Année 2011

THESE DE DOCTORAT

Présentée à

L'UNIVERSITE DE LILLE 1 – SCIENCES ET TECHNOLOGIES

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE

Discipline : Molécules et Matière Condensée

Ecole Doctorale : Sciences de la Matière, du Rayonnement et de l'Environnement

Par

Mohammed Samir IBN EL ALAMI

SYNTHÈSE DE NOUVEAUX LIGANDS CHIRAUX À PARTIR DE TERPÈNES ET APPLICATIONS EN TRANSFERT D'HYDROGÈNE ASYMÉTRIQUE

Soutenue le 20 juillet 2011 devant la commission d'examen

<u>Président</u> F. AGBOSSOU-NIEDERCORN	Directeur de Recherche, Université de Lille 1
<u>Rapporteurs</u> M. PFEFFER A. KARIM	Directeur de Recherche, Université de Strasbourg I Professeur, Université de Cadi Ayyad - Marrakech
<u>Examinateurs</u> A. MORTREUX M. A. EL AMRANI I. SUISSE	Professeur, Université de Lille 1 Professeur, Université Abdelmalek ESSAADI - Tétouan Maître de conférences, Université de Lille 1

Remerciements

Le travail reporté dans la présente thèse a été effectué dans le cadre d'une cotutelle entre l'Université Abdelmalek ESSAADI de Tétouan au Maroc et l'Université des Sciences et Technologies de Lille en France

Une grande partie de ce travail a été réalisée au laboratoire de Catalyse et Chimie Moléculaire à l'Unité de Catalyse et Chimie du Solide de l'Université Lille1 sous la direction du Professeur André MORTREUX, et au laboratoire de Chimie Organique Appliquée à l'Université Abdelmalek ESSAADI à Tétouan sous la direction du Professeur Mohamed Amin El AMRANI.

Je tiens sincèrement à remercier mes directeurs de thèse Pr. André MORTREUX et Pr. Mohamed Amin EL AMRANI pour le temps qu'ils ont consacré pour le bon déroulement de cette thèse avec beaucoup de compétences et d'efficacité.

J'adresse tous mes sincères remerciements aux membres du jury qui ont accepté de juger ce travail : Dr. Michel PFEFFER, Directeur de Recherche - Université de Strasbourg I, Prof. Karim ABDELLAH, Université de Cadi-Ayyad (Marrakech).

Je remercie chaleureusement Madame Isabelle SUISSE qui a dirigé cette thèse comme coencadrante avec beaucoup de compétences et d'efficacité. Elle m'a donné de précieux conseils pour orienter judicieusement mes recherches. Merci pour sa gentillesse, son positivisme ainsi que pour sa disponibilité.

Je tiens également à exprimer mes remerciements à Madame Francine AGBOSSOU-NIEDERCORN directeur de Recherche au CNRS pour m'avoir accueilli dans son laboratoire. Je lui adresse ici toute ma reconnaissance.

Un grand merci à Monsieur Pascal ROUSSEL Chargé de Recherche au CNRS pour avoir déterminé les structures RX.

Je remercie également toutes les personnes que j'ai rencontrées au laboratoire, permanents, thésards (Jonathan, Jérémy, Benoît, Sandra, Paul, Florian, Gabin, Saliha) ou stagiaires, ainsi que ceux qui m'ont aidé notamment Catherine pour l'analyse élémentaire, et Till pour la LC-MS. Merci aussi à Mathieu, Régis, Christophe, Sylvain et Lydie pour leur soutien scientifique et moral. Je remercie aussi l'ensemble du personnel de l'ENSCL pour leur dévouement et leur gentillesse.

Je suis très reconnaissant à tous mes amis de Lille (Adil, Reda, Mohammed). Merci à tous.

Je remercie vivement le Ministère de l'Education Nationale, de l'Enseignement Supérieure et de la Recherche Scientifique du Maroc, qui a assuré un soutien financier via le Ministère des Affaires Etrangères (Programme Volubilis AI n°012/SM/07), le Ministère de la Recherche et Technologies par le biais de l'Institut Universitaire de France et le CNRS.

En mémoire de mes deux parents

A mes sœurs

Liste des abréviations

δ	Déplacement chimique
λ	Longueur d'onde
APTS	Acide Para-Toluène Sulfonique
Cat	Catalyseur
Conv	Conversion
CPG	Chromatographie en phase gazeuse
d	Doublet
dd	Doublet dédoublé
DMF	<i>N</i> , <i>N</i> -Diméthylformamide
ee	Excès énantiomérique
ESI-MS	Electrospray Ionisation – Spectrométrie de Masse
HMB	Hexaméthylbenzène
J	Constante de couplage en Hz
L*	Ligand chiral
LC-MS	Chromatographie en phase liquide couplé à un spectromètre de masse
т	Méta
m	Multiplet
0	Ortho
р	Para
ppm	Partie par million
rac	racémique
Rdt	Rendement
RMN	Résonnance magnétique nucléaire
S	Singulet
st	Septuplet
t	Triplet
t.a.	Température ambiante
td	Triplet dédoublé
TOF	Turn Over Frequency

Table des matières

11 troduction

PARTIE BIBLIOGRAPHIQUE

Chapitre I : Alcools chiraux fonctionnalisés

1. Chiralité – Molécules optiquement pures	15
2. L'intérêt des alcools chiraux fonctionnalisés	16
3. Modes d'obtention des alcools optiquement actifs	17
4. Synthèse asymétrique	18
4.1. Formation d'une liaison carbone-carbone	
4.2. Formation d'une liaison carbone-oxygène	19
4.3. Réduction asymétrique des cétones	21
4.3.1. Réduction asymétrique par les hydrures chiraux (oxazaborolidines)	21
4.3.2. Hydrogénation asymétrique	21

Chapitre II : Réduction asymétrique par transfert

1.	Etu	de mécanistique de l'hydrogénation de cétones par transfert d'hydrogène	. 31
	1.1.	Transfert direct d'hydrogène	. 31
	1.2.	La voie hydrure	. 31
2.	Les	s principaux systèmes catalytiques pour l'hydrogénation par transfert d'hydrogèr	ne
			. 34
	2.1.	Donneur d'hydrogène	. 34
	2.2.	Précurseurs catalytiques	. 35
	2.3.	Le rôle de la base	. 35
	2.4.	Ligands chiraux utilisés dans la réduction par transfert d'hydrogène	. 35
	2.4	.1. Les ligand P et P,P	. 35
	2.4	.2. Les ligands mixtes P,N	. 37
	2.4	.3. Les ligands non phosphorés	. 39
	2.4	.4. Les diamines	. 42
	2.4	.5. Les diamines monotosylées	. 45
	2.4	.6. Les β-aminoalcools	. 49

2.4.7. Les ligands tétradentates	
2.4.8. Les ligands N,S	
3. Nouveaux développements	
3.1. Réduction des imines par transfert asymétric	que d'hydrogène 54
3.2. Réduction des cétones par transfert d'hydrog	gène en milieu aqueux 58
3.3. Catalyseurs à base de fer dans la réduction a	symétrique par transfert
d'hydrogène	
3.4. Transfert asymétrique d'hydrogène par cycl	ométallation60
4. Conclusion	

RESULTATS

Chapitre III : Transfert asymétrique d'hydrogène des cétones aromatiques

1.	Intr	oduction	67
2.	Gér	néralités sur les conditions opératoires	67
	2.1.	Substrats	67
	2.2.	Complexes arène-ruthénium	67
	2.3.	Protocole d'une réduction asymétrique par transfert d'hydrogène	68
	2.4.	Phénomène de racémisation	68
3.	Les	coordinats chiraux	69
	3.1.	Les aminoalcools optiquement purs et leurs dérivés N-substitués	71
	3.2.	Les diimines et diaminediols	75
	3.3.	Les α-aminooximes	78
	3.3.	1. Influence de la température	81
	3.3.	2. Influence du rapport L* / Ru	81
	3.3.	3. Etude des différents coordinats chiraux	85
	3.3.	4. Réduction asymétrique par transfert d'hydrogène des dérivés de	
		l'acétophénone	86
	3.3.	5. Complexes Ruthénium / Aminooxime	90
	3.3.	6. Analyses et caractérisations radiocristallographiques des complexes Ru /	
		Aminooxime	93
	3.3.	7. Tests catalytiques avec les complexes C1 et C2 (Transfert Asymétrique	
		d'Hydrogène)	94

3.3	3.8. Approche mécanistique « Ru-Aminooxime » en transfert asymétrique	
	d'hydrogène	95
3.4.	Les α-aminooximes-éthers	101
3.5.	Les ligands diazotés : diamines	104
3.5	5.1. Ligands diamines issus du limonène	104
3.5	5.2. Ligands diimines issus du camphre	106

Chapitre IV : Conclusion générale

Chapitre V : Partie Expérimentale

1. Matériels et méthodes
1.1. Rampe vide-azote
1.2. Solvants
1.3. Analyses
1.3.1. Analyses élementaires
1.3.2. Spectrométrie de masse
2. Substrats
3. Procédure typique de transfert d'hydrogène114
4 Synthèses des ligands
4.1. β-aminoalcools
4.1.1. (1R, 2R, 3S, 5R)-3-(benzylamino)-2,6,6-triméthyl-bicyclo[3.1.1]
heptan-2-ol <u>4</u>
4.1.2. (1 <i>R</i> ,2 <i>R</i> ,3 <i>S</i> ,5 <i>R</i>)-3-(biphényl-4-ylméthylamino)-2,6,6
triméthylbicyclo[3.1.1]heptan-2-ol <u>5</u> 115
4.2. Diiminediols et diaminediols
4.2.1. (1R,1'R,2R,2'R,5R,5'R)-3,3'-(éthane-1,2-diylbis-(azan-1-yl-1-ylidène))-bis-
(2,6,6 triméthylbicyclo-[3.1.1]heptan-2-ol) <u>8</u> 116
4.2.2. (1R, 1'R, 2R, 2'R, 5R, 5'R)-3,3'-(propane-1,3-diylbis-(azan-1-yl-1-
ylidène))bis(2,6,6 triméthylbicyclo[3.1.1]-heptan-2-ol) <u>9</u> 117
4.2.3. (1R, 1'R, 2R, 2'R, 3S, 3'S, 5R, 5'R)-3,3'-(éthane-1,2-diylbis(azanediyl))bis(2,6,
triméthylbicyclo[3.1.1]-heptan-2-ol) <u>10</u> 117
4.2.4. (1R, 1'R, 2R, 2'R, 3S, 3'S, 5R, 5'R)-3,3'-(propane-1,3-diylbis(azanediyl))-bis-
(2,6,6 triméthylbicyclo[3.1.1]-heptan-2-ol) <u>11</u> 118

4.3. Les α-aminooximes
4.3.1. (1 <i>S</i> ,4 <i>R</i>)-1-phénylamino-p-menth-8-en-2-one oxime <u>12</u>
4.3.2. (1 <i>S</i> ,4 <i>R</i>)-1-benzylamino-p-menth-8-en-2-one oxime <u>13</u>
4.3.3. (1 <i>S</i> ,4 <i>R</i>)-1- <i>iso</i> propylamino-p-menth-8-en-2-one oxime <u>14</u>
4.3.4. (1 <i>S</i> ,4 <i>R</i>)-1-picolylamino-p-menth-8-en-2-one oxime <u>15</u>
4.4. Les α-aminooxime-éthers121
4.4.1. (1 <i>S</i> , 4 <i>R</i>)-aminooxime-éther <u>16</u>
4.4.2. (1 <i>S</i> , 4 <i>R</i>)-aminooxime-éther <u>17</u> 122
4.4.3. (1 <i>S</i> , 4 <i>R</i>)-aminooxime-éther <u>18</u>
4.5. Les diamines
4.5.1. (1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-diamine <u>19</u>
4.5.2. (1 <i>S</i> ,2 <i>R</i> ,4 <i>R</i>)-diamine <u>20</u>
5. Complexes catalytiques
5.1. Les précurseurs catalytiques126
5.2. Synthèse par déplacement de l'arène
5.3. Les intermédiaires catalytiques
5.3.1. [RuCl{ η^6 - <i>p</i> -cymène}{(1 <i>S</i> ,4 <i>R</i>)-aminooxime <u>12</u>] ⁺ Cl ⁻ (C1)
5.3.2. [RuCl{ η^6 - <i>p</i> -cymène}{(1 <i>S</i> ,4 <i>R</i>)-aminooxime <u>13</u>] ⁺ Cl ⁻ (C2)
5.3.3. [RuCl{ η^6 - <i>p</i> -cymène}{(1 <i>S</i> ,4 <i>R</i>)-aminooxime <u>13</u>] ⁺ (A1)
5.3.4. [RuCl{ η^6 - <i>p</i> -cymène}{(1 <i>S</i> ,4 <i>R</i>)-aminooxime <u>12</u>] ⁺ (A2)
5.3.5. [RuH{ η^6 - <i>p</i> -cymène}{(1 <i>S</i> ,4 <i>R</i>)-aminooxime <u>13</u>] ⁺ (F)129

Chapitre VI : Annexes

1. Données radiocristallographiques	133
2. Ligand type N,N dérivé du (+)-camphre	143
3. Liste des publications et communications	147
3.1. Publications	147
3.2. Communications	147

Chapitre VII : Références bibliographiques	<u>r</u> 1	14	9
--	------------	----	---

Introduction générale

La chiralité est un concept fondamental dans la vie quotidienne. La synthèse de nouvelles molécules optiquement pures présente un véritable challenge dans leurs développements pour l'agrochimie, la cosmétique, la parfumerie et avant tout l'industrie pharmaceutique.

La recherche de nouveaux ligands chiraux pour la catalyse énantiosélective constitue un des objectifs les plus importants de la chimie moderne et aussi le centre d'intérêt de nombreux laboratoires de recherche.

L'importance de la catalyse asymétrique par les complexes organométalliques chiraux a été démontrée par son application dans la synthèse de molécules cibles bioactives (produits pharmaceutiques, agrochimiques, parfums, édulcorants...). Les industries, qui opèrent dans ces domaines, commercialisent un seul énantiomère qui est la molécule cible, d'où la nécessité d'un contrôle parfait de la stéréochimie des réactions de synthèses. Parmi toutes les voies d'accès possibles, la catalyse asymétrique est certainement la plus intéressante car elle permet des procédés sélectifs, économiques et tolérants de l'environnement, conditions exigées pour le développement de l'industrie chimique moderne. Le ligand chiral coordonné au métal joue un rôle primordial pour l'efficacité (activité et sélectivité) du catalyseur.

Dans cette thématique, nous avons choisi de développer une nouvelle famille de coordinats chiraux à partir de terpènes naturels optiquement purs qui représentent souvent plus de 80% des essences naturelles et sont très abondants au Maroc. Les terpènes existent dans la nature sous forme optiquement pure. Ces composés, de par leur structure qui se prête facilement à des réactions de fonctionnalisation, comportent un ou plusieurs centres de chiralité qui les placent en première ligne comme précurseurs potentiels de coordinats optiquement actifs.

Les ligands synthétisés ont ensuite été appliqués en catalyse asymétrique sur des complexes de métaux de transition dans la réaction de réduction asymétrique par transfert d'hydrogène.

Dans le premier chapitre, nous présenterons un résumé bibliographique sur l'intérêt des alcools chiraux fonctionnalisés et leurs modes d'obtention avec quelques exemples d'applications notamment dans l'industrie pharmaceutique.

Dans le second chapitre, nous présenterons brièvement l'historique de la réduction asymétrique par transfert d'hydrogène avec les principaux résultats obtenus par des complexes de métaux de transition associés à différents coordinat chiraux.

Dans le troisième chapitre, nous développerons les synthèses et les réactivités de nouveaux coordinats chiraux dérivés de terpènes naturels dans la réaction de transfert d'hydrogène catalysée par des complexes de métaux de transition. Nous étudierons aussi l'aspect mécanistique de cette réaction. Chapitre I

Synthèses d'alcools chiraux

1. Chiralité – Molécules optiquement pures

A l'origine, le terme chiralité vient du mot grec ``kheir´´ qui signifie main. En effet, tel une main, un objet chiral, en particulier une entité moléculaire chirale, n'est pas superposable à son image dans un miroir (figure 1). Cette propriété est une caractéristique fondamentale de la vie. Dans la nature, la plupart des objets sont chiraux et sont produits et utilisés sous une forme énantiomorphe.

Figure 1

Deux énantiomères de la même substance peuvent présenter des propriétés physiologiques différentes. De fait, d'un point de vue biologique, les récepteurs gustatifs et olfactifs sont capables de distinguer les énantiomères d'une structure moléculaire donnée.

Le schéma suivant, présente quelques exemples de différence de propriétés des deux énantiomères de la même substance.

Les exemples précédents montrent que l'utilisation d'un principe sous forme énantiopure présente plusieurs avantages. Par exemple, la L-DOPA est un médicament qui entre dans le traitement de la maladie de Parkinson, par contre l'autre énantiomère reste biologiquement inactif, et peut provoquer des effets secondaires voire être toxique.

De nombreux domaines sont aussi concernés par l'utilisation de molécules énantiomériquement pures. Par exemple dans l'agrochimie, les composés chiraux trouvent leurs applications dans la fabrication et l'utilisation des pesticides, dont le mode d'action et les effets dépendent de leur configuration. Par exemple le (R)-(+)-dichlorprop est l'énantiomère actif (figure 2), alors que le (S)-(-)-dichlorprop est inactif.

Figure 2

(R)-acide-2-(2,4-dichlorophenoxy)propionique

2. L'intérêt des alcools chiraux fonctionnalisés

Les alcools chiraux fonctionnalisés et surtout les alcools secondaires comptent parmi les grands intermédiaires clés de la synthèse de nombreuses molécules cibles, notamment pour l'industrie pharmaceutique. En effet, ils permettent l'introduction d'un centre asymétrique dans la molécule, tout en autorisant la poursuite de la synthèse grâce au groupement hydroxy qui peut aisément être transformé en d'autres groupements par exemple, en amine, thiol, éther etc

L'exemple suivant montre une voie d'obtention du chlorhydrate de la cétirizine, un antihistaminique plus connu sous le nom de Zyrtec[®] (schéma 1)¹.

¹ a) Corey, E. J.; Link, J. O. J. Am. Chem. Soc. 1992, 114, 1906.

b) Corey, E. J.; Christopher, J. H. Tetrahedron Lett. 1995, 36, 9153.

c) Corey, E. J.; Christopher, J. H. Tetrahedron Lett. 1996, 37, 5675.

Schéma 1

La figure 3 présente des exemples d'alcools chiraux fonctionnalisés. Ces composés se sont révélés très efficaces dans le traitement de maladies du cœur.^{2,3,4}

Figure 3

3. Modes d'obtention d'alcools optiquement actifs.

Compte tenu de leur importance, diverses méthodes pour l'obtention de ces composés ont été développées. Elles peuvent être classées en trois catégories.⁵

² a) Lefkowitz, R.J. *Ann. Rep. Med. Chem.* **1980**, *15*, 217. b) Frishman, W. H. *New Engl. J. Med.* **1981**, *305*. 500.

³ Corey, E. J.; Link, J.O. J. Org. Chem. 1991, 56, 442.

⁴ Miyano, S.; Lu, L. D. L.; Viti, S. M.; Sharpless, K. B. J. Org. Chem. 1983, 48, 3608.

⁵ Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley ; New York 1994.

Initialement, au début des années 1970, le dédoublement classique d'un mélange racémique par transformation en diastéréoisomères à l'aide d'un agent chiral pur a été la principale méthode utilisée pour obtenir des composés optiquement actifs. Par cette méthode, on peut obtenir les deux énantiomères mais avec seulement 50% de rendement en l'énantiomère désiré, ce qui limite l'utilisation de cette méthode. Toutefois , il faut signaler que des techniques de précipitation sélectives du diastéréoisomère formé souhaité ont pu être mises en œuvre, et qu'une racémisation *in situ* de l'énantiomère non désiré permet de rendre cette transformation totale. En tout état de cause, une régénération de l'énantiomère et de l'agent de dédoublement sont nécessaires.

Le deuxième mode d'obtention d'alcools optiquement purs est la transformation sélective d'un composé optiquement pur issu du milieu naturel (*chiral pool*). Les synthons ainsi transformés sont généralement des acides aminés, des terpènes, des glucides et des alcaloïdes. Mais malheureusement, l'intérêt de ce procédé reste limité car les synthons utilisés ne sont généralement accessibles que sous la forme d'un seul énantiomère.

La dernière méthode d'obtention d'alcools optiquement purs est la synthèse asymétrique. Elle consiste à réduire un substrat prochiral insaturé en un produit chiral

4. Synthèse asymétrique

4.1. Formation d'une liaison Carbone-Carbone

L'addition de réactifs tels que des alkyllithiens, des dérivés magnésiens et des dérivés zinciques sur un groupement carbonyle est une voie classique de formation de liaison C-C. Le centre chiral peut être formé grâce à l'utilisation d'un réactif optiquement pur. Le schéma 2 donne un exemple de réaction d'un organozincique avec un aldéhyde.⁶

Schéma 2

⁶ Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071

D'autres exemples de synthèses d'alcools chiraux par formation de liaison C-C ont été développés ; nous citons par exemple la réaction de nitroaldolisation.^{7,8} Le schéma 3 illustre un exemple de cette réactions.^{8,9}

Schéma 3

4.2. Formation d'une liaison Carbone-Oxygène

Les alcools chiraux peuvent aussi être obtenus par hydrosilylation ou hydroboration d'oléfines suivie d'une oxydation. L'hydrosilylation du norbornène, catalysée par un complexe du palladium¹⁰ ou l'hydroboration du styrène, catalysée par un complexe du rhodium¹¹ sont deux exemples conduisant à d'excellentes énantiosélectivités (schéma 4)

⁷ Wills, M.; Tye, H. J. Chem. Soc., Perkin Trans 1 **1999**, 1109-1132

⁸ a) Sawamura, M.; Ito, Y. *Catalytic Asymmetric Synthesis*, Ojima, I. *Ed*, *VCH Publishers*; New York, **1993**, chap 7.2

b) Nogradi, M. Stereoselective Synthesis, VCH Publishers; New York, 1995, chap 5.3.

⁹ a) Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura, K.; Shibasaki, M. J. Am. Chem. Soc. **1993**, *115*, 10372

b) Shibasaki, M.; Sasai, H. Pure & Appl. Chem. 1996, 68, 523

¹⁰ a) Uozumi, Y.; Hayashi, T., J. Am. Chem. Soc. **1991**, 113, 9887

b) Uozumi, Y.; Lee, S-Y.; Hayashi, T., Tetrahedron Lett. 1992, 33, 7185

¹¹ a) Hayashi, T.; Matsumoto, Y.; Ito, Y., J. Am. Chem. Soc. 1989, 111, 3426

b) Sato, M.; Miyama, N.; Suzuki, A., Tetrahedron Lett. 1990, 31, 231

c) Zhang, J.; Lou, B.; Guo, G.; Dai, L., J. Org. Chem. 1991, 56, 1670

Schéma 4

D'autres voies de synthèse ont été aussi utilisées pour la synthèse des alcools chiraux. Citons comme exemples l'époxydation asymétrique des oléfines suivie de l'ouverture du cycle par un nucléophile, la dihydroxylation asymétrique et la carbométhoxylation régio et énantio-sélective d'oléfines^{12,13} (schéma 5).

Schéma 5

Néanmoins, la méthode la plus simple d'obtention d'alcools chiraux s'avère être la réduction asymétrique des cétones.

¹² Hinterding K.; Jacobsen, E., J. Org. Chem. 1999, 64, 2164

¹³ Krief, A.; Colaux-Castillo, C. Pure Appl. Chem. 2002, 74, 107

4.3. Réduction asymétrique des cétones

La synthèse des alcools chiraux par réduction asymétrique des cétones correspondantes peut être réalisée selon trois principales méthodes utilisées avec succès.

4.3.1. Réduction asymétrique par les hydrures chiraux (oxazaborolidines)

La réduction des cétones par des hydrures chiraux basés sur la structure oxazaborolidine a été développée par Corey^{14,15} (schéma 6). Ce type d'agent inducteur de chiralité fournit d'excellents résultats en terme d'activité et d'énantiosélectivité (ee de l'ordre de 95% en quelques minutes). Cependant, le catalyseur est souvent utilisé en quantité importante (10 % par rapport au substrat) et la non-compatibilité des boranes avec certains groupements fonctionnels limite quelque peu leur utilisation.

Schéma 6

4.3.2. Hydrogénation asymétrique

Face aux divers inconvénients de la méthode précédente, l'hydrogénation asymétrique reste la méthode la plus efficace pour la synthèse des alcools chiraux et présente plusieurs avantages.

Selon la source d'hydrogène, il est possible d'effectuer l'hydrogénation par l'hydrogène moléculaire, ou bien de réaliser un transfert d'hydrogène à l'aide d'un donneur d'hydrogène qui est généralement un alcool secondaire ou l'acide formique. Ces deux procédés s'avèrent évidemment très intéressants d'un point de vue économique.

Dans un premier temps, nous décrirons un bref aperçu sur la réduction énantiosélective par l'hydrogène moléculaire, avant de nous tourner plus précisément vers le transfert d'hydrogène à partir d'isopropanol qui fera l'objet de nos travaux.

¹⁴ Corey, E. J; Bakshi, R.; Shibata, S., J. Am. Chem. Soc. 1987, 109, 5551

¹⁵ Corey, E. J; Bakshi, R.; Shibata, S.; Chen, C.; Singh, V., J. Am. Chem. Soc. **1987**, 109, 7925

• Hydrogénation asymétrique par l'hydrogène moléculaire

La plupart des catalyseurs organométalliques utilisés pour l'hydrogénation asymétrique de doubles liaisons sont à base de métaux de transition du groupe VIII, tel que le ruthénium, le rhodium et l'iridium. D'une manière générale, le métal est associé à un ligand chiral qui va induire l'énantiosélectivité sur l'alcool.

Les diphosphanes représentent une classe très importante de ligands chiraux. Leur développement a joué un rôle très important dans le développement de l'hydrogénation asymétrique. En effet, l'exploration de ligands phosphorés chiraux a commencé à la fin des années 1960 et se poursuit aujourd'hui.

Durant la période 1970-1980, les travaux de Knowles¹⁶ et Kagan¹⁷, ont démontré avec la synthèse de la DIPAMP et de la DIOP, que la chiralité d'un ligand type diphosphane pouvait induire efficacement l'asymétrie. De nombreuses diphosphines chirales ont été découvertes par la suite au cours de cette période.

Entre 1980 et 1992, Noyori et al^{18,19,20} ont décrit une diphosphine chirale, la BINAP de symétrie C2 associé au rhodium ou au ruthénium pour l'hydrogénation asymétrique de diverses oléfines et cétones fonctionnalisées (schéma 7).

¹⁶ a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, O. J. J. Am. Chem. Soc. 1977, 99, 5946

b) Knowles, W. S. Acc. Chem. Res. **1983**, *16*, 106¹⁷ a) Kagan, H. B.; Dang, T. P. Chem. Commun. **1971**, 481

b) Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429

c) Kagan, H. B.; Langlois, N.; Dang, T. P. J. Organomet. Chem. 1975, 90, 353

¹⁸ Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito. T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102.7932

¹⁹ Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R. Tetrahedron 1984, 40, 1245

²⁰ a) Noyori, R.; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. **1986**, 108, 7117 b) Hitamura, M.; Hsiao, Y.; Noyori, R.; Takaya, H. Tetrahedron Lett. 1987, 28, 4829

c) Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Inoue, S.-I.; Kasahara, I.; Noyori, R. J. Am. Chem. Soc. 1987, 109, 1596

d) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 3174

Schéma 7

Le grand inconvénient de tels systèmes catalytiques est que la plupart des ligands diphosphanes conduisent à des complexes qui ne se sont pas actifs et énantiosélectifs pour l'hydrogénation asymétrique des cétones non fonctionnalisées²¹.

Cependant, Noyori et al²² ont utilisé un système catalytique capable d'hydrogéner des cétones aromatiques. Ce système est basé sur l'utilisation d'une diamine chirale pour activer le complexe Ru-BINAP. Cette étude a montré que la réduction est le résultat d'un effet de synergie entre la diphosphine et la diamine.

Le schéma 8 montre un exemple d'utilisation efficace de ce système dans l'hydrogénation asymétrique de cétones aromatiques²².

Schéma 8

²¹ Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. **2000**, *Comprehensive Asymmetric Catalysis*, Springler-Verlag, Berlin Heidelberg, chap. 6.1.3., p 23

²² Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675

D'autre part, pour éviter le dédoublement du binaphtol dans la synthèse du ligand BINAP, Noyori et al.²³ ont aussi développé un nouveau concept basé sur l'utilisation d'un complexe phosphoré racémique du ruthénium. En effet, le centre métallique est complexé par la diphosphine introduite en mélange racémique et la 1,2-diamine ((*S*,*S*)-DPEN) qui joue le rôle d'activateur asymétrique, et qui interagit avec le complexe [RuCl₂((rac)-TolBINAP)(DMF)_n] de manière irréversible formant deux complexes diastéréoisomériques. Selon la structure de la cétone introduite, l'un ou l'autre des deux diastéréroisomères est à la base du cycle catalytique tournant le plus vite.

A titre d'exemple significatif, la réaction décrite dans le schéma 9 a été étudiée sur le plan cinétique, et il a été démontré que le complexe diastéréoisomérique portant les ligands de configuration (*S*,*SS*) fournit l'alcool avec un rapport *R*/*S* de 98,7 / 1,3 et rend compte d'une vitesse relative 13 fois plus rapide que celui portant les ligands de configuration (*R*,*SS*) qui forme l'alcool avec une sélectivité *S*/*R* de 54 / 46 ²³.

Schéma 9

Inspiré par le travail de Noyori sur la chimie de Ru-BINAP, d'autres groupes de recherche ont développé de nombreux ligands diphosphines.

La figure 4 représente quelques structures de diphosphines fréquemment citées dans la littérature pour l'hydrogénation asymétrique.

²³ T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M.Terada, R. Noyori, J. Am. Chem. Soc. **1998**, 120, 1086

Figure 4

Contrairement aux diphosphines classiques telles que la DIOP¹⁷ ou la BINAP¹⁸ qui sont de symétrie C2, d'autres ligands chiraux ont joué aussi un rôle très important dans l'hydrogénation asymétrique des liaisons insaturées. Parmi ces coordinats, les aminophosphine-phosphinites (AMPP), qui sont facilement accessibles à partir d'aminoalcools ou d' α -aminoacides, et se distinguent des diphosphines classiques par la présence des deux atomes de phosphore qui diffèrent par la nature de l'hétéroatome adjacent.

Le schéma 10 illustre un exemple d'application d'un aminophosphine-phosphinite optiquement pur en réduction du dihydro-4,4-diméthyl- 2,3-furandione²⁴.

Schéma 10

²⁴ Roucoux, A.; Thieffry, L.; Carpentier, J. F.; Devocelle, M.; Méliet, C.; Agbossou, F.; Mortreux, A. *Organometallics* **1996**, *15*, 2440.

De même, ces ligands ont été mis en œuvre avec succès en réactions d'hydrogénation de chloro cétones, céto-amides et céto-amines, conduisant dans ce dernier cas à la mise au point d'une synthèse originale impliquant l'utilisation de deux réactions d'hydrogénation asymétrique pour l'obtention des deux centres chiraux dans le composé référencé SR 58611²⁵ (schéma 11).

Schéma 11

Grâce à l'hydrogénation asymétrique catalytique, beaucoup d'alcools chiraux et leurs dérivés fonctionnalisés ont été synthétisés. Néanmoins, cette méthode peut présenter un inconvénient : la réduction par l'hydrogène moléculaire nécessite souvent de travailler sous pression, ce qui implique l'utilisation d'un appareillage spécifique et coûteux sans compter les risques encourus liés à la manipulation d'hydrogène et de systèmes placés sous haute pression.

Une solution alternative permettant de pallier cet inconvénient consiste à utiliser une autre source d'hydrogène, nous parlerons alors de la réduction par transfert d'hydrogène dont l'étude bibliographique est reportée dans le chapitre suivant.

²⁵ Devocelle, M.; Mortreux, A.; Agbossou, F.; Dormoy, J-R. Tetrahedron Lett. 1999, 40, 4551

Chapitre II Réduction asymétrique par transfert d'hydrogène

L'hydrogénation par transfert d'hydrogène est définie comme ``la réduction d'une liaison multiple à l'aide d'un donneur d'hydrogène et en présence d'un catalyseur^{--26,27}. Cette réaction peut être schématisée comme indiqué ci-dessous (Schéma 12).

Schéma 12

La réaction de transfert d'hydrure est connue depuis 1925. A l'origine, cette réaction était connue sous le terme de réduction de Meervein-Pondorf-Verley (MPV)²⁸. L'*iso*propylate d'aluminium était utilisé comme catalyseur et l'*iso*propanol comme source d'hydrogène. Suite à ces travaux, d'autres systèmes métalliques ont été développés, comme des alcoolates de métaux alcalins ou de lanthanides, et même des catalyseurs hétérogènes (oxydes de métaux ou zéolithes)²⁹. L'inconvénient majeur de cette méthode est que l'alcoolate d'aluminium doit souvent être utilisé en quantité stœchiométrique, ce qui représente un désavantage pour une utilisation à grande échelle.

Le schéma 13 présente le mécanisme proposé pour la réduction de MPV. Il fait intervenir un transfert direct d'hydrogène du donneur (*i*PrOH) vers l'accepteur (cétone), les deux étant liés au métal^{26, 28}.

²⁶ Palmer, M. J.; Wills, M. Tetrahedron : Asymmetry 1999, 10, 2045

²⁷ Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. **1992**, 92, 1051

²⁸ a) Meerwein, H.; Schmidt, R. Ann. Chem. **1925**, 444, 221

b) Verley, A. Bull. Soc. Chim. Fr. 1925, 37, 537

c) Pondorf, W. Angew. Chem. 1926, 39, 138gf

²⁹ De Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007

Schéma 13

Une version énantiosélective de cette réduction MPV a été décrite par l'équipe d'Evans³⁰. Il s'agit d'une réduction d'arylalkylcétones catalysée par des complexes de samarium associés à un auxiliaire chiral tridentate de type N,O,N. Des alcools chiraux ont été obtenus avec d'excellents excès énantiomériques de l'ordre de 97% (schéma 14). Mais cet exemple performant reste toutefois un cas isolé et particulier.

Schéma 14

D'autres travaux basés sur l'utilisation des diols comme ligands chiraux en association avec l'erbium³¹ ou le zirconium³² ont été effectués par la suite sur des dérivés de l'acétophénone et ont conduit à des excès énantiomériques inférieurs à 60% avec des rapports Substrat/Catalyseur très faibles (S/C = 5).

³⁰ Evans, D. A.; Nelson, S. G.; Gagné, M. R.; Muci, A. R. J. Am. Chem. Soc. 1993, 115, 9800

³¹ Hu, X. M.; Kellog, R. M. *Rec. Trav. Chim. Pays Bas* **1996**, *115*, 410

³² a) Knauer, B.; Krohn, K. *Liebigs Ann.* **1995**, 677

b) Krohn, K.; Knauer, B. Rec. Trav. Chim. Pays Bas 1996, 115, 140

1. Etudes mécanistiques de l'hydrogénation de cétones par transfert d'hydrogène

D'un point de vue mécanistique, deux possibilités sont proposées et coexistent pour expliquer la réduction par transfert d'hydrogène^{26,27} : le transfert direct d'hydrogène et la voie dite « hydrure».

1.1. Transfert direct d'hydrogène

En transfert direct d'hydrogène, ce dernier est transféré directement entre le donneur (*i*PrOH) et l'accepteur (cétone), tous deux étant liés au métal. Le mécanisme est censé passer par un état de transition cyclique à six chaînons (schéma 15). Ce mécanisme a été initialement proposé pour la réduction de Meerwein-Ponndorf-Verley, pour laquelle $Al(Oi-Pr)_3$ est utilisé comme catalyseur²⁸.

Schéma 15

1.2. La voie `` Hydrure ''

La voie hydrure est souvent considérée lorsque la réaction est réalisée en présence d'un catalyseur organométallique à base d'un métal de transition : rhodium, ruthénium, iridium). De manière assez caractéristique, il se forme dans le milieu un hydrure métallique, généralement formé par élimination β -hydrure provenant d'un donneur comme le propan-2-ol (schéma 16)^{33,26}. L'hydrogène est ensuite transféré à partir du métal vers l'accepteur (par exemple la cétone).

Schéma 16

³³ Sasson, Y.; Blum, J. J. Org. Chem. **1975**, 40, 1887.

Généralement, le mécanisme exact de fonctionnement dans un système donné dépend du catalyseur métallique et du donneur d'hydrogène. La voie hydrure peut encore être scindée en deux mécanismes dits ``monohydrure´´ et ``dihydrure´´ en fonction du nombre d'atomes d'hydrogène portés par le métal durant le processus.

Dans le mécanisme monohydrure, l'hydrure métallique M-H provient uniquement du C-H₁ du donneur d'hydrogène (l'*iso*propanol), et se transfère sur le carbone du carbonyle du substrat (schéma 17, chemin 1). Dans la voie dihydrure, les deux hydrogènes C-H¹ et O-H² de l'alcool sont transférés au métal, et donc dans ce cas, le catalyseur ne fait pas la distinction entre les 2 hydrures. Les deux hydrures H¹ et H² peuvent alors être transférés sur l'oxygène de la cétone (schéma 17, chemin 2).Ces mécanismes peuvent néanmoins être distingués l'un de l'autre par marquage au deutérium^{34,35}.

Schéma 17

Pour les réactions de transfert d'hydrogène catalysées par une espèce monohydrure métallique, deux chemins réactionnels différents sont proposés. La formation de l'hydrure métallique peut en effet impliquer :

-1- soit le passage par un alcoolate *via* la coordination de l'alcool sur le métal, suivie d'une β -élimination et d'un transfert des hydrogènes dans la sphère interne de métal : on parle alors de mécanisme de sphère interne.

-2- soit le transfert des hydrogènes dans la sphère externe du métal sans participation d'un alcoolate lié au métal : c'est le mécanisme dit de sphère externe.

³⁴ Laxmi, Y. R. S.; Bäckvall, J.-E. *Chem. Commun.* **2000**, 611.

³⁵ Pamies, O.; Bäckvall, J.-E. Chem. Eur. J. 2001, 7, 5052.

La différence principale est que l'alcool est coordiné directement au métal dans le mécanisme de sphère interne. Par contre, il agit sans coordination directe au métal dans le mécanisme de sphère externe. Mais dans les deux cas, l'hydrure métallique migre ensuite du métal vers le carbone du carbonyle pour former la liaison CH.

Dans le mécanisme par sphère interne, la cétone prochirale se coordine sur le métal *via* une π -coordination de la double liaison, puis est insérée dans la liaison métal-hydrure de l'hydrure métallique **1** (schéma 18) pour former l'alcoolate **2**. La substitution de l'alcool dans **2** par l'*iso*propanol en excès conduit à l'alcool chiral désiré, et finalement l'hydrure métallique **1** est régénéré par β -élimination.

Schéma 19 : Mécanisme de sphère interne

Dans le mécanisme par sphère externe, l'alcool ne se trouve jamais coordiné sur le métal. Ce type de mécanisme non usuel a été proposé pour la première fois par Noyori et al.^{36,37} qui l'ont formulé après étude du système Ru/TsDPEN (schéma 19). L'hydrure actif **5** est alors produit par le transfert de protons, à partir de l'*iso*propanol vers l'intermédiaire **4** grâce à un mécanisme concerté à six centres décrit sur l'intermédiaire **A**. La cétone prochirale est convertie en alcool de la même manière, par le transfert simultané de l'hydrure du ruthénium et du proton NH du ligand dont l'hydrogène établit une liaison hydrogène avec l'oxygène de la cétone à réduire.

³⁶ Noyori, R.; Hashiguchi, S. Acc. Chem. Res. **1997**, *30*, 97.

³⁷ Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285.

Schéma 19 : Mécanisme de sphère externe

2. Les principaux systèmes catalytiques pour l'hydrogénation par transfert d'hydrogène

2.1. Donneur d'hydrogène

Le donneur d'hydrogène le plus souvent utilisé pour l'hydrogénation par transfert d'hydrogène est l'*iso*propanol (généralement en présence d'hydroxyde de potassium ou de sodium comme base). Cette source d'hydrogène se montre très efficace et présente en plus de nombreux avantages tels son faible coût, sa non-toxicité, son point d'ébullition adapté (82°C) à la réaction effectuée et sa capacité à solubiliser une grande partie des composés organiques.
D'autre part, son produit de déshydrogénation, l'acétone peut être facilement éliminée du milieu dans le cas d'une réaction équilibrée défavorable.

Ce phénomène de réversibilité peut affecter les résultats catalytiques. Afin de pallier cet inconvénient, un second donneur d'hydrogène est aussi utilisé : l'acide formique généralement sous forme d'un azéotrope avec la triéthylamine. Celui-ci conduit à des réactions exothermiques et surtout irréversibles par élimination de CO_2 , permettant ainsi de mener la réduction de la cétone jusqu'à une conversion totale.²⁶

2.2. Précurseurs catalytiques

Les catalyseurs les plus souvent utilisés pour la réduction asymétrique par transfert d'hydrogène sont des complexes des métaux de transition essentiellement à base de Ru, Rh et Ir. D'une manière générale, ces catalyseurs sont souvent commerciaux ou facilement accessibles.

2.3. Le rôle de la base

La présence d'une base minérale telle que KOH, NaOH ou *i*PrOK est indispensable pour former l'espèce catalytique. Dans ce cas, la réaction est régie par un équilibre déplacé vers la formation du produit de réduction lorsque le donneur d'hydrogène est en excès.

2.4. Ligands chiraux utilisés dans la réduction par transfert d'hydrogène

De nombreux ligands chiraux associés à des complexes à base de métaux de transition (Ru, Rh et Ir) ont été utilisés pour l'hydrogénation énantiosélective de cétones par transfert d'hydrogène.²⁶ Dans ce paragraphe, nous donnerons un bref résumé des différents ligands les plus fréquemment cités dans la littérature, avec une comparaison de leurs efficacités relatives.

2.4.1. Ligand P et P,P

Les complexes à base de Ru, Rh et Ir contenant des phosphines et diphosphines ont été utilisés en réduction asymétriques par transfert d'hydrogène.^{38,39,40} La BINAP, la DIOP et la

³⁸ Bianchi, M.; Matteoli, U.; Menchi, G.; Frediani, P.; Pratesi, S.; Piacenti, F.; Botteghi, C. J. Organomet. Chem. **1980**, *198*, 73.

³⁹ Spogliarich, R.; Kaspar, J.; Graziani, M.; Morandini, F. J. Organomet. Chem. **1986**, 306, 407.

⁴⁰ Krause, H. W.; Bhatnagar, A. K. J. Organomet. Chem. **1986**, 302, 265.

PROPHOS ont essentiellement été testées.²⁶ En général, les conversions et les énantiosélectivités obtenues sont modérées.

Krause et al⁴⁰ ont étudié l'activité catalytique de complexes iridiés préparés *in situ* par la réaction du complexe [Ir(COD)(acac)] avec 1 équivalent de HBF₄ et 2 équivalents de ligandMDPP ou DMPP dans la réaction de réduction de l'acétophénone (schéma 20). La conversion maximale atteint 81%. Cependant les excès énantiomériques restent modestes et ne dépassent pas 40%.

Schéma 20

En 1993, Genêt a décrit une série de catalyseurs à base de ruthénium du type $[RuP_2*Br_2]$ où P* est une diphosphine telle que la (*R*)-PROPHOS. Les conversions obtenues sont bonnes mais les excès énantiomériques restent modestes (4-52%)(schéma 21).⁴¹

Schéma 21

L'utilisation de diphosphines dérivées du ferrocène ^{42,43}, a permis d'augmenter l'excès énantiomérique jusqu'à 72% (schéma 22).

⁴¹ Genêt, J.-P.; Ratovelomanana-Vidal, V.; Pinel, C. Synlett 1993, 478

⁴² Cabou, J.; Brocard. J.; Pélinski. L. Tetrahedron Lett. 2005, 46, 1185

⁴³ Barbaro, P.; Bianchini, C.; Togni, A. Organometallics **1997**, *16*, 3004

2.4.2. Ligands mixtes P,N

Des ligands optiquement purs de type oxyde de β -aminophosphine associés à un précurseur ruthénié ont également été utilisés pour la réduction d'arylalkylcétones. Ils ont permis de réduire l'acétophénone avec un excès énantiomérique relativement modeste (45%) et qui évolue favorablement à 84% dans le cas du substrat 2-méthylpropiophénone (schéma 23).⁴⁴

⁴⁴ Maj, A.; Pietrusiewicz, K.; Suisse, I.; Agbossou, F.; Mortreux, A. *Tetrahedron : Asymmetry* **1999**, *10*, 831.

Le même type de ligand a suscité l'intérêt d'un travail de recherche de l'équipe de Hii⁴⁵ (schéma 24). Les performances de ces coordinats sur un complexe à base de ruthénium au cours de la réduction de l'acétophénone dans l'*iso*propanol restent modestes au vu des meilleures sélectivités obtenues (jusqu'à 45% d'ee). L'utilisation de la phosphine correspondante conduit à une conversion nettement supérieure avec néanmoins le même niveau de la sélectivité.

Schéma 24

Des bases de Schiff tridentates dérivées du ferrocène ont été associées au précurseur $Ru(DMSO)_4Cl_2$. L'hydrogénation par transfert d'hydrogène de l'acétophénone à l'aide de ces catalyseurs offre de bonnes conversions (81%) et des excès énantiomériques modestes qui n'excèdent pas 50% (schéma 25).⁴⁶ Si le temps de réaction est prolongé, l'activité catalytique augmente à 98% mais l'énantiosélectivité chute à 35%.

conv = 81%, ee = 50% apres 30min conv = 98%, ee = 35% après 2h

⁴⁵ Rahman, M.; Oliana, M.; Hii, K., Tetrahedron : Asymmetry 2004, 15, 1835

⁴⁶ Dai, H.; Hu, X.; Chen, H.; Bai, C.; Zheng, Z. Tetrahedron : Asymmetry 2003, 14, 1467

2.4.3. Ligands non phosphorés

• Oxazoline

Des complexes préparés *in situ* par réaction d'une oxazoline dérivée de l'acide 8quinoléine sur le précurseur [RuCl₂(*p*-cym)]₂ ont été appliqués par Zhou pour la réduction de cétones aromatiques.⁴⁷ Dans le cas de l'hydrogénation de l'acétophénone, l'ee augmente de 44% à 78% lorsque la température diminue de 82°C à -20°C (schéma 26).Il est précisé dans cette publication que la présence d'une fonction NH dans l'auxiliaire chiral est très importante pour obtenir des énantiosélectivités élevées.

Schéma 26

Récemment, un analogue dérivé de la pyrrolidine associé au précurseur $[Ir(COD)Cl]_2$ s'est avéré actif pour la réduction de l'acétophénone, puisque une conversion de 88% et un excès énantiomérique de 41% ont été observés (schéma 23)⁴⁸. Le même auxiliaire associé au précurseur $[RuCl_2(p-cym)]_2$ permet d'améliorer l'énantiosélectivité (ee = 61%), mais la conversion reste relativement modérée et ne dépasse pas 73% (schéma 27).

⁴⁷ Zhou, Y, B.; Tang, F, Y.; Xu, H, D.; Wu, X, Y.; Jun-An Ma, J, A.; Zhoua, Q,Y.; *Tetrahedron : Asymmetry* **2002**, *13*, 469

⁴⁸ McManus, H.A.; Barry, S.M.; Andersson, P.G.; Guirya, P.J. Tetrahedron 2004, 60, 3405

• **Bis(oxazoline)**

La combinaison de deux unités oxazoline permet de former une pince chélatante azote-azote. Des complexes du Rh, Ir et Ru avec la bis(oxazoline) chirale ont été envisagés comme catalyseurs pour le transfert asymétrique d'hydrogène sur l'acétophénone.⁴⁹ Le système catalytique à base de Ru s'est montré le plus performant et a permis d'obtenir une conversion de l'ordre 50% et un excès énantiomérique de 89% (schéma 28).

Schéma 28

L'étude de la réaction a montré que la présence du groupement hydroxy dans la structure de ce ligand était nécessaire pour obtenir de bonnes énantiosélectivités. En effet, la protection du groupement hydroxy par un triméthylsilane a nettement diminué les deux paramètres conversion et énantiosélectivité (20% et 30% respectivement).

• Dérivés des aminoacides

Des complexes préparés *in situ* par la combinaison du précurseur $[RhCl_2Cp^*]_2$ et de pseudopeptides dérivés d'aminoacides ont été appliqués par Adolfsson dans la réduction par l'*i*sopropanol de cétones aromatiques.⁵⁰ Des conversions allant jusqu'à 89% et des énantiosélectivités variant de 22% à 96% ont été obtenues dans le cas de l'acétophénone (schéma 29), résultats qui sont fonction de la structure de l'aminoacide comme on peut s'y attendre.

⁴⁹ Debono, N.; Besson, M.; Pinel, C.; Djakovitch, L. Tetrahedron: Lett. 2004, 45, 2235

⁵⁰ Wettergren, J.; Zaitsev, A. B.; Adolfsson. H. Adv. Synth. Catal. 2007, 349, 2556

• Les bis(morpholine)s

Ce type de ligand a été envisagé par l'équipe de $Lopp^{51}$ en réduction de cétones aromatiques. Une étude a été faite sur l'influence des rapports relatifs ligand / métal / base / substrat afin d'obtenir les meilleures conditions. Des conversions supérieures à 90% et des excès énantiomériques jusque 83% ont été obtenus dans le cas de la 2-méthylbenzophénone (schéma 30).

Schéma 30

• Dérivés de la pyridine

Des complexes du Rh⁵² et de l'Ir⁵³ associés à des bipyridines, des phénanthrolines et des imines chirales ont été employés comme catalyseurs pour la réduction des cétones par transfert d'hydrogène.

