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Abstract

Chemical imaging has grown in popularity, due to the increased amount of informa-
tion that it provides. Besides the chemical information, it also offers insights in the
spatial distribution of the samples. Within this thesis, we distinguish between two
different types of images: spatial-temporal images (super-resolution fluorescence
microscopy) and spatial-spectral images (unmixing). For both applications, the goal
is to get a better understanding of the underlying structure generating these images.

In early super-resolution fluorescence microscopy, a low number of fluorophores
were active per image. Currently, the field evolves towards high-density imaging
that requires new ways of looking at information beyond the diffraction limit, as the
traditional single-molecule localization methods collapse. In this thesis, we propose
SPIDER, an image deconvolution approach with multiple penalties. These penalties
directly translate the properties of the blinking emitters used in super-resolution
fluorescence microscopy imaging. SPIDER allows investigating highly dynamic
structural and morphological changes in biological samples with a high fluorophore
density. Within this thesis, we applied the method on live-cell imaging of a HEK-
293T cell labeled with DAKAP-Dronpa and demonstrated a spatial resolution down
to 55 nm and a time sampling of 0.5 s.

Unmixing spectral and hyperspectral images with MCR-ALS provides spatial and
spectral information of the individual contributions in the mixture. Due to loss of the
pixel neighborhood during the unfolding of the hyperspectral data cube to a two-way
matrix, spatial information cannot be added as a constraint during the analysis in
the traditional framework. We therefore propose an alternative approach in which
an additional refolding / unfolding step is performed in each iteration. This data
manipulation restores the pixel neighborhood and global spatial features can be
added to the palette of MCR-ALS constraints. From this idea, we also developed
several constraints (e.g. shape smoothness, sparseness, edge-preserving smoothing)
and show their application on experimental data.

Keywords: Spatial, Spectral, Microscopy, Least squares, Penalty, Chemometrics,
Multivariate Curve Resolution
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Résumé

L’imagerie est devenue un outil incontournable en chimie, notamment parce qu’elle
permet d’accéder à la distribution spatiale des espèces chimiques. Nous distinguerons
dans cette thèse deux types d’images différents: les images spatiales-temporelles
(images de fluorescence super-résolue) et les images spatiales-spectrales (images
hyperspectrales). Dans les deux cas, l’objectif est de mieux comprendre la structure
latente ayant généré ces images.

Au début de la microscopie de fluorescence super-résolue, un faible nombre de fluo-
rophores étaient actifs par image. Actuellement, le domaine évolue vers l’imagerie
en haute densité qui requiert de nouvelles façons d’examiner les informations au-delà
de la limite de diffraction, alors que les méthodes traditionnelles s’effondrent. Nous
proposons dans cette thèse SPIDER, une approche de déconvolution d’images haute
densité par moindres carrés pénalisés. La considération de plusieurs pénalités permet
de traduire complètement les propriétés des émetteurs utilisés dans l’imagerie de
fluorescence super-résolue. L’utilisation de cette méthode permet d’étudier des
changements structuraux et morphologiques dans les échantillons biologiques. Dans
cette thèse, la méthode a été appliquée à l’imagerie sur cellules vivantes d’une cellule
embryonnaire de rein humain (HEK-293T) encodée par la protéine fluorescente
DAKAP-Dronpa. On a pu obtenir une résolution spatiale de 55 nm pour un temps
d’acquisition de 0.5 s.

La résolution d’images hyperspectrales avec MCR-ALS fournit des informations
spatiales et spectrales des contributions individuelles dans le mélange. Néanmoins,
le voisinage des pixels est perdu du fait du dépliement du cube de données hyperspec-
trales sous forme d’une matrice bidirectionnelle. L’implémentation de contraintes
spatiales n’est donc pas possible en MCR-ALS. Nous proposons une approche al-
ternative dans laquelle une étape de repliement / dépliement est effectuée à chaque
itération. Cette manipulation restaure le voisinage des pixels et des fonctionnalités
spatiales globales peuvent alors être ajoutées à la palette des contraintes. À partir de
cette idée, nous avons développé plusieurs contraintes (par lissage, la parcimonie,
etc.) et on montre leur application aux données expérimentales.

Mots clés: Spatial, Spectral, Microscopie, Moindres-carrés, Pénalité, Chimiométrie,
Résolution de Courbes Multivariées
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Aims and structure of the thesis

In different fields, chemical imaging becomes a more and more popular and powerful
way of getting information. The numerous advances in the instrumentation not only
allow capturing images at a high frame rate, but they also allow accessing a diversity
of molecular information. The goal of the chemical imaging problem is to unravel
the underlying structure (i.e. spatial or spectral) of the chemical sample from the
measured data using their mathematical structure, and these problems are therefore
called inverse problems. Many of these problems are ill-posed and the overall aim of
this thesis is to come up with ways that help in the analysis of several of them. The
thesis is divided in two parts, depending on their application: (I) super-resolution
fluorescence microscopy imaging and (II) unmixing of hyperspectral images.

In super-resolution fluorescence microscopy imaging, the goal is to characterize
biological or chemical samples at the nanometer scale. However, despite all the
instrumental advances, the data obtained are physically constrained by the diffraction
limit of light. To increase the spatial resolution, and to get insights in the structure
of the sample, sparse deconvolution with multiple penalties is used to investigate
the data. It is based on the physical assumptions that the underlying latent original
image is that one of point-like fluorophore sources and that the acquired data are
arranged in spatial-temporal way. It is the subject of the first part of the thesis.
Additionally, experimental fluorescence microscopy data do not typically follow the
assumptions of the super-resolution analysis techniques and should thus be properly
pre-processed. Several approaches to pre-processing the data will also be discussed
within this thesis.

Part 2 of the thesis deals with the unmixing of hyperspectral images into the different
underlying (pure) components, where spectral and / or spatial information can
be used to constrain the resolution in multivariate curve resolution – alternating
least squares (MCR-ALS). The goal of applying image processing and modeling
techniques as constraints within the MCR-ALS framework is to extract relevant
spatial information that can be helpful in the resolution of the hyperspectral images.
Chapter 1 starts with a general introduction on the topic and looks into the setting
and the approaches being used throughout this thesis. The nature of a chemical
image and its application to the two different studies is explained, combined with
an introduction of the ill-posed inverse problem and penalized linear regression for
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AIMS AND STRUCTURE OF THE THESIS

modeling signals. It also describes different approaches used throughout the thesis
into detail. This chapter provides the necessary mathematical background, and the
focus can be shifted to the different studies performed in this work.

The first part of the thesis encompasses Chapter 2, Chapter 3 and Chapter 4, and
looks into super-resolution fluorescence microscopy images. Chapter 2 deals with
generalities of fluorescence microscopy and imaging and gives more insight in the
current state-of-the-art methods used to analyze it. It covers the principles of fluores-
cence spectroscopy and the essentials of high-density super-resolution fluorescence
imaging. Pre-processing the data is an important step in the analysis pipeline and
Chapter 3 investigates different pre-processing methods to restore the key assump-
tions of spatial image deconvolution techniques and stochastic analysis approaches.
Finally, Chapter 4 closes the first part of the thesis. It explores the feasibility of a
sparse deconvolution approach with multiple penalties, called SPIDER, on high-
density fluorescence microscopy imaging data to obtain super-resolved images of
biological processes and insights in their dynamics.

In the second part, unmixing of hyperspectral images with MCR-ALS is considered.
Chapter 5 deals with generalities of unmixing hyperspectral images and how this
is done in different fields, while Chapter 6 investigates a new framework that takes
into consideration spatial information into the chemical resolution of these images
and covers the development of several spatial constraints and their demonstration on
different hyperspectral images.

xii
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Introduction

The introduction part discusses the type of data that is investigated in this thesis,
i.e. chemical imaging data, and what makes a chemical image a good one. It then
defines what inverse problems exactly are and how they can be regularized by using
for example Lq-norm penalties. It also shows different ways of smoothing the data, to
reduce the variance in the data and then it ends by two examples of inverse problems
discussed throughout this thesis. These are image deconvolution and unmixing of
hyperspectral imaging data with MCR-ALS.





Chapter 1

Inverse problems in chemical
imaging

1.1 Chemical imaging
Chemical imaging is a tool used in many different disciplines, with industrial appli-
cations in pharmaceutics [1–3], clinics [4–6], forensics [7–9], food science [10–12],
polymers [13–15], etc. The size of the sample under investigation can range from
single molecules [16–19] to cells [20, 21] or even the atmosphere [22, 23] and res-
idential areas [24, 25]. Obviously, the instrumentation used for observing these
widely different samples is dependent on the application. The main idea of chemical
imaging is that it has the ability to create a visual image of a chemical sample while
simultaneously providing information about its chemical composition or properties.
This allows the investigation of its structure, composition or dynamics and its goal is
to gain an understanding of these structures and processes. In other words, chemical
imaging is the description of a spatially resolved recording of chemical (and physical)
properties of a sample of interest. In this thesis, we focus mainly on optical imaging,
in which the interaction of the sample with light is measured. The photons, coming
from a light source, interact with the sample and are either absorbed or scattered
and the interaction pattern is inherent to the molecules present in the sample and its
physical aspects.

The basic unit of the chemical image is called the chemical map [26]. It is a two-
dimensional gray scale image (x, y) in which the value for each pixel carries intensity
information of only a single wavelength and are usually color coded for visualization
purposes (e.g. dark blue for the weakest intensity and red for the highest intensity).
The distinct objects present in the sample can have a different interaction with the
light source and thus spatial structures can be recognized in this chemical map. For
different applications, including the ones discussed throughout the thesis, a stack
containing a sequence of these discrete images is acquired. In super-resolution
fluorescence microscopy, for which the Nobel Prize in chemistry was awarded to

3



1. INVERSE PROBLEMS IN CHEMICAL IMAGING

Eric Betzig [27, 28], Stefan Hell [29, 30] and William Moerner [31, 32] in 2014, the
stack is obtained by following the evolution of the sample with respect to time (at
for example video rate). The chemical image is then a data cube with two spatial
dimensions and a temporal dimension (See Figure 1.1a). This type of images is
considered in Part 1 of the thesis. For hyperspectral images, the subject of Part
2 of the thesis, the data is captured in contiguous spectral bands within a specific
wavelength range and the data cube then contains one discrete image per wavelength
interval (also called channels). Moreover, for these images, the signal intensity of
a single pixel can be plotted as a function of the wavelength, and what is obtained
is a standard spectrum. With this dimension, discrimination between different
chemical species is made as it visualizes chemical specificity. As per illustration,
for the surface of a sample, the spectral information is collected per pixel on the
two-dimensional chemical image, as shown in Figure 1.1b.

FIGURE 1.1: The three-dimensional data structure of chemical images within the
context of this thesis. In (a) the time evolution of fluorescence emission for super-
resolution fluorescence microscopy imaging and in (b) a hyperspectral chemical
image with spectral information for each pixel of the sample surface.

So far, only the lateral dimensions (x, y) were mentioned, while the third spatial
dimension (depth, z) has been ignored for simplicity. However, for an imaging
system, every pixel considered in the two lateral dimensions is in fact a voxel (with
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1.1. Chemical imaging

small depth). Besides mentioning this here, it will not be discussed further throughout
this thesis. However, one should be aware that volumetric chemical imaging is an
active area of research, mainly within the Raman [33, 34] and super-resolution
fluorescence microscopy [35–38] communities.

1.1.1 Quality of the chemical image

The chemical image obtained is dependent on the use and development of reliable
instrumentation and methodologies. What makes a chemical image a good image
is the resolution (spatial, spectral and temporal), the sensitivity and the accuracy
of the instrument, without giving priority to either of them (as this is application
dependent). Nevertheless, there is an intrinsic trade-off between spatial resolution
and sensitivity in detectors [39]. Whenever a high spatial resolution is desired, a high
analytical sensitivity is also required, and thus applications are limited. For each
increase in order of magnitude in three-dimensional spatial resolution, the sensitivity
should be enhanced by three orders of magnitude [26]. Another problem is to find a
reliable way to convert the measurements in analytical information [40].

Spatial resolution

The spatial resolution is defined as the ability to distinguish two points as separate in
space. Otherwise said, it is the smallest resolvable distance between two specimen
points and is affected by different instrumental parameters (e.g. spot size of the laser,
diffraction limit, etc.) [26]. Images are known to suffer from degradation sources in
their applications. In short, the signal sample is degraded by circular convolution
with the blur of the microscope or other optical instruments. It can be described as a
convolution system (in discrete form) [41]

y(i) = ∑
s

C(i,s)x(s)+ ε(i) i = (i1, i2) ∈ Sy and s = (s1,s2) ∈ Sc , (1.1)

where y(i) is the observed image, C(i,s) the blurring kernel, x(s) the latent original
image and ε(i) the noise (e.g. Gaussian or Poisson noise). i and s are two sets of
spatial coordinates (with Sy ⊂R2 and Sc ⊂R2). Note that Equation 1.1 is only valid
when the observed image is the output of a linear spatially invariant system with
additive noise. For optical instruments, this blur is limited by the wave nature of
light and is often referred to as the diffraction limit [42]. As a result, for a circular
diaphragm, the sample will appear as an Airy pattern with a finite central disk that
is broader than the original object. Apart from discussing this concept now in the
frame of spatial resolution, the system described in Equation 1.1 is the basis of the
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1. INVERSE PROBLEMS IN CHEMICAL IMAGING

spatial deconvolution approach used to improve the spatial resolution in Part 1 of the
thesis. The theoretical lateral resolution is defined by Abbe’s law [43] as

dx,y =
λ

2NA
, (1.2)

where λ is the wavelength of the light and NA is the numerical aperture of the
objective, defined as

NA = nsinα , (1.3)

with n the refractive index of the imaging medium and α the half-cone angle of
the focused light produced by the instrument objective. Later, in a more rigorous
study [44], the equation for the lateral resolution for a widefield microscope (whereas
Equation 1.2 is still valid for a confocal microscope) was corrected to the more
appropriate form (Rayleigh’s criterion for uniform illumination) as

dx,y =
0.61λ

NA
. (1.4)

Equation 1.2 and Equation 1.4 show that instruments with a lower wavelength laser
offer higher spatial resolution (e.g. Raman imaging has a better spatial resolution
than infrared imaging), while ideally an objective with high numerical aperture
should be used. The three-dimensional distribution of the Airy disk is called the
Point Spread Function (PSF) and its size determines the spatial resolution of the
instrument. The axial resolution is given by

dz =
2λ

NA2 . (1.5)

The axial resolution is worse than the lateral resolution, which is due to the non-
symmetrical nature of the wave front that emerges from the microscope objective.
It makes the PSF elongated along the optical axis and therefore, it will be bigger
(as illustrated in Figure 1.2). That said, it should be noted that for the applications
throughout this thesis, the lateral dimensions are the most relevant ones, and are
therefore the most relevant quality parameter of the chemical image concerning
spatial resolution.

Apart from the PSF of the optical system, the effective spatial resolution is also
affected by the image pixel size. The previous equations are only valid when it is
assumed that the image is taken with an adequate spatial sampling, according to the
Nyquist sampling limit: the image sampling interval (i.e. image pixel size) must be
at least two times higher than the desired spatial resolution to avoid artifacts [45].
As last, when dealing with super-resolution fluorescence microscopy of biological
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samples, the effective spatial resolution is also affected by several other factors, such
as the labeling density, probe size and preservation of the sample structures during
sample preparation [46].

FIGURE 1.2: The PSF of a widefield microscope with an oil immersion objective
(NA = 1.40). It shows the focal spot of a laser (λ = 550 nm) in a medium with a
refractive index (n = 1.515). The Full Width at Half Maximum (FWHM) is 240 nm
for the lateral directions and 560 nm for the axial direction (figure based on [46]).

Spectral resolution

The spectral resolution is the ability to resolve spectral features and bands into their
separate components. It is, in other words, the smallest difference in wavelengths that
can be distinguished, and allows for subtle differences in peak shape or position to be
characterized [47]. It is influenced by different components of the instrument, such
as the grating for dispersive instruments, the pinhole and the detector. In terms of
chemical imaging, the difference in spectral resolution is what makes the difference
between a multispectral image and a hyperspectral image and influences the signal-
to-noise ratio (SNR) of the data [48]. Additionally, a higher spectral resolution also
significantly increases the size of the data cube, and thus data manipulation will be
more time-consuming.
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Temporal resolution

The concept of temporal resolution is also an important parameter that determines the
quality of the chemical image. It can be compared to the shutter-speed of a classical
camera and thus mainly depends on the efficiency of the detector [49]. Within this
thesis, the temporal resolution is considered within the context of super-resolution
fluorescence microscopy (i.e. Part 1), thus it will be treated as such. It is the ability
of the instrument to precisely resolve fast-moving objects and a key factor in the
imaging of dynamics in biological samples. Additionally, in fluorescence microscopy
imaging, it is also limited by the time required for all the excited molecules (S1
state) to return to the ground state (S0 state) [50] as enough photons should reach
the detector to be detected. To improve the temporal resolution of the chemical
image, the number of fluorescent probes that can be imaged at the same time
can be increased [51]. However, opposed to what the single molecule localization
microscopy techniques can handle, the probe density will become too high to localize
single molecules and thus high-density techniques are introduced. Chapter 4 shows
the method developed during this thesis, called sparse image deconvolution and
reconstruction (SPIDER), capable of imaging fast dynamics of biological samples.

Sensitivity and detection limit

Each pixel of the chemical image contains a numerical value that represents the cu-
mulative intensity of the image over the sampling interval. Part of this is background
intensity, which usually has a relatively uniform distribution over all the pixels, and
the other part is the signal of interest, which can be identified in pixels whose values
extend the relatively uniform background [26]. The sensitivity of an instrument,
i.e. the change in response of a system to a small change of the stimulus causing
the response [52], and detection limit, i.e. the lowest amount of a substance that
can be reliably distinguished from a blank [53], are two terms that are often used
together, but that should not be confounded from one another. However, from their
definitions, it is clear that they are directly related to the quality of the chemical
image. The sensitivity of an instrument is the measure of signal magnitude and the
detection limit is related to the noise level of a signal. An optimal instrument has
a low detection limit (i.e. small quantities can be detected) and a high sensitivity,
so that the SNR is high. This is important for chemical images in which the spatial
resolution moves from the microscopic to the nanoscopic level. Image pixels this
small contain a small amount of substance (e.g. picogram levels), and thus a high
sensitivity and low detection limit are needed. This is easily understandable when
thinking of two different situations: a trace quantity will be easily detected when it
has a physical size of the order of the imaged pixel size, while it will be harder if the
trace substance is homogeneously dispersed over multiple image pixels.

As per illustration of the importance of the sensitivity and detection limit, super-
resolution fluorescence microscopy is taken. In order to detect the single molecules,
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fluorescence spectroscopy is used as it isolates the emitted photons from the exci-
tation photons. Therefore, only the emitted photons are detected against the dark
background. In contrast, absorption spectroscopy requires the measurement of the
transmitted light relative to the high incident light levels at the same wavelength,
with higher background levels as a result, and thus a lower sensitivity [54], making
it not possible to detect the single molecules.

Accuracy

The accuracy of the chemical image can be defined as the closeness of the mea-
surement with respect to the true value, and can be understood in both spatial and
quantitative terms [55]. This becomes even more important with the ever-decreasing
size of the image pixels. The imaging accuracy decreases for small image pixels due
to an increasing amount of background noise with respect to the signal of interest.
On the other hand, there is also a problem for large image pixels (with a size larger
than the laser spot), as the measurement is subject to pixelization noise [56]. If the
measurement uncertainty is known, then the chemical image can be acquired in such
a way that a satisfactory level of accuracy is achieved. However, measuring this is
more easily said than done, and many experimental conditions have an influence on it
(e.g. sample moving throughout measurement, presence of background, non-uniform
surfaces, etc.). It should thus not be surprising that this field of study receives a great
deal of attention [56–61].
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1. INVERSE PROBLEMS IN CHEMICAL IMAGING

1.2 Inverse problems
Inverse problems [62, 63] emerge when the goal is to recover information about a
system’s unobservable properties from the observations made of that system. The
contrary, a forward or direct problem, relates a set of model parameters to a solution
of the system. From a mathematical standpoint speaking, the physical signal x can
be related to the measured data y as

y =C{x} , (1.6)

where the continuous-domain signal x may be a function of time and / or space, and
the measured data is stored in the M-dimensional vector y. The operator C is called
the forward operator and it models accurately the physics behind the measurements.
Computing this operator might involve linear or nonlinear operations, discretization,
etc.

The inverse problem is then obviously the opposite: it is the problem in which
observed measurements are converted into information about a physical object.
These problems are often ill-posed, which means that many different solutions might
be consistent with the measured data and they are usually ‘big’ in the sense that the
measurements and corresponding solutions contain millions of data points. There
is no clear definition of what ill-posedness exactly is, but a problem is said to be
ill-posed if it fails to fulfill the requirements to be well-posed, according to the
definition of Hadamard [64]: (I) a solution to the problem should exist; (II) the
solution to that problem is unique and (III) the solution depends continuously on the
data. The first two properties are rather obvious, while the last property is related
to the stability of the solution: small changes in the data should not lead to large
changes in the solution. Without going much into detail (see Appendix A for more
details), some discrete problems can be associated to ill-posed problems and linear
systems of equations can be written as [65]

y = Cx , (1.7)

where C is an m x n matrix, x an n x 1 vector and y an m x 1 vector. For now, the
notation for one-dimensional signals will be used for simplicity, but everything can
be extended to two-dimensional signals, i.e. images. More information for the linear
inverse problem related to images is given in Section 1.4.1.

1.2.1 Regularization of inverse problems
As mentioned above, the linear inverse problem is subject to the problem of ill-
posedness. It is mainly underdetermined due to the collinearity in C. To stabilize
the problem, and overcome this issue, regularization can be used [65]. It introduces
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additional information to the problem and singles out a useful and stable solution. In
order to fully grasp the concept of regularization with penalized linear regression,
the concept of linear regression is first introduced.

Linear regression

The linear regression model [66] for a data set where y, with elements yi (i =
1, . . . ,n), are the dependent variables and C, with elements Ci j ( j = 1, . . . , p), are the
independent variables can be described as

yi = x0 + x1Ci1 + . . .+ xpCip + εi . (1.8)

For this model, n is the number of observations, p the number of predictors and εi is
the model error for that observation. In matrix form, Equation 1.2 becomes

y = Cx+ ε , (1.9)

where y is an n x 1 vector of outcomes, C an n x p design matrix, x a p x 1 vector
of unknown parameters and ε an n x 1 vector of model errors. The general rule is
to include a constant term in the set of independent variables C by taking ci1 = 1
for all i = 1, . . . ,n. It is also important to note that when a relationship between the
independent variables exists, it is still considered to be a linear model because the
linearity is a property of x. Estimating the coefficients in the model is based on
minimizing the standard objective function (i.e. minimizing the sum of the squared
error producing unbiased estimators) by the classical least squares approach

min(‖y−Cx‖2) , (1.10)

with ‖ · ‖2 indicates the quadratic norm. The solution is unique when C has a full
column rank and is of the following form (see Appendix B for details)

x = (CTC)−1CTy . (1.11)

Penalized linear regression

Experimental measurements are influenced by noise and when the values in x are
influenced by this, overfitting of the data occurs instead of fitting the underlying
model of the data. On the other hand, underfitting occurs when the trend in the data
is poorly mapped. In both cases, the model will not be able to generalize well for
new data, and consequently, prediction errors will be large. It is therefore necessary
to make a trade-off between the bias and the variance in the solution (see Appendix
C) [67]. Typically, the more non-zero parameters a model has, the lower the bias
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1. INVERSE PROBLEMS IN CHEMICAL IMAGING

term will be, but the higher the variance term becomes. In an ideal situation, with a
true model and infinite data to calibrate it, both the bias and variance terms can be
reduced to zero. However, measurements are not perfect and data is finite, and thus
the trade-off has to be made [68].

