Despite using different electronic components, both 

devices have the same logical layout.146 Therefore, they are entirely ‘software 

compatible’ and can run the same source code and implement the identical 

computational hierarchy (i.e., various of the same LoA; cf. Chapter 2), albeit (and 

this is the crucial part) with different underlying components. Even though the 

computational hierarchy is almost identical, the proponent of the static reading of 

the physical view might still argue that the two machines implement different 

programs since identity conditions solely depend on specific machine parts.147  

Although the example is simple, it exemplifies a pattern of reasoning that 

concerns others, if not all, implementations of the same source code in different 

machines (which typically do not rely on the same logic diagram). Now, the 

reason why this is worthy of mention is that Physical View’s way of discerning 

 
144 I described the widespread view that (artificial) computing systems are composed of 
different sorts of levels, forming a computational hierarchy, in Chapter 2. 
145 Some philosophers have previously considered the two machines to discuss the issue of 
multiple realization for computational systems (Wimsatt 2002; Milkowski 2013, Milkowski 
2016). 
146 The newer machine has different specifications than the older one. Due to smaller transistors, 

it is 50% smaller, requires less ventilation, and consumes 70% less power; transistors also 

operate faster than tubes (Milkowski 2016). 
147 In a recent paper, Ritchie & Klein (2023) argue that the notion of multiple realizability may 
prevent successful implementation of interactive programs with specific time requirements 
(they discuss a video game as an example). 
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different programs stands in stark contrast with our ordinary practice (where we 

usually think that many programs can be implemented in multiple machines). It 

thus raises the urgent question, whether the Physical View is compatible with the 

intuitive view that programs are multiply realizable. As extensively discussed in 

Chapter 3, this issue resembles a line of reasoning about the metaphysical nature 

and identity conditions of so-called repeatable artworks like novels or works of 

music; I refer the interested reader to the corresponding sections in Ch. 3.  

Lastly, although the Physical View is only the first suggested interpretation of 

the current subject matter, it already underscored the diverse ontological 

understandings that fall under the term ‘program.’ The question arises: Should 

we consider ‘program’ to encompass both static and dynamic views, or should 

we make a clear distinction between these interpretations?  

 

A.2 The Mathematical View 
Several influential figures in the computing world, such as Dijkstra, Floyd, 

McCarthy, Naur, and Wirth, believed that taking a mathematical and rigorous 

approach to program construction could enhance the quality of ‘software’ and 

programming. Hoare expressed an extreme stance, suggesting that all of 

computing could be boiled down to mathematics. According to him, computers 

function as mathematical machines, computer programs are mathematical 

expressions, programming languages are mathematical theories, and 

programming itself is a mathematical activity (Tedre 2015, 59): 

“Computer programs are mathematical expressions. They describe, with 

unprecedented precision and in the most minute detail, the behavior, 

intended or unintended, of the computer on which they are executed.” 

Hoare (1985, 1)  

Accordingly, there is a widespread view that computing is closely related to 

mathematics and that programming is a mathematical activity; let us call this the 

Mathematical View. Today, different versions of this standpoint are still frequently 

embraced (or, at least mentioned) to give an adequate characterization of 

computing as a discipline (e.g., Denning et al. 1989, Eden 2007, Tedre 2015, 

Bringsjord 2019, Primiero 2020).  

If taken at face value, the Mathematical View commits us to see the entities 

studied in computing as mathematical in nature. Consequently, entities like 

programs may become the subject of philosophical considerations similar to 

other mathematical objects like numbers, proofs, etc. Let me first consider a few 

of the common tropes that seem to give credence to the Mathematical View 

(computability theory, and algorithms) before closing with some of the most 

common philosophical issues pertaining to mathematical objects.  



Appendix A: A Guide to the Chimera of Programs 
 

141 
 

 

Computability theory 

Computability theory is a subdomain of mathematical logic that studies and 

classifies which mathematical problems are computable and which are not 

(Davies et al. 1994).148 Until the beginning of the 20th century, the notion of 

computation was an informal one and referred to an activity that was carried out 

by human computors (and their instruments). Notwithstanding, the concept of 

computation was tightly related to the formal notion of proof and calculations. 

In principle, formal proofs can be validated, following rules of inference step-by-

step. Likewise, calculations were typically executed by human computors by 

mechanically following rules, simply aided by pencil and paper.  

The study of what’s formally computable gained considerable traction in the 

1930s, when several mathematicians from different parts of the world came up 

with precise, independent definitions of what it means to be computable: Alonzo 

Church defined the Lambda calculus, Kurt Gödel defined Recursive functions, 

Stephen Kleene defined Formal systems, Markov defined what later became 

known as Markov algorithms, and Emil Post and Alan Turing defined abstract 

machines which are now called Post machines and Turing machines. What 

motivated the quest to formally capture the nature of computation was Hilbert’s 

program and to solve the Entscheidungsproblem. 

Now, the reason why this is relevant concerning the ontological status of 

computer programs is that one may view programs characterized in terms of one 

of the formalisms of computability theory. For instance, in his recent monograph 

On the Foundations of Computing, Primiero (2020, Def. 52) described this view for 

the ‘configuration’149 of Turing Machines:  

“A set of configurations for a given Turing Machine is meant to fully and 
exhaustively expresses the behaviour of that machine, i.e. to represent a 
program: 

[…]. The sequence of configurations of a TM says for each stage of the 
computation what is on the tape at that stage, what is the state the machine 
is in at that stage, and which square is being scanned and what the next 
state is. The full set of configurations for a machine is also called its 
program.” Primiero (2020, 46; own emphasis) 

 
148 I already provided a brief introduction to computability theory in Chapters 3 and 5 and will 
keep myself brief here with regards to formalisms in order to avoid redundancy (for a more 
formal introduction I refer the reader to these sections; else another entry to the topic can be 
found in Primiero’s (2020) book). 
149 TMs’ formalization doesn’t require us to adhere to actual components such as ‘tape’ or ‘read-
write head’ (even though, when considered with care, it admittedly remains a valuable 
conceptual aid). 
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Despite their suggestive name (containing ‘machine’), TMs are not actual real-

world devices but specific set-theoretic structures (De Mol 2021). Accordingly, 

programs (qua configurations of abstract machines) also purport to be abstract 

mathematical objects.  (Of course, the same holds true for Post machines, the 

lambda calculus and so on).  

 

Algorithms 

As expounded in the introduction, the usage of the term ‘program’ has been 

subject to constant change and may obtain slightly different, yet non co-

extensive, meanings in different communities related to computing (it is a 

polyseme). At the same time, other notions like software or algorithm are often 

used interchangeably with the term (and may turn out to be hard to define, 

too).150 Although, disputes over what counts as ‘program’ and ‘algorithm’ may 

be verbal unless we specify the relevant roles these notions (ought to) play in 

practice, it is nevertheless instructive to try clarifying to what extent programs 

and algorithms are related.   

A good way to get started is to consult Chabert’s (1996) rich historical survey 

on algorithms. Opening his book, he states: 

“Algorithms have been around since the beginning of time and existed well 
before a special word had been coined to describe them. Algorithms are simply a 
set of step by step instructions, to be carried out quite mechanically, so as to 
achieve some desired result. Given the discovery of a routine method for deriving 
a solution to a problem, it is not surprising that the ‘recipe’ was passed on for 

others to use.” Chabert (1996, 1) 
 

At first stab, the notion of algorithms seems to be both historically prior to the 

development of formal notions of computing (and computer programs).151 

Moreover, it concerns a broader range of non-computing phenomena 

(sometimes e.g. kitchen recipes are regarded as ‘algorithms’). Over the 

centuries, the term algorithm has come to mean any systematic calculation 

that could be carried out automatically. Nowadays, due to computing’s 

influence, the idea of finiteness has shaped the meaning of algorithms, and 

we usually distinguish between algorithms that are deterministic or non-

deterministic, parallel, interactive, quantum, etc. A typical view on the 

 
150 Duncan (2014) provided an overview of 12 different criteria to define the term ‘software’ in 
his PhD thesis.   
151 The word ‘algorithm’ derives from al-Khwarizmi, a 9th-century central Asian 
mathematician. His influential work on algebra provided an exhaustive account of solving 
polynomial equations by reducing them to standard forms. In the 12th century, his work and 
others were translated from Arabic into Latin, and his name became associated with the 
methods contained in his writings. 
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relationship between algorithms and programs is expressed by Newell, who 

states  

“An algorithm is more abstract than a program. Given an algorithm, it is possible 
to code it up in any programming language. You might think that a program 
should be something like an algorithm plus implementation details. Thus, you 
examine the text of a purported algorithm-if you find an implementation detail, 
you know it is a mere program.” (Newell 1986, 1029) 

In recent years, there has been some impetus to philosophically scrutinize the 

nature of algorithms (and their relations to computing) more precisely (e.g., 

Vardi 2012; Dean 2016; Hill 2016; Angius & Primiero 2019; Primiero 2020, Ch. 

6; Papayannopoulos 2023). The takeaway message is that many of the debates’ 

participants noted the existence of multiple notions of algorithms. While 

Vardi speaks of an “algorithmic duality,” Angius and Primiero’s ontological 

analysis suggests a three-fold distinction between algorithms as informal 

specifications, as (linguistically construed) procedures, and as 

(implementable) abstract machines. 

Similarly, Papayannopoulos (2023) pointed out that the notion of 

‘algorithm’ has been conceptualized and used in contrasting ways. His 

argument goes that moving from an initial informal idea to a more precise 

formal concept typically involves moving through different stages of 

conceptualization (from pre-theoretic to proto-theoretic to fully-theoretic). 

However, when it came to sharpening algorithms’ meaning, the last stage of 

development culminated in two separate conceptions: On the one hand, the 

‘abstract view’ (according to which algorithms are procedures over abstract 

objects Moschovakis (2001), Gurevich (2012)), and on the other hand, the 

‘symbolic view’ (algorithms are processes that necessarily hinge on some 

given alphabet and notational system (Kolmogorov & Uspenski 1963).   

Given the complex developments under the umbrellas of both ‘algorithm’ 

(even after focusing only on classical sequential algorithms) and ‘computer 

program,’ there is no obvious/unique answer to their relationship. The issue 

is that there are many possibly different relationships due to the 

combinatorics of the various conceptions of programs and algorithms. 

Lastly, is there a philosophical takeaway, particularly concerning our 

metaphysical understanding of computer programs, that follows from endorsing 

the Mathematical View? To the best of my knowledge, no study has tackled the 

issue systematically, i.e., having investigated how the plausibility differing 

metaphysical frameworks of mathematics shape the views presented here. So, 

depending on one’s general leaning regarding (notorious) metaphysical issues of 
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mathematical objects, one may need to consider vastly different ontological and 

epistemological issues. To name but a few problems:  

(a) If, for instance, one were a mathematical Platonist (see (Linnebo 2024) for 

an overview of the different positions under the umbrella ‘Platonism’) 

about computer programs, then one would have to face the familiar 

epistemological puzzle – Benacerraf’s identification problem – of how we 

could possibly get to know/discover such mathematical objects (I discuss 

this issue in more details in Chapter 3). 

(b) If, however, one were to be a nominalist about mathematical objects, the 

Mathematical View of computer programs would be in serious trouble (and 

may collapse into specific readings of the Physical and/or Notational 

View). Mathematical nominalism posits that mathematical entities do not 

exist as abstract objects, lacking location in space-time or causal powers 

(Bueno 2020).    

(c) Philosophers of applied mathematics maintain that there are several so-

called application problems of mathematics (Steiner 1998; Fillion 2012). The 

common theme of these problems is how supposedly abstract mathematical 

entities relate to the physical world. Consequently, when computational 

entities such as computer programs are considered mathematical entities, 

these problems also pertain to computing.   (I address one – the so-called 

Bridging Problem, i.e., the metaphysical problem of how the mathematical 

relates to the physical– in Appendix B.) 

Besides these general themes from the philosophy of mathematics, one can 

expect additional, more specific issues about computability theory, algorithms, 

etc. For instance, despite my presentation of algorithms under the ‘Mathematical 

View,’ we may need to revise this interpretation. Dean (2016, 26) notes that we 

typically think of mathematical objects as static. However, our usage of 

operational terms in the specification of algorithms reflects our understanding 

that executing an algorithm is to carry out a sequence of operations ordered in 

time. 

 

A.3 The Notational View 

Regarding programs as sorts of texts is parasitic to the widespread use of modern 

programming languages. According to this view, programs are constituted by a 

well-formed sequence of symbols written in a programming language. This view 

raises several questions regarding the nature of programming languages and, 

consequently, programs qua texts written in such a ‘language.’ As Lonati et al. 

(2022, 155) aptly remarked recently 
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“A program is a notational artifact, in the same sense way that a manuscript, 
book, or music score is: it relies on a notation with a particular syntax, according 
to some formal rules, linguistic notations and conventions.” 

In the following, I call the view to conceive of programs as some symbolic 

structure as the Notational View. It is instructive to provide some brief (historical) 

background to better understand the Notational View and its philosophical 

implications. How exactly became the notational view so pervasive? And what 

exactly are programming languages? 

Until the end of the 19th century, computations were essentially performed 

by human clerks. Typically, these ‘computors’ relied on pencil, paper, and 

possibly some (semi-automatic) calculating tools (see e.g., Campbell-Kelly et al. 

2023, Ch. 1-3). Unless wholly carried out in one’s head, manual computation 

involved the manipulation of different symbols according to rules of 

arithmetic.  In parallel, there was a long tradition of considering mathematics in 

linguistic terms, such as the language of nature, the “grammar of science,” or, in 

the 20th century, as a formal symbolic system (Nofre et al. 2014, 47). 

The advent of various mechanical and later electronic (special-purpose) 

computing machines increasingly enabled practitioners to carry out sequences of 

computations automatically. Notably, the increasing speed and automatization 

of electronic processing provided by the technological leaps in the 1940s required 

program execution to rely less on repeated human intervention. For instance, 

whereas the functioning of the Harvard Mark I required human operators to 

manually change program tapes for conditional branching during runtime, 

ENIAC featured fully automatic conditional branching (Bullynck & De Mol 2010; 

Priestley 2011, 111-115). Although the ever-increasing automatization of 

computing machines marked a significant development, it gave rise to a novel, 

unexpected source of error: human programmers’ failure to fully anticipate the 

effects of the given instructions accurately.   

At first, practitioners would usually write programs directly in machine code 

(i.e., referring to one’s device’s hardware components in binary notation). As 

Valdez succinctly writes about the state of the art at the time,  

“There was a very close correspondence between the structure of the program 
and the structure of the machine itself. Consequently, programmers were 
required to know every detail of the structure and working of the machine they 
were programming and inevitably the focus in programming was on the 
formulation of the problem to fit the structure of the machine; the logic of the 
program was totally shaped by the structure of the machine.” (Valdez 1981, 4) 

For successful programming, one had to be familiar with virtually every 

hardware component and the entire architecture of the machine; this method was 

tedious, made code difficult to read for humans, and the probability of 
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accidentally making errors was high. Accordingly, from the late 1940s onwards, 

programmers created a notation called assembly code to simplify the process of 

writing machine code. Rather than writing down the binary digits for each 

machine instruction, they used short words or abbreviations like ADD, SUB, or 

MOVE. These words representing instructions were easier for humans to read 

and remember than a series of 1s and 0s. 

In explaining why it became custom to see programming as a linguistic 

activity, Nofre et al. (2014) remind us that computing specialists swiftly extended 

the previously mentioned tradition of viewing mathematics in linguistic terms to 

the mathematical/computational problems solved by the aid of machines. While 

initially, the adaptation from assembly to machine code was done by hand, it was 

soon realized that the process is automatable, too. Resultingly, programs called 

assemblers emerged to perform the process. In this context, the transition from 

mathematical problem to code was interpreted as an act of ‘translation.’  

Importantly, it is possible to apply repeatedly, or ‘nest’ such translation 

process to come up with new notational schemes beyond first (machine code) 

and second-generation programming languages (assembly). Throughout the 

1950s, this nesting strategy enabled practitioners to invent third-generation high-

level programming languages such as FORTRAN, ALGOL, or Lisp that were 

more programmer-friendly and typically omitted even more hardware details 

(Knuth & Pardo 1980; Wexelblat 1981). Slowly, this development separated 

programmers from the intricate make-up and inner workings of the machine. As 

such, the computing community increasingly distanced itself from thinking of 

code as an attribute of individual computing devices and began to draw on 

linguistics and symbolic logic. The reason for this conceptual borrowing is that 

new notation schemes are similar to formal languages like first-order logic as 

they have variables (to which we can assign values), predicates, and functions 

(White 2004). Interestingly, every new ‘language’ gives rise to a new model of the 

machine: Although the hardware remains unchanged, the programmers can now 

reason in terms of variables rather than memory cells or of algebraic formulas 

rather than registers and adders. Furthermore, the development introduces the 

notion of ‘machine independence,’ meaning that a single program can eventually 

run on many computers. 

In the past seventy years, thousands of programming languages have 

emerged, utilizing various approaches to writing programs. Some languages, 

known as imperative languages, specify how a computation should be done, 

while declarative languages focus on what the computer is supposed to do. There 

are general-purpose languages as well as those developed for specific application 

domains. For instance, C and C++ are typical in systems programming, SQL for 
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writing queries for databases, and PostScript for describing the layout of printed 

material. Innovations and applications often lead to the creation of new 

languages. For example, the development of the Internet led to the creation of 

Java for writing client/server applications and JavaScript and Flash for animating 

web pages.152 

Summarizing these developments, we can (broadly construed) understand a 

programming language as an artificial notational formalism in which we can 

express algorithms/computational problems (Gabbrielli & Martini 2010, 27). 

Abstracting away from the machine allowed the arrival of notational schemes 

pertinent to the (human) problems to be solved. As described in Chapter 2, 

‘Notations – There is no Escape’ of the PROGRAMme book,153 notations are thus 

frequently regarded as intermediaries between human programmers and 

computing machines (Fig. A.2).  

 

Fig. A.2: Schematic depiction of the relation between computing 

machines, symbol structures, and humans. 

 

Ultimately the common idea remains to exercise control over the underlying 

device and use it for problem solving; programmers therefore must formulate or 

program instructions in a notation that the machine can ‘understand.’154 To turn 

the human-readable inscription into a machine-readable one, the high-level 

inscription needs to undergo a translation process and be implemented in a 

‘lower level.’ In practice, we employ interpreters, compilers, and linkers (which 

are all programs themselves) to go through the different translation stages 

automatically.155  

 

 

 
152 I emulated this paragraph based on (NRC 2004, 76f).  
153 (https://wiki.program-me.org/index.php/Notations:_There_is_no_escape) 
154 N.b. that the term ‘understand’ is yet another linguistic (and anthropomorphic) metaphor. 
155 These translation stages are frequently discussed under the name ‘implementation.’ In 
Chapter 2, I discuss the corresponding philosophical ramifications. 



Appendix A: A Guide to the Chimera of Programs 
 

148 
 

Beyond textual notations 

Next to a textual conception, one may employ other forms of notations. 

Flowcharts represent another prominent notational scheme for computer 

programming. In his article ‘The Multiple Meanings of a Flow Chart,’ Ensmenger 

(2016) illuminates the importance of flowcharts for representing the logical 

structure of programs beginning in the 1940s. Their genesis can be traced back to 

a series of reports authored by John von Neumann and Hermann Goldstine. 

These reports introduced the conventions of the flow diagram notation, 

intending to capture a program’s dynamic unfolding (the program process) by 

pictorial means. One notable feature of this novel notation was the inclusion of 

so-called assertion and substitution boxes connected by arrows. These notational 

devices facilitated the manual conversion of a program to otherwise hardly 

readable machine code. 

