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CSTR   Continuous stirring reactor tank 
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gas 
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Fi in   Molar inlet flow     mmol/h 

Fi out    Molar outlet flow     mmol/h 
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FID   Flame Ionization Detector 

𝑘𝑎𝑑𝑠     Rate constant of adsorption     m3/kgcat s 

𝑘𝑑𝑒𝑠      Rate constant of desorption    1/s 

𝑘𝑛   𝑛 = 1 to 4            Rate constant of methanation reaction mechanism  1/s 

Ntotal     Total number of active sites     µmol/g 

Ni      Number of adsorbed species (𝑖 = CO, CH4)  µmol/g  

𝑁𝑅𝑖(𝑡))  Normalized transient response of SSITKA curves 

𝑅𝑤    Reaction rate of different species   mol/kgcat  s 

P   Pressure      bar 

PDE   Partial Differential Equation 

PFR   Plug flow reactor 

SSITKA  Steady State Isotopic Transient Kinetic Analysis 

SCH4       Methane selectivity     % 

SCO2
        Carbon dioxide selectivity    % 

T    Temperature      ºC 

t   time       s 

TCD   Thermal conductivity detector 

TEM   Transmission Electron Microscopy 

TOS   Time on stream      h 

TOFSSITKA     SSITKA turnover frequency    s-1 

TOF turnover frequency based on cobalt dispersion and steady-state rate measurements of 

methane          s-1 

TPR-H2   H2 programmed temperature reduction 
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TPH- MS  Temperature Programmed Hydrogenation with Mass Spectrometry 

𝑉𝑅      Total volume of the reactor     m3 

W     Mass of catalyst     g 

WGS   Water Gas Shift Reaction 

GHSV   Gas Hourly Space Velocity    mL/gcat h 

XAS   X-ray absorption spectroscopy  

XCO   CO conversion      % 

XRD   X-ray diffraction  

τi        Surface residence time determined by SSITKA   s 

𝜏        Surface residence time of the set of Partial Differential Equation (PDE) 

          s 

𝜌𝑏     Specific mass of catalyst bed    kgcat/m3
bed 

ρcat         Specific mass of the catalyst    kg/m3
 

ρSiC   Specific mass of SiC      kg/m3
 

𝜀𝑐𝑎𝑡    Catalyst pellet porosity     m3
gas/m3

cat 

𝜀𝑏      Catalyst bed porosity      m3
gas/m3

bed 
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1 
 

RESUMO 
 

O desempenho de catalisadores heterogêneos é geralmente atribuído a presença de sítios 

ativos. A concentração, a atividade intrínseca, a localização e a estabilidade destes sítios são 

os principais parâmetros de todos os sistemas catalíticos conhecidos. Métodos cinéticos 

transientes, como análise por SSITKA, são técnicas poderosas para o estudo cinético de 

reações catalíticas heterogêneas. Catalisadores à base de ferro com a presença de promotores 

metálicos (Bi e Pb) causaram notável aumento na taxa de produção de olefinas leves, criando 

a possibilidade de realizar a síntese de Fischer-Tropsch em condições amenas de reação e até 

mesmo em pressão atmosférica. Experimentos cinéticos transientes mostraram que a 

dissociação de CO é facilitada na presença de promotores devido a retirada de átomos de 

oxigênio pela ação do carboneto de ferro. O catalisador de cobalto suportado em zeólita 

mordenita apresentou maior valor da taxa de reação determinada por SSITKA entre todos os 

catalisadores suportados em zeólitas estudados. No entanto, ZSM-5 utilizada como suporte 

apresentou menor taxa de reação, provavelmente devido à localização das nanopartículas de 

cobalto na superfície externa da zeólita. A localização dos sítios ativos de cobalto em 

catalisadores bifuncionais formados por cobalto e zeólita apresentou grande impacto sobre a 

taxa de reação e em particular sobre a seletividade dos hidrocarbonetos. A proximidade entre 

os sítios ativos de cobalto e os sítios ativos de Brønsted demonstrou ser um parâmetro chave 

para obter uma alta seletividade e alto rendimento de hidrocarbonetos ramificados. O estudo 

combinando a análise SSITKA com técnicas de caracterização de catalisadores revelou que a 

deposição de carbono e a aglomeração de nanopartículas de cobalto durante a reação foram 

os responsáveis pela desativação do catalisador de cobalto suportado em sílica. A regeneração 

do catalisador via hidrogenação diminuiu o depósito de carbono e liberou parcialmente os 

sítios mais ativos para a dissociação de monóxido de carbono, assim como os sítios envolvidos 

na adsorção reversível de monóxido de carbono. A modelagem SSITKA demonstrou a 

presença de duas espécies intermediárias de carbono.  
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RESUMÉ 

Les performances des catalyseurs hétérogènes sont généralement attribuées à la présence de 

sites actifs. La concentration, l’activité intrinsèque, la localisation et la stabilité de ces sites 

sont des paramètres importants de tous les systèmes catalytiques connus. Les méthodes 

cinétiques transitoires comme SSITKA sont des outils puissants pour mener à bien les études 

cinétiques des réactions catalytiques. La promotion des catalyseurs à base de fer avec des 

métaux utilisés pour la soudure (Bi et Pb) conduit à une augmentation remarquable de la 

vitesse de production des oléfines légères avec la possibilité d’effectuer la synthèse Fischer-

Tropsch dans des conditions très douces (basse pression) voire pression atmosphérique. Les 

expériences cinétiques transitoires ont démontré la facilité de la dissociation du CO à la 

surface du carbure de fer en présence des promoteurs par le piégeage d’atomes d’oxygène. 

Parmi tous les catalyseurs étudiés, les catalyseurs à base de zéolite de type mordenite ont 

présenté la valeur la plus élevée de la constante de vitesse SSITKA. En revanche, la ZSM-5 

utilisée comme support présentait une vitesse de réaction la plus basse, probablement à cause 

de la localisation de nanoparticules de cobalt uniquement à la surface externe de zéolite. La 

localisation des sites actifs de cobalt dans les catalyseurs bifonctionnels à base de zéolite et 

de cobalt a un impact majeur sur la vitesse de réaction et en particulier sur la sélectivité en 

hydrocarbures. La proximité entre les sites actifs de cobalt et les sites actifs de Brønsted a été 

considérée comme un paramètre clef pour obtenir une sélectivité et un rendement plus élevés 

en hydrocarbures ramifiés. Le SSITKA couplé à des techniques de caractérisation a révélé 

que le dépôt de carbone et l'agglomération des nanoparticules de cobalt étaient responsables 

de la désactivation du catalyseur cobalt supporté par la silice. Le dépôt de carbone a entraîné 

une diminution du nombre d'intermédiaires carbonés qui produisent du méthane via leur 

hydrogénation. La régénération des catalyseurs sous hydrogène diminue le nombre d'espèces 

de carbone déposées et libère partiellement les sites les plus actifs d’adsorption dissociative 

et les sites les plus forts d'adsorption réversible du monoxyde de carbone. L'étude de 

modélisation SSITKA a démontré la présence de deux intermédiaires carbonés. 
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ABSTRACT  

The catalytic performance of heterogeneous catalysts is usually attributed to the presence of 

active sites. The concentration, intrinsic activity, localisation and stability of these sites are 

major parameters of all known catalytic systems. Transient kinetic methods such as Steady 

State Transient Kinetic Analysis (SSITKA) are powerful tools for carrying out kinetic studies 

of heterogeneous catalytic reactions. Promotion of iron catalysts with metals used for soldering 

(Bi and Pb) results a remarkable increase in the light olefin production rate with the possibility 

to conduct Fischer-Tropsch synthesis at very mild reaction conditions (low pressure) and even 

at atmospheric pressure. Transient kinetic experiments showed facilitation of CO dissociation 

in the presence of promoters by scavenging O atoms from iron carbide. Cobalt catalyst 

supported by mordenite zeolite presented higher value of SSITKA rate constant among all 

catalysts studied. On the other hand, the ZSM-5 as support presented the lowest reaction rate, 

probably due to the localization of cobalt nanoparticles on the external surface of the zeolite. 

Localization of cobalt active sites in bifunctional cobalt-zeolite catalysts has a major impact on 

the reaction rate and in particular on the hydrocarbon selectivity. A proximity between the 

cobalt active site and Brønsted active sites was found to be a key parameter to obtain higher 

selectivity and yield of isomerized hydrocarbons. SSITKA combined with catalyst 

characterization revealed that carbon deposition and cobalt nanoparticle agglomeration were 

responsible for the deactivation of silica supported cobalt catalysts. The carbon deposition led 

to a decrease in the number of carbon-chemisorbed intermediates, which yield methane through 

their hydrogenation. Catalyst rejuvenation in hydrogen lessened the amounts of deposited 

carbon species and partially released the most active sites of carbon monoxide dissociative 

adsorption and stronger sites of carbon monoxide reversible adsorption. The SSITKA modeling 

demonstrated the presence of two intermediates carbon species. 
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General introduction 

 

Fischer-Tropsch synthesis (FTS) represents a unique opportunity for manufacturing 

clean fuels and chemicals from both renewable and fossil resources [1-6]. In Fischer-

Tropsch (FT) technologies, fossil and renewable resources are first converted to syngas 

(mixture of carbon monoxide and hydrogen) via gasification, steam reforming and/or 

partial oxidation. The syngas then reacts on metal, carbide or sulfide catalysts to yield the 

value-added products.  

Different transition metals from Group VIII are used in FTS (e.g., cobalt, nickel, 

iron and ruthenium). Cobalt catalysts are suitable for the synthesis of middle distillates and 

waxes. Benefits of cobalt include are highest FT reaction rates compared to iron, a high 

selectivity to linear paraffins and low water–gas shift (WGS) activity. Considering high 

cost of cobalt, a high productivity and an extended catalyst life are required to make the 

FT process economically feasible [3, 7].  

Transient kinetic methods including the steady state isotopic transient kinetic 

analysis (SSITKA) are powerful techniques for the kinetic investigation of heterogeneous 

catalytic reactions at molecular level. Originally developed by Happel [8] and Biloen [9], 

SSITKA can be used to determine site heterogeneity, concentration of different types of 

adsorbed reaction intermediates, surface residence time, activity distributions and site 

coverage [10] by inclusion of one or more stable isotopic labels in a reactant species [11].  

SSITKA has been used to evaluate the effect of different promoters, support 

modification and cobalt particle size [6, 12-19] on the type, concentration and reactivity of 

the surface intermediates. SSITKA can be particularly useful to identify the origin of the 

loss of activity and selectivity, because it yields independent information about the number 

of active sites and their intrinsic activity.  

The goal of the thesis is to evaluate the intrinsic activity and localization of active 

sites in cobalt and iron based catalysts using a combination of transient kinetic methods 

such as SSITKA, extended physico-chemical characterization and catalytic tests under 

realistic conditions. 
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The present manuscript is divided into six chapters. Chapter 1 presents a literature 

review on FT synthesis and SSITKA methodology. Chapter 2 introduces the methods for 

catalyst preparation and characterization. Special attention is paid to the SSITKA technique 

and to the experimental and modeling procedures. Chapter 3 presents the role of promoters 

for iron and cobalt catalysts as well the effect of the zeolites structure on the catalytic 

performance and surface kinetic parameters. Chapter 4 presents a synthesis procedure to 

obtain cobalt-zeolite composite materials using an extraction with a heteropoly acid. 

Chapter 5 describes the SSITKA evaluation of the deactivation mechanism during FTS 

with pure syngas and syngas containing nitrogen compounds. Additionally, Chapter 5 

demonstrated the manner in which the regeneration procedure affects the FT reaction at 

molecular level and results of SSITKA kinetic modeling. Chapter 6 presents the general 

conclusions and perspectives of the thesis. 

Major results of this thesis are published in the following articles: 

Carvalho, A.; Ordomsky, V. V.; Luo, Y.; Muniz, A. R.; Marcilio, N. R.; Khodakov, A. Y., 

Elucidation of deactivation phenomena in cobalt catalyst for Fischer-Tropsch synthesis 

using SSITKA. Journal of Catalysis, 2016, 344, 669-679. 

 

Carvalho, A.; Marinova, M.; Batalha, N; Marcilio, N.R., Khodakov, A. Y; Ordomsky, V.V. 

Design of pure pore incorporated metal-zeolite composite for highly efficient synthesis of 

isomerized hydrocarbons by Fischer-Tropsch synthesis. Catalysis Science & Technology, 

2017, 7, 5019−5027. 

 

Ordomsky, V. V.; Carvalho, A.; Legras, B.; Paul, S.; Virginie, M.; Sushkevich, V. L.; 

Khodakov, A. Y., Effects of co-feeding with nitrogen-containing compounds on the 

performance of supported cobalt and iron catalysts in Fischer–Tropsch synthesis. Catalysis 

Today, 2016, 275, 84−93. 

 

Cheng, K.; Subramanian, V.; Carvalho, A.; Ordomsky, V. V.; Wang, Y.; Khodakov, A. Y., 

The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for 

Fischer–Tropsch synthesis. Journal of Catalysis, 2016, 337, 260−271. 

 

Ordomsky, V. V, Luo, Y,  Gu, B, Carvalho, A., Chernavskii, P. A.; Cheng, K., Khodakov, 

A. Y. Soldering of iron catalysts for direct synthesis of light olefins from syngas under 

mild reaction conditions. ACS Catalysis, 2017, 7, 6445−642. 
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Chapter 1. Literature review 

1.1 Fischer Tropsch synthesis 

 

Fischer Tropsch synthesis (FTS) is a chemical process used to convert syngas 

(mixture of carbon monoxide and hydrogen) in a mixture of long chain hydrocarbons and 

oxygenated species (Figure 1.1). Franz Fischer and Hans Tropsch discovered the process 

in 1922 employing an iron-based catalyst [1, 2]. Due to its fast technological development, 

FTS was already a commercial process in 1930. 

 

Figure 1.1 Transformation of non-petroleum carbon resources into liquid fuels and chemicals via 

syngas. Reproduced from Zhang et al. [3]. 
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The FTS process is interesting for both academic and commercial purposes. 

However, its economic importance has been oscillating during recent history (post II World 

War). Accordingly to Van Dijk [4], FTS importance depends on the following four criteria:  

o The world reserves of carbon-containing resources;  

o Geographic location of carbon reserves; 

o Demand for cleaner feedstock; 

o Demand for reduction of CO2 emissions.  

 

FTS technologies are named according to the used carbon feedstock, for example, 

the processes of Coal to-Liquids (CTL), Gas-to-Liquids (GTL) and Biomass-to-Liquids 

(BTL). This reference is recognized as XTL (“Anything-to-Liquids”) processes [5]. 

FTS involves a complex system of reactions with a desired and undesired products 

formed (see list below). Commonly, the desired products are olefins, paraffins and alcohols 

(compounds with greater commercial value) and the undesired may be methane and coke 

[1].  

Desired reaction: 

Olefin:      nCO + 2nH2 → nH2O + CnH2n 

Paraffin:     nCO + (2n+1)H2 → nH2O + CnH2n+2 

Alcohols:     nCO + 2nH2 → CnH2n+1OH + (n – 1)H2O 

Undesired reaction [6, 7]: 

Water Gas Shift Reaction (WGS):    CO + H2O → H2 + CO2 

Boudouard reaction (carbon deposition) : 2CO → C + CO2 

Formation of metal carbides:   yC + xM → MxCy 

Oxidation of metal:    xM + H2O → MOx + H2 

 

As showed above the FTS produces a wide-ranging distribution of hydrocarbons. 

The reaction selectivity is described typically using the Anderson–Schulz–Flory (ASF) 

distribution model [8]. In the ASF distribution, the molar fraction (𝑀𝑛) of the hydrocarbon 

product with a carbon number of n preferably depends only on the chain-growth 

probability(𝛼), which is a function of the rates of chain growth and chain termination. 

Equation 1 determines the ASF distribution model. 
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                    𝑀𝑛 =  (1 −  𝛼) ∙ 𝛼𝑛−1                                                            (1) 

FTS usually occurs at reaction conditions far from equilibrium [9]. Consequently, 

the product yields and selectivities are controlled by the reaction kinetics. The pressure 

applied are usually in the range of 15 to 20 bar. FT reaction is highly exothermic, with an 

average heat reaction of approximately -40 kcal/gmol [1]; consequently, efficient heat 

removal is required. The process temperature is the parameter responsible for the large 

spectrum of the FTS product distribution. For that reason, two fundamental FTS operation 

modes are defined. They are the lower temperature Fischer Tropsch (LTFT) and high 

temperature Fischer Tropsch (HTFT) processes. 

LTFT is characterized by temperatures between 200 °C and 240 °C and proceeds 

in the slurry bubble column (SBCR) and fixed bed reactors in industrial scale. Cobalt and 

iron catalysts are applied in this technology. The goal of LTFT is production of the C1 - 

C100 linear paraffins and light olefins with a H2/CO ratio between 1.7 and 2.15 [10]. 

Accordingly to Dai et al. [11] and De la Osa et al. [12] LTFT is the most promising route 

for production of transportation fuels and chemical feedstocks from natural gas, coal and 

biomasses.  

HTFT processes are carried out in the range of 300 to 350 °C, and are generally 

applied to produce gasoline/naphta, olefins and oxygenates [13]. HTFT uses iron based 

catalysts and is usually performed in fluidized bed reactors. 

1.1.1 Fischer Tropsch catalysts 

 

The Fischer Tropsch catalysts make use of transition metals from the group VIII 

(iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru) and rhodium (Rh)) as the active phase. 

Concerning the chemical state, there is a consensus that metallic cobalt (Coo) and metallic 

ruthenium (Ruo) act as the active phases for CO hydrogenation. For iron based catalysts, 

the iron carbides are recognized as the active phase [3]. Further investigation is necessary 

to identify and to understand how the chemical states of each catalyst affect FT catalytic 

performance. In the next paragraphs, special attention is given for iron and cobalt based 

catalysts. 
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Cobalt based catalysts presents the highest reaction rate, highest selectivity to linear 

paraffins, in particular at higher CO conversion, and low water–gas shift (WGS) activity. 

They are usually applied to obtain waxes and middle distillates [14, 15, 16]. In terms of 

cobalt catalyst design for FTS, De La Osa et al. [17] and Vosoughi [18] listed the general 

crucial factors as follows: 

o The support material with appropriate physico-chemical and textural properties; 

o The method of catalyst preparation with the inclusion of the precursor type, 

loading, drying, calcination and reduction procedures; 

o Optimum operational conditions in favor of higher CO conversion and C5+ 

selectivity. 

The activation of cobalt catalysts in hydrogen converts cobalt oxide phases to 

metallic Co. The Co° as the active phase may exist in two different crystalline forms, i.e. 

fcc (face centered cubic) and hcp (hexagonal close packing) phases [19]. For bulk Co, the 

hcp-phase is more stable at lower temperatures, but the fcc-phase becomes more stable 

when the size of Co particles becomes less than 20 nm [20]. Several studies have pointed 

out that the hcp-phase Co° is more active than the fcc-phase Co° in silica and alumina 

supported catalysts [19, 21, 22]. In addition, the gas composition applied on the catalytic 

reduction may influence the metallic cobalt phase obtained as well the catalyst support. For 

example, Elbashir et al. [23] have noticed in the used FT catalysts, the fcc-phase on silica 

support, while the hcp-phase was detected on alumina support. 

Cobalt catalytic performance is significantly affected by adsorption of CO + H2 

reactants and intermediates by active sites [18, 24]. Additionally, an increase in the CO 

conversion is reported to be the responsible for the changes in the product selectivity, e.g. 

decreasing the methane selectivity with simultaneously increasing the C5+ hydrocarbon 

selectivity [25]. Moreover, at typical FTS conditions, the CO2 selectivity also increases 

with increasing CO conversion. This correlates with the higher WGS reaction rate at high 

water partial pressures. 

Fe may be described as the most complicated active metal due to the coexistence 

of several iron phases in the course of FT reaction [26]. These iron phases are: ε-Fe2C, ε’-

Fe2.2C, Fe7C3, χ-Fe5C2 and θ-Fe3C carbides as well as metallic iron, FeO and Fe3O4. This 
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occurs because the activation energy to form iron carbides is lower or similar compared 

with the activation energy of the CO hydrogenation. The metallic iron phase is not stable 

under FT reaction conditions, but still can be present in the catalyst even at long time on 

stream [3, 27]. The spatial distribution of the active carbide particles on the support 

material plays an important role on the catalytic performance [28]. For example, Zhang et 

al. [3] observed that χ-Fe5C2 is the active phase for Fe-based catalysts. 

The product selectivity of Fe catalysts depends both on FT activity and water–gas-

shift (WGS) activity due to the fact that iron active phase is active in WGS reaction [25]. 

In terms of catalyst promoters, it is known that the alkali metals are able to suppress the 

methane selectivity and increase the selectivity to the C5+ hydrocarbons. The commercial 

iron catalyst is a multicomponent system. Potassium (K) is a recognized promoter to tune 

the product selectivity, resulting into an improvement of the selectivity to higher molecular 

weight hydrocarbons [29, 30, 31]. Another iron promoter with interesting results is the 

manganese (Mn) because it is capable to increase the CO conversion activity and decrease 

methane selectivity. Copper (Cu) may improve the iron reduction and carbidisation, while 

silica (SiO2) and alumina (Al2O3) supports acts for a structural improvement [32].  

Rh-based catalysts have been pointed out as the most efficient for synthesis of the 

C2+ oxygenates [33-35]. Ni-based catalysts are typically used to obtain methane [36, 37]. 

For that reason, carbon monoxide hydrogenation with Ni catalysts have been suggested as 

a substitute process for synthesis of substitute natural gas (SNG). In addition, Ni is a 

relatively inexpensive metal [38]. Iron based catalysts are well recognized to exhibit both 

FTS and water-gas shift (WGS) reaction [25, 39]. 

The FT active catalytic species are generally supported on high surface area 

supports such as silica, alumina or zeolites. In the group of oxide supports, titania, alumina 

and silica are commonly used in FTS. In the case of zeolite supports, ZSM-5 [32], zeolite 

Y, zeolite L, and beta have been applied for synthesis of metal–zeolite FT catalysts. Zeolite 

is a material with elementary building units of SiO4 and AlO4 tetrahedra. Adjacent 

tetrahedra are linked at their corners via a common oxygen atom. This results in an 

inorganic macromolecule with a structurally distinct three dimensional framework [40].  



Chapter 1. Literature review  

________________________________________________________________________________ 

 

12 
 

Zeolites are well known catalysts applied in the petrochemical and fine chemical 

industries [41, 42] due to their tunable acidity. Zeolites are characterized by high surface 

area and unique microporous structure that help to well disperse the catalyst active phase 

and obtain the shape selectivity.  

As about disadvantages, zeolites with high Si/Al ratio can exhibit high selectivity 

for undesired low molecular weight hydrocarbons due to their strong hydrocracking 

activities [43]. Furthermore, the high zeolite acidity may lead to the difficulties to reduce 

metal oxides at cation exchange sites and can increase catalytic deactivation rates. 

Only cobalt and iron based catalysts are considered economically feasible for large 

scale production [2, 39, 44, 45, 46, 47] and have deserved special attention in the literature. 

Because of high price and rarity, ruthenium has been restricted for research purposes or 

used as a promoter for cobalt catalysts [36, 48]. Nickel produces a high quantity of 

methane.  

1.1.2 Bifunctional catalysts and their application in FTS 

 

Bifunctional catalysts present two different active phases that assure catalytic sites 

for diverse reaction steps. Thus, the reaction occurs in successive steps involving two types 

of sites: metallic sites presenting the main function to hydrogenate and to dehydrogenate 

and acidic sites with the main function to crack or to isomerize [49]. These two types of 

sites affect the rate of different chemical steps, which can alter reaction pathways and 

consequently modify product distribution. Besides, a bifunctional process may require the 

diffusional steps of the intermediate species. 

A conventional example of process using a bifunctional catalyst is isomerization of 

n-hexane into methylpentanes using platinum-silica aluminate catalyst. While the 

hydrogenation and dehydrogenation occur on platinum, the isomerization takes place on 

the acid sites. 

Different steps of the reaction in bifunctional catalysts are catalyzed by different 

types of sites. If these steps occurs in series, both types of sites must be in proximity one 

to another.  
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An advantage of the combination of a metal with an acid catalyst is the possible 

enhancement of the catalytic performance. This is due to the solid acid catalysts itself 

which suffers from fast deactivation by coking [50]. As commented by Guisnet [51], 

bifunctional redox-acid catalysts can decrease coke formation. Therefore, no longer a 

regenerative system is necessary and a new method of synthesis of catalysts to obtain less 

sensitives material to coking can be sidestepped.  

As commented in the above section, the zeolites supply acid sites to the catalyst. 

Zeolites present properties to be an “ideal” (highly active, stable and selective) acid catalyst 

due to their high number of acid sites and highly activity. The addition of a metal to the 

zeolite framework often guarantees a catalyst with high metal dispersion [50].  

Pure acid zeolites are capable to crack and isomerize pentanes and hexanes [49]. 

The activity, stability and isomerization selectivity are usually increased if a hydrogenation 

phase is added to the zeolite. Therefore, the nature and reaction routes performed by both 

acid and hydrogenation sites are extremely important for the stability and selectivity of 

bifunctional zeolite catalysts. 

It is important to comment that the isomerization to cracking rate ratio depends also 

on the operating conditions applied and not only of the type of zeolite. Comparing zeolites 

with different structures is not an easy task. Furthermore, the isomer distribution is 

markedly dependent on the conversion [49]. 

Several groups reported [52, 53, 54] that the hydrocracking of FT heavy wax 

produces fuels in the middle distillate range. The bifunctional catalysts have been also 

tested in FTS in order to combine hydrocracking and isomerization of long-chain 

hydrocarbons in a single reactor to restrict hydrocarbon distribution to a specific range.  

The hybrid or composite catalysts for FTS contain an active metal component, such 

as Co, Fe and Ru for the growth of the primary straight chained hydrocarbons [55] and an 

acid zeolite catalyst for cracking and isomerization. These two types of sites are applied in 

FTS to obtain isoparaffins or diesel fuels (C10–C20 hydrocarbons) from the direct syngas 

conversion.  

Different process configurations have been selected for the use of bifunctional 

catalysts in FTS. For example, dual-bed configuration of the catalytic reactor with the FT 
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catalyst in the first layer and the zeolite or metal/zeolite in the second was tested by Zhao 

et al. [56] and Botes et al. [54]. Additionally, different method of catalyst preparation, such 

as mechanical mixing of FT catalysts with the zeolite [57, 58, 59] or the impregnation of 

the metal into the zeolite [52] have been studied. Below are some results from the literature 

concerning use of bifunctional catalysis in FTS.  

Botes et al. [54] proposed use of HZSM-5 in FTS in order to obtain high quality 

gasoline obtained by the step of skeletal isomerisation and aromatisation over acidic 

zeolites. The high quality is linked to the fact that the branched and aromatics hydrocarbons 

formed presented a high-octane value. The authors commented that addition of HZSM-5 

to the Fischer–Tropsch process also improved production of gasoline range products due 

to the cracking of longer chain hydrocarbons and oligomerization of light olefins.  

Liu et al. [58] applied mechanical mixture of hybrid catalysts using cobalt 

supported on silica (Co/SiO2) and palladium supported on beta zeolite (Pd/BEA). The 

catalyst was applied for the direct production of gasoline ranged isoparaffins from syngas. 

They have found an interesting result about the effect of the interface between the Co/SiO2 

and Pd/beta hybrids catalyst in the granual and powdery mixture. The granular hybrid 

catalyst showed lower CH4 selectivity and much higher isoparaffin selectivity than the 

powdery hybrid catalyst due to hydrogen spillover.  

The spillover was also observed by Tsubaki et al. [59] using a catalyst prepared 

from a physical mixture of three catalysts with different roles (Co/SiO2, Pd/SiO2 and ZSM-

5) in order to produce directly isoparaffin from syngas conversion. FTS and the 

hydrocracking of hydrocarbons occur in the same reactor. The hybrid catalyst life was 

remarkably extended after inclusion of Pd in the catalyst. In addition, Pd was able to 

decrease the methane selectivity. Hydrogenation of olefins was performed by the FT active 

metal catalyst, while the zeolite was able to perform wax cracking.  

Sarpini et al. [60] made use of the hierarchical-zeolite-supported cobalt catalyst, 

synthesized by impregnation method, in wax hydrocraking to shorter-chain hydrocarbons. 

The selectivity to the gasoline range of the C5-C11 fraction was increased. Bessell et al. [55] 

used impregnation method to synthesize a series of cobalt catalysts supported by zeolites 

(ZSM-5, ZSM-11, ZSM-12 and ZSM-34). The authors concluded that the activity was 
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related to the channel size of the zeolite support. The 12 membered ringed ZSM-12 

supported catalyst was the most active, followed by the two 10 membered ringed ZSM-5 

and ZSM-11 supported catalysts, while the predominantly 8 membered ringed ZSM-34 

supported catalyst was the least active.  

An example of the use of core-shell catalyst in bifunctional FT process is the work 

by Yang et al. [57]. The one-step synthesis of light isoparaffins from syngas via Fischer–

Tropsch synthesis (FT) was performed using two types of core-shell-like zeolite capsule 

catalysts. Both catalysts effectively improved the selectivity to light isoparaffins, 

simultaneously depressing formation of heavy hydrocarbons, presenting a better catalytic 

performance than the traditional hybrid catalyst prepared by physical mixing.  

Another example involving of bifunctional catalysis is the syngas conversion to 

higher alcohols named as HAS. This reaction can be performed over bifunctional catalysts 

with one type of site to catalyze non‐dissociative CO adsorption for CO insertion and 

alcohol formation, and with the other site to dissociate CO and to form surface alkyl species 

[61]. 

In terms of zeolite material, ZSM-5 has been demonstrating to be an adequate 

support to combine both FTS and hydrocracking. It is due to the fact that ZSM-5 presents 

a specific porous structure, ability to perform shape selectivity, high acidity and resistance 

to coking and stability under FTS conditions [47, 55, 62]. It is important to remember that 

the choice of the preparation method for bifunctional catalysts for the direct synthesis of 

isoparaffins from syngas would depend on the zeolite acidity and its porous structure. 

 

1.1.3 Basic concepts of Fischer-Tropsch reaction mechanism 

The FT reaction mechanism is a topic widely studied in virtue of the relatively 

complexity of the subject [63]. Different approaches have been proposed over years, such 

as the carbide mechanism, CO insertion mechanism, hydroxycarbene mechanism and 

oxygenate enol mechanism. The reaction mechanism can be divided in elementary steps 

[64] to aid its understanding, as follow:  
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1) CO and H2 adsorption; 

2) CO activation or chain initiation;  

3) Chain propagation; 

4) Chain termination. 

