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INTRODUCTION 

Blends of polymers are commonly used in the plastic industry. The usual polymers 

are often not sufficient for the actual demand of consumers that always want better 

performance. To meet this need of multi-functional materials, a range of polymer blends 

has been developed. Blending polymers of different type is a relatively easy and cost-

effective way to obtain materials that combine contradictory properties compared to the 

development of a new molecule. Indeed, it only requires a simple process (batch mixer, 

extruder…) to mix the preexisting polymers compared to a chemical synthesis, which is 

more expensive, more complex and less evident to set up. In particular, immiscible polymer 

blends are technologically interesting since their mechanical, thermal, electric, magnetic, 

transport, and optical properties strongly depend on their microstructure. Very often, 

polymer blends morphology develops during processing, and at the same time, the polymer 

blends processability is influenced by the microstructure. The interplay between flow, 

morphology, and rheology is therefore a key point if one aims at tailoring the final material 

properties by mixing two immiscible fluids.  

 

The incompatibility between polymers has led the researchers to develop strategies 

to improve the adhesion between the phases. Over the years, several methods have been 

found. The most common remains the addition of block copolymer in which each block is 

chosen to be compatible with one of the phases so that the copolymer localizes itself at the 

interface. Another route, often preferred in industry, is the addition of reactive polymers. 

In this case, two polymers react in situ during processing directly at the interface. More 

recently, immiscible blends have been shown to be stabilized by nanofillers as well. The 

use of those colloidal particles results in what is called “Pickering emulsion” such as in 

water/oil emulsions. Even though the stabilization mechanism remains unclear, the 

stabilization by nanoparticles can offer advantages compared to copolymer 

compatibilization: solid particles are usually less expensive than block copolymers and can 

bring additional properties to the material (thermal, electrical, optical…) if necessary. At 

the present time, the influence of fillers on polymer blends morphology is still a matter of 

intensive investigation. 



The rheology–morphology mutual interaction was studied experimentally, 

theoretically, and numerically, focusing on both concentrated systems and dilute ones using 

mostly small amplitude oscillatory shear (SAOS) in the linear regime. The works that link 

microstructure with flow and rheology are numerous. Linear rheology is a powerful way to 

characterize polymer blends: morphology, interfacial tension between the components, 

relaxation phenomena after small deformations can be inferred from a simple shear 

measure in the linear regime. 

 However, in real processing conditions, polymer blends encounter more complex 

flows and higher deformations. Extensional flow, for example, is an important part of 

several processes. As such, the extensional properties of polymer melts are of great interest. 

Extensional flow is usually used to evidence a strain hardening behavior of branched 

polymers or exfoliated clay nanocomposites. However, there is very few studies of polymer 

blends behavior under extensional flow. 

The main objective of this thesis was to use rheology to study the effect of adding 

nanoparticles to polymer blends. To do so, clay nanoparticles were chosen as they can come 

in varied sizes and shapes. Moreover, they can be easily organo-modified to disperse well 

in polymers. PMMA and PS were chosen as together they form a model polymer blend 

which rheological behavior is already well known and appropriate for the use of rheological 

models.  

Several steps in the process of understanding the effect of adding nanoparticles and 

a possible compatibilization mechanism induced by them were conducted: 

• The first goal was to understand more deeply the mechanism taking place in 

the compatibilization of PMMA/PS blends with conventional 

compatibilizers: PS-b-PMMA block copolymers and Cloisite 20A, a 

commercially available organoclay. 

• The second step was to study the effect of adding different clay 

nanoparticles: Montmorillonite, laponite and halloysite which differ only by 

their size and shape and study their effect under both shear flow (low 

deformations) and extensional flow (so high deformations).  

 



 

CHAPTER 1 

 

POLYMER BLENDS & THEIR RHEOLOGICAL BEHAVIOR 

This literature review covers generalities about immiscible polymer blends, the 

compatibilization using block copolymers or nanoparticles and the use of shear and 

extensional rheology to characterize polymer blends behavior. 

A. Polymer blends: Generalities 

The final properties of blends depend on the composition, but also on the interfacial 

properties and morphology. Over the years, numerous works on simple blends of two 

Newtonian fluids allowed the understanding of the different microstructural changes. 

Depending on the concentration in dispersed phase, the blend can have different 

morphologies such as in FIG. 1.1.  

 

FIG. 1.1 Evolution of a blend morphology as a function of concentration [1] 

For example, dilute systems usually display a droplet like morphology whereas both 

phases can create domains of uncertain shape when the concentration of dispersed phases 

increases. Our study focuses on the dilute or semi-dilute blends that exhibit a droplet like 

morphology. In this case, the creation of the microstructure is mainly governed by droplet 

breakup and coalescence under flow and after cessation of flow which are all described 

below. 

1. Droplet breakup 

Taylor [2], [3] and Rumscheidt and Mason [4] studied the dispersion of a 

Newtonian fluid into another Newtonian fluid subjected to small deformation. In such field, 

the droplets are deformed into an elongated shape in the direction of the flow. Taylor 

suggested that at low stress in a steady uniform shear flow, the deformation degree of a 

droplet is a function of 

• The capillary number Ca  



 𝐶𝑎 =
𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠

𝐹𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙
=

𝜂𝑚  𝑅𝑣

𝛼
 

( 1.1 ) 

 

• The viscosity ratio p of the dispersed phase and the matrix 

 𝑝 =
𝜂𝑑

𝜂𝑚
     ( 1.2 ) 

Applying a flow can lead to droplet breakup when the interfacial tension forces 

cannot balance the viscous forces. That is what happens above a critical value of the 

capillary number: Cac. Below this value the droplets will not break anymore. Grace [5] 

provided data about this phenomenon by plotting Cac as a function of p for both simple 

shear and extensional flow (FIG. 1.2). The critical capillary number is significantly higher 

in simple shear than in elongation. In fact, in an elongational flow, droplet breakup can 

occur at any p whereas for a simple shear flow and a p ≥ 4, it is not possible to break the 

droplets anymore. Also, the weaker p, the higher Cac will be, which means that it will be 

more difficult to break the droplets of low viscosity in a highly viscous matrix. The lowest 

Cac, in other words the range where breakup is the easiest, is found for 0.1 ≤ p ≤ 1.0. 

 

FIG. 1.2 Effect of the viscosity ratio on critical capillary number in rotational shear and irrotational shear fields 

[5] 

A simple empirical fit of this curve has been given later by De Bruijn [6] (see 

equation ( 1.3 )): 

 𝑙𝑜𝑔𝐶𝑎𝑐 = −0.506 − 0.0995𝑙𝑜𝑔𝑝 + 0.124(𝑙𝑜𝑔𝑝)2 −
0.115

𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔4.08
 ( 1.3 ) 

2. Coalescence 

Coalescence is a process in which two or more droplets merge into one, resulting in 

a bigger droplet. Two types of coalescence can be distinguished: 

• Flow driven coalescence where droplets are brought close by the flow (FIG. 1.3). 

• Static coalescence which involves only Brownian motion.  

C

ac 

p 
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FIG. 1.3 Idealized shear induced coalescence [7] 

When two droplets collide, they develop a flat interface over which they are 

separated by a thin film of matrix fluid. If its thickness falls below a critical value hc (usually 

around 10 nm) then the film ruptures and the droplets coalesce [6]. Sundaraj and Macosko 

[7] showed that coalescence decreases if the matrix phase viscosity is above a critical value 

and the dispersed phase volume fraction under a critical value. The shear rate can also have 

an influence on the coalescence process: Van Puyvelde et al. [8] and Lyu et al. [9] both 

agreed that increasing the shear rate decreases coalescence which is in good agreement with 

the definition of the critical capillary number (equation ( 1.1 )).  

3. Morphological hysteresis 

The interactions between breakup and coalescence produce a phenomenon of 

morphological hysteresis illustrated in FIG. 1.4 [6]. In this figure, the coalescence limit 

under which coalescence occurs and the breakup limit above which breakup occurs can be 

visualized. The coalescence limit and breakup limit meet at a critical shear rate 𝛾𝑐̇. Above 

this value of shear rate, the steady state drop size is determined by a competition between 

coalescence and breakup (point 1 for example), here both can occur but the fastest one 

dominates. Below this critical number there exists a range of drops in the hysteresis region 

where the two phenomena cancel each other out (point 2, 3, 4, 5 and 6). In this region we 

observe neither coalescence nor breakup.  

If we only want to observe coalescence, as Vinckier et al. [10] and many others did, 

it is possible to use the hysteresis present in these blends to do so. First, the blend undergoes 

a pre-shearing at high shear rate to generate a fine morphology and then the shear rate is 

lowered in step to below a critical value (point 1 to 2 for instance) allowing us to observe 

only coalescence.  



 
FIG. 1.4 Typical history of droplet size versus shear rate, illustration of morphological hysteresis [6] 

 

B. Compatibilization of polymer blends 

In order to obtain a fine and stable morphology, what is called compatibilizers can 

be added. They are expected to settle at the interface between the polymers and stabilize 

the morphology. Numerous papers focus on the use of block copolymer as compatibilizer. 

Recently, nanoparticles such as silica, clay or carbon nanotubes have been shown useful as 

well. Below the different types of compatibilizers that are commonly used in polymer 

blends are presented. 

1. Block copolymers 

The compatibilization effect of block copolymers is a subject that has been widely 

studied. It has become a usual way to stabilize polymer blends. They enhance the adhesion 

between the phases and allow to obtain finer dispersions by settling at the interface. There 

are two ways to compatibilize a blend: add a pre-synthesized block copolymer in the blend, 

or create it in-situ during the process the compatibilizer. The first option has the advantage 

of allowing a better control the molecular architecture of the compatibilizer. The second 

option is called reactive compatibilization. To directly generate the copolymer at the 

interface both polymers must have reactive groups. The main advantage of this option is 

that the compatibilizer is created directly at the interface so the problem of locate it there is 

no longer a concern. However, in this case, it is difficult to control the amount and the 

architecture of the compatibilizer [11], [12]. Most of the articles deal with the 

compatibilization with a pre-synthesized polymer, however, reactive compatibilization is 

often the solution chosen by the industry. 



7 

 

The presence of block copolymers at the interface can induce one or several of the 

following effects:  

• reduction of the dispersed phase size [13]–[15] 

• decrease of interfacial tension [7], [14]–[16] 

• inhibition of the droplet’s coalescence [7], [17]–[20] 

 

Sundararaj and Macosko [7] were the first to suggest that the addition of a 

copolymer causes suppression of coalescence rather than reduction of interfacial tension. 

Two physical mechanisms both illustrated in FIG. 1.5 have been proposed to explain 

coalescence suppression. 

The first one (FIG. 1.5a) is based on the Marangoni effect. When two droplets 

approach each other, the matrix flows out from the gap between the approaching droplets 

and when it happens the compatibilizer is dragged along. This results in a gradient in 

compatibilizer concentration on the droplet surface, so in an interfacial tension gradient. 

Because of that, Marangoni stresses appear to make the compatibilizer come back 

homogeneously around the droplets and in doing so, prevents coalescence. This mechanism 

was elegantly evidenced by Jeon and Macosko [21] who showed gradients in block 

copolymer concentration during flow by visualizing a fluorescent PS-PMMA copolymer at 

the surface of a PMMA droplet in a PS matrix. The minimum coverage of block copolymer 

necessary to completely suppress coalescence by considering Marangoni stresses can be 

estimated using equation ( 1.4 ) [22].  

 ∑ =

𝑚𝑖𝑛

5

32

2𝑅𝑣𝜂𝑚𝛾̇

𝑘𝑇
 ( 1.4 ) 

 

The second mechanism (FIG. 1.5b), proposed by Sundararaj and Macosko [7],  

explains coalescence suppression by steric hindrance. When two droplets approach each 

other, the block copolymer is squeezed in between them. It leads to repulsion between the 

droplets because a change in the conformation of the copolymer chain leads to a gain in 

entropy. This hypothesis is consistent with the observations of Van Hemelrijck et al. [23], 

and Lyu et al. [20] that showed that the length of the diblock in the matrix influences 

coalescence in such a manner that the longer the block, the more coalescence is suppressed. 

This theory assumes that the block copolymer cannot move at the interface. By equating 



the Van der Waals force with the steric force, the minimum coverage of block copolymer 

can be estimated by the following expression [20]: 

 ∑ =
𝑐

20

27𝜋 < 𝑟0
2 >

 ( 1.5 ) 

Where < 𝑟0
2 > is the square mean end-to-end distance of the chains of block 

copolymers. Originally, this steric hindrance theory was developed to explain suppression 

of static coalescence, thus it is independent of shear rate. 

 

FIG. 1.5 Two possible mechanisms preventing coalescence : a) Marangoni effect b) Steric hindrance [24] 

These two phenomena could also be present at the same time. On this subject, 

Fortelny [25] assessed that steric hindrance can act only if the Marangoni effect is 

negligible, suggesting that Marangoni stresses usually dominates. 

All this is valid if the block copolymers settle only at the interface, however, some 

researchers evidenced that micelles can be present in the blends, decreasing the efficiency 

of the compatibilizers [22]. The efficiency is then linked to the quantity of block copolymer 

at the interface, thus to the surface coverage. 

2. Nanoparticles 

a) Generalities 

Nanoparticles have been used as modifiers in polymer materials for many years. 

Their ability to improve elastic, thermal or electric properties is particularly appreciated. 

The nanoparticles have the advantage of offering a wide variety of chemistry, size and 

shape. Their efficiency is less dependent on the chemistry they offer compared to block 

copolymers which need a tailored chemistry for each blend. Also, their greatest advantage 

is to be cheap. Among others, silica, clay, carbon nanotubes have been shown to induce a 

stabilization of morphology [19]. 

Particles localization, established during processing, has a non-negligible impact on 

the final properties. To estimate it theoretically, the wetting parameter described in FIG. 

1.6 can be calculated. It takes into account the interactions between the three components 

(two polymers and one filler).  
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FIG. 1.6 Representation of the interface between polymer A, polymer B and a particle and the equation of the 

wetting parameter, where Θ is the contact angle, γS-B and γS-A the interfacial tension between particle and 

polymers, and γAB the interfacial tension between the polymers A and B [26] 

According to Fenouillot et al. [27], if ωAB > 1 the particles are present in polymer 

A, if ωAB < -1 the particles are present only in polymer B and if  -1 < ωAB < 1 the particles 

are located at the interface. 

The interfacial tension between two polymers can be found using several methods 

such as the breaking thread method, the retraction of deformed drop method, the pendant 

drop method and rheological methods based on linear viscoelastic measurements [28]. Each 

method has its advantages and limitations, but the experimental error increases in the 

following order: equilibrium methods < dynamic methods < rheological methods.  

However, the interfacial tension between particles and polymers are more difficult 

to obtain. It is difficult to obtain reliable values between polymers and fillers in general 

because of the special surface structure of fillers. This induce some difficulties to calculate 

the wetting parameter and be able to predict the localization of nanoparticles. 

The wetting parameter can help predict where the nanoparticles would be located 

at equilibrium, but the final localization of the filler in the blend is also strongly influenced 

by dynamic processes. The sequence of mixing of the components during processing or the 

viscosity of blends components can have an influence. For example, Elias et al. [29] have 

selected different sequences of addition for PP/EVA/hydrophilic silica blends. The 

components were either loaded simultaneously, or silica was premixed with PP and then 

PP/silica was blended with EVA. They showed that in the first case silica was located in 

the EVA phase, whereas in the second case silica particles were at the interface. Gubbels 

et al. [30] also varied the sequence mixing of PE, PS and carbon black to localize the carbon 

black at the interface. They showed that the kinetic of transfer of the carbon black from the 

less preferred phase to the other one can be used to allow the migration of the filler to the 

interface. It allows one to stop the mixing procedure at the right time to have carbon black 



at the interface. The kinetics of this transfer depends on the shear forces and the rheology 

of each polymer under the processing conditions. 

The rheology hence the viscosity ratio of the polymers is also a key factor for the 

determination of the final morphology. Elias et al [31] showed the influence of the 

molecular weight of two EVA on the final morphology of PP/EVA blends with hydrophilic 

silica and hydrophobic silica. The three components were loaded simultaneously but as the 

EVA melt before PP the filler is first placed in EVA. In the case of hydrophobic silica, 

which has better affinity with the PP matrix, they showed that the migration of silica toward 

the PP phase depended on the EVA molecular weight: it was easier with low viscous EVA. 

The efficiency of nanoparticles as compatibilizers depend on, obviously, their 

chemical nature but also their size and shape. For example, Elias et al. [32] added 

hydrophobic and hydrophilic silica in PP/PS blends. They showed that hydrophilic silica 

tends to disperse in PS phase whereas hydrophobic silica localized itself at the interface 

and in PP phase. Similarly, Du et al. [33] functionalized multi-walled carbon nanotubes 

(MWCNT) with copolymers of methyl methacrylate and styrene P(MMA-co-S) of different 

molecular weight. Consequently, the molecular weight of the grafted copolymers had an 

influence on the localization of the MWCNT is SAN/PPE blends: low molecular weight 

copolymer grafted MWCNTs were localized at the interface whereas higher molecular 

weight led the nanoparticles to dispersed in PPE phase. It is quite common to modify the 

surface chemistry of the whole nanoparticle. Indeed, the nanoparticles are inorganic, and 

the modification mostly consists into making them more compatible with polymers to 

achieve a good dispersion. Usually, carbon compatibilizers don’t need to be modified even 

if graphene is often oxidized and carbon nanotubes’ surface can easily be functionalized.  

The size of nanoparticles has proven to be an important parameter in the 

compatibilization as well. The particle radius Rp should be of the same order of magnitude 

than the gyration radius Rg of the polymer. If Rp is similar to Rg the particles begin to 

influence entropy of the chains. With a much higher Rp, the role of entropic surface tension 

become stronger and lead to phase separation (particle-rich and polymer-rich phases) [27]. 

To investigate the influence of nanoparticle size, Yurekli et al. [34] used three clays of 

different sizes (laponite which is around 300 Å, montmorillonite which is 0.5-1.0 μm and 

fluorohectorite 10 μm). They showed that laponite and montmorillonite had a satisfying 
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compatibilization effect whereas fluorohectorite had no effect. This is believed to be 

because fluorohectorite is too big.  

TABLE 1.1 Different type of nanoparticles used as compatibilizers and their characteristics [26] 

 

As it can be seen in TABLE 1.1, the nanoparticles can have different shapes: 

platelets, spheres or rods. Very few articles deal with the influence of shape. Among those 

few we can notice Huang and Guo [35] who studied the influence of the shape of Janus 

particles. Janus particles are nanoparticles which contain two compartments with different 

surface chemistry. The use of those particles follows the same logic than block copolymers: 

eache surface chemistry has more affinity with a different phase. Huang and Guo studied 

Janus nanospheres, nanodiscs and nanorods with different dividing surface design. Their 

main conclusion is that spheres and discs were the most efficient.  

Among the nanoparticles, clays have particularly attracted interest because most of 

them are natural, recovered from soils, easily modified by simple ionic exchange, and 

present less health hazard than carbon-based nanoparticles.  

b) Clays  

Especially, montmorillonite has already been used as a compatibilizer for polymer 

blends. Montmorillonite is a layered silicate which structure is described in FIG. 1.7. Its 

sheets have two siloxane tetrahedral sheets sandwiching an aluminum octahedral sheet. The 

silicate layers are negatively charged, which is counterbalanced by exchangeable cations 

such as Na+ and Ca2+ placed in the interlayer. When associated with polymers, the interlayer 

cations are usually exchanged with quaternary ammonium salts which increase the basal 

spacing [36], [37]. The intercalation of such organic surfactants changes the surface 



properties of clays in such a way that they have better affinity with polymers and disperse 

better. Because of its popularity, several modified montmorillonite are already 

commercially available.  

 

 

FIG. 1.7 Structure of montmorillonite 

As for other clays like laponite or halloysite, the modification is possible but 

modified Laponite or halloysite are rarely available commercially. Laponite is a synthetic 

clay shaped in discs of around 30 nm of diameter [38] which has the same structure than 

montmorillonite (see FIG. 1.7). As such, the same organic modification can be done. The 

only difference is that Laponite has a smaller Cation Exchange Capacity (CEC) than 

montmorillonite. Laponite CEC can be found in the literature between 47 and 75 meq/100 

g [39]–[41] whereas montmorillonite CEC is 92.5 meq/100g (information of supplier). 

Contrary to montmorillonite, Laponite was not extensively used for polymer blend 

compatibilization. Recently, Tang and Alavi [38] discovered by blending starch, PVOH 

and Laponite RD that apart from enhancing the properties of the material, Laponite also 

had a function of crosslinker and compatibilizer between Starch and PVOH. 

 

Halloysites are natural rod nanoparticles that have started to get some interest in 

nanocomposite quite recently [42]. Halloysite is a silicate bi layer which is rolled into a 

cylinder as described in FIG. 1.8. The outside layer of the nanotubes, made of SiO2, is 

negatively charged whereas the Al(OH)3 inner lumen is positively charged. Thanks to this 

difference in the external and internal chemical composition, a selective modification is 

favored: cations can adsorb around the nanoparticles whereas anions can place itself inside 

the tube (see FIG. 1.9). 
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FIG. 1.8 Halloysite structure [43] 

Halloysite can be used for flame retardant, corrosion protection or optical and 

electrical properties. Because of its tubular structure, halloysite was also used as 

nanocontainer for drug release [44]. However, very few articles deal with the 

compatibilization of blends using Halloysites. Pal et al. [45] studied the influence of adding 

Halloysites in a blend of polyoxymethylene/PP. They found out that the Halloysite induced 

a reduction in the average droplet radius. They also were able to show that modified 

Halloysites had more effect than the pure unmodified ones. Kundu et al. [46] also evidenced 

the effectiveness of Halloysites as compatibilizers. The Halloysites used were also 

organically modified. 

 

FIG. 1.9 Selective absorption of anionic and cationic molecules [47] 

C. Linear shear rheology  

Linear viscoelasticity is the simplest behavior that molten polymers can exhibit in 

rheology. It occurs at very small and very slow deformation. It can be easily characterized 

by using the storage modulus, loss modulus and complex viscosity of standard SAOS 

experiments. Deformation in the linear regime is mainly useful to obtain data about the 



molecular structure of the product. It can give us the molecular weight distribution and 

information about branching.  

1. Experiments 

In the case of polymer blends, SAOS results are particularly useful to assess the 

morphology and study the relaxations. As can be seen in FIG. 1.10, the storage modulus of 

a pure polymer blend presents a shoulder (dashed line) compared to a simple polymer which 

storage modulus would have a slope of 2 (pointed line). This shoulder is due to the 

relaxation of the droplets after shearing. When the blend is compatibilized, the presence of 

compatibilizer at the interface causes a complex interfacial rheology. Several research 

teams discovered an additional relaxation process in small amplitude oscillatory shear than 

for a common polymer blends as shown (see FIG. 1.10) [48], [49]. 

 

FIG. 1.10 Storage modulus of a PI/PDMS blend compatibilized with 0.1% of a bloc copolymer. The dashed line 

is the PI/PDMS blend without compatibilizer. [23] 

Inferring the relaxation spectra from SAOS results is a way to evidence clearly those 

relaxations. Honerkamp and Weese [50] developed a mathematical methods to do so. On a 

classical relaxation spectrum, the following relaxations can be vizualized:  

• At small times, the relaxation of the chains of polymers. One or several 

relaxations, depending on the number of polymers involved and if the 

relaxations overlap or not. 

• At medium times, the relaxation of the droplet’s shape happening at τ1(but 

usually referred as τF) in FIG. 1.11. 

• In some cases, at long times, the relaxation due to Marangoni stresses (τF in 

FIG. 1.11) [15], [16], [51]. 

All those relaxations were predicted by the Palierne model [52]. But the first to fit 

this model to experimental results showing those two relaxation processes were Riemann 
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et al. [48]. They found values for τF and τβ that will be described again later on by Jacobs 

et al. [49]. Van Hemelrjick et al. [53] studied the influence of the compatibilizer 

concentration on these times. They showed that τβ strongly depends on the concentration 

of compatibilizer whereas τF depends more on the concentration of the dispersed phase. 

This last relaxation time only happens for blends compatibilized by copolymers and is 

believed to be due to the presence of copolymer at the interface.  

 

FIG. 1.11 Relaxation spectra of PMMA/PS blends compatibilized by block copolymers [48] 

Apart from characterizing polymer blends, linear shear rheology can be used to 

study shear induced coalescence. The experimental procedure is based on the hysteresis 

described in Part I.A.3. Generally, pre-shearing the blend at high rate to generate a fine 

morphology and then lowering the shear rate to a value favoring coalescence is the chosen 

procedure [10], [17], [19], [54]. A typical coalescence tests is shown in FIG. 1.12b. During 

coalescence tests, the shearing is stopped to conduct SAOS experiments in order to probe 

morphology at a certain time.   

 

FIG. 1.12 Usual procedure (a) to investigate the effect of pre-shearing, and (b) to investigate the coalescence 

process. Extracted from [19]  



2. Models 

Several models were developed to link the microstructure of a polymer blend to its 

rheological behavior. One such model is Palierne’s model [52] which is used to describe 

the rheology of viscoelastic polymer blends with or without compatibilizer.  

To enable the use of this model, several conditions have to be respected: 

• The droplets of dispersed phase should be small enough so that bulk forces 

such as gravitation and inertia are negligible  

• All inclusion should have the same environment which is true when they are 

regularly stacked such as in a monodispersed emulsion. 

• Interactions between particles other than dipole-dipole are not considered in 

the model. As such, the blend should be dilute to avoid those interactions.  

• The experiments must be carried out at small strain amplitude because only 

linear phenomena are considered here.  

• The surface energy is dependent on the variation of area and resistance to 

shear.  

