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General introduction

Life is a miracle, and many of its mysteries fascinate scientists, such as: what is life? where
does it come from? why is like we know it? Each of these questions stimulates our deep desire
of understanding nature and also ourselves. Based on the discovery of the structure of DNA
by James Watson and Francis Crick in the 1950s and subsequent fundamental discoveries in
molecular cell biology, life sciences have experienced tworevolutions. The first revolution
essentially revealed how the genetic information carried in DNA molecules is expressed into
various proteins that exert functions at different levels of cellular organization, which led to the
development of molecular biology and of such techniques as recombinant DNA technology.
The second revolution occurred following the explosion of data from genomics and proteomics
by the mid-1980s.

Recently many engineers, mathematicians and physicists have begun to collaborate with
biologists in powerful new ways. The advent of interdisciplinary research in biology has stimu-
lated many discoveries and innovations, bringing new experimental technologies for measuring
and manipulating molecular and cellular events with high resolution and powerful computa-
tional tools for data analysis. This led to great opportunities to extend our view of molecular
cell biology. This is why Susan Hockfield, the sixteenth president of the Massachusetts In-
stitute of Technology (MIT) predicted the coming of the new biological revolution during her
speech in 2009 [96].

Quite interestingly, experimental studies revealed that macromolecules in cells like DNAs,
RNAs and proteins are extremely dynamical, and that they do not operate separately. In fact,
by interacting with each other, macromolecules form complex networks called genetic net-
works. The structure of genetic networks has been shown to bethe key factor explaining
how living cells change in space and time to respond to environmental variations and stimuli,
make the necessary decisions to stay alive, grow and reproduce, differentiate and perpetuate the
species. Therefore, dynamical properties and physiological functions of living cells are decided
by genetic networks. We will focus particularly on one typical dynamical behavior of genetic
networks which has been highlighted by intensive theoretical and experimental investigations:
oscillations. Biological oscillations are involved in manybiological functions, for example,
circadian rhythms [53, 75, 160] or cell division [129]. Other representative examples are im-
mune response [66], cell growth/death [93], embryo development [2, 60], calcium dynamics
[58], etc.

Two main fundamental questions about oscillatory behaviorin cellular mechanisms are
how (what are the underlying molecular mechanisms) and why (what are the physiological
functions of oscillating molecular signals). However, dueto the complex topology and huge
size of genetic networks, both questions cannot be comprehended by sheer intuition alone.
One may view genetic networks similar to electronic circuits. Instead of resistors, capacitors
and transistors linked together by wires, genes, RNAs, proteins and other macromolecules
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are connected by biochemical reactions. Thus, the questioncan be raised of whether genetic
networks can be usefully described by mathematical modeling, in the same way as electronic
circuits are. The answer is yes. Accordingly, many powerfulmodeling and analysis approaches
from physics and mathematics can be applied.

In order to study the design principles of biological oscillations, deterministic mathemati-
cal equations are commonly used to describe the time evolution of average quantities of com-
ponents of genetic networks. Some key ingredients of oscillations have been uncovered. A
negative feedback is a necessary condition, but it should besufficiently delayed by biological
processes or intermediate steps that take a certain amount of time; nonlinear degradation mech-
anisms of RNAs or proteins can also trigger oscillations. It has been suggested that nonlinear
degradation is an important source of delay. Morantet al. [138] have analytically demonstrated
how these key ingredients of oscillations interact and can be traded off against each other in
a simple system, a self-repressing gene where gene activityresponds slowly to variations in
protein level [85].

Due to small copy numbers of reacting molecules, the geneticnetworks that regulate cel-
lular dynamics are subject to noisy stimuli and large intrinsic fluctuations. These fluctu-
ations have been proposed as useful mechanisms responsiblefor phenotypic heterogeneity
[157, 120], coordinated expression of a large set of genes and probabilistic differentiation
strategies [195, 35, 5, 77]. Increasing experimental and theoretical investigations suggest that
cellular fluctuations play crucial roles in the design principle of the livings [195, 35, 5, 77]. In
view of this, deterministic equations which assume biochemical reactions with an infinite num-
ber of participating molecules are not appropriate. There is a growing need for mathematical
modeling approaches which takes into account fluctuations.One such approach is the master
equation, however there are few cases where it can be solved analytically.

Fluctuations in genetic networks arise not only from elementary biochemical reactions, but
also from these highly regulated and multiple-steps processes such as transcription [165, 44,
104, 142, 143, 121], in which macromolecular enzyme RNA Polymerases (RNAPs) synthesizes
the mRNA according to the gene sequence. A specific dynamical behavior of RNAP which has
attracted much interest is the stochastic pausing where theRNAP is halted at a nucleotide
along the genetic sequence and which is observed in both prokaryotes and eukaryotes. Pausing
can severely affect transcription dynamics, probably contributing to the transcriptional bursting
widely observed in most of the genes of prokaryotes [85, 20, 71], yeast [198, 181, 19] and
eukaryotes including mammalians [156, 155, 22, 42, 44, 176].

Motivated by important roles and the intriguing dynamical behaviors of genetic networks,
we will theoretically elucidate dynamical effects of time delay, fluctuation and transcriptional
pausing on genetic networks. This thesis work mainly includes three studies.

Combination of time delays and biological oscillations

The first study is about delays, one of the key ingredients of biological oscillations. Various
sources of delay exist in cellular processes, such as transcription and translation which feature
many intermediate steps and take a minimum amount of time, molecule transport, phospho-
rylation and etc. Understanding how these various time delays combine is crucial to explain
the robustness of experimentally observed oscillations [175], however this has been relatively
little studied. A further question is whether delays from various sources play similar dynamical
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roles. In order to address these questions, the action of a delay must be specified mathemati-
cally. In the literature, there are actually two different strategies for modeling delays. In some
studies, the delay appears in an explicit manner as the time-delayed value of some dynamical
variable [137, 127, 184] and is referred to as "explicit delay". In other studies, it is originated
in a reaction step [123, 80] and called "reaction delay". Even though both of them are com-
monly used, their similarities and differences have not yetquantitatively studied. In this first
study, we will investigate the combination principles of delays and compare the different in-
fluences of explicit and reaction delays on oscillatory behavior. To this aim, we will study a
self-repressing gene circuit comprising delays respectively due to the dynamics of gene activity
and to molecule transport.

Influence of fluctuations on the biological oscillation of genetic
networks

In the second study, we investigate the influence of fluctuations on the oscillatory behavior of
genetic networks. For this purpose, we will develop a cumulant expansion derived from the
master equation to incorporate fluctuations in a deterministic description. We will apply this
approach to the same self-repressing gene circuit we have studied before. In this simple circuit,
fluctuations are due to the small copy numbers of mRNA and proteins, and more importantly
to the binary nature of gene activity, which undergoes transitions between the "ON" and "OFF"
states. We will show how fluctuations shift the steady state predicted by deterministic equations
and how fluctuations can induce oscillations in this reducedsystem.

Stochasticity of transcriptional pausing and its dynamics ef-
fect

The aim of the third study is to study the dynamical effects induced by transcriptional pausing
and its influence on transcription rate. To this aim, we will introduce a classical system in
out-of-equilibrium statistical physics named the Total Asymmetric Simple Exclusion Process
(TASEP). We will use it to model transcription and study how the dynamics of transcription is
affected by pauses occurring in a stochastic fashion with weak dependence on DNA sequence.
For simplicity, we will restrict ourselves to the case of TASEP model with periodic boundary
condition. It will be found that mean-field approach works well only in the limit case where
pause are short. We will then suggest a statistical approachto compute the transcription rate
modified by pausing over the entire range of pause duration. An expression of the transcription
rate agreeing well with numerical simulations will be given.

Plan

In Chapter 1, we first introduce the motivation of this thesis work. Then we present different
mathematical approaches to describe the dynamics of genetic networks, such as deterministic
equations which are helpful to reveal the key ingredients ofbiological oscillations, the cumulant
expansion of the master equation which allows to take into account fluctuations, and the TASEP
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model describing the transcription process. In Chapter 2, weintroduce an extension of the
model proposed by Morantet al. [138]. In this model there are two delays respectively due to
gene response dynamics and protein transport, with the latter being modeled as a reaction or an
explicit delay. We will discuss the combination of these twodelays and compare the different
influences of reaction and explicit delays on oscillatory behavior. In Chapter 3, we take the self-
repressing gene circuit as an example to apply the cumulant expansion of the master equation.
This approach allows us to investigate the influence of fluctuations on the steady state and
oscillation regions predicted by deterministic models. InChapter 4, we study how transcription
is affected by RNAP pausing in using the TASEP model and predict the transcription rate for
all pause durations.
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Chapter 1

Dynamical modeling of gene networks

1.1 Biological motivation

1.1.1 Biological oscillations

Living cells may be viewed as dynamical systems which have tofunction and maintain them-
selves in highly changing environments. They receive information from inside and outside the
cells, process this information to make decisions, and thentrigger responses which are appro-
priate for survival and reproduction. Essential cellular functions rely on complex networks in
which macromolecules, such as genes, RNAs and proteins, interact with each other via bio-
chemical reactions so as to generate collective behaviors.These genetic regulatory networks
are intrinsically dynamic and highly nonlinear. Understanding their dynamics is the key to de-
scribe the temporal and spatial changes that a cell undergoes to respond to stimuli, grow and
reproduce, differentiate and do other important and necessary activities.

The development of new quantitative real-time measures of molecular dynamics in living
cells, but also the capacity to synthesize genetic networks, has shed light on a striking dynam-
ical behavior of genetic networks: oscillation [114, 92, 87, 95, 83, 84, 6, 144, 41]. Oscillatory
behavior is characterized by periodically repeating variations of some measures or quantities
and is observed in a great number of biological systems, witha wide range of timescale from
seconds to days (Table. 1.1). Some representative examplesof biological oscillations are found
in the cell division cycle [129], circadian rhythms [53, 75,160, 3, 32], immune response [66],
embryo development [95], cell death and apoptosis [93, 52],and cellular calcium dynamics
[58]. It has been suggested that oscillations are more efficient than a steady state to encode
and transfer information both in time and space, and that they actively contribute to robust
regulations of biological functions at different levels ofcellular organization and as well as to
flexible responses to environmental variations [21, 148]. However, oscillations are not easy to
understand, because they do not result from the action of a single molecular actor but from the
combined interaction of several of them. We review below a few biological systems that can
display sustained oscillations, as well as the components involved in the oscillating network.

In vertebrate embryo, the somites [2, 60] are the basis of thesegmental pattern of the body
and give rise to the axial skeleton and the dermis of the back.Fig (1.1) illustrates the phe-
nomenon of somite formation in Zebrafish [137], which has attracted a lot of interest. We
see a spatial pattern which is not unlike a trace on a magneticrecording tape. It is actually a
record of the temporal cyclic variation in expression levels of some genes in the cells of the
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Function Components Period
Metabolism Glucose, ATP, phospho-fructokinase 2 min

Somitogenesis Her1, Her7, Notch 30-90 min
Signaling Cyclic AMP, receptor, adenylate cyclase 5 min
Signaling Ca2+, lns(1,4,5)P3 >1 s
Signaling NF-kB, lkB, lKK, ∼ 2 h
Signaling p53, MDM2 5 h

Yeast endoreplication cycles Cig2, Cdc10, Rum1 1-2 h
Frog egg cycles Cycb, Wee1, Cdc25, Cdc20 30 min

Circadian rhythm PER, TIM, CLOCK, CYC 24 h

Table 1.1:Survey of biological systems displaying sustained oscillations. Table taken from
[145].

Figure 1.1:A Zebrafish embryo at 10-somite stage. This spatial pattern of segmentation is a
record of temporal oscillation of the expression process ofprotein Her1 and Her7. Figure taken
from [137].

presomitic mesoderm (PSM). Two genes, Her1 and Her7, and their associated proteins, which
are responsible for the somite formation in Zebrafish, have been identified, since when these
genes are knocked down by morpholino injections or chromosomal deletion, oscillations break
down. The Her1/Her7 system has often served as a paradigmatic example of a simple genetic
circuit comprising self-repressing genes which will be studied extensively in this thesis.

The second example of oscillations involves one of the most intensively studied proteins,
the tumor suppressor p53 which is involved in preventing cancer in multicellular organisms. It
functions by triggering DNA repair in case of damage, but is also a key protein involved in cell
death and apoptosis pathways, which may be required if DNA cannot be repaired. In advanced
and accurate single-cell experiments, the p53 protein was fused to fluorescent proteins so that
the variation of its copy number over time could be recorded [93, 52]. After a stress-induced
DNA damage, p53 is activated and its concentration increases. The increase of p53 protein
levels in turn leads to the production of its degradation enzymes. p53 is then rapidly degraded,
which after some time reduces the production of the degradation enzymes, and so on. This re-
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sults in very dynamical variations of p53 levels in individual cells. It can be seen in Fig 1.2 that
the interaction between p53 and its degradation enzymes gives rise to an oscillatory behavior.
This causes particular interest to understand the mechanism underlying the appearance of these
oscillations.

Figure 1.2:Dynamics of tumor suppressor p53. After DNA damage, the concentration of
protein p53 fused by fluorescent proteins is measured in real time in individual cells and is
found to display oscillatory behavior. Figure taken from [52].

Circadian rhythms provide another classical example of biological oscillations. Many or-
ganisms, including humans, have their life organized by theday/night cycle with period of 24
hours. During the day, for example, we stay awake and active,and at night we sleep and regain
energy for the next day. People do not behave so because they are disciplined and follow a
well organized life schedule but because their physiology is rythmically driven by a biological
clock whose workings are gene regulatory networks oscillating inside our cells [53, 75, 160].
One piece of evidence for the existence of these so-called circadian clocks is the jet lag effect.
After traveling over a long distance in a short amount of time, our circadian clock cannot adapt
instantaneously and remains for some time phase-shifted with respect to the outside day/night
cycle, which results in discomfort.

Quite remarkably, plants display also circadian rhythms. For instance, there is a plant called
Phaseolus coccineus [40] whose leaves open during the day and close at night (Fig 1.3). Inter-
estingly, if it is put in continuous light or darkness, the daily movements persist, which reveals
that its endogenous circadian clock evolves independentlyof sunlight. The endogenous nature
of circadian oscillations is further shown by the fact that in general the period of endogenous
circadian oscillations is slightly different from 24 hours. Circadian clocks have been found in
insects, fungi and cyanobacteria [3, 32]. Their physiological function is to help living organ-
isms to adapt to the environmental changes and accordingly to regulate various physiological
properties such as body temperature, feeding behavior, etc. The molecular components of
the genetic networks generating circadian rhythms have been identified in different organisms,
such as the proteins KaiA, KaiB and KaiC driving the circadian clock inSynechococcus or the
protein frq involved inNeurospora clock [3].

Understanding the molecular basis of the genetic networks that are responsible for cellular
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Figure 1.3:Circadian rhythm in the plant Phaseolus coccineus. (A) Leaves ofP.coccineus
close at night (left) and open during the day (right). (B) Circadian rhythms of leaf movement in
continuous light. The peaks of the curve represent the leaf position at night. The vertical lines
delimitate time intervals of 24 hours. Therefore, the period of endogenous circadian oscillations
in this plant is∼ 27 hours. Figure taken from [40].

oscillations is crucial to unravel the dynamics of cells. Tounderstand how oscillations emerge
collectively from a molecular network requires first that weunderstand the molecular interac-
tions that form the building blocks of this network. In cellular processes, the primarily involved
molecules are DNA, mRNA and proteins, and the elemental biochemical processes in which
they participate are synthesis (such as transcription or translation), degradation, complexation,
covalent modifications, etc. In the next section, we will review the details of these elemental
biochemical processes.

1.1.2 Elemental biochemical processes in cells

Transcription and translation We start with DNA molecules. DNA is a nucleic acid whose
two strands are entangled as a double helix. It is composed ofsimple units, called nucleotides,
and carries the genetic information that controls phenotype and functions of cells in all living
organisms by directing the synthesis of proteins. The stability of this information is ensured
by its discrete coding, and the segments of the DNA molecule which carry it are called genes.
As for mRNA, it is a single-stranded nucleic acid made up of nucleotide components. As we
describe below, mRNA results from the transcription of the genetic sequence and serves as a
template for synthesizing proteins in a process called translation. Proteins are polymeric chains
of amino acids typically folded into a specific form suitableto its function. Proteins are major
components of cells, and play crucial roles in all cellular processes. For examples, they can
participate in biochemical reactions and metabolism as vital enzymes but are also involved in
cell signaling and other important cellular mechanisms.

According to the central dogma of molecular biology (Fig 1.4), the genetic information
carried by genes is first copied into mRNA molecules during transcription, which is carried out
by enzymatic macromolecules named RNA polymerase (RNAP). Then genetic information is
transferred from mRNA to proteins by other macromolecules called ribosomes via the process
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of translation. The whole process in which genetic information in genes is used to synthesize
matured and functional proteins is referred as to gene expression. Now we examine the details
of these two main processes of gene expression: transcription and translation.

Generally, the three main steps of transcription are initiation, elongation and termination.
During initiation, RNAP and transcription factors (TFs), such as theσ factor involved in bacte-
rial transcription, bind to a particular DNA region near thegene which is called the promoter.
Then RNAP and TFs binding the promoter interact with each other and transform into an elon-
gation machine which is ready to move along the gene and to transcribe genetic information.
During elongation, RNAP, consuming energy brought by ATP molecules, moves along one
strand of the DNA template and reads the genetic sequence nucleotide by nucleotide, whereby
a freshly synthesized mRNA transcript comes out from the trail of RNAP. Elongation is a com-
plex process. The dynamics of RNAPs is rather stochastic and they may have unusual behaviors
which we will discuss at the end of Chapter 1. In addition, the elongation process involves a
number of other enzymes which are also subject to stochasticdynamics. When RNAP reaches
the last nucleotide of the gene, the final termination step occurs, and RNAP and TFs dissociate
from DNA molecule. The mRNA transcript is released from RNAP, undergoes folding and
phosphorylation, and then becomes mature mRNA which is readyto be translated for proteins.

Translation is quite similar to transcription. Compared to transcription, the template of
translation is the mRNA sequence instead of the gene, and the enzymatic macromolecules
reading the sequence are ribosomes. As translation begins,ribosome follows the template
sequence nucleotide by nucleotide and binds transfer RNAs (tRNAs) which themselves fix the
amino acids which are bricks of which proteins are made. When ribosomes reach the end site of
mRNA, a polymer chain of amino acids is finished and eventuallybecomes a functional protein
after undergoing posttranslational modifications.

Regulation As we have seen, gene expression consists of multiple combined steps. Each
of these steps requires many macromolecules and factors so that it is highly regulated. Let
us consider transcription regulation [90]. In fact, the transcription rate is highly dynamical.
Even though the promoter is the region of DNA where RNAPs and TFs are meant to bind,
it can actually be bound by other specific proteins. Their presence can either favor or inhibit
the binding of RNAP and TFs, and thus control the transcription rate. The proteins preventing
RNAP or TFs binding are called repressors. Likewise, those enhancing transcription are called
activators. Repressors and activators are synthesized by their associated genes. Thus, genes
interact with each other by driving the expression of each other via regulation.

Molecule transport After mature macromolecules like mRNAs and proteins are synthesized,
they are transported to some organelles or other locations where they exert their specific func-
tions. In particular, in eukaryotic cell, on one hand, mRNAs synthesized in nucleus needs
be transported to the organelles of ribosomes in cytoplasm where translation occurs. On the
other hand, those functional proteins which regulate transcription have to be relocated from
cytoplasm to nucleus to control gene expression.

Molecule degradation Various mechanisms leading to the destruction of macromolecules
play also an important role in biological oscillations [16]. Molecule degradation is actually a
complex process [141] in which many specific enzymes are involved. For example, protein
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Figure 1.4:Transcription and translation . Gene expression mainly consists two important
and complex processes: transcription and translation. During transcription, macromolecule
RNA polymerase (RNAP) and transcription factors (TFs) bind DNA molecule and read through
its sequence while the mRNA is synthesized behind them. Translation is similar to transcrip-
tion, but is catalyzed by other macromolecules called ribosomes.

degradation is performed by enzymes called proteases, and mRNA degradation by ribonucle-
ases. Thereafter we take as an example protein degradation.One of the most typical protein
degradation mechanism is the so-called Michaelis-Menten degradation [141] in which a protein
molecule P bound by protease E forms a complex C which in turn is converted into a product
S ultimately destroyed and the protease E is released. Thereby, proteins are converted into
smaller compounds but degradation enzymes, proteases, remain. The kinetic of biochemical
reaction can be described by:

P + E ⇋ C → S + E

If the enzymes are abundant, degradation is linear in the sense that the number of proteins de-
graded by unit time is proportional to the total number of proteins. In the case where their copy
number is smaller than that of proteins, there is a competition between proteins for degradation
enzymes and degradation becomes nonlinear. Furthermore, when the amount of degradation
enzymes is further reduced, degradation becomes saturated, and the number of proteins de-
graded per unit time becomes independent of protein copy number, because it is in fact limited
by enzyme copy number. A more complex degradation mechanismis allosteric degradation
[102] where the protein inhibits or enhances the activity ofthe degradation enzyme by binding
to one of its sites. In this case, the kinetics of degradationis much more complicated. We
introduce here only two examples of how molecular degradation can be highly nonlinear, but
in fact there are much more.

Dimerization and phosphorylation We have yet to introduce two important elemental bio-
chemical processes which will considered later in this thesis work: dimerization and phospho-
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Figure 1.5:Transcription regulation . The promoter is a particular region near the beginning
of a gene. The binding of a repressor to the promoter preventsattachment of RNAPs and TFs
so that it represses the transcription rate.

rylation.
Dimerization is a common process in biological systems [131, 7]. In this process two

identified unitsA called monomers bind to each other and form a new moleculeA2 named a
dimer. Many functional proteins in living cells, such as transcription factors, act in the form of
dimers, because this provides a way to modify the chemical kinetics. The dimerization process
of a monomerA can be explicitly described by:

A+ A → A2

Phosphorylation is also a commonly encountered process in which a phosphate groupPO3−
4

is covalently attached to the protein. Phosphorylation of many enzymes modifies their confor-
mation and controls their activities.

1.2 Genetic networks

We have reviewed elemental biochemical processes in cells.In this section, we will introduce
genetic networks where elemental processes are carried outand discuss their typical dynamical
behaviors.

1.2.1 Natural genetic networks

In cells, transcription of genes lead to mRNAs which in turn serve to produce functional pro-
teins. Moreover, the presence of certain proteins can regulate the transcription rates of some
genes, including their own genes. Thus genes indirectly promote or inhibit the rate of expres-
sion of each other. A collection of genes interacting via mRNAand proteins is called a genetic
network [94].
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PG 

Figure 1.6:A minimal genetic network. In this circuit, the gene synthesizes mRNA which
produces the associated protein. The proteins represses the transcription of its own gene, which
forms a negative feedback loop. This minimal genetic network actually exists in the nature,
such as Hes1, Hes7, involved in somite segmentation, or LexAwhich is the SOS regulon in
E.Coli.

The simplest genetic network is a loop in which proteins synthesized via transcription of a
given gene and subsequent translation regulate the transcription rate of this gene (Fig 1.6). For
example, direct binding of protein Hes7 to its own promoter represses the expression of its own
gene, which has been demonstrated in mice [12, 127]. Other examples are repressor LexA as
the SOS regulon inEscherichia coli [168], Hes1 [100] in the segmentation and etc.

The genetic networks based around a single gene are not the rule. As there are thousands
of genes in DNA molecules (Fig 1.7), the majority of genetic networks existing in nature are
much more complex and involve anything from a few genes to much more. Accordingly,
understanding their dynamics can quickly become very complex.

1.2.2 Synthetic genetic networks

Synthetic biology combines biological and engineering approaches to construct artificial ge-
netic networks which comprise only a few components and functions in isolation [79, 37, 102].
This allows one to overcome the complexity and coordinationof natural genetic networks. With
small synthetic genetic networks as testbeds, typical dynamical behaviors can easily be studied.

Here we take a synthetic network reported [37] as an example (Fig 1.8). This synthetic
network involves a negative feedback loop in which the first gene, LacI taken fromE.Coli,
inhibits the transcription of the second gene, TetR, which inturn represses transcription of a
third gene, cI fromλ phage. Finally, cI prevents the expression of LacI. When parameters
of this synthetic network are tuned, two dynamical behaviors are possible. The system may
settle onto a stable steady state, or the steady state may be destabilized, leading to sustained
oscillations. This example shows the simplicity and the power of the synthetic biology in
studying the dynamics of genetic networks by providing testbeds for theoretical modeling.

We should mention that synthetic genetic networks may display another typical behavior:
bistability [79, 154, 101], in which the system has two possible steady states and transits be-
tween them. However, we have chosen to focus here on oscillatory behaviors. In the next
section, we will try to understand the design principles responsible for this behavior, using
deterministic modeling.
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Figure 1.7:A typical genetic network in mammalian cells. Components of the genetic net-
work which are presented as a map are macromolecules involved in the cell cycle of mammalian
cell nucleus. Lines connecting nodes represent biochemical reactions. Figure taken from [111].

1.3 Deterministic modeling of genetic networks and key in-
gredients for oscillations

For exploring quantitatively the design principles of genetic oscillators, a mathematical descrip-
tion of genetic networks is required. The commonly used approach is deterministic modeling
based on the law of mass action in which the reaction rate is proportional to the concentration
of reactants [141, 103, 91]. In this way, we obtain a set of deterministic rate equations whose
variables are the concentrations of components of genetic networks, such as concentrations
of mRNAs and proteins. Assuming a genetic network comprisingN components, a general
mathematical description can be written as follows:

dxi(t)

dt
= f(x1, x2, ..xi, ..xN )− g(x1, x2, ..xi, ..xN )

wherexi is the activity of genei or the concentration of moleculei. Interactions between
molecular actors, such as transcription, translation, regulation, degradation and other elemental
biochemical processes we have described in Section 1.1.2, are included in these two functions
f(x1, x2, ..xi, ..xN) andg(x1, x2, ..., xN ) which describe the gain or loss mechanisms for com-
ponenti.

1.3.1 Necessary ingredient for biological oscillations: negative feedback

We introduce here a necessary ingredient for biological oscillations, negative feedback, and
its mathematical modeling. In classical mechanics, the simple harmonic oscillator displays
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Figure 1.8:Construction and oscillatory behavior of a synthetic network . (A) The synthetic
genetic network is a regulating loop composed of three genes(LacI, tetR and cI). (B) Two
different dynamical behaviors corresponding to two regions in parameter space are found: this
simple synthetic genetic network settles onto a stable steady state (top left) or displays sustained
oscillation because of unstable steady state (bottom right). Figure taken from [37].

sustained oscillations. When displaced from its equilibrium position, oscillator experiences a
restoring force that intends to bring it back to the equilibrium position. In fact, the restoring
force plays a role of negative feedback. Quite similarly, the negative feedback is also a neces-
sary condition for biological oscillation appearing in genetic networks [13], as has been shown
mathematically [174, 88].

