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ABSTRACT

The objective of this thesis is to understand the processes responsible for the high

spatial and temporal variability of particulate matter as assessed from optical mea-

surements performed in situ or/and from ocean colour observations. We particu-

larly focus on coupling processes between turbulence and particulate matter (sus-

pended sediment and phytoplankton).

The first part of the thesis is on in situ measurements performed under differ-

ent meteorological situations. Here the objective was to understand the coupling

between the turbulent velocity field and suspended particles. We selected the at-

tenuation coefficient as a proxy for the total concentration of particles and in situ

measurement of particle size distribution (PSD) spectrum. This study showed that

the dynamics of the PSD is controlled by many oceanographic parameters such as

tidal currents, waves and turbulence. We also studied the multifractal character-

istics of these PSD for various size classes (silt, fine, coarse and macro particles).

For that, we used Empirical Mode of Decomposition (EMD) along with the Hilbert

Spectral Analysis (HSA).

The second part of the thesis focuses on the multi-scale analysis of satellite ocean

colour and SST images. The spatial heterogeneity of oceanic scalars (phytoplankton

and sea surface temperature) under the turbulence influence is considered at differ-

ent scales. For this, we used the satellite image of Chlorophyll-a and SST at high

spatial resolution (1000 m) of MODIS aqua. We have used different multi-scale ap-
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proaches (Power spectra, Coarse-Graining (CG) and 2D Structure Functions (SF))

to characterize scalar fluctuations under the turbulence influence (passive scalars).

Here we proposed to adapt the structure functions for 2D fields for analysing the

2D image. The CG method is tested and verified on different cascade models such

as the β-model and lognormal model. The SF method was tested by applying it

to a 2D fractional Brownian simulation with different Hurst exponent (H) values.

This method also worked with images having missing data, which is helpful since

non-averaged instantaneous images have often missing values due to cloud cover-

age. Finally, this methodology using 2D structure functions, was applied to real

images of Chl-a, SST, Rrs-443 and Rrs-555. It is possible to characterize, for all spa-

tial scales and all intensities, the heterogeneities and intermittencies of the studied

scalar fields, using a few parameters (2 parameters in the framework of the lognor-

mal approximation). The values of these parameters, for 7 different locations, are

discussed and compared.
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RÉSUMÉ

L’objectif de cette thèse est de comprendre les processus responsables de la forte

variabilité spatiale et temporelle de la matière particulaire telle qu’elle est évaluée à

partir de mesures optiques réalisée in situ et / ou à partir d’observations de couleur

de l’océan. Nous avons mis particulièrement l’accent sur des processus de couplage

entre la turbulence et la matière particulaire (sédiments en suspension et phyto-

plancton).

La première partie de la thèse porte sur des mesures in situ effectuées sous dif-

férentes situations météorologiques. L’objectif était de comprendre le couplage en-

tre le champ de vitesse turbulent et les particules en suspension. Nous avons con-

sidéré le coefficient d’atténuation, indicateur de la concentration totale de partic-

ules in situ, et le spectre de tailles des particules in situ (particle size distribution -

PSD). Cette étude a montré que la dynamique de la PSD est contrôlée par plusieurs

paramètres océanographiques, tels que les courants de marée, les vagues et la turbu-

lence. Nous avons également étudié les caractéristiques multifractales de ces PSD

pour diverses classes de taille (limon, sable fin, sable grossier, particules macro).

Pour cela, nous avons utilisé la décomposition modale empirique (empirical mode

decomposition - EMD) avec avec l’analyse spectrale de Hilbert (HSA).

La deuxième partie de la thèse porte sur l’analyse multi-échelle d’images couleur

de l’océan et SST (sea surface temperature). L’hétérogénéité spatiale des scalaires

océaniques (phytoplankton et la température de surface de la mer), sous l’influence

xxi



de la turbulence est considérée à différentes échelles. Pour cela, nous avons util-

isé l’image satellite de chlorophylle a et SST à haute résolution spatiale (1000 m

× 1000 m) d’Aqua MODIS. Nous avons utilisé différentes approches multi-échelles

(spectres de puissance, coarse graining (CG) et Fonctions de structure 2D (SF)) pour

caractériser les fluctuations de scalaires sous l’influence de la turbulence (scalaires

passifs). Ici nous avons proposé d’adapter les fonctions de structure de champs 2D

pour analyser des images 2D. le Méthode CG est testée et vérifiée avec différents

modèles de cascade multiplicatives tels que le modèle beta et le modèle log-normal.

La méthode SF a été testée en l’appliquant à un champ 2D simulé de mouvement

Brownien fractionnaire avec différents exposants de Hurst (H). Cette méthode fonc-

tionne également avec des images ayant des données manquantes, ce qui est utile,

car des images instantanées, non moyennées, ont souvent des valeurs manquantes

en raison de la couverture nuageuse. Enfin, cette méthodologie, en utilisant les fonc-

tions de structure 2D, a été appliquée à des images réelles de Chl-a, SST, Rrs-443 et

Rrs-555. Il est possible de caractériser, pour toutes les échelles spatiales et toutes

les intensités, les hétérogénéités et intermittences des champs scalaires étudiés, à

l’aide de quelques paramètres (deux paramètres dans le cadre de l’approximation

log-normale). Les valeurs de ces paramètres, pour sept endroits différents du globe,

sont examinés et comparés.
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GENERAL INTRODUCTION

0.1 Introduction

Coastal areas contribute around 60% of the world population (within 100 km from

the coastal line) and around 75-90 % of global sink of suspended river run-off takes

place in coastal waters. The coastal zone provides an area (≈ 26 × 106 km2) about 7

% of the surface area of the ocean (≈ 360 × 106 km2). This coastal zones experience

20 % of the total annual primary production of total ocean primary production (6.0

Gt C year−1 and 24.0 Gt C year−1 in the coastal ocean and open ocean respectively)

(Wollast, 1998; Doney, 2010). So the improved study of coastal water physical pro-

cesses and their effects on biological, chemical and geological aspects need to be

better monitored and understood.

The traditional approaches of oceanographic cruises and in-situ samplings over

coastal waters are time-consuming, expensive and sometimes uncertain to yield sig-

nificant results on a studied phenomena, especially at synoptic scales. This is ba-

sically due to the high variability of the physical and biogeochemical processes oc-

curring in coastal areas. Prediction and dynamics of material particles dispersed

and transported in a turbulent flow remains a challenge for the oceanographic com-

munity. Understanding these variability of physical, hydrographic, biological, and

optical properties and the relationships among these properties are necessary for

the designing of accurate coupled physical-biogeochemical models and for the in-
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terpretation of remote sensing data in the near-shore coastal ocean.

In the remote sensing context, the biological and physical parameters are a very

powerful tool for performing large-scale studies. Satellite observations provide

global coverage on a routine basis at a sufficiently high spatial and temporal reso-

lution to observe a variety of important physical and biogeochemical processes and

the linkages among them, especially when different satellite observations (ocean

colour, SST, surface winds, sea surface height) are combined with in situ data in an

analysis of numerical models. Satellite data are well suited for estimating scales

and variability of physical and biological properties of the ocean surface. These

data sets serve to constrain models of physical and biogeochemical processes and

for estimating global primary production, calcite, fluorescence line height, chro-

mophoric dissolved organic matter absorption, photosynthetic available radiation,

and sea surface temperature, winds, and sea surface height are generated opera-

tionally.

Figure 1: Illustration of time and space scales of physical oceanographic phenomena
varying from very small bubbles to oceanic circulations associated with earth’s orbit
variations.

The oceans are highly complex systems in which organism distributions are af-
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fected spatially and temporally by the physical and biogeochemical processes oc-

curring at multiple scales (Lubchenco and Petes, 2010; Doney et al., 2012). The-

ories of geophysical fluid dynamics can explain many of these basic processes at

different scales such as local turbulence, eddy systems and ocean circulation (Ped-

losky, 1982). The understanding, modelling and prediction of hydrologic processes

is needed over a broad range of scales from few mm to 10,000 km in space and from

few seconds to many years in time (Fig. 1).

Figure 1 illustrates the scale problem of oceanic fluctuations, for spatial and

temporal scales spanning 10 orders of magnitude. In fact, one way to tackle this

problem is to consider, as in Fig. 1, some special cases, giving them names and sep-

arating their study from other cases. Another way to tackle the scale problem is to

consider scaling processes, having statistics which have scale invariant properties:

the properties at a given scale are then considered to be similar with the properties

at another scale, with a rescaling factor. This is the framework of fully developed

turbulence. We have used here this framework to consider scaling properties of

particle concentration and remotely sensed parameters. The objectives of such ap-

proach are to be able to understand, to model and characterize, the intermittency of

these fields in relation with turbulence.

In the framework of this Ph.D. thesis, our objective is to analyse the interactions

of turbulence and bio-optical properties for in situ and satellite observations.

In-situ aspects. The research on coastal ocean bio-optical properties are difficult

because physical processes in this region are not only affected by shelf slope dynam-

ics, but also by river flow, bottom topography, and the shape of the coastline. The

suspended particles are the ubiquitous components of oceanic waters which plays

an important role in the biogeochemical cycles of the marine environment (Wells

and Goldberg, 1992). Important examples are: the absorption and scattering of

light, the exchange of substances between solid and liquid phases, the transport of

the substances through ocean and to the seabed and also a huge group of biological
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processes. At certain extent, these processes strongly depend on the suspended par-

ticle size distributions. In-situ measurements of particle size are currently limited to

a few locations and relatively short periods (Fennessy et al., 1994; Ellis et al., 2004;

Mikkelsen et al., 2006). In the present thesis, we mainly concentrate on the depen-

dency of turbulence on particle size distributions (PSD) along with other physical

processes like tidal currents and waves. From the PSD measurements, we will con-

sider PSD slope (ξ(t)) at each time step (every second) using automatic regression

analysis. This provides the relative concentration of small and large particles: the

steeper the PSD slope (the greater ξ), the more small particles relative to large par-

ticles are present in the water column (and vice versa). The previous studies quan-

tified ξ for oceanic waters range between 2.5 and 5 (Jonasz, 1983; Boss et al., 2001b;

Loisel et al., 2006; Buonassissi and Dierssen, 2010; Reynolds et al., 2010; Neuker-

mans et al., 2012a). The turbulence theory predicts that passively advected scalars

exhibit small-scale structure similar to the fluid motion. We will study this passive

scalar characteristic of PSD from highly dynamic coastal environment. The scaling

and intermittency properties of high frequency measurements of PSD and different

size classes of the PSD are also studied using different approaches such as Fourier

power spectra, Empirical mode of decomposition along with Hilbert spectral anal-

ysis (Huang et al., 1998, 2008). The results from in-situ aspects of the studies are

explained in Chapters 3 and 4.

To understand the temporal heterogeneity of the bio-optical properties, we have

conducted 3 campaigns of high frequency time series with all bio-optical instru-

ments (AC-S, ECO-FLRT, ECO-FLCDRT and LISST-100X type C) and current mea-

surements (ADCP and ADV) from highly dynamic coastal waters of Eastern English

Channel. Regarding the first two sampling, we found that the quality of the data

was very poor, so we discarded these data from my thesis. For the third campaign,

we have received high-quality data of LISST, ADV and ADCP. and some of the in-

struments did not work (AC-S, ECO-FLRT and ECO-FLCDRT). So we could not

incorporate much IOPs in the present thesis.
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Satellite aspects. It is common to observe high spatial and temporal heterogene-

ity in ocean colour products (Chl-a and Rrs) and SST. In the present thesis, we try

to understand these heterogeneities using different tools borrowed from the field of

turbulence, statistical physics and signal processing. 2D images are analysed using

2D power spectra, coarse graining (CG) method, 2D structure function (SF) method

and cumulant scaling of these images. The results from satellite aspects of the stud-

ies are explained in Chapters 5 and 6.

Multi-scale dynamics are relevant for many phenomena extending from turbu-

lence (Frisch, 1995; Sreenivasan and Antonia, 1997), finance (Schmitt et al., 2000;

Muzy et al., 2001) to geosciences (Schmitt et al., 2009; Lovejoy and Schertzer, 2012).

Multi-scale/Multifractal studies have been widely applied to time series, but there

are not many studies in the field of ocean colour remote sensing. Montera et al.

(2011) tested and derived the multifractal parameters for satellite-derived Chl-a. It

is a well-known fact that natural images possess power law scaling which reflects

their scale-invariant nature. These scaling properties are associated with the power

spectrum, that is usually related to the fractal characteristics of the image (Bur-

ton and Moorhead, 1987; Field, 1987). These scaling properties of satellite-derived

ocean colour (Chl-a and Rrs) and SST have been tested with 1D and 2D power spec-

tra. For the multi-scaling analysis, we have adopted and adapted the methodology

of 2D structure function method. This method has been applied to various oceanic

environments and their multifractal parameters also derived using lognormal inter-

mittency model fit.

0.2 Outline of the thesis

This Ph.D. dissertation is organized as follows:

• Chapter 1 describes the introduction to homogeneous turbulence and inter-

mittency. Here we give brief explanations of fully developed turbulence, in-

termittency, cascades, multifractality, scaling and stochastic scaling processes.

5



General Introduction

• Chapter 2 depicts the introduction of marine optics and ocean colour remote

sensing through radiative transfer theories. Here we explain briefly the com-

position and optical properties of the natural waters. As this Ph.D. mainly

focuses on scattering processes, we explain some of the properties of PSD, ab-

sorption, scattering and attenuations, because these are directly linked with

the remote sensing reflectance.

• Chapter 3 shows the impact of the tidal currents, waves and turbulence on

the particle re-suspension over the sea bottom in a highly dynamic coastal

environment of eastern English Channel. Here we show different power spec-

tra’s of PSD along with particle concentration cp(670), a proxy for suspended

particulate matter concentration) and analysed the dynamics with different

forcing parameters.

• Chapter 4 analyses the intermittency properties of the PSD. Here we decom-

posed the PSD into different size classes and analysed their intermittency us-

ing different techniques like Empirical mode of decomposition (EMD) and

Hilbert transform (HT) using arbitrary order Hilbert spectral analysis (AHSA).

• Chapter 5 derives a new methodology to analyse the multi-scale properties of

2D satellite images. Here we proposed a new methodology of directly estimate

SF scaling exponents.

• Chapter 6 uses the 2D SF method for different regions of the global ocean

having large heterogeneity in the bio-mass distribution. Here we derive the

multifractal parameters µ and H using lognormal intermittency model fitting

and discuss their values.

• Chapter 7 conclude this thesis with some future perspectives.
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CHAPTER1

INTRODUCTION TO HOMOGENEOUS TURBULENCE

AND INTERMITTENCY

Abstract

In this chapter, I recall some of the important terminologies and concepts in the

field of fully developed turbulence, including intermittency and scaling concepts.

These will be used in other chapters for data analysis: particle size distribution time

series analysis as well as ocean colour image analysis.

1.1 Fully developed turbulence

Turbulence belongs to the field of fluid mechanics. It corresponds to a flow with a

large Reynolds number:

Re =
VL
ν

(1.1)

where V is a typical velocity, L is typical scale and ν the kinematic viscosity (m2/s).

Since ν ≈ 10−5 m2/s in the air and 10−6 m2/s in water (at usual temperature). Natural

flows in the atmosphere, ocean or hydrology are most often in a state of fully de-

veloped turbulence (Re� 1). When Re is very small, the flow is considered as lam-

inar and fluid motion is regular. There is a transition value at which fluid motion
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changes from laminar to turbulent and instabilities occur. Turbulence is character-

ized by irregular motion, with lack of predictability, enhanced mixing, and apparent

stochastic fluctuations. The governing equation are known since 1822 and are the

Navier-Stokes equations:

∂ui
∂t

+uj
∂ui
∂xj

= −
∂p

∂xi
+ ν∇2ui (1.2)

and the continuity equation:
∂ui
∂xi

= 0 (1.3)

where ~u = (ui) is the velocity vector, p the pressure, and ν the kinematic viscosity

of the fluid. These equations are known for almost 200 years but are still unsolved,

due to their non-linear character.

An inspiring concept in the theory of turbulence is Richardson’s energy cascade

process (Fig. 1.1). For large Reynolds numbers, the non-linear term dominates the

viscosity according to dimensional analysis, for the large-scale structures. In the

cascade process, the inertial term is responsible for the transfer of energy to smaller

and smaller scales until small enough scales are reached for which viscosity becomes

important. At those smallest scales, kinetic energy is finally dissipated into heat. It

should be emphasized that turbulence is a dissipative process; no matter how large

the Reynolds number is, viscosity plays a role at the smallest scales.

Such description has been proposed by Lewis Fry Richardson in a book in 1922,

with the following poem (Richardson, 1922):

“Big whorls have little whorls

That feed on their velocity

And little whorls have lesser whorls

And so on to viscosity”

This was later quantified by the probabilist A.N. Kolmogorov in a very famous

paper published in 1941 (Kolmogorov, 1941a). Kolmogorov assumed that for large

enough Reynolds number, at intermediary scales the turbulence statistics are isotropic

8
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Figure 1.1: Illustration of the cascade process: Energy is injected at large scales,
eddies are broken at inertial scales until the Kolmogorov scale η, where energy is
converted into heat (Richardson, 1922).

(i.e. independent of direction). He assumed that the velocity fluctuations at scale l

as ∆Vl , depends only on the scale and on the dissipation of kinetic energy ε defined

as:

ε = 2ν〈SijSij〉 (1.4)

where Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the fluctuating rate of strain tensor. He obtained dimen-
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sionally the following law:

〈∆Vl〉 = Cε1/3l1/3 (1.5)

This is now considered as valid for scales belonging to the so called “inertial range”,

from the large scale where energy is injected to the small scale where energy is

dissipated, now called the Kolmogorov scale.

Simultaneously to this, his student Obukhov proposed a similar law in Fourier

space (Obukhov, 1941a,b):

Ev(k) = C′ε2/3k−5/3 (1.6)

where Ev(k) is the Fourier power spectrum of the velocity, C′ is a constant and k is

the wavenumber. This has been verified with many studies in atmosphere (Gurvich,

1960), the ocean (Grant et al., 1962) and in the laboratory (Champagne, 1978). It

has soon became universal to describe fully developed turbulence.

K41 theory can also be used to express the Re using the scale ratio. For a given

scale l, belonging to the inertial range, ∆Vl is the velocity fluctuations at this scale,

and the local Re corresponding to this can be written as:

Rel =
∆Vll
ν

(1.7)

We can introduce the scale η, also known as Kolmogorov scale, for which Reη ≈ 1.

Then ∆Vηη = ν and using Kolmogorov relation ∆Vl ≈ ε1/3l1/3 for l = η we have

ε1/3η4/3 = ν, then the Kolmogorov scale η is given by:

η =
(
ν3

ε

)1/4

(1.8)

This is the smallest scale of turbulent motion; below this scale there are viscous

scales. Kolmogorov scale separates the turbulent scales and viscous scales. Using

the distinctive values of the dissipation and viscosity in the atmosphere and ocean,

it is found that η is of the order of millimeters, both in the atmosphere and ocean.

The scale η depends on both ν, characterizing the fluid, and ε, characterizing the
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flow. Further, using ∆Vηη = ν, we find

Rel =
(
l
η

)4/3

(1.9)

showing that the local Reynolds number depends on a scale ratio, for scales l be-

longing to the inertial range.

1.2 Intermittency and cascades

Figure 1.2: A surrogate of the dissipation is given by the squares of the derivative of
the velocity (dV )2. It shows intermittency.

The central assumption of K41 theory is the local homogeneity of dissipation

rates, where ε is assumed to be smooth and even constant. However, experimental

measurements estimated ε from the local derivative
(
∂V
∂t

)2
and found that this proxy

of local dissipation is extremely variable (Fig. 1.2). This was called by Batchelor and

Townsend (1949) as “intermittency”.

After the discovery of intermittency in the late 1940s, Kolmogorov (1962) have

proposed some new formulations involving lognormal fluctuations for the velocity.
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Figure 1.3: A schematic representation of a discrete multiplicative cascade

A few years later, Yaglom (1966), a student of Kolmogorov, has proposed a toy model

to generate intermittency and mimic the energy cascade from large to small scale

(Fig. 1.3).

The cascade of turbulent eddies in Yaglom’s model can be seen as the ensemble

of cells, each cell being associated with a random variable. All the variables are

assumed to be positive and independent, and they obey the same statistical law. The

largest external scale is associated with a single cell of size L. The largest cell divided

into 2 cells, each of them having a length scale of L/2. This process is iterated, and

at the step m, there are 2m cells, each of size L/2m, until the viscous scale l = L/2n.

Whatever the spatial position the turbulence dissipation rate ελ at scale ratio λ =

L/l = 2n can be written as a product of n independent random variable as;

ελ = 〈ε〉
n∏
i=1

Xi (1.10)

where Xi is a positive random variable associated with the level i in the cascade pro-
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cess. Following the previous hypothesis of independence of variables, it is straight-

forward to calculate the moment of the turbulence-dissipation rate ελ that is ex-

pressed as

〈(ελ)q〉 = 〈ε〉q
〈 n∏
i=1

Xi

q 〉= 〈ε〉q
n∏
i=1

〈(Xi)q〉 = 〈ε〉q〈Xq〉n (1.11)

The moments of the dissipation rate ελ are then given by:

〈εqλ〉 ≈ λ
K(q) (1.12)

with

K(q) = log2〈X
q〉 (1.13)

This expression is the second Laplace characteristic function of the random variable

γ = logX; as such it is a convex function. There is also K(0) = 0 and K(1) = 0 by

conservation. Such cascade generate a multifractal process.

1.3 Multifractal properties

A fractal is a rough or fragmented geometrical object that can be subdivided into

parts, each of which is (at least approximately) a reduced-size copy of the whole.

The shape of the smaller features is like the shapes of the larger features. If the

replication is exactly the same at every scale, it is called a self-similar pattern. Frac-

tals are generally self-similar and independent of scale and are characterized by a

fractal dimension. A multifractal is a set of intertwined fractals. A deviation from a

strict self-similarity is also called intermittency. A single exponent is not enough to

describe the dynamics of a multifractal; instead, a continuous spectrum is required,

called as singularity spectrum.

In the multiplicative cascade framework the following relation is found:

Pr(ελ ≥ λγ ) ∼ C”λ−C(γ) (1.14)

where C” is a constant, γ is called a singularity and C(γ) is a co-dimension function,
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related to the fractal dimension associated to the support of the singularity γ , d(γ),

by:

C(γ) = d − d(γ) (1.15)

where d is the dimension of the field (d=1,2 or 3). For a monofractal field there is

only one value for d(γ), for a multifractal field an infinite number of values. C(γ)

and K(q) are related through a Legendre transform. Indeed let us write the mo-

ments:

〈εqλ〉 =
∫
ε
q
λP (ελ)dελ =

∫
ε
q
λλ
−C(γ)dελ (1.16)

using the change of variable ελ = λγ this gives:

〈εqλ〉 ≈
∫
λqγλ−C(γ)dγ ≈ λmaxγ {qγ−C(γ)} f orλ� 1. (1.17)

This shows that:

K(q) = max
γ
{qγ −C(γ)} (1.18)

This is a Legendre transform and relates the co-dimension function C(γ) to the mo-

ment function K(q). Whenever C(γ) is non-linear, K(q) also. Reciprocally when

K(q) is non-linear, this is a sign of multifractality.

The Legendre transform can be written also as:


γ = K ′(q)

C(γ) = qγ −K(q)
(1.19)

or 
q = C′(γ)

K(q) = qγ −C(γ)
(1.20)

Such Legendre transform is also found in statistical physics (Thermodynamics or

large deviation theory).
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1.4 Scaling concepts to deal with intermittency in tur-

bulence

Since a proposal of Kolmogorov (1962) the velocity fluctuations at scale l, ∆Vl are

related to the energy cascade flux at scale l, εl , by:

∆Vl
d= (εl)

1/3 l1/3 (1.21)

where “d=” means equality in distribution and ελ is obtained from a cascade process.

This leads to a scaling form of the structure functions:

〈∆V q
l 〉 ∼ l

ζ(q) (1.22)

where ζ(q) is the moment function that characterizes the scale dependence of the

moments of order q of the increment ∆Vl . Kolmogorov’s (1962) relation gives

ζ(q) =
q

3
−K

(q
3

)
(1.23)

This relates the energy cascade statistics K(q) and the velocity scaling law ζ(q). Kol-

mogorov’s (1941) relation corresponds to no intermittency; K(q) = 0 and ζ(q) = q/3.

Wherever there is intermittency, we have seen that K(q) is concave with K(1) = 0

hence ζ(q) is convex with ζ(3) = 1. The power spectrum of the velocity field is the

following:

Ev(k) ∼ k−β (1.24)

This is a scaling relation with β the scaling exponent. Furthermore the previous

relation gives

β = 1 + ζ(2) = 5/3−K(2/3) (1.25)

Usually K(2/3) is small and negative hence there is a so-called scaling power spec-

trum with a scaling exponent slightly larger than 5/3. This is called intermittency

effect and usually β ' 1.69 (Sreenivasan and Kailasnath, 1993).
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From the relation Eq.(1.23), we see that the probability distribution chosen for

the cascade, which determines K(q), determines also the shape of ζ(q). Hence ζ(q)

has different shapes for different models. Many cascade models have been proposed

in the turbulence literature. Below we recall only 4 famous models.

The β model. This model was introduced by Frisch et al. (1978) but was already

presented by Mandelbrot (1974). This model is monofractal and linear, it has only

one fractal dimension. The exponents for β model are:

K(q) = µ(q − 1); ζ(q) =
q

3
−µ

(q
3
− 1

)
(1.26)

The power spectral exponent is β = 5
3 + µ

3 . The parameter µ is related to β by µ =

− log2β.

The log-normal model. This model was introduced by Yaglom (1966). The expo-

nents K(q) (derived from the moment of dissipation rate) and ζ(q) (derived from the

moment of velocity fluctuations using structure function) for the log-normal model

are;

K(q) =
µ

2
(q2 − q); ζ(q) =

q

3
−
µ

18
(q2 − 3q) (1.27)

where µ is called as intermittency parameter: µ = K(2) = 2− ζ(6). The equation for

the power spectral exponent is β = 5/3 + µ/9. This model is classical and can be

considered as a generic example of multifractal process. Hence we take this model

for fitting data analysis in application chapters.

The log-Lévy/log-stable model. The log-Lévy, also called as universal multifrac-

tal model was proposed by Schertzer and Lovejoy (1987). This is based on the Lévy

stable law (Lévy and Borel, 1954). The exponents K(q) and ζ(q) characterizing the

dissipation rates and the velocity fluctuations are:

K(q) =
C1

α − 1
(qα − q); ζ(q) =

q

3
− C1

α − 1

[(q
3

)α
−
q

3

]
(1.28)
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where C1 is the co-dimension of the mean event (0 ≤ C1 ≤ d), where d is the dimen-

sion of the space and α is the Lévy index. The α is bounded between 0 and 2, when

α = 2 the lognormal model is recovered and when α = 0 the β-model is found. This

model has been used in many studies in turbulence and the geosciences (Schmitt

et al., 2009).

The log-Poisson model. Based on the Poison distribution, this model was pro-

posed in the mid 1990s (She and Leveque, 1994; Dubrulle, 1994; She and Waymire,

1995). The moment function using the dissipation rate K(q) and velocity fluctua-

tions ζ(q) are:

K(q) = c [(1−γ)q − 1 +γq] ; ζ(q) =
q

3
− c

[
(1−γ)

q

3
− 1 +γq/3

]
(1.29)

where c > 0 is the co-dimension of the most extreme events and γ , 0 < γ < 1 is linked

to the maximum singularity reachable from a finite sample. The constants c = 2 and

γ = 2
3 provided a relation with no adjustable parameters.

1.5 Universal stochastic scaling models

In this section we consider some of the important scaling models and their scaling

moment functions. Since they will be used for methodological purpose in later

chapters.

Brownian motion. Let us consider the normal distribution N (µ,σ2) with mean µ

and variance σ2. Then the 1D Brownian motion can be defined as a continuous

stochastic process having Gaussian stationary increments such that X(t + l) − X(t)

belong to N (0, l). The scaling moment function ζB(q) for Brownian motion is given

by:

ζB(q) =
q

2
(1.30)

The β for Brownian motion is β = 2.
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Fractional Brownian motion. Fractional Brownian motion (FBM), is a general-

ization of Brownian motion and was introduced by Kolmogorov (1940) and later

studied by Mandelbrot and Van Ness (1968). A possible definition is as follows: for

0 ≤H ≤ 1, a fractional Brownian motion BH (t) of parameter H is defined as a Gaus-

sian process of mean 0 and covariance 〈BH (t)BH (s)〉 = 1
2

(
| t |2H + | s |2H − | t − s |2H

)
.

The scaling moment function is given by:

ζH (q) = qH (1.31)

For H = 1/2 the Brownian motion is recovered and when 0 ≤ H ≤ 1/2, increments

are negatively correlated, whereas when 1/2 ≤ H ≤ 1 increments are positively cor-

related. We also have β = 1+2H , so that time series modelled by FBM have a spectral

exponent between 1 and 3.

Lévy stable motion. Lévy stable laws are generalizations of the Gaussian law,

named after the French mathematician Paul Lévy (1886-1971).

The Lévy stable motion also are scaling, but because of the divergence of the

moments of order α, the moment function is peculiar. For q ≤ α, one has H =

1/α and the moment function is linear of the form ζL(q) = q/α. For q > α, the

consequence of the divergence of moments is that it depends on the number of

realizations, Schmitt et al. (1999); Nakao (2000) have shown this moment function

to be bilinear. The equation for the scaling moment function is given by:

ζL(q) =


q
α ; q ≤ α

1; q > α

(1.32)

this saturation for moments q > α comes from a cancellation of the effect of integra-

tion and of divergence of moments.

The power spectrum is not considered for such process, since this corresponds

to a second order moment, for α < 2, the second moment is not defined since it is

diverging.
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1.6 Summary

In this chapter, we have presented turbulence and the way turbulent fluctuations

are statistically characterized, using scaling approaches such as power spectra and

structure functions. Such framework helps to characterize intermittency for 1D or

2D processes. Such framework will be used to study in-situ (1D) data and satellite

2D data. The chapters 3 and 4 are dealing with the in-situ data of the Particle Size

Distributions along with the current and tide. The chapters 5 and 6 deal with the

satellite data of Chl-a and SST from the MODIS aqua using these turbulent tools.
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CHAPTER2

INTRODUCTION TO MARINE OPTICS AND OCEAN

COLOUR REMOTE SENSING

Abstract

In this chapter, I will give brief descriptions of the composition of the natural wa-

ters, mainly oceanic. Then I briefly recall some of the major optical properties of the

natural waters along with their units. I briefly recall Particle Size Distribution (PSD)

and its importance in the aquatic sciences. I also provide the link between some of

the properties like Absorption, Scattering and Attenuation to the reflectance of the

water.

2.1 Composition of natural waters

Natural waters are complex composite physical-chemical-biological media of dis-

solved and particulate matter assemblages (Stramski et al., 2004). Together with air

bubbles and pure sea water, these components determine the bulk inherent optical

properties (IOPs) of natural water bodies. The constituents of natural waters are

traditionally divided into “Dissolved” and “Particulate” matter, of organic and in-

organic origins, living and non-living. When filtering a water sample, everything

that passes through a filter paper of pore size 0.2 µm is called dissolved matter and
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everything retained on the filter is called particulate.

Figure 2.1: Schematic diagram of various seawater constituents in the broad size
range from molecular size of the order of 10−10 m to large particles and bubbles of
order of 10−3-10−2 m in size [Figure reprint from Stramski et al. (2004)].

2.1.1 Dissolved matter

The constituents of the dissolved matter are further classified into “Organic” and

“Inorganic” origins.

