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Ob nicht Natur zuletzt sich doch ergründe?

Goethe.

Fecisti nos ad te

et

inquietum est cor nostrum donec requiescat in te.

St. Augustine of Hippo.
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Abstract

The transition zone is the region in the Earth’s mantle between 410 and 660 km depth
that separates the upper from the lower mantle. In spite of its small volume, it may play
a role in constraining the style, vigour and scale of global mantle convection through, for
instance, the fate of subducting slabs. Mantle convection is governed by plastic flow that
occurs through the motion of crystal defects. Line defects or dislocations are considered
to be one of the most efficient defects contributing to intracrystalline deformation. That
is why in this work, we concentrate on the motion of dislocations in relation to the major
phases of the mantle transition zone: wadsleyite and ringwoodite.
A theoretical mineral physics approach is used to model thermally activated glide motion
of dislocations at appropriate pressure conditions by means of kink-pair nucleation on
dissociated dislocations as they exist in both high-pressure polymorphs of olivine. The
intrinsic properties of dislocation core structures are modelled with a generalized Peierls-
Nabarro model and parametrized by atomic scale calculations to take into account the
effect of pressure on atomic bonding. Plastic deformation is finally described in terms
of steady-state conditions, by taking into account the instrinsic strain rate dependence
on the mobility of the defects.
Since plastic deformation by the motion of dislocations is associated with creep, we use
the above results and a climb mobility law combined with experimental data to address
the effective creep process in wadsleyite and ringwoodite under natural conditions. We
show the inefficiency of dislocation glide as a strain producing deformation mechanism
in wadsleyite and ringwoodite under natural conditions and suggest the potential im-
portance of pure climb creep in the main minerals constituting the Earth’s transition
zone. This would imply the mantle transition zone to be rheologically distinct from the
upper mantle.
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Résumé

Modélisation de la plasticité
dans la wadsleyite et la ringwoodite:

sur la dynamique des dislocations dans la zone de transition du manteau terrestre

La zone de transition est située entre, environ, 410 et 660 km de profondeur dans le
manteau terrestre. Elle sépare le manteau supérieur du manteau inférieur. Bien qu’il
s’agisse d’une zone assez petite en volume du manteau terrestre, son rôle peut être impor-
tant pour déterminer le mode, la vigueur et l’échelle de la convection globale, par exemple
par le devenir de la subduction des plaques lithospheriques. Cette convection résulte de
la déformation plastique des minéraux qui constituent le manteau, qui elle-même résulte
du mouvement des défauts cristallins. Parmi ces défauts, les dislocations sont souvent
considérées comme les agents les plus efficaces de la plasticité intracristalline. C’est
pourquoi nous proposons d’étudier les mouvements des dislocations dans les principales
phases de la zone de transition: la wadsleyite et la ringwoodite.

Par une approche de modélisation numérique de la physique des minéraux, nous avons
déterminée la mobilité thermiquement activée du glissement des dislocations dissociées
comme celles que l’on trouve dans les polymorphes haute-pression de l’olivine. A partir
de l’échelle atomique, pour bien prendre en compte l’effet de pression sur les liaisons
atomiques, nous avons modélisé les propriétés de coeur des dislocations en utilisant
la théorie de Peierls-Nabarro généralisée. La déformation plastique est formulée en
conditions stationnaire en rendant compte de la dependence intrinsèque du taux de
déformation sur la mobilité des dislocations.

La déformation plastique par mouvement des dislocations dans les roches mantelliques
résulte du fluage. Pour mieux comprendre les mécanismes de fluage dans la wadsleyite et
la ringwoodite en conditions naturelles, on a utilisé les résultats précédemment définis sur
le glissement que l’on a combiné avec la mobilité des dislocations en montée, paramétrée
par des données expérimentales. Les résultats montrent que le glissement des disloca-
tions est inefficace par rapport au fluage par montée dans des minéraux majeurs de la
zone de transition. Cela suggère l’importance potentielle du fluage par montée, ce qui
rendrait la zone de transition rhéologiquement distincte du manteau supérieur.
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1 Introduction

It will become clear that the simplicity of the inner

Earth is only apparent ... we may perhaps expect that

someday ”physics of the interior of the Earth” will

make as little sense as ”physics of the crust”.

Jean-Paul Poirier.

(Introduction to the Physics of the Earth’s Interior, Cambridge University Press 1991.)

The very nature of the dynamics of the solid Earth lies in the flow of thermal en-

ergy out the Earth’s interior. The Earth can be considered as a ”working” body that

transforms heat into mechanical work for which the consequences are manifested at the

Earth’s surface by mountain belts, volcanoes and earthquakes and indirectly by pro-

cesses captured in the geological record. The latest estimate of the global heat-ouput of

the Earth is 46× 1012 W (Jaupart et al. 2007) that for the largest part consist of heat

involved in the cooling of oceanic plates which are continuously formed at mid-oceanic

ridges. There are three main heat sources that contribute to the Earth’s global heat flow.

The most important (in its present day state) contributions are the premordial heat due

to the formation of the Earth and the radiogenic heat production as a consequence of

the decay of radioactive isotopes such as 235U , 238U , 232Th and 40K in the mantle, and

to a lesser extent followed by the latent heat as a result of phase transitions, mainly in

15



16 1.1. State-of-the-Art

form of the contribution of the crystallization of the inner core.

Heat from the Earth’s interior is for the largest part transferred to the surface by

solid-state convection within the mantle: this is the Earth’s outer region down to about

2900 km depth and below which we can find the Earth’s core. Counterintuitive to what

one might think, thermal convection is a much more effective mechanism to transport

heat out of the Earth’s hot interior than through heat conduction. This is because the

mantle is mainly composed of poor heat conductive solid silicate material to which we

will come back.

Solid-state convection is directly related to the concept of continental drift that was

first proposed by the German meteorologist Alfred Wegener. His idea became widely

accepted in the sixties of the twentieth century when paleomagnetic observations of the

ocean floor supported the concept of plate-tectonics, which turned out to be nothing

more than the relative motion of the about twelve lithospheric plates, that form the out-

ermost portion of the Earth as being part of global solid-state convection. In the current

state of the Earth’s evolution, these lithospheric plates are created at mid-oceanic ridges

(oceanic lithosphere), transformed into orogens as a result of plate collisions (continental

lithosphere) or disappear again after becoming gravitionally unstable when cooled down

and being forced to penetrate (oceanic lithosphere) at plate boundaries into the Earth’s

interior.

1.1 State-of-the-Art

The physical description of the dynamics of the Earth’s interior requires first of all

knowledge of the radial distribution of the composition, pressure and temperature of the

Earth’s interior. These questions have been adressed in the fields of seismology, mineral

physics and geochemistry for which we intend to give a brief overview of the main con-
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Figure 1.1: a) Radial seismic body wave velocities vp and vs and density distribution as proposed
by the preliminary Earth reference model (PREM) (Dziewonski and Anderson 1981).
b) A schematic illustration is shown of the compositional layering of the Earth’s
interior as a function of depth, pressure and temperature.

tributions of the respective fields with their results.

The development in seismological studies and related techniques during the last half of

the twentieth century made it possible to gain a fortunate amount of information about

the inaccessible interior of the Earth earned from the collection and analysis of nor-

mal modes and arrival times of seimic waves that travel through the Earth or along the

Earth’s subsurface after the occurrence of (major) Earthquakes. The collection of seismic

body waves, which are dependent on the elastic properties of the material through which

the waves travel, revealed that the Earth’s interior is principally divided into a mainly

solid mantle of 2900 km thick and a core with a radius of about 3480 km, subdivided into

a liquid outer and a solid inner core. This has been characterized by the registration of
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the presence or absence of seismic body waves collected at seismic stations all over the

world together with the identification of abrupt major changes in seismic velocities with

depth. Abrupt variations in seismic body wave velocities are the primary indicators of

changes in (radial) structure or composition of the Earth’s interior which relates these

seismic observations indirectly to either solid-solid or solid-liquid phase transitions, that

could be chemical or structural (polymorphism) in nature (Fig. 1.1). In addition, in

the late seventies of the twentieth century, the inversion of traveltime data with the use

of spectral analysis of the Earth’s normal modes or eigenvibrations made it possible to

constrain the radial density and hence the directly related pressure distribution of the

Earth’s interior. The physical results of both achievements, as mentioned, in the field of

seismology, together with the analysis of surface wave dispersion has been captured into

a model that is known as the preliminary reference Earth model (PREM) proposed by

Dziewonski and Anderson in 1981 (Fig. 1.1). The model confirmed in a more accurate

way (as it includes wave attenuation and anisotropy for the first time) earlier studies

of the structure of the Earth’s mantle: the Earth’s mantle can be mainly divided into

three parts, an upper mantle that extends to a depth of about 410 km, a lower mantle

between 660-2900 km and a region which ranges from 410-660 km depth that is known

as the transition zone. Around the end of the ninetees, another seismic discontinuity

was found locally around 2600 km depth that had led to the definition of the innermost

part of the Earth’s mantle which extends to the core-mantle boundary (CMB)(Lay et

al. 1998). This innermost part of the Earth’s mantle is known as the D”-layer, that has

been named by Bullen (1950) before the discontinuity was found. Below the mantle, the

Earth’s core then extends from about 2900-6379 km and can be subdivided into a low

viscous liquid outer core (no propagation of S-waves) until a depth of 5150 km and a

solid inner core.

The seismic discontinuities identified as a function of pressure are directly related to
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abrupt variations in the material properties as they influence the seismic wave veloci-

ties and their arrival times. On the other hand, density jumps are constrained through

reflection coefficients. This knowledge has been used in relation to the study of phase

transitions in candidate materials investigated under high pressure and temperature

conditions in laboratory experiments and by using theoretical models to construct phase

diagrams. The candidate materials have been defined on the basis of geological, geochem-

ical and petrological observations on one hand and on cosmochemical considerations on

the other. The chemical composition of chondritic meteorites is considered to be a good

reference for undifferentiated material that condensed from the solar nebula. Together

with the analysis of the composition of geological outcrops of xenoliths and ophiolites,

which are good representatives of (differentiated) upper mantle material, it has been

determined that the Earth is primary composed of the atomic species Si, O, Mg, Al, Ca,

Ni and Fe that are condensed to crystalline solids, mainly in the form of silicates and

oxides. This forms the bulk of the Earth’s mantle. An Fe-Ni alloy is expected to form

the bulk the Earth’s core (Birch, 1952). This has led to the first model of the chemical

composition of the Earth’s upper mantle, known as the pyrolitic model, which was in-

troduced by Ringwood (1962; 1975). The model refers to the mineral assemblage with

respect to a peridotitic composition of the upper mantle of (Mg,Fe)2SiO4 olivine and

(Mg,Fe,Ca)SiO3 pyroxene and garnet. Since then, efforts in the field of high pressure

and temperature research in mineral physics have elucidated the main mineral candidate

constituents of the Earth’s interior as a function of pressure and temperature. This is

illustrated in a simplified radial distribution of the mineralogy for a pyrolitic composition

of the Earth’s mantle as shown in Fig. 1.2.

Finally, the radial temperature of the Earth, often referred to as the geotherm,

has been constrained on the basis of the above studies. The main phase boundaries in

the Earth’s mantle as a function of pressure and temperature for the respective mate-
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Figure 1.2: Simplified radial distribution of the mineralogy for a pyrolitic composition of the
Earth’s mantle as a function of depth, volumetric mantle fraction, pressure and tem-
perature.

rials serve as anchor points for the geotherm. The P-T phase diagram for the relevant

pressure range for a given mineral assemblage of the Earth’s mantle can therefore be

determined by mineral physics theory. Together with the revealed adiabaticity of the

Earth’s mantle, supported through the analysis of the Earth’s radial eigenvibrations, it

has been possible to model the Earth’s geotherm (Anderson 1982; Ono 2008).

To summarize the main findings with respect to the radial composition of the Earth’s

mantle: the main constituent, which is estimated to form about 50-60% of the volume

percentage of the upper mantle, is (Mg,Fe)2SiO4 olivine. This mineral has an orthorhom-

bic crystal structure Pbnm that is no longer stable at the pressure and temperature con-

ditions around a depth of 410 km and transforms into the closer packed (Mg,Fe)2SiO4

wadsleyite which defines the beginning of the transition zone, before it transforms into
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the even closer packed spinel (Mg,Fe)2SiO4 ringwoodite at 520 km depth. These phase

transformations are purely polymorphic, which means that the phase transition of the

material is characterized by a change in crystal structure with conservation of the chemi-

cal composition. Besides olivine, the upper mantle contains (Mg,Fe,Ca)2Si2O6 pyroxenes

and (Mg,Fe,Ca)3Al2Si3O12 garnets (e.g. pyrope). Apart from its main constituents wad-

sleyite and ringwoodite the transition zone is rich in majorite garnet. Then at 660 km

depth, ringwoodite transforms in a mineral assemblage of Al-(Mg,Fe)SiO3 bridgmanite

(perovskite structure) together with minor percentages of CaSiO3 perovskite and fer-

ropericlase (Mg,Fe)O (rock-salt structure). This region between 660-2600 km depth is

known as the lower mantle. The bridgmanite is finally expected to transform at depths

around 2600 km into its high-pressure polymorph post-perovskite in the Earth’s lower

mantle.

1.2 Plastic deformation in the transition zone

The evolution and dynamics of the Earth can be explained in terms of thermal solid-

state convection of the Earth’s silicate mantle, through which heat is transferred to the

Earth’s surface. The heterogeneous composition and structure of the Earth’s interior

governs the style of the overall convective pattern in the mantle. The region in the

mantle between 410-660 km, known as the transition zone, plays an important role in

the dynamics of the Earth’s interior despite its relatively small volume in comparison

to the upper but certainly to the lower mantle. Analysis from studies of isostatic post-

glacial rebound has led to first order estimates of the radial distribution of the viscosity

of the Earth’s mantle, based on the initially proposed theory of Haskell (1935). Most

models predict a gradual increase in viscosity from the upper into the lower mantle over

the transition zone. The radial viscosity profile however is hardly constrained and un-

certainties in the local variations may be as large as three to four orders of magnitude

(Ricard and Wuming 1991; Mitrovica and Forte 2004). An other source of information
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comes from seismic tomography to determine the internal seismic wave speed structure

of the Earth. This leads to imaging of the Earth’s interior from the analysis that can

be interpreted in terms of seismic wave speed differences as a consequence of thermal,

chemical or structural anomalies or as a combination. Despite overall poor resolution,

due to a sparse distribution of seismic sources and global record coverage, seismic to-

mography has revealed the subduction of slabs as being part of the convective system.

Former studies report about the stagnation of slabs, as subducting lithosphere tends to

flatten laterally, up to over a few thousand kilometers within the transition zone or just

below (around 1000 km depth) (van der Hilst et al. 1991; van der Hilst et al. 1997;

Tajima and Grand 1995; Grand et al. 1997; Fukao et al. 2001; Grand 2002; Zhao 2004;

Fukao and Obayashi 2013). The same studies report, on the other hand, that at other

places, slabs seem also to penetrate unhindered through the transition zone. So far,

we dealt with information concerning the present-day-state of the Earth’s interior. In

addition, studies of forward numerical modelling on mantle convection, in particular the

self-consistent thermo-chemical convection models (Tackley 2000) show that it is impos-

sible to reproduce an Earth like convective system, i.e. with a plate-tectonic setting,

without having a viscosity jump in one form or another, somewhere in the mid-mantle.

These are all indications that the transition zone may play a vital role in the dynamics

of the Earth’s interior and as such we focus our study on this particular zone in the

Earth’s mantle.

Solid-state flow in the Earth’s mantle is controlled by viscosity that varies with depth

as function of the crystal chemistry, pressure and temperature. Plastic deformation of

minerals is the fundamental underlying mechanism that determines the local viscosity

in the Earth’s mantle. The Earth’s mantle mainly consists of crystalline solids: silicates

and oxides. Besides their chemical composition these solids are characterized by an

orderly arrangement of atoms into a crystalline lattice. It is specifically the motion of
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lattice defects, which are the carriers of solid-state deformation, that produces the strain

responsible for plastic flow in extreme conditions of the deep Earth. There is a large

number of defects that may exist in (poly)crystalline materials, e.g. starting from grain

boudaries, lattice vacancies, intersticials, impurities, dislocations and disclinations. Line

defects or dislocations are considered to be one of the most efficient defects contributing

to intracrystalline deformation, on which we would like to concentrate in relation to the

major phases of the transition zone: wadsleyite and ringwoodite. In the next section we

intend to review what is already known about the minerals wadsleyite and ringwoodite

and their plasticity due to deformation experiments and numerical modelling that have

been developed. Special attention will be payed to (microstructural) studies of disloca-

tions present in those materials.

Figure 1.3: Phase diagram of the Mg2SiO4 system. The illustration is based upon Fei et al.
(1990).
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1.3 Wadsleyite

1.3.1 Crystal structure and natural occurrence

(Fe,Mg)2SiO4 wadsleyite is the major consituent of the upper transition zone that ranges

from a depth of 410-520 km, at pressures ranging from 13 − 18 GPa and temperatures

between 1600−1800 K. It is a high-pressure polymorph of and about 8% more dense than

the most abundant upper mantle mineral (Mg,Fe)2SiO4 olivine (Agee 1998). The seismic

discontuity that is globally found at 410 km depth is widely accepted to be the conse-

quence of the phase transformation of olivine into its denser high pressure-polymorph

wadsleyite. The seismic discontinuity is therefore due to the accompanying changes in

physical properties between both polymorphs (Goldschmidt 1931; Ringwood and Major

1966; Akimoto and Sato 1968; Irifune and Ringwood 1987; Agee 1998). Wadsleyite is

stable in the Earth’s mantle until a depth of about 520 km for which the stability field

with respect to Mg2SiO4 wadsleyite is illustrated in the phase diagram of the Mg2SiO4

system as shown in Fig. 1.3.

The crystal structure of wadsleyite consists of polyhedral (SiO4)4− and (MgO6)10−

units where pairs of the (SiO4)4− tetrahedra share a vertex to form isolated double

tetrahedra groups of (Si2O7)6−. Wadsleyite belongs as such to the sorosilicates as being

part of the silicate minerals. Wadsleyite exhibits an orthorhombic crystal structure of

space group Imma. The orthorhombic crystal structure may equally be understood as a

distorted cubic close packed arrangement of the oxygen sublattice with the Mg2+, Fe2+

and Si4+ cations placed at the octahedral and tetrahedral sites. The unit cell param-

eters of wadsleyite at 18.5 GPa have been determined experimentally by Horiuchi and

Sawamato (1981) as a = 5.70 Å , b = 11.44 Å , and c = 8.26 Å . The unit cell of

wadsleyite can be seen in Fig. 1.4 and 1.5.
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Figure 1.4: Illustration of the unit cell of Mg2SiO4 wadsleyite that clearly shows the isolated
(Si2O7)6− groups. The Mg, Si O atomic species are yellow, blue and red, respectively.
The (SiO4)4− tetrahedra are visualised in light blue.
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Figure 1.5: Illustration of the unit cell of Mg2SiO4 wadsleyite with respect to the representation
of the (SiO4)4− tetrahedra colored in light blue. The Mg, Si O atomic species are
yellow, blue and red, respectively.

It was Ringwood and Major, in 1966, who first were able to synthesize wadsleyite which

is not stable at ambient pressure and temperature conditions. However it was Putnis

and Price in 1979 who discovered the natural occurrence of (Mg,Fe)2SiO4 wadsleyite in



26 1.3. Wadsleyite

the Peace River meteorite (Price et al. 1983) that was eventually named after Dr. A.

D. Wadsley.

1.3.2 Plasticity

The study of plastic deformation of wadsleyite has been started in the second half of

the ninetees by experimental studies of so called stress-relaxation experiments. The ex-

periments were performed by compressing powder samples (often San Carlos olivine) at

ambient temperature after which the samples were heated and diffraction peak broad-

ening could be monitored as a function of pressure, temperature and time, by X-ray

diffraction (Weidner et al. 1992; Chen et al. 1998; Mosenfelder et al. 2000). These

experimental data can be seen as a first order indicative measure of the strength of

mineral phases which makes these experiments the pioneers of later work on effective

plastic deformation that has been studied by the use of the multi-anvil apparatus and

the rotational Drickamer apparatus (RDA) (Nishihara et al. 2008; Kawazoe et al. 2010;

Kawazoe et al. 2013; Hustoft et al. 2013; Farla et al. 2015). The difficulties of conduct-

ing experiments on the plastic deformation of wadsleyite is its stability field at pressure

and temperature conditions equal to those of the upper transition zone, depending on

the type and amount of impurities it contains. A summary of the data available from

experimental deformation on wadsleyite is shown in Fig. 1.6 as the applied stress or

engineering stress as a function of temperature under steady state conditions.

The most remarkable of the experimental results in terms of plastic deformation is the

relatively large effective flow stresses determined during deformation in the RDA in com-

parison to what has been found on olivine under upper mantle conditions ∼ σ ' 1.5 GPa

(Kawazoe et al. 2009; Nishihara et al. 2008).

The first who used the multi-anvil cell to deform wadsleyite, starting with monocrys-
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Figure 1.6: Assemblage of the data gathered by the experimental deformation experiments on
wadsleyite.

talline San Carlos olivine to be transformed into wadsleyite at 16 GPa and ∼ 1900 K,

was Sharp et al. (1994) and Dupas et al. (1994), but starting with synthetic harzburgite

to be transformed into wadsleyite at 14 GPa and ∼ 1700 K. From these studies, disloca-

tions with Burgers vector [100] have been identified, as well as the existence of the (010)

stacking faults as observed in wadsleyite samples of the Peace River meteorite. It also

resulted in the first observations of individual partial dislocations with Burgers vector

1/2〈111〉. These findings were confirmed and extended by Dupas-Bruzek et al. (1998)

and the experimental studies performed by Thurel and Cordier (2003), Thurel et al.

(2003) and Thurel, Douin and Cordier (2003). In the latter three studies, deformation

experiments were performed on recovered wadsleyite samples, synthesized from synthetic

forsterite powder which has been transformed into wadsleyite, both supported by com-
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pression and shear in separate experimental runs using a multi-anvil cell device, after

which the following nine slip systems were identified by transmission electron microscopy

(TEM):

• [100](010)

• [100](001)

• [100]{011}

• [100]{021}

• 1/2〈111〉 {101}

• [010](001)

• [010]{101}

• [001](010)

• 〈101〉 (010)

Thurel (2001) estimates that the glide systems most probable to operate under transition

zone conditions in order of likelihood can be listed as follows:

• 1/2〈111〉 {101}

• [100](010)

• [100](001)

• [100]{011}

• [100]{021}
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Dupras-Bruzek et al. (1998) conclude from microstructural analysis that dislocation

climb appears to be very active at temperatures above 1200 K. These findings are sup-

ported by Mosenfelder et al. (2000) who interpreted the observation of the formation of

subgrains (polygonization) in terms of climb activity. Thurel, Douin and Cordier (2003),

on the other hand, do not find strong evidence of the dislocation climb after microstruc-

tural analysis and argues that the microstructures observed in studies of Dupras-Bruzek

et al. (1998) and Mosenfelder et al. (2000) could as well be explained in terms of the

olivine-wadsleyite phase transformation.

Finally, two main studies in the field of computational mineral physics with respect

to intracrystalline plasticity of wadsleyite have to be addressed. In 2010, Walker cal-

culated the core structure and energies of the [100] and [001] screw dislocations based

on a cluster-based elastic-atomistic method using the THB1 empirical potential. He

concluded that the movement of the [001] screw dislocation will be inhibited by the

necessity to destroy strong Si-O bonds contrary to the motion of the [100]-screw dislo-

cations. This may give an explanation of the relatively large presence of dislocations

with [100] Burgers vector in contrast to those with [001] Burgers vector as observed in

experiments.

Metsue et al. (2010) used a Peierls-Nabarro based finite-element method to calculate

the dislocation core structures and their potential activity through calculations of the

Peierls stress that can be seen as the critical resolved shear stress (CRSS) at 0 K. They

have taken into account the following slip systems: [100](010), [100](001), [010](100),

[010](001), [001](010), 1/2〈111〉 {101}, for both the screw and edge dislocations. The

calculations relied on the γ-surfaces of the potential slip planes, which were calculated

by the use of the THB1 empirical potential. The easiest slip systems were found to be

the 1/2〈111〉 {101} and [100](010) which is supported by the experimental observations

as given above. Both screw and edge dislocations belonging to the 1/2〈111〉 {101} and
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[100](010) slip systems are characterized by a dissociation into collinear partials, sepa-

rated by a stacking fault: 1/2〈111〉 → 2/10〈111〉+3/10〈111〉 and [100] → 1/2[100]+1/2[100].

1.4 Ringwoodite

1.4.1 Crystal structure and natural occurrence

(Fe,Mg)2SiO4 ringwoodite is the major consituent of the lower transition zone that ranges

from a depth of 520-660 km, at pressures ranging form 18−25 GPa and temperatures be-

tween 1700−1900 K. It is about 4% more dense than its lower high-pressure polymorph

wadsleyite and associated with the seismic discontinuity that is found at 520 km depth

as the consequence of the phase transformation of wadsleyite into its denser higher

pressure-polymorph ringwoodite. Ringwoodite is stable in the Earth’s mantle until a

depth of about 660 km for which the stability field with respect to Mg2SiO4 wadsleyite

is illustrated in a the phase diagram of the Mg2SiO4 system as shown in Fig. 1.3.

Ringwoodite exhibits a spinel structure of space group Fd3m due to the cubic-close

packing of the oxygen sublattice, where the Mg2+ and Fe2+ cations are embedded at the

octahedral and the Si4+ cations at the tetrahedral interstices respectively, in such a way

that the (SiO4)4− units form isolated tetrehedra. The unit cell parameter of ringwood-

ite as determined by Ringwood and Major (1970) and Meng et al. (1994) at ambient

pressure and temperature conditions is equal to a=8.071 Å . Figures 1.7 and 1.8 show

the unit cell and the crystal symmetry of ringwoodite.

Ringwoodite was first observed and identified in the Tenham meteorite by Binns et al.

in 1969 and later in other shocked meteorites as the Peace River meteorite (Price et al.

1982), for which both samples were characterized and analyzed by TEM. However, after

the work of Goldschmidt (1931) on Mg2GeO4 analogues, it was already Bernal who
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Figure 1.7: Illustration of the unit cell of Mg2SiO4 ringwoodite that shows the isolated (SiO4)4−

groups. The Mg, Si O atomic species are yellow, blue and red, respectively. The
(SiO4)4− tetrahedra are visualised in light blue.
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Figure 1.8: Illustration of the unit cell of Mg2SiO4 ringwoodite with respect to the representation
of the (SiO4)4− tetrahedra colored in light blue. The Mg, Si O atomic species are
yellow, blue and red, respectively.

in 1936 proposed a high-pressure polymorph of olivine to exist with a more compact

spinel crystal structure. Finally, (Mg,Fe)2SiO4 ringwoodite was named after Prof. A. E.

Ringwood. Later it has been observed that ringwoodite crystals in the aforementioned
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meteorite samples contain lots of stacking faults. It was Madon and Poirier in 1980

who first observed the existence of dislocations within (Mg,Fe)2SiO4 spinel grains of the

meteoritic samples.

1.4.2 Plasticity

The first techniques used to estimate the strength of ringwoodite, as in the case of

wadsleyite, were stress relaxation experiments performed by monitoring diffraction peak

broading with the use of X-ray diffraction techniques (Chen et al., 1998; Xu et al.,

2003). It was Karato et al. in 1998 who performed the first deformation experiment on

(Mg,Fe)2SiO4 ringwoodite at 16 GPa and 1600 K using a multi-anvil apparatus. The

starting material was a synthetic olivine that has been compressed and heated until the

phase transformation into ringwoodite after which it has undergone shear deformation

during the same run. After TEM analysis of the recovered samples, they identified dis-

locations belonging the 1/2〈110〉{111} and 1/2〈110〉{001} slip systems. A study of Thurel

(2001) shows presence of slip of the 1/2〈110〉 dislocations in the {111} and {110} planes

by using a multi-anvil apparatus. After being synthesized, the ringwoodite samples

were deformed by compression and shear deformation and analysed by TEM studies.

The principal slip direction in (Mg,Fe)2SiO4 ringwoodite is always observed to be par-

allel to the 〈110〉 direction. The 1/2〈110〉 is the shortest perfect and therefore unique

Burgers vector in ringwoodite and in fact in minerals having the spinel structure. These

1/2〈110〉 dislocations glide mainly in the {110}, {111} and {001} as observed. Earlier

studies (Duclos 1981; Mitchell 1999; Welsch et al. 1974; Mitchell et al. 1976) on spinel

analogues as MgAl2O4 and MgO·nAl2O3 support that the Burgers vector direction of

dislocations in spinels are always found to be equal to 1/2〈110〉 which glide primarily

in the {110}, {111} as well as in the {001} planes. The latter studies often report on

the dissociation into partials separated by a stacking fault, something that was not yet

observed in (Mg,Fe)2SiO4 ringwoodite by TEM studies conducted. However, stacking
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faults of the type 1/4〈110〉{011} were both observed in studies of ringwoodite grains in

samples of the Tenham meteorite and in Mg2GeO4 analogues studied by Vaughan and

Kohlstedt (1981). A study of Mitchell (1999) on MgO·nAl2O3 spinel shows that dis-

location networks are commonly observed with nodes extended by climb or glide into

1/4〈110〉 partial dislocations. Microstructures associated with climb appear to become

more important in the deformed samples at higher temperatures.

Besides the deformation experiment on ringwoodite by Karato et al. (1998), other

deformation experiments were undertaken using the diamond avil cell (DAC) (Meade

and Jeanloz 1990; Kavner and Duffy 2001; Wenk et al. 2004) and the D-DIA (multi-

anvil apparatus) (Nishihara et al. 2005; Wenk et al. 2005) for deformation at ambient

temperature and recently by deforming ringwoodite in the RDA at pressure and tem-

perature conditions equivalent to the transition zone (Hustoft et al. 2013; Miyagi et al.

2014). A summary of the data available from experimental deformation on ringwoodite

is shown in Fig. 1.9 for the engineering stress as a function of temperature under steady

state conditions.

As for wadsleyite, we would like to note that the stresses determined by the de-

formation experiments using the RDA are relatively elevated in comparison to what has

been found on olivine under upper mantle conditions (σ ' 1.5 GPa) by Kawazoe et al.

(2009) and Nishihara et al. (2008).

Finally, one extensive theoretical study of Carrez et al. (2006) on the intracrystalline

plasticity of Mg2SiO4 ringwoodite has been undertaken so far. They have used a 1-D

Peierls-Nabarro model to calculate the dislocation core structures and their potential

activity through calculations of the Peierls stress. They have taken into account the

following slip systems: 1/2〈110〉{001}, 1/2〈110〉{110} and 1/2〈110〉{111} by modeling both
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Figure 1.9: Assemblage of the data gathered by the experimental deformation experiments on
ringwoodite.

the screw and edge dislocations. The calculations relied on the γ-surfaces of the potential

slip planes, which were calculated using ab initio based density functional theory (DFT)

calculations. This revealed that all core structures of the respective 1/2〈110〉 screw and

edge dislocations are extended with Burgers vector reactions that split the 1/2〈110〉

Burgers vector into two partials dislocations separated by a stacking fault. Further

viscoplastic self-constistent modeling (VPSC) was undertaken that was parametrized by

the former Peierls stress analysis. The results emphasized that glide of the 1/2〈110〉{111}

is likely to dominate the deformation followed by 1/2〈110〉{110} at low temperature

conditions, which is supported by microstructural studies of preferred orientations in

ringwoodite by Miyagi et al. (2014), Wenk et al. (2004) and Wenk et al. (2005).
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1.5 Modelling dislocation glide in the transition zone

Mineral physics plays a central role in studying the dynamics of the Earth’s interior as

it provides relations between the intensive (crystal chemistry, stress, viscosity, pressure,

temperature, etc.) and extensive variables (strain rate, free enthalpy, momentum, length,

volume, mass, etc.) through constitutive equations, describing the rheology intrinsic to

solid-state deformation.

A lot of effort has been dedicated over the last decades to deformation experiments

at high pressure and temperature conditions of the deep Earth’s interior in the field of

mineral physics, i.e. multi-anvil appartus (Cordier and Rubie 2001) and D-DIA (Wang

et al. 2003), diamond anvil cell and rotational Drickamer apparatus (Yamazaki and

Karato 2001). It however still remains difficult to conduct experimental deformation at

high pressure (∼ 18 GPa) and high temperature (∼ 1700 K) conditions of the transition

zone. Furthermore, the rheological flow laws as constitutive equations deduced from

experiments at typical laboratory strain rates of 10−5 s−1 or larger, need to be extrap-

olated to the extremely low strain rate conditions of 10−16 s−1 in the Earth’s mantle.

Finally, it has to be mentioned as well that the deformation mechanisms responsible for

plastic deformation at laboratory strain rates may be different than under conditions of

the deep Earth.

Computational mineral physics, however, provides alternative approaches to study

plastic deformation of the high-pressure phases of the Earth’s interior. In the present

study, we would like to focus on the intracrystalline plasticity of the end-member phases

Mg2SiO4 wadsleyite and ringwoodite at the typical pressure conditions of 15 GPa and

20 GPa, respectively. In particular, the aim is to determine the glide mobility of the rate

controlling dislocations as a function of stress and temperature in order to derive the

constitutive equations corresponding to glide. The research finds its foundation in the

multiscale modelling approach of monocrystalline MgO (Amodeo et al. 2011; Amodeo
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et al. 2012; Cordier et al. 2012).