With all these conditions and approximations taken into account in the calculations, 

Palierne proposed the following expression for the complex modulus of the blends 

depending on the moduli of the matrix 𝐺𝑀
∗  and the inclusion 𝐺𝐼

∗, on the interfacial tension 

𝛼0, on the radius of the droplets R and on two surface parameters β’ and β’’: 

𝐺𝑏
∗ = 𝐺𝑀

∗ [
1 +

3
2

∑
𝛷𝐼𝐸𝐼

𝐷𝐼
𝐼

1 − ∑
𝛷𝐼𝐸𝐼

𝐷𝐼
𝐼

] ( 1.6 ) 

 

𝐸𝐼 = 2(𝐺𝐼
∗ − 𝐺𝑀

∗ )(19𝐺𝐼
∗ + 16𝐺𝑀

∗ ) +
48𝛽′𝛼0

𝑅
+

32𝛽′′(𝛼0 + 𝛽′)

𝑅2

+
8𝛼0

𝑅
(5𝐺𝐼

∗ + 2𝐺𝑀
∗ ) +

2𝛽′

𝑅
(23𝐺𝐼

∗ − 16𝐺𝑀
∗ )  

+ 
4𝛽′′

𝑅
(13𝐺𝐼

∗ + 8𝐺𝑀
∗ ) 

( 1.7 ) 
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𝐷𝐼 =  (2𝐺𝐼
∗ − 3𝐺𝑀

∗ )(19𝐺𝐼
∗ + 16𝐺𝑀

∗ ) +
48𝛽′𝛼0

𝑅
+

32𝛽′′(𝛼0 + 𝛽′)

𝑅2
 

+
40𝛼0

𝑅
(𝐺𝐼

∗ + 𝐺𝑀
∗ ) +

2𝛽′

𝑅
(23𝐺𝐼

∗ + 32𝐺𝑀
∗ ) 

+
4𝛽′′

𝑅
(13𝐺𝐼

∗ + 12𝐺𝑀
∗ ) 

( 1.8 ) 

Special cases of this expression are listed below. Some of them have been given in 

the literature even before the creation of this model and are special cases or limit cases 

recovered by this expression. Others are simplified version used later on in different works. 

When 𝛼0 = 𝛽′ = 𝛽′′ = 0 , we can find the Kerner result in case of incompressible 

media [52]. This expression describes the rheological behavior only in high frequency 

region where the interfacial tension has no effect. 

For Hookean spheres in a Newtonian matrix, i.e. for 𝐺𝐼
∗constant and real and 𝐺𝑀

∗  

Newtonian (𝐺𝑀
∗ = 𝑖𝜔𝜂𝑀), the expressions gives Frohlich and sack result [52]. 

If we consider that both inclusion and matrix are Newtonian liquids, then the result 

of Oldroyd is found with these equations [52]. 

The Palierne model is meant to be used on a blend where all the droplets are 

identical so for monodisperse blends. If we have a wider range of droplet size, R should be 

replaced by a size distribution v(R) leading to the expression below. 

𝐺𝑏
∗ = 𝐺𝑀

∗ [
1 +

3
2 ∫

E(ω, R)
𝐷(ω, R)

𝜈(𝑅)𝑑𝑅
∞

0

1 − ∫
E(ω, R)
D(ω, R)

𝜈(𝑅)𝑑𝑅
∞

0

] ( 1.9 ) 

 

To simplify the model in the case of polydispersed blends, Graebling et al. [55] 

showed that the use of a volume average radius Rv rather than a size distribution can be 

done up to a polydispersity of 2.3, leading to a simplified version: 

𝐺𝑏
∗ = 𝐺𝑀

∗ [
1 +

3
2 Φ

E(ω, Rv)
𝐷(ω, Rv)

1 − Φ
E(ω, Rv)
𝐷(ω, Rv)

] ( 1.10 ) 

𝛽′ = 𝛽′′ = 0 corresponds to a constant interfacial tension despite the possible 

addition of interfacial agents. This version of Palierne is the most simple one and the most 

used [55], [56]. It is often used to fit the storage modulus in order to find the interfacial 

tension or the average radius of droplets. To do so, the following expression of the droplets 

shape relaxation time can be easily used: 



τF =
(

𝑅𝜂𝑀

4𝛼 ) (19𝑝 + 16)(2𝑝 + 3 − 2𝛷(𝑝 − 1))

10(𝑝 + 1) − 2𝛷(5𝑝 + 2)
 ( 1.11 ) 

Palierne’s model was also modified by Jacobs et al [49] who noticed that the two 

interfacial parameters β’ and β’’ of the original version had symmetrical roles in the 

equations. In regard of this, they decided to consider only one of them and set the other to 

zero. They decided to set the interfacial dilatation modulus β’ to zero and consider the 

interfacial shear modulus β’’ constant. This approach requires the existence of an additional 

shape relaxation time other than the drops relaxation time and also that the η0 values depend 

only on the amount of dispersed phase and not the interfacial nature. 

Following the work of Jacobs et al., Van Hemelrijck et al [53]. found the 

corresponding expression for 𝐺𝑏
′ with only two parameters : 

𝛼

𝑅
 and 

𝛽′′

𝑅
.  

This work gave the following relaxation times: 

𝜏𝐹 =
𝜆12

2
(1 − (1 −

4𝜆11

𝜆12
)

0.5

) ( 1.12 ) 

𝜏𝛽 =
𝜆12

2
(1 + (1 −

4𝜆11

𝜆12
)

0.5

) ( 1.13 ) 

 

With : 

𝜏11 =
𝑅𝑣𝜂𝑚

4𝛼

(19𝑝 + 16)(2𝑝 + 3 − 2𝛷(𝑝 − 1))

10(𝑝 + 1) +
𝛽20

𝛼
(13𝑝 + 12) − 2𝛷 ((5𝑝 + 2) +

𝛽20

2𝛼
(13𝑝 + 8))

 
( 1.14 ) 

𝜏12 =
𝑅𝑣𝜂𝑚

8𝛽20

10(𝑝 + 1) +
𝛽20

𝛼
(13𝑝 + 12) − 2𝛷 ((5𝑝 + 2) +

𝛽20

2𝛼
(13𝑝 + 8))

(1 − 𝛷)
 

( 1.15 ) 

 

The relaxation time τβ corresponding to Marangoni stresses was clearly identify by 

this work. As can be seen in FIG. 1.13, De Souza et al. [16] showed that τF does not depend 

on the value of β20. However, τβ decreases with increasing β20.  
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FIG. 1.13 (a) τf values as a function of β20 estimated using eqs.( 1.12 )-( 1.15 ), for PMMA/PP/PP-g-PMMA 

blends. (b) τβ values as a function of b20 estimated using eqs. ( 1.12 )-( 1.15 ), for PMMA/PP/PP-g-PMMA 

blends[16] 

Other models can be used to link the morphology with linear rheology. They are 

not described in details here but among them can be found Lacroix et al.’s [57] version of 

the Lee and Park model [58], Bousmina’s model [59] which is very similar to Palierne’s 

model and Yu et al.’s model [60] based on Grmela et al.’s work [61]. 

D. Extensional Rheology 

Extensional rheology is of significant importance as nearly all polymer process 

subject the material to elongational flow. The dominance of extensional flow is accentuated 

in processes such as blow molding or melt spinning. Extensional deformations are very 

sensitive to macromolecular structure of the polymers such as the degree of branching, the 

molecular weight distribution, and cross-linking [62].  

1. Measurement devices 

Measuring the properties of polymer melts under extensional flow has been a 

technical challenge for researchers for decades. The first way to evaluate the extensional 

properties of melts was to use the entrance pressure drop of the flow through a contraction 

by using a conventional capillary rheometer [57]. Several analyses exist to infer the 

extensional viscosity from the entrance drop pressure. According to Padmanabhan and 

Macosko [63] these analysis, which are approximations of the complex reality, can lead to 

very different results. As such, this method is not the most reliable one.  

Later on, a uniaxial elongational rheometer (RME) was developed by Meissner and 

Hostettler [64]. The sample, floating horizontally on a cushion of nitrogen or argon gas 



heated to the measuring temperature, is stretched by four rotating belt clamps at the required 

constant rate of strain (constant rotational speed of the clamps).  

Another device was developed by Munsted et al.[65] where the sample is vertically 

suspended in a heated oil bath which compensates for much of the specimen's gravity and 

apply an homogeneous temperature distribution. One end of the sample is fixed to a load 

cell located in the oil bath and its other end is fixed to a thin metal tape which can be rolled 

up by a disk. 

The last device that is going to be described here is the Sentmanat extensional 

rheometer (SER) [66] described in FIG. 1.14. This miniature rheometer is a device that can 

be installed on a conventional rotational rheometer. It consists in two paired drums, a master 

drum (A) and a slave drum (B) on which the sample is attached using clamps (I). The 

rotation of the drive shaft (F) results in a rotation of the master drum and an opposite 

rotation of the slave drum which results in the stretching of the sample. 

 

FIG. 1.14 Sentmanat Extensional Rheometer device. A: Master drum, B: slave drum, C: bearings, D: 

intermeshing gears, E: chassis, F: drive shaft, G: torque shaft, H: sample, I: securing clamps. Extracted from 

[66]. 

During a uniaxial elongational test, the sample of length L0, witdh W0 and thickness 

B0 is stretched at a constant strain rate 𝜀̇ defined by equation ( 1.16 ) and the resulting force 

F is measured as a function of time. 

𝜀 ̇ = 𝜀0̇ℎ(𝑡) ( 1.16 ) 

with ℎ(𝑡) = 0 for 𝑡 < 0 and ℎ(𝑡) = 1 for 𝑡 > 0. 𝜀0̇ is constant. 

The magnitude of stretching is usually defined by the Hencky strain as follow: 
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𝜀𝐻 =  ∫
𝑑𝐿

𝐿

𝐿(𝑡)

𝐿0

= ln (
𝐿(𝑡)

𝐿0
)

̇
 ( 1.17 ) 

To have a constant strain rate 𝜀0̇ =
𝜕𝜀𝐻

𝜕𝑡
=

𝜕 ln(
𝐿(𝑡)

𝐿0
)

𝜕𝑡
, the dimensions of the sample 

must vary exponentially.  

Generally, the elongational viscosity is the studied feature under uniaxial 

elongation. Like the shear viscosity, it is a function of the shear rate. However, in the case 

of elongational flows, it is difficult to measure the steady state value. In experiments, it is 

only possible to access a time dependent value 𝜂𝐸
+(𝑡) which is the tensile stress growth 

coefficient (also called the transient elongation viscosity) defined as follow: 

𝜂𝐸
+(𝑡) =

𝜎+(𝑡)

𝜀0̇
=  

𝐹(𝑡)/𝐴(𝑡)

𝜀0̇
 ( 1.18 ) 

Where A(t) is the cross section of the sample. 

The elongational viscosity is defined as the asymptotic value of this coefficient for 

large times (t → ∞). 

2. Strain hardening 

The most studied feature in extensional flow is the strain hardening behavior of 

some polymer melts [67]–[70]. An example of a linear and crosslinked PMMA’s tensile 

stress growth coefficients are shown in FIG. 1.15. It can be seen that crosslinked polymers 

exhibit a strong increase compared to the linear region whereas linear polymers have a 

linear behavior meaning that their transient elongational viscosity curve follow the curve 

representing three times the shear viscosity (see FIG. 1.15a). Long-chain branching, and 

broadness of molecular weight distribution are also factors that are known to enhance strain 

hardening of polymers.  

The presence of exfoliated or intercalated organoclays can enhance strain-hardening 

behavior of polymers as well. Okamoto et al. [72] were one of the first to show the influence 

of layered silicate on the elongational viscosity. They showed by observing samples using 

TEM that the exfoliated clays formed what they called a house of cards structure during 

extensional experiments. They attributed the strong strain hardening to the silicate layers 

perpendicular to the flow direction.  Park et al. [73] concluded that exfoliated systems were 

able to display strain hardening whereas intercalated systems were not. Their results are 

represented in FIG. 1.16 where exfoliated clay (FIG. 1.16a) clearly induce a strain 

hardening phenomenon whereas intercalated structures did not (FIG. 1.16b). 



 

FIG. 1.15 Tensile stress growth coefficients of a (a) linear PMMA, (b) cross-linked PMMA. The viscoelastic limit 

is indicated by 3η+, the other dotted lines and plain lines are the predictions of various models not described 

here. Extracted from [71] 

 

FIG. 1.16 Transient elongational viscosities of (a) exfoliated PP nanocomposites, (b) intercalated PS 

nanocomposites and PP microcomposite. Extracted from [73]   

However, Li et al. [74] evidenced a subtle strain hardening in the case of intercalated 

systems as can be seen in FIG. 1.17. They found that modified clays could induce an 

increase in the transient elongational viscosity (indicated by an arrow in FIG. 1.17) 

attributed to a strain hardening behavior. They also evidenced that the higher the strain rate, 

the earlier the strain hardening behavior occurs. 
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FIG. 1.17 Transient elongational viscosities of pure PP and its nanocomposites with different amounts of 

surfactant. Extracted from [74]. 

3. Polymer blend behavior 

The behavior of polymer blends pure or compatibilized under elongational 

deformation is still very rare in the literature. The pioneering works of Taylor [2], [3] and 

Grace [5] described previously helped to understand the deformation of emulsion and 

polymer blends under flow. As can be seen in FIG. 1.2, under irrotational shear, such as 

extensional flow, the value of Cac is very low and not significantly dependent on the 

viscosity ratio. As such, elongational flow is likely to induce breakup.  

Works describing the evolution of blend morphology during elongational flow is 

still quite rare. Delaby and al. [75], [76] showed the droplets deform less than the sample 

if it has a higher viscosity than the matrix and more than the sample if it is lower, in the 

case of large capillary number. Heindl et al. [77] studied the evolution of the extensional 

viscosity of PS/PE blends. They found that the extensional viscosity is greatly influenced 

by the matrix PS at low content of PE. They also showed that after shape recovery of the 

droplets, droplet breakup did not occur, but coalescence did, leading to a coarse 

morphology. 

 

Indeed, the blend morphology can be unstable after mixing or processing during the 

cooling step. As such, understanding what is happening in the blends after cessation of flow 

is also of importance. On that matter, Gramespacher and Meissner [78] studied the 

elongational flow behavior as well as the recovery behavior of PMMA/PS blends. They 

showed that the elongational viscosity did not display notable differences between blends, 

but the recovery behavior did: the recoverable elongational strains increased with the PS 



concentration. Also, when the viscoelastic recovery is reached, the droplets are not yet 

totally relaxed. From this moment, the interfacial tension is the only force acting to relax 

the droplets back to a spherical shape. Gramespacher et al. used the following equation to 

infer the interfacial tension between the components of the blends using the relaxation time 

of the droplets. 

 𝜏𝑟𝑒𝑙𝑎𝑥 =
𝜂0,𝑏𝑑0

𝛷𝛼
 ( 1.19) 

Where η0,b is the zero-shear viscosity of the blend, d0 the diameter of the droplets, 

Φ the volume concentration of dispersed phase and α the interfacial tension. The resulting 

interfacial tension were in good agreements with information extracted from linear shear 

rheology. This expression can be used on the contrary to estimate the relaxation time of the 

droplets. 

Handge and Potschke [79] also evidenced such a two-step recovery. They also 

applied the Handge model [80] made to describe the recovery behavior samples and had 

good agreement with experiments at high capillary number. Mechbal and Bousmina [81] 

also studied the behavior after elongation and the following relaxation of PMMA/PS 

blends. They chose to compare experimental data with the model of Yu et al. [82] and found 

that the model described fairly well the morphological evolution. As far as they are 

concerned, Stary et al. [83], [84] showed that in a PS/LLDPE blend, during elongation 

followed by a free recovery experiment, the fibrils can undergo breakup due to Rayleigh 

disturbance or necking. They also showed that the relaxation experiments, where the 

sample length is kept constant after cessation of flow, led to substantially higher frequency 

of droplet breakup resulting in a finer morphology than in the case of free recovery.  

 

Actually, most polymer blends commercially used are compatibilized, however, the 

works on compatibilized polymer blends under elongational flow are extremely rare. Stary 

et al. [85] showed that the presence of compatibilizer at the interface suppressed droplet 

breakup and promoted the shape recovery of the droplets after cessation of flow. They 

explained it by the presence of Marangoni stresses at the interface. Mechbal and Bousmina 

[86] also explained their results by the presence of Marangoni stresses. Stone et al. [87] 

studied the breakup after elongation of a droplet. They found that the stretch ratio (Lfib 

length of the ellipsoids divided by the initial diameter d0) must be above a critical value for 
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the droplet to break. They were able to plot experimentally 
𝐿𝑓𝑖𝑏

𝑑0
 as a function of the viscosity 

ratio as shown in FIG. 1.18.  

 

FIG. 1.18 Critical elongation ratio ensuring breakup after cessation of flow. Triangles denote the smaller ratio 

for which droplet breakup was observed, squares denote the highest ratio for which the droplets relaxed back to 

a sphere without breakup. Extracted from [87] 

All the results found in the case of compatibilized polymer blends used block 

copolymers. No study concerning the behavior of polymer blends compatibilized by 

nanoparticles under elongation flow could be found.   

  



E. Conclusion 

Through this literature review, the works already done on rheology of polymer 

blends were presented. This subject has already attracted a lot of attention in the past 20 

years. However, there is still room for improvement and research. Usually, a stabilization 

of morphology can be obtained by adding a so called compatibilizer, which can be a block 

copolymer or nanoparticles. Nanoparticles have the advantage to be cheaper and do not 

need to have a tailored chemistry for each type of blend. Generally, the addition of 

compatibilizers at the interface leads to a decrease in the droplets size, a decrease of 

interfacial tension and an inhibition of coalescence. In the case of block copolymers, the 

apparition of Marangoni stresses can also be evidenced. 

On the one hand, linear shear rheology can be used to characterize polymer blends 

morphology but also study the coalescence phenomenon. Indeed, small angle oscillatory 

shear results can be used to find the interfacial tension of the blend or the morphology by 

using linear models such as the Palierne model. It is then particularly useful to observe a 

refinement of the droplets size, a decrease in interfacial tension or to assess the evolution 

of morphology during coalescence tests. The relaxation spectra inferred from SAOS results 

can help in evidencing an additional relaxation time corresponding to Marangoni stresses 

for polymer blends compatibilized by block copolymers. 

On the other hand, extensional flow allows to study polymer melts and their blends 

under high deformations. Generally, extensional flow is used to study the strain hardening 

behavior of polymer melts or nanocomposites. However, the deformation of the droplets 

under uniaxial elongation can also be studied as well as the relaxation of the droplets after 

cessation of flow. No articles could be found on the behavior of polymer blends 

compatibilized by nanoparticles under elongational flow. 

 

 



 

CHAPTER 2 

 

 ARTICLES ORGANIZATION 

The literature review of Chapter I investigated the current knowledge about polymer 

blends, their compatibilization and their rheological behavior. This thesis aims at extending 

the knowledge on polymer blends compatibilized by nanoparticles and their rheological 

behavior. A total of 3 papers were written to contribute to the scientific knowledge in the 

following order: 

 

Chapter 3 presents the first article entitled “Compatibilization mechanism induced 

by organoclay in PMMA/PS blends”. Those preliminary results on PMMA/PS blends 

compatibilized by Cloisite 20A, a commercial organo-modified clay, evidenced for the first 

time that nanoparticles could also induce Marangoni stresses when located at the interface. 

This innovative result led to think that clay nanoparticles acted similarly to block 

copolymers and was published in Journal of Rheology in May 2017.  

 

After discovering that Marangoni stresses could occur in the case of clay 

nanoparticles, PMMA/PS blends with block copolymers of different molar masses were 

investigated. The goal was to have a deeper knowledge about the compatibilization 

mechanism induced by block copolymers and to be able to compare with nanoparticles. As 

such, the variation of interfacial tension, the coalescence phenomenon and the relaxations 

happening in the blends were studied. Particularly, the evolution of the relaxation due to 

Marangoni stresses during coalescence generated interesting results. Those results led to a 

second article entitled “Compatibilization mechanism induced by block copolymers with 

different molar masses in PMMA/PS blends”, currently under review in Journal of 

Rheology.  

 

Chapter 5 presents the third article entitled “Comparison of Montmorillonite, 

Laponite and Halloysite as compatibilizers in PMAM/PS blends”. This work focuses on 

the use of 3 types of clay: montmorillonite, laponite and halloysite, to compatibilize 

PMMA/PS blends. This work first presents the modification of clays and their dispersion 

state in polymers. The results on PMMA/PS blends to which clays were added were greatly 

influenced by the localization of clays and their dispersion state. As in Chapter 4, the 



variation of interfacial tension, the coalescence phenomenon and the relaxations happening 

in the blends were studied but led to different results. The results were used to write a third 

article submitted to the European Polymer Journal.  

 

As Chapter 1 evidenced, the behavior of polymer blends compatibilized by 

nanoparticles under elongational flow is still little known. As such, the last chapter’s goal 

was to study the behavior of the same blends as Chapter 5 under elongational flow. The 

influence of addition of the 3 clays on the tensile stress growth coefficients of PMMA and 

PS nanocomposites and the relaxation of the droplets after high elongational deformation 

were studied. This last chapter is particularly innovative as the relaxation of the droplets of 

polymer blends after elongational deformation compatibilized by nanoparticles was never 

studied before to our knowledge. Those results are written as a thesis chapter rather than 

an article. 
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Abstract 

In this work, the effect of adding organoclay (Cloisite 20A) to a poly(methyl 

metacrylate) (PMMA)/polystyrene (PS) blend was evaluated in order to understand the 

compatibilization mechanism taking place. The blend morphology was quantified using 

micrographs obtained by Scanning Electron Microscopy, and observed by transmission 

electron microscopy (TEM). The state of dispersion of the clay was studied using Small 

Angle X-ray Scattering (SAXS) and Wide Angle X-ray Scattering (WAXS) and by 

applying the Carreau-Yasuda with a yield stress model to small amplitude oscillatory shear 

data. Morphological analyses revealed that the clay was intercalated, that its addition 

resulted in a decrease in the size of the dispersed phase and that it was preferentially located 

at the interface, except in the case of saturated interfaces, in which case the remaining clay 

was dispersed in PMMA. By applying the simplified Palierne model to Small Amplitude 

Oscillatory Shear (SAOS) experiments, the interfacial tension between the polymers 

forming the blend was inferred and shown to decrease upon addition of clay. The relaxation 

spectra inferred from the SAOS data, using the Honerkamp and Weese method, revealed 

four relaxation times: relaxation of PMMA and PS chains, relaxation of the droplet shape, 

as well as an additional relaxation phenomenon attributed to the Marangoni stress. 

Although, Marangoni stresses have already been studied in the case of blends 

http://sor.scitation.org/doi/10.1122/1.4982701


compatibilized by block copolymers, this is the first time that it has been evidenced in the 

case of a clay as compatibilizer. 

A. Introduction 

Polymer blends have been extensively used in industry due to the interesting 

properties they present. Most polymers are thermodynamically immiscible, resulting in a 

multiphase material whose engineering properties can be controlled by their morphology. 

The blends’ morphology is controlled during processing, but at the same time, the 

processability of polymer blends is influenced by the microstructure. The interplay between 

flow, morphology, and rheology is therefore a key point in tailoring the final material 

properties.  

The immiscibility between the polymers forming the blends can however lead to a 

coarse morphology or even to phase separation, which is not interesting, as it leads to poor 

physical properties. The addition of a so-called compatibilizer is a way to control the 

morphology over time [6], [24]. Premade block copolymers are commonly used for this 

purpose, and have been shown to be very efficient. However, their use involves significant 

drawbacks, including the fact that each chosen blend type needs to have a block copolymer 

with a tailored chemistry adapted to it, which in turn results in an expensive block 

copolymer design. At the industrial level, it is more common to create a compatibilizer 

during processing thanks to an interfacial reaction, followed by the use of a so-called 

reactive compatibilization [11]. Although this has been shown to be efficient in stabilizing 

the blend morphology, when it is employed, it becomes difficult to quantify and adjust the 

amount of compatibilizer created, as well as its exact structure. In the case of a droplet 

dispersion, as the compatibilizers settle at the interface, the addition leads to a reduction in 

the dispersed phase size [13]; a stabilization of morphology, inhibiting the dispersed phase 

coalescence [7]; a decrease in interfacial tension [13], [14], and the presence of an 

additional relaxation phenomenon [15], [16], [48]. All this leads to an improvement of the 

blend properties. 

Recently, some studies have shown that the addition of nanoparticles could have a 

similar effect as adding compatibilizer, as in some cases, the former can result in a reduction 

in the dispersed phase size [29], morphology stabilization [19], as well as a decrease in 

interfacial tension [26], [29], when the nanoparticles are located at the interface. However, 

if the nanoparticles are located in a single phase other possible mechanisms can be 
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considered: change in the viscosity of the phases, immobilization of the dispersed drops by 

the creation of a physical network of particles in the matrix (possible when concentration 

of solid above the percolation threshold) or the strong interaction of polymer chains onto 

the solid particles inducing steric hindrance [27], [88]. Therefore, the localization of the 

nanoparticles is key to understanding the compatibilization mechanism. This localization 

is a function of the nature of the nanoparticles, and thus depends on the size, shape and 

chemical surface of the nanoparticles. That is why most often, nanoparticles are 

organomodified either by chemical grafting [35], [89], [90] or by ionic exchange [37], [91]–

[93] in order to be more compatible with blend components. However, while some studies 

have shown that adding organoparticles could be similar to adding block copolymers, when 

the latter are located at the interface, no additional relaxation phenomenon has as yet been 

observed.  

 

The linear viscoelastic rheological behavior of a blend can provide information on 

the morphology and the interfacial tension of the blended component: small amplitude 

oscillatory shear experiments show an increase in elasticity at low frequencies, resulting in 

a shoulder on the storage modulus curve. This increase is associated with the relaxation of 

the shape of the droplets (τF), which were previously deformed by the stress applied [55]. 