In order to illustrate the mathematical modeling of a negative feedback loop, we consider
the example of a minimal genetic network consisting of one self-repressing gene. In this genetic
network, proteins inhibiting the transcription of their own gene create the negative feedback.
To be precise, when there are only a few proteins, protein synthesis of the gene is not affected.
When proteins become abundant, they can bind to the promoter of gene and thereby inhibit the
transcription. After proteins are degraded, the gene resumes the protein synthesis. The kinetic
of this minimal genetic circuit can be described by [184]:

dp(t)

dt
= k1

Kn
d

Kn
d + pn

− g(p) (1.1)

wherep is the concentration of protein;k1 is the maximum transcription rate when there are
few copies of protein and gene is fully expressed. The termK

n
d

Kn
d
+pn

is used to model the negative
feedback and describes how gene transcription is repressedby the presence of the protein. In
this term,n is an integer indicating whether protein binds to the gene asa monomer (n = 1),
dimer (n = 2), trimer (n = 3) or other forms,Kd characterizes the protein-DNA dissociation
constant. For small protein copy numbers,p ≪ Kd, the synthesis rate is approaching a constant.
The synthesis rate decreases monotonically as a function ofprotein concentrationp. In the limit
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Figure 1.9:A model of circadian rhythms with a reaction transport delay and its corre-
sponding oscillatory behavior. (A) Biochemical reactions of the negative feedback loop of
protein FRQ inNeurospora are presented. The protein FRQ is synthesized in cytoplasm and
then transported into nucleus to regulate transcription ofthe frq gene. (B) A numerical sim-
ulation of Eqs. (1.2) shows oscillations with a period closeto 24 hours. Figure taken from
[123].

case where protein concentration is sufficiently large (p ≫ Kd) the production of proteins is
completely inhibited. In this way, the negative feedback can be mathematically described.

1.3.2 Delay as the second key ingredient for oscillations

When analyzing Eq. (1.1), we find that the state of constant protein concentration is always
stable. Any perturbation in protein concentration immediately relaxes to zero because of the
negative feedback. Therefore, another key ingredient is needed for oscillations to appear. It is
found that if the negative feedback is delayed, oscillations appear systematically [137, 100, 127,
135, 123, 11, 180, 133, 175, 80, 145]. This can be understood with a simple example: consider
a person who walks straight towards a point marked on the ground. When he is approaching
to the point, he will reach it and stop there if he can make the decision instantaneously. This
resembles a genetic network in which the negative feedback signal is not delayed. However,
if this person have to take some time to realize the fact that he has reached the point, he will
cross it, then turn around and walk towards it again. Certainly he will reach and cross that point
again and again. Sustained oscillations are thus generated.

Therefore delay is also a dynamical ingredient which plays acrucial role in biological os-
cillations. There are actually various sources of delay in biological systems, for example, tran-
scription and translation take a minimum amount of time. Molecular transport, phosphorylation
and other intermediate steps of biological processes also lead to delays. Two main strategies
are used to model a delay. In some studies, the delay originates in a reaction step [123, 80],
and we will call such a delay a "reaction delay". In other studies, the delay appears explicitly
as a time-delayed value of some dynamical variable [137, 127, 184], without specifying the
underlying processes. We shall thereafter refer to such a delay as an "explicit delay".
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Ordinary Differential Equation (ODE) model with a delay induc ed by a reaction step
First, we consider a model of circadian rhythms inNeurospora [123, 80], in which delay orig-
inates from a reaction step. In this model (Fig 1.9),frq mRNAs are transcribed in the nucleus
and transported into cytoplasm where protein FRQ proteins are synthesized. Proteins are trans-
ported reversibly between cytoplasm and nucleus. Negativeregulation of gene expression is
exerted by proteins in nucleus. Given the biochemical reactions involved in this genetic circuit,
the kinetic is described by:

dM(t)

dt
= vs

Kn
I

Kn
I + F n

N

− vm
M

Km +M
(1.2a)

dFC(t)

dt
= ksM − vd

FC

Kd + FC

− k1FC + k2FN (1.2b)

dFN(t)

dt
= k1FC − k2FN (1.2c)

The set of Ordinary Differential Equations (ODEs) thus obtained describe the temporal
evolution of each components according to the law of mass action. In Eqs. (1.2),M , FC and
FN are respectivelyfrq mRNA copy number, FRQ protein copy numbers in the cytoplasm and
in the nucleus. The termvs

Kn
I

Kn
I
+Fn

N

denotes the transcription rate under control of FRQ proteins.

The termvm
M

Km+M
(or vd

FC

Kd+FC
) is the degradation function of mRNA (or FRQ proteins in

cytoplasm) following a Michaelis-Menten mechanism (see Section 1.1.2) in whichvm is the
maximum degradation rate andKm is the Michaelis-Menten constant.ks is the translation rate
of FRQ protein.k1 andk2 characterize the protein transport rates into and out of nucleus.

Here proteins are separated into two different compartments: cytoplasm and nucleus. The
protein transport between cytoplasm and nucleus leading tothe delay ensures that synthesized
proteins cannot inhibit gene transcription instantly. It can be proved that without the delay
due to protein transport, the steady state of Eqs. (1.2) remains always stable. Therefore, the
delay specified by reaction delays due to protein transport is crucial for this circadian model
to display sustained oscillations. Although reaction delays increase the dimension of system,
the advantage of models described by ODEs is that they are easily analyzed. Approaches for
analyzing ODE dynamics are well developed, such as linear stability analysis.

Delayed Differential Equations (DDEs) model involving an explicit delay The second
strategy to model delays is to introduce a variable with an explicit delay in the equations, which
are then termed Delayed Differential Equations (DDEs). Such equations were first introduced
in [130] and have been since widely used to describe mathematically the kinetics of biological
networks [137, 100, 127, 135, 11, 133, 80, 145].

To illustrate this concept with an example, we consider a small genetic circuit involving the
transcription factor Hes1 which regulates the expression of its own gene via a feedback loop
[95]. The kinetics of this genetic circuit is described by the following DDEs:

dr(t)

dt
=

αkh

kh + s(t− τ)h
− krr(t) (1.3a)

ds(t)

dt
= βr(t)− kss(t) (1.3b)
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In Eqs. 1.3,s andr are concentrations of protein Hes1 and of the correspondingmRNA,
respectively.β is the translation rate.kr andks are the spontaneous degradation rate of mRNA
and proteins, respectively. The production of mRNA and regulation by Hes1 are described by
the term αkh

kh+s(t−τ)h
. The mRNA is fully expressed when the gene is not bound by Hes1 and

is produced at a rateα. Otherwise, binding of Hes1 to its own gene reduces the transcription
rate. The explicit delayτ accounts for the fact that mRNA synthesis rate depends of the protein
concentration at timet − τ rather than at timet. This delay may be due to time needed to
complete transcription, translation or any other intermediate biological step. Importantly, the
model described by Eqs 1.3 can display sustained oscillations [100]. Compared with equations
featuring a reaction delay, the advantage of using an explicit delay is that we can neglect the
detail of biochemical processes inducing a delay. On the other hand, the dynamical analysis of
a system described by DDEs requires more sophisticated approaches.

The important point we want to make is that a given process canbe modeled either with
a reaction delay or with an explicit delay. How do we choose between them in our modeling
strategy? Indeed whether or not they have similar dynamicalbehaviors, especially for inducing
oscillations, remains unclear.

1.3.3 Nonlinear degradation and oscillations

As mentioned in Section 1.1.2, various degradation mechanisms can affect macromolecules
like mRNA and proteins in cells, such as linear, Michaelis-Menten or allosteric degradation.
They lead to very different behaviors of the degradation rate as a function of the concentration
(Fig 1.10). In particular, degradation functions describing Michaelis-Menten mechanism have
been utilized in Eqs. (1.2). In general, degradation mechanisms play important roles in shaping
the dynamical behaviors of genetic networks [135, 145].
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Figure 1.10: Functions associated with different degradation kinetics. Three functions,
which mathematically represent the kinetics of linear (redcurve), Michaelis-Menten (magenta)
and allosteric (blue) degradation are shown.
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Figure 1.11:Oscillations driven by nonlinear degradation. (A) Protein and mRNA are in-
volved in a negative feedback loop where the protein represses its own expression. In addition,
it can bind to an allosteric site in its degradation enzyme, the protease, and inhibit protease
activity. (B) Sustained oscillations in mRNA and protein concentrations are observed. Figure
taken from [145].

To introduce the mathematical modeling of degradation and its role in oscillations, we will
focus on a circadian model describing the expression of thePER gene in fruit flies [145]. In
this example, the protein PER represses the expression of its own gene, but it can also bind to
an allosteric site on its degradation enzyme, the protease,and thereby inhibit protease activity
(Fig 1.11A). The system is modeled by the following equations [145]:

dX(t)

dt
= ksx

Kp
d

Kp
d + Y p

− kdxX (1.4a)

dY (t)

dt
= ksyX − kdyY − kTY

Km + Y +KIY 2
(1.4b)

In Eqs. (1.4),Y andX denote respectively the concentration of protein PER and its mRNA.
ksx

Kp

d

Kp

d
+Y p describes the regulation ofPER transcription rate by protein PER.ksy is the trans-

lation rate of PER proteins.kdx is the spontaneous mRNA degradation rate.kdy is the rate
constant for an alternative pathway of protein degradation. Both of them are associated with
linear degradation mechanisms. The term kT Y

Km+Y+KIY 2 represents the allosteric degradation
and is a second-order function. The presence of this nonlinear degradation term is essential to
trigger sustained oscillations in protein and mRNA concentrations (Fig 1.11).

To summarize, we have discussed in this section three key ingredients of biological oscilla-
tions: negative feedback as a necessary condition, delay aswell as nonlinear degradation. We
have also discussed the fact that genetic networks can be mathematically described by models
comprising ODEs or DDEs. These deterministic models have been quite successful to pre-
dict oscillatory behavior in genetic networks. However, deterministic models are obtained by
assuming that the number of reacting molecules are infinite.This assumption is usually not cor-
rect because many molecules involved in cellular reactionspresent very small copy numbers.
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Figure 1.12:Fluctuations due to small copy numbers. Time series of protein concentrations
generated from a deterministic model and from a stochastic simulation (blue and red curves,
respectively). Histograms show the probability that a cellwill have a given protein concen-
tration. (A) Low-amplitude fluctuations with high numbers of protein molecules (∼ 10, 000).
(B) Large fluctuations correlate with a decrease in the numberof protein molecules (∼ 100).
Figure taken from [110].

In the next section, we will discuss effects due to the small and integer numbers of molecules,
which result in fluctuations (or noises) which can influence the oscillatory behavior of genetic
networks.

1.4 Stochastic fluctuations in genetic networks

1.4.1 Fluctuations due to low copy number of molecules

Deterministic rate equations are a widely used approach formodeling the dynamics of genetic
networks. In this context, copy numbers of macromolecules are assumed to be very large,
so that the relative error made by describing them with continuous variables is very small
(Fig 1.12A) in spite of the presence of fluctuations [110, 196]. More precisely, determinis-
tic models usually describe the time evolution of the averages of molecular numbers over an
infinite number of realizations of the underlying stochastic process.

However, in cells, many molecules are present at very small levels so that molecular copy
numbers have to be considered as small integers, not continuous quantities. For example, there
are typically ten copies of a transcription factor and one ortwo copies of a given gene in a single
cell. When the copy number of reacting molecules is low, synthesis or degradation leading to
variation of the copy number by one unit induces a large relative fluctuation, and thus may have
a significant influence on the system dynamics (Fig 1.12B).

Fluctuations arising from low copy numbers and inducing stochasticity are commonly en-
countered in many biological processes [72, 159, 150] and have attracted intensive studies since

25



decades [38, 105, 179, 183, 33, 151]. Recent theoretical workhas demonstrated that negative
feedback genetic circuits are able to reduce noise [183, 33,47, 9], with however some funda-
mental limits [125]. A natural question is whether molecular noise is just a nuisance which
should be controlled or whether it could have a functional role?

1.4.2 Functional roles of fluctuations

One may think that fluctuations are harmful to cellular functions, because they can degrade
the quality of intra- and inter-cellular signals. However,more and more experimental and the-
oretical investigations support the hypothesis that molecular fluctuations play crucial roles in
the design principles of cellular functions [195, 35, 5, 77]. For example, molecular fluctua-
tions have been proposed as a mechanism responsible for phenotypic heterogeneity [157, 120].
This is expected to be particularly important for microbialcells that need to adapt efficiently
to highly changing environments. In addition, fluctuationsin gene expression provide mecha-
nisms for achieving distinct physiological states in a given population, and therefore increase
the probability of survival without needing genetic mutation [110, 74].

A recent work by Gagatayet al. [77] provides new insights into the functional role of fluc-
tuations. Under experimental stress, a small fraction ofB.subtilis cells transiently switch into
a competence state in which they can take up extracellular DNA and incorporate it into their
chromosome. This switching dynamics is mainly driven by a relatively simple circuit involv-
ing the transcription factor ComK which actives its own expression and inhibits the expression
of its activator ComS (Fig 1.13A). By making use of the developed single-cell experimen-
tal technology, Gagatayet al. construct an alternative circuit called SynEx circuit in which
ComK activating always its own expression induces the expression of MecA which is respon-
sible for the degradation of ComK (Fig 1.13C). According to comparisons of simulations and
vivo experiments, the native and synthesized SynEx circuits generate transient pulses of ComK
(Fig 1.13B and D) with similar frequency, duration and amplitude.

So a fundamental question is why this particular circuit exists natively in cells rather than
other potential alternatives that display the same dynamical behavior, such as the SynEx circuit.
A key point is that the cellular fluctuation profiles of nativeand alternative SynEx circuit are
very different (Fig 1.13E). Specifically, the cell-cell variability of competence duration induced
by fluctuations in the copy number of ComS in the native circuitis much larger than these in the
SynEx circuit. It was shown that such higher fluctuations in the native circuit provides a func-
tional advantage which facilitates response to a wide rangeof extracellular DNA concentration
[77].

This suggests that fluctuation dynamics is an important property of a gene circuit archi-
tecture besides its deterministic dynamics, and that both must be taken into account when
discussing the design principles of gene circuits in livingcells.

1.4.3 Approaches to modeling stochastic fluctuations: the master equa-
tion and its cumulant expansion

Fluctuations are generally considered as a zero-mean noisesuperimposed on the deterministic
signal. However, genetic networks are usually highly nonlinear, which implies that a zero-mean
noise can be transformed into a non zero-mean signal feedback. For example, let us assume that
〈x〉 = 0. Then, the square of this signal verifies〈x2〉 6= 0 unlessx is constantly zero. If another
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Figure 1.13:Fluctuation dynamics discriminates functionally analogous genetic circuits.
(A) The simplified diagram of the native circuit displaying the competence dynamics. The
ComK positively regulates its own expression and represses the expression of its activator
ComS. (B) The native circuit generates a transient increase ofComK corresponding the com-
petence dynamics. (C) The diagram of the alternative circuit: ComK positively regulating its
own expression induces the protein MecA which is responsible for its degradation. (D) The al-
ternative circuit generates also a competence dynamics which is equivalent to that of the native
circuit. (E) The cell-cell fluctuation of competence duration is distinct between the native and
the SynEx circuit. The distribution of competence durationof native circuit is much broader
than that of alternative circuit. Figure taken from [77].
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variable is driven byx through this square term, sayẏ = f(y) + αx2, then fluctuations of the
zero-mean signalx will feed back into the average quantities whose evolution is described by
the deterministic equations. It can be expected that such feedback may dramatically change the
dynamical behavior. We will discuss here approaches to describe genetic networks subject to
fluctuations and to characterize the influence of fluctuations on the dynamical behaviors.

The standard approach to describe a stochastic system is theso-called master equation
[189]. It consists of coupled differential equations describing the time evolution of probabil-
ities of all microscopic states characterized by the numberof molecules in each species. Let
P ({n}, t) be the probability of the microscopic staten = (n1, n2...) whereni denotes the
number of molecules in speciesSi. The master equation reads as follows:

dP ({n}, t)
dt

=
∑

{n′}

W{n}{n′}P ({n′}, t)−W{n′}{n}P ({n}, t) (1.5)

whereW{n}{n′} ≥ 0 is the transition rate from microscopic state{n′} to {n}. The master
equation is a gain-loss equation for the probabilities of microscopic states. To be specific, the
first term is related to the increase in the probability of being in state{n} due to transitions
from other states{n′}, and the second term is related to the decrease of this probability due
to transitions from{n} to other states. The master equation predicts the temporal evolution of
all molecular quantities characterizing deterministic averages and fluctuations. However, it can
rarely be analytically solved [158], even for the steady states of the probability density function
(PDF)P ({n}, t) [98], and it is typically solved by numerical integration [169, 139]. Moreover,
knowing the time evolution of probabilities may not suffice to characterize certain dynamical
behaviors such as oscillations, since the solution of the master equation in this case will typi-
cally be a PDF centered around the limit cycle, with the phasedynamics being lost. Note that
a commonly used algorithm for stochastic simulation, the Gillespie algorithm [82]), does not
solve the master equation but yields a specific realization of the specific process. Evaluating the
time evolution of probabilities requires many concurrent simulations of the stochastic process
to obtain the ensemble average.

One approach of particular interest to solve the master equation is to construct the cumulant
expansion for the PDF of the master equation. Before derivingthe cumulant expansion, we
define cumulants and moments. First, moments of a random variablex are defined as:

µp = 〈xp〉 =
∑

{n}
xpP ({n}, t) (1.6)

wherep is the order of moment and the{n} are all the microscopic states. Therefore, all
moments are easily computed once the PDF is known. Moments are often used to characterize
the shape of the PDF quantitatively. For example, the first-order moment is the mean; the
second-order and third-order moments respectively measure variance and the skewness. More
generally, a PDF is completely specified if moments of all orders are known. The moment-
generating function is then defined in terms of the momentsµn as:

Mx(t) = E(etx) = 1 + µ1t+
µ2t

2

2!
+

µ3t
3

3!
+ ...

µnt
n

n!
+ ...

As to the cumulantsKn of x, they are defined via the cumulant-generating function expressed
as a function of the moment-generating function. More precisely, the cumulant-generating
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function ofx is expressed as:

Gx(t) =
∞
∑

n=1

Kn
tn

n!
= logMx(t)

Therefore, cumulants are given by:

Kn =
dnGx(0)

dtn
=

dn logMx(0)

dtn
(1.7)

Eq. (1.7) allows us to express cumulants of any order in termsof moments. A similar principle
can be applied to find joint cumulants for different random variablesx, y z:

Kx = 〈x〉
Kxy = ∆xy = 〈xy〉 − 〈x〉〈y〉

Kx,y,z = 〈xyz〉 − 〈x〉 〈y〉 〈z〉 − 〈x〉∆y,z − 〈y〉∆x,z − 〈z〉∆x,y.

(1.8)

The first-order and second-order joint cumulants are the average, and the covariance, re-
spectively. Note that higher-order cumulants are expressed in terms of the lower-order cumu-
lants. In fact, a cumulant of ordern captures then-point correlations which are not trivially
induced by correlations of lower order.

An important case is that of a Gaussian distribution for which all cumulants of order 3 and
above are zero. This distribution is thus completely determined by its average and covariance.
In general, it may be expected thatn-point cumulants of high order are negligible compared to
the lowest-order cumulants and thus that only a small numberof them suffices to characterize
the complete PDF. The idea is then that the master equation (3.3) can be recast in a set of
differential equations describing the time evolution of moments:

dµp

dt
=

∑

{n}
xpdP ({n}, t)

dt
(1.9)

where the time derivatives of theP ({n}, t) are given by the master equation (3.3) and thus can
be rewritten in terms of theP ({n}, t) themselves. As will be illustrated below, the key point is
that when this substitution is done, the right hand side terms of Eqs. (1.9) can be rewritten in
terms of moments. In the end, we obtained equations giving the time derivatives of moments in
terms of moments. Similar equations can obviously be derived for cumulants, and thus coupled
equations for cumulants constitute a infinite hierarchy because of the cumulant order.

In a linear stochastic system, equations for cumulants of a given order involves only cumu-
lants of the same and lower orders, thus the infinite hierarchy of equations for cumulants can
be easily truncated. In contrast, for the nonlinear system,equations for cumulant of a given
order involves higher-order cumulants. This is the most common case, as the presence of any
biochemical reaction will make the system nonlinear. So a crucial question raised is how to
truncate this infinite hierarchy of equations for joint cumulants. In the following, we will il-
lustrate the cumulant expansion approach derived from the master equation in the context of
a linear and a nonlinear examples. We will also try to show howfluctuations can influence
dynamical behavior.
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A simple linear model First, we show how to describe a simple linear model by the master
equation and the cumulant expansion. This linear model consists of the following chemical
reactions:

∅ α−→ X

X
X−→ ∅

(1.10)

In this system, proteinX is synthesized at rateα and is linearly degraded at the rate of one
molecule per unity time. The synthesis and degradation are both linear. The deterministic rate
equation describing this model is simply given by

dx

dt
= α− x (1.11)

wherex is the average copy number ofX.
When the synthesis rate is comparable with or smaller than thedegradation rate, the copy

number of proteinsX is very low and thus fluctuations have to be taken into account. The
master equation reads:

dP (x, t)

dt
= αP (x− 1, t) + (x+ 1)P (x+ 1, t)− αP (x, t)− xP (x, t) (1.12)

whereP (x, t) is the probability at timet of the microscopic state withx copies of proteins.
Note that the evolution ofP (x, t) depends only on the probabilities of the two other states
x + 1 andx − 1, as well as on the transition rateα. Even though Eq. (1.12) is linear, it is still
not easy to compute the steady state of probabilityP (x). The difficulty of finding analytical
solutions limits severely the usability of the master equation. However, a numerical solution is
easily obtained and is useful to verify the analysis of cumulant expansion that we will construct
below (Fig 1.14).

From the definitions of cumulants and the master equation (1.12), we can write equations
for the first-order and second-order cumulants associated respectively with the average and the
variance [189]:

d〈x〉
dt

= α− 〈x〉
d∆xx

dt
= 〈a2(x)〉+ 2〈(x− 〈x〉)a1(x)〉 = α + 〈x〉 − 2∆xx

(1.13)

Note that the equation for the average (or first-order cumulant) is the same as the determin-
istic rate equation. Moreover, it is not affected by the variance. The evolution of the variance
depends on the average and on itself. Equations for high-order cumulants similarly involve
only cumulants of the same or lower order. Eqs. (1.13) form a closed system. The steady state
can easily be obtained, with an average〈x〉 = α and a variance-to-mean ratio

√
∆xx

〈x〉 = 1/
√
α.

Both expressions agree well with the numerical integration of the master equation (Fig 1.14).
In this part, we derived the cumulant expansion from the master equation for a linear model.

We showed that equations for cumulants of a given order are uncoupled from those for higher-
order cumulants, for example the average quantity is not affected by fluctuations. Two quan-
tities that capture essential features of dynamics, average and the variance, are perfectly pre-
dicted by the cumulant expansion. We next analyze a nonlinear example using the cumulant
expansion.
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Figure 1.14:Analysis of a linear model by using cumulant expansion.(A) The average
〈x〉 (blue curve) and variance-to-mean ratio (green curve)

√
∆/〈x〉) predicted by the cumulant

expansion (1.13) are consistent with numerical simulations. (B) The time evolution of the
concentration ofX displays large fluctuations when the copy number is low (α = 10). (C) The
time evolution of the concentration ofX is subject to small fluctuation forα = 1000.
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Nonlinear example: dimerization The nonlinear example we will consider here is a reaction
network featuring a dimerization process. Dimerization isvery common in biological systems
and describes a process in which two identical units bind together and form a dimer [188, 7].
The governing kinetic reactions of the unitX are expressed as follows:

∅ α−→ X

X +X
X(X−1)−−−−−→ X2

(1.14)

The proteinX is synthesized at constant rateα and is transformed into the dimerX2 at a
rate which is proportional to the number of molecule pairsx(x− 1)/2. In the kinetic reactions
Eqs. (1.14), the factor of1/2 is absorbed into the rate constant which is normalized. Notethat
for simplicity, we neglect degradation of proteinX. This dimerization model can be described
by the following cumulant expansion:

d〈x〉
dt

= α− 2
(

〈x〉2 − 〈x〉+∆xx

)

(1.15a)

d∆xx

dt
= α + 4(〈x〉2 − 〈x〉+ 2∆xx − 2〈x〉∆xx −K3) (1.15b)

Equations (1.15) describe the time evolution of the averageand of the variance. The fac-
tor of 2 accounts for the fact that dimerization transforms two protein molecules at a time.
Compared to the deterministic rate equationdx/dt = α − 2x2, the differential equation for
the average (1.15a) describes more precisely how the reaction rate depends on the number of
molecule pairs by using the term〈x〉(〈x〉 − 1) instead of〈x〉2. This is particularly important
in the limit caseα ≪ 1 where fluctuations are significant because of the low copy number of
proteinsX.

A key point is that variance affects the time evolution of average and that the differential
equation for the variance involves the third-order cumulant K3. Thus, equations for the cumu-
lant of a given order involve higher-order cumulants: all cumulants are coupled in an infinite
hierarchy of equations in which Eqs. (1.15) are the first. Thus constructing a strategy to truncate
this hierarchy is a key step to solve the cumulant expansion.Several approximations have been
suggested [7, 134, 86]. Here we will discuss only two limit cases according to the importance
of fluctuations.

When the synthesis rateα ≫ 1, the proteinX is in high level so that we can assume
that fluctuations described by second-order and third-order cumulants can be ignored. Under
this assumption, the steady state is the same as that predicted by the deterministic rate equa-
tion: 〈x〉 =

√

α/2. This analytical steady state predicts well the regime withlow fluctuations
(Fig 1.15). However, whenα approaches to unity or becomes even smaller, fluctuations are
dominant and the steady state is underestimated.

