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administratif du GEPV et de l’Ecole Polytechnique de Palaiseau de m’avoir
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Prelude

“His progress through life was hampered by his tremen-
dous sense of his own ignorance, a disability which af-
fects all too few people.”

- Terry Pratchett (Maskerade, 1994)

When wading through interdisciplinary waters, which tend be murky at
best, having some indication of what is beneath your feet can be of some
comfort. With this in mind, I have attempted to provide the members of
the present committee who are of a mathematical persuasion with basic in-
formation and definitions that the average evolutionary biologist knows like
the back of their hand. I hope that I have included all the necessary infor-
mation, making the water slightly less murky for those who need it, without
encumbering those who are equipped with the latest goggles and can see the
tropical fish as clear as day.
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Act 1

Introduction

“The presence of those seeking the truth is infinitely to
be preferred to the presence of those who think they’ve
found it.”

- Terry Pratchett (Monstrous Regiment, 2004)

In this first chapter we present the motivations for this thesis and a brief sum-
mary of the results obtained. The works undertaken are put into perspective
and can be found, presented in more detail, in Chapters 2, 3 and 4.
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1.1 Mother Nature is a gambler

“God does not play dice with the universe; He plays an ineffa-
ble game of his own devising, which might be compared, from
the perspective of any of the other players, to being involved
in an obscure and complex version of poker in a pitch dark
room, with blank cards, for infinite stakes, with a dealer who
won’t tell you the rules, and who smiles all the time.”

- Terry Pratchett and Neil Gaiman (Good Omens, 1990)

The ultimate source of genetic variation is mutation, a random event
along a strain of DNA (or RNA) that is then subjected to, among other
things, selection, which shapes the evolution of species (see Boxes 1.1 and 1.2
for more information on the function of DNA). Of all of the possible changes
that can be made in a genome (between substitutions, deletions, insertions,
reversals) it is only intuitive that but a few mutations lead to a beneficial
change (Agrawal and Whitlock 2011 and see Box 1.3 on Mutation). In spite of
the fact that most new mutations have a negative effect on fitness (Keightley
and Lynch, 2003), mutation has not been completely eradicated for two main
reasons, first the potential introduction of advantageous alleles, and second
the metabolic costs of reparation and conservation mechanisms (or the cost of
fidelity) are high (Sniegowski et al, 2000). By allowing mutations to happen,
organisms gamble with their fitness, there can be good gains, but there is
also non-negligible risk. Organisms have therefore evolved mechanisms to
deal with the constant introduction of deleterious mutations. For example,
it has been suggested that diploidy has evolved in order to decrease the effects
of somatic mutations (Orr, 1995) and sexual reproduction and recombination
(Keightley and Otto, 2006) as a means to eliminate deleterious alleles present
in the genome (Sniegowski et al, 2000).

These deleterious alleles have several consequences, as not only do they
reduce individual fitness, they are also one of the causes of inbreeding de-
pression (Charlesworth and Charlesworth 1987 and see Box 1.6). It has
been proposed that on average, humans carry up to a thousand deleterious
mutations in their genome (Agrawal and Whitlock, 2012). A stranger to
population genetics (the study of the evolution of allelic frequencies within
populations) may find it odd that deleterious mutations are not immediately
eliminated by natural selection, why would such mutations persist? First of
all, the majority of mutations are in fact of very small effect (Agrawal and
Whitlock, 2011), hence they do not provide a sufficient disadvantage in order
to be completely eradicated. Second as they are continuously introduced by
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Box 1.1 - The basics

The genetic information necessary for the 
functioning and development of organisms is 
stored in structures known as chromosomes 
as DNA. DNA is mostly made up of 
nucleotides Adenine (A), Thymine (T), 
Cytosine (C) and Guanine (G). DNA is double 
stranded and the two strands are 
complementary, each type of nucleotide pairs 
up only one other type (A with T and C with 
G).

A locus or a gene is a segment of a chromosome 
containing the information for the production of a 
protein. Different variants of a gene are known as 
alleles.

We consider diploid individuals (each individual 
carries two copies of each chromosome). An 
individual can therefore be homozygous or 
heterozygous at a given locus.

Homozygous Heterozygous

Mutation is the source of new alleles (see Box 1.3).

Mutation

blah blah

Box 1.2 - From DNA to proteins

Transcription

Translation

DNA

mRNA

Protein

Codon

Amino acid

As mentioned in Box 1.1, DNA is made up of 
two complementary strands of nucleotides. 
Getting from nucleotides to proteins occur in 
two main steps: 1) Transcription from DNA on 
to a template known as messenger RNA ( or 
mRNA), and 2) Translation from mRNA to 
chains of amino acids, the building blocks of 
proteins.

The order of nucleotides in the DNA 
codes for a specific order of amino 
acids. Three consecutive nucleotides, 
known as a codon, representing a given 
amino acids. There are 64 possible 
codons but only 20 amino acids, giving 
rise to the possibility of several codons 
being used for a single amino acid.
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Box 1.3 - Mutation
Mutations are a random event that can occur at any point in the genome leading to a
change in the DNA sequence. Mutations occur due to errors during replication or due to
exposure to radiation and groups several possible events on the genetic level. They can
occur in somatic cells (any bodily cells that are neither gametes nor used for producing
them) and in the germline (cells that produce gametes). Several examples of mutations
are given below, showing the impact on the chain of nucleotides and on the final chain of
amino acids (see Box 1.1 for more information).
Original sequence:

Nucleotides TGT CAT ATT TGT AAA GAG AAT
Amino acids C H I C K E N

Deletion: When one or more nucleotides are deleted
TGT CAT TGT AAA GAG AAT

C H C K E N
Insertion: When one or more nucleotides are inserted.

TGT CAT ATT TGT AAA GCG AGA AT?
C H I C K A S ?

Substitution: When a single nucleotide is replaced by another. There are two kinds of
substitutions, those that change the sequence of amino acids (non-synonymous) and those
that do not (synonymous). Below is an example of a synonymous substitution:

TGT CAT ATT TGT AAA GAA AAT
C H I C K E N

Reversal: When the sequence of amino acids is reversed
TGT TTA TAC TGT AAA GAG AAT

C L Y C K E N

mutation, selection against them may not act fast enough to eliminate all of
the mutations. At mutation-selection balance, when the frequency of delete-
rious mutations is at an equilibrium as the number of mutations introduced
becomes compensated by those removed by selection (Gillespie, 1998), the
reduction of fitness due to deleterious mutations is known as the mutation
or genetic load, usually noted L (see Box 1.4). Understanding the muta-
tional load and its potential consequences has played an important role in
the evolution of population genetics models and this work is no exception.
Throughout this thesis we will address the role of deleterious mutations in
shaping both population demography (i.e. reproductive rates, population
size, etc.) and genetic structure (i.e. allelic frequencies).

1.2 Spice things up: Adding some interplay

between population size and selection

Before going further it seems appropriate to define what “fitness” is, as this
is what is affected by the mutation load. Fitness is a complex trait, made
up of several components, such as an individual’s fecundity, it’s capacity to

6



Box 1.4 - The mutation load
In the presence of deleterious mutations, mean population fitness W = 1 − L, where L
the mutation load at mutation selection balance, when the introduction of a deleterious
mutation via mutation is countered by its elimination by selection. First let us consider a
single locus with two alleles A (wild-type) and a (deleterious).

μ

AA Aa aa

Frequency

Frequency of A = p

Frequency of a = q

p + q = 1

Fitness (W)

Frequency 
after selection

If now we consider that A mutates to a
at a rate µ, then the frequency of A af-
ter mutation is p(1 − µ). When the pop-
ulation is at mutation selection balance,
hence the frequencies of p and q are fixed,

then p = (p2WAA+pqWAa)(1−µ)
W

(Crow and

Kimura, 1970, Chapter 6). When a is
recessive (h = 0, this gives an expected

W = 1 − µ.
blah blah

obtain resources, size, growth rate, and the list goes on. However, a complex
definition cannot be integrated into a simple model. Initially, fitness was
defined as an individual’s capacity to produce offspring, be it due to better
survival, or actual fecundity (Haldane, 1924). The mutational load reduces
fitness and fitness defines how many offspring are created, either in the ab-
solute sense (the actual number of offspring) or relative sense (compared to
the maximal number of offspring that can be produced). It seems plausible
that as the mutation load decreases fitness and decreasing fitness reduces
the reproductive output (or population growth rate as shown in Crow and
Kimura, 1970, Chapter 1), a greater mutation load could lead to a smaller
population size.

There does however seem to be controversy surrounding this statement
(Agrawal and Whitlock, 2012). Wallace (1970) defined two terms to define
the demographic consequences of the genetic load: hard and soft selection
(see Box 1.5). Hard selection, as defined by (Wallace, 1970, p.89) is “selec-
tion resulting from conditions that an organism must meet to function as
a breeding individual”, i.e. lowered reproduction resulting from mutations
that cause sterility or physical disability reducing survival. Soft selection on
the other hand does not necessarily involve selection against deleterious mu-
tations but rather a quantity of available resources supporting only a given
number of individuals. If more offspring than can be supported by the en-
vironment are produced, then a proportion of the offspring will not survive,
independently of their fitness. This therefore implies that if there is an in-
crease in the genetic load (given that it does not reduce the reproductive
capacity below one descendant per individual in which case the population
would go extinct, (Wallace, 1970, p.87), the increase in the number of deaths
due to it are absorbed by the deaths that would have occurred due to a lack
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Box 1.5 -Hard and soft selection

If we consider that in a population the num-
ber of births (juveniles) is greater than the
environment can support, death due to a
lack of resources can occur, regulating the
population so that its size remains at car-
rying capacity. When we take into account
the possible effects of deleterious mutations
(deaths due to mutation load in red), then
there is either soft selection (which leaves
the population size at carrying capacity)
or hard selection, which decreases popu-
lation size to below the carrying capacity.

Carrying 
capacity

Number of 
juveniles

No selection Soft selection Hard selection

Surviving 
adults

Selective 
deaths

Non-
selective 
deaths

of resources, leaving population size unaffected. As Agrawal and Whitlock
(2012) pointed out, external factors regulating population density (or size),
such as limited resources, are ever-present in nature, making the genetic load
negligible when considering population size. However, although models have
explored the potential effects of the genetic load on population size (Clarke,
1973; Agrawal and Whitlock, 2012, and references within), few have done
so by allowing both population size and the mutational load to co-evolve
(Bernardes, 1995; Abu Awad et al, 2014).

The separation between demographic models and genetic models seems
to be an inherited trait. When pioneering population geneticists Fisher,
Wright and Haldane began their work on understanding how allelic frequen-
cies evolve, they made the hypothesis that populations were of infinite or of
a fixed size. Hence as the evolution of allelic frequencies was considered to
suffice for the understanding of the evolution of population size, in the mod-
els that stemmed from these works, population size itself was independent
of population fitness and considered to be a parameter. Although the ex-
plicit interaction between demography and genetics is not taken into account,
population genetics models have undertaken introducing demographical con-
straints. For example, following the evolution of populations with different
population sizes (Bataillon and Kirkpatrick, 2000), after a bottleneck (severe
reduction of population size Kirkpatrick and Jarne, 2000), population struc-
ture (Roze and Rousset, 2004) and changes in the environment that lead to
changes in selective pressures (Glémin and Ronfort, 2013), among others.
Whether such approaches are indeed sufficient remains to be seen. So far the
only models to have allowed the interplay of population size and deleterious
mutations are models following the evolution of the mutational meltdown
(Lande, 1994; Lynch et al, 1995; Coron et al, 2013). Although models study-
ing the mutational meltdown allow for population size to be a consequence
of population fitness (population size is not a parameter), their aim is not to
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understand the mutational load in a general context, but the fixation of dele-
terious mutations in small populations. The recurrent fixations eventually
lead to lower and lower fitnesses, eventually leading to their extinction. It
seems surprising therefore that in a single scientific community the validity
of the mutational meltdown is widely accepted, but that the mutation load
may be sufficiently large so as to decrease population size is not (Agrawal
and Whitlock, 2012) .

1.2.1 First there was one (locus)

Wallace’s work (1970) was but one of several contemporary theoretical works
with an interest in the effects of density dependence (the regulation of pop-
ulation growth by population density) on population evolution (for example
(Charlesworth, 1971; Clarke, 1972, 1973)). Clarke’s (1973) work focused
more specifically on the potential effects of a mutation load at a single locus
influencing given ecological traits on population size (his work is discussed in
more detail in Chapter 2.1). He concluded that whether density-independent
selection took place before or after the density regulating factors, there would
be a reduction in population size. There are however several shortcomings to
Clarke’s (1973) work (discussed in further detail in Chapter 2.1), the most
important being the introduction of a pre-calculated genetic load, it is not
an emergent property of his model but a parameter. Clarke (1973) therefore
made the hypothesis that the mutation load itself evolves independently of
population demography, a hypothesis we tested in Chapter 2.1. Inspired by
Clarke’s work, we propose a model in which population size is a consequence
of the mutation load and where both the frequencies of a deleterious muta-
tion and population size co-evolve. We have chosen to explore the potential
genetic and demographic consequences of the different definitions of fitness
used in population genetics models. Depending on the author, when the mu-
tational load is calculated fitness can be defined differently for a same given
model. For example, it can either be zygote (or juvenile) survival (Gille-
spie, 1998) or reproductive capacity (Haldane, 1937). Though both kinds of
selection do reduce the genotype’s contribution to the next generation, are
they equivalent? By clearly defining when selection and census take place,
we find that the mutational load can vary. Selection occurring at the adult
stage leads to the same mutational load as expected from models that do
not explicitly consider the life cycle (Crow and Kimura, 1970, Chapter 6),
whereas selection at the zygote stage does not. In the latter case there is a
non-monotonic relationship between the mutation load and the deleterious
effect (the coefficient of selection and dominance) of the deleterious alleles,
a previously unobserved result.

9



As ways of taking the interaction between selection and demography fur-
ther, we took on the task of formulating a simple model in which mutations
are considered to take place at different times during the life cycle (Chapter
2.2). It is worth mentioning that as population geneticists focus on following
the evolution of genetic frequencies over time (generations), the mutations
of interest are only those that can be inherited. With this reasoning, such
models rely on new mutations being introduced during gamete formation.
First of all, the assumption that somatic mutations are not transmitted does
not hold for all taxa, as in plants, for example, there is no separation be-
tween the germ-line and somatic cells. Any parent acquiring a mutation can
transmit it to its offspring. Second, even if they are not hereditary, somatic
mutations occur throughout the life cycle (Lynch, 2010) and can decrease
fitness (Ally et al, 2010), hence potentially influencing population size. We
find that there can be both a mutational load and a decrease in population
size from such mutations, be they hereditary or not. We also find that when
mutations are introduced at the adult stage, increasing the introduction of
new mutation free individuals (or increasing the birth rate) will decrease the
observed mutational load as well as its effect on population size.

1.2.2 And then there were many (loci)

In the conclusion of his paper Clarke (1973) verbally suggested that although
the mutation load had very little effect on population size, as his model
was based on a single locus (as is the case in our model in Section 2.1),
the load on several loci should have a non-negligible effect. In (Gervais
et al, 2014, included in Supplementary Information) I participated in the
development of a model exploring the transition from an outcrossing to a
self-fertilising reproductive regime. This work was my first experience in
multi-locus populations genetics models, where population size is kept fixed.
Fixed population size implies that a population may remain very large in
spite of a high mutation load or very small fitness. Results of the simulations
run led me to be sceptic on the validity of such an approach as it implied
that a population’s relative fitness could sink from 1 to 10−3 and still have
the same size. It seemed necessary to test whether by effectively introducing
an interaction between the genetic load and the actual number of offspring
this hypothesis still held.

In Chapter 3 we modified existing multi-locus population genetics models
in order to allow for a population size that fluctuates with population fitness.
Population size is kept in check using a logistic form of density dependence.
As the reproductive rate depends on the mutation load, the higher the load
the lower the reproductive rate. When the population’s mean reproduc-
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Mutation rate

R

Figure 1.1: The predicted relationship between the genomic mutation rate and
the reproductive rate R. The red dots indicate potential qualitative relationships
between the mutation rate and the reproductive rate. If our prediction is correct,
there should be no points beneath the dashed line.

tive rate drops below 1, then the population goes extinct deterministically.
Although the mutation loads of the simulated populations are not greatly in-
fluenced in this model compared to models with fixed population sizes, their
population size and demographic viability are. Though population sizes in
this model are always below the carrying capacity they reach a stable size,
which itself depends on the genetic load as verbally predicted by Clarke
(1973). As in some cases the mutation load was too high to be demographi-
cally viable, and the mutation load is highly dependent on the mutation rate
(see Box 1.4), there seems to exist a link between population viability and the
mutation rate. Taking this reasoning one step further, if populations with
higher intrinsic reproductive rates can be viable with higher mutation loads
(as is the case in this model, see Chapter 3), then there may be a relationship
between the mutation rate and the reproductive rate in natural populations
(see Figure 1.1).

1.3 Reproduction: A team effort or going

solo?

“Because this is also a story about sex, although probably
not in the athletic, tumbling, count-the-legs-and-divide-by-two
sense unless the characters get totally beyond the author’s
control. They might.”

- Terry Pratchett (Equal rites, 1987)

Literature is littered with theoretical and empirical approaches whose
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aims are to understand the role of deleterious mutations on the evolution
of reproductive systems. The evolutionary transitions between reproductive
systems are frequent and not constrained to specific species or even taxa.
In plant families the most common transition in hermaphroditic plants is
of the loss of Self-Incompatibility (the ability to avoid self-fertilisation and
reproduction with related individuals due ), hence leading to the evolution of
self-fertilisation from initially outcrossing populations. From a genetic point
of view, the evolution of selfing is driven by what is known as Fisher’s auto-
matic transmission advantage Fisher 1941, see Box 1.6). The advantage of
an outcrossing reproductive system is the avoidance of the cost of inbreed-
ing (Charlesworth and Charlesworth, 1987; Porcher and Lande, 2005), giving
fitter offspring (Brennan et al 2005; Randle et al 2009, see Box). However,
despite these numerous empirical and theoretical evolutionary studies, we
are far from understanding the mechanisms behind the maintenance of out-
crossing in a great number of species as in natural populations the levels of
inbreeding depression are more often than not below the theoretical limit of
the level of inbreeding depression necessary to maintain outcrossing in the
presence of a self-fertilising mutant (Winn et al, 2011). The efficiency of the
purge (or elimination) of deleterious alleles is also greater in the presence
of self-fertilisation (Glémin, 2003), making the necessary levels of inbreeding
depression to deter an invading self-fertilising mutant even higher (Porcher
and Lande, 2005).

Recent work on the phylogeny of the Solanaceae has brought to light the
differences in extinction rates between self-fertilisers and outcrossers (Gold-
berg et al, 2010). The latter seem to be more long-lived species, supporting
the hypothesis that self-fertilisation is potentially an evolutionary dead-end
(Takebayashi and Morrell, 2001). There are two main arguments to sup-
port this hypothesis. The first was presented by Stebbins (1957) wherein
the lack of genetic variation found in self-fertilising populations should be
to their disadvantage as their adaptive potential would be reduced (see Box
1.7). However, though standing variation does play a significant role in adap-
tation, a population’s adaptive potential also depends on the rapidity with
which a beneficial allele is fixed, something that occurs faster in self-fertilising
populations (Glémin and Ronfort, 2013). The second argument relies on the
negative effects of deleterious mutations, either due to their fixation or the
inbreeding depression they engender. As mentioned above, increased self-
fertilisation is expected to decrease genetic variation, hence decreasing the
effective population size (Wright et al, 2008). Smaller effective size implies
greater genetic drift (the change in genetic frequencies due to random events)
leading to higher probabilities of the fixation of deleterious alleles and even-
tually extinction by mutational meltdown (Lande, 1994; Lynch et al, 1995;
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Box 1.6 - Inbreeding depression and Fisher’s automatic advantage

Outcrossing

Self-fertilisation

Fitness W Wo s

Parents

Offspring 

Reproduction

P1 P2

Inbreeding depression δ is the reduced
fitness of individuals due to non-random
mating (either with closely related individ-
uals or through selfing). The fitnesses of
offspring produced through outcrossing and
selfing are noted Wo and Ws respectively.
The level of inbreeding depression is mea-
sured using the following equation

δ = 1 − Ws

Wo

Fisher’s automatic advantage the trans-
mission of two copies of an individual’s
genome through selfing compared to a single
copy through outcrossing. An outcrossing
individual (blue) will transmit only one copy
of its genome to each of its descendants. By
self-fertilising, as an individual’s male ga-
metes fertilise its own ovules, offspring will
carry two copies of the parent’s genome.
Self-fertilisation therefore increases the rate
of transmission of genetic material, giving it
an advantage over outcrossing.

Coron et al, 2013). Inbreeding depression is considered one of the major ge-
netic factors influencing population extinction (Frankham, 2005). However,
both the fixation of deleterious mutations and inbreeding depression are coun-
tered by the potential purge of deleterious mutations (see Box 1.7). With
the evolution of self-fertilisation, the number of deleterious mutations and in-
breeding depression are both expected to decrease (Charlesworth et al, 1990),
hence weakening the hypothesis on the importance of deleterious mutations
in the probability of population extinction. At this point, as suggested by
Glémin and Ronfort (2013), it is adaptive potential (and not deleterious mu-
tations) that accounts for the differences in extinction rates between selfers
and outcrossers.

Models studying the evolution and the consequences of self-fertilisation
have done so in infinitely large or fixed population sizes. In the model pre-
sented in Chapter 3 we also examined how self-fertilisation influences pop-
ulation viability if population size is a consequence of selection. We find a
general positive increase in population size and decrease in the probability of
extinction when self-fertilisation increases. However, we find that when mu-
tations are completely recessive, intermediate rates of self-fertilisation fare
badly compared to strictly outcrossing and high rates of self-fertilisation.
We also find that when mutations are of very small effect, they induce a
mutational meltdown in strictly self-fertilising populations.
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Box 1.7 -Effective population size and purging deleterious muta-

tions

Strict Self-fertilisation Outcrossing Generation

t

t+1

t+2

t+n

Changes of genotypic frequencies with time with no mutation, selection or drift.

Effective population size Ne depends on
the genetic variation present in a population
as it represents the expected variation in
an “ideal” population (a panmictic popula-
tion in which all individuals reproduce at the
same rate). When there is self-fertilisation,
there is loss of genetic variability as homozy-
gous genotypes are fixed and others can be
lost through drift.

Purge of deleterious alleles: If we con-
sider the red allele to be deleterious, as it is
most often found at the homozygous state
in selfing populations, it will be eliminated
by selection at a faster rate that in an out-
crossing population where it is not as often
homozygous.

The results of this first approach confirm that deleterious mutations on
their own do not suffice as an the explanation as to why self-fertilising popu-
lations do not persist compared to outcrossing ones, as our results generally
confirm the higher fitness and better purge of self-fertilising populations.
This therefore points to another possibility, what if it is not self-fertilisation
in itself but the genetic and demographic consequences of the transition from
outcrossing to self-fertilisation that lead to extinction? There are several dif-
ferences in the genetic backgrounds of selfers and outcrossers (Charlesworth
and Wright, 2001), with expected consequences on the genetic structure of a
population during a change in the reproductive system. For instance, as out-
crossing populations maintain a considerable amount of genetic variability,
the evolution of self-fertilisation, if it does not efficiently purge (or eliminate)
the deleterious mutations, it could fix them leading to population extinction.
Though this has not been observed in previous models, it could be a con-
sequence of the interaction between selection and demography. In Chapter
4, we propose a modified version of the model presented in Chapter 3. This
new version allows for the free evolution of self-fertilisation in an initially
outcrossing population. From this model there is one main conclusion. As
mentioned above, populations that evolve to strict self-fertilisation in the
presence of deleterious mutations of very small effect go to extinction. The
results presented in Chapter 4 show that most populations evolved to have
high self-fertilising rates, but none of the viable populations were strictly
self-fertilising. All populations that had evolved strict self-fertilisation went
to extinction. Depending on the reproductive rate, the ensuing population
sizes rendered the fixation of an allele leading to strict self-fertilisation more
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or less probable (the higher the reproductive rate the lower the probability
of fixation). None of the populations with mutations of stronger effect had a
self-fertilisation rate equal to 1, going against the expectations of the evolu-
tion of strict self-fertilisation if there are no ecological constraints (e.g. pollen
discounting, Porcher and Lande 2013). There are therefore populations with
a genetic structure allowing for the fixation of a strictly self-fertilising geno-
type but the ensuing consequences do not allow for such population to be
viable, making the evolution to strict self-fertilisation an evolutionary suicide.