In the case of compatibilized blends, an additional relaxation time (τβ) may be observed, as 

already mentioned. Van Hemelrjick et al. showed that τF depends mainly on the 

concentration of the dispersed phase, whereas τβ strongly depends on the concentration of 

compatibilizer [54]. Therefore, the latter relaxation time is believed to be due to the 

presence of copolymer at the interface, and especially to the Marangoni stress illustrated in 

FIG. 3.1 [15], [16], [51]. This Marangoni stress occurs when the compatibilizer is not 

distributed equally around the droplet. When two droplets approach, the matrix in between 

them will flow elsewhere and drag the compatibilizer with it. It results in a gradient in 

compatibilizer concentration on the surface of the droplets. Because of that, an opposite 

force will cause the compatibilizer to come back equally distributed on the surface, thereby 

preventing coalescence. This is called the Marangoni stress. In this regard, Jeon and 

Macosko [21] showed gradients in block copolymer concentration during flow by 

visualizing a fluorescent PS-PMMA copolymer at the surface of a PMMA droplet in a PS 

matrix. On those matters, rheology can provide information on the morphology and 

compatibilization mechanism in a blend.  



 

FIG. 3.1 Illustration of the Marangoni stress 

In order to better study the Marangoni stress relaxation, relaxation spectra can be 

recovered from classical small amplitude oscillatory shear measurements by the method of 

Honerkamp and Weese [50]. Usually, on a relaxation spectrum, the two relaxation times, 

each corresponding to a phase, can be seen, followed by a longer relaxation time induced 

by the relaxation of the shape of the droplets τF. Upon the addition of block copolymer, a 

fourth relaxation time τβ can be observed between 10 to 100 s in some cases. However, this 

last relaxation phenomenon can be observed at even longer times that are hard to reach with 

only SAOS measurements. One possibility for avoiding this problem is to use creep 

experiments for complementary data over longer times [94].  

 

Several models have been developed to link the rheological behavior of polymer 

blends to their morphology, composition, and interfacial tension between components. One 

such model is the Palierne model, which predicts the rheological behavior of a blend formed 

by two viscoelastic polymers [52]. The polymers should be viscous enough to render bulk 

forces such as gravitation and inertia negligible, and the emulsion should be monodispersed 

and diluted. This model is made to predict the behavior of blends in the linear viscoelastic 

regime so at small and slow deformations. As such, the constitutive equations which relate 

stress to deformations are linear.  

Palierne developed a constitutive equation to describe the complex modulus 𝐺(𝜔)𝑏
∗  

of the blend as a function of the modulus of the matrix 𝐺(𝜔)𝑀
∗  and the dispersed 

phase 𝐺(𝜔)𝐼
∗ as written below: 
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where 𝛼0 is the interfacial tension, 𝑅 the radius of the droplets, Φ the dispersed 

phase volume concentration, 𝛽′ the interfacial dilatation modulus relative to the area 

varation and 𝛽′′  the interfacial shear modulus relative to shear without change of area [52]. 

To simplify the model in the case of polydispersed blends, Graebling et al. showed 

that an average radius Rv can be used up to a polydispersity of 2.3 [55].  

A second simplification often used is to take 𝛽′ = 𝛽′′ = 0, which corresponds to a 

constant interfacial tension despite the addition of interfacial agents. This version of 

Palierne is the most simple, and the most used [22, 30]. The expression has often been used 

to fit the storage modulus in order to find the interfacial tension or the average radius of 

droplets because these two parameters are the only unknowns. These expressions allow the 

following relaxation time to be found: 

 τF =
(

𝑅𝑣𝜂𝑀

4𝛼 ) (19𝑝 + 16)(2𝑝 + 3 − 2𝛷(𝑝 − 1))

10(𝑝 + 1) − 2𝛷(5𝑝 + 2)
 

(3.4) 

 

where Rv is the average droplet radius, α the constant interfacial tension, and p the 

viscosity ratio. 

This time corresponds to the relaxation of the droplets’ shape. The original Palierne 

model was also modified by Jacobs et al., who noticed that the two interfacial parameters 

β’ and β” of the original version had symmetrical roles in the equations [49]. In that regard, 



they decided to consider one of them constant, and set the other to zero. This approach 

requires the existence of an additional shape relaxation time other than the drops’ relaxation 

time. In this work, the following expression was used for the relaxation times: 
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𝜆12 =

𝑅𝑣𝜂𝑚

8𝛽20

10(𝑝 + 1) +
𝛽20
𝛼

(13𝑝 + 12) − 2𝛷 ((5𝑝 + 2) +
𝛽20
2𝛼

(13𝑝 + 8))

(1 − 𝛷)
 

(3.8) 

 

 

In the next work, the rheological behavior of poly(methylmethacrylate)/polystyrene 

(PMMA/PS) blends compatibilized by a clay (Cloisite 20A) was studied. PMMA/PS blends 

are often used in research on compatibilization of polymer blends as it is a “model” blend 

with a relatively simple rheological behavior. The morphology, the dispersion state, and 

the localization of clay in the blends were assessed. The interfacial tension was found using 

the simplified Palierne model. Relaxation phenomena were also studied by using the 

relaxation spectra inferred from SAOS measurements.   

B. Materials and methods 

1. Materials 

Poly(methylmethacrylate) (PMMA, DHAF grade) from Metacrill S.A. and 

polystyrene (PS, N1841 grade) from InNova S.A. were used in this study. The 

characteristics of the polymers are reported in TABLE 3.1. Cloisite 20A was purchased 

from Southern Clay.  

TABLE 3.1 Properties of the polymers 

Polymer 
Mw 

(g/mol) 

Mn 

(g/mol) 
Mw/Mn 

Viscosity (0) 

(Pa.s) 

at 200 °C 

Viscosity (0) 

(Pa.s) 

at 220 °C 

PMMA 65,000 31,000 2.1 24,000 4,300 

PS 198,000 87,000 2.2 3,200 2,100 
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2. Blending 

Blends of PMMA/PS were prepared in 90/10 and 70/30 weight concentrations. For 

each concentration in PMMA and PS, several blends were prepared with different 

concentrations of Cloisite 20A ranging from 0 to 8 wt% with respect to the dispersed phase 

PS. All the percentages in this paper are weight percentage and clay weight percentage is 

always given with respect to PS. 

The blends were prepared using a Haake PolyLab 900/Rheomix 600p batch mixer at 

200 °C and 50 rpm after PMMA was dried at 60 °C for 12 hours. They were prepared in 

two steps: in the first step, the nanoclay was mixed with the minor phase (PS) for 5 minutes, 

and in the second, PS+nanoclay was mixed with the matrix (PMMA) for 7 minutes. The 

clay was added to the PS because of the affinity between the polymer and the clay (see part 

3.C.2). In the case of the non-modified blends, the minor phase was processed twice in 

order to ensure it had the same thermal history. 

3. Characterizations 

Samples for rheological and morphological analyses were obtained by compression 

molding. Discs with a 25 mm diameter and 1 mm thickness were molded at 200 °C under 

18 MPa for 10 minutes. 

The rheological characterization of pure phases, PMMA/PS blends to which clay 

was or was not added, was performed using a stress-controlled MCR 501 rheometer from 

Anton Paar. Measurements were carried out under dry nitrogen atmosphere. A parallel-

plate geometry was used with a gap size of 0.9 mm and plate diameter of 25 mm. Time 

sweep tests were performed in order to check the thermal stability of the samples (see an 

example in FIG. 3.2). 

Strain sweep tests were carried out for all blends and pure polymers to define the 

linear viscoelasticity region. Finally, dynamic frequency sweep tests were performed for 

all blends and pure polymers at 200 and 220 °C. The strain varied from 1.5 to 6 %. The 

measurements were performed from 300 to 0.01 Hz. The zero-shear viscosity of the 

individual phases necessary to calculate the interfacial tension between the components of 

the blend, using Palierne’s model, was determined using the curve of complex viscosity 

(Pa.s) versus frequency (rad/s) obtained from dynamic frequency sweep tests. Rheological 

experiments were shown to be reproducible within 5 %. 



 

FIG. 3.2. Variation of the complex viscosity, the storage modulus and the loss modulus over time of the 90/10 

(PMMA/PS) blend at 200 °C and 0.1 rad/s 

 The morphology was characterized by scanning electron microscopy (SEM) using 

a Philips model XL 30 microscope as described by Yee et al.[15], [95]. The samples were 

previously fractured in liquid nitrogen and covered with gold using a Balzers sputter coater, 

model SCD-050. The PS was extracted using cyclohexane at room temperature under 

continuous stirring for six hours in order to improve the contrast of pictures. The 

morphology was quantified using an image analysis software package (KS 300) after 

analysis of the SEM photomicrographs. About 1000 particles were considered for each 

sample. For the calculation of the average droplet radius, Saltikov’s correction was used 

[96]. This correction takes into account the polydispersity of the morphology of the samples 

and the fact that the fracture in the samples does not always occur at the maximum diameter 

of the droplets of the dispersed phase.  

SAXS experiments were carried out using the synchrotron source from the National 

Synchrotron Light Laboratory (LNLS), Campinas, Brazil, to evaluate the state of dispersion 

of the clays within the polymers. The wavelength of the X-Ray beam was 1.488 Å. The 

sample-to-detector distance was 950 or 1125 mm. Other samples were subsequently 

characterized using WAXS on a PANalytical diffractometer, model X’Pert Pro, with a 

CuKα radiation of wavelength 0.154 nm scattering at ambient temperature.  

In order to obtain TEM pictures, samples were sectioned at room temperature, with 

a thickness of ~ 90 nm with a Leica Microsystems UCT ultramicrotome and transferred to 

200-mesh Cu TEM grids with carbon support film. The images were collected on the FEI 
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Tecnai G2 F20 S/TEM equipped with a Gatan Ultrascan 4000 CCD Camera Model 895 at 

an accelerating voltage of 200 kV. 

C. Results and discussion 

1. Morphology 

SEM observations were used to assess the morphology of the blends. FIG. 3.3 

shows the morphology of 90/10 and 70/30 blends with and without the addition of 8 % of 

clay. A droplet dispersion morphology type is observed for all the blends. According to 

FIG. 3.3a and FIG. 3.3c, the size of the droplets increases as a function of the concentration 

of PS. The experimental values of the volume average droplet radius (Rv) and the 

polydispersity (Rv/Rn) are reported in TABLE 3.2, where the increase in the radius of the 

droplets is quantitatively confirmed. This expected behavior is generally due to an increase 

in the coalescence of the dispersed phase when its concentration increases[7], [96].  

 

FIG. 3.3. Morphology of blends for a 90/10 composition (a) with and (b) without the addition of 8 % 

Cloisite 20A, and for a 70/30 composition (c) without and (d) with addition of 8 % of Cloisite 20A 



Moreover, a decrease of Rv of 34 % upon addition of clay can be seen, which 

illustrates a compatibilizing effect of the clay. However, this reduction in droplet diameter 

size is smaller than what we obtained previously when using a random copolymer [15]. 

This may be due to a different interface coverage due to the less adequate chemistry when 

compared to that of the copolymer.  

TABLE 3.2. Volume average radius (Rv) and polydispersities (Rv/Rn) of the dispersed phase 

Composition 

% 

Compatibilizer 

with respect to 

PS 

% 

Compatibilizer 

with respect to 

the whole 

blend 

Cloisite 20A PMMA-ran-PS* 

Rv (µm) 
𝑹𝒗

𝑹𝒏
 Rv (µm) 

𝑹𝒗

𝑹𝒏
 

90/10 

0 0 
0.125 

± 0.015 
1.8 

0.125 

± 0.015 
1.8 

1 0.1 - - - - 

4 0.4 
0.094 

± 0.005 
2.0 

0.060 

± 0.007 
1.9 

8 0.8 
0.083 

± 0.009 
1.8 

0.050 

± 0.007 
1.8 

70/30 

0 0 
0.620 

± 0.080 
2.3 - - 

1 0.3 
0.580 

± 0.070 
2.4 - - 

4 1.2 
0.482 

± 0.070 
2.4 - - 

8 2.4 
0.437 

± 0.080 
2.6 - - 

*Results extracted from [15] 

As stated in the introduction, the compatibilization mechanism can have several 

explanations. To understand it, the dispersion and localization of clay in the blends must 

be known. 

2. Dispersion state of clay 

The basal spacing of Cloisite 20A alone and in the polymers was estimated from 

WAXS and SAXS patterns. The values of d(001) are reported in TABLE 3.3 and TABLE 

3.4.  

It can be seen that the basal spacing increases when clay is dispersed in blends or pure 

polymers, indicating that chains of polymer are intercalated between the clay platelets. 

Parts of the clay platelets might however be exfoliated within the polymer. It can be seen 

from TABLE 3.3 that the interlayer spacing between the clay platelets is larger for the 
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composites with 1 wt% clay than for that with 8 %. This could be due to the fact that at 

higher clay content, the formation of aggregates could occur more easily because of the 

interactions between particles. A similar behavior was observed by Amurin et al. [97].  

TABLE 3.3. SAXS results for PMMA+(PS+C) blends 

Composition 

% 

Cloisite 

20A 

q (Å-1) 
d(001) 

(nm) 

Δd(001) 

(nm) 

Cloisite 20A - 2.57 2.44 - 

PS 1 1.68 3.73 1.29 
 8 1.76 3.56 1.12 

70/30 1 1.71 3.67 1.22 
 4 1.74 3.61 1.16 
 8 1.73 3.63 1.18 

90/10 1 1.74 3.61 1.16 
 4 1.71 3.67 1.22 
 8 1.74 3.61 1.16 

 

TABLE 3.4. WAXS results 

Composition % Cloisite 20A 2θ2 (°) d(100) (nm) Δd(001) (nm) 

PS 8 5.04 3.51 1.07 

PMMA 1 5.07 3.49 1.05 

 4 4.99 3.54 1.10 

 

FIG. 3.4 shows the complex viscosities measured for pure PMMA and PS which 

clay was added. An increase in the complex viscosity at low frequencies can be observed 

with the addition of clay in the case of PMMA. This addition does not have a large influence 

on the rheological behavior of PS, except when 8 % is added. In this case, the viscosity of 

the material increases for the whole frequency range, indicating that it acts as a filler. 



 

FIG. 3.4. Complex viscosity of (a) pure PMMA and (b) pure PS with different levels of Cloisite 20A at 200 ºC. 

Lines represent the fit of Carreau-Yasuda with yield stress equation. 

The complex viscosities were fitted to the Carreau-Yasuda model to which a yield 

stress had been added, as described by Vergnes [98], in order to obtain further information 

on the dispersion state of clay. According to Vergnes, the complex viscosity of a material 

to which clay has been added can be written as follows:  

 𝜂∗(𝜔) =
𝜎0

𝜔
+ 𝜂0(1 + (𝜆𝜔)𝑎)

𝑛−1
𝑎  

(3.9) 

 

where 𝜎0 is the melt yield stress, η0 the zero shear viscosity, λ is the time constant, 

n is the power law index, and a is the Yasuda parameter.  

This model contains five parameters that were adjusted to obtain the best fit with 

the experimental data. FIG. 3.4 shows that the fits (lines) correspond well to the 

experimental data (points) in the complex viscosity curves. The corresponding values for 

the parameters are reported in TABLE 3.5.  

TABLE 3.5. Values of parameters of Carreau-Yasuda with yield stress found by fitting with experimental values 

Matrix PMMA PS 

% clay 0 1 2 4 0 1 8 

σ0 (Pa) 0.00 21.0 93.4 610 0.00 0.00 0.96 

η0 (Pa.s) 21000 23740 23740 40000 2800 2800 4920 

λ (s) 0.24 0.29 0.29 0.31 0.09 0.09 0.12 

a 0.91 0.92 0.85 0.68 0.72 0.66 0.63 

n 0.34 0.37 0.36 0.30 0.31 0.30 0.29 

 

The only parameters that vary significantly are the zero shear viscosity and the yield 

stress. This is in agreement with the work of Lertwimolnum and Vergnes, who noticed the 

same effect [99]. The increase in zero shear viscosity is particularly noticeable for high clay 
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contents (PMMA +4 % and PS+8 %), and seems to be linked to the combined effect of 

high clay levels and partly exfoliated clay. On the other hand, the yield stress is essentially 

affected by the exfoliation of clay [98]: for PS+8 %, the viscosity has doubled, but the yield 

stress had almost no increase. In the case of PMMA+4 %, the viscosity has doubled as well, 

but the yield stress dramatically increased compared to pure PMMA and PS+8 %. This 

indicates that clay has more affinity with PMMA, and as a result, if the clay were to disperse 

in one of the phases, it would be PMMA. In the blending method, the nanoparticles were 

dispersed in PS prior to mixing the whole blend. The goal was to locate clay at the interface 

between PMMA and PS, thanks to the migration of clay nanoparticles during blending. The 

localization of clay is confirmed below by TEM and rheological experiments. 

3. Localization of clay 

TEM pictures showed that in a 70/30/8 blend, clay is located both at the interface and 

in PMMA (see FIG. 3.5a). For 90/10/8 blends, clay is located mainly at the interface (see 

FIG. 3.5b). These results indicate that while clay is located preferably at the interface, 

however, 8 % of clay in 70/30 blends leads to a saturated interface, and excess clay goes to 

PMMA.  

 

FIG. 3.5. Typical TEM picture of 70/30/8 (a) and 90/10/8 (b) blends 

FIG. 3.6 shows the rheological behavior of pure blends. It can be seen that for low 

frequencies, the storage moduli of the 70/30 blends exhibit a shoulder corresponding to the 

presence of a dispersed phase. This shoulder cannot be well observed for lower dispersed 

phase concentrations, as expected in the work of Graebling et al. [55]. 



 

FIG. 3.6. Storage moduli of PMMA and PS and of pure blends 90/10 and 70/30, in order to emphasis the effect of 

dispersed phase at 200 °C 

FIG. 3.7 shows the rheological results for blends with different amounts of clay. The 

rheological behavior of 90/10 blends does not seem to be affected by the presence of clay, 

most likely due to a too low concentration of both dispersed phase and clay. Conversely, a 

shoulder, typical to immiscible blend rheological curves, is clearly visible in the case of 

70/30 blends, which also shows different behaviors depending on the amount of clay.  

 

FIG. 3.7. Storage moduli of PMMA/PS/Cloisite20A blends for 90/10 (a) and 70/30 (b) concentrations 

and different levels of clay at 200 °C 

FIG. 3.8 compares the rheological behavior of 70/30/8 blends with that of the pure 

polymers with clay. 8 % of clay with respect to PS corresponds to 3.4 % of clay with respect 

to PMMA, and as such, the 70/30/8 curve can be compared to PMMA+4 % if all the clay 

is dispersed in PMMA, and to PS+8 % if all the clay is dispersed in PS. In the 70/30/8 

curve, the shoulder due to the presence of droplets disappears, and a plateau is observed at 

low frequencies, mimicking the behavior of PMMA+4 % of clay.  
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FIG. 3.8. Storage moduli of PMMA+4 %, PS+8 %, 70/30/0 and 70/30/8 blends as a comparison  

There are several phenomena that can influence the evolution of the storage 

modulus at low frequencies: the droplet relaxation, the interface relaxation, and the 

presence of clay in one of the phases. In order to try to differentiate those phenomena, the 

simplified Palierne model with the approximation of Graebling et al. [55] was fitted to a 

70/30 pure blend, leading to an interfacial tension of 0.89 mN/m. The fit is presented in 

FIG. 3.9a. The blends with clay were then compared to their predictions using the same 

Palierne model with Rv extracted from TABLE 3.2 and the interfacial tension defined 

previously (0.89 mN/m). This model only considers the droplet shape relaxation.  

If we compare the theoretical predictions of Palierne’s model to the experimental 

curves (see FIG. 3.9), it can be seen that for 70/30/1, the fit corroborates the experimental 

data, and that a discrepancy between theoretical predictions and experimental data starts to 

surface for clay concentrations of 4 %. Palierne’s model predicts a shoulder shifting slightly 

to a higher frequency, and hence to shorter relaxation times induced by the decrease in the 

dispersed phase size, upon addition of clay, whereas the experimental data show a gradual 

increase at low frequencies and the disappearance of the shoulder in favor of this increase, 

starting at 4 % of clay. The loss modulus is also increased as compared to predictions, 

indicating an effect on the viscosity of the blend. 



 

FIG. 3.9. Experimental storage moduli (G’e) and loss moduli (G”e) and their prediction by the Palierne model 

(G’p and G”p) of (a) 70/30, (b) 70/30/1, (c) 70/30/4 and (d) 70/30/8 blends at 200 °C 

To better visualize the difference with the theory, the experimental storage modulus 

(G’e) was plotted as a function of the theoretical storage modulus (G’p) (see FIG. 3.10). As 

expected, the pure blend and 70/30/1 had no noticeable deviation from the theory, whereas 

70/30/4 and 70/30/8 showed a significant deviation at low frequencies. As the model takes 

into account the shape relaxation of the droplets, the deviation from the line could represent 

the effect of nanoparticles at the interface or in one of the phases. FIG. 3.5 shows that for a 

70/30/8 blend, the clay was present at the interface as well as in the PMMA phase. For a 

90/10/8 blend, clay was located only at the interface. The rheological behavior changes 

from a typical blend behavior to a behavior close to a PMMA filled with clay for 4 % and 

8 % of clay in 70/30 blends. This have not been observed for 90/10 blends, therefore it is 

considered that the interface is saturated in 70/30/8 and 70/30/4 blends and the excess of 

clay disperse in the matrix.   
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FIG. 3.10. Experimental storage moduli (G’e) as a function of theoretical storage moduli  (G’p) 

The concentration of clay at which the interface is saturated can be evaluated by the 

following equation used by Ray et al. [93]:  

 %𝐶𝑠𝑎𝑡 =
3𝑒

𝑅𝑣
 %𝑃𝑆 (3.10) 

where e is the thickness of one clay platelet, Rv is the PS average droplet radius, 

and %PS is the volume fraction of PS.  

The authors primarily estimate that the clay is exfoliated, and thus use the thickness 

of a single clay platelet in their equations. In this study, since the clay may not be fully 

exfoliated, we considered that the clay could be held in tactoids containing 1, 2, 3 or 4 

layers of clay. The results are reported in TABLE 3.6, while the thickness is calculated, 

adding successive layers of clay (1 nm thickness) and the basal spacing reported in TABLE 

3.3. The percentage of clay needed to saturate the interface is smaller for 70/30 blends, 

which is normal because as the droplets are bigger, the total interfacial area is smaller than 

for 90/10 blends. If the clay saturates the interface for concentrations below 4 %, then the 

sheets are stacked together into 1 to 2 sheets tactoids on average (see also FIG. 3.11). 

TABLE 3.6. Weight percentage of clay with respect to PS needed to saturate the interface 

Number of 

sheets 

thickness 

(nm) 

%C 

70/30 

%C 

90/10 

1 1.0 0.8 4.0 

2 5.6 4.5 22.5 

3 10.2 8.3 40.9 

4 14.8 12.0 59.4 



 

FIG. 3.11. Typical TEM of a PMMA/PS/Cloisite 20A droplet 

Concerning the 90/10 blends, nothing could be inferred, as no noticeable difference 

could be seen directly on neat rheological results. In that case, TABLE 3.6 indicates that 

the interface was not saturated in those blends, and TEM pictures discussed previously 

showed that clay is located at the interface (FIG. 3.5). 

This presence of clay at the interface limits the possible hypotheses for the 

compatibilization mechanism to the decrease in interfacial tension and/or the inhibition of 

coalescence by steric hindrance, solid barrier or Marangoni stress. 

4. Interfacial tension 

The interfacial tension was calculated by fitting the simplified Palierne model on 

SAOS experimental data. FIG. 3.12 show the fits of the Palierne model on 90/10 blends. 

The values reported in TABLE 3.7 show that the interfacial tension decreases upon 

addition of clay. Our results corroborate those of Yee et al. [15], who found similar 

values of interfacial tension fitting Bousmina’s model (see TABLE 3.7). The interfacial 

tension is lower for the 70/30 blend than for the 90/10 blend. This has already been 

shown by Calvão et al. [100] who found similar values (0.9 mN/m) for a 70/30 

PMMA/PS blend. 
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FIG. 3.12. Experimental storage moduli (circles) and loss moduli (diamonds) and their fit of the Palierne model 

(lines) on the (a) 90/10, (b) 90/10/4 and (c) 90/10/8 blends at 200 °C  

 

TABLE 3.7. Values of interfacial tension (αP) found by fitting the simplified Palierne model on SAOS 

experimental results and (αY) values found by Yee et al. [15] 

Composition 

% 

Compatibilizer 

with respect to 

PS 

% 

Compatibilizer 

with respect to 

the whole 

blend 

αP (mN/m) αY (mN/m) 

90/10 

0 0 1.35 ± 0.16 1.4 

1 0.1 - - 

4 0.4 0.70 ± 0.04 0.97 

8 0.8 0.65 ± 0.08 0.85 

70/30 0 0 0.89 ± 0.12 - 

 

 



In the case of a block copolymer, a decrease in interfacial tension is often combined 

with Marangoni stresses to explain the compatibilization mechanism. As we showed that 

an interfacial tension decrease occurs upon the addition of clay, the relaxation phenomena 

were investigated. 

5. Relaxation phenomena 

The relaxation phenomena were studied by using the relaxation spectra inferred 

from SAOS measurements. The NLREG technique was used to convert the dynamic results 

into continuous relaxation spectra [50]. FIG. 3.13 shows the corresponding weighted 

relaxation modulus (H(τ)*τ) as a function of the time τ of PMMA, PS and pure blends. Two 

peaks can be identified for the blends; one related to the relaxation times of the blends 

phases (PS and PMMA) which are overlayed because they are very close to one another 

[15], and a second, which is associated with the form relaxation of the dispersed droplets. 

When the concentration of the dispersed phase is higher, the peaks have more amplitude, 

and the second peak, corresponding to the relaxation of the droplets, is longer because for 

30 % of PS, the droplets are larger.  

 

FIG. 3.13. Weighted relaxation spectra of pure blends and materials 
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FIG. 3.14. Weighted relaxation spectra of (a) 70/30 and (b) 90/10 blends with different levels of Cloisite 20A at 

200 °C 

For both 90/10 blends and 70/30 blends (see FIG. 3.14), the rise of the relaxation 

modulus at long times with the addition of clay could suggest the presence of an additional 

relaxation phenomenon at longer times. One way to obtain data at those times is to use 

creep experiments as a complimentary technique [94]. In this case, another approach was 

used consisting of increasing the temperature as it decreases relaxation times.  Therefore, 

additional measurements were carried out at 220 °C. FIG. 3.15a shows the results. As 

expected, the pure materials with clay exhibit only the relaxation of PMMA or PS chains. 

