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Résumé 

La tendance naturelle d’un matériau à cristalliser ou à vitrifier est très 

difficilement prévisible. Il s’agit d’un problème très fondamental de la science des 

matériaux avec aussi des implications très importantes dans le développement 

pharmaceutique et en particulier pour des formulations basées sur l’état amorphe. 

La cristallisation se décompose en général en deux étapes principales de nucléation 

et de croissance au cours desquelles les mêmes ingrédients physiques 

fondamentaux apparaissent: i) la mobilité moléculaire mesurée par exemple par la 

constante de diffusion ou indirectement par la viscosité, ii) la force motrice, c’est à 

dire la différence d’énergie libre de Gibbs entre l’état liquide et cristallin, et iii) 

l’énergie libre d’interface   entre le liquide et le cristal. La connaissance de ces 

trois paramètres couplée à l’utilisation d’approches théoriques comme la théorie 

classique de la nucléation et certains modèles de croissance (continue, 2d, 

dislocation vis) peut fournir a priori une estimation de la facilité d’un matériau à 

cristalliser ou pas. La mobilité moléculaire et la force motrice sont relativement 

accessibles. La détermination expérimentale de l’énergie libre interfaciale 

représente par contre un vrai défi. La modélisation moléculaire offre une 

alternative très intéressante pour pallier cette difficulté.  

Au cours de ce travail, à l’aide de simulations de dynamique moléculaire 

nous avons déterminé les principaux paramètres impliqués dans la nucléation et la 

croissance de différents matériaux de complexité croissante : des systèmes 

atomiques modèles de type Lennard-Jones et plusieurs polymorphes de composés 

moléculaires d’intérêt pharmaceutique (felodipine, nifedipine et indométacine). 

Ces investigations nous ont permis d’analyser les tendances à la cristallisation de 

ces matériaux et notamment de souligner le rôle fondamental de l’énergie libre 

interfaciale solide-liquide. Les études menées sur les systèmes modèles ont mis en 



 

 

évidence l’importance de la partie attractive des potentiels d’interactions vis-à-vis 

de la cristallisation.  Dans le cas des matériaux pharmaceutiques, les valeurs de 

l'énergie libre interfaciale cristal-liquide à la température de fusion ont été 

déterminées pour la première fois. Le recouvrement des zones de nucléation et de 

croissance qui sont particulièrement bien reproduites a été étudié.  Cette analyse 

permet de comprendre l’origine qui était jusqu’à présent mal comprise de la 

cristallisation préférentielle de certains polymorphes métastables. Les travaux 

réalisés apparaissent clairement comme un premier pas vers le développement d’un 

outil numérique pour prédire les transformations d’état de matériaux 

pharmaceutiques complexes. 

 

 

  



 

 

Abstract  

The natural tendency of a material to crystallize or to vitrify is not easily 

predicted. It is a fundamental problem in material science with many implications 

in the pharmaceutical developments in particular in the formulation of drugs in the 

amorphous state. The crystallization occurs in general in two steps of nucleation 

and growth during which the same fundamental factors appear: i) the molecular 

mobility measured for example by the diffusion or indirectly by the viscosity, ii) 

the driving force which is the difference in the Gibbs free energy between the 

liquid and the crystalline states and iii) the interfacial free energy   between the 

liquid and the solid. The knowledge of these three parameters coupled with 

theoretical approaches like the classical nucleation theory and some growth models 

(normal, 2d, screw dislocation) can provide an estimation of the ability of a 

material to crystallize or not. The molecular mobility and the driving force are 

relatively accessible. However, the experimental determination of the interfacial 

free energy presents a real challenge. Molecular modeling offers a very interesting 

alternative to overcome this challenge. 

In this work, by means of molecular dynamic simulations, we determined 

the main factors involved in the nucleation and the growth of different materials 

with increasing complexity: Lennard-Jones model atomic systems and some 

molecular polymorphs having a pharmaceutical interest (felodipine, nifedipine and 

indomethacin). These investigations enabled us to analyze the crystallization 

tendency of these materials and especially emphasis the role of the crystal-liquid 

interfacial free energy. The study held on the model systems enabled to show the 

importance of the attractive part of the interaction potential towards the 

crystallization. In the case of the pharmaceutical materials, the values of the 



 

 

crystal−liquid interfacial free energy at the melting temperature have been 

determined for the first time. The overlap of the nucleation and growth zones, 

which are accurately reproduced, was studied. This analyze allowed to clarify the 

preferential crystallization of certain metastable polymorphs. This work is a 

rational step towards the development of a numerical tool in order to predict the 

phase transformation of complex pharmaceutical materials.  
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Introduction   

Upon cooling, there are two basic ways for a liquid to solidify: it may 

form a crystalline solid in which atoms are arranged in an orderly manner on a 

lattice; or it may form a glass characterized by an atomic disorder and the absence 

of a long-range order. The latter can only be formed if the liquid is cooled rapidly 

enough with respect to the kinetics associated to crystallization. Although 

thermodynamically unstable, a solid can remain amorphous for a long time until its 

transformation into a stable crystalline state having a lower Gibbs free energy 

because the atoms do not have enough mobility to rearrange
1, 2

. Despite 

considerable attention and great importance to both basic science and applications 

for processing materials, the tendency for a given material to crystallize, vitrify, or 

revert to the more stable crystalline state from the amorphous state remains poorly 

understood
3-5

. This fundamental issue has initiated intense activity. Recent 

developments and approaches in many different fields particularly focus on 

predicting and possibly controlling the conditions that will favor/unfavor the 

crystallization/vitrification depending if it is desirable or not. For example, these 

transformations have been extensively studied and reviewed throughout the 

metallurgic literature
6, 7

. Indeed, understanding glass-forming ability of metallic 

glasses is a long-standing fundamental problem
6-9

. The possibility to obtain 

excellent glass-forming ability at a very low cooling rate for complex 

multicomponent alloys has clearly aroused much interest. In pharmaceutical 

industries, many substances are preferably developed in the crystalline state for 

evident reasons of stability. However, either by accident or design, they may also 

exist in a total or partially amorphous state. This situation is encountered more and 

more frequently due to the increasing complexity of synthesized molecules. The 

amorphous state has thus become increasingly important in pharmaceutical 
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applications owing to its higher apparent solubility and faster dissolution rate. 

Most pharmaceuticals are composed of small organic molecules showing a high 

contrast between intra and inter molecular forces with respect to other classes of 

materials. Motivated by the need to predict if crystallization/vitrification will occur 

or not for a large number of materials including pharmaceuticals, many attempts 

have been made to derive general rules from easily accessible structural, dynamical 

or thermodynamical experimental properties and thus define some quantitative 

predictors. For example, it was suggested that good glass-forming ability (GFA) is 

linked to the complex composition of molecules such as metallic alloys
10

 where 

various of Fe-based alloys have been developed with a large GFA combined with 

other high physical, chemical and mechanical properties (high strength and 

hardness, good corrosion and excellent soft magnetic properties). It was also 

suggested that the low molecular symmetry and high flexibility due to a high 

number of internal degrees of freedom
11

 could be used as an indicator to a good 

GFA. Figure 1 represents an example of two isomers of xylene: meta-xylene and 

para-xylene. Even though both isomers have the same chemical formula 

(C6H4(CH3)2), similar melting and boiling points, the molecular structure 

difference allows the meta-xylene (having a lower molecular symmetry) to have a 

much better GFA than the para-xylene
11

. 

 

Fig.1.1: Two different isomers of xylene (meta- and para- xylene). 

 



3 

 

The role of the molecular mobility and its temperature dependence has been also 

pointed out. The mobility versus the steepness of the temperature curve is usually 

measured by the so-called fragility parameter defined as the slope at the glass 

transition temperature    of the viscosity or the primary relaxation time obtained 

from dielectric relaxation experiments
12

. Liquids can be thus classified either as 

strong or fragile depending if their molecular mobility shows an Arrhenius or a 

non-Arrhenius behavior respectively. The role of the fragility in 

crystallization/vitrification has been highly debated. It has been particularly shown 

that a large number of good glass-formers belong to the strong liquids having a 

lower molecular mobility in the supercooled regime
13-16

. However, the situation 

seems quite different for some other materials such as isomers of monohydroxy 

alcohols or alkanes
17

 or some pharmaceuticals showing the same molecular 

dynamics but completely different crystallization tendencies
18, 19

. For polymers, it 

has been observed that the crystallization tendency increases with increasing 

fragility
20

. These results suggest a weak correlation between the glass forming 

ability and the fragility which could be also highly dependent on the considered 

class of materials. While this correlation seems accurate in metallic materials, it 

seems more questionable in other molecular glass-formers. Correlations are also 

difficult to clearly assess due to the inconsistency of the fragility values for the 

same sample determined from different techniques such as calorimetry and 

dielectric relaxation spectroscopy
15

. Thermodynamically, a low melting entropy 

    and a limited range between the melting temperature    and the glass 

transition temperature    appear to be an advantage for glass formation
11, 13, 16, 21

. 

For a long time, it is well known that the ratio 
  

  
 

 

 
  may provide a fair 

prediction of the glass-forming ability
22, 23

 but there are some counter     

examples
24, 25

. No predictors can be unfortunately considered as fully reliable
21, 26-28
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since the structure, the dynamics and the thermodynamics seem interrelated. 

Moreover, in order to really investigate the influence of one specific parameter, the 

others should be the same which is not the case in general.  

 

From a fundamental point of view, crystallization in the undercooled melt 

is a phenomenon involving complex nucleation and growth stages both having 

their own specific properties
26

. Nucleation is the first stage. It can be described in 

the framework of the classical nucleation theory (CNT) which provides a reliable 

basic description despite significant shortcomings amply reviewed in the 

literature
1, 2, 29-31

. Nucleation is related to the stochastic spontaneous formation of 

small crystalline nuclei made of few molecules in the liquid. The appearance of a 

nucleus of the new phase implies the creation of an interface between liquid and 

solid phases. Growth is the second stage in which the supercritical nuclei formed 

will grow within the liquid phase
1, 2, 29-32

. It occurs by aggregation of molecules of 

the phase undergoing a transformation.  

 

Overall the phase transformation induced by cooling is the interplay of the 

nucleation rate   and growth rate   which are basically determined to some extent 

by three main physical ingredients: i) the driving force   , ii) the diffusivity   and 

iii) the interfacial free energy   26, 33
. The first two parameters can be estimated 

without major difficulty from experimental data. The driving force    can be 

usually obtained either from the temperature dependencies of the heat capacities of 

the liquid and crystalline phases if experimental data are available with enough 

accuracy or from analytical expressions derived from the melting enthalpy and 

temperature such as Turnbull or Hoffman equations
34, 35

.  Experimental diffusivity 

data are often scarce but assuming the validity of the Stokes-Einstein relation, the 

diffusion coefficient   can be replaced by the much more experimentally 
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accessible shear viscosity, although this replacement is questionable due to 

possible decoupling of diffusion and relaxation
2, 36

.  

 

However, the experimental determination of the last parameter i.e. the 

crystal-liquid interfacial free energy really remains problematic. Despite its 

importance to theoretical models and to practical applications, accurate data for   

are in general not known, even for simple cases
6, 7

. Only a few interfacial free 

energies values are available in the literature for pharmaceuticals and more 

generally for molecular compounds
30, 37-39

. The determination of the parameter   

from simulation thus presents a clear interest as revealed by recent works
6, 7, 40, 41

. 

In recent years, several approaches based on Molecular Dynamics (MD) 

simulations have been particularly proposed but validated mostly on simple 

systems composed of hard spheres, Lennard-Jones particles, metal atoms or small 

molecules such as water.  

 

This thesis is motivated by the need to develop a numerical tool in order 

to predict the phase transformation of complex materials.  The question ‘‘why 

some liquids form a glass easily but others do not?’’ is still the matter of active 

debates
6, 23, 42

. Understanding the microscopic origin of the tendency for a given 

material to vitrify/crystallize is highly desirable for both fundamental researches or 

from the perspective of materials designs.  Clear explanations have not been yet 

suggested for the origin of the good glass forming ability of some bulk metallic 

glasses 
6
. In pharmaceutical developments, a basic understanding of the principles 

underlying molecular properties in the amorphous state and disordered crystalline 

materials is essential for stability studies for any type of bulk drug manufacturing 

or solid dosage design
19, 43, 44

. 
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By combining guidance from the available theories of nucleation (CNT) 

and growth with calculations of fundamental parameters (driving force   , 

diffusivity   and interfacial free energy  ) obtained from MD simulations there is 

an interesting opportunity to investigate the conditions that will favor 

crystallization/vitrification of some materials.   

 

In this work, two different classes of systems of increasing complexity 

were investigated: i) simple Lennard-Jones (LJ) atomic systems in which the 

attractive part of the interaction potential can be tuned and ii) some molecular 

polymorphs having a pharmaceutical interest (felodipine, nifedipine and 

indomethacin). These investigations enabled us to analyze the crystallization 

tendency of these materials and especially emphasis the interplay of the crystal-

liquid interfacial free energy and driving force on the nucleation barrier. 

 

Investigations performed on simple LJ models have clearly served as a 

rational step before studying real molecular pharmaceutical compounds. Methods 

and validity of some theories were tested. The simplicity of the LJ models 

particularly allowed us to observe directly the crystallization phenomena and thus 

to obtain nucleation rates without any theory. Such results were compared with 

predictions from the classical nucleation theory (CNT) on steady-states rates and 

the induction periods at small and large undercooling. It revealed in which 

temperature domain either the transient/induction regime dominates. From a 

fundamental point of view, these studies also enabled us to analyze the importance 

of the attractive part of the interaction potential towards the crystallization. The 

need for a temperature-dependent interfacial free energy      was also pointed out 

from different tests performed. 
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Then, we have studied three well-known pharmaceuticals nifedipine, 

felodipine and indomethacin which usually serve as model systems for studying 

the crystallization of organic compounds. All three drugs exhibit a rich crystalline 

polymorphism and polymorphic selectivity of crystallization is observed 

depending on temperature. Nifedipine and felodipine are known to have different 

remarkable crystallization tendencies
45-48

 from the melt which were not understood. 

The availability of some experimental estimations of the interfacial free energy of 

indomethacin polymorphs was another motivation of investigation of this material. 

The values of the crystal−liquid interfacial free energy at the melting temperature 

have been determined for the first time for the different polymorphs of these 

pharmaceuticals. The overlap of the nucleation and growth zones was studied. This 

analysis allowed us to clarify the preferential crystallization of certain metastable 

polymorphs.  

 

The thesis manuscript is organized in four chapters. 

 

In the first chapter, we introduce the general framework along with a short 

review of the actual experimental and numerical developments in the field. This 

introduction includes the description of the mechanisms of nucleation and growth, 

the concepts related to polymorphism and glass transition, the experimental and 

numerical determinations of the crystal-liquid interfacial free energy and some 

examples of recent experimental approaches to predict crystallization and 

vitrification of pharmaceuticals. 

 

The second chapter is dedicated to the numerical methods and algorithms 

associated with molecular dynamic simulations along with the methods used to 

determine the different thermodynamical and dynamical properties. The capillary 
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fluctuation method is detailed in this chapter since it is the numerical method 

applied in order to obtain the crystal-liquid interfacial free energy in chapter three 

and four. Simulation details are also reported in this chapter. 

 

In chapter three, recent works performed on simple modeled liquids with 

tunable interaction potentials are reviewed. The construction of tunable LJ-

potential is described. The calculation of the interfacial free energy at the melting 

temperature for the different potentials is presented. A comparison between the 

estimated nucleation time and the nucleation times obtained directly from MD 

simulations is shown in order to validate the method. 

 

In Chapter four, a comparative study of the crystallization tendency from 

the melt of felodipine (I and II), nifedipine (α and β) and indomethacin polymorphs 

(α and  ) is reported. A detailed description of each compound is given including 

some comparisons between properties obtained by MD simulations with 

experimental values. We particularly focused our investigations on the calculations 

of the Gibbs free energy difference between the liquid and the crystal   , the 

diffusivity   and the crystal-liquid interfacial free energy  . The determination of 

these parameters enables the estimation of the nucleation/growth rates of each 

compound. 

 

In the final part, we summarize our main results and present some 

perspectives that might be done in order to improve this work. 
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Chapter 1: General framework 

This chapter presents the scientific context of this thesis.  General 

concepts and properties involved in crystallization and glass formation processes 

are described.  

This chapter has four distinct parts. Section 1 deals with notions of 

nucleation and growth for which the contribution of the main physical ingredients 

(kinetics and thermodynamics) are given as well as a brief presentation of the 

classical nucleation theory and some models of growth.  Section 2 specifically 

focuses on the definition of the solid-liquid interfacial free energy, its main 

properties and its experimental and numerical characterization. In section 3 some 

recent approaches for the prediction of the glass-forming ability of pharmaceuticals 

are presented.  

The general framework given in this chapter aims to facilitate 

understanding of the results and discussions presented in the next chapters. 

 

1 Crystallization and glass formation 

1.1 Nucleation 

Two main stages are involved in the crystallization process from the 

undercooled melt: nucleation and growth
26

. The nucleation process has been well 

described in the framework of the classical nucleation theory (CNT).  Although 

this theory is far from being perfect, it offers a rational framework to understand 

nucleation
1, 2, 29-31

. Nucleation occurs via the formation of small embryos of the 

crystalline phase inside the large volume of the liquid phase. This transformation is 

thermodynamically controlled by a subtle balance between a favorable term, the 
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so-called “driving force” for the phase transformation,    , which is the difference 

between the Gibbs free energy of the liquid and the solid per unit volume (Fig.1.2) 

and an unfavorable term, the crystal-liquid interfacial free energy  , that is the 

resistance to the creation of the solid-liquid interface. This latter mainly originates 

from an entropy loss due to the increased ordering of the liquid as the crystal 

nucleus surface is approached
33

.  

The Gibbs free energy needed to form a spherical crystalline germ with a 

radius   may be written as follows
2, 49

: 

       
 

 
                          1.1 

The evolution of the function       as function of the radius   is shown in Fig. 

1.3. From the analysis of equation 1.1, it can be demonstrated that       has a 

maximum value     
   

 

  

   
  and at the radius    

  

   
  . 

The balance between “driving force” (   ) and resistance to the creation of the 

solid-liquid interface ( ) thus gives rise to an activation energy barrier (   ) that 

needs to be overcome to produce a nucleus having a size larger than a minimum 

critical size (  ) needed for the nucleus to expand, otherwise it will shrink (see 

Fig.1.3). In other words, the formation of a small solid nucleus in the liquid 

generates a negative volume contribution to the Gibbs free energy due to the 

lowest free energy of the solid with respect to the liquid, and a positive surface 

contribution due to the creation of a solid-liquid interface
49-51

. 



11 

 

 

 

Fig.1.2: A schematic representation of the Gibbs free energy as function of the temperature. The 

liquid and the crystal are represented respectively by red and blue lines. Both lines cross at the 

melting point at the temperature   . The driving force for transformation i.e. the Gibbs free 

energy difference     between the liquid and the crystal is also represented. 

 

Fig.1.3: A schematic representation of the Gibbs free energy ΔG(r) as function of the nucleus 

radius r (extracted from ref. 
52

). The volume and the surface contributions are also represented. 

Combining these two contributions ( 
 

 
       and      ) we obtain a maximum value at r

*
. 

For r<r
*
, the system can lower its free energy by the dissolution of the germ while if r>r

*
 it can 

lower its free energy by the growth of the germ.  
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In addition, diffusion is also required to make the nucleation process 

possible since molecules have to aggregate to form the nucleus.  Nucleation is 

often characterized by the nucleation rate   (unit m
-3

s
-1

) which is the number of 

formed critical nuclei per unit of volume and time. It depends on the product of 

two activated processes:  i) the number of critical size nuclei ~              , 

and ii) the probability of an atom to migrate across the interface separating the 

critical size nucleus and the liquid (thus forming a supercritical size nucleus) which 

is roughly proportional to the diffusivity               where   is the energy 

barrier associated to atomic motion. Both probabilities behave in opposite ways as 

a function of temperature and thus give rise to the bell-shaped dependence of the 

nucleation rate. Diffusion thus allows the nucleation phenomenon to occur but also 

modulates its kinetics
53, 54

. The steady-state nucleation rate   can be estimated 

from the expression
2, 49

 : 

             
   

   
                                       1.2 

where       is the kinetic pre-factor that  is usually expressed as        

    
    

 
 
 

  
  where   is the atomic jump distance approximated to      

    in the 

following,    is the number of atoms in the critical nucleus,     is the number 

density of liquid,              
     

    is the Zeldovich factor and     is the 

number density of the solid. We could write as well     
 

 
           

55
. The 

Zeldovich factor describes the fluctuations of the cluster around the critical size 

and the probability for a stable nucleus to redissolve. This factor was not taken into 

consideration in the initial expression of the nucleation rate derived by Volmer & 

Weber
56

 and Farkas
57

 which led to an overestimation. It should be mentioned that 

in most cases the steady-state regime occurs after the so-called transient time or 

incubation time which is also described by the CNT
19

 (see chapter 3).  
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1.2 Growth 

Once a small crystal seed has formed during the nucleation step, it will 

continue to grow by advancing the crystal/liquid interface
1, 2, 29-32

. Growth occurs 

by aggregation of molecules of the phase undergoing a transformation. Crystal-

growth velocity   (unit ms
-1

) is a measure of the growing of the crystal surface of 

the supercritical nuclei. Similarly to the nucleation rate, the growth velocity   

depends on the product of a thermodynamic term that describes the probabilities of 

attachment/detachment of the molecules to/from the nuclei                   

and the probability of the diffusion of the molecules across the interface which is 

also roughly proportional to the diffusivity  .  The net effect combining these two 

terms is that the growth rate must go through a maximum and thus also gives rise 

to a bell-shaped dependence as a function of temperature. The general 

mathematical form for the crystal growth rate can be summarized as follows: 

                       
  

   
       1.3 

where   is a temperature independent constant,       (unit : m.s
-1

) describes the 

molecular mobility and has been approximated by 
   

  
 in the following where   is 

the average width of the crystal lattice spacing (       
   ). The last two terms 

represent thermodynamics of the growth process.      is a dimensionless function 

depending on the growth mechanism at the interface. The last term represents the 

probability of attachment/detachment of molecules to the crystal nucleus. It only 

plays a significant role at relatively small undercooling and it approaches unity at 

large undercooling. The establishment of the mechanism of growth i.e. the 

mathematical form of      is far from being trivial
30, 58

. Three main general 

models have been classically proposed
2
: i) normal or continuous growth, ii) growth 

determined by two-dimensional nucleation and iii) growth originating from screw 



14 

 

dislocations. In the simplest model, i.e. normal growth, all liquid-like molecules 

from the melt are able to join the crystal surface to become solid-like. Growth thus 

proceeds from any point along a direction normal to the surface. This behavior 

could be expected from a rough interface where on average all site are   

equivalent
2, 33, 59

. In that case,     and growth at deep undercooling is mainly 

controlled by dynamics. In contrast, for perfect smooth surfaces, growth requires 

the formation of two dimensional nuclei on the interface. Such surface nucleation 

mediated growth proceeds via lateral aggregation. Models are based on two-

dimension treatment of nucleation similar to the three-dimensional theory
2, 33, 59

. 

The function is given by        
      

       
 . However, crystal often possesses 

defects such as dislocations that may induce continuous steps on their surface. The 

dislocation thus also provides a perpetual ledge and there is no longer need for the 

nucleation of new layers as in the previous two-dimensional model. Steps form 

spiral on the surface and   is given by the number of growth sites where the spiral 

has developed on the crystal surface which is inversely proportional to the spacing 

between spiral steps
2, 33, 59

. For dislocation-controlled growth, it can be shown 

that          . It can be mentioned that it is believed that specific treatment to 

eliminate lattice defects are required  in order to observe surface nucleation 

mediated growth as shown for molecular compounds such as salol
2, 33

.  

 

 The maximum of the growth rate can be different to the maximum 

associated with the nucleation rate. In other words, the curves representing their 

temperature dependencies can either overlap or not. When the curves representing 

the temperature dependencies of nucleation and growth rate do not significantly 

overlap, good glass-forming ability is to be expected (Fig.1.4).  Poor glass formers 

would have a large temperature overlap in which both nucleation and growth rates 
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are high. The knowledge of the two nucleation and growth rates as function of 

temperature thus provides a guide to predict the crystallization tendency. 

 

 

Fig.1.4: A schematic representation of the nucleation and the growth rates as function of 

temperature. In the figure a) the overlap of the two curves is small and a good glass forming 

ability is expected. In figure b), a bad glass forming ability is expected since the two curves have 

a large overlap. This can be explained by a large and small interfacial free energy 

respectively
26

.  

 

It could be noted that from the combination of both nucleation and growth rates 

(assuming a constant variation as function of time), it would be possible to 

determine the so-called TTT (Time-Temperautre-Transformation) curve for a 

given crystallized volume fraction as it is frequently done in metallurgy
21, 60

. Each 

point of this C-shaped curve (Fig.1.5) corresponds to the time required to observe a 

fixed extent of crystallization that occurred in a sample at a given temperature.  

The nose of this curve represents the minimum time required to observe the 

crystallization below    
61

. Therefore, the glass-forming ability can directly be 

determined from the position of the ‘nose’ of the TTT curve. In Fig.1.5, the 

cooling rates (      ) are represented by the lines (1 and 2). In order to obtain a 
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glass, the cooling rate should bypass the cone of crystallization enabling the 

supercooled melt to vitrify. The tangent line to the TTT curve (line 1) gives the 

critical cooling rate    required for vitrification. If the cooling rate is slower (line 2 

in Fig. 1.5 that has a smaller steepness than line 1) the crystallization is expected 

since an intersection occurred with the TTT curve. 

 

 

Fig.1.5: A TTT curve of a GeO2 system
61

. Line 1 gives the critical cooling rate for glass 

formation and line 2 shows a slower cooling rate (having a smaller steepness). 
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1.3 Polymorphism 

 

The capability of a solid material to exist in more than one form or crystal 

structure is called polymorphism. Pseudopolymorphism is a term used when the 

changes in the crystalline arrangements appears in the presence of solvent 

molecules as an integral part of the structure
62

. The difference between two 

polymorphs can be detected by the variation of their physical and chemical 

properties such as their solubility, hardness, color, melting temperature, stability, 

solubility, heat of fusion, density and conductivity. 

In the pharmaceutical industry, the phenomenon of polymorphism is 

certainly the most important because of its impact on the biodisponibility and the 

toxicity of the active ingredients and the excipients
50

. For example, the hardness of 

a crystal form can promote the stage granulation or the conversion into pills
63

. The 

quality of the final product can be affected due to the unwanted crystallization of 

excipients into formula during freeze-drying
50

. The drug effectiveness can be 

influenced as well if the polymorph in use is not fully identified. The 

biodisponibility is linked directly to the solubility which itself depends on the type 

of polymorph. So a drug can become ineffective if the amount of substance 

initially designed to enter the body is reduced. While in some cases, a high 

solubility can increase the side effects
64, 65

. 