Lynch et al’s (1995) work on the mutational meltdown of initially small
populations with strict self-fertilisation had already pointed to the acceler-
ated rate at which such populations went extinct compared to simulated
outcrossing populations. In both of the works presented here (with and
without the evolution of the self-fertilisation rate), population sizes were not
small and have still led to the same conclusions. As mildly deleterious muta-
tions are extremely common (Agrawal and Whitlock, 2011) it is a potential
explanation as to why no plants existing in natural populations reproduce
solely by self-fertilisation. Our results further support the hypothesis that
self-fertilisation is a dead-end.
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Act 2

The interaction between
demography and selection: A
one-locus model

Within this chapter the evolution of the mutation load and its consequence
on population size is studied deterministically at a single bi-allelic locus. The
first section of this chapter focuses on the importance of timing of selection
during the life cycle in determining the potential demographic and genetic
consequences of selection. In the second section we present preliminary work
on the influence of somatic mutations on population size and the mutation
load.
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2.1 The timing of selection

The effect of the timing of selection on the
mutation load, inbreeding depression and
population size
Diala Abu Awad1,∗, Sylvain Billiard1 Viet Chi Tran2,
1 UMR-CNRS 8198, Laboratoire Génétique et Évolution des
Populations Végétales, Université Lille 1, Villeneuve d’Ascq,
France
2 Laboratoire Paul Painlevé, UFR de Mathématiques, UMR
CNRS 8524, Université Lille 1, 59655 Villeneuve d’Ascq Cedex,
France
∗ E-mail: Corresponding diala.abu-awad@univ-lille1.fr

2.1.1 Abstract

If and how the genetic load affects population size has been long debated
as on one hand it has been suggested that a high genetic load leads to ex-
tinction, and on the other hand, if selection during the life-cycle takes place
before density dependence has acted, then population size should not be af-
fected by its genetic load. Explicitly considering the life cycle and the timing
of selection is therefore a factor that cannot be ignored when quantifying the
effect of deleterious mutations on population size. In addition, population
genetics models calculating the expected genetic loads and levels of inbreed-
ing depression ignore the potential effects of demography on these variables.
Here we propose a deterministic model in continuous time where deleterious
mutations affect individual fitness in one of four ways: by decreasing mating
success, fecundity and adult or zygote survival. The genetic load, inbreed-
ing depression and population size are emergent properties. Our results are
compared to the predictions from two population genetics models. We find
that changing the timing of selection mostly affects population size, but also
leads to genetic loads and inbreeding depression that can diverge from the
predictions of consensual population genetics models. Our results empha-
sise the importance of integrating both population demography and genetics
in order to study the demographic impact and, more generally, the fate of
deleterious mutations.
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2.1.2 Introduction

Of the new mutations introduced into populations, ranging from 0.1 to 2.2
new mutations per generation per genome (Sniegowski et al, 2000; Keightley,
2012), most of them are deleterious (Keightley and Lynch, 2003). In spite of
their deleterious effects, these alleles are not always immediately eliminated
by selection from the genetic pool but can persist for several generations and,
in the case of stochasticity, can even go to fixation. These mutations de-
crease mean population fitness by engendering a mutational load, and are in
part responsible for inbreeding depression (Charlesworth and Charlesworth,
1987). In the field of population genetics, the evolution of load and inbreed-
ing depression as a function of population size and structure has been greatly
explored (Bataillon and Kirkpatrick, 2000; Roze and Rousset, 2004). How-
ever, these models do not consider an explicit interaction between the two,
as population size is considered to be a parameter. If and how these muta-
tions influence population size remains unclear; while inbreeding depression
is a major concern in conservation biology, whether the mutational load of
populations affects population size and viability is debatable. In the case
of very small populations and deleterious mutations of very small effects it
is widely accepted that there is a risk of mutational meltdown (extinction
due to the fixation of deleterious alleles at an accelerating rate; Lande, 1994;
Lynch et al, 1995; Coron et al, 2013). Nevertheless, how the mutational
load affects the demography of populations that are not at risk of extinc-
tion remains widely debated. In the discussion of a recent review (Agrawal
and Whitlock, 2012) we find two conflicting statements: “load has no direct
relationship to population abundance or persistence” followed by “however,
load can reduce population sizes (even with density-dependent regulation)
and possibly cause extinction”. These contradictory statements just a few
paragraphs apart, sum up the complexity of the relationship between the
mutational load and population size.

There are two main views in literature (reviewed in Agrawal and Whit-
lock, 2012); some authors argue that populations cannot persist with high
mutational or genetic loads (Kondrashov, 1995), whereas others have insisted
that load has little or no ecological consequences (Turner and Williams, 1968;
Wallace, 1970). In the latter case, authors have argued that due to density
dependence, deaths of individuals due to selection simply replace the un-
avoidable deaths due to a lack of resources (soft selection), whereas in the
former case, the genetic load is expected to directly decrease population size,
independently of density dependent factors (hard selection). The main dif-
ference between these two types of selection is the timing of the elimination
of individuals via selection, either before resource consumption (soft selec-
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tion) or after these resources have been used and rendered inaccessible (hard
selection). In a simple demographic model proposed by Agrawal and Whit-
lock (2012), where load was considered a parameter, the authors came to the
conclusion that if individuals are eliminated by selective death before hav-
ing consumed any resources (i.e. at the zygote stage), then the genetic load
would not affect population size, as the loss of juveniles would be “masked by
ecological compensation”. Even though their results are intuitive, this model
is limited in that the genetic mechanisms behind the load are not taken into
account, therefore ignoring any potential influence that the interaction be-
tween the genetic and demographic factors could have on population size.

Clarke (1973) dubbed the decrease of population size due to the presence
of deleterious mutations the “numerical load”, a term that we will be using
throughout this paper. In his model, the genetic frequencies are explicitly
taken into account and individuals are subjected to both density-independent
and density-dependent selection. His results agree with those of Agrawal and
Whitlock (2012), not only can the mutational load lead to a numerical load,
but the amplitude of the decrease in population size also depends on when
selection is considered to take place, or the timing of selection. However,
several points need to be clarified. In this model the mutational load is cal-
culated independently of the demographic context, with selective values of
the two phenotypes (homo-zygote for the deleterious allele or carrying at least
one wild-type allele) defined in such a way as to keep the mutational load
constant. That the genetic load is calculated assuming the deleterious allele
reduces zygote survival then extrapolating this as the mutational load ob-
served for selection occurring at a different demographic trait is questionable.
Furthermore, the selective values with expressions that change depending on
the trait can lead to confusion, as not only do the expressions for the selec-
tive values change, but the relation between them changes (i.e. the fitness
of the deleterious phenotype is not always (1 − s) the fitness of the wild-
type phenotype). This makes it difficult to quantify how a mutation with a
given deleterious effect will influence population size depending on the trait
it modifies. It is therefore necessary to provide a clearer framework in which
the change in the number of deleterious alleles in the population is followed
by modelling the selection process and its demographic consequences explic-
itly. This will also allow the detection of a potential deviation of genetic
frequencies from those expected from population genetics models that ignore
population demography.

It is generally accepted that when mutations are very rare the muta-
tional load is approximately equal to 2µ (where µ is the mutation rate from
the wild-type to the deleterious allele) based on Haldane’s (1937) classical
theoretical paper. In this work, the author defines fitness as the reproductive
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capacity, whereas, while using the same model, other authors (e.g. Gillespie,
1998) define fitness as zygote survival. This possible double-interpretation
comes from the method used to calculate the frequency q of the deleterious
allele at mutation-selection balance, noted q̂. At mutation-selection balance
the change in q due to mutation, ∆qµ, is considered to be exactly equal to
the change in q due to the elimination of the deleterious allele by selection
∆qs. This method therefore implies that selection and mutation occur at the
same time. However, as shown by (Crow and Kimura, 1970, Chapter 6), for
selection that reduces the reproductive capacity, q̂ should be obtained first by
reducing the frequency q by ∆qs, then increasing it by ∆qµ. The difference
between Crow and Kimura’s (1970) model and Haldane’s (1937) model is
numerically negligible when the mutation rate is small, but this nonetheless
highlights the importance of properly defining when selection takes place, as
depending on the hypotheses of what fitness is and when it is measured, the
mutational load can vary. Explicitly considering the life cycle could there-
fore modify how selection acts, leading to a genetic load and an amplitude
of inbreeding depression that depend on the timing of selection. That the
amplitude of inbreeding depression varies at a given trait has been observed
empirically (Frankham et al 2010, Chapter 13; Angeloni et al 2014), how-
ever, whether this could be due to differences in how selection affects the
frequencies of deleterious mutations at given traits has not been explored
theoretically.

In this present work we address the validity of the hypothesis made in
previous models that the mutational load at a given fitness trait is indepen-
dent of this trait’s demographic consequences. We also provide expressions
that allow for predictions of the mutational load, the numerical load and
inbreeding depression for mutations of any effect and mutation rate based on
a deterministic model where the number of individuals carrying each geno-
type is considered explicitly. In the presence of selection, genotypes differ in
their selective values at a single trait, and there is no density or frequency-
dependent effect on fitness. We consider selection at four traits considered
to represent fitness: mating success, fecundity, zygote survival and adult sur-
vival (Agrawal and Whitlock, 2012). Population size, the mutational load
and inbreeding depression are all emerging properties of the model. The
genetic properties of our models will be compared to expectations from Hal-
dane’s (1937) and Crow and Kimura’s (1970) models.

2.1.3 Analytical Model

We consider the evolution of a population with a varying population size and
a single bi-allelic locus, where A is the wild type and a the mutant allele. The
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population is panmictic and made up of sexually reproducing hermaphrodite
individuals. The environment is stable, and the population is isolated and
spatially unstructured. Three genotypes can be found in the population, aa,
Aa and AA, which, from here onwards, are denoted X, Y , and Z respectively.
At a given time t, the population is made up of three kinds of individuals,
Xt, Yt and Zt representing the number of individuals carrying the respective
genotype. We denote the population size Nt = Xt + Yt + Zt. In a large
population setting, these quantities can be considered as continuous, and
the evolution of the number of individuals of each genotype is described in
continuous time using ordinary differential equations. Three processes affect
the change in the number of individuals of each genotype, births (occurring
with rate RV

t , where V can be either X, Y or Z), deaths (at a rate MV
t )

and mutation. Selection and density dependence are introduced in these
processes. We consider that the mutation from A to a is unidirectional and
occurs with a probability µ at the gamete stage.

We first introduce the demographic and mutational properties of the
model without considering selection and show that this model respects the
genotypic frequencies predicted by the Hardy-Weinberg model for neutral
alleles (and no mutation). Selection is then introduced during different mo-
ments of the life cycle and we define the variables measured in order to esti-
mate the effect of the recurrent introduction of deleterious mutations on the
numerical load, the mutational load and inbreeding depression. In order to
facilitate the reading of the following sections, the notation used throughout
the text has been summarised in Table 2.1.

Model without selection

As we consider mutations occurring during gamete formation, the propor-
tions of a gametes produced per genotype are 1, 1+µ

2
and µ for X, Y and Z

individuals respectively. Mutational events are therefore integrated into the
birth rate RV

t . For example, as Z individuals produce a proportion µ of a
gametes and (1−µ) of A gametes. When two Z individuals are crossed, they
produce X, Y and Z offspring with proportions µ2, 2µ(1 − µ) and (1 − µ)2

respectively. For each reproductive pair, the parents contribute both via the
male and the female functions. We consider that the total number of female
gametes produced by all individuals in the population is limited and, when
there is no selection, depends only on the number of individuals, whereas
male gametes are produced in very large quantities and are subject to com-
petition. The probability that an individual reproduces via the male function
depends on the proportion of male gametes contributed compared to the total
amount of male gametes available. For example, when the X and Y indi-
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Table 2.1: Notation.

Λ, L, δ The numerical load, the mutational load and inbreeding depression.

Nt, Neq Population size at time t with or with selection, and population size at
equilibrium when there is no selection.

Vt, Ṽt The total number of either X, Y or Z individuals (with genotypes aa,
Aa and AA respectively) at time t, and the number of individuals at
time t that contribute to the genetic pool.

Nmut, Vmut Population size and number of V individuals at population equilibrium.

Rt,Mt The total birth and death rates of the population at time t.

RVt ,M
V
t The birth and death rates of individuals of genotype V at time t.

b, d The intrinsic birth and death rates of individuals.

s, h The coefficient of selection and dominance of allele a. The relative fit-
nesses of X, Y and Z individuals at a given trait are (1 − s), (1 − hs)
and 1 respectively.

µ, µfix The mutation rate from A to a and the threshold value of µ for which
there is deterministic fixation of a.

viduals cross to give X individuals, X individuals contribute Xt ovules and
a proportion of Xt

Nt
male gametes, while Y individuals contribute (1 + µ)Yt

2

ovules and a proportion of (1 + µ) Yt
2Nt

male gametes (as only (1+µ)
2

of the
gametes produced carry an a allele).

Generally, the equation describing the change in the number of individuals
for each genotype is given by

dVt
dt

= RV
t −MV

t . (2.1)

For each of the genotypes, when there is mutation and no selection, the
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birth rates RV
t are given by

RX
t =

b

Nt

(
X2
t + 2XtZtµ+ Z2

t µ
2 +XtYt(1 + µ) + YtZtµ(1 + µ)

+
1

4
Y 2
t (1 + µ)2

)
RY
t =

b

Nt

(
XtYt(1− µ) + 2XtZt(1− µ) + 2Z2

t (1− µ)µ+
1

2
Y 2
t (1− µ2)

+ YtZt
(
1 + µ− 2µ2

))
RZ
t =

b

Nt

(
1

4
Y 2
t (1− µ)2 + YtZt(1− µ)2 + Z2

t (1− µ)2

)
.

The birth rate depends on an intrinsic birth rate b, which, by default, holds
the same value for all genotypes, on the reproductive events that lead to the
production of new individuals with genotype V and on the mutation rate
µ. The death rate MV

t depends on an intrinsic death rate d and is density
dependent (we consider a carrying capacity K). The equation for MV

t is
given by

MV
t = d

Nt

K
Vt. (2.2)

When solving dN
dt

= dX
dt

= dY
dt

= dZ
dt

= 0 we find the optimal population size
is given by (see Supplementary Material S4 for the proof)

Neq =
bK

d
. (2.3)

If we consider that there is neither selection nor mutation (µ = 0), then we
find that the frequencies of X, Y and Z are at Hardy-Weinberg equilibrium
(see Supplementary Material S3). Explicitly considering the demography
of a population leads to the same genotypic frequencies at a neutral locus
as those predicted by deterministic population genetics models. This implies
that, once selection is introduced, any differences observed between our model
and the two population genetics models (Haldane, 1937; Crow and Kimura,
1970, Chapter 6) are due to the interaction between the timing of selection
and demography.

Timing of selection

Fitness can be defined as being an individual’s relative mating success, fe-
cundity or survival either at the zygote or adult stages. We consider all
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four definitions of fitness. Selection can occur at different times during the
life cycle, affecting either reproduction or survival. As a is deleterious, Z
individuals always have the maximal fitness. The relative fitness of each
genotype at a given trait (i.e. its reproductive rate or survival) is equal to
(1 − s), (1 − hs) and 1 for genotypes X, Y and Z respectively, where s is
the selection coefficient and h the dominance of the mutant allele a. If we
consider that a affects the inherent birth rate and if the inherent birth rate
of Z individuals is bZ and the inherent birth rate of X individuals is bX , then
the relative fitness of X individuals is bX

bZ
= (1 − s). The full equations for

the change in the number of individuals of each genotype for these models
can be found in Supplementary Material S2.

Selection on reproduction: In order to model the effect of the dele-
terious allele a on the reproductive success of individuals, we introduce a
new term Ṽt instead of Vt in the RV

t function. This term represents the
contribution of V individuals to the genetic pool, which is proportional to
their fitness and can reduce their reproductive success (i.e. X̃t = (1− s)Xt).
There are two ways in which carrying a can affect reproductive success; it
can reduce the mating success of individuals (i.e. for X individuals only a
proportion of (1− s) matings are successful or lead to fertilisation) or by re-
ducing the fecundity of individuals (i.e. the proportion of gametes produced
by X individuals is (1− s) that produced by Z individuals).

Mating success: When mating success is reduced, all individuals produce
the same quantity of gametes and the proportion of male gametes an in-

dividual V contributes to the next generation is Ṽt
Nt

. The probability of a
successful reproductive event is proportional to the parental fitnesses. For
example, RX

t for this model of selection is given by

RX
t =

b

Nt

(
X̃2
t + 2X̃tZ̃tµ+ Z̃2

t µ
2 + X̃tỸt(1 + µ) + ỸtZ̃tµ(1 + µ)

+
1

4
Ỹ 2
t (1 + µ)2

)
. (2.4)

Fecundity: When fecundity is affected by selection, an individual V con-

tributes Ṽt female gametes and a proportion of Ṽt
X̃t+Ỹt+Z̃t

male gametes to

the next generation (the proportion of male gametes produced by V depends
on the total amount of male gametes produced and not on the number of
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individuals in the population). For example

RX
t =

b

X̃t + Ỹt + Z̃t

(
X̃2
t + 2X̃tZ̃tµ+ Z̃2

t µ
2 + X̃tỸt(1 + µ) + ỸtZ̃tµ(1 + µ)

+
1

4
Ỹ 2
t (1 + µ)2

)
. (2.5)

Note that in both models with selection on reproduction the probability
of reproduction via the female function remains unaffected as we consider
that there is no competition between the female gametes.

Selection on survival: Selection can also occur during the life cycle, in-
dependently of reproductive success, affecting either zygote or adult survival.
Zygote survival can be translated as the proportion of germinating seeds, or,
more generally, viable offspring. Selection on adult survival is considered to
occur before reproduction.

Zygote survival: The probability of zygote survival is decreased by con-
sidering a birth rate RV

t that is genotype dependent. This can be done by
introducing a term bV , an intrinsic birth rate that is proportional to the
genotype’s fitness. For example, bX = (1− s)b and

RX
t =

b(1− s)
Nt

(
X2
t + 2XtZtµ+ Z2

t µ
2 +XtYt(1 + µ) + YtZtµ(1 + µ) +

1

4
Y 2
t (1 + µ)2

)
.

(2.6)

Adult survival: We consider that the number of adults that survive selec-
tion before reproduction of genotype type V is Ṽ , hence proportional to their
fitness. As only surviving individuals reproduce and compete for resources,
V is replaced by Ṽ in the birth rate RV

t and in the death rate MV
t . Therefore

we obtain the same expression for RV
t as for selection on fecundity and MV

t

is given by

MV
t = d

X̃t + Ỹt + Z̃t
K

Vt. (2.7)

Population equilibrium

In order to understand how the interaction between selection and population
demography impacts population size and the frequency of a recurrent delete-
rious mutation, we derive the deterministic equilibrium values for each of the
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models of selection described above (mating success, fecundity and zygote
and adult survival) by solving dXt

dt
= dYt

dt
= dZt

dt
= 0. This allows us to ob-

tain the number of individuals carrying each genotype at equilibrium (Xmut,
Ymut and Zmut), the sum of which gives us the population size at equilibrium
Nmut. Using Nmut we obtain the expression for the numerical load Λ (the
decrease of population size due to the presence of deleterious mutations), a
term defined by Clarke (1973) and given by

Λ =
Neq −Nmut

Neq

, (2.8)

where Neq is the population size at equilibrium when there is no selection
(s = 0, see equation 2.3). We also use the expressions for Xmut, Ymut and
Zmut to derive the expressions for the mutational load L and inbreeding
depression δ. The mutational load L is defined as the decrease in population
fitness due to the presence of deleterious mutations and is given by (Gillespie,
1998, p.61):

L = 1− (1− s)Xmut + (1− hs)Ymut + Zmut
Nmut

(2.9)

Inbreeding depression δ is defined as the difference in fitness between offspring
produced via selfing and via outcrossing. We calculate it using equation 3 in
Roze and Rousset (2004):

δ = 1−
(1− s)Xmut +

(
1
4

+ 1−hs
2

+ 1−s
4

)
Ymut + Zmut

(1− s)Xmut + (1− hs)Ymut + Zmut
. (2.10)

We then compare L and δ to expectations from population genetics models.
In order to compare our results to these models, we replace Xmut, Ymut and
Zmut with q2, 2q(1− q) and (1− q)2 respectively, where q is the frequency of
the deleterious mutant a at mutation-selection balance. We will compare our
models to the explicit expressions for q (for any value of µ) from Haldane’s
model (1937), obtained using the equations given by (Gillespie, 1998, p.71)

qH =
2µ

hs(1 + 2µ) +
√
s (4µ(1 + µ)− 8hµ(1 + µ) + hs(1 + 2µ)2)

, (2.11)

as well as the expression from the model by (Crow and Kimura, 1970, Chapter
6), where

qCK =
2µ

hs(1 + µ) +
√
s (4µ− 8hµ+ h2s(1 + µ)2)

. (2.12)
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For all four models of selection, there exists a solution where the popula-
tion is made entirely of X individuals. There is therefore a threshold value of
the mutation rate µ, as a function of the selection coefficient s and the dom-
inance h, which leads to the deterministic fixation of a. This threshold value
is noted µfix and is calculated by solving the equations for µ when consider-
ing that Nmut is equal to Xmut. In order to calculate the fixation threshold
for the population genetics models, we solve for µ when q (equation 2.11 and
2.12) is equal to 1.

2.1.4 Results

Model h Nmut Λ L δ

Mating success 0 Neq(1− µ)2 2µ− µ2 µ
√
µs−µ

2(1−µ)

0.5 Neq
(1−µ)2

(1+µ)2
4µ

(1+µ)2
2µ

1+µ
0

Fecundity 0 Neq(1− µ) µ µ
√
µs−µ

2(1−µ)

0.5 Neq
1−µ
1+µ

2µ
1+µ

2µ
1+µ

0

Adult survival 0 Neq 0 µ
√
µs−µ

2(1−µ)

0.5 Neq 0 2µ
1+µ

0

Zygote survival 0 Neq(1− µ) µ µ(1−s)
1−µ

√
µs−µ

2−2µ(2−s)

0.5 Neq
1−µ
1+µ

2µ
1+µ

µ(2−µs−s)
1+µ2

0

Haldane’s model 0 − − µ
1+µ

√
(1+µ)µs−µ

2

0.5 − − 2µ
1+2µ

0

Table 2.2: Expressions for population size Nmut, numerical load Λ, muta-
tional load L, inbreeding depression δ and the threshold value of the mutation
rate for deterministic fixation µfix at population equilibrium for h = 0 and
0.5 for selection on mating success, fecundity and zygote and adult survival,
as well as Haldane’s (1937) model. Crow and Kimura’s (1970) model gives
the same expressions as our models, with the exception of zygote survival.
Exact expressions or any h 6= 0.5 obtained using Wolfram’s Mathematica 9
(Wolfram Research, 2012) are given in Table S1.

By solving the equations given above, we have found explicit solutions
for population size Nmut, the numerical load Λ, the mutational load L and
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inbreeding depression δ at population equilibrium for all four models of se-
lection (mating success, fecundity and zygote and adult survival). The full
expressions (valid for all parameter values when h 6= 0.5) can be found in
Table S1 of the Supporting Information, as for the sake of legibility, we
present only the expressions for recessive and co-dominant mutations (h = 0
and h = 0.5 respectively) in the main text in Table 2.2. For h 6= 0, the
expressions were found by using Wolfram’s Mathematica 9.0 (Wolfram Re-
search, 2012) , whereas the proofs for population size for h = 0 can be found
in Supplementary Material S4. The expressions for the frequencies of each
genotype at population equilibrium are also in the Supplementary Material
S3. The equations are valid given that there is no fixation of the deleterious
mutation, which occurs at the mutation rate µfix = (1−h)s

1−hs . If the conditions
for fixation are met, there is only one valid solution, where Nmut = Xmut.

General results

We can distinguish two expressions when considering the genetic properties,
L and δ, of the populations at equilibrium. Selection on mating success,
fecundity and adult survival all lead to the same L and δ, while selection
on zygote survival leads to different equilibrium values (see Table 2.2 and
Table S1 in Supplementary Material). Concerning the numerical load Λ we
find three different equilibria, one for mating success, one for fecundity and
zygote survival, and one for adult survival (see Table 2.2 and Table S1).
In the latter model, we find that selection has no effect on population size.
As adult survival shares the same genetic equilibria as selection on mating
success and fecundity and there is no numerical load, we will not graphically
represent this model in the results.

Concerning the expectations from the population genetics models, we
find that our results for mating success, fecundity and adult survival are the
same as Crow and Kimura’s (1970) model. The assumption that mutation
and selection occur at the same time lead to a slight deviation in the case
of Haldane’s (1937) model, with a very slight numerical difference for low
mutation rates, but a large difference for higher mutation rates. It is impor-
tant to note that we do not make the simplifying assumption that µ << s,
therefore the mutational load L does not take on its simplified form 2µ as
given by Haldane (1937). The equations for the predictions of these models
are valid for any and all rates of mutation and coefficients of selection, while
dominance must be between 0 and 1.
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Figure 2.1: The numerical load Λ (red), mutational load L (blue) and inbreeding
depression δ (yellow) at population equilibrium as a function of the coefficient of
selection s for selection on a) mating success, b) fecundity and c) zygote survival.
The black dashed and dotted lines represent L and δ respectively as predicted from
Haldane’s model. Results from Crow and Kimura’s model are not represented as
they are equal to those with selection on mating success and fecundity. Lines are
plotted using the expressions in Table S1, for h = 0.2 and µ = 10−4.
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The mutational load and inbreeding depression

Selection on mating success, fecundity and adult survival all lead to the
same genetic properties at equilibrium. The equations obtained are exactly
the same as those from Crow and Kimura’s (1970), but deviate from Hal-
dane’s (1937) model (see Table 2.2 and Table S1). When the mutation rate
µ is small, these models are numerically close, as can be seen in Figures
1a and 1b, where the red line representing the mutational load L and the
yellow line representing inbreeding depression δ from our models are super-
posed by the black dashed and dotted lines representing L and δ respectively
from Haldane’s (1937) model. However, this holds only for small values of
µ, increasing the mutation rates leads to higher values of L and δ than those
predicted by Haldane’s (1937) model. For selection on mating success, fe-
cundity and adult survival, as well as both population genetics models, L
increases with the coefficient of selection s (Figure 1) and the dominance (h,
results not shown). Inbreeding depression also increases with s, but decreases
with h.

The genetic properties at equilibrium when selection is on zygote survival
differs both quantitatively and qualitatively from the other models. These
differences are due to a greater effect of the coefficient of selection s on both
L and δ. This can clearly be seen in Table 2.2 when mutations are completely
recessive (h = 0), where s is present in the equation for L for zygote survival,
but completely absent in the other equations for L. L and δ are both lower
for zygote survival than for the other models and both have a non-monotonic
relationship with s, for low values of s the mutational load and inbreeding
depression increase. Once they have reached a maximum, further increasing
s leads to a decrease in both variables. This non-monotonic effect is also
observed for L when s is constant and h is increased (results not shown).

