

UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE 1

SCIENCE DE LA MATIERE, DU RAYONNEMENT ET DE L'ENVIRONNEMENT

DOCTORAT

Optiques, Lasers, Physico-Chimie, Atmosphère

Laboratoires d'accueil:

IFP Energies Nouvelles, Division: Systèmes Moteurs et Véhicules

et

PC2A, CNRS: Physico-Chimie des Processus de Combustion et de l'Atmosphère

Mamady KEITA

MODELING OF SOOT PARTICLES NUCLEATION FROM COMBUSTION PROCESSES

Soutenue le 14 décembre 2017

<u>Composition du Jury</u>:

Rapporteurs :	M. Guillaume DAYMA	Professeur, Université d'Orléans	
	M. Alexander KONNOV	Professeur, Université de Lund	
Examinateurs :	M ^{me} Benedetta FRANZELLI	Chargée de Recherche, Université	
		Paris-Saclay	
	M ^{me} Pascale DESGROUX	Directrice de Recherche, Université	
		de Lille 1 Sciences et Technologies	
	M. Olivier COLIN	Ingénieur de Recherche, IFP-Energies	
		Nouvelles	
Directeur de thèse :	M. Abderrahman El BAKALI	Professeur, Université de	
		Lille1 Sciences et Technologies	

Acknowledgements

Firstly, I would to express my deepest gratitude to my advisors Dr. André Nicolle (ENSTA Paritech, former IFPEN) and Pr. Abderrahman El Bakali (Professor at the University of Lille 1) for the excellent guidance in preparing this thesis and the continuous support of my Ph.D study and related research, for their availability, motivation and immense knowledge. I had a great opportunity not only to explore many research fields and develop skills that can help me to conduct a research but also, skills related to written and verbal communications and Human skills (teamwork, relational skills and curiosity). I could not have imagined having better advisors and mentors for my Ph.D study. I express my deepest appreciation to Dr. Damien Aubagnac-Karkar (Researcher at IFPEN) for his great support in using his soot model and for his advices and suggestions in writing this thesis.

I would like to thank my thesis committee members: Pr. Guillaume Dayma (Professor at the University of Orléans), Pr. Alexander Konnov (Professor at the University of Lund), Dr. Benedetta Franzelli (Research Coordinator at CNRS, University of Paris-Saclay), Dr. Pascale Desgroux (Research Director at CNRS, University of Lille 1) and Dr. Olivier Colin (Research Coordinator at IFPEN), for their availability and for agreeing to assess my work.

I thank Dr. Antonio Pires Da Cruz (Program Manager at IFPEN) and Dr. Christian Angelberger (Expert at IFPEN) for accepting me as the right candidate to take part of this project in the engines and vehicles modeling department of IFPEN. My thoughts also go to all the staff of this division, especially to Stephane Henriot (Head of engine and vehicle systems division at IFPEN). I thank all the staff of PC2A laboratory, Dr. Pascale Desgroux (Research Director at CNRS), Dr. Laurent Gasnot (Head of PC2A laboratory), Dr. Xavier Mercier (Research Coordinator at CNRS) and Christopher Betrancourt (Ph.D candidate at PC2A) for accepting me in their Lab and for providing experimental data in the framework of the ASMAPE (Advanced Soot Model for Aeronautics and Piston Engines) project.

My sincere thanks also go to Dr. Christophe Dujardin (Director of Studies at ENSCL) who provided me an opportunity to join IFPEN first as intern and for his recommendation and advice to accept this Ph.D position. Without his precious support, it would not be possible to conduct this research.

I thank my office colleagues of IFPEN and all the Ph.D candidates of IFPEN for the stimulating discussions and for all the fun we have had in the last three years. I also thank my colleagues of PC2A Laboratory for their kind invitations for lunch and for having diner together.

Last but not the least, I would like to thank my family: my parents, my wife and my brothers and sisters for their unconditional support throughout writing this thesis and my life in general.

Abstract

To better control soot particles emission and minimize their health and environmental effects, it is crucial to better understand their formation mechanisms in particularly combustion processes. The first step of these particulates matter formation is their precursors PAH (Polycyclic Aromatic Hydrocarbons) formation, followed by the nucleation process which links the gas-phase (PAH chemistry) and solid-phase (particles).

In the first part of this work, we developed a new detailed chemical kinetic mechanism describing accurately both low and high-temperature ignition and combustion of a wide range of liquid transportation and laboratory fuels as well as the formation of PAH up to coronene, suspected to be major soot precursors. Surrogate mixtures containing n-decane, iso-octane and n-propylbenzene were selected to represent liquid transportation fuels based on their cetane numbers (CN) and threshold sooting index (TSI). Including new reactions paths from recent studies resulted in the improvement of mechanism predictivity (ignition delay times, laminar flame speeds and species mole fractions) over a wide range of experimental conditions (shock tubes, jet stirred reactor, burner stabilized premixed flames, and freely propagating premixed flames). Then, this mechanism was utilized to analyze some key intermediate species as well as PAHs formation pathways for a variety of fuels.

In the second part of this work, a sectional soot model is used with the developed kinetic mechanism in order to investigate soot particles nucleation mechanisms in reproducing experimental data tendencies (soot volume fractions and particles diameters). This model accounts for soot particle inception, condensation, surface growth, coagulation and oxidation processes and directly predicts the Soot Volume Fraction (SVF) and the Soot Number Density Function (SNDF) at each time and location. This couple of kinetic and soot models is run on the detailed kinetic solver Cantera in order to solve both the gas and disperse solid phases in steady laminar flame conditions. The soot model used with the developed detailed kinetic mechanism is validated over premixed laminar methane, ethylene and n-butane flames at various equivalence ratios. Homomolecular and Heteromolecular dimerizations of modest size of PAHs from pyrene to coronene (mass of monomer ranging from 200 to 300 amu) have been considered for particle nucleation modeling.

Keywords: Soot, Nucleation, Kinetic Mechanism, PAH, Modeling, Sectional Method, Flames

Résumé

Pour mieux contrôler l'émission des particules de suies et minimiser leurs impacts sur l'environnement et la santé publique, il est crucial de mieux comprendre leurs mécanismes de formation, en particulier dans les processus de combustion des hydrocarbures. La première étape de formation de ces matières carbonées est la formation de leurs précurseurs appelés HAP (Hydrocarbures Aromatiques Polycycliques), suivie de l'étape de nucléation qui fait le lien entre la phase gaz où les HAP sont formés et la phase solide qui correspond à la formation des particules de suies.

La première partie de ce travail de recherche est focalisée sur le développement d'un nouveau schéma cinétique détaillé, décrivant avec précision non seulement l'auto-inflammation et la combustion basse et haute températures des carburants liquides de transport et ceux du laboratoire, mais aussi la formation des HAP jusqu'au coronène car ces HAP sont suspectés d'être les principaux précurseurs de suies. Des mélanges de carburants modèles contenant le n-décane, l'iso-octane et le n-propylbenzène ont été sélectionnés pour représenter les carburants liquides de transport (Essence, Kérosène et Diesel), en se basant sur leurs nombres de cétane (CN) et leurs indices de suies (TSI). L'ajout de nouvelles voies de reactions issues des études récentes a permis l'amélioration de la prédictivité (délais d'auto-inflammation, vitesses de flamme et fractions molaires des espèces) sur une large gamme de conditions expérimentales (tubes à chocs, réacteurs parfaitement agités, flammes stabilisées sur un brûleur). Ensuite, ce schéma cinétqiue détaillé a été utilisé pour analyser les voies de formation de quelques espèces intermédiaries clés ainsi que les HAP lors de la combustion d'une grande variété de carburants.

Dans la deuxième partie de ce travail, un modèle sectionnel de suies est utulisé avec le présent schéma cinétique afin d'investiguer les mécanismes de formation des particules de suies en reproduisant les tendences des données expérimentales (fractions volumiques de suies, diamètres des particules). Ce modèle de suies décrit la nucleation, la condensation, la croissance en surface, la coagulation et l'oxydation des particules de suies. Les calculs sur les suies ont été effectués sur un solveur cinétique Cantera afin de résoudre la phase gaz et la phase solide disperse dans des conditions de flammes laminaires stationnaires. Le couple "schéma cinétique-modèle sectionnel de suies" a été validé sur les flammes prémélangées laminaires de methane, d'éthylène et de n-butane à différentes richesses. Les dimérisations homomoléculaire et hétéromoléculaire des HAP de taille modérée (du pyrène au coronène) ont été considérées pour la modélisation de la nucleation des particules de suies.

Mots clés: Suies, Nucléation, Schéma Cinétique, HAP, Modélisation, Méthode Sectionnelle, Flammes

Table of Contents

Acknowledgements				
Abstract				
Résumé7				
Table of Contents 9				
Chapter 1: Introduction				
1.1. General context				
1.1.1. Soot formation process16				
1.2. Outline of the thesis				
Chapter 2: Literature Review				
2.1. Proposed PAHs molecule for nucleation				
2.2. Main PAH formation pathways				
2.2.1. HACA mechanism				
2.2.2. HAVA (Hydrogen Abstraction and Vinyl Addition) mechanism				
2.2.3. Phenyl Addition and Cyclization (PAC) pathway:				
2.3. Soot formation mechanism				
2.3.1. Gaseous precursors of soot particles				
2.3.2. Soot particles nucleation				
2.3.3. Mass growth of soot particles				
2.3.4. Oxidation of PAHs and soot particles				
2.3.5. Aggregation of soot particles				
2.4. Soot nucleation mechanisms				
2.5. Soot models				
2.5.1. Empirical models				
2.5.2. Kinetic models				
2.5.2.1. Method of moments				
2.5.2.2. Sectional method				
2.6. Conclusions				
Chapter 3: Modeling Tools and Methods 47				
3.1. One dimensional premixed laminar flames: governing equations				
3.2. The 1D premixed flame code				
3.3. Sensitivity analysis				

3.4. Rate of production analysis	50
3.5. Sectional Soot Method	51
3.5.1. Governing equations and variables in the model	51
3.5.2. Volume discretization	52
3.5.3. Soot particles volume number in a section <i>i</i>	53
3.5.4. Collisional source terms	54
3.5.5. Inception and condensation	55
3.5.6. Surface chemistry	56
3.5.7. Surface growth	57
3.5.8. Oxidation	57
3.5.9. Parameter α: fraction of soot surface radical sites available for reactions	58
Chapter 4: Gas-phase Chemistry	61
4.1. Objective	61
4.2. Surrogate fuels formulation	61
4.3. Development of a detailed chemical kinetic mechanism	66
4.4. Mechanism Validation Results and Discussions	70
4.4.1. Premixed laminar flames configuration	72
4.4.1.1. Saturated aliphatic hydrocarbon flames	72
4.4.1.1.1. Methane flame	72
4.4.1.1.2. N-butane flames	76
4.4.1.1.3. n-butane doped with n-propylbenzene flames	94
4.4.1.1.4. Iso-octane flame	103
4.4.1.1.5. n-decane flame	111
4.4.1.2. Unsaturated aliphatic hydrocarbon flames	117
4.4.1.2.1. Ethylene flames	117
4.4.1.3. Benzene and monoalkyles aromatic flames	129
4.4.1.3.1. Benzene flame	129
4.4.1.3.2. n-propylbenzene flame	138
4.4.1.4. Liquid transportation fuel flames	145
4.4.1.4.1. Jet fuel flame	146
4.4.1.4.2. Gasoline flame	153
4.4.2. Jet Stirred Reactor (JSR) Configuration	158
4.4.2.1. Jet fuel combustion	158
4.4.2.2. Diesel fuel	160

4.4.3. Ignition delay times and laminar flame speeds	
4.4.3.1. Gasoline	
4.4.3.2. Jet fuel	
4.4.3.3. Diesel fuel	
4.5. Conclusions	
Chapter 5: Solid phase: Soot particles Nucleation Modeling	
5.1. Objective	
5.2. Nucleation modeling: soot precursors considered	
5.3. Collision efficiency	
5.4. Results and Discussions	
5.4.1. Methane flame	
5.4.2. Ethylene flame	
5.4.3. n-butane flames	
5.5. Comparison between investigated flames	
5.6. Conclusions	
Chapter 6: Conclusions and Future Work	
References	
Appendices	

Chapter 1: Introduction

1.1. General context

Combustion is an old technology of mankind that has been used for several years. Most of the worldwide energy support (about 90%) in traffic, heating, or electric power generation is provided by combustion [1]. Following the continuous growth in demand of energy and the need of reduction of pollutants emitted to produce energy, the formation of pollutants from combustion processes has become one of the key topics for researchers. In automotive sector for example, pollutants emission mitigation is really important not only for fuel engine efficiency, but also for the human health and environment. Given the upcoming of new regulations in terms of pollutants emissions into the environment, there is a worthwhile cause to study properly this process.

- Norms in automotive sector

The current pollutants under European regulations are the following: carbon monoxide (CO), nitrogen oxides (NOx), unburned hydrocarbons and particulate matter (PM). These pollutants are products of an incomplete combustion process and have a huge impact on the air quality. Carbon dioxide (CO₂) is also of the main combustion products that is not currently under regulation, but is known to cause a global warming as a greenhouse gas. Figure 1 shows the evolution of regulations on pollutant emissions for land cars in Europe, United States of America and Japan [2].

Figure 1 : Exhaust emissions regulations around the world for nitrogen oxides (NOx) and for particulate matter (PM) [2].

It can be seen that the amount of exhaust emissions has drastically decreased from 1998 to 2014 for all the regulations. For example, within the EU regulation, a reduction factor of 20 for PM and a factor of 11 for NOx have been achieved. The amount of PM decreased from 0.10 to 0.005 g/km, while that of NOx is decreased from 0.9 to 0.08 g/km. The development of advanced technologies including advanced combustion devices and advanced aftertreatment systems has allowed reaching such goals. The amount of the other pollutants according to the EURO 6 regulation is presented as follows in

Table 1:

Norm [mg/km]		Euro 6 Gasoline	Euro 6 Diesel
Nitrogen oxides (NOx)		60	80
Carbon monoxide		1000	500
Unburned hydrocarbons		100	-
Unburned non-methane hydrocarbons		68	-
Unburned hydrocarbons + NOx		-	170
	Particulate matter (PM)	4.5	5
	Number of particulate matter [#/km]	6 x10 ¹²	6 x10 ¹¹

Table 1 : Pollutants emissions under EURO 6 regulation.

Both technologies: gasoline and diesel fuel engines are presented. A particular attention is given to diesel engines regarding NOx formation since these systems operate at lean condition (φ <1), where a great amount of NOx can be formed through oxygen combination with nitrogen at high temperature (> 2300 K) [2]. Gasoline engines operate at stoichiometric condition (φ =1). The specific mass of CO allowed for spark ignition (SI) engines is two times higher than that of diesel engines. There is no regulation on unburned hydrocarbons for diesel engines, while gasoline engines are limited to 100 mg/km for unburned hydrocarbons and 68 mg/km for unburned non-methane hydrocarbons. However, the amount of unburned hydrocarbons + NOx for diesel engines is limited to 170 mg/km. Regarding particulate matter, SI engines are allowed to emit ten times more particles than diesel engines. In the latter case, the amount and the number of particulate matter is important due to the non-premixed

combustion that take place, the local equivalence ratio in diesel engines can be very high. As a result, soot particles which are one form of particulate matter can be formed in these conditions, where the concentration of oxygen is very low. Pischinger et al. [3] proposed a diagram that explains the formation of soot and NOx as a function of relative molar air/fuel ratio as depicted in Figure 2.

Figure 2 : Formation of pollutants according to Pischinger diagram [3], λ represents the relative air fuel ratio.

It can be seen from this diagram that NOx formation is favored at lean condition and at temperature above 2300 K. Soot and CO are formed at rich condition and at temperature above 1700 K. The formation of unburned hydrocarbons and CO below 1700 K is a phenomenon controlled by the kinetics [2].

Despite the severity of current regulations on pollutant emissions, there is still need to avoid their production from combustion processes not only for human health, but also for the global warming and the technical damages to devices. On one hand, even if gasoline engines emit less PM than diesel ones, both technologies produce PM. On the other hand, the constantly growing number of diesel engines particularly in Europe pleads for the intensification of particulate matter emissions. New regulations for the future will require more limitations on pollutants emissions and new pollutants such as aldehydes can also be regulated. Aldehydes are already under regulation for gasoline engines in California, since they are found to play an important role in photo-oxidation pollution [2]. While

motivations for pollutants mitigation are provided, the understanding of their formation process as well as scientific tools are required to model all the processes involved. With this in mind, the present work focuses on both soot particles and their gaseous precursors formation mechanism since their harmfulness has been clearly demonstrated.

1.1.1. Soot formation process

Soot is one form of particulate matter that is formed from incomplete combustion processes. In the transportation field, soot is mainly produced from diesel engines (up to 87 % mass of cases in transportation field) [4]. Non negligible contribution also comes from spark engines and in aeronautics field. There are several reasons to better understand and control soot particles formation. Among these reasons, one can put forward:

- The fine particle toxicity: fine particle can easily penetrate into human body to cause heart and lung diseases [5].
- The significant contribution to climate change (contribution to radiative forcing).
- The radiative impact and interaction with turbine blades: technical damage in industries.
- The formation of contrail related to cloud albedo: in aircraft's wake.

Soot particles can be classified as fine particles (diameter $< 2.5 \ \mu$ m). In epidemiological studies, fine particles are found to increase mortality due to serious health attack such as heart and lung diseases. In United States for example, the fine particles may cause up to 60,000 deaths per year [6]. Soot particles are associated with Poly Aromatic Hydrocarbons (PAH), which are adsorbed onto their surface. These PAH are found to be mutagenic or tumorigenic. For example, benzo[a]pyrene (5 aromatic rings) causes lung cancer [7]. Soot particles are also found to be suspended in the atmosphere as aerosols (air pollutants), forming brown cloud that causes regional warming. Soot deposition might be responsible for 95% of the polar ice melting [8]. It may cause several technical damages in industries such as the coating of combustion chambers and their interaction with turbine blades (gas turbines damages in power generation). Figure 3 shows a general overview of soot particles formation from homogeneous gaseous mixtures.

molecular weight, time

Figure 3: Soot particles formation process in premixed flames [9]. PCAH stands for PeriCondensed Aromatic Hydrocarbon and AALH denotes Aromatic Aliphatic Linked Hydrocarbon. The term AALH is related to the proposed nucleation mechanism where PAHs are linked by σ bonds.

Soot and PAH formation have been investigated for decades by numerous research groups [8,10–13]. Their formation still remains poorly understood, mainly the nucleation step. It is widely accepted within combustion community that the gaseous species known as Polycyclic Aromatic Hydrocarbons (PAH) are precursors of soot particles as shown on the caption above. Therefore, reliable detailed kinetic mechanisms that describe accurately PAH formation is required to account for soot particles formation modeling. The gas-phase chemistry is a crucial part of the modeling study and need to be carefully elaborate in order to develop robust soot models. Soot formation and their emission must be controlled to cleanup environment and reduce human health attack and also to promote efficient utilization of petroleum based fuels and biofuels. Combustion processes must be well understood for developing cleaner and more economic combustion equipment. For that, physical and chemical processes involved in combustion process have to be better understood.

1.2. Outline of the thesis

As stated in the previous section, soot particles nucleation modeling from gaseous species (PAHs) must be carefully investigated. The present work focuses on the chemical understanding of precursor formation including PAHs and nascent soot formation mechanism. The elucidation of chemical

reactions network is required for predicting the soot particles formation and for improving our knowledge on chemical processes involved in combustion. For that, two principal components are investigated:

- Gas-phase chemistry: development of a detailed chemical kinetic mechanism that describes accurately liquid transportation as well as laboratory fuels combustion. Determining of a large set of gas-phase species and reactions.
- (2) Computational modeling of soot nucleation from gaseous species: investigating the role of PAHs widely involved in the nucleation process.

One dimensional premixed laminar flames are considered for soot particles nucleation modeling. In practical systems such as SI engines, combustion is turbulent. In premixed turbulent flames, combustion is a more-dimensional phenomenon and may as such not be treated as a one-dimensional problem. However, both premixed and turbulent premixed flames have the same physical processes and many turbulent flame theories are based on underlying laminar flame structure.

A brief description of each chapter is presented as follows:

In chapter 2, general information concerning soot gaseous precursors (PAHs) used in the previous works, different proposed soot nucleation mechanisms and PAHs formation pathways as a function of fuels are presented.

In chapter 3, modeling tools and methods used to develop a detailed chemical kinetic mechanism and to investigate soot nucleation mechanism are presented.

In chapter 4, the precursor gas-phase chemistry is mainly discussed. A methodology describing commercial surrogate fuels formulation as well as the development of a detailed chemical kinetic mechanism for both commercial and laboratory (single component) fuels combustion modeling. The modeling results for the mechanism validation are presented.

In chapter 5, the particle nucleation modeling (solid phase) is presented. A description of nucleation modeling methodology as well as the investigation of the chosen PAH molecules for soot particles inception are discussed. Finally, results obtained for particles nucleation modeling are presented and discussed.

In chapter 6, the summary of the present study and future work are presented.

Chapter 2: Literature Review

2.1. Proposed PAHs molecule for nucleation

While PAHs are considered by many research groups as soot precursors, the nature of those involved in the nucleation process remains ambiguous and very difficult to determine. This question has been a topic of research for decades. Due to experimental findings limitations, numerical simulations [14–17] are widely used for such investigations.

Frenklach et al. [18,19] concluded that the dimerization of pyrene was necessary to reproduce soot particle size distributions. Miller et al. [20] claimed that the soot nucleation process is most likely if the PAH size is at least four times larger than pyrene. These results are based on the computed lifetimes of dimers under flame conditions. Subsequently, Frenklach et al. [21] performed molecular dynamics calculations and concluded that aromatic dimers of species as small as pyrene can survive long enough to evolve into soot nuclei. From these results, pyrene dimerization was widely used as the key of soot nucleation step but no definitive experimental findings support this assumption. Sabbah et al. [22] presented an experimental and theoretical study of pyrene dimerization at temperatures ranging from 60 to 470 K. Figure 4 shows the results obtained from this study. In Figure 4 (b) (at 120 K), the signal first increases linearly with the increase of pyrene concentration. Above a certain pyrene concentration value, a sudden decrease of pyrene monomer signal is observed. The authors explained this loss of monomer signal by the onset of nucleation and proposed that at these higher degrees of supersaturation, pyrene dimers may be considered as critical nuclei within the framework of classical nucleation theory [23]. In Figure 4 (a) (at 235 K), an excellent linearity is observed between pyrene monomer signal and pyrene monomer concentration, indicating the absence of nuclei formation.

Figure 4 : Plots of the pyrene monomer signal (σ_{py}) as a function of the nominal density (pyrene concentration at each flow temperature employed). The upper panel (a) demonstrates the absence of significant nucleation at 235 K at pyrene densities up to 4.10¹⁴ molecules cm⁻³ for reaction times of 143 µs at a total density of 2.06 10¹⁶ molecules cm⁻³. In the lower panel (b), nucleation at a temperature of 120 K is evidenced by the collapse of the pyrene monomer signal above a nominal pyrene density of 1.7 10¹⁴ molecules cm⁻³ for a reaction time of 118 µs and a total density of 1.96 10¹⁶ molecules cm⁻³.

According to their predictions, dimerization occurs at 235 K if the pyrene partial pressure is in the range of $0.8-3.9 \times 10^{-5}$ bar which is in good agreement with their experimental findings. Further, the partial pressure at which 10% conversion to the pyrene dimer may occur at high temperature (up to 1500 K) is in excess of 40 bar. Such high value of partial pressure of pyrene can clearly not be reached in flames conditions or any other combustion environment.

Violi and Elvati [15] conducted a thermodynamic analysis of the physical growth of poly-aromatic hydrocarbons using atomistic molecular dynamics simulations that take into account the entropic contributions that can effect dimerization or trimerization of PAHs. These results clearly showed that even at 1000 K, only the formation of dimers of species such as ovalene or heavier are favored over their corresponding free monomers, ruling out the dimerization of pyrene as the only step for soot formation. These results are consistent with Wang's [8] thermodynamic calculations demonstrating that dimerization of a PAH molecule as big as coronene ($C_{24}H_{12}$) is not feasible beyond 1000 K.

From these calculations, only the dimerization of PAH molecules at least as heavy as circumcoronene $(C_{54}H_{18})$ is probable at 2300 K. Teini et al. [24] determined the PAH molecules that would most likely contribute in soot production by measuring their fringe length which is a function of the number of carbon atoms in the molecule, the fuel composition and the temperature history. They investigated acetylene pyrolysis in a rapid compression machine at 10 atm over the temperature range of 1600-2000 K. The mean fringe length of the soot forming PAH clusters was 0.65 nm corresponding to a PAH molecule with 20 carbon atoms and the size of PAH did not change considerably within the soot particles, showing that neither temperature history nor residence time had a significant impact on the distribution of these molecules. Additionally, PAH molecules deposited on both nascent and aged soot particles were shown to have a constant size distribution. Moreover, Dobbins et al. [25] investigated experimentally the chemical evolution and the PAH components of soot particles extracted from the centerline of a laminar ethylene diffusion flame. They found that the thermodynamically stable PAH species also called stabilomers with a mass ranging between 202 amu ($C_{16}H_{10}$) and 374 amu ($C_{30}H_{14}$) are the constituents of the soot precursors particles. However, PAH species $C_{20}H_{12}$, $C_{22}H_{12}$ and $C_{24}H_{12}$ with atomic mass units of 252, 276 and 300 respectively had the highest concentrations. In a recent investigation, Saffaripour et al. [26] have improved their soot models for jet fuel (jet A-1) diffusion flames by implementing some changes in their models such as the nature of soot particle precursors (PAH molecules). They replaced pyrene ($C_{16}H_{10}$) by benzopyrene ($C_{20}H_{12}$) in their models according to results from the above-mentioned study by Teini et al. [24]. This modification of their model resulted in an improvement related to physical soot formation prediction, notably the chemical composition of soot particles. This improvement is observed by comparing the soot concentration on the flame wings, at lower flame heights, for the pyrene based model (for which the overprediction was more important) and benzopyrene based model. They attributed this improvement to the slower formation of benzopyrene compared to pyrene. The same observations have been performed in the flame centerline region (at intermediate flame heights) where the concentration of Benzo(a)pyrene is higher than that of pyrene, allowing a better prediction of soot volume fraction in that flame region. However, despite the improvement brought to the model (good prediction of soot particle size and structure), an underprediction by up to a factor of 5 in soot concentration in the flame centerline region is still observed. Chung [27] investigated the dimerization of PAH molecules and their collision efficiency by numerical simulations. He calculated accurate rates for pyrene dimerization and also the dimerization of larger PAH molecules with different sizes and morphologies. He defined nucleation rate through dimerization in terms of the collision efficiency and collision frequency of two molecules. The nucleation rate r_{nuc} is expressed as follows:

$$r_{nuc} = \frac{1}{2N_A} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \beta_{ij} N_i N_j$$
 Equation 1

Where N_A is the Avogadro number and N_i , N_j are respectively the number density of *i* and *j* species, β_{ij} is the collision frequency. Assuming a free-molecular regime, β_{ij} is expressed as follows:

$$\beta_{ij} = \beta. \,\sigma_{ij} \sqrt{\frac{8k_B T}{\pi \mu_{ij}}}$$
 Equation 2

Where β is the collision efficiency, σ_{ij} is the reaction cross section between species *i* and *j* and μ_{ij} is the reduced mass of species *i* and *j*. It is worth noting that β is not a constant and depends considerably on temperature. The expression of the collision efficiency β given by the authors depends on the PAH mass (number of aromatic rings) and the temperature:

$$\beta = exp(p0 + p1 \times AR + p2 \times T^2 + p3 \times T \times AR + p4 \times AR^2 + p5 \times T^3 + p6 \times T^2 \times AR + p7$$
$$\times T \times AR^2 + p8 \times AR^3)$$

Where AR denotes the number of aromatic rings, T is the temperature and p0 to p7 are the fitting parameters.

If the colliding species are the same, the nucleation rate can be written as:

$$r_{nuc} = \beta . N_A d_{PAH}^2 . \sqrt{\frac{4\pi k_B T}{m_{PAH}}} [PAH]^2$$
 Equation 3

Where d_{PAH} is the diameter of the PAH molecule, m_{PAH} is the mass of the PAH molecule and [PAH] is the PAH concentration.

Figure 5 below shows the collision efficiency for three PCAH molecules. The effect on molecular mass and temperature are clearly observed. One can note that there is a difference in the magnitude of variation depending on molecular mass of PCAH. In the case of molecule III_0 , the collision efficiency drops from 0.400 at 500 K to 0.050 at 1500 K. In the case of molecule I_0 , the collision efficiency drops considerably from 0.10 at 500 K to 2.5x10⁻⁴ at 1500 K. Since soot zone

is within this range of temperature, the pyrene (molecule I_0) dimerization route depends highly on flame conditions, while molecule III_0 dimerization route is likely to occur at various temperature conditions.

Figure 5: Collision efficiency for 3 peri-condensed aromatic hydrocarbon I_0 : Pyrene; II_0 : Coronene; III_0 : circumcoronene [27].