⁵¹Kriis, K.; Kanger, T.; Lopp, M., Tetrahedron : Asymmetry 2004, 15, 2687

⁵²Botteghi, C.; Chelucci, G.; Chessa, G.; Delogu, G.; Gladiali, S.; Soccolini, F. J. Organomet. Chem. **1986**, 304, 217

 ⁵³ a) Gladiali, S.; Pinna, L.; Delogu, G.; De Martin, S.; Zassinovich, G.; Mestroni, G. *Tetrahedron : Asymmetry*.
 1990, *1*, 635

b) Zassinovich, G.; Bettella, R.; Mestroni, G.; Bresciani-Pahor, N.; Geremia, S.; Randaccio, L. J. Organomet. Chem. **1989**, 370, 187

Toutefois, les valeurs obtenues en termes d'énantiosélectivité sont peu élevées. Par exemple, l'utilisation d'une 3-alkylphénanthroline a permis d'obtenir un excès de 63% (schéma 31).

Schéma 31

2.4.4. Les diamines

Les 1,2-diamines chirales sont aussi utilisées comme agents de chiralité en catalyse asymétrique.

Lemaire et al^{54,55} ont étudié l'activité catalytique des complexes formés par association de diamines chirales de symétrie C2 avec des précurseurs à base de Rh, Ir et Ru. Les énantiosélectivités obtenues sont généralement modestes et le meilleur résultat a été obtenu avec le ligand (*S*,*S*)-N,N-diméthyl-1,2-diamine associé au dimère [Rh(COD)Cl]₂ lors de la réaction de transfert d'hydrogène sur l'acétophénone. Un excès énantiomérique de 67% a ainsi été obtenu, mais l'activité catalytique est faible (7 jours pour obtenir une conversion totale, avec un rapport cétone/ catalyseur = 5 %).

Dans le cas de la réduction du phénylglyoxylate de méthyle, le même système catalytique conduit, en une heure de réaction, a une conversion totale et un excès énantiomérique de 99% (schéma 32).

⁵⁴Gamez, P.; Fache, F.; Mangeney, P.; Lemaire, M. Tetrahedron Lett. 1993, 34, 6897

⁵⁵Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron: Asymmetry 1995, 6, 705

La même équipe a observé que l'utilisation d'une diurée préparée à partir de la diamine précédente comme agent chiral permet d'augmenter légèrement l'énantiosélectivité pour certains substrats, en particulier la propiophénone pour laquelle un ee de 80% a été obtenu (schéma 33).⁵⁶

Schéma 33

La modification du ligand diamide (diurée) en dithiourée a conduit à 91% d'ee et une conversion de 96% lorsqu'elle est combinée avec le complexe [Ru(benzène)Cl₂]₂ (schéma 34).⁵⁷ En revanche, la monothiourée s'est révélée peu performante, ce qui confirme le rôle incontournable de la symétrie C_2 pour ce type de ligand⁵⁸.

Schéma 34

La réduction catalytique par transfert d'hydrogène peut être conduite à basse température comme il a été montré par l'équipe de Knochel avec ses diamines ferrocéniques. Associés au ruthénium, ces ligands se sont avérés très efficaces à basse température (-30°C) et une hausse significative de l'ee a été observée (90% contre 78% pour l'acétonaphtone à 22°C) (schéma 35).⁵⁹

⁵⁶ Gamez, P.; Dunjic, B.; Lemaire, M. J. Org. Chem. 1996, 61, 5196

⁵⁷ Touchard, F.; Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron Lett. 1997, 38, 2275

⁵⁸ Touchard, F.; Fache, F.; Lemaire, M. Tetrahedron : Asymmetry 1997, 8, 3319

⁵⁹ a) Püntener, K. ;Schwink, L. ; Knochel, P. Tetrahedron Lett. 1996, 37, 8165

b) Schwink, L.; Ireland, T.; Püntener, K.; Knochel, P. Tetrahedron : Asymmetry 1998, 9, 1143

Un autre système catalytique décrit par Noyori et Inoue⁶⁰ utilise aussi une diamine chirale. Il s'agit d'un système à base d'iridium associé avec la (*S*)-DAIPEN ou ses dérivés. Celui-ci s'est révélé performant en hydrogénation par transfert d'hydrogène des arylalkylcétones. Dans le cas du substrat acétophénone, le produit de réduction a été obtenu après 12h avec de bonnes conversions (68-96%) et énantiosélectivités (53%-78%). D'autres arylalkylcétones ont également été réduites dans les mêmes conditions et les alcools correspondants sont obtenus, dans la plupart des cas, avec des énantiosélectivités satisfaisantes (schéma 36).

Schéma 36

Des diamines chirales issues de la proline associés à un Ru (II) ont été aussi testées en transfert d'hydrogène sur des cétones arylées.⁶¹ Ces systèmes ont permis de réduire l'acétophénone et la 2-méthoxyacétophénone avec respectivement 89% et 96% d'ee (schéma 37).

⁶⁰ a) Inoue, S. I.; Nomura, K.; Hashiguchi, S.; Noyori, R.; Izawa, Y. Chem. Lett. **1997**, 9, 957

b) Malacea, R.; Poli, R.; Manoury, E. Coord. Chem. Rev. 2010, 254, 729

⁶¹ Aitali, M.; Allaoud, S.; Karim, A.; Méliet, C.; Mortreux, A. *Tetrahedron : Asymmetry* **2000**, *11*, 1367

Des complexes à base d'iridium préparés *in situ* avec une nouvelle diamine de symétrie C_2 issue de la 1,2-diméthylcyclohexane ont été examinés dans la réduction par transfert d'hydrogène de cétones aromatiques.⁶² D'excellentes conversions (jusqu'à 100%) mais des énantiosélectivités moyennes ont été obtenues (schéma 38).

Schéma 38

2.4.5. Les diamines monotosylées

En 1995, de nouveaux ligands de type diamine ont été décrits. Il s'agit de la (S,S)-*N*-tosyl-1,2-diphényléthylènediamine ((S,S)-TsDPEN) découverte par l'équipe de Noyori. Ce ligand associé à des précurseurs du type [RuCl₂(arène)]₂, donne des catalyseurs très performants en réduction de nombreuses arylalkylcétone⁶³. Les alcools chiraux correspondant sont obtenus avec d'excellentes activités et énantiosélectivités (98% d'ee) (schéma 39).

⁶² J.A. Fuentes, J. A.; France, M. B.; Slawin, A. M. Z.; Clarke, M. L. New J. Chem. 2009, 33, 466

⁶³ Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562

Le système $[RuCl_2(mésitylène)]_2$ / TsDPEN en utilisant le mélange (acide formique/triéthylamine) comme source d'hydrogène⁶⁴ catalyse la réaction de manière irréversible et permet ainsi une conversion totale des substrats. De nombreuses cétones aromatiques ont ainsi pu être converties à plus de 99% et avec d'excellents ee (95-99%) (schéma 40). Le choix du ligand aromatique est très important, les complexes du *p*-cymène ou du mésitylène génèrent des intermédiaires plus énantiosélectifs mais le complexe du benzène reste le plus actif. L'hexaméthylbenzène conduit à des espèces catalytiques peu actives.

⁶⁴ Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521

D'une part, l'équipe de Knochel a aussi reporté la synthèse d'autres diamines monotosylées dérivées respectivement d'un diaminoferrocène et du 1,2-diaminocyclohexane (figure 5).

Figure 5

Avec le mélange azéotropique (acide formique / triéthylamine) comme donneur d'hydrogène et $[RuCl_2(p-cymène)]_2$ comme précurseur métallique, ces deux auxiliaires chiraux permettent de réduire l'acétophénone avec de bonnes sélectivités, par comparaison avec l'*iso*propanol (ee : 83-94%) (schéma 41).

Schéma 41

Très récemment, le groupe de Wills a utilisé, avec succès, des catalyseurs associant des dérivés alkylés de la TsDPEN et le $[RuCl_2(benzène)]_2$ en transfert d'hydrogène.⁶⁵ Ces ligands ont permis de réduire l'acétophénone et ses dérivés avec de bonnes conversions et énantiosélectivités (schéma 42). En particulier, Wills a montré que le ligand N-méthyl-TsDPEN est plus actif que son analogue non substitué.

⁶⁵ Martins, J.E.D.; Redondo, M. A. C.; Wills, M. Tetrahedron : Asymmetry 2010, 21, 2258

Le ruthénium n'est pas le seul métal qui a été utilisé avec les diamines monotosylées ; d'autres systèmes associant à ces diamines des précurseurs du rhodium et de l'iridium ont été aussi reportés.⁶⁶

Ces complexes utilisés en transfert d'hydrogène ont conduit à d'excellents résultats en induction d'asymétrie. Ceci s'explique par la structure de ces entités qui comportent le ligand pentaméthylcyclopentadiènyle (Cp*), ce qui rend ces complexes isoélectroniques avec les systèmes Ru-arène. Dans la réduction de l'acétophénone, les énantiosélectivités restent comparables, mais de faibles activités ont été observées dans le cas des complexes catalytiques IrCp*TsCYDN (Cat 1) et RhCp*TsDPEN (Cat 2) (schéma 43).^{65a}

⁶⁶ a) Murata, K.; Ikariya, T. Noyori, R. J. Org. Chem. **1999**, 64, 2186

b) Wu, X.; Li, X.; Zanotti-Gerosa, A.; Pettman, A.; Liu, J.; Mills, A. J.; Xiao, J. Chem. Eur. J. 2008, 14, 2209

Dans le même contexte, Xiao et al^{66b} ont aussi développé l'utilisation de ces mêmes catalyseurs en milieu aqueux. En effet, la réduction de l'acétophénone avec le ligand (R,R)-TsDPEN associé aux Ru, Rh et Ir s'avère plus active quand la réaction est effectuée dans l'eau plutôt que dans l'*iso*propanol. En une demi-heure, la conversion est quasi-totale et des énantiosélectivités allant jusqu'à 97% ont été observées (Tableau 1).

Tableau 1

	Ru-TsDPEN			Rh-TsDPEN			Ir-TsDPEN		
Solvant	<i>t</i> (<i>h</i>)	Conv(%)	<i>Ee(%)</i>	<i>t</i> (<i>h</i>)	Conv(%)	<i>Ee(%)</i>	<i>t</i> (<i>h</i>)	Conv(%)	<i>Ee(%)</i>
HCOONa/H ₂ O	1	99	95	0,5	99	97	3	99	93
iPropanol	24	81	89	24	45	89	24	48	87

2.4.6. β -aminoalcools

Une accélération de la vitesse de réaction de transfert en présence d'un complexe métallique associé à des β -aminoalcools racémiques a aussi été observée par Noyori.⁶⁷ Par conséquent, l'utilisation de β -aminoalcools chiraux pour les réactions de transfert d'hydrogène a été développée par son équipe.

Ainsi, Noyori a décrit l'utilisation du (S,S)-2-amino-1,2-diphényléthanol et de l'éphédrine comme ligands chiraux dans la réaction de transfert d'hydrogène sur des cétones simples^{67a}. Ces auxiliaires s'avèrent plus actifs que la TsDPEN dans le cas de l'acétophénone qui est convertie à 94% en une heure à température ambiante. Les alcools correspondants sont obtenus avec des ee de l'ordre de 92%. De même que pour les diamines monotosylées, le choix du ligand arène est très important pour l'activité et l'énantiosélectivité (schéma 44).

⁶⁷ a) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.-I.; Ikariya, T.; Noyori, R. *Chem. Commun.* 1996, 233
b) Noyori, R.; Hashiguchi, S. *Acc. Chem. Res.* 1997, *30*, 97

Par la suite, de nombreuses équipes se sont intéressées à l'utilisation des β aminoalcools en transfert d'hydrogène dans l'*iso*propanol^{68,69,70,71,72,73,74}. Le schéma 45 représente quelques β -aminoalcools fréquemment cités dans la littérature pour l'hydrogénation asymétrique par transfert d'hydrogène.

- ⁶⁹ a) Alonso, D. A.; Guijarro, D.; Pinho, P.; Temme, O.; Andersson, P.G. J. Org. Chem. 1998, 63, 2749
 b) Alonso, D.A.; Brandt, P.; Nordin, S.J.M.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580
 - c) Alonso, D.A.; Nordin, S.J.M.; Roth, P.; Tarnai, T.; Andersson, P.G. J. Org. Chem. 2000, 65, 3116
 - d) Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2004, 69, 4885

- ⁷¹ Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synth. Catal. 2003, 345, 67
- ⁷² Frost, C.G.; Mendonca, P. Tetrahedron : Asymmetry. 2000, 11, 1845

⁶⁸ Palmer, M.; Walsgrove, T.; Wills, M. J. Org. Chem. 1997, 62, 5226

e) Nordin, S. J. M.; Roth, P.; Tarani, T.; Alonso, D. A.; Brandt, P.; Andersson, P.G. Chem. Eur. J. 2001, 7, 1431

⁷⁰ a) Petra, D. G. I.; Kamer, P.C.J.; Van Leeuwen, P.W.N.M.; Goubitz, K.; Van Loon, A. M.; de Vries, J.G.; Schoemaker, H. E. *Eur. J. Inorg. Chem.* **1999**, *12*, 2335

b) Petra, D. G. I.; Reek, J. N. H.; Handgraaf, J.W.; Meijer, E.J.; Dierkes, P.; Kamer, P. C. J.; Brussee, J.; Schoemaker, H. E.; Van Leeuwen, P. W. N. M. *Chem. Eur J.* **2000**, *6*, 2818

⁷³ Watts, C.C.; Thoniyot, P.; Cappuccio, F.; Verhagen, J.; Gallagher, B.; Singaram, B. *Tetrahedron : Asymmetry* **2006**, *17*, 1301

⁷⁴ Schiffers, I.; Rantanen, T.; Schmidt, F.; Bergmans, W.; Zani, L.; Bolm, C. J. Org Chem. 2006, 71, 2320

Récemment, de nouveaux β -aminoalcools optiquement purs issus des acides lactique et mandélique ont été synthétisés et utilisés dans l'hydrogénation par transfert d'hydrogène de cétones aromatiques⁷⁵. Des conversions variant entre 20 et 96% et des énantiosélectivités entre 30 et 87% ont été obtenues avec différents précurseurs catalytiques (schéma 46).

⁷⁵ Deshpande, S. H.; Kelkar, A. A.; Gonnade, R. G.; Shingote, S. K.; Chaudhari, R. V. *Catal. Lett.* **2010**, *138*, 231

D'autre part, l'étude a montré que de bonnes énantiosélectivités sont obtenues en utilisant un ligand qui porte un centre chiral sur le carbone lié au groupe OH, ce qui indique que ce centre est important pour avoir des bonnes sélectivités.

Schéma 46

2.4.7. Ligands tétradentates

L'équipe de Gao a étudié l'activité d'un cluster à base de ruthénium formé *in situ* par la réaction de $Ru_3(CO)_{12}$ avec des diimines et diaminediphosphines en transfert asymétrique d'hydrogène de cétones aromatiques simples dans l'*iso*propanol⁷⁶. D'excellentes conversions (jusqu'à 98%) et des excès supérieurs à 96% ont été obtenus (schéma 47).

Schéma 47

La même équipe⁷⁷ a reporté les résultats obtenus en transfert d'hydrogène sur divers cétones aromatiques en utilisant des complexes chiraux d'iridium(I). Lorsque le complexe [Ir(COD)Cl]₂ associé à un ligand tétradentate de type diaminodiphosphine est utilisé comme catalyseur, les alcools chiraux sont obtenus, dans des conditions douces, avec des conversions

⁷⁶ Zhang, H.; Yang, C. B.; Li, Y. Y.; Donga, Z. D.; Gao, J. X.; Nakamura, H.; Muratab, K.; Ikariya, T. *Chem. Commun.* **2003**, 142.

⁷⁷ Yan-Yun Li, Y. Y.; Zhang, H.; Chen, J. S.; Liao, X. L.; Dong, Z. R.; Gao, J. X. *J. Mol. Cat. A: Chemical* **2004**, *218*, 153

élevées (de l'ordre de 100%) et d'excellentes énantiosélectivités (jusqu'à 99% pour la 2 - méthylacétophénone et la 2-méthylpropiophénone) (schéma 48).

Schéma 48

Un complexe analogue d'Ir(I) avec un ligand diiminodiphosphine (figure 6) a été aussi envisagé dans la réaction de transfert d'hydrogène sur l'acétophénone.⁷⁷ Dans les mêmes conditions et après 48h de réaction, l'alcool est obtenu avec seulement 38,9% de conversion et 39,5% d'ee. Les auteurs proposent que les fonctions NH sont responsables de l'activité élevée, et probablement stabilisent l'intermédiaire catalytique.

Figure 6

2.4.8. Ligands N,S

Des ligands de type N,S issus du camphre associés au précurseur $[IrCl(COD)]_2$ ont été employés dans la réduction par transfert d'hydrogène sur l'acétophénone⁷⁸. Une conversion totale et un excès de 80% ont été obtenus (schéma 49).

⁷⁸ Gayet, A.; Bolea, C.; Andersson, P. G. Org. Biomol. Chem. 2004, 2, 1887

En résumé, la réduction asymétrique par transfert d'hydrogène, a montré que c'est une méthode efficace pour l'obtention de nombreux alcools chiraux avec des bonnes conversions et énantiosélectivités. Dans les paragraphes suivants, nous présenterons les développements récents de cette méthode pour la synthèse des molécules cibles.

3. Nouveaux Développements

Dans les années 1990, la réduction par transfert d'hydrogène est resté limitée à la réduction de la fonction carbonyle en milieu organique d'une part, et à l'utilisation de métaux nobles tels que le ruthénium, le rhodium et l'iridium. Dans les paragraphes suivants, nous présenterons les nouveaux développements de cette réaction.

3.1. Réduction des imines par transfert asymétrique d'hydrogène

• Catalyseurs à base de ruthénium

Les développements récents se concentrent principalement sur une utilisation plus écologique du dérivé hydrosoluble de la TsDPEN pour la réduction des imines cycliques.⁷⁹ Encouragée par les résultats obtenus pour les cétones prochirales^{63,64}, l'équipe de Deng a rapporté l'hydrogénation par transfert d'hydrogène des imines et iminiums dans l'eau en

⁷⁹ a) Wu, S.; Wang, F.; Ma, Y. P.; Cui, X. C.; Cun, L. F.; Zhu, J.; Deng, J. G.; Yu, B. L. Chem. Commun. **2006**, 1766.

b) Li, J.; Zhang, Y. M.; Han, D. F.; Gao, Q.; Li, C. J. Mol. Catal. A: Chem. 2009, 298,31.

c) Haraguchi N.; Tsuru, K.; Arakawa, Y.; Itsuno, S. Org. Biomol. Chem. 2009, 7, 69.

d) Canivet, J.; Süss-Fink, G. Green Chem. 2007, 9, 391.

utilisant ce ligand. Catalysée par $[RuCl_2(p-cym)]_2$ associé au dérivé (*R*,*R*)-TsDPEN sulfoné, la réduction de l'imine a été menée avec une conversion de 89% et un excès énantiomérique de 90% après 10h de réaction. La même équipe a rapporté que l'activité catalytique et la sélectivité peuvent être également améliorées par l'addition d'un tensioactif dans le milieu aqueux (schéma 50)^{79a}.

Schéma 50

D'autre part, Andersson⁸⁰ a mis en évidence la capacité du complexe [Cp*Ru(diamine)] à hydrogéner des imines. Les diamines utilisées sont représentées dans la figure suivante :

Les systèmes catalytiques portant les ligands **A** et **B** conduisent à d'excellentes conversions mais n'ont pas induit de bonnes énantiosélectivités. Par contre le système [Ru] / **D** donne un excès énantiomérique de 51% (schéma 51).

⁸⁰ a) Cheruku, P.; Church, T. L.; Andersson, P. G. *Chem. Asian J.* **2008**, *3*, 1390

b) Fleury-Brégeot, N.; De la Fuente, V.; Castillon, S.; Claver, C.; ChemCatChem 2010, 2, 1346

Le complexe ruthénié préparé à partir de $[RuCl_2(p-cym)]_2$ et de (1S,2R)-1-amino-2indanol est un catalyseur très efficace pour l'hydrogénation asymétrique par transfert du (*R*)-N-(*tert*-butylsulfinyl)-imine dans l'*iso*propanol.⁸¹ Des amines primaires chirales ont ainsi été obtenues avec d'excellentes énantiosélectivités (jusqu'à 99%) par la réduction diastéréosélective des imines suivie de l'élimination du groupe sulfinyle dans des conditions douces d'acidité (schéma 52).

$R_1 \sim R_2^{O^-} R_2^{H^-}$	1) $[\operatorname{RuCl}_2(p\text{-cym})]_2 / L^*$ KOtBu, iPrOH 2) HCI, CH ₃ OH R ₁ R ₂	L* =
R_1	R_2	Ee (%)
Ph	CH ₃	>99
Ph	Et	97
4-MeOC ₆ H ₄	CH ₃	95
$4-NO_2C_6H_4$	CH ₃	98

⁸¹ Guijarro, D.; Pablo, O.; Yus, M. Tetrahedron Lett. 2009, 50, 5386.

• Catalyseurs à base de rhodium et d'iridium

Wills et al⁸² ont décrit un catalyseur à base de Rh^{III} associé à de diamines monotosylées qui est un catalyseur très efficace pour l'hydrogénation asymétrique des imines : des sélectivités modérées à excellentes ont été obtenues (jusqu'à 96%) (schéma 53).

Schéma 53

Le système catalytique [Ir]/SegPhos développé par Zhou⁸³ pour l'hydrogénation des hétérocycles sous pression d'hydrogène a été utilisé avec succès pour le même objet en utilisant des esters de Hantzsch comme source d'hydrogène (schéma 54).

⁸² Matharu, D. S.; Martins, J. E. D.; Wills, M. Chem. Asian J. 2008, 3, 1374

⁸³ Wang, D. W.; Zeng, W.; Zhou, Y. G.; *Tetrahedron : Asymmetry.* 2007, 18, 1103

3.2. Réduction des cétones par transfert d'hydrogène en milieu aqueux

Des tétraamines chirales synthétisées à partir de la L-proline ont été appliquées en transfert asymétrique d'hydrogène dans l'eau.⁸⁴ D'excellentes conversions (supérieures à 99%) et de bonnes énantiosélectivités (supérieures à 76%) ont été observées (schéma 55).

Schéma 55

L'équipe de Carreira⁸⁵ a décrit un système catalytique efficace pour la réduction asymétrique par transfert d'hydrogène des α -cyanocétones et α -nitrocétones. Il s'agit d'un catalyseur à base d'iridium (III) associé à des diamines chirales, et la réaction est réalisée dans l'eau comme solvant en utilisant l'acide formique comme agent réducteur. Ce système catalytique conduit à des alcools avec des conversions de l'ordre de 97% et avec également un excès de 99% (schéma 56).

Schéma 56

Ar = p-tBu-C₆H₄, X = NO₂ : conv = 92%, ee = 99% Ar = 2-naphthyl, X = CN : conv = 95%, ee = 96%

⁸⁴ Zhou, Z.; Wu, L.; Catalysis Communication 2008, 9, 2539

⁸⁵ Soltani, O.; Ariger, M, A.; Vasquez-Villa, H.; Carreira, E, M. Org. Lett. 2010, 13, 2893

3.3. Catalyseur à base de fer dans la réduction asymétrique par transfert d'hydrogène

Le fer est le métal le plus abondant sur la terre. Son utilisation en catalyse homogène a récemment attiré l'attention^{86,87} en vue de substituer plusieurs métaux précieux tels que le palladium, le rhodium ou le ruthénium.

Reiser et al⁸⁸ ont développé un nouveau type de catalyseur à base de fer pour la réduction asymétrique par transfert d'hydrogène des cétones aromatiques. Il s'agit de complexes formés par la combinaison de divers bis-isonitriles avec le FeCl₂,4H₂O comme précurseur. Les énantiosélectivités obtenues sont généralement bonnes (jusqu'à 91%) (schéma 57). Le même auteur suggère que le transfert se fait par la voie « hydrure » probablement par un intermédiaire imine généré *in situ* par la réduction d'une fonction isonitrile, alors que le fer est considéré comme acide de Lewis pour activer la fonction carbonyle.

Schéma 57

Des complexes du fer (II) avec des ligands types PNNP dérivés de diamines ont aussi été utilisés comme catalyseurs pour le transfert asymétrique d'hydrogène sur l'acétophénone en présence d'*iso*propanol comme donneur d'hydrogène⁸⁹. L'activité catalytique des complexes augmente avec la taille du squelette des ligands (schéma 58).

⁸⁶ a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317
b) Gaillard, S.; Renaud, J. L. ChemSusChem. 2008, 1, 505

⁸⁷ Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev., **2004**, 104, 6217

⁸⁸ Reiser, O.; Maji, T.; Naik, A. Communications **2010**, 46, 4475.

⁸⁹ Mikhailine, A.A.; Morris, R.H. Inorg. Chem. 2010, 49, 11039

3.4. Transfert asymétrique d'hydrogène par cyclométallation

Récemment, il a été constaté que le ligand commercial 2-aminométhylpyridine (ampy) conduisait à un effet d'accélération dans la réaction d'hydrogénation par transfert d'hydrogène catalysée par des complexes de ruthénium dans l'*iso*propanol.^{90,91} L'hydrogénation de l'acétophénone catalysée par RuCl(CO)[(2-CH₂-6-MeC₆H₅)PPh₂]éthylènediamine permettait d'accéder à un TOF de 2800 h⁻¹, mais avec l'introduction de la 2picolylamine, la vitesse de la réaction a été accélérée avec un TOF de 60 000 h⁻¹.

⁹⁰ Baratta, W.; Herdtweck, E.; Siega, K.; Micaela Toniutti, M.; Rigo, P. Organometallics **2005**, *24*, 1660

⁹¹ Baratta, W.; Rigo, P. Eur. J. Inorg. Chem. 2008, 4041

L'introduction d'un squelette chiral PP* (par exemple : PP* = Skewphos) dans le complexe RuCl₂(PP)(ampy), a permis de préparer des catalyseurs conduisant à un TOF jusque 300 000 h⁻¹ et des ee entre 83-94% en transfert asymétrique d'hydrogène de cétones aromatiques simples⁸⁹ (schéma 59).

Schéma 59

D'excellents résultats ont également été obtenus avec les complexes [RuCl(CNN)(PP)] dérivés de ligands benzo[h]quinoline.⁹² La combinaison du benzo[h]quinoline chiral avec des ligands de type JOSIPHOS offre des catalyseurs très actifs pour le transfert asymétrique d'hydrogène des cétones aromatiques (TOF jusque 2×10^5 h⁻¹ et des ee jusque 98%) (schéma 60).

⁹² Baratta, W.; Ballico, M.; Baldino, S.; Chelucci, G.; Herdtweck, E.; Siega, K.; Magnolia, S.; Rigo, P. *Chem. Eur. J.* **2008**, *14*, 9148

Dans la même thématique, l'équipe de Pfeffer a préparé des complexes ruthéniés obtenus par cyclométallation des amines primaires et secondaires énantiopures avec le dimère $[RuCl_2(p-cymène)]_2$ ou $[RuCl_2(benzène)]_2$ en présence de NaOH et KPF₆.⁹³ Ces complexes sont des catalyseurs efficaces pour l'hydrogénation asymétrique par transfert d'hydrogène de l'acétophénone puisque des TOF jusqu'à 190 h⁻¹ et des sélectivités variant de 38% à 89% ont été obtenus (schéma 61).

⁹³ a) Sortais, J-B.; Ritleng, V.; Voelklin, A.; Holuigue, A.; Smail, H.; Barloy, L.; Sirlin, C.; Verzijl, Gerard K. M.; Boogers, Jeroen A. F.; de Vries, André H. M.; de Vries, Johannes G.; Pfeffer, M. Org. Lett. 2005, 7, 1247

b) Jerphagnon, T.; Haak, R.; Berthiol, F.; Gayet, Arnaud J. A.; Ritleng, V.; Holuigue, A.; Pannetier, N.; Pfeffer, M.; Voelklin, A.; Lefort, L.; Verzijl, G.; Tarabiono, C.; Janssen, Dick B.; Minnaard, A-J.; Feringa, Ben L.; de Vries, J. G. *Top. Catal.* **2010**, *53*, 1002

4. Conclusion

Ce résumé bibliographique concernant la réduction asymétrique par transfert d'hydrogène, montre que c'est une méthode particulièrement intéressante et universelle et qui reste parmi les meilleurs procédés comparativement à plusieurs autres méthodes dans la synthèse asymétrique pour la création de nouveaux centres chiraux.

La recherche de nouveaux coordinats, performants et d'accès facile reste toujours un des objectifs majeurs : le chapitre suivant présentera les résultats obtenus en transfert d'hydrogène en utilisant des nouveaux ligands chiraux dérivés de terpènes naturels.

Chapitre III

Réduction asymétrique de cétones aromatiques par transfert d'hydrogène :

Résultats

1. Introduction

Appliqué aux cétones simples, le transfert asymétrique d'hydrogène a été bien développé et a fait l'objet d'un grand nombre de travaux. Une grande variété de ligands a été utilisée, et les meilleurs résultats sont généralement obtenus avec les diamines monotosylées et les β -aminoalcools associés au ruthénium (II).

A notre connaissance, peu de travaux se sont intéressés aux agents inducteurs de chiralité obtenus à partir de terpènes naturels. Ces derniers sont très abondants dans la nature, sont présents pour la plupart sous forme des deux énantiomères optiquement purs et constituent donc une source potentielle de coordinats chiraux.

Pour notre part, nous nous sommes intéressés à l'étude de la réduction de cétones aromatiques prochirales par transfert asymétrique d'hydrogène en utilisant des complexes à base de métaux de transition coordinés à des aminoalcools et des aminooximes ainsi qu'à des diamines et diimines chirales synthétisées à partir de l' α -pinène et du (*S*) ou (*R*)-limonène optiquement purs.

2. Généralités sur les conditions opératoires

2.1. Substrats

Pour évaluer nos ligands, nous avons choisi des cétones simples dérivées de l'acétophénone comme substrats modèles. Elles sont d'origine commerciale et utilisées sans aucune purification particulière.

2.2. Complexes arène-ruthénium

Les complexes ruthéniés du type $[RuCl_2(arène)]_2$ qui sont peu onéreux, performants et simples à manipuler ont été utilisés comme précurseurs catalytiques. Leurs préparations ont été effectuées selon le protocole décrit par Bennett et al⁹⁴. Par exemple, le $[RuCl_2(p$ $cymène)]_2$ est obtenu par réduction de RuCl₃ en ruthénium (II) à reflux de l'éthanol en présence de l' α -terpinène ou du γ -terpinène qui s'oxyde facilement en *p*-cymène. Pour notre étude, nous avons choisi les trois arènes suivants : le *para*-cymène (*p*-cymène), le benzène, et l'hexaméthylbenzène (HMB) (figure 1). Bennett a montré par une étude structurale que ces complexes sont sous forme de dimères stables dans lequel le métal est à 18 électrons.

⁹⁴ Bennett, M.A.; Smith, A.K. J. Chem. Soc., Dalton Trans 1974, 233

Figure 7 : structures des précurseurs ruthéniés

Dans le cas de l'hexaméthylbenzène, le précurseur $[RuCl_2(HMB)]_2$ est obtenu par substitution du *p*-cymène du complexe $[RuCl_2(p-cymène)]_2$ par l'hexaméthylbenzène, la réaction étant effectuée dans l'hexaméthylène fondu⁹⁵. D'autres complexes à base de métaux tels que le rhodium et l'iridium ont été aussi utilisés.

2.3. Protocole d'une réduction asymétrique par transfert d'hydrogène

Les catalyseurs sont préparés généralement *in situ* dans un tube de Schlenk, par réaction du précurseur [RuCl₂(arène)]₂ avec le ligand dans l'*iso*propanol en chauffant à 80°C pendant 30 min sous atmosphère inerte. Le substrat dissout dans l'*iso*propanol est ensuite ajouté à la solution catalytique, suivi par l'ajout d'une base minérale (par exemple KOH) dans l'*iso*propanol. L'avancement de la réaction est suivi périodiquement par chromatographie en phase gazeuse.

Les excès énantiomériques (ee) sont déterminés par chromatographie en phase gaz à l'aide d'une colonne chirale permettant de séparer le mélange d'énantiomères.

2.4. Phénomène de racémisation

La réduction asymétrique par transfert d'hydrogène est généralement une réaction réversible, ce qui peut conduire à une racémisation sur l'alcool formé. En effet, l'équipe de Noyori⁶³ a réalisé une étude à ce sujet, sur une solution d'acétophénone à 1M dans l'*iso*propanol. Les résultats montrent bien que le catalyseur [RuCl₂(mésitylène)]₂ associé au (*S*,*S*)-TsDPEN fournit le phényléthanol avec une proportion initiale de 99% en (*S*) pour 1% de (*R*). Cette sélectivité chute après 75% de conversion pour atteindre 97% (*S*) : 3% (*R*) (schéma 62).

⁹⁵ Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Smith, A. K.; Trucker, P. A. Inorg. Chem. 1980 19, 1014

Néanmoins, ce phénomène dépend essentiellement du système catalytique utilisé. En effet, dans le cas par exemple d'un catalyseur ruthénié associé à un ligand tétradentate N2P2, aucune racémisation n'est observée et ceci même après un temps de réaction assez important⁹⁶ (schéma 63).

Schéma 63

3. Les coordinats chiraux

La gestion des ressources naturelles doit tenir un rôle de premier plan dans les politiques de recherche et de développement économique. En effet, une utilisation incorrecte de celles-ci et l'augmentation des besoins des populations font peser sur l'environnement des contraintes de plus en plus lourdes qui le rendent de plus en plus vulnérable.

Parmi ces ressources, les terpènes qui représentent plus de 80% des essences naturelles sont de faible coût et très abondants dans la nature. C'est par exemple le cas des pinènes, des 2 et 3-carènes : essences des résineux 300.000 tonnes/an, du limonène : essences

⁹⁶ Gao, J. X.; Ikariya, T.; Noyori, R. Organometallics 1996, 15, 1087.

d'agrumes, de l'esclaréol : Salvia sclarea. Ce pourrait être le cas des α , β et γ himachalènes : huile de cèdre de l'Atlas, Cedrus Atlantica dont la surface totale occupée au Maroc est d'environ 130.000 hectares, répartis sur le Rif, le Moyen et le Grand Atlas ce qui met en relief l'abondance de ces substrats qui pourraient constituer une source importante de matière premières tant recherchées dans les industries chimiques et parachimiques. Sur le schéma suivant, nous avons noté les structures de quelques monoterpènes (figure 8).

Figure 8

La valorisation de ces molécules naturelles implique leur fonctionnalisation grâce à l'insaturation qui existe dans leurs structures qui permet des transformations en d'autres produits comme par exemple des esters, cétones....

En se basant sur certains travaux de la littérature utilisant les terpènes comme précurseurs, notre objectif a donc été de les fonctionnaliser pour obtenir des ligands pouvant se coordiner sur un métal de transition en vue de leur application en réaction de transfert d'hydrogène. Notre choix s'est porté sur les aminooalcools, les diimines et les diaminediols obtenus à partir de l' α -pinène, puis sur des aminooximes et leurs dérivés diaminés obtenus à partir du limonène.
3.1. Les aminoalcools optiquement purs et leurs dérivés N-substitués

Les excellentes sélectivités obtenues avec l'éphédrine et ses dérivés au cours de la réduction par transfert d'hydrogène nous ont encouragés à préparer de nouveaux ligands du type aminoalcool. Ces coordinats ont été synthétisés à partir de l' α -pinène, un monoterpène dont la source très abondante permet d'envisager la synthèse de produits chiraux en quantité importante et à moindre coût. Les aminoalcools et leurs dérivés substitués ainsi obtenus sont des ligands bidentés bicycliques qui diffèrent uniquement par le substituant porté par la fonction azotée du ligand (schéma 64).

Schéma 64

Les aminoalcools <u>3</u>, <u>6</u> et <u>7</u> ont été préparés selon un mode opératoire décrit dans la littérature⁹⁷. Par contre, les deux dérivés <u>4</u> et <u>5</u> sont nouveaux, et ils sont préparés en deux étapes à partir de l'aminoalcool <u>3</u>.

La première étape consiste à former l'imine par la réaction de la fonction aldéhyde avec l'amine primaire dans l'éthanol à température ambiante. Dans la deuxième étape, un excès de NaBH₄ est ajouté qui permet de réduire la fonction imine en amine secondaire pour obtenir les aminoalcools <u>4</u> et <u>5</u>.

La pureté optique de ces aminoalcools est déterminée par la mesure de leur pouvoir rotatoire. Concernant leur étape de la réduction, aucune racémisation n'a été observée avec les différents agents réducteurs (NaBH₄, LiAlH₄).

Ensuite ces ligands ont été testés en réduction asymétrique par transfert d'hydrogène de l'acétophénone, choisi initialement comme substrat modèle, catalysée par des complexes formés *in situ* à partir du précurseur [RuCl₂(p-cymène)]₂ (schéma 65).

Schéma 65

L'ensemble des résultats obtenus est consigné dans le tableau 2.

 ⁹⁷ a) Carlson, R.; Pierce, J. J. Org. Chem. 1971, 36, 2319
 b) Masui, M.; Shioiri, T. Tetrahedron 1995, 51, 8363

c) Saavedra, J. J. Org. Chem. **1985**, *50*, 2271

⁷²

Entrée	Ligand	Conv (%)	Ee (%)	Config*
1	2	71	8	R
2	3	85	18	R
3	4	83	34	R
4	5	77	45	R
5	6	92	29	R
6	7	-	-	-

Tableau 2 : Hydrogénation par transfert d'hydrogène de l'acétophénone en présence des ligands chiraux 2-7 associés au complexe [RuCl₂(*p*-cymène)]₂.

<u>Conditions</u> : $T = 20^{\circ}C$ dans l'*iso*propanol ; S/Ru = 100 ; Base/Ru = 5 ; [S] = 0,1M ; t= 3h, *Enantiomère majoritaire.

On note tout d'abord les bonnes activités catalytiques obtenues au cours de la réduction de l'acétophénone catalysée par des complexes ruthénies préparés *in situ* par la combinaison du $[RuCl_2(p-cymène)]_2$ avec les ligands chiraux <u>2-7</u>. Cependant, l'énantiosélectivité reste très modeste et le meilleur excès énantiomérique est obtenu avec l'aminoalcool <u>5</u> (entrée 4).

L'aminoalcool qui porte une fonction amine primaire conduit à un faible excès énantiomérique (entrée 2). D'autre part, on constate que l'induction asymétrique dans le cas des aminoalcools N-substitués (entrées 3, 4 et 5) est probablement liée à la taille du substituant porté par l'atome d'azote. En effet, une augmentation de l'effet stérique entraîne une augmentation de l'énantiosélectivité. Cette corrélation se fait dans le sens décroissant suivant :

$H_2C\text{-}Ph\text{-}Ph\text{-}H_2C\text{-}Ph\text{-}CH_3\text{-}H$

Le résultat obtenu en utilisant l'aminoalcool $\underline{7}$ montre qu'aucune activité n'est observée pour la réduction de l'acétophénone. Une observation identique a été faite par notre groupe quand nous avons appliqué l'éphédrine N-tosylée dans l'hydrogénation des cétoesters⁹⁸. De faibles activités et sélectivités avaient été observées en utilisant l'acétophénone comme substrat et le (*S*)-alaninol ou (*R*)-leucinol comme ligands chiraux⁹⁹.

⁹⁸ Everaere, K.; Mortreux, A.; Bulliard, M.; Brussee, J.; Van der Gen, A.; Nowogrocki, G.; Carpentier, J. F. *Eur. J. Org. Chem.* **2001**, *2*, 275

⁹⁹ M. Ait Ali, *Thesis*, Université Cadi Ayyad, Marrakech, Maroc, **2001**

Beaucoup de travaux ont été réalisés sur le transfert asymétrique d'hydrogène en utilisant des ligands bidentates soit avec des diamines monotosylées soit avec des aminoalcools comme ligands chiraux^{63,64,65}.

Le mécanisme proposé par l'équipe de Noyori^{36,37} en utilisant un système [Ru(arène)/TsDPEN] montre l'importance de la fonction NH et de la différence de la fonctionnalité du ligand bidentate. En effet, la fonction la plus acide du ligand se coordine au métal par une liaison σ alors que le groupement NH passe d'une liaison σ à une liaison π en présence de l'*iso*propanol (schéma 66).

Schéma 66

Dans notre cas, le résultat négatif pourrait être lié aux propriétés acido-basiques du ligand. En effet, la basicité du groupement NH est diminuée avec le substituant sulfonamide (tosyle), et par conséquent la différence d'acidité entre les deux fonctions de l'auxiliaire chiral diminue, ce qui pourrait expliquer l'effet inhibiteur sur le fonctionnement du catalyseur.

D'après les résultats que nous avons vus, nous pouvons conclure que la présence du groupement amine secondaire NH est préférable pour avoir une efficacité du ligand au cours de transfert d'hydrogène. La réactivité obtenue dans le cas de l'hydroxyoxime <u>2</u> pourrait être liée à une réduction partielle *in situ* de la fonction oxime en amine. Cependant, l'efficacité d'autres ligands comportant des fonctions oxime sera révélée par la suite dans cette thèse, ce qui laisse à penser que les ligands de ce type doivent garder leur intégrité au cours de la transformation.

De la comparaison de cette série de ligands, il apparaît que ce sont les aminoalcools N-substitués qui permettent d'augmenter de façon significative l'induction asymétrique.

3.2. Les diimino et diaminodiols

Nous avons ensuite porté notre attention sur la préparation de nouveaux ligands diimino- et diaminodiols dérivés de l' α -pinène, *via* l'hydroxycétone **1** synthétisée précédemment. Ces composés se comportent comme des ligands tétradentates et ils possèdent un axe de symétrie C₂. Dans un premier temps, les diiminodiols <u>8</u> et <u>9</u> sont obtenus par réaction de deux équivalents de l'hydroxycétone <u>1</u> avec un équivalent d'une diamine en présence d'APTS à l'aide d'un Dean-Stark. Ces diimines <u>8</u> et <u>9</u> peuvent ensuite être réduites en diamines correspondantes par action de NaBH₄ (schéma 67).

Schéma 67

Comme reporté dans la littérature, la réduction est diastéréosélective et l'analyse RMN ne révèle pas la formation d'autres diastéréoisomères¹⁰⁰. Ainsi, en accord avec la stéréochimie de l'aminoalcool <u>3</u> obtenu aussi par réduction de l'aminooxime, nous proposons la même stéréochimie pour les ligands <u>10</u> et <u>11</u>. Les diimines <u>8</u> et <u>9</u> ont été complètement caractérisées.

Par suite, ces ligands ont été appliqués dans la réduction par transfert d'hydrogène de l'acétophénone. Les catalyseurs ont été générés *in situ* par la réaction du précurseur [RuCl₂(*p*-cymène)]₂ avec le ligand désiré en présence de KOH. Les résultats obtenus sont résumés dans le tableau 3.

¹⁰⁰ Markowicz, S. W.; Figlus, M.; Lejkowsli, M.; Karolak- Wojciechowska, J.; Dzierzawska-Majewska, A.; Verpoort, F. *Tetrahedron : Asymmetry* **2006**, *17*, 434

Entrée	Ligand	Conv(%)	Ee (%)	Config*
7	8	90	10	R
8	9	97	18	R
9	10	90	13	R
10	11	88	7	R

Tableau 3 : Hydrogénation par transfert d'hydrogène de l'acétophénone en présence des ligands chiraux <u>8-11</u> associés à $[RuCl_2(p-cymène)]_2$

<u>Conditions</u> : $T = 20^{\circ}C$ dans l'*iso*propanol ; S/Ru = 100 ; Base/Ru = 5 ; [S] = 0,1M ; t = 3h, *Enantiomère majoritaire.

Les résultats des tests catalytiques montrent qu'en présence des diiminodiols et diaminodiols chiraux <u>8-11</u>, une température de 80°C est nécessaire pour réduire l'acétophénone. Les catalyseurs formés par ces ligands offrent de bonnes conversions (entre 88% et 97%), comparables à celles obtenues avec les aminoalcools (entrées 2-5, tableau 1). Néanmoins, l'énantiosélectivité reste très faible et ne dépasse pas 18%.

Une étude a été faite par Alper¹⁰¹ sur la réduction de l'acétophénone catalysée par un complexe de ruthénium associé à une base de Schiff dérivée du diaminocyclohexane. Des conversions similaires avec un excès très modéré (28,8%) ont été obtenues.

Pour expliquer les résultats obtenus dans le cas de nos diimino- et diamino- diols, nous nous sommes basés sur des travaux similaires effectués par l'équipe de Van Leeuwen¹⁰² qui a utilisé des ligands diaminodiols préparés à partir de (1*R*,2*S*)-noréphédrine (schéma 68).

Schéma 68

¹⁰¹ Krasik, P.; Alper, H. *Tetrahedron* **1994**, *50*, 4347.

¹⁰² Petra, D. G. I.; Kamer, P. C. J.; Van Leeuwen, Piet W. N. M.; Goubitz, K.; Van Loon, Arjen. M.; de Vries J.

G.; Schoemaker, Hans. E. Eur. J. Inorg. Chem. 1999, 2335.

L'analyse de rayons X des intermédiaires catalytiques montre la formation du complexe I dans lequel le ligand est coordiné avec les deux atomes d'azote. L'addition de la base minérale (*t*BuOK) dans l'*iso*propanol, permet de déprotoner le groupe OH et conduit à un complexe II dans lequel le ligand est coordiné avec un seul atome d'oxygène et un seul atome de d'azote¹⁰² (schéma 69).

Schéma 69

En se basant sur les remarques observées par Van Leeuwen, on peut proposer que les faibles sélectivités observées avec nos ligands diaminodiols pourraient être expliquées par la formation de plusieurs complexes dont les effets seraient antagonistes conduisant ainsi à des énantiosélectivités très faibles.

Conclusion

En résumé, des β -aminoalcools, diiminodiols et diaminediols optiquement purs sont aisément préparés à partir de l' α -pinène en peu d'étapes et avec de bons rendements. L'utilisation de ces ligands en hydrogénation par transfert a permis la réduction de l'acétophénone avec de bonnes conversions mais des énantiosélectivités modérées. L'excès énantiomérique maximal atteint reste modeste, il est de 45% avec le ligand <u>5</u> utilisé en association avec le précurseur [RuCl₂(*p*-cymène)]₂. Dans le cas des tétradentates diiminodiols et diaminodiols tétradentates, le système catalytique donne des résultats médiocres résultant probablement de l'effet antagoniste de plusieurs complexes induisant la formation de configurations opposées.

3.3. Les α -aminooximes

Les α -aminooximes simples ont une structure générale représentée dans la figure 9. Elles se composent d'un groupement amine et d'un groupement oxime, les deux reliés avec une liaison carbone-carbone.

Figure 9

Récemment, ce type de composés a été reporté dans la littérature, en vue de leur implication en tant que ligands de complexes de ruthénium. Par exemple, dans le cas du cluster $Ru_3(CO)_{12}$, ces α -aminooximes peuvent se comporter comme des ligand tridentate avec la participation du l'atome d'oxygène à la coordination. En effet, des complexes similaires ont été préparés et isolés par Tkachev¹⁰³. Il s'agit de complexes formés par la réaction de $Ru_3(CO)_{12}$ avec des aminooximes dérivés de l' α -pinène et du 3-carène. L'étude a montré que la coordination au métal se fait par les deux atomes d'azote et l'atome d'oxygène pour former des complexes binucléaire et trinucléaire (schéma 70).

¹⁰³ Shabalina, I. Y.; Kirin, V. P.; Maksakov, V. A.; Virovets, A. V.; Golovin, A. V.; Agafontsev, A. M.; Tkachev, A. V. *Russ. J. Coord. Chem.* **2008**, *34*, 286.

Schéma 70

Ces α -aminooximes se chélatent aux métaux de transition donnant lieu à des complexes qui pourraient fournir des catalyseurs efficaces en catalyse, et la présence de fonction amine secondaire et hydroxyle en font de bons candidats pour envisager leur application en réaction de transfert d'hydrogène.

Dans un premier temps, nous avons réalisé un test préliminaire afin de savoir si ces complexes s'avéraient performants en transfert asymétrique d'hydrogène, en utilisant le cluster $Ru_3(CO)_{12}$ associé à un ligand de cette famille (ligand aminoxime <u>13</u> dont la synthèse sera décrite ci-après). Les résultats obtenus sont présentés dans le tableau 4.

Tableau 4: Hydrogénation par transfert d'hydrogène de l'acétophénone en présence deRu₃(CO)₁₂ associé à un ligand aminooxime

Temps (h)	Conv (%)	Ee (%)
1	48	3
2	62	< 1
3	70	< 1
4	76	< 1

Conditions : $T = 80^{\circ}C$ dans l'*iso* propanol, L* / Ru₃ = 3, S/Ru₃ = 200, B / Ru₃ = 4

Le test catalytique réalisé pour la réduction de l'acétophénone a montré que le catalyseur formé généré *in situ* par la réaction du cluster $Ru_3(CO)_{12}$ avec un ligand type aminooxime est peu performant en transfert asymétrique d'hydrogène notamment en terme d'énantiosélectivité. Ces observations nous ont amenés à penser que l'utilisation d'un catalyseur classique du type [RuCl₂(arène)]₂ serait plus appropriée.

Suite à notre étude bibliographique, nous avons choisi le (*S*)- ou le (*R*)-limonène comme source chirale de nos aminooximes, la synthèse des composés <u>12</u> et <u>13</u> ayant déjà été décrite dans la littérature ¹⁰⁴ (schéma 71).

Schéma 71

(R) ou (S) limonène

Les deux nouvelles aminooximes <u>14</u> et <u>15</u> ont été synthétisées de manière analogue à <u>12</u> et <u>13</u>. La première étape consiste à préparer un dimère nitrosochlorure par réaction de NOCl, généré par action de l'acide chlorhydrique sur le nitrite d'isoamyle, sur la double liaison du cycle. L'action d'une amine primaire en présence d'éthanol lors de la deuxième étape conduit à la formation de l'aminooxime correspondante.