Today, programmers still often rely on forms of software visualizations, like 

Bachman or UML diagrams, to attempt to gain an overview of complex software 

systems. As such, the purpose of flowcharts diverges from a program as text view 

in so far as flowcharts are typically not apt to directly exercise control of the 

machine. Rather, they act as specifications and fill the need to make a program 

clear to those who want to understand it. 

Overall, I have attempted to survey a relatively large area of computer science 

in this subsection. Accordingly, there is a vast landscape of underlying theoretical 

and philosophical issues. Let me now sketch some of the implications for the 

metaphysical nature of computer programs in broad strokes.  

The section started with a quote by Lonati et al. (2022), stating that programs 

are notational artifacts like different kinds of texts or works of music. In fact, there 

is extensive literature on the ontological status of such repeatable artifacts in the 

philosophy of art and metaphysics. In so far as one can think of programs as 

repeatable artifacts, the same conclusions about the ontological status of texts, 

words and so on should also inform our reasoning in computing. (I extensively 

discuss the issue and relevant literature in Chapter 3). 

At the same time, the nature of programming languages itself raises 

conceptual issues. Although there are thousands of programming languages 

nowadays, most share common features when it comes to their semantics. The 

three most typical styles are operational, denotational, or axiomatic (Jones & 

Astarte 2018). 156  In some of his work, Turner (2007; 2010; 2014) attempts to 

 
156 An operational semantics allows us to interpret the meaning of a programming language 
through an abstract machine. It involves translating expressions in the programming language 
into instructions or programs for the abstract machine. Denotational semantics formalizes the 
interpretation of programming languages in terms of mathematical structures (called 
denotations) like sets or categories that describe the meanings of expressions from the 
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unscramble how the underlying semantics may furnish potentially different 

ontological commitments concerning programming languages. One critical 

problem is that programming languages have an abstract guise we can reason 

about mathematically but ultimately need to be implemented in a physical 

medium. Often, this issue is discussed under the label the ‘dual nature view,’ and 

we will come back to it shortly in the last section of this appendix.   

Another important issue pertains to the relation between programs as static 

notations and the real-world ongoings in concrete computing devices. As I have 

argued in Chapters 2, 4, and Appendix B, the relationship between these 

symbolic structures and material systems is subject to the vexing issue of the 

Problem of Implementation. 

 

A.4 The Artifact View 

In our everyday life, we are surrounded and constantly confronted with artifacts. 

Typically, an artifact is defined as an object intentionally made or produced for a 

specific purpose (Hilpinen 2017). Intuitively, many computer programs appear 

to be artifacts because they are ‘creations of the mind’ (cf. Mahoney’s quote a 

couple of pages ago). In due course, philosophers often distinguish between 

different types of artifacts. Especially two conceptions turn out to be relevant for 

classifying computer programs: Technical artifacts and abstract artifacts.  In the 

following, I will provide an entry into these notions (concerning computer 

programs). 

 

Technical Artifacts  

Technical artifacts are considered an important subclass of artifacts in general (I 

already briefly introduced them in Ch. 2 and Ch. 5).  They are taken to include 

mundane objects like tables, screwdrivers, and toasters to highly sophisticated 

technologies like particle detectors or spacecraft. All technical artifacts have in 

common that they are constituted by both material and intentional features.157 On 

the one hand, technical artifacts can be described by their material structure, i.e., 

in terms of their physical or chemical capacities. On the other hand, they can be 

couched teleologically with regards to goals and actions. The combination of both 

structural and teleological (or material and intentional) aspects are required to 

 
languages. The underlying idea is to map a language into some space of such mathematically 
tractable structures. Lastly, an axiomatic semantics contains axioms and rules of inference that 
describe computer programs in propositional logic. This approach is beneficial for proving the 
correctness of programs (Hoare Logic is a prominent example). 
157 The materiality delineates technical artifacts from socio-cultural artifacts like constitutions or 
the law; intentional features render them distinct from naturally occurring material entities like 
tigers and tornados.  
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provide a complete picture of them (Kroes 2012).  For that reason, technical 

artifacts are often referred to as having a ‘dual nature’ (cf. Kroes & Meijers 2006; 

Baker 2006).   

Importantly, the material and intentional features are deemed to stand in a 

special relationship: It is the artifact’s material structure which allows agents to 

pursue their goals – only if there is the right correspondence between the two 

may an artifact function correctly.158 Accordingly, philosophers of technology like 

Houke and Vermaas concluded that  “[…] the notion of ‘function’ is like a bridge 

connecting the intentional, use-plan description of artefacts and a description of 

their physicochemical capacities.” (Houke & Vermaas 2010, 138). As we will see 

later on under the discussion of the ‘dual nature view of programs’, several 

philosophers have suggested that such teleological function are suited to 

conceptually connect the different clusters in this appendix.  

 

Abstract Artifact 

There is another prominent class of artifacts – abstract artifacts (see also the 

material in Ch. 3). The prefix ‘abstract’ should be understood in the metaphysical 

sense of lacking spatial features described previously in the introduction. Despite 

lacking ordinary spatial features, abstract artifacts are nevertheless characterized 

as creations of the mind. They are abstract objects that were created. Standard 

examples often mentioned in the relevant literature are fictional characters 

(Sherlock Holmes, Donald Duck) and other types of so-called repeatable 

artworks like literature or musical works (Wollheim 1968, Levinson 1980, 

Thomasson 2006). Even though these entities are typically inscribed in 

tangible/physical media – a text printed on paper, for instance – many 

philosophers deem these artifacts abstract. As expounded in Chapter 3, this is the 

main conclusion of the so-called Physical Object Hypothesis about repeatable 

artworks. Simply put, the idea is that repeatable entities/artworks are abstract 

because they cannot be identified with a specific copy or token in which they are 

inscribed. However, in contrast to a platonic conception of abstract objects (which 

somehow exist independently of us and can be discovered), the artifactual view 

maintains that (at least some) abstract objects depend on agency and can be 

created.  

Two angles render the abstract artifact view relevant to the study of computer 

programs. First, and more superficially, one may associate abstract artifacts with 

programs because the terms ‘abstract’ and ‘artifacts’ seem to resemble already 

 
158 If there is a mismatch between intention and structure, an object may be inadequate for a 
designated task – a wooden toothpick, for instance, likely won’t be an adequate replacement for 
one’s car key. 
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familiar features.  Secondly, and more substantially, one may take the analogy to 

literary and musical works seriously (CONTU report, Faulkner & Runde 2010; 

Irmak 2012). As we have already seen, both conceptions have been greatly 

compared to computer programs (and in Chapter 3, I developed this idea more 

formally through the so-called Problem of Creation). On the one hand, the 

analogy of computer programs to literary works was one of the main features of 

what I referred to as Symbolic View. On the other hand, the analogy of computer 

programs to musical works has been used extensively by legal practitioners to 

argue for the copyrightability of software (commissioner Hersey also used both 

cases to express his dissent with the final CONTU report). 

Note that this framing is not merely based on armchair philosophy but is well 

anchored in the computing community. For instance, in his 1975 book The 

Mythical Man-Month – a seminal text in software development – Frederick Brooks 

observed that, like the poet, the programmer engages in a creative endeavor and 

is 

“only slightly removed from pure-thought stuff. He builds his castles in the air, 
from air, creating by exertion of the imagination […] One types the correct 
incantation on a keyboard, and a display screen comes to life, showing things that 

never were nor could be.” (Brooks 1975, 7) 

And as noted by Tedre (2015, 157), it was a widespread opinion that computing 

was a craft or art of making programs in the early days of computing. So if 

programs are indeed pure creations of the mind and if their making is essentially 

an art or craft, one may reasonably draw the conclusion that they seem to be some 

kind of abstract artifacts.  

Let me wrap up this section by mentioning the key metaphysical implications 

of the Artifactual View. Given the different philosophical frameworks that 

underpin the notions of technical and abstract artifacts, it is wise to discuss them 

one by one. I start by looking at appropriation of technical artifacts into 

computing.  

As already mentioned previously, attempting to extend the technical artifacts 

view to computing is welcome, for it takes the engineering perspective, as 

expressed in Denning et al. (1989) or Tedre (2015) seriously. I will discuss some 

of the details and potential caveats of this approach in the last subsection of this 

appendix in connection with the work of Lando et al. (2007) and Turner (2014, 

2018). Taking stock, we should keep the following points in mind:  

(a) Notably, the Artifact View is compatible with many of the other clusters 

presented so far (technical artifacts are physical objects; depending on 

one’s favored position with regards to the philosophy of mathematics, one 

may think that mathematical objects are also abstract artifacts; the abstract 
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artifacts view is complementary to the view that programs are symbol 

structures).  

(b) Accepting the Artifact View entails that programs stand in a particular 

ontological dependence relation to humans (or other epistemic agents). 

(see e.g., Duncan 2014) 

(c) Depending on which framework of the Artifact View one subscribes to, 

one may ‘inherit’ normative features (e.g., due to artifactual functions that 

come with several conceptions of artifacts) that tell us when an artifact is 

malfunctioning, and so on. In the realm of computing, normative features 

are required to make sense of ‘miscomputation’ (and that the execution 

of programs can go wrong; see e.g., Fresco & Primiero (2013) and Tucker 

(2018)). 

 

A.5 The Neural View 
There is a long and rich (philosophical) tradition to conceive of the mind as a 

machine (Boden 2006). With the advent of electronic computing machines, it did 

not take long until ideas about the computer and the brain became mutually 

entangled. This shaped both the perception of what kinds of things computers 

and brains are, thus having implications for the understanding of computer 

programs. Let me elucidate two main developments.  

 

The Computer as Brain 

The first main development is about the public anthropomorphization of the 

newly emerging electronic computing technology from the 1930s onwards. 

Increasingly, new computing devices seemed to solve calculations which were 

previously reserved to only the human mind. Accordingly, the new technology 

became attributed with human qualities, especially with those of the mind and 

brain. As Martin explains in her article ‘The Myth of the Awesome thinking 

machine,’ it was “[…] the press [who] consistently used exciting imagery and 

metaphors to describe early computers.” (Martin 1993, 130). Analyzing 

newspapers, she concludes that it was rather mainstream media journalists than 

the early computing pioneers that spread the use of expressions like ‘electronic 

brain’ or ‘intelligent machine.’159  

While using such sensational anthropomorphic labels occurred primarily in 

the 1950s and 1960s and subsequently influenced large parts of the (American) 

population, the myth of the awesome thinking machine lost its bite when 

minicomputers started affecting a more widespread workforce (and users 

 
159 Von Neumann, Turing, and Vanevar Bush were prominent exceptions. Whereas the Von 
Neumann wrote of machine elements as neurons, Bush stated that machines performed 
“repetitive thought” (Martin 1993). 
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realized that they were not thinking by themselves).  However, today, we live 

through another public hype cycle fueled by recent developments in AI 

applications. Especially deep neural networks (DNN) 160  – as can already be 

inferred from their name – are suggestive in resembling the neural structure of 

the human brain. 

Floridi’s & Nobre’s (2024) recent article casts light on the general 

anthropomorphization of machines. In particular, they argue that AI’s technical 

vocabulary is deeply entangled with biological and human terms. Cases in point, 

among others, are ‘machine learning,’ ‘memory,’ ‘synapses,’ and ‘hallucinations.’ 

As such, these metaphors may influence our way of thinking about computing 

machines since whenever technical terms are transferred between disciplines, 

they carry additional baggage and implications due to their original context.161 

 

The Brain as Computer 

The second main development however is less superficial and arguably had 

longer lasting philosophical influence.  Roughly put, here the direction of 

influence worked the other way around – the computational metaphor was 

applied to the mind and brain. Contrary to the early widespread public 

conception to see computers as brains, the view to see our neural apparatus as 

some sort of computing system unfolded less straight forward. One of the first to 

argue that cognition is the product of computation in the sense of the formal 

notion of computability defined by logicians like Alan Turing were arguably 

McCulloch & Pitts (1943).162 In his recent book on neural mechanisms, Piccinini 

foreshadows some of the potentially far-reaching consequences of this theory for 

our understanding of computation: 

“McCulloch and Pitts’s theory was not the only source of modern computational 
theories of cognition. But McCulloch and Pitts’s use of computation to describe 
neural functions, together with their proposal to explain cognitive phenomena 
directly in terms of neural computations, contributed to a large shift in the use of 
computation that occurred around the middle of the twentieth century. Before 
1943, computing was thought of as one human activity among others (e.g., 
cooking, walking, or talking). After 1943, computing could be thought of as, in a 
sense, all that humans did. Under McCulloch and Pitts’s theory, any neural 
network could be described as performing a computation. In the sense in which 
McCulloch–Pitts nets compute, and to the extent that McCulloch–Pitts nets are a 

 
160 Neural networks are an array of connected signal-processing units known as ‘neurons.’ 
Usually, they consist of (i) input units that receive signals from the environment, (ii) output 
units that send outputs to the environment, and (iii) hidden units that communicate solely with 
other units within the system. 
161 Colburn & Shute (2008) provide a more in-depth analysis of how metaphors in computer 
science offer a conceptual framework in which novel concepts can be embedded. 
162 See Piccinini (2004; 2020, Ch.5) for some historico-philosophical assessment of McCulloch 
and Pitt’s theory.  
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good model of the brain, every neural activity is a computation. Given that 
McCulloch and Pitts considered the computations of their nets to be explanations 
of cognitive processes and human behavior, every cognitive process was turned 
into a computation, and every behavior into the output of a computation.” 
Piccinini (2020, 124) 

While overtly highlighting the impact of ‘historical firsts’ makes many 

professional historians chuckle, it is true that the early 1950s saw a surge of 

interest in formalisms that likened the mind to a computer. Following Penn 

(2020), one may point out the examples of Herbert Simon’s development of 

complex information processing and heuristic programming, John McCarthy 

and Marvin Minsky’s development of artificial intelligence, and Frank 

Rosenblatt’s development of machine learning. Although, as Penn argues, the 

approaches to simulate aspects of cognition varied among these computing 

pioneers, they should nevertheless be regarded as a single intellectual project of 

reducing “epistemology to code.”  

Besides, other disciplines picked up on the idea to couch the brain in 

computational terms. Take, for instance, the seminal textbook Cognitive 

Psychology by Neisser, which massively contributed to putting the same-named 

field on the map as a discipline in its own right. In the introduction, he draws 

parallels between humans and computers. He writes that the “task of a 

psychologist trying to understand human cognition is analogous to that of a man 

trying to discover how a computer has been programmed. In particular, if the 

program seems to store and reuse information, he would like to know by what 

‘routines’ or ‘procedures’ this is done.” (Neisser 1967, 6). Today, it is still common 

practice in cognitive science and adjacent fields to view the internal states in the 

cognitive system that provide information about the environment and guide 

behavior as mental representations undergoing computations (i.e., 

transformations that obey computational rules).  

Parallel to the emergence of disciplines like artificial intelligence, cybernetics, 

and Cognitive Psychology, the idea of viewing the brain as a computer also 

gained traction in philosophical circles in a family of views nowadays referred to 

as Computational Theory of Mind (CTM).163 In the 1960s, philosophers like Hilary 

Putnam (1967) proposed a form of functionalism couched in computational terms 

that was supposed to supersede its rivals, namely behaviorism and identity 

theory.  

While the first versions of the CTM maintained that minds perform 

computations similarly to Turing Machines, subsequent proponents of the view, 

like Fodor (1981), focused on the symbols manipulated under computational 

 
163 See (Rescorla 2020) for an accessible survey. 
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rules. (Fodor is sometimes said to have revived the ‘language of thought’ idea). 

In brief, the proposal argues that to fully understand cognitive abilities, we need 

to consider how syntactic operations work on language-like symbolic structures 

and the digital computational procedures that transform them. 

In the 1980s, connectionism was revived as an alternative to the classical 

CTM.164  This “Golden Age of Connectionism” (Buckner & Garson 2019) was 

underpinned by a culmination of theoretical refinements, especially the notion of 

back-propagation in artificial neural networks was paramount (Rummelhart et 

al. 1986). In a nutshell, connectionism’s main difference is that it draws from 

neurophysiology rather than computability theory. This paradigm relies on 

computational models and neural networks that differ significantly from abstract 

machines such as TMs. 

Finally, I will shed some light on the philosophical impact of the Neural View 

on our metaphysical understanding of computer programs. What are the most 

vital implications?  

First, the Neural View paves the way for naturalized conceptions of 

computation beyond neural activity (‘Why stop with the brain?’). Taken to the 

extreme, this pattern of reasoning opens the floodgates to so-called 

pancomputationalism (viz., the idea that everything computes). 

Pancomputationalism is a conception that comes in various flavors165 and is often 

considered to trivialize the notion of computation (this phenomenon is 

frequently referred to as triviality arguments (Sprevak 2018)).  However, since for 

proponents of the CTM, it is a conditio sine qua non to have a mind-independent 

notion of physical computation, a lot of ink has been spilled to work out the 

nature of physical computation precisely. For the sake of brevity, I will not deep-

dive into the intricate details. Anyhow, to make a long story short, this 

development brought forward philosophical debates about the nature of 

physical computation166 and gave rise to a host of issues: 

(a) Suppose computation is no longer just a human activity but a mind-

independent process occurring in various natural systems. In that case, we 

may ask whether there are also ‘natural computer programs.’  

 
164 The connectionist project started in the 1940s (including, e.g., McCulloch and Pitts’ work) 
and attracted considerable attention by the 1960s. However, major concerns about the 
connectionist modeling techniques led to a decline in research interest and funding.  
165 Pancomputationalist ideas, while often associated with the Neural View, are not limited to it. 
For instance, computing pioneer Zuse (1969) proposed that all processes in the universe are 
computational. Today, many philosophers of computing distinguish between limited, 
unlimited, and ontic pancomputationalism, each with its own unique characteristics. For a 
comprehensive analysis of these distinctions, see Anderson & Piccinini (2024). 
166 I refer the interested reader to my second and fourth chapters and the following appendix to 
learn more about the subject. 
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(b) If one subscribes to some version of the CTM, then physical computation is 

no longer based on cognition but the basis for cognition. This potentially raises 

issues of circularity in the sense that the sequence of computations carried 

out by the execution of humanly produced computer programs is 

dependent on prior neural computation. 

Second, to date, the Neural View has consequences on the way in which we 

conduct our discussions within the various brain sciences, computing, and 

computationally heavy fields (for instance ‘machine learning’). Moreover, the 

‘Computer as Brain’ and ‘Brain as Computer’ views arguably continue to exert a 

reciprocal influence on each other.  

A.6 State of the Art 
At first stab, the list of clusters I just presented leaves us with a fragmented 

picture of computer programs’ ontological status – such fragmentation results in 

conceptual difficulties, mutual misunderstandings, and category mistakes. 

Tensions arise, such as how qua abstract causally efficacious object programs are 

simultaneously executable entities that do have real-world effects. Similarly, we 

may wonder whether we should classify programs as (material) technical 

artifacts or abstract ones (or whether there might even be naturalized programs). 

What to make of these rival analyses of the ontological status of computer 

programs? Are they all of these things, some of them, or a novel sui generis entity 

that requires the revision of our standard metaphysical frameworks? 

Some investigators have sketched approaches to answering questions like 

these in a philosophically satisfying way. In this State of the Art section, I briefly 

yet critically review them chronologically.  

