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INTRODUCTION 
 

 

The world production of nuclear energy has risen significantly in last decades: from 

203 TW∙h in 1973 to 2731 TW∙h in 2008, indeed the percentage of primary energy produced 

from nuclear fuel increased from 0.9% to 5.8% in this period [IEA2010]. In December 31 

2009, there were 437 operating reactors in the world, 55 under construction and 61 whose the 

construction had been planned [IAEA2010]. In a context where the growing energy demand 

must be satisfied together with the reduction of greenhouse gas emissions, the use of nuclear 

power plants represents an important aspect of an energy supply strategy based on the 

diversification of the energy production technology, especially considering the fact that 

renewable energies are not yet able to represent a unique alternative to fossil fuels. In this 

context, it is imperative to ensure the reliability of nuclear reactors during operation and in 

preparation for the possible extension of their lifetime. Moreover, it is necessary to develop 

technologies to ensure the safety and the economic viability of nuclear energy production 

technologies that are still under study (future generation fission reactors and fusion reactors). 

In both cases, one of the most important tasks is the study and the development of the 

materials used in environments characterised by extreme conditions: exposure to neutron 

radiation, high temperatures or presence of a corrosive medium [Zinkle2009, Mansur2004, 

Was2007, Murty2008, Yvon2009]. France represents an emblematic case among the countries 

producing nuclear energy: 58 PWRs (Pressurised Water Reactors) operates in France, 

providing about 75% of the electric power generation. Through its major energy supplier – 

EDF – it also faces both the problem of extending the service life of reactors in operation 

[LeDelliou1994, Bonnet1990, Gendrot1999] and the development of new production 

technologies. EDF is directly involved in the research concerning the materials for nuclear 

application in next generation reactors as a partner of the European research program 

GETMAT (Generation IV and Transmutation Materials) and in both current and future 

generation reactors, as leading partner of the material ageing institute (MAI). The MAI is an 

international research centre founded and financed by EDF, the Tokyo Electric Power 

Company (TEPCO), the Kansai Electric Power Company (KEPCO) and the US Electric 

Power Research Institute (EPRI). The research presented in this thesis work has been 

achieved in the framework of EDF R&D and the GETMAT project and has been founded by 

the MAI. 
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One of the main factors which limits the lifetime of nuclear power plants and may 

compromise the safety of reactors operation is the degradation of structural materials, 

especially the vessel steels and primary circuit steels. The vessel contains the reactor core and 

the primary circuit contains the coolant which carries a few radioactive elements coming from 

the corrosion of activated primary components or from the partial activation of the coolant 

itself by absorption of neutrons from the core. For these reasons, the good performance of 

these two components is a fundamental issue; particularly the reactor vessel which cannot be 

replaced so that its lifetime limits that of the entire plant. The vessel and primary circuit 

materials are exposed to physical and chemical conditions that can cause alteration of their 

mechanical properties. As stated above, the main sources of degradation of structural 

materials are radiation damage, thermal ageing, and corrosion (concerning the damage caused 

by corrosion, one can refer, for example, to review article [Fry2002]). 

Radiation damage is due to collisions between the neutrons from nuclear reactions 

occurring in the reactor core and the nuclei of the structural materials. During a period of forty 

years of operation, the internal components of a light water reactor can be exposed to a fast 

neutron flux (E ≥ 1 MeV) up to about 10
22

 n/cm² for a PWR and 10
23

 n/cm² for a boiling 

water reactor. Such doses of neutron radiation – corresponding to 7 dpa (displacement per 

atom
1
) and 70 dpa, respectively – induce the formation of defects in the crystal lattice of 

structure of steels [Zinkle2009]. The primary damage induced by neutrons irradiation consists 

in the formation of point defects: high energy neutrons can knock the lattice atoms, the latter 

are consequently displaced from their equilibrium position and vacancy-self interstitial atom 

pairs (i.e. Frenkel pairs) can be formed. Vacancy and interstitial atoms are likely to diffuse 

through the lattice, their mobility being enhanced by the high operating temperature of the 

reactor. Migrating point defects can combine to form point defects clusters which can give 

rise to two dimensional defects such as interstitial loops or voids. These defects induce the 

hardening and the embrittlement of the steel. Vacancies combining in clusters also create 

voids which are responsible for the swelling phenomenon (this latter issue concerns, 

particularly, the inner components of the vessel, i.e. "internals"). In addition, some of the 

elements present in the structural materials can absorb neutrons from the core and be 

consequently activated becoming α emitters. This causes the introduction of helium atoms in 

the crystal which can diffuse and penetrate into vacancy voids increasing the swelling 

phenomenon [Gelles2000]. 

                                                           
1
 A damage level of 1 dpa corresponds to a "stable" displacement of every atom from its lattice site 

[Zinkle2009]. 
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Thermal ageing is the microstructural transformation that occurs in materials exposed 

to relatively high temperatures for long periods when their initial state does not correspond to 

thermodynamic equilibrium at these temperatures. The operating temperature of materials 

constituting the vessel or the primary circuit of PWRs is about 300 °C, whereas the materials 

constituting the containment chambers of nuclear fusion reactors can reach temperatures of 

1000 °C.  

The present work focuses on the degradation of the structural materials in nuclear 

power plants by thermal ageing, and, in particular, on the ageing kinetics of the ferritic phase 

of Fe-Cr based steels. The understanding of the thermal ageing mechanism and a deep 

knowledge of the material response to a prolonged exposure to operation conditions is a very 

important issue, both to guarantee the safety of operating nuclear reactors and to guide the 

structural materials design for future generation reactors.  

Concerning the reliability and the service maintenance of the operating nuclear power 

plants, one fundamental aspect is related to some components of the primary cooling circuit 

and, particularly, the cast elbows. The cast elbows in French PWRs are made of austenitic-

ferritic stainless steel. The austenitic-ferritic stainless steels are alloys containing chromium 

(~20 wt.%), nickel (~10 wt.%), silicon (~1 wt.%), and sometimes molybdenum (~2.5 wt.%). 

The austenitic phase has a face centred cubic (fcc) structure while the ferritic phase has a 

body centred cubic (bcc) structure. This material is historically known as being sensitive to 

thermal ageing at service temperatures which has an embrittling effect on the alloy 

[LeDelliou1994, Gendrot1999]. The embrittling effect of the thermal ageing is nowadays 

recognised as a consequence of the chromium precipitation in the ferritic phase. High 

chromium ferritic steels undergo α-α’ phase separation (where α and α’ are the iron-rich phase 

and the chromium-rich phase respectively) if the chromium content exceeds ~9 at.% in the 

region of temperatures important for their application in the nuclear industry (> 600 K). The 

latter issue also refers to chromium-rich ferritic-martensitic steels which are considered 

leading candidates for structural materials for future generation IV fission reactors and fusion 

reactors [Zinkle2009, Klueh207] because of the high resistance of such alloys to corrosion 

and radiation damage.  

The thermal ageing consists in the evolution of the alloy microstructure. If one 

neglects the primary radiation damage, which induces the formation of interstitial defects, the 

microstructure evolution can be considered as being driven by a vacancy diffusion 

mechanism. The experimental observation of the thermal ageing in chromium-rich ferritic or 

austenitic-ferritic steels can be achieved via the analysis of the microstructure of samples 
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thermally aged at a given temperature. The most evident drawback of the experimental 

approach is the fact that experiments are time-consuming since they require the samples to be 

thermally aged for several years in order to observe the microstructure evolution. In such a 

context the development of reliable models at the atomic scale and their implementation 

through numerical simulations represent complementary approaches to the experimental 

investigation. Atomic-scale theoretical models are likely to help interpret the experimental 

data and to understand the microscopic mechanism which drives the kinetics of the thermal 

ageing. Furthermore, the numerical simulations can represent precious predictive tools: in the 

case of stochastic simulations such as atomistic kinetic Monte Carlo (AKMC) simulations, 

and considering the current computer’s performances, the evolution of an atomic structure 

(containing up to some thousands of atoms) exposed at a given temperature for some 

hundreds of hours can be simulated with a computational time of few hours.  

The aim of this work is to contribute to the recent modelling effort [Malerba2008, 

Dudarev2009, Terentyev2011] that is increasingly representing an essential aspect of the 

research on ferritic and ferritic-martensitic alloys for nuclear power industry. The main goals 

of the present work are, on the one hand, the achievement of a better understanding of the 

atomic-scale mechanisms which drive the microstructure evolution via the vacancy diffusion 

and, on the other hand, to exploit such knowledge to parameterise an AKMC approach for the 

simulation of the thermal ageing of the ferritic steels. The parameterisation of an AKMC 

simulation is based on the knowledge of the vacancy migration energy towards an occupied 

lattice site. In principle, this quantity depends both on the atomic species which exchanges its 

position with the vacancy and on the chemical environment where the vacancy diffusion 

occurs. The parameterisation of the AKMC simulations should reflect such dependence in 

order to be realistic and physically consistent.  

In order to develop such modelling, we considered a chemically simplified system. 

The ferritic phase of stainless steels is described as a chromium-rich Fe-Cr binary alloy with 

bcc structure. Thus we theoretically investigated the vacancy migration energy dependence on 

the local chemical environment (up to the second nearest neighbour shell of the vacancy-

migrating atom pair) in an Fe-Cr alloy. Such an investigation requires the cohesive energy of 

the system to be computed for several atomic configurations and to introduce a method for 

computing the vacancy migration energy. The first task has been achieved both in the 

framework of density functional theory (DFT) and using an Fe-Cr semi-empirical potential 

based on the embedded atom method (EAM). Concerning the vacancy migration energy, it 

has been computed with the nudged elastic band method within the density functional theory 
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and with the drag method within the EAM cohesive model. On the basis of our study of the 

vacancy migration energy dependence on the local atomic environment, we developed two 

types of parameterisation for the AKMC simulations. The first is based on the computation of 

the vacancy migration barriers with the EAM potential for all the possible configurations of 

the vacancy local atomic environment by the drag method. The second type of 

parameterisations has been obtained by introducing an approximate expression for the 

vacancy migration energy depending on both the species of the atom which migrates towards 

the vacancy and the local atomic environment. Such formulas have been obtained as 

successive improvements of the existing final initial state energy (FISE) approach. Our 

improvements consisted in introducing a more explicit dependence of the vacancy migration 

energy on the local environment deduced from DFT results. Our estimations of the vacancy 

migration energy performed with the interatomic potential or with the approximate 

expressions we introduced have been validated by comparison with full DFT calculations for 

several configurations of the vacancy local atomic environment. Finally, we compared some 

available experimental observations or theoretical previsions of the Fe-Cr thermal ageing 

kinetics with the description we obtained with the AKMC simulations parameterised with the 

different approaches we proposed.   

This manuscript is organised as follows. In chapter 1 we will introduce the Fe-Cr 

system as a model for ferritic stainless steels. In particular, we will present the state of the art 

knowledge of its phase diagram as well as some still open questions related to this issue. We 

will then present the models describing the phase separation thermodynamics and kinetics of 

the binary alloys and we will show that such models should be particularly simple to apply to 

the Fe-Cr system. Finally we will show that, although the Fe-Cr system is a simplified model 

for the description of the ferritic stainless steels as well as for the validation of the models 

describing the phase separation in binary alloys, its complexity is raised by its very peculiar 

magnetic properties which, as it will be further illustrated in chapter 3, have an influence both 

on the thermodynamics and the kinetics of decomposition. 

In chapter 2, we will present the methods we used for computing the cohesive energy 

of the Fe-Cr structures: namely the DFT and the EAM potential. We will also present a 

bibliographic study which allowed us to choose, within the existing EAM Fe-Cr potentials, 

the one which better describes the thermodynamics of Fe-Cr system with respect to the 

available DFT previsions and experimental data. Thus we will illustrate some DFT and EAM 

preliminary calculations which we performed to characterise some properties of the system 

we are dealing with (vacancy formation energy, chromium-chromium and vacancy-chromium 
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formation energy in an iron matrix) as well as some DFT calculations characterising the local 

magnetic properties of different solute chromium configurations in the iron matrix. Finally we 

will introduce the methods we used for computing the vacancy migration energy both in the 

framework of DFT (nudged elastic band method) and EAM potential (drag method) as well as 

the calculations we made to optimise the parameters related to these methods. 

Chapter 3 will concern our study of the vacancy migration energy dependence on the 

local chemical environment both with the DFT and the EAM Fe-Cr potential. In this study we 

investigated the vacancy migration energy dependence on the chromium content in the local 

environment and the specific influence of the chromium content in different group of sites of 

the first and the second nearest neighbour shells of the vacancy-migrating atom pair. We will 

also characterise the delicate relation between the vacancy migration energy and the variation 

of the energy of the system which follows a vacancy jump. Moreover, we will illustrate our 

conclusions about the relation between the vacancy migration energy dependence on the local 

environment and the chromium-chromium and the chromium-vacancy interactions as well as 

the variation of the local magnetic moments of the migrating atom and its environment during 

the migration process. Thus, considering the DFT results as reference values, we studied the 

capability of the EAM Fe-Cr potential to reproduce such results.          

Finally, in chapter 4, we will briefly present the theoretical basis of the AKMC method 

as well as the approaches we proposed for the parameterisation. In particular, we will discuss 

the origin of the FISE approximation and our improvement to this approximation to ensure a 

better description of the effect of the atomic environment on the vacancy migration energy. 

We will then present our AKMC simulations of the Fe-20 at.%Cr and Fe-25 at.%Cr alloys. In 

order to compare the results of the AKMC simulations based on the different 

parameterisations with experimental data, we will introduce the approaches we considered for 

the estimation of the time dependence of the size of the chromium-rich precipitates and the 

implementation of the scaling procedure of the AKMC simulated time to the real ageing time. 

Finally we will discuss the comparison between the results we obtained with the AKMC 

simulations and the experimental observation, on the one hand, and previsions based on 

theoretical models, on the other hand. 
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1. THE Fe-Cr ALLOY: A MODEL FOR FERRITIC STEELS  
 

 

In this chapter, we will briefly discuss the importance of ferritic steels in operating 

nuclear reactors and the reasons why they are promising candidates to be employed as 

structural materials for future generation nuclear power plants. We will then introduce the Fe-

Cr system as a model for the study of the ferritic phase of stainless steels. The Fe-Cr binary 

system represents a simplification with respect to the stainless steels on the chemical point of 

view, it also represents an apparently simple physical system for the validation of theoretical 

models describing the phase separation in binary alloys. Nevertheless, despite some 

simplifications, the Fe-Cr binary alloy still carries some peculiarities which considerably 

increase the difficulties related to its theoretical modelling. Such difficulties concern the still 

open issue of the Fe-Cr binary alloy phase boundaries at low temperatures and its very 

particular magnetic properties (in the next chapter it will be shown how these two aspects are 

closely related).     

 

1.1 Ferritic Steels 

 

Among the components of the primary circuit of PWRs, a particular attention is 

devoted to the austenitic-ferritic cast stainless steel elbows. These components are indeed 

submitted to intense mechanical stress in operating conditions and austenitic-ferritic stainless 

steels are long-time known to undergo embrittlement due to thermal ageing at temperatures of 

the order of the reactor operating ones [LeDelliou1994, Gendrot1999] (the temperature of the 

primary circuit austenitic-ferritic components can vary from 285° C to 323° C, depending on 

their distance from the reactor core [NOVY2009b]). The study of the behaviour of these 

materials during reactor operations requires, in particular, an understanding of the 

mechanisms of thermal ageing of the ferritic phase. Furthermore, ferritic steels are good 

structural materials candidates for both future generation nuclear fission reactors and fusion 

reactors prototypes [Kohyama1996, Hishinuma1998, Garner2000, Klueh207] because of their 

better response – as compared to austenitic steels – to radiation damage and, particularly, for 

their resistance to radiation induced swelling [Little1979, Gelles1982, Porollo1998, 

Konobeev2006]. We reproduce in figure 1-Ch1, measures – reported by Yvon and Carré 
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[Yvon2009] – of the hoop deformation (deformation orthogonal to both the radius and the 

rotation axis in rotationally symmetric samples) on different irradiated austenitic and ferritic-

martensitic steels. The ferritic steels have an iron-based body-centred cubic crystal structure 

(bcc). They are characterised by low carbon content (< 0.2 wt.%) and a chromium content 

between 10 wt.% and 30 wt.% (12 wt.% chromium makes the alloy resistant to oxidation) to 

which other alloying elements (e.g. Mo, Nb, Ti, Si, V) can be added in different 

concentrations to improve their mechanical or chemical properties [Baïlon2007]. In short, the 

main effects of these alloying elements and their concentration range in commercial steels are 

the following: molybdenum is added (up to 4.5 wt.%) to improve high temperature strength 

and hardness, niobium (up to 1.5 wt.%) improves the strength of the alloys for high 

temperature service, titanium (up to 1 wt.%) minimises intergranular corrosion, silicon (up to 

1 wt.%) is a deoxidising agent used during the melting of the steels and, at the same time, 

improves the strength and the elasticity, vanadium is added (up to 0.3 wt.%) to increase 

hardness, strength, creep resistance and impact resistance. In ferritic steels for nuclear 

applications, high activation solutes such as molybdenum and niobium are replaced with 

tungsten and vanadium. In ODS (Oxide Disperse Steels) - designed to improve the resistance 

of steel at high temperatures (above 800 K) – chromium concentrations can reach higher 

values (up to 14 wt.%) [Auger2011].  

 

 

Figure 1-Ch1 Hoop test performed on irradiated austenitic and ferritic-martensitic steels. The figure is from Yvon and Carré 

[Yvon2009]. 
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Oxidation resistance is a fundamental characteristic for primary circuit and reactor 

core materials. When one considers other degradation mechanisms such as hardening and 

embrittlement, the ferritic stainless steels exhibit a non-monotonic behaviour depending on 

chromium concentration. As a consequence, the optimal composition of steels for structural 

components of future generation reactors is still under investigation. From a macroscopic 

point of view, the radiation induced hardening of Fe-Cr steels increases with the chromium 

content [Matijasevic2008]. The study of the effects of chromium content in Fe-Cr binary 

alloys shows that the presence of a small amount of chromium (from 0.1 at.%) in an iron 

matrix promotes the formation of interstitial dislocation loops under neutrons and electrons 

irradiation [Okada1999]. Arakawa et al. [Arakawa2004] showed that chromium contributes to 

stabilise the interstitial loops: in a ferritic alloy containing 9 wt.% of chromium, dislocation 

loops are stable up to 820 K, whereas they disappear in pure iron above 620 K. Furthermore, 

the presence of chromium as an alloying element prevents the formation of voids created by 

irradiation [Porollo1998, Konobeev2006] thus diminishing the swelling phenomenon. A very 

significant effect which shows the non-monotonic properties of ferritic steels is the evolution 

of the ductile-to-brittle transition temperature (DBTT) and the shift of the ductile-to-brittle 

transition temperature (ΔDBTT) with the chromium content. Figure 2-Ch1 indicates that both 

the DBTT and ΔDBTT are minimal for a chromium concentration of 9 wt.% [Kohyama1996, 

Hishinuma1998].  

 

Figure 2-Ch1 Ductile to brittle transition temperature and ductile to brittle transition temperature shift for different 

chromium contents in Fe-xCr-2W-0,25V alloy. The figure is from Hishinuma et al. [Hishinuma1998].   

 

It is well known that ferritic steels with high chromium content undergo embrittlement 

when they are subjected to temperatures of about 475° C for a long period [Tisinai1957, 
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Grobner1973, LeDelliou1994, Lo2009]. This embrittlement is now recognised as being the 

result of the formation of chromium rich precipitates (α’ phase) during the thermal ageing 

[Lo2009]. The interaction between the dislocations and the precipitates is responsible for the 

hardening and the embrittlement of the alloy. Indeed the chromium rich clusters act as pinning 

centers and the α’ phase precipitates hinders dislocation motion [Baïlon2007, Bonny2009a, 

Lo2009, Soriano-Vargas2010, Malerba2008]. The latter aspect concerns not only the ferritic 

steels, but also the austenitic-ferritic steels in which the formation of precipitates of chromium 

may occur in the ferritic phase. The decomposition of a ferritic stainless steel in a chromium-

rich phase (phase α’) and an iron-rich phase (phase α) can occur by nucleation and growth or 

by spinodal decomposition. The first mechanism occurs if the second derivative of the free 

energy with respect to the chromium concentration is positive, the second if it is negative. The 

latter case means that the initial state which is a quenched solid solution is unstable and no 

thermodynamic barrier must be crossed for the decomposition to occur [Binder2001]. The 

precipitation mechanism (spinodal decomposition or nucleation and growth) depends on 

chromium concentration and temperature. It is often considered that the nucleation and 

growth unmixing mechanism leads to the formation of isolated α’ precipitates whereas the 

spinodal decomposition occurs throughout the whole volume of the alloy and leads to the 

formation of interconnected α and α’ domains. In reality, interconnected features in the 

microstructure cannot be seen as a signature of spinodal decomposition. Indeed, in 

concentrated alloys, where the number density of precipitates of the second phase is large, the 

spacing between the solute-rich clusters can be small enough to allow for interconnectivity. 

Thus, the interconnectivity of the microstructure in the late stages of the decomposition can be 

attributed to other mechanisms such as the coalescence of neighbouring particles or the 

coarsening of elastically favourable oriented precipitates [Wagner2001] (we remind that the 

coalescence is a phenomenon that consists in the merging of close precipitates which gives 

rise to a single bigger precipitate whereas the coarsening is the dissolution of small 

precipitates in favour of the growth of larger precipitates). The position of the spinodal limit 

remains controversial. In his early study on stainless steels thermal ageing, Gröbner 

[Grobner1973] observed, by transmission electron microscope, the formation of a chromium-

rich phase  in Fe-Cr alloys aged at 316 °C, 371 °C, 427 °C, 482 °C, and 538 °C and concluded 

that chromium precipitation occurs via the formation of isolated chromium-rich precipitates 

for a chromium concentration lower than 18 wt.%. Miller et al. observed, in the case of an Fe-

45 at.%Cr-5 at.%Ni, that the morphology of the domains seems to depend on temperature. In 

particular, between 400 °C and 500 °C, the two phases form an interconnected network 
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whereas for temperatures above 550 °C α’ phase forms as isolated  precipitates [Miller1996]. 

More recently Hättestrand et al. [Hättestrand2009] observed by transmission electron 

microscopy that the chromium-rich α’ phase may form in the ferrite phase of a duplex 

stainless steel Fe-25 wt.%Cr-7 wt.%Ni-4 wt.%Mo either via the formation of isolated 

precipitates or the formation of two interconnected phases. According to Hättestrand and co-

workers, the unmixing mechanism depends on both the ageing temperature and whether the 

material is cold-worked or not (cold-work rendering the formation of an interconnected 

structure more likely).  

 

1.2 The Fe-Cr binary alloy 

 

The Fe-Cr binary alloy is considered as the reference model for ferritic stainless steels, 

in particular it allows characterising the effect of the chromium on the properties of the alloy 

regardless of the presence of other solutes. The Fe-Cr system is therefore the subject of 

extensive studies, both theoretical and experimental.  

In this section, we will present the main topics on which Fe-Cr system studies focus. 

First, we will discuss the computation of the Fe-Cr phase diagram, particularly in the low 

temperature region. In this context, one of the most important issues is the definition of the 

boundary of the Fe-Cr miscibility gap and, in particular, the localisation of the chromium 

solubility limit in iron for temperatures approaching zero Kelvin.  

Secondly, we will discuss the phase separation mechanism that occurs when the Fe-Cr 

alloy is quenched in the miscibility gap of the phase diagram. The main theoretical 

approaches exploited to describe the Fe-Cr phase separation will be presented together with 

some of the experimental observations related to this aspect. 

Finally, we will describe the magnetic properties of pure iron, pure chromium, and 

their influence on the resulting Fe-Cr magnetic configuration. 

Pure iron and pure chromium have the same ground state structure, very close lattice 

parameter, and similar electronic structure. These characteristics should render the Fe-Cr 

system a quite simple model for binary alloy. They should allow to employ simple 

approaches, such as the regular solution model, for the study of the solid solution, and 

simplify the thermodynamic related to the phase separation (as it will be discussed in the 

subsection devoted to the unmixing mechanisms). Nevertheless, the magnetism of Fe-Cr 

system proves to be a major difficulty in studying the properties of the alloy. Indeed, we will 
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show, in the following chapters, that magnetism has a significant influence, not only on the 

thermodynamics of the alloy, but also on the kinetic aspect. 

 

1.2.1 The Fe-Cr phase diagram 

 

An essential information for understanding the microstructural evolution of an alloy is 

its equilibrium phase diagram. Concerning the binary alloy Fe-Cr, Xiong et al. have recently 

calculated the phase diagram using the CALPHAD method [Xiong2011]. The CALPHAD 

method consists in introducing, for the different phases, an expression of the free energy 

containing a given number of parameters and to adjust such parameters in order to fit a set of 

experimentally observed equilibrium thermodynamic properties. In the case of the phase 

diagram for the Fe-Cr binary alloy, the free energy expression is usually based on the ideal 

solution model improved by adding terms accounting for the excess properties.  

The experimental results Xiong et al. used as thermodynamic database to calculate the 

phase diagram of Fe-Cr are listed and discussed in reference [Xiong2010], the phase diagram 

they obtained [Xiong2011] is illustrated in figure 3-Ch1. The phases boundaries differ from 

those previously calculated by Andersson and Sundman [Andersson1987] and are in better 

agreement with available experimental results [Xiong2010, Xiong2011]. 

 

 

Figure 3-Ch1 Comparison between the equilibrium phase diagram of the Fe-Cr binary alloy calculated by Xiong et al. 

[Xiong2011] and the one calculated by Andersson and Sundman [Andersson1987]. The figure is from Xiong et al. 

[Xiong2011]. 

 

Xiong et al.,  2011

Anderson and Sundman ,1987
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The Fe-Cr phase diagram exhibits different solid phases: α, α’, γ or σ, depending on 

the temperature and the chromium concentration. The Fe-Cr phase diagram is characterized 

by a large miscibility gap where phase separation occurs between an Fe-rich phase (namely, 

the α phase) and a Cr-rich phase (namely, the α’ phase). Both the α phase and the α’ phase 

have a body centered cubic (bcc) structure. (. Xiong and co-workers used the same 

parameterisation as Andersson and Sundman [Andersson1987] for the free energy of pure 

chromium, whereas, for pure iron, they used the parameterisation proposed later on by Chen 

and Sundman [Chen2001]. This choice allows a description of pure iron in better agreement 

with the experimental data available at low temperatures. The γ phase has a face-centred cubic 

(fcc) structure. The σ phase is an intermetallic compound whose unit cell contains 30 atoms 

and is defined by the space group P42/mmm (a description of this space group can be found, 

for example, in reference [DeNault2007]) and has an embrittling effect on the alloy. Because 

of its extremely slow formation kinetics, the σ phase is rarely observed [Joubert2008]. To 

describe this phase, Xiong et al. used the thermodynamic modelling proposed by Joubert 

[Joubert2008] and fitted it to the experimental data presented in reference [Xiong2010]. They 

located the lower limit of its zone of formation at 774 K for a chromium concentration of 48.9 

at.% and the upper limit at 1093 K for a chromium concentration of 47.1 at.%.  

One of the most remarkable features of the Fe-Cr phase diagram is the existence of a 

large miscibility gap (see figure 3-Ch1) within which the α phase and α’ phase are likely to 

form. The position of the miscibility gap and, particularly, the position of the solubility limit 

in the iron-rich zone of the phase diagram are still topics under investigation, especially in the 

very low temperatures zone for which experimental data are missing. At very low 

temperatures, because of the very slow kinetics, the thermodynamic equilibrium cannot be 

reached in a time interval suitable for the experiments; therefore it is impossible to obtain 

experimental data in this area. As a consequence, the phase boundaries at low temperatures 

are usually extrapolated from experimental data obtained for higher temperatures. One of the 

first observations suggesting the existence of an Fe-Cr ordered solid solution for low 

chromium concentration has been the measure, by Mirebeau and Parette [Mirebeau1984], of 

short range order (SRO) parameter introduced by Cowley [Cowley1950]. The SRO parameter 

      in a solid solution Fe1-xCrx is defined as follows: 

 

        
  
     

   
,          (1) 
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where   is the chromium concentration and   
      is the conditional probability to find an 

iron atom in the i
th

 coordination sphere around a chromium atom.       equals zero if 

  
          (i.e. if the probability corresponds to the iron content and there is no 

preference for the chromium atoms to be surrounded by iron or chromium atoms, in which 

case the alloy behaves like an ideal solution). A positive value of       indicates a clustering 

tendency of chromium atoms whereas a negative value of       suggests the tendency 

towards the formation of ordered structures.    

In 1984 Mirebeau and Parette [Mirebeau1984] measured by neutron scattering, the 

SRO parameter of samples of various chromium contents (Fe0.85Cr0.15, Fe0.9Cr0.1 and 

Fe0.95Cr0.05). They observed that the SRO parameter is negative when the chromium 

concentration is 5 at.%, positive when the chromium concentration reaches 15 at.% and very 

close to zero when the chromium concentration is 10 at.%. As stated above, the sign change - 

from negative to positive - of the Cowley SRO order parameter identifies the transition from 

the tendency of chromium atoms to repel each other to the tendency of chromium atoms to be 

surrounded by atoms of the same type. This phenomenon is often interpreted as the evolution 

from an ordered structure to the formation of solute-rich domains. It is important to notice that 

Mirebeau et al., in their experience of 1984, measured the SRO only in the first four 

neighbour shells of the atoms. More recently, Mirebeau and Parette [Mirebeau2010] 

reproduced similar measures using an optimised experimental procedure (the signal to noise 

ratio was incremented by a factor 12). They also considered a greater number of chromium 

concentration values. Figure 4-Ch1, from reference [Mirebeau2010], shows the evolution of 

the quantity α12 with chromium content. The SRO α12 is the weighted (with respect to the 

coordination number) average between the value of the SRO associated with the first and 

second neighbour shells and is expressed by the following formula: 

 

    
           

       
 (2) 

 

where       and       are, respectively, the coordination number and the SRO associated with 

the i
th

 or j
th

 neighbour shells.  
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Figure 4-Ch1 α12 as a function of the chromium concentration measured by Mirebeau and Parette compared with predictions 

based on Monte Carlo simulation by Erhart et al. [Erhart2008] and Lavrentiev et al. [Lavrentiev2007]. The blue line 

corresponds to maximal repulsion between chromium atoms. The figure is from [Mirebeau2010]. 

 

Mirebeau and Parette’s results [Mirebeau2010] have been compared with the 

theoretical predictions of Erhart et al. [Erhart2008] and Lavrentiev et al. [Lavrentiev2007], 

who performed Metropolis Monte Carlo (MMC) simulations in the semi-grand canonical 

ensemble. In order to obtain the energies associated with the different structures, Erhart et al. 

used the Fe-Cr embedded atom method (EAM) cohesive model introduced by Caro et al. 

[Caro2005], whereas Lavrentiev et al. used the cluster expansion (CE) method 

[Sanchez1984]. Lavrentiev et al. simulations have been performed on a rigid lattice whrereas 

in Erhart et al. the atoms positions were relaxed by molecular dynamics between each MMC 

step. 

In a very recent publication [Dubiel2011], Dubiel and Cieslak measured by Mössbauer 

spectroscopy the SRO in binary Fe-Cr alloys with chromium concentrations up to 25 at.%. 

They too observed a sign change, from negative to positive, for α1 and a sign change, from 

positive to negative, for α2 and showed that the chromium concentration value for which the 

sign change of α1 and α2 occurs depends on the metallurgical process employed to prepare the 

samples. Furthermore, they did not observe the sign change of α12, which, according to their 

results, was negative whatever the chromium content for samples obtained by cold-rolling and 

positive for samples annealed at 800° C for 4 hours and quenched in liquid nitrogen. All 

samples considered by Mirebeau and Parette were shaped into cylinders, after an 

homogenisation at 800° C, they were heated at 520° C, gradually cooled down to 430° C and, 
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after few hours, quenched in water. These results indicate thus that the degree of 

decomposition or ordering strongly depends on samples’ metallurgical history.  

 

 

Figure 5-Ch1 Chromium solubility limit in iron obtained by Andersson and Sundman [Andersson1987] compared with 

extrapolations from Bonny et al. [Bonny2008] and Xiong et al. [Xiong2010] based on a series of experimental results. 

Experimental data are from references [Kuwano1985, Dubiel1987, Kuwano1988, Filippova2000]. The figure is from Xiong 

et al. [Xiong2010]. 

 

Figure 5-Ch1 shows a temperature-concentration phase diagram where the chromium 

solubility limit in iron was extrapolated by Bonny et al. in a review article [Bonny2008] and 

Xiong et al. [Xiong2010] on the basis of a series of experimental measurements.  Bonny et 

al.’s and Xiong et al.’s conclusions are compared with the solubility limit predicted by the Fe-

Cr phase diagram proposed by Andersson and Sundman [Andersson1987]. Recent results of 

Bergner et al. [Bergner2009, Heintze2011] are missing in figure 5-Ch1 and should be 

mentioned. These results have been obtained by small angle neutron scattering observation of 

neutron-irradiated Fe-Cr alloy at 300° C with different chromium concentrations and allowed 

the authors to locate the chromium solubility limit at 8.5at.%. Figure 4-Ch1 shows that Xiong 

and co-workers, unlike Bonny et al., do not draw a precisely defined solubility limit, but 

rather span it on a concentration range that becomes larger as temperature decreases because 

of the increasing uncertainty. The reason for this uncertainty is due, on the one hand, to the 

fact that experimental data miss as temperature decreases and, to the other hand, to the fact 

that most of the experimental results considered by Xiong et al. and Bonny et al. refers to 

observations made under irradiation. Bonny et al. consider that the only effect of irradiation is 

to enhance the atoms diffusion and accelerate the ordering or phase separation kinetics 

[Bonny2008]. Xiong et al. disagree strongly and point the fact that no experimental 
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observation supports this hypothesis [Xiong2010]. Indeed irradiation may alter the structure 

of an ordered phase [Abromeit2000] or induce solute precipitation by coupling between 

defect fluxes and atoms and, in general, does not allow samples to reach thermal equilibrium 

but only stationary conditions [Martin1984]. This implies that the points represented in figure 

5-Ch1 obtained from observations on irradiated samples do not necessarily capture the alloy 

at thermodynamic equilibrium. Therefore, the extrapolation of the equilibrium phase diagram 

from these points requires some care.  

 

1.2.2 Theoretical results regarding chromium solubility in iron at low 

concentrations 

 

The existence of a range of chromium concentrations for which the Fe-Cr mixture 

forms a thermodynamically stable solid solution (not necessarily ordered) at low temperatures 

was essentially suggested by theoretical predictions. One of the first remarkable results was 

obtained by Hennion who calculated, by the generalised perturbation method, the interaction 

potential of chromium-chromium pairs in a ferromagnetic iron matrix [Hennion1983]. At zero 

Kelvin the potential obtained by Hennion is negative when the chromium concentration is 

lower than 25 at.% and positive for greater chromium concentrations. Hennion results thus 

indicate that solutes atoms in an Fe-Cr alloy tend to maximise their distance (ordering 

tendency) or to form aggregates (unmixing tendency) if their concentration is lower or higher 

than 25 at.% respectively. One year later, the observations of Mirebeau et al. [Mirebeau1984, 

Mirebeau2010] showed that the chromium concentration limit, which separates the ordering 

tendency from the unmixing tendency is much smaller than the one proposed by Hennion.  

The existence of a chromium concentration domain (at zero Kelvin) in which 

introducing substitutional chromium atoms in Fe-Cr is energetically favourable has been 

predicted by many theoretical calculations based on the tight binding method or on the density 

functional theory (DFT)
2
 [Geng2003, Jiang2004, Olsson2003, Olsson2005b, Olsson2006, 

Klaver2006, Nguyen-Manh2008a, Nguyen-Manh2007, Ruban2008, Paxton2008, Nguyen-

Manh2008b, Nguyen-Manh2009, Korzhavyi2009]. One of the fundamental aspects that have 

been explored by these techniques is the evolution of the mixing enthalpy with chromium 

concentration as it is the quantity which determines the solubility limit at zero Kelvin. Olsson 

                                                           
2
 In the next chapter, we will introduce the density functional theory and its most common approximations. We 

will then present its most interesting findings about the Fe-Cr system and their theoretical implications.  
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et al. were among the first ones to show - by ab initio calculations within the DFT and taking 

into account the magnetic properties of the alloy – that the Cr-Fe mixing enthalpy is negative 

up to a chromium concentration of 6 at.% and positive for higher concentrations 

[Olsson2003]. Figure 6-Ch1 shows Olsson et al. results. 

 

 

Figure 6-Ch1 Fe-Cr mixing enthalpy as a function of chromium concentration obtained by DFT calculations. The figure is 

from Olsson et al. [Olsson2003]. 

 

Several other publications presenting DFT calculations of the Fe-Cr mixing enthalpy 

qualitatively confirmed Olsson et al. results.  