Les ligands synthétisés sont ensuite testés en réduction asymétrique par transfert d'hydrogène de l'acétophénone et ses dérivés catalysée par des complexes à base de ruthénium.

Dans un premier temps, l'optimisation de quelques paramètres de la réaction a été faite en prenant l'*iso*propanol comme donneur d'hydrogène et avec l'acétophénone comme substrat modèle. L'espèce active est générée *in situ* par la réaction du précurseur [RuCl₂(p-cymène)]₂ avec 2 équivalents du ligand désiré en présence de base.

¹⁰⁴ Brecknell, D. J.; Carmon, R. M.; Singaram, B.; Verghese, J. Aust. J. Chem. **1977**, 30, 195

3.3.1. Influence de la température

Afin de connaître quelle est la température optimale de la réaction, nous avons réalisé des essais de réduction de l'acétophénone à différentes températures en utilisant le ligand <u>12</u> et [RuCl₂(*p*-cymène)]₂ comme précurseur (tableau 5).

Tableau 5 : Réduction de l'acétophénone catalysée par $[RuCl_2(p-cymène)]_2 / (1S,4R)-\underline{12}$: influence de la température

Entrée	Température (°C)	Temps (h)	Conv (%)	Ee (%)
11	25	1	0	-
		2	0	-
12	50	0.5	0	-
		1	0	-
		2	0	-
13	80	2	8	50
		4	16	46
		20	99	11

Conditions : réaction dans l'isopropanol ; $S/Ru/L^*/B = 100/1/2/6$; [S] = 0,1 M

Au vu des résultats obtenus, on peut conclure qu'une température de 80°C est nécessaire pour activer le système catalytique. Par contre on constate dans ce cas une racémisation sur l'alcool formé.

3.3.2. Influence du rapport L*/Ru

Afin de savoir si le rapport L*/Ru a une influence sur nos systèmes catalytiques, nous avons réalisé une étude avec les aminooxime <u>12-15</u> comme ligand chiral associé à $[RuCl_2(arène)]_2$. Dans un premier temps, nous avons examiné l'effet du rapport L*/Ru sur l'activité et l'énantiosélectivité de la réduction de l'acétophénone par transfert d'hydrogène en utilisant le système $[RuCl_2(p-cym)]_2 / (1S,4R)-\underline{12}$ pour les rapports L* /Ru = 1,2 et 4, puis nous avons réalisé une série des essais avec différents ligands associés aux autres précurseurs ruthéniés. Le tableau 6 présente les résultats obtenus au cours de ces études.

Entrée	Ligand	L/Ru	Arène	Temps	Conv	Ee (%)	Ee (%)	Config*
				(h)	(%)	t _{1/2}		
14 ^a	(1 <i>S</i> ,4 <i>R</i>)- <u>12</u>	1	<i>p</i> -cymène	7	96	5	9	S
13 ^a	(1 <i>S</i> ,4 <i>R</i>)- <u>12</u>	2	<i>p</i> -cymène	20	99	27	11	S
15 ^a	(1 <i>S</i> ,4 <i>R</i>)- <u>12</u>	4	<i>p</i> -cymène	48	98	16	12	S
16	(1 <i>S</i> ,4 <i>R</i>)- <u>12</u>	1	Benzène	6	88	23	17	S
17	(1 <i>S</i> ,4 <i>R</i>)- <u>12</u>	2	Benzène	21	84	51	43	S
18	(1 <i>R</i> ,4 <i>S</i>)- <u>13</u>	1	Benzène	4	93	54	48	R
19	(1 <i>R</i> ,4 <i>S</i>)- <u>13</u>	2	Benzène	20	94	50	43	R
20	(1 <i>R</i> ,4 <i>S</i>)- <u>13</u>	1	HMB	4	90	53	36	R
21	(1 <i>R</i> ,4 <i>S</i>)- <u>13</u>	2	HMB	21	97	nd	40	R
22	(1 <i>S</i> ,4 <i>R</i>)- <u>14</u>	1	HMB	5	96	17	6	S
23	(1 <i>S</i> ,4 <i>R</i>)- <u>14</u>	2	HMB	21	97	nd	5	S
24	(1 <i>S</i> ,4 <i>R</i>)- <u>15</u>	1	Benzène	4	96	4	4	S
25	(1 <i>S</i> ,4 <i>R</i>)- <u>15</u>	2	Benzène	7	94	18	20	S

Tableau 6 : Réduction de l'acétophénone catalysée par $[RuCl_2(arène)]_2 / \underline{12}-\underline{15}$: influence durapport L*/Ru.

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol ; S/Ru/L*/B = 100/1/2/2 ; [S] = 0,1M

^a S/Ru/L*/B = 100/1/2/6

*Enantiomère majoritaire

Les résultats obtenus montrent l'influence importante du rapport L*/Ru sur l'activité de la réaction. En effet, avec 4 équivalents de ligand **12** (L/Ru = 4), l'acétophénone est réduite lentement (98% de conversion après 48h) (entrée 15) Par contre, on voit que l'activité augmente rapidement avec un rapport de L/Ru = 1 (96% de conversion juste après 7h) (entrée 14). Lorsque le rapport est L*/Ru = 2 (entrée 13), la conversion est de 99% après 20 heures. Par ailleurs, il est à noter que les excès énantiomériques obtenus sont comparables pour tous les rapports L*/Ru = 1, 2 et 4.

Pour généraliser les observations obtenues avec l'aminooxime <u>12</u> aux autres ligands, nous avons réalisé des essais avec les autres aminooximes associées aux différents précurseurs ruthéniés. Au cours de cette étude, nous avons fixé les rapports L*/Ru à 1 et 2 qui donnent les meilleures activités, avec un rapport B/Ru = 2. Les tests catalytiques effectués avec les différents systèmes catalytiques montrent que de bonnes activités catalytiques sont observées dans le cas de la réduction de l'acétophénone (entrées 16-25).

Tout d'abord, on note que de même que pour le système $[RuCl_2(p-cym)]_2 / (1S,4R)$ - **12** (entrées 13 et 14), des remarques identiques sont observées en utilisant le précurseur $[RuCl_2(benzène)]_2$. En effet, de bonnes conversions ont été obtenues, et le système est le plus efficace avec un rapport L/Ru = 1 (88% de conversion après 6h avec un excès 17%). Les tendances observées dans le cas du ligand <u>15</u> (entrées 24 et 25) confirment les résultats obtenus avec le ligand <u>12</u> et avec les deux ligands arènes.

Concernant la variation de la sélectivité, généralement un excès de ligand permet d'améliorer notablement l'excès énantiomérique, ce qui a été observé dans le cas des ligands <u>12</u> et <u>15</u>. Cependant, les ligands <u>13</u> et <u>14</u> (entrées 18-23) conduisent à des résultats comparables au niveau de l'énantiosélectivité pour les deux rapports L/Ru = 2 et L/Ru = 1. La mesure de l'ee à mi-conversion ($t_{1/2}$) nous permet de voir que, dans certains cas, celui-ci chute au cours du temps. Le problème de racémisation observé précédemment ne permet pas de rationaliser ces résultats, celle-ci pouvant être plus ou moins marquée en fonction de la nature des ligands.

Le comportement observé dans le cas des ligands <u>13</u> et <u>14</u> est inverse à celui dans le cas des ligands <u>12</u> et <u>15</u> (entrées 16, 17, 24 et 25). Ceci pourrait être expliqué par la nature du système catalytique utilisé (ligand + précurseur métallique). Enfin, un essai a été réalisé en utilisant le précurseur RuCl₂(PPh₃)₃ associé à l'aminooxime <u>12</u> (tableau 7).

Tableau 7 : Transfert d'hydrogène de l'acétophénone en présence de (1S,4R)-<u>12</u> associé aRuCl₂(PPh₃)₃

Entrée	L*/Ru	Temps (h)	Conv (%)	Ee (%)	Config*
26	1	4	90	27	S
27	2	19	97	23	S

Conditions : T = 80°C dans l'*iso*propanol ; S/Ru/L/B = 100/1/2/2 ; [S] = 0,1M. *Enantiomère majoritaire

Les résultats obtenus avec le $RuCl_2(PPh_3)_3$ lors de la réduction de l'acétophénone montrent bien que l'influence du rapport L*/Ru est fortement dépend du système catalytique utilisé.

Conclusion

Grâce à l'étude réalisée sur les différents paramètres qui régissent le transfert d'hydrogène, on constate que les différents systèmes catalytiques conduisent à des différences remarquables sur le plan de l'activité et de l'énantiosélectivité. Cette étude nous a permis d'optimiser les conditions expérimentales pour réaliser un bon transfert asymétrique d'hydrogène.

Une concentration du substrat de 0,1 M et un rapport de S/Ru = 100 ont été fixés préalablement pour tous les tests catalytiques (par comparaison avec ceux qui sont décrits dans la littérature). Un excès de la base par rapport au métal diminue notablement l'énantiosélectivité de la réaction. Ainsi un rapport de B/Ru = 2 a été fixé comme conduisant au meilleur compromis entre activité et sélectivité.

L'influence du rapport L*/Ru sur la réduction de l'acétophénone est plus marquée sur l'activité catalytique que sur l'énantiosélectivité mais les résultats dépendent aussi du système catalytique utilisé.

Les tests catalytiques qui font l'objet de ce qui suit seront donc réalisés dans les conditions expérimentales suivantes :

- Température : 80°C
- Rapport B/Ru = 2
- Rapport L/Ru = 2
- Rapport S/Ru = 100
- Concentration du substrat [S] = 0,1M

3.3.3. Etude de l'effet du ligand aromatique

Nous avons élargi notre étude en utilisant les ligands aminooximes avec différents dimères ruthéniés (*p*-cymène, benzène et hexaméthylbenzène). Les résultats obtenus sont rassemblés dans le tableau 8.

Tableau 8: Transfert asymétrique d'hydrogène de l'acétophénone catalysé par $[RuCl_2(arène)]_2$ associé aux ligands <u>12-15</u>.

Entrée	Arène	Ligand	Temps (h)	Conv (%)	Ee (%)	Config*
28	p-cym	(1 <i>S</i> ,4 <i>R</i>)- 12	21	97	24	S
29		(1 <i>R</i> ,4 <i>S</i>)- 13	20	93	38	R
30		(1 <i>S</i> ,4 <i>R</i>)- 14	22	64	< 5	S
31		(1 <i>S</i> ,4 <i>R</i>)- 15	22	96	35	S
17	Benzène	(1 <i>S</i> ,4 <i>R</i>)- 12	21	84	43	S
32		(1 <i>S</i> ,4 <i>R</i>)- 13	19	92	80	S
33		(1 <i>S</i> ,4 <i>R</i>)- 14	23	93	28	S
25		(1 <i>S</i> ,4 <i>R</i>)- 15	7	94	20	S
34	HMB	(1 <i>S</i> ,4 <i>R</i>)- 12	20	85	53	S
21		(1 <i>R</i> ,4 <i>S</i>)- 13	21	97	40	R
23		(1 <i>S</i> ,4 <i>R</i>)- 14	21	97	5	S
35		(1 <i>S</i> ,4 <i>R</i>)- 15	24	26	39	S

Conditions : T = 80°C dans l'isopropanol ; S/Ru/L/B = 100/1/2/2 ; [S] = 0,1M. *Enantiomère majoritaire

Au vu des résultats obtenus, nous remarquons l'efficacité des systèmes catalytiques utilisés, puisque toutes les conversions sont assez élevées (jusqu'à 97% après 21h). La meilleure activité est obtenue en utilisant le précurseur [RuCl₂(benzène)]₂ en présence du ligand (1S,4R)-<u>15</u> avec une conversion de 94% après seulement 7h (entrée 25). D'autre part, pour tous les tests catalytiques, les sélectivités sont très variables avec un excès maximal de 80%. Dans ce dernier cas, le ligand utilisé est le (1S,4R)-<u>13</u> avec une conversion de 92% après 19h (entrée 32). Comme nous avons vu dans le chapitre 2, le ligand aréné joue un rôle fondamental sur la sélectivité de la réaction. La comparaison des résultats de différents arènes montre bien que le complexe [RuCl₂(benzène)]₂ est le plus actif des trois ligands arénés testés.

3.3.4. Réduction asymétrique par transfert d'hydrogène des dérivés de l'acétophénone

Les tests catalytiques précédents ont été menés en présence de 2 équivalents de ligand et à 80°C. Dans ces conditions, nous avons voulu élargir la gamme de substrats afin de voir leurs influences sur la réduction asymétrique par transfert d'hydrogène. Pour cela nous avons choisi comme système catalytique les coordinats chiraux <u>12</u> ou <u>13</u> associés au précurseur [RuCl₂(benzène)]₂ (figure 10).

Figure 10

Les résultats obtenus sont résumés dans les tableaux 9 et 10.

Entrée	Substrat	Temps (h)	Conv (%)	Ee (%)
17	А	21	84	43
36	В	22	98	6
37	С	22	96	12
38	D	22	84	22
39	E	7	94	6
40	F	8	71	30
41	G	8(23)	73(87)	78(74)
42	Н	6	93	17
43	K	17	99	37
44	L	8	92	59

Tableau 9: Transfert d'hydrogène sur les différents substrats en présence de $[RuCl_2(benzène)]_2$ associé au ligand (1S,4R)-12.

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol ; S/Ru/L/B = 100/1/2/2 : [S] = 0,1 M.

Tableau10 : Transfert d'hydrogène sur les différents substrats en présence de $[RuCl_2(benzène)]_2$ associé au ligand (1S,4R)-

Entrée	Substrat	Temps (h)	Conv (%)	Ee (%)
32	А	19	92	80
45	В	23	99	24
46	С	23	97	55
47	D	5	88	66
48	E	18	84	39
49	F	2	95	56
50	G	3	97	72
51	Н	3	95	74
52	Ι	1	99	66
53	J	0,5	95	64
54	K	3	99	46
55	L	2	90	78

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol ; S/Ru/L/B = 100/1/2/2 : [S] = 0,1 M.

Dans le cas des cétones aromatiques substituées et pour un système catalytique donné, la vitesse de réaction est généralement sensible aux propriétés électroniques du substituant sur le noyau aromatique.

En utilisant les aminooximes <u>12</u> et <u>13</u>, les activités du catalyseur, lorsque le noyau aromatique du substrat est substitué par des groupements électrodonneurs tel que le méthyle CH_3 ou le groupe méthoxy OCH₃, sont similaires à celles observées avec l'acétophénone : jusqu'à 99% de conversion ont été atteints après 23h.

D'autre part, en présence de Cl ou NO_2 comme substituant, le transfert d'hydrogène est très rapide (entrées 40-42, 44 et 49-53, 55) : on peut observer des conversions pratiquement totales après seulement 1 h. Ces différences de réactivité des différents substrats ont déjà été décrites par Gladiali¹⁰⁵ et les mêmes tendances sont observées dans notre travail.

Au niveau de la sélectivité, on remarque qu'elle est fortement influencée par les substituants du cycle aromatique (des ee entre 6 % et 78% ont été obtenus), et l'étude en fonction du temps de l'évolution des excès énantiomériques nous enseigne qu'aucune racémisation n'apparaît clairement. Les meilleurs résultats ont été observés avec la *m*-chloroacétoacétophénone (74%-72% entrées 50 et 51). Les mêmes observations ont été reportées par Noyori³⁷ qui a trouvé que les meilleures activités (98%) et énantiosélectivités (98%) ont également été obtenues avec ce substrat. Dans le cas de la trifluoroacétophénone, le résultat obtenu est quelque peu décevant avec un excès maximal de 46%.

La réduction asymétrique du 2-acétonaphtone L conduit au meilleur résultat en termes d'activité et d'énantiosélectivité (90% de conversion avec un excès de 78% ont été obtenus après juste 2h) quand le système [RuCl₂(benzène)]₂/(1*S*,4*R*)-<u>13</u> est utilisé.

Comme attendu, avec l'énantiomère (1R,4S)-<u>13</u> les résultats obtenus en terme d'activité et énantiosélectivité restent presque les mêmes que ceux obtenus avec le (1S,4R)-<u>13</u>. Le tableau 11 présente les résultats obtenus avec [RuCl₂(Benzène)]₂ / (1R,4S)-<u>13</u>.

¹⁰⁵ Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.

Entrée	Substrat	Temps (h)	Conv (%)	Ee (%)
56	D	5	90	62
57	F	3	97	55
58	G	3	97	75
59	L	2	90	78

Tableau 11 : Transfert d'hydrogène sur différents substrats en présence de $[RuCl_2(benzène)]_2$ associé au ligand (1R, 4S)-<u>13</u>.

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol ; S/Ru/L/B = 100/1/2/2 : [S] = 0,1 M.

* * *

Conclusion

Les résultats de tests catalytiques montrent bien que les coordinats α -aminooximes permettent d'obtenir dans certains cas de bonnes activités et énantiosélectivités.

Par la suite, nous nous sommes concentrés sur le mode d'action de ces catalyseurs pour définir le mode de coordination de ces nouveaux ligands, tout particulièrement au travers de leurs fonctions oxime et amine secondaire, potentiellement donneuses de protons et susceptibles de réagir avec le centre métallique pour former des liaisons de type amido et/ou oximato.

3.3.5. Complexes Ruthénium / Aminooxime

Une première approche a consisté à synthétiser des complexes directement à partir du précurseur ruthénié et des ligands type aminooxime sans ajout de base.

Deux nouveaux complexes mononucléaires C1 et C2 ont ainsi été préparés par réaction des aminooximes <u>12</u> et <u>13</u> avec le précurseur $[RuCl_2(p-cymène)]_2$ ($[Ru]_2/aminooxime = 1:2$) dans le dichlorométhane (schéma 72).

Schéma 72

Les analyses spectroscopiques RMN ¹H et ¹³C des complexes C1 et C2 dans le chloroforme deutérié montrent que les ligands sont bien coordinés sur le ruthénium *via* les deux atomes d'azote.

Les déplacements chimiques des protons des groupements NH et OH dans les complexes sont différents de ceux des ligands libres. En effet, le signal du proton du groupe OH est déplacé de 9,03 ppm pour le ligand libre <u>12</u> à 12,46 ppm dans le complexe ruthénié **C1**, et le déplacement chimique du proton du groupement NH passe de 3,75 ppm pour <u>12</u> à 5,40 ppm pour le complexe **C1**. De manière similaire, en RMN ¹³C le déplacement du carbone *C*=N de l'oxime passe de 164,47 ppm pour <u>le ligand libre</u> à 171,93 ppm dans C1.

Les mêmes propriétés ont été observées dans le cas du complexe C2 (figures 11 et 12). En particulier, les protons du groupement NC H_2 Ph dans le cas du ligand libre ne sont pas équivalents et donnent deux doublets à 3,73 ppm et 3,44 ppm respectivement et ceux-ci sont déblindés pour donner un signal à 4,58 ppm après complexation. Par ailleurs, on note la présence de deux doublets des méthyles du groupement CH(CH₃)₂ du *p*-cymène et des quatre doublets pour les protons du noyau aromatique.

Figure 11 : Spectre RMN ¹H et spectre COSY ¹H-¹H (CDCl₃) du complexe C2

Figure 12 : Spectre RMN 13 C (APT) (CDCl₃) du complexe C2 et du ligand <u>13</u>

3.3.6. Analyse et caractérisation radiocristallographique des complexes Ru/Aminooxime

L'analyse spectroscopique RMN-¹H et ¹³C ne nous pas a permis de déterminer le mode exact de coordination de ligand avec le ruthénium : une étude cristallographique s'est avérée nécessaire.

Le complexe C1 a été cristallisé dans un mélange chloroforme / éther à température ambiante. La structure obtenue par diffraction des rayons X est représentée sur la figure 13. Le complexe cristallise dans le groupe d'espace orthorhombique $P2_12_12_1$ et présente une géométrie sous forme ``piano stool''. Les deux atomes de l'azote sont engagés dans la coordination *via* une liaison π et forment un cycle à cinq chaînons contenant le ruthénium. L'atome de chlore et l'arène du *p*-cymène complètent la sphère de coordination avec le ruthénium.

De nombreux essais de cristallisation ont été effectués pour le complexe C2 mais se sont toujours révélés infructueux.

Figure 13 : Structure cristallographique du complexe C1 (S_{Ru} ,S,R). L'atome d'hydrogène situé sur l'atome d'oxygène de l'oxime n'a pu être localisé avec précision lors de l'analyse. Les autres atomes d'hydrogène ont été omis pour plus de clarté.

Chapitre III : Résultats : Réduction asymétrique de cétones aromatiques par transfert d'hydrogène

Les principales longueurs de liaison et les angles caractéristiques sont regroupés dans le tableau 12.

Tableau 12 : Sélection de longueurs de liaison et d'angles pour le complexe C1

Distances inter	ratomiques (Å)	Angles de liaison (°)		
Ru1-Cl2 : 2.405(3)	Ru1-N3 : 2.192(8)	Cl2 -Ru1-N3 : 79.2(2)	Cl2-Ru1-N12 : 85.7(3)	
Ru1-N12: 2.103(9)	N12- 013 : 1.393(12)	N3-Ru1-N12 : 74.0(4)	Ru1-N12-O13 : 122.8(8)	

3.3.7. Test catalytique avec les complexes C1 et C2 (Transfert Asymétrique d'Hydrogène).

Les complexes C1 et C2 préparés et isolés à partir de $[RuCl_2(p-cym)]_2$ et des aminooximes <u>12</u> et <u>13</u> respectivement ont été utilisés comme pré-catalyseurs en réduction asymétrique par transfert d'hydrogène de l'acétophénone.

Les résultats obtenus sont présentés dans le tableau 13.

Tableau 13 : Réduction asymétrique par transfert d'hydrogène de l'acétophénone catalyséepar les complexes C1 et C2.

Entrée	Complexe	Temps (h)	Conv (%)	Ee (%)	Config*
60	C1 (in situ)	7	96	9	S
61	C1	5	97	3	S
62	C2 (in situ)	5	81	27	S
63	C2	7	61	30	S

<u>Conditions</u> : $T = 80^{\circ}C$ dans l'*iso*propanol S/Ru = 100 ; B/Ru = 2 : [S] = 0,1 M.

*Enantiomère majoritaire

Dans un premier temps, il faut noter que les complexes **C1** et **C2** ne catalysent la réduction par transfert d'hydrogène de l'acétophénone que si l'*iso*propylate de potassium est ajouté au milieu réactionnel. Après ajout de la base, on constate que les activités et énantiosélectivités sont comparables à celles observées lorsque les complexes sont formés *in situ*. Ceci nous conduit à penser que les complexes cationiques **C1** et **C2** sont bien les précurseurs dans la réaction de transfert d'hydrogène.

3.3.8. Approche mécanistique : ``Ru-Aminooxime'' en transfert asymétrique d'hydrogène

En termes de cycle catalytique, aucun travail n'ayant été effectué sur les aminooximes en réduction asymétrique par transfert d'hydrogène, les informations sur le mécanisme exact de fonctionnement restent à explorer.

Les travaux de Noyori concernant le mécanisme de transfert d'hydrogène avec le complexe [RuCl₂(*p*-cymène)]₂ associé à la TsDPEN³⁷ conduisent à proposer le cycle catalytique présenté dans le schéma 10. La réaction du précurseur avec le ligand chiral conduit à une espèce stable à 18 e⁻ I qui forme le précatalyseur. L'action d'une base minérale sur celui-ci conduit à la formation d'une espèce à 16 e⁻ qui est l'espèce active réelle II. La présence de l'*iso*propanol comme donneur d'hydrogène, permet d'obtenir l'hydrure métallique III qui est le réducteur. Ces trois intermédiaires ont été observés expérimentalement et identifiés par rayons X. Le transfert d'hydrogène sur la cétone prochirale se fait *via* un intermédiaire cyclique à six centres décrit sur l'intermédiaire IV grâce à une liaison hydrogène entre l'hydrogène de l'amine NH et l'oxygène de la cétone. Des calculs théoriques ont été effectués par Noyori¹⁰⁶ et d'autres équipes¹⁰⁷ et confirment l'existence de l'état de transition de l'intermédiaire IV.

Dans le cas des ligands du type β -aminoalcool, dans un premier temps, aucun intermédiaire n'a pu être déterminé expérimentalement, mais les calculs de simulation effectués par les équipes d'Anderson¹⁰⁷, Noyori¹⁰⁸ et Van Leeuwen¹⁰⁹ ont montré que le mécanisme est similaire à celui avec décrit avec la TsDPEN (schéma 73). Ces résultats ont été confirmés par la suite dans notre laboratoire¹¹⁰ où ces intermédiaires ont été isolés et caractérisés par RMN 1D et 2D, spectroscopie infrarouge et spectrométrie de masse par ionisation electrospray (ESI-MS).

¹⁰⁶ Yamakawa, M. ; Ito, H. ; Noyori, R. J. Am. Chem. Soc. **2000**, 122, 1466

¹⁰⁷ Alonso, D. A.; Brandt, P.; Nordin, S. J. M.; Andersson, P. G. J. Am. Chem. Soc. **1999**, 121, 9580

¹⁰⁸ Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466

¹⁰⁹ Petra, D. G. I.; Reek, J. N. H.; Handgraaf, J.-W.; Meijer, E. J.; Dierkes, P.; Kamer, P. C. J.; Brussee, J.; Schoemaker, H. E.; van Leeuwen, P. W. M. N. *Chem. Eur. J.* **2000**, 2818

¹¹⁰ Everaere, K. ; Mortreux, A. ; Carpentier, J.-F. Adv. Synth. Catal. 2003, 345

Schéma 73

La structure de nos ligands aminooximes qui présente à la fois une fonction amine NH et une fonction OH sur l'oxime, nous a laissés penser dans un premier temps à un mécanisme similaire à celui proposé par Noyori (schéma 74).

Schéma 74

Encore fallait-il le prouver par les méthodes appropriées, similaires à celles déjà mises en œuvre pour les aminoalcools. A cet effet, l'intermédiaire A1 a été préparé par réaction du dimère ruthénié, du ligand <u>13</u> et de l'hydroxyde de potassium (Ru/aminooxime/KOH = 1:1:1) dans le dichlorométhane à température ambiante. Les

données spectrales de RMN dans le chloroforme deutérié indiquent clairement l'absence d'un signal vers 13 ppm correspondant au groupement OH de l'oxime. Les déplacements chimiques des autres protons restent comparables à ceux observés dans le cas du complexe **A**. Le spectre de masse LC-MS présente un massif de masse (m/z) à 543,05, et tous les différents pics correspondant aux différents isotopes sont en accord avec le spectre calculé théoriquement du composé $C_{27}H_{38}ClN_2ORu$. Le complexe **A1** cristallise à température ambiante dans un mélange de chloroforme / éther.

La structure moléculaire (S_{Ru} , S, R)-A1 obtenue par la diffraction des rayons X est représentée sur la figure 7. Le complexe montre deux motifs dans la même structure et cristallise dans le groupe d'espace monoclinique P2₁ avec une géométrie sous forme ``piano stool´´ consistant en un atome de ruthénium sur lequel est coordiné le ligand aromatique (le *para*-cymène) et les deux atomes d'azote du ligand aminooxime. Grâce au résultat de l'analyse des rayons X, et contrairement à ce que l'on aurait pu penser, l'atome d'oxygène ne coordine pas le ruthénium et reste donc sous forme oximato.

Figure 14 : Structure moléculaire du complexe cationique **A1**. L'atome d'hydrogène situé sur l'atome de l'azote de l'amine n'a pu être localisé avec précision. Les atomes d'hydrogène ont été omis pour plus de clarté.

Les distances interatomiques sont presque identiques pour les deux motifs du complexe A1. Les autres principaux distances et angles de liaisons sont regroupés dans le tableau 14.

Distances a	tomiques (Å)	Angles de liaison (°)			
Ru1- Cl2 : 2.4038(18)	Ru22-Cl23 : 2.4011(19)	Cl2-Ru1-N3: 83.01(14)	Cl23-Ru22-N24 : 82.45(15)		
Ru1-N3 : 2.074(4)	Ru22- N24 : 2.066(5)	Cl2-Ru1-N11: 81.83(13)	Cl23-Ru22 -N28 : 82.62(14)		
Ru1-N11 : 2.166(5)	Ru22-N28 : 2.171(5)	N3-Ru1- N11 : 75.60(17)	N24-Ru22- N28 : 74.8(2)		
N3-04 : 1.371(6)	N24-O25 : 1.402(6)				

 Tableau 14 : Sélection de longueurs de liaisons et d'angles pour A1

Compte tenu de ce résultat mettant en évidence l'absence de liaison Ru-O, le mécanisme suivant peut être proposé (schéma 75).

Schéma 75

Des essais ont été effectués en vue d'isoler l'intermédiaire **E**, par réaction du précurseur $[\operatorname{RuCl}_2(p\text{-cym})]_2$ avec le ligand (1S,4R)-<u>13</u> en présence de 2 équivalents d'hydroxyde de potassium. Après plusieurs tentatives, nous n'avons toujours pas réussi à l'isoler ni à le caractériser.

Néanmoins, quand le complexe formé *in situ* par la réaction du précurseur [RuCl₂(*p*cym)]₂ avec l'aminooxime <u>13</u> est traité avec 4 équivalents d'*iso*propylate de potassium en absence de substrat, une solution de coloration rouge a été obtenue. L'analyse par RMN ¹H (figure 15) de ce complexe révèle la présence de deux résonances à -5,10 et - 6,15 ppm qui ont été affectées à la présence de deux hydrures métalliques diastéréoisomères (schéma 76). Ces valeurs sont proches de celles d'autres complexes de ruthénium obtenus avec les diamines ($\delta_{Ru-H} = -5,47$ ppm)³⁷ et les aminoalcools ($\delta_{Ru-H} = -5,20$ ppm)¹¹¹.

Schéma 76

Figure 15 : Spectre de RMN-¹H du complexe hydrure **F**

¹¹¹ Everaere, K.; Mortreux, A.; Bulliard, M.; Brussee, J.; Van der Gen, A.; Nowogrocki, G.; Carpentier, J.-F. *Eur. J. Org. Chem.* **2001**, 275.

3.4. Les α-aminooximes-éthers

Afin de déterminer la contribution du groupement OH dans le cas des ligands aminooximes en transfert asymétrique d'hydrogène, nous avons étudié l'effet engendré par le changement de cette fonction alcool en éther pour les différents aminooximes. Ces ligands ont été obtenus par la réaction des aminooximes correspondants avec un halogénure d'alkyle en présence d'hydrure de sodium. La procédure se fait en deux étapes et a permis d'obtenir les coordinats aminooxime-éthers avec de bons rendements (schéma 77).

Schéma 77

Les résultats des tests catalytiques en réduction asymétrique par transfert d'hydrogène de l'acétophénone sont rassemblés dans le tableau 15.

Tableau 15: Transfert asymétrique d'hydrogène sur l'acétophénone catalysé par descomplexes du ruthénium associés aux aminooximes-éthers <u>16-18</u>.

Entrée	ligand	Complexe	Temps	Conv (%)	Ee (%)	Config*
			(h)			
64	16	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	68	96	5	R
65	16	[RuCl ₂ (benzène)] ₂	68	87	10	R
66	17	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	6	90	10	R
67	17	$[RuCl_2(benzen)]_2$	22	95	11	R
68	17 ^a	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	5	78	10	R
69	18	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	3	52	rac	-
70	18	[RuCl ₂ (benzène)] ₂	3	94	7	S

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol, S/Ru/L*/B = 100:1:1:2 ; [S] = 0,1 M.

^a $L^*/Ru = 2$

*Enantiomère majoritaire

Tout d'abord, on note que ces coordinats s'avèrent plus ou moins actifs dans la réduction de l'acétophénone dans l'*iso*propanol à 80°C. Le ligand (1S,4R)-<u>17</u> permet d'obtenir la meilleure sélectivité (11% d'excès énantiomérique pour 95% de conversion) dans le cas de [RuCl₂(benzène)]₂ après 22h de réaction (entrée 67). Par contre, le ligand (1*S*,4*R*)-<u>16</u> s'avère être moins actif par rapport à ses analogues (68h de réaction pour avoir 96% de conversion)(entrée 64). Malheureusement, ces ligands ont conduit à des excès énantiomériques très modestes au cours de la réduction de l'acétophénone. Au vu des conversions obtenues avec ce type de ligand, la présence d'une fonction hydroxy n'apparaît pas nécessaire et confirme la non-coordination de l'oxygène sur le ruthénium.

Par ailleurs, nous avons réalisé quelques tests catalytiques préliminaires en utilisant le cluster trinucléaire $Ru_3(CO)_{12}$ et le $RuCl_2(PPh_3)_3$ associés au aminooximes-éthers <u>16-18</u>. Les résultats sont rassemblés dans le tableau 16.

Tableau 16: Transfert asymétrique d'hydrogène sur l'acétophénone catalysé par lescomplexes $RuCl_2(PPh_3)_3$ et $Ru_3(CO)_{12}$ associés aux ligands <u>16</u> et <u>17</u>.

Entrée	ligand	Complexe	Temps (h)	Conv (%)	Ee (%)	Config*
71	16 ^a	$RuCl_2(PPh_3)_3$	24	87	rac	-
72	17	$RuCl_2(PPh_3)_3$	19	96	rac	-
73	16 ^b	Ru ₃ (CO) ₁₂	68	83	11	R
74	17 ^b	Ru ₃ (CO) ₁₂	22	91	36	R
75	18 ^b	Ru ₃ (CO) ₁₂	4	92	23	S

Conditions : $T = 80^{\circ}C$ dans l'isopropanol, S/Ru/L*/B = 100:1:1:2 ; [S] = 0,1 M.

^a S/Ru = 200, B/Ru = 4

^b S/Ru₃/L*/B : 200:1:3:1,3

*Enantiomère majoritaire

Avec le précurseur $RuCl_2(PPh_3)_3$ le système n'a conduit à aucune énantiosélectivité. Cette observation laisse penser que dans ce cas, il n'y a pas de coordination du coordinat aminooxime-éther avec le ruthénium et c'est le ligand PPh₃ qui joue le rôle du ligand.

Les résultats obtenus avec les complexes formés *in situ* par la réaction entre les ligands aminooximes-éthers et le précurseur $Ru_3(CO)_{12}$ ont montré des bonnes conversions (jusqu'à 92%) avec une amélioration notable au niveau de la sélectivité au cours de la réduction de l'acétophénone par transfert d'hydrogène. La meilleure performance en sélectivité a été réalisée avec l'aminooxime-éther (1*S*,4*R*)-<u>17</u> (entrée 76). D'autre part, le ligand (1*S*,4*R*)-<u>18</u> conduit à un système très actif (entrée 75) : la conversion atteint 92% après

4 heures avec une énantiosélectivité modeste (23% d'ee). Par contre, et comme pour les dimères ruthéniés, le coordinat (1*S*,4*R*)-<u>**16**</u> s'avère le moins actif avec une conversion de 83% après 68 heures.

L'augmentation observée de la sélectivité dans le cas de $Ru_3(CO)_{12}$ peut être expliquée par la formation des complexes binucléaires et trinucléaires. L'encombrement stérique des espèces actives générées pourrait entraîner des modifications électroniques dans la sphère de coordination du métal en faveur de l'énantiosélectivité.

* * *

Nous avons étudié l'efficacité des systèmes catalytiques à base des coordinats aminooxime-éthers pour l'hydrogénation par transfert d'hydrogène de l'acétophénone. Dans un premier temps, avec les dimères de ruthénium, les aminooxime-éthers s'avèrent être actifs mais malheureusement présentent de modestes énantiosélectivités. Par la suite, nous avons étudié les performances de ces coordinats avec les clusters type $Ru_3(CO)_{12}$ pour la même réaction et il apparaît que ces catalyseur se révèlent un peu plus performants sur le plan de l'énantiosélectivité (ee = 36%).

3.5. Les ligands diazotés : diamines et diimines

Au cours du chapitre II, nous avons parlé de la réduction des cétones prochirales par transfert d'hydrogène en utilisant les diamines chirales comme inducteur d'asymétrie. Par ailleurs, nous avons aussi montré que les systèmes de Noyori comportant les 1,2-diamines monotosylées restent parmi les plus performants en termes de conversion et sélectivité.^{63,64}

3.5.1. Ligands diamines issus du limonène

Dans ce paragraphe, nous allons étudier le transfert asymétrique d'hydrogène sur l'acétophénone en présence de catalyseurs à base de métaux de transition modifiés par de nouvelles diamines optiquement pures préparées à partir du (R)-limonène *via* les aminooximes <u>12</u> et <u>13</u>. Ces diamines possèdent trois centres de chiralité sur le cycle, leur préparation est réalisée en une seule étape par la réduction de la fonction oxime avec un excès de LiAlH₄ à reflux d'éther (schéma 78).

Schéma 78

Les diamines que nous avons préparées seront testées par la suite en transfert d'hydrogène de l'acétophénone. Les catalyseurs générés *in situ* sont formés par la réaction des dimères du Ru, Rh et Ir avec les diamines chirales <u>19-20</u>. Les résultats des tests catalytiques sont présentés dans le tableau 17.

Entrée	Ligand	Complexe	Τ (° C)	Temps	Conv	Ee (%)	Config*
				(h)	(%)		
76	19	[Ir(COD)Cl] ₂	80	4	90	19	R
77	19	[Ir(COD)Cl] ₂	25	16	83	28	R
78	19	[Rh(COD)Cl] ₂	80	16	75	1	-
79	19	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	80	18	97	rac	-
80	19	[RuCl ₂ (benzène) ₂	80	18	96	rac	-
81	19	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	25	23	12	5	R
82	19	[RuCl ₂ (benzène) ₂	25	23	21	13	S
83	19	RuCl ₂ (PPh ₃) ₃	80	3	90	31	S
84	20	[Ir(COD)Cl] ₂	80	3	96	7	R
85	20	[Ir(COD)Cl] ₂	25	22	82	18	R
86	20	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	80	4	94	4	R
87	20	[RuCl ₂ (benzène) ₂	80	3	94	rac	-
88	20	$RuCl_2(PPh_3)_3$	80	2	96	6	S

 Tableau 17 : Réduction de l'acétophénone catalysée par des complexes de Ru, Rh et Ir associés aux diamines 19 et 20.

<u>Conditions</u> : réduction dans l'*iso* propanol, $S/Ru/L^*/B = 100 : 1 : 2 : 6$; [S] = 0,1 M. *Enantiomère majoritaire

De façon inattendue, nous avons remarqué que la réduction de l'acétophénone avec les dimères de benzène et *p*-cymène associés aux diamines <u>19</u> et <u>20</u> est inefficace à 80°C en terme de sélectivité, puisque les excès énantiomériques ne dépassent pas 4% (entrées 78-80 et 86-87). Nous avons abaissé la température à 25°C, mais la réduction est très lente : 21% de conversion après 23 heures. Par contre une amélioration légère en sélectivité a été observée dans ce cas (ee = 13%) (entrée 82).

Le ligand <u>19</u> fournit le meilleur résultat en termes d'activité et énantiosélectivité en utilisant le précurseur RuCl₂(PPh₃)₃ avec une conversion 90% et un excès modéré de 31% après seulement 3 heures (entrée 83). Par contre, avec le même précurseur catalytique, la diamine <u>20</u> s'avère moins performante au niveau de l'énantiosélectivité, puisque seulement 6% d'excès énantiomérique ont été obtenus (entrée 88).

Nous avons observé également que les catalyseurs formés *in situ* par la réaction entre les diamines chirales <u>19</u> et <u>20</u> et [Ir(COD)Cl]₂ offrent les meilleurs performances à température ambiante. En effet, une conversion de 83% et un excès de 28% ont été obtenus après 16 heures (entrée 77), alors qu'à 80°C la conversion atteint 90% après seulement 4 heures de réaction avec une diminution notable d'énantiosélectivité (ee = 19%). Les mêmes remarques ont été observées dans le cas de la diamine <u>20</u> (entrées 84 et 85). Par ailleurs, on constate que l'induction asymétrique dans le cas du dimère rhodié est quasiment nulle (ee = 1%), avec une conversion de 75% (entrée 78).

3.5.2. Ligands diimines issus du (+)-camphre

Nous avons également effectué des tests préliminaires afin d'étudier l'efficacité d'un nouveau ligand type iminepyridine dérivé du camphre (schéma 72) pour la réduction asymétrique par transfert d'hydrogène de l'acétophénone.

Schéma 72

Les catalyseurs générés *in situ* sont à base de Ru, Rh et Ir et s'avèrent être actifs pour cette réaction mais les énantiosélectivités restent très modestes (ee $\leq 18\%$). Les résultats obtenus sont présentés dans le chapitre VI (paragraphe 2) car actuellement en cours et incomplets. Nous avons aussi effectué quelques tests catalytiques sur les dérivés de l'acétophénone catalysés par [Ir(COD)Cl₂]₂. A la suite de ces premiers essais, il serait important de les approfondir en modifiant le catalyseur, en particulier en utilisant des complexes cationiques.
Chapitre IV

Conclusion générale

Le travail de cette thèse a pour but la valorisation des essences naturelles d'origine végétale par des voies nouvelles faisant appel en particulier à des procédés de catalyse homogène, s'inscrivant ainsi dans le concept de « chimie verte » en tenant en compte des considérations environnementales.

L'abondance naturelle des monoterpènes nous a permis de synthétiser de nouveaux ligands optiquement purs de structures très variées. La préparation, d'une part, de β -aminoalcools, diimines et diaminediols dérivés de l' α -pinène, et d'autre part d' α -aminooximes, d'aminooxime-éthers ainsi que de leurs diamines correspondantes, dérivés du limonène, a permis d'accéder en peu d'étapes et avec des rendements très satisfaisants à des coordinats chiraux nouveaux pour des applications catalytiques.

L'application catalytique a été le transfert asymétrique d'hydrogène dans l'*iso*propanol comme source d'hydrogène. Les coordinats synthétisés sont utilisés comme agents inducteurs de chiralité, et se sont révélés très performants sur le plan de l'activité et de l'énantiosélectivité. L'étude des différents paramètres qui régissent la réaction de transfert d'hydrogène a permis de déterminer les meilleures conditions. On a pu voir que c'est surtout le précurseur catalytique et la nature du substrat qui sont déterminants. Dans ce dernier cas, nous avons pu préciser le rôle des effets électroniques qui agissent sur l'activité au cours de la réduction des cétones aromatiques. Les meilleurs résultats sont obtenus avec le ligand (1S,4R)-<u>13</u> (une conversion de 99% et un excès énantiomérique de l'ordre 80% ont été observés).

Notre étude sur les α-aminooximes comme ligands chiraux en transfert asymétrique d'hydrogène nous a permis de proposer un mécanisme réactionnel en tenant compte de nos observations expérimentales.

Enfin, ce travail démontre bien que les monoterpènes présentent une source potentielle des ligands chiraux qui peuvent être attractifs pour la catalyse asymétrique. Une des perspectives envisageable serait d'utiliser ces α -aminooximes pour de nouveaux développements, en particulier pour d'autres réactions de catalyse asymétrique telles que l'hydrosilylation ou l'hydroformylation d'oléfines.

Chapitre V

Partie Expérimentale

1. Matériels et méthodes

1.1. Rampe vide-azote

Les tests catalytiques et les synthèses organométalliques ont été réalisés sous atmosphère d'azote en utilisant la technique Schlenk et la boîte à gants. Les autres réactions qui ne sont pas sensibles à l'air, ont été effectuées dans des conditions normales.

1.2. Solvants

Les solvants utilisés pour les différentes réactions ont été dégazés et distillés sous azote sur un agent desséchant puis stockés en tube de Schlenk. L'éther diéthylique a été distillé sur sodium en présence de benzophénone et l'*iso*propanol sur CaH₂. Le dichlorométhane est prélevé sur une fontaine à solvants après passage sur des colonnes desséchantes. Les autres solvants comme l'éther de pétrole ou l'acétate d'éthyle utilisés pour les colonnes de silice et pour l'élution ont été employés sans purifications particulière.

1.3. Analyses

Les spectres RMN ont été enregistrés sur un appareil BRUKER AC 300 MHz équipé d'une sonde multinoyaux (¹H, ¹³C, ³¹P, ¹⁹F). Les déplacements chimiques sont exprimés en ppm, et les spectres sont référenciés par rapport au TMS en utilisant le signal résiduel du solvant deutérié (CDCl₃).

Les conversions et les énantiosélectivités ont été déterminées par chromatographie en phase gaz sur une colonne chirale Chirasil-DEX CB ($25m \times 0.25mm$, Chrompack) en isotherme à des températures variant de 95°C à 160°C en fonction du substrat, et avec une pression du gaz vecteur P(H₂) = 70 kPa.

Les configurations absolues déterminées à l'aide d'échantillons optiquement purs ou grâce aux données de la littérature.

1.3.1. Analyses élémentaires

Les analyses élémentaires ont été mesurées à l'aide d'un appareil ELEMENTAR MICROVARIO au service d'analyses dans l'Unité de Catalyse et de Chimie du Solide.

1.3.2. Spectrométrie de masse

Les spectres de masse ont été enregistrés au service de masse de la Faculté de Pharmacie / l'Université de Lille 2.

2. Substrats

Les substrats commerciaux (Aldrich, Fluka) sont utilisés sans purification particulière.

3. Procédure typique de transfert d'hydrogène

Les réactions de réduction par transfert asymétrique d'hydrogène sont effectuées sous atmosphère d'azote dans un tube de Schlenk.

Une solution composée de $[RuCl_2(benzène)]_2$ (5 mg ; 0,01 mmol) et de (1*S*, 4*R*)-1benzylamino-p-menth-8-en-2-one oxime (10,88 mg ; 0,04 mmol) dans l'*iso*propanol (5 ml) est portée à 82°C pendant 30 min. Après refroidissement de la solution jaune, la cétone aromatique (2 mmol) dans l'*iso*propanol (14 ml) est additionnée. L'ajout final d'*iso*propylate de potassium (0,33 ml, 0,12 M dans l'*iso*propanol) constitue le début (t₀) de la réaction. L'avancement de la réaction est suivi par chromatographie en phase gaz par analyse des échantillons prélevés périodiquement.

• 1-Phényléthanol :

Conditions : pression d'hydrogène 70 kPa ; température de la colonne : isotherme à 95° C tr (R) = 10.95 min ; tr (S) = 11.60 min

4. Synthèses des ligands

Les ligands suivants ont été obtenus selon une méthode décrite dans la littérature.⁹⁷

- (1*R*, 2*R*, 5*R*)-2-Hydroxypinan-3-one
- (1R, 2R, 5R)-2-Hydroxypinan-3-one oxime
- (1*R*, 2*R*, 3*S*, 5*R*)-3-Amino-2-hydroxypinane
- (1R, 2R, 3S, 5R)-N-Méthyl-3-amino-2-hydroxypinane

4.1. β-aminalcools

4.1.1. (1R, 2R, 3S, 5R)-3-(benzylamino)-2,6,6-trimethyl-bicyclo[3.1.1]heptan-2-ol 4

Un mélange de (1*R*, 2*R*, 3*S*, 5*R*)-3-Amino-2-hydroxypinane chlohydrate (1.37 g, 6.7 mmol), benzaldéhyde (0.711 g, 6.7 mmol) et de triéthylamine (0.77 g, 1.05 mmol) dans l'éthanol absolu (15 ml) est agité à température ambiante pendant 30 min. A 0°C, le borohydrure de sodium (0.45 g, 12 mmol) est ajouté peu à peu. La solution est agitée pendant 20 min, neutralisée ensuite avec de l'eau (2,5 ml), diluée avec du dichlorométhane (10 ml) et filtrée. Après élimination des solvants sous pression réduite, le résidu est repris avec de l'éther diéthylique (10 ml) et lavé à l'eau (3×10 ml). Le séchage de la phase organique sur Na₂SO₄ et l'évaporation du solvant fournissent le produit qui est recristallisé dans un mélange éther diéthylique / éther (1 : 1) de pétrole pour donner le N-benzylaminoalcool.

Rdt : 63%, $[\alpha]_D^{20} = -14,8$ (c 1.0, CHCl₃). Analyse élémentaire calculée pour C₁₇H₂₅NO : C, 78.72; H, 9.71; N: 5.04 ; trouvée : C, 78.45; H, 9.60; N, 4.95. **RMN** ¹**H** (CDCl₃): $\delta = 0,91$ (s, CH₃), 0,98 (s, CH₃), 1.25 (s, CH₃), 1,5–1,7 (m, 6H), 2,63 (m, CH—N), 3,8 (dd, CH₂), 7,1–7,5 (m, H_{aro}). **RMN** ¹³C (CDCl₃) : $\delta = 20,1$; 22,5; 25,56; 27,05; 28,21; 39,8; 41,22; 50,61; 52,63; 67,15; 75,55; 126,56; 127,61; 127,77; 139,75.

4.1.2. (1R,2R,3S,5R)-3-(biphenyl-4-ylméthylamino)-2,6,6trimméthylbicyclo[3.1.1]heptan-2-ol 5

Le ligand 5 a été préparé de manière analogue au N-benzylamino-alcool 4.

Rdt : 68%, $[\alpha]_D^{20} = -18,7$ (c 1.0, CHCl₃). Analyse élémentaire calculée pour C₂₃H₂₉NO: C, 82.34; H, 8.71; N, 4.18 ; trouvée : C, 82.11; H, 8.56; N, 4.02.

RMN ¹**H** (CDCl₃) δ = 0,91(s, CH₃), 0,98 (s, CH₃), 1,25 (s, CH₃), 1,5–1.7 (m, 6H), 2,63 (m, CH-N), 3,8 (dd, CH₂), 7,1–7,8 (m, H_{arom}).

RMN ¹³**C** (CDCl₃) 20,1; 22,5; 25,56; 27,05; 28,21; 39,8; 41,22; 50,61; 52,63; 67,15; 75,55; 120,51; 127,39; 133,0; 133,26; 135,7; 142,11; 143,27; 144,31.