The description of intracrystalline plasticity, in our modelling, will be based on the

mobility of dislocations that glide on specific crystallographic planes. To be able to

glide, dislocations must overcome their intrinsic lattice friction which occurs through

stress-assisted thermally-activated processes. This glide process is controlled by lattice

friction if the temperature is lower than a critical temperature (commonly referred to as

the athermal temperature Ta), when the critical resolved shear stress (CRSS) is temper-

ature dependent. Dislocations can be subdived into two end-member characters: screw

and edge dislocations. If a dislocation bows out under the action of resolved shear stress,

in materials with high lattice friction, segments with the faster moving characters will

produce a small amount of strain and leave behind long segments of the slow moving

characters which will account for most of the plastic deformation produced. By using

this approach, the model is also able to forecast the temperature threshold above which

dislocation-dislocation interactions become essentially important to determine the dis-

location mobility. The kinematics of glide below Ta depend strongly on the specific

atomic arrangements that build the dislocation cores. The core structures of the poten-

tial dislocations will be calculated using the Peierls-Nabarro-Galerkin (PNG) method, a

generalization of the Peierls-Nabarro (PN) model (Peierls 1940; Nabarro 1947). These

calculations, once more, rely on first principle simulations of generalized stacking fault

surfaces (or γ-surfaces). The latter allow us to address the effect of pressure on atomic

bonding accurately. Lattice friction experienced by the dislocations belonging to the

potential slip systems, is then calculated and quantified by the Peierls potential and

its derivative, the Peierls stress. Finally, the glide mobility will be derived that results

from thermally-activated motion of dislocations over their Peierls barriers by nucleation

and propagation of unstable kink-pairs. We propose to describe this process through

an elastic interaction model, initially proposed by Koizumi et al. (1993) and applied

by Amodeo et al. (2011) on MgO. In the present work, this approach is extended to
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dissociated dislocations as they occur in wadsleyite and ringwoodite, which will be elu-

cidated by our results of the dislocation core structures. The elastic interaction model

will as such be adapted to handle kink-pair nucleation on partial dislocations. It is

the core extension of the dissociated dislocations and the presence of the stacking faults

that is finally determining the motion of the dislocation below the athermal temperature

Ta. Dislocation mobilities are determined from the stress dependence on the nucleation

rate of kink-pairs. The collective behaviour of dislocations, which finally determines

the overall rate of deformation, will be obtained by linking the macroscopic strain rate

to the plastic flow through the dislocation mobility under conditions both relevant to

experiments and to the Earth’s mantle.

The constitutive equations associated to pure single slip dislocation glide are com-

pared to the data of experimentally deformed wadsleyite and ringwoodite. This enables

us to address the potential contribution of dislocation glide during plastic deformation

of both minerals under pressure, temperature and strain rate conditions of the transition

zone. Implications for the rheology of the transition zone and the possible consequences

for geodynamics will be discussed at the end of chapter three and in chapter four.
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2 Methods and models

The numerical multiscale modelling approach we present in this study, relies on multi-

physics at different scales in space and time. In this chapter, we present and describe

the three main steps upon which the theoretical study is based. In the first part of the

first section, we start to describe the ab initio based density functional theory used to

calculate so called generalized stacking fault surfaces (γ-surfaces). In the second part of

the first section, we will deal with the concept of γ-surfaces and its relation to disloca-

tions. This is a key stage of the model where the influence of pressure on the electronic

structure of wadsleyite and ringwoodite, and hence on their crystal structure, is accu-

rately taken into account through first-principles calculations. The γ-surfaces provide

an efficient tool to search for the low energy cost shear paths in the crystal. As such,

γ-surfaces are one of the key ingredients to model dislocation core structures with the

PNG-model which will be dealt with in the second section of this chapter. Lattice fric-

tion, then is quantified by a classical evaluation of the Peierls potential in the framework

of the PN model (Peierls 1940; Nabarro 1947). The third and last section of this chap-

ter describes the thermally-actived mechanism by which a dislocation line overcomes its

lattice friction. This is presented by an elastic interaction model which allows us to cal-

culate the critical configuration that triggers elementary displacements of dislocations.

It allows us to obtain the critical enthalpy associated to a critical dislocation bow-out

by the extremum of the corresponding total energy variation. The dislocation mobility

and subsequent single slip collective behaviour of dislocations will be determined by the

39
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above results. Finally, we end this chapter by presenting a benchmark study on the

elastic interaction model applied to monocrystalline SrTiO3 perovskite. We made our

choice for SrTiO3 perovskite, since it is, for the high pressure minerals that constitute

the Earth’s mantle, experimentally still impossible to obtain very accurate data of the

CRSS as a function of T related to dislocations belonging to a given slip system in single

crystals.
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2.1 Ab initio calculations: γ-Surfaces and elastic constants

We must be clear that when it comes to atoms,

language can be used only as in poetry.

Niels Bohr.

(quoted by W. Heisenberg, translation A.J. Pomerans in Physics and Beyond: Encounters and Conversations 1971.)

The aim of this chapter is to describe the conceptual idea and the use of generalized

stacking fault surfaces (hereafter called γ-surfaces) and the way in which they, together

with the elastic constants, are calculated by taking into account the appropriate pressure

conditions for which Mg2SiO4 wadsleyite and ringwoodite are stable in the transition

zone.

To begin with, a γ-surface is an energy landscape describing the excess energy as

a result of a discontinuous shear of the crystal structure along a given (slip) plane.

Therefore, both the γ-surfaces and the elastic constants involve knowledge on the total

energy change of a distorted system composed of one or at least a small number of

primitive cells of the respective material. An atomistic approach is necessary in order

to take into account the intrinsic properties of both olivine polymorphs as accurately

as possible. Elementary quantum mechanics tells us that the wavefunction Ψ describes

the quantum state of a given system. Ab initio atomistic calculations are based on

density functional theory (DFT) and rely on solving the Schrödinger equation of a (many-

particle) system without the need of any adjustable parameters. DFT is restricted to the

description of the electronic structure of atoms in the system through which the total

energy of the system’s ground state can be solved for through Schrödinger’s equation. As

such, this method is very suitable to incorporate the intrinsic pressure-induced variations

in the electronic structure captured in the total energy of the system. Although, this is a

first-principles and self-consistent method and as such the most accurate to use in atomic
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scale modelling, it is limited to study systems with a restricted number of atoms because

of its otherwise too large computational costs. As such it would be impossible to perform

ab initio calculations to study dislocation core structures in complex materials such as

minerals with primitive cells already containing a large number of atoms. However, it

is very suitable to use for systems containing a few hundred of atoms such as in case of

the calculation of γ-surfaces of complex silicates and of their material properties as the

elastic constants.

2.1.1 Ab initio calculations: Theory

Ab initio calculations are based on quantum mechanics and rely as such on solving the

non-relativistic time-independent Schrödinger equation:

HΨ(r1, r2, ..., rM ,R1,R2, ...,RN ) = EΨ(r1, r2, ..., rM ,R1,R2, ...,RN ) (2.1)

in order to to obtain the total energy E of a system of M electrons at positions ri

and N nuclei at positions Ri. The Hamiltonian operator H of a many-particle system

characterized by the wavefunction Ψ is defined as:

H = T + V (2.2)

and can be decomposed into the following operators T and V :

1. The kinetic energy operator T = TE + TN , where TE and TN are related to

the kinetic energy of the electrons and the nuclei, respectively.

2. The potential energy operator V = VE,E + VN,N + VE,N , where VE,E , VN,N

and VE,N are related to the interaction energy between the electrons, the nuclei

and between the electrons and nuclei respectively.
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It is impossible to obtain the exact wavefunction Ψ in Eq. 2.1 by solving the Schrödinger

equation for a system containing more than two electrons let alone for a large number of

particles, so that a series of approximations have to be made in order to solve Eq. 2.1.

2.1.1.1 Born-Oppenheimer approximation

One of the basic assumptions on which DFT relies was first proposed by Born and Oppen-

heimer in 1927 and is known as the Born-Oppenheimer or adiabatic approximation. The

approximation is based on the observation that electrons are much lighter particles than

the nuclei and therefore exhibit higher velocities: the electrons move more rapidly than

the heavier nuclei to which the electrons are bound. As a consequence, the kinetic energy

of the nuclei is negligible with respect to those of the electrons TE � TN → TE+TN ' TE

so that the Hamiltonian (Eq. 2.2) reduces to:

H = TE + VE,E + VE,N + EN,N (2.3)

The interaction energy VN,N between the approximately stationary positioned nuclei

has therefore been replaced by a constant EN,N . As a consequence, EN,N does not

play a role in solving the Schrödinger equation and will consequently be eliminated in

the Hamiltonian. The Schrödinger equation can be further simplified by describing the

interactions between the nuclei and the electrons in the form of an external potential

V (r) acting on the electrons so that the wave function Ψ in Eq. 2.1 only depends on the

electronic coordinates. The Hamiltonian H for a single electron moving in an external

potential ε(r) that mimicks the interaction between the electron and the nucleus to

which it is bound, can thus be described by:

H = TE + VE,N = − h̄
2∇2

2m
+ ε(r) (2.4)
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with h̄ and m equal to the reduced Planck constant and the electron mass respectively.

In the case of a many-particle problem, where more electrons are moving in a potential,

for example due to a crystalline lattice, the Schrödinger equation becomes:

HΨ(r1, r2, ..., rM ) = EΨ(r1, r2, ..., rM ) (2.5)

with a Hamiltonian given by:

H = TE + {VE,N + VE,E} =

M∑
i

− h̄
2∇2

i

2m
+ {v(r)} (2.6)

where the potential functional v(r) corresponds to:

v(r) =

M∑
i

V (ri) +
∑
i<j

q2

|ri − rj |
(2.7)

The number of electrons is given by M . The first term on the right hand side of Eq. 2.7

describes the interactions between the electrons and the external potential, the second

term is equal to the electron-electron interactions (Coulomb interaction) with q being

the electron charge. The interactions between the nuclei EN,N is left out as it is a

constant. Different methods can be adopted to solve the above many-body problem in

a self-consistent way. One of the methods is by using the Hartree Fock theory which is

based on a simple approximation of the true many-body wavefunction. We however will

use a more advanced approach proposed by density functional theory (DFT) for which

the framework was constructed in 1965 by Hohenberg and Kohn.

2.1.1.2 Density functional theory

The classical approach to tackle the Schrödinger equation is by first defining the external

potential Vext(r) that determines the system (e.g. atom, molecule, crystal lattice, ...)

and solve the wavefunction Ψ which gives access to the observables of the systems through
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〈Ψ∗|...|Ψ〉. One of the observables that can be calculated is the electronic density n(r):

n(r) = M

∫
d3r2

∫
d3r3

∫
d3rMΨ∗(r, r2, ..., rM )Ψ(r, r2, ..., rM ) (2.8)

Hohenberg and Kohn (1965) stated in their Hohenberg-Kohn (HK) theorem that Eq. 2.8

can be inverted for all ground states: a ground-state wave function Ψ0 is a functional of

the ground-state density n0. This implies that all ground-state observables are function-

als of n0. It opens the opportunity to replace the many electron problem to which our

quantum mechanical system has been reduced, by a one electron system that interacts

with an external potential Vext through the formulation of the total energy of the system

Et[n] as a function of the electronic density n(r):

Et[n] = Ts[n] +

∫
Vext(r)n(r)d3r + EH [n] + Exc[n] (2.9)

where Ts corresponds to the kinetic energy of an isolated electron and where EH is

equal to the Coulomb self-interaction energy (Hartree energy). The latter describes

the electrostatic self-interaction energy of the charge distribution n(r) in terms of the

electronic coordinates r and r′:

EH [n] =
q2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(2.10)

The formulation of the total energy Et[n] of a system in terms of single-electron systems

as in Eq 2.9 is the achievement of Kohn and Sham (1965). The approximation is based

on the decomposition of the total energy of the system into a part that represents the

energy of the non-interacting electrons (single electrons) and the residual part related

to the interacting electrons. This is the way in which the kinetic energy functional

Tkinetic[n] and the Coulomb interaction functional Ecoulomb[n] are treated. The residual

parts are described by the so called exchange-correlation functional Exc that contains the
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differences Tcor = Tkinetic−Ts and Ecor+x = Ecoulomb−EH for the kinetic and Coulomb

functionals in which Tcor contributes most to the correlation energy. Ecor+x also contains

the exchange functional Ex which is due to corrections according to the Pauli exclusion

principle. There is no general exact expression for the exchange-correlation functional

Exc in terms of the electronic density so that it will depend on approximations that will

be briefly described in the next sections.

The effective single electron approach as defined in the Kohn-Sham formulation of the

total energy of the system allows us to determine the fundamental electronic ground

state of the total system in a self consistent way. The essential problem lies in solving

the density by minimization of the total energy Et[n] of the single electron system(s):

0 =
∂Et[n]

∂n(r)
=
∂Ts[n]

∂n(r)
+ Vs[n](r) (2.11)

so that the potential functional Vs[n](r) in the Hamiltonian of the single-electron Schrödinger

equation can be expressed as:

Vs[n](r) = V [n](r) + VH [n](r) + Vxc[n](r) (2.12)

where V [n](r) corresponds to the external potential the electrons move in. Eq. 2.12

is known as the Kohn-Sham potential. Minimization of Et[n] can now be replaced by

solving the Schrödinger-like Kohn-Sham equations of a single noninteracting electron

system in the potential Vs[n](r):

[
− h̄

2∇2

2m
+ Vs[n](r)

]
φi(r) = εiφi (2.13)
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through which the density n(r) of the original system can be obtained by the Kohn-Sham

orbitals φi:

n(r) ≡ ns(r) =
M∑
i

fi|φi(r)|2 (2.14)

where fi corresponds the occupation of the i’th orbital. Note that there is a strong sim-

ilarity between the insolvable Schrödinger equation of a many-particle system (Eq. 2.5)

and the Kohn-Sham equations (KS) (Eq. 2.12 and 2.14).

The iterative scheme to solve the KS equations starts with an initial guess n0(r), so

that the corresponding V 0
s [n](r) can be calculated, through which the single-electron

Schrödinger-like equation of the auxiliary system can be solved for the wavefunction φ0
i .

A new density n1(r) can be calculated from the φ0
i orbitals that allows to calculate again

V 1
s [n](r) to resolve the differential equation (Eq. 2.13). The iterative scheme is repeated

until a predefined cutoff convergence criterion has been achieved. The solution of the

KS-equations lead to the ground state electron charge density n0(r) and to the total

ground state energy of the system for a fixed set of nuclei (Eq. 2.9). Finally, geometry

optimization requires a second minimization scheme of the total energy of the system as

a function of the atomic positions (e.g. relaxed crystal structure).

2.1.2 Ab initio calculations: Application

2.1.2.1 The exchange-correlation functionals

• Local-density approximation

The most simple approach to define the exchange correlation functional is by as-

suming that both the exchange energy Ex[n] and correlation energy Ec[n] are local

functionals of the electronic density:

ELDAxc [n] =

∫
n(r){Ex[n] + Ec[n]}d3r (2.15)
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where Ex[n] and Ec[n] are energy functionals related to a uniform electron gas

(UEG). Although analytic expressions can be found for the exchange energy of

a UEG, quantum Monte Carlo (QMC) methods are often used to calculate the

correlation energy of a UEG. The above approach is known as the local-density

approximation or LDA and has been introduced by Kohn and Sham (1965).

• Generalized-gradient approximation

The exchange-correlation functional ELDAxc [n] does not account for local changes in

the electronic density as it occurs in any system that is spatially inhomogeneous.

The generalized-gradient approximation or GGA takes into account the gradient

of electronic density variations on the exchange Ex[n] and correlation Ec[n] func-

tionals:

EGGAxc [n] =

∫
n(r)f [n,∇n]{Ex[n] + Ec[n]}d3r (2.16)

There are several methods to calculate the functional term f [n,∇n] including the

density variation ∇n, such as the one formulated by Perdew, Burke and Ernzerhof

(1996) often referred to as the PBE formalism.

2.1.2.2 Crystal structure and Bloch’s theorem

To obtain the total energy of a system, in the framework of DFT, requires knowledge

of the local electronic density at any point of the system. The system, in our case is

defined by minerals where the atomic positions obey a certain motif: the crystal lattice,

for which the smallest unit (in the Bravais lattice formalism) in reciprocal space is known

as the first Brillouin zone. The electronic density and therefore the Kohn-Sham orbitals
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φi of a mineral system will consequently have the same periodicity as the crystal lattice:

φi = ui(r)eikr (2.17)

where each KS-orbital φi is expressed by a set of plane wave functions for which ui(r)

ought to be continuous and has to be calculated for an infinite number of k spanning just

the first Brillouin zone (Bloch’s theorem). Monkhorst and Pack (1976) have developed

a method which allows to sample the first Brillouin zone by constructing a mesh for a

finite number of discretized k-points. Sampling of the number of k-points is dependent

on the size of the system and has to be refined until convergence of the total ground state

energy has been achieved. The energy cutoff Ecutoff as defined in table 2.1 determines

the number of basis functions that will be used.

Atomic Species Fundamental Electronic Number of Ecutoff (eV)
electronic configuration valence

configuration pseudopotential electrons

Mg (US) [Ne]3s2 p6s2 8 365.887
Mg (PAW) [Ne]3s2 s2p0 2 210.083
Si (US) [Ne]2s22p2 s2p2 4 300.0
Si (PAW) [Ne]2s22p2 s2p2 4 245.435
O (US) [Ar]2s22p4 s2p4 6 395.994
O (PAW) [Ar]2s22p4 s2p4 6 400

Table 2.1: Characteristics of the pseudopotentials related to the US-pseudopotentials and PAW-
method regarding the atomic species in Mg2SiO4 wadsleyite and ringwoodite from the
VASP-documentation. The energy cutoff Ecutoff shown are the minimum cutoff values
that should be used for the individual atoms.

2.1.2.3 Pseudopotentials

The nuclei in DFT appear only in the form of a potential V [n](r) acting on the electrons.

The electronic degrees of freedom can be further reduced by replacing the isolated nuclei

by effective ions: the nucleus plus the inner atomic electrons defined in a zone r < rc. Of-
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ten, ab initio calculations make use of potentials that replace the all-electron-potentials

by the potential energy of the interactions between the effective ions and the remain-

ing valence electrons which mainly determine the material properties. These potentials

are known as pseudopotentials. The ultrasoft (US)-pseudopotentials (Vanderbilt 1990;

Kresse and Hafner 1994) smoothen the pseudo wavefunctions of the inner core regions

r < rc, where the orbitals of the ”real” electrons would undergo heavy oscillations. The

projector augmented wave (PAW) method, on the other hand, accounts for the orbitals

of the inner electrons as well by using a linear transformation of the total electron wave-

function into a pseudo wavefunction in the region r < rc. This method is developed

by Blöchl (1994). Apart from the all-electron-methods, the PAW is considered to be

one of the most accurate method to handle the interactions between the nuclei and the

electrons, whereas the US-potentials are not norm-conserving but also the least time

consuming. See table 2.1 for the essential characteristics of the US-pseudopentials and

PAW-method that have been used in this study. In our calculations, we have been using

Ecutoff=600 eV for all atoms and for both US and PAW.

2.1.2.4 VASP: wadsleyite and ringwoodite

All ab initio based calculations are performed with the VASP code (Kresse and Hafner

1993; Kresse and Furthmüller 1996) using the GGA (PBE, Perdew et al. (1996)) and

US pseudopotentials or the PAW method. The outermost core radii for the Mg, Si and

O atoms are set to 1.058, 0.953 and 0.820 Å respectively. The first Brillouin-zone has

been sampled using the Monkhorst-Pack grid adapted to each different simulation with

an electronic density that is expanded on a plane wave basis set with a single energy

cut-off value Ecutoff of 600 eV to impose a convergence better than 4×10−5 eV per atom

for the total energy. As an illustration, Fig. 2.1 shows the energy convergence test of the

k-point sampling of the first Brillouin zone for a primitive cell of Mg2SiO4 ringwoodite
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Figure 2.1: Monkhorst & Pack sampling of the first Brillouin zone: ground state energy evolu-
ation as a function of the number of k-points in a unit cell of Mg2SiO4 ringwoodite
at 20 GPa using ab initio calculations for an energy cutoff Ecutoff=600 eV on the
US-pseudopotentials.

at 20 GPa. It can be seen that sampling with about 8 k-points is sufficient in this case,

using the US-pseudopotentials.

Both the γ-surfaces and the elastic constants are calculated by ab initio atomistic

simulations. The perfect crystal structures will be obtained by a full relaxation of the

atomic positions and box volume V0 of the unit cells at the appropriate pressure condi-

tions. Any further system will be constructed upon those unit cells with fixed volume

V ′ and performed under ambient pressure conditions.

2.1.3 γ-Surface: generalized stacking fault energies

Generalized stacking fault surfaces (γ-surfaces) are based upon a purely theoretical con-

cept. A γ-surface maps the energy landscape that corresponds to an excess energy γ per

unit area due to an imposed discontinuous shear in the crystal structure along a given

crystallographic (slip) plane. This is achieved by calculating the energies corresponding
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to rigid displacements (shear) of the crystal half above with respect to the one below the

stacking fault plane (Christian and Vı́tek 1970). As such, the concept relies on mapping

the energies required to create any stacking fault that is possible for a given plane that

is constrained to the smallest unit of the periodic crystalline lattice (see Fig. 2.2):

γ =
Estacked − Eperfect

AB
(2.18)

where Estacked is the total energy of the stacked crystal, Eperfect is the total energy of the

perfect crystal and A and B are the dimensions of the (slip) plane. Since a γ-surface is

purely theoretical, there is no way to reproduce it experimentally. However, the method

enables us to identify the existence of stacking faults in the material by the presence

of metastable energy minima. An example is shown for the {001} in ringwoodite at 20

GPa in Fig. 2.2. The metastable energy minimum along a 1/2〈110〉 direction shows the

existence of a stacking fault in this plane. The corresponding stacking fault is a planar

defect and exhibits an energy equal to the γ-value. This, on the other hand, could be

compared to experimental measurements on stacking faults in single crystals.

Besides, the γ-surfaces also form an essential tool to obtain the first order elementary

characteristics of the potential manifestation of slip systems in a crystal. A dislocation

is a line defect characterized by an elementary quantity of lattice shear: Burgers vector

b, that can be associated to the energy excess due to a discontinuous shear of a perfect

crystal lattice. The lowest energy shear path along the direction with the shortest lattice

periodicity with respect to different potential glide planes therefore allows us both to

identify the best candidate of the Burgers vector on each potential plane and to indicate

indirectly the slip system which potentially exhibits the lowest energy configuration.

Besides this semi-qualitative information on the potential slip systems in the material,

the γ-surfaces also form the key ingredient for modelling dislocation core structures with

the Peierls-Nabarro(-Galerkin) method, which will be dealt with in the next section.
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Figure 2.2: Illustration of the supercell constructions built to calculate the corresponding γ-surface
with respect to a given stacking fault plane (potential glide plane) indicated in red.

All γ-surfaces are obtained by the use of ab initio calculations to explicitly incorporate

the pressure-induced changes in the electronic structure. To calculate the γ-surfaces,

supercells are built in a Cartesian frame of reference for each potential slip plane defined

by its normal and shear directions. The γ-surface is calculated by imposing a shear

displacement to the part above the stacking fault plane of the supercell. The crucial

step consists in defining this stacking fault plane by choosing a cutting level in order to

separate the upper half from the lower half of the supercell in such a way that a minimum

number of valence electrons involved in the atomic bonding have to be destroyed in order
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Figure 2.3: The influence on the stacking fault energies of a supercell construction with and with-
out a vacuum buffer (fully 3-D periodic boundary conditions). Both γ-lines shown
correspond to the 1/2〈110〉 direction of the {001} in Mg2SiO4 ringwoodite at 0 GPa.

to create the stacking faults. In both minerals, Mg2SiO4 wadsleyite and ringwoodite, it

is possible to find a cutting level with respect to all the (stacking fault) planes considered

in this study, in such a way that it avoids to cut the strong Si-O bonds. All atoms, except

those located near the external boundary layers are allowed to relax perpendicular to

the shear plane in order to minimize the energy of the γ-surfaces. Complete relaxation

of the atoms in every direction would result in a disappearance of the stacking fault,

since the perfect crystal structure exhibits the lowest energy configuration. Up to 16

atomic layers (depending on the supercell geometry) are used to be able to relax the

crystal structure and to converge the total energy. An extra vacuum buffer of 6 Å has

been added in the direction normal to the slip plane to reduce the number of atoms

and to ensure the lack of interaction between stacking fault replicas as a result of the

use of periodic boundary conditions. The disadvantage, however of the introduction

of a vacuum buffer is that the free crystal surfaces that have been created in this way

may carry a certain amount of charge which may interact with the stacking fault and

influence the total energy of the calculations. Both approaches (with and without a
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vacuum buffer) have been investigated for which the γ-lines in the 1/2〈110〉 direction

of the {001} in Mg2SiO4 ringwoodite at 0 GPa are shown in Fig. 2.3. The example

shows that there are only minimal differences between both approaches for which the

supercell construction with an extra vacuum buffer results in the lowest excess energy

configuration. The excess energy values are found to be in good agreement at the

metastable minima, which gives the energy of the stacking fault in that plane. We

adopted the method with addition of the vacuum buffer (as it gives the lowest excess

energies) in all the further calculations of γ-surfaces in this study. Finally, Fig. 2.2 gives

an illustration of the supercell constructions in order to produce the γ-surfaces with

respect to a given stacking fault plane (corresponding to a potential glide plane).

2.1.4 Elastic constants

The athermal elastic constants are calculated at the appropriate pressure conditions by

imposing small (elastic) deformations between a maximum of −3% ≤ ε ≤ +3%. The

energy excess ∆E between strained and unstrained unitcells are obtained by using ab

initio calculations. The applied strain is given in matrix notation with respect to the

strain tensor components εij :



ε1

ε2

ε3

ε4

ε5

ε6


=



ε11

ε22

ε33

2ε12

2ε14

2ε23


and the induced stress, according to elastic deformation, is equal to σi = cijεj , where

cij corresponds to the stiffness tensor. The amount of elastic work W performed can be
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expressed as:

W =
1

2
σiεi =

1

2
cijεjεi (2.19)

The confining pressure p, in case of applying εi with i=1,2,3, performs work as well,

which has to be taken into account. In that case, the elastic constants constituting the

stiffness tensor cij can be obtained with the symmetric substitution tensor cijkl for which

i=k and j=l, by a variation in the application of ε1 = ε2 = ε3 = ε:

• Applying either ε1, ε2 or ε3 → (i=j)

∆E

V0
= −pεi +

1

2
cijklδklεjεi (2.20)

• Applying a combination of εi and εj → (i 6= j)

∆E

V0
= −p [εi + εj ] +

1

2
[cijklδjl + cijklδik + 2cijklδkl − 2p] εjεi (2.21)

The pressure will not be involved in case of the application of either ε4, ε5 or ε6 →

(i=j):

∆E

V0
= 2cijklδklεjεi (2.22)

In the above equations, δαβ corresponds to the Kronecker delta. All subscripts are writ-

ten in the Einstein summation convention. The elastic constants are finally determined

by fitting ∆E versus ε by a second order polynomial: ax2 + bx+ c, for which the curve

related to c44 in Mg2SiO4 ringwoodite at 20 GPa is shown in Fig. 2.4 as an example.
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Figure 2.4: The evolution of the energy excess ∆E with strain ε4 = ε in order to calculate c44 in
Mg2SiO4 at 20 GPa.

2.2 Resistance to dislocation glide: continuum-atomistic

approach

Là, tout n’est qu’ordre et beauté ...

Charles Baudelaire.

(L’invitation au voyage, Fleurs du Mal.)

2.2.1 Introduction

A dislocation is a line defect characterized by an elementary quantity of lattice shear

given by the Burgers vector b. The local lattice distortions are caused by the atomic

displacements within an arranged crystalline lattice. The distortions are the largest at

the center of the defect. The spread of the Burgers vector in the glide plane mainly de-

termines the core structure of the dislocation (Fig. 2.5). It was Sir Rudolf Ernst Peierls
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who first suggested in his 1940 paper: ”The size of a dislocation” (Peierls 1940) that the

glide motion of a dislocation under an external state of stress is dependent on the exten-

sion of the dislocation core in the glide plane. The size of a dislocation is described by

the core extension that defines the non-linear atomic misfit displacements that build the

defect. This core structure mainly determines the amount of lattice friction opposed to

the motion of the defect. It is the lattice friction that represents the intrinsic resistance

to the glide motion of dislocations. A description of the core structure of a dislocation

is therefore essential to model its intrinsic glide mobility. The dislocation core structure

is strongly dependent on the local non-linear atomic interactions around the dislocation

line. The use of a fully atomistic approach would therefore be the most obvious choise

to model dislocation core structures in crystalline materials. This can be done by using

a first-principles approach or by the use of an empirical potential that reproduces the

material properties at the atomic scale. Since first-principles based methods are less

efficient as the simulation boxes require a large number of atoms to model dislocation

core structures, the use of empirical potentials is the most conventional. Studies in

which a fully atomistic approach is used to model dislocations in minerals include Woo

and Püls (1977), Walker et al. (2004), aWalker et al. (2005), bWalker et al. (2005),

Carrez et al. (2008) and Hirel et al. (2014). However, in the absence of a suitable

appropriate empirical potential to model the core structure of line defects, a hybrid

continuum-atomistic Peierls-Nabarro-Galerkin approach can be used which is based on

the one-dimensional Peierls-Nabarro model (PN-model). Studies of dislocations in min-

erals using the Peierls-Nabarro theory include Miranda & Scandolo (2005), Carrez et al.

(2006), Carrez et al. (2007), Carrez et al. (2009), Durinck et al. (2007), Ferré et al.

(2007), Ferré et al. (2009), Metsue et al. (2010), aMetsue et al (2010) and Gouriet et

al. (2014) on MgO periclase, Mg2SiO4 ringwoodite, MgSiO3 post-perovskite, Mg2SiO4

wadsleyite, CaMgSi2O6 diopside, Mg2SiO4 forsterite, CaSiO3 perovskite and MgSiO3

perovskite, respectively.
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In order to glide from one to the next stable position in the crystal structure, the

dislocation core has to overcome an energy barrier as a consequence of friction exerted

by the crystal lattice that is opposed to the motion of the dislocation. In absence of

thermal activation at 0 K this barrier is called the Peierls potential. The maximum of

the derivative of this potential, with respect to position of the dislocation, is propor-

tional to the Peierls stress τp which can be seen as a pure mechanical measure of the

lattice friction experienced by the dislocation. Lattice friction quantified by the Peierls

potential can be calculated in the framework of the PN-model by making use of the

relaxed core structure of the dislocation.

The aim of this chapter is to describe the methods used to obtain the core structures

of dislocations in Mg2SiO4 wadsleyite and ringwoodite and the way in which lattice

friction as opposed to the glide motion of dislocations is quantified in the framework of

the Peierls-Nabarro theory. This chapter is divided into four sections. The first section

briefly describes the main features of the 1D PN-model on which the PNG-method is

based. The PNG-model itself is described in the second section. The following two

sections are dedicated to the description of the core structure (section 2.2.3) and the

quantification of the lattice friction (section 2.2.4) with respect to the glide of disloca-

tions.

2.2.2 Peierls-Nabarro model in one dimension

The PN-model was first introduced by Peierls (1940) and later refined and completed

by Nabarro (1947) and is based on both continuum elasticity theory and local atomic-

scale information. In the PN-model (Fig. 2.5), the crystal is considered to be an elastic

continuum which is divided into two elastic semi-infinite half crystals A and B, separated

by a misfit region C of inelastic (atomic) displacements constrained into the glide plane

in which the dislocation core spreads in the direction normal to the dislocation line.
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Figure 2.5: Illustration of the conceptual idea of the Peierls-Nabarro model by making use of an
edge dislocation. a) Edge dislocation illustrating the atomic misfit region in between
two semi-infinite half crystals. The atomic misfit can be seen as an interplanar misfit
between atomic planes perpendicular to the glide plane as a result of the elastic and
non-elastic interaction forces between both half crystals. b) At equilibrium conditions,
both forces balance each other which results in the local misfit displacements ux or the
disregistry S(x). c) The local misfit displacements ux is a function that evolves from
−b/2 to b/2 and shows the spread of the dislocation core structure in the glide plane
in the direction of glide.

Figure 2.5 illustrates the case of an edge dislocation in the context of the PN-model. The

same theory, however, is applicable independent of the character of the dislocation. The

dislocation core in the PN-model is based on a continuous distribution of infinitesimal
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shear S(x) across a given glide plane:

S(x) = ux(x) +
b

2
(2.23)

where ux(x) corresponds to the relative local atomic (misfit plane) displacements in the

region C between the halfcrystals A and B: ux(x) = uax(x) − ubx(x) (see Fig. 2.5). We

will call ux from now on the local misfit displacement. The mismatch S(x), which is

a direct measure of the misfit displacement ux, is called the disregistry function. The

disregistry S(x) therefore quantifies the spread of the dislocation core structure in the

direction x normal to the dislocation line in a given glide plane. The derivative of the

disregistry dS(x)/dx describes the continuous local Burgers vector density ρ which is a

measure of the localized lattice misfit produced by the dislocation core on the glide plane

in the crystal structure. The local stress generated by the shear displacements S(x) can

thus be represented as a distribution of infinitesimal Burgers vectors db which implies

that S(x) has to obey the following boundary conditions:

 limx→−∞ S(x) = 0

limx→+∞ S(x) = b
(2.24)

so that summation of all displacements by the infinitesimal Burgers vectors db along

the direction of spread in the glide plane results in following normalisation condition

(Eshelby 1949):

b =

∫ +∞

−∞

(
dS(x)

dx

)
x=x′

dx′ =

∫ +∞

−∞
ρ(x′)dx′ (2.25)

The misfit displacements out of the glide plane are neglected in this approach.