Dissolved organic matter. Dissolved organic matter (DOM) concentrations in nat-

ural waters are consequences of either photosynthetic activity of phytoplankton,

bacterial activity or direct inputs of terrestrially matter. The transformation of phy-

toplankton into DOM is a consequence of photolysis, hydrolysis and bacterial de-

composition of the phytoplanktonic cellular structures. These compounds are pro-

duced by the decay of plant matter and consist mostly of various humic and fulvic

acids (Carder et al., 1989). These compounds are generally brown in colour and in

sufficient concentrations they can colour the water in yellowish brown. For this rea-

son, these compounds are referred to yellow matter or coloured dissolved organic

matter (CDOM). This substance is also referred as Gelbstoff. The biogeochemical
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cycle of CDOM is driven by several physical and biological processes such as river

input, biogeneration and photo-bleaching that act as primary sinks and sources

of CDOM (Kirk, 1994; Vantrepotte et al., 2007; Loisel et al., 2014). The CDOM

plays a central role in many physical, chemical and biological processes in aquatic

ecosystems, including inhibiting attenuation of harmful ultraviolet radiation, affect-

ing carbon budgets, nutrient availability and ecosystem productivity (Coble, 2007;

Stedmon et al., 2007).

Dissolved inorganic matter. The pure sea water consists of pure water along with

various dissolved salts, which average about 35 parts per thousand (35 %�) by weight.

These salts increase scattering above that of pure water by about 30 % (Mobley,

1994). These salts have a negligible effect on absorption at visible wavelengths, but

it is likely that they increase an absorption somewhat at ultraviolet wavelengths

(Mobley, 1994).

2.1.2 Particulate matter

The particulate matter in the ocean and coastal waters is composed of heterotrophic

bacteria, phytoplankton, detritus, zoo-plankton, and mineral particles from bio-

genic or minerogenic origin. This particulate matter can directly be generated from

biological processes occurring in water (primary production, the degradation pro-

cess by bacteria activity, etc) or bring from land through local run-off, river plums,

and dust deposition. These particulate matter are the major determiner of both the

absorption and scattering properties of natural waters. They have both biogenic

and minerogenic material whose relative amounts are variable in the ocean (Stram-

ski et al., 2004; Balch et al., 2009).

Particulate Organic Matter. Organic particles include two major categories of par-

ticulate matter: living plankton micro-organisms (viruses, bacteria, and various

phytoplankton and zoo-plankton species) and non-living organic detritus (break-

down products of micro-organisms). Particulate organic matter, usually present ev-
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erywhere, is an important component in floc formation since it acts as the glue that

holds particles together. Particles of a given size are destroyed by breaking apart

after death, by flocculation into larger aggregate particles or by setting out of the

water column. The particles formed by organisms largely consist of organic matter

(Riley, 1963).

Particulate Inorganic Matter. Inorganic particles include the various mineral spe-

cies (clay minerals, quartz, feldspars, calcite and many others). The particulate in-

organic matter are created primarily by weathering of terrestrial rocks and soils.

The mechanisms which produce particulate inorganic matter in the aquatic envi-

ronment are by inorganic processes (precipitation and flocculation) and break-up of

sediments and rocks (erosion and re-suspension). These particles enter the water by

wind-blown dust settled on the sea surface, as the river carry eroded soil to the sea,

or as currents re-suspend bottom sediments.

2.2 Optical properties of the water

Natural waters, both fresh and saline, are a mixture of dissolved and particulate

matter. These solutes and particles are both optically significant and highly variable

in kind and concentration. Therefore, the optical properties of natural waters show

large temporal and spatial variations and rarely resemble that of the pure water.

The large-scale optical properties of natural waters are handily divided into two

mutually exclusive classes: Inherent and Apparent (Mobley, 1994).

Inherent Optical Properties (IOPs) These are optical properties, which depend

only upon the medium and, therefore, are independent of the ambient light field

within the medium. Some of the IOP s are absorption coefficient, volume scatter-

ing function, index of refraction, beam attenuation coefficient and single scattering

albedo.
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Apparent Optical Properties (AOPs) These are the optical properties which de-

pend both on the medium (IOP s) and on the geometric structure of the ambient

light field. AOP s exhibit enough regular features and stability, so it can be used as

useful descriptors of the water body. Some of the commonly used AOP s are the irra-

diance reflectance, the average cosines and various diffuse attenuation coefficients.

In the frame of this Ph.D. thesis we will mainly focus on scattering (or backscat-

tering) processes, which will be used to assess the concentration of particles, as

well as the Particle Size distribution, and the remote sensing reflectance. For

that purpose, the following parts are dedicated to the definition of Particle size

Distribution, scattering, absorption (as it affects the remote sensing reflectance),

and the remote sensing reflectance (with introduction to ocean colour observa-

tion principles).

2.3 Particle Size Distributions (PSD)

The concentration and species composition of organic and inorganic particles vary

greatly in the ocean. The particle size distribution in the ocean, which describes

the particle concentration as a function of particle size/number, typically shows a

rapid decrease in concentration with increasing size from a sub-micrometer range

to hundreds of micrometers. This feature is common to all the suspended particles

and also for plankton micro-organisms (Jackson et al., 1997; McCave, 1983; Sheldon

et al., 1972; Stramski and Kiefer, 1991).

Particles are 3-dimensional objects, and unless they are perfect spheres, they

cannot be fully described by a single dimension such as a radius or diameter. In

order to simplify the measurement process, it is often convenient to define the par-

ticle size using the concept of equivalent spheres. In this case, the particle size is

defined by the diameter of an equivalent sphere having the same volume.
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Weighted distribution. A particle size distribution can be represented in different

ways with respect to the weighting of individual particles. The weighting mecha-

nism will depend upon the measuring principle being used.

Number weighted distributions. A counting technique such as image analysis

will give a number weighted distribution where each particle is given equal weight-

ing irrespective of its size. This often useful for deriving the PSD slope (ξ).

Volume weighted distributions. Static light scattering techniques such as laser

diffraction will give a volume weighted distribution. In volume weighted distribu-

tion, the contribution of each particle distribution are related to the volume of that

particle (equivalent to mass if the density is uniform), i.e. the relative contribution

will be proportional to (size)3. In the present study, we used LISST-100X type C

instrument, which works on laser diffraction principle and derive volume concen-

trations of particle between 2.5 - 500 µm in 32 logarithmically spaced size classes.

Intensity weighted distributions. Active/Dynamic light scattering technique, some-

times called as Quasi Elastic Light Scattering (QELS) is a non-invasive well estab-

lished technique for measuring the size and size distribution of molecules and par-

ticles typically in the sub-micron region. The active light scattering techniques will

give an intensity weighted distribution, where the contribution of each particle in

the distribution related to the intensity of light scattered by the particle. From

Rayleigh approximation, the relative contribution of very small particles will be

proportional to (size)6.

It is possible to convert particle size data from one type of distribution to an-

other, however this requires certain assumptions about the form of the particle and

its physical properties. We cannot expect that the volume weighted particle size

distribution measured using image analysis agree exactly with a particle size distri-

bution measured by laser diffraction.

The variability of the marine particle size distribution (P SD) impacts the differ-
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ent biological processes occurring in oceanic waters and vice versa. For instance,

trophic interactions are tightly linked to the size distribution of the different liv-

ing and non-living particles involved all over the trophic system (McCave, 1984).

The size of the particles in the aquatic environment is measured in various ways.

Visible microscopy can be used for particles greater in size than a few wavelengths

of light; electron microscopy can be used for particles as small as nano-meters in

size. These two methods are extremely tedious and time consuming if large number

of the particles are counted and sized. Laser diffraction technique is the other tech-

nique to derive the volume concentration of the particles in the aquatic environment

(Agrawal and Pottsmith, 2000).

More details of PSDs and its importance in the aquatic environments are given

in the chapters 3 and 4.

2.4 Absorption, Scattering and Attenuation coefficients

The propagation of photons within a natural water body will undergo scattering and

absorption interactions with the optically significant matter of natural water body

(Mobley, 1994; Bukata et al., 1995). Both scattering and absorption interactions

change the original subsurface radiance distribution as the photon flux propagates

through the aquatic medium. Absorption and scattering processes combine to re-

duce the intensity of the radiance distribution while the scattering processes also

change the directional character of the radiance distribution.

Absorption coefficient. A convenient form of Beer’s Law (the absorbance of light

is directly proportional to the thickness of the media through which the light is be-

ing transmitted multiplied by the concentration of absorbing chromophore) results

from the consideration of the loss of energy from a beam of light (photons com-

prised of a spectrum of energy values hν). The absorption loss of beam energy from

an initial radiant flux value of Φinc to a final radiant flux value of Φtrans subsequent
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to passing through an attenuating medium of thickness ∆r would then be given by:

Φtrans −Φinc = −aΦinc∆r (2.1)

where the constant of proportionality a is defined as the absorption coefficient.

Since the beam attenuation coefficient is a function of wavelength λ, it follows from

the above equation that:

Φ(r,λ) = Φ(0,λ)e−a(λ)r (2.2)

from which

a(λ) = − 1
Φ(r,λ)

∂Φ(r,λ)]abs
∂r

(m−1) (2.3)

This provides the general definition of the absorption coefficient a(λ) as the fraction

of radiant energy absorbed from a beam as it travels an infinitesimal distance ∂r. To

this point, we have considered attenuation of a photon flux or a radiant flux as due

solely to absorption processes and independent of any attenuation due to scattering

processes.

As IOPs are additive in nature, the bulk IOPs are the sum of pure seawater and

all its individual constituents. Then the total absorption coefficient a(λ) can be writ-

ten as:

a(λ) = aw(λ) + aDOM(λ) + ap(λ) (2.4)

where w, DOM and p are the pure water, dissolved organic matter and particulate

matter, respectively. The particulate are again subdivided into phytoplanktons and

non algal particles.

Scattering coefficient. The radiant flux, however is also subject to attenuation due

to scattering and in a manner similar to the development of absorption coefficient,

the scattering coefficient b(λ), defined as fraction of radiant energy scattered from a

beam per unit distance as it travels an infinitesimal distance ∂r, is mathematically

expressed as:

b(λ) = − 1
Φ(r,λ)

∂Φ(r,λ)]scatt
∂r

(m−1) (2.5)
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Figure 2.2: Illustration of absorption, scattering and transmission [Figure repro-
duced from Mobley et al. (2011)].

where the subscript scatt denotes that the diminution of radiant energy as it tra-

verses an infinitesimal distance ∂r is due entirely to scattering processes. The above

equation describes the attenuation of a radiant flux of wavelength λ in the absence

of absorption processes in the same way of the absorption coefficient describes the

attenuation of radiant flux of wavelength λ in the absence of scattering processes.

This b(λ) is obtained by integration of volume scattering function β(θ,φ,λ) over

all scattering directions θ and φ:

b(λ) =
∫ 4π

0
β(θ,φ,λ)dΩ =

∫ 2π

0

∫ π

0
β(θ,φ,λ)sinθdθdφ (2.6)

where θ and φ are the nadir and azimuthal scattering angles and Ω is the solid

angle in the direction of (θ,φ). The back scattering coefficient bb(λ) can be derived

by integration over back directions. In natural waters, particles are assumed to be

randomly oriented, so that:


b(λ) = 2π

∫ π
0
β(θ,λ)sinθdθ

bb(λ) = 2π
∫ π
π/2
β(θ,λ)sinθdθ

(2.7)

In general, the components of natural water responsible for the scattering are the

pure water and particulate matter. Then total back scattering of natural water be-
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comes:

bb(λ) = bbw(λ) + bbp(λ) (2.8)

where bbw(λ) and bbp(λ) are backscattering due to pure water and particulate matter,

respectively.

Beam attenuation coefficient. In a natural medium such as air and water where

both absorption and scattering processes are responsible for attenuation, the beam

attenuation coefficient, c(λ) is defined as the fraction of radiant energy removed

from an incident beam per unit distance as it traverses an infinitesimal distance ∂r

due to the combined processes of absorption and scattering. The beam attenuation

coefficient is then mathematically defined as the sum of the absorption coefficient

and the scattering coefficient.

c(λ) ≡ a(λ) + b(λ) (2.9)

or, equivalently,

c(λ) ≡ − 1
Φ(r,λ)

[(
∂Φ(r,λ)abs

∂r

)
+
(
∂Φ(r,λ)scatt

∂r

)]
(m−1) (2.10)

The units of a(λ), b(λ) and c(λ) are all m−1.

Measurements of a(λ), b(λ) and c(λ). The most widely used in situ instruments

for measuring absorption a(λ) and attenuation c(λ) are the WET Labs ac-9 (multi-

wavelength) and ac-s (hyper-spectral). The particulate scattering bp(λ) is measured

from these instruments as the difference between the simultaneous measurements

of a(λ) and c(λ) after proper correction have been applied to ultra-pure Milli-Q

(Sullivan et al., 2005).

The other instruments which measure the backscattering are the WET Labs BB-

9 and HOBI Labs Hydroscat (Jonasz and Fournier, 2011). These instruments are

widely used to measure the backscattering based on single angle measurements of
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β(θ,λ).

2.5 The principle of ocean colour radiometry

Reflectance. The commonly usedAOP is the spectral irradiance reflectanceR(z;λ),

defined as the ratio of spectral upwelling to downwelling plane irradiances:

R(z;λ) ≡ Eu(z;λ)
Ed(z;λ)

(2.11)

R(z;λ) is often evaluated in the water just below the surface; we denote this depth

by z = w ≈ 0.

Remote sensing reflectance. The spectral remote sensing reflectance Rrs is de-

fined as the ratio of up-welling radiance to downwelling irradiance.

Rrs(θ,φ;λ) ≡
L(z = a;θ;φ;λ)
Ed(z = a;λ)

(sr−1) (2.12)

Figure 2.3: Illustration of light rays contributing to Lu as measured above the sea
surface (after Mobley et al. (2011)).

Here depth z = a indicates that Rrs is evaluated using upwelling radiance Lu

and downwelling irradiance Ed in the air, just above the water surface; this Lu is
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often called as “water-leaving” radiance. Ocean colour radiance is the wavelength-

dependent solar energy captured by an optical sensor looking at the sea surface.

These water-leaving radiances contain information on the ocean albedo and infor-

mation on the optical constituents of the sea water, in particular phytoplankton pig-

ments (e.g., chlorophyll-a). It is also affected by sun and sky reflection that should

be corrected. A specific geometric observation configuration is adopted for field

measurement to reduce this reflection effects. Data analysis is not easy as at satel-

lite altitudes the relatively weak ocean colour radiance signal (5-15% of incident

solar radiation) propagates through the atmosphere before detection.

Gordon et al. (1988) proposed a simplified reflectance model for the direct link

between IOPs and AOPs as:

rrs(λ) =
f ′

Q

bb(λ)
a(λ) + bb(λ)

(2.13)

where rrs is the subsurface remote sensing reflectance.

rrs(λ) =
Lw(θ,φ,λ,0−)
Ed(λ,0−)

(2.14)

f ′ is the dimensionless reflectance model factor (Morel and Gentili, 1991) and Q is

the ratio of subsurface upwelling radiance to the subsurface upwelling radiance in

the viewing direction. The subsurface remote sensing reflectance can be related to

remote sensing reflectance by:

πΞrrs(λ) = πRrs(λ) (2.15)

where Ξ represents reflection and refraction effects at sea surface. The typical value

of this Ξ is derived by Morel and Gentili (1996) as Ξ = 0.529. The value of f ′/Q

found for sediment dominated waters: f ′/Q = 0.13 by Loisel and Morel (2001).

The remote sensing reflectance is a measure of how much of the downwelling

light that is incident onto the water surface is eventually returned through the sur-

face in direction(θ,φ), so that it can be detected by a radiometer pointed in the
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opposite direction. Both R and Rrs are of great role in the satellite oceanography.

2.6 Bio-optical algorithms for Chlorophyll-a

Satellite remote sensing is the adequate method for monitoring the phytoplankton

biomass in the coastal and oceanic waters synoptically. The task of estimating Chl-a

from remotely-sensed ocean colour has been considerably difficult at regional and

local scales because the spectral inherent optical properties (IOPs) of the ocean in-

fluencing the colour of the ocean are both diverse and complex.

The first use of the ocean colour measurements was carried out by on-board

Nimbus 7 satellites sensor of CZCS (Coastal Zone Colour Scanner) launched in

1978 followed by many sensors like SeaWiFS, OCM, MERIS, MODIS and GOCI. The

images provided by the CZCS sensor have completely changed the oceanographic

concepts of the distribution of biomass in the coastal waters (Bricaud et al., 1987;

McGillicuddy et al., 2001). In our study, we are interested in the MODerate resolu-

tion Imaging Spectroradiometer (MODIS) sensor, from which the images were ac-

quired. The Rrs measured by the satellite is the input for the algorithms which com-

pute the Chl-a concentrations. In this thesis, we used Chl-a derived using OC3M

(O´ Relly et al., 2000) algorithm of MODIS Aqua. The form of the OC3M algorithm

is:

log[Chl − a] = a0 + a1X + a2X
2 + a3X

3 + a4X
4 (2.16)

where

X =
[
max(Rrs − 443,Rrs − 488)

Rrs − 547

]
(2.17)

and the coefficients a0, a1, a2, a3, a4 are 0.2424, -2.7423, 1.8017, 0.0015 and -1.2280

respectively.
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2.7 Remarks

The main objective of this Ph.D. thesis is to understand the high temporal variabil-

ity of suspended particulate matter and its spatial distribution in relation to some

physical forcing processes occurring during relativity short time period. To under-

stand the temporal heterogeneity we have conducted time series measurements of 3

field samplings from the Eastern English channel. We have used AC-S, ECO-FLRT,

ECO-FLCDRT, LISST-100X type C, Troll, Nortek Vector Velocimeter and ADCP RD

instruments.

Figure 2.4: Instruments (bio-optical and hydro-graphic) mounted over the sea-
spider for the in situ sampling; done in the laboratory of oceanology and geo-
sciences, Wimereux.

AC-S measures absorption and attenuation coefficients, ECO-FLRT measures

34



Chapter 2.

the Chlorophyll-a fluorescence, ECO-FLCDRT measures the CDOM fluorescence,

LISST-100X measures the volume concentration of the particles from 2.5-500 µm,

Troll measures the turbidity along with temperature and salinity, Nortek Velocime-

ter measures the point measurement of velocity components (x,y and z directions)

and ADCP measures the velocity profiles of x,y and z components at every 0.4 m.

Concerning the first two sampling, after retrieving the instruments, unfortu-

nately we found that the quality of the data was very poor, so we discarded that

data from my thesis. For the third sampling, some of the instruments did not work

(AC-S, ECO-FLRT and ECO-FLCDRT). That is why we could not incorporate many

of the bio-optical data sets in the present thesis.
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CHAPTER3

HIGH FREQUENCY VARIABILITY OF PARTICLE SIZE

DISTRIBUTION AND ITS DEPENDENCY ON

TURBULENCE OVER THE SEA BOTTOM DURING

RE-SUSPENSION PROCESSES

This chapter was published as Renosh et al., 2014. In open access available from

http://www.sciencedirect.com/science/article/pii/S0278434314000454

Renosh, P. R., Schmitt, F. G., Loisel, H., Sentchev, A., Meriaux, X., 2014. High fre-

quency variability of particle size distribution and its dependency on turbulence

over the sea bottom during re-suspension processes, Continental Shelf Research,

77, 51-60.

Abstract

The impact of tidal current, waves, and turbulence on particles re-suspension over

the sea bottom is studied through eulerian high frequency measurements of veloc-

ity and particle size distribution (PSD) during 5 tidal cycles (65 hours) in a coastal

environment of the eastern English Channel. High frequency variability of PSD is

observed along with the velocity fluctuations. Power spectral analysis shows that

turbulent velocity and PSD parameters have similarities in their spectral behaviour
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over the whole range of examined temporal scales. The low frequency variability

of particles is controlled by turbulence (β ' −5/3) and the high frequency is partly

driven by dynamical processes impacted by the sea bottom interactions with tur-

bulence (wall turbulence). Stokes number (St), rarely measured in situ, exhibits

very low values, emphasizing that these particles can be considered as passive trac-

ers. The effect of tide and waves on turbidity and PSD is highlighted. During slack

tide, when the current reaches its minimum value, we observe a higher proportion

of small particles compared to larger ones. To a lower extent, high significant wave

heights are also associated with a greater concentration of suspended sediments and

the presence of larger particles (larger Sauter’s diameter DA, and lower PSD slope

ξ).

3.1 Introduction

Marine particles cover a broad range in diameters from nanometers, mainly as

colloids, to few millimeters and even centimeters in presence of big Phaeocystis

colonies, diatoms chains, or cyanobacteria filaments. Intermediate size particles

include viruses, heterotrophic bacteria, pico-, nano-, and micro-, phytoplankton,

micro-, meso-, and macro-zooplankton, non-living particles, and mineral particles

(Stramski et al., 2004). These particles do not solely appear as individual entities

in the water column, but are mainly present as marine algal flocs and aggregates

(Eisma, 1986; Fowler and Knauer, 1986; Hill, 1998; Boss et al., 2009). The vari-

ability of the marine particle size distribution (PSD), impacts the different biolog-

ical processes occurring in oceanic waters, and vice versa. For instance, trophic

interactions are tightly linked to the size distribution of the different living and

non-living particles involved all over the trophic system (McCave, 1984). On the

other way, blooms of specific phytoplankton species modify the general PSD shape

by affecting one given size class. Phytoplankton degradation processes as well as

zooplankton grazing also affect the PSD shape by promoting the small particles

size classes compared to larger ones. Physical processes occurring in the water col-
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umn are also related to the PSD. For example, the settling velocity of the suspended

matters is strongly controlled by the particles size. In contrast, the size distribu-

tion of floc or aggregate depends on the balance between aggregation and breakage,

two processes driven by diffusive turbulent transport and differential settling (Mc-

Cave, 1984). McCave suggested that particles in the Brownian range (< 1.0 µm) are

pumped rapidly into larger size classes by aggregation. The instantaneous turbulent

kinetic energy modifies the proportion between particles/floccule, fine and coarse

microflocs, and macroflocs (Lefebvre et al., 2012). The re-suspension of marine sed-

iments are also strongly size dependent (Wells and Goldberg, 1992; Mikkelsen and

Pejrup, 2001; Fettweis et al., 2006).

Turbulence is one of the most important physical phenomenon which deter-

mines the re-suspension and settling of the suspended particles in the coastal as

well as oceanic waters (Eisma, 1986; Van Leussen, 1988; Umlauf and Burchard,

2005; Fettweis et al., 2006; Burchard et al., 2008; Van der Lee et al., 2009). For

instance, observations on floc in the field show that smaller flocs occur in high en-

ergy environments (Kranck and Milligan, 1992; Berhane et al., 1997). At a critical

magnitude of turbulence, shear overcomes the binding strength of flocs and tends

to destroy aggregates (Eisma, 1986). For primary (disaggregated) particles signifi-

cantly larger than 1.0 µm, and for the process of smaller flocs (microflocs) growing

into larger flocs (macroflocs), turbulent shear is thought to be the dominant colli-

sion mechanism, except during periods of slack current velocities when differential

settling of suspended particles on to one another may be responsible for most of the

flocs formation and rapid clearing of the water (Van Leussen, 1988).

Studies done by Wolanski and Gibbs (1995) in Fly River Estuary show that the

mean floc size was affected by the turbulence of tidal currents. The largest floc size

were observed in the low tidal currents (< 0.5 m/s) and comparatively smaller floc

sizes were observed in the high tidal currents (> 0.5 m/s).

In the present study, we analyse the dynamics of PSD and its relation with tur-

bulence from in situ measurements. We conducted simultaneous measurements of

velocity and PSD from instruments fixed on a frame positioned on the sea floor in
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the coastal waters of eastern English Channel. This study area, characterized by low

depth, exhibits a large range of variability of bio-optical properties related to the

occurrence of difference phytoplankton blooms, bottom sediments re-suspension

confined in the coastal areas, and numerous river inputs (Velegrakis et al., 1999;

Loisel et al., 2007; Vantrepotte et al., 2007). The study carried out by Velegrakis

et al. (1999) showed that re-suspension of fine-grained particles takes place during

the spring tides and correlates well with the distribution of the bottom lithological

type. In this paper, we will assess whether the re-suspended particles are passive

tracers, or have an inertia that influences their transport by turbulence. For this,

we estimate from in situ measurements their Stokes number St, which is a dimen-

sionless number explaining the effect of inertia on the particles in a fluid motion.

The impact of hydro-dynamical forcing on the particles behaviour is examined for

different size classes of particles (silt/clay, fine, micro/coarse and macro flocs).

In the first section we present the study area as well as the different measure-

ments and methods used to assess the coupling between turbulence and the parti-

cles behaviour over the sea bottom. The meteorological and hydrodynamic contexts

occurring during the field measurements are then provided in the next section. The

velocity field and particle size distribution variability are described and their re-

lationships are analysed. The Stokes numbers of these different particles, rarely

measured in situ, are also estimated.

3.2 Data and methods

3.2.1 Study area

The measurements were conducted in the coastal waters of the eastern English

Channel at a fixed station (50◦45.676N , 01◦35.117E) from the 25 to the 28 of June

2012 (Fig. 3.1A). The different instruments (explained in the data section) are fixed

on a structure which was positioned on the seafloor. The English Channel is a mega

tidal sea having a tidal range that varies from 3 to 9 m, and experiencing a tidal
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(A)
(B)

Figure 3.1: Location (blue dot) of the sampling area in the eastern English Channel
together with the isobaths (A). Zoom on the sampling area (blue dot), the meteoro-
logical station (red dot) and SOMLIT stations (green dot) in (B).

current of amplitude close to 1.0 m/s (Desprez, 2000; Seuront and Schmitt, 2005;

Korotenko et al., 2012). The biogeochemical environment during the particular

sampling period is defined from in-situ data collected few days before the exper-

iment (the 21 of June) in the frame of the SOMLIT program in two different areas

and in high tide period (Fig. 3.1B). A strong stratification can be noticed, especially

for the suspended particulate matter (SPM), which increases by a factor of 15 from

the surface to the bottom at the coastal station (Table 3.1). However the SPM values

are relatively low for a coastal environment, in good agreement with the summer

low fresh water discharge, and the absence of phytoplankton bloom. The partic-

ulate carbon concentration is however relatively high. Besides, the relatively high

POC/Chl-a ratio values, a proxy of the carbon mass of living and non-living organ-

isms with respect to the autotrophic organisms (Loisel et al., 2007), indicates that

the particulate organic fraction is largely dominated by detritus and heterotrophic

bacteria.
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Site Date Depth Temp.(◦c) Salinity(psu) POC(µg/l) SPM(mg/l) Chl-a(µg/l)
C 21-06-2012 Surface 15.83 34.43 341.9 0.1 0.5
C 21-06-2012 Bottom 14.82 34.76 239.67 1.54 0.5
L 21-06-2012 Surface 14.88 34.93 220.9 0.48 1.21
L 21-06-2012 Bottom 13.92 35.06 85.804 1.63 0.18

Table 3.1: Biogeochemical and optical data collected from SOMLIT before the time
series measurements from the stations C and L (shown in Figure 1B).

3.2.2 Data

High frequency time series data were collected at 0.5 meter depth above the sea

bottom from different instruments fixed on the same platform moored on the sea

bed. The three following instruments were used for the present study: a LISST-

100x type C (Laser In-Situ Scattering and Transmissometry, Sequoia Scientific), a

Nortek Vector ADV current meter, and a RDI ADCP. The LISST measures the vol-

ume concentration of particles having diameters ranging from 2.5 to 500 µm in 32

size classes in logarithmic scale (Agrawal and Pottsmith, 2000). It also records the

beam attenuation (c) at 670 nm (±0.1nm) over a 5 cm path length with an acceptance

angle of 0.0135◦. The particulate beam attenuation coefficient cp has been derived

from c after calibration with MilliQ water before and after the field campaign, us-

ing the assumption that chromophoric dissolved organic matter (CDOM) does not

absorb the light at 670 nm. The volume concentration and cp are measured with a

sampling frequency of 1.0 Hz. The Nortek Vector ADV current meter measured the

North, East and up components of the local velocity components with an accuracy

of ±0.5% at every 1 Hz. The available range of the velocity value measured by the

instrument is from 0.01 to 7.0 m/s (±0.01m/s). A 1.2 MHz upward-looking four

beam broadband RDI ADCP was also deployed on the bottom, along with the pre-

vious cited instruments clubbed in a structure. The ADCP was operated in the fast

pinging mode, providing two profiles per second. Each velocity was an average of

six short pulse measurements over a 2Hz interval. The velocities were recorded in

Cartesian co-ordinates with 0.4 m vertical resolution. The significant wave height

Hs, peak wave period T p, and peak wave direction Dp are derived from the ADCP

data using manufacture provided software WavesMon (Teledyne RD Instruments).
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These wave parameters were computed for 10 minutes burst duration with a mov-

ing window of 5 minutes interval providing one data point every 5 minutes. The

wind data were provided by the meteorological station of harbour, Boulogne-Sur-

Mer light house (Meteo-France) with a temporal resolution of 1 hour.

3.2.3 Methods

Particle Size Distributions and power law of PSD. The scattering patterns of par-

ticles at 670 nm are recorded in 32 logarithmically size scattering angles by the

LISST-100X type C (Agrawal and Pottsmith, 2000). This instrument measures the

volume concentration Cvol,i (µl/l) of the particles in 32 size classes from 2.5 to 500

µm through diffraction technique. Because of instability in the smallest and largest

size classes, the data recorded in the first five inner and last outer rigs are excluded

from further analysis (Traykovski et al., 1999; Jouon et al., 2008; Reynolds et al.,

2010; Neukermans et al., 2012a). These instabilities observed in the smaller size

classes have also been related to effects of stray light (Reynolds et al., 2010). Due

to multiple scattering effects and signal to noise ratio sensitivity, the data for which

optical transmission values are less than 30% and greater than 98% are also disre-

garded from the statistical analysis (personal communication with Ole Mikkelsen).

The volume concentration distributed on a particle size class can also be ex-

pressed as the concentrationCvol(σ ) per unit volume per unit bin width (Jouon et al.,

2008):

Cvol(σ ) =
Cvol,i

σmax(i)− σmin(i)
(3.1)

where σ is the median diameter of the particle size class i, σmax(i) and σmin(i) are

respectively the maximum and minimum particle size of the class i. This resulting

volumetric PSD is expressed in µll−1µm−1. The number of particles for a size σ of

the PSD is estimated by a normalisation by their volume (Jouon et al., 2008). We

obtain the number density n(σ ), which is also the product of the probability density
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function of the size, p(σ ), times N , the total number of particles:

n(σ ) =Np(σ ) =
Cvol(σ )

4
3π(σ/2)3

(3.2)

The PSD of this density number classically follows a power law distribution for

aquatic particles in suspension (Sheldon et al., 1972; Kitchen et al., 1982; Jonasz,

1983; Boss et al., 2001a; Twardowski et al., 2001; Loisel et al., 2006; Reynolds et al.,

2010).

n(σ ) ∼ Kσ−ξ (3.3)

where K is a constant and ξ is the PSD slope. The value of ξ(t) is here estimated

at each time step (every second) from the LISST measurements, using an automatic

regression analysis. The ξ value provides information on the relative concentration

of small and large particles: the steeper the slope (the greater ξ), the more small

particles relative to large particles are present in the water (and vice versa).

Mean particulate diameters. Sauter’s diameter (DA) is the mean diameter of an

equivalent sphere which has the same specific surface area as that of the PSD. This

diameter is commonly used in sedimentology to represent size distribution in fluid

flow calculation. The Sauter’s diameter DA is also computed from the PSD using the

following equations (Neukermans et al., 2012a; Filippa et al., 2012):

DA =
∑31
i=6 [AC]iσi

[AC]
=

∫ σ31

σ6
n(σ )σ3dσ∫ σ31

σ6
n(σ )σ2dσ

=

∫ σ31

σ6
p(σ )σ3dσ∫ σ31

σ6
p(σ )σ2dσ

(3.4)

[AC]i =
3

2σi
Cvol(σ ) (3.5)

where [AC]i is the cross sectional area concentration of particles in bin i, and [AC]

is the total cross sectional area.

The following size classification has been adopted: silt/clay (< 30µm), fine (<

105µm), coarse/micro (< 300µm) and macro-floc (> 300µm) (Lefebvre et al., 2012).

