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General introduction

Life is a miracle, and many of its mysteries fascinate s@&)tsuch as: what is life? where
does it come from? why is like we know it? Each of these questgtimulates our deep desire
of understanding nature and also ourselves. Based on thevdrycof the structure of DNA
by James Watson and Francis Crick in the 1950s and subsequnelatniental discoveries in
molecular cell biology, life sciences have experienced texwlutions. The first revolution
essentially revealed how the genetic information carme®NA molecules is expressed into
various proteins that exert functions at different levelsadlular organization, which led to the
development of molecular biology and of such techniqguessasmbinant DNA technology.
The second revolution occurred following the explosionatidrom genomics and proteomics
by the mid-1980s.

Recently many engineers, mathematicians and physicists leeyun to collaborate with
biologists in powerful new ways. The advent of interdisicipty research in biology has stimu-
lated many discoveries and innovations, bringing new expantal technologies for measuring
and manipulating molecular and cellular events with higtohation and powerful computa-
tional tools for data analysis. This led to great opporiasito extend our view of molecular
cell biology. This is why Susan Hockfield, the sixteenth mtest of the Massachusetts In-
stitute of Technology (MIT) predicted the coming of the newldgical revolution during her
speech in 2009 [96].

Quite interestingly, experimental studies revealed thatnomolecules in cells like DNAS,
RNAs and proteins are extremely dynamical, and that they doperate separately. In fact,
by interacting with each other, macromolecules form compietworks called genetic net-
works. The structure of genetic networks has been shown tihddey factor explaining
how living cells change in space and time to respond to enmental variations and stimuli,
make the necessary decisions to stay alive, grow and repepdiiferentiate and perpetuate the
species. Therefore, dynamical properties and physiadgiactions of living cells are decided
by genetic networks. We will focus particularly on one tygdidynamical behavior of genetic
networks which has been highlighted by intensive thecaitiod experimental investigations:
oscillations. Biological oscillations are involved in mahiplogical functions, for example,
circadian rhythms [53, 75, 160] or cell division [129]. Othrepresentative examples are im
mune response [66], cell growth/death [93], embryo devalem [2, 60], calcium dynamics
[58], etc.

Two main fundamental questions about oscillatory behawiczellular mechanisms are
how (what are the underlying molecular mechanisms) and wiha( are the physiological
functions of oscillating molecular signals). However, doghe complex topology and huge
size of genetic networks, both questions cannot be compdelteby sheer intuition alone.
One may view genetic networks similar to electronic cirguiinstead of resistors, capacitors
and transistors linked together by wires, genes, RNAs, protand other macromolecules
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are connected by biochemical reactions. Thus, the queséinrbe raised of whether genetic
networks can be usefully described by mathematical mogleimthe same way as electronic
circuits are. The answer is yes. Accordingly, many powerfateling and analysis approaches
from physics and mathematics can be applied.

In order to study the design principles of biological ostibns, deterministic mathemati-
cal equations are commonly used to describe the time ewvalofi average quantities of com-
ponents of genetic networks. Some key ingredients of asiaiis have been uncovered. A
negative feedback is a necessary condition, but it shoukluffieiently delayed by biological
processes or intermediate steps that take a certain amidimepnonlinear degradation mech-
anisms of RNAs or proteins can also trigger oscillations.at been suggested that nonlinear
degradation is an important source of delay. Mortiat. [138] have analytically demonstrated
how these key ingredients of oscillations interact and catrdded off against each other in
a simple system, a self-repressing gene where gene aagggdponds slowly to variations in
protein level [85].

Due to small copy numbers of reacting molecules, the genetiworks that regulate cel-
lular dynamics are subject to noisy stimuli and large irsienfluctuations. These fluctu-
ations have been proposed as useful mechanisms respofwilgaenotypic heterogeneity
[157, 120], coordinated expression of a large set of gendspaobabilistic differentiation
strategies [195, 35, 5, 77]. Increasing experimental aadr#tical investigations suggest that
cellular fluctuations play crucial roles in the design pipte of the livings [195, 35, 5, 77]. In
view of this, deterministic equations which assume biodkahneactions with an infinite num-
ber of participating molecules are not appropriate. There growing need for mathematical
modeling approaches which takes into account fluctuati@mee such approach is the master
equation, however there are few cases where it can be sahadgtiaally.

Fluctuations in genetic networks arise not only from eletagnbiochemical reactions, but
also from these highly regulated and multiple-steps peE®such as transcription [165, 44,
104,142,143, 121], in which macromolecular enzyme RNA Pelases (RNAPS) synthesizes
the mRNA according to the gene sequence. A specific dynamateivior of RNAP which has
attracted much interest is the stochastic pausing wher&MNwP is halted at a nucleotide
along the genetic sequence and which is observed in botlapyrates and eukaryotes. Pausing
can severely affect transcription dynamics, probablyonting to the transcriptional bursting
widely observed in most of the genes of prokaryotes [85, 20, yeast [198, 181, 19] and
eukaryotes including mammalians [156, 155, 22, 42, 44,.176]

Motivated by important roles and the intriguing dynamicahbviors of genetic networks,
we will theoretically elucidate dynamical effects of timelaly, fluctuation and transcriptional
pausing on genetic networks. This thesis work mainly inetuithree studies.

Combination of time delays and biological oscillations

The first study is about delays, one of the key ingredientsabgical oscillations. Various
sources of delay exist in cellular processes, such as tigtiesn and translation which feature
many intermediate steps and take a minimum amount of timégoule transport, phospho-
rylation and etc. Understanding how these various timeydetambine is crucial to explain
the robustness of experimentally observed oscillatio@$],lhowever this has been relatively
little studied. A further question is whether delays fromieas sources play similar dynamical
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roles. In order to address these questions, the action dag deist be specified mathemati-
cally. In the literature, there are actually two differetragegies for modeling delays. In some
studies, the delay appears in an explicit manner as thedetared value of some dynamical
variable [137, 127, 184] and is referred to as "explicit deldg other studies, it is originated
in a reaction step [123, 80] and called "reaction delay". Ev®ugh both of them are com-
monly used, their similarities and differences have notqeeintitatively studied. In this first
study, we will investigate the combination principles ofades and compare the different in-
fluences of explicit and reaction delays on oscillatory édra To this aim, we will study a
self-repressing gene circuit comprising delays respelgtaue to the dynamics of gene activity
and to molecule transport.

Influence of fluctuations on the biological oscillation of genetic
networks

In the second study, we investigate the influence of fluatuaton the oscillatory behavior of
genetic networks. For this purpose, we will develop a cumiuéxpansion derived from the
master equation to incorporate fluctuations in a determmenaescription. We will apply this
approach to the same self-repressing gene circuit we haglieedtbefore. In this simple circuit,
fluctuations are due to the small copy numbers of mMRNA and imstand more importantly
to the binary nature of gene activity, which undergoes items between the "ON" and "OFF"
states. We will show how fluctuations shift the steady stegdipted by deterministic equations
and how fluctuations can induce oscillations in this redwusedem.

Stochasticity of transcriptional pausing and its dynamics ef-
fect

The aim of the third study is to study the dynamical effecthiired by transcriptional pausing
and its influence on transcription rate. To this aim, we witroduce a classical system in
out-of-equilibrium statistical physics named the TotalyAsnetric Simple Exclusion Process
(TASEP). We will use it to model transcription and study héw tynamics of transcription is
affected by pauses occurring in a stochastic fashion withkveeependence on DNA sequence.
For simplicity, we will restrict ourselves to the case of TA&S model with periodic boundary
condition. It will be found that mean-field approach workdivealy in the limit case where
pause are short. We will then suggest a statistical apprwacbmpute the transcription rate
modified by pausing over the entire range of pause duratiorexfression of the transcription
rate agreeing well with numerical simulations will be given

Plan
In Chapter 1, we first introduce the motivation of this thestskyv Then we present different
mathematical approaches to describe the dynamics of gametivorks, such as deterministic

equations which are helpful to reveal the key ingredientsabgical oscillations, the cumulant
expansion of the master equation which allows to take intoaat fluctuations, and the TASEP

9
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model describing the transcription process. In Chapter 2jntveduce an extension of the
model proposed by Moramt al. [138]. In this model there are two delays respectively due to
gene response dynamics and protein transport, with thex lzeing modeled as a reaction or an
explicit delay. We will discuss the combination of these wadays and compare the different
influences of reaction and explicit delays on oscillatorgdngor. In Chapter 3, we take the self-
repressing gene circuit as an example to apply the cumukgainsion of the master equation.
This approach allows us to investigate the influence of fhicdns on the steady state and
oscillation regions predicted by deterministic modelsChapter 4, we study how transcription
is affected by RNAP pausing in using the TASEP model and préldéctranscription rate for
all pause durations.

10
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Chapter 1

Dynamical modeling of gene networks

1.1 Biological motivation

1.1.1 Biological oscillations

Living cells may be viewed as dynamical systems which havariotion and maintain them-
selves in highly changing environments. They receive métion from inside and outside the
cells, process this information to make decisions, and thgger responses which are appro-
priate for survival and reproduction. Essential cellulandtions rely on complex networks in
which macromolecules, such as genes, RNAs and proteinsadht&ith each other via bio-
chemical reactions so as to generate collective behavidiese genetic regulatory networks
are intrinsically dynamic and highly nonlinear. Underslizug their dynamics is the key to de-
scribe the temporal and spatial changes that a cell undetgaespond to stimuli, grow and
reproduce, differentiate and do other important and necgstivities.

The development of new quantitative real-time measuresadcualar dynamics in living
cells, but also the capacity to synthesize genetic netwbidks shed light on a striking dynam-
ical behavior of genetic networks: oscillation [114, 92, 83, 83, 84, 6, 144, 41]. Oscillatory
behavior is characterized by periodically repeating \temes of some measures or quantities
and is observed in a great number of biological systems, avitlide range of timescale from
seconds to days (Table. 1.1). Some representative exaoffiedogical oscillations are found
in the cell division cycle [129], circadian rhythms [53, 780, 3, 32], immune response [66],
embryo development [95], cell death and apoptosis [93, &2ql, cellular calcium dynamics
[58]. It has been suggested that oscillations are more @fiichan a steady state to encode
and transfer information both in time and space, and that #utively contribute to robust
regulations of biological functions at different levelsa#llular organization and as well as to
flexible responses to environmental variations [21, 14&wEler, oscillations are not easy to
understand, because they do not result from the action oigdesmolecular actor but from the
combined interaction of several of them. We review belowva liélogical systems that can
display sustained oscillations, as well as the componemtdved in the oscillating network.

In vertebrate embryo, the somites [2, 60] are the basis adegenental pattern of the body
and give rise to the axial skeleton and the dermis of the b&ag.(1.1) illustrates the phe-
nomenon of somite formation in Zebrafish [137], which hasaated a lot of interest. We
see a spatial pattern which is not unlike a trace on a magrestarding tape. It is actually a
record of the temporal cyclic variation in expression levef some genes in the cells of the

11
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Function Components Period
Metabolism Glucose, ATP, phospho-fructokinase 2 min
Somitogenesis Herl, Her7, Notch 30-90 min
Signaling Cyclic AMP, receptor, adenylate cyclase 5 min
Signaling Cé", Ins(1,4,5)R >1s
Signaling NF-kB, IkB, IKK, ~2h
Signaling p53, MDM2 5h
Yeast endoreplication cycles Cig2, Cdc10, Ruml 1-2h
Frog egg cycles Cycb, Weel, Cdc25, Cdc20 30 min
Circadian rhythm PER, TIM, CLOCK, CYC 24 h

Table 1.1:Survey of biological systems displaying sustained oscitians. Table taken from
[145].

head formed somites presomitic mesoderm

‘ ‘ B > l“
-«-a«“ .

completed cycles 123456 78 9 10 (12) (13)

oscillation arrested | oscillation
slowing down

Figure 1.1:A Zebrafish embryo at 10-somite stageThis spatial pattern of segmentation is a
record of temporal oscillation of the expression processatiein Herl and Her7. Figure taken
from [137].

presomitic mesoderm (PSM). Two genes, Herl and Her7, amdadsociated proteins, which
are responsible for the somite formation in Zebrafish, haenhdentified, since when these
genes are knocked down by morpholino injections or chromagdeletion, oscillations break
down. The Herl/Her7 system has often served as a paradgexatnple of a simple genetic
circuit comprising self-repressing genes which will bedstd extensively in this thesis.

The second example of oscillations involves one of the ndshsively studied proteins,
the tumor suppressor p53 which is involved in preventingeeam multicellular organisms. It
functions by triggering DNA repair in case of damage, bulss a key protein involved in cell
death and apoptosis pathways, which may be required if DNvh@igbe repaired. In advanced
and accurate single-cell experiments, the p53 protein usefto fluorescent proteins so that
the variation of its copy number over time could be record8] p2]. After a stress-induced
DNA damage, p53 is activated and its concentration inceea3ke increase of p53 protein
levels in turn leads to the production of its degradationyemes. p53 is then rapidly degraded,
which after some time reduces the production of the deg@mdahzymes, and so on. This re-
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sults in very dynamical variations of p53 levels in indivadgells. It can be seen in Fig 1.2 that
the interaction between p53 and its degradation enzymes gise to an oscillatory behavior.
This causes particular interest to understand the meahamserlying the appearance of these
oscillations.

ik,

2
o

ol
o

2
IS

e
i

p53-CFP fluorescence (AU)

(=]

200 4{10 6_60 800 1,000
Time (min)

o

Figure 1.2:Dynamics of tumor suppressor p53 After DNA damage, the concentration of
protein @3 fused by fluorescent proteins is measured in real time irviddal cells and is
found to display oscillatory behavior. Figure taken fror2][5

Circadian rhythms provide another classical example ofgickl oscillations. Many or-
ganisms, including humans, have their life organized bydgngnight cycle with period of 24
hours. During the day, for example, we stay awake and a&iwat night we sleep and regain
energy for the next day. People do not behave so because rthelysaiplined and follow a
well organized life schedule but because their physiolggythmically driven by a biological
clock whose workings are gene regulatory networks osiitiainside our cells [53, 75, 160].
One piece of evidence for the existence of these so-calteddian clocks is the jet lag effect.
After traveling over a long distance in a short amount of tim& circadian clock cannot adapt
instantaneously and remains for some time phase-shiftédraspect to the outside day/night
cycle, which results in discomfort.

Quite remarkably, plants display also circadian rhythnts.ikstance, there is a plant called
Phaseolus coccineus [40] whose leaves open during the day and close at night (Big hter-
estingly, if it is put in continuous light or darkness, theélglanovements persist, which reveals
that its endogenous circadian clock evolves independentynlight. The endogenous nature
of circadian oscillations is further shown by the fact thmgeneral the period of endogenous
circadian oscillations is slightly different from 24 houiGircadian clocks have been found in
insects, fungi and cyanobacteria [3, 32]. Their physiatagfunction is to help living organ-
isms to adapt to the environmental changes and accordiagbgulate various physiological
properties such as body temperature, feeding behaviar, Bte molecular components of
the genetic networks generating circadian rhythms have lieatified in different organisms,
such as the proteins KaiA, KaiB and KaiC driving the circadi#ock in Synechococcus or the
protein frq involved inNeurospora clock [3].

Understanding the molecular basis of the genetic netwbikisare responsible for cellular

13
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Figure 1.3:Circadian rhythm in the plant Phaseolus coccineus. (A) Leaves ofP.coccineus
close at night (left) and open during the day (right). (B) Ciliea rhythms of leaf movement in
continuous light. The peaks of the curve represent the lesifipn at night. The vertical lines
delimitate time intervals of 24 hours. Therefore, the pnbendogenous circadian oscillations
in this plant is~ 27 hours. Figure taken from [40].

oscillations is crucial to unravel the dynamics of cells.ufmerstand how oscillations emerge
collectively from a molecular network requires first that wederstand the molecular interac-
tions that form the building blocks of this network. In cddluprocesses, the primarily involved

molecules are DNA, mRNA and proteins, and the elemental eimetal processes in which

they participate are synthesis (such as transcriptioreostation), degradation, complexation,
covalent modifications, etc. In the next section, we williegwthe details of these elemental
biochemical processes.

1.1.2 Elemental biochemical processes in cells

Transcription and translation  We start with DNA molecules. DNA is a nucleic acid whose
two strands are entangled as a double helix. It is compossidnple units, called nucleotides,
and carries the genetic information that controls pher®gmd functions of cells in all living
organisms by directing the synthesis of proteins. The Hfalif this information is ensured
by its discrete coding, and the segments of the DNA molectilietwcarry it are called genes.
As for mRNA, it is a single-stranded nucleic acid made up oflemidde components. As we
describe below, mRNA results from the transcription of theajie sequence and serves as a
template for synthesizing proteins in a process calledstadion. Proteins are polymeric chains
of amino acids typically folded into a specific form suitabddts function. Proteins are major
components of cells, and play crucial roles in all cellulewgesses. For examples, they can
participate in biochemical reactions and metabolism ad ezymes but are also involved in
cell signaling and other important cellular mechanisms.

According to the central dogma of molecular biology (Fig)1#he genetic information
carried by genes is first copied into mMRNA molecules duringdcaiption, which is carried out
by enzymatic macromolecules named RNA polymerase (RNAP Geeetic information is
transferred from mRNA to proteins by other macromoleculdiedaibosomes via the process

14
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of translation. The whole process in which genetic infoioratn genes is used to synthesize
matured and functional proteins is referred as to gene sgjme. Now we examine the details
of these two main processes of gene expression: transerigiid translation.

Generally, the three main steps of transcription are tnitng elongation and termination.
During initiation, RNAP and transcription factors (TFs)chias ther factor involved in bacte-
rial transcription, bind to a particular DNA region near thene which is called the promoter.
Then RNAP and TFs binding the promoter interact with eachrahd transform into an elon-
gation machine which is ready to move along the gene and msdrdoe genetic information.
During elongation, RNAP, consuming energy brought by ATP euoles, moves along one
strand of the DNA template and reads the genetic sequentéeotide by nucleotide, whereby
a freshly synthesized mRNA transcript comes out from thédaf& NAP. Elongation is a com-
plex process. The dynamics of RNAPSs is rather stochastideaydhay have unusual behaviors
which we will discuss at the end of Chapter 1. In addition, tlom@ation process involves a
number of other enzymes which are also subject to stochdgtimics. When RNAP reaches
the last nucleotide of the gene, the final termination stepis; and RNAP and TFs dissociate
from DNA molecule. The mRNA transcript is released from RNARdergoes folding and
phosphorylation, and then becomes mature mRNA which is reslg translated for proteins.

Translation is quite similar to transcription. Comparedremscription, the template of
translation is the mRNA sequence instead of the gene, andnthgmatic macromolecules
reading the sequence are ribosomes. As translation begdesome follows the template
sequence nucleotide by nucleotide and binds transfer RNEYA$) which themselves fix the
amino acids which are bricks of which proteins are made. Witb@somes reach the end site of
MRNA, a polymer chain of amino acids is finished and eventumdlyomes a functional protein
after undergoing posttranslational modifications.

Regulation As we have seen, gene expression consists of multiple celsteps. Each
of these steps requires many macromolecules and factofsasd is highly regulated. Let
us consider transcription regulation [90]. In fact, thensexiption rate is highly dynamical.
Even though the promoter is the region of DNA where RNAPs and it meant to bind,

it can actually be bound by other specific proteins. Theis@nee can either favor or inhibit
the binding of RNAP and TFs, and thus control the transcniptade. The proteins preventing
RNAP or TFs binding are called repressors. Likewise, thobamcing transcription are called
activators. Repressors and activators are synthesizedebyabsociated genes. Thus, genes
interact with each other by driving the expression of eableiotia regulation.

Molecule transport  After mature macromolecules like mMRNAs and proteins arer®gited,
they are transported to some organelles or other locatitveserthey exert their specific func-
tions. In particular, in eukaryotic cell, on one hand, mRNAsteesized in nucleus needs
be transported to the organelles of ribosomes in cytoplaberevtranslation occurs. On the
other hand, those functional proteins which regulate tnapgon have to be relocated from
cytoplasm to nucleus to control gene expression.

Molecule degradation Various mechanisms leading to the destruction of macrocnéés
play also an important role in biological oscillations [18Jlolecule degradation is actually a
complex process [141] in which many specific enzymes arelvedo For example, protein
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Figure 1.4:Transcription and translation. Gene expression mainly consists two important
and complex processes: transcription and translation.inBuranscription, macromolecule
RNA polymerase (RNAP) and transcription factors (TFs) bind®Dfblecule and read through
its sequence while the mRNA is synthesized behind them. Tethmis is similar to transcrip-
tion, but is catalyzed by other macromolecules called obuess.

degradation is performed by enzymes called proteases, &NAndegradation by ribonucle-
ases. Thereafter we take as an example protein degrad@iosn of the most typical protein
degradation mechanism is the so-called Michaelis-Menggmnatiation [141] in which a protein
molecule P bound by protease E forms a complex C which in sioomnverted into a product
S ultimately destroyed and the protease E is released. By)gpeoteins are converted into
smaller compounds but degradation enzymes, proteaseaineifthe kinetic of biochemical
reaction can be described by:

P+E=C—-S+FE

If the enzymes are abundant, degradation is linear in theestrat the number of proteins de-
graded by unit time is proportional to the total number oftens. In the case where their copy
number is smaller than that of proteins, there is a compatiietween proteins for degradation
enzymes and degradation becomes nonlinear. Furthermbes the amount of degradation
enzymes is further reduced, degradation becomes satueatddhe number of proteins de-
graded per unit time becomes independent of protein copyrurhecause it is in fact limited
by enzyme copy number. A more complex degradation mechaisisihosteric degradation
[102] where the protein inhibits or enhances the activitthef degradation enzyme by binding
to one of its sites. In this case, the kinetics of degradasaomuch more complicated. We
introduce here only two examples of how molecular degradatan be highly nonlinear, but
in fact there are much more.

Dimerization and phosphorylation We have yet to introduce two important elemental bio-
chemical processes which will considered later in thisithesrk: dimerization and phospho-
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Figure 1.5:Transcription regulation . The promoter is a particular region near the beginning
of a gene. The binding of a repressor to the promoter prewatashment of RNAPs and TFs
so that it represses the transcription rate.

rylation.

Dimerization is a common process in biological systems [IQ1 In this process two
identified unitsA called monomers bind to each other and form a new moleduleamed a
dimer. Many functional proteins in living cells, such aswaription factors, act in the form of
dimers, because this provides a way to modify the chemicaitids. The dimerization process
of a monomerA can be explicitly described by:

A+A— A

Phosphorylation is also a commonly encountered proceskitiva phosphate groupO;
is covalently attached to the protein. Phosphorylation ahynenzymes modifies their confor-
mation and controls their activities.

1.2 Genetic networks

We have reviewed elemental biochemical processes in deltbis section, we will introduce
genetic networks where elemental processes are carrieshdutiscuss their typical dynamical
behaviors.

1.2.1 Natural genetic networks

In cells, transcription of genes lead to mMRNAs which in turrveeo produce functional pro-
teins. Moreover, the presence of certain proteins can aggthe transcription rates of some
genes, including their own genes. Thus genes indirectlynpte or inhibit the rate of expres-
sion of each other. A collection of genes interacting via mRa& proteins is called a genetic
network [94].
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Figure 1.6:A minimal genetic network. In this circuit, the gene synthesizes mRNA which
produces the associated protein. The proteins repressgatiscription of its own gene, which
forms a negative feedback loop. This minimal genetic nétvamtually exists in the nature,
such as Hesl, Hes7, involved in somite segmentation, or Lvetigh is the SOS regulon in
E.Cali.

The simplest genetic network is a loop in which proteins lsgsized via transcription of a
given gene and subsequent translation regulate the tiptisorate of this gene (Fig 1.6). For
example, direct binding of protein Hes7 to its own promoggresses the expression of its own
gene, which has been demonstrated in mice [12, 127]. Otleanbes are repressor LexA as
the SOS regulon iiescherichia coli [168], Hes1 [100] in the segmentation and etc.

The genetic networks based around a single gene are notléheAsithere are thousands
of genes in DNA molecules (Fig 1.7), the majority of genettworks existing in nature are
much more complex and involve anything from a few genes tolmmore. Accordingly,
understanding their dynamics can quickly become very cerpl

1.2.2 Synthetic genetic networks

Synthetic biology combines biological and engineeringrapphes to construct artificial ge-
netic networks which comprise only a few components andtfans in isolation [79, 37, 102].
This allows one to overcome the complexity and coordinadifaratural genetic networks. With
small synthetic genetic networks as testbeds, typicalmhyce behaviors can easily be studied.

Here we take a synthetic network reported [37] as an exanippl(.8). This synthetic
network involves a negative feedback loop in which the fiestegy Lacl taken fronk.Coali,
inhibits the transcription of the second gene, TetR, whictum represses transcription of a
third gene, cl from\ phage. Finally, cl prevents the expression of Lacl. Whenrpatars
of this synthetic network are tuned, two dynamical behaveme possible. The system may
settle onto a stable steady state, or the steady state magshkabiized, leading to sustained
oscillations. This example shows the simplicity and the @owf the synthetic biology in
studying the dynamics of genetic networks by providinglteds for theoretical modeling.

We should mention that synthetic genetic networks may dysphother typical behavior:
bistability [79, 154, 101], in which the system has two pbksisteady states and transits be-
tween them. However, we have chosen to focus here on oecyllaehaviors. In the next
section, we will try to understand the design principlegpogsible for this behavior, using
deterministic modeling.
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Figure 1.7:A typical genetic network in mammalian cells Components of the genetic net-
work which are presented as a map are macromolecules imvivltiee cell cycle of mammalian
cell nucleus. Lines connecting nodes represent biochénei@etions. Figure taken from [111].

1.3 Deterministic modeling of genetic networks and key in-
gredients for oscillations

For exploring quantitatively the design principles of gemescillators, a mathematical descrip-
tion of genetic networks is required. The commonly used @gqgn is deterministic modeling

based on the law of mass action in which the reaction rateoisgstional to the concentration

of reactants [141, 103, 91]. In this way, we obtain a set oéwheinistic rate equations whose
variables are the concentrations of components of genetiganks, such as concentrations
of mMRNAs and proteins. Assuming a genetic network comprigfhgomponents, a general

mathematical description can be written as follows:

dt
wherez; is the activity of gene or the concentration of molecule Interactions between
molecular actors, such as transcription, translationyleggpn, degradation and other elemental
biochemical processes we have described in Section 1re.?@uded in these two functions
f(z1, 2o, ..x;, .xn) @Ndg(z1, x9, ..., xy) Which describe the gain or loss mechanisms for com-
ponent;.

= f(x1, 22, .74 .xN) — g(T1, T2, .. T4, .. TN)

1.3.1 Necessary ingredient for biological oscillations: negative feedback

We introduce here a necessary ingredient for biologicaillasons, negative feedback, and
its mathematical modeling. In classical mechanics, theksrharmonic oscillator displays
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Figure 1.8:Construction and oscillatory behavior of a synthetic netwak . (A) The synthetic
genetic network is a regulating loop composed of three gélnad, tetR and cl). (B) Two
different dynamical behaviors corresponding to two regimnparameter space are found: this
simple synthetic genetic network settles onto a stablelgtetate (top left) or displays sustained
oscillation because of unstable steady state (bottom)rigigure taken from [37].

sustained oscillations. When displaced from its equilioriposition, oscillator experiences a
restoring force that intends to bring it back to the equilibr position. In fact, the restoring
force plays a role of negative feedback. Quite similarlg tlegative feedback is also a neces-
sary condition for biological oscillation appearing in géino networks [13], as has been shown
mathematically [174, 88].

In order to illustrate the mathematical modeling of a negateedback loop, we consider
the example of a minimal genetic network consisting of ofierspressing gene. In this genetic
network, proteins inhibiting the transcription of their mgene create the negative feedback.
To be precise, when there are only a few proteins, proteithegis of the gene is not affected.
When proteins become abundant, they can bind to the promicgene and thereby inhibit the
transcription. After proteins are degraded, the gene resuhe protein synthesis. The kinetic
of this minimal genetic circuit can be described by [184]:

dp(t) Ky

dt UKD pr

—9(p) (1.1)
wherep is the concentration of proteirk; is the maximum transcription rate when there are
few copies of protein and gene is fully expressed. The tgﬁ{:—%; is used to model the negative
feedback and describes how gene transcription is représstiee presence of the protein. In
this term,n is an integer indicating whether protein binds to the gena m®nomer#{ = 1),
dimer (» = 2), trimer (» = 3) or other forms K, characterizes the protein-DNA dissociation
constant. For small protein copy numbersg K, the synthesis rate is approaching a constant.
The synthesis rate decreases monotonically as a functigmotgin concentratiop. In the limit
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Figure 1.9:A model of circadian rhythms with a reaction transport delay and its corre-
sponding oscillatory behavior. (A) Biochemical reactions of the negative feedback loop of
protein FRQ inNeurospora are presented. The protein FRQ is synthesized in cytoplasin an
then transported into nucleus to regulate transcriptiothefrq gene. (B) A numerical sim-
ulation of Egs. (1.2) shows oscillations with a period clése€4 hours. Figure taken from
[123].

case where protein concentration is sufficiently largex K,) the production of proteins is
completely inhibited. In this way, the negative feedbaak lsa mathematically described.