The increase at long times for PS+8 % is believed to be due to the relaxation of clay network 

or agglomerates. Concerning the 90/10 blends, a third relaxation time is revealed. This 

relaxation time is believed to be due to the Marangoni stress, as neither PMMA+1 % nor 

PS+8 % have a similar peak as the 90/10/8 blend (see FIG. 3.15b), and clay is located at 

the interface. This is the first time that this relaxation time has been observed in the case of 

nanoparticles. The Marangoni stress time decreases with increasing concentration of clay 

so even if the relaxation does not appear for 90/10/1 the increase at long time indicates a 

possible relaxation longer than 300 s. This trend is in accordance with the results obtained 

by several researchers in the case of block copolymer compatibilizers [23], [48], [49], [54], 

[99]. This means that Cloisite 20A behaves similarly to block copolymers.  



 

FIG. 3.15. Relaxation spectrum of PMMA+(PS+C) (90/10) (a) blends with different levels of Cloisite 20A at 220 

°C, (b) comparison of 90/10/8 blends with PMMA+1 % and PS+8 % 

The Palierne model described by Jacobs et al. takes into account a second relaxation 

phenomenon that has been shown to correspond to the Marangoni stress in previous studies   

[15], [48], [49]. In order to compare the values found experimentally using the relaxation 

spectra to the values predicted by the Palierne model, an estimation of the shear modulus 

of the interface is needed. Indeed, the shear modulus of the interface is likely to be 

influenced by the nature of the compatibilizer so block copolymers may correspond to a 

different interfacial shear modulus than nanoparticles. The literature provides values for 

block copolymers [15], [48], [49] as compatibilizer, but not for clay nanoparticles. By 

applying equations (3.5) and (3.6), corresponding to the version of the Palierne model given 

by Jacobs et al. [49], the results at 200 °C allow an estimation of the shear moduli of the 

interface β20. The results show that β20 is higher than for the block copolymer (see TABLE 

3.8). However, the tendency is the same: β20 increases with the addition of clay as well as 

with addition of block copolymers. These results are in accordance with the observations 

of Labaume et al. [101]. 

At 220 °C, a theoretical estimation of the relaxation times was carried out, 

considering the influence of temperature on the interfacial tension and the interfacial shear 

modulus to be negligible over 20 °C (i.e., from 200 to 220 °C). The interfacial tension was 

extracted from TABLE 3.7, Rv was extracted from TABLE 3.2, and β20 was the one 

calculated previously (reported in TABLE 3.8). The results show good agreement between 

the theoretical and experimental scenarios for droplet shape relaxation times, even though 

the model underestimates the results. Regarding the Marangoni stress relaxation, the values 

were much smaller than those given by experiments. According to the theoretical results, 
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the Marangoni stress relaxation should be around 1.5 s, which would likely be overlayed 

with the droplet shape relaxation at 0.5 s. This underestimation was also observed in the 

publication of Yee et al. [15]; however, it is significantly more dramatic in this case than 

in their case, which may be due to the fact that nanoparticles are used instead of copolymers, 

which would change the interface properties. 

TABLE 3.8. Experimental values of the relaxation times τF
E and τβ

E extracted from the relaxation spectra; the 

theoretical values τF
T and τβ

T were found using equations (3.5) and (3.6) and β20 the shear moduli of the interface 

 
% 

Cloisite 

20A 

τF
E (s) τβ

E (s) β20
1 

(mN/m) 

β20
2 

(mN/m) 

τF
E (s) τβ

E (s) τF
T (s) τβ

T (s) 

200 ºC 220 ºC 

90/10 

0 2.95 - - - 0.82 - 0.73 - 

1 2.60 * 0.80 0.18 0.70 * 0.55 1.51 

4 2.15 * 1.15 0.22 0.50 74 0.46 1.58 

8 1.71 * 1.32 0.30 0.50 50 0.37 1.45 

*Not observed, 1Calculated using equation (3.5) and (3.6), 2Extracted from [49] 

In the case of 70/30 blends, the relaxation spectra at 220 °C are not displayed as no 

third relaxation time was observed. In the case of a saturated interface (70/30/4 and 

70/30/8), no Marangoni stress may even be present, as the clay may not be able to move 

around the droplets enough. Here, the compatibilization could be due to a physical barrier 

created by clay around the droplets and/or an increase in matrix viscosity due to the 

presence of clay. Knowing that 8 % of clay with respect to PS corresponds to 1.7 % with 

respect to PMMA, and by recalling the results found on PMMA+clay complex viscosity 

(TABLE 3.5 and FIG. 3.4), we know that PMMA+2 % does not induce any noticeable 

increase in viscosity. Moreover, as clay is also present at the interface, the clay content in 

PMMA is strictly lower than 1.7 %. We can conclude that the presence of clay in PMMA 

for 70/30/8 blends does not influence the viscosity of the matrix. As such, for 70/30/4 and 

70/30/8 blends, the compatibilization mechanism is believed to be due to a decrease in 

interfacial tension and physical barrier, what is also called a Pickering effect, around the 

droplets. 

 



D. Conclusion 

The aim of this work was to understand the compatibilization mechanism of 

PMMA/PS/ Cloisite 20A blends. First, the morphology was assessed, a decrease in the 

droplet radius upon addition of clay indicated a compatibilizing effect. The dispersion and 

localization of clay was then studied as it is a key element in understanding 

compatibilization mechanisms. The results on pure materials showed that clay was better 

dispersed in PMMA than in PS. In the blends, it was shown that clay localizes itself to the 

interface until saturation of the interfacial area, after which the remaining clay disperses in 

PMMA rather than in PS. By considering the blends with a saturated interface, it was 

possible to say that clay is dispersed in 1 to 2 sheets on average. Linear rheology results 

combined with the Palierne model showed the compatibilization mechanism to be due to a 

decrease in interfacial tension as well as Marangoni stresses in the case of an unsaturated 

interface. This is the first time that Marangoni stresses are shown in the case of 

nanoparticles. In other words, these results showed that Cloisite 20A behaves similarly to 

block copolymers Althought, small differences can be observed due to the inherent nature 

of the ceramic particles: 1) the interfacial shear modulus (β20) from the Palierne model is 

higher than the ones observed for block copolymers, 2) the Marangoni stress time is longer 

in the case of nanoparticles as an increase in the temperature of the SAOS experiments was 

needed to be able to observe it. This indicates that the mobility of ceramic particles around 

the droplet is smaller than the one of block copolymers which have affinity with both 

phases.  
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Abstract 

The compatibilization mechanism of PMMA/PS blends induced by PMMA-b-PS 

block copolymers of different molar masses (30 and 104 kg/mol) was studied. The blend 

morphologies with and without copolymers were observed by scanning electron 

microscopy. The rheological behavior was studied performing small amplitude oscillatory 

shear experiments. The experimental results were compared to Palierne’s model 

predictions. Shear induced coalescence tests were also conducted. Contrary to what was 

expected, adding block copolymers did not result in a refinement of the droplets size. 

However, it induced Marangoni stresses, a decrease in interfacial tension and an inhibition 

of coalescence of the dispersed phase. During coalescence tests a decrease of the relaxation 

time due to Marangoni stresses with time was revealed. This interesting behavior 

contradicts previous works on the subject and is believed to be due to a migration of block 

copolymers to the interface during the tests rather than droplets’ coalescence. As such, the 

morphology was explained by the fact that block copolymers are not entirely at the interface 

initially. Also, the block copolymer with a higher molecular mass was shown more efficient 

at inhibiting coalescence, indicating that the compatibilization mechanism is a combination 

of Marangoni stresses and steric hindrance. 

 

 

 



A. Introduction 

The control of morphology of immiscible polymer blends is a common issue in 

polymer processing. When polymer blends are subjected to flow, their morphology is 

influenced by breakup and coalescence phenomena. Taylor [2] suggested that at low stress 

in a steady uniform shear flow, the deformation degree of a droplet is a function of : 

• The capillary number Ca  

 𝐶𝑎 =
𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠

𝐹𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙
=

𝜂𝑚  𝑅𝑣

𝛼
 (4.1) 

• The viscosity ratio p  

 𝑝 =
𝜂𝑑

𝜂𝑚
 (4.2) 

 Where ηm and ηd are the viscosities of the matrix and the droplets 

respectively, 𝛾̇ is the shear rate, Rv the radius of the droplets and α the interfacial tension. 

Applying a flow can lead to droplet breakup when the interfacial tension forces 

cannot balance the viscous forces. That is what happens above a critical value of the 

capillary number Cac. Below this value the coalescence will be promoted. Grace [5] 

provided data about this phenomenon by experimentally plotting Cac as a function of p for 

both simple shear and extensional flow (FIG. 4.1). The lowest Cac, in other words the range 

where breakup is the easiest, is found for 0.1 ≤ p ≤ 1.0. This is the range where most blends 

will be chosen as a fine morphology is wanted for good final properties, however 

coalescence still often takes place during processing. 

 

FIG. 4.1 Effect of the viscosity ratio on critical capillary number in rotational shear and irrotational shear fields 

[5] 

The addition of a so-called compatibilizer is a way to control the morphology over 

time [6], [24]. Premade block copolymers are generally used for this purpose, but at the 

industrial level it is more common to create a compatibilizer during processing thanks to 
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an interfacial reaction [11]. For both methods, in the case of a droplet dispersion, the 

compatibilizers settle at the interface because of their dual chemistry. Their addition leads 

to a reduction of the dispersed phase size [13]–[15], an inhibition of the droplet’s 

coalescence [7], [17]–[20], a decrease of interfacial tension [7], [14]–[16], and the presence 

of an additional relaxation phenomenon [8], [16], [23], [25], [48], [49], [53], [100], [102] 

besides an improvement of the blend properties. 

Coalescence suppression is generally believed to be induced by two phenomena. 

The first one is based on the appearance of Marangoni stresses. When two droplets 

approach each other, the matrix flows out from the gap between the approaching droplets 

and when it happens the compatibilizer is dragged along. This results in a gradient in 

compatibilizer concentration on the droplet surface, so in an interfacial tension gradient. 

Because of that, Marangoni stresses appear to make the compatibilizer come back 

homogeneously around the droplets and in doing so, prevents coalescence. Those 

Marangoni stresses are the source of the additional relaxation phenomenon mentioned 

previously. They were evidenced by Jeon and Macosko [21] who showed gradients in block 

copolymer concentration during flow by visualizing a fluorescent PS-PMMA copolymer at 

the surface of a PMMA droplet in a PS matrix. The minimum coverage of block copolymer 

necessary to completely suppress coalescence by considering Marangoni stresses can be 

estimated using equation (4.3) [22].  

 
∑ =

𝒎𝒊𝒏

𝟓

𝟑𝟐

𝟐𝑹𝒗𝜼𝒎𝜸̇

𝒌𝑻
 (4.3) 

The second mechanism, proposed by Sundararaj and Macosko [7],  explains 

coalescence suppression by steric hindrance. When two droplets approach each other, the 

block copolymer is squeezed in between them. It leads to repulsion between the droplets 

because a change in the conformation of the copolymer chain leads to a gain in entropy. 

This hypothesis is consistent with the observations of Van Hemelrijck et al. [23], and Lyu 

et al. [20] that showed that the length of the diblock in the matrix influences coalescence in 

such a manner that the longer the block, the more coalescence is suppressed. This theory 

assumes that the block copolymer cannot move at the interface. By equating the Van der 

Waals force with the steric force, the minimum coverage of block copolymer can be 

estimated by the following expression [20]: 

 ∑ =
𝑐

20

27𝜋 < 𝑟0
2 >

 (4.4) 



Where < 𝑟0
2 > is the square mean end-to-end distance of the chains of block 

copolymers. Originally, this steric hindrance theory was developed to explain suppression 

of static coalescence, thus it is independent of shear rate. 

These two phenomena could also be present at the same time, but this is rarely dealt 

with in the literature. On this subject, Fortelny [25] assessed that steric hindrance can act 

only if the Marangoni effect is negligible, suggesting that Marangoni stresses usually 

dominates. All this is valid if the block copolymers settle only at the interface, however, 

some researchers evidenced that micelles can be present in the blends, decreasing the 

efficiency of the compatibilizers [22]. The efficiency is then linked to the quantity of block 

copolymer at the interface, thus to the surface coverage. 

 

The rheological characterization of a blend in the linear regime can provide 

information on the morphology, interfacial tension between the polymers forming the blend 

and relaxation phenomena above mentioned. Indeed, small amplitude oscillatory shear 

experiments reveal an increase in elasticity at low frequencies, resulting in a shoulder on 

the storage modulus curve as a function of frequency. This increase is associated with the 

relaxation of the shape of the droplets (τF), which were previously deformed by the stress 

applied [55]. In the case of compatibilized blends, an additional relaxation time (τβ) may 

be observed. Van Hemelrjick et al. [54] showed that τF depends mainly on the concentration 

of the dispersed phase, whereas τβ strongly depends on the concentration of compatibilizer. 

Therefore, the latter relaxation time is believed to be due to the presence of copolymer at 

the interface, and especially to the presence of Marangoni stresses.  

In order to evaluate clearly relaxation times, relaxation spectra can be recovered 

from classical small amplitude oscillatory shear measurements using Honerkamp and 

Weese method [50]. Those spectra allow a better visualization of the relaxation times 

originated from the relaxation of the droplet shape and Marangoni stresses. In the present 

work, these relaxation times will be called droplet’s shape relaxation and Marangoni’s 

relaxation. 

 

Several models have been developed to link the rheological behavior of polymer 

blends to their morphology. One such model is Palierne’s model, which predicts the 

rheological behavior of a blend formed by two viscoelastic polymers [52]. The polymers 

should be viscous enough to render bulk forces such as gravitation and inertia negligible, 



57 

and the emulsion should be monodispersed and diluted. This model is made to predict the 

behavior of blends in the linear viscoelastic regime in other words at small and slow 

deformations. As such, the constitutive equations which relate stress to deformations are 

linear. This model predicts the relaxations happening in a blend.  

The simplified version commonly used gives the following expression for the 

droplet’s shape relaxation time [56]: 

 τF =
(

𝑅𝑣𝜂𝑀

4𝛼 ) (19𝑝 + 16)(2𝑝 + 3 − 2𝛷(𝑝 − 1))

10(𝑝 + 1) − 2𝛷(5𝑝 + 2)
 

(4.5) 

 

where Rv is the average droplet radius, α the interfacial tension, and Φ the volume 

fraction of the dispersed phase. 

The original Palierne model was modified by Jacobs et al.[49] (see equations (4.6)-

(4.9)) to take into account Marangoni’s relaxation (τβ) resulting in values for both the 

droplet shape and Marangoni stress relaxation times as follows: 

 𝜏𝐹 =
𝜆12

2
(1 − (1 −

4𝜆11

𝜆12
)

0.5

) (4.6) 

 𝜏𝛽 =
𝜆12

2
(1 + (1 −

4𝜆11

𝜆12
)

0.5

) 
(4.7) 

 

With 

𝜆11 =
𝑅𝑣𝜂𝑚

4𝛼

(19𝑝 + 16)(2𝑝 + 3 − 2𝛷(𝑝 − 1))

10(𝑝 + 1) +
𝛽20
𝛼

(13𝑝 + 12) − 2𝛷 ((5𝑝 + 2) +
𝛽20
2𝛼

(13𝑝 + 8))

 
(4.8) 

𝜆12 =
𝑅𝑣𝜂𝑚

8𝛽20

10(𝑝 + 1) +
𝛽20
𝛼

(13𝑝 + 12) − 2𝛷 ((5𝑝 + 2) +
𝛽20
2𝛼

(13𝑝 + 8))

(1 − 𝛷)
 

(4.9) 

 

Where β20 is the interfacial shear modulus, an interfacial parameter. 

 

In the present work, PMMA/PS blends with addition of PS-b-PMMA block 

copolymers of different molar masses were studied. PMMA/PS blends are often used as 

“model” blends for research as their rheological behavior is well known and not too much 

sensitive to side effects like degradation. The morphology and rheological behavior were 

assessed. The interfacial tension was calculated using Palierne’s model. The 

compatibilization mechanism was studied using rheology: Marangoni stresses were 

evidenced using the relaxation spectra inferred from SAOS measurements, and shear 

induced coalescence tests were performed.  



B. Materials and methods 

1. Materials 

In this study, poly(methylmethacrylate) (PMMA) from PLEXIGLAS, grade 6N, and 

polystyrene (PS) from INEOS Styrenics, grade EMPERA 350N, were used. Two 

symmetric (ratio PMMA/PS 1:1) block copolymers (BC) with their molar mass being the 

only difference were added to the blends. The BCs were purchased from Sigma Aldrich. 

The characteristics of the materials are reported in TABLE 4.1. 

TABLE 4.1 Properties of the polymers 

Polymer 
Mn 

(g/mol) 
Mw/Mn 

Melt flow index 

(cm3/10 min) 

Viscosity 

(0) (Pa.s) 

at 200 °C 

PMMA - - 
12  

(230 °C / 3.8 kg) 
12,000 

PS - - 
1.5  

(200 °C / 5 g) 
9,800 

BC1 30,000 ≤1.2  - 

BC2 104,000 ≤1.2  - 

 

2. Blending 

Blends of PMMA/PS in 90/10 weight concentrations were prepared. To these were 

added different concentrations of BC ranging from 0 to 1 wt%. All the percentages in this 

paper are weight percentage. 

The blends were prepared using a micro twin screw extruder HAAKE MiniLab II 

from Thermo Scientific. Components were blended at 200 °C and 50 rpm after PMMA was 

dried at 80 °C for at least 12 hours. Blends were prepared in two steps: First, the block 

copolymers were mixed with the minor phase (PS) in direct extrusion mode, and then, 

PS+BC was mixed with PMMA for 7 minutes in cycle extrusion mode. The aim was to 

follow a process similar to another work [103]. In the case of the uncompatibilized 

PMMA/PS blend (without BC, called pure in the rest of the paper), the minor phase was 

processed twice in order to ensure it had the same thermal history as the others. 

3. Characterizations 

Samples for rheological and morphological analyses, discs with a 25 mm diameter 

and 1 mm thickness, were molded at 200 °C under 18 MPa for 10 minutes using a 

compression molding press. 
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The rheological characterization was performed using two stress-controlled 

rheometers: MCR 501 and MCR 302 from Anton Paar. All measurements were carried out 

under dry nitrogen atmosphere. A parallel-plate geometry was used with a gap size of 0.9 

mm and plate diameter of 25 mm. Time sweep tests were performed in order to check the 

thermal stability of the samples and showed that the samples were stable at 200 °C for 2 

hours. Strain sweep tests were carried out for blends and pure polymers to define the linear 

viscoelasticity region. The strain was fixed at 4 % in the linear region. Finally, dynamic 

frequency sweep tests were performed from 300 to 0.01 Hz for all blends and pure polymers 

at 200 °C and some at 180 °C. The zero-shear viscosity of the individual phases necessary 

for further analyses and calculation was determined using the curve of complex viscosity 

(Pa.s) versus frequency (rad/s) from dynamic frequency sweep tests. Rheological 

experiments were shown to be reproducible within 5 % for both rheometers.  

 

Coalescence tests were conducted on the MCR 302 at 200 °C under nitrogen. As 

the blend already has a fine morphology, a pre-shearing was not considered necessary. The 

shear rate was chosen low enough to favor coalescence: using 𝑝 = 0.82, the experimental 

fit of Grace’s curve by De Bruijin [6] (equation (4.10)) gives a critical capillary number of 

0.47. Equation (4.1) gives a critical shear rate of 0.12 s-1
 (using ηm from TABLE 4.1 and Rv 

= 0.323 µm, Rv of the pure blend measured by SEM). Thus, a shear rate of 0.05 s-1 was 

chosen to ensure coalescence conditions. The coalescence tests were designed as described 

in FIG. 4.2 with a succession of steady shear (shear induced coalescence) and frequency 

sweeps to probe the evolution of morphology. 

𝑙𝑜𝑔𝐶𝑎𝑐 = −0.506 − 0.0995𝑙𝑜𝑔𝑝 + 0.124(𝑙𝑜𝑔𝑝)2 −
0.115

𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔4.08
 

(4.10) 

 

 

FIG. 4.2 Design of coalescence experiments 



Those tests last 10 hours in total. The rheological behavior is then evaluated as a 

function of strain ((time length of steady shear)*(shear rate)). Neat polymers were 

characterized rheologically, TABLE 4.2 shows the evolution of the zero shear viscosity 

and the resulting viscosity ratio during the tests. During coalescence tests some thermal 

degradation occurs resulting in a decrease of PMMA and PS viscosity. These data were 

taken into account at each step of the test. Block copolymers probably also degrade during 

coalescence tests. This degradation is considered to be taken into account by considering 

PMMA and PS decrease of viscosity as their degradation will be similar and also because 

the amount of block copolymer is very low. 

TABLE 4.2 Evolution of complex viscosities of PMMA and PS and of the resulting viscosity ratio p 

during coalescence tests at 200 °C 

strain 0 10 25 100 250 1000 

η0(PMMA) 11,900 11,800 11,500 11,100 10,700 9,800 

η0(PS) 9,800 7,100 6,200 5,900 5,700 5,200 

p 0.82 0.60 0.54 0.53 0.53 0.53 

 

The morphology prior to coalescence was characterized by scanning electron 

microscopy using a HITACHI SU8230 FE-SEM. A JEOL JCM-600 plus was used for 

blends after coalescence. The samples were previously fractured at ambient temperature. 

For the use of JEOL JCM-600 plus, the samples were covered with gold. The morphology 

was quantified with ImageJ software considering at least 600 particles for each sample.  

C. Results and discussion 

1. Morphology 

SEM observations were used to assess morphology. Small droplets were obtained 

but contrary to what has been observed in many other studies, the addition of BC did not 

result in a decrease in the droplets average volume radius (see FIG. 4.3 and FIG. 4.4). For 

PMMA/PS systems, Yee et al. [15] showed a decrease of Rv with addition of random block 

copolymer.  

An explanation could be that there are micelles in the blend which would limit the 

amount of BC at the interface, thus limiting the compatibilization mechanism. However, 

because of their dual chemistry it is expected that at least part of the BC is at the interface. 

In this case, the interfacial tension should be decreased [6], [23], [53] and Marangoni 

stresses should appear [48], [102].  
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FIG. 4.3 Morphology of (a) pure PMMA/PS blend, and blends with (b) 1% of BC1 and (c) 1% of BC2. 

 

FIG. 4.4 Evolution of the volume average droplet radius with addition of BC. 

2. Interfacial tension & Marangoni stresses 

To verify if there is BCs at the interface, rheological experiments were conducted 

at 200 °C. FIG. 4.5a and FIG. 4.5b show the storage moduli of the blends as a function of 

frequency. It can be seen that the presence of BCs induces an increase in G’ even at high 

frequencies. This could indicate the presence of BCs in one of the phases, however, this 

cannot be ensured here. As the concentration of dispersed phase and block copolymer is 

very low, the shoulder that should be present on the storage modulus, in the case of BC at 

the interface [53], is not apparent. In order to better visualize the relaxation phenomena, 

the relaxation spectra of the blends were calculated using the SAOS data reported in FIG. 

4.5a. and FIG. 4.5b. The results are presented FIG. 4.5c and FIG. 4.5d. When the data are 

shown that way, the changes from one sample to another can be acknowledged more easily. 

The first relaxation observed in the blends spectra corresponds to mainly PMMA and 

minorly PS chains relaxation. The second relaxation phenomenon is due to the relaxation 

of the droplets shape (τF). It can be noticed that this second relaxation is of the same order 



than the second relaxation in neat PS’ relaxation spectra. However, due to its very low 

concentration, PS’ contribution to the relaxations of blends is considered negligible. The 

third relaxation observed only in the case of BC2 (FIG. 4.5d) is due to Marangoni stresses 

(τβ). As generally observed in the literature, FIG. 4.5d shows that this relaxation time 

decreases with addition of BC [48], [49]. This shows that BC2 is at least partially at the 

interface and a compatibilization mechanism should be observed.  

The absence of these Marangoni stresses in the case of BC1 is probably due to the 

difference in molar mass as it is the only difference between BC1 and BC2. Knowing that 

Marangoni stresses relaxation is induced by movements of BC at the interface, BC1 should 

have a shorter Marangoni’s relaxation: it has a smaller molar mass, so it should be able to 

move faster. As such, the relaxation of the droplets and Marangoni’s relaxation may be 

overlapped or close enough to be not distinguishable in FIG. 4.5c. 

To verify this assumption, other rheological measurements were conducted at lower 

temperature: as already shown by Genoyer et al.[103], Marangoni’s relaxation is influenced 

by temperature. By decreasing the temperature, the movements of BCs at the interface will 

be longer as the viscosity increases. As predicted, at 180 °C the third relaxation 

corresponding to Marangoni stresses appears (see FIG. 4.6) for BC1. The relaxation time 

corresponding to relaxation of Marangoni stresses is not seen for 0.2 % of BC1 as the 

amount of block copolymer might be too low or the relaxation time too long to be observed. 

This confirms that BC1 also is at least partially at the interface, that the two relaxations 

were at similar times at 200 °C, and that Marangoni stresses are more influenced by 

temperature than the droplet shape relaxation. For the next results, the relaxation at 200 °C 

for BC1 blends is considered to be representative of the droplets shape relaxation.   
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FIG. 4.5 SAOS results at 200 °C : storage moduli of blends with (a) BC1, (b) BC2 and the relaxation spectra of 

(c) BC1 and (b) BC2 

 

FIG. 4.6 Relaxation spectra of BC1 at 180 °C  



By extracting the droplet shape relaxation time (τF) and using equation (4.5) the 

interfacial tension of each blend can be calculated. The interfacial tension between PMMA 

and PS can be found in the literature to be between 1 to 3 mN/m [15], [49], [95], [103]. The 

values found here are of the same order of magnitude, decrease with addition of BC1 but 

increase with addition of BC2 (see TABLE 4.3).  