The volume concentration of each size class has been analysed using statistical and
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dynamical approaches.

Stokes number. In turbulent flows, the largest turbulent eddies break-up into

smaller eddies through an energy cascade and finally dissipate at small scale due to

molecular viscosity. The length of these smallest eddies is the Kolmogorov length

scale. The eddies at this scale have typical life time τη which is the smallest time

scale of turbulence. The Stokes number St is defined as the non-dimensional ratio

of an inertial characteristic time scale τp, to τη . It is one of the fundamental pa-

rameter characterising particle-turbulence interactions: for St� 1, particles follow

passively the fluid flow, whereas for St� 1, large inertia particles are not influenced

by turbulence, and follow their own trajectories. It can also be related to the parti-

cles and fluid characteristics (Wang et al., 2000; Schmitt and Seuront, 2008; Xu and

Bodenschatz, 2008) as follows:

St =
τp
τη

= Cp

(
σ
η

)2

(3.6)

withCp = B/18, where B = ρp/ρ is the ratio of the particle density to the fluid density,

and η =
(
ν3/ε

)1/4
is the Kolmogorov length scale, where ν and ε are the kinematic

viscosity of the fluid (in m2s−1) and the dissipation rate (in m2s−3) , respectively.

The value of the dissipation rate ε is estimated using the power spectrum of

the velocity time series, assuming a local isotropic Kolmogorov relation of the form

(Pope, 2000).

E(k) = Cε2/3k−5/3 (3.7)

where E(k) is the Fourier power spectrum, C = 1.5 is a constant and k is the wavenum-

ber. Since the power spectrum is here estimated from a time series in a fixed point,

we estimate E(f ) where f is the frequency. Frequency and wavenumber are related

with the horizontal component of the velocity V : k = 2πf /V . This gives the fol-

lowing estimation of the dissipation, from the power spectrum (Sethuraman et al.,

1978; Lien and D’Asaro, 2006; Gerbi et al., 2009; Huang et al., 2012; Thomson et al.,
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2012):

ε =
(C0

C

)3/2 (2π
σV

)5/2

(3.8)

where σV is the standard deviation of V and C0 is the constant such that E(f ) =

C0f
−5/3 is a best fit estimated over a range of frequencies corresponding to the iner-

tial range.

3.3 Results

3.3.1 Meteorological and hydrodynamic conditions

(A)

(B)

(C)

(D)

Figure 3.2: Time series of A) the significant wave height Hs, B) peak wave period
T p, C) peak wave direction Dp, and D) water level.

Figure 3.2 shows the hydrodynamic conditions prevailing in the study area dur-

ing the observations. The significant wave height Hs exhibits relatively large vari-
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ability in its magnitude during the entire time series observation (from 0.18 to 0.84

meters). The mean and standard deviation values ofHs are 0.41 and 0.14m, respec-

tively. The peak wave period, T p, also presents a relatively great variability from

few seconds to 20 seconds, with a mean and standard deviation values of 6.41 and

2.44 s, respectively. In contrast, the peak wave direction, Dp, is almost constant dur-

ing the entire experiment, with a mean value around 268◦, which reveals that, the

waves are coming from the West. The water level shows typical semi diurnal tidal

characteristics with a period of 12.42 hours. The total water column depth observed

during the low tide time and high tide time is 3.74 m and 10.07 m, respectively, re-

vealing the spring tide conditions.

Relatively large wind fluctuations in terms of amplitude and direction are ob-

served during the experiment. Relatively high wind speed values (above 4ms−1) are

generally associated with South West wind (except at the end of the experiment);

whereas relatively low wind speeds values (less than 4 ms−1) are generally associ-

ated with South East wind.

From the water level evolution and current data set provided by ADCP, the effect

of tidal current on the PSD can be analysed. The interval when the speed of the tidal

current is very weak or zero, usually refers to the period of reversal between ebb

and flood currents, and also refers to the slack tide. The vertically averaged current

velocity (VACV) has been derived for the entire time series (Fig. 3.3). VACV shows

minimum values during the current reversal time, and two maxima, the main ones

corresponding to the high tide (high water), and the second ones, reached at low

tide (low water) (Fig. 3.3). The consecutive intervals of time between flood to ebb

and ebb to flood is (7-7.34 h) greater than ebb to flood and flood to ebb (5.1 - 5.42

h), evidencing a pronounced asymmetry of tidal currents (Fig. 3.3).

3.3.2 Stokes number

The estimation of horizontal power spectra (U and V components) were used to

estimate the constant C0 in equation( 3.8) and hence the dissipation rate. The mean
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Figure 3.3: Time series of water level evolution along with tide (black line), time se-
ries of VACV (in red) and contour map showing the vertical structure of the current
velocity.

value of the dissipation rate over the sampling day is ε = 7.65 × 10−7 m2s−3. Since

the mean temperature value is T = 16.11◦C(±0.10), the viscosity value is fixed at

ν = 1.133 × 10−6m2s−1 (Kestin et al., 1981) and hence the Kolmogorov dissipation

length scale η = (ν3/ε)1/4 = 1.2 mm. Because the mass density is not measured in

the present study, two extreme values are imposed to assess the ratio of the particle

density to the fluid density, B. The mass density of mineral and organic particles

are ρp = 2.7 ± 0.15gcm−3 and ρp = 1.06 ± 0.03gcm−3, respectively (Chiappa-Carrar

et al., 2006); resulting in B values of 2.7 ± 0.15gcm−3 and 1.06 ± 0.03, respectively.

Using equation ( 3.6), these range of values for B, the estimation of ε and the range

of particle sizes detected by the LISST (6.20 to 390 µm), we obtain Stokes numbers

ranging from 6.8×10−7 to 0.03 for mineral particles and from 2.66×10−7 to 0.01 for

organic particles. The largest values of the Stokes number are found for the largest
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particles (∼ 0.39mm), which are still almost four times smaller than the Kolmogorov

scale. This shows that the Stokes numbers are here always very small, and that these

particles are likely to be passive tracers and move along with the fluids.

3.3.3 Temporal variability of the velocity field

The time series of along-shore (U ) and cross-shore (V ) components of the velocity

and their corresponding power spectra were estimated using the ADV data (Fig. 3.4).

The along and cross shore velocity components are characterized by a periodicity of

12.42 hours, and a large small scale variability with a coefficient of variation (i.e., a

ratio of standard deviation to the mean value of the absolute velocity also called as

turbulent intensity) value for the along-shore and cross-shore components of 64.28

and 50.48 %, respectively (Fig. 3.4 A-B). These velocity records are tightly linked to

the tidal cycle which also exhibits a period of 12.42 hours. The along-shore com-

ponent is characterized by a higher variability compared to the cross-shore compo-

nent. The variability patterns of U and V are analysed through their power spectra

(Fig. 3.4C). At low frequency scaling ranges, the power spectra of the two horizon-

tal components (U and V ) are characterized by a power law with a slope (β) close

to −5/3 associated with 3D homogeneous turbulence (Kolmogorov scaling). From

T = 1000s ∼ 17min there is a transition to a regime for which the power spectra

is characterized by a lower slope value (close to −0.6). Similar kind of β value has

been observed in the 1-min summer rainfall time series data with a scaling regime

from 1 h to one day (Yonghe et al., 2013). At high frequencies (0.1 to 0.3 Hz, hence

on the range 3 to 10 s), the energy spectra exhibit the impact of a localized forcing.

Such forcing has previously been attributed to the high energy associated with wave

breaking scales (Schmitt et al., 2009).
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(A)

(B)

(C)

Figure 3.4: Time series of U (A) and V (B). The insets represent a small portion of
the time series to show the fluctuations. (C) Power spectra of U (blue curve) and V
(green curve). The two straight lines correspond to two different scales with slopes
of -1.72 (near to -5/3 slope of Kolmogorov) in light green and -0.58 in red and the
humps in the energy value at high frequency represents a small scale forcing of high
energy wave breaking.

3.3.4 Temporal variability patterns of particles concentration and

size parameters in relation with hydrodynamical forcing.

The size parameters considered here are the slope ξ of the PSD, as well as DA

and the normalised volume concentration of different size classes (silt/silt, fine,

coarse/micro and macro-floc) of aggregates (Lefebvre et al., 2012). The turbidity

dynamics is also considered through the particulate attenuation coefficient, cp(670),

which is proportional to the particle concentration, at first order (Neukermans et al.,

2012b). The number of particles in size class i per unit volume and per unit diame-

ter increment n(σ ) is computed for the entire size classes at each time step (Fig. 3.5).

The PSD of the present data set is well represented by a power-law distribution

throughout the whole time series. The slope values, ξ, of the particulate size distri-
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(A)

(B)

Figure 3.5: P SD for volume concentration (A) and for number concentration (B).
The inset in (A) is a log-log plot emphasizing the power-law relations for the volume
concentrations.

bution range between 2.57 and 3.94, with a mean value of 2.9 and a standard de-

viation of 0.16. These values are in good agreement with previous studies (Jonasz,

1983; Boss et al., 2001b; Loisel et al., 2006; Buonassissi and Dierssen, 2010; Reynolds

et al., 2010; Neukermans et al., 2012a).

The Probability Density Function (PDF) of the concentrations and size parame-

ters followed non-Gaussian distributions (Fig. 3.6). The inset of each panel in Fig-

ure 6 shows the PDF and the Gaussian fit in a semi log scale, in order to emphasize

extreme values. All the parameters show an asymmetry, and some are showing a

heavy tail in their distribution (Fig. 3.6C, 3.6D and 3.6E). In addition, chi-square
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goodness-of-fit tests have been performed to test the normal distribution; the test

result rejects the null hypothesis that these parameters come from a normal distri-

bution with a mean and variance computed from these parameters, at 5% signifi-

cance level with a p − value of 0 and h=1.

The temporal variability of ξ(t) is analysed along with the vertically averaged

current velocity (VACV) showing the tidal information as well as the current re-

versal (Fig. 3.7A). At the time of the current reversal, that is when VACV is mini-

mum, ξ(t) generally exhibits a well pronounced peak. This pattern indicates that

the proportion of small particles compared to larger ones increases at this particu-

lar time. The mean diameter DA, estimated for each time step, exhibits strong high

frequency variability and has a mean value of 116.57 µm and standard deviation of

±20.43 µm (Fig. 3.7B). DA presents a well pronounced trough in magnitude during

the current reversal time, in agreement with the ξ(t) patterns. This impact of cur-

rent reversal on particles size distribution is also well evidenced through the tempo-

ral evolution of the normalized volume concentration of each considered size class

(Fig. 3.7D-G). During slack tide the normalised volume concentration presents rela-

tively higher values (a peak) in the lower size classes (silt/clay and fine) (Fig. 3.7D-E)

and lower values (a trough) in the complementary higher size classes (coarse/micro

and macro-flocs) (Fig. 3.7F-G). The time series of cp(670), a proxy of the suspended

particulate concentration, exhibits strong high frequency variability (coefficient of

variation of 53 %), with numerous peaks which generally occur when the VACV is

maximum (Fig. 3.7C). The mean and standard deviation of cp(670) are 10.38 and

5.53 m−1, respectively.

Besides the apparent impact of the vertically averaged current velocity on the

particles concentration and size distribution, the significant wave height also slightly

contributes to the re-suspension effects (r2 = 0.23). The larger the mean significant

wave height, the more the concentration of re-suspended particles (Fig. 3.8A). More-

over, significant wave height seems to affect PSD, by promoting the concentration

of larger particles compared to smaller ones (Fig. 3.8B). However, according to the

low determination coefficient value additional data are needed to confirm this last
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(A)

(B)

(C)

(D)

(E)

(F)

(G)

Figure 3.6: The PDF of A) ξ, B)DA, C) cp(670) and normalised volume concentration
of the different size classes of particles (VCsilt (D), VCf ine (E), VCcoarse (F) and
VCmacro (G)), superposed to a Gaussian fit with the same mean and variance. The
inset in all figures is a semi log plot emphasizing extremes, showing that all PDFs
are non-Gaussian.
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(A)

(B)

(C)

(D)

(E)

(F)

(G)

Figure 3.7: Time series of A) ξ(t), B) DA, C) cp(670) and the normalised volume
concentration of different size classes of particles (VCsilt (D), VCf ine (E), VCcoarse
(F) and VCmacro (G)) superposed to VACV data.

point.

Since we have high frequency time series of ξ(t),DA(t), cp(670)(t) and normalised
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Figure 3.8: (A) Scatter plot of cp(670) versus Hs and (B) ξ versus Hs.

volume concentration of each size classes of particles, we can explore their dynam-

ical properties. The dynamics of ξ, DA and cp(670) has been estimated through

power spectral analysis (Fig. 3.9A-C). Two scaling regimes characterized by differ-

ent slope values are observed on either side of the period of T=1000s, similarly to

the velocity period. These parameters in the low frequency regime present the same

spectral slope (β close to -5/3) similar to the velocity field, indicating that the dy-

namics of the particles is influenced by turbulence at low frequencies. At higher

frequencies, the slope values of these parameters and velocity field are significantly

different but remain similar to the velocity spectra. With a slope value close to -

0.8 in the frequency range [0.001; 0.1 s−1], the dynamics of the particles seems to be

partly driven by dynamical processes likely impacted by the interaction with the sea

floor, for which a slope of -1.0 is expected (Perry et al., 1986; Katul et al., 1995; Katul

and Chu, 1998). Similar power spectra are also observed in the case of normalised

volume concentrations of different size classes of particles (Fig. 3.9D).

3.4 Discussion and Conclusion

Large temporal variability in the hydrodynamic fields, particle concentration and

size distribution were observed during the in-situ experiment reported here. The
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(A)

(B)

(C)

(D)

Figure 3.9: Power spectra of ξ, DA, cp(670) and the total volume concentrations of
different size classes of particles showing different scale regimes as indicated by the
different slope values for different frequency ranges.

hydrodynamic conditions, along with the high turbulence level encountered, pro-

vide favourable conditions for the re-suspension of particle. The present data set

has shown that tidal current and waves have a significant role in the particle re-

suspension and further water column turbidity. This is in good agreement with

Velegrakis et al. (1999) who observed large scale particle re-suspension processes

generated by the tidal current and coastal waves for the same region. During the

current reversal, when the VACV is minimum, all the size parameters examined

here indicate a modification in the particle size distribution. The proportions of

small particles tend to increase compared to bigger ones (Fig. 3.7). Two processes

can explained this pattern. First, hydrodynamic forcing is not sufficient to re-

suspend large particulate assemblages from the bottom. Second, during the period

of slack current, the differential settling of particles one over the other takes place
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inducing a washing of the water column, especially of heavy flocs. These observa-

tions agree with the study carried out by Van Leussen (1988). To a lesser extend,

the occurrence of waves induces an increase of the suspended particulate matter

concentration (i.e. cp(670)), and especially of large particulate assemble (Fig. 3.8).

Turbulence has been extracted from the along shore and cross-shore components

of the current velocity, which show periodic fluctuations in their magnitude. The

power spectra of velocity components follow three different regimes depending on

the scale. The first one, with typical inertial range, has a slope close to -5/3. The

second one is characterized by a flatter slope of -0.6 with a transition scale of 1000

seconds. At last, the energy spectra at high frequencies (3-10 s) shows a localised

forcing attributed to waves forcing, similarly to the previous results obtained in the

same region (Schmitt et al., 2009). From T=1000 s ∼ 17 min there is a transition to

a regime for which the power spectra is characterized by a lower slope value (close

to -0.6). While there is still no theoretical explanation of such low slope value, the-

oretical studies have shown that the power spectra of velocities close to the sea floor

may be characterized by a slope value of -1.0 (Panchev, 1972; Kader and Yaglom,

1984; Katul and Chu, 1998). The theoretical and experimental studies carried out

by Perry et al. (1986); Katul et al. (1995); Katul and Chu (1998) showed that the

turbulent boundary layer was characterized by a power-spectral slope of -1.0 at the

low wave number values.

Thus, the power spectra of size parameters and cp(670) exhibit very similar tur-

bulent scaling in the lower and higher frequency region compared to the velocity

field. The Stokes number derived from the present measurements exhibit very low

values (� 1), showing that the particles in the fluid motion behave like tracers and

move along with the fluid.

We found that turbulence has a great role in the dynamics of the particles in

the present region. Low frequency variability of the particles is controlled by the

turbulence (β ' −5/3) and high frequency variability is controlled by the physical

processes which are related to the sea bottom interactions (wall turbulence), tidal

currents and waves. A next step related to this work will be to analyse the turbu-
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lent intermittency scaling of these parameters using empirical mode decomposition

(Huang et al., 2008). Other measurement campaigns will be performed in coastal

waters to compare with the present study and assess its possible universality.
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CHAPTER4

INTERMITTENT PARTICLE DYNAMICS IN MARINE

COASTAL WATERS

Abstract

Marine coastal processes are highly variable over different space and time scales.

In this paper we analyse the intermittency properties of particle size distribution

(PSD) recorded every second using a LISST instrument (Laser In-Situ Scattering

and Transmissometry). The particle concentrations has been recorded over 32 size

classes from 2.5 to 500 µm, at 1 Hz resolution. Such information is used to esti-

mate at each time step the hyperbolic slope of the particle size distribution, and to

consider its dynamics. Shannon entropy, as an indicator of the randomness, is es-

timated at each time step and its dynamics is analysed. Furthermore, particles are

separated into four classes according to their size, and the intermittent properties of

these classes are considered. The empirical mode decomposition (EMD) is used, as-

sociated with arbitrary order Hilbert spectral analysis (AHSA), in order to retrieve

scaling multi-fractal moment functions, for scales from 10 sec to 8 minutes. The

intermittent properties of two other indicators of particle concentration are also

considered on the same range of scales: the total volume concentration Cvol−total

and the particulate beam attenuation coefficient cp(670). Both show quite similar
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intermittent dynamics and are characterized by the same exponents. Globally we

find here negative Hurst exponents for each time series considered, and non-linear

moment functions.

4.1 Introduction

Ocean data fields show a high variability over many different time and space scales.

Such variability is often associated with turbulence, and multi-scaling properties

of oceanic fields have been reported and studied in many previous studies: sea

state (Kerman, 1993); phytoplankton concentration (Seuront et al., 1996b,a, 1999;

Lovejoy et al., 2001a); rainfall and cloud radiance (Tessier et al., 1993; Lovejoy and

Schertzer, 2006); satellite images of ocean colour, chlorophyll-a and sea surface tem-

perature (Lovejoy et al., 2001b; Nieves et al., 2007; Pottier et al., 2008; Turiel et al.,

2009; Montera et al., 2011; Renosh et al., 2015). Here we focus on coastal waters and

consider particles transported by oceanic currents in this highly energetic medium

(Svendsen, 1987; Schmitt et al., 2009). The solid phases in the environment has been

described by hyperbolic particle size distributions (PSD) of clay aggregates in water

(Amal et al., 1990), biological aggregate and marine snow (Jiang and Logan, 1991;

Logan and Wilkinson, 1991), aerosol agglomerates (Wu and Friedlander, 1993) and

flocs produced in the water and waste water discharge (Li and Ganczarczyk, 1989).

PSD has major influence in biological, physical and chemical processes in the

aquatic environment (Boss et al., 2001a; Twardowski et al., 2001; Reynolds et al.,

2010). For instance, PSD is strongly involved in the trophic interaction within the

plankton community and in the chemical/geological aspects. The shape of the PSD

is also uses in computing the sinking rate of the sediment fluxes. The study carried

out by Renosh et al. (2014) using the same in situ data set than the present study

showed that the dynamics of the PSD is controlled by many oceanographic param-

eters like tidal currents, waves and turbulence. The present study is a continuation

of this work.

All environmental and geophysical data sets are non-linear and non-stationary
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at many different scales of time and space. Intermittency is a property that occurs in

fully developed turbulence ranging between the large scale injection and the small

scale dissipation (Frisch, 1995; Pope, 2000). The main objective of this study is to

analyse the intermittency properties of particle size distribution (PSD). In this study

we mainly focus on the dynamics of the PSD along with the velocity data. For that

we decomposed the PSD into different size classes and also derived the Shannon

entropy from the probability density function (PDF) of the PSD.

Empirical Mode of Decomposition (EMD) together with Hilbert spectral analy-

sis (HSA) is a well-known time-frequency analysis method for non-stationary and

non-linear time series (Huang et al., 1998, 1999). Such analysis is done in two parts:

the EMD is an algorithm to decompose a time series into a sum of mono-chromatic

modes, and HSA extends for each mode into characteristic amplitude and frequency.

Hence this method is a time-amplitude-frequency analysis, which is recalled in ap-

pendices A and B. This approach can be generalised to extract intermittency expo-

nents (Huang et al., 2008, 2011). This is presented in Appendix C.

The first part of the paper present the study area and in-situ data, which contains

the separation of different size classes and the hyperbolic shape shape of the PSD.

Intermittency analysis using the EMD-AHSA method (presented in the appendices)

are then provided in the next section followed by the conclusion.

4.2 In-situ data

The same data sets presented in the chapter 3 will be used for this present study.

4.2.1 Separation into size classes

The volume concentration distributed of a particle size class can also be expressed

as the concentration Cvol(σ ) per unit volume per unit bin width (Jouon et al., 2008):

Cvol(σ ) =
Cvol,i

σmax(i)− σmin(i)
(4.1)
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where σ is the median diameter of the particle size class i, σmax(i) and σmin(i) are

respectively the maximum and minimum particle size of the class i. This resulting

volumetric PSD is expressed in µl.l−1.µm−1. The total volume concentration of the

PSD (Cvol−total) has been derived at each time step:

Cvol−total(t) =
31∑
i=6

Cvol,i(t) (4.2)

This quantity gives the total volume of the particles in µl/l. For the present study

we deal with 4 different size classes, using the following classification: Silt/Clay

(σ < 30µm), Fine (30 < σ < 105µm), Coarse/Micro (105 < σ < 300µm) and Macro

flocs/particles (σ > 300µm) (Lefebvre et al., 2012; Renosh et al., 2014). Fig. 4.1

shows the time series of normalized volume concentrations (VC) of different size

classes of PSD. All 4 size classes are showing large temporal fluctuations in their

magnitude. There statistical and dynamical properties are considered below.

4.2.2 PSD slope (ξ)

The particle size distribution in the ocean, which describes the particle concen-

tration as a function of particle size/number, typically shows a rapid decrease in

concentration with increasing size from a sub-micrometer range to hundreds of mi-

crometers. This feature is common to all the suspended particles and also for plank-

ton micro-organisms (Sheldon et al., 1972; McCave, 1983; Stramski and Kiefer,

1991; Jackson et al., 1997). The number of particles for a given size σ is estimated by

a normalisation by their volume (Jouon et al., 2008). We obtain the number density

n(σ ), which is also the product of the probability density function of the size, p(σ ),

times N , the total number of particles:

n(σ ) =Np(σ ) =
Cvol(σ )

4
3π(σ/2)3

(4.3)

The PSD of this density number classically follows a power law distribution for

aquatic particles in suspension (Sheldon et al., 1972; Kitchen et al., 1982; Jonasz,
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(A)

(B)

(C)

(D)

Figure 4.1: Time series of 3000 samples of volume concentrations of different size
classes of P SD. (A) Silt/Clay, (B) Fine particles, (C) Coarse/Micro particles (D)
Macro particles/flocs.

1983; Boss et al., 2001a; Twardowski et al., 2001; Loisel et al., 2006; Reynolds et al.,

2010; Renosh et al., 2014):

n(σ ) ∼ Kσ−ξ (4.4)

where K is a constant and ξ > 0 is the PSD hyperbolic slope. Since the LISST pro-

vides size class information at each time step, the power-law distribution can be

fitted at each time step, providing the exponent as a time series ξ(t). The ξ value

provides information on the relative concentration of small and large particles: the

steeper the slope (the greater ξ), the more small particles relative to large particles

are present in the water (and vice versa). A small portion of 3000 samples of ξ is

shown in Fig. 4.2A: large temporal fluctuations in its magnitude are visible. When

considering all size classes in all the time steps, a hyperbolic PDF is also obtained,
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represented in Fig. 4.2B with a slope value of ξ̄ = 2.9± 0.16.

(A) (B)

Figure 4.2: Time series of 3000 samples of PSD slope (ξ) (A) and PSD slope of the
entire dataset with a power-law fit of slope ξ̄ = 2.9± 0.16 (B).

The study carried out by Renosh et al. (2014) considered the dynamics of the

ξ(t) in relation with different hydrodynamic quantities like waves, tidal currents

and turbulence. It showed that turbulence has a major role in the re-suspension

of the particles in the aquatic environment. It also showed that along-shore (U)

and cross-shore (V) components of velocity have power spectra showing different

scaling regimes in low frequency and high frequency regions (Fig. 4.3). At low fre-

quency scale there is a typical Kolmogorov −5/3 slope and at high frequency a scal-

ing regime with a 0.6 slope. For high frequencies there is a hump like structure,

which can be identified as the high energy associated with surf zone wave breaking

(Schmitt et al., 2009).

The study of Renosh et al. (2014) showed that the low frequency variability of

ξ(t) and cp(670) are controlled by turbulence and that the high frequency part is

related to dynamical processes impacted by the sea bottom. The present study is a

continuation of Renosh et al. (2014); it considers the high frequency scaling regimes

and studies the intermittency of particle concentration in this range of scales.
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4.3 Intermittent dynamics

4.3.1 Velocity intermittency

We first consider here the scaling and intermittency properties of the velocity. Fig. 4.3A

shows the Fourier and Hilbert (HSA) estimation of the U and V components of the

velocity. Scaling range are found from 20 to 500 seconds with a slope of about -0.6.

In this range of scales the AHSA method has been applied to characterise intermit-

tency in a multi-fractal framework (see Appendix C for the AHSA method). First

a negative Hurst exponent is found: HU = −0.26 and HV = −0.24. Such negative

sign for H values indicates that small scales show larger fluctuations than the larger

scales in a scaling way (Lovejoy and Schertzer, 2012). Both curves become quite

different for larger moments: the U curve is more non-linear, associated to larger

intermittency (Fig. 4.3B).

4.3.2 Dynamics of the entropy of particle size

The LISST system records at each time step a discretized PDF of the particle size.

Hence it is possible to estimate at all time step the entropy of the particle size dis-

tribution as:

S(t) = −
31∑
i=6

Pi(t) logPi(t) (4.5)

where Pi(t) = n(σi)(t)/N (t). The Shannon Entropy S(t) is estimated at each time step;

it possesses some variability with value centered around S̄ = 1.59 ± 0.03. Fig. 4.4A

shows a sample of S(t) and Fig. 4.4B shows its PDF, which is centered around S̄

with values ranging mainly between 1.5 and 1.7. As a stochastic process, in order

to consider the dynamics of S(t), we plot in Fig. 4.4C the autocorrelation of S(t). A

memory time of the entropy series can be estimated as:

T =
∫ T0

0
Cs(t)dt (4.6)
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(A)

(B)

Figure 4.3: Turbulent power spectra of U and V components of velocity fields show-
ing different scaling regimes same for both FFT and HSA (A). The scaling exponents
estimated using the HSA method: the curve for U is more nonlinear than the one
for V. The Hurst exponents HU and HV are negative (B).

where T0 is the first time for which Cs(t) = 0; we find here T0 = 7826s and we com-

pute T = 2176s = 36.26min. This characteristic time scale could be related to the

transition scale (Fig. 4.3A) between two scaling regimes of low frequency injection

scale and high frequency wave breaking scale.

The entropy of particle sizes characterises the “disorder” of the size distribution,

its information content. We showed here that the dynamics of such quantity can

be considered by using LISST data. One of the very interesting feature of LISST
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measurements is hence to be able to characterise non-linear classical indicators such

as the Shannon entropy, in a dynamical way.

(A) (B)

(C)

Figure 4.4: Time series of 3000 samples of Shannon entropy in (A), PDF of Shannon
entropy along with a Gaussian fit in semi-log plot (inset) in (B) and the Autocorre-
lation of Shannon entropy in (C).

4.3.3 Intermittent dynamics of different size classes

As explained above, the PSD is decomposed into 4 different size classes of particles

(Silt/Clay, Fine particles, Coarse/Micro particles and Macro particles/flocs). The

power spectra of these 4 size classes have been derived using Fourier as well as

Hilbert transform (Fig. 4.5) for understanding the turbulent characteristics. Similar

spectra are found from Fourier and Hilbert transform and there is a good power-law
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(A)

(B)

(C)

(D)

Figure 4.5: Power spectra for different size classes of PSD estimated for Fourier
and Hilbert transform Silt/Clay (A), Fine (B), Coarse/Micro (C) and Macro parti-
cles/flocs (D). The red lines shows the scaling range and the slope of the best fit in
this range.

behaviour observed in the high frequency region (0.09Hz - 0.002Hz).

This scale range has been taken for the extraction of the scaling exponents. The

scaling exponent function ξ(q) has been extracted for all size classes using arbitrary

order Hilbert spectral analysis (Appendix C). The exponent ζ(q) = ξ(q) − 1 is com-

puted. Non-linear functions are visible for each size classes (Fig. 4.6). The Hurst

number H = ζ(1) = ξ(1) − 1 is estimated for each classes: we find H = -0.17; -0.19;

-0.38; -0.26 for increasing size classes. The high H values are observed in the larger

size classes and low H values are observed in lower size classes. This parameter

determines the rate at which mean fluctuations grow (H > 0) or decrease (H < 0)

with the scale. We found negative H values in the present study. Negative H val-

ues have not been found in many studies. Recently in Lovejoy and Schertzer (2012,
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2013) it was argued that Haar wavelet analysis can be used to extract the H values

with any sign for the exponent (−1 < H < 1). Such sign indicate that small scales

show larger fluctuation than large scales. If ζ(q) is linear, the statistical behaviour is

mono-scaling; if ζ(q) is non-linear and concave/convex, the behaviour is defined as

multi-scaling, corresponding to a multi-fractal process. The concavity of this func-

tion is a characteristic of the intermittency: the more concave is the curve, the more

intermittent is the process (Frisch, 1995; Schertzer et al., 1997; Vulpiani and Livi,

2003; Lovejoy and Schertzer, 2012). The slight curvature which is found here for all

size classes (Fig. 4.6) is hence a signature of intermittency in the particle dynamics.

Figure 4.6: Scaling exponents ζ(q) estimated for different particle sizes, using the
HSA method. In all cases the Hurst exponent is negative, with values between -0.17
and -0.38. The curves are all slightly nonlinear, sign of intermittency.

4.3.4 Intermittent concentration dynamics

We perform here an analysis of intermittency of concentration dynamics consid-

ering two indicators of this particle concentration: cp(670) and total volume con-
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centration (Cvol−total). At first order, cp(670) is driven by the suspended particulate

matter (SPM). We observe here a large variability in the cp(670) data (Fig. 4.7A). The

total volume concentration of the P SD has been derived for each time step using

Eqn. 4.2. The derived Cvol−total shows large fluctuation in its magnitude (Fig. 4.7B).

The turbulent power spectrum derived for these series shows 2 scaling regimes sim-

ilar to the size classes (Fig. 4.7C and Fig. 4.7D). A good scaling between 0.002Hz -

0.09Hz is observed (Fig. 4.7C and Fig. 4.7D). Hence the region between 0.002 to

0.09 Hz (10 sec. to 8 min.) has been identified for the multi-scaling analysis. The

structure function scaling moment function derived for this series shows a non-

linearity and concavity in its shape (Fig. 4.7E). TheH value derived for the Cvol−total

is slightly negative; H = −0.08. The scaling moment function of the cp(670) showed

a non-linearity in its behaviour showing its intermittent characteristics (Fig. 4.7E).

We find hereH = −0.06 which is quite similar to Cvol−total . Globally, for power spec-

tra as well as for their intermittency properties, both proxies of SPM show similar

scaling properties. These two different indicators of particle concentrations show

quite similar dynamics and statistical intermittent properties.