4.2. Diiminediols et diaminediols

4.2.1. (1R,1'R,2R,2'R,5R,5'R)-3,3'-(ethane-1,2-diylbis-(azan-1-yl-1-ylidene))-bis-(2,6,6 trimethylbicyclo-[3.1.1]heptan-2-ol) <u>8</u>:

Un mélange de (1R, 2R, 5R)-2-Hydroxypinan-3-one (5 g, 29,7 mmol), d'éthyl-1,2diamine (0,894 g, 14,8 mmol) et quelques cristaux de APTS dans le toluène (50 ml) est porté à reflux pendant 24h dans un appareil de Dean-Stark. La solution obtenue est filtrée et le filtrat est concentré sous pression réduite jusqu'à un volume de 5ml et de l'éthanol absolu (20 ml) est ajouté. Le résidu est refroidi à 0°C et recristallisé après addition d'eau et le précipité formé est filtré, lavé avec l'hexane pour donner le diimindiol (1,7g).

Rdt : 68%, $[\alpha]_D^{20} = -13,1$ (c 1.0, CH₃OH).

RMN ¹**H** (CDCl₃) : $\delta = 0.88$ (s, 6H), 0.98 (s, 6H), 1.25(s, 6H), 1.56 (d, 2H), 2.05 (m, 4H), 2.36 (m, 4H), 3.65 (m, 4H).

RMN ¹³**C** (CDCl₃) : δ = 23,08; 25,35; 27,47; 28,27; 28,43; 33,78; 38,55; 50,53; 51,57; 67,99; 177,14 (C=N).

4.2.2. (1R, 1'R, 2R, 2'R, 5R, 5'R)-3,3'-(propane-1,3-diylbis-(azan-1-yl-1ylidene))bis(2,6,6 trimethylbicyclo[3.1.1]-heptan-2-ol) <u>9</u>

Le ligand $\underline{9}$ a été préparé d'une manière analogue au ligand 1,2-diiminediol $\underline{8}$

Rdt : 40%, $[\alpha]_D^{20} = -6.3$ (c 1.0, CH₃OH).

RMN ¹**H** (CDCl₃) $\delta = 0.85$ (s, 6H); 1,32 (s, 6H); 1,47 (s, 6H); 1,52 (d, 2H), 1,67 (d, 4H); 1,9 (m, 2H); 2,06 (m, 2H); 2,36 (m, 2H); 2,51–2,64 (m, 4H); 3,39 (t, 2H).

RMN¹³**C** (CDCl₃) 23,02; 27,47; 28,28; 28,49; 31,26; 33,43; 38,50; 48,37; 50,50; 52,34; 68,28; 177,17 (C=N).

4.2.3. (1R, 1'R, 2R, 2'R, 3S, 3'S, 5R, 5'R)-3,3'-(ethane-1,2diylbis(azanediyl))bis(2,6, trimethylbicyclo[3.1.1]-heptan-2-ol) <u>10</u>:

Le 1,2-diiminediol <u>8</u> (0,5 g, 1,3 mmol) dans l'éthanol absolu (15 ml) est refroidi à 0°C. Le borohydrure de sodium NaBH₄ (0,11 g, 2,9 mmol) est ajouté peu à peu, et la solution est agitée pendant 30 min à 0°C. Ensuite celle-ci est neutralisée avec l'eau (2,5 ml) et concentrée sous pression réduite. Le résidu est extrait par de l'éther diéthylique (3x10 ml), puis séché sur MgSO₄. L'évaporation du solvant conduit à la diamine correspondante (0,52 g).

Rdt : 51%, $[\alpha]_D^{20} = +8,3$ (c 1.0, CH₃OH). Analyse élémentaire calculée pour C₂₂H₄₀N₂O₂ : C, 72.48; H, 11.06; N, 7.68; trouvée: C, 72.64; H, 11.22; N, 7.51.

RMN ¹**H** (CDCl₃) : $\delta = 0,87$ (s, 6H); 0,96 (s, 6H); 1,31 (s, 6H); 1,35 – 1,75 (m, 12H); 2,64 (m, 2H); 2,67 (m, 4H).

RMN ¹³**C** (CDCl₃): 22,84; 23,05; 24,71; 27,28; 28.11; 39,01; 40,21; 50,36; 50,85; 60,89; 77,63.

Le ligand suivant a été préparé d'une manière analogue à la 1,2-diamine <u>10</u> :

4.2.4. (1R, 1'R, 2R, 2'R, 3S, 3'S, 5R, 5'R)-3,3'-(propane-1,3diylbis(azanediyl))bis(2,6,6 trimethylbicyclo[3.1.1]-heptan-2-ol) <u>11</u>:

Rdt : 65%, $[\alpha]_D^{20} = -22,7$ (c 1.0, CH₃OH). Analyse élémentaire pour C₂₃H₄₂N₂O₂ : C, 72.97; H, 11.18; N, 7.40; O, 8.45; trouvée: C, 73.12; H, 11.25; N, 7.22.

RMN ¹**H** (CDCl₃) $\delta = 0.82$ (s, 6H); 1.22, (s, 6H), 1.34 (s, 6H); 1.41–1.52 (m, 12H); 1.55 (m, 2H); 2.55 (m, 4H); 2.64 (m, 2H).

RMN ¹³**C** (CDCl₃): 21,55 ; 22,47 ; 24,95 ; 26,14 ; 27,06 ; 28,16 ; 39,86 ; 41,11; 46,09 ; 50,57 ; 68,03 ; 75,67.

4.3. Les α -aminooximes

4.3.1. (1S,4R)-1-phenylamino-p-menth-8-en-2-one oxime 12

Un mélange composé de nitrosochloride¹⁰⁴ (2 g, 4,95 mmol), d'aniline (2 ml, 21,9 mmol) dans l'éthanol (3 ml) est chauffé jusqu'à l'obtention d'une solution claire. Cette dernière est refroidie à - 5°C et de l'acide chlorhydrique (5 ml) est ajouté goutte à goutte. Après filtration, le solide blanc est lavé successivement par de l'éthanol (3 ml) et de l'éther diéthylique (5 ml). Le chlorhydrate formé est basifié par la triéthylamine (jusqu'à un pH fortement basique). Ensuite, la solution est reprise avec de l'éther diéthylique, lavée avec de l'eau (2×10 ml), et séchée sur MgSO₄. L'évaporation du solvant fournit le produit sous forme d'une huile jaunâtre qui est ensuite purifiée par addition d'éther de pétrole. Le produit final est un solide de coloration blanc-jaune (0,80 g).

Rdt : 62,5%. $[\alpha]_D^{20} = + 114,19$ (c 0,4, CH₃OH). Analyse élémentaire calculée pour $C_{16}H_{22}N_2O$: C, 74.38 ; H, 8.58 ; N, 10.84. Analyse élémentaire trouvée : C, 73.68 ; H, 8.35 ; N, 10.8

RMN ¹**H** (CDCl₃) : δ = 9,03 ppm (1H, OH); 6,5-7,30 ppm (m, 5H, C₆H₅); 4,75 ppm (s, 2H, CH₂=); 3,57 ppm (s, 1H, NH); 3,30 ppm (d, 1H, J = 11,91Hz, CH₂); 2,00 ppm (d, 1H, J = 11,22Hz, CH₂); 1,80-2,16 ppm (m, 5H); 1,74 ppm (s, 3H, CH₃C=CH₂); 1,36 ppm (s, 3H, CH₃-CNH).

RMN ¹³**C** (CDCl₃) : δ = 164,47 ppm (C=N); 148,17 ppm (Cq=CH₂); 146,26 ppm (Cq(C₆H₅)); 129,17, 118,12, 115 ppm (C₆H₅); 56,77 ppm (Cq-NH); 45,55 ppm (²CH); 43,18 ppm (CH₂); 26,38 ppm (CH₂); 25,61 ppm (CH₂); 22,88 ppm(**CH₃**-CNH); 20,71 ppm (**CH₃**-C=).

Les ligands suivants ont été préparés de manière analogue au ligand 12.

4.3.2. (1S,4R)-1-benzylamino-p-menth-8-en-2-one oxime 13

Rdt : 67%, poudre blanche. $[\alpha]_D^{20} = +109.22$ (c 0.4, CH₃OH). Analyse élémentaire calculée pour C₁₇H₂₄N₂O : C, 74.96; H, 8.88; N, 10.28. Analyse élémentaire trouvée : C, 74.59 ; H, 9.064 ; N, 10.17

RMN ¹**H** (CDCl₃) : $\delta = 9,48$ ppm (s, 1H, OH); 7,15-7,40 ppm (m, 5H, C₆H₅); 4,77 ppm(s, 2H, CH₂=); 3,73 ppm (1H, d, J = 12,4Hz, *CH*₂Ph); 3,44 ppm (1H, d, J=12,6Hz, *CH*₂Ph); 3,35 ppm (1H, d, J = 12,4Hz, CH₂); 2,01 ppm (1H, d, J=12,6Hz, CH₂); 1,56-2,17 ppm (m, 5H) ; 1,77 ppm (s, 3H, **CH**₃C=CH₂); 1,36 ppm (s, 3H, **CH**₃CNH).

RMN ¹³**C** (CDCl₃): $\delta = 162,61$ ppm (C=N); 148,48 ppm (Cq=CH₂); 140,69 ppm (Cq(C₆H₅)); 126,96, 128,26, 128,42 ppm (C₆H₅); 109,51 ppm (CH₂=); 56,74 ppm (Cq-NH); 46,79 ppm (CH₂NH); 44,73 ppm (CH); 40,30 ppm (CH₂); 25,99 ppm (CH₂); 25,47 ppm (CH₂); 23,16 ppm (CH₃-C-NH); 20,78 ppm (CH₃-C=).

4.3.3. (1S, 4R)-1-isopropylamino-p-menth-8-en-2-one oxime 14

Rdt : 50% poudre blanche. $[\alpha]_D^{20} = +12,41$ (c 0,4, CH₃OH). Analyse élémentaire calculée pour C₁₃H₂₄N₂O : C, 69.60; H, 10.78; N, 12.49. Analyse élémentaire trouvée : C, 69.48 ; H, 10.60 ; N, 12.21

RMN ¹**H** (CDCl₃) : $\delta = 8,75$ ppm (1H, OH) ; 4,76 ppm (2H, CH₂=) ; 3,30 ppm (1H, J = 11,3 Hz,); 2,86 ppm (1H, st, J = 6,33 Hz, **CH**(CH₃)₂); 1,99 ppm (1H, d, J = 11,88 Hz) ; 1,3-2,2 ppm (m, 5H) ; 1,76 ppm (3H, s, *CH*₃-C=CH₂) ; 1,28 ppm (3H, s, *CH*₃-CNH) ; 1,06 ppm (3H, d, J = 6,3 Hz, (*CH*₃)₂CH) ; 0,99 ppm (3H, d, J = 6.3 Hz, (*CH*₃)₂CH).

RMN ¹³**C** (CDCl₃) : δ = 162,69 ppm (C=N); 148,44 ppm (*Cq*-CH₂); 109,47 ppm (CH₂=); 56,85 ppm (*Cq*-NH); 44,68 ppm (*CH*(CH₃)₂) ; 43,60 ppm (CH); 41,08 ppm (CH₂); 26,19 ppm (CH); 25,57 ppm (CH₂); 25,02 ppm (2CH₃(*i*pr)); 24,34 ppm (CH₃); 20,82 ppm (CH₃).

4.3.4. (1S, 4R)-1-picolylamino-p-menth-8-en-2-one oxime 15

Rdt : 63%, poudre blanche. $[\alpha]_D^{20} = +54.61$ (c 0.4, CH₃OH). Analyse élémentaire calculée pour C₁₆H₂₃N₃O : C, 70.30; H, 8.48; N, 15.37. Analyse élémentaire trouvée : C, 69.75 ; H, 8.58 ; N, 14.97

RMN ¹**H** (CDCl₃) : $\delta = 9,82$ ppm (1H, OH); 8,52 ppm (1H, d, J = 4,5 Hz, C₆H₄N); 7,61 ppm (1H, td, J = 1,14 Hz, C₆H₄N); 7,30 ppm (1H, d, J = 7,8Hz, C₆H₄N); 7,13 ppm (1H, t, J = 5,85Hz, C₆H₄N); 4,77 ppm (2H, d, J = 8,1Hz, CH₂=); 3,88 ppm (1H, d, J = 14,2Hz, CH₂Py), 3,62 ppm (1H, d, J = 14,3Hz, CH₂Py); 3,30 ppm (1H₁, d, J = 13,1Hz, CH₂); 1,98 ppm (1H, d, J = 12,3Hz, CH₂); 1,6-2,4 ppm (m, 5H); 1,77 ppm (s, 3H, CH₃-C=CH₂); 1,34 ppm (s, 3H, CH₃-CNH).

RMN ¹³**C** (CDCl₃) : δ = 20,69 ppm (**CH**₃-C=); 23,25 ppm (**CH**₃-CNH); 25,31 ppm (CH₂); 26,12 ppm (CH₂); 40,37 ppm (CH₂); 44,71 ppm (**CH**-C=); 47,86 ppm (**CH**₂NH); 56,49 ppm (**Cq**-NH); 109,46 ppm (**CH**₂=); 121,82 ; 122,38 , 136,51 , 148,60 ppm (4CH); 148,92 ppm (**Cq**-CH); 159,91 ppm (**Cq**(Py)); 162,19 ppm (**C=N**-OH).

4.4. Les α -aminooxime-éthers

4.4.1. (1S, 4R)-aminooxime-éther <u>16</u>

A une suspension d'hydrure de sodium (56 mg; 1,71 mmol) dans 10 ml de diméthylformamide (DMF) à 0°C, on ajoute une solution de (1*S*,4*R*)-aminooxime <u>3</u> dans 20 ml de DMF. Le mélange réactionnel est agité à 0°C pendant une heure. Le chlorure de benzyle (0,267 ml) est ensuite ajouté. La solution est agitée à température ambiante pendant trois heures. Après l'élimination du solvant sous pression réduite, le résidu est repris avec de l'éther (3×40 ml) et lavé par une solution de NaCl (50%). Le séchage de la phase éthérée sur MgSO₄ et l'évaporation de solvant fournit le (1S,4*R*)-aminooxime-éther <u>16</u> sous forme d'un solide de coloration jaune pâle.

Rdt : 91%. Analyse élémentaire calculée pour $C_{23}H_{28}N_2O$: C, 79.27; H, 8.10; N, 8.04. L'analyse élémentaire trouvée : C, 79.30 ; H, 8,48 ; N, 7.45

RMN ¹**H** (CDCl₃) : $\delta = 6,4-7,5$ ppm (H_{*aro*}, m, *Ph*-N + CH₂*Ph*); 5,09 ppm (2H, s, *CH*₂-Ph); 4,64 ppm (2H, s, *CH*₂=); 3,48 ppm (1H, s, NH); 3,17 ppm (1H, d, J = 6Hz, CH₂); 1,1-2,1 ppm (6H, m); 1,64 ppm (3H, s, CH₃); 1,35 ppm (3H, s, CH₃).

RMN ¹³**C** (CDCl₃) : δ = 163,85 ppm (C=N); 148,41 ppm (*Cq*=CH₂); 146,45 ppm (*Cq*(Ph)); 138,95 ppm (*Cq*(CH2Ph)); 129.09, 128.41, 128.26, 127.66, 117.69, 114.74 ppm (CH_{aro}); 109,60 ppm (*CH*₂=); 75,59 ppm (O*CH*₂-Ph); 56,55 ppm (*Cq*-NH); 45,70 ppm (CH); 43,29 ppm (CH₂); 26,57, 26,51 ppm (CH₂); 22,83 ppm (CH₃); 20,81 ppm (CH₃).

Les ligands suivants $\underline{8}$ et $\underline{9}$ ont été préparés de manière analogue à $\underline{16}$.

4.4.2. (1S, 4R)-aminooxime-éther 17

Rdt : 89%. Poudre jaune pâle. Analyse élémentaire calculée pour $C_{24}H_{30}N_2O$: C, 79.52; H, 8.34; N, 7.73. Analyse élémentaire trouvée : C, 78.30 ; H, 8.61 ; N, 7.16

RMN ¹**H** (CDCl₃) : δ = 7,1-7,4 ppm (H_{aro}, m, Ph); 5,10 ppm (2H, s, -O*CH*₂Ph); 4,72 ppm (2H, s, *CH*₂=); 3,62 ppm (1H, d, J = 12Hz, *CH*₂Ph); 3,32 ppm (1H, d, J = 12Hz, *CH*₂Ph); 3,23

ppm (1H, d, J = 9Hz, *CH*₂); 1,2-2,1 ppm (6H + *NH*, m); 1,72 ppm (3H, s, CH₃); 1,29 ppm (3H, s, CH₃).

RMN ¹³**C** (CDCl₃) : δ = 162,31 ppm (C=N); 148,71 ppm (*Cq*=CH₂); 141,24 ppm (*Cq*, CH₂Ph); 138,60 ppm (*Cq*, OCH₂Ph); 128.44, 128.34, 128.26, 128.21, 127.66, 126.90 ppm (H_{aro}, Ph); 109,51 ppm (*CH*₂=); 75,58 ppm (O*CH*₂Ph); 56,64 ppm (*Cq*-NH); 46,72 ppm (NH*CH*₂Ph); 44,73 ppm (CH); 40,30 ppm (CH₂); 26,41 ppm (CH₂); 26,08 ppm (CH₂); 23,61 ppm (CH₃), 20,85 ppm (CH₃).

4.4.3. (1S, 4R)-aminooxime-éther <u>18</u>

Rdt : 88%. Poudre jaunâtre. Analyse élémentaire calculée pour $C_{23}H_{29}N_3O$: C, 76.00; H, 8.04; N, 11.56. Analyse élémentaire trouvée : C, 72.79 ; H, 8.07 ; N, 10.50

RMN ¹**H** (CDCl₃) : $\delta = 8,43$ ppm (1H, dd, J = 4.8, 0.9Hz, Py); 7,50 ppm (1H, td, J = 7.8, 1.8Hz, Py); 7-7,3 ppm (7H, m, Py+Ph); 5,02 ppm (2H, s, OCH₂Ph); 4,66 ppm (2H, s, CH₂=); 3,69 ppm (1H, d, J = 14.1Hz, CH₂Py); 3,42 ppm (1H, d, J = 14.1Hz, CH₂Py); 3,14 ppm (1H, d, J = 10.8Hz, CH₂); 1,45-2,4 ppm (m, 6H + NH); 1,67 ppm (3H, s, CH₃); 1,23 ppm (3H, s, CH₃).

RMN ¹³**C** (CDCl₃) : δ = 162,12 ppm (C=N), 159,99 ppm (C=N, Py); 149,09 ppm (CH, Py); 148,71 ppm (*Cq*=CH₂); 138,53 ppm (*Cq*, CH₂Ph); 136,41 ppm (CH, Py); 128.30, 128.25, 127.63, 122.45, 121.85 ppm (7H, Py+Ph); 109,55 ppm (CH₂=); 75,46 ppm (CH₂); 56,45 ppm (*Cq*-NH); 47,90 ppm (CH₂); 44,72 ppm (CH); 40,32 ppm (CH₂); 26,16 ppm (CH₂); 26,04 ppm (CH₂); 23,41 ppm (CH₃); 20,67 ppm (CH₃).

4.5. Les diamines

4.5.1. (1*S*,2*R*,4*R*)-diamine <u>19</u>

Le (1S,4R)-aminooxime <u>3</u> (1 g ; 3,87 mmol) dans l'éther anhydre (20 ml) est ajouté à une suspension d'hydrure d'aluminium et de lithium LiAlH₄ (0,44 g ; 11,61 mmol) dans l'éther anhydre (25 ml) à 0°C. Le mélange réactionnel est porté à reflux d'éther pendant 15h, puis refroidi à 5°C. De l'acétate d'éthyle (0,44 ml), une solution aqueuse de NaOH (10%, 0,44 ml) et de l'eau (1,32 ml) sont ajoutés goutte à goutte et le mélange résultant est agité à température ambiante pendant 4 heures. Après filtration sur célite, la phase organique est évaporée sous pression réduite. Ensuite, le résidu est purifié par chromatographie sur gel de silice avec un mélange d'acétate d'éthyle / éther de pétrole (1:1).

Rdt : 53%, huile jaunâtre.

RMN ¹**H** (CDCl₃) : δ = 6,5-7.3 ppm (5H, m, Ph); 4,69 ppm (2H, s, CH₂=); 2,78 ppm (1H, dd, J = 4.5, 4.8Hz, *CH*-NH₂); 2,42 ppm (1H, td, J = 3, 15Hz, CH₂); 2,03 ppm (m, CH); 1,70 ppm (CH₃); 1,3-1,65 ppm (5H, m), 1,20 ppm (CH₃).

RMN ¹³**C** (CDCl₃) : δ = 149,40 ppm (*Cq*, =CH₂); 147,51 ppm (*Cq*, Ph); 128.84, 117.62, 117.20 (*CH*, Ph); 108,71 ppm (CH₂=); 58,81 ppm (*CH*NH₂); 54,95 ppm (*Cq*-NH); 44,35 ppm (CH); 35,48 ppm (CH₂); 34,99 ppm (CH₂); 26,10 ppm (CH₂); 24,37 ppm (CH₃); 20,76 ppm (CH₃).

Le ligand suivant a été préparé de manière analogue au ligand 19.

4.5.2. (1*S*,2*R*,4*R*)-diamine <u>20</u>

Rdt : 60%. Huile jaune pâle.

RMN ¹**H** (CDCl₃) : $\delta = 7,1-7,5$ ppm (5H, m, Ph); 4,64 ppm (2H, s, CH₂=); 3,60 ppm (2H, s, *CH*₂Ph); 2,72 ppm (1H, dd, J = 4.2, 11.7Hz, *CH*-NH₂); 1,95-2,05 ppm (6H, m); 1,67 ppm (3H, s, CH₃); 1,17 ppm (3H, s, CH₃).

RMN ¹³**C** (CDCl₃) : δ = 149,92 ppm (*Cq*, =CH₂); 142,03 ppm (*Cq*, Ph); 128.29, 128.24, 126.70 ppm (*CH*, Ph); 108,46 ppm (CH₂=); 58,88 ppm (*CH*NH₂); 54,11 ppm (*Cq*-NH); 45,60 ppm (*CH*₂Ph); 44,74 ppm (CH); 35,90 ppm (CH₂); 33,93 ppm (CH₂); 26,23 ppm (CH₂); 24,78 ppm (CH₃); 21 (CH₃).

4.6. Ligand iminopyridine-camphre

Ce ligand a été obtenu selon une procédure de la littérature¹¹².

Rdt : 79%. Huile jaunâtre.

RMN ¹**H** (CDCl₃) : δ = 7,65 ppm (1H, td, J = 1.8, 7.8Hz, py); 7,45 ppm (1H, d, J = 8.1Hz, Py); 7,12 ppm (1H, dd, J = 5.1, 6.9Hz, Py); 4,61 ppm (1H, d, J = 18Hz, CH₂Py); 4,54 ppm (1H, d, J = 18Hz, CH₂Py); 2,43 ppm (1H, dt, J = 3.6, 15.9Hz); 1,8-2,05 ppm (3H, m); 1,70

¹¹² Blay, G.; Climent, E.; Fernandez, I.; Hernandez-Olmos, V.; Pedro, J. R. *Tetrahedron: Asymmetry* **2007**, *18*, 1603

ppm (1H, td, J = 3.9, 12.6Hz); 1,42 ppm (1H, ddd, J = 4.2, 9Hz); 1,21 ppm (1H, ddd, J = 3.9, 12Hz); 1,04 ppm (3H, s, CH₃); 0,94 ppm (3H, s, CH₃); 0,77 ppm (3H, s, CH₃).

RMN ¹³**C** (CDCl₃) : δ = 183,72 ppm (C=N); 160,14 ppm (*Cq*, Py); 148,31 ppm (*CH*=N, Py); 135,96 ppm (*CH*, Py); 121,06 ppm (*CH*, Py); 121 ppm (*CH*, Py); 57,04 ppm (*CH*₂-Py); 53,46 ppm (CH); 46,68 ppm (*Cq*); 43,34 ppm (CH); 35,45 ppm (CH₂); 31,64 ppm (CH₂); 26,93 ppm (CH₂); 19,13 ppm (CH₃); 18,50 ppm (CH₃); 10,97 ppm (CH₃).

5. Complexes catalytiques

5.1. Les précurseurs catalytiques

Les complexes $[RuCl_2(p-cymène)]_2$, $[RuCl_2(benzène)]_2$, $[Rh(COD)Cl]_2$, $[Ir(COD)Cl]_2$, $RuCl_2(PPh_3)_3$ et $Ru_3(CO)_{12}$ sont commerciaux et utilisés sans purification préalable. Cependant, le complexe $[RuCl_2(HMB)]_2$ a été préparé par déplacement de l'arène selon une méthode décrite dans la littérature.⁹⁴

5.2. Synthèse par déplacement de l'arène

[RuCl₂(HMB)]₂ ou Di-µ-chloro-bis[(η⁶-hexaméthylbenzène)chlororuthénium(II)]

Le [RuCl₂(*p*-cymène)]2 (0,1 g ; 0,15 mmol) est agité dans de l'hexaméthylbenzène fondu (1,0 g ; 6.15 mmol) pendant 2 h à une température supérieure à 170 °C. L'excès d' hexaméthylbenzène est éliminé par sublimation et le composé restant est lavé à l'heptane puis séché sous vide. Rdt : 49%, poudre orange foncé.

RMN ¹**H** (CDCl₃) : δ = 2,05 ppm (18H, s, 6 CH₃). **RMN** ¹³**C** (CDCl₃) : δ = 16,90 ppm (6 CH3), 132,18 ppm (6 Cq).

5.3. Les intermédiaires catalytiques

5.3.1. [RuCl{ η^6 -*p*-cymène}{(1*S*,4*R*)-aminooxime <u>12</u>]⁺Cl⁻ (C1)

Le (1*S*, 4*R*) phénylaminooxime <u>12</u> (0,136 g ; 0,527 mmol) et le $[RuCl_2(p-cym)]_2$ (0,161 g ; 0,263 mmol) sont introduits dans un tube de Schlenk et solubilisés dans du dichlorométhane anhydre (7 ml). Le mélange réactionnel est agité à température ambiante pendant 30 min. L'éther diéthylique (4,5 ml) est ajouté goutte à goutte et le mélange est maintenu à -5 °C pendant une nuit. Après filtration, le résidu est séché sous pression réduite pour donner le complexe **C1** sous forme d'une poudre brune. (0,1 g) Rdt = 65%. **RMN** ¹**H** (CDCl₃) : $\delta = 12,46$ ppm (1H, s, OH); 6,90-7.95 ppm (5H, m, Ph); 6,44 ppm (1H, d, J = 6Hz, *CH*(*p*-cym)); 6,31 ppm (1H, d, J=6Hz, *CH*(*p*-cym)); 5,40 ppm (1H, s, *NH*); 5,99 ppm (1H, d, J = 6 Hz, *CH*(*p*-cym)); 4,74 ppm (1H, d, J = 8Hz, *CH*(*p*-cym)); 4,72 ppm (1H, s, CH₂=); 4,57 ppm (1H, s, CH₂=); 3,7 (1H, d, J = 15Hz, CH₂); 2,79 ppm (1H, st, *CH*(CH₃)₂); 2,49 ppm (1H, m, CH); 2,38 ppm (1H, d, J = 7.5Hz, CH₂); 2,36 ppm (3H, s, *CH*₃(p-cym)); 1,3-1,9 ppm (4H, m, 2CH₂); 1,81 ppm (3H, s, CH₃); 1,56 ppm (3H, s, CH₃); 1,07 ppm (3H, d, J = 6Hz, *(CH₃)*₂CH); 0,57 ppm (3H, d, J = 6Hz, *(CH₃)*₂CH).

RMN ¹³**C** (CDCl₃) : $\delta = 167,32$ ppm (C=N); 143,34 ppm (*Cq*-C₆H₅); 142,77 ppm (*Cq*=CH₂); 124,07; 124,83; 127,96; 128,14; 129,15; 130,23 ppm (*CH*, C₆H₅); 113,90 ppm (CH₂=); 105,87 ppm (*Cq*(*p*-cym)); 97,63 ppm (*Cq*(*p*-cym)); 86,62; 86,40; 84,88; 81,14 ppm (*CH*(*p*-cym)); 69,93 ppm (CH₃*Cq*NH); 39,27 ppm (CH); 34,68 ppm (CH₂); 30,55 ppm (*CH*(CH₃)₂); 28,50 ppm (CH₂); 24,16 ppm ((*CH*₃)₂CH); 24 ppm (CH₂); 22,93 ppm (CH₃); 22,13 ppm (CH₃); 18,85 ppm (*CH*₃(*p*-cym)); 18,47 ppm ((*CH*₃)₂CH).

La recristallisation de ce complexe dans un mélange de chloroforme / éther diéthylique à température ambiante conduit après quelques jours à des cristaux de l'adduit C1-CHCl₃ de coloration marron et convenant à une analyse RX (chapitre VI : annexes).

5.3.2. [RuCl{(η^6 -*p*-cym)}{(1*S*,4*R*)-aminooxime <u>13</u>]⁺Cl⁻(C2)

Ce complexe a été obtenu de manière analogue à C1. Rdt : 81%. Poudre jaunâtre

RMN ¹**H** (CDCl₃) : $\delta = 12,19$ ppm (1H, s, OH); 7,2-7,6 ppm (5H, m, C₆H₅); 5,96 ppm (1H, d, J = 5.94Hz, (*p*-cym)); 5,86 ppm (1H, d, J = 5.73Hz, (*p*-cym)); 5,76 ppm (1H, d, J = 6.48Hz, (*p*-cym)); 5,39 ppm (1H, d, J = 5.97Hz, (*p*-cym)); 4,68 ppm (2H, m, CH₂=); 4,58 ppm (2H, m, *CH*₂-NH); 4,05 ppm (1H, singulet large, NH); 3,64 ppm (1H, d, J = 16,6Hz, CH₂); 2,67 ppm (1H, spt, J = 7.2Hz, *CH*(CH₃)₂); 2,41 ppm (1H, m, CH); 2,29 ppm (1H, dd, J = 6Hz, CH₂); 2,07 ppm (3H, s, CH₃(*p*-cym)); 1,30-2,01ppm (4H, m, CH₂); 1,59 ppm (3H, s, CH₃); 1,51 ppm (3H, s, CH₃); 1,16 ppm (3H, d, J = 7Hz, *(CH*₃)₂CH); 0,90 ppm (3H, d, J = 6.9Hz, *(CH*₃)₂CH).

RMN ¹³**C** (APT, CDCl₃) : $\delta = 171,58$ ppm (C=N); 142,85 ppm (*Cq*=CH₂); 135,25 ppm (*Cq*-C₆H₅); 129,17 ; 128,66 ; 128,21 ppm (*CH*, C₆H₅); 114,24 ppm (*Cq*(*p*-cym)); 109,89 ppm (**CH**₂=); 96,46 ppm (*Cq*(*p*-cym)); 87,46 , 84,70 , 81,36 , 80,82 ppm (**CH**(*p*-cym)); 68,86 ppm (*Cq*-NH); 55,04 ppm (**CH**₂-Ph); 39,22 ppm (CH); 34,15 ppm (CH₂); 31,26 ppm (*CH*(CH₃)₂);

29,41 ppm (CH₂); 24,36 ppm (CH₂); 23,47 ppm (CH(*CH*₃)₂); 22,05 ppm (CH₃); 21,15 ppm (CH₃); 20,50 ppm (CH(*CH*₃)₂); 18,98 ppm (*CH*₃(*p*-cym)).

5.3.3. [RuCl{ η^6 -*p*-cym}}{(1*S*,4*R*)-aminooxime <u>13</u>]⁺(A1)

Un mélange composé de (1S,4R)-aminooxime <u>4</u> (68mg ; 0.25 mmol), d'hydroxyde de potassium (15 mg ; 0,275 mmol) dans 10 ml de dichlorométhane est agité à température ambiante pendant 2 heures. Une solution de $[RuCl_2(p-cym)]_2$ est ajoutée et le mélange réactionnel subit une agitation pendant 4 heures. Après filtration, la solution orange est concentrée puis séchée sous vide. Rdt : 70%. Poudre orange. LC-MS : 543. ([MS+], masses et intensités sont en accord avec le spectre théorique calculé du composé protoné (C₂₇H₃₈ClN₂ORu).

RMN ¹**H** (CDCl₃) : $\delta = 7.2$ -7.6 ppm (5H, m, C₆H₅) ; 6.11 ppm (1H, d, J = 6Hz, *CH*(*p*-cym)) ; 5.92 ppm (1H, d, J = 6Hz, *CH*(*p*-cym)) ; 5.62 ppm (1H, d, J = 6Hz, *CH*(*p*-cym); 5.44 ppm (1H, d, J = 6Hz, *CH*(*p*-cym)); 4.85 ppm (2H, m, *CH*₂NH); 4.66 ppm (2H, d, J = 15Hz, CH₂=); 4.03 ppm (1H, s, NH); 3.61 ppm (1H, d, J = 18Hz, CH₂); 2.66 ppm (1H, spt, *CH*(CH₃)₂); 2.39 ppm (1H, m, CH); 2.17 ppm (1H, dd, J = 6, 15Hz, CH₂); 2.00 ppm (3H, s, CH₃(*p*-cym)); 1.2-1.9 ppm (4H, m, 2CH₂); 1.58 ppm (3H, s, CH₃); 1.51 ppm (3H, s, CH₃); 1.09 ppm (3H, d, J = 9Hz, (*CH*₃)₂CH); 0.87 ppm (3H, d, J = 9Hz, (CH₃)₂CH).

RMN ¹³**C** (CDCl₃) : δ = 164,37 ppm (C=N); 143,79 ppm (*Cq*=CH₂); 136,01 ppm (*Cq*-C₆H₅); 128,88 ; 128,42 ; 128,16 ppm (*CH*(*p*-cym)); 113,49 ppm (CH₂=); 108,32 ppm (*Cq*(p-cym)); 96,37 ppm (*Cq*(*p*-cym)); 87,74 ; 83,59 ; 81,79 ; 81,55 ppm (*CH*(p-cym)); 68,45 ppm (*Cq*-NH); 54,93 ppm (*CH*₂NH); 39,34 ppm (CH); 34,33 ppm (CH₂); 31,10 ppm (*CH*(CH₃)₂); 29,69 ppm (CH₂); 24,62 ppm (CH₂); 23,98 ppm (CH(*CH*₃)₂); 22,20 ppm (CH₃); 21,18 ppm (CH₃); 20,10 ppm (CH(*CH*₃)₂); 18,60 ppm (*CH*₃(*p*-cym)).

La recristallisation de ce complexe dans un mélange de chloroforme / éther diéthylique à température ambiante conduit après quelques jours à des cristaux de coloration orange et convenant à une analyse RX (chapitre VI : annexes).

5.3.4. [RuCl{ η^6 -*p*-cym)}{(1*S*,4*R*)-aminooxime <u>12</u>]⁺(A2)

Ce complexe a été obtenu de manière analogue à A₁. Rdt : 75%. Poudre marron. LC-MS : 529. ([MS+], masses et intensités sont en accord avec le spectre théorique calculé du composé protoné ($C_{26}H_{36}ClN_2ORu$).

RMN ¹**H** (CDCl₃) : $\delta = 6,8-8,1$ ppm (5H, m, C₆H₅); 6,34 ppm (1H, tp, J = 6Hz, *CH*(*p*-cym)); 5,95 ppm (1H, d, J = 6Hz, *CH*(*p*-cym)); 5,35 ppm (1H, s, NH); 4,71 ppm (1H, d, J = 6Hz, *CH*(*p*-cym)); 4,69 ppm (1H, s, CH₂=); 4,55 ppm (1H, s, CH₂=); 3,67 ppm (1H, d, J = 15Hz, CH₂); 2,76 ppm (1H, spt, *CH*(CH₃)₂); 2,46 ppm (1H, m, CH); 2,33 ppm (1H, dd, J = 6, 24Hz, CH₂); 2,32 ppm (3H, s, *CH*₃(*p*-cym); 1,78 ppm (3H, s, CH₃); 1,1-1,9 ppm (4H, m, 2CH₂); 1,53 ppm (3H, s, CH₃); 1,03 ppm (3H, d, J = 9Hz, CH(*CH*₃)₂); 0,53 ppm (3H, d, J = 9Hz, CH(*CH*₃)₂).

RMN ¹³**C** (CDCl₃) : $\delta = 166,04$ ppm (C=N); 143,50 ppm (*Cq*C₆H₅); 142,73 ppm (*Cq*=CH₂); 130,21 ; 129,36 ; 127,81 ; 124,89 ; 123,93 ppm (*CH*, C₆H₅); 113,61 ppm (CH₂=); 105,54 ppm (*Cq*(*p*-cym)); 97,40 ppm (*Cq*(*p*-cym)); 86,57 ; 86,31 ; 85,06 ; 80,78 ppm (*CH*(*p*-cym)); 69,81 ppm (CH₃*Cq*NH); 39,21 ppm (CH); 34,60 ppm (CH₂); 30,45 ppm (*CH*(CH₃)₂); 28,28 ppm (CH₂); 24,08 ppm ((*CH*₃)₂CH); 23,97 ppm (CH₂); 22,80 ppm (CH₃); 22,08 ppm (CH₃); 18,68 ppm (*CH*₃(*p*-cym)); 18,36 ppm ((*CH*₃)₂CH).

5.3.5. [RuH{ η^6 -*p*-cym}}{(1*S*,4*R*)-aminooxime <u>13</u>]⁺ (F)

Un mélange de $[RuCl_2(p-cymène)]_2$ (76,5 mg; 0,125 mmol), de (1*S*,4*R*)aminooxime <u>13</u> (68 mg; 0,25 mmol) dans 5 ml d'*i*sopropanol est agité pendant 30 min à 80°C. L'hydroxyde de potassium (4,13 ml; 0.12M) est ajouté au mélange réactionnel. La solution rouge résultante est agitée pendant 15 min et évaporée sous vide à 0°C. Rdt : 91%. Le produit obtenu est sous forme d'un solide rouge.

RMN ¹**H** (C₆D₆) : 7-7,4 ppm (5H, m, C₆H₅); 5,29 ; 5,02 ; 4,86 ; 4,64 ppm (4H, 4d, J = 6H, 4*CH*(*p*-cym)); 5 ppm (1H, NH); 4,05-4,45 ppm (4H, m, *CH*₂Ph + CH₂=); 2,46 ppm (1H, spt, *CH*(CH₃)₂); 2,18 ppm (1H, m, CH); 1,83 ppm (3H, s, *CH*₃(p-cym); 1,15-1,65 ppm (4H, m, 2CH₂); 1,485 ppm (3H, dd, J = 1.5, 6Hz, CH₃); 1,14 ppm (3H, d, J = 4.5Hz (*CH*₃)₂CH)); 1,12 ppm (3H, d, J = 4.5Hz, (*CH*₃)₂CH)). -5,10 ; -6,15 ppm (1H , Ru-*H*).

Chapitre VI

Annexes

1. Données radiocristallographiques

Toutes les mesures radiocristallographiques ont été effectuées sur un appareil Bruker Kappa Apex2 (Bruker AXS 2006) équipée d'un monochromateur en graphite. Les collections de données sont obtenues en utilisant la radiation K_{α} du molybdène ($\lambda = 0.71073$ Å). Les structures ont été résolues à l'aide du programme « Superflib software (Palatinus & Chapuis, 2007) » et affinées à l'aide du programme « CRYSTALS Software Package (Betteridge et al. 2003) ».

Les structures moléculaires sont représentées à l'aide du programme Mercury ou ORTEP. Les tableaux 20 et 21 présentent un résumé des paramètres cristallographiques de chaque cristal mesuré.

Les listes complètes des paramètres atomiques, des longueurs de liaisons sont déposées au Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK (https://www.ccdc.cam.ac.uk/services/structure_deposit/), numéros de dépôt CCDC : 826373 (complexe C1), 826374 (complexe A1).

Chemical_formula_moiety	C ₂₆ H ₃₅ Cl ₁ N ₂ O ₁ Ru ₁
Chemical_formula_weight	528.10
Crystal_colour	pale yellow
Crystal_size_mid	0.07
Crystal_size_max	0.23
Crystal_size_max	0.27
Symmetry_cell_setting	Orthorhombic
Symmetry_space_group	P 2 ₁ 2 ₁ 2 ₁
a (Å)	9.5362(15)
b (Å)	15.604(3)
c (Å)	23.905(4)
α (°)	90
β (°)	90
γ (°)	90
V (Å ³)	3557.0(10)
Z	4
Temperature (K)	293
R _{int} (%)	6.59
Goodness-of-fit	1.02
Residual density : Max, Min	1.08, -1.64
R indices [I>2σ(I)]	R = 0.0904, WR = 0.893
R indices (all data)	R = 0.1019, wR = 0.0893
F(000)	1096

Tableau 18 : Donnés radiocristallographiques pour [RuCl{ η^6]	-p-cymène}{ $(1S,4R)$ -aminooxime $\underline{12}^+$ Cl ⁻ (C1)
--	---

<u>Structure moléculaire du complexe</u> C1 : [RuCl{ η^6 -*p*-cymène}{(1*S*,4*R*)-aminooxime <u>12</u>]⁺Cl⁻

L'atome d'hydrogène situé sur l'atome d'oxygène de l'oxime n'a pu être localisé avec précision lors de l'analyse.

Distances et angles du complexe C1

Distances

Ru1 . Cl2 . 2.404(3)	N12.013.1.397(12)	C24 . H241 . 0.973
Ru1 . N3 . 2.188(8)	C14 . C15 . 1.45(2)	C25 . C26 . 1.386(14)
Ru1 . N12 . 2.102(9)	C14 . H141 . 0.974	C25 . C28 . 1.453(17)
Ru1 . C22 . 2.177(11)	C14 . H142 . 0.969	C26.C27.1.497(17)
Ru1 . C23 . 2.161(10)	C15.C16.1.471(19)	C26 . H261 . 0.976
Ru1 . C24 . 2.219(10)	C15.C18.1.493(19)	C27.H271.0.980
Ru1 . C25 . 2.232(12)	C15 . H151 . 0.982	C28.H281.0.955
Ru1 . C26 . 2.199(10)	C16.C17.1.564(16)	C28 . H282 . 0.956
Ru1 . C27 . 2.149(12)	C16 . H161 . 0.969	C28 . H283 . 0.959
N3.C4.1.414(11)	C16 . H162 . 0.970	C29.C30.1.57(2)
N3.C10.1.516(12)	C17 . H171 . 0.970	C29.C31.1.59(2)
N3 . H31 . 0.950	C17.H172.0.971	C29.H291.0.981
C4.C5.1.372(13)	C18.C19.1.31(2)	C30.H301.0.985
C4.C9.1.358(14)	C18.C20.1.50(3)	C30.H302.0.984
C5.C6.1.387(15)	C19.H191.0.930	C30.H303.0.982
C5.H51.0.950	C19.H192.0.928	C31.H311.1.069
C6.C7.1.292(17)	C20 . H201 . 0.958	C31.H312.1.064
C6.H61.0.932	C20 . H202 . 0.958	C31 . H313 . 1.074
C7.C8.1.409(19)	C20 . H203 . 0.956	
C7.H71.0.932	C21.H211.0.995	
C8.C9.1.326(15)	C21 . H212 . 1.000	
C8.H81.0.927	C21.H213.0.997	
C9.H91.0.926	C22.C23.1.394(18)	
C10.C11.1.499(14)	C22.C27.1.407(16)	
C10.C17.1.529(18)	C22.C29.1.397(19)	
C10.C21.1.600(16)	C23.C24.1.421(19)	
C11 . N12 . 1.207(15)	C23 . H231 . 0.974	
C11.C14.1.584(16)	C24 . C25 . 1.392(15)	

<u>Angles</u>

CI2 . Ru1 . N3 . 79.4(2)	C7. C8. C9. 120.2(12)	H202 . C20 . H203 . 109.3	C30.C29.H291.10/.1
N3 . Ru1 . N12 . 73.9(4)	C7.C8.H81.120.2	C10.C21.H211.107.6	СЗ1. С29. Н291. 106.5
Cl2 . Ru1 . C22 . 91.4(4)	C9.C8.H81.119.6	C10.C21.H212.107.5	C29.C30.H301.108.5
N3 . Ru1 . C22 . 120.2(5)	C4.C9.C8.122.0(11)	H211 . C21 . H212 . 110.7	C29.C30.H302.109.2
N12 . Ru1 . C22 . 164.8(5)	C4.C9.H91.119.0	C10.C21.H213.109.4	H301 . C30 . H302 . 110.3
Cl2 . Ru1 . C23 . 95.1(6)	C8.C9.H91.119.0	H211.C21.H213.110.5	C29.C30.H303.108.7
N3 . Ru1 . C23 . 157.4(4)	N3.C10.C11.107.1(8)	H212.C21.H213.110.9	H301 . C30 . H303 . 110.2
N12 Ru1 C23 127 9(5)	N3 C10 C17 109 1(8)	Ru1 C22 C23 70 6(6)	H302 C30 H303 109 8
$C_{22} R_{u1} C_{23} 37.5(5)$	C_{11} C_{10} C_{17} $1134(9)$	Ru1 C22 C27 699(6)	$C_{29} C_{31} H_{311} 105.9$
C12 $\operatorname{Ru1}$ C24 117 4(3)	N3 C10 C21 $110.0(9)$	C_{23} C_{22} C_{27} $1120(12)$	C_{29} C_{31} H_{312} 106 4
N2 D_{11} C24 . 117.4(3)	$(11 \ C10 \ C21 \ 105 \ 4(0))$	$P_{11} = C_{22} + C_{21} + C_{12} + C$	$U_{211} = C_{21} = U_{212} = 112.4$
N12 D_{22} C24 . 100.8(4)	C17 $C10$ $C21$ $103.4(9)$	$\begin{array}{c} Ku1 \cdot C22 \cdot C29 \cdot 132.7(13) \\ C32 \cdot C32 \cdot C32 \cdot C30 \cdot 137.2(12) \end{array}$	H311 . C31 . H312 . 112.4
N12. $Ru1$. $C24$. $96.9(4)$	C17.C10.C21.111.7(11)	C_{23} , C_{22} , C_{29} , I_{27} , I_{2} , I_{2}	C29.C31.H313.100.7
C22 . Ru1 . C24 . /1.2(6)	C10.C11.N12.116.9(10)	C_{27} . C_{22} . C_{29} . $120.4(11)$	H311.C31.H313.112.5
C23 . Ru1 . C24 . 37.8(5)	C10.C11.C14.115.9(11)	Ru1 . C23 . C22 . 71.9(7)	H312 . C31 . H313 . 112.3
Cl2 . Ru1 . C25 . 153.4(3)	N12.C11.C14.127.0(10)	Ru1 . C23 . C24 . 73.3(6)	
N3 . Ru1 . C25 . 125.6(3)	Ru1 . N12 . C11 . 122.8(8)	C22 . C23 . C24 . 130.8(13)	
N12 . Ru1 . C25 . 92.6(4)	Ru1 . N12 . O13 . 122.6(8)	Ru1 . C23 . H231 . 115.3	
C22 . Ru1 . C25 . 83.4(6)	C11 . N12 . O13 . 114.6(9)	C22.C23.H231.112.4	
C23 . Ru1 . C25 . 65.3(6)	C11.C14.C15.110.7(11)	C24 . C23 . H231 . 113.3	
Cl2 . Ru1 . C26 . 159.6(3)	C11.C14.H141.109.5	Ru1 . C24 . C23 . 68.9(6)	
N3 Ru1 C26 102 1(4)	C15 C14 H141 110.6	Ru1 C24 C25 72 3(7)	
N12 Ru1 C26 $1145(4)$	C11 C14 H142 1087	C_{23} C_{24} C_{25} $114.9(10)$	
$C_{22} R_{u1} C_{26} 701(5)$	$C_{15} C_{14} H_{142} H_{179}$	$R_{\rm H1} = C24 + C23 + H14.9(10)$	
C_{22} Rul C_{26} 70.1(5)	$H_{141} = C_{14} = H_{142} = 107.5$	$C_{24} = C_{24} = C$	
C_{23} . Kul . C_{20} . 73.0(0)	$\Pi 41 \cdot C14 \cdot \Pi 42 \cdot 109.4$	C_{23} , C_{24} , H_{241} , $I_{22.4}$	
$C12 \cdot Ru1 \cdot C27 \cdot 119.3(4)$	C14, $C15$, $C16$, $112.9(13)$	C25.C24.H241.122.1	
N3. Ru1. C27. 98.2(3)	C14. $C15$. $C18$. $116.2(12)$	Ru1 . C25 . C24 . 71.3(6)	
N12 . Ru1 . C27 . 152.5(4)	C16.C15.C18.112.2(14)	Ru1 . C25 . C26 . 70.5(7)	
C22 . Ru1 . C27 . 37.9(4)	C14 . C15 . H151 . 104.3	C24 . C25 . C26 . 119.5(10)	
C23 . Ru1 . C27 . 65.2(5)	C16.C15.H151.105.2	Ru1 . C25 . C28 . 125.5(9)	
C24 . Ru1 . C25 . 36.4(4)	C18 . C15 . H151 . 104.7	C24 . C25 . C28 . 114.9(11)	
C24 . Ru1 . C26 . 65.8(4)	C15.C16.C17.111.2(10)	C26 . C25 . C28 . 125.3(12)	
C25 . Ru1 . C26 . 36.4(4)	C15.C16.H161.108.9	Ru1 . C26 . C25 . 73.1(6)	
C24 . Ru1 . C27 . 82.1(4)	C17.C16.H161.107.9	Ru1 . C26 . C27 . 68.1(7)	
C25 . Ru1 . C27 . 70.3(5)	C15.C16.H162.109.5	C25.C26.C27.122.1(10)	
C26 . Ru1 . C27 . 40.3(5)	C17.C16.H162.110.0	Ru1 . C26 . H261 . 119.3	
Ru1, N3, C4, 120,4(5)	H161, C16, H162, 109.3	C25 . C26 . H261 . 118.2	
$R_{\rm H}1$ N3 C10 109 9(5)	C_{10} C_{17} C_{16} C_{13} $8(11)$	C_{27} C_{26} H_{261} H_{178}	
C4 N3 C10 1190(7)	C10 C17 H171 108 2	$C_{26} C_{27} R_{u1} 71.6(5)$	
$R_{\rm H}1$ N3 H31 101 1	C16 C17 H171 100.2	$C_{26} C_{27} C_{22} 1197(10)$	
C_4 N2 H21 101.0	C_{10} C_{17} H_{172} 107.0	$P_{\rm Pl} = C_{27} + C_{27} + C_{22} + T_{17} +$	
C_{10} N2 H21 101.0	C_{10} , C_{17} , H_{172} , H_{173}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$V_{10} = V_{10} = V$	U_{10} , U_{17} , U_{1	C_{20} , C_{27} , H_{271} , 119.0	
N3.C4.C5.124.4(8)	H1/1.C1/.H1/2.109./	Rul . C27 . H271 . 121.8	
N3 . C4 . C9 . 119.6(8)	C15.C18.C19.124.9(15)	C22.C27.H271.120.3	
C5.C4.C9.116.0(9)	C15 . C18 . C20 . 116.2(14)	C25 . C28 . H281 . 109.3	
C4.C5.C6.122.5(11)	C19.C18.C20.118.9(15)	C25 . C28 . H282 . 109.4	
C4 . C5 . H51 . 118.5	C18 . C19 . H191 . 119.0	H281 . C28 . H282 . 109.5	
C6.C5.H51.118.9	C18 . C19 . H192 . 120.8	C25 . C28 . H283 . 109.4	
C5.C6.C7.119.2(11)	H191 . C19 . H192 . 120.2	H281 . C28 . H283 . 109.6	
C5.C6.H61.120.8	C18.C20.H201.109.3	H282 . C28 . H283 . 109.7	
C7.C6.H61.120.0	C18.C20.H202.110.3	C22.C29.C30.114.0(15)	
C6.C7.C8.119.6(10)	H201 . C20 . H202 . 109.1	C22.C29.C31.116.7(14)	
C6.C7.H71.120.5	C18.C20.H203.109.2	C30.C29.C31.105.1(14)	
C8.C7.H71.119.9	H201, C20, H203, 109.7	C22, C29, H291, 106.9	

chemical_formula_moiety	C ₂₇ H ₃₆ ClN ₂ ORu
chemical_formula_weight	541.12
crystal_colour	Yellow
crystal_size_min	0.120
crystal_size_mid	0.140
crystal_size_max	0.160
symmetry_cell_setting	Monoclinic
symmetry_space_group	P 2 ₁
a (Å)	8.8793(11)
b (Å)	22.171(3)
c (Å)	18.394(2)
α (°)	90
β (°)	90.627(5)
γ (°)	90
V (Å ³)	3620.8(8)
Z	4
Temperature (K)	293
Rint (%)	5.50
Goodness-of-fit	0.99
Residual density : Max, Min	1.22, -0.85
R indices [I>2σ(I)]	R = 0.0622, wR = 0.05837
R indices (all data)	R = 0.0785, wR = 0.0793
F(000)	1124

Tableau 19 : Donnés radiocristallographiques pour [RuCl{ η^6 -p-cymène}{(1*S*,4*R*)aminooxime <u>13</u>}]⁺ (A1)

<u>Structure moléculaire du complexe</u> A1 : $[RuCl{\eta^6-p-cymène}{(1S,4R)aminooxime <u>13}]^+$ </u>

L'atome d'hydrogène sur l'atome d'azote de l'amine n'a pu être localisé avec précision lors de l'analyse.