Among the four steps, the first step of CO and H2 adsorption occurs on the metal 

sites of the catalyst surface. The second step, named CO activation, is a matter of debate 

due to possibility of two types of dissociation: CO dissociation directly on the metal surface 

or hydrogen assisted CO dissociation [64, 65, 66]. These two CO activation pathways are 

shown in Figure 1.2, and lead namely to the carbide mechanism and to the CO insertion 

mechanism (both are going to be explained later).  

 

Figure 1.2 Examples of CO activation pathways: (a) direct CO dissociation (carbide mechanism); 

and (b) H-assisted CO dissociation (carbide mechanism); (c) CO hydrogenation (CO-insertion 

mechanism). Reproduced from Todic et al. [64]. 

 

The chain propagation and chain termination (steps 3 and 4) show that FTS 

proceeds through a stepwise addition of a monomeric intermediate.[65]. A description of 

each step is available in the literature [67, 68, 69]. 

Valero et al. [70] and Davis et al. [71] have pointed out the carbide mechanism and 

CO insertion mechanism as the most likely FT reaction pathway. Nevertheless, several 

H-assisted CO dissociation 
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alternative FT mechanisms have been proposed, making this topic still a subject of debates 

[72, 73].  

The carbide mechanism, originally proposed by Fischer and Tropsch in 1926, 

suggests "polymerization of methylene groups" on the metal surface. Hence, the formation 

of hydrocarbon and oxygenate products includes metal carbide formation followed by its 

hydrogenation [71]. The carbide mechanisms involves one or two carbon pools on the 

surface that lead to formation of methane and higher hydrocarbons. In consequence, the 

reaction occurs on two types of active sites, one for CO dissociation and another for chain 

growth.  

Another plausible pathway for the chain growth is the CO insertion [74]. In the 

initial step, CO is hydrogenated. Then, CO is inserted into the growing chain instead of 

CHx as granted in the carbide mechanism.  

1.2 Catalyst deactivation 

 

Deactivation is the loss of the catalytic activity during the reaction. The catalyst 

deactivation causes loss of the active phase, recurrent startups and shutdowns of the reactor 

and replacement of the relatively expensive catalysts. Deactivation reduces the yield of 

valuable products and increases the operation costs [76]. Consequently, it has a great 

influence for both catalyst and reactor design. Deactivation is a complex problem, which 

involves occurrence of several intrinsic mechanisms [75]. 

The catalyst lifetime depends on several factors, i.e., reaction conditions, catalyst 

properties, feed purity, changes in reaction composition, among others. There is a wide 

variation in catalyst lifetimes among different processes, from 10-6 to 15 years [76]. In the 

case of methanation which typically make use of nickel supported catalysts, the lifetime of 

the catalyst varies from 5 to 10 years [76]. In the case of Fischer Tropsch synthesis, cobalt 

as metal phase is usually applied because presents high catalytic longevity as well high 

activity [1]. 
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Heterogeneous catalysis deactivation phenomena can be classified as chemical, 

thermal and mechanical. Each class presents different intrinsic mechanisms, as briefly 

described in Table 1.1. 

Table 1.1 Mechanisms of catalyst deactivation. Adapted from Argyle and Bartholomew [76]. 

Nature Mechanism Brief definition/description 

Chemical Poisoning 
Strong chemisorption of species on catalytic 

sites which block sites for catalytic reaction 

Mechanical Fouling 

Physical deposition of species from fluid phase 

onto the catalytic surface and in the catalyst 

pores 

Thermal 

/chemical 

Thermal 

degradation and 

Sintering 

Thermally induced loss of catalytic surface 

area, support area and active phase-support 

reactions 

 

A detailed description of chemical and mechanical deactivation phenomena is given 

in the review by Argyle and Bartholomew [76]. The next sub-section describes different 

deactivation mechanisms shown in Table 1.1. 

1.2.1 Chemical deactivation 

 

Poisoning is a deactivation phenomenon, which causes loss of activity due the 

presence of impurities in the feed stream. These impurities are able to block sites or to 

modify their catalytic performance. In addition to physically blocking of adsorption sites, 

adsorbed poisons may induce changes in the electronic or geometric structures of the 

surface [77]. The poisoning may be reversible or irreversible and it may be selective and 

non-selective as illustrated in Figure 1.3. 
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Figure 1.3 Two types of catalyst poisoning: selective to the active phase (a) and non-

selective to the active phase (b). Black circles: active phase; gray circles: catalyst support 

Reproduced from Moulijn et al. [78]. 

 

Catalyst deactivation can be attributed to selective poisoning of the most active sites 

(see Figure 1.3a), which play the most important role in the catalytic reaction, while the 

total number of active sites can be only slightly reduced by the deactivation. Note that the 

molecules present in the feed streams are not the only responsible for poisoning of the 

metal active sites; the catalyst might also produce intermediates and products that act as 

lethal poisons for the active sites [78]. 

1.2.2 Thermal degradation 

 

Thermal degradation of the catalysts usually occurs in the reactions conducted at 

high temperatures. The loss of activity may occur due to metal active phase and/or catalyst 

support modification with the following catalyst consequences [79]: 

 loss of catalytic surface area due to crystallite growth of the catalytic phase; 

 loss of support area due to the collapse of the support and catalyst surface area; 

 chemical transformations of catalytic phases to non-catalytic phases.  

The first two correspond to sintering. Sintering is often an irreversible process 

driven by loss of the surface energy due the crystallite growth. Generally occurs at reaction 

temperatures above the catalyst or support Tamman temperatures. A series of factors may 

influence the sintering rate on supported metals catalysts, from the catalyst material itself 

(type of metal and dispersion, presence of promoters, support surface area and its porosity 

and texture) to the operation conditions such as chemical composition of syngas, 

a b    
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conversion and gas space velocity [80]. It is known that an excessive heat provided by an 

exothermic reaction such as FTS may cause sintering, therefore this deactivation 

phenomena increases exponentially with the temperature of reaction. In addition, presence 

of impurities may also affect metal particle growth.  

Bartholomew [79] has classified three main mechanisms of the metal crystallite 

growth as crystallite migration, atomic migration (or Ostwald ripening) and vapor 

transport. The third possible mechanism called vapor transport occurs only at very high 

reaction temperatures. The processes of crystallite and atomic migration are illustrated in 

Figure 1.4. 

 

Figure 1.4 Two conceptual models for crystallite growth due sintering by (A) atomic migration 

or (B) crystallite migration. Reproduced from Bartholomew [79]. 

 

As described by Karaca et al. [21] and Bartholomew [79], the particle migration 

and coalescence involves migration of entire particles over the support and is followed by 

collision and coalescence. Atomic migration or ripening involves detachment of metal 

atoms from crystallites, migration of these atoms over the support surface and ultimately 

their capture by larger crystallites.  
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1.2.3 Carbon fouling 

 

This literature review is focused on the fouling phenomena. Fouling is the name 

attributed to the carbon and coke deposition, which are components capable to deactivate 

the catalyst by blockage of sites and/or support pores, as demonstrated in Figure 1.5. 

 

Figure 1.5 Example of surface and pore plugging of different carbon deposition on cobalt 

supported catalyst. Reproduced from Peña et al. [81]. 

 

According to Bartholomew [79] carbon is typically a product of CO 

disproportionation, while coke is produced by decomposition or condensation of 

hydrocarbons on catalyst surfaces and typically consists of polymerized heavy 

hydrocarbons.  

Carbon and coke deposition exhibit a strong effect on the deactivation behavior. In 

the work by Menon [82], the precise location of the coke on catalyst surface was proposed, 

considering its nature, structure and morphology which has strongly influenced the 

deactivation behavior. All the catalytic reactions were classified as coke-sensitive or coke-

insensitive [82]. A coke-sensitive reaction presents a negative effect of the coke on the 

activity at very low carbon content. The coke sensitive deactivation is a type of chemical 

deactivation and in many aspects is close to poisoning (see section 1.2.1). In the case of 

coke-insensitive reactions (e.g., methanation, Fischer–Tropsch synthesis, steam reforming 
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and catalytic reforming), the coke precursors only slightly affect the catalytic performance 

even at relatively high contents. 

It is well known that most part of catalytic heterogeneous processes are carried out 

with metal particles dispersed on a support material. A wide range of supports may be used, 

and its heterogeneous structure can cause various interactions with the metal particles 

during reaction. For that reason, Bartholomew [79], described the possible effects of carbon 

or coke deposition on supported metal catalyst:  

o carbon may strongly chemisorb as a monolayer or physically adsorb in 

multilayers. In both cases, the result is the blockage of reactants to the metal 

surface sites; 

o the metal particle can be totally encapsulated by the carbon or coke; 

o plugging micro- and/or mesopores of the support may block the reactant access 

to the metal particle sites.  

 

1.3 Specific aspects of the deactivation of cobalt based Fischer–Tropsch 

catalysts 

 

The FT reaction occurs under influence of several deactivation mechanisms. These 

mechanisms are strongly associated with the catalyst, reactor configuration and operation 

conditions. This section is dedicated to deactivation of cobalt based catalysts. 

Cobalt catalyst deactivation is a major challenge in FTS [83]. In consequence, an 

improvement of catalyst stability is mandatory [75] to maintain the high hydrocarbon 

productivity. Cobalt catalysts deactivation might be caused by several mechanisms, such 

as sintering, metal oxidation, carbon deposition and carbidization. A series of results from 

the literature about sintering, carbon deposition and poisoning are discussed in the next 

paragraphs, as well as the cobalt activity behavior during deactivation.  
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In the work by van de Loosdrecht et al. [84], several samples of cobalt supported 

on alumina were taken from a 100 bbl/d FT demonstration reactor operated at 230 °C, 

20 bar, H2 + CO conversion of 50% − 70% and composition of 50−60 vol % of H2 and 30 

− 40 vol % of CO. Transmission electron microscopy (TEM) demonstrated a cobalt particle 

size increase from about 9 nm for the fresh catalyst to around 15 nm for the spent catalyst. 

The High-Angle Annular Dark Field (HAADF-TEM) clearly showed a rapid increase in 

the crystallite size during the first few days of FTS and after that, it levels off. This 

observation is also reported by Sadeqzadeh et al. [80] and Overret et al. [85]. 

Karaca et al. [21] concluded that cobalt sintering occurred already on the first hours 

of reaction (20 bar and 220 °C) for alumina-supported cobalt catalysts promoted with 

platinum. Consequently, a significant drop of the catalytic activity was observed. 

Kistamurthy et al. [86] applied TEM and X-ray spectroscopy (XPS) in a flat model catalyst 

of cobalt supported on silica before and after exposing the sample to FT conditions (20 bar, 

230 °C, H2/CO = 2) for 10 h. The authors concluded that temperature of 230 °C is too low 

for purely thermally induced loss of metal surface area. The most important conclusion 

was about the sintering mechanism. It was identified the dominance of Ostwald ripening 

in the flat model catalyst.  

Deactivation study from a modeling point of view was examined in the work by 

Sadeqzadeh et al. [80]. The authors have been modeled a sintering mechanism for a FT 

slurry reactor using kinetic experimental parameters. A three-step sintering mechanism for 

cobalt-based catalysts including intermediate formation of an oxide layer on cobalt metal 

nanoparticles in presence of water was suggested. These results indicate that the sintering 

occurs mainly during the first hours of the reaction. Cobalt sintering proceeds faster when 

water is co-fed during the reaction. 

Moodley et al. [87] reported about carbonaceous species observed on CoPt/Al2O3. 

The samples were taken from a slurry bubble column reactor operated over a period of 6 

months at commercially FT conditions. Both Temperature Programmed Hydrogenation 

(TPH) and Temperature Programmed Oxidation (TPO) showed an increase in polymeric 

carbon with time on stream. Analysis of Energy-filtered transmission electron microscopy 

(EFTEM) and High Sensitivity-Low Energy Ion Scattering (HS-LEIS) demonstrated that 

http://scholar.google.com.br/scholar_url?url=https://www.researchgate.net/profile/Jian_Xu28/publication/6935158_Temperature-Programmed_Hydrogenation_TPH_and_in_Situ_Mossbauer_Spectroscopy_Studies_of_Carbonaceous_Species_on_Silica-Supported_Iron_Fischer-Tropsch_Catalysts/links/56b2f2e608ae5ec4ed4b5dc1.pdf&hl=pt-BR&sa=X&scisig=AAGBfm02NKHvFNu9RmW0EQULWn8SikmopQ&nossl=1&oi=scholarr&ved=0ahUKEwjtoI7U0-rSAhWDf5AKHUPeBh8QgAMIGSgAMAA
http://scholar.google.com.br/scholar_url?url=https://www.researchgate.net/profile/Jian_Xu28/publication/6935158_Temperature-Programmed_Hydrogenation_TPH_and_in_Situ_Mossbauer_Spectroscopy_Studies_of_Carbonaceous_Species_on_Silica-Supported_Iron_Fischer-Tropsch_Catalysts/links/56b2f2e608ae5ec4ed4b5dc1.pdf&hl=pt-BR&sa=X&scisig=AAGBfm02NKHvFNu9RmW0EQULWn8SikmopQ&nossl=1&oi=scholarr&ved=0ahUKEwjtoI7U0-rSAhWDf5AKHUPeBh8QgAMIGSgAMAA
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the polymeric carbon was located both on cobalt and alumina support. These results 

suggested the presence of an interaction between polymeric carbon and active phase, 

affecting the long-term deactivation of FT cobalt based catalysts. Table 1.2 shows the 

nature of carbon deposits reported in the literature. 

Table 1.2 Carbon species observed by Moodley et al. [53] and literature. 

Temperature of 

hydrogenolysis 

(°C) 

Possible carbon species References 

250 

Surface carbidic species (atomic carbon) 

Residual wax/hydrocarbons 

Bulk cobalt carbide 

Lee et al. [88] 

Gruver et al. [89] 

Pankina et al. 

[90] 

330 
Residual wax (probably contained in small 

pores) 
Gruver et al. [89] 

445 
Polymeric (amorphous) carbon on cobalt 

or the support 
Lee et al. [88] 

 

Peña et al. [91] also applied TPH with mass spectrometer (MS) and X-ray 

photoelectron spectroscopy (XPS), among others characterization techniques, to identify 

carbon species deposited on cobalt supported on alumina. FT activity was measured in a 

slurry type reactor at different FT operating conditions. Three types of carbon species were 

observed: residual hydrocarbons (probably wax), strongly adsorbed hydrocarbon 

fragments and amorphous polymeric carbon. Interestingly, graphene/graphite appears not 

to be produced even under low H2/CO ratio feed condition. 

Lee et al. [88] also have reported the formation of polymeric carbons on alumina-

supported catalyst. It was suggested that hydrogenolysis of polymeric carbons occurred 

above 400 ºC. They observed that the carbon deposits significantly decreased both the 
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activity and activation energy from 28-32 kcal/mol to 17-18 kcal/mol (117-134 kJ/mol to 

71-75 kJ/mol). 

Duncan et al. [92] and Pinard et al. [93] demonstrated negative effects of amorphous 

polymeric carbon on the catalytic activity due to physical blocking of the active sites. The 

authors reported that polymeric carbon in FTS could correspond to the polymerization of 

CHx forming an alkyl group structure.  

Nitrogen and sulfur compounds present in the syngas stream, mainly from coal and 

natural gas sources, are largely recognized as poisons for FTS catalysts [15, 94, 95]. Dry 

et al. [36], identified the minimum amount of sulfur (0.02 mg/m3) content on syngas to 

avoid significant deactivation of iron and cobalt catalysts. 

In the work by Visconti et al. [96], sulfur was fed within a wide range of 

concentrations (0-2000 ppm) to cobalt catalysts supported on alumina. A fixed bed reactor 

operating at 220 °C, 20 bar and H2/CO ratio of 2 was applied. It was found that increasing 

sulfur amounts affected the catalyst reduction and also changed the product distribution. 

They observed a drop in wax formation and an increase in the selectivity to light products. 

However, the authors did not find any influence of the catalyst morphological 

characteristics on the deactivation rate.  

The sulfur catalyst poisoning can be reduced by inclusion of alkali promoters. [97]. 

The catalyst was exposed to low (100 and 200 ppm) and high levels of sulfur (500 ppm). 

They have found that 500 ppm of sulfur led to a decrease of 80% in the reaction rate. The 

low-level of sulfur addition (100 ppm, 200 ppm) did not significantly influence the catalyst 

activity and selectivity. In presence of boron as promoter, the decrease in the reaction rate 

was less significant (only 35%). 

In terms of activity, Van Berge et al. [14] demonstrated two regimes of deactivation 

for cobalt based catalysts applied in a FT plant, named “A” and “B”. As demonstrated in 

Figure 1.6, syngas conversion decreased with time on stream, which suggests the FT 

deactivation behavior as a combination of several mechanisms. The first initial step (A) 

lasted for a few days and during this phase, the deactivation was considered reversible. The 

second long term regime (B) was associated to operations conditions and was considered 

irreversible [75]. 
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Figure 1.6 Deactivation regime for cobalt based catalyst. Synthesis conditions: 220 °C, 

20 bar; commercial syngas feed: 50 vol% H2, 25 vol% CO and 25 vol% inert; relative space 

velocity equal to 0.5. Reproduced from Van Berge et al. [14]. 

 

These studies show that catalytic deactivation is inevitable in cobalt FT process. 

However, several critical consequences of the deactivation may be avoided, postponed or 

even reversed with optimization of catalyst structure and operation conditions [98]. A way 

to reverse and minimize the effects of deactivation mechanisms is application of 

regeneration procedures. Next section is dedicated to discuss these procedures when they 

are applied to cobalt based catalysts.  

 

1.4 Regeneration of cobalt based catalysts 

 

This section presents a brief discussion about regeneration procedures and their 

application to FT cobalt catalysts reported in the literature. Regeneration is a widely studied 

topic in the patent literature in virtue of the necessity of improving the catalyst lifetime 

[98]. 
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The lifetime of FT catalysts can be extended by regeneration and rejuvenation 

procedures [81, 84, 87, 99]. Regeneration of the catalyst can efficiently restore the activity 

and should be capable of removing poisons and coke from the surface, as well as to 

redisperse cobalt nanoparticles that have sintered. Diverse regeneration procedures of FT 

catalysts involve solvent washing, hydrogen treatment, steam treatment, and oxidative and 

reductive treatments [100]. Often the regeneration procedures include a combination of the 

above processes. In this section, only H2 rejuvenation application is discussed, because this 

method of regeneration is applied in the present thesis. 

Rejuvenation in hydrogen is one of the possible and most common ways to 

regenerate FT catalysts. The advantage of the reductive rejuvenation with hydrogen is that 

this treatment may be performed in situ in fixed bed, slurry or microreactors. The 

rejuvenation with hydrogen leads to the removal of most of carbon species and reversible 

poisons (e.g. nitrogen containing compounds) and possibly to the reduction of cobalt which 

might be partially oxidized in the presence of FT reacting medium (e.g. surface cobalt 

oxidation) [101]. Much smaller effect of treatment with hydrogen can be expected however 

on more refractory deposited atomic or polymeric carbon species [102].  

As mentioned by Holmen and Rytter [98], some of the main industrial companies, 

major players in LTFT (Sasol, Exxon, Nippon Oil, ConocoPhillips, Syntroleum) have been 

applying regeneration procedures in slurry and fixed bed reactors, with cobalt supported 

on alumina and titania in presence of different promoters (platinum (Pt), rhenium (Re), 

ruthenium (Ru), manganese (Mn)).  

Exxon company has patented [103] a FT process at 200 °C – 230 °C using a spent 

CoRu/titania catalysts. The H2 rejuvenation was described as a successful method. It was 

also claimed that the promoter Ru helped the rejuvenation because of inhibition of carbon 

deposition.  

The role of promoters has been discussed in different works. Morales [104] claimed 

that noble metals were capable to maintain “clean” the catalyst surface, avoiding catalyst 

deactivation and helping the regeneration procedure. Argawal et al. [105] applied CO 

hydrogenation using cobalt supported on alumina in an all-quartz internal-recycle reactor 

at temperatures between 200 °C and 400 °C from 0.1 to 20% CO in H2 at atmospheric 



Chapter 1. Literature review  

________________________________________________________________________________ 

 

28 
 

pressure. The authors observed cobalt carbide formation, which was caused by bulk 

carburization and growth of multilayer graphitic deposits. H2 rejuvenation at 400 °C for 

16 h was able to reactivate the catalyst by removing carbonaceous phases. 

As pointed out in the previous paragraphs, hydrogen treatment has demonstrated its 

capacity of reducing carbonaceous phases from cobalt catalysts. Regeneration in hydrogen 

needs to be combined with other procedures, such as redox treatment and wax removal.  

1.5 Steady-state isotopic-transient kinetic analysis (SSITKA) 

 

Steady-state isotopic-transient kinetic analysis (SSITKA) is a technique applied to 

the kinetic study of heterogeneous catalytic reactions at molecular level. SSITKA 

determines surface kinetic parameters, such as the number of intermediates species (Ni), 

surface residence time (τi), SSITKA rate constant (RSSITKA), site coverage and turnover 

frequency (TOFSSITKA). It also provides valuable information about the catalyst surface 

species and it can be of great help in the identification of possible reaction mechanisms. 

A general reversible heterogeneous catalytic reaction at steady-state is taken as 

example, where the reactant (R) is transformed into a product (P) through an adsorbed 

intermediate (X).  

   R ⇌ X ⇌ P 

The inclusion of one or more stable isotopic labels in a reactant species (R) enables 

evaluation of parameters related to R, P, and X species under steady state condition. The 

experiment consists of an abrupt replacement of one of the reactants by its labeled isotopic 

counterpart (for example: 12C to 13C; H2 to D2 and 16O to 18O), while an inert tracer is 

abruptly removed from the feed. There is no change of the reaction intermediates present 

on the catalyst surface. Figure 1.7 illustrates a typical curve of the dynamic responses 

resulting of a SSITKA switch.  
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Figure 1.7 Typical normalized isotopic-transient responses in product species P following an 

isotopic switch in reactant, R - *R, which appears in the product as P - *P. An inert tracer, I, is 

simultaneously removed to determine the gas-phase holdup of the reactor. Reproduced from 

Shannon and Goodwin [106]. 

 

Figure 1.7 shows the transient responses of a differential-bed plug-flow reactor 

(PFR) following a step change in the isotopic labeling of reactant R to *R labeled, which 

subsequently appears in product as P to *P labeled. As explained by Shannon and Goodwin 

[106], the step-input response (F*P
m(t)) is a statistical distribution representing the 

probability that an isotopic label remains adsorbed on the catalyst surface or appears in the 

effluent stream with time.  

The nature of intermediates leading to the products may be diverse and the catalyst 

surface is composed by a system of interconnected pools, where each pool represents a 

homogeneous or well-mixed subsystem within the reaction pathway [106]. In the next 

section, the main measured SSITKA parameters are introduced.  
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1.5.1 SSITKA general parameters 

 

SSITKA is a technique suitable to investigate the catalyst surface and reaction 

mechanisms at a near to molecular level under realistic and steady-state conditions. Surface 

residence time of reactants and products, and number of adsorbed reactant and 

intermediates leading to the products are identified as the fundamental SSITKA 

parameters. Moreover, the methodology may provide the coverage of surface 

intermediates, intrinsic turnover frequency (TOF), surface heterogeneity and/or reactivity 

distribution. 

Surface residence time (τi) is a fundamental SSITKA parameter and its 

interpretation differs from reactants to products. For reactants, this parameter is related to 

the interaction between the gas phase and catalyst active sites. In the case of products, the 

value of τi represents the lifetime of intermediates. To properly interpret the surface 

residence time results, it is necessary to apply a correction regarding the chromatographic 

effect. This is required because the reactant may be adsorbed in the entire reaction system, 

not just in the reactor. 

The chromatographic effect leads to a delay in the isotope composition in the gas 

phase as reported in the literature. According to Ledesma et al. [107], the chromatographic 

effects should be kept negligible in order to avoid its interference with the intrinsic kinetics. 

The effect can be neglected if the area between the response of the reactant and inert is less 

than 20% of the area between the response of the product and inert. A detailed explanation 

about the procedure used to obtain the surface residence time and chromatographic effect 

is given on the Chapter 2.  

Another phenomenon required to interpret correctly the surface residence time is 

readsorption. According Shannon and Goodwin [106], it is difficult to avoid and to 

interpret the readsorption phenomena. The readsorption of products or intermediates on the 

catalyst surface builds up a delay on the products curve. Consequently, it affects negatively 

the activity and reaction rate. The effect is insignificant only if the product readsorbs on 

nonreactive sites.  
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As commented above, readsorption creates a delay in the product response curves, 

which requires a suitable method for correction. The most common procedure consists in 

passing an inert gas in addition to reactants and products on the labeled or non-labeled 

lines. The inert gas curve is the fast one because there is non-adsorption of inert on catalyst 

surface. The area under the inert gas curve gives directly the value of its surface residence 

time. 

The number of intermediate species (Ni) is the most general and accurate SSITKA 

parameter. It represents the amount of active intermediates (in terms of carbon atoms) on 

the surface that lead to the product. Ni is the actual number of reaction intermediates [108], 

providing a more accurate turnover frequency (TOFSSITKA) compared to the TOF obtained 

from chemisorption and characterization techniques. It is one of the most important 

parameters due to its capacity to evaluate the role of promoters on different types of 

catalysts, the effect of catalyst aging, the identification of reaction mechanisms, among 

others. 

TOFSSITKA is another useful parameter that has been used to quantify the active 

intermediate reactivity. Literature presents different definitions of TOFSSITKA. For example, 

Gao et al. [33] assumed TOFSSITKA as the reciprocal of the surface residence time of 

intermediates leading to the product. Alternatively, Rohr et al. [109] Shannon and Goodwin 

[106] and Ledesma et al. [107], have defined it as reactivity for a pseudo first order reaction. 

According to Shannon and Goodwin [106], TOFSSITKA is calculated as the ratio of surface 

coverage of the product (Φ) and its surface residence time (τi). The present work makes 

use of the latter TOFSSITKA definition.  

SSITKA also provides a value of rate constant (RSSITKA) considering the number of 

intermediates leading to the products and reciprocal surface residence time of the same 

intermediates. Further explanation about how to obtain the parameters cited in this section 

is given on the Chapter 2. 
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1.5.2 SSITKA application 

 

SSITKA has been used in several heterogeneous catalytic reactions [33, 110, 111, 

112, 113]. Reactions and processes studied using this technique include: 

o Ammonia synthesis; 

o CO oxidation; 

o Phenol steam reforming; 

o Propene epoxidation; 

o CH4 oxidation; 

o Methanol decomposition/steam reforming; 

o Selective NO reduction; 

o Oxidative dehydrogenation; 

o Butane isomerization;  

o FTS. 

 

SSITKA has brought information about reaction pathways, role of promoters and 

effects of the operating conditions on the coverage and number of intermediates, among 

others [107]. SSITKA has been used in Fischer-Tropsch synthesis to evaluate surface 

reaction parameters for various catalysts including iron, palladium (Pd), cobalt, rhodium 

and nickel. The next subsection presents examples of SSITKA use for investigation of FT 

processes. 

1.5.2.1 Role of promoters 

 

The role of promoters on catalyst performance has been investigated by SSITKA. 

Several promoters were studied, such as lanthanum (La), Pt, Ru, Re and also alkali (sodium 

(Na), potassium (K), lithium (Li)), manganese dioxide (MnO2) and copper (Cu). The goal 

of the present section is to discuss the SSITKA results obtained for the promoted cobalt 

based catalysts.  
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Promoters may have an influence on the intrinsic activity, selectivity as well on the 

number of intermediates leading to the products [107]. Yang et al. [114] reported that 

rhenium promotion of Co catalysts led to a small increase in both number of intermediates 

and number of adsorbed CO molecules. However, no noticeable changes in the intrinsic 

site activity were found. The study suggests that Re might be able to slightly enhance CO 

adsorption, once the surface coverage of CO is about ten percent higher on the Re promoted 

sample. A SSITKA investigation by Schanke et al. [115] for cobalt supported on silica and 

alumina, revealed that an enhancement of CO hydrogenation rate occurred in the presence 

of Pt, due to the increase in both cobalt reducibility and dispersion of reduced cobalt 

particles.  

In the case of alkali species (Na, K, Li), SSITKA studies have reported a decrease 

in the activity and number of intermediates, but an enhancement in the C5+ selectivity [116, 

117]. Use of La and MnO2 have also affected the number of intermediates and caused 

changes in the intrinsic activities [118, 119]. Promotion with Re also influences the site 

activity and number of reaction intermediates. However, according to Bertole et al. [120] 

the selectivity has not been altered by this promotion for cobalt catalysts supported on silica 

and titania. This observation is in agreement with other studies [121, 122]. Bertole et al. 

[120] also concluded that even the enhancement of cobalt reducibility by the promoter did 

not have any effect on the catalytic behavior. 

The work by Enger et al. [110] investigated the effect of zinc (Zn) on cobalt 

catalysts supported on α and ɣ-alumina. The presence of Zn showed a loading-dependent 

and a negative influence under both SSITKA and FTS conditions. The promoter increased 

the surface residence time of active intermediates and decreased the CH4 selectivity. Zn 

had no effect in all sites of cobalt catalysts due to the same amount of adsorbed CO in 

equilibrium with the gas phase. 

The effect of catalyst support modification for FTS has been investigated by 

SSITKA, more specifically, to understand how the structure of supports affects the surface 

kinetic parameters. Moreover, the use of promoters in modified supports have gained 

attention.  
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In the study by Rane et al. [123] for cobalt supported on different alumina phases 

(ɣ, Φ, δ and α-Al2O3) a slightly change in the surface residence time of CO and CHx was 

detected. On the other hand, the number of intermediates was lower for ɣ and Φ-Al2O3 than 

for δ and α-Al2O3. The authors concluded that the active surface concentration of 

intermediates leading to products could be associated with the C5+ selectivity observed at 

realistic FT conditions.  

Kim Phan et al. [124] compared the macroporous structure of MPS-Al2O3 support 

with the conventional ɣ and α-alumina supports. The SSITKA investigations pointed out 

similar CHx residence times for all supports, suggesting an unchangeable intrinsic reaction 

rate for methane formation. In terms of CO surface residence time, the value for MPS-

Al2O3 with Re as promoter was slightly higher compared to others supports. The amount 

of adsorbed CO was almost twice as high for the macro structure than that for the cobalt 

catalyst supported on α-Al2O3. Hence, MPS-Al2O3 seems to combine the advantages of ɣ 

and α-Al2O3 in terms of activity and selectivity. 

Bertole et al. [120] studied unsupported and conventional supports (alumina, silica 

and titania) for cobalt based catalysts. In addition, modified supports with promoters 

(yttrium (Y), magnesium (Mg) and zinc oxide (ZnO)) were applied. Different support-

modified catalysts revealed significantly lower site activity compared to those basic 

supported catalysts. The lowest site activity was measured with the unsupported cobalt 

catalyst. The authors commented that the same trend was observed for samples in presence 

of impurities that were difficult to eliminate during preparation, which could easily cause 

a loss of metal surface area.  