Note that ordinary ab initio techniques provide the energy of the ground state (T = 0 

K) of an assembly of atoms, ignoring the influence of temperature. The effects of temperature 

on the solubility limit can be partially addressed and studied by Monte Carlo simulation in 

semi-grand canonical ensemble.   

Since the publication of Olsson et al. ab initio results [Olsson2003], several studies 

whose goal was to develop an empirical model for the cohesive energy of the Fe-Cr system 

have been published. Empirical models are required to dispose of a predictive tool 

computationally more efficient than the DFT and able to provide a description of the Fe-Cr 

system consistent with DFT predictions. In such a context, semi-empirical many-body EAM 

(embedded atom method) potentials [Caro2005, Olsson2005a, Bonny2011a] and models 

based on cluster expansion [Sanchez1984, Lavrentiev2009, Lavrentiev2010] have been 

proposed. These models have been reviewed in a paper by Bonny et al. [Bonny2009b]. In the 

next chapter, we will present the empirical cohesive models we have chosen to perform our 

atomistic Kinetic Monte-Carlo simulations. 
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1.2.3 Thermodynamics of phase coexistence and the case of Fe-Cr 

 

Up to this point we focused our attention on the chromium solubility limit in iron. As 

previously stated, within a set of chromium concentration and temperatures which define the 

miscibility gap, the Fe-Cr alloy undergoes phase separation through the formation of an iron-

rich phase (α phase) and a chromium-rich phase (α’ phase). The decomposition of a 

supersaturated alloy into two distinct phases α and α’ usually occurs at constant temperature 

and pressure. The system reaches the equilibrium when its free enthalpy   is minimised. In a 

binary alloy at constant temperature, pressure and solute concentration, the equilibrium 

between the two phases α and α’ is achieved when elements chemical potentials in the two 

different phases are equal: 

 

  
    

  
          (3)  

 

where   stands for the atomic species (either Fe or Cr in the present case). Equation (3) can be 

written in terms of the free energy derivative with respect to the number of particle of a given 

species in each phase: 

  

(
   

   
)
      

 (
    

   
)
      

.          (4) 

 

The miscibility gap of the binary alloy can be divided in a metastable region and an 

unstable region according with the sign of the second derivative of the free energy with 

respect to the solute concentration. 
   

   
   corresponds to the metastable region whereas 

   

   
   corresponds to the unstable region of the solid solution. As stated in the previous 

section, if the alloy is quenched in the metastable region of the miscibility gap phase 

separation occurs via a nucleation and growth mechanism, if the alloy is quenched in the 

unstable region phase separation occurs via a spinodal decomposition. The nucleation 

mechanism is initiated by sufficiently large and localised thermal composition fluctuations 

which lead to the formation of stable solute-rich precipitates. It is a thermally activated 

process. The spinodal decomposition mechanism occurs when the system is unstable with 

respect to non-localised composition fluctuations of small amplitude, thus it is initiated by 

means of spontaneous formation and growth of composition fluctuations [Wagner2001].      
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The reduction of free energy which follows the phase separation is the driving force 

   of the transformation. The driving force is the sum of two contributions. The first 

contribution,      (chemical driving force), promotes the unmixing process and accounts for 

the reduction of the free energy due to the precipitation of the α’ phase from the 

supersaturated solid solution. The second contribution,     , accounts for a reduction of the 

driving force associated to the increase of the elastic strain energy taking place during the 

phase separation. In the case of homophase fluctuations,      is due to the variation of the 

lattice parameter with composition and depends thus strongly on the difference between the 

elements atomic radii. In the case of heterophase fluctuations, the nucleation activation energy 

barrier mainly depends on the matrix/precipitates interface formation energy. Coherent 

interfaces are energetically more favourable. As a result, the precipitates are usually coherent 

during the first stages of a phase separation.      is the energy cost required for the matrix 

and the precipitates to be coherent and it is due to the mismatch between the lattice parameter 

of the matrix and the one of the precipitating phase. The iron and the chromium lattice 

parameters are very close (a0(Fe) = 2.86 Å, a0(Cr) = 2.88 Å [Kittel1996]), and so are their 

atomic radius. As a consequence, in the case of the Fe-Cr phase separation, the driving force 

should be dominated by the chemical contribution.  

In the following part of this subsection we will briefly present the main features of the 

theoretical models which describe the phase separation mechanism for a binary alloy. We will 

first focus on the models accounting for the early stages of the phase separation (nucleation or 

spinodal decomposition) and then on the description of the late stages (growth and 

coarsening). 

 

1.2.3.1 Early stages of nucleation mechanism: 

  

Two main approaches exist for the description of the nucleation mechanism: the 

classical and the non-classical nucleation model. In both models, the precipitate is considered 

as interacting only with the matrix and the precipitate-precipitate interaction is neglected.  In 

the classical nucleation model (see, for example, [Wagner2001]) the nuclei of the 

precipitating phase (α’ phase) are considered as spherical droplets whose composition remains 

constant during the precipitation and who have bulk properties. Furthermore, the 

matrix/precipitate interface is considered as being sharp. The variation of the free energy 

induced by the formation of a coherent precipitate with radius   can be written as: 
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                     (5)       

  

where              is the driving force per unit volume (including both the chemical and 

the elastic contribution) and      is the formation energy per unit surface of the α/α’ interface. 

The first term exhibits a    dependence and accounts for the free energy gain due to the 

formation of the solute droplets; it represents a negative contribution to the free energy. The 

second term depends on    and accounts for the energy cost (it is a positive contribution to 

the free energy) due to the formation of the α/α’ interfaces. The positive quadratic term in 

equation (5) dominates when the droplet radius is lower than a critical value. When the 

droplet radius is higher than the critical value, the negative cubic term becomes dominant. 

      passes thus through a positive maximum corresponding to a critical radius    whose 

expression is: 

 

   
  

   

            
.          (6) 

 

Only precipitates with radius higher than the critical value will grow continuously. 

Hence, a localised composition fluctuation will become a stable nucleus only if it overcomes a 

nucleation energy barrier given by: 

 

           
    

   

            
 
.          (7) 

 

The precipitates size can increase via the condensation of solute atoms on the 

precipitates and decrease via the evaporation of solute atoms from the precipitates. It should 

be noted that, because of the stochastic nature of these processes, it is not impossible that a 

solute cluster with radius slightly higher than    dissolves again in the matrix. 

As stated above, in the classical nucleation model, the composition of the precipitates 

is assumed to be homogeneous and the matrix/precipitates interface is sharp. In the non-

classical nucleation theory, developed by Cahn and Hilliard [Cahn1958, Cahn1959a, 

Cahn1959b], the precipitates/matrix interface is considered to be diffuse because the solid 

solution, in its metastable state, is considered to contain homophase composition fluctuations 

with diffuse interfaces and a composition of the precipitates which varies throughout the 
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solute clusters. Therefore, in the non-classical nucleation model, a critical fluctuation must be 

characterised by its spatial extension and its spatial composition. The volume and the surface 

of the precipitates cannot be treated anymore as separate contribution to the free energy 

change of the system due to the phase separation. In order to develop their formalism, Cahn 

and Hilliard considered a coarse grained free energy depending on the local (evaluated in a 

sample volume   ) composition and composition gradient. They expressed the homogeneous 

solution free energy (ore equivalent free enthalpy) as: 

 

    
 
       ,          (8) 

 

and the inhomogeneous solution free energy as: 

 

   
 
              ,          (9) 

 

where    is the homogeneous solution composition and    is equal to the mean composition 

     within a volume    located at position   in the inhomogeneous solution and   is the free 

energy par unit volume. Equation (9) is obtained by assuming the free energy to be a function 

of the local concentration and its derivatives. They expanded the free energy in a Taylor series 

about the free energy per molecule of a solution with uniform composition and truncated the 

development to second order terms. Furthermore they considered the system to have cubic 

symmetry. The latter assumption introduces some constraints on the free energy spatial 

dependence because of the symmetry of the crystal (i.e. the free energy must be invariant to 

the sign change of each coordinate and to fourfold rotation about each axis). As can be seen in 

equation (9), the coarse-grained free energy of the inhomogeneous system depends on the 

gradient of the composition via the term         where    is the free energy gradient 

coefficient [Cahn1958]. The coarse-graining methodology requires the number of atoms 

within each volume element to be sufficiently large so that      and      can be introduced as 

continuous functions (i.e. functions which do not exhibit too sharp variations between 

adjacent volume elements). On the other hand the volume element must be sufficiently small 

in order to avoid phase separation to occur within   . 

In the framework of Cahn and Hilliard approach, the free energy change due to the evolution 

of the system from homogeneous to inhomogeneous (i.e. due to the phase separation process) 

is:  
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[                  ]  .          (10)        

 

The non-classical nucleation model provides a continuous description of the 

precipitates and does not require the matrix/precipitates interface to be sharp. It is based on 

the assumption that the free energy      varies slowly with the composition and requires the 

precipitating phase to be coherent with the matrix. If the lattice parameter changes with the 

composition, introducing a coherency strain, an elastic term has to be introduced in equation 

(10) which then becomes:  

 

           
 
[                            

 ]  ,          (11) 

 

where   (
 

  
) (

  

  
) accounts for the change of the lattice parameter (   being the lattice 

parameter of the homogeneous solid solution with composition   ) and   is a combination of 

elastic constants. It depends on the crystallographic direction of the composition modulation 

(the details on the derivation of the elastic energy term can be found, for example, in 

reference [Cahn1961]). As previously stated, the Fe-Cr system represents a rather simple case 

since pure iron and pure chromium have the same crystallographic structure and very similar 

lattice parameters. This fact allows the elastic term to be neglected in first approximation. If 

one neglects the free energy increase due to the coherency strain, a formal analogy can be 

established between equation (11) and equation (5), the latter describing the free energy 

change associated to the formation of solute droplets in the framework of classical nucleation 

model. Indeed, the positive contribution of the gradient energy         in equation (11), 

similarly to the interfacial term          in equation (5), can be regarded as the equivalent of 

an energy barrier opposing the nucleation. Such energy barrier can be overcome by the gain in 

chemical free energy when the composition difference between the fluctuation and the 

homogeneous solid solution is large enough. It must be emphasised the fact that the analogy 

between the         term in equation (11) with an interface energy term is more than simply 

formal. Indeed the composition gradient is non-zero only at the matrix/precipitate energy. 

Cahn and Hilliard have shown [Cahn1959b] that, in the case of an isotropic system, 

the composition profile      of a critical nucleus (  being the distance from the centre of the 

fluctuation) can be obtained by integrating the following equation:     
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          (12) 

 

and considering the following boundary conditions: 

 

  

  
      {

   
   

.          (13) 

 

The energy barrier that must be overcome for the critical nucleus to form in the 

homogeneous solid solution is: 

 

       (             (
  

  
)
 

)
 

 
    .          (14) 

   

The classical nucleation model is supposed to apply in weakly supersaturated solid 

solutions [Wagner2001]. As the supersaturation increases the matrix/precipitate interface 

becomes more and more diffuse and the non-classical nucleation model becomes more 

appropriated to describe the phase separation. Moreover, it should be noted that, when the 

supersaturation increases, the nucleus density in the matrix rises because of the increasing 

nucleation rate. As a consequence, the non-interacting precipitates approximation becomes 

less appropriate. It is clear that phase separation in supersaturated alloys represents a very 

complex scenario because of the breakdown of the simple classical nucleation theory on the 

one hand and the non-interacting precipitates approximation on the other hand. In this context 

it is very important to define a reliable criterion for the applicability of the simple classical 

nucleation theory. Cahn and Hilliard introduced such a criterion [Cahn1959b] by suggesting 

that the classical nucleation theory can be used for the modelling of the binary solid solutions 

phase separation if the following condition is fulfilled: 

     

  
   

   

     
  .          (15) 

 

Equation (15) simply states that the width of the diffuse interface    must be much smaller 

than the core of the nucleus where the composition is constant.   
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1.2.3.2 Precipitates growth 

 

Regardless of the nucleation mechanism (classical or non-classical), once stable nuclei 

are formed, they might be embedded in a still supersaturated matrix. Chemical potential 

difference between the supersaturated matrix and the precipitates can be seen as a kinetic 

driving force promoting precipitates growth. Two different phenomena are involved in the 

growth mechanism: the diffusion of solute atoms through the matrix and the diffusion of the 

solute atoms through the precipitates’ interface. The slowest process determines the growth 

rate. As the matrix becomes more and more depleted from solute atoms, the driving force is 

progressively reduced and solute diffusion through the bulk becomes slower and starts to 

drive the growth rate [Wagner2001]. Zener showed [Zener1949] that the precipitates radius 

grows with time as     . In this model, he considered that all the precipitates in the matrix 

were non-interacting spheres of the same size, that the solute concentration near the 

precipitates was equal to the equilibrium concentration of the α phase, and that the 

composition of the matrix far from the precipitates was equal to that of the homogeneous 

solution composition. Finally, he assumed that the diffusion coefficient in the matrix did not 

depend on the matrix composition. Zener’s precipitates growth law can be written as:    

 

     ( 
     

  

 
  
  

   
  )

 

 
    

 

           (16) 

 

where    is the homogeneous solution composition,   
  

 is the equilibrium composition of the 

α phase,  
  
  

 is the equilibrium composition of the α’ precipitates and   is the diffusion 

coefficient in the matrix. It should be noted that one of the roughest approximation introduced 

by Zener consists in considering that the solute concentration near the matrix/precipitate 

curved interface of the precipitates is equal to the equilibrium concentration of the α phase. 

This hypothesis completely neglects the Gibbs-Thomson effect which corresponds to the fact 

that the solute concentration near the matrix/precipitate interface depends on the curvature of 

the interface. The relation can be written as follows: 

 

        
  

   (
  

      

    
)          (17) 

 



 

31 
 

where   is the radius of the α’ precipitate,     is the volume of the precipitate and      is the 

formation energy of the α/α’ interface. Not considering the Gibbs-Thomson effect and 

assuming that all the precipitates have the same size are indeed closely related since the 

Gibbs-Thomson effect depend on the precipitates radius. It should be noted that Perez and 

Deschamps, in a recent work [Perez2003], used the classical nucleation and growth theory to 

model the carbide precipitation in low carbon steels. For the growth stage, they used the 

Zener’s approach that they modified to take into account the Gibbs-Thomson effect and the 

fact that nucleation can occur during the growth stage. Perez and Deschamps successfully 

compared their results with experimentally obtained Time-Temperature-Transformation 

diagram.    

 

1.2.3.3 Early stages of spinodal decomposition: 

     

If a homogeneous supersaturated alloy is quenched in the unstable region of the phase 

diagram (where 
   

   
   , the phase separation can occur through the spinodal decomposition 

mechanism. The first theoretical description of the spinodal decomposition in binary alloys 

[Cahn1961, Cahn1965] is based on the Cahn and Hilliard continuum description of the free 

energy (the formalism is the same as the one used for the formulation of the non-classical 

nucleation theory). If one considers equation (10), the difference            can be written 

as a Taylor development of the free energy about the free energy calculated for the 

homogeneous solution of composition   : 

 

                 
  

  
 

 

 
      

    

   
.          (18) 

 

Since            , equation (10) then becomes: 

 

           
 
[
 

 
      

    

   
                  

 ]   .          (19) 

 

If one considers sinusoidal concentration fluctuations,            , the 

subsequent variation of the free energy of the system is: 

 

  

 
 

  

 
(
   

   
          ).          (20) 
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If 
  

 
 is negative, the solution is unstable with respect to the fluctuation of wavelength 

  

 
. The right hand side of equation (20) is quadratic on the amplitude of the fluctuation so the 

stability of the solution does not depend on the amplitude. The coefficient    has to be 

positive, otherwise the solution would be unstable also outside of the spinodal region. As a 

consequence, for 
   

   
  , the solution is stable with respect to sinusoidal fluctuations of all 

wavelengths. If 
   

   
  , the solution is unstable with respect to sinusoidal fluctuations of 

wavelengths greater than a critical value: 

 

   
  

  
 [ 

     

   

   
    

]

 

 

.          (21) 

 

It must be emphasised the fact that the     term in equation (20), representing the 

elastic energy term due to the coherency strain, tends to stabilise the solid solution with 

respect to the composition fluctuations. Indeed, the energy cost necessary to respect the 

coherency constraint partially compensates the chemical free energy gain associated to the 

phase separation. The chemical spinodal line, separating the metastable region from the 

unstable region in a binary phase diagram, only accounts for the chemical contribution to the 

free energy. When one considers the elastic energy contribution to the free energy, the 

spinodal region is reduced by the stabilising effect of the coherency strain. In this case, a new 

spinodal line, the coherent spinodal, must be defined as the boundary between the zone where 

unmixing occurs through the nucleation mechanism and the zone where spinodal 

decomposition is observed. This issue can be neglected in the case of the Fe-Cr systems 

because of the small difference between the pure chromium and pure iron lattice parameters. 

Up to this point, we have described the thermodynamic aspect of the spinodal 

decomposition. A description of the kinetic evolution of the microstructure of a binary alloy 

A-B during the phase separation has been proposed by Cahn [Cahn1961, Cahn1965] by 

solving for the fluxes    the following equation: 

 

                ,          (22) 
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where   is defined by Cahn [Cahn1965] as the ratio of diffusional flux to the gradient in 

chemical potential. The       term can be obtained as the functional derivative of the free 

energy   [                      
 ] with respect to the concentration of species   in 

one of the two phases: 

 

      
  

   
.          (23) 

 

Finally, the well known Cahn-Hilliard equation can be obtained by considering Fick’s 

second law,      
       

  
, which is the continuity condition accounting for the conservation 

of the average solute concentration in the volume of the alloy, and considering only the linear 

functions of the composition. This corresponds to consider only the early stages of the phase 

separation. One obtains thus:     

 

       

  
  (

   

   
     )                      .          (24) 

 

Equation (24) determines the spatial and time dependence of the concentration 

fluctuation       , thus any random statistical fluctuation is considered during the phase 

separation. This drawback of the Cahn-Hilliard theory has been removed by Cook 

[Cook1970] who introduced a Gaussian noise term in the right hand side of equation (24). 

As a final remark on the spinodal decomposition mechanism, it must be emphasised 

that, as by Cahn et al. [Cahn1959b, Cahn1961], there is no sudden transition from the 

nucleation mechanism and spinodal decomposition: the nucleation mechanism approaches 

spinodal decomposition continuously with the increase of the supersaturation. 

  

1.2.3.4 Late stages: coarsening regime: 

 

The simple model of diffusional growth presented in equation 16 is based on the 

assumption that the precipitates are isolated and thus non-interacting particles, with uniform 

size. Moreover, as previously stated, it completely neglects the Gibbs-Thomson effect 

(equation 17). Such a model does not realistically describe the precipitates evolution beyond 

their nucleation stage. The main reason for that is the fact that, after the nucleation stage, the 

precipitates size distribution can be quite broad. According to the Gibbs-Thomson equation 
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(equation 17) the solubility near a small particle with a large surface to volume ratio is higher 

than near larger precipitates. As a consequence, the growth rate of a precipitate does depend 

on its size and hypothesis on which equation (16) is based brakes down. Because of the 

release of excess interfacial energy, larger precipitates will grow. On the other hand, small 

precipitates will dissolve. This process is called coarsening or Ostwald ripening and generally 

leads to the reduction of the precipitates number density. The coarsening of randomly 

dispersed precipitates is a very complex problem of multiparticle diffusion. The first 

theoretical description of the coarsening regime is the classical theory proposed by Lifshitz, 

Slyozov and Wagner (LSW) [Lifshitz1959]. The LSW theory of coarsening is based on the 

computation of the precipitates growth rate by taking into account the time evolution of the 

precipitate size distribution       . Lifshitz et al. computed the time evolution of the 

precipitates size distribution which satisfies the continuity equation: 

 

  

  
 

 

  
[ 

  

  
]   .          (25) 

 

By introducing the precipitate size dependence in Zener’s growth rate model, Lifshitz 

et al. had been able to take thus into account the Gibbs-Thomson effect. Using the following 

assumptions: 

 

1. The thermodynamics of both α and α’ can be described by a dilute solution 

model; and the linearised version of the Gibbs-Thomson equation can be 

considered. 

 

2. The precipitate volume fraction    
  

 
  ̅̅ ̅   (where    is the precipitate 

number density) is close to zero and the particles only interact with an infinite 

matrix. 

 

3. The decomposition is almost completed and the supersaturation is close to 

zero. 

 

Lifshitz et al. derived the time evolution of the mean precipitate radius  ̅    and of the 

precipitates number density       that, in the asymptotic limit (    , where    is the 

supersaturation), can be written as follows: 
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 ̅     
   

     
  

 
  

    
    

              (26) 

   

      
   

    
         

      .          (27) 

 

Since the LSW theory of coarsening is based on the assumption that the precipitate 

volume fraction is close to zero, it should not apply to the description of the late stages of the 

phase separation by spinodal decomposition because the latter mechanism is expected to 

occur for high solute concentrations. Attempts to extend the LSW theory of coarsening to 

systems characterised by high precipitate volume fraction have been unsuccessful 

[Binder2001]. Nevertheless, experimental observations [Novy2009a] and atomistic kinetic 

Monte Carlo simulations [Huse1986, Pareige2011] have shown that the time exponent 

predicted by the LSW growth law still holds in systems with high solute concentrations.  

 

1.2.3.5 Experimental observation and simulation of the Fe-Cr phase separation: 

 

As previously mentioned, Xiong et al. [Xiong2010] presented a series of experimental 

results concerning the characterisation of the unmixing regime in binary Fe-Cr alloys. They 

showed the difficulty to accurately locate the spinodal curve, i.e. the boundary between 

nucleation-growth and spinodal regimes. 

The experiences presented by Xiong et al. were mainly based on microstructure 

observations by small angle neutron scattering, Mössbauer spectroscopy, atom probe and 

transmission electron microscopy and were performed at temperatures between 673 and 823 

K. One of the reasons of the difficulty of locating the spinodal curve is that, as explained 

previously, the morphology of the unmixed structure cannot be considered as a fully reliable 

signature of the decomposition mechanism. Several studies concerning the evolution of the 

microstructure of the Fe-Cr alloy were recently published. From an experimental point of 

view, the tomographic atom probe is particularly suitable for such studies since it allows to 

obtain three dimensional reconstructions of the atomic positions [Danoix2000]. A series of 

articles have been recently published presenting comparative studies of the Fe-Cr 

microstructure evolution observed by tomographic atom probe and simulated by kinetic 

Monte-Carlo (KMC) and/or obtained by numerical solutions of the Cahn-Hilliard-Cook 
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equation [Miller1995, Hyde1995a, Hyde1995b]. Miller et al. Hyde et al. considered alloys 

containing from 17 to 45 at.%Cr aged at 773 K during 500 hours. They observed the 

formation of isolated chromium precipitates together with some interconnected regions for a 

chromium content of 24 at.% and an interconnected structure from a chromium content of 32 

at.%. As a consequence they proposed that the spinodal line should lie between 24 and 32 

at.%Cr at 773 K, considering that the interconnected regions observed in alloy containing 24 

at.% of chromium can be due to coarsening. More recent observations of Fe-Cr alloys by 

atom probe tomography [Novy2009a, Pareige2011] investigated the microstructure evolution 

during thermal ageing at 773 K of Fe-20 at.%Cr and Fe-25 at.%Cr. Novy and co-workers 

observed the formation of isolated precipitates in the Fe-20 at.%Cr alloy aged at 773 K - in 

agreement with previous observations of Bley [Bley1992] by small angle neutron scattering – 

whereas Pareige et al. observed interconnected structures in the Fe-25 at.%Cr alloy that they 

considered as the consequence of spinodal decomposition. Comparing their experimental 

results with those of KMC simulations, Pareige et al. [Pareige2011] found that the average 

width of the chromium-rich domains obtained from the simulations were about four time 

smaller than the values observed experimentally. Both Novy et al. [Novy2009a] and Pareige 

et al. [Pareige2011] showed that, despite the elevated matrix supersaturation, the time 

dependence of chromium-rich precipitates growth rate is described by the LSW coarsening 

theory in the late stages of the phase separation. KMC simulations have been largely used to 

investigate the separation phase mechanisms of the Fe-Cr system [Olsson2005a, 

Wallenius2007, Bonny2009c, Castin2010, Castin2011]. Bonny et al. and Castin et al. 

performed simulations of the thermal ageing of Fe-20 at.%Cr at different temperatures, and 

compared in particular the results they obtained at 773 K with those of Novy et al. 

[Novy2009a]. They obtained some success in reproducing the time dependence of the 

precipitates radius growth but quite unsatisfactory results about the comparison of the 

precipitate size. Olsson et al. [Olsson2005a], and Wallenius et al. [Wallenius2007] performed 

KMC simulations of the thermal ageing of Fe-10 at.%Cr and Fe-32 at.%Cr at 704 K. They 

observed the formation of isolated chromium-rich precipitates in Fe-10 at.%Cr and 

interconnected chromium-rich and iron-rich domains in Fe-32 at.%Cr. Their conclusions are  

that for the low Cr content, the Fe-Cr system underwent phase separation by means of 

nucleation and growth whereas in the other alloy spinodal decomposition occurred. Regarding 

the interconnected structure observed in the Fe-32 at.%Cr, it could simply result from a 

coarsening process since the authors did not provide any other argument to prove that the 

decomposition regime they observed was indeed spinodal decomposition.        
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1.2.4 Magnetic properties of Fe-Cr alloy 

 

As previously mentioned, the understanding (and modelling) of Fe-Cr alloys 

behaviour would seem somehow not to be a too complex task, as pure iron and pure 

chromium have the same crystallographic structure and very close lattice parameters in the 

temperature and concentration range pertinent with the service conditions in nuclear power 

plants. Nevertheless, the Fe-Cr binary alloy presents very complex and interesting properties 

because of magnetism. Pure iron is ferromagnetic, its Curie temperature is 1043 K 

[Xiong2010]. Pure chromium magnetic properties are more complex as below 311 K (Néel 

temperature), the local magnetic moments associated to each atom are oriented along an 

incommensurate spin density wave (SDW) [Fawcett1988]. The first observations by neutron 

diffraction suggesting the existence of this phenomenon were published by Corliss et al. in 

1959 [Corliss1959]. In 1962, Overhauser [Overhauser1962] showed that the magnetic 

configuration of the ground state of an ideal electron gas is a spin wave. DFT ground state 

calculations for pure chromium are not able to reproduce the incommensurate SDW magnetic 

configuration; they predict a ground state which, from the magnetic point of view, is 

characterised by a commensurate antiferromagnetic arrangement whose the period equals the 

lattice parameter [Hafner2001, Hafner2002]. However, the impact of this drawback is rather 

marginal when the calculation of the cohesive energy of crystalline structures is addressed 

since the energy difference between the commensurate antiferromagnetic configuration and 

the incommensurate SDW magnetic configuration is very small: its order of magnitude is 10
−3

 

eV [Hafner2001, Hafner2002, Soulariol2010]. Concerning the magnetic properties of Fe-Cr 

system, the importance of the existence of an incommensurate spin density wave in chromium 

at low temperatures (below its Néel temperature) is limited to chromium-based alloys 

containing a very small percentage of iron. Indeed, Tsunoda drew a magnetic phase diagram 

of Fe-Cr alloy based on the available experimental observations [Tsunoda1994] which shows 

that, below the Néel temperature, above an iron concentration of 1.5 at.%, the Fe-Cr system is 

antiferromagnetic with a period equal to the lattice parameter (AF0 in figure 7-Ch4). A very 

small amount of iron in chromium is enough to destroy the incommensurate spin density 

wave configuration. Figure 7-Ch1 shows the phase diagram proposed by Tsunoda: for very 

low iron contents (<1.5 at.%), the local magnetic moments of the atoms in the structure are 

oriented along a longitudinal (L-SDW) or transverse (T-SDW) spin density wave depending 
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on the temperature. When the iron concentration lies between 1.5 at.% and about 2 at.%, the 

L-SDW phase is completely removed whereas the T-SDW phase can only be observed within 

a small temperature range. Finally, when chromium content exceeds 2 at.%, the system 

exhibits a commensurate antiferromagnetic  configuration with a period equal to the lattice 

parameter (AF0 in figure 7-Ch4) at temperatures below 250 K and is paramagnetic at higher 

temperatures. The research of materials for the nuclear industry focuses on iron-based alloys 

whose service temperature is above the chromium Neel temperature; as a consequence, in the 

context of this work, it is very reasonable to consider that the magnetic ground state of 

chromium corresponds to a commensurate antiferromagnetic configuration. 

 

 

Figure 7-Ch1 Magnetic phase diagram of Cr-Fe alloy. The figure is from Tsunoda et al. [Tsunoda1994] 
 

In the following of this manuscript we will show that the magnetic interactions 

between the iron atoms constituting the matrix and solute chromium atoms is a fundamental 

issue when one is interested in the thermodynamic and kinetic properties of the Fe-Cr alloy. It 

is therefore necessary to consider, as a starting point for the study of Fe-Cr, some 

experimental and theoretical results illustrating the effects that introducing chromium atoms 

in an iron matrix has on the arrangement of the local magnetic moments of the atoms. Aldred 

performed magnetisation measurements on iron-based alloys with a chromium content 

between 2 and 70 at.% and showed that the chromium atoms magnetic moments tend to be 

oriented in opposite direction with respect to the iron atoms of the matrix and that their 

absolute value decreases when the chromium concentration increases [Aldred1976a]. This 

result has been confirmed by observations, using neutron scattering, of Aldred et al. and 
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Kajzar et al. [Aldred1976b, Kajzar1980] and, more recently, by the DFT calculations of 

Klaver et al. [Klaver2006] and Nguyen-Manh et al. [Nguyen-Manh2009]. The DFT 

calculations showed the link between the reduction of the local magnetic moment absolute 

value of the chromium atoms and the increase in the chromium local concentration. Indeed, 

when chromium concentration increases, magnetic frustration rises as the result of the 

competition between the tendency of the chromium atoms to orient their magnetic moments in 

antiparallel direction with respect to those of the surrounding iron atoms and in an 

antiferromagnetic configuration with respect to the chromium atoms. 

 

In this chapter, we discussed the importance of ferritic steels in the context of 

operating nuclear reactors and the reasons why they are leading candidates for structural 

materials in future generation nuclear power plants. We then presented the Fe-Cr binary alloy 

as a simplified system for the modelling of the ferritic phase of stainless steels. We discussed 

recent researches concerning the Fe-Cr phase diagram and, in particular, the still open issue 

concerning the phase boundaries at low temperatures. We briefly outlined the theoretical 

models describing the thermodynamics of phase coexistence in a binary alloy quenched in 

the miscibility gap and discussed the reason why the Fe-Cr alloy represents a simple system 

for the validation of such models. We then discussed the fact that, even if the Fe-Cr binary 

alloy is a simplified system with respect to ferritic stainless steels, especially for studying the 

time evolution of the microstructure at a given temperature, it still carries some difficulties 

that are mainly due to its very particular magnetic properties. 
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2. SIMULATION METHODS 
 

 

In chapter 2, we will introduce the theoretical methods that we exploited in order to 

investigate some properties of the Fe-Cr system: from the cohesive energy associated to a 

given configuration to the migration energy of a vacancy introduced in the structure. The 

latter being a fundamental issue for our further investigation of the kinetic properties of the 

Fe-Cr binary alloy. 

In section 2.1, we will describe the theoretical foundations of the two cohesive models 

(i.e. the density functional theory and the embedded atom method interatomic potentials) 

which we used to compute the ground state energy associated to a given Fe-Cr structure. In 

the case of the embedded atom method approach, we will briefly describe the Fe-Cr 

interatomic potentials available in the literature and we will present some arguments leading 

to the choice of the more appropriate one for describing the Fe-Cr system.   

In section 2.2, we will present and discuss some preliminary calculations performed 

within the density functional theory end the embedded atom method. First, we will compare 

the density functional theory and the Fe-Cr embedded atom method potential results about the 

chromium-chromium and the chromium-vacancy binding energy as well as the vacancy 

formation energy in pure iron and pure chromium. Second, we will use the density functional 

theory to sketch out some magnetic properties of substitutional chromium atom in a pure iron 

matrix. 

In section 2.3, the methods we will use for computing the vacancy migration energy 

within both the density functional theory and the embedded atom method will be introduced; 

some tests that we performed in order to optimise the parameters pertinent to these techniques 

will be illustrated. 
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2.1 Cohesive models: DFT & EAM potentials 

 

One of the basic tasks necessary to build a thermodynamic and kinetic description of a 

crystal – a binary alloy in our case – is to estimate the underlying energies of the system. 

From a thermodynamic point of view, it is important, for example, to determine the 

configuration of the system which minimises the cohesive energy. On the other hand, to 

investigate the evolution of the system, the potential energy associated to a particular 

configuration is the essential starting point to determine the minimal energy path for a given 

transition to occur.    

From a quantum mechanical point of view, computing the energy of a crystal 

corresponds to computing the eigenvalues of the Hamiltonian operator, which implies solving 

the Schrödinger equation: 

 

 ̂              (1) 

 

where  ̂ is the Hamiltonian operator,   is the many-body wavefunction and   is the energy.    

The time-independent Schrödinger equation describing   interacting particles is 

exactly solvable, under some assumptions (e.g. the potential generated by each interacting 

particle has a spherical symmetry), only for    . If    , an approximated approach is 

necessary to solve the so called quantum many-body problem. "Ab initio" methods are a class 

of techniques whose aim is to provide an approximate solution for the quantum many-body 

problem. It should be emphasised that, despite the denomination "ab initio" – which is related 

to the fact that these techniques requires the number of atoms and their species as the only 

initial data to solve the Schrödinger equation –, these techniques rely on a certain number of 

approximations.     

 

2.1.1 Density Functional Theory  

 

A widely exploited "ab initio" approach in solid state physics is Density Functional 

Theory (DFT). DFT allows to compute the ground state energy associated to a many-electron 

time-independent Hamiltonian. 

The Hamiltonian operator describing an ensemble of interacting atoms can be written 

as: 
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|     |
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|     |
                 (2)  

 

where   is the reduced Plank’s constant,   ,   and    are the electron mass, electric charge 

and position,   ,    are the mass and the electric charge of a nucleus at position   ,    and    

are the nabla operators acting on the electrons wavefunctions and the nuclei wavefunctions 

respectively.  

The Schrödinger equation associated to Hamiltonian (2) is: 

 

 ̂                            (3) 

  

The first approximation which is introduced in DFT is the Born-Oppenheimer 

approximation. It assumes that, because of the mass difference between the nuclei and the 

electrons (the nucleus mass is at least three orders of magnitude higher than the electron 

mass), electrons can be considered as moving in the potential generated by fixed nuclei. As a 

consequence of the Born-Oppenheimer approximation, the Hamiltonian of the system can be 

written as a many-electron Hamiltonian containing a term representing the external potential 

generated by the nuclei: 

 

 ̂   ̂   ̂     ̂             (4) 

 

where  ̂  is the electrons kinetic operator,  ̂    is the electron-electron interaction operator and 

 ̂    is the operator accounting for the electrons’ interaction with the external potential 

generated by the nuclei. To describe the Hamiltonian for the whole system (the electrons plus 

the nuclei) the nucleus-nucleus interaction operator  ̂    should also be taken into account. 

Despite the simplification of nuclei contribution to the Hamiltonian of the system by means of 

the Born-Oppenheimer approximation, the many-body problem holds and the solution of the 

Schrödinger equation remains a hard task. One of the main features of the way DFT provides 

an approximate solution of the many-body problem consists in reformulating the problem by 

considering the electron charge density as the main variable instead of the wavefunction. A 

complete description of DFT is given, for example, in reference [Martin2004].   

DFT is conceptually based on the Thomas-Fermi model (for a complete description of 

the model see, for example, [Parr1989]) which represents the first attempt (in the 1920’s) to 



 

43 
 

express the total energy of an ensemble of atoms as a functional of the electron density. The 

Thomas-Fermi model is based on the assumption that the electrons are uniformly distributed 

in the six dimensional phase space and that they obey the Fermi-Dirac distribution. Starting 

from these considerations, Thomas and Fermi introduced an expression of the electrons 

kinetic energy as a functional of electron density and derived a total energy functional by 

adding two terms accounting for the nucleus-electron and electron-electron electrostatic 

interactions. Finally, they assumed that the real ground-state electron density is the one which 

minimise the total energy functional. Forty years later, Hohenberg and Kohn demonstrated 

this latter assumption and proved that the many-body quantum problem can be rigorously 

formulated considering the many-electron density instead of the many-electron wave function. 

The Thomas-Fermi model turned out to be an oversimplified version of modern DFT.  