In the limit caseα ≪ 1, the synthesis process is so slow compared to dimerization that
once two protein molecules are produced, both will be dimerized rapidly. The fluctuation is
significant in this limit, as the protein copy number is either 0 or 1. The temporal protein profile
consists of a sequence of spikes. The variance-to-mean ratio equals unity (Fig 1.15) which is
related to the fact that protein spikes are distributed in time according to a Poisson process. On
average, there are no protein molecules during a time1/α, then1 molecule during the same
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Figure 1.15:Comparison of numerical average and fluctuation level of stochastic dimer-
ization with theoretical predictions of the cumulant expansion. Red stars (resp., ma-
genta circles) represent the numerical average concentration 〈x〉 (resp., variance-to-mean ratio√
∆xx/〈x〉) in the stochastic dimerization process. The variance to mean ratio is approaching

to unity forα ≪ 1, which indicates that the system dynamics is driven by protein production
following a Poisson process. The blue (green) curve is the steady state predicted by cumulant
expansion for the limit case whereα ≫ 1 (resp.,α ≪ 1). Both limits agree well with numerical
simulations.
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time. So the average of molecules is found to be〈x〉 = 1/2 (Fig 1.15). The steady state of the
second-order and third-order cumulants is also easily found:

√
∆xx/ < x >≃ 1, K3 = 3α/4

according to Eqs. (1.15). In this limit, the steady state is exactly solved and is seen to be highly
affected by fluctuations.

In the dimerization problem, as well as in any nonlinear system, equations of the cumulant
expansion at a given order involve higher-order cumulants.This implies that average quantities
governed by deterministic rate equations are perturbed when fluctuations are taken into ac-
count, which is especially important in cell circuits. Moregenerally, any finite set of cumulant
equations does not form a a closed system, and it is thereforenecessary to elaborate a strategy
to truncate the hierarchy of equations.

In this section, we discussed the important role of fluctuations due to low molecular copy
numbers in genetic networks. We presented a promising approach, the cumulant expansion
of the master equation, which allows us to analyze the influence of fluctuations on dynamical
behaviors. In chapter 3, we will apply this approach to the example of a self-repressing gene,
showing how fluctuations can induce oscillations. In the next section, we will still consider the
effect of stochastic fluctuations, but more specifically those arising in the highly regulated and
multiple-step process of transcription [165, 44, 104, 142,143, 121] (or, equivalently, translation
[20]).

1.5 Stochastic aspect of the transcription

Transcription is a process where mRNA molecules are synthesized by macromolecules called
RNA polymerases (RNAPs), which copy the gene sequence carriedby DNA. In many studies,
transcription is described as a simple Poisson process witha constant rate [184, 150]. It is
actually a very complex process [106, 192, 76, 18, 178]. Transcription can be divided into three
separate steps: initiation, elongation and termination, and each of them is exquisitely regulated
[59, 14, 132, 167] by transcription factors present in smallcopy numbers and stochastic events.
Precise single-molecule experiments have allowed us to characterize directly the dynamics of
transcription by monitoring mRNA synthesis in real time, onecopy at a time.

1.5.1 Transcriptional bursting directly observed in experiments

Golding and colleagues used MS2-GFP fusion proteins to tag transcripts in living individual
cells of E. Coli when the target gene was expressed. They have directly observed individual
transcription events by measuring the copy number of mRNA transcripts. They showed that
transcription occurs in an unexpectedly irregular fashionrather than at constant rate.

Fig 1.16 shows the copy number of mRNA transcripts in individual cells as a function
of real time. it is seen that transcription is characterizedby periods of inactivity of duration
∆tOFF followed by periods of activity of duration∆tON . During the ON periods, transcripts
are synthesized, whereas during the OFF periods, transcription remains silent. The averages
of the ON and OFF durations are respectively 6 min and 37 min. This phenomenon is called
transcriptional bursting and has been widely observed in many prokaryotes [85, 20, 71], in
yeast [198, 181, 19] and in eukaryotes including mammalians[156, 155, 22, 42, 44, 176].

Numerous mechanisms have been suggested to explain transcriptional bursting [136, 85,
152, 31, 177, 164, 199, 187, 186, 62]. A commonly considered idea is that transcriptional
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Figure 1.16: Transcriptional bursting in individual cells . The mRNA transcripts tagged
by fluorescence proteins are counted in real timet in single cell. The experimental result
directly demonstrated that the gene is transcribed during short periods of activity of duration
∆tON interspersed by silent intervals of duration∆tOFF . The averages of these two periods
are〈∆tON〉 ≈ 6 min and〈∆tOFF 〉 ≈ 37 min. Therefore, the autonomous dynamics of gene
activity has a time scale comparable to that of other important processes. Figure taken from
[85].

bursting is the consequence of initiation dynamics, in particular, regarding access to promoter
[85]. In this hypothesis, the silent periods are the periodswhere the promoter is bound by
repressors, and the bursts correspond the periods of activity when the promoter is free. How-
ever, studies in vitro have shown that initiation time can beas fast as a few seconds [136],
which conflicts the hypothesis. Meanwhile, as typical genespossess easily thousands or mil-
lions of nucleotides that need to be transcribed by RNAPs and the elongation process is subject
to complex regulations, people begin recently to investigate the elongation as a developmental
checkpoint. Elongation is actually not a constant forward process. RNAPs read the template of
DNA in a stochastic stepwise fashion, and moreover they can display some unusual dynamical
behaviors which enhance the stochasticity, such as transcriptional pausing [126] which is one
mechanism possibly explaining the transcriptional bursting [31, 62, 67].

1.5.2 Pausing of RNA polymerases during transcription

Unusual dynamical behaviors of RNAPs [182, 43, 163, 25, 97] may seriously affect the tran-
scription dynamics. During elongation in which RNAPs move forwards along the DNA tem-
plate in stochastic single-nucleotide steps [190], the movement of RNAP in vivo and in vitro
is usually interrupted by an event where the RNAP is halted at anucleotide. This behavior is
defined as transcriptional pausing [26, 118, 126, 108]. Single-molecule assays have recently
achieved base-pair resolution for following motion of RNAPsand allow us to directly visualize
the RNAP pausing [57, 54, 56] (Fig 1.17). Transcriptional pausing has been widely found in
both prokaryotes and eukaryotes [10, 70, 118].

RNAP pausing occurs in a stochastic fashion and is spontaneously reversible, after which
the RNAP continues to move forwards. The majority of pauses are short with an average
duration of≈ 1 s. They are referred to as "ubiquitous" or "elemental" short pauses [56, 107,
119, 55, 57] and must be distinguished from the so-called prolonged backtracking pauses [55,
57, 4]. The latter are rare (represent less than5% − 10% of all pauses) and their durations
are usually over20 s. In fact, prolonged pauses are involved in the backtracking process [197,
171, 78, 48, 113, 49, 15, 50, 192] in which RNAPs move backwardsand may proofread the
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Figure 1.17:RNAP pausing observed in single-molecule transcription onsynthetic tem-
plate. Advanced single-cell experiments allow people to monitorthe dynamics of single RNAP
molecule in real time. Here seven representative records ofpositions of single RNAP molecule
along the≈ 3 kb ops repeat templates as a function of time are shown. It is found that in most
records, RNAP is halted at some sites for a small or large amount of time. Figure taken from
[57].
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Figure 1.18:Transcription and TASEP model. TASEP model is used to describe the tran-
scription process. (A) In transcription, RNAPs cannot overlap with each other and move for-
wards along DNA template in stochastic single-nucleotide steps. (B) In the TASEP model, each
site can only accommodate at most one particle which hop downwith a constant probability
related to the elongation rate only if the next site is not occupied.

sequences of copied mRNA [63]. In addition, it is observed that short pauses depend little on
template sequences. They are not affected by mechanical pushing forces exerted by trailing
RNAPs, so that the pause frequency and duration are the same even for a large density of
RNAPs. In contrast, prolonged backtracking pauses exhibit astrong sequence dependence, and
a RNAP in prolonged pause can be pushed forwards by a trailing RNAP [56, 171, 65].

Recent investigations show that transcriptional pausing plays important functional roles
in coordination and accuracy of gene expression [51, 45, 1, 61]. Intuitively, transcriptional
pausing leads to traffic jams of RNAPs. Not only the average transcription rate is seriously
reduced, but also the temporal dynamics of transcription isdramatically affected. When small
groups of RNAPs induced by traffic jams arrive at the termination site, they produce a group of
mRNA transcripts, which can correspond to a burst of transcription we have mentioned before.

As the transcription is a complex process, the question is how to describe mathematically
the transcriptional pausing so as to study its influence. To this aim, we first introduce a classical
system in out-of-equilibrium statistical physics, which has been proposed to model transcrip-
tion.

1.5.3 TASEP (Totally Asymmetric Simple Exclusion Processes) as the model
of transcription

During transcription, there are two main features in RNAP dynamical behavior. They move
forwards along DNA template in a stochastic fashion, and they can not overlap with each other
so that they are constrained by the "excluded volume constraint". Several studies have sug-
gested to model transcription [62, 164, 31, 109] (as well as translation [23, 17, 161, 172, 24])
as a driven lattice gas in one dimension (Fig 1.18), known as the Totally Asymmetric Simple
Exclusion Process in out-of-equilibrium statistical physics (TASEP for short) [115, 112, 29, 28,
34, 30, 117, 27, 153].
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In this TASEP model, RNAPs are modeled as particles moving in one direction along a
discrete lattice comprisingN sites. For the sake of simplicity, we will not take into account
RNAP footprint, which does not qualitatively change the results. Particles hop down with a
constant probability associated with elongation rate, only if the next site is not occupied by
another particle, so that each site can accommodate at most one particle (the excluded volume
constraint is implemented). The dynamics of TASEP model highly depends on the boundary
conditions. TASEP models with open boundary conditions [29], where a new particle can enter
the lattice with rateα representing the transcription initiation and particles can also exit from the
end of lattice with rateβ for the transcription termination, describe naturally thetranscription
process. The analysis of TASEP with open boundary conditionis relatively involved and has
been an achievement of statistical physics.

For mathematical simplicity, transcription can also be modeled as a TASEP model with pe-
riodic boundary conditions, where the lattice is a ring around which particles move indefinitely
[28, 172]. The number of particles is thus constant. Also, all sites are equivalent and the density
is the same in each site by symmetry.

The central quantity of interest in the TASEP model is the particle current, which is the
average number of particles going through one site per unit time. This current may display large
variations depending on the values of parameters because ofthe possible formation of “traffic
jams” blocking the flow across the lattice and thereby dramatically lowering the current. From
a statistical point of view, the particle current is a representative of all transport phenomena
between two bodies which are not in thermal equilibrium. As in any transport phenomenon,
there is a conservation law relating the variation of density at one site to the difference between
the incoming and outgoing currents. When steady state has been reached, densities at all sites
are constant, which implies that the current is the same across the entire lattice.

In the TASEP model with periodic boundary condition, the current, which measures the
mean number of particles advancing from a given site during unit time and represents the
transcription rate, is given by:

J = ρ(1− ρ) (1.16)

whereρ is the average density of RNAPs at each site. Remarkably this expression can
be obtained from a simple mean-field approach. Formula (1.16) expresses the fact that the
probability of a particle advancing from one site depends both on the presence of a particle
on the site (with probabilityρ) and on the absence of particle on the next site (with probability
1−ρ). Note that the transcription rate is a symmetric function of density. Low particle densities
lead to small transcription rate, which is not surprising. For high densities of particles, only
particles with an empty site in front of them can move forwards and contribute to the current,
so that the transcription rate is reduced as well. The current reaches its maximum value of
Jmax = 1/4 when the ring system is half occupied.

Although TASEP with periodic condition, where particles travel on a ring, has little resem-
blance with the transcription process, it is sufficiently simple to allow analytical studies. Some
analytical results can be derived and provide us crucial insights, such as the current-density
relation, into the transcription dynamics influenced by RNAPs.

Here we have discussed a typical feature of transcription, RNAP pausing, as a possible
explanation for transcriptional bursting. The TASEP model, as one classical system in out-
equilibrium statistical physics, has then be presented as amodel of transcription. We will
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analyze it further in chapter 4 to investigate dynamical effects of RNAP pausing on transcrip-
tion.

1.6 Conclusion and aims of this thesis

In this chapter, we first introduced the intriguing oscillatory behaviors displayed in many bi-
ological systems, which motivated us to begin this thesis work. Then we discussed briefly
elemental biochemical processes occurring in the cell and how major functional molecules,
such as DNA, mRNA and proteins, interact with each other via biochemical reactions to form
genetic networks which can display oscillations. Next, we showed how to describe genetic
networks by deterministic modeling and discussed three keyingredients for oscillations: neg-
ative feedback, delay and nonlinear degradation. Stochastic fluctuations due to low molecular
copy numbers are then considered as well as their influence ongenetic networks. An approach
combining the master equation and a cumulant expansion werepresented as a method to de-
scribe fluctuations and to explore their influence on oscillatory behavior. Finally we focused
on the stochastic properties of transcription which have attracted much interest during the past
decade. In particular, transcriptional pausing was introduced. It may highly affect the dynamics
of transcription and contributes to transcriptional bursting.

This thesis mainly focuses on dynamical effects of transcription. As the title suggests, it
consists of three different studies devoted to (i) the combination of various and multiple time
delays in a self-repressing gene circuit and its influences on oscillations, (ii) dynamical effects
of stochastic fluctuation on the oscillation and (iii) the dynamical influences of RNAP pausing
on transcriptional dynamics.

In the first part of this work, we study theoretically the combination of various delays in a
small gene circuit as well as the dynamical influence of different types of delays in the context
of a deterministic modeling of genetic networks. Time delays have been highlighted as an
important ingredient for sustained oscillations. Here we consider in particular time delays
arising from transcription. Transcription is usually considered as an instantaneous process
[137, 100, 127]. However, we have presented in Section 1.5.1experimental results showing
that gene activity has an autonomous dynamics with a time scale comparable to that of other
important processes. Thus we will recall in Section 2.1.1 a model proposed by Morantet al.
[138] taking into account a transcriptional dynamics of gene activity with a finite gene response
time. In this model, it can be analytically shown that there is a time scale of the gene response
at which the system is most destabilized. Also, the trade-off between the delay and saturation
of degradation can be studied precisely. However, there arevarious sources of delay in genetic
networks, such as translation, molecule transport, etc. aswe mentioned in Section 1.3.2.

A natural question is whether the results of [138] remain valid when other sources of delay
are taken into account. In Chapter 2, we will study extensionsof the model of [138] where a
second delay derived from protein transport is added. Another question is raised: how do delays
from two different sources interact, does their combined influence only depend on their sum
or not? Is it correct to hypothesize that the more delays there are, the more easily oscillations
are obtained is correct? In Section 1.3.2, we had introducedtwo types of delay modeling:
explicit delay or reaction delay in which the delay is modeled as reaction step. The following
question is whether the two different types of delay exert the same influence on the appearance
of oscillations. If no, how do they differ? Under which conditions do they play the same role
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in dynamics? We will answer all these questions in Chapter 2 byderiving analytical expression
of the oscillation threshold in models with explicit or reaction delays.

The second part of this thesis work is motivated by the observation that the dynamical be-
haviors predicted by deterministic models, such as steady state levels and regions of oscillation
in parameter space, can be dramatically modified by fluctuations. In order to elucidate the in-
fluence of fluctuations on the dynamics of genetic networks, we use the minimal genetic circuit
comprising one self-repressing gene with linear degradation of mRNA and protein. In this re-
duced system, sources of fluctuations are not only the low copy numbers of mRNA and protein
molecules, but also the dynamics of gene activity which is characterized by transitions between
"ON" and "OFF" states. The question is then whether the cumulant expansion can be applied
to describe the binary gene states. If so, how do fluctuationschange the steady state predicted
by deterministic model? Moreover, it is known that there is no deterministic oscillations in this
small genetic circuit when degradation mechanisms are linear [138]. Are fluctuations then able
to induce oscillations ? Another question raised is how to characterize stochastic oscillation in
numerical simulations to verify our analytical results. All these questions will be discussed in
Chapter 3.

The third part studies dynamical effects of RNAP pausing on transcription. We introduced
In Section 1.5.3 the classical TASEP model which is used to model the transcription process,
as well as pausing which increases the stochasticity of transcription in Section 1.5.2. Thus
the question is how to incorporate pausing into the TASEP system, and how to analyze its
dynamical effects. The TASEP model is usually studied underthe mean-field approximation
[23, 17, 161]. Does the mean-field approximation always workin the model with pausing ? If
not, how can we study this model ? With pausing, what is the typical behavior of transcription
and how does pausing drive the transcription rate ? We will study these questions in Chapter 4.
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Chapter 2

Oscillation arising from combination of
various and multiple time delays with
nonlinearity in a self-repressing gene

Many studies have highlighted the importance of oscillations in various biological systems,
such as circadian rhythms [53, 75, 160, 40, 3, 32], cell division cycle [129], immune response
[66], cell growth/death [93] and embryo development [2, 60]. The physiological role of biolog-
ical oscillations may stem from the fact that they encode more information than steady states,
allowing them to contribute efficiently to robust biological regulations of cellular functions at
different levels. Oscillations also allow cells to respondflexibly to variations of their environ-
ments [21, 148]. In order to meet the growing need of understanding the mechanisms under-
lying these oscillations, intensive work has been carried out [174, 88, 184, 137, 100, 127, 135,
123, 11, 180, 133, 175, 80, 145]. It was found that negative feedback of molecular signals is a
necessary ingredient to support sustained oscillations displayed in genetic networks. Secondly,
these molecular signals should be sufficiently delayed so that the steady state of genetic net-
works is destabilized. Additionally, highly nonlinear molecule degradation mechanisms may
also trigger oscillations. The subtle relation between delay and nonlinear degradation in the de-
sign principle of biological oscillators has been often mentioned but is not yet fully understood
[135].

There are in fact various sources of time delay, in particular originating in transcription
[85, 155, 22], translation, phosphorylation, molecule transport, etc. The combination of these
various and multiple time delays may be key to explain the robustness of experimentally ob-
served oscillations [175], however how these delays interact remains unclear. In order to ad-
dress this question, mathematical modeling of delays is required. There are actually two types
of delay used in modeling. In some studies, the delay appearsin an explicit manner, as the
time-delayed value of some dynamical variables [137, 127, 184], and the underlying processes
are not specified. We shall thereafter refer to such a delay asan "explicit delay". In other stud-
ies, the delay originates in a reaction step [123, 80], and weshall call such a delay a "reaction
delay". Although explicit and reaction delays are commonly used to model biological oscilla-
tions, the similarities and differences of these two types of delay modeling have not yet studied
systematically.

The purpose of chapter 2 is to investigate how the combination of various and multiple
time delays affects oscillations and to compare the influences of explicit and reaction delays on
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Figure 2.1:Reaction diagram of the self-regulating gene circuit. Transcription and trans-
lation are involved. The autonomous dynamics of gene is approximated by the protein-DNA
binding-unbinding. Transcription rate of bound gene by proteins is perfectly repressed. Arbi-
trary degradation functions are chosen for mRNA and protein.

oscillatory behavior of genetic networks. To this aim, we consider the minimal genetic network
comprising a self-repressing gene [12, 127, 100, 137], which is a very common element of
biological networks. For example, inE. Coli cells,40% of genes for transcription factors are
repressed by their own protein products [162]. This chapteris organized as follows: in the first
section, we review a mathematical model for the self-repressing gene that takes into account the
autonomous dynamics of gene activity [138]. Then we extend that model to combine the gene
response time with transport delays modeled as reaction delays or as explicit delays. These
two cases will be discussed respectively in the second and third sections. In the last section,
we discuss similarities and differences in the dynamical behaviors induced by the two types of
delay.

2.1 Description of time delay in the model of a self-repressing
gene with transcription memory

2.1.1 Basic model accounting for the slow dynamics of gene activity

We first review the model proposed by Morantet al. [138]. It describes the minimal genetic
circuit consisting of a self-repressing gene (Fig 2.1), andtakes into account the fact that a slow
transcriptional dynamics can affect the system behavior. Besides transcriptional regulation, the
synthesis and degradation of proteins and messager RNAs are the basic biochemical processes
of the model. For the sake of simplicity, we only consider thecase where transcription rate is
reduced by the binding of a protein monomer.

Except for the degradation mechanisms which will be left unspecified, we apply the law
of mass action according to which the kinetic rate is proportional to the number of reacting
molecules. The kinetic equations of the genetic circuit represented in Fig 2.1 are then the
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following:

dG

dT
= θ0(1−G)− α0PG (2.1a)

dP

dT
=

dG

dt
+ β0M − δPF (P ) (2.1b)

dM

dT
= µ0 + λ0G− δMH(M) (2.1c)

G,P andM represent respectively gene activity, protein and RNA copy numbers. Eq. (2.1a)
describes the kinetics of protein-DNA binding at rateα0 and unbinding at rateθ0. The first
term of Eq. (2.1b) corresponds to protein-DNA binding and unbinding, the second and third
terms describe translation and protein degradation. Eq. (2.1c) describes the total transcription
rateµ0 + λ0G (as the unbound gene is expressed asG with the transcription rateλ0 + µ0

and the bound gene is1 − G with the transcription rateµ0) and RNA degradation. Eq. (2.1a)
can also be viewed as a minimal description of the dynamics ofan effective gene activity
G slowly relaxing towards an equilibrium value given by the gene regulation functionG =
1/(1 + P/P0), with P0 = θ0/α0 the half-expression threshold. Such a model can be viewed
as the leading approximation of a mechanistic model of transcription including all processes
concurring to gene expression when there is a dominant limiting step. The negative feedback
in this system arises from the fact that the activityG, or the transcription rate is reduced when
the DNA is bound by a protein. In order to study how oscillations can be induced by tuning
protein and RNA degradation, we consider arbitrary degradation functionsH(M) andF (P ),
without specifying detailed mechanisms. These degradation functions are assumed to have unit
derivative at zero, so that a deviation of their slope from 1 will characterize the nonlinearity in
degradation.

Note that a common interpretation of the circuit in Fig 2.1 isthat the gene has two states,
bound and unbound. Our deterministic model is valid when themean response time of gene is
small compared to the oscillation period, so that there are many binding/unbinding events by
cycle.G can then be viewed as a temporal average of gene activity.

By renormalizing time, variables and parameters (more details in the Appendix A.1), Eq. (2.1)
can be rewritten in dimensionless form :

dg

dt
= θ (1− g(1 + p)) (2.2a)

dp

dt
= α (1− g(1 + p)) + δ(m− f(p)) (2.2b)

dm

dt
= µ+ λ g − h(m) (2.2c)

Eqs. (2.2) have a single steady state (g∗, p∗,m∗). Note that the steady state depends only on
parametersλ andµ as well as on functionsf andh, whereas parametersθ, α, δ control time
scales. Therefore, tuning gene response time does not change the steady state. The behavior of
the degradation in the neighborhood of the steady state is described by the slopes:

s =
df(p)

dp

∣

∣

∣

p=p∗
, u =

dh(m)

dm

∣

∣

∣

m=m∗

(2.3)

In the case of linear degradation, we haveu = s = 1. Small or even negative values
of the slopess andu generally denote strongly nonlinear degradation mechanisms, including
saturation.
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To assess whether system (2.2) can display sustained oscillations, we have searched for
parameter values where the fixed point loses its stability toa periodic solution via the Hopf
bifurcation. For the sake of simplicity, we assume here perfect repression when the gene is
bound by a protein (µ = 0) and a large threshold (P0 ≫ 1) leading toα ∼ 0. Under this
approximation, the Routh-Hurwitz stability criterion [89]indicates that the Hopf bifurcation
occurs when:

Hǫ(Σ, T ) = Σ

(

ǫ2 Σ2

4
T 2 + (Σ− 1

Σ
)T + 1

)

< 0 (2.4)

whereǫ = 2
√
δ su

δ s+u
∈ [0, 1] indicates whether the protein degradation rateδ s and the RNA

degradation rateu are balanced. When these two rates are equal,ǫ = 1. ǫ becomes zero as one
or the other rate vanishes.Σ = δ s+ u represents the sum of degradation rates;T = g2∗

√
δλ/θ

characterizes the time scale with which gene responds to a sudden variation in protein copy
number.

The criterion 2.4 allows one to identify key ingredients foroscillations and to assess their
influence quantitatively. In particular it shows how delay,characterized byT and nonlinear
degradation, characterized byΣ and ǫ, combine to generate oscillations. When the delay is
small, the degradation needs to be strongly saturated (Σ → 0). When degradation is closer to a
linear mechanism, then the delay needs to be larger. In this sense, a saturated degradation can
be viewed as equivalent to a time delay.

Eq. 2.4 defines a series of curvesΣǫ(T ) specifying the degradation rateΣ at oscillation
threshold as a function of response timeT and balance indexǫ. For a givenǫ, oscillations are
found forΣ < Σǫ(T ). For fixedT , Σǫ(T ) decreases monotonously withǫ. Fig 2.2 shows the
limit curvesΣ1(T ) andΣ0(T ) which are particularly important to understand the bifurcation
diagram.

Figure 2.2:Bifurcation diagram of the model (2.2) in the (Σ, T ) plane. The system with
balance indexǫ oscillates forΣ < Σǫ(T ). The limit curvesΣ1(T ) andΣ0(T ) are shown.
Black dots correspond to oscillating parameter sets of (2.2)with specific degradation functions.
Tc = 1 denotes the time scale beyond which transcriptional dynamics cannot be neglected.
Figure taken from [138].

Two regions can be distinguished. ForT < 1, the instability thresholdΣǫ(T ) increases
rapidly withT and its dependence onǫ is negligible. In the region ofT > 1, Σǫ(T ) reaches its
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maximum value and then decreases for larger values ofT except in the caseǫ = 0.
This analysis indicates that there is a resonance-like phenomenon in the dynamics of a self-

repressing gene with slow transcription response: this minimal genetic circuit bifurcates most
easily to periodic behavior, or more generally is most instable, at a finite value of the gene
relaxation time given byTopt = 2

√
2.

However, there are other various sources of delay besides the gene response time, such as
those arising in translation, molecule transport, etc. A natural question is whether the con-
clusions of Ref. [138] remain valid when other various delaysare taken into account. Another
question is how to describle mathematically these delays. In the next section, we give examples
of various sources of delay and introduce two types of delay modeling which are commonly
used in the literature: reaction delays or explicit delays.

2.1.2 Reaction and explicit delays

The work of Morantet al. [138] analytically demonstrates that delay is a key ingredient for
oscillatory behavior. However, besides delays due to slow transcriptional response, various
sources of delay are found in biological systems, even in such a minimal genetic network
comprising a self-repressing gene. Translation takes a minimum amount of time. There are
many intermediate steps giving rise to delays, such as molecular transport of mRNAs and
proteins between nucleus and cytoplasm, phosphorylation,etc. (Fig 2.3). These delays are
probably comparable to or even larger than the gene responsetime.

This raises thus several questions: do delays from other sources promote or weaken oscil-
lations induced by the slow gene activity? Can these delays becombined into a global delay
that promotes oscillatory behavior? If yes, how ? A further question is whether delays from
different sources play similar roles or not.