TABLE 4.3 α the interfacial tension calculated using Rv from SEM observation and τF from the 

relaxation spectra of each blend 

Blend Pure BC1 BC2 

%BC  0.2 0.5 1 0.2 0.5 1 

α (mN/m) 
4.29 

± 1.37 

2.20 

± 0.67 

0.60 

± 0.18 

1.01 

± 0.28 

2.96 

± 0.66 

0.35 

± 0.10 

0.67 

± 0.18 

 

A decrease in interfacial tension and the presence of Marangoni stresses clearly 

attest the presence of block copolymers interface and that there should be a 

compatibilization effect. As generally Marangoni stresses are associated with coalescence 

suppression, coalescence tests were conducted to ensure the results reported here. 

3. Coalescence  

Coalescence tests were carried out following the shear history described previously. 

The results for BC1 are shown in FIG. 4.7. An evolution of the storage modulus at low 

frequencies can be witnessed. To understand better this evolution, 3 storage moduli 

predicted by the simplified Palierne model [56] were plotted in FIG. 4.8. P0.37 is the actual 

fit of the simplified Palierne model to experimental data for BC1 0.2 % at strain = 0, with 

Rv = 0.37 µm (determined previously by SEM). P0.037 and P3.7 curves are the model 

predictions with the parameters determined previously except Rv that is changed to 0.037 

µm and 3.7 µm respectively. The aim is to understand the evolution of the storage modulus 

when the droplets size changes. FIG. 4.8 shows that the shoulder for which the droplets 

relaxation is responsible, indicated by arrows, shifts to lower frequencies when Rv increases 

and is more pronounced while doing so. This is the same type of evolution as observed in 

FIG. 4.7 during coalescence experiments. This increase in Rv is the evidence that 

coalescence occurred during the tests. 

To analyze the coalescence phenomenon, the relaxation spectra for the different 

blends were inferred from the SAOS data reported FIG. 4.7. In the case of BC1 (FIG. 4.9), 

the evolution of the droplets’ relaxation time (second relaxation) is very clear and shifts to 

greater values during the experiment. Indeed, the bigger the droplets, the more they will be 
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deformed during shearing, therefore the longer the relaxation time of the shape after 

deformation. In the case of BC2, the results are slightly different because of Marangoni’s 

relaxation: the relaxation of the droplets disappears starting at a strain of 100 for BC2 0.5 

% and 1 %. This is most likely due to the fact that the shape and Marangoni’s relaxation 

times are overlapped.  

 

FIG. 4.7 SAOS measurements from the coalescence tests of blends containing BC1 

 

TABLE 4.4 Experimental values of relaxations times τF
Eand τβ

E, β20 the interface parameter calculated, τF
T the 

theoretical relaxation time of the droplets calculated after determining β20 

%BC2 
β20 

(mN/m) 
τβ

E (s) τF
E (s) τF

T (s) 

0.5 0.11 53.4 1.52 1.51 

1 0.43 22.5 1.30 1.27 

 



The evolution of the volume average radius was then calculated using τF extracted 

from the relaxation spectra (FIG. 4.9 and FIG. 4.10) for all the blends except BC2 0.5 % 

and 1 % where τF was used only until strain = 100. To do so, equation (4.5) was used and 

the interfacial tension was taken as calculated previously for strain = 0 and its variation 

during coalescence test was assumed negligible. Because of the disappearance of τF for 0.5 

% and 1 % of BC2, τβ was used to determine Rv. First, equation (4.7), (4.8) and (4.9) were 

used to determine the interface parameter β20 at strain = 0 necessary for further calculation. 

β20 was shown to increase when the amount of compatibilizer increases (see TABLE 4.4) 

which was already shown in other works [16], [48]. It is also shown in TABLE 4.4 that 

adjusting the β20 parameter with the value of τβ
E and then calculating the theoretical τF

T 

leads to a very good agreement with the τF
E extracted directly from the relaxation spectra. 

This very good agreement confirms the fact that the second relaxation corresponds to the 

droplet relaxation time (τF) and the third to Marangoni’s relaxation (τβ). 

 

FIG. 4.8 Evolution of storage modulus predicted by Palierne’s model when Rv varies 
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FIG. 4.9 Relaxation spectra of the blends containing BC1 during coalescence test 

For more clarity on the evolution of Marangoni’s relaxation during the test, the 

values of τβ were extracted from the relaxation spectra and plotted in FIG. 4.11. Two 

regimes can be observed: a decrease until strain = 100 and then a minor increase. As τβ 

decreases with time, the calculated Rv decreases because Palierne’s model predicts that τβ 

varies with RV (see equation (4.7), (4.8) and (4.9)). It is the first time that such results were 

found: our results differ completely from Van Hemelrijck et al.’s observations [23] who 

found that τβ increased during coalescence tests such as predicted in  Palierne’s model 

because the larger the droplets, the longer the distance required for the block copolymer to 

relax back to a uniform concentration. Because of the unusual evolution of τβ, it was 

preferred to fit Palierne’s model [56] on the storage modulus directly for blends with 0.5 

and 1 % of BC2 and for strain = 100, 250 and 1000. This way the exact value of τF is not 



required. The results show a slight increase of Rv and are reported in FIG. 4.14 along the 

results extracted from the relaxation spectra.  

 

FIG. 4.10 Relaxation spectra of the blends containing BC2 during coalescence test 

One explanation for τβ’s evolution previously reported in FIG. 4.11 could be that 7 

min of mixing was not enough for the block copolymer to migrate entirely to the interface, 

so the decrease of τβ would be due to an increase of BC concentration at the interface rather 

than coalescence. This would explain the evolution of τβ: it would decrease over time when 

BC are still migrating to the interface, and it would increase when all the BC are at the 

interface (starting around strain=100). To verify this assumption, the blend with 0.5 % of 

BC2 was prepared again using a longer mixing time (20 min).  

 



69 

 

FIG. 4.11 Evolution of Marangoni’s relaxation (τβ) during coalescence tests, dotted lines are here to better 

visualize the tendencies 

The same experiments were conducted on this blend, named here BC2 0.5%-20 

min. FIG. 4.12 shows the evolution of the relaxation spectra of the new blend at strain = 0, 

and compares it to the previous blends with BC2. In FIG. 4.12b, the droplets relaxation 

seems slightly shorter for BC2 0.5 %-20 min, which means that the droplets are slightly 

smaller. It also shows that Marangoni’s relaxation is shorter when the blend is mixed 20 

min (BC2 0.5 % - 20 min) than 7 min (BC2 0.5 %) and the relaxation peak is sharper. The 

evolution of τβ during coalescence experiments is reported in FIG. 4.13. It can be clearly 

seen that the relaxation times are smaller for BC2 0.5 % - 20 min during the whole 

experiment. However, the same previously observed evolution was found: a decrease until 

strain = 100. This evolution is clearly less pronounced than for both BC2 0.5 and 1 %: the 

magnitude of the decrease in τβ is smaller than the two previous blends. It seems to us that 

this indicates that initially there is more block copolymer at the interface and therefore less 

important migration. These results explain the evolution of morphology observed 

previously: there is no refinements as compatibilizer is added because there is not enough 

BC at the interface initially.  

 



 

FIG. 4.12 (a) evolution of BC2 0.5 % - 20 min during coalescence tests, (b) comparison of the relaxation spectra 

of blends containing 0.5 and 1 % of BC2 

 

FIG. 4.13 Evolution of τβ for blends with 0.5 % of BC2 with 7 min (BC2 0.5 %) and 20 min of mixing (BC2 0.5% 

- 20 min) 

The evolution of Rv can be seen in FIG. 4.14. 0.2 % of BC does not influence the 

coalescence process as no difference with the pure blend is observed. At higher BC content, 

0.5 and 1 %, a decrease of coalescence is observed. In addition, it seems that BC2 has a 

stronger influence compared to BC1 and therefore is more efficient. Surprisingly it also 

seems that 0.5 % is slightly better than 1 %. 
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FIG. 4.14 Evolution of Rv during coalescence tests calculated using the Palierne model.  

 All the samples after coalescence were observed with SEM to confirm results 

obtained by rheology. FIG. 4.15 shows the volume average radii after coalescence found 

with both rheology and SEM. Relatively good agreements were found for blends with 0.5 

and 1 % of BC. However, blends with 0.2 % of BC show a huge disagreement between 

rheology results and SEM observations. We do not have an explanation for that important 

difference. However, those results confirm that BC2 is slightly more efficient than BC1.  

To understand why BC2 is more efficient, the theoretical surface coverage was 

calculated using equation (4.11) extracted from Lyu et al.’s work [20]. Here the block 

copolymer is supposed to be at the interface only. The results reported in TABLE 4.5 show 

very low values compared to Adedeji et al. [22] who found values around 0.1 to 0.2 

chain/nm². This is mainly because we use less block copolymers: they used 5 to 30 % of 

BC whereas our highest concentration is 1 %. According to those results, BC1 blends have 

a more important quantity of copolymer chains at the interface. This is not surprising as 

BC1 has a smaller molar mass so for a same mass there is more BC1 macromolecules than 

in the case of BC2. By multiplying the surface coverage by the area one chain of block 

copolymer can cover at the interface, the percentage of covered interface can be recovered 

(see TABLE 4.5). It can be noted that due to its bigger size, BC2 covers more interface 



than BC for a weight concentration of 1 %. However, for 0.5 % of BC, the percentage of 

covered interface is similar but BC2 is more efficient. 

 

 

FIG. 4.15 Comparison of the Rv found by SAOS measurements and by SEM after coalescence tests 

TABLE 4.5 Surface coverage 

 %BC 
∑ 

(chain/nm²) 

Covered 

interface 

(%) 

BC1 

0.2 0.0023 13 

0.5 0.0032 18 

1 0.0075 43 

BC2 

0.2 0.0006 11 

0.5 0.0009 19 

1 0.0030 60 

  

Using equation (4.12) from Milner et Xi’s work defining the minimum surface 

coverage needed to suppress coalescence and equation (4.11), the minimum percentage of 

BC needed can be found [104]. The results are 0.05 % for BC1 and 0.16 % for BC2. It 

shows that both block copolymers should suppress coalescence even with 0.2 %. This 

would indicate again that BC are not completely at the interface initially. The theory shows 

again that BC1 should be more efficient than BC2 as a smaller percentage should be 

required to suppress coalescence. However, both SEM and rheological results agree on the 

fact that BC2 is more efficient. As Milner and Xi based their equation on Marangoni 

stresses, it seems logical that BC1 should be more efficient as it can move more easily 
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around the interface due to its small molecular mass. As such, the efficiency of BC2 may 

not be due to Marangoni stresses but to a better steric hindrance.  

 

 ∑ =
𝛷𝐵𝐶

𝛷𝑃𝑆

𝑅𝑣𝜌𝐵𝐶𝑁𝐴

6𝑀𝑤𝐵𝐶
 (4.11) 

 ∑ =

𝑚𝑖𝑛

5

32

2𝑅𝑣𝜂𝑚𝛾̇

𝑘𝑇
 

(4.12) 

On this matter, Macosko et al. [105] assumed that coalescence inhibition arises from 

the steric repulsive forces from block copolymers at the surface of two approaching 

droplets. They estimated the minimum surface coverage for coalescence suppression to be 

as following: 

 ∑ =
𝒄

𝟐𝟎

𝟐𝟕𝝅 < 𝒓𝟎
𝟐 >

 (4.13) 

Where <ro²> is the square mean end-to-end distance of the chains of block 

copolymer.  

This minimum surface coverage is reported in TABLE 4.6. Contrary to Milner and 

Xi’s work, the concentration of BC1 added to the blend needs to be 3 times larger than the 

one of BC2 to be efficient. By comparing ∑c to ∑, the theoretical surface coverage of the 

droplets of each blend, it can be noticed that both BC1 and BC2 should start to be efficient 

at 0.5 %. BC2 is indeed efficient at 0.5 % and 1 %, but even if BC1 shows some 

improvement it is still less efficient than BC2. Macosko et al. [105] had a similar result 

with a block copolymer with a low molecular mass of 55 000 g/mol, suggesting that BC1 

simply has a molecular mass too low to induce any steric hindrance. 

TABLE 4.6  <ro²> the square mean end-to end distance of the BC chains and ∑c the minimum surface coverage 

for coalescence suppression according to the steric hindrance theory 

 <ro²> 

(nm) 

∑c 

(chain/nm²) 

BC1 65.8 0.0036 

BC2 227.9 0.0010 

 

This study leads us to think that steric hindrance and Marangoni stresses are both 

needed to be able to suppress coalescence as illustrated in FIG. 4.16. Indeed, Marangoni 

stresses are needed because if the block copolymer is not distributed equally around the 

droplet, coalescence can happen easily (see FIG. 4.16a). On the contrary, if there are 



Marangoni stresses but the block copolymer is not big enough to induce steric hindrance, 

coalescence can be diminished but not completely suppressed as in the case of BC1 (see 

FIG. 4.16c). Finally, Marangoni stress combined with a good steric hindrance can suppress 

coalescence as in the case of BC2 (FIG. 4.16b). As such, an efficient coalescence 

suppression can be obtained at low concentration of block copolymers as the interface does 

not need to be saturated provided that the chosen compatibilizer induce enough steric 

hindrance.  

 

FIG. 4.16 Illustration of the compatibilization mechanism: (a) Steric hindrance without Marangoni stresses leads 

to coalescence, (b) Marangoni stresses combined with steric hindrance prevent coalescence, (c) Marangoni 

stresses without steric hindrance does not suppress coalescence 

D. Conclusion 

The aim of this work was to understand the compatibilization effect induced by two 

block copolymers with different molar masses. The morphology was assessed by SEM and 

evidenced no refinement of the droplets’s size contrary to what is expected. For further 

analysis, the rheological behavior was characterized.  

The interfacial tension between the blend components for each blend was calculated 

using Palierne’s model and relaxation spectra were inferred from SAOS results. A decrease 

of interfacial tension and the presence of Marangoni stresses were evidenced for blends 

containing the shorter block copolymer, indicating that at least part of block copolymers 

are at the interface and act as compatibilizers. To evidence these Marangoni stresses, 

lowering the temperature was necessary in the case of addition of block copolymer with a 
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low molar mass. Indeed, Marangoni’s relaxation was too short and was not distinguishable 

from the droplet’s shape relaxation. As lowering the temperature allowed to differentiate 

them, it proves that Marangoni stresses are very influenced by temperature, more than 

droplets’ shape relaxation. In the case of blends with addition of the block copolymer with 

a higher molar mass, no decrease of interfacial tension was evidenced, however, Marangoni 

stresses were evidenced by relaxation spectra. 

Knowing that Marangoni stresses helps inhibiting coalescence, shear induced 

coalescence tests were performed. Those tests resulted in the confirmation that the presence 

of block copolymers induce an inhibition of coalescence for both block copolymers. 

However, coalescence tests evidenced a decrease in Marangoni’s relaxation during 

coalescence tests. This behavior was attributed to the fact that block copolymers were not 

fully at the interface after processing. Their migration to the interface during coalescence 

is an explanation for the decrease in τβ and would also explain why there is no refinement 

of the morphology upon addition of copolymers: initially there is not enough block 

copolymer at the interface. Finally, the block copolymer with the higher molar mass was 

shown to be more efficient at inhibiting coalescence. However, if only Marangoni stresses 

were involved in the mechanism, the smaller block copolymer should be more efficient as 

it can move faster around the interface. These results evidenced the importance of steric 

hindrance in the compatibilization mechanism. Higher molar mass of the block copolymer 

results in more efficient repulsion between the droplets and thus decreased coalescence.  

To conclude, the compatibilization mechanism in these systems was shown to be a 

combination of decrease of interfacial tension, Marangoni stresses and steric hindrance. 
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Abstract 

The addition of 3 types of clays (Laponite, Montmorillonite and Halloysite) to 

poly(methyl methacrylate), polystyrene and their blends was studied. Clays were organo-

modified by ionic exchange. Infrared spectroscopy, thermogravimetric analysis and X-ray 

diffraction (XRD) were used to characterize the modified clays. PMMA and PS 

nanocomposites were characterized by XRD and small angle oscillatory shear (SAOS) 

tests. Modified montmorillonite and laponite were shown to have a larger interlayer d-

spacing and to disperse better than their non-modified counterpart. It was also shown that 

organoclays dispersed better in PMMA than in PS. The morphologies of PMMA/PS blend 

with and without clays were observed by scanning electron microscopy. While calculating 

the wetting parameter allows to know where the non-modified clays are located, 

transmission electron microscopy was preferred to observe the localization of modified 

clays. SAOS experiments as well as shear induced coalescence tests were carried out. A 

refinement of the dispersed phase of the blend was generally evidenced upon addition of 

clay. Modified montmorillonite was shown to be located at the interface, modified laponite 

was dispersed in the whole blend whereas the other clays were dispersed in PMMA. A 

decrease in interfacial tension was shown upon addition of clay. Using the relaxation 

spectra inferred from SAOS results, it was possible to evidence Marangoni stresses in the 

case of clay located at the interface. Coalescence tests showed that modified 

montmorillonite was the most efficient at inhibiting coalescence thanks to its localization 

at the interface. 



A. Introduction 

Currently, most of the commercial plastics products are made of immiscible 

polymer blends. Blending immiscible polymers is interesting as the final properties 

strongly depend on the morphology that can be controlled during processing. The control 

of morphology is usually achieved adding so-called compatibilizers. A classic 

compatibilizer can be a premade block copolymer or a copolymer created in-situ thanks to 

an interfacial reaction [6], [24]. Recently, nanoparticles were shown to be efficient 

compatibilizers as well, however they need to be organo-modified previously by either by 

chemical grafting [35], [89], [90] or ionic exchange [37], [91]–[93] to be efficient enough. 

Their modification enables a better dispersion and a better compatibility with the polymers 

involved. Especially, montmorillonite has already been used as a compatibilizer for 

polymer blends. Montmorillonite is a layered silicate composed of two siloxane tetrahedral 

sheets sandwiching an aluminum octahedral sheet. The silicate layers are negatively 

charged, which is counterbalanced by exchangeable cations such as Na+ and Ca2+ placed in 

the interlayer. When associated with polymers, the interlayer cations are usually exchanged 

with quaternary ammonium salts which increases the basal spacing [36], [37]. Because of 

its popularity, several modified montmorillonites are already commercially available.  

There exist others type of clays which are less known and less used. One such clay 

is laponite. It is a synthetic clay shaped in discs of around 30 nm of diameter [38] which 

has the same chemical structure than montmorillonite. As such, the same organic 

modification can be done. The only difference is that laponite has a smaller Cation 

exchange capacity (CEC) than montmorillonite. Laponite CEC can be found in the 

literature between 47 and 75 meq/100 g [39]–[41] whereas montmorillonite CEC is 92.5 

meq/100g. Contrary to montmorillonite, laponite was not extensively used for polymer 

blend compatibilization, however, laponite and montmorillonite’s effect on phase-

separation was studied by Yurekli et al. [34] showing that both clays slowed down the 

kinectic of the phenomenon. As such, laponite may be a suitable compatibilizer. 

Halloysites are natural rod nanoparticles of 50 to 5000 nm length and 20 to 200 nm 

of outer diameter that have started to get some interest in nanocomposite recently [42]. 

Halloysite’s chemistry is similar to the other clays mentioned as it is a silicate bi layer 

which is rolled into a cylinder, however, they have a very different size and shape. The 

outside layer of the nanotubes, made of SiO2, is negatively charged whereas the Al(OH)3 

inner lumen is positively charged. Thanks to this difference in the external and internal 
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chemical composition, a selective modification is possible: cations can adsorb around the 

nanoparticles whereas anions can place itself inside the tube [47]. Halloysite has attracted 

attention as possible natural nanocontainers for loading and sustained release of chemical 

agents [47]. However, very few articles deal with the compatibilization of blends using 

Halloysites. On that matter, Pal et al. [45] studied the influence of adding Halloysites in a 

blend of polyoxymethylene/PP. They found out that the Halloysite induced a reduction in 

the average droplet radius. They also were able to show that modified Halloysites had more 

effect than the pure unmodified ones.  

Generally, upon addition of a compatibilizer and irrespective of its chemical nature, 

one or several of the following phenomena can be observed in the case of a blend with a 

droplet dispersion type morphology: reduction of the dispersed phase size [13], [32], 

inhibition of the droplet’s coalescence [7], [17]–[20], decrease in interfacial tension [16], 

[26], [29], and presence of an additional relaxation phenomenon [8], [23], [25], [48], [49], 

[54], [102], [103]. The additional relaxation phenomenon observed upon addition of 

compatibilizers is known to correspond to Marangoni stresses induced by a non-

homogeneous concentration of the compatibilizers at the interface [8], [21], [54], [103]. 

Indeed, when two droplets approach, the matrix film in between them is evacuated, 

dragging some of the compatibilizers with it around the interface. A gradient in 

compatibilizer concentration on the surface of the droplets results from this, causing 

Marangoni stresses to appear. Those stresses make the compatibilizer comes back equally 

distributed on the surface, thereby preventing coalescence and creating the relaxation 

described previously. This was elegantly proven in the case of block copolymer by Jeon 

and Macosko [21] who showed gradients in block copolymer concentration during flow by 

visualizing a fluorescent PS-PMMA copolymer at the surface of a PMMA droplet in a PS 

matrix.    

The morphology, the interfacial tension and the relaxation phenomenon of the 

blends can be inferred from rheological characterization in the linear viscoelastic regime. 

Small amplitude oscillatory shear (SAOS) experiments reveal an increase in elasticity at 

low frequencies, resulting in a shoulder on the storage modulus curve as a function of 

frequency. The relaxation of the shape of the droplets (τF) is responsible for this increase 

[55]. In the case of compatibilized blends, an additional relaxation time (τβ) may be 

observed, corresponding to Marangoni stresses [54]. However, in the case of dilute systems 

those relaxations are very subtle if observed solely on the storage modulus. Obtaining the 

relaxation spectra by the method of Honerkamp and Weese [50] from SAOS data can help 



with identifying the relaxation. Indeed, those spectra can display clearly the polymer chain 

relaxation, the droplet’s shape relaxation, and the relaxation due to Marangoni stresses.   

Relaxations can also be studied using existing rheological models which link the 

rheological behavior of polymer blends to their morphology. One such model is the 

Palierne model, which is made to predict the rheological behavior of a blend formed by two 

viscoelastic polymers in the linear viscoelastic regime [52]. The approximations needed 

include that the polymers should be viscous enough to render bulk forces such as 

gravitation and inertia negligible, and the emulsion should be monodispersed and diluted.  

Several authors used and simplified the model to obtain the simple expression of 

droplet’s shape relaxation time as follow [56]: 

 τF =
(

𝑅𝑣𝜂𝑀

4𝛼 ) (19𝑝 + 16)(2𝑝 + 3 − 2𝛷(𝑝 − 1))

10(𝑝 + 1) − 2𝛷(5𝑝 + 2)
 

(5.1) 

 

where Rv is the average droplet radius, α the constant interfacial tension, p the 

viscosity ratio, Φ the volume fraction of dispersed phase and ηM the viscosity of the matrix.  

 

In the following study, the effect of shape and size of the nanoparticles on the 

compatibilization mechanism was studied. To do so, 3 clays (montmorillonite, laponite and 

halloysite) were chosen because of their similar chemistry but different sizes and shapes. 

They were first organo-modified by ionic exchange and then added to the blends. 

PMMA/PS blends were used as they have a very well-known rheological behavior and 

allow to identify clearly additional phenomenon induced by the addition of a 

compatibilizer. The morphology of the blends and the localization of clay were assessed. 

The linear rheology results combined with Palierne’s model were used to find the interfacial 

tension, relaxations induced by Marangoni stresses and study coalescence phenomena. 

B. Materials and methods 

1. Materials 

Poly(methylmethacrylate) (PMMA) PLEXIGLAS, grade 6N from Evonik, and 

polystyrene (PS) from INEOS Styrenics, grade EMPERA 350N, were used for this study. 

3 different clays were used: Cloisite Na+ from Southern Clay Products (named here MMT), 

Laponite RD (L) from BYK Additives, and Halloysite (H) from Gelest Inc. Clays were 

organically modified using di(hydrogenated tallow)dimethylammonium chloride, Arquad 

2HT-75, purchased from Sigma Aldrich. 

The characteristics of the materials are reported in TABLE 5.1 and TABLE 5.2. 
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TABLE 5.1 Properties of the polymers  

Polymer 
Density 

(g/cm3) 

Viscosity (0) 

(Pa.s) 

at 200 °C 

PMMA 1.19 12,000 

PS 1.04 9,800 

TABLE 5.2 Properties of clays 

Clay Shape Size 

Surface 

area 

(m²/g) 

Cation 

exchange 

capacity 

(meq/100 g) 

MMT platelets 150-250 nm* 750 92.6 

L discs 25-30 nm D* 370 55 

H tubular 
0.1-1.5 µm length, 

10-200 nm OD** 

 

64 8 

*from the supplier 

**measured using TEM pictures 

2. Modification of clays 

An amount of ammonium salt equivalent to the CEC was dissolved in water. 5 g of 

clay (MMT, L or H) were added to the solution and left for 48 hours under stirring at room 

temperature. The solution was then filtered under vacuum and washed two times with 

water. The solid obtained was dried at 85 °C for several days until the weight percentage 

of water was less than or equal to 5% (verified by TGA). Before each use, the clays were 

re-dried at 85 °C for at least 12 hours.  

3. Blending 

A concentration of 10 % of dispersed phase was chosen as droplet like morphology 

happens at low concentration and because the Palierne model, frequently used in this work, 

can be used only for dilute systems. As such, 90/10 Blends of PMMA/PS to which were 

added 0 to 1 % of clay were prepared. All the percentages in this paper are weight 

percentages. 

A micro twin screw extruder HAAKE MiniLab II from Thermo Scientific was used 

to prepare the blends. The extrusion was carried out at 200 °C and 50 rpm. Prior mixing, 

PMMA was dried at 85 °C for at least 12 hours. The processing took part in two steps: first, 

the clays were mixed with the minor phase (PS) in direct extrusion mode, and then, PS+clay 

was mixed with PMMA for 7 minutes in cycle extrusion mode. The aim was to follow the 

same procedure as a previous study [103]. In the case of the PMMA/PS blend without clay, 



the minor phase was processed twice to have the same thermal and shearing history as the 

others. This blend is called “Pure” in the rest of the paper. 