 

The dual nature view & linguistic refinements 

In his article Three Myths of Computer Science, Moor (1978) provides one of the 

earliest analyses of the situation by stating that computer programs can be 

understood on physical and symbolic levels. As we will see, the duality theme 

will reoccur for many subsequent authors.   The way in which Moor tries to 

explain the duality is by appealing to linguistic confusion. In particular, he writes 

that extensionally inadequate definitions (being simultaneously too permissive 

and too narrow) are the root of the problem. To remedy the situation, he proposes 

a revised definition, viz., a computer program is a set of instructions that a 

computer can follow to perform an activity. Unfortunately, Moor’s attempt at 

linguistic reform does not completely clarify what kinds of things programs are 

after all, either.  
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Everything is a program 

In a more radical attempt, Suber (1988) concludes that everything is software:167 

“Hardware, in short, is also software, but only because everything is.” Suber 

(1988, 102).  This verdict hinges on equating software with patterns per se and 

assuming that all kinds of prima facie nonsensical patterns could, in principle, 

retroactively be turned into programming languages. Overall, the idea to reduce 

software to everything there is flies in the face of our shared beliefs that some 

things implement computer programs and others don’t; Suber’s account is, 

therefore, extensionally inadequate. Notably, his kind of reasoning bears striking 

similarities to a family of pancomputationalist accounts (e.g., Searle 1990) and 

ought to be rejected for the same reasons.168  

 

A complete metaphysical overhaul 

In Smith’s (1998) On the Origin of Objects, we find yet another far-reaching 

stratagem on how to tackle the issue. His book is the summit of extensive 

investigations on the metaphysical foundations of computer science, AI, and 

cognitive science. As such, the first chapter contains a few pages on the 

ontological status of programs. Similar to Moor, he first points towards linguistic 

confusions by claiming that the vocabulary of computing is somewhat vague; 

since computing as a discipline is relatively young, the field employed metaphors 

and concepts from other disciplines: 

“Given the intellectual origins of computer science, it is no surprise that much of 
our present-day computational vocabulary was lifted from the study of logic, 
mathematics, and formal languages.” (Smith 1998, 33) 

He believes that the initial conceptual borrowing obscured the “true nature of the 

computational situation” (ibid.). In his view, programs are best understood 

through a tripartite distinction of a program text, a program process, and some 

(external) subject matter the computation is about. (N.b. that Smith’s 

conceptualization of the textual and process aspects essentially aligns with 

Moor’s dual nature view). However, what is truly unique about the account is 

that it calls for an alternative metaphysical framework beyond the realm of 

computing (“it is not just the ontology of computation that is at stake; it is the nature 

of ontology itself.” (Smith 1998, 42)). While these claims are potentially far 

reaching, it is well beyond the scope of this survey section to give a fully-fledged 

critique of Smith’s entire attempt (i.e., the ‘middle distance’ approach) to 

overhaul the way we ought to conduct metaphysics.  

 
167 Suber uses ‘software’ and ‘computer program’ interchangeably (Suber 1988, 94).  
168 As previously mentioned, so-called triviality arguments typically render 
pancomputationalist positions unplausible; see Anderson & Piccinini (2024) for an in-depth 
analysis of the topic.  
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Embracing the Dual Nature View: Concrete Abstractions  

At the end of the millennium, Colburn (1999) also picked up the dual nature 

theme: According to him, programs are comprised of what he calls a medium of 

description (which is usually text) and a medium of execution (which is typically a 

switch setting). However, instead of trying to overcome the issue through 

linguistic reform (like Moor), he tried to embrace the seemingly opposing 

features, arguing that together they form concrete abstractions.169  

As such, “the duality inherent in a ‘concrete abstraction’ crosses metaphysical 

categories” (Colburn 1999, 10). To make sense of the ontological status of concrete 

abstractions, he appeals to the mind/body problem as an analogy. Notably, he 

employs this strategy not because he believes programs are like persons/minds, 

but for the taxonomy of solutions, this philosophical discourse offers on 

overcoming an apparent ontological mismatch. Going through the solution 

space, he contends that  

“[…] the pre-established harmony thesis is well suited for explaining the high 
correlation between computational processes described abstractly in formal 
language and machine processes bouncing electrons around in a semiconducting 
medium.” (ibid., 17) 

Colburn suggests that, in the absence of a divine entity, programmers can play a 

role in establishing a harmonic correspondence between the abstract and the 

concrete. 170  However, his conclusion is rather superficial; what exactly this 

relation between such ontologically distinct categories amounts to remains vague 

at best.171  

 

The dual nature view & linguistic refinement – attempt no. 2 

Like their predecessors, Eden & Turner (2007) start from the dual nature 

assumption about the metaphysical nature of programs. In particular, they 

identify two sub-categories of the term ‘program,’ viz., program-script and 

program-process. As such, their distinction resembles that of Smith and differs 

from the one employed by Moor and Colburn. While the latter appeals to the 

static sub-branch of the Physical View, Eden and Turner mention the dynamic 

one (i.e., because the program-process is the execution of the program script). 

Moreover, the authors attempt to unscramble the situation by introducing a 

 
169 Colburn adopted the notion of ‘concrete abstractions’ from an undergraduate textbook 
(Hailperin et al. 1999). 
170 The idea of pre-established harmony goes back to Leibniz, which is, roughly, the thesis that 
there is no causal mind-body interaction but just a relationship of harmony or parallelism 
(Kulstad & Carlin 2020). 
171 Throughout my thesis, I argue that we should understand this relation as computational 
implementation. 
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refined definition of program script as a well-formed expression based on a 

Turing-complete programming language.  

However, despite these differences, it is paramount to highlight that the 

authors also appeal to a concretization relation (similar to Colburn’s ‘pre-

established harmony thesis’) that is supposed to link the program-script to the 

corresponding program process. In particular, the authors describe 

concretization as “a process during which an entity or entities of one category are 

synthesized (come into being) from entities of a more abstract category.” 

Although this notion is intriguing and already has more substance than 

Colburn’s ‘pre-established harmony thesis,’ it does not fully clarify the nature of 

this relationship. 

Clarifying definitions and the dual nature through Formal Ontologies  

Lando et al. (2007) developed a new domain-specific ontology of programs and 

software called COPS (Core Ontology of Programs and Software) using high-

level formal ontologies as a template.172 COPS classifies computer programs as 

abstract documents to enable a computing system to process information. More 

concretely, computer programs are said to have a dual nature with two elements, 

branching into static entities and their execution (similar to Eden & Turner 

(2007)). As previous participants in the debate, the authors shed light on the 

relation between these elements (of the duality) and suggest further refinements 

of the term ’program.’ 

When examining the relation between these elements, the authors identify 

artefactual functions (cf. Artifact View) as their linkage. Specifically, they define 

such a function as the ability of an instrument to perform an activity (assigned 

by agents to endurants) in a perdurant.173 This conceptualization characterizes an 

artifact as an endurant with an assigned function and gives rise to the notion of 

computer programs as Artefacts of Computation. I will return to potential issues 

with this conception when discussing a very similar approach in the work of 

Turner shortly. When further considering the static side of programs, they 

suggest distinguishing files (inscribed in a medium), computer language 

expressions (expressed in a Turing-complete language), data types, and 

algorithms (conceptualizations representing the semantics of programs). In sum, 

 
172 The authors’ work is underpinned by the DOLCE and I&DA core ontology. DOLCE, a 
‘foundational’ ontology, comprises abstract concepts that generalize ideas in different 
knowledge domains. Under philosophically grounded principles, DOLCE’s domain – that of 
Particulars – splits into four subdomains. 
173 In context of the here employed framework ‘endurants’ can be understood as entities that are 
wholly present at any time at which they exist; ‘perdurants’ can be understood as entities that 
happen in time, e.g., events or actions. 
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programs are thus both computer language expressions and ‘artefacts of 

computation.’ 

 

Programs as Abstract Artifacts 

In his article Software is an Abstract Artifact Irmak (2012) rejects the dual nature 

view and suggests that programs are abstract artifacts. 174   In a nutshell, he 

identifies programs as notational entities and argues that they are subject to the 

same considerations as works of literature and musical works (i.e., so-called 

repeatable artworks; cf. Notational and Artifact View): Although programs lack 

spatial properties (as they cannot be identified with any particular 

implementation), they have temporal properties. As a ‘creation of the mind,’ 

programs are artifacts; they are the end product of a laborious process and start 

to exist at some point in time. Due to their temporality, they can cease to exist 

when all their copies are destroyed (or nobody is around to remember the 

underlying source code and algorithms). 

While Irmak’s innovative idea to draw the analogy to the ontology of art 

opened up a new avenue to investigate the metaphysical nature, his account is 

partially incomplete. The crux is that his work remains silent about the way in 

which programs qua abstract artifacts relate to real-world systems (i.e., it does 

not tell us anything about computational implementation). 

 

Unscrambling the Software/Hardware distinction through Formal Ontologies 

Similarly to the work of Lando et al., Duncan (2014) employed a ready-made 

formal ontology (the so-called Basic Formal Ontology (BFO)) in his dissertation 

to elucidate computational notions such as ‘software,’ ‘hardware,’ and ‘artifacts.’ 

In due course, he argues that we can unscramble the notorious 

software/hardware dichotomy (i.e., in this case, the dual nature view) 175  by 

thinking of programs as ontologically dependent entities, while computational 

hardware is ontologically independent artifact. 176 , 177  Regarding software, he 

states 

“A software program, similar to a novel, is a generically dependent entity. A 
particular software program does not depend on a particular independent entity 

 
174 Irmak told me, in private communication, that he used ‘software’ and ‘programs’ 
interchangeably.  
175 It is paramount to note that one should be cautious to simply equate the software/hardware 
dichotomy with the dual nature view. While in this case, the two overlap, a different 
understanding of 'software' may change the situation. 
176 Like many authors, Duncan uses ‘software’ and ‘program’ interchangeably. 
177 Following the BFO-framework (Arp et al. 2015), Duncan differs between two types of 
dependent entities: specifically dependent and generically dependent ones. While the former depend 
upon a particular bearer to exist (and only as long as that particular entity exists), the latter exist 
as long as they are borne by some entity (i.e., they do not depend upon a specific bearer).  
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(such as a particular DVD or flash drive) in order to exist. Rather, a software 
program exists as long as it is borne by some independent entity. For example, if 
you destroy my DVD of Microsoft Word, Microsoft Word (the software program) 

does not cease to exist.” (Duncan 2014, 38) 

Engaging in conceptual engineering, one can find, among others, such 

ambitious novel concepts like programming language expression, computational 

requirement specification, computational information entity, and computational plan 

specification (where each is rigorously defined in terms of his upper-level 

ontology). To cut a long story short, a software program is then defined as “a 

computational plan specification in which the instructions are specified using 

programming language expressions.” (ibid., 133). 

When explaining how to relate these entities to hardware, Duncan appeals to 

a tool function (the notion strongly resembles the characterizations of teleological 

function endorsed by many philosophers of technology; noteworthily, he also 

introduced the notion of computational artifact (ibid., 140)). Accordingly, 

hardware ‘concretizes’ programs when the former bears the (teleological) 

function that is realized in some computational planned process (ibid., 136-140). 

(Alas, this characterization couches the concretization relation in the unanalyzed 

terms of ‘bearing’ and ‘realizing’). 

Ultimately, the success of such linguistic reform and conceptual adaptation in 

such a heterogeneous field as computing is somewhat doubtful (to the best of my 

knowledge, the novel concepts have yet to be widely adopted). 

 

A requirement engineering perspective: An abstract information artifact view  

Wang et al. (2014a; 2014b)178  and Wang (2016) aim to refine further the abstract 

artifact proposal about programs (made by Irmak (2012)). Specifically, their work 

sheds light on programs’ identity criteria against the backdrop of software 

changes (i.e., code changes). In a nutshell, the question is how specific programs 

can keep their identity despite code changes. By methodologically relying on the 

DOLCE ontology (similar to Lando et al. 2007), the authors identify and precisify 

programs as abstract information artifacts. Generally speaking, there is a wide 

variety of abstract information artifacts; see e.g. (Sanfilippo 2021) for a survey. 

However, in contrast to other information artifacts, which  

“[…] directly refer to the objects in the world (so that executing a recipe or 
a law implies a manipulation of objects in the world), software programs 
refer to virtual variables in a machine, whose manipulation inside the 
machine affects the outside world in an indirect way” Wang (2016, 63) 

 
178 Although the two papers have different names and are published in different venues, the 
content (i.e., the overall argument) is essentially the same. 
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To then further distill what is peculiar about programs, they draw from software 

engineering and requirements engineering literature. This strategy allows them 

to distinguish between software and hardware (i.e., the dual nature view), the 

underlying hardware, and different ‘software artifact’ features (code, program, 

software system, and software product).  

 

Programs are Computational Artifacts 

By transposing the conception of ‘technical artifact’ to computing, Raymond 

Turner popularized the term computational artifact.179 As arguably one of the most 

prolific investigators in the philosophy of computer science, the development of 

‘computational artifacts’ is the culmination of a longer lasting research program 

into various central notions of computing (Turner 2011; Turner 2014; Turner 

2018). Arguably, Turner’s concept borrowing was supposed to kill multiple birds 

with one stone:  

1. First, the manoeuver accounts for software engineering. As per Turner, 

programs are artifacts because they are intentionally created objects. 

2. Second, the notion is arguably supposed to explain away the longstanding 

issue of the dual-nature view of programs. In brief, the idea is that we can 

couch the dual-nature view in terms of the function-structure pair 

ingrained in the notion of technical artifacts. This move resembles the idea 

of framing implementation in terms of artifactual functions we have seen 

in (Lando et al. 2007) and (Duncan 2014). 

3. Third, it allows us to account for the normative dimensions of computing. 

Previously, I already mentioned the verificationist debate and the 

importance of miscomputation.  Having teleological functions at our 

disposal facilitates normative judgments about computational systems.  

Given the scope and different problems Turner’s computational artifact proposal 

is able to address, it is undoubtedly one of the most sophisticated accounts on the 

market.  

However, there is one potentially serious caveat with appropriating technical 

artifacts to the realm of computer science; the issue is expressed in Kroes’s 

monograph Technical Artefacts: Creations of Mind and Matter, where he warns us 

that   

 
179 One should not mistake Turner’s computational artifacts with Suchman’s notion of 
computational artifacts presented in (Suchman 1987). Remarkably, Tuner and Lando et al. 
(2007)’s notion of ‘Artefacts of Computation’ and the idea of using artifactual functions to 
bridge the gap of the dual nature view seems to have been developed independently. As far as I 
can tell, Lando et al. only referenced some of Turner’s work that preceded the development of 
his computational artifacts notion. Likewise, I did not find a reference to Lando et al. in Turner’s 
(2014; 2018). 
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“ […]  software programs fall outside the scope of this book. I consider software 
programs to be ‘incomplete’ technical artefacts; only in combination with the 
appropriate hardware that executes software programs are they able to fulfil their 
technical function.” Kroes (2012, fn. 4) 

When further developing Kroes’ worries, we may pose the question of 

whether the dual nature view of programs (i.e., the abstract-concrete 

dichotomy) adequately is accounted for by the function-structure duality of 

technical artifacts.180 The crux of the matter is that Turner’s account presumes 

that the notion of physical structure can also be understood in the abstract 

(like a set-theoretic one).181  

 

A Phenomenological Perspective 

In his 2019 dissertation, Geisse (2019) takes a phenomenological approach, 

drawing on Kant’s Critique of Pure Reason and Husserl’s phenomenological 

perspective to define the term ‘program’ based on human experience. 

Subsequently, he examines programs through the properties assigned to them in 

perception processes. This method results in a multi-dimensional 

characterization of programs, distinguishing them as (i) physical, (ii) syntactic 

entities, (iii) semantic entities, and (iv) embedded entities dependent on other 

entities. Geisse argues that this differentiation of object forms (i)-(iv) allows for 

greater precision in using the term and elucidating their interrelationships. 

However, since the focus of his work is primarily on phenomenological aspects 

of programs -- and not on their metaphysical nature -- dissolving the dual nature 

view (or, in fact, the occurrence of four categories (i)-(iv)) is not the primary 

concern. Accordingly, there is no worked-out solution to the problem of 

implementation. 

 

Programs have a stratified ontology 

In several of his works, Primiero picks up the themes of computational artifacts 

and the corresponding idea of using a function-structure pair to characterize 

them. However, instead of appealing to the standardly evoked dual ontology of 

technical/computational artifacts, his work advocates an even more fine-grained 

classification – a so-called layered or stratified ontology Primiero (2016; 2020). 

What is the motivation for this move?  

 
180 In an online session of the Histoire et Philosophie de l'informatique (HEPIC) seminar (a joint 
seminar of the University of Lille and University of Paris 1) I attended on October 30, 2022, 
Maarten Fraanssen (a member of the Dutch research group that developed the notion of 
‘technical artifacts’ in the early 2000s) re-iterated the concern that the dual nature of view of 
technical artifacts does not transpose to the dual nature view of computer programs.  
181 N.b., similar kinds of worries would apply to other accounts (e.g., by Lando et al. (2007) or 
Duncan 2014)) that also make use of the notion of teleological function. 
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As described in the introduction (cf. Ch. 1, especially the section on epistemic 

abstraction), level-views have been pervasive throughout the history of 

computer science. In the section on the Notational View, for instance, we have seen 

that abstracting away from the machine licensed programmers to develop new 

programming environments that omitted cumbersome machine details. As per 

Primiero, computational artifacts are, therefore, subject to a form of levelism:  

i. Intention: the request of epistemic agents (typically, the customers, users, 

and other stakeholders involved in software development projects) to 

define and solve a specific computational problem.   

ii. Specification: the formal version of the request to solve the computational 

problem; it provides (formal) constraints on the programs’ operations. 

iii.  Algorithm: the procedure providing a solution to the proposed 

computational problem in line with the specification requirements. 

iv.  High-level programming language instructions: a symbolic 

implementation of the proposed algorithm in a high-level language (the 

source code). 

v. Assembly/machine code operations: typically, the machine cannot 

directly execute the source code; it is translated (e.g., by a compiler) into 

assembly code and subsequently assembled in machine code operations. 

vi. Execution: the physical level (the execution LoA) is where the program 

runs, i.e., where the computer architecture executes the instructions. 

While such a level view is certainly not entirely new in computing, what is 

paramount to note about Primiero’s proposal (and what distinguishes it from 

previous versions) is the claim that it has ontological commitments. Drawing on 

the notion of levels of abstraction (LoA) developed by Floridi (2008; 2011, Ch. 3), 

Primiero argues that each LoA contains a corresponding pair of epistemological 

and ontological domains (a so-called EO-construct). Accordingly, computational 

artifacts are ontologically stratified or layered entities in the sense that they are 

composed of various LoA with different degrees of abstractness. This view, in 

other words, diverges from the traditional abstract-concrete dichotomy since it 

requires us to buy into a metaphysical framework that allows for multiple 

different notions of what it means to be ‘abstract.’ 
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Appendix B: Why we should think of 
computational implementation as a three-
place relation 
 

In the main body of the text, I occasionally consider an issue related to 

implementation which I keep referring to as Bridging Problem. So far, the relevant 

literature on physical computation has discussed the Bridging Problem182 and the 

Problem of Implementation 183  separately. This appendix clarifies how the 

Bridging Problem affects our understanding of the metaphysical assumptions 

underpinning computational implementation.  

While the Bridging Problem deals with the unexpected accurate applicability 

of mathematics to the physical world, the Problem of Implementation seeks to 

provide an account of physical computation by establishing an adequate 

correspondence between abstract logico-mathematical states and physical states. 

As I will demonstrate, the Problem of Implementation is not just a problem in its 

own right but an instance of the Bridging Problem. This view has potentially far-

reaching implications for our understanding of physical computation because it 

allows us to apply insights from the philosophy of applied mathematics to 

computing that were hitherto neglected. 

