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Résumé 

La couche D" située à la frontière manteau-noyau est une région des plus complexes 

caractérisée en particulier par une forte anisotropie à différentes échelles. Inaccessible de 

par sa profondeur et caractérisée par des conditions de pression et de température extrêmes 

(au delà de 120 GPa et 2000 K), l‟étude de cette région de la Terre représente un défi 

majeur qui ne peut être abordé qu‟au travers de quelques observables géophysiques et 

d‟expériences de hautes pressions qui mènent parfois à des résultats contradictoires. En 

particulier, les causes de la forte anisotropie sismique de D" sont toujours l‟objet de débats 

(orientations préférentielles de cristaux (CPO) ou d‟inclusions, hétérogénéités thermo-

chimiques,…). La contribution de l‟orientation préférentielle des cristaux à l‟anisotropie 

reste cependant une piste privilégiée compte-tenu de la structure très anisotrope de la post-

perovskite. De plus, la couche D" est une couche limite thermique à l‟interface entre le 

noyau constitué d‟un alliage de fer liquide et le manteau inférieur constitué de silicates 

solides mais au comportement visqueux. Les propriétés physiques de D" sont donc 

particulièrement importantes pour comprendre les transferts thermiques en provenance du 

noyau et leur contribution à la convection mantellique. Ce phénomène implique 

l‟écoulement plastique de roches contrôlé par le déplacement de défauts cristallins. 

Cependant, pour la post-perovskite, les informations concernant les propriétés mécaniques, 

les systèmes de glissement majeurs ou les défauts sont extrêmement parcellaires. Pour ces 

phases de hautes pressions, la modélisation numérique représente une approche de choix 

pour obtenir des informations sur les mécanismes de déformations élémentaires difficiles à 

obtenir par voie expérimentale. Le but de ce travail est d „étudier à l‟échelle atomique les 

défauts majeurs de la post-perovskite MgSiO3 (dislocations [100], [001] et ½[110]) ainsi 

que leurs mobilités afin d‟évaluer la capacité de cette phase à se déformer plastiquement 

par glissement de dislocations  dans les conditions de la couche D". 

  



 

Abstract 

The D‘‘ layer, located right above the core-mantle boundary (CMB), represents a 

very complex region with significant seismic anisotropy both at the global and local scale. 

Being a part of inaccessible deep Earth interior, characterized by extreme P-T conditions in 

excess of 120 GPa and 2000 K, this region is extremely challenging for interpretation 

relying only on the direct geophysical observations and high-pressure experiments, leading 

often to contradictory results. Thus, the reasons of the pronounced anisotropy in D‘‘ are 

still debated (e.g. crystal preferred orientation (CPO), oriented inclusions, thermo-chemical 

heterogeneities etc.). Among them, contribution of CPO in anisotropic silicate post-

perovskite phase is commonly considered as substantial. Furthermore, the D‘‘ layer is a 

thermal boundary layer located at the interface between liquid iron alloy, constituting the 

outer core, and solid although viscous silicates of the lowermost mantle. As such, its 

physical properties are critical for our understanding of the heat transfer from the core, 

driving mantle convection. The latter is governed by plastic flow, which, in turn, is 

controlled by the motion of defects in crystals. However, for the high-pressure post-

perovskite phase, information about mechanical properties, easy slip systems, dislocations 

and their behavior under stress is still scarce. For high pressure phases, numerical 

modelling represents a powerful tool able to provide the intrinsic properties and the 

elementary deformation mechanisms, not available for direct observations during high-

pressure experiments. The aim of this study is to access the structure and mobility of [100], 

[001] and ½<110> dislocations in MgSiO3 post-perovskite, relying on the full atomistic 

modeling approach, in order to infer the ability of this phase to plastically deform by 

dislocation glide at D‘‘ conditions.  
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INTRODUCTION 

 

Being restricted to the surface of the Earth, we tend to reveal the secrets of its 

inaccessible deep interior. An important source of information about the inner structure 

and composition of the planet comes from geophysical observations and from seismic 

waves that propagate through the Earth or along its subsurface after the occurrence of 

earthquakes. The travel time of seismic waves represents the first observable. Seismic 

wave velocities depend on the elastic properties and on the density of the matter through 

which the waves travel. This allows distinguishing the major divisions of the Earth's 

interior into a silicate mantle which extends to a depth of ~2900 km, and the iron rich 

metallic core with a radius of ~3400 km, subdivided into a liquid outer and a solid inner 

core (Fig. 1).  

The Earth‟s mantle is not homogeneous with depth: abrupt variations in seismic body 

wave velocities indicate changes in structure or/and composition of the Earth's interior with 

depth. Based on such observations, the Earth's mantle is further divided into two major 

 

Fig.1. Schematic illustration of the Earth inner structure and the major distinct characteristics of 

the Earth‘s mantle. Right panel is taken from Mainprice et al. (2000). The radial seismic 

anisotropy profile corresponds to the seismic model SP6-F by Montagner and Kennett (1996). 
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parts: the upper mantle that extends to a depth of about 410 km and mostly consists of 

(Mg,Fe)Si2O4 olivine (60%), (Mg,Fe,Ca)2Si2O3 pyroxenes and (Mg,Fe,Ca)3Al2Si3O12 

garnets; and the lower mantle between 660-2700 km mostly made up by 

(Mg,Fe,Ca,Al)(Al,Si)O3 perovskite (PV), named bridgmanite in 2014 (Tschauner and Ma 

2014), and (Mg,Fe)O ferropericlase. Besides these two regions, there are two highly 

anisotropic layers of ~200 km thickness (Fig. 1) where horizontally polarized shear waves 

travel faster (velocity VSH) than vertically polarized shear waves (VSV): the transition zone 

(TZ) which separates the lower and the upper mantle, and the D‘‘ layer located right above 

the core-mantle boundary (CMB). Sharp seismic discontinuities in the transition zone are 

known to be associated with subsequent phase transitions of (Mg,Fe)Si2O4 olivine into 

wadsleyite at ~410 km depth and ringwoodite at ~520 km depth, while the nature of the 

profound D‘‘ layer, lying almost halfway to the Earth‟s center, is still a matter of ongoing 

debates. Being located at the interface between the outer core and the lowermost mantle, 

where liquid iron alloy meets solid silicates, this region represents one of the most complex 

boundary layers of the Earth, where, for instance, the density contrast exceeds the one 

between the crust and the atmosphere. The properties of this region inevitably influence the 

processes occurring both in the core and in the mantle. Although being solid, the mantle 

undergoes slow convection due to the temperature and density gradient between its 

different regions. At the surface, downwelling zones are associated with cold and dense 

subducting slabs (the portion of a tectonic plate) sinking into the mantle, while the 

upwelling regions mainly correspond to the hot mantle plumes, rising from sources which 

may be as deep as the CMB (Fig. 2). Thus, the heat flow across the CMB plays an 

important role for the thermal structure of the planet, and contributes to the driving force of 

mantle convection. 

Historically, the few hundred kilometers zone above the CMB were interpreted as a 

continuous thermal boundary layer, characterized by reduced seismic velocity gradient. 

This view has changed in the early 1980s, when the discontinuous increase in the shear 

wave velocities was first observed between 250 and 350 km above the CMB (Lay and 

Helmberger 1983). Since that time, numerous seismological observations (e.g. Weber 

1993; Garnero and Helmberger 1995; Thomas et al. 2004; Lay 2008; Hutko et al. 2009; 

Long 2009; Cobden and Thomas 2013 etc.) have shown that the D‘‘ region is much more  
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Fig.2. Schematic illustration of the distinct large scale structures at the bottom of the 

mantle and their possible role in mantle convection. LLSVP corresponds to the large low 

shear wave velocity provinces. Mantle plumes are generated at their top and entrain some 

fractions of the matter from the deep interior towards the surface. ULVZ stands for the 

ultralow velocity zones, likely represented by residuals of the magma ocean enriched in 

iron. The PPV zone corresponds to the lenses of post-perovskite, thought to be stable in 

relatively cold regions beneath the subducted slabs. The thickness of the PPV lenses 

strongly depends on the temperature. The picture is modified from Deschamps et al. 

(2015). 

 

complex and heterogeneous than the rest of the lower mantle, where no major 

discontinuities are detected. 

Topographically, global structures are detected in the deep mantle beneath Africa and 

South-Central Pacific (Fig. 3). These zones are characterized by shear wave velocity 

anomalies of -2 to -5%, and therefore, defined as large low shear-wave velocity provinces 

(LLSVPs). It‟s generally accepted that these provinces, covering ~20% of the CMB, are 

hotter than the rest of the mantle and represent the main source of mantle plumes (see 

Davies et al. 2015 for a review). Location of LLSVPs is strongly correlated with location 

of the hot spots and the reconstructed eruption sites on the Earth‟s surface (Fig. 3). 

However, seismic observations in LLSVPs cannot be explained by thermal anomalies 

alone. The exact nature of LLSVPs is still not clear and understanding compositional 

anomalies (e.g. enrichment in iron) is needed to better explain it. 

Another low velocity anomalies at the bottom of the mantle are characterized by 

significant drop of VP and VS velocities by ~10% (Garnero and Helmberger 1995) and, 
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therefore, commonly referred as ultralow velocity zones (ULVZ). In contrast to LLSVPs, 

ULVZs form local structures of 5-40 km. These zones are generally observed at the edges 

of LLSVPs (Fig. 2) and interpreted as denser regions, possibly represented by pockets of 

partial melt enriched in iron (Williams and Garnero 1996; Rost et al. 2005).  

Locally, regional seismic data also indicates presence of abrupt vertical changes in 

speed of both P and S waves at the top of D‘‘ region. This abrupt changes are commonly 

referred as D‘‘ discontinuity. Numerous studies reported existence of such structures 

between ~100 and 450 km above the CMB in different parts of the globe (see Cobden et al. 

2015 for a review). Mapping the regions, where D‘‘ discontinuity has been observed for S 

and P waves (Fig. 3), clearly demonstrates that D‘‘ discontinuity does not form a global 

structure, but rather represents lenses locally disposed out of LLSVPs, i.e. in colder 

regions, likely associated with subducted slabs. 

 

Fig.3. Superposing the shear wave tomography at the CMB (2800 depth) with location of surface 

hotspots (green dots on the left panel), reconstructed eruption sites (yellow dots on the left panel) 

and with S- and P-waves seismic discontinuities (right panel). On both plots LLSVPs correspond 

to the red areas. The pictures are taken from Davies et al. (2015) and Cobden et al. (2015). 

 

By analogy with the phase transformations in the TZ, Sidorin et al. (1999) suggested 

that seismic observations of the D‘‘ discontinuity could be explained by a mineral phase 

transition with a large positive Clapeyron slope of ~7 MPa/K. However, at that time no 

phase transition was known to occur and bridgmanite was believed to be stable down to the 

CMB (Knittle and Jeanloz 1987; Kesson et al. 1998) where pressures are expected to reach 

120-135 GPa. In 2004, several research groups (Murakami et al. 2004; Oganov et al. 2004; 

Shim et al. 2004) independently demonstrated that MgSiO3 bridgmanite transforms into 



Introduction 

 

 

17 

 

 

Fig.4. Schematic illustration of 

the relation between cold and 

warm geotherms at the bottom 

of the lower mantle with the 

PV→PPV transition boundary. 

The picture is modified from 

Hernlund et al. (2005). 

 

layered MgSiO3 post-perovskite (PPV) at pressures and temperatures in excess of 120 GPa 

and 2000 K (see Chapter 1 for more details), i.e. at the P-T conditions close to that in the 

lowermost mantle. 

In agreement with the hypothetical suggestion by Sidorin et al. (1999), the so-called 

“last mantle phase transition” is characterized by a large Clapeyron slope of 6-11 MPa/K 

(Ono and Oganov 2005; Hirose et al. 2006a; Tsuchiya et al. 2004a), which indicates that 

lateral variations in the temperature at the CMB will result in large lateral variations in the 

transition depth. In cold regions, the post-perovskite transition rather occurs at relatively 

shallow depth, while in hot regions it may not transform at all (Fig. 4). Moreover, near the 

CMB where temperature increases rapidly, a back transition from PPV to PV (Fig. 4) may 

take place (Hernlund et al. 2005). Several seismologic observations indicate presence of 

double discontinuities, consistent with such a forward transformation, beneath the Pacific 

and the Caribbean (Thomas et al. 2004; Lay et al. 2006; van der Hilst et al. 2007; Hutko et 

al. 2008). However, taking into account large uncertainties in the thermochemical state of 

the lowermost mantle (Grocholski et al. 2012), the correlation between location of D‘‘ 

discontinuities and location of cold regions can‟t be blindly interpreted as a direct evidence 

of PPV at the CMB. A major question is whether presence of this phase can explain the 

observed seismic anisotropy and discontinuity of D‘‘. 

To answer this question, anisotropic seismic properties of the post-perovskite should 

be compared with the observed seismic data. Dynamic processes in the Earth‟s interior, 

such as mantle convection, cause deformation of the mineral phases that make up the 

mantle. At the mantle conditions, these rocks deform plastically under very low strain rates 
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(in the order of 10
-16

-10
-14

 s
-1

) and their rheological behavior is controlled by the motion of 

defects in the crystal structure. Anisotropic mobility of defects produces crystal preferred 

orientation (CPO), which, in turn, significantly affects seismic properties of an aggregate. 

In this context, understanding anisotropic rheological and seismic properties of mineral 

phases is not possible without understanding the elementary deformation mechanisms at 

the microscopic scale. So far, the easy slip systems in the post-perovskite are poorly 

known. Silicate post-perovskite is only stable at very high P-T conditions and cannot be 

quenched to ambient pressure. Therefore, there is no direct experimental evidence of 

dislocations activity in this phase and the available information is limited to in situ XRD 

measurements of textures, from which one can only assume easy slip systems. Well 

controlled experimental deformation of minerals, followed by the micro texture analysis, 

are very challenging under extreme P-T conditions, and the textures observed 

experimentally for MgSiO3 lead conflicting results (Merkel et al. 2007; Miyagi et al. 

2011). Moreover, strain-rates accessible in a laboratory are 8-10 orders of magnitude larger 

than those in the mantle.  

Alternatively, numerical modeling represents a powerful tool able to provide 

information on microscopic processes taking place in the deep Earth‟s interior. The present 

work aims to investigate fundamental mechanisms of plastic deformation in the high 

pressure MgSiO3 post-perovskite through modeling defects and their mobility at the atomic 

scale, which in perspective will allow determining the relevant deformation textures 

resulting from dislocation creep in this phase at the lower mantle conditions.  

 



 

 

 

CHAPTER  1 

Literature Overview on the Post-Perovskite 

 

 

In 2004, discovery of the so-called “last mantle phase transition” immediately 

became promising to shed light on puzzling properties of the D′′ layer, including its 

marked seismic anisotropy. Since that time, anisotropic physical properties of the 

post-perovskite have been intensively studied in order to answer the major question 

whether this phase can explain the enigma of D′′. This chapter provides a 

bibliographic overview of MgSiO3 post-perovskite physical properties, essential for 

understanding rheological properties in the lowermost mantle, and summarizes the 

results of high-pressure experiments and numerical modeling performed within the 

last 12 years. The overview includes the description of the intrinsic crystal structure; 

experimental and theoretical evidence of the post-perovskite transition boundary and 

stability field at extreme pressures; insights into anisotropic elasticity and analysis of 

the available data on plastic deformation of silicate post-perovskite and its low-

pressure structural analogues. 
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1.1  Post-perovskite structure 

High-pressure MgSiO3 post-perovskite phase exhibits orthorhombic CaIrO3-type 

crystal structure (space group Cmcm, z = 4) with anisotropic unit cell parameters 

a = 2.456 Å , b = 8.042 Å  and c = 6.093 Å  at 121 GPa (Murakami et al. 2004). The 

occupied Wyckoff positions are 4c for Mg, 4a for Si, and 4c and 8f for O. Uncommonly 

for high-pressure minerals, post-perovskite is characterized by the presence of two non-

equivalent cation layers parallel to (010). These layers are formed by Si-octahedra and 

eightfold coordinated Mg exclusively (Fig. 1.1). Along [100], Si-octahedra share edges 

forming rutile-like chains which are interconnected by apical oxygen atoms along [001] 

direction, building up (010) Si-layers. In contrast to the octahedra, centered by highly 

charged Si atoms, Mg polyhedra are linked with each other and Si-layers by edges and 

triangle faces. Due to the octahedral junctions by vertices, in the dense post-perovskite 

structure there are still [100] empty channels with pseudo trigonal symmetry (left panel of 

Fig. 1.1).  

 

 

Fig. 1.1 Crystal structure of MgSiO3 post-perovskite. Mg atoms and 

polyhedra are shown in grey, Si – in blue and O – in red. 

 

Being normal to the shortest lattice repeat, (100) represents the most densely packed 

atomic plane. In the post-perovskite, there are only two {100} atomic layers (per unit 

length) which are geometrically identical and shifted from each other by ½[010] in accord 

with the symmetry produced by the C-lattice. Presence of two equivalent atomic layers  
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with pseudo trigonal features, shifted from each other, implies a relation with the 

hexagonal close packed (hcp) structure. However, the specific arrangement of atoms with 

different nature within each (100) layer (Fig. 1.2) as well as the location of these layers 

with respect to each other excludes the possibility to describe the post-perovskite structure 

in terms of a distorted close pack formed by anions or/and cations. 

 

 

1.2  Perovskite → post-perovskite phase transition 

Transition boundary  

The first experimental evidence of MgSiO3 post-perovskite phase transition 

(Murakami et al. 2004) was detected in a laser-heated diamond anvil cell (LHDAC) at P-T 

conditions in excess of 125 GPa and 2500 K (Pt scale by Jamieson et al. (1982)). The 

transition was shown to be reversible at 101 GPa and 2200 K, however, a specific 

Clapeyron slope was not properly constrained. Simultaneously, the existence of this new 

phase was confirmed by ab initio simulations (Oganov and Ono 2004, Tsuchiya et al. 

2004a). Further, the transition boundary in pure MgSiO3 was experimentally determined 

(Ono and Oganov 2005, Hirose et al. 2006a) based on Pt (Jamieson et al. 1982; Holmes et 

al. 1989), MgO (Speziale et al. 2001) and Au (Heinz and Jeanloz 1984; Shim et al. 2002; 

Tsuchiya 2003) pressure standards (Fig. 1.3). The transition pressures reported from 

 

Fig. 1.2 Atomic (100) monolayer of the post-perovskite compared with 

orthorhombically distorted close pack layer. Zigzags of cations and anions are 

highlighted with grey and red, respectively; unit cell is shown with black rectangular. 
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Fig. 1.3 Perovskite → post-perovskite transition boundaries observed experimentally 

(Hirose et al. 2006a; Ono and Oganov 2005) with different pressure scales and 

calculated from the first principles (Tsuchiya et al. 2004a) for pure MgSiO3. Range of 

D‘‘ discontinuity is taken from Cobden et al. (2015). 

 

 

 

 

 

 

 

Fig. 1.4 Pressure ranges of the 

silicate perovskite → post-perov-

skite phase transitions observed 

experimentally at 2500 K  for 

various compositions compared 

to the pressure conditions of the 

D‘‘ layer. The diagram is built 

based on the overview of 

experimental data published in 

Cobden et al. (2015).  

 

different pressure scales vary by more than 20 GPa. Even while using a given standard, 

different equations of state (EoSs) of the calibration material may result in some 

discrepancies in the P-T conditions determined (see Fig. 1.3 for Au and Pt scales). In 

overall, the transition pressures estimated with Pt are higher than those defined with Au but 

both are characterized by the similar Clapeyron slope of ~6 - 7 MPa/K (Ono and Oganov 
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2005, Hirose et al. 2006a), close to that suggested to be necessary for the solid-solid phase 

transition accounting for the observed D‘‘ discontinuity (Sidorin et al. 1999). At the same 

time, MgO standard provides intermediate pressures but with a higher dP/dT gradient of 

the phase boundary close to 11.5 MPa/K (Hirose et al. 2006a). 

Complementary to the high-pressure experiments (Ono and Oganov 2005, Hirose et 

al. 2006a), the Clapeyron slope for the PV → PPV transformation in pure Mg-silicate was 

computed from the first-principles by Tsuchiya et al. (2004a) within the quasiharmonic 

approximation (QHA) framework (Carrier et al. 2008, Wallace 1972). The estimated range 

of the phase transition, with the lower pressure frontier from LDA (Perdew and Zunger 

1981) and the higher – from GGA (Perdew et al. 1996) exchange correlation functionals, is 

indicated with a shaded area on Fig. 1.3. The calculated Clapeyron slope is ~7.5 MPa/K, 

consistent with those derived from high-pressure experiments with Pt and Au scales. 

Although the uncertainties in the defined phase transition boundaries are quite large both 

for experimental and theoretical techniques, superposing the overall results with the 

estimated mantle adiabat (Brown and Shankland 1981) suggests that the phase transition in 

MgSiO3 is likely associated with the D'' discontinuity at ~120 GPa and 2500 K (Fig. 1.3) as 

it was reported from the very first experiments by Murakami et al. (2004).  

Besides pure MgSiO3, Fe- and Al-bearing compositions have been extensively 

studied in order to estimate compositional effects on the PV → PPV transition boundary 

(Fig. 1.4). Experiments and theoretical simulations performed on binary (Mg1-xFex)SiO3 

system indicate that incorporation of Fe
2+

 as Mg substituent significantly decreases the 

transition pressure (Mao et al. 2004, 2005; Caracas and Cohen 2005; Zhang et al. 2016). 

Thus, experimental measurements on the silicate systems with compositions close to 

(Mg0.9Fe0.1)SiO3 consistently provide the onset of PV → PPV  phase transition at pressures 

and temperatures about 111 GPa and 2500 K (Shieh et al. 2006; Catalli et al. 2009; Metsue 

and Tsuchiya 2012). At the same time, most of theoretical (Akber-Knutson et al. 2005; 

Caracas and Cohen 2005; Zhang and Oganov 2006) and experimental (Tateno et al. 2005) 

studies, except for ab initio simulations by Tsuchiya and Tsuchiya (2008), indicate that 

Al
3+

 has the opposite effect stabilizing perovskite phase at higher pressures (Fig. 1.4). 

Accounting for simultaneous presence of both Fe and Al impurities, experimental studies 

of ternary (Mg1-xFex)(Si1-xAlx)O3 systems indicate a widely varying transition region from 

+20 GPa above to -25 GPa below the CMB (Nishio-Hamane et al. 2007; Catalli et al. 

2009; Andrault et al. 2010; Shieh et al. 2011). 
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The post-perovskite phase transition was also experimentally observed in more 

complex multi-phase systems compositionally close to natural peridotitic/pyrolitic mantle 

and Mid-Ocean Ridge Basalt (MORB). Most observations of PV → PPV transformation in 

pyrolitic compositions occur in a relatively narrow transition region of ~113 – 127 GPa at 

2500 K (Murakami et al. 2005; Ono and Oganov 2005; Ohta et al. 2008; Sinmyo et al. 

2011). However, study by Groholski et al. (2012) demonstrates that the transition 

boundary in pyrolite may be shifted up to 140 GPa. Since most of these studies were based 

on gold pressure standards, the calibration effect would not account for more than ~5 GPa 

of discrepancy and the origin of the latest is still debated. Experiments performed for 

compositions close to MORB (Hirose et al. 2005; Ohta et al. 2008; Grocholski et al. 

2012), corresponding to the component of subducted slabs which may penetrate into the 

lower mantle (Tackley 2011), consistently report the onset of the phase transition between 

~107 and 114 GPa at 2500 K (Fig. 1.4).  

In summary, the experimental data illustrated on (Fig. 1.4) clearly demonstrates that 

P-T conditions and thickness of the phase boundary represent a complex function of 

chemical composition, which, in turn, remains obscure due to the uncertainties in the 

thermochemical state of the lowermost mantle (Grocholski et al. 2012). 

 

Mechanism of the phase transition 

As suggested by Tsuchiya et al. (2004a), a structural relation between perovskite 

(Pbnm) and post-perovskite (Cmcm) phases can be seen from the compressive behavior of 

MgSiO3 perovskite (Wetzcovitch et al. 1995), illustrated on the upper panel of Fig. 1.5. In 

the perovskite structure under an applied strain ε6, the angles between octahedral edges 

bisected by (110) plane decrease faster than other similar angles. With sufficiently large 

strain (ε6 > 0.3) these angles vanish and give rise to the layered post-perovskite structure. 

However, a uniform transformation by simply closing the corners between Si-octahedra 

was demonstrated to be energetically less favorable than the transition through 

intermediate phases built by successive [101](010) stacking faults (Zahn 2011; Oganov et 

al. 2005). During this process, the shear strain decreasing the angles between octahedral 

edges is expected to enhance the onset of phase transformation. The reverse PPV → PV 

transformation is believed to occur through accumulation of <110>{110} stacking faults in 

post-perovskite (Oganov et al. 2005) as illustrated on Fig. 1.5. 
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Fig. 1.5 Structural relation between the orthorhombic perovskite (bridgmanite) and 

post-perovskite phases. Transformation mechanism on the upper panel proposed by 

Tsuchiya et al. (2004a), on the lower one – by Oganov et al. (2005) 

 

According to the transition mechanisms described above (Tsuchiya et al. 2004a; 

Oganov et al. 2005), the post-perovskite structure inherits [001] direction of the perovskite 

(Fig.1.5), while [100]
PV

 and [010]
PV

 directions correspond to <110>
PPV

 vectors in the post-

perovskite reference (Fig. 1.5). Relying on this simple structural relation between the two 

phases, one can expect the appearance of a local structure resembling post-perovskite 

geometry inside [010](100) and [100](010) dislocation cores in perovskite; and, by 

analogy, - resembling perovskite in <110>{110} dislocation cores in the post-perovskite. 

Indeed, such a kind of dislocation cores was reported for dissociated [010](100) and 

[010](100) edge dislocations in MgSiO3 bridgmanite (Hirel et al. 2014; 2016). For these 
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dislocations, stacking faults between the two partials look like a lamella of the distorted 

post-perovskite structure where octahedra are linked by edges in one direction, by corners 

in another one and don‟t interconnect in the third direction, forming a nucleus of 2D layers. 

Thus, dislocations in perovskite might prompt the instant of the phase transition into post-

perovskite and vice versa. However, up to now there is no evidence on atomic structure of 

<110> dislocation cores in post-perovskite, possibly playing an important role for the 

PPV → PV transformation process. 

 

1.3  Stability of post-perovskite at extreme pressures  

Besides the Earth's CMB, several studies suggest the mantle of some extra-solar 

large rocky planets (if differentiation into silicate mantle and metallic core takes place 

there) to be made mostly of the silicate post-perovskite phase (Stamenković et al. 2011; 

Tackley et al. 2013; Baraffe et al. 2014). The so-called super-Earths, e.g. in GJ876d 

(Rivera et al. 2005), CoRoT-7 (Queloz et al. 2009), Kepler-10b (Batalha et al. 2011) and 

some other planetary systems, are expected to have a density ρ = 5.6 ± 1.3 g/cm
3
, very close 

to that of Earth, and radii of about twice the Earth radius. Based on these characteristics, 

pressures at the base of their mantles are expected to reach Tera Pascals (Valencia et al. 

2006; Sotin et al. 2007). The interior dynamics of these planets causes a keen scientific 

interest nowadays and understanding of the post-perovskite plasticity may provide some 

insights into rheological processes taking place outside of the Solar System. 

Taking into account the extreme P-T conditions relevant to the interior of super-

Earths, only shock experimental techniques can be directly applied to investigate the 

stability field of the silicate post-perovskite phase there. Alternative experiments 

performed for isostructural low-pressures analogues and theoretical studies of the post-

perovskite behavior under compression provide contradictory results and report several 

possible scenarios of phase transformations into the so-called post-PPV phases followed by 

their decomposition into oxides (Fig. 1.6). Thus, study of MnTiO3 post-perovskite 

suggested its decomposition into MnO and orthorhombic MnTi2O5 (Okada et al. 2011), 

however, the precise crystal structure of the latest was not identified. Similarly, a gradual 

dissociation of MgSiO3 post-perovskite into MgO (CsCl - type) and MgSi2O5 with small  
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Fig. 1.6 Phase diagram of the two-stage (QHA by Umemoto and Wentzcovitch (2011)) 

and three-stage dissociation (AGA by Wu et al. (2014)) of MgSiO3 PPV in comparison 

with the estimated P-T conditions at CMB of terrestrial exoplanets (Sotin et al. 2007). 