 

Nanocomposites of PMMA and PS were also extruded. PMMA nanocomposites, to 

which 0 to 5 % of clays were added, were extruded for 7 min in cycle extrusion mode. PS 

nanocomposites were first extruded in direct extrusion mode and then for 7 min in cycle 

mode in order to undergo the same thermomechanical treatment as the dispersed phase in 

the blend. 0 to 10 % of clay were added to PS. 

4. Characterizations 

Infrared spectra (FTIR) were obtained using a Nicolet 6700 FT-IR spectrometer 

from Thermo Scientific at room temperature in transmission mode. Spectra were taken 

from 4000 to 400 cm–1. Pellets were made from mixture of powder sample and KBr. 

 

Thermogravimetric analysis (TGA) was investigated using a Diamond TG-DTA 

from PerkinElmer, from 50 °C to 900 °C at a heating rate of 10 °C /min. 

 

X-ray diffraction patterns were obtained using an X-ray diffractometer (D8 

Advance from Bruker) with a Co Kα cathode (λ=0.179 nm). The monochromator was used 

at a voltage of 40 kV and an intensity of 40 mA. The scattering angles (2θ) ranged from 

4.6 to 40° with an interval of 0.02°. The interlayer spacing or d-spacing was estimated from 

XRD scans by using Bragg’s law as follows: 

 𝑑001 =
𝜆

2𝑠𝑖𝑛𝜃
 

(5.2) 

 

Samples for rheological and morphological analyzes were molded into discs with a 

25 mm diameter and 1 mm thickness at 200 °C under 18 MPa for 10 minutes using a 

compression molding press. 

 

The morphology was characterized by scanning electron microscopy (SEM) under 

high vacuum with a Hitachi S-4300SE/N SEM or a JEOL JCM-600 Plus. The samples were 

previously fractured at ambient temperature and covered with gold. The morphology was 

quantified with ImageJ software by considering at least 600 particles for each sample.  
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Samples for transmission electron microscopy were sectioned at room temperature 

at a thickness of ≈ 70 nm using a LEICA EM UC7 ultramicrotome and transferred to TEM 

grids with carbon supported film. The images were taken using a FEI TECNAI G² LAB6 

at an accelerating voltage of 200 kV.  

 

Linear rheology experiments were performed using two stress-controlled 

rheometers: MCR 501 and MCR 302 from Anton Paar under dry nitrogen atmosphere. A 

parallel-plate geometry was used with a gap size of 0.9 mm and plate diameter of 25 mm. 

Thermal stability of the sample was check by performing time sweep tests. It was shown 

that PMMA/PS blends were stable under nitrogen atmosphere for at least 2 hours at 200 

°C. 

 

The linear viscoelastic region was defined by carrying out strain sweep tests. 

Finally, dynamic frequency sweep tests were performed for all blends and pure polymers 

at 200 °C and 220 °C at 4 % of strain. The frequency range was chosen to be from 300 to 

0.01 Hz. The zero-shear viscosities of the neat polymers were determined using the curve 

of complex viscosity (Pa.s) versus frequency (rad/s) obtained from dynamic frequency 

sweep tests. Rheological experiments were shown to be reproducible within 5 %.  

 

Shear induced coalescence tests were conducted on the MCR 302 at 200 °C under 

nitrogen atmosphere. The design of those tests is described in a previous paper [106]. A 

constant shear rate of 0.05 s-1 was chosen to ensure coalescence conditions. The 

coalescence tests were designed as described in Genoyer et al’s work [106] with a 

succession of steady shear (shear induced coalescence) and frequency sweeps to probe the 

evolution of morphology as first described in Vinckier et al.’s work [10]. Those tests last 

10 hours in total. The rheological behavior is then evaluated as a function of strain ((time 

length of steady shear)*(shear rate)). Neat polymers were also characterized using this 

procedure, the resulting data were taken into account at each step of the test. 

C. Results and discussion 

1. Clay modification 

5.1.1.1 Characterization of modified clays 

The infrared spectra of each modified clay were obtained. TABLE 5.1 shows a part 

of the IR spectra focused on the frequencies corresponding to CH2-stretching mode. Those 



peaks are induced by the aliphatic chains of the surfactant. In the surfactant spectra, the 

bands at 2916 and 2850 cm-1 are attributed to CH2 antisymmetric stretching vibration 

νas(CH2) and symmetric stretching vibration νs(CH2) respectively. The frequency νas(CH2) 

shifts to higher frequency in the case of modified clays indicating a change in the 

environment of the surfactant. Those results are in accordance with other studies [36] and 

confirm that surfactants are in interaction with clay surface for mMMT, mL and mH. 

 

FIG. 5.1 Asymmetric and symmetric stretching vibrations of CH2 groups in modified clays and surfactant 

FIG. 5.2 shows the XRD patterns of clay before and after modification. After 

modification with the surfactant, the diffraction peaks shift slightly to smaller diffraction 

angles. It corresponds to a larger interlayer space which indicates that the surfactant is 

successfully intercalated in between the sheets of clay. The basal spacings (d(001)) of clays 

calculated using equation (5.2) are reported in TABLE 5.3.  

MMT has a basal spacing of 1.19 nm which corresponds well to the data of the 

supplier (1.17 nm). mMMT has a basal spacing of 1.24 nm which is larger than the one of 

MMT but smaller than the basal spacing of a commercial Cloisite 20A which is 2.24 nm 

(see Genoyer et al. [103]). This was expected as mMMT is modified with the same 

surfactant as Cloisite 20A but at a lower concentration (95 meq/100 g corresponding to 

0.73 mg/m² for Cloisite 20A and 0.46 mg/m² for mMMT).  

The basal spacing of laponite discs also increases when it is modified. Moreover, 

non-modified laponite’s basal spacing of 1.30 nm corresponds to typical values found in 

the literature for Laponite RD which can range from 1.25 to 1.43 nm [38], [39], [41], [107].  

Because of its tubular shape, Halloysite has a positively charged inner lumen and a 

negatively charged outer surface. The surfactant is positively charged so it is believed to be 

located on the outer surface of the nanotubes [47]. The basal spacing of 0.74 nm found for 
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Halloysite corresponds to values found in the literature for dehydrated halloysite [108], 

[109]. As the surfactant is not supposed to intercalate, no further XRD experiments were 

conducted on halloysite or halloysite nanocomposites. 

 

FIG. 5.2 XRD pattern of clays before and after modification 

TABLE 5.3 Basal spacing values of clays 

Clay 2θ1 (°) 
d(001) 

(nm) 

MMT 8.6 1.19 

mMMT 8.26 1.24 

L 7.88 1.30 

mL 6.85 1.50 

H 13.96 0.74 

 

To determine the quantity of surfactant inserted, thermogravimetric analysis (TGA) 

was used.  FIG. 5.3 shows the mass loss curves of neat and modified clays. There are 3 

successive mass losses: the mass loss due to water (between 50 and 200 °C), the mass loss 

due to the thermal degradation of the surfactant for modified clays (between 200 and 500 

°C) and the mass loss associated to the dihydroxylation of clay sheets starting around 400 

°C. This is in good agreement with the work of Delbem et al. [37] who worked on the 

modification of smectite clays. The mass loss due to the surfactant only was calculated by 

subtracting the mass loss of non-modified clays due to dehydroxylation from the total mass 

loss of the modified clays. The results are reported in TABLE 5.4. 

. 



 

FIG. 5.3 Mass loss curves of non-modified and modified clays 

A similar surface chemistry for each clay is necessary to observe only the influence 

of shape and size. As such, the same concentration of clay at the surface is necessary. 

Usually, when modified by ionic exchange, clays are modified at the concentration 

corresponding to their cation exchange capacity which is different for each clay (see 

TABLE 5.2). However, because they have a similar chemical structure, modifying 

montmorillonite, laponite and halloysite in the CEC quantities would lead to a similar 

weight concentration of surfactant per surface onto the nanoparticles: in the CEC 

conditions, the concentration of surfactant would be around 0.71-0.86 mg/m² (see TABLE 

5.4). As such, the total amount of surfactant associated with the nanoparticles is greater for 

clays with larger surface area (halloysite < laponite < montmorillonite). The clays were put 

in presence of an amount of surfactant corresponding to CEC for ionic exchange. The 

amount of surfactant successfully intercalated, calculated using TGA, corresponds to a 

concentration of surfactant between 0.42 and 0.46 mg/m² so around 60 % of the CEC. To 

have a better percentage, working in excess of surfactant and playing with parameters such 

as pH and temperature could have made a difference. For this study, it is only necessary 

that the concentration of clay at the interface is similar for each clay. Those modified clays 

were then used in the following work and named mMMT, mL and mH.  
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TABLE 5.4 Results extracted from TGA 

Clay 

Weight loss 

dehydroxylation 

of neat clay 

(%) 

weight 

loss 

surfactant 

(%) 

Weight of 

surfactant 

per surface 

obtained if at 

CEC (mg/m²) 

Weight of 

surfactant per 

surface 

obtained 

experimentally 

(mg/m²) 

mMMT 5.66 34.23 0.71 0.46 

mL 5.18 15.28 0.86 0.42 

mH 14.95 2.73 0.71 0.43 

5.1.1.2 Dispersion state of clays in pure polymers 

The main expectation when modifying clays is to achieve a better dispersion state 

of clay platelet, discs or tubes in a polymer matrix. As such, clays were blended with pure 

polymers, PMMA and PS, and the resulting nanocomposites were characterized. 

XRD was used to find the interlayer spacing of clays in the nanocomposite. The 

values are reported in TABLE 5.5. First, it is clear that the clays are all better dispersed in 

PMMA than PS as all the Δd(001), representing the difference in basal spacing with neat 

clays, are all superior to zero whereas in PS some clays have the same basal spacing as neat 

clays. It can also be noticed that mMMT is the clay with a higher Δd(001) so which disperse 

better in polymers. This can be surprising because laponite should be the more dispersible 

because of its very small size. 

TABLE 5.5 XRD results of nanocomposites  

 Matrix Clay %Clay 2θ1 (°) d(001) (nm) 
Δd(001) 

(nm) 

PS 

MMT 5 8.70 1.18 0 

mMMT 5 6.25 1.64 0.40 

L 10 7.13 1.43 0.13 

mL 
10 6.82 1.50 0 

5 7.08 1.45 0 

PMMA 

MMT 2 6.73 1.52 0.33 

mMMT 2 5.78 1.78 0.52 

L 5 6.53 1.57 0.27 

mL 5 6.65 1.54 0.04 

 

Small amplitude oscillatory shear experiments were also carried out on the 

nanocomposites at 200 °C. The storage moduli as a function of frequency of PMMA and 

PS with clays are reported in FIG. 5.4 and FIG. 5.5. The increase in the storage modulus at 

low frequencies, displayed for PMMA with 5 % of mMMT and PS with 10 % of mMMT 



(FIG. 5.4a and FIG. 5.5a), can generally be associated with a better dispersion of the 

nanoparticles [99], [103]. It is the witness of a percolation of the nanoparticles which arises 

at low content when the dispersion is good. In the case of Laponite (FIG. 5.4b and FIG. 

5.5b) and Halloysite (FIG. 5.4c and FIG. 5.5c), high contents of clay resulted in a slight 

increase in the whole frequency range but not a terminal behavior similar to mMMT.  

 

FIG. 5.4 Storage moduli as a function of frequency at 200 °C of PS with (a) MMT and mMMT, (b) L and mL 

and (c) H and mH. Filled symbols correspond to the modified clays and open symbols to non-modified clays 

 

FIG. 5.5 Storage moduli as a function of frequency at 200 °C of PMMA with (a) MMT and mMMT, (b) L and 

mL and (c) H and mH. Filled symbols correspond to the modified clays and open symbols to non-modified clays 

To obtain a more quantitative analysis of the dispersion state, the approach proposed 

by Ren et al.[110] was used. At percolation, the tactoids “touch” each other and induce the 

terminal behavior observed in rheological measurements. Ren et al. found the following 

expression to infer the number of nanoclay sheets per tactoids nper from rheology results 

considering the tactoids of nanoclay sheets as hydrodynamic spheres: 

 𝑛𝑝𝑒𝑟 =
4

3𝛷𝑝𝑒𝑟

𝜔𝑠𝑖𝑙𝑝𝑒𝑟𝜌𝑜𝑟𝑔

𝜔𝑠𝑖𝑙𝑝𝑒𝑟𝜌𝑜𝑟𝑔 + (1 − 𝜔𝑠𝑖𝑙𝑝𝑒𝑟)𝜌𝑠𝑖𝑙

𝑅ℎ

ℎ𝑠𝑖𝑙
  

(5.3) 

 

 Where Φper is 0.3, the volume fraction for percolation of random spheres,  𝜔𝑠𝑖𝑙𝑝𝑒𝑟 

is the weight fraction at rheological percolation, 𝜌𝑜𝑟𝑔 and 𝜌𝑠𝑖𝑙 are the densities of the 

polymer and the nanoclay respectively, 𝑅ℎ is the radius of the hydrodynamic spheres and 

ℎ𝑠𝑖𝑙 the thickness of the silicate sheets.  
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According to Vermant et al. [111], the value of the concentration at percolation 

necessary for the use of equation (5.3), can be determined by simply plotting value of the 

storage modulus at low frequency as a function of concentration of clay. As above the 

percolation threshold, G’ increase linearly with clay concentration, the concentration at 

percolation can then be identified as the interception of the linear increase and the y = 0 

axis.  

In the case of the present study, the value of the storage modulus at 0.01 rad/s versus 

the concentration of mMMT is plotted in FIG. 5.6. For PS nanocomposite, as G’ is 

supposed to increase linearly after percolation, the concentration at percolation was 

determined calculating a linear regression from the two last points (0.05 and 0.1 weight 

fraction). The value found was 𝜔𝑠𝑖𝑙𝑝𝑒𝑟 = 0.045. In the case of PMMA composites, the 

evolution of the storage modulus is very similar to the one of PS nanocomposites, however, 

there is not enough data to apply the same procedure.  

 

FIG. 5.6 Storage modulus at low frequency (0.01 rad/s) as a function of weight fraction of mMMT 

Using equation (5.3), the number of nanoclay sheets in the tactoids was determined. 

The results indicated that mMMT is dispersed in tactoids composed of 7.8 sheets in average 

in PS. As a comparison, Genoyer et al. [103] showed that Cloisite 20A was dispersed in 1 

to 2 sheets on average, showing that mMMT is not as well dispersed as Cloisite 20A in the 

same type of nanocomposite. This probably originates from the fact that Cloisite 20A is 

modified with a higher content of surfactant. As MMT does not display a percolation, it is 

clear that it has a number of sheets per tactoids superior to 8.  

Due to its very small size, laponite nanocomposites do not display a terminal 

behavior in any of the nanocomposites. To understand this behavior, equation (5.3) was 



used to calculate the theoretical concentration at percolation for several numbers of layers. 

The results are reported in TABLE 5.6. Knowing that the percolation threshold happens at 

more than 10 % of clay in PS, TABLE 5.6 indicates that L or mL discs are dispersed in 

group of 3 at least. However, it is not possible to infer the exact number of layers in tactoids 

such as for mMMT. 

TABLE 5.6 Concentration at percolation of L or mL calculated for different number of discs nper 

𝒏𝒑𝒆𝒓 1 2 3 4 

𝝎𝑳𝒑𝒆𝒓 0.03 0.07 0.1 0.13 

 

 In the case of halloysite, due to its particular shape 𝑅ℎ and ℎ𝑠𝑖𝑙 of equation (5.3) 

corresponds to half the average length of the tube (200 nm) and the average outer diameter 

(117 nm) respectively which were measured using TEM observation. If it is dispersed in 

single particles, the percolation should happen at 26 % of clay if dispersed individually. 

Despite its bigger size, halloysite would induce a terminal behavior at higher content than 

montmorillonite and laponite. It is because a single particle of halloysite have a smaller 

aspect ratio 𝑓 =
2𝑅ℎ

ℎ𝑠𝑖𝑙
 of 3.4 than montmorillonite which have an aspect ratio of 200 when 

individual. This shows that the rheological terminal behavior of clay nanocomposites is 

more influenced by the aspect ratio than the size of the droplets. 

 

 The non-modified and modified clays were added to a PMMA/PS blend in order to 

study a possible compatibilization mechanism. 

 

2. Influence of clays in PMMA/PS blends 

5.1.1.3 Morphology 

The morphology of each PMMA/PS blend with clay was observed using SEM. The 

evolution of the droplet size upon addition of clay is represented in FIG. 5.7. There is a 

refinement of the droplets size of around 35 % when clay is added to the blend whether is 

it modified or not as well as a decrease in the standard deviation (see FIG. 5.7a). 0.2 % of 

mL induced a decrease of the radius of 20 %, however, at higher concentration, mL blends 

morphology size is similar to the one of the pure blend. mL might be too well dispersed 

and too small to have a significant influence on the morphology. 

The refinement of morphology observed is in agreement with the results of Genoyer 

et al. [103] who showed a refinement of 34 % for 0.8 % of Cloisite 20A in PMMA/PS 
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blends. In their case, the refinement of morphology was explained by the presence of 

Cloisite 20 A at the interface which decreased the interfacial tension and stabilize the 

morphology. In order to understand the mechanism taking place in the refinement of 

morphology, knowing the localization of nanoparticles is essential. 

 

 

FIG. 5.7 Morphology of the blends with (a) MMT and mMMT, (b) L and mL and (d) H and mH 

5.1.1.4 Localization of NP 

Inhibition of the droplet’s coalescence, decrease in interfacial tension, relaxation 

phenomenon at the interface are some of the physical phenomena generally reported when 

nanoparticles are at the interface. Therefore, the localization of nanoparticles is of high 

interest for the discussion. This location can be predicted by theory as it depends strongly 

on the surface tension of each component (nanoparticles and two polymers)[26]. The 

localization at equilibrium can be defined by calculating the wetting parameter (see 

equation (5.4)) where γAB, γS-A and γS-B are the surface tension between polymer A and 

polymer B, between the solid nanoparticles and polymer A and between the solid 

nanoparticles and polymer B respectively. 

 𝜔𝐴𝐵 =  
𝛾𝑆−𝐵 − 𝛾𝑆−𝐴

𝛾𝐴𝐵
  

(5.4) 

 

The wetting parameter expresses the most favorable position of the nanoparticles to 

minimize the free interfacial energy of the blend. If 𝜔𝐴𝐵 > 1, the particles are preferentially 

located in polymer A, if 𝜔𝐴𝐵 < −1, the particles are located in polymer B and if 

−1 < 𝜔𝐴𝐵 < 1, the particles are likely to locate at the interface between the polymers [27]. 

Even if most of the surface tension of typical polymer blends such as PMMA/PS is 

known, accessing experimentally the surface tension relative to solid nanoparticles is very 

difficult. They are usually calculated using theoretical models such as Owens-Wendt model 

as follow: 



 𝛾𝑖𝑗 = 𝛾𝑖 + 𝛾𝑗 − 2√𝛾𝑖
𝑑𝛾𝑗

𝑑 − 2√𝛾𝑖
𝑝𝛾𝑗

𝑝
 

(5.5) 

 

Where 𝛾𝑖
𝑑 and 𝛾𝑖

𝑝
 corresponds to the dispersive and polar contribution to the surface 

tension 𝛾𝑖. With this equation, the surface tension between two components can be found 

by knowing only the surface tension of one individual component. 

However, the values of interfacial tension need to be measured at the same 

temperature than the temperature used for processing, in our case at 200 °C. Elias et al. [32] 

used Guggenheim’s equation to calculate the surface tension at any temperature (see 

equation (5.6)). 

 𝛾(𝑇) = 𝛾0 (1 −
𝑇

𝑇𝑐
) 

(5.6) 

 

Where γ0 is the surface tension at 0 K and Tc is the critical temperature. 

The values of surface tension of each individual component used for the calculation 

of the wetting parameter are reported in TABLE 5.7TABLE 5.9 and used to calculate the 

surface tension between two components of the blends using equation (5.5). The resulting 

wetting parameter is calculated using equation (5.4) and reported in TABLE 5.8 for each 

type of blend. 

TABLE 5.7 Surface tension of each components of the blends 

 
Surface tension at 200 °C 

(mJ/m²) References 

γ γd γp 

PMMA 27.4 19.6 7.7 Calculated from [26] 

PS 27.8 21.9 3.9 Calculated from [32] 

Cloisite 20A 24.4 22.8 1.6 Directly extracted 

from [112] MMT 43.1 29.2 13.9 

L 45.0 - - Calculated from [113] 

H 42.0 - - Calculated from [91] 

TABLE 5.8 Wetting parameters 

Type of blend 𝝎𝑷𝑴𝑴𝑨/𝑷𝑺 

Cloisite 20A 0.02 

MMT 1.34 

 

According to the theory, MMT is dispersed in PMMA. As the dispersive and polar 

components are not available for H and L, it is not possible to calculate the wetting 

parameter in this case. However, from the values of surface tensions reported in Table VII 

one can imagine easily that both L and H are also dispersed in PMMA. This can be 
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explained by the fact that MMT, L and H have a higher polar component compared to PS, 

as such they will have more affinity and will prefer to be dispersed in PMMA. Concerning 

modified clays, there is no data in the literature allowing us to do the calculations as they 

are home-made modified. Moreover, there are very few studies using modified Halloysite 

or Laponite. In the case of Montmorillonite, the wetting parameter was calculated for a 

PMMA/PS/Cloisite 20A blends (see TABLE 5.8). According to those results, modifying 

Montmorillonite with an organic compound modify the surface properties in such a way 

that modified montmorillonite is theoretically located at the interface. It is probably because 

modifying clay induce a decrease in the surface tension, especially the polar contribution, 

of the nanoparticle (see TABLE 5.7). In our case, Montmorillonite is modified by the same 

surfactant, but with a smaller quantity so an intermediate value of ωPMMA/PS between the 

one with MMT and the one with Cloisite 20A is expected. As such, it is believed that 

mMMT will locate at the interface. However, one must keep in mind that the wetting 

parameter is valid only if the equilibrium state is reached. Knowing that PMMA and PS 

have close values of surface tension, the localization of clays might also be due to kinetic 

factors such as the migration from PS to PMMA or the viscosities.   

As the wetting parameters of blends with modified clays could not be accessed, 

PMMA/PS blends with the highest content of modified clays (1 %) were observed with 

TEM. Pictures of those blends are displayed in FIG. 5.8. The droplets, darker than the 

matrix, can easily be identified and the black parts are the clays. FIG. 5.8a clearly confirms 

that mMMT is located at the interface. In FIG. 5.8c, it is clear that mH is too big to really 

locate itself at the interface, however, it seems always close to a PS droplet instead of 

dispersing clearly in PMMA. As such, mH might possibly locate at the interface if its size 

would allow it. In the case of mL, clays were difficult to visualize because of their very 

small size, it is believed the very small black points (not observed for other samples) of 20-

30 nm of diameter are laponite discs (evidenced by arrows in FIG. 5.8b). Globally, 

modified Laponite seems to be dispersed in the whole blend with no preference.  

 

FIG. 5.8 TEM pictures of PMMA/PS blends with 1 % of (a) mMMT, (b) mL and (c) mH 



5.1.1.5 Marangoni stresses & interfacial tension 

SAOS experiments were conducted on the blends at 200 and 220 °C. The neat 

results are not displayed as the concentration in dispersed phase (10 %) and clay (0 to 1 %) 

are very low and no differences between the samples could be clearly identified on the 

storage moduli. The relaxation spectra were inferred to identify clearly the relaxation 

phenomena. At 200 °C, two relaxations were observed: the relaxation of PMMA and PS 

chains and the relaxation of the droplet after deformation (τF). It is known from previous 

studies that these relaxation spectra can display a third relaxation induced by Marangoni 

stresses when the compatibilizers are at the interface [49], [53], [103] and it can be easily 

evidenced by increasing the temperature [103].  

 

FIG. 5.9 Relaxation spectra of blends at 220 °C with different concentration of (a) MMT and mMMT, (b) L and 

mL and (c) H and mH 

 

 The relaxation spectra at 220 °C are displayed in FIG. 5.9FIG. 5.10. As expected, 

a third relaxation is evidenced for blends containing 0.5 and 1 % of mMMT (see FIG. 5.9a). 

0.2 % of mMMT does not display a third relaxation time probably because the 

concentration of clay might be too low. mL also displays a Marangoni’s relaxation (FIG. 

5.9b). Even if TEM observations (FIG. 5.8b) showed that mL was dispersed, at least partly, 

in PMMA, the presence of Marangoni stresses indicates that enough quantity is located at 

the interface to induce this effect. No Marangoni’s relaxation appears for blends with mH, 

possibly because they are not located at all at the interface (see FIG. 5.8b). In other words, 

by simply conducting a classic SAOS experiments and calculating the relaxation spectra, 

it is possible to determine if the nanoparticles are located at the interface or not. However, 

it does not exclude the presence of clay elsewhere in the blend as observed for mL. The 

blends with non-modified clays do not display a Marangoni’s relaxation. It is believed that 

non-modified clays do not disperse well so they are probably in aggregates and in PMMA. 

As a result, no Marangoni’s relaxation is possible. 
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Using Palierne’s model (equation (4.5)), the value of the droplet shape relaxation 

time extracted from the relaxation spectra at 200 °C and Rv, the interfacial tension between 

components was calculated. The values are reported in TABLE 5.9. Usually, the literature 

reports values between 1 to 3 mN/m for PMMA/PS blends [15], [49], [95], [103]. In our 

case, the pure blend has a value of 4.29 mN/m, which is slightly higher than usual but still 

of the same order of magnitude. The addition of clay induces a lower interfacial tension 

than the pure blend. The interfacial tension decreases slightly upon addition of clay such as 

in a previous study with Cloisite 20A [103]. The modification seemed to have induced a 

smaller interfacial tension in the case of mMMT and mH. In the case of Laponite, the 

contrary is observed. This is in good agreement with the morphological results which 

showed that mL did not induce a decrease in the droplet size but L did. As a matter of fact, 

as the interfacial tension is calculated using the Rv values discussed previously, it is directly 

linked to the evolution of morphology. 