The basic idea of penalized regression is to reduce the variance of the model by using
a penalty parameter. The model will be ‘simpler’, but will consequently have a higher
bias. Overall seen, this will lead to an improved model if the penalty parameter is
set in a smart way. It will lead to a model that is neither underfitting nor overfitting.
A graphical representation is given in Figure 1.3.

FIGURE 1.3: Bias – variance trade-off curve. A higher penalty factor leads to a
higher bias estimator (red curve), but a lower variance (blue curve). The ideal value
is where the error (green curve) is the lowest. The figure is based on [69].
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1.3 Penalties

1.3.1 Lq-norm penalties
The regularization puts explicit constraints on the variance of x, and bounds the
so-called Lq-norm of x. Two well-known Lq-norm penalties are the Ridge regression
(q = 2) [70] and the Least Absolute Shrinkage and Selection Operator (LASSO; q =
1) [71]. Regularizing Equation 1.10 for an Lq-norm can be written as

min(‖y−Cx‖2) subject to ‖x‖q
Lq
≤ S , (1.12)

or as a penalized model as

min(‖y−Cx‖2 +λ‖x‖q
Lq
) , (1.13)

where ‖ · ‖q
Lq

is the Lq-norm. Note that the two notations are equivalent to each other,
as for any value of S in Equation 1.12, a correspondent value for λ in Equation
1.13 exists (with λ > 0). Continuing with the latter, the amount of shrinkage of the
coefficients is determined by the parameter λ . The higher this value is, the further the
situation is to the right on the curve in Figure 1.3, and the estimates of coefficients
of the regression will go towards 0.

Equation 1.14 and Equation 1.15 show the objective function for the Ridge regression
penalty (L2) and the LASSO penalty (L1), respectively

min(‖y−Cx‖2 +λRidge

p

∑
j=1

x2
j) , (1.14)

min(‖y−Cx‖2 +λLASSO

p

∑
j=1
|x j|) . (1.15)

The Ridge regression (Equation 1.14) penalizes the sum of squares of the coefficients,
while the LASSO (Equation 1.15) penalizes the sum of absolute values of the
coefficients. Note also that the penalties do not give equivariant solutions under
scaling of the input and thus it should be kept in mind in practice for the optimization
of λ . The solution of the Ridge regression is then given by

x = (CTC+λ I)−1CTy , (1.16)

where I is the identity matrix. The quadratic penalty keeps the Ridge regression
solution a linear function of y, as a positive constant is added to the diagonal of CTC
and thus it is non-singular, even if CTC is not of full rank. On the other hand, the
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LASSO constraint makes the solutions nonlinear with respect to y, and there is no
closed form expression as in Ridge regression. This makes it difficult to calculate its
solution, but we will get back to a trick for it later.

To show what the two penalties do to the coefficients, Figure 1.4 is presented for a
situation in which two coefficients should be estimated. For Ridge regression, the
constraint region is the disk x2

1 + x2
2 ≤ S, while for the LASSO, it is the diamond

|x1|+ |x2| ≤ S. The different ellipses represent the errors obtained by the least
squares term. The two approaches find the first point where the ellipse touches the
constraint region. If the solution occurs at a corner of the LASSO constraint region,
one of the coefficients x j will be zero. This is not possible for the Ridge regression;
it will shrink the coefficients, but never put them to zero. On the other hand, with the
LASSO, sparse solutions (i.e. it will contain many zeros) can be obtained.

FIGURE 1.4: Representation of the (a) Ridge regression (constraint region: x2
1+x2

2≤
S) and (b) LASSO (constraint region: |x1|+ |x2| ≤ S) estimation. The black ellipses
are the contours of the least squares error function, while the gray areas are the
constraint regions. The green dots indicate where the penalized solution is tangent
to the constraint region. The figure is adapted from [72] and based on [67].

Despite the usefulness of the LASSO constraint in inducing sparsity, there exists
another penalty, the L0 penalty (q = 0), which does the job even better [73, 74]. It is
more natural than the LASSO constraint, as its description is in accordance with the
natural background of sparsity: it penalizes the presence of non-zero coefficients in
x. Its objective function is written as [75]

min(‖y−Cx‖2 +λL0

p

∑
j=1

I(x j 6= 0)) , (1.17)
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where I( ·) is the indicator function. It will be 1 if the condition in its argument is
true and 0 otherwise. This penalty very aggressively forces the elements of x towards
zero, unless their contribution to the fit is strong enough. Therefore, x is forced to be
sparse. The problem with this penalty is that its solution is non-convex, making it
difficult to solve computationally as it is not certain that the solution has a global
minimum. However, works of de Rooi and Eilers [73] and de Rooi et al [74] showed
that the following iterative algorithm, based on the work of Osborne et al. [76] and
Frommlet and Nuel [77], is effective. The latter work states that for any member
of the Lq-norm penalty family (0≤ q < 2), the loss function can be rewritten as a
weighted version of Ridge regression. It is based on the trivial mathematical identity
|x j|0 = x2

j/x2
j , which is 1 when x j 6= 0 and 0 otherwise. Suppose an approximation

x̃ j is known. Then |x j|0 ≈ x2
j/x̃2

j = w̃ jx2
j , with w̃ j = 1/x̃2

j . Using this approximation
to the penalty, the objective function becomes

min(‖y−Cx‖2 +λxTW̃x) . (1.18)

The matrix W̃ is a diagonal matrix with elements w̃ j. The objective function is
minimized iteratively, updating W̃ in every round. Given W̃, the solution is

x = (CTC+λW̃)−1CTy . (1.19)

To get started, unweighted Ridge regression is used, i.e. W̃ = I. To avoid numerical
instabilities near zero and to speed up convergence, the weights are modified slightly:

w̃ j = 1/( x̃2
j +β

2) , (1.20)

where β is a small number, of the order of 0.001 times the largest element of |x|.
More generally speaking, the objective function for the Lq-norm penalty (with
0≤ q < 2) is as Equation 1.18, with the matrix W̃ is of the following form

W̃ = diag[1/( x̃2
j +β

2)
2−q

2 , . . . ,1/( x̃2
j +β

2)
2−q

2 ] . (1.21)

We remind that for the LASSO penalty q = 1, and for the L0-norm penalty q = 0.

Sparsity with L0-norm in one-dimensional signals and two-dimensional signals are
used within this thesis to improve the spatial resolution in fluorescence microscopy
imaging [78, 79] and as an MCR-ALS constraint [80]. The critical point in applica-
tions is the sparseness parameter, λ , which varies according to the degree of natural
sparseness of each of the constituents analyzed since the shape of the signal for each
of them may be different. Optimization of this parameter remains an open issue due
to the discontinuity of sparsity with the L0-norm.
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1.3.2 Smoothness
Whereas the LASSO and the L0-norm penalty induce sparsity in the vector of
coefficients, for some applications, the goal is to capture important spatial patterns
while filtering high-frequency noise in order to extract or highlight characteristic
features. Within this thesis, smoothness is applied as a way to pre-process super-
resolution fluorescence microscopy imaging data (see Part 1) and as an MCR-ALS
constraint [81, 82] (see Part 2). A keen eye will remark that smoothing is not an
ill-posed inverse problem, and we merely try to reduce the variance of the model
by providing a smooth approximation of the coefficients in x. Despite this, it is a
penalized least squares regression and is therefore discussed in this section.

Whittaker smoother

The Whittaker smoother, originally published in 1923 [83], and later picked up
by Eilers [84] is a straightforward algorithm with many attractive properties [84].
Suppose data y with length n and linear sampling. For the fit of a smooth series
µ to y, the Whittaker smoothing can be reduced to linear regression in which the
following least squares loss function is minimized

min(‖y−µ‖2 +λWhittaker‖Dµ‖2) . (1.22)

The matrix D is called the differencing matrix and is of order d (within the context
of this thesis, d = 3). The penalty term constrains the differences of the adjacent
coefficients in µ. For n = 7, the differencing matrix of order d = 3 is given as

D =


−1 3 −3 1 0 0 0
0 −1 3 −3 1 0 0
0 0 −1 3 −3 1 0
0 0 0 −1 3 −3 1

 . (1.23)

The solution for the objective function in Equation 1.22 is given as

µ̂ = (I+λWhittakerDTD)−1y . (1.24)

The weight of the penalty, which is directly related to the smoothness of the fit, is
controlled by the tuning parameter λWhittaker. Additionally, the work of Eilers [84]
showed that it was possible to handle missing data. The missing elements of the data
series y are set to an arbitrary value and a vector of weights, w, is introduced, where
wi = 0 when data observations are missing and wi = 1 otherwise. The loss function
to be minimized is then given as

min[ (y−µ)TW(y−µ) +λWhittaker‖Dµ‖2] , (1.25)
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where W = diag(w) . The solution is given as

µ̂ = (W+λWhittakerDTD)−1Wy . (1.26)

One-dimensional P-splines smoother

The P-splines smoother is used within this thesis to estimate the baseline of a signal.
The example used to explain how the algorithm works will therefore be explained as
such. For other applications, we refer to references [85, 86].

The one-dimensional P-splines smoother [85–87] is based on using penalized B-
splines to perform a sort of Whittaker smoothing. B-splines are curves constructed
from joining polynomial pieces (segments) in a smooth way. The positions on the
x-axis where the segments come together are called knots. Different orders of splines
can be considered, but within this thesis, cubic splines (third order splines) are
applied in practice. Suppose the data y. A set of equally spaced and identically
shaped B-splines is used to provide a smooth fit of this one-dimensional signal
(comparable to the Whittaker smoother). Doing so, the loss function becomes

min(‖y−µ‖2) = min(‖y−Bα‖2) , (1.27)

where B is the B-spline basis and α the vector of spline coefficients. The explicit
solution is as in Equation 1.11, but now with α and B

α= (BTB)−1BTy . (1.28)

To illustrate the algorithm, a noisy example in which four peaks are superposed on
a smooth baseline will be considered. For a B-spline basis with 55 segments, the
result as in Figure 1.5a is obtained. The use of the B-spline basis introduces a certain
smoothness of the fit already, but the estimation mainly fits the original data. To
control the smoothness of the fit as for the Whittaker smoother, a penalty to the loss
function presented in Equation 1.27 is added. The new loss function becomes

min(‖y−Bα‖2 +λsplines‖Dα‖2) , (1.29)

for which the solution is given as

α= (BTB+λsplinesDTD)−1BTy . (1.30)

where D is as in Equation 1.23 and the smoothness is tuned with parameter λsplines.
Note that when using the loss function as in Equation 1.29, we refer to P-splines rather
than B-splines. Applying the P-splines approach to the data previously mentioned
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gives the result as in Figure 1.5b. The coefficients of the individual B-splines are
now close to one another, making the fit smoother than before with the cost of having
lower data fidelity. However, we mentioned before that the approach would be used
to estimate a baseline, but as can be seen from the results obtained, the fit is not an
estimation of the baseline, but is rather drawn through the entire data cloud. Let us
consider that every observation in the signal is either part of the baseline, or part of
the signal of interest. If it is known to which component the observation belongs,
then this information can be included in the objective function. This asymmetry can
be encoded using a weight matrix W. The values of this matrix, wi, will be close to
1 if it is assigned to the baseline and close to 0 if it is not. Doing so, it is like dealing
with missing data as in Equation 1.25, and thus every data point that is not assigned
to the baseline is considered as a missing value. The loss function then becomes

min[ (y−Bα)TW(y−Bα) +λsplines‖Dα‖2] , (1.31)

and its solution is given by

α= (BTWB+λsplinesDTD)−1BTWy . (1.32)

The matrix W = diag(w) is controlled by the asymmetry parameter p so that

wi =

{
p if µi− yi > 0
1− p in the other case

, (1.33)

and is estimated in an iterative procedure until convergence is obtained. This
algorithm is called a weighted P-splines approach and applying it on the data gives
remarkable results to estimate the baseline of the signal (see Figure 1.5c).
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FIGURE 1.5: Illustration of estimating a one-dimensional baseline with splines.
In (a) linear regression with B-splines (55 segments); in (b) linear regression with
P-splines (λ = 50) and in (c) weighted linear regression with P-splines (p = 0.1).
Red line is the original data (y); black line is the model fit (µ); colored lines are the
individual splines.
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Two-dimensional P-splines smoother

Consider an image Y (m x n). The rows have coordinates i = 1, . . . ,m and the
columns j = 1, . . . ,n. The two-dimensional baseline of the image can be represented
by a smooth surface M. It can be estimated by the tensor products of two bases of
B-splines: B1 (m x K) for the row direction and B2 (n x L) for the column direction.
The smooth surface is then written as

M = B1ABT
2 , (1.34)

where A (K x L) is the matrix of coefficients of the B-splines. The size of the two
bases does not necessarily have to be the same, meaning that the x and y direction of
the images can be tuned independently. This allows for an anisotropic smoothing of
the surface [87]. As for one-dimensional signals, a penalty term is added to the least
squares loss function to tune the smoothness of the fitted surface

Pen = λ1‖D1A‖F +λ2‖D2AT‖F , (1.35)

with D1 and D2 the differencing matrices, ‖ · ‖F the Frobenius norm and λ1 and λ2
the smoothing parameters for the row-wise and column-wise penalties, respectively.
Again, as for the one-dimensional approach, asymmetry is encoded by using a weight
matrix W, of which the elements, wi j, are assigned to the different pixels i j. They
are again controlled by the asymmetry parameter p so that

wi j =

{
p if Mi j−Yi j > 0
1− p in the other case

. (1.36)

To estimate this smooth baseline, Kronecker products and vectorization of the data
matrix, the coefficient matrix, the smooth surface and the weight matrix could be
used. However, this is very inefficient and an algorithm called generalized linear
array model (GLAM) [88] is used (see Appendix D).

Edge-preserving smoother

Whereas the goal of the previously explained smoothing algorithms is solely to
smooth the data (or estimate a smooth baseline), the goal of the edge-preserving
smoother – a two-dimensional smoother – is twofold. On one hand, it flattens and
removes irrelevant spatial details (i.e. smooths), and on the other hand, it enhances
or preserves prominent edges. The algorithm used to obtain this goal depends on
the application (as explained in reference [82]): smoothing with L1-norm [89, 90]
is more suitable when gradual shifts exist between adjacent regions of interest (e.g.
chemical or biological samples), while smoothing with L0-norm [91] is more suitable
for applications requiring less-photorealistic rendering as it produces sharper edges
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and piece-wise constant amplitudes. The global smoothing algorithm is also based
on penalized least squares regression

min[‖Iin− Iout‖2 +λP(Iout) ] , (1.37)

where Iin and Iout are the input (measured) and output (processed) images, respec-
tively. The penalty term P(Iout) regulates how the image smoothing is carried out,
and its mathematical formulation depends on whether an L1-norm or an L0-norm
smoother is used. The L1-norm smoother features a low directional gradient along
the spatial dimensions of the image. It is expressed as

P(Iout) = ∑
x,y

√
( ix+1,y− ix,y)2 +( ix,y+1− ix,y)2 , (1.38)

where ix,y represents the intensity value of the (x x y)-th pixel of Iout. On the other
hand, the L0-norm smoother minimizes the total amount of non-zero variations
between neighboring pixels across the image. It is written as

P(Iout) = #{ p | ‖ix+1,y− ix,y‖0 +‖ix,y+1− ix,y‖0 6= 0} . (1.39)

The penalty connotes the number (#) of all the pixels p of Iout for which the sum of
the L0-norm (‖ · ‖0) of the intensity differences along the x and y dimensions are not
zero.
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1.4 Examples
Two types of inverse problems that are considered in this thesis are presented. The
first one is image deconvolution and its application in super-resolution microscopy
data and the second one is unmixing using MCR-ALS that aims at decomposing
multicomponent mixture data into individual component contributions.

1.4.1 Image deconvolution
Nowadays, in current science, images are indispensable. They are obtained in differ-
ent areas as mentioned before, and they are meant to observe an underlying object or
scene. The original image is the ideal representation of the observed image. Unfortu-
nately, the observation is never perfect, as different effects will have an influence.
What image deconvolution aims at is to recover (an estimate of) the original image,
free from any uncertainty – such as blur and noise –, from the observed image. The
key in doing so is incorporating proper a priori knowledge of the original image
in the restoration process [41]. The problem of image deconvolution for a linear
spatially invariant system (i.e. the signal is independent of position and additive) was
described before in Equation 1.1, in which the blur was described by the array C(i,s)
and the additive noise by ε( i) . In reality, however, imaging systems are hardly ever
perfectly shift invariant (e.g. due to optical aberrations) and the noise is not Gaussian
(due to quantum effects of photons). Despite these considerations, the simplified
model works well for the application in the thesis (see Part 1 of the thesis).

As convolution is a linear operator, the convolution system of Equation 1.1 can be
represented in the matrix-vector notation

y = Cx+ ε , (1.40)

in which the inverse problem of Equation 1.7 can be recognized. Consider that in this
notation, the observed image (i.e. one image of the data stack), y, the original image,
x, and observation noise, ε , have been ordered in a lexicographical way by stacking
either the rows or the columns of the image into a vector. As mentioned before, the
model assumes a linear spatially invariant system and when zero-end conditions are
considered (i.e. outside the domain of the image, values are assumed to be zero),
then the four-dimensional array C(i,s) can be transformed to a block Toeplitz with
Toeplitz blocks matrix, i.e. C is partitioned in blocks and each block is a Toeplitz
matrix [92, 93]. For more information, we refer to reference [94]. When the blurring
kernel is not known, blind deconvolution can be used. In blind deconvolution, the
blurring kernel can be estimated a priori [95], or it is estimated simultaneously
with the original image [73] (by for example an iterative approach in which they
are estimated concurrently in the same iteration). Fortunately, for super-resolution
fluorescence microscopy, an optical system is used of which the blurring kernel is
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known or can be estimated. For this application, the original image is that one of
point sources (i.e. fluorophores, see Figure 1.6a), but the observed image is blurred
by the PSF of the optical system, originating from the diffraction limit (Figure 1.6b).
The blurring kernel for such a system is shown in Figure 1.6c.

FIGURE 1.6: Deconvolution for super-resolution fluorescence microscopy. In (a)
the true original image of a point source of a fluorophore; in (b) the blurred observed
image of the fluorophore (the blur the PSF of the optical system) and in (c) the
blurring kernel C of this linear spatially invariant system is a block Toeplitz with
Toeplitz blocks matrix.

Once the analysis is performed, the vector x can be transformed into an image and
for a given image in time, the pixel values of the image represent the brightness
of a molecule located at that point. The complete structure of the sample under
investigation can then be found by summing up all the super-resolved images for the
entire data stack.

It must be noted, however, that the fluorescence microscopy images considered in
this thesis are of samples with a high density of fluorophores. This means that the
images will contain lots of overlap in the observed signal. It is therefore necessary to
combine image deconvolution with a sparse prior (the L0-norm sparse prior discussed
in Section 1.3.1) to obtain a useful solution. Additionally, to unravel information
on a pixel-grid smaller than the original pixel grid, the matrix C is adapted. For
example, to double the resolution in x (i.e. oversampling factor is 2), the number of
columns of C is doubled and the PSF is adapted: it is computed on a finer grid and
the sums of adjacent pairs of values are computed. The sparse penalty will ensure
that the regression problem is not ill-posed (even when estimating 2n unknowns
from n observations). The price to pay for super-resolution is heavier computation,
as the size of the system of equations increases. The principle is graphically shown
in Figure 1.7.
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FIGURE 1.7: Graphical representation of sparse image deconvolution for super-
resolution fluorescence microscopy on a finer grid.

It must be noted though that the PSF of the system has to cover multiple image pixels
for this to work (keeping in mind the Nyquist sampling criterion). When this is the
case, the distribution of the signal over these different pixels reveals the positions of
the fluorophores.

1.4.2 Spectral unmixing with multivariate curve resolution -
alternating least squares

The goal of multivariate curve resolution (MCR) techniques [96] is to describe the
underlying contributions of a data set. It allows resolving the data into the individual
contributions when spectral or calibration information is not available [97]. The basis
of the technique in chemistry is the Beer-Lambert law [98, 99] for the absorbance of
a multicomponent mixture. In vector notation, the problem is described as

d = cST , (1.41)

in which d is the measurement vector (1 x n), taken at n different wavelengths, c (1
x k) is the vector of concentrations of the k different components in the mixture and
S (n x k) the matrix of molar absorptivity for each species at each wavelength. In
order to make use of MCR techniques, a minimum of second-order data is required.
This means that a set of m (m≥ 2) spectral mixtures are collected at n wavelengths.
The (linear) MCR model is then given as

D = ∑
i

ciST
i +E ,

= CST +E .
(1.42)

The matrix D (m x n) contains the measured data, of m different mixtures at n
different wavelengths, C (m x k) represents the concentrations of the k different
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components (note that C in this application is not the same as the C in image
deconvolution) in the m mixtures and ST is the same as described above. The error
contribution of the measurement is described by the matrix E (m x n). It is also often
depicted in graphical form as in Figure 1.8.

FIGURE 1.8: Graphical representation of a multivariate curve resolution model for a
data set D containing m observed mixture samples at n wavelengths. The model is
shown for k components.