The key question concerning polymorphic systems is the relative stability 

of the different crystal conformations and the alterations in the thermodynamic 

properties accompanying phase changes and the different domains of temperature, 

pressure and other conditions. Let’s consider two polymorphs (1 and 2). Their 

relative stability depends on their free energy, the most stable phase has the lowest 

http://en.wikipedia.org/wiki/Crystal
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free energy (phase 1 in our case). At a constant temperature (T) and pressure (P), 

the relative stability of a system is given by the Gibbs free energy (G): 

                                                  1.4 

where   is the enthalpy and   is the entropy. The thermodynamic conditions that 

define the equilibrium between phases and the possible phase transformation at 

constant pressure for a system having two polymorphs that exists in amorphous 

and crystalline states are shown in the Gibbs free energy plot or the phase diagram 

(Fig 1.6 a and b). In Fig. 1.6 a), the polymorph 1 is more stable than 2, since the 

transformation from polymorph 2 to 1 is possible (          ). While the 

amorphous form of the same system has a higher free energy than the crystalline 

phases due mainly to the higher enthalpy and entropy of the glass. The temperature 

   in the diagram represent the melting points: coexisting between the crystal state 

(either 1 or 2) and the liquid state. The point   ,1-2 corresponds to the 

transformation between the two crystalline states. The temperature    is the glass 

transition temperature at which the supercooled liquid leaves equilibrium. 

The system shown in Fig.1.6 a) is a monotropic system where at all 

temperatures below the melting point, phase 1 is more stable. In other words, the 

free energy curves of the different polymorphs do not cross as it is seen in the case 

of indomethacin for example
30

. An enantiotropic system is represented in Fig. 1.6 

b) where a crystal-crystal transition temperature exists between two polymorphs 

below the melting points. Carbamazepine
66

 and flufenamic acid
67

 are two examples 

of enantiotropic systems where above and below the transition temperature    ,1-2 

the stability order is reversed. 
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Fig.1.6: Schematic phase diagram for a monotropic system (a) and an enantiotropic system (b) 

that exhibits crystalline (crystal 1 and 2) and amorphous phases. The melting temperatures   , 

the crystal-crystal transition temperature    and the glass transition temperature    are 

represented by the intersections of the crystalline and the liquid curves, the intersection of the 

crystalline curves and the intersections of the supercooled liquid and the amorphous curves 

respectively. 

 

1.4 Supercooled liquid and glass transition 

A liquid maintained below its melting temperature    is said to be 

supercooled
68

 (see Fig.1.7). This state is thermodynamically metastable with 

respect to the most stable crystalline state.  The most striking feature of some 

supercooled liquids is the dramatic decrease in the mobility by several orders of 

magnitude, with slight decrease in temperature (see Fig.1.8). When the structural 

relaxation time reaches 100 s or the viscosity 10
12

 Poise, dynamics is extremely 
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slow and actually coincides with the experimental timescale
69

. Thus inevitably 

results in the loss of equilibrium. The supercooled liquid then transforms to an 

amorphous solid material, i.e., a glass. The corresponding temperature at which 

this event happens is called as the glass transition temperature    (see Fig.1.7).   

 

Fig.1.7: The specific volume as function of temperature represented schematically for a liquid 

that can either crystallize at the temperature    or vitrify at the temperature     or      

depending on the cooling rate. A slower cooling rate was applied to form glass 2 compared to 

glass 1. 

The glass transition represents a change from equilibrium to non-equilibrium 

conditions on cooling or the reverse process on heating. The temperature at which 

glass transition takes place reflects the kinetic behaviour of the system and not a 

thermodynamically driven process
68

. Changes in volume that occur on liquid 

supercooling and glass formation are shown graphically in Fig.1.7. As shown in 

Fig. 1.7,  the value of the temperature    is different for different cooling rates. A 

smaller cooling rate allows the system to remain in equilibrium until lower 

temperatures. However, for a variation of about an order of magnitude of the 



21 

 

cooling rate,    varies only by 3-5 K.     is thus really an important characteristic 

of the material
1
.  

In Fig.1.8, the viscosity of several materials is represented as function of 

  

 
 (Angell plot

70
).  Using this representation of the viscosity, the liquids can be 

classified into two categories: ‘strong’ or ‘fragile’ liquids. The formers have a 

viscosity that is described by the Arrhenius functionality         
  

  
  where    

is the viscosity at infinitely high temperature,    is the activation energy and   is 

the universal gas constant. This kind of behavior is generally encountered in 

systems having short range and strong interactions like covalent bonds (ex: SiO2 in 

Fig.1.8). The fragile liquids show a clear deviation from the Arrhenius behavior 

where the viscosity increases sharply near    . These materials are well represented 

by the Vogel-Tammann-Fulcher-Hesse (VTFH) equation
71-73

         
 

    
  

where   is a characteristic constant of each material and         . Complex 

organic systems (as many pharmaceutical materials
25

) are considered as fragile (ex: 

o-terphenyl in Fig.1.8). Their apparent activation energy is also high near the glass 

transition temperature compared to the strong liquids. The fragility index  , which 

characterizes the slope of the viscosity versus the temperature as we approach the 

glass transition temperature, can be used to distinguish between fragile and strong 

liquids. It can be written as follow:     
       

  
  

 
 
 
  

. Fragile liquids have high   

(  =107 for sorbitol
74

) whereas strong liquids have low    ( =18 for SiO2) 
1, 12

. 
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Fig.1.8: Angell classification of liquids (strong/fragile)
70

. Strong liquids show Arrhenius 

behavior (a straight line in the         vs  
  

 
  plot) while fragile liquids present a sharp increase 

in viscosity near    . 

 

2 Solid-Liquid interfacial free energy 

 

The solid-liquid interfacial free energy is one of the fundamental 

parameters of nucleation and it is involved in several mechanisms of growth
6, 7, 33

. 

Three types of interfaces are fundamentally important in most systems: i) free 

surfaces of a crystal (solid/vapor interface), ii) grain boundary interfaces (between 

two solid phases) and iii) the interphase interfaces (between two different phases, 

i.e. the crystal-liquid interface). The solid/vapor interface is essential in all the 

vaporization and the condensation processes. The grain boundary interface, which 
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is the interface that separates two crystals having the same composition and 

structure but different orientation, plays an important role in the recrystallization 

mechanism from a highly deformed crystal into a new undeformed crystal
31

. One 

of the most important thermodynamic factors that influence nearly all of the 

processes involving the nucleation and growth of crystals from the melt is the 

crystal-liquid interfacial free energy  . It determines the morphology of growth 

and also leads the solidifications in preferred crystallographic orientations
31

. In 

addition, crystal-melt energies dictate to a large extent the temperature at which 

solids nucleate, homogenously or heterogeneously, from their liquids
34

. In 

indomethacin, it was shown that the interface term has a different value for each 

polymorph
30

. This might be an additional reason for the difference in the energy 

barrier between polymorphs. Indeed, since at the crystal-liquid interface, the 

surface of a less stable phase is likely to be more disordered than the surface of a 

most stable one, hence the interfacial free energy is likely to be smaller. This trend 

is also well in line with the well-known Ostwald rule of stages
75

 suggesting that the 

crystal phase that nucleates is not the most thermodynamically stable phase but 

rather another metastable phase that is closest in Gibbs free energy to the parent 

phase. 
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Fig.1.9: Crystal-liquid interface for a flat interface (a), and a rough interface (b) and (c)
31

. The 

dotted line in (b) represent the rough nature of the interface by dividing the atoms into solid-like 

and liquid-like. 

 

Two types of solid-liquid interfaces exist. The first type is described by a 

smooth interface (also called faceted, flat or sharp) (Fig.1.9 a) where the transition 

from the liquid to the solid phase takes place in a narrow region with a thickness of 

one atom layer. The second type is the diffuse interface (also called rough or non-

faceted) as shown in Fig.1.9 b and c. The transition between solid and liquid in 

such interfaces takes place over quite a few atom layers
31, 33

. The change in the 

thermodynamic parameters (enthalpy and entropy) will thus occur gradually across 

the interface from the bulk solid to the bulk liquid as presented schematically in 

Fig.1.10.  At equilibrium and at the melting temperature, the higher enthalpy of the 

liquid compared to the solid is compensated by the higher entropy so the two 

phases have the same free energy. Nevertheless, at the interface the balance is 

dispersed generating an excess free energy  .  
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Fig.1.10: The origin of the crystal-liquid interfacial free energy γ shown by the variation of the 

thermodynamic parameters (enthalpy H, entropy S and free energy G) across the solid-liquid 

interface at the melting temperature    
49

. The superscripts S and L correspond to the solid and 

liquid phases respectively. 

 

Spaepen
76

 stated that this excess free energy should be basically of entropic 

origins. He showed that surface free energy is produced by the decrease of the 

configurational entropy       caused by the adjustment of liquid particles to a 

crystal surface in pursuance of minimizing its density and energy. In other words, 

liquid atoms at the crystal-liquid interface do not have as much available 

configurations as the bulk due to the special boundary conditions of the crystal 

plane. It is possible to show for a model interface that the interfacial free energy 

can estimated as
6, 76

:
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                   1.5 

  

where     is the total entropy of fusion which consists of two components: a 

configurational term          and a vibrational term       due to the increasing in 

the local available volume to the liquid atoms around their average position. In 

Spaepen’s model,       is considered to be the same in the bulk liquid and at the 

interface since the atomic volume is approximately constant up to the interface. 

Fig.1.11 shows a schematic representation of the entropies as a function of the 

distance normal to the interface. 

 

Fig.1.11: Schematic representation of the entropy change as function of the distance normal to 

the interface. The interfacial free energy   is thus proportional to                

                   . 

 

A correlation between   with both the melting enthalpy     (consistent with 

equation 1.5) and the atomic density in the crystal state     was first established by 

Turnbull 
34

 on the basis of experimental data on metallic systems (Fig.1.12). It is 
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usually expressed as               
   

  where    is the Turnbull coefficient 

which was found to be about 0.45 for most metals and 0.32 for semi metals and 

water
38

. Other studies showed that this coefficient, for metallic alloys, range from 

0.13 to 1
77

 or from 0.21 to 0.77
39

 for other variety of materials (camphene, 

benezene, lauric acid, stearic acid, dibromobenzene…). Therefore, the value of    

seems to change with the type of materials. For hard-sphere model a 

proportionality with the melting temperature    
78

,               
   

 , has been 

suggested which is consistent with the Turnbull relation since for all fcc metals the 

ratio         is roughly the same. Alternative rules to the Turnbull relation have 

been also proposed in which the interfacial free energy varies with         

temperature 
79, 80

 such as         
 

  
. 

 

Fig.1.12: The gram-atomic interfacial free energy (    versus the enthalpy of fusion for various 

substances extracted from ref. 
34

. 
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Reported interfacial free energies values are very scarce in literature
16, 23

 

especially for molecular materials due to the difficulty to determine this parameter 

with high accuracy from experiments
30, 37-39

. A further difficulty is that, unlike a 

liquid-gas interface, the crystal-liquid interfacial free energy may show anisotropy 

and dependence on the orientation of the crystalline face in contact with the liquid. 

There are few experimental techniques capable of measuring this fundamental 

quantity. One of the oldest and most widely used technologies proposed in the 

early 1950s by Turnbull
34

 to estimate   is based on the nucleation rate 

measurements of the formation of solid particles in the liquid from microscopy 

followed by a subsequent treatment using the classical nucleation theory (CNT). In 

this approach,   emerges as a fitting parameter (Fig.1.13)
81

. The values thus 

measured have also a large degree of uncertainty due to the heterogeneous 

nucleation that may occur close to material defects (impurities)
2, 81

. Moreover, as 

previously mentioned, nucleation is also a difficult phenomenon to study in-situ 

due to the very small critical nuclei of a few nanometers. 
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Fig.1.13: The steady state nucleation rate         (m-3
 s

-1
) for liquid Hg as function of 

   

      
 

where    represents the undercooling. The figure was extracted  from ref.
82

. The two sets of data 

correspond to two different droplet size distributions: black circles correspond to the data 

obtained from the nucleation of droplets having a slightly bigger diameter. The solid lines 

correspond to the linear fit since         vs             should be linear. The slope is 

proportional to    which enables the determination of the interfacial free energy. For Hg,   was 

found to be 0.031 J/m
2
. 

 

 Another alternative experimental approach, called the grain boundary groove 

method (GBG), is widely used to determine   as well as the Gibbs-Thomson 

coefficient. The first report of its application was by Jones and Chadwick
83

 for 

some transparent materials and it was later extended by Gunduz and Hunt
84, 85

 to 

measure   for metallic alloys. It is based on the application of the Gibbs-Thomson 

equation. To observe the grain boundary groove, a thin liquid layer will be melted 
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and the specimen will be annealed in a constant temperature gradient for enough 

time to observe the grain boundary groove shapes via CCD digital cameras. Even 

though this method has a wide application on multi-component systems as well as 

pure materials, for opaque and transparent materials, it lacks of accuracy since the 

total error in the determination of the Gibbs-Thomson coefficient is about 10 %. 

Another method was introduced by Glicksman and Vold
86, 87

 to study the free 

energy of extended crystal-liquid interfaces. It employs measurements of the 

equilibrium dihedral angle of a groove on the solid-liquid interface by a low angle 

tilt boundary (DA). The measurements were done in situ by an electron microscope 

and then using Herring analysis
88

 to extract the crystal-liquid interfacial free 

energy. Good agreement was found between the values of   derived from this 

method and the values obtained by Turnbull’s method but there are some 

difficulties encountered in analyzing the data obtained from the tilt boundaries for 

some wide angles. It is therefore not surprising that the values determined 

experimentally differ considerably depending on the specific technique used
86, 89

 

(see some examples in Table 1). 

   (mJ/m
2
) Method of measurement 

Bismuth 
61.3 DA

86
 

54.4 Turnbull’s method
34

 

Ice-water 

44 GBG
89

 

45 DA
89

 

32 Turnbull’s method
34

 

Succinonitrile 
7.86 GBG

39
 

8.94 GBG
39

 

Al 
158 DA

90
 

93 Turnbull’s method
34

 

Table 1: A comparison between the experimental crystal-melt interfacial free energies obtained 

from different methods.  



31 

 

In recent years, several techniques based on Molecular Dynamics (MD) 

simulations have been proposed for the determination of the solid-liquid interfacial 

free energy
6, 7, 40, 41

. Broughton and Gilmer
91

 proposed a method called "adiabatic 

cleaving" based on the fact that the free energy of interface is a thermodynamic 

state function. Using this approach, they were able to calculate the reversible work 

required to create a solid-liquid interface . .i e  the interfacial free energy for a set of 

particles interacting via a Lennard-Jones potential. This approach has been 

extended by Davidchack and Laird
92, 93

 to take into account the anisotropy of the 

crystal interface of the compounds mainly made either of hard spheres
92

 or 

Lennard-Jones particles
93

. Handel et al
94

 extended the cleaving method to a 

molecular system where they performed direct calculations of the ice-water 

interfacial free energy for the TIP4P model. Moreover, the critical nucleus method 

(CNM)
95

 is based on the classical nucleation theory (CNT).  is estimated from 

the Gibbs-Thomson effect and from the determination of the critical undercooling 

corresponding to a given critical radius. An alternative approach proposed by Hoyt, 

Asta, and Karma
96, 97

, called "the capillary fluctuation method" (CFM) has been 

successfully validated in recent years for monatomic
98

 and binary atomic simple 

systems
99

 and more realistic models such as metallic compounds
40, 100

, alloys
101

 and 

molecular materials such as water
102

 and succinonitrile
38

. In this approach the 

interface is intrinsically treated as "rough". The amplitude of the fluctuations of the 

position of the crystal-liquid interface is used as a measure of its roughness in 

order to determine its stiffness - soft interface have more fluctuations – which can 

be directly correlated to the interfacial free energy. All these methods will be 

detailed in chapter 2 along with the CFM which is the method employed in the 

present work in order to obtain the crystal-melt interfacial free energy  . 
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3 Some approaches for the prediction of the glass-forming ability of 

pharmaceuticals 

 

There has been a considerable amount of work on the so-called 

amorphous solid dispersions aiming to predict the persistence of the active 

pharmaceutical ingredients (API) in the amorphous state as function of 

temperature
103-105

. The main motivation is to prevent recrystallization upon long-

term storage since this transformation would obviously negate advantages of using 

the amorphous state (higher solubility)
19, 45, 46, 106-108

. In other words, it is essential 

for the drug to remain in the amorphous state for the life time of the product (2-3 

years). Since it is not practical to wait all this time in order to verify if 

crystallization will occur, it is necessary to widen the understanding of the 

crystallization tendency. This understanding will enable to differentiate between 

the compounds that have a high risk for crystallization and those who do not.  

 

The reduced glass transition temperature       
22, 23

 is the most common 

used estimation of the GFA of organic molecules. Compounds with higher       

values are most probably more resistant to crystallization. However, there are 

compounds that have similar values of      , like chlorpropamide and 

ketoconzazole
25

, but exhibit different crystallization rates indicating that       is 

not a good predictor of the GFA. 

 

The viscosity η, when it is used to represent the diffusion, is considered as 

a key factor that governs the crystallization tendency since both nucleation and 

growth are dependent on η
25

. It can be thus used as a predictive factor to the 

crystallization/vitrification tendency. The compounds that have a steeper increase 

in viscosity upon cooling might be more resistant to crystallization (good GFA). 
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This correlation between the viscosity and crystallization is not always valid since: 

i) other thermodynamics factors ( ,   ) varies between compounds which make 

the comparison more difficult, and ii) the viscosity may not accurately reproduce 

the diffusion upon deep cooling owing to the breakdown of the Stokes-Einstein 

relations
2, 36

. 

 

 

Fig.1.14:   -scaled viscosity for different pharmaceutical organic compounds (circles) extracted 

from ref. 
25

 exhibiting a similar non-Arrhenius behavior (fragile liquids) which is represented by 

the solid orange line (m=134). The black solid line represents an Arrhenius behavior (Strong 

liquids, m=16). 

 

Furthermore, the fragility was used for polymers to distinguish between good and 

bad GFA’s
20

. But for several pharmaceutical compounds
25

, this parameter is not 

able to predict their crystallization/vitrification tendencies since they possess 

similar fragile behavior as shown in Fig.1.14 where        vs       is 
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represented.  It can be noted that all compounds, good and bad glass formers, 

exhibit a similar non-Arrhenius behavior. Hence, “Angell” plot as presented in 

Fig.1.14 gives us minimal information on the GFA of organic compounds. 

 

Since it is difficult to obtain a good prediction of the 

crystallization/vitrification tendency while knowing only one (or more) parameter 

that influence the crystallization and nucleation rates, it is obviously more 

advantageous to use directly the nucleation/crystallization rates to predict the 

good/bad GFA. A method combining several types of  experiments (DSC, hot 

stage microscopy) can be applied to obtain the growth rate by melt quenching and 

subsequently reheating the compound in question
16, 28

. The crystallization 

tendencies observed by this method depend on the experimental conditions 

(heating/cooling rates) and more importantly on the temperature dependence of the 

nucleation and growth rates (  and  ). As mentioned before, both    and   have a 

bell-shaped form as function of the temperature where the maximum in the growth 

rate occurs generally at higher temperatures than the maximum in the nucleation 

rate
30

. As shown schematically in Fig.1.4, a compound that has a good crystallizing 

ability should have a considerable growth rate in a region where the nucleation is 

thermodynamically and kinetically favorable. In contrast, compounds that exhibit a 

good GFA upon cooling and a good crystallizing ability upon reheating might form 

nuclei upon cooling in a region where the crystal growth is slower. Hence, these 

compounds will crystallize upon heating when a more favorable temperature 

region for growth is obtained. Many possible explanations can be presented for 

compounds that do not crystallize neither upon cooling nor upon heating. Both 

nucleation and growth rates might be low or the system might have a high 

crystallization rate but a low nucleation rate. This method
16

 cannot thus provide 

fundamental understanding for recrystallization of similar compounds since the 
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study is limited to the growth rate which is easily accessible compared to the 

nucleation rate
46, 48, 58

. However, Trasi et al
28

 used the crystallization behavior from 

DSC experiments from ref.
16

 to include the nucleation rate effects and compounds 

were classed in 5 classes (Fig.1.15): class IA where compounds have high 

nucleation and growth rates with a temperature range where the two rates overlap 

which explains their high nucleation tendency upon cooling from the melt, class IB 

has high nucleation/growth rates but a minimal overlapping which is explained by 

a good GFA ability but once a nuclei is formed there is a high probability of 

crystallization (low glass stability), class II  represent the compounds that have a 

high growth rate but low nucleation rate which explains there good GFA but poor 

glass stability once a nuclei is formed, class III encompasses compounds that have 

high nucleation rates but low growth rate while class IV compounds have slow 

nucleation and growth rates. It can be noted that the highest risk compounds for 

formulation in the amorphous form are compounds from the class I followed by 

class II.  

 

 

 

Fig.1.15: Classification of compounds based on their crystallization and growth rates (figure 

extracted from ref.
28

). 
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Chapter 2 Simulations details and methods 

The aim of this chapter is to present the different numerical methods used 

to calculate all the parameters under investigation in this thesis.  

First, we will present brief highlight on the numerical methods and 

algorithms associated with the molecular dynamics (MD) simulations (additional 

details can be also found in the annex section) followed by the possibilities and 

limits of MD simulations in calculating the different thermodynamic and kinetic 

parameters. 

Secondly, the estimation of the interfacial free energy via MD simulations 

will be discussed. A more detailed description will be given to the capillary 

fluctuations method being the method used in this work to determine the crystal-

liquid interfacial free energy. 

Finally, the details of the simulations used in this work will be presented.  

The general simulation parameters (simulation time, integration time step, …) and 

the details of the construction of the simulation boxes (size, shape…) will be 

shown. 

1 Introduction to MD simulations 

Simulations cover a large ensemble of numerical techniques that enable 

the determination of the properties of a certain material on different time and 

length scales. The choice of the simulation method relies on the choice of the 

desired temporal and spatial scales (Fig.2.1). The atomic radius spatial scale and 

the femto/picosecond temporal scale are covered by Quantum Mechanics 

calculations such as the Density Functional Theory (DFT)
109

 describing the 
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evolution of the electronic clouds. MD simulations treat the interactions on an 

atomic level (nanometer scale) with time scales ranging from picoseconds to a few 

nanoseconds
110

. Mesoscopic methods use coarse-grain approaches in which 

molecular groups such as CH3 or monomers in polymers are treated as a single 

‘super’ atom. It thus reduces the number of atoms and allows simulations of 

systems having the size of nanometers to micrometers with microseconds time 

scales
111

. For larger systems (centimeters) and on a larger time scale (seconds), 

finite element simulations are applied
112

. It can be noticed that numerical 

simulations may thus intervene in all the constituent of matter: electrons, atoms, 

molecules, macromolecules and micro-structures. 

 

Fig.2.1: Different numerical approaches as function of the time/spatial scales. 

 

Molecular dynamics simulations was our chosen numerical method since 

our study consist of understanding the mechanisms involved in crystallization, 

recrystallization, vitrification processes (and in particular the role of the crystal-
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liquid interfacial free energy  ) by simulating crystalline and amorphous materials 

at the microscopic level.  

It should be mentioned that MD simulation is a very powerful technique 

which has been playing an important role, not only in physics but in biology and 

chemistry as well, in the understanding of the different physical mechanisms 

involved in the studied systems. Therefore, numerous works have been published 

in various domains in order to study biomolecular systems
113-115

, predictions of 

molecular properties
116, 117

, rheological properties
118, 119

, etc ...    

MD simulations can be described as a bridge between the microscopic 

parameters, like positions, velocities and accelerations of an atom or a group of 

atoms, and the macroscopic properties, which we can mainly use to depict the 

tangible world such as density, enthalpy, and viscosity. Essentially MD simulations 

consist of resolving Newton’s second law that is expressed as  

         
        

   
                                               2.1 

where        is the force exerted on an atom i at time t,    is its mass and 
        

   
 its 

acceleration vector. By a step by step integration using a time step of about      

fs, it is possible to follow the evolution of the position of each atom in the studied 

system as function of time.        is obtained by the use of an empirical complex 

force field that describes all the interactions between each atom (van der Waals 

forces, electrostatic forces, covalent bonds…). Using this technique, we have 

access to a complete knowledge of the simulated material and it is thus possible to 

calculate different experimental properties like the dipole moment, enthalpy, 

etc…
110, 120

. 
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1.1 Force fields 

The force field is one of the most essential ingredients in MD simulations 

that enable the calculations of the forces exerted on atoms. The accuracy of the 

calculations is strongly related to the accuracy of the force field itself and its ability 

to reproduce experimental data. Its main role is to describe the potential energy of 

an assembly of atoms. It is composed of an empirical and analytical expression of 

the interatomic potential energy                     where the       ’s are the 

coordinates of the   atoms contained in the system,  and some other parameters 

like the spring constant, van der Waals radius, electrostatic charges, … . Those 

parameters are obtained generally by quantum mechanics calculations or by fitting 

experimental data such as X-ray diffraction, NMR … 
121

. The molecules are 

usually modeled as a group of atoms linked together by harmonic oscillators where 

no chemical reaction can take place. The significant development of force fields 

started in the end of the 1960’s when the first computers became available
122

.  The 

first force fields were very simple and optimized to determine structural properties 

and vibrational spectra and enthalpies of isolated molecules such as    

hydrocarbons
123

 and alcohols
124

. Improvements of force fields (and computer 

power) made possible first atomistic simulations of a protein
125

 in the native state, 

denaturation of a protein using a coarse grained model
126

, or even study of 

enzymatic reactions from QM-MM (Quantum Mechanics/Molecular 

Mechanics)
127

. In the early 1980’s, many force fields were developed like 

AMBER
128

, CHARMM
129

 and OPLS
130

. Since then, those force fields have been 

improved and are still used nowadays. A good review of available force fields can 

be found in refs.
131-133

. 

Each force field has its own applications that are highly dependent on the 

system studied that makes it hard to compare the performance of existing force 
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fields. The force field used in this work is the General Amber Force Field 

(GAFF
134, 135

) which is a generalization of the AMBER force field to a variety of 

small organic molecules and the OPLS force field
130

 where its functional form is 

also very similar to the AMBER force field.  

In general, the force field can be written as the summation of 6 

contributions (see eq. 2.2) to the total potential energy
110, 120, 132, 136

: 

                                                        2.2 

These contributions can be classified into 2 groups:  

i) the intramolecular interactions which model the flexibility of the molecule 

     ,         ,            and            describe respectively the interactions 

linked to the chemical bond between two atoms, the deformation of the angles 

between covalent bonds, the torsions and the planarity of molecules.  

ii) the intermolecular contributions such as the van der Waals interactions modeled 

by the Lennard-Jones potential      and Coulomb interactions      . The Lennard-

Jones potential models the combination of two opposite forces: a repulsive force 

describing Pauli repulsion at short ranges due to the overlapping of electron 

orbitals and an attractive force describing the attraction at long-ranges (van der 

Waals forces). Each term is detailed in the annex at the end of this manuscript. Ab-

initio calculations are performed in order to calculate the point charges needed by 

the electrostatic potential      . For the force field GAFF, Hartree-Fock method is 

recommended to obtain charges. The angle and bond parameters can be adjusted 

using the crystalline structures data from X-ray and neutronic diffraction 

experiences while dihedral angles can be obtained using quantum mechanics 

calculations
110, 120, 132, 136

. 
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1.2 Algorithms and principles 

A system of N point particles in a classical system is characterized by 6N 

variables. 3N variables relative to the positions of the particles and 3N variables 

relative to the momentum. Hence, a phase space is formed by these variables and 

each position in this system is called a microstate.  All the needed quantities can be 

obtained by averaging their corresponding values in each microstate. To do so, an 

exploration of the phase space must be done. This exploration can be made by a 

stochastic approach (like Monte Carlo simulations) or a deterministic approach. 

MD simulations study the phase space by integrating step by step the Newton 

equation. This equation cannot be solved analytically as it is since it consists of 

solving 3N coupled equations of the 2
nd

 order (equation 2.1). These equations are 

hence an N-body problem that has not an analytical solution. Several numerical 

algorithms have been developed for integrating the equations of motion such as 

Verlet algorithm
137

 and Verlet leap-frog
138

 that are discussed in the annex. 