TABLE 5.9 Interfacial tensions between the component of the blends determined using the Palierne 

model 

 
Pure 

MMT L H 

 0.2 0.5 1 0.2 0.5 1 0.2 0.5 1 

α (mN/m) 

modified clay 
4.3   

±1.4 

1.0    

±0.3 

1.1   

±0.3 

0.9   

±0.3 

1.9   

±0.5 

1.5   

±0.4 

1.1   

±0.3 

1.1   

±0.3 

1.0   

±0.3 

0.9   

±0.2 

α (mN/m) 

non-modified 

clay 

1.6     

±0.4 

1.2   

±0.3 

1.2   

±0.3 

1.0   

±0.3 

1.3   

±0.4 

1.0   

±0.3 

1.2   

±0.3 

1.2   

±0.3 

1.4   

±0.4 

5.1.1.6 Coalescence tests 

Coalescence tests were carried out following the procedure described in a previous 

work [106]. The relaxation spectra from the SAOS were calculated for each blend at 

different strain during coalescence. FIG. 5.10 shows the relaxation spectra of mMMT 

blends. As expected, τF increases with strain, indicating that the size of the droplets 

increases so coalescence is happening. The same observations were made for all the blends. 

Also, mMMT 1% does not show clearly this increase in the droplets time relaxation, 

indicating that coalescence is stopped or at least decreased. 

The volume average radius can be calculated using the relaxation time τF extracted 

from the relaxation spectra and Palierne’s model (equation (4.5)). The results are reported 

in FIG. 5.11 for blends with non-modified clays and in  

FIG. 5.12 for blends with modified clays. Non-modified clays induce a decrease in 

coalescence between 50 and 70 %. Coalescence is reduced in the presence of non-modified 



clays but is not completely suppressed. Among the non-modified clays, L is the most 

efficient, it is probably due to the fact that L disperse better. 

 

FIG. 5.10 Relaxation spectra of the blends containing (a) 0 %, (b) 0.2 %, (c) 0.5 % and (d) 1 % of mMMT during 

coalescence test 

 

FIG. 5.11 Evolution of Rv during coalescence tests calculated using the Palierne model for blends containing (a) 

MMT, (b) L, (c) H 

FIG. 5.12 shows that the modification of clay gave different results in terms of 

coalescence inhibition. mMMT is clearly the most efficient of the three types of clay as 1 
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% of mMMT completely suppress coalescence. mL and mH both decrease coalescence by 

around 70 % with 1 % of clay. However, the efficiency of mL increases with the 

concentration whereas mH blends have a similar effect regardless clay concentration.  

 

FIG. 5.12 Evolution of Rv during coalescence tests calculated using the Palierne model for blends containing (a) 

mMMT, (b) mL, (c) mH 

To better understand the results in the case of clays located at the interface, the 

surface coverage of mMMT and mL nanoparticles was calculated using the following 

equation that was calculated by dividing the interfacial area with the number of 

nanoparticles: 

 ∑ =
𝜱𝑪

𝜱𝑷𝑺

𝑹𝒗

𝟑 𝑽𝟏𝑪
 (5.7) 

Where Φc and ΦPS are the volume fraction of clay and dispersed phase respectively, 

Rv is the volume average radius and V1C is the volume of one clay nanoparticle. 

The results are reported in TABLE 5.10. This calculation supposes that all clay is 

located at the interface. mMMT has a lower interfacial coverage because its size is larger 

than mL. The minimum surface coverage needed to suppress coalescence using equation 

(4.12) which takes into account an inhibition caused by Marangoni stresses was calculated 

[20]. mMMT is supposed to suppress coalescence starting at 6.06 % which is a value 

incredibly high. In the case of mL, it is supposed to suppress coalescence at 0.21 %. By 

considering only Marangoni stresses, mL should be significantly more efficient than 

mMMT and should suppress coalescence at 0.5 and 1 % which is not the case.  This is 

mainly because the mL nanoparticles are only located partially interface (see FIG. 5.8b). 

Also, mMMT suppress coalescence at 1 %, so this theory is clearly not appropriate for this 

study. Coalescence inhibition is happening if clay is located at the interface, it is believed 

to be due partly to Marangoni stresses which allow to have an adequate distribution of clays 



around the droplets, but mostly due to the barrier effect induced by nanoparticles such as 

in Pickering emulsions. 

∑ =

𝑚𝑖𝑛

5

32

2𝑅𝑣𝜂𝑚𝛾̇

𝑘𝑇
 

(5.8) 

TABLE 5.10 Surface coverage calculated for mMMT and mL blends in the case of exfoliated clay (1 

sheet) and intercalated clays (in tactoids of 8 sheets) 

Clay 
Clay 

concentration 

surface 

coverage if 

exfoliated 

(particles/nm²) 

surface 

coverage if 

tactoids 

(tactoids/nm²) 

mMMT 

0.2 0.000016 0.000001 

0.5 0.000054 0.000003 

1 0.000114 0.000007 

mL 

0.2 0.000747 - 

0.5 0.002215 - 

1 0.005055 - 

 

FIG. 5.13 shows Rv as a function of strain during coalescence tests for blends 

containing 1 % of clay (non-modified and modified). It clearly shows that H is the least 

efficient clay to inhibit coalescence. MMT, mL and L have intermediate efficiencies. It can 

be noted that mL and L have comparable results, so the modification did not really have a 

significant role for Laponite. In comparison, mH is significantly more efficient than H. To 

understand why, the sample after coalescence was observed with TEM. FIG. 5.14 shows 

that during coalescence, modified halloysite particles placed itself at the interface. In doing 

so modified halloysites particles helped to prevent coalescence. According to FIG. 5.12, 

this seems to be the case starting at strain = 100 and Rv = 1 µm. 

 

FIG. 5.13 Evolution of Rv during coalescence tests for blends with 1 % of clay 
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FIG. 5.14 TEM of PMMA/PS blend with 1 % of mH after coalescence experiment  

5.1.1.7 Comparison with block copolymers 

In a previous study [106], the same coalescence experiments were conducted on 

PMMA/PS blends with two block copolymers as compatibilizers. BC1 and BC2 have a 

molar mass of 30 000 g/mol and 104 000 g/mol respectively. It was shown that BC2 with 

a higher molar mass leads to better coalescence inhibition due to a combination of 

Marangoni stresses and steric hindrance. The results of their coalescence tests are compared 

to the results with modified clays in FIG. 5.15. Two tendencies arise from those results: 

mMMT and BC2 completely suppress coalescence whereas mL, mH and BC1 only 

decrease coalescence of 70 %. It can also be noticed mMMT needs to cover less interface 

to be as efficient as BC2 (see TABLE 5.11). This may be due to the very different chemistry 

and structure of the compatibilizers: BC2 inhibits coalescence using steric hindrance 

whereas mMMT induce a barrier effect. The barrier effect is then more efficient. 

 

FIG. 5.15 Comparison of results with modified clay and a similar study made with block copolymers as 

compatibilizers 



TABLE 5.11 Comparison of the surface coverage of mMMT and BC2 

 %Compatibilizer ∑ (chain/nm²) 

Covered 

interface 

(%) 

mMMT 

0.2 0.00001 4 

0.5 0.00003 13 

1 0.00007 27 

BC2 

0.2 0.00060 11 

0.5 0.00090 19 

1 0.00300 60 

 

D. Conclusion 

The results reported in this paper indicated that it is possible to disperse 

montmorillonite (MMT) and laponite (L) clays within PS and PMMA polymers provided 

they are organically modified. However, no such conclusion could be done on the 

dispersion state of halloysite (H) and modified halloysite (mH) with our results.  

The decrease of the dispersed size in the case of addition of modified 

montmorillonite (mMMT) originated most likely from the location of the clay at the 

interface between both polymers. mMMT was the most efficient clay in terms of 

coalescence inhibition, most likely thanks to the presence of Marangoni stresses and a 

certain Pickering effect. 

 In the case of H, mH, and MMT which were located in PMMA, the reduction of 

the size of the droplets might originate from the variation of viscosity of the matrix due to 

the presence of nanoparticles. This variation of the viscosity of the matrix is believed to be 

also the cause of a decrease in coalescence. The efficiency of mH at inhibiting coalescence, 

better than both MMT and H, originates from the fact that mH particles migrate to the 

interface during coalescence thus induce an effect similar to mMMT when enough mH 

have migrated.  

L and mL were dispersed within the whole blend and we believe that their small 

sizes are the cause for a limited efficiency at inhibiting coalescence. The slight 

improvement in coalescence inhibition using mL is most likely due to a more important 

quantity of nanoparticles located at the interface as suggested by the presence of Marangoni 
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stresses. However, L induced a decrease in the droplet size whereas mL did not. No 

explanation could be found for that.    

 Finally, compared to block copolymers, mMMT is as efficient as a block copolymer 

with a high molecular mass (104 kg/mol) and mL, L and mH as a block copolymer with a 

lower molar mass (30 kg/mol). mMMT is as effective as BC2 even if it covers less interface, 

suggesting that a barrier effect is more efficient than steric hindrance. In regard to the very 

high price of block copolymers, replacing block copolymers by a clay such as mMMT, mL, 

L or mH is very cost effective. 
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CHAPTER 6 

 

 

INFLUENCE OF ADDITION OF CLAY ON THE BEHAVIOR OF PMMA AND 

PS NANOCOMPOSITES AND ON THE MORPHOLOGY OF PMMA/PS 

BLENDS UNDER ELONGATIONAL FLOW 

A. Introduction 

Even if linear shear rheology is very useful to characterize polymer blends and study 

the compatibilization mechanisms by inferring the interfacial tension, the droplets’ size, 

observing the relaxations after small deformations and study shear induced coalescence, it 

cannot describe what would happen at high deformations and under elongational flow. 

Furthermore, extensional flow is an important part of several processes such as, but not 

limited to, extrusion, blow molding and fiber spinning. The extensional properties of 

polymer melts have, therefore, been of great interest these past 40 years. Moreover, some 

polymers have shown a strain hardening behavior under elongational flow, a behavior 

which aroused the interest of many researchers [67]–[69]. Long-chain branching and 

broadness of molecular weight distribution are two main factors that are known to enhance 

strain hardening of polymers. Organoclays were also shown to enhance strain-hardening 

behavior of polymers too if well dispersed [72]–[74].  

 

Studies reporting the behavior of polymer blends compatibilized or not, under 

elongational flow are still very rare in the literature. The pioneering works of Taylor [2], 

[3] can, however, help to understand the evolution of dispersed droplet blend morphology 

under elongational flows. Taylor pointed out the major influence of the capillary number 

on the deformation of drops. The capillary number Ca estimates the ratio of the viscous 

stress of the matrix to the interfacial stress. For a capillary number under a critical value 

(Ca < Cac), the interfacial stress dominates, and the the drop remains in a nearly spherical 

shape under flow, promoting thus coalescence phenomena. For a capillary number above 

the critical value (Ca > Cac), viscous stresses dominate, and the drop deforms affinely with 

the macroscopic strain and breakup is promoted. Grace [5] provided data about this 

phenomenon by experimentally plotting Cac as a function of p, the viscosity ratio of the 

dispersed phase and the matrix, for both simple shear and extensional flow. In irrotational 

shear, such as extensional flow, the value of Cac is very low and not significantly dependent 



on the viscosity ratio implying that, in most cases, elongational flow is likely to induce 

breakup. After the work of Grace, very few experimental studies have been carried out to 

study the evolution of blend morphology when subjected to elongational flow. Delaby and 

al. [75], [76] showed that for large values of capillary number, the drops of the dispersed 

phase deform less than the sample if the viscosity of the dispersed phase is lower than the 

one of the matrix. Heindl et al. [77] studied the evolution of the extensional viscosity of 

PS/PE blends. They found that extensional viscosity is greatly influenced by the rheological 

properties of the matrix PS and that temperature plays a key role in the morphology 

developments.  

If the evolution of morphology under elongational flow is interesting, it is also 

important to understand how it evolves after cessation of flow. On that matter, 

Gramespacher and Meissner [78] studied the elongational flow behavior as well as the 

recovery behavior of PMMA/PS blends. They showed that the elongational viscosity did 

not display notable differences between blends, but the recoverable elongational strains 

increased with the PS concentration. Mechbal and Bousmina [81] also studied the behavior 

after elongation and the following relaxation of PMMA/PS blends. They showed that the 

relaxation of the blend is slower than that of the pure components even with a small 

concentration of dispersed phase (5%). They compared experimental data with the model 

of Yu et al. [82] and found that the model described fairly the experimental results. Handge 

and Potschke [79] also studied elongational flow followed by a recovery behavior. They 

showed that the samples recover in two steps: first, the molecular recovery of each polymer 

dominates, then the interfacial tension is responsible for the recovery at long times. Stary 

et al. [83], [84] also worked on the relaxation and recovery of the samples after elongation. 

They showed that in a PS/LLDPE blend, elongation followed by a free recovery experiment 

can cause the fibrils to breakup due to Rayleigh disturbance or necking. Also, the lower the 

temperature, the finer the morphology obtained after recovery. They also showed that the 

relaxation experiments, where the sample length is kept constant after cessation of flow, 

leads to substantially higher frequency of droplet breakup resulting in a finer morphology 

than in the case of free recovery.  

As said previously, adding what is called a compatibilizer is a way to control the 

morphology [6], [24]. Block copolymers or organo-modified nanoparticles can be used for 

this purpose. Among the few studies that have been reported in the literature on the effect 

of elongational flow on the evolution of morphology, very few evaluated the effect of 
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addition of compatibilizer. Stary et al. [85] showed that the presence of compatibilizer at 

the interface suppressed droplet breakup and promoted the shape recovery of the droplets. 

They explained it by the presence of Marangoni stresses at the interface. Mechbal and 

Bousmina [86] also explained their results by the presence of Marangoni stresses in 

PMMA/PS blends. In both cases, the blends were compatibilized by a premade block 

copolymer. No study concerning the behavior of polymer blends compatibilized by 

nanoparticles under elongation flow have been reported up to our knowledge. 

 

In this work, the rheological behavior of PMMA and PS nanocomposites was 

studied under uniaxial elongation flow and compared to linear shear rheological results. In 

a second part, the deformation of the droplets under elongational flow as well as the 

following relaxation of PMMA/PS blends with and without clay was studied. 

B. Materials and methods 

PMMA, PS, montmorillonite (MMT), laponite (L), halloysite (H) and their modified 

counterpart mMMT, mL, mH respectively were the same as in CHAPTER 5. The 

characteristics of the materials are reminded in TABLE 6.1 and TABLE 6.2. The 

modification of the clays was explained in CHAPTER 5. 

TABLE 6.1 Properties of the polymers  

Polymer Grade 
Melt volume rate 

(cm3/10 min) 

Density 

(g/cm3) 

Viscosity (0) 

(Pa.s) 

at 200 °C 

Viscosity (0) 

(Pa.s) 

at 170 °C 

PMMA 

PLEXIGLASS 

6N 

(Evonik) 

12 (230 °C / 3.8 kg) 1.19 12,000 323,000 

PS 

EMPERA 350N 

(INEOS 

Styrenics) 

1.5 (200 °C / 5 g) 1.04 9,800 429,000 

TABLE 6.2 Properties of clays 

Clay Shape Size 

Surface 

area 

(m²/g) 

Concentration 

of surfactant 

(mg/m²) 

MMT 
platelets 150-250 nm 750 

0 

mMMT 0.46 

L 
discs 25-30 nm D 370 

0 

mL 0.42 

H 
tubular 

1-15 µm L, 10-150 

nm D 

 

64 

0 

mH 0.43 



All blends are in 90/10 weight concentrations of PMMA/PS. Concentrations of clay 

ranging from 0 to 1 wt% were added to the blends. All percentages are in weight 

percentages. 

The blends were mixed using the same equipment and procedure as in CHAPTER 4 

and CHAPTER 5. 

 

Samples were molded at 200 °C under 18 MPa for 10 minutes using a compression 

molding press. Discs with a 25 mm diameter and 1 mm thickness were used for shear 

rheology. Rectangles of 20 mm long, 6 mm large and 0.7 mm of thickness were 

compression molded for elongational tests. 

 

Shear rheology was performed using two stress-controlled rheometers: MCR 501 

and MCR 302 from Anton Paar under nitrogen atmosphere exactly as described in 

CHAPTER 4 and CHAPTER 5. 

 

Tests under elongation flow, specific to this chapter, were conducted on a MARS 

III rheometer from ThermoScientific using the Sentmanat Extensional Rheometer [66] 

device at 170 °C. This geometry consists of two drums rotating in opposite directions. 

Rectangular samples are fixed onto each drum and are stretched thanks to the roll motion. 

During a uniaxial elongational test, a sample is stretched at a constant strain rate 𝜀0̇, 

and the tensile force F is measured as a function of time. The magnitude of stretching is 

characterized by the Hencky strain 𝜀0
𝐻. The relation between the constant strain rate and the 

Hencky strain is as follow: 

 𝜀0̇ =  
𝜕𝜀0

𝐻

𝜕𝑡
 

(6.1) 

 

 

Usually, the tensile stress growth coefficient is studied and is defined as  

 𝜂𝐸
+(𝑡) =

𝜎+(𝑡)

𝜀0̇
 

(6.2) 

 

After elongation or during relaxation, the morphology of the samples was observed 

using scanning electron microscopy (SEM) under high vacuum with a JEOL JCM-600 Plus. 

At the desired time during the experiment, the oven of the rheometer was opened, and the 

samples were cooled down using a compressed air jet. The time to cool down the sample 
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below Tg was estimated experimentally to be less than 30 s. This will not influence the 

results as it is very short compared to the droplets relaxation (around 600 s) and because 

the same procedure was repeated for each sample. The samples were then cut parallel to 

the direction of the flow as indicated by a double arrow in FIG. 6.1, in order to visualize 

the deformation. They were then covered with gold or carbon. The morphology was 

quantified with ImageJ software by considering at least ≈ 200 particles for each sample.  

 

 

FIG. 6.1 Scheme of the specimens (a) before and (b) after elongation. The double arrow represents the cut for 

SEM observations. 

C. Results and discussion 

1. PMMA and PS nanocomposites 

SAOS tests were conducted on PMMA and PS filled with clay at 200 °C. The 

complex viscosities of those blends are reported in FIG. 6.2 and FIG. 6.3. It can be seen 

that results from SAOS measurements are sensitive to the microstructural changes in the 

nanocomposites. At high frequencies, the rheological behavior of nanocomposites is 

dominated by the matrix, PMMA or PS. At lower frequencies 2 phenomena can take place: 

variation of the plateau value upon addition of clay and a strong increase at very low 

frequencies. The latter corresponds to a solid-like behavior and is generally associated with 

a good dispersion of clay. It is induced by a percolation which happens at low contents for 

exfoliated clays and would happen at higher content for clay that are not as well dispersed. 

As for a variation in the plateau value, an increase is generally noticed when nanoparticles 

are added whereas a decrease could be associated with some degradation. 

 The complex viscosities were fitted to the Carreau-Yasuda model with yield stress 

follows: 

 𝜂∗(𝜔) =
𝜎0

𝜔
+ 𝜂0(1 + (𝜆𝜔)𝑎)

𝑛−1
𝑎  (6.3) 

 Where σ0 is the yield stress sensitive to the dispersion state of clays and the 

resulting percolation, η0 is the zero-shear viscosity characteristic to the material 



corresponding to the value of the plateau, λ is a time constant corresponding to the transition 

from the shear thinning behavior to the plateau, n is the power law index corresponding to 

the shear thinning behavior and a the Carreau-Yasuda parameter. 

 

FIG. 6.2 Complex viscosities of PMMA with different concentration of (a) MMT and mMMT, (b) L and mL and 

(c) H and mH. Filled symbols correspond to the modified clays and open symbols to non-modified clays 

 

FIG. 6.3 Complex viscosities of PS with different concentration of (a) MMT and mMMT, (b) L and mL and (c) H 

and mH. Filled symbols correspond to the modified clays and open symbols to non-modified clays 

Those five parameters were adjusted to fit the experimental data. Generally, λ, n 

and a are not really affected by the difference between the samples, their values remain 

close from one another for the same type of blend. On the contrary, the viscosity and the 

yield stress are very different from one sample to another. FIG. 6.4 and FIG. 6.5 shows η0 

and σ0 as a function of concentration of clay respectively. To clearly visualize the influence 

of clay compared to the pure polymer, PS and PMMA’s values of zero-shear viscosities are 

represented by a line. Non-modified clay (empty symbols) content increases systematically 

viscosity in both PS and PMMA. mL and mH (filled symbols), however, induce a decrease 

in the zero-shear viscosity which is most likely due to the degradation of part of the 

surfactant during processing as discussed in others studies [114]. On the contrary, mMMT 

induce a very strong increase in viscosity upon addition of nanoparticles. It is possible that 
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decrease of viscosity due to the degradation of surfactant is counterbalanced by the strong 

increase induced by the good dispersion of mMMT.  

 

FIG. 6.4 Zero-shear viscosities determined using Carreau-Yasuda model as a function of clay content for (a) 

PMMA nanocomposites and (b)  

To compare PS and PMMA nanocomposites, the variation of the zero-shear 

viscosity in PS and in PMMA for the same amount of nanoparticle is reported in TABLE 

6.3. The presence of clay seems to have a stronger effect on the viscosity of PS than PMMA, 

especially in the case of mMMT and MMT. To characterize the dispersion of clays, XRD 

was conducted on some nanocomposites. The results were presented in CHAPTER 5 and 

reported in The main expectation when modifying clays is to achieve a better dispersion 

state of clay platelet, discs or tubes in a polymer matrix. As such, clays were blended with 

pure polymers, PMMA and PS, and the resulting nanocomposites were characterized. 

XRD was used to find the interlayer spacing of clays in the nanocomposite. The 

values are reported in TABLE 5.5. First, it is clear that the clays are all better dispersed in 



PMMA than PS as all the Δd(001), representing the difference in basal spacing with neat 

clays, are all superior to zero whereas in PS some clays have the same basal spacing as neat 

clays. It can also be noticed that mMMT is the clay with a higher Δd(001) so which disperse 

better in polymers. This can be surprising because laponite should be the more dispersible 

because of its very small size. 

TABLE 5.5. Clearly, MMT and mMMT both have a smaller basal spacing in PS 

than in PMMA. This would mean that those clays are not as well dispersed in PS than in 

PMMA. However, this increase is more significant for mMMT than MMT. Knowing that 

mMMT is better dispersed, the increase in the zero-shear viscosity is probably associated 

with a good dispersion. It can be noticed the addition of L or H to the blend does not result 

in an increase of the zero-shear viscosity as much as MMT. This suggest that their 

dispersion is not as good. In the case of L it is also possible that its very small size is the 

reason its effect is limited. 

In the case of the decrease due to the degradation of the surfactant (for mL and mH), 

the effect is also stronger on PS viscosity. This is probably caused by the fact that PS 

nanocomposites are processed twice in order to undergo the same thermal history than in 

the blends. As such, the surfactant would have more time to degrade in PS than in PMMA 

which is processed only once.  

TABLE 6.3 Variation of the zero-shear viscosity induced by the presence of clay 

Clay 

% of 

clay 

Variation in the 

value of η0 (%) 

 in PS in PMMA 

MMT 5 +40 +29 

L 5 +21 +31 

H 2 +25 +21 

mMMT 5 +54 +32 

mL 5 -10 -2 

mH 5 -21 -9 

 

FIG. 6.5 shows that the yield stress increases significantly starting at 5 % of mMMT 

in PMMA and PS. Consequently, the rheological percolation is exceeded at 5 %. The fact 

that MMT does not induce such a behavior confirms that it is not as well dispersed as 

mMMT. Laponite-based and Halloysite-based nanocomposites do not induce this kind of 

behavior as well, however, it does not mean that it is badly dispersed: the percolation 

strongly depends on the size and aspect ratio of clays. It was shown previously [115] that 
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Laponite would not induce any percolation at low content because of its very small size 

and Halloysite is also not likely to induce a percolation because of its low aspect ratio. 

 

FIG. 6.5 Yield stress from Carreau-Yasuda model as a function of clay concentration 

The tensile stress growth coefficients at different strain rates of PMMA and PS were 

measured at lower temperature (170 °C) so that the samples are viscous enough not to flow 

in the oven which would alter the measure. The results for pure PMMA and PS are 

represented in FIG. 6.6. At the beginning, the curves increase. After it reached a maximum, 

the tensile stress growth starts to decrease. This decrease is due to the necking of the sample 

followed by rupture. This behavior is totally normal for PS and PMMA which are not 

expected to show strain hardening. Instead of decreasing close to rupture, polymers 

exhibiting strain hardening would show a significant increase compared [67], [71], [116].  

 

 

FIG. 6.6 Tensile stress growth coefficients of (a) PS and (b) PMMA at 0.1, 0.3, 1 and 3 s-1 



Tensile stress growth coefficients were also measured for PMMA and PS 

nanocomposites at 0.1 and 1 s-1. FIG. 6.7 and FIG. 6.8 show the results for PS 

nanocomposites. It can be noticed that the increase in viscosity found for H with shear 

rheology can be confirmed in elongational experiments: the tensile stress growth coefficient 

curves increase with addition of H, which is linked to an increase in viscosity. This is not 

the case with addition of  L and MMT which has lower or equal tensile stress growth 

coefficients of pure PS. Fornes et al. [117] evidenced a lower viscosity using capillary data 

than using shear flow. They suggested it to be caused by high clay platelet alignment, 

smaller particle sizes or matrix molecular weight degradation. It is true that MMT and L 

are smaller than H and may align better with the flow. In the case of modified clays (FIG. 

6.8), all the nanocomposites have a lower or equal viscosity compared to PS caused by 

either degradation of surfactant discussed with shear data or better alignment.  