Other authors such as D'anna et al. [28], Vander Wal et al. [29] and Franklin et al. [30] have focused their research on morphology, chemical evolution and internal structure of particles formed in flames. D'Anna et al. [28] focused on the morphology and number of molecules in the clusters at particle inception and they have computed by sectional method, the mass of particles, H content and internal structure. Their model was able to distinguish clearly between single high molecular mass molecules, clusters of molecules and aggregates of clusters. On the one hand, the above authors indicated that ordered and disordered aromatics coexist in incipient soot particles. The ordered ones are formed from planar (stacked) PAH, corresponding to PAH with only sixmembered rings, while the disordered ones are formed from non-planar PAH and/or randomly oriented [30]. They argued that particles with ordered structures are formed preferably at higher temperature and for long residence time in flame, while particles with disordered structures are favored at lower temperature and for short residence time. Moreover, they provided detailed information on the nature of PAH as shown in Figure 6 below: PCAH that contain only π bonds between C atoms (low H/C ratio) and incompletely condensed aromatics that contain π and σ bonds (high H/C ratio).

Figure 6 : Representation of aromatic compounds for C_{24} - C_{250} . Lines represent the limits of oligomers of benzene [28]. On the other hand, D'Anna et al. have examined the number of molecules in the clusters at different heights above the burner. They found that at particle inception, clusters comprise 2 to 8 molecules, in agreement with experimental data from HR-TEM (High Resolution Transmission Electronic Mircroscope). They also mentioned that at particle inception, three mass peaks are observed: molecules of aromatic compounds having masses up to 1000 amu, their clusters (nanoparticles) with masses up to 5000 amu and isolated particles (first single particles). However, they did not precise the

nature of PAHs at particle inception step.

- Heteromolecular dimerization

Most of soot models only account for homomolecular dimerization, meaning that the two colliding species are assumed to have the same chemical structure. The heteromolecular dimerization, which assumes that two or more reactants that have different chemical structure is rarely considered. This assumption is found to be an interesting route for soot nucleation comprehension. Indeed, experiments showed that several PAHs have been detected and quantified and collisions between these PAHs can potentially lead to soot particles inception, instead of considering only one PAH physical agglomeration.

Chung and Violi [31] investigated soot mass concentration prediction in a plug flow reactor. Figure 7 shows results obtained by considering collision between two molecules of pyrene and collision between pyrene and coronene molecules.

Figure 7: Heteromolecular dimerization compared to homomolecular dimerization for soot mass concentration prediction in a plug flow reactor configuration [32]. P denotes pyrene and C denotes coronene.

The results clearly show that including the heteromolecular dimerization (reaction between pyrene and coronene molecules) results in a much better prediction of soot mass concentration than the homomolecular dimerization alone (reaction between two molecules of pyrene). This is probably due to the collision efficiency effect $(5x10^{-4} \text{ for the homomelcular dimerization against } 3x10^{-3} \text{ for the heteromolecular pyrene/coronene dimerization at T=1500 K}), which increases with the molar mass [27]. Since the mean molar mass of coronene and pyrene is higher than that of pyrene only, one should expect to get higher collision efficiency in the coronene and pyrene case. However, one should not omit the effect of the mass action law that can significantly impact results even the collision efficiency is higher. Results obtained from Chung and Violi are also compared to those of Raj et al. [33] in term of collision efficiency between PAHs. One can notice that the collision efficiency obtained by Raj et al. [33] leads to an overprediction of the soot mass concentration. Moreover, no significant difference is observed by comparing homomolecular to heteromolecular dimerization. These results clearly show the significant influence of precursors on soot formation. Consequently, investigation on the$

dimerization of a large pool of reactive PAH molecules (multi-precursors nucleation) is necessary to better understand the soot formation mechanism.

2.2. Main PAH formation pathways

2.2.1. HACA mechanism

The nature of PAHs molecules widely involved in nucleation process raises many questions within combustion community as the mechanism involved is poorly understood because of experiment findings, which are very limited. From the previous reviews, PAHs molecules with moderate size (not larger than 300 amu) are found to be soot precursors [34]. However, understanding PAHs chemistry (gas-phase chemistry) is a key step in soot formation modeling as their respective contributions vary from one fuel structure to another, which influence nucleation in a complex way.

Starting from the first aromatic ring (benzene), PAH chemistry has been investigated by many researchers [11,35,36] during the last decades. Pathways leading to their formation remain controversial. It was reported that C_3 species combination plays a dominant role in benzene formation for the combustion of acetylene, C_3 fuels (propene, propane), n-heptane and n-decane flames [35], ethylene [36] and methane flames [37]. In C_4 fuels such as but-1,3-diene [35] or n-butane [38], ethylene [11,39,40] and iso-octane [35,40]: C_3 species combination and C_4 species reaction with acetylene seem to be dominant pathways leading to benzene production. In cyclohexane flame [35] benzene is mainly produced via the sequential dehydrogenation of the initial fuel. In the hexadiene doped methane diffusion flame [37] authors reported that benzene is mainly produced via the sequential combination is the dominant benzene production pathway. A large amount of cyclopentadiene in this doped flame has been observed, leading to cyclopentadienyl radical creation. In toluene flame [40] benzene is directly produced via fuel decomposition, which is faster than C_3 species combination or C_4 species and acetylene reaction.

Beyond benzene formation, several pathways leading to two-ring aromatic hydrocarbon (naphthalene) production have been proposed. Among them, the well-known HACA mechanism (H-abstraction- C_2H_2 -addition) [10] has received much attention. Castaldi et al. [36] reported that cyclopentadienyl

radicals combination might play a key role for naphthalene formation in ethylene flames. Colket et al. [41] and McEnally et al. [12] focused their investigation on benzyl radical route, indicating that benzyl radical reacts with propargyl radical to create directly naphthalene [41] or benzyl radical reacts with acetylene to form indene, which is subsequently converted into naphthalene by methyl radical addition [12]. Anderson et al. [42] have evaluated both routes (HACA and benzyl radical) in their investigation and suggested that the importance of HACA route in naphthalene formation is proportional or related to the maximum phenylacetylene concentration in flame, while that of benzyl route is proportional to the maximum toluene concentration. Moreover, authors suggested that both routes constitute the main naphthalene production pathways in the flames studied. Recent investigations carried out by Slavinskaya et al. [39] and Appel et al. [11] involved C₄ species reaction with phenyl radical (or benzene) besides HACA route (with phenylacetylene) and cyclopentadienyl radicals combination route. Wang et al. [40] studied different fuel structures: ethylene, n-heptane, iso-octane, benzene and toluene, and postulated that major pathways leading to naphthalene are C₄ species (i-C₄H₅; C₄H₃) reaction with phenyl radical or benzene and cyclopentadienyl radicals combination.

Regarding larger PAH formation (up to pyrene), the HACA mechanism is widely used. Castaldi et al. [36], Appel et al. [11] and Marinov et al. [43] have considered solely phenanthryl reaction with acetylene as the main pathway leading to pyrene in their kinetic mechanism. However, they observed that pyrene concentration was underpredicted and concluded that additional pathways beyond HACA mechanism might contribute to pyrene production as well. Slavinskaya et al. [39] proposed that species such as acetylene, diacetylene (C_4H_2), cyclopendienyl radical, phenyl radical and phenylacetylene might play a crucial role in PAH growth process, starting from the first aromatic ring. For example, for pyrene production, authors reported that acenaphthylene with diacetylene combination, phenanthryl radical with acetylene combination and phenylacetylene radical with phenylacetylene combination appear as the major pyrene production pathways. In recent investigations on different fuel structures: ethylene, n-heptane, iso-octane, benzene and toluene, Wang et al. [40] suggested that naphthyl radical with naphthalene combination might also play a role in pyrene production. An overview of aromatics formation pathways can be depicted as in Figure 8.

Figure 8 : Overview of different aromatics (up to Pyrene) formation pathways.

Computational studies (DFT) shows that the gaseous acetylene molecule plays a key role in PAHs growth process. The reaction mechanism of PAHs from acenaphthylene ($C_{12}H_8$) to Pyrene (C_6H_{10}) have been examined by Unterreiner et al. [44]. Authors brought to light the role of acetylene as a key species and considered the Hydrogen-Abstraction-Acetylene-Addition mechanism as one of the major paths in PAHs production. Results obtained from their work are presented as follows:

- Acenaphthylene formation: $C_{10}H_7$ [1] + $C_2H_2 \rightarrow C_{12}H_8$ [6] + H

Figure 9 shows the reaction enthalpies at 298 K for the acetylene addition to naphthyl radical [1] to yield acenaphthylene [6] and hydrogen. The reaction is exothermic by 163 kJ.mol⁻¹. The highest barrier of the total reaction path (relative to the educts) is 19 kJ.mol⁻¹. The reaction begins with the formation of [2] which proceeds to either [3] via hydrogen migration or to [4] under hydrogen atom loss. At B3LYP level the way to [3] shows a barrier of 26 kJ.mol⁻¹, significantly lower than the one to [4] of 150 kJ.mol⁻¹. The barrier of the ring cyclization of [3] to [5] is 42 kJ.mol⁻¹. Forming [6] under hydrogen loss has an activation barrier of 192 kJ.mol⁻¹, the transition state is 2 kJ.mol⁻¹ above the energy of the final product.

Figure 9 : Potential energy diagram of the reaction napthyl [1] + acetylene \rightarrow acenaphthylene [6] + H. The dashed line is a second reaction path. The reaction enthalpies are calculated from harmonic frequencies at 298 K and 0.1 MPa on B3LYP/SV(P) level [44]. The number indicated in the bracket stands for molecule identification as shown in the caption.

- Phenanthryl formation pathway : $C_{12}H_7$ [6a] + $C_2H_2 \rightarrow C_{14}H_9$ [17]

Figure 10 shows the reaction enthalpies at 298 K for the acetylene addition to acenaphthylenyl to yield phenanthryl radical.

Figure 10 : B3LYP/SV(P) potential energy diagram of the reaction acenaphthylenyl [6a] + acetylene \rightarrow phenanthryl [17]. The solid line is the most probable reaction pathway, the dashed and dotted lines are other pathways [44]. The number indicated in the bracket stands for molecule identification as shown in the caption.

This reaction is a transformation reaction from a five to six-membered ring. The reaction is exothermic by 312 kJ.mol^{-1} . The HACA mechanism proceeds through formation of [11] and [16], respectively and the highest barrier of the reaction path is found to be 227 kJ.mol^{-1} for the formation of [11].

- Pyrene formation pathway: $C_{14}H_9$ [17] + $C_2H_2 \rightarrow C_{16}H_{10}$ [23] + H

Figure 11 shows the reaction enthalpies at 298 K for the acetylene addition to phenanthryl to form pyrene.

Figure 11: Potential energy diagram of the reaction phenanthryl [17] + acetylene \rightarrow pyrene [23] + H. Values calculated at B3LYP/SV(P) level. The solid, dashed and dotted lines are three different pathways [44]. The number indicated in the bracket stands for molecule identification as shown in the caption.

This reaction is six-membered ring cyclization with an exothermic reaction of 257 kJ.mol⁻¹. The highest barrier of the total path is calculated to be 29 kJ.mol⁻¹. Starting after the formation of [**18**] the radical has three possibilities to react. For the first way, molecule [**21**] is obtained under hydrogen loss. The second way leads to [**19**] via ring cyclization and the last way is a H-migration from the C_2H_2 group to the six-membered ring [**20**] followed by ring cyclization [**22**]. Both radicals, [**19**] and [**22**], decompose to pyrene [**23**].

- Fluoranthene formation pathway: C_6H_6 [1] + $C_{10}H_7$ [2a] $\rightarrow C_{16}H_{10}$ [8] + H_2 + H.

Figure 12 shows the reaction enthalpies at 298 K for the benzene addition to naphthyl radical to form fluoranthene.

Figure 12: Potential energy diagram of the aromatic condensation reaction benzene [1] + naphthyl [2a] \rightarrow fluoranthene [8] + H + H2. Calculated at B3LYP/SV(P) level. The dashed line is the reaction pathway for phenyl [1a] + naphthalene [2] [44].

This reaction shows the aromatic condensation of benzene [1] with a naphthyl radical [2a]. The reaction is endothermic by 24 kJ.mol⁻¹ and the highest barrier of the reaction path, relative to the educts, is obtained to be 85 kJ.mol⁻¹. The analogous reaction of phenyl [1a] and naphthalene [2] is also calculated (dashed line). [3] is lower in energy than [4] by 39 kJ.mol⁻¹. This is due to the stabilization of the radical through the π -system. The next step is the separation of a hydrogen atom leading to [5]. The energy of the barrier from [3] to [5] is found to be 132 kJ.mol⁻¹ and from [4] to [5] it is 104 kJ.mol⁻¹. The following step is a hydrogen abstraction under formation of H2 and [6] with a barrier of 51 kJ.mol⁻¹. The barrier of the ring cyclization forming a fluoranthenyl radical [7] has been computed to be 52 kJ.mol⁻¹. The final step is the decomposition to fluoranthene [8], through a barrier of 113 kJ.mol⁻¹.

Some alternative mechanisms that may compete with the HACA based mechanism and all the possible reactions quoted above are proposed. A brief description of these alternative mechanisms is given as follows:

2.2.2. HAVA (Hydrogen Abstraction and Vinyl Addition) mechanism

A nouvel route for PAH growth in HACA based mechanisms was proposed by Shukla et al. [45] in investigating acetylene and ethylene pyrolysis, where small aliphatic hydrocarbon products to large PAHs (up to 324 uma) were observed. They showed that PAH growth take place by addition of any C_2H_x species (radical or neutral) such as C_2H_2/C_2H (ethyne/ethynyl) and C_2H_4/C_2H_3 (ethene/ethenyl), since they are produced in significant concentrations and they further accelerate the formation of a wide range of products including PAHs. Moreover, they suggest that production of naphthalene from benzene via HACA mechanism is less probable, assuming that HAVA mechanism seems to be more promising for producing PAHs during aliphatic hydrocarbon pyrolysis. Experimental evidence supports the HAVA mechanism as shown on the following reaction sequence (Figure 13) during ethylene pyrolysis:

Figure 13 : PAH growth process via vinyl radical addition from ethylene pyrolysis [45].

The time of flight mass spectrometer (TOFMS) experiments shows that from naphthalene to fluoranthene, a repetitive addition of C_2H_3 radical is observed with regular mass number intervals of 26. Similarly, from fluoranthene to corannulene, a repetitive addition of C_2H_3 radical is also observed.

In the case of acetylene pyrolysis, HACA mechanism is proposed for the PAHs growth as shown in Figure 14:

Figure 14 : PAH growth process ethynyl radical addition from acetylene pyrolysis [45].

As for ethylene pyrolysis, C_2H_2/C_2H ratio has a major impact on PAH growth from naphthalene to corannulene, where a regular mass number interval of 24 is observed.

Therefore, the nature of species involved in the growth process depends considerably on fuel structure and operating conditions. The formation of cyclopentaring fused-PAHs (fluoranthene to corannulene) is possible and might be preferred over currently accepted reaction that forms benzenoid-PAHs (PCAHs) (pyrene to coronene) especially in aliphatic hydrocarbon pyrolysis/oxidation. Moreover, these authors reinforce the validity of HACA/HAVA mechanism for PAHs growth from naphthalene to large PAHs (up to corannulene) even if kinetic data for HAVA mechanism are not yet available.

2.2.3. Phenyl Addition and Cyclization (PAC) pathway:

Shukla and Koshi [45] have investigated the role of phenyl radical during benzene pyrolysis with or without addition of acetylene in a flow tube reactor conditions. They detected PAHs such as polyphenyl-PAHs, cyclopentafused-PAHs and larger PAHs up to $C_{36}H_{22}$ (454 amu). They observed an appearance of mass peaks at regular mass number intervals of 76, corresponding to phenyl radical addition followed by hydrogen elimination. Since HACA mechanism is only found efficient for producing symmetrical PAHs by filling a triple fusing site, the PAC pathway is found to be efficient to continue the endless growth of PAHs.

The authors proposed the following sequence of reactions at low temperature region (< 1300 K) that clearly shows PAH growth by phenyl radical addition (Figure 15), where the number in the bracket represent atomic mass of the corresponding species.

Figure 15 : PAH growth process via phenyl radical addition from benzene pyrolysis [45].

The mass peaks at regular intervals of mass number 76 from benzene to quaterphenyl are produced by successive phenyl radical addition at each step. However, the mass spectra analysis cannot provide the preference sites of addition leading to isomers of terphenyl (o-; m- p- terphenyl), and isomers of quaterphenyl (1, 1':2',1''-terphenyl, 4'-phenyl; 1,1': 3'1''-terphenyl, 5'-phenyl; o-quaterphenyl;

m-quaterphenyl; p-quaterphenyl). Mass peaks are found diminishing with appearance of -2 mass number peaks with increasing temperatures as shown in Figure 16:

Figure 16 : Ring closure by hydrogen loss under the effect of temperature [45].

o-Terphenyl (m/z=230) is dehydrogenated/dehydrocylized to yield terphenylene (m/z=228). That is probably due to the thermal conversion (effect of tempereature) and is not expected in the case of mor p-terphenyl. Similarly, two new species can be produced from o-quaterphenyl (m/z= 306) by increasing temperature as shown in Figure 17:

Figure 17 : Effect of temperature in more condensed PAH formation [45].

Only o-quaterphenyl can efficiently produce these two new species: o-phenylterphenylene (m/z=304) and dibenzo (fg, op) naphthacene (m/z=302).

In the high temperature region (> 1300 K), phenyl addition sequence starting from naphthalene (m/z= 178) to produce larger PAHs such as phenylnaphthalene (m/z= 204) and phenylfluoranthene (m/z= 278) can be observed as shown in Figure 18:

Figure 18 : Cyclopentafused PAHs growth process via phenyl addition/H abstraction [45].

Phenyl addition products are accompanied by stable dehydrocyclized ones, which are most probably fluoranthene and indeno [3,2,1,7, defg] chrysene.

Norinaga et al. [46] have investigated benzene pyrolysis in a flow reactor at atmospheric pressure and at temperature ranging from 1123 to 1223 K, residence time up to 4s. They found that benzene oligomers such as biphenyl ($C_{12}H_{10}$, terphenyl ($C_{18}H_{14}$), quaterphenyl ($C_{24}H_{18}$) and quinquephenyl ($C_{30}H_{22}$) were primarily products and important intermediates of carbonaceous particles in benzene pyrolysis. Therefore, they found necessary to include reactions leading to these benzene oligomer formations in their chemical kinetic mechanism.

All the above results indicate that the PAC route might be an efficient route for PAH growth since it increases the mass by 74 with respect to 24 and 26 in respectively the HACA and HAVA cases. PAC pathway is found efficient for ring growth from any fusing site of a PAH since it generates two new sites at each step and can continue the endless growth. However, it is inefficient to produce symmetrical PAHs, while HACA is only efficient for the ring growth from a triple fusing site of a PAH to generate symmetrical PAHs such as coronene or corannulene. Despite the separate advantages of both routes (PAC and HAVA), PAC or HAVA alone cannot explain the fast growth of PAHs and consequently soot particles formation process. By combining the contribution of all possible routes to PAHs production, one should expect to account for PAHs growth rate and to better predict their formation.

2.3. Soot formation mechanism

The soot particles formation process is a complex process that is not fully known. Soot particles are formed from hydrocarbon fuels conversion at higher temperature and their concentration is increased by increasing the fuel equivalence ratio (relative fuel-air ratio with respect to stoichiometry). The least understood step is probably the particles nucleation step that makes the link between the gas-phase and the solid-phase. Figure 19 illustrates the entire soot formation mechanism.

Figure 19 : Soot particles formation mechanism from hydrocarbon combustion.

The blue part of this caption shows the flame zone where PAHs are formed. The production of particulate matter induces a change in flame color changes from blue to yellow. Despite the misunderstanding of all process of soot formation, experimental investigations namely in laminar premixed or non-premixed flames of several hydrocarbon allowed to identify the main steps of this complex process. The PAHs formation mechanisms have been presented in the previous section as well as the potential chemical species involved. The identified processes involved in soot formation mechanism can be summarized as follows:

- (1) Soot gaseous precursors formation: such as C₂H₂, PAHs
- (2) Nucleation: the smallest particles formation from gaseous species
- (3) Condensation
- (4) Coagulation
- (5) Particles surface growth
- (6) Particles oxidation
- (7) Particles aggregation
The above-mentioned processes can be discussed as follows:

2.3.1. Gaseous precursors of soot particles

It is suspected that PAHs with size of 500-1000 amu are molecular precursors of soot particles [47]. The chemical growth of light aromatics (1 or 2 aromatics ring) to heavy PAHs (4 to 7 and more) is described by the addition of C_2 , C_3 and other small units to the light PAHs. Among these growth processes, the Hydrogen-Abstraction-Acetylene-Addition mechanism (HACA) has received much attention. The term HACA was introduced by Frenklach and Wang [18]. HACA implied a repetitive reaction sequence of two successive steps:

(1) abstraction of hydrogen atom from the reacting hydrocarbon by a gaseous hydrogen atom:

$A_i\text{-}H + H \rightarrow A_i^{\,\circ} + H_2$

Where A_i-H represents the hydrocarbon and A_i° the hydrocarbon radical

(2) Addition of a gaseous acetylene (C_2H_2) molecule to the radical site formed:

$A_i^{\circ} + C_2 H_2 = products$

Equation 5

However, the inability of the HACA mechanism to be an effective way to ring formation for PAHs formation beyond naphthalene has come under scrutiny by Parker et al. [48]. This compelling study performed under 300 Torr and 1200 K shows that HACA mechanism is unable to form tricyclic PAHs (phenanthrene or anthracene) from naphthyl radical reacting with acetylene. In fact, naphthyl radical reaction with acetylene would form predominantly acenaphthylene $(C_{12}H_8)$ which is a precursor to nonplanar PAHs (or PAHs containing a five-membered ring) such as corannulene and probably fullerene. Naphthyl radical reaction with one acetylene molecule forms an intermediate $(C_{12}H_9)$ that turns by cyclization to acenaphthylene ($C_{12}H_8$). Mebel et al. [49] showed that this cyclization is much faster than the second addition of acetylene molecule to the intermediate C12H9 leading to C14H11 followed by H atom abstraction to yield a third aromatic ring (anthracene or phenanthrene). These findings suggest that the HACA mechanism is not the most significant mechanism in mass growth to heavy PAHs. Acetylene is not the only species that can be envisioned to propagate the growth of aromatic rings. Several alternate pathways have been put forward such as methyl, propargyl (C_3) , vinylacetylene (C_4) addition, cyclopentadienyl (C_5) radicals and phenyl (C_6) radicals addition and

Equation 4

cyclization [36,41,50–53]. These proposals are based on the resonantly stabilized structure of the reacting radicals, assuming that hydrocarbons with conjugated structures and their derivatives are critical intermediates to soot nucleation [54]. It is found that the pool of species involved in PAH formation growth process depends considerably on fuel structure [55]. For example, in aromatic flames such as benzene, phenyl radicals which exist in high concentration, accelerate PAHs growth and formation. In acetylene flame, acetylene and other small species such as vinyl radicals (C_2H_3) exist in high concentration and can contribute significantly to PAHs formation process.

2.3.2. Soot particles nucleation

The soot particles inception step is probably the least understood of all as the transition from gas-phase to solid phase still remains unclear. It could be defined as the transition from gaseous hydrocarbons to macromolecular building blocks [56] (nanoparticles with a mass around 1000-2000 uma and an effective diameter of about 1.5 nm) that turn probably into soot. The combustion conditions (high temperatures and large pools of radicals) make this process very complex. Stein and Fahr [57] have found that heavy PAHs are stable enough at flame temperatures, and the majority consensus on soot particle inception is that the soot particle form via PAHs dimerization. Base on thermodynamic consideration, Wang [8] suggested that PAHs as big as coronene ($C_{24}H_{12}$) dimer cannot be stable in flame at temperature higher than 700 K, since the entropic contribution to free energy tears the dimer apart. From his assumptions, only PAHs as big as circumcoronene ($C_{54}H_{18}$) dimer might remain stable but not at temperature higher than 1600 K. However, since flame temperature can reach 2000 K or more, the nature or the exact stable structures involved in the soot nucleation mechanism remain unclear. The present work aims to discuss the PAHs molecules that could potentially be involved in this process.

2.3.3. Mass growth of soot particles

The mass of nascent soot is increased via the addition of gas phase species such as acetylene $(C_2H_2+soot \text{ contributes to surface growth})$ and PAHs (PAH+soot contributes to condensation) and the collisions between solid particles (soot+soot contributes to coagulation) which significantly increase the particles size and decrease particles number as they merge. For the surface growth, H-atom abstraction from soot surface leads to an active site creation (radical site), which further reacts with a

gaseous species such as acetylene. Soot surface activity decreases when H-atom concentration decreases (limiting active sites production) or due to surface defects causing active sites deactivation [58,59]. By considering soot particles as spherical before and after coagulation, equations governing soot mass growth such as Smoluchowski equation [60] are implemented in most of soot models.

2.3.4. Oxidation of PAHs and soot particles

The oxidation of PAHs and soot leads to mass loss by elimination of CO and CO₂ molecules. This process may compete with the formation of PAH and soot. The main oxidation reactants are found to be OH, O and O₂. In fuel-rich conditions, OH is the main oxidation reactant while O_2 is the main reactant in the case of fuel-lean conditions. However, due to the low temperature effect, the rate of oxidation process is not sufficient to lead to the consumption of all soot particles.

2.3.5. Aggregation of soot particles

Soot particles agglomeration starts when their growth is finished. The resulting particles called mature soot, agglomerate to form a long chain structure.

Soot formation process has received much attention from several research groups and many studies have been performed to better understand the inception step. A lot of operating parameters (fuel type, global and local equivalence ratio, temperature and pressure) have to be taken into account to get a full insight about soot inception. Thus, the good understanding of chemical reactions network in fuel combustion could be a crucial way to increase our knowledge on soot and PAHs formation and to predict soot properties (reactivity) from parent fuel. This support can be offered by computational simulation which allows a critical testing of chemical reaction networks.

2.4. Soot nucleation mechanisms

Soot nucleation mechanism remains poorly understood due to its very fast reaction rate constant and the lack of detailed experimental data. However, three nucleation pathways have been postulated in the literature but they are still much debated. Figure 20 shows a representation of the proposed nucleation mechanisms, indicating the ratio carbon to hydrogen (C/H), the nucleation mechanism type (A, B or C) and the proponent of the mechanism. In addition, all these three different conceptual pathways consider PAHs molecules as soot particle precursors, which is a common point of view within combustion chemistry community.

Figure 20 : Postulated soot nucleation mechanisms.

As depicted in Figure 20, paths A, B and C are described as follows:

Path A: proposed by Homann [61], it is represented by the growth of two-dimensional PAHs into fullerene-like structures (curved). This soot particle nucleation mechanism type is ruled out since it leads to a mono-modal particle distribution function while experimental findings showed a bimodal particle distribution function, as depicted in Figure 21. Moreover, it seems too slow to account for rates observed for soot nucleation. Consequently, this mechanism may not be a plausible pathway since experimental data are not reproduced by this mechanism alone.

Figure 21 : Detailed particle Distribution Function in ethylene flame ($C_2H_4/O_2/Ar = \phi = 2.1$) [8], where H_p is the height above the burner.

Path B: proposed by Frenklach and coworkers [62], this mechanism involves the physical coalescence of PAH molecules into stacked clusters. However, the nature of PAHs molecules that are widely involved in the soot nucleation process remains unclear. Moreover, the binding energies and number of stacked PAH molecules that could lead to soot particle are poorly understood. Path B seems to be

plausible at low temperature conditions because physical coalescence is favored, so, PAHs molecules can collide to form particles. However, under high temperature conditions, the mechanism is not found plausible since high temperature conditions do not favor stacking because of sticking efficiency of PAH molecules decreases with temperature rising. Consequently, this mechanism might be plausible at low temperature conditions but not important at high temperature conditions. Since soot particles are also formed under high temperature conditions, Path B cannot exclusively accounts for nucleation and complementary mechanisms should exist. An alternative mechanism (path C) combined with path B has been proposed by Violi and D'Anna [63].

Path C: proposed by Violi and D'Anna [63] path C involves the chemical coalescence or reaction of PAHs molecules into crosslinked three-dimensional structure. The authors found this mechanism to be important at high temperature conditions since a large amount of radical species favoring chemical coalescence are formed. Authors have evaluated in detail the importance of paths B and C (physical growth and chemical growth respectively). They concluded that path B or physical growth is favored at lower temperature and lower radical concentrations while path C or chemical growth is favored at higher temperature and higher radical concentrations.

They described paths B and C as follows:

-Path B: physical coalescence:

$$A_i + A_j \rightarrow A_{i+j}$$
 (k_3) and $r = k_3 [A_i]^2$ $(\text{if } A_i = A_j)$ $k_3 = K_{GK} \times \gamma$

Where A_i and A_j represent the colliding PAHs molecules, r is the physical rate of nucleation process, k_3 is the reaction rate constant, $[A_i]$ is the concentration of PAH molecule, K_{GK} is the gas collision constant and γ is the sticking efficiency. One can note that k_3 is a function of K_{GK} and γ that depend on temperature and also the rate constant of a non-reversible reaction that leads to soot particles. As the temperature increases, γ decreases and consequently, the physical growth might be neglected (since k_3 decreases) with respect to the chemical coalescence.

-Path C: chemical coalescence:

$$A_i + H \longrightarrow A_i^* + H_2 \qquad (k_1)$$
$$A_i^* + A_j \rightarrow A_{i+j} \qquad (k_2) \qquad r = \frac{k_2 \times [A_i]^2 \times K_{eq} \times [H]}{[H_2]}$$

Where A_i and A_j represent PAHs molecules, A_i^* is the radical formed from A_i by hydrogen abstraction, k_1 and k_2 are rate constants of reactions, K_{eq} is the equilibrium constant of reaction that forms A_i^* , [H] and $[H_2]$ are concentrations of hydrogen and molecular hydrogen respectively and r is the chemical rate of nucleation process. One can note that k_2 is the rate constant of a non-reversible reaction that leads to soot particle and follows Arrhenius formulation. The higher temperature, the higher k_2 and the chemical coalescence may become the major pathway to explain soot particle nucleation at high temperature.