The numerical load

In Figure 1, the numerical load Λ is represented in blue lines for selection on
mating success, fecundity and zygote survival (Figures 1a, 1b and 1c respec-
tively). For these three models, increasing the mutation rate µ, coefficient
of selection s and the dominance h all lead to an increased Λ. Selection on
zygote survival and on fecundity both have the same numerical load Λ, with
Λ = µ when mutations are completely recessive (Table 2.2). In the case of
selection on fecundity, Λ = L, whereas the relationship between L and Λ
is more complex for the other models. Selection on mating success leads to
the highest numerical load, almost double that observed for the other two
models.
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Figure 2.2: The genetic load L as a function of the numerical load Λ for selection
on fecundity (full line) and zygote survival (dashed line) at population equilibrium
for a coefficient of selection s between 0.01 and 1. Inbreeding depression as a
function of the numerical load gives a qualitatively equal result. Lines are plotted
using the expressions in Table S1, for h = 0.2 and µ = 10−4.

When selection is on fecundity and mating success, a higher numerical
load is associated with a higher genetic load (see Figure 2.2). The same holds
for the relationship between inbreeding depression and the numerical load.
As increasing selection lowers the genetic load when selection is on zygote
survival, a higher Λ is associated with a lower L (see Figure 2.2) and δ.

2.1.5 Discussion

In this article we have presented models in which the timing of selection
is explicitly taken into account in order to explore the link between the
genetic load and population size. We have also tested whether the differ-
ent definitions of fitness proposed in population genetics models are indeed
interchangeable. We find that population size, the mutational load and in-
breeding depression depend on the fitness trait affected, with, in the case of
selection on zygote survival, a non-monotonic relationship between the mu-
tational load and the strength of selection and dominance of the deleterious
allele. Unlike the proposed population genetics models in literature, we have
avoided making approximations concerning the values of the mutation rate
and the coefficient of selection. This has allowed us to define mathematical
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conditions under which there is a deterministic fixation of deleterious muta-
tions, a property that has been overlooked in the past. This implies that the
mutational meltdown is potentially possible even in large populations pro-
vided that mutations of a small enough deleterious effect are continuously
introduced at a large number of loci.

Population size as a consequence of the mutational load

Previous models have found that the genetic load can affect population size
and does so differently depending on the trait under selection (Clarke, 1973;
Agrawal and Whitlock, 2012). In such models the genetic load is introduced
as the population’s mean decrease in performance at a given trait and the
mutational load is a fixed parameter. In the model proposed by Agrawal
and Whitlock (2012) the decrease in demographic performance is considered
on the population and not the genotypic level. In this model resources are
consumed and regenerated at different rates. The authors allow for selection
to occur at different life stages (zygote and adult survival) by considering
that individuals at each age consume different amounts of resources. Lower
reproductive efficiency and survival engender a numerical load, with zygote
survival leading to a smaller numerical load than lowered adult survival. In
our model genotypic mutational loads are taken into account and resources
(which could be described as available patches) become immediately avail-
able upon death. We also observe a numerical load when the efficiency of
reproduction is diminished, however, depending on whether the mutational
load influences mating success or fecundity (the quality or the quantity of
gametes), the numerical load is not the same. Selection on mating success
induces a greater numerical load because there is competition between ga-
metes of differing quality, i.e. gametes that do or do not lead to a successful
reproductive attempt. Lower mating success implies that “good” gametes
are wasted when they meet gametes of lower quality, in which case reproduc-
tion is not successful. Concerning selection on adult vs. zygote survival, our
results contradict those of Agrawal and Whitlock (2012) as reducing zygote
survival generates a numerical load whereas reducing adult survival does not.
This is because when zygotes do not survive all of the resources invested in
producing them are lost and the low reproducing adults continue to occupy
patches, whereas upon the death of an adult’s resources are freed and imme-
diately used by new individuals. In our demographic model, reducing zygote
survival equates to reducing fecundity, as can be deduced from the equations
for the numerical load which are equal for these two models of selection.
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The timing of selection and genetic properties at equilibrium

First we would like to point out that though Haldane’s (1937) and Crow and
Kimura’s (1970) models are equivalent when the mutation rate is smaller
than the coefficient of selection (with L ≈ 2µ), higher mutation rates and
multiple loci should amplify the difference between them. Excepting selection
on zygote survival, explicitly modelling selection and mutation in our models
results in the same genotypic frequencies as those predicted by Crow and
Kimura’s model. Clarke (1973) assumed that selection occurred at zygote
survival and used the same genetic load to determine the numerical load,
independently of the demographic trait affected. The potential effect of the
interaction between demography and selection on the mutational load at
equilibrium is therefore neglected. In our models we find that 1) the timing
of selection can influence the genetic load and 2) selection on zygote survival
leads to a mutational load different than that calculated by Clarke (1973),
which he gave as being equal to µ for recessive mutations.

Selection at the zygote stage engenders a non-monotonic relationship be-
tween the coefficients of selection and dominance and the mutational load.
The mutational load L is also lower for this model than for the other proposed
models of selection. These discrepancies are in part due to having defined
the mutational load as being due to the genotypic frequencies among the
individuals in the adult population. Deleterious mutations are introduced
into the population through the zygotes. If selection immediately eliminates
individuals carrying a before they are a part of the adult population, this
automatically leads to lower observed frequencies of a. As the deleterious
effect of a increases (higher values of s and h), it is more efficiently selected
against. This leads to lower frequencies of adult individuals carrying a, de-
creasing the number of a alleles introduced by reproduction and making
mutation the main source of new a alleles. The maximum of the genetic
load observed in Figure 1c represents the turning point where mutation be-
comes a more important source of individuals carrying a than reproduction.
As of this point it is the value of s that defines the efficiency of selection.
In the other models, the deleterious mutation rate µ continues to play an
important role in the evolution of the genetic load as offspring carrying a
will arrive to the adult stage. This reasoning is also applicable to explaining
the differences in levels of inbreeding depression between selection on zygote
survival and the other models. Inbreeding depression related to a trait early
in life may therefore be lower than that of a trait observed in later stages.
Interestingly, segregating mutations that affect selection on zygote survival
that will be observed within the population will not have any coefficient of
selection associated with any dominance, as contrary to the other models
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of selection and population genetics models, the coefficient of selection and
the dominance both play an important role in selection. For a mutation of
strong deleterious effect on zygote survival to make it to the adult population
it must be recessive or nearly so, whereas mutations of small effect can be
associated with any dominance. This association between s and h has been
documented empirically (Simmons and Crow, 1977; Steinmetz et al, 2002;
Agrawal and Whitlock, 2011). It is not impossible that a fraction of the
observed associations between the coefficient of selection and dominance of
deleterious mutations may be an artefact due to the timing of selection.

The interaction between demography and genetics

As predicted by other models, a given mutational load can lead to different
numerical loads depending on the timing of selection. This model, however,
is the first to consider both genetic frequencies and population size as prop-
erties and not as parameters of the model. How the numerical load and the
genetic properties co-evolve is represented in Figure 2.2 for selection on fe-
cundity and zygote survival. For selection on mating success and fecundity,
as the mutational load increases so does the numerical load. This is not the
case when selection is on zygote survival, where the numerical load effectively
reflects the consequences of selection on demography, but does not follow the
non-monotonic nature of the mutational load. Selection on resource acqui-
sition has been shown to lead to lower numerical loads in populations with
higher mutational loads (Clarke, 1973), but none have shown that, depending
on the properties of the deleterious allele, the numerical load can be higher
for a lower mutational load. There can therefore exist a demographic cost to
selection that is not necessarily reflected in the population’s genetic traits.

Another point we wish to bring forward is the relationship between the
numerical load and inbreeding depression, which is qualitatively equal to that
between the mutational load and the numerical load. In population genetics
models where population size is a fixed parameter, inbreeding depression is
expected to decrease with population size as in small populations polymor-
phism is lost with random drift (Bataillon and Kirkpatrick, 2000). In our
model, population size decreases due to selection leading to a higher inbreed-
ing depression associated with smaller population sizes when selection influ-
ences mating success and fecundity. This implies that if a population were
small because of its numerical load and not because of external constraints,
we would expect to observe higher inbreeding depression in traits that af-
fect reproductive success. Due to the non-monotonic relationship between
inbreeding depression and selection, traits that influence zygote survival will
portray lower levels of inbreeding depression in small populations.
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2.2 Somatic mutations

2.2.1 Introduction

Somatic mutations are constantly being introduced into populations, and at
mutation rates that are usually higher than those observed in germ-line cells
(Lynch, 2010). In spite of their frequency, how such mutations can influence
the genetic and demographic evolution of populations is not clear. In current
literature, existing population genetic models only address mutations that
occur in the germ-line as only they are considered to be heritable. This
therefore excludes how genetic frequencies evolve in plants, protists and fungi,
where the germ-line and the somatic cells are not separated (i.e. mutations
acquired during an individual’s lifetime can be transmitted to their offspring).
This aside, a recent work on the frequency of neutral alleles in which both
germ-line mutations and somatic (non-heritable) mutations were taken into
account, the authors found that there was a potential over-estimation of the
heritable genetic variation (Ezawa and Innan, 2013). Though the goal of
this work was to examine how using somatic cells for polymorphism data
engenders biased results, the authors have pointed out the importance of
also accounting for somatic mutations, be they heritable or not. With these
results in mind, one can intuitively suggest that if such mutations can have
an impact on individual fitness, then they could contribute to the observed
genetic load. It is generally accepted that deleterious somatic mutations do
occur and are thought to be one of the causes of senescence (the decrease of
fitness with age, Ally et al 2010) and to have contributed to the evolution of
diploidy (Newman and Pilson, 1997). It has also been suggested that there
exists a relationship between somatic mutations and demography, as the
number of genetic abnormalities is correlated with population size in voles
(Cheprakov and Rakitin, 2012). In light of the available empirical data and
lack of theoretical works, there is clearly a need for a theoretical framework
exploring the role somatic mutations (hereditary or not) play in decreasing
population fitness and potentially population size has yet to be examined.
Here we propose a simple model based on the models presented in Chapter
2.1 modified so as to introduce deleterious somatic mutations that are either
hereditary or not and that may appear at either the adult or zygote stage.
The results from this model are compared to those with mutation occurring
during gamete formation (Chapter 2.1).
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2.2.2 Model

We consider a single bi-allelic locus affecting fecundity at which mutations
occur at a rate µ from the wild-type allele A to the deleterious mutant a
(there are no back mutations). The number of individuals carrying each
genotype at a given time t are noted Xt, Yt and Zt for genotypes aa, Aa
and AA respectively. We test two kinds of somatic mutations, those that are
hereditary and those that simply decrease adult fitness but are not trans-
mitted. X, Y and Z individuals have fitnesses of (1 − s), (1 − hs) and 1
respectively, where s is the coefficient of selection and h the dominance.

Hereditary mutations

When mutations are hereditary, the change in the number of individuals
carrying each genotype is given by

dVt
dt

= RV
t −MV

t , (2.13)

where V represents X, Y or Z, RV
t is the birth rate and MVt the mortality

of individual’s with genotype V . We consider that reproduction is sexual
and all the individuals are hermaphrodites, hence contributing both via the
male and the female function. When there is no selection or mutation and a
is hereditary, the birth rates are

RX
t =

b

Nt

(
X2
t +XtYt +

1

4
Y 2
t

)
RY
t =

b

Nt

(
XtYt + 2XtZt +

1

2
Y 2
t + YtZt

)
RZ
t =

b

Nt

(
1

4
Y 2
t + YtZt + Z2

t

)
.

The birth rate depends on an intrinsic birth rate b, which, by default, holds
the same value for all genotypes, and on the reproductive events that lead to
the production of new individuals with each genotype. The death rate MV

t

depends on an intrinsic death rate d and is density dependent (we consider
a carrying capacity K). The equation for MV

t is given by equation 2.2. As
shown in Chapter 2.1, when solving dN

dt
= dX

dt
= dY

dt
= dZ

dt
= 0 we find the

optimal population size is Neq = bK
d

and the genotypic frequencies are at
Hardy-Weinberg equilibrium.

The number of available female gametes is limited and depends on the
number of individuals present in the population and their respective fitnesses
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whereas male gametes are produced in very large quantities and are subject
to competition. The probability that an individual reproduces via the male
function depends on the proportion of male gametes contributed compared
to the total amount of male gametes available. We consider that selection de-
creases gamete production, lowering fecundity. Below we use RX

t to illustrate
how the equations are changed when selection is introduced. For example,
when a decreases fecundity in general (fewer ovules and sperm) RX

t becomes

RX
t =

b

((1− s)Xt + (1− hs)Yt + Zt)(
(1− s)2X2

t + (1− s)Xt(1− hs)Yt + (1− hs)2 1

4
Y 2
t

)
.

(2.14)

Mutations occur at a rate µ from A to a at either the adult stage, where
the change in the number of individuals is

dXt

dt
= RX

t + µYt −MX
t

dYt
dt

= RY
t + 2µZt − µYt −MY

t

dZt
dt

= RZ
t − 2µZt −MZ

t ,

(2.15)

or exclusively at the zygote stage, with

dXt

dt
= RX

t + µRY
t −MX

t

dYt
dt

= (1− µ)RY
t + 2µRZ

t −MY
t

dZt
dt

= (1− 2µ)RZ
t −MZ

t .

(2.16)

Note that in the latter case mutation only introduces Y but not X individ-
uals. This is because we consider the zygote stage as being too short-lived
for two mutations to occur simultaneously.

2.2.3 Non-hereditary mutations

If we consider that the mutations introduced into the population lower fitness
but are not in any way hereditary, then reproduction always leads to the
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introduction of new Z individuals. In this case, when there is no selection,
the reproductive rate RU

t = bNt, as it depends only on the intrinsic birth rate
and the number of individuals in the population. Once selection is introduced
and a decreases fecundity, RU

t becomes

RU
t =

b

((1− s)Xt + (1− hs)Yt + Zt)
(2.17)(

(1− s)2X2
t + 2(1− s)(1− hs)XtYt + 2(1− s)XtZt

+ (1− hs)2Y 2
t + 2(1− hs)2YtZt + Z2

t

)
.

In the case of mutations occurring at the adult stage the change in the number
of individuals becomes

dXt

dt
= µYt −MX

t

dYt
dt

= 2µZt − µYt −MY
t (2.18)

dZt
dt

= RU
t − 2µZt −MZ

t .

When mutations are considered to occur exclusively at the zygote stage, only
Y individuals can be introduced via mutation, simplifying the change in the
number of individuals to

dYt
dt

= 2µRZ
t −MY

t (2.19)

dZt
dt

= (1− 2µ)RU
t −MZ

t .

Population equilibrium

We derive the deterministic expectations at population equilibrium for each
of the models of mutation (adult or zygote), selection (general fecundity, male
fecundity or female fecundity) and heritability described above by solving
dXt
dt

= dYt
dt

= dZt
dt

= 0. This allows us to obtain the number of individuals
carrying each genotype at equilibrium (Xmut, Ymut and Zmut), the sum of
which gives us the population size at equilibrium Nmut. Using Nmut we
obtain the expression for the numerical load Λ (the decrease of population
size due to the presence of deleterious mutations), a term defined by Clarke
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Figure 2.3: a) L as a function of the birth rate for hereditary somatic mutations
occurring at the adult stage (in black) and the zygote stage (in grey). s = 0.1,
h = 0 and µ = 10−4. b) L as a function of the coefficient of selection for hereditary
(in black) and non-hereditary (in grey) somatic mutations occurring at the zygote
stage. The dashed line is the genetic load for the model with selection on fecundity
from section 2.1. b = 1, h = 0.1 and µ = 10−3). For these parameter values,
somatic mutations at the adult stage give numerically equivalent values.

(1973) is given in equation 2.8. We also use the expressions for Xmut, Ymut
and Zmut to derive the expressions for the mutational load L (equation 2.9).

2.2.4 Preliminary Results and Conclusions

As in the model presented in Chapter 2.1, selection on fecundity leads to a
numerical load Λ equal to the genetic load L for both the hereditary and non-
hereditary mutations, independently of the timing of mutation. Hence from
the point onwards, as Λ = L, we will only be referring to the genetic load. We
find that somatic mutations occurring at the adult stage, be they hereditary
or not, lead to loads that are dependent on the intrinsic birth rate b (see
Figure 2.3a). When mutations are recessive (h = 0) and hereditary, L = µ

b

for mutations at the adult stage, increasing the birth rate therefore leads to
a decrease in the observed loads. The genetic load due mutations introduced
exclusively at the zygote stage is completely independent of b, with (when
h = 0) L = µ. If b is set at 1, then the timing of mutation has no effect on
the observed loads and when mutations are hereditary, and for h 6= 0, L is
in fact numerically equivalent to that obtained when mutations occur during
gamete formation (see Chapter 2.1). In figure 2.3b we present the genetic
load L as a function of the coefficient of selection for mutations that occur at
the zygote stage. When the mutations are non-hereditary, both the numerical
and the genetic loads are simply 2hµs. This result is intuitive as mutations
can only be found in the heterozygote state and can only be introduced by
mutation. Similarly, when mutations are not hereditary, regardless of the

41



timing of mutation, the dominance h has no effect on the frequencies of each
genotype.

In light of these exploratory results, as well as the results of Ezawa and
Innan (2013) on the polymorphism of neutral mutations, somatic mutations
influence the observed allelic frequencies and may play a role in decreas-
ing population size and increasing the genetic load. That mutation at the
adult stage lead to a load that is dependent on the birth rate is intuitive.
The more new mutations free individuals introduced, the lower the actual
frequency of “older” individuals carrying the deleterious allele a. In their
paper, Cheprakov and Rakitin (2012) had tested for structural chromosomal
aberrations (among other genetic abnormalities) in voles. The authors found
that the frequency of this particular abnormality (induced only in somatic
cells) decreased with an increase in population size. Their interpretation
was that this was due to a reduced somatic mutation rate that given year of
sampling. In light of our results however, the lower frequencies of detected
genetic abnormalities mays simply be due to higher birth rate that year.

Non-hereditary mutations could be compared to the onset of cancer (one
of the consequences of somatic mutations, Lynch 2010). No models to our
knowledge have studied how the onset of cancer within populations influences
demographic variables. As the mutation rate is predicted to play a role in an
individual’s susceptibility of developing cancer (Nunney, 1999), a perspective
to this preliminary work would be to consider a heritable “mutation rate”.
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Interlude

In the previous chapter we examined the potential influence of the interplay
between demography and selection on both population size and the genetic
load at a single locus. Clarke (1973) verbally predicted that taking multiple
loci into account could lead to a non-negligible effect of the genetic load on
population size. In the following chapters we develop stochastic individual-
based models with a potentially infinite number of loci testing his prediction.
We also take these models one step further by introducing self-fertilisation,
either as a fixed (Chapter 3) or an evolving trait (Chapter 4).

43



44



Act 3

Population viability and
self-fertilisation: a multi-locus
model

Published work: PLoS ONE 9(1): e86125. DOI:10.1371/journal.pone.0086125
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Abstract

Population extinction due to the accumulation of deleterious mutations has
only been considered to occur at small population sizes, large sexual popu-
lations being expected to efficiently purge these mutations. However, little
is known about how the mutation load generated by segregating mutations
affects population size and, eventually, population extinction. We propose
a simple analytical model that takes into account both the demographic
and genetic evolution of populations, linking population size, density depen-
dence, the mutation load, and self-fertilisation. Analytical predictions were
found to be relatively good predictors of population size and probability of
population viability when verified using an explicit individual based stochas-
tic model. We show that initially large populations do not always reach
mutation-selection balance and can go extinct due to the accumulation of
segregating deleterious mutations. Population survival depends not only on
the relative fitness and demographic stochasticity, but also on the interaction
between the two. When deleterious mutations are recessive, self-fertilisation
affects viability non-monotonically and genomic cold-spots could favour the
viability of outcrossing populations.

3.1 Introduction

Population size and viability are both affected by extrinsic (e.g. environmen-
tal change and interspecific interactions) and intrinsic factors (e.g. genetic
and demographic components). The genetic factors most frequently consid-
ered as contributing to population decline are the lack of adaptive potential
in a changing environment, inbreeding depression and the reduction of fit-
ness due to the accumulation of deleterious mutations (reviewed in Frankham
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2005). The accumulation of deleterious mutations has often been put forth
as an explanation for species extinction, especially concerning the differ-
ences in extinction rates between sexual and asexual species, or selfers and
outcrossers. The relevance of the accumulation of deleterious mutations on
population extinction, however, remains unclear.

Both empirical and theoretical works have insisted on the importance of
deleterious mutation fixation on the decline and extinction of populations.
Some models have shown that small populations can go extinct due to the
acceleration of recurrent fixation of deleterious mutations with a small ef-
fect, the so-called mutational meltdown (Lynch and Gabriel, 1990; Lande,
1994; Lynch et al, 1995; Coron et al, 2013). Several empirical works have
also supported this hypothesis. The fitness of experimental populations has
been shown to decrease after several generations during which new deleteri-
ous mutations are fixed (Newman and Pilson, 1997; Frankham et al, 2001;
Zeyl et al, 2001; Vassilieva and Lynch, 1999; Baer et al, 2005), and data from
small highly inbred natural populations follow the same trend (Packer et al,
1991; Westemeier et al, 1998; Gelatt et al, 2010). However, in these theoreti-
cal and empirical works, populations are considered to be small and isolated
or, because of successive growth-dilution cycles, are subjected to recurrent
and strong bottlenecks. When these conditions are not met (i.e. when pop-
ulations are larger, or are not isolated or are not subject to strong recurrent
bottlenecks) populations are more likely to go extinct because of other ge-
netic and demographic factors before the fixation of deleterious mutations
has an effect on population decline (Frankham, 2005).

What about large populations, can they decline in size due to recurrent
deleterious mutations? It has been suggested that the mutation load due to
segregating mutations might be important in population decline (Bernardes,
1995; Lynch et al, 1995). This however remains controversial as it is gener-
ally thought that in large sexual populations deleterious mutations should
be efficiently purged (Hedrick, 2004; Whitlock M.C., 2004). First, segregat-
ing deleterious mutations are expected to have no consequence on demog-
raphy (Agrawal and Whitlock, 2012), especially in the presence of density-
dependence, where there is compensation of the death of individuals due to
selection by those that would have been lost from the population due to the
lack of resources (soft selection). Empirical evidence on the other hand sup-
ports more “hard selection” (Saccheri and Hanski, 2006), in which density-
independent deaths due to the genetic load are not completely compensated.
It is crucial to determine whether segregating mutations are important or not
for determining population viability as this has direct empirical implications,
especially when considering the genetic rescue of populations. Second, many
aspects of population survival and extinction in presence of a high mutation
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load still remain unclear. When taking into account empirical estimations of
genomic mutation rates (between 0.1 and more than 1 for higher Eukaryotes
per genome and per generation, (Sniegowski et al, 2000)) and the effects of
deleterious mutations, population genetics theories (Haldane, 1937) imply
that we should expect extremely high mutation loads. Population genetics
models consider population size as a fixed variable, and their stochastic es-
timations of the mutation load, even in finite populations, also agree with
the existence of high mutation loads (Bataillon and Kirkpatrick, 2000; Haag
and Roze, 2007). Can these predictions still hold if we allow selection to
influence population size, or would the mutational load evolve differently?
One of the earliest models, to our knowledge, that has taken into account
the effect of the mutation load on mean fitness, and the latter’s effect on pop-
ulation size is a single-locus model proposed by Clarke (1973). In this model,
the mutation load had a very small, almost negligible effect on population
size, however Clarke (1973) verbally suggested that extending the model to
a whole genome could possibly lead to a more important effect.

In order to better understand the interaction between the mutation load
and demography, we propose a model that combines simple deterministic
population genetics and demographic models. We consider sexual reproduc-
tion, with a mean reproductive rate that depends both on population density
and on the population’s mutation load, and recurrent mutations segregating
at an infinite number of loci. Using this model we predict the relationship
between population size and the mutational load at mutation-selection equi-
librium. We also predict the threshold fitness value depending on both the
genetic and demographic parameters under which the population is not ex-
pected to be viable. These predictions are then verified using an individual-
based simulation model in which we explicitly model the introduction of new
mutations in the genome and the effect of the mean genomic recombination
rate. Population size varies from one generation to the next, as it depends
on individual fitness and competition. This simulation model allows for the
better understanding of the mechanisms leading to population extinction,
more specifically the relative importance of the polymorphism of deleterious
mutations, the fixation of these mutations, and the mutational meltdown.

To illustrate the importance of such an approach (i.e. combining genetic
and demographic factors) in ecology and evolution, we will address the ques-
tion of the effect of self-fertilisation on population size and viability. This is
indeed a long running question, as the prevalence of outcrossing species is still
puzzling both in animals and plants (Jarne and Auld, 2006). From an evo-
lutionary standpoint, self-fertilisation should be greatly advantaged because
of Fisher’s transmission advantage (Fisher, 1941), a more efficient purge of
deleterious mutations (Glémin, 2003), and also because of their reproductive
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assurance (e.g. Baker’s law, Baker 1955; Stebbins 1957). This is correlated
with the empirical estimation of high transition rates from outcrossing to
selfing reproductive systems, for instance in the Solanaceae (Goldberg et al,
2010). Despite this transition rate, and high speciation rates in selfers com-
pared to outcrossers, outcrossers still represent more than 40% of species in
this family. Other studies in other plant families also come to this conclu-
sion (Schoen et al, 1997; Perez-Barrales et al, 2006; Sakai and Wright, 2008).
Goldberg et al (2010) show that this puzzling prevalence of outcrossers is
due to higher extinction rates in selfing species than in outcrossing ones.
One hypothesis to explain this difference in extinction rates is that selfers
are more prone to mutational meltdown than outcrossers (Lynch et al, 1995).
Empirical work on fungi, more specifically Neurospora, strongly supports this
hypothesis, as selfing lineages accumulate more deleterious mutations and are
less fit than outcrossing ones (Gioti et al, 2013). We will therefore extend
our model in order to include different rates of self-fertilisation and test this
hypothesis.