The most significant upshot of this framing is that we should no longer think 

of implementation as a simple dyadic relation between an abstract model of 

computation and a physical computing system. The problem with the dyadic-

view (i.e., a mind independent one-to-one relation) is that it stands at odds with 

most approaches to solving the Bridging Problem, which suggest that the math-

world relation does not hold by itself but requires a third element – the 

stipulations and descriptive practices of epistemic agents. Ergo, we should also 

understand the implementation relation as a three-place relation, where the 

relata are abstract computational states, physical states, and epistemic agents and 

their stipulations. This ‘three-place conclusion,’ which diverges from many of the 

most prominent accounts of physical computation, redefines our traditional 

 
182 Wigner (1960), Steiner (1998), French (2000), Wilson (2000), Colyvan (2001), Grattan-Guiness 
(2008), Pincock 2004, 2009, 2012, Batterman (2010), Fillion (2012), Bueno & Colyvan (2011), 
Nguyen & Frigg (2021), Vos (2022). 
183 Some key sources that deal with (parts of) the Problem of Implementation are Putnam (1989), 
Searle (1990), Churchland & Sejnowski (1992), Chalmers (1996), Copeland (1996), Scheutz 
(1999), Shagrir (2001; 2018; 2022), Klein (2008),  Piccinini (2007; 2015), Ladyman (2009), 
Milkowski (2013), Fresco (2014), Horseman et al. (2014), Fletcher (2018), Dewhurst (2018), Mollo 
(2018), Sprevak (2010), Rescorla (2013; 2014), Lee (2020), Curtis-Trudel (2022). 
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understanding of implementation as a completely naturalized phenomenon 

hinging on a two-place relation. 

The structure of the appendix is as follows. In Section 1, I briefly remind us 

about the main issues underlying the Bridging Problem, which serves as the 

starting point of our discussion. In Section 2, I shift gears, introducing the 

Problem of Implementation from the discourse of physical computation and 

sketch its most prominent solutions. In Section 3, I introduce the Bridging 

Problem of Applied Mathematics and its candidate solutions in more detail. In 

Section 4, I adapt the Problem of Implementation to the context of applied 

mathematics and argue that it is a particular instance of the Bridging Problem. 

Lastly, in Section 5, I offer some discussion and concluding remarks. 

 

B.1 The Bridging Problem 

One of the central questions of (the philosophy of) mathematics has been the 

seemingly miraculous accurate applicability of mathematics to the empirical 

sciences. This question, which has captivated scholars for centuries, was perhaps 

most notably revived by Wigner (1960) when he challenged us to explain the 

remarkable usefulness of mathematics in science. Considering its long history, 

the issue is known under many names (e.g., Application Problem) and may 

comprise several different (albeit related) problems under the same umbrella 

(Steiner 1998, Fillion 2012).  

For instance, some investigators picked up Wigner’s theme and tried to 

demystify the ‘unreasonableness’ of mathematics’ applicability. Grattan-Guiness 

(2008), for example, suggests that mathematics is so useful for science because 

many of its formalisms has been motivated by science. In a different manner, 

Wenmakers (2016) argues that the phenomenon is due to selection effects such as 

a selection bias that overtly focuses on the rare success of applications but not 

their ubiquitous failures. Yet others pointed out a semantic problem about ‘mixed 

statements’ (Steiner 1998, 13-23, Colyvan 2001, fn.4, Pincock 2004, Fillion 2012). 

Here, one may wonder about the truth conditions for statements like “there are 

seven apples on the table” (Steiner 1998, 16) or “the gravitational acceleration is 

9.81 m/s2” (Pincock 2004, 137), where mathematical and physical terminology is 

mixed (i.e., they occur in the same sentence). While indeed interesting, the 

semantic problem of applying mathematics will not be the central topic of this 

appendix. 

Instead, I will focus on another issue that has to do with the widespread 

mathematization of modern science. Given that so many mathematical 

formalisms accurately describe, explain, and predict empirical phenomena, we 

suspect an underlying coupling (a math-world relation) that enables such 
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knowledge gaining. It is widely accepted that here we confront a metaphysical 

problem of applications stemming “from a gap between mathematics and the 

world” (Steiner 1998, 19). Intuitively, the mathematical universe shares structural 

similarities with certain parts of the physical world.  

To avoid potential conflations and misunderstandings with the different 

issues associated with the application of mathematics, I decided to employ the 

name ‘Bridging Problem’ (BP) throughout my thesis. 184  This choice, while a 

matter of taste, highlights the crux of the matter best – the metaphysical problem 

of bridging the gap between the two fundamentally different ontological 

domains of abstract mathematical entities and physical objects. At a first stab, we 

thus may narrow down the problem statement to 

BP: How does the mathematical relate to the physical? 

Solving the ‘Bridging Problem’ is paramount to understanding the ‘model-world 

relation’ featured in the discourse about scientific representation and adjacent 

fields as the philosophical literature on computer simulations. As I will show, 

attempting to answer the problem is not only central to many of today’s 

philosophical debates but also besets the physical computation discourse. 

 

B.2 The Problem of Implementation 

Let me briefly remind us about the Problem of Implementation (which I already 

presented more formally in Chapter 2) by describing it in general terms. 

Subsequently, I introduce the approaches that emerged from trying to solve the 

issue and argue that all the leading contenders (mapping accounts, semantic 

accounts, mechanistic accounts) are descendants of the so-called simple mapping 

account (SMA). This result will be key for framing computational 

implementation in terms of the BP. 

 

B.2.1 The Main Rationale 

Computation is methodologically divided (Curtis-Trudel 2022). On the one hand, 

we may study computation in the abstract realm of logico-mathematical 

formalism like Turing Machines (TM), recursive functions, etc. In general, such 

computational formalisms are definable in a large variety of ways. In Chapter 2, 

I explained that the computer science literature’s two main kinds of 

computational formalisms are (i) programming languages and (ii) abstract 

machine models. Following my earlier convention, I use the term ‘model of 

computation’ Mc for both. To put a long story short, such models of computation 

are logico-mathematical formalisms that encode an abstract sequence of 

 
184 The particular name ‘Bridging Problem’ was coined by Contessa (2010b).  
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computations through a programming language, a machine table, a transition 

function, and so on.  

On the other hand, computations take place in the real world. While the 

formal theory of computation is a well-established branch of 

mathematics/theoretical computer science, developing an account that specifies 

when a physical system implements computations proves challenging. Even 

though many models of computation allude to a machine metaphor, these 

theoretical models are divorced from the ongoings in real-world devices, i.e., 

they do not tell us which real-world systems perform which computations. What 

makes an abstract MC stand in relation to genuine physical computing systems – 

and not to other systems like rocks or hurricanes – is an open question and is 

commonly referred to as the Problem of Implementation.  

Roughly put, the common idea of solving the issue is by alluding to a special 

kind of correspondence or mapping that bridges the gap between abstract 

computational and physical states.  As we have seen, translating this seemingly 

simple idea into formal terms resulted in the Simple Mapping Account (SMA) 

(see Chapter 2, sect. §2.3). However, many philosophers have claimed that under 

the regime of the SMA implementing physical computation would be trivial since 

virtually any physical computation turns out to implement computations. For 

most philosophers, such unlimited pancomputationalism is unplausible. 

Henceforth, the quest began for devising a theory of computational 

implementation equipped with extensional adequacy concerning paradigmatic 

computing systems (like computers and brains). 

 

B.2.2 Further Refinements: The Physical Computation Landscape 

Providing an answer to the Problem of Implementation – and thus developing 

an account of physical computation – is paramount for such disciplines as the 

foundation of computer science, AI, robotics, and cognitive science. Accordingly, 

solving this issue has received considerable attention and brought forward a host 

of accounts of physical computation (see Piccinini & Maley (2021) for an 

overview). Although the resulting options purport to look like a wide range of 

options on the surface, the physical computation landscape is somewhat 

deceiving since all accounts are a species of the SMA. In what follows, I will 

untangle this genealogy by analyzing the three most prominent candidate 

solutions – extended mapping accounts, semantic accounts, and mechanistic 

accounts. Mainly, I will show that, despite their different branding, these three 

leading contenders still adhere to the SMA’s strategy of defining physical 

computation as the relation between two relata (a model of computation and a 

putative physical computing system). 
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i. Extended mapping accounts 

The threat of unlimited pancomputationalism/triviality arguments has raised 

concerns about the limitations of the simple mapping account (SMA) in 

distinguishing genuine from overly permissive mappings. So-called extended 

mapping accounts (EMAs) seek to address this issue by a common strategy. 

EMAs aim to filter out spurious mappings by using different forms of counter-

factual dependencies to differentiate between the abstract domain of model 

computation and the physical domain (Chalmers (1995), Copeland (1996), 

Scheutz (1999), Klein (2008)).185 For instance, Chalmers states 

“A physical system implements a given computation when there exists a 
grouping of physical states of the system into state-types and a one-to-one 
mapping from formal states of the computation to physical state-types, such that 
formal states related by an abstract state-transition relation are mapped onto 
physical state-types related by a corresponding causal state-transition function.” 
Chalmers (1995, 392; emphasis added) 

This approach requires that the formal set-theoretic structure of MC only maps to 

the causal/counterfactual structure of a physical system P. Instead of merely 

considering one execution trace, implementation occurs if counterfactual 

computations are satisfied. However, importantly EMAs still maintain the 

fundamental idea of SMA (i.e., a mapping between the abstract domain of the 

model of computation and the physical domain). 

 

ii. Semantic accounts 

Historically, so-called semantic accounts emerged separately from the 

considerations of the SMA and EMAs. Fodor’s slogan “There is no computation 

without representation.” (Fodor 1975; Pylyshyn 1984), captures the essence of 

semantic accounts. There are two common reasons for embracing semantic 

accounts: First, the semantic account is consistent with the views of various brain 

sciences and the Computational Theory of Mind, which suggests that cognition 

relies on our brains performing computations (Rescorla 2020). Since brain states 

are believed to have content and process information, computational states must 

do the same. The semantic view turns this into a doctrine, and accordingly, 

computational states must have ‘aboutness’ and carry external content or 

meaning. Additionally, the computational states of our computing devices often 

manipulate meaningful symbols. 

 
185 This view is extrapolated from the causal, dispositional, and counterfactual views. Since on 
most accounts of causality causal claims support counterfactuals, one may simply lump all 
these different views together under the label of EMAs. See Piccinini (2015, Ch. 2) for a similar 
line of reasoning. 
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It is worth noting that simply having meaning attached to a physical state is 

not sufficient for a theory of implementation. Otherwise, any random symbol 

manipulation - like a dog chewing on a newspaper - could be seen as executing 

computations (Milkowski 2013, 42). Therefore, for semantic accounts to be 

extensionally adequate, they must incorporate some rule-following that typically 

boils down to following the the EMAs’ specifications. This includes the mapping 

between physical processes and abstract computational states, as well as the 

ability of the mapping to support counterfactual state transitions.  

The second important reason for embracing the semantic account is of more 

recent origin. Shagrir (2020; 2022) refers to this as the master argument for the 

semantic account. Accordingly, philosophers of computing like Shagrir (2001), 

Sprevak (2010) have argued that semantic properties circumvent computational 

indeterminacy. Philosophers often discuss the issue using the example of logical 

duals such as AND- or OR-gates (e.g., Papayannopoulos et al. 2022). In cases 

where more than one mapping between physical and logical structure is possible, 

the SMA or an EMA alone cannot determine which computation is implemented. 

Put simply the claim of the master argument goes that an EMA with a semantic 

condition mounted on top does not suffer from this defect. Notably, 

contemporary semantic accounts thus also rely on structural mappings.  

 

iii. Mechanistic accounts 

Lastly, the mechanistic accounts result from espousing neo-mechanist 

conceptions and applying them to computation. According to the ‘consensus 

conception,’ “a mechanism for a phenomenon consists of entities and activities 

in such a way that they are responsible for the phenomenon.”, (Illari and 

Williamson 2012, 120). This view has been put into action by philosophers such 

as Piccinini (2007; 2015), Milkowski (2013), Mollo (2018), and Dewhurst (2018) 

when characterizing physical computing systems as (functional) mechanisms.  

Piccinini’s influential account, for instance, states that physical computation 

is the processing of vehicles by a teleo-functional mechanism according to 

medium-independent rules (cf. Piccinini 2015, 120-21). The notion of teleological 

function emphasizes that systems may only execute computations if it is their 

function. ‘Function’ here should be understood in the sense of aim or purpose 

and not in the formal mathematical sense. Specifically, it is a computing system’s 

function to manipulate vehicles following a rule, i.e., computing a mathematical 

function mapping from inputs (and possibly internal states of P) to outputs 

(Piccinini 2015, 121).186 The term ‘vehicle’ denotes a variable or a state that can 

 
186 Importantly, a rule that is mapping input to outputs should not be conflated with mapping f 
between the abstract computational and physical domain, as depicted in Fig. 1. Rather, the 
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take different values and change over time. This term is simply another 

expression for what I previously referred to as grouped-together physical state(s) 

(cf. quote by Chalmers). Moreover, since computational descriptions/the rules of 

physical computing systems are abstract, they can define computation 

independently of the media that implement them – they are ‘medium 

independent.’  

Upon first glance, the terminology and concepts used by computational 

mechanists such as Piccinini to explain physical computation may seem different 

from the SMA, EMA, and semantic accounts, which could lead to interpretative 

difficulties. However, once familiar with the terminology, it becomes clear that 

the mechanistic account also relies on the main idea underlying SMA. So, to 

better understand how it works, let me break down Piccinini’s reasoning into 

three steps: 

1. Selection: To show how a concrete mechanism may perform computations 

(say, of a TM), computational mechanists first need to find concrete 

counterparts to the formal notions of a finite set of states q that are part of a 

finite set of symbols Σ (Piccinini 2015, 127). In Piccinini’s account, the thus 

selected concrete counterparts are called ‘digits.’  

2. Labeling: Subsequently, “[o]nce microstates are grouped into digits, they 

can be given abstract labels such as ‘0’ and ‘1’.” (Piccinini 2015, 128). The 

purpose of the labeling operation is to prepare the mechanism’s concrete 

components to align with the standard nomenclature of set 

symbols/alphabet Σ of our MC.  

3. Imputation to a computational rule: Lastly, one may generalize the 

previous step, such that “[g]iven their special functional characteristics, 

digits can be labeled by letters and strings of digits by strings of letters. As a 

consequence, the same formal operations and rules that define 

mathematically defined computations over strings of letters can be used to 

characterize concrete computations over strings of digits.”, (Piccinini 2015, 

132). This imputation process to a computational rule is a crucial aspect of 

understanding physical computation mechanistically, for it glues together 

the abstract MC with a concrete counterpart. 

Digits (i.e., physical state types pi) have been labeled with symbols – presumably, 

letters contained in the alphabet of the model of computation MC of our choice – 

so that the mathematical rule/function δ can be used to characterize the concrete 

computations performed by the system P. The labeling scheme thus establishes 

 
mechanistic framework’s notion of rule can be understood as the transitions leading from one 
computational state to another (the horizontal arrows in the top-span of the picture). 
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a reference (builds a bridge) to a specific abstract model of 

computation/computational formalism.  

However, together steps 1 to 3 are just a different way of saying that physical 

states correspond to computational states specified by a computational rule. In 

other words, the correspondence established by the labeling process still boils 

down to a mapping relation advocated by the SMA and its descendants. That is 

why, despite the different terminology/emphasis, mechanistic accounts are 

descendants of the SMA and also rely on mappings. 

Taking stock of this section, we need to keep in mind that although many 

physical computation accounts are conceptually much richer than the SMA (and 

sometimes employ different terminology), they still depend on dyadic mappings 

between a material system and mathematical structures defined by a model of 

computation. Therefore, all the physical computation accounts discussed above 

are outgrowths or extensions of the SMA rather than offering a conceptual 

alternative wholesale. The result that virtually all theories of implementation 

hinge on mappings is significant because it licenses us to transpose the insights 

from the BP debate in the philosophy of applied mathematics to how we flesh 

out computational implementation. In order to turn this conceptual borrowing 

into a fruitful maneuver, we need to familiarize ourselves with the relevant 

insights of BP. 

 

B.3 Charting the landscape of the Bridging Problem’s Solutions  

At the beginning of this Appendix, I briefly introduced the BP by stating that it 

concerns the relation between mathematics and the physical world. However, I 

have yet to discuss how philosophers of applied mathematics have tried to make 

sense of this relation. Hence, this section overviews today’s most widely 

embraced answers. Although they may differ considerably on certain aspects, 

they all maintain that epistemic agents are necessary for the solution. What is the 

underlying reason for this commonality? I will start depicting the core idea (§3.1) 

before canvassing the landscape of more fine-grained solutions (§3.2). 

 

B.3.1 The Core Idea: The Mapping Account 

With the advent of structuralism in the 20th century (e.g., Balzer et al. 1987), 

potential solutions to BP, typically, started to follow a particular strategy: most 

of the contemporary approaches (re)formulate the issue in terms of structures 

and the relations between them. On this construal, there is a structural mapping 

(i.e., a morphism) between the mathematical structure and parts of the physical 
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world. Due to the central notion of mappings, Pincock (2004) dubbed this the 

Mapping Account,187  

Mapping Account:  The gap between the mathematical M and the physical P is 

bridged by a structure-preserving mapping f: SP→SM between two corresponding 

structures SM and SP. 

The purported advantage of this view is that both ‘structure’ S and ‘mapping’ f 

are understood as precisely definable mathematical objects. To further 

understand the merits and limitations of the Mapping Account, it is therefore 

instructive to consider what philosophers of mathematics intend to convey by 

these terms.  

 On the one hand, we can understand a mathematical structure as a composite 

of a family of objects, nodes, or positions (in a domain D) and a set of relations Ri 

among them. This definition is widely accepted and has, for instance, been 

discussed in works by Resnik (1997) and Shapiro (1997).  Expressed more 

formally, we can define S as 𝑆 = 〈𝐷, 𝑅1, 𝑅2, …  〉. Mappings between structures f: 

SP→SM, on the other hand, may come in various flavors and can be understood 

as an isomorphism (van Fraassen 1980; Suppes 2002), partial isomorphism (Da 

Costa and French 2003) homomorphism, etc. between mathematical structures. 

Although it is interesting to ponder the (dis)advantages of each option, the 

crucial point for this chapter’s argument is how these mappings come about (and 

not which one will be the preferred one in this or that scenario). Importantly, all 

these mapping conceptions require the physical system to display a particular 

structure to establish any math-world correspondence. 

To give an brief example, we may state, for instance that two structures 𝑆 =

〈𝐷, 𝑅1, 𝑅2, …  〉 and 𝑆∗ = 〈𝐷∗, 𝑅1
∗, 𝑅2

∗, …  〉 are isomorphic iff there is a function f 

from the domain 𝐷 of 𝑆 to the domain 𝐷∗ of 𝑆∗ that is total, one-one, and onto 

and such that for any relation 𝑅𝑖  in 𝑆  and 𝑅𝑖
∗  in 𝑆∗  and for all 𝑥1, … , 𝑥𝑛  in 𝐷 , 

𝑅𝑖(𝑥1, … , 𝑥𝑛) iff 𝑅𝑖
∗(𝑓(𝑥1), … , 𝑓(𝑥𝑛)) (Pincock 2012, 27).  

However, there is a fundamental problem with the mapping account: Physical 

systems must have structures for morphisms to be well defined as 

“[i]somorphism is a relation that holds between two structures and not between 

a structure and a piece of the real world per se.” Frigg (2006, 55). The issue is that 

physical systems are concrete entities existing in physical reality, not 

mathematical structures. Recently, Vos (2022) aptly called this discrepancy the 

ontological-mismatch problem. Claiming that a set-theoretic structure is 

 
187 Interestingly, the Mapping Account bears a strikingly similar name to the Simple Mapping 
Account (SMA) in the physical computation discourse– a happenstance (?) that already seems to 
hint at a deeper connection. 
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isomorphic to a physical object f: P→SM, thus leads to committing a category 

mistake. Without accounting for how a physical system P obtains a unique 

structure SP, the idea underlying the mapping account remains in jeopardy. What 

is thus required to solve BP is an account of how physical systems obtain a unique 

structure. 