To answer these question, a mathematical modeling of delay is required. However, two
different strategies of modeling delays exist in the literature: explicit and reaction delays, as
mentioned in Section 1.3.2. Explicit delays allow us to ignore details of underlying mecha-
nisms, but bring up delayed differential equations (DDEs),which are difficult to solve analyt-
ically, while reaction delays allow us to specify process details giving birth to delay and are
easily analyzed. When a delay has to be introduced in a model, researchers most often seem to
choose between those two types of delay according to personal preferences, without discussing
their different influence on oscillatory behavior. Thus, wemay ask whether the influence of one
type of delay is stronger than that of the other. If it is so, which one does promote oscillations
more easily ? What are the conditions under which they will play similar roles for triggering
oscillations ?

2.1.3 Extended models incorporating molecular transport delays

In order to answer these questions, we extend the self-repressing gene model studied by Morant
et al. [138] in which there is already a delay modeled as reaction delay: the gene response time.
We will combine this delay with an additional delay, here induced by protein transport between
nucleus and cytoplasm. Such kind of delay has been for example considered in Ref. [123].

In this extended models, transport delay will be modeled as areaction delay and as an
explicit delay in turn. For the sake of simplicity, we still assume perfect repression (µ = 0) and

45



GP
P

P

M

Cytoplasm

Nucleus
M

Degradation

Degradation

P

T
ra

n
sl

at
io

n

Transport

Transport Regulation

T
ra

n
sc

ri
p

ti
o

n

Figure 2.3:Various sources of delay. Transcription and translation take a minimum amount
of time. Many intermediate steps lead to delays, such as the transport of mRNA and protein
between nucleus and cytoplasm.

a large half-repression threshold (α ∼ 0). Numerical simulations indicate that the final results
we will obtain are relevant even when these conditions are not met.

We first assume that protein transport from cytoplasm to nucleus is irreversible and model
it as a reaction delay. Then the governing kinetic equationsin dimensionless form are:

dg

dt
= θ (1− g(1 + pn)) (2.5a)

dm

dt
= λ g − h(m) (2.5b)

dpc
dt

= δ m− pc
τp

(2.5c)

dpn
dt

=
pc
τp

− δ fn(pn) (2.5d)

whereg,m, pc, pn are respectively gene activity, RNA copy number, protein copy numbers in
cytoplasm and nucleus. We assume single-protein regulation for simplicity, with DNA being
bound by nuclear protein (2.5a).h(m) (fn(pn)) is an arbitrary function describing the kinetics
of RNA degradation (protein degradation in the nucleus) which can be linear or nonlinear.λ
andδ characterize the maximum transcription rate and the protein degradation rate;θ denotes
the rapidity of gene response to a sudden variation of protein copy number. Since Eqs. (2.5) are
extended from Eqs. (2.2) by adding the transport of proteins, the same degradation parameter
δ is kept in (2.5c) and (2.5d) as in the Eq. (2.2b). The termpc

τp
represents the protein transport

from cytoplasm to nucleus, withτp the protein transport time. Note that such a reaction delay
could also describes delays arising from intermediate steps of several biological processes, such
as protein folding, phosphorylation, etc. Here we suppose that the protein degradation occurs
only in the nucleus so that the steady state of system does notdepend on the transport delay,
which much simplifies the following computation.

Protein transport can be irreversible, if it results from anactive process, or reversible if it
results from mere diffusion [123]. To include reverse transport, kinetic equations are modified
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as follows:

dg

dt
= θ (1− g(1 + pn)) (2.6a)

dm

dt
= λ g − h(m) (2.6b)

dpc
dt

= δ m− pc
τp

+
pn
τr

(2.6c)

dpn
dt

=
pc
τp

− pn
τr

− δ fn(pn) (2.6d)

whereg,m, pc, pn are respectively gene activity, RNA copy number, protein copy number in
the cytoplasm and in the nucleus; the termpc

τp
represents the protein transport from cytoplasm

to nucleus; similarly, the termpn
τr

is the reverse transport of protein from nucleus to cytoplasm,
andτr characterizes the reverse delay.

This delay due to protein transport can also modeled as explicit delays. Explicit delays in
the form ofx(t− τ) wherex(t) is a dynamical variable andτ is a fixed delay are widely used
to describe the dynamics of genetic networks. They are generally used to take into account bio-
logical processes which take a minimum amount of time, such as transcription and translation,
etc. It is clearly also admissible to use such terms to describe a delay induced by molecular
transport. In this case, the kinetic equations become:

dg

dt
= θ (1− g(1 + p(t− τ1))) (2.7a)

dm

dt
= λ g − h(m) (2.7b)

dp

dt
= δ (m(t− τ2)− f(p)) (2.7c)

whereθ is still the parameter characterizing gene response time, and τ1 andτ2 represent re-
spectively the protein transport time from cytoplasm to nucleus and RNA transport time from
nucleus to cytoplasm.

In the next section, we will analyze the above extended models with reaction and explicit
delays taking into account molecular transport. We will tryto uncover the principles governing
the combination of these delays with the gene response time and to understand the differences
in the influences of a reaction delay and of an explicit delay on oscillatory dynamics. Note
that the model extended with a reaction transport delay has one more variable than the original
model (4 variables in Eqs. 2.5 vs. 3 variable in model 2.1). Incontrast with this, the model with
the explicit transport delay has the same dimension as the original one, however the ordinary
differential equations (ODEs) become delay differential equations (DDEs).

2.2 Analysis of the model with a reaction delay

2.2.1 Analytical criterion of oscillations

First of all, we study the model 2.5 with a reaction delay describing the irreversible transport
of protein from cytoplasm to nucleus. Eqs. (2.5) have a single steady state(g∗,m∗, pn∗) which
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does not depend on the parameterτp andθ characterizing respectively the time scale of protein
transport and gene response. In other words, varyingτp andθ does not change the fixed point
(g∗,m∗, pn∗), which is an important property that it greatly facilitatesour analysis. The behav-
ior of the degradation mechanisms in the neighborhood of thesteady state is still denoted by
the slopes:

s =
df(pn)

dpn

∣

∣

∣

pn=pn∗

, u =
dh(m)

dm

∣

∣

∣

m=m∗

(2.8)

As the steady state does not depend on theτp andθ, the slopess andu does not depend
on them either. In the case where degradation functions of protein and RNA are linear, we
haves = 1, u = 1. Values ofs andu differing from 1 generally denote strongly nonlinear
degradation mechanisms, including saturation.

To assess whether the system (2.5) can display sustained oscillations, we search for pa-
rameter values where the fixed point losses its stability to aperiodic solution via a Hopf bi-
furcation. The analytical Routh-Hurwitz stability criterion [89] indicates the Hopf bifurcation
occurs when:

H = (δ s+ u)(τg + τp)(δ sτg + 1)(uτg + 1)(δ sτp + 1)(uτp + 1)

−g2∗δλ[(τg + τp) + (δ s+ u)τgτp]
2 < 0

(2.9)

whereτg = g∗/θ denotes the gene response time. When the criterion (2.9) crosses zero to
become negative, sustained oscillations are observed. In the limit of τp = 0, we recover the
criterion given by Morantet al. [138]. Note that the effect of the transport delay is exactly
the same as that of gene response time, as shows the symmetry betweenτp andτg in the cri-
terion (2.9). Therefore, we can conclude that these two reaction delays from different sources
play completely identical roles for the appearance of oscillations. This is a remarkable result
because it allows us to extend our results for the self-repressing gene with finite response time
to the case of a self-repressing gene with finite transport time, which has been much more
studied.

Then, how do these two reaction delays combine ? To answer this, we represent the criterion
as a function of the sum of delaysτ = τg + τp and of their productτ

′2 = τg τp, which are both
symmetric functions. The degradation rate of mRNA and protein δ s andu are also expressed
in their sumσ = δ s+ u and productγ = δ su (see Section 2.1.1).

H = σ + (σ2 − g2∗δ λ) τ + σ γ τ 2 + σ τ
′2(

γ2 τ τ
′2 − σ − 2γ τ

σ τ ′2 + τ
− g2∗δ λ) < 0 (2.10)

We then renormalize criterion (2.10) as follows:

σc = g∗
√
δ λ, σ = σc Σ, γ =

ǫ2 Σ2 σ2
c

4
, τ =

T

σc

, τ
′2 =

η T

2σc

(2.11)

whereη = 2
√
τ ′2/τ ∈ [0, 1] is a balance indicator that quantifies the asymmetry of the two

delays. For example,η = 1 implies that these two delays are equal andη = 0 when one of
delay is zero;ǫ = 2

√
γ/σ ∈ [0, 1] is another balance indicator introduced before, which plays

a similar role asη for the degradation rates.
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The oscillation criterion then becomes:

Hǫ, η(Σ, T ) =
ǫ2 Σ2

4
T 2 + (Σ− 1

Σ
)T + 1 + Tη2 (

ǫ4 Σ4 T 3 η2 − 64Σ− 32ǫ2 Σ2 T

64(ΣTη2 + 4)
− T

4
) < 0

(2.12)
whereT is the sum of the two reaction delays derived from different biological mechanisms
(protein transport delay and gene response time), andΣ is the sum of degradation rates.

When only one of the delays is present and the other is zero, then we haveη = 0. In
this case, the criterion reduces to the first 3 terms in (2.12)are the same as the criterion (2.4),
as expected. In the general case where both delays are present, these terms quantify how the
total sum of the two reaction delays influences the appearance of sustained oscillations. The
last term in criterion (2.10), however, demonstrates that these delays can interact together in a
non-trivial manner. Thus the influence of two coexisting reaction delays on the appearance of
oscillations cannot be deduced simply from their sum. In particular, their interaction can either
promote or reduce oscillations depending on the sign of the interaction term. In the limit case
where one delay is much smaller than the other, the interaction term is neglectful compared to
the first 3 terms so that it is the sum of delays that influences oscillations. However, in general
cases, the term of delay interaction may become significant,which has to be taken into account.

In conclusion, we found that the analytical criterion (2.12) not only depends on the two key
parameters which are the sum of delaysT and the sum of degradation ratesΣ but also on how
the delays and degradation rates are balanced, which is quantified respectively by the indicators
ǫ andη. In the limit case where one of reaction delays is zero (η = 0), the last term of criterion
(2.12) becomes zero and the oscillation criterion 2.4 is recovered, regardless of whether the de-
lay originates from gene response or transport. In the general case, the dependence of criterion
(2.12) onη demontrates that the dynamics is not only influenced by the sum of delaysT but
also on their relative importances. In particular, note that in the case where degradation is sat-
urated (ǫ = 0), the delay interaction term is always negative, which means that delay interation
then always promotes oscillations.

In order to understand more closely how oscillations are affected by the combination of two
reaction delays, we now study the bifurcation diagram with more detail, and in particular the
behavior of oscillation thresholds in different limiting cases.

2.2.2 Bifurcation diagrams and interaction of reaction delays

The criterion (2.12) defines a series of curvesΣǫ,η(T ) specifying the degradation rateΣ at
oscillation threshold as a function of delay sumT and balance indicatorsǫ andη. For fixedǫ
andη, oscillations can be found forΣ ≤ Σǫ,η(T ). Fig 2.4A shows four curves corresponding
to four limit cases of criterion (2.12), where the two indicators ǫ and η take their maximal
and minimal value (respectively1 and0). These limiting curves are particularly important to
understand the bifurcation diagrams. To provide numericalsupport for our analysis, we have
searched for the parameter space of equations (2.5) for oscillatory behavior in the case where
α, µ 6= 0 and where protein degradation and RNA degradation obey respectively allosteric and
Michaelis-Menten enzymatic kinetics, as described by:

f(p) =
p(a+ p/κ)

a+ 2a(p/κ) + (p/κ)2
, h(m) =

χm

χ+m
(2.13)
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Figure 2.4:Bifurcation digrams of the model with a reaction transport delay and finite
gene response time. (A) Oscillation threshold specifying the total degradation rateΣ as a func-
tion of sum of the two reaction delaysT for limiting values of the indicatorsǫ andη. The two
blue curves correspond to the limit cases in which one of delay is zero (η = 0) as in [138]; the
two red curves correspond to the limiting cases where the twodelays are equal. Black dots indi-
cate parameter sets giving rise to oscillations, withθ ∈ (0.001, 1000), α, µ ∈ (0.001, 10), λ, δ ∈
(0.1, 1000), τp ∈ (0.001, 1000), assuming degradation mechanisms described by equation
(2.13) with a, κ, χ ∈ (0.1, 100). (B) Illustration of oscillatory behavior observed in model
(2.5) for the parameter set:θ = 0.1, λ = 50, δ = 1, τp = 5, a = 0.01, κ, χ = 10.

Parameter sets giving rise to sustained oscillations are shown as black dots in Fig 2.4A.
Note that numerical simulations agree very well with our analytical criterion even though they
do not assume perfect repression (µ = 0) or a large half-repression threshold (α ∼ 0). Indeed,
all dots are below theΣ01(T ) and only a few of them, which correspond to parameter sets
where one degradation rate is small are found aboveΣ11(T ).

The curvesΣ1,0 andΣ0,0 correspond to the cases where there is just one delay (eithergene
response time or protein transport) and are the same as thosediscussed by Morantet al. [138]
for the self-repressing gene with finite response time. In order to illustrate effects of combi-
nation of two reaction delays, we first compare the curvesΣ1,0 andΣ1,1, in which degradation
rates are equal (ǫ = 1). In the first curve there is a single delay (η = 0). In the second one, the
total time delayT is divided into two identical delays corresponding to two different biological
steps (η = 1). WhenT is small, these two curves are superimposed, which implies that it is the
sum of delays that drives the system dynamics. However, whenT becomes sufficiently larger,
these curves separate and the one with two identical delays is always above the other, which
means that oscillations can be achieved at higher degradation rates. Thus, delays distributed
in intermediate steps of a genetic loop promote oscillations more easily than in a single step,
which contributes to the robustness of oscillations. In addition, the resonance-like effect de-
scribed by Morantet al. [138] is preserved: there is always one gene response time for which
the system is most easily destabilized.

Secondly, we compare the curvesΣ0,0 andΣ0,1, for which either protein or mRNA degra-
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dation is saturated (ǫ = 0), in which we observe a notable phenomenon. It is found that the
oscillation threshold indicated byΣ0,1 with two identical reaction delays can become remark-
ably higher than in the single delay case. For practical purposes, it is almost as if oscillations
can always be obtained for a sufficient large delay, given that the maximum of the curve is very
high.

In the above discussion, we have analyzed the model with a reaction delay describing uni-
directional protein transport from cytoplasm to nucleus, whereas transport can be reversible if
it results from ordinary diffusion. We consider the latter case in the next section.

2.2.3 Dynamical effect of reversible transport delay

Here, we analyze model (2.6) to discuss the dynamical effectof delays resulting from bidirec-
tional transport of proteins between cytoplasm and nucleus. The steady state (g∗,m∗, pn∗) of
Eqs. (2.6) does not depend onθ, τp or τr which characterize the time scales of delays. Thus,
tuning gene response time or the two transport delays does not change the steady state, and
therefore not the degradation rates either. We introduce the quantityµ = τp/τr which is the
ratio between the transport delay from cytoplasm to nucleusand the one from nucleus to cyto-
plasm.

To assess how the backward delayτr influences the appearance of sustained oscillation,
we use again the same strategy of searching for parameter values where the fixed point loses
stability via a Hopf bifurcation. After a suitable parameter normalization, we can obtain an
analytical oscillation criterionHǫ,η(Σ, T, µ), which is very complicated so that we will not
reproduce it here. This criterion reduces to (2.12) when thenew parameterµ verifiesµ = 0.
The curvesΣǫ,η(T, µ) giving the oscillation threshold in the particular case where gene response
time is equal to protein transport delay from cytoplasm to nucleus are shown in Fig 2.5 for
different values of parameterµ.

When the parameterµ is increased, the oscillation region in parameter space is progres-
sively reduced, requiring smaller and smaller degradationrates. This implies that adding a
backward transport delay obstructs sustained oscillations. Note thatµ > 1 indicates that the
backward transport is more rapid than the protein transportfrom cytoplasm to nucleus, in this
case, the backward transport decreases coupling between gene activity and protein and stabi-
lizes the system.

In this section, we have investigated the dynamical influence of combining two reaction
delays on the oscillatory behavior of a minimal genetic network. Remarkably, an analytical
criterion was found, which allowed us to show that reaction delays interact in a non-trivial way
so that how reaction delays are distributed can affect the dynamics. In the next section, we will
discuss the case where transport is modeled using explicit delays.

2.3 Analytical oscillation criterion of the model with explicit
delay

In model (2.7), there are two explicit transport delays:τ1 denotes the protein transport from
cytoplasm to nucleus;τ2 is the RNA transport form nucleus to cytoplasm. As with reaction
delays, we first find the steady state (g∗,m∗, p∗), which is the same as for the model (2.2)
without transport delays. We also find that the steady state does not depend on the parameters
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Figure 2.5:Influence of the reverse transport delay. (A)Oscillation thresholdsΣ0,1(µ) for
different values of reverse transport delay in the case where at least one degradation is saturated
and where gene response time (τg) and the transport delay of protein from cytoplasm to nucleus
(τp) are equal.µ = 0 means that transport is irreversible. (B)Oscillation thresholdsΣ1,1(µ) for
different values of reverse transport delay in the case where two degradation rates are equal and
where gene response time (τg) and the transport delay of protein from cytoplasm to nucleus (τp)
are also equal.

τ1 andτ2 which characterize the time scale of transport delays. Degradation rates of proteins
and RNAs are still defined as the slopes of degradation function in the neighborhood of steady
state, and they are independent of transport delaysτ1, τ2 as well.

To assess whether the model (2.7) can display sustained oscillations, we apply also the
linear stability analysis in the neighborhood of the steadystate by writing the Jacobian matrix
[73, 116]. The characteristic equation for eigenvalues obtained is the following:

ξ3 +
1 + g∗τg(δ s+ u)

g∗τg
ξ2 +

δ s+ u+ g∗τgδ s u

g∗τg
ξ +

δ s u+ δ λ g2∗ exp (−(τ1 + τ2)ξ)

g∗τg
= 0

(2.14)

whereξ denotes the eigenvalue. If it is positive, the steady state is stable; otherwise, the
steady state is unstable and sustained oscillations are observed. It appears in Eq. (2.14) that
explicit delaysτ1 andτ2 only influence the dynamics through their sumτ1 + τ2, unlike with
reaction delays.

Now we further analyze Eq. (2.14). We search for values of thetotal delayτe = τ1 + τ2 for
which Eq. (2.14) has a pair of conjugate pure imaginary roots. Therefore, we assumeξ = ±iω
(ω > 0) as roots of Eq. (2.14). By separating the real and imaginary parts, we obtain the
following equations:
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Figure 2.6:Illustration of oscillations of model (2.7). Numerical simulation is carried out with
parametersθ = 0.1, λ = 50, δ = 1, τp = 5, a = 0.01, κ, χ = 10 and specific degradation of
mRNA and proteins described by Eqs. (2.13).

cos (ω τe) =
(1 + g∗τg(δ s+ u))ω2 − δ s u

g2∗δ λ
(2.15a)

sin (ω τe) =
−g∗τg ω

3 + (δ s+ u+ g∗τg δ s u)ω

g2∗δ λ
(2.15b)

whereτe is the sum of explicit delays;τg = g∗/θ characterizes the time scale of gene response;
δ s andu are respectively the protein and RNA degradation rates. Eqs.(2.15) provide relations
between the parameters at which the system losses the stability via a Hopf bifurcation and the
frequency of periodic solutionω (Fig 2.6). The latter may be in principle eliminated from the
equations to yield the equation of an hypersurface in parameter space.

For the sake of simplicity, we renormalize parameters as follows:

σ = δ s+ u, γ = δ su, σc = g∗
√
δ λ, σ = σc Σ, γ =

ǫ2 Σ2 σ2
c

4
, τe =

Te

σc

, τg =
Tg

σc

, ω = Ωσc

(2.16)
whereǫ = 2

√
γ/σ ∈ [0, 1] is defined as the balance indicator of degradation rates as before.

Thus, Eqs. (2.15) become:

cos (ΩTe) = (1 + ΣTg)Ω
2 − ǫ2 Σ2

4
(2.17a)

sin (ΩTe) = −Tg Ω
3 + (Σ +

ǫ2 Σ2 Tg

4
)Ω (2.17b)

Te is the normalized total delay;Tg is the normalized gene response time;Σ represents the
sum of degradation rates;Ω is the frequency of periodic solution when Hopf bifurcationoccurs.
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Eqs. (2.17) give the oscillation threshold at which the system loses stability to a periodic
solution via Hopf bifurcation. They define a series of curvesΣǫ(Tg, Te) which specify the
degradation rateΣ at threshold as a function of gene response timeTg and explicit transport
delayTe. Oscillations are found in the regionΣ ≤ Σǫ(Tg, Te)

In order to assess how the bifurcation frequency depends on delay and degradation rate, we
square both sides of Eq. (2.17) and add them, then obtain:

F (Ψ) = Ψ3+(
1

T 2
+(1− ǫ2

2
)Σ2)Ψ2+(

ǫ4Σ4

16
+(1− ǫ2

2
)
Σ2

T 2
)Ψ+

1

T 2
(
ǫ4 Σ4

16
− 1) = 0 (2.18)

whereΩ =
√
Ψ. Sinceǫ ∈ [0, 1], all coefficients of non zero degrees ofΨ are positive.

According to the Descartes rule of signs,ǫ4 Σ4

16
− 1 < 0 leading toΣ < 2/ǫ, or equivalently

σ2
c > γ, is a necessary condition to have a positive root forΨ and thus a necessary condition for

oscillatory behavior as well. The fact that only the product, and not the sum, of the degradation
rates, is constrained is interesting because it implies that oscillations will always be observable
if one of the degradation rates is sufficiently small. Once the valueΩ of the Hopf frequency is
obtained, it can be substituted in Eqs. (2.17) to solve forΣ as a function of total delayTe and
response timeTg.

In conclusion, we have analyzed a model with two explicit delays and demonstrated that
these two explicit delays have the same effect as a single total delay equal to their sum. We also
derived a simple analytical criterion for oscillations given by Eqs. (2.17) and (2.18). This crite-
rion will allow us to compare the influences of reaction and explicit delays on the appearance
of oscillations in the next section.

2.4 Comparison of dynamical influences between reaction and
explicit delays

In the two previous sections, analytical criteria for oscillating behavior in models both with
reaction and explicit transport delays have been obtained.It was found that the combination of
two explicit delays is equivalent to a single delay equal to their sum, whereas reaction delays
interact in a non-trivial way. This gives a hint that the dynamical influences of reaction and
explicit delays are different. In the scientific literature, however, reaction or explicit delay
are used in a relatively arbitrary way, seemingly accordingto the personal preferences of the
authors. Therefore, we discuss here similarities and differences in the dynamical behaviors of
these two types of delay.

As a starting point, we consider bifurcation diagrams for a sequence of increasing transport
delays, modeled either as a reaction delay or as an explicit delay (Fig 2.7). In these diagrams,
the degradation rate at oscillation thresholdΣ is given as a function of gene response time
Tg for a given transport delay. Oscillation are found for the region Σ ≤ Σ(Tg). We show
two limiting cases whereǫ = 1 or ǫ = 0, corresponding respectively to the cases where two
degradation rates are equal or where one degradation rate iszero. TheΣ00 andΣ10 curves in
blue correspond to the cases where there is no transport delay and serve as references.

For the limiting caseǫ = 0 (Fig 2.7A), the larger the transport delay, either in reaction
or explicit form, the more extended the oscillation zone is,which indicates transport delay
always promotes oscillation. Moreover, because the oscillatory zone is much more extended
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for explicit delay, we can conclude that the explicit delay is more destabilizing than a reaction
delay. Despite quantitative differences, the influences ofboth types of delays are qualitatively
similar.

Fig (2.7)B represents the limiting caseǫ = 1 where the two degradation rates are equal. The
resonance-like effect in which the genetic circuit is most destabilized at a finite gene response
time can still be observed, but its behavior depends clearlyon the type of delay. By increas-
ing gradually the explicit delay, the oscillatory zone becomes more and more extended and the
resonance point approaches rapidly theΣ axis, which means that increasing the gene response
time will typically stop oscillations. In contrast, when weincrease gradually the reaction de-
lay, the resonance point first moves towards theΣ axis and then towards large values ofTg.
Moreover the degradation rateΣ at the maximum of theΣ(Tg) curve (the “resonance point”)
saturates at1. The oscillation regions for small and large reaction delays superimpose relatively
well. In this limiting case, influences of explicit and reaction delays seem to be quite different
except in the case where they are both small compared to the gene response time. Increasing
the explicit delay always promotes oscillations, much moreclearly than for a reaction delay.

In order to have a global point of view on the influences of reaction and explicit delays, we
now consider bifurcation diagrams in the plane of the gene response time and of the transport
delay modeled as either reaction or explicit delay (Fig 2.8). These bifurcation diagrams are
computed for different values of the total degradation rateΣ.

We start with Figs 2.8A and C corresponding to the limiting caseǫ = 0 where one degrada-
tion mechanism is saturated. It is seen that when the sum of degradation ratesΣ is increased,
oscillation regions are gradually reduced for both explicit and reaction delays. When both
degradations rates are approaching to saturation (Σ ∼ 0), oscillation regions occupy almost
the first quadrant of plane, which confirms that saturated degradations facilitate sustained os-
cillations very much. The oscillation region for a reactiondelay is symmetric, resulting from
the fact that reaction transport delay and gene response play symmetric roles in the analytical
criterion. In contrast, the oscillation region for explicit delay is not symmetric, which is not
surprising, given that bifurcation diagrams involve both an explicit delay and a reaction de-
lay, the response time. Note that for some small values ofΣ, the instability threshold crosses
the axis and enter into the second quadrant of the plane wherethe explicit delay is negative,
which corresponds to the fact that the circuit already oscillates at zero delay. Besides the dif-
ferences in the symmetries of oscillatory regions, the influences of explicit and reaction delay
are qualitatively similar.

When degradation is saturated, the bifurcation occurs for the same value of reaction and
explicit delays whenΣ < 0.7 (inset of Fig 2.8A). ForΣ > 0.7, reaction and explicit delays
are also equivalent when the gene response time is sufficiently large. However, it can be seen
in Fig 2.8A that when the gene response time is smaller than 2,oscillations are much more
easily reached with an explicit delay than with a reaction one. More generally, it is interesting
to note that even when the gene response time is large, a smalladded transport delay can
trigger oscillations and vice versa. Once again, the fact that oscillations appear for a total delay
much smaller when there are two delays rather than one indicates that a sequence of biological
processes inducing delays can greatly emphasize oscillations.