3.2 Model

3.2.1 Deterministic model and expectations

We consider a population in a constant environment, with discrete, non-
overlapping generations. At generation t, the population is made up of Nt

hermaphrodite individuals, where

Nt = Nt−1Rt−1. (3.1)

Rt is the absolute multiplicative fitness of a population at a given generation
t, with trait value (or relative fitness) Wt, in a population of density Nt

(Chevin and Lande, 2010) is given by

Rt = r
1−Nt

K
0 Wt. (3.2)

The density-dependent component of fitness depends on K, the carrying ca-
pacity of a population with all individuals having the optimal relative fitness,
and on r0, the intrinsic reproductive rate of such a population (Chevin and
Lande, 2010). The second factor, Wt, corresponds to the mean relative fit-
ness of individuals in the population, as a function of their mutation load,
and so on the number of segregating or fixed deleterious mutations in the
population. In this model, we consider that density dependence affects all
individuals in the same way, independently of their relative fitness (or geno-
type).
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If the mean relative fitness is at equilibrium (when the population is at
mutation-selection balance), and there is no demographic stochasticity, the
equilibrium of population size denoted Ndet, can be expressed as a function
of the relative fitness at equilibrium Weq, r0 and K, giving

Ndet = K

(
1 +

Ln(Weq)

Ln(r0)

)
. (3.3)

By solving Ndet = 0 from equation 3.3, we can determine the relative
fitness threshold

Wmin =
1

r0

, (3.4)

under which the population is not expected to be viable.
A deterministic value of Weq, noted Wdet, can be calculated at mutation-

selection balance for a large population of diploid individuals with a large
number of independent bi-allelic loci, where deleterious mutations with se-
lection coefficient s and dominance h can segregate. This is done using
equations for the mutation load L derived from Wright’s equations for allele
frequencies at equilibrium at a single locus (Caballero and Hill, 1992; Roze
and Rousset, 2004), and gives

L = u (3.5a)

for recessive mutations (the dominance coefficient h = 0), and

L = u
4h+ α(1− 4h)

2h+ α(1− 2h)
(3.5b)

when h >> 0, where u is the deleterious mutation rate at a single locus
and α is the proportion of offspring produced via self-fertilisation. If we
consider that there is no epistasis and no linkage disequilibrium, then the
relative population fitness when considering a genome-wide mutation load is
given by Wdet = e−L (Haldane, 1937), where u is replaced by U , the haploid
genomic mutation rate, when calculating L.

Finally we can calculate Ndet, using Wdet instead of Weq in Equation 3.3
as an estimation of population size at equilibrium Neq. Populations are not
expected to be viable (Ndet ≤ 0) when for h = 0

r0 ≤ eU (3.6a)

and for h >> 0

r0 ≤ e(U
4h+α(1−4h)
2h+α(1−2h)). (3.6b)

High mutation rates and low reproductive rates are both expected to
contribute to the decrease of population viability.
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3.2.2 Simulation Model

An individual-centred model with discrete non-overlapping generations was
used to follow the evolution of an isolated population of variable size, made
up of diploid hermaphrodite individuals.

Genomic assumptions

The genetic properties of this model, mutation and recombination, are those
described in Roze’s (2009) model. Each individual is represented by two
homologous chromosomes of length 2D with a potentially infinite number of
loci. The map length is considered to beD from the centre of the chromosome
to the edge, hence representing a chromosome with a defined centromere. The
life cycle is as follows: mutation, selection, meiosis and reproduction.

The number of new deleterious mutations occurring per chromosome per
generation, is sampled from a Poisson distribution with mean U , where 2U
is the genomic mutation rate. Their position on the chromosome is sampled
from a uniform distribution in [−D,D]. The effect of deleterious mutations
on the fitness of individual i living at time t, W i

t , is multiplicative and de-
pends on the number of homozygous, nho, and heterozygous, nhe, deleterious
mutations each individual carries

W i
t = (1− hs)nhe(1− s)nho , (3.7)

where s and h are the selective and dominance coefficients respectively and
are fixed parameters. All mutations are deleterious and have the same val-
ues of s and h. The deleterious effect of these mutations is independent of
population density. Recombination occurs during gamete production and
is considered to be uniform along the chromosome. New individuals are a
combination of two gametes, either from two different individuals for repro-
duction via outcrossing, or the same individual via selfing.

Demography and selection

At a given time t, population size Nt is given by

Nt =

Nt−1∑
i=1

X i
t−1 (3.8)

where X i
t is the number of viable offspring an individual i at time t con-

tributes to the next generation via the female function (we consider that
there is no limitation in the number of offspring an individual i can sire).
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X i
t is sampled from a Poisson distribution with mean Ri

t = W i
t r

1−Nt
K

0 (the
individual reproductive rate).

Self-fertilisation occurs at a probability αit for individual i, at time t given
by

αit =
α0W

i
t

α0W i
t + (1− α0)

∑
j 6=i

W j
t

Nt−1

. (3.9)

The proportion of selfed offspring depends on α0, the proportion of an
individual’s male gametes that are available for self-fertilization, and on the
individual’s fitness W i

t compared to the average relative fitness of the other

possible fathers in the population (

∑
j 6=i

W i
t

Nt−1
). The lower an individual’s relative

fitness as a father, the lower the proportion of offspring produced via selfing.
We consider that there is no limitation in the availability of male gametes.
The proportion of an individual’s offspring produced by self-fertilisation is
sampled from a binomial distribution with parameters αit andX i

t . When α0 =
0 the population is strictly outcrossing and the population is automatically
considered non-viable if Nt < 2.

In order to facilitate the reading of the following sections, the notation
used through the text has been summarized in Table 3.1.

Initial conditions and simulations run

At the beginning of each simulation, we consider population size to be equal
to K and that there are no deleterious mutations present in the population.
The simulations are run until the population reaches equilibrium or goes
extinct. We define equilibrium as the stabilisation of the mean population
fitness, denoted W t; the average W t over one thousand generations is calcu-
lated and compared to the average W t of the previous thousand generations.
If the difference between the two is lower than 1 per cent the population is
considered to be at equilibrium. Population size Neq, mean fitness W eq and
the mean number of mutations per chromosome were measured at equilib-
rium. Throughout the results, we will mostly be addressing the average of
the mean value of the population’s relative fitness across all simulations for
each set of parameter values, which we note Ŵeq. If the population goes
extinct, then the time to extinction is measured.

The mutational meltdown is defined as the acceleration of the decrease
of population size due to the accumulation of deleterious mutations (Lande,
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1994; Lynch et al, 1995; Coron et al, 2013). In order to evaluate this acceler-
ation, once non-viable populations reach a population size of 250 individuals,
the best fitting quadratic polynomial regression (a + yt + zt2) is calculated
to fit the decrease in W t, Nt and Rt independently of one another. When
these variables are decreasing, the first order coefficient is negative. As these
variables decrease with time, if they decrease in a linear fashion, then there
is no mutational meltdown and the second order coefficient z is equal to 0.
In the case of acceleration of the decrease of these variables with time, as
expected in the case of a mutational meltdown, then the second order co-
efficient z, like the first order coefficient y, is negative. This second order
coefficient z is calculated for each simulation run that results in population
extinction. We also measure the mean population size at the fixation of the
first deleterious mutation in order to detect whether population decline is
associated to mutation fixation.

A wide range of values, from 0 to 1, were run for the parameter α0, with
r0 = 2, 4 and 10. For r0 = 2, simulations were run for U between 0.1 and 0.6,
mutations were mildly deleterious, moderately deleterious or lethal (s = 0.02,
0.2 and 1), that were completely recessive, almost recessive, or moderately
recessive (h = 0, 0.02 and 0.2). The recombination rates taken into account
reflect conditions where mutations were highly linked, moderately linked or
very slightly linked (D = 0.1, 1 and 10). Aside from the general effect of
recombination rates over a whole genome, these genomic recombination rates
can also reflect how mutation loads evolve within a genome in specific ge-
nomic hot and cold spots. Increasing D over 10 has very little effect on the
results, which allows us to make the assumption that the mutations act as
though they were independent (Roze, 2012). However, it is possible, when
there is selfing, that there is some linkage due to the genomic consequences
of self-fertilisation. One thousand replicates were run for each group of pa-
rameter values, coming to a total of 1458000 simulations run for r0 = 2. For
r0 = 4 and 10, one hundred replicas were run for U = 0.2 to 1, s = 0.02 and
0.2, h = 0 and 0.02 and D = 10, leading to a total of 54000 simulations run.

We compare the expected deterministic values of the mean fitness at
equilibrium Wdet, as well as the expected deterministic fitness threshold value
Wmin under which populations should not be viable, with our simulation
results.
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3.2.3 Estimating the stochastic fluctuations of popula-
tion size

The stochastic fluctuation of population size from one generation to the next
can be due to two mechanisms: demographic stochasticity alone or the inter-
action between demography and genetic selection. In order to estimate the
importance of each of these two sources of stochasticity, we first estimated
the fluctuations that would be observed with only demographic stochasticity
and no mutations (the relative fitness W t is a constant) and then compared
these estimations with the fluctuations observed in our simulations. We use
the standard deviation of population size over time σN as a measure of these
fluctuations. We compare σN calculated from simulations run for 100000
generations for different constant values of W t to the standard deviation of
Nt over 100 generations when the populations in our simulations were at
equilibrium. If demographic stochasticity alone can explain the fluctuation
of population size, then the stochastic fluctuations calculated from the sim-
ulations with a dynamic component of relative fitness (denoted σ̂N) should
not be very different than those run with W t as a constant.

In our simulations, population extinction is inevitable, as when time is
very long, all populations go extinct due to demographic stochasticity with
a probability of 1. In order to test whether populations that are expected
to be viable, in other words with an expected relative fitness Wdet greater
than the threshold value Wmin (Equation 3.3), go extinct because of demo-
graphic stochasticity alone, we ran stochastic simulations of Equation 3.8.
We assume that all individuals have the same constant relative fitness Wdet

(equation 3.5) and the initial population size is Ndet (Equation 3.3). We cal-
culate the probability of population extinction before one order of magnitude
higher than the highest time to extinction observed in our simulations with
a dynamic component of relative fitness.
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Table 3.1: Notation.

V, V , V̂ No superscript indicates deterministic values (except in the case
of population size N , where it is mentioned clearly in the text),
a bar indicates that the variable is the intra-population mean for
one simulation run (W eq is the mean relative fitness for one popu-
lation) and a hat indicates that the variable is the mean across all

simulations (Ŵeq is the mean relative fitness across all simulations,
conditional to survival).

Nt, N̂eq Population sizes at generation t and mean population size at pop-
ulation equilibrium across all simulations

σN , σ̂N Standard deviation of population size over time as a measure of
the fluctuation of population size for one population and across
simulations.

Ndet Expected population size without demographic or genetic
stochasticity

r0 The intrinsic reproductive rate.

K The carrying capacity.

Rt Expected number of offspring per individual at generation t.

Xi
t , R

i
t Respectively the number of offspring produced by individual i at

generation t and its expectation.

W t,W eq, Ŵeq Means of the population’s relative fitness at generation t and at
population equilibrium for one or across simulations conditional
to population survival.

W i
t Relative fitness of individual i at generation t.

Wdet Expected value of the population’s component of fitness calculated
using the Wright-Fisher model.

Wmin The threshold value of the population’s mean relative fitness, un-
der which populations are not viable.

U,D Genomic properties: the haploid mutation rate and the recombi-
nation rate or map length.

s, h Mutational effects: the selection coefficient and the dominance.

nhe, nho The number of heterozygote and homozygote mutations on an
individual’s genome.

a0 The proportion of male gametes available for selfing.

αit, αt Proportion of offspring produced via self-fertilisation by individual
i and the population’s mean proportion of offspring produced via
self-fertilisation at generation t.
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3.3 Results

3.3.1 Demographic and genetic evolution to equilib-
rium and extinction

Populations either evolve both demographically and genetically to a quasi-
stationary equilibrium of population size and the relative fitness, noted re-
spectively Neq and W eq, or go extinct (illustrated in Figure 3.1A).

For all values of the intrinsic reproductive rate r0, the simulation results
agree with deterministic expectations of the interaction between Weq and
Neq from Equation 3.3 (see Figure 3.1B) for viable populations. When r0 =
10 and Weq values are greater than 0.74, the deterministic equilibrium is
oscillatory and unstable, as confirmed by a stability analysis of equation 3.3.
This is clearly seen in the simulation results, where the populations oscillate
between two states.

Very few populations are viable with a relative fitness at equilibrium W eq

that is lower than the estimated value of the relative fitness threshold Wmin,
and as expected from Equation 3.4, Wmin decreases with an increasing in-
trinsic reproductive rate r0. This strong relationship between W eq and Neq is
not enough, however, to explain population extinction. When taking a closer
look at the relationship between the probability of population extinction and
mean population fitness, we do not have a positive linear relationship be-
tween the two variables, but a more bimodal distribution (Figure 3.1C). We

observe a great range of values of Ŵeq (i.e. the average W eq of viable popu-
lations) across simulations for which all populations survive, a similar range

of Ŵeq for parameter sets for which very few populations were viable and

intermediate-low values of Ŵeq for populations with an intermediate proba-
bility of extinction.

When the deterministic value of mean fitness Wdet is greater than the
fitness threshold Wmin but populations are not viable, extinction can be
attributed to either demographic stochasticity alone, or to an interaction be-
tween both demographic and genetic stochastic processes. When we consider
the mean relative fitness W t to be a constant, so that population extinction
is due only to demographic stochasticity, we find that the probability of ex-
tinction is extremely low compared to what is observed in our results. For
example for r0 = 2 and W t = 0.52, the probability of extinction within a time
equivalent to one order of magnitude greater than our highest time to extinc-
tion observed is almost null. In other words, these populations are expected
to survive as their relative fitness is above the threshold value Wmin, and the
expected time to stochastic demographic extinction is extremely long. This
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Figure 3.1: Demographic and genetic evolution of populations. A) Typical evolution of popu-
lation size Nt with time for a viable population (U = 0.2), one that reaches equilibrium but goes
extinct due to stochasticity (U = 0.3), and one that is not viable (U = 0.4). α0 = 0, s = 0.02,

h = 0.2, D = 10, K = 10000 and r0 = 2. W t follows the same pattern. B) Population size at equi-

librium, Neq as a function of mean population fitness W eq for different values of r0. The dashed
line represents the expected population size Ndet from Equation 3.3, and the points represent
simulation results for all viable populations for all parameter sets with D = 10 and K = 10000.
C) Probability of population extinction from simulations run for all sets of parameter values for

r0 = 2 and K = 10000 as a function of the average population’s mean relative fitness Ŵeq. The
grey line represents the population fitness above which the probability of population extinction
in less than 105 generations due to demographic stochasticity alone is almost null. D) Standard
deviation of population size over time at population equilibrium σN as a function of the relative
fitness W eq from simulations run for all sets of parameter values for r0 = 2 and K = 10000.
The light grey points each represent σN of a single simulation, the open circles represent the
mean standard deviation across simulations per group of parameter values σ̂N and the full circles
represent results from simulations run that take into account only demographic stochasticity.
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however is not the case in simulations with a dynamic component of fitness,
suggesting that it is the interaction between demography and genetics that
leads to population extinction in such a relatively short time scale.

The importance of this interaction is observed when taking into account
the standard deviation of population size over time σN (Figure 3.1D). We
observe that the values of σN for each simulation run (grey points) fluctu-
ate around the expected standard deviation if the change in population size
from one generation to the next were due only to demographic stochastic-
ity (full circles). Fluctuations are even higher when the relative fitness W eq

decreases. We note that the mean value of the standard deviation of popula-
tion size over time σN for any group of parameter values σ̂N (open circles) is
always greater than the expected values of standard deviation of this variable
when only demographic stochasticity affects population size. This suggests
that the interaction between demography, genetics and selection highly in-
creases the stochastic fluctuations of population size. Below, we show that
this increased stochasticity is important when estimating the probability of
population extinction.

From this point onwards, we will mostly be addressing results with an
intrinsic reproductive rate r0 = 2 since that we observe the same patterns for
higher values of r0 when considering population extinction and mutational
loads. For simplicity, in order to compare the effect of selfing between pop-
ulations, we have chosen to compare population characteristics for different
values of the proportion of male gametes available for selfing α0 and not αt,
the effective mean proportion of offspring produced via self-fertilisation of the
population. The difference between the two is slight (unless the population
is very near extinction), with α0 ≤ αt ≤ α0(1 + 0.1), except for α0 = 0 and
1, where it remains fixed.

3.3.2 Probability of population extinction

As expected from deterministic approximations (see section “Deterministic
model and expectations”, Equation 3.6), when mutations are only slightly
linked (D = 10) we find that for a particular intrinsic reproductive rate r0,
increasing values of the haploid mutation rate U leads to higher probabil-
ities of extinction (Figure 3.2A) and lower Ŵeq (Figure 3.2B). Contrary to
deterministic expectations, the coefficient of selection s affects both popula-
tion extinction and mean relative fitness. The effect of the coefficient of the
selection and the proportion of selfed offspring both depend greatly on the
dominance h of the deleterious mutations. Generally, increasing the coeffi-
cient of selection decreases the probability of extinction at higher mutation
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Figure 3.2: Population extinction and equilibrium. A) Probability of population extinction
calculated from the 1000 simulations run (r0 = 2 and K = 10000), from black (0% extinction)
to white (100% extinction), as a function of α0. The circles indicate that more than 95% of
populations went extinct. The horizontal lines indicate that deterministic extinction was pre-
dicted (Equation 3.3). B) Mean values of the observed population fitness at equilibrium across

simulations Ŵeq of viable populations as a function of α0 for r0 = 2 and K = 10000. The grey
lines represent the expected mean fitness Wdet for (from top to bottom) U = 0.1, 0.2, 0.3, 0.4,
0.5 and 0.6. Top row s = 0.02 and below s = 0.2. Missing points indicate parameter values for
which none of the 1000 simulations run were viable. C) Standard deviation of population size
over time at population equilibrium across simulations σ̂N with a logarithmic scale as a function
of α0, with r0 = 2 and K = 10000. Note that this variable is underestimated for parameter sets
with less than 100% population survival, as the standard deviation of extinct populations is not
taken into account. For B) and C) : � U = 0.1, • U = 0.2, N U = 0.3, � U = 0.4, ◦ U = 0.5,
M U = 0.6
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rates and increases mean relative fitness Ŵeq.

From the deterministic equations, the proportion of selfed offspring should
not affect either of these variables when mutations are completely recessive
and almost recessive (h = 0). However, self-fertilisation has a non-monotonic
effect on both of these variables. Between α0 = 0 and 0.2 the probability
of extinction increases, while Ŵeq decreases. For α0 between 0.2 and 0.95,
the opposite tendency is generally observed, the greater α0, the lower the
probability of extinction and the higher Ŵeq. When a strictly selfing regime
is imposed, no simulated populations survive when mutations are almost
neutral (s = 0.02) and when mutations are mildly deleterious (s = 0.2)
the probability of extinction (respectively the mean relative fitness) is the
same, or slightly higher (respectively lower), as what is observed for α0 =
0.95. The same patterns are observed when mutations are almost recessive
(h = 0.02). When mutations are moderately recessive (h = 0.2), we find
that the deterministic expectations are more accurate. There is generally a
monotonic effect of α0 on both the probability of extinction viability and Ŵeq,
the former decreases and the latter increases with increasing α0. At higher
mutation rates, we observe that the probability of extinction increases and
Ŵeq decreases at very high values of α0 (> 0.8). Once again, when mutations
are almost neutral (s = 0.02), no populations survive when α0 = 1. For all

values of h, increasing U accentuates the effect of α0 on the decrease of Ŵeq

and increase of the probability of extinction.

At lower recombination rates (D = 1 and 0.1), Ŵeq is generally not af-
fected by s and h, but the probability of population extinction is generally
greater with increasing U than what is observed for high recombination rates
(for D = 10). This is especially true for lower proportions of selfed offspring.
The effect of recombination on viability decreases with increasing selection.
We observe one particular case, when mutations are very tightly linked (the
recombination rate D = 0.1), of small effect (the coefficient of selection
s ≤ 0.2) and completely recessive (dominance h = 0), where increasing the
haploid mutation rate U can, for low rates of α0, decrease the probability of
extinction and increase the mean relative fitness or have no effect on either
(Figures 3.2A and 3.2B). This could be due to more efficient selection against
deleterious mutations at higher mutation rates, as increasing the mutation
rate could increase the probability that tightly linked groups of recessive
mutations are found at a homozygote state and eliminated.

As mentioned above, population fitness and demographic stochasticity
alone cannot fully explain population viability. Figure 3.2C represents the
mean standard deviation of population size over time at equilibrium con-
ditional to population survival σ̂N . We observe that, when considering pa-
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rameter sets with the same mutation rate U , σ̂N increases with increasing
probability of population extinction. It is important to note that σ̂N is most
probably underestimated for parameter sets for which not all populations
are viable, as the standard deviation of extinct populations is not taken into
account during its calculation.

3.3.3 Accumulation and fixation of deleterious muta-
tions

Our results show that when deleterious mutations are fixed, it is only in popu-
lations that are very small, in other words already on their way to extinction.
Even though the mean number of mutations is smaller at higher proportions
of selfed offspring (Figure 3.3A), when populations are not viable, increasing
α0 leads to the fixation of deleterious mutations at greater population sizes
(Figure 3.3B) and with a higher probability (results not shown). The smaller
the coefficient of selection and the greater the mutation rate, the greater the
population size at first fixation. Therefore, if mutations are indeed fixed,
they are fixed at larger population sizes when they are mildly deleterious,
frequently introduced and in populations with greater proportions of selfed
offspring. Mean population size at first fixation is generally relatively small
compared to the carrying capacity K (see Figure 3.3B), except for one group
of parameter values (U = 0.1, s = 0.02, h = 0 and α0 = 1, results not
shown) where fixation can occur at a population size of 8000 individuals.
Mean population size at first fixation is greater for high-intermediate val-
ues of α0 when there is little recombination than when recombination rates
(D = 10) are high, whereas outcrossing populations are not affected.

The mean number of mutations per chromosome at population equilib-
rium across all simulations (conditional to population survival) decreases
with increasing coefficients of selection s and/or the dominance h and for
increasing proportions of male gametes available for selfing α0 (Figure 3.3A
shows typical results). Increasing the haploid mutation rate U increases the
mean number of mutations per chromosome. The lower number of mutations
per chromosome for mutations with stronger effects (either at the homo- or
heterozygous state) and for higher proportions of selfed offspring can be ex-
plained by a more efficient purging (Glémin, 2003).

Lower recombination rates generally do not affect the mean number of
mutations per chromosome, except when mutations are completely recessive
(h = 0) and there is almost no recombination (D = 0.1). In this case the
mean number of mutations per chromosome can be more than doubled for
low values of α0 independently of the coefficient of selection s, but not greatly
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Figure 3.3: Accumulation and fixation of deleterious mutations. A) Mean number
of mutations per chromosome equilibrium across simulations as a function of α0.
U = 0.1, h = 0.02, D = 10 and r0 = 2. Missing points present parameter values
for which no populations were viable. B) Mean population size at first fixation of
deleterious mutations for populations greater than 50 individuals as a function of
α0. U = 0.5 in grey, U = 0.6 in black. h = 0.2, D = 10 and r0 = 2.
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changed for higher values of α0 when selection is strong s ≥ 0.2.

3.3.4 Mutational meltdown and time to extinction

When a population is on its way to extinction, there is a weak but significant
acceleration in the decrease of the mean relative fitness W t and in the mean
reproductive rate Rt, but there is a deceleration in the decrease of popula-
tion size Nt for high recombination rates (D = 10, see Figure 3.4A). Higher
mutation rates U , lower dominance of mutations h and lower proportions of
selfed offspring α0 contribute to the acceleration (respectively the deceler-
ation) of the decrease of W t and Rt (respectively Nt). Even though both
the mean relative fitness and the reproductive rate show an overall tendency
to decrease at an accelerating rate, the low population density allows for
the deceleration of the decrease of population size as the smaller the popu-
lation size, the more resources available per individual for reproduction, as
Rt is density dependent (Equation 3.2).At low recombination rates, there is
neither an acceleration or a deceleration in the decrease of W t, Rt and Nt.

The mean time to extinction for non-viable populations has a complex
relationship with the proportion of male gametes available for selfing α0

(Figure 3.4B). The general patterns that are observed, however, are that the
effect of α0 on the time to extinction is attenuated with increasing values of
U . Increasing selection (s and h) reduces the mean time to extinction for
populations with low proportions of offspring produced via self-fertilisation,
but increases it for higher α0 (Figure 3.4B). The contrary is observed when
mutations are very mildly deleterious (s = 0.02) and recessive (h = 0 and
0.02), with longer times to extinction for outcrossing populations than for
selfing populations. The pattern of the effect of α0 and selection on time to
extinction remains unchanged when recombination rates are low.
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Figure 3.4: A) Median value of acceleration in the rate of decrease of W t, Rt
and Nt, noted z, for non-viable populations from Nt = 250 until extinction as a
function of α0. U = 0.6, s = 0.02 , h = 0.02, D = 10, r0 = 2 and K = 10000. B)
Mean time to extinction as a function of α0. D = 10, r0 = 2 and K = 10000.
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3.4 Discussion

It is generally accepted that selection is less effective in small populations,
which could lead to their extinction due to mutational meltdown (Lynch and
Gabriel, 1990; Lande, 1994; Lynch et al, 1995; Coron et al, 2013), whereas
large populations are able to purge recurrent deleterious mutations and re-
main at mutation-selection balance (Wright, 1931; Hedrick, 2004). Our
results suggest that there are values of genetic parameters for which even
large populations cannot purge deleterious mutations fast enough to reach
mutation-selection balance and go to extinction due to the increasing num-
ber of segregating mutations, which in turn increase the mutational load.
This implies two things: 1) Mutation selection balance is not attainable
for all genetic parameters as hypothesized by population genetics models
and 2) Populations can go to rapid extinction due to segregating deleteri-
ous mutations. Self-fertilisation, while expected to allow for more efficient
purging of deleterious mutations (Glémin, 2003), does not always allow for
lower probability of extinction. Population fitness as well as the amplitude
of the fluctuation of population size both contribute to the eventual fate of
a population, with lower population fitness and greater fluctuations leading
to higher probabilities of extinction. More specifically, our results show that
there is a synergistic interaction between genetics and demography, which
increases the stochastic fluctuations of population size.