There are different ways to find the decomposition of the data set D, and thus to
perform MCR. They are divided in non-iterative and iterative approaches. Most non-
iterative approaches are based on combining the information present in small sections
of the data set (by either global or local rank information). Examples are window
factor analysis [100] or heuristic evolving latent projections [101]. The iterative
approaches, such as MCR-ALS [102, 103], are more flexible and can accommodate
external information in the resolution procedure [104]. This last property is very
important for methods as MCR-ALS as it is known to be subject to ambiguities [105].
This means that many sets of paired C and ST matrices can reproduce the signal with
the same quality of the fit [106]. The simplest case of ambiguity is the permutation
ambiguity, i.e. the order of the MCR-ALS components can be shuffled as long as
the correspondence of the dyads is respected. The second type of ambiguities that
can be recognized is intensity ambiguity. This type of ambiguity translates into the
fact that dyads of profiles with the same shape but different relative scales between
concentration profile and spectral profile will reproduce the original data equally
well. It is mathematically written as

D = ∑
i
(ciki)(

1
ki

sT
i ) +E , (1.43)

where ki is a scalar. To suppress and overcome this intensity ambiguity, the con-
centration profiles (or the spectral profiles) can be normalized. The last type of
ambiguity is the rotational ambiguity and within MCR-ALS, this is the most difficult

25



1. INVERSE PROBLEMS IN CHEMICAL IMAGING

one to assess. It shows that dyads of concentration profiles and spectral profiles with
different shapes can reproduce the original data equally well. It is written as

D = (CR)(R−1ST) +E , (1.44)

in which R is the rotation matrix. The external information mentioned before can be
introduced in the optimization process under the form of constraints and will limit
the ambiguity of the solutions [107]. These constraints are chemical or physical
properties that are fulfilled by the entire system, or, by some of its pure contributions.
They are ‘translated’ into mathematics, which forces the solution to respect the
desired conditions. Examples are non-negativity, unimodality, etc. The general
operating procedure of the algorithm is described by the following steps:

1. Determine the number of components [e.g. by a priori information or by
principal component analysis (PCA)].

2. Initial estimates (e.g. ST matrix).
3. Calculate C using least squares under constraints.
4. Calculate ST using least squares under constraints.
5. Reproduce the data D (by making the product of C and ST) and evaluate the

reproduction.
6. Go back to step (3) until convergence has been reached.

This iterative procedure has as a goal to minimize the lack of fit (LOF)

LOF(%) = 100x

√√√√∑i, j e2
i, j

∑i, j d2
i, j

, (1.45)

where di, j and ei, j are the (i x j)-th elements of D and E, respectively.

The use of MCR-ALS has been reported in many different applications in the
literature [104, 106], and is also useful in the field of spectroscopic image analysis
[108–110]. It is the subject of investigation in Part 2 of the thesis. The difference
between hyperspectral images and traditional process data is that the images are
defined by three informative directions, as described in Section 1.1. Fortunately, the
pixels in the image still obey Equation 1.42 and MCR-ALS is still a valid bilinear
model. On the other hand, the three-dimensional data cube has to be transformed into
a data matrix to be analyzed by MCR-ALS (Figure 1.9). When optimization is done,
images can be restored by rearranging the columns of C according to the original
dimensions of the image. Some constraints for MCR-ALS with hyperspectral
images were previously proposed (e.g. local rank constraint [109]), but adding
spatial information as input to the MCR-ALS analysis is the topic op Part 2 of this
thesis, and will be further explained there.
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FIGURE 1.9: Multivariate curve resolution – alternating least squares for hyperspec-
tral images. The original three-dimensional data cube has to be unfolded to restore
the bilinear data matrix D to be analyzed by MCR-ALS. When optimization is done,
images can be restored by rearranging C according to the original dimensions of the
image.
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Part 1
Sparse image deconvolution in super-
resolution fluorescence microscopy

Part 1 of this thesis talks about the development of techniques that deal with the
analysis of chemical imaging data obtained by fluorescence microscopy imaging.
The goal within the framework of this thesis is to provide visualization and insights of
biological structures and processes at the cellular and subcellular level. To manage
looking at a spatial resolution beyond the diffraction limit for the images with a high
fluorophore density, image deconvolution with a sparsity prior is applied. We rely
on an L0-norm penalized least squares framework to accomplish this, which is in
accordance with the true physics of a point-like fluorophore source and we called the
method sparse image deconvolution and reconstruction (SPIDER). Also, the correct
reconstruction of a super-resolved image by SPIDER, or any other method for that
matter, relies heavily on a robust estimation of the non-specific fluorescence signal,
as opposed to the emitters of interest. We therefore also investigate different ways to
pre-process the data and show results obtained with and without correction.





Chapter 2

Super-resolution fluorescence
microscopy

2.1 Introduction
Fluorescence can be defined as the interaction in which a molecule in an electron-
ically excited state decays, by photon emission, to a lower electronic state. In
Figure 2.1, the energy level diagram that explains this phenomenon is shown. Ini-
tially, a molecule is excited from the ground state to one of the various vibrational
states of the first excited electronic state (green arrow), using a light source. Colli-
sions with other molecules (vibrational relaxation, blue arrow) can cause this excited
molecule to go to the lowest vibrational level of that excited state. Finally, the
molecule can go to one of the vibrational states of the ground electronic state level,
emitting a photon in the process. The molecule can drop down to any of the vibra-
tional levels of this state, emitting photons with different energy during the process.
These photons will therefore have different frequencies and the fluorescence spectra
will give specific information on the molecule. Not mentioned here in the diagram is
the internal conversion of the molecule (from the electronically excited state to the
ground electronic state), which is a non-radiative process.
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FIGURE 2.1: Energy level diagram illustration of the transitions between electronic
states of a molecule involved in the fluorescence process.

For the study of biological samples, the cell is specifically labeled with fluorescent
dyes or fluorescent proteins to make the structures of interest (e.g. mitochondria)
become visible. The image is then generated by these so-called fluorescent probes
and thus the structure is defined by the spatial coordinates of these probes. In
general, the microscopes illuminate the sample at shorter wavelengths than the
fluorescence to excite the molecules and the light these excited molecules emit (at
longer wavelengths) forms the fluorescent image. An example of the excitation
and emission spectrum of a well-used fluorescent protein, Dronpa [111, 112], is
given in Figure 2.2. Throughout this project, the images were obtained in the epi-
illumination mode of a widefield fluorescent microscope, meaning that the sample
under investigation is illuminated through the objective. As a consequence, the
excited sample emits light into each direction and is partially collected by the
objective. The collected light is then separated from the excitation light by using
optical filters and a dichroic mirror, and sent to the camera for acquisition and
eventually to the computer for analysis and visualization.
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FIGURE 2.2: Absorption spectra (red) of Dronpa and its emission spectrum (green)
obtained after excitation at 488 nm (adapted from [112]).

Super-resolution techniques rely on the fact that the fluorophores have a reversible
character, meaning that they can switch from a bright state (emitting light) to a
dark state (not emitting light) and back, and this repeatedly [113, 114]. These
fluorophores are called photoswitchable. Using this type of fluorescent probes
makes it possible to detect [35, 115, 116] or track [117–119] single molecules in
many different applications, such as living or fixed cells [120, 121], allowing the
measurement of biological activities and dynamics, unravel mechanisms, etc. The
downside to these fluorophores, as with any other fluorophore, is that they undergo
photobleaching. Photobleaching is a process in which the fluorescence signal is
irreversibly lost with time. This phenomenon is shown in Figure 2.3.

FIGURE 2.3: Schematic representation of the effect of photobleaching.

To look at information beyond the diffraction limit, the position of the fluorescent
probes in the sample has to be determined with a high precision. Different ways to
achieve this are proposed, but the best-known data processing methods are local-
ization techniques for single molecules [e.g. stochastic optical reconstruction mi-
croscopy (STORM) [122] or photo-activation localization microscopy (PALM) [28],
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etc.]. For STORM and PALM, a large number of images are collected under a
widefield microscope in which only a few fluorophores are active (i.e. in the bright
state) per frame. The light emitted by these molecules is isolated on the image and
the spatial coordinates can be determined. Over the frames of the chemical image,
different probes will be active and acquiring enough frames will allow visualizing
the entire structure of the sample. However, it should be clear that a labeled sample
can contain millions of fluorescent probes, and the key to success of these techniques
is the use of these photoswitchable fluorophores so that the otherwise spatially
overlapping fluorophores are separated in the time domain. To control the number
of active fluorophores in a single image, lasers are used to activate the fluorescent
probes at a different wavelength than the imaging light used to excite the molecules
for imaging and deactivation [28, 46, 122, 123].

Despite the good results obtained, the inherent slow temporal resolution of the
techniques is a major limitation when investigating live-cell dynamics. In STORM
and PALM, each image of the data stack samples a random subset of the total
number of fluorophores present in the sample. Thus, the temporal resolution is
mostly determined by the time needed to gather enough fluorophore switching events
so that adjacent localization points can be according to the Nyquist criterion [124].
A possibility to overcome this is by using high-density imaging, in which the density
of the activated fluorescent probes is increased. The number of active fluorophores
per image will increase, and consequentially, overlap of the fluorophore spots occurs,
making it impossible to use single-molecule techniques such as STORM and PALM.
Thus, new methods, including SPIDER, are proposed to cope with these highly
overlapping fluorescent spots.
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2.2 Super-resolution algorithms for high density
data

There are several ways to analyze the chemical imaging data obtained from super-
resolution fluorescence microscopy as presented in Figure 2.4.

FIGURE 2.4: Analysis of super-resolution fluorescence microscopy data: image
deconvolution and stochastic approaches.

A first way is to consider the data cube as a stack of images and every image can
be analyzed independently by using image deconvolution. This type of techniques
are the main focus of this part of the thesis. Their philosophy is that every image of
the data cube is considered to be the blurred version of a latent image of point-like
emitters. The cause of this blur is the PSF of the optical system. Therefore, it suffices
to use an image deconvolution approach to find the original images, as described in
Section 1.4.1. It is rewritten in Equation 2.1 for reasons of convenience

y = Cx+ ε , (2.1)

where y is the vectorized observed image, C represents the PSF, x is the vectorized
latent original image and ε the observation noise. The key assumption to a success-
ful application of these image deconvolution techniques is spatial sparsity of the
original latent image. Two state-of-the-art methods for this approach are compressed
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sensing stochastic optical reconstruction microscopy (CSSTORM) [124] and FAst
Localization algorithm based on a CONtinuous-space formulation (FALCON) [125].

Another way to analyze the data cube is to investigate the time traces under every
pixel of the image. These methods are called stochastic analysis methods and require
independent blinking of the different fluorophores. An example is super-resolution
optical fluctuation imaging (SOFI) [35], which is based on the temporal correlations
of independently blinking emitters.

Additionally, the spatial and temporal direction can be analyzed simultaneously,
which is done by methods such as Bayesian analysis of blinking and bleaching
(3B) [126,127] or deconvolution stochastic optical reconstruction microscopy (decon-
STORM) [128]. 3B bases the analysis on realistic models of the blinking processes
and photobleaching to reconstruct the high-density data with a Bayesian approach,
while deconSTORM applies a modified Lucy-Richardson deconvolution algorithm
that simultaneously exploits the temporal correlation of the activated fluorophores.

2.2.1 Image deconvolution approaches
CSSTORM

Compressed sensing stochastic optical reconstruction microscopy [124] is a super-
resolution approach for high density data based on global optimization by using a
compressed sensing framework. CSSTORM recovers x from Equation 2.1 when
the matrix C is known (i.e. the PSF of the system is known or can be estimated) by
minimizing its L1-norm

min(‖x‖1
L1
) subject to y = Cx . (2.2)

The calculation is performed in a compressed sensing framework, a popular technique
in the signal processing field [129, 130]. Using this framework, certain signals and
images can be recovered from far fewer samples or measurements (i.e. y has fewer
elements than x) [129]. It is worth noting once more that this image deconvolution is
possible because it is assumed that each image frame contains a sparse fluorophore
distribution, which is ensured by the stochastic switching of the fluorophore probes.
This will have as a result that most of the elements in x will be zeros. To take into
account corruption of the image with measurement noise, the L1-norm minimization
is constrained with

min(‖x‖1
L1
) subject to ‖y−Cx‖2 ≤ ε · (∑y j)

1/2 , (2.3)

where ε dictates the balance between sparsity and fitting fidelity. The Poisson
statistics of the photon counting implies that the variance of photon counts on pixel j
equals the expectation of the photon counts on that pixel. Thus, the maximum ratio
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between the sum of squared deviations and the sum of variances is set by ε2. This is
equivalent to the reduced χ2 without weighting each pixel individually [124].

Compressed sensing stochastic optical reconstruction microscopy was one of the first
high-density super-resolution methods and was able to analyze simulated images up
to a density of 8 µm−2 without distorting the solution much. With densities higher
than this, the method deviated from the ideal solution. The number of frames needed
to analyze a sample with a given overall image resolution of 40 nm was calculated to
be ∼ 850, while for single-molecule fitting techniques ∼ 4500 were needed [124]. It
was one of the first steps of image deconvolution techniques to visualize biological
samples quicker, leading to the possibility of getting insights in the dynamics of the
cell. Despite these advantages, also some disadvantages can be found in CSSTORM.
The technique is rather slow due to the combination of the compressed sensing
framework and the sub-pixel grids to account for super-resolution. This is partially
addressed by dividing the problem into several sub-problems and using parallel
computation, but it still remains the bottleneck of the method. Alternative methods
have been proposed (e.g. L1 homotopy [131]) to further reduce the computational
load. Additionally, the use of this sub-pixel grid in CSSTORM does not allow
continuous localization as the discrete-domain formulation only accounts for pre-
defined locations. It is therefore easy to understand that the position accuracy is
also limited by the oversampling factor. Lastly, the use of the L1-norm to induce
sparsity of the solution is coupled with an underestimation of the photon count of
the emitters, to which stray emitters are then associated.

FALCON

FAst Localization algorithm based on a CONtinuous-space formulation [125] is
a more recent super-resolution technique for high-density images. As the name
says, it is a grid-free reconstruction approach, because in addition to the image
deconvolution with sparse prior step, it also has an additional continuous-domain
refinement. The algorithm consists of three stages: (I) image deconvolution using
a weighted L1-norm sparsity prior (image on a pixel grid), (II) deconvolution with
a fixed spatial support to compensate for the fact that the L1-norm biases the pixel
intensities towards zero and (III) continuous-domain refinement. The FALCON
algorithm is shown in a schematic way in Figure 2.5 and it performs especially well
in situations where only low-photon emission rates are observed [125]. However, the
correction of the number of fluorophores from step (I) to step (II) is overcompensated
at higher densities, as will be shown in Chapter 4, leading to a massive drop in terms
of recall rate for randomly placed emitters. On the bright side, this does not have a
huge effect on the visualization of biological structures, because the geometry of the
sample can be taken into consideration [46].
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FIGURE 2.5: Schematic representation of the FALCON algorithm.

SPIDER

With SPIDER [78, 79], we propose our own approach to tackle the inverse problem
described in Equation 2.1. It is based on solving the sparse image deconvolution
problem by using an L0-penalized least squares framework. Combining this spatial
penalty with a temporal penalty, further improvement of the spatial resolution of the
super-resolved images is obtained. More information can be found in Chapter 4.

2.2.2 Stochastic analysis: SOFI
The SOFI algorithm [35] analyzes the acquired images sequence with an advanced
correlation method; it uses a high-order cross-cumulant analysis of the temporal
fluctuations of blinking emitters to achieve two-dimensional [37, 132, 133] and
three-dimensiona [134, 135] spatially super-resolved images. Before going to the
model, it is important to know that the fluorescent probes should fulfill certain
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conditions for SOFI: (I) they should exhibit at least two optically distinguishable
states, e.g. a bright and a dark state, (II) they should switch between those states
repeatedly and independently from each other in a stochastic way and (III) the PSF
of each emitter should extend several camera pixels. As a consequence of these
requirements, intensities recorded by each camera pixels over which the PSF spreads
will be spatio-temporally correlated with each other, but not with the other pixels.

For every pixel of the stack of images, a time trace is obtained and contains the sum
of the fluorophore contributions whose PSF reaches the pixel. It is written as

F(r, t) =
N

∑
k=1

εk ·U(r− rk) · sk( t) +b(r) +n(r, t) , (2.4)

where F(r, t) is the fluorescence signal at a position r and time t, U(r) the PSF
of the system, b(r) is the stationary background and n(r, t) additive noise. εk
represents the constant molecular brightness, rk the position and sk( t) the time-
dependent fluctuation of the kth emitter. Note that the SOFI model is not written as
in Equation 2.1, but it can be related to it [132].

For each pixel, a measure of correlation (i.e. nth order cumulant) is calculated to
discriminate better between the different emitters inside the PSF volume. Typically,
the spatio-temporal cumulants can be calculated with different time lags, but to
reduce the complexity, a zero time lag is generally used. The nth order cumulant
applied to Equation 2.4 gives

κn{F(r, t)}=
N

∑
k=1

ε
n
k ·U

n(r− rk) ·κn{sk( t)}+κn{b(r)}+κn{n(r, t)} . (2.5)

When n≥ 2, under the assumption of uncorrelated noise and stationary background,
the terms κn{b(r)} and κn{n(r, t)} will cancel out.

From Equation 2.5, it should be clear that for an nth order cumulant, the PSF is
raised to the nth order, with as a consequence that the spatial resolution is improved
by a factor

√
n (see Figure 2.6) [35]. Therefore, increasing the cumulant order will

yield an image with enhanced spatial resolution. However, molecules with a lower
intensity with respect to the others will be lost as also the brightness is raised to the
nth power. It is therefore important to make a balance between the order used to
enhance the spatial resolution and keeping the signal intact.
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FIGURE 2.6: Effect of raising the PSF to the nth power (n = 1, . . . ,5).
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2.3 Data pre-processing

2.3.1 Pre-processing for image deconvolution
The assumption for spatial deconvolution approaches is that the original latent image
is sparse. However, as is often the case in fluorescence microscopy images, the
data may contain structured background components (baseline) that corrupts this
assumption and thus complicate the analysis, regardless of the method used [58].
Contributions to this baseline could be camera offset (i.e. the signal registered when
no photon reaches the camera), out-of-focus fluorescence (i.e. fluorescence coming
from fluorophores that are not in-plane), read-out noise (i.e. noise introduced of
reading the image), auto-fluorescence (i.e. natural fluorescence of the biological
sample), uneven illumination (i.e. the light source does not evenly illuminate the
sample across the field of view), etc. Equation 2.1 has to be rewritten as follows

y = Cx+b+ ε , (2.6)

in which y, C, x and ε are as described before and b represents the (smooth) spatial
background (baseline). The goal of the pre-processing is to estimate or fit the baseline
as well as possible and restore the initial assumption of the image deconvolution
methods (i.e. sparsity of the latent original image), so that the image deconvolution
can be reduced to solving Equation 2.1.

Figure 2.7a shows the mean image of a realistically simulated data set of seven
tubulins [135] and in Figure 2.7b the cross-section over the line indicated in Fig-
ure 2.7a is shown. The simulation contains a high level of read-out noise and an
auto-fluorescence background is present. Using the original signal (black line) in
Figure 2.7b, the emitters are difficult to recover with spatial deconvolution methods,
due to the smooth baseline being present. The current state-of-the-art to correct
this is to remove the minimum pixel intensity of the image from all the pixel in-
tensities in that image. However, the limitation of this is that it assumes that this
baseline is stationary. Using this method would only remove an offset, and not the
auto-fluorescence. What is wanted in the ideal case is to remove the smooth baseline
contribution (red line) so that a corrected signal (blue line) is obtained where all
the contributions are zero, except at the positions where emitters are truly present.
Then, image deconvolution techniques will further improve the spatial resolution
(i.e. the peaks with a certain FWHM in the corrected signal will give rise to spikes,
as explained in Section 1.4.1).
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FIGURE 2.7: Typical fluorescence microscopy data with auto-fluorescence [135].
The mean image is shown in (a) while the cross-section of the line indicated in (a) is
shown in (b). The original signal (black line) includes a smooth baseline (red line).
Ideally, this smooth baseline should be removed so that the signal originates only
from a sparse latent original image (blue line).

2.3.2 Pre-processing for stochastic analysis
The photobleaching process described before (Section 2.1) makes the different
fluorophores no longer independent from one another. Thus, the key condition for
SOFI is violated. This effect has been studied carefully in the study of Peeters et
al. [136]. The authors remarked that photodegradation contributes to the SOFI signal
but that it does not provide any super-resolution information. Moreover, despite the
fact that the additional signal obtained by the photodegradation results in images with
a higher SNR, with more pleasing super-resolved images as a result, it actually gives
a distorted view of the reality. The current state-of-the-art methods to compensate for
this are batching [133, 137] [i.e. the data cube is split into smaller batches (to limit
the relative change of the temporal mean signal) that are analyzed separately and then
summed together for the final SOFI image], moment-preserving correction [138] (i.e.
transforming the data so that the mean and variance of the intensities are constant in
time), and using a multiplication correction [139] (i.e. dividing the pixel intensity
values by the values extracted from a normalized fit of the pixel-intensity trace).

For both types of techniques, we propose a way to pre-process the data so that the
key assumptions of the techniques can be restored. This is the subject of Chapter 3
of this thesis.
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Chapter 3

Pre-processing fluorescence
microscopy data

Chapter 3 is part of a manuscript in preparation:

S. Hugelier, R. Vitale, O. Devos, W. Vandenberg, T. Lukeš, Y. Peeters, P. Dedecker, J.
Hofkens, T. Lasser, P. Eilers, C. Ruckebusch. Correction of baselines in fluorescence
microscopy data with temporal and spatial approaches.

3.1 Spatial pre-processing for image deconvolution
approaches

As was shown in Equation 2.6, fluorescence microscopy data typically do not contain
only the signal of the emitters of interest, but the data also contain non-specific
fluorescence signal (and observation noise). Thus, the data can be decomposed in
a two-component mixture: the peaks of interest and a smooth baseline plus noise.
There are several baseline contributions that can be considered stationary (e.g. cam-
era offset), but in reality, most of the times these contributions are not (e.g. uneven
illumination of the microscope, auto-fluorescence of the sample, etc.). Removing
a stationary background will therefore not be helpful. The method investigated
in this thesis is a two-dimensional penalized regression with P-splines [84, 87] to
estimate the smooth baseline (see Section 1.3.2 for theoretical considerations). In
the ideal case, after removing the baseline, the signal only contains sparse emitter
contributions and the model of Equation 2.1 can be used.
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3.1.1 Practical considerations
The algorithm is used on each image of the data stack and iteratively updates
the weights and the spline bases coefficients in alternating way. To speed up the
calculations of the algorithm, the final weights are stored and used in the subsequent
frames of the analysis (i.e. what is called a warm start). The idea behind this
approach is that the baseline only changes smoothly in time and the baseline in the
subsequent frames will not have abrupt changes with respect to one another. The
degree of smoothness can be controlled by changing the number of splines for each
spatial dimension and by changing the penalty parameters. As an example of the
approach, Figure 3.1 is shown. The figure shows a smooth baseline that is estimated
for the data previously shown in Figure 2.7. The smooth surface is estimated with
30 P-splines for each direction (λ1 = λ2 = 0.1 and p = 0.001). Note that only 10 %
of the total number of two-dimensional splines is shown and that the fitted smooth
surface has an offset for visual reasons. What can be noticed is that the baseline
evolves in a smooth way over the entire surface (i.e. it only contains low frequency
signal). Additionally, seeing that the baseline changes quite drastically (but still
in a smooth way) over the surface, it is clear that the method offers a flexible, but
powerful tool way of estimating the baseline.