Figs 2.8B and D correspond to the limiting caseǫ = 1, where protein and RNA degradation
rates are equal. There are significant qualitative changes in the bifurcation diagrams compared
to the caseǫ = 0, especially for reaction delays. This suggests that the degradation rate balance
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measured byǫ is also a key factor for deciding the appearance of oscillations. By increasing
gradually the degradation rate sumΣ, oscillation regions for reaction and explicit delays are
both reduced, and no oscillations are observed forΣ > 1 (reaction delays) orΣ > 2 (explicit
delays). However, a marked difference between reaction andexplicit delays is that for explicit
delays, oscillations can always be observed whenever the transport delay is larger than the
threshold whereas for reaction delays, oscillations disappear when the delay is too large. This
corresponds to the fact that in the latter case, the oscillation region is contained inside a closed
curve.

To summarize, Fig 2.8 allows us to understand the similarities and differences in the dy-
namical influences of reaction and explicit delays on oscillatory behavior. Whether degradation
rates are balanced or not is clearly an important factor for the appearance of biological oscil-
lations. When degradations of protein and mRNA are approaching to saturation or transport
delay is small, reaction and explicit delays have similar effects. A sufficiently large explicit de-
lay always destabilizes the system, however a large reaction delay can restabilize the oscillating
system. This has to be taken into account when designing the mathematical modeling.

2.5 Conclusions

Previous work [138] showed that a delay due to the slow dynamics of gene activity can induce
oscillations in a minimal genetic circuit comprising a self-repressing gene. In this chapter, we
extended this model by adding delays due to molecule transport described both as reaction and
explicit delays. Our results, based on analytical criteria, confirm the crucial role of delays in
the design principle of biological oscillators and the trade-off between delay and degradation
nonlinearity. How delays combine was also revealed: the influence of two explicit delays only
depends on their sum, while reaction delays interact in a non-trivial way. Thus, how delays
are distributed can affect the oscillatory dynamics. Reaction and explicit delays have the same
dynamical influences only if delays are small or protein and RNA degradation are saturated.
In the general case, their influences are dramatically different. For example, an explicit delay
always favors oscillations, in contrast, a reaction delay can either destabilize or stabilize genetic
circuits.
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Chapter 3

Influences of stochastic fluctuations on the
oscillation of a self-repressing gene

3.1 Introduction

The genetic networks that are responsible for cellular dynamics and functions are subject to
large fluctuations (or noise) in the number of molecules, as has been revealed by numerous
experimental and theoretical investigations [38, 105, 179, 183, 33, 151]. Indeed, most bio-
chemical reactions in cells involve very low copy numbers ofreacting molecules. Noise may
be a nuisance, because it makes it more difficult to obtain a deterministic behavior, however
an interesting question is why cells are designed with it. Recent studies provide strong sup-
ports for the hypothesis that cellular noise may be involvedin design principles of living cells
[195, 35, 5, 77, 140, 185].

In particular, noise in gene expression have been identifiedas a key biological effect un-
derling observed phenotypic variability of genetically identical cells in homogeneous envi-
ronments [157, 69, 173, 128, 157, 120]. Furthermore, it plays a crucial role in coordinated
expression of a large set of genes and in probabilistic differentiation strategies [195, 35, 5, 77].
Although negative feedback loops can in principle reduce noise [183, 33, 47, 9], they display
fundamental limitations [125]. Therefore, molecular noise, wanted or unwanted, is unavoid-
able in biological systems. However, how noise influences the dynamics of genetic networks is
not yet fully understood in spite of the numerous works devoted to its study.

Here, we will investigate the dynamical influences of noise in the same minimal genetic
circuit consisting of a self-repressing gene that we have studied before [137, 127, 138]. In this
simple circuit, most of the stochasticity resides in the fact that there is a single copy of the gene
and that the dynamics of its activity is complex and should betaken into account [85]. In a
molecular point of view, the gene dynamics is usually modeled as a series of transition between
"ON" and "OFF" states [85, 151]. When the promoter site is bound by repressor (OFF state),
transcription is repressed, while the transcription occurs when the repressor is dissociated from
gene (ON state). The fluctuations resulting from the stochastic alternation between these two
gene states may decisively affect the system stability and oscillatory behavior [124, 170, 147,
194, 166, 99, 64, 68, 193].

The common approach to modeling gene expression using mean-field deterministic rate
equations provides insights into the time evolution of molecular average quantities, but it is not
appropriate to describe fluctuations [122]. Moreover, it isoften overlooked that these fluctua-
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tions will in fact impact the deterministic dynamics described by the mean-field equations and
may in some cases dramatically change the behavior predicted classically. Although noise is
general viewed as a zero-mean fluctuation superimposed on the deterministic average, this is no
longer true as soon as this noise interacts with the nonlinearities present in the genetic circuit.
For example, ifx is a zero-mean stochastic variable, then(1 + x)2 will not have a mean of1.

Therefore, stochastic models of genetic circuits, where the integer nature of copy numbers
are fully taken into account, are required. Such models can easily be simulated numerically,
however this provides generally little insight because it is difficult to assess the influence of the
various parameters.

The most general theoretical approach is writing the masterequations which describe the
time evolution of probability distribution of microscopicstates [189] characterized by the inte-
ger copy numbers of molecules. The master equation describes precisely the temporal evolution
of the system and is typically solved by numerical integration [169, 139]. However, the disad-
vantage is that there are only very few examples which may be analytically solved, even when
only the steady state is desired [158, 98, 146, 46]. For instance, Hornos et al. [98] derive an
exact solution of the master equation for the self-repressing gene under a hypothesis that an
adiabatic elimination of the mRNA variable. However this hypothesis is not realistic. Some
approximations of the master equations can also be considered, such as the Fokker-Plank or
Langevin equations [7, 8, 36, 189], however they are not appropriate to describe fluctuations
linked to a binary variable such as the gene state.

The aim of this chapter is to derive a cumulant expansion of the master equation for the
genetic circuit of a self-repressing gene. In this way, we will obtain equations for the dynamics
of the mean-field averages taking into account the effect of fluctuations by incorporating a few
higher-order cumulants as dynamical variables. This will allow us to investigate how fluctua-
tions dramatically shift the steady state and to compare oscillation regions to what is predicted
by usual deterministic rate equations.

This chapter is organized as follows: First, we write the master equations for the genetic
circuit. Second, we show how to derive the cumulant expansion from the master equation. In
the third section, we examine the steady state of a set of equations for cumulants, and compare
it with the one predicted by usual deterministic rate equations. The last section is devoted to
the dynamical influences of fluctuation on oscillatory behavior.

3.2 Master equation of the model of a self-repressing gene

We first consider the master equation that describes the dynamics of self-repressing gene circuit.
In Fig (3.1) we show all biochemical reactions in this genetic network.

The gene synthesizes mRNA with transcription rateλ when active. Protein monomers bind
the gene with a constant rateα, and then repress transcription completely. The bound monomer
dissociates from the gene at rateθ. β is the protein translation rate. Because we are interested in
understanding how fluctuations can spontaneously induce oscillations, we minimize the amount
of nonlinearities in the circuit, so as to stay away from configurations where oscillations appear
deterministically. We thus consider linear degradation mechanisms for mRNA and proteins,
with the associated degradation ratesδm andδp.

The parameterP0 = θ/α represents the number of proteins at which gene activity is re-
pressed to half the maximum level. This threshold is assumedto be large,P0 ≫ 1 leading to
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Figure 3.1:Reaction diagram of the self-repressing gene. In this minimal genetic circuit,
a single protein binding to gene perfectly represses the transcription. Degradations of protein
and mRNA are both linear.

α ≃ 0, so that binding or unbinding of a single protein does not change protein copy number
significantly. According to the analysis in previous chapter, the genetic circuit studied can then
be described by the following deterministic rate equationswith reduced variables and parame-
ters:

dG

dt
= Θ (1−G(1 + P )) (3.1a)

dP

dt
= δ(M − P ) (3.1b)

dM

dt
= ΛG−M (3.1c)

whereG, P andM are respectively the average gene activity, and protein andmRNA copy
numbers. Note that the notion of gene activity average is natural in the limit case where binding-
unbinding is much faster than other processes. The steady state of Eqs. (3.1) is given by

G∗ =
−1 +

√
1 + 4Λ

2Λ
, P∗ = M∗ = ΛG∗ (3.2)

and is found to be unconditionally stable. Thus deterministic rate equations predict that there
are no oscillations in the case of linear degradation.

In stochastic simulations, gene activity alternates randomly between the "ON” and "OFF"
states and can be described by a binary variable, with value0 or 1. There is no macroscopic
limit in which this variable becomes continuous, in contrast with protein or mRNA copy num-
bers which become large whenΛ is increased. Because of this important property, common
theoretical descriptions, such as deterministic rate equations under mean-field approximation,
Fokker-Plank or Langevin equations, are in principle not appropriate to describe the dynamics
of this genetic circuit. However, the master equation describing the time evolution of proba-
bilities for all microscopic states characterized by gene activity, copy numbers of mRNA and
protein, is still valid. To formulate the master equation more easily, we consider separately the
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time evolution of the quantitiesP0,m,p andP1,m,p which are respectively the probabilities of
finding the gene bound (g = 0) or unbound (g = 1) with m copies of mRNA andp copies of
protein:

dP0,m,p

dt
= α(p+ 1)P1,m,p+1 − θ P0,m,p

+δm(m+ 1)P0,m+1,p − δmmP0,m,p

β mP0,m,p−1 − β mP0,m,p

+δp(p+ 1)P0,m,p+1 − δp pP0,m,p

dP1,m,p

dt
= θ P0,m,p−1 − α pP1,m,p

λP1,m−1,p − λP1,m,p

δm(m+ 1)P1,m+1,p − δmmP1,m,p

β mP1,m,p−1 − β mP1,m,p

δp (p+ 1)P1,m,p+1 − δp pP1,m,p

The master equation is actually a gain-loss equation. Consider for example the equation of
P0,m,p. The probability of having the system in microscopic state{0,m, p} can increase due to
transition to{0,m, p} from other states and decrease due to transition from{0,m, p} to other
states. More precisely, the termα(p + 1)P1,m,p+1 describes how the probability of the state
{0,m, p} increases due to transition from{1,m, p + 1} by protein binding; on the other hand,
−θ P0,m,p is the loss of this probability due to transition from state{0,m, p} into {1,m, p+ 1}
by the dissociation of protein from DNA.

Even for such a simple genetic circuit, the master equation is not easily solved analytically
and must be studied numerically, except under some approximations [98].

In the next section, we propose an approach which will allowsus to take into account
fluctuations while obtaining deterministic dynamical equation: a cumulant expansion of the
master equation. From the latter, differential equations are obtained for the time evolution
of the cumulants of the distributions, the lowest-order cumulants being the averages involved
in the mean-field equations. This allows us to incorporate the influence of fluctuations in a
hierarchical way.

3.3 Incorporating variances in a deterministic model: cumu-
lant expansion to the second order

Before deriving the cumulant expansion of the master equation, we first recall how moments
and low-order joint cumulants are defined. The set of momentsof a probability distribution
function (PDF) characterizes it completely. Given the probability distributionPg,m,p defined
above, the moments of a quantityx(g,m, p) depending on the circuit state are defined as the
expectation values of the powers ofx:

µn = 〈xn〉 =
∑

g,m,p

xn(g,m, p)Pg,m,p
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wheren is the order of the moment. The moment-generating function is a series whose coeffi-
cients are the momentsµn:

Mx(t) = 〈etx〉 = 1 + µ1t+
µ2t

2

2!
+

µ3t
3

3!
+ ...

µnt
n

n!
+ ...

For example, the moment-generating function of a Gaussian PDF for variablex with average
µ and varianceσ2 is Mx(t) = eµt+1/2σ2t2.

The idea behind a moment expansion of the master equation is that if we know the time
evolution of the probability distribution, we know the timeevolution of the moment values:

dµn

dt
=

∑

g,m,p

xn(g,m, p)
dPg,m,p

dt
(3.4)

with dPg,m,p/dt being expressed in terms of thePg′,m′,p′ and possibly of the state variables
when the biochemical network features reactions where there are two or more reagents. For
example, the variablesp andm appear in the time derivates given in Eqs. (3.3). In this case,
the time derivative of a given moment will typically involvemoments of higher order so that
Eqs. (3.4) are not closed but form an infinite hierarchy of equations. When reactions involve
only one reagent, the time derivates of moments of order 1 areexpressed in terms of moments
of order 2, etc.

Solving the moment equation is equivalent to solving the master equation since the PDF
can be reconstructed from its moments. The idea behind the moment expansion is that if only a
few moments suffice to describe the dynamics, solving the corresponding equations (3.4) may
be simpler than solving the master equation. However, this is not true if equations at all order
are coupled, as mentioned above. It is then necessary to truncate the hierarchy of equations,
which means to choose a way to approximate the moments of certain orders, without solving
for them [189].

Actually, this approach is more efficiently formulated in terms of cumulants, a notion
closely related to moments. The cumulantsKn of x are defined via the cumulant-generating
function, which is obtained as the logarithm of the moment-generating function:

Gx(t) =
∞
∑

n=1

Kn
tn

n!
= logMx(t)

Thus cumulants are given by:

Kn =
dnGx(0)

dtn
=

dn logMx(0)

dtn
(3.5)

Eq. (3.5) allows us to express cumulants at any order as a combination of moments. Assuming
a Gaussian-distributed variablex, we haveGx(t) = µt + σ2t2/2, so that cumulants are given
by K1 = µ andK2 = σ2, with higher-order cumulants being zero. More generally, we obtain
the following expressions for the lowest-order joint cumulants of random variablesx, y z:

Kx = 〈x〉
Kxy = ∆xy = 〈xy〉 − 〈x〉〈y〉

Kx,y,z = 〈xyz〉 − 〈x〉 〈y〉 〈z〉 − 〈x〉∆y,z − 〈y〉∆x,z − 〈z〉∆x,y.

(3.6)
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Note that the first-order cumulant is the average and the second-order is the covariance. It
can be seen that the second- and third-order cumulants can beexpressed in term of lower-order
cumulants, which is actually true at any order. In fact, joint cumulants defined by Eqs. (3.6)
quantify the amount of correlation at a given order which does not arise from correlations at
lower orders. For example, the second-order moment〈xy〉 can be non-zero even thoughx and
y are not correlated, simply because the averages〈x〉 and〈y〉 are not zero. In the cumulant∆xy,
which is actually the joint moment ofx − 〈x〉 andy − 〈y〉, the contribution from the averages
is removed so that the cumulant is zero whenever the two random variables are not correlated.
Thus,∆xy measures much better the correlation ofx andy than the moment in some sense.
Similarly the third-order cumulantKx,y,z is zero if random variablesx, y andz are correlated
only pairwise.

The presence of a binary variable, such as gene activityg (which takes values1 or 0), can
lead to special mathematical treatments [147, 194, 166, 99,64, 68, 193], and also simplifies
cumulant computation. More precisely, moments of any orderof a binary variableg are equal
to its average.

〈gn〉 =
∑

g,m,p

gnPg,m,p =
∑

g,m,p

gPg,m,p = 〈g〉

Consequently, all high-order cumulants ofg can be expressed in terms of the first-order mo-
ment (the average), which reduces the dimension of the cumulant expansion. For example, the
variance is written as:

∆gg = 〈g〉(1− 〈g〉) (3.7)

As described above, cumulant expansion of the master equations yields a set of differential
equations which describe the temporal variations of joint cumulants. We will now derive the
equations for the lowest-order cumulants of the self-repressing gene circuit. We first renormal-
ize the time, joint cumulants and parameters according to:

t → Tδm, δ → δp
δm

, 〈g〉 → G, 〈p〉 → θ

α
P, 〈m〉 → δθ

βα
M,

∆pp → (
θ

α
)2∆PP , ∆mm → (

δθ

βα
)2∆MM , Θ → θ

δm
,

∆gp →
θ

α
∆GP , ∆gm → δθ

βα
∆GM , ∆mp →

δ

β
(
θ

α
)2∆MP ,

λβα

δθ
→ Λ,

θ

α
→ P0

(3.8)

We also define the quantityP0 = θ/α which represents the number of proteins required to
reduce the transcription rate by half. Again, we assume thisthreshold is large (P0 >> 1) which
is equivalent toα ≃ 0.

The time evolution equations for the first-order cumulants (i.e., averages) and second-order
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cumulants (i.e., covariances) are given by:

dG

dT
= Θ(1−G−GP −∆GP ) (3.9a)

dM

dT
= ΛG−M (3.9b)

dP

dT
= δ(M − P ) (3.9c)

d∆GP

dT
= δ(∆GM −∆GP )−Θ(KGPP +G∆PP +∆GP + P∆GP ) (3.9d)

d∆GM

dT
= ΛG(1−G)−∆GM −Θ(KGMP +∆GM +G∆MP + P∆GM) (3.9e)

d∆MP

dT
= Λ∆GP − (δ + 1)∆MP + δ∆MM (3.9f)

d∆MM

dT
= 2Λ∆GM − 2∆MM (3.9g)

d∆PP

dT
= 2δ(∆MP −∆PP ) (3.9h)

Eqs. (3.9) describe the time evolution of joint cumulants oforder 1 and 2 in the form of
deterministic differential equations, incorporating theeffect of fluctuations through cumulants
of second order and higher. These are only the first equationsamong an infinite hierarchy.
When covariances and higher-order cumulants are set to zero,which amounts to neglect fluc-
tuations, we recover the deterministic mean-field model based on averages of copy numbers,
which are the first-order cumulants. The important point is that the time evolution of averages
depend on covariances, which demonstrates that fluctuations affect the temporal dynamics of
averages. In addition, the time evolution of second-order cumulants depends on third-order
cumulantsKGPP andKGMP . If we wrote the differential equations for third-order cumulants,
we would find that they depend on even higher orders, forming ainfinite hierarchy of equations
for cumulants.

Therefore, Eqs. (3.9) do not form a closed system because of the presence of the third-order
cumulantsKGPP andKGMP . The standard solution to this problem is to make approximations
allowing us to truncate this hierarchy and close it. Severalpropositions for achieving this have
been discussed [7, 134, 86]. The most natural strategy is to set the cumulants of third order to
zero, which closes the set of equations. This amounts to represent the probability distributions
of copy number variables as Gaussian distributions whose averages and variances are the dy-
namical variables. This assumption is valid in the limit case where molecular fluctuations are
small enough.

In the next section, we will study the steady state of (3.9) inthe limiting cases of a fast and
of a slow gene, according to the value of the unbinding rateθ. In these two cases, we will be
able to truncate easily the hierarchy of equations for cumulants or to solve it analytically. This
will allow us to show that fluctuations can severely shift average copy numbers compared to
the prediction of the mean-field model.
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3.4 Steady state analysis

3.4.1 Fast gene limit case

We first discuss the steady state of the system (3.9) in the simple limit case where the binding
and unbinding rates are infinitely large, withΘ → ∞ keeping the ratioθ/α constant. This
expresses the fact that the gene remains in a given state, bound or unbound, only for very short
amounts of time, so that the production of mRNA and proteins islittle affected during that time.
The memory of molecular states is well preserved across one binding-unbinding cycle, so that
the average gene activity can reach an equilibrium state with respect to the current protein and
mRNA copy numbers, and can be described by a continuous variable varying between0 and
1. In this limit, fluctuations of mRNA and protein copy numbers are relatively small. Their
distribution can be expected to be Gaussian, leading to the third-order cumulantsKGPP and
KGMP being zero, so that Eqs. (3.9) become closed.

We further assume thatΛ ≫ 1, which implies that the mRNA and protein copy numbers
are large compared to1 and thus can be considered as macroscopic variables. The steady state
of the cumulant equation system (3.9) is expressed as follows:

G∗ ≃
1√
Λ
(1 +

1

4

δ

Θ(δ + 1)
)

P∗ = M∗ ≃
√
Λ(1 +

1

4

δ

Θ(δ + 1)
)

∆GP∗ ≃ −1

2

δ

Θ(δ + 1)
∆MP∗ = ∆PP∗ ≃

Λ

2

δ

Θ(δ + 1)

∆MM∗ ≃
Λ

2Θ
(1 +

1

δ + 1
) ∆GM∗ ≃

1

2Θ
(1 +

1

δ + 1
)

(3.10)

Note that first-order corrections to the steady-state values of G, M andP only involves
a combination of parameters,Θ(δ + 1)/δ. This shows that the protein degradation rate is
also important for controlling the level of fluctuations. Furthermore, the covariance∆GP∗ is
negative, which results from the negative protein regulation. The covariances∆PP∗ and∆MM∗
are positive, as expected, since they are the variances ofP andM . Eqs. (3.10) indicate that
when the unbinding rateΘ is increased to infinity, all covariances tend to zero and thesteady
state predicted by deterministic model (3.2) is recovered.

In conclusion, third-order cumulants can be neglected in the limit case where the transition
between gene activity states is rapid. Then the system (3.9)becomes closed and an analyt-
ical expression of the steady state can be obtained. This expression allows us to study how
the steady state is affected by fluctuations. Our analyticalresults agrees well with numerical
simulation (Fig 3.3).

3.4.2 Slow gene limit case

Conversely, we now consider the opposite limit case where theunbinding rate is very small:
Θ ≪ 1. In this limit, the time scale of gene binding and unbinding is much larger than that of
other processes. The dynamics of system is simply driven by the gene jumping between "ON"
and "OFF" states according to a Poissonian stochastic process. When the gene is unbound,
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Figure 3.2: Correlated temporal variations of copy numbers of protein (A), mRNA (B)
and gene (C) in the slow gene limit case. Numerical estimation is carried out withδ = 1,
θ = 0.5, P0 = 100, Λ = 200 andβ = 10. The gene activity is equal to0 (OFF state) or
1 (ON state). When the gene is in the ON state, mRNA and protein copy numbers increase
rapidly. They decrease abruptly when the gene switches to OFF state. The dynamics of system
is mainly driven by the transition of the gene between two states, and temporal variations of
copy numbers of protein, mRNA and gene are highly correlated.

mRNA and protein copy numbers reach rapidly a high levelMON = PON = Λ which is then
maintained. When the gene is bound and transcription is repressed, mRNA and protein copy
numbers are abruptly decreased until they reach a low levelMOFF = POFF = 0. Once the
binding protein dissociates from DNA, an another dynamicalcycle repeats. When the system
starts a new cycle, it has lost the memory of the previous one.Thus, temporal variations of
copy numbers of the gene, mRNA and protein are all characterized by a sequence of spikes,
distributed in time according to a Poisson process.

In this limit case, we cannot simply assume that the third-order cumulants are zero, because
fluctuations are extremely important. The mRNA and protein copy numbers are at a high level
for some time and then are decreased to zero, according to transitions between gene states.
However, this simple behavior, without memory from one cycle to the next, makes it easier
to determine the steady state. On average, the gene is unbound during an amount of time
proportional to1/(θΛ) and it is repressed during an amount of time proportional to1/θ. Thus
we can easily find that the average gene activity is given byG∗ = 1/(1+Λ). Given the average
durations of the two gene states and the mRNA and protein levels in each state, we can compute
the values of averages, covariances and third-order cumulants in the limitΛ ≫ 1:

G∗ ≃ 1/Λ; P∗ = M∗ ≃ 1; ∆PP∗ = ∆MM∗ = ∆PM∗ ≃ Λ

∆GP∗ = ∆GM∗ ≃ 1; KGPP∗ = KGMP∗ ≃ Λ
(3.11)
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Figure 3.3:Average gene activities as a function of the reduced parameter Θ(1+ δ−1). (A)
Numerical estimation using stochastic simulations is computed with parameter values:θ/α =
100, Λ = 200, λ = β. Each color corresponds to a given value ofδ, which varies from102

(black) to10 (cyan). (B) Fixed point values of gene activity in model (3.9)with vanishing third-
order joint cumulants. Arrows on the left and on the right indicate the gene activity limiting
values given by Eqs. (3.10) for largeΘ and by Eqs. (3.11) for smallΘ.

This expression for the steady state (3.11) is consistent with numerical simulations (Fig 3.3).
Compared to the fast gene case, averages (G∗,M∗, P∗) are much lower and decrease with the
quantityθ(1+δ)/δ. In addition, the values of various cumulants differ very much in magnitude
(we assume thatΛ is large). This is related to the fact thatG, which takes only two values in
any case, remains a microscopic variable whileM andP become macroscopic variables in the
limit of largeΛ. Accordingly, averages and covariances involving the microscopic variableG
are small compared to their counterparts involving only macroscopic variables and to the third-
order cumulants with two macroscopic variables. Note however that even though fluctuations
involving the gene are smaller in absolute value, they are more important in relative proportions,
as one can see by computing the ratio of the standard deviation (square root of variance) to the
average (is proportional toΛ for G and to

√
Λ for M andP ).

In order to compare the predicted values for the steady stateof Eqs. (3.9) in fast and slow
gene limit cases, we have evaluated it numerically using stochastic simulations of the biochem-
ical reaction network. In Fig 3.3A we show the numerical estimation of average gene activities
using stochastic simulations. They agree quite well with the values predicted in the limiting
cases of a fast gene (large unbinding rateΘ) and of a slow gene (small unbinding rateΘ). We
find that the steady state value derived from deterministic rate equations (indicated by the arrow
for largeΘ) is dramatically shifted whenΘ is small and fluctuations are large.

Fig (3.3)B shows the steady state values of gene activity in Eqs. (3.9), computed by assum-
ing that third-order joint cumulants are zero. It can be seenthat model (3.9) with vanishing
third-order cumulants reproduces well the variation of average gene activity with unbinding
rate. The global shape of the curve, with a maximum aroundΘ(1 + δ)/δ, is recovered as well
as the limiting values for the fast and slow genes. The main discrepancy is a faster transition
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from high to low values of gene activity for Eqs. (3.9) than for stochastic simulations.

In summary, we have studied in this section the average behavior of the self-repressing gene
circuit using a cumulant expansion of the master equation. In the limit of a fast gene, first-order
corrections to the mean-field values can be obtained by assuming that third-order cumulants
are zero. This assumption is not valid in the limit of a slow gene, however, simple expressions
for averages and covariances can be obtained by noting that mRNA and protein copy numbers
are slaved to the gene state. Yet, the average gene activities predicted by cumulant expansion
with zero third-order cumulants reproduce surprisingly well these obtained from numerical
simulations across the entire range of unbinding rates. Thus the approach followed here allows
us to study precisely how average quantities can be dramatically shifted by fluctuations. Further
studies are the analysis of instability of the steady state of Eqs. (3.9) and what is the dynamical
significance of this instability. We discuss them in the nextsection.

3.5 Dynamical influence of fluctuations

3.5.1 Stability of steady states predicted by cumulant model

An analysis of a deterministic model of the self-repressinggene by Morantet al. had concluded
that the steady state of this model is always stable in the case of linear degradation. This
model is equivalent to that obtained from cumulant expansion (3.9) when all cumulants of
second order and higher orders are set to zero, in other wordsthe mean-field model (3.1).
When fluctuations are incorporated into the dynamics by adding higher-order cumulants as
dynamical variables, and the associated differential equations, the stability of the fixed point
may be modified. Thus, the approach based on the cumulant expansion allows us to study how
fluctuations feed back into the deterministic part of the dynamics to induce oscillations of the
average quantities.