1.3.2 Delay as the second key ingredient for oscillations

When analyzing Eq. (1.1), we find that the state of constartepraoncentration is always

stable. Any perturbation in protein concentration immesliarelaxes to zero because of the
negative feedback. Therefore, another key ingredientesl@@ for oscillations to appear. It is
found that if the negative feedback is delayed, oscillai@mppear systematically [137, 100, 127,
135,123, 11, 180, 133, 175, 80, 145]. This can be understahdavsimple example: consider

a person who walks straight towards a point marked on thengkoWhen he is approaching

to the point, he will reach it and stop there if he can make #&sibn instantaneously. This

resembles a genetic network in which the negative feedhgolalsis not delayed. However,

if this person have to take some time to realize the fact tedtds reached the point, he will

cross it, then turn around and walk towards it again. Cestdialwill reach and cross that point
again and again. Sustained oscillations are thus generated

Therefore delay is also a dynamical ingredient which plageuaial role in biological os-
cillations. There are actually various sources of delayiahogical systems, for example, tran-
scription and translation take a minimum amount of time. étalar transport, phosphorylation
and other intermediate steps of biological processes e&mbto delays. Two main strategies
are used to model a delay. In some studies, the delay orgginata reaction step [123, 80],
and we will call such a delay a "reaction delay". In other stsidibe delay appears explicitly
as a time-delayed value of some dynamical variable [137, 18%], without specifying the
underlying processes. We shall thereafter refer to suchey ds an "explicit delay”.
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Ordinary Differential Equation (ODE) model with a delay induc ed by a reaction step
First, we consider a model of circadian rhythms\eurospora [123, 80], in which delay orig-
inates from a reaction step. In this model (Fig 1f&),mRNAs are transcribed in the nucleus
and transported into cytoplasm where protein FRQ protemsyarthesized. Proteins are trans-
ported reversibly between cytoplasm and nucleus. Negadiyelation of gene expression is
exerted by proteins in nucleus. Given the biochemical reastnvolved in this genetic circuit,
the kinetic is described by:

dM(t) K7 M
i CKrvFy "Ka+ M (1.23)
dFa(t) Fo
= kM —vg—— — ke Fo + ko F 1.2b
7 vde g 1'c + Kol N ( )
F
d gt(t) = ki Fo—koFy (1.2¢)

The set of Ordinary Differential Equations (ODESs) thus oled describe the temporal
evolution of each components according to the law of massracin Egs. (1.2) M, F and
Fy are respectivelyrg mRNA copy number, FRQ protein copy numbers in the cytoplasm and
in the nucleus. The term, K,fiF denotes the transcription rate under control of FRQ proteins

The termva o (or UdK ) is the degradation function of mMRNA (or FRQ proteins in
cytoplasm) followmg a Mlchaells Menten mechanism (seetiBe 1.1.2) in whichv,, is the
maximum degradation rate aiid,, is the Michaelis-Menten constarit, is the translation rate
of FRQ protein.k; andk, characterize the protein transport rates into and out densc

Here proteins are separated into two different compartseytoplasm and nucleus. The
protein transport between cytoplasm and nucleus leadittgetdelay ensures that synthesized
proteins cannot inhibit gene transcription instantly. dhde proved that without the delay
due to protein transport, the steady state of Egs. (1.2) irenaways stable. Therefore, the
delay specified by reaction delays due to protein transpacstucial for this circadian model
to display sustained oscillations. Although reaction gelacrease the dimension of system,
the advantage of models described by ODEs is that they ailg eaalyzed. Approaches for
analyzing ODE dynamics are well developed, such as linehilgy analysis.

Delayed Differential Equations (DDEs) model involving an expicit delay The second
strategy to model delays is to introduce a variable with giliexdelay in the equations, which
are then termed Delayed Differential Equations (DDEs).hSeguations were first introduced
in [130] and have been since widely used to describe matheaiigtthe kinetics of biological
networks [137, 100, 127, 135, 11, 133, 80, 145].

To illustrate this concept with an example, we consider dlggeaetic circuit involving the
transcription factor Hes1 which regulates the expressfats @wn gene via a feedback loop
[95]. The kinetics of this genetic circuit is described bg tbllowing DDES:

dr(t) akh

it Kirs(t—71)p kor(t) (1.3a)
ds(t)
g = ) = kes(t) (1.3b)
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In Egs. 1.3,s andr are concentrations of protein Hes1 and of the correspondiRlA,
respectively is the translation rate:, andk, are the spontaneous degradation rate of mMRNA
and proteins, respectively. The production of mMRNA and ratjom by Hes1 are described by
the term%. The mRNA is fully expressed when the gene is not bound by Hedl a
is produced at a rate. Otherwise, binding of Hes1 to its own gene reduces the ¢rgion
rate. The explicit delay accounts for the fact that mMRNA synthesis rate depends ofrtiteip
concentration at timeé — 7 rather than at timé. This delay may be due to time needed to
complete transcription, translation or any other interiadbiological step. Importantly, the
model described by Egs 1.3 can display sustained oscillgf00]. Compared with equations
featuring a reaction delay, the advantage of using an ekdkday is that we can neglect the
detail of biochemical processes inducing a delay. On therdtand, the dynamical analysis of
a system described by DDEs requires more sophisticatedagipes.

The important point we want to make is that a given processbeamodeled either with
a reaction delay or with an explicit delay. How do we choossvben them in our modeling
strategy? Indeed whether or not they have similar dynarbigladviors, especially for inducing
oscillations, remains unclear.

1.3.3 Nonlinear degradation and oscillations

As mentioned in Section 1.1.2, various degradation meshaican affect macromolecules
like mRNA and proteins in cells, such as linear, MichaelisAés or allosteric degradation.
They lead to very different behaviors of the degradatioa &ata function of the concentration
(Fig 1.10). In particular, degradation functions deseargoMichaelis-Menten mechanism have
been ittilized in Fas (1 2)Y In neneral dearadatinon mechmnnlav imnortant roles in shanina

the dy

Figure 1.10: Functions associated with different degradation kinetics Three functions,
which mathematically represent the kinetics of linear @genre), Michaelis-Menten (magenta)
and allosteric (blue) degradation are shown.
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Figure 1.11:0Oscillations driven by nonlinear degradation (A) Protein and mRNA are in-
volved in a negative feedback loop where the protein repeeiss own expression. In addition,
it can bind to an allosteric site in its degradation enzyrhe, grotease, and inhibit protease
activity. (B) Sustained oscillations in mMRNA and protein cenitations are observed. Figure
taken from [145].

To introduce the mathematical modeling of degradation &ble in oscillations, we will
focus on a circadian model describing the expression oP#R gene in fruit flies [145]. In
this example, the protein PER represses the expressios @ivit gene, but it can also bind to
an allosteric site on its degradation enzyme, the proteaskthereby inhibit protease activity
(Fig 1.11A). The system is modeled by the following equatifi5]:

dX (1) K?

e 7 A —d X 1.4
dt ksx Kg + Yp kd:c ( a)

dY (t) kY

= kX — kY — 1.4b
dt sy WK 1Y + K Y2 (1.4)

In Eqs (1.4)Y andX denote respectively the concentration of protein PER amdRNA.
v Kp -4~ describes the regulation &ER transcription rate by protein PER,, is the trans-

lation rate of PER proteinsk,, is the spontaneous MRNA degradation ratg, is the rate
constant for an alternative pathway of protein degradat®oth of them are associated with
linear degradation mechanisms. The teﬁm% represents the allosteric degradation
and is a second-order function. The presence of 'this nanlidegradation term is essential to
trigger sustained oscillations in protein and mRNA concdians (Fig 1.11).

To summarize, we have discussed in this section three kegdients of biological oscilla-
tions: negative feedback as a necessary condition, delagglhss nonlinear degradation. We
have also discussed the fact that genetic networks can leematically described by models
comprising ODEs or DDEs. These deterministic models haen logiite successful to pre-
dict oscillatory behavior in genetic networks. Howevertedministic models are obtained by
assuming that the number of reacting molecules are infifiltes assumption is usually not cor-
rect because many molecules involved in cellular reactpyasent very small copy numbers.

24

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

>
O

7 0.154

0.10

Abundance (uLM)
=
1

: i 0.00 T T T 1 ( ]
0 4 8 12 16 01 02

Time (h) Probabilty

Figure 1.12:Fluctuations due to small copy numbers Time series of protein concentrations
generated from a deterministic model and from a stochastialation (blue and red curves,
respectively). Histograms show the probability that a well have a given protein concen-
tration. (A) Low-amplitude fluctuations with high numberfspsotein molecules~ 10, 000).
(B) Large fluctuations correlate with a decrease in the nurabprotein molecules~ 100).
Figure taken from [110].

In the next section, we will discuss effects due to the smralliateger numbers of molecules,
which result in fluctuations (or noises) which can influerfee dscillatory behavior of genetic
networks.

1.4 Stochastic fluctuations in genetic networks

1.4.1 Fluctuations due to low copy number of molecules

Deterministic rate equations are a widely used approactméateling the dynamics of genetic
networks. In this context, copy numbers of macromolecutesagsumed to be very large,
so that the relative error made by describing them with comtius variables is very small
(Fig 1.12A) in spite of the presence of fluctuations [110,]199ore precisely, determinis-
tic models usually describe the time evolution of the avesagf molecular numbers over an
infinite number of realizations of the underlying stochagtiocess.

However, in cells, many molecules are present at very smal$ so that molecular copy
numbers have to be considered as small integers, not coasrquantities. For example, there
are typically ten copies of a transcription factor and onevorcopies of a given gene in a single
cell. When the copy number of reacting molecules is low, sysithor degradation leading to
variation of the copy number by one unit induces a largeivgdiuctuation, and thus may have
a significant influence on the system dynamics (Fig 1.12B).

Fluctuations arising from low copy numbers and inducingls&sticity are commonly en-
countered in many biological processes [72, 159, 150] and atiracted intensive studies since
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decades [38, 105, 179, 183, 33, 151]. Recent theoretical haskdemonstrated that negative
feedback genetic circuits are able to reduce noise [183433)], with however some funda-

mental limits [125]. A natural question is whether moleculaise is just a nuisance which

should be controlled or whether it could have a functionkd?0

1.4.2 Functional roles of fluctuations

One may think that fluctuations are harmful to cellular fumas, because they can degrade
the quality of intra- and inter-cellular signals. Howewagre and more experimental and the-
oretical investigations support the hypothesis that mdédluctuations play crucial roles in
the design principles of cellular functions [195, 35, 5,.7Fpr example, molecular fluctua-
tions have been proposed as a mechanism responsible fastgperheterogeneity [157, 120].
This is expected to be particularly important for microlalls that need to adapt efficiently
to highly changing environments. In addition, fluctuatiomgene expression provide mecha-
nisms for achieving distinct physiological states in a giy®pulation, and therefore increase
the probability of survival without needing genetic mubat{110, 74].

A recent work by Gagatast al. [77] provides new insights into the functional role of fluc-
tuations. Under experimental stress, a small fractioB.siibtilis cells transiently switch into
a competence state in which they can take up extracellulak BNl incorporate it into their
chromosome. This switching dynamics is mainly driven bylatieely simple circuit involv-
ing the transcription factor ComK which actives its own exgsien and inhibits the expression
of its activator ComS (Fig 1.13A). By making use of the devetbgangle-cell experimen-
tal technology, Gagatagt al. construct an alternative circuit called SynEx circuit inig¥h
ComK activating always its own expression induces the espaof MecA which is respon-
sible for the degradation of ComK (Fig 1.13C). According to pamsons of simulations and
Vivo experiments, the native and synthesized SynEx cs@éherate transient pulses of ComK
(Fig 1.13B and D) with similar frequency, duration and arygle.

So a fundamental question is why this particular circuisexnatively in cells rather than
other potential alternatives that display the same dynalbehavior, such as the SynEx circuit.
A key point is that the cellular fluctuation profiles of natiaed alternative SynEx circuit are
very different (Fig 1.13E). Specifically, the cell-cell iaility of competence duration induced
by fluctuations in the copy number of ComS in the native cinsuituch larger than these in the
SynEXx circuit. It was shown that such higher fluctuationsh@native circuit provides a func-
tional advantage which facilitates response to a wide rahg&tracellular DNA concentration
[77].

This suggests that fluctuation dynamics is an importantgngpof a gene circuit archi-
tecture besides its deterministic dynamics, and that baibktrhe taken into account when
discussing the design principles of gene circuits in livieds.

1.4.3 Approaches to modeling stochastic fluctuations: the master equa-
tion and its cumulant expansion

Fluctuations are generally considered as a zero-mean sigpEimposed on the deterministic
signal. However, genetic networks are usually highly noedir, which implies that a zero-mean
noise can be transformed into a non zero-mean signal fekdbacexample, let us assume that
(x) = 0. Then, the square of this signal verifigs) # 0 unlessr is constantly zero. If another
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Figure 1.13:Fluctuation dynamics discriminates functionally analogas genetic circuits
(A) The simplified diagram of the native circuit displayingetcompetence dynamics. The
ComK positively regulates its own expression and repredsesxpression of its activator
ComsS. (B) The native circuit generates a transient increa@»ofK corresponding the com-
petence dynamics. (C) The diagram of the alternative cir€mmK positively regulating its
own expression induces the protein MecA which is respoeddlits degradation. (D) The al-
ternative circuit generates also a competence dynamiadmdequivalent to that of the native
circuit. (E) The cell-cell fluctuation of competence dunatis distinct between the native and
the SynEx circuit. The distribution of competence duratdmative circuit is much broader

than that of alternative circuit. Figure taken from [77].
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variable is driven by: through this square term, sgy= f(y) + az?, then fluctuations of the
zero-mean signat will feed back into the average quantities whose evoluttodescribed by
the deterministic equations. It can be expected that sweztbieck may dramatically change the
dynamical behavior. We will discuss here approaches toriesgenetic networks subject to
fluctuations and to characterize the influence of fluctuatmmthe dynamical behaviors.

The standard approach to describe a stochastic system sotballed master equation
[189]. It consists of coupled differential equations désog the time evolution of probabil-
ities of all microscopic states characterized by the nunatbenolecules in each species. Let
P({n},t) be the probability of the microscopic state= (ni,n,...) wheren; denotes the
number of molecules in speci®s. The master equation reads as follows:

—dP(gZ},t) = Z W{n}{n/}P({nl}7 t) - W{n’}{n}P<{n}’t) (1.5)
{n'}

whereW,, ./, > 0is the transition rate from microscopic stdte } to {n}. The master
equation is a gain-loss equation for the probabilities afrogcopic states. To be specific, the
first term is related to the increase in the probability ofnigein state{n} due to transitions
from other stategn’'}, and the second term is related to the decrease of this litpaloie
to transitions from{n} to other states. The master equation predicts the tempahiten of
all molecular quantities characterizing deterministierages and fluctuations. However, it can
rarely be analytically solved [158], even for the steadyestaf the probability density function
(PDF)P({n},t)[98], and it is typically solved by numerical integratior6f, 139]. Moreover,
knowing the time evolution of probabilities may not sufficecharacterize certain dynamical
behaviors such as oscillations, since the solution of thet@naquation in this case will typi-
cally be a PDF centered around the limit cycle, with the pliggsemics being lost. Note that
a commonly used algorithm for stochastic simulation, thike&pie algorithm [82]), does not
solve the master equation but yields a specific realizatitimeospecific process. Evaluating the
time evolution of probabilities requires many concurranigations of the stochastic process
to obtain the ensemble average.

One approach of particular interest to solve the mastertexuuia to construct the cumulant
expansion for the PDF of the master equation. Before derithegcumulant expansion, we
define cumulants and moments. First, moments of a randoablesi are defined as:

iy = (a7 = 3 e P({n}, 1) (16)
{n}

wherep is the order of moment and thig:} are all the microscopic states. Therefore, all
moments are easily computed once the PDF is known. Momeatsfin used to characterize

the shape of the PDF quantitatively. For example, the fidéilomoment is the mean; the

second-order and third-order moments respectively measuirance and the skewness. More
generally, a PDF is completely specified if moments of alleosdare known. The moment-

generating function is then defined in terms of the momgeptas:

. pot?  ust? fint"
M,(t) = E(e"™) =1+ ut + TR TR

As to the cumulantg(,, of z, they are defined via the cumulant-generating functionesged
as a function of the moment-generating function. More @edgj the cumulant-generating
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function ofx is expressed as:
oo tn
G.(t) = Zl Knm = log M, (t)

Therefore, cumulants are given by:

_d"G,(0)  dlog M,(0)

Ky
dtn dtn

(1.7)

Eq. (1.7) allows us to express cumulants of any order in tefmsoments. A similar principle
can be applied to find joint cumulants for different randomalaesz, y z:

Koy = Ay = (zy) — (2)(Yy) (1.8)
Koy, = (zyz) — (2) (y) (2) — () Ays — () Duz — (2) Auy.

The first-order and second-order joint cumulants are theagee and the covariance, re-
spectively. Note that higher-order cumulants are expressterms of the lower-order cumu-
lants. In fact, a cumulant of order captures the:-point correlations which are not trivially
induced by correlations of lower order.

An important case is that of a Gaussian distribution for Wwlatt cumulants of order 3 and
above are zero. This distribution is thus completely deiteechby its average and covariance.
In general, it may be expected thapoint cumulants of high order are negligible compared to
the lowest-order cumulants and thus that only a small nurobérem suffices to characterize
the complete PDF. The idea is then that the master equati8h ¢&8n be recast in a set of
differential equations describing the time evolution ofrmremts:

dpy <~ pdP({n},1)
= d o — (1.9)
{n}
where the time derivatives of the({n}, t) are given by the master equation (3.3) and thus can
be rewritten in terms of th&({n}, t) themselves. As will be illustrated below, the key point is
that when this substitution is done, the right hand side $esfEgs. (1.9) can be rewritten in
terms of moments. In the end, we obtained equations giviagjtine derivatives of moments in
terms of moments. Similar equations can obviously be déifivecumulants, and thus coupled
equations for cumulants constitute a infinite hierarchyalise of the cumulant order.

In a linear stochastic system, equations for cumulants efengorder involves only cumu-
lants of the same and lower orders, thus the infinite hieyaotlequations for cumulants can
be easily truncated. In contrast, for the nonlinear syseguations for cumulant of a given
order involves higher-order cumulants. This is the mostroom case, as the presence of any
biochemical reaction will make the system nonlinear. Sougiaf question raised is how to
truncate this infinite hierarchy of equations for joint cuamis. In the following, we will il-
lustrate the cumulant expansion approach derived from th&ten equation in the context of
a linear and a nonlinear examples. We will also try to show flaatuations can influence
dynamical behavior.
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A simple linear model First, we show how to describe a simple linear model by thetenas
equation and the cumulant expansion. This linear modelisnsf the following chemical
reactions:

D= X
X 50
In this system, proteiX is synthesized at rate and is linearly degraded at the rate of one

molecule per unity time. The synthesis and degradation attelmear. The deterministic rate
equation describing this model is simply given by

dx
dt
wherez is the average copy number &f.
When the synthesis rate is comparable with or smaller thadegeadation rate, the copy
number of proteinsX is very low and thus fluctuations have to be taken into accolihie
master equation reads:
dP(x,t)
dt
where P(z, t) is the probability at time of the microscopic state with copies of proteins.
Note that the evolution of’(z,t) depends only on the probabilities of the two other states
x + 1 andz — 1, as well as on the transition rate Even though Eq. (1.12) is linear, it is still
not easy to compute the steady state of probab#tity). The difficulty of finding analytical
solutions limits severely the usability of the master eguatHowever, a numerical solution is
easily obtained and is useful to verify the analysis of ciantiexpansion that we will construct
below (Fig 1.14).
From the definitions of cumulants and the master equatidi?]1lwe can write equations
for the first-order and second-order cumulants associatsgzectively with the average and the
variance [189]:

(1.10)

=a—z (1.11)

=aP(x—1,t)+ (x + 1)P(x + 1,t) — aP(z,t) — 2 P(z,1) (1.12)

d{x)

o oW
dA (1.13)
dtxa: = <G2(l’)> + 2<(l‘ — <l’>)a1(aj)> = o+ <I> —2A,.

Note that the equation for the average (or first-order cuntla the same as the determin-
istic rate equation. Moreover, it is not affected by the aace. The evolution of the variance
depends on the average and on itself. Equations for higbramamulants similarly involve
only cumulants of the same or lower order. Egs. (1.13) forfoser! system. The steady state
can easily be obtained, with an avergge = « and a variance-to-mean ratig== = 1/./a.
Both expressions agree well with the numerical integratidh® master equation (Fig 1.14).

In this part, we derived the cumulant expansion from the erasjuation for a linear model.
We showed that equations for cumulants of a given order azeupied from those for higher-
order cumulants, for example the average quantity is nectdtl by fluctuations. Two quan-
tities that capture essential features of dynamics, aeeaad the variance, are perfectly pre-
dicted by the cumulant expansion. We next analyze a nonlieea@mple using the cumulant
expansion.
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Figure 1.14:Analysis of a linear model by using cumulant expansion.(A) The average
() (blue curve) and variance-to-mean ratio (green cug¥a)/ (x)) predicted by the cumulant
expansion (1.13) are consistent with numerical simulatio(B) The time evolution of the
concentration ofX displays large fluctuations when the copy number is law=(10). (C) The
time evolution of the concentration of is subject to small fluctuation far = 1000.
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Nonlinear example: dimerization The nonlinear example we will consider here is a reaction
network featuring a dimerization process. Dimerizatiomdsy common in biological systems
and describes a process in which two identical units bindttegy and form a dimer [188, 7].
The governing kinetic reactions of the utitare expressed as follows:

DS X
(X—1)

X (1.14)
X+X —=

Xo

The proteinX is synthesized at constant rateand is transformed into the diméf, at a
rate which is proportional to the number of molecule pairs — 1) /2. In the kinetic reactions
Eqgs. (1.14), the factor df/2 is absorbed into the rate constant which is normalized. Mwate
for simplicity, we neglect degradation of protela This dimerization model can be described
by the following cumulant expansion:

% = a—2 (<$>2 - <ZL‘> + Aacac) (115a)
d?tm o+ 4((z)* — () + 20,0 — 2(2) Ny — K3) (1.15b)

Equations (1.15) describe the time evolution of the avemgkof the variance. The fac-
tor of 2 accounts for the fact that dimerization transforms two giromolecules at a time.
Compared to the deterministic rate equatibrn/dt = o — 222, the differential equation for
the average (1.15a) describes more precisely how the oeaetie depends on the number of
molecule pairs by using the terftm)((x) — 1) instead of(x)>. This is particularly important
in the limit casenr < 1 where fluctuations are significant because of the low copybeuraf
proteinsX.

A key point is that variance affects the time evolution ofragge and that the differential
equation for the variance involves the third-order cumulgfn Thus, equations for the cumu-
lant of a given order involve higher-order cumulants: alnciliants are coupled in an infinite
hierarchy of equations in which Egs. (1.15) are the first.SI¢tnnstructing a strategy to truncate
this hierarchy is a key step to solve the cumulant expanSeweral approximations have been
suggested [7, 134, 86]. Here we will discuss only two limgesaccording to the importance
of fluctuations.

When the synthesis rate > 1, the proteinX is in high level so that we can assume
that fluctuations described by second-order and thirdrazdesulants can be ignored. Under
this assumption, the steady state is the same as that e digtthe deterministic rate equa-
tion: (x) = /a/2. This analytical steady state predicts well the regime Vath fluctuations
(Fig 1.15). However, when approaches to unity or becomes even smaller, fluctuatians ar
dominant and the steady state is underestimated.

In the limit casea < 1, the synthesis process is so slow compared to dimerizatian t
once two protein molecules are produced, both will be dimsetirapidly. The fluctuation is
significant in this limit, as the protein copy number is erther 1. The temporal protein profile
consists of a sequence of spikes. The variance-to-meaneagials unity (Fig 1.15) which is
related to the fact that protein spikes are distributednmetaccording to a Poisson process. On
average, there are no protein molecules during a fifag then1 molecule during the same
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Figure 1.15:Comparison of numerical average and fluctuation level of stohastic dimer-
ization with theoretical predictions of the cumulant exparsion. Red stars (resp., ma-
genta circles) represent the numerical average conciemtrat) (resp., variance-to-mean ratio
VvA,./(z)) in the stochastic dimerization process. The variance tammatio is approaching
to unity for o« < 1, which indicates that the system dynamics is driven by jpngieoduction
following a Poisson process. The blue (green) curve is #dst state predicted by cumulant
expansion for the limit case whetie> 1 (resp.,o < 1). Both limits agree well with numerical
simulations.
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time. So the average of molecules is found tobe= 1/2 (Fig 1.15). The steady state of the
second-order and third-order cumulants is also easilydowM,,/ < z >~ 1, K3 = 3a/4
according to Egs. (1.15). In this limit, the steady statexectly solved and is seen to be highly
affected by fluctuations.

In the dimerization problem, as well as in any nonlinearesystequations of the cumulant
expansion at a given order involve higher-order cumularitss implies that average quantities
governed by deterministic rate equations are perturbedloetuations are taken into ac-
count, which is especially important in cell circuits. Maenerally, any finite set of cumulant
equations does not form a a closed system, and it is thereém@ssary to elaborate a strategy
to truncate the hierarchy of equations.

In this section, we discussed the important role of flucaregidue to low molecular copy
numbers in genetic networks. We presented a promising apbrdhe cumulant expansion
of the master equation, which allows us to analyze the infleaf fluctuations on dynamical
behaviors. In chapter 3, we will apply this approach to thenegle of a self-repressing gene,
showing how fluctuations can induce oscillations. In thetisextion, we will still consider the
effect of stochastic fluctuations, but more specificallyséharising in the highly regulated and
multiple-step process of transcription [165, 44, 104, 1418, 121] (or, equivalently, translation
[20)).

1.5 Stochastic aspect of the transcription

Transcription is a process where mRNA molecules are syrbésly macromolecules called
RNA polymerases (RNAPs), which copy the gene sequence cényi®dNA. In many studies,
transcription is described as a simple Poisson processamithnstant rate [184, 150]. It is
actually a very complex process [106, 192, 76, 18, 178]. Saaption can be divided into three
separate steps: initiation, elongation and terminatiod,each of them is exquisitely regulated
[59, 14, 132, 167] by transcription factors present in sioaly numbers and stochastic events.
Precise single-molecule experiments have allowed us tactaize directly the dynamics of
transcription by monitoring mRNA synthesis in real time, @opy at a time.

1.5.1 Transcriptional bursting directly observed in experiments

Golding and colleagues used MS2-GFP fusion proteins torgagstripts in living individual
cells of E. Coli when the target gene was expressed. They have directlyvalaserdividual
transcription events by measuring the copy number of mRNAstapts. They showed that
transcription occurs in an unexpectedly irregular fashaiher than at constant rate.

Fig 1.16 shows the copy number of mRNA transcripts in indialdcells as a function
of real time. it is seen that transcription is characteribggeriods of inactivity of duration
Atorr followed by periods of activity of duratiothto . During the ON periods, transcripts
are synthesized, whereas during the OFF periods, tratiscriggemains silent. The averages
of the ON and OFF durations are respectively 6 min and 37 mims phenomenon is called
transcriptional bursting and has been widely observed inynpaokaryotes [85, 20, 71], in
yeast [198, 181, 19] and in eukaryotes including mammaliab6, 155, 22, 42, 44, 176].

Numerous mechanisms have been suggested to explain tpios@l bursting [136, 85,
152, 31, 177, 164, 199, 187, 186, 62]. A commonly considedea iis that transcriptional
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Figure 1.16: Transcriptional bursting in individual cells. The mRNA transcripts tagged
by fluorescence proteins are counted in real time single cell. The experimental result
directly demonstrated that the gene is transcribed duiiogt eriods of activity of duration
Atoy interspersed by silent intervals of duratidit,r. The averages of these two periods
are (Aton) ~ 6 min and(Atorr) ~ 37 min. Therefore, the autonomous dynamics of gene
activity has a time scale comparable to that of other impon@ocesses. Figure taken from
[85].

bursting is the consequence of initiation dynamics, inipaldr, regarding access to promoter
[85]. In this hypothesis, the silent periods are the periwtiere the promoter is bound by
repressors, and the bursts correspond the periods oftastiien the promoter is free. How-
ever, studies in vitro have shown that initiation time canalsefast as a few seconds [136],
which conflicts the hypothesis. Meanwhile, as typical ggnessess easily thousands or mil-
lions of nucleotides that need to be transcribed by RNAPslamélongation process is subject
to complex regulations, people begin recently to investiglae elongation as a developmental
checkpoint. Elongation is actually not a constant forwamatpss. RNAPs read the template of
DNA in a stochastic stepwise fashion, and moreover they play some unusual dynamical
behaviors which enhance the stochasticity, such as tigtisoal pausing [126] which is one
mechanism possibly explaining the transcriptional bogsfB1, 62, 67].

1.5.2 Pausing of RNA polymerases during transcription

Unusual dynamical behaviors of RNAPs [182, 43, 163, 25, 974} saiously affect the tran-
scription dynamics. During elongation in which RNAPs movenmards along the DNA tem-
plate in stochastic single-nucleotide steps [190], theenmnt of RNAP in vivo and in vitro
is usually interrupted by an event where the RNAP is haltedratcdeotide. This behavior is
defined as transcriptional pausing [26, 118, 126, 108]. |8ingplecule assays have recently
achieved base-pair resolution for following motion of RNAd#P&l allow us to directly visualize
the RNAP pausing [57, 54, 56] (Fig 1.17). Transcriptionalgag has been widely found in
both prokaryotes and eukaryotes [10, 70, 118].

RNAP pausing occurs in a stochastic fashion and is spontahemyersible, after which
the RNAP continues to move forwards. The majority of pausessaort with an average
duration of~ 1 s. They are referred to as "ubiquitous” or "elemental” shouspa [56, 107,
119, 55, 57] and must be distinguished from the so-calletbpged backtracking pauses [55,
57, 4]. The latter are rare (represent less thgn— 10% of all pauses) and their durations
are usually over0 s. In fact, prolonged pauses are involved in the backtrackmocess [197,
171, 78, 48, 113, 49, 15, 50, 192] in which RNAPs move backwardkmay proofread the
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Figure 1.17:RNAP pausing observed in single-molecule transcription orsynthetic tem-
plate. Advanced single-cell experiments allow people to mortherdynamics of single RNAP
molecule in real time. Here seven representative recorgesifions of single RNAP molecule
along thex 3 kb opsrepeat templates as a function of time are shown. It is fobatlih most
records, RNAP is halted at some sites for a small or large atafuime. Figure taken from

[57].
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Figure 1.18:Transcription and TASEP model. TASEP model is used to describe the tran-
scription process. (A) In transcription, RNAPs cannot ayerlvith each other and move for-
wards along DNA template in stochastic single-nucleottdps (B) In the TASEP model, each
site can only accommodate at most one particle which hop deiyna constant probability
related to the elongation rate only if the next site is notupied.

sequences of copied mRNA [63]. In addition, it is observed shart pauses depend little on
template sequences. They are not affected by mechanicainguforces exerted by trailing
RNAPs, so that the pause frequency and duration are the saenef@ava large density of
RNAPs. In contrast, prolonged backtracking pauses exhgirosmg sequence dependence, and
a RNAP in prolonged pause can be pushed forwards by a trailinfgARBE6, 171, 65].