FIGURE 3.1: Example of the estimation of a smooth two-dimensional baseline
surface. Note that only 10 % of the total number of splines is shown and the fitted
smooth surface has an offset so that the individual splines would be visible.
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3.1.2 Results and discussion
The goal of the pre-processing approach is to obtain a signal that is suitable for
sparse image deconvolution. It is therefore important to apply the approach with
care as only the non-specific fluorescence signal should be removed and the emitters
of interest should be retained. Figure 3.2 shows the effect of the degree of smoothing
on an experimental data set of a HEK293-T cell labeled with DAKAP-DRONPA
targeted to the mitochondria [78]. As can be seen from the profiles shown in the
figure, a high degree of smoothing will remove a quasi-stationary offset and the
baseline does not follow the structure of the signal closely. However, it does reduce
the amount of non-specific fluorescence in the signal. On the other hand, a lower
degree of smoothness allows more flexibility in the estimation of the baseline and will
therefore fit the original signal better, removing the non-specific fluorescence from
the signal of interest even more. In the images on the right, the baseline obtained
with a high degree of smoothness has a higher intensity at the center, while the
baseline obtained with a low degree of smoothness reflects the structure of the cell
better. The results were obtained with following parameters: high degree: 5 splines /
λ1 = λ2 = 0.1 / p = 0.001; low degree: 35 splines / λ1 = λ2 = 0.01 / p = 0.001.

Based on the results presented in Figure 3.2, and careful analysis of several other
cross-sections across the entire image, parameters for the low degree of smoothness
were used as input to correct this data. It was concluded that the baseline (cyan line
in Figure 3.2) removed more non-specific fluorescence signal than when the other set
of parameters was used. However, the final choice of parameters will depend on the
user, and in experimental data, the real contribution of the non-specific fluorescence
is never known. The approach is performed on each frame individually and the
results are shown in Figure 3.3. The smooth baseline in Figure 3.3b simultaneously
removes the offset that can be seen in the raw data presented in Figure 3.3a and
leads to corrected data as in Figure 3.3c. Figure 3.3d then shows the image of the
pre-processed data to clearly show the structure of the biological sample. Note that
all the images are mean images of the entire data stack.
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FIGURE 3.2: Effect of a high degree of smoothness and a low degree of smoothness
on an experimental data set of a HEK293-T cell, labeled with DAKAP-Dronpa. The
cross-sections for high and low degree of smoothing are indicated by the white line
in the mean raw image [the original signal (red line) is fitted by a baseline (cyan
line) to give the corrected signal (blue line)]. The corrected mean baseline surface is
auto-scaled (from black to white).
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FIGURE 3.3: Removal of a smoothly varying baseline component to obtain the
corrected data. A three-dimensional view of (a) the raw data; (b) the smoothly
varying baseline component; and (c) the corrected data. The corrected data from
(c) is also shown as an image in (d) to clearly see the structure of the entire sample.
Note that the images are mean images of the entire data stack and are auto-scaled
(from black to white).

To show the importance of removing this smoothly varying baseline component
present in fluorescence microscopy data, Figure 3.4 is shown. As mentioned before,
the data is simulated in such a way that a high amount of auto-fluorescence and read-
out noise is present. If SPIDER (see Chapter 4) is used on the raw data (Figure 3.4a),
the result in Figure 3.4b is obtained. It is clear that the auto-fluorescence present
in the raw data prevents SPIDER from being effective. The structure becomes
clearer in some zones (i.e. the zones with less auto-fluorescence), but it is nearly
impossible to obtain a good super-resolved image. After using the spatial correction
method, and removing most of the auto-fluorescence, the results in Figure 3.4c can
be obtained. Using SPIDER on the corrected data, a clear image of the tubulins is
obtained (Figure 3.4d). It is indeed true that not everything is completely resolved,
but the difference is striking nonetheless.
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FIGURE 3.4: Effect of pre-processing raw fluorescence microscopy data (a realisti-
cally simulated data set of seven tubulins [135]) with a two-dimensional P-splines
approach. In (a) the raw data; in (b) SPIDER applied to the raw data; in (c) the
baseline corrected data and in (d) SPIDER on the corrected data. Note that the
images are auto-scaled (from black to white).
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3.2 Temporal pre-processing for stochastic analysis
methods

The photodegradation or photobleaching does not provide any super-resolution in-
formation and there is no easy way to interpret this [136]. This signal induces
correlations between the fluorescent probes present in the sample and therefore, the
key assumption of SOFI (i.e. independent blinking) is violated. We therefore investi-
gate ways to remove this contribution from the experimental signal. The techniques
are based on the fact that a fluorescence signal in time has several contributions, of
which bleaching and blinking are the most prominent ones. Figure 3.5a shows the
mean image obtained for a live HEK293 cell that expresses a construct encoding
Lyn-DRONPA, targeted to the plasma membrane [140, 141]. Figure 3.5b then shows
the time traces for the different pixels highlighted in Figure 3.5a. The figure shows
that the highlighted pixels are not all the same, but the differences are mainly related
to intensity and short time fluctuations. However, the typical shape of the time
trace for the blinking behavior of the fluorescent probes (i.e. a smoothly decaying
trend, superposed by some fluctuations) can be recognized. Dealing with single
molecules, an exponential model could be determined for the exponential decay
of the fluorophores. However, dealing with high-density data, where hundreds of
fluorophores could be present under a single pixel, the photobleaching pattern is
much more complex than of single-molecules. Nevertheless, the smoothly decaying
trend of the bleaching can be used as an advantage, as a smoothing approach without
any physical model incorporated could be applied. We therefore first investigate
a PCA-based filtering approach. The basic idea behind this technique is that the
bleaching trend is more or less comparable for every fluorescent probe, as all of
them are the same Lyn-DRONPA protein. We show the average intensity trend of
all the pixels over time in Figure 3.5c. One could argue that the time traces under
pixels deviate from this trend, in either a positive of negative way, but, on average,
the deviation will remain the same for a given pixel (i.e. the mean trend can be
multiplied by a scalar to obtain a trace close to the ones of a single pixel). The
second approach is applying the Whittaker smoother on the time trace for each pixel
individually.
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FIGURE 3.5: a HEK293 cell, labeled with Lyn-DRONPA [140,141]. In (a) the mean
raw image; in (b) the time traces of the pixels highlighted in (a) and in (c) the mean
time trace of all the pixels in the data. Note that the image is auto-scaled (from black
to white).

3.2.1 Pixel-wise Whittaker smoothing
The routine is as explained in Section 1.3.2 and needs no further explanation as it is
used as such. Additionally, the smoothing of all the time traces can be performed
simultaneously, making this technique extremely fast (e.g. ∼ 20 seconds for a 343
pixels x 512 pixels x 5000 frames data set with an Intel(R) Xeon(R) E5-2643 v4
CPU).

3.2.2 PCA-based filtering
Principal component analysis [142–144] is a statistical tool (see Appendix E) that
is used to emphasize variation and bring out patterns in a data set. It highlights in
a certain way the similarities in the data, but also their differences. The similarity
in the data here is the photobleaching, and it has a common pattern for all the data
pixels of the data set as all fluorophores in a sample suffer from this effect in more
or less the same way. An example of a PCA-based filtering approach is given in
Figure 3.6. It can be seen that the three-dimensional data cube (in Figure 3.6, only
the mean image is provided) is first lexicographically unfolded to obtain the data
matrix X (note that the traditional notation in PCA is used). When performing a PCA
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analysis on this data matrix, the first principal component is obtained (indicated as
p1). A peculiar property of this first principal component is that it matches the mean
trend of the data set (indicated in Figure 3.5c) as it explains the highest variance in
the data.

FIGURE 3.6: Illustrative explanation of the PCA-based filtering approach to remove
the photobleaching contribution of the fluorescence microscopy data. Note that the
image is auto-scaled (from black to white).

As previously explained, this curve shows mainly a smoothly decaying photobleach-
ing contribution, but paying close attention to the principal component p1, small
fluctuations on this smooth decay can still be observed. These effects do not con-
tribute to the photobleaching and should therefore be filtered from the principal
component. The approach that was chosen here is Whittaker smoothing (as de-
scribed in Section 1.3.2) because it is straightforward and fast. Using the Whittaker
smoothing allows a fully automatic procedure as the smoothing parameter, λWhittaker
(see Equation 1.22) can be decided by a generalized cross validation [145–147]
approach or the L-curve approach [147]. The smoothed principal component is
indicated in Figure 3.6 by the green curve (p1,smooth). However, smoothing this first
principal component will lead to deviations in the original PCA space, but as long
as the deviations are not too big, it will not have critical effects on the data [148].
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This filtering step also explains why we did not opt for a complete PCA analysis,
but rather for a sequential approach. Doing so, after deflating and obtaining matrix
X̂1 (see Equation E.7 in Appendix E), the remainder of what was removed with
the filtering of the principal component (blue curve minus the green curve) will be
brought back into play for the subsequent PCA analysis. This strategy is continued
until no clear trend is present anymore in the data (up to, let us say, five times).

3.2.3 Results and discussion
The data presented in Figure 3.5 were corrected by the PCA-based filtering approach
by removing all the data contributions related to the (smooth) principal compo-
nents showing a clear trend. The raw data in Figure 3.7a is compared to the final
corrected data, shown in Figure 3.7b. The removal of non-specific fluorescence
signal surrounding the biological structure is clear and the sharpness of the image
has increased; it is easier to recognize some structure already whereas it was not
possible beforehand. Additionally, looking at Figure 3.7c, it is confirmed that the
photobleaching decay was removed from the raw data (black curve) and that only
a stationary blinking pattern can be detected (blue curve). However, a remarkable
consideration is that the biggest part of the signal is uninformative and that up to 99
% of the total data does not contain useful information for obtaining super-resolved
images.

FIGURE 3.7: Application of the PCA-based smoothing approach to remove temporal
trends (such as photobleaching) from the data. In (a) the raw data; in (b) the corrected
data and in (c) a comparison of the average intensity of all the pixels over time. Note
that the images are auto-scaled (from black to white).
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To show the remarkable improvements of the results, the method is applied on two
experimental data sets in which the vimentin in living Hela cells is labeled with
Dreiklang proteins (kindly provided by dr. Tomas Lukeš of EPFL Switzerland).
The two data sets are 343 pixels x 512 pixels x 5000 frames. In Figure 3.8, the
raw data of the first data set (Figure 3.8a) is corrected by the PCA-based filtering
approach (Figure 3.8b) and the pixel-wise Whittaker smoothing (Figure 3.8c). To
show how drastic the change is, a zoom of the box indicated in Figure 3.8a is shown
for the three images in Figure 3.9. These zooms show that a lot of signal in the raw
data is hiding the structure of the Hela cells. The different parts can be more easily
recognized after correcting the data as the contrast between the signal of interest and
the non-specific fluorescence is higher. To further show this, a cross-section is taken
of the indicated lines and presented in Figure 3.9d. Whereas the cross-section for
the raw data (black line) shows several peaks already, it is clear that by correcting
the data (blue and green lines), the contrast of those peaks is bigger and there is a
slight improvement in spatial resolution.
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FIGURE 3.8: Pre-processing living Hela cells (vimentin labeled with Dreiklang
proteins) and subsequent SOFI analysis: data set 1. The raw data is shown in (a)
and its 2nd order SOFI analysis in (d). (b) and (e) show the data obtained after
the PCA-based filtering approach and its corresponding 2nd order SOFI analysis,
respectively and (c) and (f) show the data obtained after the pixel-wise Whittaker
smoothing approach and its corresponding 2nd order SOFI analysis, respectively.
The white box indicated in (a) is shown in Figure 3.9. Note that the images are
auto-scaled (from black to white).
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FIGURE 3.9: Zoom of the box indicated inFigure 3.8a. The raw data (a) is compared
to the data obtained after (b) PCA-based filtering and (c) pixel-wise Whittaker
smoothing, respectively. (d) shows the normalized cross-sections as indicated in the
figures in (a), (b) and (c). Note that the images are auto-scaled (from black to white)
and that the green curve covers the blue curve almost completely.

The final goal of applying this correction technique is to be able to obtain better
super-resolution images with it. This data pre-processing technique treats the data
in such a way that photobleaching is being removed, therefore restoring the key
assumption of dealing with independent emitters for SOFI. Super-resolution optical
fluctuation imaging is applied on the raw data and the corrected data of the before
mentioned Hela cell data and shown in Figure 3.8d-f. It was chosen to apply SOFI
with 2nd order and to use a batch size of 50 frames. Note however that due to the fact
that the signal in the corrected data is quasi stationary (with blinking superposed),
batching is not necessary (different batch sizes were tested and had no influence
on the final result of 2nd order SOFI on the corrected data). The difference in
results obtained is remarkable. It was already clear from comparison between the
raw data and the corrected data that the contrast was much higher, but the SOFI
analysis confirms this. The background is being suppressed further and this leads
to an additional improvement in contrast between the emitters of interest and the
non-specific fluorescence.
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FIGURE 3.10: Pre-processing living Hela cells (vimentin labeled with Dreiklang
proteins) and subsequent SOFI analysis: data set 2. The raw data is shown in (a)
and its 2nd order SOFI analysis in (d). (b) and (e) show the data obtained after
the PCA-based filtering approach and its corresponding 2nd order SOFI analysis,
respectively and (c) and (f) show the data obtained after the pixel-wise Whittaker
smoothing approach and its corresponding 2nd order SOFI analysis, respectively.
The white box indicated in (a) is shown in Figure 3.11. Note that the images are
auto-scaled (from black to white).
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FIGURE 3.11: Zoom of the box indicated in Figure 3.10a. The raw data (a) is
shown and compared to the 2nd order SOFI analysis on (b) the raw data, (c) the
data obtained after PCA-based filtering and (d) the data obtained after pixel-wise
Whittaker smoothing. Note that the images are auto-scaled (from black to white).

The results for the second data set are shown in Figure 3.10. The raw data (Fig-
ure 3.10a) is once again compared to the two pre-processing methods (Figure 3.10b
and Figure 3.10c). Despite the fact that the contrast is higher in the corrected data,
in both cases, some zones (e.g. the bottom zone) appear to have a lower contrast
after the data is corrected. The structure seems to be less clear. However, when
2nd order SOFI is applied, it shows that the signal in those zones can be recovered
better than when no pre-processing is applied. It is also clear that the SOFI result on
the corrected data suffers less from the influence of bright spots present in the data
set. This is highlighted in Figure 3.11. The raw data (Figure 3.11a) is compared to
the 2nd order SOFI analyses of the raw data (Figure 3.11b) and the corrected data
(PCA-filtering corrected data in Figure 3.11c and pixel-wise Whittaker smoothing
corrected data in Figure 3.11d). The contrast between background signal and actual
informative signal is higher and thus the structures can be more easily recognized.
Additionally, despite the fact that SOFI theoretically should remove the stationary
background, it is not completely removed in Figure 3.11b, whereas this is the case
for the corrected data.
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3.3 Concluding remarks
As was shown in this chapter, typical fluorescence microscopy data do not always
follow the assumptions made for the methods to be valid. It is therefore very
important that the data is properly pre-processed so that non-specific fluorescence is
separated from the emitters of interest. The spatial image deconvolution methods
assume sparsity of the latent original image of the data, whereas SOFI, a stochastic
analysis method, assumes that the emitters blink in an independent way. However,
several processes and effects contribute to the fluorescence measurements and render
these assumptions invalid, leading to super-resolved images in which artifacts are
introduced.

This chapter shows one way to pre-process data meant to be analyzed with image
deconvolution methods. It restores the sparsity assumption by removing the baseline
present in the data with a two-dimensional P-splines approach, hereby removing
most of the non-specific fluorescence signal. The results obtained with SPIDER after
this correction show that the artifacts are removed and an increased spatial resolution
is obtained.

To restore the key assumption for SOFI, two methods to pre-process the data were
investigated. The first method is a PCA-based filtering approach, while the second
method is a pixel-wise Whittaker smoothing. The corrected data show improvements
already (mainly due to contrast enhancement), but the 2nd order SOFI analysis
showed further improvement in contrast and suppresses the background, leading to
apparent better results. However, the two pre-processing methods presented in this
thesis should be further investigated to be able to conclude on the advantages of each
method.

58



Chapter 4

Sparse image deconvolution and
reconstruction

Chapter 4 is based on and published as:

S. Hugelier, J. de Rooi, R. Bernex, S. Duwé, O. Devos, M. Sliwa, P. Dedecker,
P. Eilers, C. Ruckebusch. Sparse deconvolution of high-density super-resolution
images. Sci. Reports. 6, 21413 – 21423 (2016).

S. Hugelier, P. Eilers, O. Devos, C. Ruckebusch. Improved super-resolution mi-
croscopy imaging by sparse deconvolution with an inter-frame penalty. J. Chemom.
31, e2847 (2017).

4.1 Proof of concept
Sparse image deconvolution and reconstruction is a super-resolution method that
considers each frame of the data cube independently. The super-resolved original
image is put on a sub-pixel grid finer than the pixelated observed image. The problem
is then as explained in Section 1.4.1. To find a solution to this ill-conditioned inverse
problem, an assumption of sparsity is imposed on the latent original image as the
number of active fluorophores per frame is limited. This reflects the prior knowledge
that the specimen is labeled with discrete fluorophores and the local density should
be zero everywhere, except at the positions of the fluorophores. Merging the results
obtained for each high-density frame gives the final super-resolution image.

The state-of-the-art high density methods previously discussed in section 2.2.1 are
based on an L1-norm penalty to provide sparseness in the result. This penalty
imposes a restriction on the sum of the absolute values of the elements in the
vector containing the positions of the emitters of the latent original image [71,
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149], i.e. the emitter brightness. However, the L1-norm penalty does not strictly
translate the real properties of the single-molecule fluorescence signals. A much
more relevant approach is to impose a penalty on the total number of fluorophores
per image, whatever their intensity is. This can be achieved with the L0-norm
penalty. Using this penalty matches the properties of the signals emitted by point-
like fluorophores better and it produces better quantitative results when estimating
the emitter density. This is shown in Figure 4.1. The simulated image contains
20 emitters (Figure 4.1a). The solutions shown in Figure 4.1b (L1-norm penalty
in a least squares regression framework) and in Figure 4.1c (L0-norm penalty in a
least squares regression framework) represent the sparsest solutions that allow a full
reconstruction of the simulated image (i.e. a true positive rate of 100 %). The two
approaches reproduce the simulated image equally well, but a much sparser solution
is obtained with an L0-norm penalty (66 found emitters for the L1-norm penalized
solution versus 21 for the L0-norm penalized solution). Additionally, the individual
emitters in Figure 4.1c are found with a good estimation of the intensity, while for the
L1-norm sparsity solution, the intensity of the individual emitters is underestimated.
This example emphasizes that minimizing an L1-norm in a regression context distorts
resolution. It induces shrinkage of the magnitude of the active coefficients, to which
stray emitters get associated. On the other hand, the intensity of the individual
emitters recovered by using an L0-norm penalty is in agreement with the ones of the
simulation.

FIGURE 4.1: Comparison between sparsity with L1-norm and L0-norm in penalized
least squares regression. Fluorophore positions and intensities are indicated by the
vertical lines; (a) Simulated image consisting of 20 overlapping emitters, correspond-
ing to a density of 1.25 µm−2; (b) Image reconstruction based on an L1-norm penalty
and (c) based on an L0-norm penalty.
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4.2 SPIDER: the algorithm
This section provides details about the framework and how a spatial L0-norm penalty
can be applied in combination with the implementation of a time mode penalty that
ensures continuity of the pixel signal over consecutive frames. Some words are also
said about the tuning of the penalty parameters.

4.2.1 Penalized deconvolution with L0-norm
Spatial sparsity with an L0-norm has been extensively explained in Section 1.3.1 and
will therefore not be repeated here. We start from

min(‖y−Cx‖2 +λxTW̃x+κxTVx) , (4.1)

and its solution

x̂ = (CTC+λW̃+κV)−1CTy . (4.2)

y is the vectorized observed image, C represents the PSF, x is the vectorized original
image and x̂ its approximation, λ the penalty parameter for spatial sparsity, W̃ is a
diagonal matrix containing the weights and is as in Equation 1.21, κ is the penalty
parameter for non-negativity and V is as in Equation 4.3.

V = diag(v1, . . . ,vn) , such that v j =

{
1 if x j > 0
0 otherwise

. (4.3)

This last penalty is added because the physical background dictates that the intensities
of the emitters are non-negative. So all non-zero elements of x̂ should be positive.
Please note that κ is the penalty parameter for the non-negativity penalty.

4.2.2 Interframe penalty
The penalized deconvolution delivers a sparse latent vector x̂t for frame t. The non-
zero elements of x̂t represent the intensity of the emitters. Unfortunately, because of
noise in the observations, the positions that correspond to one emitter can slightly
change from one frame to the other. The shift can be of the order of several sub-
pixels in the super-resolution context in any direction. As a result, time series of the
estimated intensities of sub-pixels in a region close to an emitter show haphazard
variation. Ideally, only one sub-pixel, at the position of the emitter, should show
non-zero intensities, switching on and off during multiple frames.

Work by Rippe et al. [150] has shown that an L0-norm penalty on differences of a
fitted series can be quite successful in getting step-like signals. Suppose a time series
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u (1 x m) that we want to approximate by a piecewise-constant series z. This can be
achieved by minimizing

S =
m

∑
s=1

(us− zs)
2 +

m

∑
s=2

λ |zs− zs−1|0 . (4.4)

The second term is a penalty that aims at minimizing the number of jumps in z, while
the first term strives for a good fit of z to u.

In essence, this inter-frame penalty should be applied to each sub-pixel, in addition to
the penalties for sparseness and positivity. But that would lead to a huge estimation
problem in which all sub-pixels for all frames are involved. With hundreds of
thousands of variables, this is too large to handle, so an approximate algorithm was
applied. Consider frame t. An average of the frames from t−K to t+K is computed,
with K a small number, say 1 to 4. Let ȳt be the average observed image and x̄t the
latent original average image obtained by deconvolution as in Equation 4.1. For
frame t the following penalty is added

d(x.t) = γ ∑
j
[ I(x jt 6= 0) − I( x̄ jt 6= 0) ]2 . (4.5)

It discourages, for each pixel, changes relative to the fit to the average of the running
window centered at t. It is a crude heuristic device, but in practice it leads to marked
improvements, if the parameter γ is tuned well.

As a summary, the algorithm for each image at time t can be written as

min(‖yt−Cxt‖2 +λxT
t W̃txt +κxT

t Vtxt + γd2
t ) , (4.6)

in which W̃t and Vt are the same as in Equations 1.21 and 4.3, respectively, and
where dt = [d1t , . . . ,dnt ]

T, such that d.t = I(x jt 6= 0) − I( x̄ jt 6= 0) .