 

 

Fig. 1.7 (a) Monoclinic MgSi2O5 post-PPV (P21/c) observed by (Umemoto and 

Wentzcovitch 2011) and (Wu et al. 2014). (b) Tetragonal Mg2SiO4 post-PPV (I4̅2d) 

reported by (Wu et al. 2014). On the right panel anion sublattice is left out.   
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monoclinic distortions from the orthorhombic Pbam cell (P21/c, a = 4.429 Å, b = 4.031 Å, 

c = 6.179 Å, β = 89.68°) was predicted at ~0.9 TPa by Umemoto and Wentzcovitch (2011) 

from the first-principles simulations within the quasiharmonic approximation (QHA) 

(Carrier et al. 2008, Wallace 1972). In MgSi2O5, both Si and Mg atoms change their 

original coordination into denser 9- and 8-fold coordinated polyhedra (Fig. 1.7a) 

interconnected in such a way that 9-fold coordinated Si2 form (010) layers linked with 

each other by [100] chains made of 8-fold coordinated Si1. The empty [100] channels in 

this rigid Si network are filled by Mg atoms. The P21/c post-PPV phase is shown to be 

stable up to pressures of ~2.1 TPa (Fig. 1.6) when it undergoes further decomposition into 

MgO (CsCl-type) and SiO2 (Fe2P-type) oxides.  

Another theoretical study by Wu et al. (2014) based on adaptive genetic algorithm 

(AGA) confirms the appearance of MgSi2O5 (P21/c) post-PPV, however, the dissociation 

mechanism (Fig. 1.6) is shown to be more complex than the one proposed by Umemoto 

and Wentzcovitch (2011). At the first stage of the MgSiO3 PPV decomposition at ~0.77 

TPa, MgSi2O5 (P21/c) is found to coexist with another high-pressure tetragonal phase 

Mg2SiO4 (I4̅2d, a = 4.5745 Å, b = 4.7006 Å). In this structure, both Si and Mg are 8-fold 

coordinated and create a complex network made of 6-member corrugated rings penetrating 

into each other (Fig. 1.7b) in accord with the symmetry produced by the diamond d-plane. 

Under further compression, MgSi2O5 (P21/c) breaks down into SiO2 (Fe2P-type) and 

Mg2SiO4 (I4̅2d) at ~1.25 TPa, followed by gradual dissociation into MgO (CsCl-type) and 

SiO2 (Fe2P-type). The complete decomposition into oxides is expected to occur at ~3.09 

TPa, which notably exceeds the expected pressures in mantle of super Earth planets (Sotin 

et al. 2007).  

Comparing the estimated internal pressures and temperatures of the large rocky 

planets (Valencia et al. 2006; Sotin et al. 2007) with the phase boundaries calculated using 

the QHA (Umemoto and Wentzcovitch 2011) and AGA (Wu et al. 2014), MgSiO3 post-

perovskite could be expected to remain stable in the mantles of super-Earths with masses 

smaller than 6-7M⊕ (Fig. 1.6). Therefore, among the known planetary systems, 

transformation of MgSiO3 post-perovskite into post-PPV phases possibly occurs in interior 

of big super Earths (>7M⊕) belonging to GJ876d (Rivera et al. 2005), while in the other 

systems, like CoRoT-7 (Queloz et al. 2009) and Kepler-10b (Batalha et al. 2011), post-

perovskite would rather represent a major constituent of the silicate mantle down to the 

CMB. 
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1.4  Elasticity of silicate post-perovskite 

The orthorhombic symmetry of post-perovskite results in the elastic stiffness tensor 

containing nine independent Cij coefficients: 

[
 
 
 
 
 

   

            

            

            

 
              
              
              

                   
                   
                   

  
          
        
        

    

]
 
 
 
 
 

  (1.1) 

Experimental measurements of elastic properties at P-T conditions relevant to the 

CMB are extremely challenging to perform and up to now there are no reports of elastic 

coefficients determined experimentally for the post-perovskite silicate phase. As an 

alternative to laboratory approach, several theoretical studies based on the first-principles 

simulations (Iitaka et al. 2004; Tsuchiya et al. 2004b, Oganov and Ono 2004; Liu et al. 

2012) provide us some insights into athermal anisotropic elasticity of MgSiO3 post-

perovskite
1
. Generally, all elastic moduli computed for the post-perovskite with LDA 

(Tsuchiya et al. 2004b, Iitaka et al. 2004; Caracas and Cohen 2005) are somewhat higher 

than those estimated using GGA (Oganov and Ono 2004; Carrez et al. 2007; Liu et al.  

 

Fig. 1.8 Athermal elastic constants of MgSiO3 post-perovskite computed from the first 

principles. Solid lines correspond to LDA simulations by Tsuchiya et al. (2004b); 

dotted lines – to GGA by Liu et al. (2012)  

                                                 
1
 Table with athermal elastic constants computed from the first principles at 120GPa  is provided in Chapter 2  
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2012). Depending on the chosen exchange correlation functional (LDA or GGA), C66, C12, 

C13 and C23 differ within 15%, while other elastic coefficients Cij are in a good agreement 

(Fig.1.8). Much lower values of the C22 coefficient compared to C11 and C33 (Fig. 1.9) 

indicate that the post-perovskite is much more compressible along the b –axis, normal to 

the structural layering (Fig. 1.1), than along the a and c-axis. 

Studies of MgSiO3 post-perovskite thermoelasticity based on the quasiharmonic 

approximation (QHA) (Wentzcovitch et al. 2006) and density functional molecular 

dynamics (DFT-MD) (Stackhouse and Brodholt 2007, Zhang et al. 2016) demonstrate that 

all elastic moduli are two orders of magnitude more sensitive to the changes in pressure 

(i.e. dCij/dP) than to the changes in temperature (dCij/dT). Recent ab initio simulations by 

(Zhang et al. 2016) in a wide range of pressures and temperatures indicate that 

incorporation of up to 20-25% of Fe
2+

, Fe
3+

 and Al
3+

 into silicate post-perovskite at 

T = 2000 K and P = 120 GPa, close to that expected at the CMB, will result in an overall 

decrease of elastic moduli up to 10% without changing the intrinsic anisotropic character 

of the post-perovskite elasticity. 

 

 

1.5  Plastic deformation of MgSiO3 post-perovskite and its 

structural analogues 

Seismic anisotropy of post-perovskite is not only linked to anisotropic elasticity 

resulting from the distinct layered structure. Seismological properties of crystalline 

aggregates depend also strongly on the development of crystal preferred orientation (CPO) 

mostly produced by dislocation creep. So far, the concept of easy slip system in the post-

perovskite is poorly understood. Silicate PPV is only stable at very high P-T conditions 

and cannot be quenched to ambient pressure. Therefore, high-pressure experiments are 

limited to in situ XRD measurements of textures, from which one can only assume easy 

slip systems. Even though, the textures observed experimentally for MgSiO3 and its close 

Ge-analogues lead to conflicting results (see Table 1.1). Thus, LHDAC experiments 

performed by Merkel et al. (2006, 2007) suggest a slip in (110) or/and (100), which seems 

to be consistent with theoretically predicted <110>{110} by Oganov et al. (2005).  
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Table 1.1  

Slip systems of MgSiO3 post-perovskite and its structural analogues from 

high-pressure experiments and theoretical studies 

Composition Slip System Method Reference 

(Mg, Fe)SiO3 

(100) / {110} LHDAC Merkel et al. 2007 

(001) LHDAC Miyagi et al. 2010 

[1̅10](110) 
ab initio 

metadynamics 
Oganov et al. 2005 

[100](010)  

[001](010) 

ab initio GSF 

& PN model 
Carrez et al. 2007a,b 

[001](010) 
ab initio PN model, 

VPSC 
Metsue et al. 2009 

[100](001) ab initio GSF 
Metsue and   

Tsuchiya 2013 

MgGeO3 

(100) / {110} LHDAC Merkel et al. 2006 

(100) – transf. Opx 

(001)  – deform. 
LHDAC Okada et al. 2010 

(100) – transf. Opx 

(001) – deform. 
LHDAC Miyagi et al. 2011 

[1̅10](110) / (001) 

[010](001) 

LHDAC 

In-situ 3D XRD 
Nisr et al. 2012 

[100](001) 
ab initio PN model 

VPSC Metsue et al. 2009 

MnGeO3 (001) LHDAC Hirose et al. 2010 

CaPtO3 [100](010) D-DIA,  TEM McCormack et al. 2011 



Chapter 1                                                                                                         Post-Perovskite 

 

 

32 

Table 1.1 continued 

CaIrO3 

[100](010) 

[u0w](010) 

Cubic anvil 

apparatus, TEM 
Miyajima et al. 2006 

[100](010) 

[001](010) 
D-DIA, TEM 

Miyajima and  

Walte  2009 

[100](010) 

[001](010) 

{110} twins 

LHDAC, TEM Miyajima et al. 2010 

[100](010) D-DIA, TEM Walte et al. 2007 

(100) – transf. PV 

(010) – deformation 

D-DIA,  

SEM-EBSD 
Walte et al. 2009 

(010) DAC, In-situ XRD Niwa et al. 2007 

(010) 

{110} twins 
DAC, TEM Niwa et al. 2012 

[100](010) 

Kawai-type 

apparatus, SEM-

EBSD 

Yamazaki et al. 2006 

[100](010) D-DIA, In-situ XRD Miyagi et al. 2008 

[100](010) 
D-DIA, In-situ XRD, 

SEM-EBSD 
Hunt et al. 2016 

[001](010) 
ab initio PN model, 

VPSC  
Metsue et al. 2009 

 

However, during similar experiments by Miyagi et at. (2010, 2011), a strong development 

of (001) textures is observed. At the same time, Nisr et al. (2012) reports appearance of 

both (110) and (001) in MgGeO3. Under similar conditions, MnGeO3 (Hirose et al. 2010) 

produces textures consistent with slip in (001). Further experimental studies by Miyagi et 

al. (2011), Okada et al. (2010) and Walte et al. (2009) suggest that slip in (100) plane, 

similar to that observed by Merkel et al. (2006, 2007) can be rather classified as a 

transformation texture (from orthopyroxene), while (001) is likely produced during 



Post-Perovskite                                                                                                         Chapter 1 

 

 

33 

deformation of PPV phase. Dominant (001) slip in MgSiO3 and MgGeO3 is consistent with 

the results from ab initio simulations of generalized stacking faults (GSF) by Metsue et al. 

(2013). This theoretical study also indicates that incorporation of Fe
2+

 decreases the 

strength of all slip systems without changing the general character of plastic anisotropy. 

Another numerical modeling based on the Peierls-Nabarro (PN) model (Peierls, 1940; 

Nabarro 1947) performed for MgSiO3 by Carrez et al. (2007a,b) and Metsue et al. (2009), 

rather emphasizes the importance of dislocation glide in (010) parallel to the structural 

layering. 

Alternatively to silicate and germanate compositions, use of analogue materials 

stable at ambient pressures allows direct TEM analysis of recovered samples. Therefore, 

not surprisingly, CaIrO3 appears to be very attractive to perform well-controlled 

deformation experiments (see Table 1.1). In contrast to high-pressure MgSiO3 and 

MgGeO3 phases, both experimental and theoretical studies of CaIrO3 consistently report 

the presence of [100](010) and [001](010) dislocations and (010) textures, independently 

from the applied deformation and analytical techniques (see Table 1.1). It‟s also interesting 

to note, that appearance of {110} twin domains in CaIrO3 is systematically reported only 

during DAC experiments (Miyajima et al. 2010, Nawa et al. 2012). This implies that the 

observed {110} textures in MgSiO3 and MgGeO3 (Merkel et al. 2006, 2007) might not 

represent a transformation texture as suggested by Miyagi et al. (2011) and Okada et al. 

(2010), but instead could result from deformation through twinning due to high stress and 

strain rates produced by DAC. 

However, before direct extrapolation of plastic behavior inferred for analogue 

materials into silicate compound, one should take into account that in terms of bonding 

(Hustoft et al. 2008, Metsue et al. 2009; Tsuchiya and Tsuchiya 2007), characteristics of 

CaIrO3 differ from those in MgSiO3 and MgGeO3 (Kubo et al. 2008; Hustoft et al. 2008). 

First-principles studies also indicate that anisotropic elasticity (Tsuchiya and Tsuchiya 

2007) and plasticity (Metsue et al. 2009) in CaIrO3 are not the same as in silicate post-

perovskite. Even so, being very close in terms of bond strength to MgGeO3 and not to 

CaIrO3, MgSiO3 may produce [001](010) CPO, remarkably similar to that in CaIrO3, and 

different from the expected [100](001) texture in germanates (Metsue et al. 2009). 

Summarizing the available experimental and theoretical results (see Table 1.1), we 

are clearly far from understanding plasticity of both monocrystalline and polycrystalline 
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silicate post-perovskite. The only clear answer is provided for the low-pressure analogue 

CaIrO3. However, there is still no plausible definition of good isostructural analogues of 

MgSiO3 post-perovskite, accounting for bond strength contrast controlling plastic 

anisotropy in monocrystalline material. This implies that experimental observations and 

theoretical predictions made for PPV low pressure analogues can not necessarily address 

rheology of the lowermost mantle. 

 



 

 

 

CHAPTER  2 

Models and Methods 

 

 

 

Within the last forty years, atomic scale modeling has become a powerful tool for 

modeling physical properties of a wide range of materials. Theoretical modeling is 

especially valuable when performing well-controlled experiments at relevant P-T 

conditions, strain rates etc. is extremely challenging or simply impossible. The aim 

of this chapter is to describe the basic physical models of the two commonly used 

simulation techniques, employed in this work: ab initio atomic-scale calculations 

within the density functional theory (DFT) framework; and atomistic simulations 

based on classical interatomic potentials. The chapter also provides an outline of the 

technical methods used in this study for modeling planar and linear defects, including 

explicit description of the simulation cells geometries and of the computational setup 

used for modeling defects at the atomic scale. 
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2.1 Atomic scale modeling: methodology and computational setup 

2.1.1  Ab initio calculations 

Schrödinger equation 

The total energy E of a system which consist of N electrons at positions ri and M 

nuclei at positions Ri can be found by solving the (non relativistic and time independent) 

Schrödinger equation: 

Ĥ Ψ(r1, r2, …, rN, R1, R2, …, RM) = E Ψ(r1, r2, …, rN, R1, R2, …, RM),  (2.1) 

where Ĥ is the Hamiltonian operator and Ψ is the wave function. The Hamiltonian Ĥ can 

be defined as combination of kinetic energy operator T and potential energy operator V: 

Ĥ =Te + TN + Vee + VNN + VeN ,   (2.2) 

where Te and TN correspond to the kinetic energy of electrons and nuclei; Vee , VNN , VeN  - 

to the interaction energy between the electrons, the nuclei, and between electrons and 

nuclei, respectively. Despite the apparent simplicity of the Hamiltonian (2.2), solving the 

Schrödinger equation (2.1) is very difficult because of large 3N number of electronic 

coordinates. For an atomic system containing more than two electrons, it‟s impossible to 

obtain the exact wave function Ψ by solving the Schrödinger equation (2.1) without 

introducing some approximations. 

Born-Oppenheimer approximation 

The first basic assumption is known as Born-Oppenheimer or adiabatic 

approximation. It relies on the fact that electrons are much lighter than nuclei and, 

therefore, are characterized by higher velocities. Consequently, the kinetic energy of the 

nuclei are negligible with respect to those of electrons: Te >> TN ; thus, the TN term can be 

neglected. Low mobility of nuclei allows assuming them stationary positioned and 

considering only electrons to behave as quantum particles, therefore, the interaction energy 

VNN has a constant value ENN, which does not play a role in solving the Schrödinger 

equation. Based on all these assumptions, the Hamiltonian (2.2) reduces to: 

Ĥ = Te + Vee + ENN + VeN .    (2.3) 
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The many electron Schrödinger equation can be further simplified while considering 

N single electron Schrödinger like equations, where each electron experiences an effective 

field of other electrons. At this point, the problem becomes one of finding suitable ways to 

define the effective electron interactions, and to describe the total wave function from the 

N single electron wave functions ψi with energy ϵi.  

Density functional theory 

The framework of density functional theory (DFT) was built by Hohenburg and 

Kohn (1964) based on two theorems: (i) that the external potential of a system of electrons 

is a unique functional of the electron density, and (ii) that the ground state and energy of 

the system is variational with respect to electron density. The energy of such a system can 

be written as: 

          ∫                                                              

where both the external potential Vext and the “universal” functional F are functions of the 

electron density ρ(r). The effective single electron approach, suggested by Kohn and Sham 

(1965), defines the total electron density as a sum over one-electron wavefunctions 

describing single non-interacting electrons moving in the mean field of other electrons. 

The electron density ρ at a given point r corresponds then to the sum of the probability of 

finding an electron from any of one-electron orbitals at that point.  

The functional F, contributing to the total energy E (eq. 2.4) of the system can be 

decomposed into three parts: 

                                                                          

where Ts is a kinetic energy of an isolated electron; EH – Coulomb interaction between the 

electronic density states related to positions r and r‘; and Eex –  the exchange correlation 

functional. The EH term can be defined as: 

         
 

 
∫

         

|    |
                                                     

There is no general exact expression for the exchange-correlation functional Eex in terms of 

the electronic density ρ(r). The Eex term is commonly defined by approximations described 
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in the next section. To compute the energy E[ρ(r)] of the system, each one-electron 

equation should rely on the solutions of all the other equations, therefore, they all are 

solved together using a self-consistent approach.  

 

Approximations for the exchange-correlation functional 

Approximating the exchange-correlation functional is the only inaccuracy in DFT 

that does not arise from its numerical implementation. The Local Density Approximation 

(LDA) introduced by Kohn and Sham (1965) represents a very simple and accurate 

approximation. Within the LDA approach, the energy arising from exchange and 

correlation at a point r of electron density ρ is equal to the exchange and correlation energy 

in a system of electrons with uniform density ρ: 

   
        ∫                                                                      

where ϵex is the energy of exchange and correlation of a uniform electron gas which can be 

accurately defined by quantum Monte Carlo methods. The LDA functional was 

parameterized by Perdew and co-workers (Perdew and Zunger 1981; Perdew and Wang 

1992). The use of LDA for condensed matter is known to lead to over binding (total 

binding energy is too high) and to somewhat underestimated bond lengths. Consequently, 

elastic moduli computed with LDA can be expected to be somewhat overestimated (e.g. 

Fig. 1.8 and Table 2.2). 

An effective refinement to LDA is to include a dependence on the local density 

gradient    in the exchange correlation functional. This approach is known as the 

Generalized Gradient Approximation (GGA) and can be defined as: 

   
        ∫                                                              

In this equation, the functional                , accounting for the local density gradient   , 

can be calculated in several ways. Common GGA parameterizations include PW91 (Wang 

and Perdew 1992) and PBE (Perdew et at. 1996). Compared to LDA, GGA formalism 

often leads to slight under binding, i.e. to energies that are lower and bonds that are longer.  
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Plane waves and pseudopotentials 

In practice, performing DFT simulations requires introducing some additional 

“machinery” making it efficient. In periodic solids, the most common approach is using the 

concept of plane waves and pseudopotentials. A plane wave basis set is established to 

represent the one-electron Kohn-Sham orbitals. The wave functions of the latter have the 

same periodicity as the crystal lattice (Bloch‟s theorem), which is essential for describing 

3D periodic boundary conditions of the system, making it infinite. Representing the 

periodic wave functions (Bloch waves) in reciprocal space allows studying a single unit 

cell while sampling the one-electron wave functions with k-points over the first Brillouin 

zone (primitive cell of the reciprocal crystal lattice). In principle, this sampling should be 

infinite, however, practically, it‟s not possible and, therefore, restricted to a finite number 

of k-points (dependent on the size of the system), sufficient to reach a reasonable 

convergence for the total energy of the system.  

 

 

Fig. 2.1. Schematic illustration of 

a pseudo wavefunction ψ
PS

  and 

potential VPS, compared to the 

corresponding all-electron (AE) 

functions. 

 

The wavefunctions are characterized by the largest curvature close to the cores of 

atoms, therefore their explicit description in this region is computationally expensive. To 

reduce this effect, pseudopotentials are introduced to replace the potential energy of the 

interactions between the core and valence electrons which mainly determines the material 

properties. The core (effective ion) region is defined as the nucleus plus the inner atomic 

electrons and can be restricted to the zone with r < rcut. Outside the core, i.e. in the region 

where r > rcut, the pseudopotential wavefunction ψ
PS

 and potential VPS matches the 

corresponding all-electron curvatures ψ
AE

 and VAE (Fig. 2.1). The most accurate 

approximation to handle the interactions between the nuclei and the electrons is projector 
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augmented wave (PAW) method developed by Blöchl (1994). It allows accounting for the 

orbitals of inner electrons (i.e. within the core) by using a linear transformation of the all 

electron wavefunctions into a pseudo wavefunction in the region r < rcut. Other commonly 

used pseudopotentials, known as ultrasoft (US), are based on a generalized eigenvalue 

formalism (Vanderbilt 1990) and just smoothen the pseudo wavefunctions of the core. The 

US-potentials are therefore less accurate than PAW and the least time consuming. To 

define the number of plane waves needed to accurately describe the atomic system, the 

corresponding energy cutoff Ecut should be introduced. 

 

Computational setup for modeling defects in MgSiO3 PPV with VASP 

In this work, ab initio calculations are performed based on the density-functional 

theory (DFT) within the generalized gradient approximation (GGA), with PW91 

parameterisation as derived by Perdew and Wang (1992), and the all-electron projector 

augment-wave (PAW) method as implemented in the VASP code (Kresse and Furthmüller 

1996; Blöchl 1994). The outmost core radius for Mg, Si and O are 2.0, 1.9 and 1.52 au, 

respectively. To achieve computational convergence, a plane-wave cutoff Ecut of 600 eV is 

applied. The first Brillouin zone is sampled using the Monkhorst-Pack scheme (Monkhorst 

and Pack 1976) with 8 × 6 × 1  k-point grid to compute generalized planar fault energy 

(GPFE) for <110>{110} system in atomic arrays containing 180 atoms; with 10 × 1 × 1  for 

1b dipole simulation cells containing 360 atoms (employed for modelling [100] screw 

dislocations); and with 4 × 1 × 1  grid for the 2b dipole cells containing 720 atoms 

(employed for calculating line tension Г of [100] screw dislocations). The convergence 

energy is 10
-3

 meV/atom. Simulations are performed at a constant volume, corresponding 

to the bulk volume at 120 GPa. 

 

 

2.1.2 Pairwise potential modeling 

Atomic scale modeling from the first principles, relying on solving the Schrödinger 

equation, is a very accurate and, therefore, computationally expensive method. As such it 

is restricted to systems containing few hundred of atoms. This limitation often hampers 

using ab initio methods for direct atomic-scale modeling of dislocation cores in complex 
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materials since it requires designing large simulation cells containing thousands of atoms. 

Alternatively to the time consuming ab initio calculations, the total energy of an atomic 

array can be found through introducing parameterized functions that depend on the relative 

atomic positions. These functions are meant to mimic interatomic interactions with less 

complex function which leads to drastic saving in computer time and allows using large 

atomic arrays. This approach is widely used for atomistic modeling of minerals and other 

complex ionic materials (Lewis and Catlow 1985; Catlow and Price 1990; Price and 

Vocadlo 1996; Wright 2003, etc.). 

 

Interatomic interactions 

In a system of N atoms, the total lattice energy U (the energy required to bring all 

atoms together from infinite separation) can be expressed as a Taylor expansion: 

  ∑   
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In this expression, the first term represents the sum of the self-energies of all the atoms; the 

second one – the pairwise interaction between all the pairs of atoms distant by r, and so on. 

The interaction terms can be substituted by parameterized functions φij, ϕijk etc. For many 

systems, including MgSiO3 perovskite (Oganov et al. 2000), good results can be achieved 

by truncating the Taylor expansion (2.9) at two-body terms φij. However, in some systems, 

higher order interaction terms are needed. For instance, accounting for the three-body 

interactions ϕijk is critical to accurately describe covalent bonds in rigid silicate and 

phosphate tetrahedra (e.g. in (Mg,Fe)2SiO4 olivine (Price et al. 1987) and 

Ca5[PO4]3(F,Cl,OH) apatite (Rabone and De Leeuw 2006)). 

The short range interactions of the pairwise term φij can be summed to convergence 

only while considering interactions between atoms separated by less than a finite cutoff 

distance rc. For Coulombic interactions, different technique of summation should be 

applied because of the slow rate of decay: in an infinite (periodic) solid the strength of the 

Coulombic interaction decreases as r
-1

, while number of particles increases as r
3
. The most 

common approach to overcome this problem is to use Ewald summation (Ewald 1921).  

The sum is separated into two parts: for the region with r ≤ rc and r > rc, such as summing 
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the first one in real space and the second one in reciprocal space results in two convergent 

sums. 

To describe the pairwise interactions φij, there is a wide range of potential forms (the 

exhaustive description can be found in (Gale and Rohl 2003)). In this work we rely on the 

Buckingham potential form (Buckingham 1938), which consists of the exponential Born-

Mayer potential (1932) accounting for the short range repulsion and the van der Waals 

attraction term. Based on the Buckingham potential, the lattice energy can be defined as: 

        
      

    
         

   

   
  

   

   
                                                 

where the first term stands for long-range Coulombic interaction between i and j ions of 

charge qi and qj; the second term describes short range repulsion parameterized by Aij and 

ρij; and the last one corresponds to the van der Waals attraction controlled by a single Cij 

parameter.  

 

Pairwise potential parameterization  

The parameterization used in this work was previously derived by (Oganov et al. 

2000) for MgSiO3 perovskite (bridgmanite). The corresponding Aij, ρij and Cij coefficients 

for Mg-O, Si-O and O-O interactions are provided in Table 2.1. 

Table 2.1  

Parameterization of the Buckingham potential for MgSiO3 by Oganov et al. (2000) 

Bond ij Aij (eV) ρij (Å) Cij (eV·Å
-6

) 

Mg-O 1041.435 0.2866 - 

Si-O 1137.028 0.2827 - 

O-O 2023.8 0.2674 13.83 

 

Based on this parameterization, the calculated ground state properties (structural 

parameters and elastic stiffness coefficients Cij) of MgSiO3 post-perovskite at P = 120 GPa 

and T = 0 K are provided in Table 2.2. The a and b parameters computed with the potential 

model are slightly overestimated in comparison with experimental data and DFT   
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Table 2.2 

Lattice parameters (in Å), elastic constants Cij, bulk and shear moduli B and G (in GPa) of MgSiO3 

post-perovskite calculated at 120 GPa and 0 K using the potential model by (Oganov et al. 2000) 

compared with those from previous DFT and experimental studies. Difference with DFT values is 

provided in brackets 

 Potential GGA
1
 GGA

2
 LDA

3
 LDA

4
 Exp

5
 

a 2.521 (2-3%) 2.474 2.474 2.455 2.462 2.456 

b 8.124 (~1%) 8.121 8.112 8.051 8.053 8.042 

c 6.050 (~1%) 6.138 6.139 6.099 6.108 6.093 

C11 1118 (9-15%) 1252 1225 1270 1308  

C22 781 (16-19%) 929 928 937 968  

C33 1062 (12-18%) 1233 1211 1264 1298  

C12 509 (15-24%) 414 409 425 444  

C13 410 (19-26%) 325 328 329 343  

C23 601 (19-26%) 478 484 493 507  

C44 286 (~3%) 277 281 291 295  

C55 119 (43-54%) 266 260 264 278  

C66 256 (37-42%) 408 404 412 439  

B* 667 (1-6%) 647 645 660 681  

G* 228 (41-51%) 327 332 322 344  

1
Oganov and Ono ( 2004); 

2
Carrez et al. (2007a); 

3
Iitaka et al. (2004); 

4
Tsuchiya et al. (2004a,b); 

5
Murakami et al. (2004); * Voigt notation   
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calculations, while the c parameter is slightly underestimated. In general, all structural 

characteristics (including the unit cell volume) are in good agreement with previous 

experimental and theoretical data (the differences do not exceed 3%). The elastic Cij tensor 

provided by the potential model is in a reasonable agreement with the available literature 

data. Generally, all non diagonal components are about 20% stiffer, while all diagonal 

components are about 15% softer, except C55 and C66 which differ by 40-50% from the 

corresponding DFT values (Table 2.2). 

Reasonable agreement of athermal ground state properties with previous DFT and 

experimental studies (Table 2.2) makes the potential model by Oganov et al. (2000) 

promising for atomic scale modeling of MgSiO3 post-perovskite. However, modeling 

plasticity and defects requires transferability of the potential to reproduce atomic 

configurations far from equilibrium where the potential was fitted. In order to validate the 

chosen parameterization for dislocation modeling, its ability to reproduce ab initio 

calculations of γ-lines is examined in Chapter 3. 

 

Computational setup for modeling defects in MgSiO3 PPV with LAMMPS 

In this work, atomistic modeling of defects in MgSiO3 post-perovskite is performed 

using the Buckingham form of a pairwise potential derived by Oganov et al. (2000) for 

MgSiO3 bridgmanite (see eq. 2.10; Table 2.1) with the potential short range cut off distance 

rc = 12 Å. Molecular statics simulations are carried out at P = 120 GPa and constant volume 

(corresponding to the volume of the perfect crystal) with the program package LAMMPS 

(Plimpton 1995), which relies on Ewald summation methods for Coulombic interactions. 