Two distinct types of forces are generated by the dislocation system:
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• Elastic interaction forces between the infinitesimal dislocation segments db and

the half crystals. The total elastic energy of the system is given by the summation

of work performed by the elementary infinitesimal dislocation segments db:

Eelastic = 1/2

∫ +∞

−∞
σby(x)S(x)dx (2.26)

The stress σby(x) induced by the local Burgers vector distribution at point x′ along

the spreading the direction in the glide plane equals:

σby(x) =
K

2π

∫ +∞

−∞

ρ(x′)

x− x′
dx′ (2.27)

where K is the energy coefficient which in the isotropic case is equal to K = µ and

K = µ/(1 − ν) for screw and edge dislocations respectively. The above stress σby

tends to keep the misfit aligned with the atomic planes in bulk of half crystals A

and B by spreading out the shear S(x). The resulting elastic energy becomes :

Eelastic =
K

4π

∫ +∞

−∞

∫ +∞

−∞

ρ(x′)S(x)

x− x′
dxdx′

= −K
4π

∫ +∞

−∞

∫ +∞

−∞
ρ(x)ρ(x′)log|x − x′|dxdx′ (2.28)

• Non-elastic restoring forces between atoms of the misfit planes on either side

A and B of the glide plane. This force tends to align the atoms across the glide

plane by reducing the spread of the shear S(x). The total energy Eγ as a result

of the work done by these forces across the glide plane is given by the sum of all

stacking fault energies γ as function of shear S(x) along the spreading direction:

Eγ =

∫ +∞

−∞
γ(S(x))dx (2.29)

In the original PN-model, the inelastic stacking fault energy γ(S(x)) was considered
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to be a simple sinusoidal function due to the periodicity of the crystal lattice:

γ(S(x)) =
Kb

π

(
1− cos

(
2πS(x)

b

))
(2.30)

In 1994, Joos et al. already mentioned that the restoring forces ∇γ(S(x)) in a real

crystal may be significantly different from a sinusoidal function. In 1970, Christan

and Vı́tek proposed that atomic scale generalized stacking fault energies (GSF)

can be used to calculate the inelastic restoring forces. The γ-lines or γ-surfaces

therefore, have to be calculated at the atomic scale as discussed in the section 2.1.3

(Vı́tek 1968; Christian and Vı́tek 1970).

If the system is in equilibrium, both elastic and inelastic forces balance each other.

The total classical Hamiltonian H of the dislocated crystal system is given by:

H =

∫ +∞

−∞
γ(S(x))dx− K

4π

∫ +∞

−∞

∫ +∞

−∞
ρ(x)ρ(x′)log|x− x′|dxdx′ (2.31)

Minimization of the Hamiltoninan H leads to the effective stable dislocation core struc-

ture S(x). Eq. 2.31 can be reduced to an Euler-Lagrange equation by making use of the

Lagrange multiplier λ:

H =

∫ +∞

−∞
γ(S(x))dx− K

4π

∫ +∞

−∞

∫ +∞

−∞
ρ(x)ρ(x′) log |x− x′|dxdx′

+ λ

∫ +∞

−∞
ρ(x)dx (2.32)

for which minimization leads to the well known Peierls-Nabarro equation (Peierls 1940;

Nabarro 1947):
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0 =
K

2π

∫ +∞

−∞

ρ(x)dx′

x− x′
+
dγ(S(x))

dx
(2.33)

Let us now solve Eq. 2.33 in the most simple case for which the stacking fault energy

γ(S(x)) is given by a pure sinusoidal function as in Eq. 2.30:

K

2π

∫ +∞

−∞

ρ(x)dx′

x− x′
= 2K sin

(
2πS(x)

b

)
= τ0 sin

(
2πS(x)

b

)
(2.34)

where τ0 is the ideal shear stress (ISS). We will try a solution for the disregistry S(x)

and its derivative, the local Burgers vector density ρ(x) as proposed by Peierls (1940):

1. The disregistry S(x) = b
2 + b

π arctan
(
x
ξ

)
2. The local Burgers vector density ρ = dS(x)

dx = b
π

ξ
x2+ξ2

− K

2π

ξb

π

∫ +∞

−∞

1

x− x′
dx

x′2 + ξ2
= τ0 sin

(
π + 2 arctan

(
x

ξ

))
= −τ0sin

(
2 arctan

(
x

ξ

))
(2.35)

that can be reduced to

−K
2π

ξb

π

πx

(x2 + ξ2) ξ
= −2τ0

xξ

x2 + ξ2
(2.36)

which results in the condition that ξ = Kb/4πτ0, where ξ is the halfwidth of the disloca-

tion core structure. The half-width ξ of a dislocation can be seen as the domain between

half of the maximum of the Burgers vector density. The above demonstrates that the
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disregistry function S(x) as a proposed solution is a function of the γ through the ISS

τ0: S(ξ(γ(τ0))).

The 1D PN-model however is based on strong a-priori assumptions, such as a pla-

nar core spreading, a 1D reconstruction of the dislocation core and the impossiblity of

treating dislocations that exhibit both edge and screw components or dissociations into

non-collinear partials. In other words, the model reduces a dislocation to a one dimen-

sional structure in a 3-D crystal lattice. Another disadvantage are the strong limitations

in modelling very confined core structures. The restrictions of the 1-D model as such has

been discussed in Schoeck (2005) and Schoeck (2006). The assumptions finally, may be in

some cases too oversimplified to model dislocation core structures in complex materials

such as minerals. A good example of this is the inability of the PN-model to handle the

non-planar core spreading of the [001] screw dislocations in Mg2SiO4 forsterite (Durinck

et al. 2007; Carrez et al. 2008).

2.2.3 Peierls-Nabarro-Galerkin model

The dislocation core structures in Mg2SiO4 wadsleyite and ringwoodite (at the appro-

priate pressures) are calculated with the PNG model based code Cod2ex (Denoual 2004;

Denoual 2007). This model is a generalization of the PN-model as described in the para-

graph above, in the framework of the element-free Galerkin method. It allows for the

introduction of multiple glide planes which makes it possible to describe the dislocation

core structures in three dimensions, however constrained to the geometries of the intro-

duced glide planes. Just as in the PN model, the configuration of the most stable core

structure emerges naturally by minimization of the total energy of the system composed

of the elastic strain energy and the inelastic stacking fault energy across the potential

glide plane(s). The latter is given as an interplanar potential that mimicks all inelastic

forces acting across the glide plane(s). The interplanar potential is directly derived from
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the γ-surfaces. Minimization of the energy occurs through a continuous field approxi-

mation. The introduction of a perfect Volterra dislocation on a slip plane Σ within the

crystal volume V leads to the formation of two distinct fields:

1. A continuous three dimensional elastic field u(r) of the space contained by the

volume V .

2. A discontinuous two-dimensional field f(r) expressed in the orthonormal basis that

spans the plane(s) Σ.

Therefore u(r) gives a representation of the continuous deformation around the dislo-

cation core, whereas f(r) describes the displacements by crossing the glide plane Σ.

The total deformation of the crystal system containing a dislocation introduced into the

plane Σ is given by the homogeneous strain εtij :

εtij = εeij + εfij =
1

2
(ui,j + uj,i) (2.37)

where u corresponds to the displacement field and where εeij are the pure elastic and εfij

the pure inelastic parts of the components εtij of the total strain (tensor) generated. The

PNG model is based on a description of the total Langrangian of the system, given by:

−L(u, f) =

∫
Σ
Esf (f(r))dΣ +

∫
V
{Ee(u(r), f(r))− 1

2
Ωu̇(r)2}dV (2.38)

where Ω corresponds to the material density, u̇ is equal to the time derivative du/dt

of displacement field u(r) and Esf is equal to the inelastic stacking fault energy. The

latter is given by the γ-surfaces produced through atomistic simulations, from which the

purely elastic part has been extracted. Further, Ee is equal to the total elastic strain

energy:

Ee(u, f) =
1

2
{εeijCijklεekl} (2.39)
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where Cijkl corresponds to the full stiffness tensor. Note that the Lagrangian of the sys-

tem (Eq. 2.38) is very similar and strongly related to the Hamiltonian of the dislocation

system in the PN-model (Eq. 2.31).

Minimizing the Lagrangian of Eq. 2.38 with respect to u(r) and f(r) leads to the

relaxed dislocation core structure within volume V . The lowest energy configuration

arising from the initial introduction of the dislocation can lead to a Burgers vector dis-

tribution within multiple glide planes. An element free Galerkin method is used to

compute the evolution of u(r). Minimization of f(r) is achieved by using a time depen-

dent Ginzburg-Landau (TDGL) type of viscous relaxation mechanism:

ḟ(r) =
1

ξ

∂L(u, f)

∂f(r)
(2.40)

where ξ is a kinetic parameter which corresponds to the ”relaxation viscosity” of the

glide plane.

Discretization within the element-free Galerkin method is achieved through a nodal

structure on volume V and surface Σ. The volume V is equal to a simulation cell repre-

sented by the crystal on which the nodal mesh is constructed as a replica of the crystal

structure by the introduction of the planes Σ corresponding the generalized stacking

fault energies (GSF) or γ-surfaces calculated (atomistically) on those planes in the crys-

tal.

The three main ingredients to calculate the relaxed dislocation core structure therefore

are:

1. Crystal structure of the material.

2. γ-surfaces of the potential glide planes (calculated atomistically).

3. Elastic constants of the full stiffness tensor.
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Figure 2.6: Illustration of the conceptual idea of the Peierls-Nabarro-Galerkin model for the mesh
construction suitable to determine the core spreading of the 1/2〈110〉 screw dislocation
in Mg2SiO4 ringwoodite. The crystal lattice of ringwoodite is reproduced by the γ-
surfaces on a nodal mesh indicated in green. They are those planes in which the
dislocation core structure is able to spread after the initial introduction of a Volterra
dislocation (dark green nodes) where the [110]-direction points out of the paper. Linear
elasticity is calculated on all purple nodes, which means all the nodes not belonging
to the γ-surfaces.

Fig. 2.6 gives an example of the nodal mesh used to calculate the core structure of the

1/2〈110〉 screw dislocation in Mg2SiO4 ringwoodite. The γ-surfaces of the potential glide

planes (green dots) reconstruct the crystal structure. A multiplicity of all potential glide

planes is used to reproduce the periodic variation of the total dislocation core energy

with respect to the crystal structure (Denoual 2007). The darkgreen nodes within the
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mesh in Fig. 2.6 represent the plane of introduction of the initial dislocation that creates

a rigid step in the mesh in the direction and equal to the modulus of the Burgers vector.

The dislocation is considered to be infinite in the direction of the line. Free boundary

conditions are used in the simulation as the elastic field caused by the dislocation are

imposed on the boundaries of the simulation cell. A value of the kinetic parameter

ξ−1=10−6 m/(Pa s), for all simulation cells constructed in this study, is found to be

sufficient to guarantee complete convergence of the calculations.

2.2.3.1 Dislocation core structures

The principal outcome of the PNG model are the final displacement fields u(r) and

f(r) for a relaxed dislocation core structure. The final core structure is described as

the spread of the Burgers vector distribution in the potential glide planes Σ, in the

direction x perpendicular to the line, by the inelastic displacement field fΣ(x). The

function fΣ(x) therefore can be represented as the distregistry SΣ(x) in the plane Σ

as formulated in the framework of the PN-model (chapter 1.2). Following Joos et al.

(1994), the disregistry SΣ(x) of the dislocation core in plane Σ has to satisfy the general

solution of the Peierls-Nabarro equation:

SΣ(x) =
bΣ
2

+
bΣ
π

N∑
i=1

αi arctan

(
x− xi
ξi

)
(2.41)

where bΣ is equal to the Burgers vector distribution in the plane Σ

bΣ =

∫ +∞

−∞
ρΣ(x)dx (2.42)

and where ρΣ(x) is equal to the local Burgers vector density:

ρΣ(x) =
dSΣ

dx
=
bΣ
π

N∑
i=1

αi
ξi

(x− xi)2 + ξ2
i

(2.43)



70 2.2. Resistance to dislocation glide: continuum-atomistic approach

where αi, ξi and xi are variational constants which can be obtained using a least squares

minimization by fitting fΣ(x) with the function given by Eq. 2.41. Both SΣ(x) and ρΣ(x)

have to obey to the normalisation condition of Eq. 2.25 which requires that
∑N

i=1 αi = 1.

Since edge dislocations are confined to their plane of introduction, the complete Burg-

ers vector distribution for the edge character(s) after relaxation will be established in

the plane of initial introduction. For the simple case of a pure edge dislocation, the PN

and the PNG-model will give the same result according to Eq. 2.41, constrained to the

plane of introduction Σ. The Burgers vector for screw dislocations, on the other hand,

can be distributed in all potential glide planes.

Once the relaxed core structure of the dislocation is known, the Peierls potential Vp

and its derivative with respect to the dislocation position, the Peierls stress τp, can be

quantified since it is principally the core structure of a dislocation that determines the

amount of lattice friction which is opposed to the glide motion of the dislocation in the

crystal lattice.

2.2.4 Lattice friction

The intrinsic lattice resistance to the glide motion of a dislocation can be quantified

in terms of energy by the Peierls potential Vp. The potential Vp describes the energy

along the gliding direction which the dislocation has to face in order to move from one

to the following stable position in the crystal lattice. Under equilibrium conditions in

the absence of an external state of stress, the dislocation is placed in the valley(s) of the

Peierls potential. The Peierls valleys are separated by the shortest lattice periodicity in

the direction of glide: the Peierls periodicity a′. The maximum of the derivative of Vp

is equal to the Peierls stress which is a pure mechanical measure of the lattice friction

opposed to dislocation motion. The Peierls stress τp is therefore defined as the resolved

shear stress at 0 K (i.e. the stress to be applied on the dislocation, in the absence of

thermal activation, to make it cross the Peierls barrier).
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The core structure of a dislocation, in the scheme of the PN-model, is described by

a continuous distribution of shear across the glide plane, given the local misfit displace-

ment ux(x) or in terms of the disregistry S(x). Lattice discretisation of the atomic

structure has to be reintroduced to be able to describe the lattice friction opposed to

dislocation glide. This can be achieved by calculating the Peierls potential Vp as the

total energy cost of displacing the dislocation rigidly form one to the next Peierls valley.

The potential is obtained by a summation of the energy cost relative to the dislocation

core displacement χ in the crystal structure. The Peierls potential is the result of two

main energy constributions as a function of the core displacement χ:

1. summation of the misfit energy between pairs of crystal planes (Christian and

Vı́tek 1970; Joós et al. 1994)

2. summation of the elastic strain energy caused by the misfit between pairs of crystal

plains (Wang 2006)

The potential Vp is obtained by summing the misfit and elastic strain energy between x

pairs of crystal planes, normal to the glide plane, by moving the dislocation core rigidly

through the crystal structure by a′:

Vp(χ) =
+∞∑

x=−∞
γ(ux)a′ +

a′

2

[
+∞∑

x=−∞
F a(ux)uax + F b(ux)ubx

]
(2.44)

where the local misfit displacement ux is a function of the core displacement χ:

ux(χ) = ux(xa′ − χ) (2.45)

for which the core displacement χ → [0 : a′]. The first term on the right hand side of

Eq. 2.44 corresponds to the misfit interaction energy γ and is equal to the stacking fault

energy per unit area of the primitive cell of the glide plane. The second term on the
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right hand side of Eq. 2.44 describes the total elastic strain energy in the misfit region

C of Fig. 2.5, in which the elastic restoring force is given by:

F a,b(ux) = −
[
∂γ

ux
(ux)

]a,b
(2.46)

As already mentioned in section 2.2.2, ux(x) corresponds to the relative local atomic

(misfit plane) displacements in the region C between the half crystals A and B: ux(x) =

uax(x)−ubx(x). The superscripts a and b are used to indicate a crystal half plane belonging

to half crystal A or B respectively.

The stress necessary to overcome the Peierls barrier at any point along the glide

direction χ without thermal activation is defined as the Peierls force Σ(χ):

Σ(χ) =
1

b

∂Vp(χ)

∂χ
=

1

b
∇Vp(χ) (2.47)

where b is equal to the modulus of the Burgers vector. The maximum of Σ(χ) is equiv-

alent to the Peierls stress τp:

τp = max{1

b
∇Vp(χ)} (2.48)

Classically, as done in Peierls (1940), the Peierls potential Vp is estimated through the

misfit term only (Joós et al. 1994; Schoeck 1999). The stable configuration of a disloca-

tion core, in this case, exhibits a maximum instead of a minimum energy. However, it is

also the elastic strain energy, as a consequence of the misfit between the atomic planes,

that varies by displacing the dislocation core structure rigidly through the crystal lattice

(Wang 2006). Both misfit and elastic strain energy contributions are strictly opposite in

sign. The addition of both energy contributions as a function of the direction of motion

on the glide plane results in the effective Peierls potential with a minimum energy at the

stable lattice configurations. Adding the contribution of the elastic strain energy to the
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Peierls potential consequently leads to an overall lower Peierls barrier than a potential

which is purely defined by the misfit energy.
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Figure 2.7: Example of the core structure and associated Peierls potential with Peierls periodicity
a′ for a compact screw dislocation core in a simple cubic lattice. a) The local misfit
displacement ux associated to the disregistry S(x) which describes the spread of the
dislocation core. b) Calculation of the contribution of the misfit and the elastic strain
energy to the total energy given by the Peierls potential for a screw core in a simple
cubic lattice. Both misfit and elastic strain energy have opposite signs which leads to
an effective potential. It is clear that by calculating the potential as the misfit energy
between pairs of atomic plains leads to a situation where the dislocation exhibits the
maximum instead of the miminum energy configuration at equilibrium position.

The effect of the contribution of both misfit and elastic strain energy to the Peierls

potential is illustrated in the scholastic example of a screw dislocation in a simple cubic

lattice, with a lattice constant d, Burgers vector modulus b, Peierls periodicity a′, such

that d = b = a′ = 1 Å. Taking the assumption of a pure sine-like force field Fr in the

glide plane leads to the following formulation of the γ-line:

γ(ux(x)) =
U

2

[
1− cos

(
2πux(x)

b

)]
→

Fr(x) =
dγ

dux
=
πU

b
sin

(
2πux
b

)
(2.49)
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for which U = 2Kb/π. The analytical solution (Eq. 2.41) of the PN equation in this

simple case is given by:

ux(x) =
b

π
arctan

(
x

ξ

)
(2.50)

where the half-width ξ of the screw dislocation core is equal to ξ = Kb/4πτ0 by using

the second derivative ∂2γ/∂u2
x → µ = 2πτ0. Having the misfit displacement ux and the

γ-line, the Peierls potential can be obtained as described in Eq. 2.44. Figure 2.7 shows

the separate contribution of the misfit and the elastic strain energy to the total energy

defined as the Peierls potential Vp as a function of the core displacements between [0 : a′].

This simple example shows that there is a tendency to have lower Peierls potentials by

taking into account both the contributions of the misfit and elastic strain energy to the

potential instead of only the misfit energy. However, the exact contribution of both

misfit and the elastic energy to the Peierls potential depend strongly on the complexity

of shape and symmetry of the disregistry function.

2.3 Thermally activated glide of dissociated dislocations

It can scarcely be denied that the supreme goal of all theory is to make

the irreducible basic elements as simple and as few as possible without

having to surrender the adequate representation of a single datum of

experience.

Albert Einstein.

(On the Method of Theoretical Physics, 10 June 1933.)
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2.3.1 Introduction

As we have seen in chapter 2.2, the Peierls potential Vp describes the energy a dislocation

has to face in order to move from one to the following stable position in the crystal lattice

as a consequence of the interaction between the dislocation and the crystal lattice. Un-

der equilibrium conditions, in the absence of an external state of stress, the dislocation

is well placed in the valley(s) of the Peierls potential. The stress necessary to move a

dislocation without any thermal activation, at 0 K, is maximal and equal to the Peierls

stress τp. However, at finite temperatures, the dislocation is able to move at τ < τp since

thermal activation allows segments of the dislocation line to bow out under an applied

stress (Seeger and Schiller 1962; Dorn and Rajnak 1964; Guyot and Dorn 1967; Celli et

al. 1963; Hirth and Lothe 1982). In case of the existence of a high Peierls potential,

thermal activation is controlled by the nucleation and propagation of unstable kink-pairs

that allow the dislocation line to slip through the crystal lattice from one Peierls valley

to the next (Kubin 2013). Different models exist to describe this process, such as the

line-tension model (Friedel 1964), pure kink-kink interaction model (Seeger 1981) and

the elastic interaction model (Koizumi et al. 1994) suitable at the low stress regime, ini-

tially proposed by Koizumi et al. (1993) and applied by Amodeo et al. (2011) on MgO.

In the latter cases, the elastic interaction model was applied to undissociated disloca-

tions. In the present work, we will adopt the elastic interaction model and extend this

approach to collinear dissociated dislocations as they occur in wasleyite and ringwoodite.

Therefore, kink-pair nucleation must be handled on two partial dislocations. The model

allows us to obtain the enthalpy variation associated with a critical dislocation bow-out

over the Peierls potential by the extremum of the corresponding total energy variation.

The latter depends on the dislocation core structures, the Peierls potential and the asso-

ciated Peierls stresses. Dislocation mobilities can be finally determined from the stress

dependence on the nucleation rate of kink-pairs. The rate of kink-pair nucleation is gov-

erned by the critical enthalpy variation as determined by the elastic interaction model.
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Finally, the kink-pair model as adapted for dissociated dislocations will be benchmarked

on SrTiO3 perovskite for which there is activity of dissociated dislocations at ambient

conditions as has been observed and measured accurately in experiments. Illustrations

of both Mg2SiO4 ringwoodite and SrTiO3 perovskite will be used throughout the entire

section.

2.3.2 Kink-pair nucleation: elastic interaction model

The elastic interaction model (Koizumi et al. 1993) is used to calculate the energy of

the saddle point ∆Hcrit of ∆H with respect to the kink-pair geometry. This saddle

point of the energy surface ∆H is dependent on the applied resolved shear stress τ .

For low and intermediate τ , the kink-pair width is much larger than the spread of the

kink shape along the dislocation line. In that case, a kink-pair can be assumed to have

a rectangular geometry (Koizumi et al. 1994). Therefore, the model is based on the

assumption that at low stresses, a metastable rectangular kink-pair bow-out exhibits a

critical height hcrit displacing a critical line width wcrit on a dislocation segment. The

change in energy between a straight and a kinked dislocation is dependent on the applied

resolved shear stress and has to be calculated to describe the nucleation process. This

is not as trivial for dissociated dislocations, as a kink-pair needs to be formed on both

partials in order to move the complete dislocation (Fig. 2.8). Indeed, this can occur in

several different ways (Möller 1978; Mitchell et al. 2003). Two kink-pairs may nucleate

simultaneously (Fig. 2.8a) in such a way that they coincide along both partials (this

is the so-called ”correlated” nucleation). On the other hand, one kink-pair can first

nucleate independently on the leading or on the trailing partial and only then on the

second partial (hereafter called ”uncorrelated” nucleation). Two end-member types of

uncorrelated nucleation processes are possible: the outward motion of the leading partial

as a first unit step, followed by the inward motion of the trailing partial (Fig. 2.8b) or the
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a

b

c

Figure 2.8: Kink-pair nucleation on collinear dissociated dislocations with equilibrium stacking
fault width d, Peierls periodicity a′ and kink-pair height h and width w. (a) Corre-
lated nucleation process: coherently simultaneous kink-pair nucleation on partial dis-
locations. (b) Uncorrelated nucleation: kink-pair nucleation starting from the leading
partial followed by a nucleation of the trailing partial. (c) Uncorrelated nucleation:
kink-pair nucleation starting from the trailing partial followed by the nucleation of the
leading partial.
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inward motion of the trailing partial as a first unitstep followed by the outward motion

of the leading partial (Fig. 2.8c). The variation in enthalpy ∆H related to kink-pair

nucleation on dissociated dislocations can be generally described as follows:

∆H = ∆Eelastic + ci∆Pp + ∆Wsf + ciWp (2.51)

where

∆Eelastic = ∆Eξ1 + ∆Eξ2 + ∆Eξ1,ξ2 (2.52)

∆Eelastic is the change in elastic energy, ∆Wsf = ±γhw is the change in stacking fault

energy due to the nucleation processes, where γ is equal to the equilibrium stacking

fault energy, ∆Pp is the variation in Peierls energy related to one partial, caused by the

energy cost of segments that lie on the Peierls potential away from the valley, and finally

∆Wp = −τbphw is the plastic work under the action of the resolved shear stress τ . In

Eq. 2.51, ci = cu = 1 for uncorrelated and ci = cc = 2 for correlated kink-pair nucleation

in which case ∆Wsf vanishes.

In the literature, the activation energy of Eq. 2.51 with the ”work” term included

is often referred to as either ”the activation free enthalpy” or ”Gibbs free energy of ac-

tivation” (Gibbs 1965; Schoeck 1965). In case ∆H is interpreted in terms of ”Gibbs”

energy, Eq. 2.51 lacks an energy term T∆Sk related to a variation in the entropy ∆Sk

associated with kink-pair nucleation. This is in the first place due to the fact that there

is little known about the quantification of the entropy variation as a consequence of kink-

pair nucleation. However, Hirth and Lothe (1982) relate this variation in entropy ∆Sk

to the entropy variation ∆Sωk
associated with the change in phonon vibration modes ωk

within the crystal. They suppose a vibrational frequency ωp of the dislocation lying in

the Peierls valley. Under the assumption of invariance of the total number of vibrational
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modes, the energy related to the entropy change in the high-temperature limit is given

by:

T∆Sk = kbT

[
log

(
kbT

h̄ωk

)
− log

(
kbT

h̄ωp

)]
= kbT log

(
ωp
ωk

)
(2.53)

for which only the kink-vibrations are excited classically at high-temperature: h̄ωp >>

kbT >> h̄ωk, so that the energy related to the total entropy variation due to kink

formation can be estimated to be equal to:

T∆Sk = kbT log

(
kbT

h̄ωk

)
= ckbT log

(
kbT

hδν

)
(2.54)

where ωk = 2πν with ν equal to the vibrational frequency, typically in the order of the

Debye frequency νD = 1013 s−1. The constant δ determines the effective vibrational

frequency and can be estimated to have values within the domain [10−3:1]. For a tem-

perature value of 1700 K, which reflects a typical temperature in the transition zone,

this leads to the following estimates of the energy T∆Sk=0.2-1.2 eV. In chapter three,

we will compare these values with respect to the energies associated with dislocation

motion at high temperature.

In general, the screw dislocations belonging to a given slip system have more con-

fined cores than the edge dislocations belonging to the same slip system. This means

that the edge dislocations have the tendency to spread more out into the glide plane than

the screw dislocations. This is the consequence of the Poisson ratio ν in the anisotropic

energy coefficient K (Eq. 2.27). As a consequence, lattice friction will be generally lower

for the edge than for the screw dislocations. The screw dislocations will therefore ac-

count for most of the plastic strain produced during deformation. The kink-pair model

is therefore based on initial dislocations lines that exhibit a pure screw character, nu-

cleating kinks with a pure edge character, since the model describes the formation of
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rectangular kink-pairs. At low stress conditions, the kinks have to be widely separated

in order not to collapse as a consequence of the mutual attractive kink-kink interaction.

The larger the resolved shear stress applied in the direction of motion, the more the

width between the kinks decreases as the applied stress works against the collapse of the

kinks.

2.3.2.1 Peierls energy

The formation of a kink-pair on a partial leads to a variation in the Peierls energy

dependent on the Peierls potential Vp (Eq. 2.44). The applied resolved shear stress τ

will force the dislocation into a new quasi-equilibrium position x0 within the crystal

lattice. The dissociated dislocation is assumed to displace rigidly into the new position

x0, since both partials experience the same stress condition. This has to be calculated

for every new applied resolved shear stress τ :

dVp(x)

dx

∣∣∣∣
x=x0

= τb (2.55)

Following Koizumi (1993), the total variation in Peierls energy can now be described as

∆Pp =

∫ x0+h

x0

Vpdx+
w

2
[Vp (x0 + h)− Vp (x0)] (2.56)

The underlying assumption is that in the case of two equivalent partial dislocations,

each of them has to overcome half of the complete Peierls potential Vp. The first part

on the right hand side of Eq. 2.56 describes the energy associated with kinks crossing

the potential whereas the second term accounts for the energy related to the position x0

of the nucleated line segment w in the crystal. We like to mention that the deviation x0

of the initial partial lines from the Peierls vallies is nevertheless very small.

To be able to handle the Peierls potential as obtained by Eq. 2.44 for any given
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dislocation, we choose to parametrize the latter by the following sinosoidal function

Vp(x) introduced by Koizumi (1993):

Vp(x) =
C

2π
a′bτpg(x)

g(x) = 1− cos

(
2φ

a′
x

)
− α

2

(
1− cos

(
2φ

a′
x

))2

, 0 ≤ α ≤ 1,

C =
√

2
(1− α)2 + 4α2 + (1− α)

√
(1− α)2 + 8α2{

(1− α)2 + 2α2 + (1− α)
√

(1− α)2 + 8α2

}3/2

(2.57)

The variational constant α can be obtained using a least squares minimization by fitting

Vp(x) with the potential calculated as given in Eq. 2.44. The variational constant α

determines the amplitude of the potential which is purely sinusoidal in case α = 0 and

exhibits a camel hump shape for values of α > 0.5.

We would like to note that in case each partial needs to overcome half of the complete

potential: Vp(x) → 1
2
C
2πa
′bτpg(x) = C

2πa
′bpτpg(x). As such, we consider that the Peierls

stress to move the complete dislocation without thermal activation is independent of the

type of kink-pair nucleation process in case both partials are strictly equivalent.

2.3.2.2 Elastic energy

All variations in the elastic energy ∆Eelastic (Eq. 2.51), between two consecutive dis-

location configurations divided into segments (as shown in Fig. 2.11), are calculated

considering piecewise straight line segments within an isotropic elastic continuum by

using the coplanar elastic interaction formalism formulated by Hirth and Lothe (1982).

Here, the change in elastic interaction energy between the two partial dislocation lines

is given by ∆Eξ1,ξ2 that is dependent on the specific type of nucleation process (which

will be dealt with in next section). The overall variation in elastic energy ∆Eξn of the
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partial (screw) lines (Eq. 2.51), is given by the total change in elastic interaction energy

and the change in self-energy of the lines ξ1 and ξ2 and is given by:

∆Eξn(h,w) =
µb2p
2π

(√
w2 + h2 − w − h+ w log

2w

w +
√
w2 + h2

− 1

1− ν

(
w −

√
w2 + h2 + h log

h+
√
w2 + h2

w
− h log

h

eρ

))
(2.58)

The above function ∆Eξn depends on the height h of and the width w between kink-

pairs, but also on the change in absolute self energy of the partial dislocations due to

the creation of new kink-line segments. The latter is expressed in a fixed cutoff radius

ρ (Hirth and Lothe 1982; Koizumi et al. 1993). The cutoff radius ρ is postulated as the

distance below which dislocation segments are not supposed to interact to avoid energy

divergence. The cutoff radius therefore strongly depends on the local inelastic distortion

field of the dislocation core. In our case, the height of the kinks h are comparable to the

core spreading ξn of the partials, which means that the self-energy of a kink is about

equal to the energy of a core segment of length h. As such, we propose to parametrize

ρ by the spread of the core structure of the partial lines. However, there is no defi-

nite way to determine ρ other than by the use of atomistics, which would be a complete

study on its own. Nevertheless, there are ways to constrain ρ within a restricted domain.

The expression of ∆Eξn can be simplified by a Taylor development in h/w (Hirth

and Lothe 1982) which leads to the following result:

∆Eξn =
µb2p

4π(1− ν)

{
h

[
log

(
h

ρ

)
− 2 + ν

]
− h2(1 + ν)

2πw

}
(2.59)

with µ and ν equal to the shear modulus and the Poisson ratio, respectively. The first

term on the right hand side of Eq. 2.59 accounts for the self energies of both kinks on

the partial lines and the second term describes the interaction between the kinks. The
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change in self-energy Uk due to the nucleation of a single kink on a partial line can

therefore be given by:

Uk =
µb2ph

4π(1− ν)

[
log

(
h

ρ

)
− 2 + ν

]
+

∫ x0+h

x0

1

2
Vpdx (2.60)

The self energy Uk of the kink is due to the local change in core energy of the initial screw

partial and is therefore directly related to the spread of the core in the glide plane and

to the change in Peierls energy (in case identical partials are considered). The larger the

initial spreading of the partial core (the larger ρ), the lower the variation in self-energy

(the lower Uk) of the line due to the formation of a kink as can be seen in Eq. 2.60, since

a larger volume of the crystal lattice has already been distorted by the partial line.

In previous works (Koizumi et al. 1993; Carrez et al. 2009; Amodeo et al. 2010), a

cut-off radius of 5% of the core spreading was considered for undissociated dislocations

(ρ = 0.05ξ) in order to introduce the dependency of the change in self energy on the

choice of slip system. In this case we parametrize the cut-off radius by the width of a

partial dislocation core ξn as ρ = 0.1ξn. We explain why below.

As the self-energy of the kink can be associated with the core energy Wk = κµb3p, with

κ ≈ 0.1, we are able to make a first order approximation with respect to the above

assumption by:

Wk ≈
µb2ph

4π(1− ν)

[
log

(
h

ρ

)
− 2 + ν

]
+

∫ x0+h

x0

1

2
Vpdx (2.61)

for which ρ can be solved. As the kink-pair model is valid in the low stress regime, the

end-member case is used in Eq. 2.61: τ → 0 leads to max{h} = a′, where a′ is equal to

the Peierls periodicity and x0=0. In that case, it is confirmed that ρ = (0.1± 0.03)ξn.

In order to investigate the sensitivity of the kink self-energy, directly related to ∆H
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Figure 2.9: Sensitivity of the cut-off radius ρ on the function |f | and therefore on the relative
error in ∆H by the choise of ρ. The latter is parametrized by the core spreading of
the partial dislocation lines.