Distances et angles dans le complexe A1

Distances

Rul. N3. $2.074(4)$ N24. C25. $1.402(6)$ C2. $1.422.0.950$ Rul. N11. 2.166(5)N24. C26. $1.248(9)$ C22. H221. 0.950 Rul. C18. 2.194(7)C26. C27. $1.523(8)$ C22. H222. 0.950 Rul. C39. 2.23(6)C27. N28. $1.505(9)$ C39. C48. $1.418(9)$ Rul. C39. 2.23(6)C27. N28. $1.505(9)$ C39. C48. $1.418(9)$ Rul. C30. 2.221(8)N28. C5.05(9)C39. C48. $1.418(9)$ Rul. C20. 2.21(8)N28. C5. $1.439(9)$ C23. H231. 0.950 Rul. C20. 2.21(8)N28. C5. $1.439(9)$ C23. H233. 0.950 N3. O4. $1.371(6)$ C29. H291. 0.950 C28. C58. $1.307(13)$ N3. C5. $1.271(8)$ C29. H292. 0.950 C14. C11. $1.391(13)$ C5. C6. $1.511(8)$ C30. C2. $1.556(13)$ C14. H141. 0.950 C6. H61. 0.950 C30. H301. 0.950 C11. H111. 0.950 C6. H61. 0.950 C30. H302. 0.950 C17. C24. $1.356(16)$ C7. C28. $1.518(10)$ C31. C32. $1.427(9)$ C38. H381. 0.950 C7. R1.518(10)C31. C33. $1.429(9)$ C38. H381. 0.950 C8. C9. $1.519(11)$ C32. C37. $1.508(9)$ C41. C55. $1.406(15)$ C8. H81. 0.950 C34. C33. $1.379(11)$ C25. H251. 0.950 C9. H91. 0.950 C34. C35. $1.379(11)$ C25. H252. 0.950 C9. H91. 0.950 C34. C35. $1.379(11)$ C25. H252. 0.950 C9. H91. 0.950 C34. C35. $1.379(11)$ C25. H252. 0.950 C9. H91. 0.950 C34. C35. $1.379(11)$ C25. H252. 0.950 C10. N11. $1.523(8)$ C35. C22. $1.465(13)$ C21. C24. $1.337(10)$ C10. C11. 1	Ru1 . Cl2 . 2.4038(18)	Ru22 . C36 . 2.176(8)	C2.H21.0.950
Rul. N11. 2.166(5)N24. C26. 1.248(9)C22. H221. 0.950Rul. C18. 2.194(7)C26. C27. 1.523(8)C22. H222. 0.950Rul. C19. 2.171(6)C26. C1. 1.518(10)C22. H223. 0.950Rul. C29. 2.223(6)C27. N28. 1.505(9)C39. C48. 1.418(9)Rul. C48. 2.166(6)C27. C29. 1.5241(9)C23. H233. 0.950Rul. C48. 2.166(6)C27. C30. 1.526(10)C23. H233. 0.950Rul. C48. 2.166(6)C27. C30. 1.526(10)C28. C38. 1.307(13)N3. O4. 1.371(6)C29. H291. 0.950C28. C38. 1.307(13)N3. C5. 1.271(8)C29. H292. 0.950C14. C11. 1.391(13)C6. C7. 1.541(8)C30. C21. 1.556(13)C14. H141. 0.950C6. C7. 1.541(8)C30. C30. H302. 0.950C11. C14. H141. 0.950C6. H61. 0.950C30. H302. 0.950C17. C24. 1.356(16)C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.518(10)C31. C33. 1.427(9)C18. H184. 0.950C7. H71. 0.950C31. H311. 0.950C38. H381. 0.950C8. P. 0.519(11)C32. C33. 1.423(11)C41. H411. 0.950C8. H82. 0.950C34. C35. 1.379(11)C25. H251. 0.950C9. H20. 0.950C34. C35. 1.379(11)C25. H253. 0.950C9. H91. 0.950C34. L351. 1.379(11)C21. C20. 1.386(10)C10. L1.530(8)C35. C36. 1.447(12)C21. C20. 1.386(10)C10. C16. 1.548(8)C35. C22. 1.456(13)C21. C20. 1.386(10)C10. C16. 1.548(8)C35. C35. 1.379(11)C25. H252. 0.950C12. H12. 0.950C37. H371. 0.950C34. H381. 0.950C13. C14. 1	Ru1 . N3 . 2.074(4)	N24 . O25 . 1.402(6)	C2.H22.0.950
Rul. C18. 2.194(7)C26. C27. 1.523(8)C22. H222. 0.950Rul. C39. 2.171(6)C26. C1. 1.518(10)C22. H223. 0.950Rul. C39. 2.223(6)C27. N28. 1.505(9)C39. C48. 1.418(9)Rul. C48. 2.166(6)C27. C30. 1.526(10)C23. H233. 0.950Rul. C48. 2.166(6)C27. C30. 1.526(10)C23. H233. 0.950Rul. C48. 2.166(6)C27. C30. 1.526(10)C23. H233. 0.950N3. O4. 1.371(6)C29. H291. 0.950C28. C38. 1.307(13)N3. C5. 1.271(8)C29. H292. 0.950C28. C30. 1.489(12)C5. C6. 1.511(8)C29. H293. 0.950C14. C11. 1.391(13)C6. C7. 1.541(8)C30. C2. 1.556(13)C14. H141. 0.950C6. H61. 0.950C30. H301. 0.950C17. C17. C14. 1.356(16)C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.519(11)C31. C32. 1.427(9)C38. H382. 0.950C8. C9. 1.519(11)C32. C37. 1.508(9)C41. C55. 1.406(15)C8. H81. 0.950C33. C34. 1.435(11)C41. H411. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H92. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H92. 0.950C34. C35. 1.379(11)C25. H252. 0.950C10. N11. 1.523(8)C35. C36. 1.447(12)C21. C48. 1.373(10)C10. C16. 1.548(8)C35. C22. 1.465(13)C21. C20. 1.386(10)C10. C16. 1.548(8)C35. C36. 1.447(12)C31. H381. 0.950C12. C13. 1.520(10)C37. C53. 1.530(12)C48. H481. 0.950C13. C1	Ru1 . N11 . 2.166(5)	N24 . C26 . 1.248(9)	C22 . H221 . 0.950
Rul. C19. 2.171(6)C26. C1. 1.518(10)C22. H223.0.950Rul. C39. 2.223(6)C27. N28. 1.505(9)C39. C48. 1.418(9)Rul. C21. 2.214(6)C27. C29. 1.524(10)C23. H233. 0.950Rul. C20. 2.221(8)N28. C3. 1.493(9)C23. H233. 0.950Rul. C20. 2.221(8)N28. C3. 1.493(9)C23. H233. 0.950N3. O4. 1.371(6)C29. H291. 0.950C28. C38. 1.307(13)N3. C5. 1.271(8)C29. H292. 0.950C14. C11. 1.391(13)C6. C7. 1.541(8)C30. C2. 1.556(13)C14. H141. 0.950C6. H61. 0.950C30. H302. 0.950C11. H111. 0.950C6. H62. 0.950C30. H302. 0.950C17. C24. 1.356(16)C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.518(10)C31. C32. C33. 1.429(9)C38. H381. 0.950C7. C7. R17.1.0.950C31. H311. 0.950C38. H381. 0.950C8. C9. 1.519(11)C32. C33. 1.429(9)C38. H382. 0.950C8. H81. 0.950C33. C34. 1.435(11)C41. H411. 0.950C8. H82. 0.950C33. C34. 1.435(11)C41. H411. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H91. 0.950C34. C35. 1.379(11)C32. C32. 0.950C10. L1.530(8)C35. C36. 1.447(12)C21. C48. 1.373(10)C10. C16. L548(8)C35. C22. 1.465(13)C21. C23. 0.950C10. L16. L548(8)C35. C23. L453(1)C44. H441. 0.950C10. L16. L548(8)C35. C36. 1.447(12)C21. C48. 1.373(10)C12. L121. 0.950C37. H37	Ru1 . C18 . 2.194(7)	C26.C27.1.523(8)	C22 . H222 . 0.950
Rul. $(29, 2.223(6)$ C27. $N28, 1.505(9)$ C39. $C48, 1.418(9)$ Rul. $(24, 2.214(6)$ C27. $C29, 1.541(9)$ C23. $H231, 0.950$ Rul. $(24, 2.166(6)$ C27. $(23, 1.1252(10)$ C23. $H232, 0.950$ Rul. $(24, 2.166(6)$ C27. $(23, 1.1493(9)$ C23. $H233, 0.950$ N3. $04, 1.371(6)$ C29. $H291, 0.950$ C28. $C38, 1.307(13)$ N3. $C5, 1.271(8)$ C29. $H292, 0.950$ C28. $C50, 1.489(12)$ C5. $C6, 1.511(8)$ C29. $H292, 0.950$ C14. $C11, 1.391(13)$ C6. $H61, 0.950$ C30. $H301, 0.950$ C11. $H111, 0.950$ C6. $H61, 0.950$ C30. $H301, 0.950$ C17. $C24, 1.356(16)$ C7. $C8, 1.518(10)$ C31. $C32, 1.427(9)$ C17. $H171, 0.950$ C7. $C28, 1.504(11)$ C31. $C32, 1.427(9)$ C14. $H411, 0.950$ C7. $A1, 0.950$ C31. $H311, 0.950$ C38. $H381, 0.950$ C8. $(9, 1.519(11)$ C32. $C37, 1.508(9)$ C41. $C55, 1.406(15)$ C8. $H81, 0.950$ C32. $C37, 1.508(9)$ C41. $C55, 1.406(15)$ C8. $H81, 0.950$ C32. $C37, 1.508(9)$ C41. $H411, 0.950$ C9. $H0, 1.530(8)$ C33. $C34, 1.435(11)$ C41. $H411, 0.950$ C9. $H91, 0.950$ C34. $C35, 1.379(11)$ C25. $H253, 0.950$ C9. $H91, 0.950$ C34. $C35, 1.237(13)$ C21. $C20, 1.386(10)$ C10. $N11, 1.523(8)$ C35. $C22, 1.465(13)$ C21. $C20, 1.386(10)$ C11. $L11, 1.523(8)$ C35. $C22, 1.465(13)$ C21. $C20, 1.386(10)$ C12. $C13, 1.520(10)$ C37. $C51, 1.519(13)$ C20. $C49, 1.471(13)$ C12. $R141, 1.0950$ C37. $R171, 0.950$ C39. $H49$	Ru1 . C19 . 2.171(6)	C26.C1.1.518(10)	C22 . H223 . 0.950
Rul. C21. 2.214(6)C27. C39. 1.541(9)C23. H231. 0.950Rul. C48. 2.166(6)C27. C30. 1.526(10)C23. H232. 0.950Rul. C20. 2.221(8)N28. C3. 1.493(9)C23. H233. 0.950N3. O4. 1.371(6)C29. H291. 0.950C28. C38. 1.307(13)N3. C5. 1.271(8)C29. H292. 0.950C28. C50. 1.489(12)C5. C6. 1.511(8)C29. H293. 0.950C14. C11. 1.391(13)C6. C7. 1.541(8)C30. C2. 1.556(13)C14. H141. 0.950C6. H61. 0.950C30. H301. 0.950C11. H111. 0.950C6. H62. 0.950C30. H302. 0.950C17. C24. 1.356(16)C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.519(11)C31. C32. 1.376(12)C24. H241. 0.950C7. C8. 1.519(11)C32. C33. 1.429(9)C38. H381. 0.950C8. F81. 0.950C33. C33. 1.429(9)C38. H382. 0.950C8. F81. 0.950C33. C34. 1.435(11)C41. H411. 0.950C9. F01. 0.950C34. C35. 1.379(11)C25. H222. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H222. 0.950C9. H91. 0.950C34. C35. C32. 1.465(13)C21. C20. 1.386(10)C10. 1.530(8)C35. C32. 1.465(13)C21. C48. 1.373(10)C10. 1.530(8)C35. C32. 1.465(13)C21. H21. 0.950C12. H12. 0.950C37. H371. 0.950C44. H41.0.950C12. H12. 0.950C37. H371. 0.950C49. H471(13)C12. H12. 0.950C37. H371. 0.950C49. H471(13)C12. H12. 0.950C37. H371. 0.950C49. H492. 0.950C13. C14. 1.361(11)C44. H442. 0.950C50. H502.	Ru1 . C39 . 2.223(6)	C27.N28.1.505(9)	C39.C48.1.418(9)
Rul. C48. 2.166(6)C27. C30. 1.526(10)C23. H232. 0.950Rul. C20. 2.221(8)N28. C3. 1.493(9)C23. H233. 0.950N3. O4. 1.371(6)C29. H291. 0.950C28. C50. 1.489(12)C5. C5. 1.511(8)C29. H292. 0.950C14. C11. 1.391(13)C6. C7. 1.541(8)C30. C2. 1.556(13)C14. H141. 0.950C6. H61. 0.950C30. H301. 0.950C11. H111. 0.950C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.518(10)C31. C32. 1.429(9)C38. H382. 0.950C7. C8. 1.519(11)C32. C33. 1.429(9)C38. H382. 0.950C8. C9. 1.519(11)C32. C37. 1.508(9)C41. C55. 1.406(15)C8. H81. 0.950C33. C34. 1.435(11)C41. H411. 0.950C9. H01. 0.530(8)C33. H331. 0.950C25. H251. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H91. 0.950C34. C35. C36. 1.447(12)C21. C48. 1.373(10)C10. N11. 1.523(8)C35. C22. 1.465(13)C21. C20. 1.386(10)N11. C12. 1.590(8)C36. C37. C51. 1.519(13)C20. C49. 1.471(13)C12. H121. 0.950C37. C31. 1.530(12)C48. H481. 0.950C12. C13. 1.520(10)C37. C23. 1.530(12)C48. H481. 0.950C13. C14. 1.361(11)C44. H442. 0.950C50. H501. 0.950C14. H12. 0.950C37. C31. 1.519(13)C20. C49. 1.471(13)C12. H121. 0.950C36. H361. 0.950C51. H511. 0.950C13. C14. 1.361(11)C44. H442. 0.950C50. H501. 0.950C14. H42. 0.	Ru1 . C21 . 2.214(6)	C27.C29.1.541(9)	C23.H231.0.950
Rul. C20. 2.221(8)N28. C3. 1.493(9)C23. H233. 0.950N3. O4. 1.371(6)C29. H291. 0.950C28. C38. 1.397(13)N3. C5. 1.271(8)C29. H292. 0.950C14. C11. 1.391(13)C6. C7. 1.541(8)C30. C2. 1.556(13)C14. H141. 0.950C6. H61. 0.950C30. H301. 0.950C11. H111. 0.950C6. H61. 0.950C30. H302. 0.950C17. C24. 1.356(16)C7. C8. 1.518(10)C31. C32. 1.427(9)C17. H171. 0.950C7. C8. 1.518(10)C31. C32. 1.427(9)C38. H381. 0.950C7. C78. 1.519(11)C31. C32. C33. 1.429(9)C38. H381. 0.950C8. C9. 1.519(11)C32. C33. 1.429(9)C38. H381. 0.950C8. H81. 0.950C32. C37. 1.508(9)C41. C55. 1.406(15)C8. H82. 0.950C33. C34. 1.435(11)C41. H411. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H253. 0.950C9. H91. 0.950C34. C35. C36. 1.447(12)C21. C48. 1.373(10)C10. C16. 1.538(8)C35. C32. 1.465(13)C21. C21. C48. 1.373(10)C11. L11. 0.950C37. C51. 1.519(13)C20. C49. 1.471(13)C12. H121. 0.950C37. C51. 1.519(13)C20. C49. 1.471(13)C12. H122. 0.950C37. H371. 0.950C44. H441. 0.950C13. C14. 1.36(11)C44. H441. 0.950C49. H491. 0.950C13. C14. 1.36(11)C44. H442. 0.950C50. H502. 0.950C13. C14. 1.38(10)C44. H442. 0.950C50. H502. 0.950C15. H11. 0.950C46. H461. 0.950C50. H502. 0.950C15. C14. 1.45(2) <td< td=""><td>Ru1 . C48 . 2.166(6)</td><td>C27.C30.1.526(10)</td><td>C23 . H232 . 0.950</td></td<>	Ru1 . C48 . 2.166(6)	C27.C30.1.526(10)	C23 . H232 . 0.950
N3 $04.1.371(6)$ $C29.H291.0.950$ $C28.C38.1.307(13)$ N3 $C5.1.271(8)$ $C29.H292.0.950$ $C28.C50.1.489(12)$ C5C6.1.511(8)C29.H293.0.950C14.C11.1.391(13)C6C7.1.541(8)C30.C2.1.556(13)C14.H141.0.950C6H61.0.950C30.H302.0.950C11.H111.0.950C6H62.0.950C30.H302.0.950C17.C4.1.356(16)C7C28.1.514(10)C31.C32.1.427(9)C17.H171.0.950C7C7.H71.0.950C31.H311.0.950C38.H381.0.950C8C8C9.1.519(11)C32.C33.1.429(9)C38.H381.0.950C8C8C9.1.519(11)C32.C37.1.508(9)C41.C55.1.406(15)C8H82.0.950C33.C34.1.435(11)C41.H411.0.950C9C10.1.530(8)C33.H331.0.950C25.H251.0.950C9C9.10.1.530(8)C35.C36.1.447(12)C21.C48.1.373(10)C10.C16.1.548(8)C35.C32.1.447(12)C21.C48.1.373(10)C10.C16.1.548(8)C35.C32.1.530(12)C48.H481.0.950C12.C13.1.520(10)C37.C23.1.530(12)C48.H481.0.950C12.C13.1.520(10)C37.C23.1.530(12)C48.H481.0.950C12.C13.1.520(10)C37.C23.1.530(12)C48.H481.0.950C13.C14.1.361(11)C44.C40.1.482(11)C49.H491.0.950C15.C11.1.293(16)C44.H442.0.950C49.H491.0.950C15.C11.1.293(16)C44.H442.0.950C50.H501.0.950C15.C24.1.452(2)C44.H442.0.950C49.H491.0.950C15.C14.1.293(16)C44.C40.1.482(11)C49.H493.0.950C15.C14.1.29	Ru1 . C20 . 2.221(8)	N28.C3.1.493(9)	C23 . H233 . 0.950
N3. C5. $1.271(8)$ C29. $H292. 0.950$ C28. C50. $1.489(12)$ C5. C6. $1.511(8)$ C29. $H293. 0.950$ C14. C11. $1.391(13)$ C6. C7. $1.541(8)$ C30. C2. $1.556(13)$ C14. H141. 0.950 C6. H61. 0.950 C30. H301. 0.950 C11. H111. 0.950 C6. H62. 0.950 C30. H302. 0.950 C17. C24. $1.356(16)$ C7. C8. $1.518(10)$ C31. C32. $1.427(9)$ C17. H171. 0.950 C7. H71. 0.950 C31. H311. 0.950 C38. H381. 0.950 C8. R91. 0.950 C32. C33. $1.429(9)$ C38. H382. 0.950 C8. R91. 0.950 C32. C37. $1.508(9)$ C41. C55. $1.406(15)$ C8. H82. 0.950 C33. C34. $1.435(11)$ C41. H411. 0.950 C9. C10. $1.530(8)$ C33. H331. 0.950 C25. H251. 0.950 C9. H91. 0.950 C34. C35. $1.379(11)$ C25. H252. 0.950 C9. H92. 0.950 C34. H341. 0.950 C25. H253. 0.950 C10. $1.530(8)$ C35. C36. $1.447(12)$ C21. C48. $1.373(10)$ C10. $1.512(8)$ C36. H361. 0.950 C21. H211. 0.950 C12. C13. $1.520(10)$ C37. C23. $1.530(12)$ C48. H481. 0.950 C12. H122. 0.950 C37. H371. 0.950 C49. H491. 0.950 C12. H122. 0.950 C37. H371. 0.950 C49. H491. 0.950 C13. C14. $1.36(11)$ C44. H442. 0.950 C50. H501. 0.950 C15. C14. $1.338(10)$ C44. H442. 0.950 C50. H501. 0.950 C15. C14. $1.338(10)$ C44. H442. 0.950 C50. H501. 0.950 C15. C14. $1.36(10)$ C44. H442. 0.950 C50. H501. 0.950 C15. C14. $1.37(12)$ <	N3. O4. 1.371(6)	C29 . H291 . 0.950	C28.C38.1.307(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N3.C5.1.271(8)	C29.H292.0.950	C28.C50.1.489(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5.C6.1.511(8)	C29 . H293 . 0.950	C14.C11.1.391(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C6.C7.1.541(8)	C30.C2.1.556(13)	C14 . H141 . 0.950
C6H62 0.950 C30H302 0.950 C17C24 $1.356(16)$ C7C.C8 $1.518(10)$ C31C32 $1.427(9)$ C17H171 0.950 C7C28 $1.504(11)$ C31C36 $1.376(12)$ C24H241 0.950 C8H31 0.950 C33H311 0.950 C38H381 0.950 C8H81 0.950 C32C37 $1.508(9)$ C41C55 $1.406(15)$ C8H82 0.950 C33C34 $1.435(11)$ C41H411 0.950 C9C10 $1.530(8)$ C33H331 0.950 C25H253 0.950 C9H91 0.950 C34C35 $1.379(11)$ C25H252 0.950 C10N11 $1.523(8)$ C35C26 $1.447(12)$ C21C48 $1.481.0.950$ C10C11 $1.523(8)$ C35C23 $1.457(12)$ C21C24 $1.437(10)$ C10C16 $1.548(8)$ C35C22 $1.465(13)$ C21C20 $1.386(10)$ N11C12 $1.509(8)$ C36 $1.437(12)$ C48 $H481.0.950$ C12C13 $1.520(10)$ C37C23 $1.530(12)$ C48 $H481.0.950$ C12H121 0.950 C37C31 $1.530(13)$ C20C49 $1.471(13)$ C12H121 0.950 C37C31 $1.530(13)$ C40 $4.949.0.950$ C13C14 <td< td=""><td>C6.H61.0.950</td><td>C30 . H301 . 0.950</td><td>C11.H111.0.950</td></td<>	C6.H61.0.950	C30 . H301 . 0.950	C11.H111.0.950
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C6. H62. 0.950	C30, H302, 0.950	C17.C24.1.356(16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7. C8. 1.518(10)	C31. C32. 1.427(9)	C17 . H171 . 0.950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7. C28. 1.504(11)	C31, C36, 1.376(12)	C24 . H241 . 0.950
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7.H71.0.950	C31 . H311 . 0.950	C38 H381 0.950
C8. H81.0.950C32. C37. 1.508(9)C41. C55. 1.406(15)C8. H82.0.950C33. C34. 1.435(11)C41. H411.0.950C9. C10.1.530(8)C33. H31.0.950C25. H251.0.950C9. H91.0.950C34. C35.1.379(11)C25. H252.0.950C9. H92.0.950C34. H341.0.950C25. H253.0.950C10. N11.1.523(8)C35. C36.1.447(12)C21. C48.1.373(10)C10. C16.1.548(8)C35. C22.1.465(13)C21. C20.1.386(10)N11. C12.1.509(8)C36. H361.0.950C21. H211.0.950C12. H121.0.950C37. C51.1.519(13)C20. C49.1.471(13)C12. H122.0.950C37. H371.0.950C49. H491.0.950C13. C14.1.361(11)C44. C40.1.482(11)C49. H492.0.950C13. C17.1.389(10)C44. H442.0.950C50. H501.0.950C15. C11.1.293(16)C44. H442.0.950C50. H501.0.950C15. C11.1.293(16)C44. C46.1.338(17)C50. H501.0.950C16. H161.0.950C3. C4.1.504(12)C51. H511.0.950C16. H162.0.950C3. C4.1.504(12)C51. H512.0.950C16. H163.0.950C3. C4.1.1371(12)C53.1.452(17)C18. C20.1.447(11)C3. H32.0.950C52. H511.0.950C18. C19.1.409(11)C3. H32.0.950C52. H511.0.950C18. C19.1.447(11)C3. H32.0.950C52. H511.0.950C18. C20.1.447(11)C3. H32.0.950C52. H511.0.950C18. C20.1.447(11)C3. H31.0.950C52. H511.0.950C16. H163.0.950C4. C41.1.371(12)C53. H511.0.950C18. C20.1.447(11)C3. H32.0.950C52. H511.0.950C19. H191.0.950C4.	C8.C9.1.519(11)	C32, C33, 1.429(9)	C38 . H382 . 0.950
C8H82 0.950 C33C34 $1.435(11)$ C41H411 0.950 C9C10 $1.530(8)$ C33H331 0.950 C25H251 0.950 C9H92 0.950 C34C35.1379(11)C25H252 0.950 C10N11 $1.523(8)$ C35C36 $1.447(12)$ C21C44 $1.373(10)$ C10C16 $1.548(8)$ C35C23 $1.457(12)$ C21C48 $1.373(10)$ C10C16 $1.548(8)$ C35C22 $1.465(13)$ C21C20 $1.386(10)$ N11C12 $1.509(8)$ C36H361 0.950 C21H211 0.950 C12C112 0.950 C37CC3 $1.530(12)$ C48H481 0.950 C12H121 0.950 C37C31 $1.530(12)$ C48H481 0.950 C12H122 0.950 C37H371 0.950 C40 $1.471(13)$ C12H122 0.950 C37H371 0.950 C40H491 0.950 C13C14 $1.361(11)$ C44C44 0.950 C50H501 0.950 C15C14 $1.482(1)$ C49H492 0.950 C15C11 $1.929(10)$ C44H442 0.950 C15C14 $1.452(2)$ C44H442 0.950 C50H501 0.950 C15H151 0.950 C3C46L462 0.950 C51H5	C8. H81. 0.950	C32.C37.1.508(9)	C41. C55. 1.406(15)
C9. C10. 1.530(8)C33. H331. 0.950C25. H251. 0.950C9. H91. 0.950C34. C35. 1.379(11)C25. H252. 0.950C9. H92. 0.950C34. H341. 0.950C25. H252. 0.950C10. N11. 1.523(8)C35. C36. 1.447(12)C21. C48. 1.373(10)C10. C16. 1.548(8)C35. C22. 1.465(13)C21. C20. 1.386(10)N11. C12. 1.509(8)C36. H361. 0.950C21. H211. 0.950C12. H121. 0.950C37. C31. 1.519(13)C20. C49. 1.471(13)C12. H122. 0.950C37. C37. H371. 0.950C49. H491. 0.950C13. C14. 1.361(11)C44. C40. 1.482(11)C49. H492. 0.950C13. C17. 1.389(10)C44. H441. 0.950C49. H493. 0.950C15. C11. 1.293(16)C44. H443. 0.950C50. H502. 0.950C15. C24. 1.45(2)C44. H443. 0.950C50. H502. 0.950C15. H151. 0.950C46. C56. 1.338(17)C50. H503. 0.950C16. H161. 0.950C46. H461. 0.950C51. H511. 0.950C16. H161. 0.950C46. H462. 0.950C51. H512. 0.950C16. H163. 0.950C3. C4. 1.504(12)C51. H513. 0.950C16. H163. 0.950C46. C46. 1.3371(12)C53. 1.452(17)C18. C19. 1.409(11)C3. H32. 0.950C52. C53. 1.452(17)C18. C20. 1.447(11)C3. H32. 0.950C52. C54. 1.33(2)C19. C39. 1.410(9)C4. C41. 1.371(12)C53. H531. 0.950C18. H181. 0.950C4. C41. 1.371(12)C53. H531. 0.950C19. H191. 0.950C4. C41. 0.950C57. C54. 1.488(15)Ru22. C23. 2.4011(19)C40. C39. 1.539(10)C55. H551. 0.950Ru22. N24. 2.2066(5) <td< td=""><td>$C8 \cdot H82 \cdot 0.950$</td><td>C_{33}, C_{34}, 1.435(11)</td><td>C41 . H411 . 0.950</td></td<>	$C8 \cdot H82 \cdot 0.950$	C_{33} , C_{34} , 1.435(11)	C41 . H411 . 0.950
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C9 C10 1 530(8)	C_{33} H331 0.950	C_{25} H251 0.950
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C9 H91 0 950	C_{34} C_{35} $(1379(11))$	C_{25} H252 0 950
$\begin{array}{c} C10 \cdot N11 \cdot 1.523(8) \\ C10 \cdot C10 \cdot 1.1 \cdot 1.523(8) \\ C10 \cdot C16 \cdot 1.548(8) \\ C11 \cdot C12 \cdot 1.509(8) \\ C12 \cdot C13 \cdot 1.520(10) \\ C13 \cdot C14 \cdot 1.361(11) \\ C14 \cdot C40 \cdot 1.482(11) \\ C14 \cdot 1.481 \cdot 0.950 \\ C13 \cdot C14 \cdot 1.361(11) \\ C14 \cdot C40 \cdot 1.482(11) \\ C49 \cdot H492 \cdot 0.950 \\ C13 \cdot C14 \cdot 1.361(11) \\ C44 \cdot C44 \cdot 1.482(11) \\ C49 \cdot H492 \cdot 0.950 \\ C13 \cdot C17 \cdot 1.389(10) \\ C14 \cdot H441 \cdot 0.950 \\ C15 \cdot C11 \cdot 1.293(16) \\ C15 \cdot C11 \cdot 1.293(16) \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot C21 \cdot 1.310(16) \\ C51 \cdot H511 \cdot 0.950 \\ C19 \cdot H191 \cdot 0.950 \\ C19 \cdot H191 \cdot 0.950 \\ C41 \cdot C21 \cdot 1.568(11) \\ C51 \cdot H511 \cdot 0.950 \\ C19 \cdot H191 \cdot 0.950 \\ C11 \cdot C57 \cdot 1.542(11) \\ C57 \cdot C56 \cdot 1.488(15) \\ C12 \cdot C23 \cdot 2.240(6) \\ C1 \cdot H11 \cdot 0.950 \\ C56 \cdot C45 \cdot 1.499(19) \\ C42 \cdot C33 \cdot 2.213(7) \\ C1 \cdot H12 \cdot 0.950 \\ C45 \cdot H451 \cdot 0.950 \\ C45 \cdot H453 \cdot 0.950 \\ C45 \cdot H453 \cdot 0$	C9 H92 0 950	$C_{34} H_{341} 0.950$	C_{25} H253 0.950
$\begin{array}{c} C10 & C16 & 1.548(8) \\ C10 & C16 & 1.548(8) \\ C11 & C12 & 1.509(8) \\ C12 & C13 & 1.520(10) \\ C12 & C13 & 1.520(10) \\ C13 & C23 & 1.530(12) \\ C12 & H121 & 0.950 \\ C12 & H121 & 0.950 \\ C13 & C14 & 1.361(11) \\ C14 & C40 & 1.482(11) \\ C14 & H421 & 0.950 \\ C13 & C14 & 1.361(11) \\ C14 & C44 & 1.442(11) \\ C44 & H441 & 0.950 \\ C13 & C17 & 1.389(10) \\ C14 & H441 & 0.950 \\ C15 & C11 & 1.293(16) \\ C15 & C44 & H442 & 0.950 \\ C15 & C11 & 1.293(16) \\ C16 & H161 & 0.950 \\ C16 & H162 & 0.950 \\ C16 & H161 & 0.950 \\ C16 & H162 & 0.950 \\ C16 & H161 & 0.950 \\ C18 & C19 & 1.409(11) \\ C3 & H31 & 0.950 \\ C18 & C19 & 1.409(11) \\ C3 & H32 & 0.950 \\ C18 & C19 & 1.40(9) \\ C4 & C41 & 1.371(12) \\ C53 & C54 & 1.33(2) \\ C19 & C19 \\ Ru22 & C123 & 2.4011(19) \\ C40 & C25 & 1.568(11) \\ C54 & H541 & 0.950 \\ C12 & L23 & 2.4011(19) \\ C40 & C25 & 1.568(11) \\ C54 & H541 & 0.950 \\ C12 & C123 & 2.240(6) \\ C1 & C1 & C57 & 1.542(11) \\ C57 & H571 & 0.950 \\ Ru22 & C13 & 2.213(7) \\ C1 & H11 & 0.950 \\ C45 & H451 & 0.950 \\ Ru22 & C32 & 2.240(6) \\ C1 & H111 & 0.950 \\ C45 & H451 & 0.950 \\ Ru22 & C34 & 2.212(7) \\ C2 & C57 & 1.530(14) \\ C45 & H451 & 0.950 \\ C45 & H451 & 0.950 \\ Ru22 & C34 & 2.212(7) \\ C2 & C27 & 1.530(14) \\ C45 & H452 & 0.950 \\ C45 & H453 & 0.950 \\ C16 & H161 & 0.950 \\ C16 & H161 & 0.950 \\ C16 & H161 & 0$	C10 N11 1 523(8)	C_{35} C_{36} $C_{447}(12)$	C_{21} C_{48} $(1373(10))$
$\begin{array}{c} \text{C12} & \text{C12} & 1.50(6) \\ \text{C12} & \text{C13} & 1.50(6) \\ \text{C12} & \text{C13} & 1.520(10) \\ \text{C12} & \text{C12} & 0.950 \\ \text{C13} & \text{C13} & 1.519(13) \\ \text{C12} & \text{C14} & 1.361(11) \\ \text{C14} & \text{C44} & \text{C40} & 1.482(11) \\ \text{C49} & \text{C49} & 1.492 & 0.950 \\ \text{C13} & \text{C11} & 1.361(11) \\ \text{C44} & \text{C40} & 1.482(11) \\ \text{C49} & 1.492 & 0.950 \\ \text{C13} & \text{C11} & 1.293(16) \\ \text{C15} & \text{C11} & 1.293(16) \\ \text{C15} & \text{C14} & 1.45(2) \\ \text{C15} & \text{C14} & 1.45(2) \\ \text{C16} & \text{C16} & 1.0950 \\ \text{C15} & \text{C11} & 1.293(16) \\ \text{C16} & \text{C14} & 1.442 & 0.950 \\ \text{C15} & \text{C15} & 0.950 \\ \text{C15} & \text{C15} & 0.950 \\ \text{C15} & \text{C11} & 0.950 \\ \text{C16} & \text{C16} & 0.950 \\ \text{C16} & 1.162 & 0.950 \\ \text{C16} & 1.162 & 0.950 \\ \text{C16} & 1.163 & 0.950 \\ \text{C16} & 1.409(11) \\ \text{C3} & 1.431 & 0.950 \\ \text{C18} & \text{C11} & 0.447(11) \\ \text{C3} & 1.432 & 0.950 \\ \text{C18} & 1.47(11) \\ \text{C3} & 1.432 & 0.950 \\ \text{C18} & 1.410(9) \\ \text{C14} & 1.371(12) \\ \text{C13} & 1.531 & 0.950 \\ \text{C18} & 1.133(2) \\ \text{C19} & 1.390 \\ \text{C19} & 1.410(9) \\ \text{C4} & \text{C41} & 1.371(12) \\ \text{C53} & 1.531 & 0.950 \\ \text{C19} & 1.10(9) \\ \text{C4} & 0.239 & 1.539(10) \\ \text{C55} & 1.551 & 0.950 \\ \text{Ru22} & 0.23 & 2.4011(19) \\ \text{C40} & 0.239 & 1.539(10) \\ \text{C55} & 1.551 & 0.950 \\ \text{Ru22} & 0.23 & 2.240(6) \\ \text{C1} & 1.11 & 0.950 \\ \text{C22} & 1.548(11) \\ \text{C54} & 1.4541 & 0.950 \\ \text{Ru22} & 0.23 & 2.213(7) \\ \text{C1} & 1.12 & 0.950 \\ \text{C22} & 1.530(14) \\ \text{C55} & 1.451 & 0.950 \\ \text{C56} & 1.448(15) \\ \text{Ru22} & 0.23 & 2.213(7) \\ \text{C1} & 1.11 & 0.950 \\ \text{C22} & 0.23 & 2.235(8) \\ \text{C2} & 1.210(16) \\ \text{C55} & 0.451 & 1.452(0.950 \\ \text{C45} & 1.4451 & 0.950 \\ \text{C45} & 1.4451 & 0.950 \\ \text{Ru22} & 0.23 & 2.235(8) \\ \text{C2} & 1.210(16) \\ \text{C45} & 1.4452 & 0.950 \\ \text{C45} & 1.4451 & $	C_{10} C_{16} C	C_{35} C_{22} 1 465(13)	C_{21} C_{20} 1 386(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N11 \cdot C12 \cdot 1.509(8)$	$C_{36} + H_{361} + 0.950$	C_{21} , H_{211} , 0.950
$\begin{array}{c} C12. H121. (0.950) \\ C12. H122. (0.950) \\ C37. C51. 1.519(13) \\ C12. H122. (0.950) \\ C37. H371. (0.950) \\ C37. H371. (0.950) \\ C49. H491. (0.950) \\ C49. H492. (0.950) \\ C49. H493. (0.950) \\ C50. H501. (0.950) \\ C15. H151. (0.950) \\ C44. H442. (0.950) \\ C50. H502. (0.950) \\ C16. H161. (0.950) \\ C16. H162. (0.950) \\ C16. H162. (0.950) \\ C16. H163. (0.950) \\ C16. H163. (0.950) \\ C18. C19. 1.409(11) \\ C3. H31. (0.950) \\ C4. C41. 1.371(12) \\ C53. C54. 1.33(2) \\ C19. C39. 1.410(9) \\ C4. C41. 1.371(12) \\ C53. H511. (0.950) \\ C19. H191. (0.950) \\ C4. C41. 1.371(12) \\ C53. H511. (0.950) \\ C19. H191. (0.950) \\ C4. C42. 1.1371(12) \\ C53. H531. (0.950) \\ C19. H191. (0.950) \\ C4. C42. 1.1371(12) \\ C53. H531. (0.950) \\ C19. H191. (0.950) \\ C40. C25. 1.568(11) \\ C44. H541. (0.950) \\ C42. C123. 2.4011(19) \\ C40. C29. 1.539(10) \\ C55. H551. (0.950) \\ C42. C123. 2.210(6) \\ C11. H11. (0.950) \\ C57. C56. 1.488(15) \\ Ru22. C31. 2.187(6) \\ C11. C17. 1.542(11) \\ C57. H571. (0.950) \\ C45. H451. (0.950) \\ Ru22. C32. 2.240(6) \\ C11. H11. (0.950) \\ C45. H451. (0.950) \\ C45. H453. (0.$	C_{12} C_{13} C_{13} C_{12} C_{13} C_{12} C_{13} C	C_{37} C_{23} 1 530(12)	C48 H481 0 950
C12. H122.0.950 C37. H371.0.950 C49. H491.0.950 C13. C14.1.361(11) C44. C40.1.482(11) C49. H492.0.950 C13. C17.1.389(10) C44. H441.0.950 C49. H493.0.950 C15. C11.1.293(16) C44. H442.0.950 C50. H501.0.950 C15. C11.1.293(16) C44. H442.0.950 C50. H502.0.950 C15. C24.1.45(2) C44. H443.0.950 C50. H503.0.950 C16. H161.0.950 C46. C56.1.338(17) C50. H503.0.950 C16. H161.0.950 C46. H461.0.950 C51. H511.0.950 C16. H162.0.950 C46. H462.0.950 C51. H512.0.950 C16. H163.0.950 C3. C4.1.504(12) C51. H513.0.950 C18. C19.1.409(11) C3. H31.0.950 C52. C53.1.452(17) C18. C19.1.447(11) C3. H32.0.950 C52. H521.0.950 C18. H181.0.950 C4. C41.1.371(12) C53. H531.0.950 C19. C39.1.410(9) C4. C42.1.1.371(12) C53. H531.0.950 C19. H191.0.950 C40. C25.1.568(11) C54. H541.0.950 Ru22. N24.2.066(5) C40. C25.1.568(11) C54. H541.0.950 Ru22. N24.2.066(5) C40. C25.1.568(11) C54. H541.0.950 Ru22. N24.2.066(5) C40. C457.1.542(11)	C_{12} H121 0 950	C_{37} C_{51} $1.519(13)$	C_{20} C_{49} 1 471(13)
C13. C14. 1.361(11)C44. C40. 1.482(11)C49. H492. 0.950C13. C17. 1.389(10)C44. H441. 0.950C49. H493. 0.950C15. C11. 1.293(16)C44. H442. 0.950C49. H493. 0.950C15. C24. 1.45(2)C44. H443. 0.950C50. H501. 0.950C15. C24. 1.45(2)C44. H443. 0.950C50. H502. 0.950C15. H151. 0.950C46. C56. 1.338(17)C50. H503. 0.950C16. H161. 0.950C46. H461. 0.950C51. H511. 0.950C16. H162. 0.950C46. H462. 0.950C51. H511. 0.950C16. H163. 0.950C3. C4. 1.504(12)C51. H513. 0.950C18. C19. 1.409(11)C3. H31. 0.950C52. C53. 1.452(17)C18. C20. 1.447(11)C3. H32. 0.950C52. H521. 0.950C19. C39. 1.410(9)C4. C41. 1.371(12)C53. C54. 1.33(2)C19. C39. 1.410(9)C4. C42. 1.137(12)C53. H531. 0.950C19. H191. 0.950C4. C52. 1.310(16)C55. C54. 1.37(2)Ru22. C123. 2.4011(19)C40. C39. 1.539(10)C55. H551. 0.950Ru22. N24. 2.066(5)C40. C25. 1.568(11)C54. H541. 0.950Ru22. C31. 2.187(6)C1. C57. 1.542(11)C57. H571. 0.950Ru22. C32. 2.240(6)C1. H11. 0.950C56. C45. 1.499(19)Ru22. C33. 2.213(7)C1. H12. 0.950C45. H451. 0.950Ru22. C33. 2.213(7)C1. H12. 0.950C45. H451. 0.950Ru22. C34. 2.212(7)C2. C57. 1.530(14)C45. H453. 0.950Ru22. C34. 2.212(7)C2. C57. 1.530(14)C45. H453. 0.950	C_{12} H122 0.950	C_{37} H ₃₇₁ 0.950	C49 H491 0 950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{13} , C_{14} , $1.361(11)$	$C44 \cdot C40 \cdot 1.482(11)$	C49 . H492 . 0.950
$\begin{array}{c} C15 \cdot C11 \cdot 1.293(16) \\ C14 \cdot 1.442 \cdot 0.950 \\ C15 \cdot C24 \cdot 1.45(2) \\ C15 \cdot C24 \cdot 1.45(2) \\ C15 \cdot H151 \cdot 0.950 \\ C15 \cdot H151 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H161 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H162 \cdot 0.950 \\ C16 \cdot H163 \cdot 0.950 \\ C17 \cdot H151 \cdot 0.950 \\ C18 \cdot C19 \cdot 1.409(11) \\ C13 \cdot H31 \cdot 0.950 \\ C18 \cdot C19 \cdot 1.409(11) \\ C13 \cdot H32 \cdot 0.950 \\ C18 \cdot H181 \cdot 0.950 \\ C18 \cdot H181 \cdot 0.950 \\ C19 \cdot 1.410(9) \\ C4 \cdot C41 \cdot 1.371(12) \\ C53 \cdot C54 \cdot 1.33(2) \\ C19 \cdot C39 \cdot 1.410(9) \\ C40 \cdot C39 \cdot 1.539(10) \\ C55 \cdot C54 \cdot 1.37(2) \\ C122 \cdot N24 \cdot 2.066(5) \\ C40 \cdot C25 \cdot 1.568(11) \\ C54 \cdot H511 \cdot 0.950 \\ C122 \cdot N24 \cdot 2.066(5) \\ C40 \cdot C25 \cdot 1.568(11) \\ C57 \cdot L551 \cdot 0.950 \\ C122 \cdot N24 \cdot 2.066(5) \\ C10 \cdot C10 \cdot C57 \cdot 1.542(11) \\ C57 \cdot L571 \cdot 0.950 \\ C122 \cdot N24 \cdot 2.066(5) \\ C11 \cdot C57 \cdot 1.542(11) \\ C57 \cdot H571 \cdot 0.950 \\ C122 \cdot C23 \cdot 2.240(6) \\ C1 \cdot H11 \cdot 0.950 \\ C15 \cdot C54 \cdot 1.499(19) \\ C42 \cdot C33 \cdot 2.213(7) \\ C1 \cdot H12 \cdot 0.950 \\ C45 \cdot H451 \cdot 0.950 \\ C45 \cdot H453 \cdot 0.9$	C_{13} C_{17} C_{13} C_{17} C_{13} C_{17} C_{13} C_{17} C_{13} C_{17} C_{13} C_{17} C	C44 H441 0 950	C49 H493 0 950
C15C14C14C14C15C16C16C17C18C20C14C17C18C20L 44L 10O50C18L 130.950C18L 130.950C18	C_{15} C_{11} $1.293(16)$	C44 H442 0 950	C_{50} H501 0.950
C15 . H151 . 0.950C46 . C56 . 1.338(17)C50 . H503 . 0.950C16 . H161 . 0.950C46 . H461 . 0.950C51 . H511 . 0.950C16 . H162 . 0.950C46 . H462 . 0.950C51 . H511 . 0.950C16 . H163 . 0.950C3 . C4 . 1.504(12)C51 . H513 . 0.950C18 . C19 . 1.409(11)C3 . H31 . 0.950C52 . C53 . 1.452(17)C18 . C20 . 1.447(11)C3 . H32 . 0.950C52 . H521 . 0.950C18 . H181 . 0.950C4 . C41 . 1.371(12)C53 . C54 . 1.33(2)C19 . C39 . 1.410(9)C4 . C41 . 1.371(12)C53 . H531 . 0.950C19 . H191 . 0.950C4 . C42 . 1.310(16)C55 . C54 . 1.37(2)Ru22 . C123 . 2.4011(19)C40 . C39 . 1.539(10)C55 . H551 . 0.950Ru22 . N24 . 2.066(5)C40 . C25 . 1.568(11)C57 . H541 . 0.950Ru22 . N28 . 2.171(5)C40 . H401 . 0.950C57 . C56 . 1.488(15)Ru22 . C31 . 2.187(6)C1 . C57 . 1.542(11)C57 . H571 . 0.950Ru22 . C33 . 2.213(7)C1 . H11 . 0.950C45 . H451 . 0.950Ru22 . C34 . 2.212(7)C2 . C57 . 1.530(14)C45 . H451 . 0.950Ru22 . C34 . 2.212(7)C2 . C57 . 1.530(14)C45 . H453 . 0.950Ru22 . C35 . 2.235(8)C2 . H21 . 0.950C45 . H453 . 0.950	$C_{15} C_{24} 145(2)$	C44 H443 0 950	C50 H502 0 950
C16 : H161 : 0.950C46 : H461 : 0.950C51 : H511 : 0.950C16 : H162 : 0.950C46 : H462 : 0.950C51 : H511 : 0.950C16 : H163 : 0.950C3 : C4 : 1.504(12)C51 : H513 : 0.950C18 : C19 : 1.409(11)C3 : H31 : 0.950C52 : C53 : 1.452(17)C18 : C20 : 1.447(11)C3 : H32 : 0.950C52 : H521 : 0.950C18 : H181 : 0.950C4 : C41 : 1.371(12)C53 : C54 : 1.33(2)C19 : C39 : 1.410(9)C4 : C41 : 1.371(12)C53 : H531 : 0.950C19 : H191 : 0.950C4 : C41 : 1.371(12)C55 : C54 : 1.37(2)Ru22 : C123 : 2.4011(19)C40 : C39 : 1.539(10)C55 : H551 : 0.950Ru22 : N24 : 2.066(5)C40 : C25 : 1.568(11)C54 : H541 : 0.950Ru22 : N28 : 2.171(5)C40 : H401 : 0.950C57 : C56 : 1.488(15)Ru22 : C31 : 2.187(6)C1 : C57 : 1.542(11)C57 : H571 : 0.950Ru22 : C32 : 2.240(6)C1 : H11 : 0.950C45 : H451 : 0.950Ru22 : C33 : 2.213(7)C1 : H12 : 0.950C45 : H451 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H453 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H453 : 0.950	C_{15} , H_{151} , 0.950	$C46 \cdot C56 \cdot 1.338(17)$	C50 + H502 + 0.950
C16 : H161 : 0.950C46 : H161 : 0.950C51 : H511 : 0.950C16 : H162 : 0.950C3 : C4 : 1.504(12)C51 : H513 : 0.950C16 : H163 : 0.950C3 : C4 : 1.504(12)C51 : H513 : 0.950C18 : C19 : 1.409(11)C3 : H31 : 0.950C52 : C53 : 1.452(17)C18 : C20 : 1.447(11)C3 : H32 : 0.950C52 : H521 : 0.950C18 : H181 : 0.950C4 : C41 : 1.371(12)C53 : C54 : 1.33(2)C19 : C39 : 1.410(9)C4 : C41 : 1.371(12)C53 : H531 : 0.950C19 : H191 : 0.950C4 : C52 : 1.310(16)C55 : C54 : 1.37(2)Ru22 : C123 : 2.4011(19)C40 : C39 : 1.539(10)C55 : H551 : 0.950Ru22 : N24 : 2.066(5)C40 : C25 : 1.568(11)C54 : H541 : 0.950Ru22 : N28 : 2.171(5)C40 : H401 : 0.950C57 : C56 : 1.488(15)Ru22 : C31 : 2.187(6)C1 : C57 : 1.542(11)C57 : H571 : 0.950Ru22 : C32 : 2.240(6)C1 : H11 : 0.950C56 : C45 : 1.499(19)Ru22 : C33 : 2.213(7)C1 : H12 : 0.950C45 : H451 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H452 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H453 : 0.950	C16 H161 0.950	C46 H461 0.950	C51 H511 0.950
C16 : H163 : 0.950C3 : C4 : 1.504(12)C51 : H513 : 0.950C18 : C19 : 1.409(11)C3 : H31 : 0.950C52 : C53 : 1.452(17)C18 : C20 : 1.447(11)C3 : H32 : 0.950C52 : H521 : 0.950C18 : H181 : 0.950C4 : C41 : 1.371(12)C53 : C54 : 1.33(2)C19 : C39 : 1.410(9)C4 : C41 : 1.371(12)C53 : H531 : 0.950C19 : H191 : 0.950C4 : C41 : 1.371(12)C53 : H551 : 0.950C19 : H191 : 0.950C4 : C52 : 1.310(16)C55 : C54 : 1.37(2)Ru22 : C123 : 2.4011(19)C40 : C29 : 1.539(10)C55 : H551 : 0.950Ru22 : N24 : 2.066(5)C40 : C25 : 1.568(11)C54 : H541 : 0.950Ru22 : N28 : 2.171(5)C40 : H401 : 0.950C57 : C56 : 1.488(15)Ru22 : C31 : 2.187(6)C1 : C57 : 1.542(11)C57 : H571 : 0.950Ru22 : C33 : 2.240(6)C1 : H11 : 0.950C45 : H451 : 0.950Ru22 : C33 : 2.213(7)C1 : H12 : 0.950C45 : H451 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H452 : 0.950Ru22 : C35 : 2.235(8)C2 : H21 : 0.950C45 : H453 : 0.950	C16 . H162 . 0.950	C46 . H462 . 0.950	C51 . H512 . 0.950
C18 : C19 : 1.409(11)C3 : H31 : 0.950C52 : C53 : 1.452(17)C18 : C20 : 1.447(11)C3 : H32 : 0.950C52 : H521 : 0.950C18 : H181 : 0.950C4 : C41 : 1.371(12)C53 : C54 : 1.33(2)C19 : C39 : 1.410(9)C4 : C41 : 1.371(12)C53 : H531 : 0.950C19 : H191 : 0.950C4 : C41 : 1.371(12)C55 : C54 : 1.37(2)Ru22 : C123 : 2.4011(19)C40 : C39 : 1.539(10)C55 : H551 : 0.950Ru22 : N24 : 2.066(5)C40 : C25 : 1.568(11)C54 : H541 : 0.950Ru22 : N28 : 2.171(5)C40 : H401 : 0.950C57 : C56 : 1.488(15)Ru22 : C31 : 2.187(6)C1 : C57 : 1.542(11)C57 : H571 : 0.950Ru22 : C33 : 2.240(6)C1 : H11 : 0.950C56 : C45 : 1.499(19)Ru22 : C33 : 2.213(7)C1 : H12 : 0.950C45 : H451 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H452 : 0.950Ru22 : C35 : 2.235(8)C2 : H21 : 0.950C45 : H453 : 0.950	C16 H163 0 950	$C_3 C_4 = 1504(12)$	C51 H513 0.950
C18 · C20 · 1.447(11)C3 · H32 · 0.950C52 · H521 · 0.950C18 · H181 · 0.950C4 · C41 · 1.371(12)C53 · C54 · 1.33(2)C19 · C39 · 1.410(9)C4 · C41 · 1.371(12)C53 · H531 · 0.950C19 · H191 · 0.950C4 · C42 · 1.310(16)C55 · C54 · 1.37(2)Ru22 · C123 · 2.4011(19)C40 · C39 · 1.539(10)C55 · H551 · 0.950Ru22 · N24 · 2.066(5)C40 · C25 · 1.568(11)C54 · H541 · 0.950Ru22 · N28 · 2.171(5)C40 · H401 · 0.950C57 · C56 · 1.488(15)Ru22 · C31 · 2.187(6)C1 · C57 · 1.542(11)C57 · H571 · 0.950Ru22 · C33 · 2.240(6)C1 · H11 · 0.950C56 · C45 · 1.499(19)Ru22 · C33 · 2.213(7)C1 · H12 · 0.950C45 · H451 · 0.950Ru22 · C34 · 2.212(7)C2 · C57 · 1.530(14)C45 · H452 · 0.950Ru22 · C35 · 2.235(8)C2 · H21 · 0.950C45 · H453 · 0.950	C_{18} , C_{19} , 1.409(11)	C3 . H31 . 0.950	$C52 \cdot C53 \cdot 1.452(17)$
C18 · H181 · 0.950C4 · C41 · 1.371(12)C53 · C54 · 1.33(2)C19 · C39 · 1.410(9)C4 · C41 · 1.371(12)C53 · C54 · 1.33(2)C19 · H191 · 0.950C4 · C41 · 1.371(12)C53 · H531 · 0.950C19 · H191 · 0.950C4 · C52 · 1.310(16)C55 · C54 · 1.37(2)Ru22 · C123 · 2.4011(19)C40 · C39 · 1.539(10)C55 · H551 · 0.950Ru22 · N24 · 2.066(5)C40 · C25 · 1.568(11)C54 · H541 · 0.950Ru22 · N28 · 2.171(5)C40 · H401 · 0.950C57 · C56 · 1.488(15)Ru22 · C31 · 2.187(6)C1 · C57 · 1.542(11)C57 · H571 · 0.950Ru22 · C33 · 2.213(7)C1 · H11 · 0.950C45 · 1.499(19)Ru22 · C34 · 2.212(7)C2 · C57 · 1.530(14)C45 · H451 · 0.950Ru22 · C35 · 2.235(8)C2 · H21 · 0.950C45 · H453 · 0.950	C_{18} C_{20} 1 447(11)	C3 H32 0 950	C52 H521 0 950
C19 : C39 : 1.410(9)C4 : C41 : 1.371(12)C53 : H531 : 0.950C19 : H191 : 0.950C4 : C52 : 1.310(16)C55 : C54 : 1.37(2)Ru22 : C123 : 2.4011(19)C40 : C39 : 1.539(10)C55 : H551 : 0.950Ru22 : N24 : 2.066(5)C40 : C25 : 1.568(11)C54 : H541 : 0.950Ru22 : N28 : 2.171(5)C40 : H401 : 0.950C57 : C56 : 1.488(15)Ru22 : C31 : 2.187(6)C1 : C57 : 1.542(11)C57 : H571 : 0.950Ru22 : C33 : 2.240(6)C1 : H11 : 0.950C56 : C45 : 1.499(19)Ru22 : C33 : 2.213(7)C1 : H12 : 0.950C45 : H451 : 0.950Ru22 : C34 : 2.212(7)C2 : C57 : 1.530(14)C45 : H452 : 0.950Ru22 : C35 : 2.235(8)C2 : H21 : 0.950C45 : H453 : 0.950	C_{18} H181 0.950	C4 C41 1 371(12)	C_{53} C_{54} 1 $33(2)$
C19.H191.0.950 C4.C52.1.310(16) C55.C54.1.37(2) Ru22.C123.2.4011(19) C40.C39.1.539(10) C55.H551.0.950 Ru22.N24.2.066(5) C40.C25.1.568(11) C54.H541.0.950 Ru22.N28.2.171(5) C40.H401.0.950 C57.C56.1.488(15) Ru22.C31.2.187(6) C1.C57.1.542(11) C57.H571.0.950 Ru22.C32.2.240(6) C1.H11.0.950 C56.C45.1.499(19) Ru22.C33.2.213(7) C1.H12.0.950 C45.H451.0.950 Ru22.C34.2.212(7) C2.C57.1.530(14) C45.H452.0.950 Ru22.C35.2.235(8) C2.H21.0.950 C45.H453.0.950	C_{19} C_{39} 1 410(9)	C4 C41 1 371(12)	$C_{53} + C_{51} + C_{53} + C$
Ru22. Cl23. 2.4011(19) C40. C39. 1.539(10) C55. H551. 0.950 Ru22. N24. 2.066(5) C40. C25. 1.568(11) C54. H541. 0.950 Ru22. N28. 2.171(5) C40. H401. 0.950 C57. C56. 1.488(15) Ru22. C31. 2.187(6) C1. C57. 1.542(11) C56. C45. 1.499(19) Ru22. C33. 2.240(6) C1. H11. 0.950 C56. C45. 1.499(19) Ru22. C33. 2.213(7) C1. H12. 0.950 C45. H451. 0.950 Ru22. C34. 2.212(7) C2. C57. 1.530(14) C45. H452. 0.950 Ru22. C35. 2.235(8) C2. H21. 0.950 C45. H453. 0.950	C_{19} H191 0 950	C4 $C52$ 1 310(16)	C55 $C54$ $1.37(2)$
Ru22 · 0125 · 2:1011(17) C10 · C05 · 11557(10) C05 · 11557(10) Ru22 · N24 · 2.066(5) C40 · C25 · 1.568(11) C54 · H541 · 0.950 Ru22 · N28 · 2.171(5) C40 · H401 · 0.950 C57 · C56 · 1.488(15) Ru22 · C31 · 2.187(6) C1 · C57 · 1.542(11) C57 · H571 · 0.950 Ru22 · C32 · 2.240(6) C1 · H11 · 0.950 C56 · C45 · 1.499(19) Ru22 · C33 · 2.213(7) C1 · H12 · 0.950 C45 · H451 · 0.950 Ru22 · C34 · 2.212(7) C2 · C57 · 1.530(14) C45 · H452 · 0.950 Ru22 · C35 · 2.235(8) C2 · H21 · 0.950 C45 · H453 · 0.950	$R_{\rm H}^{22}$ Cl23 2 4011(19)	C40 $C39$ $1.539(10)$	$C_{55} H_{551} 0.950$
Ru22 . N28 . 2.171(5) C40 . H401 . 0.950 C57 . C56 . 1.488(15) Ru22 . C31 . 2.187(6) C1 . C57 . 1.542(11) C57 . H571 . 0.950 Ru22 . C32 . 2.240(6) C1 . H11 . 0.950 C56 . C45 . 1.499(19) Ru22 . C33 . 2.213(7) C1 . H12 . 0.950 C45 . H451 . 0.950 Ru22 . C34 . 2.212(7) C2 . C57 . 1.530(14) C45 . H452 . 0.950 Ru22 . C35 . 2.235(8) C2 . H21 . 0.950 C45 . H453 . 0.950	$R_{11}22$ N24 2 066(5)	C40 $C25$ $1.568(11)$	C54 H541 0 950
Ru22 . C31 . 2.187(6) C1 . C57 . 1.542(11) C57 . H571 . 0.950 Ru22 . C32 . 2.240(6) C1 . H11 . 0.950 C56 . C45 . 1.499(19) Ru22 . C33 . 2.213(7) C1 . H12 . 0.950 C45 . H451 . 0.950 Ru22 . C34 . 2.212(7) C2 . C57 . 1.530(14) C45 . H452 . 0.950 Ru22 . C35 . 2.235(8) C2 . H21 . 0.950 C45 . H453 . 0.950	Ru22 N28 2 171(5)	C40 H401 0 950	C57 $C56$ 1 488(15)
Ru22.C32.2.240(6) C1.H11.0.950 C56.C45.1.499(19) Ru22.C33.2.213(7) C1.H12.0.950 C45.H451.0.950 Ru22.C34.2.212(7) C2.C57.1.530(14) C45.H452.0.950 Ru22.C35.2.235(8) C2.H21.0.950 C45.H453.0.950	Ru22 C31 2 187(6)	C1 $C57$ $1.542(11)$	$C_{57} + C_{50} + 1.100(15)$
Ru22.C33.2.213(7) C1.H12.0.950 C45.H451.0.950 Ru22.C34.2.212(7) C2.C57.1.530(14) C45.H452.0.950 Ru22.C35.2.235(8) C2.H21.0.950 C45.H453.0.950	$R_{\rm H}22$ C32 2.240(6)	C1 H11 0950	C_{56} C_{45} 1 499(19)
Ru22.C34.2.212(7) C2.C57.1.530(14) C45.H451.0.950 Ru22.C35.2.235(8) C2.H21.0.950 C45.H453.0.950	$R_{\rm H}22$ C33 2.213(7)	C1 H12 0 950	C45 H451 0 950
Ru22 . C35 . 2.235(8) C2 . H21 . 0.950 C45 . H453 . 0.950	$R_{\rm H}22$ C34 2 212(7)	C_{2} C_{57} 1 530(14)	C45 H452 0 950
	Ru22 . C35 . 2.235(8)	$C_2 \cdot H_{21} \cdot 0.950$	C45 . H453 . 0.950