2.5. Soot models

Soot formation modeling is a challenging task that is not yet fully successful, especially soot inception process that remains unclear. In the current EURO 6 regulation, limit on particles number and size must be defined from combustion devices mainly for land vehicles. Soot models must be capable of accurately predicting soot particles number and their size. An accurate prediction of soot formation should enable optimization of combustion processes and combustion devices design for lowering soot emissions.

The models proposed fall into two categories. The first ones are based on the predicted soot yield by using one or several empirical parameters such as equivalence ratio and the temperature of the flame. The second ones are based on the detailed kinetic modeling of flame structures. Both models are described as following:

2.5.1. Empirical models

Empirical models are widely used in automotive field. They correlate soot production with operating conditions. There are several empirical or semi-empirical models used to predict soot formation and references [64–66] give some examples of those frequently encountered in the literature. Typically, a critical equivalence ratio (ϕ_c) is measured to determine a general fuel sooting tendency. Fuels that exhibit high ϕ_c have low tendency to form soot. Takahashi et al. [67] show that sooting tendency seems depending on C/H ratio and the number of carbons instead of fuel structure. In the case of premixed flame and constant temperature, authors showed that the logarithm of the critical sooting equivalence ratio linearly decreases with the number of C-C bond in hydrocarbon fuels. A double and a triple CC bond counts for two and three C-C bonds, respectively. Based on these observations and

comparing for example, benzene and toluene, benzene has lower sooting tendency than toluene. In the case of diffusion flames, the sooting tendency of a hydrocarbon is traditionally characterized by the smoke height H, which is the height of that hydrocarbon jet flame at the smoke point. These smoke heights measured in a particular setup may be converted into setup-independent threshold sooting index (TSI), by the following equation:

$$TSI = A \cdot \frac{MW_i}{H} + B$$
 Equation 6

Where MW₁ is the molecular weight of the hydrocarbon and A and B are apparatus specific constants. For example, TSI of ethane is found to be 0, contrary to that of naphthalene, which equals to 100. These TSI have been measured by McEnally and Pfefferle [68] for around 100 hydrocarbons, and a quantitative relationship between TSI and molecular structure has been derived, allowing to predict the TSI for some other hydrocarbons. Since the H parameter depends inversely on sooting tendency, it is small and difficult to measure it precisely for heavily sooting hydrocarbons, such as aromatics. As a result, McEnally and Pfefferle have established a new expression for measuring sooting tendency: the maximum soot volume fraction ($f_{v,max}$) measured on the centerline of a co-flow and non-premixed flame of methane/air, whose fuel is doped with 400 ppm of the test hydrocarbon. Similarly to smoke points, these soot volume fractions can be converted into apparatus-independent yield sooting indexes (YSI) by the equation:

$YSI = C. f_{v.max} + D$

Equation 7

Where C and D are apparatus specific parameters. According to measurements performed by McEnally and Pfefferle, benzene has a YSI of 30, toluene has a YSI = 43.5, n-propylbenzene has a YSI = 55.9 and naphthalene has a YSI = 100. These results are consistent with the findings of Takahashi et al. [67]. In addition, authors showed that compounds having similar C/H ratios and identical total C atom number may have highly different YSI, demonstrating that the fuel structure may play a role in soot formation.

2.5.2. Kinetic models

Authors of these models have developed detailed kinetic models that are able to predict soot concentration in hydrocarbons flames based on their predicted flames structures. The methods widely used for solving the soot population balance are: method of moments and sectional method. The input of these models is a detailed gas-phase chemical kinetic model that includes chemical species to consider for soot modeling. Therefore, gas-phase is differentiated from the solid phase in these models.

2.5.2.1. Method of moments

Developed by Frenklach and coworkers [11,69], the most efficient computationally numerical approach is the method of moments. This method only gives mean properties (number, diameter and mass) of all soot particle populations. It describes particles system evolution via mass or particle dimensions distribution function moments. In general, the knowledge of the three first distribution function moments is needed to calculate the main characteristics of particles population, namely the total number of soot particle , their mean mass, their mean diameter or their total equivalent spherical area. A mathematical details associated with the determination of moments can be found in the work of Frenklach et al. [70,71].

2.5.2.2. Sectional method

Developed by Howard and coworkers [72,73] and D'Anna and Kent [74], the sectional approach gathers gas-phase and aerosol chemistry into a unique kinetic model. In this method, particle populations are divided into particle size classes called sections, which allows a detailed representation of particle size distribution. A sectional soot method requires a minimum number of sections due to the long calculation time since more precisions are obtained. Therefore, the method of moments is a very simple method that does not require long calculation time since general information is given on soot particles population. Sectional soot method is adopted in the present work and details on governing equations as well as the methodology used to describe particles evolution are presented in Chapter 3.

2.6. Conclusions

In this chapter, we investigated potential soot precursors considered in previous soot models. Most of the soot models focused on pyrene dimerization and considered as relevant for particle nucleation modeling. However, several studies rule out this possibility based on thermodynamics calculations [8,14,15]. While PAH molecules are accepted as soot precursors within combustion community, the nature of those involved in the particles inception step raises many questions and remains still

ambiguous. Due to experimental findings limitations, numerical simulations are employed for such investigations.

A promising particle nucleation modeling might be the heteromolecular dimerization of PAH molecules [31], which implies at least two reactants that have different chemical structure. Only few studies addressed this option. Among different proposals of particles nucleation mechanism, most of previous investigations focused on collisional phenomena, i.e collisions between PAH molecules that lead to soot nuclei.

For a better prediction of soot particle formation, a good knowledge of PAHs chemistry network is required. It was observed that PAHs formation paths vary as a function of fuels. Several pathways leading to aromatics species formation have been highlighted from different configurations and experimental conditions. This intertwining of chemical pathways makes the understanding of PAHs chemistry very difficult and must be carefully examined.

In the present work, we aim to develop a detailed chemical kinetic mechanism that describes accurately laboratory as well as liquid transportation fuels combustion, including both low and high temperature reactions and to integrate a large pool of PAH molecules (up to coronene). Soot particles nucleation is modeled by physical agglomeration pathway (collisional phenomena) between PAH molecules. Both homomolecular and heteromolecular dimerizations are considered and investigated for particles inception modeling. Details on the soot sectional model used [75] in this work are presented in Chapter 3.

Chapter 3: Modeling Tools and Methods

3.1. One dimensional premixed laminar flames: governing equations

In the case of a laminar and premixed one dimensional flat flame stabilized on a burner, the properties depend on coordinate z, which is the height above the burner surface and perpendicular to the burner surface. The evolution along z axis of the temperature and mole fractions of chemical species is referred to as the flame structure. The typical structure of a one dimensional, premixed laminar flame consists of three main zones, as depicted in Figure 22.

- The zone 1: represents the preheating zone, where the fresh mixture is present.
- The zone 2: represents the flame front where the radical or intermediate species are present. The combustion took place in this zone, where heat transfer and consumption rates of reactants reach their peaks. From chemical point of view, the flame front zone is the most important zone to analyze.
- The zone 3: represents the zone of burnt gases, where the combustion products are found.

Figure 22 : Structure of a one dimensional premixed laminar flame stabilized on a burner.

For laminar one-dimensional premixed flames, the species conservation equation can be simplified as follows: for k^{th} species ($k \in \{1, ..., N - 1\}$)

$$\frac{\partial \rho Y_k}{\partial t} + \frac{\partial}{\partial z} (\rho(u + V_k) Y_k) = \dot{\omega}_k$$
 Equation 8

Where Y_k denotes the mass fraction, u the reacting flow velocity, V_k the diffusion velocity and $\dot{\omega}_k$ the volume specific mass source term due to reactions.

Considering a chemical system of N species reacting through M reactions, the mass reaction rate $\dot{\omega}_k$ for species k is the sum of rates $\dot{\omega}_{kj}$ produced by all M reactions.

$$\dot{\omega}_k = \sum_{j=1}^M \dot{\omega}_{kj} = W_k \sum_{j=1}^M v_{kj} Q_j$$
 Equation 9

Where W_k is the atomic weight of species k, v_{kj} is defined as $v_{kj} = v'_{kj-}v'_{kj}$ and $v'_{kj,j}v'_{kj}$ are the stoichiometric coefficients of species k in reaction j. Q_j is the rate of progress of reaction j and can be rewritten as follows:

$$Q_j = k_{dir,j} \prod_{k=1}^{N} [X_k]^{\nu'_{kj}} - k_{re\nu,j} \prod_{k=1}^{N} [X_k]^{\nu''_{kj}}$$
 Equation 10

Where $[X_k]$ is the molar concentration of species k. k_{dir} and k_{rev} are respectively the forward and reverse rates of reaction j and they are modeled using the Arrhenius formalism as describes in Appendix A.

The diffusion coefficient D_i^M of species *i* into the mixture of the other species is defined as

$$D_i^M = \frac{1-Y_i}{\sum_{j \neq i} \frac{x_j}{D_{ij}}}$$
, Y_i is the mass fraction of species *i*, D_{ij} the multicomponent diffusion coefficients, x_j

the mole fractions of species *j*.

3.2. The 1D premixed flame code

The kinetic code allows the use of a detailed description of gas-phase chemistry that includes several species and reactions. As presented above, a chemically reacting flow can be described in time and space by its pressure P, its temperature T, its velocity u and the density ρ_i of each species that it contains. For all of our flame structure calculations, the pressure P is constant. Considering that the density ρ_i of each of the N chemical species constituting the flame is giving by the product of its mass fraction Y_k with the total density ρ , N + 2 variables remain unknown: Y_k , Y_{k+1} ... Y_{N-1} , T, u and ρ .

At each distance of the burner surface, the N + 2 unknown variables are determined by the kinetic solver using the conservation equations, based on a chemical kinetic model, thermodynamic and transport data of involved compounds and the boundary conditions of the flame. If a flame temperature profile is provided from experiment, calculations can be performed without solving the energy conservation equation. In this case, only the species transport equations are solved. The general principle of the kinetic code for a premixed laminar one dimensional flame stabilized on a burner is depicted in Figure 23. The system of equations is determined first on the basis of input data and conservation equations. Secondly, the system of equations is solved using Newton's method. This one determines a sequence of iterations or appropriate solutions that approach the true solution. In case of convergence difficulties, transient equations are solved using backward Euler method. The convergence level can be adjusted and considerably affects the calculation time. The quality of the initial guess, the size of the chemical kinetic model and the number of involved chemical species also affect the calculation time. When the solver succeeds to converge, an output file is written with the calculated flame structure.

Figure 23 : General functioning structure of the kinetic solver for a premixed laminar one dimensional flame stabilized on a burner. This kinetic solver generates chemical species concentration profiles, rates of production or of consumption, species sensitivity analysis, laminar flame speed, etc. The thermokinetic and transport formalism used in the reactor model are presented in Appendix A.

Kinetic modeling was performed with the PREMIX and AURORA libraries of Chemkin-PRO package, version 1.5.1.3.1 [76]. Cantera software [77] was used for soot calculations. As the latter software has similar operating conditions with Chemkin PRO, only Chemkin general functioning is presented. For all premixed flames calculations, gradient and curvature criteria for mesh refinement were set both to 0.2 and a mixture-averaged transport approach was used as the full multi-component formulation was computationally too intensive for the present mechanism.

3.3. Sensitivity analysis

Sensitivity analysis is a tool that helps to understand quantitatively how the solution to a model depends on parameters in the model and also helps to interpret the results from a model. Sensitivity can be calculated from species mass fraction to rate constants. Thus, a sensitivity coefficient for species j for a reaction i is expressed as follows:

$$S_{j,i} = \frac{\partial \ln Y_j}{\partial \ln k_i} = \frac{k_i}{Y_j} \frac{\partial Y_j}{\partial k_i}$$
 Equation 11

Where k_i is the rate constant of reaction *i*, Y_j the mass fraction of species *j*. As a result, a positive sensitivity coefficient means that the concentration of species *j* increases with the rate constant k_i . A negative sensitivity coefficient indicates that the concentration of species *j* decreases when the rate constant k_i increases.

3.4. Rate of production analysis

This analysis determines the contribution of each reaction *i* to the formation or the consumption of species *j*. The total rate of production $r_{f,j}$ and total rate of consumption $r_{c,j}$ for species *j* from all the *N* reactions in the mechanism are expressed as follows:

$r_{f,j} = \sum_{i=1}^{N} r_{f,j,i}$	(Total rate of production)	Equation 12
$r_{c,j} = \sum_{i=1}^{N} r_{c,j,i}$	(Total rate of consumption)	Equation 13

The rate of production $ROP_{f,j}$ and the rate of consumption $ROC_{f,j}$ for a reaction *i* are defined as follows:

$$ROP_{f,j} = \frac{r_{f,j,i}}{r_{f,j}} \quad \text{(rate of production)} \qquad \text{Equation 14}$$
$$ROC_{f,j} = \frac{r_{c,j,i}}{r_{f,j}} \quad \text{(rate of consumption)} \qquad \text{Equation 15}$$

3.5. Sectional Soot Method

The sectional soot modeling approach has been briefly introduced previously. In this section, a description of the soot model used in the present study is given. Modeling of soot particles formation is a challenging task that is not yet fully known. Soot models must be capable of accurately predicting the number and size of particles emitted. Firstly, an accurate prediction of soot particles emissions would facilitate the legislative regulations. Secondly, it will enable optimization of combustion processes and even combustion devices design for lowering emissions of soot particles. Modeling of soot formation implies two main challenges:

- (1) To model accurately the PAHs chemistry that leads to particles nucleation, which processes according to the phenomenological basis through the clustering of PAHs to form soot particles with a size of few nanometers.

- (2) To model particle growth, condensation, coagulation and oxidation-degradation-fragmentation.

The present work is mainly focused on the particles nucleation step, as it is poorly understood and is the very beginning of mature soot formation. We aimed to consider a large pool of PAHs with different structure, in order to point out those widely involved in the particle nucleation step. This service can be performed by sectional approach and the main governing equations of the soot model are described in the next sections.

3.5.1. Governing equations and variables in the model

The soot sectional model used in the present work considers that soot particles are solid and modeled as a distinct disperse phase, interacting with the gaseous phase. This soot model is based on the previous work of Netzell and coworkers [78] and Aubagnac-Karkar et al. [75,79,80], where investigation on development and application of detailed kinetic models for the soot particle size distribution function has been carried out.

Considering a turbulent reactive flow, the soot particles population is evaluated by using a sectional approach, or otherwise, the soot particles are separated with respect to their volume into discrete sections. In each section *i*, representing the soot particles of a given volume range, the standard transformation equation for the soot mass fraction $\tilde{Y}_{soot,i}$ is governed as follows:

$$\frac{\partial \bar{\rho} \tilde{Y}_{soot,i}}{\partial t} + \nabla . \left(\bar{\rho} \tilde{u} \tilde{Y}_{soot,i} \right) = \nabla . \left(\bar{\rho} D_{t,soot} \nabla \tilde{Y}_{soot,i} \right) + \bar{\rho} \tilde{\omega}_{soot,i}$$

Equation 16

Where $\bar{\rho}$ is the gas-phase density, \tilde{u} the gas velocity, $D_{t,soot}$ the turbulent diffusion coefficient of soot and $\tilde{\omega}_{soot,i}$ the soot source term in section *i*.

A detailed representation of the phenomena involved in the soot formation process can be depicted in Figure 24.

Figure 24 : Soot particles formation and evolution process in the model [75].

Two main stages are described in the model: the collisional phenomena and the surface chemistry.

- The collisional phenomena include particle inception from gaseous species (PAHs) to generate the smallest solid particle or nuclei. Condensation describes the collision of the nuclei with gaseous species to form larger particle. Coagulation describes collision between solid particles to form larger particle and more dense.
- The surface chemistry model includes the particles surface growth that describes the particle growth by chemical reactions such as a gaseous species (acetylene) reaction with soot solid particle. The oxidation reactions aimed to reduce considerably the soot particles size to form smaller particles.

3.5.2. Volume discretization

A fixed interval of volume range $[V_{min}; V_{max}]$ is divided into *n* sections. V_{min} indicates the smallest considered particles and is defined as the carbon equivalent volume of the carbon atoms number of

soot precursors (the colliding PAHs). Carbon equivalent volume for two carbon atoms can be expressed as follows:

$$V_{C_2} = \frac{2M_C}{N_A \rho_{soot}}$$
 Equation 17

Where M_C represents the carbon molar mass, N_A is Avogadro's number and ρ_{soot} is the soot density assumed constant and equal to 1.86 x10⁻³ kg.m⁻³ [78].

Considering two soot precursors containing *n* atoms of carbon (C_nH_m) , V_{min} is equal to *n*. V_{C_2} and all hydrogen atoms taken form the gas phase are sent to H₂ to close the hydrogen balance since all volumes exchanged between phases are given with respect to the exchanged of carbon atoms number. The largest particles diameter d_{max} is set to 50µm (sphere diameter), to ensure that carbon mass will not be accumulated in the last section.

The soot particles volume in the first section ranges from V_{min} to $V_{min} + V_{C_2}$. Concerning the following sections, particles volume is defined as follows:

$$V_{max,i} = \left(V_{min} + V_{C_2}\right) \left(\frac{V_{max}}{V_{min} + V_{C_2}}\right)^{(i-1)/(n_{sections} - 1)} \forall i \in [[2; n_{sections}]]$$
Equation 18

Based on the computational calculation time, the number of sections is often set to 30 and could be extended to 100 [75], which requires more calculation time. In the present work, all simulations have been performed with 70 sections.

3.5.3. Soot particles volume number in a section *i*

The soot volume fraction Q_i is defined as the soot particles volume in a section *i* normalized by the total volume gas and solid phases. Considering that the volume of all soot particles is negligible with respect to the volume of the gas, Q_i can be written as a function its mass fraction $\tilde{Y}_{soot,i}$ in Equation 19.

$$Q_i = \frac{\overline{\rho}}{\rho_{soot}} \widetilde{Y}_{soot,i}$$
 Equation 19

The soot mass fraction source term $\tilde{\omega}_{soot,i}$ is expressed as follows:

$$\widetilde{\omega}_{soot,i} = \frac{\rho_{soot}}{\overline{\rho}} \dot{Q}_i = \frac{\rho_{soot}}{\overline{\rho}} \left(\dot{Q}_{nucl,i} + \dot{Q}_{cond,i} + \dot{Q}_{sg,i} + \dot{Q}_{ox,i} + \dot{Q}_{coag,i} \right) \quad \text{Equation 20}$$

Where $\dot{Q}_{nucl,i}$, $\dot{Q}_{cond,i}$, $\dot{Q}_{sg,i}$, $\dot{Q}_{ox,i}$, $\dot{Q}_{coag,i}$ represent respectively the volume fraction source terms in section *i* due to nucleation, condensation, surface growth, oxidation and coagulation.

The soot volume fraction density q_i in each section *i* is given by:

$$q_i = \frac{Q_i}{V_{max,i} - V_{min,i}}$$
 Equation 21

Thus, the particle number density $n_i(v)$ is expressed as follows:

$$n_i(\nu) = \frac{q_i}{\nu} \quad \forall \nu \in \left[V_{min,i} ; V_{max,i} \right]$$
 Equation 22

And then, the soot particles volume number N_i in a section *i* is given by:

$$N_i = \int_{V_{min,i}}^{V_{max,i}} n_i(\nu) d\nu = \frac{Q_i}{V_{max,i} - V_{min,i}} \ln\left(\frac{V_{max,i}}{V_{min,i}}\right)$$
 Equation 23

 N_i allows to calculate finally the Soot Number Density Function (SNDF) in each section *i*, at each time and each position.

3.5.4. Collisional source terms

Smoluchowski equation, introduced briefly in chapter 1 is the one that describes collisional phenomena (particle inception, condensation and coagulation). It is expressed in the continuous form as follows:

$$\dot{F}_{a}(t) = \frac{1}{2} \int_{0}^{a} \beta_{a-b,b} F_{b}(t) F_{a-b}(t) db - \int_{0}^{\infty} \beta_{a,b} F_{a}(t) F_{b}(t) db$$
 Equation 24

Where $F_x(t)$ is the number of particles of size x, $\dot{F}_x(t)$ is its variation rate and $\beta_{x,y}$ is the collision frequency between particles of size x and size y. This latter is obtained from the theory of aerosol science by Kazakov and Frenklach [81]. Depending on regime applied that in turn depends on Knudsen number value k_n , collision frequencies can be evaluated.

$$k_n = \frac{\gamma_{gas}}{d}$$
 Equation 25

Where γ_{gas} is the gas mean free path, *d* is the particle diameter.

The regime considered in this model is that of free molecular collision and collision frequencies are expressed as in [81].

3.5.5. Inception and condensation

Particle inception involves collision between two soot precursors (two PAHs) to generate the nuclei or smallest particle, while condensation involves collision between a soot precursor (one PAH) and soot solid particle. Considering the volume number of PAHs, N_{PAH} , the rate of volume fraction variation \dot{Q}_{nucl} of the smallest soot given by Smulochwski equation Equation 24 combined with Equation 21 and Equation 22.

$$\dot{Q}_{nucl} = \frac{1}{2} V_{PAH} \beta_{PAH,PAH}^{fm} N_{PAH}^2$$
 Equation 26

Where V_{PAH} is the volume of one PAH (soot precursor containing *n* atoms of carbon) and $\beta_{PAH,PAH}^{fm}$ is the collision frequency in free molecular regime between two PAHs.

The collision frequency can be linked to the collision efficiency through the following expression [27]:

$$\beta_{PAH,PAH}^{fm} = C_E \times \sigma_{PAH,PAH} \sqrt{\frac{8k_B T}{\pi \mu_{PAH,PAH}}}$$
 Equation 27

Where C_E is the collision efficiency, $\sigma_{PAH,PAH}$ is the reaction cross section between PAHs an $\mu_{PAH,PAH}$ is the reduced mass of PAHs.

As a result, the global volume amount of precursors that collide with all soot particles per unit time \dot{Q}_{cond}^{PAH} is given by:

$$\dot{Q}_{cond}^{PAH} = V_{PAH} N_{PAH} \sum_{i=1}^{i_{max}} \beta_{PAH,i}^{fm} \int_{V_{min,i}}^{V_{max,i}} n_i(\nu) d\nu$$
 Equation 28

Where $\beta_{PAH,i}^{fm}$ is the collision frequency between precursors and soot solid particles of section *i*. The volume number of PAH (N_{PAH}) is determined based on steady state assumption between PAH formation reaction and PAH consumption by the two collision phenomena (nucleation and condensation) in all sections. Then, the volume fraction reaction rate of PAH is given as follows:

$$r_{PAH} = 2V_{PAH}\beta_{PAH,PAH}^{fm}N_{PAH}^2 + \left(V_{PAH}\sum_{i=1}^{i_{max}}\beta_{PAH,i}^{fm}\int_{V_{min,i}}^{V_{max,i}}n_i(\nu)d\nu\right)N_{PAH} \qquad \text{Equation 29}$$

By solving this polynomial equation, the positive root gives N_{PAH} expression and is found to be:

$$N_{PAH} = \frac{-k_{cond} + \sqrt{k_{cond}^2 + 4r_{PAH}k_{nucl}}}{2k_{nucl}}$$
 Equation 30

Where $k_{nucl} = 2V_{PAH}\beta_{PAH,PAH}^{fm}$, $k_{cond} = V_{PAH}\sum_{i=1}^{i_{max}}\beta_{PAH,i}^{fm}\int_{V_{min,i}}^{V_{max,i}}n_i(\nu)d\nu$.

It is worth nothing that the particle inception rate is given by (Equation 26) and equal to k_{nucl} . The condensation rates cannot directly be deduced from (Equation 28) since the volume fraction computed represents the global volume fraction transferred from gas phase to solid phase. Details on post nucleation processes including condensation and coagulation and their associated rates are described in [75].

3.5.6. Surface chemistry

The surface growth and oxidation of soot is described consistently with the gas-phase kinetics. The surface growth is implemented using HACA mechanism [11] and through PAH condensation. The gaseous species involved in the present surface chemistry are: H, H₂, O₂, OH, H₂O, CO, HCO and C_2H_2 . The surface reactions implemented in the soot model are describes in Table 2:

	$k = AT^n \exp(-\frac{E_a}{RT})$			
Reactions	A (cm ³ .mol ⁻¹ .s ⁻¹)	n	E (kcal.mol ⁻¹)	
$C_{soot} + H \rightarrow C_{soot}^* + H_2$	$4.2 \ge 10^{13}$	0.0	13.0	
$C_{soot}^* + H_2 \rightarrow C_{soot} + H$	3.9×10^{12}	0.0	11	
$C_{soot} + OH \rightarrow C_{soot}^* + H_2O$	$1.0 \ge 10^{10}$	0.734	1.43	
$C_{soot}^* + H_2O \rightarrow C_{soot} + OH$	3.68×10^{08}	1.139	17.1	
$C_{soot}^* + H \rightarrow C_{soot}$	2.0×10^{13}	0.0	0.0	
$C_{soot}^* + C_2 H_2 \rightarrow C_{soot} + H$	8.0 x 10 ⁷	1.56	3.8	
$C_{soot}^* + O_2 \rightarrow C_{soot}^* + 2 CO$	2.2 x 10^{12}	0.0	7.5	
$C_{soot} + OH \leftrightarrow C_{soot}^* + HCO$	$1.62 \ge 10^{11}$	0.50	0.0	

Table 2 : Surface chemistry mechanism [11].

The kinetics of surface reactions is described in term of surface sites. These sites are carbon atoms saturated with hydrogen (C-H) or dehydrogenated (C*).

3.5.7. Surface growth

The surface growth is described by the gaseous acetylene (C_2H_2) addition to soot particles. The volume fraction rate of soot particles in section *i* which grow to move to the next section *i* + 1 is expressed as follows:

$$\dot{Q}_{SG,i}^{out} = N_A K_{SG,i} \int_{V_{max,i}-V_{C_2}}^{V_{max,i}} (v + V_{C_2}) \frac{1}{v} \left(\frac{v}{V_{C_2}}\right)^{\frac{\theta}{3}} dv \qquad \text{Equation 31}$$

Where $K_{SG,i}$ is the reaction rate of acetylene addition to a soot radical site, $(v + V_{C_2})$ is the volume of soot particle that increases due to C_2H_2 addition, and $\frac{1}{v}\left(\frac{v}{V_{C_2}}\right)^{\frac{\theta}{3}}$ denotes the available reaction surface variation depending on the volume.

As a result, the surface growth source terms applied to each section is given as follows:

$$\dot{Q}_{SG,1} = -\dot{Q}_{SG,1}^{out} + \dot{Q}_{SG,1}^{gas}$$
Equation 32
$$\dot{Q}_{SG,i} = \dot{Q}_{SG,i-1}^{out} - \dot{Q}_{SG,i}^{out} + \dot{Q}_{SG,i}^{gas} \quad \forall i \in [\![2; n_{sect} - 1]\!]$$
Equation 33
$$\dot{Q}_{SG,n_{sect}} = \dot{Q}_{SG,n_{sect}}^{out} + \dot{Q}_{SG,n_{sect}}^{gas}$$
Equation 34

3.5.8. Oxidation

Soot particles oxidation is described by the reaction of soot with oxygen (O₂) or hydroxyl (OH) where carbon atoms are removed from soot particles. This process is similar to that of surface growth but the size of particle is reduced due to carbon removal. The volume fraction rate of soot moved from section i to section i - 1 is give as follows:

$$\dot{Q}_{OX,i}^{out} = N_A K_{OX,i} \int_{V_{min,i}}^{V_{min,i}+V_{C_2}} (v - V_{C_2}) \frac{1}{v} \left(\frac{v}{v_{C_2}}\right)^{\frac{\sigma}{3}} dv \qquad \text{Equation 35}$$

Where $K_{OX,i}$ is the reaction rate of oxygen or hydroxyl with soot particles. The oxidation source terms applied to each section are given by:

$$\dot{Q}_{OX,1} = -\dot{Q}_{OX,2}^{out} + \dot{Q}_{OX,1}^{gas} \qquad \text{Equation 36}$$

$$\dot{Q}_{OX,i} = \dot{Q}_{OX,i+1}^{out} - \dot{Q}_{OX,i}^{out} + \dot{Q}_{OX,i}^{gas} \quad \forall i \in [2; n_{sect} - 1]] \qquad \text{Equation 37}$$

$$\dot{Q}_{OX,n_{sect}} = -\dot{Q}_{OX,n_{sect}}^{out} - \dot{Q}_{OX,n_{sect}}^{gas} \qquad \text{Equation 38}$$

In addition to the surface growth phenomena, Frenklach and Wang [18] introduced a new parameter α which is the fraction of surface sites available for reactions. α was introduced into a kinetic model of

soot surface growth after investigation for chemical alternatives to account for the difference between the low and high temperature flames was exhausted. α was supposed to quantify the changing morphology of soot particle surface and that change was found to be correlated to the particle surface temperature. As a result, the value given to α considers the growing surface of soot particles as being composed of graphitic edges that contain sites available for reactions and some parts of the surface are comprised of unreactive basal aromatic planes. Authors clearly claimed this temperature dependency upon parameter α as their conclusions were later experimentally confirmed by Faeth et al. [82,83] for the post flame region of laminar premixed flames. The established correlations and the values of parameter α used in previous soot models are describes in the next section.