 

2.1.1.1 Hohenberg and Kohn theorems 

 

The Hohenberg and Kohn theorems [Hohenberg1964] represent the theoretical basis 

for the formulation of DFT. They prove that the many-body problem can be formulated in 

terms of electron density rather than many-electron wavefunction. If the many-electron 

wavefunction is normalised, then the electron density is: 

 

     
⟨ | ̂   | ⟩

⟨ | ⟩
                                             (5) 

 

where  ̂    ∑        
 
    is the density operator,   is the number of particles and    are 

the position vectors associated to each particle. The first Hohenberg and Kohn theorem states 

that for all systems of interacting particles in an external potential     , the external potential 

     is determined up to an additive constant by the knowledge of the ground state electron 

density      . The second Hohenberg and Kohn theorem states that the energy of the many-

electron system can be defined as a functional    [ ] of the density      regardless of the 

choice of     : 

 

   [ ]     [ ]      [ ]                               (6) 

 

and that the absolute minimum of the functional    [ ] corresponds to the energy ground 

state of the system and the electron density      which minimise    [ ] is the ground state 
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electron density      . The Hohenberg and Kohn theorems have two fundamental 

consequences: 

 

1) The Hamiltonian operator of a many-electron system can be expressed as a 

functional of the electron density. 

 

2) A variational approach for computing the energy ground state can be exploited 

when the many-electron problem is formulated in term of electron density.        

 

Simple demonstrations of the Hohenberg and Kohn theorems can be found in 

references [Parr1989] and [Martin2004]. It should be noticed that Hohenberg and Kohn 

theorems also hold when the spin degree of freedom of each electron is taken into account. In 

the latter case the electron density depends not only on position but also on a spin variable: 

 

                            (7) 

 

and the energy of the system will depend both on electron density and spin density: 

 

     [   ]          (8) 

 

where the spin density can be written as:   

 

                  .          (9) 

 

The many-body problem can be formulated exactly in terms of the electron density 

which is a function depending on a position vector   and, possibly, a spin degree of freedom 

rather than the more complex and more abstract many-body wavefunction. However, the 

Hohenberg and Kohn theorems do not provide a solution of the many-body Schrödinger 

equation. 
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2.1.1.2 Kohn-Sham equations 

 

It was thanks to the work of Kohn and Sham [Kohn1965] that DFT became an 

exploitable approach for ground state energy calculations. The Kohn and Sham method allows 

solving the many-body problem in the framework of Hohenberg and Kohn theorems and 

provides the energy and the wavefunction of the ground state of an  -electrons system.   

The Kohn and Sham achievement basically consists in replacing the  -body problem 

by   single body problems. In the Kohn and Sham picture, each electron is described with a 

single particle time-independent Schrödinger equation where the potential accounts for all 

exchange-correlation and Coulomb interactions due to the presence of all other electrons. The 

consistency of this point of view relies on the following assumption: the electron density of 

the ground state of   interacting particles can be expressed as the electron density of the 

ground state of   non-interacting particles which experience an external potential. The non-

interacting particle system can be described with a Hamiltonian with a kinetic part represented 

by the usual operator  
 

 
   and a potential     

     which acts on an electron at position   

with spin   and accounts for exchange-correlation effects. The Kohn-Sham effective 

Hamiltonian is:  

 

 ̂  
   

 

 
    ̂   

    .          (10) 

 

Once the   
     one-electron eigenfunctions associated to the Kohn-Sham 

Hamiltonian  ̂  
  has been computed, the electron density of the real system can be obtained 

by: 

 

     ∑        ∑ ∑ |  
    |   

     .          (11) 

 

The expectation value of the kinetic energy of the system is given by the average of 

the kinetic operator: 
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              (12) 

 

while the Coulomb energy due to electron-electron interaction can be written as: 
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  [ ]  
 

 
      

         

|    |
.           (13) 

 

Thus, the total Kohn-Sham energy can be written as an electron density functional: 

 

   [ ]     [ ]                   [ ]          [ ],          (14) 

 

where    [ ]  carries all exchange-correlation effects. Energy    [ ]  can be defined from 

Hohenberg and Kohn functional (equation 6):  

 

   [ ]               [ ]    [ ]  〈 ̂  〉     [ ]  〈 ̂   〉    [ ].          (15) 

 

In this scheme    [ ] is the difference between the energy of the   interacting electron 

system and the fictitious   uncoupled electrons system. From this point of view,    [ ] 

accounts for the difference between the kinetic energy of non interacting electrons (fictitious 

system) and the kinetic energy of interacting electrons (real system) and the difference 

between the total interaction energy of the electrons and the Coulomb contribution. In order to 

find the ground state energy associated to the Kohn-Sham Hamiltonian, the variational 

method can be used to find the minimum of    [ ]  functional with respect to the 

wavefunction. This approach leads to the following variational equation: 

 

    

   
     

 
    

   
     

 [
     

       
 

   

       

    

       
]

       

   
     

  .          (16) 

 

By considering the following relations: 

 

    

   
     

  
 

 
    

              (17) 

 

       

   
     

   
              (18) 

 

and wavefunction orthonormalisation constraints ⟨  
 |  

  
⟩         , equation (16) leads, via 

the Lagrange multiplier method, to the Kohn-Sham equations [Martin2004]: 
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  ̂  
    

     
                (19) 

 

where the Kohn-Sham Hamiltonian  ̂  
  is 

 

 ̂  
   

 

 
   

     

       
 

   

       

    

       ⏟            
 ̂  

 

.          (20) 

 

The Kohn-Sham equations are iteratively solved with a self-consistent approach: a 

trial electron density is used to compute the Kohn-Sham Hamiltonian operator, the 

Hamiltonian operator is diagonalised and the one-electron wavefunctions are calculated.  Self-

consistency is achieved via the computation of the electron density of the  -electron system 

from equation (11). Once the electron density obtained, the total energy of the system is 

computed as: 

 

  ∑ (∑   
  

    
 

 
                   

|    |
    [ ]              )           (21) 

 

where  

 

    
    

       
  and 

 

 ∑ ∑    
  

    ∑ ∑ ⟨  
 | 

 

 
    ̂  

 |  
 ⟩     [ ]              

  

    . The nuclei of the 

structure are then relaxed by computing the interatomic forces from equation (21) via the 

Hellmann-Feynman theorem [Parr1989]. 

 

The form of equations (19) does not depend on the choice of the functional    , thus 

the Kohn-Sham approach to the solution of the  -body problem is rigorously exact up to this 

point.   

 

 

 

 

 



 

48 
 

2.1.1.3 The Local Density Approximation (LDA) and Generalised gradient 

Approximation (GGA) approximations for the exchange-correlation 

functional 

 

The first approximation which is introduced to solve the Kohn-Sham equations 

concerns the functional form of the exchange-correlation energy    [ ]  from which the 

exchange-correlation potential is obtained as the functional derivative with respect to the 

electron density:     
    [ ]

       
. Kohn and Sham proposed [Kohn1965] to express    [ ] as a 

local functional of the electron density (Local Density Approximation) with the following 

form: 

  

   
   [ ]            [    ]          (21) 

 

where    [    ] is the exchange-correlation energy per particle. Within the LDA approach, 

the exchange–correlation energy is chosen as being equal to the one of a homogeneous 

electron gas with density     . LDA can be extended to local spin density approximation 

(LSDA) if spin degree of freedom is taken into account. Neglecting spin-orbit coupling, the 

electron density can be written as a function of the position and a spin variable:  

 

                  .          (22) 

 

thus, the exchange-correlation energy in LSDA framework is: 

 

   
    [     ]            [             ].          (23) 

 

Equation (23) holds in the case of collinear spins (the spin quantification direction is 

the same for all particles) but LSDA can be further generalised to the case of non-collinear 

spin. Even if LDA and LSDA seem to be quite rough approximations, they provide a 

satisfactory description of many systems. However, they are less accurate for the study of 

transition metals, in particular LSDA fails to capture the ground state of iron. Indeed LSDA 

provides slightly lower ground state energy for the non-magnetic hexagonal close packed 

(hcp) iron than for ferromagnetic iron [Burke2007]. The improvement of the LSDA 

approximation is the generalised gradient approximation (GGA) which consists in introducing 
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a non-local dependence of exchange-correlation energy on electron density. In the GGA 

framework, a dependence on the gradient of the electron density is introduced in the     

functional, thus the exchange-correlation energy is: 

 

   
   [     ]            [                             ].          (24) 

 

While LDA and LSDA are uniquely defined, different parameterisations exist for the 

implementation of GGA. The most widely used parameterisations of GGA are those 

introduced by Perdew, Wang (PW91) [Perdew1991, Perdew1992] and by Perdew, Burke and 

Ernzerhof [Perdew1996]. The GGA predicts the experimentally observed ferromagnetic bcc 

phase for the ground state of iron [Domain2001, Postnikov2003]. In all DFT calculation 

which will be presented and discussed in this work the GGA approach has been used with 

PW91 parameterisation of Perdew and Wang.     

 

2.1.1.4 Kohn-Sham wavefunction development and description of the electron-ion 

interaction (pseudopotentials and the Projector Augmented Wave (PAW) 

method)  

 

Beyond the choice of the functional form of the exchange-correlation energy, the 

Kohn-Sham method for the solution of the  -body problem requires a further approximation 

effort which concerns the representation of the one-electron wavefunctions and the 

description of the ion-electron interactions.  

In periodic crystalline structures, the potential generated by the ions is symmetric 

under discrete translations and so is the Hamiltonian of the system. As a consequence, the 

Bloch theorem (see [Bloch1928] for the original paper, or [Ashcroft1976]) is verified and 

one-electron wavefunctions obey the Bloch condition: 

 

                            (25) 

 

where   is the Bloch wave vector and   is the lattice translation vector. If the Kohn-Sham 

Hamiltonian eigenfunctions and eigenvalues computation is performed in reciprocal the 

space, then the translational symmetry will apply to one-electron energy eigenvalues, so that: 
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                 (26) 

 

where   is a reciprocal lattice vector. From equations (25) and (26) follow that all the 

properties of the whole crystal can be obtained by solving the Kohn-Sham equation in the first 

Brillouin zone. In order to implement the numerical solution of the Kohn-Sham equations, the 

one-electron wavefunction must be developed on a finite dimension basis set. The choice of 

the basis set is done together with some approximations concerning the way the ion-electron 

interaction potential is described and taken into account. Plane waves can be used as basis set 

to develop the one-electron wavefunctions. In this case, the wavefunctions are expressed as 

follows: 

 

      ∑      
        

 .          (27) 

 

To be numerically tractable, the plane waves development must be truncated to an 

appropriate value of   which allows a good description of the wavefunctions with low 

numerical cost. This can be achieved for slowly varying wavefunctions as the ones of valence 

electrons are. However, in the core region, wavefunctions have a rapidly oscillating behaviour 

and a very large number of plane waves must be included in the expansion in order to 

guarantee the convergence towards the real wavefunction. A widely exploited procedure to 

deal with this issue consists in defining a distance    from the ions which represents the limit 

between the core region (     ) and the valence region (     ). Core electrons are 

considered as "frozen" in the core region. The valence electrons experience a potential which 

is smoothed in the core region with respect to the 
 

 
 potential (where   is the atomic number of 

the ions and   is the distance from the ions) because of the screening effect due to the core 

electrons. The real wavefunction   
        is then replaced with a smoothed pseudo-

wavefunction   
      which is an eigenfunction of a Kohn-Sham equation where the external 

potential has been replaced with the pseudopotential. The following constraints must be 

satisfied:    

 

1. Real and pseudo valence eigenvalues agree for a given atomic configuration. 

 

2. Real wavefunction   
        and pseudo-wavefunction   

      are identical for 

    . 
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3. The total charge of each pseudo-wavefunction equals the charge of the real 

wavefunction in core region (norm-conservation condition): 

   |  
     |

 
   

  

 
   |  

       |
 
  

  

 
.  

 

The method described above is the norm-conserving pseudopotentials approach 

[Hamann1979]. 3d transition metals are characterised by strongly varying atomic orbitals. In 

such context the norm-conservation is a strong constraint which requires large plane waves 

basis set to be fulfilled. In the Ultrasoft pseudopotential approach (USPP), introduced by 

Vanderbilt [Vanderbilt1990], the norm-conservation condition is relaxed. As a consequence a 

more efficient smoothing of the wavefunctions in core region is possible and the 

wavefunctions can be expanded on a smaller basis set with respect to the case of norm-

conserving pseudopotentials. One drawback is that the USPP approach can lead to a bad 

estimation of the electron density in the core region [Martin2004]. Another approach 

describing the electron-ion interactions is the projector augmented wave (PAW) method 

[Blöchl1994]. In principle, the PAW method is an all-electron approach which allows a more 

accurate description of the core region and valence region with respect to pseudopotential 

methods. In the PAW method, core electron wavefunctions are expanded in terms of atomic 

orbitals. Concerning the description of the valence electrons, the PAW technique consists in 

introducing a linear transformation   which maps a set of smooth auxiliary wavefunctions 

 ̃   , suitable for a plane wave expansion, onto real wavefunctions     : 

 

       ̃   .          (28) 

 

The variation principle can be applied to auxiliary wavefunctions to find the ground 

state of the system and the real wavefunctions can be retrieved via the transformation  .   is 

defined as: 

 

    ∑              (29) 

 

where   is the identity operator and    is the difference between the real and the auxiliary 

wavefunctions at site  . Operator    vanishes beyond a distance    defined as being the limit 

of the core region. In the core region (i.e. where |   |    ), valence electron 
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wavefunctions can be expanded in terms of auxiliary partial waves defined in the framework 

of quantum scattering theory. Hence, in the core region corresponding to each site, the real 

wavefunctions of the valence electrons can be written as: 

 

     ∑                   (30)   

 

 for |    |       where    stands for the position vector of site   (   also depends on 

atomic site because different atomic species can be included in the structure). The index   in 

equation (30) runs on all atomic sites and on quantum numbers which identify the partial 

waves. Since the valence electron wavefunctions must be orthogonal with respect to core 

electrons wavefunctions, the partial waves       must be chosen orthogonal to the atomic 

orbitals which are employed as basis set for the expansion of the core electron wavefunctions. 

For each partial wavefunction, an auxiliary partial wavefunction can be introduced and 

auxiliary real wavefunctions can be expanded on an auxiliary partial wavefunction set: 

 

 ̃    ∑  ̃  ̃     .          (31) 

 

The expansion coefficients  ̃  are obtained from the scalar product ⟨ ̃ | ̃⟩ where 〈 ̃ | is 

the dual vector of state | ̃ 〉. 

Thus, the local (local refers to the core region corresponding to a single atomic site) 

action of    operator on valence electron auxiliary wavefunctions can be defined by its action 

on the auxiliary partial wave states (partial waves are the position representation of partial 

wave states): 

 

  | ̃ 〉  |  〉  | ̃ 〉,          (32) 

 

where |  〉 and | ̃ 〉 are the partial wave states for the real wavefunctions and the auxiliary 

wavefunctions respectively. The action of    on an auxiliary state will be: 

 

  | ̃〉  ∑    | ̃ 〉⟨ ̃ | ̃⟩  ∑ (|  〉  | ̃ 〉)⟨ ̃ | ̃⟩ .          (33) 

 

Operator   can then be written as:              
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    ∑ (|  〉  | ̃ 〉) 〈 ̃ |,          (34) 

 

and | 〉  | ̃〉  ∑ (|  〉  | ̃ 〉) ⟨ ̃ | ̃⟩  

     

The USPP and the PAW are very similar approaches except for the fact that PAW 

provides a more accurate description of the core region than USPP does. Many properties of 

materials, such as bond length or bulk modulus, are described with equal accuracy by USPP 

and PAW but this is not the case for magnetic properties such as magnetisation energy or 

atomic local magnetic moment for which PAW approach is more reliable than USPP 

approach [Kresse1999]. In the particular case of Fe or Cr structures, Olsson et al. have shown 

that experimental measurement of local magnetic moment is better reproduced with the PAW 

method than with the USPP approach [Olsson2007].  

 

In this work, all DFT calculations have been performed using the Vienna Ab initio 

Simulation Package (VASP) [Kresse1996a, Kresse1996b] implemented with the projector 

augmented wave method  [Blöchl1994] in the general gradient approximation (PAW-GGA) 

with the Perdew and Wang parameterisation (PW91) for the exchange correlation energy 

functional [Perdew1991, Perdew1992]. The Brillouin zone sampling has been done using the 

Monkhorst-Pack scheme [Monkhorst1976]. We performed spin-polarised calculations within 

the collinear approach: all spin variables are oriented along the same direction. The Vosko et 

al. correction on the interpolation of the correlation energy [Vosko1980] has been 

systematically taken into account. In all our calculations, the iron matrix has been initially 

placed in its ground state ferromagnetic configuration with local magnetic moment (LMM) of 

2.1 µB, close to the experimentally observed value of 2.22 µB [Kittel1996]. Chromium atoms 

have been introduced in the system by replacing iron atoms. Following Klaver et al. DFT 

calculations [Klaver2006] the initial LMM of isolated chromium atoms have been oriented 

anti-ferromagnetically with respect to the matrix iron atoms. When two or more chromium 

atoms are close to each other in the matrix, their LMM are oriented ferromagnetically, if they 

are second nearest neighbours (2nn) and anti-ferromagnetically, if they are first nearest 

neighbours (1nn). Unless otherwise specified, all along this work, we performed the DFT 

computation of the ground state energy associated to a given structure under the following 

conditions. We considered a simulation box containing 250 atoms. The initial absolute value 

of the chromium magnetic moment has been set to 0.6 µB, according to the experimental 
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value of the amplitude of the spin-density wave observed in pure chromium structures 

[Fawcett1988]. The cut-off energy has been set at 300 eV. The first Brillouin zone has been 

sampled with a mesh of 2×2×2 k-points in reciprocal space. Both the cut-off energy and the k-

point mesh have been chosen in order to guarantee the energy convergence to within 0.06 

meV per atom. The theoretical equilibrium lattice parameter of pure iron has been used 

(a0=2.831 Å) [Olsson2007] and the structure have been relaxed by keeping constant the 

volume of the supercell. The DFT computed Fe-Cr lattice parameter is constant and equals the 

pure iron lattice parameter in the range of chromium concentrations that we considered in this 

work [Olsson2006]. Moreover, since both the pure iron and the pure chromium exhibit a bcc 

structure with very similar lattice parameter, the chromium-rich precipitates that form during 

the thermal ageing of an Fe-Cr alloy in the miscibility gap are coherent with the matrix. 

Consequently, performing constant volume calculations (i.e.  introducing a constraint on the 

lattice parameter) is a physically reasonable approach.   

 

2.1.1.5 The Fe-Cr thermodynamics: first principle calculations of Fe-Cr mixing 

enthalpy 

 

One of the most important features of DFT calculations consists in the fact they 

provide insight in properties of materials at zero Kelvin. Very low temperature equilibrium 

properties cannot be observed experimentally because of the very long time an atomic 

structure needs to reach thermodynamic equilibrium at very low temperature. DFT 

calculations provide the ground state energy of a structure of atoms from which some low 

temperature characteristics of materials can be deduced. DFT calculations based on crystalline 

structures are achieved by implementing periodic boundary conditions in order to guarantee 

the applicability of the Bloch’s theorem. An important consequence of this approach is the 

fact that any system exhibits a periodicity equal to the size of the structure. This means that it 

is formally impossible to create a real random structure because periodic boundary conditions 

break the randomness. In order to study disordered alloy properties, the most intuitive 

approach consists in considering a large number of big structures where atoms are randomly 

distributed respecting a given solute concentration and to compute each quantity as the 

average on different configurations. The evident drawback of this method is the high 

computational cost. Two alternative ways exist for simulating disordered alloys by keeping 

reasonable the size of the system: the Coherent Potential Approximation (CPA) 
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[Gyorffy1972] and the Special Quasi-random Structures (SQS) method [Zunger1990] 

[Jiang2004]. The CPA consists in replacing the alloy components with one fictitious atomic 

species which reproduces some characteristics - such as scattering properties and cohesive 

energy - of the real structure, the properties of the fictitious atom are determined as 

concentration weighted averages of the properties of the real components of the alloy. CPA is 

a mean field approach, thus it cannot capture local properties of the alloy. The SQS method 

allows simulating disordered alloys by considering very small structures (a few tens of atoms) 

where atoms are arranged with particular care: the SQS are periodic structures generated by 

distributing the solute atoms to reproduce, as well as possible, the spatial correlation function 

of a random alloy (the spatial correlation function is computed by considering the relevant 

number of shells around each atom according to the physical property which is investigated). 

Even if numerically less efficient than the CPA approach, the SQS method allows alloys local 

properties to be taken into account.       

In the case of Fe-Cr alloys a large amount of DFT results is available. Many of these 

results on the Fe-Cr alloy concern the still open issue of the phase diagram at low 

temperatures. In particular, in the past decade, a growing interest has been devoted to the 

problem of the solubility limit of chromium in iron. The relevant quantity related to this 

aspect is the chromium concentration dependence of Fe-Cr mixing enthalpy. The mixing 

enthalpy of a  -component alloy is given by: 

 

         ∑   
 
            (35)   

 

where        is the total energy if the alloy,    and    are the reference total energy and the 

fraction of component   respectively. As was mentioned in the first chapter of this manuscript, 

one of the first DFT systematic studies of the evolution of the Fe-Cr alloy mixing enthalpy 

with chromium concentration has been achieved by Olsson et al. [Olsson2003]. Olsson and 

co-workers have simulated the random alloy in the framework of CPA, they performed spin 

polarised calculation within the Exact Muffin Tin Orbitals (EMTO) method for the 

representation of the wavefunctions [Andersen2000] by considering a magnetic ordered phase 

(ferromagnetic) and a magnetic disordered phase. The first corresponding to zero Kelvin 

condition, the latter partially accounting for high temperature effects. Indeed magnetic 

disorder corresponds to the paramagnetic phase which is the magnetic state of the system 

above its Curie temperature. The magnetic disordered calculations have been achieved within 
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the Disordered Local Moments (DLM) model. In the DLM picture the random paramagnetic 

alloy Fec-Cr1-c is modeled by the following random quaternary alloy: (Fe↓-Fe↑)c-(Cr↓-Cr↑)1-c, 

where an equal amount of spin up and spin down have been introduced. Olsson and co-

workers showed that the Fe-Cr mixing enthalpy is strictly positive for the paramagnetic state. 

On the contrary, in the ferromagnetic state, the mixing enthalpy exhibits a sign change. It is 

negative in the range of chromium concentration below 10 at.% and positive for larger 

chromium contents. This observation clearly illustrates the crucial role magnetic interactions 

play in the physics of Fe-Cr system. Olsson et al. reproduced the Fe-Cr mixing enthalpy 

calculations for different chromium concentrations in the framework of DFT with the PAW 

method and constructing SQS super-cells to describe the random alloy [Olsson2006]. They 

qualitatively confirmed their previous EMTO-CPA results even if the width and the depth of 

the negative part of Fe-Cr mixing enthalpy obtained with PAW-SQS calculations has been 

found to be smaller compared to those obtained with the EMTO-CPA calculations. Olsson et 

al. results on chromium concentration dependence of Fe-Cr mixing enthalpy have been 

confirmed by further super-cell calculations [Klaver2006] [Lavrentiev2007]. In their 2006 

paper Olsson et al. [Olsson2006] computed the averaged density of states of the Fe-Cr alloys 

for different chromium contents within the EMTO-CPA approach. They observed a lowering 

of the density of states at Fermi level in the chromium concentration region below 10at.% and 

identified this fact as being responsible of the stabilisation of the Fe-Cr alloy in the same 

region. This explanation was later confirmed by Korzhavyi et al. [Korzhavyi2009].  A more 

phenomenological explanation of the change of sign of Fe-Cr mixing enthalpy has been 

proposed by Klaver et al. [Klaver2006] with spin-polarised DFT calculations implemented 

within the PAW-GGA approach. On the one hand Klaver and co-workers showed that the 

chromium solubility for concentrations lower than about 10 at.% is due to repulsive 

chromium-chromium interaction. On the other hand, Klaver et al. computing the energy 

difference between an iron matrix containing dispersed chromium atoms and an iron matrix 

containing the same number of chromium atoms arranged in clusters, showed that, above a 

certain concentration, even if chromium-chromium interactions are repulsive, the 

configurations with clustered chromium atoms are energetically more stable than the ones 

with dispersed chromium atoms. It must be mentioned that in 2008 Paxton and Finnis 

provided a theoretical explanation of the connection between magnetic interactions and the 

concentration dependent Fe-Cr mixing enthalpy [Paxton2008]. Paxton and co-worker 

proposed a tight-binding Hamiltonian where magnetic interactions are described with a Stoner 

parameter; this model is able to explain the fact that, at low chromium concentration, 
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chromium atoms tend to repel each other and to orient their local magnetic moment anti-

ferromagnetically with respect to the iron matrix atoms while as chromium concentration 

increases a cooperative effect takes place and chromium atoms tend to form clusters with anti-

ferromagnetic configuration. 

 

 

2.1.2 Embedded Atom Method based potentials for Fe-Cr alloys 
 

DFT calculations are particularly suitable for the computation of static properties of 

materials. Even if first principle molecular dynamics can be implemented in a DFT 

framework, this method is very time-consuming. In most molecular dynamics or Monte Carlo 

simulations semi-empirical cohesive models are employed to obtain configurational energies. 

In the case of the Fe-Cr system, some semi-empirical interatomic potentials, based on the 

Embedded Atom Method (EAM), have been developed. In the following, the most frequently 

used Fe-Cr EAM potentials will be presented. 

The EAM approach has been introduced by Daw and Baskes [Daw1984] for transition 

metals, it provides a many-body interatomic potential. In this context, the general expression 

of the cohesive energy of an atomic structure is given by the following equation:  

 

     ∑        
 

 
∑ ∑    (   )  ∑ (  

         
   

    
)      .          (36) 

 

The term ∑         in equation (36) is an embedding contribution at equilibrium 

conditions.    is the electron density at sites   due to the presence of all other atoms within the 

cut-off range while        is the energy needed to embed an atom at site   in the 

environmental electron density.    can be expressed as a sum of the atomic electron densities 

of all other atoms within the cut-off range:  

 

   ∑           .          (36) 

 

The term 
 

 
∑ ∑              in equation (36) usually accounts for a short-range 

repulsive pair interaction. The functional form for the expressions of        ,       , and 

   (   ) are not implicitly defined by EAM approach. Once such expressions are chosen, the 
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parameters are adjusted to fit experimental data or theoretical predictions about the physical 

properties of the particular materials which have to be modelled.   

In order to describe the cohesive energy of a generic binary alloy A-B, an EAM 

potential must include the description of the pair interaction term for AA-like interactions, for 

BB-like interaction and for AB-like interactions. Concerning the Fe-Cr alloy, a few attempts 

have been made to develop such an interatomic many-body potential. In the 90’s Fe-Cr 

potentials were developed and fit to the experimental data on the Fe-Cr mixing enthalpy for 

the paramagnetic state [Yifang1996, Konishi1999]. As a consequence, these potentials fail to 

capture the physically meaningful sign change of the Fe-Cr mixing enthalpy pointed out later 

by DFT calculations at 0 K [Olsson2003, Olsson2006]. More recently Wallenius et al. 

[Wallenius2004a, Wallenius2004b] derived an Fe-Cr potential constructed by considering the 

functional form proposed by Ackland et al. for the pair interactions terms [Ackland1997]. 

Wallenius and co-workers adjusted the Fe-Fe interaction term and the Cr-Cr interaction term 

to fit the cohesive energy, the lattice parameter, the vacancy formation energy, the elastic 

constants of ferromagnetic pure iron and paramagnetic pure chromium. Concerning the mixed 

pair interaction term (i.e. the Fe-Cr interaction term), different adjustments have been 

performed, each one for a different chromium concentration, in order to fit the concentration 

dependent Fe-Cr mixing enthalpy.  

 

2.1.2.1 The Two Band Model 

 

In 2005 Olsson et al. proposed an Fe-Cr potential [Olsson2005] based on an extension 

of the EAM approach previously proposed by Ackland and Reed [Ackland2003] called the 

Two Band Model (2BM). The 2BM approach consists in considering the s-electron 

contribution, as well as d-electron contribution (which is always taken into account), to the 

electron density and to write term        of equation (36) as follows: 

 

         
        

     .          (37) 

 

According to Ackland and Reed the expression for   
     , where the index   stands 

for the s band or the d band, is: 

 

  
        

 √     
   

    
   

 .          (38) 
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Following Wallenius et al., Olsson et al. used cubic splines for the representation of 

the pair interaction terms     in equation (36). Coefficients   
  have been determined to fit the 

DFT results on concentration dependence of Fe-Cr mixing enthalpy at 0 K [Olsson2006], 

particularly the sign change (from negative to positive) observed for a 10at.% chromium 

concentration. Olsson and co-workers assumed that the s-electrons contribution to the electron 

density only affects the Fe-Cr interaction. The pair interaction terms for pure elements were 

adjusted to fit the cohesive energy, the lattice parameter, and the elastic constants of pure iron 

and pure chromium (in the case of pure chromium, the elastic constants of paramagnetic 

chromium extrapolated to 0 K have been considered as reference values).  

The Fe-Cr mixing enthalpy obtained with the Olsson EAM-2BM potential predicts a 

sign change (from positive to negative) also in the chromium-rich part of the curve for a 

chromium concentration of 90 at.%, in disagreement with Olsson et al. DFT calculations 

[Olsson2006]. In order to overcome this disagreement Bonny et al. have recently proposed a 

new implementation based on the 2BM [Bonny2011a]. They used the potential developed by 

Mendelev et al. for pure iron [Mendelev2003]. For the pure chromium potential expression, 

they used cubic splines to fit the cohesive energy, the lattice parameter, the vacancy formation 

energy, the vacancy migration energy, the formation energy of self-interstitial defects of the 

ferromagnetic phase and the elastic constant of the paramagnetic phase. The Fe-Cr enthalpy 

of mixing obtained with the potential developed by Bonny et al. is not symmetric with respect 

to the 50 at.% chromium concentration and is strictly positive in the chromium rich part. 

In the following of the manuscript we will refer to Olsson et al. Fe-Cr potential and to 

Bonny et al. Fe-Cr potential with the acronyms EAM-2BM-PO and EAM-2BM-GB 

respectively. 

   

2.1.2.2 The concentration dependent model 

 

A different approach - with respect to the 2BM - for the construction of an Fe-Cr 

many-body potential has been presented by Caro et al. [Caro2005]. Caro and co-workers 

developed an EAM potential which does not include any contribution of the s-electrons to the 

electron density but they introduced a chromium concentration dependence in the expression 

of the total cohesive energy. The general form of the total cohesive energy proposed is: 
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 ∑     (   )     

 ∑     (   )         ∑     (   )          ̃          ̃ ,  

 

(39) 

 

where  ̃     ∑            ∑        .  

Caro et al. assumed that the functions depending on the electron density are slowly 

varying for small variation of  . Hence they considered the pair interactions as dominating the 

variations of the total cohesive energy. They used the same potential as Olsson et al. 

[Olsson2005] for the pure elements whereas they introduced a mixed Fe-Cr pair interaction 

depending not only on the distance between the atoms but also on the local chromium 

concentration. The Fe-Cr pair interaction then is written as:  

 

               
 

 
[                 ]          (40) 

 

where      has a polynomial form whose the parameters are obtained to fit the Fe-Cr mixing 

enthalpy obtained by Olsson et al. [Olsson2003]. In the following we will refer to the EAM 

potential parameterised by Caro et al. as the EAM-CDM where CDM stands for 

Concentration-Dependent Model.    

 

2.1.2.3 Fe-Cr alloy phase diagram and mixing enthalpy obtained with the EAM 

Fe-Cr potentials 

 

In order to choose the better potential for our investigations concerning the Fe-Cr 

system, we considered the comparative study that Bonny et al. [Bonny2011a, Bonny2011b] 

have performed to compare the capability of the three EAM potentials described in 

subsections 2.2.1 and 2.2.2 to reproduce the available thermodynamic data. Bonny et al.   

computed the Fe-Cr mixing enthalpy with the Fe-Cr EAM-2BM potentials and the EAM-

CDM potential. In figure 1-Ch2 (taken from [Bonny2011a]) the Fe-Cr mixing enthalpy as a 

function of chromium concentration computed with the EAM potentials is compared with the 

DFT results obtained by Olsson et al. within the EMTO-CPA as well as the PAW-SQS 

methods. 

Figure 1-Ch2 shows that both the EAM-2BM-GB potential and the EAM-CDM 

potential provide a very satisfactory agreement with the PAW-SQS [Olsson2006] and EMTO-
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CPA calculations respectively [Olsson2003]. On the contrary, as stated before, the EAM-

2BM-PO potential exhibits qualitative disagreements with the DFT results, as it predicts a 

negative mixing enthalpy in the chromium rich region. This latter circumstance would imply 

the existence of low iron content Cr-Fe solid solutions. Neither theoretical predictions nor 

experimental measurements indicate such scenario is realistic. 

Bonny et al. also computed the Fe-Cr phase diagram using the EAM-2BM potentials 

and the EAM-CDM as cohesive models [Bonny2011a, Bonny2011b]. They used a mixed 

approach based on Monte Carlo simulations in the isobar semi-grand canonical ensemble 

           where           , on the one hand, and thermodynamic integration on the 

other hand.  

 

 

Figure 1-Ch2 Fe-Cr mixing enthalpy computed with the Fe-Cr potential developed by Bonny et al. (BON), Olsson et al. 

(OLS), and Caro et al. (CAR). The figure is from [Bonny2011a]. 

    

The Monte Carlo simulations - performed in structures containing 1024 atoms at 0 Pa 

for a temperature range going from 300 K to 1200 K and    varying from 0.25 eV to 0.35 

eV - were used to determine the equilibrium concentration for a given phase. At each Monte 

Carlo step the Metropolis algorithm was implemented for three different tests: 

 

1. Random displacement of all atoms from their current position (to take into 

account the structure relaxation and the vibrational entropy). 

 

2. Change of the atomic species of a randomly selected atom (sampling of the 

possible concentrations). 
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3. Variation of the simulation box volume (to keep the pressure constant). 

  

Considering that         
  

    
, and the following expression for the free enthalpy of 

the Fe-Cr alloy: 

  

                                                      ∑            
  

   ,     (41)      

 

the authors adjusted the free enthalpy derivative with respect to chromium concentration to 

the data obtained with the Monte Carlo simulations, hence they deduced the free enthalpy 

from which the solubility limits were computed with the common tangent construction. In the 

expression (41) for the free enthalpy, the free enthalpy of pure iron and pure chromium was 

obtained by thermodynamic integration, the third term accounts for the configurational 

entropy and the last term –       ∑            
  

    – is a Redlich-Kister development that 

partially compensates for the discrepancy between the real system and the ideal solution. 

 

 

Figure 2-Ch2 Fe-Cr phase diagram computed with the Fe-Cr potential developed by Bonny et al. (BON), Olsson et al. 

(OLS), Caro et al. (CAR). The results obtained with the different Fe-Cr potentials are compared with the Fe-Cr phase 

diagram obtained within the CALPHAD method. The figure is from [Bonny2011a]. 

 

Bonny et al. compared (figure 2-Ch2) the phase diagrams obtained with the EAM 

potentials with the one they obtained with the CALPHAD method [Bonny2010]. The Bonny 

et al. computation of the phase diagram within the CALPHAD approach is based on 

Andersson et al. work [Andersson1987] except for the Fe-Cr bcc phase which they re-

adjusted by introducing as reference data to fit the Olsson et al. Fe-Cr mixing enthalpy and 

the position of the solubility limit that they determined in a previous publication based on a 
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review of experimental data [Bonny2008]. The EAM-2BM potentials qualitatively reproduce 

the CALPHAD phase diagram even if the EAM-2BM-PO potential underestimates the critical 

temperature estimated by CALPHAD of about 200 K while the EAM-2BM-GB potential 

overestimates the critical temperature of the same amount. The most notable difference 

between the EAM-2BM-PO potential and the EAM-2BM-GB potential is the fact that the 

latter correctly predicts the non-solubility of iron in chromium. Finally, as it can be observed 

in figure 2-Ch2, the EAM-CDM captures the phase boundary predicted by the CALPHAD 

method up to 600 K but above this temperature it fails to close.  

On the basis of Bonny et al. results which have been exposed above, we decided to use 

the EAM-2BM potentials in this work and, particularly the EAM-2BM-GB potential. Our 

choice was motivated by the better capability of the EAM-2BM-GB potential to reproduce the 

Fe-Cr phase diagram with respect to the EAM-CDM potential, and, the chromium 

concentration dependence of the Fe-Cr mixing enthalpy with respect to the EAM-2BM-PO 

potential. It should be noted that Bonny et al. calculations account for vibrational entropy, 

whereas  we performed our atomistic kinetic Monte Carlo simulations of the Fe-Cr thermal 

ageing (see chapter 4) on a rigid lattice, thus neglecting vibrational effects. Nevertheless, we 

considered that the EAM-2BM-GB cohesive model allows a better description of the Fe-Cr 

alloy than the EAM-2BM-PO potential because it correctly reproduces the 0 K Fe-Cr mixing 

enthalpy dependence on the chromium content in the zone of high chromium concentrations. 

This is a very important issue because, as we previously discussed, the Fe-Cr mixing enthalpy 

dependence on chromium concentration is related to the magnetic properties of the alloy. 