Recent investigations show that transcriptional pausimyimportant functional roles
in coordination and accuracy of gene expression [51, 4511, Btuitively, transcriptional
pausing leads to traffic jams of RNAPs. Not only the averagestmaption rate is seriously
reduced, but also the temporal dynamics of transcripti@masatically affected. When small
groups of RNAPs induced by traffic jams arrive at the termorasite, they produce a group of
MRNA transcripts, which can correspond to a burst of trapson we have mentioned before.

As the transcription is a complex process, the questionustbadescribe mathematically
the transcriptional pausing so as to study its influencehiBoaim, we first introduce a classical
system in out-of-equilibrium statistical physics, whicashbeen proposed to model transcrip-
tion.

1.5.3 TASEP (Totally Asymmetric Simple Exclusion Processes) as the mdde
of transcription

During transcription, there are two main features in RNAPaigital behavior. They move
forwards along DNA template in a stochastic fashion, ang ta& not overlap with each other
so that they are constrained by the "excluded volume constraSeveral studies have sug-
gested to model transcription [62, 164, 31, 109] (as weltassiation [23, 17, 161, 172, 24])
as a driven lattice gas in one dimension (Fig 1.18), knowrhasTotally Asymmetric Simple
Exclusion Process in out-of-equilibrium statistical plegg TASEP for short) [115, 112, 29, 28,
34, 30, 117, 27, 153].
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In this TASEP model, RNAPs are modeled as particles movingh direction along a
discrete lattice comprisingy sites. For the sake of simplicity, we will not take into acabu
RNAP footprint, which does not qualitatively change the hssuParticles hop down with a
constant probability associated with elongation ratey ainthe next site is not occupied by
another particle, so that each site can accommodate at megtasticle (the excluded volume
constraint is implemented). The dynamics of TASEP modehlyigepends on the boundary
conditions. TASEP models with open boundary condition$,[28ere a new particle can enter
the lattice with ratev representing the transcription initiation and particles also exit from the
end of lattice with rates for the transcription termination, describe naturally ttenscription
process. The analysis of TASEP with open boundary condisioalatively involved and has
been an achievement of statistical physics.

For mathematical simplicity, transcription can also be sled as a TASEP model with pe-
riodic boundary conditions, where the lattice is a ring awhich particles move indefinitely
[28, 172]. The number of particles is thus constant. Aldasitds are equivalent and the density
is the same in each site by symmetry.

The central quantity of interest in the TASEP model is thdigiar current, which is the
average number of particles going through one site periamt tThis current may display large
variations depending on the values of parameters becauke pbssible formation of “traffic
jams” blocking the flow across the lattice and thereby drazaby lowering the current. From
a statistical point of view, the particle current is a repraative of all transport phenomena
between two bodies which are not in thermal equilibrium. Asny transport phenomenon,
there is a conservation law relating the variation of dgreibne site to the difference between
the incoming and outgoing currents. When steady state hasrbaehed, densities at all sites
are constant, which implies that the current is the samesac¢he entire lattice.

In the TASEP model with periodic boundary condition, thereat, which measures the
mean number of particles advancing from a given site durimig ime and represents the
transcription rate, is given by:

J=p(1-p) (1.16)

wherep is the average density of RNAPs at each site. Remarkably tipisegsgion can
be obtained from a simple mean-field approach. Formula Jlegpresses the fact that the
probability of a particle advancing from one site dependth lmm the presence of a particle
on the site (with probability) and on the absence of particle on the next site (with prdibabi
1—p). Note that the transcription rate is a symmetric functibdemsity. Low particle densities
lead to small transcription rate, which is not surprisin@r Righ densities of particles, only
particles with an empty site in front of them can move forvgaathd contribute to the current,
so that the transcription rate is reduced as well. The cuneaches its maximum value of
Jmax = 1/4 when the ring system is half occupied.

Although TASEP with periodic condition, where particlesvel on a ring, has little resem-
blance with the transcription process, it is sufficientipgie to allow analytical studies. Some
analytical results can be derived and provide us cruciagjims, such as the current-density
relation, into the transcription dynamics influenced by RNAP

Here we have discussed a typical feature of transcriptiorARRIdausing, as a possible
explanation for transcriptional bursting. The TASEP mo@eal one classical system in out-
equilibrium statistical physics, has then be presented a®a@el of transcription. We will
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analyze it further in chapter 4 to investigate dynamicat&# of RNAP pausing on transcrip-
tion.

1.6 Conclusion and aims of this thesis

In this chapter, we first introduced the intriguing oscolat behaviors displayed in many bi-
ological systems, which motivated us to begin this thesiskwda'hen we discussed briefly
elemental biochemical processes occurring in the cell avd tmajor functional molecules,
such as DNA, mRNA and proteins, interact with each other vaglemical reactions to form
genetic networks which can display oscillations. Next, Wweveed how to describe genetic
networks by deterministic modeling and discussed thredargedients for oscillations: neg-
ative feedback, delay and nonlinear degradation. Stoichfsttuations due to low molecular
copy numbers are then considered as well as their influengeretic networks. An approach
combining the master equation and a cumulant expansion pvesented as a method to de-
scribe fluctuations and to explore their influence on odoijabehavior. Finally we focused
on the stochastic properties of transcription which hatraeted much interest during the past
decade. In particular, transcriptional pausing was intoed. It may highly affect the dynamics
of transcription and contributes to transcriptional bingst

This thesis mainly focuses on dynamical effects of trapsiom. As the title suggests, it
consists of three different studies devoted to (i) the coratodn of various and multiple time
delays in a self-repressing gene circuit and its influenocessaillations, (ii) dynamical effects
of stochastic fluctuation on the oscillation and (iii) thendynical influences of RNAP pausing
on transcriptional dynamics.

In the first part of this work, we study theoretically the condtion of various delays in a
small gene circuit as well as the dynamical influence of difé types of delays in the context
of a deterministic modeling of genetic networks. Time dslénave been highlighted as an
important ingredient for sustained oscillations. Here wesider in particular time delays
arising from transcription. Transcription is usually colesed as an instantaneous process
[137, 100, 127]. However, we have presented in Section k¥perimental results showing
that gene activity has an autonomous dynamics with a timle scemparable to that of other
important processes. Thus we will recall in Section 2.1.1cgl@hproposed by Moraret al.
[138] taking into account a transcriptional dynamics ofgaativity with a finite gene response
time. In this model, it can be analytically shown that thera time scale of the gene response
at which the system is most destabilized. Also, the trad&etiveen the delay and saturation
of degradation can be studied precisely. However, thergaareus sources of delay in genetic
networks, such as translation, molecule transport, etaeasientioned in Section 1.3.2.

A natural question is whether the results of [138] remaimvahen other sources of delay
are taken into account. In Chapter 2, we will study extensadrtee model of [138] where a
second delay derived from protein transport is added. Aeraihestion is raised: how do delays
from two different sources interact, does their combindth@nce only depend on their sum
or not? Is it correct to hypothesize that the more delaysthes, the more easily oscillations
are obtained is correct? In Section 1.3.2, we had introdiaedtypes of delay modeling:
explicit delay or reaction delay in which the delay is modedes reaction step. The following
guestion is whether the two different types of delay exertsdame influence on the appearance
of oscillations. If no, how do they differ? Under which cotiolins do they play the same role
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in dynamics? We will answer all these questions in Chapter@diying analytical expression
of the oscillation threshold in models with explicit or réaa delays.

The second part of this thesis work is motivated by the olagenv that the dynamical be-
haviors predicted by deterministic models, such as stetadly levels and regions of oscillation
in parameter space, can be dramatically modified by flucinstiln order to elucidate the in-
fluence of fluctuations on the dynamics of genetic networlesyse the minimal genetic circuit
comprising one self-repressing gene with linear degradaif mRNA and protein. In this re-
duced system, sources of fluctuations are not only the low nambers of MRNA and protein
molecules, but also the dynamics of gene activity which &rabterized by transitions between
"ON" and "OFF" states. The question is then whether the curhebgmansion can be applied
to describe the binary gene states. If so, how do fluctuatbasge the steady state predicted
by deterministic model? Moreover, it is known that thereagdeterministic oscillations in this
small genetic circuit when degradation mechanisms araiifis8]. Are fluctuations then able
to induce oscillations ? Another question raised is how tratterize stochastic oscillation in
numerical simulations to verify our analytical results] thlese questions will be discussed in
Chapter 3.

The third part studies dynamical effects of RNAP pausing andcription. We introduced
In Section 1.5.3 the classical TASEP model which is used tdehthe transcription process,
as well as pausing which increases the stochasticity os¢rgstion in Section 1.5.2. Thus
the question is how to incorporate pausing into the TASEResysand how to analyze its
dynamical effects. The TASEP model is usually studied utidemean-field approximation
[23, 17, 161]. Does the mean-field approximation always wortke model with pausing ? If
not, how can we study this model ? With pausing, what is thee&ffpehavior of transcription
and how does pausing drive the transcription rate ? We witlysthese questions in Chapter 4.
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Chapter 2

Oscillation arising from combination of
various and multiple time delays with
nonlinearity in a self-repressing gene

Many studies have highlighted the importance of oscillain various biological systems,
such as circadian rhythms [53, 75, 160, 40, 3, 32], cell timigycle [129], imnmune response
[66], cell growth/death [93] and embryo development [2, 60je physiological role of biolog-
ical oscillations may stem from the fact that they encodeamoiormation than steady states,
allowing them to contribute efficiently to robust biologicagulations of cellular functions at
different levels. Oscillations also allow cells to respdiaibly to variations of their environ-
ments [21, 148]. In order to meet the growing need of undedstg the mechanisms under-
lying these oscillations, intensive work has been carrig#d b74, 88, 184, 137, 100, 127, 135,
123, 11, 180, 133, 175, 80, 145]. It was found that negatigdlfack of molecular signals is a
necessary ingredient to support sustained oscillatis®alied in genetic networks. Secondly,
these molecular signals should be sufficiently delayed abthie steady state of genetic net-
works is destabilized. Additionally, highly nonlinear reolle degradation mechanisms may
also trigger oscillations. The subtle relation betweeagahd nonlinear degradation in the de-
sign principle of biological oscillators has been often tmred but is not yet fully understood
[135].

There are in fact various sources of time delay, in partrcal&ginating in transcription
[85, 155, 22], translation, phosphorylation, molecule$ort, etc. The combination of these
various and multiple time delays may be key to explain theistiiess of experimentally ob-
served oscillations [175], however how these delays ioteemains unclear. In order to ad-
dress this question, mathematical modeling of delays isired. There are actually two types
of delay used in modeling. In some studies, the delay appeas explicit manner, as the
time-delayed value of some dynamical variables [137, 184],Jand the underlying processes
are not specified. We shall thereafter refer to such a delay dsxplicit delay". In other stud-
ies, the delay originates in a reaction step [123, 80], andhvadl call such a delay a "reaction
delay". Although explicit and reaction delays are commordgdito model biological oscilla-
tions, the similarities and differences of these two tydetetay modeling have not yet studied
systematically.

The purpose of chapter 2 is to investigate how the combinaifovarious and multiple
time delays affects oscillations and to compare the inflasié explicit and reaction delays on
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Figure 2.1:Reaction diagram of the self-regulating gene circuit Transcription and trans-
lation are involved. The autonomous dynamics of gene iscqimated by the protein-DNA
binding-unbinding. Transcription rate of bound gene byteire is perfectly repressed. Arbi-
trary degradation functions are chosen for mRNA and protein.

oscillatory behavior of genetic networks. To this aim, wasider the minimal genetic network
comprising a self-repressing gene [12, 127, 100, 137], wvigca very common element of
biological networks. For example, B Coli cells,40% of genes for transcription factors are
repressed by their own protein products [162]. This chapterganized as follows: in the first
section, we review a mathematical model for the self-regingsgene that takes into account the
autonomous dynamics of gene activity [138]. Then we extbatmodel to combine the gene
response time with transport delays modeled as reacti@ysl@r as explicit delays. These
two cases will be discussed respectively in the second araiglctions. In the last section,
we discuss similarities and differences in the dynamichbb®rs induced by the two types of
delay.

2.1 Description of time delay in the model of a self-repressing
gene with transcription memory

2.1.1 Basic model accounting for the slow dynamics of gene activity

We first review the model proposed by Moraantal. [138]. It describes the minimal genetic
circuit consisting of a self-repressing gene (Fig 2.1), @kes into account the fact that a slow
transcriptional dynamics can affect the system behaviasid®s transcriptional regulation, the
synthesis and degradation of proteins and messager RNAlseabasic biochemical processes
of the model. For the sake of simplicity, we only consider ¢age where transcription rate is
reduced by the binding of a protein monomer.

Except for the degradation mechanisms which will be leftpeegfied, we apply the law
of mass action according to which the kinetic rate is prapoel to the number of reacting
molecules. The kinetic equations of the genetic circuitespnted in Fig 2.1 are then the
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following:
dG
ﬁ = 6’0(1 — G) — agPG (21a)
dP dG
dM

G, P and M represent respectively gene activity, protein and RNA cagyloers. Eq. (2.1a)
describes the kinetics of protein-DNA binding at ratgand unbinding at raté,. The first
term of Eq. (2.1b) corresponds to protein-DNA binding andinding, the second and third
terms describe translation and protein degradation. Efic)Y2lescribes the total transcription
rate o + A\oG (as the unbound gene is expressed-awith the transcription raté, + 1
and the bound gene is— G with the transcription ratg,) and RNA degradation. Eq. (2.1a)
can also be viewed as a minimal description of the dynamicanoéffective gene activity
G slowly relaxing towards an equilibrium value given by thengeegulation functiorG =
1/(1 + P/Py), with Py = 6,/ the half-expression threshold. Such a model can be viewed
as the leading approximation of a mechanistic model of tnépison including all processes
concurring to gene expression when there is a dominantitigngtep. The negative feedback
in this system arises from the fact that the activityor the transcription rate is reduced when
the DNA is bound by a protein. In order to study how oscillaa@an be induced by tuning
protein and RNA degradation, we consider arbitrary degraddtinctionsH (M) and F'(P),
without specifying detailed mechanisms. These degradéaitioctions are assumed to have unit
derivative at zero, so that a deviation of their slope fromilLaharacterize the nonlinearity in
degradation.

Note that a common interpretation of the circuit in Fig 2.1hiat the gene has two states,
bound and unbound. Our deterministic model is valid whemikan response time of gene is
small compared to the oscillation period, so that there aaynbinding/unbinding events by
cycle. G can then be viewed as a temporal average of gene activity.

By renormalizing time, variables and parameters (more ldeteihe Appendix A.1), Eq. (2.1)
can be rewritten in dimensionless form :

dg

o = 01 —g(l+p) (2.2a)
B = 0y +p) +5m— 7)) (2.20)
W = wtag—him) (2.20)

Egs. (2.2) have a single steady staje p.,m.). Note that the steady state depends only on
parameters\ andy as well as on functiong andh, whereas parametefsa, o control time
scales. Therefore, tuning gene response time does noteliamgteady state. The behavior of
the degradation in the neighborhood of the steady statesizithed by the slopes:
d dh
s= ¥ dh(m) 2.3)
dp P=DP=x dm M=MM %
In the case of linear degradation, we have= s = 1. Small or even negative values

of the slopess andu generally denote strongly nonlinear degradation mechajiscluding
saturation.
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To assess whether system (2.2) can display sustainedatisti, we have searched for
parameter values where the fixed point loses its stability peeriodic solution via the Hopf
bifurcation. For the sake of simplicity, we assume hereqmrfepression when the gene is
bound by a proteiny( = 0) and a large threshold?, > 1) leading toa ~ 0. Under this
approximation, the Routh-Hurwitz stability criterion [8Bldicates that the Hopf bifurcation

occurs when:
€2 )2

H(E, T) =% ( T+ (X - %)T + 1) <0 (2.4)

wheree = 25@ € [0,1] indicates whether the protein degradation réteand the RNA
degradation rate are balanced. When these two rates are egual]. ¢ becomes zero as one
or the other rate vanisheX. = ¢ s + u represents the sum of degradation raies: g2v/d)/6
characterizes the time scale with which gene responds ta@esuvariation in protein copy
number.

The criterion 2.4 allows one to identify key ingredients éscillations and to assess their
influence quantitatively. In particular it shows how delalgaracterized by" and nonlinear
degradation, characterized byande, combine to generate oscillations. When the delay is
small, the degradation needs to be strongly saturaieée (0). When degradation is closer to a
linear mechanism, then the delay needs to be larger. Inéhises a saturated degradation can
be viewed as equivalent to a time delay.

Eqg. 2.4 defines a series of curvEs(T') specifying the degradation rate at oscillation
threshold as a function of response tiffi@nd balance index For a giverx, oscillations are
found fory < X.(7'). For fixedT', ¥.(T') decreases monotonously withFig 2.2 shows the
limit curves> (7') and>,(7") which are particularly important to understand the biftiora
diagram.

1105

’I‘c 'I:)pt T

Figure 2.2:Bifurcation diagram of the model (2.2) in the (2, T) plane. The system with
balance index oscillates fory¥ < X.(7"). The limit curvesy;(7") andX(7") are shown.
Black dots correspond to oscillating parameter sets of (Zith)specific degradation functions.
T. = 1 denotes the time scale beyond which transcriptional dyoswénnot be neglected.
Figure taken from [138].

Two regions can be distinguished. Fbr< 1, the instability threshold.(7") increases
rapidly with 7" and its dependence ens negligible. In the region of’ > 1, ¥.(7T') reaches its
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maximum value and then decreases for larger valu@seicept in the case= 0.

This analysis indicates that there is a resonance-likegghenon in the dynamics of a self-
repressing gene with slow transcription response: thismahgenetic circuit bifurcates most
easily to periodic behavior, or more generally is most iblstaat a finite value of the gene
relaxation time given by, = 2V/2.

However, there are other various sources of delay besidgegahe response time, such as
those arising in translation, molecule transport, etc. Aurs question is whether the con-
clusions of Ref. [138] remain valid when other various delaysstaken into account. Another
guestion is how to describle mathematically these delaythd next section, we give examples
of various sources of delay and introduce two types of delageting which are commonly
used in the literature: reaction delays or explicit delays.

2.1.2 Reaction and explicit delays

The work of Morantet al. [138] analytically demonstrates that delay is a key ingeatlfor
oscillatory behavior. However, besides delays due to slawscriptional response, various
sources of delay are found in biological systems, even i suminimal genetic network
comprising a self-repressing gene. Translation takes amam amount of time. There are
many intermediate steps giving rise to delays, such as milaletransport of mRNAs and
proteins between nucleus and cytoplasm, phosphorylagitan, (Fig 2.3). These delays are
probably comparable to or even larger than the gene respiomse

This raises thus several questions: do delays from othecesyromote or weaken oscil-
lations induced by the slow gene activity? Can these delayobwined into a global delay
that promotes oscillatory behavior? If yes, how ? A furtheesfion is whether delays from
different sources play similar roles or not.

To answer these question, a mathematical modeling of delagquired. However, two
different strategies of modeling delays exist in the litera: explicit and reaction delays, as
mentioned in Section 1.3.2. Explicit delays allow us to igndetails of underlying mecha-
nisms, but bring up delayed differential equations (DDE8)ich are difficult to solve analyt-
ically, while reaction delays allow us to specify procestade giving birth to delay and are
easily analyzed. When a delay has to be introduced in a madslarchers most often seem to
choose between those two types of delay according to pdrgiarences, without discussing
their different influence on oscillatory behavior. Thus,way ask whether the influence of one
type of delay is stronger than that of the other. If it is sojalilfone does promote oscillations
more easily ? What are the conditions under which they wily glianilar roles for triggering
oscillations ?

2.1.3 Extended models incorporating molecular transport delays

In order to answer these questions, we extend the selfsgpgegene model studied by Morant
et al. [138] in which there is already a delay modeled as reactitaydé¢he gene response time.
We will combine this delay with an additional delay, hereundd by protein transport between
nucleus and cytoplasm. Such kind of delay has been for exaoapisidered in Ref. [123].

In this extended models, transport delay will be modeled asaation delay and as an
explicit delay in turn. For the sake of simplicity, we stilsume perfect repression £ 0) and
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Figure 2.3:Various sources of delay Transcription and translation take a minimum amount
of time. Many intermediate steps lead to delays, such agamspgort of mMRNA and protein
between nucleus and cytoplasm.

a large half-repression threshold £ 0). Numerical simulations indicate that the final results
we will obtain are relevant even when these conditions atenab.

We first assume that protein transport from cytoplasm toeuscls irreversible and model
it as a reaction delay. Then the governing kinetic equatiosmensionless form are:

dg

0= 0 (- g(+p) (252)

dm

dpe _ Pe

i om . (2.5¢)

d’ﬂ c

= =5 fulp) (2.50)
Tp

whereg, m, p., p,, are respectively gene activity, RNA copy number, proteinycopmbers in
cytoplasm and nucleus. We assume single-protein regal&iosimplicity, with DNA being
bound by nuclear protein (2.5&)(m) (f.(p»)) is an arbitrary function describing the kinetics
of RNA degradation (protein degradation in the nucleus) witian be linear or nonlinean
andJ characterize the maximum transcription rate and the prategradation rate] denotes
the rapidity of gene response to a sudden variation of pratgyy number. Since Egs. (2.5) are
extended from Eqgs. (2.2) by adding the transport of proteiressame degradation parameter
¢ is kept in (2.5¢) and (2.5d) as in the Eq. (2.2b). The térmepresents the protein transport
from cytoplasm to nucleus, with, the protein transport time. Note that such a reaction delay
could also describes delays arising from intermediatessiépeveral biological processes, such
as protein folding, phosphorylation, etc. Here we suppbaethe protein degradation occurs
only in the nucleus so that the steady state of system doedepeind on the transport delay,
which much simplifies the following computation.

Protein transport can be irreversible, if it results fromaative process, or reversible if it
results from mere diffusion [123]. To include reverse tgors, kinetic equations are modified

46

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

as follows:

dg

% = 0 (1—g(1+p)) (2.6a)
dm

i _ 2.

= Ag — h(m) (2.6b)
e 5y Lo P (2.6¢)
dt T, Ty

dpn De Pn
Zme e I 2.
TR F (2.60)

whereg, m, p., p, are respectively gene activity, RNA copy number, proteinycopmber in
the cytoplasm and in the nucleus; the teﬂjfnepresents the protein transport from cytoplasm
to nucleus; similarly, the terr is the reverse transport of protein from nucleus to cytoplas
andr, characterizes the reverse delay.

This delay due to protein transport can also modeled asaiixgélays. Explicit delays in
the form ofz(¢ — 7) wherez(t) is a dynamical variable andis a fixed delay are widely used
to describe the dynamics of genetic networks. They are gépeised to take into account bio-
logical processes which take a minimum amount of time, sgdhaascription and translation,
etc. It is clearly also admissible to use such terms to des@idelay induced by molecular
transport. In this case, the kinetic equations become:

Y = g+ plt—m) (272)
Cii—? = Ag—h(m) (2.7b)
D~ mit—m) ~ ) (2.70)

whered is still the parameter characterizing gene response timé&;@and , represent re-
spectively the protein transport time from cytoplasm tolaus and RNA transport time from
nucleus to cytoplasm.

In the next section, we will analyze the above extended nsod#h reaction and explicit
delays taking into account molecular transport. We willttryincover the principles governing
the combination of these delays with the gene response tghéceunderstand the differences
in the influences of a reaction delay and of an explicit delayoscillatory dynamics. Note
that the model extended with a reaction transport delay haswre variable than the original
model (4 variables in Egs. 2.5 vs. 3 variable in model 2.1¢dntrast with this, the model with
the explicit transport delay has the same dimension as tgamakone, however the ordinary
differential equations (ODEs) become delay differentgia&tions (DDES).

2.2 Analysis of the model with a reaction delay

2.2.1 Analytical criterion of oscillations

First of all, we study the model 2.5 with a reaction delay diéstg the irreversible transport
of protein from cytoplasm to nucleus. Egs. (2.5) have a sistgady statéy., m.., p,.) which
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does not depend on the parametgandd characterizing respectively the time scale of protein
transport and gene response. In other words, vargjramdé does not change the fixed point
(9«, M+, Pns ), Which is an important property that it greatly facilitatagr analysis. The behav-
ior of the degradation mechanisms in the neighborhood ostbady state is still denoted by
the slopes:

s = df (pn) u= M (2.8)

)
dpn Pn=DPn=x dm M=%

As the steady state does not depend onrthandd, the slopess and« does not depend
on them either. In the case where degradation functionsaiepr and RNA are linear, we
haves = 1,u = 1. Values ofs andu differing from 1 generally denote strongly nonlinear
degradation mechanisms, including saturation.

To assess whether the system (2.5) can display sustainéitasts, we search for pa-
rameter values where the fixed point losses its stability per@odic solution via a Hopf bi-
furcation. The analytical Routh-Hurwitz stability criteri [89] indicates the Hopf bifurcation
occurs when:

H=(6s+u)(ry+7) (6575 + 1)(ury +1)(6 57 + 1) (ur, + 1) (2.9)

_935/\[(7—9 +7) +(0s+ U)TyTp]z <0 .
wherer, = ¢./6 denotes the gene response time. When the criterion (2.93esa=ro to
become negative, sustained oscillations are observedeltinhit of 7, = 0, we recover the
criterion given by Morangt al. [138]. Note that the effect of the transport delay is exactly
the same as that of gene response time, as shows the symmaetgebr, andr, in the cri-
terion (2.9). Therefore, we can conclude that these twaigadelays from different sources
play completely identical roles for the appearance of t&wins. This is a remarkable result
because it allows us to extend our results for the self-s=omg gene with finite response time
to the case of a self-repressing gene with finite transporg tiwhich has been much more
studied.

Then, how do these two reaction delays combine ? To ansvegrthirepresent the criterion
as a function of the sum of delays= 7, + 7, and of their product ? = 7, 7, which are both
symmetric functions. The degradation rate of mMRNA and pnaieiandw are also expressed
in their sumo = § s + v and producty = ¢ su (see Section 2.1.1).

o V2TT? =0 —2
’}-[:a—l—(02—giéA)T#—a’yTz—1—072(7 T ,20 77—93(5)\)<0 (2.10)
oT*+T
We then renormalize criterion (2.10) as follows:
2y202 T T
UC:g*\/(;/\,a:UcE,v:E UC,T:—,T2=n (2.11)
4 o, 20,

wheren = 2v/72/7 € [0,1] is a balance indicator that quantifies the asymmetry of the tw
delays. For example; = 1 implies that these two delays are equal gne- 0 when one of
delay is zerog = 2,/7/0 € [0, 1] is another balance indicator introduced before, whichsgplay
a similar role ag) for the degradation rates.
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The oscillation criterion then becomes:

DI 1 o AT ? — 648 — 322527 T
T+(2—§)T+1+Tn( 61 T + 1) _Z)<0
(2.12)
whereT is the sum of the two reaction delays derived from differantdgical mechanisms
(protein transport delay and gene response time)aisdhe sum of degradation rates.

When only one of the delays is present and the other is zero,weehaven = 0. In
this case, the criterion reduces to the first 3 terms in (2at@the same as the criterion (2.4),
as expected. In the general case where both delays are primsse terms quantify how the
total sum of the two reaction delays influences the appearahsustained oscillations. The
last term in criterion (2.10), however, demonstrates thesé¢ delays can interact together in a
non-trivial manner. Thus the influence of two coexistingctem delays on the appearance of
oscillations cannot be deduced simply from their sum. Itipalar, their interaction can either
promote or reduce oscillations depending on the sign ofrttezaction term. In the limit case
where one delay is much smaller than the other, the intewratérm is neglectful compared to
the first 3 terms so that it is the sum of delays that influenceslations. However, in general
cases, the term of delay interaction may become signifiedmnth has to be taken into account.

In conclusion, we found that the analytical criterion (39.4&t only depends on the two key
parameters which are the sum of deldyand the sum of degradation ratésut also on how
the delays and degradation rates are balanced, which isiie@dnespectively by the indicators
e andn. In the limit case where one of reaction delays is zere:-(0), the last term of criterion
(2.12) becomes zero and the oscillation criterion 2.4 isvered, regardless of whether the de-
lay originates from gene response or transport. In the génase, the dependence of criterion
(2.12) onn demontrates that the dynamics is not only influenced by the cudelaysT” but
also on their relative importances. In particular, notd thahe case where degradation is sat-
urated € = 0), the delay interaction term is always negative, which rsehat delay interation
then always promotes oscillations.

In order to understand more closely how oscillations arecaédid by the combination of two
reaction delays, we now study the bifurcation diagram wittrerdetail, and in particular the
behavior of oscillation thresholds in different limitingses.