 

B.3.2 The Proposals on how Physical Systems obtain structure 

In this section, I will review existing accounts and attempt to make sense of the 

mapping account in light of the call for structure. As we will see, providing a 

definitive answer is not easy to come by and I won’t try to solve this daunting 

task myself. Instead, I will merely rule out the most implausible candidate 

solutions and demonstrate that the remaining contenders are unified in their 

advocacy for a three-place relation. Accordingly, they necessitate the stipulations 

and descriptive practices to explain how physical systems obtain a structure SP.  

 

i. The world is fundamentally mathematical  

One way to address the ontological mismatch problem is by arguing that it does 

not actually exist. There are generally two approaches to this.188  Philosophers 

who claim that the world is fundamentally mathematical adopt one of them. 

Tegmark (2008), for instance, maintains his so-called Mathematical Universe 

Hypothesis, according to which our physical worlds turns out to be an abstract 

mathematical structure. If this were correct, the ontological mismatch would 

seemingly dissolve.  

However, as discussed by Nguyen and Frigg (2021, 5949f), whether or not the 

world is fundamentally mathematical is irrelevant since we are more often than not 

interested in the math-world relation beyond the fundamental level. So, even if 

Tegmark’s account was correct at the fundamental level, it fails to address how 

to identify structures at the non-fundamental level of, say, four apples on a table. 

For all that, there is a related but less radical-sounding proposal that suggests 

that the physical world somehow exhibits some unique structure S. The 

seemingly intuitive idea that physical systems somehow just bear or instantiate 

a unique structure   is highly contentious for two reasons. First, there are multiple 

 
188 Another way to respond to the ontological mismatch problem lies in the opposite spectrum 
of the previous proposal: Nominalism. According to nominalists, mathematical objects, 
relations, and structures either do not exist at all or at least do not exist as abstract objects 
(Bueno 2020). As a result, there is no ontological mismatch (and hence no problem) because 
there are no mathematical objects to begin with, or at least not the kind that would require 
bridging across different ontological domains. As argued by Colyvan (2001) (see also Pincock 
(2004, 139-140)), BP appears to be independent of any particular philosophy of mathematics. 
Despite trying to do away with mathematical objects, nominalism faces the challenge of 
explaining why using mathematics in scientific practice is so effective. 
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ways of picking out a set of objects to form the domain of a structure of a system. 

As Bueno & Colyvan (2011, 347) aptly remind us, “the world does not come 

equipped with a set of objects (or nodes or positions)” that constitute a 

domain.  Second, even if we manage to establish the objects in D, the relations Ri 

are not fixed, possibly yielding different structures. As Psillo’s aptly puts it,  

“[…] the structure of a domain is a relative notion. It depends on, and varies with, 
the properties and relations that characterize the domain. A domain has no 
inherent structure unless some properties and relations are imposed on it. Or, two 
classes A and B may be structured by relations R and R’ respectively in such a 
way that they are isomorphic, but they R may be structured by relations Q and 

Q’ in such a way that they are not isomorphic.” (Psillos 2006, 562) 

These considerations – that there is not ‘the’ structure of a system are not new –

are often referred to as Newman’s Objection.189 According to this objection, the 

mapping between a set-theoretic structure and a physical object might be 

trivialized since the latter fails to display a unique or privileged structure. The 

claim goes that one can always gerrymander the domain D and the relations Ri 

in such a way that they match an arbitrary structure S. For given there are enough 

n basic objects x1,…, xn in the system (such that the cardinality of the 

corresponding domain is sufficiently large), then “[…] a system of relations 

between its members can be found having any assigned structure compatible 

with the cardinal number of [S]”, (Newman 1928, 140), where S is an arbitrary 

structure.190  

To summarize, mathematical-universe-style proposals – according to which 

the physical world boils down to mathematical structure – and adjacent realist 

stances about unique structure-bearing systems do not adequately solve BP. In a 

nutshell, scientists wishing to link a mathematical formalism with a concrete 

system encounter significant underdetermination problems. That is why the 

dyadic view fails. In order to generate a suited structure, we need to engage in 

two tasks. First, we must specify the domain D of objects xi; second, we must 

determine the relations Ri between these objects. 

 

ii. Inferentialist proposal  

Having recognized the challenges associated with a ‘pure structuralist’ solution, 

Bueno & Colyvan (2011) put forth a proposal that amends the mapping account. 

While their approach is still partially structural, it also accounts for practical and 

context-sensitive factors when utilizing mathematics. Particularly, their 

inferentialist conception of applied mathematics requires three steps:  

 
189 See Ainsworth (2009) for a more in-depth problem analysis and potential answers. 
190 Note that this is essentially what the SMA was criticized for by Copeland (1996). 
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1. Immersion: Bueno and Colyvan’s first step in their process is called 

immersion. It involves creating a connection between the real-world 

scenario and a mathematical structure that is convenient to work with. 

2. Derivation: The second step, derivation, involves deriving consequences 

from the mathematical structure obtained in the immersion step. 

3. Interpretation: The third step is referred to as interpretation. To establish 

an interpretation, a mapping from the mathematical structure to the initial 

empirical setup is necessary.   N.b., this procedure goes in the opposite 

direction of the immersion step, but the authors claim that this mapping 

does not have to be simply the inverse of the mapping used in the 

immersion step, though it may be in some cases.  Using a mapping 

different from the one used in the immersion steps is unproblematic as 

long as the mappings in question are definable for appropriate domains. 

The takeaway is that the inferentialist proposal is a mind-dependent notions 

because it amends the original mapping account by alluding to epistemic agents.  

 

iii. Abstraction based proposal  

According to the abstraction-based proposal, the required structure SP is 

generated through epistemic abstraction. Nguyen and Frigg (2021) formalized 

this idea in their ‘extensional abstraction account.’ Simply put, the idea is this: 

Given a physical system P, one may obtain a unique structure through some 

structure-generating description, a so-called extensional description. These 

extensional descriptions can be created by hiding specific physical information 

about P such that it no longer explicitly refers to physical magnitudes. 

 Expressed formally, epistemic agents must decide on a domain D and their 

respective elements to generate a structure S of a physical object. Next, they need 

to determine the relations between those elements. Once certain choices about 

the elements in domain D and their relations Ri are agreed upon and held fixed, 

the extensional description that is thus generated gives rise to a purely set-

theoretical structure SP.  

To render the idea less theoretical, it is helpful to consider an example from 

Frigg (2006, 57-58), where he demonstrates how to generate a structure of a 

methane molecule (CH4). To obtain a structure that aligns with our previous 

definition, we need a domain D of objects and relations Ri that are abstracted 

from the molecule. One way to obtain a structure is to ‘abstract away’ the physical 

properties of the atoms and solely focus on the molecule’s shape. Since the four 

hydrogen atoms of the molecule form a regular tetrahedron (with the carbon 

atom in the center), it would be one choice to pick the edges as objects and the 
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vertices as relations. This way, one obtains a unique structure with four objects 

(the tetrahedron’s edges) and six relations (the connections between the edges).  

Although the example is simple, it exemplifies a pattern of reasoning that 

underlies all abstraction-based structure generation accounts. Worthy of mention 

in this regard is that structure generation is parasitic on human agents making 

certain choices about a suitable domain and its relations, typically informed by 

our scientific practice. (we could have swapped the tetrahedron’s vertices and 

edges with respect to objects and relations and thus obtained a different 

structure). 

In sum, my brief review has shown that there is a genuine philosophical 

problem associated with the applicability of mathematics. As we have seen, the 

critical issue of BP is the ontological mismatch between mathematical and 

physical properties. Most recent accounts adhere to variants of structuralism to 

bridge the gap between these different domains. However, since more than 

‘pure’ structuralism is needed to solve the problem, various amended schemata 

have been brought forward. They are all contingent on human activity and as 

such, they are adherents of mind-dependent three-place views.  As far as my 

research has revealed, the broader implications of this three-place insight on 

theories of computational implementation have not been previously explored. It 

is now high time to bring the different results of the previous sections together. 

 

B. 4 Synthesizing the Problems: A new perspective  

Although the literature on physical computation has brought forward an 

impressive number of contributions, the focus on the metaphysical nature of the 

implementation relation has usually taken the backseat. To change that, I will 

now propose a way to think about the issue more deeply from a newfangled 

perspective. In particular, it will become evident that the Problem of 

Implementation is a species of the BP. Given that employing computational 

concepts thus falls under the broader practice of applying mathematics, we can 

anticipate analogous rationales to apply in the realm of computation. 191  

To recap, since the methodology of computing is bifurcated, it faces the issue 

of an ontological mismatch (the Problem of Implementation). In response, 

today’s most prominent theories of implementation (SMA, EMA, semantic 

accounts, mechanistic accounts) rest on the assumption that there is a mapping 

between an empirical setup and some abstract logic-mathematical model of 

 
191 Admittedly, one can already find traces of this reasoning (i.e., structuralism about physical 
computation) in the literature (Milkowski 2011, 360), Rescorla (2013; 2014), Doherty & Dewhurst 
(2022), Curtis-Trudel (2022). However, to the best of my knowledge, the conclusion to view 
physical computation as a three-placed based on BP has not been drawn before based on this 
framing; the current proposal thus goes beyond the proposals above. 
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computation Mc. Similarly, albeit more globally, the philosophy of applied 

mathematics also confronts an ontological mismatch – the BP.   Here, the most 

plausible proposals regarding BP likewise rest on the assumption that a mapping 

constitutes the math-world relation.  These parallels are not mere coincidences 

but the result of a systematic relationship. Uncovering this conjunction requires 

a closer look into the differences in the frameworks’ scopes.  

Whereas proposals to solve BP are designed to be generally applicable, 

solutions to the Problem of Implementation are limited to the applicability of 

computability theory. Based on this comparison, we can deduce that the Problem 

of Implementation is a specific instance of the Bridging problem. Accepting this 

conclusion hinges on accepting that the implementation relation is a unique 

species of the math-world relation. In fact, I have already discussed an instance 

of this: As we have previously seen in section §2, we can understand TMs as bona 

fide mathematical entities, defined as a four tuple TM = (Q, Σ, m, δ). Importantly, 

how this mathematical/computational formalism applies to parts of the physical 

realm is the same metaphysical problem of the ontological mismatch between the 

mathematical and the physical, investigators like Steiner, Pincock, and others 

have pointed out (cf. Sect. §B.1).  

While both lines of research propose that the ontological mismatch can be 

overcome by adhering to structure-preserving mappings, most solutions to the 

Problem of Implementation typically do not further elucidate the metaphysical 

nature of the mappings they employ.  

It is here where my framing of the Problem of Implementation in terms of the 

solutions of BP becomes a unique selling point because, in contrast, the literature 

on the application of mathematics has thoroughly explored the metaphysical 

commitments that are needed for a mapping view. We can thus enrich our 

current understanding of computational implementation by appealing to the 

insights of the philosophical literature on applied mathematics.  

Although no solution to BP has emerged as the definitive one, they pull in the 

same direction: All corresponding analyses share the idea that the mapping 

relation is not a brute fact. Instead, the math-world relation necessitates a third 

relatum – an agent responsible for establishing the mapping f and determining 

which set-theoretic structures are supposed to be related.  On this three-place 

relation view, physical computation is thus a mind-dependent conception 

because a system may only be computing due to human activity. The reason is 

that, strictly speaking, the implementation relation is not reducible to f alone. 

Despite being a necessary component, f is insufficient, for we also require at least 

some minimal stipulations by an epistemic agent or community. 
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While extended investigation is required to determine which solution(s) 

is/are the correct one(s), I do not need to endorse any particular proposals for 

enriching our understanding of the metaphysical nature of physical 

computation. The result that the BP’s most promising solutions reject dyadic 

relations and instead advocate a three-place relation, is a novel and significant 

contribution to today’s physical computation landscape. In sum, my four-step 

argument thus leads to an upgraded view of computational implementation, as 

shown in Fig. B.2.  

 

Fig. B.2: The upgraded view three-place view of computational implementation (cf. 
nomenclature to standard view depicted in Fig. 2.1 in Chapter 2). Accordingly, 
physical computation is not reducible to f as it necessitates an agential 
component.  

 

As such, the conclusion that computational implementation should be seen as a 

three-place relation is a considerable advancement of the state of the art that may 

ignite a hefty research program, inspiring further exploration and discovery in 

the field.  

 

 B.5 Discussion and Conclusion  

I argued that computational implementation is an instance of the more general 

metaphysical problem of how mathematics applies to the physical world 

(namely, the Bridging Problem). Based on a four-step argument, I have argued 

that computing systems do not implement computations all by themselves but 

that implementation should be thought of as a three-place relation. Having 

introduced the BP as a metaphysical issue of applied mathematics (1), I argued 

that the Problem of Implementation is of the same species (2). (3) Since most 

contemporary solutions to the BP advocate for a three-place relation, solutions to 

the Problem of Implementation should follow suit. Accordingly (4), the 

designers’ or users’ intentions and descriptive practices are indispensable for 

relating physical states to abstract computational states. The takeaway is that we 

should couch computational implementation as a three-place relation.  
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Now, why does the here-advocated ‘three-place result’ matter? Is all of this, 

not mere pedantry? Several important lessons can be learned from subsuming 

the Problem of Implementation under BP. First, if my reasoning above is correct, 

the face of discussion about physical computation will have to change towards 

focusing on the metaphysical nature of the implementation relation. (One may 

add this criterion to the list of desiderata for a good theory of computational 

implementation). Those who presume that computational implementation is a 

one-to-one correspondence between physical states and the computational states 

as described by its model must, in defense of their view, explain how this 

correspondence comes about. Absent such an explanation, the claim that 

computational implementation is a mind-independent phenomenon remains at 

odds with today’s dominant solutions to BP on the market. The onus is thus on 

the advocates of naturalizable accounts of physical computation to respond to 

these tensions. Until such time, it would be wise to assume that computational 

implementation is a mind-dependent three-place relation. This is a pressing 

matter because naturalized accounts of computation are deemed essential for the 

cognitive science project; if computational implementation is a three-place 

relation, it cannot be the basis for cognition.  

Second, I want to clarify that the viewpoint I defended should not be 

misconstrued as support for overly liberal interpretational theories of 

implementation. The sticking point has been that some interpretational accounts 

claim that one can transform arbitrary objects into computers through mere 

stipulation. However, we do not need to endorse such a conclusion. My 

argument does not deny or negate that mind-independent requirements are 

paramount for successful implementation. Here, it is worth noting to similar 

conclusions in the literature of scientific representation, where philosophers 

suggest that informational and functional theories are complementary (see e.g., 

Chakravartty 2010). For instance, computers are useful because of specific causal 

regularities and counterfactual dependencies. What I contest is the notion that 

the implementation relation can be wholly naturalized.  If correct, this result has 

potentially far-reaching consequences for our understanding of physical 

computation. 

Lastly (and related to the previous point), this line of research may pave the 

way to foster synergies between the philosophical discourses on physical 

computing and scientific models. Recall that philosophers of science have 

successfully integrated the structuralist insights surrounding BP into 

characterizations of model-world relations (viz., suggesting that it is a three-place 

relation). Facing related problems holds the promise of similar solutions. For 

instance, one promising line of future research could try to frame the 
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implementation relation in terms of scientific representation accounts (see 

Chapter 4 for such an account).



 
 

 

Appendix C : Synopsis détaillé en 
français 
 

 Il s’agit d’un résumé d’environ 10 % de ma thèse, « Mind the Gap », qui explore 

le statut ontologique des programmes informatiques. Les pages suivantes 

résument la structure argumentative et les conclusions des chapitres de ma thèse.  

 

Chapitre 1 - Introduction  

L’introduction (chapitre 1) prépare le terrain en motivant le sujet, en fournissant 

des préliminaires méthodologiques et en attirant l’attention sur les obstacles 

conceptuels potentiels. L’affirmation principale est que la notion de 

« programme informatique » renvoie à de nombreuses choses liées et 

(historiquement) instables - il s’agit d’un polysème (un mot avec de multiples 

significations liées). C’est pourquoi, en l’absence d’une caractérisation stable, les 

études précédentes ont placé les programmes informatiques dans presque toutes 

les catégories ontologiques disponibles. Afin d’éviter les erreurs précédentes, la 

thèse poursuit une stratégie indirecte : l’approche méthodologique principale 

consiste à élucider les relations entre les différents éléments identifiés par le 

terme « programme » dans le contexte de l’ontologie la plus ‘modeste’ et la plus 

répandue sur le marché : la distinction abstrait-concret (un système à deux 

catégories). Plus concrètement, la thèse vise à élucider ce qui peut être placé dans 

le système à deux catégories et comment les entités qui s’y trouvent sont liées.  

 

1.1 Prologue  

Ma thèse commence par un scénario hypothétique basé sur des événements réels 

et demande au lecteur d’imaginer qu’il est un jeune avocat spécialisé dans les 

brevets au début des années 1970. Au cours des années précédentes, les 

entreprises de logiciels sont apparues comme une industrie de plus en plus 

puissante. Par la suite, les années 70 ont été le théâtre d’une série de procès 

novateurs concernant la protection juridique des « logiciels ». Les programmes 

informatiques devaient-ils être soumis au droit des brevets ou au droit d’auteur 

? La question s’est avérée si délicate que le gouvernement américain a même créé 

une commission spéciale (CONTU) pour trancher le débat (Con Diaz 2019). 

Cependant, même après quatre ans, les spécialistes ne sont pas parvenus à un 

consensus. J’ai utilisé cet exemple partiellement fictif comme point de départ, car 

ces questions juridiques sont sous-tendues par des questions 

ontologiques/métaphysiques. 
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1.2 Concrétisation du problème : préliminaires et diagnostic  

Dans la section §1.2. j’affine et je précise ma question de recherche initiale. En 

particulier, je prends trois mesures pour planter le décor et clarifier le problème 

lié à mon sujet de recherche. Premièrement, je discute de la pertinence globale de 

cette entreprise pour les philosophes et les informaticiens. Deuxièmement et 

troisièmement, j’explique les deux éléments constitutifs – l’ontologie et les 

programmes informatiques - qui définissent la question principale de la 

recherche.  

En ce qui concerne la pertinence, j’affirme que mon sujet de recherche est 

important pour les raisons suivantes : d’une part, il y a une motivation 

philosophique/métaphysique. À première vue, les programmes sont des entités 

déroutantes qui semblent échapper aux caractérisations standard et qui peuvent 

donc soulever des questions métaphysiques intéressantes. D’autre part, la 

clarification de leur statut ontologique pourrait avoir des conséquences pour 

l’informatique (les praticiens pourraient éviter des erreurs de catégorie).  

En ce qui concerne l’ontologie, je partaique ce que des métaphysiciens 

contemporains (anglophones) comme Fine (2017) et Hofweber (2016) appellent 

la « métaphysique traditionnelle ». Notamment, je distingue les questions 

ontologiques primaires (POQ) et les questions ontologiques secondaires (SOQ), 

c'est-à-dire, 

(POQ) : L’ontologie pose la question de ce qui existe.  

(SOQ) : La métaphysique proprement dite étudie la nature de ce qui existe. 

 

À la suite de ces considérations, nous devons spécifier un système de catégories 

ontologiques (c’est-à-dire un système de classification structuré des types d’êtres 

qui devrait fournir un inventaire complet de ce qui existe). L’avantage d'un 

système préconçu est qu’il nous permet de porter des jugements métaphysiques 

cohérents sur toutes les sortes d’entités sous l’examen de la SOQ. De même, il 

devient le motif central de la thèse de préciser l’appartenance des programmes 

informatiques à l’une des catégories du système.  