(Eq. 2.51), with the choise of ρ, we derived ∂Uk/∂ρ →

∂Uk
Uk

= f(ρ)
∂ρ

ρ
(2.62)

with

f(ρ) =
1

log(hρ )− 2 + ν
(2.63)

An example for the 1/4〈110〉 {110} partial in ringwoodite can be seen in Fig. 2.9. Since

we focus on the low stress regime, we look at the end-member case where τ → 0: h→ a′.

We can observe that the absolute value of f as a function of ρ can be roughly divided

into two regions: one where f , and hence ∆H, is highly sensitive to a change in ρ for

values above 15 − 20% of ξn. The relative error in ∆H is small for values of ρ around

10% of the partial core spreading ξn. The latter seems the best choice for the cutoff

radius ρ as it is in agreement with the core energy based estimates. However, it has to

be stressed that the self-energy of a kink cannot be known a priori and that the relative
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errors in our choise of ρ affect the absolute values of the critical nucleation enthalpies.

Nevertheless, it will not influence the relative difference with respect to different slip sys-

tems since the cutoff has been parametrized as a function of ξn which explicitly depends

on the dislocation considered.

2.3.2.3 Model solution

An enthalpy variation ∆H (Eq. 2.51) is associated with the mechanism of each type of

kink-pair nucleation. For a given stress τ , the critical nucleation enthalphy ∆Hcrit as a

function of the critical kink-pair geometry can be found as the saddle point configuration

of the respective total enthalpy variation ∆H.

ΔH ΔH

χ χ0 0(b)

Correlated nucleation

Uncorrelated nucleation

(a)

τ bp h w

Figure 2.10: Illustration of the enthalpy variation ∆H(τ = 0) as a function of the position of a
partial dislocation in the crystal lattice in case of (a) correlated nucleation of kink-
pairs and (b) uncorrelated nucleation of kink-pairs. The latter implies that the work
done by the applied stress needs to be sufficient to lower the energy level of the next
Peierls valley. The consequence is that uncorrelated nucleation of kink-pairs can
only take place at τ ≥ τc (critical stress).

This makes it possible to calculate the critical nucleation enthalpy of kink-pair forma-

tion ∆Hcrit for both correlated as well as for the two uncorrelated nucleation mechanisms.

Both uncorrelated nucleation mechanisms involve two unit steps (Fig. 2.8). Uncorrelated

nucleation requires a substantial change in stacking fault width d which increases the
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absolute energy level of the next Peierls valley, associated with the inward or outward

motion of one partial, after the first nucleation step with respect to the original val-

ley (Fig. 2.10). This is the consequence of a significant change in equilibrium stacking

fault width d and the subsequent change in stacking fault energy and elastic interaction

energy between both partials. This means that no saddle point exists for τ < τc (criti-

cal stress), regarding independent nucleation of kink-pairs on the partials (Möller 1978;

Takeuchi 1995; Mitchell et al. 2003). The critical stress is therefore fully determined by

the properties of the dissociated dislocation core structure. However, the stacking fault

width is more or less maintained in case of correlated kink-pair nucleation so that this

process is possible at all stresses 0 < τ ≤ τp, as there is no decoupled motion of the

partials that changes the absolute value of the Peierls valleys. It however becomes less

favorable for τ ≥ τc due to the larger nucleation enthalpy compared to the uncorrelated

processes (see Fig. 2.11).

Because of the restriction of the elastic interaction model to the low stress regime

as mentioned by Caillard and Martin (2003), the critical nucleation enthalpy can be

extrapolated up to the Peierls stress based on the classical formalism proposed by Kocks

et al. (1975):

∆Hcrit (τ) = ∆H0 (1− (τeff/τp)
p)q (2.64)

where τeff is the effective resolved shear stress. For correlated nucleation τeff = τ and

for uncorrelated nucleation τeff = α (τ − τc), with α = τp/ (τp − τc) ≈ 1. τc is equal to

the critical stress above which uncorrelated nucleation is able to occur. ∆H0 is equal to

∆Hcrit
c (τ = 0) and ∆Hcrit

u (τ = τc) for the correlated and uncorrelated nucleation mech-

anisms respectively. The saddle point energies ∆Hcrit (calculated at low stress) are used

to fit the empirical parameters p and q.
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'

Figure 2.11: Illustration of the kink-pair nucleation processes on dissociated screw dislocations as
a function of the applied stress. Correlated nucleation of kink-pairs on both partials
occurs under low stress conditions for which the end-member case implies conser-
vation of the stacking fault d. If stress increases towards higher values, kink-pair
nucleation will be gradually taken over by uncorrelated nucleation starting from the
trailing partial.

2.3.2.4 Correlated versus uncorrelated nucleation

Correlated kink-pair nucleation: low stress regime

End-member case in the low stress regime: τ → 0

Kink-pair nucleation in the end-member case τ → 0, relies on the nucleation of two
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strictly identical rectangular kink-pairs on both partial dislocations. The underlying

reason is that the work performed by the resolved shear stress is insufficient to allow

for the energy cost related to a change in the equilibrium stacking fault width d. This

implies that all kinks exhibit an equivalent height h and that both kink-pairs consist of

two kinks separated by an equivalent width w (Fig. 2.11). The change in stacking fault

width d associated with this type of kink-pair nucleation is negligible as can be seen in

Fig. 2.11. The variation in enthalpy ∆Hc associated with correlated nucleation of two

identical kink-pairs on both partials has been derived analytically and is equal to:

∆Hc = ∆Eξ1 + ∆Eξ2 + ∆Eξ1,ξ2 + 2∆Pp + 2∆Wp (2.65)

In the above equation, the plastic work performed by the resolved shear stress τ on one

partial is equal to ∆Wp and the change in Peierls energy due to kink-pair formation on

a partial is given by ∆Pp. The change in elastic energy ∆Eξn of a screw partial ξn is

given by Eq. 2.58. The height h of the kinks and the width w between a pair of kinks

describe the geometry of the kink-pair(s).

The change in elastic interaction ∆Eξ1,ξ2 between the partial dislocations is due to

the contributions of elastic interactions Wint between the kinks of both lines (Fig. 2.11):

∆Eξ1,ξ2=Wint(DD
′)+Wint(DE

′)+Wint(EE
′)+Wint(ED

′) ≈ Wint(DD
′)+Wint(EE

′) =

2Wint(DD
′) at low stress conditions since the width between the kink-pairs (segments C

and C ′) is large. At high stress the interactions DE′ and ED′ would lower the enthalpy

variation of kink-pair formation since the egde lines are opposite in sign, however these

second order contributions can be neglected since this mechanism governs the kink-pair

nucleation in the low stress regime. The change in elastic interaction ∆Eξ1,ξ2 has been
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derived as:

∆Eξ1,ξ2 = ∆Ek =
µb2p

2π (1− ν)
h log

d

d− h
(2.66)

where d is equal to the equilibrium stacking fault width.

By solving ∂H/∂h=∂H/∂w=0, for a given stress τ , the critical nucleation enthal-

phy ∆Hcrit
c as a function of the critical kink-pair geometry, hcrit and wcrit, can be found

as the saddle point configuration of the respective total enthalpy variation ∆Hc. Gen-

erally, the height h of all kinks, in the end-member case where τ → 0, is equal to a full

period a′ of the Peierls potential.

Low stress regime: τ > 0

Kink-pair nucleation in the end-member case at low stress conditions is based on the nu-

cleation of two strictly identical kink-pairs on both partials. However, the work done by

the applied resolved shear stress τ in the low stress regime can be sufficient to account

for the energy variation related to small changes in the stacking fault, as illustrated

in Fig. 2.11, by correlated formation of two geometrically different kink-pairs on both

partials. Since we are still in the low stress regime, the critical height is taken to be

fixed as hcrit = a′ for τ → 0 and the widths w1 (H) and w2 (K’+H’+L’) between the

kink-pairs on both partials 1 and 2 respectively are now taken to be the free geometrical

variables (Fig. 2.11 and 2.8a). The critical nucleation enthalpy ∆Hcc associated with

this nucleation processes is equal to:

∆Hcc = ∆Eξ1 + ∆Eξ2 + ∆Esξ1,ξ2 + 2∆Pp + 2∆Wp (2.67)

where the change in elastic energy ∆Eξn of a screw partial ξn is given by Eq. 2.58. The

elastic interaction energy between the partials is equal to ∆Esξ1,ξ2 = ∆Eξ1,ξ2 + ∆Ws.
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The energy cost ∆Ws depends on two opposite contributions: 1) the energy variation

due to the change in stacking fault energy 2γa′w and 2) the along going variation in

interaction energy between the partial lines (segments KK ′ and LL′ in Fig. 2.11):

∆Ws =
µb2p
2π

(
−2a′ − 2

√
w2 + (d− a′)2 − w log

√
w2 + (d− a′)2 − w√
w2 + (d− a′)2 + w

+2
√
w2 + d2 + w log

√
w2 + d2 − w√
w2 + d2 + w

)
− 2γa′w (2.68)

where d is the equilibrium stacking fault width and w=1/2(w2 − w1) > 0 (equal to the

length of the line segments K = K ′ = L = L′ in Fig. 2.11).

The change in elastic interaction ∆Eξ1,ξ2 between the partial dislocations is due to

the contributions of elastic interactions Wint between the kinks of both lines (Fig. 2.11):

∆Eξ1,ξ2 = Wint(II
′) + Wint(IJ

′) + Wint(JJ
′) + Wint(JI

′) ≈ Wint(II
′) + Wint(JJ

′) =

2Wint(II
′) at low stress conditions since the width between the kink-pairs (segments H

and H ′) is large. The change in elastic interaction ∆Eξ1,ξ2 in this case has been derived

as:

∆Eξ1,ξ2 =
µb2p

2π(1− ν)

(
2
√
w2 + d2 − d log

√
w2 + d2 + d√
w2 + d2 − d

−
√
w2 + (d+ a′)2 + 1/2(d+ a′) log

√
w2 + (d+ a′)2 + (d+ a′)√
w2 + (d+ a′)2 − (d+ a′)

−
√
w2 + (d− a′)2 + 1/2(d− a′) log

√
w2 + (d− a′)2 + (d− a′)√
w2 + (d− a′)2 − (d− a′)

)
(2.69)

By solving ∂H/∂w1=∂H/∂w2=0, for a given stress τ , the critical nucleation enthalphy

∆Hcrit
cc can be found as the saddle point configuration of the respective total enthalpy

variation ∆Hcc.
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Figure 2.12: Overview of the critical nucleation enthalpies associated with all nucleation mech-
anisms possible: correlated and both unit processes of uncorrelated kink-pair nucle-
ation. The first column shows the results for SrTiO3 perovskite at ambient pressure
conditions and the second column for Mg2SiO4 ringwoodite at 20 GPa.

Systems with small dissociation widths

Here, we focus on dissociated dislocations with partials being strongly coupled together,
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i.e. each partial is significantly influenced by the elastic field of the other partial. This

implies that the dissociated dislocation exhibits low to intermediate stacking fault widths

of ∼ a′ ≤ d ≤ 3a′, or large stacking fault energies γ, which is for screw dislocations only

dependent on the value of the shear modulus µ in case pure linear elasticity applies:

γ =
µ

2πd

{
(b1 · ξ1) (b2 · ξ2) +

(b1 × ξ1) · (b2 × ξ2)

1− ν

}
(2.70)

The partial Burgers vectors and partial screw lines in Eq. 2.70 are given by bn and

ξn, respectively. The critical nucleation enthalpies of these systems calculated at low

stress conditions using Eq. 2.67 are equal to the critical nucleation enthalpies in the end

member case at low stress using Eq. 2.65, on the condition that ∆Ek=0 (Eq. 2.66). This

implies that the use of linear elasticity overestimates the kink-kink interaction between

the rectangular kink-pairs on both partials in the end-member case of the low stress

regime, since small changes in the stacking fault are able to reduce the kink-kink inter-

actions. As a consequence, the enthalpy variation associated with correlated kink-pair

nucleation on dissociated dislocation with high stacking fault energy is finally taken to

be equal to Eq. 2.65 with ∆Eξ1,ξ2=Ek=0 (Eq. 2.66).

An example is given in Fig. 2.12b of the 1/2〈110〉 {110} screw dislocation in ring-

woodite. The equilibrium stacking fault width is equal to d=8 Å (which is 2a′) with an

stacking fault energy of about 2 J/m−2. The red curve is calculated using Eq. 2.65 and

the green curve by the use of Eq. (2.67). The latter is equivalent to the use of Eq. 2.65

given that ∆Ek=0 (Eq. 2.66).

Systems with large dissociation widths

The situation is different in the case of dissociated dislocations with partials being weakly

coupled together, i.e. each partial is only marginally influenced by the elastic field of the
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other partial. In this case, dissociated dislocations exhibit large stacking fault widths

of d ≥ 3a′, or relatively low stacking fault energies γ. The difference with respect to

systems with strongly coupled partials lies in the difference between ∆Ws (Eq. 2.67 and

2.68) in case small changes in the stacking fault d are allowed at low stress. If the

dissociation width d is small, the change in stacking fault energy more or less compen-

sates the associated variation in interaction energy between the partial lines. In case

of weakly coupled partials, both terms have significant different weights: the change in

stacking fault energy becomes more important than the variation in elastic interaction

energy between the partials, despite the low stacking fault energies. This is due to the

fact that the variation in interaction energy between widely separated partial lines is

negligible, because of the large separation between the partials. It means that stacking

fault changes in case of weakly coupled partials helps the nucleation process to occur by

a decrease in the critical activation enthalpy at low stress. Therefore, the enthalpy vari-

ation associated with correlated kink-pair nucleation regarding weakly coupled partials

is finally taken to be equal to Eq. 2.67 in order to caption the aforementioned role of the

stacking fault.

An example is given in Fig. 2.12a of the 〈110〉 {110} screw dislocation in SrTiO3

perovskite which is characterized by an equilibrium stacking fault width of about d=30

Å (∼6a′). The red curve is calculated using Eq. 2.65 and the green curve by the use

of Eq. 2.67. The latter, in this case, results in different activation enthalpies than the

use of Eq. 2.65 with ∆Ek=0 (Eq. 2.66). The significant separation between the partials

allows a decrease in stacking fault energy without a significant increase in the interaction

between the partials (Fig. 2.11).

Figure 2.12a shows two typical features related to the enthalpy curves associated

with weakly coupled partials. The first is the substantial reduction in nucleation en-
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thalpy at low stresses with respect to the low stress end-member case. This is because

of the stacking fault decrease that favors the nucleation process to occur. The second

characteristic is that the gradient of the enthalpy evolution with stress in the low stress

regime approximation (green curve) is smaller than the one of the low stress end member

case (red curve) at low stresses. This is due to the fact that in both approximations the

enthalpy curves are constrained by the Peierls stress in the high stress regime.

Uncorrelated kink-pair nucleation: high stress regime

The alternative to glide of dissociated dislocations is the motion of the partials as a

result of uncorrelated kink-pair nucleation. These processes typically govern kink-pair

nucleation on dissociated dislocations in the high stress regime since this type of mecha-

nism is characterized by an explicit change in the equilibrium stacking fault width which

does not allow the isolated partials to move independently by kink-pair nucleation at low

stress conditions. The kink-pair model in the high stress regime relies on the nucleation

of a rectangular kink-pair of height h and width w on one partial dislocation at a time.

The variation in enthalpy ∆Hun associated with one unit step of uncorrelated kink-pair

nucleation can be described as follows:

∆Hun = ∆Eξn + ∆Eξ1,ξ2 + ∆Wsf + ∆Pp + ∆Wp (2.71)

where the variation in interaction energy ∆Eξ1,ξ2 between the partials is described as

the change in elastic interaction energy between both dislocation lines (segments NN ′

in Fig. 2.11) as a consequence of the kink-pair formation on either the leading or the
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trailing partial:

∆Eξ1,ξ2 =
µb2p
4π

±2h− 2
√
w2 + d2

f − w log

√
w2 + d2

f − w√
w2 + d2

f + w

+2
√
w2 + d2

i + w log

√
w2 + d2

i − w√
w2 + d2

i + w

 (2.72)

This expression is dependent on the precise mechanism of a unit step such that di and df

correspond to the initial and final stacking fault width between both partial dislocations

respectively during nucleation as shown in Fig. 2.8b and c. ∆Wsf is equal to the change

in stacking fault energy ±γhw and balances as such the variation in elastic interaction

energy ∆Eξ1,ξ2 .

2.3.2.5 Critical nucleation enthalpies

The enthalpy evolution with stress according to kink-pair nucleation on dissociated dis-

locations can be described in a general way in the framework of the elastic interaction

model. Correlated nucleation of kink-pairs is always captured by the single critical ac-

tivation enthalphy 1 ∆Hcrit
c (Fig. 2.12a and b). However, two independent uncorrelated

nucleation processes can be distinguished (Fig. 2.8). The process where the leading par-

tial first starts to move outwards, described by 2 ∆Hcrit
u,l1

, followed by the inward migra-

tion of the trailing partial, given by ∆Hcrit
u,t2 , is entirely governed by the first nucleation

step: ∆Hcrit
u,t2 � ∆Hcrit

u,l1
≈ ∆Hcrit

c . This uncorrelated nucleation process is therefore

equivalent to correlated nucleation since the first nucleation step governs the critical

enthalpy change of the whole process and displays a similar critical enthalpy evolution

1The subscript ”c” refers to correlated nucleation processes occuring coherently at both partials whear-
eas the subscript ”u” refers to uncorrelated nucleation of a kink-pair on the partial dislocation lines.
These subscripts will be used in the same manner throughout the rest of the thesis.

2The subscripts ”l” and ”t” refer to the outward motion of leading partial and the inward motion of
the trailing partial respectively as due to uncorrelated kink-pair nucleation. The subscripts ”1” and
”2” refer to the first and second unit step respectively of uncorrelated nucleation of kink-pairs.
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as correlated nucleation. Examples of this processes are shown in Fig. 2.12c and d. For

the second uncorrelated nucleation processes, the first step is described by ∆Hcrit
u,t1 of the

inward migration of the trailing partial followed by the outward motion of the leading

partial described by ∆Hcrit
u,l2

and is much larger than the first step: ∆Hcrit
u,t1 � ∆Hcrit

u,l2
.

Examples are shown in Fig. 2.12e and f. Hence, uncorrelated nucleation of kink-pairs is

therefore essentially determined by ∆Hcrit
u,l2

to which we will simply refer as ∆Hcrit
u , on

the condition that uncorrelated nucleation of kink-pairs starting from the trailing partial

(Fig. 2.8c) is possible to occur.

In case the equilibrium dissociation width d is equal to a single period a′ of the Peierls

potential: kink-pair nucleation that starts from the trailing partial is impossible to oc-

cur since the change in interaction energy of the partials would diverge. The evolution

of the critical nucleation enthalpy with stress would be entirely given by ∆Hcrit
c , since

∆Hcrit
u,l1
≈ ∆Hcrit

c .

Model summary

As a small summary, Fig. 2.11 shows the characteristics of kink-pair nucleation as a func-

tion of applied stress that is brought together in the model. Starting from Fig. 2.11b at

low stress conditions, kink-pair nucleation is forced to occur in a correlated manner at

both partials. Only a small variation in equilibrium stacking fault width d is allowed.

This small variation in d, in case the partials are weakly coupled (i.e. partials are sepa-

rated by a large equilibrium distance d), is able to reduce the saddle point configuration

of the metastable system by lowering the stacking fault energy without any change in

elastic interaction between the partials. Under these low stress conditions, the widths

w1 (partial 1) and w2 (partial 2) between the kink-pairs are relatively equal. However, if

stress increases, one of the kink-pairs tends to collapse and the kink-pair nucleation pro-

cess becomes progressively decoupled: independent uncorrelated kink-pair nucleation
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on both partials (Fig. 2.11c) that is dominated by the second unitstep of a complete

kink-pair nucelation process which starts from the trailing partial (Fig. 2.8c).

2.3.3 Dislocation mobility

Below the athermal temperature, dislocation motion is the result of the interaction

between dislocations and the crystal lattice. The motion of a dissociated dislocation

of length L over an elementary lattice period a′ is characterized by the nucleation of a

kink-pair on both partials. Therefore, the dislocation mobility depends on the waiting

time for a complete nucleation process to occur, i.e. on the rate of the governing kink-

pair nucleation process. The average dislocation velocity (Dorn and Rajnak 1964; Guyot

and Dorn 1967; Möller 1978) under the action of a uniform resolved shear stress can be

described as:

v (τ, T ) =
a′

t
= a′J (2.73)

where t is equal to the waiting time of the complete dislocation to move a unit distance

a′ (Peierls periodicity). J describes the kink-pair nucleation rate which for correlated

kink-pair formation Jc is given by:

Jc = ν0
bp

wcrit (τ)

L

2bp
exp

(
−∆Hcrit

c (τ)

kbT

)
(2.74)

where bp is the modulus of the Burgers vector of the partial dislocations. The nu-

cleation rate J (Eq. 2.74) is the product of three terms: exp
(
−∆Hcrit (τ) /kbT

)
is

equal to the probability distribution of kink-pair formation, ν0bp/w
crit is the jump fre-

quency with which the partials attack the energy barrier, with the Debye frequency

ν0=(3N/4πV )1/3 vp and N/V being equal to the number density of the crystal and vp

corresponding to the P-wave speed. Further, L/cibp is the number of sites at which

nucleation might occur on the partial lines. For correlated nucleation ci=cc=2, whereas
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for uncorrelated nucleation ci=cu=1. The number of potential nucleation sites is smaller

for correlated than for uncorrelated kink-pair nucleation since only the resonance modes

of the complete dislocation allow nucleation of kink-pairs on both partials (Takeuchi

1995). The average length of the dislocation lines is given by L = 1/
√
ρm. Here, ρm

corresponds to the dislocation density, taken to be 1012 m−2 under experimental and

108 m−2 for mantle conditions to take into account the stress difference between both

regimes. The pre-exponential factor in Eq. 2.74 may also, to some extent, depend on

temperature, but it is negligible with respect to the exponential term.

The dislocation mobility for τ ≤ τc can therefore be described by:

vc (τ, T ) = a′Jc
(
∆Hcrit

c

)
(2.75)

The dislocation velocity for τ ≥ τc is due to both correlated and uncorrelated kink-pair

nucleation and is given, following Möller (1978), by:

vc+u (τ, T ) =
1

2
a′
[
Jc
(
∆Hcrit

c

)
+ Ju

(
∆Hcrit

u

)]
(2.76)

where the nucleation rate corresponding to uncorrelated nucleation can be formulated

as:

Ju = (tu,t1 + tu,l2)−1 =

(
1

Ju,t1
+

1

Ju,l2

)−1

' Ju,l2 (2.77)

where the Ju,t1 and Ju,l2 correspond to the nucleation rate associated with the inward

motion of the trailing partial and the outward motion of the leading partial (characterized

by ∆Hcrit
u ) respectively. The nucleation rate of kink-pairs that corresponds to Ju is
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defined as

Ju = ν0
bp

wcrit (τ)

L

bp

(
τ − τc
τ

)
exp

(
−∆Hcrit

u (τ)

kbT

)
(2.78)

The pre-exponential factor (τ − τc) /τ has been introduced to guarantee the continuity

between both velocity solutions vc and vc+u. It relies on the assumption that the dis-

location velocity vc+u at τ = τc has to be strictly equal to that of vc since the velocity

below τc is only the result of correlated nucleation of kink-pairs on the partials.

In case the dissociation width is equal to a single period of the Peierls potential,

kink-pair nucleation that starts from the trailing partial is impossible to occur as al-

ready mentionned before. In that case, uncorrelated nucleation will be entirely governed

by the process where the leading partial starts to move outward followed by the inward

motion of the trailing partial:

Ju =

[(
1

Ju,l1
+

1

Ju,t2

)−1
]
' Ju,l1 ' Jc (2.79)

The partials are strongly coupled as a result of the minimum dissociation width and

we can see that the dislocation mobility in the entire stress regime 0 < τ ≤ τp will

be essentially governed by correlated nucleation of kink-pairs along both partials. In

this special case, the dissociated dislocation can be considered to have a compact core

structure and the dislocation mobility can to first order be approximated by using the

same method as in Amodeo et al. (2011).

2.3.4 Single slip constitutive equations

Below the athermal temperature, plastic flow is directly controlled by the mobility of

dislocations. In this regime, the relation between the atomic scale behavior of individ-

ual dislocations and the average collective macroscopic behavior can be derived from
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Orowan’s equation:

ε̇ = ρmbv = ε̇0 exp

(
−∆Hcrit (τ)

kbT

)
(2.80)

where ρm corresponds to the mobile dislocation density, b is the modulus of the Burgers

vector, v is the average dislocation velocity and kb is Boltzmann constant. For any given

constant strain rate ε̇, Eq. 2.80 can be solved for the temperature as function of the

shear stress τ , which can be seen as the critical resolved shear stress CRSS.

By taking the natural logarithm of Eq. 2.80, the latter can be rewritten as:

log (ε̇0/ε̇) = β =
∆Hcrit (τ)

kbT
→ ∆Hcrit (τ)

∣∣∣∣
τ=CRSS

= βkbT (2.81)

Physically, it shows the direct relation between the microscopic processes of kink-pair

formation captured by the resolved shear stress dependence τ on the critical nucleation

enthalpies ∆Hcrit and the macroscopic temperature T observable as function of the

CRSS.

The physics that describes the dislocation mobility as a result of thermally activated

kink-pair nucleation is strongly dependent on the intrinsic lattice friction (Peierls poten-

tial en Peierls stress) and therefore on the core structure of the dislocation considered.

The evolution of the CRSS with T for a given dislocation is therefore largely determined

by the material properties and the crystal chemistry at the appropriate physical condi-

tions. Nevertheless, there is a number of general features to summarize with respect to

the model. We illustrate that by considering three non-equivalent collinear dissociated

dislocations each gliding in different planes in a fictive material. All dislocations exhibit

the same Peierls stress (they experience the same intrinsic lattice friction) and the crit-

ical nucleation enthalpies ∆Hcrit at τ → 0 are strictly equivalent as well. The main
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difference between them is the dissociation width and the corresponding stacking fault

energies depending on the shear modulus µ with respect to each dislocation. One of

the dissociated dislocations is considered to have strongly coupled partials, the next one

intermediate coupled partials and the last one is finally characterized by weakly coupled

partials. We suppose as well that the weakly coupled partials have more extended core

structures in the glide plane than the strongly coupled partials that exhibits a small

dissociation width. Figure 2.13 gives an illustration of the different evolutions of ∆Hcrit

to be expected as a function of τ for the three cases considered. In any case, there

exists a critical stress τc below which only correlated kink-pair nucleation can take place

and above which both uncorrelated and correlated nucleation operate in parallel. The

critical stress τc is the lowest for the system having weakly coupled partials. In case

the partials are strongly coupled, e.g. dissociation width is about equal to a single pe-

riod of the Peierls potential, the mobility is completely governed by correlated nucleation.

The microscopic description of thermally activated dislocation glide can be converted

into a constitutive equation as the T -dependence of the CRSS, as illustrated by Eq. 2.81.

This conversion is shown in Fig. 2.13 for the three dissociated dislocations in our fictive

material. The intrinsic lattice friction is equal in all cases, since all dislocations are

assumed to have the same Peierls stress τp. However, the evolution of the CRSS with T

in the presence of thermal activation is significantly different for the three dislocations

considered. The CRSS for the system with weakly coupled partials decreases faster

with T than for the system with the strongly coupled partials: the evolution of the

CRSS as a function of T for strongly coupled partials has the tendency to exhibit a

more linear evolution than the case of weakly coupled partials with more extended core

structures, for which the evolution is expected to be more exponential. This behaviour

can be explained by two effects:
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1) the effect of the large equilibrium stacking fault width that drastically lowers the

change in interaction energy between both partials related to kink-pair nucleation.

2) the effect of the cutoff radius ρ by its dependence on the core spreading of the partials.

We, nevertheless, want to strongly emphasize the uniqueness of the constitutive equa-

tions related to a particular dislocation belonging to a given system, which is strongly

dependent on the intrinsic lattice friction that will be determined by the core structure

of the dislocation. The latter is dependent on the material properties and the crystal

chemistry.
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Figure 2.13: Illustration of the evolution of the critical nucleation enthalpy ∆Hcrit as a function
of τ normalized by the Peierls stress τp for three non-equivalent collinear dissociated
dislocations each gliding into different planes in a fictive material. All dislocations
are characterized the same Peierls stress (they experience the same intrinsic lattice
friction) and the critical nucleation enthalpy ∆Hcrit at τ → 0. The first dislocation
has strongly coupled partials with confined core structurs, the next intermediate cou-
pled partials and the last one is characterized by weakly coupled partials which are
extended into the glide plane. Finally, the relation is shown between the constitutive
equations given as the T -dependence on the CRSS and the τ -dependent evolution of
the critical nucleation enthalpies ∆Hcrit associated with thermally activated glide.
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2.3.5 Benchmark: SrTiO3 perovskite

For the high pressure minerals that constitute the Earth’s mantle, it is experimentally

still impossible to obtain very accurate data of the CRSS as a function of T related to

slip systems in single crystals. As such, there is no way to benchmark our elastic inter-

action model directly to mantle minerals. However, strontium titanate SrTiO3, a cubic

perovskite of space group Pm3m, is stable at ambient pressure conditions and can be

considered as analogue of natural perovskites such as bridgmanite. Because of the duc-

tility of strontium titanate at room temperature, numerous experimental studies have

been performed on the intracrystalline plasticity of SrTiO3 that provided accurate data

related to dislocation mobility (Brunner 2001; Brunner 2006; Sigle et al. 2006; Castillo-

Rodŕıguez and Sigle 2010; Hirel et al. 2012). At low temperature, below ∼1000 K,

plastic deformation is controlled by glide of the 〈110〉 screw dislocations spreading into

their {110} glide planes (Brunner 2006; Castillo-Rodŕıguez and Sigle 2010).

Dislocation bp µ a′ ξh d ν APBγ τp ρ
(Å) (GPa) (Å) (Å) (Å) (GPa) (J/m2) (MPa) (Å)

〈110〉{110} bp1=2.78 110 3.9 ξh1 =3.5 30 0.25 0.45 500 0.56=
bp2=2.78 ξh2 =3.5 0.08·2ξh

Table 2.2: Parametrization of the core structures of the 〈110〉{110} screw dislocation and associ-
ated intrinsic lattice friction in SrTiO3. The partial Burgers vector are given by bp, µ
is equal to the shear modulus, ν is the Poisson ratio, ξh corresponds to the half width of
each partial (2ξh is the width of a partial), d is equal to the equilibrium stacking fault
width taken as the distance between the partials, APBγ is the apparent equilibrium
stacking fault energy and τp is equal to the Peierls stress.

In 2006, Brunner performed isothermal straining and isothermal straining temperature-

lowering tests (IST’s and ISTLP’s) to quantify accurately the critical resolved shear

stress CRSS as a function of T in SrTiO3 single crystals. Polarized light microscopy

revealed the dominance of 〈110〉 {110} screw dislocations until temperatures correspond-

ing to 300 K. This is confirmed by weak-beam TEM characterization of the domi-
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nance of 〈110〉 screw dislocations below 1000 K. The 〈110〉 {110} screw dislocation is

collinearly dissociated into two equivalent partials following the Burgers vector reaction:

〈110〉 = 1/2〈110〉+ 1/2〈110〉 (Hirel et al. 2012). This has been supported by experimental

observations (Castillo-Rodŕıguez and Sigle 2010).
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Figure 2.14: Spread of the Burgers vector distribution or dislocation core structure in form of the
disregistry (red continuous line) and its derivative, the local density of the Burgers
vector (green dotted line) of the 〈110〉{110} screw dislocation in SrTiO3 as inferred
from the atomistic study of Hirel et al. (2012).

We propose to benchmark our elastic interaction model adapted for dissociated dis-

locations by the thermal activation of 〈110〉 {110} screw dislocations in the low temper-

ature regime. The core structure of the glide-dissociated 〈110〉 {110} screw dislocation

has already been modelled using atomistic simulations by Hirel et al. (2012). The gen-

eralized stacking fault surface of the {110} in SrTiO3 has been calculated also by Hirel

et al. (2010). We will use both the core structure and the γ-surface to calculate the

intrinsic lattice friction of the 〈110〉 {110} screw dislocation by the Peierls potential and

the Peierls stress with which we will, in combination with the core structure as such,
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parametrize the elastic interaction model.
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Figure 2.15: γ-line in the direction of the 〈110〉 screw dislocation in SrTiO3 as calculated atom-
istically, using ab initio calculations, by Hirel et al. (2010).

The model parameters used with respect to the core structure as inferred from Hirel et

al. (2012) are listed in table 2.2. The use of the Thomas potential by Hirel et al. (2012)

underestimates the dissociation width d as they discuss, due to an overestimation of the

equilibrium stacking fault energy of about 30%. We therefore rescale d by 30% as input

for our model, assuming that the overestimation can be translated to an underestimation

of d as suggested by Eq. 2.70. We choose to parametrize the disregistry S(x) of the

〈110〉{110} screw dislocation by two arctangent functions (Eq. 2.41) as follows:

S(x) =
b

2
+

b

2π

[
arctan

(
x− d/2
ξh1

)
+ arctan

(
x− d/2
ξh2

)]
(2.82)

The disregistry and its derivative, the local Burgers vector density can be seen in

Fig. 2.14. The intrinsic lattice friction is quantified by the Peierls potential that is cal-

culated by making use of the {110} γ-surface according to Eq. 2.44, as described in
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chapter 2.2.4. The γ-surface of the {110} plane has been obtained by the use ab intio

calculations by Hirel et al. (2010), for which the γ-line in the Burgers vector direction

is shown in Fig. 2.15. The resulting Peierls potential Vp and the Peierls stress τp, as

derived from the Peierls force Σ=b−1 ∇Vp, are shown in Fig. 2.16. Results are as well

listed in table 2.2.
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Figure 2.16: Peierls potentials V (p) and subsequent Peierls force Σ=b−1 ∇V (p) calculated using
the PN model based on the dislocation structures for the 〈110〉{110} screw dislo-
cations in SrTiO3. The potentials give a pure mechanical measure of the lattice
friction of both slip systems which will serve as input to calculate the thermally
activated mobility the respective screw dislocations.