Empirical estimations of the genetic parameters used in our model are
now becoming available. The idea that there is a strong correlation between
h and s has often been shown in empirical works (Simmons and Crow 1977;
Steinmetz et al 2002; Agrawal and Whitlock 2011; also see Phadnis and Fry
2005). As the dominance coefficient has been estimated as being around 0.25
(Manna et al, 2011) and most of the deleterious mutations that make up an
individual’s mutational load are of small effect, this implies that the most
realistic parameters we have run are for h = 0.2 and s = 0.02. However, a
new approach using a phenotypic landscape model has shed doubt on this
interpretation; the dominance and the coefficient of selection of mutations
might well be independent of one another (Manna et al, 2011). This justifies
our choice to study several values and combinations of these values of s and
h values. We have chosen to consider mutations with constant and only
deleterious effects, which is one of the limits of this model. Mutations found
in natural populations have variable coefficients of selection s and dominance
h and the distributions of these variables are still under debate as they can
vary not only between species (Eyre-Walker and Keightley, 2007), but also
between populations (Keightley and Halligan, 2009). How the variability of
mutation affects the evolution of populations is still unclear and yet to be
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fully taken into account in theoretical models.

The genomic mutation rates (equivalent to 2U in our model), estimated
empirically in various organisms range from 0.01 to 1 (Sniegowski et al, 2000)
and even greater (Agrawal and Whitlock, 2012) in eukaryotes. We therefore
explore realistic mutation rates, even though in our case we consider that all
new mutations are deleterious.

3.4.1 Population size, viability and the mutational melt-
down

Generally, if we are able to predict demographic factors (such as the intrinsic
reproductive rate, the carrying capacity and density dependence) and the
mean relative fitness of populations (or the mutational load), we are able
to predict population size and a threshold value of mean relative fitness,
below which a population is not viable (Figure 3.1A). However, predicting
a relatively large (or non-null) population size is not enough to guarantee
population survival within a relatively long time scale. In our model we find
that population extinction is not due to demographic stochasticity alone, but
to increased levels of stochasticity that result from the interaction between
demography and genetics.

The importance of this interaction on population extinction has already
been suggested in literature (Lande, 1988). Our results find that it is indeed
non-negligible as shown by the fluctuation of population size over time in our
model, which is a result of demographic stochasticity and a dynamic muta-
tion load or relative fitness, which are not independent of one another (Figure
3.1D). The mean fluctuation of the population size for a given set of parame-
ter values (open circles) are too great to be due to demographic stochasticity
alone (full circles). Even though stochastic processes affect the reproductive
rate, contemporary stochasticity alone does not account for this variance.
Past stochastic events, or the mutational history of the population (where
the deleterious mutations are in the genome, and at what frequencies), can
also influence this variable, as observed in Figure 3.1D, where the standard
deviation of population size σN (grey points) varies greatly around the mean
standard deviation observed σ̂N (open circles). For parameter values where
the probability of extinction is different than 0 and 1, the importance of past
stochastic events, is even more evident as the fate of a population is not
sealed. The importance of past mutational events has also been observed in
experimental mutation accumulation lines, where replicate populations with
the same genetic origin do not all go to extinction (e.g. for yeast populations
(Zeyl et al, 2001)). We propose, that in order to predict the probability of
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extinction of populations, it is not only important to predict the mean fitness,
but also the fluctuation of population size. Further exploration of this model
is required to estimate how the genetic and demographic parameters affect
the amplitude of the fluctuations of population size. No theoretical work,
to our knowledge, has taken on this question from a demo-genetic point of
view.

Clarke’s (1973) work highlights the importance of the effect of selection on
demography, and his prediction that taking into account the accumulation
of deleterious mutations throughout the genome would allow a significant
decrease of population size is confirmed by our model, where in some cases
populations go to extinction. It has been suggested that the timing of selec-
tion is crucial in order to assess the effect of the mutation load on population
size (Clarke, 1973; Agrawal and Whitlock, 2012). In our model we have
chosen relative fitness to affect only the reproductive rate. However, it is
possible that selection that affects the consumption of resources (K) could
lead to different results (Clarke, 1973). It is often considered that selection
has no effect on demography (e.g. Agrawal and Whitlock, 2012), but if the
mutation load has a direct effect on an individual’s reproductive capacity, as
is the case in our model, then the effect of selection on population size cannot
be ignored. This has important implications on how data on population size
from natural populations should be interpreted (see below).

The importance of the reproductive rate concerning population extinction
has already been suggested by other models, where populations with higher
intrinsic reproductive rates have longer times to extinction (Lynch et al, 1995;
Robert et al, 2002) or lower probabilities of extinction (Bernardes, 1995).
These predictions are an inherent property of our model, as populations
with high intrinsic reproductive rates r0 are expected to be viable at higher
mutational loads (Equation 3.6), and are supported by our stochastic simu-
lations (Figure 3.1B). In our model, we consider a stable environment, which
is an unrealistic hypothesis. It is therefore probable that we overestimate
population viability, as shown by Higgins and Lynch’s model (Higgins and
Lynch, 2001), which, upon taking environmental stochasticity into account,
suggests that it increases the rate of accumulation of deleterious mutations.

To what extent are we capable of estimating the mean relative fitness (or
the mutational load)? In spite of explicitly considering demography, we find
that the simplified deterministic predictions of the mutation load are reliable
when mutations have a strong effect (s = 0.2 and h = 0.2). However, when
mutations are almost neutral, mean fitness is overestimated, especially when
the mutations are recessive (h = 0) and the genomic recombination rate is
low as the number of mutations per chromosome is increased (Kondrashov,
1982), affecting the purging process. The deterministic expectations of mean
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fitness when comparing them to simulated results have already been shown to
be reliable by population genetics models (Bataillon and Kirkpatrick, 2000;
Haag and Roze, 2007), however none of these models explicitly include the
effect of demography. This interaction, between genetics and demography,
could in fact be important, as shown by the unexpected non-monotonic re-
lationship between population fitness and the proportion of selfed offspring
in our model (Figure 3.2B), which we discuss below.

It is important to note that a high mutation rate and a large number
of segregating deleterious mutations do not necessarily lead to a higher mu-
tation load. In the case of very little recombination (D = 0.1), increasing
the mutation rate increases mean fitness when mutations are recessive and of
small effect, and hence decreases the mutation load. Therefore, the mutation
rate in itself is not sufficient, and depending on the effects of deleterious muta-
tions and the recombination rates, increasing the genomic mutation rate does
not always lead to an increase in the mutational load. The extreme case of
very little recombination could also be translated as the existence of genomic
regions with low recombination rates known as cold-spots (reviewed in Petes,
2001), allowing for the accumulation of deleterious mutations (Charlesworth
and Charlesworth, 2010, p. 555). The existence of such genomic regions
could in fact have an important influence on the survival of populations.
Low rates of recombination are expected to reduce population fitness and in-
crease the rate of fixation of deleterious mutations (Charlesworth et al, 1993).
Though our results confirm this for mutations that are moderately recessive
(h = 0.2), it is not the case when considering recessive mutations, where
the contrary is observed. At such low recombination rates, the high levels of
linkage-disequilibrium lead to the formation of tightly linked groups of mu-
tations. These groups of mutations act as a single “super locus”. When the
mutations are recessive, this load remains silent at the heterozygous state,
but once at the homozygous state, the multiplicative effects of these small
mutations are expressed and lead to a very deleterious effect. The relative
fitness of individuals that become homozygous for only one of these differ-
ent super loci is extremely low. In this case, the advantage of outcrossing
is much higher, as outcrossed offspring have a higher probability of being
heterozygous at these loci than selfed offspring.

From our simulated results, we conclude that when populations are on
their way to extinction, whether we observe a mutational meltdown depends
not only on the values of the genetic parameters, but also on the variable
measured. Due to the nature of the density dependence in this model, the
decrease in population size decelerates when population density is low: the
smaller the population size, the more resources available to the few remaining
individuals. Even though both the reproductive rate and the mean relative
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fitness do show an acceleration in their decrease when populations are on their
way to extinction, we find that the existence of this mutational meltdown
depends greatly on the effect of the deleterious mutations, the mutation rate,
and the proportion of offspring produced via self-fertilisation.

The importance of segregating mutations has already been suggested by
Lynch et al (1995), but this work concluded that fixation had a greater effect
on the meltdown. Our model suggests that the fixation of deleterious mu-
tations is a consequence rather than a cause of decline towards population
extinction, this however could be due to the fact that in Lynch et al’s (1995)
model the genetic load affected offspring survival, whereas in our model there
is a direct link between the reproductive rate and the mutational load. The
effect of the accumulation of segregating deleterious mutations has been con-
sidered to be negligible when considering large populations (Hedrick, 2004;
Whitlock M.C., 2004), even more so when considering their eventual extinc-
tion over a short time scale because of this process (but see Bernardes, 1995).
This does not seem to be the case when considering the interaction between
demography and genetics. A feed-back loop between these two properties
seems to lead to a “cost of purging” : Unfit individuals do not reproduce,
decreasing population size at the next generation, which in turn increases
the effect of drift, leading to a lower efficiency of purging and more unfit
individuals. This continual increase of the number of segregating deleterious
mutations eventually leads to a demo-genetic extinction. Mutation-selection
balance is therefore not the automatic fate of initially large populations, and
the cost of purging can lead to a very rapid extinction (Bernardes, 1995).

3.4.2 How does selfing affect population size and via-
bility?

Our results indicate that selfing has an effect both on population size and
viability. We often observe that selfing populations have lower probability of
extinction than outcrossing populations at higher mutation rates (see Figure
3.2A), especially when there is strong selection, in which case selfers are
always expected to have larger population sizes. However, when selection
is weak, we find that strict-selfing and low levels of selfing (but not strictly
outcrossing) hinder both size and viability. As this has not been noted in
other models, even when genetic drift is taken into account (Bataillon and
Kirkpatrick, 2000; Roze and Rousset, 2004), it is possibly a consequence of
the interaction between genetics and demography. A possible hypothesis to
explain this observation is that the viability of populations concerning the
accumulation of deleterious mutations depends on two opposing properties
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1) The purge of these mutations and 2) The avoidance of expressing them.
Outcrossers accumulate deleterious mutations (Glémin, 2003), but avoid the
cost of inbreeding depression (Charlesworth and Charlesworth, 1987), with
most of their mutations being at a heterozygous state. Selfers purge these
mutations (Glémin, 2003) and even though they do not accumulate as many
as outcrossers do, many are at a homozygous state (Charlesworth, 2003). We
therefore propose that populations with low proportions of offspring produced
via self-fertilisation suffer from both the inconveniences of outcrossers and
selfers, not only do they accumulate deleterious mutations, as purging is not
as efficient as for high proportions of selfed offspring, they also express them,
and suffer from the demographic cost of purging.

The effect of self-fertilisation on the extinction of populations due to the
accumulation of deleterious mutations has long been debated (Stebbins, 1957;
Lynch et al, 1995; Takebayashi and Morrell, 2001). Our results suggest that
the accumulation, hence fixation, of deleterious mutations is probably an
insufficient explanation for higher extinction rates. In spite of this model’s
limitations, we find that even though self-fertilisation does affect population
extinction due to genetic deterioration, the effects of the genetic parameters
are complex and do not result in a simple pattern of the effect of selfing on the
time to extinction. When selection is weak, strict outcrossers are less likely
to go extinct than strict selfers, agreeing with Lynch et al’s (1995) results.
However, allowing for a small amount of outcrossing (e.g. a proportion of
male gametes available for selfing α0 = 0.95) is enough to greatly decrease the
probability of extinction, even allowing for a higher probability of population
survival at higher mutation rates than for strict outcrossing (see Figure 3.2A).
Strong selection reverses this observation, with strict outcrossers being more
prone to a mutational meltdown than selfers, in accordance with Bernardes’s
(1995) results. What rate of selfing is more likely to cause extinction or
lead to population vulnerability is not clear and greatly depends on both
the genetic (mutation rates, genomic recombination rates, deleterious effects
of mutations) and demographic (intrinsic reproductive rate) parameters. It
has already been suggested that selfing has a greater effect on population
extinction when considering the fate of beneficial mutations and their effects
after environmental change. For instance Glémin and Ronfort (2013) showed
that if adaptation is due to standing variation, then outcrossers are less prone
to extinction than selfers. Their model, however, is not demographically
explicit.

When considering genomic cold-spots with low recombination rates, out-
crossers are greatly advantaged when mutations are recessive, as they do not
express these accumulated mutations. The lower viability of selfing popula-
tions in our results for such low recombination rates supports the observation
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that selfing species could be more likely to evolve higher recombination rates,
in order to avoid the hitchhiking of deleterious mutations (Roze and Lenor-
mand, 2005). The difference in extinction rates between outcrossers and
selfers observed empirically (Goldberg et al, 2010) could perhaps be due to
such genomic regions where mutations of small effect segregate.

The non-monotonic effect of selfing on the probability of extinction in our
results, could offer a possible explanation to the differences in extinction rates
between selfers and outcrossers within the same family. For a transition to be
successful, the transition in the reproductive mode has to be of large effect,
going from complete outcrossing to high proportions of selfed offspring, for
in some cases the mutational load that an outcrossing population could put
up with could prove lethal for a reproductive mode with low proportions of
offspring produced via self-fertilisation. The observed high extinction rates
could therefore be related to the transition process and not the reproductive
mode in itself.

3.4.3 Empirical implications

How can the correlation between population size and population fitness be
interpreted? In most empirical works, a positive correlation between the two
is translated as the negative effect of a small population size on population
fitness due to inbreeding, the fixation of deleterious mutations or a lack of
reproductive assurance (for example Fischer and Matthies, 1998; Dostalek
et al, 2010). Another possible interpretation which is not often considered
is simply that population size is a consequence and not the initial cause of
a high mutation load, just as in some cases small population size does not
seem to lead to a decline in fitness (Costin et al, 2001).

Generally, small populations are considered to be most at risk of extinc-
tion within a relatively short time frame due to inbreeding depression, muta-
tional meltdown and demographic stochasticity (Lande, 1988; Hedrick, 2004;
Frankham, 2005). Empirical experiments have therefore concentrated on the
extinction of small populations, through the accumulation of deleterious mu-
tations (Newman and Pilson, 1997; Frankham et al, 2001; Zeyl et al, 2001;
Vassilieva and Lynch, 1999; Baer et al, 2005). Even though the fixation of
deleterious mutations can lead to the mutational meltdown of small popula-
tions (Lande, 1994; Lynch et al, 1995; Coron et al, 2013), our results suggest
that the interaction between demography and genetics can lead to the extinc-
tion in large populations due to segregating mutations alone and at relatively
fast rates. In initially large populations, once the “mutational meltdown” is
underway, fixation is rare and is a consequence rather than a cause of popula-
tion decline. The importance of segregating mutations in population decline
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could have implications in conservation biology, as in most empirical studies,
it is automatically assumed that the load leading to population decline is
fixed or almost fixed (Fredrickson et al, 2007; Heber et al, 2013). If popula-
tion decline is mostly due to segregating mutations, then there exists a real
potential of purging the deleterious load through conservation efforts. Small
populations are also expected to be more prone to demographic stochasticity,
which should act more rapidly on population extinction than genetic factors
(Lande, 1988; Frankham, 2005), as has been shown through empirical ex-
periments (Wootton and Pfister, 2013). The higher levels of stochasticity in
the variation of population size observed due to this interaction compared to
the expected effect of demographic stochasticity alone in our results (Figure
3.1D) indicate that stochastic events (that are not due to external factors
such as environmental stochasticity) are not only detrimental in small pop-
ulations, but can also be so in large populations.

Our results suggest that measuring the decline in population size could
be misleading when attempting to asses whether a population is going into a
mutational meltdown or not. Depending on the density dependence, a pop-
ulation on the way to extinction could seem to be demographically stable, as
the decrease of population size could potentially decelerate with time, becom-
ing barely detectable. As the mutational load is not accessible, measuring
the acceleration of the decline of the mean relative fitness is not possible in
natural populations. However, measuring the acceleration in the decline of
the mean reproductive rate over several generations could be a more informa-
tive measure concerning population extinction, or the mutational meltdown,
and is empirically more accessible. The lack or rarity of a mutational vortex
when our simulated populations are on the decline could indicate that, if the
segregating deleterious mutations can be purged at any time, then, as there
is very little or no increase in the rate of reduction of population size, con-
servation efforts could be applied successfully even when populations reach
relatively small sizes.

In conservation biology, Population Viability Analyses (PVA) are the
most frequently used tool for estimating the probability of population ex-
tinction. PVAs take mostly demographic data and parameters into consid-
eration and do not take into account genetics explicitly. They have proved
useful and accurate when considering external pressures (i.e. over-fishing,
fragmentation, etc.) that affect population demography. However, the effec-
tiveness of PVA’s remains ambiguous, as even though they can be relatively
accurate predictors of the evolution of population demography (Schoedel-
bauerova et al, 2010), in other cases the population growth rates can be
over-estimated (Bell et al, 2013). Could the overestimation of growth rates
of growth rates be due to the omission of the genetic effects on population
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demography?
The direct relationship between higher intrinsic reproductive rates and

greater population sizes for the same relative fitness in our model (Equation
3.3, Figure 3.1B) leads to a relationship between the reproductive and mu-
tational rates in viable populations (Equation 3.6). This could mean that
for a population with a high genomic mutation rate to be viable, it must
have a large enough intrinsic reproductive rate. This relationship has not
been studied either theoretically or empirically, and it could be interesting
to perform a comparative analysis between species to test if there is such
a relationship. We suggest that there could be a correlation between the
genomic mutation rates of a species and the number of gametes produced,
which could represent the intrinsic reproductive capacity.
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4.1 Abstract

The prevalence of outcrossing in the plant kingdom in spite of numerous
transitions from strictly outcrossing to self-fertilising reproductive systems
remains poorly understood. It has been suggested that self-fertilising species
have higher extinction rates, thus giving outcrossers a long-term advantage.
Whether higher extinction rates are due to self-fertilisation being an evolu-
tionary dead-end or whether they are a consequence of the already marginal
nature of the populations in which transitions tend to be common is un-
known. Using an individual-centred model in which both population size
and the genetic load co-evolve we test the conditions for which the transi-
tion to self-fertilisation is responsible for population extinction due to the
accumulation of deleterious mutations. We find that when mutations have a
small deleterious effect, populations sometimes evolve to reproduce strictly
by self-fertilisation, leading to the accumulation of deleterious mutations and
extinction.
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4.2 Introduction

One of the most frequently observed evolutionary transitions is that of the
evolution of self-fertilisation (selfing) in primarily outcrossing plant fami-
lies (Stebbins, 1957). Self-fertilization provides two main advantages 1) The
demographic advantage of reproductive assurance which facilitates coloni-
sation as pollen limitation is eliminated (Baker, 1955) and 2) The genetic
advantage of Fisher’s automatic advantage or the transmission of two copies
of an individual’s genome to its offspring, against one copy if the individ-
ual does not self-fertilize (Fisher, 1941). Theoretical models studying the
question have shown that Fisher’s automatic advantage can be countered
by high levels of inbreeding depression, where outcrossing is expected to be
maintained if selfed progeny are at least 50% less fit than those produced
by outcrossing (Lande and Schemske, 1985; Charlesworth and Charlesworth,
1987; Charlesworth et al, 1990; Porcher and Lande, 2005). However, there is
recent empirical evidence that levels of inbreeding depression in outcrossed
populations are below the limit for the maintenance of outcrossing (Winn
et al, 2011), and as the transition is frequent and seemingly uni-directional
(Igic et al. 2004), it is paradoxical that only 11% of flowering plants are
predominantly selfing (Wright et al, 2013).

In order to explain the prevalence of outcrossing (in spite of the facil-
ity with which selfing can evolve) it has been suggested that selfing lin-
eages within outcrossing families present higher extinction rates (Goldberg
et al, 2010), supporting that self-fertilization is an evolutionary dead-end (the
“dead-end hypothesis”, reviewed in Takebayashi and Morrell, 2001). These
higher rates of extinction have been attributed to two phenomena; firstly
selfing-species have lower standing genetic variation and hence are expected
to have lower adaptive potential Stebbins (1957). Secondly selfing popula-
tions accumulate deleterious mutations at the homozygous state that can
eventually go to fixation, leading to population extinction via mutational
meltdown Lynch et al (1995). Both of these hypotheses can be disputed, as
even though selfing does decrease genetic variation, it does however increase
the probability of fixing new advantageous mutations and have the same,
if not in some cases better, adaptive potential as expected in outcrossing
populations (Glémin and Ronfort, 2013). Concerning deleterious mutations,
not only can selfing lead to (in general) a more efficient purge of the genetic
load (Glémin, 2003), it can also purge inbreeding load during the transi-
tion from outcrossing (Lande and Schemske, 1985; Charlesworth et al, 1990;
Porcher and Lande, 2005; Gervais et al, 2014) and even lead to lower genetic
loads (Charlesworth et al, 1990). As the evolution of selfing has been greatly
observed in marginal populations (Barrett, 2010), the already deteriorat-
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ing genetic and demographic background in populations where selfing has
evolved could be the reason why newly evolved selfing lineages are not long-
lived (Wright and Barrett, 2010). Though this explanation is plausible, it
would concern only certain populations in given conditions, making it insuf-
ficient. There is therefore no clear explanation for the higher extinction rates
observed in selfing lineages. Wright and Barrett’s (2010) hypothesis does
however lead to an important question: what are the potential demographic
consequences of a transition from strictly outcrossing to self-fertilising and
how do they influence population viability?

Models that have studied the transition from outcrossing to selfing have
done so by considering populations of fixed size (Charlesworth et al, 1990;
Porcher and Lande, 2005). Although several works have integrated ecologi-
cal or environmental factors in transition models (Cheptou and Dieckmann,
2002; Porcher and Lande, 2005; Porcher et al, 2009), to our knowledge none
have taken into account the interaction between selection and demography.
It has been suggested that depending on the intrinsic demographic and ge-
netic properties of a population, when the interaction between genetics and
demography is considered explicitly, different rates of self-fertilisation can in-
deed affect the probability of extinction (Abu Awad et al, 2014). One could
therefore argue that the genetic changes that could ensue (Charlesworth and
Wright, 2001) also lead to demographic consequences, hence leading to ex-
tinction during or after the transition. Here we present an individual based
model in which population size evolves as a consequence of the genetic load,
and self-fertilizing mutants are introduced into an initially outcrossing pop-
ulation at equilibrium in order to test this hypothesis.

4.3 Model

4.3.1 Deterministic model and expectations

As in (Abu Awad et al, 2014, presented in Chapter 3), we consider a popu-
lation of Nt hermaphroditic individuals at generation t, where

Nt = Nt−1Rt−1. (4.1)

Population size therefore depends on Rt, the absolute multiplicative fitness
of a population at a given generation t, with trait value (or relative fitness)
Wt, in a population of density Nt (Chevin and Lande, 2010) given by

Rt = r
1−Nt

K
0 Wt. (4.2)
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The environment is considered to have a constant carrying capacity of K.
The intrinsic reproductive rate of such a population is r0 ≥ 1 (Chevin and
Lande, 2010), and Wt is the mean relative fitness of individuals in the popula-
tion as a function of their mutation load. Therefore the number of segregating
or fixed deleterious mutations in the population can decrease the reproduc-
tive rate and eventually population size. In this model, we consider that
density dependence affects all individuals in the same way, independently of
their relative fitness (or genotype).

At equilibrium (in this case, mutation selection balance) when there is no
demographic stochasticity, population size Ndet is given by

Ndet = K

(
1 +

Ln(Weq)

Ln(r0)

)
. (4.3)

This implies that for a population to be viable (Ndet > 0), the mean relative
fitness at mutation-selection balance Weq must be greater than the threshold
value Wmin (obtained by solving for Ndet = 0 from equation 4.3), where

Wmin =
1

r0

. (4.4)

Initially, the population is made of strictly outcrossing individuals. The
deterministic mean relative fitness at a very large number of independent
loci of the population is approximately e−L (Haldane, 1937), where L is the
mutation load. We consider that at t = 0 there is a sudden transition of all
of the individuals in the population from strictly outcrossing to outcrossing
at a rate 1− α and self-fertilising at a rate α. As of this point, we consider
that all offspring produced by outcrossing have a fitness Wo = Weq, whereas
those produced by self-fertilisation will automatically have a mean relative
fitness Ws that is decreased by a factor δ, representing the effect of inbreeding
depression with

δ = 1− Ws

Wo

. (4.5)

Ws can therefore be expressed as a function of Wo, giving Ws = Wo(1 − δ).
The population’s new mean fitness is now Wα = (1 − α)Weq + αWeq(1 − δ)
which simplifies to Wα = Weq(1 − αδ). Demographically speaking, in order
for there to be a successful transition from outcrossing to selfing at a given
rate α, Ndet must remain greater than 0, hence Wα should remain greater
than Wmin (equation 4.4). Therefore for a population to successfully evolve a
rate of self-fertilisation α, it must have a level of inbreeding depression lower
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than δlim (obtained by solving for Wα = Wmin) given by

δlim =
r0Weq − 1

r0Weqα
. (4.6)

There exist two possible scenarios for the evolution of self-fertilisation,
either the purge of deleterious mutations is relatively slow compared to the
evolution of α (sudden transition) or there is sufficient time for deleterious
mutations to be purged during the transition. In the first scenario, Weq

in equation δlim does not change with α, hence the fitness of the popula-
tion remains fixed as it was before t = 0. In the second scenario, a rapid
purge implies that the mean fitness of the population changes with the rate
of self-fertilisation, increasing as α increases (Roze and Rousset, 2004). In
Abu Awad et al (2014), we find that the equations of population fitness pro-
vided in Roze and Rousset (2004) are accurate in estimating the mean fitness
of simulated populations. If there is no purge, we replace Weq in equation
4.6 with e−U for completely recessive mutations (dominance h = 0) and e−2U

for all other values of h >> 0, where U is the haploid genomic mutation
rate. In the second scenario where deleterious mutations are purged, Weq

is considered to change with the selfing rate α, but this occurs only when

h 6= 0 in which case it is replaced by Wdet = e−U
4h+α(1−4h)
2h+α(1−2h) (Roze and Rousset

2004). As fitness increases with α, the value of δlim greater in the second sce-
nario than in the first, implying that if the deleterious mutations are purged
then the evolution of selfing is facilitated demographically speaking as the
population will be less likely to go extinct.