The effect of adding zirconia (Zr) to the modified alumina support on cobalt 

catalysts has been investigated by Rohr et al. [109]. Zr was able to improve FTS activity. 

However, SSITKA results indicated that the intrinsic activity of cobalt was basically the 

same for the zirconia-modified and unmodified catalysts. Moreover, it was independent of 

the nature of the promoter. Similar results were obtained with a noble metal (Pt) promoted 

catalyst.  
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The role of Zr on cobalt catalysts was also investigated by Jongsomjit [125]. The 

same trend for the intrinsic persisted even with an increase in the number of intermediates 

with Zr modification. The major impact of Zr is the increase in the concentration of active 

cobalt surface sites. Besides, the promoter presented ability to increase the cobalt 

reducibility.  

 

1.5.2.2 Particle size 

 

SSITKA technique has been successfully applied to understand the effect of 

catalyst particle size on the FTS. In the work by Den Breejen et al. [126] SSITKA was 

applied to investigate the origin of cobalt particle size effects. The authors claimed that the 

investigation was valid because the same trend of TOF and methane selectivity has been 

found at both FTS under conventional and SSITKA conditions for cobalt particle smaller 

than 6 nm. For carbon nanofiber supported cobalt catalysts, the cobalt particle range studied 

was between 2.6 nm and 16 nm at constant temperature (210 °C) and H2/CO ratio feed 

equal to 10. The CHx and CO residence times appeared independent of the size for cobalt 

particles larger than 6 nm. In addition, a lower TOF was observed, justified by the blockage 

of edge/corner sites and lower intrinsic activity at the small terraces. 

Yang et al. [127] also investigated the effect of cobalt particle size by SSITKA 

using cobalt supported on alumina. The authors observed that the TOF remains constant as 

the particle increased from 4 nm to 15 nm, but an increase in the number of intermediates 

was noticed. In addition, the switches between hydrogen (H2) and deuterium (D2) were 

applied, helping to prove that the particle size did not change the kinetically relevant steps 

of the reaction.  

Even though the literature cited above has showed that cobalt particle size might 

influence the activity and the yield of the samples, Iglesia et al. [121] and Borg et al. [128] 

commented that the effect of cobalt dispersion on the FTS performance is still not well 

understood for supported cobalt catalysts. The use of different supports could affect the 

real cobalt dispersion, causing a misinterpretation. For example, the use of carbon 
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nanofibers, which do not present interaction with active phase, may lead to different results 

compared to porous metal oxide supports (alumina, silica and titania). The metal oxide 

supported catalysts shows a varied interaction with the reactants, interfering differently 

with the active sites.  

In the work by Tsai and Goodwin [108], the goal was to compare H2 or CO 

chemisorption measurements with the adsorption study obtained by SSITKA under CO 

hydrogenation conditions. The chemisorption measurement provided metal particle size 

and metal dispersion. A comparative study of SSITKA (obtained after reaching steady-

state reaction conditions) and static chemisorption results was carried out. It was found that 

SSITKA could be applied as a complementary technique to static chemisorption, XRD line 

broadening, and TEM for better characterizing metal dispersion (availability of surface 

metal atoms) and metal particle size. 

1.5.2.3 Effect of operation conditions 

 

SSITKA has been used to discern about influence of operation conditions on the 

kinetics. Frøset and Holmen [129] have found that neither CO partial pressure or space 

velocity influences the in situ CO adsorption on cobalt supported on ɣ-alumina with and 

without Re as promoter. At the reaction conditions, the intrinsic activity is slightly affected 

by space velocity, H2/CO ratio (5, 10 and 15) and temperature (200 °C, 210 °C and 220 °C), 

while total pressure of 1.6 bar, 1.85 bar and 2.1 bar had only a negligible effect. The CH4 

and CO surface residence times were not affected by variation in total pressure. However, 

this variation has been slightly increased both TOF and CO reaction rate. A drop in methane 

selectivity was also observed. 

Panpranot et al. [130] have studied the H2 partial pressure effect on cobalt supported 

in two kinds of silica: amorphous and mesoporous MCM-41. The average CH4 surface 

residence time consistently dropped with the increase in hydrogen partial pressure. The 

intrinsic site activity and concentration of surface intermediates for CO hydrogenation were 

strongly dependent on hydrogen partial pressure for both supports applied. 
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Rohr et al. [109] noticed an unexpectedly increase in the surface coverage of 

reactive intermediates, for modified alumina supported on cobalt, at higher temperature 

applied (240 °C). This might occur due to the competition between reactive carbon-

containing species and further species adsorption. The higher TOF (0.21 s-1) was found at 

240 °C and the lowest one (0.10 s-1) at 210 °C. Nevertheless, TOF was found to be non-

dependent on the pressure. 

1.6 SSITKA modeling  

 

This section presents methods usually applied for modeling SSITKA experiments. 

The use of such methodologies allows identifying and discriminating kinetic models 

among several proposed reaction pathways. 

Different models were considered in the literature based on the continuous-stirred 

tank reactor (CSTR), plug-flow reactor (PFR) configurations [4, 107] or 

convolution/deconvolution techniques [107]. This section provides an introduction about 

mathematical techniques used to analyze SSITKA experimental data, focusing in the PFR 

approach, used in this thesis. A more complete description of mathematical methods used 

for analysis of SSITKA can be found in the review by Ledesma et al. [107]. 

The most common approach to mathematical analysis of SSITKA data comes from 

the approximation of the system as a transient plug flow reactor (PFR). The PFR modeling 

has been widely used to study SSITKA under methanation conditions. In a plug flow 

regime, all changes relative to the inlet signal are ascribed to chemical kinetics [131].  

Accordingly to Ledesma et al. [107] the major benefit of PFR modeling compared 

to deconvolution and convolution methods is its ability to describe more complex processes 

compared to pseudo-first-order reactions. In addition, this model may take into account 

internal diffusion limitations, especially in microporous catalysts with fast heterogeneous 

reactions.  
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The PFR reactor model consists in a set of partial differential equations (PDE) 

corresponding to conservation of all species involved in the isotopic substitution, from both 

gas-phase and surface. This set of PDEs is solved using numerical methods, providing the 

concentration of each species as a function of time and axial position within the reactor. 

The general equations of the PFR model used to analyze SSITKA transient results will be 

presented and discussed in Chapter 2.  

PFR modeling of SSITKA has been widely used to study the methanation reaction 

mechanism under Fischer–Tropsch conditions [4, 72, 107, 131, 132]. Diverse reaction 

pathways were proposed, as illustrated in Figure 1.8. The SSITKA modeling allows 

discriminating among distinct models, pointing out the most appropriate one to describe 

the experimental results. These models are based on the presence of two gas phase 

compounds (CO and CH4) and on distinct surface components (CO adsorbed and C and 

C adsorbed intermediates species) [133, 134].   

 

Figure 1.8 Possible reaction mechanisms for CH4 formation from CO hydrogenation. Adapted 

from Van Dijk [4] and Ledesma et al. [107]. 

 

The models differ regarding the presence of one or two carbon pools and occurrence 

of parallel or competitive routes towards methane production in the case of two existing 

active pools. For example, Model 1 considers the existence of a single intermediate C 

species, while Models 2 to 6 considers two intermediate species, formed and consumed 
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through different routes. Models 2 and 6 consider the existence of buffer steps involving 

the intermediate species (reversible transformation of one intermediate into the other). The 

formation of hydrocarbons of higher molecular weight is not considered in the models 

presented; this approximation is valid when the reaction is carried out at lower pressures. 

Hence, the surface concentrations of Cα,ads and Cβ,ads are usually underestimated.  

The six alternative mechanisms displayed in Figure 1.8 have been employed in the 

SSITKA modeling studies. For example, Govender et al. [131], observed for Fe based 

catalysts, that Models 3, 4 and 6 provided the best fits. An extension of the models to 

consider formation of higher hydrocarbon products by including C–C coupling reactions 

allowed further discrimination of models, resulting in two possible mechanisms, both 

characterized by the presence of two active pools of carbon intermediates (Cα and Cβ) 

leading to methane formation.  

The existence of two carbon pools was also observed in the SSITKA work by Van 

Dijk et al. [72] for cobalt promoted with Ru and supported on titania. It was concluded 

that two single C species were present on the catalyst surface, and both participated in 

methane and higher hydrocarbons formation. Accordingly to Yang et al. [132], these 

carbon pools correspond to CH2O and CHx, species associated to two reaction pathways 

for methane formation. 

 

1.7 General conclusion  

The literature presents a significant number of publications about FTS and FT 

catalysts. Cobalt and iron catalysts seem to optimal systems for synthesis respectively of 

middle distillates and light olefins. Selectivity and stability are currently the most important 

challenges in most of FT processes. 

The research of different groups addresses design of bifunctional catalysts on the 

basis of cobalt and acid catalysts to improve the selectivity of FTS to the desired 

hydrocarbon fractions: usually gasoline and diesel type fuels. Co/zeolites catalysts have 

shown promising catalytic performance in this reaction. The effect of several important 

catalyst characteristics on the reaction performance need to be however elucidated and in 
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particularly the effect of the zeolite acidity and mesoporosity on the reaction rate and 

selectivity. 

Iron catalysts are the catalysts of choice for synthesis of light C2-C4 olefins. The 

catalytic activity and in particular selectivity seems to be however insufficient for industrial 

implementation of this reaction. Promotion of iron catalysts opens interesting perspectives 

for the improvement of the yields of light olefins in this reaction. Both electronic and 

structural promoters are being used. However, very few information is available in 

literature about the effect of the promotion on the intrinsic activity of the active sites in 

iron catalysts. 

Steady-state isotopic-transient kinetic analysis (SSITKA) is a powerful technique 

for the kinetic investigation of heterogeneous catalytic reactions at molecular level. It also 

provides valuable information about the catalyst surface species and it can be of great help 

in the identification of possible reaction mechanisms. Deactivation has been a major 

limitation for obtaining higher and enduring hydrocarbon productivity on supported cobalt 

catalysts. Catalyst deactivation leads to the decrease in the catalyst productivity, loss of 

active phase, recurrent halts of the reactor operation and replacement of relatively 

expensive cobalt catalysts. SSITKA can be particularly useful to identify the origin of the 

loss of activity and selectivity, because it yields independent information about the number 

of active sites and also allows measuring their intrinsic activity. 

The goal of the thesis is to evaluate the intrinsic activity and localization of active 

sites in cobalt and iron catalysts using a combination of transient kinetic methods such as 

SSITKA, extended physico-chemical characterization and catalytic tests under quasi 

steady state conditions. The SSITKA experiments were performed to elucidate the role of 

promoters for iron and cobalt catalysts as well the effect of the zeolites structure on 

catalytic performance and surface kinetic parameters. A new procedure of catalyst 

preparation was developed to obtain a cobalt/zeolite composite catalyst. Moreover, the 

present thesis combines SSITKA with catalyst characterization to elucidate deactivation 

mechanisms and to understand the kinetic effect of a regeneration procedure. Additionally, 

the thesis exposes the SSITKA modeling to identify and to discriminate methanation 

reaction mechanisms.  
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Chapter 2. Catalysts, Experimental Methods and Modeling  

2.1  Catalyst preparation 

2.1.1 Cobalt based catalysts 

 

Cobalt catalysts supported on silica with and without platinum as promoter (15% 

and 20% Co; 0.1% Pt in wt.) were prepared by incipient wetness impregnation of 

commercial amorphous silica (CARIACT Q-10, Fuji Silysia) with aqueous solutions of 

cobalt nitrate (Co(NO3)2·6H2O) and tetramine platinum nitrate (Pt(NH3)4(NO3)2). The 

catalysts were dried for 1 h at 100 °C and calcined at 450 ºC in air flow of 10 mL/min for 

7 h. 

The cobalt catalysts supported on zeolites (ZSM-5, BEA, MOR) have been 

synthesized by incipient wetness impregnation of relevant zeolites with Co nitrate in the 

mixture with tetramine platinum nitrate. The ZSM-5, MOR and BEA zeolites with the 

Si/Al ratio of 13, 8 and 9 have been provided by Zeolyst. The content of Co and Pt has 

been respectively 20 and 0.1 wt. The catalysts were dried for 1 h at 100 °C and calcined at 

450 ºC in air flow of 10 mL/min for 7 h.  

The alumina supported catalyst containing 25 wt.% cobalt was prepared using the 

two-step impregnation. In case of Pt-promoted samples, an additional incipient wetness 

impregnation of Co/Al2O3 with aqueous solutions of hydrogen hexachloroplatinate 

(H2PtCl6), (Sigma–Aldrich) was carried out. The platinum content was 0.1 wt.% in the 
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final catalysts. After impregnation and drying, the cobalt catalysts were calcined in airflow 

at 400 °C for 6 h with a 1 °C/min temperature ramping. 

2.1.2 Cobalt extraction from the outer surface of zeolites with a 

heteropoly acid  
 

Cobalt catalysts supported on zeolites ZSM-5, BEA, MOR synthesized by incipient 

wetness impregnation as described in the above section were treated with a Keggin-type 

tungstophosphoric acid H3PW12O40 (HPW). The large acid molecules of HPW (diameter = 

1.2 nm) are not able to enter the pores of the zeolites. The HPW treatment was performed 

to selectively remove cobalt from the zeolite outer surface and non-incorporated in the 

pores of the zeolite. The following experimental procedure was applied:  

1) 0.25 g of the catalysts was mixed mechanically to 10 g of HPW (H3W12O40) 

and to small amount of water (5 mL) to obtain slurry; 

2) The catalysts were heated up to 90 ºC with a ramp rate of 2 ºC/min; 

3) The catalysts were washed by distilled water while its separation by filtration.  

These three steps were repeated 5 times with subsequent calcination of the catalysts 

at 450 ºC in air during 7 h.  

2.1.3 Iron based catalysts 

 
Commercial amorphous silica (CARIACT Q-10, Fuji Silysia) was used as a 

catalytic support. The Fe/SiO2, FeBi/SiO2 and FePb/SiO2 catalysts were prepared by 

incipient wetness impregnation of support with aqueous solutions of hydrous iron nitrate 

(Fe(NO3)3·9H2O), bismuth nitrate (Bi(NO3)3·5H2O) or lead nitrate (Pb(NO3)2).  

The concentrations of the impregnating solutions were calculated to obtain 

10 wt. % iron in the final catalysts with the molar ratio of Fe to promoter 100 to 2. After 

the impregnation, the catalysts were dried overnight in an oven at 100 °C. Then, the 

samples were calcined in air at 400 °C for 6 h with 1 °C/min temperature ramping.  
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2.2  Catalyst characterization 

2.2.1 Transmission Electron Microscopy (TEM)  

 

The Transmission Electron Microscopy (TEM) is an efficient tool to study a 

catalyst structure with spatial resolution. The technique presents the same basic principles 

as the light microscope, however, the source is an electron beam. TEM analysis enables to 

get a good spatial resolution due to the use of electrons with a low wavelength (less than 

1Å). Therefore, the sample is submitted to an electron beam of high energy (200 keV). By 

the interaction with the specimen, both backscattered and secondary electrons are reflected 

giving information about the sample morphology [1]. The difference from the scanning 

electron microscopy (SEM) is that the TEM technique makes use of transmitted electrons 

to take information about the internal structure of the sample and to generate the images. 

In the present thesis, TEM observations were performed on a Tecnai instrument, 

equipped with a LaB6 crystal, operating at 200 kV. Prior to the analysis, the samples were 

dispersed by ultrasound in an ethanol solution for 5 min, and a drop of solution was 

deposited onto a carbon membrane supported on a 300 mesh-copper grid. The metal 

particle histograms were obtained using more than 150 detected cobalt particles from the 

TEM images. Software Gatan Digital Microgap was utilized to treat the TEM images. 

 

2.2.2 Temperature Programmed Hydrogenation (TPH) combined with 

Mass Spectrometry (TPH-MS) 

 

Temperature-programmed hydrogenation (TPH) consists of monitoring of specific 

chemical reactions involving a carrier gas while temperature is rising with a linear rate. 

Temperature Programmed Hydrogenation with the analysis of desorbing products by Mass 

Spectrometry (TPH-MS) was carried using an AutoChem II 2920 V3 0.2 Micromeritics 

apparatus with 80 mg of samples exposed to FTS after different times on stream. The 

heating rate was of 5 °C/min from room temperature to 1000 °C under flow of 3 vol. % 

H2/Ar. The hydrogenation of carbon species: Cads + 2H2 → CH4 (m/e = 15, instead of 16 
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to avoid interference from ionized oxygen coming from water vapor) was monitored using 

a Balzers Omnistar mass spectrometer. The m/z = 28 fragment was used to identify the 

presence of desorbing CxHy hydrocarbons.  

 

2.2.3 X-ray diffraction (XRD) 

 

The ex situ X-ray diffraction (XRD) patterns of the calcined catalyst were recorded 

by a Bruker AXS D8 Advance diffractometer. The data were recorded in the 2θ range from 

10 to 90° with a 0.02 ° step size and a 2 s step time from a source of Cu (Kα) radiation 

(λ = 1.54 nm).  

The crystallite phases were determined by comparing the experimental diffraction 

patterns with those from the standard powder XRD files (JCPDS) published by the 

International Center for Diffraction Data. The average crystallite size of cobalt oxide was 

calculated according to Scherrer’s equation [2] at the maximum of the width at half height 

(FWMH) for the more intense peaks. Software EVA was used to the data treatment. The 

following equation was applied to obtain the cobalt metallic crystallite size from the size 

of cobalt oxide crystallites. 

𝑑𝐶𝑜0(𝑛𝑚) = 0.75 ∗ 𝑑𝐶𝑜3𝑂4                                                     (1) 

The dispersion was calculated from average metal particles sizes, assuming 

spherical, uniform particles with the site density of 14.6 atoms/nm², by use of the following 

formula: 

𝐷(%) =
96

𝑑𝐶𝑜0
                                                                                                                                              (2)  

 2.2.4 Inductively coupled plasma - optical emission spectrometry (ICP-

OES) 
 

The ICP-OES is an analytical technique used for quantitative, semi-quantitative or 

qualitative determination of elements constituting the catalysts. The ICP-EOS determines 

elements at trace level. The catalyst is dissolved using acid or base digestion procedures. 
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In the present thesis, the samples of cobalt supported on zeolites were digested in the aqua 

regia (mixture of hydrochloric acid and nitric acid).  

The applied ICP-OES – Agilent equipment in the Plateform Realcat includes a 

source of emission (argon) surrounded by a copper coil connected to a radio frequency 

(RF) generator, a concentric nebulizer, optics (diffracting grating and polychromator),  a 

coupled charged detector (CCD) and an autosampler with 3 racks of 60 positions each and 

an automatic arm to collect samples.  

 2.2.5 Determination of surface area by the Brunauer–Emmett–Teller 

method (BET) 

 
 BET analysis provides specific surface by nitrogen multilayer adsorption measured 

as a function of relative pressure of the adsorbed nitrogen. The technique encompasses 

external area and pore area evaluations to determine the total specific surface. The shape 

of the isotherm hysteresis provides information about the porosity of the material. 

The BET surface area, pore volume and average pore diameter were determined by 

N2 low temperature adsorption using a Micromeritics ASAP 2000 automated system. The 

samples were degassed under vacuum at <10 μm Hg in the Micromeritics ASAP 2000 at 

300 °C for 4 h prior to N2 physisorption. The total pore volume (TPV) was calculated from 

the amount of vapor adsorbed at a relative pressure close to unity assuming that the pores 

are filled with the condensate in liquid state. The catalyst external surface area and 

micropore volume were calculated using the de Boer t-plot method. 

2.3  SSITKA set up 

 

The schema of the experimental SSITKA is shown in Figure 2.1. On the feed 

section, the SSITKA system presents two independent feed lines. The first line is dedicated 

to unlabeled compounds and tracer (CO, H2, He and Ne), the second one to the isotopic 

compound (13CO), H2 and He. The Brooks mass flow controllers (MFC) for each 

component were used. The total flow rate of these two feed streams was identical during 

the switch. Ne was used in a small rate (0.5 mL/min) as the tracer to measure the gas-phase 
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hold up for the reaction system. Pressure transducers are used to adjust the same pressure 

drop for both lines. 

 

Figure 2.1 Schematic representation of the SSITKA set-up. (MFC = flow controller; PT = 

pressure transducer; PR = Manual pressure regulator; TI = temperature indicator; MS = mass 

spectrometer; GC = gas chromatograph; L = GC loop). 

 

The reaction section is composed of the following items: 

o Two-position Valco four-way; 

o Fixed bed reaction fixed bed reactor (din = 2 mm); 

o Pressure transducers; 

o Manual pressure regulator of the vent line (can be changed for the 

automatic pressure regulator); 

o Device to switch the Valco valve (actuator); 

o Temperature controller. 

 

Carbon monoxide hydrogenation was performed in a fixed bed reactor (diameter of 

2 mm) at atmospheric pressure. The reactor was heated by an electric resistance. The axial 

catalyst bed temperature was monitored with a movable thermocouple located in the center 
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of the reactor. For all experiments, before loading into the reactor, the catalyst was pressed 

into wafers, crushed and sieved to obtain the particle size range of 50 µm –150 µm.  

The carbon monoxide conversion and reaction selectivities were determined by 

analyzing the reaction effluents with a Shimadzu 2014 gas-chromatograph equipped with 

a CP-PoraPLOT and a CTR-1 column, as well as flame ionization detector (FID) and 

thermal conductivity detector (TCD). Nitrogen was used as an internal standard for 

calculating carbon monoxide conversion (see further details in the next section). 

The isotopic switches were realized using a two-position four-way Valco valve and 

monitored with a QMG 432 Omnistar mass spectrometer. The gaseous sample was 

transferred from the outlet of the reactor to the mass-spectrometer via a silica capillary. To 

prevent condensation of water and hydrocarbons, the capillary was heated to 150 °C.  

2.4  Calculation of conversion and selectivities 

  

The CO conversion was based on the molar flow of carbon monoxide entering 

(𝐹𝐶𝑂 𝑖𝑛) and leaving the reactor (𝐹𝐶𝑂 𝑜𝑢𝑡) as demonstrated on Equation 3.  

𝑋𝐶𝑂 =
𝐹𝐶𝑂 𝑖𝑛− 𝐹𝐶𝑂 𝑜𝑢𝑡

𝐹𝐶𝑂 𝑖𝑛
∗ 100                                   (3) 

TCD determines the CO, CO2, N2 and CH4 concentrations on the gas flow. Then, 

the outlet flow of each species was obtained on the basis of the response factor acquired by 

the GC calibration. Therefore, the methane and carbon dioxide selectivities were calculated 

by Equation 4 and Equation 5, respectively. 

𝑆CH4
=  

𝐹𝐶𝐻4 𝑜𝑢𝑡

𝐹𝐶𝑂 𝑖𝑛− 𝐹𝐶𝑂 𝑜𝑢𝑡
∗ 100                             (4) 

𝑆CO2
=  

𝐹𝐶𝑂2 𝑜𝑢𝑡

𝐹𝐶𝑂 𝑖𝑛− 𝐹𝐶𝑂 𝑜𝑢𝑡
∗  100                               (5) 
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Using FID, the carbon counting device, the molar flow of each hydrocarbon from 

C2 to C4 was calculated on carbon basis. Equation 6 was applied to determine the selectivity 

to each saturated and unsaturated hydrocarbon. 

𝑆C𝑖
=  

𝐹𝐶𝑖 𝑜𝑢𝑡

𝐹𝐶𝑂 𝑖𝑛− 𝐹𝐶𝑂 𝑜𝑢𝑡
∗  100             (𝑖 = 𝐶2 − 𝐶4)                           (6) 

 

2.5  Experimental procedure 

2.5.1 Transient isotopic study of iron based catalysts 
 

The following experimental procedure was used for the iron catalyst: 100 mg of 

FeBi/SiO2 were mixed with the same amount of SiC as inert. The reduction was done using 

a heating ramp of 3 °C/min to reach 350 °C. The catalyst was submitted to the CO flow of 

2 mL/min during 12 h. Then, the sample was cooled down to 25 °C using the same 

temperature ramp. At ambient temperature, the switches of 12CO to 13CO were applied. 

These measurements were only used to evaluate the CO adsorption on iron catalysts. Note 

that no chemical reaction occurs at room temperature. 

To study the kinetic parameters under reaction conditions Fe/SiO2 and FeBi/SiO2 

were activated using CO flow of 2 mL/min during 12 h with a heating ramp of 3 °C/min.  

Afterwards, the catalyst was cooled down with the same temperature ramp and 

submitted to the following reaction conditions: temperature of 350 °C, ambient pressure, 

GHSV equal to 8 400 mL/g h and ratio H2/CO of 2. After 17 h on stream, the SSITKA 

12CO to 13CO switches were performed. 

The WGS activity evaluation for iron promoted and non-promoted catalysts was 

carried out by the following procedure: 

1) Activation by carbidization in CO to obtain the iron carbide phase. The conditions 

were the following: temperature 350 °C, heating rate 3 °C/min, CO flow of 

2 mL/min during 12 h.  
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2) After 12 h, cooling down to 300 °C. Use of 2 mL/min of N2 to purge. Heating ramp 

of 3 °C/min. 

3) At 300°C with 2 mL/min of N2, start H2O addition with the rate of 0.3 mL/min 

during 10 min. The signals of H2 and CH4 were observed by mass spectrometer 

(MS). 

Reaction at this step: 

Fe + H2O → FeO + H2 

M + H2O→ MeO + H2 

 

4) Stop the water exposure after 10 min and purge with N2 (2 mL/min). Wait the MS 

signal stabilization of H2 and CH4.  

5) CO exposure in the following conditions: temperature of 300 °C and CO flow of 

5 mL/min. The CO2 production was observed by mass spectrometer (MS). 

 

Reactions at this step: 

FeO + 3CO → FeC + 2CO2 

M-O + CO → M + CO2 

 

2.5.2  Effect of platinum promotion on the intrinsic activity of cobalt 

catalyst during CO hydrogenation 

 

The reduction of the Co/SiO2 and CoPt/SiO2 catalysts was realized at 400°C in 

hydrogen flow of 8 cm3/min for 2 h with a 5 °C/min heating rate. To study the SSITKA 

surface kinetic parameters under CO hydrogenation conditions (250 °C, syngas at different 

ratio feed of H2/CO of 2 and 5 with 45 mg of catalyst mixed with 90 mg of SiC), the 

switches from 12CO/H2/He/Ne to 13CO/H2/He were executed using a four-port Valco valve. 

 

2.5.3 Influence of the support structure over the catalytic performance 

and SSITKA parameters  

 

In all experiments, 40 mg of catalyst was mixed with 80 mg of SiC. The samples 

were loaded into a millimetric fixed bed reactor and reduced in pure H2 flow of 8 cm3/min 
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for 2 h at 400 °C with a 5 °C/min heating rate. In the CO adsorption study, after reduction, 

the sample were cooled down in the same rate ramp to 100 ºC and switches from 

12CO/He/Ne to 13CO/He were applied to determine the total number of active sites.  

To evaluate both the effect of support structure and hydrogen partial pressure, the 

samples were submitted to the reaction temperature equal to 250 ºC and at different ratios 

of H2/CO (2, 5 and 10), corresponding to the gas hourly space velocities (GHSV) of 

13 500 mL/g h, 18 000 mL/g h and 23 850 mL/g h, respectively. Then, after 3 h of 

reaction, the switches from 12CO/H2/He/Ne to 13CO/H2/He were applied. 

2.5.4 High throughput catalytic tests of the cobalt-zeolite composites  
 

The catalytic performance of the synthetized cobalt-zeolite composite was 

evaluated using the REALCAT platform in a Flowrence high-throughput unit 

(Avantium®) equipped with 16 parallel milli-fixed-bed reactors (d = 2 mm) with a plug-

flow hydrodynamics. The operating conditions of the carbon monoxide hydrogenation are 

displayed as follow: 

o Total pressure of 20 bar;  

o Temperature of 250 °C; 

o Molar ratio H2/CO equal to 2; 

o GHSV at 1.7-5 L/g·h; 

o Catalyst loading of 50 mg per reactor.  

Prior to the catalytic tests, all the samples were activated in a flow of H2 at 

atmospheric pressure during 10 h at 400 °C. During the activation step, the temperature 

ramp was 3 °C/min. After the activation, the catalysts were cooled down to 180 °C and a 

flow of premixed syngas was gradually introduced to the catalysts. When the pressure 

attained 20 bar, the temperature was slowly increased to 250 °C.  
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Figure 2.2 Flowrence (Avantium) unit in the RealCat high throughput platform. 

 

The gaseous reaction products were analyzed by on-line gas chromatography. 

Analysis of permanent gases was performed using a Molecular Sieve column and a thermal 

conductivity detector. Carbon dioxide and C1-C4 hydrocarbons were separated in a PPQ 

column and analyzed by a thermoconductivity detector.  

The C5-C12 hydrocarbons were analyzed using a CP-Sil5 column and a flame-

ionization detector. High-molecular-weight products were collected at atmospheric 

pressure in vials heated at 60 °C. The carbon monoxide contained 5% of helium, which 

was used as an internal standard for calculating carbon monoxide conversion. The reaction 

rates were defined as the number of moles of CO converted per hour per gram of catalyst 

(mol/g h). The product selectivity (S) was reported on carbon basis.  

 

2.6  SSITKA methodology 

 

SSITKA involves isotopic labelling, and detection of the labelled product species 

to measure parameters like surface residence times, surface coverage and concentrations 

of adsorbed reaction intermediates.  
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The maintenance of isobaric, same flow rates and isothermal reaction conditions 

during the switch guarantees the operation at the quasi steady-state conditions. Figure 2.3 

shows a typical SSITKA response with normalized curves (𝑁𝑅𝑖(𝑡)) for CO, CH4 (both 

labeled – 13C and non labeled – 12C) with Ne as the inert.  

 

Figure 2.3 Normalized concentrations during switches from 12CO/H2/He/Ne to 13CO/H2/He on 

CoPt/SiO2 for CO hydrogenation reaction. 

 

Because the reactor operates under isothermal and isobaric conditions for each gas 

component, the catalytic surface does not suffer any chemical changes during the isotopic 

switch, and mechanistic studies can be carried out efficiently. The surface residence time 

is determined by the area under the normalized curve.  

𝜏𝑖 = ∫ 𝑁𝑅𝑖(𝑡)𝑑𝑡          (𝑖 =  Ne, CH4, CO)                                                                (7)
∞ 

0

 

where 𝑁𝑅𝑖  is the normalized response of reactants and reactive intermediates.  

The difference in area computed for a particular specie (i) with the area measured 

for the inert tracer (Ne in this work) gives the average surface reaction residence time (𝜏𝑖). 