Energy minimization is performed using a conjugate-gradient (cg) algorithm (Lewis and 

van de Geijn 1993) followed by a Hessian-free truncated Newton (hftn) algorithm (Martens 

2010) until the maximum force on atom drops below 10
-9

 eV/Å (1.602∙10
-18

 N).  

 

 

2.1.3 Nudged elastic band method 

Nudged elastic band (NEB) is and efficient method for searching the minimum energy 

path between a given initial and final state of transition (Henkelman and Jonsson 2000; 

Henkelman et al. 2008; Nakano 2008). This method is widely used to investigate diffusion 
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and absorption in crystals and at crystal surfaces (Wardle et al. 2006; Krasheninnikov et al. 

2009); and, more importantly for this study, to determine a path of a straight dislocation 

moving from one Peierls valley to the next one and the associated energy barrier (Rodney 

and Proville 2009; Pizzagalli et al. 2008a). 

 

Fig. 2.2. Schematic illustration of a 

set of intermediate images bonded 

together with springs. The force 

component normal to the reaction 

path is indicated as   
 . 

 

To employ this method, the exact atomic configurations of initial and final state should 

be known. The MEP between them will be found by constructing the set of images 

(replicas) of the system, typically on the order of 10-20. The initial guess of the path can be 

built as a linear interpolation of intermediate configurations. All configurations are bonded 

with springs (Fig. 2.2) and the whole band acts as an elastic chain. As such, the 

intermediate images are always constrained to remain between the configurations that 

precede and follow them.  

 

Fig. 2.3. Schematic illustration of the NEB calculation principle. Right side 

represents 3D energy landscape with the initial guess of the path (dashed line) 

and the final MEP (solid line) between the two minimum energy configurations 

located in the blue valleys. The left panel corresponds to the 2D projection of this 

energy landscape. Spring forces acting along the path and the force component 

normal to the path are indicated as   
  and   

 , respectively. The picture is taken 

from Kraych (2016). 
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Optimization of the band involves minimization of the force acting on the images 

(Fig. 2.3). During NEB calculations, a force projection along the path is considered in such 

a way, that true forces   
  acting normally to the band do not affect the distribution of 

images along the MEP; and the spring forces   
  do not interfere with the convergence of 

the band to the MEP, i.e. only control the spacing of the images along the path. The NEB 

calculation stops when the sum of these forces drops below a given convergence criterion. 

In this study, the NEB simulations are performed for [100](010) screw dislocations in 

conjunction with the chosen pairwise potential (Oganov et al. 2000) via fire damped 

dynamics (Bitzek et al. 2006), as required by the minimization procedure implemented in 

LAMMPS. The MEP is sampled with 24 points (configuration images) which are bounded 

with a spring constant of 0.1 eV/Å (1.602∙10
-10

 N). The force convergence criterion is 

taken as 10
-3

 eV/Å (1.602∙10
-12

 N). 

 

2.2 Atomistic modeling of planar defects 

2.2.1 Generalized stacking faults 

The calculation of generalized stacking faults (GSF), also called γ-surfaces, represents 

a first powerful approach to crystal plasticity (Vitek 1968). By application of a rigid body 

shear to a crystal structure followed by excess energy calculations, it is possible to identify 

easy shear paths. Further full atomistic modeling of the actual 3D structure of dislocations 

cores requires using large atomic arrays which are often beyond computational capabilities 

of the first principles calculations (see section 2.1.1). One can overcome this limitation 

while using empirical pairwise potentials (see section 2.1.2). The use of these potentials 

fitted against equilibrium properties must be validated in case of plasticity studies which 

involve atomic configurations far from equilibrium (Zimmerman et al. 2000; Godet et al. 

2003; Carrez et al. 2008). In this work, the transferability of the pairwise potential derived 

by Oganov et al. (2000) is examined for modeling defects in MgSiO3 post-perovskite by 

computing the GSF excess energies and comparing them with previous DFT calculations. 
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Fig. 2.4. Geometry of atomic systems designed for γ-surface calculations. 

The excess energies γ, corresponding to the energy cost (per unit area) resulting from a 

rigid-body shear, are calculated by displacing the upper part of a perfect crystal over the 

lower part across a chosen (hkl) slip plane (Fig. 2.4). Simulations are performed for fully 

periodic atomic arrays built on three lattice vectors a1, a2 and a3. The supercells are 

oriented in such a way that the (hkl) stacking fault plane of interest is normal to the 

Cartesian z direction (Fig. 2.4). It should be noted, that in complex materials there could be 

several nonequivalent geometric locations of a slip plane with a given (hkl) index which 

distort different atomic bonds. All possible configurations of slip planes in the post-

perovskite structure are described in detail in Chapter 3. In order to keep a periodic 

boundary condition in a simulation cell containing a stacking fault, the lattice vector a3 is 

given an additional component  ⃗     ⃗     ⃗ , corresponding to the applied shear 

displacement (Fig. 2.4). Using a 5% increment of displacement ei, the resolution of the 

energy landscape corresponds to 400 calculation points. After shearing the upper part, 

atomic relaxations are allowed along the direction normal to the glide plane, i.e. along z, 

exclusively. Absence of atomic relaxations parallel to the glide plane allows avoiding 

spurious recovery of the perfect crystal geometry during energy minimization. The 

optimum size of a simulation supercell along the z direction is found to be about 70 Å, 

which is large enough to allow relaxation of atoms close to the slip plane and to prevent 

the effect of atomic distortions on the boundary condition. Typical orthorhombic 

simulation supercell contains about 1500-2000 atoms. The energy minimization is 

performed at constant volume, corresponding to the ground state volume of a perfect 
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crystal under the given external pressure field of 120 GPa using the computational setup 

described in the section 2.1.2. 

Based on the γ-surface excess energies, one can estimate the ideal shear stress (ISS), 

i.e. the upper limit of the stress that a perfect crystal can sustain (Paxton et al. 1995), as the 

absolute maximum of the γ-surface energies derivatives relative to the applied shear. 

 

2.2.2 Twinning energy landscape 

Deformation twinning at atomic scale is commonly modeled through computing 

twinning energy landscapes, also called generalized planar fault energy (GPFE). This 

energy landscape results from the lattice shearing process due to the successive passage of 

twinning partials characterized by displacement vector bp (Fig. 2.5). In this process, the 

first layer fault corresponds to the intrinsic stacking fault (isf) similar to that produced by 

GSF calculations described above. To compute the second layer fault energy, a new shear 

level (geometrically identical to the first one) should be introduced. Then, only the atoms 

above this level are rigidly shifted by the same displacement vector bp without affecting the 

already existing first layer fault.  

 

Fig. 2.5. GPFE calculations at atomic scale. Location of a newly introduced shear level is 

indicated with a black arrow for each simulation cell. The picture is modified from the 

scheme provided by Kibey et al. (2007) for modeling 3-layer twin nucleation in fcc metals. 
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As such, the upper part of the simulation cell is displaced by 2bp (Fig. 2.5). A similar 

procedure can be further repeated to create the third, fourth etc. layers. Similarly to the 

GSF calculations (see section 2.2.1), in order to keep periodicity of the atomic array, the 

supercell vector a3 is tilted by the total displacement vector (Fig. 2.5). Once the energy 

calculations for N and N+1 layers yield the same GPFE, the twin nucleation event is 

reached and further increase in the defect thickness represents the twin growth. For 

instance, in GPFE calculations for fcc and bcc metals, formation of 3-layer twins is 

typically observed (Kibey et al. 2007; Wang and Sehitoglu 2013; Ojha et al. 2014).  

Several TEM studies of low pressure CaIrO3 post-perovskite analogue (Miyajima et 

al. 2010; Niwa et al. 2012) indicate presence of <110>{110} twin domains (see Table 1.1 

in Chapter 1). Therefore, in this study GPFE landscape is computed for <110>{110} 

system in MgSiO3 post-perovskite. In order to avoid ineligible overestimation of the 

twinning energy landscape (which will lead to overestimation of the critical twinning 

stress), degrees of freedom along (110) plane are restricted for Si atoms only. In order to 

allow additional shuffling across the twinning plane optimizing the faulted structure, all the 

atoms within one Si-octahedra thick layer above and below the newly introduced stacking 

fault are allowed to relax fully (for more details see Chapter 7). These shuffles do not 

produce drastic structural changes and do not exceed 25% of interatomic distances. GPFE 

simulations are performed both from the first principles and with the empirical potential at 

constant volume conditions at 120 GPa. The designed simulation cells are as thick as 18 

Si-octahedra layers (~43 Å) along the direction normal to {110} twinning plane and 

contain 180 atoms. The exact computational setup for DFT and semi-empirical calculations 

is provided in sections 2.1.1 and 2.1.2, respectively. 

 

2.3 Atomistic modeling of linear defects 

Dislocations represent linear defects with a translational symmetry characterized by a 

dislocation line l, and a Burgers vector b (the elementary amount of shear carried by the 

dislocation). These two vectors are parallel in case of screw dislocations and perpendicular 

in case of edge dislocations (Fig. 2.6). The long range displacement field produced by 

dislocations can be described using continuum models, which however fail near the 
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dislocation core where elastic theory breaks down. Atomic scale modeling is a powerful 

technique able to provide direct information about the dislocation core structure which is 

essential, for example, for understanding the anisotropy of plastic shear. 

 

 
 

Fig. 2.6. Left panel: screw and edge dislocations in a crystalline material. Burgers circuit is 

indicated with blue arrows. Right panel: reference cylinder (a) with Volterra edge (b,c) and 

screw dislocations (d). The picture is modified from Cordier et al. (2014). 

 

 

2.3.1 Designing and analyzing dislocation cores structures 

Designing dislocation cores 

Based on the isotropic elastic theory (Hirth and Lothe 1982), displacement field    

produced by a Volterra screw dislocation (Fig. 2.6d) with Burgers vector b aligned with x 

axis can be described with the following expression: 

    
 

  
    (

 

 
)                                                                   

In this work, initial configurations of screw dislocations are created by imposing in a 

perfect crystal an isotropic displacement field    (2.11) using the command-line program 

Atomsk (Hirel 2015). Then, structural relaxation (using the computational setup described 

in sections 2.1.1 and 2.1.2) yields a dislocation core configuration counting anisotropic 

effects. 

For a Volterra edge dislocation (Fig. 2.6b,c) with a dislocation line l lying along the x 

axis and the Burgers vector b along the y axis, the displacement field can be described as: 
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where ν is the Poisson ratio. Atomic structure of an edge dislocation is characterized by the 

presence of an atomic extra half plane (left panel of Fig. 2.6). Thus, an edge dislocation 

could be constructed through inserting an extra row of atoms into the system followed by 

introducing the corresponding elastic displacement field described by eq. 2.12. This 

method seems to be straightforward, however in practice, when such a dislocation is 

embedded into a simulation cell of finite size, it‟s not possible to keep the atomic array 

fully periodic along the Burgers vector direction because atomic planes at the cell 

boundaries are deformed. Also, in case of complex materials (characterized by the 

presence of several atomic sublattices), it is very difficult to control the exact location of 

the glide plane while creating a dislocation this way. 

 

Fig. 2.7. Building an edge dislocation. Grey zone corresponds to 

the fixed area described in the section 2.3.2. 

To avoid these technical difficulties, edge dislocations are constructed in this study by 

building and joining along the z axis  two supercells of size b×N and b×(N+1) along the y 

direction (Fig. 2.7). Structural relaxation of the joint atomic array gives a rise to an edge 

dislocation (Osetsky and Bacon 2003; Bulatov and Cai 2006) with a Burgers vector 

aligned with y and a dislocation line along x. 

 

Analyzing structure of relaxed dislocation cores 

Geometric characteristics of relaxed dislocation cores can be extracted from their 

disregistry S, which can be computed from the relative displacements of atoms near the 

core. Figure 2.8 illustrates a typical structure of an edge dislocation spread along the y  
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Fig.2.8. Crystal lattice containing an edge dislocation superposed with the original 

structure of the perfect crystal. The atomic displacements (along y) created by the 

dislocation above and below the glide plane are indicated as   
  and   

 
, respectively; 

the Burgers vector direction is indicated with the arrow. 

 

direction aligned with the burgers vector. With respect to the perfect crystal structure, atom 

i located right above the glide plane is displaced by   
 , while the nearest neighboring atom 

j located right below the glide plane is displaced by   
 
. Analyzing such atomic 

displacements for all the i-j pairs along the dislocation core spreading, one can compute the 

corresponding atomic disregistry as      
    

 
. To describe the 3D structure of a 

dislocation core, similar procedure can be performed along the other directions. For 

instance, for the edge dislocation presented on Fig. 2.8, disregistry Sx, computed along the 

dislocation line, will describe the screw component of the core. Presence of both edge and 

screw components will indicate mixed character of the dislocation. The same technique 

can be applied to compute disregistry produced by a screw dislocation core. 

The discrete atomic disregistry Sr computed from the actual atomic displacements 

along r can be further characterized with the continuous function S(r). For a dislocation 

core with a line lying along the x axis and spreading in the plane normal to z (Fig. 2.8), the 

corresponding S(y) can be described with the following function (e.g. Joós et al. 1994): 
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where b is the Burgers vector length; 0 ≤ αi ≤ 1 is a variable constant equal 1 in case of 

compact dislocation cores; to 0.5 in case of symmetric core dissociation into two partials;  



Models & Methods                                                                                                   Chapter 2 

 

 

53 

 

Fig. 2.9. Typical disregistry functions S(y) and dislocation density ρ(y) 

 for compact (α=1) and dissociated (α=0.5) dislocation cores. 

 

 

 

Fig. 2.10. Typical DD-map of 

½<111> screw dislocation core 

in bcc metals. Dislocation line 

and Burgers vector are normal 

to the plane of representation. 

The picture is taken from 

Hayward et al. (2012). 

 

yi is a location of the dislocation line along the glide direction y; δ is a half-width of a 

dislocation. The derivative dS(y)/dy describes the Burgers vector density ρ(y) in a given 

plane, and its full width at half maximum defines the width of the dislocation core, i.e. 2δ. 

Distance between the maximum peaks of the ρ(y) depicts the dissociation distance R 

between the partial dislocation lines (Fig. 2.9). 

In contrast to edge dislocations, where dislocation core spreading can be clearly 

visualized, in screw dislocation cores, all atomic displacements are parallel to the line and 

therefore cannot be directly seen in views parallel to this direction. Hence, to get a 

representative image of a screw dislocation along its line, the differential displacement 

(DD) maps are commonly used. On this maps, the relative displacements      
    

 
 

along the dislocation line between all the neighboring atoms i and j are represented by 

arrows between those two atoms (Fig. 2.10). The lengths of the arrows scale to the 

amplitude of the displacement. Thus, based on this way of visual representation, 
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dislocation core spreading can be defined from the location of the biggest arrows between 

the pairs of atoms. 

2.3.2 Geometry of simulation cells 

In this work, two types of simulation cell geometries are employed (Fig. 2.11). The 

first one is fully periodic in all directions and contains a quadrupole of screw dislocations. 

The second one – of the so-called “slab” type, where the cell borders parallel to the glide 

plane are fixed. Keeping atomic systems as thin as a single Burgers vector b along x 

ensures the dislocation lines to be straight and infinite due to the periodic boundary 

conditions. 

Quadrupole 

For modeling compact [100] screw dislocation cores, a quadrupole arrangement of 

dislocations embedded in a fully periodic atomic array is used (Fig. 2.11a). Such a cell 

contains two dislocations with positive Burgers vector and two dislocations with negative 

arranged as a rectangular checkerboard pattern. This geometry allows canceling the long 

range displacement field produced by a single dislocation (Cai 2005) and ensures that 

interaction of dislocations remains only at a quadrupolar level and that the net force on 

each core is zero due to the periodic arrangement (Bigger et al. 1992). For the simulations 

performed with the pairwise potential, size of the atomic arrays was gradually increased 

along y and z in order to track size effect on the dislocation core geometry, Peierls stress σp 

and Peierls potential VP. Simulation cell with a size of b × 100 Å × 100 Å  containing 3840 

atoms is found to be sufficient to reproduce correctly the properties mentioned above. A 

quadrupole can be reduced into a twice smaller, but still fully periodic cell (Bigger et al. 

1992) containing a dislocation dipole (Fig.2.11a), which is especially useful for 

computationally expensive ab initio calculations. Thus, for DFT simulations, the smallest 

possible quadrupolar atomic array of 48Å × 36 Å  (720 atoms) along [010] and [001], 

respectively, is reduced into a dipole (360 atoms). 

Slab 

Fully periodic atomic arrays containing a dipole or quadrupole arrangement of 

extended (dissociated) dislocations should be extremely large to minimize the long-range   
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Fig. 2.11. (a) Right panel: post-perovskite atomic array containing a  quadrupole of 

[100] screw dislocations. Left panel: schematic illustration of a quadrupole and reduced 

dipole of screw dislocations in a fully periodic cell. (b) "Slab" geometry of simulation 

cells employed for modeling edge and extended screw dislocations in this work. 
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elastic interactions between the dislocations. In order to overcome this issue, the so-called 

“slab” geometry (Fig. 2.11b) is employed for modeling [001] and ½[110] screw 

dislocations and all the edge dislocations, following the strategy described by (Hirel et al. 

2014). In this approach, a single dislocation is embedded into a simulation cell which is 

designed to be fully periodic along the directions of the dislocation line (x) and the 

dislocation glide direction (y). Along the direction, normal to the glide plane (z), atoms at 

the bottom and at the top of the supercell are fixed to their regular positions (Fig. 2.11b) 

and atomic relaxation is only allowed for the rest of the crystal. This enables mimicking an 

infinite perfect crystal and allows avoiding ineligible interactions between the periodic 

replicas of the dislocation. The total width (along z) of the layer with fixed atoms is equal 

to the potential short range cut off distance, i.e. to 12 Å in our case. For screw dislocations, 

the supercell parameter aligned with y is tilted by ½b along x in order to keep periodicity 

along the dislocation glide direction (Fig. 2.12). 

 

Fig. 2.12. Left panel: displacement field produced by a screw dislocation. Right panel: tilting y 

axis in order to keep periodicity of the ‗slab‘ simulation cell along the glide direction. 

If the supercell is not large enough, the dislocation core structure and the Peierls stress can 

be affected by the interaction of the dislocation with its periodic images. Thus, the size of 

the supercell is gradually increased until convergence is reached. Typical simulation 

supercell sizes are ~350 Å along y, ~160 Å along z, and as a single unit cell parameter 

along x. Such cells contain of the order of 30,000-60,000 atoms depending on the unit 

length along x. 
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2.3.3 Computing lattice friction 

In order to move, a dislocation has to overcome the intrinsic resistance of the lattice, 

which is commonly described through the corresponding energy barrier (Fig. 2.13), called 

Peierls potential (Peierls 1940, Nabarro 1947), or through the critical stress needed to move 

a straight infinite dislocation line in absence of thermal activation, called Peierls stress. 

 

Fig.2.13. Lattice friction: schematic 

illustration of a straight dislocation 

line gliding over the Peierls potential 

from the valley (I) to the valley (II). 

 

The Peierls potential VP can be directly computed with the NEB method (see section 

2.1.3) as the energy barrier that a straight dislocation line has to overcome in order to move 

from one stable position in the Peierls valley to the next one. The corresponding Peierls 

stress σp can be estimated from the maximum slope of the Peierls potential:    
   

  
    . 

In this work, this strategy is applied for [100] screw dislocations with compact cores, 

which allow building fully periodic atomic systems (e.g. as illustrated on Fig. 2.11a). 

Alternatively, critical stress σp, needed to trigger dislocation glide can be found by 

applying a simple shear strain to the simulation cell in order to increase the shear stress in a 

glide plane. The force acting on the dislocation is then given by the Peach-Koehler 

equation (Peach and Koehler, 1950): 

  
⃗⃗⃗⃗    ̿   ⃗⃗   ⃗                                                                        

where   
⃗⃗⃗⃗  is a force acting on a unit length of a dislocation line  ⃗;  ̿ is the applied stress 

tensor resulting from straining the cell and  ⃗⃗ is the Burgers vector. In this work, this 

approach is applied both for fully periodic (Fig. 2.11a) and for the slab-type (Fig. 2.11b) 

simulation cells. All atomic systems, employed to compute lattice friction, are oriented in 

such a way that the dislocation line lies along x and glides in the plane normal to z along 

the y axis. In order to initiate a dislocation glide, εxz and εxy components are gradually 

increased for screw and edge dislocations, respectively, in accord with the eq. (2.15). To 
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ensure quasi-static loading, after applying a shear strain increment (of the order of 10
-4 

- 

10
-3

), the deformed atomic configuration is optimized accordingly to the procedure 

described in the computational setup. The Peierls stress σp is evaluated as the critical stress 

needed to initiate the dislocation glide. The values estimated for different glide planes 

describe anisotropic lattice friction in a material. 

 

2.4 Thermally activated dislocation glide 

2.4.1 Kink-pair formation mechanism 

At finite temperature, the actual motion of a dislocation from one Peierls valley to the 

next one is assisted both by stress and thermal activation, which means that actual 

dislocation motion starts at the stresses lower than the Peierls stress. The corresponding 

mechanism involves nucleation of kink-pairs on a dislocation line followed by their 

propagation through the crystal structure, i.e. the dislocation does not move as a straight 

line, but partly bows out over the Peierls potential (Fig. 2.14). For low lattice friction 

materials, like metals, the limiting process of thermally activated dislocation glide is 

nucleation of the kink-pairs (Cai et al. 2004); while for high-lattice friction materials, it 

may be rather controlled by the kink-pair migration, e.g. in case of dissociated dislocations 

in silicon (Bulatov et al. 2001; Pizzagalli et al. 2008b). 

 

 

Fig. 2.14. Thermal activation of 

dislocation glide: schematic illustration 

of the kink-pair mechanism which 

allows the dislocation line to pass from 

one Peierls valley to the next one at 

finite temperature. 

 

The kink-pair formation process can be described based on different models, such as 

the kink-kink (KK) interaction model (Seeger and Schiller 1962; Seeger 1981), the elastic 

interaction model (Koizumi et al. 1993, 1994) and the line tension (LT) model (Guyot and 

Dorn 1967). The first two models are only suitable at the low stress regime, where the 
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kink-pair shape is not much affected by the external stress. When the kinks are distant 

enough (w >> h), their elastic interaction does not depend on the exact shape of the slope 

and, therefore, can be assumed to a simple rectangular kink shape model, where dislocation 

line segments represent pure screw and pure edge components. This approximation was 

first used for the KK interaction model, where the elastic interaction potential between 

such a kinks is simply  
     

   
 (Hirth and Lothe 1982; Seeger 1981). Further, this model 

was developed into the elastic interaction model (Koizumi et al. 1993, 1994), which allows 

distinguishing the rectangular and trapezoidal kink shapes, but still applicable only at the 

low stress regime. In contrast to these two models, the LT model is also valid for the high 

stress regime and allows describing evolution of the kink-pair formation enthalpy with 

applied stress. This model is shown to be very effective for the low lattice friction 

materials (like metals) where self energy of a dislocation line is much higher than the 

Peierls barrier (Caillard and Martin 2003; Proville et al. 2013; Dezerald et al. 2015). 

For all the models described above, the enthalpy ∆H of a kink pair can be generally 

defined as follows: 

             ,            (2.16) 

where ∆Eel is the increase in elastic energy of the dislocation line; ∆P is the change in 

Peierls energy of the line portion which leaves the Peierls valley; Wσ is the negative 

contribution due to the work of the applied stress. The ∆H value decreases from 

∆H(σa=0) = H2 k , the kink-pair formation enthalpy at zero applied stress, down to 

∆H(σp) = 0 at the Peierls stress. This expression is uniform for all the kink models 

described above, which only differ by the way the ∆Eel term, resulted from the increase of 

the dislocation line, is defined. In contrast to the KK and the elastic interaction model, 

which provide the exact analytic expression for ∆Eel as a function of a kink-pair geometry 

(characterized by a given width w and height h), the LT model defines this term through 

the dislocation line stiffness corresponding to the line tension.  

In dissociated dislocation cores, kink pairs nucleate on the partial dislocation lines. 

This process can occur in several different ways. Thus, the two kinks may nucleate 

simultaneously on the both partials; or one kink-pair can nucleate independently on one of 

the partials. Figure 2.15 illustrates the two extreme cases of the kink-pair nucleation on the 

dislocation partials, corresponding to the so-called "correlated" nucleation (Fig. 2.15a), 
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Fig.2.15. Schematic illustration of (a) correlated and (b) uncorrelated rectangular 

kink-pair nucleation on collinear partials of a dissociated dislocation. 

 

where the stacking fault width remains invariant; and to the so-called "uncorrelated" 

nucleation (Fig. 2.15b), where one dislocation partial remains straight and the width of the 

stacking fault between the partials locally changes. Change in the stacking fault width 

results in additional ∆Wsf energy increase contributing into the kink-pair enthalpy ∆H.  

Different configurations of the kink-pair nucleation on dissociated dislocations were 

described within the elastic interaction model for MoS2 and MgAlO4 spinel by Mitchell et 

al. (2003) and for MgSiO4 wadsleyite and ringwoodite by Ritterbex et al. (2015; 2016). 

In this work, the full curve describing evolution of ∆H  with applied stress σa  is 

investigated based on the LT model in conjunction with atomic scale simulations for [100] 

screw dislocations. The detailed procedure is provided in the next section. For dissociated 

[001] dislocations, the kink-pair formation enthalpy ∆H(σa=0) is estimated using the 

elastic interaction model (Koizumi et al. 1993) for the rectangular kink-pair with large 

width w (w >> h), relying on the exact characteristics of straight [001] dislocations (core 

geometry, γ-energy and Peierls barrier) inferred from the atomic-scale modeling.  

 

2.4.2  LT model in conjunction with atomistic simulations 

Within the line tension (LT) model, a dislocation is considered as an elastic string on 

a periodic substrate. Change in elastic energy ΔEel during the kink-pair formation is 

calculated through the stiffness of the dislocation line, i.e. the line tension Γ. A dislocation 

can be represented as a 1D function y(x) which describes its position y in the glide plane at 
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each x coordinate along the dislocation line. Assuming the line tension Γ to be stress 

independent and derivative of the y(x) function to be small (dy/dx << 1), a linearized 

version of the LT model can be applied to compute the dislocation enthalpy HLT:  

             ∫  *  (    )          
 

 
(
  

  
)
 

+                              

where Γ is the line tension (representing the stiffness of the dislocation line), and the term 

VP(y(x)) - σaby(x) corresponds to the so-called “substrate enthalpy” in 1D-Frenkel-

Kontorova model (Frenkel and Kontorova 1938; Joos and Duesbery 1997). To use this 

equation, the VP term can be computed at atomic scale with the NEB method (as described 

in the section 2.1.3). The line tension Γ can be also estimated at atomic scale based on the 

procedure described below in detail. Once VP and Γ are known, the critical kink-pair 

enthalpy HLT and the corresponding equilibrium kink-pair shape at a given stress can be 

found from the eq. (2.17) as the saddle point on the HL T  energy landscape. 

 

 

Computing line tension of a dislocation at atomic scale 

The line tension Γ can be calculated at atomic scale as the energy cost associated with 

a dislocation bow-out consistent with the first stage of kink-pair formation. Bending a 

dislocation line requires breaking up 1b translational symmetry of the simulation cell. 

Thus, following the strategy proposed by Rodney and Proville (2009), the length of the 

supercell along the dislocation line is increased up to 2b (Fig. 2.16) and the dislocation line 

is considered as the two segments of length b: segment S1 remains in the Peierls valley (I) 

while another segment S2 starts bowing out towards to the next valley (II). 

 

 

 

Fig. 2.16. Schematic illustration of a 

dislocation line bending, mimicking the 

very beginning a kink-pair formation, in 

2b simulation cell. Glide plane is 

highlighted with gray. 
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In order to accurately compute this process at atomic scale, atoms around the 

dislocation segment S2 are forced to follow the exact displacements Δx along the MEP 

derived from NEB simulations (see the section 2.1.3); while the corresponding atoms 

belonging to the segment S1 are fixed to their regular positions in the valley (I). Practically, 

it means that for the selected atoms around the dislocation core, degrees of freedom along 

the dislocation line are constrained. The energy increase associated with the small gradual 

disposition (up to 3-5%) of the dislocation line segment S2 (accounting for the periodic 

boundary conditions along the dislocation line):                         

 

 
       

 , can be used to extract the corresponding value of the line tension Γ. 