4.3.2 Simulation Model

In order to follow the evolution of the selfing rate, we used an individual-
centred model with discrete non-overlapping generations. We consider a
population of variable size in a stable environment, made of diploid herma-
phroditic individuals. As in Abu Awad et al. (2014), at a given time t,
population size Nt is given by

Nt =

Nt−1∑
i=1

X i
t−1 (4.7)

where X i
t is the number of viable offspring an individual i at time t con-

tributes via the female function to the next generation. X i
t is sampled from

a Poisson distribution with mean Ri
t = W i

t r
1−Nt

K
0 (the individual reproduc-

tive rate), where W i
t is the individual’s relative fitness (see below for more
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details) and r0 is the intrinsic reproductive rate (which is the same for all
individuals).

The genetic properties of this model, mutation and recombination are
modelled as in (Roze, 2009). We consider that each individual is represented
by two homologous chromosomes of length 2D with a potentially infinite
number of loci. The map length is considered to be D from the centre of
the chromosome to the edge, hence representing a chromosome with a de-
fined centromere. Near the centromere, we have included a modifier locus
that affects the rate of self-fertilization. The life cycle is as follows: mu-
tation, selection, meiosis and reproduction. Recombination occurs during
gamete production and is considered to be uniform along the chromosome.
New individuals are a combination of two gametes, either from two differ-
ent individuals for reproduction via outcrossing, or the same individual via
selfing.

Self-fertilisation

If there is evolution to self-fertilisation, then self-fertilisation occurs at a
probability αit and is given by

αit =
αi0W

i
t

αi0W
i
t +

∑
j 6=i

(1−αj0)W j
t

Nt−1

, (4.8)

where αi0 is the proportion of an individual i’s male gametes that are available
for self-fertilization. As the probability of self-fertilization depends on the
individual’s relative fitness W i

t compared to the average relative fitness of the
other possible fathers in the population. The lower an individual’s relative
fitness as a father, the lower the proportion of offspring produced via selfing.
There is no limitation in the availability of male gametes. The proportion
of an individual’s offspring produced by self-fertilisation is sampled from a
binomial distribution with parameters αit and X i

t . At the beginning of all
simulations, αi0 = 0 for all individuals in the population as the population is
strictly outcrossing (the population is automatically considered non-viable if
Nt < 2).

Mutations

In this model we introduce two types of mutations: mutations at the modifier
locus that influence the rate of self-fertilisation by modifying αi0 and delete-
rious mutations that appear randomly throughout the chromosome but not
on the modifier locus. The number of new deleterious mutations occurring
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per chromosome per generation, is sampled from a Poisson distribution with
mean U , where 2U is the genomic mutation rate. Their position on the
chromosome is sampled from a uniform distribution in [−D,D].

As little is known of the mutations causing self-fertilisation arising in
natural populations we explore two types of mutations at the modifier locus.
The first type of mutation is the introduction of mutants with a fixed rate of
self-fertilisation d defined at the beginning of the simulation, i.e. there is only
one type of self-fertilising mutant and if it invades the population then the
population’s mean self-fertilisation rate is d. The second type of mutation
involves the continuous evolution of α0, with at every generation both self-
fertilizing and outcrossing individuals can mutate to have a new value of α0

that is sampled from a uniform distribution between −d and d around the
initial value, but the new value is bounded between 0 and 1. Therefore the
second type of mutation leads to a gradual evolution of selfing with mutations
of either large or small effects defining the rate of selfing (depending on the
value of d) until the stabilization of the population’s mean selfing rate, which
can go as high as 1. We consider that the alleles at the modifier locus are
co-dominant.

In order to facilitate the reading of the following sections, the notation
used through the text has been summarized in Table 4.3.1.

Initial conditions and simulations run

At the beginning of each simulation, we consider that the population is
strictly outcrossing (α0 = 0) with size K, no deleterious mutations present
and all individuals have the same identity at the modifier locus. At first,
only deleterious mutations are introduced. The simulations are run until the
population’s mean relative fitness W t reaches equilibrium or goes extinct.
We define equilibrium as the stabilization of W t, when the average W t over
one thousand generations varies les than 1 per cent compared to the aver-
age Wt of the previous thousand generations. Once at equilibrium, mutation
at the modifier locus is introduced and the simulations are run until the
stabilization of the mean rate of self-fertilization (detected using the same
method as for the relative fitness) or the population goes extinct. We keep
track of the frequency of all of the self-fertilising alleles in the population,
independently of the rate of self-fertilisation they induce. The level of in-
breeding depression at generation t is given by δt = 1 − Ws

Wo
, where Ws is

the fitness of offspring produced by self-fertilization and Wo is the fitness
of offspring produced though outcrossing. Every generation, 200 individuals
are sampled and the population’s δt is estimated by producing hypothetical
offspring through selfing and outcrossing. If population size Nt is smaller
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than 200 individuals, then the entire population is sampled.
Mean fitness W eq and the level of inbreeding depression δeq are measured

at the fitness equilibrium before the introduction of mutations at the modifier
locus. After the introduction of mutations at the modifier locus, once the
mean rate of self-fertilization α0 is stabilized, the population’s new mean
fitness W tr and level of inbreeding depression δtr are measured and compared
to those obtained at equilibrium before the introduction of mutations at the
modifier locus.

We ran simulations for an intrinsic reproductive rate r0 = 2, 4 and 10,
with a haploid genomic rate U between 0.1 and 0.3 for r0 = 2 (as for higher
values of U all populations went extinct) and U between 0.1 and 0.6 for the
other values of r0. Mutations were either mildly deleterious or moderately
deleterious (coefficient of selection s = 0.02 and 0.2), that were completely
recessive or moderately recessive (dominance h = 0 and 0.2). We considered
a recombination rate D = 10 as D over 10 has very little effect on the results,
which allows us to make the assumption that the mutations act as though
they were independent (Roze, 2012). However, it is possible, when there
is selfing, that there is some linkage due to the genomic consequences of
self-fertilization. Mutations at the modifier locus were either of fixed effect
d = 0.3, 0.6 and 0.9, or sampled around the initial value for d = 0.1 and
0.5. One thousand replicates were run for each group of parameter values,
coming to a total of 300000 simulations run.

We compare the values of the mean levels of inbreeding depression δ̂eq
and δ̂tr across all the simulations run in order to determine how the level of
inbreeding depression evolves after the transition to selfing. We also compare
these values of inbreeding from our simulations to our deterministic limit
of inbreeding depression δlim to test our deterministic predictions for the
maximal rate of self-fertilisation. The notation used throughout the Results
and Discussion is resumed in Table 4.3.1.
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Table 4.1: Notation.

V, V , V̂ No superscript indicates deterministic values (except in the case of pop-
ulation size N , where it is mentioned clearly in the text), a bar indicates
that the variable is the intra-population mean for one simulation run
(W eq is the mean genetic component of fitness for one population) and

a hat indicates that the variable is the mean across all simulations (Ŵeq

is the mean genetic component of fitness across all simulations, condi-
tional to survival).

N̂t Mean population size at generation t across all simulations conditional
to survival.

r0 The intrinsic reproductive rate.

Ŵeq, Ŵtr Mean population fitness at population equilibrium before the introduc-
tion of mutants at the modifier locus and at equilibrium after their
introduction across all simulations conditional to survival.

Wmin The threshold value of the population’s genetic component of fitness,
under which populations are not viable.

δ̂eq, δ̂tr Mean level of inbreeding depression at population equilibrium before the
introduction of mutants at the modifier locus and at equilibrium after
across all simulations conditional to survival.

δlim The threshold value of inbreeding depression (with or without the purge
of deleterious mutations affecting fitness) providing the limit of the rate
of self-fertilisation above which populations are not viable.

α0 The proportion of male gametes available for selfing. At the beginning
of each simulation it is set at 0.

α̂tr The proportion of male gametes available for selfing at equilibrium after
the introduction of mutations at the modifier locus across all simulations
conditional to survival.

U,D Genomic properties: the haploid mutation rate and the recombination
rate or map length.

s, h Mutational effects of deleterious mutations: the selection coefficient and
the dominance.

d The effect of the mutations at the modifier locus on the proportion of
available mate gametes for self-fertilisation. We consider two kinds of
mutations at the modifier locus, either new alleles at the modifier locus
will have a value d of α0 or new values of α0 are sampled from a uniform
distribution between −d and d around the initial value.
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4.4 Results

4.4.1 Initial levels of inbreeding depression and allelic
frequencies at the modifier locus

At equilibrium, before the introduction of mutations at the modifier locus,
the observed levels of inbreeding depression δ̂eq increase with the mutation
rate U and the coefficient of selection s, but decrease with the dominance
h (Figure 4.1a). The intrinsic reproductive rate r0 influences δ̂eq only when
there are very large differences in population sizes between the different values
of r0. This occurs when s = 0.02, h = 0.2 for U = 0.3 when r0 = 2 (none
of the simulations run for r0 = 2 with U > 0.3 were viable) and for U = 0.6

when r0 = 4. In these two cases, increasing r0 leads to a higher δ̂eq (results not
shown). As of this point, these populations will be referred to as “marginal”
as they have fitnesses close to Wmin (equation 4.4) and are hence at risk of
going extinct.

The initial levels of inbreeding depression provide some information on the
expected frequencies of mutant alleles at the modifier locus (Figure 4.1b). For
very high levels of initial inbreeding depression (≥ 0.8), which occurs when
deleterious mutations are completely recessive (h = 0), the frequencies of
mutant alleles at the modifier locus remain low. This is true for both types of
mutations at the modifier locus and independently of the value of d (results

not shown). The highest δ̂eq for which there is fixation is 0.547, however

having a δ̂eq lower than this value does not guarantee that the population
will be invaded by alleles at the modifier locus increasing self-fertilisation.
Whether fixation is possible or not and is associated with the “marginal”
nature of the population, and hence depends greatly on the coefficient of
selection s. Although most simulations run with “marginal” populations end,
when viable, with low to intermediate frequencies of the mutant modifier
alleles, we find that within a similar time frame there are a few cases of
fixation. This could be attributed to the stochastic nature of the mutational
history (and allele associations within the genome) within populations. In
these conditions, more often than not, a mutant increasing the rate of self-
fertilisation is associated with a genome carrying deleterious mutations that
are difficult to purge (discussed below), making the fixation of this mutant a
rare occurrence.
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Figure 4.1: a) δ̂eq (conditional to population survival) as a function of the muta-
tion rate U for r0 = 4. The full lines represent h = 0.2 and the dashed lines h = 0.
The circles are for s = 0.02 and the squares for s = 0.2. b) The mean frequency of
mutant modifier alleles at equilibrium conditional to survival as a function of δeq
for mutations at the modifier locus with a fixed value of d = 0.3 for r0 = 4. The
black plot markers represent h = 0.2 and the grey ones h = 0. The circles are for
s = 0.02 and the squares for s = 0.2.
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with fixed modifier effects d = 0.3, 0.6 and 0.9. α̂tr differs for s = 0.02 and s = 0.2,
but the values of d are always in ascending order from left to right for each value
of s. The circles are for s = 0.02 and the squares for s = 0.2.
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4.4.2 Purging deleterious mutations and the evolution
of self-fertilisation in viable populations

When populations are viable once self-fertilisation evolves we find that in
most cases the mean levels of inbreeding depression decrease and mean pop-
ulation fitnesses Ŵeq increase (see Figure 4.2). These changes are due to
the purge of deleterious mutations brought on by the increased rates of self-
fertilisation. In the cases where deleterious mutations cannot be purged, as
in Figure 4.2 where the ratios of δ̂tr and δ̂eq, as well as those between Ŵtr

and Ŵeq, are almost equal to 1, the mean rate of self-fertilisation remains
relatively small. In Figure 4.3 for parameter sets that allow little or no purge
(circles) the rates of self-fertilisation are well below those predicted by δlim
(Equation 4.3). This implies that although demographically the population
could survive the evolution of higher rates of self-fertilisation (as Ndet would
remain greater than 0, see equation 4.3), the increase in the frequency of self-
fertilising mutants is constrained by the cost of inbreeding depression. When
considering that the purge of deleterious mutations occurs rapidly relative
to the evolution of self-fertilisation we find that the demographic constraints
are small compared to when there is no purge (see full black line in Figure
4.3) and always predict the evolution of high self-fertilisation rates for the
observed levels of inbreeding depression.

When the mutant alleles at the modifier locus invade the population, we
find that the rate of self-fertilisation is equivalent to the proportion of self-
pollen available, the mean α0 of the population. Therefore when the mutants
at the modifier locus have a fixed d, the rate of self-fertilisation is equal to d
(see Figure 4.3). In simulations where α0 is allowed to evolve in small steps
(as the effect of the alleles at the modifier locus is sampled between −d and
d), populations present very high self-fertilisation rates, very close, but never
equal, to 1.

4.4.3 Extinction

In the previous sections we addressed the evolution of self-fertilisation in
viable populations. When populations go extinct in our simulations it is
for one of two reasons, either the initial parameter values were those result-
ing in “marginal” populations, or populations went extinct via mutational
meltdown. In the case of marginal populations, it is not clear whether the
introduction of the mutant modifier alleles influences the probability of ex-
tinction within a given time frame. There is however a slight indication that
this is the case. For marginal populations when r0 = 2 (but not for r0 = 4)
there is a clear increase of the proportion of extinct populations with increas-
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Figure 4.4: a) The evolution of population size Nt with time after the introduction
of mutations at the modifier locus (second transition regime, d = 0.5) for one
simulation run with r0 = 2, U = 0.2, s = 0.02 and h = 0.2. The dashed line
represents the moment in time when the population becomes strictly self-fertilising.
b) δeq (conditional to population survival) as a function of the proportion of extinct
populations post the introduction of mutations sampled between −d and d (d =
0.1) at the modifier locus for h = 0.2 and s = 0.02. The triangles, circles and
squares represent r0 = 2, 4 and 10 respectively.

ing d when d is a fixed value, rising from 10% to 98% extinction rates for
d = 0.3 and 0.9 respectively.

The observed mutational meltdowns occur only for s = 0.02 and when
the effects of mutations at the modifier locus are sampled between −d and d.
In these simulations, first there is loss of the initial modifier allele (initially
α0 = 0) and then, by chance, the population becomes strictly self-fertilising.
This then leads to the fixation and accumulation of deleterious alleles and to
the extinction of the population (see Figure 4.4a). Increasing the intrinsic
reproductive rate leads to lower rates of extinction due to the transition to
a strictly self-fertilising reproductive regime (Figure 4.4b)).

4.5 Discussion

4.5.1 The importance of inbreeding depression and de-
mography in the evolution of self-fertilisation

In this work we have explored how taking into account the interaction be-
tween selection and demography influences the evolution of self-fertilisation
in an initially outcrossing population. As predicted by previous models,
increasing the rate of self-fertilisation leads to a decrease in inbreeding de-
pression due to the purge of deleterious mutations, with greater coefficients of
selection s and dominance h leading to a more efficient purge (Charlesworth
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et al, 1990; Porcher and Lande, 2013). In Charlesworth et al (1990), the
authors proposed that for deleterious mutations of weak effect, if the level
of inbreeding depression is greater than 0.5 there would always be selection
against a modifier allele only slightly increasing the rate of self-fertilisation,
but that a modifier allele greatly increasing self-fertilisation would be selected
for. In our results, for δ̂eq ≥ 0.5 the types of mutations introduced seem to
have no effect on the probability of the evolution of self-fertilisation. This
could be due to the fact that in our model we introduce recurrent mutations
at the modifier locus, whereas in Charlesworth et al (1990) mutant alleles at
the modifier locus are introduced at a given frequency into the population
only once. The recurrent introduction of these mutants could therefore cre-
ate a gradual purge, eventually leading to favourable conditions for them to
increase in frequency.

The introduction of an interaction between population fitness and pop-
ulation size has not greatly influenced the genetic evolution of populations
(given that they are viable). We find that our analytical predictions of the
rates of self-fertilisation by considering that there are solely demographic con-
straints to the evolution of selfing (i.e. decreased number of offspring, hence
population decline and extinction) do not suffice. When there is no purge
of deleterious mutations, the predicted maximal rate of self-fertilisation in
Figure 4.3 is at around 0.3. However, none of the types of mutations at the
modifier locus lead to a level of self-fertilisation that is that high, generally
remaining below 0.1. The importance of introducing demography therefore
is not in furthering our understanding of the evolution of the rates of self-
fertilisation, but the viability of populations that do.

4.5.2 Evolutionary suicide and extinction of marginal
populations

That strictly selfing populations go extinct when mutations are mildly dele-
terious (s = 0.02) was not surprising as this had been predicted in a previous
model (Abu Awad et al, 2014). However, as this occurs in simulations where
the effect of mutations at the modifier locus that can either increase or de-
crease self-fertilisation, it is surprising that once the population was on the
decline, mutant alleles at the modifier locus decreasing the selfing rate were
not selected for. This can be explained by the fact that the levels of inbreed-
ing depression at such high selfing rates are low (see Figure 4.2,Charlesworth
et al 1990), and inbreeding depression also continues to decrease with pop-
ulation size (Bataillon and Kirkpatrick, 2000). In this scenario, in spite of
the decrease in population fitness due to the accumulation of deleterious mu-
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tations, the automatic advantage of self-fertilisation outweighs any potential
advantage of outcrossing. The role played by the intrinsic reproductive rate
R0 in decreasing the probability of these populations going extinct is mostly
due to higher population sizes for otherwise equal parameter sets. Increased
population size decreases the probability that a strictly self-fertilising modi-
fier allele goes to fixation due to genetic drift.

Whether what we have termed to be “marginal” populations have a higher
probability of going extinct because of the introduction of mutations at the
modifier locus remains unclear and should be tested further. It does however
seem plausible that perturbations in the reproductive system could engender
a greater genetic (hence demographic) stochasticity, eventually leading to a
decrease in fitness below the predicted threshold value Wmin and extinction.

4.5.3 Self-fertilisation: an evolutionary dead-end?

In a recent work on the phylogeny of the Solanaceae, Goldberg et al (2010)
came to the conclusion that the net diversification rates of self-fertilising
lineages were smaller than those of self-incompatible lineages due to higher
extinction rates. They concluded that this observation was due to species se-
lection, self-incompatible species presenting a long-term advantage. Natural
selection is short-sighted, a long-term advantage must therefore stem from a
short-term advantage. Models on the evolution of self-fertilisation have all
come to the same conclusion: in order to maintain outcrossing in the face of
recurrent introductions of self-fertilising mutants, a high level of inbreeding
depression is necessary. However, these conditions are rarely met in natural
populations. What then can explain the prevalence of outcrossing?

The hypothesis that self-fertilisation is a dead end has received consid-
erable attention, but has yet to be proven, as although self-fertilisation can
be disadvantageous (by decreasing genetic variability) it also presents both
genetic (purging of deleterious alleles) and demographic advantages (repro-
ductive assurance). Our results point to the possibility of an evolutionary
suicide that is independent of ecological constraints and due solely to the in-
teraction between population size and deleterious mutations. As most novel
deleterious mutations are of small effect (Agrawal and Whitlock 2011) and
it is only in cases where mutations were only slightly deleterious (s = 0.02)
that the mutational meltdown occurs, our results seem biologically plausible.
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Act 5

Conclusions and Perspectives

“They both savoured the strange warm glow of being
much more ignorant than ordinary people, who were
only ignorant of ordinary things.”

- Terry Pratchett (Equal Rites, 1987)
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5.1 Some demography can go a short (but

not negligible) way

Introducing demography into population genetics models is not necessarily
an easy task. The number of hours spent eating away at pen and staring
at a blank piece of paper, cursing the program you are using for not being
able to resolve these equations (even if they are rather complicated) should
be enough to put anyone off. However, the results are worth the time spent.
With this work we have in some cases validated the hypotheses of existing
population genetics models and conditions for which taking demography in
to account is not necessary. The work presented in Chapter 2.1 has clarified
when both selection and census take place for a give genetic load, something
as a masters student had never quite been clear to me. We also have presented
comprehensible relationships between the genetic load at a given locus and its
effect on population size. Clarke (1973) had also presented such relationships,
however in his model fitnesses were density dependent and his genetic load
was imposed. I aim to take this model a step further by first integrating
several timings of selection, for example for a given genotype there may be
better survival at the zygote stage by individuals are less fit when it comes to
mating success. The pleiotropy of mutations is well known, and if we consider
a mutation that decreases a metabolic function, it is intuitive that its effects
may not be constrained to a given moment in the life cycle. Second of all,
the preliminary work presented in Chapter 2.2 has aroused my curiosity and
I am preparing to integrate both somatic and germ-line mutations in order
to test my personal predictions of whether the simultaneous effects of these
mutations will be additive or have a more complex relationship when it comes
to the genetic load. I will also be expanding this model further to test the
timing of selection as in Chapter 2.1.

The multi-locus models presented in Chapters 3 and 4 were a result of
endless hours of programming, running simulations, re-programming and re-
running all million simulations all over again because of a bug. This work
however has comforted me in my initial reaction to the unintuitive existence
of populations with extremely low fitnesses. Though one of the drawbacks,
in my opinion, is that we have only tested a single demographic scenario, at
the same time, it was necessary to keep the simulations as simple as possi-
ble so as to avoid the drowning out of the separate parameter effects. The
finding of higher mutation rates actually increasing fitness and viability in
the case of highly linked mutations giving an advantage to outcrossers was
one of the surprising results of this work. From my point of view, this result
seems to support why highly self-fertilising species have such small chromo-
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somes. If only the chromosomal regions with higher rates of recombination
are maintained then extinction due to tightly linked loci is eliminated. Al-
though effective recombination rates are very low in selfers (Charlesworth,
2003), they may be high enough to eliminate a newly introduced deleterious
mutation.

The non-monotonic relationship between the rate of self-fertilisation and
population fitness observed for recessive mutations was at first quite surpris-
ing and unexpected. Though we have attributed this observation to being
due to the possible interaction between selection and demography, this does
not seem to be the case. During a discussion with Denis Roze he confirmed
to me that this observation occurs also in simulations where population size
is kept fixed. It is due to the fact that there exists some linkage between the
mutations that results from self-fertilisation. However, the observation that
populations with intermediate self-fertilisation rates can go extinct more of-
ten than either extreme does provide a possible explanation for the observed
outcrossing and self-fertilising rates in natural populations (Jarne and Auld,
2006).

After having obtained the results from the model in Chapter 3, I was
convinced that during a transition from outcrossing to self-fertilisation, as
the self-fertilisation rate evolved, its non-monotonic effect on fitness would
lead to it extinction. This however was not the case, a result that to me was
rather disappointing. That extinction was mainly due to the off-chance (in
some cases it was actually very frequent) self-fertilisation would evolve to 1
and go extinct by mutational meltdown was also surprising as the recurrent
mutations at the modifier locus could have prevented the maintenance of
such high self-fertilisation rates.

Introducing demography into population genetics models has provided
a possible means to evaluate what genetic parameters, such as the effects
and rates of introduction of deleterious mutations, are indeed reasonable
and how a decrease in the fitness of a given trait could potentially lead to
a decrease in population size. Although in most cases presented here, the
genetic properties of populations were not very different than those obtained
from models with fixed sizes, the exception is the case of selection on zygote
survival in Chapter 2.1. The non-monotonic fitness with increasing selection
has pointed to a potential relationship between the timing of selection and
the observed relationships between dominance and the coefficient of selection.
This finding further encourages taking the demographic components into
consideration if only to provide a clearer idea of how, for example, the timing
of selection can influence the interpretation of results obtained empirically.
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Epilogue

“Light thinks it travels faster than anything but it is
wrong. No matter how fast light travels it finds the
darkness has always got there first, and is waiting for
it.”

- Terry Pratchett (Reaperman, 1999)

Something that I come across regularly is the look of horror or sheer bore-
dom (in some cases both) of an audience made up of evolutionary biologists
and/or ecologists when the current slide being shown is one of a mathe-
matical equation. It has been suggested that this aversion to mathematics is
widespread, as works flaunting their mathematical innards (or equations) are
shunned (Fawcett and Higginson, 2012). The irony is that most of what we
do as evolutionary biologists and ecologists has stemmed from mathematical
works, from the Hardy-Weinberg law, to population dynamics and even to
statistically verifying whether two measurements of a given trait are signifi-
cantly different. The importance of mathematics in all biological disciplines
is undeniable (Karlin, 1984; May, 2004), yet so few seem conscious of this
fact. My goal in this short essay is not give a full history of how mathematics
has influenced the biological sciences (there are many reviews on the subject,
such as Gunawardena 2014), but a brief account of how this writer’s view of
mathematical modelling has evolved over time.

When I first decided to go into biology I knew nothing of mathematical
models in biology. From the outside, as a molecular biologist, mathematics
didn’t seem to have its place in my discipline other than for statistical pur-
poses or measuring enzyme reactions and so forth. Everything that could
be known about evolution was already known. Everything that had to do
with mathematics was already known. The reader can therefore imagine my
surprise when I realised that biology and mathematics are living, breathing,
-dare I say it?- evolving disciplines. There seems to be some lack of informa-
tion somewhere along the line. How is it that while within the educational
system we are not conscious of all that we do not yet understand on a fun-
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damental level? Biology is presented as an empirical science in which theory
has nothing to offer.

When I stumbled upon modelling population dynamics during my mas-
ter’s degree, I was in awe. What was this side of biology that had been kept
hidden all of these years? I had discovered the cave of wonders. Theoretical
and mathematical approaches in biology offer (almost) endless possibilities.
My current thesis has focused on understanding the impact of deleterious
mutations both on a demographic and genetic level. Due to the difficulty of
accessing the mutational history and the frequencies of deleterious mutations
of both individuals and populations, tackling these questions empirically is
something we don’t have the technologies for. Theory can and already has
provided a basis for future empirical works, explanations for current obser-
vations and predictive models (i.e. in predicting the evolution of life-history
traits, Stearns and Koella 1986).