The chromatographic effect must be taken into account, because the gaseous compounds 

might adsorb not only on the active sites but also throughout the whole reactor system. The 

chromatographic effects should be kept small in order to avoid interference with the 
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intrinsic kinetics. The required correction is showed in Eq. 8 for reactant and Eq. 9 for 

product: 

  𝜏𝐶𝑂,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝜏𝐶𝑂,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜏𝑁𝑒                                                                                                       (8) 

 𝜏𝐶𝐻𝑥,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝜏𝐶𝐻𝑥,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 0.5 ∙ 𝜏𝐶𝑂,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑                                                                          (9)  

The number of intermediates (Ni), also called the number of adsorbed species, is 

calculated from the mean surface residence time and molar outlet flow of species (𝐹𝑖,𝑜𝑢𝑡  ) 

and mass of catalyst (𝑊). 

 Ni =
𝐹𝑖,𝑜𝑢𝑡  

𝑊
∙ 𝜏𝑖                                                                                                                                         (10)  

The surface coverage of precursors leading to methane and CO are calculated on 

basis of the number of adsorbed species and total number of active sites (NS), often 

determined by H2 chemisorption. 

𝛳𝑖 =
Ni

NS
         (𝑖 =  CH4, CO)                                                                                                                 (11) 

 

2.7 Kinetic modeling  

 

The application of kinetic modeling in SSITKA allows obtaining additional 

information about surface reaction mechanisms and rate constants, beyond the surface 

residence time and concentration of intermediates. This technique was applied to identify 

plausible surface reaction mechanisms for FT reaction in cobalt catalyst, based on the 

results obtained in the experiments described in the previous sections. 

The SSITKA experiment was modeled as a transient isothermal/isobaric PFR using 

the approach described by Ledesma et al. [3] imposing a sudden switch on 13CO/12CO in 

the feed stream at t = 0. The model predicts the composition (in the gas phase and surface) 

along the axial direction of reactor as a function of time Ci (z,t) for a given set of operating 

conditions and kinetic parameters. The data generated in the SSITKA experiments 

(transient curves for the concentration of CO and CH4 in the outlet stream and CO 
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conversion) can be used to estimate the kinetic parameters according to different proposed 

mechanisms, as discussed later in this section. The model was implemented in the software 

EMSO [4], which integrates modeling, simulation and parameter estimation in a single 

environment. The following assumptions were made in the formulation of the model: 

• Reactor as a plug-flow-reactor without radial and axial dispersion; 

• Absence of internal and external temperature gradients in a catalyst pellet; 

• No mass transfer limitations; 

• Absence of kinetic isotope effects; 

• Isothermal and isobaric operation of the reactor; 

• Constant total molar flow rate; 

• Reversible molecular sorption of CO; 

• Existence of one or two reactive intermediates towards methane formation. 

The concentrations of the relevant species are then computed as functions of time 

and normalized axial position (0 ≤ x ≤1), by solving the set of equations formed by the 

conservation equations for gaseous (X = CO(g), CH4(g)) and adsorbed species (Y= COads, 

Cads, C,ads, C,ads), which are written as follows: 

𝜕𝐶𝑋

𝜕𝑡
+

1

𝜏
 
𝜕𝐶𝑋

𝜕𝑥
=  

𝜌𝑏

𝜀𝑏
𝑅𝑤,𝑋                                                                                                                       (12) 

𝜕𝐿𝑌

𝜕𝑡
=  𝑅𝑤,𝑌                                                                                                                                              (13) 

where: 

𝐶𝑋 = gas phase concentration (mol/m3
gas) 

𝐿𝑌 = surface concentration (mol/kgcat) 

𝑅𝑤 = reaction rate of different species (mol/kgcat s) 

t    = time (s) 

𝜌𝑏 = density of catalyst bed (kgcat/m
3
bed) 

𝜀𝑏  = catalyst bed porosity (m3
gas/m

3
bed) calculated from: 
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𝜀𝑏 = 1 −
1

𝑉𝑅
 (

𝑊𝑐𝑎𝑡

𝜌𝑐𝑎𝑡
(1 − 𝜀𝑐𝑎𝑡) +

𝑊𝑆𝑖𝐶

𝜌𝑆𝑖𝐶
 )                                                         (14) 

𝜏  is the surface residence time (s) calculated from:  

𝜏 =  
𝜀𝑏.𝑉𝑅

𝐹𝑉,𝑡𝑜𝑡𝑎𝑙
                                                                  (15) 

where: 

𝑉𝑅 = total volume of the reactor (m3) 

𝐹𝑉 , 𝑡𝑜𝑡𝑎𝑙 = total flow rate (m3/s) 

The Rw term is dependent on the reaction mechanism used among the six models 

presented in Figure 1.8 from Chapter 1. The initial conditions to run the simulation using 

EMSO software is the normalized concentration of CO(g) equal to 1 and in relation to 

carbon species intermediates (Cads, C,ads, C,ads) is equal to zero. An example of the full set 

of equations for one of the mechanisms (M1 from Figure 1.8) is given below; the analogous 

models are formulated according the other proposed mechanisms. 

Gaseous phase species: 

𝜕𝐶𝐶𝑂(𝑔)

𝜕𝑡
+

1

𝜏
 
𝜕𝐶𝐶𝑂(𝑔)

𝜕𝑥
=  

𝜌𝑏

𝜀𝑏
(𝑘𝑑𝑒𝑠𝐶𝐶𝑂𝑎𝑑𝑠

− 𝑘𝑎𝑑𝑠𝐶𝐶𝑂𝑔
)                                                                    (16) 

 

𝜕𝐶𝐶𝐻4

𝜕𝑡
+

1

𝜏
 
𝜕𝐶𝐶𝐻4

𝜕𝑥
=  

𝜌𝑏

𝜀𝑏
(𝑘4𝐶𝐶𝑎𝑑𝑠

)                                                                                                        (17)   

 

Intermediate and adsorbed species: 

𝜕𝐶𝐶𝑂𝑎𝑑𝑠

𝜕𝑡
= 𝑘𝑎𝑑𝑠𝐶𝐶𝑂(𝑔) − 𝑘𝑑𝑒𝑠𝐶𝐶𝑂𝑎𝑑𝑠 −  𝑘1𝐶𝐶𝑂𝑎𝑑𝑠                                                                           (18) 

𝜕𝐶𝐶𝑎𝑑𝑠

𝜕𝑡
=  𝑘1𝐶𝐶𝑂𝑎𝑑𝑠     −  𝑘4𝐶𝐶𝑎𝑑𝑠                                                                                                        (19) 

 

The set of PDE equations was solved numerically using the method of lines. The 

spatial derivatives are discretized using backward finite-differences, using a mesh with 100 

points along the axial direction enough to provide mesh-independent solutions, as verified 
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in a preliminary convergence study. The resulting set of ordinary differential equations is 

solved using an implicit ODE solver with automatic control of time step as implemented 

in the software EMSO.  

The kinetic parameters (kads, kdes, k1, k2, k3 and k4) for each model (M1 to M6) were 

estimated by minimizing the deviation between experimental data, namely the normalized 

transient curves of 12CO and 12CH4 and CO conversion obtained in SSITKA experiments, 

and corresponding model predictions according to the least-squares method as 

implemented in the EMSO software. The parameter estimation package implemented in 

the EMSO was used in this procedure; this package makes use of the model implemented 

and provides estimates of the selected parameters and results of a statistical analysis of the 

estimation.  
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Chapter 3. Promoter and support influence on the intrinsic catalytic 

activity of iron and cobalt FT catalysts 
 

3.1 Introduction 

 
Promoters and supports have influence on the catalytic performance and catalyst 

structure of iron and cobalt based catalysts. In FTS the noble metals such as ruthenium 

(Ru), rhenium (Re), platinum (Pt) and palladium (Pd) are usually applied as promoters for 

cobalt catalysts in an effort to improve the catalyst reducibility, FT activity and/or modify 

the product selectivity.  

Iron based catalysts has been demonstrated ability to produce directly light olefin 

from syngas operating in High Temperature Fischer-Tropsch synthesis (HTFT) [1, 2]. 

Moreover, iron FT catalysts can be efficient in the water gas shift reaction (WGS) in 

comparison with cobalt FT catalysts. The WGS leads to a lesser amount of water and 

increases hydrogen content in the reacting medium and thus, can be used to control the 

ratio of H2 to CO during the reaction. 

Several promoters for iron based catalysts have been widely applied in order to 

improve the FT reaction rate, iron dispersion and extent of iron carbidization. As 

commented in Chapter 1, alkali promoters change significantly the catalytic performance 

and catalyst structure. As an example, the K promoter improves selectivity towards the C5+ 

hydrocarbons, while Mg can enhance iron dispersion and also tune the product distribution 

to light hydrocarbons [3]. Application of bismuth (Bi) as promoter for iron catalyst is 

interesting due to the fact that the melting temperature point of the Bi metal (327 °C) is 

lower than the temperature applied in the FT reaction (350 °C). This leads to the pseudo-
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liquid state of promoters at the reaction conditions, their migration and close contact 

between iron and promoter.  

Cobalt based catalysts are the catalyst of choice for the Low Temperature Fischer-

Tropsch synthesis (LTFT) which produces middle distillates and waxes. Use of noble 

metals as promoters leads to a significant increase in FT catalytic activity [4] in both slurry 

and fixed bed reactors [5, 6, 7]. Higher cost of noble metals makes however, challenging 

their application at industrial scale. For that reason, knowledge about the interaction of 

promoter and the catalyst active phase can be helpful. 

Pt as a promoter for cobalt FT catalysts supported on alumina and silica has been 

demonstrated a strong effect on the FT reaction rate [8, 9]. Pt can influence catalyst 

properties e.g. modifies cobalt reducibility [10] by decreasing the activation energy to form 

the cobalt metallic phase [8]. On the other hand, a higher content of Pt (> 0.1 wt. %) may 

be responsible for both higher methane selectivity and a decrease in the selectivity to higher 

hydrocarbons. Higher Pt content in cobalt catalysts also significantly increases their cost. 

The knowledge of the influence of catalyst support on FT catalyst is extremely 

important, once the support may significantly alter FT performance due to metal–support 

interactions, support acidity, porosity and mass transfer limitations [11, 12]. A wide range 

of supports materials can be used. Silica, alumina and titania are commonly commercial 

oxide supports for cobalt catalysts [13, 14, 15]. Even presenting a relatively weak 

interaction with cobalt, the silica support may cause formation of cobalt-silica mixed 

compounds, which can affect the FTS activity.  

The high acidity and stability of zeolite materials can be used to control the FT 

selectivity. It was shown that the zeolite could perform hydrocarbon cracking and 

isomerization under the conditions of FTS [16, 17].  

SSITKA provides information concerning kinetic surface parameters due to 

specific characteristic of support materials. Rane et al. [18]  found different concentrations 

of CO and CHx intermediates on the cobalt catalysts supported by ɣ, Φ-, δ- and α-Al2O3. 

The effect of the support on the SSITKA kinetic parameter was also observed by Kim Phan 

et al. [19] for cobalt catalysts supported on conventional and macroporous MPS alumina. 

The number of intermediates leading to methane (NCH4) of cobalt supported on MPS-Al2O3 
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was higher (7.0 µmol/g) than that for Co/α-Al2O3 (4.1 µmol/g). The Re promotion led to 

the increase in the number of CHx intermediates to 11.3 µmol/g. This trend is correlated 

with the reaction rate constant, which was higher for cobalt Re-promoted supported on 

MPS-Al2O3. This is in agreement with earlier results of Frøseth et al. [20] and Hanssen et 

al. [21] who observed an increase in overall activity and in the concentration of active 

surface intermediates on promotion with Pt and Re. 

The improvement in the catalytic activity for iron and cobalt based catalysts 

depends on several factors, such as type of catalytic support, metal promoter and reaction 

conditions. The aim of this chapter is to apply the kinetic transient techniques such as 

SSITKA to study the elementary steps of CO hydrogenation for iron and cobalt FT 

catalysts. The first part of this chapter has as the goal to evaluate the effects of bismuth (Bi) 

and lead (Pb) promotion on the catalytic performance of silica supported iron catalysts. 

After that, the effects of Pt promotion on the cobalt catalysts supported by the ZSM-5, 

MOR and BEA zeolites are investigated at different FT reaction conditions.  

 

3.2 Results and discussion 

 

3.2.1 SSITKA study of CO adsorption on the bismuth promoted iron 

catalyst  

 

Prior to CO adsorption, the iron Bi-promoted catalyst was reduced using heating 

ramp of 3 °C/min, CO flow of 2 mL/min during 12 h at 350 °C. The determination of the 

total number of sites for iron based catalysts using CO adsorption by SSITKA switches 

was performed at different temperatures (350 °C, 100 °C and at room temperature). The 

gas composition during adsorption was 1 mL/min of CO with 0.5 mL/min of inert Ne.  

Figure 3.1 shows the transient curve of 12CO and inert gas during the CO adsorption 

for the Bi-promoted iron catalyst at 25 °C. Similar shape of the transient curves of CO was 

also obtained in all temperatures tested. 
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Figure 3.1 Transient curve of 12CO and Ne during CO adsorption of silica supported iron 

catalyst at 25 °C. 

 

The transient curves (Figure 3.1) clearly show that both CO adsorption and 

desorption are very fast processes on iron catalysts. The same overlapping of the transient 

response of CO with the inert gas was observed by Govender et al. [22] for iron catalyst 

promoted with K. The authors concluded that an accurate measure of CO chemisorption 

has to be performed for the iron based catalysts at low temperatures (−80 °C). 

Recent DFT report [23] showed that differently to cobalt catalysts, direct carbon 

monoxide dissociation proceeds much easier on iron catalysts compared to the hydrogen 

assisted process. Carbon monoxide direct dissociation results in the formation of surface 

carbide and chemisorbed oxygen species followed by oxygen removal via their reaction 

either with hydrogen or carbon monoxide. Under FT reaction conditions, the chemisorbed 

carbon can be then hydrogenated to the CHx monomer which is involved in the FT surface 

polymerization. It can be expected that the rate of these different elementary steps can be 

affected differently by the promoting elements. The next section displays the catalytic 

results obtained for the iron Bi and Pb promoted catalyst. 
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3.2.2 Catalytic performance and SSITKA analysis for iron Bi and Pb-

promoted catalysts during CO hydrogenation  

 

Methane, light C2-C4 olefins, light C2-C4 paraffins, C5-C10 hydrocarbons, carbon 

dioxide and water were the principal products of carbon monoxide hydrogenation under 

the studied operating conditions. The catalysts were tested under a wide range of reaction 

pressures (1-20 bar). FT activity (FTY) increased 5 to 10 times on the promotion (Table 

3.1). Interestingly, Fe catalysts promoted by the soldering metals were active even at low 

pressures, while no activity was observed over Fe/SiO2. 

 

Table 3.1 Catalytic performance of iron non-promoted and Bi and Pb-promoted catalyst at feed 

ratio H2/CO = 1 after 60 h of reaction. 

Catalyst 

Reaction conditions Activity 

T 

(ºC) 

P 

(bar) 

GHSV 

(L/g h) 

FTY 10-4 

(mol/gFe
 s) 

XCO 

(%) 

SCO2 (%) 

Fe/SiO2 

350 10 1.5 0.3 32 43 

350 10 3.4 0.4 16 35 

350 10 4.5 0.4 13 34 

FeBi/SiO2 

 

350 10 1.4 1.8 21 42 

350 10 6.7 2.4 58 47 

350 10 3.4 1.8 75 49 

350 1 3.4 0.4 17 48 

FePb/SiO2 

350 10 3.4 1.3 60 45 

350 1 3.4 1.2 55 45 

250 5 3.4 0.1 6 10 

 

Figure 3.2 shows carbon monoxide conversion obtained on these catalysts at iso-

GHSV but at different total pressures. As expected for the reference silica supported iron 

catalyst, carbon monoxide conversion strongly decreased with the decrease in total 

pressure. There was already no conversion at 5 bar which means that the unpromoted iron 

catalyst cannot be used for FTS at low pressure.  
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Figure 3.2 Carbon monoxide conversion on iron catalysts as a function of the reaction 

total pressure. Reaction conditions: T = 350 ºC, H2/CO = 1, GHSV = 3.4 L/g h. The data were 

obtained by increasing pressure in the row 0 – 2 – 5 – 10 – 20 bar. 

  

Surprisingly, the Bi- and Pb-promoted catalysts demonstrated significant activity 

even at atmospheric pressure. This is also indicative of significant modifications in the 

reaction kinetics and possibly mechanism of FTS. Note that the FTY observed over the Bi- 

and Pb-promoted Fe/SiO2 (FTY 2.8∙10-4 mol/gFe
 s) catalysts was comparable with the most 

active iron catalytic systems known so far [2, 24, 25, 26] (FTY, Table 3.1). In the presence 

of the promoters, FTS might be performed at much milder conditions and even at 

atmospheric pressure (Table 3.1, Figure 3.2). 
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Figure 3.3 Effect of the type of promoter on the CO conversion at different temperatures. 

Reaction conditions: P = 5 bar, H2/CO = 1, GHSV =3.4 L/g h. 

 

The promoted catalysts demonstrate continuous increase in the catalytic activity 

during the reaction. This is most probably due to optimization of active sites (Figure 3.4). 

Note that the unpromoted Fe/SiO2 deactivates under the same conditions. 

 

 

Figure 3.4 Effect of the type of promoter on the CO conversion as a function of time. Reaction 

conditions: P = 10 bar, H2/CO = 1, GHSV= 3.4 L/g h. 
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The selectivity data for the Bi promoted iron catalyst and Fe/SiO2 measured as a 

function of carbon monoxide conversion are summarized in Figures 3.5, 3.6 and 3.7. 

 

 

Figure 3.5 Effect of Bi promoter on the selectivity versus CO conversion. Reaction 

conditions: T= 350 °C, H2/CO = 1, P = 1 and 10 bar for FeBi/SiO2 and Fe/SiO2, respectively, 

GHSV = 1.5−27 L/g h. 

 

Similar catalytic performance has been observed for the lead promoted catalysts 

(see Table 3.2). The reactions occurring during FTS over iron catalysts are displayed 

below:  

    nCO + 2nH2 = CnH2n + nH2O      (1) 

    CO + H2O = CO2 + H2          (2) 

     2nCO + nH2 = CnH2n + nCO2      (3) 

 

For the Fe/SiO2 catalyst, carbon dioxide selectivity increases with carbon monoxide 

conversion moving to the stoichiometric value of 50% (Figure 3.5, Eq. 3). This is consistent 

with the hypothesis that carbon dioxide can be produced by WGS which is secondary 

reaction of FTS (Eq. 2). Note however that over the Bi and Pb-promoted catalysts, high 

carbon dioxide selectivity is observed even at very low carbon monoxide conversion levels 

(Figure 3.5, Table 3.2). This suggests that on these catalysts, the primary route of carbon 
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dioxide formation might take place together with the secondary reaction occurring through 

reaction of carbon monoxide with the water produced by WGS.  

 

Figure 3.6 Selectivity to hydrocarbons versus CO conversion over Fe/SiO2 (a), FeBi/SiO2 (b) and 

FePb/SiO2 (c) catalyst. Reaction conditions: P = 10 bar, H2/CO = 1, GHSV = 1.5-27 L/g h. 
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Figure 3.7 Selectivity to hydrocarbons versus CO conversion over the FeBi/SiO2 catalyst. 

Reaction conditions: P = 1 bar, H2/CO = 1, GHSV = 1.5-7.5 L/g h, T = 350 ºC. 

 

Note also that the selectivity to light olefins decreases with an increase in CO 

conversion over Fe/SiO2 catalyst which is probably due to secondary hydrogenation of 

olefins to alkanes [27] (Table 3.2, Figure 3.5). The presence of promoters stabilizes 

selectivity to light olefins close to 35% at high conversions at 10 bar with suppression of 

the secondary transformation of olefins (Figure 3.6). This effect is similar to those observed 

in the presence of alkali promoters.  

Table 3.2 Product distribution of iron unpromoted and Bi and Pb-promoted catalyst at 

feed ratio H2/CO = 1 after 60 h of reaction. 

Catalyst 

Reaction conditions 
Selectivity 

Product distribution (%Cat, CO2 free) 

T (ºC) 
P 

(bar) 

GHSV 

(L/g h) 
SCH4 (%) 

SC2-C4
= 

(%) 
SC2-C4

-(%) SC5+(%) α 

Fe/SiO2 

350 

350 

10 

10 

1.5 

3.4 

15 

14 

22 

33 

22 

10 

40 

43 

0.5 

0.48 

350 10 4.5 15 41 11 33 0.48 

FeBi/SiO2 

 

350 

350 

350 

350 

10 

10 

10 

1 

1.4 

6.7 

3.4 

3.4 

27 

24 

24 

29 

36 

32 

26 

53 

16 

17 

21 

8 

21 

27 

29 

10 

0.46 

0.47 

0.48 

0.35 

FePb/SiO2 

350 

350 

250 

10 

1 

5 

3.4 

3.4 

3.4 

20 

22 

15 

31 

32 

26 

11 

12 

9 

38 

34 

50 

0.48 

0.39 

0.54 
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Differently to alkali promotion, the Bi and Pb-promoted catalysts exhibit lower 

selectivity to the long chain hydrocarbons. High selectivity to long chain hydrocarbons 

limits the selectivity to light olefins over alkali-promoted catalysts. At lower reaction 

pressures (1 bar), the selectivity to light olefins can be further increased by about 20% 

reaching 53% at the conversions of 17% which corresponds to the best published reports 

[25, 28, 29Erro! Indicador não definido.] (Table 3.1, Figures 3.5 and 3.7).  

Importantly, the increase in the selectivity to light olefins at lower reaction pressure 

coincides with the decrease in the selectivity to the C5+ hydrocarbons (Figure 3.7). This 

seems to be due to the gradual decrease in the chain growth probability (α) with the 

pressure decrease (Figure 3.8). The Anderson-Schulz-Flory distribution predicts maximum 

selectivities to the C2-C4 hydrocarbons about 50% at α between 0.3 and 0.6 [30]. The 

pressure decrease from 10 to 1 bar leads to the decrease in α from 0.5 to 0.35 which is 

favorable for higher olefin selectivity.  

 

Figure 3.8 (a) ASF plots and (b) chain growth probabilities over FeBi/SiO2 catalyst at 

different pressures. Reaction conditions: P = 1−20 bar, H2/CO = 1, GHSV = 1.5−3.4 L/g h, 

T = 350 °C. The conversion was about 30%. 
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It is interesting to note that increase in the CO conversion at atmospheric pressure 

leads to the gradual decrease in the selectivity to light olefins (Figure 3.5 and Figure 3.7) 

in comparison with a more stable selectivity to olefins as a function of conversion at higher 

pressure. The chain growth probability does not change significantly in the case. The 

possible explanation of this effect could be reinsertion of light olefins in the growing chains 

at higher CO conversion at low pressure leading to decrease in the selectivity to light 

olefins and increase in the selectivity to C5+ hydrocarbons.  

Thus, use of soldering metal promoters makes it possible to produce light olefins 

over iron catalysts with high yield and selectivity. Note that the selectivity gain is more 

pronounced at lower reaction pressure.  

3.2.3 Mechanism of the promotion of iron catalysts with Bi and Pb 

 

Previous reports suggest [2, 24, 31, 32, 33] that FT reaction on iron catalysts occurs 

over iron carbides. FT reaction rate on the iron catalysts could be therefore a function of 

the number and intrinsic reactivity (turnover frequency) of iron carbide surface sites [34]. 

The concentration of iron carbide surface sites is a function of iron carbide dispersion and 

extent of carbidization.  

Investigation of the calcined catalysts by XRD (Figure 3.9) did not reveal any effect 

of the promoters on the dispersion of supported hematite iron oxide. The size of iron oxide 

particles was always between 15 and 17 nm and was not much affected by the promoters.  
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Figure 3.9 XRD patterns of the catalysts after calcination. 

 

Figure 3.10 displays XRD patterns of the unpromoted and Bi and Pb-promoted iron 

catalysts after the FT reaction tests. Very broad XRD peaks attributed to iron carbide phase 

has been detected. Again, the width of the iron carbide XRD peaks has not also much 

affected by the promotion. The sizes of iron carbide nanoparticles according to XRD were 

in the range from 4 to 6 nm. This suggests that iron carbide dispersion is also not affected 

by the promotion with soldering metals.  

 

Figure 3.10 XRD patterns of the catalysts after FT reaction. 
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The in-situ magnetic method (Figure 3.11) did not either reveal any effect of the 

promoters on the extent of carbidization and chemical composition of iron carbide phases. 

Prior to the magnetic measurements, the catalysts were treated in CO at 350 °C using the 

procedure similar to that used for catalyst activation.  

Catalyst magnetization was zero at temperatures higher than the Curie temperature 

of Hagg iron carbide. Magnetite has the Curie temperature at 585 °C and (if present in the 

catalysts) must be detected by the magnetic method. Thus, the observed zero magnetization 

at temperature higher than 250 °C suggests complete iron carbidization and thus, extremely 

low concentration of magnetite in the activated catalysts. In addition, catalyst 

magnetization at room temperature in the catalysts carbidized in CO at 350 °C was the 

same for unpromoted and promoted catalysts. This is indicative of the same concentration 

of iron carbide. The Curie temperature (205-220 °C) measured in both unpromoted and 

promoted catalysts corresponded to the Hägg iron carbide (χ-Fe5C2).  

 

Figure 3.11 Catalyst magnetization during cooling down after CO treatment at 350  ͦC. 

The catalytic phenomena over the Bi- and Pb-promoted catalysts cannot be 

therefore attributed to the changes in the iron carbide dispersion, amount and composition. 

Thus, the performance of the promoted catalysts seems to be affected not by variation of 

the number of active sites but by the modification of their intrinsic activity (turnover 

frequency).  
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The reactivity of iron carbide in the promoted and unpromoted catalysts has been 

characterized by hydrogenation at the reaction conditions. Our earlier study [35] indicated 

that the catalysts with higher rate of iron carbide hydrogenation exhibited high activity in 

FTS. The comparable hydrogenation profiles were observed with unpromoted and 

promoted catalysts. The results suggest no significant difference in the concentration and 

reactivity of the iron carbide species in the unpromoted and promoted catalysts in the 

presence of hydrogen (Figure 3.12).  

 

Figure 3.12 Methane formation rate in static hydrogenation of carbidized Fe/SiO2, 

FePb/SiO2 and FeBi/SiO2. 

 

The observed strong effects of the Bi and Pb promoters on the catalytic performance 

of Fe catalysts might be due to the intimate contact between Fe and promoter. It is expected 

that low melting point of soldering metals can lead to their higher mobility. In order to 

prove it, we have prepared mechanical mixtures of Fe/SiO2 with either Bi/SiO2 or Pb/SiO2 

and performed catalytic tests (Table 3.1, Figure 3.13).  
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Figure 3.13 Conversion of CO over FeBi/SiO2, Bi/SiO2, Fe/SiO2, and mechanical mixture 

Fe/SiO2 + Bi/SiO2. Reaction conditions: H2/CO = 1, P = 10 bar, T = 350 °C, GHSV = 

3.4 L/g 
 h, TOS = 100 h. 

 

CO conversion over mechanical mixtures was much higher than over the 

unpromoted Fe/SiO2 and comparable with the conversion over the co-impregnated 

promoted catalysts. This is indicative of substantial migration of the promoters during the 

reaction. The conducted TEM-EDX confirms this assumption (Figure 3.14). 
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Figure 3.14 TEM-EDX images for Fe and Bi before after catalysis for the mechanical mixture 

Fe/SiO2 + Bi/SiO2 (see Figure 3.13). 

 

In the mechanically mixed sample, TEM-EDX detected both Fe nanoparticles in 

the range of 10-40 nm and Bi particles which were much smaller because of lower metal 

content. Note that in the initial mechanical mixtures, Bi was uniformly distributed with the 

same density in all parts of the image (Figure 3.14). After conducting FTS, the EDX maps 

clearly show preferential Bi localization in a close proximity of iron carbide nanoparticles 

(Figure 3.14).  

The significant increase in the density of Bi in the interface with Fe nanoparticles 

might be explained by migration of Bi under the reaction conditions and their interaction 

with iron. This high mobility might result in sintering of the promoter in long-term test. 

However, several days of experiment leads only to the increase in the activity (Figure 3.4) 

most probably due to activation of Fe sites by interaction with promoter. Thus, longer 

experiments are necessary to clarify further behavior of promoter during the catalysis.  

FTS is a multistage catalytic reaction. Previous reports suggest that FTS over iron 

catalysts may proceed with the Mars-Van Kravelen sequence [36, 37]. One of the initial 

steps of FTS on iron catalysts is carbon monoxide dissociative adsorption. Carbon 
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monoxide dissociation over iron catalysts can be either direct or hydrogen-assisted. Recent 

DFT report [23] showed that differently to cobalt catalysts, direct carbon monoxide 

dissociation proceeds much more easily on iron catalysts compared to the hydrogen 

assisted process. 

Carbon monoxide direct dissociation results in formation of surface carbide and 

chemisorbed oxygen species followed by oxygen removal via its reaction either with 

hydrogen or carbon monoxide. Chemisorbed carbon can be then hydrogenated to CHx 

monomer, which then can be involved in the FT surface polymerization. It can be expected 

that the rate of these different elementary steps can be affected differently by the promoting 

elements. First, the rate of carbon monoxide adsorption and dissociation on the unpromoted 

and Bi- and Pb-promoted iron catalysts in the presence of syngas and at the reaction 

temperature (350 °C) was evaluated using SSITKA [38, 39, 40]. During the switches from 

12CO/H2/Ne to 13CO/H2, the 12CO carbon monoxide response curves were indistinguishable 

from the transient response of the inert gas (Figure 3.15). This suggests that the rates of 

carbon monoxide adsorption and desorption are very fast on both unprompted and 

promoted iron catalysts.  

Importantly, no molecular adsorption of carbon monoxide was observed on iron 

carbide under the reaction conditions. This also suggests that the only type of CO 

dissociative adsorption on iron catalysts can be dissociative. 
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Figure 3.15 SSITKA results over FeBi/SiO2. Reaction conditions: P = 1 bar, H2/CO = 2, 

GHSV = 8.4 L/g h, T = 350 ºC. 

 

The rates of oxygen removal produced on CO dissociation on the Bi-, Pb-promoted 

and unpromoted iron catalysts were evaluated by the reaction with carbon monoxide.  The 

unpromoted and Bi- and Pb-promoted catalysts were first carbidized in carbon monoxide 

under typical conditions used for the catalyst activation. Then the catalysts were exposed 

to water to generate oxygen species on the catalyst surface. During the contact of the 

catalyst with water, hydrogen formation has been observed (Figure 3.16).  

 

Figure 3.16 Rate of hydrogen production after exposure of the activated silica supported iron 

catalysts to water vapours. Reaction conditions: P = 1 bar, H2O flow 0.3 mL/h, T = 350 ºC. 
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Hydrogen formation probably comes from the oxidation of iron carbide with water. 

Interestingly, hydrogen production rate and oxidation of iron carbide in the unpromoted 

catalyst were slow. At the same time, over the promoted catalysts intensive and rapid 

hydrogen formation has been observed at lower reaction time. 