The rescaled dissociation width d as obtained by Hirel et al. (2012) are in good agree-

ment with experimental observations (Castillo-Rodŕıguez and Sigle 2010). Since our

model is based on linear elasticity, we will use the value of d to calculate an apparent

equilibrium stacking fault energy APBγ for the antiphase boundary by the use of elas-

ticity theory (Eq. 2.70). The resulting value of APBγ is underestimated with respect

to ∼0.9 J/m2 from the γ-line in the 〈110〉 direction, as shown in Fig. 2.15. A possible
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explanation of this discrepancy could lie in the imperfect ABP as the partials partially

overlap, which can be seen in the Burgers vector density in Fig. 2.14 as it is not equal

to 0 at the APB. The value of the apparent APB, APBγ , as used in the model is given

in table 2.2.

The cut-off radius ρ is fixed such that the critical stress τp is about equal to the

∼100 MPa that is observed experimentally. This results in ρ=0.56 Å which is equal to

8% of a the width a partial ξn. This is in agreement with our initial choice of ρ=0.1×ξn

that is considered in the elastic interaction model (table 2.2).

The elastic interaction model adapted for collinear dissociated dislocations has been

used to calculate the evolution of the CRSS with T related to thermally actived slip.

The model is parametrized by the Peierls potential and the subsequent Peierls stress

(Fig. 2.16) and the core structure of the 〈110〉{110} screw dislocation in SrTiO3. All pa-

rameters are listed in table 2.2. The effective results of the critical activation enthalpies

∆Hcrit are shown in Fig. 2.12e. These results can be converted into a constitutive equa-

tion as the T dependence of the CRSS. The dislocation density ρ has been parametrized

by the Taylor relation to take into account the back stress of the (dislocation) forest:

ρ =

(
τf

Cµbp

)2

(2.83)

where τf is the back stress of the forest that has been measured experimentally (Castillo-

Rodŕıguez and Sigle 2010) and C ' 0.1 is a constant. The effect of the forest on the

plasticity is not included in our model. It is the most important in the low stress regime

as the resolved shear stresses are too low to cut the dislocation forest. We therefore
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make the corrections in the low CRSS regime as follows:

CRSS(T ) = CRSS(T ) +

(
T

Ta
× τf

)
(2.84)

where Ta is equal to the athermal temperature. Figure 2.17 shows the final resuls of

the CRSS as a function of T for the 〈110〉{110} screw dislocation together with the

experimental results obtained by Brunner (2006) and shown by the red dots.
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Figure 2.17: Constitutive relation shown as the critical resolved shear stress (CRSS) versus tem-
perature (T ) at a fixed experimental strain rate of ε̇ = 10−5 s−1 for thermally actived
glide of the rate controlling 〈110〉{110} screw dislocations. The experimental values
from Brunner (2006) are shown by the red dots.

We can observe that there is an overall good agreement between the experimental

values and the theoretical results from the elastic kink-pair model. The best fits are

found in the low and high stress regime. The model shows that the non-monotonic

behaviour of the CRSS with T can be explained by the transition from thermally acti-
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vated glide by correlated nucleation of kink-pairs in the low stress regime to glide that

is governed by uncorrelated nucleation of kink-pairs in the high stress regime. However,

the model is not able to predict the exact curvature in the transition region. The elastic

interaction model is based on the calculation of the critical nucleation enthalpy ∆Hcrit

related to a specific nucleation mechanism. The transition region between the different

mechanisms is therefore not well described by the model. Nevertheless, Fig. 2.17 shows

that the use of the model considering the end-member case at low stress produces less

accurate results with respect to the low stress model. The latter takes explicitly into

account the effect of the dissociation width on the mobility of the partials. Therefore,

the weakness of the model lies in the description of the constitutive relations according

to the transition between the low and high stress regime. However, the model seems

to be capable of predicting the correct trends and the good order of magnitude of the

constitutive equations related to thermally activated glide of the 〈110〉{110} dissociated

dislocations in SrTiO3 single crystals.

2.3.6 Conclusive summary

The modelling of thermally activated glide of dissociated dislocations is based on an

elastic interaction model, intially proposed by Koizumi et al. (1993) for undissociated

dislocations. In this work, it has been adapted to dissociated dislocations. In high

lattice friction materials, the glide mobility is assumed to be controlled by the nucleation

and propagation of unstable kink-pairs over the Peierls barrier assisted by the resolved

shear stress (Kubin 2013). The rate of kink-pair formation is governed by the enthalpy

variation ∆H, as a function of the kink-pair geometry, required to nucleate a bulge

from the initial dislocation line bowing out over the Peierls potential. The model is

parameterized by the Peierls potential and the subsequent Peierls stress and the core

structure of the rate limiting screw dislocation(s) in the respective material. The key

features of the model are:
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1. At low stress, correlated nucleation of kink-pairs along both partials is forced to

govern the thermally activated glide motion of dissociated dislocations.

2. Above a critical stress τc, uncorrelated nucleation of kink-pairs mostly account for

the glide motion. This process is unable to occur below τc.

3. The shift in kink-pair nucleation mechanism from purely correlated at low stress

to uncorrelated governed kink-pair nucleation at higher stresses is characterized

by a region of non-monotonic evolution of the CRSS with T in the framework of

the elastic interaction model.

4. The effect of the dissociation on the dislocation mobility is strongly dependent on

the dissociation width (equilibrium stacking fault width) between the partials.

5. The evolution of the CRSS with T in case of weakly coupled partials (i.e. large

dissociation width) evolves more exponentially than in the case of strongly coupled

partials.

The nature of the stacking fault between partials, and therefore the coupling mode

between the partials, will have a determining influence on the mobility of dissociated

dislocations.



3 Dislocation glide in Mg2SiO4 wadsleyite

and ringwoodite

It is not possible to do much with only the results of a tensile test, be-

cause one does not know what they really mean. They are the outcome

of a number of very complicated physical processes taking place during

the test. The extension of a piece of metal is, in a sense, more compli-

cated than the working of a pocket watch, and to hope to derive infor-

mation about its mechanism from two or three data derived from mea-

surements is perhaps as optimistic as would be the attempt to learn ab-

out the working of a pocket watch by determining its compressive strength.

Egon Orowan.

(The significance of tensile and other mechanical test properties of metals, 1944.)

The aim of this chapter is to apply the multiscale modelling approach as presented in

chapter 2 to Mg2SiO4 wadsleyite at 15 GPa and ringwoodite at 20 GPa. The purpose

is to establish constitutive equations related to the glide mobility of the rate controlling

dislocations that belong to the easiest slip systems. Our modelling approach is based on

111
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the glide mobility that is controlled by lattice friction: glide is the consequence of stress-

assisted thermally activated motion of the (partial) dislocations through the nucleation

and propagation of unstable kink-pairs by which the dislocation is able to overcome its

lattice resistance. This means that dislocation motion in the form of glide is the result

of the interaction between dislocations and the crystal lattice. This is the case below a

critical temperature Ta (commonly referred to as the athermal temperature) in a regime

where the CRSS is temperature dependent. At the same time, the model is able to de-

termine the temperature threshold Ta above which dislocation-dislocation interactions

control the dislocation mobility.

The resulting constitutive equations have to be associated with single slip of the rate

governing dislocations. Considering the appropriate conditions, they will be compared

with the available data on plastic deformation of both wadsleyite and ringwoodite to

be able to validate our modelling approach. Finally, single slip viscosities according to

the relevant mantle conditions will be derived. The implications for the rheology of the

transition zone are discussed in section 3.3 of this chapter and in chapter 4.

This chapter gave rise to the publication of the following articles:

• Ritterbex, S., Carrez, Ph., Gouriet, K., and Cordier, P. (2015) Modeling

dislocation glide in Mg2SiO4 ringwoodite: Towards rheology under tran-

sition zone conditions. Physics of the Earth and Planetary Interiors, 248,

20-29.

• Ritterbex, S., Carrez, Ph., and Cordier, P. Modeling dislocation glide and

lattice friction of Mg2SiO4 wadsleyite in conditions of the Earth’s transition

zone. American Mineralogist, in press, published in Sept. 2016.
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3.1 Wadsleyite at 15 GPa

The dislocation core structures belonging to the easiest slip systems have already been

calculated by Metsue et al. (2010) using the PNG model. They have taken into ac-

count the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](010),

1/2〈111〉 {101}, for both the screw and edge dislocations. The calculations relied on the

γ-surfaces of the potential slip planes, which were calculated using the so-called THB1

empirical potential following the earlier work of Sanders et al. (1984) and Lewis and Cat-

low (1985). The easiest slip systems were found to be the 1/2〈111〉 {101} and [100](010)

which is supported by experimental observations (Thurel et al. 2003). Metsue et al.

(2010) show that dislocation core structures of both slip systems are found to be more

confined for the screw than for the edge dislocations. As a consequence, the mobility

of the 1/2〈111〉{101} and the [100](010) screw dislocations will account for most of the

plastic strain produced during deformation. In this work, we first have reevaluated the

core structures of the 1/2〈111〉{101} and [100](010) screw dislocations. These results

are used to model plastic deformation of Mg2SiO4 wadsleyite as a result of thermally

activated dislocation glide.

3.1.1 γ-Surfaces

In order to validate the use of the THB1 potential, Metsue et al. (2010) compared the

γ-line in the [100] Burgers vector direction for the (010) plane obtained with explicit

use of ab initio calculations. Apart from minor differences, the results were satisfying

and the empirical potential was able to reproduce an equivalent shape and excess energy

values as the line calculated using ab initio simulations. This exercise was not done

for the {101}. Therefore, we calculate the γ-line of the {101} in the 1/2〈111〉-direction.

Calculations are perfomed with the ab initio based VASP code using the GGA approxi-

mation and the PAW pseudopontial method. Relaxation of the perfect crystal structure

at 15 GPa leads to the lattice parameters a = 5.6067 Å b = 11.2542 Å c = 8.0553 Å
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comparable to the experimental values obtained at 18 GPa (Horiuchi and Sawamoto

1981).

[101]

normal to [101]

[010]

(101)

Figure 3.1: Unsheared supercell configuration used to calculate the γ-lines in the 1/2〈111〉 Burgers
vector direction of the {101} plane. The shear plane is presented by the red plane in
the middle of the supercell. A vacuum layer of 6 Å at the top of the supercells avoids
the effect of interaction between the stacking fault replicas due to periodic boundary
conditions.

A supercell was built in a Cartesian frame of reference defined by its normal and shear

directions. The supercell is shown in Fig. 3.1. The stacking fault level in each of the three

supercells is chosen in such a way as to avoid a cut of the strong Si-O bonds that leads

to the definition of a unique choice of the cutting level with respect to the {101} plane.

See chapters 2.1.2 and 2.1.3 for more details about the construction of the supercells

and the calculation of γ-surfaces. The resulting γ-line and the one calculated by Metsue

et al. (2010) using the THB1 potential are shown in Fig. 3.2a. Both the shape and the

quantification of the excess energy related to γ-line from using the empirical potential

are in relatively good agreement between the line obtained by our ab initio calculations.

This validation enables us to use the full γ-surfaces of the (010) and {101} as obtained



115 3.1. Wadsleyite at 15 GPa

by Metsue et al. (2010) from molecular statics (THB1 potential). Ab initio calculations

of the γ-lines of both potential (010) and {101} glide planes in their Burgers vector

direction, [100] and 1/2〈111〉 respectively, are shown in Fig. 3.2b. Both γ-lines exhibit

a camel hump shape due to the existence of a metastable minimum, which forecasts

the dissociation of the complete Burgers vector into partials. The complete γ-surfaces

as used to parametrize the PNG model in order to calculate the core structures of the

1/2〈111〉{101} and the [100](010) screw dislocations are shown in Fig. 3.3. The lowest

energy shear paths are indeed found along the [100] direction for the (010) plane and

along the 1/2〈111〉 direction for the {101} plane. These directions therefore correspond

indeed to the Burgers vectors direction with respect to the (010) and {101} slip planes.

From Fig. 3.2 and 3.3, it can be clearly observed that the energy values according to the

{101} plane are signifantly lower than for the (010) plane which suggests the potential

importance of the 1/2〈111〉{101} slip system.
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Figure 3.2: γ-lines in the Burgers vector direction of the potential (010) and {101} slip planes
at 15 GPa. a) Comparison between ab initio and molecular statics ( THB1 potential
used by Metsue et al. (2010)) based calculations of the γ-lines in the 1/2〈111〉 Burgers
vector direction of the {101} plane. b) Ab initio calculations of the γ-lines in the [100]
and 1/2〈111〉 Burgers vector direction of the potential (010) and {101} planes. The
metastable energy minima are equal to the equilibrium stacking fault energies of the
respective slip systems.
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Figure 3.3: γ-surfaces provided by Metsue et al. (2010) that were calculated using molecular
statics based on the THB1 potential: a) (010) plane, b) {101} plane, c) (001) plane
and d){011} plane. The (001) and {011} planes are introduced into the PNG model
to reconstruct the crystal structure of wadsleyite as explained in chapter 2.2. Both
{101} and {011} surfaces are rotated in the appropriate way to introduce them into
the mesh that will be used in the PNG model (see section 3.1.2).

3.1.2 Core structures and lattice friction

The γ-surfaces are used as input for the PNG calculations in order to obtain the dis-

location structures as described in chapter 2.2. Simulation cells are based on a nodal

mesh constructed around the dislocation line which relies on the crystal structure by the
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introduction of families of planes corresponding to the potential glide planes. Two dis-

tinct mesh configurations were necessary to evaluate the core structures of the [100](010)

and 1/2〈111〉{101} screw dislocation, as shown in Fig. 3.4 and 3.5. The planes (010) and

(001) are considered with respect to the [100] Burgers vector and (101) and (01̄1) are

considered for the 1/2〈111〉 Burgers vector. A multiplicity of all planes have been used

in the model to reproduce the periodic variation of the dislocation core energy in the

crystal structure (Denoual 2007), as can be seen in Fig. 3.4 and 3.5. The simulation cells

contain at least 20 unit cells of Mg2SiO4 wadsleyite with a node density of 18 nodes per

Burgers vector. An increase in node density did not further affect the simulation results.

A perfect Volterra dislocation is introduced in the center of the simulation box in such a

way that it is allowed to spread into the families of planes introduced. As already shown

by Metsue et al. (2010), the [100] Burgers vector distribution spreads entirely into the

(010) and the Burgers vector distribution of the 1/2〈111〉 completely in the {101} plane.

Dislocation bp K(θ = 0◦) K(θ = 90◦) a′ ξ d τp
(Å) (GPa) (GPa) (Å) (Å) (Å) (GPa)

[100](010) 2.803 123 185 4.028 2.0 5.4 4.8
1/2〈111〉{101} bp1=2.987 128 171 7.3 ξ1=8.4 35.8 3.5

bp2=4.480 ξ2=12.5

Table 3.1: Core structures of the 1/2〈111〉{101} and [100](010) screw dislocations with Peierls
periodicity a′ and partial Burgers vectors bp. K(θ) is equal to the anisotropic elastic
parameter, ξ corresponds to the width of each partial, d is equal to the equilibrium
stacking fault width taken as the distance between the partials and τp corresponds to
the Peierls stress.
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Figure 3.4: Illustration of the mesh in the PNG model to calculate the core structure of the
[100](010) screw dislocation: position of the γ-surfaces (solid lines) correspond to
the location of the glide planes imposed on the actual crystal structure of Mg2SiO4

wadsleyite (yellow, red and blue atoms reflect the Mg, O and Si respectively). True
unit cells shown by the dashed rectangular contours have been used to construct the
simulation cell with orientations along [100], [010] and [001] directions.

Figure 3.5: Illustration of the mesh in the PNG-model to calculate the core structure of the
1/2〈111〉{101} screw dislocation comparable to Fig. (3.4). True unit cells shown by
the dashed rectangular contours have been used to construct the simulation cell with
orientations along the [100] and [111] directions and the direction normal to [111]
with respect to the (101) plane.
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The resulting dislocation core structures are shown in Fig. 3.6 by the disregistry

and its derivative, the local Burgers vector density. An illustration of the atomistic

view of both the 1/2〈111〉{101} and [100](010) screw dislocations are shown in Fig. 3.7

and 3.8, respectively. This shows the dissociation of both screw dislocations into two

collinear partials. The Burgers vector reaction for the [100] screw in the {010} plane is

[100] = 1/2[100] + 1/2[100]. This dissociation is collinear and both partials are strictly

equivalent. The Burgers vector reaction for the 1/2〈111〉 screw in the {101} plane is

1/2〈111〉 = 2/10〈111〉 + 3/10〈111〉. Therefore, the collinear partials of the 1/2〈111〉 screw

dislocation are not equivalent. However, the asymmetry of the partials is small and is

neglected throughout the calculations of the dislocation mobility. As a matter of fact,

the core structure of this dislocation is widely spread with a large equilibrium stacking

fault (d=35.8 Å). This significant core extension is confirmed by clear weak beam dark

field observation (Fig. 3.9) of both partials of the 1/2〈111〉 dislocation using TEM (Thurel

and Cordier 2003). The effect of this low energy stacking fault on the mobility is more

important than the small differences between both partials. So formally, we will assume

both partials of the 1/2〈111〉 screw dislocation to be equal to 1/4〈111〉.
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Figure 3.6: Results of the PNG calculations in form of the disregistry (red continuous line) and
its derivative, the local density of the Burgers vector (green dotted line) of the: a)
1/2〈111〉{101} screw dislocations and b) [100](010) screw dislocations.
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Figure 3.7: Atomistic view of the core structure of the 1/2〈111〉{101} screw dislocation in wads-
leyite, as inferred from the PNG results and shown in Fig. 3.6. The normal of the
glide plane points out of the paper in the above figure which gives a top view on the
glide plane. The dislocation core is visualized by atomic displacements according to
the disregistry and dislocation density.

Figure 3.8: Atomistic view of the core structure of the [100](010) screw dislocation in wadsleyite,
as inferred from the PNG results and shown in Fig. 3.6. The normal of the glide plane
points out of the paper which gives a top view on the glide plane. The dislocation
core is visualized by atomic displacements according to the disregistry and dislocation
density.
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Finally, it is worth to mention that the equilibrium stacking fault width d between the

partials is always found to be equal to an integer multiple of the Peierls periodicity a′.

This means that both partials occupy the minimum energy configuration in the crystal

system under equilibrium conditions, so that both partials are well placed in the wells

of the Peierls potential (Schoeck and Püschl 1994).
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Figure 3.9: Weak beam darm field image that shows the dissociation of the 1/2〈111〉 dislocations
into partials. The image is obtained by transmission electron microscopy (TEM) on
a Mg2SiO4 wadsleyite polycrystal (Thurel and Cordier 2003). The dissociation width
between the partials of the observed 1/2〈111〉 dislocations are comparably large to the
one inferred from core strutures of the 1/2〈111〉 screw dislocation that glide in the
{101} plane calculated with the PNG model.

Quantification of the intrinsic lattice friction of these [100](010) and 1/2〈111〉{101}

screw dislocations are obtained through explicit calculation of the Peierls potentials as

derived according to Eq. 2.44. Table 3.1 shows the dislocation core properties as well

as the Peierls stresses of both slip systems. Peierls potentials and their derivatives are

shown in Fig. 3.10, respectively. Both slip systems have a value of τp/µ ∼ 3.5× 10−2. A

comparison with τp/µ ∼ 1× 10−3 in MgO (Amodeo et al. 2011) at similar high pressure

conditions indicates higher lattice friction in wadsleyite.

Although the core structures as calculated in this work are in good agreement with

those previously obtained by Metsue et al. (2010), the Peierls stresses (PN-framework)

are about one order of magnitude larger than the ones of Metsue et al. (2010) (PNG-
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Figure 3.10: Peierls potentials Vp and subsequent Peierls force Σ=b−1 ∇Vp calculated using the
PN model based on the core structures of the a) [100](010) and 1/2〈111〉{101} screw
dislocations. The potentials give a pure mechanical measure of the lattice friction
of both slip systems which will serve as input to calculate the thermally activated
mobility of the respective screw dislocations.

model). However, the relative differences between both screw dislocations are found to

be equal. Nevertheless, the values of τp obtained in this study are more in line with what

can be expected from experiments (Nishihara et al. 2008; Kawazoe et al. 2013; Hustoft

et al. 2012; Farla et al. 2015).

3.1.3 Thermal activation of dislocation glide

Calculations of the critical kink-pair enthalpies are parametrized by the dislocation core

structures (Fig. 3.6), the Peierls potentials (Fig. 3.10) and the associated Peierls stresses

(Table 3.1) of the [100](010) and 1/2〈111〉{101} screw dislocations as calculated above.

As the kink-pair model is based on linear elasticity, the shear modulus µ and Poisson ra-

tio ν at 15 GPa have been deduced from the dislocation character dependent anisotropic

elastic parameter K(θ). This is derived within the frame of the Stroh theory using the

DisDi software (Douin 1987), where K(0◦) = µ and K(90◦) = µ/(1 − ν) for screw and

edge type dislocation segments respectively (Table 3.1). The calculation relies on the

elastic constants (at 15 GPa) as obtained with ab initio calculations (Table 3.2).
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C11 C22 C33 C44 C55 C66 C12 C13 C23 (GPa)

Ab initio (15 GPa) 439 431 350 116 126 120 116 130 140
Exp. Zha et al. (14.2 GPa) 444 465 387 131 122 130 124 142 152

Table 3.2: Elastic constants of Mg2SiO4 wadsleyite at 15 GPa as obtained by ab initio calcu-
lations. A comparison is given with respect to the elastic constants inferred from
experiments at 14.2 GPa as provided by Zha et al. (2000). The results are in good
agreement. The shear modulus µ and Poisson ration ν for the different b are given in
terms of the anisotropic elastic parameter K(θ) in table 3.1.

The critical enthalpies related to kink-pair nucleation on the 1/2〈111〉{101} screw dis-

location can be calculated as in the general case for dissociated dislocations, which is

discussed in chapter 2.3. This means that correlated nucleation of kink-pairs is captured

by the single critical activation enthalphy ∆Hcrit
c (Fig. 3.11). However, two independent

uncorrelated nucleation processes can be distinguished (Fig. 2.8). The process where

the leading partial first starts to move outwards, described by ∆Hcrit
u,l1

, followed by the

inward migration of the trailing partial, given by ∆Hcrit
u,t2 , is entirely governed by the first

nucleation step: ∆Hcrit
u,t2 � ∆Hcrit

u,l1
≈ ∆Hcrit

c . Uncorrelated nucleation of kink-pairs is

therefore essentially determined by ∆Hcrit
u,l2

to which we will simply refer as ∆Hcrit
u , on

the condition that uncorrelated nucleation of kink-pairs starting from the trailing partial

is possible to occur.

This is not the case for the [100](010) screw dislocation since the equilibrium dissoci-

ation width d is equal to a single period a′ of the Peierls potential (table 3.1): kink-pair

nucleation that starts from the trailing partial is impossible to occur. The evolution

of the critical nucleation enthalpy with stress for this slip system is therefore entirely

given by ∆Hcrit
c , since ∆Hcrit

u,l1
≈ ∆Hcrit

c . Results of the critical nucleation enthalpies as

a function of stress for both correlated (∆Hcrit
c ) and uncorrelated kink-pair nucleation

(∆Hcrit
u , ∆Hcrit

u,l1
) are presented in Fig. (3.11).
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[100](010) screw dislocations. Results are shown for correlated nucleation and the
relevant elementary steps of the uncorrelated nucleation processes.

Because of the restriction of the elastic interaction model to the low and interme-

diate stress regime as mentioned by Caillard and Martin (2003), the critical nucleation

enthalpy can be extrapolated up to the Peierls stress according to Eq. (2.64). The saddle

point energies ∆Hcrit (calculated at low stress) are used to fit ∆H0 and the empirical

parameters p and q. Fitting of the saddle point energies can be seen in Fig. (3.11) as

dashed lines. Tables (3.3) and (3.4) show the parameterizations related to the two slip

systems considered.

Dislocation τp (GPa) ∆H0 (eV) p q

[100](010) 4.8 12.5 0.5 1.03
1/2〈111〉{101} 3.5 12.3 0.5 1.61

Table 3.3: Key features and parameterization related to the glide as a result of correlated kink-pair
nucleation of the governing screw dislocations. ∆H0 is the critical nucleation enthalpy
at zero stress, a′ the Peierls periodicity, τp corresponds to the Peierls stress and p and
q are together with ∆H0 the empirical fitting parameters of Eq. 2.64.
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Dislocation τp (GPa) τc (GPa) ∆H0 (eV) p q

[100](010) 4.8 0.89 8.6 n/a n/a
1/2〈111〉{101} 3.5 0.455 5.3 1.0 5.0

Table 3.4: Key features and parameterization related to the glide as a result of uncorrelated kink-
pair nucleation of 1/2〈111〉{101} screw dislocation, where ∆H0 is the critical nucle-
ation enthalpy at τ = τc. The remaining parameters are defined as in Table (3.3).
The uncorrelated kink-pair nucleation of the [100](010) screws can be described as in
Table (3.3) since they are constrained to kink-pair nucleation starting at the leading
partial.

Kink-pair geometry

The saddle point ∆Hcrit of the total enthalpy variation ∆H of kink-pair formation,

as given in Fig. 3.11, is determined by the free variables that describe the kink-pair

geometry: the critical width wcrit and the critical height hcrit of a metastable kink-pair.

Figure (3.12) shows the evolution of the critical kink-pair geometry as a function of the

applied stress of the [100](010) and 1/2〈111〉{101} screw dislocations. One can observe

that the critical width wcrit at low stresses (correlated nucleation) is on the order of

∼ 1000×bp, whether at higher stress (uncorrelated nucleation) it converges rapidly to

∼ 10×bp. The critical height hcrit is about equal to the Peierls periodicity a′ at low

stress and descreases with increasing stress. Figure 3.12a shows the kink-pair evolution

as a function of stress τ with respect to the [100](010) screws. Kink-pair nucleation on

this screw dislocation is essentially occuring in a correlated manner. The end-member

case approach in the low stress regime is used to calculate the saddle point configu-

ration of the total enthalpy variation ∆Hc (chapter 2.3.2.4). Figure 3.12b shows the

kink-pair evolution as a function of stress τ with respect to the 1/2〈111〉{101} screws.

The evolution of the kink-pair geometry with stress τ for both correlated and uncor-

related are presented. The low stress regime approach is used to calculate the saddle

point configuration of the total enthalpy variation ∆Hcc (chapter 2.3.2.4) for correlated

nucleation of kink-pairs at low stresses. As such, the effect of the large dissocation width
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on the kink-pair nucleation is taken into account. The critical height hcrit is taken to

be equal to the Peierls periodicity a′ at low stresses with the free variables being the

widths w1 and w2 between the kink-pairs on each partial as described in chapter 2.3.2.4.

The results for uncorrelated nucleation are equally shown in Fig. 3.12b. As correlated

kink-pair nucleation mainly occurs in the low stress regime and is taken over by uncor-

related nucleation at higher stresses, one can clearly observe that there is a correlation

between the values of the critical widths wcrit2 and wcritu of either nucleation processes as

a function of stress.
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Figure 3.12: Evolution of the critical kink-pair geometry hcrit and wcrit as a function of the re-
solved shear stress τ for the: a) [100](010) screw and b) 1/2〈111〉{101} screw dislo-
cation.

3.1.4 Dislocation mobility

Dislocation mobilities with respect to glide of the [100](010) and 1/2〈111〉{101} screw

dislocations are parametrized by the critical nucleation enthalpies (Fig. 3.11) and calcu-

lated as described in chapter 2.3.3. The glide velocities obtained in this study rely on the

assumption that kink-pair nucleation controls the overall mobility of the rate controlling

screw dislocations. This implies that the second order Peierls potential, i.e. the poten-

tial which the individual edge kinks have to overcome to migrate along dislocation lines,

is neglected (Joós and Zhou 2001). Neverthesless, since the edge kinks, after nucleation,
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are forced to lie over the Peierls potential, the energy associated with migration of the

edge kinks is assumed to be less than the energy related to the nucleation process.

Dislocation velocity profiles as a function of the resolved shear stress for both 1/2〈111〉

{101} and [100](010) screw dislocations are shown in Fig. 3.13. The critical stress τc

below which only correlated kink-pair nucleation can occur is equal to about 500 MPa

and 900 MPa for the 1/2〈111〉{101} screw and [100](010) screw dislocations, respectively

(table 3.4). Figure 3.13a shows the resolved shear stress dependence of the velocities for

both screws at 1700 K in a logarithmic plot. This clearly shows that independent of the

applied stress, the velocity of the 1/2〈111〉{101} screw is always larger than that of the

[100](010) screw dislocation. The plot inserted in Fig. 3.13a shows the same velocity

curves in a semi-log plot which gives a better insight into the velocity differences with

stress between both screw dislocations. Here, we can observe that at high, but mainly

at intermediate stress values, the velocity differences between both slip systems are rel-

atively large and decrease with decreasing stress. At very low stress levels (what can

be expected in mantle conditions), the dislocation velocities for both screw dislocations

become more comparable. Typical laboratory strain rates of ε̇ = 10−5 s−1 correspond

to dislocation velocities of about v = 2 × 10−8 m/s. The stresses associated with these

velocities are on the order of 0.5 − 2 GPa. In constrast, dislocation velocities related

to mantle strain rates of ε̇ = 10−16 s−1 are about v = 2 × 10−15 m/s with stresses of

∼ 200− 1000 MPa. At room temperature, the velocity evolution with stress of the same

screw dislocations are shown in Fig. 3.13b. To obtain physically relevant dislocation

velocities, glide only takes place in the high stress regime where uncorrelated nucleation

of kink-pairs governs the dislocation mobility. The overall trend of the velocity profiles

at room temperature is comparable to the results at 1700 K. Stresses of about 1−4 GPa

are required to obtain dislocation velocities corresponding to typical laboratory strain

rates at room temperature. Finally, one can observe in Fig. 3.13 that the dislocation
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velocities at the Peierls stress for each individual dislocation are strictly independent of

temperature since this stress corresponds to the resolved shear stress required to move

an infinite dislocation at the absolute zero. At the Peierls stress, the mobility of disloca-

tions is governed by other mechanisms than the nucleation of kink-pairs and the results

of limτ→τp v(τ) are considered to be unphysical.
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Figure 3.13: Glide velocity of the 1/2〈111〉{101} and [100](010) screw dislocations as a function
of the resolved shear stress at: a) 1700 K and b) 300 K.

The dislocation velocities as shown in Fig. 3.13 are parametrized by the critical kink-

pair widths. This gives the stress dependency on the pre-exponential factor of the glide

velocities. From Fig. 3.12, one can infer that the critical width wcrit at low stresses (cor-

related nucleation) is on the order of ∼ 1000×bp, whereas at higher stress it converges

rapidly to ∼ 10×bp. Figure 3.14 shows the glide mobility of the [100](010) screw disloca-

tions as a function of the stress τ with accurate parametrization wcrit(τ) (red curve) and

the fixed ones w = 1000 × bp (blue curve) and w = 10 × bp (green curve). Because the

[100](010) screw dislocation is characterized by a single kink-pair nucleation mechanism,

it is the best candidate to show the influence of wcrit(τ) on the resulting glide mobility.

It can be seen in Fig. 3.14 that the evolution of the velocity with stress is comparable for

all three curves. This shows that the stress dependence of the pre-exponential factor in
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the description of the velocity is of minor importance compared to the stress dependence

of the critical activation enthalpies ∆Hcrit. Further, we can observe that the velocity

curve with stress described by a fixed critical kink-pair width w = 10× bp follows the ac-

curate velocity evolution with wcrit(τ) for velocities smaller than 10−25 m/s. The latter

can be associated with unrealistic small mantle strain rates smaller than 10−26 s−1. This

implies that the stress dependence on the pre-expontential factor of the glide velocity as

given in chapter 2.3.3 vanishes with respect to the importance of the large values of the

stress dependent nucleation enthalpies Hcrit given in the exponential.
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curve) and the fixed widths w = 1000 × bp (blue curve) and w = 10 × bp (green
curve).

The dislocation velocities as shown in Fig. 3.13 are the result of the underlying kink-

pair mechanism for the respective screw dislocations. Figure 3.13b shows that thermally

activated glide of the [100](010) screw dislocation leads to pronounced differences in the

velocity evolution with resolved shear stress with respect to the 1/2〈111〉{101} screw dis-

location. These differences are directly related to the difference in evolution of ∆Hcrit
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with stress as shown in Fig. 3.11. The latter, once more, is the consequence of the differ-

ent core structures between the [100](010) and 1/2〈111〉{101} screws: [100](010) exhibits

a narrow dissociation with a confined spreading of the partials, whether 1/2〈111〉{101}

is characterized by an extended dissociation with a large spread of the partials as shown

in Fig. 3.6. These features finally determine the velocity evolution of the dislocations as

a function of the applied stress.

The results further show that correlated nucleation of kink-pairs which coincide along

both partials is possible at every stress, whereas uncorrelated nucleation is only possi-

ble and becomes more favorable than correlated nucleation at τ ≥ τc, due to the lower

critical nucleation enthalpy. This implies that dislocation glide operating by the Peierls

mechanism at low temperatures and high deviatoric stress (in most cases, laboratory

conditions), will be mainly governed by uncorrelated nucleation of kink-pairs. However,

at high temperatures and small deviatoric stresses (more likely to represent mantle con-

ditions), glide will be predominantly controlled by correlated nucleation of kink-pairs on

both partials.