Therefore, the EAM-2BM-GB potential appears to better account for magnetic interactions in 

Fe-Cr system than the EAM-2BM-PO potential. The Fe-Cr phase diagram computed with 

both the EAM-2BM-GB potential or the EAM-2BM-PO potential on a rigid lattice should 

lead to a wider miscibility gap. Consequently, in simulations on rigid lattice, one should 

expect to observe a lower solubility limit than the one computed by Bonny and co-workers 

(figure 2-Ch2).    
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2.2 Ground state energy calculation: the DFT and the EAM-2BM 

cohesive model  

 

In this subsection, we will present some preliminary calculations that we performed in 

order to evaluate the capability of EAM-2BM Fe-Cr potentials to reproduce DFT estimations 

about some properties of Fe-Cr system which we consider as being relevant in the context of 

our study. Such quantities are the chromium-chromium and the chromium-vacancy binding 

energy (section 2.3), and the vacancy formation energy (section 2.4). 

Moreover, in section 2.5, we will present our DFT results concerning the ground state 

magnetic configuration associated to iron structures containing two or more subsititional 

chromium atoms in different positions. Such calculations have been achieved via the 

computation of the local magnetic moments associated to each atom of the Fe-Cr structures.   

 

2.2.1 Chromium-chromium and chromium-vacancy interaction 

 

This work focuses on the modelling and the simulation of the thermal ageing of 

chromium rich Fe-Cr alloys. The microstructure evolution of Fe-Cr is considered as being 

driven by a vacancy diffusion mechanism (irradiation effects are not taken into account in the 

present work). The vacancy-atom exchange activation barrier depends on the chemical 

environment. We will assume that the local atomic environment (LAE) enclosing the first and 

second neighbour shells of the vacancy–migrating atom pair is mainly responsible for the 

environmental dependence of the migration energy. We then expect the chromium-chromium 

and the chromium-vacancy short-range interactions to have a remarkable effect on the 

vacancy migration barriers. Hence, we started by computing the chromium-chromium and the 

chromium-vacancy binding energy both with DFT and the EAM-2BM potentials. The 

formula we use to compute the binding energies can be written as follows:  

 

               ∑      — [                       ]
 
             (41) 

 

where       is the cohesive energy of a structure containing one entity    (i.e. a vacancy or a 

substitutional chromium atom),               is the cohesive energy of a structure 

containing all the   vacancies or substitutional chromium atoms which are considered (    

in the case of the calculation of chromium-chromium or chromium-vacancy binding energy) 
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and      is the cohesive energy of a defect-free structure (pure iron in our case). In this 

picture, a positive binding energy corresponds to an attractive interaction, while a negative 

binding energy indicates a repulsive interaction. 

Calculations based on EAM-2BM cohesive models have been performed with the 

code DYMOKA [Becquart1997] considering a simulation box with dimensions 8a0×8a0×8a0, 

where a0=2.8553 Å is the equilibrium lattice parameter of pure iron obtained with both EAM-

2BM-PO potential and EAM-2BM-GB potential.  

Figure 3-Ch2 displays the chromium-chromium binding energy as a function of the 

chromium-chromium distance computed within DFT and with the EAM-2BM-PO and EAM-

2BM-GB potentials. Regardless of the cohesive model, the chromium-chromium interaction 

is repulsive. When the two chromium atoms are first nearest neighbours the chromium-

chromium interaction is strongly repulsive, and the estimations of the EAM-2BM potentials 

are in good agreement with DFT results. When the chromium-chromium distance increases, 

the binding energy computed within DFT rapidly varies from about -0.25 eV to -0.05 eV. On 

the contrary, the binding energy variation with the chromium-chromium distance is slower for 

the EAM-2BM potentials. EAM-2BM potentials describe thus a more long-ranged chromium-

chromium interaction as compared to the DFT predictions. In particular, when the chromium-

chromium distance varies from first nearest neighbour distance to second nearest neighbours 

distance, the DFT computed binding energy becomes about 50% less repulsive. In the same 

circumstances, almost no change in the binding energy obtained with the EAM-2BM potential 

is observed. Note that both potentials predict the same tendencies for the variation of the 

binding energy with the chromium-chromium distance, even if the chromium-chromium 

repulsion is slightly lower in the case of the EAM-2BM-GB potential.     
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Figure 3-Ch2 Cr-Cr binding energy as a function of the relative position of the two chromium atoms.  

DFT calculations: simulation box: 5a0×5a0×5a0, a0=2.831 Å. K-points mesh: 2×2×2. 

EAM-2BM calculations: box 8a0×8a0×8a0, a0=2.8553 Å. 

 

The chromium-vacancy binding energy has been computed in the cases where 

chromium and vacancy are first or second nearest neighbours. Results are displayed in figure 

4-Ch2. In both configurations, the DFT results show a very low positive chromium-vacancy 

binding energy; this corresponds to a weakly attractive interaction in agreement with 

experimental observation by muon spectroscopy performed by Möslang et al. [Möslang1983] 

which estimated the chromium-vacancy binding energy to be less than 105 meV. 

 whereas the EAM-2BM cohesive models predict a repulsive interaction. In the case of 

EAM-2BM-PO potential, the discrepancy with respect to the DFT results is much more 

pronounced than in the case of EAM-2BM-GB potential. 

 

 

Figure 4-Ch2 Cr-V binding energy as a function of the distance between the chromium and the vacancy.  

DFT calculations: simulation box size: 5a0×5a0×5a0, a0=2.831 Å. K-points mesh: 2×2×2. 

EAM-2BM calculations: box 8a0×8a0×8a0, a0=2.8553 Å. 
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Even if, for both DFT and the EAM-2BM potentials, the chromium-vacancy 

interaction is very weak, the fact that they predict opposite signs can lead to notable 

differences in the description of the physics of Fe-Cr alloy as we will see in chapter 3.  

 

2.2.2 Vacancy formation energy 

 

In order to further compare the semi-empirical models estimations with the DFT 

previsions, we computed the vacancy formation energy in pure iron and pure chromium. The 

vacancy formation energy for pure elements can be obtained as follows: 

 

  
           

    

 
     ,          (41) 

 

where   is the number of atoms constituting the structure,      is the cohesive energy of the 

structure containing all   atoms while        is the cohesive energy of the structure where 

a vacancy has been introduced.    

The DFT calculations have been performed in a simulation box containing 128 atoms, 

the first Brillouin zone has been sampled with a mesh of 3×3×3 k-points in reciprocal space. 

The cut-off energy has been set to 300 eV. We considered the pure ferromagnetic iron and 

pure anti-ferromagnetic chromium equilibrium DFT lattice parameters which are a0=2.831 Å 

and a0=2.850 Å respectively [Olsson2007]. The atom positions have been relaxed by keeping 

constant the volume of the supercell. We performed the calculations based on EAM-2BM 

cohesive models in a simulation box with dimensions 8a0×8a0×8a0. For iron structures we 

considered a0=2.8553 Å both in the case of EAM-2BM-PO potential and EAM-2BM-GB 

potential. For chromium structures we considered a0=2.878 Å in the case of EAM-2BM-PO 

potential and a0=2.866 Å EAM-2BM-GB potential, these values are the pure chromium 

equilibrium lattice parameters obtained with the two potential respectively. Atoms positions 

relaxations within the EAM cohesive models have been achieved with the conjugate gradient 

algorithm.  

Table 1-Ch2 collects the vacancy formation energies of pure iron and pure chromium. 

The EAM-2BM-PO potential and the EAM-2BM-GB potential provide very close values for 

the vacancy formation energy in pure iron and pure chromium. Both in the case of iron and 

chromium, the EAM-2BM potentials underestimate the vacancy formation energy with respect 

to DFT data, the discrepancy being larger in the case of the vacancy formation energy in iron. 
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 EAM-2BM-

PO 

Relaxed 

structure 

(eV) 

EAM-2BM-

PO 

Unrelaxed 

structure 

(eV) 

EAM-2BM-

GB 

Relaxed 

structure 

(eV) 

EAM-2BM-

GB 

Unrelaxed 

structure 

(eV) 

DFT (This 

work) 

(eV) 

DFT (Olsson 

et al. 

[Olsson200] 

(eV) 

Experimental 

observations 

(eV) 

Iron  
1.72 1.84 1.71 1.84 2.15 2.15 

2.0±0.2 (a) 

1.60±0.15 (b) 

Chromium  2.56 2.88 2.52 2.68 2.72 2.71 2.0±0.2 (c) 

 

Table 1-Ch2 Vacancy formation energy in pure iron and pure chromium.  

(a) [DeSchepper1983], (b) [Schaefer1977], (c) [Loper1985] 

 

If one considers the data on chromium-chromium binding energy, vacancy-chromium 

binding energy and vacancy formation energy presented above, there is no strong evidence 

from which to conclude that one of the two EAM-2BM potentials (namely the EAM-2BM-PO 

potential or the EAM-2BM-GB potential) is preferable over the other because of its better 

capability to reproduce DFT results. Nonetheless, EAM-2BM-GB potential, beside the fact 

that, compared to the EAM-2BM-PO potential, it provides a better thermodynamic 

description of the Fe-Cr alloy (see previous discussion in subsection 2.2.3), it is also slightly 

better in reproducing DFT results about chromium-chromium and chromium-vacancy 

interactions. In the following of this manuscript we will show that this latter aspect can lead to 

some observable consequences.  

 

2.2.3 Substitutional chromium atoms local magnetic moments 

 

Magnetism plays a fundamental role in the physics of the Fe-Cr system. Even if the 

Fe-Cr EAM potentials which have been presented in section 2.2 have been adjusted to 

reproduce data sets obtained with DFT spin-polarised calculations, they cannot treat explicitly 

the magnetic degrees of freedoms of the Fe-Cr system. On the contrary, in DFT ground state 

energy calculations the magnetic degrees of freedom are treated explicitly and are taken into 

account during the iterative relaxation of the system. According to DFT results obtained by 

Klaver et al. [Klaver2006], isolated substitutional chromium atoms in an iron matrix orient 

their local magnetic moment (LMM) µ anti-ferromagnetically with respect to the surrounding 

iron atoms. When the nearest neighbour sites of a substitutional chromium are progressively 

occupied with chromium atoms, the competition between the anti-ferromagnetic chromium 
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ground state (as predicted by GGA-PAW DFT calculations) and the tendency of chromium 

atoms’ LMM to orient anti-ferromagnetically with respect to iron matrix atoms rises resulting 

in a magnetic frustration for the chromium atoms. As a consequence, the absolute values of 

the chromium atoms LMM decrease. In this subsection, we will illustrate some basic local 

magnetic properties of substitutional chromium atoms in an iron matrix. After DFT 

calculations of the ground state energy, the LMMs in relaxed Fe-Cr structures can be 

calculated by integrating the spin density expressed by equation (9) in the volume of a sphere 

centred on each atom and with a radius equal to the Wigner-Seitz radius corresponding to the 

atom type (1.323 Å for chromium and 1.302 Å for iron). We computed the LMM of two 

substitutional chromium atoms in an otherwise pure iron matrix as a function of the separation 

distance. Table 2-Ch2 gathers the results we obtained. 

 

 

Cr-Cr distance 

(nn) 
5nn 4nn 3nn 2nn 1nn 

Cr magnetic 

moments (µB) 

 

1.73 

 

1.70 1.67 1.58 1.38 

 
Table 2-Ch2 Local magnetic moment of two substitutional chromium atoms in an iron matrix placed at different distances. 

 

The iron atoms local magnetic moments in the relaxed structures are not affected by 

the presence of the chromium atoms, they have an absolute value of 2.2 µB and are parallel, 

thus forming a ferromagnetic structure. The substitutional chromium atoms orient their LMM 

anti-ferromagnetically with respect to the iron atoms. As expected, the absolute value of the 

chromium atoms LMM decreases when the separation distance decreases (see table 2-Ch2). In 

order to illustrate on a quantitative point of view the rising of a frustrated magnetic 

configuration, we computed the LMM of all atoms in three different iron-based structures: the 

first containing one substitutional chromium, the second and the third obtained by filling with 

chromium atoms the (eight) first nearest neighbours and the (six) second nearest neighbours 

with chromium atoms (figure 5-Ch2). DFT calculations have been performed to relax the 

structures, 250 atoms were included in the simulation box. The cut-off energy has been set at 

300 eV and the first Brillouin zone has been sampled with a mesh of 2×2×2 k-points. 
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1 Cr 9 Cr 15 Cr 

   

 
Figure 5-Ch2 From right to left : iron matrix containing one substitutional chromium, iron matrix containing a 9 

substitutional chromium atoms cluster, iron matrix containing a 15 substitutional chromium atoms cluster. Red spheres: iron 

atoms. Blue spheres: chromium atoms. Simulation box size: 5a0×5a0×5a0, a0=2.831 Å. 

   

While all the iron atoms LMMs oscillate very close to the value of 2.2 µB regardless of 

their environment, the situation for the chromium atoms is quite different. When a single 

chromium atom is introduced in the matrix, it orients its LMM anti-ferromagnetically with 

respect to iron atoms LMM. The single chromium LMM is 1.71 µB. When additional 

chromium atoms are introduced in the first nearest neighbour shell, magnetic frustration takes 

place. It results from the cooperative tendency of the chromium atoms to arrange the nine Cr 

LMM in an anti-ferromagnetic configuration and the tendency of single chromium atoms to 

orient their LMM anti-ferromagnetically with respect to the surrounding iron atoms. The anti-

ferromagnetic configuration is realised with the cost of a lowering of the absolute value of the 

chromium atoms LMM. In this case we found 0.79 µB for the central chromium of the 9 Cr 

compound and 1.09 µB for its eight nearest neighbours. Finally, for the 15 Cr compound we 

found the following LMM: 0.10 µB for the central chromium atom, 0.30 µB for chromium 

atoms in first nearest neighbours shell and 0.24 µB for chromium atoms in second nearest 

neighbours shell. A weak anti-ferromagnetic configuration stands for the central chromium 

atom and its first nearest neighbour shell but disappears at the boundary between the 

chromium compound and the iron matrix. 

When a further chromium shell is added around the 15 Cr cluster (figure 6-Ch2), the 

trends are similar. As for the 15 Cr cluster, an anti-ferromagnetic configuration takes place in 

the core of the cluster while magnetic frustration persists at the boundary between the 

chromium cluster and the iron matrix as one would expect. 
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Figure 6-Ch2 Iron matrix containing a 27 substitutional chromium cluster. Red spheres: iron atoms. All other colours: 

chromium atoms. Simulation box size: 5a0×5a0×5a0, a0=2.831 Å. 

 

The LMM moment for the different chromium atoms are presented in table 3-Ch2.  

  

Light green (central chromium atom) 0.19 µB 

Yellow (1nn shell) 0.38 µB 

Dark green (2nn shell) 0.58 µB 

Light blue (3nn shell) 0.85 µB 

 

Table 3-Ch2 LMM for atoms occupying different position in the 27 Cr cluster. 

 

It is interesting to notice that, in the case of the 27 Cr cluster, the central atom has a 

negative LMM whereas in the case of the 15 Cr cluster the central chromium LMM is 

positive. This is simply due to the fact that, in order to minimise the chromium-iron interfacial 

energy, chromium atoms at the boundary of the cluster orient their LMM anti-

ferromagnetically with respect to the iron atoms belonging to the matrix. The sign of the 

LMM of the inner part of the chromium cluster are then consequently determined to set up the 

anti-ferromagnetic stable configuration. 

 

2.3 Vacancy migration energy calculations 

 

As was stated above, the vacancy diffusion in the bulk is considered as being the only 

mechanism driving the Fe-Cr microstructure evolution. The main problem concerning the 

theoretical investigation of the kinetics of transformation of a given system consists in 

identifying the lowest energy path for the evolution of the system from one configuration to 
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another. The potential energy maximum along the minimum energy path is the saddle point 

energy which corresponds to the activation energy barrier. Estimating the activation barrier 

associated to a given transition allows the modelling of the transition rate using, for example, 

the Vineyard harmonic transition state theory [Vineyard1957]. 

In order to compute the minimum energy path for the vacancy-atom jump, we used the 

Nudged Elastic Band method (NEB) [Jonsson1998], implemented in the VASP code, in the 

framework of DFT and the drag method, which we implemented within the DYMOKA code, 

in the framework of the EAM-2BM-GB cohesive model. The two methods will be presented 

in the next two sections.     

 

2.3.1 The Nudged Elastic Band (NEB) method 

 

The NEB approach consists in introducing   images of the system in which the 

migrating atom occupies   intermediary positions between the initial configuration (before 

the jump) and the final configuration (after the jump) of the system. Each image is relaxed 

and the migration barrier energy profile is obtained as the difference of the images’ energy 

and the energy of the initial configuration of the system. In order to avoid the images to relax 

toward the initial migrating atom equilibrium position or the final migrating atom equilibrium 

position - leaving no images in the intermediate positions – elastic spring-like forces are 

introduced between the migrating atom images. During the relaxation procedure execution, 

the forces acting on each image are: the projection of the elastic forces on the local tangent to 

the migration trajectory and the force resulting from the interaction of the image with all other 

atoms in the super-cell projected in the orthogonal direction with respect to the local tangent 

to the migration trajectory. As a consequence, each image is relaxed under the action of a 

force which can be written as follows: 

   

  
 ⃗⃗⃗⃗    ⃗⃗     

⃗⃗  ⃗     
 ⃗⃗⃗⃗   ̂ ̂          (42)  

 

where   ⃗⃗     
⃗⃗  ⃗   is the component of the force acting on the image at position   , projected 

on the direction orthogonal to the migration trajectory;   
 ⃗⃗⃗⃗   ̂ ̂  is the elastic force acting 

between each image and its two neighbouring images projected on the local tangent to the 

migration trajectory ( ̂ is the unitary tangent vector to the migration trajectory). The accuracy 

of the NEB method depends both on the cohesive model which is used for the structure 
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relaxation and the number   of images which are considered. We have made a series of tests 

on the impact that the number of images has on the estimation of the saddle point of the 

vacancy-atom migration barrier. These tests have been implemented by considering three 

different ways to implement the NEB method. The first way consists in considering infinite 

spring constants for the elastic interaction acting between each image and its neighbouring 

images. The second way consists in considering the VASP default spring constant for the 

elastic interaction acting between each image and its neighbouring images, the third way 

corresponds to the previous method improved with the so called Climbing Image (CI) 

approach [Henkelman2000]. CI is designed to guarantee that one of the images will be located 

on the saddle point of the migration barrier profile. The CI technique consists in identifying - 

after the NEB procedure convergence - the higher energy image, to switch off the elastic 

interactions, and to relax this image again under the action of the force derived from the 

potential energy surface with opposite sign. 

For all the three NEB techniques presented above, we performed different calculations 

of vacancy-atom energy barrier profiles for different numbers of images. The most important 

goal of this series of tests is to verify which of the three methods is the most appropriate for 

estimating vacancy-atom migration barriers in complicated cases such as an asymmetric 

double-hump barrier profile. For this reason, we decided to perform the tests on the barrier 

corresponding to the vacancy-chromium jump process in a chemical environment 

characterised by chromium occupation of the sites A, B1, B2, B3, C1, C2, C3, D1, D2, D3, 

E1, E2, E3, F, G1 (see figure 7-Ch2 for the atomic sites nomenclature).  

 

Figure 7-Ch2 Local chemical environment structure scheme and sites nomenclature. 

AT: migrating atom, 

V: vacancy. 

Black spheres: atom windows the vacancy goes though along migration path (first window: C1, C2, C3. Second window: D1, 

D2, D3). 
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The first neighbours’ shell of the vacancy-migrating atom pair is saturated with 

chromium atoms and an additional chromium atom is placed in a site of the second 

neighbours shell. This configuration of the LAE gives rise to an asymmetric double-hump 

barrier as can be seen in figures 8-Ch2, 9-Ch2, and 10-Ch2.  

The barrier profiles obtained are presented in figure 8-Ch2 (NEB – infinite spring 

constants), figure 9-Ch2 (NEB – VASP default spring constants), figure 10-Ch2 (NEB – 

VASP default spring constants – Climbing Image algorithm). From the migration barrier 

profiles, we deduced the migration energies which are reported in table 4-Ch2 as a function of 

the number of images introduced in the system for the NEB calculation.  

 

 

Figure 8-Ch2 NEB method calculations of chromium-vacancy migration energy profiles for different numbers of images. 

Each image is constrained to relax on a plane perpendicular to the local tangent of the migration trajectory.  

                        

 

Figure 9-Ch2 NEB method calculations of chromium-vacancy migration energy profiles for different numbers of images. 

VASP default spring constants.  
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Figure 10-Ch2 NEB method calculations of chromium-vacancy migration energy profiles for different numbers of images. 

The climbing image algorithm is implemented. VASP default spring constants.  

 

The data in table 4-Ch2 show that the NEB method implemented using the VASP 

default spring constant and the Climbing Image (CI) algorithm exhibits almost no-dependence 

of the estimated value of saddle point energy on the number of images. This means that all the 

saddle point energies obtained with the NEB-CI approach are very close or identical to the 

one obtained introducing 9 images (i.e. the most precise). We conclude thus that the NEB-CI 

technique is the optimal one to use in this particular case. Since the case was chosen explicitly 

for its complexity, we assume that all barriers will be well described by the NEB-CI method 

with the VASP default spring constant using three images, if not specified otherwise. 

 

Number of images 

NEB 

(Infinite spring 

constant) 

(eV) 

NEB 

(VASP default spring 

constant) 

(eV) 

NEB 

(VASP default spring 

constant- 

Climbing Image 

algorithm) 

(eV) 

3 0.77 0.77 0.80 

4 0.69 0.68 0.79 

5 0.77 0.77 0.80 

6 0.80 0.80 0.80 

7 0.76 0.76 0.80 

8 0.77 0.77 0.80 

9 0.80 0.80 0.80 

 

Table 4-Ch2 Migrating chromium saddle point energies. Sites A, B1, B2, B3, C1, C2, C3, D1, D2, D3, E1, E2, E3, F, G1 are 

occupied by chromium atoms (see figure 7-Ch2 for the atomic sites nomenclature), all other sites of the matrix are occupied 

by iron atoms. 
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2.3.2 The Drag Method (DM) 

 

The computation of the minimum energy path for the vacancy-atom exchange with the 

EAM-2BM-GB cohesive model has been achieved within the so called Drag Method (DM). 

Once the vacancy is introduced in the bcc Fe-Cr structure, the migration barrier profile 

is computed by the DM through the following procedure: 

 

1. The migrating atom is displaced, step by step, from its initial position towards 

the vacancy initial position along the segment joining the initial vacancy 

position and the migrating atom initial position. 

 

2. At each step, a specific constrained relaxation is performed.  

 

3. At each step, the difference between the energy of the relaxed structure and the 

energy of the relaxed reference system is computed. 

  

The energies differences computed at each step are plotted as a function of the reaction 

coordinate (i.e. the migrating atom position along the segment joining the initial vacancy 

position and the migrating atom initial position) to obtain the migration barrier profile. The 

migration energy is the maximum of the activation barrier profile. If the discretisation step 

used to increment the migrating atom position along the migration direction is sufficiently 

small, this point corresponds to the maximum of the minimum energy path (namely: the 

saddle point energy). During the structure relaxation procedure, two constraints are 

introduced. The first concerns the migrating atom which is allowed to move only on a plane 

orthogonal to the migrating direction. The second constraint is applied at the border of the 

simulation box: the positions of all the atoms located within a distance of 1 Å from the 

boundary of the simulation box are fixed. Constraining the migrating atom to relax in an 

orthogonal plane with respect to the migration trajectory avoids the migrating atom to move 

back to its initial equilibrium position during the relaxation. On the other hand, fixing the 

simulation box borders avoid the matrix to be dragged along migration direction when the 

migrating atom is displaced. A schematic representation of the DM is displayed in figure 11-

Ch2 for a bcc structure. 
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Figure 11-Ch2 Scheme of an atom (white sphere) dragged toward a vacancy placed in the centre of the cell and 

representation of the associated energy barrier profile. 

Red line:  migration trajectory  

Green plane: plane orthogonal to the line joining the migrating atom initial and final position. At each dragging step, the 

atom is allowed to relax on the green plane. 

 

The vacancy can jump towards one of its eight (in the case of a bcc structure) nearest 

neighbours so that the distance between the migrating atom initial position and the vacancy 

initial position equals the first nearest neighbours distance. For all DM calculations, we 

considered the equilibrium lattice parameter of a pure iron structure obtained with the EAM-

2BM-GB potential: 2.8553 Å. The first nearest neighbours distance is then 2.47 Å. During the 

calculation of the migration barriers, the migrating atom has been moved by a total distance 

slightly bigger than the first nearest neighbour distance, namely 2.53 Å, in order to check the 

position of the final minimum from which the total energy change ΔE of the system 

associated to the vacancy-migrating atom exchange is computed.  

We performed some tests on the effect of the size of the simulation box and on the 

influence of the discretisation step on the estimation of the migration energy. The first test 

was done by considering two cubic boxes: 6a0×6a0×6a0 and 8a0×8a0×8a0. For both simulation 

box sizes, the chromium and iron migration energy were computed for all possible chemical 

configurations of the first neighbour shell (2
14

 = 16384 configurations) of the vacancy-

migrating atom pair in a first time, and for all possible chemical configurations of the two first 

neighbour shells (2
20

 = 1048576 configurations) of the vacancy-migrating atom pair in a 

second time. All other sites of the structure were occupied by iron atoms. In figure 12-Ch2, 

the migration energies computed in the two different sizes of the simulation box are 

compared.  
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Figure 12-Ch2 Migration barrier computed in a 6a0×6 a0×6 a0 box versus migration barriers computed in a 8a0×8 a0×8a0 . 

a0=2.8553 Å. Discretisation step: 0.04 Å. Right hand side: the migration energy has been computed for all chemical 

configurations of the vacancy-migrating atom pair first nearest neighbours shell. Left hand side: the migration energy has 

been computed for all chemical configurations of the vacancy-migrating atom pair first and second nearest neighbours shell.  

 

As figure 12-Ch2 displays, no box size effects have been observed: neither in the case 

where we explored all configurations of first nearest neighbour shell (right hand side of figure 

12-Ch2), nor in the case we also considered the second nearest neighbour shell (left hand side 

of figure 12-Ch2). 

The test on the effect of the discretisation step on the estimation of the saddle point 

energy has been performed for a particular LAE configuration in a 8a0×8a0× 8a0 simulation 

box. We considered the migration of an iron atom in a LAE where sites A, B1, B2, B3, C1, 

C2, C3, D1, D2, D3 are occupied by chromium atoms (see figure 7-Ch2 for the atomic sites 

nomenclature) while all other sites of the structure are occupied by iron atoms. This 

configuration gives rise to an asymmetric double-hump barrier profile when the cohesive 

model is the EAM-2BM-GB potential. This configuration thus represents a non-trivial case 

where the effect of different choices of discretisation step can be efficiently compared. Four 

different discretisation steps were considered: 0.34 Å, 0.16 Å, 0.08 Å, and 0.04 Å. Figure 13-

Ch2 shows the iron activation energy profile obtained with the four different choices for the 

discretisation step. 
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Figure 13-Ch2 Migration profile of a double hump barrier obtained by DM with different discretisation steps. Migrating 

atom: Fe. Sites A, B1, B2, B3, C1, C2, C3, D1, D2, D3 are occupied by chromium atoms (see figure 7-Ch2 for the atomic 

sites nomenclature), all other sites of the matrix are occupied by iron atoms. Simulation box size: 8a0×8a0×8a0 . a0=2.8553 Å. 

 

As figure 13-Ch2 displays, the larger discretisation step leads to a bad estimation of 

the saddle point energy and misses the local energy minima associated to the initial and the 

final position of the migrating atom. The smaller the discretisation step, the better the 

migration energy barrier profile is reproduced. All the calculations of the vacancy migration 

energy which will be presented in this work have been performed in a 8a0×8a0×8a0 simulation 

box (a0=2.8553 Å) and implemented by using the smallest discretisation step we considered in 

the previous test (i.e. 0.04 Å). 
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In this chapter, we have characterised some basics properties related to the presence 

of chromium atoms in an iron matrix by DFT calculations. When possible (i.e. excepting for 

the local magnetic moments calculations), we compared DFT results with those obtained 

with the EAM-2BM-GB potential. On the other hand, we have defined the optimal 

parameters to implement the calculation of the vacancy migration energy both in the 

framework of DFT – with the NEB method – and in the framework of the EAM-2BM-GB 

potential – with the drag method –. In chapter 3, we will exploit these techniques to 

investigate the dependence of the vacancy migration energy on the local atomic environment. 

We will use both the DFT and the EAM-2BM-GB potential and compare their respective 

predictions. The aim of our approach will be to relate the vacancy migration energy 

dependence on the local environment to the chromium-chromium and chromium-vacancy 

interactions and to magnetic effects due to the presence of chromium in the iron matrix. We 

will show how the difference in the DFT and the EAM-2BM-GB potential estimates for the 

vacancy migration energy are related to the different estimations of the chromium-chromium 

and the chromium-vacancy binding energy that we obtained with the two approaches. 
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3. VACANCY MIGRATION ENERGY DEPENDENCE ON 

LOCAL   CHEMICAL ENVIRONMENT 

 

 

The first step towards understanding and modelling the Fe-Cr alloy kinetic properties 

consists in estimating the migration energies related to the processes which drive the 

microstructure evolution. The vacancy migration barrier is expected to depend on the 

vacancy-migrating atom pair atomic environment. In the case of Fe-Cu alloys the 

environmental dependence of the vacancy migration energy has been previously investigated 

by using an EAM Fe-Cu potential by Le Bouar and Soisson [LeBouar2002] or via a DFT 

approach by Soisson and Fu [Soisson2007]. To our knowledge, such an investigation misses 

in the case of the Fe-Cr system. The vacancy migration energy dependence on the local 

atomic environment has been previously studied by Nguyen-Manh et al. [Nguyen-

Manh2008a, Nguyen-Manh2009] and by Bonny et al. [Bonny2011c]. Nguyen-Manh used a 

DFT approach, while Bonny et al. exploited the EAM-2BM-GB Fe-Cr potential as cohesive 

model. Both these studies only considered the effect of the chromium content in the first 

nearest neighbour shell of the migrating atom saddle point position without taking into 

account the effects due to the different positions chromium atoms can occupy within the 

saddle point local environment. In this chapter we will address the issue of the dependence on 

the vacancy local atomic environment (LAE) of both the vacancy migration energy and the 

configurational energy change ΔE which occurs when the vacancy jumps towards one of its 

nearest neighbour sites. The DFT as well as the EAM-2BM-GB potential will be used in order 

to determine the ground state energy associated to a given configuration of the system. Our 

DFT results on the LAE dependence of the vacancy migration energy will be interpreted in 

the light of the chromium-chromium and chromium-vacancy binding energies as well as the 

substitutional chromium atoms magnetic properties which we investigated in chapter 2. The 

DFT based study of the LAE dependence of the vacancy migration barriers and ΔE will be 

presented in section 3.1. In section 3.2, we will investigate the capability of EAM-2BM-GB 

potential to reproduce the DFT previsions and the impact that the difference between the DFT 

and the EAM-2BM-GB potential in the estimation of the chromium-chromium and 

chromium-vacancy binding energies has on the estimation of the vacancy migration barriers. 
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3.1 DFT study of the LAE dependence of the vacancy migration 

barriers 

 
Our objective consists in achieving a better understanding of the influence of the LAE 

on the vacancy migration energies and the total energy change which occurs when the 

vacancy jump in an Fe-Cr structure. As we have shown in chapter 2, DFT computed 

chromium-chromium and chromium-vacancy interactions have been found to be repulsive 

and attractive respectively. In what follows, it will be shown that such considerations provide 

a rather simple explanation of the vacancy-atom migration barrier dependence on the LAE. 

We will also investigate the influence of the magnetic properties on the vacancy migration 

energy.  

In a first step, we will examine how the vacancy migration energy and the total energy 

of the system evolve while progressively filling the neighbouring shells of the migrating atom 

with chromium atoms. We then evaluate the influence of the chromium content in different 

groups of atomic sites, namely B, C, D, and E sites (see figure 1-Ch3 for the atomic sites 

nomenclature) on the vacancy migration energy and ΔE.  

Electronic structure calculations in the framework of DFT have been performed in 

order to relax all the different structures which have been considered. The vacancy migration 

energies have been computed with the NEB-CI method implemented by introducing three 

images between the initial and final position of the vacancy. We considered a simulation box 

containing 250 atoms. The initial absolute values of the iron and the chromium local magnetic 

moments have been set to 2.1 µB and 0.6 µB respectively. Following Klaver et al.’s DFT 

calculations [Klaver2006], isolated chromium atoms initial local magnetic moment (LMM) 

have been oriented anti-ferromagnetically with respect to the matrix iron atoms. When two or 

more chromium atoms are close to each other in the matrix, their LMM are oriented 

ferromagnetically if they are 2nn and anti-ferromagnetically if they are 1nn. The cut-off 

energy has been set at 300 eV. The first Brillouin zone has been sampled with a mesh of 

2×2×2 k-points in reciprocal space. The theoretical equilibrium lattice parameter of pure iron 

has been used (a0=2.831 Å). One of the main advantages of DFT as compared to the empirical 

EAM-2BM-GB potential is the fact that, in the first case, the magnetic properties of the 

system are explicitly taken into account. This is an essential aspect as the magnetic 

contribution to the cohesive energy has a very strong influence on Fe-Cr alloy properties and, 

as it will be shown, particularly in the vacancy migration processes. 
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Figure 1-Ch3 Local chemical environment structure scheme and sites nomenclature. 

AT: migrating atom 

V: vacancy 

Black spheres: atom windows the vacancy goes though along migration path (first window: C1, C2, C3. Second window: D1, 

D2, D3). 

 

3.1.1 Migration barriers dependence on the chromium content in 1
st
 and 2

nd
 

nearest neighbour sites of the migrating atom  

 

As the closest atoms to the vacancy will very probably dominate the influence of the 

environment on the migration barriers, we computed the vacancy-iron and vacancy- 

chromium migration energies for different chromium contents in the first and the second 

nearest neighbour shells of the migrating atom and vacancy. The different LAE configurations 

have been obtained by progressively filling sites A, B1, B2, B3, C1, C2, C3, D1, D2, D3, E1, 

E2, E3, F, G1, G2, G3, H1, H2, H3 with chromium atoms (see ANNEX 1 for details on the 

atomic sites nomenclature).  The iron and chromium migration energies for all the LAE 

configurations we explored are displayed in figure 2-Ch3. Figure 2-Ch3 also reports the 

difference in energy E between the final and the initial configuration for each configuration 

of the LAE. 
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Figure 2-Ch3 Vacancy migration energy and total energy change ΔE for increasing chromium content in first and second 

nearest neighbour sites of the initial and final positions of the migrating atom. a) The migrating atom is an Fe atom, b) the 

migrating atom is a Cr atom. 

 

The results presented in figure 1-Ch3 indicate that the vacancy-iron migration energy 

decreases from 0.64 eV to 0.3 eV when the chromium concentration around the migrating 

atom initial position increases. This fact is probably due to the chromium-vacancy attractive 

interaction. Indeed we have shown, in chapter 2, that the chromium interaction with a vacancy 

is attractive and equal to 0.056 eV when the chromium-vacancy separation corresponds to 1nn 

distance and 0.010 when the chromium-vacancy separation corresponds to 2nn distance. 

When sites A, B1, B2, B3, C1, C2, C3 are completely filled with chromium atoms (7 Cr in 

figure 1-Ch3 horizontal axis), the iron vacancy migration barrier rises from 0.3 eV to 0.5 eV. 

Then the migration energy remains constant with increasing Cr content until all the nearest 

neighbours of the migrating atom and vacancy are occupied with chromium atoms. When the 

second nearest neighbours (G and H sites) start to be occupied with chromium atoms, the 

vacancy-iron migration energy shows a slowly increasing tendency. As it will be shown in the 

following, the increase of iron migration energy occurring when the first nearest neighbour 

shell of iron initial position is saturated with chromium atoms (7 Cr in figure 1-Ch3 horizontal 

axis) probably has a magnetic origin.  

When the migrating atom is a chromium atom, an increase (from 0.2 eV to 0.8 eV) of 

chromium migration energy can be observed when the C sites – which are first nearest 

neighbours of the migrating chromium initial position – are progressively filled with 

chromium atoms. A further increase (from 0.6 eV to 1 eV) of the chromium migration energy 

occurs when the G sites are occupied (15 to 17 Cr in figure 1-Ch3 b), one by one, by 
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chromium atoms. Finally the vacancy-chromium migration energy decreases (from 1 eV to 

0.7 eV) while the H sites (18 to 20 Cr in figure 1-Ch3 b) are progressively occupied.  

The results in figure 1-Ch3 indicate that the migration barriers do depend on the Cr 

content in the neighbourhood of the migrating atom as could be expected. This dependence is 

more pronounced when the migrating atom is a chromium atom as the changes in the barriers 

are larger.  