3.5.9. Parameter a: The fraction of soot surface radical sites available for reactions

Due to the scarcity of experimental data, α was expressed as a constant value in most of soot models [84–86]. Frenklach et al. [87] claimed that parameter α representing a kind of steric factor decreases with the increase of flame temperature. They concluded that at high temperature, soot particle structural units are expected to be more mobile and align themselves in a more concentric manner, and then, the access of gaseous species to the reactive site on soot particle surface is limited. Authors show that parameter α significantly decreases with the increase of maximum flame temperature. Figure 25 shows results obtained from their study.

Figure 25 : The fraction of soot surface radical sites available for reaction α as a function of maximum flame temperature, T_{max} . The line is a fit to the data [87].

The correlation established is given as follows:

$$\alpha = \frac{\left[\tanh\left(\frac{8168}{T_{max}} - 4.57\right) + 1\right]}{2}$$
 Equation 39

Numerical calculations show that predictions of soot volume fractions are extremely sensitive to the value of α considered. A few years later, Appel et al. [11] proposed a correlation that takes into account temperature of soot particles size effects. A critical particle diameter was defined to match the experimentally observed diameters of primary soot particles. The expression proposed by the authors is given as follows:

$$\alpha = \tanh\left(\frac{a}{\log\mu_1} + b\right)$$
 Equation 40

Where μ_1 is the first size moment of the soot particle distribution, a and b are the fitted parameters.

Braun-Unkhoff et al. [86] investigated premixed laminar high pressure ethylene flames at different pressure (from 5 to 20 bars) and different equivalence ratios (from 2.04 to 2.76). They showed that the value of parameter α varies from 0.2 to 0.6. An increase of the α value was observed by increasing the flame equivalence ratio. However, the pressure dependency was not discussed. Authors performed the α value variation to match the experimental soot volume fraction measurements. Mouton et al. [85] studied premixed laminar methane flames at low pressure (200 Torr) where a constant value of α was used. The equivalence ratio of the flames investigated varies from 2.05 to 2.32 and they used constant value for α 0.115 and 0.35 respectively. As a result, the α value is increased by increasing the equivalence ratio. Chernov et al. [84] used a constant value of 0.15 for parameter α for both nonpremixed ethylene co-flow flame, where good agreement with experiments were obtained. Dworkin et al. [88] investigated laminar co-flow ethylene diffusion flame and used a constant value of 0.078 in their soot model to match experimental data. This value is set to 1.0 if the mechanism of Appel et al. was used. Eaves et al. [89] investigated co-flow ethane-air diffusion flame at different pressures ranging from 2 to 15 atm. Authors concluded that α value is found to be between 0.055 and 0.067 since the predicted peak soot volume fraction for all flames were within experimental error. Therefore, a constant value of α found to be 0.061 was adopted since a good agreement with experiments was obtained. In addition, they concluded that no pressure effect on parameter α was observed over the ranges of pressures simulated (1-15 atm). This conclusion is in line with that of Kim et al. [90] where experimental investigation on ethylene-air diffusion and premixed flames from 1 to 8 atm did not show any pressure dependency on parameter α . Consequently, authors claimed that α value does not need to be altered to predict the trends in peak soot volume fraction as pressure is increased. Aubagnac et al. [75] used a constant value of 0.27 for α in modeling commercial diesel fuel combustion and in engine conditions. A satisfactory agreement with measurements on soot particles size distribution was obtained.

The parameter α remains poorly understood since no clear correlation was established. Its ranges have been found to probably change with fuel structure, equivalence ratio, flame temperature or soot particles size. The value of α is usually determined by fitting experimental data that significantly depends on the chemical kinetic mechanism used.

In the present work, we initially kept constant the value of α that is set to 0.05 for PAHs homomolecular (mono-precursor) and heteromolecular (multi-precurscors) dimerizations. Then, a parametric variation over α is performed to match experimental data (soot volume fractions and particle diameters) for the investigated laminar premixed methane, ethylene and n-butane flames.

Chapter 4: Gas-phase Chemistry

4.1. Objective

Soot gaseous precursors must accurately be predicted to account for a better understanding of particles inception mechanism. Thus, it is necessary to develop and validate a kinetic model for gas-phase soot precursor formation.

In this chapter, a methodology describing commercial fuel surrogates development as well as a detailed chemical kinetic model development and validation over a wide range of experimental conditions is presented. The availability of experimental and modeling data (thermokinetic, transport) for hydrocarbons combustion can on the one hand, help to formulate surrogate fuels based on two global combustion parameters: cetane number (CN) and threshold sooting index (TSI). On the other hand, detailed kinetic models can be developed. They can also help to analyze with some confidence, the PAHs formation pathways as a function of fuels. The system chosen for the computational investigation of the PAHs formation paths is that of the one dimensional premixed laminar flame configuration.

4.2. Surrogate fuels formulation

Due to high complexity of liquid transportation fuels, surrogate fuels composed of few hydrocarbons (from 1 to 12 components) [91] are often used to represent them. To reduce computational time (strongly dependent on the number of species to be transported) and simplify as much as possible the analysis and design of ever more complex engine technologies, combustionists desperately need flexible, simple and reliable chemical surrogate mixtures. As for most of the computational fluid dynamics (CFD) models, evaporation surrogates and chemical surrogates are still distinct, the choice was made to focus on the development of a purely chemical surrogate. A complete physico-chemical surrogate accounts for a number of important targets including H/C ratio, average molecular weight, autoignition quality, heat release rate, extinction, flame adiabatic temperature, sooting behavior, etc. A variety of surrogates formulations were proposed in the literature [92–96] but there is no one that

models liquid transportation fuels with the same three components by varying their respective concentrations as a function of fuel type. The present ternary chemical surrogate does not aim to reproduce volatility nor H/C ratio nor PIONA (n-Paraffin, Iso-paraffin, Olefin, Naphthene, and Aromatic) composition, it was optimized to reproduce CN and TSI parameters accounting for both autoignition and soot production rate. We herein assess the robustness of this approach and PAHs formation during liquid transportation fuels combustion. Yang et al. [97] proposed that two global combustion parameters, namely the derived cetane number (DCN) and the threshold sooting index (TSI), could be considered for formulating a chemical surrogate. Based on these two global parameters, we considered a chemical surrogate for transportation fuels combustion composed of three components: iso-octane, n-decane and n-propylbenzene. The fractions of components in the surrogate mixture are provided in Table 3.

	Diesel surrogate (%vol.)	Jet A-1 surrogate (%vol.)	Gasoline surrogate (%vol.)
n-decane	61.6	53.2	5.0
Iso-octane	0.3	21.6	75.0
n-propyl-benzene	38.1	25.2	20.0

	Diesel	Diesel	Jet A-1	Jet A-1	Gasoline	Gasoline
		surrogate		surrogate		surrogate
CN	49.0	53.7	46.0	48.3	17.0	15.9
TSI	28.0	26.9	21.4	20.0	16.0	17.3
	[98]		[99]		[98]	

Table 3 : Surrogate fuels formulation and considered to represent real fuels [100].

The global optimization of surrogate composition was performed using a genetic optimization algorithm implemented in the blend optimizer from Chemkin PRO software [76].

The Cetane Number of mixtures was calculated by a volume-fraction-weighted sum:

$$CN_{mixture} = \sum v_i CN_i$$

Equation 41

While the TSI was evaluated from a mole-fraction-weighted sum:

TSI mixture = $\sum x_i TSI_i$

Equation 42

In terms of fuel composition representativity, n- and iso-paraffins are massively present in all liquid transportation fuels [101,102]. Aromatic compounds are also usually present in petroleum-based liquid transportation fuels [101–103] and have to be included in the blend to predict correctly soot volume fraction produced in fossil distillates combustion. N-propylbenzene was chosen as a good trade-off between light and heavier aromatics (from benzene to methylnaphthalene). Moreover, the combustion chemistry of n-decane, iso-octane and n-propylbenzene is presently relatively well modeled and several kinetic mechanisms have been validated over a wide range of conditions [104].

A variety of surrogate formulation for liquid transportation fuels may be suggested as depicted in Table 4 and Table 5. For example, Violi et al. [105] proposed a jet surrogate fuel (JP-8) containing six components. Farell et al. [106] proposed a diesel surrogate containing 4 components and also argued about components that may be of interest in the future.

Components	Kerosene (JP-8) surrogate (%vol)
iso-octane	10
n-dodecane	30
n-tetradecane	20
methylcylohexane	20
m-xylene	15
Tetralin	5

 Table 4 : Jet fuel fuel surrogate [105].

Diesel surrogates			
Current components	Prospective components		
n-decane	n-hexadecane		
iso-octane	Heptamethylnonane		
Methylcyclohexane	n-decylbenzene		
Toluene	1-methylnaphthalene		

 Table 5 : Diesel fuel surrogate [106].

Since a surrogate fuel must be as simple as possible, but not simpler, the more accurately it captures the compositional characteristics of the target fuel (commercial fuels), the more accurately it also embodies the target fuel properties. A higher compositional accuracy requires a larger number of compounds with molecular structures and weights that are more representative of those found in target fuel, while a lower compositional accuracy implies a smaller number of readily available compounds and easy to procure and blend. Mueller et al. [107] recently investigated diesel surrogates formulation in balancing multiple trade-offs including: molecular structure, molecular weight, ignition quality, boiling and melting points, component availability, density, viscosity, purity, cost, safety and availability of chemical kinetic mechanisms. Surrogate candidate components proposed in Mueller's investigation are depicted in Figure 26:

Figure 26 : Diesel surrogate palette compounds [107].

Authors proposed four surrogates from lower to higher compositional accuracy as depicted in Table 6. They showed that surrogate 4 describes better the target fuel properties namely its hydrocarbon class mass fractions, the carbon type mole fractions, peroxide contents, volatility, density, lubricity and cloud point. With soot emissions under diesel combustion conditions, surrogate 2 is expected to best match the soot emissions of the commercial fuels. All the four surrogates represent well the commercial diesel fuels in term of carbon and hydrogen mass fractions (elementary analysis). However, neither combustion experiment nor computational study using these surrogate mixtures was

published. Thus, it remains difficult to assess which proposed surrogate is more representative of commercial fuels.

Component	Diesel surrogate 1	Diesel surrogate 2	Diesel surrogate 3	Diesel surrogate 4
abbreviation	%wt	%wt	%wt	%wt
(see Figure 26)	(4 components)	(5 components)	(8 components)	(9 components)
NHXD	32.2	0.0	3.2	0.0
NOD	0.0	32.1	27.3	15.1
NEI	0.0	0.0	0.0	1.2
HMN	42.0	32.8	35.1	0.0
2MHPD	0.0	0.0	0.0	10.2
NBCX	0.0	0.0	3.8	14.8
TIPCX	0.0	0.0	0.0	12.8
TDEC	10.5	0.0	4.0	0.0
PHP	0.0	0.0	0.0	6.4
TMB	0.0	8.0	4.8	0.0
TIPB	0.0	0.0	0.0	16.6
TET	0.0	14.8	10.8	12.0
1MN	15.3	12.3	10.9	10.9

Table 6 : Diesel surrogate fuels composition from Mueller et al. work [107].

In the same way, Gou et al. [108] and Dooley et al. [92] proposed jet-A1 surrogates by matching molecular structure and functional groups: CH₃, CH₂, CH, C and phenyl of a commercial jet fuel. The components selected in their investigation are presented in Table 7:

Components	Gou et al. jet surrogate	Dooley et al. jet surrogate	Commercial jet fuel
*	% mol	% mol	·
n-decane	0.0	42.7	normal, branched, cyclic
iso-octane	0.0	33.0	alkanes, aromatics,
Toluene	27.2	24.3	naphthalenes
n-dodecane	50.9	0.0	
2,5-dimethylhexane	21.9	0.0	
H/C	1.98	2.02	1.96
Molecular weight	136.5	126.3	142 ± 20

 Table 7 : Jet surrogate fuels proposed by Gou et al. [108] and Dooley et al. [92].

They concluded that these surrogate fuel mixtures can reproduce well combustion characteristics in a homogeneous ignition and flow reactor combustion process over a wide temperature range.

For gasoline surrogates, most of previous works use a Primary Reference Fuels (PRF) that is a mixture of n-heptane and iso-octane or a toluene reference fuels (TRF) that is a mixture of toluene and primary reference fuels [109–112]. These surrogates were proposed based on their capability to reproduce gasoline auto-ignition properties in engine conditions, density, global atom content and lower heating value. Table 8 summarizes some surrogates encountered in the literature.

Surrogate	Mehl et al. [113]	Cai et al.[111]	Cai et al. [111]	Yz. An et al.[110]
components	gasoline surrogate	gasoline surrogate	gasoline surrogate PRF	gasoline surrogate
	(% mol)	(% vol)	(% vol)	(% mol)
n-heptane	0.0	19.4	13.0	17.0
Iso-octane	47.0	42.2	87.0	55.0
Toluene	35.0	38.3	0.0	28.0
1-hexene	18.0	0.0	0.0	0.0
MON	94.6	83.4	87.0	85.0
RON	103.7	90.5	87.0	88.0
H/C ratio	1.84	1.750	2.260	1.971

Table 8 : Some proposed gasoline surrogates in the literature.

4.3. Development of a detailed chemical kinetic mechanism

A new detailed chemical kinetic mechanism describing the combustion of our and literature surrogates was derived from different subsets. Iso-octane and n-decane sub-mechanisms were extracted from Dooley et al. [92] and n-propylbenzene sub-mechanism comes from the study of Darcy et al. [114]. These 3 sub-mechanisms were merged to build a base mechanism. Whenever several thermokinetic data were present for the same reaction in both individual sub-mechanisms, those of Dooley et al. [92] were retained. The C₀, C₁, C₂ and C₃ sub models were extracted directly from the mechanism of Dooley et al. [92]. Reactions were subsequently added to improve agreement with experimental data obtained over a broad range of conditions such as ignition delay times, laminar flame speeds, PAH and important C1-C6 intermediates concentration profiles. Table 9 summarizes all mechanisms used for the model construction. Reactions added for improving C_2 species (acetylene, ethylene, ethane) formation were taken from Alzueta et al. [115] and from AramcoMech [116]. For C₃ species (allene, propyne, propene), additional reactions were taken from Hansen et al.[117]. For C₄/C₆ species (butadienes, butenes, cyclopentadiene, benzene), reactions were taken from Wang et al. [118], Zeng et al. [119] and Colket et al. [120]. In addition to low temperature reactions from Dooley et al. [92], some additional n-heptane, iso-octane and n-decane low temperature reactions were extracted from the work of Ranzi et al. [121]. This low temperature subset allowed improving ignition delay times predictions over the 600-900 K range, which is crucial in Diesel engine operation. For monoaromatic species (toluene, styrene, phenylacetylene), reactions were taken from Yuan et al. [122]. The PAH subset (up to coronene and including polyphenyls) was built from the works of Yuan et al. [122], Slavinskaya et al. [123], Miyoshi et al. [124], Norinaga et al. [125], Kousoku et al. [126] and Djokic et al. [127].

Mechanisms	Subsets
Dooley et al. [92]	n-decane and iso-octane subsets including H ₂ /CO, C ₁ -C ₆ subsets
Darcy et al. [114]	n-propylbenzene subset
Alzueta et al. [115]	C ₂ subset
Metcalfe et al. [116]	C ₂ subset
Hansen et al. [117]	C_3/C_4 subset
Colket et al. [41,120]	C_4/C_6 subset
Wang et al. [118]	C_4/C_6 subset
Zeng et al. [119]	C_4/C_6 subset
Ranzi et al. [121]	n-decane/iso-octane low temperature reactions
Yuan et al. [122]	Monoaromatics (toluene, styrene, phenylacetylene) subset
Yuan et al.[122], Slavinskaya et al. [123],	
Miyoshi et al. [124], Norinaga et al. [125],	PAH up to coronene subset
Kousoku et al. [46] and Djokic et al. [127]	

 Table 9 : Mechanistic sources for model construction.

In the present reaction model, dibenzofuran (DIBZFUR) subset was taken from Ranzi et al. [128] and from Sebbar et al. [129] as shown in Table 10.

Reactions	A (cm, mol, s)	n	E (kcal.mol ⁻¹)	Ref.
C ₆ H ₅ O+C ₆ H ₅ O=>DIBZFUR+H ₂ O	4.0×10^{13}	0.00	11.0	[128]
DIBZFUR+H=DIBZFURNYL+H ₂	2.5×10^{14}	0.00	16.0	p.w
DIBZFURNYL+O ₂ =DIBZFURNOXY+O	1.5×10^{19}	-0.89	18.1	[129]
DIBZFUR+OH=>CO+NAPHT+HCO	2.0×10^{13}	0.00	0.0	[128]

Table 10: Dibenzofuran submechanism used in the present work.

Dibenzofuran (DIBZFUR) is produced from phenoxy radicals recombination and may be consumed through H abstraction or oxidation by OH. The rate constant of phenoxy recombination is in line with theoretical and experimental data published so far. The rate constant for H abstraction from dibenzofuran to yield dibenzofuranyl was herein assumed to be idenical to that of H abstraction from naphthalene. Benzene oxidation in moderately rich flames can yield significant quantities of resonantly stabilized phenoxy radicals (> 10 ppm) [130] which readily recombine to dibenzofuran [131]. This reaction path has been so far studied mainly in the context of oxygenated fuel oxidation. The rate constant from Ranzi et al. [128] mechanism adopted in the present study is smaller by a factor of two than Grotheer et al. rate constant [132]. Further, it is in good agreement with the Gibbs free energy of activation obtained by Asatrya et al. [131] in their electronic structure calculations of phenoxy dimer dehydration. As there is not sufficient experimental data to directly validate dibenzofuran path kinetics in jet A premixed flames, we assessed this path against dibenzofuran

oxidation experiments in very diluted conditions, showing a correct agreement of naphthalene concentration profile with measurements from [133]. This tends to indicate that the contribution of this path to naphthalene production is indeed accounted for by the present kinetic model at T > 1000 K.

The C₀-C₁ subset contains 34 species and 171 reactions. The C₂-C₃ subset contains 96 species and 582 reactions. The C₄-C₅ subset contains 210 species and 1170 reactions. The C₆-C₇ subset contains 196 species and 770 reactions. The C₈-C₉ subset contains 192 species and 856 reactions. The C₁₀-C₁₁ subset contains 132 species and 487 reactions. The C₁₂₊ subset contains 154 species and 514 reactions. To allow compatibility of the present mechanism with older chemkin versions, pressure dependency has been described using Troe's formalism. An example of fit of Troe can be seen in Appendix F, showing the rate constant fitting as a function of temperature for different constant pressures. The vast majority (98%) of reactions implemented in the mechanism are bidirectional. Some lumped reactions were assumed to be monodirectional as $\Delta rG \ll 0$ over the whole temperature range of interest (300-2500 K) and because making them bidirectional may result in convergence issues for premixed flame calculations. The most important added reaction kinetic parameters based on sensitivity analyses performed for benzene and naphthalene are listed in Table 11.

Reactions	A (cm, mol, s)	n	E (kcal/mol)	Reference
$C_2H_3(+M) = C_2H_2+H(+M)$	$\begin{array}{c} A_{\infty} = 3.9 \times 10^8 \\ A_0 = 2.6 \times 10^{27} \end{array}$	$n_{\infty} = 1.62$ $n_0 = -3.40$	$E_{\infty} = 37.0$ $E_0 = 35.0$	[134]
$H_2 \rightleftharpoons H_2$	5.7 ×10 ⁴	2.43	6.2	[135]
$(+M) \rightleftharpoons CH_3(+M)$	$\begin{array}{l} A_{\infty} = 1.9 \times 10^{27} \\ A_{0} = 1.0 \times 10^{98} \end{array}$	$n_{\infty} = -3.16$ $n_0 = -22.96$	$E_{\infty} = 100.0$ $E_{0} = 120.0$	[136]
$\begin{array}{c} \cdot \\ & \cdot \\ & + \operatorname{H}\left(+ \operatorname{M} \right) \rightleftharpoons \left(+ \operatorname{M} \right) \end{array}$	$\begin{array}{c} A_{\infty} = 7.2 \times 10^{13} \\ A_{0} = 3.0 \times 10^{136} \end{array}$	$n_{\infty} = 0.06$ $n_0 = -33.35$	$E_{\infty} = -0.04$ $E_0 = 55.0$	[136]
\leftrightarrow + C ₂ H ₂	6.0 ×10 ¹³	0.00	70.0	[137]
$+$ HO ₂ \rightleftharpoons $+$ OH	1.2 ×10 ⁹	1.03	-2.2	[138]
$+_{\mathrm{H}} \rightleftharpoons C_{3}\mathrm{H}_{7}$	5.8 ×10 ¹³	0.00	8.0	[139]

$C_2H_3 + C_2H \rightleftharpoons 2 C_2H_2$	3.0 ×10 ¹³	0.00	0.0	[115]
$2 C_2 H_3 \rightleftharpoons C_2 H_4 + C_2 H_2$	6.3 ×10 ¹³	0.00	0.0	[115]
$2 C_2H_3 \rightleftharpoons H_2C=C=\dot{C}H+CH_3$	1.8×10^{13}	0.00	0.0	[115]
$HC \equiv C - CH_3 + H \rightleftharpoons H_2C = C = \dot{C}H + H_2$	3.6×10^4	2.80	4.8	[140]
$2 H_2C=C=\dot{C}H \rightleftharpoons$	7.2 ×10 ⁶⁵	-16.00	25	[141]
$2 H_2C=C=CH \rightleftharpoons$	1.6 ×10 ⁶⁶	-15.90	28	[142]
$+H \rightleftharpoons +H_2$	6.7×10^{6}	2.53	6.1	[11]
$HC\equiv C-CH=CH_2 \rightleftharpoons$	3.3 ×10 ³³	-5.70	130.0	[11]
$\dot{H}_2C=C=\dot{C}H$ \rightleftharpoons $+2H$	2.0 ×10 ¹³	0.35	5.0	[38]
$+ CH_3 \rightleftharpoons + 2H$	3.0 ×10 ¹⁸	0.00	37.0	[143]
$\dot{\bigcirc}$ $\dot{\circ}$ $\dot{\bigcirc}$ $\dot{\frown}$ $\dot{\bullet}$	4.0 ×10 ¹³	0.00	11.0	[128]

Table 11 : Kinetic rate parameters ($k = A (T / 1 K)^n exp (- E / RT)$) of most important added reactions for naphthalene production.

To better account for diesel intermediate temperature oxidation, the rate parameters of the reaction between benzyl and hydroperoxy radical forming benzoxyl radical (see Table 11), which is important from 800 to 1000 K, were modified. Despite modest deviation with other proposed rate constants [114,138,144,145], that of Da Silva et al. [138] results in a better agreement with experimental ignition delays. In the present work, phenyl+vinylacetylene and benzyl+propargyl pathways are represented as lumped reactions. In fact, production of naphthalene from these two pathways proceed respectively through the formation of phenyl vinylacetylenyl [146] and methyleneindanyl [147]. Figure 27 shows the rate constants proposed for phenyl+vinylacetylene and benzyl+propargyl reactions yielding naphthalene.

Figure 27 : The proposed rate constants for phenyl+vinylacetylene and benzyl+propargyl reactions. Units are in mol, s, cm3, cal, K.

The rate constant herein adopted for phenyl+vinylacetylene pathway follows the recommendation of Appel et al. [11] exhibiting a negative curvature unlike that recommended by Miyoshi et al. [124]. For benzyl+propargyl reaction, large discrepancies still subsist between recommended rate parameters. The rate constant proposed previously by El Bakali et al. [148] was used. The final mechanism contains 1014 species and 4550 most reversible reactions and also accounts for both low and high temperature combustion regimes. The nomenclature of some important species including PAHs used in the present kinetic model as well as the heat of formation of all species is presented in Appendices B and C . The sub-mechanisms used for benzene as well as for naphthalene and pyrene formation and consumption are presented in Appendix G.

4.4. Mechanism Validation Results and Discussions

The performance of the mechanism was assessed against experimental data and several major mechanisms from the literature (see figures for references). A wide range of experimental conditions involving both pure components and commercial fuels combustion have been considered in validating the mechanism. The robustness of the mechanism can be verified by its validation over a wide range of operating conditions such as the nature of fuel (alkanes, alkenes, alkynes, aromatics and commercial fuels), the effects of pressure, temperature, equivalence ratio and the type of the studied system configuration (stabilized flame on a burner, jet stirred reactor, plug flow reactor and shock tube). The determining of this robustness is crucial to assess the acceptable deviation of the kinetic model. Table

12 presents an overview of experimental data used for model validation and Table 13 provides information of those reaction models included in comparison of species profiles taken from literature, with number of species and reactions and their range of validation.

Fuel structure	Configuration	Reference	
Methane	Premixed laminar flame, 0.263 atm φ =2.05; φ =2.32	[148]	
Acetylene	Oxidation in Plug flow reactor, 1 atm, φ =7.50	[115]	
Ethylene	Premixed laminar flame, 1 atm, ϕ =3.06	[36]	
N-butane	Premixed laminar flame, 1 atm, φ =1.60; φ =1.75; φ =1.95	[149]	
N-butane/n-propylbenzene	Premixed laminar flame, 1 atm, $\varphi=1.75$; $\varphi=1.95$	[149]	
Benzene	Premixed laminar flame, 30 Torr, φ=2.00	[150]	
Iso-octane	Premixed laminar flame, 1 atm, ϕ =1.90	[151]	
N-decane	Premixed laminar flame, 1 atm, ϕ =1.70	[152]	
Styrene	Premixed laminar flame, 30 Torr, φ=1.70	[153]	
Ethylbenzene	Premixed laminar flame, 30 Torr, φ =1.79	[154]	
N-propylbenzene	Premixed laminar flame, 30 Torr, φ =1.79	[118]	
Gasoline			
	Premixed laminar flame, 30 Torr, φ =1.73	[155]	
	Ignition delay times 20-40 bar: shock tube	[156]	
	Laminar flame speeds, φ =0.50-1.50	[157]	
Jet Fuel	Premixed laminar flame, 1 atm, ϕ =1.70	[152]	
	Oxidation in jet stirred reactor, 1 atm, φ =2.00	[158]	
	Ignition delay times 20 atm: shock tube	[159]	
	Laminar flame speeds, $\varphi=0.70-1.40$	[160]	
Diesel Fuel			
	Oxidation in jet stirred reactor, 1 atm, φ =2.00	[96]	
	Ignition delay times 6 atm: shock tube and rapid	[161]	
	compression machine		
	Laminar flame speeds, $\varphi=0.70-1.50$		

Table 12 : The overview of experimental data used for model validation.

Reaction models from literature	Number of species/reactions	Range of validation	
Slavinskaya et al. [123]	94 species and 722 reactions	Methane and ethene flames	
Polimi [128]	200 species and 6826 reactions	Gasoline, Jet Fuels, Diesel:	
		PRFs, heavy n-alkanes,	
		Isocetane, Decalin, Tetralin	
Battin-Leclerc et al. [163]	662 species and 3884 reactions	α -methylnaphthalene/air and	
		α-methylnaphthalene/n-	
		decane/air mixtures	
Yuan et al. [153]	290 species and 1786 reactions	Styrene flames	
Dooley et al. [92]	1599 species and 6633 reactions	Jet fuel surrogate	
Raj et al. [164]	231 species and 1350 reactions	Gasoline surrogate fuels	
LLNL [165]	2885 species and 11,754 reactions	Diesel fuel surrogate	

Table 13 : Models included in the validation process against experiments.

Modeling results were compared to experimental data previously published on a few atmospheric pressure premixed flames of ethylene (φ =3.0) [36], n-butane (φ =1.75 and 1.95) [149], iso-octane (φ =1.9) [151], n-decane (φ =1.7) [152] and jet fuel (φ =1.7) [152] and low pressure premixed flame of methane (φ =2.05 and 2.32) [148], benzene (φ =2.0) [166], styrene (φ =1.7) [153], ethylbenzene (φ =1.8) [167], n-propylbenzene (φ =1.8) [118] and gasoline (φ =1.7) [155]. In jet stirred reactor configuration, jet fuel (φ =2.0) [158] at atmospheric pressure and diesel fuel oxidation (φ =1.5) [96] at a pressure of 10 bar were modeled. The prediction of ignition delays times and laminar flame speeds of gasoline [156], jet-A1 fuel [159] and diesel fuel [161] was also considered. Results obtained for a variety of other fuels are provided in Appendix D.

4.4.1. Premixed laminar flames configuration

Species that are of major interest in the sooting flame analysis are acetylene and PAHs. The accepted dominant soot growth mechanisms are the addition of acetylene through HACA mechanism and PAH condensation. Therefore, comparing the measurements and predicted mole fractions of such species is crucial and allows determining of the performance of the kinetic model in order to build a robust soot model.

4.4.1.1. Saturated aliphatic hydrocarbon flames

The alkane flames investigated in the present work are those of methane, n-butane iso-octane and ndecane. In the next sections, comparison between predicted concentration profiles and the measured ones are presented. The rate of production and consumption of most of measured species are also presented and discussed.

4.4.1.1.1. Methane flame

Methane combustion modeling is of prime importance as energies carrier and the primary component of natural gas. As a simple fuel, methane combustion is necessary to generate a detailed understanding of that of complex hydrocarbons. Combustion characteristics such as ignition delay time, flame speed and emissions of such small hydrocarbons are of critical importance in describing that of practical fuels. A low pressure (0.263 atm) rich methane premixed flame at φ =2.32 has been simulated to assess the capability of the present kinetic model in predicting concentrations of species of major interest such as benzene, pyrene and fluoranthene. The comparison between experimental data and the
predicted one is shown in Figure 28. The predicted mole fractions of acetylene as well as PAHs that are not experimentally measured can be seen in Appendix D.