3.1.5 Constitutive equations

As the plastic flow below the athermal temperature Ta is directly controlled by the

mobility of dislocations, the relation between the behaviour of individual dislocations

and the collective macroscopic behaviour in this regime, as discussed in chapter 2.3.4,

can be derived from Orowan’s equation:

ε̇ = ρmbv (3.1)
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where ρm corresponds to the mobile dislocation density, b is the modulus of the Burgers

vector and v is the average dislocation velocity. For any given constant strain rate ε̇,

Eq. 3.1 can be solved for the temperature T as function of the critical resolved shear

stress CRSS.

1/2〈111〉{101} screw dislocation:

• 0 < τ ≤ τc:

ε̇c(τ) = 2190
√
ρm exp

−
1.97× 10−18

(
1−

(
τ
τp

)0.5
)1.6

kbT

 in s−1

• τc ≤ τ ≤ τp:

ε̇c+u(τ) =
1

2
ρmb [vc + vu] =

1

2
[ε̇c + ε̇u] with

ε̇u = 4380
√
ρm

(
τ − τc
τ

)
exp

−
8.49× 10−19

(
1−

(
τ−τc
τp

)1.0
)5.0

kbT

 in s−1

[100](010) screw dislocation:

• 0 < τ ≤ τp

ε̇c(τ) = 1208
√
ρm exp

−
2.0× 10−18

(
1−

(
τ
τp

)0.5
)1.03

kbT

 in s−1

with kb equal to the Boltzmann constant, T the temperature in [K] and the dislocation

density ρm given in
[
m−2

]
.
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3.1.5.1 Deformation under laboratory conditions

In order to compare the results of the above model with experimental data available

on deformation of wadsleyite at around 15 GPa, we calculated the CRSS over a broad

temperature range for typical laboratory strain rates of ε̇ = 10−5 s−1. The mobile dis-

location density is set to ρm = 1012 m−2. Figure 3.15 shows the results for the slip of

the rate govering 1/2〈111〉{101} and [100](010) screw dislocations. The transition of the

curves to the dotted lines at 2500 K marks the onset of melting for the Mg2SiO4 system

around 15 GPa. This demonstrates that dislocation glide in wadsleyite at laboratory

strain rates always operates in the thermally-activated regime, since the athermal tem-

perature would be higher than the melting temperature. It means that intracrystalline

plasticity under laboratory conditions is mainly governed by the mobility of the rate

controlling slip systems. The results show that for 0 < τ ≤ τp, slip of the 1/2〈111〉{101}

screw dislocations is always easier than slip of the [100](010) screw dislocations. Fur-

thermore, one can observe that the evolution of the CRSS as a function of T for both

screw dislocations is significantly different. This is directly related to the difference in

core structure between both screw dislocations and the subsequent difference in equi-

librium stacking fault energies. Whereas the evolution at high CRSS and low T for

[100](010) screw dislocations is roughly linear, the same evolution for the 1/2〈111〉{101}

screws is highly exponential. At high T where both curves converge towards each other,

the difference in CRSS are found to be the smallest.

Figure 3.15 shows a remarkably good agreement between the theoretical predictions

and the available experimental data. It is worth mentioning that the deformation ex-

periments used from Nishihara et al. (2008), Kawazoe et al. (2010), Kawazoe et al.

(2013), Hustoft et al. (2013) and Farla et al. (2015) were performed on polycrystalline

wadsleyite samples. The raw experimental data rather display the temperature depen-

dence on the effective flow stress than on the CRSS related to single slip systems as in
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Figure 3.15: Constitutive relation shown as the engineering stress versus temperature at a fixed
strain rate of ε̇ = 10−5 s−1 for thermally actived glide of the rate controlling
1/2〈111〉{101} and [100](010) screw dislocations. The mobile dislocation density is
taken to be ρm = 1012 m−2. Single slip CRSS as calculated are multiplied by two
to be converted into apparent engineering stresses which allows for the comparison
with the results from deformation experiments.

our calculations. Only a fraction of the effective flow stress is resolved in the direction

of dislocation motion within each single slip plane. The CRSS(T ) of the theoretical

single slip results are therefore multiplied by two (corresponding to the maximum of the

Schmid factor) in order to be compared with the experimental data in Fig. 3.15. The

latter assumption may be too simple as more deformation mechanisms may be involved

in the experiments and effects of grain boundaries and hardening have not been taken

into account in our model. However, a posteriori TEM observations of deformed samples

in some of the experimental studies (e.g. Hustoft et al. 2013; Farla et al. 2015) clearly

reveal the potential contribution of dislocation glide to the overall deformation under

laboratory conditions by the development of dense microstructures with high dislocation

densities (> 1012 m−2). Furthermore, the agreement between the experimental data and
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the evolution of the CRSS with T of the rate controlling dislocations shows that glide

controls largely the mechanical behaviour in laboratory conditions.

3.1.5.2 Deformation under transition zone conditions

Following the same approach as for laboratory strain rates, the CRSS as a function

of T for typical mantle strain rates of ε̇ = 10−16 s−1 can be obtained. Wadsleyite is

stable in the upper half of the transition zone from 410 to 520 km at a pressure range

of 13− 18 GPa corresponding to temperatures of about 1700 K. The mobile dislocation

density is taken to be ρm = 108 m−2 to adjust to the low stress regime of the Earth’s

mantle. Results are shown in Fig. 3.16. One can observe that the minimum CRSS’s at

1700 K are on the order of 150 MPa for the easiest slip system, up to over 600 MPa for

the more difficult slip system. The results show that glide in wadsleyite under mantle

conditions still occurs in a regime where the CRSS is temperature dependent. This

implies that plastic deformation by dislocation glide in wadsleyite under conditions of

the upper transition zone would be governed by the average mobility of the rate govern-

ing screw dislocations. However, the athermal temperature is a function of the applied

strain rate and the mobile dislocation density. Larger strain rates and smaller mobile

dislocation densities would shift the athermal temperature to larger values and vice versa.

The constitutive relations as shown in Fig. 3.16 are used to calculate viscosities as-

sociated with single slip in wadsleyite at the conditions of the lower transition zone

by

η =
CRSS(T = 1700K)

2ε̇
(3.2)

A viscosity of 9×1023 Pa s and 3×1024 Pa s, with respect to glide, can be attributed to

the 1/2〈111〉{101} and [100](010) screw dislocations, respectively. These viscosity values
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can be seen as lower bounds since they are related to the intrinsic glide resistance of

single slip systems.

Dislocation core modelling shows that the intrinsic lattice resistance as defined by

the Peierls stress is lower for 1/2〈111〉{101} than for the [100](010) screw dislocations.

From our study, it follows that temperature and strain rate do not change this hierarchy

since glide of the 1/2〈111〉{101} screw dislocations remains easier in the whole range of

conditions considered here. Together with the fact that 1/2〈111〉{101} has more symmet-

rical variants than [100](010), we estimate that 1/2〈110〉{111} is the most important slip

system in dislocation glide governed deformation of (poly)crystalline wadsleyite under
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both natural and laboratory conditions.

3.2 Ringwoodite at 20 GPa

As for wadsleyite, the aim of this section is to determine the constitutive equations ac-

cording to the glide mobility of the rate controlling dislocations in Mg2SiO4 ringwoodite

at 20 GPa. Previous studies (Karato et al. 1998; Thurel 2001; Carrez et al. 2006) suggest

the importance of the activity of the following three main slip systems: 1/2〈110〉{110},

1/2〈110〉{111} and 1/2〈110〉{001}. They involve dislocations dissociated into two collinear

partials, according to the Burgers vector reaction: 1/2〈110〉 → 1/4〈110〉 + 1/4〈110〉. Our

multiscale approach will be applied with respect to the aforementioned slip systems

for which the γ-surfaces have been calculated. These are used in the next step of the

model to calculate the core structures of the screw and edge dislocations belonging to

the three main slip systems by using the PNG model. Finally, thermal activation of the

rate controlling dislocations is calculated by the use of the elastic interaction model as

adapted for dissociated dislocations. The constitutive equations are finally inferred from

the stress dependence on the mobility of the rate controlling dislocations as obtained

from the latter results.

3.2.1 γ-Surfaces

γ-surfaces have been calculated for the three potential {110}, {111} and {001} slip planes

at 20 GPa using ab initio methods. Calculations are performed with the VASP code

using the GGA approximation and the US pseudopotentials as described in chapter 2.1

(especially chapter 2.1.2.4). Relaxation of the perfect crystal structure at 20 GPa leads

to a lattice parameter a = 7.879 Å and athermal elastic constants (stiffness tensor) of

C11 = 415 GPa, C12 = 160 GPa and C44 = 143 GPa which are in agreement with

previous work (Kiefer et al. 1997; Sinogeikin et al. 2001; Carrez et al. 2006) as listed in
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table 3.7.

Figure 3.17: Unsheared supercell configurations used to calculate the γ-surfaces associated with
the following slip systems: a) 1/2〈110〉{001}, b) 1/2〈110〉{110} and c) 1/2〈110〉{111}.
The shear planes are presented in red in the middle of the supercells. A vacuum
layer of 6 Å at the top of the supercells avoids the effect of interaction between the
stacking fault replicas due to periodic boundary conditions.

The unsheared supercells, according to the description in chapter 2.1, are shown in

Fig. 3.17. All atoms, except those located near the external boundary layers were al-

lowed to relax perpendicular to the shear plane in order to minimize the energy of the

γ-surfaces. Finally, the stacking fault level in each of the three supercells is chosen in

such a way as to avoid a cut of the strong Si-O bonds (Carrez et al. 2006), which leads

to a unique choice of the cutting levels with respect to the {110} and {111} planes. Two

cutting levels could be considered for the {001} plane: one in between a Mg-layer and

a layer of SiO4 tetrahedra and a one in between two SiO4 tetrahedra layers. We choose

to cut with respect to the Mg-layer, since this cutting level corresponds to the one with

the largest interplanar distance and should as such reproduce the lowest stacking fault

energies (Fig. 3.17).
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Figure 3.18: γ-surfaces provided by first principles based density functional theory calculations
(DFT) of the following planes at 20 GPa: a) {001} plane, b) {110} plane and c)
{111} plane. d) shows the γ-lines in the 1/2〈110〉 Burgers vector direction for the
{001}, {110} and {111} planes. The metastable energy minima are equal to the
equilibrium stacking fault energies of the respective slip systems.

The complete γ-surface calculations for the {001}, {110} and {111} slip planes are

given in Fig. 3.18. This extends the results of Carrez et al. (2006), where only γ-lines

were calculated along the 1/2〈110〉 direction. However, it is confirmed that the lowest

energy paths are found along the 1/2〈110〉 direction, corresponding to the Burgers vector

within the three potential slip planes. One can clearly observe in Fig. 3.18d that the en-

ergy excess of both γ-lines in the Burgers vector direction of the {110} and {111} planes

are comparable and significantly smaller than those in the {001} plane. The absolute

values of the stacking fault energies are slightly larger than in the case of Carrez et al.

(2006), due to difference in the degrees of freedom of the atomic relaxations. All γ-lines
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exhibit a camel hump shape due to the existence of a metastable energy minimum. This

forecasts the dissociation of the Burgers vector into two equivalent partials separated by

a stacking fault.

[112]
[112]

Figure 3.19: Illustration of the mesh configuration as used to model the core structures of the
1/2〈110〉 screw dislocations in the PN-model: position of the γ-surfaces (solid lines)
correspond to the location of the glide planes imposed on the actual crystal struc-
ture of Mg2SiO4 ringwoodite (yellow, red and blue atoms reflect the Mg, O and Si
respectively). True unit cells shown by the dashed rectanglar contours have been
used to construct the simulation cells. Orientations along [1̄10], [110] and [001]
directions have been used to construct a rectangular mesh. Orientations along the
[1̄12], [11̄2] and [110] directions have been used to construct a quasi-hexagonal mesh
configuration.

3.2.2 Core structures and lattice friction

The γ-surfaces have been used as input for the PNG calculations of the dislocation struc-

tures. Simulation cells are based on a nodal mesh constructed around the dislocation

line which relies on the crystal structure by the introduction of families of planes corre-

sponding to the potential glide planes: (1̄10), (001), (1̄11), (1̄11̄) as considered for the

1/2〈110〉 Burgers vector. The simulation cells contain at least 20 unit cells of Mg2SiO4

ringwoodite with a node density of 16 nodes per Burgers vector. An increase in node
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density did not further affect the simulation results.

[110]

[110]

(110)

(110)

[110]

[111]

(111)

(110)

(b)

Figure 3.20: Illustration of the meshes used to model the core structures of the 1/2〈110〉 edge dis-
locations with the PNG model gliding in the a) {110} and b) {111} planes. Position
of the γ-surfaces (solid lines) correspond to the location of the glide planes imposed
on the actual crystal structure of Mg2SiO4 ringwoodite (yellow, red and blue atoms
reflect the Mg, O and Si respectively). True unit cells shown by the dashed rect-
anglar contours have been used to construct the simulation cell with orientations
along [1̄10], [110] and [001] directions.

A rectangular mesh configuration with orientations along the [1̄10], [110] and [001]

directions as illustrated in Fig. 3.19 is constructed to calculate the core structure of the

1/2〈110〉 screw dislocation potentially spreading in the (1̄10), (001), (1̄11), (1̄11̄) planes.

A Volterra screw dislocation is introduced in the center of the simulation box in such

a way that it is able to spread in all possible families of planes. Introducing a 1/2〈110〉

screw dislocation initially in {110} or {001} leads after relaxation to a complete spread

into {110}. Due to the applied boundary conditions of the model, it is not possible

to stabilize a core structure by introducing a 1/2〈110〉 screw dislocation in {111}. To

be able to investigate that possibility, a quasi-hexagonal mesh was constructed with

orientations along the [1̄12], [11̄2] and [110] (Fig. 3.19). Introducing an initial 1/2〈110〉

screw dislocation in the {111} leads, after energy minimization, to a complete spread
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Figure 3.21: Results of the PNG calculations in form of the disregistry (red continuous line)
and its derivative, the local density of the Burgers vectors (green dotted line) of the
1/2〈110〉 screw dislocation spreading into the {110} and {111} plane as presented in
the first column and of the 1/2〈110〉 edge dislocation spreading into the {110} and
{111} plane presented in the second column.

into {111}. The simulations performed with both mesh configurations showed that no

significant Burgers vector distribution is found in the {001} plane. However, we are

not able to distinguish whether the 1/2〈110〉{110} or the 1/2〈110〉{111} screw dislocation

exhibits the lowest energy configuration, due to the limitations of the boundary condi-

tions of the PNG model. Consequently, we will take into account both 1/2〈110〉{110}

and 1/2〈110〉{111} screw dislocations (Fig. 3.21).

A similar approach is used to calculate the structure of the edge dislocations except

for the fact that they are confined into their plane of introduction as a consequence of
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the edge character. Since the stable 1/2〈110〉 screw core configurations were found to

spread in {110} and {111}, we could constrain our calculations to the core structures of

the 1/2〈110〉{110} edge and the 1/2〈110〉{111} edge dislocations. The PNG mesh config-

urations are constructed as shown in Fig. 3.20.

Figure 3.22: Atomistic view of the core structure of the 1/2〈110〉{110} screw dislocation in wad-
sleyite, as inferred from the PNG results (Fig. 3.6). The normal of the glide plane
points out of the paper. The dislocation core is visualized by atomic displacements
according to the disregistry and local Burgers vector density.

The resulting dislocation core structures of the 1/2〈110〉 screw and edge dislocations

spreading in {110} and {111} are shown in Fig. 3.21 by the disregistry and its deriva-

tive, the Burgers vector density. One can observe that the core structures of the

1/2〈110〉{110} and 1/2〈110〉{111} screw dislocations are very similar. It further shows

clearly the collinear dissociation into two partials according to the Burgers vector reac-

tion 1/2〈110〉 = 1/4〈110〉 + 1/4〈110〉. Properties of all structures are shown in tables 3.5

and 3.6 for the 1/2〈110〉 screw and edge dislocations respectively. It can be seen that all

core structures of the screws are more confined and less extended into the glide plane
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Figure 3.23: Atomistic view of the core structure of the 1/2〈110〉{111} screw dislocation in wad-
sleyite, as inferred from the PNG results (Fig. 3.6). The normal of the glide plane
points out of the paper in the above figure which gives a top view on the glide plane.
The dislocation core is visualized by atomic displacements according to the disregistry
and local Burgers vector density.

than the edge characters. The equilibrium stacking fault width d between the partials

is always equal to an integer multiple of the lattice periodicity a′. This means that both

partials occupy the minimum energy configuration in the crystal, and are therefore well

placed into the wells of the Peierls potential, under equilibrium conditions. An illustra-

tion of the atomistic view of the 1/2〈110〉 screw dislocation spreading in the {110} and

{111} planes are shown in Fig. 3.22 and 3.23.

Dislocation K(θ = 0◦) (GPa) a′ (Å) ξ (Å) d (Å) τp (GPa)

1/2〈110〉{110} 135 a/2 ≈ 3.940 2.9 8.5 7
1/2〈110〉{111} 135 a

√
6/4 ≈ 4.825 3.8 10 9

Table 3.5: Core structures and quantification of the intrinsic lattice friction of the 1/2〈110〉 screw
dislocations for a given periodicity a′ of the Peierls potential. K(θ) is equal to the
anisotropic elastic parameter, ξ corresponds to the width of each partial, d is equal
to the equilibrium stacking fault width taken as the distance between the partials com-
parable to an integer multiple of one lattice periodicity a′ and τp corresponds to the
Peierls stress.
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Dislocation K(θ = 90◦) (GPa) a′(Å) ξ (Å) d (Å) τp (GPa)

1/2〈110〉{110} 185 a
√

2/4 ≈ 2.786 4.5 12 1
1/2〈110〉{111} 187 5.5 14 2.5

Table 3.6: Core structures and quantification of the intrinsic lattice friction for the 1/2〈110〉 edge
dislocations. All parameters are defined as in table 3.5.

The dislocation core structures calculated in this study are in relatively good agree-

ment with results previously obtained by Carrez et al. (2006). In both studies, all screw

dislocations exhibit narrower core structures with respect to the edge dislocations. Nev-

ertheless, all core structures here are found to be slightly more confined, so that the

stacking fault widths, measured as the distance between the center of both partials in

the spreading direction, are integer multiples of the corresponding Peierls periodicities.

The only difference is that we show here that the 1/4〈110〉{111} partial screw dislocations

exhibit minor edge components of 9% of the 1/2〈110〉 Burgers vector. This may explain

why spreading of the 1/2〈110〉 screw dislocation is found in {111} when initially introduc-

ing it in the same plane. This let us suggest that the 1/2〈110〉 screw dislocation spreading

in the {110} may finally be the most stable dislocation core configuration in ringwood-

ite. Figure 3.24 shows the explicit Burgers vector path of a relaxed 1/2〈110〉{111} screw

dislocation superimposed on a contourplot of the γ-surface of the {111} plane. One

can observe that the dislocation is dissociated into 1/4〈110〉{111} partials separated by

a stacking fault, for which both partials are split into two smaller partials of large screw

and small edge segments. However, this deviation from collinear dissociation is small

and will therefore be neglected throughout the calculations of the dislocation mobility.

So formally, we will assume the Burgers vector reaction for the 1/2〈110〉{111} screw dislo-

cation to be 1/2〈110〉 = 1/4〈110〉 + 1/4〈110〉. It is however worth to mention that exactly

this type of core structure of the 1/2〈110〉{111} dislocation, as shown in Fig. 3.24, was

proposed by Welsch et al. (1974) to exist in stoichiometric MgAl2O4 spinel after weak-

beam TEM study. The dissociation of the 1/2〈110〉{111} dislocation into four partials
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has first been proposed by Hornstra in 1960.

Figure 3.24: Contourplot of the γ-surface of the {111} plane including the Burgers vector path
for a relaxed 1/2〈110〉{111} dislocation initially introduced as purely screw using the
PNG model. The metastable minimum at the top halfway along the 1/2〈110〉 direction
indicates the dissociation of the dislocation. It can be seen that both 1/4〈110〉 partials
exhibit small edge components of 9% of the 1/2〈110〉 Burgers vector.

Quantification of the intrinsic lattice friction of the 1/2〈110〉 screw and edge dislocations

is obtained through explicit calculation of the Peierls potentials according to Eq. 2.44

(chapter 2.2.4). Tables 3.5 and 3.6 give the Peierls stresses resulting from all disloca-

tion structures. One can observe that the Peierls stresses for the edge dislocations are

considerably lower than those for the screw dislocations. As the edge characters exhibit

lower lattice friction, the mobility of the 1/2〈110〉 screw dislocation gliding in the prefer-

ential {110} and {111} slip planes will account for most of the plastic strain produced

during deformation (as plastic strain contributed by the faster edge segments is negli-

gible). Peierls potentials of the most important 1/2〈110〉{110} and 1/2〈110〉{111} screw
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dislocations are shown in Fig. 3.25. Both slip systems have a value of τp/µ ∼ 5× 10−2.

For comparison at similar high pressure conditions, τp/µ ∼ 1 × 10−3 in MgO (Amodeo

et al. 2011) and τp/µ ∼ 3.5 × 10−2 in wadsleyite at 15 GPa with respect to the easiest

slip systems.
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Figure 3.25: Peierls potentials calculated using the PN model based on the dislocation structures
for the 1/2〈110〉 screw dislocations gliding in the {110} and {111} planes.

3.2.3 Thermal activation of dislocation glide

Calculations of the critical kink-pair enthalpies are parametrized by the dislocation core

structures (Fig. 3.6), the Peierls potentials (Fig. 3.10) and the associated Peierls stresses

(Table 3.5) of the 1/2〈110〉{110} and 1/2〈110〉{111} screw dislocations as previously cal-

culated. As the kink-pair model is based on linear elasticity, the shear modulus µ and

Poisson ratio ν at 20 GPa have been deduced from the dislocation character dependent

anisotropic elastic parameter K(θ) using the DisDi software (Douin, 1987) (K(0◦) = µ

and K(90◦) = µ/(1 − ν) for screw and edge type dislocation segments respectively, see

table 3.5 and 3.6). The calculations rely on the elastic constants at 20 GPa which are
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obtained with ab initio calculations (table 3.7), as discussed in section 2.1.4.

C11 C44 C12 (GPa)

Ab initio (this study) (GGA) (20 GPa) 415 143 160
Exp. Sinogeikin et al. (15.8 GPa) 427 142 161
Ab initio (Kiefer et al.) (LDA) (20 GPa) 475 150 175

Table 3.7: Elastic constants of Mg2SiO4 ringwoodite at 20 GPa as obtained by ab initio calcula-
tions in this study. A comparison is given with respect to the elastic constants inferred
from experiments at 15.8 GPa as provided by Sinogeikin et al. (2001) and with respect
to ab initio calculation performed by Kiefer et al. (1997). The results are comparable.
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Figure 3.26: Evolution of the critical kink-pair nucleation enthalpy as a function of the resolved
shear stress (normalized by the Peierls stress) for the 1/2〈110〉 screw dislocation
gliding in the a) {110} plane and b) {111} plane. Results are shown for correlated
nucleation and both elementary steps of the uncorrelated nucleation process. It can
be seen that the critical enthalpy related to step 2 of the uncorrelated nucleation of
kink-pairs will govern this process since the corresponding mobility is described by
an Arrhenius type of law as described in section 2.3.3.

The critical enthalpies related to the nucleation of kink-pairs on the 1/2〈110〉{110} and

1/2〈110〉{111} screw dislocations are calculated as described in chapter 2.3. Kink-pair

nucleation on both screw dislocations can be described as in the general case for dissoci-

ated dislocations. This means that correlated nucleation of kink-pairs is captured by the

single critical activation enthalphy ∆Hcrit
c . On the other hand, uncorrelated kink-pair

nucleation is essentially determined by the outward motion of the leading partial ∆Hcrit
u,l2
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(to which we will simply refer to as ∆Hcrit
u ) associated with the nucleation process as

shown in Fig. 2.8c in chapter 2.3. This means that both correlated and uncorrelated kink-

pair nucleation can be described by the single critical activation enthalpies ∆Hcrit
c and

∆Hcrit
u respectively. Results of the critical nucleation enthalpies as a function of stress

for both correlated (∆Hcrit
c ) and uncorrelated kink-pair nucleation (∆Hcrit

u,t1 , ∆Hcrit
u,l2

) are

presented in Fig. 3.26.

Dislocation τp (GPa) ∆H0 (eV) p q

1/2〈110〉{110} 7 10.7 0.5 1.2
1/2〈110〉{111} 9 13.2 0.5 1.1

Table 3.8: Key features and parameterization related to the glide as a result of correlated kink-
pair nucleation of the governing screw dislocations. ∆H0 is the critical nucleation
enthalpy at zero stress, a′ is the periodicity of the Peierls potential, τp corresponds to
the Peierls stress and p and q are together with ∆H0 the empirical fitting parameters
of Eq. 2.64.

Dislocation τp (GPa) τc (GPa) ∆H0 (eV) p q

1/2〈110〉{110} 7 2.7 2.2 1.0 2.9
1/2〈110〉{111} 9 2.4 3.6 1.0 2.9

Table 3.9: Key features and parameterization related to glide as a result of uncorrelated kink-pair
nucleation of the governing screw dislocations, where ∆H0 is the critical nucleation
enthalpy at τ = τc. The remaining parameters are defined as in table 3.8.

As in the case of wadsleyite, the critical nucleation enthalpies can be extrapolated up

to the Peierls stress according to Eq. 2.64. The saddle point energies ∆Hcrit (as calcu-

lated at low stress) are used to fit ∆H0 and the empirical parameters p and q. Fitting

of the saddle point energies can be seen in Fig. 3.11 as dashed lines. Table 3.8 and 3.9

show the parameterizations related to the two slip systems considered.
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Kink-pair geometry

The saddle point configuration ∆Hcrit of the total enthalpy variation ∆H of kink-pair

nucleation as shown in Fig. 3.26 is determined by the free geometrical variables that

define the kink-pair. The evolution of the critical kink-pair geometry as a function of

the applied stress for both correlated and uncorrelated nucleation processes is shown

in Fig. 3.27 with respect to the rate governing 1/2〈110〉{110} and 1/2〈110〉{111} screw

dislocations. As mentionned before, under low stress conditions, the critical height hcrit

of a kink is about equal to the Peierls periodicity a′ and decreases with increasing stress.

Further, one can observe that the critical width rapidly converges to finite values with

increasing stress but diverges when the resolved shear stress goes to zero. Therefore,

the critical kink-pair width has to be truncated at low stress with respect to the typical

average length L = 1/
√
ρm (where ρm is equal to the dislocation density) of the partial

dislocation lines.
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Figure 3.27: Evolution of the critical kink-pair geometry hcrit and wcrit as a function of the re-
solved shear stress τ for 1/2〈110〉 screw dislocation gliding in the a) {110} and b)
{111} plane. It can be seen that the height of kink-pairs under negligible stress con-
ditions is equal to the Peierls periodicity a′ and decreases with increasing stress.
The width between the kink-pairs rapidly converge with increasing stress to almost
constant values but diverges when the stress goes to zero.
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3.2.4 Dislocation mobility

Dislocation glide mobility of 1/2〈110〉 screw dislocations in the {110} and {111} planes

are parametrized by the critical nucleation enthalpies (Fig. 3.26) and calculated as de-

scribed in chapter 2.3.3. The stress dependence of the pre-exponential factor in the

description of the glide velocity, as discussed in section 2.3.3, can be neglected due to

similar high values of the critical kink-pair nucleation enthalpies as for wadsleyite. The

glide velocities obtained in this study rely on the assumption that kink-pair nucleation

controls the overall mobility of the rate controlling screw dislocations as briefly discussed

in section 3.1 on wadsleyite.

Dislocation velocity profiles as a function of the resolved shear stress for both 1/2〈110〉{110}

and 1/2〈110〉{111} screw dislocations using a dislocation density of ρm = 1012 m−2 are

shown in Fig. 3.28. At T=1800 K (Fig. 3.28a), the velocity difference between both slip

systems remains fairly constant at low and intermediate stresses and decreases for high

values approaching the Peierls stress τp. The critical stress τc below which only corre-

lated kink-pair nucleation can occur is equal to ∼ 2.5 GPa for both screw dislocations

(table 3.9). Typical laboratory strain rates of ε̇ = 10−5 s−1 correspond to dislocation

velocities of about v = 2 × 10−8 m/s. The stresses associated with these velocities

are ∼ 1 GPa. In constrast, the dislocation velocity related to mantle strain rates of

ε̇ = 10−16 s−1 is about v = 2× 10−15 m/s. This demonstrates the intrinsic non-linearity

of the velocity variation with resolved shear stress at fixed T . At room temperature, the

dislocation velocity profiles for the same screw dislocations are shown in Fig. 3.28b. In

this case, glide only takes place in the high stress regime where uncorrelated nucleation

of kink-pairs governs the dislocation mobility. The overall trend of the velocity profile

with stress at room temperature is comparable to the results at 1800 K. Stresses of about

4 GPa are required to obtain dislocation velocities corresponding to typical laboratory

strain rates at room temperature.
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Figure 3.28: Glide velocities of the 1/2〈110〉{110} and 1/2〈110〉{111} screw dislocations as a func-
tion of the resolved shear stress at: a) 1800 K and b) 300 K.

The above results on the dislocation mobility show the same trends as in case of

wadsleyite: dislocation glide operating by the Peierls mechanism at low temperatures

and high deviatoric stress (in most cases, laboratory conditions), will be mainly gov-

erned by uncorrelated nucleation of kink-pairs. Whereas at high temperatures and small

deviatoric stresses (more likely to represent mantle conditions), the glide will be pre-

dominantly controlled by correlated nucleation of kink-pairs on both partials. This is

in agreement with what has been found on the mobility of collinearly dissociated dislo-

cations in several intermetallic compounds and semiconducting crystals such as silicon

(Si) and germanium (Ge) by Möller (1978) and Takeuchi (1995).

3.2.5 Constitutive equations

As the plastic flow below the athermal temperature is directly controlled by the mobil-

ity of dislocations, the relation between the behaviour of individual dislocations and the

collective macroscopic behaviour in this regime, as discussed in chapter 2.3.4, can be

derived from Orowan’s equation:
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1/2〈110〉{110} screw dislocation:

• 0 < τ ≤ τc:

ε̇c(τ) = 3940
√
ρm exp

−
1.60× 10−18

(
1−

(
τ
τp

)0.5
)1.2

kbT

 in s−1

• τc ≤ τ ≤ τp:

ε̇c+u(τ) =
1

2
ρmb [vc + vu] =

1

2
[ε̇c + ε̇u] with

ε̇u = 7880
√
ρm

(
τ − τc
τ

)
exp

−
3.52× 10−19

(
1−

(
τ−τc
τp

)1.0
)2.9

kbT

 in s−1

1/2〈110〉{111} screw dislocation:

• 0 < τ ≤ τc:

ε̇c(τ) = 4800
√
ρm exp

−
2.0× 10−18

(
1−

(
τ
τp

)0.5
)1.1

kbT

 in s−1

• τc ≤ τ ≤ τp:

ε̇c+u(τ) =
1

2
ρmb [vc + vu] =

1

2
[ε̇c + ε̇u] with

ε̇u = 9600
√
ρm

(
τ − τc
τ

)
exp

−
5.77× 10−19

(
1−

(
τ−τc
τp

)1.0
)2.9

kbT

 in s−1
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with kb equal to the Boltzmann constant, T the temperature in [K] and the dislocation

density ρm given in
[
m−2

]
.

3.2.5.1 Deformation under laboratory conditions

Single slip constitutive equations as a consequence of thermally actived glide of 1/2〈110〉{110}

and 1/2〈110〉{111} screw dislocations can be inferred as described in chapter 2.3.4 and

3.1.5.

To compare the results of the constitutive equations obtained in our theoretical study

with experimental data available on deformation of ringwoodite at 20 GPa, we calcu-

lated the CRSS over a broad temperature range for typical laboratory strain rates of

ε̇ = 10−5 s−1. The mobile dislocation density is set to ρm = 1012 m−2. Figure 3.29

shows the results for the slip of the 1/2〈110〉{110} and 1/2〈110〉{111} screw dislocations.