 

 



 

 

 

CHAPTER  3 

Generalized Stacking Faults 

 

 

 

Atomistic simulations based on empirical potentials represent a very attractive technique 

for modeling defects as it allows employing large atomic arrays, beyond computational 

capabilities of ab initio calculations. However, the use of these potentials fitted to 

reproduce ground state properties of a material must be additionally validated for modeling 

defects which involve atomic configurations far from equilibrium. In this chapter 

transferability of the pairwise potential parameterization by Oganov et al. (2000) is 

examined for modeling defects in MgSiO3 post-perovskite. For that purpose, the ability of 

this parameterization to accurately compute the excess energies of generalized stacking 

faults (GSF), also called γ-surfaces, is verified by comparing them with previous 

calculations from the first principles. The performed simulations of γ-surfaces are followed 

by a detailed analysis of the influence of crystal chemistry in the post-perovskite structure 

on its ability to be sheared. This chapter is intended to serve as a basis for the full atomistic 

modeling of dislocations in MgSiO3 post-perovskite provided in the next three chapters. 
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3.1 Location of the shear planes 

The base-centered orthorhombic C-lattice of the post-perovskite results in four 

potential shear vectors: [100], [010], [001] and ½[110] which correspond to the shortest 

lattice repeats. For a given shear direction, potential glide planes are expected to be among 

those with the largest dhkl distance, i.e. with the lowest Miller index of the (hkl) plane. 

Thus, there are five potential glide planes and ten slip systems to test: [100](010), 

[100](001), [100](011), [010](100), [010](001), [001](100), [001](010), [001](110), 

½[110](001) and ½[110](11̅0). 

 

Fig. 3.1. Shear vectors [100], [010], 

[001] and ½[110], and diagonal 

planes (011) and (11̅0) in a base-

centered orthorhombic C-lattice. 

 

In contrast to metals, most minerals have complex crystal structures with interatomic 

bonds of significantly different nature. This fact requires a detailed consideration of 

bonding and makes the crystal chemistry dominant over the simple concept of close-

packed atomic planes for predicting the most probable slip planes. Thus, for each (hkl) 

plane, we consider different possibilities of its location along zhkl
2
 in order to analyze the 

effect of different types and number of bonds involved.  

Atomic planes parallel to (100) are the most densely packed planes in the post-

perovskite structure (see Chapter 1, section 1.1). All atoms in the structure are located at 

two levels along the shortest [100] direction: z100 = 0  and z100 = 0.5 (Fig. 3.2a). 

Consequently, for the (100), there is only one cutting level located at z100 = 0.25 (equivalent 

to z100 = 0.75 according to the symmetry of the structure). 

 

                                                 
2 

 Here and hereafter, zhkl corresponds to the Cartesian z normal to the (hkl) plane. 
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Fig. 3.2. Various non equivalent geometric locations of slip planes (100) (a), (010) (b), 

(001) (c), (110) (d) and (011) (e) in the post-perovskite structure. 

 

The slip planes (010), (110) and (011) have three nonequivalent potential geometric 

locations for shear. In the (010) plane (Fig. 3.2b), shear can be imposed at the levels 

z010 = 0.7 (equivalent to 0.2, 0.3 and 0.8), z010 = 0.4 (equivalent to 0.1, 0.6 and 0.9) and 

z010 = 0.55 (equivalent to 0.05, 0.45 and 0.95). For the (110) plane (Fig. 2d), shear can be 

applied at z110 = 0.25 (equivalent to 0.75), 0.42 (equivalent to 0.08, 0.58 and 0.92) and 

0.65 (equivalent to 0.15, 0.35 and 0.85). The (011) plane (Fig. 2e) can be sheared at 

z011 = 0.42, 0.49 and 0.54 (equivalent to ±0.08, ±0.01 and ±0.04, respectively, with 
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periodicity 1/6 (3.64 Å) along z011 since in the designed monoclinic cell there are twelve 

symmetrical replicas for each cutting level). For the (001) glide plane (Fig. 2c) there are 

two possibilities: z001 = 0.65 (equivalent to 0.15, 0.35 and 0.85) and 0.47 (equivalent to 

0.03, 0.53 and 0.97). The number of the affected bonds per unit cell for each of the 

listed cutting levels is given in Table 3.1. 

 

3.2 GSF excess energies 

Previous ab initio studies of GSF in MgSiO3 post-perovskite provided only γ-lines 

(Carrez et al. 2007a; Metsue and Tsuchiya 2013). In this work, full γ-surfaces are 

calculated for all possible slip planes and cutting levels. The shape of the obtained γ-

surfaces clearly reflects the symmetry of the structure in a given glide plane for all 

configurations considered in this work (Figs. 3.3a-k). In agreement with the Cmcm space 

group, each γ-surface exhibits a mirror plane m perpendicular to the [100] and [001] 

directions. Due to the C-lattice, ½[110] translation vector is clearly seen in (001) and (110) 

γ-surfaces (Figs. 3.3a, b, h - j) such as all energy minimum valleys and maximum peaks are 

translated by ½<110>. For (010) with z010 = 0.7 and (110) with z110 = 0.65 γ-surfaces, there 

are metastable stacking faults (Figs. 3.3c,h) which presence is not caused by additional 

translation vectors of the lattice but by the favorable atomic arrangement in these 

configurations of faulted crystals. In case of (010), the stacking fault is located exactly in 

the middle of the γ-surface (Fig. 3.3c), while stacking faults on (110) are centered with 

respect to [001] and disposed at ⅓[110] with ½<110> periodicity (Fig. 3.3h). Presence of 

such stacking faults may indicate simultaneous presence of ½[100] and ½[001] Burgers 

vector components for dislocations lying on (010) as well as ⅓[110] and ½[001] 

components for dislocations related to (110) as it is shown with arrows on (Figs. 3.3c,h). 

Among all examined γ-surfaces, the (010) plane with z010 = 0.7 (Fig. 3.3c) is characterized 

by the lowest excess energies, while the highest energy barriers are observed for (100) and 

(001) at z001 = 0.47 along the longest [010] direction (Table 3.1; Figs. 3.3a,k). 

Glide along the [100] and ½<110> directions are characterized by a single maximum 

peak while glide for all the other systems exhibit a camel hump shape with a local 

minimum at 50% along the shear vector (Figs. 3.4a - j). This indicates the presence of a  
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Fig. 3.3. 2D projections of γ-surfaces (in J/m
2
). The corresponding shear levels zhkl are given on 

each plot. Easy slip directions are indicated with green arrows; ½<110> translation vectors 

are shown with grey arrows. 
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Fig. 3.4. γ-lines computed in this work with pairwise potential (Oganov et al. 2000) 

compared with previous DFT studies (Carrez et al. 2007a; Metsue and Tsuchiya 2013). 

 

stable stacking fault suggesting the possibility of dissociation of [001] and [010] Burgers 

vectors into two partial dislocations with ½[001] and ½[010] Burgers vectors. The base-

centered C-lattice affects the shape of the [010](001) γ-line (Fig. 3.4e). In the (001) plane, 

translation of atoms and, consequently, of GSF excess energy maximum peaks and/or 

minimum valleys occur by vector ½[110] (Fig. 3.3a, b) which results in asymmetric shape 

of [010](001) γ-lines. Both for z001 = 0.65 and z001 = 0.47, the maximum peaks located at 

¾[010] are about 2.5 J/m² (10 - 12%) higher than peaks at ¼[010] which can be explained 

by differences in geometry of faulted crystals with ¼[010] and ¾[010] rigid shear. Thus, 

close to the slip plane, configuration with ¾[010] shear is characterized by shorter Mg-Si 
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distances (by ~0.5 Å) and longer Si-O bonds with apical oxygens (by ~0.4 Å) than those 

with ¼[010] shear. However, in should be noted that the observed asymmetric shapes are 

not so distinct for the DFT curves (Carrez et al. 2007a; Metsue and Tsuchiya 2013). The 

lowest energy barriers are related to the three slip systems which involve the smallest shear 

vector [100] (b = 2.521 Å) and to the [001](010) slip system with z010 = 0.7 (only Mg-O 

bonds are affected). The highest energy barrier corresponds to the [010](100) system 

(Table 3.1). 

 

3.3 Validity of the pairwise potential 

The γ-surface energies computed in this work for the (010), (001), (011) and (110) 

glide planes are in good agreement with previous ab initio simulations by Carrez et al. 

(2007a) and Metsue and Tsuchiya (2013). For these shear planes, pairwise potential 

accurately reproduces the shape of DFT γ-lines and qualitatively provides 20-30% lower 

energy barriers with respect to those computed with DFT (see Table 3.1; Figs. 3.4a - h ). 

Discrepancies of ~30% observed for [100](010) and [100](001) slip systems may be partly 

attributed to an overestimation of excess energies in DFT calculations resulting from a 

small size effect in DFT approach. Although the exact cutting levels are not explicitly 

specified in the works by Carrez et al. (2007a) and Metsue and Tsuchiya (2013), the shape 

of DFT γ-lines for (011) and (110) clearly planes indicates that, DFT simulations were 

performed for different cutting levels. Thus, the [100](011) γ-line by Carrez et al. (2007) is 

related to z011 = 0.42, while the γ-line by Metsue and Tsuchiya (2013) reproduces the shape 

of the high-energy barrier obtained with z011 = 0.49 (Fig. 3.4c). Considering γ-lines for 

(110), the ½[1̅10](110) asymmetric curve by Metsue and Tsuchiya (2013) is consistent 

with our lowest energy barrier obtained with z110=0.65, while results by Carrez et al. 

(2007a) agree with the high-energy symmetric curve obtained at z110=0.42 (Fig. 3.4g). 

However, the easiest cutting level is not the same for ½[1̅10] and [001] directions: along 

[001], the lowest energy barrier in (110) corresponds to z110 = 0.42 (Fig. 3.4h). This 

phenomenon is considered below in detail. 

For (100), the potential model leads to γ-lines with systematically higher energies 

and comparatively dissimilar shape (Table 3.1; Figs. 3.4i, j). The stacking fault along 
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[001](100) which appears in DFT curves is barely visible with the potential (Fig. 3.4j). 

Similarly, along [010](010), the shoulders at 25% of shear found with the DFT are not 

reproduced by the potential (Fig. 3.4i). However both DFT and potential model clearly 

show that (100) is one the most unfavorable planes for shear which involves very high-

energy configurations.  

Apart from the discrepancy observed for very unfavorable shear planes like (100); 

results on the γ-surfaces obtained from the potential model compare well with ab initio 

calculations. The empirical parameterization of pairwise potentials proposed by Oganov et 

al. (2000) can be thus considered as valid for modeling shear properties of MgSiO3 post-

perovskite and in particular crystal defects modeling involving atomic arrangements far 

from equilibrium.  

 

3.4 Influence of crystal chemistry 

Analyzing the computed γ-lines from different cutting levels for each (hkl) plane, it 

appears that the lowest and the highest energy barriers do not necessarily correspond to the 

same cutting levels for shear along different directions within the same plane. For instance, 

in the (010) plane, shear at z010 = 0.7 cuts only Mg-O bonds (8 bonds per unit cell), whereas 

only Si-O bonds (6 per unit cell) are cut at z010 = 0.55 and both Mg-O and Si-O bonds (2 

Mg-O and 4 Si-O per unit cell) are cut at z010 = 0.4 (Fig. 3.2b). While the lowest excess 

energy corresponds to z010 = 0.7 for shear along [100] and [001] in (010), the highest 

energy barriers correspond to different cutting levels (Figs. 3.4 a, d ). In (010), shear is 

easier at z010 = 0.55 compared to z010 = 0.4 along [001], whereas along [100], the energy 

barrier is higher at z010 = 0.55, although the difference with z010 = 0.4 is very small 

(Figs. 3.4 a, d ; Table 3.1). A similar effect is observed for shear along ½[1̅10] and [001] in 

(110) with cutting levels 0.42 (6 Mg-O and 4 Si-O) and 0.65 (8 Mg-O and 4 Si-O). But in 

this case, the easiest cutting level is not the same for both directions (Figs. 3.4 g, h ; Table 

3.1). This behavior illustrates that the number and nature of bonds is not enough to 

describe the ease of shear. The ability for building up new bonds after shear is likely to 

play an important role.  
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Table 3.1 

Characteristic parameters of the investigated slip systems in MgSiO3 post-perovskite from γ-

surface calculations in comparison with previous theoretical studies  

Slip system 
Impacted bonds 

(per unit cell) 
γmax (J/m

2
) γsf (J/m

2
) ISS (GPa) 

[100](010) 

z010 = 0.55 6 Si-O 6.90  82.5 

z010 = 0.4 2 Mg-O, 4 Si-O 6.37  78.3 

z010 = 0.7 8 Mg-O 4.00  47.9 

GGA
1
  5.55  71.7 

LDA
2
  6.01  78.1 

[100](001) 

z001 = 0.47 4 Mg-O, 6 Si-O 8.32  102.2 

z001 = 0.65 6 Mg-O, 2 Si-O 3.32  41.0 

GGA
1
  4.86  61.8 

LDA
2
  5.04  63.4 

[100](011) 

z010 = 0.49 8 Mg-O, 6 Si-O 7.53  93.9 

z010 = 0.54 7 Mg-O, 4 Si-O 4.99  60.5 

z010 = 0.42 6 Mg-O, 2 Si-O 3.33  40.6 

GGA
1
  4.91  61.7 

LDA
2
  6.31  80.1 

[010](100) 

z100 = 0.25 12 Mg-O, 8 Si-O 30.14  113.3 

GGA
1
  21.02  115.8 

LDA
2
  19.25  82.4 

[010](001) 

z001 = 0.47 4 Mg-O, 6 Si-O 25.14 4.31 178.1 

z001 = 0.65 6 Mg-O, 2 Si-O 19.33 3.32 137.0 

GGA
1
  18.11 4.89 131.2 

LDA
2
  17.79 5.04 117.3 
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Table 3.1 continued 

[001](100) 

z100 = 0.25 12 Mg-O, 8 Si-O 13.56 13.23 95.2 

GGA
1
  11.66 9.01 107.1 

LDA
2
  11.35 7.35 119.0 

[001](010) 

z010 = 0.55 6 Si-O 11.69 6.18 113.0 

z010 = 0.4 2 Mg-O, 4 Si-O 18.32 12.42 173.8 

z010 = 0.7 8 Mg-O 6.29 3.72 68.2 

GGA
1
  7.50 4.95 78.0 

LDA
2
  7.49 4.56 71.4 

[001](110) 

z110 = 0.65 8 Mg-O, 4 Si-O 10.22 8.15 95.7 

z110 = 0.25 6 Mg-O, 4 Si-O 11.82 11.80 85.7 

z110 = 0.42 6 Mg-O, 4 Si-O 9.44 7.90 83.7 

GGA
1
  11.42 10.14 101.6 

LDA
2
  11.54 7.42 120.6 

½[110](001) 

 

z001 = 0.47 4 Mg-O, 6 Si-O 25.43  171.9 

z001 = 0.65 6 Mg-O, 2 Si-O 18.33  126.9 

GGA
1
  16.23  120.0 

LDA
2
  15.81  120.1 

 

½[1̅10](110) 

z110 = 0.65 8 Mg-O, 4 Si-O 8.95  82.9 

z110 = 0.25 6 Mg-O, 4 Si-O 14.39  111.9 

z110 = 0.42 6 Mg-O, 4 Si-O 12.54  92.2 

GGA
1
  14.44  133.4 

LDA
2
  13.65  100.04 

1
Carrez et al. 2007a; 

2
Metsue and Tsuchiya 2013 
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3.5 Searching for the easiest slip systems 

In order to further describe the relative resistance to shear of the potential slip 

systems, the ideal shear stresses (ISS) are calculated (Table 3.1). ISS represents the upper 

limit of stress that a perfect crystal can sustain before yielding (Paxton et al. 1991). The 

lowest ISS values together with the lowest γ-surface excess energies can point to the 

easiest slip systems. The smallest ISS values, as well as the lowest γ-energies, correspond 

to the slip systems with the shortest [100] shear vector and to the [001](010) slip system 

with the glide plane located at the level 0.7 along the [010] direction (Table 3.1). In order 

to analyze an effect of the reduced C55 and C66 values predicted by the potential model 

(Table 2.2) on the calculated ISS for these slip systems, the ISS values can be normalized 

by the corresponding Cij components and compared with those from DFT. Both DFT and 

semi-empirical values provide the same ISS/Cij ratios (0.25, 0.3 and 0.19 for [001](010), 

[100](001) and [100](010), respectively). This correlation between computed elastic 

constants and ISS indicates that underestimated C55 and C66 values inevitably result in 

smaller ISS values (~35%) for [100] slip systems predicted by the potential model (Table 

3.1). However, even keeping in mind such an effect of reduced ISS for [100] systems, they 

clearly remain among the most probable slip systems together with [001](010) which is 

consistent with the ab initio studies by Carrez et al. (2007a) and Metsue and Tsuchiya 

(2013). The empirical potential model also shows that ½[1̅10](110) (at z110 = 0.65) and 

[001](110) (at z110 = 0.42) are further possible slip systems. While considering all possible 

cutting levels in the post-perovskite structure, we show that the lowest and the highest 

energy barrier can correspond to different shear levels for different directions within the 

same glide plane. This effect was not taken into account in previous ab initio studies and 

therefore has affected the (011) and (110) γ-surface calculations. Possible relevance of the 

½[1̅10](110) system is in agreement with the slip predicted by Oganov et al. (2005) based 

on the first-principles metadynamics. 
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3.6  Summary 

In this chapter, transferability of the pairwise potential parameterization by Oganov et al. 

(2000) was examined for modeling defects in MgSiO3 post-perovskite. The ability of this 

parameterization to accurately compute γ-surfaces, describing the excess energies of 

generalized stacking faults, which involve atomic configurations far from the equilibrium, 

was verified by comparing them with previous DFT calculations by Carrez et al. (2007) 

and Metsue and Tsuchiya (2013). Calculations of the γ-surface energies were performed 

for all possible non-equivalent geometric locations of slip planes breaking different bonds 

in the post-perovskite structure. In agreement with the ab initio studies (Carrez et al. 2007; 

Metsue and Tsuchiya 2013), the slip systems involving the shortest [100] shear vector and 

the [001](010) system within the glide plane cutting only Mg–O bonds are characterized 

with very low γ-surface energies. Based on the performed γ-surface calculations, (110) 

could be considered as further possible slip plane. Reasonable agreement with previous 

theoretical and experimental results proves the pairwise potential parameterization by 

Oganov et al. (2000) to be valid for further fully atomistic modeling of dislocations in 

MgSiO3 post-perovskite. 

 

 

 



 



 

 

 

 

CHAPTER  4 

Dislocations with [100] Burgers Vector 

 

 

 

The shortest [100] Burgers vector in MgSiO3 post-perovskite is expected to play an 

important role in plastic deformation of this material, and therefore [100] 

dislocations deserve a particularly detailed and thorough consideration. This chapter 

summarizes the results of the atomic scale modeling performed for [100] screw and 

edge dislocations. The dislocation core structures as well as the critical stresses 

opposed to their glide in (010), (011) and (001) planes in absence of thermal 

activation (i.e. the Peierls stresses) are first computed with the pairwise potential in 

order to reveal the most important slip systems with [100] Burgers vector. These 

simulations are followed by calculations of the Peierls barrier, dislocation line 

tension and kink pair formation enthalpy for the easiest slip system, relying both on 

the pairwise potential and DFT frameworks. 
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4.1 Stable dislocation cores 

4.1.1 Screw dislocations 

Core structure 

The core structure of [100] screw dislocations is computed using a quadrupole 

arrangement of dislocations in a fully periodic atomic array (see Chapter 2, section 2.3.2). 

The core configurations are obtained relying both on the pairwise potential (Oganov et al. 

2000) and on the first principle DFT simulations. Both simulation techniques provide 

similar geometries of [100] dislocation cores, which exhibit two possible configurations, 

labeled as (I) and (II) hereafter. Figure 4.1 shows the differential displacement (DD) maps 

(see Chapter 2, section 2.3.1) of these cores, where the relative displacements along [100] 

between neighboring atoms are represented by arrows between those two atoms. 

Dislocations (I) and (II) represent pure screw cores without any edge component. The core 

configuration is centred between two neighbouring Mg atoms and mainly spread in {011}. 

In (010), equivalent stable core configurations are found every ½[001] lattice repeat, i.e. 

distant by a' ~3 Å. The cores correspond to alternative variants: (I) - spread in (011) and 

(II) – spread in (01̅1). In fact, these core configurations represent a mirror reflection of 

each other.  

 

 

Fig. 4.1. DD maps of [100] screw dislocations viewed along the Burgers vector direction. 

The anion sublattice is left out. Si atoms are shown with blue balls, Mg atoms – with gray 

balls; the unit cell – with red rectangle. The arrows between atoms correspond to the [100] 

component of the relative displacement of the neighboring atoms produced by the 

dislocation. The length of the arrows is proportional to the magnitude of these components. 
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Fig. 4.2. Local structure produced by 

[100] screw dislocation in (010) MgO 

layer. 

 

 

 

Fig. 4.3.  Disregistry function S(y) 

and the [100] Burgers vector density 

ρ(y) of the stable screw dislocations 

(I) and (II) computed for the cation 

sublattice. Values of the dislocation 

core half-widths δ are provided on the 

plot. 

 

Locations of [100] screw dislocation lines in the PPV structure coincide with the 

positions of screw axis 21 disposed between Mg atoms. Superposition of these elements 

creates a local structure along the dislocation line similar to the action of a 2 axis instead of 

the original 21 (Fig. 4.2). The dislocation cores tend to spread towards the empty trigonal 

channels located between Si- and Mg-layers (Fig. 1.1, 4.8). The spreading of the cores is 

limited by two Si-layers and the distortion produced by the dislocation core notably affects 

interconnection of Mg-polyhedra only. Figure 4.3 shows the atomic disregistry S(y) and the 

Burgers vector density ρ(y) along <011> calculated for the cations sublattice (see Chapter 

2, section 2.3.1) based on the structural data acquired from pairwise potential and DFT 

simulations. Relying on the S(y) and ρ(y) functions, the half-widths δ of the dislocation 

cores are found to be 1.93 Å and 1.84 Å for pairwise potential and ab initio calculations, 

respectively (Fig. 4.3). These functions are identical for dislocations (I) and (II). 

 

Dislocation core energy 

For atomic systems containing a quadrupole of screw dislocations, the energy of a 



Chapter 4                                                                                                 Burgers vector [100] 

 

 

80 

dislocation core Ec per Burgers vector unit length can be extracted from the following 

equation (Ismail-Beigi and Arias 2000): 

   𝑐       𝑐  𝑐  
𝜇  

  
[  (

  

 𝑐
)   (

  

  
)]                                             

where E corresponds to the energy of a straight dislocation line (defined as the total energy 

of the atomic system once the energy of the perfect crystal is subtracted) which includes 

the elastic term Eel and the energy Ec(rc) of a dislocation core with radius rc (commonly 

taken equal to 2b) where elastic theory breaks down; μ is an anisotropic shear modulus; d1 

and d2 are equilibrium distances between the dislocations along y and z axis (see Chapter 2; 

Fig. 2.11a);  (
  

  
) is a coefficient which includes all dislocation pairwise interactions and 

which depends only on the 
  

  
 ratio. In this work, for the pairwise potential calculations, all 

simulation cells are designed in such a way that this ratio remains invariant and equal to 

1.007. Thus, all dislocations are equidistant and the   
  

  
  value is constant for all 

supercells. Relying on these conditions, eq. (4.1) is applied to evaluate the dislocation core 

energy using the energies E computed with the pairwise potential for ten different 

simulation cells, with the dimensions varying from 100 Å to 365 Å along the y and z axis 

(3840-54000 atoms).  

 

 

 

Fig. 4.4.  Evolution of the [100] screw 

dislocations total energy E (including 

elastic energy Eel and the dislocation 

core energy Ec) as a function of 

ln(d1/rc)+ A(d1/d2 ),  deduced from the 

pairwise potential modeling. 

 

The minimized energy of atomic systems of different sizes is shown on Fig. 4.4 as a 

function of ln(d1/rc) + A(d1/d2). The energies follow a linear trend as predicted by the 

elastic theory. The calculated value of the A coefficient (including all the effects of the 

infinite Ewald-like sums of dislocation interactions) is -0.89. The linear fit provides the 
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dislocation core energy Ec(2b) = 3.08 eV/b (1.23 eV/Å) and the anisotropic shear modulus 

μ = 167 GPa. This value compares well with the modulus  μ = 173 GPa estimated from the 

elastic constants. Atomistic modeling of [100] screw dislocation cores predicts their full 

width rc = 2δ = 3.86 Å, which is less than formal rc = 2b, employed for evaluation of the 

dislocation core energy. Relying on the 2δ  value deduced from the atomistic modeling, the 

dislocation core energy is Ec(2δ) = 2.72 eV/b (1.08 eV/Å) which is slightly lower than 

Ec(2b).  

For the first principles simulations we only employ the smallest possible atomic array 

with quadrupolar arrangement of dislocations, distant by 18 Å along [001] and by 24 Å 

along [010]. Since DFT calculations are much more computationally expensive then the 

pairwise potential approach, we don‟t increase the simulation cell size as it was described 

above, but directly define the core energy Ec(2δ)  from the eq.(4.1), relying on the 

computed energy E = 6.76 eV/b, elastic interaction coefficient A = -0.80, and anisotropic 

shear modulus μ = 324 GPa. The corresponding dislocation core energy is found to be 

Ec(2δ) = 4.79 eV/b (1.93 eV/Å), which is almost twice higher than that acquired from the 

pairwise potential modeling.  

The core energy can be also generally described as Ec =  
   

  
, where ε is a screening 

factor (Joós and Zhou 2001). Thus, the energetic characteristics of a dislocation core are 

strongly dependent on the shear modulus μ and the screening factor ε, which significantly 

vary for different materials. For instance, in metals ε is commonly taken as 0.5 (Joos and 

Zhou 2001). Relying on the computed core energies Ec(2δ) , deduced from the semi-

empirical and ab initio calculations, one can find that the ε value for [100] screw 

dislocations in MgSiO3 post-perovskite is 2, regardless of the level of atomic description. 

Therefore, the observed discrepancy between the dislocation core energies computed based 

on the data from different simulation techniques rather results from the difference 

(characterized by the factor of 2) in the elastic moduli μ (173 GPa vs 324 GPa). The [100] 

dislocation core energy (normalized per angstrom) computed based on the pairwise 

potential for MgSiO3 post-perovskite is comparable with the ½[110] dislocation core 

energy Ec(b) = 1.28 eV/Å in MgO computed at 100 GPa with the similar approach (Carrez 

et al. 2015) using the pairwise potential by (Henkelman et al. 2005). The close values of 

the dislocation core energies in MgSiO3 post-perovskite and in MgO periclase result from 
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the close values of the elastic moduli (173 GPa vs 195 GPa) and the identical values (ε = 2) 

of the screening factors. 

 

4.1.2 Edge dislocations 

In this study, we mainly focus on [100](010), [100](001) and [100](011) edge 

dislocations within glide planes characterized with the lowest γ-surface energies, i.e., 

corresponding to z010 = 0.7, z001 = 0.65 and z011 = 0.42, respectively (see Chapter 3). A 

dipole arrangement of edge dislocations with positive and negative Burgers vectors in a 

fully periodic supercell is commonly used for metals (Chang et al. 1999, Bulatov et al. 

1999, Chang et al. 2002). However, in the post-perovskite structure, edge dislocations 

lying on the same glide plane with positive and negative Burgers vectors
3 

 have different 

geometries. Thus, a fully periodic dipole cell containing two geometrically identical glide 

planes would incorporate two different dislocation cores. Reciprocally, a periodic dipole 

configuration containing two identical dislocation cores of opposite sign would not be 

charge neutral. Therefore, edge dislocations are modeled using slab geometries of 

simulation cells (see Chapter 2, section 2.3.2) employing the empirical potential. 

Due to the location of the (010) glide plane at z010 = 0.7 (affecting only Mg-O bonds), 

all Si atoms in the dislocation core keep octahedral coordination (Fig. 4.5a). Edge 

dislocation with positive Burgers vector is characterized with a lack of O for Mg 

coordination in the dislocation core, which results in the presence of sixfold and sevenfold 

coordinated Mg along the dislocation line. On the contrary, in a dislocation core with 

negative Burgers vector, there are extra O atoms increasing coordination of some Mg 

atoms located along the dislocation line up to 10. Both dislocation cores are very 

symmetric. 

Edge dislocations lying on the (001) plane (z001 = 0.65) are also very symmetric. The 

chosen (001) glide plane is located in the structure in such a way that all Mg-polyhedra 

below this plane remain eightfold coordinated for both dislocations with positive and 

negative Burgers vectors, whereas coordination of Mg above the glide plane is going to be 

incomplete. The edge [100](001) dislocations with positive Burgers vector retain the 

                                                 
3 
 
Edge dislocation with positive Burgers vector corresponds to the configuration where atomic extra half plane is located above the 

glide plane, while dislocations with negative Burgers vector - below the glide plane.
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favorable octahedral coordination of Si (Fig. 4.5b). Inside the dislocation core with 

negative Burgers vector, there are Si atoms with incomplete fivefold coordination which 

also can be described as (5 + 2) while taking into account next two closest (~2.4 Å) O 

atoms (Fig. 4.5b). Thus, for the dislocation cores with positive and negative b, distortions 

of Mg-polyhedra are quite similar, while Si changes coordination only in the dislocation 

core with negative Burgers vector. 