He (X, T) =

2.2.2 Bifurcation diagrams and interaction of reaction delays

The criterion (2.12) defines a series of curdes,(7") specifying the degradation rate at
oscillation threshold as a function of delay sdiand balance indicatoksandr. For fixede
andn), oscillations can be found fat < ¥, (7"). Fig 2.4A shows four curves corresponding
to four limit cases of criterion (2.12), where the two ind@a ¢ andn take their maximal
and minimal value (respectivelyand0). These limiting curves are particularly important to
understand the bifurcation diagrams. To provide numesagbort for our analysis, we have
searched for the parameter space of equations (2.5) fdtabsy behavior in the case where
a, i # 0 and where protein degradation and RNA degradation obeycteply allosteric and
Michaelis-Menten enzymatic kinetics, as described by:

_ pla+p/k) ) X
0 = S aprm + e M T @19
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Figure 2.4:Bifurcation digrams of the model with a reaction transport delay and finite

gene response time(A) Oscillation threshold specifying the total degradatrate’ as a func-

tion of sum of the two reaction delaysfor limiting values of the indicators and». The two

blue curves correspond to the limit cases in which one ofydslaero ¢ = 0) as in [138]; the

two red curves correspond to the limiting cases where thelelays are equal. Black dots indi-
cate parameter sets giving rise to oscillations, With (0.001, 1000), cv, 1 € (0.001,10), A, 6 €
(0.1,1000),7, € (0.001,1000), assuming degradation mechanisms described by equation
(2.13) witha, x, x € (0.1,100). (B) lllustration of oscillatory behavior observed in model
(2.5) for the parameter set:= 0.1, A =50, 6 =1, 7, = 5, a = 0.01, &, x = 10.

Parameter sets giving rise to sustained oscillations avenstas black dots in Fig 2.4A.
Note that numerical simulations agree very well with ourlgin@al criterion even though they
do not assume perfect repressian=£ 0) or a large half-repression threshotd < 0). Indeed,
all dots are below thé&,(7") and only a few of them, which correspond to parameter sets
where one degradation rate is small are found abavér).

The curves; o andX, correspond to the cases where there is just one delay (gitner
response time or protein transport) and are the same asdiszsessed by Morardt al. [138]
for the self-repressing gene with finite response time. teoto illustrate effects of combi-
nation of two reaction delays, we first compare the cutvggand}; ;, in which degradation
rates are equak (= 1). In the first curve there is a single delay- 0). In the second one, the
total time delayl" is divided into two identical delays corresponding to twiedent biological
steps { = 1). WhenT is small, these two curves are superimposed, which impglestis the
sum of delays that drives the system dynamics. However, Whieecomes sufficiently larger,
these curves separate and the one with two identical dedagfsvays above the other, which
means that oscillations can be achieved at higher degoadettes. Thus, delays distributed
in intermediate steps of a genetic loop promote oscillatimore easily than in a single step,
which contributes to the robustness of oscillations. Initalt the resonance-like effect de-
scribed by Morangt al. [138] is preserved: there is always one gene response tinvehich
the system is most easily destabilized.

Secondly, we compare the curveg, andX ;, for which either protein or mRNA degra-
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dation is saturated: (= 0), in which we observe a notable phenomenon. It is found that t
oscillation threshold indicated by, ; with two identical reaction delays can become remark-
ably higher than in the single delay case. For practical gsgp, it is almost as if oscillations
can always be obtained for a sufficient large delay, givetittieamaximum of the curve is very
high.

In the above discussion, we have analyzed the model withcieeadelay describing uni-
directional protein transport from cytoplasm to nucleuleveas transport can be reversible if
it results from ordinary diffusion. We consider the lattase in the next section.

2.2.3 Dynamical effect of reversible transport delay

Here, we analyze model (2.6) to discuss the dynamical effiedtlays resulting from bidirec-
tional transport of proteins between cytoplasm and nucl@ine steady state)(, m., p,.) of
Egs. (2.6) does not depend 6nr7, or 7. which characterize the time scales of delays. Thus,
tuning gene response time or the two transport delays daeshange the steady state, and
therefore not the degradation rates either. We introdueetlantity,, = 7,/7,. which is the
ratio between the transport delay from cytoplasm to nucdeusthe one from nucleus to cyto-
plasm.

To assess how the backward delayinfluences the appearance of sustained oscillation,
we use again the same strategy of searching for parametersvailhere the fixed point loses
stability via a Hopf bifurcation. After a suitable paranret®rmalization, we can obtain an
analytical oscillation criterior¥{., (3,7, 1), which is very complicated so that we will not
reproduce it here. This criterion reduces to (2.12) whemthe parameter verifiesy = 0.
The curves.. (T, i) giving the oscillation threshold in the particular case vetgene response
time is equal to protein transport delay from cytoplasm tolews are shown in Fig 2.5 for
different values of parameter

When the parameter is increased, the oscillation region in parameter spaceogres-
sively reduced, requiring smaller and smaller degradatates. This implies that adding a
backward transport delay obstructs sustained oscillatidiote thaf: > 1 indicates that the
backward transport is more rapid than the protein trandpami cytoplasm to nucleus, in this
case, the backward transport decreases coupling betweenagtvity and protein and stabi-
lizes the system.

In this section, we have investigated the dynamical infleesiccombining two reaction
delays on the oscillatory behavior of a minimal genetic meky Remarkably, an analytical
criterion was found, which allowed us to show that reactielags interact in a non-trivial way
so that how reaction delays are distributed can affect tinaitycs. In the next section, we will
discuss the case where transport is modeled using expdieiysl

2.3 Analytical oscillation criterion of the model with explicit
delay

In model (2.7), there are two explicit transport delays:denotes the protein transport from
cytoplasm to nucleust; is the RNA transport form nucleus to cytoplasm. As with reacti

delays, we first find the steady statg,(n.,p.), which is the same as for the model (2.2)
without transport delays. We also find that the steady sta¢s dot depend on the parameters
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Figure 2.5:Influence of the reverse transport delay (A)Oscillation threshold&, ; () for
different values of reverse transport delay in the case avaeleast one degradation is saturated
and where gene response timg) @nd the transport delay of protein from cytoplasm to nugleu
(7,) are equaly = 0 means that transport is irreversible. (B)Oscillation thoggs>, ; () for
different values of reverse transport delay in the case evtves degradation rates are equal and
where gene response timg)and the transport delay of protein from cytoplasm to nuelg)

are also equal.

71 and 7, which characterize the time scale of transport delays. &gron rates of proteins
and RNAs are still defined as the slopes of degradation fumatithe neighborhood of steady
state, and they are independent of transport delays as well.

To assess whether the model (2.7) can display sustainellatsos, we apply also the
linear stability analysis in the neighborhood of the stestdye by writing the Jacobian matrix
[73, 116]. The characteristic equation for eigenvaluesioled is the following:

=0

(2.14)
where¢ denotes the eigenvalue. If it is positive, the steady statable; otherwise, the

steady state is unstable and sustained oscillations aexv@us It appears in Eq. (2.14) that

explicit delaysm; andr, only influence the dynamics through their suin+ 7, unlike with
reaction delays.

1+g*7'g(53+u)€2+53+u+g*rg53uf+5su+5>\gf exp (— (11 + 12)&)

GxTg GxTg 9«Tg

&+

Now we further analyze Eq. (2.14). We search for values ofdted delayr, = 7, + =, for
which Eq. (2.14) has a pair of conjugate pure imaginary robierefore, we assunge= +iw
(w > 0) as roots of Eq. (2.14). By separating the real and imaginaryspwe obtain the
following equations:
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Figure 2.6:lllustration of oscillations of model (2.7). Numerical simulation is carried out with
parameterg = 0.1, A =50, 6 = 1, 7, = 5, a = 0.01, x, x = 10 and specific degradation of
MRNA and proteins described by Egs. (2.13).

(14 gu7g(d 5+ u))w® —dsu

) = 2.15

cos (w Te) 7200 ( a)
_ 3

sin(wr,) = GxTgw® + (9 Zz—gz + 4Ty 0 Su)w (2.15b)

wherer, is the sum of explicit delays;, = g./6 characterizes the time scale of gene response;
0 s andu are respectively the protein and RNA degradation rates. R2dE5) provide relations
between the parameters at which the system losses thatgtaiaila Hopf bifurcation and the
frequency of periodic solutiow (Fig 2.6). The latter may be in principle eliminated from the
equations to yield the equation of an hypersurface in pai@mspace.

For the sake of simplicity, we renormalize parameters ds\isl:

222 2 Te T
c=084+uyYy=08U,0.= g VO, 0 =05, 7= € 1 UC, Te=—, 17,= 2, w=Qo.
O, g
(2.16)
wheree = 2,/7/0 € [0,1] is defined as the balance indicator of degradation ratesfasebe
Thus, Egs. (2.15) become:

2 €2 32
4
6222Tg

(2.17a)

cos(QT,) = (1+XT7,)Q

sin(QT,) = —T,0°+ (S +

)0 (2.17D)

T, is the normalized total delay, is the normalized gene response tirheepresents the
sum of degradation rateQ;is the frequency of periodic solution when Hopf bifurcatamocurs.
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Egs. (2.17) give the oscillation threshold at which the eyystoses stability to a periodic
solution via Hopf bifurcation. They define a series of cur¥e$,, T,) which specify the
degradation raté& at threshold as a function of gene response tilnand explicit transport
delayT.. Oscillations are found in the regiah < X.(7,, 1)

In order to assess how the bifurcation frequency dependslay dnd degradation rate, we
square both sides of Eq. (2.17) and add them, then obtain:

1 €2 ety e 32 1 ety
FU) =0+ (— +(1— —)2?)u? 1——)— —
(¥) = W4 (g + (1= )W (S (1= 5) 2w (2

T 5 —1)=0 (2.18)
whereQ = /. Sincee € [0,1], all coefficients of non zero degrees fare positive.
According to the Descartes rule of sigﬁ%—4 — 1 < 0 leading toX < 2/¢, or equivalently
o? > ~,is anecessary condition to have a positive roofif@and thus a necessary condition for
oscillatory behavior as well. The fact that only the prodacid not the sum, of the degradation
rates, is constrained is interesting because it impligsaballations will always be observable
if one of the degradation rates is sufficiently small. Onaewhlues? of the Hopf frequency is
obtained, it can be substituted in Egs. (2.17) to solvefas a function of total delay, and
response timé,.

In conclusion, we have analyzed a model with two expliciagieland demonstrated that
these two explicit delays have the same effect as a singledelay equal to their sum. We also
derived a simple analytical criterion for oscillationsgivby Eqs. (2.17) and (2.18). This crite-
rion will allow us to compare the influences of reaction angliex delays on the appearance
of oscillations in the next section.

2.4 Comparison of dynamical influences between reaction and
explicit delays

In the two previous sections, analytical criteria for dstihg behavior in models both with
reaction and explicit transport delays have been obtaih@ds found that the combination of
two explicit delays is equivalent to a single delay equahiirtsum, whereas reaction delays
interact in a non-trivial way. This gives a hint that the dymeal influences of reaction and
explicit delays are different. In the scientific literatuteowever, reaction or explicit delay
are used in a relatively arbitrary way, seemingly accordothe personal preferences of the
authors. Therefore, we discuss here similarities andréiffees in the dynamical behaviors of
these two types of delay.

As a starting point, we consider bifurcation diagrams foeguence of increasing transport
delays, modeled either as a reaction delay or as an expéilEiydFig 2.7). In these diagrams,
the degradation rate at oscillation threshalds given as a function of gene response time
T, for a given transport delay. Oscillation are found for thgioe ¥ < >(7,). We show
two limiting cases where = 1 or ¢ = 0, corresponding respectively to the cases where two
degradation rates are equal or where one degradation rageas TheX,, and>;, curves in
blue correspond to the cases where there is no transpoyt aledbserve as references.

For the limiting case = 0 (Fig 2.7A), the larger the transport delay, either in reacti
or explicit form, the more extended the oscillation zonewsjch indicates transport delay
always promotes oscillation. Moreover, because the asorly zone is much more extended
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Figure 2.7:Oscillation threshold in the (3, ;) plane for fixed values of reaction or explicit
transport delay. (A) The case = 0 means one degradation is saturated. In the blue cugye
the transport delay is zero. (B) The case 1 is two degradation rates are equal. In the blue
curveXq the transport delay is also zero.
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for explicit delay, we can conclude that the explicit delayriore destabilizing than a reaction
delay. Despite quantitative differences, the influencdsotfi types of delays are qualitatively
similar.

Fig (2.7)B represents the limiting case- 1 where the two degradation rates are equal. The
resonance-like effect in which the genetic circuit is masttebilized at a finite gene response
time can still be observed, but its behavior depends clearlthe type of delay. By increas-
ing gradually the explicit delay, the oscillatory zone b@es more and more extended and the
resonance point approaches rapidly thaxis, which means that increasing the gene response
time will typically stop oscillations. In contrast, when werease gradually the reaction de-
lay, the resonance point first moves towards ¥haxis and then towards large valuesTgf
Moreover the degradation rateat the maximum of thé(7,) curve (the “resonance point”)
saturates at. The oscillation regions for small and large reaction desyperimpose relatively
well. In this limiting case, influences of explicit and reaatdelays seem to be quite different
except in the case where they are both small compared to tieergeponse time. Increasing
the explicit delay always promotes oscillations, much nabearly than for a reaction delay.

In order to have a global point of view on the influences of tieacand explicit delays, we
now consider bifurcation diagrams in the plane of the gesparse time and of the transport
delay modeled as either reaction or explicit delay (Fig.2:Bhese bifurcation diagrams are
computed for different values of the total degradation Fate

We start with Figs 2.8A and C corresponding to the limitingexa= 0 where one degrada-
tion mechanism is saturated. It is seen that when the sumgoédation rateX is increased,
oscillation regions are gradually reduced for both expkagid reaction delays. When both
degradations rates are approaching to saturabibn-(0), oscillation regions occupy almost
the first quadrant of plane, which confirms that saturatedadtzgions facilitate sustained os-
cillations very much. The oscillation region for a reactaelay is symmetric, resulting from
the fact that reaction transport delay and gene respongesytametric roles in the analytical
criterion. In contrast, the oscillation region for explidielay is not symmetric, which is not
surprising, given that bifurcation diagrams involve bothexplicit delay and a reaction de-
lay, the response time. Note that for some small values, dhe instability threshold crosses
the axis and enter into the second quadrant of the plane viherexplicit delay is negative,
which corresponds to the fact that the circuit already tetes at zero delay. Besides the dif-
ferences in the symmetries of oscillatory regions, the arfaes of explicit and reaction delay
are qualitatively similar.

When degradation is saturated, the bifurcation occurs frstime value of reaction and
explicit delays whert: < 0.7 (inset of Fig 2.8A). Fo) > 0.7, reaction and explicit delays
are also equivalent when the gene response time is sufficlanje. However, it can be seen
in Fig 2.8A that when the gene response time is smaller tharsd|lations are much more
easily reached with an explicit delay than with a reactioa.dviore generally, it is interesting
to note that even when the gene response time is large, a agddd transport delay can
trigger oscillations and vice versa. Once again, the fattdbcillations appear for a total delay
much smaller when there are two delays rather than one ireditlhhat a sequence of biological
processes inducing delays can greatly emphasize osmiltati

Figs 2.8B and D correspond to the limiting case 1, where protein and RNA degradation
rates are equal. There are significant qualitative chamgéibifurcation diagrams compared
to the case = 0, especially for reaction delays. This suggests that theadiadion rate balance
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Figure 2.8: Bifurcation diagrams in the plane of gene response time and etion or
explicit transport delay. (A) Oscillation thresholds for reaction transport deldya =
0.5,0.7,1.0,1.5 in the casee = 0 where one degradation is saturated. Oscillation regions
are above curves. The inset is to compare oscillation tbtdshHor small explicit and re-
action delays a2 = 0.5,0.7,1.0. (B) Oscillation thresholds for reaction transport delay at
¥ = 0.5,0.6,0.7,0.8 in the casec = 1 where two degradation rates are equal. Oscilla-
tion regions are inside of curves. (C) Oscillation threshdiok explicit transport delay at

3 =0.5,0.7,1.0,1.5 in the case = 0 where one degradation is saturated. Oscillation regions
are above curves. (D) Oscillation thresholds for expli@nsport delay at = 0.5,0.7,1.0

in the case = 1. Oscillation regions are above curves. The inset is to coenpacillation
thresholds of explicit and reaction delays #or= 0.7.
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measured by is also a key factor for deciding the appearance of osaltati By increasing
gradually the degradation rate sun oscillation regions for reaction and explicit delays are
both reduced, and no oscillations are observedifor 1 (reaction delays) oE > 2 (explicit
delays). However, a marked difference between reactioreaplicit delays is that for explicit
delays, oscillations can always be observed whenever #imsgort delay is larger than the
threshold whereas for reaction delays, oscillations gisapwhen the delay is too large. This
corresponds to the fact that in the latter case, the osoilaégion is contained inside a closed
curve.

To summarize, Fig 2.8 allows us to understand the simiariéind differences in the dy-
namical influences of reaction and explicit delays on aatatly behavior. Whether degradation
rates are balanced or not is clearly an important factorferappearance of biological oscil-
lations. When degradations of protein and mRNA are approgdoirsaturation or transport
delay is small, reaction and explicit delays have similég@s. A sufficiently large explicit de-
lay always destabilizes the system, however a large readétay can restabilize the oscillating
system. This has to be taken into account when designing #tieematical modeling.

2.5 Conclusions

Previous work [138] showed that a delay due to the slow dyosimii gene activity can induce
oscillations in a minimal genetic circuit comprising a sedpressing gene. In this chapter, we
extended this model by adding delays due to molecule trahdpscribed both as reaction and
explicit delays. Our results, based on analytical critec@nfirm the crucial role of delays in
the design principle of biological oscillators and the &auff between delay and degradation
nonlinearity. How delays combine was also revealed: theemite of two explicit delays only
depends on their sum, while reaction delays interact in atneial way. Thus, how delays
are distributed can affect the oscillatory dynamics. Readiind explicit delays have the same
dynamical influences only if delays are small or protein andARIégradation are saturated.
In the general case, their influences are dramaticallyreiffie For example, an explicit delay
always favors oscillations, in contrast, a reaction delyeither destabilize or stabilize genetic
circuits.
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Chapter 3

Influences of stochastic fluctuations on the
oscillation of a self-repressing gene

3.1 Introduction

The genetic networks that are responsible for cellular dyos and functions are subject to
large fluctuations (or noise) in the number of molecules, aslieen revealed by numerous
experimental and theoretical investigations [38, 105,, 183, 33, 151]. Indeed, most bio-
chemical reactions in cells involve very low copy numbersezicting molecules. Noise may
be a nuisance, because it makes it more difficult to obtaintermnistic behavior, however
an interesting question is why cells are designed with it. éRestudies provide strong sup-
ports for the hypothesis that cellular noise may be invoivedesign principles of living cells
[195, 35, 5, 77, 140, 185].

In particular, noise in gene expression have been identiged key biological effect un-
derling observed phenotypic variability of geneticallyeidical cells in homogeneous envi-
ronments [157, 69, 173, 128, 157, 120]. Furthermore, itpkacrucial role in coordinated
expression of a large set of genes and in probabilisticreiffeation strategies [195, 35, 5, 77].
Although negative feedback loops can in principle redudsenfl83, 33, 47, 9], they display
fundamental limitations [125]. Therefore, molecular mgiwanted or unwanted, is unavoid-
able in biological systems. However, how noise influenceglgmamics of genetic networks is
not yet fully understood in spite of the numerous works degldo its study.

Here, we will investigate the dynamical influences of noise¢hie same minimal genetic
circuit consisting of a self-repressing gene that we haveistl before [137, 127, 138]. In this
simple circuit, most of the stochasticity resides in the faat there is a single copy of the gene
and that the dynamics of its activity is complex and shoulddken into account [85]. In a
molecular point of view, the gene dynamics is usually modlekea series of transition between
"ON" and "OFF" states [85, 151]. When the promoter site is bountepressor (OFF state),
transcription is repressed, while the transcription ogeunen the repressor is dissociated from
gene (ON state). The fluctuations resulting from the staahaliernation between these two
gene states may decisively affect the system stability aedlatory behavior [124, 170, 147,
194, 166, 99, 64, 68, 193].

The common approach to modeling gene expression using freddrdeterministic rate
equations provides insights into the time evolution of malar average quantities, but it is not
appropriate to describe fluctuations [122]. Moreover, iften overlooked that these fluctua-

59

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

tions will in fact impact the deterministic dynamics debed by the mean-field equations and
may in some cases dramatically change the behavior prdditassically. Although noise is
general viewed as a zero-mean fluctuation superimposeceateterministic average, this is no
longer true as soon as this noise interacts with the nonitresapresent in the genetic circuit.
For example, ifr is a zero-mean stochastic variable, thier- )? will not have a mean of.

Therefore, stochastic models of genetic circuits, wheedriteger nature of copy numbers
are fully taken into account, are required. Such models eailyebe simulated numerically,
however this provides generally little insight becauss difficult to assess the influence of the
various parameters.

The most general theoretical approach is writing the masjaations which describe the
time evolution of probability distribution of microscopstates [189] characterized by the inte-
ger copy numbers of molecules. The master equation desgibeisely the temporal evolution
of the system and is typically solved by numerical integnra{il69, 139]. However, the disad-
vantage is that there are only very few examples which maybg/tcally solved, even when
only the steady state is desired [158, 98, 146, 46]. FormustaHornos et al. [98] derive an
exact solution of the master equation for the self-repngsgene under a hypothesis that an
adiabatic elimination of the mRNA variable. However this bifesis is not realistic. Some
approximations of the master equations can also be coesidsuch as the Fokker-Plank or
Langevin equations [7, 8, 36, 189], however they are not@pyate to describe fluctuations
linked to a binary variable such as the gene state.

The aim of this chapter is to derive a cumulant expansion efmiaster equation for the
genetic circuit of a self-repressing gene. In this way, wikatatain equations for the dynamics
of the mean-field averages taking into account the effectofdltions by incorporating a few
higher-order cumulants as dynamical variables. This Mlilvaus to investigate how fluctua-
tions dramatically shift the steady state and to compariatsen regions to what is predicted
by usual deterministic rate equations.

This chapter is organized as follows: First, we write the terasquations for the genetic
circuit. Second, we show how to derive the cumulant expanam the master equation. In
the third section, we examine the steady state of a set otieqador cumulants, and compare
it with the one predicted by usual deterministic rate equmesti The last section is devoted to
the dynamical influences of fluctuation on oscillatory bebav

3.2 Master equation of the model of a self-repressing gene

We first consider the master equation that describes thewigea@f self-repressing gene circuit.
In Fig (3.1) we show all biochemical reactions in this gemagtwork.

The gene synthesizes mMRNA with transcription ratghen active. Protein monomers bind
the gene with a constant rateand then repress transcription completely. The bound meno
dissociates from the gene at rétes is the protein translation rate. Because we are interested in
understanding how fluctuations can spontaneously indukati®ns, we minimize the amount
of nonlinearities in the circuit, so as to stay away from agunfations where oscillations appear
deterministically. We thus consider linear degradatiorcima@isms for mRNA and proteins,
with the associated degradation raigsand,.

The parameteP, = 0/« represents the number of proteins at which gene activitg-is r
pressed to half the maximum level. This threshold is assumée large,”, > 1 leading to
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Figure 3.1:Reaction diagram of the self-repressing geneln this minimal genetic circuit,
a single protein binding to gene perfectly represses tmsdrgtion. Degradations of protein
and mRNA are both linear.

a ~ 0, so that binding or unbinding of a single protein does nongeaprotein copy number
significantly. According to the analysis in previous chapige genetic circuit studied can then
be described by the following deterministic rate equatwitk reduced variables and parame-

ters:
% = 0(1-G(1+P) (3.1a)
% = 6(M - P) (3.1b)
dM
— = AG—-—M 3.1
o G (3.1c)

whereG, P and M are respectively the average gene activity, and proteinnaRNA copy
numbers. Note that the notion of gene activity average israbin the limit case where binding-
unbinding is much faster than other processes. The steatyaftEqgs. (3.1) is given by

—14++v1+4+4A
2A

G, = , P.= M, = AG, (3.2)
and is found to be unconditionally stable. Thus deternmmistte equations predict that there
are no oscillations in the case of linear degradation.

In stochastic simulations, gene activity alternates ramgdetween the "ON” and "OFF"
states and can be described by a binary variable, with valuel. There is no macroscopic
limit in which this variable becomes continuous, in contraih protein or mMRNA copy hum-
bers which become large whenis increased. Because of this important property, common
theoretical descriptions, such as deterministic rate opumunder mean-field approximation,
Fokker-Plank or Langevin equations, are in principle ngirapriate to describe the dynamics
of this genetic circuit. However, the master equation dbsgy the time evolution of proba-
bilities for all microscopic states characterized by gectévdy, copy numbers of mMRNA and
protein, is still valid. To formulate the master equationreneasily, we consider separately the
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time evolution of the quantities}, ,,, , and P, ,,, , which are respectively the probabilities of
finding the gene bound;(= 0) or unbound ¢ = 1) with m copies of mMRNA ang copies of

protein:

dPy .

% = a(p+1)Prmpir — 0 Pomp
+5m(m + 1)P0,m+1,p - 5mmP0,m,p
B mPO,m,p—l - 6 mPO,m,p
+0p(p + 1) Pomp+1 — 0p pPomp

dPi .,

# = QPO,m,p—l - OépPme

AP j—1p — APy

Om(m + )Py s1p — 0Py p
/Bmpl,m,p—l - /Bmpl,m,p

p (P + 1) Prmps1 — Op PPy

The master equation is actually a gain-loss equation. Cen&id example the equation of
Po.m - The probability of having the system in microscopic siten, p} can increase due to
transition to{0, m, p} from other states and decrease due to transition ffo/m, p} to other
states. More precisely, the tera{p + 1)P, ,,, ,+1 describes how the probability of the state
{0, m, p} increases due to transition frofh, m, p + 1} by protein binding; on the other hand,
—0 Py.mp is the loss of this probability due to transition from sté@em, p} into {1, m,p + 1}
by the dissociation of protein from DNA.

Even for such a simple genetic circuit, the master equasiowti easily solved analytically
and must be studied numerically, except under some appabixins [98].

In the next section, we propose an approach which will alloggo take into account
fluctuations while obtaining deterministic dynamical etiua a cumulant expansion of the
master equation. From the latter, differential equatiores abtained for the time evolution
of the cumulants of the distributions, the lowest-order alants being the averages involved
in the mean-field equations. This allows us to incorporageitifiluence of fluctuations in a
hierarchical way.

3.3 Incorporating variances in a deterministic model: cumu-
lant expansion to the second order

Before deriving the cumulant expansion of the master equatie first recall how moments

and low-order joint cumulants are defined. The set of momehgs probability distribution

function (PDF) characterizes it completely. Given the pialbty distribution P, ,, , defined

above, the moments of a quantityg, m, p) depending on the circuit state are defined as the
expectation values of the powers.af

pn = (") = > 2"(9.m,p) Py p

g,m,p
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wheren is the order of the moment. The moment-generating func@nseries whose coeffi-
cients are the moments,:
2 3 n
ety pot™  pat fnt
Mx(t)—<€ >—1+M1t+7+7+... o

For example, the moment-generating function of a Gausdidn fBr variablex with average
i and variance? is M, (t) = et +1/20°,

The idea behind a moment expansion of the master equatitsatisf twe know the time
evolution of the probability distribution, we know the tiregolution of the moment values:

+ ..

W — 3™ an(g,m,p) Lo 3.4)
g,m,p

with dP,,, ,/dt being expressed in terms of ti#&, ,, ,, and possibly of the state variables
when the biochemical network features reactions wheresther two or more reagents. For
example, the variablgs andm appear in the time derivates given in Egs. (3.3). In this case
the time derivative of a given moment will typically involveoments of higher order so that
Egs. (3.4) are not closed but form an infinite hierarchy ofagiquns. When reactions involve
only one reagent, the time derivates of moments of order &xgreessed in terms of moments
of order 2, etc.

Solving the moment equation is equivalent to solving theterasquation since the PDF
can be reconstructed from its moments. The idea behind tineemibexpansion is that if only a
few moments suffice to describe the dynamics, solving theesponding equations (3.4) may
be simpler than solving the master equation. However, ghiet true if equations at all order
are coupled, as mentioned above. It is then necessary tocateithe hierarchy of equations,
which means to choose a way to approximate the moments @ificentders, without solving
for them [189].

Actually, this approach is more efficiently formulated innes of cumulants, a notion
closely related to moments. The cumulahts of = are defined via the cumulant-generating
function, which is obtained as the logarithm of the momesneagating function:

oo tn
G.(t) = E Knm = log M, (t)
n=1 ’

Thus cumulants are given by:

_d"G,(0)  d"log M,(0)
Cdtr dtn

Eq. (3.5) allows us to express cumulants at any order as ainatidn of moments. Assuming
a Gaussian-distributed variable we haveG,(t) = ut + o?t?/2, so that cumulants are given

by K, = pandK, = o2, with higher-order cumulants being zero. More generalky,olstain
the following expressions for the lowest-order joint cuamik of random variables y z:

K, (3.5)

K, = (z)
Koy = Ay = (zy) — (2)(y) (3.6)
Koy = (zyz) — (z) () (2) = (2) Byz = () Doz = (2) Agy.
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Note that the first-order cumulant is the average and thenskodler is the covariance. It
can be seen that the second- and third-order cumulants eapbessed in term of lower-order
cumulants, which is actually true at any order. In fact, j@omulants defined by Egs. (3.6)
guantify the amount of correlation at a given order whichdoet arise from correlations at
lower orders. For example, the second-order momeit can be non-zero even thougtand
y are not correlated, simply because the averageand(y) are not zero. In the cumulark,,,
which is actually the joint moment of — (z) andy — (y), the contribution from the averages
is removed so that the cumulant is zero whenever the two ran@doiables are not correlated.
Thus, A,, measures much better the correlationzadindy than the moment in some sense.
Similarly the third-order cumulank’, , . is zero if random variables, y andz are correlated
only pairwise.

The presence of a binary variable, such as gene act\iyhich takes value$ or 0), can
lead to special mathematical treatments [147, 194, 16669968, 193], and also simplifies
cumulant computation. More precisely, moments of any oodflerbinary variabley are equal
to its average.