The transition from the solid to the thin lines at 2500 K marks the onset to melting

for Mg2SiO4 ringwoodite at 20 GPa. This demonstrates that dislocation glide in ring-

woodite at laboratory strain rates always operates in the thermally-activated regime,

since the athermal temperature would be higher than the melting temperature. Slip of

the 1/2〈110〉{110} screw dislocations is comparable, yet slightly softer than slip of the

1/2〈110〉{111} screw dislocations. Fig. 3.29 shows a remarkable agreement between our

theoretical predictions and the experimental data available as it was the case in wads-

leyite in section 3.1. As for wadsleyite (chapter 3.1), the deformation experiments on

ringwoodite as used, from Meade and Jeanloz (1990), Kavner et al. (2001), Nishiyama et

al. (2005), Hustoft et al. (2012) and Miyagi et al. (2013), were performed on polycrys-

talline samples. This means that only a fraction of the effective flow stress is resolved

in the direction of dislocation motion within each single slip plane. The CRSS(T )

corresponding to our theoretical single slip results is therefore multiplied by two (cor-

responding to the maximum of the Schmid factor) in order to be compared with the
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experimental data in Fig. 3.29. The latter assumption may be too simple as more defor-

mation mechanisms may be involved in the experiments and effects of impurities, grain

boundaries and hardening have not been taken into account in our model. However,

we are able to well reproduce the evolution of the CRSS as a function of T compared

to the available experimental data in terms of dislocation activity for both wadsleyite

at 15 GPa and ringwoodite at 20 GPa. This agreement suggest that dislocation glide

controls the mechanical behaviour at laboratory conditions.
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Figure 3.29: Critical resolved shear stress (CRSS) versus temperature (T ) at a fixed strain rate
of ε̇ = 10−5 s−1 for thermally actived glide of the 1/2〈110〉{110} and 1/2〈110〉{111}
screw dislocations. The mobile dislocation density is taken to be ρm = 1012 m−2.
The transition of correlated kink-pair nucleation towards both uncorrelated and cor-
related nucleation occurs around τc ∼ 2.5 GPa. Single slip CRSS as calculated are
multiplied by two to be converted into apparent engineering stresses which allows for
the comparison with the results from deformation experiments.
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3.2.5.2 Deformation under transition zone conditions

Following the same approach as for the laboratory strain rates, the CRSS can be ob-

tained as a function of T for typical mantle strain rates of ε̇ = 10−16 s−1. Ringwoodite

is stable in the lower half of the transition zone at a pressure around 20 GPa corre-

sponding to a temperature of ∼ 1800 K. The mobile dislocation density is taken to be

ρm = 108 m−2 to adjust to the low stress regime of the Earth’s mantle. The results

are shown in Fig. 3.30. One can observe that the minimum CRSS’s are on the order

of 100 MPa for the easiest slip system (1/2〈110〉{110} screw) up to over 500 MPa for

the most difficult slip system (1/2〈110〉{111} screw) at 1800 K. The results show that

dislocation glide in ringwoodite under mantle conditions operates in the thermally ac-

tivated regime (where CRSS is a function of T ), although near the boundary to the

athermal regime above which dislocation-dislocation interactions would govern the dis-

location mobility. However, the athermal temperature is a function of the applied strain

rate and the mobile dislocation density. Smaller strain rates and larger mobile dislo-

cation densities would shift the athermal temperatures to lower values and vice versa.

We want to mention that the CRSS for both slip systems at the appropriate mantle

conditions are significantly lower than the critical stress τc, which means that the glide

mobility is the result of correlated kink-pair nucleation under the relatively low stress

and high T conditions in the Earth’s mantle.

Viscosities associated with single slip in ringwoodite are deduced from the constitutive

relations as shown in Fig. 3.30 at the conditions of the lower transition zone by

η =
CRSS(T = 1800K)

2ε̇
(3.3)

A viscosity of 8 × 1023 Pa s and 3 × 1024 Pa s with respect to glide can be attributed

to the 1/2〈110〉{110} and 1/2〈110〉{111} screw dislocations, respectively. The viscosity
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Figure 3.30: Critical resolved shear stress (CRSS) versus temperature at a fixed strain rate of
ε̇ = 10−16 s−1 for thermally actived glide of the 1/2〈110〉{110} and 1/2〈110〉{111}
screw dislocations. The dislocation density is taken to be ρm = 108 m−2. The
shaded area depicts the stability field of ringwoodite in the lower transition zone at
20 GPa.

values as calculated can be seen as lower bounds since they are related to the intrinsic

glide resistance of single slip systems.

Dislocation modelling shows that intrinsic lattice friction measured by the Peierls

stress is lower for 1/2〈110〉{110} than for the 1/2〈110〉{111} screw dislocations. From our

study, it follows that temperature and strain rate do not change this hierarchy since glide

of the 1/2〈110〉{110} screw dislocations remains easier in the whole range of conditions

considered here. This is in contrast with some experimental studies which emphasize the

dominance of 1/2〈110〉{111} slip (Wenk et al. 2005; Miyagi et al. 2014). However, this

conclusion is drawn from crystal preferred orientation measurements and viscoplastic

self-consistent modelling (VPSC). As already noted by Carrez et al. (2006) and Miyagi
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et al. (2014), this may be due to the fact that 1/2〈110〉{111} has more symmetrical

variants than the 1/2〈110〉{110} slip system and might therefore play an important role

in the deformation despite its slightly more difficult slip.

3.3 On dislocation glide in wadsleyite and ringwoodite

Dislocation glide has been modeled using a multiphysics approach to investigate its

potential contribution to the overall plastic deformation of Mg2SiO4 wadsleyite and

ringwoodite in the Earth’s transition zone. The multiscale model we have been using is

extensively described in chapter 2, followed by the results regarding both Mg2SiO4 high-

pressure polymorphs in chapter 3. Glide has been modelled in wadsleyite at 15 GPa and

in ringwoodite at 20 GPa at finite temperatures at both laboratory and natural strain

rates. Lattice friction that is opposed to glide motion of dislocations is quantified in the

framework of the Peierls-Nabarro model, parametrized by atomic scale calculations of

γ-surfaces, and used to model thermally activated glide of the rate controlling (screw)

dislocations in wadsleyite and ringwoodite.

To move in both high-pressure polymorphs of olivine, dislocations have to overcome

their intrinsic lattice friction. Plastic slip in this so called thermally-activated regime,

is mainly governed by sluggish glide of long dislocation segments of screw character. If

a dislocation bows-out in its glide plane, under the conjugate action of resolved shear

stress and thermal activation, it activates non-screw segments that migrate rapidly and

leave behind long straight slow moving screw segments, which in turn will account for

most of the plastic strain produced. Our model is also able to determine the temperature

threshold above which dislocation-dislocation interactions would govern the mobility of

dislocations, i.e. the temperature threshold below which the glide mobility of dislo-

cations is primarily dominated by the interaction between dislocations and the crystal
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lattice. As such, the model strongly relies on the intrinsic core properties of the rate gov-

erning (screw) dislocations: 1/2〈111〉{101} and [100](010) screw dislocations in wadsleyite

and the 1/2〈110〉 screw dislocations gliding in the {110} and {111} planes in ringwoodite.

A crucial feature of these rate controlling screw dislocations is the (collinear) dissociation

into partials which determines their mobility. Thermal activation of these dissociated

dislocations is then modelled in order to calculate the respective glide velocities. De-

formation by dislocation glide is finally presented as the response of the CRSS(T ) to a

constant applied strain rate at the grain scale.

We would like to focus on some points of the modelling approach and spend some

time to discuss the possible effect on the final results in form of the glide mobilities, i.e.

the constitutive equations. The glide mobilities of dislocations are derived by the use of

the kink-pair model, which is based on linear elasticity. This model has been adopted

and extended to describe the nucleation of kink-pairs on dissociated dislocations. The

model is expected to be the most accurate in the low stress regime (correlated nucleation

of kink-pairs). This implies that CRSS(T ) are found to be the most accurate at high

T and low stress conditions, which are the conditions of interest in the Earth’s deep

mantle. This also means that the values of the CRSS(T ), as determined by the kink-

pair model, may be more uncertain at typical laboratory conditions of low T and high

stresses (uncorrelated nucleation of kink-pairs). However, the modelling approach has

led to a good agreement with the constitutive relations at laboratory conditions in both

wadsleyite and ringwoodite which exhibit high lattice friction. It has to be mentioned

that the benchmark of our multiscale model on SrTiO3 perovskite has shown that the

model is capable of reproducing the constitutive equations related to glide in SrTiO3

single crystals satisfactorily with respect to the initial assumptions which are used to

model thermally activated glide in both transition zone minerals. The validations sug-

gest that the model is able to capture the essential physics at all scales.
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Secondly, we would like to spend a few lines on the fact that the contribution of the

entropy change is neglected in the kink-pair model. In chapter 2, an estimation of this

energy contibution was calculated to be lower than [0.2-1.2] eV at 1700 K. At these high

temperatures, we are in the low-stress domain for the threshold of dislocation motion,

which corresponds to high critical nucleation enthalpies > 10 eV for both wadsleyite and

ringwoodite. As such, the entropy variation seems to be of minor importance on the

energy contribution associated to kink-pair formation for both high-pressure polymorphs

of olivine.

The modelling results show that glide in wadsleyite and ringwoodite under both lab-

oratory and mantle conditions still occurs in a regime where the CRSS is temperature

dependent. This implies that plastic deformation by dislocation glide in both minerals

under conditions of the transition zone is governed by the mobility of the rate govern-

ing screw dislocations. The constitutive equations related to glide at typical laboratory

strain rates of ε̇ = 10−5 s−1 show a good agreement with experimental data on plastic

deformation of wadsleyite and ringwoodite. This suggests that glide may largely control

the mechanical behaviour under laboratory conditions in both high-pressure Mg2SiO4

polymorphs. However, strain rate is one of the physical quantities that determine the

potential contribution of a deformation mechanism to the overall plasticity. Taking into

account the intrinsic strain rate dependency on the mobility of the defects, constitutive

equations are derived with respect to typical mantle strain rates of ε̇ = 10−16 s−1. This

has been used to calculate single slip viscosities:

• Mg2SiO4 wadsleyite at 15 GPa

1. 1/2〈111〉{101} screw - η = 9× 1023 Pa s

2. [100](010) screw - η = 3× 1024 Pa s
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• Mg2SiO4 ringwoodite at 20 GPa

1. 1/2〈110〉{110} screw - η = 8× 1023 Pa s

2. 1/2〈110〉{111} screw - η = 3× 1024 Pa s

All viscosity values are on order of about 1024 Pa s. This shows that lattice friction

of the transition zone minerals wadsleyite and ringwoodite cannot be neglected, even

at the typical low strain rates expected in the Earth’s mantle. The results suggest

the inefficiency of dislocation glide as a strain producing deformation mechanism in the

high-pressure polymorphs of olivine under transition zone conditions. Furthermore, dif-

ficult dislocation glide in the Mg-endmembers of wadsleyite and ringwoodite, under the

conditions of the Earth’s transition zone, is in contrast to glide in (Mg,Fe)2SiO4 olivine

(Boioli et al. 2015) that seems to be much easier to activate. These results suggest that

the sole contribution of dislocation glide is unlikely to account for the overall plasticity

of Mg2SiO4 wadsleyite and ringwoodite under transition zone conditions.

It has to be mentionned that the single slip viscosities as obtained in our study are

two orders of magnitude larger than what is expected (1021−1022 Pa s) from global joint

inversion (e.g. Ricard and Wuming 1991; Mitrovica and Forte 2004). It is essentially

the evolution of the critical kink-pair nucleation enthalpies ∆Hcrit(τ) that determine

the constitutive equations. Typical values of the critical nucleation enthalpies at low

stress conditions of the mantle for the rate controlling dislocations in both high pressure

polymorphs of olivine are found to be limτ→0 ∆Hcrit > 10. This is what makes glide

difficult to activate.

Large critical resolved shear stresses (> 100 MPa) regarding pure single slip disloca-

tion glide would imply that other mechanisms may control the deformation of wadsleyite
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and ringwoodite in the Earth’s transition zone.
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4 Implications: which deformation

mechanisms in the transition zone?

I wish that they would softly creep ...

William Wordsworth.

(The Excursion: Being a portion of The Recluse, a poem 1814.)

The above modelling of dislocation glide in Mg2SiO4 wadsleyite and ringwoodite con-

firms results from high P and T deformation experiments by obtaining comparable stress

levels. This confirms that the glide motion of dislocations, despite the high plastic flow

stresses required to produce plastic strain, largely controls the mechanical behavior un-

der laboratory conditions. Moreover, by taking into account the intrinsic dependency of

the strain rate on the dislocation velocity, we have shown that the lattice resistance for

dislocations to glide in both high-pressure polymorphs of olivine remains relatively high

for what can be expected under mantle conditions at very low strain rates of 10−16 s−1.

This implies that the sole contribution of dislocation glide to the overall plasticity in

wadsleyite and ringwoodite cannot account for the plastic strain produced at low stress

conditions of the Earth’s deep mantle.

The glide of dislocations, as integral part of the dislocation creep deformation mech-

anism, is often seen as one of the efficient processes to produce intracrystalline plastic

strain in minerals. This principle becomes questionable for wadsleyite and ringwoodite

163
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as a result of the high lattice friction under natural conditions. This suggests the need

for deformation mechanisms other than dislocation glide to be responsible for the overall

plasticity of both high-pressure polymorphs of olivine in the Earth’s transition zone.

Beside dislocation glide, plastic deformation in (poly)crystalline materials can also be

accomodated by the diffusion of point defects as present in the grains. Vacancy diffusion

through the crystal bulk (Nabarro-Herring creep) or along grain boundaries (Coble creep)

can both operate if vacancies are emitted or absorbed by the grain boundaries. Also

dislocation creep may involve the diffusion of point defects through dislocation climb,

where the core structure of the edge dislocations (instead of the grain boundaries) act

as sources and sinks for vacancy diffusion. The nature of point defects (vacancies, inter-

sticials, etc.), the diffusion process (single atomic diffusion, multicomponent diffusion,

etc.) and the sources and sinks in relation to the interdiffusive distances determine for

a large part the overall rate of deformation.

These diffusion based deformation mechanisms may provide a more efficient alterna-

tive to dislocation glide in the high-pressure phases of the Earth’s transition zone. The

next step therefore consists in comparing pure diffusion creep mechanisms with the dis-

location creep involving both dislocation glide and vacancy diffusion (dislocation climb)

by constructing deformation mechanism maps. The implications and constraints on the

rheology of the transition zone will be discussed afterwards.
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4.1 Deformation mechanisms: dislocation glide versus vacancy

diffusion

In this section, we will introduce the underlying principles and physical description of the

most important potential deformation mechanisms involving pure diffusion of vacancies

versus the one involving both glide and vacancy diffusion: diffusion versus dislocation

creep. The aim is to address the strain producing efficiency of these deformation mech-

anisms in wadsleyite and ringwoodite under transition zone conditions.

4.1.1 Diffusion creep

Diffusional flow in ionic and covalent bonded materials such as the silicates that consti-

tute the Earth’s mantle is governed by multicomponent diffusion of point defects (i.e.

diffusion of multiple atomic species forming a structural unit (Mg2SiO4-unit in case of

wadsleyite and ringwoodite)) so as for the minerals to remain charge neutral. This

implies the migration of vacancies or interstitials. Although both types of defects can

effectively contribute to the diffusion process, vacancies generally exhibit lower forma-

tion energies. We therefore assume that deformation by diffusional flow is controlled by

the vacancy diffusion.

4.1.1.1 Nabarro-Herring creep

An imposed stress field on a (poly)crystal causes a heterogeneous state of stress between

grain surfaces with different orientations. This results in different vacancy concentrations

between different surfaces which gives rise to a vacancy concentration gradient (hence

a chemical potential gradient) between the boundaries of a grain that exhibits different

orientations with respect to the imposed stress field. The resultant flux of vacancies

through a grain then occurs from grain boundaries under tension to grain boundaries in

compression, as is the opposite for the flux of matter (ions). This deformation mecha-
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nism, where plastic strain is produced by the conjugate and opposite transport of matter

and vacancies through the crystal lattice is known as Nabarro-Herring creep (Nabarro

1948; Herring 1950). Figure 4.1a shows the principle of Nabarro-Herring creep caused

by an applied engineering stress σ. The corresponding strain rate, under the assumption

of equal distribution of matter and vacancies at the grain boundaries, can be described

as:

ε̇NH = ζ
DsdσΩ

d2kbT
(4.1)

where σ corresponds to the applied engineering stress, Ω is the average molecular volume

of vacancy formation and d is the average grain size. The self-diffusion coefficient of one

atomic species is given byDsd in [m2s−1] and ζ is a shape factor which after Poirier (1985)

is taken to be equal to 16/3 for spherical grains and corresponding to the impossibility

of grain boundary sliding (GBS).

4.1.1.2 Coble creep

The diffusion of vacancies and matter as induced by concentration gradients of vacan-

cies between crystal surfaces, become easier through grain boundaries than through the

crystal lattice at intermediate temperatures and small grain sizes. This deformation

mechanism is well known as Coble creep (Coble 1963). Figure 4.1b shows the principle

of Coble creep under the assumption of spherical grains which form a polycrystal with

sinusoidal grain boundaries (Ray and Ashby 1971). The strain rate induced by the en-

gineering stress σ (as boundaries locally experience compression and tension), under the

assumption of equal distribution of matter and vacancies at the grain boundaries, can

be described by the following equation:

ε̇C = ζ
πδDgbσΩ

d3kbT
(4.2)
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where Dgb is the grain boundary self diffusion coefficient associated with one atomic

species (slowest diffusing species) and δ is the grain boundary thickness. The remaining

quantities are defined as in Eq. 4.1.

σ

σ

a) b)

Figure 4.1: The principle to produce plastic strain in a spherical grain by the following defor-
mation mechanisms: a) Nabarro-Herring creep based on the conjugate bulk diffusion
of vacancies (open dots) and matter (solid dots) through the crystal lattice in cor-
respondence to the engineering stress σ. The arrows indicate the diffusion direction
with respect to the engineering stress b) Coble creep that is based on conjugate dif-
fusion of vacancies (open dots) and matter (solid dots) through grain boundaries in
correspondence to an applied engineering stress σ.

4.1.2 Dislocation creep

4.1.2.1 Glide

The intrinsic resistance of the crystal lattice has to be overcome for dislocations to

move by glide in high lattice friction silicates, such as the high-pressure phases of the

mantle transition zone. Rather than moving as a straight line, a thermally activated

dislocation nucleates so-called kink-pairs over the Peierls potential under the action of

deviatoric stress. This initiates elementary displacements of dislocation segments after

which the propagation of the kinks along the lines will trigger the motion of the complete

segments. In case of high lattice friction, the dislocation mobility is mainly controlled
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by the resolved shear stress dependent enthalpy ∆Hcrit(τ) associated with a critical

dislocation bow out over the Peierls potential (Kubin 2013). The relation between the

resulting glide mobility and the macroscopic strain rate under steady state conditions

as deduced from Orowan’s equation equals

ε̇ = ρbv = λ
√
ρ exp

(
−∆Hcrit(τ)

kbT

)
(4.3)

in which λ in [ms−1] is slightly dependent on the resolved shear stress τ , but can be

considered as a constant in high lattice friction solids as this is negligible with respect to

the stress dependent exponential term (chapter 2.3.4 and 3 and Ritterbex et al. 2015).

Figure 4.2a shows the principle of dislocation glide by producing plastic strain through

thermally activated nucleation of kink-pairs under applied stress.

σ

σ

a) b)

Figure 4.2: The principle to produce plastic strain in a spherical grain by the following deforma-
tion mechanisms: a) glide of dislocations through thermally activated nucleation of
kink-pairs under applied stress. Generally, the sluggish glide of screw dislocations will
account for most of the plastic strain produced. Screw dislocations belonging to four
slip systems are illustrated in one grain. The applied engineering stress is equal to σ
and τ corresponds to the resolved shear stress. b) pure climb creep as accomodated by
bulk diffusion through the emission and absorption of vacancies (open dots) at jogs
along dislocation lines. Pure shear strain can be produced by the coupled motion of
edge dislocations belonging to quasi-perpendicular slip systems through the balanced
emission and absorption of vacancies in response to an applied stress σ. The direction
of climb with respect to σ is indicated by arrows
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4.1.2.2 Climb

Pure dislocation climb involves the conjugate diffusion of vacancies and matter through

the crystal lattice, as in the case of Nabarro-Herring creep. Here, however, it is not the

crystal surfaces which act as sources and sinks of vacancies but rather the dislocation

cores in the bulk of the crystals. Pure dislocation climb is therefore assumed to be

controlled by vacancy diffusion through the emission and absorption of vacancies at jogs

along the line segments of edge dislocations (Nabarro 1967; Boioli et al. 2015). The

climb velocity under steady-state conditions can be solved from the diffusion equation

under the assumption that the dislocation lines with cylindrical symmetry are saturated

with jogs:

vclimb =
2π

ln
(

1
2
√
ρξ

)Dsd

b

[
exp

(
σΩ

kbT

)
− X∞
Xv

]
(4.4)

where ξ corresponds to the dislocation core width, b is the modulus of the Burgers vector

and ρ is the dislocation density. The vacancy concentration far from the dislocation is

defined as X∞ whether the equilibrium vacancy concentration in the crystal bulk is given

by Xv. Figure 4.2b shows how pure shear strain can be produced by the coupled motion

of edge dislocations belonging to quasi-perpendicular slip systems through the balanced

emission and absorption of vacancies in response to a compressive and tensile stress

respectively. The strain rate produced corresponding to this process under steady-state

conditions, by assuming that dislocation multiplication (Bardeen-Herring climb sources)

is balanced by a decrease in dislocation density ρ through annihilation events, can thus

be derived with the use of Orowan’s equation as:

ε̇climb =
2πρ

ln
(

1
2
√
ρξ

)Dsd

[
exp

(
σΩ

kbT

)
− 1

]
(4.5)
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Bardeen-Herring sources are the equivalent of Frank-read dislocation glide sources. In

case of climb sources, dislocations are multiplicated through climb of edge dislocations

in the presence of point defects around the dislocation core structures. Climb sources

were initially proposed by Bardeen and Herring (1952) and later observed in silicon

(Ravi 1972). Equation 4.5 corresponds to the condition that the equilibrium vacancy

concentration in the crystal bulk is equal to the concentration far from the dislocation

as is usually assumed in dislocation dynamics models.

As effective strain producing mechanism, pure climb creep is difficult to observe since

dislocation glide is much easier in most cases, so that climb rather acts as recovery

mechanism. However, evidence of pure dislocation climb governed deformation can be

found in hexagonal crystals, when basal glide is inhibited by loading parallel to the c-

axis (Edelin and Poirier 1973; Le Hazif et al. 1973). Further, pure climb creep is known

to occur in quasi periodic crystals, which are complex alloys with an ordered but not

periodic crystal lattice. Lattice friction is usually high in quasicrystals due to difficult

shear along densely packed planes as a result of crystal symmetries that are forbidden for

periodic crystals. Therefore, at high temperature, some quasicrystals deform plastically

by pure climb creep since the glide mechanism is too difficult (Mompiou and Caillard

2008). The first natural occurrence of a quasicrystal has been discovered recently by

Bindi et al. in 2011 and is known as Al63Cu24Fe13 icosahedrite.

4.1.2.3 Which dislocation creep mechanism in the transition zone

In contrast to diffusion creep mechanisms that rely purely on the diffusion of vacancies,

dislocation creep involves both glide and diffusion controlled climb processes. Disloca-

tion creep at high temperatures was first formulated by Weertman (1955; 1957) and is

often referred to as recovery-controlled or climb-controlled dislocation creep (Fig. 4.3).

In this framework, plastic strain is considered to be produced by the glide of dislocations
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that are free to move. Due to glide and hence the activation of dislocation sources, dislo-

cations may interact with each other. Edge dislocations can free themselves by climbing

out of their glide planes by the emission or absorption of vacancies at jogs along the

lines to be able to produce strain again by glide. The climb process in this case can

be seen as a recovery mechanism necessary to maintain steady-state deformation. As

screw dislocations cannot move out of their glide planes, they may continue gliding by

cross-slip which allows them to change glide planes without the interaction with point

defects.

Climb-controlled dislocation creep (Weertman)

Figure 4.3: Illustration of the principle of high temperature recovery controlled dislocation creep
as introduced by Weertman (1955; 1957). Dislocation glide is activated under the con-
jugate action of stress and thermal activation that is responsible for the production
of plastic strain. The activation of dislocation sources however leads to the multi-
plication of dislocations interacting with each other that leads to the formation of a
mircrostructure, illustrated in this figure by some dipole-dipole interactions. Disloca-
tions are able to free themselves by climbing out of their glide plane by the emission
or absorption of vacancies at jogs along the dislocation lines to become mobile. This
recovery mechanism enables the freed dislocations to further produce plastic strain by
glide to maintain steady-state deformation.

This recovery-controlled creep mechanism corresponds well to dislocation creep in

olivine as shown by Boioli et al. (2015). Figure 4.4 shows the ratio of the glide (vglide)

versus climb (vclimb) velocity in olivine at ambient pressure conditions as a function of

engineering stress (σ) and temperature (T ). It can be seen that vglide � vclimb in the

complete σ-T domain. It is therefore the fast glide mechanism that is responsible for

producing the plastic strain whereas the slower climb mechanism effectively controls the
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rate of deformation under steady-state conditions as described by Weertman (1955).

Figure 4.4: The ratio of the glide versus the climb velocity vglide/vclimb as function of engineering
stress σ and temperature T for olivine under ambient pressure conditions. The glide
and climb mobilities are calculated with respect to the [100](010) slip system (Boioli
et al. (2015).

Coming back to the transition zone minerals, the ratio between the glide and climb

velocities vglide/vclimb for the easiest slip sytems in wadsleyite at 15 GPa and ringwood-

ite at 20 GPa has been mapped out as a function of engineering stress σ and T in a

similar way as in olivine by using the 2.5-D dislocation dynamics code as in Boioli et

al. (2015). The Si self-diffusion coefficients Dsd are taken from Shimojuku et al. (2009)

for ringwoodite and from Shimojuku et al. (2010) for wadsleyite (tables 4.1 and 4.2).

It can be seen in Fig. 4.5, that the vglide/vclimb ratio in both high-pressure polymorphs

of olivine are completely opposite to those in olivine itself: the climb velocity is always

significantly larger than the glide velocity (vglide � vclimb) in the σ-T domain appro-

priate to mantle conditions. This demonstrates the efficiency of the climb mechanism

to produce plastic strain with respect to the glide mechanism in wadsleyite and ring-
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woodite under transition zone conditions. The main reason is the high lattice friction

necessary to overcome for the dislocation to move by the nucleation of kink-pairs at

conditions of the transition zone. This implies that the coupled interaction between

the glide and climb mechanism in recovery-controlled dislocation creep as formulated by

Weertman (1955) is not valid anymore. Both glide and climb processes will be decoupled

in wadsleyite and ringwoodite. We suggest that dislocation glide is not likely to operate

in the high-pressure polymorphs of olivine under the conditions of the transition zone.

Instead, dislocation climb would be the main strain producing mechanism and has to be

considered as an effective deformation mechanism rather than a recovery process: pure

climb creep.

Wadsleyite
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Figure 4.5: The ratio of the glide versus climb velocity vglide/vclimb as a function of enineering
stress σ and temperature T for: a) wadsleyite at 15 GPa. The glide and climb
mobilities are calculated with respect to the easiest to the 1/2〈111〉{101} slip system
and b) ringwoodite at 20 GPa. The glide and climb mobilities are calculated with
respect to the easiest to the 1/2〈110〉{110} slip system.
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4.2 Deformation mechanism maps

4.2.1 How to build a deformation mechanism map?

Deformation mechanism maps are typically drawn in 2-D space that spans the stress (σ),

temperature (T ) and grain size (d) to map the predominance of different deformation

mechanisms considered (i.e. the ones operating under the lowest stress) under steady-

state flow conditions at constant strain rates.

Having the constitutive equations in terms of the σ-ε̇ relations of the different potential

deformation mechanisms, the minimum stress contours in a for example σ-d or σ-T space

identify which mechanism provides the largest contribution to the strain rate (i.e. the

lowest stress necessary to produce plastic deformation by a given steady-state strain

rate).

In this section, deformation mechanism maps for the transition zone minerals will be

constructed in a σ-d space showing isothermal contours since the temperature range over

which the minerals in the transition zone are stable is very constrained. The deformation

mechanisms that are considered involve diffusion creep versus dislocation creep as has

been discussed above: Nabarro-Herring and Coble creep will be considered for the pure

diffusional mechanisms as well as dislocation glide and climb which can be associated

with dislocation creep.

4.2.2 Diffusion coefficients

Both Nabarro-Herring creep and pure climb creep are assumed to be activated at high

temperature and therefore potentially important in plastic deformation of wadsleyite and

ringwoodite in the transition zone. Both deformation mechanisms involve the diffusion

of vacancies and matter through the crystal lattice. Coble creep may play a role in

case of small grain sizes (e.g nucleation of new grains during phase transformation). A

description of the strain rate produced by those mechanisms depends on the self-diffusion
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coefficients (Eq. 4.1, 4.2 and 4.5):

D = DvXv = D0 exp

(
−∆E

kbT

)
(4.6)

where D is the diffusion coefficient (e.g. self-diffusion or grain boundary self-diffusion

coefficient), D0 is a pre-exponential factor, ∆E is the activation enthalpy barrier to over-

come during diffusion, kb is the Boltzmann constant and T is the absolute temperature.

The vacancy diffusion coefficient is given by Dv = exp(−∆Hm/kbT ) which depends on

the migration enthalpy of vacancy diffusion ∆Hm.

Vacancy diffusion in high-pressure silicates involves different ionic species. Experimen-

tal studies at high pressure and temperature (Shimojuku et al. 2004; Shimojoku et al.

2009; Shimojuku et al. 2010; Zhang et al. 2011 and Holzapfel et al. 2009) have shown

that Si is the slowest diffusion species in wadsleyite and ringwoodite. The self-diffusion

coefficients of Fe-Mg interdiffusion are not shown as they are found to be much larger

than those for Si and O (e.g. Holzapfel et al. 2009). As such, Fig. 4.6 incorporates

all relevant data available on the atomic self-diffusion in ringwoodite and wadsleyite.

Apart from the fact that Si is the slowest diffusion species at transition zone tempera-

tures between 1600-1900 K, more interesting is the similarity between the self-diffusion

coefficients Dsd for the different species in the different phases under those temperature

conditions as being the result of different experiments, given the dependency of the equi-

librium bulk vacancy concentration Xv on D (Eq. 4.6). Grain boundary self-diffusion

coefficients in wadsleyite and ringwoodite are found to be smallest for the Si species as

well (table 4.1). Tables 4.1 and 4.2 give an overview of the available experimental data

on the diffusion coefficients of Si and O species in wadsleyite and ringwoodite. Given

the latter results, we will assume that diffusion processes in wadsleyite and ringwoodite
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will be controlled by the migration of Si as slowest diffusing species. The available data

further suggests that the rate limiting diffusivities in wadsleyite and ringwoodite are

comparable without much variation under the appropriate temperature conditions.
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Figure 4.6: Arrhenius plot showing the self-diffusion coefficients Dsd of Si, O and Mg4Si4O12

majorite in wadsleyite, ringwoodite and a majorite-pyrope diffusion couple. Colors
indicate the different mineral phases. Different line characters (solid, dotted) indicate
the different diffusing species.
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Species/phase D0,sd (m2/s) E (KJ/mol)

Si
wadsleyite

1673-1873 K 2.51 10−8 409
16 GPa

Shimojuku et al. 2009

Si
wadsleyite

1703-1903 K 2.00 10−12 261
18 GPa

Shimojuku et al. 2010 (2004)

Si
wadsleyite

1673-1873 K 1.26 10−10 342
18 GPa

Shimojuku et al. 2010

O
wadsleyite

1673-1873 K 3.16 10−11 291
16 GPa

Shimojuku et al. 2009

Si
ringwoodite
1673-1873 K 3.16 10−6 483

22 GPa
Shimojuku et al. 2009

O
ringwoodite
1673-1873 K 3.16 10−9 367

22 GPa
Shimojuku et al. 2010 (2004)

Mg4Si4O12 component
majorite

1673-2073 K 1.4 10−11 214 (15 GPa)
12-20 GPa 300 (18 GPa)

van Mierlo et al. 2013

Table 4.1: Comparison between experimental data available of the self-diffusion coefficients Dsd

of Si, O and Mg4Si4O12 diffusion in wadsleyite, ringwoodite and a pyrope-majorite
diffusion couple at different pressure and temperature conditions.
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Species/phase δD0,gb (m3/s) E (KJ/mol)

Si
wadsleyite

1673-1873 K 1.26 10−15 327
16 GPa

Shimojuku et al. 2009

Si
wadsleyite

1703-1903 K 1.58 10−17 257
18 GPa

Shimojuku et al. 2010 (2004)

Si
wadsleyite

1673-1873 K 1.00 10−20 159
18 GPa

Shimojuku et al. 2010

O
wadsleyite

1673-1873 K 1.58 10−17 244
16 GPa

Shimojuku et al. 2009

Si
ringwoodite
1673-1873 K 6.31 10−14 402

22 GPa
Shimojuku et al. 2009

O
ringwoodite
1673-1873 K 7.94 10−18 246

22 GPa
Shimojuku et al. 2009

Table 4.2: Comparison between experimental data available of the grain boundary self-diffusion
coefficients Dgb of Si and O diffusion in wadsleyite and ringwoodite at different pres-
sure and temperature conditions.
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4.2.3 Deformation mechanism maps: wadsleyite and ringwoodite

Based on the available Si diffusion coefficients in wadsleyite and ringwoodite, we are able

to construct deformation mechanism maps regarding Nabarro-Herring creep, Coble creep

and pure climb creep according to Eq. 4.1, 4.2 and 4.5. The average vacancy formation

volume Ω associated with a complete structural defect unit is about 60 Å3 for Mg2SiO4

wadsleyite and ringwoodite as calculated from their unitcells at transition zone pressures.

The plastic contribution of dislocation glide as modelled in this work (chapter 3)

will be used. Equation 4.3 relates the plastic strain rate to the resolved shear stress τ

with respect to dislocations belonging to single slip systems. We therefore consider, as

already mentionned in chapter 3, σ = 2τ (maximum of the Schmid factor) to account

for the fact that only a fraction of (engineering) stress is resolved in the direction of

dislocation motion (Fig 4.2a). The constitutive relations associated with dislocation

motion (Eq. 4.3 and 4.5) depend on the engineering stress σ and the dislocation density

ρ. To have a self-consistent set of equations, we assume the dislocation density ρ to be a

function of the yield stress σ to activate a dislocation source (Knight and Burton 1989;

Mordehai et al. 2008; Hirth and Lothe 1992):

σ =
µb

L
= µb

√
ρ→ ρ =

(
σ

µb

)2

(4.7)

where µ corresponds to the shear modulus, ρ to the dislocation density and L to the

length of the dislocation lines L = 1/
√
ρ. In the high-pressure silicates of the transition

zone for which µ ∼150 GPa and b ' 5 Å, Eq. (4.7) leads to the following relation between

dislocation density and the engineering stress: ρ ' 10−4σ2.
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Figure 4.7: Deformation mechanism maps associated with steady state deformation in: a) Wad-
sleyite at 1700 K with ε̇ = 10−16 s−1. Pure dislocation glide is parametrized by
single slip of the rate controlling 1/2〈111〉{101} and [100](010) screw dislocations.
The diffusion based accomodated mechanisms are parametrized with respect to three
Si diffusion coefficients D (Eq. 4.6) available from experimental data (table 1 and
2). The engineering stress and resolved shear stress are given by σ and τ respec-
tively, where σ = 2τ is considered (maximum of the Schmid factor) to account for
the fact that only a fraction of principle stress is resolved in the direction of disloca-
tion motion. Viscosity η has been calculated as σ/2ε̇ and d corresponds to the mean
grain size. b) Wadsleyite at 1700 K with ε̇ = 10−14 s−1. c) Ringwoodite at 1800
K at ε̇ = 10−16 s−1. Pure dislocation glide is parametrized by single slip of the rate
controlling 1/2〈110〉{110} and 1/2〈110〉{111} screw dislocations. The diffusion based
accomodated mechanisms are parametrized with respect to the Si diffusion coefficients
D available from experimental data (table 4.1 and 4.2). d) Ringwoodite at 1700 K
with ε̇ = 10−14 s−1.