Angles

Cl2 . Ru1 . N3 . 83.01(14)	C28.C7.H71.106.0	Cl23 . Ru22 . N28 . 82.62(14)	C27 . C29 . H293 . 109.8
Cl2 . Ru1 . N11 . 81.83(13)	C7.C8.C9.109.6(5)	N24 . Ru22 . N28 . 74.8(2)	H291 . C29 . H293 . 109.5
N3 . Ru1 . N11 . 75.60(17)	C7.C8.H81.109.1	Cl23 . Ru22 . C31 . 123.84(18)	H292 . C29 . H293 . 109.5
Cl2 . Ru1 . C18 . 95.6(2)	C9.C8.H81.110.8	N24 . Ru22 . C31 . 95.2(2)	C27 . C30 . C2 . 111.7(7)
N3 . Ru1 . C18 . 114.3(2)	C7.C8.H82.108.7	N28 . Ru22 . C31 . 150.9(2)	C27.C30.H301.107.6
N11 . Ru1 . C18 . 169.5(3)	C9.C8.H82.109.2	Cl23 . Ru22 . C32 . 161.21(16)	C2.C30.H301.110.1
Cl2, Ru1, C19, 125.69(16)	H81 . C8 . H82 . 109.5	N24 . Ru22 . C32 . 99.9(2)	C27.C30.H302.108.9
N3 Ru1 C19 93 5(2)	C8 C9 C10 112 8(6)	N28 Ru22 C32 1161(2)	C2 C30 H302 108 9
N11 Ru1 $C19 1495(2)$	C8 C9 H91 109 3	C_{31} Ru22 C_{32} 37 6(2)	H301 C30 H302 109 5
C_{18} Rul C_{19}	C_{10} C_{9} H91 108 /	$C_{123}^{123} R_{122}^{122} C_{23}^{123} 1/8 1/2)$	$P_{11}22$ C31 C32 73 2(3)
C10 $Ku1$ $C19$ $37.7(3)$	C_{10} C_{9} C_{101} C_{101} C_{100}	$N24$ $B_{12}2$ $C22$ $1286(2)$	Ru22 : C31 : C32 : 73.2(3) Ru22 : C31 : C36 : 71.2(4)
$N_2 = 0.1 + 0.06 + 0.06 = 0.000 + 0.00000 + 0.00000 + 0.00000 + 0.000000 + 0.00000 + 0.0000 + 0.0000 + 0.0000$	$C_0 = C_0 = 1192 = 100.4$	$N24 \cdot Ru22 \cdot C33 \cdot 128.0(2)$	Ru22 : C31 : C30 : 71.2(4)
N11 D_{-1} (20) 115 7(2)	C10. C9. H92. 108.4	N_{20} . Ru_{22} . C_{33} . $97.0(2)$	C_{32} , C_{31} , C_{30} , $I_{21,3}(0)$
N11 . $Ru1 . C39 . 115./(2)$	H91.C9.H92.109.5	$C31 \cdot Ru22 \cdot C33 \cdot 67.0(2)$	Ru22.C31.H311.119.3
C18. Rul. C39. 67.2(3)	C9.C10.C5.110.0(5)	C32 . Ru22 . C33 . 37.4(2)	C32.C31.H311.118.2
C19. Rul. C39. 37.4(2)	C9.C10.N11.110.5(5)	CI23 . Ru22 . C34 . 111.0(2)	СЗб. СЗІ. НЗІІ. 119.6
Cl2 . Ru1 . C21 . 110.6(2)	C5 . C10 . N11 . 107.1(4)	N24 . Ru22 . C34 . 166.5(3)	Ru22 . C32 . C31 . 69.2(3)
N3 . Ru1 . C21 . 166.3(2)	C9.C10.C16.111.6(5)	N28 . Ru22 . C34 . 104.4(2)	Ru22 . C32 . C33 . 70.3(4)
N11 . Ru1 . C21 . 104.5(2)	C5 . C10 . C16 . 107.3(5)	C31 . Ru22 . C34 . 79.0(3)	C31 . C32 . C33 . 116.4(6)
C18 . Ru1 . C21 . 66.8(3)	N11 . C10 . C16 . 110.3(5)	C32 . Ru22 . C34 . 68.0(3)	Ru22 . C32 . C37 . 134.7(5)
C19. Ru1. C21. 79.6(2)	C10.N11.Ru1.111.9(3)	Cl23 . Ru22 . C35 . 88.0(2)	C31.C32.C37.123.5(5)
Cl2. Ru1. C48. 146.1(2)	C10.N11.C12.111.6(4)	N24 . Ru22 . C35 . 151.8(2)	C33.C32.C37.119.9(6)
N3 . Ru1 . C48 . 129.9(2)	Ru1 . N11 . C12 . 120.8(4)	N28 . Ru22 . C35 . 130.3(3)	Ru22 . C33 . C32 . 72.3(4)
N11, Ru1, C48, 97.20(17)	N11.C12.C13.113.7(5)	C31, Ru22, C35, 68.4(3)	Ru22 . C33 . C34 . 71.0(4)
C18 Ru1 C48 79 3(2)	N11 C12 H121 109 1	C32 Ru22 C35 81 2(3)	C_{32} C_{33} C_{34} $120.7(6)$
C19 Ru1 $C48$ $67.8(2)$	C_{13} C_{12} H_{121} 108.3	$C_{123}^{123} R_{11}^{122} C_{36}^{123} 94 9(3)$	$R_{11}22$ C33 H331 1195
$C_{12}^{(1)}$ Ru1 $C_{20}^{(2)}$ 88.6(2)	N11 C12 H122 108.0	N24 Ru22 C36 1161(3)	C_{32} C_{33} C
N2 \mathbf{P}_{11} (20) 150 4(2)	C_{12} C_{12} H_{122} $H_{100,0}$	N24 . $Ru22$. $C30$. 110.1(3) N29 Du22 C26 169 5(2)	$C_{32} = C_{33} = C$
N11 D_{2} C20 121 2(2)	U121 C12 U122 100.2	N_{20} . Ru_{22} . C_{30} . $108.3(3)$	C_{34} , C_{35} , C_{35} , C_{35} , $C_{110,3}$
N11. $Ru1$. $C20$. $151.5(2)$	$H121 \cdot C12 \cdot H122 \cdot 109.3$	C_{31} , Ru_{22} , C_{30} , $S_{0.8}(3)$	Ru22 . C34 . C35 . 71.1(4)
C18. Rul . $C20$. $38.2(3)$	$C12 \cdot C13 \cdot C14 \cdot 118.8(7)$	C_{32} . R_{122} . C_{30} . $0/.2(3)$	Ru22.C34.C35.72.8(4)
$C19 \cdot Ru1 \cdot C20 \cdot 68.6(3)$	C12.C13.C17.121.5(7)	C_{33} . Ru22. C_{34} . $37.8(3)$	C_{33} . C_{34} . C_{35} . $122.8(6)$
C39. Rul. C21. 66.8(3)	$C14 \cdot C13 \cdot C17 \cdot 119.7(8)$	C33 . Ru22 . C35 . 6/.5(3)	Ru22.C34.H341.117.0
C39 . Ru1 . C48 . 37.7(3)	C11.C15.C24.117.6(10)	C34 . Ru22 . C35 . 36.1(3)	C33 . C34 . H341 . 117.6
C21 . Ru1 . C48 . 36.5(3)	С11.С15.Н151.117.9	C33 . Ru22 . C36 . 78.6(3)	C35 . C34 . H341 . 117.9
C39 . Ru1 . C20 . 79.8(3)	C24 . C15 . H151 . 123.9	C34 . Ru22 . C36 . 66.0(3)	Ru22 . C35 . C34 . 71.0(4)
C21 . Ru1 . C20 . 36.4(3)	C10 . C16 . H161 . 108.8	C35 . Ru22 . C36 . 38.3(3)	Ru22 . C35 . C36 . 68.7(4)
C48 . Ru1 . C20 . 66.5(3)	C10.C16.H162.110.8	Ru22 . N24 . O25 . 122.7(4)	C34 . C35 . C36 . 115.4(7)
Ru1 . N3 . O4 . 123.9(3)	H161 . C16 . H162 . 109.5	Ru22 . N24 . C26 . 122.7(4)	Ru22 . C35 . C22 . 130.4(8)
Ru1 . N3 . C5 . 121.5(4)	C10.C16.H163.108.8	O25 . N24 . C26 . 114.6(5)	C34 . C35 . C22 . 122.9(8)
O4 . N3 . C5 . 114.5(4)	H161 . C16 . H163 . 109.5	N24 . C26 . C27 . 116.9(6)	C36.C35.C22.121.7(8)
N3.C5.C6.124.1(5)	H162 . C16 . H163 . 109.5	N24.C26.C1.124.7(6)	Ru22.C36.C35.73.1(5)
N3.C5.C10.117.3(5)	Ru1 . C18 . C19 . 70.3(4)	C27.C26.C1.118.2(6)	Ru22 . C36 . C31 . 72.1(4)
C6. C5. C10. 118.5(5)	Ru1, C18, C20, 71,9(4)	C26, C27, N28, 106,3(5)	C35, C36, C31, 123,3(7)
C_{5} C_{6} C_{7} $1124(5)$	$C_{19} C_{18} C_{20} 1202(6)$	$C_{26} = C_{27} = C_{29} = 108.4(5)$	$R_{11}22$ C36 H361 1179
$C_5 C_6 H_{61} 1091$	$R_{\rm H1} = C18 + H181 + 120.2(0)$	N28 C27 C29 1083(6)	C_{35} C_{36} C
C7 C6 H61 109.1	C19 $C18$ $H181$ 120.1	C_{26} C_{27} C_{29} $C_{100.5(0)}$	C31 C36 H361 118 3
$C_{7} = C_{6} = C_{101} = 109.8$	C_{10} C	N28 C27 C20 111 0(5)	C_{22} C_{27} C_{22} $112.0(6)$
C_{2} C_{3} C_{4} C_{6} C_{6} C_{6} C_{6} C_{7} C_{6} C_{7} C_{6} C_{7} C_{7	C_{20} . C_{10} . H_{101} . H_{101} .	$N_{20} = C_{27} = C_{30} = 112.9(5)$	C_{22} , C_{27} , C_{23} , T_{13} , $0(0)$
C_{1} , C_{0} , H_{02} , H_{01} , H_{02}	Ru1 . C19 . C18 . 72.1(4)	C_{29} , C_{27} , C_{30} , $H_{2.0(3)}$	C_{32} , C_{37} , C_{31} , $100.2(0)$
$\Pi 01 . C0 . H02 . 109.3$	$\mathbf{K}\mathbf{U}1 \cdot \mathbf{U}19 \cdot \mathbf{U}59 \cdot \mathbf{75.5(4)}$	C_{27} N28 C_{22} 112 C_{23}	C_{23} , C_{37} , C_{31} , $C_{12.3}(8)$
$C_0 \cdot C_1 \cdot C_0 \cdot 108.3(6)$	C18.C19.C39.120.3(6)	C_{27} . N28. C3. 112.2(5)	C_{32} C_{37} C
$C_0 = C_1 = C_2 $	Ku1. C19. H191. 119.6	Ku22 . N28 . C3 . 120.3(5)	C23.C37.H3/1.109.3
C8.C7.C28.115.0(6)	C18.C19.H191.119.9	C27. C29. H291. 110./	C51.C3/.H3/1.106.4
C6.C7.H71.106.9	C39.C19.H191.119.2	C27. C29. H292. 107.9	C40.C44.H441.108.3
C8.C7.H71.107.6	CI23 . Ru22 . N24. 82.45(15)	H291 . C29 . H292 . 109.5	C40.C44.H442.108.4

H441. C44. H442. 110.7.C13. C14. C11. 121.3(9)C37. C51. H512. 111.2C40. C44. H443. 110.7.C13. C14. H141. 118.5H511. C51. H512. 109.5H441. C44. H443. 109.5C11. C14. H141. 120.2C37. C51. H513. 109.5C56. C46. H461. 120.7C14. C11. C15. 121.4(11)H511. C51. H513. 109.5C56. C46. H462. 119.2C15. C11. H111. 121.2C4. C52. C53. 119.4(11)C46. C46. H462. 120.0C13. C17. C24. 177.8(10)C4. C52. H521. 118.9N28. C3. H31. 108.0C15. C24. C17. 121.9(11)C52. C53. H531. 119.9N28. C3. H31. 108.0C15. C24. C17. 121.9(11)C52. C53. H531. 119.9N28. C3. H32. 107.7C15. C24. H241. 117.0C54. C53. H531. 119.9N28. C3. H32. 107.7C17. C24. H241. 117.0C54. C53. H551. 120.4C3. C4. C41. 122.8(8)C28. C38. H382. 119.6C54. C55. H551. 120.4C3. C4. C41. 122.8(8)C28. C38. H382. 119.6C55. C54. C53. H19.6(11)C41. C42. S2. 116.1(8)H381. C38. H382. 120.0C55. C54. C53. H19.8(11)C44. C40. C25. 112.4(7)C55. C41. H411. 118.7C1. C57. C2. 107.3(7)C39. C40. C41. H401. 107.9C40. C25. H252. 109.6C2. C57. C56. H14.7(8)C44. C40. C25. 104.7(6)C40. C25. H252. 109.5C1. C57. H571. 107.0C55. C54. H401. 107.9C40. C25. H253. 109.5C56. C57. H571. 107.0C30. C2. C57. H571. 107.0C40. C25. H253. 109.5C56. C57. H571. 107.0C30. C2. C57. H571. 107.0C40. C25. H253. 109.5C56. C57. H571. 107.0C55. C40. H401. 109.1C40. C25. H253. 109.5C56. C45. H453. 109.5C30. C2. C7			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	H441 . C44 . H442 . 109.5	C13 . C14 . C11 . 121.3(9)	C37.C51.H512.111.2
H441. C44. H443. 109.5C11. C14. H141. 120.2C37. C51. H513. 109.5H442. C44. H443. 109.5C14. C11. C15. 121.4(11)H511. C51. H513. 109.5C56. C46. H461. 120.7C14. C11. H11. 1121.2C4. C52. C53. 119.4(11)H461. C46. H462. 120.0C13. C17. C24. 117.8(10)C4. C52. H513. 109.5N28. C3. H462. 119.2C13. C17. H171. 121.8C53. C52. H51. 118.9N28. C3. H31. 108.0C15. C24. C17. 121.9(11)C52. C53. C54. 120.3(13)C4. C3. H32. 107.7C15. C24. C17. 121.9(11)C54. C53. H531. 119.9N28. C3. H32. 107.7C15. C24. H241. 117.0C54. C53. H531. 119.4C4. C3. H32. 109.5C28. C38. H381. 120.2C41. C55. C54. C54. H19.7(10)H31. C3. H32. 109.5C28. C38. H382. 119.6C54. C55. H551. 120.4C3. C4. C52. 116.1(8)H381. C38. H382. 120.0C55. C54. C53. H19.8(11)C44. C40. C52. 112.4(7)C55. C41. H411. 118.7C1. C57. C56. H441. 122.1C44. C40. C25. 112.4(7)C55. C44. H411. 118.7C1. C57. C56. 114.7(8)C44. C40. C25. 112.4(7)C45. C25. H252. 109.6C2. C57. C56. 114.7(8)C35. C40. H401. 107.9C40. C25. H252. 109.5C1. C57. T56. 114.7(8)C44. C40. C57. 114.4(6)H251. C25. H252. 109.5C1. C57. T56. 114.7(8)C35. C41. H411. 118.7C1. C57. C56. 114.7(8)C35. C41. H411. 108.7C1. C57. C56. 114.7(8)C35. C41. H411. 108.7C1. C57. C56. 114.7(8)C35. C41. H411. 118.7C1. C57. T56. 114.7(8)C35. C41. H411. 108.7C1. C57. C56. C45. H15.7(10)C35. C41. H411. 108.7C1. C57. C56. C45. H15.7	C40.C44.H443.111.7	C13.C14.H141.118.5	H511 . C51 . H512 . 109.5
H442C44H443109.5C14C11C151214(11)H511C51H513109.5C56C46H462119.2C15C11H111111.2C4C52C53119.4(11)H461C46H462119.2C15C11H111112.1C4C52C53119.4(11)C46C43H31108.1C24C17H171119.7C52C53C54120.3(13)C4C3H32107.7C15C24C171171C52C53C54120.4(15)C4C3H32107.5C17C24H21110.0C54C55L54119.7(10)C3C4C41122.8(8)C28C38H381120.2C41C55C54L55119.4(1)C41C42C23113.8(5)C4C41C41C51C55C54L51110.4C3C4C41121.8C53C54C53119.4(11)C41C53C54L53111.7C44C40C30C13C43H382110.6C55C54L53111.7C44C40C25112.4(7)C55C54H541117.8C44C40C25112.4(7)C55C54H541117.8C44C40C25112.4(7)C55C54H541117.8C44C40C25112.4(7)C55C54H54111	H441 . C44 . H443 . 109.5	C11.C14.H141.120.2	C37.C51.H513.106.4
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	H442 . C44 . H443 . 109.5	C14.C11.C15.121.4(11)	H511 . C51 . H513 . 109.5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C56.C46.H461.120.7	C14.C11.H111.116.4	H512.C51.H513.109.5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C56.C46.H462.119.2	C15.C11.H111.121.2	C4.C52.C53.119.4(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H461 . C46 . H462 . 120.0	C13.C17.C24.117.8(10)	C4.C52.H521.118.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N28.C3.C4.115.9(6)	C13.C17.H171.121.8	C53.C52.H521.121.7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N28.C3.H31.108.1	C24. C17. H171. 119.7	C52.C53.C54.120.3(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4.C3.H31.108.0	C15.C24.C17.121.9(11)	C52. C53. H531. 119.9
$ \begin{array}{c} C4. C3. H32. 107.5 \\ C4. C3. H32. 107.5 \\ C17. C24. H241. 121.0 \\ H31. C3. H32. 109.5 \\ C28. C38. H381. 120.2 \\ C41. C55. C54. 119.7(10) \\ H31. C3. H32. 109.5 \\ C3. C4. C41. 112.8(8) \\ C3. C4. C41. 112.8(8) \\ C3. C4. C52. 116.1(8) \\ H381. C38. H382. 119.6 \\ C54. C55. H551. 119.8 \\ C54. C55. H551. 119.8 \\ C54. C52. 112.4(7) \\ C41. C4. C41. H411. 121.6 \\ C55. C54. H541. 117.8 \\ C1. C57. C52. 104.7(6) \\ C44. C40. C25. 112.4(7) \\ C55. C41. H411. 118.7 \\ C1. C57. C52. 104.7(6) \\ C44. C40. C25. 112.4(7) \\ C44. C40. H401. 109.7 \\ C40. C25. H252. 109.5 \\ C1. C57. C56. H421. 122.1 \\ C44. C40. H401. 109.9 \\ H251. C25. H252. 109.5 \\ C1. C57. C56. H42. (14.7(8) \\ C26. C1. C77. H371. 108.8 \\ C26. C1. C57. H401. 109.1 \\ C40. C25. H253. 109.5 \\ C57. C56. C45. H571. 106.6 \\ C26. C1. H11. 107.7 \\ H252. C25. H253. 109.5 \\ C57. C56. C45. 115.9(13) \\ C56. C45. 115.9(13) \\ C57. C1. H11. 108.8 \\ Ru1. C21. C20. 72.1(4) \\ C46. C56. C45. 119.7(13) \\ C57. C1. H112. 109.0 \\ C48. C21. C20. 72.1(4) \\ C46. C56. C45. H451. 106.9 \\ H11. C1. H12. 109.0 \\ C48. C21. C20. 121.4(6) \\ C56. C45. H451. 106.9 \\ C57. C56. C45. H451. 106.9 \\ C10. C57. C56. C45. H452. 109.5 \\ C57. C56. C45. H452. 109.5 \\ C57. C2. H21. 109.1 \\ C20. C21. H211. 119.4 \\ H451. C45. H453. 109.5 \\ C30. C2. C77. 110.7(7) \\ C48. C21. H211. 119.4 \\ H451. C45. H453. 109.5 \\ C30. C2. H22. 109.5 \\ Ru1. C48. C21. 73.7(4) \\ H452. C45. H453. 109.5 \\ C37. C2. H22. 109.5 \\ Ru1. C48. C21. 73.7(4) \\ H452. C45. H453. 109.5 \\ C37. C2. H22. 109.5 \\ Ru1. C48. C21. 73.7(4) \\ H452. C45. H453. 109.5 \\ C37. C2. H22. 109.5 \\ Ru1. C48. C21. 73.7(4) \\ H452. C45. H453. 109.5 \\ C37. C22. H222. 109.5 \\ Ru1. C48. C21. 73.7(4) \\ H452. C45. H453. 109.5 \\ C37. C23. H23. 109.5 \\ C18. C20. C49. H493. 109.5 \\ C37. C23. H23. 109.5 \\ Ru1. C20. C49. H493. 109.5 \\ C37. C23. H23. 109.5 \\ Ru1. C20. C49. H493. 109.5 \\ C37. C23. H23. 109.5 \\ H501. C50. H502. 109.5 \\ Ru1. C39. C48. 117.6(6) \\ C20. C49. H493. 109.5 \\ C37. C28. C30. H13.$	N28 . C3 . H32 . 107.7	C15 . C24 . H241 . 117.0	C54 . C53 . H531 . 119.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4 $C3$ $H32$ 107 5	C_{17} C_{24} H_{241} H_{210}	C41 $C55$ $C54$ $1197(10)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H31 C3 H32 109 5	C28 C38 H381 1202	C41 C55 H551 1204
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_3 C_4 C_{41} 122 \ 8(8)$	C_{28} C_{38} H_{382} 119.6	C54 C55 H551 119.8
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$C_3 C_4 C_5^2 1161(8)$	H381 C38 H382 120.0	$C_{55} = C_{54} = C_{53} = 119.0$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{41} C_{4} C_{52} 1210(9)$	$C_4 C_{41} C_{55} 1196(10)$	$C_{55} = C_{54} = C_{55} = 117.0(11)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{41} = C_{41} = C_{42} = C_{41} = C_{42} = C_{41} = C_{42} = C$	C_{4} C_{41} H_{411} 121.6	$C_{53} C_{54} H_{541} 1_{221}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{44} C_{40} C_{25} $113.8(3)$	C_{4} , C_{41} , H_{411} , H_{21} , H_{11}	$C_{33} = C_{34} = C_{134} = C_{14} = $
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C44 : C40 : C23 : 112.4(7) C30 : C40 : C25 : 104.7(6)	C_{40} C_{25} H_{251} 106.0	$C1 \cdot C57 \cdot C2 \cdot 107.5(7)$ $C1 \cdot C57 \cdot C56 \cdot 114.7(8)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{39} C40 C23 C40 C23 C40 C23 C40	C40, $C25$, $H251$, 100.9	$C_1 C_3 T_1 C_3 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{44} = C_{40} = 11401 = 107.9$	$H_{251} = C_{25} = H_{252} = 109.0$	$C_2 \cdot C_3 7 \cdot C_3 0 \cdot 112.2(0)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{39} = C_{40} = H_{401} = 108.9$ $C_{25} = C_{40} = H_{401} = 109.1$	C_{40} C_{25} H_{252} H_{253} H_{110}	C_{1}^{2} C_{57}^{2} H_{571}^{2} 108.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{25} = C_{40} = 11401 = 109.1$	$H_{251} = C_{25} + H_{253} + H_{1.9}$	C56 C57 H571 106.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{20} = C_{11} = C_{20} = C_{11} = C_{20} = C_{11} = C_{20} = C_{11} = C_{20} = C$	$H251 \cdot C25 \cdot H253 \cdot 109.5$ $H252 \cdot C25 \cdot H253 \cdot 109.5$	C57 $C56$ $C46$ $1242(10)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{20} , C_{1} , H_{11} , 107.7	$P_{12} = C_{23} = C$	C57 $C56$ $C45$ $1150(13)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{26} C_{1} H_{12} 108.5	Ru1 $C21$ $C48 C9.0(4)$ Ru1 $C21$ $C20$ $721(4)$	C_{46} C_{56} C_{45} C_{119} C_{13}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{20} , C_{1} , H_{12} , 100.0	C48 C21 C20 1214(6)	$C_{40} = C_{50} = C_{45} = 119.7(13)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$H_{11} = C_1 + H_{12} + H_{109,0}$	$P_{11} = C_{21} + C_{21} + C_{20} + C_{21} + C_{20} + C_{21} + C$	C56 C45 H452 1117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{20} C_{2} C_{57} 1107(7)	C_{48} C21 H211 119.5	$U_{451} = C_{45} = H_{452} = 111.7$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{30} C_{2} C_{37} C_{100}	C_{40} , C_{21} , H_{211} , H_{74}	$C_{56} C_{45} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{50} = C_{2} = H_{21} = 109.1$	$P_{11} = C_{12} + C$	$H_{451} = C_{45} + H_{453} + H_{53} +$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{30} C_{2} H_{21} H_{20} $H_$	Ru1 $C48$ $C21$ $73.7(4)$	H452 C45 H453 109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{57} C_{2} H_{22} H_{23} $H_$	$C_{39} C_{48} C_{21} 1_{22} 2_{(5)}$	11452.045.11455.107.5
InternetInternetInternetC35C22H221109.2C39C48H481118.5C35C22H222108.5C21C48H481118.9H221C22H223110.7Ru1C20C18 $69.9(4)$ C35C22H223110.7Ru1C20C21 $71.5(4)$ H221C22H223109.5Ru1C20C21 $71.5(4)$ H222C22H223109.5Ru1C20C49 $119.2(7)$ C40C39C19121.2(6)C21C20C49 $119.2(7)$ C40C39C19 $121.2(6)$ C21C20C49 $119.2(7)$ C40C39C19 $121.2(6)$ C21C20C49 $119.2(7)$ C40C39C48 $121.2(6)$ C21C20C49 $119.2(7)$ C40C39C48 $121.2(6)$ C20C49 $1492.109.5$ C40C39C48 $121.2(6)$ C20C49 $1492.109.5$ C19C39C48 $117.6(6)$ C20C49 $1492.109.5$ C19C39C48 $117.6(6)$ C20C49 $1493.109.5$ C37C23H232 109.5 C28C50 $1503.109.5$ C37C23H232 109.5 C28C50 $1502.109.5$ H231C23H233.109.5H501C50 $1503.109.5$ C32H233.109.5H501C50 1503.10	$H_{21} = C_2 + H_{22} + H_{21} + H_{21} + H_{21} + H_{21} + H_{22} + H_{22} + H_{22} + H_{23} + H_{2$	$R_{\rm u1} = C48 + H481 + 1190$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C_{35} C_{22} H_{221} 109.5	$C_{39} C_{48} H_{481} 1185$	
C33. C22. H222. 103.5C21. C43. H431. H33H221. C22. H222. 109.5Ru1. C20. C18. $69.9(4)$ C35. C22. H223. 110.7Ru1. C20. C21. 71.5(4)H221. C22. H223. 109.5C18. C20. C21. 118.0(7)H222. C22. H223. 109.5Ru1. C20. C49. 130.6(7)C40. C39. Ru1. 132.4(4)C18. C20. C49. 119.2(7)C40. C39. C19. 121.2(6)C21. C20. C49. H22.8(7)Ru1. C39. C19. 69.3(4)C20. C49. H491. 108.8C40. C39. C48. 121.2(6)C20. C49. H492. 110.3Ru1. C39. C48. 69.0(4)H491. C49. H492. 109.5C19. C39. C48. 117.6(6)C20. C49. H493. 109.5C37. C23. H231. 108.3H491. C49. H493. 109.5C37. C23. H232. 110.8H492. C49. H493. 109.5C37. C23. H232. 109.5C28. C50. H501. 111.1C37. C23. H233. 109.2C28. C50. H502. 109.1H231. C23. H233. 109.5H501. C50. H502. 109.5H232. C23. H233. 109C28. C50. H503. 108.3C7. C28. C38. 126.6(7)H501. C50. H503. 109.5C7. C28. C50. 114.5(9)H502. C50. H503. 109.5C38. C28. C50. 118.8(9)C37. C51. H511. 110.7	C_{35} C_{22} H_{221} H_{221} H_{221} C_{35} C_{22} H_{222} H_{223} H_{233}	C_{21} C_{48} H_{481} H_{80}	
1121: 022: 1122: 1107.5 $Ru1: 020: 013: 07.64$ $C35: 022: H223: 110.7$ $Ru1: 020: 021: 71.5(4)$ $H221: 022: H223: 109.5$ $C18: 020: 021: 118.0(7)$ $H222: 022: H223: 109.5$ $Ru1: 020: 049: 130.6(7)$ $C40: 039: Ru1: 132.4(4)$ $C18: 020: 049: 119.2(7)$ $C40: 039: 019: 121.2(6)$ $C21: 020: 049: 122.8(7)$ $Ru1: 039: 019: 69.3(4)$ $C20: 049: H491: 108.8$ $C40: 039: 048: 121.2(6)$ $C20: 049: H492: 110.3$ $Ru1: 039: 048: 69.0(4)$ $H491: 049: H492: 109.5$ $C19: 039: 048: 117.6(6)$ $C20: 049: H493: 109.3$ $C37: 023: H231: 108.3$ $H491: 049: H493: 109.5$ $C37: 023: H232: 110.8$ $H492: 024: 110.111.1$ $C37: 023: H232: 109.5$ $C28: 050: H502: 109.1$ $H231: 023: H233: 109.2$ $C28: 050: H502: 109.1$ $H231: 023: H233: 109.5$ $H501: 050: H502: 109.5$ $H232: 023: H233: 109.5$ $H501: 050: H503: 108.3$ $C7: 028: 050: 114.5(9)$ $H502: 050: H503: 109.5$ $C38: 028: 050: 118.8(9)$ $C37: 051: H511: 110.7$	$H_{221} = C_{22} + H_{222} + 100.5$	$R_{11} = C_{10} = C$	
C32C42C40C22C423C40	C_{35} C_{22} H_{223} 110.7	Ru1 $C20$ $C10 \cdot 00.9(4)$ Ru1 $C20$ $C21 \cdot 71.5(4)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$H_{221} = C_{22} + H_{223} + H_{0.7}$	$C_{18} C_{20} C_{21} 1_{18} 0(7)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H222 C22 H223 109.5	$R_{\rm H1}$ C20 C49 130 6(7)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{40} C_{30} R_{11} 132 A(A)$	$C_{18} C_{20} C_{49} 1192(7)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C40 $C39$ $C19$ $1212(6)$	$C_{10} = C_{20} = C_{49} = 119.2(7)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ru1 C39 C19 693(4)	C_{20} C_{49} H_{491} 108.8	
Ru1. C39. C48. 69.0(4) H491. C49. H492. 109.5 C19. C39. C48. 117.6(6) C20. C49. H493. 109.3 C37. C23. H231. 108.3 H491. C49. H493. 109.5 C37. C23. H232. 110.8 H492. C49. H493. 109.5 H231. C23. H232. 109.5 C28. C50. H501. 111.1 C37. C23. H233. 109.2 C28. C50. H502. 109.1 H231. C23. H233. 109.2 C28. C50. H502. 109.5 H232. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109 C28. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	C40 $C39$ $C48$ $1212(6)$	C_{20} C_{49} H_{492} 1103	
C19. C39. C48. 117.6(6) C20. C49. H493. 109.3 C37. C23. H231. 108.3 H491. C49. H493. 109.5 C37. C23. H232. 110.8 H492. C49. H493. 109.5 H231. C23. H232. 109.5 C28. C50. H501. 111.1 C37. C23. H233. 109.2 C28. C50. H502. 109.1 H231. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109.5 H501. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	Ru1 C39 C48 690(4)	H491 C49 H492 1095	
C37. C23. H231. 108.3 H491. C49. H493. 109.5 C37. C23. H232. 110.8 H492. C49. H493. 109.5 H231. C23. H232. 109.5 C28. C50. H501. 111.1 C37. C23. H233. 109.2 C28. C50. H502. 109.1 H231. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109.5 H501. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	C19 $C39$ $C48$ $1176(6)$	C20 C49 H493 109 3	
C37. C23. H232. 110.8 H492. C49. H493. 109.5 H231. C23. H232. 109.5 C28. C50. H501. 111.1 C37. C23. H233. 109.2 C28. C50. H502. 109.1 H231. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109.5 H501. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	C37 C23 H231 108 3	H491 C49 H493 109 5	
H231. C23. H232. 109.5 C28. C50. H501. 111.1 C37. C23. H233. 109.2 C28. C50. H502. 109.1 H231. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109 C28. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	C37 . C23 . H232 . 110.8	H492 . C49 . H493 . 109.5	
C37. C23. H233. 109.2 C28. C50. H502. 109.1 H231. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109 C28. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	H231 . C23 . H232 . 109.5	C28.C50.H501.111.1	
H231. C23. H233. 109.5 H501. C50. H502. 109.5 H232. C23. H233. 109 C28. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	C37. C23. H233. 109.2	C28.C50.H502.109.1	
H232. C23. H233. 109 C28. C50. H503. 108.3 C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	H231 . C23 . H233 . 109.5	H501 . C50 . H502 . 109.5	
C7. C28. C38. 126.6(7) H501. C50. H503. 109.5 C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	H232 . C23 . H233 . 109	C28.C50.H503.108.3	
C7. C28. C50. 114.5(9) H502. C50. H503. 109.5 C38. C28. C50. 118.8(9) C37. C51. H511. 110.7	C7. C28. C38. 126.6(7)	H501 . C50 . H503 . 109.5	
C38.C28.C50.118.8(9) C37.C51.H511.110.7	C7. C28. C50. 114.5(9)	H502 . C50 . H503 . 109.5	
	C38.C28.C50.118.8(9)	C37.C51.H511.110.7	
- 2. Ligand type N,N dérivé du (+)-camphre
- Synthèse : La préparation de ce ligand se fait selon une méthode décrite par Pedro¹¹² (schéma 72).

Schéma 72

Les résultats des tests catalytiques sont présentés dans le tableau 20.

Tableau 20 : Réduction de l'acétophénone catalysée par des complexes de Ru, Rh et Ir modifiés par le ligand iminopyridine-camphre.