Furthermore, in order to run MD simulations in an NPT (constant number of 

particles, pressure and temperature) or an NVT (constant volume) ensemble, 

barostats and/or thermostats must be used such as the Berendsen
139

 

barostat/thermostat (see annex). These algorithms are employed to maintain the 

temperature and the volume/pressure constant during a MD run. 

2 MD simulations: possibilities and limits 

In recent years, the application of MD simulations to condensed matter 

sciences has made it an essential analysis tool that sheds the light on information 

that is hardly accessible by other methods
119

. We can “naively” classify the 

information provided by MD simulations in two categories: the easily estimated 
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parameters that can be directly obtained by the outputs of the simulations and the 

more difficult parameters that demand additional efforts in order to acquire them. 

 

2.1 Easily accessible properties    

The first category includes the density of the system, the total volume, the 

internal energy   obtained from the force field inter and intra interactions and the 

enthalpy (      ). The self-diffusion coefficient   is also in this category 

and it can be calculated by the mean square displacement (   )        . By 

definition,     is defined as 

        
 

 
                  

                                  2.3 

where the <> symbol denotes the average over time,        is the position of the 

center of mass i at a given time   and        is the tagged particle's initial position. 

Using Einstein-Smoluchowski relation of motion
140

, one can relate the self-

diffusion coefficient  , which is a macroscopic transport coefficient, to the     

which is a microscopic property (for long t): 

        
       

  
                                           2.4 

For each temperature the long time behavior of         can be fitted using the 

linear relation (equation 2.4) in order to obtain   as function of the temperature. 

An example is shown in Fig.2.2 for felodipine. 
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Fig.2.2: An example of the evolution of the     as function of time for a felodipine system at 

500 K. The diffusion coefficient obtained from the fitting (solid line) is  =8.1 10
-11

 m
2
/s. 

 

The shear viscosity   can be also calculated without difficulty. Using the 

Green-Kubo (GK) expression
120

,   can be estimated by integrating the stress-stress 

autocorrelation function : 

        
 

   
              
 

 
                            2.5 

where   is the volume of the system,   is the temperature,    is Boltzman’s 

constant and     refers to an off-diagonal element of the stress tensor. The 

brackets in equation 2.5 refer to an average over time (see Fig.2.3). The calculation 

can be performed at different temperatures enabling the determination of the shear 

viscosity as function of the temperature     . 
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Fig.2.3: The shear viscosity of the different xylene isomers as function of time at T=298 K and 

P=0.1 MPa taken from ref
141

. The shear viscosity is given by the value of   when    . The 

values of   at T=298 K and P=0.1 MPa are thus 0.76 mPa.s, 0.53  mPa.s and 0.60 mPa.s for o-

xylene, m-xylene and p-xylene respectively. 

 

The calculation of   and   requires evidently sufficient mobility. To access this 

mobility via MD simulations while avoiding very long simulations, the 

temperature of the system where the transport property is calculate should be high 

(     . At lower temperatures,   and   can be estimated using extrapolations 

from equations that fit their behavior at different “high” temperatures such as the 

VFTH (Vogel-Fulcher-Tamman-Hesse) equation
71-73

 or the model proposed by 

Mauro et al
142

. 

The radial distribution function (RDF) is easily obtained as well by the means of 

MD simulations. To calculate the RDF, also referred to as     , one needs to 
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calculate the probability of finding a particle between a distance   and      

away from a given reference particle (Fig.2.4). This probability is then normalized 

by the expected value for a homogenous system. 

 

Fig.2.4: A schematic representation of the enumeration of the particles localized between a 

distance   and      away from a given reference particle. The central particle represents the 

reference particle (see text). 

  

The RDF parameter      is linked by a Fourrier transformation to the 

experimentally measurable structure factor    ).  Both      and    ) thus provide 

additional information on the spatial correlations between atoms
110

. An example is 

shown in Fig.2.5. The RDF of a solid phase is distinguished by several peaks while 

only a few broad peaks are found for the liquid phase.  
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Fig.2.5: RDF calculated for Pb taken from ref 
143

. The solid phase of the fcc system is showed at 

500 K and at 700 K for the liquid. 

  

2.2 More difficult properties to determine from MD  

In the second category, we can find some thermodynamic parameters such 

as the melting temperature. The melting point, or more generally the melting line, 

has a fundamental interest leading to the understanding of the equilibrium 

properties of both liquid and solid phases
144

. The calculation of the Gibbs free 

energy of both phases led traditionally to determination of the melting line
145

 by 

using the relationship 

                                                    2.6 

where        is the Gibbs free energy per particle at the melting temperature    

corresponding to the pressure  . The subscripts   and   corresponds to the solid 

and liquid phases respectively. Many simulations are needed to calculate the 
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difference in free energy from a reference system to the system of interest at 

certain temperature and pressure and then to plot the Gibbs free energy as a 

function of temperature and pressure
144

. The Gibbs free energy itself presents a 

significant difficulty to compute directly since it requires calculations to estimate 

the entropy of the simulated system. Determining the entropy of the simulated 

system (           by estimating the number of microstates   from the 

positions and the velocities linked to each atom is impossible
110

. Therefore, the 

application of some approximations is necessary, such as harmonic and quasi-

harmonic approximations
146

, which can limit the use of these methods on some 

systems or in a range of temperature. 

Alternatively, the crystal-liquid coexistence can be simulated directly by 

combining the two phases in question, and then monitoring the evolution of this 

biphasic system at different temperatures
144, 147

. While performing several MD 

simulations at several temperatures, either the crystallization of the system or the 

melting can be observed. The melting temperature will be the temperature where 

the system stays in equilibrium, i.e. when the system neither melts nor crystallizes. 

The melting/crystallizing of the system can be examined by the density or the total 

energy change at each temperature
148, 149

 (Fig.2.6), by calculating an order 

parameter
150

 or by probing the crystal-melt interfacial position
149

. The 

microcanonical ensemble (NVE) has been the natural choice in the direct 

simulation of the liquid-solid coexistence
148, 150, 151

, but other studies showed that 

such calculation are possible in the NPT ensembles
148, 149, 152

. This method is 

widely used for the study of fluid-solid coexistence in LJ systems
144

, hard 

spheres
151

, metals
147, 152-154

, alloys
149

, fluids
155

, ionic systems
156

, and water
157, 158

. All 

these works share the same approach of the calculation of the melting properties 

from direct simulations either by using MD simulations or Monte Carlo. Both 
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simulation techniques are valid and show good results compared to experimental 

data. The accuracy of the method is mainly affected by the potential parameters, 

specially the potential cutoff, and other finite-size effects
159

. 

 

Fig.2.6: The evolution of the total energy (per mole of molecules) of an ice and liquid water 

system for the TIP4P/2005 model at P=1 bar
148

. The increase (at T = 252, 254 or 258 K) or 

decrease (at T = 242 K) of the total energy indicates melting and crystallization respectively. 

 

The thermodynamic integration based on the coupling parameter of Kirkwood
160

 is 

largely employed in numerical simulations. It consists of determining the 

difference in the Gibbs free energy between two phases along a fictive path linking 

these two phases. This path consists of an ensemble of states where the potential 

energy of each state (   and   )  is equal to the summation of the potential energies 

of each phase (phase 1 and 2) weighted by a coupling constant   that varies 

between 0 and 1 (              ). This description assumes that at the 

extreme cases ( =0 and  =1), we retrieve the potential energies of each phase. 
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Given that in the NVT ensemble the variation of the free energy along the fictive 

path is similar to the variation of the spatial average of the potential energy, the 

difference in the free energy between the two phases could be obtained by 

integrating the spatial average of the potential energy compared to the coupling 

parameter      
  

  
   

 

 
 

145
. This method was able to determine the 

thermodynamic properties of systems composed of single chemical entities and of 

a mixture of binary systems as well having different concentrations
161

. This method 

was recently used to determine the melting temperature of atomic and ionic 

systems. The melting temperatures were underestimated by 1 to 20 K compared to 

experimental data for Argon and 1-Butyl-3-methylimidazolium chloride 

respectively
162

. The difficulty of applying this method to molecular systems (such 

as pharmaceuticals) comes from the complexity of constructing a reversible fictive 

path from the liquid to the crystal
162

. In order to apply this method on polymorphic 

systems, the fictive and reversible path should be simulated between each phase of 

the system and all the other polymorphic forms at different temperatures. 

The two-phase model
163, 164

 is a method that can provide the thermodynamic 

parameters such as entropy of the system in a given state from its vibrational 

density of state. The use of complex reversible paths is then avoided. Therefore, 

just one MD simulation at a given temperature is needed to obtain the 

thermodynamic parameters. The vibrational density of state of the system is 

divided into two components, a fluid-like component and a solid-like component, 

and used subsequently to determine the different thermodynamical properties since 

the entropy can be theoretically determined from these two types of vibrational 

density of state. This method was able to determine accurately the entropy in a 

large range of temperatures of hard spheres system
163

, small molecules used as 
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solvents
165

 and the entropy as well as the coexistence curves of different models of 

water
164

.     

3 Interfacial free energy 

For a few years, due the importance of the determination of γ, several new 

theoretical approaches have been developed to tackle the issue of the interfacial 

free energy via computer simulations
166

. The most recent approaches are based on 

metadynamics
167

, superheating-supercooling method
168

, Gibbs-Cahn integration
169

, 

entropy/energy changes across the interface
166

, Gibbs-Thomson approach
41, 170, 171

, 

thermodynamic integration scheme
172, 173

 and mold integration method
174

. All these 

methods have been successfully checked in general for model systems so far. Only 

few data exist
30, 37-39

 in literature for complex systems which makes validation of 

numerical approaches even more difficult. In the following, the estimation of the 

crystal-liquid interfacial free energy via MD simulations will be discussed 

exploring the different methods used in order to determine this parameter. 

In this section, we will focus mainly on three methods that use molecular 

dynamics simulations. 

3.1 The cleaving method (CM) 

Taking into consideration that γ is the reversible work needed to form a 

unit area of interface between a crystal and its melt, the cleaving method 

introduced by Broughton & Gilmer
91

 and then developed by Davidchack &  

Laird
92, 93 

determines γ by thermodynamic integration along a reversible path that 

begins with the separation of crystal and liquid bulk systems maintained at the 

coexistence conditions and ends with one system containing a crystal-melt 

interface surrounded by two bulk phases. To achieve such a path, a procedure 
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should be used in order to reversibly cleave the simulation box into two systems 

that does not interact. This procedure consists of 4 consecutive steps: 

Step 1: Choose a cleaving potential to cleave (separate) the crystal bulk 

while maintaining the periodic boundary conditions. 

Step 2: Cleave the liquid bulk in the same way 

Step 3: Join the crystal and the liquid systems together while rearranging 

the periodic boundary conditions. In this step, the cleaving potentials are 

maintained. 

Step 4:  Remove the cleaving potential from the final system. 

The interfacial free energy is obtained by calculating the total work needed to 

perform the 4 steps above and dividing it by the area of the created interface. 

The cleaving of the systems is achieved by cleaving potentials. The choice of these 

potentials influences significantly the reversibility and the precision of the 

thermodynamic integration process. It is required from a cleaving potential to 

perturb the system as little as possible. Consequently the potential in step 2 should 

bring in some structure to the cleaved liquid making it compatible with the 

structure of the crystal. In addition, the cleaving potential should be able to prevent 

any particle from crossing the cleaving planes. If this requirement is not fulfilled 

the rearrangement of the periodic boundary conditions in step 3 cannot be 

achieved. 
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Fig.2.7: An illustration of the cleaving of the system by two moving walls as shown in ref.
92

.  

 

A series of cleaving potentials was first designed by Broughton & 

Gilmer
91

 but it was mainly optimized to the truncated LJ system of their work. 

Later Davidchack and Laird
92, 93 

proposed a different approach adaptable to 

systems with different interparticle interaction potentials and different crystal 

structures. Fig.2.7 shows the idea of this approach. First, to cleave the system at a 

cleaving plane the particles in the system are assigned by types 1 and 2 relative to 

their position to the plane. Then, two assigned walls (1 and 2) are placed on the 

opposite sides of the cleaving plane. The goal of assigning the walls and the 

spheres is to specify the interaction between them in a way that the walls interact 

only with the spheres having a similar type. It should be noted that if the distance 

between the walls and the cleaving plane is bigger than the sphere radius, the walls 

do not interact with the spheres. The system will be cleaved when the walls move 

towards each other (arrows in Fig.2.7), from an initial position   , where the walls 

have no interaction with the system, till    where the spheres of different types no 

longer collide. The average pressure on the wall      will be measured, during the 
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progression of the walls, as a function of the wall position. Finally the total work 

per unit area needed to perform the cleaving is given by the following integral: 

        
  
  

                                           2.7 

This work can be calculated for the 4 steps mentioned above, and since γ is the 

reversible work needed to form a unit area of interface between a crystal and its 

melt,   is given by: 

                                                   2.8 

The w3 is missing from equation 2.8 because in Davidchack & Laird’s
 
approach, 

no work is done on the system in the third step. 

This method proved its efficiency to obtain the magnitude of the crystal-

melt interfacial free energy but it is still complicated and not straightforward to 

implement
41

, and it is restricted to hard-spheres and Lennard-Jones systems. 

3.2 The critical nucleus method (CNM) 

This method was inspired by Turnbull’s experiments that were mentioned 

earlier (see chapter 1). The classical nucleation theory (CNT)
49

 states that the 

change in the Gibbs free energy       to form a small crystal sphere of radius   

from the undercooled melt is expressed as : 

        
 

 
                                                     2.9 

where     is the Gibbs free energy difference per unit volume between the liquid 

and crystal phases at temperature        can be approximated as: 

          
  

  
                                                 2.10 
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where         is the undercooling temperature.  Using equation 2.9, the 

critical radius can be obtained: 

    
  

   
  

    

     
 

 

  
                                           2.11 

and the critical nucleation barrier is: 

     
     

      
 
  

       
 

      
  

 

   
                               2.12 

For a given undercooling temperature, there exist a critical radius    associated 

with    . If       the crystal sphere melts lowering the free energy of the 

system; if       it grows. In the case where       
can be obtained, the sphere 

will be in equilibrium (but unstable) with the surrounding liquid. Fig.2.8 presents 

an example of a germ of iron nanoparticles
95

. 

 

Fig.2.8: Snapshots of the calculation cell containing two different germs of iron nanoparticle. In 

the case where r=2.24nm (>r*) the growth of the nanoparticle is observed and if r=2.05nm 

(<r*) the melting is observed 
95

.  
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In this method
41, 95, 170, 171

, the critical undercooling temperature     is found for a 

given critical radius   . So, if         
the crystal sphere dissolves into the 

surrounding liquid, if        , it grows. Since the critical nucleus radius    
is 

proportional to the reciprocal of the undercooling    (equ. 2.11),   can be found 

by the slope of the curve of    
versus 1/     (Fig.2.9). The melting temperature    

and the enthalpy of fusion     can be calculated by the coexistence temperature 

of the crystal and the melt and by comparing the enthalpy difference of the bulk 

solid and liquid phases at   .  

 

Fig.2.9: The critical nucleus size r
* 

as function of the inverse of the critical undercooling 

temperature ΔT
*
 for a LJ system

41
. The value of   was found to be 0.302 (in standard LJ units). 

This method showed its accuracy in the calculation of the interfacial free 

energy
171

, but since the   calculated here is an average value over different 

crystallographic orientations this method is not able to detect the anisotropy of the 

interfacial free energy. Furthermore, its application on more complex systems 

might be difficult since the crystallization time of a molecular system will be much 

longer than that of an atomic liquid
27

. 
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3.3 The capillary fluctuation method (CFM) 

In the following, the capillary fluctuation method, the method used in this 

work, will be described. By definition, the capillary fluctuations are waves on an 

interface between two bulk regions excited by thermal noise
175

. This method is 

widely used in literature
38, 96-98, 176-178 

where the interfacial stiffness is determined 

from the power spectrum of the fluctuations of the interfacial position. The 

stiffness is defined as        where              and   is the angle between 

the growth direction and the direction normal to the interface. The anisotropy of 

this quantity is an order of magnitude larger than that of   
179

 giving an advantage 

to the capillary fluctuation method to detect more accurately the anisotropy of the 

interfacial free energy than the other methods described above. It is usually 

reported in many model systems
97, 99, 100, 178, 179

 and realistic molecular systems
38

 

that the anisotropic effect is usually relatively weak being of the order of few 

percent. For succinonitrile
38

 for example, the interfacial free energies for the 

orientations (100)[001], (110)[001] and (111)[1-10] were found to be 7.06 mJ/m
2
, 

7.00 mJ/m
2
  and 7.01 mJ/m

2
 respectively. For the LJ system

178
,  (100),   (110) and 

  (111) were estimated to be 0.369, 0.361 and 0.355 respectively (in standard LJ 

units).     

3.3.1 Demonstration of the equilibrium fluctuation spectrum expression  

Considering two infinite phases in equilibrium at pressure P and 

temperature T, their minimum free energy corresponds to a flat interface, but due 

to the thermodynamic fluctuation near the equilibrium, the interface of all 

configurations of the system is not planar
179

. Consequently, for non flat interfaces, 

the assumption of fluctuating interface can be reasonably used in order to extract 

the interfacial free energy
180

. In addition, the fluctuations magnitudes are of the 
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order of nanometer and the growth and time scale for the decay of the interface 

waves are of the order of picosecond which make the molecular dynamics 

techniques suitable to this kind of studies. 

To identify the relation between the fluctuation of the interface position and the 

interfacial free energy, a form of the free energy of the interface should be 

established. To do so, the energy cost of the distortion of the interface should be 

considered. 

Let us consider S the area of an interface, and dS the infinitesimal variation of its 

area. The minimum work needed to form this interface is proportional to the 

quantity dS
181, 182

: 

                                                     2.13 

Monge parameterization
175

 is used in order to define the dS term. Fig.2.10 shows a 

schematic representation of a 2 dimensional interface: the   and   directions are 

along the interface, and the   direction is normal to the interface. In this 

representation the height,  , is equal to        183
. 
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Fig.2.10: Monge representation of a surface defined by a set of cartesian coordinates x,y and z. 

Therefore the position of the interface is given by 

                                                         2.14 

We can take a slice of surface in the   direction (i.e. at constant  ), and construct a 

tangent vector     in this direction by making a unit step in the x-direction, and a 

step       in the   direction (Fig.2.11a). The same procedure is applied to the   

direction giving the pair of tangent vectors:     = (1,      ,0) and      = (0,    

  ,1). (i.e.    =      ,    =      ). 
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Fig.2.11  (a) For a line tangent to the surface and lying in the    plane, a step      

corresponds to    
 

  
 , resulting in a tangent vector        

 

  
    . (b) An area element 

       on the    plane corresponds to an element                    on the surface. The unit 

normal to the surface is                        

As shown in Fig.2.11b, a segment of length    along the   axis corresponds to a 

vector       along the surface. The cross product of the vector       and       gives 

the area element    on the surface which is 

                       
    

                                       2.15 

Replacing equation 2.15 in equation 2.13 and summing on all the area: 

 

           
    

  
 

     
 

 

 

 
                               2.16 

For a system with a quasi-2D boundary, where   is the width and   is the length 

(          ), which is our case, equation 2.16 will take the following form         

           
  

 

   
 

 
                                   2.17 
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If we consider that   does not depend on the orientation, we can extract it from the 

integral, and if we consider the approximation that the fluctuations are small 

(   << 1),   will be equal to: 

         
 

 
  
    

 

 
                                 2.18 

The energy of a flat interface is given by          so the additional interfacial 

free energy of the undulated interface over that of the flat interface (  ) is given 

by  

               
 

 
  
   

 

 
                    2.19 

To solve this integral, the local interface position is expressed as Fourier series 

               
   

 
      

   

 
 

 

   
           2.20 

Deriving      over  : 

   
     

  
                                   

 

   
           2.21 

with          as the wave vector, 

  
                                  

 
    2                     2.22 

  
  =    

  
   

          
      

  
   

          
  + 2              2.23 

Using                  , and the fact that for          then     , so we 

eliminate the final term in equation 2.23 and   
  becomes: 

  
      

    
     

  
                                     2.24 

Replacing 2.24 in equation 2.19 
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                        2.25  

    
 

 
       

    
     

  
                              2.26 

We can use the equipartition theorem (each normal mode, when configurationally 

averaged, contributes       for the energy of the system
179

 where    is 

Boltzmann constant and   is temperature), 

    
 

 
     

 

 
      

                              2.27 

where    
        , and   denotes the magnitude of the wave vector. 

Finally we obtain the usual form of the interface fluctuation spectrum: 

    
   

   

      
                                               2.28 

The typical geometry of the required system needed to perform such 

calculations is shown in Fig.2.12. The longest direction is perpendicular to the 

average interfacial plane. The other two directions parallel to the plane are the 

thickness   and the width   where        in order to obtain a quasi-one-

dimensional height function      measuring the position of the interface (see 

Fig.2.12). Details about how we can obtain the shape of the system used to extract 

the fluctuation spectrum via molecular dynamics simulation will be provided at the 

end of this chapter. 
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Fig.2.12: A snapshot of a simulation box used to determine the interfacial stiffness of an LJ 

system. The interface is parallel to the (xz) plane. The system size is as follow: L = Lx = 165.98 

Å, b = Lz = 21.83 Å and Ly = 225.91 Å. Lx, Ly and Lz are the dimensions of the whole 

simulation box along the x, y an z directions. The left part of the figure represents the evolution 

of the local order parameter (see section 3.3.4) that enabled the determination of the height 

function h(x). For solid-like particles the local parameter should be equal to 1 and for liquid-like 

particles it should be equal to 0 (see chapter 3). 

 

3.3.2 The analysis of the CFM 

The first step of the capillary fluctuation method is to analyze the different 

configurations of the equilibrated system obtained during the production. For each 
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configuration the interface position is determined using a local order parameter as 

described in the next section. The interfacial profile thus obtained has the 

following form        where   is the direction along the interface. The values 

of the function      are measured at a discrete set of points       where 

       and      . 

The fluctuating height profiles are then Fourier transformed to obtain the 

instantaneous values of the height amplitudes    which are averaged over all the 

configurations to yield    
  . Using equation 2.28, the plot of     

  
    versus       should be linear with a slope of -2. The interfacial free energy 

is then extracted from the intercept of this plot. 

The capillary fluctuation method was chosen in this study because it was 

shown that it can be applied accurately to obtain the crystal-melt interfacial free 

energies for molecular systems
38, 102

. On the computational level, this method is 

easy to implement compared to the cleaving method since it does not require 

external cleaving potentials that should be chosen carefully since the cleaving 

process should be reversible. Table 2.1 represents some interfacial free energy 

values obtain by using different simulation methods. It can be noticed that, for 

some cases, the orientationally averaged interfacial free energy varies significantly 

as function of the method employed (up to 16 % for example in the case of the 

Lennard-Jones systems). 

  



65 

 

Computational Method System studied Orientationally averaged 

interfacial free energy  

CFM
178

 

LJ system 

0.362 ε/σ
2
 

CM
93

 0.360 ε/σ
2
 

CNM
41

 0.302 ε/σ
2
 

CFM
102

 

Water 

27 mJ/m
2
 

CM
94

 23.8 mJ/m
2
 

CFM
171

 

Cu 

149 mJ/ m
2
 

CNM
171

 136 mJ/ m
2
 

 

Table 2.1: Comparative table for some orientationally averaged interfacial free energies 

obtained from the different methods described in the text. 

 

3.3.3 Order parameters  

A major issue in most methods is the definition of a local parameter at the 

molecular scale that can distinguish very clearly between the liquid and the solid 

phases in order to obtain the position of the interface
41, 97, 100, 184

. Due to the 

complexity of molecular systems and their crystalline symmetries, a simple 

rotational-invariant order parameter      
40, 184-188

 is used. It is defined as a 

combination of spherical harmonic functions that interfere constructively when the 

system has the correct symmetry (crystal form), and destructively when the system  

is disordered (liquid form)
189

. Generally this order parameter is used for systems 
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having a cubic symmetry and allows distinguishing between different crystal cubic 

systems but it can be used as well for non-cubic symmetries
187, 188

. In this work, 

this parameter allows us to distinguish the liquid and the solid phases in order to 

obtain the position of the interface. The order parameter for a molecule   is given 

by
186

: 

          
  

    
           

  
                                   2.29 

where     is defined in terms of        

          
 

     
       
     
                                 2.30 

 The complex vector        of the particle k is defined as  

        
 

     
          
     
                                2.31 

      is the number of nearest neighbors of particle i,           are the spherical 

harmonics and      is the vector from particle   to particle  .   is a free integer 

parameter and   runs from      to    .   is considered to be equal 6 in the 

following. Two molecules are considered as neighbors if the distance between their 

center of mass is smaller than the distance that corresponds to the first minimum of 

the radial pair distribution function of the bulk-liquid phase at the melting 

temperature. Therefore to obtain         of particle  , the local orientational vector 

         is used and averaged over the particle   and its surroundings. Fig.2.13 

shows an example of the evolution of      along the direction perpendicular to the 

interface for one instantaneous configuration of the felodipine II system for a given 

layer         . This figure shows clearly the existence of two domains allowing 

the identification of a crystal part (high values roughly above     ~0.115) and a 
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liquid part (low values below     ~0.06) separated by an interface. In order to 

precisely determine the position of the interface     , the evolution of      has 

been fitted to an hyperbolic tangent function
40

 : 

            
     

 
 

     

 
      

       

  
       

       

  
             2.32 

This function describes the shape of a flat interface with effective width      and 

   are the average value of the      parameter in the solid and the liquid domains 

respectively and       and       are the mean positions of the two interfaces 

created due to the boundary conditions (Fig.2.12). 

 

Fig.2.13: Evolution of the order parameter      along the direction orthogonal to the interface 

(y). The line indicates the fitting using equ. 2.32. 
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3.3.4 Limitations of the equilibrium fluctuation spectrum expression 

 The interpretation of the form of the fluctuation spectrum discussed 

above is based essentially on the assumption that    =       << 1. So equation 

2.28 is limited to    . 

By the mean of this theory, we could define two regions where the fluctuation 

spectrum of equation 2.28 is no longer valid: 

- For long wave lengths, corrections must be made to the   form. Higher order 

terms must be taken into consideration (like the bending rigidity of the interface  )   

                                            2.33 

      is the macroscopic interfacial tension. 

- For short wave length, the interface is probed on single-particle (or molecule) 

length scale and smaller, and will be very rough as a result, so the concept of a 

smooth interface breaks down
180

. 

Note that the two final remarks were made for fluid-fluid or polymer-polymer 

interfaces. But the breakdown of equation 2.28 in the case of the interfacial free 

energy of a solid-liquid system is also probable
40, 98, 100, 152, 190-193

 and deviations are 

expected in those kinds of systems for large and small   as it is shown in Fig.2.14: 

-For small   (large wave length) the relaxation time could be larger than the 

simulation time
98

 which gives larger uncertainties in the results. 

-For large   (small wave length), the wave length becomes commensurate with the 

crystal lattice spacing and the uncertainty will be amplified by morphological 

instabilities
193

. 
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Fig.2.14: An example of the fluctuation spectrum of the quasi-one-dimensional interface height 

of a succinonitrile system
38

 for three different orientations. The deviations of equation 2.28 are 

shown for large and small values of the wave vector k.  