As was shown in chapter 1 and chapter 2 the Fe-Cr system exhibits very peculiar 

magnetic properties. As a consequence, the Fe-Cr system kinetic behaviour is probably 

partially driven by magnetism. In order to investigate the role the magnetism plays in such a 

context, the average of the neighbouring atoms LMM (figure 3-Ch3 for a migrating iron atom 

and figure 4-Ch3 for a migrating chromium atom) and the migrating atom LMM (figure 5-

Ch3 for a migrating iron atom and figure 6-Ch3 for a migrating chromium atom) has been 

computed for its initial position, saddle point and final position. This has been done for all the 

LAE configurations we considered here. According to what stated in chapter 2, the LMMs in 

relaxed Fe-Cr structures have been calculated by integrating the spin density (see equation (9) 

in chapter 2) in the volume of a sphere centred on each atom and with radius equal to the 

Wigner-Seitz radius corresponding to the atom type (1.323 Å for chromium and 1.302 Å for 

iron). 

First of all it should be noted that, regardless of the migrating atom type and the 

chromium content in the LAE, the average LMM of the iron atoms in the super-cell 

(excluding the migrating atom) remains constant (~2.2 µB) whereas the average LMM of 

chromium atoms in the super-cell varies between –2 µB and –0.4 µB (see figure 3-Ch3 and 

figure 4-Ch3). Globally, the chromium magnetic moments tend to orient anti-

ferromagnetically with respect to the iron matrix magnetic moments. The fact that the 

absolute value of the chromium atoms average LMM decreases with increasing chromium 

content in the migrating atom LAE is due to the rise of frustrated magnetic configurations for 

chromium atoms. This has been previously explained by Klaver et al. [Klaver2006] and is 

further confirmed by our DFT calculations. If one look more carefully to the reduction of the 

absolute value of the neighbouring chromium average LMM (figure 3-Ch3 and figure 4-Ch3), 

one can notice that it occurs by means of a three steps variation. This happens because 

magnetic frustration rises as a shell of chromium is added to a previous existing chromium 

shell: when sites A, B and C are occupied by chromium atoms, no magnetic frustration 

occurs; when the D, E and F sites are progressively filled with chromium atoms, magnetic 

frustration appears. Finally, it becomes more pronounced when the G and H sites are filled 
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with chromium. Looking at the variation of the migrating iron initial position magnetic 

moment with the chromium content in its nearest neighbour shell (figure 5-Ch3 horizontal 

axis), one can observe that the magnetic moment is anti-parallel (–1.5 µB) with respect to the 

matrix when sites A, B1, B2, B3, C1, C2  are filled with chromium (6 Cr in figure 5-Ch3). 

For the same configuration of its LAE (namely: sites A, B1, B2, B3, C1, C2 occupied by 

chromium atoms), the migrating iron LMM is positive at the saddle point position. A certain 

amount of energy is required for this spin-flip to be realised during the displacement of the 

migrating atom from its initial position to the saddle point position. As a consequence of this 

spin-flip, a rise of the migration energy occurs starting from the configuration corresponding 

to the chromium filling of sites A, B1, B2, B3, C1, C2 (6 Cr in figure 1-Ch3 a). The spin flip 

effect described above occurs between the saddle point and final position of the migrating 

iron when sites A, B1, B2, B3, C1, C2, C3, D1, D2, D3, E1, E2 are all filled with chromium 

atoms (12 Cr in figure 5-Ch3 horizontal axis) and disappears when the first nearest neighbour 

shell of the final position is saturated with chromium atoms (14 Cr in figure 5-Ch3 horizontal 

axis). 

 

 

Figure 3-Ch3 Average magnetic moments of neighbouring iron and chromium atoms for the three different positions of a 

migrating iron atom (initial position, final position, saddle point position) and for different contents of chromium in first and 

second nearest neighbour sites of the migrating atom and the vacancy. The error bars correspond to the standard deviation. 
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Figure 4-Ch3 Average magnetic moments of neighbouring iron and chromium atoms for the three different positions of a 

migrating chromium atom (initial position, final position, saddle point position) and for different contents of chromium in 

first and second nearest neighbour sites of the migrating atom and the vacancy. The error bars correspond to the standard 

deviation. 

 

 

 

Figure 5-Ch3 Magnetic moments of a migrating iron atom in three different positions (initial position, final position, saddle 

point position) and for different contents of chromium in first and second nearest neighbour sites of the migrating atom and 

the vacancy. The error bars correspond to the standard deviation. 
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Figure 6-Ch3 Magnetic moments of a migrating chromium atom in three different positions (initial position, final position, 

saddle point position) and for different contents of chromium in first and second nearest neighbour sites of the migrating 

atom and the vacancy. The error bars correspond to the standard deviation. 

 

The migrating chromium LMM undergoes a spin-flip when the chromium content in 

its first nearest neighbours passes from 4 to 7 Cr (figure 6-Ch3). As figure 6-Ch3 shows, the 

difference between the migrating chromium final and initial LMM increases during the filling 

of the A, B and C sites with chromium atoms (1 to 7 Cr in figure 6-Ch3). This fact should 

produce a monotonic increase of vacancy-chromium migration energy in the same region 

whereas, observing figure 1-Ch3 b, one realises that when sites A, B1, B2, B3 (from 1 Cr to 4 

Cr in figure 1-Ch3 b horizontal axis) are progressively occupied with chromium atoms, the 

vacancy-chromium migration energy stays almost constant. This can be explained by the 

competition of two coexistent effects whose origins are magnetic in one case and chemical in 

the other case. On the one hand, the vacancy-chromium exchange requires more and more 

energy to be realised because of the LMM variation of the migrating atom during the jump, on 

the other hand the chromium-chromium repulsive interaction –which we have found to be –

0.232 eV (respectively –0.121 eV) when the chromium atoms separation equals first 

(respectively second) nearest neighbours distance (in good agreement with Olsson et al. DFT 

calculations [Olsson2007]) – lowers the migration barrier when sites A, B1, B2, B3 are filled 

with chromium atoms (from 1 to 4 Cr in figure 1-Ch3 b) because the neighbouring chromium 

atoms tend to push away the migrating chromium. These two opposite effects result in a weak 

variation of the vacancy-chromium migration barrier with the progressive filling of sites A, 

B1, B2, and B3. Above 7 Cr the figure 6-Ch3 then shows an overall tendency of the migrating 

chromium LMM to reduce its absolute value. This, we believe, is related to the attempt of the 

system to minimise its configurational energy excess due to the frustration phenomena. 

 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1
C

r

2
C

r

3
C

r

4
C

r

5
C

r

6
C

r

7
C

r

8
C

r

9
C

r

1
0
C

r

1
1
C

r

1
2
C

r

1
3
C

r

1
4
C

r

1
5
C

r

1
6
C

r

1
7
C

r

1
8
C

r

1
9
C

r

2
0
C

r

µ
 (

 µ
B

 )
H

Migrating Cr initial position 

Migrating Cr final position 

Migrating Cr saddle point position

A
B C D E

F
G H



 

89 
 

Another interesting point to notice in figure 1-Ch3 is the fact that, regardless of the 

atomic species of the migrating atom, and for most of the configuration of the LAE we 

investigated, the trend observed in the migration energies follows the trend in the E. The 

migration energy is the difference between the energy of the system when the migrating atom 

is at the saddle point position and when the migrating atom is at its initial position. In 

principle, there is no trivial relation between the value of the migration energy and ΔE for a 

given configuration of the LAE. However, when the ΔE is positive (i.e. the final state has 

higher energy than the initial state), it represents the lower limit of the energy the atom needs 

to jump towards the vacancy. The migration energy is generally higher than ΔE because the 

saddle point energy can be higher than the final state energy. As a consequence one can 

consider that, if ΔE is positive, the difference between the migration energy and ΔE, is the 

excess energy the atom needs to achieve the path towards the vacancy. Such energy can be 

supposed as being mainly dependent on the atomic environment near the saddle point position 

of the migrating atom. From this point of view, if one observes the zone where the second 

shell of the vacancy-migrating atom LAE starts to be filled with chromium atoms (from 15Cr 

in figure 1-Ch3 a and b), will note that ΔE is strictly positive and increases until the G sites 

are completely filled with chromium atoms and decreases when the H sites are progressively 

filled with chromium atoms. This tendency is a common feature of both chromium atom and 

iron atom migration energy. The positive ΔE corresponding to the progressive filling of the 

G1, G2, and G3 sites shows that for such LAE (15Cr, 16 Cr, and 17 Cr in figure 1-Ch3), the 

initial (before the vacancy jump) configuration of the system has lower energy than the final 

(after the vacancy jump) configuration of the system. This means that, regardless of the 

migrating atom type, the initial configuration where the migrating atom first neighbours shell 

(A, B1, B2, B3, C1, C2, and C3) and the migrating atom second neighbours shell (G1, G2, 

G3, D1, D2, and D3) are completely filled with chromium atoms is more stable than the final 

configuration where the vacancy has moved to the migrating atom initial position. From such 

consideration we deduce that, despite the fact that the chromium-vacancy interaction is 

attractive, the system is less stable when the vacancy is embedded by two chromium shells 

(this is not the case when the vacancy is embedded by only one chromium shell). This 

phenomenon has probably a magnetic origin. The LMMs of chromium atoms embedding the 

vacancy are slightly higher than LMMs of chromium atoms embedding a chromium atom or 

an iron atom so that magnetic frustration is enhanced in the former case than in the latter case. 

However it is very difficult to draw a definitive conclusion on this issue because the 

chromium compounds corresponding to the different configurations of the LAE that we are 
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considering here are too far from being large enough to orient their magnetic moment in the 

chromium antiferromagnetic stable configuration. Also, the spin density around each atom 

that we integrate to obtain the LMMs may correspond to local minima and not to the real 

ground state of the system. As a consequence the LMMs we obtain could be not fully reliable.   

It is also interesting to note that the chromium atom migration energy variation with 

the chromium filling of the G sites and the H sites follow the variation of ΔE. The difference 

between the migration energy and ΔE remains almost constant during the filling of the G sites 

and the H sites with chromium atoms. This means that the excess energy which must be added 

to the ΔE to obtain the migration energy weakly depends on the vacancy-migrating atom pair 

second neighbour shell. Also it seems that the variation of the vacancy migration energy with 

the environment is driven by the variation of the ΔE when the G and H sites are progressively 

filled with chromium atoms. The situation is less clear in the case where the migrating atom is 

an iron atom (see figure 1-Ch3 a). Indeed, the ΔE variation with the increasing chromium 

content in the G sites and the H sites follows the tendency observed when the migrating atom 

is a chromium atom but the migration energy does not.      
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3.1.2 Migration barriers dependence on the position of the environmental 

chromium along the migration path 

 

In order to better understand the influence of the specific positions of the chromium 

atoms on the vacancy-atom migration barriers, the vacancy-chromium and vacancy- iron 

migration energies have been calculated for different positions of a single chromium atom in 

the LAE. 

 

  

 
Figure 7-Ch3 Vacancy migration energy and difference (ΔE) between final (after the migration) and initial (before the 

migration) energy of the system for different positions of one chromium atom within the first nearest neighbour sites of initial 

and final position of migrating atom. a) The migrating atom is an Fe atom b) the migrating atom is a Cr atom. 

 

Figure 7-Ch3 indicates that, as already observed in figure 3, the changes in the barrier 

are more pronounced when the migrating atom is a chromium atom. Indeed, the vacancy-iron 

migration energy and the E depend very weakly on the presence of one chromium atom in 

the local environment whereas the vacancy-chromium migration is sensible to the presence 

and, in particular, to the relative position of the chromium atom. This fact can be easily 

explained as the consequence of the repulsive interaction existing between chromium atoms. 

When the system contains only two chromium atoms, their LMMs are both oriented 

antiferromagnetically with respect to the iron atoms LMMs and this regardless of their 

separation distance (see table 2-Ch2 in chapter 2). As a consequence, when the two chromium 

atoms are first nearest neighbours an intense repulsive force rise between them to increase 

their separation distance and avoid a frustrated magnetic configuration.  

According to our results, the chromium-chromium repulsive interaction can either 

produce a rise of chromium migration energy or a reduction of chromium migration energy 

depending on the positions of the environmental chromium atoms. If a chromium atom is 

placed in site A or in site B1, the vacancy-chromium migration barrier is lower than in the 
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cases sites C1, D1, E1 or F are occupied. This is due to the fact that in the first cases the 

chromium-chromium repulsive force facilitates the jump of the migrating chromium atom 

towards the vacancy whereas in the latter cases chromium-chromium repulsive force 

represents an obstacle to the migrating chromium. 

The migration barrier is also larger when the Cr atom is situated in the neighbourhood 

of the saddle point (C and D windows) or of the final position (E and F sites). In fact, the 

maximum value of the vacancy-atom migration energy results from the presence of a 

chromium atom in a D site (this fact is much more visible in the case where the migrating 

atom is chromium). 

The dependence of ΔE on the LAE is related not only to the Cr-Cr binding energy but 

also to the Cr-V binding energy. According to our DFT calculations, the latter is equal to 

0.056 eV when the chromium and the vacancy are 1
st
 nearest neighbour and 0.01 eV when 

they are 2
nd

 nearest neighbours. When the migrating atom is an iron atom, the main 

contribution to ΔE is the interaction of the vacancy with chromium atoms belonging to the 

LAE. The gain or the loss of stability for the system, which follows a vacancy-atom 

exchange, depends on the variation of the number of chromium atoms which are first or 

second nearest neighbours of the vacancy. As the chromium-vacancy interaction is attractive, 

the system tends to become more stable when the chromium occupancy of the sites 

surrounding the vacancy increases and vice versa. However, since the chromium-vacancy 

interaction is weak, this effect is quite small, as can be seen in figure 7-Ch3 a) for the 

migrating iron atom. On the other hand, the chromium-chromium interaction plays a more 

important role in the variation of the energy of the system, because of its magnitude with 

respect to the chromium-vacancy interaction. Chromium-chromium repulsion is strong and 

considerably dependent on the distance between the two chromium atoms (see figure 4-Ch2 in 

chapter 2). As a consequence, the ΔE can be very large and strongly affected by the LAE. 

When the vacancy jump leads to an increase of the distance between the migrating chromium 

and the chromium atoms in LAE, then the system becomes more stable. On the contrary, 

when the vacancy jump results in a reduction of the distance between the migrating chromium 

and environmental chromium atoms, then the total cohesive energy increases and the system 

becomes less stable (see in figure 7-Ch3 b).    
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3.1.3 Influence of the saddle point and the final configuration environment 

 

Figures 1-Ch3 indicates that, especially in the case where the migrating atom is a 

chromium atom, the chromium content of the nearest neighbour sites of the migrating atom 

saddle point position (sites C1, C2, C3, D1, D2, and D3) has a notable influence on the 

variation of the migration energies. In particular figure 1-Ch3 shows that when the C sites and 

the D sites are progressively filled with chromium atom the dependence on the LAE of the 

vacancy migration energy differs from the variation of the ΔE. This can be noticed especially 

in the case where the migrating atom is a chromium atom for which the progressive filling 

sites C1, C2, and C3 corresponds to a monotonic growth of the vacancy-atom exchange 

migration energy. This latter aspect was previously pointed by Nguyen Manh et al. [Nguyen-

Manh2008a, Nguyen-Manh2009] who investigated a few specific configurations. In order to 

study in a more precise way the influence of the neighbouring Cr atoms on the vacancy 

migration energy, we investigated all the possible configurations of the saddle point 

environment using the DFT-NEB-CI approach. All our results can be found in ANNEX 2, in 

what follows we will discuss the most significant cases.  

Figure 8-Ch3 represents the evolution of the migration energy and the changes in total 

energy of the system when filling progressively the "saddle point windows" and the final 

configuration sites. 
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Figure 8-Ch3 Migration barriers and change in the total energy configuration ΔE as a function of the filling of the different 

sites (“saddle point window”: C and D and sites: E) with Cr atoms. Left: the migrating atom is an Fe atom; right: the 

migrating atom is a Cr atom. 

 

Figure 8-Ch3 clearly shows that the filling of windows C and D and sites E has a 

strong impact on E. The more Cr atoms located in the C window, the lower the final 

configuration energy, whereas the more Cr atoms located in the D and E sites the higher the 

final configuration energy. The fact that the trends are not as pronounced for the migration 

barrier, in particular for the E sites demonstrates the delicate balance between the contribution 

of the final and initial configurations and that of the local environment of the saddle point to 

the migration barrier. 

The calculations of the vacancy-iron and vacancy-chromium migration energies show 

that the migration barriers exhibit a clear dependence on the saddle point nearest neighbour 
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shell chemical environment. In particular the most remarkable effect can be summarised as 

follows: when sites D1 D2 D3 are occupied by chromium atoms the vacancy migration 

energy is always higher than in the other cases. This tendency can be observed also for each 

configuration for which chromium occupancy of D sites is higher than chromium occupancy 

of C sites and is stronger when the migrating atom is chromium. The latter observation (in the 

extreme case corresponding to a complete chromium filling of the D sites and a complete iron 

filling of C sites) can be explained with a magnetic interaction argument. Chromium atoms in 

sites D are second nearest neighbours of the migrating chromium when the latter is at its 

initial position. When the migrating chromium reaches its final position by means of the 

exchange with the vacancy, the D sites become its nearest neighbours. This means that the 

migrating chromium atom at its initial position can orient its LMM in a parallel way with 

respect to the other chromium atoms in the structure (placed in sites D1, D2, and D3) and in 

anti-parallel way with respect to the iron atoms in the structure. The migrating chromium at 

its final position will tend to orient its LMM in order to create an anti-ferromagnetic 

compound with chromium atoms in D1, D2, D3 (now first nearest neighbours) and, at the 

same time, it will tend to orient its LMM in anti-ferromagnetic configuration with respect to 

the iron atoms in the matrix. This competition between two orientation states of the LMM 

associated to the migrating chromium at its final position leads to a frustrated configuration 

with higher energy then the one corresponding to the configuration before the chromium atom 

jump. Figure 9-Ch3 depicts the mechanism described above. In order to better illustrate this 

phenomenon, we computed the vacancy-chromium migration energy in an environment 

characterised by the chromium occupancy of sites D1, D2, and D3 (all other matrix sites 

being occupied by iron atoms) by introducing nine images between the initial and the final 

position of the vacancy. Figure 10-Ch3 displays the variation of migrating chromium LMM 

along the migration path (left hand side) and the migration barrier energy profile (right hand 

side). The left hand side of figure 10-Ch3 clearly shows that the migrating chromium LMM 

undergoes a spin-flip.       
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Figure 9-Ch3 Migrating chromium magnetic moment before (left side) and after (right side) the jump when sites D1, D2, D3 

(see ANNEX 1) are occupied with chromium atoms.  

 

  

 
Figure 10-Ch3 Migrating chromium LMM (left) and migration barrier profile (right). Sites D1, D2, D3 (see ANNEX 1) are 

occupied by chromium atoms and all the other sites in the supercell are occupied by iron atoms. 

 

A more general explanation of the fact that the vacancy-atom migration barrier is 

higher when the chromium content among the D sites is higher than the chromium content 

among the C sites can be formulated in terms of the chromium-chromium and the chromium-

vacancy interaction. 

A migration barrier profile associated to a vacancy-atom exchange provides both the 

migration energy of the forward jump and the migration energy of the backward jump. Let us 

consider, as an example, the case we dealt with above (figure 10-Ch3): the chromium 

migration in the environment characterised by the occupation of all D sites with chromium 

atoms and all C sites with iron atoms. The migration barrier represented in the right hand side 
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of figure 10-Ch3 provides the migration energy of the forward jump but also, by reversing the 

reaction coordinate, the migration energy of the backward jump. The backward jump path is 

equivalent, on a topological point of view, to the chromium migration in the environment 

characterised by full chromium occupancy of C sites and full iron occupancy of D sites. In the 

case represented in figure 10-Ch3, comparing the forward migration energy with the 

backward migration energy is equivalent to comparing chromium migration energy for the 

configuration represented by chromium saturation of D sites and iron saturation of C sites 

with the chromium migration energy for the symmetric configuration (i.e. chromium 

saturation of C sites and iron saturation of D sites). From this point of view, the difference of 

migration energy between a forward and backward vacancy-atom jump corresponds to the 

energy difference between the two reference equilibrium configurations (see figure 11-Ch3 

for a schematic representation). This means that the difference between vacancy-atom 

migration energies computed for two symmetric configurations (by chromium occupancy 

exchange in sites D and C) corresponds to the energy difference between the initial and final 

state energy with a sign depending on the direction of the migration (from 1 to 2 or from 2 to 

1, if one uses the nomenclature in figure 11-Ch3).  It is clear that the energy the system needs 

for an atom to jump in a vacancy is at least the energy difference between the final state and 

the initial state energies, if the final state has a higher energy than the initial state. Inversely, 

the energy gain for the system corresponds to the energy difference between the initial state 

and the final state energies if the initial state has a higher energy than the final state. As a 

result the difference between the vacancy-atom migration energy in symmetric configurations 

simply corresponds to the energy difference of the final and the initial state energy. The 

reason why a higher chromium occupancy of the D sites leads to higher vacancy-atom 

migration energies can be then understood by simply thinking in terms of the final state (after 

the jump) and initial state (before the jump) energy difference: 

 

- In the case the migrating atom is a chromium atom, a higher chromium 

occupancy of the D sites than the chromium occupancy of the C sites (all other sites of 

the matrix being occupied by iron atoms) will mean that the migrating chromium, at 

its final position, will have a larger number of chromium atoms within its nearest 

neighbours than at its initial position. This implies that the final configuration energy 

will be higher than the initial configuration energy because of the chromium-

chromium repulsive interaction. 
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- In the case the migrating atom is an iron atom, a higher chromium occupancy 

of the D sites than the chromium occupancy of the C sites (all other sites of the matrix 

being occupied by iron atoms) will mean that the vacancy, at its final position, will 

have a lower number of chromium atoms within its nearest neighbour than at its initial 

position. This implies that the final configuration energy will be higher than the initial 

configuration energy because of the chromium-vacancy attractive interaction. 

 

 

 

Figure 11-Ch3 Migration barrier for a forward and backward jump of the migrating atom through the C sites "window" and 

the D sites "window".   

 

What has been stated above indicates that, in some cases, the variation of the vacancy 

migration barrier as a function of the LAE follows the variation of total energy of the whole 

system. In particular, this is true when one compares the vacancy migration energy for LAEs 

which are symmetric with respect to the inversion of the reaction coordinate. 
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Figure 12-Ch3 Migration barrier as a function of the change in the total energy configuration (ΔE). a) The migrating atom is 

an Fe atom, b) the migrating atom is a Cr atom. The equations on the figure are the linear fits of the data points obtained by 

least square method. a) The square of the correlation coefficient is     0.6393. b) The square of the correlation coefficient is 

    0.4176. 

 

However, a general relation between the vacancy migration energy and the energy 

change of the system due to the vacancy jump cannot be established. The reason for that is the 

fact that the migration energy is the difference between the saddle point energy (i.e. the 

energy of the system when the migrating atom is at the saddle point position) and the energy 

of the system before the vacancy jump. Thus, strictly speaking, the migration energy does not 

depend on the energy of the system after the vacancy jump. Figure 12-Ch3 – where all 

configurations which have been considered are represented – seems to indicate that there is 

indeed some correlation between the migration energy and the E associated to a given 

vacancy migration process. However the dispersion of the data points also indicates that the 

migration energy depends also on the local environment at the saddle point as shown 

previously. Indeed most of the data points which lie far away from the "tendency line" can be 

understood by a careful examination of the saddle point windows.  

All along this section we tried with some success to provide a physically consistent 

interpretation of the vacancy migration energy and ΔE dependence on the LAE based on 

magnetic arguments or considerations concerning the chromium-chromium and chromium-

vacancy interaction. We can make the following conclusions: 

 

1. In most cases the chromium-chromium and the chromium-vacancy interactions 

can explain the variation of the vacancy migration energy as a function of the 

LAE. 
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3. In most configurations of the LAE, the trend we observed for the vacancy 

migration energy follows the trend of ΔE. 

 

4. When chromium atoms occupy the nearest neighbour site of the migrating 

atom saddle point positions (C sites and D sites), the relationship between the 

migration energy and ΔE is not trivial. 

 

5. A practical model of the migration barrier for the vacancy migration, such as 

the model introduced by Kang and Weinberg [Kang1988] and later referred as 

the final initial state energy (FISE) model [Vincent2008], in an Fe-Cr system 

has to take into account not only the total energies change of the system due to 

the vacancy jump but also a description of the saddle point chemistry and in 

particular the number of Cr atoms in the saddle point environment.  
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3.2 EAM-2BM-GB potential 

 

In order to test the capability of the EAM-2BM-GB potential to reproduce the DFT 

trends regarding the influence of the LAE, we computed the vacancy migration energy and 

ΔE for different chromium contents using the Drag Method (DM) and the EAM-2BM-GB 

potential.  

    

  

 
Figure 13-Ch3 Iron-vacancy migration energy and total energy change ΔE for increasing chromium content in first and 

second nearest neighbour sites of initial and final position of migrating atom. Comparison between DFT previsions and 

EAM-2BM-GB potential results. a) The migrating atom is an Fe atom, b) the migrating atom is a Cr atom. 

 

Accordingly to our previous tests (see chapter 2), all the calculations of the vacancy 

migration energy with the EAM-2BM-GB potential have been performed within the DM in a 

8a0×8a0×8a0 simulation box (a0=2.855 Å) with a discretisation step corresponding to 0.04 Å 

along the segment joining the initial and final position of the migrating atom. Our results are 

represented in figure 13-Ch3. 

The first interesting feature of our results is that, as we observed for the DFT results, 

the EAM-2BM-GB calculations show some correlation between the dependence on the LAE 

of the migration energy and ΔE. Nevertheless, once again, no trivial relationship between the 

migration energy associated to a vacancy jump and the energy changes it leads to can be 

established. The largest disagreement between the EAM-2BM-GB potential and DFT results 

are observed when the migrating atom is a chromium atom. Furthermore, for both vacancy-

iron exchanges and vacancy-chromium exchanges, a disagreement occurs when the C sites 

(which are first nearest neighbours of the saddle point position) are progressively filled with 
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chromium atoms. The disagreement is quite important also in the case of the vacancy-

chromium exchange when one fills the A and B sites with chromium atoms. The latter 

observation is a consequence of the difference in the chromium-chromium binding energy 

predicted by DFT and the EAM-2BM-GB potential. Concerning the case of the vacancy-

chromium exchange, figure 13-Ch3-(b) also reveals that, for a large range of chromium 

contents in the LAE, the cohesive energy change related to the vacancy jump computed by 

DFT or by the EAM-2BM-GB potential differs by the sign. An important point which should 

be emphasised is the fact that the EAM-2BM-GB potential correctly reproduces the variation 

of the migration energy due to the progressive filling of sites G and H.   

Finally, figure 7-Ch3 and figure 8-Ch3 clearly show that the vacancy migration 

barriers and the ΔE computed with the EAM-2BM-GB potential are less sensitive to the LAE 

than the ones obtained by DFT. Nevertheless, it should be noticed that, from a qualitative 

point of view, the EAM-2BM-GB potential is able to reproduce some of the tendencies we 

observed. In particular, it correctly predicts the fact that both vacancy-chromium and 

vacancy-iron migration barriers are higher in the case where chromium atoms are located in 

the D sites than in the case where the chromium atoms of the LAE occupy the C sites.  

Figure 14-Ch3 displays a comparison of the migration barriers computed with the 

EAM-2BM-GB potential and the DFT for different configurations of the LAE of the vacancy-

migrating atom pair. The list of the configurations of the LAE which have been considered 

can be found in ANNEX 3.  

 

  

 

Figure 14-Ch3 DFT-NEB vs. DM-EAM-2BM-GB. Migration energy for different configurations of LAE. Left hand side: 

the migrating atom is an Fe atom, Right hand side: the migrating atom is a Cr atom.  

 

Figure 14-Ch3 shows that the EAM-2BM-GB potential fails to reproduce the DFT 

estimations. Especially in the case where migrating atom is chromium, the migration energies 
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obtained with the EAM-2BM-GB potential exhibit a weak dependence on chemical 

environment compared to DFT results. The right hand side of figure 14-Ch3 shows that the 

variation domain of the migration energies is broader for DFT calculations than for the EAM-

2BM-GB-DM ones. It is important to notice that some of the worst estimations of the 

chromium migration barriers obtained with the EAM-2BM-GB potential concern LAE 

configurations characterised by the presence of chromium atoms in the A, B1, B2, B3 sites 

(green circle in right hand side of figure 14-Ch3), in D1, D2, D3 sites (orange circle in right 

hand side of figure 14-Ch3) and in C1, C2, C3, D1, D2, D3 sites (blue circle in right hand side 

of figure 14-Ch3). This confirms our previous conclusions about the inability of the EAM-

2BM-GB potential to correctly reproduce the DFT results for LAE containing chromium 

atoms in A, B or C sites (see figure 13-Ch3). A partial explanation is that the EAM-2BM-GB 

potential predicts that the chromium-chromium interactions decreases more slowly with 

distance than predicted by DFT (see figure 4-Ch2 in chapter 2) and is thus less sensible to the 

distance between chromium atoms. As a result, when a chromium atom migrates towards a 

vacancy and its position with respect to the chromium atoms in the LAE changes, a smaller 

variation of the total energy of the system occurs than predicted by DFT. 

The same explanation holds regarding the dependence of ΔE on the LAE. It is stronger 

for the DFT results than for the EAM-2BM-GB potential calculations. 

 

  

 

Figure 15-Ch3 DFT vs. EAM-2BM-GB. Total energy change of the system induced by a vacancy-atom exchange for 

different configurations of the LAE. Left: the migrating atom is an Fe atom, right: the migrating atom is a Cr atom. 

 

Figure 15-Ch3 shows indeed that, for the configurations which we investigated, the 

variation range of ΔE is broader for DFT calculations than for EAM-2BM-GB potential based 
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The disagreement between the chromium-vacancy binding energy obtained with DFT 

or with the EAM-2BM-GB potential mainly affects the cohesive energy change ΔE induced 

by the vacancy-iron exchange (see left hand side of figure 15-Ch3). The reason of such a 

disagreement comes from the fact that, even if both the DFT and the EAM-2BM-GB potential 

predict very weak chromium-vacancy interactions, their estimations are qualitatively 

different: in the case of DFT the interaction is attractive whereas in the case of the EAM-

2BM-GB potential the interaction is repulsive. This leads to the previously mentioned sign 

differences between the ΔE computed with the DFT or with the EAM-2BM-GB potential. 

Considering what has been shown above, one could wonder why the EAM-2BM-GB 

potential is still capable of reproducing some of the DFT trends regarding the vacancy 

migration barriers dependence on the saddle point environment.  In particular, the EAM-

2BM-GB potential reproduces the fact that the vacancy migration energy is higher when the 

D sites chromium content is higher than the C sites chromium content, although their absolute 

values are far from DFT results. In section 3.1, we explained this tendency as being a 

consequence of the chromium-chromium interaction and the chromium-vacancy interaction. 

How can the EAM-2BM-GB potential reproduce such tendencies despite its disagreement 

with the DFT concerning the estimation of the chromium-chromium interaction and 

chromium-vacancy interaction (see chapter 2)? As we discussed above, the disagreement 

between the DFT and the EAM-2BM-GB potential is only quantitative for the chromium-

chromium interaction: both the cohesive models predict a repulsive interaction. However, the 

EAM-2BM-GB potential predicts that the repulsive interaction decreases slower with 

chromium-chromium separation distance than in the case of DFT. As a consequence, the 

cohesive energies and migration barriers computed with the EAM-2BM-GB potential are less 

sensitive to the environmental chromium relative distances and, consequently, to the LAE 

configuration. Concerning the vacancy-chromium interaction, the EAM-2BM-GB potential 

predicts a repulsive interaction which increases when the vacancy-chromium separation 

increases from 1nn distance to 2nn distance whereas DFT predicts an attractive vacancy-

chromium distance which decreases with vacancy-chromium separation. However, regardless 

of this striking qualitative disagreement, in both cases an increase of the distance between the 

vacancy and the chromium atoms in the LAE leads to an increase of the total cohesive energy 

of the system.  

The comparison we made in this section between the DFT and the EAM-2BM-GB 

potential allows us to conclude that: 
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1. Because of the disagreement between the DFT and the EAM-2BM-GB 

potential results about the chromium-chromium and the chromium-vacancy 

interactions, the two approaches predicts ΔE which are sometimes in 

qualitative disagreement. 

 

2. Even if the EAM-2BM-GB potential is able to reproduce some features of DFT 

results, its sensibility to the dependence of vacancy migration energy and ΔE 

on the LAE is smoothed by the fact that it predicts a too long-range chromium-

chromium interaction. 
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In this chapter, we have investigated the dependence of the vacancy migration energy 

on the LAE. DFT calculations presented in section 3.1 allowed us to capture the vacancy 

migration dependence on the chromium content in the first and second nearest neighbour 

shells of the vacancy-migrating atom pair. We also investigated the specific influence of the 

presence of chromium atoms in localised zone of the LAE. In both cases, we partially 

interpreted the variation of the vacancy migration energy as driven by the chromium-

chromium and the chromium-vacancy interactions as well as by the variation of the magnetic 

state of the system during the vacancy jump. Moreover, we investigated the relation between 

the vacancy migration energy and the variation of the cohesive energy ΔE of the system that 

follows a vacancy jump. We have shown that, even if in most configurations of the LAE, the 

trend we observed for the vacancy migration energy follows the trend of ΔE, this is not true 

in general. In particular, in the case of a migrating chromium atom, if chromium atoms are 

located among the nearest neighbour sites of the saddle point position (the C sites or the D 

sites), the relation between the migration energy and ΔE could be not trivial. As a 

consequence, a model based on the Kang and Weinberg approach [Kang1988] and providing 

an approximate estimation of the vacancy migration barrier in an Fe-Cr structure, has to take 

into account, not only the total energies change of the system due to the vacancy jump, but 

also a description of the saddle point chemistry.  

Section 3.2 has been devoted to the investigation of the capability of the EAM-2BM-

GB potential to reproduce DFT results. We observed that the disagreement between the DFT 

and the EAM-2BM-GB potential in the description of the chromium-chromium and the 

chromium-vacancy interactions sometimes leads to qualitative disagreement about the 

estimation of ΔE. Finally, from a general point of view, even if the EAM-2BM-GB potential 

is able to reproduce some features of DFT results, it is less sensible than the DFT to the 

dependence of the vacancy migration energy and ΔE on the LAE because it predicts a too 

long-range chromium-chromium interaction. 
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4. SIMULATION OF THE THERMAL AGEING OF Fe-Cr 

BINARY ALLOYS 

 

 

Since experiments on materials thermal ageing are time-expensive, a reliable computer 

simulation approach, able to describe Fe-Cr alloys microstructure evolution, represents a 

useful tool which contributes to the understanding of the thermal ageing mechanism. The 

simulation of the microstructure evolution induced by thermal ageing in a crystalline structure 

can be described via the Atomistic Kinetic Monte Carlo (AKMC) approach. The AKMC 

allows, through the residence time algorithm, to estimate the physical time related to the 

microstructure evolution of the alloy. In this context, if one neglects relaxation effects and 

vibration entropy contributions to the free energy of the system, the bulk can be modelled by a 

rigid lattice. Moreover, if the existence of other kinds of defects such as interstitial atoms is 

not taken into account, the evolution of the configuration of the system can be simulated as 

being driven by a vacancy diffusion mechanism. In this work, the vacancy diffusion via a 

vacancy-atom exchange (i.e. the migration of an atom towards an unoccupied site among its 

eight nearest neighbours) will be considered as the only process leading to the Fe-Cr micro-

structure evolution. As we will not consider radiation damage situations, interstitial defects 

will not be introduced in the systems we will analyse. 

 The first step towards the understanding and modelling Fe-Cr alloy kinetic properties 

consists in computing the energy barriers related to the processes which drive the alloy 

microstructure evolution. The vacancy-atom diffusion is a thermally-activated mechanism. As 

shown in chapter 3, the migration energy associated to a vacancy jump depends not only on 

the migrating atom chemical type, but also on its local chemical environment. Several 

methods exist for including chemical environment effects on the transition energies 

computation in AKMC simulations, for a review paper on these methods one can refer, for 

example, to reference [Becquart2009]. A very popular choice for computing the energy 

required for a vacancy-atom exchange consists in introducing the so called Final Initial State 

Energy (FISE) approximation, according to the terminology adopted by Vincent et al. 