After this treatment, the catalysts were again exposed to carbon monoxide to 

evaluate the reactivity of the generated oxygen species in the presence of carbon monoxide. 

Carbon dioxide production rates from CO after partial oxidation of carbide surface in water 

are displayed in Figure 3.17. 

 

Figure 3.17 Rate of carbon dioxide production after exposure of the activated silica 

supported iron catalysts pretreated with water to CO at 300 °C. 

 

Interestingly, the rates of carbon dioxide production were much higher over the Pb– 

and in particular Bi-promoted catalysts compared to the unpromoted counterpart. The trend 

was similar to the hydrogen rate formation during catalyst oxidation by water. This 

suggests that the rates of oxygen scavenging and its removal via its reaction with carbon 

monoxide are significantly enhanced in the presence of promoters. It is relevant to the 

enhancement of the diffusion of the oxygen formed on iron carbide during CO dissociation 

to the promoting atoms (Bi or Pb) situated in a close proximity. Oxygen migration to the 

promoters leads to their partial oxidation.  
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Oxygen species will be then removed much more easily from the promoter by CO 

than those located on the surface of iron carbide. The observed trend is consistent with 

electrochemical potentials of iron (Fe2+ + 2 e−⇌ Fe(s) -0.44V), bismuth (Bi3+ + 3 e−⇌Bi(s) 

+0.308 V) and lead (Pb2+ + 2 e−⇌ Pb(s) −0.126 V). Oxygen removal by reaction with CO 

leading to the reduction of the promoter will be thermodynamically favored on Bi and Pb 

compared to Fe.  

This suggestion is also consistent with the XPS characterization data. The Pb-

promoted and unpromoted iron catalysts were activated in carbon monoxide and exposed 

to syngas in the pretreatment chamber of XPS spectrometer. For XPS analysis, the catalyst 

was transferred without exposure to air from the pretreatment chamber to XPS analysis 

chamber (Figure 3.18).  

 

Figure 3.18 Pb 4f XPS spectra of the FePb/SiO2 catalyst after calcination and exposure to 

carbon monoxide and syngas. 

 

Note that before the reaction, Pb was in the oxidized state. In the catalyst activated 

in carbon monoxide, Pb was mostly observed in the metallic state. This suggests that the 

catalyst treatment with carbon monoxide results in the removal of all oxygen atoms from 

the promoter and its reduction to the metallic state. Interestingly, noticeable modifications 
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of the XPS spectra of lead were observed after the exposure of the activated catalyst to 

syngas. 

The presence of syngas resulted in lead oxidation. This is consistent with the 

hypothesis about scavenging of oxygen atoms formed on carbon monoxide dissociation on 

iron carbide by the promoter, followed by the removal of oxygen species from the promoter 

with carbon monoxide. This suggestion agrees with high CO2 selectivity at low carbon 

monoxide conversion observed on the promoted catalysts indicating that CO2 is a primary 

reaction product over the Bi- and Pb-promoted catalysts.  

 

3.2.4 Pt-promoter effect on the kinetic parameters for cobalt catalyst 

during FTS  

 

This section presents catalytic performance and SSITKA analysis for the cobalt Pt-

promoted and non-promoted during FTS. Figure 3.19(a,b) shows CO conversion as a 

function of time on stream of non-promoted and Pt-promoted cobalt catalysts for H2/CO 

ratio feed of 2 and 5. The Pt-promoted catalyst presented better catalytic performance, since 

the CO conversions are higher during whole time at feed ratio of H2/CO equal to 2 (see 

Figure 3.19a). Similar behavior was noticed by Jacobs et al. [6] using Pt and Ru on the 

alumina, titania and silica supported catalysts. 

For the non-promoted catalyst at H2/CO ratio feed of 2, CO conversion slightly 

decreased at the first hour of reaction. Considering the whole time on stream (around 13 h), 

the non-promoted catalyst lost 50% of the CO conversion, contrasting with the 30% of 

reduction for the Pt-promoted cobalt catalyst. Increasing hydrogen partial pressure from 

0.29 bar to 0.58 bar improved catalyst stability for both samples. In fact, the promoted Pt 

catalyst became completely stable during 14 hours of reaction. The non-promoted had a 

slightly decrease in CO conversion from 15% to 11%.  
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Figure 3.19 CO conversion in function of time on stream for non-promoted and promoted 

cobalt catalysts at (a) Ratio H2/CO 2 and (b) Ratio H2/CO 5. Reaction conditions: 250 °C, 

GHSV = 12 000 mL/g h and 16 000 mL/g h. 

 

The literature points out that the presence of noble metal has the ability to restrict 

formation of cobalt support mixed oxides during FTS [4, 41]. The promoter effect over 

catalyst stability is also associated to the type of support applied. 
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Table 3.3 Catalytic performance for promoted Pt and unpromoted cobalt catalysts. Reaction 

conditions: T = 250 °C, GHSV = 12 000 mL/g h and 16 000 mL/g h. 

Catalyst  
Ratio feed 

H2/CO 

XCO 

(%) 
SCH4 (%) 

Rate 

(µmol/g s) 

RSSITKA 

(µmol/g s) 

Co/SiO2 

2 6 86 1.1 0.9 

5 11 92 1.9 1.8 

CoPt/SiO2 

2 15 85 2.5 2.1 

5 21 93 3.6 3.3 

 

The increase of the H2/CO feed ratio influenced the catalyst activity for both cobalt 

catalysts. This may be correlated to the reaction condition applied, due to the influence of 

Pt over FT reaction rate be more noticeable at atmospheric pressure [9, 42]. Note that the 

rate constant determined by GC analysis at conventional steady state conditions presents 

similar values with the rate constant in the SSITKA experiments. As showed in Table 3.3, 

methane is the major product of the reaction under these conditions for both catalysts, with 

methane selectivity higher than 80%. 

Table 3.4 shows the surface residence time and number of active sites measured by 

SSITKA.  
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Table 3.4 Total number of active sites by CO adsorption and SSITKA data for CO hydrogenation 

under different ratio feed of H2/CO in the presence of promoter (Pt) and without promoter. 

Catalyst 
Ratio 

H2/CO 

CO 

(s) 

CH4 

(s) 

NCO 

(µmol/g) 

NCH4 

(µmol/g) 

TOFSSITKA  

(s-1) 

Co/SiO2 

2 2.3 19 38 17 0.018 

5 2.0 13 31 24 0.036 

CoPt/SiO2 

2 2.8 17 39 35 0.029 

5 1.8 11.5 23 38 0.047 

 

Cobalt Pt-promoted catalysts present larger amount of intermediates leading to 

methane in comparison with the non-promoted samples. Such result is interesting, once 

SSITKA studies has demonstrated that higher coverage of NCH4 intermediates could lead 

to a high chain growth probability, which causes an increase in the selectivity toward the 

C5+ hydrocarbons and a decrease in the selectivity to methane [43, 44].  

The higher number of intermediates combined with a slightly fast lifetime of 

intermediates in the promoted cobalt catalyst are responsible for 2 times higher TOFSSITKA 

for the Pt-promoted catalyst compared to the unpromoted counterpart. Hence, it is possible 

to conclude that addition of the Pt-promoter results in a significant increase in the activity.  

Table 3.4 also demonstrates the effect of the H2/CO feed ratio. In this case, the 

lifetime of intermediates leading to methane are shorter due to higher number of available 

hydrogen species and faster hydrogenation during the reaction.  

3.2.5 Effect of cobalt supports on the total number of active sites  

 

All catalysts were submitted before CO adsorption to reduction in hydrogen flow 

of 8 mL/min at 400 °C in temperature ramp of 5 °C/min. The reduction temperature of the 

cobalt supported on the zeolites was also determined in the work by Subramanian et al. 
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[16] by temperature-programmed reduction with hydrogen (H2-TPR). There was a single 

group of peaks around 350-400 °C assigned to the reduction of cobalt oxide species to 

metallic phases. 

In terms of zeolite surface area and pore volume, Subramanian et al. [16] observed 

that after the impregnation of about 20 wt. % of Co, a decrease in zeolite BEA was around 

50%, followed by MOR (around 20%) and ZSM-5 (10%). The surface area and pore 

volume of Co/ZSM-5 decreases only slightly after impregnation relative to the parent 

zeolite.  

The 3D pore structure of BEA (0.76×0.64 nm) is more open than that of MOR 

(0.65×0.7 nm; 1 D) and ZSM-5 (approximately 0.55 nm; 3D). A more significant decrease 

in the BET surface area and micropore volume of BEA compared to that of ZSM-5 and 

MOR could be assigned, therefore, to a much easier diffusion of Co species into the BEA 

zeolite pores during the impregnation. This would result in a higher Co fraction in the BEA 

pores. 

The SSITKA switch from 12CO/He/Ne to 13CO/He was realized to determine the 

total number of active sites in the catalysts with 20% of cobalt and 0.1% of Pt supported 

on silica and on ZSM-5, MOR and BEA zeolites. As shown in the Table 3.5, the CO surface 

residence time (CO) for cobalt supported on silica was 5.2 s contrasting with an average 

residence time of 3.5 s for the cobalt supported on all zeolites. This proves stronger 

interplay between the gas phase and cobalt nanoparticles on silica support. The 

concentration of reversibly adsorbed carbon monoxide (NCO) on cobalt supported on silica 

is higher than that for cobalt supported on the zeolites.  
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Table 3.5 Catalysts characterization and SSITKA CO adsorption data (switches between 
12CO/He/Ne and 13CO/He). 

Catalyst 
Co size 

(nm)a 

CO 

 (s) 
NCO

b(µmol/g) 

NCO
c in H2 

presence 

(µmol/g) 

CoPt/SiO2 17.3 5.2 90 90 

CoPt/ZSM-5 26.4 3.0 49.6 - 

CoPt/BEA 16.2 2.9 51.1 53 

CoPt/MOR 27.5 3.5 60.2 - 

a Co = 0.75 ∙ dCobalt oxide (nm). Determined by XRD analysis.  
b Amount of CO adsorbed at 100  ͦC, evaluated from SSITKA. 
c Amount of CO adsorbed at 100  ͦC in presence of hydrogen (H2/CO = 10),  

evaluated from SSITKA. 

 

 

The phenomena described in the previous paragraph are related to the catalyst 

support porosity, since cobalt catalyst supported on silica presents large total pore volume 

(0.85 cm3/g). The total pore volume of cobalt supported on BEA, ZSM-5 and MOR is 

0.18 cm3/g, 0.16 cm3/g and 0.21 cm3/g, respectively [16].  

The switch during the CO adsorption in presence of hydrogen (from 

12CO/H2/He/Ne to 13CO/H2/He) was done for the silica and BEA supported cobalt catalysts 

(see Table 3.5). The concentration of reversibly adsorbed carbon monoxide (NCO) of both 

samples in the presence of hydrogen shows that in the adsorption conditions applied 

(T = 100 °C) there is non-competition between H2 and CO for active sites. Hence, CO is a 

dominating specie on the surface of the amorphous silica and on the BEA zeolite, which is 

in agreement with Frøseth et al. [20], for cobalt supported on alumina, TiO2 with and 

without Re as promoter. However, Enger et al. [45] noticed different trend for cobalt 

supported on different modified aluminas with and without promoters such as Zn, Re, Ni 

and Mg. The authors have found that the co-adsorption of CO with H2 prior to the reaction 
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showed an apparent competitive H2-CO adsorption which resulted in a lower CO saturation 

coverage than with only CO feed. 

A different value of reversibly adsorbed carbon monoxide (NCO) is a consequence 

of the interaction between cobalt nanoparticles and support. As commented by Yang et al. 

[46] and Zhang et al. [47], this can be related to the surface reconstruction caused by CO 

adsorption and/or an electronic effect induced by supports. 

 

3.2.6 Influence of the zeolite support on the intrinsic kinetic parameters 

of cobalt catalyst during FTS 

 

This section presents both catalytic activity and SSITKA study for conventional 

silica FT support as well for the cobalt catalysts supported on the ZSM-5, MOR and BEA 

zeolites. All cobalt based catalysts were reduced in hydrogen flow of 8 mL/min at 400 °C. 

Afterwards, the samples were cooled down to the reaction temperature of 250 °C. At 

ambient pressure and after 3 h of reaction, SSITKA measurements were done on all cobalt 

based catalysts under different feed H2/CO ratios (2, 5 and 10) corresponding to hydrogen 

partial pressure of 0.29 bar, 0.58 bar and 0.83 bar, respectively. 

Carbon monoxide conversion and methane selectivity measured at quasi-steady 

state reaction conditions as a function of the H2/CO feed ratio for each catalyst are 

displayed in Figure 3.20 and Table 3.6. Methane was the major product for all samples 

under applied conditions. At the H2/CO feed ratio of 2, higher carbon monoxide conversion 

was observed using MOR as support, followed by SiO2, BEA and ZSM-5 zeolites. 

However, increasing the hydrogen partial pressure in the feed strongly affects CO 

conversion on silica supported catalyst, making the CO conversion the same as on Co/MOR 

at H2/CO ratio feed of 5. Approximately 50% of CO conversion was obtained for silica 

supported cobalt catalyst at ratio H2/CO of 10. 
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Figure 3.20 CO conversion in function of ratio feed H2/CO for cobalt supported on silica, BEA, 

MOR and ZSM-5. Reaction condition: P ambient, 250 °C, GHSV = 13 500 mL/g h, 

18 000 mL/g h and 23 850 mL/g h. 

 

Among the zeolites, in the range of hydrogen partial pressure, the CO conversion 

was higher for the cobalt catalysts supported on MOR, followed by BEA and ZSM-5. The 

ZSM-5 supported cobalt catalyst presented the smallest FT reaction rate (see Table 3.6).  

Table 3.6 shows the SSITKA data for each catalyst as functions of the H2/CO feed 

ratio. In the case of zeolite supports, the CO residence time (τCO) slightly decreases or even 

remains constant as a function of H2 partial pressure.  
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 Table 3.6 GC analysis and SSITKA results under different feed ratio of H2/CO. Reaction 

condition: P ambient, 250 °C, GHSV = 13 500 mL/g h, 18 000 mL/g h and 23 850 mL/g h.  

 

Figure 3.21 shows the transient curves of CH4 surface residence time for each 

catalyst at H2/CO ratio feed of 2, 5 and 10. The transient curves helps to understand the 

influence of H2 to CO feed ratio on the catalytic activity behavior, once faster CH4 

intermediates were found at higher partial pressure of hydrogen. Frøseth et al. [48] found 

that increasing H2/CO  ratio affects slightly the surface residence time of intermediates 

(τCH4). On the other hand, Panpranot et al. [49] observed for amorphous and mesoporous 

silica, a consistently drop of τCH4 with increasing hydrogen partial pressure. The authors 

also concluded that the intrinsic site activity and concentration of surface intermediates for 

CO hydrogenation were strongly dependent on the hydrogen partial pressure for both 

supports applied.  

 

 

Catalyst H2/CO XCO SCH4 
FT rate 10-6  

(mol/gcat s) 
τCO (s) τCH4 (s) 

CoPt/SiO2 

2 

5 

10 

9.1% 

17% 

48% 

67% 

75% 

60% 

1.6 

2.9 

- 

4.9 

3.4 

- 

18.8 

17.5 

- 

CoPt/MOR 

2 

5 

10 

11% 

17% 

26% 

78% 

82% 

78% 

1.9 

3.0 

4.0 

3.1 

2.5 

2.9 

16.9 

12 

12.1 

CoPt/ZSM-5 

2 

5 

10 

4.6% 

6.7% 

10% 

71% 

87% 

90% 

0.8 

1.1 

1.6 

2.0 

2.0 

2.4 

19.0 

16.6 

12.4 

CoPt/BEA 

2 

5 

10 

6.4% 

8.9% 

16% 

82% 

87% 

75% 

1.1 

1.5 

2.5 

2.7 

2.5 

2.3 

17.3 

13.9 

12.1 
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Figure 3.21 Transient curves of inert (Ne) and intermediates leading to CH4 from the 

switch of 12CO/H2/He/Ne to 13CO/H2/He in function of ratio feed of H2/CO (2, 5 and 10). 

Reaction condition: P ambient, 250 °C, GHSV =13 500 mL/g h, 18 000 mL/g h and 23 850 

mL/g h. 

 

The influence of the H2/CO feed ratio for each sample on the SSITKA rate 

constant (RSSITKA), number of total sites (Ntotal), including the adsorbed carbon monoxide 

(NCO) and concentration of CH4 intermediates (NCH4) is demonstrated in Figure 3.22(a,b).  
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Figure 3.22 Total number of sites (Ntotal = NCO + NCH4), number of CO sites (NCO), number of 

CH4 sites (NCH4) and SSITKA rate constant in ratio feed of H2/CO equal to 2 (a) and 5 (b). 

Reaction condition: P ambient, 250 °C, GHSV = 13 500 mL/g h, 18 000 mL/g h and 

23 850 mL/g h. 

 

The number of molecularly adsorbed carbon monoxide molecules (NCO) decreases 

with increasing the H2/CO ratio for the cobalt catalysts supported on SiO2, BEA and MOR. 

This probably occurred due to higher CO conversion (see Table 3.6), unavoidable site 
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competition between CO and H2 and irregular distribution of cobalt nanoparticles. For the 

cobalt catalyst supported on ZSM-5 (microporous structure), NCO value remained constant 

(33 µmol/g for ratio 2; 32.5 µmol/g for ratio 5 and 33.6 µmol/g for ratio 10) demonstrating 

in association with the τCO that CO adsorbs faster for the ZSM-5 support.  

Higher amount of CHx intermediates giving methane on their hydrogenation was 

observed on the CoPt/MOR catalyst while higher concentration of reversibly adsorbed 

carbon monoxide molecules (NCO) was detected on CoPt/SiO2. Interestingly, for cobalt 

catalyst supported on ZSM-5, NCO and NCH4 are smallest between all samples. The MOR 

demonstrated the highest NCH4 among zeolites [50]. 

Previous DFT modeling results [51] suggest that cobalt molecular adsorption 

occurs on cobalt terraces, while carbon monoxide dissociation may involve sites and edges 

in cobalt nanoparticles. Our results suggest that higher cobalt dispersion and in particular 

higher concentration of the CHx hydrogenation sites are favorable for higher FT reaction 

rate. This can possibly explain higher FT reaction rates observed over the catalyst 

supported by the MOR compared to amorphous silica (Figure 3.23). It can be expected that 

the zeolite contains more defected cobalt particles compared to silica. The fraction of 

defects increases with the partial penetration of cobalt nanoparticles in the pores of the 

MOR and BEA zeolites.  

 

Figure 3.23 Correlation between FT reaction rates measured from steady state experiments 

and concentration of CH4 intermediates evaluated from SSITKA. 
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The trend obtained in this work in relation to NCO, NCH4 and RSSITKA for the zeolite 

supports is consistent with their distinct porous structure. According to the characterization 

analysis of Subramanian et al. [16], an increase in the size of the zeolite pore causes an 

increase in the amount of cobalt located inside of the pores. Since the channel diameters of 

BEA and MOR are larger than for ZSM-5, this leads to the fact that the pores of ZSM-5 

present a smaller amount of cobalt available for the reaction, affecting negatively the CO 

conversion and SSITKA kinetic parameters such NCH4 and NCO. Previous report [18, 44] 

established a correlation between the number of intermediates leading to methane with the 

pore size of the catalysts. SSITKA experiments demonstrated larger number of CHx 

intermediates in the catalysts with medium pore size relative to the catalysts with smaller 

pore size. 

Images of transmission electron microscopy (TEM) presented on Figure 3.24 

demonstrate rather different distribution of cobalt nanoparticles in silica and zeolites. For 

example, in cobalt catalyst supported on ZSM-5, the polycrystalline zeolite particles are 

covered by large agglomerates of cobalt nanoparticles with sizes between 100–200 nm. 

Therefore, there is preferential cobalt localization on the external surface of ZSM-5. The 

TEM images of cobalt catalyst supported on MOR demonstrated a significantly higher 

incorporation of cobalt nanoparticles in the zeolite crystallites. Even though, some fraction 

of cobalt nanoparticles was also observed on the surface of the zeolite crystals. TEM 

images of cobalt catalyst on BEA displayed cobalt inside of zeolite crystals.  
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Figure 3.24 TEM image of cobalt based catalysts. 

 

The low activity of cobalt catalyst supported on ZSM-5 was attributed to the 

preferential localization of cobalt on the outer surface of the zeolite and low concentration 

of active sites because of poor cobalt dispersion. The long lifetime of the CHx intermediates 

(τCH4) also contributed for the lower activity of CoPt/ZSM-5 zeolite. A more homogeneous 

distribution of cobalt in the CoPt/MOR and CoPt/BEA catalysts results in higher FT 

reaction rate. Importantly, a higher FT reaction rate measured at the quasi steady state 

conditions coincides with a higher fraction of CHx intermediates (see Figure 3.23) and not 

to the higher concentration of molecularly adsorbed carbon monoxide molecules (NCO). 
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This is consistent with previous reports [52] and indicates that CHx hydrogenation can be 

a kinetically relevant step under these conditions. 

Subramanian et al. [16], using the same samples for FTS under realistic conditions 

(high pressure) also observed that catalytic performance was affected strongly by the 

zeolite used. CoPt/MOR and Co/PtSiO2 showed the highest CO conversion at low and high 

pressures among all catalysts studied. 

Cobalt catalysts supported on silica and on zeolites have shown different selectivity 

for the C12+ hydrocarbons in comparison with the short-chain C5 –C12 paraffins at realistic 

FTS conditions [16]. The Co/MOR catalyst demonstrated a significantly lower activity in 

the isomerization of short-chain hydrocarbons probably due to the partial blocking of 

stronger acid sites by cobalt species in the 1D channels of the MOR pores. In the case of 

ZSM-5, as already commented and indicated by the SSITKA data, cobalt is located largely 

on the external surface of the zeolite crystals. Therefore, FTS occurs on the zeolite external 

surface and that only short-chain hydrocarbons can diffuse and isomerize effectively inside 

the pores of ZSM-5 zeolite. Because of stronger acidity compared to other zeolites, 

Co/ZSM-5 exhibited a higher activity towards the isomerization of C5 – C12 hydrocarbons. 

The trend was different for larger molecules where isomerization activity was a function 

of hydrocarbon diffusion in the zeolite pores. 

 NCH4, that is the measure of the concentration of intermediates able to form 

hydrocarbons, seems to correlate to the product selectivity at high pressure FTS. For 

example, the number of the CHx intermediates is higher for Co/MOR and Co/SiO2, 

followed by Co/BEA and then by Co/ZSM-5. In terms of selectivity, the Co/ZSM-5 

presented the lowest C12+ selectivity [16], behind Co/SiO2 and Co/MOR with highest 

values and Co/BEA in the intermediate scale of such comparison.  

3.3 Conclusions 

 

A very strong promoting effect of iron catalysts with soldering metals (Bi, Pb) was 

uncovered in high temperature FTS. The FT rate and light olefin selectivity increase by 5-

10 times and up to 60% respectively, compared to the unpromoted catalyst. The Bi- and 
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Pb-promoted catalysts also provide an opportunity to selectively produce light olefins from 

syngas with high yields at atmospheric pressure. A combination of transient kinetic 

methods and catalyst characterization has provided important information about the 

observed catalytic phenomena. Noticeable migration of Bi and Pb was observed during the 

catalytic activation and reaction. It was found that the Bi and Pb promoters are localized in 

a close proximity to the iron carbide nanoparticles and can facilitate CO dissociation by O 

removal, which results in modification of Bi and Pb oxidation state. TEM-EDX mapping 

clearly showed migration the Bi and Pb and preferential localization (decoration) of iron 

carbide species by the promoter in the catalysts exposed to FT reaction conditions. These 

results provide efficient strategy for the design of extremely active and selective catalysts 

for direct synthesis of light olefins from syngas and elucidates the role on the promoters in 

this reaction. 

SSITKA has provided important information about the number of active sites and 

their intrinsic activity for cobalt catalysts supported on silica and zeolites. Under CO 

hydrogenation conditions, the total number of sites was higher for cobalt supported on 

silica compared to the zeolites. The rise of hydrogen partial pressure resulted in a decline 

of surface residence time of CH4 and an increase in the concentration of surface 

intermediates giving methane on hydrogenation (NCH4). The FT reaction rate correlated 

with the NCH4 concentration.  

 



Chapter 3. Promoter and support influence on the intrinsic catalytic activity of iron and cobalt FT catalysts  

______________________________________________________________________________________ 

100 
 

References 

 

1. Galvis, H. M. T.; Koeken, A. C. J.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, 

A. I.; de Jong, K. P., Catalysis today 2013, 215, 95-102. 

2. Davis, B. H., Industrial & Engineering Chemistry Research 2007, 46 (26), 8938-8945. 

3. Lohitharn, N.; Goodwin Jr, J. G., Journal of Catalysis 2008, 260 (1), 7-16. 

4. Diehl, F.; Khodakov, A. Y., Oil & Gas Science and Technology-Revue de l'IFP 2009, 64 

(1), 11-24. 

5. Storsæter, S.; Borg, Ø.; Blekkan, E. A.; Holmen, A., Journal of Catalysis 2005, 231 (2), 

405-419. 

6. Jacobs, G.; Das, T. K.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B. H., Applied Catalysis A: 

General 2002, 233 (1), 263-281. 

7. Tsubaki, N.; Sun, S.; Fujimoto, K., Journal of Catalysis 2001, 199 (2), 236-246. 

8. Chu, W.; Chernavskii, P. A.; Gengembre, L.; Pankina, G. A.; Fongarland, P.; Khodakov, 

A. Y., Journal of Catalysis 2007, 252 (2), 215-230. 

9. Schanke, D.; Vada, S.; Blekkan, E. A.; Hilmen, A. M.; Hoff, A.; Holmen, A., Journal of 

Catalysis 1995, 156 (1), 85-95. 

10. Batley, G. E.; Ekstrom, A.; Johnson, D. A., Journal of Catalysis 1974, 34 (3), 368-375. 

11. Surisetty, V. R.; Dalai, A. K.; Kozinski, J., Industrial & Engineering Chemistry Research 

2010, 49 (15), 6956-6963. 

12. Gardezi, S. A.; Landrigan, L.; Joseph, B.; Wolan, J. T., Industrial & Engineering Chemistry 

Research 2011, 51 (4), 1703-1712. 

13. Fu, T.; Li, Z., Chemical Engineering Science 2015, 135, 3-20. 

14. Bai, S.; Huang, C.; Lv, J.; Li, Z., Catalysis Communications 2012, 22, 24-27. 

15. Dinse, A.; Aigner, M.; Ulbrich, M.; Johnson, G. R.; Bell, A. T., Journal of catalysis 2012, 

288, 104-114. 

16. Subramanian, V.; Zholobenko, V. L.; Cheng, K.; Lancelot, C.; Heyte, S.; Thuriot, J.; Paul, 

S.; Ordomsky, V. V.; Khodakov, A. Y., ChemCatChem 2016, 8 (2), 380-389. 

17. Kang, J.; Cheng, K.; Zhang, L.; Zhang, Q.; Ding, J.; Hua, W.; Lou, Y.; Zhai, Q.; Wang, Y., 

Angewandte Chemie 2011, 123 (22), 5306-5309. 

18. Rane, S.; Borg, Ø.; Yang, J.; Rytter, E.; Holmen, A., Applied Catalysis A: General 2010, 

388 (1–2), 160-167. 

19. Phan, X. K.; Yang, J.; Bakhtiary-Davijnay, H.; Myrstad, R.; Venvik, H. J.; Holmen, A.,  

Catalysis letters 2011, 141 (12), 1739-1745. 

20. Frøseth, V.; Storsæter, S.; Borg, Ø.; Blekkan, E. A.; Rønning, M.; Holmen, A., Applied 

Catalysis A: General 2005, 289 (1), 10-15. 

21. Hanssen, K. F.; Blekkan, E. A.; Schanke, D.; Holmen, A.; Froment, G. F.; Waugh, K. C., 

Stud. Surf. Sci. Catal. 1997, 109, 193. 

22. Govender, N. S.; Botes, F. G.; de Croon, M. H. J. M.; Schouten, J. C., Journal of Catalysis 

2008, 260 (2), 254-261. 

23. Pham, T. H.; Duan, X.; Qian, G.; Zhou, X.; Chen, D., The Journal of Physical Chemistry 

C 2014, 118 (19), 10170-10176. 

24. Torres Galvis, H. M.; de Jong, K. P., ACS catalysis 2013, 3 (9), 2130-2149. 

25. Xie, J.; Torres Galvis, H. M.; Koeken, A. C. J.; Kirilin, A.; Dugulan, A. I.; Ruitenbeek, M.; 

de Jong, K. P., ACS catalysis 2016, 6 (6), 4017-4024. 

26. Cheng, Y.; Lin, J.; Xu, K.; Wang, H.; Yao, X.; Pei, Y.; Yan, S.; Qiao, M.; Zong, B., ACS 

Catalysis 2015, 6 (1), 389-399. 

27. Yang, J.; Ma, W.; Chen, D.; Holmen, A.; Davis, B. H., Applied Catalysis A: General 2014, 

470 (0), 250-260. 



Chapter 3. Promoter and support influence on the intrinsic catalytic activity of iron and cobalt FT catalysts  

____________________________________________________________________________________ 

 

101 
 

28. Bukur, D. B.; Mukesh, D.; Patel, S. A., Industrial & engineering chemistry research 1990, 

29 (2), 194-204. 

29. Post, M. F. M.; Van't Hoog, A. C.; Minderhoud, J. K.; Sie, S. T., AIChE Journal 1989, 35 

(7), 1107-1114. 

30. Nowicki, L.; Ledakowicz, S.; Bukur, D. B., Chemical engineering science 2001, 56 (3), 

1175-1180. 

31. Dictor, R. A.; Bell, A. T., Journal of Catalysis 1986, 97 (1), 121-136. 

32. Pansanga, K.; Lohitharn, N.; Chien, A. C. Y.; Lotero, E.; Panpranot, J.; Praserthdam, P.; 

Goodwin, J. G., Applied Catalysis A: General 2007, 332 (1), 130-137. 

33. Galvis, H. M. T.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. 

P., Science 2012, 335 (6070), 835-838. 

34. Yang, J.; Ma, W.; Chen, D.; Holmen, A.; Davis, B. H., Applied Catalysis A: General 2014, 

470, 250-260. 

35. Ordomsky, V. V.; Legras, B.; Cheng, K.; Paul, S.; Khodakov, A. Y., Catalysis Science & 

Technology 2015, 5 (3), 1433-1437. 

36. Gracia, J. M.; Prinsloo, F. F.; Niemantsverdriet, J. W., Catalysis letters 2009, 133 (3-4), 

257. 

37. Ozbek, M. O.; Niemantsverdriet, J. W. H., Journal of Catalysis 2014, 317, 158-166. 

38. Legras, B.; Ordomsky, V. V.; Dujardin, C.; Virginie, M.; Khodakov, A. Y.,  ACS Catalysis 

2014, 4 (8), 2785-2791. 