4.4 Conclusions

This work analysed the intermittency and scaling properties of particles using the

AHSA method. The intermittent transport of particles in complex flows, like in

coastal waters, is very important for the study of partition dynamics, erosion pro-

cesses, ecosystem modelling, sediment transport and turbidity dynamics. Suspended

particle dynamics in turbulent flows are complex; some studies showed preferential

concentration (Eaton and Fessler, 1994; Squires and Eaton, 1991) and some other

studies showed multifractal repartition according to the Stokes number (Bec, 2005;

Yoshimoto and Goto, 2007). We thus expect here also, in the natural environment

to find intermittent particle dynamics.

This work has analysed the intermittency and scaling properties of the PSD us-

ing different aspects. We have time series of normalized volume concentration of
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(A) (B)

(C) (D)

(E)

Figure 4.7: Time series of 3000 samples of cp(670) in (A), Time series of 3000 sam-
ples of Cvol−total in (B), Turbulent power spectrum of cp(670) and turbulent power
spectrum of Cvol−total showing different scaling regimes (The scaling regime indi-
cated as red is used for the scaling exponent computation) in (C and D) and scaling
moment function of cp(670) and Cvol−total in (E). The Hurst exponent values are very
small but the curve is strongly non-linear.

different size classes of PSD and Shannon entropy which have been derived from

number density of PSD. Here we showed the intermittency of particles for differ-

ent size classes. The cp(670), a proxy of the suspended sediment concentration, and

the total volume concentration (Cvol−total) showed an intermittent and multiscaling
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properties in their dynamics.

Turbulent scaling of these parameters has been derived through both Fourier

power spectra and spectra derived through HSA. The scaling moment function de-

rived for Cvol−total and cp(670) are showing similar non-linear curve stressing the

intermittency in their dynamics. The scaling moment functions derived for each

size class of the particle are also non-linear. The curvature of the spectrum for vari-

ous size class shows the intermittency of the particles dynamics in different sizes.

We may note also that the Hurst exponent derived for the velocity components

and the particle concentrations are negative. This negative sign indicates that small

scales show larger fluctuations than large scales. We have here no theoretical in-

terpretation to propose to these values, which could be related to the particular

statistical characteristics of a bottom boundary layer flow.

This multi-scaling analysis has been tested only in the bottom of the highly dy-

namic coastal waters of the Eastern English channel. Such analysis is an illustration

of the potential provided by LISST data, with many particle size classes recorded at

each time steps. It may be applied to other time series in the open ocean, coastal

waters and also fresh water situations, in order to provide comparison and help to

look for universal properties.

4.5 Appendices

Appendix A Empirical Mode of Decomposition (EMD)

Hilbert Spectral Analysis (HSA) and Empirical Mode of Decomposition (EMD) have

been introduced by Norden Huang and collaborators in the end of the 1990s (Huang

et al., 1998) to locally extract amplitude and frequency information in a time series.

It was mainly introduced for non-linear and non-stationary time series. The first

step of this approach is EMD. The objective of the EMD method is to decompose

a signal into a series of modes. Each component is defined as an intrinsic mode

function (IMF) satisfying the following conditions: (1) In the whole data set, the
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number of extrema and the number of zero crossings must either equal or differ at

most by one. (2) The mean value of the envelope defined using the local maxima

and the envelope defined using the local minima are zero (Huang et al., 1998; Huang

and Wu, 2008). An iterative algorithm was proposed to extract successive IMF from

time series. We do not reproduce all the details of this algorithm here and refer to

original publications (Huang et al., 1998, 1999).

3.47 S 6.42 S

10.13 S 16.21 S

26.56 S

1.2 M

3.2 M

10.0 M

1.09 H

4.63 H

15.33 H

43.53 S

2.0 M

5.5 M

21.0 M

1.80 H

6.15 H

A)

B)

Figure 4.8: Time series of of cp(670) in (A), IMF retrieved through the EMD methods
in (B), the time scale is increasing with the mode from C1 to C17

The decomposition process stops when the residue, rn, becomes a monotonic func-

tion or a function with only one extrema from which no more IMF can be extracted.
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At the end of the decomposition, the original time series x(t) is decomposed into a

sum of n modes and a residue:

x(t) =
n∑
j=1

cj(t) + rn(t) (4.7)

where cj(t) are IMFs and rn(t) is the residue. In this decomposition, each mode has

a decreasing characteristic frequency. If N is the number of points of the original

series, we have: n ≈ log2(N ), hence in general, 10 ≤ n < 20 (Flandrin and Goncalves,

2004; Huang et al., 2008).

Appendix B Hilbert Spectral Analysis (HSA)

Figure 4.9: Representation of the joint pdf in log scale of the cp(670) fluctuations in
an amplitude-frequency space.

Hilbert Spectral Analysis (HSA) is the second step of the analysis, which is ap-
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plied to each mode cj(t) extracted for the time series x(t) using the procedure dis-

cussed in Appendix A. For any function x(t), its Hilbert transform y(t) is written

as:

y(t) =H{x}(t) =
1
π

∫ +∞

−∞

x(τ)
t − τ

dτ (4.8)

The analytic function z(t) estimated from x(t) using the Hilbert transform y(t):

z(t) = x(t) + iy(t) = x(t) + iH{x}(t) (4.9)

where i =
√
−1. The analytical function is estimated for each mode and at each time

step. For each mode and each time step a local amplitude a and phase function θ

can be estimated:

a(t) = (x2 + y2)1/2 (4.10)

θ(t) = tan−1(y/x) (4.11)

The local frequency is estimated from the phase function:

ω =
dθ
dt

(4.12)

The HSA represents a time-amplitude-frequency analysis. This helps to esti-

mate a joint PDF p(ω,A) of frequency and amplitude. From this, a marginal spec-

trum is estimated:

h(ω) =
∫ ∞

0
p(ω,A)A2dA (4.13)

This h(ω) spectral analysis is done through a Hilbert transform and can be compared

to the Fourier spectrum E(f ) obtained through the classical Fourier analysis (Huang

et al., 2008).
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Appendix C Arbitrary order Hilbert Spectral Analysis (AHSA)

The equation obtained in the previous section giving h(ω) is a second order statisti-

cal moment; it can be generalised into arbitrary order moment (Huang et al., 2008,

2011), by taking a moment of order q:

Lq(ω) =
∫ ∞

0
p(ω,A)AqdA (4.14)

where q ≥ 0. In case of scale invariance we can write

Lq(ω) ≈ω−ξ(q) (4.15)

where ξ(q) is the corresponding scaling exponent, which is related to the classical

structure function by ξ(q) = 1+ζ(q) (Huang et al., 2008). For example for a fractional

Brownian motion ξ(q) = 1 + qH . Here we are interested by the “Hurst" exponent

given by H = ζ(1) = ξ(1) − 1. H can positive or negative and it characterises the

degree of stationarity of the scaling process. The non-linearity of ζ(q) is related to

the intermittency of the time series: the more non-linear the scaling exponent ζ(q),

the more intermittent is the series (Schmitt and Huang, 2015).
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CHAPTER5

SCALING ANALYSIS OF OCEAN SURFACE

TURBULENT HETEROGENEITIES FROM SATELLITE

REMOTE SENSING: USE OF 2D STRUCTURE

FUNCTIONS.

This chapter was published as Renosh et al., 2015. In open access available from

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126975

Renosh P. R., Schmitt F. G., Loisel H., (2015) Scaling Analysis of Ocean Surface Tur-

bulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Func-

tions. PLoS ONE 10(5): e0126975. doi:10.1371/journal.pone.0126975.

Abstract

Satellite remote sensing observations allow the ocean surface to be sampled syn-

optically over large spatio-temporal scales. The images provided from visible and

thermal infra-red satellite observations are widely used in physical, biological and

ecological oceanography. The present work proposes a method to understand the

multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and

the Sea Surface Temperature (SST), rarely studied. The specific objectives of this

study are to show how the small scale heterogeneities of satellite images can be
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Chapter 5.

characterised using tools borrowed from the fields of turbulence. For that purpose,

we show how the structure function, which is classically used in the frame of scal-

ing time series analysis, can be used also in 2D. The main advantage of this method

is that it can be applied to process images which have missing data. Based on both

simulated and real images, we demonstrate that coarse-graining (CG) of a gradient

modulus transform of the original image does not provide correct scaling exponents.

We show, using a fractional Brownian simulation in 2D, that the structure function

(SF) can be used with randomly sampled couple of points, and verify that 1 million

of couple of points provides enough statistics.

5.1 Introduction

One of the main features of geophysical fields is their huge fluctuations occurring

over wide ranges of spatio-temporal scales. Here we consider the heterogeneities

and intermittencies in 3D ocean turbulence. We use for this the framework of

homogeneous and locally isotropic turbulence that originated in the work of Kol-

mogorov (Kolmogorov, 1941b). In this framework, energy is supplied, introduced

or produced in the fluid at a relatively large scale, and is successively passed by

interactions between eddies or their instabilities. This is performed through a spec-

trum of smaller and smaller eddies where inertial forces are dominant. After suc-

cessive cascades steps, these eddies are conveyed to eddies of size comparable to

the Kolmogorov length scale η, where viscosity plays a major role in transferring

their kinetic energy into heat. This was formalised using the velocity fluctuations at

scale l; for time series it writes ∆Vl =| V (x + l)−V (x) | (V is the velocity); and for an

isotropic 2D field it can be written ∆Vl =‖ V (M) −V (N ) ‖, where M and N are two

points and l = d(M,N ):

〈∆Vl〉 = Cε1/3l1/3 (5.1)
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where 〈〉 means statistical average, C is a constant and ε represents the dissipation.

This can also be written in the spectral space as follows (Obukhov, 1941b):

Ev(k) = C1ε
2/3k−5/3 (5.2)

where C1 is another constant, Ev(k) is the Fourier spectral energy of velocity, and

k is the wave number. This corresponds to a situation of scale invariance: velocity

fluctuation have no characteristic scale with a power-law scale dependence. A simi-

lar scale dependence can be obtained for a passive scalar θ, with a power-law of the

form (Obukhov, 1949; Corrsin, 1951):

Eθ(k) = C2ε
−1/3χk−5/3 (5.3)

where Eθ(k) is the Fourier spectral energy of passive scalar, C2 is another constant,

and χ is the dissipation of scalar variance (analogous to ε as dissipation of kinetic

energy). It is now realized for a long time that turbulence produces intermittency,

i.e. huge local fluctuations in energy and passive scalar fluxes ε and χ, and large

variations in velocity and passive scalars (Frisch, 1995). Since the proposals of

Obukhov and Kolmogorov in 1962 (Obukhov, 1962; Kolmogorov, 1962) those quan-

tities are characterized using local averages εl and χl at scale l:

εl(x) =
1
al

∫
Bl(x)

ε(x′)dx′; χl(x) =
1
al

∫
Bl(x)

χ(x′)dx′ (5.4)

where Bl(x) is a bowl of radius l centered in x and al = 4
3πl

3 is its volume. This is

called the “coarse graining”method (CG). This method is used to change the reso-

lution of a positive, intermittent field. These local averages have scaling statistical

properties of the form (Frisch, 1995; Lovejoy and Schertzer, 2013):

〈εql 〉 ≈ l
−Kε(q); 〈χql 〉 ≈ l

−Kχ(q) (5.5)
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where q is the statistical moment, Kε(q) and Kχ(q) are scale invariant moment func-

tions; these are also second Laplace characteristic function and as such are convex

functions. They verify Kε(1) = 0 and Kχ(1) = 0 by conservation of fluxes. Another

approach to characterize intermittency and local fluctuations in the studied fields

is to directly characterize the fluctuations of velocity and passive scalar using struc-

ture functions (Frisch, 1995):

〈∆V q
l 〉 ≈ l

ζv(q); 〈∆θql 〉 ≈ l
ζθ(q) (5.6)

where ζv(q) and ζθ(q) are the scaling moment functions that characterize the fluc-

tuations of velocity and passive scalar (Schmitt et al., 1996). This is called the struc-

ture function method (SF). In the following, we focus on the passive scalar case,

since we will consider Chlorophyll-a and Sea Surface Temperature, which are trans-

ported scalars and may be compared to passive scalars. The scaling moment func-

tions for both CG and SF methods are derived using remotely sensed 2D Chl-a and

SST images from MODIS Aqua.

In the next section we present the two-dimensional data analysis techniques us-

ing CG and SF methods. The next section deals with the test of these two methods

for various 2D stochastic simulations. Finally as an illustration, the methods are

applied to two real images (Chl-a and SST) measured from MODIS Aqua. An of-

ten assumed link between scaling exponents estimated using CG and SF methods is

tested on these images and shown to be wrong except for low order moments.

5.2 Methods

5.2.1 Data analysis techniques

Multifractal methods have been widely applied to time series, but there are not

many studies applying such approaches to 2D data, especially in the field of ocean

color remote sensing. Some of them considered a local gradient transform in order

to identify currents and oil spills (Turiel et al., 2005, 2009; Nieves et al., 2007; Yahia
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et al., 2008). Other studies transformed satellite Chl-a or SST image data into a

positive singular field using a gradient modulus transform (Montera et al., 2011;

Lovejoy et al., 2001b). Below we will consider this method and compare it to the

structure functions method.

Coarse Graining (CG) method. One method which has been applied in several

studies is to produce a positive field, called “multifractal random measure”, from

a non stationary field such as Temperature and Chlorophyll-a (Turiel et al., 2005,

2009; Montera et al., 2011). For that purpose, the gradient modulus of the field θ is

calculated as follows:

ϕ =

√(
∂θ
∂x

)2

+
(
∂θ
∂y

)2

(5.7)

using at the smallest resolution the discrete transformation:

ϕ2
i,j =

(
θi+1,j −θi,j

a

)2

+
(
θi,j+1 −θi,j

a

)2

(5.8)

where a is a constant corresponding to grid size and θi,j is the value of the field

θ at pixel position (i, j). This relates a fluctuating field θ (a passive scalar) to an

intermittent and passive field ϕ. The latter is taken as the multifractal measure at

the best resolution l0. The field ϕl at larger scales l ≥ l0 is then estimated by coarse

graining:

ϕl(x,y) =
1
al

∫
Bl(x,y)

ϕ(x0, y0)dx0dy0 (5.9)

This is usually done by taking an image of size 2n×2n, and degrading the resolution

in p steps until scale l = 2pl0 (2 ≤ p ≤ n). At each step, one goes from resolution l to

2l by taking a local average in a square of 4 values and giving to the larger scale cell

this average value. The resolution is degraded recursively. As given by Eq. (5.5), the

scale-dependant field has scaling statistics with a scale invariant moment function

K(q), 〈ϕql 〉 ≈ l
−K(q). Experimentally, the function K(q) is estimated as the regression

of log〈ϕql 〉 versus log(l), for each value of q (in practice q ≥ 0 varies from 0 to 5).
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Structure Function (SF) method. In fact the application of the gradient modulus

method is not necessary to consider the intermittency properties of a 2D field, θ,

such as temperature and Chlorophyll-a. Let us consider two points M and N be-

longing to the field, and their distance d(M,N ). The moments 〈| θ(M) − θ(N ) |q〉

versus d(M,N ) are considered. This can be estimated directly by taking all couple

of points (M,N ) in the 2D domain and discretizing the distance d(M,N ) in small in-

tervals. A log-log regression of 〈| θ(M)−θ(N ) |q〉 versus d(M,N ) gives the exponent

ζθ, following the law

〈| θ(M)−θ(N ) |q〉 ≈ d(M,N )ζθ(q) (5.10)

where “≈”means scaling relation. In practice, for an image of size n×n, M is chosen

among n × n values and the same for N , which corresponds to consider n4 couple

of points. If n = 103, this will provide 1012 couple of points, which is usually much

too computationally expensive, even for modern computers. It is then necessary to

use a numerical method to optimize the computations. M and N are here randomly

taken. The Np number of couple of points (Np � n4) are taken small enough for a

computational realistic time (less than half an hour for each image for a powerful

personal computer), and large enough to have converged statistics. The exponent

function ζθ(q) is directly estimated from such images using the randomly selected

couple of points, Np.

5.2.2 Tests on 2D stochastic simulation

CG Method. In the following, the coarse graining method is tested in 2D with two

classical cascade models: the β model and the Log-normal model.

β model 2D cascade. This is one of the first and simplest cascade models to de-

scribe the intermittency in turbulence, also called as the black and white model

(Frisch et al., 1978). This model was introduced under this name by Frisch et al.

(Frisch et al., 1978), but it has already been discussed by Mandelbrot (Mandel-

brot, 1974) using a “pulses into pulses”approach originally proposed by Novikov
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and Stewart (Novikov and Stewart, 1964). The β-model is a discrete multiplica-

tive model. The multiplicative cascade yields a small scale field ε(x) at the smallest

scale, as the product

ε(x) =
n∏
i=1

Wi,x (5.11)

of n independent realisations Wi,x of a random variable W (here x is the position

and i is the level in the cascade).

The β-model is a binomial model with only 2 possibilities for the value of W

(0 < β < 1): 
Pr(W = 0) = 1− β

Pr
(
W = 1

β

)
= β

(5.12)

We can verify that such field is normalized:

〈W 〉 =
∑

Wi Pr(Wi) =
(

1
β

)
β = 1 (5.13)

The statistical moments of the random variable W are:

〈W q〉 =
∫
W qPr(W )dw =

n∑
i=1

W
q
i Pr(Wi) = β1−q (5.14)

The cascade field ε is built by multiplying n independent realisations of W . Hence

its moments write:

〈εq〉 = 〈

 n∏
i=1

Wi,x

q〉 =
n∏
i=1

〈(Wi,x)
q〉 = 〈W q〉n = β(1−q)n (5.15)

Since each cascade step is associated with a scale ratio of 2 from one scale to the next,

we have λ = 2n, where λ is the total scale ratio. Hence we have the scaling relation

for moments 〈εq〉 = λK(q) with K(q) = c(q−1), where c = − log2β is the co-dimension.

Which give rise to Eq. (5.5) by coarse-graining. The scaling moment function K(q)

is linear, and corresponds to a mono-fractal process. A realisation with n = 10 and

β = 0.9 is shown in Fig. 5.1A. Fig. 5.1B shows the CG method applied to this field
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and Fig. 5.1C, the scaling moment function.

A) B)

C)

Figure 5.1: A) simulation of a 2D β model with n = 210 and β = 0.9 (ε is displayed),
B) coarse grained moments for q=1 to 5 and C) moment scaling functionK(q), where
the experimental estimation is shown in dots compared to the theoretical prediction
as a dotted line, with c = 0.15.

Lognormal 2D cascade. The cascade generation for the log-normal model is simi-

lar to the β model cascade. The only difference is that here we useW = eg , where g is

Gaussian. As above, the scaling moment function for the dissipation is 〈εq〉 = λK(q),

where K(q) = log2〈W q〉. To understand the scaling moment function, some basic

characteristics of a log-normal random variable are now provided. The moment

generating function of a log-normal series (X) of mean m and standard deviation σ

(of logX) is 〈Xq〉 = exp(qm+ q2σ2/2). This can be applied to the moment generating

84



Chapter 5.

function for dissipation:

K(q) = log2〈W
q〉 =

qm+ q2σ2/2
log2

(5.16)

Since we want to have K(q) = µ
2

(
q2 − q

)
, where µ = K(2) is the intermittency

parameter, the adequate choice for the discrete log-normal cascade is to take for g,

a Gaussian random variable of mean m = −µ log2
2 and variance σ2 = µ log2.

A realisation of discrete log-normal cascade has been produced with n = 10 and

µ = 0.3 (Fig. 5.2A). The coarse-gaining method is applied to this image in Fig. 5.2B,

and the resulting K(q) function provided by Eq. (5.16) in Fig. 5.2C. The agreement

is excellent until moment of order 3; this is a statistical bound of the estimation of

moments which is theoretically predicted (Schertzer and Lovejoy, 1992).

SF Method. The proposed structure function method has been validated with a 2D

fractional Brownian field with H value varying from 0.1 to 0.9 with an increment of

0.1.

Fractional Brownian motion (fBm). A generalization of Brownian motion, was

introduced by Kolmogorov in 1940 (Kolmogorov, 1940). This has been extensively

studied by Mandelbrot and his co-workers in 1960s (Mandelbrot and Van Ness,

1968) and since then, it is considered as a classical scaling stochastic process for time

series analysis. For time series, a f Bm, denoted by BH (t), is a zero-mean Gaussian

process with stationary increments characterized by the self-similarity parameter

H , also known as the Hurst exponent. It possesses the following rescaling property:

BH (Λt) d= ΛHBH (t), ∀Λ > 0 (5.17)

Where d= means equality of probability distributions. It leads to linear moment

functions using structure functions Eq. (5.6): ζ(q) = qH . This can be done also in

2D. The bi-dimensional isotropic fractional Brownian motion with Hurst parameter
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A) B)

C)

Figure 5.2: A) Simulation of a 2D log-normal image using a discrete cascade model
with µ = 0.3, B) coarse grained moments from q=1 to 5 and C) the correspond-
ing moment scaling function experimentally estimate as dots and theoretical value
K(q) = µ

2

(
q2 − q

)
as a dotted line.

H is a centered Gaussian field BH with an autocorrelation function (Kamont, 1995):

〈B(~x)B(~y)〉∝‖ ~x ‖2H + ‖ ~y ‖2H − ‖ ~x − ~y ‖2H ; 0 < H < 1 (5.18)

where ~x, ~y ∈ R2 and ‖ . ‖ is the usual Euclidean norm.

In the present study we simulated 2D fractional Brownian field for various H

values (H = 0.1, 0.2 .., 0.9) using an algorithm and code described in recent works

(Barrière, 2007; Nicolis et al., 2011) (Fig. 5.3A). These images are analysed using

2D SF method for various randomly selected data (Np = 0.1 million, 0.5 million,

1.0 million, 5.0 million and 10.0 million). The scaling moment function has been
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derived for each image for different iteration number. H has been derived from the

moment scaling function using H = ζ(1). Since satellite images often have missing

values due to cloud coverage, we have also applied the SF approach to irregular

images, where some part of the image have been removed. Fig. 5.3A shows some

simulations for various values of H and Fig. 5.3B compares H estimations for full

images and for images with some rectangles removed. This is tested for various

values of Np. We see that for Np = 106 the method works very well (with an error

of 3.88 %) even when there are missing values, and the estimated exponents are

very precise. In the following we thus choose Np = 106, since it is computationally

reasonable and provide converged statistics for scaling exponents. To estimate the

standard deviation of the estimated values with respect to full image and percentage

of missing values will need a systematic study, which will be the topic of a future

work.

5.3 Comparison of the CG and SF methods

Two recent studies have proposed to analyse the scaling of satellite images by ap-

plying first a gradient modulus approach (Montera et al., 2011; Nieves et al., 2007),

in order to have a positive intermittent field, and then appying the CG method. The

KCG(q) exponent function is retrieved and the authors assume that:

KCG(q) = qH − ζ(q) (5.19)

where ζ(q) is the scaling exponent characterizing the Chl-a or SST fluctuations.

Based on one simulated image, and two real satellite images we compare this lat-

ter approach with the one proposed here. We extract KCG(q) as described above,

and we directly estimate ζ(q) using the 2D structure functions. We then compute

KCG(q) + ζ(q): if Eq. 5.19 is correct this should be linear (= qH = qζ(1)).
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A)

B)

Figure 5.3: A) Simulation of 2D fractional Brownian motion for various Hurst ex-
ponents (H = 0.1, 0.2 .., 0.9). The white rectangles are the space where the data
have been removed to test this method for deriving H using spatial Structure func-
tion method. The 2D structure function was applied to each full image and also to
the same image with white rectangles removed, in order to show that this scaling
method can be applied to irregular images. B) For each image, comparison of the H
value estimated using the structure function for the full image and for images with
missing values.

Multifractal field from cascade and fractional integration

We first test Eq. 5.19 using a multifractal simulation done by performing a cas-

cade and then a fractional integration (Schertzer et al., 1997). As done in Lovejoy
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et al.(Lovejoy et al., 2001b), we simulate a 2D log-normal multifractal image with

H = 0.35 and µ = 0.1 (Schertzer and Lovejoy, 1989) (Fig. 5.4A). The SF is directly

applied to the image itself and the CG is applied to its gradient modulus. The scal-

ing moment spectrum is derived for each method (Fig. 5.4B and 5.4C). The moment

scaling functions for both SF and CG are derived for various moments from 0.1 to

5 with an interval of 0.1. KCG(q) is non-linear and ζ(q) is almost linear and Eq. 5.19

is not verified: KCG(q) + ζ(q) is close to qH for q ≤ 2 but for larger moments it is no

more the case (Fig. 5.4D).

A) B)

C) D)

Figure 5.4: A) Simulation of a 2D log-normal multifractal image with H = 0.35 and
µ = 0.1. B) Scaling of the SF; C) Scaling analysis when gradient modulus is applied
on the image shown in A; D) representation of different exponents.

5.3.1 Scaling analysis on a Chl-a image of MODIS aqua

The standard MODIS Chl-a imagery available from the Goddard Space Flight Cen-

tre is produced via OC3M algorithm (O´ Relly et al., 2000) has been used for the
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present study. The OC3M algorithm is a fourth order polynomial equation and ap-

plies the maximum ratio of the remote sensing reflectance at 443 nm (blue) to 550

nm (green) or 490 nm (blue) to 550 nm (green). These proposed methods have been

applied to real images of Chl-a from the Mauritanian coast sampled on 11-March-

2003 (Fig. 5.5A). A cloud free image (512 × 512 pixels) has been extracted for the

analysis (square region marked in Fig. 5.5A). The gradient modulus of Chl-a (∆ Chl-

a) has been derived from the Chl-a image (Fig. 5.5B). This gradient modulus gener-

ates a positive field, the CG method is adopted for analysing this positive field. The

SF method has been applied directly to the Chl-a image. We have chosen the ran-

dom picking method tested in section 2 with Np = 106 couple of points. Here also

we could observe the power-law behaviour of the SF. The radially summed power-

spectra of the Chl-a image has been derived for the cloud free part of the image

(512 × 512 pixel). The derived spectral exponent α for the radially summed image

is 1.79 (Fig. 5.5C). The constants derived for the Chl-a image are shown in Table 5.1.

The ζ(q) derived for the Chl-a image also follows a non-linear convex curve showing

intermittency in the spatial distribution of Chl-a (Fig. 5.5C). Fig. 5.5D shows that

Eq. 5.19 is not verified for q ≥ 1.7.

Region Sampling date Parameter H α
Mauritanian Coast 11-Mar-2003 Chl-a 0.37 1.79
Mauritanian Coast 11-Mar-2003 SST 0.41 1.80

Table 5.1: The exponents (H and α) derived for Chl-a and SST images for Maurita-
nian region. The Hurst exponent H derived through SF (H = ζ(1)).

5.3.2 Scaling analysis of MODIS SST

These proposed methods (CG and SF) have also been applied to an image of SST

sampled simultaneously with Chl-a from the Mauritanian coast on 11-March-2003.

A cloud free image (512 × 512 pixels) has been extracted for the analysis (Fig. 5.6A).

The 2D power-spectra of the SST image has been derived. It follows a power-law be-

haviour with a spectral slope α = 1.8 (Fig. 5.6B) with some noise observed at smaller

scales. Similarly to Chl-a, the gradient modulus of the SST has been derived and CG
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A) B)

C) D)

Figure 5.5: A) Chl-a image from MODIS Aqua from the Mauritanian coast sampled
on 11 March 2003; the square indicates the 512 × 512 pixel of cloud free image
chosen for the analysis of Chl-a. B) Gradient modulus estimated for the latter square
image. C) Power-spectrum of the Chl-a image showing a scaling exponent α = 1.79.
D) Moment scaling function for the square image, using the CG and SF methods.
Eq. 5.19 is tested and found not to be correct for q ≥ 1.7.

method applied. Here also the scaling moment function derived for the SST follows

a non-linear concave curve showing the spatial intermittent characteristics of SST

(Fig. 5.6C). However its small value shows that this field is not very intermittent.

The proposed SF method has been directly applied to the SST image. The moment

scaling function of SST image derived follows a non-linear convex shape, showing

the intermittent characteristics of the spatial distribution of the SST (Fig. 5.6C). The

H derived through the SF method is H = 0.41 (H = ζ(1)). The constants derived for

the SST image are shown in Table 5.1. Here we also can see that these two exponents

fall away from the typical linear qH line for q ≥ 1.5.

The values of the spectral exponent α derived here for the Chl-a and SST satel-
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lite images are in good agreement with the range of α values derived from in situ

measurements of fluorescence (as a proxy of Chl-a) and temperature (Seuront et al.,

1996b). The estimated values of the scaling parameter H for Chl-a and SST show

also very good agreement with previous studies (Seuront et al., 1996b; Lovejoy et al.,

2001a; Verrier et al., 2014). Concerning the µ value, let us note that this intermit-

tency parameter could be more sensitive to the local conditions. It can be estimated

using structure functions as µ = KCG(2) = 2ζ(1) − ζ(2). For Chl-a and SST we ob-

tain here 0.13 and 0.012 respectively. For Chl-a, this value is larger than the one

estimated from Eulerian time series, ranging from 0.065 to 0.074 (Seuront et al.,

1996b,a). On the other hand, the SST field considered here seems smoother than

found in other studies since µ = KCG(2) in other published studies range from 0.05

to 0.19 (Seuront et al., 1996b; Lovejoy et al., 2001a; Verrier et al., 2014; Seuront

et al., 1996a, 1999).

5.4 Discussion: the role of signs

We have considered here the scaling exponent KCG(q) obtained by coarse-graining a

positive field, and the exponent ζ(q) obtained directly through structure functions.

We found, using a simulation and two satellite images, that Eq. 5.19 is not verified,

an equation assuming that the gradient modulus applied to a non-stationary field

retrieves the basic scaling information. In fact, such relation is not verified because

the local sign contains information; when performing a gradient modulus, the sign

information is lost. We check this hypothesis here by considering a fBm simulation

with H = 0.6. We estimated a sign information from the 2D fBm simulation as

follows. We computed the two components of the gradient (in the x and y directions)

and took the sum of the two terms. If this sum is positive, we choose to consider a

sign information as 1 and 0 if the sum is negative. This way the sign information of

the gradient is transformed into a matrix containing only 0 and 1 values. The figure

obtained (Fig. 5.7A) does not seem to be a noise; to check this we consider its scaling

by using a coarse-graining (Fig. 5.7B). We obtain a scaling law of the form µ(q − 1)
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A) B)

C)

Figure 5.6: A) SST image from MODIS from the Mauritanian coast sampled on
11 March 2003. B) 2D power-spectrum of the image showing a scaling exponent
α = 1.80. C) Moment scaling function, using the CG and SF method. Eq. 5.19 is
approximately valid, coming from the fact the KCG(q) is very small, corresponding
to a very regular field.

with µ = 0.09. This is similar with β-model and shows that the sign information has

a structure; such structure is lost when performing a modulus and we can assume

the same property for real images: such analysis is left for future studies.

5.5 Conclusion

We have considered here several methods to estimate the scaling properties of ocean

colour images, in relation with turbulence. We have first recalled data analysis

methods, mainly coarse graining after taking the gradient modulus, and 2D struc-

ture functions. Similar to many atmospheric processes, oceanic processes are also

governed by complex turbulent processes. These processes cannot be fully charac-

terised by a single scaling exponent such as α. Additional multifractal parameters
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A)

B)

Figure 5.7: The gradient sign information of the 2D fBm derived for H=0.6 in A)
and its moment scaling function in B).

are required to fully characterise these multi-scaling properties. Even though the

CG method is successful in many applications, it suffers from several approxima-

tions that can add some uncertainties in the estimation of multifractal parameters.

In this context, we highlighted here an alternative tool such as 2D structure func-

tion to overcome the approximations related to the CG method. This method of 2D

structure functions has rarely been documented and studied for geophysical image

analysis due to computational complexity constraints. We have obtained several

results in this framework:

• Since the structure function approach needs to consider n4 couple of points,

where n is the linear size (in pixels) of an image, it is too much computer

time consuming. We shown using fBm simulations that taking 106 couple of

points randomly is enough for an adequate estimation of the structure func-
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tion scaling exponents. We showed also that this method works for images

with missing data, an important aspect since many real images have missing

pixels due to cloud coverage.