[Vincent2008] in the context of Fe-Cu alloys, which is based on Kang and Weinberg 

decomposition of migration energy barriers [Kang1988]. The FISE approximation have been 

widely used for the study of the Fe-Cr system [Pareige2009, Pareige2011, Wallenius2007, 
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Bonny2009c, Nguyen-Manh2008b, Nguyen-Manh2008a]. Within the approaches for 

computing atom-vacancy migration barriers, an alternative method proposed by Castin et al. 

must be mentioned. Castin and co-workers developed and trained an artificial neural network 

(ANN) to compute the energy barriers [Castin2010]. The ANN was trained on the basis of a 

set of 30000 atom-vacancy migration energy barriers computed for different chemical 

environment in a simulation box containing 615 atoms using the Nudged Elastic Band (NEB) 

method. They showed for instance, that their ANN-based AKMC was capable of reproducing 

the experimental Fe-Cr phase diagram in the range of concentration of 7 at.%Cr to 15 at.%Cr 

and between 0 and 1200 K. Finally, Martinez et al. [Martinez2011] used a recently introduced 

Fe-Cr concentration-dependent pair potential [Levesque2011] to parameterise AKMC 

simulation of the Fe-Cr thermal ageing. They computed the vacancy migration energy within 

the broken bond method (see, for example, [Becquart2009]). Martinez et al.’s results are in 

quite good agreement with Novy et al. TAP observations of the time evolution of the 

chromium concentration in the α-phase and the α’-phase in the Fe-20 at.%Cr alloy at 773 K 

[Novy2009a]. Their results also exhibit a very good agreement with Bley et al. [Bley1992] 

measurements by small angle neutron scattering of the time evolution of the position of the 

peak of the scattering intensity for Fe-20 at.%Cr, Fe-35 at.%Cr, and Fe-50 at.%Cr alloys at 

773 K.    

 

4.1 Atomistic Kinetic Monte Carlo (AKMC). The residence time 

algorithm 

 

The first papers presenting a kinetic Monte Carlo approach have been published by 

Young and Elcock [Young1966] and by Bortz et al. [Bortz1975], the first dealing with the 

kinetic of the vacancy diffusion in ordered alloys, the latter dealing with the kinetic evolution 

of an Ising spin system. A full theoretical description and formalisation of the AKMC 

algorithm have been achieved quite recently by Fichtorn [Fichtorn1991]. The most important 

feature of the AKMC technique – as compared to Metropolis Monte Carlo (MMC) 

simulations [Metropolis1953] – is the fact that a time step can be related to each simulation 

step (jump of the vacancy). In the AKMC simulations, the configurations are not randomly 

generated and sampled respecting a given probability distribution (usually a thermodynamic 

equilibrium distribution) – as it is done in MMC approach –; the configuration at step   is 

obtained from configuration at step     by realising a vacancy jump. At each AKMC step, 
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the vacancy migrates toward one of its nearest neighbours, the probability associated to each 

possible jump corresponds to a transition frequency which depends on the energy barrier 

associated to the jump. As it will be shown below, this approach allows associating an 

average time increment to each simulation step. As a consequence, the AKMC simulations 

provide a physically realistic kinetic description of the micro-structural changes which occur 

in the system while it evolves toward the thermodynamic equilibrium. On a theoretical point 

of view, the AKMC algorithm describes the kinetic of the structure evolution as a stochastic 

process corresponding to a continuous-time Markov chain (each vacancy jump event does not 

depend on the previous jump but only on the current state). From this point of view, the 

AKMC simulation can be seen as a numerical solution of the master equation: 

 

      

  
 ∑ (                 )    (1) 

 

where     and     are, respectively, the transition rates from configuration   to 

configuration   and configuration   to configurations  , while       and       are the 

probabilities to find the system, respectively, in   and   state at time  .       and       do not 

depend on the previous state of the system but only on time  . The thermodynamic 

equilibrium of a system corresponds to the steady solution of the master equation. The 

condition  
      

  
   leads to the equation:  

 

∑ (     
  

      
  

)   .          (2) 

 

A possible solution of equation (2) is 

 

     
  

      
  

.          (3) 

  

The latter condition is called detailed balance. By imposing the detailed balance 

condition for all possible vacancy-atom exchanges, one can define the transition probabilities 

  to guarantee that the system will reach thermal equilibrium.   

In our case, the vacancy diffuses in a bcc structure in which each lattice site is 

surrounded by 8 nearest neighbours: at each AKMC step the system can evolve through one 

of 8 possible transitions. Vineyard’s simplified transition state theory provides an expression 
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for the frequency associated to a given transition     which, in the case the process is a 

vacancy jump, can be written as [Vineyard1957]: 

 

    
∏   

    
   

∏    
    
   

   ( 
    
  

   
) , (4) 

 

where     
   is the energy barrier associated to the vacancy migration, it corresponds to 

the difference between the energy of the system with the migrating atom constrained at the 

saddle point position and the energy of the system with the migrating atom at its initial 

equilibrium position. The coefficient 
∏   

    
   

∏    
    
   

 is a term called attempt frequency in which    

are the normal modes of the system at the starting point of the transition and     are the normal 

modes of the system when the atom exchanging its position with the vacancy is constrained at 

the saddle point of the migration barrier.   is the simulation temperature and    is 

Boltzmann’s constant. Figure 1-Ch4 represents a scheme of the vacancy-atom exchange 

process. One of the 8 possible transitions is selected with a probability which corresponds to 

the transition frequency associated at each vacancy jump. This is schematically achieved at 

each AKMC step by means of the following procedure: 

 

1. All possible transitions     are listed and the probability rate    (jump 

frequency in the case of a vacancy-atom exchange) associated to each 

transition is computed. 

 

2. The cumulative function    ∑   
 
    , where         is an index on the 

possible transitions, is computed. 

 

3. A random number   ]   ] is generated. 

 

4. The transition which is selected to be carried out is the event   which satisfies 

            . 
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Figure 1-Ch4 Scheme of a Vacancy-atom exchange process. 

 

A physical time step can be associated to each simulation step by implementing the 

residence time algorithm. The basic idea on which the algorithm relies is the fact that if the 

following conditions are fulfilled: 

 

a) the time step used to describe the process is sufficiently small so that it can 

enclose at most one transition (i.e. two events cannot occur simultaneously) 

 

b)  the probability of a given transition to occur at time   is independent on the 

previous history 

 

then the evolution of the system towards a series of transitions (vacancy jumps in the 

case we are considering here) is a Poisson process and the time distribution of transition 

events occurring during a sequence of time intervals will follow a Poisson’s probability law 

[Fichtorn1991]: 

 

        
       

   
                    (5) 

 

where         is the probability that    events occur during time   and    ∑   
 
   .   

A very important feature of Poisson distributed events is the fact that the time interval 

  separating two consecutive events is a stochastic variable exponentially distributed: 
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    ,        (6) 

               

where      is the probability that         . 

From equation (6) follows that the average time step separating two different 

transitions (two vacancy jumps in the case of vacancy diffusion simulation) is: 

  

     
 

  
.   (7) 

 

Equation (7) thus represents the time increment associated to each AKMC step. 

 

4.2 Parameterisation of the AKMC simulations of the Fe-Cr thermal 

ageing 

 

The most relevant quantity of AKMC simulations is the transition frequency. 

Following Pareige et al. [Pareige2011], in our AKMC simulations, the attempt frequency 

(factor 
∏   

    
   

∏    
    
   

 in equation 4) has been considered as constant – as the atom in our system 

(iron and chromium) have similar masses and vibrational properties – and equal to 6∙10
12

 s
-1

. 

The only quantity in equation (4) which varies in our simulations is the energy barrier of the 

transitions which drive the system evolution. 

As discussed above, this work focuses on the bcc Fe-Cr microstructure evolution by 

means of a vacancy diffusion mechanism. The energy barrier associated to each transition is 

the migration energy      the vacancy must overcome to jump toward one of its 8 nearest 

neighbours and to achieve the system’s transition from a configuration to another. As shown 

in chapter 3, the vacancy migration energy strongly depends on the chemical environment of 

the migrating atom-vacancy pair. A realistic parameterisation of an AKMC simulation of Fe-

Cr thermal ageing requires such a dependence to be taken into account. Since there is a low 

probability for the system to be found two times in the same configuration during the 

simulation, the vacancy migration energy should be – in principle – calculated at each step. In 

the subsections which follow, the different approaches which have been considered in this 

work to take into account the vacancy migration energy dependence on chemical environment 
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during the AKMC simulations will be presented. The AKMC simulation results which have 

been obtained with the different parameterisation will be exposed in the last section (section 

4.3) of this chapter.   

   

4.2.1 Final Initial State Energy approximation  

 

A widely exploited approach for the computation of the vacancy migration energy for 

the simulation of the Fe-Cr microstructure evolution [Pareige2009, Pareige2011, 

Wallenius2007, Bonny2009c, Nguyen-Manh2008b, Nguyen-Manh2008a] is the so called 

final initial state  energy (FISE) approach which consists in expressing the vacancy migration 

energy (associated to the transition from the configuration   to the configuration  ) as the sum 

of two terms:  

  

    
         

   
       

 
.          (8) 

 

      
   is often considered as being dependent on the migrating atom type but not on 

the chemical environment and all the effects of the environment on the migration barrier are 

carried by the term        . In particular, in most of the FISE-based parameterisations of the 

AKMC simulations of the iron based alloys which can be found in the literature,       
   is 

simply the atom-vacancy exchange energy in a pure iron matrix. Equation (8) can then be 

written as follows: 

 

    
         

        
       

 
,         (9) 

 

where     indicates the migrating atom type. 

To our knowledge, the only attempt to give a physical basis to this approximation is 

due to Kang and Weinberg [Kang1988]. Kang and Weinberg introduced what has been later 

called FISE approximation [Vincent2008] assuming that the migrating atom experiences a 

harmonic potential α     and α     when it is at its initial or final equilibrium position 

respectively and considering that the saddle point energy corresponds to the point where 

α     and α     cross each other (see figure 2-Ch4). The latter hypothesis implicitly 

corresponds to the questionable assumption that the harmonic approximation still holds quite 
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far from the equilibrium positions of the migrating atom and, particularly, at the saddle point 

position of the migrating atom, regardless of the chemical configuration of the local atomic 

environment.  

 

Figure 2-Ch4 FISE approximation scheme. 

 

As stated in the previous section, the transition frequencies (equation 4), which 

represent the main ingredient of the AKMC parameterisation, must satisfy the detailed 

balance condition (equation 3) which can be written as:  
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where  
 
 

  
   

 
 et 

 
 

  
   

 
 are the probabilities to find the system in configuration   and in 

configuration   (  ∑  
 

  
   

 , where index   runs on all the possible configurations of the 

system, being the configurational partition function) while  
 

    
  

    and  
 

    
  

    are the transition 

rates associated to transition     and transition a    . If one considers a FISE-based 

expression for the approximation of the vacancy migration energy, equation (10) becomes: 
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 .          (11) 

 

Equation (11) is satisfied if       
              

       . The latter condition is always 

fulfilled when             is considered to be independent of the vacancy atomic 

environment and corresponds to the migration energy of a vacancy-atom exchange in a pure 

iron matrix. The FISE approximation has been exploited with some success to compute the 

atom-vacancy exchange energy barrier in the context of the study of the Fe-Cr microstructural 

evolution [Pareige2009, Pareige2011, Wallenius2007, Bonny2009c, Nguyen-Manh2008a] 

because, even if it oversimplifies the migration energy dependence on the chemical 

environment, it is consistent with the detailed balance condition. 

In most of the works using the FISE approach,       
        is generally obtained by 

DFT calculation whereas         is computed using an appropriate cohesive model. Some 

of the most frequently exploited approaches consist in using empirical many-body EAM 

potentials [Pareige2009, Pareige2011, Wallenius2007, Bonny2009c] or the cluster expansion 

(CE) method [Nguyen-Manh2008b, Nguyen-Manh2008a]. The term         could be also 

obtained from DFT calculations but computing this quantity for each initial and final 

configuration encountered would require prohibitive numerical cost. Note that EAM 

potentials and CE cohesive models are nowadays often parameterised to fit some relevant ab 

initio data so, even if they take into account Fe-Cr magnetic properties indirectly, they do not 

explicitly treat magnetic interactions. One important exception is the magnetic cluster 

expansion (MCE) approach [Lavrentiev2009, Lavrentiev2010] which provides the Fe-Cr 

alloys cohesive energy by taking explicitly into account both the chemical interactions (up to 

second nearest neighbours) and the magnetic interactions (up to fifth nearest neighbours), the 

latter being introduced by assigning continuous (vector) spin variables to each atomic site. 

MCE seems to be a promising way to deal with Fe-Cr structures energetic and it was 

exploited to compute the         term in a FISE parameterisation of AKMC simulation of 

Fe-Cr thermal annealing [Lavrentiev2009]. Nevertheless, according to its developers, this 

kind of AKMC parameterisation still presents some difficulties, such as large fluctuations of 

the magnetic contribution to the energy at elevated temperatures. Moreover, MCE is not 
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suitable to directly compute the atom-vacancy migration barriers since it is an on-lattice 

method.  

Following our DFT results, we decided to introduce a dependence of the migration 

barrier (            in equation (9)) to the LAE. The second term in equation (9), namely 

       

 
, being obtained, in our simulations, using an empirical potential, depends naturally on 

the chemical configuration. In chapter 3, it was shown that the chemical environment of the 

saddle point position of the migrating atom has a strong influence on the migration barriers, 

particularly when the migrating atom is chromium. As a result, it seems natural that an 

improvement of the model should start from taking into account, in a more explicit way, the 

saddle point environment effects on the energy barrier associated to the vacancy-atom 

exchange. For this purpose we introduced two possible expressions for            :  

 

- the first expression depends on the number    
  

 of chromium atoms which 

occupy the saddle point position nearest neighbour sites (namely C sites and D 

sites) 

 

- the second expression depends on    
  

 as well as on the relative positions 

chromium atoms occupy within saddle point nearest neighbour sites.  

 

In the first case,             will thus be a function      
  
  and in the second case 

            will be computed as a function    ⃗   
  
 ,  ⃗   

  
                           being 

a vector whose components are the atomic species occupying sites C and D (see figure 3-Ch4 

for the sites nomenclature). The functions  (   
  
) and    ⃗   

  
  have been defined as follows:       

 

      
  (       

  
)  〈     

        ⃗   
  

 〉                               
            (12) 
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)  

(    
  (     ⃗   
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  (     ⃗   
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.          (13) 

 

In the first case (equation 12),       
  (       

  
)  is obtained as the average of the 

vacancy migration energies obtained for all the possible chemical configurations of the saddle 

point LAE for fixed chromium content (   
  

). Here, the LAE includes 1
st
 nearest neighbours 
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only and all the other atoms in the structure are considered to be iron atoms. In the second 

case (equation 13),       
  (     ⃗   

  
) is obtained as the average of the forward (   ) and 

backward (b  ) vacancy migration energy for a given chemical configuration of the saddle 

point LAE. In that case also, the LAE includes 1
st
 nearest neighbours only and all the other 

atoms in the simulation box are considered to be iron atoms. In both cases it is clear that:  

 

      
         

  .         (14)    

 

Concerning equation (13), this follows directly from the invariance under   and   

indexes exchange. Concerning equation (12), 〈     
        ⃗   

  
 〉                               

   is an 

average on all possible atomic configurations of the saddle point LAE hence, for each 

transition which is taken into account, the reverse transition is necessarily included in the 

average. For example, if one considers the atom AT migration in an environment where sites 

C1 and C2 are occupied by chromium atoms, the reverse migration will correspond, from a 

topological point of view, to the migration of atom AT in an environment where sites D1 and 

D2 are occupied by chromium atoms (see figure 3-Ch4 for the sites nomenclature), so that 

both forward and backward migration mechanisms contribute to the term 

〈     
        ⃗   

  
 〉                               

  . By applying the same consideration to all possible 

configurations of saddle point LAE, one concludes that for each configuration the forward 

and backward migration energy is taken into account in the estimation of 

〈     
        ⃗   

  
 〉                               

   which is thus invariant under   and   index 

exchange.  
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Figure 3-Ch4 Local chemical environment structure scheme and sites nomenclature. AT: migrating atom. V: vacancy. Black 

spheres: atom windows the vacancy goes though along migration path (first window: C1, C2, C3. Second window: D1, D2, 

D3). 

 
Equations (12) and (13) lead, respectively, to two expressions of the activation 

barrier, in the FISE approximation: 
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 〈     

        ⃗   
  

 〉                               
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  (     ⃗   
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.                    (16) 

 

Since both       
  (       

  
) and       

  (     ⃗   
  

) fulfil condition (14), it follows that 

expressions (15) and (16) for the approximation of the migration barriers satisfy the detailed 

balance condition (equation 10). They may be thus suitable for the parameterisation of 

AKMC simulations of the evolution of the system toward thermodynamic equilibrium.  

It should be noticed that equation (16), reduces to the exact migration energy when the 

system does not contain chromium atoms other than those which are included in the saddle 

point LAE (1
st
 nearest neighbours). Indeed, in this case, equation (16) becomes (see figure 2-

Ch4 for the notation): 

 

    
   

               

 
 

     

 
       .          (17) 
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In the following of this manuscript we will refer to standard FISE approximation – 

equation 9 – with the denomination "FISE 1" and to the improved FISE approximations – 

equation 15 and16 – with denominations "FISE 2" and "FISE 3" respectively. The table below 

(table 1-Ch4) summarises this nomenclature: 

 

FISE 1     
         

        
  

 
 

FISE 2     
   〈     

        ⃗   
  

 〉                               
   

  

 
 

FISE 3     
   

(    
  (     ⃗   

  
)      

  (     ⃗   
  

))

 
 

  

 
 

 

Table 1-Ch4 FISE approximations. 

 

For all our FISE parameterisations, we computed the first term, namely       , with a 

full DFT approach and the second term, namely 
Δ 

 
, using the EAM-2BM potential 

parameterised by Bonny et al. [Bonny2011] which was described in chapter 2. The EAM-

2BM-GB potential parameterised by Bonny et al. has been chosen, over other potentials such 

as the  potential derived by Olsson et al. (EAM-2BM-PO) [Olsson2005] and the one proposed 

by Caro et al. (EAM-CDM) [Caro2005], because of its better consistency with the 

thermodynamics (considering, in particular, the fact that it provides a Fe-Cr phase diagram in 

better agreement with the recently recalculated CALPHAD Fe-Cr phase diagram 

[Xiong2011]) [Bonny2011a].  

During our AKMC simulations, depending on the parameterisation used, either the 

migrating atom species or both the migrating atom species and the saddle point LAE 

configuration (depending on whether FISE 1 or FISE 2 and 3 are used) are read at each step. 

A migration energy is then assigned to each one of the possible transitions (the eight possible 

jump of the vacancy) to compute the transition frequencies. It is clear that, because of the high 

numerical cost required, the DFT computed quantities involved in the AKMC 

parameterisation must be obtained and tabulated before the simulations. In particular, the 

implementation of FISE 2 and FISE 3 parameterisations requires the vacancy migration 

barriers for all possible configurations of the saddle point LAE (and for the two possible kinds 

of migrating atom) to be computed. All the DFT results obtained are reported in ANNEX 2.  
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Before focusing on AKMC simulations results of thermal ageing, we first present a 

study of the efficiency of the different FISE parameterisations for computing the vacancy 

migration barriers, and compare them with full DFT calculations. To this event, we used the 

FISE approximations to compute the migration barriers in a LAE progressively filled with 

chromium atoms and compared the FISE estimations with the DFT-NEB results. In order to 

better assess the quality of our model, we also computed the Δ  term in the framework of 

DFT as well as with the EAM-2BM-GB potential. As previously stated, since Δ  is computed 

on the fly during our AKMC simulations, it was done using the EAM-2BM-GB potential to 

keep a reasonable numerical cost.  It is also important to notice that the different FISE 

approaches that we have considered in this work are partially based on polarized DFT 

calculations. This is reasonable since, for the chromium concentrations and the temperature 

that we considered in our AKMC simulations, the Fe-Cr alloy is in the ferromagnetic domain 

[Xiong2010]. Furthermore, the choice of the EAM-2BM-GB cohesive model is also 

consistent with this fact because, as stated in chapter 2, this potential has been parameterised 

to reproduce polarised DFT calculations. 

Figures 4-Ch4 and 5-Ch4 show, respectively, the migration energies of the vacancy-

iron and vacancy-chromium exchange for different chromium contents of the LAE. The 

configurations have been obtained by progressively replacing iron atoms in the LAE with 

chromium atoms. The filling order of the LAE with chromium atoms is: A, B1, B2, B3, C1, 

C2, C3, D1, D2, D3, E1, E2, E3, F, G1, G2, G3, H1, H2, and H3. We remind that, following 

the nomenclature which has been employed in this work, the saddle point nearest neighbour 

sites correspond to the C and D sites. FISE 2 and FISE 3 are identical when one, five or six 

chromium atoms are found in the saddle point LAE (1
st
 nearest neighbours). This is due to the 

fact that       
  (       

  
) and       

  (     ⃗   
  
) are computed in a simulation box where the 

only chromium atoms are in the saddle point LAE, all other sites of the structure being 

occupied by iron atoms. As a consequence, for    
  

  , only one configuration of the system 

exists (which corresponds to  ⃗   
  

                                  

          ) and the forward migration energy equals the backward migration energy for 

this configuration so that:  

 

(    
  (     ⃗   

  
)     

  (     ⃗   
  

))

 
 〈     

        ⃗   
  
 〉                        

  
  .          (18) 
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On the other hand, when    
  

   or    
  

  , even if there are six possible 

configurations  ⃗   
  

                           of the saddle point LAE which satisfy 

   
  

   or    
  

  , only two different configurations are distinguishable from a topological 

point of view in each of the two cases:  

 

a)    
  

  : the only chromium atom is placed either on one of the C sites or on 

one of the D sites  

 

b)    
  

  : the only iron atom is placed either on one of the C sites or on one of 

the D sites.  

 

One can easily verify that:    

 

(    
  (     ⃗   

  
)     

  (     ⃗   
  

))

 
 〈     

        ⃗   
  
 〉                        

  
              (19) 

 

for all  ⃗   
  

                           satisfying the constraint    
  

   or    
  

  . 

  Thus, observing figures 4-Ch4, 5-Ch4  and considering the filling order of saddle 

point LAE sites with chromium atoms, one should keep in mind that: 

 

a) FISE 1, FISE 2 and FISE 3 approximations for the vacancy migration energy 

overlap from 0 Cr to 4 Cr (because for these configurations       
   is the same 

for the three approximations). 

 

b) FISE 2 and FISE 3 approximations for the vacancy migration energy overlap 

from 0 Cr to 5 Cr and from 9 Cr to 20 Cr (because for these configurations 

      
   is the same for the both the approximations). 
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Figure 4-Ch4 Fe migration energy for increasing number of chromium atom in the LAE. Comparison between DFT-NEB 

results and different FISE approximations. Filling order of the LAE with Cr atoms: A, B1, B2, B3, C1, C2, C3, D1, D2, D3, 

E1, E2, E3, F, G1, G2, G3, H1, H2, and H3. 

 

Figures 4-Ch4 and 5-Ch4 show that in the region where the saddle point LAE is 

progressively filled with chromium atoms, FISE 1 approximation is weakly dependent on 

chemical environment whereas FISE 2 and FISE 3 predict a variation of both the iron and 

chromium migration energy in qualitatively good agreement with the DFT-NEB predictions 

(especially when the migrating atom is a chromium atom). Furthermore, it holds true, both in 

the case where Δ  has been computed with the EAM-2BM-GB potential or in DFT 

framework. 

It is important to notice that the most remarkable disagreement, both qualitatively and 

quantitatively, between the estimations of the migration energies obtained with the FISE 

approximations by computing  Δ  with the EAM-2BM-GB potential or by DFT can be 

observed in the zone where no chromium atoms are present in the saddle point LAE (i. e. 

when sites A, B1, B2, B3 are occupied with chromium atoms). This suggests that FISE 

estimations are dominated by the Δ  term when no chromium atoms are placed in the saddle 

point LAE and by        term when, on the contrary, the saddle point LAE is populated with 

chromium atoms. Not surprisingly, this effect is particularly visible when the migrating atom 

is a chromium atom: in this case the Cr-Cr interaction has a strong effect on the saddle point 

energy when the migrating atom goes through C window or D window. When the saddle 

point LAE is saturated with iron atoms, the dependence of Δ  on the LAE seems to be 

responsible for most of the migration barrier dependence on the LAE. A large difference can 

A
B C D E

F
G H

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
C

r

1
C

r

2
C

r

3
C

r

4
C

r

5
C

r

6
C

r

7
C

r

8
C

r

9
C

r

1
0

C
r

1
1

C
r

1
2

C
r

1
3

C
r

1
4

C
r

1
5

C
r

1
6

C
r

1
7

C
r

1
8

C
r

1
9

C
r

2
0

C
r

E
m

ig
(e

V
)

Number of Cr in LAE

DFT-NEB

FISE 1, ΔE : DFT

FISE 2, ΔE : DFT

FISE 3, ΔE : DFT

FISE 1, ΔE : EAM-2BM-GB

FISE 2, ΔE : EAM-2BM-GB

FISE 3, ΔE : EAM-2BM-GB



 

 123 

be observed between the migration barrier using Δ  computed with the EAM-2BM-GB 

potential or by DFT. The reason for this effect is the partial failure of EAM-2BM-GB to 

estimate properly Δ  as compared to the DFT results which is due to the fact that the EAM-

2BM-GB potential fails to reproduce DFT-computed Cr-Cr and Cr-V interactions (see 

discussions in chapters 2 and 3).       

 

Figure 5-Ch4 Cr migration energy for increasing number of chromium atoms in the LAE. Comparison between DFT-NEB 

results and different FISE approximations. Filling order of the LAE with Cr atoms: A, B1, B2, B3, C1, C2, C3, D1, D2, D3, 

E1, E2, E3, F, G1, G2, G3, H1, H2, and H3.   

 

In order to further investigate the capability of different FISE approximations to 

account for the migration barrier dependence on the saddle point LAE, we traced the DFT-

NEB computed migration barriers versus the FISE approximation estimations for some 

configurations containing chromium atoms among saddle point nearest neighbour sites (figure 

6-Ch4). The list of the chemical environment configurations which have been considered can 

be found in ANNEX 3. In principle, FISE approximations should be more accurate as the 

dependence of        on saddle local chemical environment is better taken into account. Thus, 

FISE 1, for which no dependence of        on the local chemical environment is taken into 

account, should provide the roughest estimation of the migration barriers whereas FISE 3 

should provide the best estimation of the migration barriers since, in this latter case,        

depends both on the number and the position of chromium atoms among the saddle point 

nearest neighbours sites. Figure 6-Ch4 shows that both in the case the migrating atom is an 

iron or a chromium atom, the more detailed the FISE description of the saddle point, the 

better reproduced the DFT-NEB migration energies. 
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Figure 6-Ch4 DFT-NEB vs. FISE approximations. Migration energy for different configurations of the LAE containing 

chromium atoms among saddle point nearest neighbour sites. Left: the migrating atom is an Fe atom, right: the migrating 

atom is a Cr atom. 

   

In the case where the migrating atom is an iron atom (left hand side of figure 6-Ch4), 

regardless of the way the Δ  term is computed, the agreement between FISE approximation 

and DFT-NEB previsions becomes more and more satisfying as the        dependence on 

saddle point LAE is described in more details. This is not however the case when the 

migrating atom is a chromium atom (right hand side of figure 6-Ch4) for which the accuracy 

of FISE approximation seems to increase significantly with the accuracy of        only if the 

Δ  term is obtained from DFT. This is due to the fact that EAM-2BM-GB potential does not 
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describe the Cr-Cr and Cr-V interactions (see discussion in chapter 3) correctly. Of course, 

the Cr-V interaction also intervenes in the change of the total energy of the system whatever 

the migrating atom, as the chromium vacancy distance will also change when the migrating 

atom is an iron atom, but this effect is small compared to the change of the total energy of the 

system due to the variation of the distances separating chromium atoms. This is due to the fact 

that, regardless of the cohesive model, the absolute value of the Cr-V binding energy is one 

order of magnitude lower than the absolute value of the Cr-Cr binding energy. Table 2-Ch4 

and table 3-Ch4 gather the linear fit associated to DFT-NEB vs. FISE approximations plots 

represented in figure 6-Ch4 for a migrating iron atom and a migrating chromium atom 

respectively.  

 

 Linear fit 
Square of the correlation 

coefficient 

FISE 1 
             (ΔE: DFT) 

             (ΔE: EAM) 

               

     (ΔE: EAM) 

FISE 2 
             (ΔE: DFT) 

             (ΔE: EAM) 

     (ΔE: DFT) 

     (ΔE: EAM) 

FISE 3 
             (ΔE: DFT) 

                       

     (ΔE: DFT) 

     (ΔE: EAM) 

 

Table 2-Ch4 DFT-NEB vs. FISE approximations : linear fit and correlation coefficient. The migrating atom is an iron atom. 

 

 Linear fit 
Square of the correlation 

coefficient 

FISE 1 

             (ΔE: DFT) 

             (ΔE: EAM) 

     (ΔE: DFT) 

     (ΔE: EAM) 

FISE 2 
             (ΔE: DFT) 

             (ΔE: EAM) 

     (ΔE: DFT) 

     (ΔE: EAM) 

FISE 3 
             (ΔE: DFT) 

             (ΔE: EAM) 

     (ΔE: DFT) 

     (ΔE: EAM) 

 

Table 3-Ch4 DFT-NEB vs. FISE approximations: linear fit and correlation coefficient. The migrating atom is a chromium 

atom. 
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4.2.2 Parameterisation via the EAM-2BM-GB potential. Vacancy migration energy 

dependence on the LAE configuration (up to second nearest neighbour shell) 

 

Another approach for the parameterisation of the AKMC consists in computing the 

vacancy-atom migration energy for all possible LAE configurations of the migrating atom-

vacancy pair. In this case, during an AKMC run, the LAE of the migrating atom-vacancy pair 

is read, the appropriate migration energy is assigned to each one of the eight possible jumps of 

the vacancy and the transition rate corresponding to each diffusion event computed. This 

approach has been implemented using the EAM-2BM-GB potential. To compute the 

migration barriers, we used the Drag Method which has been described in chapter 2.  

We computed the vacancy-atom exchange energy barriers in a first step considering 

the 1nn shell of the migrating atom-vacancy pair in the LAE. In a second step, the barriers 

were calculated including also the second nearest neighbours (2nn) contributions. The number 

of possible configurations is 2
14 

for each possible type of migrating atom (i. e. iron or 

chromium) in the first case and 2
20 

in the second case. The migration barriers were computed 

in a bcc structure where only the migrating atom-vacancy LAE (either 1nn or 1nn and 2nn 

shell) was progressively changed to generate all possible chemical configurations, all other 

sites of the matrix being occupied by iron atoms. Following our usual site nomenclature (see 

figure 3-Ch4) the 1nn LAE includes sites A, B1, B2, B3, C1, C2, C3, D1, D2, D3, E1, E2, E3, 

F, whereas the 2nn LAE corresponds to sites G1, G2, G3, H1, H2, H3. As stated in chapter 2 

we used the DYMOKA code to relax the structures and determine the barriers. The size of the 

simulation box (8a0×8a0×8a0) and the discretisation step 0.04 Å along the migration trajectory  

were chosen according to the tests we performed and presented in chapter 2.  
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Figure 7-Ch4 Migration barriers for different chromium contents in the vacancy and migrating atom 1nn shell. In the case 

where the barriers are computed for all the configurations of the first and the second neighbour shells of the migrating atom–

vacancy pair, the barriers have been ordered according to the vacancy 1nn shell chromium content. AT and V stands for the 

migrating atom and the vacancy respectively. Left hand side: the migrating atom is a chromium atom. Right hand side: the 

migrating atom is an iron atom. Simulation box size: 8a0×8a0×8a0. Discretisation step along the migration direction: 0.04 Å.  

 

Figure 7-Ch4 displays the migration barriers for increasing chromium contents in the 

migrating atom-vacancy pair 1nn shell. It shows that the 2nn shell has quite an important 

effect on the migration energy, especially when the migrating atom is a chromium atom. In 

order to assess the extent of this effect, we performed some AKMC runs with both sets of 

migration barriers. The simulations were performed in a simulation box with size 

32a0×32a0×32a0 (a0=2.8553 Å) at a temperature of 773 K for two different composition of the 

Fe-Cr alloy i.e. Fe-20 at.%Cr and Fe-25 at.%Cr. In such conditions, according to the Fe-Cr 

phase diagram, the alloy is inside the miscibility gap, hence the α-α’ phase separation is 

expected to occur. 

Figures 8-Ch4 and 9-Ch4 show the final AKMC configurations for the Fe-20 at.%Cr 

and Fe-25 at.%Cr alloys respectively. When the vacancy migration barriers have been 

determined considering both the 1nn and 2nn LAE, both in the case of Fe-20 at.%Cr or Fe-25 

at.%Cr alloy, chromium clustering is observed after 1×10
8
 AKMC steps for both alloys. On 

the contrary, when the 2nn LAE dependence of vacancy migration barrier is neglected – left 

hand side of figures 8-Ch4 and 9-Ch4 – chromium precipitation has not occurred after 

1.6×10
9 

AKMC steps, for neither alloys. These latter results seem to be not consistent with the 

Fe-Cr phase diagram but they could also be the consequence of a slower phase separation 
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kinetics. The 2nn LAE contribution to the migration barriers has been included in all further 

AKMC simulations. 

 

 

Number of AKMC steps: 1.6×10
9 

AKMC time: 12 s
  

 

Number of AKMC steps: 1×10
8  

AKMC time: 0.017 s 

 
Figure 8-Ch4 Fe-20 at.%Cr structures after AKMC simulated thermal ageing at 773 K. Red spheres are chromium atoms, 

iron atom have not been represented. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å). Left hand side: the migration 

barriers have been determined for the 1nn migrating atom-vacancy pair chemical environments. Right hand side: the 

migration barriers have been determined for 1nn end 2nn migrating atom-vacancy pair chemical environments. 

 

 

Number of AKMC steps: 1.6×10
9 

AKMC time: 12 s 

 

Number of AKMC steps: 1×10
8 

AKMC time: 0.016 s 

 
Figure 9-Ch4  Fe-25 at.%Cr structures after AKMC simulated thermal ageing at 773 K. Red spheres are chromium atoms, 

iron atom have not been represented. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å). Left hand side: the migration 

barriers have been determined for the 1nn migrating atom-vacancy pair chemical environments. Right hand side: the 

migration barriers have been determined for 1nn end 2nn migrating atom-vacancy pair chemical environments.  
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4.3 AKMC simulations of Fe-20 at.%Cr and Fe-25 at.%Cr thermal 

ageing 

 

The kinetics of the Fe-Cr microstructure evolution has been studied by AKMC 

simulations on a rigid bcc lattice. Our study focused on bcc Fe-Cr alloys with 20 at.% and 25 

at.% chromium content at 773 K, for such compositions very recent experimental 

observations are available in the literature [Novy2009a, Pareige2011]. In order to include the 

vacancy migration barrier dependence on the LAE, the AKMC simulations have been 

parameterised with the different FISE approaches (namely FISE 1, FISE 2, and FISE 3) or by 

exploiting the migration barriers computed with the EAM-2BM-GB potential for all possible 

configurations of 1nn and 2nn shell of the migrating atom-vacancy pair.  

In order to characterise the phase separation mechanism which occurs during our 

simulations, we represented different slabs of the structure corresponding to different AKMC 

steps. In figure 10-Ch4 and 11-Ch4, we represented the Fe-20 at.%Cr and the Fe-25 at.%Cr 

alloys respectively. We considered two different thicknesses for the slabs: 1.2 nm (e.g. 8 

atomic layers) and 2.4 nm (e.g. 17 atomic layers). Comparing the structure of the Fe-20 

at.%Cr alloy (figure 10-Ch4) with the structure of the Fe-25 at.%Cr alloy (figure 11-Ch4), one 

can notice that in the case of Fe-25 at.%Cr there is a larger number of connected chromium-

rich clusters than in the Fe-20 at.%Cr structure and that, as the simulation advances, an 

interconnected structure seems to further develop in Fe-25 at.%Cr.  

A difference in the microstructure morphologies between the Fe-20 at.%Cr and the Fe-

25at.%Cr can also be observed in figure 12-Ch4 where we only represented the chromium-

rich precipitates containing more than fifty atoms of a structure obtained after 10
8 

AKMC 

steps. We identified the chromium rich clusters with the same method as the one discussed in 

subsection 4.3.3. 

In figure 12-Ch4, one can clearly see that most of the chromium clusters are isolated in 

the case of the Fe-20 at.%Cr system, whereas in the case of the Fe-25 at.%Cr most of them 

are interconnected.  
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8 atomic layers 

2∙106 AKMC steps 

8 atomic layers 

4∙106 AKMC steps 

8 atomic layers 

6∙106 AKMC steps 

8 atomic layers 

8∙106 AKMC steps 

    
17 atomic layers 

2∙106 AKMC steps 

17 atomic layers 

4∙106 AKMC steps 

17 atomic layers 

6∙106 AKMC steps 

17 atomic layers 

8∙106 AKMC steps 

 

Figure 10-Ch4 Fe-20 at.%Cr microstructure corresponding to 8 atomic layers (1.2 nm thickness, higher row) or 17 atomic 

layers (2.4 nm thickness, lower row) at different AKMC steps. Only chromium atoms in clusters larger than 50 atoms have 

been represented. For visualisation, clusters have different colours, but some different clusters have the same colour, thus all 

atoms with the same colour do not necessarily belong to the same cluster. Isolated chromium atoms are not represented. FISE 

3 parameterisation. 