39. Carvalho, A.; Ordomsky, V. V.; Luo, Y.; Marinova, M.; Muniz, A. R.; Marcilio, N. R.; 

Khodakov, A. Y., Journal of Catalysis 2016, 344, 669-679. 

40. Ordomsky, V. V.; Luo, Y.; Gu, B.; Carvalho, A.; Chernavskii, P. A.; Cheng, K.; Khodakov, 

A. Y., ACS Catalysis 2017. 

41. Jongsomjit, B.; Panpranot, J.; Goodwin, J. G., Journal of Catalysis 2001, 204 (1), 98-109. 

42. Kogelbauer, A.; Goodwin Jr, J. G.; Oukaci, R., Journal of Catalysis 1996, 160 (1), 125-

133. 

43. den Breejen, J. P.; Frey, A. M.; Yang, J.; Holmen, A.; van Schooneveld, M. M.; de Groot, 

F. M. F.; Stephan, O.; Bitter, J. H.; de Jong, K. P., Topics in catalysis 2011, 54 (13-15), 768. 

44. Ledesma, C.; Yang, J.; Chen, D.; Holmen, A., ACS Catalysis 2014, 4 (12), 4527-4547. 

45. Enger, B. C.; Frøseth, V.; Yang, J.; Rytter, E.; Holmen, A., Journal of Catalysis 2013, 297 

(0), 187-192. 

46. Yang, J.; Frøseth, V.; Chen, D.; Holmen, A., Surface Science 2016, 648, 67-73. 

47. Zhang, X.-Q.; van Santen, R. A.; Hensen, E. J. M., ACS Catalysis 2014, 5 (2), 596-601. 

48. Frøseth, V.; Holmen, A., Topics in Catalysis 2007, 45 (1), 45. 

49. Panpranot, J.; Goodwin, J. G.; Sayari, A., Journal of Catalysis 2002, 211 (2), 530-539. 

50. Bajusz, I. G.; Goodwin, J. G., J. Catal. 1997, 169, 157. 

51. Shetty, S.; Jansen, A. P. J.; van Santen, R. A., Journal of the American Chemical Society 

2009, 131 (36), 12874-12875. 

52. Govender, N. S.; de Croon, M. H. J. M.; Schouten, J. C., Applied Catalysis A: General 

2010, 373 (1–2), 81-89. 

 

 

 

 



 

102 

 

 

 

Chapter 4. New approach for the design of cobalt-zeolite 

nanocomposites for selective synthesis of isoparaffins in Fischer-

Tropsch reaction  

 

4.1 Introduction 
 

A combination of metallic and acidic sites in a single nanocomposite 

material has been attractive for catalytic application for several decades. Zeolites 

appear to be among the best candidates for introducing an acidic function because 

of their high thermal stability, high acidity and unique nanometric porous network. 

There are a number of catalytic reactions where metal-zeolite composite materials 

have been efficiently used.  

Aromatization of alkanes and methane takes place over bifunctional 

Ga/ZSM-5 or Zn-ZSM-5 and Mo/H-ZSM-5 catalysts, respectively [1]. Reduction of 

nitrogen oxides with hydrocarbons and ammonia is catalyzed by bifunctional metal 

(Cu, Fe, Co, Zn) - zeolite (ZSM-5, MOR, FAU) catalysts [2]. The single-step 

synthesis of dimethyl ether from syngas requires a Cu/zeolite composite catalyst [3]. 

Isomerization of long chain alkanes requires both metallic and acidic sites [4]. 

Metal-zeolite bifunctional catalysts are also used to convert biomass based 

feedstocks into value-added fine chemicals via combined hydrolysis or liquefaction 

with hydrogenation [5]. 

The effect of metal-zeolite composites in comparison for example with 

mechanical mixtures might be related to the shift of the thermodynamic equilibrium 

due to rapid conversion of a thermodynamically limited intermediate, increase in the 

reaction rate or in the selectivity to a specific product. Higher efficiency of metal-
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zeolite nanocomposite materials often depends on the distance between metal sites 

and acid sites [6].  

One of the most important applications of metal-zeolite composites is 

Fischer-Tropsch synthesis (FT) for direct synthesis of short chain isomerized 

hydrocarbons as gasoline fuel from syngas. FTS over Co, Fe and Ru metallic 

catalysts leads to the production of broad range of linear hydrocarbons [7]. 

Subsequent cracking and isomerization over zeolite based catalysts are used in 

industry nowadays for the fuel manufacturing. A lot of efforts have been dedicated 

to the development of the catalysts containing both metallic and zeolite phases for 

the direct one step synthesis of liquid fuels from syngas by combination of FTS and 

hydrocarbon cracking and isomerization [8-13].  

Currently, the main method of preparation of metal-zeolite nanocomposites 

is impregnation of zeolite with metal salts. In this procedure, a significant part of 

metal is located on the external surface of zeolite [14, 15]. Mesoporous hierarchical 

zeolites [8, 9, 10] with encapsulated Co nanoparticles [13] and core-shell catalysts 

containing FT core and zeolite shell [11, 12] have been also proposed as the most 

promising solutions. Although the contact between metal and acid sites has been 

improved in these catalysts in comparison with mechanical mixtures, the yield of 

gasoline fuel is still not high enough for industrial application. 

In this work we suggest a fundamentally new approach for the synthesis of 

metal-zeolite nanocomposites with selective localization of the metal inside of the 

zeolite pores. The Keggin-type tungstophosphoric acid H3PW12O40 (HPW) which is 

one of the most commonly used heteropoly acids with a relatively large anion 

(around 1.2 nm), strong acidity and high stability [16] was used for metal extraction 

from the ZSM-5, MOR, and BEA zeolite outer surface.  

The ZSM-5, MOR and BEA zeolites have pore sizes in the range of 0.54-

0.77 nm, which is significantly smaller than the HPW anion diameter. At the first 

step, the zeolites were impregnated with cobalt nitrate promoted by a small amount 

of platinum followed by calcination. Then, the as-prepared materials have been 
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treated with HPW. Co3O4 nanoparticles in this case can be extracted by a strong acid 

only from the external surface of zeolite due to the large size of acid anion. Thus, 

the cobalt zeolite composite materials containing cobalt species only inside of the 

zeolite pores were prepared. These materials have been tested in the synthesis of 

isomerized hydrocarbons from syngas by Fischer-Tropsch reaction. At different 

stages of preparation, the zeolite structure and cobalt localization in the 

nanocomposites were characterized by combination of techniques. 

4.2 Results and discussion 
 

4.2.1 Cobalt localization in zeolites 

 

The initial catalysts for further modifications have been prepared by 

incipient wetness impregnation of H-form of zeolites ZSM-5, MOR and BEA with 

a similar Si/Al ratio (Table 4.1) by cobalt nitrate with subsequent calcination. The 

characterization results for the Co/ZSM-5, Co/MOR and Co/BEA materials are 

shown in Table 4.1 and in Figures 4.1 and 4.2. All prepared catalysts contained about 

18 wt. % of Co (Table 4.1) in the form of Co3O4. 

 

Table 4.1 Physico-chemical properties of the materials. 

 
a calculated for zeolite part only. 

 

Material Si/Al 
Co, 

wt% 

N2 adsorption 

Theoretical 

volume of 

Co3O4 (cm3) 

SBET
a Vmic

a  

ZSM-5 13 - 305 0.12 - 

Co/ZSM-5 - 17.5 281 0.1 - 

Co/ZSM-5-

HPW 
- 8.1 270 0.09 0.016 

MOR 8 - 400 0.17 - 

Co/MOR - 18.2 347 0.15 - 

Co/MOR-HPW - 10.3 334 0.13 0.023 

BEA 9 - 556 0.15 - 

Co/BEA - 18.7 349 0.08 - 

Co/BEA-HPW - 13.1 382 0.09 0.030 
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The N2 adsorption–desorption isotherms for the catalysts prepared by 

impregnation of the parent zeolites are shown in Figure 4.1.  

 

 

Figure 4.1 Nitrogen adsorption/desorption isotherms obtained at -196.5  ͦC over the parent 

zeolites, Co/zeolite catalysts and Co/zeolite catalysts after the HPW treatment. 

 

The ZSM-5 and MOR samples display Type I isotherms with a sharp uptake 

at a low relative pressure followed by a plateau without a hysteresis. The BEA 

zeolite exhibits a combination of Type I and IV isotherms with additional hysteresis 

loop at a high relative pressure (P/P0 larger than 0.8) due to filling of intercrystalline 

pores. This is a result of agglomeration of small crystallites in BEA zeolite as 

demonstrated in Figure 4.2. 

 
 

Figure 4.2 SEM images of zeolites. 
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Impregnation with cobalt results in a downward shift of adsorption 

isotherms in the case of MOR and ZSM-5 zeolites and transformation of BEA 

zeolite isotherm to Type I. These changes correspond to decrease in the surface area 

and micropore volume of zeolite after Co impregnation. This decrease is more 

pronounced in BEA (around 50%) followed by MOR (approximately 20%) and 

ZSM-5 (10%). Interestingly, the surface area and pore volume of Co/ZSM-5 only 

slightly decrease after impregnation relative to the parent zeolite. The 3D pore 

structure of BEA (pore sizes around 0.76×0.64 nm) is more open than that of MOR 

(pore sizes around 0.65×0.7 nm; 1 D) and ZSM-5 (pore sizes around 0.55 nm; 3D).  

A more significant decrease in the BET surface area and micropore volume 

of BEA compared to that of ZSM-5 and MOR (Table 4.1) could be assigned, 

therefore, to much easier diffusion of Co cations into the zeolite pores during the 

impregnation, which results in a higher Co fraction in the BEA pores.  

In the case of ZSM-5, the main fraction of Co oxide seems to be localized 

on the external surface area. The MOR zeolite with pore size comparable to BEA 

but 1D structure demonstrates intermediate behavior. The TEM data support these 

assumptions (Figure 4.3).  
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Figure 4.3 TEM image of the catalysts before and after HPW treatment. The 

agglomerates of Co nanoparticles are indicated by white circle. 

 

In the impregnated calcined Co/ZSM-5, zeolite particles are covered by 

large agglomerates of Co nanoparticles (100–200 nm). These results are consistent 

with the preferential Co localization on the external surface of the ZSM-5 zeolite.  

The TEM images of Co/MOR demonstrate a significantly higher 

incorporation of Co in the zeolite crystallites, although some fraction of Co 

nanoparticles can be observed on the surface of the zeolite crystals.  

The TEM images of Co/BEA show that metal does not form a separate phase 

and most probably uniformly covers zeolite crystals with significant incorporation 

in the zeolite pores. Relatively uniform cobalt distribution in the BEA zeolite 

decreases interaction between nanocrystals, which explains disappearance of 

intercrystalline volume (Figure 4.3, Table 4.1). 
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4.2.2 Extraction of cobalt species by HPW from outer surface of the 

zeolites  

 

Treatment of the cobalt zeolite nanocomposites prepared by incipient 

wetness impregnation with bulky HPW results in dissolution of Co oxide from the 

surface of zeolite crystals. No effect of this treatment is expected however on the 

metal oxide nanoparticles located in the zeolite pores. Indeed, because of the large 

HPW anion diameter, cobalt in the zeolite pore is not accessible for extraction. 

Cobalt was detected in the solution used for washing the zeolite materials after 

cobalt extraction with HPW. Interestingly, after 5 cycles of treatment at 90 ºC with 

a 5 times excess of HPW to cobalt, no further cobalt extraction was observed from 

the zeolite.  

The ICP analysis showed a significant decrease in the cobalt content in the 

zeolite (Table 4.1). The most significant decrease was observed for Co/ZSM-5. The 

resulting Co/ZSM-5-HPW contained twice smaller amount of cobalt in comparison 

with the parent material. The decrease in cobalt content in the Co/MOR catalyst was 

slightly smaller than in Co/ZSM-5. In the case of the Co/BEA zeolite, the amount 

of Co in the catalyst decreased only by 5 wt. % after HPA washing. 

The cobalt content in the zeolite after extraction with HPW increases in the 

row ZSM-5<MOR<BEA which correlates with the increase in the fraction of Co 

oxide located in the pores according to N2 adsorption. Thus, it might be considered 

that cobalt species remaining in the nanocomposites after extraction with HPW were 

principally located in the zeolite pores. Note that the microporous volume of 

Co/ZSM-5 and Co/MOR after treatment with HPW almost does not change. This 

indicates that cobalt oxide is still present inside of the zeolite micropores (Table 4.1, 

Figure 4.1).  

Only in the case of Co/BEA, the micropore volume after the HPW treatment 

increases which might be explained by opening of the pores of zeolite due to removing 

large Co3O4 nanoparticles located in the pore mouths. Calculation of the volume of cobalt 

oxide in the catalysts after washing taking into account Co3O4 density of 6.1 g/cm3 gives 
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0.016 cm3 to 0.03 cm3 for the 1 g of zeolite which correlates with the decrease in the 

microporous volume after cobalt impregnation, as demonstrated in Table 4.1 and Figure 

4.4.  

 
 

Figure 4.4 Correlation between decrease of the microporous volume of Co/Zeolite-HPW in 

comparison with parent zeolite and theoretical volume of the introduced Co. 

 

TEM microscopy indicates that treatment of the catalysts with HPW leads to 

removal of cobalt oxide from the surface of the zeolite crystals for all the zeolites (Figure 

4.3).  

Figure 4.5 displays the TEM images at high magnification. It is possible to observe 

dots of Co oxide nanoparticles in the pores of zeolites and absence of Co species on the 

surface of zeolite crystals. 
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Figure 4.5 TEM image of the catalysts after HPW treatment. 
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Detailed analysis of Co/BEA-HPW has been performed by high angle annular 

dark-field (HAADF) STEM analysis. Intensity of the elements at this mode is roughly 

proportional to the square of the atomic number (Z2) of the element. Thus, Co atoms (Z = 

58) appear as bright scattering centers (see Figure 4.6) in the zeolite structure, which 

consists of only light atoms like Si, Al, O and H.  

 

 

Figure 4.6 HAADF-STEM image of Co/BEA-HPW catalyst. 

 

The image shows the presence of bright intense spots in the pores of zeolite BEA 

which are attributed to cobalt oxide nanoparticles (Figure 4.6). Interestingly, some of the 

metal oxide nanoparticles are elongated and arranged along the zeolite channels and some 

seems to have diameter larger than the diameter of the pore which could be a result of 

agglomeration of Co oxide species with partial destruction of zeolite structure. In any case, 

the size of the Co oxide species in any of the directions did not exceed 3 nm. No cobalt 

species have been observed on the outer surface of zeolite crystals.  

It is expected that the properties of the metal species in the pores of zeolites could 

be significantly different from the properties of metal oxide on the outer surface of zeolite. 

Indeed, the size of cobalt oxide nanoparticles outside of the pores is at least an order of 

magnitude larger.  
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H2-TPR has been used to study the reducibility of the metal species in the catalysts. 

Figure 4.7 shows that reduction of CoOx species to metallic Co in the parent catalysts takes 

place in the range of 200-400 ⁰C. The TPR results suggest that most of cobalt in zeolites 

can be reduced at relatively moderate temperatures.  

 

 

Figure 4.7 TPR reduction curves of Co/zeolite catalysts before and after treatment by HPW. 

 

The treatment of the catalysts with HPW leads to a significant decrease in the TPR 

peak area due to the lower metal content. In addition, the peaks are shifted to the highest 

temperature range (approximately 400 ⁰C) and have similar shapes for all zeolites.  

The observed modification of cobalt reducibility correlates with the removal of 

large oxide nanoparticles from the zeolite outer surface via their extraction with HPW.  In 

agreement with previous reports [17], smaller cobalt oxide particles in zeolites are reduced 

at higher temperatures compared to larger cobalt oxide particles on the zeolite outer 

surface. Besides, several other parameters like diffusion limitations of hydrogen into the 

pores of zeolite and strong interaction with support might have an impact on the reduction 

behaviour.  

The acidity of the catalysts has been characterized by FTIR adsorption of pyridine 

(Py). The FTIR spectra recorded after Py adsorption on the reduced catalysts are presented 

in Figure 4.8. Pure zeolite catalysts exhibit characteristic bands at ѵ = 1545 cm-1 and 
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1450 cm-1 assigned to the pyridinum ion (PyH+) formed over Brønsted acid sites (BAS) 

and to Py adsorbed on Lewis acid sites (LAS) (which may include Co2+ ions), respectively. 

Py adsorbed on both the LAS and BAS also displays a band at ѵ = 1490 cm-1.  

 

Figure 4.8 FTIR spectra observed after the adsorption of Py. 

 

The concentration of BAS and LAS calculated using the published extinction 

coefficients for the bands at ѵ = 1545 and 1450 cm-1 are presented in Table 4.2. The results 

suggest that impregnation with Co2+ cations leads to a significant decrease in the 

concentration of BAS in the zeolites.  

Table 4.2 Concentration of Brønsted sites and Lewis sites of materials. 

 
 

 

 

 

 

 

 

Material 

Acidity (Py adsorption) 

Brønsted sites 

(μmol/g) 

Lewis sites 

(μmol/g) 

  

ZSM-5 1090 240 

Co/ZSM-5 507 1427 

Co/ZSM-5-

HPW 
794 2100 

MOR 921 452 

Co/MOR 345 275 

Co/MOR-HPW 323 444 

BEA 486 834 

Co/BEA 88 84 

Co/BEA-HPW 56 382 
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The effect is more pronounced for the BEA zeolite compared to MOR and ZSM-

5. The reduced Co/ZSM-5 catalyst retains about 50% of Brønsted acidity, however, the 

concentration of BAS in Co/BEA is only 18% compared to that of the parent zeolite. This 

effect might be explained by the ion exchange of the bridging OH group protons for Co2+ 

ions.  

The samples treated by HPW demonstrate similar amount of Brønsted acid sites 

in comparison to non-treated catalysts (Table 4.2 and Figure 4.8). Thus, as expected HPW 

does not affect internal Brønsted acidity of the catalysts. In contrast, a reversed order is 

observed for Py adsorption on LAS in the impregnated reduced catalysts. 

The number of LAS in ZSM-5 is significantly increased in the presence of Co in 

comparison with the parent sample. This is a result of Py adsorption over ion exchanged 

cobalt forming Lewis acid sites. The effect is smaller in the case of the MOR zeolite. At 

the same time, the parent BEA zeolite already demonstrates significant Lewis acidity 

because of its defect-rich structure in comparison with ZSM-5 and MOR. Impregnation 

with Co leads to a sharp decrease in the intensity of the band of Lewis acid sites in the 

spectrum of Co/BEA.  

The weak or negative effect of the introduction of Co on Lewis acidity in BEA 

and MOR may be due to a more complete Co reduction in these zeolites as confirmed by 

TPR. The amount of Lewis acid sites in the catalysts washed by HPW is higher in 

comparison with impregnated catalysts, which might be explained by ion exchange of 

dissolved Co with external acid sites and unblocking of the pores of zeolite from Co species 

on the surface in the BEA zeolite.  

4.2.3 FTS of isomerized hydrocarbons over cobalt nanoparticles 

encapsulated in the zeolite pores 

 

The cobalt zeolite nanocomposites with different localization of cobalt species 

were evaluated as catalysts in FTS. There might be several effects on the FT catalytic 

performance from the presence of metal nanoparticles only inside of the zeolite pores. First, 

the size of cobalt nanoparticles inside of the pores of zeolite should be smaller or 
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comparable to the zeolite micropores. According to earlier studies [18, 19], the decrease in 

the size of Co nanoparticles leads to lower intrinsic activity in FTS and higher methane 

selectivity. Second, localization of cobalt nanoparticles inside the zeolite pore can facilitate 

cracking and isomerization of hydrocarbons produced in FTS. Finally, hydrocarbon 

synthesis on cobalt nanoparticles in the zeolite micropores can introduce the effect of shape 

selectivity [20]. 

The parent nanocomposite Co/zeolite catalysts with cobalt species located both 

inside and outside of the zeolite pores show a rather broad hydrocarbon distribution with a 

significant fraction of long chain hydrocarbons (Table 4.1). 

Earlier studies [15] indicate that both zeolite pore structure and acidity play key 

roles in the catalytic performance. For the light C5-C12 hydrocarbons, the isomerization 

activity is mostly a function of the number of strong acid sites. The ZSM-5 zeolite has been 

shown to have the highest concentration of the strongest Brӧnsted acid sites compared to 

the MOR and BEA zeolites [15]. This is why a higher concentration of isoparaffins was 

observed over Co/ZSM-5, as show in Table 4.3. 

Table 4.3 Catalytic properties of materials (Conditions: T = 250 ⁰C, P = 20 bar, 

H2/CO = 2, GHSV = 1.7-5 L/g h). 

 

Material XCO (%) 
CTY  

(10-4 mol/gCo s) 

SCH4 

(%) 

SC2-C4 

(%) 

SC5-C11 

normal 

(%) 

SC5-C11 

iso 

(%) 

SC12≥ 

(%) 

Cis

o/

Cn 

Co/ZSM-

5 
27 6.8 12 13 6 16 52 2.6 

Co/ZSM-

5-HPW 
14 5.0 28 13 6 32 21 5.3 

Co/MOR 40 9.7 9 10 13 6 62 0.5 

Co/MOR-

HPW 
18 4.8 26 11 5 26 32 5.2 

Co/BEA 18 4.2 10 14 12 8 56 0.6 

Co/BEA-

HPW 
22 5.5 25 14 7 35 21 5.8 
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For longer-chain hydrocarbons, because of their slow diffusion, the selectivity to 

the branched hydrocarbons is mainly influenced by spatial effects such as the pore size and 

open character of the zeolite pore structure as well as the location of Co species in the 

zeolite structure. Broad application of mesoporous zeolite materials for the synthesis of 

isoparaffins supports this assumption [8, 9, 10]. The large-pore zeolites like BEA and MOR 

exhibit higher selectivity to long chain isoparaffins and a lower selectivity to linear C20+ 

hydrocarbons (Figure 4.9). The selectivity to the long-chain isoparaffins is favored by the 

proximity between Co metallic species and Brӧnsted acid sites.  

 
 

Figure 4.9 Hydrocarbon distribution in liquid products. 
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The presence of olefins is a key factor for isomerization activity. Earlier studies 

show that an increase in the isomerization and cracking activity over hydrocracking 

catalysts (like Pt/USY and Ni/ZSM-5) coincided with increase of the chain length of 

hydrocarbons [21]. The rate of isomerization is therefore a function of both diffusion and 

intrinsic catalytic activity. 

The catalytic performance of the cobalt zeolite nanocomposites after cobalt 

extraction from the zeolite outer surface by HPW was rather different in comparison with 

the parent materials. First, the overall activity significantly decreased after the HPW 

treatment. This seems to be consistent with the decrease in the overall metal content. 

Interestingly, the cobalt time yield (CTY) has also significantly decreased (Table 4.3) 

compared to the parent cobalt zeolite nanocomposite. 

It is known that smaller cobalt particles exhibit different behavior in FTS. 

Kuznetsov [22] and Bartholomew [23] in the pioneering works observed much lower FT 

turnover frequency on small cobalt nanoparticles. Those observations have been supported 

with more recent results of the group of de Jong [24]. The decrease in the size smaller than 

6 nm resulted in lower FT turnover frequency and higher methane selectivity. 

It is interesting to note that CTY over all catalysts after the HPW treatment is very 

similar (approximately 5∙10-4 mol/gCo s) which might be explained by similar structure and 

size of Co nanoparticles inside of the pores in all zeolites. The slightly higher CTY of 

Co/BEA-HPW in comparison with the parent catalyst could be explained by easier access 

of syngas to the cobalt metal sites after the removal of large cobalt nanoparticles from the 

zeolite outer surface. This is also consistent with the increase in the pore volume of the 

Co/BEA zeolite after the HPW treatment (Table 4.1, Figure 4.1). 

The distribution of hydrocarbons produced on the impregnated samples before and 

after the HPW treatment is shown in Figure 4.10 and Table 4.3. The selectivities are 

presented at comparable conversion, which was obtained by the GHSV variation. The 

results are presented after reaching the steady-state activity of the catalysts. Note that the 

selectivity to methane significantly increases from about 10% over the parent catalysts to 

25% over all the catalysts after the HPW treatment. Higher methane selectivity could be 
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explained by the presence of smaller Co nanoparticles which have higher intrinsic 

methanation activity [25]. The selectivity to the C2-C4 hydrocarbons is only slightly 

affected by the HPW treatment. 

 

Figure 4.10 Selectivity to hydrocarbons during FTS over Co/zeolite catalysts 

before and after cobalt extraction with HPW at CO conversion of about 20 %. 

Conditions: T = 250 ⁰C, P = 20 bar, H2/CO = 2, GHSV = 1.7-5 L/g h. 

 

It is interesting to note that the C2-C4 hydrocarbon fraction does not contain olefins 

over the catalysts after HPW treatment in comparison with significant amounts of olefins 

over catalysts before HPW treatment (Table 4.3). This fact might be explained by 

participation of the C2-C4 olefins in oligomerization over acid sites with formation of 

isomerized short chain hydrocarbons. According to the literature, the oligomerization of 

light olefins proceeds at the similar reaction conditions [27].  

The most significant differences in the hydrocarbon selectivities have been 

observed in the middle range (C5-C12) branched hydrocarbons (Table 4.3 and Figure 4.10). 

The selectivity to this hydrocarbon fraction increases up to 5 times in comparison with the 

parent catalysts reaching the 35% selectivity over the Co/BEA-HPW nanocomposite.  

The ratio of isoparaffins to linear paraffins in the C5-C12 range, which correlates 

with the quality of gasoline fuel, also significantly increases in the cobalt zeolite materials 

containing cobalt nanoparticles only in the zeolite micropores and reaches 5.2-5.8 (Table 

4.3). At the same time, the selectivity to long chain hydrocarbons was significantly lower 
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over the catalysts with cobalt extracted from outer surface in comparison with the parent 

impregnated catalyst.  

Lower selectivity to long chain hydrocarbons can be due to either to fast secondary 

reactions of the hydrocarbons which form by FT reaction or to the steric effects which 

restrict chain growth in the zeolite pores. The secondary reactions which occur over the 

acid sites in the zeolites include hydrocracking and isomerization of the primary 

hydrocarbons. Cracking of primary FT hydrocarbons should lead to a markedly higher 

selectivity to light hydrocarbons. Note that the C2-C4 selectivities are not really influenced 

by cobalt extraction from the zeolite outer surface. Low selectivity to light hydrocarbons 

observed over cobalt zeolite nanocomposites is indicative of low contribution of 

hydrocracking reactions.  

Low impact of hydrocracking reactions have been observed earlier by application 

of mesoporous zeolites [28]. It is expected that use of a mesoporous zeolite to replace the 

conventional microporous zeolite may avoid the overcracking because of the improved 

mass transport, decreasing the selectivities to light alkanes. 

The hydrocarbon selectivities in FTS can be also affected by the shape selectivity 

effects. The effect of shape selectivity in FTS was first uncovered by Fraenkel in 1980 [27]. 

It has been shown that cobalt metal clusters incorporated inside very small cages of A 

zeolite (1.1 nm) produce mainly propane and propylene. This effect has been later 

confirmed over different bifunctional Co−zeolite catalysts [28, 29, 30]. More recently, the 

effect of shape selectivity was also observed in FTS on Co/SBA-15. A decrease in the 

SBA-15 pore size from 11 to 5 nm led to a significant decrease in the C19+ selectivity from 

15% to 4% [31]. 

It can be expected that the shape selectivity will impose some steric limitations on 

the hydrocarbon chain growth in FTS, while no influence of steric limitations is expected 

on the catalyst isomerisation activity. Thus, isomerization over zeolite acid sites and shape 

selectivity due to the localisation of cobalt nanoparticles in the zeolite pores give main 

impacts on the hydrocarbon distribution over cobalt zeolite nanocomposites in FTS. The 

limitation of the chain growth in the pores of zeolite results in a non-linear ASF distribution 
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over nanocomposite catalysts after cobalt extraction with HPW (Figure 4.11). Similar 

effect of the restriction of the hydrocarbon chain growth has been observed earlier for FTS 

in nanoreactors [31]. 

 
 

Figure 4.11 Anderson-Schulz-Flory SF distribution of hydrocarbons produced in 

Fischer-Tropsch synthesis over Co/Zeolite nanocomposites before and after HPW 

treatment. 

 

It is interesting to note that the nanocomposites containing only cobalt species in 

the zeolite pores demonstrate almost absence of linear olefins in the products in comparison 

with non-treated materials (Figure 4.12-4.14).  
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Figure 4.12 Distribution of isomers, linear paraffins and linear olefins depending on the 

chain length for Co/ZSM-5 (open symbols) and Co/ZSM-5-HPW (filled symbols). 

 

 

 

 
Figure 4.13 Distribution of isomers, linear paraffins and linear olefins depending on the 

chain length for Co/MOR (open symbols) and Co/MOR-HPW (filled symbols). 
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Figure 4.14 Distribution of isomers, linear paraffins and linear olefins depending on the 

chain length for Co/BEA (open symbols) and Co/BEA-HPW (filled symbols). 

 

Our previous observations [15] indicate that a decrease in the amount of olefins in 

the products correlate with an increase in the selectivity to isomerized hydrocarbons. 

Indeed, the reaction mechanism implies protonation of olefins with subsequent 

isomerization or cracking of carbocations and hydrogenation of the products. Our results 

suggest that olefin protonation and subsequent isomerization proceed much faster than 

olefin secondary hydrogenation to linear paraffins. 

Development of hierarchical zeolite materials in order to decrease diffusion 

limitations and overcracking of long chain hydrocarbons in FTS has been a subject of 

several recent reports. This strategy resulted in the enhanced selectivity to C5-C11 

hydrocarbons in FTS. Thus, the C5-C11 hydrocarbon selectivities of about 50-60% have 

been earlier reached over mesoporous catalysts prepared by the groups of Kapteijn [10] 

and Wang [28].  

Lower fraction of branched hydrocarbons in the reaction products led however, to 

the low octane number gasoline fuel. The ratio of isoparaffins to n-paraffins observed in 

FTS over cobalt zeolite catalysts is usually close to unity. Recently Wang and co-workers 

has reported the isoparaffins to n-paraffins ratio of 3 over Ru catalysts supported by the 

mesoporous BEA zeolites [8]. The results presented in this work show that the ratio can be 

increased to 6 over cobalt catalyst prepared by selective extraction of cobalt species from 

the zeolite outer surface by HPW. The main factor, which significantly increases the 
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efficiency of isomerization over the nanocomposite catalysts seems to be a proximity 

between acid and metallic sites. This proximity might be attained by localization of metal 

nanoparticles inside of the zeolite pores. In this case, a strong synergetic interaction 

between dehydrogenation/hydrogenation and isomerization functions might be observed 

with a significant increase in the selectivity to isomerized products.   