 

Fig. 4.5. Atomic structure of the relaxed [100](010) (a), [100](001) (b) and [100](011) 

(c) edge dislocation cores. Right panel of (c) illustrates the location of (011) glide plane 

and inversion centers belonging to it. 



Chapter 4                                                                                                 Burgers vector [100] 

 

 

84 

  

 

Fig. 4.6.  Disregistry functions S(y) and 

the Burgers vector density ρ(y) of the 

[100](010) (a), [100](001) (b) and 

[100](011) (c) edge dislocations 

computed for the cation sublattice. Solid 

lines correspond to dislocations with 

positive Burgers vector; dashed lines—

with negative. Evaluated values of the 

dislocation core half-widths δ are 

indicated in the plot. 

 

The chosen (011) glide plane located at z011 = 0.42 is the only plane considered in this 

work which has a symmetric position in the post-perovskite structure. This plane contains 

inversion centers (Fig. 4.5c), which results in identical core structures for dislocations with 

negative and positive Burgers vectors. Incorporation of atomic extra half-plane leads to 

appearance of an extra O ligand for the Si atom below the plane and lack of one O ligand 

for the Si atom above the glide plane (Fig. 4.5c). The incomplete fivefold coordination of 

the latest is similar to the one observed in the [100](001) dislocation core with negative 

Burgers vector. 

The computed disregistry functions S(y) and their derivatives ρ(x) have symmetric 

shapes for all edge dislocations described above, consistent with their core structures. All 

[100] edge dislocations are characterized by the dislocation half-width δ very close to 2b 
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(Fig. 4.6a–c; Table 4.1) which is almost three times larger than for the [100] screw 

dislocations. 

 

 

4.2 Anisotropic lattice friction: Peierls stress calculations 

4.2.1 Glide of screw dislocations 

Glide of the [100] screw dislocations is investigated relying on the pairwise potential 

modeling and triggered by applying a simple shear εxy in order to increase stress in a glide 

plane of interest normal to z axis (see Chapter 2, section 2.3.3). When stress reaches a 

critical value, i.e., the Peierls stress value σp , the straight dislocations start gliding. 

Monitoring the system stress field and the disregistry function of the dislocation allows 

determining the Peierls stress value (Fig. 4.7a). Motion of all dislocations within the 

quadrupole system is observed to start simultaneously. Dislocations with opposite Burgers 

vectors move toward each other and eventually annihilate. Lattice friction (described by 

σp ) displays a highly anisotropic behavior: Peierls stresses are 1 GPa and 17.5 GPa for 

glide in (010) and (001), respectively. The observed zigzag path of the [100](010) gliding 

(Fig. 4.8) explicitly  

 

Fig. 4.7. Evolution of the σxy, σxz and σyz stress components (a) while applying a simple 

shear εxy to an orthorhombic cell in order to trigger [100] screw dislocation glide in (010); 

and (b) to a monoclinic supercell in order to activate [100](011) system. For the 

monoclinic configuration (b), the resolved stress on (010) is shown with the dashed line. 
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Fig. 4.8. Observed paths of [100] screw 

dislocations glide in (010) and (001). 

The easiest (010) glide is shown with a 

solid green line; the difficult (001) 

glide—with a dashed red line. Location 

of stable screw dislocations (I) and (II) 

in the structure are given with ―screw‖ 

signs; location of mirror planes m001 

between these dislocations are 

indicated as ―m‖. 

 

reproduces the geometry of dislocation core spreading while switching from dislocation (I) 

spread in (011) to its symmetric replica (II) spread in (011̅) (Fig. 4.1). In this study, this 

path is not classified as a cross-slip mechanism because the general direction of glide 

remains the same and clearly corresponds to (010). The remarkably easy [100](010) glide 

occurs strictly within a Mg-O layer which is rather correlated with the [100](010) low 

energy γ-line (z010 = 0.7) cutting only Mg-O bonds. The observed motion in (001) plane 

(Fig. 4.8) also matches the lowest energy γ-line for this system (z001 = 0.65). 

Modeling dislocation glide in (011), i.e., in the plane where the dislocation core 

exhibits a tendency for spreading, requires rebuilding a simulation cell in such a way that 

lattice vectors a1, a2 and a3 are aligned with [059], [100] and [011̅], respectively. There is a 

monoclinic angle 89.95° between [059] and [011̅] which is very close to an orthogonal 

configuration. Applying a strain component εxy to the monoclinic cell (characterized with 

an elastic tensor containing 13 independent components) results here in an increase in 

several stress components (Fig. 4.7b). During the deformation, the σxy component, needed 

to activate glide in (011), increases much faster than the residual σxz and σyz components 

(Fig. 4.7b). However, whereas the system geometry is built to maximize the resolved shear 

stress in (011), the close orientation of (010) results in a nonzero resolved shear stress in 

this plane as σxy increases. Due to the low lattice friction of the [100](010) system, it turns 

out that the dislocations always start gliding in (010) instead of in the desired (011) plane 

when the resolved stress on (010) (resulting from σxy and σxz) reaches the critical value of 



Burgers vector [100]                                                                                                 Chapter 4 

 

 

87 

1 GPa (Fig. 4.7b). A lowest bound of the Peierls stress needed for glide in (011) can be 

evaluated from the resolved stress on (011) based on calculations for [100](001) glide. For 

this orientation, the resolved shear stress on (010) is null, preventing dislocations to glide 

in this plane. The resolved stress on (011) reached 10.4 GPa without promoting glide in 

(011). Our simulations clearly demonstrate that for [100] screw dislocations, the Peierls 

stress in (010) is much smaller than in (011) (σp > 10.4 GPa) and in (001) (σp = 17.5 GPa). 

The conservative motion of [100] screw dislocations was also explored using 

simulation supercells with slab geometry (see Chapter 2, section 2.3.2). These calculations 

lead to a dislocation core geometry identical with that observed in a quadrupole cell, and 

Peierls stresses of 1.1 GPa and 17.5 GPa for [100](010) and [100](001), respectively. 

Modeling screw dislocation glide in (011) plane produces the same effect of activating 

[100](010) glide. These results compare well with the simulations performed using fully 

periodic atomic arrays which shows the slab-type simulation cells to be appropriate for 

dislocation modeling. 

 

4.2.2 Glide of edge dislocations 

The motion of the [100] edge dislocations is studied by applying a simple shear strain 

εyz in order to force a dislocation line lying along x to glide in the plane normal to z (see 

Chapter 2, section 2.3.3). As expected, [100] edge dislocations are much more mobile than 

screw dislocations. In general, they all are characterized by Peierls stresses one order of 

magnitude lower than those, estimated for [100] screw dislocations, which indicates that 

the latter will control plastic deformation along [100] in MgSiO3 post-perovskite. Glide of 

[100](010) dislocations with both positive and negative Burgers vectors occurs at very low 

stresses σp < 0.1 GPa. The lattice friction of other dislocations is somewhat higher but still 

very low. Thus, the Peierls stresses estimated for the [100](001) edge dislocations with 

positive and negative Burgers vectors are 0.1 and 0.15 GPa, respectively. Clearly, this 

difference is mainly caused by different level of the Si-octahedra distortions in the 

dislocation cores. The [100](011) edge dislocations start gliding at σp ~ 0.12 GPa. In 

contrast to [100] screw dislocations, glide of [100] edge dislocations in (001) and (011) 

occurs as easily as in (010). 
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4.3 Peierls barrier and MEP of [100](010) screw dislocation glide 

Based on the anisotropic lattice friction in MgSiO3 post-perovskite computed with the 

pairwise potential (section 4.2), we focus further on the [100](010) screw dislocation glide, 

which will account for the most of the plastic strain, and combine empirical potential and 

DFT simulation techniques.  

4.3.1 Pairwise potential calculations 

Although DFT represents high accuracy calculations, we first employ the pairwise 

potential to compute the minimum energy path (MEP) between two stable core 

configurations (I) and (II) in (010). The MEP between them is computed using the a (NEB) 

method, as described in Chapter 2, section 2.1.3. In the initial quadrupole configuration, all 

four dislocations are equidistant and located at Peierls valleys (I); in the final state two 

dislocations of the opposite sign remain in the initial Peierls valleys (I) while two other 

dislocations are displaced to the next valleys (II). For such a configuration, the performed 

NEB calculations indicate successive motion of the two displaced dislocations. The 

corresponding energy barrier is provided on Fig. 4.9. 

 

 

Fig. 4.9. Energy barriers deduced from the NEB calculations 

and the corresponding elastic interaction energy. 
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For each atomic configuration along the MEP, the elastic interaction term is estimated 

from the anisotropic elastic theory (Clouet 2011) and subtracted from the energy computed 

with the NEB method (Fig. 4.9). In order to account for the effect of applied stress σa and 

increase the corresponding σxz stress component in the xy glide plane, a strain component 

εxz resulting in a certain σa value is applied. Figure 4.10a illustrates the resulting energy 

barriers ΔHP = VP - σaba', opposed to the motion of one dislocation, as a function of a 

dislocation line reaction coordinate in projection on (010) glide plane along ½[001]. For 

each energy curve, reaction coordinates 0 and 1 correspond to the initial and final positions 

of a stable dislocation configuration at a given stress σa and intermediate reaction 

coordinates are defined by extracting the exact position of each dislocation line image from 

its disregistry function (eq. 2.13).  

With no stress applied, the MEP reproduces the peculiar <011> zig-zag trajectory 

reported in the previous section (see Fig. 4.8). The maximum peak of the Peierls potential 

of 39 meV/b is related to the MEP dislocation image when trajectory in (011) switches to 

(01̅1). Due to the very low lattice friction, once σa ≥ 400 MPa is applied, the dislocation  

 

Fig. 4.10. (a) Peierls barrier Vp (black line) calculated for [100](010) with the pairwise 

potential (solid line) and DFT (dashed line). Evolution of the energy barrier with applied 

stress ΔHP = VP - σaba', deduced from NEB calculations with pairwise potential, is provided in 

colour. (b) MEP of a straight [100] screw dislocation gliding from the Peierls valley (I) to (II) 

and its evolution with applied stress. 
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Fig.4.11. Evolution of the critical 

stress σc with applied stress σa. 

 

starts climbing the potential and the equilibrium position of the dislocation line is displaced 

from the valley (I) towards (II) by Δz along [010] and by Δy along [001] (Fig. 4.10b). This 

means, that under an applied stress, the path followed by the dislocation in (011) is not any 

more symmetric to that in (01̅1). 

The critical stress σc required to overcome the energy barrier ΔHP, which includes 

contributions of the Peierls potential VP and of the work of the applied stress σa, can be 

calculated as maximum of dHP/b
2
dy. With no stress applied, σc ~1 GPa corresponds to the 

Peierls stress and compares well with the σp value computed as the critical stress needed to 

trigger [100] dislocation glide in (010) (see section 4.2.1). The estimated σс are shown as a 

function of applied stress σa on Fig. 4.11. The linear relation between σс and σa indicates 

that the observed asymmetry of MEP trajectory at applied stress does not have a strong 

effect on the critical stress needed to overcome the energy barrier. 

 

4.3.2 DFT calculations 

In order to estimate the Peierls barrier VP from the first principles, we reconstruct the 

high-energy dislocation core associated with the maximum of the Peierls barrier (deduced 

from NEB simulations with empirical potential) and employ it for DFT simulations 

(Fig. 4.12). This high energy configuration is associated with 77.7 meV/b energy barrier 

(Figure 4.9a). Based on these results, the Peierls stress σp can be estimated from the 

maximum slope of the sinusoidal Peierls potential. Thus, DFT calculations lead to σp = 2.1 

GPa, which is twice larger than the corresponding stress estimated with empirical potential.  
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Fig.4.12. (a) Disregistry functions S(y) of the high energy [100] screw dislocation core 

computed for the cation sublattice in (011) plane based on the structural data acquired from 

DFT and pairwise potential simulations (performed for atomic arrays of the same size). 

(b) DD-plot map of the high energy [100] dislocation core computed with DFT. Si atoms are 

shown in blue; Mg atoms – in gray; anion sublattice is left out (for clarity). The arrows 

between atoms correspond to the [100] component of the relative displacements of the 

neighboring atoms. The length of the arrows is proportional to the magnitude of these 

components. 

 

Based on the pairwise potential modelling, the optimum size of a quadrupole simulation 

cell is found to be 1b × 100 Å × 100 Å (i.e. the dislocation cores are distant by 50 Å), which 

is large enough to avoid ineligible size effects on the computed Peierls barrier VP and 

Peierls stress σp. However, for DFT simulations, we are restricted to the smallest atomic 

array (1b × 36 Å × 48 Å quadrupole reduced into a twice smaller dipole containing 360 

atoms) where the dislocations are distant by only 18 Å along [001] and by 24 Å along 

[010]. Relying on the size effect deduced from the pairwise potential modeling, one can 

expect that the energy barrier VP and, consequently, the corresponding Peierls stress σp, 

computed with DFT for such a small atomic array is ~10% underestimated. 

The apparent discrepancy (the factor of two) between the Peierls stress σp computed 

with the pairwise potential and DFT is likely related to the drawback of the potential 

parameterization used in this study. Indeed, both simulation techniques provide very close 

dislocation core structures both for stable and high energy configurations (Fig. 4.3; 4.12), 

but the empirical potential underestimates the elastic stiffness coefficients C55 and C66 by a 

factor of 2 (see Chapter 2, Table 2.2), and consequently, the corresponding anisotropic 
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shear modulus μ (173 GPa vs 324 GPa) of the post-perovskite. Qualitatively, one still finds 

the ratio σp/μ ~5 10
-3

, regardless of the level of atomic description.  

 

4.4 Line tension of [100](010) screw dislocations 

To compute the line tension Γ describing the stiffness of a dislocation line, the energy 

cost associated with a dislocation bow-out consistent with the first stage of kink-pair 

formation should be evaluated. Bending a dislocation line requires breaking up the 1b 

translational symmetry of the simulation cell. Thus, the length of the supercell along the 

dislocation line is increased up to 2b. We consider a dislocation line which consists of two 

segments of length b: the segment S1 remains in the Peierls valley (I) while another 

segment S2 starts bowing out towards to the next valley (II) as it is shown on Fig. 4.13c. In 

order to compute this process at the atomic scale, the evolution of atomic displacements Δx 

along [100] during the dislocation glide from (I) to (II) is analysed relying on the MEP 

structural information obtained from the NEB calculations (see section 4.3.1). Since DFT 

and pairwise potential modelling provide very close configurations of dislocation cores 

(Fig. 4.3; 4.12), we employ the same MEP trajectory to mimic a dislocation line bending 

both with DFT and pairwise potential. Dealing with a complex material, we mostly focus 

on cation sublattice and allow anions to adapt to the local displacement of cations.  

Along the MEP, one Mg and four Si atoms exhibit the largest displacements Δx along 

the dislocation line compared to other cations in the crystal (Fig. 4.13a, b). The selected 

Mg atom is located right between the two Peierls valleys and bears the maximum 

displacement amplitude (about 0.8 Å). Maximum Δx amplitude of the four Si atoms is 

twice smaller (Fig. 4.13b). Once the evolution of atomic positions along the MEP is 

defined, one can create the dislocation bow-out while applying the exact displacements Δx 

consistent with the MEP (under zero applied stress) to the selected atoms belonging to the 

segment S2 of a dislocation line (Fig. 4.13d). The corresponding cations of the segment S1 

are fixed to their regular positions in the Peierls valley. Practically, it means that for these 

atoms, the degrees of freedom along the dislocation line are constrained. After structural 

relaxation, the exact location of segments S1 and S2 are defined through computing the 

disregistry function S(y) (eq. 2.13) at each step of the line “bending”. The computed change  
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Fig.4.13. Line tension calculation scheme: 

(a) The five cations, four Si and one Mg, that exhibit the biggest displacements along [100] during 

dislocation glide are labelled here. Si atoms are indicated by blue spheres, Mg by grey, the 

anion sublattice is left out for clarity, the dashed line indicates the MEP followed by the 

dislocation during its glide, and the unit cell is indicated by the red rectangle. 

(b) Atomic displacements along [100], deduced for the five selected cations from NEB simulations. 

The plot provides displacements for a screw dislocation with positive Burgers vector; in the 

case of negative Burgers vector, atomic disposition occurs in the inverse way. 

(c) Schematic illustration of dislocation line bending, mimicking the instant of kink-pair formation, 

in a 2b simulation cell. Glide plane (010) is highlighted in grey. 

(d) Local structure of the cation sublattice produced by the screw dislocation (I) in the (010) plane. 

To create a bow-out, degrees of freedom along [100] are restricted for the cations located in 

the pink area: in segment S1, the selected atoms are fixed to their regular positions in the 

Peierls valley (I), while the corresponding atoms of segment S2 are forced to follow up to 5% of 

the MEP along a‘ towards the next Peierls valley (II), as indicated by the arrows. The 

associated increase in elastic energy ∆E is provided in (b) 
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Fig.4.14. Elastic energy ∆ELT inferred 

from the pairwise potential and DFT 

simulations performed for the reduced 2b 

dipole cell containing 720 atoms. The 

corresponding line tension Г values are 

provided on the plot. 

 

in energy,                         
 

 
       

  related to the gradual disposition 

of the line segment S2 is shown on Fig. 4.13b and Fig . 4.14 as a function of the reaction 

coordinate along [001]. For the large simulation cell (2b × 100 Å × 100 Å) employed for the 

pairwise potential simulations, fitting the curvature of quadratic function ΔELT (Fig. 4.13b) 

provides the line tension Γ = 7.1 eV/Å. Similar simulations performed for the reduced 

dipole cell (720 atoms) provide 9.2 eV/Å for DFT simulations and 7.0 eV/Å for empirical 

potential (Fig.4.14). Thus, based on the values deduced from the pairwise potential 

modelling, the size effect for larger atomic arrays is about +2%. 

The anisotropic line tension Γel = 2.08 eV/Å, calculated within Stroh formalism (Stroh 

1958) using the set of elastic constant Cij of PPV (Carrez et al. 2007) computed with the 

same GGA pseudopotentials as we employ in this work, is notably lower. Previous studies 

of bcc metals based on a similar simulation approach for computing LT at atomic scale 

(Proville et al. 2013; Dezerald et al. 2015) report comparable discrepancies between the 

LT values predicted atomistically and from the elastic theory. Indeed, the latter does not 

account for the large effect of the dislocation core contribution which leads to drastically 

underestimated Γel values. 

 

4.5 Kink-pair formation on [100] screw dislocations 

The performed atomic scale simulations clearly demonstrate that [100] screw 

dislocation glide in MgSiO3 post-perovskite is associated with a very low Peierls stress 

(σp/μ ~ 5∙10
-3

) and that the corresponding Peierls barrier is small compared to the  
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Fig.4.15. (a) Saddle point on the 

HLT(α,m)  energy landscape. (b) Kink 

shape computed based on the data 

acquired from DFT simulations. Along 

horizontal axis, n corresponds to the  

number of Burgers vectors b = 2.474 Å. (c) 

Kink-pair formation enthalpy HLT and its 

evolution with applied stress computed 

with the data acquired from DFT and 

pairwise potential simulations. 

 

dislocation self-energy (VP
max

/Ec(2δ)  ~1.5∙10
-2

). These characteristics suggest employing 

the linearized line tension (LT) model (see Chapter 2, section 2.4.2) to describe the kink-

pair formation mechanism on [100](010) dislocations.  

Once line tension Γ is computed at atomic scale and the Peierls barrier VP is known, 

the equilibrium kink-pair shape at a given stress and the corresponding critical kink-pair 

enthalpy HLT can be calculated using eq. (2.17). To solve eq. (2.17), we rely on a trial 

function y(x) that describes the equilibrium shape of a symmetric kink-pair based on a 

combination of hyperbolic tangents (Joós and Duesbery 1997):  

     
 

 
  [    (      )      (      )]                                           

where a' is the periodicity of the Peierls potential and α and m are variable parameters, 

defining the widths and the height of the kink slope. The saddle point on HLT(α,m) energy 

landscape (Fig.4.15a) ultimately defines both the enthalpy HLT and the equilibrium kink-

pair configuration y(x). The equilibrium kink shape (Fig. 4.15b) is characterized by 
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extremely large width of about 35-40b (~100 Å) resulting from the very low Peierls 

barrier. Under applied stress, this width changes moderately while the height of the kink-

pair decreases rapidly as the straight part of the dislocation line is moved upwards on the 

Peierls barrier. It should be pointed out that such wide kink shape fully justifies our choice 

of using the LT model with respect to unreasonable direct atomistic computation of bowed 

configuration lines which would require extremely large simulation cells. Figure 4.15c 

shows the evolution of the computed enthalpy HLT as function of the applied stress σa. As 

one expects from dislocation theory (Hirth and Lothe 1982), the kink-pair enthalpy is 

maximum under zero stress with a value below 3 eV, corresponding to twice the energy of 

a single kink Hk, and it vanishes when the applied stress is equal to the Peierls stress. The 

normalized kink-pair enthalpy 2Hk/μb
3
 is found to be ~3·10

-6
, confirming the relatively low 

lattice friction born by the [100](010) slip system in MgSiO3 post-perovskite, despite the 

high confining pressure of 120 GPa. 

 

 

4.6 Summary 

In this chapter we characterized atomic structure, anisotropic lattice friction and 

computed the key parameters describing thermally activated mobility of [100] dislocations. 

In order to reveal the most important slip system, calculations were first performed relying 

on the chosen pairwise potential parameterization (Oganov et al. 2000). The [100] screw 

dislocations have compact dislocation cores with a slight tendency for spreading in {011} 

plane (half-width δ = 1.9 Å). The [100] edge dislocation cores exhibit compact cores with a 

half width close to 2b ~5 Å, regardless the spreading plane. Lattice friction opposed to the 

[100] dislocation glide in (010), (001) and (110) planes is found to be highly anisotropic. 

Remarkably low value of Peierls stress σp = 1 GPa is found for [100] screw dislocation 

glide in (010) within MgO layer, while glide in (001), normal to the structural layering, 

requires almost 18 times bigger stress values. Mobility of the [100] edge dislocations is 

systematically higher than that of the screw dislocations. The Peierls stress opposed to the 

[100] edge dislocation glide is found to be in the order of 0.1 GPa, regardless of the glide 

plane orientation. Thus, based on the performed pairwise potential modeling, [100](010) 

screw dislocation glide should play an important role for plastic deformation along [100].  
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Relying on this conclusion, further simulations were performed for the [100] screw 

dislocations both within pairwise potential and DFT frameworks in order to address the 

essential parameters (kink-pair shape and kink-pair formation enthalpy H2k) describing 

thermally activated [100](010) glide. For that purpose, the associated Peierls barrier VP and 

line the tension Γ (describing stiffness of [100] screw dislocation line) were calculated at 

the atomic scale. These parameters were further integrated into the one-dimensional line 

tension (LT) model, commonly used for low lattice friction materials. Under zero stress, 

VP = 77.7 meV/b and Γ = 9.2 eV/Å from DFT simulations lead to a kink-pair enthalpy 

H2k = 2.69 eV and equilibrium kink shape characterized by a very large width of ~100 Å. 

 



 

 

 

 



 

 

 

 

CHAPTER  5 

Dislocations with [001] Burgers Vector 

 

 

 

This chapter describes the results of the atomic scale modeling performed for 

dissociated [001] screw and edge dislocations in MgSiO3 post-perovskite with the 

pairwise potential. Full atomistic modeling provides insights into the complex atomic 

structure of the dislocation cores and peculiarities of their dissociation, which allows 

estimating the associated γ-energies. Stable dislocation core configurations are 

further employed to compute the lattice friction opposed to the glide of straight [001] 

dislocations at 0 K and to estimate the energy of an isolated kink-pair, i.e. the kink 

pair formation enthalpy at zero applied stress. 
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5.1 Structure of stable [001] dislocation cores 

5.1.1 Screw dislocations 

Dislocation core structures of [001] screw dislocations are investigated using the 

so-called “slab” simulation cell geometries (Fig. 2.11b in Chapter 2), fully periodic along 

the x and y axis aligned with the dislocation line and with the core spreading directions, 

respectively, and characterized by the fixed borders along the third direction. Structural 

relaxation of perfect [001] Volterra dislocations systematically results in their spontaneous 

dissociation into two symmetric partials in the (010) plane separated by a stacking fault. 

The atomic structure of the relaxed screw dislocation core along [010] direction is 

illustrated on Fig. 5.1 where the stacking fault between the two partials can be clearly 

distinguished.  

 

Fig. 5.1. Atomic structure of the stable [001] screw dislocation core 

in the (010) plane. Si atoms are shown with blue balls, Mg – with 

white, and O – with red. The distance R between the two partials and 

the unit cell parameters a and c are indicated with arrows. 

 

The corresponding differential displacement (DD) map (viewed along the 

dislocation line direction) is presented on Fig. 5.2. The largest atomic displacements are 

localized in (010) plane between the Mg- and Si-layers. Quantitative characteristics of the 

dislocation core are derived from its disregistry function S(y) computed with eq. (2.13) for 

the cation sublattice and its derivative ρ(y) describing distribution of the [001] Burgers 

vector density in the glide plane. Symmetric shapes of both functions (Fig. 5.3a) indicate  
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Fig. 5.2. Differential displacement map of 

the stable [001] screw dislocation core. The 

anion sublattice is left out; Si atoms are 

shown with blue balls; Mg atoms – with 

light grey balls; the unit cell – with red 

rectangle. Atomic positions in a perfect 

crystal are displayed in dark grey. The 

lengths of arrows are proportional to the 

magnitude of the corresponding atomic 

displacements along [001]. 

 

Fig. 5.3. Disregistry function S(y) and the [001] Burgers vector density ρ(y) of stable 

screw (a) and edge (b) dislocations computed for the cation sublattice. 

 

 

that splitting occurs into two geometrically identical partials. The core spreading of each 

partial is very narrow and characterized by the half-width δ close to 1 Å. The distance R 

between the partials is estimated as the distance between the two maximum of the peaks 

ρ(y) and found to be 10.8 Å which is close to 4×a unit cell parameters. It should be noted 

that in addition to the [001] screw component, the dislocation core exhibits the presence of 

~15% <100> edge component (Fig. 5.3a), i.e. the presence of small displacements in the 

plane of core spreading, but perpendicular to the dislocation line. On the DD-plot map 

(Fig. 5.2), such atomic displacements in the dislocation core can be clearly seen within the 

Mg-sublattice by superposing atomic layout in the dislocation core with that in a perfect 

crystal. Alternatively, from Figure 5.1, one can notice that, out of the dislocation core, Mg 
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atoms are perfectly aligned along the [100] direction with vertical bonds between silicon 

and apical oxygen atoms (in the perfect crystal both Mg and apical O occupy 4c Wyckoff 

positions), while within the stacking fault area, the Mg sublattice is slightly displaced 

towards empty spacing between the Si-O bonds due to the presence of the small <100> 

edge component. 

 

 

5.1.2 Edge dislocations 

Taking into account that [001] screw dislocations dissociate in (010) plane and that 

their dissociation in any other planes has been never observed, only [001](010) edge 

dislocations are considered in this work. From the atomic structure of the relaxed 

[001](010) edge dislocation core (Fig. 5.4), one can notice that it also splits into two 

symmetric partials separated by a widespread stacking fault where orientation of Si-

octahedra located below and above the stacking fault (indicated with dashed red line on 

Fig. 5.4) resembles a mirror reflection of each other. Such a configuration can be produced 

by shearing the upper (or lower) part of the crystal by ½<101> in (010). In other words, 

this atomic arrangement explicitly reproduces the structural geometry of the metastable 

stacking fault in the middle of the (010) γ-surface with z010 = 0.7 (see Fig. 3.3c).  

 

 

Fig. 5.4. Atomic structure of the stable [001] edge dislocation core viewed along 

[100] direction. SiO6 octahedra are shown in blue; Mg atoms – with white balls. 

Distance R between the two partials and the unit cell parameters b and c are 

indicated with arrows. Location of the stacking fault is shown with dashed red line 
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The disregistry function S(y) of the observed dislocation core (Fig. 5.4b) confirms its 

mixed character and indicates simultaneous presence of both ½[001] edge and 

½<100>screw components. The estimated distance R between the partials is 41.6 Å which 

[001] screw dislocation. The half-width δ of each partial is found to be about 3 Å, which is 

close to ½b. 

 

5.2 Evolution of dislocation core characteristics with dissociation distance 

In this work, we also seek for structural optimization of several metastable 

configurations of [001](010) dislocation cores with different separation distance between 

the partials. For that purpose, [001] screw dislocations are also designed by imposing 

separately the two ½[001] pure screw or mixed ½<101> partials in such a way that the 

distance between them along [100] varies from 5 Å  to 50 Å . In case of edge dislocation, 

the initial building scheme (see Chapter 2, section 2.3.1) restricts the search for metastable 

configurations to those encountered during the molecular static minimization steps.  