• We compared the Coarse graining scaling exponent KCG(q) from the gradient

modulus, to qH − ζ(q), and found that such relation is not verified, indicating

that the gradient modulus looses information (the signs have a scaling struc-

ture) and hence this method cannot be safely used instead of SF.

• We considered two images from MODIS Aqua (Chl-a and SST) and showed on

these examples that scaling approach using SF and Np = 106 couple of points

is adequate; we also showed that the spectral exponent for these examples is

close to 5/3 characteristic of passive scalar fully developed turbulence. Such

2D multifractal property of Chl-a and SST is a 2D generalistic of previous

results obtained for time series (Seuront et al., 1996b,a, 1999).

• Since Chl-a and SST are not conservative, Chl-a can be influenced by biological

activities and SST can be influenced by the surface heat flux. These biological

and physical processes can have influence on the scaling exponents. These two

parameters may show different scaling properties for in situ measurements

as shown in other studies (Seuront et al., 1996b,a). The spectral exponent α

derived for Chl-a and SST satellite images are in good agreement with the in-

situ measurements of fluorescence by Chl-a and temperature (Seuront et al.,

1996b,a, 1999).

• The present paper compared CG and SF methods on a real image. We have

considered here the question of missing data on a synthetic fBm field; the

same has been done on real images and it was confirmed that the method is

also providing the same scaling exponents for real images (not shown here).

Let us note that this method can also be applied to the 2D velocity field obtained

from altimeter data, since the velocity can also be intermittent and scaling. As a

perspective, in a following work, we will use the SF method with Np = 106 couple
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of points, to estimate the ζ(q) function, fit with the data using a log-normal approx-

imation with 2 parameters (H = ζ(1) and µ = 2H − ζ(2)) and consider the values of

these parameters in several locations (open ocean, coastal waters, upwelling region,

etc.). For that purpose, several images collected over different oceanic regions char-

acterised by contrasted biological and physical environment will have to be studied.
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MULTI-SCALE ANALYSIS OF OCEAN COLOUR AND

SEA SURFACE TEMPERATURE IMAGES OF

MODIS-AQUA: STATISTICAL CHARACTERISATION

USING TURBULENCE TOOLS

Abstract

Satellite remote sensing is a powerful tool for understanding many of oceanic pro-

cesses synoptically. The scaling and multi-scaling properties of these satellite prod-

ucts have been studied hardly in the framework of the turbulence theory. The main

objective of the present study is to understand the multi-scaling and multifractal

properties of the satellite images of ocean colour and sea surface temperature for

various oceanic regions using tools borrowed from the turbulence theory. For this

purpose, we have selected satellite ocean colour products of Remote sensing re-

flectance (Rrs), Chlorophyll-a (Chl-a) and thermal infra-red Sea Surface Tempera-

ture (SST). For understanding the spatial scaling associated with turbulence, it is

important to have a daily imagery of these products. As far as ocean colour remote

sensing is considered, it is very difficult to have a cloud free images for the under-

standing of scaling behaviour.
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For that purpose, we have identified seven contrasted regions of the global ocean,

characterised by high spatial heterogeneity in Chl-a and SST. Power spectral analy-

sis, a widely used tool in the marine environment and marine ecology to assess the

scaling properties of these scalars, especially in connection with turbulence have

been used for the present study. Here we use 1D and 2D Fourier power spectra to

understand the spatial scaling of Chl-a and SST. The 2D spectral slope β is derived

from the 2D power spectrum using radial sum of the power spectrum. The multi-

scaling properties of these images are also studied using the Structure Function (SF)

method. Using a lognormal fit, we have derived the multifractal parameters (Hurst

exponent H and intermittency parameter µ) of these images using SF method. The

β derived through power spectra and SF method show good agreement except SST

images. The derived multifractal parameters show variability in their values de-

pending upon the region. The scatter plot of µ versus H shows some clustering of

these parameters. The SST is showing low intermittency, Rrs high, and Chl-a shows

intermittency in between SST and Rrs for all the regions.

Cumulant scaling of these images is also performed for deriving H using log-

normal intermittency model. The H values derived through the SF method and the

cumulant scaling method also show good agreement with Chl-a data.

6.1 Introduction

The ocean is a complex physical system in which organism distributions are affected

spatially and temporally by the physical and biogeochemical processes on multiple

scales (Lubchenco and Petes, 2010; Doney et al., 2012). Theories of geophysical fluid

dynamics can explain many of the basic processes at different scales such as local

turbulence, eddy systems and ocean circulation (Pedlosky, 1982). The ocean colour

remote sensing is a tool used for the understanding of these spatial and temporal

changes synoptically. The spatial/temporal scale of a variable is the distance/period

over which it is relatively unchanged (Powell, 1995). The spatial heterogeneity of

the ocean is omnipresent and occurs at all scales (Steele, 1991; Levin and Whitfield,
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1994; Mitchell et al., 2008). These heterogeneities are quite common in biogeochem-

ical (Gruber, 2011; Hales et al., 2012), biophysical (Hsieh et al., 2005) and trophic

interactions (Litzow and Ciannelli, 2007; Brander, 2010) of the the aquatic environ-

ments.

The distribution of phytoplankton does provide key information about the phys-

ical and biological processes in the aquatic ecosystems (Denman et al., 1977; Steele,

1989; Abraham et al., 2000). Phytoplankton distribution has a unique feature at all

spatial scales. For instance, at global scale it defines rich ocean regions and outline

ocean biomasses at mesoscales (Falkowski et al., 1998). It highlights the importance

of the upwelling for the primary production and role of mixing in dispersion and

the ability of fronts to confine and accumulate phytoplankton (Yoder et al., 1994).

The Sea Surface Temperature (SST) is an important variable for the study of

the earth’s climate system, for weather forecasting, and for oceanographic research.

Patterns of SST reveal the complexity of the ocean surface currents, and large scale

SST anomalies in critical oceanic areas presage climate perturbations, such as El-

Nino events. The SST is a controlling variable in the coupling of the ocean and

atmosphere in terms of the fluxes of heat, moisture, momentum and greenhouse

gasses, such as CO2. The global distribution of the SST and its change with time and

space is of growing importance to many agencies worldwide (Donlon et al., 2007).

It includes climate variability monitoring, seasonal forecasting, operational weather

and ocean forecasting, military and defence operations, validating or forcing ocean

and atmospheric models, ecosystem assessment, and tourism and fisheries research.

The multiscale/multifractal properties of SST simulated from NEMO are studied by

Verrier et al. (2014). This study has been quantified the Hurst exponent H (one of

the important multifractal parameter) for SST simulation range from 0.32 to 0.76.

In Renosh et al. (2015) the 2D structure function methodology was proposed

for satellite image analysis. It was tested on simulated data and also on 2 sample

MODIS images. The present study is the continuation of this work, with more im-

ages analysed in several parts of the ocean.

The interpretation and analysis of data acquired by remote sensing are based on
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physical laws linked to the optical properties of the constituents of the ocean. There-

fore, it is essential to understand their spectral responses to explain the behaviour

of the various components of the surface layer of the oceans and their relationships

with their physical environment. The present study fits into this framework to char-

acterise the effect of turbulence on physical and biological processes. The distinc-

tive feature of our work is to understand the large spatial variability of ocean colour

(Chl-a) and SST. Studies based on the spectral analysis of these parameters from

satellite imagery are in most cases corresponding to average measurements over a

week, a month or even years. However, averaging measurements corresponds to

loose the information on small spatial scales. For this reason in our study, we focus

on instantaneous measurements of Chl-a, SST and remote sensing reflectance (Rrs).

6.2 Materials and methods

6.2.1 Data and study areas

We used MODerate resolution Imaging Spectrometer (MODIS) derived Chl-a, SST,

Rrs-443, and Rrs-555 data for the present study. MODIS is a sensor on-board Aqua

(Earth Observation System PM) satellite which capture data in 36 spectral bands

ranging in wavelength from 0.4 µm to 14.4 µm, and at varying spatial resolutions (2

bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). MODIS Aqua gives a global

vision of the earth surface during 3 days. Each MODIS image spans a distance of

2330 km with a spatial resolution of 1 km for the bands of interest here (Chl-a, SST,

Rrs-443, and Rrs-555). The most difficult task for selecting a region was the cloud

coverage. Level 2 imagery consists in the derived geophysical variables, such as Chl-

a, SST, Rrs-443, and Rrs-555 at 1 km spatial resolution covering the same area as the

original scene. In the present study we have selected 7 different regions (Argentina

Coastal waters (AC), Mauritanian Coastal waters (MC), North Eastern Arabian Sea

(NEAS), Angola Namibia coastal waters (ANC), Peru Chile coastal waters (PCC),

Celtic Sea (CS) and Eastern Mediterranean (EM)). The level 2 (spatial resolution 1.0
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km) products of MODIS-Aqua (Chl-a, SST, Rrs-443, and Rrs-555) for cloud-free days

has been selected for the present study. The date of sampling and the geographical

location of the study area are shown in Table 6.1.

AC MC NEAS ANC PCC CS EM
08/07/2013 05/02/2014 02/12/2013 05/04/2013 30/05/2012 29/03/2012 31/12/2009
10/02/2014 10/01/2013 05/03/2013 06/05/2012 – – –
19/04/2013 12/02/2014 07/01/2014 12/04/2014 – – –
30/07/2012 12/01/2013 12/10/2012 14/07/2011 – – –

– – 20/01/2013 23/04/2013 – – –
– – 20/11/2013 30/04/2013 – – –
– – 21/03/2013 30/07/2013 – – –

Table 6.1: The geographical locations with sampling date

Argentina Coastal waters (AC)
Mauritanian Coastal waters (MC)
North Eastern Arabian Sea (NEAS)
Angola Namibia Coastal waters(ANC)
Peru Chile Coastal waters (PCC)
Celtic Sea(CS)
Eastern Mediterranean (EM)

Figure 6.1: Study area maps from different regions of world ocean

6.2.2 Significance of the study regions

In this study, we have selected 7 different regions of the world ocean (Fig. 6.1) which

show high spatial heterogeneity in their biomass. The physical and biological fea-

tures of these areas are provided below.

Argentina Coastal waters (AC) Argentina coastal ocean is known to be an eu-

trophic ocean. Three large rivers discharge in this region: the Rio de la Plata, the
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Rio Negro and the Rio Colorado. The water masses of the Northern Argentine Con-

tinental Shelf are derived from the advected waters of subantarctic origin, local

source of continental river run-off and a locally generated salinity maximum (Lucas

et al., 2005). This region is also famous for the small scale local frontal zones (Acha

et al., 2004).

A) B)

C) D)

Figure 6.2: Chl-a, SST, Rrs-443 and Rrs-555 from AC region sampled on 10/07/2013.
The square indicates the 512×512 pixel of cloud free image chosen for the analysis.

Mauritanian Coastal waters (MC). The equatorial Atlantic ocean is a complex

region dominated by large scale westward currents (North Equatorial CurrentNEC)

and eastward counter currents (North Equatorial Counter Current NECC). The

North-West African upwelling region, where surface waters are driven away from

the coast by easterly trade-winds and cold, nutrient-rich waters, ascends from the

102



Chapter 6.

deep to fertilize the euphotic layer. Mauritanian coastal waters are the region having

high productivity and plankton biomass along with strong seasonal fluctuations in

the North-East Atlantic Ocean (Kuipers et al., 1993).

A) B)

C) D)

Figure 6.3: Chl-a, SST, Rrs-443 and Rrs-555 from MC region sampled on
10/01/2013. The square indicates the 512×512 pixel of cloud free image chosen
for the analysis.

North Eastern Arabian Sea (NEAS). The Arabian Sea is one of the most biolog-

ically productive oceanic regions, mainly due to the upwelling of nutrients during

the south-west monsoon (summer). The northern Arabian Sea continues to sustain

fairly high biological production after the upwelling season and during much of the

north-east monsoon season (winter) (Banse, 1987). The cooling of surface waters in

the winter season triggers the convection mechanism for injecting the high nutrient

subsurface waters into the surface, and cause high productivity during the winter
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season (Madhupratap et al., 1996).

A) B)

C) D)

Figure 6.4: Chl-a, SST, Rrs-443 and Rrs-555 from NEAS region sampled on
02/12/2013. The square indicates the 512×512 pixel of cloud free image chosen
for the analysis.

Angola Namibia Coastal waters (ANC). ANC is located in a region influenced by

a fast narrow and stable Angola Current of 250-300 m depth covering both the shelf

regions and the continental slope (Moroshkin et al., 1970). This water mass usually

has a temperature greater than 24◦C and a salinity of more than 36.4 psu in the

upper mixed layer. This water mass gradually becomes colder and less saline as it

travels south (Lass et al., 2000). During winter and spring, the hot Angola Current

waters, with temperatures between 27 and 30◦C, retreat to the north-west and are

replaced by slightly cooler waters with temperatures between 20 and 26◦C. This

periodic south-east advance and north-west retreat of the Angola Current seems
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to be linked to the intensity of upwelling that occurs later off the Namibian coast

(Meeuwis and Lutjeharms, 1990).

A) B)

C) D)

Figure 6.5: Different parameters from the Angola Namibia coastal waters sampled
on 30-April-2013, Chl-a in A), SST in B), Rrs-443 in C) and Rrs-555 in D). The square
indicates the 512×512 pixel of cloud free image chosen for the analysis.

Peru Chile coastal waters (PCC). The Peru-Chile current system is characterised

by a high biological production, supporting some of the largest fisheries on the

planet (Chavez and Messié, 2009). The inter-annual variability of Chl-a in this re-

gion is mainly associated with El Nino-Southern Oscillation (ENSO) perturbations

(Correa-Ramirez et al., 2012).

Celtic Sea (CS). CS is an extensive shallow area bordering the eastern North At-

lantic in 50◦ North. It is separated from the deep ocean by a rapidly descending
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A) B)

C) D)

Figure 6.6: Chl-a, SST, Rrs-443 and Rrs-555 from PCC region sampled on
30/05/2012. The square indicates the 512×512 pixel of cloud free image chosen
for the analysis.

shelf break and is strongly stratified over much of its interior throughout the sum-

mer months. Phytoplankton productivity and taxonomic composition in the CS de-

pend on the water column structure. Diatoms dominate well mixed areas with high

nutrient content and show a high rate of productivity, while dinoflagellates and mi-

cro flagellates are found in stratified waters exhibiting lower rates of productivity

(Raine et al., 2002; Cooper, 1961).

Eastern Mediterranean (EM). Eastern Mediterranean is one of the most famous

oligotrophic waters of the world ocean (Azov, 1991). It is because low nutrient con-

tent in the deep waters, when they are upwelled or mixed into the photic zone, pro-

duce less primary production. Because of the clarity of the water, Eastern Mediter-
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A) B)

C) D)

Figure 6.7: Chl-a, SST, Rrs-443 and Rrs-555 from CS region sampled on 29/03/2012.
The square indicates the 512×512 pixel of cloud free image chosen for the analysis.

ranean has deeper euphotic zones.

Here we considered a broad range of regions from highly eutrophic sea of AC

region to highly oligotrophic waters of EM. These regions differ also by the hydrog-

raphy and river run-off. Except EM, all other regions are famous for the coastal

upwelling and high primary production.

6.2.3 Chlorophyll-a (Chl-a)

The standard MODIS Chl-a imagery available from Goddard Space Flight Centre is

produced via theOC3M algorithm. TheOC3M algorithm is an extension of the em-

piricalOC4v4 algorithm derived for SeaWiFS, based upon 2853 field measurements

collected across a range of bio-optical marine provinces (O´ Relly et al., 2000). The
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A) B)

C) D)

Figure 6.8: Chl-a, SST, Rrs-443 and Rrs-555 from EM region sampled on
31/12/2009. The square indicates the 512×512 pixel of cloud free image chosen
for the analysis.

OC3M algorithm is in the form of a fourth order polynomial equation and applies

the maximum of the ratio of the remote sensing reflectance at 443 nm (blue) to 550

nm (green) or 490 nm (blue) to 550 nm (green). Chl-a is the pigment in the majority

of the photosynthetic organisms, therefore it is considered as an excellent indica-

tor of biomass. It is used to estimate the primary production of the water column

(Jeffrey and LeRoi, 1997), also used to track the phytoplankton dynamics (Brentnall

et al., 2003) and included in templates of the biogeochemical cycle especially in the

carbon cycle (Behrenfeld et al., 2005). As far as fisheries are considered, Chl-a is

used as an important input to many dynamic models. A sample data of Chl-a used

for the present study is shown in Fig. 6.5A and the square shows the cloud-free part
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of 512×512 pixels. This is later used in our study.

6.2.4 Sea Surface Temperature (SST)

The SST represents the temperature of a thin layer of the ocean of 0.01 m deep. The

algorithm described for the measurement of the SST is based on the measurements

of brightness temperature. MODIS SST algorithms use either band 22 and 23 at

3.959 and 4.050 µm or bands 31 and 32 at 11 and 12 µm. Bands 31 and 32 in

the long-wave infra-red part of the spectrum are applied during the day as they

are not affected by the reflected sunlight; however they are potentially affected by

water vapour in the atmosphere. While bands 22 and 23 in the short-wave infra-

red are less affected by water vapour, they are applied only to night imagery due

to contamination by sunlight (Brown et al., 1999). Daytime SST imagery has been

selected for the present study as it is collected simultaneously to Chl-a (Fig. 6.5B).

The study areas have been selected in such a way that Aerosol Optical Depth (AOD)

has minimum values.

6.2.5 Remote sensing reflectance (Rrs)

The standard Rrs products of MODIS Aqua are downloaded from the Goddard

Space Flight Centre. For the present study, we choose two different wavelengths,

443 nm and 555 nm, Rrs-443 and Rrs-555 (Fig. 6.5C and Fig. 6.5D). The use of these

two wavelengths represents the minimum (555 nm) and maximum (443 nm) ab-

sorption of phytoplankton. Because of that the ratio of these two Rrs (Rrs-443/Rrs-

555) approximates the concentration of Chlorophyll-a and the biomass. As Chl-a

values are retrieved from these two Rrs values using a non-linear equation, the Chl-

a and Rrs spatial patterns and their relation to turbulence could be different. In this

context, we will specifically examine if Rrs-443 is a better proxy than space retrieved

Chl-a to assess the effect of turbulence.
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6.2.6 Homogeneous isotropic turbulence

The analysis of the data is done in the methodological framework of turbulence.

Turbulent flows have been investigated for more than a century; however no gen-

eral approach to the problems in turbulence exists. There is no general solution of

the Navier-Stokes equations, which drive the turbulent flows. For fully developed

turbulence (with large Reynolds number Re = UL/ν where U is a typical velocity

scale, L a typical length scale and ν the kinematic viscosity) a classical picture is

the Kolmogorov-Richardson energy cascade. In this framework energy is supplied,

introduced or produced in the fluid at a relatively large scale, and is successively

passed by interactions between eddies or their instability through a spectrum of

smaller and smaller eddies, within which inertial forces, rather than the viscosity

forces, are dominant. Finally energy is conveyed to eddies of size comparable to

Kolmogorov length scale η, where viscosity is effective in transferring their kinetic

energy into heat. This was formalised using the velocity fluctuations by Kolmogorov

using the below-mentioned equation (Kolmogorov, 1941b):

∆Vl = Cε1/3l1/3 (6.1)

where V is the velocity, ∆Vl is the velocity difference between position, l is the scale

and ε the dissipation. This relationship is valid for homogeneous and isotropic

turbulence and for the scales belonging to the inertial regime η ≤ l ≤ L. It is the

smaller scale of the inertial regime, written as:

η =
(
ν3/ε

)1/4
(6.2)

In the ocean η is often of the order of 0.5 mm to a few cm. Below this η scale,

viscosity dominates. Obukhov (1941b) has written the K41 theory in spectral space

as:

Ev(k) = C1ε
2/3k−5/3 (6.3)
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where E(k) is the power spectrum, k is the wave number and C1 is a constant. A

similar scale dependence can be obtained for a passive scalar θ, with a power-law

of the form (Obukhov, 1949; Corrsin, 1951):

Eθ(k) = C2ε
−1/3χk−5/3 (6.4)

where Eθ(k) is the Fourier spectral energy of passive scalar, C2 is another constant,

and χ is the dissipation of scalar variance (analogous to ε as dissipation of kinetic

energy). This energy spectrum is calculated using the fast Fourier transform of the

data with a regular sampling. The resulting energy spectra are represented in log-

log plot which allows good visualisation of the scale dependence.

6.2.7 1D Power spectra

A major difficulty in the analysis of ocean colour images is the missing values due

to cloud cover. In the present study, we extracted 512×512 pixels of cloud free

Chl-a and SST of different regions of the coastal oceans. One-dimensional power

spectra are performed from the pixel values taken from zonal (rows) and meridional

(columns) of the MODIS image. For such analysis, 512 realizations of 1D power

spectra are averaged, providing an ensemble average power spectra.

6.2.8 2D Power spectra

The 2D spatial scaling of the image has been analysed using the radially averaged

2D power spectra. The 2D Fourier transform of the image F(u,v) becomes,

F(u,v) =
∫ +∞

−∞

∫ +∞

−∞
IMG(x,y)e−2πi(xu+yv)dxdy (6.5)

Here u,v are the spatial frequencies. The function F(u,v) is a complex spectrum

which gives the weight of harmonics components in the linear combination. The
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discrete version of this is:

F(u,v) =
1
MN

M−1∑
m=0

N−1∑
n=0

IMG(m,n)exp
[
−2πi

(mu
M

+
nv
N

)]
(6.6)

Here u=0,1,. . . ,M-1; v=0,1,. . . ,N-1; M = number of rows of the image and N=number

of columns of the image. The power spectrum of the image is computed using:

P (u,v) =| F(u,v) |2= R2(u,v) + I2(u,v) (6.7)

Due to the symmetries of the spectrum the quadrant positions can be swapped diag-

onally and the low frequencies fall in the middle of the image. The radially averaged

power spectrum E(k) is derived using the centered power spectrum with the origin

of the coordinate system. To obtain this we first convert the Cartesian co-ordinate

system into polar coordinate axis and the low-frequency spectrum falls close to the

origin. The radial power spectrum can be derived from summing or averaging of the

concentric circles with unit frequency increment. For a scaling process, the radially

summed power spectrum of the 2D image has the same slope β as the 1D sections

of the image.

6.2.9 Structure Function (SF) method

In the following we analyse image fluctuations in the framework of passive scalar

turbulence (Frisch, 1995):

〈∆θql 〉 ≈ l
ζθ(q) (6.8)

where ζθ(q) is the scaling moment functions that characterize the fluctuations of

passive scalar (Schmitt et al., 1996). We focus on the passive scalar case, since we

will consider Chlorophyll-a and Sea Surface Temperature, which are transported

scalars and may be compared to passive scalars. The scaling moment functions

are derived using remotely sensed 2D Chl-a, SST, Rrs-443 and Rrs-555 images from

MODIS Aqua.
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Let us consider two points M and N belonging to the field, and their distance

d(M,N ). The moments 〈|θ(M) − θ(N )|q〉 versus d(M,N ) are considered. This can

be estimated directly by taking all couple of points (M,N ) in the 2D domain and

discretizing the distance d(M,N ) in small intervals. A log-log regression of 〈|θ(M)−

θ(N )|q〉 versus d(M,N ) gives the exponent ζθ, following the law

〈|θ(M)−θ(N )|q〉 ≈ d(M,N )ζθ(q) (6.9)

where “≈”means scaling relation.

The exponent function ζθ(q) is directly estimated from such images using ran-

domly selected couple of points. In Renosh et al. (2015), we have presented and

tested this methodology and showed that 106 couple of points is convenient for sta-

tistical convergence and computing time. The present work is hence a continuation

of this methodological work.

For scaling ranges this approach was used to extract ζ(q) as a log-log fit of the

moments. Then, in the framework of a lognormal scaling model, we have proposed

a fit of ζ(q) of the following form:

ζLN (q) = qH −
µ

2

(
q2 − q

)
(6.10)

where H=ζLN (1) is the Hurst parameter, and characterizes the mean scaling invari-

ance of the field, and µ = 2H − ζLN (2) is the intermittency parameter: the larger

this parameter, the more the field is intermittent. The values (H,µ) are used here to

characterize the scaling and intermittency of satellite images, for the scales where

Eq.6.9 is valid, i.e. the scales for which there is scale invariance.

6.2.10 Cumulants and cumulant scaling analysis

The cumulant analysis corresponds to characterize the fluctuations at a single scale,

and fit the moment function using 2 parameters. We then consider the scale depen-

dence of these 2 parameters. For a fixed scale l, the cumulant generating function of
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the generator gl = log |∆Vl | is defined as Φl(q) = log〈|∆Vl |q〉 (Gardiner, 2004; Schmitt

et al., 2007). Here we apply the difference of passive field separated between two

points M and N as θ(M)−θ(N ) instead of ∆Vl . The distance d(M,N ) between these

two points M and N is noted as l for the cumulant scaling:

Φl(q) = log〈|θ(M)−θ(N )|q〉 (6.11)

The function Φl(q) is also the second Laplace characteristic function of the genera-

tor: Φl(q) = log〈eqgl 〉. As second characteristic function, it is convex (Feller, 2008)

and can be developed using the cumulants:

Φl(q) =
∞∑
p=1

Cp(l)
qp

p!
(6.12)

where Cp(l) is the nth cumulant. Let us recall that C1(l) = 〈gl〉, C2(l) = 〈g2
l 〉 −C1(l)2,

and Cn depends on all moments 〈gpl 〉 (1 ≤ p ≤ n). The other way to derive C2(l) is

from the the intercept of the linear fit between log(Φ(q) − C1(l)q) versus logq; the

exponential of the intercept gives C2(l). On the other hand, since we have 〈|θ(M)−

θ(N )|q〉 = Bqlζ(q), its logarithm writes:

Φl(q) = log〈|θ(M)−θ(N )|q〉 = ζ(q) log(l) + logBq (6.13)

let us write ζ(q) for the lognormal model:

ζLN (q) = qH −
µ

2

(
q2 − q

)
(6.14)

where H=ζLN (1) and µ is the intermittency parameter. Then:

Φl(q) = [q(H +
µ

2
)−
µ

2
q2] log(l) + logBq (6.15)

= C1(l)q+
C2(l)

2
q2 + logBq (6.16)
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From the above two equations, the 2 cumulants for the scaling lognormal model are:


C1(l) =

(
H + µ

2

)
log(l) +A

C2(l) = −µ log(l) +B
(6.17)

whereH and µ are the multifractal parameters and A and B constants that may come

out from the Bq parameter. For pure scaling processes, the structure function and

cumulant give the same results. However for cases where the scaling is not perfect

the cumulant approach may be a good alternative to the SF approach, since Φl(q)

can be estimated perfectly at any scale l and the first two cumulants estimated. In

the following for 2D images, the cumulant scaling analysis has been performed and

the first two cumulants expressions have been used to extract the H and µ values.

6.3 Results and discussions

6.3.1 1D and 2D scaling

First we have selected the regions having no missing data in 512×512 pixels. We

have identified 7 regions for the present study. The scaling behaviour of the Chl-

a, SST, Rrs-443, Rrs-555 and Rrs-443/Rrs-555 images have been analysed using the

power spectrum. For this, we have considered two types of power spectra: one

dimensional (1D) and two dimensional (2D) power spectra using fast Fourier trans-

form. Cloud free image of 512×512 pixels of each parameter were selected for the

power spectral scaling for all regions.

We show first the resulting images for a typical case, in order to illustrate the

scaling behaviour which was found for almost all images considered. The case cho-

sen here concern the ANC region sampled on 30/4/2013. The 2D power spectrum

of Chl-a sampled from ANC on 30/4/2013 is shown in Fig. 6.9A. The 1D power

spectral energy is derived by slicing the image zonally and meridionally and deriv-

ing power spectral energy for each slice and averaging it. From this average, the

power spectrum is derived from power spectral energy versus wavenumber in log-
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A)

B) C)

Figure 6.9: Various power spectra, log centered 2D power spectrum of Chl-a sam-
pled from ANC on 30-April-2013 in A), averaged zonal and meridional power spec-
tra (1D) of various parameters in B), radially summed power spectra of Chl-a, SST,
Rrs-443 and Rrs-555 in C). These 2 types of spectra show good scaling for Chl-a, SST,
Rrs-443 and Rrs-555.

log scale and the exponent β is also derived. Here we found that the 1D power

spectra of these parameters follow a clear power law behaviour with some distur-

bance in the high wavenumbers (0.1 - 1 km−1) (Fig. 6.9B). The β derived values for

1D approach for various parameters show large variability (Table 6.2), as well as for

the 2D case (Table 6.3).

β-1D AC MC NEAS ANC PCC CS EM Global
Chl-a 1.66±0.21 1.12±0.39 1.41±0.12 1.13±0.33 1.64 1.53 1.50 1.34±0.32
SST 1.54±0.06 1.52±0.13 1.42±0.22 1.60±0.14 1.45 1.43 1.67 1.52±0.16

Rrs-443 1.50±0.15 1.40±0.11 1.12±0.23 1.46±0.24 1.38 1.10 1.23 1.33±0.24
Rrs-555 1.35±0.34 1.33±0.09 1.02±0.31 1.26±0.28 1.42 1.16 0.96 1.20±0.29

Rrs-443/Rrs-555 1.18±0.16 1.36±0.10 1.14±0.12 1.41±0.13 1.39 1.04 0.99 1.26±0.18

Table 6.2: The spectral slope β derived in 1D, for various parameters sampled from
different regions.

The 1D β derived for the Chl-a image ranges from 0.65-1.87 with a mean value
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β-2D AC MC NEAS ANC PCC CS EM Global
Chl-a 1.69±0.26 1.27±0.45 1.29±0.18 1.06±0.42 1.74 1.68 1.51 1.31±0.38
SST 1.77±0.04 1.85±0.12 1.79±0.17 1.89±0.11 1.70 1.74 1.84 1.83±0.12

Rrs-443 1.72±0.19 1.62±0.18 1.20±0.32 1.62±0.19 1.73 1.07 1.41 1.49±0.31
Rrs-555 1.48±0.45 1.45±0.20 1.18±0.46 1.31±0.27 1.69 1.38 0.76 1.30±0.36

Rrs-443/Rrs-555 1.45±0.17 1.56±0.19 1.33±0.21 1.61±0.15 1.73 1.25 1.37 1.48±0.21

Table 6.3: The spectral slope β derived in 2D, for various parameters sampled from
different regions.

of 1.34 and standard deviation 0.32. Similarly, for SST it varies from 1.06-1.77 with

a mean value of 1.52 and standard deviation 0.16. The 1D β derived for the Rrs-443

also shows large variability in its value and ranges from 0.86-1.77 with a mean of

1.33 and standard deviation 0.24. Similarly for Rrs-555, the β ranges from 0.59-

1.76 with a mean of 1.20 and standard deviation 0.29. This is the first report of the

scaling exponent computation for the remote sensing reflectance.

A) B)

C) D)

Figure 6.10: Comparison of 1D and 2D spectral slope β derived for Chl-a in A), SST
in B), Rrs-443 in C) and Rrs-555 in D).
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2D power spectrum (Fig. 6.9A) is derived for these parameters and β is derived

from the slope value obtained from radial sum of the power spectrum versus the

wavenumber in log-log scale (Fig. 6.9C). Here also we could find a large variability

in the slope values for each parameter. The 2D β for the Chl-a images, ranges from

0.58-2.04 with an average of 1.31 and standard deviation 0.38. Likewise, SST also

shows large variability in its β values with a mean value of 1.83 and standard de-

viation 0.12. The β value derived for the present study falls inside the range of the

β values (1.5-2.5) of previous studies (Abraham and Bowen, 2002; Montera et al.,

2011; Piontkovski et al., 1997). Similarly for Rrs-443, the scaling exponent found a

mean 1.49 and standard deviation 0.31 and for Rrs-555 a mean of 1.30 and standard

deviation 0.36.