Cependant, il existe plusieurs systèmes ontologiques concurrents. Compte 

tenu de cette diversité et de l’absence de consensus, nous sommes confrontés au 

problème suivant  

Problème I : Sélection d’un système de catégories approprié : approche 

fragmentaire ou systématique ?  

Enfin, en ce qui concerne le terme « programme informatique », il est essentiel 

que nous ayons la même signification que les autres participants au débat (sous 
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peine de malentendus). Afin d’affiner le type d'entités désignées par le terme 

« programme informatique », je me penche sur la Begriffgeschichte du terme. Le 

mot « program » (ou « programme » en orthographe britannique) trouve ses 

racines dans le mot grec προγραφιν, composé de προ (« avant » ou « pré ») et de 

γραφιν (« écrire ») Grier (1996, 51). En tant que tel, le terme n’est pas né dans un 

contexte informatique, mais a subi des transformations considérables tout au 

long de l'histoire. De Mol & Bullynck (2021, 36) expliquent que le mot était 

employé de manière générique pour désigner une série planifiée d'actions ou 

d'événements futurs. (Aujourd'hui, nous utilisons encore des expressions telles 

que programmes de télévision, de théâtre ou de radio). 

Comme beaucoup d'autres premières occurrences historiques, les premières 

occurrences de « programme » dans un contexte informatique sont 

controversées. Toutefois, à partir des années 1950, l'informatique a évolué vers la 

fiabilité, la production de masse et la normalisation, et les tentatives se sont 

multipliées pour déterminer des pratiques normalisées et définir des termes de 

base tels que « programme » dans des glossaires (De Mol & Bullynck 2022). Un 

aspect qui allait de pair avec ce développement et cette professionnalisation 

précoce du domaine était que la configuration des ordinateurs était de plus en 

plus associée à des langages formels étroitement liés à la logique et à la 

linguistique (Nofre et al. 2014).  

Cependant, pour faire court, la caractérisation ne s’est jamais complètement 

stabilisée et il serait donc erroné de considérer les programmes comme de 

simples textes ou entités linguistiques. En raison du pluralisme épistémique de 

l’informatique, de nombreuses notions centrales de l’informatique présentent 

une ambiguïté sémantique surprenante. Plus précisément, le terme 

« programme » est un polysème qui, à l’instar d’une toile, recouvre plusieurs sens 

différents (bien que liés). Le problème est que nous devons concevoir une 

stratégie qui empêche la confusion linguistique de s’insinuer dans notre enquête 

métaphysique, faute de quoi nous pourrions obtenir autant de réponses 

potentielles sur le statut ontologique des programmes informatiques qu’il y a de 

significations différentes cachées dans ce complexe polysémique. 

 

Problème II : démêler l'écheveau polysémique du terme « programme ». 

 

1.3 Les idées directrices du projet  

Ma stratégie pour répondre aux problèmes I et II est de me concentrer 

explicitement sur les relations entre toutes les relata ontologiquement différentes 

qui se cachent derrière ce réseau polysémique. Pour clarifier, les relations dont je 
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parle sont celles qui sont apparues dans mon analyse précédente et dans la revue 

de la littérature, celles qui sont considérées comme responsables de la dualité/du 

pluralisme présumé des programmes : D’une part, il y a le domaine des objets 

abstraits, formels et mathématiques. D’autre part, il y a le domaine du physique, 

des systèmes concrets, des événements et des processus qui se déroulent dans 

l’espace et le temps.  

Plus précisément, je pense que la notion de l’implémentation est essentielle 

pour comprendre comment ces entités se connectent. Lorsque je parle de 

« l’implémentation », je me réfère (dans un premier temps) à la relation entre 

différents domaines informatiques. En outre, ma thèse soutient que les agents 

jouent un rôle essentiel dans la médiation de l’implémentation. Je développerai 

ces deux idées en détail dans les chapitres suivants, mais voici un graphique 

décrivant la situation pour en saisir l’essentiel (Fig. C.1). 

 

 

Fig. C.1 : Représentation schématique de l’idée directrice de cette thèse. 

 

Chapitre 2 - Vers une théorie unifiée de l’implémentation 

Le chapitre 2 identifie « l’implémentation » comme le candidat le plus prometteur 

pour considérer la relation entre les éléments du programme et s'en sert comme 

motivation pour étudier les différentes notions disponibles. En résumé, le 

chapitre esquisse un cadre unificateur qui intègre deux approches jusqu’ici 

traitées de manière largement indépendante : le type-(A), qui traite de la notion 

de correction par l’attribution de fonctions téléologiques à des « artefacts 

informatiques » à différents niveaux d’abstraction (LoA) ; et le type-(B), qui 

s’attache à combler la dichotomie abstrait/concret pour rendre compte de 

l'informatique concrète. Bien que je montre que leur champ d’application se 

chevauche au niveau de l’interface abstrait-physique, peu de recherches 
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systématiques ont été menées sur leur relation. Compte tenu des 

développements récents dans les discours respectifs, je soutiens que les deux 

comptes peuvent s’enrichir mutuellement de manière considérable en s’unifiant. 

Plus précisément, je soutiens que (A) et (B) peuvent être unifiés en les mettant en 

relation avec la machinerie conceptuelle des modèles matériels et de la 

représentation scientifique. Dans cette optique, les agents utilisent des systèmes 

informatiques putatifs comme outils épistémiques en leur imputant des fonctions 

mathématiques et en leur attribuant des fonctions téléologiques.  

Voici comment cette entreprise se déroule en détail : Après avoir formulé 

quelques remarques générales sur l’implémentation dans l'introduction du 

chapitre (2.1.), je donne plus de détails sur l’utilisation de la notion en 

informatique dans la section 2.2. En particulier, pour avoir une compréhension 

commune de cette relation d’implémentation, il est instructif de nous rappeler les 

formalismes informatiques. Bien qu’ils puissent être définis d'une grande variété 

de façons, la littérature informatique présente généralement deux façons 

principales de présenter les formalismes informatiques (Turner 2018, 190) :  

1. Langages de programmation, tels que C, Python, etc.  

2. Modèles de machines, comme les machines de Turing (TM), les machines à 

états finis (FSM), etc.  

Tout au long de la thèse, j’utilise le terme « modèle de calcul » pour les deux. Les 

modèles de calcul sont des formalismes logico-mathématiques qui nous 

permettent d’encoder une séquence abstraite de calculs par le biais d’un langage 

de programmation, d’une table de machine, d’une fonction de transition, etc. Par 

exemple, formellement, le concept de machine de Turing peut être caractérisé 

comme un quadruple TM = (Q, Σ, m, δ), où Q est un ensemble fini d’états q ; Σ est 

un ensemble fini de symboles ; m est l'état initial m ∈ Q ; δ est une fonction de 

transition qui détermine le prochain mouvement δ : (Q × Σ)→(Σ ×{𝐿,𝑅}× Q ). La 

fonction de transition δ de la TM permet de passer d'états de calcul à des états de 

calcul (De Mol 2021). En d’autres termes, les fonctions de transition comme δ, les 

programmes informatiques écrits dans un langage de programmation, ou toute 

autre notion correspondante dans un Mc théoriquement équivalent, permettent 

l’encodage d’une séquence de calculs. Pour qu’un système calcule, il doit mettre 

en oeuvre une séquence de calculs codée dans un programme/une fonction de 

transition spécifié(e) par un Mc donné. En pratique, les formalismes de calcul 

sont souvent intégrés dans une hiérarchie de calcul spéciale composée de ce que 

l’on appelle des niveaux d’abstraction (« Levels of Abstraction » ; LoA) (Floridi 

2008 ; Primiero 2020). En conséquence, l’application de l’implémentation en 

informatique est très variée. Des exemples sont « l’implémentation d’un 
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algorithme dans un langage de programmation de haut niveau » ou 

« l'implémentation d’instructions de code machine dans un ordinateur du monde 

réel ». Parler de différents « level » est une pratique courante dans les sciences du 

comptage.  

Historiquement, cependant, deux notions de l’implémentation largement 

séparées ont été développées afin de préciser les exigences relatives à la 

connexion de ces différents types de niveaux : Pour faciliter la discussion, je les 

ai appelées l’implémentation de type (A) et l’implémentation de type (B). Il est 

surprenant de constater que ces deux approches ne sont pas en contact étroit 

l’une avec l’autre. Dans ce qui suit, je discute des détails de ces deux types 

d’implémentation. 

 

2.3 Type-A  

En ce qui concerne l’implémentation de type (A), on peut identifier trois 

approches différentes : La première est due à Rapaport (1999, 2005)  

Implémentation en tant qu’interprétation sémantique : Un objet est une 

implémentation d’un domaine syntaxique A dans un support M s’il est une 

interprétation sémantique d’un modèle de A,  

Rapaport présente l’implémentation comme une interprétation sémantique. Son 

récit a été critiqué parce qu’il tenait la sémantique pour acquise. Turner (2018) a 

développé la seconde notion et a suggéré de considérer la conception suivante : 

L’implémentation en tant que relation fonction-structure : La relation 

entre la spécification (fonction) et la structure de l’artefact (informatique).  

Enfin, Primiero (2020) a lui suggéré l’acception suivante : 

L’implémentation en tant que relation de LoA : Une l’implémentation I 

est une relation d’instanciation entre des paires composées d’une 

construction épistémologique E et d’un domaine ontologique O d’un 

artefact informatique.  

 

2.4 Type -B  

L’implémentation de type (B) est caractérisée par le problème de l’implémentation. 

Des philosophes comme Sprevak (2018) et Ritchie & Piccinini (2018) soutiennent 

que deux sous-problèmes, à savoir le problème de l’implémentation et le 

problème de l’application, sont à l’origine de l’implémentation.  

COMP Conditions de calcul d’un système physique.  

IDENT Conditions qui spécifient qu'un système de calcul implément un 

calcul plutôt qu’un autre. 
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doivent être abordés pour répondre au problème de l’implémentation. L’une des 

premières catégories de comptes conçues (par exemple, Putnam 1987) pour 

résoudre ce problème est aujourd’hui appelée « Simple Mapping Account ».  

Simple Mapping Account (SMA)  

1. Il existe une correspondance f entre les états sj de SC et les états mi de MC, 

telle que  

2. Sous f, les transitions d'état physique de SC sont morphiques aux 

transitions d'état formel de MC (spécifiées par δ) , de sorte que si SC est 

dans l'état s1 où f(s1)= m1 , alors SC évolue dans l'état s2 où f(s2 )= m2 .  

 

L’idée qui sous-tend le SMA est que les transitions d’état d'un MC doivent d’une 

manière ou d'une autre refléter la dynamique (transitions d'état physique) du 

système matériel.  

Bien que le SMA soit apparemment élégant et simple, il est largement admis 

qu'il entraîne des conséquences indésirables, généralement qualifiées 

d'arguments de trivialité. En conséquence, le calcul physique serait banalisé 

puisque chaque système implémente toutes sortes de calculs.  

En réponse aux arguments de trivialité et d’indétermination 

computationnelle, la plupart des comptes de l’implémentation de calcul 

physique/type (B) ont modifié le SMA en introduisant des caractéristiques 

supplémentaires pour traiter l’un ou l’autre, ou les deux, ainsi que ses 

descendants (causal/dispositionnel/contrefactuel ; mécaniste). 

 

2.5 Juxtaposition  

Après une analyse détaillée de la portée de l’implémentation des types (A) et (B), 

nous pouvons conclure qu’ils ne s’excluent pas mutuellement. Il existe un point 

de jonction dans (i) les systèmes informatiques artificiels à (ii) l’interface abstrait-

physique (voir Fig. C.2). Du point de vue du type-(A), les idées du type-(B) sont 

pertinentes pour la mise en œuvre de programmes informatiques à l'interface 

abstrait-physique. A l’inverse, du point de vue du type-(B), les connaissances 

contenues dans le discours du type-(A) offrent une image nuancée des systèmes 

artificiels et des préoccupations et pratiques des informaticiens en la matière. 
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Fig. C.2: Diagramme de Venn schématique de l’intersection 
l’implémentation des types (A) et (B). Leurs domaines d’application se 
chevauchent dans (i) les dispositifs informatiques artificiels et (ii) 
l’interface abstraite-physique. 

 

Cependant, malgré ce chevauchement, il n’y a eu, à ma connaissance, qu’un 

échange limité entre ces deux domaines de recherche. Pour faire progresser notre 

compréhension générale l’implémentation et en faire un effort de coopération, 

juxtaposons les deux différents types des implémentations en ce qui concerne 

leurs caractéristiques les plus saillantes : (i) la description téléologique des 

fonctions et (ii) les correspondances entre les niveaux. En résumé, voici ce qu’il 

faut retenir :  

1. Téléologie : Il existe un décalage entre les hypothèses qui sous-tendent 

l’utilisation des fonctions téléologiques dans l’implémentation des types 

(A) et (B).  

2. Relation de correspondance : Différentes relations de correspondance 

sont en jeu : d'une part, il existe des correspondances entre structures 

abstraites et, d'autre part, une correspondance (au niveau de l’interface 

abstrait-concret) entre une structure abstraite et un système physique.  

 

2.6 UTAI  

Pour remédier à cette situation, j’ai esquissé un nouveau cadre vers une théorie 

unifiée de l’implémentation agentielle, en abrégé UTAI. Une grande partie de ce 

nouveau cadre est basée sur les idées théoriques de la littérature sur les modèles 

scientifiques matériels. L’un des principaux principes de ce point de vue est qu’il 

permet de surmonter les différences entre les implémentations de type (A) et (B) 

en ce qui concerne leurs caractéristiques téléologiques et les relations de mise en 

correspondance. En effet, le discours sur les modèles matériels a déjà abordé avec 

succès les questions relatives aux correspondances entre les structures abstraites 

et les systèmes physiques, ainsi que les cas où les modèles en tant qu’artefacts ne 

fonctionnent pas correctement. La principale contribution de l’UTAI est le 
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développement d’une série d'études de cas clarificatrices qui suivent trois 

relations de dépendance différentes : 

1. La relation de dépendance (a) met l’accent sur l'implication cruciale des 

agents humains dans la LoA supérieure. En tant que telle, elle rend compte 

des désirs, des intentions et des préoccupations pragmatiques des 

programmeurs et de la manière dont ils formulent leur problème 

informatique dans un formalisme informatique approprié.  

2. La relation de dépendance (b) concerne le mappage f qui relie l’interface 

abstraite et physique. L’implémentation peut avoir lieu lorsque les agents 

proposent une description génératrice de structure (par exemple, par le 

biais de la « dissimulation d'informations ») et un mappage approprié 

reliant les domaines abstrait et concret.  

3. La relation de dépendance (c) caractérise les interactions physiques du ou des 

agents humains avec le système informatique supposé. Idéalement, un 

système informatique est non seulement suffisamment fiable pour des 

exécutions répétées, mais aussi reconfigurable. 

 

Chapitre 3 - Le problème de la création rencontre les programmes 

informatiques 

 

3.1 Introduction  

Selon un point de vue très répandu, les programmes informatiques ne semblent 

pas être des objets concrets, mais nous les considérons généralement comme des 

entités créées avec lesquelles il est possible d’interagir. Cela est quelque peu 

surprenant puisque l’orthodoxie philosophique considère que les objets abstraits 

ne sont pas intégrés dans la voie causale et ne peuvent pas être créés.192 Par 

conséquent, un problème philosophique pressant se profile à l'horizon :  

En quoi ces programmes en tant qu'objets abstraits peuvent-ils être les 

produits de notre création ?  

Malheureusement, cette question n’a pas reçu toute l’attention qu’elle mérite 

jusqu’à présent. À la lumière de ce problème, mon objectif dans ce chapitre est 

d’indiquer plus précisément dans quel sens nous pouvons classer les 

programmes informatiques en tant qu’objets abstraits. Pour ce faire, ma stratégie 

 
192 Le point de vue métaphysique standard stipule que les objets abstraits existent éternellement 
et ne peuvent pas être créés. La plupart des philosophes conçoivent la création comme une 
relation de cause à effet entre le créateur et sa création. Cependant, les objets abstraits sont 
inertes sur le plan causal et ne peuvent donc pas entrer dans une telle relation, de sorte que l’on 
ne sait pas exactement quel type de processus implique la création d’un objet abstrait (Mag 
Uidhir 2013, 11). 
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consiste à adopter ce que l’on appelle le Problem of Creation (PoC) de la 

philosophie de l’art à l’informatique. 

 

3.2 Préparer le terrain  

Avant de nous plonger dans les détails philosophiques essentiels du (PoC), je 

souhaite apporter quelques clarifications initiales sur les programmes. Si les 

programmes informatiques doivent être le sujet du (PoC), nous devons avoir une 

idée claire (i) de ce que l’on entend exactement par « programme », (ii) de la 

manière dont ils sont créés, et (iii) du sens dans lequel ils sont abstraits :  

(i) Conformément à mes arguments sur la nature polysémique du terme dans 

l'introduction de cette thèse (Ch. 1), je ne définirai pas les programmes ici. Au 

lieu de cela, je m’appuierai uniquement sur ce que je considère comme un 

exemple paradigmatique de programme informatique écrit dans un langage de 

programmation de haut niveau, tel qu’illustré à la figure 3.1. Le code source est 

écrit en C et, et le programme utilise un while-loop pour trouver le plus grand 

diviseur commun (GCD) de deux entiers. Au lieu de s’appuyer sur une 

caractérisation rigoureuse de tous les programmes informatiques, cet exemple me 

servira de « laboratoire conceptuel » en temps voulu.  

(ii) En général, l’histoire de la création des programmes se déroule comme suit : 

Au départ, l’objectif est de créer un programme spécifique. Cependant, dans le 

domaine de l’informatique, nous ne pouvons pas simplement transférer nos 

désirs et nos intentions à nos ordinateurs. Nous devons d’abord les traduire dans 

un formalisme informatique que la machine peut exécuter. Cela implique 

généralement d’écrire le code source dans un langage de programmation de haut 

niveau. Le processus de programmation comporte plusieurs étapes, est sujet aux 

erreurs et est souvent laborieux. Pour ne pas perdre de vue notre objectif initial, 

nous créons idéalement une spécification. Les spécifications servent de « plan » 

pour la production de programmes informatiques à grande échelle, qu’ils soient 

petits ou complexes. En d’autres termes, elles définissent ce que le programme 

est censé faire (Primiero 2020, 208). Il est donc essentiel de comprendre les 

spécifications pour comprendre le processus de création des programmes.  

(iii) Pourquoi et en quoi les programmes peuvent-ils être conçus comme des 

objets abstraits ? Pour répondre plus précisément à cette question, je les encadre 

d’une manière plus formelle. En philosophie de l’art, le problème en jeu est 

fréquemment discuté sous le nom de Physical Object Hypothesis (POH). Adapté de 

Mag Uidhur (2013, 8, fn. 4), le raisonnement de la (POH) peut être résumé comme 

suit,  
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Hypothèse de l’objet physique (POH) :  

(POH)1 Il existe des oeuvres d’art.  

(POH)2 Les oeuvres d’art peuvent être répétées ou non.  

(POH)3 Les oeuvres d’art répétables ne peuvent être interprétées de 

manière cohérente comme des oeuvres concrètes.  

(POH)4 Donc, s’il existe de tels types d’oeuvres d’art, ces oeuvres 

d’art doivent être des objets abstraits.  

(POH)5 Il existe de telles oeuvres d’art.  

(POH)6 Il existe donc des oeuvres d’art qui sont des objets abstraits.  