<gn> - Z gnPg,m,p = Z ng,m,p - <g>

g’m’p g)m)p

Consequently, all high-order cumulantso€tan be expressed in terms of the first-order mo-
ment (the average), which reduces the dimension of the @amhakpansion. For example, the
variance is written as:

ANgg = (9)(1 = (9)) (3.7)

As described above, cumulant expansion of the master egsatields a set of differential
equations which describe the temporal variations of jourhalants. We will now derive the
equations for the lowest-order cumulants of the self-reging gene circuit. We first renormal-
ize the time, joint cumulants and parameters according to:

5, o 50
0 00 0
App — (_)2APP7 N — (ﬁ—)2AMM, 0 — 6—,
3 59 50 (3.8)
Bap = EAGP’ Bgm = ﬁ_aAGM> Amp = E(a)QAMP7
N

50 —>A, E—>PO

We also define the quantity, = 0/« which represents the number of proteins required to
reduce the transcription rate by half. Again, we assumehinéshold is large/, >> 1) which
is equivalent tax ~ 0.

The time evolution equations for the first-order cumulanés,(averages) and second-order
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cumulants (i.e., covariances) are given by:

aG

= 8(1-G-GP-Agp) (3.9a)
dM
— = AG— M (3.9b)
dP
— = M- P .
o o( ) (3.9¢)
dA
d;P = d(Aem — Agp) — O(Kgpp + GApp + Agp + PAgp) (3.9d)
dA
d;M = AG(1—-G)—Agm — O(Kgup + Agu + GAyp + PAcy)  (3.9€)
d@é‘; P ADap— (04 1)Dup + 00w (3.9
dBara = 2MAcm —2AMM (3.99)
dT
d?;p = 25(Ayp — App) (3.9h)

Egs. (3.9) describe the time evolution of joint cumulantofer 1 and 2 in the form of
deterministic differential equations, incorporating #ftect of fluctuations through cumulants
of second order and higher. These are only the first equasiorsg an infinite hierarchy.
When covariances and higher-order cumulants are set towhich amounts to neglect fluc-
tuations, we recover the deterministic mean-field modeétas averages of copy numbers,
which are the first-order cumulants. The important poinh&t the time evolution of averages
depend on covariances, which demonstrates that fluctsaéifiect the temporal dynamics of
averages. In addition, the time evolution of second-ordenwants depends on third-order
cumulantsKgpp and K p. If we wrote the differential equations for third-order culiants,
we would find that they depend on even higher orders, formin§rate hierarchy of equations
for cumulants.

Therefore, Egs. (3.9) do not form a closed system because piesence of the third-order
cumulantskopp and K p. The standard solution to this problem is to make approxonat
allowing us to truncate this hierarchy and close it. Sevarapositions for achieving this have
been discussed [7, 134, 86]. The most natural strategy msttive cumulants of third order to
zero, which closes the set of equations. This amounts tesept the probability distributions
of copy number variables as Gaussian distributions whoseages and variances are the dy-
namical variables. This assumption is valid in the limiteaghere molecular fluctuations are
small enough.

In the next section, we will study the steady state of (3.9helimiting cases of a fast and
of a slow gene, according to the value of the unbinding fatin these two cases, we will be
able to truncate easily the hierarchy of equations for camislor to solve it analytically. This
will allow us to show that fluctuations can severely shiftrage copy numbers compared to
the prediction of the mean-field model.
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3.4 Steady state analysis

3.4.1 Fast gene limit case

We first discuss the steady state of the system (3.9) in thelsilimit case where the binding
and unbinding rates are infinitely large, with — oo keeping the rati@/a constant. This
expresses the fact that the gene remains in a given stated lsownbound, only for very short
amounts of time, so that the production of mMRNA and proteifitilis affected during that time.
The memory of molecular states is well preserved across imagnig-unbinding cycle, so that
the average gene activity can reach an equilibrium stategpect to the current protein and
MRNA copy numbers, and can be described by a continuous l&anabying betweer and
1. In this limit, fluctuations of mMRNA and protein copy numbers aelatively small. Their
distribution can be expected to be Gaussian, leading tohiheg-order cumulantd{spp and
Kganp being zero, so that Egs. (3.9) become closed.

We further assume that > 1, which implies that the mRNA and protein copy humbers
are large compared tband thus can be considered as macroscopic variables. Tddy state
of the cumulant equation system (3.9) is expressed as fsillow

1 1 6
G~ —(1+ -

NPT
P*:M*g\/K(HlL)

40(6+1) (3.10)
O S N P S
GPx — 2@((54—1) MPx — PPx — 2@((5-'-1)
A 1 1 1

Apras ~ %(1 + m) Agnx ~ %(1 + m)

Note that first-order corrections to the steady-state wabfe~, M and P only involves
a combination of parameter§ (s + 1)/6. This shows that the protein degradation rate is
also important for controlling the level of fluctuations. rthermore, the covarianc&gp. is
negative, which results from the negative protein regoiatiThe covariancel pp, andA /.
are positive, as expected, since they are the variancésasfd M. Eqgs. (3.10) indicate that
when the unbinding rat® is increased to infinity, all covariances tend to zero andsteady
state predicted by deterministic model (3.2) is recovered.

In conclusion, third-order cumulants can be neglectederlithit case where the transition
between gene activity states is rapid. Then the system (@&mes closed and an analyt-
ical expression of the steady state can be obtained. Thiessipn allows us to study how
the steady state is affected by fluctuations. Our analytesullts agrees well with numerical
simulation (Fig 3.3).

3.4.2 Slow gene limit case

Conversely, we now consider the opposite limit case whereuthending rate is very small:

O < 1. In this limit, the time scale of gene binding and unbindiagriuch larger than that of
other processes. The dynamics of system is simply drivehégéne jumping between "ON"
and "OFF" states according to a Poissonian stochastic mod&$en the gene is unbound,
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Figure 3.2: Correlated temporal variations of copy numbers of protein (A), mMRNA (B)
and gene (C) in the slow gene limit caseNumerical estimation is carried out with= 1,

0 = 0.5, B, = 100, A = 200 and3 = 10. The gene activity is equal to (OFF state) or
1 (ON state). When the gene is in the ON state, mRNA and proteig ngmbers increase
rapidly. They decrease abruptly when the gene switches tostdte. The dynamics of system
is mainly driven by the transition of the gene between twdestaand temporal variations of
copy numbers of protein, mMRNA and gene are highly correlated.

MRNA and protein copy numbers reach rapidly a high leMely = Pony = A which is then
maintained. When the gene is bound and transcription is $epce mMRNA and protein copy
numbers are abruptly decreased until they reach a low leiglr = Porr = 0. Once the
binding protein dissociates from DNA, an another dynamoyale repeats. When the system
starts a new cycle, it has lost the memory of the previous dimus, temporal variations of
copy numbers of the gene, mRNA and protein are all charaetéliy a sequence of spikes,
distributed in time according to a Poisson process.

In this limit case, we cannot simply assume that the thidkocumulants are zero, because
fluctuations are extremely important. The mRNA and protepyaaumbers are at a high level
for some time and then are decreased to zero, accordingrsitices between gene states.
However, this simple behavior, without memory from one ey the next, makes it easier
to determine the steady state. On average, the gene is whlolwimg an amount of time
proportional tol /(AA) and it is repressed during an amount of time proportional/to Thus
we can easily find that the average gene activity is giveG'by- 1/(1+ A). Given the average
durations of the two gene states and the mRNA and proteirsl@velch state, we can compute
the values of averages, covariances and third-order cumsulathe limitA > 1:

G,~1/A; P.=M,~1; App.=Anne = Apyse = A

3.11
Agps = Agux =~ 1, Keppe = Kagups = A (3.11)
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Figure 3.3:Average gene activities as a function of the reduced paramet ©(1 +d-1). (A)
Numerical estimation using stochastic simulations is categ with parameter value8y/a =
100, A = 200, A = 3. Each color corresponds to a given valuejpfvhich varies from10?
(black) to10 (cyan). (B) Fixed point values of gene activity in model (3M¥h vanishing third-
order joint cumulants. Arrows on the left and on the righticatie the gene activity limiting
values given by Egs. (3.10) for largeand by Egs. (3.11) for smai.

This expression for the steady state (3.11) is consistehtrwimerical simulations (Fig 3.3).
Compared to the fast gene case, averagesi/., P.) are much lower and decrease with the
quantityd(1-+4)/4. In addition, the values of various cumulants differ veryamin magnitude
(we assume that is large). This is related to the fact th@t which takes only two values in
any case, remains a microscopic variable whileand P become macroscopic variables in the
limit of large A. Accordingly, averages and covariances involving the asicopic variable~
are small compared to their counterparts involving only rascopic variables and to the third-
order cumulants with two macroscopic variables. Note havdévat even though fluctuations
involving the gene are smaller in absolute value, they anenmoportant in relative proportions,
as one can see by computing the ratio of the standard deviggmare root of variance) to the
average (is proportional th for G and tov/A for M andP).

In order to compare the predicted values for the steady sfdgs. (3.9) in fast and slow
gene limit cases, we have evaluated it numerically usinghststic simulations of the biochem-
ical reaction network. In Fig 3.3A we show the numericalrastion of average gene activities
using stochastic simulations. They agree quite well with\thlues predicted in the limiting
cases of a fast gene (large unbinding 1@)eand of a slow gene (small unbinding r&. We
find that the steady state value derived from determiniate equations (indicated by the arrow
for large©) is dramatically shifted whe® is small and fluctuations are large.

Fig (3.3)B shows the steady state values of gene activitygs B.9), computed by assum-
ing that third-order joint cumulants are zero. It can be dibah model (3.9) with vanishing
third-order cumulants reproduces well the variation ofrage gene activity with unbinding
rate. The global shape of the curve, with a maximum arcgaqd+ 0) /4, is recovered as well
as the limiting values for the fast and slow genes. The maardpancy is a faster transition
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from high to low values of gene activity for Egs. (3.9) thandtochastic simulations.

In summary, we have studied in this section the average mtahthe self-repressing gene
circuit using a cumulant expansion of the master equatiothd limit of a fast gene, first-order
corrections to the mean-field values can be obtained by asguimat third-order cumulants
are zero. This assumption is not valid in the limit of a slomgehowever, simple expressions
for averages and covariances can be obtained by noting fRitAand protein copy numbers
are slaved to the gene state. Yet, the average gene astpriteicted by cumulant expansion
with zero third-order cumulants reproduce surprisinglyll ileese obtained from numerical
simulations across the entire range of unbinding ratess Tiieiapproach followed here allows
us to study precisely how average quantities can be draafigitehifted by fluctuations. Further
studies are the analysis of instability of the steady sthEgs. (3.9) and what is the dynamical
significance of this instability. We discuss them in the resdtion.

3.5 Dynamical influence of fluctuations

3.5.1 Stability of steady states predicted by cumulant model

An analysis of a deterministic model of the self-represgiage by Moranét al. had concluded

that the steady state of this model is always stable in the o&dinear degradation. This
model is equivalent to that obtained from cumulant expang®9) when all cumulants of
second order and higher orders are set to zero, in other wbedmean-field model (3.1).
When fluctuations are incorporated into the dynamics by agtigher-order cumulants as
dynamical variables, and the associated differential #ops the stability of the fixed point
may be modified. Thus, the approach based on the cumulamsgpaallows us to study how
fluctuations feed back into the deterministic part of theadyits to induce oscillations of the
average quantities.

We first consider the fast gene limit. In this case correspuntb © — oo, the genetic
circuit is subjected to weak fluctuations, and protein and ®RNpy numbers are expected
to follow a Gaussian distribution. The third-order cumui$anan be neglected, allowing to
truncate the hierarchy of equations for cumulants. A lirgability analysis of the fixed point
of these equations demonstrates that it is always stablehwsconsistent with the results of
Morantet al. for the mean-field model [138].

The stability analysis of the steady state in the slow geng tase is more interesting, be-
cause the system is then dominated by fluctuations. Thdistaibithe 8 differential equations
of the cumulant expansion (3.9) is difficult to study analgtiy due to the high dimension. For
the sake of simplicity, we will analyze this system in theitimmhere ©A << §,1. It then
happens that the following equations uncouple from theraheations:
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% = 6(M—P) (3.123)
% = AG—-M (3.12b)
% = 0(1-G—-GP—Agp) (3.12c)
dAdf’P = 6 (Agm —Agp) (3.12d)
dAd?M = AG(1-G)—Agur. (3.12€)

The reduced system (3.12) consists of only five differeetigiations describing the dynam-
ics of three averages and two covariances. Its steady sigteides with that of the cumulant
expansion (3.9) in the slow gene limit but its stability ayséd is much simpler. By further as-
suming that\ >> 1 a Routh-Hurwitz criterion associated to a Hopf bifurcatian be obtained
analytically. Thus we find that oscillations appear in thdueed system when

H=40°+0 |2(1+6) — Al +6<0. (3.13)

4]
(1+490)
The analytical criterion (3.13) indicates that if the unbirg rate is infinitely slow® ~ 0),
the steady state is stable becat#se- § > 0. For intermediate values @, the criterion can

become negative providefl is sufficiently large, which predicts that the system capldig
oscillations. However, this can only occur wh®n > § + 1 which conflicts with our preced-
ing assumptio®A << 4§, 1. The question raised is thus whether the analytical coite8.13)
is valid to capture the appearance of oscillatory behawothe following part of this section,
we therefore check the relevance of this criterion by comnpgaits predictions with stochas-
tic simulations which are performed according to an impletagon of next reaction method
(Gibson-Bruck algorithm [81]) mainly by my colleague Quanthommen.

3.5.2 Numerical stochastic oscillation

In order to verify whether the criterion (3.13) obtainednfrthe cumulant expansion correctly
predicts oscillatory behavior, we will search for paramgsdues at which the circuit displays a
dynamical behavior which can be classified as oscillatiblwsvever, it is difficult to character-
ize oscillations in the stochastic regime because there enodicity in a strict sense. We will
therefore search for regimes where one observes a serigstefrpcopy number peaks more
or less regularly spaced. We thus first need to discuss agpesallowing us to characterize
the regularity of such stochastic oscillations in a systahjext to fluctuations.

Given a temporal stochastic signal, it is usual to assegethdarity of oscillatory behavior
by computing the autocorrelation function of the signalwdéwger, this function is sensitive to
variations both in time and amplitude. In our case, it is redtto allow the signal to be highly
variable in amplitude while requiring that it is regular ime. It is indeed often the case that
biological functions only detect that a signal goes overedmeshold regardless of the actual
amplitude reached, so that only the peak timing is significainerefore, the autocorrelation
function may fail to capture the regularity in time of thersad)if there are important variations
in amplitude.
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Figure 3.4:Stochastic dynamical behavior of the self-repressing gereaction network.
Time evolution of protein copy number fdr = 200,6 = 1 and (A)f = 5.1073 (B) = 0.5
(C) # = 500. The dashed lines indicates the mean protein level and measip level plus
variance. Red lines correspond to the high trigger level aidrg) events are indicated by red
circles. (D,E,F) Probability of observingspikes during a given time windows for each of the
three regimes.

A standard technique for assessing the temporal regulafribscillations is to divide the
state space into two regions, and to record the times ofittramgrom one region to an-
other [149]. Once a series of transition time is obtainedcarecharacterize the dynamical be-
havior by an approach also used to quantify the statistighofons from a light source [149].
More precisely, we determine the probability to observeevents within a time interval of
fixed duration and quantify the temporal regularity by cotimpythe Fano factor which is de-
fined as the ratio of variance to mean. A Fano factor close ity isoften associated with a
process governed by a Poissonian statistics, while a Faor fiess (resp., larger) than unity
indicates anti-bunching (resp., bunching) of events. Bingchheans that peaks tend to cluster
and one observes groups of peaks followed by long intervdlout peaks. On the contrary,
anti-bunching is associated with evenly spaced peaks whictain well separated from each
other. Here, we will consider that anti-bunching of proteeaaks can be viewed as a stochastic
counterpart of deterministic oscillations.

Now we apply this approach to characterize the stochastitlaisry behavior of the self-
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repressing gene circuit. The temporal signal we consider isethe fluctuating protein copy
number. We could record the times at which the signal crasgesscribed level, however, we
would get many spurious crossings in sequence becauseastimctuctuations would drive the
signal rapidly above and below the threshold. Thus we fix tigaiBcantly separated levels
given by the average protein levél and by P, + v/ App/4 where\/App is the standard
deviation. We record the times where the system crossegshéefiel, then the second before
falling back below the first one. This amounts to require ficeht excursion above the mean
level to count one spike.

Fig 3.4 shows how the series of transition time is recorded (ed cycles) as well as the
probability distribution of observing events within a time interval of given duration for a slow,
an intermediate and a fast gene. In the slow gene liéit{ 0), the transition events occur
independently of protein numbers (Fig 3.4A) and their stats is Poissonian as indicated by
the distribution of the number of event number within a gitieme window (Fig 3.4D). When
the binding rate of gen® is intermediate, protein spikes are mostly anti-bunchegl 3#B),
and the probability distribution of the number of transisois Gaussian-like (Fig 3.4E). In
contrast, for the fast gene ca®e>> 1, the regularity of stochastic oscillations is degraded
(Fig 3.4C and F). We compute the Fano factor for the slow, ntermediate and the fast gene
in Fig 3.4. The Fano factor of the slow gene is close to unibtyficming that the transition
events is Poissonian. The relative regularity of transgifor the intermediate gene is well
captured by the Fano factor that is around 0.35. The Fanorfémt the fast gene rises again
to about 0.5. Therefore, we observe a resonance-like effleete the protein signal is most
regular when the gene response time is close to a finite séalee show now, this resonance
is also controlled by the protein and mRNA lifetimes, whicledmine the time during which
a memory of previous gene states persists.

We have studied systematically how the Fano Factor depamdiseogene unbinding rate
© and the relative protein decay ratdn stochastic simulations of the self-repressing gene
circuit. As Fig (3.5) shows, the regularity of protein spgke enforced when (1) the decay rates
4, andd,, are comparablej(~ 1) and (2) the reduced parameék (1 + 6~') is close to unity.
Quite remarkably, the parameter space region where prepees are more regularly spaced
superimposes very well with the region where the reducedetn(@d12) displays deterministic
oscillations. This suggests that this model captures welldynamical interaction of mean-
field variables and fluctuations, although it possesses thelyaverage gene activities of the
cumulant expansion (3.9) in the slow gene limit. This prdpaidicates that the dynamically
important joint cumulants are those involving the geneestairiable. This is not surprising
given that gene state remains binary in all limits and is thesnost stochastic variable.

To conclude this section, we have quantified the regulafigtachastic oscillations in the
self-repressing gene circuit using the Fano Factor. Thdsvad us to show that the region
where protein spikes are more evenly spaced is well pretiayethe oscillation region of a
reduced model determined from the cumulant expansion.

3.6 Conclusion
To investigate the dynamical influence of fluctuations ordgal oscillations, we developed
a cumulant expansion of the master equation that descritmésimal genetic circuit consisting

of a self-repressing gene. We have found that fluctuatigrsfgiantly shift the average values
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Figure 3.5:Stochastic oscillations characterized by Fano factorDependence of the Fano
factor F' quantifying spiking regularity on and©x*(1 + 6~'). Stochastic simulations of genetic
circuit have been carried out with = 200, 5 = A, 0/« = 100. Different values of Fano factor
are indicated by red hexago#f' (< 0.35), blue pentagon9)(3 < F' < 0.4), green diamonds
(0.4 < F < 0.45), cyan triangles({.45 < F' < 0.5), magenta star$)(5 < F' < 0.7) and orange
crosses((.7 < F). The black line encloses the region where the analytiagdrasn (3.13)
predicts oscillations.
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compared to those predicted by deterministic rate equstiemd that this is well approached
by the cumulant expansion. We also have studied the stochimsé evolution of this circuit
and characterized the regularity of protein spikes usingreoHike indicator, showing the pa-
rameter region with most regular protein spikes can be nbtairom an analytical oscillation
criterion derived from cumulant expansion. Together, @esutts demonstrate how fluctuations
can induce oscillatory behavior in a simple genetic circ@ur approach to characterize the
regularity can also be applied for other biological proldeon even experimental signals, for
example, the mRNA or protein signals of circadian genes.
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Chapter 4

Dynamical effects of stochastic RNA
Polymerase pausing on transcription

4.1 Introduction

Transcription is one of the most complex and tightly regedaprocesses in gene expression
[106, 192, 76, 18, 178]. It consists in transcribing the dgenaformation stored in DNA
molecules into MRNA molecules, and is carried out by macremdes called RNA poly-
merase (RNAP). Transcription can be essentially divideal 3ifferent steps: initiation, pro-
ductive elongation and termination. RNAP and transcripfextors (TFs) are recruited by
promoter during initiation. Then the assembly of RNAP and Eases the promoter and en-
ters into productive elongation in which RNAP moves forwaattsng the DNA sequence in
stochastic single-nucleotide steps and produces the mRasdript. At termination, RNAP
releases the complete mRNA transcript and dissociates fie®DNA sequence.

Specific dynamical behaviors of RNAP procession along the D&RAplate during pro-
ductive elongation can highly modulate transcription rdtkis includes pausing [31, 62, 67],
which is a phenomenon where the RNAP is halted at a nucleotidasawidely observed in
both prokaryotes and eukaryotes [10, 70, 118, 57, 54, 56]. RpN&using occurs in a stochas-
tic fashion and is spontaneously reversible, after whiehRNAP continues to move forwards
along the DNA template. The majority of pauses are short &iferiod of~ 1 s in av-
erage, with weak sequence dependence, and they are ndedftectrailing RNAPs. They
are usually referred to as "ubiquitous” or "elemental” shauges [56, 107, 119, 55, 57], to
distinguish them from the so-called prolonged backtragkiauses [55, 57, 4] which are rare
(less tharb% — 10% of all pauses). Prolonged pauses only occur at specific aitdgheir
duration is usually ove20 s. In contrast to elemental short pauses, prolonged paaselsec
suppressed by the pushing of trailing RNAPS. In additionlgmged pauses involve the back-
tracking phenomenon [197, 171, 78, 48, 113, 49, 15, 50, 10&hich RNAPs move backwards
and may proofread the sequences of copied mRNA [63]. Recesdtigations show transcrip-
tional pausing plays important functional roles in cooadion and accuracy of gene expression
[51, 45, 1, 61]. However, the question as to how RNAP pausifegts transcription dynamics
remain unclear.

In this chapter, we focus on elemental short pauses. In todavestigate their influences
on the dynamics of transcription, we will use a model welbgtd in out-of-equilibrium statis-
tical physics, a driven lattice gas in one dimension, knowitha Totally Asymmetric Simple
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Exclusion Processes (TASEP) [115, 112, 29, 28, 34, 30, 14,7123]. This TASEP model
is commonly used to study the different dynamical aspectsaofcription [62, 164, 31, 109]
and translation [23, 17, 161, 172, 24]. However, in most ekthstudies, the TASEP model
is analyzed under the mean-field approximation which néglé®e particle correlations and
simplifies computations. Meanwhile, it is shown that, sushre[23], when the particle cor-
relations in the model become nonneglectable, the meahdpgroximation biases the results
of interest. In particular, Klumpp et al. [109] found that RRAvausing seriously increases
the correlation between RNAPs by numerical simulations. rd@foee, a more genelized ap-
proache is necessarily needed for understanding the dgahmie of RNAPs pausing. Here
we will propose a statistical approach to study the TASEPehadd provide insights into the
parameter space where the mean-field approximation aréleoteabe applied.

This chapter is organized as follows: first, we will explaimwhelemental pauses can be
modeled by a TASEP system. We will show that the dynamics efsifstem can be classi-
fied into three regimes according to the dependence of trigtiso rate on pause duration:
short pause case where mean-field approximation works aadadwtical transcription rate is
given, intermediate and long pause cases where mean-fietdagh fails. Then we suggest a
statistical approach in which transcription rate is cdntied by all system configurations char-
acterized by the number of paused particles. After that, Wepply this approach and obtain
expressions of transcription rate for short pause and langg@regimes. At last we discuss our
understanding of intermediate pause regime and give a gengression of transcription rate
for three regimes.

4.2 Mean-field approach and its limitation

First, we explain how to model elemental pauses using theEFABiodel. We remind that
elemental pauses occur in a stochastic fashion with weakeseg dependence and are not
affected by the pushing of trailing RNAPs. These importaatiees allows us to consider an
homogeneous system. In TASEP model, the gene sequence &eda@s$ a one-dimensional
discrete lattice ofV sites; RNAPs are modeled as particles hopping from site ¢ovgih a
constant probability determining the elongation rate, only if the next site is aotupied,
to take into account the fact that RNAPs can not overlap. Festdke of simplicity, we will
neglect the fact that RNAP footprint may extend over sevete$sand we moreover assume
that the occurrence of pausing is completely random at tel$ SRNAPs thus are modeled to
have two states in each site: active or paused. In the actte RKNAPs may move forwards
along the lattice provided the next site is not occupied lotlzer RNAP, or they may enter into
the paused state with a frequentyRNAPs remain in paused states for an average time of
before returning the active state (Fig 4.1).

We now indicate the orders of magnitude of some biologicatipeters involved in our
model. The frequency of elemental pauses is about™! and the duration is¢ 1s [56, 107,
119, 55, 57]. The average elongation raten vivo is found in the range o020 — 80 nt/s
[191, 39]. In fact, these rate measured are already sloweah dy the pauses, so that the
elongation rate without pauses should be much larger. Immgel, we choose an elongation
rate givere = 100s~* as in [109].

We recall that the fundamental quantity that we will studythie particle current. The
current is the mean flow of particles across the lattice, ithdhe average number of particles
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O 00

Figure 4.1: Model of transcription and RNAP pausing. The size of RNAP footprint is
neglected. Active RNAPs (white circles) hop from site to siyestochastic single-nucleotide
steps with elongation rateprovided the next site is not occupied. Active RNAPs can switc
to an paused state (black) with a pause frequefyand remain- amount of time in average
before returning to the active state. Figure modified fro09]1

going through a site per unit time. Since it can be interpretethe average number of RNAPs
going through the sequence per unit time, the current qooregs to the transcription rate. Our
goal is to understand how pauses affect the transcriptierarad by how much. In steady state
conditions, the current is the same at each site so that alglalmscription rate can be defined.

Under the mean-field approximation where the probabilitgrog site being occupied does
not depend on that of its next, the time evolution of activd paused states at sitecan be
described by the following differential rate equations:

dai 1
7 cai_1(1—a; —p;i) —e€ai(1 — a1 — piy1) — fa; + —Di (4.1a)
o fa P (4.1b)

wherea; andp; are respectively the density of particles in active and pdissates in sité ¢ is
the elongation rate. The terem,_; (1 — a; — p;) describes the arrival at sitef active particles
coming from sitel — 1 (also named incoming current) and;(1 — a;1 — p;+1) describes the
loss of active particles leaving from sitéo i + 1 (outgoing current). In steady state conditions,
the incoming and outgoing currents are the same at eactssitbat a global current can be
defined. fa; is related to active particles entering into paused sta}tda,%@ to paused particle
becoming active.

In steady state, the densities of active and paused partalebe expressed by:

P (4.2)

wherep; = a; + p; is the total density for sité The current (transcription rate) of the TASEP
model depends on boundary conditions [115, 112, 29, 28;lwvten be open or periodic. With
open boundary conditions, particles enter the one-dimeasiattice with a constant probabil-
ity o representing the initiation rate and exit from the end didatwith termination rates.
Likewise, for simplicity, we can use the TASEP system withigdic boundary conditions
(also called ring TASEP) which is a uniform and closed syst&he total number of particles
is conserved and all sites are identical because of symmésyrecalled in Chapter 1, the
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current of the TASEP without pauses is correctly predictethban-field approximation and is
given by

J =ep(l—p)

wherep is RNAP density for all sites. So the current is proportiowethte elongation rate
and reaches the maximum value for the RNAP density.&f For small density, transcription
rate is low because there are few particles; when the ddmsttymes large, the probability that
the site next to a particle is occupied is large so that theeatirs reduced by particle exclusion.

We thereafter adopt the TASEP system with periodic boundangition to study the in-
fluence of RNAP pausing. By incorporating RNA pausing, the TASE®em is still uniform
because the occurrence of an elemental short pause doespaotdion location. Although the
TASEP model with periodic condition has little resemblataé¢he transcription process, it is
sufficiently simple for us to derive some analytical resuliseir results will provide us with
crucial insights into the influence of RNAP pausing, such ag th@ current-density relation is
modified.

In the TASEP system with periodic boundary condition, akésiare identical, and thus
pi—1 = p; = p. The expression of current in the mean-field approximatbitained by solving
Egs. (4.1) and recognizing thdt= ea(1 — p) (i.e., there can be an advance if site is occupied
by an active particle and next site is empty) becomes:

(1-p) (4.3)

G
_1+pr

Eq. (4.3) predicts the transcription rate taking into actdbbe RNAP pausing under mean-
field approximation. Note that it depends only on the prodadfigtause frequency and pause
durationr. Compared with the case without pausing, the transcriptitis reduced by RNAP
pausing with a factor ofj—fT which results from the fact that only the particles in aettate
contribute the current. So the TASEP model with pausing eamapped to the TASEP model
without pausing by changing the elongation rate.

In order to assess whether the mean-field approximationgisexbrrectly the transcription
rate, we will compare Eq. (4.3) with the numerical stocltasitnulation. Here we specify that
in this chapter, all numerical simulations are performecbading to Gillespie Algorithm [82].

Before that, we normalize rate constants of TASEP system negpect to the elongation
ratee, so that the new expression of current is (4.3) with 1. By using the Gillespie Algo-
rithm [82], the current of the TASEP model with pausing andgaiic boundary conditions is
numerically estimated for values ranges of pause duratidvioreover, the value of 7 = 0.1
is fixed, so that the fraction of paused particles remainsteon and variations in current will
only be due to correlations between particles. If the mead-&pproximation was valid across
the entire range of parameter values, the value of the duisheruld be constant.