Figure 28 : Low pressure (0.263 atm) methane premixed flame, φ =2.32: CH₄ (46.2% in mol.)/O₂ (39.8%)/N₂ (14.0%). Species mole fraction profiles. The symbols represent experimental data from [148,168]; the lines represent modeling results from the present work.

In Figure 28, only the mole fractions for benzene, pyrene and fluoranthene were reported. The predicted mole fractions of the other PAHs are shown in Appendix D to get an insight into gas phase concentrations, since they will be considered as soot precursors for particles nucleation modeling.

In this low pressure flame of methane at φ =2.32, it can be seen that the computed concentration profiles of species agree fairly well with the measured ones, despite a slight underprediction for benzene. The shift observed between measurements and prediction is due to the uncertainties about the microprobe position, since species concentration profiles were measured by using this device. The microprobe induces a shift that is tricky to determine in such experimental conditions.

- Rate of production/consumption Analysis

Methane consumption pathways

The methane fuel is consumed mainly by H atom abstraction by its reaction with H, OH and O radicals. At a temperature of 1767 K, the main methane consumption reactions are:

$CH_4 + H = CH_3 + H_2$	(R54)
$CH_4 + OH = CH_3 + H_2O$	(R56)
$CH_4 + O = CH_3 + OH$	(R55)

At this temperature, methane consumption is dominated by 70% of (R54), followed by 20% contribution of (R56) and 10% of (R55).

Benzene formation/consumption

In the above experimental conditions, benzene formation is dominated by recombination reaction of propargyl (C_3 species) radical. Propargyl comes from propyne, which is mainly formed from acetylene. Figure 29 shows the rate of production and consumption of benzene.

Figure 29 : Benzene rate of production and consumption in low pressure methane rich flame (φ =2.32). The main benzene formation reactions as a function of the height above the burner (HAB) are:

$C_{3}H_{3} + C_{3}H_{3} = C_{6}H_{6}$	(R3745)
$MC_6H_6 = C_6H_6$	(R3330)
$STYREN = C_6H_6 + C_2H_2$	(R3448)

It can be seen that the reaction (R3745) predominates not only in the reaction zone but also in the higher distance from the burner surface. This reaction is followed by the isomerization (R3330) of dimethylene cyclobutene (MC_6H_6) and then styrene decomposition (R3448) reaction to yield benzene

and acetylene. The major source of benzene consumption is benzyl radical formation, $C_6H_6 + H = C_6H_5 + H_2$ (R3227) and $C_6H_6 + OH = C_6H_5 + H_2O$ (R3230).

Pyrene formation/consumption

As depicted in Figure 30, pyrene formation is dominated by the HACA mechanism, represented by the phenanthryl radical reaction with acetylene, $A3-4 + C_2H_2 = PYRENE + H (R4055)$.

Figure 30 : Pyrene rate of production and consumption in low pressure methane rich flame (φ =2.32).

Pyrene consumption is dominated by the pyrenyl radicals formation through the reaction between pyrene and methyl radical, PYRENE + $CH_3 = A4-2 + CH_4$ (R4070) and PYRENE + $CH_3 = A4-4 + CH_3$ (R4072). These reactions are also a source of methane production. The minor discrepancies observed between measured and predicted pyrene concentration can be due to the lack of reactions that are involved in its consumption and probably its production. Reliable kinetic parameters are required for pyrene production in this flame and this issue must be carefully examined in the future work.

Fluoranthene (FLTHN) formation/consumption

Fluoranthene formation is dominated by the isomerization reactions from acephenanthrylene (A3R5) and from aceanthrylene (A3LR5):

A3R5 = FLTHN	(R4389)
A3LR5 = FLTHN	(R4391)

Reactions (R4389) and (R4391) are found to produce fluoranthene near the burner surface (at low HAB) and at higher HAB (burnt gas zone). Between both zones, they represent a major source of

fluoranthene consumption. Fluoranthene is also consumed to yield fluoranthenyl radicals (FLTHNJ1, FLTHNJ3 and FLTHNJ7).

$FLTHN + H = FLTHNJ1 + H_2$	(R4381)
$FLTHN + H = FLTHNJ3 + H_2$	(R4382)
$FLTHN + H = FLTHNJ7 + H_2$	(R4383)
$FLTHN + OH = FLTHNJ1 + H_2O$	(R4545)
$FLTHN + OH = FLTHNJ3 + H_2O$	(R4546)

4.4.1.1.2. N-butane flames

The n-butane is one of the simplest hydrocarbons contained in commercial fuel (gasoline) and is a major constituent of liquefied petroleum gas (LPG) that is an important alternative fuel for engines. Therefore, the modeling of n-butane combustion is important for understanding the combustion process in engines. This fuel exhibits two-stage ignition and cool flame that are properties relevant to abnormal combustion problems such as knock. A better understanding of n-butane combustion behavior will help elucidate the study of complex hydrocarbon constituents in practical fuels. Three atmospheric pressure n-butane premixed flames have been simulated to get insight into the capability of the present kinetic model in predicted species of major interests such as acetylene. The modeling of this flame is of prime importance due to the availability of experimental data over soot volume fractions that will be later modeled. Therefore, the importance of modeling of this flame is twofold: get insight into the robustness of the mechanism and better understanding of soot formation process from its gaseous precursors. The comparison between experimental mole fractions of species and the predicted ones for the three equivalence ratios φ =1.60; 1.75 and 1.95 is shown from Figure 31 to Figure 33. The experimental data come from a parallel work to the present one in the framework of Advanced Soot Models for Aeronautic and Piston Engines (ASMAPE). The studied flames were stabilized for mainly soot volume fraction measurements and the reactivity near the burner surface was completely ignored. As can be seen in the captions below, the reactivity near the burner surface is high of importance and these flames are not suitable to investigate the progress of chemical species in the flame. However, reliable quantitative information in the reaction as well as the soot formation zone can be obtained. In contrast to the temperature profile measurement, the species mole fractions were

measured by using a microprobe. Therefore, the shift indicated (+1 mm) was necessary to match the species maximum concentration, mainly due to uncertainties over the microprobe positions that are difficult to precise.

Figure 31 : Atmospheric n-butane premixed flame, $\phi=1.60$: n-C₄H₁₀ (8.8% in mol.)/O₂ (35.9%)/N₂ (55.3%). Species mole fraction profiles. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. p.w/10 denotes than the prediction results are divided by 10.

Figure 32 : Atmospheric n-butane premixed flame, $\phi=1.75$: n-C₄H₁₀ (9.46% in mol.)/O₂ (35.22%)/N₂ (55.32%). Species mole fraction profiles. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. p.w/10 denotes than the prediction results are divided by 10.

Figure 33 : Atmospheric n-butane premixed flame, $\phi=1.95$: n-C₄H₁₀ (10.30% mol.)/O₂ (34.31%)/N₂ (55.39%). Species mole fraction profiles. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. p.w/10 denotes than the prediction results are divided by 10.

In both flames at φ =1.60 and φ =1.75, most of measured species profiles show a good agreement with the computed ones (within a factor of 2). Some species of major interest such as acetylene, ethylene, propyne, propene, but-1,3-diene and but-1-ene are satisfactorily represented. Some discrepancies are observed for vinylacetylene C₄H₄ (within an overprediction of a factor of 10) and benzene, where a continuous increase of concentration is observed at higher HAB, while the measurement shows a constant evolution. From the rate of production analysis, the reactions involved in the benzene production are discussed in the next sections. In the flame at φ =1.95, similar observations as for φ =1.75 can be seen. However, the predicted acetylene and propyne maximum concentration peaks are lower than the measured ones, but the concentration profiles are well represented.

- Rate of production/consumption Analysis

The formation pathways of measured intermediate species and the comparison between the three flames at different equivalence ratios can be discussed as follows:

<u>n-butane</u>

For the three flames, the n-butane is predominantly consumed by H atom abstraction by H and OH, followed by thermal decomposition. The main reactions involved in butane decay are presented in Figure 34.

$C_4H_{10} + H = SC_4H_9 + H_2$	(R671)
$C_4H_{10} + H = PC_4H_9 + H_2$	(R670)
$C_4H_{10}(+M) = NC_3H_7 + CH_3(+M)$	(R657)
$C_4H_{10}(+M) = 2C_2H_5(+M)$	(R656)
$C_4H_{10} + OH = SC_4H_9 + H_2O$	(R673)

Figure 34 : n-butane decay pathways.

The predominant reaction (R671) starts near the burner surface, followed by the reaction (R670) that yields respectively but-2-yl (SC₄H₉) and but-1-yl (PC₄H₉). The reaction (R657) produces n-propyl radical and methyl and the reaction (R656) yields two ethyl radicals (C₂H₅). In contrast with the two flames at φ =1.60 and φ =1.75, reaction (R673) involving n-butane oxidation by OH is as important as n-butane thermal decomposition (R656) and also takes place near the burner surface. It can be seen that the three flames exhibit similar results in terms of reactions involved in n-butane decay. However, the reaction zone is larger in the flame at φ =1.95 than in φ =1.60 and φ =1.75 due to diffusion processes.

At temperature above 800 K, SC_4H_9 is mainly consumed to produce propene, $SC_4H_9 = C_3H_6 + CH_3$ (R700), while PC_4H_9 predominantly decays to yield ethylene and ethyl radical $PC_4H_9 = C_2H_5 + C_2H_4$ (R699). The formation of ethylene and but-1-ene from n-butane decay is clearly understandable, since they are ones of the main n-butane combustion products measured in higher concentrations.

Acetylene formation/consumption

Acetylene is mainly produced from vinyl radical decay, followed by a modest contribution of propyne in the three flames. Figure 35 shows the comparison between the three flames.

Figure 35 : Acetylene rate of production analysis in the three n-butane premixed flames.

The main reactions involved in acetylene production are:

$C_2H_3 = C_2H_2 + H$	(R3768)
$C_2H_3(+M) = C_2H_2 + H(+M)$	(R267)
$C_3H_4-P+H = C_2H_2 + CH_3$	(R525)

Vinyl radical (C₂H₃) is predominantly formed from ethylene H abstraction by H atom, C₂H₄ + H = C₂H₃ + H₂ (R253). Acetylene consumption pathways involved oxygen radical and OH as follows:

$C_2H_2 + O = HCCO + H$	(R278)
$C_2H_2 + O = CH_2 + CO$	(R277)
$C_2H_2 + OH = CH_2CO + H$	(R280)

The acetylene consumption products such as HCCO is found to contribute in ethylene and carbon monoxide production, $CH_3 + HCCO = C_2H_4 + CO$ (R3724). Methylene (CH_2) is one of the major source of HCO, $CH_2 + O_2 = HCO + OH$ (R123) and HCO is found to be the main precursor of carbon

monoxide, HCO + M = H + CO + M (R26). CH_2CO formed from acetylene reaction with OH is also a production source of HCCO, $CH_2CO + H = HCCO + H_2$ (R238). It is mainly consumed to yield methyl and carbon monoxide, $CH_2CO + H = CH_3 + CO$ (R237).

Ethylene formation/consumption

As can be seen in Figure 36, ethylene formation is dominated from ethyl radical decay, followed by the decomposition of but-1-yl (PC_4H_9), propene and HCCO.

(R3724)

$$H + C_2 H_4 (+M) = C_2 H_5 (+M)$$
 (R170)

$$C_2H_5 + C_2H_4 = PC_4H_9$$
 (R699)

$$C_{3}H_{6} + H = C_{2}H_{4} + CH_{3}$$
(R441)

$$CH_3 + HCCO = C_2H_4 + CO$$

Figure 36 : Ethylene rate of production analysis in the three n-butane premixed flames.

Ethylene is mainly produced by (R699) near the burner surface (lower HAB). As a reminder, PC_4H_9 is formed from n-butane (the fuel) decomposition, then, its contribution to ethylene production at that

zone is reasonable. At higher distance from the burner surface PC_4H_9 is no longer a main source of ethylene and is overtaken by ethyl radical, propene and HCCO contribution. At higher temperature (> 1500 K), ethyl radical is mainly produced by H abstraction from ethane, $C_2H_6 + H = C_2H_5 + H_2$ (R160) and ethane is formed from methyl radical recombination, $2CH_3$ (+M) = C_2H_6 (+M) (R52).

The reactions leading to ethylene consumption are mainly its reaction with H atom and methyl radical to yield vinyl radical, which is the main source of acetylene.

$$C_2H_4 + H = C_2H_3 + H_2$$
(R253)

$$C_2H_4 + CH_3 = C_2H_3 + CH_4$$
(R257)

Propyne formation/consumption

Figure 37 shows the main reactions involved in propyne formation and consumption. Propyne is mainly formed from allene (C_3H_4 -A) and from allyl radical (C_3H_5 -T).

$C_3H_4-P+H=C_3H_4-A+H$	(R514)
$C_{3}H_{4}-P+H=C_{3}H_{5}-T$	(R515)

Figure 37 : Propyne rate of production analysis in the three n-butane premixed flames.

Allene is predominantly formed from propargyl radical (C_3H_3) and from allyl radical (C_3H_5-A) :

$C_3H_3 + H = C_3H_4 - A$	(R530)
---------------------------	--------

$$C_{3}H_{5}-A + H = C_{3}H_{4}-A + H_{2}$$
(R461)

The major source of allyl radicals (C_3H_5 -A) is propene, $C_3H_6 + H = C_3H_5$ -A + H₂ (R442). Propargyl radical is formed mainly from acetylene, $C_2H_2 + CH_2 = C_3H_3 + H$ (R3713). It can be seen that reaction (R514) which produces propyne until HAB = 1.8 mm, becomes a source of consumption to from back allene.

Propyne is mainly consumed to yield acetylene and methyl radical, $C_2H_2 + CH_3 = C_3H_4 - P + H$ (R525). Then the latter reaction starts to produce propyne at higher distance from the burner (HAB > 1.8 mm) and becomes the major source of propyne in the burnt gas zone.

Propene formation/consumption

Propene is mainly formed from SC_4H_9 thermal decomposition and a contribution of allyl radical reaction with H atom:

(R425)

$$C_{3}H_{6} + CH_{3} = SC_{4}H_{9}$$
 (R700)
 $C_{3}H_{5}-A + H (+M) = C_{3}H_{6} (+M)$ (R425)

It can be seen in Figure 38, that SC₄H₉ starts to produce propene near the burner surface, due to SC₄H₉ formation directly from the fuel decay. Beyond HAB=0.8 mm, reaction (R700) is no longer the major pathway that lead to propene formation and is overtaken by reaction (R425), which involved allyl radical.

Figure 38 : Propene rate of production analysis in the three n-butane premixed flames.

Reactions involved in the propene consumption are:

$C_{3}H_{6} + H = C_{2}H_{4} + CH_{3}$	(R441)
$C_{3}H_{6} + H = C_{3}H_{5} - A + H_{2}$	(R442)
$C_{3}H_{6} + H = C_{3}H_{5}-T + H_{2}$	(R443)

It can be observed that allyl radical that is involved in propene production, contributes also to its consumption, indicating that the main source of propene is SC_4H_9 .

Butadiene (but-1,3-diene) formation/consumption

but-1,3-diene is mainly formed from C_4H_7 radicals hydrogen loss and a light contribution of C_7H_{13} for the richest flame (ϕ =1.95) and cyclopentadienyl radical (C_5H_5) for the flames at ϕ =1.60 and ϕ =1.75. The main reactions are presented in Figure 39:

$$C_4H_6 + H = C_4H_71-3 \tag{R751}$$

 $C_4H_7I-4 = C_4H_6 + H \tag{R791}$

Figure 39 : But-1,3-diene rate of production analysis in the three n-butane premixed flames.

The species C₄H₇1-3 and C₄H₇1-4 are formed mainly from but-1-ene as follows:

$$C_{4}H_{8}-1 + H = C_{4}H_{7}1-3 + H_{2}$$
(R712)
$$C_{4}H_{8}-1 + H + C_{4}H_{7}1-4 + H_{2}$$
(R713)

But-1-ene is predominantly formed from allyl radical, C_3H_5 -A + CH₃ (+M) = C_4H_8 -1 (+M) (R469) and is consumed to yield C_4H_7 1-3 (R712); C_4H_7 1-4 (R713) and SC_4H_9 , C_4H_8 -1 + H = SC_4H_9 (R703).

But-1,3-diene also contributes to ethylene and propyne production, since they are mainly the but-1,3diene consumption products:

$$C_4H_6 + H = C_2H_4 + C_2H_3 \tag{R772}$$

 $C_4H_6 + H = C_3H_4 - P + CH_3$ (R773)

Vinylacetylene (C₄H₄) formation/consumption

As can be seen in Figure 40, the main reaction involved in vinylacetylene production is vinyl radical

 (C_2H_3) reaction with ethynyl (C_2H) for the three n-butane flames:

$$C_4H_4 = C_2H + C_2H_3 \tag{R3767}$$

Vinylacetylene is consumed mainly by H abstraction reactions and its oxidation by O atoms:

$$C_4H_4 + OH = C_4H_3 - I + H_2O$$
 (R857)
 $C_4H_4 + OH = C_4H_3 - N + H_2O$ (R856)

$$C_4H_4 + H = C_4H_3 - I + H_2 \tag{R855}$$

$$C_4H_4 + O = C_3H_3 + HCO$$
 (R858)

Figure 40 : Vinylacetylene rate of production analysis in the three n-butane premixed flames.

Reaction (R858) produces HCO that is found to be the major carbon monoxide precursor. The species C_4H_3 -I and C_4H_3 -N are found to be ones of acetylene and C_4H_2 precursors:

$$C_4H_3-I + H = C_2H_2 + H_2CC$$
(R866)

$C_4H_3-I+H = C_4H_2 + H_2$	(R868)
$C_4H_3-N+H=C_2H_2+H_2CC$	(R861)
$C_4H_3-N+H=C_4H_2+H_2$	(R863)

It is observed that the present kinetic model overpredicts by a factor of 10 vinylacetylene concentration in all the flames. The formation and consumption of this species must be examined in the future work, in order to propose more reliable kinetic model that accounts for such species good prediction.

Benzene formation/consumption

As can be seen in Figure 41, the main reactions involved in benzene production in all the three flames are varied. It is observed that benzene formation starts near the burner surface by propargyl radical recombination. This reaction is followed by C_4/C_2 pathway contribution, involving C_4H_5 -2 (2-butyn-1yl radical) and acetylene and then, the significant contribution of phenol (C_6H_5OH) and dimethylene cyclobutene (MC_6H_6) in benzene production.

$H_2CCCH + H_2CCCH = C_6H_6$	(R3755)
$C_4H_5-2 + C_2H_2 = C_6H_6 + H$	(R816)
$MC_6H_6 = C_6H_6$	(R3330)
$C_6H_5OH + H = C_6H_6 + OH$	(R3231)

Figure 41 : Benzene rate of production analysis in the three n-butane premixed flames.

In the flame at φ =1.60, the recombination reaction of propargyl radicals is predominant in benzene production until HAB = 1 mm, then this reaction is overtaken by MC₆H₆ isomerization at higher HAB. In contrast with this flame, reaction (R3755) remains mostly predominant in benzene production in the flames at φ =1.75 and φ =1.95.

Propargyl radical is formed mainly from propyne, allene and acetylene, C_3H_4 -P + H + H₂CCCH + H₂ (R3753); C_3H_4 -A + H + H₂CCCH + H₂ (R3749); CH₂(S) + C_2H_2 = H₂CCCH +H (R3324). The species C_4H_5 -2 is mainly formed from cyclopentadiene reaction with methyl radical, C_4H_5 -2 + C_2H_4 = C_5H_6 + CH₃ (R817) and from 2-butyne H abstraction, C_4H_6 -2 + H = C_4H_5 -2 + H₂ (R831). MC₆H₆ is mainly formed from fulvene isomerization reaction, MC₆H₆ = FULVENE (R3329). Phenol (C₆H₅OH) is predominantly produced from phenoxy radical reaction with H atom, C_6H_5O + H (+M) = C_6H_5OH (+M) (R3248). The main benzene consumption reactions involved H atom abstraction and oxidation by OH to yield phenyl radical.

$$C_6H_5 + H_2 = C_6H_6 + H \tag{R3227}$$

$$C_6H_6 + OH = C_6H_5 + H_2O$$
 (R3230)

The measured amount of benzene formed in the richest flame (φ =1.95) is three times higher than in φ =1.75 and nearly six times higher than in φ =1.60. These observations are in line with the benzene rates of production obtained in each of the investigated flames.

4.4.1.1.3. n-butane doped with n-propylbenzene flames

The enrichment of n-butane flames with n-propylbenzene has been proposed to assess the robustness of the present mechanism in order to capture gaseous soot precursors concentration profiles. n-butane flames have been doped with 20% of an aromatic species "n-propylbenzene". The comparison between the measured mole fractions of species and the predicted ones are presented in Figure 42 and Figure 43.

Figure 42 : Atmospheric n-butane/n-propylbenzene premixed flame, $\varphi=1.75$: n-C₄H₁₀ (6.69% in mol.)/n-C₉H₁₂ (1.67%)/O₂ (36.32%)/N₂ (55.32%). Species mole fraction profiles. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. p.w/10 denotes that the predictions are divided by 10.

Figure 43 : Atmospheric n-butane/n-propylbenzene premixed flame, $\varphi=1.95$: n-C₄H₁₀ (7.30% in mol.)/n-C9H12 (1.82%)/O₂ (35.56%)/N₂ (55.32%). Species mole fraction profiles. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. p.w/10 denotes that the predictions are divided by 10.

Much better results between measurements and computations are obtained with the addition of an aromatic compound to a paraffinic one. That is understandable since n-propylbenzene is a part of the base mechanism and such improvements are due to its chemistry that is well represented. As a reminder, the present mechanism is composed of 5 sub-sets: C_0 - C_6 , iso-octane, n-decane, n-propylbenzene and PAHs.

In the flame at φ =1.75 as well as in φ =1.95, some key species such as acetylene and benzene concentration profiles are satisfactorily represented. The other important species such as ethylene, propyne, propene, but-1,3-diene and but-1-ene are also fairly represented within uncertainties of a factor of 2. Large discrepancies are obtained for vinylacetylene (C₄H₄) within a factor of 10.

- Rate of production/consumption Analysis

<u>n-butane</u>

In the n-butane/n-propylbenzene mixture premixed flame, n-butane decays as in the previous discussions on 100% n-butane flames. The addition of n-propylbezene shows any impact.

n-propylbenzene

As can be seen in Figure 44, n-propylbenzene (PBZ) decays to form mainly benzyl radical (PHCH₂) and ethyl radical.

Figure 44 : n-propylbenzene decay pathways in n-butane/n-propylbenzene flames.

The H atom abstraction reactions from n-propylbenzene as well as the oxidation by OH are found to be neglected with respect to reaction (R3509) in the HAB range of 0.5-1 mm. However, these

reactions are found much important near the burner surface (HAB < 0.5 mm), where n-propylbenzene reaction with OH and H atom lead to phenyl propyl radicals formation.

$PBZ + OH = PBZJC + H_2O$	(R3527)
$PBZ + OH = PBZJA + H_2O$	(R3525)
$PBZ + H = PBZJA + H_2O$	(R3519)
$PBZ + H = PBZJB + H_2O$	(R3520)

It worth noting that n-propylbenzene reaction with H atom at that zone starts to from benzene and npropyl radical formation, $PBZ + H = NC_3H_7 + C_6H_6$ (R3518). The increase of equivalence from 1.75 to 1.95 lead to a broaden reaction zone as for 100% n-butane flames.

Acetylene formation/consumption

As for n-butane flames, acetylene formation is dominated by vinyl radical hydrogen loss in both flames φ =1.75 and φ =1.95 (Figure 45). This reaction is followed by propyne decay contribution. In contrast to 100% n-butane flames, an additional pathway that leads to acetylene production is observed. In fact, cyclopentadienyl radical decays to yield acetylene and propargyl radical. The main reactions involved in acetylene production are:

$\mathbf{H} + \mathbf{C}_2 \mathbf{H}_2 = \mathbf{C}_2 \mathbf{H}_3$	(R3778)
--	---------

(R267)

$$C_2H_2 + CH_3 = C_3H_4 - P + H$$
 (R525)

$$C_5H_5(+M) = C_2H_2 + C_3H_3(+M)$$

(R3266)

Figure 45 : Acetylene rate of production analysis in n-butane/n-propylbenzene premixed flames.

It can be observed that near the burner surface, vinyl radical consumed first acetylene produced by propyne and cyclopentadienyl. Then, this reaction starts to produce (at HAB=0.65 mm) and remains the most important acetylene source. Reaction (R525) that produces acetylene until HAB=2 mm, becomes a consumption pathway at higher HAB for the richest flame. Cyclopentadienyl radical is mainly formed from phenoxy decay, $C_6H_5O = CO + C_5H_5$ (R3250) and from cyclopentadiene (C_5H_6) H atom abstraction reaction, $C_5H_6 + H = C_5H_5 + H_2$ (R3258). Cyclopentadiene is mainly formed from phenol decomposition, $C_6H_5OH = C_5H_6 + CO$ (R3249). Reactions involved in acetylene consumption are similar to those involved in the previous 100% n-butane flames. Acetylene consumption is dominated by HCCO formation, $C_2H_2 + O = HCCO + H$ (278).

Ethylene formation/consumption

The main reactions involved in ethylene formation and consumption in these flames are similar to those of 100% n-butane flames previously discussed.

Propene formation/consumption

As can be seen in Figure 46, reactions involved in propene production and consumption are similar to those previously discussed in 100% n-butane flames. However, it is observed that an additional pathway leading to propene production appears in the n-butane/n-propylbenzene mixture flames:

$$NC_3H_7 = H + C_3H_6$$
 (R420)

Figure 46 : Propene rate of production analysis in n-butane/n-propylbenzene premixed flames.

The modest contribution of n-propyl (NC_3H_7) to propene production in these flames is understandable due to the addition effect of n-propylbenzene in n-butane. It was observed that n-propylbenzene produce earlier (near the burner surface) n-propyl and benzene (see Figure 44). In 100% n-butane flames, the main source of propene is found to be SC_4H_9 , which is directly formed from n-butane hydrogen loss.

Propyne formation/consumption

As shown in Figure 47 and as for neat n-butane flames, propyne is mainly produced from allene, allyl radical and an additional pathway which is propargyl radical reaction with H atom.

$$C_{3}H_{3} + H = C_{3}H_{4}-P \tag{R529}$$

In the flame at φ =1.75, reaction (R529) is only a source of propyne production, while in the richest flame (φ =1.95), the reverse of this reaction takes place at about HAB =2.3 mm to consume propyne. Propargyl is mainly formed from cyclopentadiene and cyclopentadienyl radical:

 $C_5H_6 + H = C_3H_3 + C_2H_4 \tag{R3331}$

 $C_{5}H_{5}(+M) = C_{2}H_{2} + C_{3}H_{3}(+M)$ (R3266)

Figure 47 : Propyne rate of production in -butane/n-propylbenzene premixed flames.

As for neat n-butane flames, similar reactions that consumed propyne are observed. This consumption is dominated by acetylene and methyl radical formation.

But-1,3-diene formation/consumption

As shown in Figure 48, reactions involved in but-1,3-diene formation are similar to those observed in neat n-butane flames, where cyclopentadienyl radical contribution was found negligible with respect to those of C_4H_71 -3 and C_4H_71 -4. In the n-butane/n-propylbenzene flames, C_4H_71 -3 nad C_4H_71 -4 are found to be butadiene major precursors in lower HAB zone, while C_5H_5 reaction route is predominant in higher HAB zone, starting from 0.9 mm for φ =1.75 and about 1.3 mm for φ =1.95. The addition of

n-propylbenzene has significantly increased the contribution of cyclopentadienyl in producing but-1,3diene, since this latter is mainly produced from phenoxy radical and n-propylbenzene is a major source of aromatic production in such conditions. As for neat n-butane flames, but-1,3-diene is mainly consumed to form ethylene and propyne.

Figure 48 : But-1,3-diene rate of production analysis in n-butane/n-propylbenzene premixed flames.

Benzene formation/consumption

As can be seen in Figure 49, benzene formation pathways in neat n-butane flames and n-butane/npropylbenzene mixtures are completely different. It was observed previously that benzene production is dominated by C₃ species recombination reactions in neat n-butane flames. The only aromatic species observed in benzene formation was phenol contribution. In n-butane/n-propylbenzene mixtures, benzene production is dominated by aromatic species H atom abstraction by H. the main reactions involved in benzene production are:

$TOLUEN + H = C_6H_6 + CH_3$	(R3377)
$C_6H_5 + C_6H_6 = BIPHENYL + H$	(R4165)
$C_6H_6 + OH = C_6H_5OH + H$	(3231)
$PBZ + H = NC_3H_7 + C_6H_6$	(R3518)
$PHC_2H_5 + H = C_2H_5 + C_6H_6$	(R3424)

It can be seen that propargyl radicals, MC_6H_6 and C_4/C_2 reaction routes are no longer important in these flames. The effect of n-propylbenzene addition is clearly observed and induces large modifications to species such as benzene formation pathways with respect to neat n-butane. Toluene is mainly formed from benzyl radical, which is initially produced from n-propylbenzene, PHCH₂ + H

(+M) = TOLUEN (+M) (R3383). Biphenyl is mainly formed from benzyl reaction with cyclopentadienyl radical, C₅H₅ + PHCH₂ => BIPHENYL + 2H (R4514).