Qu’entend-on exactement par « oeuvres d’art reproductibles » ? Comme le décrit 

Levinson (1980), les philosophes débattent depuis longtemps de l’identité ou de 

la nature des oeuvres d’art reproductibles (par exemple, la musique et la 

littérature). Contrairement aux peintures et aux sculptures, ces oeuvres d’art ne 

peuvent pas être identifiées de manière plausible à une copie 

spécifique/individuelle. Non seulement elles peuvent survivre à des 

changements de leur support matériel, mais elles peuvent aussi avoir été réalisées 

avec des matériaux différents. Les oeuvres d’art répétables sont modalement 

flexibles en ce qui concerne la matière dont elles sont faites.  

Par la suite, je soutiens qu'un raisonnement similaire s'applique aux 

programmes. En philosophie de l'informatique, il est habituel de parler de multi-

réalisabilité. La « multiréalisabilité » est une notion influente dans la philosophie 

de l'esprit (Bickle 2020) et est fréquemment employée dans le discours sur 

l’informatique physique (Milkowski 2016). Dans le contexte du calcul, la 

multiréalisabilité exprime l’idée que de nombreux systèmes physiques distincts 

peuvent mettre en oeuvre les mêmes séquences de calcul.  

 

3.3 Le problème de la création  

Le problème de la création (PoC) est un problème philosophique de la 

philosophie de l’art qui concerne à l’origine les oeuvres littéraires, les 

compositions musicales et les personnages de fiction (Deutsch 1991 ; Cameron 

2008 ; Irmak 2020). Pour résumer, voici comment cela se présente : Lorsque 

l’entité examinée est appelée X, le modèle de raisonnement du (PoC) prend la 

forme suivante :  

Le problème de la création (PoC) :  

X1 : Les X sont des objets abstraits (POH).  

X2 : Des X sont créés.  

X3 : Les objets abstraits ne peuvent pas être créés.  
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A première vue, il y a de bonnes raisons d’accepter les propositions (X1)-(X3) 

individuellement, car elles semblent toutes parfaitement fondées. Cependant, les 

trois propositions sont mutuellement incohérentes. Ce paradoxe a suscité un débat 

important pendant de nombreuses années, conduisant à la question de savoir 

quelle proposition de (X1)-(X3) nous sommes prêts à rejeter. En conséquence, trois 

options majeures peuvent être identifiées :  

1. Platonisme  

2. Nominalisme  

3. Créationnisme  

En résumé, chacune de ces trois positions résulte du rejet d’une des trois 

propositions (X1)-(X3) du (PoC). Je présente ci-après chacune d’entre elles en 

détail. Très schématiquement, les différentes positions se résument à :  

(1) Platonisme : Le platonisme est le point de vue qui postule l’existence d’objets 

abstraits, c’est-à-dire d’entités non physiques et non mentales qui existent en 

dehors de l’espace et du temps. Selon le platonisme contemporain, les objets 

abstraits sont immuables et entièrement inertes sur le plan causal, c’est-à-dire 

qu’ils ne peuvent pas interagir physiquement avec d’autres objets (Balaguer 

2016).  

(2) Nominalisme : Cette position métaphysique rejette la proposition (X1) en 

soutenant qu'un objet abstrait candidat X n’existe pas ou s’avère ne pas être 

abstrait du tout. En tant que tel, le nominalisme se divise en deux points de vue 

différents : le matérialisme et l’éliminativisme.  

(3) Le créationnisme abstrait : Ce point de vue soutient qu’il est possible de créer 

des objets abstraits. En d’autres termes, le créationnisme adopte les points de vue 

(X1) et (X2) tout en rejetant le point de vue (X3).  

 

Le résultat de mon analyse est qu’aucune des trois positions philosophiques 

décrites précédemment n’est incohérente ou incohérente sur le plan interne - 

chacune d’entre elles est un point de vue défendable. Cela dit, chaque position se 

heurte à de sérieuses objections. L’examen de ces objections nécessite une 

réflexion sur des énigmes métaphysiques plus larges et plus anciennes 

concernant la causalité, la dichotomie abstrait-concret, la parcimonie 

ontologique, la paraphrase, etc. La tâche consiste maintenant à déterminer dans 

quelle mesure ces questions s’appliquent au domaine de l’informatique.  
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3.4 De l'art à l'informatique 

Sur la base de mes premières conclusions, j’applique le (PoC) aux programmes 

informatiques et j’examine les différentes options (1)-(3) en ce qui concerne les 

programmes informatiques.  

 

(1) Platonisme sur les programmes informatiques  

Selon ce point de vue, les programmes sont des objets abstraits éternels que nous 

découvrons. Il existe différentes raisons de souscrire à ce point de vue. Selon le 

« point de vue indirect », on peut en venir à considérer les programmes comme 

des objets platoniques parce qu’on est un platonicien mathématique et qu’on 

pense que les programmes sont essentiellement des sortes d'objets 

mathématiques. Selon le « point de vue direct », on peut penser que les 

programmes sont des objets platoniques parce que l’on souscrit à des positions 

similaires concernant des entités linguistiques telles que les romans, etc.  

 

(2) Nominalisme sur les programmes informatiques  

Comme dans le cas général évoqué précédemment, on peut présenter le 

nominalisme sur les programmes sous deux formes principales, l’une 

éliminativiste et l’autre matérialiste. Cependant, jusqu’à présent, personne ne 

semble avoir développé ces points de vue. En conséquence, j’esquisse brièvement 

certains des obstacles potentiels des deux positions.  

 

(3)Le créationnisme en matière de programmes informatiques  

Considérer les programmes comme des artefacts (abstraits) a gagné en popularité 

parmi les chercheurs à tendance philosophique ces dernières années (Lando et 

al. 2007 ; Faulkner & Runde 2010 ; Irmak 2013 ; Duncan 2014 ; Turner 2011 ; 2014 

; 2018 ; Wang 2016 ; Sanfilippo 2021). Aujourd’hui, ces points de vue dominent 

sans doute la littérature, bien que dispersée, sur le statut ontologique des 

programmes informatiques. Deux conceptions populaires se distinguent.  

D’une part, il y a le point de vue des artefacts informatiques (Lando et al. 2008 

; Turner 2011 ; 2014 ; 2018). D’autre part, il y a le point de vue selon lequel les 

programmes sont des abstractions temporelles, c’est-à-dire des artefacts abstraits 

(Irmak 2013).  

 

3.5 Conclusion  

Le principal enseignement de mon application du (POC) aux programmes est 

double. D’une part, du point de vue de la philosophie de l’informatique, mon 

approche nous permet de sortir des sentiers battus de la recherche métaphysique 

en informatique et d’offrir un nouvel angle de vue sur l’ontologie des 
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programmes. D’autre part, du point de vue de la métaphysique contemporaine, 

mon approche oriente le débat sur le statut ontologique des programmes 

informatiques vers un territoire philosophique plus établi. Elle montre 

notamment que la nature abstraite des programmes ne nécessite pas la 

postulation de solutions sui generis complètes (par exemple, une « double 

nature »), mais doit être formulée selon l’axe du platonisme, du nominalisme et 

du créationnisme. Les recherches futures devront montrer si l’un d'entre eux 

prendra le dessus. 

 

Chapitre 4 - L’implémentation-as : De l’art et de la science à l’informatique 

Le chapitre 4 porte sur la relation de dépendance entre les agents humains et 

l’informatique physique. Ce faisant, ce chapitre présente une nouvelle approche 

de la compréhension de l’informatique physique, appelée implementation-as. 

D’une manière générale, ma nouvelle approche est redevable à une nouvelle 

ligne de recherche qui a proposé de formuler l’implémentation en termes de 

représentation et de modélisation scientifiques. Bien que ce groupe de recherche 

soit encore relativement dispersé, il diffère des EMA traditionnels parce qu’il 

soutient que la relation de mise en correspondance f doit explicitement être 

comprise comme une forme de représentation scientifique. Cette perspective 

repose sur des considérations épistémologiques, métaphysiques et historiques. 

Plus précisément, mon cadre s’appuie sur le compte DEKI (Frigg & Nguyen 

2018), un compte formalisé de la représentation scientifique fondé sur la notion 

de représentation en tant que de Goodman et Elgin.  

 

4.2 Représentation scientifique et representation-as 

Pour fournir le contexte nécessaire, je présente d’abord la notion de 

représentation de Goodman et Elgin - comme dans la philosophie de l’art (sect. 

§4.2). Dans leurs travaux sur la représentation et la modélisation scientifiques, 

Frigg et Nguyen se sont approprié les notions de « dénotation » , d’ 

«  exemplification » et d’ «  imputation » de Goodman et Elgin et les ont 

introduites dans l'arène scientifique. En s’appuyant sur la dénotation, 

l’exemplification et l’imputation, et en ajoutant une quatrième exigence, qu’ils 

appellent « keying up », leur compte DEKI est né (le nom est un acronyme pour 

les quatre notions sur lesquelles il s’appuie).  

Pour démontrer le bien-fondé du fonctionnement pratique de leur compte, ils 

utilisent un exemple concret : le MONIAC. Le nom MONIAC signifie « Monetary 

National Income Analog Computer » (au Royaume-Uni, la machine est 

également connue sous le nom de « Philips-Newlyn machine »), et il s’agit d’un 
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ordinateur hydraulique analogique à usage spécial utilisé pour représenter une 

économie nationale.  

Le MONIAC étant un cas limite entre un modèle scientifique matériel et un 

ordinateur analogique, il constitue une passerelle idéale pour établir un lien entre 

la représentation scientifique et l’implémentation informatique. 

 

4.3 De la science à l'informatique  

Après ces considérations préliminaires, je me concentre sur le calcul physique 

(sect. §4.3). Ainsi, en utilisant les différents éléments du compte DEKI, je propose 

une nouvelle approche du calcul physique qui utilise un concept concret de 

représentation scientifique. Les résultats peuvent être résumés comme suit : 

Implementation-as  

La paire ordonnée C=⟨X, I⟩ est un dispositif de calcul, où X est un système 

matériel et I une interprétation. Soit P le formalisme/programme de calcul. C 

implémente P en tant que ZC si toutes les conditions suivantes sont remplies :  

(1) C désigne P.  

(2) C exemplifie les propriétés Z1 ,...,Zn sous une interprétation I :X→ ZC .  

(3) C est accompagné d’un codage informatique associant l’ensemble {Z1,…, 

Zn}  à un ensemble (éventuellement identique) de propriétés {P1,…, Pm}. 

E{Zi}={Pj}  

(4) C attribue au moins une des propriétés P1 ,..., Pm à P. 

Le cadre qui en résulte est baptisé implementation-as, en reconnaissance de 

l’influence de la représentation-as de la philosophie de l’art et de la science. Cette 

approche est méthodologiquement différente des précédents récits de calcul 

physique formulés en termes génériques de représentation scientifique, comme 

les L-machines (Ladyman 2009) ou la théorie A/R (Horsman et al. 2014), parce 

qu’elle s’appuie sur une proposition de représentation scientifique spécifique. 

 

4.4 Étude de cas : Machine IAS  

En discutant des éléments de l’implementation-as, j’ai suivi Frigg et Nguyen et j’ai 

utilisé le MONIAC comme exemple de jouet. Cependant, pour démontrer l’utilité 

du nouveau compte de l’implementation-as au-delà de l’informatique analogique, 

je vais montrer comment l’appliquer au cas d’une machine informatique 

numérique : la machine IAS (un ordinateur numérique à programme enregistré 

qui a été construit entre la fin des années 1940 et le début des années 1950 à 

Princeton, à l’Institute of Advanced Studies). Si, à première vue, ce dispositif peut 

sembler un choix arbitraire, deux raisons principales en font une excellente étude 

de cas : premièrement, l’architecture de la machine a été très influente ; il 

s’agissait de l’un des premiers ordinateurs à programme stocké binaire, qui 
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stockait les instructions et les données dans la même mémoire. En tant que telle, 

elle incarne les principes architecturaux de l'architecture de von Neumann, qui est 

encore couramment utilisée aujourd'hui. L’idée est que ce qui vaut pour cette 

machine peut aussi valoir pour des machines similaires. Deuxièmement, bien 

qu’elle possède toutes les caractéristiques principales des ordinateurs 

numériques modernes, la machine IAS est moins complexe et plus facile à 

analyser. 

 

4.5 Discussion  

Il est important de noter que mon analyse a montré que ce nouveau SRA 

agentiel/interprétatif répondait aux critères standards évoqués (Piccinini 2015, 

Duwell 2021) :  

Desiderata du calcul physique  

(1) L’objectivité : La prise en compte du calcul physique doit permettre, au 

moins en partie, de savoir si un système implémente une fonction de calcul.  

(2) Adéquation extensionnelle : une description adéquate du calcul devrait 

permettre de renvoyer correctement aux objets qui calculent sans inclure les 

objets qui ne calculent pas.  

(3) Explication : Les calculs effectués par un système matériel doivent, au 

moins en partie, expliquer son comportement et ses capacités.  

(4) Calculs erronés : Une conception du calcul doit permettre de rendre compte 

des cas de calculs erronnés..  

(5) Taxonomie : Une description de l’informatique doit permettre de démêler 

les différentes capacités de calcul des différents systèmes.  

 

Pour faire court, l’implémentation est une bonne théorie de l’implémentation 

informatique parce qu’elle répond aux critères (1)-(6) de manière adéquate.  

Comment cette nouvelle théorie de l’implémentation informatique s’accorde-

t-elle avec les autres ? Bien que l’implémentation en tant que telle et les EMA 

« traditionnels » partagent ces similitudes, il existe une différence essentielle 

entre les deux. Les EMA traditionnelles partent du principe que la relation 

d’implémentation est une relation à deux places entre des états physiques et des 

états abstraits de calcul, obtenue de manière naturaliste et indépendante de 

l’esprit. En revanche, les SRA plaident généralement en faveur d’une 

interprétation de la mise en correspondance en vertu de la représentation 

scientifique. Cet engagement est très différent car de nombreuses options de 

représentation scientifique sont des relations à trois places qui s’obtiennent si l'on 

prend en compte les agents et leurs capacités intentionnelles. C’est la raison pour 

laquelle de nombreux partisans de l’SRA ont soutenu qu’ils devaient être conçus 
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comme une théorie agentielle de l’implémentation. Le cadre l’implémentation-

as rend cela explicite, et je soutiens que son application réussie nécessite les 

activités de dénotation, d’exemplification, d’encodage et d’imputation qui 

dépendent de l’esprit. 

Le compte sémantique restreint encore les EMA en exigeant que les états de 

calcul soient toujours porteurs de sens ou de contenu sémantique. Dans une 

section précédente (3.1), j’ai discuté du lien entre mon approche et les approaches 

sémantiques. Les SRA et les comptes sémantiques soulignent tous deux 

l’importance de la représentation dans le calcul. Cependant, il existe des 

différences notables dans la manière dont la représentation est utilisée et 

comprise dans les deux cadres.  

Dans le cadre de l’implémentation en tant que telle, la représentation 

scientifique est utilisée pour combler le fossé entre les états de calcul abstraits et 

les états physiques sans qu’il soit nécessaire de s’engager sur un contenu externe. 

En général, les SRA n’ont qu’une exigence minimale en matière de contenu : les 

états physiques doivent simplement être porteurs d’un contenu logico-

mathématique (du modèle de calcul implémenté). Tout contenu sémantique 

supplémentaire ou toute signification des véhicules de calcul n’est pas pertinent 

pour l’application réussie des accords de reconnaissance mutuelle et donc de 

l’implémentation. (Toutefois, l’utilisateur du dispositif informatique peut, si 

nécessaire, attribuer un contenu sémantique ou une signification aux calculs). En 

revanche, les comptes sémantiques utilisent la représentation dans un sens plus 

large, où les états informatiques peuvent représenter des états de fait externes. 

Ce sens de la représentation est plus pertinent pour les sciences cognitives, qui 

partent du principe que les états du cerveau sont représentatifs.  

En ce qui concerne la relation entre les conceptions de l’implémentation-as et 

les conceptions mécanistes, la question de leur lien est nuancée. Selon la version 

mécaniste que l’on choisit pour la comparaison, il y a différents degrés 

d’engagements partagés. En général, les approaches mécanistes affirment que les 

mécanismes fonctionnels sont au coeur de l’informatique ; les véhicules 

informatiques doivent être des composants d’un mécanisme. Dans sa 

formulation actuelle, le cadre implementation-as ne partage pas spécifiquement cet 

engagement. Cependant, même si les véhicules informatiques ne doivent pas 

nécessairement faire partie d’un mécanisme pour une application réussie de 

l’approche implementation-as, rien dans la formulation de mon compte n’exclut 

que les systèmes informatiques C=⟨X, I⟩ ne puissent pas être des mécanismes. En 

fait, les deux cas discutés précédemment - le MONIAC et la machine IAS - sont 

de véritables mécanismes. Les recherches futures devraient élucider si ce fait est 
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accidentel ou si une combinaison des points de vue pourrait conduire à une 

théorie encore plus robuste du calcul physique. 

 

Chapitre 5 - Programmabilité physique 

Ce chapitre concerne la relation de dépendance entre les programmeurs et les 

systèmes matériels utilisés pour l’exécution des programmes (relation de 

dépendance (c)). A ce titre, il présente une nouvelle notion appelée  

Programmabilité physique : Le degré auquel l’activité/fonction/ 
opération/phénomène sélectionné(e) sur un automate peut être 
reconfiguré(e) de manière contrôlée. 

Dans l’ensemble, les programmes conçus par des agents humains peuvent 

consister en un simple séquençage ou en des séquences très complexes 

d’opérations sur un support physique. Les opérations séquencées vont du son 

(boîtes à musique) au calcul en passant par le tissage (métiers à tisser Jacquard). 

Pour exécuter toute séquence d’opérations souhaitée, le système choisi doit être 

configuré de manière appropriée, ce qui nécessite des interactions (physiques) 

spécifiques : la machine doit être programmable. Malheureusement, le discours 

philosophique sur la programmabilité est peu abondant et largement sous-

développé.  

 

5.1 Aperçu critique de la programmabilité  

Afin de développer une théorie adéquate, je commence (§5.1.) par passer en 

revue les quelques approches existantes de la programmabilité dues à Conrad 

(1988), Zenil (2010 ; 2012 ; 2013 ; 2014 ; 2015), Piccinini (2008 ; 2015), et Haigh & 

Priestley (2018). Bien que je soutienne que chacune d’entre elles a ses propres 

limites, il existe quelques points communs (voir le tableau C.1). 

Sur la base de ces observations, je présente ma nouvelle alternative rigoureuse 

(programmabilité physique). Ensuite, je me penche sur les détails des variables 

contenues dans cette définition, à savoir (i) les automates matériels, (ii) les 

opérations sélectionnées, (iii) la reconfiguration, et (iv) le degré de 

programmation, et je les relie aux discours fondateurs établis dans la philosophie 

des sciences.  
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Tableau C.1: Comparaison des différentes caractéristiques des comptes de 

programmabilité présentés ici. 

 

5.2 Automate matériel  

Je suggère que le fait d’être physiquement programmable se limite aux 

« automates matériels ». On peut caractériser un automate comme  

Automate : Système ayant la capacité d'exécuter une série d’opérations 
prédéterminées (dans une certaine mesure) de manière autonome.  

Il est important de ne pas confondre ces automates avec des entités logico-

mathématiques abstraites telles que les machines de Turing. Ces dernières sont 

de véritables objets mathématiques et ne sont pas sujettes à la programmabilité 

physique. Les automates matériels sont plutôt des artefacts techniques.  