In case of [001](010) edge dislocations, the metastable core configurations 

investigated correspond to a planar dissociation of [001] Burgers vector into two partial 

dislocations separated by a fault of width R varying from 30 Å  to 50 Å . All configurations 

are characterized by the presence of an invariant ½<100> component (Fig. 5.5a). This 

indicates that all these dislocation cores are associated with the same γ-energy 

corresponding to the ½<101>(010) stacking fault. The observed configurations of [001] 

screw dislocations are less extended. The estimated separation distance R between the 

screw partials varies from 8.5 Å to 18 Å. In contrast to the edge dislocations with the 

regular stacking fault geometry (Fig. 5.5a), <100> component in [001] screw dislocation 

cores increases linearly with R and varies from 10% to 35% (Fig. 5.5b) in the range 

considered. This means that all detected screw dislocation cores are characterized by 

different γ-energies, i.e. associated with various stacking fault configurations. 

Dealing with significantly extended dislocation cores prevents us from using fully 

periodic atomic arrays for estimating their energies. Thus, we verify the atomic structure of 

the boundary “frozen” area (see Chapter 2, the section 2.3.2) to be strictly the same for all 

configurations (but different for screw and edge dislocation cores) and compute potential  
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Fig. 5.5. Evolution of the <100> component in [001] edge (a) and screw (b) 

dislocation cores with increasing distance R between the partial dislocation lines. 

 

Fig. 5.6. Estimated energies of [001] edge (a) and screw (b) dislocation cores (once 

the minimum energy is extracted) shown as a function of the dissociation distance R 

between the partial dislocation lines. Energies of the edge dislocation cores (a) are 

fitted with the elastic equilibrium equation (5.1) illustrated with the solid grey line.  

 

energy of the atomic array not included into this region. Dimensions of the supercells were 

gradually increased until there is no size effect on the computed energies. In order to 

ensure that the chosen configuration of the boundary area has no effect on the structure of 

the screw dislocation cores and the associated energies, three different geometries of the 

“frozen” zone were tested. The displacement field in these areas corresponds to the 

displacement field produced by a Volterra screw dislocation, designed to be symmetric 

with respect to the geometric center of the core configurations whose size scales with (i) 
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odd number or (ii) with the even number of [100] lattice repeats, or (iii) represents the 

intermediate configuration of those two. For large enough simulation cells (in excess of 

350 Å along the dislocation core spreading and 180 Å in the direction normal to the glide 

plane), the computed energies of the system are not sensitive to the chosen configuration of 

the “frozen” zones. The estimated energy values (once the minimum energy is extracted) 

for edge and screw dislocations are presented on Fig. 5.6a,b as a function of the separation 

distance R between the partials. The minimum energy configurations correspond to the 

edge and screw dislocations with R = 41.6 Å and 10.8 Å, respectively, i.e. to the stable 

dislocation cores described above.  

 

 

5.3 Stacking fault energies 

In case of dissociated dislocations, stacking fault energies represent an essential 

parameter influencing their dissociation width. Accounting for a change in dissociation 

width R in various metastable configurations with respect to that in the stable dislocation 

core, the associated energy increase ∆W should scale with the following expression (Hirth 

and Lothe 1982):  
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where ∆W/L  is the increase in energy per dislocation unit length with respect to the 

equilibrium configuration characterized by dissociation width Req; RSF is the width of a 

perfect stacking fault between the two partials; µ is the anisotropic shear modulus; ν is the 

Poisson ratio;  ⃗⃗ , and  ⃗  are the partial Burgers vectors and the dislocation line vectors, 

respectively. According to eq. (5.1), the change in energy ∆W/L  results from misbalance 

between the elastic interaction energy of partial dislocations (the last two terms) and the 

stacking fault ribbon energy (the first term). It should be noted, that the separation distance 

R defined in this work as the spacing between the two maximum peaks of the Burgers 

vector density ρ(y) actually describes the spacing between the two partial dislocation lines. 
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The width of a perfect stacking fault for each dislocation core configuration can be defined 

as RSF = R - 2δ, where δ is a half width of each partial (Fig. 5.7). 

Based on the observed geometric and energetic characteristics of dissociated edge 

dislocation cores associated with the ½<101>(010) stacking fault, one can estimate the 

corresponding γ-energy from the elastic equilibrium equation (5.1). Fitting the dislocation 

core energies computed at atomic scale (Fig. 5.6a) with equation (5.1) employing the 

RSF = R - 2δ, µ = 184 GPa calculated from elastic constants and anisotropic Poisson ratio 

ν = 0.454 determined using GULP (Gale and Rohl, 2003) provides γ = 1.78 J/m
2
. In case of 

screw dislocations, all the dislocation cores with different dissociation width are 

characterized by different γ-energies and, therefore, the latest cannot be accurately 

calculated through fitting the dislocation core energies with equation (5.1). 

 

 

Fig. 5.7. Schematic illustration 

of the relation between the 

distance R (separating the two 

dislocation lines) and the width 

of a perfect stacking fault RSF in 

a dissociated dislocation core. 

 

Alternatively, relying on structural information derived from atomic-scale dislocation 

modeling, the related γ-energies can be computed with anisotropic elasticity using DISDI 

code (Douin et al. 1986) based on the Stroh formalism (Stroh 1958). The estimated 

energies for five different configurations of [001] screw dislocations with <100> edge 

component varying from 10 to 35 % and for the stable configuration of ½<101> edge 

dislocation are presented on Fig. 5.8 in comparison with those from GSF calculations. The 

computed γ-energies for stable screw (15% of <100> component) and edge dislocations 

(50% of <100> component) are 2.85 J/m
2
 and 1.86 J/m

2
, respectively. The γ-energy of the 

edge dislocations is in a good agreement with 1.78 J/m
2
 from the dislocation energy fit 

(Fig. 5.6a). 
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Fig.5.8. Evolution of the 

½[001](010) stacking fault γ-

energy with increasing <100> 

component estimated with the γ-

surface (GSF) simulations and 

from elastic theory (relying on 

the dislocation core geometries 

detected in this study). All the 

points provided in the legend are 

computed based on the data 

acquired from the pairwise 

potential modeling. 

Conventional GSF simulations provide higher γ-energies (blue line on Fig. 5.8) than 

that estimated with elastic theory, especially for the atomic configurations with low <100> 

component. In the performed GSF simulations (Chapter 3) all atoms are allowed to move 

perpendicular to the glide plane only (in order to avoid the perfect crystal recovery) which 

inevitably leads to overestimation of energies. In order to reduce this effect, we 

additionally perform the same kind of simulations where degrees of freedom are restricted 

only for cations while oxygen atoms are allowed to relax fully in all directions. This leads 

to a decrease in γ-surface energy associated with ½[001](010) stacking fault by ~0.6 J/m
2 

(Fig. 5.8), however, while <100> component increases (following the dashed gray line on 

Fig. 5.9), this effect subsists and almost vanishes for ½<101>(010) configuration (Fig. 5.8). 

Allowing full relaxation for all atoms in highly symmetric configurations with ½[001] and 

½<101> shift provides the energies very close to that obtained while restricting only 

cations (Fig. 5.8). Therefore, the latest can be considered as the reference γ-energy to 

compare with. For the stable screw dislocation core geometry (with 2δ = 2 Å), the 

difference between the γ-energies deduced from the GSF calculations and from elasticity is 

5%. This discrepancy increases up to 15% for the edge dislocation core configurations 

(characterized by 2δ close to 6 Å). Thus, discrepancy between the γ-energy defined from 

GSF simulations and that from the elastic theory increases with increasing dislocation core 

extension and the width of dislocation partials, which is not taken into account by 

elasticity. 
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5.4 Dissociation process 

Atomistic modeling of both [001] screw and edge dislocations show that they 

dissociate in (010) into two symmetric partials separated by a stacking fault. Both 

dislocations exhibit mixed characters and are characterized by the presence of <100> 

components. However, in case of edge dislocations, dissociation occurs into two ½<101> 

partials, while for the screw dislocations, dissociation [001] → ½[101] + ½[-101] involves 

high energy configurations (Fig. 5.6b) and, therefore, it has been never observed. The 

dissociation path of stable screw and edge dislocation cores is presented on Fig. 5.9 on top 

of the corresponding (010) γ-surface energy map (see Chapter 3). Increasing <100> 

component up to ½<100> along the ½[001](010) stacking fault (which corresponds to the 

γ– line energy profile from Fig. 5.8, also indicated with dashed gray line on Fig. 5.9) results 

in decrease in stacking fault energy and, consequently, to an increase of the stacking fault 

width between the partials. Such dependence between the stacking fault energy and 

dissociation distance explains the observed relation between the <100> component and the 

distance R in various metastable configurations of dissociated [001](010) screw dislocation 

cores (Fig. 5.5b). At the same time, dissociation of the edge dislocations appears to be large 

enough to incorporate the invariant ½<100> component (Fig. 5.5a). 

 

Fig.5.9. Dissociation path of the stable [001] edge and screw 

dislocations in (010) plane shown in projection to the 

corresponding γ-surface map. 

 

According to the elastic theory, being characterized with the same stacking-fault 

energy γ, the size of screw and edge dislocations should scale with a ratio of 1/(1-ν). Thus, 

[001] screw dislocations with ½<100> edge component would be characterized by R close 
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to 23 Å which agrees well with the linear trend (Fig. 5.5b) describing evolution of <100> 

component in [001] screw dislocations with increasing distance R between the partials.  

Previous ab initio studies of GSF in MgSiO3 post-perovskite (Carrez et al. 2007; 

Metsue and Tsuchiya 2013) did not consider the presence of ½<101>(010) stacking fault. 

In order to ensure stability of such a stacking fault configuration, we additionally 

performed γ-surface simulations with DFT where full relaxation is allowed to the highly 

symmetric ½<101>(010) and ½[001](010) configurations (green points on Fig. 5.8), i.e. 

calculations, similar to that described in the previous section for the pairwise potential 

(yellow points on Fig. 5.8). As expected, γ-energies from the ab initio calculations are 

higher (by ~25%) than those computed with the pairwise potential. However, both 

simulation techniques consistently indicate that presence of ½<100> component results in 

35% reduction of the stacking fault energy. This implies that qualitative prediction from 

the pairwise potential modeling on the mixed character of [001] dislocations is rather 

plausible. 

 

5.5 Lattice friction 

In this work, the critical stress opposed to the [001](010) dislocation glide is computed 

at atomic scale while applying a simple shear in order to increase the stress in the glide 

plane as predicted by the Peach-Koehler equation (2.15). Under applied stress, both 

[001](010) screw and edge dislocation exhibit similar behavior, i.e. the two partials glide 

together while keeping the stacking fault width constant. Dislocation glide starts at 3 GPa 

and 2 GPa and proceeds by successive steps of [100] and ½[001] lattice repeats for screw 

and edge dislocations, respectively. Being characterized by a larger Peierls stress, the 

mobility of screw dislocations is expected to govern plastic strain for this slip system. 

However, it's worth noticing that, in contrast to [100] dislocations in post-perovskite 

(Chapter 4), where the Peierls stress σp is found to be one order of magnitude lower for 

edge dislocations than for screw, σp of edge dislocations is only 33% lower in case of the 

[001](010) system. 

Relying on the observed characteristics of dislocation cores and their response to 

applied shear, one can estimate the corresponding Peierls energy barrier. Dislocation 
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motion by successive steps of [100] and ½[001] lattice repeats suggests that the periodicity 

of the Peierls potential, denoted hereafter as a‟, is equal to a = 2.5 Å and c/2 = 3 Å unit cell 

parameters for screw and edge dislocations, respectively. Both partials climb the Peierls 

barrier together. Assuming a simple sinusoidal shape of the potential, the maximum energy 

barrier for each partial can be defined as (Koizumi et al. 1993):   
    

 

 
      , where 

bp is the partial Burgers vector length. The estimated   
    values are 46 meV/Å for screw 

dislocations and 39 meV/Å for edge dislocations. 

 

 

5.6 Kink-pair formation enthalpy 

Atomistic modeling of [001](010) dislocations gives access to dislocation core 

geometries, associated γ-energies and to the opposed lattice friction at 0 K. At finite 

temperature, dislocation motion involves nucleation and propagation of kink-pairs. For a 

dissociated dislocation, the enthalpy ∆H related to a kink-pair nucleation process involves 

four terms: (i) ∆Eel - the increase in elastic energy caused by the increase in length of the 

dislocation line; (ii) ∆P - the change in the Peierls energy of the line portion which leaves 

the Peierls valley; (iii) ∆Wsf - the energy cost associated with the change in the stacking 

fault energy γ due to increase/decrease in the equilibrium distance R between the partials; 

(iv) Wσ - the work of the applied stress. 

For [001] dislocations, fully atomistic modeling of kink-pairs will be extremely 

challenging to perform due to the very complex structure of dissociated dislocation cores, 

which will also require unreasonably large atomic arrays. Therefore, in this study, kink pair 

formation enthalpy for [001](010) dislocations is estimated with the elastic interaction 

model (Koizumi et al. 1993) employing the derived characteristics of straight screw 

dislocations, controlling plastic deformation for this system. 

As it has been shown by Koizumi et al. (1993), for low lattice friction materials 

with a ratio σp/μ close to 10
-2

, the ∆P term contributes only about 1% to the total kink-pair 

formation enthalpy ∆H. For the [001] screw dislocations, this ratio is equal 1.6 ∙ 10
-2

, which 

allows neglecting the positive contribution of ∆P to the Peierls potential VP.  
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The energy term ∆Wsf is relevant only in case of the so-called uncorrelated 

nucleation when kink-pairs nucleate independently on leading and trailing partials which 

locally changes the stacking fault width and, consequently, its energy. Involving additional 

energy cost, this process is likely to occur only above a critical stress σ
crit

, while below this 

value only correlated nucleation (both kink-pairs nucleate simultaneously such as their 

centers coincide) takes place without changing the stacking fault width along the partials. 

The critical stress can be estimated as (Möller 1978):  𝑐    
     

    
 , where β is a function 

of the angle ζi between the partial Burgers vector  ⃗⃗ , and the dislocation line  ⃗   defined as 

β = cosζ1 cosζ2 + sinζ1 sinζ2 / ( 1 - ν ) , where ν is the Poisson ratio. Employing previously 

defined ν = 0.454, γ = 2.85 J/m
2
 and ζ = ~7° for the [001] screw dislocations, the critical 

stress σ
crit

 is found to be close to 1.3 GPa which is well above the stresses expected in the 

lower mantle. Therefore, in case of the [001](010) screw dislocations only correlated kink-

pair nucleation is expected to occur in mantle conditions and, therefore, the ∆Wsf  term can 

be disregarded. 

Based on all these assumptions, with no stress applied, the formation enthalpy 

H2k ( σ = 0 )  of a rectangular kink-pair with large width w (such as w >> h, where h = a' is 

the kink height) on each partial can be estimated as (Möller 1978; Hirth and Lothe 1982): 

    
𝜇  

  
*  

 (
 

   
  

  

  
  )    

 (  
  

  
 

 

   
)+                                    

where μ is the anisotropic shear modulus; a' is the periodicity of the Peierls Potential; bs 

and be are the screw and edge components of bp, respectively; ν is the Poisson ratio; e is the 

Euler's number; and ρ is the cut-off distance commonly taken as 5-10% of the Burgers 

vector. However, the H2k value defined using eq. (5.2) is very sensitive to the choice of ρ 

(Koizumi et al. 1993). Thus, varying the cut-off ρ from 5 to 10 % of the partial Burgers 

vector bp results in deviation of the H2k values from 9.7 to 4.2 eV. It should be noted that 

independently of ρ, contribution of the edge component into H2k does not exceed 0.2% due 

to the very small be = bp sin ζ , hence, the second term in eq. (5.2) is neglected. Based on the 

model of Koizumi et al. (1994) and results of the recent atomic-scale simulations in 

conjunction with the elastic interaction model (Kraych et al. 2016a), the kink-pair enthalpy 

H2k at zero stress can be approximated as 𝜇  
 √  𝜇⁄ , which provides H2k = 4.15 eV 
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consistent with ρ = 0.1bp in eq. (5.2). Relying on this value, the estimated Vp
max

= 46 meV/Å 

is indeed close to 1% of H2k in agreement with (Koizumi et al. 1993). As it was shown 

above, motion of a dissociated [001] screw dislocations is expected to occur through 

correlated kink-pair nucleation, therefore, the energetic cost associated with the kink-pair 

formation on both partials can be set as H4k = 2H2k = 8.3 eV. As expected from the 

dislocation core structure and the Peierls stress, this value is notably higher than H2k = 1.71 

eV for [100](010) dislocations in MgSiO3 post-perovskite (see Chapter 4), however it is 

still more than twice lower than the H2k values (c.a. 20 eV) calculated for MgSiO3 

bridgmanite (Kraych et al. 2016a,b). 

 

 

5.7 Summary 

In this chapter, we characterized atomic structure of dissociated [001] dislocation cores in 

MgSiO3 post-perovskite relying on the chosen pairwise potential model. Both [001] screw 

and edge dislocations dissociate in (010) plane into two symmetric partials separated by a 

stacking fault of ~11 Å and ~42 Å, respectively. Detailed analysis of the dislocation cores 

reveals their mixed character and the presence of a <100> component. In case of edge 

dislocations, dissociation occurs into two ½<101> partials, while the <100> component for 

the screw dislocation core is only 15%. Under applied stress, both [001](010) screw and 

edge dislocations behave similarly. Above the Peierls stress, the two partials glide together 

while keeping their stacking fault widths constant. Lattice friction opposed to the 

[001](010) screw dislocation glide is found to be 3 GPa, while that of edge dislocations is 

2 GPa. Consequently, plastic deformation within this slip system is expected to be 

governed by the screw dislocations. The computed characteristics of the straight [001] 

screw dislocations (stacking fault energy, Peierls stress, and periodicity of the Peierls 

potential), were used to estimate the kink-pair formation enthalpy ΔH4k = 8.3 eV at zero 

applied stress based on the elastic interaction model by Koizumi et al. (1993). 

 

 

 



 

 

 

CHAPTER  6 

Dislocations and Deformation Twinning  

with ½[110] Burgers Vector 

 

 

 

Results of the atomic scale modeling performed for defects governing plastic 

deformation of MgSiO3 post-perovskite along <110> direction are summarized in this 

chapter. Screw and edge ½[110] dislocations and their behavior under applied stress at 0 K 

are investigated based on the chosen pairwise potential model. These simulations are 

followed by ab initio and semi empirical modeling of ½<110>{110} deformation 

twinning, commonly observed with TEM for CaIrO3 post-perovskite low-pressure 

analogue. Atomistic modeling of twinning gives an access to the energy of twin boundary 

through generalized planar fault energy (GPFE), also called twinning energy landscape. 

Computed GPFE is further integrated into a mesoscale description of the total energy Etot 

associated with ½<110>{110} twinning in MgSiO3 post-perovskite, which allows 

determining the equilibrium twin configuration and the critical twin nucleation stress.  
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6.1 Structure of ½[110] dislocation cores 

6.1.1 Screw dislocations 

Dislocation cores with b = ½[110] are investigated in the so-called “slab” simulation 

cell geometry (Fig. 2.11b in Chapter 2) relying on the pairwise potential. Structural 

relaxation systematically leads to dislocation cores spreading in (11̅0). Computing 

disregistry S(y) of ½[110](11̅0) screw dislocation cores shows an asymmetric dissociation 

in (11̅0) plane into  
  ⁄ [110] and 

 
  ⁄ [110] partials. However the equilibrium distance 

between the partials is not well defined. Indeed, increasing the size of the simulation cell 

along [001], corresponding to the direction of the dislocation core spreading, always results 

in an increase of the stacking fault width while keeping geometric characteristics of the 

two partials invariant. Thus, a 1b × 300Å×160Å simulation cell of slab geometry (see 

Chapter 2) contains a dislocation core of ~18 Å, while 1b × 450Å × 160Å – a core of ~30 

Å. Such a behavior indicates very low γ energy associated with the stacking fault between 

the two partials. 

 

 

Fig. 6.1. Disregistry functions S(y) 

of ½[110](11̅0) screw dislocation 

cores (presented on Fig. 6.2) com-

puted for the cation sublattice in 

1b×300Å×160Å simulation cell with 

no stress applied (σ = 0) and under 

applied stress of 1.8 GPa, when the 

two dislocation partials collapse 

into a compact dislocation core. 

Figure 6.1 illustrates the disregistry function S(y) computed for the dislocation core 

(with no applied stress), denoted as σ = 0 GPa, with a stacking fault of 18.2 Å, close to 3×c  

lattice parameters (defined as the distance R between the two maximum peaks of ρ(y), 

further provided on Fig. 6.4). The estimated half-widths δ of the partials are 0.9 Å and 1.8 

Å for  
  ⁄ [110] and 

 
  ⁄ [110], respectively. In other words, the Burgers vector of the second 

partial is twice shorter and its core is twice wider than the first one.  
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The corresponding DD-plot map of the ~18 Å ½[110] screw dislocation is provided 

on Fig. 6.2a. To better understand the atomic structure of the dislocation core, the latter is 

cut perpendicular to its spreading into several (001) atomic layers of ½[001] width as it is 

shown on Fig. 6.2a. The extracted (010) atomic layers (which experience the largest 

distortions) can be classified into 3 distinct types illustrated on Fig. 6.2c.  

The first one, denoted hereafter as bn, incorporates local bending of SiO and MgO 

layers without changing the general character of polyhedral interconnections along [100] 

by the edges. The second, indicated as pv, – clearly corresponds to the stacking fault 

configuration containing perovskite-like octahedral interconnections by corners (shown 

 

Fig. 6.2. DD-plot map of ½[110] screw dislocation core with R=18.2 Å (a) with no stress 

applied and (b) under an applied stress σ = 1.8 GPa. The anion sublattice is left out. Si atoms 

are shown with blue balls; Mg atoms—with gray balls. The arrows between atoms correspond 

to the ½[110] component of the relative displacement of the neighboring atoms produced by the 

dislocation. Red arrows indicate interconnection by corners of Si-octahedra. Location of the 

1/3[110] and 1/6[110] partials are indicated with big and small stars, respectively. (c) Atomic 

structure of the three distinct (001) atomic layers, denoted as ―bn‖, ―pv‖ and ―sf‖, 

characterized by maximum distortion inside of the ½[110] screw dislocation core. Location of 

this layers in the core structure is specified in (a) and (b). 
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with double red arrows on Fig.6.2a). The third type of the distorted (010) atomic layers, 

marked as sf, reproduces the atomic structure which can be produced by applying  
  ⁄ [110] 

rigid shear in (11̅0) plane. Superposing the structural information, extracted from the 

disregistry function S(y) and distorted (010) layers, one can find, that the    ⁄ [110] partial is 

located in the bn layer; the  
  ⁄ [110] partial – within the sf layer; and the 5 pv layers 

between them correspond to the stacking fault separating the partials. 

 

 

6.1.2 Edge dislocations 

Similarly to the observed ½[110] screw dislocation core splitting, ½[110](11̅0) edge 

dislocations dissociate into  
  ⁄ [110] and 

 
  ⁄ [110] partials (Fig. 6.3) separated by a 

widespread stacking fault where Si-octahedra are interconnected by corners creating a 1-

octahedron thin lamella of perovskite phase in post-perovskite matrix (Fig. 6.4). From the 

disregistry function S(y), the half-width δ of the partials are 2.1 Å and 3.2 Å for  
  ⁄ [110] 

and  
  ⁄ [110], respectively. Even using simulation cells of size up to 450 Å along the 

dislocation core spreading direction (i.e. along [110] for edge dislocations), one cannot 

find size independent dislocation core configurations. By analogy with ½[110] screw 

dislocations, the dissociation width of edge dislocations increases with increasing size of 

designed atomic arrays. For the 6 Å × 300 Å × 160 Å  simulation cell size, the distance R 

between the two partials is found to be 57.2 Å, which is three times larger than that for 

½[110] screw dislocations observed in a simulation cell of the same dimensions.  

 

Fig. 6.3. Disregistry functions S(y) of 

½[110](11̅0) edge dislocation cores 

(illustrated on Fig.6.4) computed for the 

cation sublattice in 6Å×300Å×160Å 

simulation cell. 
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Fig. 6.4. Atomic structure of the ½[110](11̅0) edge dislocation core observed in 

6Å×300Å×160Å simulation cell (a) and its evolution with applied stress (b, c). Mg atoms are 

shown with grey balls; Si-octahedra –in blue. 
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6.2 Evolution of ½<110>{110} dislocation cores under applied stress 

The behavior of dissociated ½[110](11̅0) screw and edge dislocations under applied 

stress is studied by applying a simple shear, increasing the shear stress in the glide plane 

(see Chapter 2, section 2.3.3). Under applied stress, the two partials exhibit significantly 

different behavior. Moreover, this behavior changes while applying a shear in opposite 

directions, addressed hereafter through “+” and “-” signs of the shear strain ε.  

Dislocation glide of ½[110] screw dislocation along [001] direction aligned with y in 

the (11̅0) plane normal to z is triggered by applying εxz strain component. Monitoring 

disregistry function S(y) of the dislocation core during this process allows detecting the 

effect of shear stress on the core structure. The evolution of the ~18 Å screw dislocation 

core (Fig. 6.2a) under an applied stress is illustrated in Fig.6.5 through evolution of the 

Burgers vector density ρ(y) computed as the derivative of the disregistry function S(y).  

 

Fig. 6.5. Evolution of the Burgers vector density of ½[110](11̅0) screw 

dislocations under applied stress. On the plots with two ρ(y) peaks, the 

smaller peak corresponds to the location of 1⁄6[110] partial and the 

bigger one –to the 1⁄3[110] partial; N pv between them indicates the 

number of the pv-type layers (Fig. 6.2c) in the stacking fault. 
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Under positive shear, the leading    ⁄ [110] partial starts moving apart from the    ⁄ [110] 

partial at σ = 0.7 GPa (Fig. 6.5e). Its further propagation through the crystal structure (by 

successive steps of ½[001] lattice repeat) results in expansion of the pv layers in the 

stacking fault along [001]. During this process, motion of  
  ⁄ [110] partial has never been 

observed up to stresses of ~10 GPa. Applying shear in the opposite direction forces the 

leading partial to move towards the trailing one and gradually decreases the width of the 

the pv-stacking fault between them. When the stress reaches 1.8 GPa (corresponding to 

εxz = -0.75), the two partials collapse and form a compact ½[110] dislocation core with the 

half-width δ = 2 Å (Fig. 6.1, Fig. 6.2b, Fig. 6.5b) which remains immobile until the stress 

reaches 10.4 GPa (Fig. 6.5a). Screw dislocations with negative Burgers vector exhibit the 

opposite behavior with respect to positive and negative applied strain, i.e. the pv-stacking 

fault increases with negative strain and decreases with positive. 

To initiate motion of the ~57 Å edge dislocations (Fig. 6.4a) with ½[110] Burgers 

vector aligned with y axis in the (11̅0) plane normal to z, εyz strain component is gradually 

increased. Under shear stress, ½[110](11̅0) edge dislocations behave similarly with screw 

dislocations, however, uncommonly for edge dislocations, critical stress values required 

for the onset of dislocation motion are higher for edge dislocations than that for screw 

dislocations. Thus, the leading    ⁄ [110] partial starts moving apart from the    ⁄ [110] trailing 

partial when the stress reaches 2.8 GPa. Increase or decrease of the stacking fault by one 

pv-type octahedra occurs by displacement of the leading dislocation line partial by 4.25 Å, 

i.e. by ½[110] lattice repeat. When the two partials collapse into a compact ½[110](11̅0) 

dislocation core with the half-width δ = 4.1 Å (Fig. 6.3; Fig. 6.4c) at 6.5 GPa, pv-lamella in 

the dislocation core disappears. This core configuration remains immobile until the stress 

reaches ~19 GPa when it starts moving as entire compact core. 

The onset of motion (in both directions) of the mobile  
  ⁄ [110] partial is found to be 

insensitive to the initial stacking fault width of dissociated ½[110] screw and edge 

dislocations. However, appearance of the compact dislocation core, resulting from the 

gradual closure of the perovskite stacking fault, clearly depends on the original width of 

the dislocation core. Thus, for the ~30Å screw dissociated core (observed in 

1b × 450 Å × 160 Å  simulation cell), the compact core configuration appears when the 

stress reaches 2.5 GPa. The critical stress values needed to initiate the motion of compact 
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½<110>{110} screw and edge dislocations do not depend on the initial width of the 

stacking fault. Dislocations with positive and negative Burgers vectors exhibit inverse 

behavior when positive or negative shear is applied. 