As Fig 4.2 shows, the expression (4.3) derived under me&hdgproximation predicts
well the current when the pause duratiois smaller than the characteristic time scale of elon-
gation which is here normalized as one (this regime we cadllistau regime). In this regime,
pausing only affects the residence time of particles at sdeland does not induce traffic jams,
thus the mean-field approximation is valid. However, whes pause duratiom becomes
comparable to or larger than the characteristic time sdaédomgation (called intermediate-
tau regime), a paused particle can remain in one site forgintme to block other particles
coming behind it, and traffic jams are observed frequentth@lattice. Correlations between
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Figure 4.2:Transcription rate as a function of pause durationr with fr constant By us-
ing a TASEP model with periodic boundary condition compigsV = 100 sites, transcription
rates (red stars and circles) are numerically computedédttespie algorithm [82] for RNAP
densitiesp = 0.1 andp = 0.5, with f7 = 0.1 being kept constant. According to Eq. (4.3), the
transcription rate predicted by mean-field approximate®oanstant at fixeg'~ and is repre-
sented by green curves. However, according to the numestinalations, we distinguish three
different dynamical regimes: the short pause (smpallegime where mean-field approxima-
tion works well, intermediate pause (intermediatend long pause (large) regimes in which
pausing reduces more or less severely transcription raddoddcally relevant parameter values
are found in the intermediate regime.
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particles become important and significantly affect thagcaiption rate. The current is de-
creased rapidly. In the extreme case whers very large (long-tau regime), the dynamics of
system is mainly driven by pausing, and the system seemsth te another special regime,
as the current does not depend on the pause duration and é&stikety constant again.

So according to the dependence of transcription rate on dlasepduration, we classify
the dynamical behavior of the system into three differegimes: short-pause, intermediate-
pause and long-pause regimes. The mean-field approximatdss only for the short-pause
regime. An important question is to which regime the rangdiofogical parameters does
correspond. Since pause frequency and duration are naedais/ = 0.001,7 = 100, they
are clearly in the intermediate-tau regime. However, tapson and translation modeled by
TASEP systems are usually theoretically studied via themiiedd approach, which works
only for short pauses. Hence the study of the intermediates@and long-pause regimes offers
particular interest despite of their mathematical diffi@d. In the next section, we will propose
a simple statistical approach to compute the transcripatmas a function of pause duration.

4.3 Probability of configurations associated with pause num-
ber

In order to compute the transcription rate curves of Fig w@ have considered a finite-size
TASEP model (number of particles and sites are both finitepbse of intuitive consideration
and mathematical simplicity. However, commonly encowdegenes feature usually thou-
sands or even millions of nucleotides, so that it is necggsaconsider also the infinite-size
limit (where the numbers of particles and sites both tendhtimity), not only for its physi-
cal interest, but also to take into account the fact that dyoal behavior may be dramatically
changed during the transition from finite size to infiniteesi¥Ve explain the statistical approach
first for finite-size TASEP system and then in the infiniteedimit.

In a finite-size TASEP system with periodic boundary cooditivhereC, particles move
forwards alongV discrete sites, we can classify configurations accordirntQeganumbenm of
paused particles. To be specific, if there are no pauseciesrion the TASEP in ring, we
define it as a zero-pause configuration; if all particles aespd, we define it aSy-pause
configuration. So there are in total + 1 pause configurations. As the system evolves in
time, it will undergo transitions between different configtions, spending a certain amount
of time in each configuration. In each configuration, ther m& a contribution to current.
For example, the contribution to current of the zero-paws#iguration isp(1 — p), like the
TASEP model without pauses. Note that there is a contributicurrent, so long as there are
active particles with empty sites in front of them so thaytban advance. Even though paused
particles occupy some sites, current may be still conteithsb long as there are active particles
whose next sites are empty (Fig 4.3).

Therefore, not only the zero-pause configuration contebtd current but also all configu-
rations containing paused particles except of coursé€thgause configuration, where there is
no active particle. However, the contributions to curreéndiferent configurations are gener-
ally very different. We assume that the total current of thédisize TASEP can be expressed
for any value ofr as a sum over configurations with specific number of pauses:
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Figure 4.3:Current contribution of configurations with constant number of paused par-
ticles. In TASEP model of finite size with periodic boundary corwliti Cy particles are dis-
tributed in a ring of/V discrete sites. Even though paused particles occupy soeseesid block
the movement of some patrticles behind them, there are atitributions to current so long as
there are empty sites in front of active particles.

Co
Jr=>Y P, (4.4)
n=0

where P, is the probability ofn-pause configuration, ang, is its contribution to current.
Two extreme cases are already knowfy = p(1 — p) and Jo, = 0. Eg. (4.4) involves
two quantities, the probability’, of n-pause configuration and the associated contribution to
current.J,. Interestingly,P, is independent of configuration of occupied sites, in otherds,
P, is simply equivalent to the probability of havimgpaused particles in TASEP model. Next
we analyze how to compute the probability:epause configuration in the finite-size system.

4.3.1 Probability of configurations with pauses in the finite-size system

Transitions between different configurations occur witiedixed rates so that we can expect
that there is a well-defined probability distribution of ebgng a given configuration at some
time. Here we write the master equation [189] that desctitbesime evolution of probabilities
for these configurations as follows:
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P 1
dro = 2P — fCyP, (4.5a)
dt T
dP 1 9
= [CP— —Pit Py~ f(Co— )P, (4.5b)
T T
e = (4.5¢)
dp, +1
L = J(Co—(n—1)Ps - an T~ f(Co—n)P,  (4.5d)
e = (4.5e)
dP, C
dCO = [Py — 2P, (4.5f)
t T

Egs. 4.5 are basic rate equations which describe the timeteroof probability P, depending

on the probabilities?, ; and P,,; to be in neighboring configurations and on the transition
rates between these configurations. The steady state o#dExgives the stationary proba-
bilities. Note that equations defining the steady state tiigesame solution as the principle
of detailed balance would give (the probability of trarmitibbetweem andn + 1 pauses is
the same as for the reverse transition). By computing the faat, we find the following
expressions for the probabilitigs,.

1
PO - MT)CO (46a)

P, = (fr)"C&Fo (4.6b)

where C¢, is the binomial coefficient. Note that the probabilif§; of havingn pauses is
independent of the pause duratiorand depends only on the parameter prodfict This
expression can also be recovered as follows. Ther€gparticles, and for each of those, the
probability of being in pause @_{Lﬁ The probability to have paused particles is given by the
binomial distributionB(Cy, 1_{%), which is indeed the same solution as in Egs. (4.6).

So in the finite-size TASEP system, the probability of hawingauses is simply the Bino-
mial distribution for all three regimes. We next study theganumber probability distribution
in the infinite-size limit.

4.3.2 Probability of configurations with pauses in the infinite-size lint

For TASEP system in the infinite-size limit, the total numbéparticles is infinite as well as
the number of sites, and we must use different parameteestide the system. We define an
intensive continuous parameter, which is the fraction (0, 1) of paused particles:

n
Co

In this limit, the configuration is defined according to thaciion of paused particles. We
analyze now how to find the probability distribution functiPDF) for these configurations.
In the finite-size TASEP system, the probability of thgpause configuration is simply the
Binomial distribution written a3(Cy, p) with p = I”_ . When the total number of particles

1+f7°
becomes sufficiently large, an excellent approximatiomé&RBinomial distribution is given by

(4.7)

n =
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the continuous Normal distributiaN (Cop, Cop(1 —p)) with p = 1-{7}7- Based on Eq. (4.4), the

expression of the total current for the case where numbearicges is large can be written:

T = /O © p)J(n)dn

1
0 \/%\/ Cop(1 —p)

(—p)2 (4.8)

1 1 T op(0-p) N
=[] ———e ~ % J(n)dn
0 /or P(lcgp)

_ (n—Cop)?
e 2Cr(-r) J(n)dn

1
- / P()J(R)di
0
where
1 - (ﬁ(lf)z)
P(f)= ———¢ "% (4.9)
\/% P(lcgl’)

with p = f7/(1 + fr) is the probability of having the configuration for which thradtion of
paused particles is betweérandn + dn, and.J(n) is the contribution to the current associated
with that configuration. The distribution (4.9) possesses@erage ofp and a variance of
p(1 — p)/Cy (Fig 4.4). When increasing gradually the total number of ipled, the shape
of PDF becomes narrower and narrower, and the maximum eeh&trthe average becomes
higher and higher. In the infinite-size limit where the tatamber of particle€’, is infinite,
the variance is zero and the probability density functiothes Dirac function centered at the
average of the fraction of paused particlés = f7/(1 + f7). Thus, the expression of total
current in the infinite-size limit becomes:

Jr = J((R))
fr (4.10)
B J(l + fT)

Therefore, we find that in the infinite-size limit, the totalrent is generated by the configu-
ration with a fractionfr/(1 + fr) of paused particles. This represents a dramatical change
for the PDF of configurations as well as for the expressiormt tcurrent compared with the
finite-size case.

In this section, we have established the probability of cumlitions corresponding to a
given number of fraction of paused particles. To understardvariation of transcription rate
in the three regimes, determining the contribution to auircé different configurations will be
our aim in the following sections. Our strategy is first todstihe short-pause and long-pause
regimes for both finite-size and infinite-size systems, &t to study the intermediate-pause
case which is actually the transition between the two abiowvé tases.
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Figure 4.4:Probability density function (PDF) P(n) of configuration with the fraction of
paused particle between between and n + dn. When the size of TASEP model increases
gradually, this Normal distribution becomes narrower aadower and the maximum value of
PDF is approaching to infinite. In the limit of infinite sizeDP turns to be the Dirac function.
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Figure 4.5:Contribution to current as a function of the number of pausedparticles in the
finite-size TASEP model The blue solid curve is obtained by Eq. (4.11). Differeniboced
symbols represent numerical estimations for fixed parametuesN = 100, p = 0.5. Cer-
tain estimations deviate from the curve because of staidluctuations, since these configu-
rations have lower probabilities. Therefore, the exprsél.11) predicts well the contribution
to current of configurations.

4.4 Transcription rate in short pause limit

4.4.1 Finite size system

We first seek to compute the contribution to currépiof n-pause configuration for the finite
size system in the short pause limit, where the mean-fieldoappation still works. As the
pause duration is sufficiently short, particles are inddpen of each other so that the active
particles are not able to sense the presence of pausedgmriibe movement of active particles
generates the current, so intuitively the current contidlou./,, is proportional to the number
of active particles in the configuration, with = p(1 — p). The expression of,, is written as
follows:

Jo= S0 p) (4.11)
0

where the term“c—*on is the probability for a particle to be active (which is adlydhe

fraction of active particles), so thgtc%"p is the density of active particles for one site- p
is the probability that the next site is not occupied by aapfiarticle. Eq. (4.11) first confirms
two extreme casesl, = p(1 — p) and.Jg, = 0. In addition, .J,, as a function of number of
paused particle, does not depend on pause duratioand not on the parameter prodyfet,
either. As Fig 4.5 shows, the expression of the contributiocurrent of configurations given
by (4.11) agrees well with numerical simulations.

Combining our expression fok, deduced in short pause limit with the probabilRy of the
n-pause configuration in the general expression (4.4) yidgeddollowing expression of total
current:
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Co
Jr =Y _ P,J,
n=0

C
- e, o (Co—n (4.12)
_,12%(1+fr)000p(1 e?
_p(l—p)

1+ fr

Thus we recover the expression of total current derived froean-field approximation
(Eq. 4.3), regardless of the size of TASEP model. Next, wese#rch for the total current in
short pause regime for the infinite-size limit.

4.4.2 Infinite size limit

In the infinite size limit,J/(n), the contribution to current of the configuration with a fiao 7
of paused particles can be obtained from the finite-sizessgoon (4.11):

J(n) = (1 —n)p(1—p) (4.13)

where(1 — n) is the fraction of particles which are active. According he telation (4.10),
only the configuration with the fraction of paused partia@gen by7—— contributes to the

1+ f7
total current. By substituting = _{}T in EQ. (4.13), we obtain:

p(1—p)
Jr = 4.14
4 1+ fr ( )

In conclusion, we have studied the short pause regime amdifine same expression of the
current for the finite-size and infinite-size TASEPSs, the predicted by mean-field approxi-
mation. Thus, the transcription rate does not depend onzbetsystem. In the next section,
we will investigate another particular limit, that of veignig pauses.

4.5 Transcription rate in the long pause limit

4.5.1 Typical dynamical behavior

To investigate the behavior of the TASEP model with pauseeuperiodic boundary condi-
tions in the long pause limit, we again first consider the éhsiize case, for the sake of math-
ematical simplicity. We first discuss qualitatively the iggd dynamical behavior of TASEP
model in this regime, as it will give us some inspiration taide the expression of current.
When the average pause duration is sufficiently large, a da@dAP may block several
RNAPs and force them to wait for a certain account of time, ruvhich they will proba-
bly enter into paused state themselves. We define the ensefrdopaused particle in head and
its following particles, forming a contiguous block, as aster. In the long pause limit, clusters
of large size can easily be formed. In consequence, theclggrtre highly correlated. As par-
ticles confined in clusters cannot produce current by mofongards until the moment when
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Figure 4.6: Typical dynamical behavior in the long pause limit The probability distribu-
tions of the number of clusters are shown for different valaéthe pause duration, other
parameters being kept constanthat= 100, p = 0.5 and f = 0.1. A cluster is defined as a
collection of contiguous particles with a paused partiolééad. In the long pause limit, the
most probable configuration is a single cluster.

clusters collapse or particles escape from them, the simbs@mbers of clusters significantly
determine the current.

We have computed the number of clusters in our TASEP modehwlagise duration is
gradually increased (Fig 4.6). When the pause duratias small or intermediate, several
clusters coexist, whereas in the long pause regime, onlyhage cluster is found along the
TASEP ring. This implies that all paused particles are caafimside of this single cluster
(Fig 4.7). For most of the time, all particles, active or padisare confined in this cluster, and
no contribution to current is observed. When the pausedgbaiti head becomes active, it is
released from the cluster and moves forwards without anlsian, because all sites before it
are empty. It is quickly followed by the active particles behit which can also move rapidly.
When all active particles at the head have “evaporated” hemgiaused particle becomes the
head of the cluster, particles behind the new head remainmingbile. As the round-trip time
of moving particles is much shorter than the pause duratidheonew head particle, released
particles go around the ring and join the cluster again abtiter end. After this transient
flow of particles, we are back to the single immobile clustarfiguration. Therefore, the only
contributions to current come from active particles redebBom the single cluster after the
paused particle in head returns to active state.

So the typical dynamical behavior for the finite-size systerthe long pause limit is one-
cluster dominating, which provides us an important clueddwe the current contribution of
n-pause configuration.
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Figure 4.7: Contribution to current in the single-cluster regime of the long pause limit
Single huge cluster containing all particles is found forsinof the time and no current is
produced. When the paused particle at the head returns te atite, a number of active
particles released from the cluster move forwards alonglilagn and contribute to current. As
the round-trip time of active particles is much shorter thi@pause duration, they rejoin the
single cluster again before the another paused particlead becomes active.

4.5.2 Currentin an artificial model with fixed number of paused particles

As a first step toward computing the current for the TASEP énldimg-pause limit, we consider
an artificial but simpler model where the numbenf paused particles is fixed. This will allow
us to estimate the contribution to current of thipause configurations.

In this artificial model, we havé, particles on a one-dimensional lattice withsites, of
whichn particles are paused with an average pause durationAigtive particles hop from one
site to the next one if it is not occupied, which contributesdirrent as in the TASEP model.
However, active particles do not spontaneously enter h#gaused state. Each time a paused
particle becomes active again, we randomly choose one dpaoe active particle and turn it
into paused state in order to keep the number of paused|partionstant.

In the long pause limit, single-cluster behavior is alsoniduif only because the pause
duration is much longer than the round-trip time of activeipkes. In the same way as for the
TASEP model, only active particles released from the sieglster contribute to the current
after the paused patrticle in head has become active. Sieceutimber of paused particles is
fixed, the head of cluster becomes active again after an gavefharation ofr and a certain
number of particles can escape from the cluster. The cuorgginates from the movement of
these particles. A key point is that these particles canradtena complete round-trip because
of the sites occupied by the cluster. The expression of theufor the model with a fixed
numbern of paused patrticles is the following:
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Figure 4.8:Contribution to current J2 as a function of the number of pauses for different
parameter sets in the artificial model with a fixed number of paised particles Analytical
and numerical results are computed in the finite size systémparametersvV = 100 and

p = 0.5. Solid curves are computed from Eg. (4.15) for differentieal of pause duration and
agree extremely well with the simulations (representeddnous symbols), independently of
the value off .

G
Ji =" (1-p)

_ Np(l-p) (@19

(n+ 1)1

whereCy/(n + 1) is the number of active particles released from the clusteenwpaused
head becomes active. Note that this factor involvesl, notn, because we put systematically
another active particle into paused state before the haéidipan pause becomes active so that
number of paused particle actually is transiemthy 1 but returns to: immediately thereafter.
1 — p is the fraction of sites not occupied by the cluster. The esgion (4.15), which agrees
well with numerical simulation for different ranges of parater producy r (Fig 4.8), involves
the produci(1 — p) so that the contribution to current is still a symmetric ftioie of particle
density. The contribution to current efpause configuration in this particular model depends
on the size of systenV, and it is inversely proportional to the pause duratiomvhich is not
surprising given that an average time intervalahust elapse between two releases of active
particles from the cluster.

Fig 4.8 shows that the expression (4.15) fgrcaptures extremely well the contribution to
current of ther-pause configuratiori? in the artificial model, which is extremely important to
find the J,, in our original TASEP model. Even though the number of payssticles is not
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fixed in the latter, the typical dynamical behavior and titmss between configurations are
quite similar.

4.5.3 Current expression for the finite-size TASEP model

Now that we have established that the typical dynamical\aehan the long pause limit is the
single-cluster configuration, and that we have derived tiribution to current of,-pause
configuration in an artificial model with fixed number of padiggrticles, the contribution to
current.J,, of n-pause configurations in the TASEP model can be obtained.

Since the average pause duration of paused particles aettk df the single cluster is
much larger than the round-trip time of active particlegréhis no current most of the time.
When the head particle becomes active, the number of pausédgsais reduced by one. After
that transition, a current is produced by active partickdsased, which travel around the ring
until they hit the other side of the cluster. The dynamicg after a transition between two
configurations is therefore the key point for the contribatto current, both in the artificial
model and TASEP system.

Before the fixed pause-number expression (4.15) can be ugbé itontext of a normal
TASEP, a subtle point has to be made. We recall that the duassiociated to a certain number
of pauses can be defined as being proportional to the avertagbean of particles making a
round trip in this configuration divided by the time spent lmstconfiguration. This means
that whenever a particle is advancing in a numerical simariatve determine the number
of paused particles in the TASEP at that time, and we assoitiat contribution to the current
with n-pause configuration.

In the artificial model with a fixed number of paused partictege waiting timer and the
numbernC—Jf1 of released particles are both counted fortheause configuration. However, in
the TASEP model where the number of pauses varies in timeeeé to be very careful when
assigning a waiting time and a contribution to current todbefiguration of a given-number
paused particles. In particular, assume that just beferpadlused particle at the head of cluster
becomes active, there anet 1 paused particles. When the head become active jithe1()-
pause configuration becomes thgpause configuration. Theﬁo—1 active particles are released
from the cluster and contribute to the current. Therefdre waiting timer should be included
in statistics for {+ 1)-pause configuration rather than fepause one, while the advance of the
n% particles released contributes to the currentfgrause configuration. To account for this
fact, a simple prescription is to renormalize the contiuto current/,, by a factor7,, ., /7,,
whereT,, is the time spent so far in-pause configurations, so that the number of advances
occurring at times when there are exactlypauses is divided by the correct amount of time.
Fortunately, we know this ratio, becauggis by definition proportional to the probabilitk,
of havingn paused particles. Therefore, the expression of contabut current/,, reads:

_ Np(1 —p) T
"o (n+ )1 T,
_ Np(l—p) Py
(n+ 1) P,
_ Np(l—=p) ,Co—n

(n+1) fn—l—l

(4.16)
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Figure 4.9:Probability P, and contribution to current J,, of n-pause configuration Curves
for different values off r are obtained according to Eq. (4.6) and Eq. (4.16). Theyeaged!
with results from numerical simulations, shown by symbdldifierent shapes and colors.

Note that this expression contains the terth — p) and alsoN andCj. It is easy to see
that the contribution to current is reduced if we increagerthmber of paused particles while
keeping their total number constant, as expected. As shovgi4.9, the expression (4.16)
predicts perfectly the numerical estimations of thefor different ranges of parameters.

We have discussed the fact that the contribution to curef] is generated by the transi-
tion from a (. + 1)-pause configuration torapause one. The general expressiod,ppredicts
a contribution of zero-pause configuration, which we wilhd& J;, corresponding to the tran-
sition from al-pause configuration toapause configuration. The question then arises whether
the contribution/; should be taken into account in addition to the normal tégra- p(1 — p).
We tested which of the two expressions= p(1—p) or Jo+ J; = p(1—p)(1+ fCyN) agreed
better with numerical simulations, and found that the first avas clearly more accurate. In
the following we will therefore only consider the contritart of the.J,, given by Eq. (4.16) for
n> 1.

Given the contribution to current, of the n-pause configuration, and the probability
of havingn-pause configuration, we can construct the expression aif¢atrent according to
relation (4.4):

Co

p(1—p) Ce,(JT)" Np(1—p) ,Co—n
(1+ fr)co Z (14 fr)¢ (n+1) / n+1

Jp = (4.17)

n=1
where theC7, are binomial coefficients. The expression (4.17) of theemnirfor the finite-
size system in the long pause limit is relatively complex, gmedicts extremely well the total
current (Fig 4.10). Note that for very long pause duratidhs,total current tends to a finite
constant(f&;fgo which is not negligible when the size of the TASEP remainslisnidis is
due to the fact that the probability of having no particlepause is not negligible.
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Figure 4.10:Current as a function of RNAP density in the long pause regime Values of
the total current computed by numerical simulations fofedént values off = with N = 100
in the long pause regime (circles, squares, diamonds arg).stdey agree very well with the
predictions of formula (4.17) which are represented bydsalirves.

It is interesting to consider more closely in Fig 4.10 how th€p) curve evolves as a
function of the producir, which determines the fraction of paused particles. Wheretisea
small fraction of paused particles, for example wifen= 0.01, the dependence of total current
on density remains symmetric with a maximum for the halfugsed ring, as in the short-pause
regime. In contrast, when the fraction of paused particlomes larger, the curve becomes
more and more asymmetric, and eventually decreases manudlyrwhen the particle density
increases. In the latter case, the highest transcriptithisaobserved at small density. In
addition, the total current is globally reduced wheénis increased. Thus RNAP pausing in the
long pause limit qualitatively changes the dynamical be&rasompared with the short pause
case.

We can now make a summary of the behavior of the finite-sizeEFRA® the short-pause
and long pause limits. Transcription rate (or current) ldigpthree different regimes according
to pause duration (Fig 4.11). In the short pause limit, psiare uncorrelated, thus the current
does not depend on pause duration and is constant. In theplumge limit, particles most
probably remain in one huge cluster and are highly corrélakbe current is also approaching
to a constant value when pause duration is infinitely larger € pression of total current in
both limits agrees well with numerical simulations. Eveamée end of the intermediate pause
regime, where the single-cluster assumption fails, issquitll approached by our expressions.
Note that both expressions overestimate the current whpledpn the intermediate pause
case.
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Figure 4.11: Transcription rate of the finite-size TASEP system in the shor pause and
long pause regimesThe mean-field value of current (4.12) valid for small valoéthe pause
duration7, shown by a dark green curve for= 0.5 and by a green curve for = 0.1, is
obtained under mean-field approximation. The value of thession (4.17) of the current in
the larger regime, obtained in the single-cluster approximation Jasted as a blue curve for
p = 0.5 and an indigo curve fop = 0.1. Both of them agree with numerical simulations in
their respective domains of validity.

4.5.4 Current expression for the infinite-size TASEP model

In previous sections, we found that there is no differencéheshort pause limit between
finite-size and infinite-size systems. Here we will estdibtise expression of total current for
the infinite-size TASEP model in the long pause limit, and par it with that in the finite-size
TASEP.

We begin by evaluating the contribution to currdiit) in the infinite-size limit, where is,
defined as before, the fraction of paused particles. Obljgtis impossible in the infinite-size
limit to have a single cluster. Rather, there are infinitelyngnelusters, which should however
have approximately the same size distribution as in the o&sefinite size. As before, the
current only occurs when paused particles at the head ofsgeclbecome active. We therefore
expect that the result obtained in Eg. (4.16) also holds &edethus that configurations with a
fractionn of active particles contribute a current:

J(7) = u(i ~1) (4.18)

n n

This expression is much simpler than that in the finite-s&8HP model. The total current
is given by the contribution to current of the most probabéetion of particle in pausé:) =
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(4.19)

where we purposely keep the tepifl — p) as a factor to conveniently compare our result with
expressions of current found in other limits. The total eatris inversely proportional to the
pause duration, so it always decreases when pause duration is increasat goes to zero

Long-tau
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Figure 4.12:Comparison of currents for the finite-size and the infinite-sze TASEPs in the
short, intermediate and long pause regimesNumerical estimations of current are carried out
with parameterg = 0.5. N = 100 (black stars) considered to be representative of a finde-si
system, andV = 1000 (red cycles) which is already approaching the infinite-§iné. It can

be seen that short pause and intermediate pause regimes artuenced by system sizes. In
contrast, finite-size and infinite-size TASEPSs display dracal differences in the long pause
limit. Current tends to a constant for finite size, but deaeandefinitely in the infinite-size
case and is asymptotically proportionalltor. Expressions obtained for the short pause (4.14)
and long pause limits (4.19) predict well the variation ofrent.

The variations of the total current with pause duration ia ithfinite-size and finite-size
TASEPs are shown in Fig 4.12. Note that the short pause ardmetliate pause regimes
of these two cases are perfectly superimposed, so that tweseegimes are independent of
system size. The only difference occurs in the long pauseneegin a finite-size system, the
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total current is approaching to an asymptotic constantpirtrast, for infinite-size limit, it is
just a continuation of intermediate pause case and there @ear boundary between them.
The current decreases with pause duration to zero. Mostrianty, the expression of current
given by Eq. (4.19) predicts perfectly this long pause regiar infinite-size limit.

In this section, we have discussed the dynamical influendeaoEcriptional pausing in
the long pause regime in both finite-size and infinite-sizgesps. In the finite-size system,
single-cluster behavior was found. This allowed us to dedhe contribution to current of
each configuration, as well as the total transcription reterént). The expression found for
both finite-size and infinite-size systems predicts colydht transcription rate. Next, we will
discuss how the transcription rate depends on the paustaturathe intermediate pause case,
for which the ranges of biological parameters are found.

4.6 Phenomenological description and transcription rate for
the intermediate pause case

In previous sections, transcription interrupted by RNAPSiag was modeled by TASEP sys-
tems with periodic boundary conditions. It is found that trenscription rate displays three
dynamical regimes, which we termed the short, intermediatelong pause regimes. We have
studied dynamical behaviors of the short and long pausenegfor which expressions of the
transcription rate were found.

Two processes control the dynamical behavior and affeastr@ption rate. One is the
movement of active particles which is determined by elogatate and particle density, and
the other is the blocking of particles by other particlesage that leads to clusters defined as
an ensemble of particles with a paused patrticle in head sassbed before.

In the short pause limit, the time scale of particle movenlatrger than that of pausing so
that a particle is only affected by the active or paused eatfiits own states, not sensing that
of its neighbors. Particles are not correlated. Occupaheach site is independent of that of
others. The transcription rate is well predicted by the rAgeld approximation. In contrast, in
the long pause limit, clusters dominate system behaviatidRes spend most fraction of time
in clusters, otherwise, they become active moving forwastsieen clusters. In particular, in
finite-size system, there is only one cluster on the TASE®. rin

In the intermediate pause case, the typical dynamical bheh&vthe coexistence of active
particle movement and of clusters. A particle may move fedsavithout being affected by
pausing, or it may be confined in a cluster. Sizes of clustexssmaller than those in long
pause regimes, however, there are much more of them. Marebrese small-size clusters
are quickly created once a particle switches to the pausee, stnd can easily collapse when
paused particles return to the active state. The intrigdymgamics of clusters can highly reduce
the transcription rate.

An approach which seems promising is that of studying thissitzs of residence time.
During its motion around the TASEP ring, a particle will sgatdifferent amounts of time on
different sites. A question is then how these amounts of aineedistributed. We may further
divide the residence time into different contributions eleging on whether the particle was
active or paused. There is a direct connection betweenemsidtimes and the current which
is in fact the inverse of the average residence time.

The simplest and most naive way to combine the formulas we bhatained for the short
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Figure 4.13Transcription rate (current) for three regimes. Numerical simulation is carried
out with parametersN = 1000, f7 = 0.1, p = 0.5. The theoretical expression (4.21) shown
by blue curve predicts the current in all ranges of pausetidura, including the intermediate
pause regime with certain deviation if compared to numésicaulations.

pause and long pause regimes into an expression working irire range of pause durations
is to assume that the average residence tjniethe sum of the mean-field residence titffe’
and of the mean residence tirtfé&” we have obtained in the long pause regime:

L KA S U (4.20)

(1—p) 1+ fr)(—p)

where it has been expressed that the long-pause resider&s fproportional to pause duration

7 so that the coefficierf? can be viewed as the average number of pauses encounterad whe
moving over one site (in other worda/P is the average number of pauses encountered over
one turn). We have also assumed that 1 (i.e., time is renormalized to the mean elonga-
tion time). Figure 4.13 compares the current predicted losnéda (4.21) with the result of
numerical simulations.