 

3.4 Simulation details 

In chapter 3, MD simulations were performed on simple “Lennard-Jones”-

like liquids and the specific simulation details, especially the force fields, are 

detailed in this chapter. In chapter 4,  MD simulations were performed on different 

polymorphs, in their crystalline and liquid states, of felodipine, nifedipine and 

indometacin using the DLPOLY package
194

 . For felodipine and nifedipine, the 

force field GAFF
134

 (General Amber Force Field) was employed. For Indometacin, 

the OPLS
130

 force field was used since the GAFF force field failed to stabilize the 

crystal structure of the metastable   phase at temperatures close to the melting 
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temperatures. The charge distribution of  felodipine and nifedipine molecules were 

determined using the Gaussian software
195

 with the HF/6-31G
*
 basis set. For 

indomethacin, the charges used were those of the OPLS force field. Simulations 

were conducted either in the statistical ensemble NPT or NVT where N is the 

number of molecules, P the pressure, T the temperature and V is the volume. The 

number of molecules was fixed in the simulations and pressure and temperature 

were controlled with a Berendsen barostat and thermostat respectively with the 

relaxation time of 2 ps and 0.2 ps. The length of all the covalent bonds of each 

molecule was considered to be fixed using SHAKE algorithm
196

. All NPT 

simulations were realized at atmospheric pressure. The time step to integrate 

Newton’s equation of motion was chosen to 0.001 ps. A cutoff radius of 10 Å was 

used to calculate short range van der Waals interactions. Ewald summation was 

employed in order to calculate the long range electrostatic interactions with the 

same cutoff radius. Periodic boundary conditions were applied in all directions. 

The starting configurations of the crystal form of each system were 

obtained from the Cambridge Crystallographic data center
197

. The systems were 

then heated gradually to 450 K with a step of 50 K. 200 ps MD simulation runs 

were performed in the NPT ensemble at each step. 

The starting configurations of the liquid form were achieved by melting 

the crystal forms at high temperatures (~800 K). A gradual quench to 100 K is then 

applied, using a step of 50 K, to the starting configuration which was stabilized at 

750 K. Each simulation was done using the NPT ensemble during 200 ps. 

The densities, the averaged cell parameters of the boxes and the enthalpies 

of each simulation in the NPT ensemble were determined using the corresponding 

average values of the final 100 ps of the simulation. 
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 The numerical melting temperature         was estimated using solid-

liquid coexistence simulations as it was mentioned before. This method
 
requires 

MD simulations of a biphasic crystal-liquid structure. For each polymorph, a large 

crystalline simulation box was generated from the experimental crystallographic 

data but with a larger number of molecules ranging from about 1200 to 1700. Each 

system was first equilibrated at the known experimental melting temperature for 

100 ps in the statistical ensemble NPT, then for another 100 ps in the NVT 

ensemble using the equilibrated volume obtained from the NPT simulation. This 

crystalline box was then melted at high temperature (~800 K) and subsequently 

cooled at the experimental melting temperature then equilibrated at this 

temperature using first NPT then NVT simulation for 100 ps each. Both crystal and 

liquid boxes are combined together in order to form only one biphasic system 

(similar to Fig. 2.12). For all investigated systems, the total number of atoms was 

about 120 000 and the interface orientation in contact with the liquid was 

[100](010) [along the interface] (normal to the interface). A small gap was initially 

set between the crystalline and liquid parts in order to avoid overlapping between 

the atoms. The whole system was then equilibrated for 10 ps in order to remove 

this gap. Due to the periodic boundary conditions (Fig. 2.12); a solid-liquid-solid 

structure was finally obtained. Finally, this biphasic system was simulated at 

different temperatures above and below the experimental melting temperature. The 

melting temperature was estimated to be the temperature at which the density 

remains roughly stable as function of simulation time, in other words at the 

temperature where the liquid and crystals coexist. The determination of the melting 

temperature allowed us to estimate the enthalpy of melting from the difference of 

the enthalpy of the crystal and the liquid according to the MD simulation data. 
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The crystal-melt biphasic system that was used to obtain γ was 

constructed as follows. First the crystal and liquid phases were equilibrated 

separately at the melting temperature with similar cross section     (Fig. 2.12). 

Then the two systems were joined together along the y direction to form an 

interface where a small gap region is created to avoid overlapping. The total 

system is then equilibrated in a NPT ensemble for 50 ps while atomic positions of 

solid molecules were fixed leaving the melt molecules to fill in the gaps. 100 ps 

run was then conducted to equilibrate the whole system freeing the solid 

molecules. These simulations were followed by a 100 ps NVT simulation for 

additional equilibration where the averaged cell parameters of the final 

configuration of the NPT simulation were imposed. A 500 ps production run was 

finally executed in which 5000 configurations were stored for analysis. This 

procedure leads to the formation of two crystal-melt interfaces due to boundary 

periodic conditions for which profile is described by a function     . 

In order to reduce the computational effort, in the following we will 

identify the interfacial stiffness    determined using one single orientation to an 

isotropic interfacial free energy  . It is usually reported in many model      

systems
97, 99, 100, 178

 and realistic molecular systems
38, 94, 102, 198

 that the anisotropic 

effect is usually relatively weak of the order of few percent and smaller than the 

uncertainties of the employed method. For example, for the cubic molecular solid 

(succinonitrile)
38

, the interfacial free energy has been estimated to 7.06   0.4 

mJ/m
2
 , 7.0   0.4 mJ/m

2
  and 7.01   0.4 mJ/m

2
  for  the (100), (110) and (111) 

orientations respectively. For the hexagonal Ice Ih-water interface system in which 

molecules may form a high number of hydrogen bonds,  the anisotropy was also 

found to be relatively weak: 23.3   0.8 mJ/m
2
, 23.6   1 mJ/m

2
 and 24.7   0.8 

mJ/m
2 

for the basal, prism and (11-20) orientations respectively
94

. Moreover, it can 
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be mentioned that in the present work the chosen crystal orientation in contact with 

the liquid, [100](010), has approximately the same planar density for all 

polymorphs (1.2, 1.4, 1.4 and 1.3 x 10
-2

 molecules/Å
2
 for  nifedipine α, nifedipine 

β, felodipine I and felodipine II respectively and 2.0 x 10
-2

 molecules/Å
2
 for both 

indomethacin polymorphs) which made possible the comparison of the different 

interfacial free energies. It should be also noted that this property is not completely 

verified by some of the other faces for which PD may reach 0.9 to 2 x 10
-2

 

molecules/Å
2  

depending on the considered face and polymorph.  These other faces 

may possibly possess a different interfacial free energy. It is supposed that the 

difference remains within the uncertainties of the method as shown for 

succinonitrile and water. Note that the systems anisotropy is a very important issue 

and it would clearly deserve further studies. 

The method used to estimate the diffusion coefficient   is described as 

follows. The systems were first equilibrated in the NPT ensemble for 1 ns and then 

a production run was performed in the NVT ensemble for another 3 ns at the 

equilibrated volume. These longer runs allowed us to obtain the self-diffusion 

coefficient from the calculation of the mean square displacement        .  For 

each temperature the long time behavior of          was fitted using the linear 

relation        =     in order to obtain  . The diffusion coefficient at lower 

temperatures was extrapolated using equation 2.34 as described in reference
142

: 

   
 

 
     

  

 
    

  

 
                               2.34  

where A1, A2, and A3 are adjustable parameters. It has been suggested that this 

relation was particularly able to reproduce very well both high and low 

temperatures ranges
142

. 
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Chapter 3: Investigation of the crystallization 

in simple Lennard-Jones (LJ) systems 

In the present Chapter, as a rational step before studying real molecular 

pharmaceutical compounds, we have investigated from MD simulations 

crystallization properties of model systems composed of simple atoms interacting 

through “Lennard-Jones”-like potentials. This study allowed us to obtain a 

fundamental understanding to address the dependence of diffusion, relative 

stabilities of liquid and crystal phases, solid-liquid interfacial free energy and 

nucleation rates on a specific controllable property i.e. the attractive part of the 

interaction potential for the same atomic system. The simplicity of the models also 

allowed us to observe the crystallization phenomena and thus to obtain directly 

nucleation rates. Such results were compared with predictions from the classical 

nucleation theory (CNT) on steady-states rates and the induction periods of small 

and large undercooling.  

 

This chapter is organized as follow. The main motivations of this study on 

simple modelled liquids with tunable interaction potentials as well as recent works 

performed in the field are presented in the introduction. Then, the parameterization 

of the LJ-potential is firstly introduced followed by the description of the λ-

integration method used to calculate the Gibbs free energy difference between the 

liquid and the crystalline state. The calculation of the interfacial free energy at the 

melting temperature for the different potentials is then presented. The interfacial 

stiffness was estimated for three orientations for each potential in order to compute 

the interfacial free energy. Finally, a comparison between the estimated nucleation 
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time and the nucleation times obtained directly from MD simulations is 

represented in order to validate the method. 

 

This work was done with the collaboration of Dr. Valdes L.-C. and Dr. 

Mizuguchi T. (UMET-University of Lille 1-France). 

 

1 Introduction 

In many materials: metallic alloys, minerals, ceramics, polymers, 

molecular compounds,… it is clear that the interaction potential,      between the 

different components, determines ultimately all structural, dynamical or 

thermodynamical at all temperatures both below and above     
199

. An important 

aspect of the glass-forming ability may be thus elucidating how specific features of 

molecular interactions, such as the attractive and the repulsive forces, influence the 

rich variety of phenomena associated with the glass transition
200

. 

 

Computer simulations are ideally suited to the pursuit of this question 

because they allow interactions between particles to be varied in a systematic 

manner, thereby enabling the investigation of the effects of changes in individual 

variables to be conducted with a level of specificity not generally possible in 

experiments
201

. However, there are still clearly many challenges for narrowing the 

gap between practical experimental issues on real macroscopic materials, and 

results based on simulations performed at the microscopic levels
27

.  

 

Due to very limited computer power, first numerical MD studies of 

crystallization that were performed in the 1960s focused on simple liquids i.e. 

argon-like made of simple atoms interacting by pairwise hard-sphere or Lennard-
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Jones potentials 
202

. More than 40 years later, it might be surprising that these very 

simple systems are still of interest
203

. They remain relevant to model the properties 

of much complex materials due to their ability to approximate real interactions 

relatively well. Simple pair-wise interactions studied in this context include the 

hard sphere, inverse power law, large family of Lennard-Jones-type, Yukawa, 

Gaussian, and other model potentials
151, 192, 204

. Significant progresses of computers 

allow nowadays performing very extensive numerical simulations of such simple 

models. It particularly enable: i) to obtain much more accurate data by limiting size 

effects (larger systems made of billions of atoms) or ii) to access to properties that 

were not possible to obtain in the 70’ such as mobility (fragility) in very deep 

undercooled situations or to discuss stability from direct determination of the 

Gibbs energy and crystal-melt interfacial properties
203

.  

 

In the following, we will mainly focus on the interest of tuning pair-wise 

interaction potentials      in MD simulations to induce (or modify) certain liquid 

properties of molecular and atomic systems. The idea of such tuning interaction 

potentials, has been around for some time
201, 205

  but had not been exploited for the 

specific purpose of determining the conditions for vitrification/crystallization until 

rather recently. 

 

In the recent decades, MD simulations on tunable interactions have been 

particularly performed aiming to identify the key features of the potential such as 

softness, attractivity, well depth or well location that might influence glass-

forming/crystallization ability.The intrinsic “duality”glass formation/crystallization 

has obviously motivated two types of complementary investigations. Those mostly 

related to simple liquids that: 
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• do not crystallize “easily” on computation time scales with a strong focus 

on the temperature-dependence of the mobility in the supercooled regime 

(as measured by the so-called fragility index) which is one of the main 

ingredients involved in crystallization processes.  

• do crystallize “easily” on computation time scales for which interfacial 

thermodynamics, nucleation barrier, structure of the crystalline phase, 

phase diagrams were analyzed. 

 

It is a formidable challenge to avoid spontaneous crystallization on 

cooling of single component atomic simple liquid such as a Lennard-Jones liquid.  

This is why most of investigations performed on the glass formation issue have 

been mainly conducted on mixtures composed of different atoms. The viscous 

regime of the binary mixed Lennard-Jones system – the so-called Kob-Andersen 

(KA) model
206, 207

 and its numerous derivatives
199

 have been particularly 

investigated many times. One may note a few exceptions to this general rule. For 

example, the model proposed by
208

 is a single-component atomic liquid that may 

be deeply supercooled. However, the inability to vitrify is induced by the very 

specific form of the interaction potential possessing two characteristic distances. 

This model thus actually corresponds to a quasi-binary mixture of soft spheres with 

two different diameters. 

 

The accepted liquid-state picture whereby repulsive forces play a 

dominant role in determining the structure, with attractive forces providing a 

uniform cohesive background
209

 underlies important recent works on viscous 

liquids. To date, relatively few investigations have explored systematically the 

effects of changes in the interaction potential
210, 211

 and the precise role of the 

repulsive and attractive interactions in the viscous regime of some model systems. 
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One may particularly mention investigations by Berthier and Tarjus
212

 in which the 

authors made a comparison of the structure and the dynamics of a standard 

Lennard-Jones glass-forming liquid mixture with (KA model)
207

 and without 

(WCA model)
209

 the attractive tail of the interaction potentials. The viscous 

slowing down of the two systems was found to be different, whereas the static pair 

correlations remain close. It was concluded that the common assumption that the 

behavior of dense non-associated liquids is determined by the short-ranged 

repulsive part of the intermolecular potentials dramatically breaks down for the 

relaxation in the viscous liquid regime. For the same systems, Banerjee et al.
213

 

recently shown that the differences in the interaction potentials may have a modest 

effect on structure, but a more significant effect on the thermodynamics 

(configurational entropy), and the Adam-Gibbs (AG) relation could hence capture 

the quantitative differences seen in the dynamics. We may also mention MD 

investigations by Coslovich and Roland
214

 on modified LJ mixtures with different 

pair potentials defined by the exponent n of the repulsive term (     ). The 

authors have shown an invariance of some physical parameters such as the fragility 

under isobaric conditions which suggests that the variations in fragility seen among 

different real materials have their origin in other aspects of the intermolecular 

potentials. In further MD studies
200

 performed on Lennard-Jones-like glass-

forming binary mixtures interacting via pair potentials with variable softness, fixed 

well depth, and fixed well depth location, it was also shown that softening of the 

potential leads to a modest increase in fragility.  

 

Of course, the converse question of glass formation is the crystallization 

tendency. There have been important developments examining the influence of 

some specific aspects of the interparticle interactions on structural, dynamical and 

thermodynamical properties of simple systems that do crystallize “easily” on 
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computation time scales. A few examples are given below. Ahmed and Sadus
215

 

determined properties of fluids interacting via n-6 Lennard-Jones potentials, where 

n=11, 10, 9, 8, and 7 instead of the classical value n=12. The complete solid-liquid 

equilibria for these systems were obtained and the influence of the interatomic 

repulsive forces on the melting temperatures discussed. It could be noted that 

universality of melting curves for a wide range of interparticle interactions (Inverse 

power law, Yukawa, Weeks-Chandler-Anderson, Lennard-Jones and modified 

Lennard-Jones, Buckingham) have been suggested by A. Khrapak
216

 from simple 

considerations. Interaction potentials and their effects on crystal nucleation and 

symmetry have been studied by Hsu and Rahman
217

 in order to further clarify the 

effect of the interaction potential on the forming crystalline structure. By playing 

with the interaction potential, it was shown that the symmetry of the nucleated 

phase could be changed to bcc instead fcc as seen in classical Lennard-Jones. 

Davidchack and Laird
218

 performed MD studies on the dependence of the crystal-

melt interfacial free energy on molecular interaction and crystal structure (fcc vs 

bcc) for simple systems interacting with inverse-power repulsive potentials 

       
 

 
 
 

 for different    approaching the hard-sphere limit (   ). Both 

the magnitude and anisotropy were found to increase as the range of the potential 

increases. Main aim of this work was to develop a generic microscopic 

understanding of the interfacial thermodynamics of simple materials. Molinero et 

al.
219

 examined what happened to the melting points and the liquid state properties, 

of atomic systems as the parameter determining the strength of the “tetrahedrality” 

parameter in the three-body part of the Stillinger-Weber silicon potential was 

changed. Auer and Frenkel
220

 performed numerical study of crystal nucleation in a 

system of weakly charged colloids in which interaction between the colloids is 

approximated by a simple repulsive hard-core Yukawa potential. It was shown that 
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the softness of the potential has a pronounced direct effect on the nucleation barrier 

through a lowering of the solid–liquid surface free energy. Most recently, the 

effects of the softness of the pairwise repulsive core, pairwise non-additivity, and 

the form of the pairwise intermediate-range repulsion interactions have been 

investigated from MD simulations on the glass-forming ability of metallic alloys. It 

has been particularly shown that hard-core interactions play the dominant role in 

setting the glass-forming ability of such materials but the crystal structure that 

competes with glass formation (and thus the glass-forming ability) also depends 

sensitively on the form of the repulsive interactions
221

. 

In the present literature on tunable interactions investigated from MD 

simulations, some results strongly support the possibility that, contrary to our 

common understanding, some properties such as mobility in liquids in the 

supercooled regime are mostly controlled by other properties of the potential, more 

than by the hard core repulsion. The possible significant role of the attractive part 

of the interaction has been discussed. To our knowledge, no detailed investigation 

on the precise role of the attractive part alone has been realized so far neither on 

mobility nor on crystallization tendency.   

In the following, we will present some results obtained on three simple 

models composed of monoatomic Lennard-Jones atoms which have been recently 

investigated. Slight changes of the attractive part of the interaction potential were 

made in order to probe its influence on the crystallization capability. It will be 

particularly shown how the relative stabilities of liquid and crystal phases may be 

influenced by this change. 

 

The three main physical ingredients involved in the nucleation process as 

described in the classical nucleation theory (CNT) have been directly calculated:   
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• The diffusion coefficient   has been calculated at different temperatures 

from atomic displacements. 

 

• The driving force (  ) i.e. the Gibbs energy difference between the 

liquid and the crystalline state has been computed at different 

temperatures close to the melting point using the thermodynamics 

integration method (i.e. λ-integration method. See annex) 

 

• The crystal-liquid interfacial free energy ( ) has been obtained from the 

capillary fluctuation method (see chapter 2 for a full description) which 

required the simulation of the interface in equilibrium at the melting point 

and the calculation of the fluctuations of the position of the crystal-liquid 

interface. The advantages of this method allowed calculating the 

anisotropy and the magnitude of the interfacial free energy accurately.  

 

Such studies allowed us to obtain predictions from the classical nucleation 

theory (CNT) which is one of the simplest and most widely used theory that 

describes a nucleation process
1, 2, 31

.  The non steady-state (time-lag for nucleation) 

and steady-state were predicted. Since crystallization can be directly observed in 

such simple liquids, it enabled us to analyze the nucleation kinetics at different 

undercooling and to compare with CNT predictions. 
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2 Simulation Details  

2.1 Development of the interaction potentials with controlled attractivity 

The simplest mathematical model that approximates the interaction 

between a pair of neutral atoms or molecules is the Lennard-Jones (LJ) potential. 

The first proposition of this interatomic potential was in 1924 by John Lennard-

Jones 
222

. The typical form of this potential is expressed as: 

          
  

 
 
  
   

  

 
 
 

                                         3.1 

where   is the distance between two atoms,    is the distance where the potential 

well attends its minimum and   is the depth of the well. Another representation 

might be used: 

           
 

 
 
  
  

 

 
 
 

                                      3.2 

where     
 

    represents the cross section. 

In order to show the effect of the attractive part of the LJ potential on the 

different factors that influence crystallization, the repulsive part of the potential is 

fixed and the attractive part is parameterized. Hence, the whole potential is defined 

as the classic LJ repulsive part and a family of parameterized attractive potentials 

described below. 

The potential is defined on three successive intervals:           

     and      . Two conditions of continuity of the potential and its derivatives 

are added in    (between the attractive and the repulsive parts) and in    i.e. the 

cutoff radius (see chapter 2).  In the following, this family of potentials is denoted 
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by       and its parameter l is defined as the root of the equation         

      . The family of potentials is thus controlled by the six conditions below: 

 

 
 
 
 
 

 
 
 
 

         
   

  
      

    

   
       

 

  
 

        
   

  
      

        
 
 
 
 

 
 
 
 

                                           3.3 

 

In order to simplify the numerical calculations, we first thought to take a 

polynomial form of degree 5 because of the six conditions (3.3), but this solution 

must be dismissed since the potential cannot have for certain values, for       , 

the S-shape characteristic of the Lennard-Jones as reference. The easiest non 

polynomial form compatible with fast numerical calculations is, otherwise, the 

rational fraction. Rational fractions with a number of coefficients compatible with 

the number of conditions (3.3) have all been analyzed and the choice of degrees of 

the numerator and denominator was decided to respect a look of attractive potential 

similar to the Lennard-Jones potential for       .    

 

In the following, the family of the interaction potentials investigated in this study 

has the following form:  

      

 
 
 

 
    

  

 
 
  
   

  

 
 
 

                                  

 
           

       
           

                                 

                                                       
 
 

 
 

                 3.4 
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The expressions of constants       and   can be deduced from the conditions 

(3.3). By taking: 

 
  

  

  
  

  
 

  
  

                                                 3.5 

it comes 

 
 
 

 
 

    
   

                
            

 

       
  

 
 

 
 

                                    3.6 

It has been verified that the potential is similar to that of the Lennard-Jones 

potential for all values of the parameter   below a certain upper bound     , 

function of     and   . Fig.3.1 shows some examples of potentials where 

    =1.1038   for           and        .  

 

In the following, we investigated properties of four interaction potentials: the 

classical Lennard-Jones potential given by equation 3.1 and three potentials     for 

    0.10, 0.95 and 1.05 where the subscript    denotes the reduced parameter  

   
 

 
. The increasing    corresponds to the increasing attractiveness of the 

potential        (Fig.3.2). 

It could be also mentioned that an additional merit of these potentials including 

several continuity conditions (see above) is to leave open the possibility of using 

this family of potentials for the search of minima of potential energy surface by 

gradient methods and possible analyses of the potential energy landscape
1, 200, 211

 . 



86 

 

 

Fig.3.1: Some examples of the parametrized potentials       . From left to right:   =-10
9
 , 0.50 , 

0.90 , 1.02 , 1.07 , 1.09 , 1.10 , 1.1038 (upper limit). 

 

Fig.3.2 : Potentials with increasing attractivity                             and  investigated in 

the present study. The classical LJ potential        is also represented to show its similarity with 

the          potential. 

2.2 Simulation parameters 

The Molecular Dynamics simulations are performed using the software 

DLPOLY-classic
136

 on systems composed of 864 particles. The following 

parameters, in argon units, are used:    =6.642.10
-26

 kg, a cross section of     
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=3.405 10
-10

 m and a minimum potential value     =1.6605.10
-21

 J. The simulation 

box is cubic with periodic boundary conditions in all directions. Calculations are 

performed with the time step    =0.005.10
-12

 s and the cut-off distance 

  =10.215.10
-10

 m. The pressure used in this work correspond to   =4.206.10
7
 Pa. 

The results are presented in the system of units of the argon atom     ,    ,     

and the Boltzmann constant    =1.3807.10
-23

 J.K
-1

. With these quantities, we 

constructed time units      
   

   
     = 2.153.10

-12
 s, pressure     

   

   
  = 

420.6.10
5
 Pa and temperature     

   

  
 =120.27 K. In the following, an asterisk 

superscript denotes the value of the physical quantity expressed in this system of 

units. Hence,      0.005,   
  3,     1 and   

   1.122. 

 

3  Diffusion coefficient and crystal and liquid densities 

 

The variation of the liquid and crystal volumes (  ) as function of the 

temperature was obtained from the simulation of systems containing 864 particles 

at various temperatures. All simulations were conducted at     1 for the three 

studied potentials. The volumes of the systems during heating and quenching are 

represented in Fig.3.3. An initial crystalline box (fcc) was first generated and 

equilibrated at   = 0.3. The system was then heated from   = 0.3 to   = 1.3 with 

a temperature step of     = 0.1. At each temperature, the MD simulation runs last 

for   =464.5. Upon heating, the melting of the system is clearly observed from the 

sudden jump of the volume (see Fig.3.3). At   = 1.3, the system was then cooled 

to   = 0.3 at the same rate as in the heating process. Crystallization is detected by 

a clear volume drop. The melting and crystallization phenomena are characterized 

by a marked hysteresis in this heating/quenching cycle. Indeed, it is usually 



88 

 

reported that periodic boundary conditions used in MD simulation may contribute 

to reinforce artificially the stability of the crystalline state. It thus allows the 

system to be overheated. Fast quench/cooling rates certainly also contribute to 

maintain the system in a metastable state compared to the most stable state at a 

given temperature. From Fig.3.3, we may also notice that after quenching the 

system does not reach the initial volume corresponding to a perfect fcc lattice. 

Upon crystallization, several defects are formed. The solid state obtained upon 

quenching the liquid is thus more disordered which explains the observed 

increased in volume. The change of the attraction in the interaction potential has 

also clearly an influence on the volume of the crystal and the liquid phase. One 

may notice that the volume decreases with the increasing attractive part of the 

potential which can be logically understood from just an increase in cohesivity 

since the repulsive part is kept constant.  

 

 From Fig. 3.3, the density     
 

  
   evolution as function of the 

temperature was estimated by fitting the liquid density by    
         

      

and the solid density by    
         

       
      at high and low 

temperatures respectively. Table 3.1 summarizes the values of the fitting 

parameters    ,    ,    ,     and     . 

 

The coefficient of diffusion was estimated from the long term evolution 

of the mean square displacement              (see Chapter 2) calculated at 

different temperatures in the liquid states. The simulation results of    
at each 

temperature    are represented in Fig.3.4. It shows that the attractive part of the 

potential also has an influence on   : the coefficient of diffusion decreases with 

the increasing of the attractive part of the potential. This behavior certainly just 
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originates from the increase in density as it is known for purely van der Waals 

liquids. Same trend has been reported in a recent MD study
223

. 

  

It can be noticed that the coefficient of diffusion of classical Lennard-Jones 

potential and the   = 0.95 potential are roughly the same. This behavior was 

expected since the two potentials are almost identical (Fig.3.2). In order to fit    at 

high temperatures in the liquid domain, an Arrhenius law (        
  

  
     ) 

was used. The different parameters obtained by the fits are reported in the caption 

of Fig.3.4. 

 

Fig.3.3: Evolution of the volume    as function of the temperature    for the different 

investigated systems upon heating (dashed lines) and cooling (solid lines).  
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*l  0.10 0.95 1.05 

    - 0.413 - 0.330 - 0.282 

    1.135 1.122 1.155 

    - 0.107 - 0.911 - 0.811 

    - 0.051 - 0.090 - 0.083 

    1.048 1.099 1.153 

 
Table 3.1: The fitting parameters obtained for the liquid and crystal density for the 

three different studied potentials (see text). 

 

 

 

Fig.3.4: The influence of the attractive part of the potential on the coefficient of diffusion   . The 

fitting parameters (  ,   ) are: -0.49, 0.57 ; -0.35, 0.41 ; -0.25, 0.29 and -0.32, 0.38  for 

                           and        respectively (see text). 
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4 Gibbs free energy calculations 

The Gibbs free energy difference between the solid and the liquid for the 

three different potentials (    0.1, 0.95 and 1.05) and the classical LJ potential 

was calculated directly using the constrained fluid λ-integration approach 
224

. This 

method relies on the construction of reversible and integrable paths to connect the 

solid and the liquid states (see annex).  