 

 

6.3 Stacking fault structure and γ-energy 

For dissociated ½[110](11̅0) screw and edge dislocations, the stacking fault between 

 
  ⁄ [110] and 

 
  ⁄ [110] partials represents one-octahedron thin lamella of perovskite 

structure. Keeping in mind previous works by Oganov et al. (2005) and Zahn (2011), 

which indicate the close relation between the ½<110>{110} slip system in post-perovskite 

with the perovskite structure, its appearance does not seem to be surprising. However, 

taking into account the fact that the pairwise potential model employed in this study was 

initially derived for MgSiO3 perovskite phase, we additionally verify that appearance of 

the perovskite lamella is not an artifact of the chosen potential parameterization. Being 

restricted to few hundred of atoms for DFT simulations, it is impossible to directly 

reproduce full atomistic modeling of ½<110> dislocations in post-perovskite, which 

requires more than 40,000 atoms. Alternatively, to find the energy of the stacking fault, 

atomic configurations employed for ½[110](11̅0) γ-line calculations (see Chapter 3, 

Fig. 3.2d, Fig. 3.4g) are relaxed with the pairwise potential and DFT frameworks while 

allowing full relaxation to all the atoms in the system. For the atomic configuration, fully 

relaxed after applying a rigid shear of  
  ⁄ [110] in (11̅0) to the upper part of the supercell, 

both simulation techniques demonstrate spontaneous appearance of the perovskite lamella 

characterized by very low excess energy with respect to the post-perovskite perfect crystal. 

However, the energy of the stacking fault computed with the interatomic potential is found 

to be almost seven times lower than that from DFT calculations (0.10 J/m
2
 vs 0.69 J/m

2
), 

indicating that in this case the pairwise potential tends to significantly overestimate the 

dislocation core spreading. 

Although the exact dissociation width was not defined from the full atomistic 

modeling of ½[110] dislocations with the pairwise potential, one can compute the 

equilibrium dissociation width RSF based on the Stroh formalism (Stroh 1958) using DISDI 

code (Douin et al. 1986), using the procedure similar to that, employed for dissociated 
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[001](010) dislocations (see Chapter 5). Relying on the computed energies γisf of the 

 
  ⁄ [110](11̅0) intrinsic stacking fault of 0.69 J/m

2
 and 0.10 J/m

2
 for DFT and the pairwise 

potential, the corresponding stacking fault widths are 29.5 Å and 160.7 Å for screw 

dislocations, and 42.5 Å and 209.4 Å for edge dislocations,  respectively. Thus, drastically 

underestimated stacking fault energy and 20% underestimated anisotropic shear modulus μ 

provided by the pairwise potential results in five times overestimated dissociation widths 

of ½[110](11̅0) dislocations with respect to those from the DFT modeling. Taking into 

account the large dissociation widths estimated using the γ-energy computed with the 

pairwise potential, it‟s not surprising that equilibrium dissociation width was not 

determined from the performed atomistic modeling of ½[110](11̅0) dislocations, where 

dimensions of the simulation cells did not exceed 450 Å. 

 

Fig. 6.6. (a) ½[110](11̅0) γ-line computed using (b) mixed scheme of atomic relaxation for 

DFT and pairwise potential simulations in comparison with previous conventional GSF 

simulations described in Chapter 3. 

 

Conventional GSF simulations (described in Chapter 3), where all the atoms in the 

simulation cell are only allowed to relax along the direction normal to the shear plane, do 

not allow appearance of the pv-lamella. Therefore, from the performed γ-surface 

calculations, dissociation of ½<110> dislocations in {110} plane was not expected. To 

better understand the actual shape of the corresponding ½<110>{110} γ-line, additional γ-
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surface simulations where degrees of freedom along {110} shear plane are restricted only 

for Si atoms out of the stacking fault band. In order to allow additional shuffling of atoms 

close to the shear plane, necessary for appearance of the pv-lamella, one atomic Si-layer 

above and one layer below the shear plane are allowed to relax fully (Fig.6.6b). The 

resulting pairwise potential and DFT excess energy curves are provided on (Fig.6.6a) in 

comparison with the conventional GSF calculations. Indeed, allowing additional atomic 

shuffling results not only in general decrease of the γ-energy, but also in drastic change of 

its shape due to appearance of the apparent local energy minimum at  
  ⁄ [110] shear, 

indicating asymmetric dissociation of ½[110] dislocations, consistent with the dislocation 

core geometries described above. Such a scheme of mixed atomic relaxation (Fig.6.6b) 

provides 3% overestimated γ-energy of the    ⁄ [110](11̅0) stacking fault with respect to that 

computed while allowing full relaxation to all the atoms in the simulation cell. 

 

 

6.4 Modeling ½<110>{110} deformation twinning 

Dislocation glide and deformation twinning often represent complementary 

mechanisms contributing to plastic deformation of a material. For both processes, 

nucleation of a leading partial occurs first. If a trailing partial can further nucleate and 

glide, deformation occurs through dislocation motion within the glide plane. Alternatively, 

if nucleation of a leading partial is followed by further successive development of similar 

partials in parallel adjustment planes, (micro) twinning takes place. Several TEM 

experimental studies of CaIrO3 post-perovskite low pressure analogue (Miyajima et al. 

2010; Niwa et al. 2012) indicate presence of {110} twin domains in deformed CaIrO3 

samples. In this study, we also examine the efficiency of ½<110>{110} deformation 

twinning in silicate post-perovskite at 120 GPa. Atomistic modeling of ½<110>{110} 

dislocations indicates the importance of highly mobile  
  ⁄ [110] partials. Based on these 

results, we further consider  
  ⁄ [110] as a twinning dislocation. At atomic scale, 

deformation twinning is investigated through computing generalized planar fault energy 

(GPFE) landscapes (see section 2.2.2 in Chapter 2).  
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6.4.1 Generalized planar fault energy  

The twinning energy landscape, also called generalized planar fault energy (GPFE), is 

computed in this work relying both on DFT and pairwise potential simulation techniques 

as the energy cost per unit area required to form N-layer twin by shearing N consecutive 

atomic layers along [110] direction in (11̅0) plane (Fig. 6.7). This process of lattice 

shearing represents successive nucleation of N stacking faults, in such a way that each of 

them is characterized by maximum shear displacement bp  (see Chapter 2, section 2.2.2), 

corresponding to the twinning Burgers vector  
  ⁄ [110]. For each sequential shear 

displacement of the magnitude bp (resulting in energy minimum configurations on GPFE 

landscape), full atomic relaxation is allowed, including directions parallel and normal to 

the shear plane, in order to correctly reproduce the faulted structure and the associated 

energy cost. All intermediate faulted configurations are relaxed using the mixed scheme 

described in the previous section and presented on Fig. 6.6b. 

The first shear displacement by bp =  
  ⁄ [110] in (11̅0) plane creates the intrinsic 

stacking fault (isf), representing one-octahedra thick pv-lamela (Fig. 6.8), similar to that 

observed in ½[110](11̅0) dislocation cores (Fig. 6.4; Fig. 6.2). The associated energy 

 

 

Fig. 6.7. GPFE landscape of ½<110>{110} 3-layer twin with 

bp = 1/6<110> computed from the first principles and with the 

pairwise potential. 
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Table 6.1 

Essential characteristics of ½<110>{110} deformation twinning in MgSiO3 post-

perovskite derived from the performed atomic scale modeling 

 Pairwise Potential DFT (GGA) 

bp =   
  ⁄ [110], Å 1.417 1.413 

μ, GPa 247 312 

s  0.588 0.597 

γus, J/m
2
 0.82 1.23 

γisf, J/m
2
 0.10 0.69 

γut, J/m
2
 0.98 1.95 

2γtsf, J/m
2
 0.36 0.86 

γTM, J/m
2
 0.62 1.09 

δ, Å 3.2 3.2 

 

 

 

Fig. 6.8. Formation of ½<110>{110} twinning in MgSiO3 post-perovskite from the performed 

atomic-scale modeling. Each atomic configuration corresponds to the energy minimum on GPFE 

energy landscape presented on Fig. 6.7. 

 

barrier γus and the first layer intrinsic stacking fault energy γisf  reproduce the corresponding 

portion of the γ-line provided on the Fig. 6.6a. Nucleation of the second, third and 

subsequent  
  ⁄ [110] dislocations creates two-, three- and further N-layer stacking faults. 

The energy barrier opposed to appearance of each N-layer fault (N > 1) and twice the 
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energy of the twin stacking fault (i.e. accounting for the upper and lower twin boundary) 

are indicated on the GPFE landscape (Fig. 6.7) as γus and 2γtsf , respectively. Energy 

difference between these two values defines the twin migration energy γTM. For the 

investigated twinning system in MgSiO3 post-perovskite, convergence in γTM energy is 

reached after nucleation of the third twinning partial, resulting in total shear displacement 

by full ½[110] lattice repeat. Therefore, further nucleation and propagation of successive 

 
  ⁄ [110] dislocations represents twin growth on the developed three-layer twin nucleus. 

The geometry of ½<110>{110} twinning in MgSiO3 post-perovskite can be described by 

rotation of the parent lattice by 34.5° around [001] axis as it is shown on Fig.6.8.  

 

 

6.4.2 Twin nucleation model  

At the mesoscale, morphology of a twin domain is considered as a lens characterized 

by thickness h and half-length l (Fig. 6.9). Boundaries of such a lenticular twin contain 

loops or half-loops of dislocations belonging to twinning planes equidistant from each 

other by Δh. A twin lens grows longer (along the twinning direction) by dislocation glide, 

while growing thicker (in the direction normal to the twinning plane) occurs through 

successive nucleation of new dislocation loops.  

Total energy Etot of a lenticular twin nucleation (Fig. 6.9) can be defined as: 

                                                                            

where EGPFE is the twin boundary energy; Eint is the energy term resulting from interaction  

 

 

 

Fig. 6.9. Schematic illustration of 

a semi lenticular twin morphology 

characterized by thickness h, 

length l and invariant spacing d 

between each two neighboring 

twinning dislocations. Crystallo-

graphic directions correspond to 

the <110>{110} twining in PPV 

considered in this work. 
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of twinning partials; Eline is the twin dislocation line energy; and W – the work of applied 

stress. Relying on the observed ½[110](11̅0) dissociated dislocation core geometries and 

the corresponding γ-line energy, the mobile    ⁄ [110] dislocation partial is considered as the 

twinning dislocation with Burgers vector bp. Being characterized by large twinning shear 

s = bp /Δh = ~0.6 (Table 6.1; Fig. 6.7), twins in post-perovskite will be very thin compared 

to their length, by analogy with bcc metals where s is close to 0.7. As it has been shown by 

Cooper (1965, 1966), total energy of an extended twin lamella with l >>h  can be 

considered as the energy of two flat surfaces containing twinning dislocations, i.e. 

contribution of {110} interplanar spacing Δh of ~2.4 Å into the distance between twinning 

dislocations can be neglected. In this study, distance between the i
th

 and the (i + 1)
th

 

twinning dislocations belonging to one flat surface is assumed to be invariant and equal to 

d (Fig. 6.9). 

 

Twin boundary energy EGPFE 

The main parameters needed to compute the energy EGPFE of a twin boundary are 

extracted from the computed GPFE landscape (see section 6.4.1). The twin boundary 

energy EGPFE consists of the two contributions: (i) the energy γSF, required to create the 

intrinsic stacking fault, and (ii) γtwin, required to nucleate a twin. Relying on the acquired 

characteristics of the GPFE landscape (Table 6.1), these two terms can be defined as: 
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where f(y) describes the disregistry function of N twinning dislocations characterized by 

the uniform half width δ and distant from d along the twinning direction (Fig. 6.9). The 

half-width δ = 3.2 Å is taken from the geometric characteristics of    ⁄ [110] edge dislocation 

partial, derived from the fully atomistic modeling of ½[110](11̅0) edge dislocations (see 
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the previous section 6.1.2). For γSF, f(y) is considered in the range 0 ≤ f(y) ≤ bp , 

corresponding to the pv-stacking fault region; while γtwin is computed for 0 < f(y) ≤ Nbp 

with N > 1, describing the disregistry function of the twin nucleated on the existing 

stacking fault configuration. 

Relying on the defined γSF and γtwin analytic expressions (eq.6.2), the twin boundary 

energy can be computed as: 

         ∫      

 

 

      ∫        

 

 

                                              

where d is the distance between the twinning dislocations (Fig. 6.9). 

 

Interaction energy Eint between twinning partials 

As described above, a twin lamella in the post-perovskite can be considered as two flat 

surfaces composed of uniformly spaced dislocations, therefore the term Eint can be 

expressed through the summation of elastic interaction energies between parallel 

dislocations (similar to the approach for dislocation pile-ups). Thus, energy of the i
th

 

twinning dislocation interacting with the (i + 1)
th

 or (i - 1)
th

 dislocation in a twin lamella is: 

              
𝜇  

  

       
   

 

  
                                                        

where bp is the twinning Burgers vector; μ is anisotropic shear modulus, L is the size of a 

crystal; ν is the Poisson ratio; and d is the spacing between the twinning dislocations. 

In a twin lamella with l >>h ,  where dislocations are assumed to belong to two flat 

surfaces which don‟t interact with each other, the total interaction energy of all twinning 

dislocation can be defined as: 

     
𝜇  
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where N is the number of twinning dislocations; L is the size of a crystal; ν is the Poisson 

ratio; and d is the distance between the twinning dislocations. The limits of the sum 



Chapter 6                                                                                                         ½[110] Defects  

 

 

128 

exclude the first and the last dislocations in order to avoid artificial accounting for 

interactions of these dislocations with themselves.  

Dislocation line energy Eline 

The dislocation line energy Eline does not depend on the spacing d between twinning 

dislocations. For N twinning dislocations, one finds: 

       
𝜇  

  

       
                                                                  

 

Work of applied stress 

Assuming the applied stress σa to be uniform within the twin, the work of the applied 

shear stress is:  

                                                                        

 

 

6.4.3 Twin morphology and critical twinning stress  

When all the energy terms contributing into Etot (eq.6.1) are defined, the total energy 

of a twin lamella, with a constant number of twin layers N, can be represented as the 

function of the spacing d between the twinning dislocations (Fig. 6.10a). For twin 

nucleation in PPV, we have previously shown that N = 3 corresponds to the stable twin 

nucleus. Therefore, in our calculations, we rely on this value. The minimum energy 

configuration corresponds to the equilibrium distance deq, which increases with applied 

stress due to the growth of the twin lamella along the <110> twinning direction. Thus, for 

the applied stress in the range of 10-100 MPa, deq varies from 37.5 Å to 41.8 Å and from 

130.4 Å to 235.7 Å, while computing EGPFE energy term relying on GPFE from DFT and 

pairwise potential, respectively. Based on these deq values, the ratio of thickness to length 

 

  
 

  

   
 in a twin lamella is close to 6∙10

-2
 and 1.5∙10

-2
 for DFT and pairwise potential, 

respectively. Overall, similarly to the estimates done for the extension of ½[110](11̅0) 

dislocation cores (see section 6.3), pairwise potential predicts <110>{110} twin domains to 

be ~5 times more extended (along the twinning direction) with respect to the twin 

morphology derived using data from DFT simulations. 
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Fig. 6.10. (a) Total energy Etot as a function of d computed at σa=20 MPa. (b) Critical 

twinning stress σcrit. Both plots are produced relying on the data from DFT simulations. 

 

Based on the computed energies, one can calculate the critical twin nucleation stress 

σcrit while minimizing the total energy Etot with respect to distance d: 
     

  
  . Thus, for 

the ½<110>{110}deformation twinning, we find σcrit of ~889 MPa (Fig.6.10b) and 

~212 MPa, relying on the data from DFT and the pairwise potential, respectively. These 

relatively low σcrit values indicate that deformation twinning represents an important 

mechanism of plastic deformation within ½<110>{110} system in MgSiO3 post-

perovskite. 

In the literature, the twinning stress is also commonly referred as the so-called ideal 

twinning stress, which can be simply calculated as the maximum slope of the GPFE curve 

(Fig. 6.7) with respect to the shear displacement, i.e. as         
   

  
 (Ogata et al. 2005). 

For the considered ½<110>{110} system in MgSiO3 PPV, the ideal stress σideal is 13.8 GPa 

and 24.2 GPa, relying on the parameters acquired from the semi-empirical and ab initio 

GPFE curves (Fig. 6.7, Table 6.1). These values are almost 30 times larger than the 

corresponding critical twin nucleation stresses σcrit. computed from the mesoscale model 

described above. Similarly, very high unrealistic values of σideal, with at least one order of 

magnitude of difference with respect to σcrit. (calculated with the twin nucleation model 

similar to that, used in this study) were reported for metal alloys, e.g. in L10 and 14M 

Ni2FeGa (Wang and Sehitoglu 2013), Fe-based bcc alloys (Ojha et al. 2014) etc. 

Furthermore, for this metal alloys σcrit was shown to be very close (few MPa of difference) 
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to the corresponding twinning stresses measured experimentally (Sutou et al. 2004; 

Timofeeva et al. 2012; Ojha et al. 2014). For MgSiO3 post-perovskite, stable only at very 

high P-T conditions, there is no available experimental data on critical twinning stresses 

which could serve as the reference values to compare with. The only evidence of twinning 

in the post-perovskite structure was provided by TEM studies of deformed CaIrO3 low 

pressure analogue material (Miyajima et al. 2010; Niwa et al. 2012), however the critical 

twinning stress for this phase was not measured. 

 

6.5 Summary 

In this chapter, we performed atomic-scale modeling of ½[110] defects in MgSiO3 post-

perovskite. Pairwise potential modeling of ½[110] screw and edge dislocations reveals 

their asymmetric dissociation in (11̅0) plane into    ⁄ [110] and    ⁄ [110] partials separated by 

a widespread stacking fault forming a thin perovskite lamella. The employed pairwise 

potential parameterization (Oganov et al. 2000) was originally fitted for MgSiO3 

perovskite (bridgmanite) phase, therefore, it significantly underestimates (seven times) the 

energy of such a stacking fault configuration and, consequently, overestimates (about five 

times) the spreading of ½[110](11̅0) dislocation cores. Although the exact equilibrium 

width of the cores was not found, DFT calculations confirm such a perovskite lamella to be 

a stable stacking fault configuration for the ½<110>{110} system. Both for the screw and 

edge dislocation cores, the short  
  ⁄ [110] partial is found to be mobile, while the longer 

 
  ⁄ [110] partial – immobile. The critical stress, needed to initiate the motion of  

  ⁄ [110] 

partial is 0.7 GPa and 2.8 GPa for screw and edge dislocations, respectively. Thus, in 

contrast to previously considered [100] and [001] Burgers vectors, edge dislocations will 

account for most of the plastic strain produced during plastic deformation along ½<110>. 

Following observations from the TEM studies of CaIrO3 PPV low pressure analogue 

(Miyajima et al. 2010; Niwa et al. 2012), we also examined the efficiency of 

½<110>{110} deformation twinning in high pressure MgSiO3 PPV, considering mobile 

 
  ⁄ [110] partial as a twinning dislocation. At atomic scale, deformation twinning was 

investigated via generalized planar fault energy (GPFE) landscapes, which were further 

integrated into mesoscale twin formation model, providing ½<110>{110} critical twin 

formation stress of ~0.9 GPa, relying on the data from DFT simulations. 



 

 

 

CHAPTER  7 

Discussion and Implications 

 

 

 

Knowledge about intrinsic microscopic deformation mechanisms is essential for 

understanding macroscopic rheological properties of a material. This chapter outlines 

the main results inferred from the performed atomic-scale modeling of defects in 

MgSiO3 post-perovskite and describes some aspects of the macroscopic behavior 

which can be directly deduced from them. Comparing dislocation mobility in 

different slip systems at 0 K allows describing anisotropic lattice friction of the 

layered post-perovskite structure. In order to further describe thermally activated 

dislocation glide at the D‘‘ conditions, evolution of the critical resolved shear stress 

(CRSS) with temperature is computed based on the kink-pair formation enthalpies 

acquired from the atomic-scale modeling. Relying on the computed rheological 

characteristics of the post-perovskite phase, we also discuss some important 

geophysical implications, highlighting the weakness of D‘‘ layer and possibility of 

seismic waves attenuation and energy dissipation in this region. 
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7.1 Structures of dislocation cores in MgSiO3 post-perovskite 

In this study we investigate the structures of [100], [001] and ½<110> dislocation 

cores based on the full atomistic modeling approach, i.e. while directly introducing the 

corresponding displacement field into atomic arrays. Compared to the Peierls-Nabarro 

(PN) model (Peierls 1940; Nabarro 1947), this method allows avoiding the uncertainties 

which possibly may be inherited from the γ-surface calculations and/or from the choice of 

the Peierls potential periodicity a‟. Also, direct atomistic modeling of dislocation cores 

requires using large atomic arrays which are not always affordable for high accuracy ab 

initio calculations, but can be rather investigated relying on empirical pairwise potentials. 

In this work, only [100] screw dislocations, characterized with the shortest Burgers vector 

of 2.5 Å, are modeled both from the first principles and with the semi-empirical approach. 

Full atomistic modeling of all edge dislocations and of the ½<110> and [001] screw 

dislocations in the post-perovskite can only be performed with the pairwise potential 

because these dislocations are characterized by widespread dislocation cores, which 

require using simulation cells containing in excess of 40,000 atoms, i.e. far beyond 

computational capabilities of the first-principle simulations. 

 

[100] dislocations 

Computed at atomic scale both with DFT and pairwise potential, screw dislocations 

with [100] Burgers vector exhibit compact planar cores centered between two neighboring 

Mg atoms and spread in {011}. In the Mg-layer, the stable core configurations are distant 

by a‟ =½[001]. This distance defines the periodicity of the Peierls potential in (010) plane. 

The dislocation core spreading, characterized by a half-width δ of ~1.9 Å, is limited by the 

Si-layers (Fig.4.1). The geometrical characteristics of the core produced by the two 

simulation techniques are in good agreement (less than 5% of difference in the dislocation 

core spreading). Thus, the chosen pairwise potential parameterization chosen appears to 

reproduce well the core structures, i.e. configurations far from the equilibrium where the 

potential was originally fitted (Oganov et al. 2000). This further confirms the 

transferability of the pairwise potential for modeling defects in post-perovskite which was 

inferred from the γ-surface calculations, provided in Chapter 3. 
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The extension of the [100] screw dislocation cores obtained in our study is in 

reasonable agreement with previous results based on the PN model (Carrez et al. 2007a), 

which rely on γ-lines from the first-principles calculations performed with the same GGA 

approximation and pseudopotentials as employed in this study. The classical PN model 

showed that the compact [100] screw dislocation should have a half-width of 1 Å in {011}. 

Discrepancies in core size between the present results and those of the PN model can be 

largely attributed to the GSF calculations (Fig. 3.4c). GSF computed by Carrez et al. 

(2007a) involves atomic layers above the actual spreading layer of the core, delimited by 

neighbouring Mg rows. Consequently, the GSF energies used in the PN model were 

overestimated, leading to a narrower core. Despite a core spreading in {011}, the easiest 

glide plane of [100] screw dislocations is (010). This is the result of a glide alternating 

between (011) and (01̅1), defining a global macroscopic glide plane (010). This non-

standard behaviour could be evidenced only by full atomistic calculations and could not be 

deduced from the PN model. The observed path of [100] screw dislocations glide 

represents an interesting case which challenges the hypothesis and relevance of the PN 

model in this case. 

In this work, [100] edge dislocations lying on (010), (011) and (001) planes are only 

computed with the pairwise potential because of the large simulation cells needed. All 

those dislocations are characterized by compact symmetric cores (Fig. 4.5) with a half 

width δ close to 2b ~5 Å. For these dislocation cores, the PN model (Carrez et al. 2007a) 

leads to δ values below 2 Å, which mainly results from the higher γ-energies (Fig. 3.4a-c). 

 

[001] dislocations 

Atomistic modeling of [001] screw and edge dislocations (performed with the pairwise 

potential) indicates their dissociation in (010) into two symmetric partials separated by a 

stacking fault (Fig. 5.1, 5.4). Both dislocations exhibit mixed characters and are 

characterized by the presence of <100> components (Fig. 5.9). In case of edge dislocations, 

[001] → ½[101] + ½[1̅01] dissociation is observed, while for the screw dislocations, this 

dissociation scheme involves high energy configurations and the <100> component 

reaches only 15% in stable dislocation cores. 

Dissociation of [001] screw and edge dislocations in the (010) plane was previously 

investigated from the first principles based on the Peierls-Nabarro (PN) model (Carrez et 
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al. 2007a,b). However, these early studies were focused on pure screw and pure edge 

dislocation cores without taking into account the presence of <100> component, i.e. mixed 

[001] dislocation cores have been never modeled before. As it can be expected, the 

predicted dissociation width of 16.2 Å for pure [001](010) edge dislocations (Carrez et al. 

2007a,b) is significantly lower, than the value of 41.6 Å found in this work for the mixed 

dislocation core. Nevertheless, for the screw dislocations characterized by only 15% 

<100>, both the separation distance R = 10.8 Å and the half-width of each partial δ = 1.0 Å 

compare well with the values R = 9.9 Å and δ = 1.1 Å predicted by the PN model for the 

pure [001] screw dislocation core (Carrez et al. 2007a,b). 

 

½<110> dislocations 

Full atomistic modeling of ½[110] screw and edge dislocations performed with the 

pairwise potential reveals their spontaneous dissociation in (11̅0) plane into  
  ⁄ [110] and 

 
  ⁄ [110] partials separated by a widespread stacking fault where Si-octahedra are 

interconnected with neighboring Si-polyhedra by corners creating a thin perovskite lamella 

(Fig. 6.2 and 6.4 in Chapter 6). Such configuration of the stacking fault related to the 

½<110>{110} system is favored due to the structural relation between perovskite and post-

perovskite phases where [001] direction is kept in common for both phases, and where 

[110]
PPV

 and [11̅0]
PPV

 directions correspond to the [010]
PV

 and [100]
PV

 vectors, 

respectively (see section 1.2 in Chapter 1). The pairwise potential employed in this study 

was originally adjusted for MgSiO3 perovskite (bridgmanite) phase and it is shown to 

significantly underestimate (7 times) the energy of such a stacking fault configuration. This 

results in notably overestimated spreading of the dislocation cores. However, DFT 

calculations confirm that perovskite lamella represents the stable stacking fault 

configuration for the ½<110>{110} slip system (for more details see section 6.3 in Chapter 

6). By analogy, full atomistic modeling performed for the [100](010) and [010](100) 

dislocations in MgSiO3 bridgmanite (orthorhombic perovskite phase) indicate the presence 

of PPV-type interconnections of Si-polyhedra (i.e. nucleus of 2D layers) in the edge 

dislocation cores. For cubic and rhombohedral perovskites, e.g. in SrTiO3 (Hirel et al. 

2012; 2016) and KNbO3 phases (Hirel et al. 2015), similar PPV-like stacking fault 

configurations were reported for <110>{110} dislocation cores, corresponding to the 
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[100](010) and [010](100) systems in in the lower symmetry orthorhombic reference. 

Thus, the atomic scale modeling performed in this work emphasizes the role of 

½<110>{110} dislocations in MgSiO3 PPV for the PPV → PV phase transition. The role 

of defects for the transformation between the two phases was previously considered only in 

the simple context of successive accumulation of <110>{110} stacking faults in post-

perovskite (Oganov et al. 2005) and [101](010) stacking faults in orthorhombic perovskite 

(Zahn 2011).  

Similar behavior is also known for the Al2SiO5 polymorphs. TEM studies of these 

phases report that the stacking fault between the two ½[100](010) partials in sillimanite 

represents a thin lamella of kyanite phase (Doukhan and Christie, 1982; Doukhan et al. 

1985). Another example of dislocation induced structural transformations can be found in 

numerous SiC phases where activation of partial dislocations in basal plane prompts 

polymorphic transformations, such as 3C → 6H and 4H → 3H (Pirouz and Yang 1993; 

Duval-Riviere and Vicen 1994). 

In this work, we also highlight the importance of ½<110> defects in post-perovskite 

for plastic deformation along the [010] direction. In this phase, dislocations with the [010] 

Burgers vector, corresponding to the largest unit cell parameter (8.12 Å), will dissociate 

into two ½<110> dislocations, in agreement with Franck‟s criterion (b
2
> b1

2
+ b2

2
) and 

with the symmetry of the base-centered C-lattice. Due to the very short [100] lattice repeat, 

full ½<110> burgers vector length (4.253 Å) is only 4.5% larger than ½[010] lattice repeat 

(4.062 Å).  

7.2 Anisotropic lattice friction 

Lattice friction of a material describes its mechanical resistance opposed to dislocation 

motion. This intrinsic characteristic is commonly assessed in absence of thermal activation 

through the Peierls potential VP (the energy barrier opposed to the glide of a straight 

infinite dislocation line at 0 K) or through the Peierls stress σp (the critical stress required 

to move a straight dislocation at 0 K). Computing these values for different slip systems 

provides anisotropic lattice friction of a material, a key parameter for understanding its 

anisotropic plasticity. In this work, the Peierls potential was directly computed only for the 

[100] screw dislocations, and Peierls stress – for all the screw and edge dislocations,  
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Table 7.1 

Peierls stress values computed for the [100], [001] and ½<110> screw and edge 

dislocations in MgSiO3 post-perovskite  

Slip system 

Peierls stress σp, GPa 

Screw Edge 

[100](010) 1.0 // 2.3*  <0.1 

[100](011) >10.4 ~0.12 

[100](001) 17.5 ~0.1 

[001](010) 3.0 2.0 

½<110>{110} 0.7 2.8 

* DFT calculations  

 

therefore, we describe anisotropic lattice friction with the latter one. All the Peierls stress 

values calculated with the pairwise potential (and DFT for [100] screw dislocations only) 

are summarized in Table 7.1. 