We first consider the fast gene limit. In this case corresponding to Θ → ∞, the genetic
circuit is subjected to weak fluctuations, and protein and mRNA copy numbers are expected
to follow a Gaussian distribution. The third-order cumulants can be neglected, allowing to
truncate the hierarchy of equations for cumulants. A linearstability analysis of the fixed point
of these equations demonstrates that it is always stable, which is consistent with the results of
Morantet al. for the mean-field model [138].

The stability analysis of the steady state in the slow gene limit case is more interesting, be-
cause the system is then dominated by fluctuations. The stability of the 8 differential equations
of the cumulant expansion (3.9) is difficult to study analytically due to the high dimension. For
the sake of simplicity, we will analyze this system in the limit whereΘΛ << δ, 1. It then
happens that the following equations uncouple from the other equations:
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dP

dt
= δ (M − P ) (3.12a)

dM

dt
= ΛG−M (3.12b)

dG

dt
= θ (1−G−GP −∆G,P ) (3.12c)

d∆G,P

dt
= δ (∆G,M −∆G,P ) (3.12d)

d∆G,M

dt
= ΛG (1−G)−∆G,M . (3.12e)

The reduced system (3.12) consists of only five differentialequations describing the dynam-
ics of three averages and two covariances. Its steady state coincides with that of the cumulant
expansion (3.9) in the slow gene limit but its stability analysis is much simpler. By further as-
suming thatΛ >> 1 a Routh-Hurwitz criterion associated to a Hopf bifurcation can be obtained
analytically. Thus we find that oscillations appear in the reduced system when

H = 4Θ2 +Θ

[

2 (1 + δ)− δ

(1 + δ)
Λ

]

+ δ < 0. (3.13)

The analytical criterion (3.13) indicates that if the unbinding rate is infinitely slow (Θ ≃ 0),
the steady state is stable becauseH = δ > 0. For intermediate values ofΘ, the criterion can
become negative providedΛ is sufficiently large, which predicts that the system can display
oscillations. However, this can only occur whenΘΛ ≥ δ + 1 which conflicts with our preced-
ing assumptionΘΛ << δ, 1. The question raised is thus whether the analytical criterion (3.13)
is valid to capture the appearance of oscillatory behavior.In the following part of this section,
we therefore check the relevance of this criterion by comparing its predictions with stochas-
tic simulations which are performed according to an implementation of next reaction method
(Gibson-Bruck algorithm [81]) mainly by my colleague Quentin Thommen.

3.5.2 Numerical stochastic oscillation

In order to verify whether the criterion (3.13) obtained from the cumulant expansion correctly
predicts oscillatory behavior, we will search for parameter values at which the circuit displays a
dynamical behavior which can be classified as oscillations.However, it is difficult to character-
ize oscillations in the stochastic regime because there is no periodicity in a strict sense. We will
therefore search for regimes where one observes a series of protein copy number peaks more
or less regularly spaced. We thus first need to discuss approaches allowing us to characterize
the regularity of such stochastic oscillations in a system subject to fluctuations.

Given a temporal stochastic signal, it is usual to assess theregularity of oscillatory behavior
by computing the autocorrelation function of the signal. However, this function is sensitive to
variations both in time and amplitude. In our case, it is natural to allow the signal to be highly
variable in amplitude while requiring that it is regular in time. It is indeed often the case that
biological functions only detect that a signal goes over some threshold regardless of the actual
amplitude reached, so that only the peak timing is significant. Therefore, the autocorrelation
function may fail to capture the regularity in time of the signal if there are important variations
in amplitude.
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Figure 3.4:Stochastic dynamical behavior of the self-repressing genereaction network.
Time evolution of protein copy number forΛ = 200, δ = 1 and (A)θ = 5.10−3 (B) θ = 0.5
(C) θ = 500. The dashed lines indicates the mean protein level and mean protein level plus
variance. Red lines correspond to the high trigger level and spiking events are indicated by red
circles. (D,E,F) Probability of observingn spikes during a given time windows for each of the
three regimes.

A standard technique for assessing the temporal regularityof oscillations is to divide the
state space into two regions, and to record the times of transition from one region to an-
other [149]. Once a series of transition time is obtained, wecan characterize the dynamical be-
havior by an approach also used to quantify the statistics ofphotons from a light source [149].
More precisely, we determine the probability to observedn events within a time interval of
fixed duration and quantify the temporal regularity by computing the Fano factor which is de-
fined as the ratio of variance to mean. A Fano factor close to unity is often associated with a
process governed by a Poissonian statistics, while a Fano factor less (resp., larger) than unity
indicates anti-bunching (resp., bunching) of events. Bunching means that peaks tend to cluster
and one observes groups of peaks followed by long intervals without peaks. On the contrary,
anti-bunching is associated with evenly spaced peaks whichremain well separated from each
other. Here, we will consider that anti-bunching of proteinpeaks can be viewed as a stochastic
counterpart of deterministic oscillations.

Now we apply this approach to characterize the stochastic oscillatory behavior of the self-
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repressing gene circuit. The temporal signal we consider here is the fluctuating protein copy
number. We could record the times at which the signal crossesa prescribed level, however, we
would get many spurious crossings in sequence because stochastic fluctuations would drive the
signal rapidly above and below the threshold. Thus we fix two significantly separated levels
given by the average protein levelP∗ and byP∗ +

√
∆PP/4 where

√
∆PP is the standard

deviation. We record the times where the system crosses the first level, then the second before
falling back below the first one. This amounts to require a sufficient excursion above the mean
level to count one spike.

Fig 3.4 shows how the series of transition time is recorded (see red cycles) as well as the
probability distribution of observingn events within a time interval of given duration for a slow,
an intermediate and a fast gene. In the slow gene limit (Θ ≃ 0), the transition events occur
independently of protein numbers (Fig 3.4A) and their statistics is Poissonian as indicated by
the distribution of the number of event number within a giventime window (Fig 3.4D). When
the binding rate of geneΘ is intermediate, protein spikes are mostly anti-bunched (Fig 3.4B),
and the probability distribution of the number of transitions is Gaussian-like (Fig 3.4E). In
contrast, for the fast gene caseΘ ≫ 1, the regularity of stochastic oscillations is degraded
(Fig 3.4C and F). We compute the Fano factor for the slow, the intermediate and the fast gene
in Fig 3.4. The Fano factor of the slow gene is close to unity, confirming that the transition
events is Poissonian. The relative regularity of transitions for the intermediate gene is well
captured by the Fano factor that is around 0.35. The Fano factor for the fast gene rises again
to about 0.5. Therefore, we observe a resonance-like effectwhere the protein signal is most
regular when the gene response time is close to a finite scale.As we show now, this resonance
is also controlled by the protein and mRNA lifetimes, which determine the time during which
a memory of previous gene states persists.

We have studied systematically how the Fano Factor depends on the gene unbinding rate
Θ and the relative protein decay rateδ in stochastic simulations of the self-repressing gene
circuit. As Fig (3.5) shows, the regularity of protein spikes is enforced when (1) the decay rates
δp andδm are comparable (δ ∼ 1) and (2) the reduced parameterΘ∗ (1 + δ−1) is close to unity.
Quite remarkably, the parameter space region where proteinspikes are more regularly spaced
superimposes very well with the region where the reduced model (3.12) displays deterministic
oscillations. This suggests that this model captures well the dynamical interaction of mean-
field variables and fluctuations, although it possesses onlythe average gene activities of the
cumulant expansion (3.9) in the slow gene limit. This probably indicates that the dynamically
important joint cumulants are those involving the gene state variable. This is not surprising
given that gene state remains binary in all limits and is thusthe most stochastic variable.

To conclude this section, we have quantified the regularity of stochastic oscillations in the
self-repressing gene circuit using the Fano Factor. This allowed us to show that the region
where protein spikes are more evenly spaced is well predicted by the oscillation region of a
reduced model determined from the cumulant expansion.

3.6 Conclusion

To investigate the dynamical influence of fluctuations on biological oscillations, we developed
a cumulant expansion of the master equation that describes aminimal genetic circuit consisting
of a self-repressing gene. We have found that fluctuations significantly shift the average values
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Figure 3.5:Stochastic oscillations characterized by Fano factor. Dependence of the Fano
factorF quantifying spiking regularity onδ andΘ∗(1 + δ−1). Stochastic simulations of genetic
circuit have been carried out withΛ = 200, β = λ, θ/α = 100. Different values of Fano factor
are indicated by red hexagon (F < 0.35), blue pentagons (0.3 < F < 0.4), green diamonds
(0.4 < F < 0.45), cyan triangles (0.45 < F < 0.5), magenta stars (0.5 < F < 0.7) and orange
crosses (0.7 < F ). The black line encloses the region where the analytical criterion (3.13)
predicts oscillations.
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compared to those predicted by deterministic rate equations, and that this is well approached
by the cumulant expansion. We also have studied the stochastic time evolution of this circuit
and characterized the regularity of protein spikes using a Fano-like indicator, showing the pa-
rameter region with most regular protein spikes can be obtained from an analytical oscillation
criterion derived from cumulant expansion. Together, our results demonstrate how fluctuations
can induce oscillatory behavior in a simple genetic circuit. Our approach to characterize the
regularity can also be applied for other biological problems or even experimental signals, for
example, the mRNA or protein signals of circadian genes.
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Chapter 4

Dynamical effects of stochastic RNA
Polymerase pausing on transcription

4.1 Introduction

Transcription is one of the most complex and tightly regulated processes in gene expression
[106, 192, 76, 18, 178]. It consists in transcribing the genetic information stored in DNA
molecules into mRNA molecules, and is carried out by macromolecules called RNA poly-
merase (RNAP). Transcription can be essentially divided into 3 different steps: initiation, pro-
ductive elongation and termination. RNAP and transcriptionfactors (TFs) are recruited by
promoter during initiation. Then the assembly of RNAP and TFsleaves the promoter and en-
ters into productive elongation in which RNAP moves forwardsalong the DNA sequence in
stochastic single-nucleotide steps and produces the mRNA transcript. At termination, RNAP
releases the complete mRNA transcript and dissociates from the DNA sequence.

Specific dynamical behaviors of RNAP procession along the DNAtemplate during pro-
ductive elongation can highly modulate transcription rate. This includes pausing [31, 62, 67],
which is a phenomenon where the RNAP is halted at a nucleotide and is widely observed in
both prokaryotes and eukaryotes [10, 70, 118, 57, 54, 56]. RNAP pausing occurs in a stochas-
tic fashion and is spontaneously reversible, after which the RNAP continues to move forwards
along the DNA template. The majority of pauses are short witha period of≈ 1 s in av-
erage, with weak sequence dependence, and they are not affected by trailing RNAPs. They
are usually referred to as "ubiquitous" or "elemental" short pauses [56, 107, 119, 55, 57], to
distinguish them from the so-called prolonged backtracking pauses [55, 57, 4] which are rare
(less than5% − 10% of all pauses). Prolonged pauses only occur at specific sitesand their
duration is usually over20 s. In contrast to elemental short pauses, prolonged pauses can be
suppressed by the pushing of trailing RNAPs. In addition, prolonged pauses involve the back-
tracking phenomenon [197, 171, 78, 48, 113, 49, 15, 50, 192] in which RNAPs move backwards
and may proofread the sequences of copied mRNA [63]. Recent investigations show transcrip-
tional pausing plays important functional roles in coordination and accuracy of gene expression
[51, 45, 1, 61]. However, the question as to how RNAP pausing affects transcription dynamics
remain unclear.

In this chapter, we focus on elemental short pauses. In orderto investigate their influences
on the dynamics of transcription, we will use a model well studied in out-of-equilibrium statis-
tical physics, a driven lattice gas in one dimension, known as the Totally Asymmetric Simple
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Exclusion Processes (TASEP) [115, 112, 29, 28, 34, 30, 117, 27, 153]. This TASEP model
is commonly used to study the different dynamical aspects oftranscription [62, 164, 31, 109]
and translation [23, 17, 161, 172, 24]. However, in most of these studies, the TASEP model
is analyzed under the mean-field approximation which neglects the particle correlations and
simplifies computations. Meanwhile, it is shown that, such as in [23], when the particle cor-
relations in the model become nonneglectable, the mean-field approximation biases the results
of interest. In particular, Klumpp et al. [109] found that RNAP pausing seriously increases
the correlation between RNAPs by numerical simulations. Therefore, a more genelized ap-
proache is necessarily needed for understanding the dynamical role of RNAPs pausing. Here
we will propose a statistical approach to study the TASEP model and provide insights into the
parameter space where the mean-field approximation are not able to be applied.

This chapter is organized as follows: first, we will explain how elemental pauses can be
modeled by a TASEP system. We will show that the dynamics of the system can be classi-
fied into three regimes according to the dependence of transcription rate on pause duration:
short pause case where mean-field approximation works and ananalytical transcription rate is
given, intermediate and long pause cases where mean-field approach fails. Then we suggest a
statistical approach in which transcription rate is contributed by all system configurations char-
acterized by the number of paused particles. After that, we will apply this approach and obtain
expressions of transcription rate for short pause and long pause regimes. At last we discuss our
understanding of intermediate pause regime and give a general expression of transcription rate
for three regimes.

4.2 Mean-field approach and its limitation

First, we explain how to model elemental pauses using the TASEP model. We remind that
elemental pauses occur in a stochastic fashion with weak sequence dependence and are not
affected by the pushing of trailing RNAPs. These important features allows us to consider an
homogeneous system. In TASEP model, the gene sequence is modeled as a one-dimensional
discrete lattice ofN sites; RNAPs are modeled as particles hopping from site to site with a
constant probabilityǫ determining the elongation rate, only if the next site is notoccupied,
to take into account the fact that RNAPs can not overlap. For the sake of simplicity, we will
neglect the fact that RNAP footprint may extend over several sites, and we moreover assume
that the occurrence of pausing is completely random at all sites. RNAPs thus are modeled to
have two states in each site: active or paused. In the active state, RNAPs may move forwards
along the lattice provided the next site is not occupied by another RNAP, or they may enter into
the paused state with a frequencyf . RNAPs remain in paused states for an average time ofτ
before returning the active state (Fig 4.1).

We now indicate the orders of magnitude of some biological parameters involved in our
model. The frequency of elemental pauses is about0.1s−1 and the duration is≈ 1s [56, 107,
119, 55, 57]. The average elongation rateǫ in vivo is found in the range of20 − 80 nt/s
[191, 39]. In fact, these rate measured are already slowed down by the pauses, so that the
elongation rate without pauses should be much larger. In ourmodel, we choose an elongation
rate givenǫ = 100s−1 as in [109].

We recall that the fundamental quantity that we will study isthe particle current. The
current is the mean flow of particles across the lattice, thatis, the average number of particles
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Figure 4.1: Model of transcription and RNAP pausing. The size of RNAP footprint is
neglected. Active RNAPs (white circles) hop from site to siteby stochastic single-nucleotide
steps with elongation rateǫ provided the next site is not occupied. Active RNAPs can switch
to an paused state (black) with a pause frequencyf , and remainτ amount of time in average
before returning to the active state. Figure modified from [109].

going through a site per unit time. Since it can be interpreted as the average number of RNAPs
going through the sequence per unit time, the current corresponds to the transcription rate. Our
goal is to understand how pauses affect the transcription rate and by how much. In steady state
conditions, the current is the same at each site so that a global transcription rate can be defined.

Under the mean-field approximation where the probability ofone site being occupied does
not depend on that of its next, the time evolution of active and paused states at sitei can be
described by the following differential rate equations:

dai
dt

= ǫ ai−1(1− ai − pi)− ǫ ai(1− ai+1 − pi+1)− fai +
1

τ
pi (4.1a)

dpi
dt

= fai −
1

τ
pi (4.1b)

whereai andpi are respectively the density of particles in active and paused states in sitei. ǫ is
the elongation rate. The termǫ ai−1(1− ai− pi) describes the arrival at sitei of active particles
coming from sitei − 1 (also named incoming current) andǫ ai(1 − ai+1 − pi+1) describes the
loss of active particles leaving from sitei to i+1 (outgoing current). In steady state conditions,
the incoming and outgoing currents are the same at each site,so that a global current can be
defined.fai is related to active particles entering into paused state, and 1

τ
pi to paused particle

becoming active.
In steady state, the densities of active and paused particles can be expressed by:

ai =
1

fτ
pi =

1

1 + fτ
ρi (4.2)

whereρi = ai + pi is the total density for sitei. The current (transcription rate) of the TASEP
model depends on boundary conditions [115, 112, 29, 28], which can be open or periodic. With
open boundary conditions, particles enter the one-dimensional lattice with a constant probabil-
ity α representing the initiation rate and exit from the end of lattice with termination rateβ.
Likewise, for simplicity, we can use the TASEP system with periodic boundary conditions
(also called ring TASEP) which is a uniform and closed system. The total number of particles
is conserved and all sites are identical because of symmetry. As recalled in Chapter 1, the
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current of the TASEP without pauses is correctly predicted by mean-field approximation and is
given by

J = ǫρ(1− ρ)

whereρ is RNAP density for all sites. So the current is proportional to the elongation rate
and reaches the maximum value for the RNAP density of0.5; For small density, transcription
rate is low because there are few particles; when the densitybecomes large, the probability that
the site next to a particle is occupied is large so that the current is reduced by particle exclusion.

We thereafter adopt the TASEP system with periodic boundarycondition to study the in-
fluence of RNAP pausing. By incorporating RNA pausing, the TASEPsystem is still uniform
because the occurrence of an elemental short pause does not depend on location. Although the
TASEP model with periodic condition has little resemblanceto the transcription process, it is
sufficiently simple for us to derive some analytical results. Their results will provide us with
crucial insights into the influence of RNAP pausing, such as how the current-density relation is
modified.

In the TASEP system with periodic boundary condition, all sites are identical, and thus
ρi−1 = ρi = ρ. The expression of current in the mean-field approximation,obtained by solving
Eqs. (4.1) and recognizing thatJ = ǫa(1− ρ) (i.e., there can be an advance if site is occupied
by an active particle and next site is empty) becomes:

J =
ǫ

1 + fτ
ρ(1− ρ) (4.3)

Eq. (4.3) predicts the transcription rate taking into account the RNAP pausing under mean-
field approximation. Note that it depends only on the productof pause frequencyf and pause
durationτ . Compared with the case without pausing, the transcription rate is reduced by RNAP
pausing with a factor of 1

1+fτ
, which results from the fact that only the particles in active state

contribute the current. So the TASEP model with pausing can be mapped to the TASEP model
without pausing by changing the elongation rate.

In order to assess whether the mean-field approximation predicts correctly the transcription
rate, we will compare Eq. (4.3) with the numerical stochastic simulation. Here we specify that
in this chapter, all numerical simulations are performed according to Gillespie Algorithm [82].

Before that, we normalize rate constants of TASEP system withrespect to the elongation
rateǫ, so that the new expression of current is (4.3) withǫ = 1. By using the Gillespie Algo-
rithm [82], the current of the TASEP model with pausing and periodic boundary conditions is
numerically estimated for values ranges of pause durationτ . Moreover, the value offτ = 0.1
is fixed, so that the fraction of paused particles remains constant and variations in current will
only be due to correlations between particles. If the mean-field approximation was valid across
the entire range of parameter values, the value of the current should be constant.

As Fig 4.2 shows, the expression (4.3) derived under mean-field approximation predicts
well the current when the pause durationτ is smaller than the characteristic time scale of elon-
gation which is here normalized as one (this regime we call small-tau regime). In this regime,
pausing only affects the residence time of particles at eachsite and does not induce traffic jams,
thus the mean-field approximation is valid. However, when the pause durationτ becomes
comparable to or larger than the characteristic time scale of elongation (called intermediate-
tau regime), a paused particle can remain in one site for enough time to block other particles
coming behind it, and traffic jams are observed frequently inthe lattice. Correlations between
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Figure 4.2:Transcription rate as a function of pause durationτ with fτ constant. By us-
ing a TASEP model with periodic boundary condition comprisingN = 100 sites, transcription
rates (red stars and circles) are numerically computed by the Gillespie algorithm [82] for RNAP
densitiesρ = 0.1 andρ = 0.5, with fτ = 0.1 being kept constant. According to Eq. (4.3), the
transcription rate predicted by mean-field approximation is constant at fixedfτ and is repre-
sented by green curves. However, according to the numericalsimulations, we distinguish three
different dynamical regimes: the short pause (smallτ ) regime where mean-field approxima-
tion works well, intermediate pause (intermediateτ and long pause (largeτ ) regimes in which
pausing reduces more or less severely transcription rate. Biologically relevant parameter values
are found in the intermediate regime.
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particles become important and significantly affect the transcription rate. The current is de-
creased rapidly. In the extreme case whereτ is very large (long-tau regime), the dynamics of
system is mainly driven by pausing, and the system seems to reach to another special regime,
as the current does not depend on the pause duration and becomes likely constant again.

So according to the dependence of transcription rate on the pause duration, we classify
the dynamical behavior of the system into three different regimes: short-pause, intermediate-
pause and long-pause regimes. The mean-field approximationworks only for the short-pause
regime. An important question is to which regime the range ofbiological parameters does
correspond. Since pause frequency and duration are normalized asf = 0.001, τ = 100, they
are clearly in the intermediate-tau regime. However, transcription and translation modeled by
TASEP systems are usually theoretically studied via the mean-field approach, which works
only for short pauses. Hence the study of the intermediate-pause and long-pause regimes offers
particular interest despite of their mathematical difficulties. In the next section, we will propose
a simple statistical approach to compute the transcriptionrate as a function of pause duration.

4.3 Probability of configurations associated with pause num-
ber

In order to compute the transcription rate curves of Fig 4.2,we have considered a finite-size
TASEP model (number of particles and sites are both finite) because of intuitive consideration
and mathematical simplicity. However, commonly encountered genes feature usually thou-
sands or even millions of nucleotides, so that it is necessary to consider also the infinite-size
limit (where the numbers of particles and sites both tend to infinity), not only for its physi-
cal interest, but also to take into account the fact that dynamical behavior may be dramatically
changed during the transition from finite size to infinite size. We explain the statistical approach
first for finite-size TASEP system and then in the infinite-size limit.

In a finite-size TASEP system with periodic boundary condition whereC0 particles move
forwards alongN discrete sites, we can classify configurations according tothe numbern of
paused particles. To be specific, if there are no paused particles on the TASEP in ring, we
define it as a zero-pause configuration; if all particles are paused, we define it asC0-pause
configuration. So there are in totalC0 + 1 pause configurations. As the system evolves in
time, it will undergo transitions between different configurations, spending a certain amount
of time in each configuration. In each configuration, there will be a contribution to current.
For example, the contribution to current of the zero-pause configuration isρ(1 − ρ), like the
TASEP model without pauses. Note that there is a contribution to current, so long as there are
active particles with empty sites in front of them so that they can advance. Even though paused
particles occupy some sites, current may be still contributed so long as there are active particles
whose next sites are empty (Fig 4.3).

Therefore, not only the zero-pause configuration contributes to current but also all configu-
rations containing paused particles except of course theC0-pause configuration, where there is
no active particle. However, the contributions to current of different configurations are gener-
ally very different. We assume that the total current of the finite-size TASEP can be expressed
for any value ofτ as a sum over configurations with specific number of pauses:
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Figure 4.3:Current contribution of configurations with constant number of paused par-
ticles. In TASEP model of finite size with periodic boundary condition,C0 particles are dis-
tributed in a ring ofN discrete sites. Even though paused particles occupy some sites and block
the movement of some particles behind them, there are still contributions to current so long as
there are empty sites in front of active particles.

JT =

C0
∑

n=0

PnJn (4.4)

wherePn is the probability ofn-pause configuration, andJn is its contribution to current.
Two extreme cases are already known:J0 = ρ(1 − ρ) and JC0 = 0. Eq. (4.4) involves
two quantities, the probabilityPn of n-pause configuration and the associated contribution to
currentJn. Interestingly,Pn is independent of configuration of occupied sites, in other words,
Pn is simply equivalent to the probability of havingn paused particles in TASEP model. Next
we analyze how to compute the probability ofn-pause configuration in the finite-size system.

4.3.1 Probability of configurations with pauses in the finite-size system

Transitions between different configurations occur with some fixed rates so that we can expect
that there is a well-defined probability distribution of observing a given configuration at some
time. Here we write the master equation [189] that describesthe time evolution of probabilities
for these configurations as follows:
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dP0

dt
=

1

τ
P1 − fC0P0 (4.5a)

dP1

dt
= fC0P0 −

1

τ
P1 +

2

τ
P2 − f(C0 − 1)P1 (4.5b)

... = ... (4.5c)
dPn

dt
= f(C0 − (n− 1))Pn−1 −

n

τ
Pn +

n+ 1

τ
Pn+1 − f(C0 − n)Pn (4.5d)

... = ... (4.5e)
dPC0

dt
= fPC0−1 −

C0

τ
PC0 (4.5f)

Eqs. 4.5 are basic rate equations which describe the time evolution of probabilityPn depending
on the probabilitiesPn−1 andPn+1 to be in neighboring configurations and on the transition
rates between these configurations. The steady state of Eqs.4.5 gives the stationary proba-
bilities. Note that equations defining the steady state givethe same solution as the principle
of detailed balance would give (the probability of transition betweenn andn + 1 pauses is
the same as for the reverse transition). By computing the fixedpoint, we find the following
expressions for the probabilitiesPn.

P0 =
1

(1 + fτ)C0
(4.6a)

Pn = (fτ)nCn
C0P0 (4.6b)

whereCn
C0

is the binomial coefficient. Note that the probabilityPn of havingn pauses is
independent of the pause durationτ and depends only on the parameter productfτ . This
expression can also be recovered as follows. There areC0 particles, and for each of those, the
probability of being in pause isfτ

1+fτ
. The probability to haven paused particles is given by the

binomial distributionB(C0,
fτ

1+fτ
), which is indeed the same solution as in Eqs. (4.6).

So in the finite-size TASEP system, the probability of havingn pauses is simply the Bino-
mial distribution for all three regimes. We next study the pause number probability distribution
in the infinite-size limit.