The comparison of the β derived through each method is done for each parame-

ter (Fig. 6.10). Here we can see that the β values for Chl-a from different approaches

fall near to the 1:1 line (Fig. 6.10A). For the SST image, we found that the points are

systematically below the 1:1 line (Fig. 6.10B): the exponents derived from 2D show

a higher value than 1D. We can say that scaling pattern of 1D and 2D are different

from SST images. This could be explained by a lack of isotropy which could be more

important for the SST field. While coming to the Rrs-443 the points are near to the

1:1 (Fig. 6.10C) line, and still we observe high values in the 2D exponent compared

to 1D. Similar results are also observed in the Rrs-555 images (Fig. 6.10D).

6.3.2 Structure function method

The SF method is directly applied to the images. Here we found good scaling for

all 4 parameters and the ratio between Rrs-443 to Rrs-555 (Fig. 6.11). The inter-

esting thing we can see that the Rrs-443 and Rrs-555 have nice scaling, much bet-

ter than Chl-a. It means that these fluctuations are artificially introduced by the

bio-optical algorithm. The scaling moment function ζ(q) has been derived from

these images. Here we found that all the four images show a non-linear curve (con-

vex/concave)(Fig. 6.12). This is a clear indication of intermittency in the spatial
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A) B)

C) D)

E)

Figure 6.11: The 2D structure function scaling of Chl-a in A), SST in B), Rrs-443
in C), Rrs-555 in D) and the ratio between Rrs-443 to Rrs-555 in E) showing good
scaling, especially for Rrs-443.

distribution of these parameters.

To understand the intermittency characteristics we consider the classical lognor-

mal intermittency model ζ(q) = qH − µ2 (q2 − q). The multifractal parameters (H and

µ) derived through this method show variability depending on the region and pa-

rameter (Table 6.4- 6.5). The spatial pattern of these two variables for the 7 regions

is shown in Fig. 6.13 by considering a (H-µ) plot. As we know the H value for typical
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Figure 6.12: The moment scaling function derived by 2D structure function of var-
ious parameters from the ANC sampled on 30-April-2013.

Figure 6.13: H-µ plot clustering of parameters (Chl-a, SST, Rrs-443, Rrs-555 and the
ratio between Rrs-443 to Rrs-555) for different regions. The colour code corresponds
to the parameters, and the shape to the geographical location.

turbulence is close to 1/3 and for Brownian motion is 1/2; here we found that the

H values for all the parameters fall between 0.25 and 0.45 (H = 0.35 ±0.1) except

7 cases. We can also see a high level intermittency in Rrs values compared to Chl-a

and SST. Here we find low level of intermittency in SST for all the regions except the

AC region. In the AC region, the SST is showing high value of µ and follows a close
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H AC MC NEAS ANC PCC CS EM Global
Chl-a 0.40±0.09 0.35±0.06 0.34±0.06 0.39±0.08 0.40 0.38 0.33 0.37±0.07
SST 0.51±0.03 0.37±0.04 0.28±0.11 0.44±0.06 0.26 0.28 0.37 0.38±0.11

Rrs-443 0.40±0.08 0.40±0.08 0.36±0.05 0.48±0.04 0.50 0.27 0.37 0.41±0.08
Rrs-555 0.25±0.11 0.37±0.06 0.32±0.11 0.37±0.07 0.23 0.29 0.11 0.31±0.1

Rrs-443/Rrs-555 0.28±0.03 0.38±0.09 0.29±0.06 0.44±0.06 0.50 0.25 0.23 0.35±0.01

Table 6.4: The Hurst parameter H derived through SF method for various parame-
ters sampled from different regions. For each case the mean and standard deviation
are estimated by doing statistics over the number of images. For PCC, CS and EM
cases there is only 1 image.

µ AC MC NEAS ANC PCC CS EM Global
Chl-a 0.08±0.03 0.18±0.10 0.13±0.02 0.18±0.08 0.08 0.08 0.04 0.14±0.07
SST 0.25±0.02 0.08±0.04 0.03±0.02 0.08±0.04 0.05 0.02 0.03 0.09±0.08

Rrs-443 0.25±0.03 0.29±0.04 0.29±0.07 0.35±0.10 0.35 0.27 0.31 0.30±0.07
Rrs-555 0.13±0.09 0.35±0.07 0.29±0.14 0.32±0.10 0.20 0.26 0.11 0.27±0.12

Rrs-443/Rrs-555 0.23±0.03 0.26±0.04 0.25±0.03 0.29±0.02 0.30 0.22 0.24 0.26±0.03

Table 6.5: The intermittency parameter µ derived through SF method for various
parameters sampled from different regions. For each case the mean and standard
deviation are estimated by doing statistics over the number of images. For PCC, CS
and EM cases there is only 1 image.

to Brownian scaling exponent (H ≈ 0.5). The large scale river run-off in the Atlantic

continental shelf develops a large diversity of mesoscale fronts (Acha et al., 2004).

These fronts cover several scales in space and time. This may be the main reason for

showing large intermittency value in SST compared to the other regions. With re-

gards to Chl-a in all the regions, the distributions are very close to 0.35. In contrast,

the intermittency patterns are quite variable depending on the regions. Chl-a shows

high intermittency in high productive coastal waters of ANC and low intermittency

in clear oligotrophic waters of EM. The level of intermittency observed for Chl-a

lays between the SST and Rrs.

Rrs is characterised by a high range of H values compared with that of Chl-a.

Compare to Rrs-443, Rrs-555 show lower H value. The Rrs-555 values for clear olig-

otrophic waters of EM shows low intermittency and maximum intermittency has

been observed in the upwelling region of the MC. Due to less productivity, the clear

oligotrophic waters reflects more in the blue bands compared with the green bands.

This may be the reason for low intermittency of Rrs-555 in EM. The ratio of Rrs-443

to Rrs-555 shows a stable µ values for all the seven regions with a broad range of H
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values.

A)

B) C)

Figure 6.14: The second characteristic function Φl(q) derived for different l values
of Chl-a sampled from ANC on 30-April-2013 in A). The first cumulant derived for
the same image in B) and the second cumulant in C).

6.3.3 Cumulant scaling

The cumulant scaling has been done for the Chl-a and SST images using structure

cumulant scaling method. The second characteristic function is derived for each

image (Fig. 6.14A). The second characteristic function shows a non-linear concave

curve with different moments. The first and second cumulant have been derived

for each image at different scales. These cumulants show good scaling in semi-log

scale as expected from Eq.( 6.17)(Fig. 6.14B-C). Here also we applied the lognormal

intermittency model, the slope of the first cumulant versus l in semi-log scale is

related with H + µ
2 and the slope of the second cumulant is related with −µ. This

enables another estimation of H and µ.

Using these relations, we derived the H values for each Chl-a and SST images.

This cumulant derived H values are compared with SF derived H values for Chl-a
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A) B)

Figure 6.15: H derived through cumulant scaling versus H derived through struc-
ture function scaling for Chl-a in A) and SST in B).

and SST (Fig. 6.15). For Chl-a images, these two H values show very good agreement

whereas the agreement is not so good for SST. This may come from a lack of very

good scaling for SST: when the scaling is not perfect the cumulant approach is more

reliable since the scaling fit is done at the end of the process. We may note also from

Fig. 6.15 that values of H cluster around 0.3-0.4 for Chl-a, as expected for a passive

turbulence situation.

6.4 Conclusions

In the present study, we use ocean colour (Rrs and Chl-a) and thermal infra-red

SST images to characterise the heterogeneity of turbulence by analysing the bio-

physical coupling of ocean colour and SST. We use the 2D structure function which

was proposed and tested in Renosh et al. (2015), as well as a cumulant method. For

that purpose, we have selected 7 different regions of oceanic waters which show

large heterogeneity in terms of biomass (Chl-a) as well as differences in the physical

forcing environment. All the data used in the present study are from the MODIS-

Aqua sensor with a spatial resolution of 1×1 km2.

We first analyse the spatial scaling of these images using Fourier power spec-
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tra. For that, we used the 1D and 2D different approaches. We found that the

derived spectral exponent β calculated from these two approaches show relatively

good agreement with each other. These derived β values calculated for Chl-a and

SST show good agreement with previous studies (Abraham and Bowen, 2002; Mon-

tera et al., 2011; Piontkovski et al., 1997). This is the first report which shows the

spatial scaling of remote sensing reflectance. Here we have chosen 2 different wave-

lengths of remote sensing reflectance at 443 nm and 555 nm, their ratio is directly

linked with the biomass.

Multi-scale properties of these images have been analysed using two different

methods; one is the structure function method and the other one is the cumulant

scaling. The multifractal parameters (µ and H) have been derived from these meth-

ods using the lognormal intermittency model. Clustering of each parameter can

be seen from the scatter plot of µ versus H for all variables from different regions.

Here we find that SST has a minimum intermittency and Rrs has the maximum value

of intermittency, Chl-a showed an intermittency value in between the SST and Rrs

ones. The Hurst exponent derived for the each parameter cluster near to the typical

turbulent H value of 0.35±0.10 except 7 data points.

Argentina Coastal waters are famous for the frontal zones and the high run-off

region (Acha et al., 2004), the SST measured from this region shows high value of

µ and follows a close to Brownian scaling exponent (H ≈ 0.5). The large scale river

run-off along with the formation of the frontal zones may be the main reason for

showing large intermittency value in SST compared to the other regions. We found

that the spatial distributions of Chl-a could be driven by turbulence (H value close

to 1/3) for all 7 regions (Fig. 6.13). The H values derived for SST maps belongs to

the range (0.23-0.76) with the H values of simulated SST from NEMO (Verrier et al.,

2014). For Chl-a, the intermittency differs depending upon the region. Chl-a shows

high intermittency in high productive coastal waters of ANC and low intermittency

in clear oligotrophic waters of EM.

The Rrs shows high range of H values compared with the Chl-a. The Rrs-555

shows less H compared with Rrs-443. The Rrs-555 for clear oligotrophic waters
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of EM shows minimum intermittency and the maximum intermittency has been

observed in the upwelling high productive region of the MC.

The cumulants and cumulant scaling of Chl-a and SST have been derived for all

study areas. The derived first cumulant and the second cumulant followed good

scaling. Using the lognormal intermittency model fit the Hurst exponent has been

derived for Chl-a and SST. The cumulant scaling derived H values of Chl-a and SST

shown good agreement with the H value derived from the SF method.

Such approach may be generalised to other satellite products, and to other en-

vironmental situations, in order to assess the relationship between environmental

situations and lognormal multifractal parameters.
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CONCLUSIONS AND PERSPECTIVES

Conclusions. The aim of the present thesis is to better understand the character-

isation of coupling between oceanic turbulence and the variability of coastal water

optical properties using in situ and satellite data. For that purpose, the thesis was

split into two parts devoted to an analysis of in-situ and satellite data.

For the in-situ analysis, we mainly focused on the Particle size distribution and

its dependency on turbulence. We have conducted simultaneous measurements

of PSD along with the current velocity from the sea bottom from highly dynamic

coastal waters of the eastern English Channel. From the analysis of this high fre-

quency sampling, we found that there is a significant influence of tidal currents,

waves and turbulence on the particle re-suspension and its dynamics. The power

spectral analysis of cp(670), proxy for SPM concentration along with current data

showed similar scaling regimes in lower and higher frequency region. The Stokes

number derived from this PSD exhibits very low values (� 1), showing that the par-

ticles in the fluid motion behave like tracers and move along with the fluid. The

present study has shown that tidal current and waves have a significant role in the

particle re-suspension and further water column turbidity. The study carried out by

Velegrakis et al. (1999) observed large-scale particle re-suspension processes gener-

ated by the tidal current and coastal waves for the same region. Our present study

has shown good agreement with the above study. During the current reversal, when
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the vertically averaged current velocity (VACV) is minimum, all the size parameters

examined here indicate a modification in the particle size distribution. At the time

of current reversal, we found that the proportions of small particles tend to increase

compared to bigger ones (Fig. 3.7). This is explained by two processes mainly: First,

the hydrodynamic forcing is not enough to re-suspend large particulate assemblages

from the bottom. Second, during the period of slack hour, the differential settling

of particles takes place inducing a washing of the water column, especially of heavy

flocs. These observations from the present study have good agreement with the

study carried out by Van Leussen (1988). We also found that turbulence has a major

role in the dynamics of the particles in the present region. Low-frequency variabil-

ity of the particles is controlled by the turbulence (β ≈ 5/3) and high frequency

variability is controlled by the physical processes that are get along with the sea

bottom interactions especially wall turbulence, tidal currents and waves.

The intermittent characteristics of the PSD have been analysed using EMD, HSA

and AHSA methods. For that purpose, we have selected the total volume concen-

tration and cp(670), which is the proxy for total SPM concentration (Neukermans

et al., 2012b). We have also analysed the intermittent characteristics of different

size classes of PSD in relation to particle sizes (Lefebvre et al., 2012; Renosh et al.,

2014). Here we considered 4 different size classes mainly Silt/Clay, Fine particles,

Coarse/Micro particles and Macro particles/flocs. Turbulent scaling of these pa-

rameters has been derived through both Fourier power spectra and spectra derived

through HSA. Here we find similar turbulent scaling of these parameters (different

size classes of PSD, Cvol−total and cp(670)). The scaling moment function derived for

Cvol−total and cp(670) showed similar non-linear curve, indicating that their dynam-

ics is intermittent. The scaling moment function derived for each size class of the

particles are also showing non-linear curves. The curvature of the spectrum for var-

ious size class showed the intermittency characteristics of the particles in different

sizes. The curvature of the silt and macro was large compared with fine and coarse

particles. Here we observed different levels of intermittency in their dynamics. We

also derived the Shannon entropy from the number density of PSD. It was estimated
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at each time step of one second and has shown some variability with values centered

at a mean of 1.59±0.03.

For the satellite aspects, we have developed a new methodology for multi-scale

analysis of remote sensing data. Here we found that the way of extracting scaling

exponent through a passive scalar gradient modulus fail to give the exact scaling

exponent. So we derived a new methodology for computing the 2D structure func-

tion scaling exponent. We showed that this method works for images with missing

data, an important aspect since many real images have missing pixels because of

cloud coverage. We considered two images from MODIS Aqua (Chl-a and SST) and

showed in these examples that scaling approach using SF and Np = 106 couple of

points are adequate. We also showed that the spectral exponent for these examples

is close to 5/3, characteristic of passive scalar fully developed turbulence. Such 2D

multifractal property of Chl-a and SST is a 2D generalisation of previous results

obtained for time series (Seuront et al., 1996b,a, 1999).

This methodology has been applied to various oceanic regions showing high spa-

tial heterogeneity in their biomass. We mainly used Chl-a, SST, Rrs-443 and Rrs-555

images derived from MODIS Aqua with a spatial resolution 1×1 km. First we anal-

ysed the spatial scaling of these images using Fourier power spectra. For that, we

used 2 different approaches, 1D and 2D. We found that the derived spectral expo-

nent β for these two approaches were in relatively good agreement with each other.

These derived β for Chl-a and SST showed good agreement with the old studies

1.5-2.5 (Abraham and Bowen, 2002; Montera et al., 2011; Piontkovski et al., 1997).

To have a complementary approach to characterise variability without relying

on pure scaling, we have analysed multi-scale properties of these images using two

different methods; one was the structure function method and the other one was

the cumulant scaling. The multifractal parameters were derived using the lognor-

mal intermittency model. We derived µ and H using the SF method. The scatter

plot of µ versus H for all variables showed a sort of clustering for each parameter.

Here we found that the multifractal parameter µ for various parameters for various

region clusters together. We also found that SST has minimum intermittency and
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Rrs has the maximum value of intermittency, and Chl-a showed an intermittency

value in between the SST and Rrs. The Hurst exponent derived for the each area

fell near to the typical turbulent H value of 0.35±0.10 except for 5 cases. The Ar-

gentina coastal waters are famous for the frontal zones and the high run-off region

(Acha et al., 2004): the SST measured from this region showed a high value of µ

and follow a Brownian scaling exponent (H ≈ 0.5) compared with other regions. We

also observed that the spatial distributions of Chl-a are driven by turbulence (very

close to 0.35) for all 7 regions. For the Rrss, a broad range of H values have been

observed compared with the Chl-a, and for the Rrs-555 less values of H have been

observed compared with Rrs-443. The Rrs-555 for clear oligotrophic waters of EM

shows least intermittency, and maximum intermittency has been observed in the

upwelling high productive region of the MC.

The cumulants and cumulant scaling of Chl-a and SST have been derived for all

study areas. The derived first cumulant and the second cumulant followed good

scaling. A lognormal intermittency model fit was also performed to extract the

Hurst exponents for Chl-a and SST. The cumulant scaling derived H values of Chl-a

and SST showed good agreement with the H value derived from the SF method.

Globally these results showed that:

• Turbulence, tidal currents and waves play a major role in the dynamics and

the re-suspension processes of the particles in highly dynamic coastal waters.

• The Stokes number derived for the particles exhibits very low values (� 1),

showing that the particles in the fluid motion behave as tracers and move

along with the fluid.

• Particles in different size classes of PSD showed intermittency characteristics

in their dynamics.

• Heterogeneity in remote sensing images has scaling properties and can be re-

lated to turbulence.
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• Such heterogeneity can be characterized using a few parameters in the lognor-

mal model.

• The parameters can be, in some respect, related to local physical and environ-

mental conditions.

Limitations. The present study is limited to PSD and its dependency on the hy-

drodynamic conditions such as tidal currents, waves and turbulence. We could not

extend this work with some bio-optical properties (IOPs) such as absorption and

scattering at different wavelengths along with different hydrodynamic conditions.

We also failed to study the Chl-a fluorescence (a proxy for Chl-a concentration) and

CDOM fluorescence (a proxy for coloured dissolved organic matter concentration)

dynamics and its dependency with turbulence.

The present study focused only on MODIS Aqua products of ocean colour (Chl-

a and Rrs) and infra-red SST with a spatial resolution 1000 × 1000 m2. We could

not broaden this work with high resolution data (300 × 300 m2) of ocean colour

from MERIS for various coastal sites. This study was limited with only one satellite

sensor. This is the main drawback of the present study.

Perspectives. Concerning in-situ sampling, we mainly analysed PSD and its de-

pendency with turbulence. The dependency of IOPs such as a(λ), b(λ) and c(λ)

with turbulence is still to be analysed. This could be an interesting topic for the

ocean colour community. Here we found some good scaling regime with a slope

0.6. More investigations and explanations need to be done on this β value in highly

dynamic coastal environments. For that, we have to do more field campaigns in the

present area as well as other oceanic regions for understand the universality in its

distributions. This is the first perspective of the present work.

Concerning satellite aspects, the present study has been tested only with MODIS

aqua. There are other sensors that measure these parameters(SeaWiFS, MERIS and

GOCI): these should also be analysed using our methodology. GOCI has eight spec-

tral bands from 412 to 865 nm with spatial resolution 500 m and an hourly mea-
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surement during daytime from 9:00 to 16:00 local time, i.e., eight images per day.

Analysis of these high resolution data shall provide more information on the daily

dynamics of intermittency parameters in a specified region. These images give the

daily temporal heterogeneity in the reflectance and Chl-a dynamics. The spatial

scaling and multi-scale properties of Sea Surface Salinity (SSS), another passive

scalar from the Aquarius need to be analysed using our methods.

Furthermore, as recalled above, our results have provided first links between in-

termittency parameters and local environmental conditions. This needs to be con-

firmed, perhaps with more precision, and also theoretically explained.
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a b s t r a c t

The impact of tidal current, waves and turbulence on particles re-suspension over the sea bottom is
studied through Eulerian high frequency measurements of velocity and particle size distribution (PSD)
during 5 tidal cycles (65 h) in a coastal environment of the eastern English Channel. High frequency
variability of PSD is observed along with the velocity fluctuations. Power spectral analysis shows that
turbulent velocity and PSD parameters have similarities in their spectral behaviour over the whole range
of examined temporal scales. The low frequency variability of particles is controlled by turbulence
ðβC�5=3Þ and the high frequency is partly driven by dynamical processes impacted by the sea bottom
interactions with turbulence (wall turbulence). Stokes number (St), rarely measured in situ, exhibits very
low values, emphasizing that these particles can be considered as passive tracers. The effect of tide and
waves on turbidity and PSD is highlighted. During slack tide, when the current reaches its minimum
value, we observe a higher proportion of small particles compared to larger ones. To a lower extent, high
significant wave heights are also associated with a greater concentration of suspended sediments and the
presence of larger particles (larger Sauter's diameter DA, and lower PSD slope ξ).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Marine particles cover a broad range in diameters from nan-
ometers, mainly as colloids, to few millimeters and even centi-
meters in the presence of big Phaeocystis colonies, diatoms chains,
or cyanobacteria filaments. Intermediate size particles include
viruses, heterotrophic bacteria, pico-, nano-, and micro-, phyto-
plankton, micro-, meso-, and macro-zooplankton, non-living parti-
cles, and mineral particles (Stramski et al., 2004). These particles do
not solely appear as individual entities in the water column, but are
mainly present as marine algal flocs and aggregates (Eisma, 1986;
Fowler and Knauer, 1986; Hill, 1998; Boss et al., 2009). The
variability of the marine particle size distribution (PSD) impacts
the different biological processes occurring in oceanic waters and
vice versa. For instance, trophic interactions are tightly linked to the
size distribution of the different living and non-living particles
involved all over the trophic system (McCave, 1984).
In the other way, blooms of specific phytoplankton species modify
the general PSD shape by affecting one given size class. Phytoplank-
ton degradation processes as well as zooplankton grazing also affect
the PSD shape by promoting the small particles size classes

compared to larger ones. Physical processes occurring in the water
column are also related to the PSD. For example, the settling velocity
of the suspended matters is strongly controlled by the particles size.
In contrast, the size distribution of floc or aggregate depends on the
balance between aggregation and breakage, two processes driven
by diffusive turbulent transport and differential settling (McCave,
1984). McCave suggested that particles in the Brownian range
ðo1:0 μmÞ are pumped rapidly into larger size classes by aggrega-
tion. The instantaneous turbulent kinetic energy modifies the
proportion between particles/floccule, fine, coarse, microflocs and
macroflocs (Lefebvre et al., 2012). The re-suspension of marine
sediments is also strongly size dependent (Wells and Goldberg,
1992; Mikkelsen and Pejrup, 2001; Fettweis et al., 2006).

Turbulence is one of the most important physical phenomena
which determines the re-suspension and the settling of the
suspended particles in the coastal as well as oceanic waters
(Eisma, 1986; Van Leussen, 1988; Umlauf and Burchard, 2005;
Fettweis et al., 2006; Burchard et al., 2008; Van der Lee et al.,
2009). For instance, observations on floc in the field show that
smaller flocs occur in high energy environments (Kranck and
Milligan, 1992; Berhane et al., 1997). At a critical magnitude of
turbulence, shear overcomes the binding strength of flocs and
tends to destroy aggregates (Eisma, 1986). For primary (disaggre-
gated) particles significantly larger than 1:0 μm, and for the
process of smaller flocs (microflocs) growing into larger flocs
(macroflocs), turbulent shear is thought to be the dominant
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collision mechanism, except during periods of slack current
velocities when differential settling of suspended particles onto
one another may be responsible for most of the flocs formation
and rapid clearing of the water (Van Leussen, 1988).

Studies done by Wolanski and Gibbs (1995) in Fly River Estuary
show that the mean floc size was affected by the turbulence of
tidal currents. The largest floc sizes were observed in the low tidal
currents ðo0:5 m=sÞ and comparatively smaller floc sizes were
observed in the high tidal currents ð40:5 m=sÞ.

In the present study, we analyse the dynamics of PSD and its
relation with turbulence from in situ measurements. We conducted
simultaneous measurements of velocity and PSD from instruments
fixed on a frame positioned on the sea floor in the coastal waters of
eastern English Channel. This study area, characterized by low
depth, exhibits a large range of variability of bio-optical properties
related to the occurrence of different phytoplankton blooms,
bottom sediments re-suspension confined in the coastal areas,
and numerous river inputs (Velegrakis et al., 1999; Loisel et al.,
2007; Vantrepotte et al., 2007). The study carried out by Velegrakis
et al. (1999) showed that re-suspension of fine-grained particles
takes place during the spring tides and correlates well with the
distribution of the bottom lithological type. In this paper, we will
assess whether the re-suspended particles are passive tracers, or
have an inertia that influences their transport by turbulence. For
this, we estimate from in situ measurements their Stokes number
St, which is a dimensionless number explaining the effect of inertia
on the particles in a fluid motion. The impact of hydro-dynamical
forcing on the particles behaviour is examined for different size
classes of particles (silt/clay, fine, micro/coarse and macro flocs).

In the first section we present the study area as well as the
different measurements and methods used to assess the coupling
between turbulence and the particles behaviour over the sea
bottom. The meteorological and hydrodynamic contexts occurring
during the field measurements are then provided in the next
section. The velocity field and the particle size distribution
variability are described and their relationships are analysed. The
Stokes numbers of these different particles, rarely measured
in situ, are also estimated.

2. Data and methods

2.1. Study area

The measurements were conducted in the coastal waters of
the eastern English Channel at a fixed station (50145.676 N,
01135.117 E) from 25 to 28 June 2012 (Fig. 1A). The different
instruments (explained in the data section) are fixed on a structure
which was positioned on the seafloor. The English Channel is a
mega tidal sea having a tidal range that varies from 3 to 9 m, and
experiencing a tidal current of amplitude close to 1.0 m/s (Desprez,
2000; Seuront and Schmitt, 2005; Korotenko et al., 2012). The
biogeochemical environment during the particular sampling per-
iod is defined from in situ data collected few days before the
experiment (21 June) in the frame of the SOMLIT program in two
different areas and in high tide period (Fig. 1B). Significant
stratification can be noticed from the surface to the bottom at
the coastal station for Chlorophyll-a (Chl-a), particulate organic
carbon (POC) and suspended particulate matter (SPM) (Table 1).
The SPM and Chl-a values are relatively low for a coastal environ-
ment, in good agreement with the summer low fresh water
discharge, and the absence of phytoplankton bloom. The POC
concentration is however relatively high. Besides, the relatively
high POC/Chl-a ratio values, a proxy of the carbon mass of living
and non-living organisms with respect to the autotrophic organ-
isms (Loisel et al., 2007), indicate that the particulate organic

Fig. 1. Location (blue dot) of the sampling area in the eastern English Channel together with the isobaths (A). Zoom on the sampling area (blue dot), the meteorological
station (red dot) and SOMLIT stations (green dot) in (B). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)

Table 1
Biogeochemical data collected from SOMLIT few days before the time series
measurements (21 June 2012) from the stations C and L (shown in Fig. 1B).

Site Depth Temperature
(1C)

Salinity
(psu)

POC
(μg/l)

SPM
(mg/l)

Chl-a
(μg/l)

C Surface 15.83 34.43 341.9 NA 0.5
C Bottom 14.82 34.76 239.67 1.54 0.5
L Surface 14.88 34.93 220.9 0.48 1.21
L Bottom 13.92 35.06 85.804 1.63 0.18
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fraction is largely dominated by detritus and heterotrophic
bacteria.

2.2. Data

High frequency time series data were collected at 0.5 m depth
above the sea bottom from different instruments fixed on the
same platform moored on the sea bed. The three following
instruments were used for the present study: a LISST-100x type
C (Laser In Situ Scattering and Transmissometry, Sequoia Scien-
tific), a Nortek Vector ADV current meter, and a RDI ADCP. The
LISST measures the volume concentration of particles having
diameters ranging from 2.5 to 500 μm in 32 size classes in
logarithmic scale (Agrawal and Pottsmith, 2000). It also records
the beam attenuation (c) at 670 nm (70.1 nm) over a 5 cm path
length with an acceptance angle of 0.01351. The particulate beam
attenuation coefficient cp has been derived from c after calibration
with MilliQ water before and after the field campaign, using the
assumption that chromophoric dissolved organic matter (CDOM)
does not absorb the light at 670 nm. The volume concentration
and cp are measured with a sampling frequency of 1.0 Hz. The
Nortek Vector ADV current meter measured the North, East and up
components of the local velocity components with an accuracy of
70.5% at 1 Hz. The available range of the velocity value measured
by the instrument is from 0.01 to 7.0 m/s (70.01 m/s).
A 1.2 MHz upward-looking four beam broadband RDI ADCP was
also deployed on the bottom, along with the previous cited
instruments clubbed in a structure. The ADCP was operated in the
fast pinging mode, providing two profiles per second. Each velocity
was an average of six short pulse measurements over a 2 Hz
interval. The velocities were recorded in Cartesian co-ordinates
with 0.4 m vertical resolution. The significant wave height Hs, peak
wave period Tp, and peak wave direction Dp are derived from the
ADCP data using manufacture provided software WavesMon (Tele-
dyne RD Instruments). These wave parameters were computed for
10 min burst duration with a moving window of 5 min interval
providing one data point every 5 min. The wind data were provided
by the meteorological station of harbour, Boulogne-Sur-Mer light
house (Meteo-France) with a temporal resolution of 1 h.

2.3. Methods

Particle size distributions and power law of PSD: The scattering
patterns of particles at 670 nm are recorded in 32 logarithmically
size scattering angles by the LISST-100X type C (Agrawal and
Pottsmith, 2000). This instrument measures the volume concen-
tration Cvol;i ðμl=lÞ of the particles in 32 size classes from 2.5 to
500 μm through diffraction technique. Because of instability in the
smallest and largest size classes, the data recorded in the first five
inner and last outer rigs are excluded from further analysis
(Traykovski et al., 1999; Jouon et al., 2008; Reynolds et al., 2010;
Neukermans et al., 2012a). These instabilities observed in the
smaller size classes have also been related to effects of stray light
(Reynolds et al., 2010). Due to multiple scattering effects and signal
to noise ratio sensitivity, the data for which optical transmission
values are less than 30% and greater than 98% are also disregarded
from the statistical analysis (personal communication with Ole
Mikkelsen).

The volume concentration distributed on a particle size class
can also be expressed as the concentration CvolðsÞ per unit volume
per unit bin width (Jouon et al., 2008):

CvolðsÞ ¼
Cvol;i

smaxðiÞ�sminðiÞ
ð1Þ

where s is the median diameter of the particle size class i, smaxðiÞ
and sminðiÞ are, respectively, the maximum and the minimum

particle size of the class i. This resulting volumetric PSD is
expressed in μll�1μm�1. The number of particles for a size s of
the PSD is estimated by a normalization by their volume (Jouon
et al., 2008). We obtain the number density nðsÞ, which is also the
product of the probability density function of the size pðsÞ and the
total number of particles N:

nðsÞ ¼NpðsÞ ¼ CvolðsÞ
4
3
πðs=2Þ3

ð2Þ

The PSD of this density number classically follows a power law
distribution for aquatic particles in suspension (Sheldon et al.,
1972; Kitchen et al., 1982; Jonasz, 1983; Boss et al., 2001a;
Twardowski et al., 2001; Loisel et al., 2006; Reynolds et al., 2010):

nðsÞ � Ks�ξ ð3Þ
where K is a constant and ξ is the PSD slope. The value of ξðtÞ is
here estimated at each time step (every second) from the LISST
measurements, using an automatic regression analysis. The ξ value
provides information on the relative concentration of small and
large particles: the steeper the slope (the greater the ξ), the more
small particles relative to large particles are present in the water
(and vice versa).

Mean particulate diameters: Sauter's diameter (DA) is the mean
diameter of an equivalent sphere which has the same specific
surface area as that of the PSD. This diameter is commonly used in
sedimentology to represent size distribution in fluid flow calcula-
tion. Sauter's diameter DA is also computed from the PSD using the
following equations (Neukermans et al., 2012a; Filippa et al.,
2012):

DA ¼
∑31

i ¼ 6½AC�isi

½AC� ¼
R s31
s6

nðsÞs3 dsR s31
s6

nðsÞs2 ds
¼
R s31
s6

pðsÞs3 dsR s31
s6

pðsÞs2 ds
ð4Þ

½AC�i ¼
3
2si

CvolðsÞ ð5Þ

where ½AC�i is the cross sectional area concentration of particles in
bin i, and ½AC� is the total cross sectional area.

The following size classification has been adopted: silt/clay
ðo30 μmÞ, fine ðo105 μmÞ, coarse/micro ðo300 μmÞ and macro-
floc ð4300 μmÞ (Lefebvre et al., 2012). The volume concentration
of each size class has been analysed using statistical and dynamical
approaches.