As previously described, the melting and the solidifying hysteresis curves 

are obtained by progressively heating and quenching, crystal and liquid cells, using 

an NPT ensemble at    1 for each of the three tunable potentials described 

previously and the classical LJ. Four temperatures in the hysteresis loop are chosen 

at which both liquid and crystalline states can be stabilized. The Helmholtz free 

energy differences between the crystal and the liquid states are calculated using the 

constrained fluid λ-integration approach (see annex). The Gibbs free energy 

differences    between the liquid and the solid is calculated as function of the 

Helmholtz free energy   differences using the relation          . 

The evolution of the Gibbs energy difference as function of the temperature 

is represented in Fig.3.5 for the three studied potentials and the classical LJ 

potential. The Gibbs free energy can be modeled at different temperatures using 

the following quadratic form: 

       
      

                                   3.15 

Table 3.2 represents the values of the fitting of equation 3.15 to the 

calculated data of       The melting temperature can thus be easily obtained by 

solving the equation        (see Table 3.4). Table 3.3 summarizes all the values 
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of the melting temperature, the enthalpy of fusion and the crystal/liquid densities at 

the melting point for all the three studied potentials. 

Potential                                   

   -0.201725 - 0.890225 - 0.326893 - 0.195025 

   -1.14799 - 0.421411 - 1.015459 - 1.160909 

   1.01603 0.784140 0.978890 1.180715 
 

Table 3.2: The fit coefficients of the Gibbs free energy by equation 3.15 for the three studied 

potentials and for the classical Lennard-Jones potential obtained from the  -integration 

approach. 

 

 

 

Fig.3.5: The Gibbs free energy difference calculated at four different temperatures for the four 

studied potentials. The dotted line indicates the position of the melting (     ) 
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   LJ 0.10 0.95 1.05 

  
  0.778 0.731 0.772 0.885 

   
  1.118 1.260 1.172 1.333 

   
      0.984 0.958 0.993 1.058 

   
      0.871 0.831 0.867 0.904 

 

Table 3.3: Melting temperature, enthalpy of fusion and crystal/liquid densities at the melting 

point for the three studied potential and the classical LJ potential 

 

The evolutions reported in Table 3.3 of densities and melting temperatures which 

increase from potential     0.1 to 1.05 can be understood quite easily. Density 

increase is a direct consequence from the increase in cohesivity of the system 

which just originates from the increase of the attractive part of the potential while 

maintaining the repulsive part constant as described above (see Fig.3.3). Melting 

temperature increase is the result of the higher heat required to overcome cohesive 

forces that held atoms together in the crystal lattice. For strong forces, one needs 

more heat, and thus, the melting temperature is higher. For melting enthalpies, the 

situation is more complex since    
  does not follow a monotonic trend as 

function of the attraction of the potential as it could be expected.  The potential 

  =0.95 (as well as the classic LJ potential) possesses the lowest enthalpy of fusion 

(    
 =1.172) compared to the other potentials (1.26 for     = 0.10 and 1.33 for    

= 1.05). This behavior can be clarified at least partially from the evolution of the 

enthalpy difference between the liquid and the solid state as function of the 

temperature         shown in Fig.3.6. It can be noticed that the three curves do 

not follow parallel evolution in temperature. The         curve of the   =0.10 

potential particularly intersects the other curves in two distinct points. Since 

melting temperatures are different for the different potentials, the values       
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do not follow a regular evolution from the potential with the lowest attraction to 

the potential with the highest attraction. We have no clear explanation at the 

moment for the marked difference observed on         for the potential the 

  =0.10. 

 

Fig.3.6: The evolution of the enthalpy difference between the liquid and the crystal as function of 

the temperature    for the three investigated potentials. 

 

5 Interfacial free energy calculations 

The capillary fluctuation method has been used in this work. A biphasic 

(crystal-liquid)  system has been constructed and we followed the fluctuations of 

the crystal-liquid interface in equilibrium at the melting temperature (see chapter 

2). In order to obtain the fluctuation spectrum which is related to the interfacial 

stiffness, we proceeded as follows. 
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We first equilibrate crystal and liquid phases separately at constant 

temperature      
  (see Table 3.3) and pressure   =1.0 and calculate the density 

of each phase in equilibrium (see Table 3.3). With these density values, slab-

shaped crystal and liquid samples are prepared separately, with the identical cross 

sections    (see Fig.3.7). The melting temperature   
  has been determined by 

coexistence simulations (see chapter 2). The melting temperatures for our systems 

for   =1 are given in Table 3.4. Note that the melting temperatures were obtained 

as well by the constrained λ-integration method 
224

 and compared to the melting 

temperatures obtained directly from the coexisting simulations (Table 3.4). We can 

notice that the values are different but within error bars, proving the validity of 

both methods. 

 

After joining crystal and liquid boxes, the system is equilibrated at 

constant temperature      
   and pressure   =1.0. A snapshot of an 

instantaneous configuration is given in Fig.3.7 The number of particles is reported 

in Table 3.5. The system is then equilibrated at constant temperature      and 

volume (400,000 time steps). The run for data collection was one million time 

steps. During this run, atomic positions were stored every 500 time steps. 
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Potential   
  

(constrained λ-

integration method) 

  
  (coexistence 

simulation) 

0.1 0.731 0.77 +/- 0.03 

0.95 0.772 0.81 +/-  0.03 

1.05 0.885 0.89 +/- 0.03 

LJ 0.778 0.79 +/- 0.03 

 

Table 3.4:  The melting temperatures obtained via coexisting simulation and via the constrained 

λ-integration method for the 3 different potentials and for the classic LJ potential. 

 

In order to determine the interfacial height      derived from atomic 

configurations, it is necessary to distinguish between crystal and liquid atoms (see 

Figure 3.7). Hence, we first define a local order parameter
100, 178

   for each atom: 

   
 

     

 

 
                   

 

                              3.16 

where      represents a set of wave vectors     such that              for any 

vector     connecting the neighbors     in a perfect fcc lattice. The summation over 

   runs over each of the neighboring particles found within a distance    from an 

atom chosen between the first and the second neighbor shell in the perfect fcc 

lattice. The antiparallel vectors are omitted so     = 6. Thus, for a perfect fcc lattice, 

the order parameter will be equal 1 and less than 1 in all the other cases. In order to 

improve the discrimination between liquid and solid atoms, the order parameter 

will then be averaged over the neighboring values: 

     
 

   
                                          3.17 
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where   runs over all the   neighboring atoms  . This average eliminates the 

isolated atoms and clusters that might have a significantly different order 

parameter than their surroundings. 

 

 

Fig.3.7: A snapshot of the system with two (110) interfaces for the potential 0.95. Liquid-like 

particles have a blue color whereas solid-like particles have a red color. 

 

Figure 3.8 shows the averaged local order parameter     for each atom for 

the             interface of the potential 0.95. To define the interfacial particles, 

we take the following procedure. We first define a threshold value      of the order 

parameter      for the solid phase, that is, the particles that satisfy          is 

considered to belong to the solid phase. We can calculate the number of the nearest 
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neighboring solid particles      for each atom using the threshold value     . 

Figure 3.9 shows the order parameter      for each atom calculated for the same 

configuration as Fig.3.8. We also define a threshold value    for the order 

parameter     , and consider the particles that satisfy      ≥    as solid particles. 

We can determine      using these two order parameters. In Fig.3.7, the solid 

atoms have darker color than the liquid atoms. We can notice an important 

difference between crystalline and disordered regions. For instance, we may define 

    =0.47 and   =10 with Fig.3.8 and 3.9 for this configuration. The interfacial 

particles are thus determined as the particles that satisfy           and 

0<    <  . From the height function found earlier, we can calculate the 

fluctuation spectrum       which is obtained by the Fourier transform of      (see 

Chapter 2). 

 

Fig.3.8: The order parameter |Ψ| for each atom in an instantaneous configuration of the 

            interface for the potential 0.95, as a function of atomic position measured along the 

interface normal. 
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Fig.3.9: The order parameter      for each atom in the same configuration as Fig. 3.8. 

 

The interfacial stiffness is expected to be more anisotropic than the 

interfacial free energy
38, 97, 100, 178, 179, 225

. For a weak anisotropic system, the 

orientation-dependent expressions for the interfacial free energy can be represented 

by the cubic harmonic expansion
225

 

                  
  

 

           
      

   
   

  
  

         3.18 

where                is the unit vector normal to the interface,    is the 

orientationally averaged interfacial free energy, and    and    are the anisotropy 

parameters. From this equation, we can derive similar expressions for the 

interfacial stiffness. A minimum of three interface orientations are needed to 

determine the values of       and   . We calculated the parameters using the three 

stiffnesses of                       and             where the numbers in 

parentheses are Miller indices for the interface normal and the numbers in square 



100 

 

bracket are those for the short direction tangent to the interface. The anisotropic 

interfacial stiffnesses for these three orientations are given by 

                  
  

 
   

  

 
                                            

                   
  

  
   

   

  
                                          

                  
 

 
   

   

  
                                             

 

From these equations and the stiffness values derived from MD, we obtain the 

orientationally averaged free energy   . 

Fig.3.10 shows           for each of the geometries and for different 

potentials. According to Eq.2.28 (see Chapter 2), a plot of               against 

ln(q) should be linear with a slope of -2 and the determination of the interfacial 

stiffness    can be done from the intercept of this plot (Fig. 3.10). We can notice 

that the fluctuations follow this behavior for small q indicating the roughness of the 

interface
178

. For large q (small wave length), a deviation occurs. The wave length 

becomes commensurate with the crystal lattice spacing and the uncertainty will be 

amplified by morphological instabilities. Using these stiffness values and Eq. 3.19-

3.21, we can calculate the orientationally averaged interfacial free energy   . The 

values of    for the three potentials and the classical 12-6 Lennard-Jones potential 

are shown in Table 3.5. 
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Potential       Number of 

particles 

Orientation     (ϵ/σ
2
)       (ϵ/σ2

)  

0.1  16384 

18920 

17748 

(100)[001]  

            

(210)[001]  

0.35 0.33 

0.38 

0.33 

0.95  16384 

18920 

17748 

(100)[001]  

            

(210)[001]  

0.37  0.38 

0.43 

0.36  

1.05  16384 

18920 

17748 

(100)[001]  

             

(210)[001]  

0.43  0.41 

0.52 

0.40 

LJ  16384 

18920 

17748 

(100)[001]  

             

(210)[001]  

0.37  0.38  

0.43 

0.35 

 

Table 3.5: The orientationally averaged interfacial free energy for the three potentials 

and the classical 12-6 Lennard-Jones potential. The number of atoms and the interfacial 

stiffnesses for three orientations for the same potentials are also listed. 
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Fig.3.10 : Fluctuation spectra for the three orientations of the three potentials.  

The plot               vs       is represented (red dots) with the linear fit (solid green line). 

 

 

The values of the solid-liquid interfacial free energy are reported in Table 

3.5. As expected, the value of    for the potential   =0.95 and the classic LJ 

potential are close due to the similarities of the two potentials. To our knowledge, 

the effect of the attractive part of the Lennard-Jones potential was not studied 

before. So we could not compare our values to other published data. However, the 

melting temperature and the interfacial free energy of Lennard Jones system was 

already obtained for a pressure of    = -0.01 
91, 93, 178

. The value of the 

orientationally average interfacial stiffness    was found to be 0.362 
178

 and    



103 

 

0.360 
93

. In this work, and for the classic LJ system, a slightly higher value was 

obtained (0.372). A slightly higher value of the melting temperature was obtained 

as well (0.770) compared to the existing data (0.620
178

 and 0.617
93

). Note that at 

   1 in ref.
224

,   
  was found to be equal to 0.7. These higher values could be 

caused by the higher pressure used in the present work (  =1).  Furthermore, in 

ref.
93

, the coexistence conditions were studied for a Lennard-Jones system with 

different     It can be noticed from Table 3.6 that our value for the melting 

temperature seems consistent with the reported values since it can be situated 

between the melting temperatures found in literature for pressures above and below 

the pressure used in this work. 

  
     

0.61 -0.02 

0.77 (this work) 1 (this work) 

1.0 4.95 

1.5 12.9 

 

Table 3.6: The coexistence conditions (the melting temperatures   
  corresponding to the 

pressure     obtained for the LJ potential from ref. 93, and the coexistence condition obtained in 

this work at P*=1. 

 

Both the interfacial stiffness    and the interfacial free energy    values  

are reported in Table 3.5.  The interfacial free energy    is clearly interesting since 

its anisotropy is an order of magnitude larger than the anisotropy of the interfacial 

free energy
97, 178

.  The values reported in Table 3.5 reveal an increase of    and    

upon increasing the attractive part of the potential. We may particularly notice a 

significant increase of 23% in the interfacial free energy    from the increase of 
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the attraction term from   = 0.1 to   = 1.05 potential (see Fig. 3.2).  This increase is 

also coupled to an increase of anisotropy.  We also found for all the studied 

potentials that                                            except for the   = 0.1 

potential where               =              .  

This result is in line with the values obtained by Morris et al.
178

 for the 

(210)[001] and             orientations. However, in their study they found that 

(100)[001] has the smallest value of   . It should be mentioned that Broughton et 

al.
91

 also obtained different values of the anisotropy than of those of Morris et al.
178

 

which indicates the delicacy of the calculation of this parameter. 

6 A comparative insight on the nucleation and induction times as obtained 

from the CNT equations and from direct MD simulations 

At a first step, the nucleation times were calculated by the equations 

provided by the CNT as described in chapter 1 since all the parameters needed 

were determined (                 ). We defined an estimated steady state 

nucleation time     
  by the time needed to form one critical nucleus in a system. 

This time can be calculated from: 

    
  

 

   
                                                         3.22 

where             
   

   
  is the steady-state nucleation rate (see Chapter 1) 

and    is the volume of the system.  

Most of theoretical estimations of the nucleation rates are often restricted 

to the steady-state regime. However, as described in the CNT, the steady-state 

nucleation takes place after the so-called incubation time or transient time noted 

      
  in the following. This time is required for the system to reach the steady-
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state equilibrium after a quench
81

 and during this regime nucleation becomes time-

dependent. The overall characteristic time of the nucleation is thus controlled by 

the addition of the steady state nucleation time     
  and the transient time       

 . 

Some disagreement between experimental measurements and CNT predictions 

may originate from this transient time
55, 79, 80

 that is often overlooked.  

From the CNT, the transient time can be expressed as
55

: 

      
  

   

   
                                                    3.24 

where    is the number of atoms in the critical nucleus and                
   

  

(see Chapter 1). 

In this work,     
  and       

  were calculated for the three studied 

potentials and compared to the nucleation times     
   obtained directly from MD 

simulations. Since the crystallization can be observed due to the simplicity of the 

models, the nucleation time     
   was determined by quenching large systems (108 

000 particles) at different temperatures and waiting the necessary time for a germ 

to appear. The appearance of a crystalline germ was detected by the sudden 

decrease of the potential energy of the system (Fig.3.11). This procedure was 

repeated 10 times at different temperatures    in order to obtain an average value 

of the simulated nucleation time     
  . Fig.3.12 shows     

   for the three studied 

potentials as function of          .  
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Fig.3.11: An example of the evolution of the potential energy as function of the simulation 

time after a rapid quench from a high temperature to a low temperature below the melting 

temperature. Nucleation time     
    is estimated from the sudden drop of the potential energy. 

Note that the first drop at very short time is just due to the sudden change of temperature.  

 

The shape of the curves indicates the existence of a minimum nucleation time. It is 

the analogous in time of a bell shaped nucleation rate (chapter 1). The three curves 

show a minimum     
   for an approximate undercooling of 0.38   as expected for 

Lennard-Jones systems
79, 80

. For moderate undercoolings, from 0.28   to 0.35  , 

the simulated nucleation times     
   change by about 2 orders of magnitude 

whereas the variation of      
   varies only by one order of magnitude between 

0.35   and 0.6  . It can also be noted that a change in the attractive of the 

interaction potential also slightly influence the nucleation times. Indeed, Fig.3.12 

shows that the nucleation times decrease with the attractiveness of the potential i.e. 

    
   decreases from the less attractive potential l* = 0.10 to the most attractive one 

l*=1.05.  This trend does not fit with the behavior observed for the evolution of the 

interfacial free energy   (see table 3.5) which increases upon increasing the 
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interaction potential. Unlikely, this trend of the interfacial free energy would 

suggest the opposite and an enhanced difficulty to crystallize. However, the 

evolution of     
   is well in line with the evolution of the driving force     (see 

Fig.3.5). Indeed, a higher driving force is found for the more attractive potential. 

The overall crystallization trend can be explained by the fact that the nucleation 

barrier     
  

   
  depends on the interplay between the interfacial free energy   and 

the driving force    . This latter physical ingredient thus seems to dominate the 

crystallization process for the investigated systems. Its variations are more 

important from one potential to the other compared to the change found for the 

values of the interfacial free energies between the different potentials which are 

actually quite close (  =0.35 ϵ/σ
2
, 0.37 ϵ/σ

2
 and 0.43 ϵ/σ

2
 for   =0.1, 0.95 and 1.05 

respectively).  

 

Fig.3.12: The average nucleation time     
   as obtained from MD simulations for the 

three studied potentials. 
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Fig.3.13: Comparison of the calculated transient       
  and steady-state     

  

nucleation times with the simulated nucleation times     
    for the 0.95 potential using the 

temperature dependant mode                

 

     as function of the reduced undercooling 

         . The system size was also studied by comparing the simulated times for nucleation 

of a system containing 1 million atoms (empty red circles) and a system containing 108 00 atoms 

(red squares). 

 

The overall shape of the evolution of     
   will be analyzed in the 

following by a comparison with the transient       
   and steady-state     

  times.   

In Fig.3.13, we compare the steady-state nucleation time      
  and the transient 

time       
  to the simulated time     

   for the   = 0.95 potential. It can be noticed 

that two main important regimes are represented. The first regime is observed at 
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low undercoolings where the steady state nucleation time     
  is longer than the 

transient time       
  which can be neglected in this region. However, in deep and 

intermediate undercoolings,       
  is longer indicating that it is going to dominate 

the nucleation process. The crossover between the two domains occurs 

approximately at a reduced undercooling of 0.27 which is well in line with 0.33 

which is the value obtained from the calculations done for LJ sytems
79

. A similar 

behavior was observed for the other potentials and the other modes of the 

interfacial free energy but we presented the 0.95 potential here in order to compare 

it to the LJ potentials studied in the literature
79, 80

. This figure might also explain 

the discrepancies between the experimental data and the theoretical predictions of 

the CNT
7, 226, 227

 that does not take into account the transient time which dominates 

at intermediate and deep undercoolings.  It can be also mentioned that the size 

effect was studied by calculating     
   for a system containing 1 million atoms (red 

circles). No major differences were found between the two sizes tested. 

Test of some models for the temperature dependence of the interfacial free 

energy 

Three different models describing possible evolution of the temperature-

dependent interfacial free energy have been checked by comparing the       
  and 

    
   for the three tunable interaction potentials (Fig.3.14). We made a comparison 

using the transient time       
  instead of the steady-state time     

 , since        
  

dominates     
   over a larger domain in the investigated temperature range. In the 

following, we have compared: a temperature independent model           , a 

model of linear dependence of temperature                 and a 

temperature dependent model inspired from the Turnbull equation      

          
   

   79, 80
 . For this latter potential, the constant    is determined from 
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the value calculated at the melting temperature i.e.    
     

        
   

    
 . In the 

present study, we found   = 0.26, 0.29 and 0.31 for     0.10, 0.95 and 1.05 

respectively.  

 

Fig.3.14: The three temperature dependant modes used in this study to compare     
   to the 

calculated transient and steady-state nucleation times79, 80. 

 

The transient times for nucleation       
  of the three different potentials 

are compared to the simulated nucleation times     
   in Fig.3.15 for the different 

temperature-dependent interfacial free energy. The overall behavior of the different 

curves       
  is found similar with the presence of a minimum close to the 

temperature at which the nucleation time     
   shows a minimum too. We may also 

clearly notice that for the            model (no temperature dependence) the 

nucleation       
  are significantly longer compared to the other models as 

expected. For the two other models, the interfacial free energy decreases when 

temperature decreases which facilitates nucleation. We found that the linear 
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temperature dependence model                 seems to produce a better 

agreement with     
  . This temperature-dependence model was particularly able to 

reproduce the decreasing nucleation times       
  with the increasing of the 

potentials attraction at the minimum. This is not the case for the two other studied 

models.  The use of the model inspired from the Turnbull relation      

          
   

    gives the opposite trend. This may be understood from the 

peculiar evolution of the difference in enthalpy       between the enthalpy of the 

liquid and solid state that crosses unexpectedly for the different interaction 

potentials described previously (see Fig.3.6).  

7 Conclusion 

In this chapter, we studied the effect of the attractive part of the inter-

particle interaction potential on the crystallization capability of some simple LJ-

like potentials models. The construction of tunable potentials allowed us to 

investigate specifically the influence of the attractive part of the potential while 

fixing the repulsive part. The simplicity of these systems also enabled us to 

observe directly crystallization. It was thus possible to compare crystallization 

rates with predictions from the classical nucleation theory in both the transient and 

steady-state regimes. This work has required MD simulations of the liquid and 

crystalline phases separately and also biphasic systems to calculate interfacial 

properties. The main parameters involved in the CNT were directly computed such 

as driving force   , melting temperature   , interfacial free energy  , densities of 

the crystalline and liquid phase            and the coefficient of diffusion  . 
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Fig.3.15: The calculated transient times from the CNT for nucleation       
  (solid lines) of the 

three studied potentials compared to the simulated nucleation times     
   obtained directly 

(symbols) as function of the reduced undercooling           using the three interfacial 

temperature dependent models:           ,                 and 

               
   

   79, 80 . 
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We found that the attractive part of the potential has an influence more or 

less significant on all calculated parameters. As expected for a pure van der Waals 

system, the increase of the attractive part of the potential results in an increase of 

density for both liquid and crystalline phases. Accordingly, diffusion thus also 

logically decreases. The increasing of the attraction increases the driving force    

and shifts the melting temperature to higher values due to the need to bring more 

heat to the system to break forces responsible for the cohesivity of the crystal.  It is 

found that the interfacial free energy at the melting temperature, which is 

comparable to a form of tension, reasonably increases when the attractive part of 

the potential increases. All these parameters monotonically evolve with the 

variation of the form of the potential. The difference in enthalpy between liquid 

and crystal        was shown to exhibit a non-monotonic behavior but we have 

no clear explanation at the moment for this marked difference. 

We have pointed out that a change in the attractive part of the interaction 

potential slightly influences the nucleation times. The nucleation times decrease 

with the attractiveness of the potential. This trend matches well with the evolution 

of the driving force     but not with the interfacial free energy   which behaves in 

an opposite trend. This result highlights the importance of the relative interplay of 

each parameters on the nucleation barrier     
  

   
 . The driving force seems to 

dominate in the present study. 

An overall fair agreement is found between the direct estimation of the 

nucleation times and prediction of the nucleation times from the CNT. The need 

for a temperature-dependent interfacial free energy      is revealed from different 

tests performed.  Calculation of both characteristic times of the transient and 

steady-state regimes allowed providing a thorough analysis of the directly 
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determined nucleation times. Two different behaviors of the nucleation times were 

observed as function of the undercooling. For small undercoolings, the steady state 

nucleation time is much longer than the transient time for nucleation while at 

intermediate and deep undercooling the transient time is much longer. It can be 

noted, that at small undercoolings, the result point out to the possibility of reaching 

the experimental regime where the transient time can be neglected. However, at 

intermediate and deep undercoolings, the transient time should not be neglected 

while predicting the homogeneous nucleation times since it dominates over the 

steady-state nucleation time.  At small undercoolings, the nucleation time, i.e. the 

steady state nucleation time, increases abruptly which make it difficult to simulate 

due to the long simulation times needed.  Overall, the transient time seems to 

dominate mostly the investigated temperature range. This may explain, at least 

partially, the disagreement found between predictions from CNT and direct 

measurements of the crystallization times.  

This investigation thus demonstrates the possibility to obtain reasonable 

crystallization tendencies from CNT predictions by computations of the main 

involved physical ingredients (driving force, interfacial free energy and diffusion). 

Hence, in the following chapter, we will apply the same method on more realistic 

systems like pharmaceuticals while avoiding a direct simulation of the 

crystallization which can be very time consuming (or even impossible on computer 

time scales) specially for complex systems. 
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Chapitre 4 Prediction of the crystallization 

tendencies of pharmaceutical products 

Despite its importance to theoretical models and practical applications, 

predicting the ability of a given material to vitrify or crystallize remains a 

challenging problem. This is a very important issue for the development of 

amorphous pharmaceuticals which particularly requires a fundamental physical 

understanding of the stability of the amorphous state against crystallization. In this 

chapter, we will investigate the crystallization tendencies of three different 

polymorphic pharmaceutical products (nifedipine, felodipine and indomethacin). 

These drugs usually serve as model systems for studying the crystallization of 

organic compounds. In addition, they exhibit a rich crystalline polymorphism and 

polymorphic selectivity of crystallization is observed depending on temperature
228

. 

Using the methods described in the previous chapters, we will estimate the 

different thermodynamic and kinetic factors influencing the nucleation/growth 

rates via MD simulations and guidance by the classical nucleation theory (CNT) 

predictions and different growth mechanism models (normal, two-dimensional, 

and screw dislocation). Such numerical predictions are not very common in the 

literature.  

This chapter is divided into two main sections. Section 1 provides a 

comparative study of the crystallization tendency from the melt of felodipine (I and 

II) and nifedipine (α and β) polymorphs. In section 2, the study of the 

crystallization tendency of indomethacin polymorphs (α and  ) is reported. In each 

section a detailed description of each compound is given including some 

comparisons between structural, dynamical and thermodynamical properties 
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obtained by our MD simulations with the experimental values. For each system, 

we particularly focused our investigations on the calculations of the Gibbs free 

energy difference between the liquid and the crystal   , the coefficient of 

diffusion   and the crystal-liquid interfacial free energy  . A comparative study of 

the nucleation/growth rates of each compound is then discussed followed by a 

general conclusion. 

 

The main results obtained for nifedipine and felodipine have been 

published in The Journal of Physical Chemistry B 2015, 119, 10768−10783. 

 

1 Crystallization tendencies of nifedipine and felodipine 

1.1 Description of the nifedipine and felodipine systems  

Nifedipine C17H18N2O6 [3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-

dihydropyridine-3,5-dicarboxylate]  (Fig.4.1) is a calcium-channel blocker used in 

the treatment of cardio-vascular diseases
5, 229

, for the long-term treatment of 

hypertension, angina pectoris
230

 and as vasodilating drug of the dihydropyridine 

type
231

. 

 

Fig.4.1: Chemical structure of felodipine (a) and nifedipine (b). 

 

http://en.wikipedia.org/wiki/Hypertension
http://en.wikipedia.org/wiki/Angina_pectoris
http://en.wikipedia.org/wiki/Angina_pectoris
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Confusion still remains in the literature on the polymorphism of nifedipine even 

thought it has been studied for more than a decade
5, 45, 47, 229, 232-236

. It is 

characterized by a high photosensitivity, a low aqueous solubility
235

, a suitable 

product for crystallization growth rate studies
47

, and a model for studying the 

crystallization of organic compounds
5, 229, 236

. Eckert et al
234

 first identified three 

monotropically polymorphs (I-II-III) where the form I is the most 

thermodynamically stable polymorph. Chan et al
236

 identified three other 

polymorphs noted (α, β, γ) as well as Grooff et al
235

 (A,B,C). The agreement exists 

only for the thermodynamically stable polymorph (I=α=A)
5
 (Fig.4.2). The 

confusion comes mainly from the lack of structural data on nifedipine polymorphs
5
 

and the complex phase transformations during thermal treatment
229, 235

. It should be 

noted that the nifedipine system still represents an exceptional unsolved problem in 

pharmaceutical polymorphism.  