4.3.2 Probability of configurations with pauses in the infinite-size limit

For TASEP system in the infinite-size limit, the total numberof particles is infinite as well as
the number of sites, and we must use different parameters to describe the system. We define an
intensive continuous parameter, which is the fractionñ ∈ (0, 1) of paused particles:

ñ =
n

C0

(4.7)

In this limit, the configuration is defined according to the fraction of paused particles. We
analyze now how to find the probability distribution function (PDF) for these configurations.
In the finite-size TASEP system, the probability of then-pause configuration is simply the
Binomial distribution written asB(C0, p) with p = fτ

1+fτ
. When the total number of particles

becomes sufficiently large, an excellent approximation to the Binomial distribution is given by
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the continuous Normal distributionN(C0p, C0p(1−p)) with p = fτ
1+fτ

. Based on Eq. (4.4), the
expression of the total current for the case where number of particles is large can be written:

JT =

∫ C0

0

P (n)J(n)dn

=

∫ C0

0

1√
2π

√

C0p(1− p)
e
− (n−C0p)

2

2C0p(1−p)J(n)dn

=

∫ 1

0

1
√
2π

√

p(1−p)
C0

e
− (ñ−p)2

2
p(1−p)

C0 J(ñ)dñ

=

∫ 1

0

P (ñ)J(ñ)dñ

(4.8)

where

P (ñ) =
1

√
2π

√

p(1−p)
C0

e
− (ñ−p)2

2
p(1−p)

C0 (4.9)

with p = fτ/(1 + fτ) is the probability of having the configuration for which the fraction of
paused particles is betweenñ andñ+dñ, andJ(ñ) is the contribution to the current associated
with that configuration. The distribution (4.9) possesses an average ofp and a variance of
p(1 − p)/C0 (Fig 4.4). When increasing gradually the total number of particles, the shape
of PDF becomes narrower and narrower, and the maximum centered at the average becomes
higher and higher. In the infinite-size limit where the totalnumber of particlesC0 is infinite,
the variance is zero and the probability density function isthe Dirac function centered at the
average of the fraction of paused particles〈ñ〉 = fτ/(1 + fτ). Thus, the expression of total
current in the infinite-size limit becomes:

JT = J(〈ñ〉)

= J(
fτ

1 + fτ
)

(4.10)

Therefore, we find that in the infinite-size limit, the total current is generated by the configu-
ration with a fractionfτ/(1 + fτ) of paused particles. This represents a dramatical change
for the PDF of configurations as well as for the expression of total current compared with the
finite-size case.

In this section, we have established the probability of configurations corresponding to a
given number of fraction of paused particles. To understandthe variation of transcription rate
in the three regimes, determining the contribution to current of different configurations will be
our aim in the following sections. Our strategy is first to study the short-pause and long-pause
regimes for both finite-size and infinite-size systems, and then to study the intermediate-pause
case which is actually the transition between the two above limit cases.
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Figure 4.4:Probability density function (PDF) P (ñ) of configuration with the fraction of
paused particle between betweeñn and ñ + dñ. When the size of TASEP model increases
gradually, this Normal distribution becomes narrower and narrower and the maximum value of
PDF is approaching to infinite. In the limit of infinite size, PDF turns to be the Dirac function.
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Figure 4.5:Contribution to current as a function of the number of pausedparticles in the
finite-size TASEP model. The blue solid curve is obtained by Eq. (4.11). Different colored
symbols represent numerical estimations for fixed parameters valuesN = 100, ρ = 0.5. Cer-
tain estimations deviate from the curve because of statistical fluctuations, since these configu-
rations have lower probabilities. Therefore, the expression (4.11) predicts well the contribution
to current of configurations.

4.4 Transcription rate in short pause limit

4.4.1 Finite size system

We first seek to compute the contribution to currentJn of n-pause configuration for the finite
size system in the short pause limit, where the mean-field approximation still works. As the
pause duration is sufficiently short, particles are independent of each other so that the active
particles are not able to sense the presence of paused particles. The movement of active particles
generates the current, so intuitively the current contribution Jn is proportional to the number
of active particles in the configuration, withJ0 = ρ(1− ρ). The expression ofJn is written as
follows:

Jn =
C0 − n

C0

ρ(1− ρ) (4.11)

where the termC0−n
C0

is the probability for a particle to be active (which is actually the
fraction of active particles), so thatC0−n

C0
ρ is the density of active particles for one site;1 − ρ

is the probability that the next site is not occupied by another particle. Eq. (4.11) first confirms
two extreme cases:J0 = ρ(1 − ρ) andJC0 = 0. In addition,Jn as a function of number of
paused particlen, does not depend on pause durationτ and not on the parameter productfτ ,
either. As Fig 4.5 shows, the expression of the contributionto current of configurations given
by (4.11) agrees well with numerical simulations.

Combining our expression forJn deduced in short pause limit with the probabilityPn of the
n-pause configuration in the general expression (4.4) yieldsthe following expression of total
current:
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JT =

C0
∑

n=0

PnJn

=

C0
∑

n=0

(fτ)nCn
C0

(1 + fτ)C0
ρ(1− ρ)

C0 − n

C0

=
ρ(1− ρ)

1 + fτ

(4.12)

Thus we recover the expression of total current derived frommean-field approximation
(Eq. 4.3), regardless of the size of TASEP model. Next, we will search for the total current in
short pause regime for the infinite-size limit.

4.4.2 Infinite size limit

In the infinite size limit,J(ñ), the contribution to current of the configuration with a fraction ñ
of paused particles can be obtained from the finite-size expression (4.11):

J(ñ) = (1− ñ)ρ(1− ρ) (4.13)

where(1 − ñ) is the fraction of particles which are active. According to the relation (4.10),
only the configuration with the fraction of paused particlesgiven byñ fτ

1+fτ
contributes to the

total current. By substituting̃n = fτ
1+fτ

in Eq. (4.13), we obtain:

JT =
ρ(1− ρ)

1 + fτ
(4.14)

In conclusion, we have studied the short pause regime and found the same expression of the
current for the finite-size and infinite-size TASEPs, the onepredicted by mean-field approxi-
mation. Thus, the transcription rate does not depend on the size of system. In the next section,
we will investigate another particular limit, that of very long pauses.

4.5 Transcription rate in the long pause limit

4.5.1 Typical dynamical behavior

To investigate the behavior of the TASEP model with pauses under periodic boundary condi-
tions in the long pause limit, we again first consider the finite-size case, for the sake of math-
ematical simplicity. We first discuss qualitatively the typical dynamical behavior of TASEP
model in this regime, as it will give us some inspiration to derive the expression of current.
When the average pause duration is sufficiently large, a paused RNAP may block several
RNAPs and force them to wait for a certain account of time, during which they will proba-
bly enter into paused state themselves. We define the ensemble of a paused particle in head and
its following particles, forming a contiguous block, as a cluster. In the long pause limit, clusters
of large size can easily be formed. In consequence, the particles are highly correlated. As par-
ticles confined in clusters cannot produce current by movingforwards until the moment when
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Figure 4.6:Typical dynamical behavior in the long pause limit. The probability distribu-
tions of the number of clusters are shown for different values of the pause durationτ , other
parameters being kept constant atN = 100, ρ = 0.5 andfτ = 0.1. A cluster is defined as a
collection of contiguous particles with a paused particle in head. In the long pause limit, the
most probable configuration is a single cluster.

clusters collapse or particles escape from them, the sizes and numbers of clusters significantly
determine the current.

We have computed the number of clusters in our TASEP model when pause duration is
gradually increased (Fig 4.6). When the pause durationτ is small or intermediate, several
clusters coexist, whereas in the long pause regime, only onehuge cluster is found along the
TASEP ring. This implies that all paused particles are confined inside of this single cluster
(Fig 4.7). For most of the time, all particles, active or paused, are confined in this cluster, and
no contribution to current is observed. When the paused particle in head becomes active, it is
released from the cluster and moves forwards without any exclusion, because all sites before it
are empty. It is quickly followed by the active particles behind it which can also move rapidly.
When all active particles at the head have “evaporated”, another paused particle becomes the
head of the cluster, particles behind the new head remainingimmobile. As the round-trip time
of moving particles is much shorter than the pause duration of the new head particle, released
particles go around the ring and join the cluster again at itsother end. After this transient
flow of particles, we are back to the single immobile cluster configuration. Therefore, the only
contributions to current come from active particles released from the single cluster after the
paused particle in head returns to active state.

So the typical dynamical behavior for the finite-size systemin the long pause limit is one-
cluster dominating, which provides us an important clue to derive the current contribution of
n-pause configuration.
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Figure 4.7:Contribution to current in the single-cluster regime of the long pause limit.
Single huge cluster containing all particles is found for most of the time and no current is
produced. When the paused particle at the head returns to active state, a number of active
particles released from the cluster move forwards along thechain and contribute to current. As
the round-trip time of active particles is much shorter thanthe pause duration, they rejoin the
single cluster again before the another paused particle in head becomes active.

4.5.2 Current in an artificial model with fixed number of paused particles

As a first step toward computing the current for the TASEP in the long-pause limit, we consider
an artificial but simpler model where the numbern of paused particles is fixed. This will allow
us to estimate the contribution to current of then-pause configurations.

In this artificial model, we haveC0 particles on a one-dimensional lattice withN sites, of
whichn particles are paused with an average pause duration ofτ . Active particles hop from one
site to the next one if it is not occupied, which contributes to current as in the TASEP model.
However, active particles do not spontaneously enter into the paused state. Each time a paused
particle becomes active again, we randomly choose one and only one active particle and turn it
into paused state in order to keep the number of paused particles constant.

In the long pause limit, single-cluster behavior is also found, if only because the pause
duration is much longer than the round-trip time of active particles. In the same way as for the
TASEP model, only active particles released from the singlecluster contribute to the current
after the paused particle in head has become active. Since the number of paused particles is
fixed, the head of cluster becomes active again after an average duration ofτ and a certain
number of particles can escape from the cluster. The currentoriginates from the movement of
these particles. A key point is that these particles cannot make a complete round-trip because
of the sites occupied by the cluster. The expression of the current for the model with a fixed
numbern of paused particles is the following:
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Figure 4.8:Contribution to current Ja
n as a function of the number of pauses for different

parameter sets in the artificial model with a fixed number of paused particles. Analytical
and numerical results are computed in the finite size system with parametersN = 100 and
ρ = 0.5. Solid curves are computed from Eq. (4.15) for different values of pause duration and
agree extremely well with the simulations (represented by various symbols), independently of
the value offτ .

Ja
n =

C0

n+1

τ
∗ (1− ρ)

=
Nρ(1− ρ)

(n+ 1)τ

(4.15)

whereC0/(n + 1) is the number of active particles released from the cluster when paused
head becomes active. Note that this factor involvesn+1, notn, because we put systematically
another active particle into paused state before the head particle in pause becomes active so that
number of paused particle actually is transientlyn+ 1 but returns ton immediately thereafter.
1 − ρ is the fraction of sites not occupied by the cluster. The expression (4.15), which agrees
well with numerical simulation for different ranges of parameter productfτ (Fig 4.8), involves
the productρ(1− ρ) so that the contribution to current is still a symmetric function of particle
density. The contribution to current ofn-pause configuration in this particular model depends
on the size of systemN , and it is inversely proportional to the pause durationτ , which is not
surprising given that an average time interval ofτ must elapse between two releases of active
particles from the cluster.

Fig 4.8 shows that the expression (4.15) forJa
n captures extremely well the contribution to

current of then-pause configurationJa
n in the artificial model, which is extremely important to

find theJn in our original TASEP model. Even though the number of pausedparticles is not
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fixed in the latter, the typical dynamical behavior and transitions between configurations are
quite similar.

4.5.3 Current expression for the finite-size TASEP model

Now that we have established that the typical dynamical behavior in the long pause limit is the
single-cluster configuration, and that we have derived the contribution to current ofn-pause
configuration in an artificial model with fixed number of paused particles, the contribution to
currentJn of n-pause configurations in the TASEP model can be obtained.

Since the average pause duration of paused particles at the head of the single cluster is
much larger than the round-trip time of active particles, there is no current most of the time.
When the head particle becomes active, the number of paused particles is reduced by one. After
that transition, a current is produced by active particles released, which travel around the ring
until they hit the other side of the cluster. The dynamics just after a transition between two
configurations is therefore the key point for the contribution to current, both in the artificial
model and TASEP system.

Before the fixed pause-number expression (4.15) can be used inthe context of a normal
TASEP, a subtle point has to be made. We recall that the current associated to a certain number
of pauses can be defined as being proportional to the average number of particles making a
round trip in this configuration divided by the time spent in this configuration. This means
that whenever a particle is advancing in a numerical simulation, we determine the numbern
of paused particles in the TASEP at that time, and we associate this contribution to the current
with n-pause configuration.

In the artificial model with a fixed number of paused particles, the waiting timeτ and the
number C0

n+1
of released particles are both counted for then-pause configuration. However, in

the TASEP model where the number of pauses varies in time, we need to be very careful when
assigning a waiting time and a contribution to current to theconfiguration of a given-number
paused particles. In particular, assume that just before the paused particle at the head of cluster
becomes active, there aren + 1 paused particles. When the head become active, the (n + 1)-
pause configuration becomes then-pause configuration. ThenC0

n+1
active particles are released

from the cluster and contribute to the current. Therefore, the waiting timeτ should be included
in statistics for (n+1)-pause configuration rather than forn-pause one, while the advance of the
C0

n+1
particles released contributes to the current forn-pause configuration. To account for this

fact, a simple prescription is to renormalize the contribution to currentJn by a factorTn+1/Tn,
whereTn is the time spent so far inn-pause configurations, so that the number of advances
occurring at times when there are exactlyn pauses is divided by the correct amount of time.
Fortunately, we know this ratio, becauseTn is by definition proportional to the probabilityPn

of havingn paused particles. Therefore, the expression of contribution to currentJn reads:

Jn =
Nρ(1− ρ)

(n+ 1)τ

Tn+1

Tn

=
Nρ(1− ρ)

(n+ 1)τ

Pn+1

Pn

=
Nρ(1− ρ)

(n+ 1)
f
C0 − n

n+ 1

(4.16)
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Figure 4.9:Probability Pn and contribution to current Jn of n-pause configuration. Curves
for different values offτ are obtained according to Eq. (4.6) and Eq. (4.16). They agree well
with results from numerical simulations, shown by symbols of different shapes and colors.

Note that this expression contains the termρ(1 − ρ) and alsoN andC0. It is easy to see
that the contribution to current is reduced if we increase the number of paused particles while
keeping their total number constant, as expected. As shown in Fig 4.9, the expression (4.16)
predicts perfectly the numerical estimations of theJn for different ranges of parameters.

We have discussed the fact that the contribution to current (4.16) is generated by the transi-
tion from a (n+1)-pause configuration to an-pause one. The general expression ofJn predicts
a contribution of zero-pause configuration, which we will denoteJ∗

0 , corresponding to the tran-
sition from a1-pause configuration to a0-pause configuration. The question then arises whether
the contributionJ∗

0 should be taken into account in addition to the normal termJ0 = ρ(1− ρ).
We tested which of the two expressionsJ0 = ρ(1−ρ) orJ0+J∗

0 = ρ(1−ρ)(1+fC0N) agreed
better with numerical simulations, and found that the first one was clearly more accurate. In
the following we will therefore only consider the contribution of theJn given by Eq. (4.16) for
n > 1.

Given the contribution to currentJn of then-pause configuration, and the probabilityPn

of havingn-pause configuration, we can construct the expression of total current according to
relation (4.4):

JT =
ρ(1− ρ)

(1 + fτ)C0
+

C0
∑

n=1

Cn
C0
(fτ)n

(1 + fτ)C0

Nρ(1− ρ)

(n+ 1)
f
C0 − n

n+ 1
(4.17)

where theCn
C0

are binomial coefficients. The expression (4.17) of the current for the finite-
size system in the long pause limit is relatively complex, but predicts extremely well the total
current (Fig 4.10). Note that for very long pause durations,the total current tends to a finite
constant ρ(1−ρ)

(1+fτ)C0
which is not negligible when the size of the TASEP remains small. This is

due to the fact that the probability of having no particles inpause is not negligible.
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Figure 4.10:Current as a function of RNAP density in the long pause regime. Values of
the total current computed by numerical simulations for different values offτ with N = 100
in the long pause regime (circles, squares, diamonds and stars). They agree very well with the
predictions of formula (4.17) which are represented by solid curves.

It is interesting to consider more closely in Fig 4.10 how theJT (ρ) curve evolves as a
function of the productfτ , which determines the fraction of paused particles. When there is a
small fraction of paused particles, for example whenfτ = 0.01, the dependence of total current
on density remains symmetric with a maximum for the half-occupied ring, as in the short-pause
regime. In contrast, when the fraction of paused particles becomes larger, the curve becomes
more and more asymmetric, and eventually decreases monotonously when the particle density
increases. In the latter case, the highest transcription rate is observed at small density. In
addition, the total current is globally reduced whenfτ is increased. Thus RNAP pausing in the
long pause limit qualitatively changes the dynamical behavior compared with the short pause
case.

We can now make a summary of the behavior of the finite-size TASEP in the short-pause
and long pause limits. Transcription rate (or current) displays three different regimes according
to pause duration (Fig 4.11). In the short pause limit, particles are uncorrelated, thus the current
does not depend on pause duration and is constant. In the longpause limit, particles most
probably remain in one huge cluster and are highly correlated. The current is also approaching
to a constant value when pause duration is infinitely large. Our expression of total current in
both limits agrees well with numerical simulations. Even near the end of the intermediate pause
regime, where the single-cluster assumption fails, is quite well approached by our expressions.
Note that both expressions overestimate the current when applied in the intermediate pause
case.
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Figure 4.11:Transcription rate of the finite-size TASEP system in the short pause and
long pause regimes. The mean-field value of current (4.12) valid for small values of the pause
durationτ , shown by a dark green curve forρ = 0.5 and by a green curve forρ = 0.1, is
obtained under mean-field approximation. The value of the expression (4.17) of the current in
the large-τ regime, obtained in the single-cluster approximation, is plotted as a blue curve for
ρ = 0.5 and an indigo curve forρ = 0.1. Both of them agree with numerical simulations in
their respective domains of validity.

4.5.4 Current expression for the infinite-size TASEP model

In previous sections, we found that there is no difference inthe short pause limit between
finite-size and infinite-size systems. Here we will establish the expression of total current for
the infinite-size TASEP model in the long pause limit, and compare it with that in the finite-size
TASEP.

We begin by evaluating the contribution to currentJ(ñ) in the infinite-size limit, wherẽn is,
defined as before, the fraction of paused particles. Obviously, it is impossible in the infinite-size
limit to have a single cluster. Rather, there are infinitely many clusters, which should however
have approximately the same size distribution as in the caseof a finite size. As before, the
current only occurs when paused particles at the head of a cluster become active. We therefore
expect that the result obtained in Eq. (4.16) also holds hereand thus that configurations with a
fractionñ of active particles contribute a current:

J(ñ) =
f(1− ρ)

ñ
(
1

ñ
− 1) (4.18)

This expression is much simpler than that in the finite-size TASEP model. The total current
is given by the contribution to current of the most probable fraction of particle in pause〈ñ〉 =
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fτ/(1 + fτ):

JT = J(〈ñ〉)

= J(
fτ

1 + fτ
)

= ρ(1− ρ)
1 + fτ

fτ ρτ

(4.19)

where we purposely keep the termρ(1− ρ) as a factor to conveniently compare our result with
expressions of current found in other limits. The total current is inversely proportional to the
pause durationτ , so it always decreases when pause duration is increased andit goes to zero
for infinitely long pauses. In addition, the total current isinversely proportional to the most
probable fraction of particles in pauseñ = fτ/(1+fτ). This is quite reasonable given that the
larger the fraction of paused particles, the slower the transcription rate.
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Figure 4.12:Comparison of currents for the finite-size and the infinite-size TASEPs in the
short, intermediate and long pause regimes. Numerical estimations of current are carried out
with parametersρ = 0.5. N = 100 (black stars) considered to be representative of a finite-size
system, andN = 1000 (red cycles) which is already approaching the infinite-sizelimit. It can
be seen that short pause and intermediate pause regimes are not influenced by system sizes. In
contrast, finite-size and infinite-size TASEPs display dramatical differences in the long pause
limit. Current tends to a constant for finite size, but decreases indefinitely in the infinite-size
case and is asymptotically proportional to1/τ . Expressions obtained for the short pause (4.14)
and long pause limits (4.19) predict well the variation of current.

The variations of the total current with pause duration in the infinite-size and finite-size
TASEPs are shown in Fig 4.12. Note that the short pause and intermediate pause regimes
of these two cases are perfectly superimposed, so that thesetwo regimes are independent of
system size. The only difference occurs in the long pause regime. In a finite-size system, the
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total current is approaching to an asymptotic constant, in contrast, for infinite-size limit, it is
just a continuation of intermediate pause case and there is no clear boundary between them.
The current decreases with pause duration to zero. Most importantly, the expression of current
given by Eq. (4.19) predicts perfectly this long pause regime for infinite-size limit.

In this section, we have discussed the dynamical influence oftranscriptional pausing in
the long pause regime in both finite-size and infinite-size systems. In the finite-size system,
single-cluster behavior was found. This allowed us to deduce the contribution to current of
each configuration, as well as the total transcription rate (current). The expression found for
both finite-size and infinite-size systems predicts correctly the transcription rate. Next, we will
discuss how the transcription rate depends on the pause duration in the intermediate pause case,
for which the ranges of biological parameters are found.

4.6 Phenomenological description and transcription rate for
the intermediate pause case

In previous sections, transcription interrupted by RNAP pausing was modeled by TASEP sys-
tems with periodic boundary conditions. It is found that thetranscription rate displays three
dynamical regimes, which we termed the short, intermediateand long pause regimes. We have
studied dynamical behaviors of the short and long pause regimes for which expressions of the
transcription rate were found.

Two processes control the dynamical behavior and affect transcription rate. One is the
movement of active particles which is determined by elongation rate and particle density, and
the other is the blocking of particles by other particles in pause that leads to clusters defined as
an ensemble of particles with a paused particle in head, as discussed before.

In the short pause limit, the time scale of particle movementis larger than that of pausing so
that a particle is only affected by the active or paused nature of its own states, not sensing that
of its neighbors. Particles are not correlated. Occupancy of each site is independent of that of
others. The transcription rate is well predicted by the mean-field approximation. In contrast, in
the long pause limit, clusters dominate system behavior. Particles spend most fraction of time
in clusters, otherwise, they become active moving forwardsbetween clusters. In particular, in
finite-size system, there is only one cluster on the TASEP ring.

In the intermediate pause case, the typical dynamical behavior is the coexistence of active
particle movement and of clusters. A particle may move forwards without being affected by
pausing, or it may be confined in a cluster. Sizes of clusters are smaller than those in long
pause regimes, however, there are much more of them. Moreover, these small-size clusters
are quickly created once a particle switches to the paused state, and can easily collapse when
paused particles return to the active state. The intriguingdynamics of clusters can highly reduce
the transcription rate.

An approach which seems promising is that of studying the statistics of residence time.
During its motion around the TASEP ring, a particle will spend different amounts of time on
different sites. A question is then how these amounts of timeare distributed. We may further
divide the residence time into different contributions depending on whether the particle was
active or paused. There is a direct connection between residence times and the current which
is in fact the inverse of the average residence time.

The simplest and most naive way to combine the formulas we have obtained for the short
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Figure 4.13:Transcription rate (current) for three regimes . Numerical simulation is carried
out with parameters:N = 1000, fτ = 0.1, ρ = 0.5. The theoretical expression (4.21) shown
by blue curve predicts the current in all ranges of pause duration τ , including the intermediate
pause regime with certain deviation if compared to numerical simulations.

pause and long pause regimes into an expression working in the entire range of pause durations
is to assume that the average residence timetr is the sum of the mean-field residence timetMF

r

and of the mean residence timetLPr we have obtained in the long pause regime:

tr = tMF
r + tLPr = tMF

r + Pτ, tMF
r =

1 + fτ

(1− ρ)
, P =

ρfτ

(1 + fτ)(1− ρ)
(4.20)

where it has been expressed that the long-pause residence time is proportional to pause duration
τ so that the coefficientP can be viewed as the average number of pauses encountered when
moving over one site (in other words,NP is the average number of pauses encountered over
one turn). We have also assumed thatǫ = 1 (i.e., time is renormalized to the mean elonga-
tion time). Figure 4.13 compares the current predicted by formula (4.21) with the result of
numerical simulations.

It can be seen in Fig 4.13 that expression (4.21) interpolates relatively well between the
short pause and the long pause limits but that there is a notable difference with the output of
numerical simulations in the intermediate pause regime. Inthis regime, indeed, the dynamics
is quite complex. Permutations of pausing between particles are rapid but each pausing is long
enough to create clusters of small or intermediate size blocking active particles. These clusters
of all sizes form and break down continuously.

This line of research is still being developed in our group and I will not specify its details
here, except that some interesting results have been obtained. For example, we have found that
in the intermediate regime, particles are blocked by significantly more pauses than expected
during one round trip around the TASEP. An explanation is that during the time in which a
particle is blocked by other particles queued behind a paused particle, waiting for the latter
to become active, one of the particles in front of it may itself enter into paused state, thereby
masking the original paused particle. As the particle waitsfor this new pause to finish, a new
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pause may appear, and so on. It seems that an effective expression for the mean residence time
of the form

tr = tMF
r + γ(τ)Pτ, (4.21)

agrees quite well with numerical simulations ifγ(τ) is a function varying typically between
2 for small τ and1 for large τ (so that the long pause limit expression is recovered), with
a maximum around2.6. It remains how to explain with a simple argument the origin of the
correcting factorγ(τ).

4.7 Conclusion

In this chapter, we have studied the dynamical effects of RNA pausing on transcription using
a classical model of out-equilibrium statistical physics,the so-called TASEP model with pe-
riodic boundary condition. We found that depending on pauseduration, the transcription rate
dynamics displays three regimes. The first is the short pauseregime where particles are uncor-
related, so that the mean-field approximation works well andTASEP model can be mapped to
the model without pausing. The intermediate pause regime isthe second one. Pause duration
is larger than the advance time of active particles, so that pausing can block active particles,
thereby forming clusters, which reduces significantly the transcription rate. The third regime
is the case where pause duration is infinitely large. Clustersdominate the dynamical behav-
ior. We understood the characteristic dynamical behavior of all three regimes and found the
expression of the transcription rate in finite-size and infinite-size systems for short pause and
long pause limits which agree well with numerical simulations. We also discussed briefly the
strategy to obtain an expression of the transcription rate in the intermediate regime and direc-
tions for future research. Our results emphasize the significant influences of RNAPs pausing
on the transcription dynamics. If the experimental technologies in synthetic biology allow to
tune the RNAPs pause duration, it will be very helpful to confirm our conclusions. In addition,
comparing the different behaviors of synthetic genes with RNAPs pausing and of that without
pausing will provide insights into the dynamical role of RNAPpausing in the transcriptional
bursting.
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General conclusion and perspectives

Recently the interaction of biology with physics has favoredsignificant advances. Physics not
only brings new experimental technologies to measure and manipulate molecular and cellular
events with high resolution, but also theoretical modeling, which provides powerful predictions
and can be further tested by quantitative experiments. In particular, modeling enables us to
reveal the design principles of various biological phenomena and to quantitatively understand
cellular processes. The focus of this thesis has been to theoretically elucidate the influence
of some key ingredients on the dynamics of genetic networks,such as the time delay and
fluctuation in cellular processes, as well as RNA polymerase (RNAP) pausing.