It can be seen in Fig 4.13 that expression (4.21) interpolegkatively well between the
short pause and the long pause limits but that there is a lead#fference with the output of
numerical simulations in the intermediate pause regimehiBiregime, indeed, the dynamics
is quite complex. Permutations of pausing between pastete rapid but each pausing is long
enough to create clusters of small or intermediate sizekbigactive particles. These clusters
of all sizes form and break down continuously.

This line of research is still being developed in our groud awill not specify its details
here, except that some interesting results have been etitdtor example, we have found that
in the intermediate regime, particles are blocked by sigaifily more pauses than expected
during one round trip around the TASEP. An explanation i¢ thaing the time in which a
particle is blocked by other particles queued behind a ghpseticle, waiting for the latter
to become active, one of the particles in front of it may ftesilter into paused state, thereby
masking the original paused particle. As the particle wiaitghis new pause to finish, a new

t, = tMF p tEP —MF | pr
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pause may appear, and so on. It seems that an effective siprésr the mean residence time
of the form
t, = M 4~ ()P, (4.21)

agrees quite well with numerical simulationsyifr) is a function varying typically between

2 for small =~ and 1 for large 7 (so that the long pause limit expression is recovered), with
a maximum aroun@.6. It remains how to explain with a simple argument the origirthe
correcting factory(7).

4.7 Conclusion

In this chapter, we have studied the dynamical effects of RiAspg on transcription using
a classical model of out-equilibrium statistical physittee so-called TASEP model with pe-
riodic boundary condition. We found that depending on paligation, the transcription rate
dynamics displays three regimes. The first is the short paagsee where particles are uncor-
related, so that the mean-field approximation works wel BREEP model can be mapped to
the model without pausing. The intermediate pause regirtteeisecond one. Pause duration
is larger than the advance time of active particles, so thasimg can block active particles,
thereby forming clusters, which reduces significantly tiaascription rate. The third regime
is the case where pause duration is infinitely large. Clustersinate the dynamical behav-
ior. We understood the characteristic dynamical behaviallahree regimes and found the
expression of the transcription rate in finite-size and itdtsize systems for short pause and
long pause limits which agree well with numerical simulatio We also discussed briefly the
strategy to obtain an expression of the transcription ratee intermediate regime and direc-
tions for future research. Our results emphasize the siginifiinfluences of RNAPs pausing
on the transcription dynamics. If the experimental tecbgi@s in synthetic biology allow to
tune the RNAPs pause duration, it will be very helpful to canfaur conclusions. In addition,
comparing the different behaviors of synthetic genes witiARBIpausing and of that without
pausing will provide insights into the dynamical role of RNARusing in the transcriptional
bursting.
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General conclusion and perspectives

Recently the interaction of biology with physics has favoseghificant advances. Physics not
only brings new experimental technologies to measure amdpuite molecular and cellular
events with high resolution, but also theoretical modelmiich provides powerful predictions
and can be further tested by quantitative experiments. ticpéar, modeling enables us to
reveal the design principles of various biological phenoanand to quantitatively understand
cellular processes. The focus of this thesis has been todtiely elucidate the influence
of some key ingredients on the dynamics of genetic netwaish as the time delay and
fluctuation in cellular processes, as well as RNA polymerBdAP) pausing.

This thesis is divided into three studies. In the first pad,amalyzed the combination of
various and multiple time delays and how it affects osa@ligtbehavior in a minimal genetic
network comprising a self-repressing gene. The seconddpaeioped a cumulant expansion
of the master equation which revealed the interplay betwkmtuations and nonlinearities
of genetic networks, and it showed how fluctuations can iedoiological oscillations. In
the third part, we investigated the dynamical effect of RNAsRigIng on transcription in the
context of a classical system of out-of-equilibrium stated physics: the Total Asymmetric
Simple Exclusion Process (often referred to as TASEP). Herwill make a brief conclusion
and perspective for each of three studies.

Oscillation arising from combination of various and multiple
time delays with non-linearities in a self-repressing gene

The ubiquity and importance of oscillations have been lgitéd in various biological sys-
tems, such as circadian rhythms [53, 75, 160, 40, 3, 32],cyeles [129], immune response
[66], cell growth/death [93] and embryo development [2,.8@fensive studies have focused
on the design principles of biological oscillations [10@71135, 145]. Several key ingredients
of oscillations have been revealed, such as negative fekdlbanecessary condition), delay
and nonlinear degradation. A typical feature of biologisgétems is that various and multi-
ple time delays are derived from different sources, in paldir are originated in transcription,
translation, molecule transport, phosphorylation, etorédver, nonlinear degradation is also
expected to be an important source of delay [135]. The coatioin of these various and mul-
tiple delays may be the key to explain the experimentallyeoked robustness of oscillations
[135, 175]. However, the combination principle of delaysl mat yet quantitatively studied.
There are two strategies of modelling delays commonly usdiierature: explicit delay and
so-called reaction delay, whose differences remaineceancl

Using a simple self-repressing gene circuit involving tvedays due to dynamics of gene
activity and to protein transport, analytical criteria fuscillations were found. They not only
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guantitatively unify key ingredients previously discussbut also demonstrate the trade-off
between delay and nonlinear degradation. There is a tine staelay at which the system
is most destabilized. As to the combination principle ofimas delays, explicit delays are
simply combined depending on their sum, whereas reactil@ayslenteract in a non-trivial way
so that how reaction delays are distributed among diffebgolbgical steps also influences
oscillations. For small delays or saturated degradatigpliet and reaction delays display
the same dynamical influence. In the general case, howéesr,influences are dramatically
different. An explicit delay always promotes oscillation deestabilizing the steady state of the
system. In contrast, a reaction delay can destabilize or stabilize the system.

We hope that our analytical comparisons between explidtraaction delays will guide
people to choose how to model delays in theoretical studidsalso experimental data analy-
sis. In addition, our conclusion that the non-trivial comddion of various delays can launch
more easily oscillations than a single delay equal to thain snay explain the robustness of
oscillations and need to be further tested experimentally.

Influence of stochastic fluctuations on the oscillation of a self-
repressing gene

Experimental and theoretical investigations [38, 105, 1183, 33, 151] reveal that genetic net-
works are subject to large fluctuations (or noise), as masti@mical reactions in cell involve
low copy numbers of reacting molecules. It was theoreyoddimonstrated that fluctuation is
unavoidable in biological systems [125]. Fluctuation i¢ always a nuisance, but can be a
useful mechanism responsible for phenotypic heteroge[i#, 120], coordinated expression
of a large set of genes and probabilistic differentiatioatsgies [195, 35, 5, 77]. However,
the influence of fluctuation on the dynamics of genetic netwas not fully understood, and
theoretical approaches that describe molecular fluctusaod are easily solved are needed.

To address these questions in a simple setting, we havedoars the minimal genetic
network consisting of a self-repressing gene. In this diysources of fluctuations are not only
the low copy numbers of mMRNA and protein molecules, but alealmamics of gene activity
which switches between the "ON" and "OFF" states. In orderudysthe dynamical influence
of fluctuations, we performed a cumulant expansion of theenasjuation which allows us to
appropriately describe the binary gene states. Using thisutant expansion, we reveal that
the interplay between nonlinearities of the genetic ctrand stochastic fluctuations dramati-
cally shifts the steady state predicted by deterministie emuations and induces oscillations
without requiring nonlinear degradation. The oscillatemme predicted by cumulant expansion
coincides with parameter region with most regular spikiegdvior characterized by the Fano
factor.

This study suggested an interesting approach to take irouat fluctuations in genetic
networks. This theoretical approach is easily solved owanigs deterministic form that com-
prises the average quantities and other-order cumulaptesenting fluctuations. It can also
applied for other biological systems that are subject tddiatons.
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Dynamical effects of RNAP pausing on transcription

Transcription is one of the most complex and tightly regedaprocesses in gene expression
[106, 192, 76, 18, 178]. During the past decade, the intnigulynamics of transcription in
which the macromolecular machine RNA Polymerase (RNAP) @aygical role caused much
interest. Moreover, RNAPs display some unusual behaviorgsglthe process of producing
mature RNA molecules, such as stochastic pausing whichtafffldAP traffic and probably
contributes to transcriptional bursting. According togg@molecule experiments, there are two
main types of pauses, elemental short pauses [56, 107, 8197pand prolonged backtracking
pauses [55, 57, 4]. The majority of pauses are elementat phaoises with weak sequence
dependence and are not affected by trailing RNAPs.

In order to investigate the dynamical influence of elemeraalses on transcription, we have
considered the classical statistical TASEP system witlog&r boundary conditions to model
the transcription incorporating pausing. In the limit cadeere pause duration is short, we can
construct a mean-field model to analyze the transcriptitanerad site occupation. In the general
case where the mean-field approach no longer applies, weusa¢ka statistical approach to
study this model. We have obtained a good understandingeofdhious mechanisms driving
the transcription dynamics over the entire range of pausation, and in particular a theoretical
expression of transcription rate agreeing well with nucersimulations.

This study shows the critical role of RNAP pausing in trarnsoon dynamics (which pos-
sibly underlies the transcriptional bursting) and prosideeoretical analysis of how pausing
affects transcription rate in the parameter range wherensfiell approach fails. In this re-
gion, the dynamics is governed by the formation of clustetsgre a number of particles re-
main blocked behind a paused particle for some time and themeteased. Future studies
should be focused on the TASEP model with open boundary tlondj which resembles more
closely the transcription process, as well as on the dyrarmtiuence of backtracking, which
is another specific behavior of RNAPs.
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Appendix A: Linear stability analysis of

the ODE and DDE systems

A.1 Normalization and analytical criterion of the basic ODE

model

In the model proposed by Moraet al. [138], The kinetic of the self-repressing gene is de-

scribed by the following equations:

aGa

ﬁ = 90(1 - G) - OéoPG
dpP aG

ﬁ — E‘f‘ﬁoM—épF(P)
dM

ar to + MG — 0p H (M)

(A.1a)
(A.1b)

(A.1lc)

whereG, P and M represent respectively gene activity, protein and RNA capyipers. Then

the time, variables and parameters of Eqgs. (A.1) are nozedhhks follows:

T:—;, G=g, P=pPF, M=mM,
0 opPy A
Ph=— My=—> 0=—
0 O{O, 0 /80 bl 5M7
0, op Ao
T Py ot Modas
Io F(P) H(M)
== = — h - —_—

Thus Eqgs. (A.1) can be rewritten in dimensionless form:

% = 0(1-g(1+p)
% = a(l—g(1+p)+38(m— f(p))
Z—T = p+Ag—h(m)
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Egs. (A.3) have a single steady stage p., m.). The behavior of the degradation of proteins
and mRNAs in the neighborhood of the steady state is deschoyp#ue slopes:

s T _ dhlm) (A4)

dp lp=p. dm  Im=m.

For the sake of simplicity, here we assume perfect repnessien the gene is bound by a
protein (« = 0) and a large threshold?, > 1) leading ton: ~ 0. Under this approximation, the
Routh-Hurwitz stability criterion [89] indicating that theopf bifurcation occurs is specified
as:

H=(0s+u)(ds7, + 1)(ur, + 1) — g20A7, < 0 (A.5)

wherer, = g,/6 denotes the time needed for gene response to a suddenoragéfroteins.
0 s andu characterize respectively the degradation rate of pretaid mRNAs. In order to
simplify this criterion, both degradation rates are repthby their suns = ¢ s+« and product
~v = 0 su. Therefore, the criterion (A.5) becomes:

H=0c+(*—g20N)T+0oy7> <0 (A.6)
The criterion (A.6) is renormalized as follows:
2 22 2 T
Uc:g*vé)\)gzo-cXL’y:E 40-677_:_ (A7)
UC

So the following expression of the Routh-Hurwitz criterigrobtained:
€2 ¥?

H(S, T) =% ( T? 4 (2 — %)T + 1) <0 (A.8)

A.2 Linearization of the DDE system

The model with explicit delays describing the simple negefieedback loop of a self-repressing
gene is expressed as follows:

Y= 0 gl1 ot~ 7)) (A.92)
W~ Xy hm) (A.9b)
D= mit—m) - ) (A%0)

wherer; andr, are two explicit delays due to protein and mRNA transportspeetively. We
first search for the steady statg ,(m., p.), which is the same as for the model (2.2) without
transport delays. We also find that the steady state doesepend on the parametersand

7o. We use the linearization in the neighborhood of steady stat variables are rewritten as:
(9=9.+Ag,p=0p.+Ap,m=m,+ Am)whereA g, A pandA m are respectively small
perturbations of variables around the their steady statekeéping the first order of Taylor
expansion around the steady state, these perturbatioeg@nessed as:

Ag(t) = Agoe®t, Ap(t) = Apg e, Am(t) = Amg e, (A.10a)
Ag(t—1) =Ago et ™ Am(t — ) = Amg et =) (A.10b)
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Then we inject these variables in the neighborhood of stesale, we obtain the Jacobian

matrix:
. —0/9—¢ —bg 0 A go
0= 0 —ds—& et | x| Apo (A.11)
Ae =t 0 —u—£ Amy
where( is the eigenvalue. Therefore, the characteristic equati@genvalue is:

1+ g7y (6 o «Tg0 ) S\ g2 e (mtm)e
e + g7y ( 3+u)€2+ 54U+ 9.7y SUe su+dAgge _0 (A12)
9+Tg 9+Tg 9xTg
In this characteristic equation, only the sum of explicitage appears, so we suppose=
T1 —+ T2.

A.3 Stability analysis of DDE system

A.3.1 Stability analysis for a general case

In order to show the approach for the stability analysis oH3Dwe start with a general system
whose characteristic equation is written as:

Pi(§) + Py(&)e ™ =0 (A.13)

where¢ is the eigenvalue and is an explicit delay P, (£) and P, (&) are arbitrary functions of
eigenvalues. For the purpose of understanding stabilisyezfdy state, it is crucial to determine
the value of parameter, at which the characteristic equation has a pair of conjupate
imaginary roots. Therefore, we suppose that iw and Eq. (A.13) becomes:

Py (iw) + Py(iw)e™ ™7 =0 (A.14)
We express function®, (£) and P, (€) in the real and imaginary parts:
Ry(w) +1iQ1(w) + (Ra(w) + 1Qa(w)(cos(wt) — isin(wt)) =0 (A.15)

whereR; (w) and@, (w) are respectively the real and imaginary part®gf ), and( R, (w) and
(Q2(w) correspond to real and imaginary partsfaf¢). In separating real and imaginary parts
of Eq. (A.15), we obtain two equations:

Ry(w) + Ry(w) cos(wT) + Q2(w) sin(wr) =0
Q1(w) — Re(w) sin(wt) + Q2(w) cos(wr) =0
By squaring both sides of Egs. (A.16) and adding them, we eétei thecos(w7) and

sin(w7) and get an equation for the frequency of eigenvalue correfipg to the frequency of
periodic solution.

(A.16)

F(w) = Ri(w)* + Q1(w)? — Ry(w)* — Qa(w)* =0 (A.17)

We have focused on the critical value of parameters at wiieteigenvalues become a pair of
conjugate pure imaginary roots. Another important quessan which direction eigenvalues
cross the imaginary axis. We determinate the direction byfahowing expression:

d(Re&(7))

A.18
dr E=iw ( )

S = sign|
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dF(w)
dw )

S = sign(
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(A.19)

So the sign of derivate of the equation for eigenvalue fraquerossing the imaginary axis
measures the transition of system.Slis positive, eigenvalues cross the imaginary axis from
left to right, which means the steady state becomes unstakkevise, the steady state become

stable.

A.3.2 Stability analysis for our model with molecular transport delay

In applying the approach above into our model, we obtain:

(1 + gu7e(ds + u))w? N dsu

9xTe 9xTe
3 (05 4+ u + guTedsu)w

9xTe

—W

0\

GxTe

0

The criterion for oscillations is expressed as follows:

cos (W Te)

sin (w 7e)

1+ gurg(d s+ u)|w® —dsu
g2oA
— Ty + (08 +u+ gu7y d SU)w

gioA

(A.20a)
(A.20b)

(A.20c)
(A.20d)

(A.21a)

(A.21b)

The equation for the frequency of eigenvalue crossing ttaginary axis is:

1

F(0) =0+ [

S+ (11—

whereV = w2,
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Appendix B

Appendix B: Derivation of the cumulant
expansion of the master equation

B.1 Master equation

In this section, we will derive the cumulant expression @& thaster equation for the simple
genetic circuit of a self-repressing gene. In order to desmwethe nonlinearities of genetic
network, we suppose both linear degradations for mMRNA angkjpra

APy,
+5m(m + 1>P0,m+1,p — (5mmP07m7p
B mp(),m,p—l - B mPOJn,p
+0,(p + 1) Pomp+1 — 0p PPomp
dPi .
Tp = QPO,m,p—l - appl,m,p

AP 1y — APy

Om(m 4+ 1)Pi pi1p — 0mmPy

B mpl,m,pfl -3 mpl,m,p

61) (p + 1)P1,m,p+1 - 6ppP1,m,p
whereP(g, m, p) is the probability of find the gene activity characterizedjby. copies num-
ber of MRNA andp copies number of proteins. We first compute moments of vieasal, m

andp and products of variablgp andgp. Owing to the binary values af, the moment of;?
is equal to that of.

(9) = Z 9FPgmp = ZO* PO,m,p"’Z Lk Py = Zpl,m,p
m,p m,p m,p

g7m7p

(m) = Z mPy mp = ZmPOJmp + ZmPLm,p =<m >q¢+ < m >

g,m,p m,p m,p (B 2)
<p> = Z pPg,m’p = pro’m’p + ZpPLm’p =< p >0 + < p >1
g,m,p m,p m,p
{gp) =<p>1

(gm) =< m >,
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B.2 Equations for joint cumulants

According to the definition of moments, we deduce first equmstifor first-order and second-

order moments:

0(1 — (g)) — algp) + B(m) — 0(p)
Mg) + 2X(gm) + (m) — 2(m?)

0(2(p) — (gp) +1 — (9)) — a({gp) — 2(gp?))
+B(2(mp) + (m)) + 6(p) — 26(p°)

0(1+ (p) — (gp) — (9)) — a(gp®) + B{gm) — &(gp)
0((m) — (gm)) — a{gmp) + X(g) — (gm)

—a(gmp) + 0((m) — (gm)) — (mp) + \(gp)
+B(m?) — &(mp)

(B.3a)
(B.3b)
(B.3c)
(B.3d)

(B.3e)
(B.3f)
(B.39)
(B.3h)

(B.3i)
(B.3))

As joint cumulants are defined as a special combination of emisy we are searching for
the equations for joint cumulants with third-order cumtavaenishing.

dg)
dt
d(m)

© 2013 Tous droits réservés.

0(1 — (9)) — algp) + B{m) — d(p)

0(1 — (g) — Agg — Agp) + By — 5 Ay

—a((9)App + (D) Agy — (9)Agp — (9)* ()

0 g 4+ Mgy + By — (6 + 1) Ay

—a({g)Amp + () Agm)

AMgg = (0 + 1) Agm — a({g)Amp + (P) Dgm)

0(1 = {g) = 2A8g) + B(2An, + (m)) +0((p) — 24,,)
—a(2(9) App — (9)(p) — (1 = 2(p)) Ayp)

A({g) +204m) — 20 + (M)
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(B.4a)
(B.4b)
(B.4c)

(B.4d)
(B.4e)
(B.4f)
(B.49)
(B.4h)

(B.4i)
(B.4))
(B.4K)
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By renormalizing time, variables and parameters accoraing t

0 0 00
t—=T6, 6 -2 <g>—G <p>——P <m>_>ﬁ_M

Om, o «
0 0
Agg — AGG App — ( ) App Amm (6—) AMM O — 5_
0 00 0.0 " (8-5)
Agp — EAGP Agm — B_QAG]\/[ A B(_) AMP
ABa 0
S0 — A o P
Egs. (B.4) can be rewritten in dimensionless form:
d
d—f = @(1 —G—-GP— AGP) (B6a)
d—M = ANG—-M (B.6b)
dt
dP
— = al=G—=GP—Agp) +3(M - P) (B.6C)
A
d dtGP = Oz[l — 2G + G2 — +G2P —I— GAGP — Po(GAPP ‘|’ AGP ‘f‘ PAGP)](BGd)
+0(Aam — Agp) (B.6e)
dAgr
It = )\G(l—G) _AGM_CVPO(AGM"i_gAMP_"PAGM) (BGf)
Fra —a(Agy + GApp + PAgun) + Agp — (0 + 1) Ayp + 0A s (B.69)
dA
dfM = ApG+206y) — 2000 +p M (B.6h)
dA 1 .
d:P = Oz[F(l -G+ AGP + GP) — Q(AGP + GAPP + PAGP>] (BGI)
0
1 .
5(2AMP_2APP+ P (M+P)) (BG])
0

Note thatP, = 6/« is defined as the number of proteins required to reduce thedription
rate by half. We assume this threshold is largg > 1) which is equivalent tax ~ 0.
Therefore, the time evolution equations for the first-oenulants (i.e., averages) and second-
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order cumulants (i.e., covariances) are given by:

E
dT
i
dT
d_P
dT
dAgp

dT
dAcm

dT’
dAyp

dr
dAnr

ar
dApp

ar

© 2013 Tous droits réservés.

O(1 — G — GP — Agp)

AG—M

§(M — P)

§(Aay — Agp) + GApp + Agp + PAgp)
AG(1—G) — Ay + Agu + GAyp + PAGur)
AAGgp — (0 + 1) App + A N0

2AAGr) — 2000

20(Anp — App)
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(B.7a)
(B.7b)
(B.7c)
(B.7d)
(B.7€)
(B.7f)

(B.79)

(B.7h)

http://doc.univ-lille1.fr



Thése de Jingkui Wang, Lille 1, 2012

Bibliography

[1] I. Artsimovitch and R. Landick. Pausing by bacteria rndypterase is mediated by
mechanistically distinct signal®roc. Nat. Acad. <ci., 97:7090-7095, 2000.

[2] A. Aulehla and B. G. Herrmann. Segmentation in vertelsatdéock and gradient finally
joined. Genes Dev., 18:2060-2067, 2004.

[3] J. ay C. Dunlap. Molecular bases for circadian clodRell, 96:271-290, 1999.

[4] L. Bai, A. Shundrovsky, and M. D. Wang. Sequence-depetki@etic model for tran-
scription elongation by rna polymerask Mol. Biol., 344:335-349, 2004.

[5] G. Balazsi, A. van Oudenaarden, and J. J. Collins. Celluidarsion making and biolog-
ical noise: from microbes to mammalSell, 144:910-925, 2011.

[6] R. L. Bar-Or, R. Maya, L. A. Segel, U. Alon, A. J. Levine, and Kren. Generation
of oscillations by the p53-mdm2 feedback loop: A theorétamad experimental study.
Proc. Natl. Acad. Sci. USA, 97:11250-11255, 2000.

[7] B. Barzel and O. Biham. Stochastic analysis of dimerizasgstems. Phys. Rev. E,
80:031117, 20009.

[8] B. Barzel and O. Biham. Binomial moment equations for stottbaeaction systems.
Phys. Rev. Let., 106:150602, 2011.

[9] A. Becskei and L. Serrano. Engineering stability in geeéworks by autoregulation.
Nature, 405:590-593, 2000.

[10] T. P. Bender, C. B. Thompson, and W. M. Kuehl. Differentigbession of c-myb mrna
in murine b lymphomas by a block to transcription elongati@sience, 237:1473-1476,
1987.

[11] By S. Bernard, B. Cajavec, L. Pujo-Menjouet, M. C.Mackey, Bhdierzel. Modelling
transcriptional feedback loops: the role of gro/tlel inThescillations. Philos. Trans.
Roy. Soc., 364:1155-1170, 2006.

[12] Y. Bessho, H. Hirata, Y. Masamizu, and R. Kageyama. Perigpression by the bhih
factor hes7 is an essential mechanism for the somite segti@ntlock. Genes. Dev,
17:1451-1456, 2003.

[13] R. D. Bliss, P. R. Painter, and A. G. Marr. Role of feedbackhition in stabilizing the
classical operond. Theor. Biol., 97:177-193, 1982.

111

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[14] S. Boireau. The transcriptional cycle of hiv-1 in reimh¢ and live cells.J. Cell. Biol,
179:291-304, 2007.

[15] S. Borukhov, V. Sagitov, and A. Goldfarb. Transcriptaslage factors from escherichia
coli. Cell, 72:459-466, 1993.

[16] N. E. Bouchler, U. Gerland, and T. Hwa. Nonlinear protagradation and the function
of genetic circuitsProc. Nat. Acad. Sci., 102:9559-9564, 2005.

[17] C. A Brackley, M. C. Romano, and M. Thiel. The dynamics of dy@nd demand in
mrna translationPLos. Comput. Biol., 7:€1002203, 2011.

[18] D. F. Browning and S. J. W. Busby. The regulation of baeld@ranscription initiation.
Nat. Rev., 2:1-9, 2004.

[19] L. Cai, C. K. Dalal, and M. B. Elowitz. Frequency-modulatedtlear localization bursts
coordinate gene regulatioMature, 455:485-491, 2008.

[20] L. Cai, N. Friedman, and X. S. Xie. Stochastic proteinreggion in individual cells at
the single molecule leveNature, 440:358-362, 2006.

[21] R. Cheong and A. Levchenko. Oscillatory signaling preess the how, the why and the
where.Curr. Opin. Gene. Dev,, 20:665-669, 2010.

[22] J. R. Chubb, T. Trcek, S. M. Shenoy, and R H. Singer. Trapisonal pulsing of a
developmental geneCurr. Biol., 16:1018-1025, 2006.

[23] L. Ciandrini, I. Stansfield, and M. C. Romano. Role of the igéats stepping cycle in
an asymmetric exclusion process: a model of mrna translaioys. Rev. E, 81:051904,
2010.

[24] L. J. Cook, R. K. P. Zia, and B. Schmittmann. Competition le=w multiple to-
tally asymmetric simple exclusion process for a finite pdblesources. Phys. Rev.
E, 80:031142, 2009.

[25] X. Darzacq, Y. Shav-Tal, V. de Turris, Y. Brody, S. M ShgnR. D. Phair, and R. H.
Singer. In vivo dynamics of rna polymerase ii transcriptiddat. Sruct. Mol. Biol.,
14:796-806, 2007.

[26] R. J. Davenport, G. J. L. Wuite, R. Landick, and C. Bustama8iegle-molecule study
of transcriptional pausing and arrest by e.col rna polyser&cience, 287:2497-2500,
2000.

[27] J. de Gier and F. H. L. Essler. Bethe ansatz solution ohlyenmetric exclusion process
with open boundariehys. Rev. Let, 95:240601, 2005.

[28] B. Derrida. An exactly soluble non-equilibrium systethe asymmetric simple exclu-
sion processPhysics Reports., 301:65-83, 1998.

[29] B. Derrida, E. Domany, and D. Mukamel. An exact solutiéa one-dimensional asym-
metric exclusion model with open boundaridsSat.Phys., 69:667-687, 1992.

112

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[30] B. Derrida, J. L. Lebowitz, and E. R. Speer. Exact free gndunctional for a driven
diffusive open stationary nonequilibrium systeRhys. Rev. Let., 89:030601, 2002.

[31] M. Dobrzynski and F. J. Bruggeman. Elongation dynamlwpg bursty transcription
and translationProc. Nat. Acad. Sci., 106:2583-2588, 2009.

[32] G. Dong and S. S. Golden. How a cyanobacterium tells.ti@grr. Opin. Microbiol.,
11:541-546, 2008.

[33] Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. §lerini, and L. Serrano. Noise
in transcription negative feedback loops: simulation axpeeimental analysis.Mol.
Syst. Bial., page doi:10.1038/msb4100081, 2006.

[34] M. Dudzinski and G. M. Schutz. Relaxation spectrum of #symmetric exclusion
process with open boundariek.Phys. A: Math.Gen., 33:8351-8363, 2000.

[35] A. Eldar and M. B. Elowitz. Functional roles for noise ierggtic circuits. Nat. Rev.,
467:167-173, 2010.

[36] J. Elf and M. Ehrenberg. Fast evolution of fluctuatiombiochemical networks with the
linear noise approximatiorGenom. Res., 13:2475-2484, 2010.

[37] M. B. Elowitz and S. Leibler. A synthetic oscillatory meirk of transcriptional regula-
tors. Nature, 403:335-338, 2000.

[38] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swairto&astic gene expression
in a single cell.Science, 297:1183-1186, 2002.

[39] V. Epshtein and E. Nudler. Cooperation between rna pehase molecules in transcrip-
tion elongation.Science, 300:801-805, 2003.

[40] Historical Perspective Essay. Plant circadian rhyghriithe Plant Cell, 18:792-803,
2006.

[41] A. Hoffmann et al. The ikb-nf-kb signaling module: teorpl control and selective gene
activation. Science, 298:1241-1245, 2002.

[42] A. Pare et al. Visualization of individual scr mrnas ithgr drosophila embryogenesis
yields evidence for transcriptional burstin@urr. Biol., 19:2037-2042, 2009.

[43] B. Sclavi et al. Real-time characterization of internaes in the pathway to open com-
plex formation by e. coli rna polymerase at the t7al promoReoc. Nat. Acad. <.,
102:4706-4711, 2005.

[44] C. V. Harper et al. Dynamic analysis of stochastic traipsion cycle. Plos. Biol.,
9:€1000607, 2011.

[45] D. A. Gilchrist et al. Pausing of rna polymerase ii distsl dna-specified nucleosome
organization to enable precise gene regulatioa!, 143:540-551, 2010.

[46] D. Bratsun et al. Delay-induced stochastic oscillagiam gene expressiorProc. Nat.
Acad. Sci., 102:14593-14598, 2005.

113

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[47] D. W. Austin et al. Gene network shaping of inherent e@pectra.Nature, 439:608—
611, 2006.

[48] E. A. Abbondanzieri et al. Direct observation of baserstepping by rna polymerase.
Nature, 438:460-465, 2005.