 

Fig.4.2: A partial phase diagram of the nifedipine polymorphs extracted from ref. 
5
. The X 

indicates a newly obtained polymorph at 353 K which has a different crystalline structure from 

the β form (Nβ). The question mark represents the zone of confusion. The arrow from the X 

polymorph to the β polymorph indicates the conversion observed at room temperature. The kinks 

in the β and X lines mark the reversible transitions to β
’
 and X

’ 
respectively. The  β

’ 
is likely to be 

the form II identified by Zhou et al229 or the form C reported by Groof et al235. 
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From the melt, three crystalline polymorphs can be obtained: a metastable 

form, noted β (Nβ) that is preferentially obtained from the glassy state, and another 

metastable polymorph (the polymorph X in Fig.4.2) that crystallizes concomitantly 

with Nβ from the supercooled melt and transforms to the β form at room 

temperature. The most stable form noted α (Nα) only grows preferentially above 

120°C
5, 45, 47, 48

.  

The nucleation is a challenging task to study experimentally due to the 

small size of embryos and the transient nature of the nucleation process. However, 

Marsac et al
45

 were able to obtain the nucleation rate of nifedipine and felodipine 

in a narrow range of temperature (294 K to 357 K) using optical microscopic 

observation. At different temperatures, spin-coated samples were stored inside 

desiccators and then removed at each time point where the determination of the 

nucleation site number density was made. Crystal growth on the other hand is more 

easily studied due to the fact that the clusters are bigger and can be spotted without 

any difficulties. Ishida et al
48

  obtained the crystal growth rate of nifedipine (Nα  

and Nβ) by storing a liquid film at the desired temperatures in a desiccator and 

tracking the growth of the crystalline particles by polarizing light microscopy. The 

growth rate thus reported was the average growth of at least three crystalline 

particles. X-Ray powder diffraction was subsequently used to identify each 

polymorph. 

In the present work, nifedipine polymorphs Nα  and Nβ were studied. 

According to ref.
5
 the melting temperature of Nα was found to be 444 K with a 

density of 1.379 g/cm
3
 and a monoclinic crystalline structure with a space groups 

P21/c  while Nβ has a density of 1.382 g/cm
3
 and a triclinic crystalline structure  

with a space group     . A 434 K melting polymorph of nifedipine is well 

established
5, 233

 (Fig.4.2) but it is still unclear which polymorph is identified with 
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this melting point
5
. The glass transition temperature was found to be 315 -          

318 K 
45, 48

. 

Felodipine C18H19Cl2NO4 [ethyl 5-methyl 4-(2,3-dichlorophenyl)-2,6-

dimethyl-1,4-dihydropyridine-3,5-dicarboxylate ] (Fig.4.1) is a calcium-channel 

blocking agent just like nifedipine. It is also widely used for hypertension 

treatment and prevention of angina
4
. Felodipine is characterized by its insolubility 

in water but also by a good permeability and a good absorption by the 

gastrointestinal tract
237

. Srčič et al
238

 stated for the first time that felodipine possess 

several polymorphs, then Rollinger et al
239

 characterized the two forms (F I and F 

II). However F II lacked of reproducibility and they weren’t able to obtain any 

crystal structure
4, 240

. Finally, Lou et al
241

 described a method to obtain single 

crystals of form II suitable for determination of its crystalline structure. Additional 

crystallization studies
4
 later on discovered two more felodipine polymorphs (F III 

and F IV) obtained from co-crystallization in solution where F III is almost iso-

energetic to F I and F IV being obtained only as isolated single crystals. 

 

Fig.4.3: A schematic representation of the phase diagram of felodipine polymorphs based on the 

results from ref.
4
. 

 



120 

 

Two polymorphs are currently well established and have been reported to 

be produced from the melt:  the metastable F II that grows preferentially at all 

temperatures and the most stable F I that may also grow close to heterogeneities
242

.  

The most stable F I grows faster than the metastable F II at all           

temperatures
46, 106, 239

. The experimental growth rate of F I was obtained (Kestur et 

al. 
46

) by placing the supercooled liquid in contact with felodipine form I crystals 

which play the role of the seed for nucleation and growth. The growth rate of F II 

was determined by developing crystals from the amorphous form in the absence of 

seeding
46

. Raman spectroscopy was subsequently used to identify each polymorph. 

In this work, two felodipine polymorphs were studied (F I, F II). The most 

thermodynamically stable form (F I) has a melting temperature of 416.8 K 

(Fig.4.3) and a density of 1.451 g/cm
3
 at 123 K while F II has a melting 

temperature of 407.8 and a density of 1.421 at 150K
4
. The crystalline structure of F 

I and F II is monoclinic with respective space groups P21/c and C2/c. 

1.2 Thermodynamical properties    

The variations of the density as function of the temperature of each 

crystalline and amorphous form are represented in Fig.4.4 a) and b). Main 

crystallographic parameters with their estimated values are summarized in Table 

4.1. These densities are compared to the experimental values at 300 K for Nα  and 

Nβ, at 120 K for F I and at 150 K for F II . The cell parameters and the densities 

were reproduced correctly by the force field GAFF with a maximum deviation of 

0.02 g/cm
3
 in comparison with the experimental values. We were able to superheat 

Nα, F I and F II to an approximate temperature of 600 K, about 150 K above their 

experimental melting point. Nβ was superheated to an approximate temperature of 

550 K, 100 K above its experimental melting point. As mentioned in chapter 3, the 
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possibility to largely superheat originates from the periodic boundary conditions in 

MD simulations that stabilize the crystal structure. At temperatures higher than 600 

K, the density decreases brutally indicating the disappearance of the crystalline 

structure in the simulation box.  

 

Cell parameter Nα Nβ F I F II 

a Å (exp)  10.92 9.86 12.09 32.39 

a Å (sim)  10.97 9.85 12.14 32.37 

b Å (exp)  10.33 13.89 12.08 18.71 

b Å (sim)  10.37 13.73 12.13 18.70 

c Å (exp)  14.81 14.29 13.42 23.77 

c Å (sim)  14.86 12.40 12.11 23.75 

α° (exp) 90 61.22 90 90 

α° (sim) 90 61.22 90 90 

β° (exp) 92.7 79.82 116.13 91 

β° (sim) 92.7 79.82 116.13 91 

γ° (exp) 90 81.78 90 90 

γ° (sim) 90 81.78 90 90 

Density mg/m
3 

(exp) 

1.38 (at 300 K) 1.36 (at 300 K) 1.45 (at 123 K) 1.42(at 150 K) 

Density mg/m
3 

(sim) 

1.37 (at 300 K) 1.37 (at 300 K) 1.44 (at 123 K) 1.41(at 150 K) 

 

Table 4.1: Summary of the simulated (sim) and experimental
4, 5

 (exp) crystalline properties of 

nifedpine and felodipine polymorphs along with their densities. 
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Fig.4.4: Representation of the crystalline and amorphous densities of a) nifedipine and b) 

felodipine polymorphs versus T(K). A linear adjustment at high and low temperature (straight 

lines) enabled the estimation of the glass transition temperature        . 

 

The liquid densities of nifedipine and felodipine were not reported 

experimentally. As a consequence, we were unable to compare our simulation 

results with experimental values. However, the liquid density values at low 

temperature (the glassy state) are reasonable in comparison to the density of the 

crystalline forms  
          

   
     . The evolution of the amorphous densities, in 

the glass and in the liquid state, as function of the temperature enabled us to 

determine the simulated glass transition temperature for both compounds. The 

simulated    was equal to 410 K and 460 K for nifedipine and felodipine 

respectively with a respective overestimation of 90 K and 140 K compared to the 

experimental    that was found to be about 318-319 K
45

 for both compounds.  The 

overestimations were expected since the cooling rate in MD simulations is 

extremely fast (~10
11

 °C/sec) compared to experimental usual rates (~ 10°C/min). 
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The fast cooling rate used in MD simulations originates from the intrinsic small 

time-step of the order of the femtosecond required to integrate the Newton’s 

equation of motions (see details in chapter 2).  

The calculated          is expected to be always higher than the experimental one 

        . The difference between the simulated values and the experimental ones 

(   (sim)-         ) can be understood using the Williams-Landel-Ferry
243

 (WLF)  

       
           

           
  

                       

                        
. Assuming reasonable values 

                s,                 ps and using the so-called universal 

values          and         K, it is possible to estimate that    (sim)-

             K which is well in line with the differences found for liquid 

nifedipine and felodipine. 

Fig.4.5 shows an example of the evolution of the total density of a 

biphasic system of the crystalline Nα polymorph in contact with its melt at different 

temperatures. The numerical melting temperatures   (sim) were estimated to be 

448 K, 445 K, 426 K and 410 K for Nα, Nβ, F I and F II respectively. The 

overestimations ranged from 4 K to 10 K compared to the experimental values
4, 5, 45

 

(see Table 4.2). The uncertainties on the melting point values were estimated to be 

+/- 10 K. This error bars were deducted from the density versus time plots where a 

difference of 10 K was needed to distinguish between the crystallization of the 

system (increasing density) or the melting of the system (decreasing density). 
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Fig.4.5: Evolution of the density of the biphasic crystal/liquid of Nα system as function of time at 

three different temperatures. The increase or decrease of density indicates crystallization and 

melting respectively. 

 

Fig.4.6 a) and b) present the evolution of the enthalpies as function of 

temperature for the crystalline and the liquid phases for nifedipine and felodipine 

polymorphs. The enthalpies of fusion     were estimated to be 43.9 kJ/mol, 43.5 

kJ/mol, 31.8 kJ/mol and 29.3 kJ/mol for Nα, Nβ, F I and F II respectively (see Table 

4.2). The overestimations were between 0.3 kJ/mol and 3 kJ/mol compared to the 

experimental values
4, 45

. We were unable to compare the simulated value of Nβ to 

experience since the polymorphism of nifedipine is not yet completely 

understood
5
. The calculation of the enthalpy of fusion of the Nα polymorph was 

performed using three different simulation boxes (with different sizes: 4644, 55040 

and 110080 atoms) in order to check the possible size effects and validate the 

accuracy of the method. The error bars were estimated at +/- 3 kJ/mol. 
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Fig.4.6: Evolution of the enthalpy for the different polymorphic forms and the liquid of a) 

nifedipine and b) felodipine.   

 

 

In order to estimate the Gibbs free energy difference    between the 

liquid and crystal states as function of temperature for the different investigated 

systems, we used the Hoffman equation
35

. It is given by: 

      
       

  
                                         4.1 

where     and    are the simulated melting enthalpy and temperature obtained as 

described previously. This equation was already shown to reproduce with good 

agreement the experimental data for nifedipine and felodipine respectively
45

.  

Fig.4.7 shows the evolution of the driving force    as function of temperature. The 

expected tendency is obtained for the different systems and their respective 

polymorphs
4, 5, 45

.  It is a direct consequence of the fair agreement obtained for 

    and    compared to the experimental data as reported in Table 4.2.  In 

Fig.4.7, one particularly may notice that we were able to reproduce the 

experimental tendencies of all the systems from the most to the less stable 
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following this order: Nα, Nβ, F I and F II. The greater this number, the greater the 

tendency for crystallization confirms that the thermodynamic driving force for 

crystallization of nifedipine is greater than that for felodipine. However, if we 

compare two polymorphs from the same compound, the crystallization tendency is 

not reproduced since the metastable phase has a lower   . Hence, the driving force 

alone cannot be used to predict the crystallization tendencies. Other parameters 

should also be considered like the interfacial free energy   and the coefficient of 

diffusion   as it will be shown in the following. 

 

Fig.4.7: The free energy difference between the liquid state and the crystal state as predicted by 

the Hoffman equation using    and     determined from MD simulations for the different 

investigated nifedipine and felodipine polymorphs (see table 4.2). 

 



127 

 

The value of the interfacial free energy was obtained by using the 

capillary fluctuation method described in Chapter 2. This method consists on the 

simulation of the interface at equilibrium and at the melting point and the 

calculation of the fluctuations of the position of the crystal-liquid interface (see 

Fig.4.8). An order parameter (   as described in Chapter 2) is used in order to 

distinguish between the liquid and solid molecules and thus determining the height 

function     . Subsequently, by the intercepts of the plots of           (the 

power spectrum of      ) versus  , the interfacial free energy is determined. 

Fig.4.9 a) and b) shows the linear behavior of                 as function of 

      at small   for felodipine and nifedipine polymorphs respectively which 

indicates that the interface is indeed rough
178

. At larger  , the values of  

         deviates from this linear behavior; we can conclude that in this region 

the values are sensitive to the method used to identify the height function while for 

the small q region the values are not. Therefore, our fits are performed in the small 

  region only. The interfacial free energy at the melting temperature    obtained 

by the fitting curves was found to be   = 21.5, 14.4, 28.7 and 15.5 mJ/m
2
 for Nα, 

Nβ, F I and F II respectively. The error bars are calculated taking into consideration 

the uncertainties on the temperature and the fitting procedure (Table 4.2). 
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Fig.4.8: a) A snapshot of a simulation box used to determine the interfacial stiffness of felodipine 

F II. The interface is parallel to the (xz) plane. The system size is as follow:       = 224.31 

Å,       26.05 Å and    = 283.20 Å.   ,    and     are the dimensions of the whole 

simulation box along the  ,   an   directions. b) Evolution of the order parameter      along 

the direction orthogonal to the interface ( ). The line indicates the fitting using equation 2.33. 
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Fig.4.9: The fluctuation spectrum           of the interface height      for felodipine F I and 

F II (a) and nifedipine Nα and Nβ (b). The solid lines represent fits to the simulation results using 

equation 2.28. The fit is limited to the small   range. It corresponds to the domain where 

equation 2.28 is valid and thus in which the plot               vs       has a slope with the 

value -2. For larger values of  , this equation is no longer valid since the wave length becomes 

commensurate with the crystal lattice spacing. For larger values of  , the straight line thus 

deviates significantly with data points. 
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For both nifedipine and felodipine compounds, the interfacial free energy are 

clearly the highest for the more stable polymorph (see Fig.4.7).  Indeed, since at 

the crystal-liquid interface, the surface of a less stable phase is likely to be more 

disordered than the surface of a most stable one, hence the interfacial free energy is 

likely to be smaller. This trend is also well in line with the well-known Ostwald 

rule of stage 
75

 suggesting that the crystal phase that nucleates is not the most 

thermodynamically stable phase but rather another metastable phase that is closest 

in Gibbs free energy to the parent phase. Moreover, in Table 4.2 one may notice 

that the interfacial free energy of the metastable nifedipine Nβ is significantly 

smaller than the values obtained for all felodipine polymorphs.  Such result appears 

very reasonable in explaining why nifedipine may crystallize more easily than 

felodipine as reported in many investigations
45

. We were unfortunately unable to 

compare our simulated values to experimental ones since no data are available for 

nifedipine and felodipine. However, the present obtained values are of the same 

order of reported data on other similar molecular compounds 
39, 244

. For example, 

for indomethacin polymorphs, Andronis and Zografi
30 

estimated using nucleation 

rates, the interfacial free energy 27 mJ/m
2
 and 17 mJ/m

2
 for the stable   form and 

the metastable  form respectively. They also found that the interfacial free energy 

follows the Oswald rule of stages:   is higher for the stable polymorph than the 

metastable one. It can be also noted in the present numerical study that the trend of 

the crystal-liquid interfacial free energies between the different polymorphs is not 

completely consistent with the evolution of the melting entropies     
   

  
. 

Indeed, for the metastable polymorph, one finds a significant smaller value of the 

interfacial free energy compared to the most stable one but the melting entropy is 

roughly the same for the two polymorphs (see Fig.4.7).  Some additional 

investigations are being performed at the moment to understand this discrepancy. 
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To our knowledge, no other values of the interfacial free energy were 

determined for pharmaceuticals. Few values have been reported for molecular 

compounds such as 7.0 mJ/m
2
  for succinonitrile 

38
, 7.9 mJ/m

2
 for neopentylglycol 

39
, 2.8 mJ/m

2
 for pivalic acid 

245
, 4.6 mJ/m

2 
for cyclohexane 

246
 and 10 mJ/m

2 
 for 

carbon tetrabromide 
89

. 

Polymorph    (exp) 
4, 5

 

/    (sim) (at 

 (K)) 

(g/cm
3
) 

   (exp) 
4, 5

 

/  (sim) (K) 

   (exp) 
4, 5, 45

 / 

    (sim)  

(kJ/mol) 

   (sim) 

(mJ/m
2
) 

Nifedipine α ( Nα ) 1.38 /1.37 

(283-303) 

444/ 448 39.9 / 43.9 21.5 1.6 

Nifedipine β ( Nβ ) 1.39-1.36 /1.37 

(296-298) 

- / 445 -  / 43.5 14.4 1.0 

Felodipine I (F I) 1.45/1.44(123) 416/426 31.5 / 31.8 28.7 2.5 

Felodipine II (F II) 1.42/1.40(150) 416/410 29.1 / 29.3 15.5 1.2 

Table 4.2:  Comparison between experimental data (exp) and simulation data (sim) obtained 

using the GAFF
135

 force-field for nifedipine α and β and felodipine I and II crystal polymorphs.  

The exp and sim between parentheses indicate the experimental and the simulated values 

respectively.    ,  ,    and    represents the density, the melting temperature, the enthalpy 

and the interfacial free energy at the melting temperature respectively. Uncertainties of the 

interfacial free energy    have been estimated from taking into consideration the uncertainties 

on the melting temperature (10K) and the fitting procedure of equation 2.28. 
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1.3 Transport properties (  and  ) 

The diffusion coefficient  , which is the translational diffusion of the 

center of mass of molecules, and the shear viscosity   of nifedipine and felodipine 

in the equilibrated liquid state as a function of temperature   are shown in 

Fig.4.10. Upon decreasing temperature, both transport properties show the classical 

deviation from an Arrhenius behavior which is a typical behavior of the so-called 

fragile glass-formers
108

. A fair agreement is found with experimental data for 

viscosity
25

.  Very similar mobility for both nifedipine and felodipine liquids, as 

measured by values of   and  , are found at all temperatures covered by MD 

simulations which is in line with data reported in the literature
45

. This result is 

consistent with the same experimental glass transition temperature   ≈ 304-318 K 

that has been particularly found for both pharmaceuticals
25

. However, in the high 

temperature range investigated from MD simulations, molecular mobility of 

nifedipine is found a bit lower than felodipine. It is opposite to the trend observed 

experimentally at lower temperatures either from viscosity measurements or 

dielectric relaxation spectroscopy data for which felodipine relaxation times are 

about one decade longer than nifedipine ones. This disagreement between the 

simulation and the experiments can be a consequence of the inability of the GAFF 

force field to reproduce dynamics with sufficient accuracy. However, from the 

trend reported from experimental viscosity measurements (see Fig.4.10 a) one may 

reasonably also speculate about a possible crossover between felodipine and 

nifedipine dynamics that may occur from high to low temperatures. 



133 

 

 

Fig.4.10: a) Evolution of the shear viscosity and diffusivity (in inset) as a function of the inverse 

of temperature for nifedipine and felodipine in the liquid state. The diffusion coefficients are 

determined from the long term evolution of the mean square displacement (             see 

Chapter 2). Shear viscosity  has been computed from the stress-stress autocorrelation functions 

(See chapter 2). In inset, solid lines indicate fits using equ. 2.34 (   
 

 
     

  

 
    

  

 
       

= 18.17,    = 491.37 K and    = 874.81 K are obtained for nifedipine while      = 18.03,     = 

445.84 K and    = 874.81 K are obtained for felodipine. b) The linear behavior with a slope 

equal to -1 of   vs     shows the validity of the Stokes-Einstein relation at high temperatures.  
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In the simulated high temperature range, both diffusion coefficient and shear 

viscosity follow similar temperature dependence. This link between these two 

transport properties is well described by the Stokes-Einstein relation D ~ η/T 
247

 

which was shown to be perfectly valid in our case (Fig.4.10 b)). Inspired by this 

similarity and in order to fit the diffusion coefficient as a function of temperature, a 

similar approach as described in reference
142

 for viscosity was used (using equation 

2.34). It has been suggested that this alternative relation to the usual Vogel-

Tamman-Fulcher-Hesse (VFTH) equation was particularly able to reproduce very 

well both high and low temperatures ranges
247

. It thus provides a possibility to 

estimate diffusivity in the low temperature range below the melting temperature 

required to estimate the kinetic pre-factor involved in the CNT. Results of the 

fitting procedure are shown in the inset of Fig.4.10 for which very similar fitting 

parameters are obtained for both compounds (see caption Fig.4.10). 

1.4 Nucleation and growth of nifedipine and felodipine 

In this section, the nucleation and growth of N , Nβ , F I and F II will be 

studied and compared to the experience since only these polymorphs have been 

reported to appear from the melt
46, 48

. As mentioned before, the main parameters 

involved in nucleation as described by the CNT, i.e.      , ,  D and the liquid and 

crystal densities were calculated from the present MD simulations (see above). 

Prediction of the nucleation tendencies 

The steady-state nucleation rate   can be thus estimated from the 

expression (as mentioned in Chapter 2): 

             
   

   
                                            4.2 
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where       is the kinetic pre-factor and      
   

 
 
  

   
   is the nucleation 

barrier.      is the Gibbs energy difference between the liquid and crystal states 

per unit volume. The pre-factor is usually expressed as             
     

   

  
  

where   is the atomic jump distance approximated to      
    in the following,    

is the number of atoms in the critical nucleus,     is the number density of liquid, 

             
     

    
 
is the Zeldovich factor and     is the number density 

of solid. We could write as well                   and          where    

is the critical radius of the nucleus. 

In table 4.2, both the melting enthalpy and the interfacial free energy of 

nifedipine and felodipine polymorphs are reported. At first glance, by comparing 

melting enthalpy and interfacial free energies of both compounds, it seems difficult 

to reconcile the higher values of the melting enthalpy found for nifedipine with 

their lower interfacial free energies. Polymorphs of the same compound show 

similar melting enthalpy but quite different interfacial free energies although the 

trend seems in agreement with Turnbull law              
   

considering a 

similar density for both polymorphs. In other words, it thus seems that Turnbull 

relation  may not be applicable in our case with the same Turnbull coefficient    

which was found to be about 0.45 for most metals, 0.32 for semi metals and    

water
38

. Other studies showed that this coefficient, for metallic alloys, ranges from 

0.13 to 1
77

 or from 0.21 to 0.77
39

 for other variety of materials (camphene, 

benezene, lauric acid, stearic acid, dibromobenzene…). In our calculations, we 

have estimated    values for each compound to be 0.28, 0.40, 0.44 and 0.75 for 

Nβ, Nα, F II and F I respectively. A similar calculation made for the indomethacin 

polymorphs using data taken from
30

 would give us    values of about 0.43 for the 
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α polymorph and 0.59 for the γ polymorph close to the values obtained in the 

present study.   

Several works have mentioned the possible temperature dependence of the 

crystal-melt interfacial free energy
248

 and the need to use an effective temperature 

dependent interfacial free energy has been shown from MD simulations to 

reproduce nucleation rates in the framework of the CNT
79, 80, 249-253

. There are good 

reasons, related to the entropy loss due to ordering of the liquid near the interface, 

suggesting that the interfacial free energy could increase with   
7
. In the following, 

we have assumed the arbitrary following form suggested in ref.
80

 which has been 

inspired from the Turnbull law for the temperature dependence of the interfacial 

free energy: 

         
      

       
 
   

  
     

   
                                    4.3 

Using this form, the parameter    is different for each investigated compound. 

Fig.4.11 shows the steady state nucleation rate   obtained from the CNT as 

function of temperature for the different investigated polymorphs.  Nucleation rates 

  are represented as function of the undercooling         in order to 

facilitate the comparison between the different polymorphs. This representation 

also allows correcting from the slight disagreement between the experimental and 

numerical melting temperature. 

All nucleation curves show the same expected behavior. The nucleation rate   can 

be first described by a sharp increase upon cooling due to the increasing driving 

force and then a decrease upon further cooling to low temperatures due to the 

decreasing molecular mobility (diffusivity).  Curves thus show a clear maximum. 

The value of this maximum significantly increases in the following order: F I, F II, 
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Nα and Nβ.  The present results thus confirm the much more favorable nucleation 

tendency of nifedipine with respective to felopidine as observed experimentally 
45

. 

 

Fig.4.11: Predicted evolution of the nucleation N (a) and growth G (b) rate as function of 

temperature of the different investigated nifedipine and felodipine polymorphs. A comparison 

between experimental (symbols) and numerical data is also given in inset (b).  Constant 

parameters 1/k = 60, 570 and 39 have been used to rescale numerical growth rate in order to fit 

with experimental values using a growth model with f = 1. (See equation 4.5)  Experimental data 

for nifedipine Nβ and felodipine F I and F II were extracted respectively from
48

 and 
46

. 

 

Fig.4.11 also clearly suggests nucleation of the predominant metastable 

nifedipine β polymorph as observed in spontaneous crystallization
5
 and well in line 

with the Oswald rule of stage. The fact that nifedipine crystallizes more readily 
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than felodipine was mainly attributed to the higher driving force for crystallization 

for nifedipine than felodipine since both molecules have a very similar mobility 

and glass transition temperature 
45

.  The same argument cannot be applied while 

comparing polymorphs of the same molecule since, for monotropic systems, the 

driving force of the more stable phase is higher than the metastable phase for all 

temperatures. Our results show clearly an inverse correlation between the 

increasing value of   and the decreasing maximum nucleation rate (see Fig.4.11) 

for each polymorph. The order observed for the maxima of nucleation (F I, F II, Nα 

and Nβ) can be mainly explained by the influence of the interfacial free energy that 

acts as a barrier for nucleation. 

 

However, the nucleation tendencies cannot be determined only by the 

interfacial free energy since   of Nα is higher than   of F II but the nucleation rate 

of Nα is much higher. In that case, the higher driving force of Nα should explain its 

higher nucleation rate. For other compounds having  approximately the same 

mobility but different crystallization rates
19, 232

 as felodipine and nifedipine, it 

could be suggested that crystallization is controlled  by the interplay between     

and  . This result is well in line with the nucleation barrier (    
  

   
  ) as 

predicted by the CNT. 

 

Prediction of the growth tendencies 

The general mathematical form for the crystal growth rate can be 

summarized as follows (as mentioned in Chapter 1): 

                       
  

   
       4.4 



139 

 

where   is a temperature independent constant,       (unit : m.s
-1

) describes the 

molecular mobility and has been approximated by 
   

  
 in the following where   is 

the average width of the crystal lattice spacing (       
   ). The last two terms 

represents thermodynamics of the growth process.      is a dimensionless 

function depending on the growth mechanism at the interface. The last term 

represents the probability of attachment/detachment of molecules to the crystal 

nucleus. It only plays a significant role at relatively small undercooling and it 

approaches unity at large undercooling. 

 

Experimentally, an adapted plot representing the reduced growth    

                     against undercooling         may allow 

discriminating between these three models 
2, 30, 33, 58, 242

. In most cases, the inverse 

of the liquid viscosity        instead of diffusivity D is supposed to provide a 

reliable description of the molecular mobility      . For indomethacin, growth by 

two-dimensional nucleation has been found to be applicable
30

 from such approach. 

However, recent works by Wu and Yu
58

 have also shown that viscosity may not 

accurately reproduce molecular mobility upon deep cooling owing the breakdown 

of the Stokes-Einstein relation. Use of a fractional Stokes-Einstein relation
36

 where  

   (  < 1) is used instead of    particularly allow to show  that growth is diffusion-

controlled at larger undercooling (      Same behavior has been also found for 

other molecular materials such as ortho-terphenyl
58

. 