Les artefacts techniques sont des types particuliers d'artefacts qui se 

caractérisent par leur « double nature » - constituée à la fois de caractéristiques 

fonctionnelles dépendant de l'esprit et de caractéristiques structurelles 

indépendantes de l'esprit (cf. Baker 2006 ; Kroes & Meijers 2006 ; Kroes 2012 ; 

Preston 2018, §2.3). La structure détermine ce qu’un artefact peut faire, tandis que 

la fonction est ce pour quoi l’artefact est censé être utilisé. En raison de cette 

normativité, certains chercheurs (Vermaas & Houkes 2003 ; Houkes & Vermaas 

2010) ont soutenu que les fonctions techniques nécessitent une intentionnalité. En 

conséquence, un agent ou une communauté épistémique attribue 

intentionnellement une fonction à un objet dans un but spécifique.  

De ce point de vue théorique, les automates matériels peuvent être considérés 

comme des artefacts techniques parce qu’ils sont (i) des dispositifs créés 

intentionnellement avec (ii) la capacité d'exécuter une séquence prédéterminée 

d'opérations. 

 Conrad Zenil Piccinini Haigh & 

Priestley 

Type de système 

physique 

Naturel et 

technique 

Naturel et 

technique 

Technique et 

naturel ( ?) 

Technique 

Opérations Computation Computation Opérations 

séquentielles 

Opérations 

séquentielles 

Mode de 

reconfiguration 

Instruction - Mécanique, 

Instructions 

- 

 

Système de 

classement 

Efficace et 

structurel 

Mesure 

quantitative 

(information 

algorithmique) 

Hard et soft  - 
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5.3 Opération sélectionnée  

Le fonctionnement sélectionné de ces automates matériels s’explique mieux par 

le cadre néo-mécaniste et sa notion de 

Mécanisme : « Le mécanisme d’un phénomène est constitué d’entités et 
d’activités telles qu’elles sont responsables du phénomène. » (Illari et 
Williamson 2012) 

Généralement, le phénomène de niveau supérieur d’un mécanisme/système est 

appelé Ψ-ing de S, où S désigne le système, et Ψ-ing le phénomène 

correspondant. Les entités du mécanisme sont appelées Xi et leurs activités sont 

désignées par {ϕ1 , ϕ2 , ..., ϕn } (cf. Craver 2007 ; voir Fig. C.3).  

En outre, on peut définir les mécanismes d’ « Input/Output » (Glennan 2017, 

113-116 ; ci-après dénommés « I/O ») comme une sous-classe de la définition 

générique des mécanismes. Selon Glennan, les mécanismes I/O sont des 

systèmes dont les actions ou les sorties réagissent aux entrées et peuvent être 

décrits par une relation fonctionnelle entre les variables d'entrée et de sortie 

f(i)=o, où i désigne les entrées, o les sorties et f leur relation fonctionnelle.  

Un système S donné peut présenter plusieurs phénomènes à la fois. Lorsque 

nous jugeons qu’un objet présente un certain degré de programmabilité, nous le 

faisons généralement en ayant à l'esprit un seul phénomène spécifique (Ψ-ing). 

La programmabilité physique n’a de sens que par rapport à des séries 

d'opérations spécifiquement sélectionnées. Pour remédier à ce problème, j’ai 

ajouté la clause de « sélection » dans ma caractérisation de la programmabilité 

physique. L’idée de la clause de sélection est de nous guider/informer dans le 

processus de sélection des opérations de l’automate matériel et d’isoler un 

phénomène spécifique, en fonction de l’intérêt d'un individu ou d’une 

communauté épistémique. N.b., en tant que telle, la clause de sélection va de pair 

avec l’idée de restreindre l’applicabilité de la programmabilité physique aux 

seuls automates matériels conçus. 

 

Fig. C.3 : Représentation schématique d’un mécanisme. 
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5.4 Reconfiguré  

Notre compréhension de la « reconfiguration contrôlée » est facilitée par les 

théories de la causalité dites de manipulabilité ou d’agence, un sous-ensemble de 

l’interventionnisme causal (cf. Woodward (2023) pour une étude). En bref, les 

théories de la manipulabilité visent à élucider les structures causales par les 

moyens suivants  

« Difference Making » : C est une cause de E (l’effet) si la manipulation de 

C de la bonne manière affecte (fait une différence sur) E.  

L’interventionnisme sous sa forme contemporaine (voir, par exemple, 

(Woodward 2003) et (Pearl 2009) est né de la combinaison de caractéristiques 

issues de la modélisation causale et des théories de la manipulabilité. La 

principale réalisation de cette théorie a été de concevoir une notion formelle d’ 

« intervention » basée sur des modèles dits structurels, nous permettant de 

représenter les relations causales (en science) à travers un cadre formel rigoureux.  

En tant que telles, les idées de l’interventionnisme élucident la manière dont 

nous pouvons reconfigurer et contrôler les automates programmables du monde 

réel. En nous appuyant sur ce cadre formel, nous pouvons expliquer la 

programmabilité sans l’anthropomorphisation typiquement évoquée des 

ordinateurs (« ils comprennent les instructions »). L’application de concepts 

interventionnistes aux mécanismes d’I/O nous permet de comprendre comment 

contrôler les automates programmables. En particulier, je suggère que le contrôle 

humain des machines programmables est rendu plausible par le critère dit de 

« Manipulabilité Mutuelle » (MM).  

 

5.5 Le degré de programmabilité d’un automate 

En examinant divers exemples d’automates, j’ai montré que la programmabilité 

physique est une notion graduelle et qu’elle existe à différents degrés. 

Intuitivement, nous pouvons caractériser cette caractéristique comme la 

variabilité du comportement potentiel du système. Certains chercheurs de 

tendance historico-philosophique ont tenté de rassembler ce type de 

considérations sur toutes sortes d’automates programmables dans un système de 

classification théoriquement plus robuste (Brennecke 2000 ; Koetsier 2001 ; 

D'Udekem Gevers 2013 ; et Copeland & Sommaruga 2021).  

Que faut-il retenir de ces schémas de classification des automates 

programmables du monde réel ? Ils classent tous les machines informatiques à 

usage général comme étant celles qui présentent la plus grande programmabilité. 

En d’autres termes, les ordinateurs à usage général - parfois appelés machines 

universelles - sont censés être capables implémente pratiquement toutes les 
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fonctions calculables (telles que définies par la théorie de la calculabilité). En 

d’autres termes, la classe des fonctions calculables agit comme une limite 

supérieure à la séquence d’opérations qu’une machine informatique peut 

effectuer. Si nous pouvons configurer une machine pour implémente toutes ces 

fonctions, elle est entièrement programmable ; les machines qui ne peuvent 

implémenter qu’un éventail plus restreint de fonctions sont donc moins 

programmables. En résumé, ces considérations conduisent à la notion suivante  

Le degré auquel : La quantité/part de l’ensemble des fonctions possibles 
(au sens du mécanisme d’I/O f(i)=o) que le système peut implémenter. 

 

5.6 Remarques finales et questions ouvertes  

La conclusion clôt mon chapitre en énonçant les avantages de la 

« programmabilité physique » et en énumérant les problèmes en suspens. L’un 

des principaux enseignements de ce nouveau concept est sa capacité à expliquer 

la programmabilité sans faire appel à la métaphore du langage (« l'ordinateur 

comprend les instructions ») mais en termes d’interventions sur le mécanisme 

d’I/O conçu.  

Les recherches futures pourraient porter sur deux problèmes en suspens : 

Premièrement, les questions relatives à la « manipulabilité mutuelle » (MM) 

persistent (Couch (2011), Leuridan (2012), Romero (2015) et Kästner (2017)). Dans 

la littérature contemporaine sur les mécanismes, il y a un débat permanent sur la 

plausibilité de la MM parce que les interventions semblent être maîtrisées (c’est-

à-dire qu’elles font une différence dans le mécanisme et (au moins certaines) de 

ses entités agissantes).  

Deuxièmement, jusqu’à présent, j’ai simplement discuté de la 

programmabilité physique en relation avec des automates fonctionnant en 

séquence et de manière largement autonome. Cependant, en particulier en ce qui 

concerne l’informatique, il existe d’autres modes d’opérations/paradigmes 

importants (naturel, analogique et quantique). En outre, il serait intéressant de 

clarifier la relation entre la programmabilité et les paradigmes informatiques 

interactifs. 

 

Chapitre 6 - Conclusion  

Enfin, le chapitre 6 résume les principales conclusions de la thèse et fournit 

des indications pour les recherches futures sur le sujet. En résumé, les points 

à retenir sont les suivants : Le terme « programme » est un polysème. Il 

désigne donc des choses ontologiquement différentes. Dans cette thèse, j'ai 

fourni un cadre sur la façon dont ils sont liés : UTAI. Selon cette notion, nous 



Appendix C : Synopsis détaillé en français 
 

204 
 

devons accorder une attention particulière à trois problèmes philosophiques : 

le problème de la création (qui détermine la nature abstraite des programmes) 

; la question de savoir comment déterminer la programmabilité physique (qui 

détermine l'aspect physique des choses) ; et le problème de l’implémentation.  

(qui traite de la manière dont les programmes abstraits se rapportent à la 

physique).  

 

Annexe A - Vue d’ensemble de la chimère des programmes 

A1 La vue physique  

Je me réfère aux cadres qui préconisent une certaine forme de compréhension 

physique des programmes en tant que vision physique. Afin de décortiquer les 

notions regroupées sous l’égide de la vision physique, il est utile de prendre en 

compte une discussion plus approfondie de la métaphysique : la dualité entre les 

continuités et les occurrences (voir, par exemple, Simons 2000). Cette division se 

reflète également dans les différentes conceptions métaphysiques des 

programmes en tant qu'entités physiques. En conséquence, je distingue la 

physicalité des programmes en deux cas différents, à savoir une lecture statique 

et une lecture dynamique.  

D’une part, les programmes peuvent être considérés comme faisant partie 

d’une machine. Cette idée était peut-être plus évidente lors de l’utilisation 

d’ordinateurs de première génération comme l’ENIAC, où les réglages des 

commutateurs étaient visibles/tangibles. La machine devait être physiquement 

configurée pour exécuter les opérations requises pour un calcul donné dans la 

séquence correcte. D’autre part, il existe un point de vue très répandu selon 

lequel les programmes provoquent ou même sont des sortes de processus du 

monde réel (parfois appelé processus de programme). L’accent mis sur l’aspect 

empirique des choses est, par exemple, largement discuté dans la littérature sur 

la nature de l’informatique en tant que discipline. 

 

A2 Le point de vue mathématique  

Plusieurs personnalités influentes du monde de l’informatique, telles que 

Dijkstra, Floyd, McCarthy, Naur et Wirth, pensaient que l’adoption d’une 

approche mathématique et rigoureuse de la construction des programmes 

pouvait améliorer la qualité des « logiciels » et de la programmation. Hoare a 

exprimé une position extrême, suggérant que toute l’informatique pouvait se 

résumer aux mathématiques. Selon lui, les ordinateurs fonctionnent comme des 

machines mathématiques, les programmes informatiques sont des expressions 
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mathématiques, les langages de programmation sont des théories 

mathématiques et la programmation elle-même est une activité mathématique.  

 

A3 Le point de vue notationnel  

Considérer les programmes comme des sortes de textes est un parasite pour 

l’utilisation répandue des langages de programmation modernes. Selon ce point 

de vue, les programmes sont constitués d’une séquence bien formée de symboles 

écrits dans un langage de programmation. Cette vision soulève plusieurs 

questions quant à la nature des langages de programmation et, par conséquent, 

des programmes en tant que textes écrits dans un tel « langage ». Pour mieux 

cerner la question, un bref aperçu de l’évolution historique des langages de 

programmation est fourni. 

 

A4 Le point de vue de l’artefact 

Dans notre vie quotidienne, nous sommes entourés et constamment confrontés à 

des artefacts. Généralement, un artefact est défini comme un objet fabriqué ou 

produit intentionnellement dans un but spécifique (Hilpinen 2017). 

Intuitivement, de nombreux programmes informatiques semblent être des 

artefacts parce qu’ils sont des « créations de l’esprit ». En temps voulu, les 

philosophes font souvent la distinction entre différents types d’artefacts. Deux 

conceptions en particulier s’avèrent pertinentes pour classer les programmes 

informatiques : les artefacts techniques et les artefacts abstraits. En termes 

simples, les artefacts techniques sont des objets matériels conçus 

intentionnellement et caractérisés par une dualité fonction-structure. Les 

artefacts abstraits sont des objets abstraits créés intentionnellement qui ne 

peuvent être identifiés par une instanciation unique. 

 

A5 Le point de vue neuronal  

Il existe une longue et riche tradition (philosophique) qui consiste à concevoir 

l’esprit comme une machine (Boden 2006). Avec l’avènement des machines à 

calculer électroniques, il n’a pas fallu longtemps pour que les idées sur 

l’ordinateur et le cerveau s’enchevêtrent mutuellement. Cela a façonné à la fois 

la perception des types d’objets que sont les ordinateurs et les cerveaux, ce qui a 

eu des conséquences sur la compréhension des programmes informatiques. En 

conséquence, j’élucide comment nous pouvons considérer l’ordinateur comme 

un cerveau et, vice versa, comment nous pouvons considérer le cerveau comme 

un ordinateur. 

 

 



Appendix C : Synopsis détaillé en français 
 

206 
 

A6 « State of the Art »  

Dans cette section, je passe en revue les différents points de vue sur le statut 

ontologique des programmes informatiques sur le marché.  

Tout d’abord, je passe en revue l'article classique de Moor (1978) dans lequel 

il examine le point de vue de la double nature des programmes et propose des 

raffinements linguistiques. Je procède ensuite à une évaluation critique de la 

proposition de Suber (1988) selon laquelle tout est un programme. Ensuite, je 

discute de la proposition de Smith (1998) pour une révision métaphysique 

complète. Après quoi, je passe au crible les « abstractions concrètes » de Colburn 

(1999) (dans lesquelles il adopte le point de vue de la double nature). Puis, je fais 

la lumière sur l’article d'Eden et Turner (2007) dans lequel ils discutent de 

certaines implications du point de vue de la double nature et proposent d'autres 

raffinements linguistiques du terme « programme ».  Lando et al. (2007) 

proposent une autre façon de clarifier les définitions et la double nature ; la 

nouveauté de leur récit est l'appel aux ontologies formelles. Je décris ensuite 

l’idée d’Irmak (2012) de considérer les programmes comme des artefacts 

abstraits. Ceci est suivi par une brève analyse de Duncan (2014) dans laquelle il 

tente de démêler la distinction logiciel/matériel par le biais d'ontologies 

formelles. Je traite aussi des travaux de Wang et al. (2014a ; 2014b) et de Wang 

(2016) qui développent une perspective d’ingénierie des exigences selon laquelle 

les programmes sont des artefacts d’information abstraits. Ensuite, j’examine 

minutieusement la notion de Turner (2011 ; 2014 ; 2018) selon laquelle les 

programmes sont des artefacts informatiques. De plus, je mets en lumière la thèse 

de Geisse (2019) dans laquelle il fournit une perspective phénoménologique sur 

les programmes. Enfin, je passe en revue la thèse de Primiero (2016 ; 2020) que 

les programmes ont une ontologie stratifiée.  

 

Annexe B - Pourquoi nous devrions considérer l’implémentation informatique 

comme une relation à trois places 

 

B.1 Problème de liaison  

L’une des questions centrales de la (philosophie des) mathématiques a été 

l’applicabilité apparemment miraculeuse des mathématiques aux sciences 

empiriques. Cette question, qui a captivé les chercheurs pendant des siècles, a 

peut-être été ravivée par Wigner (1960) lorsqu’il nous a mis au défi d’expliquer 

l’utilité remarquable des mathématiques dans la science. Compte tenu de sa 

longue histoire, la question est connue sous de nombreux noms (par exemple, le 

problème de l’application) et peut comprendre plusieurs problèmes différents 

(bien que liés) sous le même chapeau (Steiner 1998, Fillion 2012). Le problème 
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particulier sur lequel je me concentre concerne l’inadéquation ontologique entre 

les mathématiques et le monde (ci-après dénommé « Bridging Problem » (BP)) :  

BP : Quel est le lien entre les mathématiques et la physique ? 

B.2 Le problème de l’implémentation 

Le calcul est méthodologiquement divisé (Curtis-Trudel 2022). D’une part, nous 

pouvons étudier le calcul dans le domaine abstrait du formalisme logico-

mathématique comme les machines de Turing (MT), les fonctions récursives, etc. 

D'autre part, les calculs ont lieu dans le monde réel. Alors que la théorie formelle 

du calcul est une branche bien établie des mathématiques et de l'informatique 

théorique, l’élaboration d'un compte rendu précisant quand un système 

physique implémente des calculs s’avère difficile. En termes simples, la question 

de savoir comment relier ces deux domaines est appelée le problème de 

l’implémentation. 

 

B.3 Tracer le paysage des solutions au « Bridging Problem » 

L'idée centrale de toutes les solutions contemporaines est sans doute influencée 

par le structuralisme : En raison de la notion centrale de cartographies 

structurelles, Pincock (2004) a baptisé cette proposition « Mapping Account » 

(compte de cartographie). 

Mapping Account : Le fossé entre le M mathématique et le P physique est 
comblé par un mappage préservant la structure f: SP→SM entre deux 
structures correspondantes SM et SP. 

Cependant, le compte de correspondance pose un problème fondamental : 

Les systèmes physiques doivent avoir des structures pour que les morphismes 

soient bien définis, car « le morphisme est une relation qui existe entre deux 

structures et non entre une structure et un élément du monde réel en soi ». Frigg 

(2006, 55). Le problème est que les systèmes physiques sont des entités concrètes 

existant dans la réalité physique, et non des structures mathématiques. Ce qu’il 

faut donc pour résoudre le problème de la BP, c’est expliquer comment les 

systèmes physiques obtiennent une structure unique. Trois solutions principales 

sont disponibles :  

1. Le monde est fondamentalement mathématique (Tegmark 2008) 

Cette idée est sujette à l’objection de Newman. 

2. Proposition inférentialiste (Bueno & Colyvan 2011) 

3. Proposition basée sur l’abstraction. Nguyen et Frigg (2021) ont formalisé 

cette idée dans leur « compte d'abstraction extensionnelle ». 

En résumé, toutes ces propositions dépendent de l’activité humaine et, à ce titre, 

sont des adeptes de la théorie des trois lieux dépendants de l'esprit. 
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B.4 Synthèse des problèmes : Une nouvelle perspective 

Bien que la littérature sur le calcul physique ait apporté un nombre 

impressionnant de contributions, l’accent mis sur la nature métaphysique de la 

relation de l’implémentation a généralement été relégué au second plan. Alors 

que les propositions de résolution du BP sont conçues pour être généralement 

applicables, les solutions au problème de l’implémentation sont limitées à 

l'applicabilité de la théorie de la calculabilité. Sur la base de cette comparaison, 

nous pouvons déduire que le problème de l’implémentation est une instance 

spécifique du problème du rapprochement.  

Alors que les deux lignes de recherche proposent que le décalage ontologique 

puisse être surmonté en adhérant à des mappings préservant la structure, la 

plupart des solutions au problème de la mise en œuvre n’élucident généralement 

pas davantage la nature métaphysique des mappings qu’elles emploient. Bien 

qu'aucune solution au problème de la mise en œuvre ne se soit imposée comme 

définitive, elles vont dans le même sens : Toutes les analyses correspondantes 

partagent l’idée que la relation de mise en correspondance n'est pas un fait brut. 

Au lieu de cela, la relation des mathématiques au monde nécessite un troisième 

relatum - un agent responsable de l’établissement de la correspondance f et de la 

détermination des structures de la théorie des ensembles qui sont censées être 

reliées. Selon ce point de vue de la relation à trois places, le calcul physique est 

donc une conception dépendante de l'esprit, car un système ne peut calculer 

qu’en raison de l’activité humaine. 
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