Stokes number: In turbulent flows, the largest turbulent eddies
break-up into smaller eddies through an energy cascade and
finally dissipate at small scale due to molecular viscosity. The size
of these smallest eddies is the Kolmogorov length scale. The eddies
at this scale have typical life time τη which is the smallest time
scale of turbulence. The Stokes number St is defined as the non-
dimensional ratio of an inertial characteristic time scale τp to τη. It
is one of the fundamental parameters characterizing particle-
turbulence interactions: for St51, particles follow passively the
fluid flow, whereas for Stb1, large inertia particles are not
influenced by turbulence, and follow their own trajectories.
It can also be related to the particles and fluid characteristics
(Wang et al., 2000; Schmitt and Seuront, 2008; Xu and
Bodenschatz, 2008) as follows:

St ¼ τp
τη

¼ Cp
s
η

� �2

ð6Þ

with Cp ¼ B=18, where B¼ ρp=ρ is the ratio of the particle density
to the fluid density, and η¼ ðν3=ϵÞ1=4 is the Kolmogorov length
scale, where ν and ϵ are the kinematic viscosity of the fluid (in
m2 s�1) and the dissipation rate (in m2 s�3), respectively.

The value of the dissipation rate ϵ is estimated using the power
spectrum of the velocity time series, assuming a local isotropic
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Kolmogorov relation of the form (Pope, 2000)

EðkÞ ¼ Cϵ2=3k�5=3 ð7Þ
where E(k) is the Fourier power spectrum, C¼1.5 is a constant and
k is the wavenumber. Since the power spectrum is here estimated
from a time series in a fixed point, we estimate E(f) where f is the
frequency. Frequency and wavenumber are related with the
horizontal component of the velocity V: k¼ 2πf =V . This gives
the following estimation of the dissipation from the power
spectrum (Sethuraman et al., 1978; Lien and D'Asaro, 2006;
Gerbi et al., 2009; Huang et al., 2012; Thomson et al., 2012):

ϵ¼ C0

C

� �3=2 2π
sV

� �5=2

ð8Þ

where sV is the standard deviation of V and C0 is the constant such
that Eðf Þ ¼ C0f

�5=3 is a best fit estimated over a range of frequen-
cies corresponding to the inertial range.

3. Results

3.1. Meteorological and hydrodynamic conditions

Fig. 2 shows the hydrodynamic conditions prevailing in the
study area during the observations. The significant wave height Hs
exhibits relatively large variability in its magnitude during the
entire time series observation (from 0.18 to 0.84 m). The mean and
standard deviation values of Hs are 0.41 and 0.14 m, respectively.
The peak wave period, Tp, also presents a relatively great varia-
bility from few seconds to 20 s, with a mean and standard
deviation values of 6.41 and 2.44 s, respectively. In contrast, the
peak wave direction, Dp, is almost constant during the entire
experiment, with a mean value around 2681, which reveals that
the waves are coming from the West. The water level shows
typical semi-diurnal tidal characteristics with a period of 12.5 h.
The total water column depth observed during the low tide time
and the high tide time is 3.74 m and 10.07 m, respectively,
revealing the spring tide conditions.

Relatively large wind fluctuations in terms of amplitude and
direction are observed during the experiment. Relatively high
wind speed values (above 4 m s�1) are generally associated with
South West wind (except at the end of the experiment), whereas
relatively low wind speeds values (less than 4 m s�1) are generally
associated with South East wind.

From the water level evolution and current data set provided
by ADCP, the effect of tidal current on the PSD can be analysed. The
interval when the speed of the tidal current is very weak or zero
usually refers to the period of reversal between ebb and flood
currents, and also refers to the slack tide. The vertically averaged
current velocity (VACV) has been derived for the entire time series
(Fig. 3). VACV shows minimum values during the current reversal
time, and two maxima, the main ones corresponding to the high
tide (high water), and the second ones, reached at low tide (low
water) (Fig. 3). The consecutive intervals of time between flood to
ebb and ebb to flood are (7–7.34 h) greater than ebb to flood and
flood to ebb (5.1–5.42 h), evidencing a pronounced asymmetry of
tidal currents (Fig. 3).

3.2. Stokes number

The estimation of horizontal power spectra (U and V components)
was used to estimate the constant C0 in Eq. (8) and hence the
dissipation rate. The mean value of the dissipation rate over the
sampling day is ϵ¼ 7:65� 10�7 m2 s�3. Since the mean temperature
value is T ¼ 16:11 1C ð70:10Þ, the viscosity value is fixed at
ν¼ 1:133� 10�6 m2 s�1 (Kestin et al., 1981) and hence the Kolmo-
gorov dissipation length scale η¼ ðν3=ϵÞ1=4 ¼ 1:2 mm. Because the
mass density is not measured in the present study, two extreme values
are imposed to assess the ratio of the particle density to the fluid
density, B. The mass density of mineral and organic particles is
ρp ¼ 2:770:15 g cm�3 and ρp ¼ 1:0670:03 g cm�3, respectively
(Chiappa-Carrara et al., 2006), resulting in B values of 2:770:15 and
1.0670.03, respectively. Using Eq. (6), these range of values for B, the
estimation of ϵ and the range of particle sizes detected by the LISST
(6.20–390 μm), we obtain Stokes numbers ranging from 6:8� 10�7

to 0.03 for mineral particles and from 2:66� 10�7 to 0.01 for organic
particles. The largest values of the Stokes number are found for the
largest particles ð � 0:39 mmÞ, which are still almost four times
smaller than the Kolmogorov scale. This shows that the Stokes
numbers are here always very small, and that these particles are
likely to be passive tracers and move along with the fluids.

3.3. Temporal variability of the velocity field

The time series of along-shore (U) and cross-shore (V) compo-
nents of the velocity and their corresponding power spectra were
estimated using the ADV data (Fig. 4). The along and cross shore

Fig. 2. Time series of (A) the significant wave height Hs, (B) peak wave period Tp,
(C) peak wave direction Dp, and (D) water level.

Fig. 3. Time series of water level evolution along with tide (black line), time series
of VACV (in red) and contour map showing the vertical structure of the current
velocity. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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velocity components are characterized by a periodicity of 12.5 h,
and a large small scale variability with a coefficient of variation
(i.e., a ratio of standard deviation to the mean value of the absolute
velocity also called as turbulent intensity) value for the along-
shore and cross-shore components of 64.28 and 50.48%, respec-
tively (Fig. 4A, B). These velocity records are tightly linked to the
tidal cycle which also exhibits a period of 12.5 h. The along-shore
component is characterized by a higher variability compared to
the cross-shore component. The variability patterns of U and V are
analysed through their power spectra (Fig. 4C). At low frequency
scaling ranges, the power spectra of the two horizontal compo-
nents (U and V) are characterized by a power law with a slope (β)
close to �5/3 associated with 3D homogeneous turbulence
(Kolmogorov scaling). From T ¼ 1000 s� 17 min there is a transi-
tion to a regime for which the power spectra are characterized by
a lower slope value (close to �0.6). Similar kind of β value has
been observed in the 1-min summer rainfall time series data with
a scaling regime from 1 h to 1 day (Yonghe et al., 2013). At high
frequencies (0.1–0.3 Hz, hence on the range 3–10 s), the energy
spectra exhibit the impact of a localized forcing. Such forcing has
previously been attributed to the high energy associated with
wave breaking scales (Schmitt et al., 2009).

3.4. Temporal variability patterns of particles concentration and
size parameters in relation with hydrodynamical forcing

The size parameters considered here are the slope ξ of the
PSD, as well as DA and the normalized volume concentration of
different size classes (silt/silt, fine, coarse/micro and macro-floc)
of aggregates (Lefebvre et al., 2012). The turbidity dynamics is
also considered through the particulate attenuation coefficient,
cpð670Þ, which is proportional to the particle concentration, at

first order (Neukermans et al., 2012b). The number of particles in
size class i per unit volume and per unit diameter increment nðsÞ
is computed for the entire size classes at each time step (Fig. 5).
The PSD of the present data set is well represented by a power-
law distribution throughout the whole time series. The slope
values, ξ, of the particulate size distribution range between 2.57
and 3.94, with a mean value of 2.9 and a standard deviation of
0.16. These values are in good agreement with previous studies
(Jonasz, 1983; Boss et al., 2001b; Loisel et al., 2006; Buonassissi
and Dierssen, 2010; Reynolds et al., 2010; Neukermans et al.,
2012a).

The Probability Density Function (PDF) of the concentrations
and size parameters followed non-Gaussian distributions (Fig. 6).
The inset of each panel in Fig. 6 shows the PDF and the Gaussian fit
in a semi-log scale in order to emphasize extreme values. All the
parameters show an asymmetry, and some are showing a heavy
tail in their distribution (Fig. 6C–E). In addition, chi-square
goodness-of-fit tests have been performed to test the normal
distribution; the test result rejects the null hypothesis that these
parameters come from a normal distribution with a mean and a
variance computed from these parameters, at 5% significance level
with a p-value of 0 and h¼ 1.

The temporal variability of ξðtÞ is analysed along with the
vertically averaged current velocity (VACV) showing the tidal
information as well as the current reversal (Fig. 7A). At the time
of the current reversal, that is when VACV is minimum, ξðtÞ
generally exhibits a well pronounced peak. This pattern indicates
that the proportion of small particles compared to larger ones
increases at this particular time. The mean diameter DA, estimated
for each time step, exhibits strong high frequency variability and
has a mean value of 116:57 μm and standard deviation of
720:43 μm (Fig. 7B). DA presents a well pronounced trough in

Fig. 4. Time series of U (A) and V (B). The insets represent a small portion of the time series to show the fluctuations. (C) Power spectra of U (blue curve) and V (green curve).
The two straight lines correspond to two different scales with slopes of �1.72 (near to �5/3 slope of Kolmogorov) in light green and �0.58 in red and the humps in the
energy value at high frequency represents a small scale forcing of high energy wave breaking. (For interpretation of the references to colour in this figure caption, the reader
is referred to the web version of this paper.)
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magnitude during the current reversal time in agreement with the
ξðtÞ patterns. This impact of current reversal on particles size
distribution is also well evidenced through the temporal evolution
of the normalized volume concentration of each considered size
class (Fig. 7D–G). During slack tide the normalized volume con-
centration presents relatively higher values (a peak) in the lower
size classes (silt/clay and fine) (Fig. 7D, E) and lower values
(a trough) in the complementary higher size classes (coarse/micro
and macro-flocs) (Fig. 7F, G). The time series of cpð670Þ, a proxy of
the suspended particulate concentration, exhibits strong high
frequency variability (coefficient of variation of 53%), with numer-
ous peaks which generally occur when the VACV is maximum
(Fig. 7C). The mean and the standard deviation of cpð670Þ are 10.38
and 5:53 m�1, respectively.

Besides the apparent impact of the vertically averaged current
velocity on the particles concentration and size distribution, the
significant wave height also slightly contributes to the re-suspension
effects (r2¼0.23). The larger the mean significant wave height, the
more the concentration of re-suspended particles (Fig. 8A). Moreover,
significant wave height seems to affect PSD by promoting the
concentration of larger particles compared to smaller ones (Fig. 8B).
However, according to the low determination coefficient value addi-
tional data are needed to confirm this last point.

Since we have high frequency time series of ξðtÞ, DA(t),
cpð670ÞðtÞ and normalized volume concentration of each size
classes of particles, we can explore their dynamical properties.
The dynamics of ξ, DA and cpð670Þ has been estimated through
power spectral analysis (Fig. 9A–C). Two scaling regimes charac-
terized by different slope values are observed on either side of the
period of T ¼ 1000 s, similar to the velocity period. These para-
meters in the low frequency regime present the same spectral
slope (β close to �5/3) similar to the velocity field, indicating that
the dynamics of the particles is influenced by turbulence at low
frequencies. At higher frequencies, the slope values of these
parameters and velocity field are significantly different but remain
similar to the velocity spectra. With a slope value close to �0.8 in
the frequency range [0.001; 0:1 s�1], the dynamics of the particles
seems to be partly driven by dynamical processes likely impacted
by the interaction with the sea floor for which a slope of �1.0 is
expected (Perry et al., 1986; Katul et al., 1995; Katul and Chu,
1998). Similar power spectra are also observed in the case of
normalized volume concentrations of different size classes of
particles (Fig. 9D).

4. Discussion and conclusion

Large temporal variability in the hydrodynamic fields, particle
concentration and size distribution was observed during the
in situ experiment reported here. The hydrodynamic conditions,
along with the high turbulence level encountered, provide favour-
able conditions for the re-suspension of particle. The present data
set has shown that tidal current and waves have a significant role
in the particle re-suspension and further water column turbidity.
This is in good agreement with Velegrakis et al. (1999) who
observed large scale particle re-suspension processes generated
by the tidal current and coastal waves for the same region. During
the current reversal, when the VACV is minimum, all the size
parameters examined here indicate a modification in the particle
size distribution. The proportions of small particles tend to
increase compared to bigger ones (Fig. 7). Two processes can
explain this pattern. First, hydrodynamic forcing is not sufficient to
re-suspend large particulate assemblages from the bottom.
Second, during the period of slack current, the differential settling
of particles one over the other takes place inducing a washing of
the water column, especially of heavy flocs. These observations
agree with the study carried out by Van Leussen (1988). To a lesser
extent, the occurrence of waves induces an increase of the
suspended particulate matter concentration (i.e. cpð670Þ), and
especially of large particulate assemble (Fig. 8).

Turbulence has been extracted from the along shore and cross-
shore components of the current velocity, which show periodic
fluctuations in their magnitude. The power spectra of velocity
components follow three different regimes depending on the
scale. The first one, with typical inertial range, has a slope close
to �5/3. The second one is characterized by a flatter slope of �0.6
with a transition scale of 1000 s. At last, the energy spectra at high
frequencies (3–10 s) show a localized forcing attributed to waves
forcing, similar to the previous results obtained in the same region
(Schmitt et al., 2009). From T ¼ 1000 s� 17 min there is a transi-
tion to a regime for which the power spectra are characterized by
a lower slope value (close to �0.6). While there is still no
theoretical explanation of such low slope value, theoretical studies
have shown that the power spectra of velocities close to the sea
floor may be characterized by a slope value of �1.0 (Panchev,
1971; Kader and Yaglom, 1984; Katul and Chu, 1998). The theore-
tical and experimental studies carried out by Perry et al. (1986),
Katul et al. (1995), and Katul and Chu (1998) showed that the

Fig. 5. PSD for volume concentration (A) and for number concentration (B). The
inset in (A) is a log–log plot emphasizing the power-law relations for the volume
concentrations.
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turbulent boundary layer was characterized by a power-spectral
slope of �1.0 at the low wave number values.

Thus, the power spectra of size parameters and cpð670Þ exhibit
very similar turbulent scaling in the lower and higher frequency

regions compared to the velocity field. The Stokes number derived
from the present measurements exhibits very low values ð51Þ,
showing that the particles in the fluid motion behave like tracers
and move along with the fluid.

Fig. 6. The PDF of (A) ξ, (B) DA, (C) cpð670Þ and normalized volume concentration of the different size classes of particles (VC silt (D), VC fine (E), VC coarse (F) and VC macro
(G)), superposed to a Gaussian fit with the same mean and variance. The inset in all figures is a semi-log plot emphasizing extremes, showing that all PDFs are non-Gaussian.
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We found that turbulence has a great role in the dynamics of
the particles in the present region. Low frequency variability of the
particles is controlled by the turbulence ðβC�5=3Þ and high
frequency variability is controlled by the physical processes which

are related to the sea bottom interactions (wall turbulence), tidal
currents and waves. A next step related to this work will be to
analyze the turbulent intermittency scaling of these parameters
using empirical mode decomposition (Huang et al., 2008). Other

Fig. 7. Time series of (A) ξðtÞ, (B) DA, (C) cpð670Þ and the normalized volume concentration of different size classes of particles (VC silt (D), VC fine (E), VC coarse (F) and
VC macro (G)) superposed to VACV data.
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measurement campaigns will be performed in coastal waters to
compare with the present study and assess its possible universality.
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Abstract
Satellite remote sensing observations allow the ocean surface to be sampled synoptically

over large spatio-temporal scales. The images provided from visible and thermal infrared

satellite observations are widely used in physical, biological, and ecological oceanography.

The present work proposes a method to understand the multi-scaling properties of satellite

products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely

studied. The specific objectives of this study are to show how the small scale heterogene-

ities of satellite images can be characterised using tools borrowed from the fields of turbu-

lence. For that purpose, we show how the structure function, which is classically used in the

frame of scaling time series analysis, can be used also in 2D. The main advantage of this

method is that it can be applied to process images which have missing data. Based on both

simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modu-

lus transform of the original image does not provide correct scaling exponents. We show,

using a fractional Brownian simulation in 2D, that the structure function (SF) can be used

with randomly sampled couple of points, and verify that 1 million of couple of points provides

enough statistics.

Introduction
One of the main features of geophysical fields is their huge fluctuations occurring over wide
ranges of spatio-temporal scales. Here we consider the heterogeneities and intermittencies in
3D ocean turbulence. We use for this the framework of homogeneous and locally isotropic tur-
bulence that originated in the work of Kolmogorov [1]. In this framework, energy is supplied,
introduced or produced in the fluid at a relatively large scale, and is successively passed by in-
teractions between eddies or their instabilities. This is performed through a spectrum of smaller
and smaller eddies where inertial forces are dominant. After successive cascades steps, these ed-
dies are conveyed to eddies of size comparable to the Kolmogorov length scale η, where
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viscosity plays a major role in transferring their kinetic energy into heat. This was formalised
using the velocity fluctuations at scale l; for time series it writes ΔVl = jV(x + l) − V(x)j (V is the
velocity); and for an isotropic 2D field it can be written ΔVl = k V(M) − V(N) k, whereM and
N are two points and l = d(M,N):

hDVli ¼ C�1=3l1=3 ð1Þ

where himeans statistical average, C is a constant and � represents the dissipation. This can
also be written in the spectral space as follows [2]:

EvðkÞ ¼ C1�
2=3k�5=3 ð2Þ

where C1 is another constant, Ev(k) is the Fourier spectral energy of velocity, and k is the wave
number. This corresponds to a situation of scale invariance: velocity fluctuation have no char-
acteristic scale with a power-law scale dependence. A similar scale dependence can be obtained
for a passive scalar θ, with a power-law of the form [3, 4]:

EyðkÞ ¼ C2�
�1=3wk�5=3 ð3Þ

where Eθ(k) is the Fourier spectral energy of passive scalar, C2 is another constant, and χ is the
dissipation of scalar variance (analogous to � as dissipation of kinetic energy). It is now realized
for a long time that turbulence produces intermittency, i.e. huge local fluctuations in energy
and passive scalar fluxes � and χ, and large variations in velocity and passive scalars [5]. Since
the proposals of Obukhov and Kolmogorov in 1962 [6, 7] those quantities are characterized
using local averages �l and χl at scale l:

�lðxÞ ¼
1

al

Z
BlðxÞ

�ðx0Þdx0; wlðxÞ ¼
1

al

Z
BlðxÞ

wðx0Þdx0 ð4Þ

where Bl(x) is a bowl of radius l centered in x and al ¼ 4
3
pl3 is its volume. This is called the

“coarse graining”method (CG). This method is used to change the resolution of a positive, in-
termittent field. These local averages have scaling statistical properties of the form [5, 8]:

h�ql i � l�K�ðqÞ; hwql i � l�KwðqÞ ð5Þ

where q is the statistical moment, K�(q) and Kχ(q) are scale invariant moment functions; these
are also second Laplace characteristic function and as such are convex functions. They verify
K�(1) = 0 and Kχ(1) = 0 by conservation of fluxes. Another approach to characterize intermit-
tency and local fluctuations in the studied fields is to directly characterize the fluctuations of ve-
locity and passive scalar using structure functions [5]:

hDVq
l i � lzvðqÞ; hDyql i � lzyðqÞ ð6Þ

where zv(q) and zθ(q) are the scaling moment functions that characterize the fluctuations of ve-
locity and passive scalar [9]. This is called the structure function method (SF). In the following,
we focus on the passive scalar case, since we will consider Chlorophyll-a and Sea Surface Tem-
perature, which are transported scalars and may be compared to passive scalars. The scaling
moment functions for both CG and SF methods are derived using remotely sensed 2D Chl-a
and SST images fromMODIS Aqua.

In the next section we present the two-dimensional data analysis techniques using CG and
SF methods. The next section deals with the test of these two methods for various 2D stochastic
simulations. Finally as an illustration, the methods are applied to two real images (Chl-a and
SST) measured fromMODIS Aqua. An often assumed link between scaling exponents
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estimated using CG and SF methods is tested on these images and shown to be wrong except
for low order moments.

Methods

Data analysis techniques
Multifractal methods have been widely applied to time series, but there are not many studies
applying such approaches to 2D data, especially in the field of ocean color remote sensing.
Some of them considered a local gradient transform in order to identify currents and oil spills
[10–13]. Other studies transformed satellite Chl-a or SST image data into a positive singular
field using a gradient modulus transform [14, 15]. Below we will consider this method and
compare it to the structure functions method.

Coarse Graining (CG) method. One method which has been applied in several studies is
to produce a positive field, called “multifractal random measure”, from a non stationary field
such as Temperature and Chlorophyll-a [10, 11, 14]. For that purpose, the gradient modulus of
the field θ is calculated as follows:

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@y
@x

� �2

þ @y
@y

� �2
s

ð7Þ

using at the smallest resolution the discrete transformation:

φ2
i;j ¼

yiþ1;j � yi;j

a

� �2

þ yi;jþ1 � yi;j
a

� �2

ð8Þ

where a is a constant corresponding to grid size and θi,j is the value of the field θ at pixel posi-
tion (i,j). This relates a fluctuating field θ (a passive scalar) to an intermittent and passive field
φ. The latter is taken as the multifractal measure at the best resolution l0. The field φl at larger
scales l� l0 is then estimated by coarse graining:

φlðx; yÞ ¼
1

al

Z
Blðx;yÞ

φðx0; y0Þdx0dy0 ð9Þ

This is usually done by taking an image of size 2n×2n, and degrading the resolution in p steps
until scale l = 2pl0 (2� p� n). At each step, one goes from resolution l to 2l by taking a local av-
erage in a square of 4 values and giving to the larger scale cell this average value. The resolution
is degraded recursively. As given by Eq (5), the scale-dependant field has scaling statistics with
a scale invariant moment function K(q), hφq

l i � l�KðqÞ. Experimentally, the function K(q) is esti-
mated as the regression of loghφq

l i versus log(l), for each value of q (in practice q� 0 varies
from 0 to 5).

Structure Function (SF) method. In fact the application of the gradient modulus method
is not necessary to consider the intermittency properties of a 2D field, θ, such as temperature
and Chlorophyll-a. Let us consider two pointsM and N belonging to the field, and their dis-
tance d(M,N). The moments hjθ(M) − θ(N)jqi versus d(M,N) are considered. This can be esti-
mated directly by taking all couple of points (M,N) in the 2D domain and discretizing the
distance d(M,N) in small intervals. A log-log regression of hjθ(M) − θ(N)jqi versus d(M,N)
gives the exponent zθ, following the law

hj yðMÞ � yðNÞjqi � dðM;NÞzyðqÞ ð10Þ

where “�”means scaling relation. In practice, for an image of size n×n,M is chosen among

Scaling Analysis of Ocean Images from Satellite Remote Sensing
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n×n values and the same for N, which corresponds to consider n4 couple of points. If n = 103,
this will provide 1012 couple of points, which is usually much too computationally expensive,
even for modern computers. It is then necessary to use a numerical method to optimize the
computations.M and N are here randomly taken. The Np number of couple of points (Np �
n4) are taken small enough for a computational realistic time (less than half an hour for each
image for a powerful personal computer), and large enough to have converged statistics. The
exponent function zθ(q) is directly estimated from such images using the randomly selected
couple of points, Np.

Tests on 2D stochastic simulation
CGMethod. In the following, the coarse graining method is tested in 2D with two classical

cascade models: the βmodel and the Log-normal model.
βmodel 2D cascade. This is one of the first and simplest cascade models to describe the

intermittency in turbulence, also called as the black and white model [16]. This model was in-
troduced under this name by Frisch et al. [16], but it has already been discussed by Mandelbrot
[17] using a “pulses into pulses”approach originally proposed by Novikov and Stewart [18].
The β-model is a discrete multiplicative model. The multiplicative cascade yields a small scale
field �(x) at the smallest scale, as the product

�ðxÞ ¼
Yn
i¼1

Wi;x ð11Þ

of n independent realisationsWi,x of a random variableW (here x is the position and i is the
level in the cascade).

The β-model is a binomial model with only 2 possibilities for the value ofW (0< β< 1):

Pr ðW ¼ 0Þ ¼ 1� b

Pr W ¼ 1

b

� �
¼ b

ð12Þ

8><
>:

We can verify that such field is normalized:

hWi ¼PWi Pr ðWiÞ ¼
1

b

� �
b ¼ 1 ð13Þ

The statistical moments of the random variableW are:

hWqi ¼ R Wq Pr ðWÞdw ¼
Xn
i¼1

Wq
i Pr ðWiÞ ¼ b1�q ð14Þ

The cascade field � is built by multiplying n independent realisations ofW. Hence its moments
write:

h�qi ¼ h
Yn

i¼1

Wi;x

 !q

i ¼
Yn

i¼1

hðWi;xÞqi ¼ hWqin ¼ bð1�qÞn ð15Þ

Since each cascade step is associated with a scale ratio of 2 from one scale to the next, we
have λ = 2n, where λ is the total scale ratio. Hence we have the scaling relation for moments
h�qi = λK(q) with K(q) = c(q − 1), where c = −log2 β is the co-dimension. Which give rise to Eq
(5) by coarse-graining. The scaling moment function K(q) is linear, and corresponds to a
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mono-fractal process. A realisation with n = 10 and β = 0.9 is shown in Fig 1A. Fig 1B shows
the CG method applied to this field and Fig 1C, the scaling moment function.

Log-normal 2D cascade. The cascade generation for the log-normal model is similar to
the βmodel cascade. The only difference is that here we useW = eg, where g is Gaussian. As
above, the scaling moment function for the dissipation is h�qi = λK(q), where K(q) = log2hWqi.
To understand the scaling moment function, some basic characteristics of a log-normal ran-
dom variable are now provided. The moment generating function of a log-normal series (X) of
meanm and standard deviation σ (of logX) is hXqi = exp(qm + q2 σ2/2). This can be applied to
the moment generating function for dissipation:

KðqÞ ¼ log 2hWqi ¼ qmþ q2s2=2

log 2
ð16Þ

Fig 1. A) simulation of a 2D βmodel with n = 210 and β = 0.9 (� is displayed), B) coarse grained moments for q = 1 to 5 and C) moment scaling function K(q),
where the experimental estimation is shown in dots compared to the theoretical prediction as a dotted line, with c = 0.15.

doi:10.1371/journal.pone.0126975.g001
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Since we want to have KðqÞ ¼ m
2
q2 � qð Þ, where μ = K(2) is the intermittency parameter, the

adequate choice for the discrete log-normal cascade is to take for g, a Gaussian random variable

of meanm ¼ �mlog2
2

and variance σ2 = μlog2.

A realisation of discrete log-normal cascade has been produced with n = 10 and μ = 0.3 (Fig
2A). The coarse-gaining method is applied to this image in Fig 2B, and the resulting K(q) func-
tion provided by Eq (16) in Fig 2C. The agreement is excellent until moment of order 3; this is
a statistical bound of the estimation of moments which is theoretically predicted [19].

SF Method. The proposed structure function method has been validated with a 2D frac-
tional Brownian field with H value varying from 0.1 to 0.9 with an increment of 0.1.

Fractional Brownian motion (fBm). A generalization of Brownian motion, was intro-
duced by Kolmogorov in 1940 [20]. This has been extensively studied by Mandelbrot and his
co-workers in 1960s [21] and since then, it is considered as a classical scaling stochastic process
for time series analysis. For time series, a fBm, denoted by BH(t), is a zero-mean Gaussian

Fig 2. A) Simulation of a 2D log-normal image using a discrete cascademodel with μ = 0.3, B) coarse grained moments from q = 1 to 5 and C) the
corresponding moment scaling function experimentally estimate as dots and theoretical value KðqÞ ¼ m

2
ðq2 � qð ÞÞ as a dotted line.

doi:10.1371/journal.pone.0126975.g002
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process with stationary increments characterized by the self-similarity parameterH, also
known as the Hurst exponent. It possesses the following rescaling property:

BHðLtÞ¼d LHBHðtÞ; 8L > 0 ð17Þ

Where¼d means equality of probability distributions. It leads to linear moment functions using
structure functions Eq (6): z(q) = qH. This can be done also in 2D. The bi-dimensional isotro-
pic fractional Brownian motion with Hurst parameter H is a centered Gaussian field BH with
an autocorrelation function [22]:

hBð~xÞBð~yÞi /k~xk2Hþ k~yk2H� k~x �~yk2H ; 0 < H < 1 ð18Þ

where~x ,~y 2 R2 and k . k is the usual Euclidean norm.
In the present study we simulated 2D fractional Brownian field for various H values

(H = 0.1, 0.2.., 0.9) using an algorithm and code described in recent works [23, 24] (Fig 3A).
These images are analysed using 2D SF method for various randomly selected data (Np = 0.1
million, 0.5 million, 1.0 million, 5.0 million and 10.0 million). The scaling moment function
has been derived for each image for different iteration number. H has been derived from the
moment scaling function usingH = z(1). Since satellite images often have missing values due
to cloud coverage, we have also applied the SF approach to irregular images, where some part
of the image have been removed. Fig 3A shows some simulations for various values of H and
Fig 3B compares H estimations for full images and for images with some rectangles removed.
This is tested for various values of Np. We see that for Np = 106 the method works very well
(with an error of 3.88%) even when there are missing values, and the estimated exponents are
very precise. In the following we thus choose Np = 106, since it is computationally reasonable
and provide converged statistics for scaling exponents. To estimate the standard deviation of
the estimated values with respect to full image and percentage of missing values will need a sys-
tematic study, which will be the topic of a future work.

Comparison of the CG and SFmethods
Two recent studies have proposed to analyse the scaling of satellite images by applying first a
gradient modulus approach [12, 14], in order to have a positive intermittent field, and then
appying the CG method. The KCG(q) exponent function is retrieved and the authors assume
that:

KCGðqÞ ¼ qH � zðqÞ ð19Þ
where z(q) is the scaling exponent characterizing the Chl-a or SST fluctuations. Based on one
simulated image, and two real satellite images we compare this latter approach with the one
proposed here. We extract KCG(q) as described above, and we directly estimate z(q) using the
2D structure functions. We then compute KCG(q) + z(q): if Eq 19 is correct this should be linear
(= qH = qz(1)).

Multifractal field from cascade and fractional integration
We first test Eq 19 using a multifractal simulation done by performing a cascade and then a
fractional integration [25]. As done in Lovejoy et al.[15], we simulate a 2D log-normal multi-
fractal image withH = 0.35 and μ = 0.1 [26] (Fig 4A). The SF is directly applied to the image it-
self and the CG is applied to its gradient modulus. The scaling moment spectrum is derived for
each method (Fig 4B and 4C). The moment scaling functions for both SF and CG are derived
for various moments from 0.1 to 5 with an interval of 0.1. KCG(q) is non-linear and z(q) is
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Fig 3. A) Simulation of 2D fractional Brownian motion for various Hurst exponents (H = 0.1, 0.2.., 0.9). The white rectangles are the space where the
data have been removed to test this method for derivingH using spatial Structure function method. The 2D structure function was applied to each full image
and also to the same image with white rectangles removed, in order to show that this scaling method can be applied to irregular images. B) For each image,
comparison of theH value estimated using the structure function for the full image and for images with missing values.

doi:10.1371/journal.pone.0126975.g003
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almost linear and Eq 19 is not verified: KCG(q) + z(q) is close to qH for q� 2 but for larger mo-
ments it is no more the case (Fig 4D).