 

The growth rate   as function of the temperature has been calculated from 

the present simulations for the different models of growth suggested above. The 

simplest model     (normal growth see Chapter 2) is found to reproduce better 

the experimental data as represented in inset of Fig.4.11 for three different 
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polymorphs: F I & F II and Nβ at relatively deep undercooling. It is interesting to 

notice that this simple model particularly allows reproducing the decreasing order 

of the growth rate: F I, F II, and Nβ. Moreover, it is also consistent with the 

approach used to calculate the interfacial free energy which assumes that the 

interface is rough on a microscopic scale.  However, it should be also noted that 

the interface free energy has no explicit effect on the growth rate in this case. 

Dislocation-controlled growth cannot be also totally discarded although agreement 

is less good. Growth by two-dimensional nucleation has not been found to be 

applicable even though it seemed the most reasonable. Indeed, it has been 

suggested 
2, 30, 33

 that for most materials with high melting entropies like felodipine 

           = 9.10 R and nifedipine 10.80 R, the mechanism of growth 

occurs by two dimensions nucleation. The use of the expression 

       
      

       
  associated with this type of growth is strongly dependent on 

the interfacial free energy  . It is not thus possible to reconcile the decreasing order 

determined value of the interfacial free energy    for the F I, F II and Nβ 

polymorph: 28.7, 15.5 and 14.4 mJ/m
2
 with the decreasing order of the growth rate.  

As already mentioned above, same behavior relative to the entropies of fusion has 

been also reported by Wu and Yu
58

 on both indomethacin polymorphs. 

 

Fig.4.11 shows the growth rate for the different investigated polymorphs 

including polymorph Nα for which experimental data are not available. This figure 

evidently shows the expected well-expressed maximum in the growth rate   

originating from the increase of the thermodynamical driving force on one hand 

and the decrease of the mobility on the other hand.  It can be noted that the 

maximum growth is localized at small undercooling as classically observed and 
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offers an interesting parameter  to compare crystallization of various compounds as 

shown in 
28

. 

 

Interestingly, and perhaps more importantly, is the comparison between 

both nucleation   and growth   rate. Taking into account the exponential 

dependence of both   and   upon temperature and the distance between maxima, 

glass-forming or crystallization capability can be discussed. Fig.4.11 a) and b) 

clearly confirm that glass-formation is to be expected for felodipine since the 

curves representing the temperature dependencies of nucleation and growth do not 

significantly overlap. In contrast, crystallization of the melt is favored for 

nifedipine since the nucleation and growth curves significantly overlap compared 

to the curves of felodipine. In other words, both nucleation and growth are 

favorable in a wider range of temperature for nifedipine which enables the 

crystallization of this compound and explains the fact that it crystallizes more 

readily than felodipine. 

 

1.5 Conclusion 

 

By means of MD simulations, the liquid and the crystalline state of 

felodipine and nifedipine as well as the crystal-liquid interface have been 

investigated in order to predict their nucleation and growth tendencies from the 

melt. Two polymorphs of nifedipine (Nβ, Nα) and felodipine (F I, F II) have been 

studied. Calculations were performed on liquid and crystal systems separately in 

order to determine their main physical properties: density, enthalpy and diffusivity. 

Biphasic crystal-liquid simulations enabled the calculation of the melting 

temperatures and the interfacial free energies m  at the melting temperatures of the 

different polymorphs. 
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A fair agreement was found between the simulation results and the known 

experimental data such as the crystal densities, the melting temperatures, the 

enthalpies and the molecular mobility confirming the ability of the force field 

GAFF to reproduce accurately the experimental data of both compounds. 

Similarity of the molecular mobility of felodipine and nifedipine is particularly 

confirmed. The driving force for crystallization has been estimated showing a 

higher driving force for nifedipine with respect to felodipine as suggested in 

experiments.  

 

The values of the crystal-liquid interfacial free energy at the melting 

temperature have been determined. Using the capillary fluctuation method, m = 

21.5, 14.4, 28.7 and 15.5 mJ/m
2
 have been obtained for Nα, Nβ, F I and F II 

respectively. The interfacial free energy   was found to increase with the 

polymorph stability where the metastable forms have always a smaller interfacial 

free energy than the stable forms in agreement of the Ostwald rule of stage and the 

melting entropies. 

  

 From the estimation of D , γ and G , the nucleation and the growth rates 

were calculated in the frame work of the CNT and by using different growth 

modes (normal, 2D and screw dislocation). Having a similar mobility ( D ), the 

nucleation and growth rates seem mainly controlled by the interplay between γ and

G which is consistent with the amplitude of the nucleation barrier (    
  

   
  ) as 

predicted by the CNT. We found that the higher interfacial free energy of 

felodipine polymorphs might be an additional reason for its resistance to 

crystallization compared to nifedipine, other than its lower driving force. The low 

value of   of Nβ compared to the other polymorphs seems the origin of its higher 
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nucleation rate and to its larger overlapping of nucleation and growth curves. 

However, the nucleation tendencies are not only controlled by the interfacial free 

energy since γ of Nα is higher than γ of FII but the nucleation rate of Nα is much 

higher. In that case, the higher driving force of Nα should explain its higher 

nucleation rate. A fair agreement was found between numerical and experimental 

growth rates suggesting a mechanism of normal growth as already shown for 

indomethacin assuming a fractional Stokes-Einstein dependency between viscosity 

and diffusivity in that case. Other growth mechanisms do not seem able to fit the 

experimental growth rate order (Nβ < F I < F II) owing the present calculated 

interfacial free energy. 

 

Despite a reasonable trend in the nucleation order it can be also noted that 

the nucleation rate for the different polymorphs predicted from simulations 

deviates by several decades from the experimental ones
45

 (see below). Moreover, 

the predicted nucleation rates for the different polymorph are also separated by 

several decades which does not seem to be the case experimentally as reported in
45

. 

 

The present absolute value of the predicted nucleation rates should be thus 

considered with caution. An ideal situation certainly far from reality is considered 

in the framework of the CNT where homogeneous bulk nucleation is assumed. 

Moreover, a direct comparison between numerical and experimental values is also 

difficult since it is not clear which polymorph is nucleated in the experimental 

study.  

As mentioned previously significant deviations between CNT predictions 

and experimentally measured nucleation rate are expected
81, 226

. Many checks of 

the CNT have been reported in the literature ranging from fair agreement to severe 
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disagreement 
81

. Nevertheless, because of the simplicity of its formalism, it is still 

commonly used to analyze crystal nucleation in experiments and simulations. 

Origin of the discrepancies has been mostly attributed to the kinetic pre-factor 

rather than the nucleation barrier which is approximately correct in most cases 
7
. 

For certain glass-formers such as sodium metasilicate glasses
226

 differences  by 

more than ten orders of magnitude have been reported. The  direct determination of 

the kinetic prefactor from MD simulation in the nucleation rate is found to be some 

two orders of magnitude larger than predicted by classical nucleation theory
227

. In 

the present investigation, the nucleation rate is strongly influenced by the value of 

the interfacial free energy. In contrast, we checked that a small change in the 

diffusivity   or the driving force    have more less influence on the nucleation 

rate than  . 

As reported in ref. 
253

, a small change of a few percent in the value of the 

interfacial free energy   can significantly alter by several decades the nucleation 

rates  . In order to evaluate the sensitivity of the interfacial free energy on the 

nucleation rate  , we have recalculated the nucleation rate   owing  the        

7-8% uncertainties obtained on the value of the interfacial free energy    

determined in the present study using the present fluctuation methods. In other 

words, we have computed nucleation rate using either an estimated maximum or 

minimum of the interfacial free energy using        and        respectively. 

We have also compared the nucleation rate   previously determined with the 

mathematical form given in equation 4.2 with a behavior using a constant value 

        owing the same uncertainties. 

Figures 4.12 a) and b) show the nucleation rate   obtained using the two 

different models     . The general trend of the nucleation rates is found similar 

using both models following the order of decreasing maximum nucleation rate: Nβ, 
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Nα, F II, and F I. One may particularly notice the overall higher nucleation rate of 

the metastable β polymorph of nifedipine due to its lower value of the interfacial 

free energy 14.4 mJ/m
2
. In contrast, using the         model, the nucleation 

rate of felopidine FI polymorph becomes so low that it cannot be represented on 

the Fig.4.12 a) since this polymorph possesses the highest value of the interfacial 

free energy 28.8 mJ/m
2
.  

Despite same trends, significant shifts by several orders or magnitude are 

obtained using the different models depending on the absolute value of the 

interfacial free energy.  Evidently, compounds having a higher interfacial energy 

are more impacted.  For example, an increase of about a factor 10
3
 in the maximum 

nucleation rate is obtained between the present temperature-dependent interfacial 

free energy model (equation 4.3) with respect to the use of a constant value 

(       ) for the most metastable (lower γ) Nβ and F II polymorphs. An 

increase of about 10
9
 is obtained for the most stable (higher γ)  Nα and F I 

polymorphs. 

Figures 4.12 a) and b) also show the nucleation rate   obtained taking 

into account the uncertainties on the values of the interfacial free energy. Since a 

small variation of the interfacial free energy values causes a large variation in the 

nucleation rates, the difference between the lower limit and the upper limit at the 

maximum varies significantly from 2 decades (Nβ in Fig.4.12  b) to 8 decades (F II 

in Fig.4.12 a)). This may cause a crossing between the nucleation rates curves 

where in some cases the nucleation rate tendency will considerably change.  For 

example the change in the nucleation tendency can be observed in Fig.4.12  a) 

where the lower limit of the nucleation rate of Nα is smaller than the upper limit of 

that of  F II. In all considered cases, despite the interfacial free energy 
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uncertainties, the nucleation rate of Nβ is always greater than the other polymorphs 

confirming its higher crystallization tendency. 

To conclude, it can be noted that calculation of the nucleation rate   using 

a third alternative form for the interfacial free energy         
 

  
  79, 80

 has been 

also performed (Table 4.3). This latter form roughly produces the same trend for 

felodipine and nifedipine polymorphs as obtained from equation 4.3. Table 4.3 

presents a comparison of the maximum values of the nucleation rate      for 

three different models:                 
 

  
               

      

       
 
   

 

 
     

   
  . It can be noticed that the differences in the values reported in the column 2 

and 3 do not exceed 2 orders of magnitude.  

 

Polymorph       
        

with         

      
        

with         
 

  
 

      
        with 

        

 
      

       
 
   

  
     

   
  

Nifedipine α ( Nα ) 2,10.10
15 

6,01.10
23 

3.34.10
23

 

Nifedipine β ( Nβ ) 7,72.10
15

 3,22.10
28

 3,23.10
27

 

Felodipine I (F I) 8.10
-50 

8,18.10
11

 3,83.10
10

 

Felodipine II (F II) 5,45.10
10 

8,81.10
19

 8,84.10
17

 

 

Table 4.3: A comparison of the maximum values of the nucleation rates      of the different 

investigated polymorphs using different models of     . 
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Fig.4.12: Comparison of the predicted evolution of the nucleation rate N for two temperature-dependent 

models of the interfacial free energy    as function of temperature of the different investigated nifedipine 

and felodipine polymorphs: constant value         (a) and                         
    

             (b) Experimental data (symbols) extracted from
45

 are also given for comparison. For 

each polymorphs, either dotted or dotted-dashed line indicates prediction of the nucleation rate [N] using 

values of the interfacial free energy        and       . This calculation takes into the uncertainties 

of the calculated interfacial free energy   of the order of        7-8%. Using the         model, 

the nucleation rate of felopidine FI polymorph is so low that it is not represented on the figure (a). 
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2 Crystallization tendencies of Indomethacin  

2.1 Description of the system 

Indomethacin C19H16ClNO4 [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-

1H-indole-3-acetic acid] (Fig.4.13) is a non-steroidal, anti-inflammatory agent with 

anti-pyretic and analgesic properties
254

 used as a prescription medication to reduce 

fever, pain and swelling. It is a hydrophobic poorly water soluble drug
255

, which 

make it a subject to different studies
30, 256, 257

. Indomethacin is a monotropic system 

that has two structurally solved polymorphs: the α and γ forms
258

. The γ form (Iγ) 

has the highest melting temperature (434 K)
30, 255

 with a density of 1.38 g/cm
3 259

 

and the lowest solubility making it the most thermodynamically stable 

polymorph
254

. While the α form (Iα)  has a melting temperature of 428 K
30

 with a 

density of 1.40 g/cm
3 259

. Thus this system represents an inversion between the 

stability and the density where the metastable phase (Iα) is denser than the stable 

phase (Iγ) (Fig.4.13).  

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Chlorine
https://en.wikipedia.org/wiki/Chlorine
https://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Prescription_medication
http://en.wikipedia.org/wiki/Fever
http://en.wikipedia.org/wiki/Pain
http://en.wikipedia.org/wiki/Inflammation
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Fig.4.13: Schematic representation of the phase diagram of indomethacin using data from ref.
30

. 

  

This inversion is attributed to the local organization of the molecules of each 

polymorph which limits the chemical activity of the less dense phase
30, 260

. The 

molecules of Iγ form dimers by linking their carboxylic groups with hydrogen 

bonds while the molecules of Iα form trimers with two molecules linked via their 

carboxylic groups by hydrogen bonds and the third molecule linked via its 

carboxylic group to the ketone group of the closest neighbor (see Fig.4.14). This 

supplementary association of Iα generates a more compact crystalline arrangement 

and thus presents a higher density of the possible arrangement of Iγ. 
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Fig.4.14: A representation of the conformations of the two polymorphs of indomethacin; a) 

represents the conformation of Iγ (dimer conformation) and b) represents the conformation of Iα 

(trimer conformation). The hydrogen bonds linking two molecules of indomethacin are 

represented by dotted lines. 

 

 These two polymorphs crystallize from the melt
30

. A third polymorph was 

mentioned in literature (δ)
58

; it was reported for a sample crystallized from a 

methanol solution. Indomethacin crystallizes below its glass transition temperature 

to from Iγ while at higher temperatures, the formation of Iα is predominant
259

. 

 

2.2 Simulation and results    

The variations of the density as function of the temperature of each 

crystalline and liquid form are represented in Fig.4.15. Main crystallographic 

parameters are summarized in Table 4.4. The obtained densities are compared to 

the experimental values at room temperature (300 K). The OPLS force field was 
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able also to reproduce the density inversion of the indomethacin polymorphs that 

was found in literature
259

 with a deviation of 0.06 g/cm
3
 and 0.05 g/cm

3
 for γ and α 

form respectively in comparison with the experimental values.  The systems were 

heated to an approximate temperature of 500 K before observing the melt, 70 K 

above the experimental melting point.  

 

Cell parameter Iγ Iα 

a Å (exp)  9.23 5.46 

a Å (sim)  9.23 5.46 

b Å (exp)  9.62 25.31 

b Å (sim)  9.14 25.77 

c Å (exp)  10.88 18.15 

c Å (sim)  10.37 18.42 

α° (exp)  69.89 90 

α° (sim) 69.89 90 

β° (exp)  87.32 94.38 

β° (sim) 87.32 94.38 

γ° (exp) 69.50 90 

γ° (sim) 69.50 90 

Density mg/m
3 

(exp) 1.38 (at 300 K) 1.40 (at 300 K) 

Density mg/m
3 

(sim) 1.32 (at 300 K) 1.35 (at 300 K) 

 

Table 4.4: Summary of the simulated (sim) and experimental (exp)259, 261, 262 crystalline properties 

of indomethacin polymorphs along with their densities. 

 

The evolution of the liquid density as function of the temperature enabled us to 

determine the simulated glass transition temperature of indomethacin. The 

   simulated was equal to 470 K with an overestimation of 156 K compared to the 
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experimental     that was found to be 314 K
30

. This overestimation was expected 

as mentioned earlier. 

 

Fig.4.15: Representation of the crystalline and amorphous densities of indomethacin versus T 

(K). The inversion of the density/stability is well reproduced by the OPLS force field where the 

most stable phase (Iγ) is less dense than the metastable phase (Iα). A linear adjustment of the 

amorphous density at high and low temperatures (straight lines) enabled the estimation of the 

glass transition temperature Tg to be 470 K. 

 

The melting temperatures were estimated by simulating the system at the 

coexistence temperature as described in Chapter 2. Fig.4.16 presents the biphasic 

system used to determine the melting temperature of Iγ along with its density 

variation as function of time at different temperatures. The melting temperatures of 

Iγ and Iα were estimated at 425 K and 420 K with an underestimation of 9 K and 8 

K respectively. 
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Fig.4.16: The biphasic system a) that was used to determine the melting temperature of Iγ with b) 

the evolution of its density as function of time at three different temperatures. The 

increase/decrease of the density indicates the crystallization/melting of the system respectively. 

The melting temperature    was found to be 425 K for Iγ. 

 

Fig.4.17 represents the evolution of the enthalpies of the crystalline and 

the amorphous forms as function of the temperature. The enthalpy of fusion of Iγ 

was estimated at 37.11 kJ/mol with an underestimation of 2 kJ/mol compared to 

the experimental value
30

.  While the enthalpy of fusion of Iα was estimated to be 

18.91 kJ/mol with an underestimation of 12 kJ/mol (see Table 4.5). 
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Fig.4.17: Evolution of the enthalpy for the different polymorphic forms and the liquid state of 

indomethacin. 

 

Fig.4.18 shows the difference in the Gibbs free energy between the liquid 

and the crystalline phases (γ and α) as a function of temperature calculated from 

the Hoffman equation (see equation 4.1) using    and     determined from MD 

simulations for the investigated Indomethacin polymorphs. This equation gave the 

same result as the Thompson-Spaepen
263

 equation and did accurately predict the 

   for small molecular weight organic glass formers for which heat capacity data 

exist
30, 263

. Fig.4.18 shows clearly that the system is monotropic, where the γ-form 

has a larger     and thus it is the stable phase. 
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Fig.4.18: The temperature dependence of the Gibbs free energy difference between the liquid 

and the crystal obtained using the Hoffman equation for the two indomethacin polymorphs. 

 

The interfacial free energy obtained by the fitting curves (Fig.4.19) was found to 

be 24.6   1.5 mJ/m
2
 for the γ polymorph and 14.4   1.2 mJ/m

2
 for the α 

polymorph. We were able to compare our values to the experimental data reported 

by Andronis and Zografi
30

. In their study
30

, the experimental interfacial free 

energies were obtained from fitting the expression of the steady state rate of 

homogeneous nucleation as predicted by the CNT to experimental data (Fig.4.20). 

Thus, the interfacial free energy was taken as a fitting parameter in this analysis. 

The homogeneous nucleation rates were estimated by using a single stage 

isothermal technique that consists on melting the pure crystal on pre-cleaned 

microscope slides and then store the sample inside desiccators placed in ovens 

maintained at different temperatures. Subsequently, the sample is removed for 
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microscopic examination in order to calculate the particle number density that 

enables the determination of the homogeneous nucleation rates. The values 

obtained were 27 mJ/m
2 

for the stable polymorph and 17 mJ/m
2 

for the metastable 

polymorph. 

 

 

Fig.4.19: The fluctuation spectrum of the interface height for indomethacin γ (black squares) and 

indomethacin α (red circles). The solid lines are fits to the simulation results using equ. 2.28. 
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Fig.4.20: Nucleation rates of the γ and α forms of indomethacin as function of temperature 

determined by Andronis et Zografi
30

. The solid lines represent the fits using the expression of the 

steady state rate of homogeneous nucleation as predicted by the CNT. 

 

Furthermore, in order to minimize the difference between the theoretical and 

experimental nucleation rates, Andronis and Zografi considered a temperature 

dependent interfacial free energy     . To obtain the evolution of the interfacial 

free energy as function of the temperature, the value of   was varied at each 

temperature until the experimental nucleation rates agreed with theoretical ones. 

Fig.4.21 shows the temperature dependent interfacial free energy for the two 

polymorphs. It can be noticed that each polymorph has different temperature 

dependence. The metastable polymorph α has a negative slop signifying that the 

interface free energy is primarily energetic suggesting that it could become more 

diffuse as the temperature increases. Contrarily, the γ polymorph has a positive 

slop suggesting a primarily entropic interface free energy
30

.  
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A linear fit was done giving two equations to the temperature dependent interfacial 

free energy: 

                

                  
                                     4.5 

If we considered that these equations will still be valid at the melting temperature, 

they will give us a value of 26.9 mJ/m
2 

 for the γ form and a value of 13.5 mJ/m
2
 

for the α form (Fig.4.21). The capillary fluctuation method was thus fairly accurate 

in estimating the interfacial free energies with underestimation of  2 mJ/m
2
  for the 

γ form and an overestimation of 1 mJ/m
2 
for the α form. 

 

Fig.4.21: The temperature dependent interfacial free energy      for the two crystal forms of 

Indomethacin, γ polymorph (black squares) and the α polymorph (red circles). The solid lines 

are the linear fits (see equ. 4.5)
30

. If we assume that equation 4.5 holds at the melting 

temperature, the crystal-melt interfacial free energy of Iγ and Iα would be approximately 0.026 

J/m
2
 and 0.013 J/m

2 
respectively. 
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The diffusion coefficient   was determined using the mean squared 

displacement of molecules         and fitted using equ. 2.34 (same method 

used to determine   for nifedipine and felodipine; see Fig.4.22). The estimated 

shear viscosity as a function of temperature obtained from the stress-stress 

autocorrelation functions and using the OPLS force field is in a fair agreement with 

the experimental data obtained from ref.
30

 and ref.
25

 (Fig.4.23). 

 

Fig.4.22: The estimated coefficient of diffusion   using the long term evolution of the mean 

square displacement (             see chapter 2) (black squares) and the fitting using 

equation 2.34 (solid red line) as a function of the inverse of the temperature for indomethacin in 

the liquid state. 
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Fig.4.23: Evolution of the shear viscosity as a function of the inverse of temperature for 

indomethacin in the liquid state compared to the experimental data from ref.
30

 (blue squares) 

and ref.
25

 (red squares). The shear viscosity  has been computed from the stress-stress 

autocorrelation function (see Chapter 2). 
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2.3 Prediction of the nucleation and the growth tendencies of Indomethacin 

The nucleation and growth were determined in a similar way than 

nifedipine and felodipine polymorphs. Once the main parameters ( ,    and  ) 

were estimated via MD simulations (see previous section), nucleation and growth 

of both indomethacin polymorphs were estimated using equations 4.2 and 4.4 

respectively.  

Polymorph    (exp) 

259
/    (sim) (at 

 (K)) 

(g/cm
3
) 

   (exp)
30

 

/  (sim) (K) 

   (exp)
30

 / 

    (sim)  

(kJ/mol) 

   (exp) / 

   (sim) 

(mJ/m
2
) 

Indomethacin γ ( Iγ) 1.38 /1.32 

(300 K) 

434/ 425 39.35 / 37.11 26.9/24.6   1.5 

Indomethacin  α (Iα) 1.40 /1.35 

(300 K) 

428 / 420 32.55 / 18.91 13.4/14.4   1.2 

  

Table 4.5:  Comparison between experimental (exp) and simulation (sim) data obtained using 

the OPLS force-field for indomethacin γ and α crystal polymorphs.    ,   ,     and    

represents the density, the melting temperature, the enthalpy and the interfacial free energy at 

the melting temperature respectively. Uncertainties of the interfacial free energy    have been 

estimated from taking into consideration the uncertainties on the melting temperature (10K) 

and the fitting. 
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As mentioned before, the validity of the CNT is frequently questioned 

because of a lack of agreement between these predictions with measured 

nucleation rates either from experiments or from direct determination of these rates 

from simulation.  Disparities between predicted and fitted pre-factors can be 

greatly reduced by using the interfacial free energy   as a fit parameter, i.e. 

temperature dependent parameter, or by changing the assumptions in using the 

viscosity instead of the diffusivity which is usually treated via the questionable 

validity of the Stokes–Einstein relation
36

. In this work, a temperature dependent 

interfacial free energy was considered (equ. 4.3). 

Fig.4.24 a) shows the steady state nucleation rate   as function of the 

undercooling for the two studied polymorphs. The nucleation curves show the 

expected behavior, a bell shaped curve with a sharp increase upon cooling due to 

the increasing driving force followed by a decrease due to the decreasing 

diffusivity. The maximum varies notably between the two polymorphs favoring the 

nucleation of the metastable phase α. In the same figure, we compared the curves 

obtained from the CNT to the experimental values in ref. 
30

. As mentioned before, 

the nucleation rates predicted from simulation are different from those estimated 

experimentally by few decades. Even the predicted separation of the two 

polymorphs is much bigger than the experimental separation. Furthermore, in     

ref.
30

, the fits of the experimental values give a slightly higher nucleation rate for 

the γ form than α, which is not the case in our prediction. 

Andronis and Zografi
30

 determined the growth rate   of γ and α indomethacin 

polymorphs from the melt of a purified alpha crystal. The temperature range was 

from 293 K to 373 K where two different morphologies were encountered:  a 

needle like grow for the γ form and compact spherules grow for the α form. The 

behavior of the growth was found to be favorable of a two dimensional growth
30, 58

, 
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and the use of the following function of        
      

       
  was applicable since 

Indomethacin has a high entropy of fusion (~11R), and as mentioned before that 

the model of a two-dimensional growth is applicable to similar materials
2, 30, 33

. 

But, these determinations were made just at a small range of temperature (near   ) 

and the model assumes that 
 

 
 represents accurately the effect of the mobility (i.e. 

  
 

 
 ) which is not always the case

58
 (as it will be discussed below). It was also 

mentioned that more investigation is needed to understand the crystallization 

process of the γ form since its crystallization is not consistent with what was 

shown in too many materials (and the α form) where the maximum of the 

nucleation rate is located above gT and the maximum of the growth rate is placed at 

a higher temperature between    and    (Fig.4.24). 
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Fig.4.24: Predicted evolution of the nucleation N (a) and growth G (b) rate as function of the 

undercooling of the different investigated indomethacin polymorphs. A comparison between 

experimental (symbols) and numerical (solid lines) data is also given. The experimental  

nucleation data are taken from ref.
30

 since they are the only available data. The estimated 

growth rates are compared to experimental data obtained from ref. 
30

 and ref. 
58

. Constant 

parameters 1/k = 125 and 14 for γ and α respectively have been used to rescale numerical 

growth rate in order to fit with experimental values using a growth model with f = 1.  
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Wu and Yu
58

 studied the crystallization from a melt of γ indomethacin for 

temperatures ranging from 323 K to 423 K (Fig.4.24). They found that γ and α 

indomethacin grow in different morphologies as function of temperature. At high 

temperatures (    +19 K) polycrystalline growth was observed and at low 

temperatures (    + 19 K) a randomly oriented fibers were detected. In their 

study, they assume a normal growth mode taking into consideration the break-

down of the Stokes-Einstein relation and replacing it by  
 

   
 . The estimated 

growth rates were compared to the experimental ones obtained from this reference 

(Wu and Yu
58

) assuming a normal mode growth (   ) since the growth rate near 

   seems to have different mechanisms that are not taken into account in this study. 

Our simulated values (see Fig.4.24) reproduce fairly the experimental growth rate 

with a slight disagreement of both polymorphs showing the expected bell shaped 

curve of the growth rate   derived from the respective increase and decrease of the 

thermodynamical driving force and the mobility. In this case too, the maximum 

growth is localized at small undercoolings which has been presented as a 

comparative parameter for the crystallization tendencies 
28

. 

 

The simple model used in the present study allowed reproducing the 

decreasing order of the growth rate of indomethacin polymorphs (α and γ). 