Figure 49 : Benzene rate of production analysis in n-butane/n-propylbenzene premixed flames.

As for neat n-butane flames, benzene is mainly consumed to form phenyl radical by H atom abstraction and its oxidation by OH.

4.4.1.1.4. Iso-octane flame

Iso-octane is an important component of gasoline fuels and is also a key component used in gasoline surrogates to investigate the combustion characteristics of commercial gasoline. The atmospheric pressure iso-octane premixed flame (φ =1.9) has been modeled to assess the performance of the kinetic model that is expected to mimic the combustion behavior of gasoline. As a main subset of the present mechanism, it is crucial to model iso-octane combustion in order to determine the acceptable deviation of the kinetic model. In Figure 50, model predictions are compared with measurements.

Figure 50 : Atmospheric pressure iso-octane laminar premixed flame : $iC_8/O_2/N_2$: 0.0423/0.278/ in mole fraction; φ = 1.9 ; V=5.26 x10-3 g/cm2/s ; Predicted and experimental mole fraction of a): oxygen, b): hydrogen, c): carbon monoxide, d): carbon dioxide, e): water, f): methane, g): acetylene, h): ethylene, i): propyne, j): allene, k): ethane, l): propene, m): propane, n): diacetylene, o): vinylacetylene, p): 1,3-butadiene, q): but-1-ene, r): benzene, s): iso-octane. The symbols represent experimental data from [151]; the continuous lines represent the modeling results from the present work; dashed lines: Polimi mechanism [128].

Computations from the present kinetic mechanism clearly show a good agreement with measurements. The small key species measured such as methane, acetylene, ethylene, ethane, allene, propene, propene, diacetylene and vinylacetylene are well represented within a factor of 2. Polimi mechanism [128] shows similar results for all the species. As iso-octane is one of the surrogate component and an important sub-set in the present mechanism, it is crucial to identify the robustness of this sub-set and the above results obtained clearly determine the iso-octane sub-mechanism performance in a rich atmospheric pressure premixed flame.

- Rate of production/consumption Analysis

Iso-octane decay pathways:

The main reactions involved in the iso-octane decay are those of H atom abstraction by H to yield isooctyl radicals and its thermal decomposition to form heptyl (YC_7H_{15}) and methyl radicals as well as Tbutyl and iso-butyl radicals.

$$IC_8H_{18} = YC_7H_{15} + CH_3 \tag{R1921}$$

$IC_8H_{18} + H = AC_8H_{17} + H_2$	(R1925)
$IC_8H_{18} + H = CC_8H_{17} + H_2$	(R1927)
$IC_8H_{18} + H = BC_8H_{17} + H_2$	(R1926)
$IC_8H_{18} = PC_7H_{15} + CH_3$	(R1922)
$IC_8H_{18} = TC_4H_9 + IC_4H_9$	(R1923)

At a HAB=0.2 cm corresponding to a temperature of 1163 K and the position where iso-octane is highly consumed in the reaction zone, reaction (R1921) is predominant, followed by the H abstraction reactions, (R1925), (R1927), (R1926).

Methane formation/consumption

The main reactions involved in methane formation are presented in Figure 51:

$CH_4 + H = CH_3 + H_2$	(R54)
$C_2H_4 + CH_3 = C_2H_3 + CH_4$	(R257)
$XC_7H_{14} + CH_3 => C_3H_6 + IC_4H_7 + CH_4$	(R1680)
$YC_7H_{14} + CH_3 => C_3H_6 + IC_4H_7 + CH_4$	(R1687)

Methane formation is dominated by reaction (R54) from the burner surface to a HAB=0.27 cm. This reaction is also the main pathway of methane consumption to form methyl radical, starting from a HAB=0.27 cm. Then, methane production is dominated by ethylene contribution (R257) from HAB=0.27 cm to the burnt gas zone.

Figure 51 : Methane rate of production in a rich iso-octane premixed flame.

Acetylene formation/consumption

As can be seen in Figure 52, acetylene formation is initiated by H addition on propyne. Vinyl radical becomes the main source of acetylene at higher HAB.

$C_2H_2 + CH_3 + C_3H_4 - P + H$	(R525)
$\mathbf{H} + \mathbf{C}_2 \mathbf{H}_2 = \mathbf{C}_2 \mathbf{H}_3$	(R3768)
$C_2H_3(+M) = C_2H_2 + H(+M)$	(R267)

Figure 52 : Acetylene rate of production in a rich iso-octane premixed flame.

It can be seen that reactions (R3768) and (R267) firstly consume acetylene near the burner surface (lower HAB) before starting to its production at HAB=0.23 cm. As discussed previously in the n-butane flames, acetylene is mainly consumed to form HCCO and methylene (CH_2).

$C_2H_2 + O = HCCO + H$	(R278)
-------------------------	--------

$C_2H_2 + O = CH_2 + CO$	(R277)
--------------------------	--------

$$C_2H_2 + O_2 = HCCO + OH \tag{R275}$$

Ethylene formation/consumption

Ethylene formation is dominated near the burner surface by propene reaction with H atom. At higher HAB, ethyl radical decomposition and HCCO reaction with methyl radical are the main sources of ethylene (Figure 53).

$$H + C_2 H_4(+M) = C_2 H_5(+M)$$
(R170)
$C_{3}H_{6} + H = C_{2}H_{4} + CH_{3}$	(R441)
$CH_3 + HCCO = C_2H_4 + CO$	(R3724)

Ethylene is mainly consumed to form vinyl radical (C_2H_3) through H atom abstraction and oxidation by OH. Ethylene is also found to contribute to HCO production, which the main carbon monoxide precursor.

$C_2H_4 + H = C_2H_3 + H_2$	(R253)
$C_2H_4 + CH_3 = C_2H_3 + CH_4$	(R257)
$C_2H_4 + O = CH_3 + HCO$	(R254)
$C_2H_4 + OH = C_2H_3 + H_2O$	(R256)

Figure 53 : Ethylene rate of production in a rich iso-octane premixed flame.

Propene formation/consumption

As shown in Figure 54, propene is mainly produced from iso-propyl radical, followed by the contributions of iso-butyl and iso-butene.

$\mathrm{H}+\mathrm{C}_{3}\mathrm{H}_{6}=\mathrm{I}\mathrm{C}_{3}\mathrm{H}_{7}$	(R413)	
$IC_4H_9 = C_3H_6 + CH_3$	(R1086)	
$IC_4H_8 + H = C_3H_6 + CH_3$	(R1254)	

Iso-propyl (IC₃H₇) is mainly formed from propane decomposition reaction, $H + C_3H_8 = H_2 + IC_3H_7$ (R382). IC₄H₉ formed from the fuel (iso-octane) governs IC₄H₈ formation by H elimination. In this flame, the main products formed from propene consumption are found to be ethylene and allyl radical.

$\mathbf{C}_3\mathbf{H}_6 + \mathbf{H} = \mathbf{C}_2\mathbf{H}_4 + \mathbf{C}\mathbf{H}_3$	(R441)
$C_{3}H_{6} + H = C_{3}H_{5}-A + H_{2}$	(R442)
$C_{3}H_{6} + OH = C_{3}H_{5}-A + H_{2}O$	(R435)

Figure 54 : Propene rate of production in a rich iso-octane premixed flame.

Propyne formation/consumption

As for n-butane flames, the main reaction involved in propyne are allene (R514) and allyl radical (C_3H_5-T) (R515). Propyne is mainly consumed to form acetylene (R525) and propargyl radical (R3753). Reaction (R525) that initially consumes propyne is found to be the major source of propyne at the burnt gas zone.

Allene (C₃H₄-A) formation/consumption

Allene is found to be mainly formed from IC_4H_7 , $IC_4H_7 = C_3H_4-A + CH_3$ (R1274). IC_4H_7 is predominantly formed from iso-butene (IC_4H_8). The reactions involved in its consumption are mainly propyne production, followed by a minor production of propargyl radical, allyl radical and acetylene.

$C_3H_4-P+H=C_3H_4-A+H$	(R514)
-------------------------	--------

$C_3H_4-P = C_3H_4-A$	(R513)
-----------------------	--------

 $C_{3}H_{4}-A + H = H_{2}CCCH + H_{2}$ (R3749)

$C_2H_2 + CH_3 = C_3H_4 - A + H$	(R500)
$C_{3}H_{4}-A + H = C_{3}H_{5}-A$	(R504)

The reverse of reaction (R504) is observed at higher HAB as allene formation pathway in the burnt gas zone (starting from HAB=0.23 cm).

But-1,3-diene (C₄H₆) formation/consumption

The main reactions involved in 1,3 butadiene formation are:

$C_4H_6 + H = C_3H_4 - A + CH_3$	(R774)
$C_4H_6 + H = C_4H_71-3$	(R751)
$C_4H_71-4 = C_4H_6 + H$	(R791)
$C_5H_5 + OH = C_4H_6 + CO$	(R3269)

But-1,3-diene formation is dominated at lower HAB by allene reaction with methyl (R774) until HAB=0.22 cm. Then, reaction (R751) becomes the main 1,3 butadiene source, followed bu the contribution of reactions (R791) and (R3269). The main reaction involved its consumption is ethylene and vinyl radical production, $C_4H_6 + H = C_2H_4 + C_2H_3$ (R772).

4.4.1.1.5. n-decane flame

High linear alkanes represent an important class of practical fuels such as diesel and kerosene. The oxidation of large hydrocarbon is an important element in modeling combustion in engines including pollutant emissions. Since n-decane is one of the high linear alkane, the accurate prediction of its combustion is major of interest. The atmospheric pressure n-decane premixed flame (φ =1.7) has been modeled and the comparison between predictions and measurements can be seen in Figure 55.

111

Figure 55 : Atmospheric pressure n-decane premixed laminar flame : $nC_{10}/O_2/N_2$:0.032/0.286/0.682 in mole fraction ; ϕ =1.7 ; V=11.7 cm/s ; Predicted and experimental mole fraction of a): oxygen, b): hydrogen, c): carbon monoxide, d): carbon dioxide, e): water, f): methane, g): acetylene, h): ethylene, i): ethane, j): propene, k): allene, l): propyne, m):

diacetylene, n): but-1-ene, o): pent-1-ene, p): benzene, q): hex-1-ene, r): hept-1-ene, s): n-decane. The symbols represent experimental data from [152]; the continuous lines represent the modeling results from the present work; dashed lines: Thomson et al. mechanism for n-decane combustion [26]; dotted lines: Zeng et al. mechanism for n-decane combustion [119].

As for iso-octane premixed flame, the present mechanism operates satisfactorily in a rich atmospheric pressure n-decane premixed flame. The tested mechanisms from the literature show similar results. However, discrepancies are observed with the Thomson et al. mechanism [26], where this mechanism fails to reproduce acetylene and benzene mole fraction profiles. One of the possible explanations to these discrepancies could be the lack of reactions that lead to benzene production. In the Thomson et al. mechanism [26], for the C_3H_4 species, only propyne has been considered and the authors did not include allene molecule.

- Rate of production/consumption Analysis

n-decane decay pathways

n-decane decays mainly to formed n-decyl radicals as following:

$NC_{10}H_{22} + H = NC_{10}H_{21} - 5 + H_2$	(R2573)
$NC_{10}H_{22} + H = NC_{10}H_{21} - 4 + H_2$	(R2572)
$NC_{10}H_{22} + H = NC_{10}H_{21} - 3 + H_2$	(R2571)
$NC_{10}H_{22} + H = NC_{10}H_{21} - 2 + H_2$	(R2570)
$NC_{10}H_{22} + H = NC_{10}H_{21} - 1 + H_2$	(R2569)

The H abstraction reactions are followed by the OH reaction with n-decane that formed the abovementioned radicals. N-decane is also found to dissociate by forming n-octyl-1 radical and ethyl radical, C_8H_{17} -1 + $C_2H_5 = NC_{10}H_{22}$ (R2565).

Acetylene formation/consumption

As discussed in the previous sections, acetylene is mainly formed from vinyl radical (R3768) followed by propyne contribution (R525). It is mainly consumed by reactions (R278) and (R277) that produce HCCO and CH_2 respectively.

Ethylene formation/consumption

As can be seen in Figure 56, reactions involved in ethylene production as a function HAB are given:

$$C_2H_5 + C_2H_4 = PC_4H_9 \tag{R699}$$

$NC_3H_7 = CH_3 + C_2H_4$	(R419)
$H + C_2H_4(+M) = C_2H_5(+M)$	(R170)
$C_{3}H_{6} + H = C_{2}H_{4} + CH_{3}$	(R441)
$CH_3 + HCCO = C_2H_4 + CO$	(R3724)

Starting from the near burner surface, reactions involved in ethylene production are (R699), followed by (R419), (R170), (R441) and then (R3724). The predominant reactions in the burnt gas zone are (R3724) and (R170). Ethylene is mainly consumed to form vinyl radical, that is the main source of acetylene, $C_2H_4 + H = C_2H_3 + H_2$ (R253).

Figure 56 : Ethylene rate of production in a rich n-decane premixed flame.

But-1-ene formation/consumption

But-1-ene is mainly formed from n-decyl radical ($C_{10}H_{21}$ -3) thermal decomposition and from allyl radical reaction with methyl.

$C_4H_8-1 + C_6H_{13}-1 = C_{10}H_{21}-3$	(R2639)

$$C_{3}H_{5}-A + CH_{3}(+M) = C_{4}H_{8}-1(+M)$$
 (R469)

 $C_{10}H_{21}$ -3 is directly formed from n-decane dacay. The main reactions involved in 1-butene consumption are:

 $C_4H_8-1 + H = SC_4H_9 \tag{R703}$

 $C_4H_{8}-1 + H = C_4H_71-3 + H_2$ (R712)

$C_4H_{8}-1 + H = C_4H_71-4 + H_2 $ (R713)
---------------------------------------	-------

$C_4H_8-1 + H = PC_4H_9$	(R70)

Benzene formation/consumption

As for n-butane flames, similar reactions involved in benzene production and consumption are observed. Propargyl radical recombination reaction (R3754) that produces benzene near the burner surface is followed by C_4/C_2 reaction (R816) contribution. Then, phenol (R3231) and MC₆H₆ isomerization reaction (R3330) also contribute significantly to benzene production. As can be seen in Figure 57, the relative importance of the above reactions as a function of HAB clearly evolves. At HAB= 0.1 cm corresponding to a temperature of 1513 K, reaction (R3231) is predominant, followed by propargyl radical recombination (R3754), reaction (R816) and then (R3330).

.)

Figure 57 : Benzene rate of production in a rich n-decane premixed flame.

Pent-1-ene formation/consumption

Pent-1-ene is mainly formed near the burner surface from C₁₀H₂₁-4 decomposition, which is directly

formed from n-decane decay.

$$C_5H_{10}-1 + C_5H_{11}-1 = C_{10}H_{21}-4 \tag{R2643}$$

Pent-1-ene is mainly consumed to form C_5H_91-3 , $C_5H_{10}-1 + H = C_5H_91-3 + H_2$ (R1530).

Hex-1-ene formation/consumption

Hex-1-ene is mainly formed near the burner surface from $C_{10}H_{21}$ -5 decomposition, which is directly formed from n-decane decomposition. A minor contribution of n-octyl radical is also observed.

$$C_6H_{12}-1 + PC_4H_9 = C_{10}H_{21}-5$$
 (R2647)
 $C_2H_5 + C_6H_{12}-1 = C_8H_{17}-4$ (R2674)

Hex-1-ene is mainly consumed to form n-propyl and allyl radical, $C_6H_{12}-1 = NC_3H_7 + C_3H_5-A$ (R2392).

Hept-1-ene formation/consumption

As for Hex-1-ene, hept-1-ene is mainly formed from C₁₀H₂₁-5 decomposition reaction:

$$NC_{3}H_{7} + C_{7}H_{14} - 1 = C_{10}H_{21} - 5$$
(R2648)

Hept-1-ene is mainly consumed to formed 1-butyl and allyl radicals:

$$C_7 H_{14} - 1 = P C_4 H_9 + C_3 H_5 - A \tag{R2477}$$

4.4.1.2. Unsaturated aliphatic hydrocarbon flames

The reactive system of alkene such as ethylene fuel has been examined in validating the present kinetic model. The rate of production and consumption analysis of species of interest has also been processed.

4.4.1.2.1. Ethylene flames

The reactivity of such small hydrocarbon and intermediates is of critical importance in understanding and accurately describing the combustion characteristics of practical fuels. The kinetics of ethylene combustion as well as for acetylene is of considerable importance since it is formed as intermediates in combustion of larger hydrocarbons and plays a key role in the overall combustion process. Any attempt to kinetically model larger hydrocarbons or complex fuels will require kinetic mechanisms that accurately describe such small species (ethylene, acetylene). Two atmospheric pressure ethylene premixed flames at φ =2.34 and φ =3.06 have been simulated (Figure 58Figure 59). A large pool of species of major interest from hydrogen to pyrene has been measured and the prediction of the kinetic model is compared to the measurements.

Figure 58 : Atmospheric ethylene premixed flame, φ =2.34: C₂H₄ (14.08% mol.)/O₂ (18.05%)/N₂ (67.87%). Species mole fraction profiles. The symbols represent experimental data from [82]; the lines represent modeling results from the present work.

Figure 59 : Ethylene premixed flame (φ =3.06; P= 1 atm). Predicted and experimental mole fraction of a): oxygen, b): water, c): carbon dioxide, d): carbon monoxide, e): methane, f): ethylene, g): ethane, h): allene+propyne, i): diacetylene, j): vinylacetylene, k): but-1,3-diene, l): toluene, m): styrene, n): ethylbenzene, o): phenylacetylene, p): acenapthylene, q): phenanthrene, r): anthracene, s): fluoranthene, t): benzo(ghi) fluoranthene, u): acetylene, v): benzene, w): naphthalene, x): pyrene. The symbols represent the experimental data [36]; the continuous lines represent the modeling results from the present work; dashed lines: Slavinskaya et al. mechanism [123] and dotted lines: Polimi mechanism [128].

In the ethylene premixed flame at φ =2.34, a good agreement between measurements and prediction is obtained. However, there is no reported data over PAHs mole fraction. A key species such as acetylene concentration profile is presented and is well captured by the model.

In the ethylene premixed flame at φ =3.06, satisfactory results are obtained despite some discrepancies observed for some species. A good agreement between measured and predicted mole fractions of acetylene, benzene, naphthalene (within a factor of 3) and pyrene is obtained. These encouraging are due to the better prediction of small species such as CH₄, C₂H₄, C₂H₆, C₄H₄ and 1,3-C₄H₆ that are potential precursors acetylene, benzene and naphthalene. Large discrepancies are observed for some species such as C₃H₄ (allene+propyne), C₄H₂ and acenaphthylene (A₂R₅). All the tested mechanisms fail to reproduce satisfactorily C₃H₄ concentration profile, while that of Slavinskaya et al. presents acceptable profiles over C₄H₂ and acenaphthylene. The other measured PAHs fluoranthene and benzo(ghi)fluoranthene mole fractions are predicted within a factor of 3 (underpredicted) and a factor of 4 (overpredicted) respectively. Slavinskaya et al. mechanism shows the similar trend for benzo(ghi)fluoranthene (within a factor of 4). The discrepancies are consistent with Slavinskaya et al. mechanism over benzene and naphthalene mole fraction profiles, while polimi mechanism totally underpredicted the pyrene mole fraction within a factor of more than 10.

Sensitivity on benzene and naphthalene formation/consumption

Figure 60 shows sensitivity analyses for benzene formation in ethylene premixed flame.

Figure 60 : Normalized sensitivities for benzene formation in ethylene premixed flame (φ =3.06, P= 1atm).

As expected, the core H_2-O_2 reaction system plays an important role in benzene chemistry. Reactions $H+O_2=O+OH$; $H_2+OH=H_2O+H$ and $HCO+O_2=CO+HO_2$ show positive sensitivities, indicating that reactions involving OH, H and HO₂ may contribute to benzene formation process through the formation of its precursors. Reaction HCO+M=H+CO+M produces H atom but a negative sensitivity is observed. In this case, formyl (HCO) decomposition may contribute to remove carbon from benzene production paths and H atom production through this step may favor H-abstraction on benzene forming phenyl. It is observed that reactions favoring the formation of vinyl radical, propargyl radical, propargyl radical, benzene and phenol show positive sensitivities, while those consuming vinyl radical, propargyl radical, benzene and phenoxy radical show negative sensitivities. This is consistent with the fact that these species could be benzene precursors. One can note that the highest negative sensitivity is observed for reaction $C_6H_5+H_2=C_6H_6+H$. In addition, propargyl radicals play a key role in benzene production in all flame zones.

Figure 61 shows sensitivity analyses for naphthalene formation in ethylene rich premixed flame. The core H₂-O₂ reaction system plays an important role as for benzene formation. Reactions favoring naphthalene formation such as phenyl radical reaction with vinylacetylene; propargyl radical recombination or production from propyne and vinyl radical production from ethylene exhibit positive sensitivities. Benzene is found to be a dominant precursor of naphthalene since reactions that favor its formation such as propargyl radical recombination or its derived product such as phenyl radical show positive coefficients for naphthalene formation. Reactions consuming naphthalene such as naphthyl radical, indenyl radical and phenylacetylene formation or its precursors such as phenyl radical oxidation to yield phenyl peroxy radical (C_6H_5OO) show negative sensitivities. It is worth noting that the impacts of these reactions (except naphthyl radical formation reaction) on naphthalene formation tend to vanish at higher HAB (> 3 mm). That could be explained by the drop of sensitivity coefficients of reactions that favor naphthalene production, indicating there might be a competition between naphthalene reaction route and other reaction routes that produce indenyl radical such as $C_5H_5+C_4H_2$ [169] and phenyacelyne such as C₆H₅+C₂H₂ [170]. Phenyl peroxy (C₆H₅OO) may contribute to phenoxy radical (C_6H_5O) production, which is a precursor of cyclopentadienyl radicals which can then yield naphthalene by recombination [36,52].

Figure 61 : Normalized sensitivities for naphthalene formation in ethylene premixed flame (ϕ =3.06, P= 1atm).

- Rate of production/consumption Analysis in ethylene flame (φ=3.06)

Acetylene formation/consumption

As discussed in the previous sections, acetylene is mainly formed from vinyl radical decomposition (R3768) and is mainly consumed to yield HCCO (R278), which is a major precursor of ethylene through reaction (R3724), $CH_3 + HCCO = C_2H_4 + CO$.

Benzene and naphthalene formation/consumption

The present mechanism was subsequently used to analyze benzene and naphthalene production pathways in ethylene flame (Figure 62). Rates of production were obtained at the inflection point of benzene mole fraction profile which corresponds to a HAB of 2.5 mm (55.0% of ethylene conversion). The absolute net reaction fluxes by numerical values are indicated next to the corresponding arrows. The boundary value corresponds to 1 nanomole per cubic centimeter per second and the relative contribution of reactions directly involved in benzene and naphthalene production is indicated in percent.

Figure 62 : Major benzene and naphthalene formation pathways in ethylene flame [36]: HAB=2.5 mm (T=1429 K); φ =3.06; P= 1 atm; Reaction fluxes are expressed in nanomole per cubic centimeter per second.

As can be seen in Figure 62, benzene production is dominated by C_3 species (propargyl radicals) recombination (60%), followed by isomerization reaction of dimethylene cyclobutene (MC₆H₆)(12%),

and produced from fulvene, C₄ species (but-2-ynyl C₄H₅-2) reaction with acetylene (12%), 7% contribution from phenol decomposition reaction, and a minor contribution from styrene decomposition to yield vinyl radical (4%), from toluene de-alkylation (3%), and biphenyl decomposition to yield phenyl radical (2%). Naphthalene is mainly produced from phenyl radical reaction with vinylacetylene (88%), followed by vinyl phenyl acetylene (A₁C₂H₃AC) rearrangement (9%) and minor contributions of cyclopentadienyl radicals recombination (1%) and benzyl reaction with propargyl (1%).

We also investigated the main reactions that produce benzene and naphthalene as a function of HAB (see Figure 63 and Figure 64), from 0.5 to 12.0 mm.

Figure 63 : Relative rates of benzene production normalized by the total rate of production in ethylene flame. The contributions of some reactions are multiplied by 5 as depicted in caption.

Figure 64 : Relative rates of naphthalene production normalized by the total rate of production in ethylene flame. The contributions of some reactions are multiplied by 5 as depicted in caption.

In Figure 63, we can notice that propargyl radicals recombination reaction, the fulvene derived product dimethylene cyclobutene (MC_6H_6) and butyn-2-yl (C_4H_5 -2) reaction with acetylene appear as the main benzene production paths in atmospheric ethylene rich flame. In Figure 64, naphthalene production is dominated by phenyl reaction with vinylacetylene. Phenyl radical may probably exist in large concentration and vinylacetylene can be easily produced from acetylene reaction with vinyl radical reaction. It can also be observed in Figure 64 that the HACA mechanism contribution (represented here by vinyl phenyl acetylene, $A_1C_2H_3AC$ path) is significant, while that of cyclopentadienyl radical recombination reaction contributes barely to 5% of naphthalene production.

As can be seen in Figure 65, benzene is mainly consumed to form phenyl radical:

$C_6H_5 + H_2 = C_6H_6 + H$	(R3227)

 $C_6H_6 + OH = C_6H_5 + H_2O$

(R3230)

Figure 65 : Benzene rate of production in a rich ethylene premixed flame.

In Figure 66, naphthalene is mainly consumed to form naphthyl radical, indenyl radical and phenanthrene as follows:

$NAPHT + H = A_2 - 1 + H_2$	(R3660)
$INDENYL + CH_3 = NAPHT + H + H$	(R4264)
$NAPHT + C_4H_2 => PHNHTRHN$	(R4192)

Figure 66 : Naphthalene rate of production in a rich ethylene premixed flame.

Phenanthrene (PHNTHRN) formation/consumption

Phenanthrene is mainly formed from naphthalene reaction with C_4H_2 (R4192), followed by the contribution of stilbene radical ($C_{14}H_{11}$) and a minor contribution of phenyl reaction with phenylacetylene and anthracene isomerization reaction:

$NAPHT + C_4H_2 => PHNTHRN$	(R4192)
$C_4H_{11}(+M) = PHNTHRN + H(+M)$	(R4009)
$C_6H_5 + PHC_2H = PHNTHRN + H$	(R3808)
ANTHRCN = PHNTHRN	(R3811)

Phenanthrene is mainly consumed by forming phenanthryl radical (A₃-1 and A₃-4):

$PHNTRHN + H = A_3 - 1 + H_2$	(R3798)
$PHNTRHN + H = A_3 - 4 + H_2$	(R3799)
$PHNTRHN + CH_3 = A_3 - 1 + CH_4$	(R4195)

Pyrene formation/consumption

As can be seen in Figure 67, pyrene is mainly formed through HACA mechanism, represented by the reaction of acetylene with phenanthryl radicals:

$A_3-1 + C_2H_2 = PYRENE + H$	(R4213)
$A_3-4 + C_2H_2 = PYRENE + H$	(R4055)

$A_3C_2H + H = PYRENE + H$	(R4214)
----------------------------	---------

Reactions involved in pyrene consumption are mainly pyrenyl radicals formation (A₄-1, A₄-2 and A₄-4) and benzo(a)pyrene (BAPYR) formation as follows:

$PYRENE + H = A_4 - 4 + H_2$	(R4068)
$PYRENE + H = A_4 - 1 + H_2$	(R4066)
$PYRENE + CH_3 \Longrightarrow A_4 - 4 + CH_4$	(R4072)
$PYRENE + CH_3 \Longrightarrow A_4-2 + CH_4$	(R4070)
$C_4H_2 + PYRENE => BAPYR$	(R4251)

Figure 67 : Pyrene rate of production in a rich ethylene premixed flame.

4.4.1.3. Benzene and monoalkyles aromatic flames

The reactive systems chosen for aromatic hydrocarbons combustion modeling are those of benzene and n-propylbenzene. The effect of the presence of a monoalkyle chain in term of species formation pathways in both systems has been examined.

4.4.1.3.1. Benzene flame

Aromatic hydrocarbons are important fuel component including jet fuel, gasoline and diesel fuel and atmospheric pollutants. The understanding of aromatics combustion provides useful information on their decay as well as their production pathways. Low pressure (30 Torr) aromatic premixed flame $(\varphi=2.0)$ has been modeled to validate the present kinetic model. In Figure 68, model predictions are compared with experimental mole fraction profiles up to phenanthrene.

Figure 68 : Low pressure (30 Torr) benzene premixed flame, φ =2.00. Predicted and experimental mole fraction of a): benzene, b): oxygen, c): methyl radical, d): water, e): carbon monoxide, f): carbon dioxide, g): acetylene, h): propargyl radical, i): allene, j): propyne, k): but-1,3diene, l): vinylacetylene, m): cyclopentadienyl radical, n): cyclopentadiene,

o): phenol, p): phenylacetylene, q): styrene, r): toluene, s): indene, t): naphthalene, u): biphenyl, v): phenanthrene. The symbols represent the experimental data [150]; the continuous lines represent the modeling results from the present work.