Scaling analysis on a Chl-a image of MODIS aqua
The standard MODIS Chl-a imagery available from the Goddard Space Flight Centre is pro-
duced via OC3M algorithm [27] has been used for the present study. The OC3M algorithm is a
fourth order polynomial equation and applies the maximum ratio of the remote sensing reflec-
tance at 443 nm (blue) to 550 nm (green) or 490 nm (blue) to 550 nm (green). These proposed
methods have been applied to real images of Chl-a from the Mauritanian coast sampled on
11-March-2003 (Fig 5A). A cloud free image (512 × 512 pixels) has been extracted for the anal-
ysis (square region marked in Fig 5A). The gradient modulus of Chl-a (Δ Chl-a) has been de-
rived from the Chl-a image (Fig 5B). This gradient modulus generates a positive field, the CG
method is adopted for analysing this positive field. The SF method has been applied directly to

Fig 4. A) Simulation of a 2D log-normal multifractal image withH = 0.35 and μ = 0.1. B) Scaling of the SF; C) Scaling analysis when gradient modulus is
applied on the image shown in A; D) representation of different exponents.

doi:10.1371/journal.pone.0126975.g004
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the Chl-a image. We have chosen the random picking method tested in section 2 with Np = 106

couple of points. Here also we could observe the power-law behaviour of the SF. The radially
summed power-spectra of the Chl-a image has been derived for the cloud free part of the
image (512 × 512 pixel). The derived spectral exponent α for the radially summed image is 1.79
(Fig 5C). The constants derived for the Chl-a image are shown in Table 1. The z(q) derived for
the Chl-a image also follows a non-linear convex curve showing intermittency in the spatial
distribution of Chl-a (Fig 5C). Fig 5D shows that Eq 19 is not verified for q� 1.7.

Fig 5. A) Chl-a image fromMODIS Aqua from the Mauritanian coast sampled on 11 March 2003; the square indicates the 512 × 512 pixel of cloud
free image chosen for the analysis of Chl-a. B) Gradient modulus estimated for the latter square image. C) Power-spectrum of the Chl-a image showing a
scaling exponent α = 1.79. D) Moment scaling function for the square image, using the CG and SF methods. Eq 19 is tested and found not to be correct for
q� 1.7.

doi:10.1371/journal.pone.0126975.g005

Table 1. The exponents (H and α) derived for Chl-a and SST images for Mauritanian region. The Hurst exponent H derived through SF (H = ζ(1)).

Region Sampling date Parameter H α

Mauritanian Coast 11-Mar-2003 Chl-a 0.37 1.79

Mauritanian Coast 11-Mar-2003 SST 0.41 1.80

doi:10.1371/journal.pone.0126975.t001
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Scaling analysis of MODIS SST
These proposed methods (CG and SF) have also been applied to an image of SST sampled si-
multaneously with Chl-a from the Mauritanian coast on 11-March-2003. A cloud free image
(512 × 512 pixels) has been extracted for the analysis (Fig 6A). The 2D power-spectra of the
SST image has been derived. It follows a power-law behaviour with a spectral slope α = 1.8 (Fig
6B) with some noise observed at smaller scales. Similarly to Chl-a, the gradient modulus of the
SST has been derived and CG method applied. Here also the scaling moment function derived
for the SST follows a non-linear concave curve showing the spatial intermittent characteristics
of SST (Fig 6C). However its small value shows that this field is not very intermittent. The pro-
posed SF method has been directly applied to the SST image. The moment scaling function of
SST image derived follows a non-linear convex shape, showing the intermittent characteristics
of the spatial distribution of the SST (Fig 6C). The H derived through the SF method is
H = 0.41 (H = z(1)). The constants derived for the SST image are shown in Table 1. Here we
also can see that these two exponents fall away from the typical linear qH line for q� 1.5.

Fig 6. A) SST image fromMODIS from the Mauritanian coast sampled on 11 March 2003. B) 2D power-spectrum of the image showing a scaling
exponent α = 1.80. C) Moment scaling function, using the CG and SFmethod. Eq 19 is approximately valid, coming from the fact the KCG(q) is very small,
corresponding to a very regular field.

doi:10.1371/journal.pone.0126975.g006
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The values of the spectral exponent α derived here for the Chl-a and SST satellite images are
in good agreement with the range of α values derived from in situ measurements of fluores-
cence (as a proxy of Chl-a) and temperature [28]. The estimated values of the scaling parameter
H for Chl-a and SST show also very good agreement with previous studies [28–30]. Concerning
the μ value, let us note that this intermittency parameter could be more sensitive to the local
conditions. It can be estimated using structure functions as μ = KCG(2) = 2z(1) − z(2). For Chl-
a and SST we obtain here 0.13 and 0.012 respectively. For Chl-a, this value is larger than the
one estimated from Eulerian time series, ranging from 0.065 to 0.074 [28, 31]. On the other
hand, the SST field considered here seems smoother than found in other studies since μ =
KCG(2) in other published studies range from 0.05 to 0.19 [28–32].

Discussion: the role of signs
We have considered here the scaling exponent KCG(q) obtained by coarse-graining a positive
field, and the exponent z(q) obtained directly through structure functions. We found, using a
simulation and two satellite images, that Eq 19 is not verified, an equation assuming that the
gradient modulus applied to a non-stationary field retrieves the basic scaling information. In
fact, such relation is not verified because the local sign contains information; when performing
a gradient modulus, the sign information is lost. We check this hypothesis here by considering
a fBm simulation withH = 0.6. We estimated a sign information from the 2D fBm simulation
as follows. We computed the two components of the gradient (in the x and y directions) and
took the sum of the two terms. If this sum is positive, we choose to consider a sign information
as 1 and 0 if the sum is negative. This way the sign information of the gradient is transformed
into a matrix containing only 0 and 1 values. The figure obtained (Fig 7A) does not seem to be
a noise; to check this we consider its scaling by using a coarse-graining (Fig 7B). We obtain a
scaling law of the form μ(q − 1) with μ = 0.09. This is similar with β-model and shows that the
sign information has a structure; such structure is lost when performing a modulus and we can
assume the same property for real images: such analysis is left for future studies.

Conclusion
We have considered here several methods to estimate the scaling properties of ocean colour
images, in relation with turbulence. We have first recalled data analysis methods, mainly coarse
graining after taking the gradient modulus, and 2D structure functions. Similar to many atmo-
spheric processes, oceanic processes are also governed by complex turbulent processes. These
processes cannot be fully characterised by a single scaling exponent such as α. Additional mul-
tifractal parameters are required to fully characterise these multi-scaling properties. Even
though the CG method is successful in many applications, it suffers from several approxima-
tions that can add some uncertainties in the estimation of multifractal parameters. In this con-
text, we highlighted here an alternative tool such as 2D structure function to overcome the
approximations related to the CG method. This method of 2D structure functions has rarely
been documented and studied for geophysical image analysis due to computational complexity
constraints. We have obtained several results in this framework:

• Since the structure function approach needs to consider n4 couple of points, where n is the
linear size (in pixels) of an image, it is too much computer time consuming. We shown using
fBm simulations that taking 106 couple of points randomly is enough for an adequate estima-
tion of the structure function scaling exponents. We showed also that this method works for
images with missing data, an important aspect since many real images have missing pixels
due to cloud coverage.
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Fig 7. The gradient sign information of the 2D fBm derived for H = 0.6 in A) and its moment scaling function in
B).

doi:10.1371/journal.pone.0126975.g007
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• We compared the Coarse graining scaling exponent KCG(q) from the gradient modulus, to
qH − z(q), and found that such relation is not verified, indicating that the gradient modulus
looses information (the signs have a scaling structure) and hence this method cannot be safe-
ly used instead of SF.

• We considered two images from MODIS Aqua (Chl-a and SST) and showed on these exam-
ples that scaling approach using SF and Np = 106 couple of points is adequate; we also showed
that the spectral exponent for these examples is close to 5/3 characteristic of passive scalar
fully developed turbulence. Such 2D multifractal property of Chl-a and SST is a 2D generalis-
tic of previous results obtained for time series [28, 31, 32].

• Since Chl-a and SST are not conservative, Chl-a can be influenced by biological activities and
SST can be influenced by the surface heat flux. These biological and physical processes can
have influence on the scaling exponents. These two parameters may show different scaling
properties for in situ measurements as shown in other studies [28, 31]. The spectral exponent
α derived for Chl-a and SST satellite images are in good agreement with the in situ measure-
ments of fluorescence by Chl-a and temperature [28, 31, 32].

• The present paper compared CG and SF methods on a real image. We have considered here
the question of missing data on a synthetic fBm field; the same has been done on real images
and it was confirmed that the method is also providing the same scaling exponents for real
images (not shown here).

Let us note that this method can also be applied to the 2D velocity field obtained from altim-
eter data, since the velocity can also be intermittent and scaling. As a perspective, in a following
work, we will use the SF method with Np = 106 couple of points, to estimate the z(q) function,
fit with the data using a log-normal approximation with 2 parameters (H = z(1) and μ = 2H − z
(2)) and consider the values of these parameters in several locations (open ocean, coastal wa-
ters, upwelling region, etc.). For that purpose, several images collected over different oceanic
regions characterised by contrasted biological and physical environment will have to
be studied.
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Abstract. Marine coastal processes are highly variable over different space and time scales. In this

paper we analyse the intermittency properties of particle size distribution (PSD) recorded every

second using a LISST instrument (Laser In-Situ Scattering and Transmissometry). The particle con-

centrations have been recorded over 32 size classes from 2.5 to 500 µm, at 1 Hz resolution. Such

information is used to estimate at each time step the hyperbolic slope of the particle size distribution,5

and to consider its dynamics. Shannon entropy, as an indicator of the randomness, is estimated at

each time step and its dynamics is analysed. Furthermore, particles are separated into four classes

according to their size, and the intermittent properties of these classes are considered. The empir-

ical mode decomposition (EMD) is used, associated with arbitrary order Hilbert spectral analysis

(AHSA), in order to retrieve scaling multi-fractal moment functions, for scales from 10 sec to 810

minutes. The intermittent properties of two other indicators of particle concentration are also con-

sidered on the same range of scales: the total volume concentration Cvol−total and the particulate

beam attenuation coefficient cp(670). Both show quite similar intermittent dynamics and are charac-

terized by the same exponents. Globally we find here negative Hurst exponents for each time series

considered, and nonlinear moment functions.15

1 Introduction

Ocean data fields show a high variability over many different time and space scales. Such variability

is often associated with turbulence, and multi-scaling properties of oceanic fields have been reported

and studied in many previous studies: sea state (Kerman, 1993); phytoplankton concentration (Seu-

ront et al., 1996a, b, 1999; Lovejoy et al., 2001a); rainfall and cloud radiance (Tessier et al., 1993;20
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Lovejoy and Schertzer, 2006); satellite images of ocean colour, chlorophyll-a and sea surface tem-

perature (Lovejoy et al., 2001b; Nieves et al., 2007; Pottier et al., 2008; Turiel et al., 2009; Montera

et al., 2011; Renosh et al., 2015). Here we focus on coastal waters and consider particles transported

by oceanic currents in this highly energetic medium (Svendsen, 1987; Schmitt et al., 2009). The

solid phases in the environment has been described by hyperbolic particle size distributions (PSD)25

of clay aggregates in water (Amal et al., 1990), biological aggregate and marine snow (Jiang and

Logan, 1991; Logan and Wilkinson, 1991), aerosol agglomerates (Wu and Friedlander, 1993) and

flocs produced in the water and waste water discharge (Li and Ganczarczyk, 1989).

PSD has major influence in biological, physical and chemical processes in the aquatic environment

(Boss et al., 2001; Twardowski et al., 2001; Reynolds et al., 2010). For instance, PSD is strongly30

involved in the trophic interaction within the plankton community and in the chemical/geological

aspects. The shape of the PSD is also uses in computing the sinking rate of the sediment fluxes.

The study carried out by Renosh et al. (2014) using the same in situ data set than the present study

showed that the dynamics of the PSD is controlled by many oceanographic parameters like tidal

currents, waves and turbulence. The present study is a continuation of this work.35

All environmental and geophysical data sets are nonlinear and non-stationary at many different

scales of time and space. Intermittency is a property that occurs in fully developed turbulence ranging

between the large scale injection and the small scale dissipation (Frisch, 1995; Pope, 2000). The main

objective of this study is to analyse the intermittency properties of particle size distribution (PSD).

In this study we mainly focus on the dynamics of the PSD along with the velocity data. For that40

we decomposed the PSD into different size classes and also derived the Shannon entropy from the

probability density function (PDF) of the PSD.

Empirical Mode of Decomposition (EMD) together with Hilbert spectral analysis (HSA) is a well-

known time-frequency analysis method for non-stationary and nonlinear time series (Huang et al.,

1998, 1999). Such analysis is done in two parts: the EMD is an algorithm to decompose a time series45

into a sum of mono-chromatic modes, and HSA extends for each mode into characteristic ampli-

tude and frequency. Hence this method is a time-amplitude-frequency analysis, which is recalled in

appendices A and B. This approach can be generalised to extract intermittency exponents (Huang

et al., 2008, 2011). This is presented in Appendix C.

The first part of the paper present the study area and in-situ data, which contains the separation50

of different size classes and the hyperbolic shape shape of the PSD. Intermittency analysis using the

EMD-AHSA method (presented in the appendices) are then provided in the next section followed

by the conclusion.
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2 In-situ data

The measurements were conducted above (50 cm) from the bottom of coastal waters of the eastern55

English Channel at a fixed station (50◦45.676N , 01◦35.117E) from the 25-28 of June 2012 (Figure

1).

Figure 1

We consider here simultaneous measurements of velocity and particle concentrations. The in-situ

sampling of Laser In-Situ Scattering and Transmissometry (LISST 100x type C) has been carried60

out at 1.0Hz. The main part of the instrument is a collimated laser diode and a specially constructed

annular ring detector. The primary information collected by the LISST is the scattering of the laser

at 32 angles, which are converted into size distribution using an inverting method. The size distri-

bution is presented as volume concentration with units of micro-litres per litre (µl.l−1). The LISST

measures the volume concentration Cvol,i of particles having diameters ranging from 2.5 to 500 µm65

in 32 size classes in logarithmic scale (Agrawal and Pottsmith, 2000). Because of instability in the

smallest and largest size classes, the data recorded in the inner and outer rings are excluded from fur-

ther analysis (Traykovski et al., 1999; Jouon et al., 2008; Neukermans et al., 2012). The LISST also

records the beam attenuation (c) at 670 nm (±0.1nm) over a 5 cm path length with an acceptance

angle of 0.0135◦. The particulate attenuation coefficient cp has been derived from c after calibra-70

tion with MilliQ water before and after the field campaign, using the assumption that chromophoric

dissolved organic matter (CDOM) does not absorb the light at 670 nm. cp(670) is an important pa-

rameter which has a direct link to the suspended particulate matter (SPM) of the water body (Boss

et al., 2009; Neukermans et al., 2012). Simultaneously, velocity time series are measured using a

Nortek Vector ADV current meter fixed on the same platform along with the LISST at 0.5 m above75

the sea bottom. The ADV measured the North, East and Up components of velocity components

with an accuracy of ±0.5%.

2.1 Separation into size classes

The volume concentration distributed of a particle size class can also be expressed as the concentra-

tion Cvol(σ) per unit volume per unit bin width (Jouon et al., 2008):80

Cvol(σ) =
Cvol,i

σmax(i)−σmin(i)
(1)

where σ is the median diameter of the particle size class i, σmax(i) and σmin(i) are respectively the

maximum and minimum particle size of the class i. This resulting volumetric PSD is expressed in
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µl.l−1.µm−1. The total volume concentration of the PSD (Cvol−total) has been derived at each time

step:85

Cvol−total(t) =

31∑

i=6

Cvol,i(t) (2)

This quantity gives the total volume of the particles in µl/l. For the present study we deal with

4 different size classes, using the following classification: Silt/Clay (σ < 30µm), Fine (30 < σ

< 105µm), Coarse/Micro (105 < σ < 300µm) and Macro flocs/particles (σ > 300µm) (Lefebvre

et al., 2012; Renosh et al., 2014). Figure 2 shows the time series of normalized volume concentrations90

(V C) of different size classes of PSD. All 4 size classes are showing large temporal fluctuations in

their magnitude. There statistical and dynamical properties are considered below.

Figure 2

2.2 PSD slope (ξ)

The particle size distribution in the ocean, which describes the particle concentration as a function95

of particle size/number, typically shows a rapid decrease in concentration with increasing size from

a sub-micrometer range to hundreds of micrometers. This feature is common to all the suspended

particles and also for plankton micro-organisms (Sheldon et al., 1972; McCave, 1983; Stramski and

Kiefer, 1991; Jackson et al., 1997). The number of particles for a given size σ is estimated by a

normalisation by their volume (Jouon et al., 2008). We obtain the number density n(σ), which is100

also the product of the probability density function of the size, p(σ), times N , the total number of

particles:

n(σ) =Np(σ) =
Cvol(σ)
4
3π(σ/2)3

(3)

The PSD of this density number classically follows a power law distribution for aquatic particles in

suspension (Sheldon et al., 1972; Kitchen et al., 1982; Jonaszz, 1983; Boss et al., 2001; Twardowski105

et al., 2001; Loisel et al., 2006; Reynolds et al., 2010; Renosh et al., 2014):

n(σ)∼Kσ−ξ (4)

where K is a constant and ξ > 0 is the PSD hyperbolic slope. Since the LISST provides size class

information at each time step, the power-law distribution can be fitted at each time step, providing

the exponent as a time series ξ(t). The ξ value provides information on the relative concentration110

of small and large particles: the steeper the slope (the greater ξ), the more small particles relative

to large particles are present in the water (and vice versa). A small portion of 3000 samples of ξ is

shown in Figure 3A: large temporal fluctuations in its magnitude are visible. When considering all
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size classes in all the time steps, a hyperbolic PDF is also obtained, represented in Figure 3B with a

slope value of ξ̄ = 2.9± 0.16.115

Figure 3

The study carried out by Renosh et al. (2014) considered the dynamics of the ξ(t) in relation with

different hydrodynamic quantities like waves, tidal currents and turbulence. It showed that turbulence

has a major role in the re-suspension of the particles in the aquatic environment. It also showed that

along-shore (U) and cross-shore (V) components of velocity have power spectra showing different120

scaling regimes in low frequency and high frequency regions (Figure 4). At low frequency scale there

is a typical Kolmogorov −5/3 slope and at high frequency a scaling regime with a 0.6 slope. For

high frequencies there is a hump like structure, which can be identified as the high energy associated

with surf zone wave breaking (Schmitt et al., 2009).

The study of Renosh et al. (2014) showed that the low frequency variability of ξ(t) and cp(670) are125

controlled by turbulence and that the high frequency part is related to dynamical processes impacted

by the sea bottom. The present study is a continuation of Renosh et al. (2014); it considers the high

frequency scaling regimes and studies the intermittency of particle concentration in this range of

scales.

3 Intermittent dynamics130

3.1 Velocity intermittency

We first consider here the scaling and intermittency properties of the velocity. Figure 4A shows the

Fourier and Hilbert (HSA) estimation of the U and V components of the velocity. Scaling range

are found from 20 to 500 seconds with a slope of about -0.6. In this range of scales the AHSA

method has been applied to characterise intermittency in a multi-fractal framework (see Appendix135

C for the AHSA method). First a negative Hurst exponent is found: HU =−0.26 and HV =−0.24.

Such negative sign for H values indicates that small scales show larger fluctuations than the larger

scales in a scaling way (Lovejoy and Schertzer, 2012). Both curves become quite different for larger

moments: the U curve is more nonlinear, associated to larger intermittency (Figure 4B).

Figure 4140

3.2 Dynamics of the entropy of particle size

The LISST system records at each time step a discretized PDF of the particle size. Hence it is

possible to estimate at all time step the entropy of the particle size distribution as:

S(t) =−
31∑

i=6

Pi(t) logPi(t) (5)
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where Pi(t) = n(σi)(t)/N(t). The Shannon Entropy S(t) is estimated at each time step; it possesses145

some variability with value centered around S̄ = 1.59±0.03. Figure 5A shows a sample of S(t) and

Figure 5B shows its PDF, which is centered around S̄ with values ranging mainly between 1.5 and

1.7. As a stochastic process, in order to consider the dynamics of S(t), we plot in Figure 5C the

autocorrelation of S(t). A memory time of the entropy series can be estimated as:

T =

T0∫

0

Cs(t)dt (6)150

where T0 is the first time for which Cs(t) = 0; we find here T0 = 7826s and we compute T =

2176s= 36.26min. This characteristic time scale could be related to the transition scale (Figure

4A) between two scaling regimes of low frequency injection scale and high frequency wave breaking

scale.

The entropy of particle sizes characterises the “disorder” of the size distribution, its information155

content. We showed here that the dynamics of such quantity can be considered by using LISST

data. One of the very interesting feature of LISST measurements is hence to be able to characterise

nonlinear classical indicators such as the Shannon entropy, in a dynamical way.

Figure 5

3.3 Intermittent dynamics of different size classes160

As explained above, the PSD is decomposed into 4 different size classes of particles (Silt/Clay,

Fine particles, Coarse/Micro particles and Macro particles/flocs). The power spectra of these 4 size

classes have been derived using Fourier as well as Hilbert transform (Figure 6) for understanding the

turbulent characteristics. Similar spectra are found from Fourier and Hilbert transform and there is a

good power-law behaviour observed in the high frequency region (0.09Hz - 0.002Hz).165

Figure 6

This scale range has been taken for the extraction of the scaling exponents. The scaling exponent

function ξ(q) has been extracted for all size classes using arbitrary order Hilbert spectral analysis

(Appendix C). The exponent ζ(q) = ξ(q)− 1 is computed. Nonlinear functions are visible for each

size classes (Figure 7). The Hurst numberH = ζ(1) = ξ(1)−1 is estimated for each classes: we find170

H = -0.17; -0.19; -0.38; -0.26 for increasing size classes. The highH values are observed in the larger

size classes and low H values are observed in lower size classes. This parameter determines the rate

at which mean fluctuations grow (H > 0) or decrease (H < 0) with the scale. We found negative H

values in the present study. Negative H values have not been found in many studies. Recently in

Lovejoy and Schertzer (2012, 2013) it was argued that Haar wavelet analysis can be used to extract175

the H values with any sign for the exponent (−1<H < 1). Such sign indicate that small scales

show larger fluctuation than large scales. If ζ(q) is linear, the statistical behaviour is mono-scaling;

if ζ(q) is nonlinear and concave/convex, the behaviour is defined as multi-scaling, corresponding
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to a multi-fractal process. The concavity of this function is a characteristic of the intermittency: the

more concave is the curve, the more intermittent is the process (Frisch, 1995; Schertzer et al., 1997;180

Vulpiani and Livi, 2003; Lovejoy and Schertzer, 2012). The slight curvature which is found here for

all size classes (Figure 7) is hence a signature of intermittency in the particle dynamics.

Figure 7

3.4 Intermittent concentration dynamics

We perform here an analysis of intermittency of concentration dynamics considering two indicators185

of this particle concentration: cp(670) and total volume concentration (Cvol−total). At first order,

cp(670) is driven by the suspended particulate matter (SPM). We observe here a large variability in

the cp(670) data (Figure 8A). The total volume concentration of the PSD has been derived for each

time step using equation 2. The derived Cvol−total shows large fluctuation in its magnitude (Figure

8B). The turbulent power spectrum derived for these series shows 2 scaling regimes similar to the190

size classes (Figure 8C and 8D). A good scaling between 0.002Hz - 0.09Hz is observed (Figure 8C

and 8D). Hence the region between 0.002 to 0.09 Hz (10 sec. to 8 min.) has been identified for the

multi-scaling analysis. The structure function scaling moment function derived for this series shows

a nonlinearity and concavity in its shape (Figure 8E). The H value derived for the Cvol−total is

slightly negative; H =−0.08. The scaling moment function of the cp(670) showed a nonlinearity195

in its behaviour showing its intermittent characteristics (Figure 8E). We find here H =−0.06 which

is quite similar to Cvol−total. Globally, for power spectra as well as for their intermittency proper-

ties, both proxies of SPM show similar scaling properties. These two different indicators of particle

concentrations show quite similar dynamics and statistical intermittent properties.

Figure 8200

4 Conclusions

This work analysed the intermittency and scaling properties of particles using the AHSA method.

The intermittent transport of particles in complex flows, like in coastal waters, is very important

for the study of partition dynamics, erosion processes, ecosystem modelling, sediment transport

and turbidity dynamics. Suspended particle dynamics in turbulent flows are complex; some studies205

showed preferential concentration (Eaton and Fessler, 1994; Squires and Eaton, 1991) and some

other studies showed multifractal repartition according to the Stokes number (Bec, 2005; Yoshimoto

and Goto, 2007). We thus expect here also, in the natural environment to find intermittent particle

dynamics.

This work has analysed the intermittency and scaling properties of the PSD using different as-210

pects. We have time series of normalized volume concentration of different size classes of PSD and

Shannon entropy which have been derived from number density of PSD. Here we showed the in-
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termittency of particles for different size classes. The cp(670), a proxy of the suspended sediment

concentration, and the total volume concentration (Cvol−total) showed an intermittent and multiscal-

ing properties in their dynamics.215

Turbulent scaling of these parameters has been derived through both Fourier power spectra and

spectra derived through HSA. The scaling moment function derived for Cvol−total and cp(670) are

showing similar nonlinear curve stressing the intermittency in their dynamics. The scaling moment

functions derived for each size class of the particle are also nonlinear. The curvature of the spectrum

for various size class shows the intermittency of the particles dynamics in different sizes.220

We may note also that the Hurst exponent derived for the velocity components and the particle

concentrations are negative. This negative sign indicates that small scales show larger fluctuations

than large scales. We have here no theoretical interpretation to propose to these values, which could

be related to the particular statistical characteristics of a bottom boundary layer flow.

This multi-scaling analysis has been tested only in the bottom of the highly dynamic coastal225

waters of the Eastern English channel. Such analysis is an illustration of the potential provided by

LISST data, with many particle size classes recorded at each time steps. It may be applied to other

time series in the open ocean, coastal waters and also fresh water situations, in order to provide

comparison and help to look for universal properties.

Appendix A: Empirical Mode of Decomposition (EMD)230

Hilbert Spectral Analysis (HSA) and Empirical Mode of Decomposition (EMD) have been intro-

duced by Norden Huang and collaborators in the end of the 1990s (Huang et al., 1998) to locally

extract amplitude and frequency information in a time series. It was mainly introduced for nonlinear

and non-stationary time series. The first step of this approach is EMD. The objective of the EMD

method is to decompose a signal into a series of modes. Each component is defined as an intrinsic235

mode function (IMF) satisfying the following conditions: (1) In the whole data set, the number of

extrema and the number of zero crossings must either equal or differ at most by one. (2) The mean

value of the envelope defined using the local maxima and the envelope defined using the local min-

ima are zero (Huang et al., 1998; Huang and Wu, 2008). An iterative algorithm was proposed to

extract successive IMF from time series. We do not reproduce all the details of this algorithm here240

and refer to original publications (Huang et al., 1998, 1999).

The decomposition process stops when the residue, rn, becomes a monotonic function or a function

with only one extrema from which no more IMF can be extracted. At the end of the decomposition,

the original time series x(t) is decomposed into a sum of n modes and a residue:

x(t) =

n∑

j=1

cj(t) + rn(t) (A1)245
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where cj(t) are IMFs and rn(t) is the residue. In this decomposition, each mode has a decreasing

characteristic frequency. If N is the number of points of the original series, we have: n≈ log2(N),

hence in general, 10 ≤ n < 20 (Flandrin and Goncalves, 2004; Huang et al., 2008).

Appendix B: Hilbert Spectral Analysis (HSA)

Hilbert Spectral Analysis (HSA) is the second step of the analysis, which is applied to each mode250

cj(t) extracted for the time series x(t) using the procedure discussed in Appendix A. For any func-

tion x(t), its Hilbert transform y(t) is written as:

y(t) =H{x}(t) =
1

π

+∞∫

−∞

x(τ)

t− τ dτ (B1)

The analytic function z(t) estimated from x(t) using the Hilbert transform y(t):

z(t) = x(t) + iy(t) = x(t) + iH{x}(t) (B2)255

where i=
√
−1. The analytical function is estimated for each mode and at each time step. For each

mode and each time step a local amplitude a and phase function θ can be estimated:

a(t) = (x2 + y2)1/2 (B3)

θ(t) = tan−1(y/x) (B4)

The local frequency is estimated from the phase function:260

ω =
dθ

dt
(B5)

The HSA represents a time-amplitude-frequency analysis. This helps to estimate a joint PDF

p(ω,A) of frequency and amplitude. From this, a marginal spectrum is estimated:

h(ω) =

∞∫

0

p(ω,A)A2dA (B6)

This h(ω) spectral analysis is done through a Hilbert transform and can be compared to the Fourier265

spectrum E(f) obtained through the classical Fourier analysis (Huang et al., 2008).
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Appendix C: Arbitrary order Hilbert Spectral Analysis (AHSA)

The equation obtained in the previous section giving h(ω) is a second order statistical moment; it

can be generalised into arbitrary order moment (Huang et al., 2008, 2011), by taking a moment of

order q:270

Lq(ω) =

∞∫

0

p(ω,A)AqdA (C1)

where q ≥ 0. In case of scale invariance we can write

Lq(ω)≈ ω−ξ(q) (C2)

where ξ(q) is the corresponding scaling exponent, which is related to the classical structure function

by ξ(q) = 1 + ζ(q) (Huang et al., 2008). For example for a fractional Brownian motion ξ(q) = 1 +275

qH . Here we are interested by the “Hurst" exponent given by H = ζ(1) = ξ(1)− 1. H can positive

or negative and it characterises the degree of stationarity of the scaling process. The nonlinearity of

ζ(q) is related to the intermittency of the time series: the more nonlinear the scaling exponent ζ(q),

the more intermittent is the series (Schmitt and Huang, In press 2015).
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Figure 1. Location (black triangle) of the sampling station in the eastern English Channel together with the

isobaths.
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(A)

(B)

(C)

(D)

Figure 2. Time series of 3000 samples of volume concentrations of different size classes of PSD. (A) Silt/Clay,

(B) Fine particles, (C) Coarse/Micro particles (D) Macro particles/flocs.
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(A) (B)

Figure 3. Time series of 3000 samples of PSD slope (ξ) (A) and PSD slope of the entire dataset with a power-

law fit of slope ξ̄ = 2.9± 0.16 (B).
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(A)

(B)

Figure 4. Turbulent power spectra of U and V components of velocity fields showing different scaling regimes

same for both FFT and HSA (A). The scaling exponents estimated using the HSA method: the curve for U is

more nonlinear than the one for V. The Hurst exponents HU and HV are negative (B).
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(A) (B)

(C)

Figure 5. Time series of 3000 samples of Shannon entropy in (A), PDF of Shannon entropy along with a

Gaussian fit in semilog plot (inset) in (B) and the Autocorrelation of Shannon entropy in (C).
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(A)

(B)

(C)

(D)

Figure 6. Power spectra for different size classes of PSD estimated for Fourier and Hilbert transform Silt/Clay

(A), Fine (B), Coarse/Micro (C) and Macro particles/flocs (D). The red lines shows the scaling range and the

slope of the best fit in this range.
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Figure 7. Scaling exponents ζ(q) estimated for different particle sizes, using the HSA method. In all cases the

Hurst exponent is negative, with values between -0.17 and -0.38. The curves are all slightly nonlinear, sign of

intermittency.
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(A) (B)

(C) (D)

(E)

Figure 8. Time series of 3000 samples of cp(670) in (A), Time series of 3000 samples of Cvol−total in (B),

Turbulent power spectrum of cp(670) and turbulent power spectrum of Cvol−total showing different scaling

regimes (The scaling regime indicated as red is used for the scaling exponent computation) in (C and D) and

scaling moment function of cp(670) and Cvol−total in (E). The Hurst exponent values are very small but the

curve is srongly nonlinear.
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