My first experience in modelling was writing a seemingly over-simplified
multi-locus program, which at the time I thought too biologically unrealis-
tic. As I progressed to writing analytical models, I started to understand the
satisfaction in obtaining clear results, knowing which parameter did what.
The simplicity of mathematical models is key, as are the assumptions made.
I am now steering further and further away from complex models and have
become somewhat critical of computer simulations using digital organisms
(Elena et al, 2007). However, when scanning Postdoctoral offers, most theo-
retical works aim to develop such “realistic” hyper-parametered simulations.
This leaves me to question whether the availability of such approaches is
not linked to the sense that more fundamental models are too simplistic or
perhaps to biologists’ lack of mathematical know-how. In both cases, it is
clear that biologists need to be re-introduced to mathematics for a better
understanding of their own theoretical approaches.

In their introductory paragraph, Crow and Kimura (1970) stated that
they preferred “generality and realism to precision and rigour”. Seeing how
complex biological systems are, it is only natural that some rigour be sac-
rificed. Mathematical models are all about assumptions, which is why it is
necessary, in my opinion, to test these assumptions. As Gunawardena (2014)
stated, “Reproducibility improves credibility.” If by using a separate math-
ematical approach we find the same response, then that serves to validate
a previous model. A perfect example of this is Coron et al’s (2013) more
rigorous mathematical proof of what Lande (1994) had found intuitively,
the existence of the mutational meltdown. Coron et al (2013) also provided
clearer limitations and more detailed consequences of both the demographic
and genetic parameters taken into account. Just because something has been
proven, that should not be a barrier to going back with new points of view
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and new approaches in order to test them again. The main and very per-
sonal goal of my thesis was just that: testing the assumptions we have made
about population demography in population genetics models. We have both
confirmed their validity and refuted them, these assumptions do not always
hold. But these results are ”true” if and only if, we accept the assumptions
and limits of the models presented in this thesis. Testing these assumptions
will be a next step.
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Gametophytic self-incompatibility (GSI) is a widespread genetic system, which enables hermaphroditic plants to avoid self-

fertilization and mating with close relatives. Inbreeding depression is thought to be the major force maintaining SI; however,

inbreeding depression is a dynamical variable that depends in particular on the mating system. In this article we use multilocus,

individual-based simulations to examine the coevolution of SI and inbreeding depression within finite populations. We focus

on the conditions for the maintenance of SI when self-compatible (SC) mutants are introduced in the population by recurrent

mutation, and compare simulation results with predictions from an analytical model treating inbreeding depression as a fixed

parameter (thereby neglecting effects of purging within the SC subpopulation). In agreement with previous models, we observe

that the maintenance of SI is associated with high inbreeding depression and is facilitated by high rates of self-pollination. Purging

of deleterious mutations by SC mutants has little effect on the spread of those mutants as long as most deleterious alleles have

weak fitness effects: in this case, the genetic architecture of inbreeding depression has little effect on the maintenance of SI. By

contrast, purging may greatly enhance the spread of SC mutants when deleterious alleles have strong fitness effects.

KEY WORDS: Deleterious mutation, inbreeding depression, purging, self-incompatibility.

Self-incompatibility (SI) is a genetic system that enables

hermaphroditic plants to avoid self-fertilization and limit mat-

ing with close relatives by recognition and rejection by the pis-

til of pollen expressing cognate specificities. In many species,

SI specificity is controlled by a single multiallelic locus, the

S-locus. SI is widespread, found in more than 100 families of

angiosperms (Igic et al. 2008) despite the fact that it entails a

transmission disadvantage. Indeed, a self-compatible (SC) mu-

tant occurring in an SI population should benefit from a higher

number of potential mates, and from a transmission advantage

through self-fertilization. This last advantage is equal to two-

thirds (Charlesworth and Charlesworth 1979), and is thus higher

than the 50% advantage of an allele coding for selfing in an out-

crossing population (Fisher 1941), because only the SC pollen

contributes to the selfed offspring in heterozygous individuals for

SC. Recently, it has been argued that SI may be maintained by

selection acting at the species level, due to the fact that SI species

diversify at higher rates (Goldberg et al. 2010). This form of se-

lection only acts in the long term, however, and implies that SC

mutations should occur very rarely. The main advantage of SI

that could possibly explain its maintenance in the short term is

the avoidance of inbreeding depression (e.g., Charlesworth and

Charlesworth 1987). However, Charlesworth and Charlesworth

(1979) showed that for SI to be maintained in the presence of SC

mutants, inbreeding depression has to be high; its minimal value

depends on the number of SI alleles segregating in the popula-

tion and on the selfing rate of SC mutants, but is often close to

Two-thirds when the number of SI alleles is large—this minimal

1
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value is higher and may even reach 1 when the number of SI

alleles is not large and the selfing rate of SC mutants is small

to moderate, as SC mutants also benefit from a higher number

of potential mates. Furthermore, the minimal value of inbreed-

ing depression needed to maintain SI may be underestimated by

Charlesworth and Charlesworth’s (1979) model because inbreed-

ing depression was treated as a fixed variable, therefore neglecting

the effect of purging of deleterious alleles by the self-fertilizing SC

individuals. Purging is expected to facilitate the spread of SC mu-

tants, as these mutants tend to better eliminate partially recessive

deleterious alleles, thereby reducing the magnitude of inbreeding

depression experienced by their selfed offspring (Uyenoyama and

Waller 1991; Glémin 2003). This was confirmed by a determin-

istic simulation model by Porcher and Lande (2005), assuming

that a given proportion of self-pollen lands on the stigma (“mass-

action” pollination model, Holsinger 1991) and that inbreeding

depression results from recessive lethal mutations segregating at

a very large (effectively infinite) number of loci (Kondrashov

1985). In this model, invasion of an SI population by an SC mu-

tant (i.e., the breakdown of SI) is easier than expected from results

of Charlesworth and Charlesworth (1979), in particular when the

selfing rate of SC mutants is moderate to high (so that purging can

occur). Porcher and Lande (2005) also observed that in a small

region of parameter space (namely, for high values of inbreed-

ing depression and low selfing rates), the population may reach

a stable, polymorphic equilibrium in which both SI and SC indi-

viduals are present. This observation is important in the context

of how new SI specificities may arise through SC intermediates,

assuming that compensatory mutations may secondarily restore

a novel SI functionality (Uyenoyama et al. 2001; Gervais et al.

2011).

Although Porcher and Lande (2005) model showed that con-

sidering the joint dynamics of SI and inbreeding depression may

strongly affect predictions concerning the maintenance of SI, the

fact that they considered lethal mutations may overestimate the

importance of purging in situations in which inbreeding depres-

sion is (at least partly) generated by mildly recessive deleterious

alleles. Indeed, analytical models have shown that the advantage

of a selfing modifier through purging is expected to increase with

the strength of selection against deleterious alleles (Uyenoyama

and Waller 1991; Epinat and Lenormand 2009), which was also

observed in deterministic simulations representing the spread of

a mutation affecting the selfing rate (Charlesworth et al. 1990).

More recently, Porcher and Lande (2013) showed that the effect

of purging on the spread of a mutation affecting selfing is much

lower when the strength of selection against deleterious alleles is

mild (s = 0.05) than when it is strong (s = 1). However, Porcher

and Lande (2013) only considered weak-effect selfing modifiers

(changing the selfing rate by 10−6), and the effect of purging may

be stronger in the case of a mutation having a large effect on the

selfing rate (Charlesworth et al. 1990) such as a mutation disrupt-

ing SI. Because the results of Porcher and Lande (2005) showed

that purging may strongly limit conditions for the maintenance

of SI in the presence of lethal recessive mutations, it is important

to assess the generality of this result (in particular to situations

in which a substantial proportion of mutations are mildly delete-

rious) to better understand how SI can be maintained in natural

populations (note that Porcher and Lande (2005) also considered

situations in which inbreeding depression is partly due to mildly

deleterious mutations, but this component of inbreeding depres-

sion was not dynamic in their model).

All previous simulation models explicitly considering the

genetic basis of inbreeding depression (Charlesworth et al. 1990;

Porcher and Lande 2005, 2013) were based on Kondrashov (1985)

model, representing the dynamics of deleterious alleles at an in-

finite number of unlinked loci, in an infinite population. In prin-

ciple, genetic linkage should increase the effect of purging, by

increasing the association between SC alleles and purged genetic

backgrounds; however, whether the effect of linkage is substan-

tial for realistic values of genomic recombination rates is un-

clear. Furthermore, genetic linkage to the S-locus may affect the

dynamics of deleterious alleles (“sheltered load,” Glémin et al.

2001; Porcher and Lande 2005), in turn affecting the conditions

for the maintenance of SI. Finite population size is expected to

affect the number of SI alleles maintained in the population—

which depends both on population size and on the mutation rate

toward new SI alleles (Yokoyama and Hetherington 1982). Be-

cause conditions for the maintenance of SI depend on the number

of SI alleles segregating (Charlesworth and Charlesworth 1979;

Porcher and Lande 2005; Gervais et al. 2011), they should thus be

affected by population size. Furthermore, the number of SI alle-

les may also change as SC mutants increase in frequency, which

may in turn affect the conditions needed to maintain SI and SC

individuals at a polymorphic equilibrium (Gervais et al. 2011).

In this article, we use a multilocus individual-based simu-

lation program to explore the conditions for the maintenance of

SI when inbreeding depression is generated by deleterious alleles

segregating at a large number of partially linked loci in a finite

population. Our model also differs from the previous models cited

above by assuming that inbreeding depression affects both seed

and pollen production, which in turn affects the selfing rate of SC

individuals (as it depends on the quantity of self-pollen relative to

the quantity of pollen received from other individuals). We show

that in many cases, conditions for the maintenance of SI are sim-

ilar to those obtained from an analytical model assuming fixed

inbreeding depression (i.e., the effect of purging on the spread

of SC mutants remains small), unless a substantial proportion

of deleterious mutations have strong fitness effects. Linkage has

only little effect for the parameter values tested, as long as the

mean number of crossovers per genome (i.e., genetic map length)
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is not too small. Finally, we almost never observe a polymorphic

equilibrium, which is probably due to the fact that the number

of SI alleles decreases as SC individuals increase in frequency,

further enhancing the advantage of self-compatibility.

Methods
We consider a population with a GSI system, that is, fertilization

is possible only if the specificity expressed by the pollen is dif-

ferent from the two specificities codominantly expressed in the

style. Specificities are subject to negative frequency-dependent

selection, because pollen bearing rare specificities can fertilize

more individuals than pollen bearing more common specificities

(Wright 1939). We assume that SI is coded by a single S-locus

with many alleles (denoted Si ): a plant with genotype Si S j (i �= j)

is self-incompatible and can be fertilized by pollen of genotype

Sl , with l �= i and l �= j . We also consider a mutant, SC allele

SC segregating at the same locus: pollen carrying SC can fertilize

all plants, whereas a plant with genotype Si SC is partially SC

(through its SC pollen) and can be fertilized by any pollen whose

genotype is different from Si . Finally, SC SC individuals are fully

SC and can be fertilized by any pollen. A parameter α measures

the proportion of pollen produced by a plant that stays on the

same plant (“self-pollen”), leading to self-fertilization if it carries

the SC allele. We assume that selfed offspring suffer from in-

breeding depression, generated by partially recessive deleterious

alleles segregating at a number of different loci. Several selective

forces may affect the frequency of the SC allele: (1) automatic

transmission advantage through selfing, when α > 0; (2) trans-

mission advantage through outcrossing, as SC pollen can fertilize

all plants; (3) negative consequences of increased homozygosity

due to selfing on the mean fitness of offspring (inbreeding depres-

sion); and (4) indirect benefits stemming from a better elimination

of deleterious alleles as a consequence of increased homozygosity

(purging). This last effect occurs more rapidly when deleterious

alleles have stronger effects (e.g., Charlesworth and Willis 2009).

SC is thus favored by effects (1), (2), and (4), and disfavored by

effect (3); but note that purging also tends to reduce inbreeding de-

pression. In the following, we use a multilocus, individual-based

simulation model to represent explicitly the genetic causes of ef-

fects (3) and (4) (inbreeding depression and purging). Results on

the spread of SC are compared to the predictions of a simple ana-

lytical model in which effect (4) is ignored by treating inbreeding

depression as a fixed parameter.

ANALYTICAL MODEL

Our analytical model represents an infinite population with dis-

crete, nonoverlapping generations. We assume that n + 1 alleles

segregate at the S-locus: n self-incompatible alleles and the SC

SC allele. We denote x1 and x2 the frequencies of SC SC individ-

uals produced by selfing (x1) and by outcrossing (x2), and x3 and

x4 the frequencies of Si SC individuals produced by selfing (x3)

and by outcrossing (x4), where Si can be any SI allele. We sup-

pose that selfed individuals produce fewer gametes (inbreeding

depression), the number of male and female gametes produced

by outcrossed individuals being proportional to W2 = W4 = 1,

whereas the number of gametes produced by selfed individuals

is proportional to W1 = W3 = 1 − δ; mean fecundity W is thus

given by 1 − δ(x1 + x3). The selfing rate ai (proportion of selfed

seeds) of an individual of type i (1, 2, 3 or 4) is given by

ai = α θi Wi

αWi + (1 − α)W
, (1)

where θi = 1 for i = 1, 2 and θi = 1/2 for i = 3, 4. The nu-

merator of equation (1) represents the quantity of compatible

self-pollen (bearing allele SC ), whereas the denominator is the

total quantity of pollen received by the individual. The frequency

of allele SC among gametes is given by q = ∑
i θi Wi xi/W ,

whereas, by symmetry, each SI allele is present in frequency

p = (1 − q)/n. From this, frequencies at the next generation are

given by the following:

W x ′
1 = W1 a1 x1 + W2 a2 x2 + 1

2
W3 a3 x3 + 1

2
W4 a4 x4,

W x ′
2 = W1 (1 − a1) q x1 + W2 (1 − a2) q x2

+ [W3 (1 − a3) x3 + W4 (1 − a4) x4] q

2 (1 − p)
,

W x ′
3 = 1

2
W3 a3 x3 + 1

2
W4 a4 x4, (2)

W x ′
4 = W1 (1 − a1) (1 − q) x1 + W2 (1 − a2) (1 − q) x2

+1

2
W3 (1 − a3) x3 + 1

2
W4 (1 − a4) x4

+ (1 − x1 − x2 − x3 − x4)
q

2 (1 − p)
.

In the Supplementary Material, we use a local stability anal-

ysis to determine the values of α, n, and δ for which SC increases

in frequency when rare (which involves solving a fourth-order

equation in δ numerically).

MULTILOCUS SIMULATIONS

Individual-based, multilocus simulations were used to explore

the conditions for the maintenance of SI when deleterious alleles

segregate at a large number of partly linked loci, and when the

number of SI alleles evolves freely by mutation, selection, and

drift. The simulation program (written in C++, and available

from Dryad) corresponds to a modified version of the program

described in Roze and Michod (2010), representing a population

of N diploid individuals (the parameters used in the simulation

EVOLUTION 2014 3
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Table 1. Parameters and default values used in simulations.

Description Symbol Default Value

Population size N 2000
Mean number of crossovers per genome per generation L 10
Proportion of self-pollen α

Selection coefficient of deleterious mutations s 0.05
Dominance coefficient of deleterious mutations h 0.2
Rate of deleterious mutation per haploid genome U
Rate of mutation from Si to any Sj (with j �= i) USI 10−5

Rate of mutation from Si to SC USC 10−4

model are summarized in Table 1). Each individual possesses

two copies of a linear chromosome, and an S-locus located at

the midpoint of the chromosome. We assume that a maximum

of k + 1 alleles can segregate at the S-locus: k self-incompatible

alleles Si (1 ≤ i ≤ k) and an SC allele SC ; k is fixed at 100 in all

simulations. Every generation, each Si allele mutates to any of the

k − 1 other SI alleles with probability USI and to allele SC with

probability USC (loss of SI). There is no reverse mutation from

SC to Si , that is, loss of SI is irreversible. Deleterious mutations

occur at a rate U per haploid genome, that is, the number of

new deleterious mutations on each chromosome is drawn from

a Poisson distribution with parameter U , whereas the position

of each new mutation along the chromosome is sampled from a

(continuous) uniform distribution—the number of sites at which

deleterious alleles may segregate is thus effectively infinite. All

deleterious mutations have the same selection and dominance

coefficients (s and h respectively), although we also consider

cases in which a given proportion of mutations are lethal (as

detailed below). Reproduction occurs as follows: for each of the N

individuals of the next generation the maternal parent is sampled

randomly among all individuals of the previous generation, the

probability of sampling parent i being proportional to its fecundity

Wi = (1 − hs)Nhe (1 − s)Nho , where Nhe and Nho are the number

of mutations in the heterozygous and homozygous state within its

genome. If the maternal plant carries at least one SC allele SC , its

selfing rate ai is calculated as follows:

ai = α γi i Wi

α γi i Wi + 1−α
N−1

∑
j �=i γi j W j

, (3)

where γi j is 0, 1, or 2 and represents the number of individual

j’s S-alleles that are compatible with individual i . In the case of

selfing, the offspring’s genome is formed from two of i’s recom-

binant gametes; otherwise an individual j is sampled randomly

with a probability proportional to W j , and contributes as a fa-

ther only if one of its S-alleles is compatible with those of the

mother (if not, another individual is sampled until a compatible

partner is found). To form a recombinant gamete, the number

of crossovers occurring along the chromosome is drawn from a

Poisson distribution with parameter L (genome map length, in

Morgans) and the position of each crossover is sampled from a

uniform distribution.

At the beginning of each simulation, individuals are free of

deleterious mutations and heterozygous for randomly sampled

SI alleles. During the first 2000 generations, the number of SI

alleles segregating in the population is allowed to reach equilib-

rium by considering only mutation between SI alleles (USC = 0,

U = 0). Deleterious mutations are then introduced and allowed

to reach mutation-selection balance over the next 2000 genera-

tions. Finally, during the next 500,000 generations, SC mutants

are also introduced. Because loss of SI is irreversible, simulations

are stopped after 50,000 generations if SC is fixed in the pop-

ulation. Every 100 generations, different variables are measured

from the population: the frequency of allele SC , the effective num-

ber of SI alleles present and the level of inbreeding depression.

The effective number of SI alleles ne (measured before allele SC

is introduced) corresponds to the number of alleles that would

yield the same genetic diversity at the S-locus if all alleles were

present in frequency 1/ne; it is calculated as ne = 1/
∑k

i=1 p2
i ,

where pi is the frequency of allele Si . Inbreeding depression is

measured as δ = 1 − Ws/Wo, where Ws and Wo are the mean

fecundities of selfed and outcrossed offspring, respectively (esti-

mated by creating 100 selfed and 100 outcrossed offspring from

randomly sampled parents, without taking into account the com-

patibility between their S-alleles). For each simulation run, δ and

ne are averaged over the last 50 samples before introduction of

SC mutants, whereas the frequency of SC is averaged over the

last 300 samples of the simulation (last 30,000 generations). The

minimal value of δ necessary to maintain SI in the population is

determined by running simulations with increasing values of U

for each set of parameters values (USI , USC , s, h, N , L , and α).

When the frequency of SC stays lower than 0.05 throughout the

simulation, SI is considered maintained.
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Figure 1. Minimal inbreeding depression needed to prevent in-

vasion of an SI population by an SC mutant, when the genetic

load depends only on small-effect deleterious alleles, and for dif-

ferent population sizes N. The points correspond to multilocus

simulation results and the curves to analytical predictions. Circles,

dashed curve: N = 500; squares, solid curve: N = 2000; triangles,

thick curve: N = 5000. Other parameter values: L = 10, s = 0.05,

h = 0.2.

Results
MILDLY DELETERIOUS MUTATIONS

Figure 1 shows the minimal value of inbreeding depression δ

necessary to maintain SI in the population as a function of the

rate of self-pollination α, for different values of population size

N . In all figures, the highest value of inbreeding depression (in

the absence of SC ) for which we observed that SC invades the

population (i.e., reaches frequency 0.05) is just slightly below

the points (see Fig. S3 for more detailed results). In almost all

simulations the frequency of SC at equilibrium was either close

to zero or equal to 1. Note that because the loss of SI is irre-

versible in our model (no back mutation from SC to SI), one

expects that allele SC should necessarily become fixed after a suf-

ficiently long time. However, changing the number of generations

with USC > 0 to 105 or to 106 did not lead to significant differ-

ences in the threshold values of δ shown in Figure 1 (results not

shown), suggesting that as one enters the area above the points,

the expected fixation time of SC quickly reaches extremely high

values (i.e., SI is stably maintained). In the same vein, increas-

ing the mutation rate towards SC (USC ) from 10−5 to 10−4 has

very little effect on the results (not shown). In a few cases, SC

was still polymorphic at the end of the simulation (at frequency

>0.05), or the time to fixation of SC was higher than the average

time to fixation of a neutral allele (4N generations), suggesting

that selection may maintain polymorphism for these parameter

values. However, this was only observed for narrow parameter

ranges at the leftmost limit of the region in which SI is maintained

(see Fig. S3).

Curves on Figure 1 correspond to the predictions derived

from the analytical model (neglecting the effect of genetic as-

sociations between the S-locus and selected loci), in which the

number of SI alleles n is set to the average effective number of

alleles ne measured in simulations corresponding to the critical

δ. Overall, simulation results are qualitatively and quantitatively

consistent with these analytical expectations: maintenance of SI

is always observed when inbreeding depression is high (δ > 2/3),

the critical δ being lower when the self-pollination rate α is higher,

in agreement with previous results neglecting effects of purging

(Charlesworth and Charlesworth 1979; Uyenoyama et al. 2001).

The effect of population size N on the critical δ is due to the fact

that the effective number of SI alleles is reduced in smaller pop-

ulations through the loss of low-frequency alleles by drift (e.g.,

Yokoyama and Hetherington 1982): on average ne at the critical δ

equals 11.9, 23.0, and 36.4 for N = 500, 2000, and 5000, respec-

tively. Lower effective numbers of SI alleles favor the spread of

SC by increasing the transmission advantage of SC through out-

crossing, as SC pollen never encounters incompatible pistils and

can fertilize every potential mate in the population (Charlesworth

and Charlesworth 1979; Porcher and Lande 2005; Gervais et al.

2011). Simulations for different values of USI (rate of mutation

toward new SI alleles) show that increasing USI (with N USI =
0, 0.02, and 0.2) has similar effects as increasing N (Fig. S1).

Overall, the good match between the simulation results (with

purging) and predictions from the analytical model (without purg-

ing) indicates that purging has little effect on the spread of SC for

these parameter values. Note that the analytical model systemati-

cally underestimates the critical δ for SI to be maintained, which

suggests that some purging may still be taking place. In most

cases however, the discrepancy remains slight, suggesting that

the magnitude of this effect is low, except when α increases and

hence the selfing rate of SC individuals becomes more important.

The effect of purging on the spread of SC should be more impor-

tant when selection against deleterious alleles is stronger (e.g.,

Charlesworth et al. 1990), as deleterious alleles are eliminated

more rapidly when present in homozygotes, and as the benefit

of being associated with chromosomes carrying fewer deleteri-

ous alleles is stronger. In agreement with this prediction, Figure

2 shows that discrepancies between analytical and simulation re-

sults becomes more important for higher values of s and h. One

can also see from Figure 2 that, at the critical δ, s has little effect on

the effective number of SI alleles ne maintained in the population

(the curves on Fig. 2 A are almost superposed), whereas higher

values of h lead to lower values of ne. This is likely due to the fact

that ne is affected by background selection (reduction in diversity

due to selection at linked sites, e.g., Charlesworth 1993). Indeed,

background selection is stronger when the deleterious mutation

rate U is higher (e.g., Hudson and Kaplan 1995), and higher val-

ues of U are needed to reach the critical δ when h is increased,
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Figure 2. Minimal inbreeding depression needed to prevent in-

vasion of an SI population by an SC mutant, when the genetic load

depends only on small-effect deleterious alleles, and for different

selection (A) and dominance (B) coefficients of deleterious alle-

les. The points correspond to multilocus simulation results and the

curves to analytical predictions. (A) circles, dashed curve: s = 0.02;

squares, solid curve: s = 0.05; triangles, thick curve: s = 0.1. (B) Cir-

cles, dashed curve: h = 0.1; squares, solid curve: h = 0.2; triangles,

thick curve: h = 0.3. Other parameter values: N = 2000, L = 10,

h = 0.2 (in A), s = 0.05 (in B).

leading to stronger background selection effects at the critical δ.

By contrast, δ is only weakly dependent on s (as long as pop-

ulation size is sufficiently large, e.g., Bataillon and Kirkpatrick

2000), and s has thus little effect on the strength of background

selection at the critical δ. Finally, we find that varying map

length L has relatively little effect on the results as long as it

is sufficiently large (roughly, L > 5 using our default param-

eter values shown in Table 1). Figure S2 shows that reducing

L decreases the effective number of SI alleles (background se-

lection) and increases selection for SC through purging (higher

discrepancy between analytical and simulation results when L is

lower), both effects reducing the parameter range in which SI is

maintained.

ADDING A PROPORTION OF NEARLY RECESSIVE

LETHAL MUTATIONS

Using a deterministic model in which mutations generating in-

breeding depression are lethal and nearly recessive, Porcher and

Lande (2005) found much more stringent conditions for the main-

tenance of SI than those shown on Figures 1 and 2. We modified

our simulation program so that a proportion λ of deleterious mu-

tations are nearly recessive lethals (selection and dominance co-

efficients: sl = 1 and hl = 0.02, respectively) whereas the other

mutations (in proportion 1 − λ) are mildly deleterious (s = 0.05

and h = 0.2). As shown by Figure 3, the discrepancy between

analytical and simulation results becomes stronger as λ increases,

and the parameter range in which SI is maintained is consider-

ably reduced. In particular, allele SC invades the population for

much larger values of inbreeding depression when the rate of self-

pollination α is high, so that individuals carrying SC frequently

self. The proportion of lethal mutations has almost no effect on

the effective number of SI alleles maintained in the absence of

SC , and therefore the analytical predictions are nearly unaffected

by λ (curves on Fig. 3 are nearly superposed).