4.3 Conclusion 
 

The extraction of the cobalt nanoparticles of the external surface of ZSM-5, MOR 

and BEA zeolite crystals was successfully performed through acid leaching with the 

phosphotungstic acid (H3PW12O40). The removal of the external cobalt oxide particles led 

to a decrease in the catalysts activity (on cobalt basis) due to the diffusion limitations and 

more difficult reduction of the metal inside the zeolite framework. On the other hand, on 

the washed catalysts, the hydrocarbon selectivity was shifted to products with fewer 

carbons, i.e. less wax. A higher isomerization degree was observed in particular in the 

gasoline range (C5-C12). Thus, by removing the external particles from the zeolite crystals 

external surface it is possible to improve FT selectivity for the direct production of fuels, 

i.e. gasoline. The proposed method of selective removal of external nanoparticles 

demonstrates excellent perspectives for the synthesis of the materials with metal localized 

only inside of the pores of zeolite. Application of these materials in FTS has demonstrated 

their high efficiency in the selective synthesis of isomerized hydrocarbons from syngas 

with the highest ratio of isoparaffins to n-paraffins. 

The strategy developed in the present work might be efficiently extended for the 

synthesis of other metal/oxide-zeolite nanocomposites with selective localization of metal 

inside of the zeolite pores. The main advantage of this method is its simplicity due to the 

combination of conventional impregnation and extraction using bulky acids. The proposed 

methodology can be therefore easily scaled up for the industrial applications. Note however 

that the extraction using bulky acids might be used only for non-noble metal catalysts. The 

extraction of noble metals from the zeolite outer surface will require use of other bulky 

ligands such nitriles or tetraalkylammonium hydroxides. Variation of the extraction agent 
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diameter might be also used for selective introduction of metal species into mesoporous 

materials. 
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Chapter 5. Elucidation of deactivation phenomena in cobalt 

catalysts for Fischer Tropsch synthesis using SSITKA  

  

5.1 Introduction  

 

Deactivation has been a major limitation for obtaining higher and enduring 

hydrocarbon productivity [1, 2, 3, 4] on supported cobalt catalysts in FTS. Catalyst 

deactivation leads to the decrease in catalyst productivity, a loss of the active phase, 

recurrent startups and shutdowns of the reactor and replacement of relatively expensive 

catalysts. 

Catalyst stability may be optimized by both catalyst structure and reactor operating 

conditions. The deactivation can be caused by an interplay of several mechanisms, such as 

cobalt sintering [1, 5, 6, 7] at micro- [8] and nano-scale level, cobalt surface [9] or bulk 

oxidation [4, 10, 11], carbon deposition [8, 12, 13], catalyst poisoning [14, 15] and 

carbidization [6].  

Considering the effect of catalyst deactivation on FT reaction rate, two different but 

complementary phenomena can occur. First, catalyst deactivation coincides with the 

decrease in the total number of active sites for FTS. This effect is more pronounced if all 

cobalt surface sites have similar intrinsic activity (turnover frequency, TOF). In this case, 

the drop in the FT reaction rate during deactivation would be proportional to a decrease in 

the number of cobalt surface sites. Note however, that the catalyst may contain active sites, 

which may differ significantly in their intrinsic activity. Thus, another possible 

phenomenon can occur in this case.  
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Catalyst deactivation can coincide with selective poisoning of the active sites which 

are the most active and which play the most important role in the catalytic reaction, while 

the total number of active sites can be only slightly reduced by the deactivation. 

The lifetime of FT catalysts can be extended by regeneration and rejuvenation 

procedures [1, 6, 8, 12, 14, 15]. Regeneration of the catalyst can efficiently restore the 

activity and should be capable of removing poisons and coke from the surface, as well as 

redisperse cobalt nanoparticles that have sintered. Diverse regeneration procedures of FT 

catalysts involve solvent washing, hydrogen treatment, and steam treatment, and oxidative 

and reductive treatments of spent FT catalysts [16]. Often the regeneration procedures 

include a combination of the above described processes. One of the possible and most 

common ways to regenerate FT catalysts is a periodic rejuvenation in hydrogen.  

The advantage of the reductive rejuvenation with hydrogen is that this treatment 

may be performed in situ in fixed bed, slurry or microreactors. The rejuvenation with 

hydrogen leads to the removal of most of carbon species and reversible poisons (e.g. 

nitrogen containing compounds) and possibly to the reduction of cobalt which might be 

partially oxidized in the presence of FT reacting medium (e.g. surface cobalt oxidation) 

[9]. Much smaller effect of treatment with hydrogen can be expected however on more 

refractory deposited atomic or polymeric carbon species [16]. 

In addition to coke, several impurities in syngas may cause irreversible deactivation 

of FT catalysts. A number of reports [15, 17, 18, 19, 20, 21, 22, 23] have recently addressed 

the effect of sulphur impurities on the stability of cobalt FT catalysts. Much less attention 

has been paid to the effects of nitrogen compounds in syngas on the performance and 

stability of FT catalysts. The reported results however, have been rather contradictory.  

Borg et al. [21] studied the catalytic performance of alumina and titania supported 

catalysts in the presence of 4 ppm of NH3 in syngas. No effect of ammonia on the catalytic 

performance was observed. Leviness et al. [24] found that nitrogen compounds produce 

reversible effect on the catalytic performance of cobalt catalysts. The catalyst activity was 

restored by treatment in pure hydrogen.  
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Pendyala et al. [25] studied the effect of addition of ammonia on the performance 

of platinum promoted cobalt/alumina catalysts. A significant irreversible catalyst 

deactivation was observed at ammonia levels from 1 to 1200 ppmw. In addition, in the 

presence of ammonia, the catalyst exhibited lower methane and higher C5+ hydrocarbon 

selectivity, which were attributed to selective poisoning of the methanation sites.  

Ma et al. [26] studied the effect of different ammonia containing compounds on the 

performance of precipitated iron catalysts in a slurry reactor. No deactivation was observed 

at low ammonia concentrations, while important catalyst deactivation was observed at 

concentrations of ammonia higher than 400 ppm.  

In the work by Sango et al. [27] significant amounts of ammonia (up to 10 wt. %) 

were added to the syngas feed over unsupported iron catalysts. The catalysts did not shown 

any noticeable deactivation at the ammonia concentration below 2% wt. In addition to the 

usual FT products such as hydrocarbons and oxygenates, the reaction yielded long chained 

aliphatic amines, nitriles and amides, while the selectivities to alcohols, aldehydes and 

organic acids were much lower in the presence of ammonia.  

SSITKA can be particularly useful to identify the origin of the loss of activity and 

selectivity, because it yields independent information about the number of active sites and 

also allows measuring their intrinsic activity.  

In this chapter, the goal is to elucidate and to characterize the deactivation 

phenomena occurring with cobalt catalysts during FTS using pure syngas and syngas 

containing nitrogen compounds. Combining SSITKA with the extensive characterization 

of deactivated samples yields important insights into the deactivation phenomena and 

represents an efficient strategy for the design of more stable cobalt catalysts for FTS. The 

new approach provides an opportunity to clearly identify different deactivation 

mechanisms as well to determine surface kinetic parameters such as the number of 

intermediates and their reactivity at different deactivation and rejuvenation steps. The 

influence of catalyst rejuvenation via the pretreatment with hydrogen on the number of 

active sites and their kinetic parameters has also been evaluated. 
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5.2 Results and discussion 

5.2.1 CO adsorption 

 

Prior to the catalytic test, the CoPt/SiO2 catalyst was reduced in hydrogen flow of 

8 cm3/min at 400°C. After that, switches between 12CO/He/Ne and 13CO/He were 

performed in the absence of catalytic reaction at 100 °C to evaluate the number of CO 

adsorption sites present in the catalyst (Figure 5.1). No carbon dioxide or hydrocarbon 

formation was observed under these conditions. 

 

Figure 5.1 Normalized concentrations of 12CO and Ne during switches from 12CO/He/Ne to 
13CO/He at 100 °C. 

Carbon monoxide transient response shows a delay relative to neon (Ne) which can 

be attributed to carbon monoxide adsorption. The observed delay is due to the CO 

interaction with cobalt active sites. The delay indicates the presence of reversibly adsorbed 

carbon monoxide molecules on the catalyst surface which are in equilibrium with carbon 

monoxide in gaseous phase. The transient delay (CO-Ne) which represents the average 

12CO
Ne 
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carbon monoxide residence time on the catalyst surface was calculated from the SSITKA 

transient curves.  

Carbon monoxide adsorption was completely reversible under these conditions 

(Figure 5.1). Calculation using the results obtained at 100 °C (without the catalytic 

reaction) gave 107.3 ± 6.8 mol/g as the number of the adsorption sites present in the 

catalyst and carbon monoxide surface residence time of 7.7 s.  

5.2.2 Catalytic behavior of silica supported cobalt catalyst in carbon 

monoxide hydrogenation 

 

After reduction (procedure already mentioned in Section 5.2.1), the activated 

sample was exposed to a steady flow of syngas under FT reaction conditions (GHSV = 

10 800 mL/g h, ambient pressure, 250 °C, H2/CO ratio = 2). Because of higher temperature, 

the main products of carbon monoxide hydrogenation under these conditions during the 

whole time of reaction were methane (methane selectivity >60%) and water. The duration 

of the whole catalytic tests was at least 150 h.  

Figure 5.2 shows that the CO conversion decreases as a function of time on stream 

from 18% to 8%, which is probably assigned to catalyst deactivation. Interestingly, the 

methane selectivity is not much affected by the conversion and remains high during the 

entire catalytic test. 
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Figure 5.2 CO conversion and methane selectivity as functions of time on stream during FTS 

under methanation condition (1 atm, 250°C, H2/CO = 2, GHSV = 10 800 mL/g h). 

 

The SSITKA experiments were performed with the catalyst at different times on 

stream (1 h, 22 h, 40 h and 150 h). The switches between 12CO/H2/He/Ne to 13CO/H2/He 

were conducted with simultaneous measurements of transient responses of unlabeled and 

13C-labelled CO and CH4. The SSITKA data obtained after different times on stream are 

shown in Figures 5.3a and b. A delay is observed between response of inert tracer Ne (Ne) 

and 12CO (CO) (Figure 5.3a). The information about number of adsorbed species present 

on the catalyst surface as a function of time and deactivation is given in Table 5.1.  

 

 

 

 

 

 

 

 

SCH4 (%) 

XCO (%) 
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              Table 5.1 SSITKA results (P = 1 atm, T = 250 °C, H2/CO = 2, GHSV = 10 800 mL/g h). 

TOS 

(h) 

NCO
a 

(µmol/g) 

NCH4
a 

(µmol/g) 

CO 

(s) 

CH4 

(s) 
XCO 

TOF 

SSITKA
b  

(s-1) 

TOFc 

(s-1) 

1 56.0 39.6 5.2 17.0 18% 0.022 0.013 

22 53.4 27.1 4.5 18.8 14% 0.013 0.011 

40 51.2 23.2 4.1 22.0 11% - - 

150 39.4 22.7 3.1 29.2 7% 0.007 0.005 

a   𝑁𝑖 =
𝐹𝑖,𝑜𝑢𝑡  

𝑊
∙  𝜏𝑖  (Experimental error in  the number of active sites equal to 6%). 

b TOFSSITKA = fractional coverage/surface residence time of CHx. 

 

Interestingly, the carbon monoxide surface residence time (CO) and number of 

carbon monoxide adsorption sites (NCO) decrease with time on stream (Table 5.1, Figure 

5.3a). When the catalyst has been exposed to syngas for a longer time on stream, the delay 

between Ne and 12CO responses decreases, while the slope of the 12CO transient response 

curves is not much affected by the reaction time. 

Analysis of the SSITKA data suggests a decrease in reversible carbon monoxide 

adsorption during the reaction. Note that 22 h of the reaction are sufficient for producing a 

decrease in the number of sites for reversibly adsorbed carbon monoxide. Carbon 

monoxide residence time also decreases with time on stream (Figure 5.3a). Several 

deactivation phenomena responsible for these modifications may occur under these 

reaction conditions (e.g. cobalt sintering, carbon deposition, oxidation etc) [5, 28, 29].  

An alternative interpretation of the decrease in surface coverage of CO with the 

time on stream measured by SSITKA can be due to the formation of inactive CO species 

irreversibly adsorbed on the metal sites. The effect can be similar to that observed in the 

WGS reaction on supported Pt catalysts [30] where only part of adsorbed linear CO was 

considered as an active intermediate in WGS. In contrast to the 12CO isotopic response, the 

switches between 12CO/H2/He/Ne to 13CO/H2/He produce different effects on the 12CH4 
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transient (Figure 5.3 and Table 5.1). The slope of the 12CH4 response becomes flatter with 

time on stream.  

 

Figure 5.3 12CO (a) and 12CH4 (b) normalized concentrations during switches from 
12CO/H2/He/Ne to 13CO/H2/He on CoPt/SiO2 at different times on stream. Reaction conditions: 

1 atm, GHSV = 10 800 mL/g h, 250 °C, gas composition 1CO/2H2/5.5He/0.5Ne. 

 

Quantitative analysis of the 12C methane SSITKA responses indicates a decrease in 

the number of surface intermediates leading to methane under these conditions (Figure 

5.3b). Interestingly, for the fresh catalyst after 1 h on stream, the sum of the number of sites 

of carbon monoxide reversible adsorption and CH4 intermediates measured by SSITKA at 

the beginning of the reaction is almost equal to the number of sites of reversibly adsorbed 

carbon monoxide determined by carbon monoxide desorption experiments conducted 

without reaction at 100 °C. This suggests that carbon monoxide adsorption under the 

1h 

22h 

40h 

150h 

Ne 

12CO 

1h 

22h 

40h 

150h 

Ne 

12CH4 
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reaction conditions of FTS may lead either to reversible CO adsorption or to direct or 

hydrogen-assisted dissociative CO adsorption taking place on cobalt metal sites and 

leading in turn to CH4 intermediates.  

Most of CO molecules adsorb molecularly on the surface of the cobalt 

nanoparticles, but some undergo dissociation which can be assisted by hydrogen [28]. The 

surface residence time (CH4) increases with time on stream. This suggests a lower 

hydrogenation rate of CHx intermediates in the partially deactivated catalyst. It should also 

be noted that the decrease in the number of surface CHx species occurs much faster than 

that in the number of sites for reversibly adsorbed carbon monoxide (Figure 5.4a,b).  

  

Figure 5.4 Concentration of CO (a) and CH4 (b) intermediates and their surface residence 

time versus time on stream. 

 

Thus, catalyst deactivation leads to a decrease in the number of reversibly adsorbed 

CO molecules and most active CH4 intermediates. The residence times of CO and CH4 
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intermediates are also affected. The residence time for adsorbed molecular CO decreases, 

while the residence time of CH4 species increases. This can be interpreted as preferential 

poisoning of stronger sites of CO molecular adsorption and most active CH4 methanation 

sites.  

Note that the number of CH4 intermediates decreases much faster than the number 

of reversibly adsorbed CO molecules (Figure 5.4). In addition, SSITKA was also indicative 

of shorter carbon monoxide residence times and longer CH4 residence times on partially 

deactivated catalysts. This suggests preferential poisoning of the stronger carbon monoxide 

adsorption sites and the sites which form the most reactive CH4 intermediates.  

Some decrease in hydrogen coverage of the catalyst surface during the deactivation 

can also contribute to the increase in the CH4 residence time. Indeed, it has been previously 

shown [31] that molecular adsorption of CO on cobalt metal sites usually proceeds without 

any activation barrier. Thus, the rate establishing equilibrium between adsorbed and 

gaseous CO molecules is principally affected by the activation energy of CO desorption 

from the catalyst. Catalyst deactivation results in the decrease in the concentration of the 

sites on which CO is strongly adsorbed and thus in apparent activation energy of CO 

desorption.  

On the other hand, catalyst deactivation leads to longer residence times of adsorbed 

CH4 species. Previous report [32] suggest that hydrogenation of CHx species can be the 

rate limiting step under these conditions. The observed increase in the CH4 surface 

residence time may therefore indicate a slower rate of methane production over partially 

deactivated catalysts. 

 

5.2.3 Characterization of spent catalysts 

 

The spent catalyst samples were removed from the reactor at different reaction 

times and extensively characterized by TEM and TPH-MS. TEM images of the parent 

sample and counterparts after different times on stream (1 h, 22 h and 150 h) are given in 
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Figure 5.5. In the sample exposed for 1 h to the reaction conditions, the TEM images 

display mostly cobalt nanoparticles with a diameter of about 20 nm dispersed on silica 

support.  

 

 

Figure 5.5 TEM images of the CoPt/SiO2 catalyst after different times on stream 1 h (a), 22 h 

(b), 150 h (c). 

The TEM results are consistent with the XRD data of the calcined catalyst, which 

also suggest a cobalt particle size in the same range. Conducting reaction for 22 h leads 

only to a slight increase in the apparent cobalt particles size. Previous investigations [5, 6, 

7, 33] suggest that cobalt sintering in supported catalysts principally occurs during the 

initial reaction time. Note that we did not observe any major cobalt sintering during the 

first 22 h of the reaction. Interestingly, after 150 h of the reaction very large cobalt 

a b

c
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agglomerates probably consisting of several individual cobalt nanoparticles were detected 

in the catalysts. 

The silica support texture (average pore size of 10 nm according the Fuji-Silysia 

website) could be responsible for this large cobalt agglomeration at 150 h, even in low 

water partial pressure condition. Figure 5.6 shows the cobalt agglomerate size distributions 

for the catalyst samples after 1 h and 150 h of FT reaction. The whole distribution shifts to 

larger values after conducting FTS. The average size of agglomerates increases to 130 nm 

for the catalyst exposed to FT reaction for 150 h. It is expected, however, that the presence 

of these larger cobalt agglomerates should not significantly affect the FT reaction rate. 

Previously it was shown [33, 34] that the FT reaction rate on cobalt catalysts is a function 

of individual cobalt crystallites rather than of larger cobalt nanoparticle agglomerates. 

 

 

Figure 5.6 Histograms of cobalt agglomerate size distribution after 1 h and 150 h of reaction. 

 

Several correlations are observed in this work between the SSITKA parameters and 

the structure of spent catalysts. On the one hand, TEM of the spent catalysts was indicative 

of very slight cobalt sintering occurring under our reaction conditions during the initial 

reaction time followed by formation of larger cobalt nanoparticle agglomerates at longer 

time on stream. In agreement with previous reports [33, 35], the formation of larger cobalt 
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nanoparticle aggregates should not significantly affect the FT reaction rates. Indeed, if the 

reaction rate was principally affected by the size of cobalt agglomerates, the increase in the 

size of cobalt agglomerated observed by TEM (from 20 nm to 130 nm) should correspond 

to almost 6 times the decrease in the FT reaction rate. This decrease, however, did not 

occur. Some influence of the agglomeration of cobalt nanoparticles on the FT catalytic 

performance cannot, however, be completely excluded. 

Carbon species deposited on the catalyst surface during the FT reaction were 

investigated by TPH-MS. Figure 5.7 displays curves of methane production during heating 

of spent silica supported cobalt catalysts in hydrogen. 

 

 

Figure 5.7 TPH MS profiles (m/e = 15) measured on the CoPt/SiO2 catalyst at different reaction 

times (a), and after rejuvenation conducted after 22 h of reaction (b). 
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Only methane formation was detected by the signal (m/e = 15). Analysis of 

variation of the m/e = 28 signal during TPH suggests that no higher hydrocarbons were 

produced. A broad methane peak in the temperature range of 85 °C – 280 °C was observed 

in the TPH profile after the catalyst exposure to syngas during the first 15 min of reaction. 

As the reaction proceeds, two phenomena occurred. The intensity of the main broad peak 

decreases, while additional peaks appear at higher temperatures. The formation of carbon 

species calculated by the peaks of TPH-MS is given in Table 5.2.  

The presence of several TPH peaks can be attributed to different carbon species 

present on the catalyst surface. It is interesting to note that the concentration of carbon 

species determined by TPH is significantly smaller than the decrease in the number of CHx 

species during the deactivation. Previously, formation of carbon species on cobalt catalysts 

during the FT catalytic tests in a slurry reactor was studied in a greater detail by Peña et al. 

[8, 13]. The methane production peaks observed at 250 °C were attributed to 

hydrogenolysis of adsorbed hydrocarbon fragments, including CHx species yielding 

methane on hydrogenation.  

Table 5.2 Concentration of carbon species observed by TPH MS with SSITKA (1 atm, 

250 °C, H2/CO = 2, GHSV = 10 800 mL/g h). Rejuvenation conditions are given in Table 5.1. 

Time on stream 

Concentration of carbon species (µmol/g) 

RSSITKA (µmol/g s) Peak A:  

85 °C – 280 °C 

Peak B:  

310 °C – 450 °C 

10 min 2.89 - 2.88 

1 h 2.34 0.66 2.19 

22 h 1.95 1.19 1.2 

Rejuvenated 

sample 
2.28 0.37 2.89 
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These adsorbed hydrocarbons are not likely relevant to catalyst deactivation. The 

high temperature peaks at 300-350 °C were assigned to more strongly adsorbed 

hydrocarbons probably located inside the catalyst pores. Those suggestions are consistent 

with the data of Moodley [12] and Gruver [35]. In addition, it should be noted that the 

peaks at 250 °C might have been also assigned to the presence of cobalt carbide. Several 

in-situ studies [4, 6, 36, 37] were indicative of cobalt carbide formation under the 

conditions of FTS. Surface cobalt carbide is, however, usually unstable after exposure to 

air and thus cannot be observed by the conventional TPH method [8, 12, 13].  

5.2.4 Catalyst rejuvenation 

 

A noticeable decrease in carbon monoxide conversion (Figure 5.2) was observed 

during FTS, which suggests catalyst deactivation. Catalyst rejuvenation was conducted at 

250 °C during 2 h using the H2/N2 (5:6) gas mixture. After rejuvenation, the flow of syngas 

(H2/CO ratio = 2) was reestablished to the catalyst bed. It can be expected that the 

rejuvenation in hydrogen can reduce the concentration of carbon species formed on the 

catalysts during FT reaction and recover the catalytic activity. Indeed, rejuvenation in 

hydrogen resulted in a higher FT reaction rate (Table 5.3). 

 

Table 5.3 SSITKA results obtained during reaction after rejuvenation. 

Reaction conditions: 1 atm, 250 °C, H2/CO = 2, GHSV = 10 800 mL/g h.  

Rejuvenation conditions: 1 atm, 250 °C, during 2h, H2/N2=5/6, GHSV = 13 200 mL/g h. 

Time of 

reaction 

after H2 

rejuvenation 

τCO (s) τCH4 (s) NCO (µmol/g) 
NCH4 

(µmol/g) 
XCO 

10 min 

1 h 

5.5 

5.2 

16.8 

17.6 

53.6 

53.6 

48.6 

44.3 

30% 

22% 

 

The influence of catalyst rejuvenation in hydrogen on the number and reactivity of 

the surface intermediates was studied using SSITKA. The 12CO/H2/He/Ne to 13CO/H2/He 

switches were realized after 10 min and 1 h of reaction over the rejuvenated catalyst. Table 
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5.3 and Figure 5.8 show that both the concentration and residence time of surface 

intermediates were affected by the rejuvenation. Interestingly, the concentration of the 

reversibly adsorbed CO molecules was not significantly changed, while the concentration 

of CH4 surface intermediates leading to methane (NCH4) almost doubled after conducting 

the rejuvenation. This suggests that treatment in hydrogen results in hydrogenation of 

carbon species, which can block the sites responsible for methane formation. 

In addition, the CH4 residence time decreases after the rejuvenation, while CO 

residence time slightly increases after the rejuvenation. The decrease in CH4 residence time 

could be indicative of a higher CH4 hydrogenation rate in the rejuvenated sample, while 

the increase in CO residence time suggests reemergence of stronger sites for reversibly 

adsorbed CO.  

 

 

Figure 5.8 SSITKA parameters before and after H2 rejuvenation (Reaction: 250 °C, H2/CO ratio 

= 2, 1 atm, GHSV= 10 800 mL/g h; rejuvenation: 250°C, 2 h, 1 atm, H2/N2 = 5/6. 

 

Exposure of the regenerated catalyst for 1 h to the FT reaction conditions again 

leads to a decrease in the number of CH4 intermediates and a slight increase in CH4 

residence time (Figure 5.8, Table 5.3). This probably corresponds to a built up of carbon 
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species, blocking the most active surface hydrogenation sites and lowering the hydrogen 

surface coverage. Similar phenomena occurred on the cobalt catalyst during the initial 

episodes of FTS with the freshly activated catalyst.  

The catalyst regenerated in hydrogen was characterized by TPH-MS (Figure 5.7b). 

Compared to the catalyst before rejuvenation, the regenerated sample showed preferential 

removal of carbon species, which exhibit high temperature TPH peaks and which can 

probably block the surface hydrogenation sites. On the one hand, TPH profiles conducted 

with the spent catalysts which have been exposed to syngas even for a relatively short time, 

show methane production peaks which can be attributed to hydrogenation of deposited 

carbon species. Exposure of the cobalt catalyst to FT reaction conditions for a longer time 

results in a progressive increase in the fraction of more difficult to hydrogenate carbon 

species.  

Carbon deposition seems to result in blocking of the most active FT sites located 

on the steps and edges of cobalt nanoparticles and thus leads to a major drop in the FT 

reaction rate. Carbon species deposited on the cobalt steps seem to be more strongly bonded 

to the surface. They exhibit high temperature TPH peaks and are more difficult to 

hydrogenate than those located on cobalt terraces.  

Some hypotheses about the structure of the most active cobalt sites can be built on 

the basis of molecular modeling. Recently conducted DFT calculations [38, 39] suggest 

that direct carbon monoxide dissociation is more difficult on cobalt flat terraces such as (0 

0 0 1) where the CO activation can only proceed through the H-assisted pathway [40, 41, 

42]. However, the sites situated on the steps of cobalt particles can be more efficient in CO 

activation. Several reports indicate [38, 39, 43] that CO dissociation on these sites can even 

occur directly without participation of hydrogen.  

Catalyst treatment in hydrogen results in some recovery of the catalytic activity 

(Figure 5.8). The concentration of carbon species exhibiting a TPH methane peak at 350 °C 

was also slightly reduced after catalyst rejuvenation in hydrogen. The surface residence 

time of CHx species also decreases after the rejuvenation. This also suggests partial 

recovery of the most active sites after hydrogen treatment. 
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5.2.5 Kinetic modeling  
 

In order to understand the effect of the deactivation phenomena on methanation 

reaction pathway and consequently on the values of rate constants of each mechanism, 

SSITKA modeling study was performed using the PFR approach with an set of PDE (see 

Chapter 2). The Table 5.4 shows the structure parameters of cobalt supported on silica used 

in the set of the partial differential equations (PDE) applied on EMSO software.  

Table 5.4 Parameters of the PDE set of equation applied on the EMSO software. 

CoPt/SiO2
a 

(kg/m3) 

Inert SiCa 

(kg/m3) 

Catalyst bed porosityb 

(m3
gas/m3

reactor) 

Density of catalyst 

bed (kg/m3) 

Surface 

residence 

timec (s) 

2610.2 3197.9 0.97 796 0.37 

 

The modeling approach described in Chapter 1 was used to estimate the kinetic 

parameters according to six different mechanisms (M1 to M6, see Figure 1.8 in Chapter 1). 

Figure 5.9 shows an example of the model fitting to the transient curves of 12CO and 12CH4, 

generated from SSITKA when applied after 1 h of operation.  

 

 

 

 

 

 

 

 

 

 

Figure 5.9 SSITKA data experimental and modeling results at 1h of reaction for M3 and M4. 
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The same analysis was performed for SSITKA data generated after 1 h and 150 h 

of operation. A complete set of parameters for the three experiments according to the 

proposed mechanisms (M1 to M6) is given in Table 5.5. 

Table 5.5 Estimated parameters for each relevant model and case (TOS = 1 h, 24 h and 

150 h), including standard deviation (dev). 

1 h of 

reaction 

Model 1 Model 3 Model 4 Model 5 

k dev k dev k dev k dev 

k ads 

(m3/kg s) 
4.63E-02 2.736E-03 5.67E-02 6.97E-03 4.69E-02 3.36E-03 4.63E-02 5.20E-03 

k des (s-1) 1.721 1.011E-01 2.115 2.68E-01 1.744 1.29E-01 1.72 2.01E-01 

k1 (s-1) 2.18E-02 2.836E-04 2.11E-02 5.74E-04 2.15E-02 3.40E-04 2.22E-02 3.95E-04 

k2 (s-1)   1.24E-03 2.79E-04 5.18E-04 1.56E-04 7.11E-03 1.60E-03 

k3 (s-1)   1.41E-02 1.09E-02 5.87E-03 4.21E-03 2.23E-02 1.43E-02 

k4 (s-1) 1.16E-01 2.15E-03 1.22E-01 4.06E-03 1.20E-01 2.70E-03 1.20E-01 3.00E-03 

Residual 4.53E-04 4.28E-04 3.70E-04 4.03E-04 

24 h of 

reaction 

Model 1 Model 3 Model 4 Model 5 

k dev k dev k dev k dev 

kads 

(m3/kg s) 
3.85E-02 2.29E-03 3.83E-02 3.17E-03 3.87E-02 2.65E-03 4.13E-02 3.23E-03 

k des (s-1) 1.61 9.76E-02 1.60 1.35E-01 1.61 1.17E-01 1.73 
1.381E-

01 

k1 (s-1) 1.86E-02 2.22E-04 1.76E-02 6.44E-04 1.81E-02 2.88E-04 1.89E-02 2.51E-04 

k2 (s-1)   1.42E-03 4.12E-04 4.80E-04 8.19E-05 7.89E-03 3.16E-03 

k3 (s-1)   1.69E-02 1.01E-02 7.68E-03 3.83E-03 2.62E-02 1.21E-02 

k4 (s-1) 8.95E-02 1.57E-03 9.87E-02 3.65E-03 9.46E-02 1.99E-03 9.35E-02 2.21E-03 

Residual 3.42E-04 2.83E-04 2.69E-04 2.89E-04 

150 h of 

reaction 

Model 1 Model 3 Model 4 Model 5 

k dev k dev k dev k dev 

kads 

(m3/kg s) 
3.44E-02 1.55E-03 3.95E-02 2.22E-03 3.64E-02 2.02E-03 3.20E-02 2.79E-03 

k des (s-1) 1.89 8.85E-02 2.15 1.23E-01 1.976 1.13E-01 1.73 1.61E-01 

k1 (s-1) 1.16E-02 9.02E-05 7.14E-03 5.73E-04 1.03E-02 2.01E-04 1.16E-02 1.00E-04 

k2 (s-1)   4.53E-03 5.32E-04 7.69E-04 8.39E-05 5.32E-02 4.78E-03 

k3 (s-1)   2.47E-02 1.87E-03 1.20E-02 2.02E-03 3.29E-02 1.05E-03 

k4 (s-1) 4.82E-02 8.28E-04 7.67E-02 4.54E-03 5.84E-02 1.52E-03 6.30E-02 1.25E-03 

Residual 3.74E-04 1.53E-04 2.08E-04 1.32E-04 
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The results suggest that models M3, M4 and M5 gave the best fits and can be 

considered equivalent and indistinguishable regarding the prediction of 12CH4 and 12CO 

transient curves from a statistical point of view. Also, the three aforementioned models 

predict the same CO adsorbed concentration (CCOads) and rate of CH4 formation for a given 

experiment.  