Lattice friction opposed to the glide of [100] dislocations, i.e. dislocations with the 

shortest Burgers vector, is found to be highly anisotropic. Mobility of [100] edge 

dislocations is generally much higher than that of screw dislocations (more than an order of 

magnitude of difference in the Peierls stress), regardless of the glide plane. Therefore, 

screw dislocations will account for most of the plastic strain produced during deformation. 

At the same time, glide of [100] screw dislocations through MgSiO3 post-perovskite 

structure is characterized by significantly different Peierls stress while moving in (010) 

within MgO layer or across the rigid SiO2 layers. According to the results of the performed 

atomic scale modeling, lattice friction opposed to the glide of [100] screw dislocations in 

(010) is one order of magnitude lower than that in (001). This behavior clearly results from 

the anisotropic crystal chemistry due to the difference in the Mg-O and Si-O bond strength.  

Full atomistic modeling of [001] dislocations indicates their spontaneous dissociation 

in (010), therefore we consider them gliding in (010) only. In contrast to the [100] 

dislocations, the contrast in Peierls stress between screw and edge [001] dislocations is not 

so high. Lattice friction opposed to the glide of [001] screw dislocations is 3 GPa, while  
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Fig.7.1. Structural relation 

between MgSiO3 perovskite 

(bridgmanite) and post-

perovskite at 120 GPa. Si 

atoms are shown with blue 

balls, Mg –with gray, and O 

– with red. 

 

that of edge dislocations is 33% lower (Table 7.1). Therefore, plastic deformation within 

[001](010) slip system will be governed by the screw dislocations.  

Structural relaxation of screw and edge ½[110] dislocations reveals their spontaneous 

dissociation in (11̅0) into  
  ⁄ [110] and  

  ⁄ [110] partials where the first one is found to be 

mobile and the second one – immobile. The Peierls stress values provided in Table 7.1 

correspond to the critical stress needed to initiate the motion of the mobile    ⁄ [110] partial. 

In contrast to the [100] and [001] dislocations, for ½<110>{110} system, lattice friction 

opposed to the glide of screw dislocations is lower than that for edge dislocations. The 

reason of such unusual behavior can be explained while analyzing the stacking fault 

structure between the partials, where Si-octahedra create a thin perovskite lamella. Thus, 

motion of the leading partial through the post-perovskite crystal structure involves 

propagation of the perovskite lamella along [001] direction in case of screw dislocations 

and along <110> direction in case of edge dislocations. The PPV structure inherits the 

[001] crystallographic direction of the PV phase (Fig.1.5 in Chapter 1). Consequently, the 

structural difference between PV and PPV is minimal in this direction (Fig.7.1). Therefore, 

propagation of the PV-lamella in the PPV matrix appears to be easier along [001], i.e. due 

to the motion of    ⁄ [110] (11̅0) screw dislocation partial in our case.  

For the ½<110>{110} slip system we also performed atomic-scale modeling of 

twinning. The critical twin nucleation stress is found to be ~900 MPa based on DFT 

calculations and ~200 MPa based on the pairwise potential modeling. These relatively low 
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stress values indicate that deformation twinning related to the ½<110>{110} system 

represents an important deformation mechanism in MgSiO3 post-perovskite. Taking into 

account the high strain rates involved in deformation experiments, one can expect 

appearance of <110>{110} twin domains affecting the deformation textures of aggregates. 

Indeed such domains were observed with TEM after DAC deformation experiments on 

CaIrO3 (see Table 1.1 in Chapter 1, experiments by Miyajima et al. (2010) and Niwa et al. 

(2012)). 

Easy glide of [100] and [001] dislocations in (010) is also in agreement with the TEM 

observations of dislocations in deformed CaIrO3 and CaPtO3 post-perovskite structural 

analogues (see Table 1.1 in Chapter 1). In other words, theoretical and experimental 

evidence of dislocations in post-perovskites consistently indicates, that plastic deformation 

along (010) layers appears to be much easier than in other directions. Thus, the structural 

layering can be inferred to be responsible for the anisotropic plasticity of the post-

perovskite. This behavior is significantly different from that in rather isotropic bridgmanite 

where all Si-octahedra are interconnected along the three directions creating a rigid 3D 

network. In this context, one can expect that general character of plasticity of the post-PPV 

phases (see section 1.3 in Chapter 1), where Si-polyhedra also form a rigid network, to be 

similar to that in bridgmanite, i.e. close to isotropic. 

 

Lattice friction of high-pressure silicates in the lower mantle 

To highlight the importance of the low lattice friction opposed to the dislocation glide 

in (010) layers in MgSiO3 post-perovskite, it‟s worth comparing our results with the lattice 

friction in MgSiO3 bridgmanite, the main component of the overlying mantle. Previous 

atomic-scale study of bridgmanite by Hirel et al. (2014), performed with the same pairwise 

potential parameterization, indicates that pressure has a strong effect on the lattice friction 

and the latter has been shown to increase significantly over the pressure range of the lower 

mantle. Figure 7.2 compares the Peierls stress of the easiest screw dislocations in MgSiO3 

bridgmanite with that in post-perovskite of the same composition. The change in crystal 

structure results in a drop of lattice friction. From completely different perspective, our 

calculations support the suggestion by Ammann et al. (2010), based on the study of 

anisotropic diffusion in MgSiO3, that the transition of bridgmanite to post-perovskite will 

be responsible for the weak D‘‘ layer in regions dominated by the post-perovskite phase.  
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Fig. 7.2. Lattice friction opposed to the easiest dislocation glide in MgSiO3 perovskite 

(PV), also called bridgmanite, and in post-perovskite (PPV) in the lower mantle 

pressure range. The Peierls stress values for PV phase are taken from Hirel et al. 

(2014). 

 

 

7.3 Thermally activated dislocation glide 

The anisotropic lattice friction described in the previous section corresponds to the 

intrinsic resistance of the crystal lattice at 0 K only. The Peierls stress σp, characterizing 

lattice friction, is commonly viewed as the critical resolved shear stress (CRSS) in absence 

of thermal activation. To determine how CRSS evolve in the conditions of the D‘‘ layer, it 

is necessary to model thermal activation of dislocation glide. At finite temperature, the 

actual motion of dislocations occurs through nucleation and propagation of kink-pairs. The 

nucleation process corresponds to a small segment of dislocation line which bulges over 

the Peierls potential, then the further migration of the kinks is responsible for the glide of 

the whole dislocation line to the next stable position. The key parameter describing the 

efficiency of the dislocation glide at finite temperature is the critical kink-pair formation 

enthalpy ΔH2k. In this study, evolution of the latter with applied stress was computed based 

on the LT model for the [100](010) screw dislocations (see section 4.5 in Chapter 4), 

relying both on the pairwise potential modeling and on DFT calculations. For the 
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[001](010) screw dislocations, the ΔH2k(σ=0) value is estimated (see section 5.6 in 

Chapter 5) based on the observed dislocation core characteristics inferred from the 

pairwise potential modeling. 

For the kink-pair mechanism, the shear strain rate  ́ can be defined as the function of 

dislocation glide velocity   and density of mobile dislocations ρ through Orowan‟s 

equation  ́     . Combining this equation with the assumption of a dislocation velocity 

controlled by kink-pair nucleation, the strain rate  ́ can be described with the following 

expression: 

 ́  
        

   
   (

        

  
)                                                       

where ρ is the mobile dislocation density; b is the Burgers vector length; a' stands for 

periodicity of the Peierls potential; w corresponds to the kink-pair width;    √ ⁄  

describes the average length of dislocation lines; νD is the Debye frequency; and k is the 

Boltzmann constant. Thus, according to the Orowan‟s equation, a dislocation segment of 

length L glides with a velocity   at a certain strain rate  ́. Efficiency of this motion at finite 

temperature depends on the kink-pair formation enthalpy ΔH2k(σ). Evolution of the ΔH2k 

with applied stress can be further parameterized over the whole range of stress (from 0 to 

σp) using the continuous formulation by Kocks et al. (1975): 

           (  (
 

  
)

 

)

 

                                                                  

where σp is the Peierls stress; p and q are adjustable parameters; and 2Hk(σ = 0) is the total 

activation enthalpy, corresponding to twice the energy of an isolated kink at no applied 

stress. Relying on the equations (7.1) and (7.2), one can express the CRSS as the function 

of temperature:  

    (   ( 
 

   
)

 
 ⁄

)

 
 ⁄

   (  (
 

  
)

 
 ⁄

)

 
 ⁄

                                          

where     
  ́  

√       
 is a function of a strain rate  ́, dislocation density ρ, and the kink 

geometry: width w and height a‘; Ta is the so-called athermal temperature at which lattice 

friction of a material vanishes.  
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Fig. 7.3. Evolution of CRSS with 

temperature for [100](010) in 

PPV at 120 GPa, compared with 

that for ½[110](100) and 

½<110>{110} in MgO at 100 

GPa (Cordier et al. 2012). Strain 

rate  ́ and dislocation density ρ 

correspond to the lower mantle 

conditions. 

 

 

 

 

 

 

 

Fig. 7.4. Evolution of CRSS with 

temperature for [100](010) in 

PPV at 120 GPa at strain rate  ́ 

and dislocation density ρ 

corresponding to experimental 

conditions. 

 

For [100](010) dislocation cores, relying on the computed 2Hk = 2.69 eV, p = 0.73 and 

q = 1.31 from LT model based on DFT calculations, one can find that, at the lower mantle 

conditions characterized by strain rates  ́ in the order of 10
-16

 s
-1 

and dislocation density ρ = 

10
8
 m

-2
, lattice friction vanishes at the critical temperature Ta = 600 K (Fig. 7.3). With the 

lower 2Hk = 1.71 eV, p = 0.82 and q = 1.50 values from the pairwise potential modelling, 

Ta  is close to 400 K (Fig. 7.3). These temperatures are far below the temperature of 3700 – 

4400 K (Boehler 2000; Alfè et al. 2002) expected in the lowermost mantle, therefore [100] 

dislocation glide at D‘‘ conditions can be expected to occur in the athermal regime. 

Considering experimental conditions, i.e. strain rates  ́ = ~10
-5

 s
-1 

and dislocation density 

ρ = 10
12

 m
-2

 (Fig. 7.4), we find that for the [100](010) system in MgSiO3 post-perovskite 
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lattice friction vanishes when the temperature is raised above 1100 K (as an upper bound 

defined based on data from DFT calculations). 

In case of dissociated [001](010) screw dislocation cores with much more complex 

geometry (Fig. 5.1, Chapter 5), we did not determine the full curve describing the evolution 

of the kink-pair formation enthalpy with applied stress, but only estimated the maximum 

2H2k = 8.3 eV values describing the energy of the two isolated kink-pairs nucleated 

simultaneously on the two partials without changing the stacking fault width (as it is shown 

on Fig. 2.15a, Chapter 2), relying on the elastic interaction model by Koizumi et al. (1993). 

In conjunction with the equation (7.3), we assume that the kink-pair enthalpy 2H2k scales 

linearly with kT (Kubin 2013). Then, once 2H2k(σ = 0) is defined, the athermal temperature 

Ta relevant for glide of dissociated [001](010) dislocations can be estimated as    
    

  
.  

Employing the dislocation density ρ = 10
8
 m

-2 
and the strain rate  ́ = 10

-16
, typical for lower 

mantle conditions, provides the athermal temperature Ta = 1950 K. These results suggest 

that [001](010) dislocation glide at the D‘‘ conditions in MgSiO3 post-perovskite would 

rather occur in the athermal regime. 

 

 

7.4 Implications 

Textures and CPO development. The most testable implication of our results is, of 

course, that strong crystal preferred orientation should result from preferential dislocation 

glide in (010) upon flow in the D‖ layer. This is an important parameter because this layer 

has long been recognized as highly anisotropic. Although no consensus has yet been 

reached (see, for instance, Cottaar et al. (2014)), our finding that PPV exhibits dominant 

easy glide in (010) is consistent with the recent seismological studies by Nowacki et al. 

(2013) and Ford and Long (2015). However, our results cannot account for the (001) 

textures systematically observed after DAC experiments on silicate and germanate post-

perovskites (see Table 1.1 in Chapter 1 for the overview). This CPO could rather originate 

from inherited transformation textures, which could be further enhanced by dislocation 

glide in (001) on pre-textured samples under very high stresses produced in DAC. Other 

processes, like grain boundary sliding, also may affect the resulting CPO. This discrepancy 

still remains to be clarified. 
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Low viscosity. Our results demonstrate that the presence of weak {010} Mg-layers in 

MgSiO3 post-perovskite leads to dislocation structures that can easily glide, almost without 

affecting rigid Si-layers, especially in case of the shortest Burgers vector of 2.5 Å. The 

relative ease of slip between silicate PPV and periclase (Fig.7.3) demonstrates that, due to 

the structural layering, the high pressure MgSiO3 phase can be as ductile as MgO. Under 

lower mantle conditions, these two phases are expected to deform in the athermal regime, 

i.e. lattice friction is overcome at a critical temperature Ta below the temperature range of 

3700-4400 K (Boehler 2000; Alfè et al. 2002), expected in the D‖ layer. In absence of 

intrinsic resistance of the lattice, dislocation creep is controlled by interaction of 

dislocations and by its rate of recovery which is ultimately controlled by diffusion. 

Diffusion is MgSiO3 post-perovskite is known to be highly anisotropic (Amman et al. 

2010). The fastest diffusion in this phase occurs along the shortest [100] direction (Fig.7.5) 

and the corresponding diffusion coefficient is very close to that in MgO. Again here, one 

can see the proximity between MgO periclase and the MgO sublattice in MgSiO3 post-

perovskite. Taking into account that both MgO and PPV deform in the athermal regime 

and have similar characteristics of the (fast) diffusion, one can expect that these phases 

exhibit comparable creep properties and hence viscosities. Contribution of more difficult 

deformation mechanisms normal to structural layering (either involving dislocations or 

slowest diffusion) may however affect (which is difficult to evaluate quantitatively at this 

point) the strength of polycrystalline PPV aggregates. The latter may be slightly stronger 

than coexisting periclase. The respective point defect chemistry of both phases may also  

 

 

 

 

Fig. 7.5. Vacancy diffusion 

coefficients along a geotherm in 

the lower mantle inferred from 

the first-principles calculations 

by Ammann et al. (2010).  
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affect diffusion in one or the other direction. At this stage we can only highlight the fact of 

surprising resemblance between the two phases. 

The implications of a low viscosity layer have already been considered and discussed. 

The strongest implication is the enhancement of heat transfer from the core across the 

CMB, as earlier predicted by Buffett (2007) and more recently investigated numerically 

(Nakagawa and Tackley (2011), Deschamps and Tackley (2014)).  

 

Attenuation of seismic waves. Besides, viscosity, low lattice friction in silicate post-

perovskite may also have important implications regarding seismic wave attenuation. A 

seismic (body) wave corresponds to strains in the range of 10
-8

-10
-6

, with periods in the 

range of 1-10 s. These values correspond to stresses of a fraction of a MPa at most, applied 

at a strain rate of 10
-6

 s
-1

 or lower. Under these conditions, the athermal temperature Ta will 

be lower than 1400 K (the value corresponding to a strain-rate of 10
-5

 s
-1

(to assess the 

response of a seismic wave), constraining the dislocation density at 10
8
 m

-2
 on Fig.7.4). 

This result shows that PPV will be in the athermal regime under seismic loading conditions 

at temperatures of the D‖ layer, with dislocations moving freely without lattice friction. 

This situation has not been considered up to now for seismic attenuation because most 

discussions have been driven by the example of olivine (Karato and Spetzler 1990; Karato 

1998). Olivine exhibits high lattice friction; thus, dislocations are prescribed to stay in their 

Peierls valleys, and dislocation damping can only result in a limited contribution from kink 

migration (Karato and Spetzler 1990; Karato 1998). For this reason, the most important 

source of attenuation in olivine has been linked to diffusionally assisted grain boundary 

sliding (Jackson et al. 2010).  

 

 

 

Fig. 7.6. Schematic illustration of the 

relaxation strength due to bowing of 

dislocations in absence of lattice 

friction. 
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Under an applied stress σa and without lattice friction, a dislocation segment of length l 

will bow out with a curvature   
 

 

  

  
. This bowing gives rise to a reduction of the 

effective shear modulus (Fig. 7.6), called the modulus defect or relaxation strength: 

  

 
    

 

 
   , where   is the dislocation density (Nowick and Berry 1972). Assuming 

that   scales with 
 

√ 
, one can conclude that    could be as high as 15% (as an upper 

bound). Consequently, a shear wave travelling through the post-perovskite containing 

dislocations could encounter a maximum velocity reduction 
   

  
 of approximately 7% 

compared to the ideal structure. In this regime, dislocation damping can be described using 

the vibrating string model (Nowick and Berry 1972) which assumes that under an applied 

alternating stress, a dislocation characterized by a line tension can execute forced 

vibrations like a vibrating string. An alternating stress, such as the one associated with a 

seismic wave, will result in damping and energy dissipation. This model has two important 

consequences. At sufficiently high frequency, there exists a peak in tan  versus   with a 

resonance at    such that   
  

   

   
 . The frequency    is a function of  , i.e., the line 

tension of the dislocation, as previously computed, and of   , the effective mass per unit 

length of the dislocation line. This effective mass    can be computed by summing the 

squared displacements dqi of all atoms i in a simulation cell in which a dislocation has 

moved from one Peierls valley to the next one, i.e., by dQ=a‘, using the following 

expression (Vegge et al. 2001): 

   ∑  (
   

  
)
 

 

                                                              

In the previous expression, Mi corresponds to the mass of atom i; the effective mass of 

the dislocation thus accounts for the kinetic energy of surrounding atoms as if they were to 

respond adiabatically to dislocation motion. Computed from different cell sizes to account 

for finite size effects, we find (in units of atomic mass per unit length) ml ~ 9.7 u/Å, which 

results in    ~3.3∙10
4
 s

-1
. This frequency is higher than that of seismic waves, but it could 

allow experimental verification in the laboratory. At lower frequencies corresponding to 

seismic waves, the internal friction is proportional to     and to the frequency  . 
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Our proposition of post-perovskite being highly attenuating is consistent with the 

earlier report of seismic attenuation in the D‖ by Anderson and Hart (1978) and more 

recently by Lawrence and Wysession (2006). However, attenuation in the heterogeneous 

D‖ layer is still not well constrained and the resulting shear attenuation profiles, expressed 

in terms of quality factor Qμ, differ by more than 30% (see reviews by Romanowicz and 

Durek 2000; Romanowicz and Mitchell 2007). Moreover, some seismological studies 

report a continuous decrease in attenuation from the top of the lower mantle to its bottom 

(Hwang and Ritsema 2011). This discrepancy may come from the difference in methods 

between these studies (Durand et al. 2013) and/or from the fact that their measurements 

sample different regions of the deep mantle. In this context, possible attenuation of seismic 

waves in the lowermost mantle deserves more attention in the future as it may serve a 

feasible marker of the post-perovskite phase in this region. 
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CONCLUSIONS 

The key objective of this work was to investigate the structure of dislocations, their 

mobility and their contribution to anisotropic plasticity of the high pressure MgSiO3 post-

perovskite, relying on the full atomistic modeling approach. We focused our efforts on 

[100], [001] and ½<110> defects. For this mineral phase, only [100] screw dislocations 

and ½<110>{110} deformation twinning could be explored relying on the first-principles 

simulation techniques. Structure and mobility of [001] and ½<110> screw dislocations and 

all edge dislocations can be only investigated using an appropriate semi-empirical 

potential, allowing to employ large atomic arrays. The main results of this study can be 

summarized as follows. 

 

 Transferability of the pairwise potential parameterization derived by Oganov et al. 

(2000) for MgSiO3 perovskite (bridgmanite) was examined to reproduce the structure, 

elastic properties and GSF excess energies of the post-perovskite phase. The ground state 

properties computed with the empirical potential were shown to compare well with 

available theoretical and experimental data. For the γ-surface calculations, which involve 

atomic configurations far from the equilibrium, the chosen pairwise potential 

parameterization was shown to reproduce well previous ab initio calculations by Carrez et 

al. (2007) and Metsue and Tsuchiya (2013), apart from the very unfavorable, i.e. high 

energy, (100) shear plane, where the potential model leads to γ-lines with systematically 

higher energies (up to ~30%) and dissimilar shape compared to that from DFT 

calculations. Based on the good qualitative description of the most important (010), (001), 

(011) and (110) planes, where the potential accurately reproduces the shape of DFT γ-lines 

and provides 20-30% lower energy barriers, the empirical parameterization proposed by 

Oganov et al. (2000) was considered as valid for full atomistic modeling of defects 

MgSiO3 post-perovskite. 

 

 Full atomistic modeling directly provides essential structural information about 

screw and edge dislocation cores in MgSiO3 post-perovskite at 120 GPa confining 

pressure. Among the considered [100], [001] and ½<110> dislocations, only that with the 
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shortest Burgers vector [100] are characterized by compact dislocation cores, while [001] 

and ½<110> dislocations exhibit complex dissociated core geometries. 

Our calculations emphasize the importance of [100] screw dislocations for plastic 

deformation of MgSiO3 post-perovskite. Stable [100] screw dislocations exhibit compact 

planar cores centered between two neighboring Mg atoms and spread in {011}. The 

spreading is characterized by a half-width close to δ of ~1.9 Å and limited by Si-layers. 

The geometrical characteristics of the core deduced from the pairwise potential and DFT 

calculations are in good agreement (less than 5% of difference in the dislocation core 

spreading). The performed atomic scale modeling of dislocation mobility in absence of 

thermal activation indicates that lattice friction opposed to the glide of straight [100] screw 

dislocations in MgSiO3 post-perovskite is highly anisotropic. Despite the narrow core 

spreading in {011}, remarkably low values of Peierls stress (1 GPa from the pairwise 

potential and 2.1 GPa from DFT calculations) are found for the glide in (010), which is not 

the plane of core spreading. At the same time, [100](001) glide requires stress threshold 

which is almost 18 times larger (based on the pairwise potential modeling) than that in 

(010). Dislocation glide in {011} appears to be unfavorable and could not be activated 

while applying a simple shear.  

Both [001] screw and edge dislocations exhibit spontaneous dissociation in (010) 

plane into two symmetric partials characterized by the presence of <100> component. In 

case of edge dislocations, dissociation occurs into ½<101> partials, while for the screw 

dislocations the <100> component reaches only 15%. Under applied stress, both 

[001](010) screw and edge dislocations behave similarly. Above the Peierls stress, the two 

partials glide together while keeping their stacking fault widths (~11 Å and ~42 Å for the 

screw and edge dislocations respectively) constant. The Peierls stress opposed to the glide 

of [001](010) screw dislocations is 3 GPa, while that of edge dislocations is 33% lower. 

Consequently, plastic deformation within this slip system is expected to be governed by the 

screw dislocations. 

Atomistic modeling of ½[110] screw and edge dislocations reveals their spontaneous 

dissociation within (11̅0) into  
  ⁄ [110] and  

  ⁄ [110] partials separated by a widespread 

stacking fault where Si-octahedra are interconnected with neighboring Si-polyhedra by 

corners creating a thin perovskite lamella. The pairwise potential employed in this study 
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was originally adjusted for MgSiO3 perovskite (bridgmanite) phase and it is shown to 

significantly underestimate (7 times) the energy of such a stacking fault configuration. This 

results in notably overestimated (5 times) spreading of the dislocation cores. However, 

DFT calculations confirm that perovskite lamella represents the stable stacking fault 

configuration for the ½<110>{110} slip system. For this slip system, the shorter partial is 

found to be mobile, while the larger one is not, due to a much higher lattice friction. In 

contrast to the [100] and [001] dislocations, for the ½<110>{110} system, lattice friction 

opposed to the glide of screw dislocations is lower than that for edge dislocations. The 

reason of such unusual behavior can be explained by the relative ease of propagating PV-

lamella through the PPV structure along [001] direction (as happens for the screw 

dislocations), resulting from the structural relation between perovskite and post-perovskite 

phases. 

We also investigated the possible contribution of the ½<110>{110} slip system to 

deformation twinning. Relying on the observed ½[110](11̅0) dissociated dislocation core 

geometries, the mobile    ⁄ [110] dislocation partial was considered as a twinning dislocation 

with Burgers vector bp. For the investigated twinning system in MgSiO3 post-perovskite, 

we found that a twin nucleus can be created after formation of the third twinning partial 

(N = 3), resulting in a total shear displacement of a full ½[110] lattice repeat. The geometry 

of ½<110>{110} twinning in MgSiO3 post-perovskite can be described by rotation of the 

parent lattice by 34.5° around the [001] axis. The critical twin nucleation stress is found to 

be ~900 MPa based on DFT calculations and ~200 MPa based on the pairwise potential 

modeling. These relatively low stress values indicate that deformation twinning related to 

the ½<110>{110} system may represent an important deformation mechanism in MgSiO3 

post-perovskite. Taking into account the high strain rates involved in deformation 

experiments, one can expect appearance of <110>{110} twin domains, as it was observed 

after DAC deformation experiments on CaIrO3. 

 

 To address the efficiency of dislocation glide in MgSiO3 post-perovskite under 

temperature conditions of D‖, the kink-pair formation mechanism, controlling thermally 

activated dislocation glide, was modeled. Computing critical kink-pair formation enthalpy 
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ΔH2k(σ), the key parameter defining the efficiency of dislocation glide at finite 

temperature, allows describing evolution of the CRSS with temperature.  

For compact [100](010) screw dislocations, the evolution of ΔH2k with the applied 

stress was calculated based on the LT model in conjunction with the pairwise potential and 

on DFT calculations. Modeling thermally activated mobility of [100](010) slip in PPV 

indicates that under pressure, temperature and strain-rate conditions of the lowermost 

lower mantle, there is no lattice friction opposed to the glide of these dislocations (lattice 

friction vanishes when temperature rises above 600 K ).  

For dissociated [001](010) screw dislocations with complex geometry, the maximum 

ΔH4k(σ = 0) value was computed using the elastic interaction model by Koizumi et al. 

(1993), relying on the dislocation core characteristics inferred from the pairwise potential 

modeling. For this system, we did not determine the full curve describing the evolution of 

CRSS with temperature, but only estimated the so-called athermal temperature Ta, above 

which the lattice friction vanishes. For the lower mantle conditions, the critical temperature 

Ta is found to be in the range of 1800 – 2050 K. These results suggest that [001](010) 

dislocation glide at the D‘‘ would rather occur in the athermal regime.  

The easy dislocation glide along (010), parallel to the structural layering, in the 

absence of lattice friction has several geophysical implications: 

 Although the exact viscosity of the post-perovskite cannot be calculated from 

dislocation mobility in the single (010) plane alone, we can predict a weak 

behaviour comparable with that of MgO periclase. 

 This conclusion supports the scenarios that involve a weak layer in the D‖ layer 

with, in particular, enhancement of heat transfer from the core. 

 Easy dislocation glide in (010) suggests development of marked crystal 

preferred orientations characterized by alignment of the (010) planes. 

 The high mobility of [100] screw dislocations allows for energy dissipation 

when a seismic wave travels through dislocation-bearing post-perovskite. We 

predict that deforming silicate PPV should be characterized by strong seismic 

attenuation.  
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PERSPECTIVES 

 Full atomic modeling of dislocation glide in MgSiO3 post-perovskite under lower 

mantle conditions indicates easy slip in (010) plane parallel to the structural layering. This 

results allow predicting development of (010) deformation textures (Fig. P1). However, 

results of this this study are still not sufficient for quantifying viscosity of post-perovskite 

and for deriving constitutive equation describing plastic flow in this phase. To address 

these essential characteristics, further modeling of dislocation creep involving the interplay 

between dislocation glide and diffusion of point defects is needed. 

 Using anisotropic lattice friction and critical twinning stress computed in this work 

(see Table 7.1 in Chapter 7), one can further perform VPSC modeling of deformation 

textures (Fig. P1) and seismic properties of PPV aggregates and more complex (e.g. two-

phase PPV + MgO) aggregates at D‘‘ conditions.  

 

Fig. P1. Pole figures of 

deformation textures (at 

shear strain γ = 1) in 

MgSiO3 PPV computed 

with VPSC model using  

the Peierls stresses and 

critical twin nucleation 

stress reported in this work 

(Table 7.1). Horizontal X 

axis is parallel to the shear 

direction, vertical Y axis is 

normal to the shear plane. 

VPSC modeling is done by  

A. Tommasi  

 In order to address ability of low pressure PPV analogues (e.g. CaIrO3, CaPtO3, 

MgGeO3) to qualitatively reproduce anisotropic plasticity of high pressure MgSiO3 PPV, 

atomic-scale modeling of dislocations and twinning could be performed for these phases, 

by analogy with the simulations reported in  this work. 
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