    
8 atomic layers 

2∙106 AKMC steps 

8 atomic layers 

4∙106 AKMC steps 

8 atomic layers 

6∙106 AKMC steps 

8 atomic layers 

8∙106 AKMC steps 

    
17 atomic layers 

2∙106 AKMC steps 

17 atomic layers 

4∙106 AKMC steps 

17 atomic layers 

6∙106 AKMC steps 

17 atomic layers 

8∙106 AKMC steps 

 
Figure 11-Ch4 Fe-25 at.%Cr microstructure corresponding to 8 atomic layers (1.2 nm thickness, higher row) or 17 atomic 

layers (2.4 nm thickness, lower row) at different AKMC steps. Only chromium atoms in clusters larger than 50 atoms have 

been represented. For visualisation, clusters have different colours, but some different clusters have the same colour, thus all 

atoms with the same colour do not necessarily belong to the same cluster. Isolated chromium atoms are not represented. FISE 

3 parameterisation. 
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Fe-20 at.%Cr 

108 AKMC steps 

Fe-25 at.%Cr 

108 AKMC steps 

 

Figure 12-Ch4 Fe-20 at.%Cr (left) and Fe-25 at.%Cr (right) microstructures after 108 AKMC steps. Only chromium-rich 

clusters with size larger than 50 atoms are represented. The chromium clusters have been identified using the method 

described in subsection 4.3.3 (      = 3.5 a0,     = 40 at.%). For visualisation, clusters have different colours, but some 

different clusters have the same colour, thus all atoms with the same colour do not necessarily belong to the same cluster. 

FISE 3 parameterisation. 

 

4.3.1 Local vacancy environment evolution during thermal ageing 

 

As a first step in the characterisation of the thermal ageing kinetics, we computed the 

fraction of time the vacancy diffuses in the α or α’ phase during the AKMC simulations. The 

main difficulty consists in defining a systematic criterion allowing to distinguish the iron rich 

phase (α-phase) from the chromium rich phase (α’-phase). In order to introduce such a 

criterion, we computed the probability for the vacancy nearest neighbour sites to be occupied 

by chromium atoms when the vacancy is in the iron rich phase. In the initial configuration of 

the Fe-Cr structure, chromium atoms are randomly distributed. Under the hypothesis that the 

solute atoms are randomly distributed in the α-phase, such probability can be computed with a 

binomial distribution [Novy2009b]: 

  

         
  

        
   
       

     ,          (20) 

 

where 8 is the number of the vacancy nearest neighbours,     is the chromium concentration 

in the alloy, and   is the number of chromium atoms which occupy the vacancy nearest 

neighbour sites. We computed the probability expressed by equation (20) for different 
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chromium contents (namely 9at.%, 14at.%, 20at.%, and 25at.%) and for a chromium 

occupancy of the vacancy first nearest neighbours (1nn) shell going from zero to eight. Our 

results are presented in figure 13-Ch4.  

 

  

 

Figure 13-Ch4 Probability (left) and integrated probability (right) of different chromium occupancies (from 0 to 8) of 

vacancy 1nn sites for different chromium concentrations in the Fe-Cr structure (9at.%, 14 at.%, 20 at.%, and 25 at.% ). 

 

Figure 13-Ch4 shows that, for chromium concentrations between 9 at.% and 25 at.%, 

there is a non negligible probability to find up to four chromium atoms in the vacancy 1nn 

shell. Hence, in our AKMC simulations, we considered that the vacancy is in the α-phase 

when the number of chromium atoms located among its eight nearest neighbours sites is 

lower than five. In order to verify the robustness of the method, we also considered a more 

restrictive condition by limiting to three the maximum number of chromium atoms which are 

expected to be found in vacancy 1nn shell when the latter is moving in α-phase. For all the 

AKMC simulations done in this work, the fraction of time the vacancy spends in α-phase has 

been measured and plotted every 2×10
4 

AKMC steps. Figures 14-Ch4 and 15-Ch4 display our 

results for Fe-20 at.%Cr alloy and Fe-25 at.%Cr alloy, respectively.  
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Figure 14-Ch4 Fraction of time the vacancy diffuses in the α phase for different parameterisations of our AKMC simulations 

of Fe-20 at.%Cr. T=773 K. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å).  

 

Despite a small difference between the results obtained with the two different criteria 

used to determine whether the vacancy is located in the α-phase or outside (i.e. at the interface 

or in the α’-phase), the vacancy seems to spend almost all its time in the α-phase for both 

alloys. The results show that the vacancy does not diffuse into the α’-phase, as could be 

expected because of the higher vacancy formation energy (see chapter 2). Based on figures 

14-Ch4 and 15-Ch4, the time spent by the vacancy at the α/α’ interface is not significantly 

enhanced. Indeed, figures 14-Ch4 and 15-Ch4 indicate that the fraction of time the vacancy 

spends in a local environment characterised by the presence of up to three or four chromium 

atoms in its first neighbour shell is consistent with the integrated probability of finding up to 

three or four chromium atoms in the vacancy nearest neighbour shell (figure 13-Ch4) obtained 

for an ideal solid solution with different solute concentrations. This is due to the fact that the 

migration energy is higher when the vacancy migrates towards a chromium-rich environment 

compared to a case where the vacancy jumps towards an iron-rich environment. These results 

confirm those previously obtained by Pareige et al. for Fe-25 at.%Cr alloy [Pareige2011]. 
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Figure 15-Ch4 Fraction of time the vacancy diffuses in the α phase for different parameterisations of our AKMC simulations 

of Fe-25 at.%Cr. T=773 K. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å).  

 

Concerning the different parameterisations of the AKMC, all FISE approaches provide 

similar results. When the barriers have been fully computed with the EAM-2BM-GB 

potential, the fraction of time the vacancy spends in the iron rich phase (α-phase) is slightly 

smaller than in simulations based on FISE parameterisations. This latter observation can be 

probably explained by the fact that, as shown in chapter 3, the migration barriers associated to 

vacancy jumps towards chromium rich zones are predicted by the EAM potential to be lower 

than the ones obtained with DFT.  

 

4.3.2 Time scaling 
 

One of the most important issues related with the AKMC simulations concerns the 

simulated time, and more precisely how it scales with real experimental time. Since the 

vacancy concentration in the simulation box is some orders of magnitude larger than the real 

equilibrium vacancy concentration in the alloy, AKMC simulated time must be rescaled in 

order to compare simulations results with experimental observations. For this purpose, 
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different approaches can be considered. The real time can be obtained from Monte Carlo time 

with the following relation: 

 

         
  
  

  
  , (21) 

 

where   
  

 is the equilibrium vacancy concentration in the real alloy and   
   is the vacancy 

concentration in the simulation box. In the context of thermal ageing simulations of binary 

alloys, equation (21) is often applied considering that the term   
  

 is constant during the 

phase separation [Pareige2011, Wallenius2007, Bonny2009c, Nguyen-Manh2008a, 

Castin2010, Castin2011, Bonny2009c]. Another way to obtain the time scaling factor consists 

in comparing the composition evolution of one of the two phases or the evolution of the 

chromium rich precipitate size computed during the simulations with experimental 

observations of the same quantities. In the first case, one has just to compute the appropriate 

scaling factor for which the equilibrium composition is reached at the same time in 

experiments and simulations. In the second case, one has to compute the time scaling factor 

for which the simulations provide the same precipitates size as experiences for identical 

ageing times. Another method, less frequently used than the previous ones, consists in 

computing the time scaling factor progressively, during the microstructure evolution of the 

alloy and more precisely by following the evolution of the chromium concentration in the α 

phase. The basic idea is to consider the vacancy concentration in the α phase rather than in the 

entire simulation box. This technique has been introduced in the context of the simulation of 

the thermal ageing of Fe-Cu very dilute alloys [Soisson2007, LeBouar2002], as in such 

alloys, one can assume that the vacancy diffuses either in pure iron phase or pure chromium 

phase. The case of highly concentrated Fe-Cr alloy is more complicated since none of the two 

phases can be assumed as being pure. Nevertheless, equation (21) can be applied in a more 

realistic way by considering that the relevant ratio between the vacancy concentration in the 

simulation box and the vacancy concentration in the real alloy – which determines the ratio 

between the simulated time and the real time – should be computed in a given phase (α or α’) 

of the alloy. This means that, when the vacancy diffuses into the α phase, one should compare 

the vacancy concentration in the α phase of the simulation box and the equilibrium vacancy 

concentration in an Fe-Cr structure characterised by a chromium concentration equal to the 

one of the phase where the vacancy is diffusing. In the previous subsection, we have shown 
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that the vacancy spends almost all the time in the iron rich α-phase (see figures 14-Ch4 and 

15-Ch4). As a consequence, the simulated local vacancy concentration can be written as:  

 

  
   

 

  
,          (22) 

 

where  α is the volume of the α phase. Since the volume of the α phase changes during the 

microstructure evolution, the time scaling factor in equation (21) must be progressively 

computed during the simulation. Moreover, it is necessary to follow the chromium 

concentration evolution in the α phase in the simulation box in order to compute, 

progressively, the equilibrium vacancy concentration in a real Fe-Cr structure with the same 

chromium concentration. Neglecting entropic contributions and considering the volume of the 

structure as being constant, the equilibrium vacancy concentration in a real alloy can be 

estimated as follows [Vincent2008]: 

 

  
  

     ( 
  

  
)     ( 

  
     

   
) [                   (

  
         

   
)          (

  
         

   
)], (23) 

 

where     is the chromium concentration   
      is the vacancy formation energy in pure 

iron,   
          and   

          are the binding energies of first nearest neighbour and 

second nearest neighbour chromium-vacancy pair in a pure iron structure. The factor 

    ( 
  

  
) accounts for vibrational entropy contribution and equals 3 [Porter1996] Equation 

(23) allows the vacancy concentration in an Fe-Cr structure to be computed by taking into 

account the vacancy interaction with first and second nearest neighbour solutes.  

In the case where Monte Carlo time is progressively rescaled to obtain a real time with 

the procedure described above or by comparison of the simulated composition evolution and 

the experimentally observed one, the chromium concentration in iron rich α phase must be 

measured. This can be achieved by identifying the chromium rich α’ precipitates and by 

computing the chromium concentration in the remaining volume (i.e. in the structure resulting 

from the exclusion of the α’ precipitates). 

 

4.3.3 Identification of the chromium rich precipitates 

 

One possible way to characterise the α-α’ phase separation mechanism during the Fe-

Cr thermal ageing consists in observing the time evolution of the chromium rich precipitates 
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size. This can provide some indications on the precipitation regime that characterise the phase 

separation. In order to understand whether the models we considered for the parameterisation 

of the AKMC simulations are consistent or not with phase separation thermodynamics and 

kinetics, we will compare our AKMC simulation results with existing experimental data on 

the one side, and with theoretical models and previous AKMC simulations on the other side. 

Two approaches have been considered for the estimation of the α’ precipitate size. The 

first approach consists in computing the position of the first zero   of the spherical average of 

the spatial autocorrelation function. This quantity provides the characteristic length scale of 

the microstructure. For our system it corresponds to the mean width of the α and α’ domains 

[Huse1986, Rautiainen1999, Pareige2011] (see figure 16-Ch4) and is exploited for the 

analysis of interconnected structures characterised by diffuse interfaces. The spherical average 

of the autocorrelation function can be written as: 

 

     〈
 

    
∑ [       ̅]

    
   [ (     )   ̅]〉,          (24) 

 

where    are the positions of the atoms, σ     is the    site occupancy (σ     equals 1 if the 

atom in    is chromium and -1 if the atom in    is iron), σ̅ is the average of the site occupancy 

over the whole structure,      is the number of possible    vectors for a given distance   from 

the   site.    denotes the average over all the sites of the matrix. The autocorrelation function 

is normalised so that       . 

  

 

Figure 16-Ch4 Example of spherical averaged spatial autocorrelation function. The position where the autocorrelation 

function crosses the horizontal axis corresponds to the mean domain width. 
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The second approach consists in considering that chromium rich precipitates have a 

spherical shape so that their radius can be obtained from their volume as follows: 

 

  √
     

  

 
,          (25) 

 

where   is the number of lattice sites included in the precipitate and     is the atomic volume 

obtained as the half of the bcc cell volume. This second approach requires the chromium rich 

precipitates to be identified in order to count the number of lattice sites they embed. To 

identify the chromium rich precipitates, we exploited a procedure similar to that used by Novy 

et al. [Novy2009a]. The method consists in introducing the concept of local chromium 

concentration: chromium content is measured inside a sampling sphere of given radius       

centred on a lattice site. In practice, the sampling sphere is displaced within all the volume of 

the simulation box and centred on each atomic site of the Fe-Cr structure, the chromium 

concentration in the sampling sphere is measured, if it is higher than a given threshold     

then the site is included in α’-phase otherwise it is considered as belonging to α-phase.  

The length associated to the zero of the autocorrelation function cannot be strictly 

identified with the size of the α’ precipitate. The relation between   and the precipitate size is 

not direct and not trivial, and it depends for instance if the α’ rich zone consists in isolated 

precipitates or interconnected domains. 

Despite these difficulties, the evolution of   with time is similar to the evolution of the 

α’ rich zone (precipitate) and it is a good descriptor of the evolution of the microstructure that 

has been used in this work, as already used in the literature. 

 

4.3.4 Box size effects 

 

In order to assess the influence of the simulation box size on the results, we compared 

the time evolution of the position of the first zero of the spherical average of the 

autocorrelation function obtained in a 32a0×32a0×32a0 simulation box and in a 

72a0×72a0×72a0 simulation box. This has been done for both the Fe-20 at.%Cr and the Fe-25 

at.%Cr with one vacancy in the simulation box. In order to represent and compare the results 

obtained for the two different size of the simulation box on the same time scale, the AKMC 
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time of the simulations performed in the 72a0×72a0×72a0 simulation box was rescaled by a 

factor corresponding to the ratio between the vacancy concentrations in each box.   

 

  

  

 
Figure 17-Ch4 First zero of the spherical average of the spatial autocorrelation function. T=773 K. The data have been 

averaged on ten AKMC runs. box32 stands for 32a0×32a0×32a0 simulation box size whereas box72 stands for 

72a0×72a0×72a0 simulation box size (a0=2.8553 Å). Fe-20 at.%Cr. 

 

Figure 17-Ch4 and figure 18-Ch4 indicate that, regardless of the parameterisation 

considered for implementing the AKMC simulations, no box size effect is observed for both 

alloys.   
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Figure 18-Ch4 First zero of the spherical average of the spatial autocorrelation function. T=773 K. The data have been 

averaged on ten AKMC runs. box32 stands for 32a0×32a0×32a0 simulation box size whereas box72 stands for 

72a0×72a0×72a0 simulation box size (a0=2.8553 Å). Fe-25 at.%Cr. 

 

4.3.5 Time evolution of the precipitate size in Fe-20 at.%Cr and Fe-25 at.%Cr 

alloys 

 

To pursue the analysis, we computed the time evolution of the characteristic thickness 

  of the α’-phase in the case of Fe-25 at.%Cr alloy and the time evolution of the mean 

precipitate radius   in the case of Fe-20 at.%Cr alloy. 

The AKMC time has been rescaled to obtain the real time by implementing the 

progressive scaling that we illustrated in subsection 4.3.2. This allows to compare the 

simulated precipitates radius or α’-phase thickness time evolution with experimental 

observations without introducing the bias which would consist in computing the time scaling 

factor by adjusting the simulated precipitate size or α’-phase thickness time evolution to 

match with the observed ones. On the other hand, the progressive time scaling is more 

realistic than simply computing a unique time scale factor from the ratio of the vacancy 
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concentration in the simulation box to the equilibrium vacancy concentration computed for a 

pure iron structure. The progressive time scaling approach requires the chromium 

concentration in the matrix to be estimated at each intermediate configuration in order to 

compute the vacancy concentration in the matrix with equation (23). This has been done by 

identifying the chromium-rich precipitates and by computing the chromium concentration in 

the volume obtained by subtracting the α’ precipitates from the simulation box. In order to 

identify the α’ phase, we used the procedure described in subsection 4.3.3.  

 

 

Figure 19-Ch4 Precipitate radius time evolution obtained by AKMC simulation of the thermal ageing of Fe-20 at.%Cr 

compared with experimental observations by tomographic atom probe from [Novy2009a]. T=773 K. Simulation box size: 

32a0×32a0×32a0 (a0=2.8553 Å). The Monte Carlo time has been rescaled to real time with the progressive time scaling 

described in subsection 4.3.2. AKMC simulation results are also compared with observations by small angle neutron 

scattering from [Bley1992] and [Jaquet2000].  

 

In order to be consistent with Novy et al.’s [Novy2009a] and Pareige et al.’s 

[Pareige2011] analysis we considered the following parameters for the chromium cluster 

identification:        10 Å,      40 at.%  and        6.2 Å,      30% respectively. 

Bonny et al. have used an analogous criterion for the identification of the chromium rich 

precipitates in the case of AKMC simulation of the Fe-Cr thermal annealing [Bonny2007]. 

Bonny and co-workers used a higher chromium concentration threshold (namely 90 at.%) and 

the 5
th

 nearest neighbours distance for the radius of the sampling sphere. Chromium 

concentration in the core of α’-phase precipitates is higher than 40 at.%, but the α-α’ 

interfaces in highly concentrated Fe-Cr alloy have a diffuse character so that, if one considers 

a too high concentration threshold for the identification of chromium rich precipitates, the 

interfaces could be completely or partially excluded from the α’-phase. 
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Following Pareige et al.’s, in the case of Fe-25 at.%Cr alloy, we estimated the 

characteristic length of the α’ phase   by locating the first zero of the spherical average of the 

autocorrelation function computed in each Fe-Cr intermediate structure, as obtained during 

the simulations, and without applying any post-processing treatment (see discussion in 

subsection 4.3.3). In the case of Fe-20 at.%Cr alloy, we computed the precipitate radius   by 

counting the average number of atomic sites included in the solute-rich clusters and deducing 

the radius from equation (25) according to Novy et al. analysis. The results for the Fe-25 

at.%Cr have been obtained as the average over ten AKMC runs whereas those for the Fe-20 

at.%Cr have been computed considering one AKMC run.  

 

Figure 20-Ch4 Time evolution of typical thickness of the α’ phases in the AKMC simulations of the thermal ageing of Fe-25 

at.%Cr. They are compared with experimental observations and AKMC simulations from [Pareige2011] at the same 

temperature T=773 K. The data have been averaged on ten AKMC runs. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å). 

The Monte Carlo time has been rescaled to real time with the progressive time scaling described in subsection 4.3.2. 

 

The results of our simulations parameterised with the FISE approximations are in good 

agreement with  Novy et al.’s [Novy2009a] and Bley’s experimental observations in the case 

of the Fe-20 at.%Cr alloy (figure 19-Ch4) whereas they underestimate the experimentally 

measured precipitate size in the case of the Fe-25 at.%Cr alloy (figure 20-Ch4). The results 

obtained from the AKMC simulations parameterised with the vacancy migration energies 

computed with the EAM-2BM-GB potentialoverestimate experimental data in both the case 

of the Fe-20 at.%Cr alloy and the Fe-25 at.%Cr alloy.  This is probably due to the fact that, on 
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the one hand, the chromium-chromium interaction computed with the EAM-2BM-GB 

potential remains almost constant when the chromium separation increases from the first 

nearest neighbours to the second nearest neighbours distance and, on the other hand, the first 

nearest neighbour chromium-vacancy interaction is very weak. 

 

 

Figure 21-Ch4 Logarithm of the precipitate mean radius as a function of the logarithm of the time obtained by AKMC 

simulation of the thermal ageing of Fe-20 at.%Cr. T=773 K. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å). The Monte 

Carlo time has been rescaled with the progressive time scaling described in subsection 4.3.2. AKMC simulation results are 

also compared with observations by small angle neutron scattering from [Bley1992] and [Jaquet2000]. 

 

In the case of Fe-25 at.%Cr alloy (figure 20-Ch4), it should be noticed that our results 

are closer to the experimental data than the AKMC results of Pareige et al. Their AKMC 

simulations were performed by implementing the FISE 1 parameterisation and using the 

EAM-2BM-PO potential to compute the Δ  term and             0.65 eV and             

0.52 eV. In our case, the FISE 1 approximation has been implemented considering 

            0.71 eV and             0.54 eV (as obtained by DFT calculation) and the 

EAM-2BM-GB potential to compute Δ . Our results obtained with the three different FISE 

approximations are very close to each other, so one can suppose that the effect of the choice 

of the        on the estimation of the vacancy migration barrier is quite small in the case of 

the chromium concentrations that we considered here. Therefore, the difference between our 

simulations and those from Pareige et al. [Pareige2011] is probably mainly due to the 

different choice of the EAM-2BM potential.  
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Figure 22-Ch4 Logarithm of the of typical thickness of the α’ phases as a function of the logarithm of the time obtained by 

AKMC simulations of the thermal ageing of Fe-25 at.%Cr compared with AKMC simulations from [Pareige2011]. T=773 K. 

The data have been averaged on ten AKMC runs. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å). The Monte Carlo time 

has been rescaled to real time with the progressive time scaling described in subsection 4.3.2. 

 

In order to characterise the unmixing regime which drives the α/α’ phase separation in 

our simulations, we plotted the logarithm of the precipitate mean radius   (in the case of the 

Fe-20 at.% alloy) and the α’-phase characteristic thickness   (in the case of the Fe-25 at.% 

alloy) as a function of the logarithm of the time. If one considers a time evolution relation 

with the following form: 
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Thus, the time exponent 
 

 
 can be obtained as the slope of the       vs.      (or 

      vs.     ) plot. Figures 21-Ch4 and 22-Ch4 show our results for both alloys. In the 

case of the Fe-25 at.% alloy and regardless of the parameterisation of the AKMC simulations, 

we obtained a time exponent, which asymptotically tends towards 
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precipitate size that we computed for the Fe-20 at.%Cr alloy were obtained in one AKMC run 

only, so it is difficult to draw a conclusion about the time-exponent; the tendency that these 

values exhibit seems to be close to what would be expected from the LSW law again. 

However, LSW theory is based on the hypothesis that the precipitate volume fraction is close 

to zero (see chapter 1), and this hypothesis is not verified in our case. Nevertheless, Huse 

introduced a model describing the time evolution of the α’-phase thickness in the very late 

stages of the phase separation in highly concentrated binary systems by taking into account 

the contribution of the diffusion of the vacancy along the interfaces between 

domains[Huse1986] (in his work, Huse obtained the precipitate thickness by locating the first 

zero of the spherical average of the spatial autocorrelation function). Huse computed the time 

exponent and found that it tends to 
 

 
 in the late stages of the phase separation. Recently, 

Pareige et al. [Pareige2011] have shown that the LSW law and the model introduced by Huse 

converge towards the same asymptotic behaviour. The same result was experimentally 

obtained by Novy et al. for the time evolution of precipitate mean radius in Fe-20 at.%Cr 

alloy.  

In order to further evaluate the AKMC simulation parameterisations, we compared our 

results with some very recent predictions obtained by L’vov et al. [Lvov2011] with a 

thermodynamic model describing the phase equilibrium of binary alloys containing solute rich 

nanometric precipitates. The model introduced by L’vov et al. is based on the estimation of 

the free energy of the system via the regular solution approach and takes into account the 

solute concentration dependence near the α/α’ interfaces on the precipitate radius due to the 

Gibbs-Thomson effect. L’vov and co-workers plotted the chromium concentration in the 

matrix and in the chromium-rich precipitates as a function of the precipitates radius at 773 K. 

Their results are illustrated in figure 23-Ch4 where they can be compared with our AKMC 

simulations. Our predictions seem to be in qualitative rather good agreement with both 

L’vov’s model and Novy et al.’s observations.       
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Figure 23-Ch4 Evolution of the chromium concentration in the chromium-rich precipitates and in the matrix as a function of 

the precipitate size in Fe-20 at.%Cr. T=773 K. Results from this work are compared with observations from [Novy2009a] 

and theoretical predictions from [Lvov2011]. Simulation box size: 32a0×32a0×32a0 (a0=2.8553 Å).  

 

A very important issue is the fact that the AKMC simulations performed with the FISE 

3 parameterisation and computing the vacancy migration energies obtained with the EAM-

2BM-GB (by drag method) exhibit similar tendencies. This means that the two 

parameterisations are compatible from the thermodynamic point of view, as it is expected 

since, in both cases, the energy variation of the system due to a vacancy jump is described by 

the EAM-2BM-GB potential. Thus, the disagreement between the two parameterisations has 

probably a kinetic origin and is related to the difference between the estimations of the saddle 

point energy associated to the vacancy migration process obtained with the two different 

approaches. 

 

  

 

Figure 24-Ch4 Time evolution of the chromium concentration in the chromium-rich precipitates and in the matrix. Left: our 

AKMC simulation results for the Fe-20 at.%Cr alloy (T=773 K) are compared with Novy et al.’s experimental observations 

[Novy2009a]. Right: our AKMC simulation results for the Fe-25 at.%Cr alloy (T=773 K) are compared with both Pareige et 

al.’s AKMC simulation and experimental observations [Pareige2011].  
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We also compared the time evolution of the chromium concentration in the α-phase 

and in the α’-phase estimated with the AKMC simulation parameterised with the FISE 3 

approximation with Novy et al.’s experimental results for the Fe-20 at.%Cr alloy and with 

Pareige et al.’s AKMC simulation and experimental results for the Fe-25 at.%Cr alloy. We 

identified the α’-phase with the method described in subsection 4.3.3 and using the same 

parameters as Novy et al. and Pareige et al. (       10 Å,      40 at.%  and        6.2 

Å,      30% respectively). Our results are presented in figure 24-Ch4. They are in quite 

good agreement with both the Novy et al.’s observations and Pareige et al. simulation, 

whereas they overestimate the experimentally observed chromium concentration in the α’-

phase in the case of the Fe-25 at.%Cr alloy. The composition of the chromium-rich 

precipitating phase evolves with the time, thus indicating that the decomposition mechanism 

should be either the non-classical nucleation or the spinodal decomposition. Our simulation 

results show that the evolution of the chromium concentration in the α-phase during the 

thermal ageing evolves towards a lower value than the solubility limit obtained by Bonny et 

al. [Bonny2011a] at 773 K with the EAM-2BM-GB potential (figure 2-Ch2). This is due to 

the fact that Bonny and co-workers included the vibrational entropy contribution in their 

calculations whereas our AKMC simulations are performed on a rigid lattice.  

It should be noted that Martinez et al. AKMC simulation of the Fe-20 at.%Cr alloy 

thermal ageing [Martinez2011], parameterised with the concentration-dependent Fe-Cr pair 

potential introduced by Levesque et al.  [Levesque2011], also exhibits a good agreement with 

Novy et al. TAP observations of the Fe-20 at.%Cr alloy. Furthermore, Martinez et al. AKMC 

simulation better reproduce the chromium-rich precipitate size time evolution with respect to 

our simulations. 

The results presented in this chapter indicate that our FISE parameterisation for the 

AKMC simulations seems to be able to capture the difference in the phase separation 

mechanism that occurs in Fe-Cr alloys with different chromium concentrations. In particular, 

spinodal decomposition seems to occur in the case of the Fe-25 at.%Cr alloy but this remains 

to be confirmed by further analysis. 

The fact that the precipitate size and α’-phase characteristic thickness that we observed 

in our simulations follows the asymptotic behaviour described by the LSW theory suggests 

also that most of the structures we have investigated could correspond to the late stages of the 

α/α’ phase separation. In principle, it should be possible to characterise the spinodal 

decomposition regime by studying the time dependence of the wavelength of the 

concentration fluctuations in the early stage of the phase separation. According to Rautiainen 
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and Sutton [Rautiainen1999], in the case of isotropic spinodal decomposition, the time 

dependence of the chromium rich domain thickness and the wavelength follow similar time 

dependence characterised by a power law. The time exponent is expected to be between 0.15 

and 0.2 in this regime [Binder2001]. Both the domain thickness and the wavelength can be 

estimated via the spatial autocorrelation function (the wavelength can be obtained as the 

position of the first maximum of the normalised spherical average of the autocorrelation 

function [Rautiainen1999]). Consequently, one could, in principle, show whether or not the 

spinodal decomposition occurs in the first stage of the thermal ageing by analysing the time 

dependence of the chromium-rich domain thickness. Unfortunately, we do not have a 

sufficient amount of data concerning the early stages of the thermal ageing simulations to 

draw any conclusion in that matter.     

Globally, we observed very little differences in the results obtained with the three 

FISE parameterisations even though, especially in the case where the migrating atom is an 

iron atom, the FISE 2 and FISE 3 approximations exhibit a small but visible improvement 

compared to FISE 1 in their capability to reproduce full DFT-NEB calculations of the 

vacancy migration barriers (see figure 6-Ch4). FISE 2 and FISE 3 provide a better description 

of the effect that the chromium content in the saddle point environment has on the vacancy 

migration energies. Therefore, a difference between FISE 1 approximation and the FISE 2 and 

FISE 3 approximations should be more visible in highly concentrated alloys where one would 

expect the LAE of the vacancy-migrating atom pair to be richer in chromium. Even if the 

alloys we simulated in this work contain a large amount of chromium, that is probably not 

enough to see a difference between simulations parameterised with the different FISE 

approximations. However, there is an even more important aspect which could explain the 

apparent equivalence between the simulations based on the different FISE parameterisations: 

the α/α’ phase separation occurs faster than we expected and, as we have shown, the vacancy 

spends almost all the time in the iron rich α-phase (see figures 14-Ch4 and 15-Ch4). Hence, 

the difference between FISE 1 approximation and FISE 2 and FISE 3 does not affect the 

vacancy diffusion significantly. In order to understand whether or not the description we 

proposed, by means of the FISE 2 and FISE 3 parameterisations, of the migration barriers 

dependence on the saddle point environment has an effect on the simulations of the thermal 

ageing, the very early stages of the structure evolution will have to be carefully observed.     

Concerning the parameterisation fully based on the EAM-2BM-GB potential, we 

considered, in a first step, only the contribution of the first nearest neighbour shell of the 

vacancy-migrating atom pair for the calculation of the migration barriers. In this case, we did 
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not observe the α/α’ phase separation after 1.6∙10
9 

AKMC steps, whereas two separated 

phases were clearly visible after 10
8
 AKMC steps when we included the second nearest 

neighbours effect in the calculation of the vacancy migration barriers.
 
This means that, in the 

first case, the kinetics of the phase separation is at least considerably slower with respect to 

the second case.  

It is still not completely clear why the parameterisation fully based on the EAM-2BM-

GB potential leads to a precipitate phase characterised by higher mean precipitate radius in 

the case of Fe-20 at.% Cr alloy, and higher α’-phase thickness in the case of Fe-25 at.% Cr 

alloy compared to results obtained with the FISE parameterisations. Nevertheless, the 

comparison of the simulations of the Fe-20 at.%Cr alloy performed within the FISE 3 

parameterisation or within the parameterisation fully based on the EAM-2BM-GB potential 

with the L’vov model and with Novy et al.’s experimental observations, makes us think that 

the reason for this disagreement could rely on kinetic rather than thermodynamic reasons 

(figure 20-Ch4).     

It should be emphasised that, concerning the time dependence of the evolution of the 

mean precipitate radius   or the chromium α’-phase typical thickness, all the 

parameterisations that we considered here predict a microstructure late stage evolution 

kinetics which is consistent with both the experimental observations and the LSW theory of 

coarsening. 

Finally, in the case of the AKMC simulations parameterised with the FISE 3 

approximation, we observed the evolution of the Fe-Cr microstructure in order to try to 

understand if a difference can be noticed between the phase separation mechanism that occurs 

in Fe-20 at.%Cr and Fe-25 at.%Cr alloys. We concluded that, in the Fe-25 at.%Cr alloy, 

interconnected chromium-rich clusters are more likely to develop than in the Fe-20 at.%Cr 

alloy. Nevertheless, Novy et al. have shown that non-classical nucleation occurs in Fe-20 

at.%Cr. The change in phase separation mechanism from classical nucleation to non-classical 

nucleation and spinodal decomposition occurs progressively and continuously with the 

increase of the solute concentration (see chapter 1). Hence, the characterisation of the 

difference between the phase separation mechanism in Fe-20 at.%Cr and Fe-25 at.%Cr alloys 

is a hard task that requires a detailed analysis of the early stages of the unmixing kinetics.         
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In this chapter, we illustrated the parameterisation that we have implemented to 

employ the AKMC for the simulation of the Fe-Cr thermal annealing. We considered two 

types of parameterisations. The first type is a parameterisation fully based on the calculation 

of the vacancy migration barriers with the EAM-2BM-GB potential for all the configurations 

of the vacancy-migrating atom pair first and second nearest neighbour shells. The second 

type is a parameterisation based on the FISE approximation which has been implemented by 

progressively introducing the dependence of the       
   term on the migrating atom saddle 

point position nearest neighbour environment. In order to compare our simulations with 

recent experimental observations, we focused on Fe-20 at.%Cr and Fe-25 at.%Cr alloys. 

Concerning the time evolution of the precipitate mean radius   (in the case of the Fe-20 

at.%Cr alloy) or the α’-phase thickness   (in the case of the Fe-25 at.%Cr alloy), the FISE 

parameterisations results are in good agreement with experimental data in the case of the Fe-

20 at.%Cr alloy whereas they underestimate the experimental observations in the case of the 

Fe-25 at.%Cr alloy. The parameterisation fully based on the EAM-2BM-GB potential 

overestimate both the experimental results and those obtained with the FISE 

parameterisations. Nevertheless, all the parameterisations are consistent with the time 

dependence of the chromium-rich precipitates described by the LSW theory. The observation 

of the Fe-Cr microstructure at different AKMC steps and for the two chromium contents that 

we considered here seems to indicate that the unmixing mechanism occurring in the Fe-25 

at.%Cr is the spinodal decomposition but further analysis are necessary to confirm this 

hypothesis. 
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CONCLUSIONS 
 

 

This work is a contribution to the materials research for nuclear industry, both in the 

framework of the European project GETMAT (GEneration IV and Transmutational 

MATerials) concerning the future generation nuclear power plants, and in the context of EDF 

R&D research activity on french operating reactors. This contribution addressed the study of 

chromium-rich ferritic/martensitic stainless steels in the first case, and chromium-rich 

austenitic/ferritic stainless steels in the second case. The main goal of this thesis consisted in 

the study of the thermal ageing of the ferritic phase in the absence of radiation effects.  

We chose the Fe-Cr binary alloy as a model system for the investigation of the ferritic 

stainless steels. The first part of this work has been devoted to the description of some 

important physical properties of the Fe-Cr system. We discussed the fact that even if the Fe-

Cr binary alloy represents a simplified system with respect to ferritic stainless steels, 

particularly for the study of the time evolution of the microstructure at a given temperature, it 

still carries some difficulties mainly related to its peculiar magnetic properties.  

We then presented the theoretical framework and computational methods which have 

been the basis of our investigation. These are the cohesive models we used to determine the 

energy associated to a given Fe-Cr structure (i.e. the density functional theory and an 

embedded atom method potential) as well as the method we chose to compute the vacancy 

migration energy (i.e. the nudged elastic band method and the drag method). Concerning the 

empirical potential, our literature review made us choose the parameterisation achieved by 

Bonny et al. within the two band model [Bonny2011a].  

One of our main objectives consisted in achieving a better understanding of the 

influence that the vacancy chemical environment has on the vacancy diffusion and, in 

particular, on the activation barrier of such a process. Thus, in a first time, we computed, both 

in the framework of the density functional theory (DFT) and using the empirical potential, 

some properties of the Fe-Cr binary alloy which are likely to have an influence on the 

vacancy migration energy (i.e. the interaction between a solute chromium atom and another 

chromium atom or a vacancy). Furthermore, we investigated, within the DFT, the magnetic 

properties of an iron matrix containing substitutional chromium atoms in different 

configurations and we showed that magnetism can have an influence on the energy barriers 

that oppose the microstructural changes. 
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In a second step, we used the nudged elastic band method and the density functional 

theory (DFT-NEB), as well as the drag method and the EAM potential to investigate the 

vacancy migration energy dependence on the local atomic environment. We observed, on the 

one side, the variation of the vacancy migration energy as a function of the chromium content 

in the first and second neighbour shells of the vacancy-migrating atom pair and, on the other 

side, the specific influence that the presence of chromium atoms in specific sites of the 

vacancy environment has on the migration barriers. The DFT-NEB calculations of the 

vacancy migration energy revealed the particular influence that the atomic configuration of 

the migrating atom saddle point position nearest neighbour shell has on the migration barriers. 

We have been able to partially relate the dependence of the vacancy migration energy on the 

local atomic environment to the chromium-chromium and the chromium-vacancy interactions 

properties (i.e. the attractive or repulsive character and the dependence of the binding energy 

on the chromium-chromium or the chromium-vacancy separation distance) that we previously 

characterised.  