Differences between the predictions from each model arise in the concentration of 

the adsorbed species. Figures 5.10-5.12 show respectively the model predictions for the 

total concentration of CO adsorbed (CCOads), concentration of carbon intermediate species 

(Cads), and CH4 formation rate as a function of the time on stream (1 h, 24 h, 150 h); the 

results are normalized using the corresponding values of the variables obtained in the 

experiment carried out at 1 h.  

Experimental data for NCO, NCH4 calculated from SSITKA and activity are plotted 

in Figures 5.10, 5.11 and 5.12 respectively; these parameters can be correlated to the 

aforementioned variables predicted by the model. Interestingly the models predict a 

decrease in the number of adsorption CO sites and in the methane production (related to 

activity) at longer time of stream. Models M1, M3, M4 and M5 give the same predictions 

for concentration of adsorbed CO and CH4 formation rate; the dependence of these 

parameters with the time on stream is in agreement with the experimental results of NCO 

(Figure 5.10) and activity (Figure 5.11) versus time on stream.  
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Figure 5.10 Predicted concentration of adsorbed CO according M1, M3, M4 and M5 models and 

experimental values of NCO as function of time on stream. Results are normalized by their 

corresponding value at 1 h. 

 

 

Figure 5.11 Predicted concentration of CH4 formation rate according M1, M3, M4 and M5 

models and experimental values of activity as function of time on stream. Results are normalized 

by their corresponding value at 1 h. 
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However, models M1, M3, M4 and M5 give different predictions regarding the 

concentration of adsorbed intermediate carbon species (Figure 5.12). Models M1 (one 

single pool of intermediates) and M3 and M5 (two pools of intermediates) predict small 

changes in the concentration of adsorbed intermediates as time on stream increases. Model 

M4 (two pools of intermediates) predicts slightly larger changes, showing better agreement 

with the observed experimental value of NCH4 at150 h of reaction. 

 

Figure 5.12 Predicted concentration of adsorbed intermediate species according M1, M3, M4 and 

M5 models and experimental values of NCH4 as function of time on stream. Results are 

normalized by their corresponding value at 1 h. 

 

There are some differences also in the concentration of each adsorbed intermediate 

species C,ads, C,ads predicted by models M3, M4 and M5. These models could be further 

discriminated using these differences along with additional surface characterization and/or 

theoretical analysis. Despite the quantitative differences, these different models exhibit 

several common features regarding the dependence of predicted reaction rates and 

concentration of intermediates on the time on stream. The predicted values for total C,ads, 

C,ads and individual reaction rates as a function of time (1 h, 24 h and 150 h) for models 

M3 and M4 are presented in Figures 5.13 and 5.14, respectively.  
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a        b 

Figure 5.13 Predicted (a) concentration of adsorbed intermediate species and (b) individual 

reaction rates (parallel routes for formation of Cα,ads and Cβ,ads from CO adsorbed) according 

model M3, as function of time on stream. 

a        b 

Figure 5.14 Predicted (a) concentration of adsorbed intermediate species and (b) individual 

reaction rates (parallel routes for formation of Cα,ads and Cβ,ads from CO adsorbed, however, 

Cβ,ads is also formed from Cα,ads in a consecutive reaction) according model M4, as function of 

time on stream. 

 

These results show that one of the intermediate species is predominant (present in 

larger amounts), and most importantly, the rate of formation of the predominant 

intermediates from adsorbed CO (and consequently, subsequent formation of CH4 through 

the corresponding route) is significantly much higher than for the other minority 

intermediate. In addition, the predominant route of formation of C intermediate is affected 

by the deactivation as time on stream proceeds, as seen in Figures 5.13 and 5.14.  

The surface coverage is lumped in the kinetic constants as usually done in models 

for analyzing SSITKA transient responses using 12C/13C switches. Consequently, as 

showed by Van Dijk et al. [53], the kinetic parameters should depend on the H2/CO feed 
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ratio used in the experiment (apart of other variables as temperature, for example). 

Considering that we were using the same H2/CO ratio and other conditions as well 

throughout the 150 h-long experiment, this approach can be safely applied individually at 

each instant of time on stream and application of switches. 

Analysis shows that the M1, M2, M5 and M6 models are equivalent and 

undistinguishable from a statistical point of view. In agreement with previous reports [55, 

56], the M3 and M4 models (which consider the existence of two intermediate carbon 

pools) have given the best fits based on the smaller values of the weighted residuals for all 

sets of experiments.  

As pointed out in previous studies [55, 56], these models could be further 

discriminated using the differences in the predictions along with additional experimental 

characterization and/or theoretical calculations. Interestingly, models M3 and M4 remain 

the most appropriate to describe the SSITKA responses even for the deactivated catalysts 

after exposure to syngas for a longer time on stream. These two models predict decay in 

the concentrations of reversible adsorbed carbon monoxide molecules and CHx 

intermediates with time on stream. The relative fraction of two carbon polls is affected 

however differently in M3 and M4 models during the deactivation (Figures 5.13 and 5.14). 

 

5.2.6 Catalytic performance of alumina supported cobalt catalyst in pure 

syngas and after ammonia treatment 

 

Catalyst deactivation can be also due to the presence of nitrogen compounds in the 

syngas feed. The present section addresses the impact of addition of small amounts of 

acetonitrile and ammonia (1500 and 2500 ppmv) to the syngas feed on the catalytic 

performance of supported cobalt catalysts. In particular, the effects of co-fed ammonia on 

the catalyst performance and concentration and intrinsic activity of cobalt surface sites are 

discussed using SSITKA. 
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FT catalytic data obtained in the presence of ammonia over cobalt catalysts are 

presented in Figures 5.15-5.17. In the case of co-fed with acetonitrile, it was observed that 

acetonitrile is not stable at the reaction conditions in the presence of water. It undergoes 

hydrolysis into acetic acid and ammonia with subsequent partial decomposition of acetic 

acid into methane and CO2: CH3CN + 2H2O = CH3COOH + NH3 = NH3 + CO2 + CH4 

[53]. The Co based catalysts almost do not produce carbon dioxide during FTS. Some slight 

increase in CO2 on cobalt catalysts in the presence of added CH3CN may indicate partial 

decomposition of acetonitrile. Aqueous ammonia (30 wt. %) also has been added in order 

to check the main effect of acetonitrile as the source of ammonia [53]. 

The catalyst activation was performed by hydrogen flow of 8 mL/min at 400 ºC for 

3 h. In the CO hydrogenation with pure syngas at reaction conditions of H2/CO of 5, 220 °C 

and atmospheric pressure, 13 h of reaction was conducted before the periodic switches 

from 12CO/H2/He/Ne to 13CO/H2/He. In the experiment with NH3 treatment, the cobalt 

catalyst was exposed to the flow of gaseous NH3 at 220 ºC and atmospheric pressure for 

2 h. After that, the ammonia flow was interrupted and the syngas in ratio feed of H2 to CO 

equal to 5 was directed to the catalyst. After conducting the 13 h of reaction at the same 

reaction conditions, switches from 12CO/H2/He/Ne to 13CO/H2/He were performed. The 

CO conversion behavior for CoPt/Al2O3 with and without treatment is displayed in Figure 

5.15.  
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Figure 5.15 CO conversion as a function of time on stream for CoPt/Al2O3 without and with 

treatment with NH3. Reaction conditions: 1 atm, 220 °C, H2/CO = 5, GHSV = 14 400 mL/g h. 

 

According to Figure 5.15, the catalytic performance is significantly affected by 

nitrogen containing compounds. The addition of saturated NH3 led to a significant drop in 

CO conversion in comparison with the non-treated cobalt catalyst (from 24 % to 8 % at 1 h 

of reaction). Even after 13 h on stream, the CO conversion on the sample without NH3 

treatment is the double in comparison with NH3 treated cobalt catalyst. Methane and C2-

C4 hydrocarbons were the major products of CO hydrogenation.  

Figure 5.16 shows methane selectivity as a function of time on stream. Methane 

formation is practically the same on the cobalt catalysts with and without treatment with 

NH3 during the whole time on stream. 
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Figure 5.16 Methane selectivity as a function of time on stream for CoPt/Al2O3 treated with pure 

syngas and ammonia. 

 

Figure 5.17 demonstrates that the selectivity for C2-C4 hydrocarbons is only very 

slightly altered for the catalyst with ammonia treatment (likewise to the methane selectivity 

behavior). However, as showed in Figure 5.15 the CO conversion level obtained was 

different, which makes such comparison not so reliable.  

 

Figure 5.17 C2-C4 hydrocarbon selectivity as a function of time on stream in CoPt/Al2O3 with 

pure syngas and ammonia treatment. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 2 4 6 8 10 12 14

M
et

h
an

e 
se

le
ct

iv
it

y 
(%

)

Time on stream (h)

pure syngas

syngas feed after treatment with
ammonia

0%

10%

20%

30%

40%

50%

60%

0 5 10 15

C
2-

C
4

se
le

ct
iv

it
y 

(%
)

Time on stream (h)

syngas feed after treatment with
ammonia
pure syngas



Chapter 5. Elucidation of deactivation phenomena in cobalt catalysts for Fischer Tropsch synthesis using 

SSITKA 

___________________________________________________________________________________________ 

 

154 
 

The hydrocarbon selectivities and C2-C4 olefin to paraffin ratios as functions of 

carbon monoxide conversion on cobalt catalysts are shown in Figure 5.18. Introduction of 

acetonitrile and ammonia leads to lower carbon monoxide conversions (at similar GHSV) 

and lower FT reaction rates during and after CH3CN and NH3 addition compared to pure 

syngas. Interestingly, the methane and C5+ hydrocarbon selectivities were respectively 

much lower and higher at the same conversion levels on the supported cobalt catalysts 

during and after addition of the nitrogen containing compounds. Previously, similar effects 

on hydrocarbon selectivities on cobalt catalysts were observed after addition of small 

amounts of water [26, 44, 45, 46] and ammonia [25] to the syngas feed. One of the possible 

explanations of these phenomena could be selective poisoning of cobalt methanation sites 

by added ammonia and its derivatives.  

The olefin to paraffin ratio is also affected by co-feeding. The olefin to paraffin 

ratio at similar carbon monoxide conversions significantly increases. The decrease in 

methane selectivity is accompanied by higher olefin to paraffin ratio which could result 

from the lower hydrogenation activity in the presence of ammonia. Note that the effect of 

added acetonitrile and ammonia on the reaction selectivity was rather irreversible on cobalt 

catalysts. The return to pure syngas after switching off acetonitrile and ammonia cofeeding 

does not result in full recovering the C5+ and methane selectivities to the values observed 

with the fresh catalyst in pure syngas (Figure 5.18). Only the olefin/paraffin ratio almost 

comes to the same values as they were before addition of N-containing compounds. 

 

 

Figure 5.18 Methane (a), C5+ hydrocarbon (b) selectivities and C2-C4 olefins to paraffins ratios 

(c) measured on supported cobalt catalysts as functions of carbon monoxide conversion in the 

presence of added acetonitrile and ammonia. 
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Literature has provided some information about the effect of ammonia treatment on 

catalyst performance. Borg et al. [33] noticed no effect of ammonia on the catalytic 

performance of alumina and titania supported catalysts in the presence of 4 ppm of NH3 in 

syngas. On the other hand, Pendyala et al. [34] observed a significant irreversible catalyst 

deactivation due to the effect of addition of ammonia for platinum promoted 

cobalt/alumina catalysts. In addition, in the presence of ammonia, the catalyst exhibited 

lower methane and higher C5+ hydrocarbon selectivity, which were attributed to selective 

poisoning of the methanation sites. Le Vinnes et al. [24] found that nitrogen compounds 

produce reversible effect on the catalytic performance of cobalt catalysts. The procedure 

in pure hydrogen was adopted to restore the catalyst activity. 

The decrease in reaction rate can be due to the decrease in the concentration of 

active sites or to the decrease in the site intrinsic activity (Turnover Frequency). Note that 

both phenomena can occur simultaneously during the catalyst deactivation. Unfortunately, 

the steady state catalytic data do not allow discriminating between these different 

deactivation mechanisms.  

SSITKA [47, 48, 49] addresses measuring the transient response of isotopic labels 

in the reactor following an abrupt change (switch) in the isotopic composition of one of the 

reactants. The switch involves only isotopic composition of the feed, while chemical 

composition remains unchanged. SSITKA provides independent information about the 

concentration of surface intermediates and their reactivity and thus it can be extremely 

helpful in elucidation of the mechanism of catalyst deactivation. 

In order to provide further insights into the modification of the active sites due to 

treatment with ammonia, the catalysts were characterized by SSITKA. Table 5.6 shows 

SSITKA data for the catalysts treated and non-treated with ammonia.  
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Table 5.6 SSITKA and GC data for Co25%0.1%Pt/Al2O3 catalyst without and with NH3 

treatment. 

Experiment with 

Co25%Pt0.1%/Al2O3 
τCO (s) τCH4 (s) 

NCO 

(µmol/g) 

NCH4 

(µmol/g) 

RSSITKA 

(µmol/g s) 

FT rate 

constant  

10-6 

(mol/gcat s) 

without NH3 

treatment 
8.2 21.4 92.0 25.4 1.19 3.36 

with NH3 treatment  8.6 29.2 105 18.8 0.64 1.13 

 

The number of intermediates leading to methane has been reduced in the catalysts 

exposed to ammonia. This result is consistent with an increase in the surface lifetime of 

intermediates. Interestingly, no significant modification of the reversible carbon monoxide 

adsorbed (NCO) was observed. This leads to conclude that ammonia adsorption proceeded 

on the most active sites responsible for hydrogenation. 

The best SSITKA parameter to detect the effect of ammonia treatment is the RSSITKA 

(see Table 5.6). The reason is the ability of RSSITKA to incorporate the comportment of 

surface lifetime of intermediates and the actual amount of hydrogenation sites. Hence, it is 

possible to observe a significantly reduction in the rate constant for the cobalt catalyst 

submitted to NH3 treatment. Same trend is detected for FT rate constant determined by GC 

analysis. Thus, ammonia co-fed to the catalyst can affect the number and intrinsic activity 

of active sites for FTS. These modifications can be possibly attributed to the formation of 

cobalt nitride in the presence of ammonia.  

In order to further confirm formation of cobalt nitride, the catalysts after exposure 

to ammonia during the catalytic tests were characterized by TPD-MS. Figure 5.19 shows 

the TPD-MS profiles of the alumina supported catalysts after the catalytic tests with 

detection of m/e = 28. The TPD-MS profiles of all the spend catalysts exhibited sharp peaks 

at 300 °C measured using both m/e = 28 and m/e = 14 signals. It can be suggested that 

these sharp peaks observed at 300 °C correspond to desorption of nitrogen. This nitrogen 

can be produced from cobalt nitrate decomposition.  
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The amount of nitrogen calculated from the area of this peak correlates with the 

amount of reduced cobalt in the catalysts: the N/Co ratios were 0.46 for Co15%/Al2O3, 

0.74 for Co15%0.1%Pt/Al2O3 and 0.73 for Co25%0.1%Pt/Al2O3. Cobalt nitride formation 

in the presence of ammonia has been reported in previous works [50, 51, 52]. 

 

 

Figure 5.19 TPD-MS profiles of alumina supported cobalt catalysts after the catalytic tests with 

syngas containing acetonitrile. 

 

The catalytic results obtained in this work suggest that cobalt nitride is not active 

in FTS. Indeed, formation of cobalt nitride during the catalyst exposure to acetonitrile leads 

to important catalyst deactivation. At the same time, cobalt nitride formation coincides with 

the modifications of FT catalyst selectivity patterns and leads to lower methane and higher 

C5+ hydrocarbon selectivities. This suggests that the cobalt nitride formation proceeds 

selectively on the sites favoring methanation and block the most active cobalt 

hydrogenating sites.  
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Figure 5.20 FTIR spectra of carbon monoxide adsorbed on the activated Co15%/Al2O3 (a) and 

Co25%0.1%Pt/Al2O3 (b) catalysts before and after exposure to NH3. 

 

Figure 5.20 shows the IR spectra of carbon monoxide adsorbed on the 

Co15%/Al2O3 and Co15%0.1%Pt/Al2O3 catalysts activated in hydrogen and then pre-

treated with ammonia. The spectra exhibit a set of bands of adsorbed carbon monoxide. 

The broad band with the frequency from 2000 to 2100 cm-1 can be assigned to CO 

adsorption on cobalt sites, while the bands at 2179 and 2159 cm-1 seem to be attributed to 

CO adsorption on Lewis acid sites and hydroxyl groups of the alumina support, 

respectively.  

Catalyst exposure to ammonia results in the modification of the shape of the broad 

low frequency CO band. In particular, the broad band gets narrower and contribution of 

the lower frequencies (νCO = 2029 cm-1) branch is slightly reduced. This fact suggests that 

ammonia pre-treatment results in disappearance of electron enriched cobalt surface sites, 

associated with low-frequency shoulder.  
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Previous reports [53, 54, 55] attribute low frequency bands with the frequency of 

2000-2030 cm-1 to the CO molecules in interaction with the edges or step sites of metal 

nanoparticles (Pt or Pd), while the band of CO with high frequencies (νCO = 2040-

2060 cm-1) corresponds to the adsorption on the terraces. It could be speculated therefore 

that cobalt nitride species could preferentially form on these highly unsaturated metal sites. 

The blockages of edges and steps of cobalt metal nanoparticles by nitrides could result in 

the decrease in the FT reaction rates and modify the reaction selectivity. Addition of 

platinum to the catalyst (Figure 5.19b) promotes this process and decreases the amount of 

unsaturated Co sites. Initially higher amount of active sites (bands at 2029 cm-1 in Figure 

5.19a,b) leads to higher activity of Pt-promoted catalyst in comparison with unpromoted 

catalyst. 

 

5.3 Conclusion 

 

The SSITKA method combined with conventional catalytic tests and 

characterization of spent catalysts have provided new insights into the mechanisms of 

deactivation of silica supported cobalt catalysts for FTS. Exposure of cobalt catalysts to 

syngas under the methanation reaction conditions leads to carbon deposition and formation 

of cobalt nanoparticle agglomerates. 

Catalyst deactivation in presence of pure syngas is accompanied by both a decrease 

in the number of cobalt active sites and their intrinsic activity for silica supported catalyst. 

Carbon deposition seems to preferentially occur on the most active cobalt sites presumably 

located on the steps and edges of cobalt nanoparticles and retards hydrogenation of CHx 

adsorbed species. The sites favoring stronger reversibly adsorbed CO deactivate more 

rapidly during the reaction. Catalyst rejuvenation in hydrogen partially restores the most 

active methanation sites, while the sites for reversibly adsorbed carbon monoxide remain 

largely unaffected. Kinetic modeling suggests the presence of two carbon pools on the 
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catalyst surface, which are probably due to the sequential hydrogenation of adsorbed 

reactive carbon species to methane. 

The addition of ammonia resulted in significant irreversible deactivation of alumina 

supported cobalt catalyst. It can be concluded that the ammonia treatment was responsible 

for the drop of the CO conversion due to the decrease in the number of intermediates 

leading to methane and the increase in the surface lifetime of intermediates. Ammonia 

seems to block the most active cobalt sites. The catalytic data were explained by 

irreversible formation of inactive cobalt nitrides in cobalt catalysts. Cobalt nitride possibly 

forms on the steps and edges of cobalt nanoparticles and selectively blocks the sites 

responsible for methanation. The intrinsic hydrogenation activity of cobalt sites decreases 

after cobalt nitride formation. Consequently, lower methane and higher C5+ hydrocarbon 

selectivities were observed on cobalt catalysts exposed to acetonitrile and ammonia. 
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Chapter 6. General conclusions and perspectives 

 

The concept of active sites is central in heterogeneous catalysis and dates back to 

the pioneering works by Taylor in the 1920s. The catalytic performance of numerous 

catalysts is strongly affected by the number, intrinsic activity (Turnover frequency), 

localisation and stability of these active sites. The present thesis explores an approach to 

heterogeneous catalysis, which is based on the design and characterization of these active 

sites in cobalt and iron catalysts for syngas conversion reactions. Transient kinetics 

methods such as SSITKA alongside with extended catalyst characterization techniques 

were applied to evaluate the role of promoters for cobalt and iron catalysts, to elucidate 

the effect of different supports on the localization of active sites in cobalt-zeolite 

bifunctional catalysts, to provide further insights in catalyst deactivation-regeneration 

phenomena and their influence on the number and intrinsic activity of surface sties. 

In Chapter 3, promotion of iron catalysts with soldering metals was used to 

enhance the activity of the catalyst active sites in direct olefin synthesis from syngas. 

Promotion led to scavenging of oxygen atoms sprouted on carbon monoxide 

hydrogenation and their migration in the catalysts. In the same chapter, SSITKA supplied 

interesting data about  the effect of the zeolite on cobalt active sites and catalytic 

performance of cobalt catalysts.  

In Chapter 4, we found that localization of cobalt active sites in bifunctional 

cobalt-zeolite catalysts had a major impact on the reaction rate and in particular on the 

hydrocarbons selectivity. The proximity between the cobalt active site and Brønsted active 

sites was a key parameter to obtain the higher selectivity and yield of isomerized 

hydrocarbons. A new original method for the design of the bifunctional catalysts 
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containing cobalt metal nanoparticles in a close proximity with the acid sites based on the 

extraction with heterepoly acid was developed in this chapter. 

SSITKA experiments and modeling were used to identify methane reaction 

mechanism as well to distinguish the manner how catalyst deactivation by carbon 

deposition and exposure to nitrogen containing compounds can influence the kinetics of 

elementary steps. Chapter 5 suggests that catalyst deactivation results initially at the 

deactivation of the most active sites in cobalt catalysts, which are probably located on the 

steps and edges of cobalt nanoparticles.  

6.1 Promoter and support influence on the intrinsic catalytic activity of 

cobalt and iron FT catalysts 
 

The knowledge concerning the manner how the catalyst promoters and supports 

affect the intrinsic catalytic activity is important for the appropriate catalyst design and 

then, for the catalyst performance optimization. In Chapter 3, iron and cobalt based 

catalysts with different composition were evaluated by SSITKA at different FT reaction 

conditions. 

Promotion with Bi and Pb had a major effect on the catalytic activity, which 

increased 5-10 times compared to the unpromoted catalysts. The promoted catalysts 

exhibited noticeable catalytic activity even at atmospheric pressure. The both iron Bi-

promoted and non-promoted produced carbon dioxide due to WGS. However, the iron 

non-promoted catalyst had lower CO2 rate formation. The enhanced activity of the Bi and 

Pb promoted catalysts was attributed to a much easier removal of oxygen species formed 

on carbon monoxide dissociation by the promoters. 

The SSITKA experiments also gave information about the total number of active 

sites in cobalt/zeolite catalysts. The amount of CO molecular adsorption in the promoted 

sample was higher than that for the non-promoted cobalt catalyst. Under CO 

hydrogenation reaction, a better catalytic performance was observed for the Pt-promoted 

cobalt catalysts at different partial pressures. SSITKA was capable to identify why Pt 

caused the activity increment. This occurred because Pt-promoter increased the number 
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of intermediates leading to methane (NCH4). One of the reasons responsible for these 

phenomena could better cobalt reducibility in the presence of platinum. 

Higher concentration of sites was observed in CoPt/SiO2. This may be attributed  

to better reducibility of larger cobalt particles. For the microporous ZSM-5 used as a 

support for cobalt, smaller amount of NCO was found. Between the cobalt supported on 

the zeolites, CoPt/MOR demonstrated larger amount of active sites. TEM images of 

CoPt/BEA and CoPt/MOR showed that the cobalt nanoparticles for these catalysts are 

located inside and outside of the support surface. This was different to ZSM-5 which 

exhibited the cobalt nanoparticles only on the external surface of support.  

SSITKA was capable to measure τCH4 and NCH4  which were functions of the H2/CO 

feed ratio for the CoPt/SiO2, CoPt/BEA and CoPt/MOR catalysts. For CoPt/ZSM-5 there 

was only a slight effect of the H2/CO ratio on τCO. 

6.2 Synthesis of FT cobalt-zeolite composite catalysts using extraction 

with heteropoly acid  

 
Impregnation is a well-known and easy method of catalyst preparation, however, 

it does not guarantee nanoparticle localization only inside of zeolite pores. 

Chapter 4 demonstrates a new method for the synthesis of metal-zeolite 

composites. The method consists in a selective removal of metal non-incorporated in the 

pores of zeolite. It has been attained by dissolution of metal oxide nanoparticles from 

external surface of zeolite by bulky heteropoly acids. These large molecules cannot enter 

the pores of zeolites. New metal-composite materials has been applied in the FTS to 

produce isoparaffins from syngas in a single step. These new materials contained metallic 

and acid active sites in a close proximity in zeolite matrix. 

Interesting phenomena were observed in terms of catalytic performance for the 

prepared cobalt-zeolite composites for FTS. The use of these catalysts resulted in 

significantly higher C5-C12 hydrocarbon fractions in the products in comparison with the 

parent catalysts with the maximum ratio of isoparaffins to n-paraffins. The proximity of 
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metal and acid sites in the new composite catalysts was responsible of the selectivity 

improvements. 

Figure 6.1 illustrates the effect of the heteropoly acid treatment in a cobalt-zeolite 

catalyst on the distribution of the metallic phase between the external and internal surfaces 

of the zeolite support.  

 

Figure 6.1 General scheme of the procedure for the synthesis of metal-zeolite composite 

material. 

 

6.3 Elucidation of deactivation phenomena in cobalt catalysts for Fischer 

Tropsh synthesis using SSITKA 

 

Deactivation is currently one of the most important challenges of FTS on cobalt 

catalysts, which reduces overall efficiency of the whole technology. Catalyst deactivation 

affects both catalyst structure and catalytic performance including the rate of elementary 

reaction steps.  

The SSITKA method combined with conventional catalytic tests and extended 

characterization of spent catalysts have provided new insights into the mechanisms of 

deactivation of silica supported cobalt catalysts for FTS. Exposure of cobalt catalysts only 

to syngas under the methanation reaction conditions led to carbon deposition and 

formation of cobalt nanoparticle agglomerates. Catalyst deactivation was accompanied by 

both a decrease in the number of cobalt active sites and their intrinsic activity.  
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The first mechanism of catalyst deactivation is relevant to carbon deposition on 

the most active cobalt sites presumably located on the steps and edges of cobalt 

nanoparticles and retards hydrogenation of CHx adsorbed species. The sites favoring 

stronger reversibly adsorbed CO deactivate more rapidly during the reaction. It can be 

suggested that during deactivation the most active cobalt sites are selectively blocked by 

carbon. This leads to the lower overall activity, longer residence time of the reactive CHx 

species and lower turnover frequency over the partially deactivated catalyst compared to 

the freshly activated one. The most active sites involved in FTS are probably those, which 

facilitate direct or hydrogen-assisted dissociation of CO. At longer time on stream, carbon 

deposition also occurs on less active cobalt sites not necessarily located on steps and edges 

of cobalt nanoparticles. This represents the second mechanism of catalyst deactivation. 

The contribution of these two mechanisms to catalyst deactivation depends on the 

catalyst, operating conditions and reaction time. Note that these deactivation mechanisms 

can often operate simultaneously. In practice, it is rather difficult to distinguish between 

the deactivation mechanisms from the conventional catalytic tests. Figure 6.2 tentatively 

displays the buildup of carbon species on the steps of cobalt nanoparticles during the 

reaction and their partial removal after the catalyst rejuvenation in hydrogen.  

 

Figure 6.2 Preferential carbon deposition on the steps of cobalt nanoparticles and their removal 

during the rejuvenation. 

 

Deactivation

Regeneration
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Six models were tested for the cobalt catalyst supported on silica using SSITKA 

experimental data of the deactivated cobalt catalyst. The objective was to reveal how the 

deactivation phenomena could affect the methanation routes and their kinetic constants of 

adsorption/desorption as well methane formation via intermediates. The models involving 

two carbon pools remain the most acceptable for both fresh and deactivated catalyst in 

terms of statistical analysis compared to other studied mechanisms.  

The total amounts of adsorbed reactive carbon species decrease, though the ratio 

between the two carbon pools varies differently in these two models during the catalyst 

deactivation. Interestingly, catalyst deactivation involving carbon deposition and 

formation of cobalt nanoparticle agglomerates does not produce any significantly effect 

on the kinetic relevance of these models. 

The study of poisoning for the cobalt catalysts with ammonia co-fed with syngas 

in the FTS using cobalt supported on alumina conducted with pure syngas showed a 

significantly drop in the carbon monoxide conversion. SSITKA technique showed lower 

amount of CH4 intermediates for the catalyst treated with ammonia, however, no 

significant modification of the number of molecularly adsorbed CO molecules was 

observed. Therefore, it can be concluded that ammonia proceeds on the most active sites 

responsible for hydrogenation. These sites, as showed in Figure 6.3, are probably located 

on the steps and corners of cobalt nanoparticles. During the exposure to NH3, these sites 

were blocked by the nitrogen species. The decay of the catalytic performance is explained 

by the irreversible formation of inactive cobalt nitrides in cobalt catalysts. 
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Figure 6.3 Effect of NH3 treatment in the alumina supported cobalt catalyst. The poisoning of 

NH3 blocked the steps and corner sites of cobalt particles causing the loss on catalytic activity. 

 

Perspectives  

 

The current thesis provided valuable information about the localization, activity 

and stability of active sites in cobalt and iron based FTS catalysts. We identified further 

studies that can be performed using SSITKA combined with catalyst characterization for 

the design and optimization of FT catalysts. 

 Use of different isotope labels (D2, 
18O) to perform FT experiments in order to 

obtain additional information about the reaction mechanism. 

 DFT modeling of CO dissociation and oxygen scavenging. 

 Heat and mass transfer studies. 

 Application of different regeneration procedures (e.g. oxidation) at different times 

on stream during FTS. 

 Use of other bulky acids for selective cobalt extraction for the zeolite outer surface 

in bifunctional catalysts. 
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APPENDIX 1 

 

XRD patterns of the samples of cobalt catalysts supported on silica and zeolites ZSM-5, 

MOR and BEA are shown in Chapter 3. 

XRD patterns were measured in the catalysts after calcination in air flow at 450°C during 

7 h. 

Integration of the peak of Co3O4 at 37.1° was done using Software Eva 4.0. The obtained 

value was used in the Scherrer Equation.  
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