Entrée	Complexe	Temps (h)	Conv (%)	Ee (%)	Config*
89	$[\operatorname{RuCl}_2(p\text{-cym})]_2$	6	93	4	R
90	$[RuCl_2(benzene)]_2$	6	91	5	R
91	[IrCl(COD)] ₂	5	93	11	R
92	[RhCl(COD)] ₂	3	93	18	R
93	RuCl ₂ (PPh ₃) ₃	1	95	rac	-

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol, S/C = 100, $L^* / M = 2$, B / C = 6. [S] = 0,1 M. *Enantiomère majoritaire

On note tout d'abord, que le transfert d'hydrogène est efficace puisque toutes les activités catalytiques obtenues au cours de la réduction de l'acétophénone sont assez élevées, jusqu'à 95% après une heure (entrée 93).

Les systèmes catalytiques à base d'iridium et de rhodium ont fourni les meilleurs résultats pour l'énantiosélectivité, avec un excès maximal de 18% observé dans le cas du dimère rhodié (entrée 92). Par contre, on note une très faible la sélectivité quand les dimères du benzène et du *p*-cymène sont utilisés comme précurseurs catalytiques (entrée 89 et 91). Par ailleurs, comme déjà vu avec les amino-oximes, le précurseur RuCl₂(PPh₃)₃ n'a conduit à aucune énantiosélectivité, mais reste le plus actif par rapport aux autres précurseurs.

Des travaux similaires ont été décrits dans la littérature par Zassinovich et al^{27,113} en utilisant des imino et aminopyridines comme ligands chiraux dans la réduction des cétones aromatiques catalysée par des complexes à base d'iridium (figure 16). L'étude a montré que l'activité et l'énantiosélectivité sont fortement dépendants de la structure du ligand, et des excès énantiomériques allant de 1,5% à 95% ont été enregistrés.

Figure 16

D'autre part, nous avons réalisé des tests catalytiques sur des dérivés d'acétophénone afin de savoir si la nature du substrat a une influence marquée sur la réaction. Les résultats sont rassemblés dans le tableau 21.

¹¹³ a) Zassinovich, G.; Mestroni, G. J. Mol. Cat. 1987, 42, 81

b) Zassinovich, G.; Bettella, R.; Mestroni, G.; Bresciani-Pahor, N.; Geremia, S.; Randaccio, L. J. Organomet. Chem. **1989**, 370, 187

Entrée	Substrat	Temps (h)	Conv (%)	Ee (%)
94	o-chloroacétophénone	0,5	99	12
95	<i>m</i> -chloroacétophénone	1	97	13
96	p-chloroacétophénone	0,5	97	8
97	o-méthoxyacétophénone	1(4)	57(78)	25(15)
98	<i>p</i> -méthoxyacétophénone	1	34	11
99	2-acétonaphtone	1	98	10
100	2-méthylacétophénone	1(4)	43(70)	23(18)
101	4-méthylacétophénone	1(4)	40(56)	10(9)

Tableau 21 : Réduction de dérivés de l'acétophénone catalysée par [Ir(COD)Cl]₂ associé au ligand iminopyridine-camphre

Conditions : $T = 80^{\circ}C$ dans l'*iso*propanol, S/Ir/L*/B = 100:1:1:6 [S] = 0,1 M.

Le transfert d'hydrogène lorsque le noyau aromatique est substitué par un groupe attracteur tel que le chlore en ortho, para et méta est très rapide, puisqu'une conversion de 99% a été observée après une demi-heure de réaction (entrée 94). La 2-acétonaphtone est hydrogénée avec une conversion de 98% après seulement une heure de réaction (entrée 99).

Par ailleurs, l'introduction d'un groupement donneur par effet mésomère (méthoxy), ou par effet inductif (méthyle) induit une activité catalytique excessivement faible (entrées 97, 98, 100 et 101). En terme de sélectivité, les excès énantiomériques obtenus sont généralement comparables à ceux obtenus avec l'acétophénone (entrée 91).

Si le temps de réaction est prolongé, on remarque que la racémisation est très marquée dans le cas des cétones substituées par des groupements donneurs (entrées 97, 100 et 101). Par contre, aucune racémisation n'est observée pour les autres substrats. Là encore, la rationalisation du phénomène de racémisation est difficile.

En conclusion, comme pour les coordinats aminooximes, ce système catalytique montre une forte sensibilité envers la nature des substituants du noyau aromatique notamment sur l'activité catalytique. En effet, l'introduction d'un groupement attracteur induit une diminution de la densité électronique au niveau du groupement carbonyle ce qui provoque une accélération de la vitesse de la réaction, alors que l'introduction d'un groupement donneur, inhibe la vitesse de réduction. En terme de sélectivité, on peut conclure que l'effet stérique engendré par la structure du camphre peut être responsable des faibles excès énantiomériques observés dans le cas de l'acétophénone et ses dérivés.

3. Liste des publications et communications

3.1. Publications

• Synthesis of chiral bifunctional ligands based on α-pinene and their use in ruthenium catalyzed asymmetric transfer hydrogenation.

Mohammed Samir Ibn El Alami, Abdel Aziz Dahdouh , Ahmed Ibn Mansour , Mohammed Amin ElAmrani, Isabelle Suisse, André Mortreux, Francine Agbossou-Niedercorn CR. Chimie **2009**, 12, 1253.

• Synthesis of α-amino-oxime ligands based on optically pure limonene : their use as chiral ligands in ruthenium catalyzed asymmetric transfer hydrogenation.

Mohammed Samir Ibn El Alami, Mohamed Amin El Amrani, Abdelaziz Dahdouh, Ahmed Ibn Mansour, Pascal Roussel, Isabelle Suisse, André Mortreux. (**soumis**)

3.2. Communications

• Nouveaux Catalyseurs au Ruthénium (II) coordinés par de Ligands (Dppach) et

(Dippach) : Application en Transfert Asymétrique d'Hydrogène sur des cétones

prochirales.

<u>M.S. Ibn El Alami</u>, A. Dahdouh, A. Ibn Mansour, M. A. ElAmrani, M. J. Tenorio, M. C. Puerta 2nd Spanish-Morrocan symposium on organic Chemistry and 5th Andalusian-Morrocan Meeting on Natural Products Chemistry. Torremolinos / Spain October 15-17 **2007**

• Ligands dérivés des huiles végétales et application en catalyse asymétrique : Transfert

Asymétrique d'Hydrogène.

<u>M.S. Ibn El Alami</u>, A. Dahdouh, A. Ibn Mansour, M. A. ElAmrani, I. Suisse, A. Mortreux, F. Agbossou-Nierdercorn International Symposium on Organometallic Chemistry and Catalysis (RENACOM 2009) Tetouan / Morocco April 29-30, **2009**

• Complexes catalytiques « Ruthénium / coordinats aminooximes chiraux dérivés du

limonène » Application en réduction asymétrique de cétones simples par transfer

d'hydrogène

<u>M. S. Ibn ElAlami</u>, <u>M. A. ElAmrani</u>, , I. Suisse, A. Mortreux International Symposium on Organometallic Chemistry and Catalysis (RENACOM 2011) Errachidia / Morocco April 29-30, **2011**

• Nouveaux coordinats chiraux pour la réduction des cétones aromatiques par transfert

asymétrique d'hydrogène

<u>M. S. Ibn ElAlami</u>, M. A. ElAmrani, , I. Suisse, A. Mortreux Journées Nord-Ouest Européennes des Jeunes Chercheurs JNOEJC Caen 14 et 15 juin **2011**

Chapitre VII Références bibliographiques

- ¹ a) Corev, E. J.; Link, J. O. J. Am. Chem. Soc. 1992, 114, 1906
- b) Corey, E. J.; Christopher, J. H. Tetrahedron Lett. 1995, 36, 9153
- c) Corey, E. J.; Christopher, J. H. Tetrahedron Lett. 1996, 37, 5675
- ² a) Lefkowitz, R.J. Ann. Rep. Med. Chem. 1980, 15, 217
- b) Frishman, W. H. New Engl. J. Med. 1981, 305. 500
- ³ Corey, E. J.; Link, J.O. J. Org. Chem. 1991, 56, 442
- ⁴ Miyano, S.; Lu, L. D. L.; Viti, S. M.; Sharpless, K. B. J. Org. Chem. 1983, 48, 3608
- ⁵ Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley; New York 1994
- ⁶ Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. **1986**, 108, 6071
- ⁷ Wills, M.; Tve, H. J. Chem. Soc., Perkin Trans 1. 1999, 1109-1132
- ⁸ a) Sawamura, M.; Ito, Y. Catalytic Asymmetric Synthesis, Ojima, I. Ed, VCH Publishers ; New York, 1993, chap 7.2
- b) Nogradi, M. Stereoselective Synthesis, VCH Publishers; New York, 1995, chap 5.3.
- ⁹ a) Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura, K.; Shibasaki, M. J. Am. Chem. Soc. 1993, 115, 10372
- b) Shibasaki, M.; Sasai, H. Pure & Appl. Chem. 1996, 68, 523
- ¹⁰ a) Uozumi, Y.; Hayashi, T., J. Am. Chem. Soc. 1991, 113, 9887
- b) Uozumi, Y.; Lee, S-Y.; Hayashi, T., Tetrahedron Lett. 1992, 33, 7185
- ¹¹ a) Havashi, T.; Matsumoto, Y.; Ito, Y., J. Am. Chem. Soc. 1989, 111, 3426 b) Sato, M.; Miyama, N.; Suzuki, A., Tetrahedron Lett. 1990, 31, 231
- c) Zhang, J.; Lou, B.; Guo, G.; Dai, L., J. Org. Chem. 1991, 56, 1670
- ¹² Hinterding K.; Jacobsen, E., J. Org. Chem. **1999**, 64, 2164
- ¹³ Krief, A.; Colaux-Castillo, C. Pure Appl. Chem. 2002, 74, 107
- ¹⁴ Corey, E. J; Bakshi, R.; Shibata, S., J. Am. Chem. Soc. 1987, 109, 5551
- 15 Corey, E. J; Bakshi, R.; Shibata, S.; Chen, C.; Singh, V., J. Am. Chem. Soc. 1987, 109, 7925
- ¹⁶ a) Vinevard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, O. J. J. Am. Chem. Soc. 1977, 99, 5946
- b) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106
- ¹⁷ a) Kagan, H. B.; Dang, T. P. Chem. Commun. **1971**, 481
 - b) Kagan, H. B.; Dang, T. P. J. Am. Chem. Soc. 1972, 94, 6429
- c) Kagan, H. B.; Langlois, N.; Dang, T. P. J. Organomet. Chem. 1975, 90, 353
- ¹⁸ Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito. T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932 ¹⁹ Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R. *Tetrahedron*. **1984**, *40*, 1245
- ²⁰ a) Noyori, R.; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. **1986**, 108, 7117 b) Hitamura, M.; Hsiao, Y.; Noyori, R.; Takaya, H. Tetrahedron Lett. 1987, 28, 4829
- c) Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Inoue, S.-I.; Kasahara, I.; Noyori, R. J. Am. Chem. Soc. 1987, 109, 1596
- d) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 3174

²¹ Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. 2000, Comprehensive Asymmetric Catalysis, Springler-Verlag, Berlin Heidelberg, chap. 6.1.3., p 23

- ²² Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675
- ²³ T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M.Terada, R. Noyori, J. Am. Chem. Soc. 1998, 120, 1086

²⁴ Roucoux, A.; Thieffry, L.; Carpentier, J. F.; Devocelle, M.; Méliet, C.; Agbossou, F.; Mortreux, A. Organometallics. 1996, 15, 2440

- ²⁵ Devocelle, M.; Mortreux, A.; Agbossou, F.; Dormoy, J-R. Tetrahedron Lett. 1999, 40, 4551
- ²⁶ Palmer, M. J.; Wills, M. Tetrahedron : Asymmetry 1999, 10, 2045
- ²⁷ Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051
- ²⁸ a) Meerwein, H.; Schmidt, R. Ann. Chem. **1925**, 444, 221 b) Verley, A. Bull. Soc. Chim. Fr. 1925, 37, 537
- c) Pondorf, W. Angew. Chem. 1926, 39, 138gf
- ²⁹ De Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis. 1994, 1007
- ³⁰ Evans, D. A.; Nelson, S. G.; Gagné, M. R.; Muci, A. R. J. Am. Chem. Soc. 1993, 115, 9800
- ³¹ Hu, X. M.; Kellog, R. M.Rec. Trav. Chim. Pays Bas 1996, 115, 410
- ³² a) Knauer, B.; Krohn, K.Liebigs Ann. 1995, 677
- b) Krohn, K.; Knauer, B. Rec. Trav. Chim. Pays Bas 1996, 115, 140
- ³³ Sasson, Y.; Blum, J. J. Org. Chem. **1975**, 40, 1887
- ³⁴ Laxmi, Y. R. S.; Bäckvall, J.-E. Chem. Commun. 2000, 611

- ³⁵ Pamies, O.; Bäckvall, J.-E. Chem. Eur. J. 2001, 7, 5052
- ³⁶ Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97
- ³⁷ Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285
- ³⁸ Bianchi, M.; Matteoli, U.; Menchi, G.; Frediani, P.; Pratesi, S.; Piacenti, F.; Botteghi, C. J. Organomet. Chem. **1980**, *198*, 73
- ³⁹ Spogliarich, R.; Kaspar, J.; Graziani, M.; Morandini, F. J. Organomet. Chem. 1986, 306, 407
- ⁴⁰ Krause, H. W.; Bhatnagar, A. K. J. Organomet. Chem. **1986**, 302, 265
- ⁴¹ Genêt, J.-P.; Ratovelomanana-Vidal, V.; Pinel, C. Synlett. 1993, 478
- ⁴² Cabou, J.; Brocard. J.; Pélinski. L. *Tetrahedron Lett.* **2005**, *46*, 1185
- ⁴³ Barbaro, P. ; Bianchini, C. ; Togni, A. Organometallics. 1997, 16, 3004
- ⁴⁴ Maj, A.; Pietrusiewicz, K.; Suisse, I.; Agbossou, F.; Mortreux, A. Tetrahedron : Asymmetry 1999, 10, 831
- ⁴⁵ Rahman, M.; Oliana, M.; Hii, K., Tetrahedron : Asymmetry. 2004, 15, 1835
- ⁴⁶ Dai, H.; Hu, X.; Chen, H.; Bai, C.; Zheng, Z. Tetrahedron : Asymmetry. 2003,14, 1467
- ⁴⁷ Zhou, Y, B.; Tang, F, Y.; Xu, H, D.; Wu, X, Y.; Jun-An Ma, J, A.; Zhoua, Q,Y.; *Tetrahedron : Asymmetry.* **2002**, *13*, 469
- ⁴⁸ McManus, H.A.; Barry, S.M.; Andersson, P.G.; Guirya, P.J. Tetrahedron. 2004, 60, 3405
- ⁴⁹ Debono, N.; Besson, M.; Pinel, C.; Djakovitch, L. Tetrahedron Lett. 2004, 45, 2235
- ⁵⁰ Wettergren, J.; Zaitsev, A. B.; Adolfsson. H. Adv. Synth. Catal. 2007, 349, 2556
- ⁵¹ Kriis, K.; Kanger, T.; Lopp, M., *Tetrahedron : Asymmetry.* 2004, 15, 2687
- ⁵² Botteghi, C.; Chelucci, G.; Chessa, G.; Delogu, G.; Gladiali, S.; Soccolini, F. J. Organomet. Chem. **1986**, 304, 217
- ⁵³ a) Gladiali, S.; Pinna, L.; Delogu, G.; De Martin, S.; Zassinovich, G.; Mestroni, G. *Tetrahedron: Asymmetry*. **1990**, *1*, 635
- b) Zassinovich, G.; Bettella, R.; Mestroni, G.; Bresciani-Pahor, N.; Geremia, S.; Randaccio, L. J. Organomet. Chem. **1989**, 370, 187
- ⁵⁴ Gamez, P.; Facbe, F.; Mangeney, P.; Lemaire, M. Tetrahedron Lett. 1993, 34, 6897
- ⁵⁵ Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron : Asymmetry. 1995, 6, 7057
- ⁵⁶ Gamez, P.; Dunjic, B.; Lemaire, M. J. Org. Chem. **1996**, 61, 5196
- ⁵⁷ Touchard, F.; Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron Lett. 1997, 38, 2275
- ⁵⁸ Touchard, F.; Fache, F.; Lemaire, M. Tetrahedron: Asymmetry. 1997, 8, 3319
- ⁵⁹ a) Püntener, K.; Schwink, L.; Knochel, P. Tetrahedron Lett. 1996, 37, 8165
- b) Schwink, L.; Ireland, T.; Püntener, K.; Knochel, P. Tetrahedron : Asymmetry. 1998, 9, 1143
- ⁶⁰ a) Inoue, S, I.; Nomura, K.; Hashiguchi, S.; Noyori, R.; Izawa, Y. *Chem. Lett.* **1997**, *9*, 957
- b) Malacea, R.; Poli, R.; Manoury, E. Coordination. Chem. Rev. 2010, 254, 729
- ⁶¹ Aitali, M.; Allaoud, S.; Karim, A.; Méliet, C.; Mortreux, A. Tetrahedron: Asymmetry. 2000, 11, 1367
- ⁶² J.A. Fuentes, J. A.; France, M. B.; Slawin, A. M. Z.; Clarke, M. L. New J. Chem. 2009, 33, 466
- ⁶³ Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1995**, 117, 7562
- ⁶⁴ Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521
- ⁶⁵ Martins, J.E.D.; Redondo, M. A. C.; Wills, M. Tetrahedron: Asymmetry. 2010, 21, 2258
- ⁶⁶ a) Murata, K.; Ikariya, T. Noyori, R. J. Org. Chem. 1999, 64, 2186
- b) Wu, X.; Li, X.; Zanotti-Gerosa, A.; Pettman, A.; Liu, J.; Mills, A. J.; Xiao, J. Chem. Eur. J. 2008, 14, 2209
- ⁶⁷ a) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S-I.; Ikariya, T.; Noyori, R. *Chem. Commun.* **1996**, *233*
- b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97-102
- 68 Palmer, M.; Walsgrove, T.; Wills, M. J. Org. Chem. 1997, 62, 5226
- ⁶⁹ a) Alonso, D. A.; Guijarro, D.; Pinho, P.; Temme, O.; Andersson, P.G. J. Org. Chem. 1998, 63, 2749
 b) Alonso, D.A.; Brandt, P.; Nordin, S.J.M.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580
- c)Alonso, D.A.; Nordin, S.J.M.; Roth, P.; Tarnai, T.; Andersson, P.G. J. Org. Chem. 2000, 65, 3116
- d)Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2004, 69, 4885
- e) Nordin, S. J. M.; Roth, P.; Tarani, T.; Alonso, D. A.; Brandt, P.; Andersson, P.G. Chem. Eur. J. 2001, 7, 1431
- ⁷⁰ a) Petra, D. G. I.; Kamer, P.C.J.; Van Leeuwen, P.W.N.M.; Goubitz, K.; Van Loon, A. M.; de Vries, J.G.; Schoemaker, H. E. *Eur. J. Inorg. Chem.* **1999**, *12*, 2335
- b) Petra, D. G. I.; Reek, J. N. H.; Handgraaf, J.W.; Meijer, E.J.; Dierkes, P.; Kamer, P. C. J.; Brussee, J.; Schoemaker, H. E.; Van Leeuwen, P. W. N. M. *Chem. Eur J.* **2000**, *6*, 2818
- ⁷¹ Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synth.Catal. 2003, 345, 67
- ⁷² Frost, C.G.; Mendonca, P. Tetrahedron: Asymmetry. 2000, 11, 1845
- ⁷³ Watts, C.C.; Thoniyot, P.; Cappuccio, F.; Verhagen, J.; Gallagher, B.; Singaram, B. *Tetrahedron: Asymmetry*. **2006**, *17*, 1301
- ⁷⁴ Schiffers, I.; Rantanen, T.; Schmidt, F.; Bergmans, W.; Zani, L.; Bolm, C. J. Org. Chem. **2006**, 71, 2320
- ⁷⁵ Deshpande, S. H.; Kelkar, A. A.; Gonnade, R. G.; Shingote, S. K.; Chaudhari, R. V. Catal. Lett. 2010, 138,231

- ⁷⁶ Zhang, H.; Yang, C. B.; Li, Y. Y.; Donga, Z. D.; Gao, J. X.; Nakamura, H.; Muratab, K.; Ikariya, T. *Chem. Commun.* **2003**, 142
- ⁷⁷ Yan-Yun Li, Y. Y.; Zhang, H.; Chen, J. S.; Liao, X. L.; Dong, Z. R.; Gao, J. X. *J. Mol. Cat. A: Chemical.* **2004**, *218*, 153
- ⁷⁸ Gayet, A.; Bolea, C.; Andersson, P. G. Org. Biomol Chem. 2004, 2, 1887
- ⁷⁹ a) Wu, S.; Wang, F.; Ma, Y. P.; Cui, X. C.; Cun, L. F.; Zhu, J.; Deng, J. G.; Yu, B. L. Chem. Commun. **2006**, 1766.
 - b) Li, J.; Zhang, Y. M.; Han, D. F.; Gao, Q.; Li, C. J. Mol. Catal. A: Chem. 2009, 298,31
- c) Haraguchi N.; Tsuru, K.; Arakawa, Y.; Itsuno, S. Org. Biomol. Chem. 2009, 7, 69
- d) Canivet, J.; Süss-Fink, G. Green Chem. 2007, 9, 391
- ⁸⁰ a) Cheruku, P.; Church, T. L.; Andersson, P. G. Chem. Asian. J. 2008, 3, 1390
- b) Fleury-Bgrégeot, N.; De la Fuente, V.; Castillon, S.; Claver, C.; ChemCatChem. 2010, 2, 1346
- ⁸¹ Guijarro, D.; Pablo, O.; Yus, M. Tetrahedron Lett. 2009, 50, 5386
- 82 Matharu, D. S.; Martins, J. E. D.; Wills, M. Chem. Asian J. 2008, 3, 1374
- ⁸³ Wang, D. W.; Zeng, W.; Y.G.; Zhou, Y. G.; Tetrahedron: Asymmetry. 2007, 18, 1103
- ⁸⁴ Zhongqiang Zhou, Lihua Wu, Catalysis Communication. 2008, 9, 2539
- ⁸⁵ Soltani, O.; Ariger, M, A.; Vazquez-Villa, H.; Carreira, E, M. Org. Lett. 2010, 13, 2893
- ⁸⁶ a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317
- b) Gaillard, S.; Renaud, J. L. ChemSusChem. 2008, 1, 505
- ⁸⁷ Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev 2004, 104, 6217
- ⁸⁸ Reiser, O.; Maji, T.; Naik, A. Communications 2010, 46, 4475
- ⁸⁹ Mikhailine, A.A.; Morris, R.H. Inorg. Chem 2010, 49, 11039
- ⁹⁰ Baratta, W.; Herdtweck, E.; Siega, K.; Micaela Toniutti, M.; Rigo, P. Organometallics. 2005, 24, 1660
- ⁹¹ Baratta, W.; Rigo, P. Eur. J. Inorg. Chem. 2008, 4041
- ⁹² Baratta, W.; Ballico, M.; Baldino, S.; Chelucci, G.; Herdtweck, E.; Siega, K.; Magnolia, S.; Rigo, P. *Chem. Eur. J.* **2008**, *14*, 9148
- ⁹³ a) Sortais, J-B.; Ritleng, V.; Voelklin, A.; Holuigue, A.; Smail, H.; Barloy, L.; Sirlin, C.; Verzijl, Gerard K.
- M.; Boogers, Jeroen A. F.; de Vries, André H. M.; de Vries, Johannes G.; Pfeffer, M. *Org. Lett.* **2005**, *7*, 1247 b) Jerphagnon, T.; Haak, R.; Berthiol, F.; Gayet, Arnaud J. A.; Ritleng, V.; Holuigue, A.; Pannetier, N.;
- Pfeffer, M.; Voelklin, A.; Lefort, L.; Verzijl, G.; Tarabiono, C.; Janssen, Dick B.; Minnaard, A-J.; Feringa, Ben
- L.; de Vries, Johannes G. Top Catal. 2010, 53, 1002
- ⁹⁴ Bennett, M.A.; Smith, A.K. J. Chem. Soc., Dalton Trans 1974, 233
- ⁹⁵ Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Smith, A. K.; Trucker, P. A. Inorg. Chem. 1980 19, 1014
- ⁹⁶ Gao, J. X.; Ikariya, T.; Noyori, R. Organometallics 1996, 15, 1087
- ⁹⁷ a) Carlson, R.; Pierce, J. J. Org. Chem. **1971**, 36, 2319
- b) Masui, M.; Shioiri, T. Tetrahedron. 1995, 51, 8363
- c) Saavedra, J. J. Org. Chem. 1985, 50, 2271

98 Everaere, K.; Mortreux, A.; Bulliard, M.; Brussee, J.; Van der Gen, A.; Nowogrocki, G.; Carpentier, J. F. *Eur. J. Org. Chem.* **2001**, *2*, 275

- ⁹⁹ M. Ait Ali, Thesis, Université Cadi Ayyad, Marrakech, Maroc. 2001
- ¹⁰⁰ Markowicz, S. W.; Figlus, M.; Lejkowsli, M.; Karolak- Wojciechowska, J.; Dzierzawska-Majewska, A.;
- Verpoort, F. Tetrahedron : Asymmetry. 2006, 17, 434
- ¹⁰¹ Krasik, P.; Alper, H. *Tetrahedron*. **1994**, *50*, 4347

¹⁰² Petra, D. G. I.; Kamer, P. C. J.; Van Leeuwen, Piet W. N. M.; Goubitz, K.; Van Loon, Arjen. M.; de Vries J. G.; Schoemaker, Hans. E. *Eur. J. Inorg. Chem.* **1999**, 2335

- ¹⁰³ Shabalina, I. Yu.; Kirin, V. P.; Maksakov, V. A.; Virovets, A. V.; Golovin, A. V.; Agafontsev, A. M.;
- Tkachev, A. V. Russ. J. Coord. Chem. 2008, 34, 286
- ¹⁰⁴ Brecknell, D. J.; Carmon, R. M.; Singaram, B.; Verghese, J. Aust. J. Chem. 1977, 30, 195
- ¹⁰⁵ Gladiali, S.; Alberico, E. Chem. Soc. Rev. **2006**, 35, 226
- ¹⁰⁶ Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466
- ¹⁰⁷ Alonso, D. A.; Brandt, P.; Nordin, S. J. M.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580
- ¹⁰⁸ Yamakawa, M. ; Ito, H. ; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466
- ¹⁰⁹ Petra, D. G. I.; Reek, J. N. H.; Handgraaf, J.-W.; Meijer, E. J.; Dierkes, P.; Kamer, P. C. J.; Brussee, J.;
- Schoemaker, H. E.; van Leeuwen, P. W. M. N. Chem. Eur. J. 2000, 2818
- ¹¹⁰ Everaere, K. ; Mortreux, A. ; Carpentier, J.-F. Adv. Synth. Catal. 2003, 345
- ¹¹¹ Everaere, K.; Mortreux, A.; Bulliard, M.; Brussee, J.; Van der Gen, A.; Nowogrocki, G.; Carpentier, J.-F. *Eur. J. Org. Chem.* **2001**, 275
- ¹¹² Blay, G.; Climent, E.; Fernandez, I.; Hernandez-Olmos, V.; Pedro, J. R. *Tetrahedron: Asymmetry.* **2007**, *18*, 1603

¹¹³ a) Zassinovich, G.; Mestroni, G. J. Mol. Cat. 1987, 42, 81
b) Zassinovich, G.; Bettella, R.; Mestroni, G.; Bresciani-Pahor, N.; Geremia, S.; Randaccio, L. J. Organomet. Chem. 1989, 370, 187

Author's personal copy

Disponible en ligne sur www.sciencedirect.com

C. R. Chimie 12 (2009) 1253-1258

Full paper/Mémoire

Synthesis of chiral bifunctional ligands based on α -pinene and their use in ruthenium catalyzed asymmetric transfer hydrogenation

Mohammed Samir Ibn Elalami^a, Abdel Aziz Dahdouh^a, Ahmed Ibn Mansour^a, Mohammed Amin ElAmrani^{a,*}, Isabelle Suisse^{b,*}, André Mortreux^b, Francine Agbossou-Niedercorn^b

^aLaboratoire de chimie organique appliquée, faculté des sciences, BP 2121, Tétouan 93000, Morocco ^bUnité de catalyse et de chimie du solide, UMR CNRS 8181, université des sciences et technologies de Lille, ENSCL, bâtiment C7, BP 90108, 59652 Villeneuve d'Ascq cedex, France

> Received 11 December 2008; accepted after revision 3 February 2009 Available online 27 October 2009

Abstract

Enantiopure β -aminoalcohol ligands based on α -pinene have been synthesized in a few steps and used in asymmetric transfer hydrogenation of acetophenone catalyzed by ruthenium complexes. High conversions and moderate ee's (up to 45%) have been obtained. *To cite this article: M.S.I. Elalami et al., C. R. Chimie 12 (2009).*

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Des ligands optiquement purs de type β -aminoalcool ont été synthétisés à partir de l' α -pinène puis utilisés dans la réaction de transfert d'hydrogène sur l'acétophénone catalysées par des complexes du ruthénium. De très bonnes conversions et des ee modestes (jusque 45 %) ont été obtenus. *Pour citer cet article : M.S.I. Elalami et al., C. R. Chimie 12 (2009).* © 2009 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Keywords: Asymmetric catalysis; a-pinene; Aminoalcohol; Hydrogen transfer

Mots clés : Catalyse asymétrique ; a-pinène ; Aminoalcools ; Transfert d'hydrogène

1. Introduction

The versatility of the naturally occurring terpenes and especially of the readily available pinenes furnishes the starting material to access chiral auxiliaries which have found a variety of applications in asymmetric catalysis. Especially, N,N[1-4], P,N[3,5-7], P,P[8] and P,O[9] type chiral ligands have been prepared and

* Co-corresponding authors.

applied in various enantioselective processes such as allylic alkylation [2,9], allylic oxidation [2,4], cyclopropanation [1,2], reduction of ketones [3], Heck reaction [5] and hydrogenation [6–8]. On the other hand, the pinene framework has also been utilized to synthesize chiral aminoalcohols which found use, via oxazaborolidines in reduction of C=O [10–12] when associated to aluminium in Diels–Alder reactions [12] and finally in addition of diethylzinc to aldehydes [13].

On the other side, asymmetric catalytic transfer hydrogenation [14] using *iso*propanol as the hydrogen source has been developed extensively during these last

1631-0748/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crci.2009.02.003

E-mail address: isabelle.suisse@ensc-lille.fr (I. Suisse).

few years because it is an easy method to apply and very efficient for the reduction of prochiral substrates into optically active products without using hydrogen gas. A large variety of catalysts has been applied including ruthenium [15], rhodium [16] and iridium [17] associated with chiral ligands.

Among the ligands tested and following the work of Noyori in this field, essentially two successful series have been developed, one based on 1,2-aminoalcohols [18] and the second one on monotosyl diamines [14,19], both coordinated to arene ruthenium type catalysts. Investigations on the origin of the enantioselectivity with these ligands support a ligand cooperativity based mechanism with a concerted delivery of a proton from a N-H of the ligand and a hydride from ruthenium [20,21]. Within this context, the development of new chiral ligands remains an interesting challenge. In line with our ongoing interest in the synthesis of chiral ligands from the chiral pool [22], we have been interested in using chiral terpenic starting compounds to prepare new bifunctional ligands bearing a NH and a OH functionality, the latter having been found beneficial to the transfer hydrogenation process assisted by ruthenium catalysts. In this context, α -pinene has been chosen as the starting material. Here, we report on the synthesis of new β-aminoalcohol, diiminoalcohol, and diaminoalcohol ligands with an α -pinene framework and their evaluation in transfer hydrogenation of acetophenone.

2. Results and discussion

2.1. Synthesis

Two methods have been reported for the synthesis of β -aminoalcohols based on α -pinene bearing a NH₂ moiety. The first one involves an osmium-induced vicinal oxyamination of α -pinene in the presence of the imidoosmium derivative tBuN=OsO3 and uses stoechiometric amounts of osmium [23]. We applied the second oxidation method which is depicted in the Fig. 1 [24]. Thus, (-)- α -pinene 1 (81% ee optical purity) was first oxidized with potassium permanganate into the (1R,2R,5R)-hydroxyketone 2. This reaction is highly stereoselective and the oxidant reacts on the side opposite to the gem-dimethyl bridge [25]. Compound 2 was then reacted with 50% aqueous hydroxylamine yielding the corresponding oxime 3. This compound was recrystallized from diethylether-hexane providing the optically pure oxime 3, as assessed by Masui and Shioiri [24a]. Finally, the reduction of 3 with lithium tetrahydridoaluminate afforded the B-aminoalcohol

a: KMnO₄, 90% aqueous; b: 50% aqueous NH₂OH; c: LiAlH₄, HCI/MeOH; d: NaOH 1N

Fig. 1. Synthesis of the β -aminoalcohol 4 from α -pinene.

Fig. 2. Synthesis of the N-substituted aminoalcohol ligands 5-8.

4.HCl. The β -aminoalcohol **4** was obtained after neutralization with sodium hydroxide (Fig. 1).

Next, the substitution of the amino moiety of 4 by different groups has been performed according to three procedures as depicted in the Fig. 2. Benzyl and 4-phenylbenzyl moieties have been introduced by reaction of the hydrochloride salt **4.II**Cl with the selected aldehyde. Then, reduction of the intermediate imines by NaBH₄ led respectively to the crude 3-(benzylamino)-2-hydroxypinane **5** and 3-(biphenyl-4-ylmethylamino)-2-hydroxypinane **6**. These compounds were recrystallized from diethylether-petroleum ether mixtures affording pure **5** and **6** in 63 and 68% yield, respectively. Methylation of the amine **4** has been realized in the presence of 1, 1'-carbonyldiimidazole [24]. After reduction with LiAlH₄ of the intermediate

urea and recrystallization from hexane, *N*-methyl aminoalcohol 7 was obtained in 61% yield. Tosylation of 4 could be carried out classically in the presence of *para*toluene-sulfonylchloride providing 8 in 92% yield [24]. The new ligands 5 and 6 have been fully characterized (Fig. 2).

We then turned our attention to the preparation of C_2 symmetric diaminoalcohol derivatives. First, the diiminodiols 9 and 10 could be easily synthesized by reaction of two equivalents of the hydroxyketone 2 with an equivalent of a diamine in the presence of APTS and elimination of water in a Dean-Stark apparatus. These diiminodiols 9 and 10 could then be reduced into the corresponding diamines by NaBH₄. Thus, we used this procedure with 1,2-diaminoethane and 1,3-diaminopropane which provided the diimines 9 and 10 in 68 and 51% yield, respectively, and the diamines 11 and 12 in, respectively, 40 and 65% yield from the imines. As reported in the literature, the reduction appeared to be stereoselective and no formation of diastereoisomers was observed by NMR analysis [26]. Thus, in agreement with the formation of the aminoalcohol 4, we propose the same stereoselectivity for ligands 11 and 12. Ligands 9–12 have been fully characterized (Fig. 3).

2.2. Evaluation of ligands 3–12 in the rutheniumcatalyzed transfer hydrogenation of acetophenone

Next chiral derivatives **3–12** were applied in the ruthenium catalyzed transfer hydrogenation of the standard substrate acetophenone (Fig. 4). The catalysts were generated by mixing the $[RuCl_2(p-cymene)_2]_2$ precursor with the desired ligand in the presence of KOH. The results are summarized in Table 1.

As is shown in the table, the hydrogenation of acetophenone can be achieved by Ru(II) complexes modified by ligands 3–12. In the case of the β -hydroxyoxime 3, the transfer hydrogenation occurred in 71% conversion after 3 h at room temperature with a

Fig. 3. Synthesis of diimino- and diamino-diol ligands 9-12.

Fig. 4. Asymmetric transfer hydrogenation of acetophenone.

Table 1

Transfer hydrogenation of acetophenone in the presence of $[RuCl_2(p-cymene)_2]_2$ as catalytic precursor⁶.

Entry	Ligand	<i>T</i> (°C)	Conversion (%) ^b	ee (%) ^c
1	3	20	71	8
2	4	20	85	18
3	5	20	83	34
4	6	20	77	45
5	7	20	92	29
6	8	20		
7	9	80	90	10
8	10	80	97	18
9	11	80	90	13
10	12	80	88	7

The elements in **bold** represent the numbering of the compounds in the table and in the text also.

^a All reactions were performed during 3 h by using 2 mmol of acetophenone in 20 mL *i*PrOH. S/Ru = 100, Ligand/Ru = 2, KOH = 0.1 mmol.

^b Determined by GC analysis on a CP-Sil 5 CB capillary column. ^c Determined by GC on a Chirasil–Dex capillary column. The configurations of the alcohol were always (R).

low ee of 8%. In the presence of ligand 4 containing a primary amine, under identical catalytic conditions, a slightly higher conversion was achieved (85%) but the selectivity remained low (18% ee). These results show, as expected, that the presence of an NH moiety is preferred to have an efficient ligand cooperation during the transfer of the hydrogen atoms to the substrate. The reactivity obtained in the case of ligand 3 could perhaps be due to a partial in situ reduction of the oxime ligand 3 into the amino 4 compound but up to now, this assumption could not be proved.

The selectivity of the hydrogenation could be enhanced by substitution of the NH₂ group of 4 by a methyl (7, 29% ee), a benzyl (5, 34% ee), and best a 4phenylbenzyl moiety (6, 45% ee). This selectivity increase correlates with the steric hindrance of the nitrogen substituents. The influence of the nature of the substituent on the amino group had been systematically screened using (1*S*,2*R*)-norephedrine as aminoalcohol: the best result in the reduction of ethylacetocetate in terms of both enantioselectivity and reactivity was also obtained by using a 4-phenylbenzyl substituted amine [27]. In the case of ligand **8** bearing a tosyl moiety on the nitrogen atom, no reaction occurred at all. An identical observation was made by our group when we applied a tosyl-substituted ephedrine modified ruthenium complex in the hydrogenation of ethylacetoacetate [27]. In our hands, the same observation was made using acetophenone as substrate and tosylated (S)-alaninol or (R)-leucinol as ligand [28]. In the presence of KOH, the double deprotonation of the N-tosyl hydroxy ligand **8** can provide, upon reaction with the ruthenium precursor, an amido-alcoxo-ruthenium complex which is not providing any active catalyst in the presence of *iso*propanol.

In the presence of the chiral diimine and diamine auxiliaries 9–12. a reaction temperature of 80 °C was necessary to reduce acetophenone. In that case, conversions between 88 and 97% could be reached even with the diimines 9 and 10. Alper has previously reported on the hydrogenation of acetophenone catalyzed by a ruthenium complex associated with a chiral Schiff base derived from diaminocyclohexane. Similar conversions with moderate ec's (8–28%) were obtained. In our case, the enantioselectivities lie within the same range for the two diamines as the ee's did not exceed 18% [29].

3. Conclusion

In summary, optically pure β -aminoalcohols, diimino, and diaminalcohols are conveniently prepared from α -pinene in a few steps and in moderate to good overall yields. The use of these ligands in transfer hydrogenation allowed the reduction of acetophenone with good activities and moderate enantioselectivities. Work is under progress to apply these ligands in other asymmetric processes. As aminoalcohols have proved to be the most selective within this series of bifunctional ligands, further studies are also in progress to synthesize new aminoalcohols from α -pinene and other optically pure terpenes and to apply all new ligands in asymmetric processes.

4. Experimental section

All the reactions were carried out under nitrogen atmosphere using standard Schlenk techniques. ¹H and ¹³C NMR spectra were recorded on Varian Gemini – 300 MHz and Varian Innova – 400 MHz spectrometers. Optical rotations were measured on an ZUZ: Modelo 412 polarimeter. Elemental analysis was performed by "Service central d'analyse du CNRS".

The hydroxyketone **4** was prepared according to reported protocols [24,30].

4.1. Synthesis of the ligands

4.1.1. (IR,2R,3S,5R)-3-(benzylamino)-2,6,6trimethyl-bicyclo[3.1.1]heptan-2-ol 5

A mixture of aminoalcohol hydrochloride **4.HCl** (1.37 g, 6.7 mmol), benzaldehyde (0.711 g, 6.7 mmol) and triethylamine (0.77 g, 1.05 mmol) in 15 ml ethanol was stirred at room temperature for 30 min. NaBH₄ (0.45 g, 12 mmol) was then added dropwise at 0 °C and the resulting solution was stirred for 20 min at room temperature. The reaction mixture was neutralized with water (2.5 ml) and CH₂Cl₂ (10 ml) was added. The solution was filtered and solvents were evaporated under reduced pressure. The remaining residue was extracted with diethylether (5 ml), washed with water (3 10 ml) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the product was purified by recrystallization from diethylether/ petroleum ether to afford the *N*-benzylamino-alcohol **5**.

Yield: 63%. $[\alpha]_{D}^{20} = -14.8$ (*c* 1.0, CHCl₃). ¹H NMR (CDCl₃) δ 0.91(s, CH₃), 0.98 (s, CH₃), 1.25 (s, CH₃), 1.5–1.7 (m, 6H), 2.63 (m, CH—N), 3.8 (dd, CH₂), 7.1–7.5 (m, H_{arom}); ¹³C NMR (CDCl₃) 20.1; 22.5; 25.56; 27.05; 28.21; 39.8; 41.22; 50.61; 52.63; 67.15; 75.55; 126.56; 127.61; 127.77; 139.75. Anal. calculated for C₁₇H₂₅NO: C, 78.72; H, 9.71; N: 5.04. Found: C, 78.45; H, 9.60; N, 4.95.

4.1.2. (1R,2R,3S,5R)-3-(biphenyl-4ylmethylamino)-2,6,6-

trimethylbicyclo[3.1.1]heptan-2-ol 6

The same procedure was used with biphenylcarbaldehyde as precursor to afford aminoalcohol 6.

Yield: 68%. $[\alpha]_D^{20} = -18.7$ (*c* 1.0, CHCl₃). ¹H NMR (CDCl₃) δ 0.91(s, CH₃), 0.98 (s, CH₃), 1.25 (s, CH₃), 1.5–1.7 (m, 6H), 2.63 (m, CH-N), 3.8 (dd, CH₂), 7.1–7.8 (m, H_{arom}); ¹³C NMR (CDCl₃) 20.1; 22.5; 25.56; 27.05; 28.21; 39.8; 41.22; 50.61; 52.63; 67.15; 75.55; 120.51; 127.39; 133.0; 133.26; 135.7; 142.11; 143.27; 144.31. Anal calculated for C₂₃H₂₉NO: C, 82.34; H, 8.71; N, 4.18. Found: C, 82.11; H, 8.56; N, 4.02.

4.1.3. (1R,1'R,2R,2'R,5R,5'R)-3,3'-(ethane-1,2diylhis-(azan-1-yl-1-ylidene))bis(2,6,6trimethylbicyclo-[3.1.1]heptan-2-ol) 9

A mixture of (1R,2R,5R)-hydroxyketone **2** (5 g, 0.0297 mol), ethane-1,2-diamine (0.894 g, 0.0148 mol) and a few crystals of APTS in 50 mL of toluene was refluxed for 24 h in a Dean–Stark apparatus. The resulting mixture was filtered, the filtrate was concentrated under reduced pressure to a 5 mL volume and

20 mL of ethanol were added. The resulting solution was cooled to 0 $^{\circ}$ C and water was added to crystallize the diiminodiol. The precipitate was filtered and washed with hexane to give 1.7 g of the diiminodiol 9.

Yield: 68%. $[\alpha]_D^{20} = -13.1$ (*c* 1.0, CH₃OH). ¹H NMR (CDCl₃) δ 0.88 (s, 6H), 0.98 (s, 6H), 1.25 (s, 6H), 1.56 (d, 2H), 2.05 (m, 4H), 2.36 (m, 4H), 3.65 (m, 4H), ¹³C NMR (CDCl₃) 23.08, 25.35, 27.47, 28.27, 28.43, 33.78, 38.55, 50.53, 51.57, 67.99, 177.14 (C=N).

4.1.4. (IR, I'R, 2R, 2'R, 5R, 5'R)-3, 3'-(propane-1, 3diylbis-(azan-1-yl-1-ylidene))bis(2,6,6trimethylbicyclo[3.1.1]-heptan-2-ol) 10

The same procedure was applied using 1,3-diaminopropane as precursor.

Yield: 40%. $[\alpha]_D{}^{20} = -6.3$ (*c* 1.0, CH₃OH). ¹H NMR (CDCl₃) δ 0.85 (s, 6H), 1.32 (s, 6H), 1.47 (s, 6H), 1.52 (d, 2H), 1.67 (d, 4H), 1,9 (m, 2H), 2.06 (m, 2H), 2.36 (m, 2H), 2.51–2.64 (m, 4H), 3.39 (t, 2H), ¹³C NMR (CDCl₃) 23.02, 27.47, 28.28, 28.49, 31.26, 33.43, 38.50, 48.37, 50.50, 52.34, 68.28, 177.17.

4.1.5. (IR, I'R, 2R, 2'R, 3S, 3'S, 5R, 5'R)-3,3'-(ethane-1,2-diylbis(azanediyl))bis(2,6,6trimethylbicyclo[3.1.1]-heptan-2-ol) 11

The diiminodiol 9 (0.5 g, 1.3 mmol) dissolved in 15 mL absolute ethanol was cooled to 0 °C. Sodium tetraborohydride (0.11 g, 2.9 mmol) was then added in small portions. The solution was stirred 30 min at this temperature then quenched with water (2.5 mL) and concentrated under reduced pressure. The residue was extracted with diethylether (3 \times 30 mL) and dried over MgSO₄. Evaporation of the solvent provided 0.52 g of the diamine **11**.

Yield: 51%. $[\alpha]_D^{20} = +8.3$ (*c* 1.0, CH₃OH). ¹H NMR (CDCl₃) δ 0.87 (s, 6H), 0.96 (s, 6H), 1.31 (s, 6H), 1.35– 1.75 (m, 12H). 2.64 (m, 2H), 2.67 (m, 4H), ¹³C NMR (CDCl₃): 22.84, 23.05, 24.71, 27.28, 28.11, 39.01, 40.21, 50.36, 50.85, 60.89, 77.63. Anal. calculated for C₂₂H₄₀N₂O₂: C, 72.48; H, 11.06; N,7.68. Found: C, 72.64; H, 11.22; N, 7.51.

4.1.6. (IR, I'R, 2R, 2'R, 3S, 3'S, 5R, 5'R)-3,3'-(propane-1,3-diylbis(azanediyl))bis(2,6,6trimethylbicyclo[3.1.1]-heptan-2-ol) 12

The same procedure was applied starting from the diimine 10.

Yield: 65%. $[\alpha]_D^{20} = -22.7$ (*c* 1.0, CH₃OH). ¹H NMR (CDCl₃) δ 0.82 (s, 6H), 1.22, (s, 6H), 1.34 (s, 6H), 1.41–1.52 (m, 12H), 1.55 (m, 2H), 2.55 (m, 4H), 2.64 (m, 2H), ¹³C NMR (CDCl₃): 21.55, 22.47, 24.95, 26.14, 27.06, 28.16, 39.86, 41.11, 46.09, 50.57, 68.03, 75.67. Anal calculated for $C_{23}H_{42}N_2O_2$: C, 72.97; H, 11.18; N, 7.40; O, 8.45. Found: C, 73.12; H, 11.25; N, 7.22.

4.2. Catalytic experiments

The catalysts were generated in situ prior to catalysis by heating a mixture of the $[RuCl_2(p-cymene)_2]_2$ complex with the desired aminoalcohol at 80 °C for 20 min in dry propan-2-ol. Then, a solution of the substrate in propan-2-ol followed by KOH was added to the mixture. Conversions were determined by CG analysis on a CP-Sil 5 CB column and the enantiomeric excesses were calculated from chiral GC analysis with a Chirasil–Dex capillary column. Absolute configuration was assigned by comparing with an authentic sample following Noyori procedure [17e].

Acknowledgments

We are grateful to the "ministère des Affaires étrangères (programme Volubilis)", the CNRS and the "ministère de l'Éducation nationale, de l'Enseignement supérieur et de la Recherche scientifique du Maroc" for financial support.

References

- D. Lötscher, S. Rupprecht, H. Stoeckli-Evans, A. von Zelewsky, Tetrahedron Asymm. 11 (2000) 4341.
- [2] A.V. Malkov, I.R. Baxendale, M. Bella, V. Langer, J. Fawcett, D.R. Russel, D.J. Mansfield, M. Valko, P. Kočovsky, Organometallics 20 (2001) 673.
- [3] G. Chelucci, D. Muroni, I. Manca, J. Mol. Catal. A 225 (2005) 11.
- [4] A.V. Malkov, A.J.P. Stewart-Liddon, F. Teply, L. Kor, K.W. Muir, D. Haigh, P. Kočovsky, Tetrahedron 64 (2008) 4011.
- [5] A.V. Malkov, M. Bella, I.G. Stará, P. Kočovsky, Tetrahedron Lett. 42 (2001) 3045.
- [6] J.J. Verendel, P.G. Andersson, Dalton Trans. (2007) 5603.
- [7] T. Bunlaksananusorn, K. Polborn, P. Knochel, Angew. Chem. Int. Ed. 42 (2003) 3941.
- [8] A. Gavryushin, K. Polbom, P. Knochel, Tetrahedron Asymm. 15 (2004) 2279.
- [9] E.J. Bergner, G. Helmchen, Eur. J. Org. Chem. (2000) 419.
- [10] D. Hobuß, A. Baro, S. Laschat, W. Frey, Tetrahedron 64 (2008) 1635.
- [11] M.P. Kremiński, A. Wojtczak, Tetrahedron Lett. 46 (2005) 8299.
- [12] S.W. Matkowicz, K. Pokrzeptowicz, J. Karolak-Wojciechowska, R. Czylkowski, J. Omelańczuk, A. Sobczak, Tetrahedron Asymm. 13 (2002) 1971.
- [13] Z. Szakonyi, Á. Balázs, T.A. Martinek, F. Fülöp, Tetrahedron Asymm. 17 (2006) 199.
- [14] (a) R. Noyori, Angew. Chem. Int. Ed. 41 (2002) 2008 ;
 (b) S. Gladiali, E. Alberico, Chem. Soc. Rev. 35 (2006) 226.