4.2.3 Penalty parameters for SPIDER
The penalty parameters – λ , κ and γ – in Equation 4.6 are the weights used to
balance the trade-off between the least squared fitting term and the different penalty
terms; the larger a weight is, the more important the term corresponding to that
penalty parameter will be in the entire loss function. Practically speaking, one of the
parameters, the weight κ that imposes non-negativity of the solution, can be ignored
as it is introduced in a hard way. κ is set to a high value (i.e. 106) and should not be
changed during the analysis. However, the weights of the sparseness and inter-frame
penalties terms, λ and γ respectively, have to be chosen, which can be done relatively
independently from one another. In a first step, the analysis is performed for γ = 0.
Doing so removes this term from the loss function. The λ value applied is that one
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for which the best global results are obtained (by visual inspection). It might not
always be optimal for every frame independently, but it will be for the majority of
the image frames as the total signal of each frame is comparable when working at
high density of fluorophores. In the next step, the λ value found in step 1 is being
kept constant and the value for γ is chosen. To get an idea of the number of frames
to consider in the penalty (i.e. K), one could determine the blinking characteristics
of the emitter, which depend on the photochemical nature of this emitter [111]. The
range of the two penalty parameters is within 10−8−108, depending on the signal
treated, but it should be noted that when dealing with multiple penalties, there might
be a difference of several orders in their respective values due to the different nature
of the signals the penalties work on in the spatial and in the time mode.
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4.3 Benchmark on simulated data
In a first instance, it was investigated how SPIDER compares to the state-of-the-art
high density deconvolution methods based on an L1-norm, CSSTORM [124] and
FALCON [125] (see section 2.2.1 for more information). To do so, images were
simulated (in 50-fold) with a density ranging from 0.5 – 15 µm−2. This allowed
comparing the position of the fluorophores obtained with the three methods with the
known true position of the fluorophores. However, FALCON provides the positions
in a continuous space while SPIDER and CSSTORM do this on a super-resolution
grid (the pixel size of this grid used in the comparison corresponds to 33 nm). For
more information on the evaluation approach, see the Methods section and Figure
SI1 of reference [78]. In brief, four evaluation parameters are provided: recall (i.e.
true positive rate), accuracy, false positives and sparsity of the solution (i.e. the
ratio of the number of detected fluorophores to the number of true fluorophores).
The results are shown in Figure 4.2. At the lower densities, there is no significant
difference (significance threshold at 0.05) between the different methods. A possible
explanation why high-density deconvolution methods do not work as efficiently
as single-molecule localization techniques such as PALM or STORM is because
these techniques analyze an entire image (or sub-image) at once, and do not isolate
single molecules to estimate their positions. If it happens that the emitters are of
low intensity compared to the background intensity and / or noise, they will be
lost. This also explains why there even is a small increase in recall rate between
densities 0.5 – 2 µm−2; not detecting a fluorescent probe at a density of 0.5 µm−2 has
a bigger impact on the recall rate than at a density of 2 µm−2. For image densities
larger than 6 µm−2, SPIDER outperforms both CSSTORM and FALCON in terms
of recall rate and accuracy. Additionally, less false positive detections are obtained.
Moreover, whereas CSSTORM has dense results (as in: many emitters are found
to describe the signal obtained for one true fluorophore), FALCON provides results
that are too sparse at high-density, leading to a lower recall rate by default. However,
despite these before mentioned disadvantages of CSSTORM and FALCON, it has
to be clarified that using either of the methods contribute to correctly restoring the
super-resolution image at high densities (see reference [78]).
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4.3. Benchmark on simulated data

FIGURE 4.2: Performance benchmark of SPIDER showing the figures of merit for
CSSSTORM (red), FALCON (blue) and SPIDER (black). In (a) the recall rate (or
true positive rate); in (b) the accuracy; in (c) the false positives and in (d) the sparsity
of the solution (i.e. the ratio of the number of detected fluorophores to the number of
true fluorophores).

The robustness of the SPIDER algorithm is demonstrated in Figure 4.3 on a random
distribution of fluorophores with density 15 µm−2 and in Figure 4.4 on a series
of three juxtaposed circles (diameter 400, 600 and 800 nm) containing emitters
positioned 20 nm from one another. It should be clear from the first series of images
in Figure 4.3 that the image obtained with SPIDER provides a more quantitative and
unbiased interpretation, compared to CSSTORM and FALCON. For CSSTORM,
the image is too dense (and falsely suggests a structure to be present), whereas for
FALCON, the result is too sparse (with a loss of information as a result). The second
series of images (Figure 4.4) shows that SPIDER allows the reliable recovery of
the entire structure, similar to what is obtained by FALCON. On the other hand,
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CSSTORM introduces spatial distortion in the emitter positions and estimation of
the circle diameters. Overall seen, only SPIDER works well under the two regimes
evaluated here.

FIGURE 4.3: Robustness of SPIDER on a random distribution of fluorophores
(15 µm−2 density). We report in (a) the raw data and the results obtained with (b)
CSSTORM; (c) FALCON and (d) SPIDER. The true positions of the fluorophores
are indicated with the red stars, while the positions found by the respective methods
are indicated with the black dots.
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FIGURE 4.4: Results obtained for a series of three juxtaposed circles. We report in
(a) the average image over 300 frames and the results obtained by (b) CSSTORM;
(c) FALCON and (d) SPIDER.
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4.4 Experimental live-cell data
Lastly, SPIDER is validated on a live-cell image of mitochondria in a HEK293-T
cell labeled with DAKAP-Dronpa. The results are shown in Figure 4.5. These results
correspond to a super-resolution grid with a pixel size of 25 nm (original pixel size
is 100 nm) and show dramatic improvement in resolution compared to the mean
image of the wide-field data (Figure 4.5b shows the zoomed region, indicated by
the box in Figure 4.5a). The zoomed region illustrates that hollow structures can be
resolved, whereas in the wide-field image, this is hardly visible. This morphology
is plausible given the fact that the construct used here incorporates a targeting
motif from DAKAP-1 [112], which targets the outer membrane of the mitochondria.
However, the data were obtained with protein labels expressed at very high levels,
which may impair biological function.

FIGURE 4.5: Mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa
visualized in Epi-illumination mode. (a) Average live-cell image and SPIDER re-
construction of the hollow mitochondria structures (averaging of density estimations
over 1,000 frames); (b) Average live-cell image and SPIDER reconstruction (averag-
ing of density estimations over 1,000 frames) of the region indicated by the box in
(a).
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Additionally, careful analysis of Figure 4.5b reveals that the mitochondrial membrane
appears quite blurry and thickened. To explain this, Figure 4.6 shows that averaging
the results obtained over all the frames leads to a loss of resolution. It also reveals
that the blurred and thickened view of the membrane is actually due to a movement
of the cell along the acquisition as the center of the membrane changes along the
profiles of the different snapshots (3 s time sampling). This is typical behavior for
dynamic imaging of live cells when the sample moves over a distance larger than the
spatial resolution during data acquisition.

FIGURE 4.6: Fast super-resolution with SPIDER for mitochondria in a HEK293-T
cell labeled with DAKAP-Dronpa (region indicated by the box in Figure 4.5a). In
(a) the images obtained averaging over 1,000 frames (blue) and different snapshots
at times 3 s (red), 10 s (green), 20 s (cyan) and 30 s (yellow) with a time sampling of
3 s are shown in the maps and in (b) the profiles corresponding to the lines marked
in the images of (a).

Figure 4.6 shows that using SPIDER not only allows following typical changes
observed for live-cell imaging, leading to the investigation of faster dynamics, but
it also brings an enhancement of the spatial signal. This shows the potency and
compatibility of SPIDER with fast super-resolution experiments, and high-fidelity
super-resolution images with a time sampling down to 0.5 s can be reconstructed [78].

69



4. SPARSE IMAGE DECONVOLUTION AND RECONSTRUCTION

4.5 Concluding remarks
A new image deconvolution method (SPIDER) with multiple penalties was pro-
posed that directly translate the properties of the latent system that produced the
spatio-temporal data. This system is a spatial structure resulting from a distribu-
tion of point-like emitters whose signal changes over time according to a two-state
“on-off” pattern. The method provides more ‘quantitative’ images, with reduced
bias, better recall rate and higher accuracy than previous state-of-the-art methods
(i.e. CSSTORM and FALCON). Overall, SPIDER works over a broad range of
high-density images and allows detailed studies of dynamic cellular processes. It
can be used to analyze high-density super-resolution data for fast imaging when in-
vestigating highly dynamic structural and morphological changes that mitochondria
and other membrane organelles undergo to accommodate the continuous processes
occurring in live cells.
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Part 2
Unmixing hyperspectral images

The second part of this thesis is concerned with the unmixing of hyperspectral
imaging data into its individual contributions. In this thesis, MCR-ALS, based on
the bilinear Beer-Lambert law, is used to achieve this. However, the traditional
MCR-ALS framework is not adapted to add spatial information as a constraint to the
analysis. We therefore propose to add a new step, in which the concentration profiles
are refolded / unfolded at each iteration, so that spatial information can be used as
a constraint during the analysis. This allows for any image processing technique to
be implemented in the MCR-ALS analysis. The framework is called hyperspectral
imaging – multivariate curve resolution – alternating least squares (HSI-MCR-ALS).
Several constraints have been implemented and tested on experimental data.





Chapter 5

Hyperspectral image analysis

5.1 Introduction
Three sub-areas can be differentiated in the field of image processing [108]. The first
one is image pre-processing, which is used to improve for example the visual quality
of the image, the second one is image compression and it removes the redundancies
present in the images to improve memory requirements, and the last one is image
analysis that uses the image characteristics for classification [151, 152], defect
detection [153, 154], etc. In the early days of image analysis, there were only single
channel images available, and thus the focus lied mainly on finding the different
kind of objects present in the images and providing a good description of these
features. For this reason, many algorithms related to spatial properties are available,
e.g. segmentation algorithms [155–157], recognizing texture [158, 159], etc. When
red-green-blue imaging and hyperspectral imaging were introduced, characterization
of the images could be further improved, as the number of channels containing
information increased. For the latter, the differences in the analyzed surface of
the sample do not only tell about texture or color, but it also reveals information
about the chemical composition of the sample. However, this increasing amount
of information needs to be analyzed with the proper tools to extract interpretable
knowledge. This led to the development of multivariate unmixing methods that
aim at providing the pure spectra and component distribution maps of the image
constituents from the raw (or pre-processed) data.
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5.2 Pre-processing hyperspectral images
Within this thesis, the hyperspectral images are obtained by means of spectroscopic
instruments (such as Raman or infrared spectroscopy). These data are affected by
noise, or have a baseline contribution. It is therefore important to properly pre-
process the data before using any unmixing method, as it can improve the results
considerably (e.g. the noise or baseline will not influence the modeling of the
data) [160]. On the other hand, if the data are pre-processed incorrectly, the model
could be more inaccurate than when the original raw data is used [161].

5.2.1 Improving SNR
Many methods exist to improve the SNR of spectroscopic data, and these can
also be used in a hyperspectral image, on the spectrum under the pixels. A well-
known approach to enhance the SNR, and thus denoise the data, is using a signal
enhancement technique such as smoothing. Common approaches to smooth the
data are digital filtering approaches that remove the undesired frequencies from the
signal and leave the frequency region containing the relevant information untouched
[162]. Examples are the moving average filter [163], Savitsky-Golay [164], or
Whittaker smoothing [83, 84]. However, one should be aware that e.g. smoothing
data can induce correlations between adjacent data points. Another approach is to
perform PCA and to reconstruct the data set taking only the model with the relevant
components [165].

5.2.2 Baseline correction
Dealing with spectroscopic measurements, several effects can influence the data
acquisition. The typical baseline correction methods are based on linear models
or on complex mathematical functions [166, 167]. However, for some application,
different methods should be employed that are more flexible. For example, in Raman
spectroscopy, the baseline is more complex due to the fluorescence contributions.
For this type of baseline, that is of significantly lower frequency than the signal of
interest, asymmetric least squares [168] can be used. This method is a weighted
form of the Whittaker smoother, as explained in Section 1.3.2. Additionally, the
previously mentioned Savitsky-Golay method is also capable of removing a baseline,
by deriving the polynomial function obtained. It can remove for example an additive
baseline (first derivative) or a baseline drift (second derivative).

5.2.3 Anomalous data correction
Instrumental artifacts can lead to unexpected spectral readings (e.g. spikes in Raman
spectroscopy) or the spectrum can be completely abnormal (e.g. dead pixels). These
artifacts can distort the result obtained in the hyperspectral image analysis and have
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to be corrected. Spikes can be corrected by interpolating the neighboring spectral
channels (that have normal readings) and replacing the values of the abnormal
channels. For dead pixels, a similar approach is used, but by interpolating spectra of
neighboring pixels [169].

5.2.4 Other pre-processing
Besides the before mentioned correction methods, it is sometimes necessary to use
different approaches. A spectral region of interest (ROI) can for example be selected.
This ROI contains the spectral signatures of the samples of interest to improve
the analysis. At other times, it can be necessary to perform a spectral alignment
treatment (e.g. by means of correlation optimized warping [170] or parametric time
warping [168]). And lastly, when dealing with data in which the components have a
similar spectra, it can be useful to use derivative spectra so that subtle differences
in the spectral features are enhanced. However, one should be aware this is a
non-exhaustive list of techniques, and other pre-processing techniques exist.
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5.3 Unmixing hyperspectral images
The unmixing of hyperspectral imaging data is performed by using MCR-ALS
within this thesis. Besides MCR-ALS, there exist also other techniques for unmixing.
Non-negative matrix factorization (NMF) is a technique commonly used, and in
the field of remote sensing, spectral unmixing based on the linear mixed model is a
popular technique.

5.3.1 Non-negative matrix factorization
Non-negative matrix factorization [171] is a factorization technique, such as PCA.
It can be used in cases where the data matrix does not contain negative values and
decomposes it into two matrices of non-negative elements, the basis matrix W and the
coefficient matrix H. This non-negativity constraint is the main difference between
NMF and PCA as there is no orthogonality anymore between the components.
However, using it makes the NMF model more intuitive and consistent with the
chemical applications. Moreover, the method is, just as PCA, applicable on chemical
images [172, 173]. The hyperspectral image (data cube) is first unfolded into a
two-dimensional matrix Y (m x n), in which the n columns (i.e. one column for each
wavelength) contain the m pixels of the image. An approximate factorization can
then be written as

Y≈WH , (5.1)

in which W is the basis matrix, of which the columns are called basis images and H
is the coefficient matrix. Through matrix multiplication, the columns of Y, i.e. yi,
can be written as

yi ≈Whi , (5.2)

meaning that the column vectors of Y are linear combinations of the column vectors
in W using the coefficients in the columns of H. A property of matrix multiplication
is that the dimensions of the factor matrices [i.e. W (m x p) and H (p x n)] can be
significantly lower than the original matrix (i.e. Y) and thus we have a dimensionality
reduction (p� m and p� n).

The aim of the method is to represent the image by the additive combination of a
set of non-negative basis images and it is achieved by minimizing the following loss
function

min
W,H

(‖Y−WH‖2) subject to W≥ 0 , H≥ 0 . (5.3)
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To support this further, additional penalties can be added to the method, such as
the use of sparsity for the basis vectors and coefficient vectors by the LASSO
penalty [174]. However, an important aspect is the spatial location of the pixels in
the original image, and this can also be included as a prior to the analysis, by for
example saying that pixels adjacent in the original image should not be dispersed
in the basis images [175]. The goal is to find a low rank basis matrix W in which
each column (i.e. the basis image wi) describes a spatially localized part of the
original image. This is done by measuring the dispersion degree of non-zero pixels
in each basis image wi. The larger this degree of dispersion, the more dispersive
the non-zero pixels are, meaning that when two pixels are adjacent in the original
image, they should both be in the same local areas of basis images [175, 176]. Other
spatially constrained NMF methods also exist [176, 177].

5.3.2 Spectral unmixing
Spectral unmixing is a technique commonly used in the remote sensing area. It is
assumed that within a given scene (i.e. data set), there is only a small number of
distinct materials present and they have relatively constant spectral properties. These
distinct substances (e.g. water, road, vegetation, etc.) are called endmembers, and the
fractions in which they appear in a mixed pixel are called the fractional abundances.
The goal is to find these endmembers (i.e. spectra) and their fractional abundance
in the image (i.e. the component distribution maps) [178]. The strategy of spectral
unmixing is shown in Figure 5.1 and consists of three different steps: dimension
reduction, endmember selection and inversion to obtain the fractional abundance of
the different endmembers in the image.

FIGURE 5.1: Schematic representation of spectral unmixing. The figure was adapted
from [178].
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Dimension reduction

Hyperspectral images contain a lot of variables, and thus, a dimensionality reduction
is often performed, which transforms this high-dimensional data set into one that
is less computationally demanding. However, one should be aware that this step is
optional. The dimensionality reduction is divided into ‘feature selection’ and ‘feature
extraction’ techniques. Feature selection algorithms [179, 180] perform a search
through the space of the feature subsets and look for a selection of a sub-optimal
subset of the original set of features. Feature extraction techniques retain most of the
informative data while discarding the rest (e.g. noise) and they provide potential SNR
improvements [181]. A common method to do so is PCA, as described in Appendix
E. An additional advantage is that it offers the understanding of the relationship
among the variables. Another method often used is the minimum noise fraction [182].
It consists of two separate PCA rotations and a noise whitening step. In this last step,
the noise covariance matrix is used to decorrelate and rescale the noise so that it has
unit variance and no band-to-band correlation.

Endmember selection

In this step, a set of endmembers is estimated that can explain the mixed pixels in the
data. The difference has to be made between data in which pure pixels can be found
and data that do not contain any pixels with pure signatures, which is of course the
most common scenario. In the former situation, the purest data points can be used
as endmembers, whereas in the latter situation, virtual endmembers are generated.
However, one should be aware that it is often assumed, even if it is not completely
valid, that the data contain pure pixels, to facilitate the analysis.

To find the purest data points, there exist two classes of algorithms, depending on
whether the endmembers are all estimated simultaneously, or sequentially [181,183].
The methods that use a simultaneous estimation of the endmembers come with a
high computational cost, and the two best-known algorithms are pixel purity index
(PPI) [184] and N-FINDR [185]. In PPI (Figure 5.2a), random unit vectors are
generated and the data is projected (by means of orthogonal projection) onto these
vectors. Then it is evaluated by looking for data points at the extremities of these
projections. The more often a data point is at an extremity of these random vectors,
the higher the purity index (i.e. N) of that data point will be, and thus the more
likely it is to be an endmember. However, to be effective, a high number of random
vectors is needed and thus computational costs will be high [183]. On the other
hand, instead of using random projections, N-FINDR searches for the largest simplex
constrained to be a subset of the data in an iterative way. At first, a random starting
set of endmember candidates are selected between the data points. After, each
data pixel is inspected and if the spectrum under this pixel provides an increase
in the simplex volume, then it replaces the current endmember candidate. This
is done until no replacements are found anymore. Two algorithms that select the
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endmembers in a sequential way are vertex component analysis [186] and simplex
growing algorithm [187].The first technique can be considered as a sequential version
of PPI, but has as advantage that the computational costs are heavily reduced. The
technique uses the previously discovered endmembers as spanning vectors for the
subspace. The data point at the extreme of this projection is then added as the next
endmember. The simplex growing algorithm (Figure 5.2b) first selects one random
initial endmember within the data. The simplex is then grown by adding the next
data points in such a way that the highest simplex volume is obtained. Both methods
stop when the desired number of endmembers is found.

FIGURE 5.2: Schematic representation of (a) the pixel purity index technique (N is
the purity index) with two random vectors and (b) the simplex growing algorithm,
where the distance (for two endmembers) or simplex volume (for more than two
endmembers) is maximized. The figure was adapted from [181].

In data where no pure signatures can be found, one usually resorts to minimum
volume-based algorithms that have different implementation options. An exam-
ple of a minimum volume-based algorithm is the iterated constrained endmembers
(ICE) [188] algorithm where a regularized residual sum of squares (RSS) is min-
imized, based on the convex geometry model (i.e. every pixel in the data is a
linear combination of the endmembers of the data). The model (with the traditional
notation) is as

RSS =
N

∑
i=1

M

∑
k=1

(Xi− pikEk)
T(Xi− pikEk) , (5.4)
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subject to

M

∑
k=1

pik = 1 , pik ≥ 0 , (5.5)

where X is the hyperspectral image data, N the number of pixels in the image, M the
number of endmembers, pik the proportion of endmember k for pixel i and Ek the
kth endmember. An advantage of this method is that additional terms can be added
to the objective function to promote different properties (e.g. sparsity to allow the
selection of appropriate number of endmembers [189]).

With spectral-based endmember extraction techniques, endmembers with a high
spectral contrast (i.e. the spectra with the most distinct spectral features) are detected
in an easy way, but problems arise when this is not the case [190, 191]. It is possible
that endmembers with a low spectral contrast with respect to the entire image
have a high local spectral contrast. A method that uses the local spectral contrast
of the endmembers is the spatial-spectral endmember extraction [190] algorithm.
The spatial information is included in the algorithm by using a sliding window of
fixed size to compare each candidate endmember pixel to all other pixels within
the window. Another more advanced algorithm is the automated morphological
endmember extraction [192] method, which makes a simultaneous use of spatial and
spectral information via multi-channel morphological processing. It searches the
spatial neighborhood around each pixel in the image for the most spectrally pure and
most highly mixed pixel. To do so, multichannel dilation and erosion operators are
respectively applied to the data [183, 192] and an ‘eccentricity’ value is assigned to
each pixel (i.e. the spectral angle distance between the most spectrally pure and most
highly mixed pixel for a given spatial neighborhood). The final set of endmembers
is then obtained by applying a threshold to the resulting ‘eccentricity’ image [190].

Inversion

The final step of the spectral unmixing process is to estimate the fractional abun-
dance maps. Some algorithms take this step already into account (such as the ICE
algorithm) and thus it does not have to be performed for those methods. For those
that need it, the linear mixed model is assumed. The problem is estimated pixel-wise
and is as

min f (pj) = xT
j xj−2xT

j ejpj +pT
j eT

j ejpj , (5.6)

where pj (M x 1) is the abundance column vector for pixel j ( j = 1, . . . ,N) for the
M number of endmembers, xj (K x 1) vector of the spectrum under the pixel with
K channels and ej (K x M) the matrix of endmembers. For more details about the
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computation, we refer to an algorithm called fully constrained least squares linear
unmixing [193].

5.3.3 Multivariate curve resolution – alternating least squares
The technique applied throughout this thesis was described in Section 1.4.2. However,
for the analysis of hyperspectral images, very few constraints are available for the
component distribution maps, and if they are, they work on a local level (i.e. per
pixel), and not on a global level. This will be the basis of the next chapter, in which
we show our proposal to make an evolution to the current MCR-ALS framework so
that image processing techniques can be added to the constraint palette.
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Chapter 6

Constraining spatial information in
MCR-ALS

Chapter 6 is based on:

S. Hugelier, O. Devos, C. Ruckebusch. Constraining shape smoothness in mul-
tivariate curve resolution-alternating least squares. J. Chemom. 29, 448 – 456
(2015).

S. Hugelier, O. Devos, C. Ruckebusch. On the implementation of spatial constraints
in multivariate curve resolution alternating least squares for hyperspectral image
analysis. J. Chemom. 29, 557 – 561 (2015).

S. Hugelier, O. Devos, C. Ruckebusch. A smoothness constraint in multivariate curve
resolution - alternating least squares of spectroscopy data. In: Data Handling in
Science and Technology, Volume 30. 1st edition, Elsevier, ISBN: 978-0-444-63638-6
(2016).

S. Hugelier, S. Piqueras, C. Bedia, A. de Juan, C. Ruckebusch. Application of a
sparseness constraint in multivariate curve resolution - alternating least squares. Anal.
Chim. Acta. 1000, 100 – 108 (2018).