 

FIG. 6.7 Tensile stress growth coefficients of PS at 0.1 (open symbols) and 1 s-1 (filled symbols) with (a) MMT, 

(b) L and (c) H 

 

FIG. 6.8 Tensile stress growth coefficients of PS at 0.1 (open symbols) and 1 s-1 (filled symbols) with (a) mMMT, 

(b) mL and (c) mH 

The tensile stress growth coefficients for the PMMA samples are reported in FIG. 

6.9 and FIG. 6.10. Contrary to PS nanocomposites, tensile stress growth coefficients did 

not increase with adding non-modified clays as the viscosities are equal or lower than that 
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of PMMA. As previously, it is probably because clay is better dispersed in PMMA so will 

more easily align under flow. 

 

FIG. 6.9 Tensile stress growth coefficients of PMMA at 0.1 (open symbols) and 1 s-1 (filled symbols) with (a) 

MMT, (b) L and (c) H 

 

FIG. 6.10 Tensile stress growth coefficients of PMMA at 0.1 (open symbols) and 1 s-1 (filled symbols) with (a) 

mMMT, (b) mL and (c) mH 

Overall, it seems that the transient elongational viscosity at 1 s-1 is often lower than 

the measure at 0.1 s-1. This has already been observed, according to Tanoue et al. [118], 

this could be because the structure formed by the clay particles decreases in its complexity 

and strength when the deformation rate is increased.  

No typical strong strain hardening could be evidenced. According to Park et al. [73] 

who worked with exfoliated structure, this confirms that the structure is intercalated as 

shown in CHAPTER 5. Li et al. [74], who worked on intercalated systems found a subtle 

strain hardening in the transient elongational viscosity curves. In our case, absolutely no 

strain hardening could be found in nanocomposites with non-modified clays because non-

modified clays do not disperse well thus cannot create a structure which could induce strain 

hardening. However, nanocomposites with modified clays have a strain hardening behavior 

because they are better dispersed.  



To better visualize this phenomenon, the tensile stress growth coefficients at 1s-1 

for nanocomposites with modified clays were plotted in FIG. 6.11. The transient viscosities 

first increase slowly, then the usual strain softening is followed by a strain hardening right 

before the sample breaks. This creates a sort of “bump” in the curve indicated by arrows in 

FIG. 6.11. This type of curves was already shown in the case of SEBS nanocomposites 

with a cylindrical morphology stretched in the direction transverse to cylinders orientation 

[97]. According to Okamoto et al. [72], strain hardening behavior in clay nanocomposites 

is caused by the silicate layers perpendicular to the flow. To do so, a good dispersion would 

have to be reached which is easier when the nanoparticles have more affinity with the 

polymer matrix so for modified clays. Also, if polymer chains are able to intercalate in-

between clay sheets, interaction between polymer chains and clay particles and particle-

particle interactions may be the cause of strain hardening [74]. The start of the increase is 

shown by arrows in  FIG. 6.11. This strain hardening decreases with increasing the 

concentration of clay. This probably originates by the fact that at low clay content the 

nanoparticles will disperse more easily whereas higher contents more aggregates are 

formed. Therefore, higher contents induce less stress.  As for the time at which the strain 

hardening occurs, no link between the concentration or type of clay could be evidenced.  

 

FIG. 6.11 Transient elongational viscosities of PMMA and PS nanocomposites at 1 s-1 with modified clays. The 

curves were shifted vertically to be able to compare them.  
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It could have been interesting to study the evolution of the transient elongational 

viscosity of PMMA/PS blends, however previous studies showed that blends were so 

influenced by the matrix phase that no differences could be observed for a blend, especially 

with only 10 % of dispersed phase [77], [78]. As such, the work was focused on 

deformation and recovery of PMMA/PS blends under elongation flow.  

2. PMMA/PS blends  

The initial morphologies were observed using SEM. The resulting volume average 

radius are reported in TABLE 6.4. There is a decrease of the droplet size (35 %) except for 

blends with mL. This is in good agreement with a previous work in which the volume 

average radius of blends of PMMA/PS decreased of 34 % with the addition of 0.8% of 

Cloisite 20A [103]. 

In the case of mL, 0.2 % seems to induce a decrease of 20 % of the Rv but 0.5 and 

1 % do not influence the morphology significantly. No explanation for that is proposed at 

the moment. 

TABLE 6.4 Volume average radius Rv of the initial morphology 

Blend 
Concentration 

of clay 

Non-modified clays Modified clays 

Rv (µm) 
Standard 

deviation 
Rv (µm) 

Standard 

deviation 

Pure 0 0.323 0.103 - - 

MMT 

0.2 0.211 0.057 0.183 0.050 

0.5 0.200 0.051 0.241 0.069 

1 0.247 0.068 0.254 0.078 

L 

0.2 0.196 0.054 0.254 0.065 

0.5 0.192 0.053 0.301 0.082 

1 0.205 0.055 0.343 0.088 

H 

0.2 0.181 0.046 0.203 0.053 

0.5 0.200 0.053 0.185 0.047 

1 0.230 0.063 0.178 0.044 

 

It was shown in CHAPTER 5 that non-modified clays (MMT, H and L) are 

dispersed in PMMA.  modified clays, mL is dispersed in the matrix and partly at the 

interface, mMMT is completely dispersed at the interface whereas most of mH could not 

disperse at the interface because of its size (see FIG. 5.8). 

FIG. 6.12 shows pure PMMA/PS blend morphology before and after being 

submitted to an elongational flow at a strain rate of 0.1 s-1 for various times. Initially, the 

droplets are spherical (see FIG. 6.12a). Upon elongation, the droplets are stretched into 



ellipsoids oriented in the direction of the flow (FIG. 6.12b and c). As expected, the higher 

the Hencky strain, the more deformed the droplets. Elongational flow up to a Hencky strain 

of 2 (FIG. 6.12d) was not chosen because of experimental difficulties: the sample began to 

be too thin and difficult to prepare for observation. Moreover, it would be difficult to 

quantify the morphology with pictures such as FIG. 6.12d. As such, stretching up to 1.5 

was chosen for further experiments. 

 

FIG. 6.12. PMMA/PS blend morphology (a) before elongation, after elongation at 170 °C and 0.1 s-1 up to a 

Hencky  

strain of (b) 1, (c) 1.5 and (d) 2. 

Stress as a function of time during elongation up to a Hencky strain of 1.5 followed 

by relaxation for Pure PMMA/PS blend is shown in FIG. 6.13. The length of the sample is 

kept constant during relaxation in order to hinder the shrinkage of the specimen and observe 

the relaxation of the droplets. To understand the relation between stress and morphology, 

sample were observed at different times in the process: right after elongation, during the 

relaxation process and after the relaxation process. When the elongational flow stops (FIG. 

6.13a), the droplets are elongated and a sharp decrease in stress is observed. Then, the 

relaxation is driven by the relaxation of the droplets (FIG. 6.13b and c) due to interfacial 

tension until point d (t ≈ 600 s) when the stress decreases again, and the drops are relaxed 
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(FIG. 6.13d). It can be noted that the relaxation time in this experiment is much higher than 

in experiments conducted in linear shear rheology where the droplet relaxation was less 

than 2 s at 180 °C [106].  

 

FIG. 6.13 Stress as a function of time of Pure blend during elongation at 0.1 s-1 up to a Hencky strain 

of 1.5 followed by relaxation at 170 °C 

The deformation of the droplets was measured using SEM pictures and calculated 

using the following equation: 

  

 𝐷 =
𝐿2 − 𝐵2

𝐿2 + 𝐵2
 

(6.4) 

 

Where L is the major axis and B the minor axis of the ellipsoid. 



 

FIG. 6.14 Drop deformation of blends as a function of concentration of (a) MMT and mMMT, (b) L and mL and 

(c) H and mH, after elongation at 0.1 s-1 for 15 s. Bars corresponds to the standard deviation 

The deformations of each blend at t = 0 s (point a) is shown in FIG. 6.14. The 

deformations are between 0.7 and 0.9 so the droplets undergo high deformation in each 

case. Overall, adding nanoparticles seems to induce larger standard deviations (represented 

by bars in FIG. 6.14). It means that the droplets are not deformed as homogeneously as in 

the case of a pure blend. The presence of nanoparticles might hinder some of the droplets 

to properly deform with the matrix. Globally, the addition of clay also induces a decrease 

in the deformation for low content (0.2 % or up to 0.5% depending on the type of clay). It 

might be because the droplets are smaller than for the pure blend so it is more difficult to 

deform them. The fact that at high content the deformation of the droplets is similar to the 

one of pure blend suggests that high content of clay facilitate the deformation. This could 

be due to the increase of viscosity of the matrix phase for nanoparticles dispersed in 

PMMA. The modification of clays did not play a role in the deformation of the droplets. 

The deformation of the droplets for each blend at each relaxation time is shown in 

FIG. 6.15. The deformation of the droplets was normalized in order to compare the samples 

more easily. The lines were drawn arbitrarily to guide the eye. A deformation of 0.2 is 

considered to correspond to relaxed droplets. For Pure PMMA/PS blend, the deformation 

gradually decreases with time [81], [84]. The time of the shape recovery driven by only 

interfacial tension can be calculated using the following equation: 

 𝜏𝑟𝑒𝑙𝑎𝑥 =
𝜂0,𝑏𝑑0

𝛷𝛼
 

(6.5) 

 

Where η0,b is the zero-shear viscosity of the blend, d0 the diameter of the droplets, 

Φ the volume concentration of dispersed phase and α the interfacial tension. Gramespacher 

et al. used this expression to determine the interfacial tension between PMMA and PS and 

found good agreements with information extracted from linear shear rheology. In this 
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study, equation (6.5) is used to find the theoretical relaxation time of the droplets at 170 

°C. The value of Rv from TABLE 6.4, α = 4.29 mN/m calculated in CHAPTER 4 and 

CHAPTER 5, 𝜂0,𝑏 measured by SAOS test and Φ = 0.11 were used to calculate a relaxation 

time of 660 s. This is completely in agreement with the results shown in FIG. 6.15 where 

the droplets are almost completely relaxed at 600 s. 

 

 

FIG. 6.15 Normalized deformation of the droplets as a function of relaxation time for blends containing (a) 

MMT, (b) L, (c) H, (d) mMMT, (e) mL and (f) mH 

In the case of MMT, H and mH, the droplets relax clearly faster upon addition of 

clay: they reach a spherical state in-between 200 and 400 s instead of 600 s. Knowing that 

MMT, H and mH are dispersed in PMMA, this is probably due to a change in the viscosity 

ratio.  

In the case of mMMT, mL and L, it seems that the presence of clay at the interface 

enhances the relaxation before 200 s but slows down the relaxation starting 200 s. A lower 

interfacial tension in the presence of compatibilizer at the interface would delay the shape 

recovery of the droplets. Consequently, it seems that relaxation process at long time is 

governed by the interfacial tension but at small time something else occurs. Stary et al. [85] 

evidenced a faster relaxation of the droplets and attributed it to the presence of Marangoni 

stresses. In our case, it might be possible that at small times, the gradient of concentration 



of nanoparticle is so high that Marangoni stresses force the droplet to recover a less 

deformed shape to minimize concentration gradient for clays completely located at the 

interface (mMMT). For clays dispersed in the whole blends such as mL and L, the fast 

relaxation at small times may be caused by a combination of Marangoni stresses and 

viscosity effect. It would mean that at high deformations (so at small times), Marangoni 

stresses or variation in viscosity dominate the relaxation whereas at lower deformation (so 

longer times), the interfacial tension dominates.  

 

FIG. 6.16 volume average radius of the dispersed phase before (filled symbols) and after elongation + relaxation 

(empty sympols) of blends containing (a) MMT and mMMT, (b) L and mL, (c) H and mH  

The morphology after the relaxation experiment is reported in FIG. 6.16 where the 

filled symbols represent the volume average radius before elongation and the empty 

symbols the resulting radius after relaxation experiments. Droplet breakup occurred in the 

pure blend during relaxation as the measured radius after elongation is smaller than 

initially. Also, the standard deviation is smaller after the experiment. Stone et al. [87] 

studied the breakup after elongation of a droplet. They found that the stretch ratio (Lfib 

length of the ellipsoids divided by the initial diameter d0) must be above a critical value for 

the droplet to break. They were able to plot experimentally 
𝐿𝑓𝑖𝑏

𝑑0
 as a function of the viscosity 

ratio. In our case, for a viscosity ratio of 1.33, 
𝐿𝑓𝑖𝑏

𝑑0
 ~ 3.4 . All the stretch ratios were 

calculated and reported in TABLE 6.5. Pure PMMA/PS blends have a stretching ratio of 

3.1 and was shown to undergo breakup. 3.1 is close to 3.4 so this is not surprising. However, 

according to the values found for blends containing clays, most of them should also undergo 

breakup as they are close or above 3.4. 
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 TABLE 6.5 Stretch ratio values for each blend 

  
𝑳𝒇𝒊𝒃

𝒅𝟎
 

Blend 
Concentration 

of clay 

non-modified 

clays 
modified clays 

Pure 0 3.1 

MMT 

0.2 3.6 4.6 

0.5 2.7 2.7 

1 6.7 5.0 

L 

0.2 2.6 3.1 

0.5 5.0 3.2 

1 4.5 3.7 

H 

0.2 3.2 2.8 

0.5 3.1 4.5 

1 2.5 3.7 

 

Adding nanoparticles seems to have suppress droplet breakup. As it can be seen in 

FIG. 6.16, the droplet radii did not decrease, and the standard deviation seems to be as 

broad as initially. This was also shown in the case of addition of block copolymers by Stary 

et al [85]. They explained it by the presence of Marangoni stresses. In our case, the droplets 

are already very small, so it might be difficult to break them. As a matter of fact, the droplet 

radius of the pure blend after relaxation experiments is similar to the radii of blends with 

clay (around 0.200 µm). mL also suppressed droplet break up probably thanks to the part 

that is at the interface, by either Marangoni stresses or by preventing instabilities by their 

rigidity.  

D. Conclusion 

The addition of clays (Montmorillonite, Laponite and Halloysite) to PMMA or PS 

nanocomposites induced a subtle strain hardening behavior under elongational flow 

whereas non-modified clays did not induce such a phenomenon. This suggests that the 

organic modification allowed a better dispersion of clays in both polymers. 

The relaxation of the droplets after elongation at a strain rate of 0.1 s-1 up to a 

Hencky strain of 1.5 was shown to be faster with addition of montmorillonite (MMT), 

halloysite (H) and modified halloysite (mH). As MMT, H and mH are dispersed in PMMA, 

it is most likely due to a variation in the viscosity of the matrix. In the case of better 

dispersed clays such as modified montmorillonite (mMMT), laponite (L) and modified 



laponite (mL), the relaxation seems to present two steps: Marangoni stresses or variation 

in viscosity first induce a fast relaxation, then the interfacial tension dominates and slows 

down the relaxation at longer times.  

Finally, the presence of clays in blends suppressed droplet breakup by either a 

viscosity variation if clay is dispersed in the matrix and by Marangoni stresses and/or 

Pickering effect if it is located at the interface. 
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CONCLUSION & RECOMMENDATIONS 

 

A. Summary of findings 

The preliminary results of this thesis were presented in Chapter 3, entitled 

“Compatibilization mechanism induced by organoclay in PMMA/PS blends”. These first 

results were obtained using Cloisite 20A in PMMA/PS blends. The addition of clay led to 

a finer morphology as well as a decrease in interfacial tension. The novelty of this first 

article lies in the presence of Marangoni stresses evidenced for the first time in the case of 

nanoparticles. Marangoni stresses are usually associated to gradient of concentration of 

block copolymers at the droplets surface. Those results then suggested that nanoparticles 

are able to move around the droplets as well and may act similarly to block copolymers.  

The second article, entitled “Compatibilization mechanism induced by block 

copolymers with different molar masses in PMMA/PS blends” aimed at investigating the 

compatibilization mechanism induced by block copolymers and especially study 

Marangoni stresses. Two block copolymers with different molar masses were chosen for 

this study. The results evidenced a decrease in interfacial tension but no refinement of the 

morphology. By further studying the compatibilization mechanism, relaxation caused by 

Marangoni stress was evidenced, indicating that block copolymers are located at least 

partially at the interface. However, Marangoni’s relaxation evolution during coalescence 

suggested that block copolymers were not exclusively located at the interface initially but 

continued migrating during coalescence. Finally, the block copolymer with the higher 

molar mass was shown to be the most efficient at inhibiting coalescence most likely due to 

a combination of Marangoni stresses and steric hindrance. 

In a third article, the compatibilization mechanism induced by clay nanoparticles of 

different sizes and shapes were studied. For this purpose, montmorillonite (MMT), laponite 

(L) and halloysite (H) were chosen and organically modified in such a manner that the 

surface chemistry remains similar from one type of blend to another. Each clay induced a 

decrease in interfacial tension and most of them a refinement of the morphology. 

Coalescence phenomena was more affected by the localization of clays:  

• In the case of clays dispersed in the matrix (H, mH and MMT) the very 

limited influence on the coalescence originate from the variation of viscosity 

of the matrix due to the presence of nanoparticles. 



• In the case of clays dispersed in the whole blend with no preference (L and 

mL), the small size of laponite might be the cause of a limited efficiency at 

inhibiting coalescence. Coalescence was slightly more affected by mL, most 

likely due to a more important quantity of nanoparticles located at the 

interface as suggested by the presence of Marangoni stresses. 

• Finally, the most efficient at inhibiting coalescence was modified 

montmorillonite. Its localization at the interface between both polymers 

allowed Marangoni stresses and/or a Pickering effect to inhibit coalescence. 

Finally, Chapter 6 offers preliminary results on the behavior nanocomposites and 

blends under elongational flow. The presence of clays in PMMA or PS nanocomposites 

exhibit a subtle strain hardening for modified clays most likely induced by a good 

dispersion of modified clays. The relaxation of PMMA/PS blends after elongation was then 

studied. The relaxation of the droplets was shown to be faster in the presence of clays in 

PMMA and attributed to a variation in the viscosity of the matrix. In the case of better 

dispersed clays: mMMT at the interface and mL and L in the whole blend, the relaxation 

presents two steps: a faster relaxation at small relaxation times most likely due to 

Marangoni stresses or variation in the viscosities, and a second step where the relaxation is 

slowed down by the interfacial tension. Finally, droplet breakup was noticed in pure 

PMMA/PS blends, but the presence of clays prevented this phenomenon. 

B. Conclusions 

The main conclusion is that clay nanoparticles located at the interface, especially 

organo-modified montmorillonite (Cloisite 20A or mMMT), can behave similarly to block 

copolymers in terms of compatibilization mechanism and efficiency which is financially 

interesting because of the cheaper price of nanoparticles.  

However, the initial objective of observing the influence of the shape and size of 

nanoparticles could not be studied as well as planed. Indeed, first, the large size of halloysite 

prevented it to locate at the interface and second, laponite was too easily dispersible to 

locate only at the interface. As such, the results were mainly influenced by the localization 

of clays instead of the shape and size. However, the results are still of interest and clearly 

evidenced that a localization of the nanoparticles at the interface induce a good 

compatibilization whereas a dispersion in the matrix phase lead to a limited 

compatibilization. Coalescence phenomenon is especially sensitive to the localization of 
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nanoparticles as its mechanism is induced by Marangoni stress, steric hindrance or 

Pickering effect which require the presence of compatibilizers at the interface. Droplets 

breakup was also suppressed with addition of nanoparticles but not sensitive to the 

localization of nanoparticles.  

C. Recommendations 

As most research works, some aspects could be further developed. The following 

recommendations are proposed for future works: 

 

PMMA/PS blends are useful because their rheological behavior is well known, and 

they are appropriate for the use of models such as Palierne’s model. However, PMMA/PS 

blends already have a fine dispersion of droplets and a low interfacial tension. Because of 

that, differences between the samples are too subtle to draw clear conclusions. As such, the 

first recommendation would be to use a less favorable blend for which compatibilization 

would induce more noticeable differences. To vary the viscosity ratio or the polarity of 

blends could also generate interesting results. 

 

To be able to observe more frequently clay’s localization with TEM would also 

have been of interest. Additional observations could have been interesting, for example, to 

confirm the localization of non-modified clays inferred with the wetting parameter. It 

would also have been of great interest to visualize Marangoni stresses. Theoretically, it 

would have been possible with highly deformed droplets were concentration gradients are 

supposed to appear.  

 

Finally, measuring experimentally the surface tension between laponite, modified 

laponite, halloysite, modified halloysite and polymers would have been of interest in our 

study and would benefit many future works. As said previously, this kind of measurement 

is rare in the literature even if it would be very useful for modelling, calculating the wetting 

parameter for instance. Also, the influence of the modification of laponite and halloysite 

on the surface tension is of interest. 
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[79] U. A. Handge and P. Pötschke, “Interplay of rheology and morphology in melt 

elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) 

blends,” J. Rheol. , vol. 48, no. 5, p. 1103, 2004. 

[80] U. A. Handge, “Modeling recovery of polymer blends after melt elongation,” J. 

Rheol. , vol. 47, no. 4, pp. 969–978, 2003. 

[81] N. Mechbal and M. Bousmina, “Uniaxial deformation and relaxation of polymer 

blends: Relationship between flow and morphology development,” Rheol. Acta, vol. 

43, no. 2, pp. 119–126, 2004. 

[82] W. Yu, M. Bousmina, M. Grmela, J.-F. Palierne, and C. Zhou, “Quantitative 

relationship between rheology and morphology in emulsions,” J. Rheol. , vol. 46, 

no. October, p. 1381, 2002. 

[83] Z. Starý and H. Münstedt, “Morphology development in PS/LLDPE blend during 

and after elongational deformation,” J. Polym. Sci. Part B Polym. Phys., vol. 46, no. 

1, pp. 16–27, Jan. 2008. 

[84] Z. Starý, M. Musialek, and H. Münstedt, “Shape recovery versus breakup of 

deformed droplets in a polymer blend after uniaxial extension,” Macromol. Mater. 

Eng., vol. 296, no. 5, pp. 414–422, 2011. 

[85] Z. Starý, T. Pemsel, J. Baldrian, and H. Münstedt, “Influence of a compatibilizer on 

the morphology development in polymer blends under elongation,” Polymer , vol. 



53, no. 9, pp. 1881–1889, 2012. 

[86] N. Mechbal and M. Bousmina, “Effect of Copolymer Addition on Drop Deformation 

during Uniaxial Elongation and during Relaxation after Cessation of Flow,” 

Macromolecules, vol. 40, no. 4, pp. 967–975, Feb. 2007. 

[87] H. A. Stone, B. J. Bentley, and L. G. Leal, “An experimental study of transient 

effects in the breakup of viscous drops,” J. Fluid Mech., vol. 173, no. 1, p. 131, 1986. 

[88] A. Monfared and A. Jalali-Arani, “Morphology and rheology of (styrene-butadiene 

rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of 

nanoparticle localization,” Appl. Clay Sci., vol. 108, pp. 1–11, 2015. 

[89] T. Parpaite, B. Otazaghine, A. Taguet, R. Sonnier,  a. S. Caro, and J. M. Lopez-

Cuesta, “Incorporation of modified Stöber silica nanoparticles in 
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Compatibilization of PMMA/PS blends by nanoparticles and 

block copolymers: effect on morphology and interfacial relaxation 

phenomena 

Abstract 

In this thesis, the compatibilization mechanism induced by clay nanoparticles in polymer blends was 

investigated using rheology. To do so, montmorillonite, laponite and halloysite, modified or not, were 

added to PMMA/PS blends. Linear shear rheology showed that the compatibilization mechanism, 

especially the coalescence phenomenon, was greatly influenced by the localization of clay nanoparticles. 

Modified montmorillonite, which was located at the interface, was shown to be the most efficient at 

inhibiting coalescence among clays and as efficient as a block copolymer with a high molecular mass. 

The latter is particularly interesting as nanoparticles are cheaper than block copolymers. In this work, 

special attention was given to relaxations happening in blends. Using linear shear rheology, Marangoni 

stresses due to a gradient in compatibilizer concentration at the interface was evidenced for the first time 

in the case of organically modified clay nanoparticles when located at the interface. Finally, submitting 

blends to elongational flow and subsequent relaxation showed that the relaxation of the droplets after 

high deformations was faster in the case of clays dispersed in the matrix and slowed down by the 

interfacial tension in the case of a better dispersion of clays at the interface or in the whole blend. 

 
Keywords: linear viscoelasticity, extensional rheology, polymer blends, compatibilization, 

nanoparticles, organoclay, Marangoni stresses    

 

 

 

Compatibilisation de mélanges PMMA/PS par des nanoparticules 

et des copolymères à bloc: effet sur la morphologie et les 

phénomènes de relaxations interfaciales 

Résumé 

Ces travaux de thèse présentent une étude du mécanisme de compatibilisation induit par des 

nanoparticules d’argile dans les mélanges de polymères en utilisant la rhéologie. Pour cela, de la 

montmorillonite, la laponite et l’halloysite, modifiées ou non, ont été ajoutées à des mélanges 

PMMA/PS. Les résultats de rhéologie linéaire en cisaillement ont montré que le mécanisme de 

compatibilisation, particulièrement le phénomène de coalescence, dépendait beaucoup de la localisation 

des nanoparticules. La montmorillonite modifiée, présente à l’interface entre les polymères, est la plus 

efficace à inhiber la coalescence et est aussi efficace qu’un copolymère à bloc de haute masse molaire. 

Ceci est particulièrement intéressant car les nanoparticules d’argile représentent un coût moindre 

comparé aux copolymères à bloc. Dans ces travaux, une attention spéciale a été portée aux relaxations 

présentes dans les mélanges. En utilisant la rhéologie linéaire en cisaillement, un effet Marangoni a été 

mis en évidence pour la première fois dans le cas de nanoparticules d’argile modifiées présentes à 

l’interface. Enfin, les mélanges soumis à un flux élongationnel puis relaxation ont montré que la 

relaxation des gouttes de phase dispersée après une importante déformation était plus rapide par ajout 

d’argiles dispersées dans la matrice et ralentie par des argiles mieux dispersées soit à l’interface, soit 

dans l’ensemble du mélange.     

 

Mots clés : viscoélasticité linéaire, rhéologie extensionnelle, mélange de polymères, compatibilisation, 

nanoparticules, argiles modifiées, effet Marangoni 
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