Figure 4.7 a and c shows the deformation mechanism maps for wadsleyite (at 15 GPa)

at 1700 K and ringwoodite (at 20 GPa) at 1800 K under steady-state strain rate condi-

tions of ε̇ = 10−16 s−1. The different band widths in relation to the diffusion dependent
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deformation mechanisms are constrained by the data of Si self- and grain boundary

self-diffusion coefficients as given in table 4.1 and 4.2. The band widths shown in rela-

tion to pure dislocation glide are the result of different single slip constitutive equations

with respect to the rate controlling dislocations: 1/2〈111〉{101} and [100](010) screw

dislocations in wadsleyite (chapter 3.1) and the 1/2〈110〉{110} and 1/2〈110〉{111} screw

dislocations in ringwoodite (chapter 3.2). It has to be mentioned that the constitutive

equations (Eq. 4.3 and 4.5) at high stress σ become insensitive to the dislocation density

ρ, as is the case for dislocation glide. The results for glide as shown in Fig. 4.7 have

therefore to be understood as lower bounds. From the ratio of the glide velocity versus

the climb velocity (vglide/vclimb) in both high-pressure polymorphs of olivine, we already

inferred the inefficiency of the glide mechanism to produce plastic strain in comparison

to the climb mechanism. The deformation mechanism maps as shown in Fig. 4.7 confirm

the latter by a significant difference in the stress contours between the climb and the

glide mechanism (even as lower stress bound): <1% of σ necessary to reach steady-state

deformation at ε̇ = 10−16 s−1 by pure dislocation glide is already sufficient to produce

the same plasticity by pure dislocation climb. This again underlines the inefficiency of

dislocation glide with respect to the climb mechanism. This implies that dislocation

creep in wadsleyite and ringwoodite under transition zone conditions is likely to be gov-

erned by the climb mechanism: pure climb creep.

One can observe that if the grain size d < 0.5 mm, diffusion creep processes will slowly

take over as primary deformation mechanisms, where Coble creep at very small grain

sizes will become dominant over Nabarro-Herring creep. Nevertheless, for d > 0.5 mm,

we suggest that pure climb creep will be the dominant deformation mechanism in wad-

sleyite and ringwoodite under the appropriate mantle conditions. We would like to

mention the striking similarity between the efficiency of the strain producing mecha-

nisms and their grain size dependency for wadsleyite and ringwoodite with respect to
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the available data.

Figure 4.7b and d show the deformation mechanism maps for wadsleyite and ring-

woodite (as in Fig. 4.7a and c), but under enhanced steady-state strain rate conditions

of ε̇ = 10−14 s−1. One may think of its importance around the ongoing subduction of

slabs that penetrate through the transition zone. It can be seen that the main features

as discussed with respect to ε̇ = 10−16 s−1 remain the same: 1) similarity between

the deformation mechanism maps at conditions of ε̇ = 10−14 s−1. 2) Decoupling be-

tween dislocation glide and climb mechanisms. The threshold grain size d above which

pure dislocation climb is the most dominant mechanism shifts to slightly lower values

(d > 0.1 mm) in both phases. For both dislocation glide and pure climb creep, larger

stresses correspond to lower viscosities than at a rate of ε̇ = 10−16 s−1. Because of the

stress dependence of the line segments L via the dislocation density ρ(σ), dislocation

climb is not purely Newtonian, even at low stresses. Nevertheless, the same orders of

magnitude of stress and viscosities are found in comparison to Fig. 4.7a and c for both

the glide and climb mechanisms.

4.2.4 Extension to majorite garnets

4.2.4.1 Plastic deformation experiments

Wadsleyite and ringwoodite are estimated to represent the largest volume fraction of the

transition zone in the order of about 60%. However, majorite garnet is another major

mineral phase that is assumed to represent the bulk remaining 40% of volume fraction

of the transition zone.

A handful of studies are available on deformation experiments of garnets, in particular

on majorite garnet, to investigate its mechanical behaviour at high pressure conditions.

In 2000, Kavner et al. performed compression experiments using the diamond anvil cell

(DAC) at ambient temperature conditions. They show that majorite was able to support
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shear stresses of at least 2 − 3 GPa at pressure conditions between 7 − 11 GPa. Fur-

ther measurements on grossular garnet deformed in the DAC at ambient temperatures

indicate engineering stresses of 4.1 GPa at a pressure of 15.7 GPa (Kavner 2007) under

typical laboratory strain rates (∼ 10−5 s−1). The latter results would be in agreement

by extrapolation of the stress measurements as obtained by Kavner et al. (2000) at

pressures between 7 − 11 GPa (under which condition the same results are obtained

on grossular garnet) to pressures of 15 − 19 GPa at ambient temperatures. Karato et

al. (1995) performed hot indentation tests for which the extrapolation in homologous

temperature of the collected data down to 0 K led to a stress σp = 14.8 GPa. By using

the same extrapolation as Karato et al. (1995), Kavner et al. (2000) have estimated

a stress of σp = 9.5 − 10.7 GPa for majorite at a pressure of ∼ 9 GPa at 0 K. Stress-

relaxation experiments on a pyrope-majorite solid solution by Hunt et al. (2010) using

the D-DIA and T-cup show initial stresses of 2.5 GPa at a pressure of 12.9 GPa at

T = 900 K. This result at low temperature is in relatively good agreement with results

obtained at ambient temperature conditions as inferred form the DAC-studies. Wei-

dner et al. (2001) performed further stress-relaxation experiments using a multi-anvil

high pressure apparatus and suggest that the relative strength of majorite-rich garnet is

comparable to the relative strength of wadsleyite at T = 900 K (and slightly softer than

ringwoodite) and decreases at higher temperatures. The stress of majorite-rich garnet at

this temperature is estimated to be 3 GPa. Unfortunately, no deformation experiments

(RDA, D-DIA, DAC) were performed on majorite garnet at transition zone conditions

of a pressure around 18 GPa and temperatures of 1800 K to determine its mechanical

behaviour. However, the low-T results of the stress-relaxation experiments support the

stress measurements from both real deformation experiments at ambient temperature

on majorite and grossular garnet of Kavner et al. (2000) and Kavner (2007) respec-

tively. A comparison of a stress of σmaj = 4 GPa (P = 15 GPa) at ambient temperature

(300 K) with experimental data and our results obtained for ringwoodite (Fig. 3.29)
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(σring ' 10 GPa) implies that majorite would be significantly softer at those conditions.

Nevertheless, comparing those results to wadsleyite (Fig. 3.15) (σwad ' 5.5 GPa, as a

mean value of both slip systems) suggest more comparable plastic behaviour associated

with dislocation glide (as favored under these conditions) from our theoretical results

at typical laboratory strain rates (∼ 10−5 s−1). By taking into account τp = σp/2, the

Peierls stress as estimated by Kavner et al. (2000) would be equal to τp = 5 GPa for

dislocation slip in majorite garnet at pressure conditions of the Earth’s transition zone.

This is similar to Peierls stresses calculated for the easiest slip systems in wadsleyite:

3.5 GPa for [100](010) and 4.8 GPa for the more difficult 1/2〈111〉{101} screw disloca-

tions. Since high lattice friction in wadsleyite extends to the appropriate conditions of

the transition zone, we propose the Ansatz that lattice friction in majorite garnet may

be comparably high under those conditions.

Despite the lack of constitutive relations for the rate controlling dislocations in ma-

jorite, evidence of high resistance to dislocation glide has also been observed in trans-

mission electron microscope (TEM) characterizations of microstructures developed in

majorite garnet during high pressure and temperature deformation using the multi-

anvil apparatus (Couvy et al. 2011). They suggest the activation of 1/2〈111〉 and 〈100〉

dislocations and the importance of dislocation climb under transition zone conditions

due to the appearance of subgrain boundaries. Other work on plastic deformation of sil-

icate garnets (Cordier et al. 1996; aVoegelé et al. 1998; bVoegelé et al. 1998) and shock

veins in majorite garnet (Voegelé et al. 2000) support the main conclusion of Couvy et

al. (2011) by large scale observations of dislocation junctions and subgrain boundaries.

Latter observations indicate the evidence for activation of dislocation climb in majorite

garnet, even under laboratory conditions (< 1700 K). This is in line with theoretical re-

sults that demonstrate high lattice friction as opposed to glide in high-pressure silicates

of the Earth’s mantle as shown in this and other related work (Ritterbex et al. 2015;
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Ritterbex et al. (in press); Kraych et al. 2016). We therefore postulate the likelihood of

high lattice friction in majorite garnet under natural conditions, comparable to the high-

pressure polymorphs of olivine. In that case, a decoupling between the glide and climb

mechanism in the framework of dislocation activity can be expected in majorite. Under

this hypothesis, the contribution of pure climb creep to the overall plasticity of majorite

in conditions of the Earth’s transition zone would become of interest to quantify.

4.2.4.2 Deformation mechanism maps: majorite garnet

Based on the Mg4Si4O12 majorite self-diffusion in a pyrope-majorite diffusion couple

studied by van Mierlo et al. (2013), the Mg4Si4O12 self-diffusion coefficient Dsd as a

function of the inverse temperature T is shown in Fig. 4.6. This has been used to

construct the deformation mechanism maps regarding Nabarro-Herring creep and pure

climb creep according to Eq. 4.1 and 4.5. The average vacancy formation volume Ω as-

sociated with a complete structural defect unit is equal to 70 Å3 in Mg4Si4O12 majorite

as calculated from its unitcell at 18 GPa.

Figure 4.8 shows the deformation mechanism maps for majorite (P=18 GPa) at 1800 K

under both steady-state strain rate conditions of ε̇ = 10−16 s−1 and ε̇ = 10−14 s−1. We

would like to note the striking similarities between the deformation mechanism maps of

majorite and those of the high-pressure polymorphs of olivine. These analogous findings

support once more the potential decoupling between the glide and climb mechanisms in

majorite garnet under natural conditions. The potential importance of pure climb creep

can be seen above an average grain size of d > 0.5 mm at ε̇ = 10−16 s−1, which may

shift gradually towards diffusional creep at lower grain sizes. The enhanced strain rate

of ε̇ = 10−14 s−1 leads to a smaller grain size threshold d > 0.1 mm above which pure

climb creep becomes a potential important deformation mechanism in majorite under

conditions of the transition zone.
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Figure 4.8: Deformation mechanism maps associated with steady state deformation in majorite at
1800 K at: a) ε̇ = 10−16 s−1 and b) ε̇ = 10−14 s−1. The diffusion based accomodated
mechanisms are parametrized with respect to the Mg4Si4O12 self diffusion coefficient
in a pyrope-majorite diffusion couple provided by van Mierlo et al. (2013) (table 4.1).

4.3 Discussion

High values of the CRSS(T ) regarding pure single slip dislocation glide in wadsleyite

and ringwoodite under natural conditions as inferred from the main study of this work,

suggest that other mechanisms may control the deformation of minerals in the Earth’s

transition zone. By taking into account vacancy diffusion related deformation mecha-

nisms, we finally have produced deformation mechanism maps for wadsleyite and ring-

woodite regarding the strain producing efficiency of dislocation creep versus diffusion

creep under natural conditions. Based on the appropriate defect mobilities, the maps

clearly show a decoupling of dislocation glide and climb in wadsleyite and ringwood-

ite, suggesting the importance of pure climb creep as a potential dominant deformation

mechanism for average grain sizes of d > 0.5 mm under typical steady state mantle strain

rate conditions of ε̇ = 10−16 s−1. An enhancement of the creep rate shows an insignifi-

cant reduction in the threshold grain size (d > 0.1 mm) above which pure climb creep

is a potential dominant deformation mechanism. Below this grain size, the dominant
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deformation mechanism will gradually shift towards diffusional creep processes as may

be important in relation to the nucleation of new grains during phase transformations

as present in the Earth’s transition zone (apart from any other deformation mechanisms

that have not been included so far). The work has been extended to incorporate ma-

jorite garnet based on results of experimental studies. From these studies we propose

that high lattice friction, opposed to dislocation glide, could be expected under natural

conditions. The deformation mechanism maps for majorite are comparable to what has

been found for wadsleyite and ringwoodite, which suggests the importance of pure climb

creep under transition zone conditions.

4.3.1 Limitations of the model

Constitutive equations of the diffusion dependent deformation mechanisms (Nabarro-

Herring creep, Coble creep, dislocation climb) depend on the diffusivity of the rate

controlling species. This in turn, is sensitive to the crystal chemistry (e.g. presence of

Fe3+, Al, H, etc.) regarding the Mg end-members of wadsleyite and ringwoodite as well

as for majorite. This may be important since both high-pressure polymorphs of olivine,

and certainly wadsleyite, are besides the general presence of ”impurities”, potentially

able to bear significant volume fractions of water (Inoui et al. 1995; Chen et al. 1998;

Huang et al. 2005; Pearson et al. 2014). Yet, so far, the effect of hydrogen and iron

concentrations on the diffusion coefficients of wadsleyite and ringwoodite is expected to

be limited within one order of magnitude (Fig. 4.6) at the appropriate temperatures as

inferred from experiments (Shimojuku et al. 2009; Shimojuku et al. 2010). We further

want to emphasize the fact that even the diffusion coefficients related to different atomic

species within the different phases as experimentally determined (Fig. 4.6 and table 4.1

and 4.2) do not show large variations. It nevertheless has to be mentioned that the

number of studies and method approaches are too limited to draw any strong conclusive

constraints on the influence of impurities on the diffusion coefficients of diffusing species.
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At the same time, the diffusion of point defects in mantle silicates depend strongly on

the mechanism of point defect diffusion (i.e. the effective diffusion paths associated with

diffusing a complete structural unit. The latter once more depends on the local atomic

scale electrostatics as well as on elasticity and their mutual influence). The constitutive

equations used to construct the deformation mechanism maps are based upon simple

effective mobility laws. All together, this suggests that the results obtained regarding

the diffusional mechanisms therefore have to be interpreted in terms of orders of magni-

tude.

The situation is different regarding the effect of impurities on dislocation glide based

plasticity. Here, the first point to address is whether or not the presence of impuri-

ties may significantly influence the mobility (i.e. kink-pair nucleation processes) of the

rate controlling dislocations in Mg2SiO4 wadsleyite and ringwoodite. In other words, it

remains questionable whether there may or may not be an influence of the presence of

impurities on the nucleation and propagation of kink-pairs in or in the vicinity of the dis-

location cores at the atomic scale. If this would be the case, it is not clear how this (local)

effect translates to the overall (macroscopic) plasticity due to thermally activated glide,

given the relatively large critical enthalpies for kink-pair nucleation ∆Hcrit > 10 eV as

determined at low stress conditions in both high-pressure polymorphs of olivine. It is

namely the stress dependence of these nucleation enthalpies that determines the average

dislocation mobilities as discussed in chapter 2 and 3. These fundamental questions

however are beyond the scope of our study. Nevertheless, given the significant critical

enthalpies (∆Hcrit > 10 eV) inferred for kink-pair nucleation at low stress in Mg2SiO4

wadsleyite and ringwoodite at natural conditions, we suggest that dislocation glide is

likely to be largely inhibited in wadsleyite and ringwoodite in the Earth’s transition

zone. Experimental study on deformation of silicate garnets, as discussed above, let us

suggest that this may be equally the case in majorite.



189 4.3. Discussion

4.3.2 Implications on the rheology of the transition zone

The Earth’s transition zone is characterized by a number of phase transitions. These

phase transitions will occur over a certain depth range depending on the nature and

kinetics of the phase tranformations (mainly olivine → wadsleyite, wadsleyite → ring-

woodite and pyroxene → majorite). The average grain size d in these ”transformation

regions” can be lower than for the rest of the transition zone region (grain size reduction

due to nucleation of new grains), which because of the high temperature conditions,

cannot be expected to be extremely small. We therefore suggest that pure climb creep

is a potentially important plastic deformation mechanism in the transition zone away

from those transformation regions. As inferred from Fig. 4.7 and 4.8, this would re-

sult in an average viscosity expected around 1×1021 Pa s, depending on the strain rate,

which is comparable to the early Haskell mantle estimate of 1021 Pa s (Haskell 1937).

Nevertheless, we want to note that this value depends on the self-diffusion coefficients

Dsd as inferred from experiments which may vary due to water content and chemical

heterogeneities in the Earth’s mantle: Dsd depends on the bulk vacancy concentration

Xv (Eq. 4.6) which, in an extrinsic regime, is related to the chemistry (e.g. the redox

state of the mantle, etc.) of the transition zone.

A strong depth dependence of the rheology of the Earth’s transition zone apart from

the transformation regions cannot be expected based on the similarity of plastic be-

haviour of wadsleyite, ringwoodite and what can be expected for majorite under natural

conditions regarding the mechanisms taken into account. Nevertheless, local variations

in the transition zone’s rheology cannot be completely excluded especially given the

presence of the phase transformations. Grain size dependent Nabarro-Herring and Coble

creep tend to become progressively important for d < 0.5 mm in all high pressure silicates

considered. Grain boundary related deformation mechanisms as for instance disclination

activity (Cordier et al. 2014) or grain boundary sliding (GBS) may under these con-
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ditions become active as well. Besides, also water weakening processes may occur due

to the water bearing capacity of wadsleyite and ringwoodite (Chen et al. 1998; Huang

et al. 2005) associated with diffusion accomodated deformation mechanisms. All this

can lead to various radial and/or lateral low viscosity regions depending on the average

grain size d to expect.

In addition, the presence of phase tranformations may also give rise to another defor-

mation mechanism in the transformation regions: transformation plasticity, also some-

times referred to as transformational superplasticity (Greenwood and Johnson 1964;

Poirier 1982; Paterson 1983). Nevertheless, it can be expected that grain growth pro-

cesses are favored under high temperature and low strain rate conditions of the transition

zone. We like to mention that pure climb creep in the high-pressure transition zone sil-

icates would still be the dominant deformation mechanism for average grain sizes of

d ' 0.5 mm. Therefore, as can be seen from Fig. 4.7 and 4.8, it is not expected that

diffusion creep accomodated deformation in the transformation regions would lead to

anomalously large viscosity contrasts with respect to the average of 1 × 1021 Pa s at

d > 0.5 mm.

4.3.3 Comparison to observables

The above implications show that the average viscosity of the transition zone is not

expected to exceed > 1022 Pa s. This corresponds well with respect to the order of mag-

nitude (1021-1022 Pa s) expected as calculated from global joint inversion by Ricard and

Wuming (1991) and Mitrovica and Forte (2004). Phase transformations may even lead

to regions that exhibit lower viscosities (grain size reduction, water weakening, grain

boundary related mechanisms, transformation plasticity). From this study, no signifi-

cant upwards viscosity jump is therefore predicted to occur from the lower upper mantle
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to the transition zone, nor over the complete transition zone itself. Yet, the potential

existence of a viscosity jump in the Earth’s mid mantle has been suggested by geoid

inversion analysis (Rudolph et al. 2015), mineral physics (Marquardt and Miyagi 2015)

and implied by some studies of seismic tomography (van der Hilst et al. 1991; van der

Hilst et al. 1997; Grand 2002; Zhao 2004; Fukao et al. 2013; Fukao and Obayashi, 2013)

from observations of slab stagnation of laterally deflecting lithosphere and from shape

changes of upwelling mantle plumes (French and Romanowicz, 2015). Our work suggests

that this potential viscosity jump has to be placed either at the top or further down into

the lower mantle at for instance 1000 km depth, where some slabs seem to stagnate and

changes in the shape of mantle plumes are observed. In fact, the deformation mechanism

maps (Fig. 4.7 and 4.8) show that the transition zone, according to the diffusion based

deformation mechanisms, is well able to accomodate slab deflection (as revealed by the

aforementioned studies of seismic tomography) by plastic deformation of wadsleyite and

ringwoodite, as can also be expected for majorite.

It nevertheless may be noteworthy that in case atomic diffusion processes are locally

inhibited, high lattice friction as opposed to dislocation glide in the transition zone sili-

cates is able to increase the resistance to plastic flow in the transition zone significantly

by more than up to two orders of magnitude (Fig. 4.7 and 4.8). It therefore has to be

taken into account that local slab stagnation in the transition zone, from a rheological

point of view, could be related to high lattice resistance associated with plastic slip in

wadsleyite and ringwoodite, and that can also be expected in majorite.

The relative efficiency (presence) and inefficiency (absence) of dislocation glide ac-

tivity in the upper mantle and the transition zone respectively, is expected to lead to

distinct seismic signals. This is due to the fact that dislocation glide accomodated de-

formation is able to develop the formation of lattice preferred orientations (LPO) in
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minerals, apart from other sources of seismic anisotropy (e.g. shape preferred orienta-

tions (SPO) and layered structures) in contrast to pure climb. Pure climb creep is not

able to produce LPO’s and can as such not be the primary cause of seismic anisotropy

(e.g. shear wave splitting). Yet, seismic studies (Trampert and van Heijst 2002; Vin-

nik et al. 1998; Tong et al. 1994; Fouch and Fischer 1996; Fischer and Wiens 1996)

suggest seismic anisotropy to exist in the mantle transition zone, but only locally and

significantly less pronounced than observed in the upper mantle (where olivine can be

expected to deform by Weertman creep). It nevertheless has to be taken into account

that the transition zone is a structural boundary layer and contains rock fabric of sub-

ducted lithosphere. In this light, the above seismic studies correspond reasonably well

to the rheology of the transition zone as inferred from this study.



5 Conclusion and perspectives

5.1 Conclusion

The heart of this work has been dedicated to investigate the potential contribution of

dislocation glide to the plasticity of wadsleyite and ringwoodite under transition zone

conditions by modelling thermally activated glide in Mg2SiO4 wadsleyite at 15 GPa and

Mg2SiO4 ringwoodite at 20 GPa. Modelling is based on a multiscale computational

mineral physics approach to study plastic deformation of the high-pressure phases of the

Earth’s interior (Amodeo et al. 2011; Cordier et al. 2012). It allows us to calculate the

constitutive equations associated with single slip for a wide range of temperatures and

strain rates typical for the laboratory and the Earth’s mantle. The model relies on the

core structures of the rate governing dislocations belonging to the easiest slip systems.

A crucial feature of these dislocations in wadsleyite and ringwoodite is their dissociation

into collinear partials which determines their mobility. The intrinsic resistance of the

crystal lattice as opposed to dislocation glide has been quantified and used to model

thermal activation of these dissociated dislocations in order to calculate the glide mobil-

ities. Steady-state flow due to plastic slip is described by relating the glide velocity to

the macroscopic strain rate by solving Orowan’s equation. A good agreement between

our results at typical laboratory strain rates and the available experimental data on

plastic deformation of wadsleyite and ringwoodite demonstrates that dislocation glide

largely controls the mechanical behaviour at laboratory conditions. After this valida-

tion, constitutive equations related to dislocation glide are calculated for typical mantle

193
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strain rates taking into account the intrinsic strain rate dependency on the mobility of

the defects. Critical resolved shear stresses > 100 MPa regarding pure single slip suggest

that deformation of wadsleyite and ringwoodite under natural conditions may be con-

trolled by other deformation mechanisms, since the sole contribution of dislocation glide

to the overall plasticity in wadsleyite and ringwoodite cannot account for the plastic

strain produced at low stress conditions of the Earth’s deep mantle.

Diffusion based deformation mechanisms may provide a more efficient alternative to

dislocation glide in the high-pressure phases of the Earth’s transition zone. By making

use of the available experimental data of self-diffusion coefficients in the high-pressure

polymorphs of olivine, we have computed dislocation glide versus climb velocities for the

rate controlling dislocations. It is shown that the climb velocity is always significantly

larger than the glide velocity in the σ-T domain appropriate to mantle conditions. This

implies the breakdown of the coupled interaction between the glide and climb mecha-

nisms in dislocation creep as formulated by Weertman (1950) (recovery-controlled dis-

location creep). Both glide and climb processes are completely decoupled in the case

of wadsleyite and ringwoodite under natural conditions. This means that dislocation

climb becomes a main strain producing mechanism in both high-pressure polymorphs of

olivine and has to be considered as an effective deformation mechanism rather than a

recovery process: pure climb creep.

Although no quantification of the glide mobility of dislocations in majorite garnet

exists, the decoupling between both glide and climb velocity under natural conditions

may as well be expected based on the few deformation experiments available. The latter

is supported by TEM observation of the activation of climb related processes (even at

low temperatures).
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To finally compare the relative importance of the pure climb creep mechanism to grain

size dependent Nabarro-Herring creep (bulk diffusion) and Coble creep (grain boundary

diffusion) under natural conditions, we have been constructing deformation mechanism

maps for wadsleyite, ringwoodite and majorite based on the appropriate defect mo-

bilities. Besides the decoupling between dislocation glide and climb in wadsleyite and

ringwoodite, the maps suggest the relative importance of pure climb creep as a potential

dominant deformation mechanism above average grain sizes of 0.5 mm, under typical

steady state mantle strain rate conditions of ε̇ = 10−16 s−1 in wadsleyite and ringwoodite

as also expected in majorite. Below this grain size, this dominance will gradually shift

towards diffusional creep processes as may be important in relation to the nucleation of

new grains during phase transformations as present in the Earth’s transition zone (apart

from other mechanisms such as grain boundary related disclination activity and grain

boundary sliding or water weakening, etc.).

It is noteworthy to mention that the resistance to plastic flow in the transition zone is

able to increase significantly by up to two orders of magnitude if dislocation glide is the

only active deformation mechanism, for instance in case when atomic diffusion processes

may be locally inhibited. As such, from a rheological point of view, local slab stagnation

could be related to high lattice resistance associated with plastic slip in the transition

zone minerals.

The rheology of the transition zone as discussed forms merely the starting point for

a better understanding of plastic deformation and associated solid-state flow in this

boundary layer that separates the upper from the lower mantle. All together, this work

suggests the potential importance of point defect diffusion and especially of pure climb

creep as an efficient strain producing mechanism in wadsleyite and ringwoodite, and

also likely in majorite under natural conditions. This is what makes the transition zone,
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apart from the phase tranformations, rheologically distinct from the upper mantle.

5.2 Perspectives

One of essential key stones in modelling thermally activated dislocation glide is the use of

the kink-pair model to be able to derive dislocation glide mobilities at elevated tempera-

tures and at low stress conditions. Although the model is based on linear elasticity, it was

shown to be able to predict the constitutive relations at laboratory conditions for both

wadsleyite and ringwoodite. The model however is not able to describe the mechanism of

kink-pair nucleation at the transition between correlated and uncorrelated kink-pair nu-

cleation on dissociated dislocations (chapter 2.3.2.3 and 2.3.2.4). Given the significantly

large values of the critical kink-pair nucleation enthalpies ∆Hcrit obtained in wadsleyite

and ringwoodite, it is not expected that a fine tuning of the kink-pair model will change

the order of magnitude of the CRSS(T ) in case of these high lattice friction materials.

Together with the fact the kink-pair model is expected to be the most accurate under

the conditions of the Earth’s deep mantle (high T , low stress), we consider the effort

to use a more detailed modelling approach of kink-pair nucleation (e.g. kinetic Monte

Carlo approach), in the context of geophysics, not to be of primary importance since it

is not considered to change the fact that the glide mechanism is unlikely to operate in

the high pressure silicates of the transition zone.

Our work reveals the potential importance of diffusion based deformation mechanisms,

especially pure climb creep, which is expected to become an efficient strain producing

mechanism at grain sizes above 0.5 mm in wadsleyite and ringwoodite and as is presum-

ably the case in majorite. It is important to notice that these results depend strongly

on the self-diffusion coefficients which have been taken from the relatively poor amount

of experimental data available. It is therefore essential to investigate in more detail the

mechanisms of diffusion in wadsleyite, ringwoodite and majorite to be able to better
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constrain their intrinsic transport properties which determine their plastic behaviour.

The self-diffusion coefficient can be written as Dsd = XD, where D is the point defect

diffusion coefficient given by D = exp(−∆Hm/kbT ). The latter is governed by the point

defect migration enthalphy ∆Hm which is determined by the effective atomic diffusion

paths of the atomic species involved. Besides the need in further studying the atomic

scale diffusion mechanisms, the nature and concentration X of point defects, as crystal

vacancies, may be largely controlled by the presence of chemical heterogeneities (e.g.

Fe3+, H, Al, etc.) in an extrinsic regime. In this light, it may be relevant to study

the effect of impurity concentrations on the thermodynamic and transport properties of

wadsleyite, ringwoodite and majorite to be able to relate the effect of the crystal chem-

istry to point defect accomodated plastic deformation mechanisms such as pure climb

creep. The latter however additionally requires the explicit study of the atomic inter-

action between point defects and the dislocation core structures to be able to capture

and describe the (rate) controlling mechanism at the atomic scale. The related energy

barriers for this mechanism may then be brought to the next scale to model the coupled

absorption and emission of point defects between dislocations in the bulk of the crystal

with for instance a dislocation dynamics code.

The transition zone is characterized by a number of phase transformations. The

deformation mechanisms operating in the local regions where the transformations oc-

cur may deviate with respect to the rest of the transition zone. Besides the potential

importance of Nabarro-Herring and Coble creep as a result of grain size reduction pro-

cesses in the transformation regions, other mechanisms such as grain boundary related

mechanisms (GBS, disclination activity) as well as transformation plasticity could play

an important role in the transition zone. The physics of the latter mechanism has not

been well understood so far, although it might be of importance in the transition zone.

It lies in the hands of future studies to attack the problem of transformation plasticity
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in the main phases of the mantle transition zone.

The merit of this work is having gained the insight of the inefficiency of dislocation

glide to produce plastic strain with respect to the climb mechanism in the main high-

pressure phases of the Earth’s transition zone. In the context of dislocation activity, this

leads to a breakdown of the conventional concept of dislocation creep (Weertman 1950)

in these phases and suggest the importance of pure climb creep as an active deformation

mechanism operating in the transition zone. This however only defines the beginning

of a more complete quantification of the potential deformation mechanisms operating in

parallel in the high-pressure phases of the Earth’s transition zone. These future studies

would, together with results of the present work contribute to a better understanding of

the effective solid-state flow in the Earth’s transition zone and its effect on the dynamics

of the Earth’s interior.
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Carrez, Ph., Ferré, D., and Cordier, P. (2009) Peierls-Nabarro modelling of disloca-

tions in MgO from ambient pressure to 100 GPa. Modelling and Simulation in Materials

Science and Engineering, 17, 035010.
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Poirier, J.P. (1982) On transformation plasticity. Journal of Geophysical Research,

87, 6791-6797.

Poirier, J.P. (1985) Creep of crystals. Cambridge University Press.

Price, G.D., Putnis, A., and Smith, D.G.W. (1982) A mechanism for the spinel to

β phase transformation in the (Mg,Fe)2SiO4 system. Nature, 296, 729-731.



220

Price, G.D. (1983) The nature and significance of stacking faults in wadsleyite, natu-

ral β-(Mg,Fe)2SiO4 from the Peace River meteorite. Physics of the Earth and Planetary

Interiors, 33, 137-147.

Putnis, A., and Price, G.D. (1979) High-pressure (Mg,Fe)2SiO4 phases in the Ten-

ham chondrite meteorite. Nature, 280, 217-218.

Ravi, K.V. (1972) On the Observation of Bardeen-Herring Sources in Silicon. Metal-

lurgical Transactions, 3, 1311-1313.

Ricard, Y., and Wuming, B. (1991) Inferring the viscosity and the 3-D density struc-

ture of the mantle from geoid, topography and plate velocities. Geophysical Journal

International, 105, 561-571.

Richards, M.A., and Hager, B.H. (1988) The earth’s geoid and the large-scale struc-

ture of mantle convection. In: Runcorn, S.K. (Ed.), The Physics of Planets, Wiley,

247-272.

Ringwood, A.E. (1962) A model for the upper mantle. Journal of Geophysical Re-

search, 67, 4473-4477.

Ringwood, A.E., and Major, A. (1966) Synthesis of Mg2SiO4-Fe2SiO4 spinel solid

solutions. Earth and Planetary Science Letters, 1, 241-245.

Ringwood, A.E., and Major, A. (1970) The system Mg2SiO4-Fe2SiO4 at high pres-

sures and temperatures. Physics of the Earth and Planetary Interiors, 3, 89-108.



221

Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw-

Hill, New York.

Ritterbex, S., Carrez, Ph., Gouriet, K., and Cordier, P. (2015) Modeling disloca-

tion glide in Mg2SiO4 ringwoodite: Towards rheology under transition zone conditions.

Physics of the Earth and Planetary Interiors, 248, 20-29.

Ritterbex, S., Carrez, Ph., and Cordier, P. Modeling dislocation glide and lattice

friction of Mg2SiO4 wadsleyite in conditions of the Earth’s transition zone. American

Mineralogist, in press.
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