S. Hugelier, R. Vitale, C. Ruckebusch. Edge-preserving image smoothing con-
straints in MCR-ALS of hyperspectral data. Appl. Spectrosc. (2018). Doi:
10.1177/0003702817735598.

6.1 Introduction

Hyperspectral imaging is an important analytical tool for the investigation and
characterization of a wide variety of samples in many fields, such as in forensics
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[7, 9, 194], remote sensing [195, 196], microscopy [197, 198], etc. The classical
approach to analyze this type of data is to consider it as a series of spatially resolved
spectra, to which chemometrics methods developed for non-imaging data can be
applied, but they are rarely approached as a series of spectrally resolved images [199].
As explained in Section 1.4.2, the bilinear model of MCR-ALS (see also Equation
6.1) holds for the pixels of the hyperspectral image, but requires an unfolding of the
three-dimensional data cube (two spatial dimensions and a spectral dimension) to a
two-way matrix (see Figure 6.1).

D = CST +E , (6.1)

where D is the two-way mixture data matrix, the matrices C and ST contain, respec-
tively, the concentration profiles and the pure spectra of the k different contributions
of the data mixture and E expresses the error contribution.

Constraining ST is not a problem, as there is no influence in its structure by the un-
folding step, and thus constraints such as non-negativity, unimodality (e.g. chromato-
graphic data), etc. can still be used. However, there is a loss of pixel-neighborhood
information and spatial structure in the data, as a result of this two-way arrangement
(see red pixels indicated in Figure 6.1). Consequently, there are not many constraints
for hyperspectral images. And thus, given the tremendous importance of constraints
in MCR-ALS to limit the extent of rotational ambiguities [105] (see also Section
1.4.2), the design of spatial constraints and the adaptation of algorithms aimed for
the reliable and robust resolution of hyperspectral images remains a topical and
challenging issue [104, 200–202].
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FIGURE 6.1: The unfolding of the three-dimensional hyperspectral image into a
two-way matrix results in the loss of the pixel-neighborhood information and spatial
structure as indicated by the highlighted pixels.
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6.2 HSI-MCR-ALS
To understand the importance of spatial constraints, we have to look at the spatial
features of images, which can be divided into two different categories (see Figure 6.2).
In the first category are the features that are related to spectral properties, such as
color. These features do not depend on the neighboring pixels, and thus the use of
the framework as depicted in Figure 6.1 is reasonable. The information can be used
to constrain individual pixels and, thus, they deal with the local complexity of the
sample. An example can be found in the well-known local rank constraint [109,203].
In this constraint, an algorithm called fixed size image window – evolving factor
analysis scans all the pixel areas of the sample in a local way and performs singular
values decomposition analyses. The information obtained by this is related to the
local complexity of the image (e.g. rank, purity), and is then used in the MCR-ALS
analysis as a constraint.

FIGURE 6.2: The two categories of spatial image features leading to different types
of constraints. The features related to spectral properties can be constrained within
individual pixels, while spatial properties are pixel area constraints.

In the second category of spatial features, we find the ones that are related to spatial
features, rather than spectral ones. We can take as example the size of an object, or its
shape or texture. This type of information is related to recognizing a clear structure
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or pattern and is a feature of pixel areas, rather than individual pixels. However,
in the traditional MCR-ALS framework, the pixel-neighborhood is lost, and thus
this information is not readily available. We therefore propose an evolution of the
current MCR-ALS framework for the analysis of hyperspectral imaging data that
enables any variation of spatial constraint to be applied on the component distribution
maps. Potentially, spatial constraints based on image processing approaches (e.g.,
segmentation, smoothing, or spatial filtering) or image modeling techniques (e.g.,
spatial model fitting, super-resolution, or deconvolution) could be applied.

FIGURE 6.3: Schematic representation of the HSI-MCR-ALS framework (with
two components). The component distribution maps are recovered at each step of
the ALS optimization, allowing the application of many different types of image
processing and modeling techniques as spatial constraints.

In Figure 6.3, we show our alternative approach that enables the implementation of
spatial constraints in MCR-ALS and named it hyperspectral imaging – multivariate
curve resolution – alternating least squares (HSI-MCR-ALS) [204]. The algorithm
consists mainly of restoring the spatial information at each least squares step of the
ALS optimization. This can be achieved refolding, individually, the columns of
the concentration matrix C into the corresponding component distribution map on
which any kind of spatial data processing can be applied as a constraint. Once the
constrained component distribution map, Ĉ, is obtained, it is unfolded again into a
column vector that replaces the original one in the concentration matrix C, similar
to a traditional constraint, to continue with the ALS procedure. As the columns of
the concentration matrix are treated individually, the constraints can be applied on
individual or multiple components within the same MCR-ALS analysis. Moreover,
the spatial constraints can be combined with any other constraints that are commonly
applied for hyperspectral imaging data, such as non-negativity.
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6.3 Application on simulated data
To show the interest of expanding the pool of constraints for hyperspectral images,
we refer to the seemingly easy two-component simulation shown in Figure 6.4 (60
pixels x 60 pixels x 400 channels). This simulation contains a low frequency spatial
signal (Gaussian-shaped object) that is centered in the middle of the image, and
a high-frequency spatial signal consisting of several small-sized objects scattered
across the image. The spectral profiles are relatively simple (two bands with two
Gaussian peaks that partially overlap). Homoscedastic noise (1.5 % of the maximum
amplitude of the data) was added, corresponding to a theoretical LOF of 9.80%.

FIGURE 6.4: Simulation of a two-component system. In (a) the sum of the compo-
nent distribution maps [one low frequency (component 1) and one high frequency
spatial signal (component 2)] and in (b) the spectra associated to these components.

Initially, MCR-ALS was performed (initial estimates of pure spectra were obtained
by a SIMPLISMA-based method [205]) with traditional constraints (non-negativity
constraint on both C and ST) to limit the solutions into the ones that are chemically
acceptable. The results of this initial analysis are compared to the true pure profiles
(Figure 6.5a), and it can be concluded that it gives an incomplete resolution of
the data (Figure 6.5b; LOF: 9.77 %). The component distribution map of the low
frequency component cannot be fully recovered by this MCR-ALS analysis. This is
also reflected in the incomplete resolution of the spectral profile of the high frequency
component, where a shoulder is clearly visible. This can be explained because the
criteria of Manne’s theory [206] for the resolution of chemical mixtures are not met.
In fact, the image contains regions with rank 1 or 2. The pixels where the rank is
1 are all those in which the high-frequency component is absent. From the second
theorem of Manne, it follows that the pure spectrum of the low-frequency component
can then be readily obtained. On the other hand, there are no pixels in which the
high-frequency component can be observed selectively (it is only present in pixels
with rank 2) and thus the concentration profile of the low-frequency component
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cannot be obtained (first theorem of Manne). This is a typical situation in which
adding spatial information about some global features of the shape of the object(s) in
the image could help improving the resolution of the data, as shown in the following
paragraphs.

FIGURE 6.5: Results obtained by MCR-ALS for a simulated two-component system.
In (a) Simulated component distribution maps and spectra; (b) MCR-ALS results
using non-negativity (LOF: 9.77 %); (c) HSI-MCR-ALS results with non-negativity
and segmentation on component 2 (LOF: 10.06 %); (d) HSI-MCR-ALS results
with non-negativity and spatial smoothness on component 1 (parameters: nspline
= 13, λ1 / λ2 = 0.01 and p = 0.01; LOF: 9.85 %) and (e) HSI-MCR-ALS results
with non-negativity and hard-modeling of component 1 (fitting parameters A = 0.80,
xcenter = 30.00, σx = 9.99, ycenter = 30.00 and σy = 9.99; LOF: 9.79 %). Note that
the images are auto-scaled from blue to red.
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A first constraint used in HSI-MCR-ALS is a segmentation constraint on the compo-
nent distribution map of the second component (in combination with non-negativity).
This constraint puts a threshold on the component distribution maps using a varia-
tion of Otsu’s method [155, 207]. The algorithm performs clustering-based image
thresholding that keeps into consideration the immediate neighborhood. The result
is a binary image that can be encoded as a mask to be applied onto the component
distribution map(s). The results obtained are shown in Figure 6.5c (LOF: 10.06 %)
and were proven satisfactory as a full correspondence with the simulated data is
observed. However, the residuals show that the constraint cannot discriminate some
pixel signals from noise.

The second scenario is the one where spatial smoothness is added on the component
distribution map of the first component (i.e. the low frequency component). The
results as in Figure 6.5d are obtained (LOF: 9.85 %). This constraint deals with
the smoothness of the global spatial features of samples showing a continuous
distribution of some compounds in the image by using two-dimensional asymmetric
P-splines (see Section 1.3.2). These results show that the component distribution
maps and the spectral profiles can be fully recovered, with an LOF that corresponds
to that one of the simulated data. The spatial smoothness constraint resulted in a
smooth and structured profile shape of the component distribution map of the first
component, and separated the contributions of the higher frequency component from
this one. However, due to the low-frequency character of the shape approximated by
the constraint, some very high frequency details are attenuated (e.g., top of the bell
shape) and can be detected in the residuals.

The use of the HSI-MCR-ALS framework also allows for the implementation of
hard-modeling constraints in the spatial domain. A hard-modeling constraint corre-
sponding to a two-dimensional Gaussian shape, as described in Equation 6.2, was
added to the component distribution map of the first component.

f (x,y) = Ae
−( (x−xcenter)2

2σ2x
+

(y−ycenter)2

2σ2y
)

, (6.2)

As is shown in Figure 6.5e (LOF: 9.79 %), the applied constraint resolved the system
completely, providing another alternative application of a spatial constraint within
the same data. When the residuals are investigated, it can be seen that there is nothing
left but noise, and thus, a full resolution is obtained.
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6.4 Application on experimental data
The following sections will show some of the constraints that have been developed
within this thesis. A general description of the purpose of the constraint is given
each time and then it is applied on experimental data. The different constraints
presented here are: shape smoothness constraint [81,208], sparseness constraint [80]
and edge-preserving smoothing constraint [82].

6.4.1 Shape smoothness constraint
The shape smoothness constraint (SSC) [81, 208] aims at imposing smoothness
of the global spatial features of the component distribution maps. In other words,
large spatial patterns of the constrained component distribution map can be captured
whereas high-frequency signals, corresponding to fine structures, are ‘rejected’ to
other components or to the residuals. It is based on the two-dimensional P-splines
smoother as described in Section 1.3.2.

Raman hyperspectral image of an oil-in-water emulsion 1

The shape smoothness constraint is then applied to a Raman hyperspectral image of
an oil-in-water emulsion sample. The hyperspectral image is formed by 60 pixels x
60 pixels with 253 points in the spectral dimension and the spatial lateral resolution of
the image is 1 µm, which is typical for Raman imaging. Full details about the dataset
and the experimental setup can be found in reference [197]. The image describes
four different phases: a structural phase, two droplet phases and an aqueous phase,
of which the chemical composition was fully investigated elsewhere [197, 203]. The
aqueous phase, which is an all-encompassing phase, should correspond to a quite
continuous and smooth component distribution map (i.e. the intensity values are
expected to change in a gradual way in any direction). The results obtained with
MCR-ALS are provided in Figure 6.6 (component distribution maps) and Figure 6.7
(corresponding spectral profiles).
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FIGURE 6.6: Component distribution maps for the different components of the oil-
in-water emulsion sample. Multivariate curve resolution – alternating least squares
results obtained using (a) non-negativity (LOF: 7.76 %); (b) non-negativity and
local rank (LOF: 8.19 %); (c) non-negativity and SSC on the aqueous component
(parameters: nspline = 15, λ1 / λ2 = 0.1 and p = 0.75; LOF: 8.51 %); and (d)
non-negativity and shape smoothness constraint on droplet phase 2 (parameters:
nspline = 20, λ1 / λ2 = 0.001 and p = 0.1; LOF: 9.07 %). Note that the images are
auto-scaled from blue to red.
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When an MCR-ALS analysis with non-negativity constraints is performed (Fig-
ure 6.6a), it is clear that some contributions of other components are still present in
the aqueous phase. This can be seen by the fact that the regions where the oil droplets
and structural phase are present still show a significant contribution. However, when
local rank is added to the pool of constraints of the MCR-ALS analysis (Figure 6.6b),
this problem is mostly solved for the aqueous component. The resolution is improved
as the ‘structure’ of the object is more clearly defined on the component distribution
map of this component. Note that these results obtained can be compared to those
obtained in the work of de Juan et al. [203].

FIGURE 6.7: Comparison of the spectral profiles of the multivariate curve resolution
– alternating least squares (MCR-ALS) solutions for the emulsion-in-water sample.
(a) Structural phase, (b) droplet phase 1, (c) droplet phase 2, and (d) aqueous phase.
Black curve: MCR-ALS with non-negativity; blue curve: MCR-ALS with non-
negativity and local rank; red curve: MCR-ALS with non-negativity and SSC of
the aqueous phase; green curve: MCR-ALS with non-negativity and SSC of droplet
phase 2.

An alternative approach to the local rank constraint is the application of SSC to
the component distribution map of this aqueous phase (Figure 6.6c). Applying this
global constraint on the variation of the two-dimensional intensity distribution, one
can notice the similarity of the recovered component distribution maps with the ones
obtained when the local rank constraint is applied. When the component distribution
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maps of the other components are compared to one another, no significant difference
can be noticed. The same holds for the spectra of these components. No strict
decision can be taken on which constraint provides the best results, if it can ever be
decided at all.

To highlight the flexibility and the robustness of the approach, SSC was applied to
the component distribution map corresponding to droplet phase 2, as the shape of the
contributions can be considered of relatively low frequency. The results obtained can
be seen in Figure 6.6d. When the component distribution map of the aqueous phase
is carefully analyzed, it can be noticed that the residue of the structural phase that
was observed in the component distribution map of this component has disappeared
(see Figure 6.6a and Figure 6.6d). Like this, a similar spectral profile (Figure 6.7,
green curves) is obtained as the ones after application of the local rank constraint:
the peaks have appeared again in the spectral profile of the aqueous component, even
though they are not exactly the same intensity.

Infrared hyperspectral image of a mayonnaise sample

The mayonnaise sample was acquired by using Fourier transform infrared spec-
troscopy (FTIR) over a frequency range of 3850 – 1100 cm−1 at room temperature
(24 ◦C) by using a Bruker Vertex 70 FTIR spectrometer, equipped with a Bruker
Hyperion 3000 IR microscope. The spectra were recorded with a resolution of
4 cm−1 using 512 scans, with a 36x objective. The acquired image is 64 pixels
by 64 pixels. For the purpose of analysis, the spectral range was limited between
3820 – 2950 cm−1. The mean image and the corresponding spectra can be found in
Figure 6.8.

FIGURE 6.8: FTIR hyperspectral image of mayonnaise (64 pixels by 64 pixels). In
(a) the mean image of the sample (intensity coded from blue to red) and in (b) the
spectra obtained for every pixel for a range of 3850 – 2950 cm−1.
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Mayonnaise is classified as a permanent emulsion of an oily phase (i.e. the CH
contributions) and a water phase (i.e. the OH contributions), which is created when a
shear force is applied so that the oily phase is dispersed in the water phase as droplets
that remain throughout this water phase [209, 210]. However, when looking at the
mean image in Figure 6.8a, this is not quite clear. Observing the raw image could
give the wrong impression as the total intensity over the OH spectral region (∼ 3200
– 3850 cm−1) is much higher than the one for the CH contributions (∼ 3200 – 2950
cm−1), but it is in fact a mixture of the two major contributions.

To separate the two contributions from one another and obtain their pure profiles,
MCR-ALS can be performed. In a first step, the analysis is performed with non-
negativity as a constraint (Figure 6.9a) and show that the first component can be
assigned to an aqueous phase and the second component is assigned to an oily phase.
Everywhere the aqueous phase is absent, there is a big contribution for the oily phase.
However, in the spectral profiles for the aqueous component, there is a contribution
for the CH vibrations around 3100 – 3000 cm−1, showing that the two components
are not completely unmixed. The resolution of this data set was improved by adding
the shape smoothness constraint on the component distribution map of the oily phase
(Figure 6.9b). Similar results to the initial analysis are obtained, but the changes are
now more gradually with respect to the previous analysis. Doing so, the spectral
profile of the aqueous phase has also changed, and the contributions of the CH
vibrations are removed.

The constraint can also be used on one-dimensional signals, with one-dimensional
P-splines, as is shown when the constraint is added on the spectrum of the water
phase (Figure 6.9c) to remove the CH contributions from its spectrum (because
the OH band is of significant lower frequency than the CH bands). The spectrum
becomes quite smooth and the component distribution maps obtained are not much
different from the previous analyses, apart from some noise.

95



6. CONSTRAINING SPATIAL INFORMATION IN MCR-ALS

FIGURE 6.9: Component distribution maps and spectral profiles for experimental
data of mayonnaise, obtained by FTIR imaging for a spectral range of 3850 – 2950
cm−1. Multivariate curve resolution – alternating least squares results obtained using
(a) non-negativity on all profiles (LOF: 5.64 %); (b) non-negativity and smoothness
on the component distribution map of the oily phase (parameters: nspline = 35, λ1 /
λ2 = 0.001 and p = 0.2; LOF: 5.65 %) and (c) non-negativity and smoothness on
the spectral profile of the aqueous phase (parameters: nspline = 35, λ1 / λ2 = 1 and
p = 0.4; LOF: 5.66 %). Note that the images are auto-scaled from blue to red.

6.4.2 Sparseness constraint
Sparseness is a concept in chemometrics that has increased in popularity and is often
linked to the concept of simplicity. This can for example be noticed in classical
chemometrics methods aiming at exploratory analysis, such as PCA [211, 212] or
PLS [213, 214] that have their sparse versions. Within these methods, the use of
sparseness permits enhancing information and facilitates qualitative interpretation of
the results obtained [215]. However, in multivariate curve resolution, it corresponds
to finding pure spectral signals or concentration profiles that can be naturally defined
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as sparse. It does not require the original raw data to be sparse, but only some
or all of the compound profiles in the underlying bilinear model. While applying
the constraint, the model used for the sparse reproduction of the signal is the same
model as used in Part 1 of the thesis, where an L0-norm penalized regression is
used, as in sparse deconvolution [73, 74], and works for both one-dimensional and
two-dimensional signals, as explained in Section 1.3.1 and Section 1.4.1 [80]. For
the one-dimensional application of this constraint, we refer to reference [80].

Infrared hyperspectral image of a pharmaceutical sample

A pharmaceutical sample, containing citric acid, acetylsalicylic acid and caffeine,
was carefully prepared by using a pestle and mortar to grind the products together.
The homogeneous powder mixture that was obtained was then analyzed with a
Thermo Scientific Nicolet iN 10 MX Infrared imaging microscope. The spectra
(4000 – 675 cm−1) were recorded with a resolution of 4 cm−1 using 32 scans. The
acquired image is 47 pixels x 37 pixels x 1725 wavenumbers. The spectra of the
acquired image are quite noisy and contain a flat offset baseline. They were therefore
smoothed by using asymmetric least squares, followed by a removal of the minimum
value of each spectrum to remove the offset. After proper pre-processing, the
fingerprint region of the acquired data was selected (1800 – 675 cm−1) to facilitate
the analysis (as reported in Figure 6.10).

FIGURE 6.10: Infrared hyperspectral image of a pharmaceutical sample containing
three products (41 pixels by 37 pixels). In (a) the mean image of the sample and in
(b) the spectra obtained for every pixel for a range of 1800 – 675 cm−1. Note that
the image is auto-scaled from blue to red.

The number of components is known to be three for this data set, after which
initial estimates were determined by using a SIMPLISMA-based method. The pre-
processed data was then investigated by an MCR-ALS analysis with non-negativity
(on both C and ST) and normalization of the ST profiles as constraints. The resolved
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component distribution maps and corresponding spectra can be seen in Figure 6.11a
(LOF: 7.90 %). The resolved spectral profiles of component 1 and component 2
can be assigned to citric acid and acetyl salicylic acid, as the positions of the peaks
correspond with the infrared spectra found in the database of the national institute of
standards and technology (NIST) [216], albeit with different intensity ratios. On the
other hand, the spectrum of caffeine cannot be clearly distinguished in component 3.
What should be clear from the component distribution maps is that the contributions
are scattered all across the map, which is expected for unstructured powdered
samples. The pattern of the contributions of these components is thus presumed
to have localized zones of presence and absence and, therefore, the sparseness
constraint can be appropriately applied. We define the sparseness ratio for the
component distribution maps as the ratio of the non-null pixels over the total number
of pixels. We find 55.4 % – 76.3 % – 86.2 % for the three components, respectively.
To enhance the zones of presence of the model compounds, and to improve the
spectrum obtained for the third component, MCR-ALS is performed by applying the
sparseness constraint to the component distribution maps. The results are shown in
Figure 6.11b. The LOF (8.90 %) is only slightly modified by the inclusion of the
sparseness constraint and supports the suitability of applying this constraint (using
the sparseness factors as shown in the caption of Figure 6.11) in the analysis. When
the sparseness ratio is calculated once more, values of 33.1 % – 33.3 % – 86.0 %
are obtained for the different compounds, respectively, and thus a sparser result is
obtained with respect to the resolution previously obtained (with the exception of the
third component). Removing the contributions with a low intensity in the component
distribution maps of citric acid and acetylsalicylic acid has significantly reduced the
zones of rank overlap among compounds and, particularly, with caffeine. Having
these zones with lower rank, or maybe even being selective, improves the spectral
profiles recovered. Inspecting the spectral profiles of citric acid and acetyl salicylic
acid more closely would indeed reveal a better correspondence in the intensity ratios
of the different peaks with respect to the reference found in the NIST database.
Also, an improvement can be noticed for the third component, as the resolution of
the peaks in the spectrum has increased. We can now clearly assign two peaks (at
∼ 1690 cm−1 and ∼ 1725 cm−1) to caffeine. Additionally, it is worth noting that
when the component distribution map of this third component is not constrained by
sparseness, the sparseness ratio increases to 93.2 % and the spectrum does not reveal
the two caffeine peaks anymore (results not shown). This led to the conclusion that
it is necessary to constrain all three component distribution maps in this data set.
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FIGURE 6.11: MCR-ALS analysis of a pharmaceutical powdered sample, obtained
by infrared imaging with (a) non-negativity as a constraint (LOF: 7.90 %) and (b)
non-negativity and sparseness of the component distribution maps as a constraint
(λ = 0.005 for all components; LOF: 8.90 %). Note that the images are auto-scaled
from blue to red.
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6.4.3 Edge-preserving smoothing constraint
The edge-preserving smoothing constraint [82] has a goal that is twofold. On one
hand, it is a smoothing constraint that filters the high-frequency noise and irrelevant
details so that it highlights characteristic features of the image. On the other hand,
while performing the smoothing, it also aims at preserving major edges (i.e. borders
that separate high-contrasted spatial regions) as they are one of the most striking
features to recognize objects in an image. The way we deal with this is by using an
L1-norm or L0-norm penalized global smoothing algorithm, as explained in Section
1.3.2.