[49] E. Nudler et al. The rna-dna hybrid maintains the reygisf transcription by preventing
backtracking of rna polymeras€ell, 89:33-41, 1997.

[50] F. Toulme et al. In vivo evidence for back and forth dstibns of the transcription
elongation complexEMBO J., 18:5052-5060, 1999.

[51] G. A. Perdrizet Il et al. Transcriptional pausing caoetes folding of the aptamer
domain and the expression platform of a ribswitdProc. Nat. Acad. <ci., 109:3323—
3328, 2012.

[52] G. Lahav et al. Dynamics of the p53-mdm2 feedback invimfdial cells. Nat. Genet.,
36:147-150, 2004.

[53] J. S. Takahashi et al. The genetics of mammalian ciacadider and disorder: implica-
tion for physiology and diseasélat. Rev. Gene., 9:764—775, 2008.

[54] J. Zhou et al. Applied force provides insight into trangtional pausing and its modu-
lation by transcription factor nusdol. Cel., 44:635—-646, 2011.

[55] K. Adelman etal. Single molecule analysis of rna polyase elongation reveals uniform
kinetic behaviorProc. Nat. Acad. Sci., 99:13538-13543, 2002.

[56] K.C. Neuman et al. Ubiquitous transcriptional pausmmdependent of rna polymerase
backtracking.Cell, 115:437-447, 2003.

[57] K. M. Herbert et al. Sequence-resolved detection ofspayiby single rna polymerase
molecules.Cell, 125:1083-1094, 2006.

[58] L. Zhu et al. C&" oscillation frequency regulates agonist-stimulated gepeession in
vascular endothelial celld. Cell ci., 121:2511-2518, 2008.

[59] M. Dundr et al. A kinetic framework for a mammalian rnayoerase in vivo.Science,
298:1623-1626, 2002.

[60] M. L. Dequeant et al. A complex oscillating network ofsaling genes underlies the
mouse segmentation cloc&cience, 314:1595-1598, 2006.

[61] M. L. Kireeva et al. Nature of the nucleosome barrierria polymerase iiMol. Cell,
18:97-108, 2005.

[62] M. \Woliotis et al. Fluctuations, pauses, and backtragkn dna transcriptionBiophys.
J., 94:334-348, 2008.

[63] M. \Voliotis et al. Backtracking and proofreading in dmartscription. Phys. Rev. Let.,
102:258101, 2009.

114

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[64] M. Yoda et al. Roles of noise in single and coupled mudtigénetic oscillatorsl. Chem.
Phys., 126:115101, 2007.

[65] N.R. Forde et al. Using mechanical force to probe the rapidm of pausing and arrest
during continuous elongation by escherichia coli rna p@yase Proc. Nat. Acad. ci.,
99:11682-11687, 2002.

[66] S. Bartfeld et al. High-throughput and single-cell inragof nf-kb oscillations using
monoclonal cell linesBMC. Cell Biol, 11:21, 2010.

[67] T. Rajala et al. Effects of transcriptional pausing omgexpression dynamics$?los.
Comput. Biol., 6:1000704, 2010.

[68] T. Ushikubo et al. Testing the transition state theargtochastic dynamics of a genetic
switch. Chem. Phys. Lett., 430:139-143, 2006.

[69] V. Elgart et al. Connecting protein and mrna burst disttion for stochastic models of
gene expressiorPhys. Biol., 8:046001, 2011.

[70] Y. Drabsch et al. Mechanism of and requirement for egmregulated myb expres-
sion in estrogen-receptor-positive breast cancer deftsc. Nat. Acad. Sci., 104:13762—
13767, 2007.

[71] Y. Taniguchi et al. Quantifying e. coli proteome andisariptome with single-molecule
sensitivity in single cellsScience, 329:533-538, 2010.

[72] N. Fedoroff and W. Fontana. Small numbers of big molesuficience, 297:1129-1131,
2002.

[73] J. Forde and P. Nelson. Applications of strum sequetabgurcation analysis of delay
differential equation modelsl. Math. Anal. App., 300:273-284, 2004.

[74] H. B. Fraser, A. E. Hirsh, G. Giaever, J. Kumm, and M. B. Bistloise minimization
in eukaryotic gene expressioRlos. Biol., 2:e137, 2004.

[75] L. Fu and C. Lee. The circadian clock: pacemaker and tusappressor.Nat. Rev.
Cancer, 3:350-361, 2003.

[76] N. J. Fuda, M. B. Ardehali, and J. T. Lis. Defining mechamssthat regulate rna poly-
merase ii transcription in vivaNat. Rev., 464:186—-192, 2009.

[77] T. Gagatay, M. Turcotte, M. B. Elowitz, J. Garcia-Ojalamd G. M. Suel. Architecture-
dependent noise discriminates functionally analogouterintiation circuits. Cell,
139:512-522, 2009.

[78] D. C. Galburt. Backtracking determines the force servigjtiof rnap ii in a factor-
dependent manneNature, 446:820-823, 2007.

[79] T. S. Gardner, C. R. Cantor, and J. Collins. Construction odrzejc toggle switch in
escherichia coliNature, 403:339-342, 2000.

115

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[80] N. Geva-Zatorsky, N. Rosenfeld, S. ltzkovitz, R. Milo, 3igal, E. Dekell, T. Yarnitzky,
Y. Liron, P. Polak, G. Lahav, and U. Alon. Oscillations andiahility in the p53 system.
Mol. Syst. Biol., page doi:10.1038/msb4100068, 2006.

[81] M. A. Gibson and J. Bruck. Efficient exact stochastic dation of chemical systems
with many species and many channelsPhys. Chem. A, 104:1876-1889, 2000.

[82] D. T. Gillespie. Exact stochastic simulation of couplehemical reactions.J. Phys.
Chem,, 81:2340-2361, 1977.

[83] A. Goldbeter. A model for circadian oscillations in teosophila period protein (per).
Proc. R. Soc. Lond. B, 261:319-324, 1995.

[84] A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge University
Press, Cambridge, 1996.

[85] I. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox. Rwak kinetics of gene
activity in individual bacteriaCell, 123:1025-1036, 2005.

[86] C. A. Gomez-Uribe and G. C. Verghese. Mass fluctuationtidgeeCapturing stochastic
effects in systems of chemical reactions through couplegnvariance computations.
J. Chem. Phys., 126:024109, 2007.

[87] B. C. Goodwin. Oscillatory behavior of enzymatic contpgrbcesses.Adv. Enzyme
Regul., 3:425-439, 1965.

[88] J. L. Gouze. Positive and negative circuits in dynarsgatems.J. Biol. Syst., 6:11-15,
1998.

[89] I. S. Gradshteyn and I. M. RyzhiKables of Integrals, Series, and Products. Academic
Press, San Diego, 2000.

[90] S. J. Greive and P. H. von Hippel. Thinking quantitalgvabout transcriptional regula-
tion. Nat. Rev.|Mal. Cedl. Bial., 6:221-232, 2005.

[91] J. S. Griffith. Mathematics of cellular control process. negative feedback to one gene.
J. Theor. Bial., 20:202-208, 1968.

[92] R. Guantes and J. F. Poyatos. Dynamical principles ofdamponent genetic oscilla-
tors. PLoS Comput. Bial., 2(3):e30, 2006.

[93] D. A. Hamstra. Real-time evaluation of p53 oscillatoghlvior in vivo using biolumi-
nescent imagingCancer. Res., 66:7482—-7489, 2006.

[94] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. MugtaFrom molecular to modular
cell biology. Nature, 402:C47—-C51, 1999.

[95] H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Hara#la, Yoshikawa, and
R. Kageyama. Oscillatory expression of the bHLH factor Hesjulated by a nega-
tive feedback loopScience, 298:840-843, 2002.

116

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[96] S. Hockfiled. The next innovation revolutiofcience, 323:1147, 2009.

[97] F. C. P. Holstege, U. Fiedler, and H. Th. M. Timmer. Thremsitions in the rna poly-
merase i transcription complex during initiatioBMBO J., 16:7468—-7480, 1997.

[98] J.E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wakgyl. Walczak, J. N. Onuchic,
and P. G. Wolynes. Self-regulating gene: an exact solutithys. Rev. E., 72:051907,
2005.

[99] G. C. P. Innocentini and J. E. M. Hornos. Modeling stoticagene expression under
repressionJ. Math. Biol., 55:413-431, 2007.

[100] M. H. Jensen, K. Sneppen, and G. Tiana. Sustainedatsmils and time delays in gene
expression of protein hesEEBS Lett., 541:176-177, 2003.

[101] J. J.Tyson, K. C.Chen, and B. Novak. Sniffers, buzzeggles and blinkers: dynamics
of regulatory and signaling pathways in the ce@urr. Opin. Cel. Biol., 15:221-231,
2003.

[102] J. J.Tyson, K. Chen, and B. Novak. Network dynamics aridptssiology. Nature,
2:908-916, 2001.

[103] John J.TysonComputational cell biology, volume 210. Spring, third edition, 2005.

[104] R. Karmakar and |. Bose. Stochastic model of transaniptactor-regulated gene ex-
pression.Phys. Biol, 3:200-208, 2006.

[105] T. B. Kepler and T. C. Elston. Stochasticity in transtapal regulation: origins, conse-
guences, and mathematical representatiBngphys. J., 81:3116-3136, 2001.

[106] H. Kimura, K. Sugaya, and P. R. Cook. The transcriptiociewf rna polymerase ii in
living cell. J. Cell. Biol., 159:777—782, 2002.

[107] M. L. Kireeva and M. Kashlev. Mechanism of sequenceesiir pausing of bacteria rna
polymeraseProc. Nat. Acad. <ci., 106:8900-8905, 2009.

[108] S. Klumpp. Pausing and backtracking in transcriptioder dense traffic conditionsd.
Sart. Phys., pages Doi 10.1007/s10955-011-0120-3, 2011.

[109] S. Klumpp and T. Hwa. Stochasticity and traffic jams le transcription of ribo-
somal rna: intriguing role of termination and antitermioat Proc. Nat. Acad. ci.,
105:18159-18164, 2008.

[110] M. Koern, T. C. Elston, W. J. Blake, and J. J. Collins. Sastltity in gene expression:
from theories to phenotypeblat. Rev., 6:451-464, 2005.

[111] K. W. Kohn. Molecular interaction map of the mammalieil cycle control and dna
repair systemsMol. Biol. Cell, 10:2703-2734, 1999.

[112] A. B. Kolomeisky, G. M. Schutz, G. M. Kolomeisky, and J.Straley. Phase diagram
of one-dimensional driven lattice gases with open bounddryphys. A. Math. Gen.,
31:6911-6919, 1998.

117

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[113] N. Komissarova and M. Kashlev. Rna polymerase switdietsieen inactivated and
activated states by translocating back and forth alongniaeadd the rnal. Biol. Chem.,
272:15329-15338, 1997.

[114] S. Krishna, M. H. Jensen, and K. Sneppen. Minimal madedpiky oscillations in
nf-kappab signalingProc. Nat. Acad. <ci., 103:10840-10845, 2006.

[115] J. Krug. Boundary-induced phase transition in drivéfusive systemsPhys. Rev. Lett.,
67:1882-1885, 1991.

[116] Y. Kuang. Delay differential equations with applications in population dynamics, vol-
ume 191. Academic Press, 1993.

[117] G.Lakatos and T. Chou. Totally asymmetric exclusiarcpss with particles of arbitrary
size.J. Phys. A. Math. Gen, 36:2027-2041, 2003.

[118] R. Landick. The regulatory roles and mechanism of tapsonal pausing.Biochem.
Soc. Trans., 34:1062—-1066, 2006.

[119] R. Landick. Transcriptional pausing without backkiag. Proc. Nat. Acad. <ci.,
106:8797-8798, 2009.

[120] D. R. Larson, R. H. Singer, and D. Zenklusen. A single rmole view of gene expres-
sion. Trends. Cel. Biol., 19:630-637, 2009.

[121] D. R. Larson, D. Zenklusen, B. Wu, J. A. Chao, and R. H. Singeral-time observa-
tion of transcription initiation and elongation on an endogus yeast genescience,
332:475-478, 2011.

[122] A. Lederhendler and O. Biham. Validity of rate equati@sults for reaction rates in
reaction networks with fluctuation®hys. Rev. E, 78:041105, 2008.

[123] J. C. Leloup, D. Gonze, and A. Goldbeter. Limit cycle ralsdfor circadian rhythms
based on transcriptional regulation in drosophila andosaora.. Biol. Rhyth., 14:433—
448, 1999.

[124] D. Lepzelter, H. Feng, and J. Wang. Oscillation, caapety, and intermediates in the
self-repressing gen€hem. Phys. Lett., 490:216, 2010.

[125] I. Lestas, G. Vinnicombe, and J. Paulsson. Fundarhéntiis on the suppression of
molecular fluctuationsNature, 467:174-178, 2010.

[126] M. Levine. Paused rna polymerase ii as a developmam@tkpoint. Cell Review,
145:502-511, 2011.

[127] J.Lewis. Autoinhibition with transcriptional delag simple mechanism for the zebrafish
somitogenesis oscillato€urr. Biol., 13:1398-1408, 2003.

[128] M. E. Lidstrom and M. C. Konopka. The role of physiolaglibeterogeneity in microbial
population behavioNat. Chem. Biol., 6:705-712, 2010.

118

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[129] Y. Luand F. R. Cross. Periodic cyclin-cdk activity efissan autonomous cdc14 release
oscillator. Cell, 141:268-279, 2010.

[130] M. C. Mackey and L. Glass. Oscillation and chaos in pbiggjical control systems.
Science, 4300:287-289, 1977.

[131] N.J. Marianayagam, M. Sunde, and J. M. Matthews. Thegpof two: protein dimer-
ization in biology. Trends in Biochemical Sciences, 29, 2004.

[132] S. Martin and A. Pombo. Transcription factories: ditative studies of nanostructures
in the mammalian nucleuhromosome Research, 11:461-470, 2003.

[133] W. Mather, M. R. Bennett, J. Hasty, and L. S.Tsimring. &eihduced degradate-and-
fire oscillations in small genetic circuit®hys. Rev. Lett., 102:068105, 20009.

[134] D. A. McQuarrie. Stochastic approach to chemical kose J. Appl. Probab., 4:413—
478, 1967.

[135] B. Mengel, A. Hunziker, L. Pedersen, A. Trusina, M. Haden, and S. Krishna. Mod-
elling oscillatory control in nf-kb, p53, and wnt signalingCurr. Opin. Gen. Dev.,,
20:656-664, 2010.

[136] N. Mitarai, I. B. Dodd, M. T. Crooks, and K. Sneppen. Thexgetion of promoter-
mediated transcriptional noise in bactefd.oS Comput. Biol., 4:e1000109, 2008.

[137] N. A. M. Monk. Oscillatory expression of hesl, p53 atkddb driven by transcriptional
time delays.Curr. Biol., 13:1409-1413, 2003.

[138] P. E. Morant, Q. Thommen, F. Lemaire, C. Vandermoere,dBeift, and M. Lefranc.
Oscillations in the expression of a self-repressed gengcexdl by a slow transcriptional
dynamics.Phys. Rev. Lett., 102:068104-1-068104—4, 2009.

[139] L. G. Morelli and F. Julicher. Precision of genetic diators and clocks.Phys. Rev.
Lett., 98:228101, 2007.

[140] B. Munsky, G. Neuert, and A. van Oudenaarden. Using g&pesssion noise to under-
stand gene regulatior&cience, 336:183-187, 2012.

[141] J.D. Murray.Mathematical Biology, volume 17. Springer, third edition, 2001.

[142] R. Murugan. Stochastic transcription initiation: Endependent transcription rates.
Biophys. Chem., 121:51-56, 2006.

[143] G. Nair and A. Raj. Time-lapse transcriptidgience, 332:431-432, 2011.

[144] D. E. Nelson, A. E. C. Ihekwaba, M. Elliott, J. R. JohnagonrA. Gibney, B. E. Foreman,
and G. Nelson. Oscillations in nf-kb signaling control thy@mdmics of gene expression.
Science, 306:704—-708, 2004.

[145] B. Novak and J. J.Tyson. Design principles of biocheiniscillators.Nat. Rev., 9:981—
991, 2008.

119

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[146] J. Ohakubo. Approximation scheme based on effectiteraction for stochastic gene
regulation.Phys. Rev. E, 83:041915, 2011.

[147] Y. Okabe, Y. Yagi, and M. Sasai. Effects of the dna statetuation on single-cell
dynamics of self-regulating gend. Chem. Phys., 127:105107, 2007.

[148] P. Paszek, D. A. Jackson, and M. RH. White. Oscillatontia of signalling molecules.
Curr. Opin. Gen. and Dev., 20:670-676, 2010.

[149] H. Paul. Photon antibunchin&ev. Mod. Phys,, 54:1061-1102, 1982.
[150] J. Paulsson. Summing up the noise in gene netwdiéiire, 427:415-418, 2004.
[151] J. Paulsson. Models of stochastic gene expres§ioys. Life Rev., 2:157-175, 2005.

[152] J. M. Pedraza and J. Paulsson. Effects of molecularangeand bursting on fluctuations
in gene expressiorscience, 319:339-343, 2008.

[153] P. Pierobon, A. Parmeggiani, F. von Oppen, and E. Bggamics correlation functions
and boltzmann-langevin approach for driven one-dimeradiattice gas.Phys. Rev. E,
72:036123, 2005.

[154] M. Ptashne.A genetic switch. COLD SPRING HARBOR LABORATORY PRESS,
third edition, 2004.

[155] A.Raj, C.S. Peskin, D. Tranchina, D. Y. Vargas, and Sgiyatochastic mrna synthesis
in mammalian cellsPLos. Biol., 4:1707-1719, 2006.

[156] A. Raj, S. A. Rifkin, E. Andersen, and A. van Oudenaardériability in gene expres-
sion underlies incomplete penetrandi&ature, 463:913-918, 2010.

[157] A. Rajand A. van Oudenaarden. Nature, nurture, or aftastochastic gene expression
and its consequence@ell, 135:216-226, 2008.

[158] A. F. Ramos, G. C. P. Innocentini, and J. E. M. Hornos. Ekate-dependent solution
for a self-regulating gendé?hys. Rev. E., 83:062902, 2011.

[159] J. M. Raser and E. K. O’'Shea. Noise in gene expressiaginsf consequences and
control. Science Rev., 309:2010-2013, 2005.

[160] T. Roenneberg and M. Merrow. Circadian clocks— the fatl se of physiologyNat.
Rev. Mal. Cel. Bial., 6:965-971, 2005.

[161] M. C. Romano, M. Thiel, I. Stansfield, and C. Grebogi. Quegighase transition:
theory of translationPhys. Rev. Let., 102:198104, 2009.

[162] N. Rosenfeld, M. Elowitz, and U. Alon. Negative autantgion speeds the response
times of transcription networksl. Mol. Biol., 323:785-793, 2002.

[163] W. Ross and R. L. Gourse. Analysis of rna polymerase-ptermcomplex formation.
Methods, 47:13-24, 2009.

120

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[164] M. R. Rousseland R. Zhu. Stochastic kinetic descriptfasample transcription model.
Bull. Math. Biol., 68:1681-1713, 2006.

[165] A. Sanchez and J. Kondev. Transcriptional control@ka in gene expressiorroc.
Nat. Acad. ci., 105:5081-5086, 2008.

[166] M. Sasai and P. G. Wolynes. Stochastic gene expreasiarmany-body problenfroc.
Nat. Acad. Sci., 100:2374-2379, 2003.

[167] A. Saunders, L. J. Core, and J. T. Lis. Breaking barrigtsanscription elongatioriat.
Rev., 7:557-567, 2006.

[168] M. Schnarr, P. Oertel-Buchheit, M. Kazmaier, and M. i@@r-Schnarr. Dna binding
properties of the lexa repress@&iochimie, 73:423-431, 1991.

[169] D. Schultz, J. N. Onuchic, and P. G Wolynes. Understapdtochastic simulations of
the smallest genetic networkd.Chem. Phys., 126:245102, 2007.

[170] M. Scott, T. Hwa, and B. Ingalls. Deterministic cham@ation of stochastic genetic
circuits. Proc. Nat. Acad. ci., 104:7402—-7407, 2007.

[171] J. W Shaevitz, E. A. Abbondazierl, R. Landick, and S. ModK. Backtracking by single
rna polymerase molecules observed at near-base-paiutiesolNature, 426:684—687,
2003.

[172] L. B. Shaw, R. K. P. Zia, and K. H. Lee. Totally asymmetnclesion process with
extended objects: a model for protein syntheBisys. Rev. E, 68:021910, 2003.

[173] B. Snijder and L. Pelkmans. Origins of regulated ceitell variability. Nat. Rev.|[Mol.
Cel. Biol., 12:119-125, 2011.

[174] E. H. Snoussi. Necessary condition for multistatiiigeand stable periodicityJ. Biol.
Sy, 6:3-9, 1998.

[175] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. SinTring, and J. Hasty. A
fast, robust and tunable synthetic gene oscillatature, 456:516-520, 2008.

[176] D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. $dkr, and F. Naef. Mammalian
genes are transcribed with widely different bursting kiceet Science, 332:472-474,
2011.

[177] D. M. Suter, N. Molina, F. Naef, and U. Schibler. Origiand consequences of tran-
scriptional discontinuityCurr. Opin. Cel. Biol., 23:657-662, 2011.

[178] H. Sutherland and W. Bickmore. Transcription factsrigiene expression in unions.
Nat. Rev., 10:457-465, 2009.

[179] P. S. Swain, M. B. Elowitz, and E. D Siggia. Intrinsic aextrinsic contributions to
stochasticity in gene expressidaroc. Nat. Acad. Sci., 99:12795-12800, 2002.

121

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[180] Y. Takashima, T. Ohtsuka, A. Gonzalez, H. Miyachi, &dageyama. Intronic delay
is essential for oscillatory expression in the segmematlock. Proc. Nat. Acad. <.,
108:3300-3305, 2011.

[181] R. Z. Tan and A. van Oudenaarden. Transcript countirggngle cells reveals dynamics
of rdna transcriptionMol. Syst. Bial., 6:358, 2010.

[182] G. Tang, R. Roy, R. P. Bandwar, T. Ha, and S. Patel. Real-tibsereation of the
transition from transcription initiation to elongation thfe rna polymeraseProc. Nat.
Acad. i, 52:22175-22180, 20089.

[183] M. Thattai and A. van Oudenaarden. Intrinsic noiseengregulatory network$2roc.
Nat. Acad. ci., 98:8614-8619, 2001.

[184] G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen, andSkeppen. Oscillations and
temporal signalling in cellsPhys. Biol., 4:R1-R17, 2007.

[185] Tsz-Leung To and N. Maheshri. Noise can induce bimidel positive transcriptional
feedback loops without bistabilityscience, 327:1142-1145, 2010.

[186] T. Tripathi and D. Chowdhury. Interacting rna polynmsganotors on a dna track: effects
of traffic congestion and intrinsic noise on rna syntheBig/s. Rev. E, 77:011921, 2008.

[187] T. Tripathi and D. Chowdhury. Transcriptional bursasunified model of machines and
mechanismsThe Frontiers of Physics, 84:68004, 2008.

[188] J.J. Tyson, C. I. Hong, C. D.Thron, and B. Novak. A simplelelaf circadian rhythms
based on dimerization and proteolysis of per and @ophys. J., 77:2411-2417, 1999.

[189] N. G. van KampenStochastic processes in physics and chemistry. Elsevier, 2007.

[190] D. G. Vassylyev. Elongation by rna polymerase: a raceigh roadblocksCurr. Opin.
Struct. Biol., 19:691-700, 2009.

[191] U. Vogel and K. F. Jensen. The rna chain elongationira¢scherichia coli depends on
the growth rateJ. Bacteriol., 176:2806—2813, 1994.

[192] P. H. von Hippel. An integrated model of the transedptcomplex in elongation, ter-
mination and editingScience, 281:660-665, 1998.

[193] A. M. Walczak, J. N. Onuchic, and P. G. Wolynes. Abseltdte theories of epigenetic
stability. Proc. Nat. Acad. <ci., 102:18926-18931, 2005.

[194] A. M. Walczak and P. G. Wolynes. Gene-gene coopetgtivi small networks. J.
Biophys., 96:4525-4541, 2009.

[195] Z. Wang and J. Zhang. Impact of gene expression noisergamismal fitness and the
efficiency of nature selectioriProc. Nat. Acad. ci., page pnas.1100059108, 2011.

[196] D. J. Wilkinson. Stochastic modelling for quantit@idescription of heterogeneous
biological systemsNat. Rev.|Gen., 10:122-133, 2009.

122

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

[197] P. Xie. Dynamics of backtracking long pauses of rnayp@rase.Biochimica et Bio-
physica Acta, 1789:212-219, 2008.

[198] D. Zenklusen, D. R. Larson, and R. H. Singer. Single-rmanting reveals alternative
modes of gene expression in yedsat. Sruct. Mol. Biol., 15:1263-1271, 2008.

[199] V. P. Zhdanov. Model of gene transcription includithg treturn of a rna polymerase to
the beginning of a transcription cyclPhys. Rev. E, 80:051925, 2009.

123

© 2013 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Jingkui Wang, Lille 1, 2012

Abstract

Living cells can be viewed as dynamical systems which recand process information from
highly changing environments, then make appropriate gewdor survival and reproduction.
Cellular dynamical properties and physiological functiessentially reply on nonlinear com-
plex networks, called genetic networks in which macromales such as DNAs, mRNAS, pro-
teins interact via biochemical reactions.

Motivated by the important roles and one striking dynamizethavior, oscillation, of ge-
netic networks, this thesis work elucidates dynamicalo$feof time delay, fluctuation and
transcriptional pausing on genetic networks, and thus imainludes three studies.

The first study is about delay that is one of key ingredientbiofogical oscillation. In
mathematical modeling, delay usually appears in an exphianner (explicit delay) or is ori-
ginated from a reaction step (reaction delay). By studyingramal genetic network, a self-
repressing gene involving various delays due to differ@wibgical processes, our results ana-
lytically derived from deterministic models reveal the dawnation principle of various and
multiple delays. In particular, we find that reaction delaysract in a non-trivial way. Dyna-
mical influences of two types of delay on oscillations ar® alsmpared. Explicit and reaction
delays have the same influences only if delays are small oadatjons are saturated. In the
general cases, they display dramatical differences.

Genetic networks are usually subject to large fluctuatiares to small copy numbers of
reacting molecules present in cells. In order to investigheir dynamical influences on the
oscillatory behavior, in the second study we then developnautant expansion of the master
equation and apply it to the self-repressing gene circud.fiWd that fluctuations shift signi-
ficantly the averages of molecular quantities predicted é&emninistic models and induce
oscillations without requiring the nonlinear degradation

Transcriptional pausing is a typical unusual behavior of RR#Alymerase enhancing sto-
chasticity and modulating transcription rate. In the thstddy, we investigate the dynamical
effects of pausing on transcription in using a classicalesysn out-of-equilibrium statistical
physics, so-called TASEP model with periodic boundary doma In the limit case where
pause duration is short, we can still construct a mean-fieldahto analyze the transcription
rate and site occupation. In the general case where mednafiglroach no long applies, we
obtain a good understanding of various mechanisms driviegranscription dynamics over
the entire range of pause duration. Importantly, by usingatistical approach, we find the
theoretical prediction of transcription rate that agree#l with numerical simulations.
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Réesumeé

Les cellules vivantes peuvent étre considérées comme desreys dynamiques qui recoivent
et traitent les informations d’un environnement compleixehangeant, puis prennent des dé-
cisions appropriées pour survivre et proliférer. Les piips dynamiques et les fonctions phy-
siologiques des cellules sont essentiellement réguléedgsmréseaux d’interaction appelés
réseaux génétiques au sein desquels des macromolécldssjted les ADNs, ARNS, protéines
interagissent via des réactions biochimiques.

Motivé par I'existence de comportements dynamiques réatsrdes réseaux génétiques
tels que les oscillations, ce travail de these étudie letsetfes délais, des fluctuations et des
pauses transcriptionnelles sur la dynamique des résea@tigées, et s’articule donc autour
de trois études.

La premiére étude concerne le rble des délais qui sont deddiegts clés des oscillations
biologiques. Dans la modélisation déterministe, le dgdpaaait généralement de maniéere ex-
plicite (délai explicite) ou est issue d’'une étape de réac({délai réactionnel). En étudiant
un réseau géneétique comprenant un géne auto-réprime dgiemodivers délais, nos résultats
montrent analytiquement le principe de combinaison ddgéreifits délais. En particulier, les
délais réactionnels interagissent d’'une maniére noratevlLes influences des délais explicites
et réactionnels sur les oscillations sont également cobagates délais explicites et réaction-
nels ont les mémes influences que si les délais sont petiessalépbradations sont saturées.

La seconde étude s’intéresse a I'impact des fluctuations alue petits nombres des molé-
cules présentes dans les cellules. Afin d’étudier leur inflae dynamiques sur les oscillations,
nous proposons un développement de cumulants de I'équatidiresse et I'appliquons au cir-
cuit de géne auto-réprimé. Nous trouvons que les fluctusiioodifient significativement les
moyennes des quantités moléculaires prévues par les rsatieierministes, et induisent des
oscillations sans avoir recours a la dégradation nonliega

Enfin, la troisieme étude concerne le processus de pauseti@tionnelle qui est un com-
portement typique de ’'ARN Polymérase. Nous analysons fetsatynamiques de la pause sur
la transcription a I'aide d’un systéme classique en physgjatistique : le modéle TASEP avec
condition aux limites périodique. Pour des durées des gantsmédiaires et longues pour les-
guelles I'approche de champ moyen n’est pas validée, nausmpans néanmoins a une bonne
compréhension des différents mécanismes qui contrbleshyriamique de transcription. Une
approche statistique permet d’obtenir une descriptiomtiizdive du taux de transcription en
bon accord avec les simulations numériques.
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