In general, we observed a clear disagreement between DFT-NEB results and the EAM 

estimations about the vacancy migration barriers. When the migrating atom is a chromium 

atom, the differences between the DFT and the EAM potential previsions about the migration 

energy are consequences of the disagreement between the two methods concerning the 

estimation of the chromium-chromium and the chromium-vacancy binding energy. In 

particular, the EAM potential predicts a chromium-chromium repulsive interaction which 

decreases more slowly with the chromium atoms separation distance than predicted by DFT. 

In the case of DFT calculations, the chromium-chromium binding energy is reduced by 

almost a factor 1/2 when the chromium-chromium separation passes from the first nearest 

neighbours’ distance to the second nearest neighbours’ distance. On the other hand, in the 

case of the EAM calculations, the chromium-chromium binding energy is almost unchanged 

when the chromium-chromium separation passes from the first nearest neighbours’ distance to 

the second nearest neighbours’ distance. As a result, the EAM potential predicts a 

considerably weaker dependence on the local atomic environment of the energy barrier 

associated to the vacancy-chromium exchange than DFT.  

When the migrating atom is an iron atom, the difference between the DFT previsions 

and the EAM previsions about the vacancy migration energy is due to the disagreement in the 

estimation of the chromium-vacancy interaction. In this case, the difference between DFT 

calculations and EAM calculations is also qualitative. Indeed, the DFT predicts an attractive 

interaction whereas the EAM potential predicts a repulsive interaction.  
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We also investigated the relation between the vacancy migration energy and the total 

energy change ΔE the system undergoes when the vacancy migration occurs. The DFT 

calculations have shown that, in most of the configurations of the vacancy environment we 

considered, the ΔE trend follows the migration barriers one. The EAM calculations of ΔE 

disagree with the DFT data both in the case where the migrating atom is a chromium atom or 

an iron atom. In some cases even, the methods disagree on the sign of the energy change. We 

showed that the origin of such disagreement is, once again, a consequence of the difference 

between DFT and EAM descriptions of the chromium-chromium and the chromium-vacancy 

interactions.   

On the basis of these results we developed a series of possible approaches for the 

parameterisation of the atomistic kinetic Monte Carlo simulations of the thermal ageing of the 

Fe-Cr binary alloy. We considered two different options: a parameterisation fully based on the 

EAM potential and a parameterisation partially based on DFT and the EAM potential.  

In the first case, we computed the migration barriers corresponding to all possible 

chemical configurations of the first and second neighbour shells of the vacancy-migrating 

atom pair with the EAM potential using the drag method.  

In the second case, we used the final initial state energy (FISE) approximation for the 

computation of the vacancy migration energy. According to this model, the vacancy migration 

energy can be written as the sum of two terms: one corresponding to the vacancy-migration 

energy, and the other being the energy variation of the system ΔE produced by the vacancy 

jump. In this work, we computed the first term within the DFT-NEB method and the second 

term with the EAM potential. In the standard FISE approximation – referred to as FISE 1 in 

this manuscript – , the only term accounting for the chemical environment effect on the 

vacancy migration energy is ΔE, whereas the migration energy depends only on the migrating 

atom species in an otherwise perfect iron matrix. We proposed two possible ways to improve 

this description and to introduce a richer description of the dependence of the vacancy 

migration energy on the local environment. In the first case (FISE 2), we introduced a 

dependence of the migration energy with the number of chromium atoms located among the 

saddle point position nearest neighbour sites. In the second case (FISE 3), we also took into 

account the detailed local configuration of the saddle point position nearest neighbour atoms. 

For a set of chemical configurations of the vacancy environment, we compared the vacancy 

migration energy obtained using the three FISE approximations, with full DFT-NEB 

previsions. We showed that a more precise way of describing the saddle point chemical 

environment leads to a better estimation of the migration barriers.  
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Finally, we simulated the thermal ageing of two alloys: a Fe-20 at.%Cr and a Fe-25 

at.%Cr with AKMC and our different parameterisations. The results were compared with the 

experimental results of  Novy et al. [Novy2009a] for the Fe-20 at.%Cr alloy,  and those of 

Pareige et al. [Pareige2011] for the Fe-25 at.%Cr alloy.  

To compare AKMC simulations and experimental observations, it has been necessary 

to find a method allowing to transform the Monte Carlo time into a real experimental time. 

This approach, described in chapter 4, is based on the computation of a scaling factor, as the 

ratio of the vacancy concentration in the α-phase of the simulation box to the real vacancy 

concentration in an Fe-Cr alloy with the chromium concentration of the simulated α-phase. 

We compared the time evolution of the mean radius of the chromium-rich precipitate (in the 

case of the Fe-20 at.%Cr alloy) or the typical thickness of the α’-phase (in the case of the Fe-

25 at.%Cr alloy) which formed during the simulation of the thermal ageing with the 

experimentally observed ones.  

In the case of theFe-25 at.%Cr alloy, we found that the results of the AKMC 

simulations based on the FISE parameterisations underestimate the α’-phase size of about a 

factor 1/2 with respect to the experimental observations whereas a good agreement with 

experimental data has been found for the Fe-20 at.%Cr alloy. On the contrary, in the AKMC 

simulations fully based on the EAM potential, the chromium-rich precipitate mean radius is 

overestimated as compared to experimental data for both the Fe-20 at.%Cr and the Fe-25 

at.%Cr alloys. We are not able yet to explain the different behaviour of the FISE 

parameterisations and the EAM potential parameterisation.    

 For both the Fe-20 at.%Cr alloy and the Fe-25 at.%Cr alloy, we observed the time 

exponent describing the time evolution of the precipitate size and the α’-phase thickness. In 

both cases, regardless of the parameterisation used, we found that the exponent asymptotically 

tends towards 1/3 which is the value predicted by the LSW theory of coarsening. The same 

conclusion was drawn by Novy et al. about the time evolution of the precipitates size 

observed in Fe-20 at.%Cr alloy and by Pareige et al. about the time evolution of α’-phase 

thickness obtained with AKMC simulations parameterised with the FISE 1 approximation.  

Concerning the Fe-20 at.%Cr, we compared our results with theoretical previsions of 

L’vov et al. [Lvov2011] based on the regular solution approximation and taking into account 

the Gibbs-Thomson effect. We found a rather good agreement with both the FISE 3 and full 

EAM parameterisations. This suggests that, from a thermodynamic point of view, the two 

parameterisations are consistent with each other.  
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Since we observed the coarsening regime, which occurs in late stages of phase 

separation, we cannot draw any firm conclusion about the decomposition regime in early 

stages for the moment. In particular, we cannot distinguish between non-classical nucleation 

and spinodal decomposition. We can only argue that, since the chromium rich precipitates 

composition varies during our simulations, the classical nucleation mechanism can be 

excluded. Nevertheless, our observations of the microstructure evolution in both the alloys we 

studied show that interconnected chromium-rich precipitates are more likely to form in the 

Fe-25 at.%Cr alloy thus suggesting that spinodal decomposition could occur in this case.   

A further exploitation of our AKMC simulations can focus on the early stages of the 

phase separation, the goal being the characterisation of the phase decomposition regime by 

the calculation of the time exponent describing the evolution of both the chromium-rich 

domain thickness and the wavelength. The characteristic wavelength can be obtained by 

computing both the first maximum of the spatial autocorrelation function or the position of 

the pick of the structure factor.       

Moreover, in this work we only considered two alloys and one temperature. A study of 

the temperature dependence and the chromium concentration dependence of the phase 

separation kinetics must be planned. In order to observe a nucleation regime, systems with 

lower chromium concentration will be more appropriate. 

 

Concerning the vacancy migration energy dependence on the local atomic 

environment, we have shown that the EAM potential is not able to fully reproduce the DFT 

previsions and in particular the chromium-chromium interaction. The strong chromium-

chromium long range repulsion obtained with the EAM potential is probably a consequence 

of the fact that this potential was parameterised to reproduce Olsson et al. [Olsson2006] DFT 

results on the mixing enthalpy. Indeed, a strong chromium-chromium repulsion is necessary 

to obtain a low solubility of chromium in iron at low chromium concentrations. A better 

potential could probably be obtained if one takes care of reproduce both the DFT data 

regarding the Fe-Cr mixing enthalpy and the chromium-chromium and the chromium-vacancy 

binding energies. It will be also very interesting to implement AKMC simulations using the 

FISE 2 or FISE 3 parameterisations and to compute the ΔE term with another cohesive model 

such as cluster expansion, and to compare these simulations with available experimental 

observations. This would allow to have a better insight on the effect that the choice of the 

cohesive model has in the AKMC description of the Fe-Cr thermal ageing kinetics. 
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Since we performed our AKMC simulations considering internal energies, temperature 

effect is only partially included in the computation of the transition frequencies. A further 

modelling effort will consist, for example, in including vibrational contribution to the total 

energy of the system by means of the frozen phonons approximation, for instance. 

Finally, in order to achieve a more realistic description of the ferritic stainless steels, 

the study of the effect of other alloying elements, such as molybdenum and silicon, can be 

addressed. In this context, a particular attention will be devoted to the molybdenum whose a 

known effect consists in accelerating the precipitation kinetics of the chromium-rich phase in 

the ferritic phase of austenitic-ferritic stainless steels [LeDelliou1994]. 
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ANNEX 1: LOCAL ATOMIC ENVIRONMENT SITES 

NOMENCLATURE 
 

 

 
Figure 1-A1 Local chemical environment structure scheme and sites nomenclature. 

AT: migrating atom 

V: vacancy 

Black spheres: atom windows the vacancy goes through along migration path (first window: C1, C2, C3. Second window: 

D1, D2, D3). 
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Filling of the A and the B sites 
Filling of the C and the D sites (saddle point 

nearest neighbours) 

  

Filling of the E and the F sites Filling of the G and the H sites (vacancy-

migrating atom pairs second nearest neighbours) 

 

Figure 2-A 1 Scheme of the progressive filling of the vacancy-migrating atom pair local atomic environment with chromium 

atoms. 
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ANNEX 2: VACANCY MIGRATION ENERGIES FOR ALL 

SADDLE POINT CONFIGURATIONS 

 

Tables 1-A2, 3-A2, 5-A2, 7-A2, 9-A2, and 11-A2 contain the vacancy migration 

energies computed for all possible atomic configurations of saddle point nearest neighbour 

shell (i.e. all possible atomic configurations for the sites C1, C2, C3, D1, D2, D3). All the 

other sites of the matrix are occupied by iron atoms. 

Tables 2-A2, 4-A2, 6-A2, 8-A2, and 10-A2 contains the average between the forward 

and backward vacancy migration energy for each atomic configuration of saddle point nearest 

neighbour shell. 

 

All calculations have been performed in the framework of DFT with the NEB 

approach by implementing the climbing image algorithm (NEB-CI). 

 

Simulation box size: 5a05a05a0 (a0=2.831 Å) 

Ecut-off =300 eV 

k-points mesh: 222 

Number of images: 3 

 

1 Cr ATOM AMONG THE MIGRATING ATOM SADDLE POINT POSITION 

NEAREST NEGHBOUR SITES: 

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 

(eV) 

Cr –V migration energy 

NEB-CI 

(eV) 

C1 0.64 0.52 

C2 0.64 0.52 

C3 0.64 0.52 

D1 0.69 0.71 

D2 0.69 0.71 

D3 0.69 0.71 
 

Table 1-A2 Vacancy-iron and vacancy chromium migration energy for configurations containing one chromium atom among 

the migrating atom saddle point position first nearest neighbour sites. 
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Configuration averages of vacancy-iron and vacancy-chromium (1 Cr atom among the 

migrating atom saddle point position first nearest neighbour sites):  

 

Migration Fe-V: 0.67 eV  

Migration Cr-V: 0.62 eV  

 

Average between the forward and backward path of the vacancy-iron and the vacancy-

chromium migration energies (1 Cr atom among the migrating atom saddle point 

position first nearest neighbour sites):  

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 

(eV) 

Cr –V migration energy 

NEB-CI 

(eV) 

C1 0.67 0.62 

C2 0.67 0.62 

C3 0.67 0.62 

D1 0.67 0.62 

D2 0.67 0.62 

D3 0.67 0.62 
 
Table 2-A2 Average between the forward and backward vacancy-iron and vacancy-chromium migration energies for each 

configuration containing one chromium atom among the migrating atom saddle point position first nearest neighbour sites. 

 

2 Cr ATOMS AMONG THE MIGRATING ATOM SADDLE POINT POSITION 

NEAREST NEGHBOUR SITES: 

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C1 C2 0.60 0.53 

C1 C3 0.60 0.53 

C1 D1 0.66 0.63 

C1 D2 0.54 0.60 

C1 D3 0.54 0.60 

C2 C3 0.60 0.53 

C2 D1 0.54 0.60 
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C2 D2 0.66 0.63 

C2 D3 0.54 0.60 

C3 D1 0.54 0.60 

C3 D2 0.54 0.60 

C3 D3 0.66 0.63 

D1 D2 0.74 0.91 

D1 D3 0.74 0.91 

D2 D3 0.74 0.91 

 

Table 3-A2 Vacancy-iron and vacancy chromium migration energy for configurations containing two chromium atoms 

among the migrating atom saddle point position first nearest neighbour sites. 

 

Configuration averages of vacancy-iron and vacancy-chromium (2 Cr atoms among the 

migrating atom saddle point position first nearest neighbour sites):  

 

Migration Fe-V: 0.62 eV  

Migration Cr-V:  0.65 eV 

 

Average between the forward and backward path of the vacancy-iron and the vacancy-

chromium migration energies (2 Cr atoms among the migrating atom saddle point 

position first nearest neighbour sites):  

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C1 C2 0.67 0.72 

C1 C3 0.67 0.72 

C1 D1 0.66 0.63 

C1 D2 0.54 0.60 

C1 D3 0.54 0.60 



 

 162 

C2 C3 0.67 0.72 

C2 D1 0.54 0.60 

C2 D2 0.66 0.63 

C2 D3 0.54 0.60 

C3 D1 0.54 0.60 

C3 D2 0.54 0.60 

C3 D3 0.66 0.63 

D1 D2 0.67 0.72 

D1 D3 0.67 0.72 

D2 D3 0.67 0.72 

 

Table 4-A2 Average between the forward and backward vacancy-iron and vacancy-chromium migration energies for each 

configuration containing two chromium atoms among the migrating atom saddle point position first nearest neighbour sites. 

 

3 Cr ATOMS AMONG THE MIGRATING ATOM SADDLE POINT POSITION 

NEAREST NEGHBOUR SITES: 

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C1 C2 C3 0.58 0.67 

D1 D2 D3 0.84 1.13 

C1 C2 D1 0.52 0.54 

C1 C2 D2 0.52 0.54 

C1 C2 D3 0.47 0.52 

C1 C3 D1 0.53 0.54 

C1 C3  D2 0.47 0.52 

C1 C3 D3 0.53 0.54 

C2 C3 D1 0.47 0.52 
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C2 C3 D2 0.53 0.54 

C2 C3 D3 0.53 0.54 

D1 D2 C1 0.62 0.70 

D1 D2 C2 0.62 0.70 

D1 D2 C3 0.54 0.75 

D1 D3 C1 0.62 0.70 

D1 D3 C2 0.54 0.75 

D1 D3 C3 0.62 0.70 

D2 D3 C1 0.54 0.75 

D2 D3 C2 0.62 0.70 

D2 D3 C3 0.62 0.70 

 
Table 5-A2 Vacancy-iron and vacancy chromium migration energy for configurations containing three chromium atoms 

among the migrating atom saddle point position first nearest neighbour sites. 

 

Configuration averages of vacancy-iron and vacancy-chromium (3 Cr atoms among the 

migrating atom saddle point position first nearest neighbour sites):  

 

Migration Fe-V:  0.57 eV  

Migration Cr-V:  0.65 eV 

 

Average between the forward and backward path of the vacancy-iron and the vacancy-

chromium migration energies (3 Cr atoms among the migrating atom saddle point 

position first nearest neighbour sites):  

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C1 C2 C3 0.71 0.90 

D1 D2 D3 0.71 0.90 
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C1 C2 D1 0.57 0.62 

C1 C2 D2 0.57 0.62 

C1 C2 D3 0.51 0.64 

C1 C3 D1 0.58 0.62 

C1 C3  D2 0.51 0.64 

C1 C3 D3 0.58 0.62 

C2 C3 D1 0.51 0.65 

C2 C3 D2 0.58 0.62 

C2 C3 D3 0.58 0.62 

D1 D2 C1 0.57 0.62 

D1 D2 C2 0.57 0.62 

D1 D2 C3 0.51 0.64 

D1 D3 C1 0.58 0.62 

D1 D3 C2 0.51 0.64 

D1 D3 C3 0.58 0.62 

D2 D3 C1 0.51 0.65 

D2 D3 C2 0.58 0.62 

D2 D3 C3 0.58 0.62 

 
Table 6-A2 Average between the forward and backward vacancy-iron and vacancy-chromium migration energies for each 

configuration containing three chromium atoms among the migrating atom saddle point position first nearest neighbour sites. 
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4 Cr ATOMS AMONG THE MIGRATING ATOM SADDLE POINT POSITION 

NEAREST NEGHBOUR SITES: 

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C3 D1 D2 D3 0.65 0.75 

C2 D1 D2 D3 0.65 0.75 

C2 C3 D2 D3 0.53 0.53 

C2 C3 D1 D3 0.52 0.52 

C2 C3 D1 D2 0.52 0.52 

C1 D1 D2 D3 0.65 0.75 

C1 C3 D2 D3 0.52 0.52 

C1 C3 D1 D3 0.53 0.53 

C1 C3 D1 D2 0.52 0.52 

C1 C2 D2 D3 0.52 0.52 

C1 C2 D1 D3 0.52 0.52 

C1 C2 D1 D2 0.53 0.53 

C1 C2 C3 D3 0.46 0.43 

C1 C2 C3 D2 0.46 0.43 

C1 C2 C3 D1 0.46 0.43 

 

Table 7-A2 Vacancy-iron and vacancy chromium migration energy for configurations containing four chromium atoms 

among the migrating atom saddle point position first nearest neighbour sites. 

 

Configuration averages of vacancy-iron and vacancy-chromium (4 Cr atoms among the 

migrating atom saddle point position first nearest neighbour sites):  

 

Migration Fe-V:  0.54 eV  

Migration Cr-V:  0.55 eV 
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Average between the forward and backward path of the vacancy-iron and the vacancy-

chromium migration energies (4 Cr atoms among the migrating atom saddle point 

position first nearest neighbour sites):  

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C3 D1 D2 D3 0.56 0.59 

C2 D1 D2 D3 0.56 0.59 

C2 C3 D2 D3 0.53 0.53 

C2 C3 D1 D3 0.52 0.52 

C2 C3 D1 D2 0.52 0.52 

C1 D1 D2 D3 0.56 0.59 

C1 C3 D2 D3 0.52 0.52 

C1 C3 D1 D3 0.53 0.53 

C1 C3 D1 D2 0.52 0.52 

C1 C2 D2 D3 0.52 0.52 

C1 C2 D1 D3 0.52 0.52 

C1 C2 D1 D2 0.53 0.53 

C1 C2 C3 D3 0.56 0.59 

C1 C2 C3 D2 0.56 0.59 

C1 C2 C3 D1 0.56 0.59 

 
Table 8-A2 Average between the forward and backward vacancy-iron and vacancy-chromium migration energies for each 

configuration containing four chromium atoms among the migrating atom saddle point position first nearest neighbour sites. 
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5 Cr ATOMS AMONG THE MIGRATING ATOM SADDLE POINT POSITION 

NEAREST NEGHBOUR SITES: 

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C2C3D1D2D3 
0.61 0.59 

C1C3D1D2D3 
0.61 0.59 

C1C2D1D2D3 
0.61 0.59 

C1C2C3D2D3 
0.51 0.42 

C1C2C3D1D3 
0.51 0.42 

C1C2C3D1D2 
0.51 0.42 

 

Table 9-A2 Vacancy-iron and vacancy chromium migration energy for configurations containing five chromium atoms 

among the migrating atom saddle point position first nearest neighbour sites. 

 

Configuration averages of vacancy-iron and vacancy-chromium (5 Cr atoms among the 

migrating atom saddle point position first nearest neighbour sites):  

 

Migration Fe-V:  0.56 eV  

Migration Cr-V:  0.51 eV 

 

Average between the forward and backward path of the vacancy-iron and the vacancy-

chromium migration energies (5 Cr atoms among the migrating atom saddle point 

position first nearest neighbour sites):  

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 
(eV) 

Cr –V migration energy 

NEB-CI 
(eV) 

C2C3D1D2D3 
0.56 0.51 

C1C3D1D2D3 
0.56 0.51 

C1C2D1D2D3 
0.56 0.51 

C1C2C3D2D3 
0.56 0.51 
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C1C2C3D1D3 
0.56 0.51 

C1C2C3D1D2 
0.56 0.51 

 
Table 10-A2 Average between the forward and backward vacancy-iron and vacancy-chromium migration energies for each 

configuration containing five chromium atoms among the migrating atom saddle point position first nearest neighbour sites. 

 

6 Cr ATOMS AMONG THE MIGRATING ATOM SADDLE POINT POSITION 

NEAREST NEGHBOUR SITES: 

 

Lattice sites occupied by a 

chromium atom 

Fe –V migration energy 

NEB-CI 

(eV) 

Cr –V migration energy 

NEB-CI 

(eV) 

C1C2C3D1D2D3 0.61 0.52 

 
Table 11-A2 Vacancy-iron and vacancy chromium migration energy for configurations containing six chromium atoms 

among the migrating atom saddle point position first nearest neighbour sites. 
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ANNEX 3: VACANCY MIGRATION ENERGIES FOR DIFFERENT CONFIGURATIONS OF THE 

LOCAL ATOMIC ENVIRONMENT 

 

Table 1-A3 and table 2-A3 contain the vacancy migration energies as well as ΔE for all configurations of the local atomic environment 

that we considered in this work. Table 1-A3 concerns the vacancy-iron exchange, whereas table 2-A3 concerns the vacancy-chromium exchange. 

Configurations in yellow are those for which at least a chromium atom is located in the saddle point local atomic environment (i.e. in the C or D 

sites). The calculations have been performed within the DFT using the NEB method, within the EAM potential using the drag method (DM), and 

using our different implementations of the FISE approximation. 

  

DFT-NEB calculations: 

Simulation box size: 5a05a05a0 (a0=2.831 Å) 

Ecut-off =300 eV 

k-points mesh: 222 

Number of images: 3 

 

EAM-DM calculations: 

Simulation box size: 8a08a08a0 (a0=2.8553 Å) 

Discretisation step: 0.04 Å 
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VACANCY-IRON MIGRATION ENERGIES: 

 

Lattice sites occupied by a 

chromium atom 

DFT-NEB 

(eV) 

EAM-DM 

(eV) 

ΔE (DFT) 

(eV) 

ΔE (EAM) 

(eV) 

FISE 1 

(ΔE: DFT) 

(eV) 

FISE 2 

(ΔE: DFT) 

(eV) 

FISE 3 

(ΔE: DFT) 

(eV) 

FISE 1 

(ΔE: EAM) 

(eV) 

FISE 2 

(ΔE: EAM) 

(eV) 

FISE 3 

(ΔE: EAM) 

(eV) 

C1, C2 0.60 0.63 −0.13 −0.04 0.65 0.56 0.61 0.69 0.60 0.65 

D1, D2 0.74 0.67 0.13 0.04 0.78 0.69 0.74 0.73 0.64 0.69 

C1, D2 0.54 0.63 0.00 0.00 0.71 0.62 0.54 0.71 0.62 0.54 

C1, D1 0.66 0.64 0.00 0.00 0.71 0.62 0.66 0.71 0.62 0.66 

D1, D2, D3 0.84 0.69 0.26 0.05 0.84 0.70 0.84 0.74 0.60 0.74 

C1, C2, C3 0.58 0.63 −0.26 −0.05 0.58 0.44 0.58 0.69 0.55 0.69 

C1, C2, D1 0.52 0.64 −0.09 −0.02 0.67 0.53 0.53 0.70 0.56 0.56 

C1, C2, D3 0.47 0.63 −0.07 −0.03 0.68 0.54 0.48 0.70 0.56 0.50 

C1, C3, D1 0.53 0.64 −0.09 −0.02 0.67 0.53 0.54 0.70 0.56 0.57 

D1, D2, C1 0.62 0.66 0.09 0.02 0.76 0.62 0.62 0.72 0.58 0.58 

D1, D2, C3 0.54 0.66 0.07 0.03 0.75 0.61 0.55 0.73 0.59 0.53 

E1 0.69 0.58 0.06 −0.02 0.74 0.74 0.74 0.70 0.70 0.70 



 

 171 

E1, E2 0.68 0.56 0.14 −0.03 0.78 0.78 0.78 0.70 0.70 0.70 

E1, E2, E3 0.68 0.54 0.26 −0.04 0.84 0.84 0.84 0.69 0.69 0.69 

E1, E2, E3, F 0.68 0.50 0.29 −0.01 0.86 0.86 0.86 0.71 0.71 0.71 

E1, E2, E3, F, H1 0.64 0.48 0.19 −0.03 0.81 0.81 0.81 0.70 0.70 0.70 

E1, E2, E3, F, H1, H2 0.62 0.49 0.09 −0.05 0.76 0.76 0.76 0.69 0.69 0.69 

E1, E2, E3, F, H1, H2, 

H3 
0.60 0.50 0.01 −0.07 0.72 0.72 0.72 0.68 0.68 0.68 

B1 0.63 0.61 −0.06 0.02 0.68 0.68 0.68 0.72 0.72 0.72 

C1 0.64 0.63 −0.05 −0.03 0.69 0.65 0.65 0.70 0.66 0.66 

D1 0.69 0.65 0.05 0.03 0.74 0.70 0.70 0.73 0.69 0.69 

F 0.67 0.64 0.03 −0.01 0.73 0.73 0.73 0.71 0.71 0.71 

A, F 0.62 0.60 0.00 0.00 0.71 0.71 0.71 0.71 0.71 0.71 

C3, D3 0.66 0.64 0.00 0.00 0.71 0.62 0.66 0.71 0.62 0.66 

A 0.64 0.66 −0.03 0.01 0.70 0.70 0.70 0.72 0.72 0.72 

A, B1 0.58 0.57 −0.09 0.01 0.67 0.67 0.67 0.72 0.72 0.72 

A, B1, B2 0.50 0.53 −0.17 0.01 0.63 0.63 0.63 0.72 0.72 0.72 
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A, B1, B2, B3 0.39 0.51 −0.30 0.01 0.56 0.56 0.56 0.72 0.72 0.72 

A, B1, B2, B3, C1 0.30 0.49 −0.43 −0.06 0.50 0.46 0.46 0.68 0.64 0.64 

A, B1, B2, B3, C1, C2 0.31 0.47 −0.50 −0.12 0.46 0.37 0.42 0.65 0.56 0.61 

A, B1, B2, B3, C1, C2, 

C3 
0.48 0.46 −0.42 −0.18 0.50 0.36 0.50 0.62 0.48 0.62 

A, B1, B2, B3, C1, C2, 

C3, D1 
0.46 0.47 −0.36 −0.17 0.53 0.36 0.38 0.63 0.46 0.48 

A, B1, B2, B3, C1, C2, 

C3, D1, D2 
0.46 0.48 −0.30 −0.16 0.56 0.41 0.41 0.63 0.48 0.48 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3 
0.51 0.49 −0.22 −0.15 0.60 0.50 0.50 0.64 0.54 0.54 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1 
0.49 0.42 −0.12 −0.12 0.65 0.55 0.55 0.65 0.55 0.55 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2 
0.50 0.36 −0.01 −0.08 0.71 0.61 0.61 0.67 0.57 0.57 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3 

0.50 0.36 0.03 −0.05 0.73 0.63 0.63 0.69 0.59 0.59 
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A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F 

0.49 0.33 0.00 0.00 0.71 0.61 0.61 0.71 0.61 0.61 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1 

0.55 0.35 0.06 0.02 0.74 0.64 0.64 0.72 0.62 0.62 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2 

0.61 0.38 0.12 0.04 0.77 0.67 0.67 0.73 0.63 0.63 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3 

0.65 0.41 0.17 0.05 0.80 0.70 0.70 0.74 0.64 0.64 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3, H1 

0.68 0.39 0.11 0.04 0.77 0.67 0.67 0.73 0.63 0.63 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3, H1, 

H2 

0.69 0.39 0.05 0.02 0.74 0.64 0.64 0.72 0.62 0.62 
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A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3, H1, 

H2, H3 

0.67 0.39 0.00 0.00 0.71 0.61 0.61 0.71 0.61 0.61 

C1, C2, C3, D1 0.46 0.64 −0.19 −0.04 0.62 0.45 0.47 0.69 0.52 0.54 

C1, D1, D2, D3 0.65 0.68 0.19 0.04 0.81 0.64 0.66 0.73 0.56 0.58 

C1, C2, D1, D2 0.53 0.65 0.00 0.00 0.71 0.54 0.53 0.71 0.54 0.53 

C2, C3, D1, D3 0.52 0.64 0.00 0.00 0.71 0.54 0.52 0.71 0.54 0.52 

C1, C2, C3, D1, D2 0.51 0.65 −0.10 −0.02 0.66 0.51 0.51 0.70 0.55 0.55 

D1, D2, D3, C1, C2 0.61 0.67 0.10 0.02 0.76 0.61 0.61 0.72 0.57 0.57 

C1, C2, C3, D1, D2, D3 0.61 0.66 0.00 0.00 0.71 0.61 0.61 0.71 0.61 0.61 

 

Table 1-A3 Vacancy-iron migration energies and ΔE for different configurations of the local atomic environment. Configurations in yellow are those for which at least a chromium atom is 

located in the saddle point local atomic environment (i.e. in the C or D sites).  
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VACANCY-CHROMIUM MIGRATION ENERGIES: 

 

Lattice sites occupied by a 

chromium atom 

DFT−NEB 

(eV) 

EAM−DM 

(eV) 

ΔE (DFT) 

(eV) 

ΔE (EAM) 

(eV) 

FISE 1 

(ΔE: DFT) 

(eV) 

FISE 2 

(ΔE: DFT) 

(eV) 

FISE 3 

(ΔE: DFT) 

(eV) 

FISE 2 

(ΔE: EAM) 

(eV) 

FISE 3  

(ΔE: EAM) 

(eV) 

FISE 1  

(ΔE: EAM) 

(eV) 

C1, C2 0.53 0.58 −0.37 −0.08 0.36 0.47 0.54 0.61 0.68 0.50 

D1, D2 0.91 0.67 0.37 0.08 0.73 0.84 0.91 0.69 0.76 0.58 

C1, D2 0.60 0.61 0.00 0.00 0.54 0.65 0.60 0.65 0.60 0.54 

C1, D1 0.63 0.64 0.00 0.00 0.54 0.65 0.63 0.65 0.63 0.54 

D1, D2, D3 1.13 0.68 0.46 0.10 0.77 0.88 1.13 0.70 0.95 0.59 

C1, C2, C3 0.67 0.58 −0.46 −0.10 0.31 0.42 0.67 0.60 0.85 0.49 

C1, C2, D1 0.54 0.62 −0.16 −0.03 0.46 0.57 0.54 0.64 0.61 0.53 

C1, C2, D3 0.52 0.59 −0.22 −0.05 0.43 0.54 0.53 0.63 0.62 0.52 

C1, C3, D1 0.54 0.62 −0.16 −0.03 0.46 0.57 0.54 0.64 0.61 0.53 

D1, D2, C1 0.70 0.65 0.16 0.03 0.62 0.73 0.70 0.67 0.64 0.56 

D1, D2, C3 0.75 0.64 0.22 0.05 0.65 0.76 0.75 0.68 0.67 0.57 

E1 0.57 0.55 0.26 0.05 0.67 0.67 0.67 0.57 0.57 0.57 
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E1, E2 0.64 0.52 0.54 0.03 0.81 0.81 0.81 0.56 0.56 0.56 

E1, E2, E3 0.83 0.54 0.81 −0.02 0.95 0.95 0.95 0.53 0.53 0.53 

E1, 

E2, E3, F 

0.85 0.54 0.63 −0.08 0.86 0.86 0.86 0.50 0.50 0.50 

E1, E2, E3, F, H1 0.66 0.55 0.45 −0.14 0.77 0.77 0.77 0.47 0.47 0.47 

E1, E2, E3, F, H1, H2 0.58 0.58 0.29 −0.20 0.69 0.69 0.69 0.44 0.44 0.44 

E1, E2, E3, F, H1, H2, 

H3 
0.54 0.61 0.15 −0.27 0.62 0.62 0.62 0.41 0.41 0.41 

B1 0.31 0.50 −0.26 −0.05 0.41 0.41 0.41 0.52 0.52 0.52 

C1 0.52 0.58 −0.19 −0.05 0.45 0.53 0.53 0.60 0.60 0.52 

D1 0.71 0.63 0.19 0.05 0.64 0.72 0.72 0.65 0.65 0.57 

F 0.52 0.71 0.31 0.14 0.70 0.70 0.70 0.61 0.61 0.61 

A, F 0.21 0.70 0.00 0.00 0.54 0.54 0.54 0.54 0.54 0.54 

A 0.21 0.57 −0.31 −0.14 0.39 0.39 0.39 0.47 0.47 0.47 

A, B1 0.13 0.57 −0.46 −0.07 0.31 0.31 0.31 0.51 0.51 0.51 

A, B1, B2 0.14 0.57 −0.56 0.00 0.26 0.26 0.26 0.54 0.54 0.54 
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A, B1, B2, B3 0.23 0.62 −0.63 0.08 0.23 0.23 0.23 0.58 0.58 0.58 

A, B1, B2, B3, C1 0.49 0.61 −0.45 0.08 0.32 0.40 0.40 0.66 0.66 0.58 

A, B1, B2, B3, C1, C2 0.64 0.59 −0.34 0.08 0.37 0.48 0.55 0.69 0.76 0.58 

A, B1, B2, B3, C1, C2, 

C3 
0.82 0.57 −0.27 0.07 0.41 0.52 0.77 0.69 0.94 0.58 

A, B1, B2, B3, C1, C2, 

C3, D1 
0.61 0.60 −0.32 0.11 0.38 0.39 0.43 0.61 0.65 0.60 

A, B1, B2, B3, C1, C2, 

C3, D1, D2 
0.57 0.62 −0.33 0.14 0.38 0.35 0.35 0.58 0.58 0.61 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3 
0.55 0.65 −0.29 0.16 0.40 0.38 0.38 0.60 0.60 0.62 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1 
0.59 0.57 −0.22 0.13 0.43 0.41 0.41 0.59 0.59 0.61 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2 
0.63 0.48 −0.14 0.08 0.47 0.45 0.45 0.56 0.56 0.58 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3 

0.67 0.42 −0.06 0.04 0.51 0.49 0.49 0.54 0.54 0.56 
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A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F 

0.63 0.43 0.00 0.00 0.54 0.52 0.52 0.52 0.52 0.54 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1 

0.80 0.53 0.13 0.06 0.61 0.59 0.59 0.55 0.55 0.57 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2 

0.92 0.64 0.25 0.13 0.67 0.65 0.65 0.59 0.59 0.61 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3 

1.03 0.75 0.35 0.19 0.72 0.70 0.70 0.62 0.62 0.64 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3, H1 

0.90 0.75 0.22 0.13 0.65 0.63 0.63 0.59 0.59 0.61 

A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3, H1, 

H2 

0.80 0.76 0.11 0.06 0.60 0.58 0.58 0.55 0.55 0.57 
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A, B1, B2, B3, C1, C2, 

C3, D1, D2, D3, E1, E2, 

E3, F, G1, G2, G3, H1, 

H2, H3 

0.73 0.77 0.00 0.00 0.54 0.52 0.52 0.52 0.52 0.54 

C1, C2, C3, D1 0.43 0.61 −0.31 −0.06 0.39 0.40 0.44 0.52 0.56 0.51 

C1, D1, D2, D3 0.75 0.67 0.31 0.06 0.70 0.71 0.75 0.58 0.62 0.57 

C1, C2, D1, D2 0.53 0.64 0.00 0.00 0.54 0.55 0.53 0.55 0.53 0.54 

C2, C3, D1, D3 0.52 0.63 0.00 0.00 0.54 0.55 0.52 0.55 0.52 0.54 

C1, C2, C3, D1, D2 0.42 0.62 −0.17 −0.03 0.46 0.43 0.43 0.50 0.50 0.53 

D1, D2, D3, C1, C2 0.59 0.66 0.17 0.03 0.63 0.60 0.60 0.53 0.53 0.56 

C1, C2, C3, D1, D2, D3 0.52 0.64 0.00 0.00 0.54 0.52 0.52 0.52 0.52 0.54 

 

Table 2-A3 Vacancy-chromium migration energies and ΔE for different configurations of the local atomic environment. Configurations in yellow are those for which at least a chromium atom is 

located in the saddle point local atomic environment (i.e. in the C or D sites). 
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