Near infrared hyperspectral image of plastics

An image of several different plastics, acquired using near infrared spectroscopy
(NIR) [14], was kindly provided by Prof. Jose Manuel Amigo. The data set contains
four different plastics, produced in the shape of small pellets of about 5 mm of
diameter: acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polybutylene
terephthalate (PBT) and polypropylene (PP). It was acquired within the wavelength
range of 1009 – 1694 nm in absorbance mode (4.85 nm spectral resolution) using a
Headwall photonics model 1002A-00371. The data set is 175 pixels x 115 pixels x
142 spectral bands (300 µm spatial resolution). No data pre-processing apart from
offset correction was performed. The hyperspectral image and the representative
spectra for each of the plastics can be seen in Figure 6.12. These spectra are obtained
by taking the average spectrum of pixels in which only that plastic is present.

FIGURE 6.12: Mean data image and (b) representative spectral profiles for the
different components of the NIR hyperspectral image of four plastics (spectral range:
1009 – 1694 nm). Note that the image is auto-scaled from blue to red.

100



6.4. Application on experimental data

The number of components is known to be five, as there are four different plas-
tics present and a background (or support). A first MCR-ALS analysis with non-
negativity constraint is performed. Additionally, the spectrum for the background
component is kept fixed throughout the analysis (i.e. equality constraint). It was
estimated averaging spectra obtained for pixels where none of the plastics is present.
It will make the analysis easier and allows us to focus on the discrimination of
the plastics. Alternatively, multiset MCR-ALS [103] can be performed in which
the second data set contains spectra collected in a zone of only background, and
gives comparable results (in terms of figures of merit and profiles obtained). The
component distribution maps for this MCR-ALS analysis are shown in Figure 6.13a
and the corresponding spectra in Figure 6.13c (black line).

FIGURE 6.13: Component distribution maps and corresponding spectral profiles
for the five components of the plastics data set, acquired by NIR spectroscopy.
The component distribution maps obtained by MCR-ALS analysis with (a) non-
negativity on C and ST (LOF: 13.15 %) and (b) non-negativity and L0-norm image
smoothing constraint (LOF: 20.19 %). In (c) the spectral profiles corresponding to
the component distribution maps obtained in (a) (black line) and (b) (red line). Note
that the images are auto-scaled from blue to red.
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Looking at the obtained images, it can be noted first that where PBT is present,
the background is also quite intense, whereas this is not the case for the other
plastics. Despite having no spatial overlap between all the different plastics, we
notice several significant contributions of the other plastics in addition to the ones
that are expected for each component. The origin of this is of course the spectral
overlap between the components, which prevents a good resolution. Take the PBT
component for example; its spectral profile does not resemble the representative
spectrum obtained from the raw data (Figure 6.12b, red line). That is to say, there
is a mixture of this component with the PA6 component (as can be clearly noticed
from their corresponding component distribution maps). Therefore, eliminating
these spatial artifacts from the images should enable extracting the correct spectral
profiles of the different plastics. To do so, the L0-norm image smoothing constraint
was applied onto the component distribution maps of the four plastics. The goal is
to remove the contributions coming from the other plastics, but to retain as much
detail as possible of the plastic of interest. The results are shown in Figure 6.13b
(component distribution maps) and Figure 6.13c (spectral profiles, red line). We
recall that the spectrum of the background component was kept fixed throughout the
analysis. We notice an increase in the LOF from 13.15 % in the initial analysis to
20.19 % for the second analysis. This is due to the fact that some of the details of
the plastics of interest are smoothed (and thus removed to the residuals), in addition
with the expected increase due to adding more constraints [105]. In the spatial
domain, we notice that unmixing is completely or almost completely achieved (i.e.
contributions of other plastics are removed). Additionally: (I) the morphology of
the plastic objects is preserved; (II) the edges are clear and undistorted and (III)
the image corresponding to the background becomes more selective in the zones
where the plastics are located. There is also a clear influence of this spatial constraint
on the spectral profiles of the four plastics, albeit sometimes only in terms of peak
ratios, but this is expected for NIR spectra. Moreover, because the PBT artifacts are
removed from the component distribution map of the PA6 plastic, the spectral profile
of the PBT plastic is restored, closer to that one shown in Figure 6.12b.

Raman hyperspectral image of an oil-in-water emulsion 2

The second oil-in-water emulsion sample investigated in this thesis (with thanks
to Patrizia Firmani and Isabelle Dewaele) is a mixture of a thickener, consisting
of a paraffin oil and water, and octane (1:99 ratio). To stabilize this mixture, two
surfactants were added – Span 60 (more hydrophobic) and Tween 60 (more hy-
drophilic) – in a 90:10 ratio, respectively. The total surfactant mixture amount was
1 % of the emulsion. The emulsion sample was acquired by using Raman spec-
troscopy over a range of 100 – 4000 cm−1 with a Horiba Scientific Labram HR
Evolution spectrometer (excitation at 515 nm). To avoid degradation of the sample,
a temperature-controlled microscope stage (Linkam THM600 sample holder) was
used. The spectra were recorded with a resolution of 1.9 cm−1 (5 s acquisition
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time with 10 accumulations). The acquired image is 30 pixels by 30 pixels (spatial
resolution of 0.9 µm, 100x objective). For data analysis, no pre-processing was
performed, apart from the limitation of the spectral range to the fingerprint region
between 675 – 1550 cm−1. The data is shown in Figure 6.14.

FIGURE 6.14: (a) Mean data image and (b) representative spectral profiles for
the different components of the oil-in-water emulsion data set obtained by Raman
spectroscopy (spectral range is 675 – 1150 cm−1). Note that no spectral profile can
be shown for the interface component and the image is auto-scaled from blue to red.

The emulsion data set is expected to have two main components (i.e. the aqueous
phase and the oily phase) and a minor third component, which is to be the interface
between the two immiscible phases [217]. For the two main components, a represen-
tative spectrum is shown in Figure 6.14b, but it cannot be readily obtained from the
raw data for the interface component (as this is a minor component). However, to
get insight in the exchange between the two main phases, a clear signature of the
interface component is important. Moreover, a three-component MCR-ALS analysis
(with initial estimates obtained by a SIMPLISMA-based method) is not able to
retrieve the signature of this component. It is only revealed when a two-component
MCR-ALS analysis is performed (with non-negativity constraints) and the structure
of the residuals are inspected (results not shown). Using this information to our
advantage, a three-component MCR-ALS analysis is performed with non-negativity
as a constraint on both C and ST. The results are shown in Figure 6.15a and Fig-
ure 6.15c (black line).
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FIGURE 6.15: Component distribution maps and the corresponding spectral profiles
for the three components of the oil-in-water emulsion data. MCR-ALS results
obtained using (a) non-negativity on C and ST (LOF: 5.44 %); (b) non-negativity
and L1-norm image smoothing constraint on all components (LOF: 8.22 %) and (c)
the spectral profiles corresponding to the component distribution maps obtained in
(a) (black line) and (b) (red line).

The component distribution maps of the oily phase (apolar) and the aqueous phase
(polar) have clear boundaries as their chemical composition is completely different,
but the interface does not have a clear definition in both the spatial and spectral
dimension. It contains the chemical signature of the two surfactants, mixed with
contributions from the two main components. This can be understood as the pixel
size is much larger than the physical dimension of the interface. However, the
interface component differs mainly from the other two components in intensity ratios
of the peaks, complicating the resolution of the three components (for the oily phase,
this is between 1100 – 1500 cm−1 and for the aqueous phase between 800 – 1000
cm−1). Imputing zero values is a possible strategy to increase the contrast within
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the different components. However, another method to increase the sharpness of
the borders of the different phases is to apply the edge preserving image smoothing
constraint (with the goal of edge enhancement) within the MCR-ALS analysis. As
the oil-in-water emulsion is a liquid mixture, we do not expect a clear definition of
the borders between the different phases (as with the previous example, where the
plastics were clearly defined). We therefore force the change in concentration from
one pixel to the adjacent pixels to be quite gradual by using the L1-norm smoothing.
It was applied in addition to non-negativity on C and ST during the MCR-ALS
analysis. Figure 6.15b shows the results obtained. A first clear change with respect
to the previous results is that the interface component can be better distinguished,
as the definition of it is better due to the improved contrast within the component
distribution map. The constraint led to an enhancement of the contribution in pixels
in which there is a strong presence of the interface component, while reducing the
contribution in pixels in which it is expected to be absent. The spectral profile of
the interface component reflects this (red curve) as the contributions of the other
components were removed. Additionally, the component distribution maps of the
two main phases can be interpreted in a better way; the change in contribution is
more gradual than what was obtained in the initial analysis, increasing the contrast
but retaining the edges.
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6.5 Concluding remarks
An evolution of the current framework of MCR-ALS for hyperspectral images was
proposed. The framework includes a refolding / unfolding data manipulation at
each iteration of the least squares step of the analysis. Doing so restores the pixel
neighborhood information of the image and thus any image processing or modeling
technique can be potentially applied as a constraint. Furthermore, different spatial
constraints were developed (i.e. shape smoothness, sparseness, edge-preserving
smoothing) that can be used in combination with other appropriate constraints. The
flexibility of the constraints lies in the fact that the parameters can be tuned according
to the shape of the signal for each component individually. They were demonstrated
on hyperspectral images of which the underlying profiles correspond to cases where
that property or feature is desirable, and showed that applying the spatial constraints
had a direct effect on the constrained profiles and also an indirect positive effect on
the rest of the resolved profiles of the systems under investigation.
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In this thesis, chemical images are explored for which the goal is to unravel the
underlying structure of the chemical sample under investigation. To do so, the
measured data and their mathematical structure are used, and these problems can
therefore be called inverse problems. Due to the ill-posedness of the inverse problems
in this thesis, regularization techniques are used to give rise to solutions that are
meaningful. The thesis investigates chemical images that can be divided in either
spatial-temporal images (application: super-resolution fluorescence microscopy
images) or spatial-spectral images (application: unmixing of hyperspectral images).

For the investigation of super-resolution fluorescence microscopy data, a new image
deconvolution method (SPIDER) with multiple penalties was proposed for high-
density data that directly translate the properties of the latent system that produced
the data. The L0-norm spatial penalty reflects the structure of the point-like emitters,
while a penalty on successive frames ensures the continuity of the emitters in the
time mode. The method provides more ‘quantitative’ images with a reduced bias,
better recall rate and a higher accuracy compared to the previous state-of-the-art
methods (i.e. CSSTORM and FALCON) allowing a detailed study of dynamic
cellular processes. In addition to this new framework, we also show different ways
to pre-process the fluorescence microscopy data. This pre-processing is necessary as
the typical data set does not always follow the assumptions made for the analysis
methods, and aims at separating the non-specific fluorescence from the emitters of
interest in the process. In stochastic analysis methods (such as SOFI), the assumption
is independent blinking of the emitters, while for image deconvolution methods (such
as SPIDER), the assumption is sparsity of the latent original image. To restore the
key assumption for SOFI, we evaluate approaches based on Whittaker smoothing.
When the corrected data is evaluated, it shows improvements in spatial resolution
and contrast, and it is further enhanced after performing SOFI analysis. When the
data is pre-processed by using a two-dimensional P-splines approach to remove the
baseline present in the data, we notice a better spatial resolution and that artifacts are
removed after using SPIDER.

When a hyperspectral image is analyzed by MCR-ALS, a preliminary step consists
of unfolding the raw three-dimensional data into a two-dimensional data matrix.
Through this data manipulation, the information regarding pixel neighborhood is
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lost, and thus spatial information cannot be directly constrained in the classical
MCR-ALS framework. We therefore proposed an evolution of this framework
in which an additional refolding / unfolding step of the concentration profiles to
their corresponding component distribution maps is performed at each iteration
of the least squares step. Doing so, the pixel neighborhood is restored and any
image processing or modeling technique can be potentially applied as a constraint.
Furthermore, we also developed several spatial constraints that can be used within
this new HSI-MCR-ALS framework and they were showcased on experimental data
whose underlying profiles correspond to cases where that property or feature is
desirable. A first constraint is the shape smoothness constraint that imposes a global
feature of the component distribution maps, which is not necessarily a shape, but the
smoothness of a pattern observed. This is a powerful way to investigate samples in
which large and fine scale structures coexist. It favors the presence of low-frequency
signal in the constrained component distribution map and assigns the odd, more
high-frequency, contributions to other components or to the residuals. The second
constraint is a sparseness constraint, inspired by the work performed in the first part
of the thesis. It constrains the number of non-null coefficients without having an a
priori on the number and their positions. This constraint does not necessarily require
a data matrix that is sparse by nature, but their decomposition profiles should be.
The sparseness constraint provides a more appropriate and simpler description of
the naturally sparse component distribution maps and lowers the rank of certain
concentration windows. Thus, the constraint has not only a direct effect on the
constrained component distribution map, but it also greatly increases the chances to
recover unique profiles in the constrained profile direction and in the profiles of the
counterpart matrix of the bilinear model.

The third and last constraint aims at removing spatial artifacts, preserving and
enhancing edges and making images more abstract to increase the interpretability.
To induce this, two global smoothing algorithms are used in a penalized least squares
regression setting, based on an L1-norm and L0-norm. They flatten out the irrelevant
spatial details and enhance the large changes within the images. The L0-norm-based
global smoothing can be used on images with clearly defined objects or structures,
while the L1-norm-based constraint is more applicable in cases with less clear objects
separation. The resulting component distribution maps are more abstract and thus a
simpler description is obtained.

The thesis opened up new and interesting perspectives that deserve further attention
in the future. The most important one is related to finding a way to allow an
automatic optimization of the penalty parameter used in most of the methods adopted
throughout this thesis. Having an objective criterion to make this decision will make
it easier for an inexperienced user to apply the methods. Though, the difference
should be made for smoothing and for sparsity with the L0-norm penalty. For the
one-dimensional smoothing (with Whittaker or splines), there exist ways to make
the procedure automatic (e.g. generalized cross-validation, L-curve, etc.) and these
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are used throughout this thesis. On the other hand, the decision on the parameters for
two-dimensional smoothing applications was based on visual inspection. However,
the methods for one-dimensional optimization can be extended to two-dimensions,
but it should be explored further. For the L0-norm penalty this is unfortunately
different, as this penalty gives a discontinuous result. It is therefore not possible to
use the same criteria as used for the smoothing algorithms. A new criterion has to
be found that makes the balance between the number of non-zero elements found
and the goodness of fit. Another important perspective is to evaluate the influence of
the spatial constraints on the extent of rotational ambiguity in MCR-ALS, and of
hyperspectral images in general. It is an important concept within the MCR-ALS
framework to demonstrate the robustness of the constraints. To do so, a mathematical
expression should be found – readily translating the properties of the constraint – that
can be considered in the frame of a constrained non-linear optimization problem used
in the MCR-bands routine. Lastly, with the evolution of super-resolution microscopy
imaging towards multi-color experiments, it could be interesting to investigate how
MCR-ALS works to unmix the different fluorophores at a super-resolution scale.
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Appendix A

Discrete ill-posed problems

To show that some discrete problems are ill-posed, we have to go back to the classical
example of an ill-posed problem: a Fredholm integral equation of the first kind with
a square integrable kernel [218, 219]. It can be written as

y( i) =
∫ b

a
C( i,s)x(s)ds , (A.1)

where y and the kernel C are known and the unknown solution is denoted as x. The
kernel C( i,s) describes the response of the system at location i, owing to a unit input
at location s. If the solution x is perturbed by

∆x(s) = ε sin(2π ps) , p = 1,2, . . . and ε is constant , (A.2)

then the perturbation of y is given by

∆y( i) = ε

∫ b

a
C( i,s) sin(2π ps)ds , p = 1,2, . . . . (A.3)

Due to the Riemann-Lebesgue lemma, it follows that for p→ ∞, ∆y→ 0 [65, 218].
When choosing the integer p large enough, the ratio ‖∆x‖/‖∆y‖ will become ar-
bitrarily large, showing that Equation A.1 is an ill-posed problem, as it is highly
sensitive to perturbations. For problems to be ill-posed, it must be strictly speaking
infinite-dimensional. If this is not the case, ‖∆x‖/‖∆y‖ stays bounded. However,
certain finite-dimensional problems are extremely sensitive to high-frequency pertur-
bations and can be associated to the term discrete ill-posed problems. The discrete
form of the integral equation in Equation A.1 is given by [219]

yi = ∑
s

C( i,s)x(s) . (A.4)
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When lots of measurements are available, this system of equations can be written as
a matrix multiplication

y = Cx , (A.5)

where the vector x represents the unknown values, the vector y the measurements
and the matrix C the kernel. To be considered as a discrete ill-posed problem, the
system has to satisfy two criteria: (I) a gradual decay to zero in the singular values of
C and (II) a large ratio between the largest non-zero singular value and the smallest
non-zero singular value. The first criterion implies that no ‘nearby’ problem with a
well-posed coefficient matrix and well-determined numerical rank exists, while the
second criterion implies that the matrix C is ill-posed (i.e. the solution is sensitive to
perturbations) [65].

Assume that C ∈ Rnxn is a symmetric positive definite matrix. The spectral theory
of symmetric matrices shows that eigenvalues 0≤ λ1 ≤ . . .≤ λn and corresponding
eigenvectors ui ∈ Rn (with the Euclidean norm ‖ui‖ = 1) exist so that C can be
represented as [220]

C =
n

∑
i=1

λiuiuT
i . (A.6)

The condition number of C is given by the ratio of the largest and smallest eigenvalue
(for λ1 6= 0): κ = λn

λ1
and is a measure for the stable solvability of the problem. For

the sake of simplicity, it is assumed that λn = 1, making κ = λ
−1
1 .

Assume noisy data yδ instead of y, which satisfy ‖yδ −y‖≤ δ in the Euclidean norm
on Rn. The solution to yδ is represented by xδ and from the spectral representation,
we get

xδ −x =
n

∑
i=1

λ
−1
i uiuT

i (yδ −y) . (A.7)

Using the orthogonality of the eigenvectors, we can estimate

‖xδ −x‖2 =
n

∑
i=1

λ
−2
i |u

T
i (yδ −y) |2 ≤ λ

−2
i ‖y

δ −y‖2 . (A.8)

Then, it is easy to see that

‖xδ −x‖ ≤ κ‖yδ −y‖= κδ . (A.9)
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Equation A.9 states that with an increasing condition number of the matrix C, the
noise amplification increases. Therefore, for the finite-dimensional linear case with
a large κ , the third condition in Hadamard’s definition is approximated and we speak
of an ill-posed problem.
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Appendix B

Solution to the least squares problem

The objective function φ of the least squares problem is defined as

φ = ‖y−Cx‖2 . (B.1)

The minimization of this objective function can be written as

∇xφ = ∇x[ (y−Cx)T(y−Cx) ] , (B.2)
= −CT(y−Cx) − [ (y−Cx)TC]T , (B.3)
= −CT(y−Cx) −CT(y−Cx) , (B.4)
= −2CT(y−Cx) . (B.5)

The solution will be minimal if ∇xφ = 0

0 = −2CT(y−Cx) , (B.6)
0 = −CTy+CTCx , (B.7)

CTy = CTCx , (B.8)
x = (CTC)−1CTy . (B.9)
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Appendix C

Bias-Variance trade-off

Suppose the problem described as Y = f (X) +ε , where the error term ε is normally
distributed with a mean of zero: ε ∼ N(0,σε) . A model f̂ (X) for f (X) can be
estimated by e.g. linear regression. The expected square prediction error for the
point x is then [67]

Error(x) = E[ (Y − f̂ (x))2] , (C.1)

and can be decomposed into bias and the variance components

Error(xi j) = [E[ f̂ (xi j)− f (xi j) ]
2 +E[ [ f̂ (xi j)−E[ f̂ (xi j)] ]

2] +σ
2
ε ,

= Bias2 +Variance+ irreducible error .
(C.2)

The squared bias term represents the difference between the true mean and the
average of the estimate, while the variance is the expected squared deviation of f̂ (X)
around its mean. The third term is the irreducible error term and it is the noise term
that cannot be reduced by any model. For information, the bias and variance is
explained graphically in Figure C.1.
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FIGURE C.1: Graphical representation of bias versus variance.
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Appendix D

Generalized linear array model

The GLAM algorithm is briefly explained here. For more information, we refer to
references [88, 221].

The model described in Equation 1.34 and Equation 1.35 can be classically estimated
in the least squares sense. Different matrices are vectorized, such as the data matrix:
y = vec(Y) , the smooth surface: µ = vec(M) , the coefficient matrix: α= vec(A)
and the weight matrix: w = vec(W) . The penalty is written as

P = λ1(IL ⊗ DT
1 D1) +λ2(DT

2 D2 ⊗ IK) , (D.1)

where I represents the identity matrix and ⊗ is the Kronecker product. The problem
can then be written as a weighted least squares

[ (B2 ⊗ B1)
TW̃(B2 ⊗ B1) +P]α= (Q+P)α= (B2 ⊗ B1)

TW̃y , (D.2)

where W̃ = diag(w) . Instead of estimating the coefficients in A by vectorization
and Kronecker products, the GLAM algorithm rewrites the expression for Q and
calculates it in another product. The right-hand side of Equation D.2 is also rewritten.
The following expression is then obtained

(F+P)α= r , (D.3)

where r is obtained by vectorizing (column-wise) the matrix R = BT
1 (W�Y)B2.

The matrix F is a KL x KL matrix and P is as before. To obtain F, the two-
dimensional matrix G is calculated (K2 x L2 matrix) and reordered in a four-
dimensional array (K x K x L x L array). Then, the dimensions of this array are
permuted (from 1, 2, 3, 4 to 1, 3, 2, 4) and this array is finally transformed to the

123
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matrix F. The matrix G is calculated as

G = (B1�B1)
TW̃(B2�B2) ,

= [(eT
K ⊗ B1) � (B1 ⊗ eT

K) ]
TW̃[ (eT

L ⊗ B2) � (B2 ⊗ eT
L) ] ,

(D.4)

where � is the box product, � is the element-wise multiplication and eK and eL
vectors of ones, with length K and length L, respectively. In other words, B1�B1
is the row-wise Kronecker product of B1 with itself, and B2�B2 the row-wise
Kronecker of B2 with itself.
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Appendix E

Principal Component Analysis

Principal component analysis is a common procedure used in statistics to convert a
set of possibly correlated observations into a set of values of linearly uncorrelated
variables (i.e. principal components) by using an orthogonal transformation. When
performing a PCA analysis, the first principal component will account for as much
variance in the data as possible. This principal component is a variable for the
data set such that the greatest variance of the data set comes to lie on the first
axis. Each succeeding component will then account for as much of the remaining
variance as possible. The principal components are uncorrelated with one another
(i.e. orthogonal in space) and can be defined as a linear combination of optimally-
weighted observed variables. This makes PCA in essence a rotation of the axes of
the original variable coordinate system to new orthogonal axes. Each original data
point can be projected onto the new axes and these are the so-called scores.