It can be seen that a satisfactorily agreement is obtained between measured and predicted mole fractions for most of the key radical as well as molecular species within a factor of 2. Radical species such as methyl, propargyl and cyclopentadienyl mole fraction profiles are well reproduced within experimental uncertainties. Molecular species such as benzene decay, allene, propyne, diacetylene, vinylacetylene and cyclopentadiene are fairly represented. A good agreement with acetylene concentration profile can be seen from the burner surface to 10 mm above the burner. Large discrepancies are observed from 10 mm to the burnt gas zone. In contrast with the modeling result, where a constant evolution of the mole fraction is obtained, the measurements show a decreasing trend within a factor of 3. While positive results are obtained for monoaromatic species such as phenylactylene (PHC₂H), styrene, and toluene, a fairly agreement between predicted PAHs mole fraction and the measured ones such as indene, naphthalene, biphenyl and phenanthrene can be seen. These results are online with the better prediction of these PAHs precursors such as acetylene, vinylacetylene, diacetylene, propargyl and cyclopentadienyl.

- Rate of production/consumption Analysis

Benzene decay pathways

Benzene decays mainly by its reaction with H atom and OH to yield phenyl radical. Phenoxy radical (C_6H_5O) is also found to be formed near the burner surface.

$C_6H_5 + H_2 = C_6H_6 + H$	(R3227)
$C_6H_6 + OH = C_6H_5 + H_2O$	(R3230)
$C_6H_6 + O = C_6H_5O + H$	(R3225)

In addition to benzene decomposition pathways, it is formed later by styrene decay reaction as follows:

$STYREN = C_6H_6 + C_2H_2$	(R3448)
----------------------------	---------

 $STYREN = C_6H_6 + C_2H_3$ (R3471)

Acetylene formation/consumption

As discussed previously, the main source of acetylene is vinyl radical decay reaction (R3768) and propyne dissociation reaction (R525). In this benzene flame, an additional pathway involving cyclopentadienyl is found to play a significant role in lower HAB zone:

$$C_{5}H_{5}(+M) = C_{2}H_{2} + C_{3}H_{3}(+M)$$
(R3266)

The importance of this reaction in acetylene production is related to the high amount of phenyl radical production from benzene, since cyclopentadienyl is mainly formed from phenoxy radical, which is directly produced from phenyl radical reaction with oxygen atom. For a temperature range of 1380-1770 K corresponding to a HAB range of 4-7 mm, (R3266) is predominant, followed by (R3768) and then (R525). At higher HAB, (R3768) is predominant.

Acetylene is mainly consumed to yield HCCO (R278) and CH_2 (R277) as discussed in the previous sections.

Propargyl radical (C₃H₃) formation/consumption

Propargyl formation is dominated by cyclopentadienyl decomposition (R3266) and a minor contribution of phenyl radical as follows:

$C_5H_5(+M) = C_2H_2 + C_3H_3(+M)$	(R3266)
$2C_3H_3 = C_6H_5 + H$	(R544)

The reactions involved in its consumption are mainly styrene, propyne and allene production.

$C_5H_5 + C_3H_3 = STYREN$	(R4515)
$C_3H_3 + H = C_3H_4 - P$	(R529)
$C_3H_3 + H = C_3H_4 - A$	(R530)

Propyne formation/consumption

Propyl formation is dominated by propargyl contribution, followed by allene isomerization reaction:

$C_3H_3 + H = C_3H_4 - P$	(R529)
$C_{3}H_{4}-P + H = C_{3}H_{4}-A + H$	(R514)
$C_3H_4-P = C_3H_4-A$	(R513)

In contrast with benzene flame, propyne formation is dominated by allene and allyl radical contributions in alkane premixed flames. That is understandable due to the high concentration of propargyl precursor (C_5H_5) in such aromatic flames.

As for alkane flames, propyne is mainly consumed to form acetylene (R525) in this benzene flame.

Allene formation/consumption

Allene is mainly formed form allyl radical as for alkane flames, and a major contribution of propargyl:

$$C_{3}H_{4}-A+H = C_{3}H_{5}-A$$
 (R504)
 $C_{3}H_{3}+H = C_{3}H_{4}-A$ (R530)

Reaction (R530) is found to be predominant in the burnt gas zone, starting from HAB =8 mm that corresponds to a temperature 1770 K, while reaction (R504) is the predominant one in alkane flames. It is mainly consumed to yield propyne and a minor contribution in acetylene production:

$C_3H_4-P+H=C_3H_4-A+H$	(R514)
$C_3H_4-P = C_3H_4-A$	(R513)
$C_2H_2 + CH_3 = C_3H_4 - A + H$	(R500)

Cyclopentadiene (C₅H₆) formation/consumption

Cyclopentadiene is found to be mainly formed from phenol (C₆H₅OH):

$$C_6H_5OH = C_5H_6 + CO$$
 (R3249)

It is produced at lower HAB zone (near the burner surface) by cyclopentadienyl reaction route, then this reaction becomes the main consumption path of cyclopentadiene at temperature > 1600 K.

$C_{5}H_{5} + H(+M) = C_{5}H_{6}(+M)$	(R3253)
$C_5H_6 = C_5H_5 + H$	(R3723)
$C_5H_6 + H = C_5H_5 + H_2$	(R3258)

Cyclopentadienyl (C5H5) formation/consumption

Cyclopentadienyl formation is dominated by phenoxy radical decomposition reaction, followed by a minor contribution of cyclopentadiene thermal decomposition:

$$C_6H_5O = CO + C_5H_5$$
 (R3250)

$C_5H_6 = C_5H_5 + H$	(R3/23)
-----------------------	---------

Cyclopentadienyl is mainly consumed to form acetylene, propargyl, styrene and a minor contribution in but-1,3-diene formation as follows:

$C_{5}H_{5}(+M) = C_{2}H_{2} + C_{3}H_{3}(+M)$	(R3266)
$C_5H_5 + C_3H_3 \Longrightarrow STYREN$	(R4515)
$C_5H_5 + OH = C_4H_6 + CO$	(R3269)

Toluene formation/consumption

Toluene formation is dominated by benzyl radical reaction with H atom:

$PHCH_2 + H(+M) = TOLUEN(+M)$	(R3383)
-------------------------------	---------

It is mainly consumed by through the reverse of reaction (R3383) to formed back benzyl. Benzene is also produce through its decomposition reaction:

$TOLUEN + H = PHCH_2 + H_2$	(R3388)
$TOLUEN = C_6H_6 + CH_3$	(R3377)

Styrene formation/consumption

Styrene is mainly formed from cyclopentadienyl reaction with propargyl:

$C_5H_5 + C_3H_3 \Longrightarrow STYREN$	(R4515)
--	---------

The main reactions involved in styrene consumption lead to phenyl and benzene formation as follows:

$C_6H_5 + C_2H_4 = STYREN + H$	(R3447)
$STYREN + H = C_6H_6 + C_2H_3$	(R3471)
$STYREN = C_6H_6 + C_2H_2$	(R3448)

Indene formation/consumption

Indene is mainly formed near the burner surface by cyclopentadienyl reaction with cyclopentadiene. Then, phenyl reaction with propyne and allene are found to play a key role in indene production.

$C_5H_5 + C_5H_6 \Longrightarrow INDENE + CH_3$	(R4508)
$C_6H_5 + C_3H_4 - P = INDENE + H$	(R4114)

$C_6H_5 + C_3H_4 - A \Longrightarrow INDENE + H $ (R411)	5)	ļ
--	----	---

Indene is mainly consumed to form indenyl radical:

$INDENE + H = INDENYL + H_2$	(R3684)
$INDENE + OH = INDENYL + H_2O$	(R3686)

Biphenyl (BIPHENYL) formation/consumption

Biphenyl is mainly formed from cyclopentadienyl reaction with benzyl, followed by a minor contribution of phenyl radical recombination reaction:

$C_5H_5 + PHCH_2 => BIPHENYL + H + H$	(R4514)
$2C_6H_5 = BIPHENYL$	(R4168)

Biphenyl is mainly consumed to form benzene and phenyl through its decomposition, then biphenyl radical (P₂-) formation:

$C_6H_5 + C_6H_6 = BIPHENYL + H$	(R4165)
$BIPHENYL + H = P_2 - + H_2$	(R4172)

In the lower HAB zone (near the burner surface) and due to the high amount of phenyl and benzene in that zone, biphenyl formation is initiated by reaction (R4165) that becomes later its major consumption pathway.

Naphthalene formation/consumption

As for ethylene premixed flame, naphthalene formation is dominated by the phenyl reaction with vinylacetylene (C_4H_4), followed by the contribution of HACA reaction route represented by $A_1C_2H_3AC$ and a minor contribution of cyclopentadienyl radical recombination:

$C_6H_5 + C_4H_4 = NAPHT + H$	(R4130)
$A_1C_2H_3AC = NAPHT + H$	(R3656)
$2C_5H_5 = NAPHT + H_2$	(R3654)

Reaction (R4130) which is the naphthalene predominant production pathway is found to be a source of consumption at higher HAB (T> 1770 K). Thus, only reaction (R3656) continues to produce naphthalene in that flame zone.

Naphthalene is mainly consumed to form naphthyl radical, phenylacetylene and then indenyl radical:

$NAPHT + H = A_2 - 1 + H_2$	(R3660)
$NAPHT + OH = A_2 - 1 + H_2O$	(R3661)
$NAPHT + O = CH_2CO + PHC_2H$	(R4136)
$INDENYL + CH_3 = NAPHT + 2H$	(R4264)

Phenanthrene (PHNTHRN) formation/consumption

Phenanthrene formation is dominated by phenyl reaction with phenylacetylene, followed by naphthalene reaction with diacetylene (C_4H_2):

$C_6H_5 + PHC_2H = PHNTHRN + H$	(R3808)
$NAPHT + C_4H_2 => PHNHTRN$	(R4192)
$PHC_2H - + C_6H_6 = PHNHTRN$	(R4014)

Phenanthrene is mainly consumed to form phenanthryl radical (A_3 -1; A_3 -4), which is found to be widely involved in pyrene formation process through the HACA mechanism.

$PHNTHRN + H = A_3 - 1 + H_2$	(R3798)
$PHNTHRN + H = A_3 - 4 + H_2$	(R3799)
$PHNTHRN + OH = A_3 - 1 + H_2O$	(R4017)
$PHNTHRN + OH = A_3 - 4 + H_2O$	(R4018)

4.4.1.3.2. n-propylbenzene flame

As for benzene combustion and a main subset of the present mechanism, n-propylbenzene is an aromatic hydrocarbon which combustion properties are useful to understand since this kind of component widely exists in practical fuels. Aromatic hydrocarbons are known to significantly contribute to the soot production by enhancing the soot precursors such as PAHs. The understanding of aromatic hydrocarbon combustion will help for the development of clean combustors. Compared with benzene, n-propylbenzene has longer alkyl chain and higher energy density. It is serves in most of studies as a representative component in diesel or jet surrogate fuels. A low pressure (30 Torr) rich

premixed flame of n-propylbenzene (ϕ =1.79) has been modeled and compared with the experimental mole fractions of small species as well as PAHs up to naphthalene (Figure 69).

Figure 69 : Low pressure (30 Torr) n-propylbenzene premixed laminar flame : $PBZ/O_2/Ar : 0.05/0.32/0.63$ in mole fraction ; $\varphi = 1.79$; V= 50 cm/s ; Predicted and experimental mole fraction of a): oxygen, b): hydrogen, c): carbon dioxide, d): carbon monoxide, e): water, f): methyl, g): formaldehyde, h): acetylene, i): ethylene, j): ethyl, k): propargyl radical, l): allene, m): propyne, n): diacetylene, o): vinylacetylene, p): cyclopentadienyl, q): cyclopentadiene, r): benzene, s): phenol, t): toluene, u): benzyl, v): ethylbenzene, w): n-propylbenzene, x): naphthalene. The symbols represent experimental data from [118]; the continuous lines represent the modeling results from the present work; dashed lines: Wang et al. mechanism for n-propylbenzene combustion [118].

As for iso-octane flame, a good agreement for all species measured with the predictions can be observed. Radical species as well as molecular species including acetylene, benzene, monoaromatics (n-propylbenzene decay, benzyl radical, phenol, toluene and ethylbenzene) and naphthalene are well reproduced. These results also indicate the performance of the present mechanism for a rich low pressure aromatic premixed flame. The mechanism of Wang et al. [118] shows similar results as for the present mechanism. Discrepancies are observed mainly for acetylene and naphthalene mole fractions prediction. For the acetylene, Wang et al. mechanism [118] overpredicts measurements (within a factor > 4) in the burnt gas zone, while for naphthalene, an underprediction within a factor of 3 is obtained.

- Rate of production/consumption Analysis

n-propylbenzene decay pathways

n-propylbenzene consumption is initiated near the burner surface by H atom abstraction with H and OH, followed by thermal decomposition reactions:

$PBZ + H = PBJA + H_2$	(R3519)
$PBZ + H = PBJB + H_2$	(R3520)
$PBZ + H = PBJC + H_2$	(R3521)
$PBZ + OH = PBJA + H_2O$	(R3525)
$PBZ + OH = PBJB + H_2O$	(R3526)
$PBZ + OH = PBJC + H_2O$	(R3527)
$PBZ(+M) = PHCH_2 + C_2H_5(+M)$	(R3509)
$PBZ + H = NC_3H_7 + C_6H_6$	(R3518)

At a temperature higher than 1800 K, reaction (R3509) is the predominant one.

Acetylene formation/consumption

As for benzene flame, similar reactions are involved in acetylene formation. In contrast with benzene flame, acetylene formation is dominated by vinyl radical decomposition (R3768) in all the flame zones, followed by cyclopentadienyl decomposition reaction (R3266) and propyne contribution (R525). However, an additional reaction involving benzyl radical (PHCH₂) in n-propylbenzene flame is observed:

$$PHCH_2 = C_5H_5 + C_2H_2$$
(R3391)

 $PHCH_2$ is directly formed from n-propylbenzene decay and this reaction is not found important in the case of benzene premixed flame. The presence of an alkyl chain on monoaromatic shows an impact on species such as acetylene formation pathways. The main reactions involved in acetylene consumption are similar to those previously discussed in the case of benzene flame.

Benzene formation/consumption

Benzene is mainly produced near the burner surface by n-propylbenzene decomposition reaction, followed by a major contribution of toluene, biphenyl and styrene decomposition reactions:

$PBZ + H = NC_3H_7 + C_6H_6$	(R3518)
$TOLUEN + H = C_6H_6 + CH_3$	(R3377)
$C_6H_5 + C_6H_6 = BIPHENYL + H$	(R4165)

STYREN + H =	$C_6H_6 + C_2H_3$ (1)	R3471)

$$STYREN = C_6H_6 + C_2H_2$$
 (R3448)

As for n-butane/n-propylbenzene mixture flames, benzene formation is controlled mainly by aromatic species decomposition. At a temperature of 1700 K, benzene formation is dominated by toluene decomposition (R3377), followed by biphenyl decomposition (R4165) and then styrene (R3471) and n-propylbenzene decomposition (R3518). The main reactions involved in benzene consumption are phenyl radical formation as discussed in the previous sections.

Toluene formation/consumption

No difference between benzene and n-propylbenzene premixed flames is observed concerning toluene formation and consumption pathways. Reactions observed are similar to those previously discussed in the case of benzene flame.

Benzyl (PHCH₂) formation/consumption

Benzyl is mainly formed from n-propylbenzene decomposition reaction that takes place near the burner surface through the following reactions:

$PBZ(+M) = PHCH_2 + C_2H_5(+M)$	(R3509)
$PBZJA = PHCH_2 + C_2H_4$	(R3561)

Benzyl is found to be a major source of toluene, cyclopentadienyl, ethylbenzene, biphenyl and naphthalene as following:

$PHCH_2 + H(+M) = TOLUEN(+M)$	(R3383)
$PHCH_2 = C_5H_5 + C_2H_2$	(R3391)
$PHC_2H_5 = PHCH_2 + CH_3$	(R3420)
$C_5H_5 + PHCH_2 \Longrightarrow BIPHENYL + 2H$	(R4514)
$PHCH_2 + C_3H_3 = NAPHT + 2H$	(R4265)

Reaction (R3420) that initially consumes benzyl becomes its source of production at higher HAB (T>1700 K). Also, reaction (R3383) that is the predominant benzyl consumption path becomes a major source of its production in the burnt gas zone.
Naphthalene formation/consumption

In contrast with the benzene flame, naphthalene formation is dominated by benzyl reaction propargyl, followed by the HACA mechanism and phenyl reaction with vinylacetylene:

$PHCH_2 + C_3H_3 = NAPHT + 2H$	(R4265)
$A_1C_2H_3AC = NAPHT + H$	(R3656)
$C_6H_5 + C_4H_4 = NAPHT + H$	(R4130)

As can be seen in Figure 70, reaction (R4130) exhibits different trend. It is found to play a significant role in naphthalene production, then, it becomes a major source of naphthalene consumption at T > 1800 K. The latter reaction was found predominant in the case of benzene flame and becomes a major source of naphthalene consumption at T> 1750 K. However, reaction (R4265) was not found as important in naphthalene production in benzene flame. The effect of the alkyl chain is clearly observed on aromatics production pathways, since the nature of species involved varies. Reactions involved in naphthalene consumption are similar to those discussed in benzene flame, where naphthyl, indenyl and phenylacetylene are the main products.

Figure 70 : Naphthalene rate of production analysis in benzene and n-propylbenzene premixed flames.

4.4.1.4. Liquid transportation fuel flames

Modeling of the combustion of jet fuel as well as gasoline has been performed in validating the present detailed mechanism. Due to the unavailability of experimental data over diesel fuel flame, the performance assessment of the mechanism is limited to the two above mentioned practical fuels.

4.4.1.4.1. Jet fuel flame

For modeling the combustion of aviation fuels that consist of complex hydrocarbon mixtures, it is often necessary to use surrogate mixtures. The present kinetic model consisting of a few larger hydrocarbons is used to mimic the combustion of commercial jet fuel. The detailed modeling of jet fuels combustion is useful to better control and to reduce emissions and fuel consumption. Due to the complexity of such fuels composed of hundreds of hydrocarbons: alkanes, cycloalkanes, aromatics and polycyclic compounds, such modeling is a real challenge. In Figure 71, the atmospheric pressure jet fuel flame (φ =1.70) has been modeled by using the surrogate considered (n-decane/iso-octane/n-propylbenzene, see Table 3, section 4.2) in the present work. The comparison between measurements and predictions are presented. The largest species measured is benzene and there no available experimental data over higher hydrocarbons.

Figure 71 : Atmospheric pressure Jet fuel flame, φ =1.70. Predicted and experimental mole fractions of a): carbon dioxide, b): water, c): acetylene, d): ethylene, e): benzene, f): naphthalene, g): phenanthrene and h): pyrene in jet fuel premixed flame. The symbols represent experimental data [152]; the continuous lines represent the modeling results from the present work; dashed lines: jet surrogate mechanism from Dooley et al. [92] and dotted lines: Polimi mechanism [128].

The present mechanism has also been validated over a rich atmospheric pressure commercial jet fuel premixed flame. The combustion products CO_2 and H_2O and some measured key species such as acetylene and benzene are satisfactorily predicted. Among the mechanisms taken from the literature, some discrepancies with the Polimi mechanism [128] are observed over acetylene mole fraction profile and the amount of PAHs (naphthalene and pyrene) formed is significantly lower than that obtained from the present work mechanism. Due to the lack of experimental data for these PAHs, it is tricky to compare both mechanisms in such conditions. Nevertheless, the surrogate fuel proposed in

this work to mimic commercial jet fuel shows clearly positive results in premixed 1D flame configuration.

Sensitivity analysis on benzene and naphthalene production

As the present mechanism was shown to perform fairly well over an extended range of operating conditions, it could be used with some confidence to perform local sensitivity analyses by computing the logarithmic derivatives of benzene and naphthalene concentrations with respect to the kinetic preexponential factors. The main aim of this analysis was to gain an overview not only on the nature of reactions which potentially affects benzene and naphthalene chemistry but also the nature of those conditioning benzene and naphthalene production in liquid transportation surrogate fuels.

Figure 72 shows sensitivity analyses for benzene formation in jet A-1 premixed flames.

Figure 72 : Normalized sensitivities for benzene formation in jet A-1 premixed flame (φ =1.70, P= 1atm).

As expected, the core H_2 -O₂ reaction system plays an important role in benzene chemistry in jet A-1 flame. It can be seen that reactions involved in propargyl consumption by oxidation shows negative sensitivities, while those involved in its production shows positive sensitivities, indicating that propargyl might be widely involved in benzene formation process. It is observed that reactions favoring the formation of fulvene, benzene and phenol show positive sensitivities, while those consuming benzene and phenoxy which is the main precursor of phenol show negative sensitivities. This is consistent with the fact that these species could be benzene precursors. One can note that the highest negative sensitivity is observed for reaction $C_6H_5+H_2=C_6H_6+H$. In addition, reactions involving phenol impact considerably benzene production from 1.0 to 3.0 mm (burnt gas zone).

Figure 73 shows sensitivity analyses for naphthalene formation in jet A-1 flame. The core H_2 - O_2 reaction system plays an important role as for benzene formation.

Figure 73 : Normalized sensitivities for naphthalene formation in jet A-1 premixed flame (ϕ =1.70, P= 1atm).

Benzyl reaction with propargyl shows positive sensitivities from 0.2 to 1.8 mm. Beyond 1.8 mm, this reaction does no longer impact naphthalene formation, implying that benzyl reaction route might be an important pathway from 0.2 to 1.8 mm. Phenyl reaction with vinylacetylene shows positive sensitivities, indicating that this reaction may play an important role [52,171] for naphthalene production from 1.0 mm to 3.0 mm (in burnt gas zone). Dibenzofuran oxidation reaction shows a contrasted behavior. The negative sensitivities observed for this reaction could be explained by the consumption of its precursor (i.e phenoxy), which also exhibits negative sensitivities by yielding cyclopentadienyl radical. In that case, cyclopentadienyl radicals do not seem to play an important role in naphthalene production since phenoxy radical consumption effect is more important than their production. Negative sensitivities observed for phenol decomposition reaction to yield cyclopentadiene (C_5H_6) shows that this reaction may also impact naphthalene production.

- Rate of production Analysis

Acetylene formation/consumption

In jet A-1 flame, acetylene formation is dominated by the contribution of vinyl radical (R3768) and propyne (R525) as previously discussed. It is mainly consumed to produce HCCO (R278) and CH_2 (R277).

Benzene and naphthalene formation/consumption

The present mechanism was subsequently used to analyze benzene and naphthalene production pathways in jet A-1 surrogate fuel. In Figure 74, rates of production were obtained at the inflection point of benzene mole fraction profile which corresponds to a HAB of 0.4 mm (56.2% of jet A-1 fuel conversion). The absolute net reaction fluxes by numerical values are indicated next to the corresponding arrows. The boundary value corresponds to 1 nanomole per cubic centimeter per second and the relative contribution of reactions directly involved in benzene and naphthalene production is indicated in percent.

Figure 74 shows the main reaction paths governing benzene formation in the rich atmospheric jet A-1 flame. Benzene formation is dominated by the consumption of n-propylbenzene (50%) and biphenyl (15%) by hydrogen atoms. C_3 species recombination reactions account for 11%, 8% from toluene dealkylation, 7% from ethylbenzene, 5% from styrene and a minor contribution of 3% from benzaldehyde and phenol. Naphthalene formation is dominated by benzyl reaction with propargyl (51%), followed by 31% contribution from dibenzofuran oxidation by OH, 13% contribution from vinyl phenyl acetylene (A₁C₂H₃AC) rearrangement and a minor contribution of 5% from phenyl reaction with vinylacetylene. The self-recombination of cyclopentadienyl radical reaction was found to be negligible in our conditions.

Figure 74 : Major benzene and naphthalene formation pathways in jet A-1 fuel flame [152]: HAB=0.4 mm; φ=1.70; P= 1 atm; Reaction fluxes are expressed in nanomole per cubic centimeter per second.

We also investigated the main reactions that produce benzene and naphthalene as a function of HAB from 0.1 to 3.3 mm (Figure 75 and Figure 76).

Figure 75 : Relative rates of benzene production normalized by the total rate of production in jet A-1 flames. The contributions of some reactions are multiplied by 5 as depicted in caption.

Figure 76 : Relative rates of naphthalene production normalized by the total rate of production in jet A-1 flames. The contributions of some reactions are multiplied by 5 as depicted in caption.

In Figure 75 and Figure 76, we can notice that the nature of the intermediates involved in benzene production differs from those involved in alkanes and alkenes flames previously discussed. From the current kinetic mechanism, benzene appears to be mainly formed from aromatic species such as toluene, biphenyl, ethylbenzene, n-propylbenzene and phenol. This is consistent with the fact that aromatics are well represented in jet A-1 and diesel fuels. Naphthalene production is dominated by benzyl reaction with propargyl. As many of the aromatic hydrocarbons in diesel and jet A-1 fuels contain alkylic side chains [172], they can readily produce benzyl radical by decomposition. The second important reaction identified for naphthalene production is that of dibenzofuran oxidation. Tritz et al. [133] proposed that dibenzofuran oxidation or pyrolysis could lead to naphthalene production proceeding through phenylacetylene intermediate. From the present kinetic study on jet A-1 surrogate oxidation, dibenzofuran decomposition process seems to emerge as one major naphthalene production pathway. The contribution of dibenzofuran oxidation to naphthalene production as a function of HAB in the investigated jet A-1 flame can be seen in Figure 76. It continuously produces naphthalene from HAB=0.1 mm (as a major pathway) to the burnt gas zone (HAB=3.3 mm), while benzyl radical does no longer contribute to naphthalene production at HAB > 1.5 mm since it is almost totally converted. While the present study only confirms the already established involvement of phenyl+vinylacetylene and benzyl+propargyl pathways in naphthalene production [173], the significant contribution of dibenzofuran was not proposed previously for jet A-1 premixed flames.

It can also be observed in Figure 76 that the HACA mechanism contribution (represented here by vinyl phenyl acetylene ($A_1C_2H_3AC$) path) is significant, while that of cyclopentadienyl radicals recombination reaction contributes barely to 5% of naphthalene production. Although Marinov and coworkers [36] concluded from their detailed modeling that cyclopentadienyl radicals route reaction could be the dominant naphthalene formation pathway in premixed aliphatic flames, McEnally and Pfefferle [174] deduced that benzyl addition to propargyl and HACA mechanism are viable routes from direct experimental evidence. The present results are consistent with this later assessment. However, dibenzofuran contribution to naphthalene formation had not been highlighted in the context of premixed flame literature prior to the present study.

In summary, the reactions path analyses carried out on the formation of the first aromatic rings reinforce the oxygenate involvement hypothesis in the activation of PAHs formation at high temperature. In this activation process, our calculations show that the phenoxy radical takes a central role. Unlike most of the literature mechanisms which consider that phenoxy is only a source of cyclopendienyl radicals, the present mechanism introduced a competition of the preceding step with that leading to a direct dibenzofuran formation. The presence of both reactions routes offers not only a better range of PAHs products, but also possible amphiphilic PAHs soot precursors due to the electronegative character of oxygen atoms.

4.4.1.4.2. Gasoline flame

As for jet fuels, modeling of gasoline combustion is a major of interest for both economical and environmental concerns. The gasoline surrogate proposed in the present work (n-decane/iso-octane/n-propylbenzene, see Table 3, section 4.2) with the present kinetic model is assessed for emulating commercial gasoline combustion behavior. A low pressure (30 Torr) rich gasoline premixed flame (ϕ =1.70) has been modeled to get insight into the capability of the present kinetic model. In Figure 77, comparison between predictions and measurements is presented.

Figure 77 : Low pressure (30 Torr) gasoline flame, φ =1.70. Predicted and experimental mole fractions of a): carbon monoxide, b): carbon dioxide, c): water, d): acetylene, e): benzene, f): naphthalene, g): phenanthrene and h): pyrene in gasoline premixed flame. The symbols represent experimental data [155]; the continuous lines represent the modeling results from the present work; dashed lines: Raj et al. mechanism for gasoline surrogate [164] using (n-heptane/iso-octane/toluene: 13.7% (%vol)/42.9%/43.4 from [157]) and dotted lines: Polimi mechanism [128].

As can be seen in Figure 77, the disagreement with experimental data is more important for gasoline premixed flame for which multiple sources of uncertainties may exist, notably the surrogate model, the kinetic model and experimental measurements. As shown in Figure 78, the carbon balance for this flame has been performed and it is found that the ratio of the mass of carbon (outlet) and the mass of carbon (inlet) is decreased by nearly 45%. That may indicate experimental uncertainties over measurements.

Figure 78 : Carbon balance for the gasoline premixed flame.

Among the tested mechanisms (Raj et al. and Polimi), the present one gives the closest prediction of naphthalene mole fraction (within a factor of 15). A good prediction of acetylene concentration profile is obtained while benzene concentration is underestimated within a factor of 4. Polimi mechanism

[128] underpredicts benzene mole fraction within a factor of 2, while Raj et al. [164] mechanism overpredicts within a factor of 2. For larger molecule measured such as phenanthrene, Raj et al. mechanism shows the closest prediction within a factor of 25. These results clearly show that the proposed gasoline surrogates need to be widely improved by adding more components to match more commercial gasoline properties such as molecular weight, density and the distillation curves. As a reminder, the present gasoline surrogate was proposed to satisfactorily match two global combustion parameters: the cetane number and the threshold sooting index.

- Rate of production analysis

Acetylene formation/consumption

As in jet-A1 flame, similar reactions involved in acetylene production and consumption in this rich gasoline flame are observed.

Benzene formation/consumption

As can be seen in Figure 79 and as for jet-A1 flame, benzene formation is dominated by the decomposition reactions of aromatic species such as toluene, n-propylbenzene, styrene and ethylbenzene:

$TOLUEN + H = C_6H_6 + CH_3$	(R3377)
$PBZ + H = NC_3H_7 + C_6H_6$	(R3518)
$STYREN + H = C_6H_6 + C_2H_3$	(R3471)
$PHC_{2}H_{5} + H = C_{2}H_{5} + C_{6}H_{6}$	(R3424)

Benzene is found to be produce near the burner surface from reaction (R3518), followed by the contribution of toluene, ethylbenzene and styrene.