This thesis is divided into three studies. In the first part, we analyzed the combination of
various and multiple time delays and how it affects oscillatory behavior in a minimal genetic
network comprising a self-repressing gene. The second partdeveloped a cumulant expansion
of the master equation which revealed the interplay betweenfluctuations and nonlinearities
of genetic networks, and it showed how fluctuations can induce biological oscillations. In
the third part, we investigated the dynamical effect of RNAP pausing on transcription in the
context of a classical system of out-of-equilibrium statistical physics: the Total Asymmetric
Simple Exclusion Process (often referred to as TASEP). Herewe will make a brief conclusion
and perspective for each of three studies.

Oscillation arising from combination of various and multiple
time delays with non-linearities in a self-repressing gene

The ubiquity and importance of oscillations have been highlighted in various biological sys-
tems, such as circadian rhythms [53, 75, 160, 40, 3, 32], cellcycles [129], immune response
[66], cell growth/death [93] and embryo development [2, 60]. Intensive studies have focused
on the design principles of biological oscillations [100, 127, 135, 145]. Several key ingredients
of oscillations have been revealed, such as negative feedback (a necessary condition), delay
and nonlinear degradation. A typical feature of biologicalsystems is that various and multi-
ple time delays are derived from different sources, in particular are originated in transcription,
translation, molecule transport, phosphorylation, etc. Moreover, nonlinear degradation is also
expected to be an important source of delay [135]. The combination of these various and mul-
tiple delays may be the key to explain the experimentally observed robustness of oscillations
[135, 175]. However, the combination principle of delays had not yet quantitatively studied.
There are two strategies of modelling delays commonly used in literature: explicit delay and
so-called reaction delay, whose differences remained unclear.

Using a simple self-repressing gene circuit involving two delays due to dynamics of gene
activity and to protein transport, analytical criteria foroscillations were found. They not only
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quantitatively unify key ingredients previously discussed, but also demonstrate the trade-off
between delay and nonlinear degradation. There is a time scale of delay at which the system
is most destabilized. As to the combination principle of various delays, explicit delays are
simply combined depending on their sum, whereas reaction delays interact in a non-trivial way
so that how reaction delays are distributed among differentbiological steps also influences
oscillations. For small delays or saturated degradation, explicit and reaction delays display
the same dynamical influence. In the general case, however, their influences are dramatically
different. An explicit delay always promotes oscillation by destabilizing the steady state of the
system. In contrast, a reaction delay can destabilize or even stabilize the system.

We hope that our analytical comparisons between explicit and reaction delays will guide
people to choose how to model delays in theoretical studies and also experimental data analy-
sis. In addition, our conclusion that the non-trivial combination of various delays can launch
more easily oscillations than a single delay equal to their sum may explain the robustness of
oscillations and need to be further tested experimentally.

Influence of stochastic fluctuations on the oscillation of a self-
repressing gene

Experimental and theoretical investigations [38, 105, 179, 183, 33, 151] reveal that genetic net-
works are subject to large fluctuations (or noise), as most biochemical reactions in cell involve
low copy numbers of reacting molecules. It was theoretically demonstrated that fluctuation is
unavoidable in biological systems [125]. Fluctuation is not always a nuisance, but can be a
useful mechanism responsible for phenotypic heterogeneity [157, 120], coordinated expression
of a large set of genes and probabilistic differentiation strategies [195, 35, 5, 77]. However,
the influence of fluctuation on the dynamics of genetic networks is not fully understood, and
theoretical approaches that describe molecular fluctuations and are easily solved are needed.

To address these questions in a simple setting, we have focused on the minimal genetic
network consisting of a self-repressing gene. In this circuit, sources of fluctuations are not only
the low copy numbers of mRNA and protein molecules, but also the dynamics of gene activity
which switches between the "ON" and "OFF" states. In order to study the dynamical influence
of fluctuations, we performed a cumulant expansion of the master equation which allows us to
appropriately describe the binary gene states. Using this cumulant expansion, we reveal that
the interplay between nonlinearities of the genetic circuit and stochastic fluctuations dramati-
cally shifts the steady state predicted by deterministic rate equations and induces oscillations
without requiring nonlinear degradation. The oscillationzone predicted by cumulant expansion
coincides with parameter region with most regular spiking behavior characterized by the Fano
factor.

This study suggested an interesting approach to take into account fluctuations in genetic
networks. This theoretical approach is easily solved owingto its deterministic form that com-
prises the average quantities and other-order cumulants representing fluctuations. It can also
applied for other biological systems that are subject to fluctuations.
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Dynamical effects of RNAP pausing on transcription

Transcription is one of the most complex and tightly regulated processes in gene expression
[106, 192, 76, 18, 178]. During the past decade, the intriguing dynamics of transcription in
which the macromolecular machine RNA Polymerase (RNAP) playsa critical role caused much
interest. Moreover, RNAPs display some unusual behaviors during the process of producing
mature RNA molecules, such as stochastic pausing which affects RNAP traffic and probably
contributes to transcriptional bursting. According to single-molecule experiments, there are two
main types of pauses, elemental short pauses [56, 107, 119, 55, 57] and prolonged backtracking
pauses [55, 57, 4]. The majority of pauses are elemental short pauses with weak sequence
dependence and are not affected by trailing RNAPs.

In order to investigate the dynamical influence of elementalpauses on transcription, we have
considered the classical statistical TASEP system with periodic boundary conditions to model
the transcription incorporating pausing. In the limit casewhere pause duration is short, we can
construct a mean-field model to analyze the transcription rate and site occupation. In the general
case where the mean-field approach no longer applies, we haveused a statistical approach to
study this model. We have obtained a good understanding of the various mechanisms driving
the transcription dynamics over the entire range of pause duration, and in particular a theoretical
expression of transcription rate agreeing well with numerical simulations.

This study shows the critical role of RNAP pausing in transcription dynamics (which pos-
sibly underlies the transcriptional bursting) and provides theoretical analysis of how pausing
affects transcription rate in the parameter range where mean-field approach fails. In this re-
gion, the dynamics is governed by the formation of clusters,where a number of particles re-
main blocked behind a paused particle for some time and then are released. Future studies
should be focused on the TASEP model with open boundary conditions, which resembles more
closely the transcription process, as well as on the dynamical influence of backtracking, which
is another specific behavior of RNAPs.
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Appendix A

Appendix A: Linear stability analysis of
the ODE and DDE systems

A.1 Normalization and analytical criterion of the basic ODE
model

In the model proposed by Morantet al. [138], The kinetic of the self-repressing gene is de-
scribed by the following equations:

dG

dT
= θ0(1−G)− α0PG (A.1a)

dP

dT
=

dG

dt
+ β0M − δPF (P ) (A.1b)

dM

dT
= µ0 + λ0G− δMH(M) (A.1c)

whereG,P andM represent respectively gene activity, protein and RNA copy numbers. Then
the time, variables and parameters of Eqs. (A.1) are normalized as follows:

T =
t

δm
, G = g, P = pP0, M = mM0

P0 =
θ0
α0

, M0 =
δPP0

β0

, θ =
θ0
δM

,

α =
θ0

P0δM
, δ =

δP
δM

, λ =
λ0

M0δM

µ =
µ0

M0δM
, f(p) =

F (P )

P0

, h(m) =
H(M)

M0

(A.2)

Thus Eqs. (A.1) can be rewritten in dimensionless form:

dg

dt
= θ (1− g(1 + p)) (A.3a)

dp

dt
= α (1− g(1 + p)) + δ(m− f(p)) (A.3b)

dm

dt
= µ+ λ g − h(m) (A.3c)
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Eqs. (A.3) have a single steady state (g∗, p∗,m∗). The behavior of the degradation of proteins
and mRNAs in the neighborhood of the steady state is describedby the slopes:

s =
df(p)

dp

∣

∣

∣

p=p∗
, u =

dh(m)

dm

∣

∣

∣

m=m∗

(A.4)

For the sake of simplicity, here we assume perfect repression when the gene is bound by a
protein (µ = 0) and a large threshold (P0 ≫ 1) leading toα ∼ 0. Under this approximation, the
Routh-Hurwitz stability criterion [89] indicating that theHopf bifurcation occurs is specified
as:

H = (δ s+ u)(δ sτg + 1)(uτg + 1)− g2∗δλτg < 0 (A.5)

whereτg = g∗/θ denotes the time needed for gene response to a sudden variation of proteins.
δ s andu characterize respectively the degradation rate of proteins and mRNAs. In order to
simplify this criterion, both degradation rates are replaced by their sumσ = δ s+u and product
γ = δ su. Therefore, the criterion (A.5) becomes:

H = σ + (σ2 − g2∗δ λ) τ + σ γ τ 2 < 0 (A.6)

The criterion (A.6) is renormalized as follows:

σc = g∗
√
δ λ, σ = σc Σ, γ =

ǫ2 Σ2 σ2
c

4
, τ =

T

σc

(A.7)

So the following expression of the Routh-Hurwitz criterion is obtained:

Hǫ(Σ, T ) = Σ

(

ǫ2 Σ2

4
T 2 + (Σ− 1

Σ
)T + 1

)

< 0 (A.8)

A.2 Linearization of the DDE system

The model with explicit delays describing the simple negative feedback loop of a self-repressing
gene is expressed as follows:

dg

dt
= θ (1− g(1 + p(t− τ1))) (A.9a)

dm

dt
= λ g − h(m) (A.9b)

dp

dt
= δ (m(t− τ2)− f(p)) (A.9c)

whereτ1 andτ2 are two explicit delays due to protein and mRNA transports, respectively. We
first search for the steady state (g∗,m∗, p∗), which is the same as for the model (2.2) without
transport delays. We also find that the steady state does not depend on the parametersτ1 and
τ2. We use the linearization in the neighborhood of steady state, so variables are rewritten as:
(g = g∗ +∆ g, p = p∗ +∆ p,m = m∗ +∆m) where∆ g, ∆ p and∆m are respectively small
perturbations of variables around the their steady state. In keeping the first order of Taylor
expansion around the steady state, these perturbations areexpressed as:

∆ g(t) = ∆g0 e
ξ t, ∆ p(t) = ∆p0 e

ξ t, ∆m(t) = ∆m0 e
ξ t, (A.10a)

∆ g(t− τ2) = ∆g0 e
ξ (t−τ2), ∆m(t− τ1) = ∆m0 e

ξ (t−τ1) (A.10b)
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Then we inject these variables in the neighborhood of steadystate, we obtain the Jacobian
matrix:

~0 =





−θ/g − ξ −θ g 0
0 −δ s− ξ δ e−ξ τ1

λ e−ξ τ2 0 −u− ξ



×





∆ g0
∆ p0
∆m0



 (A.11)

whereξ is the eigenvalue. Therefore, the characteristic equationof eigenvalue is:

ξ3 +
1 + g∗τg(δ s+ u)

g∗τg
ξ2 +

δ s+ u+ g∗τgδ s u

g∗τg
ξ +

δ s u+ δ λ g2∗ e
−(τ1+τ2)ξ

g∗τg
= 0 (A.12)

In this characteristic equation, only the sum of explicit delays appears, so we supposeτe =
τ1 + τ2.

A.3 Stability analysis of DDE system

A.3.1 Stability analysis for a general case

In order to show the approach for the stability analysis of DDEs, we start with a general system
whose characteristic equation is written as:

P1(ξ) + P2(ξ)e
−ξ τe = 0 (A.13)

whereξ is the eigenvalue andτe is an explicit delay.P1(ξ) andP2(ξ) are arbitrary functions of
eigenvalues. For the purpose of understanding stability ofsteady state, it is crucial to determine
the value of parameterτe at which the characteristic equation has a pair of conjugatepure
imaginary roots. Therefore, we suppose thatξ = iω and Eq. (A.13) becomes:

P1(iω) + P2(iω)e
−iωτ = 0 (A.14)

We express functionsP1(ξ) andP2(ξ) in the real and imaginary parts:

R1(ω) + iQ1(ω) + (R2(ω) + iQ2(ω)(cos(ωτ)− i sin(ωτ)) = 0 (A.15)

whereR1(ω) andQ1(ω) are respectively the real and imaginary parts ofP1(ξ), and(R2(ω) and
Q2(ω) correspond to real and imaginary parts ofP2(ξ). In separating real and imaginary parts
of Eq. (A.15), we obtain two equations:

R1(ω) +R2(ω) cos(ωτ) +Q2(ω) sin(ωτ) = 0

Q1(ω)−R2(ω) sin(ωτ) +Q2(ω) cos(ωτ) = 0
(A.16)

By squaring both sides of Eqs. (A.16) and adding them, we eliminate thecos(ωτ) and
sin(ωτ) and get an equation for the frequency of eigenvalue corresponding to the frequency of
periodic solution.

F (ω) = R1(ω)
2 +Q1(ω)

2 −R2(ω)
2 −Q2(ω)

2 = 0 (A.17)

We have focused on the critical value of parameters at which the eigenvalues become a pair of
conjugate pure imaginary roots. Another important question is in which direction eigenvalues
cross the imaginary axis. We determinate the direction by the following expression:

S = sign[
d(Re ξ(τ))

dτ

∣

∣

∣

ξ=iω
] (A.18)
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We can deduce it as:

S = sign(
dF (ω)

dω
) (A.19)

So the sign of derivate of the equation for eigenvalue frequency crossing the imaginary axis
measures the transition of system. IfS is positive, eigenvalues cross the imaginary axis from
left to right, which means the steady state becomes unstable. Likewise, the steady state become
stable.

A.3.2 Stability analysis for our model with molecular transport delay

In applying the approach above into our model, we obtain:

R1(ω) = −(1 + g∗τe(δs+ u))ω2

g∗τe
+

δsu

g∗τe
(A.20a)

Q1(ω) = −ω3 +
(δs+ u+ g∗τeδsu)ω

g∗τe
(A.20b)

R2(ω) =
δg∗λ

g∗τe
(A.20c)

Q2(ω) = 0 (A.20d)

The criterion for oscillations is expressed as follows:

cos (ω τe) =
[1 + g∗τg(δ s+ u)]ω2 − δ s u

g2∗δ λ
(A.21a)

sin (ω τe) =
−g∗τg ω

3 + (δ s+ u+ g∗τg δ s u)ω

g2∗δ λ
(A.21b)

The equation for the frequency of eigenvalue crossing the imaginary axis is:

F (Ψ) = Ψ3 + [
1

T 2
+ (1− ǫ2

2
)Σ2]Ψ2 + [

ǫ4 Σ4

16
+ (1− ǫ2

2
)
Σ2

T 2
] Ψ + (

ǫ4 Σ4

16T 2
− 1

T 2
) = 0

whereΨ = ω2.
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Appendix B

Appendix B: Derivation of the cumulant
expansion of the master equation

B.1 Master equation

In this section, we will derive the cumulant expression of the master equation for the simple
genetic circuit of a self-repressing gene. In order to decrease the nonlinearities of genetic
network, we suppose both linear degradations for mRNA and proteins.

dP0,m,p

dt
= α(p+ 1)P1,m,p+1 − θ P0,m,p

+δm(m+ 1)P0,m+1,p − δmmP0,m,p

β mP0,m,p−1 − β mP0,m,p

+δp(p+ 1)P0,m,p+1 − δp pP0,m,p

dP1,m,p

dt
= θ P0,m,p−1 − α pP1,m,p

λP1,m−1,p − λP1,m,p

δm(m+ 1)P1,m+1,p − δmmP1,m,p

β mP1,m,p−1 − β mP1,m,p

δp (p+ 1)P1,m,p+1 − δp pP1,m,p

whereP (g,m, p) is the probability of find the gene activity characterized byg, m copies num-
ber of mRNA andp copies number of proteins. We first compute moments of variables,g, m
andp and products of variable,gp andgp. Owing to the binary values ofg, the moment ofg2

is equal to that ofg.

〈g〉 =
∑

g,m,p

gPg,m,p =
∑

m,p

0 ∗ P0,m,p +
∑

m,p

1 ∗ P1,m,p =
∑

m,p

P1,m,p

〈m〉 =
∑

g,m,p

mPg,m,p =
∑

m,p

mP0,m,p +
∑

m,p

mP1,m,p =< m >0 + < m >1

〈p〉 =
∑

g,m,p

pPg,m,p =
∑

m,p

pP0,m,p +
∑

m,p

pP1,m,p =< p >0 + < p >1

〈gp〉 =< p >1

〈gm〉 =< m >1

(B.2)
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B.2 Equations for joint cumulants

According to the definition of moments, we deduce first equations for first-order and second-
order moments:

d〈g〉
dt

= θ(1− 〈g〉)− α〈gp〉 (B.3a)

d〈m〉
dt

= λ〈g〉 − 〈m〉 (B.3b)

d〈p〉
dt

= θ(1− 〈g〉)− α〈gp〉+ β〈m〉 − δ〈p〉 (B.3c)

d〈m2〉
dt

= λ〈g〉+ 2λ〈gm〉+ 〈m〉 − 2〈m2〉 (B.3d)

d〈p2〉
dt

= θ(2〈p〉 − 〈gp〉+ 1− 〈g〉)− α(〈gp〉 − 2〈gp2〉) (B.3e)

+β(2〈mp〉+ 〈m〉) + δ〈p〉 − 2δ〈p2〉 (B.3f)
d〈gp〉
dt

= θ(1 + 〈p〉 − 〈gp〉 − 〈g〉)− α〈gp2〉+ β〈gm〉 − δ〈gp〉 (B.3g)

d〈gm〉
dt

= θ(〈m〉 − 〈gm〉)− α〈gmp〉+ λ〈g〉 − 〈gm〉 (B.3h)

d〈mp〉
dt

= −α〈gmp〉+ θ(〈m〉 − 〈gm〉)− 〈mp〉+ λ〈gp〉 (B.3i)

+β〈m2〉 − δ〈mp〉 (B.3j)

As joint cumulants are defined as a special combination of moments, we are searching for
the equations for joint cumulants with third-order cumulants vanishing.

d〈g〉
dt

= θ(1− 〈g〉)− α〈gp〉 (B.4a)

d〈m〉
dt

= λ〈g〉 − 〈m〉 (B.4b)

d〈p〉
dt

= θ(1− 〈g〉)− α〈gp〉+ β〈m〉 − δ〈p〉 (B.4c)

d〈∆gp〉
dt

= θ(1− 〈g〉 −∆gg −∆gp) + β∆gm − δ∆gp (B.4d)

−α(〈g〉∆pp + 〈p〉∆gp − 〈g〉∆gp − 〈g〉2〈p〉) (B.4e)
d〈∆mp〉

dt
= −θ∆gm + λ∆gp + β∆mm − (δ + 1)∆mp (B.4f)

−α(〈g〉∆mp + 〈p〉∆gm) (B.4g)
d〈∆gm〉

dt
= λ∆gg − (θ + 1)∆gm − α(〈g〉∆mp + 〈p〉∆gm) (B.4h)

d〈∆pp〉
dt

= θ(1− 〈g〉 − 2∆gp) + β(2∆mp + 〈m〉) + δ(〈p〉 − 2∆pp) (B.4i)

−α(2〈g〉∆pp − 〈g〉〈p〉 − (1− 2〈p〉)∆gp) (B.4j)
d〈∆mm〉

dt
= λ(〈g〉+ 2∆gm)− 2∆mm + 〈m〉 (B.4k)
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By renormalizing time, variables and parameters according to:

t → Tδm δ → δp
δm

< g >→ G < p >→ θ

α
P < m >→ δθ

βα
M

∆gg → ∆GG ∆pp → (
θ

α
)2∆PP ∆mm → (

δθ

βα
)2∆MM Θ → θ

δm

∆gp →
θ

α
∆GP ∆gm → δθ

βα
∆GM ∆mp →

δ

β
(
θ

α
)2∆MP

λβα

δθ
→ Λ

θ

α
→ P0

(B.5)

Eqs. (B.4) can be rewritten in dimensionless form:

dG

dt
= Θ(1−G−GP −∆GP ) (B.6a)

dM

dt
= ΛG−M (B.6b)

dP

dt
= α(1−G−GP −∆GP ) + δ(M − P ) (B.6c)

d∆GP

dt
= α[1− 2G+G2 −+G2P +G∆GP − P0(G∆PP +∆GP + P∆GP )](B.6d)

+δ(∆GM −∆GP ) (B.6e)
d∆GM

dt
= λG(1−G)−∆GM − αP0(∆GM + g∆MP + P∆GM) (B.6f)

d∆MP

dt
= −α(∆GM +G∆MP + P∆GM) + Λ∆GP − (δ + 1)∆MP + δ∆MM (B.6g)

d∆MM

dt
= Λ(µG+ 2∆GM)− 2∆MM + µM (B.6h)

d∆PP

dt
= α[

1

P0

(1−G+∆GP +GP )− 2(∆GP +G∆PP + P∆GP )] (B.6i)

+δ(2∆MP − 2∆PP +
1

P0

(M + P )) (B.6j)

Note thatP0 = θ/α is defined as the number of proteins required to reduce the transcription
rate by half. We assume this threshold is large (P0 >> 1) which is equivalent toα ≃ 0.
Therefore, the time evolution equations for the first-ordercumulants (i.e., averages) and second-
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order cumulants (i.e., covariances) are given by:

dG

dT
= Θ(1−G−GP −∆GP ) (B.7a)

dM

dT
= ΛG−M (B.7b)

dP

dT
= δ(M − P ) (B.7c)

d∆GP

dT
= δ(∆GM −∆GP ) +G∆PP +∆GP + P∆GP ) (B.7d)

d∆GM

dT
= ΛG(1−G)−∆GM +∆GM +G∆MP + P∆GM) (B.7e)

d∆MP

dT
= Λ∆GP − (δ + 1)∆MP + δ∆MM (B.7f)

d∆MM

dT
= 2Λ∆GM)− 2∆MM (B.7g)

d∆PP

dT
= 2δ(∆MP −∆PP ) (B.7h)
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Abstract

Living cells can be viewed as dynamical systems which receive and process information from
highly changing environments, then make appropriate decisions for survival and reproduction.
Cellular dynamical properties and physiological functionsessentially reply on nonlinear com-
plex networks, called genetic networks in which macromolecules such as DNAs, mRNAs, pro-
teins interact via biochemical reactions.

Motivated by the important roles and one striking dynamicalbehavior, oscillation, of ge-
netic networks, this thesis work elucidates dynamical effects of time delay, fluctuation and
transcriptional pausing on genetic networks, and thus mainly includes three studies.

The first study is about delay that is one of key ingredients ofbiological oscillation. In
mathematical modeling, delay usually appears in an explicit manner (explicit delay) or is ori-
ginated from a reaction step (reaction delay). By studying a minimal genetic network, a self-
repressing gene involving various delays due to different biological processes, our results ana-
lytically derived from deterministic models reveal the combination principle of various and
multiple delays. In particular, we find that reaction delaysinteract in a non-trivial way. Dyna-
mical influences of two types of delay on oscillations are also compared. Explicit and reaction
delays have the same influences only if delays are small or degradations are saturated. In the
general cases, they display dramatical differences.

Genetic networks are usually subject to large fluctuations due to small copy numbers of
reacting molecules present in cells. In order to investigate their dynamical influences on the
oscillatory behavior, in the second study we then develop a cumulant expansion of the master
equation and apply it to the self-repressing gene circuit. We find that fluctuations shift signi-
ficantly the averages of molecular quantities predicted by deterministic models and induce
oscillations without requiring the nonlinear degradation.

Transcriptional pausing is a typical unusual behavior of RNAPolymerase enhancing sto-
chasticity and modulating transcription rate. In the thirdstudy, we investigate the dynamical
effects of pausing on transcription in using a classical system in out-of-equilibrium statistical
physics, so-called TASEP model with periodic boundary condition. In the limit case where
pause duration is short, we can still construct a mean-field model to analyze the transcription
rate and site occupation. In the general case where mean-field approach no long applies, we
obtain a good understanding of various mechanisms driving the transcription dynamics over
the entire range of pause duration. Importantly, by using a statistical approach, we find the
theoretical prediction of transcription rate that agrees well with numerical simulations.



Résumé

Les cellules vivantes peuvent être considérées comme des systèmes dynamiques qui reçoivent
et traitent les informations d’un environnement complexe et changeant, puis prennent des dé-
cisions appropriées pour survivre et proliférer. Les propriétés dynamiques et les fonctions phy-
siologiques des cellules sont essentiellement régulées par des réseaux d’interaction appelés
réseaux génétiques au sein desquels des macromolécules telles que les ADNs, ARNs, protéines
interagissent via des réactions biochimiques.

Motivé par l’existence de comportements dynamiques récurrents des réseaux génétiques
tels que les oscillations, ce travail de thèse étudie les effets des délais, des fluctuations et des
pauses transcriptionnelles sur la dynamique des réseaux génétiques, et s’articule donc autour
de trois études.

La première étude concerne le rôle des délais qui sont des ingrédients clés des oscillations
biologiques. Dans la modélisation déterministe, le délai apparaît généralement de manière ex-
plicite (délai explicite) ou est issue d’une étape de réaction (délai réactionnel). En étudiant
un réseau génétique comprenant un gène auto-réprimé qui contient divers délais, nos résultats
montrent analytiquement le principe de combinaison des différents délais. En particulier, les
délais réactionnels interagissent d’une manière non triviale. Les influences des délais explicites
et réactionnels sur les oscillations sont également comparées. Les délais explicites et réaction-
nels ont les mêmes influences que si les délais sont petits ou les dégradations sont saturées.

La seconde étude s’intéresse à l’impact des fluctuations dues aux petits nombres des molé-
cules présentes dans les cellules. Afin d’étudier leur influences dynamiques sur les oscillations,
nous proposons un développement de cumulants de l’équationmaîtresse et l’appliquons au cir-
cuit de gène auto-réprimé. Nous trouvons que les fluctuations modifient significativement les
moyennes des quantités moléculaires prévues par les modèles déterministes, et induisent des
oscillations sans avoir recours à la dégradation non-linéaire.

Enfin, la troisième étude concerne le processus de pause transcriptionnelle qui est un com-
portement typique de l’ARN Polymérase. Nous analysons les effets dynamiques de la pause sur
la transcription à l’aide d’un système classique en physique statistique : le modèle TASEP avec
condition aux limites périodique. Pour des durées des pauses intermédiaires et longues pour les-
quelles l’approche de champ moyen n’est pas validée, nous parvenons néanmoins à une bonne
compréhension des différents mécanismes qui contrôlent ladynamique de transcription. Une
approche statistique permet d’obtenir une description quantitative du taux de transcription en
bon accord avec les simulations numériques.
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