In mathematical terms speaking – with the traditional notation for PCA – the data can
be described by a matrix X, with m rows (i = 1, . . . ,m; equal to the number of pixels
of the data set) and n columns ( j = 1, . . . ,n; equal to the number of frames). The
individual variables (i.e. columns) of X are denoted by x j (with j = 1, . . . ,n). A new
vector in the same space as the x variables can be made and is a linear combination
of these x variables. It is written as

t = p1 xx1 + . . .+ pn xxn . (E.1)

In matrix notation, this is written as

t = Xp . (E.2)

with p a weight vector with elements p j ( j = 1, . . . ,n). The matrix X contains
variation relevant to the problem. Therefore, it seems a reasonable claim to maximize
that variation in t; it is after all the goal of PCA. The variance in this new vector
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t can be measured by var( t) . The new problem consists then in maximizing this
variance by optimizing the weights in p

p1 = max
‖p‖=1

var( t) . (E.3)

Introducing Equation E.2 into Equation E.3 gives

p1 = max
‖p‖=1

( tTt) = max
‖p‖=1

(pTXTXp) . (E.4)

Finally, Equation E.5 is obtained

p1 = max
‖p‖=1

{pTXTXp
pTp

} . (E.5)

When the data matrix X is mean-centered, then the optimal p is the first eigenvector
of the covariance matrix XTX.

The first principal component will explain the largest part of the variance in the data.
However, it will not explain everything in general and it is meaningful to check how
representative t is in terms of replacing X. To do so, the columns of the data matrix
X are projected on t and residuals E are calculated

E = X− tpT . (E.6)

By definition, the kth data component can be found by subtracting the first k−1 data
components from the data matrix X, a process called deflating

X̂k = X−
k−1

∑
s=1

XpspT
s . (E.7)
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Hagen. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and
STORM data analysis and super-resolution imaging. Bioinformatics (Oxford,
England), 30(16):2389–2390, 2014.

[116] Seamus J. Holden, Stephan Uphoff, and Achillefs N. Kapanidis. DAOSTORM:
an algorithm for high- density super-resolution microscopy. Nature Methods,
8(4):279–280, 2011.

[117] Syoji Ito, Yuhei Taga, Kengo Hiratsuka, Satoshi Takei, Daichi Kitagawa, Seiya
Kobatake, and Hiroshi Miyasaka. Restricted diffusion of guest molecules
in polymer thin films on solid substrates as revealed by three-dimensional
single-molecule tracking. Chemical Communications (Cambridge, England),
51(72):13756–13759, 2015.

[118] Jörg Enderlein. Positional and Temporal Accuracy of Single Molecule Track-
ing. Single Molecules, 1(3):225–230, 2000.

[119] Akihiro Kusumi, Taka A. Tsunoyama, Kohichiro M. Hirosawa, Rinshi S.
Kasai, and Takahiro K. Fujiwara. Tracking single molecules at work in living
cells. Nature Chemical Biology, 10(7):524–532, 2014.

[120] Kazuya Tsujita, Shiro Suetsugu, Nobunari Sasaki, Masahiro Furutani, Tsukasa
Oikawa, and Tadaomi Takenawa. Coordination between the actin cytoskeleton
and membrane deformation by a novel membrane tubulation domain of PCH
proteins is involved in endocytosis. The Journal of Cell Biology, 172(2):269–
279, 2006.

[121] Dong Li, Lin Shao, Bi-Chang Chen, Xi Zhang, Mingshu Zhang, Brian Moses,
Daniel E. Milkie, Jordan R. Beach, John A. Hammer, Mithun Pasham, Tomas
Kirchhausen, Michelle A. Baird, Michael W. Davidson, Pingyong Xu, and

137



BIBLIOGRAPHY

Eric Betzig. Extended-resolution structured illumination imaging of endocytic
and cytoskeletal dynamics. Science, 349(6251):aab3500, 2015.

[122] Michael J. Rust, Mark Bates, and Xiaowei Zhuang. Sub-diffraction-limit
imaging by stochastic optical reconstruction microscopy (STORM). Nature
Methods, 3(10):793–796, 2006.

[123] Samuel T. Hess, Thanu P. K. Girirajan, and Michael D. Mason. Ultra-High
Resolution Imaging by Fluorescence Photoactivation Localization Microscopy.
Biophysical Journal, 91(11):4258–4272, 2006.

[124] Lei Zhu, Wei Zhang, Daniel Elnatan, and Bo Huang. Faster STORM using
compressed sensing. Nature Methods, 9(7):721–723, 2012.

[125] Junhong Min, Cédric Vonesch, Hagai Kirshner, Lina Carlini, Nicolas Olivier,
Seamus Holden, Suliana Manley, Jong Chul Ye, and Michael Unser. FALCON:
fast and unbiased reconstruction of high-density super-resolution microscopy
data. Scientific Reports, 4:srep04577, 2014.

[126] Susan Cox, Edward Rosten, James Monypenny, Tijana Jovanovic-Talisman,
Dylan T. Burnette, Jennifer Lippincott-Schwartz, Gareth E. Jones, and Rainer
Heintzmann. Bayesian localization microscopy reveals nanoscale podosome
dynamics. Nature Methods, 9(2):195–200, 2012.

[127] Edward Rosten, Gareth E. Jones, and Susan Cox. ImageJ plug-in for Bayesian
analysis of blinking and bleaching. Nature Methods, 10(2):97–98, 2013.

[128] Eran A. Mukamel, Hazen Babcock, and Xiaowei Zhuang. Statistical decon-
volution for superresolution fluorescence microscopy. Biophysical Journal,
102(10):2391–2400, 2012.

[129] E.J. Candes and M.B. Wakin. An Introduction To Compressive Sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[130] Emmanuel J. Candes and Carlos Fernandez-Granda. Towards a Mathematical
Theory of Super-resolution. Communications on Pure and Applied Mathe-
matics, 67(6):906–956, 2014.

[131] Hazen P. Babcock, Jeffrey R. Moffitt, Yunlong Cao, and Xiaowei Zhuang. Fast
compressed sensing analysis for super-resolution imaging using L1-homotopy.
Optics Express, 21(23):28583–28596, 2013.

[132] Thomas Dertinger, Ryan Colyer, Robert Vogel, Jörg Enderlein, and Shimon
Weiss. Achieving increased resolution and more pixels with Superresolution
Optical Fluctuation Imaging (SOFI). Optics Express, 18(18):18875–18885,
2010.

138



Bibliography

[133] Thomas Dertinger, Mike Heilemann, Robert Vogel, Markus Sauer, and Shi-
mon Weiss. Superresolution optical fluctuation imaging with organic dyes.
Angewandte Chemie (International Ed. in English), 49(49):9441–9443, 2010.

[134] Thomas Dertinger, Jianmin Xu, Omeed Foroutan Naini, Robert Vogel, and
Shimon Weiss. SOFI-based 3d superresolution sectioning with a widefield
microscope. Optical nanoscopy, 1(2):2, 2012.

[135] Daniel Sage, Hagai Kirshner, Thomas Pengo, Nico Stuurman, Junhong Min,
Suliana Manley, and Michael Unser. Quantitative evaluation of software pack-
ages for single-molecule localization microscopy. Nature Methods, 12(8):717–
724, 2015.

[136] Yves Peeters, Wim Vandenberg, Sam Duwé, Arno Pino Bouwens, Tomas
Lukes, Cyril Ruckebush, Theo Lasser, and Peter Dedecker. Correcting for
photodestruction in super-resolution optical fluctuation imaging. Scientific
Reports, 7:srep10470, 2017.

[137] Stefan Geissbuehler, Azat Sharipov, Aurélien Godinat, Noelia L. Bocchio,
Patrick A. Sandoz, Anja Huss, Nickels A. Jensen, Stefan Jakobs, Jörg Ender-
lein, F. Gisou van der Goot, Elena A. Dubikovskaya, Theo Lasser, and Marcel
Leutenegger. Live-cell multiplane three-dimensional super-resolution optical
fluctuation imaging. Nature Communications, 5:ncomms6830, 2014.

[138] Jonas Ries, Salvatore Chiantia, and Petra Schwille. Accurate Determination of
Membrane Dynamics with Line-Scan FCS. Biophysical Journal, 96(5):1999–
2008, 2009.

[139] Nathalie B. Vicente, Javier E. Diaz Zamboni, Javier F. Adur, Enrique V.
Paravani, and Víctor H. Casco. Photobleaching correction in fluorescence
microscopy images. Journal of Physics: Conference Series, 90(1):012068,
2007.

[140] Peter Dedecker, Sam Duwé, Robert K. Neely, and Jin Zhang. Localizer: fast,
accurate, open-source, and modular software package for superresolution
microscopy. Journal of Biomedical Optics, 17(12):126008, 2012.

[141] Peter Dedecker. Localizer, 2012.

[142] Karl Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(11):559–572, 1901.

[143] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24:417–441, 1933.

[144] Rasmus Bro and Age Smilde. Principal component analysis. Analytical
Methods, 6(9):2812–2831, 2014.

139



BIBLIOGRAPHY

[145] M. Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society. Series B. Methodological, 36:111–147,
1974.

[146] David M. Allen. The relationship between variable selection and data aug-
mentation and a method for prediction. Technometrics. A Journal of Statistics
for the Physical, Chemical and Engineering Sciences, 16:125–127, 1974.

[147] Gianluca Frasso and Paul H. C. Eilers. L- and V-curves for optimal smoothing.
Statistical Modelling, 15(1):91–111, 2015.

[148] Age K. Smilde, Huub. C.J. Hoefsloot, and Johan. A. Westerhuis. The geometry
of ASCA. Journal of Chemometrics, 22(8):464–471, 2008.

[149] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, 2006.

[150] Ralph C. A. Rippe, Jacqueline J. Meulman, and Paul H. C. Eilers. Visual-
ization of Genomic Changes by Segmented Smoothing Using an L0 Penalty.
PLOS ONE, 7(6):e38230, 2012.

[151] Sylvie Chevallier, Dominique Bertrand, Achim Kohler, and Philippe Cour-
coux. Application of PLS-DA in multivariate image analysis. Journal of
Chemometrics, 20(5):221–229, 2006.

[152] M Pietikäinen, T Ojala, and Z Xu. Rotation-invariant texture classification
using feature distributions. Pattern Recognition, 33(1):43–52, 2000.

[153] J. M. Prats-Montalbán and A. Ferrer. Integration of colour and textural
information in multivariate image analysis: defect detection and classification
issues. Journal of Chemometrics, 21(1-2):10–23, 2007.

[154] Salvador García-Muñoz and Daniel S. Gierer. Coating uniformity assess-
ment for colored immediate release tablets using multivariate image analysis.
International Journal of Pharmaceutics, 395(1-2):104–113, 2010.

[155] N. Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.

[156] Kees Joost Batenburg, J. Sijbers, J. Sijbers, and J. Sijbers. Optimal Threshold
Selection for Tomogram Segmentation by Projection Distance Minimization.
IEEE Transactions on Medical Imaging, 28:676–686, 2009.

[157] A. K. Jain, R. P. W. Duin, and Jianchang Mao. Statistical pattern recognition:
a review. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(1):4–37, 2000.

140



Bibliography

[158] M. Unser. Texture classification and segmentation using wavelet frames. IEEE
Transactions on Image Processing, 4(11):1549–1560, 1995.

[159] R. M. Haralick. Statistical and structural approaches to texture. Proceedings
of the IEEE, 67(5):786–804, 1979.

[160] Alexander Kai-man Leung, Foo-tim Chau, and Jun-bin Gao. A review on
applications of wavelet transform techniques in chemical analysis: 1989-1997.
Chemometrics and Intelligent Laboratory Systems, 43(1):165–184, 1998.

[161] D. F. Thekkudan and S. C. Rutan. Denoising and Signal-to-Noise Ratio
Enhancement: Classical Filtering. In Steven D. Brown, Romá Tauler, and
Beata Walczak, editors, Comprehensive Chemometrics, pages 9–24. Elsevier,
Oxford, 2009. DOI: 10.1016/B978-044452701-1.00098-3.

[162] A. Felinger. Data Analysis and Signal Processing in Chromatography. Else-
vier, 1998. Google-Books-ID: 0dFQseHyFpUC.

[163] Matthias Otto. Signal Processing and Time Series Analysis. In Chemomet-
rics, pages 55–91. Wiley-VCH Verlag GmbH & Co. KGaA, 2016. DOI:
10.1002/9783527699377.ch3.

[164] Abraham. Savitzky and M. J. E. Golay. Smoothing and Differentiation of Data
by Simplified Least Squares Procedures. Analytical Chemistry, 36(8):1627–
1639, 1964.

[165] D. L. Massart, B. G. Vandeginste, L. M.C. Buydens, P. J. Lewi, J. Smeyers-
Verbeke, and S. De Jong. Handbook of Chemometrics and Qualimetrics: Part
A. Elsevier Science Inc., New York, NY, USA, 1997.

[166] T. Naes, T. Isaksson, T. Fearn, and T. Davies. A user Friendly guide to
Multivariate Calibration and Classification. NIR Publications, Chichester
UK, 2002.

[167] K. G. Jöreskog and Herman O. A. Wold. Systems Under Indirect Observation:
Causality, Structure, Prediction. North-Holland, 1982. Google-Books-ID:
Suq4AAAAIAAJ.

[168] Paul H. C. Eilers. Parametric Time Warping. Analytical Chemistry, 76(2):404–
411, 2004.

[169] Anna de Juan, Marcel Maeder, Thomas Hancewicz, Ludovic Duponchel, and
Romà Tauler. Chemometric Tools for Image Analysis. In Reiner Salzer
and Heinz W. Siesler, editors, Infrared and Raman Spectroscopic Imag-
ing, pages 65–109. Wiley-VCH Verlag GmbH & Co. KGaA, 2009. DOI:
10.1002/9783527628230.ch2.

141



BIBLIOGRAPHY

[170] Giorgio Tomasi, Frans van den Berg, and Claus Andersson. Correlation
optimized warping and dynamic time warping as preprocessing methods for
chromatographic data. Journal of Chemometrics, 18(5):231–241, 2004.

[171] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788–791, 1999.

[172] Yongxin Zhang, Li Chen, Jian Jia, and Zhihua Zhao. Multi-focus image fusion
based on non-negative matrix factorization and difference images. Signal
Processing, 105(Supplement C):84–97, 2014.

[173] Haishun Du, Qingpu Hu, Xudong Zhang, and Yandong Hou. Image Feature
Extraction via Graph Embedding Regularized Projective Non-negative Matrix
Factorization. In Pattern Recognition, Communications in Computer and
Information Science, pages 196–209. Springer, Berlin, Heidelberg, 2014.

[174] P. O. Hoyer. Non-negative sparse coding. In Proceedings of the 12th IEEE
Workshop on Neural Networks for Signal Processing, pages 557–565, 2002.

[175] Wei-Shi Zheng, JianHuang Lai, Shengcai Liao, and Ran He. Extracting non-
negative basis images using pixel dispersion penalty. Pattern Recognition,
45(8):2912–2926, 2012.

[176] Dakun Liu and Xiaoyang Tan. Max-margin non-negative matrix factoriza-
tion with flexible spatial constraints based on factor analysis. Frontiers of
Computer Science, 10(2):302–316, 2016.

[177] Xinlei Chen, Cheng Li, and Deng Cai. Spatially Correlated Nonnegative
Matrix Factorization for Image Analysis. In Intelligent Science and Intelli-
gent Data Engineering, Lecture Notes in Computer Science, pages 148–157.
Springer, Berlin, Heidelberg, 2012.

[178] Nirmal Keshava. A survey of spectral unmixing algorithms. Lincoln Labora-
tory Journal, 14(1):55–78, 2003.

[179] P.W. Mausel, W.J. Kramber, and J.K. Lee. Optimum band selection for
supervised classification of multispectral data. Photogrammetric Engineering
& Remote Sensing, 56:55–60, 1990.

[180] Stephen D. Stearns, Bruce E. Wilson, and James R. Peterson. Dimensionality
reduction by optimal band selection for pixel classification of hyperspectral
imagery. Applications of Digital Image Processing XVI, 2028:118–128, 1993.

[181] Hannu-Heikki Puupponen. Unmixing methods in novel applications of spec-
tral imaging. Jyväskylä studies in computing, 211:1456–5390, 2014.

142



Bibliography

[182] A. A. Green, M. Berman, P. Switzer, and M. D. Craig. A transformation
for ordering multispectral data in terms of image quality with implications
for noise removal. IEEE Transactions on Geoscience and Remote Sensing,
26(1):65–74, 1988.

[183] Chein-I. Chang. Hyperspectral Data Processing: Algorithm Design and
Analysis. Wiley, Hoboken, NJ, 1 edition edition, 2013.

[184] J. W. Boardman. Geometric mixture analysis of imaging spectrometry data.
In Geoscience and Remote Sensing Symposium, 1994. IGARSS ’94. Surface
and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpre-
tation., International, volume 4, pages 2369–2371 vol.4, 1994.

[185] Michael E. Winter. N-FINDR: an algorithm for fast autonomous spectral
end-member determination in hyperspectral data. Imaging Spectrometry V,
3753:266–276, 1999.

[186] J. M. P. Nascimento and J. M. B. Dias. Vertex component analysis: a fast
algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience
and Remote Sensing, 43(4):898–910, 2005.

[187] C. I. Chang, C. C. Wu, W. Liu, and Y. C. Ouyang. A New Growing Method
for Simplex-Based Endmember Extraction Algorithm. IEEE Transactions on
Geoscience and Remote Sensing, 44(10):2804–2819, 2006.

[188] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J.F. Hunting-
ton. ICE: a statistical approach to identifying endmembers in hyperspectral
images. IEEE Transactions on Geoscience and Remote Sensing, 42(10):2085–
2095, 2004.

[189] A. Zare and P. Gader. Sparsity Promoting Iterated Constrained Endmember
Detection in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing
Letters, 4(3):446–450, 2007.

[190] D. M. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng. Integra-
tion of spatial-spectral information for the improved extraction of endmembers.
Remote Sensing of Environment, 110(3):287–303, 2007.

[191] S. Pargal, S. Agarwal, P. K. Gupta, and H. M. A. van der Werff. Spatial-
spectral endmember extraction for spaceborne hyperspectral data. Interna-
tional Conference on Image Information Processing, pages 1–6, 2011.

[192] A. Plaza, P. Martinez, R. Perez, and J. Plaza. Spatial/spectral endmember
extraction by multidimensional morphological operations. IEEE Transactions
on Geoscience and Remote Sensing, 40(9):2025–2041, 2002.

143



BIBLIOGRAPHY

[193] Daniel C. Heinz and Chein-I. Chang. Fully constrained least squares linear
spectral mixture analysis method for material quantification in hyperspectral
imagery. IEEE transactions on geoscience and remote sensing, 39(3):529–
545, 2001.

[194] G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G.
Aalders. Hyperspectral imaging for non-contact analysis of forensic traces.
Forensic Science International, 223(1):28–39, 2012.

[195] Thierry Erudel, Sophie Fabre, Thomas Houet, Florence Mazier, and Xavier
Briottet. Criteria Comparison for Classifying Peatland Vegetation Types
Using In Situ Hyperspectral Measurements. Remote Sensing, 9(7):748, 2017.

[196] Rami Piiroinen, Janne Heiskanen, Eduardo Maeda, Arto Viinikka, and Petri
Pellikka. Classification of Tree Species in a Diverse African Agroforestry
Landscape Using Imaging Spectroscopy and Laser Scanning. Remote Sensing,
9(9):875, 2017.

[197] Jeremy J. Andrew, Mark A. Browne, Ian E. Clark, Tom M. Hancewicz,
and Allen J. Millichope. Raman Imaging of Emulsion Systems. Applied
Spectroscopy, 52(6):790–796, 1998.

[198] Roger A. Schultz, Thomas Nielsen, Jeff R. Zavaleta, Raynal Ruch, Robert
Wyatt, and Harold R. Garner. Hyperspectral imaging: a novel approach for
microscopic analysis. Cytometry Part A, 43(4):239–247, 2001.

[199] Cyril Ruckebusch. Introducing special issue on chemical image analysis.
Journal of Chemometrics, 2018.

[200] Thomas M. Hancewicz and Ji-Hong Wang. Discriminant image resolution:
a novel multivariate image analysis method utilizing a spatial classification
constraint in addition to bilinear nonnegativity. Chemometrics and Intelligent
Laboratory Systems, 77(1):18–31, 2005.

[201] L. Duponchel, W. Elmi-Rayaleh, C. Ruckebusch, and J. P. Huvenne. Mul-
tivariate Curve Resolution Methods in Imaging Spectroscopy: Influence of
Extraction Methods and Instrumental Perturbations. Journal of Chemical
Information and Computer Sciences, 43(6):2057–2067, 2003.

[202] Anna de Juan, Romà Tauler, Raylene Dyson, Claudia Marcolli, Marianne
Rault, and Marcel Maeder. Spectroscopic imaging and chemometrics: a
powerful combination for global and local sample analysis. TrAC Trends in
Analytical Chemistry, 23(1):70–79, 2004.

[203] Anna de Juan, Marcel Maeder, Thomas Hancewicz, and Romà Tauler. Use of
local rank-based spatial information for resolution of spectroscopic images.
Journal of Chemometrics, 22(5):291–298, 2008.

144



Bibliography

[204] Siewert Hugelier, Olivier Devos, and Cyril Ruckebusch. On the imple-
mentation of spatial constraints in multivariate curve resolution alternating
least squares for hyperspectral image analysis. Journal of Chemometrics,
29(10):557–561, 2015.

[205] Willem. Windig and Jean. Guilment. Interactive self-modeling mixture analy-
sis. Analytical Chemistry, 63(14):1425–1432, 1991.

[206] Rolf Manne. On the resolution problem in hyphenated chromatography.
Chemometrics and Intelligent Laboratory Systems, 27(1):89–94, 1995.

[207] Liu Jianzhuang, Li Wenqing, and Tian Yupeng. Automatic thresholding of
gray-level pictures using two-dimension Otsu method. International Confer-
ence on Circuits and Systems, 1:325–327, 1991.

[208] S. Hugelier, O. Devos, and C. Ruckebusch. A smoothness constraint in
multivariate curve resolution-alternating least squares of spectroscopy data.
In Cyril Ruckebusch, editor, Data Handling in Science and Technology,
volume 30, pages 453 – 476. Elsevier, 2016. DOI: 10.1016/B978-0-444-
63638-6.00014-0.

[209] Alison L. Chippie, Peter R. Jamieson, Caroline M. Golt, Chia-Hua Hsu, and
Y. Martin Lo. Quantitative Analysis of Fat and Moisture in Mayonnaise
Using Fourier Transform Infrared Spectrometer. International Journal of
Food Properties, 5(3):655–665, 2002.

[210] Willem van Nieuwenhuyzen and Beranrd F. Szuhaj. Effects of lecithins and
proteins on the stability of emulsions. Lipid / Fett, 100(7):282–291, 1998.

[211] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse Principal Component
Analysis. Journal of Computational and Graphical Statistics, 15(2):265–286,
2006.

[212] A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A Direct
Formulation for Sparse PCA Using Semidefinite Programming. SIAM Review,
49(3):434–448, 2007.
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