- [15] (a) S. Enthaler, B. Hagemann, S. Bhor, G. Anilkumar, M.K. Tse,
 B. Bitterlich, K. Junge, G. Erre, M. Beller, Adv. Synth. Catal. 349 (2007) 853 ;
 - (b) Ramsden, J. Chimica Oggi. I (2005) 46;

(c) M. Wills, M. Palmer, A. Smith, A. Kenny, T. Walsgrove, Molecules 5 (2000) 4 ;

(d) R. Noyori, S. Hashiguchi, Acc. Chem. Rev. (30) (1997) 97;

(e) J.-P. Genêt, V. Ratovelomanana-Vidal, C. Pinel, Synlett (1993) 478.

- [16] (a) M. Bernard, V. Guiral, F. Delbecq, F. Fache, P. Sautet, M. Lemaire, J. Am. Chem. Soc. 120 (1998) 1441;
 (b) N.A. Cortez, G. Aguirre, M. Parra-Hake, R. Somanathan, Tetrahedron Lett. 48 (2007) 4335.
- [17] (a) K. Muvate, T. Ikariya, R. Noyori, J. Org. Chem. 64 (1999) 2186 :

(b) D.-W. Wang, W. Zeng, Y.-G. Zhou, Tetrahedron Asymm. 18 (2007) 1103.

[18] (a) J. Takehara, S. Hashiguchi, A. Fujii, S. Inoue, T. Ikariya, R. Noyori, J. Chem. Soc. Chem. Comm. (1996) 233 ;
 (b) M. Palmer, T. Walsgrove, M.J. Wills, J. Org. Chem. 62

(1997) 5226 ;

(c) D.G.I. Petra, P.C.J. Kamer, P.W.N.M. Van Leeuwen, K. Goubitz, A.M. Van Loon, J.G. De Vries, H.E. Schoemaker, Eur. J. Inorg. Chem. (1999) 2335;

(d) M. Aitali, S. Allaoud, A. Karim, C. Méliet, A. Mortreux, Tetrahedron Asymm. 11 (2000) 1367 ;

(e) K. Everaere, Λ. Mortreux, J.F. Carpentier, Adv. Synth. Cat. 345 (2003) 67.

[19] (a) S. Hashigushi, A. Fujii, R. Ikariya, R. Noyori, J. Am. Chem. Soc. 117 (1995) 7562;
(b) T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata, C. Sando-

val, R. Noyori, J. Am. Chem. Soc. 128 (2006) 8724.

[20] (a) V. Rautenstrauch, X. Hoang-Cong, R. Churlaud, K. Abdur-Rashid, R.H. Morris, Chem. Eur. J. 9 (2003) 4954 ; (b) J.S.M. Samec, J.E. Bäckvall, P.G. Andersson, P. Brandt, Chem. Soc. Rev. 35 (2006) 237 ;

(c) T. Ikariya, K. Murata, R. Noyori, Org. Biomol. Chem. 4 (2006) 393.

[21] (a) R. Noyori, M. Yamakawa, I.S. Hashiguch, J. Org. Chem. 66 (2001) 7931;
 (b) C.A. Sandaral, T. Oblume, K. Muíja, P. Naueri, J. Am.

(b) C.A. Sandoval, T. Ohkuma, K. Muńiz, R. Noyori, J. Am. Chem. Soc. 125 (2003) 13490.

- [22] (a) F. Agbossou-Niedercorn, I. Suisse, Coord. Chem. Rev. 242 (2003) 145;
 (b) F. Agbossou-Niedercorn, J.-F. Carpentier, F. Hapiot, I. Suisse, A. Mortreux, Coord. Chem. Rev. 178–180 (1998) 1615;
 (c) F. Agbossou-Niedercorn, Phosphorous Ligands in Asymmetric Catalysis, in : A. Börner (Ed.), Synthesis and Applications, Wiley-VCH, Weinheim, 2008 pp. 477–505.
- [23] S. Pinheiro, S.F. Pedraza, M.C. Farias, A.S. Gonçalves, P.R.R. Costa, Tetrahedron Asymm. 11 (2000) 3845.
- [24] (a) M. Masui, T. Shioiri, Tetrahedron 51 (1995) 8363;
 (b) C.C. Watts, P. Thoniyot, L.C. Hirayama, T. Romano, B. Singaram, Tetrahedron Asymm. 16 (2005) 1829.
- [25] R.G. Carlson, J.K. Pierce, J. Org. Chem. 36 (1971) 2319.
- [26] (a) S.W. Markowicz, M. Figlus, M. Lejkowsli, J. Karolak-Wojciechowska, A. Dzierzawska-Majewska, F. Verpoort, Tetrahedron Asymm. 17 (2006) 434 ;
 (b) I.A. Dvornikova, L.L. Frolova, A.V. Churakov, A.V. Kuchin, Russ. Chem. Bull. Int. Ed. 53 (2004) 1323.
- [27] K. Everaere, A. Mortreux, M. Bulliard, J. Brussee, A. Van der Gen, G. Nowogrocki, J.-F. Carpentier, Eur. J. Org. Chem. 2 (2001) 275.
- [28] M. Ait Ali, Thesis, Université Cadi Ayyad, Marrakech, Maroc. 2001.
- [29] P. Krasik, H. Alper, Tetrahedron 50 (1994) 4347.
- [30] T. Suzuki, A. Shibata, N. Morohashi, Y. Ohba, Chem. Lett. 34 (2005) 1476.

Synthesis of α -amino-oxime ligands based on optically pure limonene : their use as chiral ligands in ruthenium catalyzed asymmetric transfer hydrogenation

umis Mohammed Samir Ibn Alami,^{*a,b,c,d*} Mohamed Amin El Amrani,^{*a*} Abdelaziz Dahdouh,^{*a*} Ahmed Ibn ⁵ Mansour,^{*a*} Pascal Roussel,^{*b,c,d*} Isabelle Suisse,^{** b,c,d*} André Mortreux^{*b,c,d*}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200ligandX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Optically pure α -amino-oxime ligands based on (R)-limonene have easily been synthesized in two steps, and used as chiral inducers for 10 enantioselective hydrogen transfer reactions on various ketones in the presence of ruthenium catalysts. The X-ray structures of Ruamino-oxime complexes are also described.

Introduction

- The synthesis of enantiomerically pure ligands for catalytic 15 applications to produce chiral compounds with a maximal selectivity is one of the key challenges of the today's organic chemistry.¹ Among the different synthesis strategies of asymmetric ligands, precursors from the chiral pool still remain of interest due to their low cost and their
- 20 availability in large quantities, and as they avoid tedious resolution processes of the racemates.² As a former example in that field, the pioneering Kagan's DIOP'S synthesis started from naturally occurring L-(+)-tartaric acid.³ Among naturally chiral compounds used for optically pure ligands
- 25 synthesis, sugars⁴, aminoacids⁵ or aminoalcohols⁶ are largely described. Terpenes such as limonene⁷, α - and β pinene⁸ or carene⁹ as inexpensive available starting materials were also widely used
- Recently, we converted α -pinene into chiral α -amino-30 alcohols and successfully used the corresponding ligands in ruthenium catalyzed asymmetric hydrogen transfer reactions. 10 On the other hand, $\alpha\text{-amino-oxime}$ derivatives of terpenes have been described as "hemilabile" ligands of ruthenium carbonyl complexes.¹¹ In line with these former
- 35 studies, it seemed us of interest to develop and synthesize a series of ligands of this type, also bearing amino and hydroxyl functions, and to use them in asymmetric transfer hydrogen reactions in the presence of ruthenium arene complexes. Herein, we report on the synthesis of α -amino-
- 40 oximes in two steps from optically pure limonene and their use in hydrogen transfer of various ketones.

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek Essaadi, Tétouan 93000, Morocco ; 45 Tel: 212 539972423; Fax: 212 539994500

E-mail : elamrani.amin@gmail.com

^bUniversité Lille Nord de France, F-59000 Lille, France, ^cUnité de Catalyse et de Chimie du Solide, CNRS, UMR 8181, France ^dUniversité Lille I, Sciences et Technologies, F-59655 Villeneuve d'Ascq, France

50 Fax: 00 33 (0)3 20 43 44 88; Tel: 00 33 (0)3 20 33 60 64;

E-mail : isabelle.suisse@ensc-lille.fr

Ligands synthesis

As described previouly,¹² the synthesis of α -amino-oximes derived from (R)-limonene proceeds via the (1S, 2S, 4R)-55 nitroso chloride intermediate formation followed by the addition of amines (scheme 1). Thus, (R)-limonene 1 was reacted with isopentylnitrite in an hydrochloric acid solution to form the nitrosochloride dimer 2. The amines 3a-d were then reacted into methanol with the $_{60}$ nitrosochloride at 50°C to afford the desired $\alpha\text{-amino-}$ oximes 4a-d, from which series 4c and 4d are new compounds. These latter were obtained respectively in 50 and 63% yield and were fully characterized. As described in the literature¹², the configurations of these compounds were $_{65}$ assumed to be (1*S*, 4*R*) and confirmed by NMR analysis.

Scheme 1 Synthesis of α -amino-oxime ligands from (R)limonene

Reaction of the α -amino-oxime **4a** with [RuCl₂(*p*-cymene)]₂ ⁸⁰ precursor leads to the clean formation of complex **5a** in 65% yield. Single crystals were isolated as brown needles after recrystallization by slow diffusion of chloroform in an ether solution. (scheme 2) The ESI mass spectrum of 5a in MeOH solution showed an isotope cluster at m/z = 529. The mass 85 peaks observed for this cluster and the intensity ratio of the various isotope peaks were in excellent agreement with the

calculated pattern for the expected molecule $C_{26}H_{36}ClN_2ORu$. The structure arising from X-Ray analysis of this complex is depicted in figure 1.

- This structure confirms the (1S, 4R) configuration onto the ⁵ amino-oxime. The main bond lengths and bond angles are given in table 1. This cationic complex has a highly distorted octahedral coordination environment. A cationic complexe of the type [Ru(arene)Cl(neutral amino-amino)]⁺ had already been crystallographically described.¹³
- ¹⁰ The ruthenium atom has the characteristic of a three-legged "piano-stool" arrangement. The amino-oxime is coordinated by the two nitrogen atoms which are involved in a five membered chelated ring displaying an envelope conformation with C10 and C11. A chloride anion and the
- ¹⁵ arene complete the coordination sphere of the ruthenium atom. A second chloride anion is present as a non coordinating counterion. Both the Ru-N_{oxime} [2.103 Å] and Ru-N3 [2.192 Å] as well as the Ru-Cl [2.405 Å] and the Ru-(C)_{arene} distances (range 2.17-2.23 Å) are comparable with ²⁰ those reported in literature.¹³

30 Scheme 2 Synthesis of the cationic ruthenium complexe 5a

Figure 1 Molecular structure of the ruthenium complexe **5a.**2CHCl₃ (the solvate molecules and hydrogen atoms have ⁵⁵ been omitted for clarity)

The same procedure was used with the 4b amino-oxime and

⁶⁵ [RuCl₂(*p*-cymene)]₂ but suitable crystals for X-rays analysis of the cationic complex **5b** could not be obtained. A description of the NMR data of the two complexes **5a** and **5b** are given in the experimental part. The presence of the OH hydroxy moieties is clearly identified at 12.46 and ⁷⁰ 12.19 ppm (respectively for **5a** and **5b** complexes).

Table 1 Selected bond lengths (Å) and angles (°) for 5a

5 11 1			
Bond lengths		Angles	
Ru - N3	2.192	$N_{oxime}\ -Ru-N3$	74.0
$\mathrm{Ru}-\mathrm{N}_{\mathrm{oxime}}$	2.103	Cl-Ru-N3	79.2
Ru - Cl	2.405	$N_{oxime}-Ru-Cl \\$	85.7
N3 - C10	1.517	C4 - N3 - C10	119.0
$N_{oxime} - C11$	1.207	$C10-C11-N_{oxime}$	117.2
C10 - C11	1.498		

70 Transfer hydrogenation of various ketones

The four synthezised α -amino-oximes were applied in the ruthenium catalyzed transfer hydrogenation of acetophenone. (scheme 3) We used the *in situ* technique to check the catalytic performance of different precursors by

- ⁸⁰ varying the arene moiety on ruthenium from *p*-cymene to benzene and hexamethylbenzene (HMB).
- ⁸⁵ In typical experiments, these catalysts were formed by mixing [RuCl₂(arene)]₂ with one or two equivalents of the desired amino-oxime in *iso*propanol in the presence of potassium hydroxide ; the substrate was then added and the mixture heated up to 80°C. The reaction course was
- ⁹⁰ monitored *vs* time using GC analysis of aliquots, both in terms of conversion using an internal standard and enantioselectivity on a Chirasil column. The results are summarized in table 2.

Scheme 3 Hydrogen transfer of acetophenone using Ru catalysts

Table 2 Transfer hydrogenation of acetophenone using ruthenium
complexes $[RuCl_2(arene)]_2$ of amino-oxime ligands 4a-d ^a

Entry	arene	Ligand	t (h)	Conv.	Ee	Conf.
				(%)	(%)	
1	<i>p</i> -cymene	4a	21	97	24	(S)
2		4b	21	93	12	(R)
3		4c	22	64	5	<i>(S)</i>
4		4d	22	96	35	<i>(S)</i>
5	Benzene	4a	21	84	43	(S)
6		4b	19	92	80	<i>(S)</i>
7		4c	23	93	28	<i>(S)</i>
8		4d	7	94	20	<i>(S)</i>
9	HMB	4a	20	85	53	(S)
10		4b	21	97	40	(R)
11		4c	23	93	28	<i>(S)</i>
12		4d	24	26	39	<i>(S)</i>

^a All reactions were performed by using 2 mmol of acetophenone in 20 mL *i*PrOH. S/Ru = 100, Ligand/Ru = 2, Base/Ru=2, T = 80°C

As shown in table 2, hydrogen transfer is effective since all the conversions are rather high, up to 97% after at most 24 h. The best activity is obtained using $[RuCl_2(benzene)]_2$ as precursor coordinated by the picolylamino-oxime **4d** with

¹⁰ 94% conversion after only 7 h. (entry 8, table 2) On the other hand, for all these reactions, the selectivities are very variable, with a maximal ee of 80%. In that latter case, the ligand used was **4b** with a 92% conversion after 19h. (entry 6, table 2)

¹⁵ Attempts were made to improve the selectivity upon changing the L/Ru ratio. In all cases, when the ratio was decreased to 1, the activity was improved with conversion ranging from 85 to 100% after 4 to 6 hours. Nevertheless, the enantioselectivity always falled drastically. For example

²⁰ in the case of $[RuCl_2(benzene)]_2$ coordinated by **4a**, we observed at L/Ru = 2 a 81% conversion after 21 h with an ee of 43% whereas at L/Ru = 1, the conversion was 88% after 6 h but with an enantioselectivity of 17%. Conversely, when the ratio was increased to 4, the activity largely ²⁵ decreases as expected with no change in the ee.

Comparing the different results in table 2 tells us that the benzene ruthenium complexes were the most active, as shown earlier¹⁴ within this series and that ligands 4a and 4b lead to the best enantioselectivities.

30

The $[RuCl_2(benzene)]_2/4a$ and 4b system were then applied using different substrates 6-16 (scheme 4). The results are reported in table 3.

35

40

Scheme 4 Aromatic ketones used for asymmetric transfer hydrogenation

45

Table 3 : Transfer hydrogenation of various ketones using benze	ene
ruthenium complexes of amino-oximes ligands 4a and 4b ^a	

Substrate	Ligand	t (h)	Conv.	Ee (%) ^b
			(%)	
6	4a	22	98	6
	4b	23	99	24
7	4 a	22	96	12
	4b	23	97	55
8	4 a	22	84	28
	4b	5	88	66
9	4 a	7	94	6
	4b	18	84	39
10	4 a	8	71	30
	4b	2	95	56
11	4 a	23	87	74
	4b	3	97	75
12	4 a	6	93	17
	4b	2	92	65
13	4 a	24	59	47
	4b	1	99	66
14	4 a	24	27	34
	4b	0.5	95	64
15	4a	10	99	37
	4b	3	99	46
16	4a	8	92	59
	4b	2	90	78
	Substrate 6 7 8 9 10 11 12 13 14 15 16	Substrate Ligand 6 4a 7 4a 7 4a 8 4a 4b 4b 8 4a 9 4a 10 4a 4b 4b 10 4a 11 4a 12 4a 13 4a 4b 13 14 4a 15 4a 16 4a	Substrate Ligand t (h) 6 4a 22 4b 23 7 4a 22 4b 23 7 4a 22 4b 23 8 4a 22 9 4a 7 4b 5 9 9 4a 7 4b 18 18 10 4a 8 4b 2 1 10 4a 23 11 4a 23 12 4a 6 4b 2 1 13 4a 24 4b 1 1 14 4a 24 4b 1 1 14 4a 24 4b 3 1 15 4a 10 4b 3 3 16 4a 8	Substrate Ligand t (h) Conv. (%) 6 4a 22 98 4b 23 99 7 4a 22 96 4b 23 97 8 4a 22 84 4b 23 97 8 4a 22 84 4b 5 88 9 4a 7 94 4b 5 88 9 4a 7 94 4b 18 84 10 4a 8 71 4b 2 95 11 4a 23 87 11 4a 23 97 12 4a 6 93 4b 2 92 13 4b 24 59 15 4a 10 99 15 4a 10 99 <t< td=""></t<>

^a All reactions were performed by using 2 mmol of ketone in 20 mL *i*PrOH. S/Ru = 100, Ligand/Ru = 2, Base/Ru = 2, T = 80° C ^b Absolute ⁵⁰ configurations have not been determinated , but the two enantiomers of the alcohols are available because of the availability of the (*R*)- and (*S*)-limonene

In the case of the substituted aromatic rings (substrates **6**-⁵⁵ **14**), for a given catalytic system, the reaction rate is generally sensitive to the electronic properties of the phenyl ring substituent. Using **4a** as ligand, reaction rates of substrates with electrodonating substituents (-CH₃ : **6**, **7** and -OCH₃ : **8** and **9**) are similar to those observed with ⁶⁰ acetophenone : 90 % conversions were reached after 20 hours (entries 13, 15, 17, table 3 *vs* entry 5 table 2). On the other hand, using electron-withdrawing groups as -Cl or - NO_2 , the reactions proceed at much higher rate (up to 99% conversion after only 1 to 10 hours, entries 21-34). These differences in reactivity of various substrates were already described by Gladiali¹⁵, and the same trend is observed in this work. The extent of the enantioselectivity appears to be

- also strongly influenced by the substituents on the aromatic rings of the substrates. Ee's between 6 to 75% were obtained and it is more difficult to rationalize these ee values. The best result is observed with the *m*-
- ¹⁰ chloroacetophenone (74-75% ee, entries 23 and 24, table 3) The same observation has already been reported by Noyori¹⁶ who found that the best activity (98%) and enantioselectivity (98%) were also reached with this substrate. In the case of trifluoroacetophenone **15**, the result
- 15 was rather disappointing with a maximal ee of 45%. The asymmetric reduction of 2-acetonaphtone led to the best result in terms of activity (90% yield after 2 hours) and enantioselectivity (78% ee) with the catalytic system $[Ru(benzene)Cl_2]_2/4b/KOH.$
- 20

As these ligands are bearing both NH and OH moieties, attempts were made to look at the mechanism of the hydrogen transfer, which may occur via pathways involving a ruthenium hydride as already described for amino-²⁵ alcohols.^{14,17}

With the aim of confirming this mechanism, we followed the Noyori's procedure and did stoechiometric reactions step by step from the ruthenium precursor and the aminooxime **3b**. The observations are described below and ³⁰ the proposed intermediates are described in Figure 3.

(i) To a mixture of $[Ru(p-cymene)Cl_2]_2$ and **3b** (1:2) in dichloromethane, 2.2 equivalents of KOH were added. After stirring 4 hours at ambient temperature, the orange solution was filtered and KCl was eliminated. Evaporation of solvent

- ³⁵ led to an orange powder. The ¹H-NMR analysis of this complex shows the complete disappearance of the OH signal which is due to the more acidic character of the hydrogen of the oxime than that of the amine. Therafter two coordination modes could be envisaged, either via the
- ⁴⁰ oxygen moiety in order to form an oximato complexe, either with the nitrogen atom. The molecular structure of this complex **6b** has been determined by single crystal X-ray diffraction analysis and is depicted in Figure 2, which shows the nitrogen coordination with an O⁻ moiety as
- ⁴⁵ already described by Pandey.¹⁸ In the asymmetric unit of **6b**, there are two independent molecules which are almost identical. As previously for **5a** complexe, the Ru-N (2.171 Å), Ru-N_{oxime} (2.066 Å) and Ru-Cl (2.401 Å) distances and N-Ru-N_{oxime}, N_{oxime}-Ru-Cl and N-Ru-Cl angles (respectively ⁵⁰ 74.8, 82.45 and 82.62°) support a three-legged "piano-stool" arrangement.

(ii) In the presence of a second equivalent of base, HCl should be eliminated in order to form the active 16-electrons species. In spite of numerous attempts, no clean

55 complexe for NMR analysis could been obtained. The use of three or four equivlents of NaOH or NaH as bases led to untractable results, as no exploitable NMR analysis could be obtained.

Figure 2 Molecular structure of the ruthenium complexe **6b** 75 (the H atoms have been omitted for clarity)

(iii) The same procedure was then performed in *i*PrOH instead of CH₂Cl₂. After addition of 2 equivalents of KOH,
80 the solution turned rapidly red. After 15 min stirring at room temperature, the solvent was evaporated and a red powder was obtained and analyzed by ¹H-NMR. Two resonances at -5.10 and -6.15 ppm in a 1:2 ratio were observed which would correspond to Ru-H units according to the literature.¹⁹ These two signals could be assigned to the presence of the expected two ruthenium diastereoisomers **7b** and **7b'** as already observed by Sirlin and Pfeffer.¹⁹

Figure 3 : Proposed intermediates for 3b α -amino-oxime based hydrogen transfer

These data are in line with the hypothesis that from a mechanistic point of vue, the amine-oxime ligands behave similarly as aminoalcohols in these tranfer reactions.

We then propose the following mechanism for the 110 asymmetric hydrogen transfer catalyzed by a aminooximeruthenium complex. (Figure 4)

Figure 4 : Proposed mechanism for the asymmetric transfer reaction of ketones over Ru(arene)(aminooxime) based catalyst

Conclusion

- ²⁵ Although their propensity to induce asymmetric induction is by far lower than that of amino alcohols, the use of aminooxime as ligands for hydrogen transfer reactions using ruthenium catalysts is here proposed for the first time, and been shown to probably occur via an outer sphere, six-³⁰ membered ring catalytic mechanistic type.
- The main advantage that may be found in this chemistry is their easiness of synthesis of these ligands from natural, enantiomerically pure compounds, especially when as in the present case, both enantiomeric forms are available from the
- ³⁵ chiral pool, resulting in the possibility to synthesize both enriched enantiomeric mixtures of a desired alcohol at will. Keeping in mind that the chiral terpene sources are renewable and both in large varieties and quantities, these results may open the way to the synthesis of new chiral
- ⁴⁰ ligands that may be used in this reaction, and many others in asymmetric catalysis.

Experimental part

All manipulations were carried out under an inert nitrogen atmosphere using standard Schlenk techniques. All reagents

⁴⁵ were commercially available and were used without further purification. Ligands **4a** and **4b** were prepared according to the published methods.¹² The different ¹H and ¹³C RMN spectra were recorded on a Bruker AC 300 spectrometer and referenced to TMS. Optical rotations were measured on an ⁵⁰ ZUZ: Modelo 412 polarimeter.

The X-ray intensity data were measured on an APEX II DUO system equipped with a mirror monochromator and a MoK α ImuS (λ = 0.71073 Å).

Conversions were determined by CG analysis on a CP-Sil 5 55 CB column and the enantiomeric excesses were calculated from chiral GC analysis with a Chirasil-Dex capillary column. Absolute configuration of 2-phenylethanol was assigned by comparing with an authentic sample.

60 Ligand 4c

A mixture of nitrosochloride **2** (2g, 4.95 mmol), *iso*propylamine **3c** (2 mL, 21.9 mmol) in ethanol (3 ml) was heated up to the formation of a clear solution. This latter was cooled at -5° C and HCl was added slowly. A white

- ⁶⁵ solid precipitate of chlorhydrate was formed which was neutralized by addition of Et₃N (up to strongly basic pH). The solution was washed with water (2*10 ml) then dried over MgSO₄. The solvent was evaporated and a yellow oil was obtained. The pure oxime was obtained by addition of 70 petroleum ether as a light yellow solid.
 - Yield : 50 %
 - $[\alpha]_D^{20} = +12.41 \text{ (c} = 0.4, \text{CH}_3\text{OH})$

¹H RMN (CDCl₃) : δ = 8.75 (1H, OH); 4.76 (2H, CH₂=) ; 3.30 (1H, J = 11.3 Hz); 2.86 (1H, t, J = 6.3 Hz, CH(CH₃)₂);

- ⁷⁵ 1.99 (1H, d, J = 11.9 Hz) ; 1.3-2.2 (m, 5H); 1.76 (3H, s, CH_3 -CH=CH₂); 1.28 (3H, s, CH_3 -CNH); 1.06 (3H, d, J = 6.3 Hz, (CH₃)₂CH); 0.99 (3H, d, J = 6.3 Hz, (CH₃)₂CH) ¹³C NMR (CDCl₃) : δ = 20.82 (CH₃-C=); 24.34 (CH₃-
- CHNH); 25.02 (2 CH₃); 25.57 (CH₂); 26.19 (CH); 41.08 ⁸⁰ (CH₂); 43.60 (CH-C=); 44.68 (CH-(CH₃)₂); 56.85 (Cq-NH); 109.47 (CH₂); 148.44 (Cq-CH₂); $\delta = 162.69$ (C=N)
- Anal. calculated for $C_{13}H_{24}N_2O$: C, 69.60; H, 10.78; N, 12.49. Found : C, 69.48; H, 10.60; N, 12.21
- 85 Ligand 4d

Same procedure as **4c** from 2-picolylamine. Yield : 63 % $[\alpha]_D^{20} = +54.61$ (c = 0.4, CH₃OH)

¹H RMN (CDCl₃) : δ = 9.82 (1H, OH); 8.52 (1H, d, J = 4.5 Hz, C₆H₄N); 7.61 (1H, td, J = 1.1 Hz, C₆H₄N); 7.30 (1H, d,

- ⁹⁰ J = 7.8 Hz, C₆H₄N); 7.13 (1H, t, J = 5.8 Hz, C₆H₄N); 4.77 (2H, d, J = 8.1 Hz, CH₂=); 3,88 (1H, d, J = 14.2 Hz, CH₂Py), 3.62 (1H, d, J = 14.3 Hz, CH₂Py); 3.30 (1H, d, J = 13.1 Hz, CH₂); 1.98 (1H, d, J = 12.3 Hz, CH₂); 1.6-2.4 (m, 5H); 1,77 (s, 3H, CH₃-C=CH₂); 1,34 (s, 3H, CH₃-CNH).
- ⁹⁵ ¹³C RMN (CDCl₃) : δ = 20.69 (CH₃-C=); 23.25 (CH₃-CNH); 25.31 (CH₂); 26.12 (CH₂); 40.37 (CH₂); 44.71 (CH-C=); 47.86 (CH₂NH); 56.49 (Cq-NH); 109.46 (CH₂=); 121.82, 122.38, 136.51, 148.60 (4 CH); 148.92 (Cq-CH); 159.91 (Cq (Py)); 162.19 (C=N)
- ¹⁰⁰ Anal. calculated for $C_{16}H_{23}N_3O$: C, 70.30; H, 8.48; N, 15.37. Found : C, 69.75; H, 8.85; N, 14.97

Complexe 5a

Phenylamino-oxime **4a** ligand (136 mg; 0.527 mmol) and $_{105}$ [RuCl₂(*p*-cymene)]₂ (0.161 g; 0.263 mmol) were stirred for

30 minutes in 7 ml anhydrous dichloromethane. Diethyl ether (7 ml) was then added drop by drop and the mixture was stirred overnight at -5° C. After filtration, the crude product was concentrated under vacuum to give complex **5a** s as a yellow powder.

Yield : 65 %

¹H RMN (CDCl₃, 300 MHz) : $\delta = 12.46$ (s, 1H, O*H*); 6.90-7.95 (m, 5H, C₆*H*₅); 6.44 (d, J = 6Hz, 1H, C*H* (*p*-cym)); 6.31 (d, J=6 Hz, 1H, C*H* (*p*-cym)); 5.99 (d, J = 6 Hz, 1H,

- ¹⁰ CH (*p*-cym)); 5.40 (s, 1H, NH); 4.74 (d, 1H, J = 8 Hz, CH (*p*-cym)); 4.72 (s, 1H, CH₂=); 4.57 (s, 1H, CH₂=); 3.7 (d, J = 15Hz, 1H, CH₂); 2.79 (st, 1H, CH(CH₃)₂); 2.49 (m, 1H, CH); 2.35-2.41 (m, 1H, CH₂); 2.36 (s, 3H, CH₃); 1.3-1.9 (m, 4H); 1,81 (s, 3H, CH₃); 1,56 (s, 3H, CH₃); 1.07 (d, J = 6 Hz, 3H, (CH₃)₂CH); 0,57 (d, J = 6 Hz, 3H, (CH₃)₂CH).
- ¹³C RMN (CDCl₃, 300 MHz) : $\delta = 171.93$ (C=N); 167.25 (C₆H₅); 143.28 (C-NH); 142.70 (C=CH₂); 105.80 (*p*-cym); 124.00; 124.73; 127.89; 129.46; 130.15 (Ph); 113.83 (CH₂); 105.8 (*p*-cym)); 97.56 (*p*-cym); 81.07; 84.81; 86.33; 86.55
- ²⁰ (*p*-cym); 39.21 (CH); 34.60 (CH₂); 30.48 (*C*H(CH₃)₂); 28.43 (CH₂); 24.09 ((*C*H₃)₂CH); 23.94 (CH₂); 22.86 (*C*H₃); 22.07 (CH₃); 18.79 (CH₃); 18.41 ((CH₃)₂CH).

X-ray crystallography : a lustrous pale yellow plate-like specimen of C28H38Cl8N2ORu, approximate dimensions 0.07

- $_{25}$ mm x 0.23 mm x 0.27 mm, was used for the X-ray crystallographic analysis. The integration of the data using an orthorhombic unit cell yielded a total of 32454 reflections to a maximum θ angle of 23.46°, of which 5163 were independent (completeness = 98.8%, Rint = 6.59%). The final cell constants
- $_{30}$ of a = 9.5362(15) Å, b = 15.604(3) Å, c = 23.905(4) Å, volume = 3557.1(10) Å3, are based upon the refinement of the XYZ-centroids of 229 reflections above 20 $\sigma(I)$ with 4.338° < 2 θ < 30.68°. Data were corrected for absorption effects using the multiscan method (SADABS).
- ³⁵ The structure was solved by Charge Flipping Method using Superflip software²⁰ and refined using the CRYSTALS Software Package²¹, using the space group P2₁2₁2₁, with Z = 4 for the formula unit, C28H38Cl8N2ORu. In the final cycles of refinements, the contribution to electron density suggested that
- ⁴⁰ part of solvent was highly disordered; attempts to model this disorder were unsuccessful. In the final cycles of refinement, the contribution to electron density corresponding to the disordered solvent was removed from the observed data using the SQUEEZE option in PLATON.²² The resulting data
- ⁴⁵ significantly improved the accurateness of the geometric parameters for the remaining structure. The final anisotropic full-matrix least-squares refinement on F with 281 variables converged at R = 0.091, for the observed data and wR = 0.087 for all data. The goodness-of-fit was 1.02.

50

Complexe 5b

Similar procedure as **5a** using benzylamino-oxime **4b**. Yield : 81 %

- ¹H RMN (CDCl₃) : $\Box \Box = 12.19$ (s, 1H, *OH*); 7.2-7.6 (m, 5H,
- ⁵⁵ C₆*H*₅), 5.96 (d, 1H, J = 5.9 Hz, *p*-cym); 5.86 (d, 1H, J = 5.7 Hz, *p*-cym); 5.76 (d, 1H, J = 6.5 Hz, *p*-cym); 5.39 (d, 1H, J

= 5.97 Hz, p-cym); 4.68 (m, 2H, CH_{2} =); 4.58 (m, 2H, CH_{2} -NH); 4.05 (singulet large, 1H, NH); 3.64 (d, 1H₁, J = 16.6 Hz, CH_{2}); 2.67 (spt, 1H, J = 7.2 Hz, $CH(CH_{3})_{2}$); 2.41

- ⁶⁰ (singulet large, 1H, CH-CH₂); 2.29 (dd, 1H₁, J = 6 Hz, CH₂); 2.7 (s, 3H, CH₃ (p-cym)); 1.30-2.01 (m, 4H, CH₂); 1.59 (s, 3H, CH₃-C=CH₂); 1.51 (s, 3H, CH₃-C-NH); 1.16 (d, 3H, J = 7 Hz, (CH₃)₂-CH (*p*-cym) ; 0.90 (d, 3H, J = 6.9 Hz, (CH₃)₂-CH).
- ⁶⁵ RMN ¹³C (APT, CDCl₃) : $\Box = 171.58$ (C=N); 142.85 (Cq-CH₂); 135.25 (Cq-Ph); 129.17, 128.66, 128.21 (C₆H₅); 114.24 (Cq (*p*-cym); 109.89 (CH₂=); 96.46 (Cq (*p*-cym)); 87.46, 84.70, 81.36, 80.82 (4 CH (*p*-cym)); 68.86 (Cq-NH); 55.04 (CH₂-Ph); 39.22 (CH₂-CH-CH₂); 34.15 (CH₂); 31.26
- ⁷⁰ (CH(CH₃)₂); 29.41 (CH₂); 24.36 (CH₂); 23.47 (CH(CH₃)₂);
 22.05 (CH₃-CNH); 21.15 (CH₃-C=); 20.50 (CH(CH₃)₂);
 18.98 (CH₃ (*p*-cym)).

Complex 6b

⁷⁵ To a mixture of [Ru(*p*-cymene)Cl₂]₂ (76.5 mg, 0.125 mmol) and and benzylamino-oxime **4b** ligand (68 mg, 0.25 mmol) in 10 mL dichloromethane, KOH (0.275 mmol) was added. After stirring 4 hours at ambient temperature, the orange solution was filtered and KCl was eliminated. Evaporation ⁸⁰ of solvent led to an orange powder.

Yield : 70%

RMN-¹H (CDCl₃) : δ = 7.2-7.6 (5H, m, C₆H₅) ; 6.11 (1H, d, J = 6 Hz, CH (*p*-cym)) ; 5.92 (1H, d, J = 6 Hz, CH (*p*-cym)) ; 5.62 (1H, d, J = 6 Hz, CH (*p*-cym) ; 5.44 (1H, d, J = 6 Hz, CH (1H, d, J = 6

⁸⁵ cym)); 4.85 (2H, m, CH₂NH); 4.66 (2H, d, J = 15 Hz, CH₂=);
4.03 (1H, s, NH); 3.61 (1H, d, J = 18 Hz, CH₂); 2.66 (1H, spt, CH(CH₃)₂); 2.39 (1H, m, CH); 2.17 (1H, dd, J = 6.1 Hz, CH₂);
2.00 (3H, s, CH₃ (*p*-cym)); 1.2-1.9 (4H, m, 2 CH₂); 1.58 (3H, s, CH₃); 1.51 (3H, s, CH₃); 1.09 (3H, d, J = 9 Hz, (CH₃)₂CH);
90 0.87 (3H, d, J = 9 Hz, (CH₃)₂CH).

RMN-¹³C (CDCl₃): δ = 164.37 (C=N); 143.79 (*Cq*=CH₂); 136.01 (*Cq*-C₆H₅); 128.88, 128.42, 128.16 (*C*H(*p*-cym)); 113.49 (*C*H₂=); 108.32 (*Cq*(*p*-cym)); 96.37 (*Cq*(*p*-cym)); 87.74, 83.59, 81.79, 81.55 (*C*H(*p*-cym)); 68.45 (*Cq*-NH); 54.93 95 (*CH*₂NH); 39.34 (*C*H); 34.33 (*C*H₂); 31.10 (*CH*(CH₃)₂); 29.69 (*C*H₂); 24.62 (*C*H₂); 23.98 (*C*H(*C*H₃)₂); 22.20 (*C*H₃); 21.18 (*C*H₃); 20.10 (*C*H(*C*H₃)₂); 18.60 (*CH*₃ (*p*-cym)).

X-ray crystallography : An irregular yellow plate-like specimen of C54H74N4O2Ru2, approximate dimensions 0.12 mm x

- ¹⁰⁰ 0.14 mm x 0.16 mm, was used for the X-ray crystallographic analysis. The integration of the data using an orthorhombic unit cell yielded a total of 14148 reflections to a maximum θ angle of 26.3°, of which 10577 were independent (completeness = 98.3%, Rint = 5.50%). The final cell constants of a = 8.8793
- ¹⁰⁵ (11) Å, b = 22.171 (3) Å, c = 18.394 (2) Å, β = 90.627 (5)°, volume = 3620.8 (8) Å3, are based upon the refinement of the XYZ-centroids of 9823 reflections with 6° < 2 θ < 52°. Data were corrected for absorption effects using the multiscan method (SADABS).
- ¹¹⁰ The structure was solved by Charge Flipping Method using Superflip software²⁰ and refined using the CRYSTALS

Software Package²¹ using the space group P 2_1 , with Z = 4 for the formula unit, C54H74N4O2Ru2. In the final cycles of refinements, the contribution to electron density suggested that part of solvent was highly disordered; attempts to model this

- ⁵ disorder were unsuccessful. In the final cycles of refinement, the contribution to electron density corresponding to the disordered solvent was removed from the observed data using the SQUEEZE option in PLATON.²² The resulting data significantly improved the accurateness of the geometric
- ¹⁰ parameters for the remaining structure. The final anisotropic full-matrix least-squares refinement on F with 578 variables converged at R = 0.062, for the observed data and wR = 0.056 for all data. The goodness-of-fit was 0.99.

Complexes 7b/7b'

¹⁵ [Ru(*p*-cymene)Cl₂]₂ (76.5 mg ; 0.125 mmol) and benzylaminooxime **4b** ligand (68 mg; 0.25 mmol) in 5 mL *iso*PrOH were stirred 30 min at 80°C. A solution of KOH in *i*PrOH (4.13 mL, 0.12 M) was added to the reaction mixture. After stirring 15 min, the solution was evaporated under vacuum at 0°C to a red ²⁰ powder.

Yield : 91%

RMN-¹H (C_6D_6) : 7.00-7.40 (5H, m, C_6H_5); 5.29, 5.02, 4.86, 4.64 (4H, 4d, J = 6 Hz, (*p*-cym)); 5.00 (1H, NH); 4.05-4.45 (4H, m, CH₂Ph + CH₂=); 2.46 (1H, spt, CH(CH₃)₂); 2.18 ²⁵ (1H, m, CH); 1.83 (3H, s, CH₃ (*p*-cym); 1.15-1.65 (4H, m, 2

²⁵ (1H, in, CH), 1.85 (3H, 8, CH₃ (*p*-Cyll)), 1.15-1.05 (4H, in, 2 CH₂); 1.48 (3H, dd, J = 1.5, 6 Hz, CH₃); 1.14 (3H, d, J = 4.5 Hz (CH₃)₂CH)); 1.12 (3H, d, J = 4.5 Hz, (CH₃)₂CH)); - 5.10 and -6.15 (Ru-H).

Typical transfer hydrogenation procedure

³⁰ The catalysts were generated *in situ* prior to catalysis by heating a mixture of the [RuCl₂(arene)₂]₂ complex with the desired amino-oxime at 80°C for 20 min in dry propan-2-ol. Then, a solution of the substrate in propan-2-ol followed by KOH (1M in *i*PrOH) was added and the mixture was heated ³⁵ at the desired temperature.

Supplementary material

Crystallographic data for the crystal structures of 5a and 6b have been deposited with the Cambridge Crystallographic Data

⁴⁰ Centre as supplementary publication under reference CCDC 826373 (**5a**) and 826374 (**6b**). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk.

Acknowledgments

⁴⁵ We are grateful to the "Ministère des Affaires Etrangères" (programme Volubilis, AI n°012/SM/07), the CNRS, the Ministère de l'Enseignement Supérieur et de la recherche and the "Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche Scientifique du ⁵⁰ Maroc" for financial support.

References

- 1 I. Ojima, *Catalytic Asymmetric Synthesis*, 2000, 2nd Ed., Wiley-VCH, New-York ; E. N. Jacobsen, A.
- Pfaltz, H. Yamamoto, *Comprehensive Asymmetric Catalysis*, Eds., Spronger : Berlin, 1999 ; H.-U. Blaser, H.-J. Federsel, *Asymmetric catalysis on Industrial Scale*, 2010, Eds, Wiley-VCH.

55

60

65

- H.-U. Blaser, *Chem. Rev.*, 1992, 92, 935-952; W. A. Nugent, T. V. RajanBabu, M. J. Burk, *Science*, 1993, 259, 479-483.
- 3 H. B. Kagan, T.-P. Dang, J. Am. Chem. Soc., 1972, 94, 6429 -6433.
- 4 N. Khiar, R. Navas, E. Álvarez, I. Fernández, Arkivoc, 2008, viii, 211-224; D. Liu, W. Li, X. Zhang, Org. Lett., 2002, 4, 25, 4471-4474; M. Diéguez, A. Ruiz, C. Claver, J. Org. Chem., 2002, 67, 11, 3796-3801.
- 5 A. Saitoh, T. Uda, T. Morimoto, *Tetrahedron : Asymmetry*, 1999, **10**, 4501-4511.
- 6 F. Agbossou-Niedercorn, I. Suisse, *Coord. Chem. Rev.*, 2000, **242**, 145-158.
- 7 C. Cimarelli, D. Fratoni, G. Palmieri, *Tetrahedron : Asymmetry*, 2009, **20**, 2234-2239 ; W. Chrisman, J.
- N. camara, K. Marcellini, B. Singaram, C. T. Goralski, D. L. Hasha, P. R. Rudolf, L. W. Nicholson, K. K. Borodychuk, *Tetrahedron : Asymmetry*, 2005, 16, 1829-1835; A. Robertson, C. Bradaric, C. S. Frampton, J. McNulty, A. Capretta, *Tet. Lett.*, 2001, 42, 2609-2612.
- For some recent examples : D. Hobuss, A. Baro, S. Laschat, W. Frey, *Tetrahedron*, 2008, 64, 1635-1640 ; A. V. Malkov, A. J. P. Stewart-Liddon, F. Teply, L. Kobr, K. W. Muir, D. Haigh, P. Kocovsky,
- Tetrahedron, 64, 4011-4025 ; J. J. Verendel, P. A. Andersson, *Dalton* Trans, 2007, 5607-5610 ; I. A. Dvornikova , L. L. Frolova, A. V. Churakov, A. V. Kuchin, *Rus. Chem. Bull., Int. Ed.*, 2004, 53, 6, 1323-1326 ; C. C. Watts, P. Thonivot, L. C. Hirayama, T.
- ⁹⁰ Romano, B. Singaram, *Tetrahedron : Asymmetry*, 2005, 16, 1829-1835; T. Suzuki, A. Shibata, N. Morohashi, Y. Ohba, *Chem. Lett.*, 2005, 34, 1476-1477; M. P. Krzeminski, A. Wojtczak, *Tet. Lett.*, 2005, 46, 8299-8302; Z. Szakonyi, A. Balazs, T. A.
 ⁹⁵ Martinek, F. Fülöp, *Tetrahedron : Asymmetry*, 2006,
 - 17, 199-204 ; A. Gavryushin, K. Polborn, P. Knochel, *Tetrahedron : Asymmetry*, 2004, 15, 2279-2288.
 - 9 A. V. Malkov, M. Bella, I. G. Stara, P. Kocovsky, *Tet. Lett.*, 2001, **42**, 3045-3048.
 - 10 S. ElAlami, A. A. Dahbouh, A. Ibn Mansour, M. A. ElAmrani, I. Suisse, F. Agbossou-Niedercorn, A. Mortreux, C. R. Chimie, 2009, 12, 1253-1258.
 - V. P. Kirin, I. Y. Prikhod'ko, V. A. Maksakov, A. V. Virovets, A. M. Agafontsev, B. A. Golovin, *Rus. Chem. Bull., Int. Ed.*, 58, 7, 1371-1382.
- A. V. Tkachev, A. V. Rukavishnikov, A. M. Chibiryaev, A. Yu. Denisov, Y. V. Gatilov, I. Y. Bagryanskaya, *Aust. J. Chem.*, 1992, **45**, 1077-1086; P. A. Petukhov, S. N. Bizyaev, A. V. Tkachev, *Rus. Chem. Bull., Int. Ed.*, 2001, **50**, 11, 2106-2112; R. Carman, P. C. Mathew, G. N. Saraswathi, B. Singaram, J. Verghese, *Aust. J. Chem.*, 1977, **30**, 6, 1323-1325.
 - 13 D. G. I. Petra, .P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz, A. M. Van Loon, J. G. de Vries, H. E. Schoemaker, *Eur. J. Inorg. Chem.*, 1999, 2335-2341.
 - 14 K. Everaere, A. Mortreux, M. Bulliard, J. Brussee, A. van de Gen, G. Nowogrocki, J.-F. Carpentier, *Eur. J. Org. Chem.*, 2001, 275-291.
 - 15 S. Gladiali, E. Alberico, *Chem. Soc. Rev.*, 2006, **35**, 226-236

120

115

100

105

- 16 S. Hashiguchi, R. Noyori, Acc. Chem. Res., 1997, 30, 97-102.
- 17 K. -J. Haack, S. Hashiguchi, T. Ikariya, R. Noyori,
- Angew. Chem. Int. Ed. Engl., 1997, **36**, 285-288. S. K. Singh, S. Sharma, S. D. Dwivedi, R.-Q. Zou, Q. 18 Xu, Inorg. Chem, 2008, 47, 11942-11949

5

10

- N. Pannetier, J. B. Sortais, P. S. Dieng, L. Barloy, C. Sirlin, M. Pfeffer, *Organometallics*, 2008, **27**, 5852-19 5859
- 20 L. Palatinus, G. Chapuis, J. Appl. Cryst., 2007, 40, 786-790
- 21 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst., 2003, 36, 1487
 A. L. Spek, PLATON, 2002, A multipurpose
- Crystallographic Tool, Utrecht University, Utrecht, The Netherlands

20

15

SYNTHESIS OF NEW CHIRAL LIGANDS FROM TERPENES AND APPLICATIONS IN ASYMMETRIC HYDROGEN TRANSFER

Terpenes represent more than 80% of natural oils of Morocco, are of moderate cost and very plentiful in nature. These compounds are prone to be readily functionalized, and as their backbone includes one or more chiral centers, they are therefore potential precursors for the synthesis of chiral ligands without separation of the enantiomers.

In this work, we were interested in the synthesis of novel chiral ligands from natural terpenes. In particular, we prepared amino alcohols, diimino and diaminodiols from α -pinene, and α -aminooximes, their ethers and their corresponding diamines from limonene. These new ligands were applied in asymmetric catalysis of hydrogen transfer of aromatic ketones with complexes based on transition metals, particularly ruthenium, in the presence of *iso*propanol as hydrogen source.

These ligands, in comparison with the literature, proved to be efficient in terms of activity and induced medium to good enantioselectivities (enantiomeric excesses up to 80% obtained on some substrates).

Further studies on the reaction mechanism were carried out specifically with the α aminooximes ligands, as this work represents the first application of this new series of ligands in asymmetric catalysis.

KEYWORDS

 $Terpenes-Asymmetric\ Catalysis-Transition\ Metals-Hydrogen\ Transfer-Ruthenium\ Complexes-\alpha-aminooxime\ chiral$

SYNTHÈSE DE NOUVEAUX LIGANDS CHIRAUX À PARTIR DE TERPÈNES ET APPLICATIONS EN TRANSFERT D'HYDROGÈNE ASYMÉTRIQUE

Les terpènes représentent plus de 80% des essences naturelles du Maroc, sont de faible coût et très abondants dans la nature, et existent sous forme optiquement pure. Ces composés, de par leur structure qui se prête facilement à des réactions de fonctionnalisations, comportent un ou plusieurs centres de chiralité qui les placent en première ligne comme précurseurs potentiels de coordinats optiquement actifs.

Nous nous sommes intéressés à la synthèse de nouveaux ligands chiraux a partir de terpènes naturels. En particulier, nous avons préparé des aminoalcools, diimino et diaminodiols à partir de d'a-pinène, et des a-aminooximes, leurs éthers ainsi que leurs diamines correspondantes à partir du limonène.

Ces nouveaux coordinats chiraux ont ensuite été appliqués en catalyse asymétrique de transfert d'hydrogène sur des cétones aromatiques sur des complexes à base de métaux de transition, en particulier le ruthénium, et en présence de l'*iso*propanol comme source d'hydrogène.

Ces ligands en comparaison avec la littérature s'avèrent performants en termes d'activité et sont à même d'induire une bonne énantiosélectivité (des excès énantiomériques de l'ordre de 80% ont été obtenu sur certains substrats).

Une étude plus approfondie du mécanisme réactionnel a été réalisée avec les ligands aaminooximes, dont ce travail présente la première application en catalyse asymétrique.

Discipline : Molécules et Matière Condensée

MOTS CLES

Terpènes – Catalyse asymétrique – Métaux de Transition – Transfert d'hydrogène Complexes du ruthénium – a-aminooximes chirales

UCCS-USTL UMR CNRS 8181 Laboratoire de Catalyse et Chimie Moléculaire ENSCL, Bât C7 BP 90108, 59652 Villeneuve d'Ascq Cedex, France

Laboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek ESSAADI, Tétouan 93000, Maroc