Furthermore, the nucleation and growth curves in Fig.4.24 do not significantly 

overlap which indicates that indomethacin is a good glass former. This behavior is 

well in line with experimental data that showed that indomethacin exhibits a very 

low crystallization tendency during cooling and reheating compared to several 

glass formers
25, 28

. Based on our results, Iα has a higher nucleation and growth 

tendency at all temperatures enabling the predominance of this form. This is not 
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the case in experience since indomethacin crystallizes as Iγ below the glass 

transition temperature and as Iα at higher temperature
30, 259

. 

2.4. Comparison between nifedipine, felodipine and indomethacin 

crystallization tendencies 

In order to compare the crystallization tendency of the different 

investigated pharmaceuticals, we represented the nucleation rates   and the growth 

rates   of the metastable polymorphs of nifedipine, felodipine and indomethacin in 

Fig. 4.25. The higher growth rate is obtained for nifedipine followed by felodipine 

and indomethacin. Even thought the nucleation tendency follows the same trend 

the crystallization tendency cannot always be predicted just by knowing   or   

alone because the growth rate might be high in a certain temperature range where 

the nucleation rate is not favorable which will not lead to a crystallzation. On the 

other hand, if we examined the position of the maximum of   and  , we can easily 

extract the crystallization tendency. In Fig.4.25,   and   curves of indomethacin 

do not overlap significantly which indicates that indomethacin should have the 

lowest crystallization tendency (good glass forming ability). The highest 

crystallization tendency as predicted from Fig. 4.25 should be attributed to 

nifedipine followed by felodpine. Thus, the crystallization tendency as predicted 

by the CNT and the normal mode of growth is as follow: nifedipine, felodipine,   

indomethacin which is well in line with experimental data
25, 28, 45

. 
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Fig.4.25: Comparison of the nucleation a) and growth b) rates of the three studied systems 

(nifedipine, felodipine and indomethacin) as predicted by the CNT. 

 

2.5 Conclusion 

Nucleation and growth tendencies from the melt were predicted for 

indomethacin polymorphs based on the investigation of the liquid state, the 

crystalline state and the crystal-melt interface via MD simulations. Separate 

calculations were performed on the crystal and the liquid state in order to obtain 

their main physical properties like the density, the enthalpy and the coefficient of 

diffusion. The simulation of biphasic systems enabled the determination of the 

melting temperatures and the crystal-liquid interfacial free energies of both 

indomethacin polymorphs. 
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The OPLS force field was able to fairly reproduce the crystallographic as 

well as the thermodynamic quantities of indomethacin polymorphs. However, it 

failed of reproducing the enthalpy of fusion of the metastable α form accurately (an 

underestimation of 12 kJ/mol). In this chapter, we were particularly able to 

compare the estimated interfacial free energy values obtained by the capillary 

fluctuation method to the experimental values obtained in ref. 
30

. We found a small 

underestimation of the interfacial free energies compared to the data extracted from 

the homogeneous nucleation or form the linear approximation proposed in ref. 
30

. 

The interfacial free energy at the melting temperature    was estimated in a good 

agreement by the capillary fluctuation method to be 24.6   1.5 mJ/m
2
 for Iγ 

(experimental value 26.9 mJ/m
2
) and 14.4   1.2 mJ/m

2 
for Iα (experimental value = 

13.4 mJ/m
2
 ). 

The nucleation rate of the indomethacin polymorphs was estimated. A 

difference of several orders of magnitude was obtained compared to the 

experimental data as usually observed from the CNT predictions. The estimated 

nucleation rate of Iα is higher than the estimated nucleation rate of  Iγ by several 

orders of magnitude. This behavior was not observed in experiments
30

 where the 

nucleation rates of both polymorphs are roughly the same as shown for nifedipine 

and felodipine. The normal mode ( 1f  ) was found to be the most suitable mode to 

reproduce the growth rate of indomethacin polymorphs. A higher growth rate for 

the metastable phase α at all temperatures was found as observed in experiments. 

The large gap between the maximum of the nucleation rate and the growth rate of 

both polymorphs indicates that indomethacin is a good glass former as observed in 

many experiments
36, 53

. This study clearly confirms the need to determine both 

nucleation and growth rates in order to predict the crystallization/vitrification 

tendencies. 
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Conclusions and perspectives 

 

In summary, by means of MD simulations, the liquid and the crystalline 

states of some simple LJ liquids and pharmaceutical materials (felodipine, 

nifedipine and indomethacin) as well as the crystal-liquid interface have been 

investigated in order to predict their nucleation and growth tendencies from the 

melt.  

In this thesis, as a preliminary step before investigations of complex 

molecular compounds, we investigated simple models composed of monoatomic 

Lennard-Jones atoms. Tunable potentials were constructed in which the attractive 

part may vary while keeping constant the repulsive part. It allowed us to 

investigate the specific influence of attractive forces on different parameters such 

as driving force   , interfacial free energy   and diffusivity   and then to predict 

nucleation rates in the framework of the classical nucleation theory (CNT). 

 Our results have particularly highlighted the importance of the often 

overlooked attractive part of the interaction potential with respect to hard core 

repulsion. We have pointed out that a change in the attractive part of the interaction 

potential slightly influences the crystallization times which decrease with the 

attractiveness of the potential. This trend matches well with the evolution of the 

driving force    but not with the interfacial free energy   which behaves in an 

opposite trend. It thus shows the importance of the relative interplay of both 

parameters on the nucleation barrier           
 . The driving force seems to 

dominate in the present study. Since LJ simple monoatomic liquids crystallize 

easily, the direct measurement of nucleation rates can be done. These latter can be 

compared with CNT predictions. Calculation of both characteristic times of the 
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transient and steady-state regimes allowed providing a thorough analysis of the 

directly determined crystallization times. Two different behaviors of the 

crystallization times were observed as function of the undercooling. For small 

undercoolings, the steady state nucleation time dominates while at intermediate 

and deep undercooling it is the transient time that dominates. This result could 

provide a track to explain some of the disagreements found between predictions 

from CNT and direct measurements of the crystallization times. An overall fair 

agreement is found between the direct estimation of the crystallization times and 

prediction of the nucleation times from the CNT but the need for a temperature-

dependent interfacial free energy      is clearly revealed from different tests 

performed. 

Two polymorphs of nifedipine (Nα, Nβ), felodipine (FI, FII) and 

indomethacin (α and γ) have been studied. Calculations were performed on liquid 

and crystal systems separately in order to determine their main physical properties: 

density, enthalpy and diffusivity. Biphasic crystal-liquid simulations enabled the 

calculation of the melting temperatures and the interfacial free energies    at the 

melting temperatures of the different polymorphs. A fair agreement was found 

between the simulation results and the known experimental data such as the crystal 

densities, the melting temperatures, the driving force for crystallization    and the 

molecular mobility (diffusivity D) confirming the ability of the force fields GAFF 

used for nifedipine and felodipine and OPLS used for indomethacin to reproduce 

accurately the experimental data.  

 

In this thesis, we validated the application of the capillary fluctuation 

method on complex pharmaceutical systems that exhibit polymorphism in order to 

determine their crystal-melt interfacial free energy at the melting temperature. The 
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crystal-liquid interfacial free energy has been determined for the first time for the 

investigated nifedipine, felodipine and indomethacin polymorphs. The values   = 

21.5, 14.4, 28.7 and 15.5 mJ/m
2
 have been obtained for Nα, Nβ, FI and FII 

respectively. For the indomethacin polymorphs, the interfacial free energy at the 

melting temperature    was estimated in a good agreement with experimental data. 

We obtained 24.6   1.5 mJ/m
2
 for Iγ (experimental value 26.9 mJ/m

2
 ) and 14.4   

1.2 mJ/m
2 

for Iα (experimental value = 13.4 mJ/m
2
). For all studied 

pharmaceuticals, the interfacial free energy    was found to increase with the 

polymorph stability where the metastable forms have always a smaller interfacial 

free energy than the stable forms in agreement with the Ostwald rule of stages.  

 

From the estimation of  ,    and    , the nucleation and the growth 

rates were calculated in the frame work of the CNT and by using different growth 

modes (normal, 2D and screw dislocation). The nucleation rates seem mainly 

controlled by the interplay between   and    which is consistent with the 

amplitude of the nucleation barrier as predicted by the CNT.  A fair agreement was 

found between numerical and experimental growth rates suggesting a mechanism 

of normal growth in which growth at deep undercooling is mainly controlled by 

dynamics as already shown experimentally for indomethacin assuming a fractional 

Stokes-Einstein dependency between viscosity and diffusivity in that case. Other 

growth mechanisms do not seem able to fit the experimental growth rate order 

between the different investigated polymorphs owing the present calculated 

interfacial free energy. We particularly obtained the increasing order of growth 

rate:  Nβ > FI > FII and Iα > Iγ as seen experimentally.  

 

Similarity between the molecular mobility of felodipine and nifedipine is 

particularly confirmed. The driving force for crystallization has been estimated 
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showing a higher driving force for nifedipine with respect to felodipine as 

suggested in experiments. We found that the higher interfacial free energy of 

felodipine polymorphs might be an additional reason for its resistance to 

crystallization compared to nifedipine, other than its lower driving force. The low 

value of    of Nβ compared to the other polymorphs seems the origin of its higher 

nucleation rate and to its larger overlapping of nucleation and growth curves. 

However, the nucleation tendencies are not only controlled by the interfacial free 

energy since   of Nα is higher than   of FII but the nucleation rate of Nα is much 

higher. In that case, the higher driving force of Nα should explain its higher 

nucleation rate.  

 

Our results also pointed out that the interfacial free energy   cannot be 

used alone as a parameter to predict the polymorph or the crystal selection. For 

indomethacin polymorphs, the metastable form possesses the lowest interfacial 

free energy but crystallizes more readily than the stable form. Furthermore, the 

nucleation rates alone cannot predict the final crystal phase. For indomethacin, the 

nucleation rates of the various crystal forms were the same but the crystal growth 

rates were completely different.  Hence, it is clear that both nucleation and growth 

rates (including driving force, interfacial free energy and diffusivity) should be 

taken into consideration when trying to predict the phase selection or the 

crystallization tendencies.  

 

It is clear that the present study is a preliminary work and several 

perspectives can be considered by improving the approximations and the 

simplifications. A few directions of additional research are given below. 
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First, different approximations for the determination of the crystal-liquid 

interfacial free energy have been made. As confirmed in the present work, a small 

variation of the γ may strongly impact the nucleation tendencies. In order to reduce 

the computational effort, the anisotropy of the interface was not taken into account 

since the interfacial stiffness was identified as the interfacial free energy. Even for 

small anisotropies, the value of   might change with the orientation of the 

crystalline phase in contact with the parent liquid. Additional calculations taking 

into account different crystallographic orientations should thus be done. Moreover, 

the curvature of the interface is not considered in the capillary fluctuation method 

where the interface is considered as a fluctuating quasi-one dimensional interface. 

This curvature causes the decrease of the melting point during solidification (the 

Gibbs-Thomson undercooling
95

). A simple correction of the curvature could be 

applied as described in ref. 
2
. The present numerical approach only allowed us to 

determine γ at the melting temperature and a simple temperature dependent model 

was also employed. This suggests the use of a recent alternative developed 

numerical technique that allows calculating this parameter at different 

temperatures
264

.  

 

Secondly, the use of the CNT can be questionable. It is well accepted that 

the CNT reproduces fairly the overall shape of the experimental nucleation rate 

(i.e. bell curve) meaning that the theory contains the physical ingredients of the 

nucleation process but fails to reproduce quantitatively the experimental data. Our 

model particularly considers an ideal situation where nucleation is purely 

homogeneous. This is generally not the case in experiments where heterogeneous 

nucleation occurs. The presence of impurities catalyzes the nucleation and it 

decreases the nucleation barrier    . Hence, our calculations certainly 

overestimate the nucleation rate. In order to consider catalyzed nucleation 
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mechanisms from the melt due to impurities, it would require a description of the 

foreign substrate which is far from being trivial and so far beyond our   

possibilities
2
. Several alternative models were elaborated in order to minimize the 

lack of agreement between the CNT predictions and the experiments. Two 

promising models were excessively used to replace the CNT. On one hand, the 

Generalized Gibb’s Approach (GGA)
265, 266

 that lies on the fact that the structure of 

the initial germ is different than the structure of the final crystal. In this case the 

germ will follow several transformations before attending the final form (this 

concept agrees with the Ostwald rule of stage). On the other hand, the two-step 

model
266-268

 considers that a pre-nucleation phase occurs before the formation of a 

nucleus. In this phase a more concentrated state will appear (but still fluid) in the 

liquid leading to the formation of a crystal nucleus. It will be interesting to test the 

alternative methods in future investigations. 

 

Thirdly, in addition to the steady state nucleation rate   and the growth 

rate  , there is a non-steady-state nucleation regime. The importance of this 

transient regime was clearly highlighted in the investigations on simple LJ liquids 

but it was not unfortunately studied in the case of pharmaceuticals. Generally, a 

rapidly cooled system requires time, called the time-lag or the transient time, 

before attending a steady state nucleation. In deep undercooling, the transient time 

was shown to be much longer than the time predicted while using only the steady-

state rate
79, 80

. Since the same parameters that are calculated in the present study 

(driving force   , diffusivity   and interfacial free energy  ) are also linked to the 

time-lag, it should not be difficult to get an estimation of this time as described in 

the CNT 
2, 79-81

. 
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Finally, it has been shown 
46, 48, 58

 for nifedipine, felodipine and 

indomethacin, that i) below    materials may experience a sudden jump in crystal 

growth rate labeled as a diffusionless mode of growth which has been related to the 

oscillatory motions in the glasses and the liquid
46

; and ii) the surface crystal growth 

rate is faster than the bulk crystal growth rate i.e. surface induced crystallization. 

Indeed, the mobility at free surfaces can exceed the bulk mobility by many orders 

of magnitudes
46, 269, 270

. Obviously, these two important phenomena were not 

simulated in our approach and it clearly motivates additional numerical 

developments in order to take them into account. 
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Annex 

Bonded interactions 

The intramolecular contributions are VBond , Vangular, VDihedral and VImproper. 

 The Vbond , which represents the chemical bond between two atoms i and 

j, can be modeled by the harmonic oscillator approximation by considering the 

bond between the 2 atoms i and j as a spring. Hence the bond potential VBond can 

be written as follow: 

 
0 2

,

1
( )

2
Bond ij ij ij

i j

V k r r                                                  1 

where kij is the spring constant associated to the bond, rij
0 

is the reference distance 

and rij is the length of the bond. The summation is done over all pair of atoms i & j 

having a covalent bond between them. Note that kij can be obtained experimentally 

via Raman or Infra-red spectroscopy. 

The VAngular contribution takes into consideration the interactions with the 

nearest neighbors. To do so the deformation of the angles of the covalent bonds 

between 3 atoms is described using the harmonic approximation: 

0 2

, ,k

1
( )

2
Angular ijk ijk ijk

i j

V k                                                     2 

where Θijk is the angle between the 3 atoms i,j & k, Θ
0

ijk is the reference angle and 

kijk is the angular spring constant. The summation is held over all triplets of atoms 

(i,j & k) where the pairs (i,j) and (j,k) form between them a covalent bond. This 

contribution is smaller than the first one knowing that one needs less energy to 

deform a covalent angle than deforming a covalent bond. 
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The diehedral terms (VDihedral & VImproper) describes the interactions 

between 4 atoms. The VDihedral term (or proper dihedral) represents the flexibility 

and the rigidity (torsion). It is represented as a sinusoidal function: 

 
, , ,

[1 cos(m )]Dihedral ijkl ijkl ijkl

i j k l

V k                                    3 

where kijkl is the energetic barrier between 2 positions at equilibrium of the torsion 

linked to the dihedral angle φijkl formed between the 2 atom groups (i,j & k) and 

(j,k &l), δijkl is a phase shift associated with the molecules geometry and m is an 

integer representing the multiplicity of the torsion potential. The summation covers 

all the quadruples of atoms (i,j,k,l) forming respectively a covalent bond between 

each pair (i,j),(j,k)and (k,l). 

On the other hand, the improper dihedral potential (VImproper) is used to 

impose and conserve the chirality or the planarity around certain atoms. It is 

represented as an harmonic potential as follow: 

 
0 2

, , ,

( )Improper ijkl ijkl

i j k l

V k                                       4 

 In this contribution, kijkl is the spring constant of the torsion, ω is the angle 

between the plane formed by the central atom and 2 peripheral atoms and the plane 

formed by the peripheral atoms and ωijkl
0 
is the equilibrium angle. 

Non-bonded interactions 

The two remaining contributions (VL-J and Velec) are considered as 

intermolecular interactions. They intervene between two pairs of atoms from two 

different molecules, or within the same molecule but separated by more than 3 

covalent bonds. 
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The VL-J potential represents the combination of two opposite forces, a 

repulsive and an attractive force (Fig.1), and it’s represented as follow: 

12 64 [( ) ( ) ]L J

ij ij ij

V
r r

 
                                          5 

where rij is the distance separating the atoms i and j, ε is the depth of the potential 

well and σ is the equilibrium distance. The repulsive part of the potential is 

represented in the 1/r
12

 term and is caused by the superposition of the electronic 

clouds of two atoms described by the exclusion law of Pauli. The second term, 1/r
6
, 

represents the attractive part of the potential resulting from the existence of van der 

waals forces generated by the different types of dipolar interactions (permanent 

dipole-induced dipole,  permanent dipole- permanent dipole, and between 

instantaneous dipoles)
271

. 

In order to reduce the calculation time, the terms in equation 5 can be reduced by 

introducing a truncation sphere having a radius of Rc. All interactions beyond this 

sphere will be neglected. This truncation seems reasonable since the van der Waals 

forces decrease by a factor of 1/r
6
. Usually Rc is chosen equal to 2.5σ or 3σ but 

always smaller than the half of the elementary cell. 
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Fig. 1 A typical Lennard-Jones potential as function of r 

 

The potential between two charged atoms i and j is expressed as a 

Coulomb potential: 

 
0

1

4

i j

elec

ij ij

q q
V

r
                                                    6 

where rij is the distance between the atoms i and j with the charges qi and qj 

respectively and ε0 is the vacuum permittivity. To minimize calculation time, two 

techniques are generally used which are the reaction field method and the Ewald 

summation. The Ewald summation is used in this work (see below). For more 

information, check the following references
272, 273

. 

Ewald summation was first introduced in 1921
274

 as an efficient tool to sum the 

long range interactions between particles and their infinite periodic images
275

. The 
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contribution of the potential energy of all the images can be taken into 

consideration with changing the equation 6 into 

 
0

1

4 | |

i j

elec

ijn ij

q q
V

r n



                                          7 

where the sum over n is the sum over all simple cubic lattice point and the vector 

sign reflects the shape of the basic box. The equation 7 as it is cannot be used 

directly to calculate the electrostatic contributions because of its divergence
120

. 

Therefore Ewald
274

 proposed a method that consists of adding for each point 

charge q, a charge distribution of opposite sign –q. A screening effect is thus 

created on the point charge q which is now surrounded by a charge density of equal 

magnitude and opposite sign. This density is represented as a Gaussian charge 

distribution: 

 
3

2 2

3

2

( ) exp( )r q r

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                                            8 

where α is a parameter that determines the width of the distribution and r is the 

position relative to the center of the distribution. Introducing this contribution 

screens the interactions between the neighboring point charges reducing their 

range. As a result the sum over all charges and their images in real space converges 

rapidly and can be calculated like the LJ potential. A second Gaussian distribution 

with the same sign and magnitude of the original distribution is then added to each 

point charge in order to cancel out the first induced Gaussian distribution. The 

resulting Poisson equation can be solved in the reciprocal space using Fourier 

transforms. A third contribution should be added as a correction term that 

counteracts the interaction of each of the introduced artificial counter-charges with 
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itself. The total electrostatic energy can then be written as the sum of the three 

contributions mentioned above: 

 elec real space reciprocal space correctionV V V V                                9 
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The convergence of the Ewald sum depends essentially of 3 parameters. Rc (the 

truncation sphere radius) that is considered equal to Rc of the LJ potential due to 

simplicity reasons, α and the number of periodic replicas taken into account. In 

order to optimize the convergence in the real and the reciprocal spaces with a fair 

precision, the relative error is considered in the order of 10
-6

 for a cubic simulation 

box (L
3
), with Rc=L/2, the maximal value of k is then 14ᴨ/L 

136
. 

Algorithms and principles  

Integration algorithm and the 2
nd

 law of Newton 

As mentioned above, the classic MD simulations determines the trajectory 

of each atom i of a system containing N atoms by integrating the equation obtained 

by the 2
nd

 law of Newton. Each atom i is considered as a mass point (mi): 
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where       is the position of the atom,       is the force applied on the atom i and V(       ) 

is the potential of interaction obtained by the force field of the system. This 

equation cannot be solved as it is since it consists of solving 3N coupled equations 
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of the 2
nd

 order. These equations are hence an N-body problem that has not an 

analytical solution. However this equation can be solved numerically using the 

finite difference method: 

2 ( )
( ) (t) t ( ) ...

2

i
i ii

i

f tt
r t t r v t

m


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where Δt is the time step and     i is the velocity of the atom i. Verlet algorithm
137

 is 

generally used to solve equation 13 in a microcanonical ensemble (NVE) where 

the total energy is conserved. This algorithm needs the knowledge of the force at 

the instant t: 
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Even though this algorithm is simple, its use remains effective and stable. Another 

algorithm that is widely used in MD simulations is the Verlet Leapfrog 

algorithm
138

. In order to obtain the position of an atom at t+Δt, this algorithm needs 

the values of the position and the forces at the instant t as well as the values of the 

velocities at t-1/2Δt. The first step consists of determining the value of the 

velocities of the particles: 

( )1 1
( ) ( )

2 2

i
i i

i

f t
v t t v t t t

m
                                           15 

Then the positions are calculated using the new velocities: 

 
1

(t t) (t) ( )
2
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To obtain the velocities at the instant t, an average of two intermediate velocities is 

calculated as follow: 



184 

 

 
1 1 1

( ) [ ( ) ( )]
2 2 2

i i iv t v t t v t t                                      17 

On the other hand, the velocity Verlet algorithm
276

 enable the user to skip 

the last part assuming that the positions, the velocities and the forces are known at 

each time step. Like the Verlet Leapfrog algorithm, the first 2 steps consist of 

determining the velocities at t+1/2Δt in order to obtain the positions at t+Δt: 

( )1 1
( ) ( )
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f t
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m
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The forces acting on the particle i are recalculated using the following equation: 
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Once the equations are solved, the trajectory can be deduced in the microcanonical 

ensemble NVE where the number of particles, the volume and the energy are 

constant. The Hamiltonian of the system is then written as: 

21

2
NVE i

i

H mv U                                                    21 

For practical reasons, sometimes the pressure and/or the temperature are fixed also.  

Therefore the ensemble of the system will be the canonical ensemble NVT or the 

canonical isotherme-isobar ensemble NPT. Those two ensembles are obtained by 

using barostats and thermostats (next paragraph). 

Additional algorithms should be used such as constraint algorithms in 

order to satisfy the Newtonian motion of rigid molecules. This algorithm insures 
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that the distance between mass points is maintained constant. In this study, the 

SHAKE
196

 algorithm is used as a constraint algorithm to maintain the geometry of 

the system by satisfying the bond-length constraints. 

Thermostats and Barostats 

In order to run MD simulations in other ensembles than the 

microcanonical ensemble NVE, thermostats and/or barostats must be introduced. 

In this work, the Berendsen thermostat and barostat was used in all MD 

simulations. 

A weak coupling method was introduced by Berendsen
139

 to an external bath to 

correct the fluctuations of the actual temperature T from the desired temperature 

T0. To do so, the velocities are multiplied by a scaling factor 0(1 ( 1))
( )T

Tt

T t





  

to push the system towards the temperature T0. Hence, the velocities are scaled at 

each time step in a way that the rate of change of temperature is proportional to the 

difference in temperature: 

0 ( )( )

T

T T tdT t

dt 


                                                     22 

where T represents the relaxation time of the temperature fluctuations and the 

instantaneous temperature T(t)= 
 

 
    

 
     obtained using the instantaneous 

velocities. This method generates a force on the system to converge towards the 

desired temperature: 

Berendsen’s Barostat on the other hand is an extended version of the 

method used in the thermostat in which the thermodynamic value to correct is the 

volume of the elementary volume. To do so, the atomic positions should be 
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changed. The motion equations are changed as function of the instantaneous 

pressure P(t) determined by the theorem of Viriel
277

 so that P(t) converges towards 

the desired pressure P0: 

0 ( )( )

p

P P tdP t

dt 


                                                 23 

where τp is the relaxation time of the pressure’s fluctuations. While readjusting the 

atomic coordinates and the dimensions of the periodic box by a factor of ς, the box 

volume will be modified to ΔV=(ς
3
-1)V  

01 ( ( ))
p

t
P P t





                                              24 

where β is the isothermal compressibility and ς will be written as: 

 

Periodic boundary conditions  

Periodic boundary conditions allow the performance of an MD simulation 

of a large (infinite) system by using a relatively small number of particles (10
4
-

10
6
). The particles experience forces as if they were in a bulk solution by 

replicating the elementary simulation box in all the 3 Cartesian directions (Fig. 2). 

Therefore, each particle i of the elementary box interacts with all the particles j in 

the same box and interacts as well with all the particles in the replicated boxes. In 

fact when a particle comes into or leaves the simulation region, an image particle 

leaves or enters this region conserving the number of particles. The surface effects 

are hence eliminated and the position of the box boundaries has no role. 
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Fig. 2: Schematic representation of the periodic boundary condition concept. 

 

The λ-integration approach:  

 In order to construct the transformation path between the liquid and the 

solid state, three separate reversible steps must be executed. Step 1 consists of the 

transition from the initial liquid state to a weakly attractive fluid. Step 2 consists of 

the transition to a solid constrained fluid and the final step will lead  to the final 

solid state (see Fig. 3) 

   The main goal of the first step is to reversibly obtain a weakly attractive 

fluid state while contracting the cell volume. The volume contraction is necessary 

since the reference liquid state has a higher volume than the final crystalline state. 

The weakly attractive fluid is generated by progressively turning off the 

corresponding potential using a linear λ-integration where the potential is 

multiplied by a scaling function       (equ. 25).   starts from a value of 0 at first 
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and goes to 1.0 at the end of this step. The potential energy   of the first step can 

be represented as: 

      
 

                                                   25 

where              and       is the potential described in the previous 

section. When   depends only on the parameter   (that varies from 0 to 1), we can 

write: 

     
  

  

 

 
     

  

  
   

 

 
                              26 

This equation establishes the link between the free energy  , and the total energy 

  that is accessible at each molecular dynamics step. 

Once the arbitrary weakly attractive fluid is created, a Gaussian well is 

gradually turned on using λ-integration in order to constrain the fluid to a solidlike 

structure. The Gaussian function can be written as follow: 

                  
 

                                     27 

where     is the distance of the     atom from the Gaussian well at the     lattice 

position,   and   are optimized constants so that the intermediate state of the solid 

constraint fluid resembles to the solid reference state. Hence the potential energy of 

the second step can be written as: 

         
 

                                      28 

where    runs again from 0 to 1. The total Helmholtz free energy change during 

this step can be calculated similarly to the first step: 
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The third step consists of turning on the main LJ potential while turning 

off the Gaussian potential at the same time in order to obtain the final reference 

solid state. The potential energy can be written as: 

      
 

                                            30  

where               .  

The total Helmholtz free energy of the three steps described above will be thus: 

                                                           31 

The Gibbs free energy is then obtained using the following relation: 

                                               32 



190 

 

 

Fig 3: A schematic representation of the λ-integration approach224 used to determine the Gibbs 

free energy between the crystal and the liquid (see text) 
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