Discussion
SI (and especially GSI) is widespread among angiosperms, de-

spite the fact that SC mutants should benefit from a direct trans-

mission advantage. Different models have shown that, provided

that it is sufficiently high, inbreeding depression can allow the

stability of SI despite the recurrent occurrence of SC mutants

(Charlesworth and Charlesworth 1979; Uyenoyama et al. 2001;

Porcher and Lande 2005; Gervais et al. 2011). However, these

models differ in the way inbreeding depression is introduced:

some models treat inbreeding depression as a fixed parameter,

thereby neglecting the effects of purging within SC backgrounds

(Charlesworth and Charlesworth 1979; Uyenoyama et al. 2001;

Gervais et al. 2011), whereas the model by Porcher and Lande

(2005) explicitly represents the genetic architecture of inbreeding

depression (infinite number of unlinked loci subject to reces-

sive lethal mutations) and shows that purging can dramatically

decrease the parameter range in which SI is maintained, in partic-

ular when the selfing rate of SC mutants is high. The importance

of this effect should, in principle, depend on the genetic basis

of inbreeding depression, because purging may occur over just a

few generations when deleterious alleles are highly deleterious,

but much more slowly when mutations tend to have weak fitness

effects. In this article, we compare predictions from an analyti-

cal model assuming fixed inbreeding depression to the results of

multilocus simulations in which deleterious alleles occur along

a linear genetic map, to assess the importance of purging on the

spread of SC mutants. When inbreeding depression is mainly due

to weak-effect mutations, purging has limited effects. In most
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Figure 3. Minimal inbreeding depression needed to prevent invasion of an SI population by an SC mutant, when the genetic load

depends on a mix of small-effect and nearly recessive lethal deleterious alleles, and for different proportions λ of lethal mutations. The

points correspond to multilocus simulation results and the curves to analytical predictions. Mildly deleterious mutations: s = 0.05 and

h = 0.2. Nearly recessive lethal mutations: s = 1 and h = 0.02. Other parameter values: N = 2000, L = 10.

cases, maintenance of SI mainly depends on the number of SI

alleles segregating in the population, the rate of self-pollination,

and inbreeding depression, independently of population size and

the genetic architecture of inbreeding depression—a similar result

was obtained recently by Porcher and Lande (2013) on the evolu-

tion of self-fertilization through weak-effect modifiers. Note that

our model does not incorporate pollen limitation, which would

tend to favor the loss of SI (Porcher and Lande 2005). However,

our results relative to the effect of purging should remain valid

in the presence of pollen limitation: pollen limitation adds direct

selection for self-compatibility, but should not modify the indirect

effect of deleterious alleles on SC mutants.

Although our current knowledge on the genetic basis of in-

breeding depression remains fragmentary, several lines of evi-

dence suggest an important role of mutations of small effects

(Carr and Dudash 2003; Charlesworth and Willis 2009), al-

though a study by Fox et al. (2010) showed a rapid reduc-

tion of inbreeding depression after several generations of in-

breeding, indicating a potentially important effect of strongly

deleterious mutations. More experimental work is thus nec-

essary to assess whether purging is susceptible to signifi-

cantly affect the spread of SC mutants within self-incompatible

populations.

Finally, we almost never observe stable polymorphic equi-

libria involving both SI and SC alleles (except for restricted cases

involving very high inbreeding depression and low rates of self-

pollination). This stands in contrast to previous models involving

infinite populations (Uyenoyama et al. 2001; Porcher and Lande

2005; Gervais et al. 2011), in which wider regions of parameter

space allowing polymorphism were observed. A possible expla-

nation for this discrepancy is that, in infinite populations, the

number of SI alleles stays constant and is not affected by the

frequency of SC, whereas in our model the number of SI alleles

decreases as SC increases in frequency (because the size of the

SI subpopulation decreases). The decrease in number of SI alle-

les tends to favor SC, whose frequency can further increase until

reaching fixation. This result is consistent with the fact that SC

alleles are rarely found in natural SI populations (Stone 2002),

although some cases have been reported in which SI appears to be

quantitative rather than qualitative, with some partially SC alleles

(Mena-Ali and Stephenson 2007; Paape et al. 2011). The lack of

polymorphic equilibria should impose restrictions on the evolu-

tion of new SI specificities. In the present model we assume that

new SI alleles appear in a single mutational step, but in reality

the evolution of a new specificity involves at least two mutations:

one affecting the protein expressed by the pollen and the other

the receptor expressed by the pistil (both genes being part of the

S-locus). Most scenarios for the evolution of new specificities

rely on an intermediate step involving a SC mutant present at an

intermediate frequency in the population (e.g., Uyenoyama et al.

2001; Gervais et al. 2011), which should become more difficult

in the absence of polymorphic equilibrium (unless the mutation

rate at the S-locus is sufficiently high, so that a compensatory mu-

tation can appear before SC reaches fixation). Furthermore, SC

mutations occurring in the receptor part of the S-locus can spread

under more restricted conditions than SC mutations in the pollen

part, because they do not benefit from a fertilization advantage

under outcrossing. Modifying our simulation model to explicitly
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represent the pollen and pistil components of the S-locus (to ex-

plore conditions for the evolution of new SI specificities with

dynamical inbreeding depression) would be an interesting exten-

sion of the present work.
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File S1

Domain of validity for the expressions for pop-
ulation size, numerical and genetic loads and
inbreeding depression

Full expressions for all measured variables (population size, the numerical
and genetic load, and inbreeding depression) can be found in Table SS1.
These equations are valid for all values of dominance h between 0 and 1, but
not codominant mutations (h = 0.5); expressions for co-dominant mutations
can be found in Table 2 of the main text. The validity of these equations
depends on the threshold value of the mutation rate µfix = (1−h)s

1−hs for the
deterministic fixation of the deleterious allele a and on the validity of H1 =√
s ((4− 8h)µ+ h2(1 + µ)2s). Figure SS1 is a graphical representation of the

domains of validity for each of the limitations. For H1 to be in the domain
of real numbers, and hence for the expressions to be biologically realistic, s
must be greater than (8h−4)µ

h2(1+µ)2
. This limitation does not interfere with the

domain of validity for the expressions, as it is always below the domain of
validity imposed by the deterministic fixation of a (µ > (1−h)s

1−hs ).
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Figure S1: Limitations for the validity of the expressions in Table SS1. The area
below the blue (respectively red) curve depicts all values of s and h for which the
expressions are not valid as mutations are deterministically fixed (respectively as
the expression H1 is not in the domain of real numbers) for µ = 10−2.
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File S2

Equations for the change in the number of in-
dividuals

Here we provide the full general equations for the change in the number of
individuals of each genotype for all three models of selection (mating success,
fecundity and survival). The expressions presented in Table SS1 as well as
the genotypic frequencies of X, Y and Z and mutation selection balace pre-
sented below are obtained by solving for the steady state of these differential
equations (dXt

Nt
= dYt

Nt
= dZt

Nt
= 0). These expressions were obtained using

Wolfram’s Mathematica 9.0.

Selection on mating success

dXt

Nt

=
b

Nt

(
(1− s)2X2

t + 2(1− s)XtZtµ+ Z2
t µ

2 + (1− s)(1− hs)XtYt(1 + µ)

+ (1− hs)YtZtµ(1 + µ) +
1

4
(1− hs)2Y 2

t (1 + µ)2

)
− dNt

K
Xt

=
b

Nt

(rX)2 − dNt

K
Xt (S1a)

dYt
Nt

=
b

Nt

(
(1− s)(1− hs)XtYt(1− µ) + 2(1− s)XtZt(1− µ) + 2Z2

t (1− µ)µ

+
1

2
(1− hs)2Y 2

t (1− µ)(1 + µ)

+ 2(1− hs)YtZt
(

1

2
(1− µ)µ+

1

2
(1− µ)(1 + µ)

))
− dNt

K
Yt

=
2b

Nt

(rXrY )− dNt

K
Yt (S1b)

dZt
Nt

=
b

Nt

(
1

4
(1− hs)2Y 2

t (1− µ)2 + (1− hs)YtZt(1− µ)2 + Z2
t (1− µ)2

)
− dNt

K
Zt

=
b

Nt

(rZ)2 − dNt

K
Zt (S1c)

where

rX =

(
(1− s)Xt + (1− hs)Yt

(1 + µ)

2
+ Ztµ

)
(S2a)

and

rZ =

(
Zt(1− µ) + (1− hs)Yt

(1− µ)

2

)
. (S2b)
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Selection on fecundity

dXt

Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)2X2

t + 2(1− s)XtZtµ+ Z2
t µ

2

+ (1− s)(1− hs)XtYt(1 + µ) + (1− hs)YtZtµ(1 + µ) +
1

4
(1− hs)2Y 2

t (1 + µ)2

)
− dNt

K
Xt

=
b

Nt − sXt − hsYt
(rX)2 − dNt

K
Xt (S3a)

dYt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)(1− hs)XtYt(1− µ) + 2(1− s)XtZt(1− µ)

+ 2Z2
t (1− µ)µ+

1

2
(1− hs)2Y 2

t (1− µ)(1 + µ)

+ 2(1− hs)YtZt
(

1

2
(1− µ)µ+

1

2
(1− µ)(1 + µ)

))
− dNt

K
Yt

=
2b

Nt − sXt − hsYt
(rXrZ)− dNt

K
Yt (S3b)

dZt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
1

4
(1− hs)2Y 2

t (1− µ)2 + (1− hs)YtZt(1− µ)2

+Z2
t (1− µ)2

)
− dNt

K
Zt

=
b

Nt − sXt − hsYt
(rZ)2 − dNt

K
Zt (S3c)

where

rX =

(
(1− s)Xt + (1− hs)Yt

(1 + µ)

2
+ Ztµ

)
(S4a)

and

rZ =

(
Zt(1− µ) + (1− hs)Yt

(1− µ)

2

)
. (S4b)
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Selection on zygote survival

dXt

Nt

=
b(1− s)
Nt

(
X2
t + 2XtZtµ+ Z2

t µ
2 +XtYt(1 + µ) + YtZtµ(1 + µ)

+
1

4
Y 2
t (1 + µ)2

)
− dNt

K
Xt

=
b(1− s)
Nt

(rX)2 − dNt

K
Xt (S5a)

dYt
Nt

=
b(1− hs)

Nt

(
XtYt(1− µ) + 2XtZt(1− µ) + 2Z2

t (1− µ)µ

+
1

2
Y 2
t (1− µ2) + YtZt

(
1 + µ− 2µ2

))
− dNt

K
Yt

=
b(1− hs)

Nt

(rXrZ)− dNt

K
Yt (S5b)

dZt
Nt

=
b

Nt

(
1

4
Y 2
t (1− µ)2 + YtZt(1− µ)2 + Z2

t (1− µ)2

)
− dNt

K
Zt

=
b

Nt

(rZ)2 − dNt

K
Zt (S5c)

where

rX =

(
Xt + Yt

(1 + µ)

2
+ Ztµ

)
(S6a)

and

rZ =

(
Zt(1− µ) + Yt

(1− µ)

2

)
. (S6b)
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Selection on adult survival

dXt

Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)2X2

t + 2(1− s)XtZtµ+ Z2
t µ

2

+ (1− s)(1− hs)XtYt(1 + µ) + (1− hs)YtZtµ(1 + µ) +
1

4
(1− hs)2Y 2

t (1 + µ)2

)
− d(1− s)Xt + (1− hs)Yt + Zt

K
Xt

=
b

Nt − sXt − hsYt
(rX)2 − d(1− s)Xt + (1− hs)Yt + Zt

K
Xt (S7a)

dYt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
(1− s)(1− hs)XtYt(1− µ) + 2(1− s)XtZt(1− µ)

+ 2Z2
t (1− µ)µ+

1

2
(1− hs)2Y 2

t (1− µ)(1 + µ)

+ 2(1− hs)YtZt
(

1

2
(1− µ)µ+

1

2
(1− µ)(1 + µ)

))
− d(1− s)Xt + (1− hs)Yt + Zt

K
Yt

=
2b

Nt − sXt − hsYt
(rXrZ)− d(1− s)Xt + (1− hs)Yt + Zt

K
Yt

(S7b)

dZt
Nt

=
b

(1− s)Xt + (1− hs)Yt + Zt

(
1

4
(1− hs)2Y 2

t (1− µ)2 + (1− hs)YtZt(1− µ)2

+Z2
t (1− µ)2

)
− d(1− s)Xt + (1− hs)Yt + Zt

K
Zt

=
b

Nt − sXt − hsYt
(rZ)2 − d(1− s)Xt + (1− hs)Yt + Zt

K
Zt (S7c)

where

rX =

(
(1− s)Xt + (1− hs)Yt

(1 + µ)

2
+ Ztµ

)
(S8a)

and

rZ =

(
Zt(1− µ) + (1− hs)Yt

(1− µ)

2

)
. (S8b)
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Genotypic frequencies at equilibrium

Hardy-Weinberg genotypic frequencies at equilibrium

We will prove that in our model, the expectations at Hardy-Weinberg equi-
librium are met when there is no selection or mutation.

Proposition 1. When there is no selection or mutation (s and µ = 0), the
genotypic frequencies in our model at are at Hardy-Weinberg equilibrium.

Proof of Proposition 1. Let q be the frequency of allele a, defined by

q =
2Xeq + Yeq

2Neq

, (S9)

and 1− q is the frequency of A.
First, at Hardy-Weinberg equilibrium the frequency of each genotype is q2,
2q(1 − q) and (1 − q)2 for genotypes aa, Aa and AA respectively. From
the expected genotype frequencies, q can be expressed as a function of the
frequency of heterozygotes (FAa).
From FAa = 2q(1− q) we obtain the expected frequency of a:

p =
1±
√

1− 2FAa

2
(S10)

Let us consider our model and prove that we have the same frequency of
the allele a. Equilibrium is defined by dVt

dt
= 0, where V represents X, Y and

Z. When there is no mutation or selection, the number of homozygous indi-
viduals in the population (either Xeq or Zeq, both noted Heq) can be written
as a function of the number of number of Yeq (or heterozygous) individuals:

b

Neq

(
H2
eq + YeqHeq +

1

4
Y 2
eq

)
− dNeq

K
Heq = 0.

By using equation 6 from the main text we can simplify the previous
equation to:

Yeq
4Neq

2

+Heq

(
Yeq
Neq

− 1

)
+
Heq

Neq

2

= 0.

This gives us a quadratic equation in Heq with discriminant

∆ =

(
1− 2

Yeq
Neq

)
≥ 0
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This gives two possible solutions, corresponding to frequencies of homozygous
individuals greater or smaller than 1

4
Neq:

Heq =
1

2

(
Neq − Yeq ±Neq

√
1− 2

Yeq
Neq

)
(S12)

If we replace Xeq with equation S12 in equation S9, then we find that

q =
Neq ±Neq

√
1− 2 Yeq

Neq

2Neq

.

Which is equation S10 and the proposition is proved.

Genotypic frequencies at mutation-selection balance

The genotypic frequencies of aa, Aa and AA individuals are given by the
expressions FXmut , F Ymut and FZmut respectively. For each of the models,
we provide the expressions for all values of the dominance h of the deleteri-
ous allele a between 0 and 1 and different than 0.5, as well as the seper-
ate expressions for h = 0.5. The domain of validity of these equations
depends on the threshold value of the mutation rate for the determinis-
tic fixation of the deleterious allele a µfix = (1−h)s

1−hs and on the validity of

H1 =
√
s ((4− 8h)µ+ h2(1 + µ)2s) (see File S1 for more details). These

expressions were obtained using Wolfram’s Mathematica 9.0.

Selection on mating success, fecundity and adult survival

For h 6= 0.5:

FXmut =
(2− 4h)µ+ h2(1 + µ)2s− hH1 − hµH1

2(1− 2h)2s

F Ymut =
µ(h(4− s+H1)− 2)− (1− h)(hs−H1)− h2µ2s

(1− 2h)2s

FZmut =
(2− h(6− 5h))s+ h2µ2s− (2− 3h)H1 + µ(2− h(4− 2(1− h)s+H1))

2(1− 2h)2s
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For h = 0.5

FXmut =
4µ2

(1 + µ)2s2

F Ymut =
4µ(s− µ(2− s))

(1 + µ)2s2

FZmut =
(s− µ(2− s))2

(1 + µ)2s2

Selection on zygote survival

For h 6= 0.5

FXmut =
(1− s) (2µ− 4hµ+ h2(1 + µ)s− hH1)

2(1− 2h)(1−m)s(1− h(2− hs))

F Ymut =
2(1− hs)((1− h)(H1 − hs)− µ(2− h(4− s+H1)))− h2µ2s

(1− 2h)(1− µ)s (2 + h2(1 + µ)s− h(4 +H1))

FZmut =
(2− h(6− 5h))s+ h2µ2s− (2− 3h)H1 + µ(2− h(4− 2(1− h)s+H1))

(1− 2h)(1− µ)s (2 + h2(1 + µ)s− h(4 +H1))

For h = 0.5

FXmut =
4µ2(1− s)
(1− µ2)s2

F Ymut =
2µ(2− s)(s− µ(2− s))

(1− µ2)s2

FZmut =
(s− µ(2− s))2

(1− µ2) s2
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Proofs for population size at equilibrium
General expressions for population size at equilibrium found in Table SS1 are
obtained using Wolfram’s Mathematica 9.0 by solving for the steady state
solutions of the differential equations dNt

dt
= dXt

dt
= dYt

dt
= dZt

dt
= 0. Expressions

and the proofs for population size at equilibrium without selection and for
recurrent recessive mutations are presented in this section.

No selection

When there is no selection, the expression for population size at equilibrium
Neq is given by equation 6 in the main text.

Proposition 2. At equilibrium and when there is no selection (s = 0), the
equation dNt

dt
= dXt

dt
= dYt

dt
= dZt

dt
= 0 admits a unique attractive non-trivial

solution Neq (equation 6 in the main text).

Proof of proposition 2. Population size is at equilibrium when

RX
t +RY

t +RZ
t −MX

t −MY
t −MZ

t = 0. (S13)

When this condition is met, then population size is noted Neq, and Xeq,
Yeq and Zeq are the numbers of individuals carrying each genotype, with
Neq = Xeq + Yeq + Zeq. Equation S13 therefore gives:

b

Neq

(
X2
eq + Y 2

eq + Z2
eq + 2XeqYeq + 2YeqZeq + 2XeqZeq

)
− dNeq

K
(Xeq + Yeq + Zeq) = 0.

leading to equation 6.

Mutation-selection balance

Population size at mutation-selection balance Nmut (s and µ 6= 0) can be
presented as a function of population size at equilibrium with no or neutral
mutations Neq. For each model of selection (mating success, fecundity and
survival), we find two attractive non-trivial solutions, one for a polymorphic
population (with X, Y and Z individuals) and one which is monomorphic as

the deleterious allele a is fixed (for µ ≥ (1−h)s
1−hs ). Proofs for Nmut for recessive

mutations (h = 0) can be found in the following section for selection on
mating success, fecundity and zygote survival.
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Selection on mating success

Proposition 3. There are two expressions for Nmut when mutations are
recessive:

Nmut = Neq(1− µ ∧ s)2 (S15)

µ ∧ s = min(µ, s)

Proof of proposition 3. At equilibrium, dNt
dt

= dXt
dt

= dYt
dt

= dZt
dt

= 0. From
equations S1 and S2 in File S2, we find:

0 =
b

Nmut

((rX)2 + 2(rX)(rZ) + (rZ)2)− d(Xmut + Ymut + Zmut)
Nmut

K

⇔0 =
b

Nmut

(rX + rZ)2 − dN
2
mut

K

⇔0 =
b

Nmut

((1− s)Xmut + Ymut + Zmut)
2 − dN

2
mut

K

⇔0 =
b

Nmut

(Nmut − sXmut)
2 − dN

2
mut

K

Nmut = 0 is a trivial solution, else Nmut satisfies

Nmut =
bK

d
(1− sXmut

Nmut

)2. (S16)

A second equation for Nmut can be obtained by finding an expression for
the change in the number of A alleles at mutation-selection dNA

dt
= 0, where

NA = 2Zt + Yt. From equations S1 and S2, and for Zmut + Ymut 6= 0 we find:

0 =
b

Nmut

2rZ(rX + rZ)− d(2Zmut + Ymut)
Nmut

K

⇔0 =
b(1− µ)

Nmut

(2Zmut + Ymut)(Nmut − sXmut)− d(2Zmut + Ymut)
Nmut

K

⇔0 = (2Zmut + Ymut)(b(1− µ)(1− sXmut

Nmut

)− dNmut

K
)

⇔0 = (b(1− µ)(1− sXmut

Nmut

)− dNmut

K
)

⇔ Nmut =
bK

d
(1− µ)(1− sXmut

Nmut

). (S17)
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Using equations S16 and S17 we find:

b(1− sXmut

Nmut

)2 = b(1− µ)(1− sXmut

Nmut

)

which implies

(1− sXmut

Nmut

) = (1− µ).

By using this equality in equation S16 or S17, we obtain equation S15
If Nmut = Xmut, we consider that there is fixation of the a allele. Using

this information in equation S16, we find that

Nmut = Neq(1− s)2 (S19)

as proposed in equation S15.

Selection on fecundity

Proposition 4. When selection is on fecundity

Nmut = Neq(1− µ ∧ s) (S20)

Proof of proposition 4. Using similar calculations as in Proposition 3, we find
an expression for Nmut using the expression for NA. From equations S3 and
S8 we find:

0 = 2(RZ
mut − dZmut

Nmut

K
) + (RY

mut − dYmut
Nmut

K
)

⇔0 =
b(1− µ)

Nmut − sXmut

(2Zmut + Ymut)(Nmut − sXmut)

− d(2Zmut + Ymut)
Nmut

K

⇔0 = (2Zmut + Ymut)(b(1− µ)− dNmut

K
)

which implies for Zmut + Ymut 6= 0

Nmut = Neq(1− µ). (S21)

If Nmut = Xmut, then the mutant allele a has gone to fixation, implying that
Zmut = Ymut = 0. This gives

0 =
b

(1− s)Xmut

((1− s)Xmut)
2 − dX

2
mut

K

⇔0 = b(1− s)− dXmut

K

Nmut = Neq(1− s) (S22)

as proposed in equation S20.
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Selection on zygote survival

Proposition 5. When mutations are recessive

Nmut = Neq(1− µ ∧ s) (S23)

Proof of proposition 5. The number of A alleles is noted NA and as in Propo-
sition 3, from equations S5 and S6 we find:

0 =
b

Nmut

2rZ(rX + rZ)− d(2Zmut + Ymut)
Nmut

K

⇔0 = b(1− µ)(2Zmut + Ymut)− d(2Zmut + Ymut)
Nmut

K

⇔b(1− µ) = d
Nmut

K

providing Nmut = Neq(1− µ).
If we consider that there is fixation of the a allele, then the entire popu-

lation is made of X individuals, then Ymut and Zmut = 0,

0 =
b

Nmut

(1− s)N2
mut − d

N2
mut

K

gives

Nmut = Neq(1− s) (S24)

if Nmut 6= 0.
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Abstract

As the ultimate source of genetic variation, mutation has the inconvenience of introducing deleterious

mutations. These mutations shape the evolution of species, from genetic mechanisms on the cellular level

to reproductive systems, which lessen their effects on fitness. In this thesis we explore how these mutations

influence population size by allowing the interaction between population size and selection, which has been

little explored in conventional population genetics models. In a deterministic context with a single locus,

germ-line and somatic mutations influence population size and the mutation load, both of which depend on

the timing of the expression of these mutations. Multi-locus individual based models show that population

viability depends on the demographic properties, the rate of introduction and impact of mutations. Though

self-fertilisation generally increases population viability, strictly self-fertilising populations go extinct due

to mutational meltdown when mutations are of small effect. When selfing is allowed to evolve from an

outcrossing reproductive regime, there are cases of evolutionary suicide where strict selfing evolves and

leads to extinction. We predict that the genetic properties of populations may not be a consequence

but a cause of population size. We emphasize the importance of taking the demographic consequences

of deleterious mutations into account when studying the evolution of populations, as in the case of the

evolution of self-fertilisation where evolutionary suicide was observed. This result may explain the observed

higher extinction rates in selfing compared to outcrossing species.

Keywords : Genetic load, population size, self-fertilisation, evolutionary suicide, extinction,

somatic mutations.

Résumé

La présence des mutations délétères a favorisé l’évolution de mécanismes, au niveau cellulaire et au niveau

des organismes (ex. les régimes de reproduction), permettant de diminuer leurs effets négatifs. Au

cours de cette thèse nous avons étudié leur impact sur la taille des populations à travers des modèles

tenant compte de l’interaction entre la démographie et la sélection, cette interaction étant souvent mise

de coté dans les modèles conventionnels de génétique des populations. Dans un contexte déterministe

à un seul locus des mutations somatiques et gamétiques influencent la taille et le fardeau génétique des

populations (ces derniers étant dépendants du moment d’expression des mutations dans le cycle de vie).

Nos modèles stochastiques avec un grand nombre de locus indiquent que la viabilité des populations

dépend des paramètres démographiques et génétiques (taux de mutation, effet délétère des mutations).

L’autofécondation est généralement avantageuse, augmentant la taille et la viabilité des populations, mais

lorsque les mutations sont de faible effet un régime d’autogamie stricte mène à l’extinction par fonte

mutationnelle. En permettant l’évolution de l’autofécondation à partir d’une population allogame nous

observons des cas de suicide évolutif où les populations évoluent vers l’autogamie stricte et s’éteignent,

ce qui pourrait expliquer les taux d’extinctions élevés des espèces auto-fécondantes comparées aux allo-

fécondantes. Ces modèles prédisent que la taille des populations pourrait être une conséquence et non une

cause de leurs propriétés génétiques, soulignant l’importance de la prise en compte leur interaction dans

l’étude de l’évolution des populations.

Mots clés : Fardeau génétique, taille de populations, auto-fécondation, suicide evolutif,

extinction, mutations somatiques.
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