Figure 79 : Benzene rate of production in a rich gasoline premixed flame.

Benzene is mainly consumed to form phenyl radical through reactions (R3227) and (R3230) as previously discussed.

Naphthalene formation/consumption

As in n-propylbenzene flame, similar reactions involved in naphthalene formation and consumption are observed and no clear difference between pathways involved in both flames is observed (Figure 80), indicating that the impact of aromatic addition to alkanes such as n-decane and iso-octane is predominant as for n-butane/n-propylbenzene mixture flames.

Figure 80 : Naphthalene rate of production in a rich gasoline premixed flame.

4.4.2. Jet Stirred Reactor (JSR) Configuration

4.4.2.1. Jet fuel combustion

In Figure 81, modeling results of commercial jet fuel ($C_{11}H_{22}$) in jet stirred reactor configuration at a pressure of 1 atm and an equivalence ratio of φ =2.0 is presented. Several species including alkanes, alkenes, formaldehyde and aromatics up to toluene have been measured and modeled. Comparison between predictions and measurements is presented as follows:

Figure 81 : Atmospheric pressure jet fuel $(C_{11}H_{22})$ diluted combustion in jet stirred reactor: jet fuel/O₂/N₂:0.07/0.58/99.35 in %mol. $\varphi = 2.0$; $\tau = 0.07$ s; Predicted and experimental mole fraction of a): oxygen, b): hydrogen, c): carbon monoxide, d): methane, e): formaldehyde, f): ethylene, g): ethane, h): propene, i): but-1,3-diene, j): iso-butene, k): cyclopentadiene, l): benzene, m): pent-1-ene, n): hex-1-ene, o): hept-1-ene, p): toluene. The symbols represent experimental data from [158]; the continuous lines represent the modeling results from the present work; dashed lines: Dooley et al. mechanism (nC10/iC8/Toluene : 42.67% (%mol)/33.02%/24.31%) [92].

4.4.2.2. Diesel fuel

Diesel fuel ($C_{15,64}H_{29,34}$) oxidation in jet stirred reactor at a pressure of 10 bar and equivalence ratio of φ =1.5 has been modeled. Predictive capability of the present kinetic model with the proposed diesel surrogate fuel (n-decane/iso-octane/n-propylbenzene, see Table 3, section 4.2) is also examined. Some key intermediate species from acetylene to but-1-ene have been measured and compared to the modeling results as shown in Figure 82.

Figure 82 : Diesel fuel ($C_{15,64}H_{29,34}$) combustion in Jet stirred reactor: diesel fuel/ O_2/N_2 :650/10,000/989,400 in ppmv. Φ =1.5; P=10 bar; τ =1s; predicted and experimental mole fractions of a) water, b): carbon dioxide, c): acetylene, d):

ethylene, e): propene, f): but-1,3-diene, g): iso-butene, h): but-1-ene and i): hydrogen. The symbols represent experimental data [96]; the continuous lines represent the modeling results from the present work; dashed lines: Battin-Leclerc mechanism for diesel surrogate (n-decane/1-methylnaphthalene: 70(%mol)/30) [163]; dotted lines: Lawrence Livermore National Laboratory mechanism for diesel surrogate (n-dodecane/m-Xylene: 77 (%vol)/23) (LLNL) [165].

The performance of the present reaction model with respect to practical fuels combustion modeling in JSR configuration has been examined. It can be seen that a good agreement between experimental data and the modeling results is obtained in both cases (jet fuel and diesel fuel). It is clearly encouraging results with the surrogate fuels proposed in this study, since some species of major interest such acetylene and benzene mole fractions are correctly reproduced.

4.4.3. Ignition delay times and laminar flame speeds

4.4.3.1. Gasoline

Ignition delay response of gasoline have been modeled near 20 and 40 bar, temperature ranging from 630 to 900 K and an equivalence ratio φ =1.0. The present kinetic model prediction is compared to that of Lawrence Livermore National Laboratory mechanism (LLNL), which uses a gasoline surrogate composed of n-heptane/iso-octane/toluene in respectively 13.7%/42.8%/43.5% in mol. In the present work, a ternary mixture of n-decane/iso-octane/n-propylbenzene in respectively 4.1%/72.9%/23.0% in mol. is proposed. In Figure 83 and Figure 84, the effect of the kinetic model as well as the gasoline surrogate content can be observed. In Figure 85, the prediction of laminar burning velocity of gasoline at atmospheric pressure and an unburned gas mixture temperature (T_u) of 358 K is illustrated for large equivalence ratios range (0.6 to 1.5).

Figure 83 : Ignition delay response of gasoline in a rapid compression machine: $\varphi=1$; P = 20 bar; T = 640-900 K; The symbols represent experimental data from [156]. The continuous lines represent the modeling results from the present work; the dotted lines: LLNL mechanism [175] (nC7/iC8/Toluene: 13.7% (mol)/42.8%/43.5%, composition from [109]).

Figure 84 : Ignition delay response of gasoline in a rapid compression machine: $\varphi=1$; P = 40 bar; T = 630-740 K; The symbols represents experimental data from [156]. The continuous lines represent the modeling results from the present work; the dotted lines: LLNL mechanism [175] (nC7/iC8/Toluene: 13.7% (mol)/42.8%/43.5%, composition from [109]).

Figure 85 : Laminar burning velocity of gasoline : P = 1 atm ; Tu = 358 K ; The symbols represents experimental data from [157]; the continuous lines represent the modeling results from the present work; the dashed lines: Dirrenberger et al. mechanism [157]; the dotted lines: LLNL mechanism [175] (nC₇/iC₈/Toluene: 13.7% (mol)/42.8%/43.5%, composition from [109]).

The proposed gasoline surrogate in this study has been examined over gasoline ignition delay times and laminar flame speeds. Flame speed is a fundamental property of fuel-air mixture which significantly influences combustion engine design parameters such as flame stabilization, autoignition, emissions characteristics and combustion dynamics. Laminar flame speed serves as a global parameter which accounts for the diffusivity, exothermicity and reactivity of mixtures. Therefore, accurate prediction of laminar flame speed would help to capture these effects. As such, laminar flame speed proves to be of high importance in validating kinetic models. In contrast with laminar premixed flame configuration, it can be seen that the present reaction model and the proposed surrogate show a good agreement with experimental data. Despite some minor discrepancies for ignition delay times prediction at a temperature range of 800-1000 K, the present kinetic model captures well the negative temperature coefficient (NTC) behavior as well as the low temperature region(600-800 K). The tested mechanisms almost show similar results. For the laminar flame speeds, the present kinetic model satisfactorily reproduces the experimental trend from low to high equivalence ratio values.

4.4.3.2. Jet fuel

In Figure 86, the prediction of jet fuel ignition delay times near 20 atm, an equivalence ratio of φ =1.0 and temperature ranging from 600 to 1230 K is presented. The present work result is compared to that of Dooley et al. [92] mechanism that considered different jet surrogate fuel from the present one. In

Figure 87, the prediction of laminar flame speed of jet fuel at atmospheric pressure and unburned gas mixture temperature of 400 K is illustrated for a large equivalence ratios range (0.7 to 1.4).

Figure 86 : Jet fuel ignition delay times prediction, $\varphi=1$; P= 20 atm; T = 600-1230 K; $X_{fuel}/O_2/N_2$: 1.3%/20.7%/78.0% in mole fraction. The symbols represent experimental data from [159]; The continuous lines represent the modeling results from the present work; dashed lines: Dooley et al. mechanism (nC10/iC8/Toluene:42.67% (%mol)/33.02%/24.31%) [92].

Figure 87 : Laminar burning velocity of jet A flame : P= 1 atm ; Tu = 400 K ; The symbols represent experimental data from [160].

The simulations agree well with the experimental data in ignition delay times prediction from 700 to 1200 K. the NTC zone is well captured and the tested mechanism shows similar results. For the laminar flame speeds, a good agreement is also obtained despite a minor disagreement at lower equivalence ratio (φ =0.7).

4.4.3.3. Diesel fuel

In Figure 88, the modeling of ignition behavior of diesel fuel at a pressure of 6 atm, an equivalence ratio of φ =0.5 and temperature ranging from 600 to 1300 K is presented. The present prediction is compared to literature mechanisms such as Battin-Leclerc et al. mechanism [163] where the authors used n-decane/ α -methyl naphthalene (70%/30% in mol.) mixture as diesel surrogate and the LLNL mechanism [165] where the authors used n-dodecane/ m-xylene (77%/23% by vol.) mixture as diesel surrogate. In Figure 89, the prediction result of the diesel fuel laminar flame speeds at atmospheric pressure and unburned gas mixture temperature of 470 K is illustrated for a large equivalence ratios range (0.75 to 1.5). The modeling result from the present work is compared with that from Pistch et al. mechanism [176], where the authors used only the n-dodecane as diesel surrogate fuel.

Figure 88 : Diesel ignition delay times measurement in shock tube: diesel fuel $(0.7\%)/O_2/Ar$; $\phi = 0.5$; P=6 atm ; T=600-1300 K ; The symbols represent experimental data from [161]; the continuous lines represent the modeling results from the present work; dashed lines: Battin-Leclerc et al. mechanism [163]; dotted lines: LLNL mechanism for diesel surrogate [165].

Figure 89 : Laminar burning velocity of diesel fuel : P = 1 atm ; Tu = 470 K ; The symbols represent experimental data from [162]; the continuous lines represent the modeling results from the present work; dashed lines: Pistsch et al. mechanism for diesel surrogate (n-dodecane) [176].

As can be seen, the present kinetic model is also able to correctly reproduce ignition delay times of diesel fuel. From the higher temperature (1250 K) to the NTC zone, all the tested mechanisms (except that of Battin-Leclerc et al. [163] for the NTC zone) follow the experimental trends. None of the mechanisms is able to predict the measured ignition delay times at the lower temperature zone (600-700K) due to uncertainties surrounded experimental data. It is suspected that the heat losses were not taken into account during experiments. In Figure 90, one can observed that by introducing a heat loss flux of 0.1 calorie per second (0.4 Watts) into simulations, prediction with the present kinetic model in the lower temperature zone is slightly improved. Due to convergence issues, none of the used kinetic models allows the introduction of higher heat flux (> 0.1 calorie/second) during simulations.

Figure 90 : Diesel ignition delay times measurement in shock tube: diesel fuel $(0.7\%)/O_2/Ar$; $\phi = 0.5$; P=6 atm; T=600-1300 K; Prediction from the present work with a heat loss flux of 0.1 cal/sec (blue line).

For the laminar flame speeds, a good agreement is obtained from the present work from φ =0.75-1 and a poor agreement can be seen for higher equivalence ratios. In contrast with the present kinetic model and the proposed surrogate (mixture of n-decane/iso-octane/n-propylbenzene, see Table 3, section 4.2) for diesel fuel, Pitsch et al. [176] models (kinetic and surrogate) fail to reproduce satisfactorily experimental data. Indeed, no aromatic species were considered in their surrogate fuel and that can significantly impact the results.

The present mechanism was used to model premixed flames presented above, different fuels structures ranging from C_1 to C_{10} species including liquid fuels, alkanes, alkenes, alkynes and aromatics. The overall agreement between predicted and experimental results remains satisfactory. The performance of this reaction model with respect to practical fuels combustion modeling (ignition delay times and laminar flame speeds prediction) shows clearly encouraging results with the surrogate fuel proposed in this study. Satisfactory results are obtained in predicting ignition delay times, laminar flame speeds and species mole fraction profiles in jet stirred reactor configuration. As can be seen from Figure 28 to Figure 89, the disagreement with experimental data is more consistent for gasoline premixed flame for which multiple sources of uncertainties may exist, namely surrogate and kinetic models. Further, for acetylene and benzene, a good agreement with experimental mole fraction profiles is obtained for all flames studied.

The current mechanism was subsequently used in low and atmospheric pressure premixed flame configuration to study some key intermediates and aromatic species formation pathways based on fuel structure. Since no aromatic species concentration profile is available in atmospheric premixed laminar flame configuration for diesel fuel, the latter fuel has not been examined in term of aromatic production pathways.

4.5. Conclusions

Aromatics formation pathways for commercial liquid transportation fuels are seldom discussed in the literature and the present study aimed at determining the most significant ones in the light of the recent rate constant evaluations. A new detailed chemical kinetic mechanism was herein developed to describe accurately the combustion of liquid transportation fuels (jet A-1 and diesel fuel) as well as laboratory fuels (single components of alkanes, alkenes and aromatics) over an extended range of equivalence ratios, temperatures, pressures and dilution levels. For the gasoline, a good agreement between predictions and measurements is obtained in predicting the ignition delay times and laminar flame speeds, while large discrepancies exist for a rich premixed gasoline flame in predicting aromatic species formation. Given the validations conditions shown in this work, this mechanism is expected to work properly for the combustion of n-decane/iso-octane/n-propylbenzene mixtures for equivalence ratios ranging from 0.5 to 3, temperatures ranging from 600 K to 2500 K and pressures ranging from 0.01 atm to 10 atm. Ternary surrogate mixtures of n-decane, iso-octane and n-propylbenzene were chosen to represent liquid transportation fuels, based on their Derived Cetane Number and Threshold Sooting Index. The impact of fuel formulation on aromatics formation pathways was examined. From the present modeling results, it turns out that jet-A1 and diesel fuels can be satisfactorily represented by the proposed chemical surrogate, while gasoline may not be satisfactorily represented due to its high iso-octane concentration (75% vol. liq.), which is not representative of the actual gasoline composition in terms of PAH precursors, despite its ability to reproduce the sooting level through a relevant TSI value.

In line with previous studies from other groups, this work highlights the discrepancies between aromatics production pathways involved in laboratory flames (widely used in most academic soot formation studies) such as ethylene flame and those involved in actual liquid transportation fuel flames, calling for more representativity in the choice of reactive systems. Regarding PAH (naphthalene) formation, common pathways were noticed for both laboratory and practical surrogate fuels. According to the present mechanism, phenyl+vinylacetylene and benzyl+propargyl reactions were shown to contribute massively to naphthalene production based on the retained rate constants for these reactions. In ethylene flame for example, phenyl+vinylacetylene reaction is the main path for naphthalene formation, while in jet-A1 flame phenyl+vinylacetylene and benzyl+propargyl are dominant naphthalene production pathways. The importance of reactions involved in aromatics (benzene and naphthalene) production was also seen to depend strongly on HAB. The HACA mechanism represented here by vinyl phenyl acetylene $(A_1C_2H_3AC)$ also plays a significant role in naphthalene production for both types of fuels. It is worth noting that an additional pathway involving dibenzofuran oxidation to produce naphthalene was noticed in practical surrogate fuel (jet-A1 flame case). To the best of our knowledge, this reaction had not been evidenced previously as a significant naphthalene production pathway in the context of liquid fuel premixed flames. We herein claim that based on state-of-the art kinetic estimate for dibenzofuran production, this pathway can contribute significantly to naphthalene production over the whole combustion and post-combustion region. This pleads for further development and validation of oxygenated aromatics combustion mechanisms (such as dibenzofuran) as they might play a key role in PAH production for liquid transportation fuels flames. Further, more experimental data on the benzyl+propargyl interaction would be needed to validate the recent theoretical rate constants proposed. Other potential mechanisms such as the alternative HAVA (Hydrogen-Abstraction-Vinyl-Addition) mechanism would also deserve further studies.

Chapter 5: Solid phase: Soot particles Nucleation Modeling

5.1. Objective

While pyrene molecule is widely used in most of previous soot models as a key species in nucleation, there is still no definitive experimental evidence. Several PAHs molecules including pyrene have been experimentally observed from combustion processes [177,178]. The nature of those actually involved in the nucleation process remains elusive. The goal of this chapter is to investigate potential soot precursors, the experimentally observed PAHs molecules that could lead to particles inception through physical agglomeration.

Following the validation of the present kinetic model, it has been used in a soot model based on a sectional approach developed in [75]. Both homomolecular and heteromolecular dimerizations of PAHs in the mass range between 200 and 300 amu have been examined. Results obtained from this investigation can serve for further studies in accurate PAHs concentrations prediction for a variety of fuels. The particles nucleation rates can also be obtained from the used soot model. Several premixed laminar one-dimensional flat flames stabilized on burner have been considered in the present work.

5.2. Nucleation modeling: soot precursors considered

Particles inception is usually represented as the collision between of two modest sized PAHs, namely pyrene molecule. This assumption is supported by several works [17,34], while many others [22,31,179] clearly rule out this possibility based on the thermodynamic stability of the corresponding dimers in flame environments. Due to experimental limitations for the particle nucleation, numerical simulations have been mainly carried out to determine the mechanism involved.

While the PAH are commonly accepted as soot particles precursors [56–58,180], the nature of those considerably involved in the nucleation process from hydrocarbons combustion remains ambiguous and has been the subject of many works [17,28,84]. On the one hand, most of soot models discussed about homomolecular dimerization, which indicates that the two colliding species have the same chemical structure and the heteromolecular dimerization, which implies two or more reactants that

have different chemical structure is rarely considered. On the other hand, most of previous soot models are focused and validated on C_1 - C_2 hydrocarbons flames [84,87,88,181] such as methane, acetylene, ethane and ethylene. Only a few works [27,75,182] investigated larger hydrocarbons sooting behavior and the heteromolecular dimerization (pyrene+coronene) [27,31] for the soot mass concentration prediction. These results clearly show that the influence of precursors on nucleation has been only marginally addressed in previous studies.

Molecular dynamics studies indicated that the nucleation process probably depends on larger PAH as big as circumcoronene ($C_{54}H_{18}$) involvement. In this work, the particles nucleation is assessed based on the modest-size PAHs dimerization (from pyrene to coronene). The present kinetic model and the sectional soot model developed in [75,79,80] are used to investigate particles inception mechanism in three premixed laminar flames: methane (φ =2.32) [85], ethylene (φ =2.34) [82] and n-butane flames (φ =1.75; φ =1.95 and φ =2.32) [38,149]. The importance of modeling these flames is discussed in Chapter 4 (section 4.4.1). In addition, both sooting and nucleation flames are investigated in the present study. Regarding the nucleation process modeling, homomolecular and heteromolecular dimerizations of PAHs were taken into account in order to reproduce the experimental data tendencies (soot volume fractions and diameters) in each of the above-mentioned flames. The effect of the choice of the precursors was illustrated using several sets of precursors. It is worth noting that one could define dozens of combinations of precursors.

The PAHs considered for soot particles nucleation modeling (ranging from pyrene (202 amu) to coronene (300 amu)) in the three premixed flames are presented in Figure 91. They include fivemembered ring aromatics as well as those containing six-membered rings based on experimental results from fuels pyrolysis [125,183] and oxidation [177,184] and have been put forward as significant PAH in combustion. Although thermodynamic stability calculations indicate that only PAH as big as circumcoronene dimer can survive in flame environments, such molecules were not experimentally quantified in combustion.

Figure 91 : Pool of investigated molecules for particles nucleation modeling.

5.3. Collision efficiency

In most soot models, PAHs molecules collide to form soot particles. One of the accepted key soot parameters which determines the soot inception and growth rates is the probability that PAHs will stick upon collision. This parameter is called the collision or sticking efficiency and is defined as the ratio of successful collisions (i.e collisions which produce clusters) to the total number of collisions [33,185].

Many research groups [27,33,185,186] investigated the PAHs collision efficiencies in order to implement them in soot models. The collision efficiency is found to be dependent not only of the colliding PAH mass and the collision diameter [34,185,187] but also the flame temperature [188]. As a result, several expressions of collision efficiency as a function of the colliding PAH mass, diameter and/or temperature have been proposed by several research groups. Raj et al. [33] established a temperature-independent correlation for collision efficiency as a function of PAHs mass and the collision diameter. Their findings are based on experimentally observed mass spectra for ethylene premixed flames investigated. Authors claimed that the collision efficiency is strongly dependent on the mass and collision diameter of the smaller of the two colliding species. In addition, authors concluded that due to the low value of collision efficiency required to properly predict the position of the maxima of PAH dimers in the spectra, if the mass of one of the colliding species is less than 360 amu and a diameter less than 10 Å, collisions involving species smaller than pyrene may not be successful at high temperature. Totton et al. [186] determined the collision efficiencies by the temperature and the mass of the colliding species via molecular dynamics modeling. The correlation

established is a fit of simulation data, using a least-squares algorithm based on the reduced mass of the colliding species. Authors mentioned that PAH molecules as small as pyrene cannot play a significant role in soot particle nucleation even at a temperature of 500 K and only large PAH as big as circumcoronene dimers can exist in flame temperature conditions (~1500 K). Blanquart et al. [189] proposed a correlation based only on the monomer mass since both experiments and numerical modeling have shown that the collision efficiency increases with the size of the colliding species. In his correlation, a constant is used to match experimental concentrations of PAHs. D'Alessio et al. [185] proposed a correlation that is a function of PAH molecules size and temperature. The potential well depth of species is investigated in order to take into physical chemistry phenomena. However, that expression is established for nanoparticles sticking (≥ 2 nm) and if one interpolates to the PAH mass ranging from 200 to 300 amu (i.e. from Pyrene to coronene), the collision efficiencies values obtained are very low by using the same Hamaker constant, which determines the strength of particleparticle potential energy interactions. This constant is expected to increase towards the value of graphite ($\sim 5.0 \times 10^{-19}$ *J*) [185] during the carbonization process. Authors estimated the lower limit value of Hamaker constant to be 3.0×10^{-20} /. Chung et al. [27] presented an empirical relation of collision efficiency that includes PAH morphology, size and temperature effect. The temperaturedependent dimerization collision efficiency was calculated using molecular dynamics simulations. Authors investigated peri-condensed aromatics dimerization collision efficiency as well as PAH linked by aliphatic chains.

The expressions of collision efficiency established by the above mentioned authors are presented in Table 14:

References	Expressions
Raj et al.[33]	$C_E = \frac{1}{1 + \exp\left(-\left(A \times \frac{D_{min}^3}{M_{min}} + \left(\frac{M_{min}}{B}\right)^6 - C\right)\right)}$ Where <i>A</i> , <i>B</i> and <i>C</i> are the fitting parameters. <i>A</i> =2 g/(mol Å ³); <i>B</i> =980 g/mol ; <i>C</i> =10 (dimensionless). <i>M_{min}</i> and <i>D_{min}</i> are respectively the

	mass and the collision diameter of the smaller of the two colliding				
	PAH.				
	$C_E = 1 + \frac{\mu}{a\mu + b} - \frac{1}{a}$ Where μ is the reduced mass of the two colliding PAHs. a and b are the				
	fitting parameters and are determined as a function of the temperature:				
Totton et al. [186]		Parameters			
		T [K]	a	b	
		500	0.5074	54.13	
		750	0.6822	190.0	
		1000	0.8032	441.3	
		1250	0.8425	714.2	
		1500	0.8858	1322	
Blanquart et al. [189]	$C_E = C_N \times m_i^4$ Where m_i is the PAH mass. C_N is an adjustment factor to match PAHs experimental concentrations.				
D'Alessio et al. [185]	$C_E = 1 - \left(1 + \frac{\phi_0(D)}{KT}\right) exp\left[-\frac{\phi_0(D)}{KT}\right]$ Where ϕ_0 is the potential well depth which is calculated using the Hamaker constant of the colliding species[190]. The potential well depth is linearly proportional to the reduce mass of the colliding species[191]. <i>K</i> is the Boltzmann constant. <i>T</i> is the temperature.				
Chung et al. [27]					

$C_E = exp(p0 + p1)$	$\times AR + p2$	$\times T^2 + p3 \times T$	$X \times AR + p4 \times AR^2$
$+ p5 \times T^3 + p6 \times T^2 \times AR + p7 \times T \times AR^2 + p8$			
$\times AR^3$)			
Where AR is the number of aromatic rings in the PAH molecule. T is			
the temperature and p0, p1, p2, p3, p4, p5, p6, p7, p8 are the fitting			
coefficients. The coefficient values are listed as follows:			
	<i>p</i> 0	-1.864	
	<i>p</i> 1	-0.006943	
	p2	-3.56E-06	
	<i>p</i> 3	0.001282	
	F -	0.1041	
	<i>p</i> 4	-0.1041	
	<i>p</i> 5	1.07E-09	
	<i>p</i> 6	3.71E-08	
	<i>p</i> 7	-5.24E-05	
	<i>p</i> 8	0.004242	

 Table 14 : Expressions of the collision efficiency.

Figure 92 shows the comparison between the collision efficiency values calculated from the above expressions.

Figure 92 : Collision efficiency values obtained from different correlations as a function of PAH size and temperature. Firstly, it is clearly observed that the correlations proposed by Chung et al. [27], Raj et al. [33], Totton et al. [186] and Blanquart et al. [189] give roughly the same collision efficiencies from 500 to 1500 K. Then, all of the above correlations show the same qualitative trends. However, the collision efficiency values given by D'Alessio et al. [185] correlation are significantly lower than the other ones. That is due to the Hamaker constant chosen for particles with a minimum diameter value of 2 nm. The Hamaker constant used is more relevant of particles sticking rather than gaseous PAH molecules.

According to the collision efficiency models, it is found to increase with the monomer mass. At 1500 K for example, the collision efficiency values vary from 2.5×10^{-4} (Chung et al.[27]) to 3.2×10^{-1} (Raj et al.[33]) for respectively monomer mass of 200 amu (pyrene) and 667 amu (circumcoronene). The effect of temperature (from 500 to 1500 K) is also observed since the values vary from 3.7×10^{-2} (Totton et al. [186] / 1.0×10^{-4} for Chung et al. [27]) to 2.5×10^{-4} (Chung et al.[27] /

 3.9×10^{-3} for Totton et al. [186]). The correlation given by Raj et al. and Blanquart et al. do not consider the impact of temperature. Only the monomer mass impact is observed.

A correlation based on the one proposed by D'Alessio et al. [185] is adopted in the soot model used in the present work [79,80]. It describes the collision efficiency evolution depending on temperature and the colliding particles size as most of the previously introduced functions from the literature. It appears to contain the relevant nucleation phenomenology. In fact, the interaction potential between two reactants that turn into soot nuclei and the effect of temperature were taken into account. Its main difference is a parameter E_d which can be modified to reproduce either collision efficiencies close to the ones obtained using D'Alessio et al. [185] or close to the ones obtained by Chung et al. [27], Raj et al. [33] and Totton et al. [186]. This choice has been done because it eases the investigation of the collision efficiency influence on the soot phase evolution.

We adjust the parameter E_d in order to match the values obtained by Chung et al. [27], Raj et al. [33] and Totton et al. [186] since all these correlations give mostly the same collision efficiency trends. The adopted collision efficiency expression is given as follows:

$$C_E = 1 - \left(1 + \frac{D_1 \times D_2 \times E_d}{k_B T}\right) exp\left[-\frac{D_1 \times D_2 \times E_d}{k_B T}\right]$$
 Equation 43

Where D_1 and D_2 are the diameters of the colliding species. k_B is the Boltzmann constant. *T* is the temperature. E_d is the adjustment factor that we used to match the collision efficiency values obtained by other correlations. The best agreement with the other correlations was found by setting E_d value at 5×10^{-3} . In fact, a higher value of E_d typically 5×10^{-2} leads to an overprediction of collision efficiencies of about a factor of 40 with respect to those obtained with $E_d = 5 \times 10^{-3}$, while a lower value of E_d (5×10^{-4}) leads to an underprediction of about a factor of 90 with respect to collision efficiencies obtained with $E_d = 5 \times 10^{-3}$.

Figure 93 shows results obtained from the proposed correlation and compared to the other ones. It can be seen that the collision efficiencies used in this work are close to the literature point of view.

Figure 93 : Comparison of the collision efficiency values calculated from different correlations.

The collision efficiency values considered for the investigated PAH molecules are given in Table 15:

PAH structure	Molecular weight (amu)	Collision efficiency (present work) T=1700 K	Collision efficiency (Yang et al.[181] (temperature-independent)
Pyrene (C ₁₆ H ₁₀)	202	6.6 x10 ⁻³	6.0 x10 ⁻³
Fluoranthene (C ₁₆ H ₁₀)	202	6.6 x10 ⁻³	
Cyclopenta[cd]Pyrene	226	8.5 x10 ⁻³	
benzo(ghi)fluoranthene	226	8.5 x10 ⁻³	
	250	1.9 x10 ⁻²	
Benzo(a)pyrene (C ₂₀ H ₁₂)	252	1.3 x10 ⁻²	1.1 x10 ⁻²
Benzo(e)Pyrene (CarHa)	252	1.3 x10 ⁻²	1.1 x10 ⁻²
Perylene $(C_{20}H_{12})$	252	1.3 x10 ⁻²	
Benzo(ghi)perylene (C ₂₂ H ₁₂)	276	1.9 x10 ⁻²	1.4 x10 ⁻²
	300	1.9 x10 ⁻²	2.0 x10 ⁻²
---------------------------	-----	-----------------------	-----------------------
Coronene $(C_{24}H_{12})$			

Table 15 : Collision efficiency used for the investigated PAH molecules.

5.4. Results and Discussions

The soot volume fractions were computed for the low pressure (0.26 atm) premixed laminar flame of methane (φ =2.32) [85], atmospheric pressure premixed flame of ethylene (φ =2.34) [82] and atmospheric pressure premixed flames of n-butane (φ =1.75; φ =1.95) [149] and φ =2.32 [38]. The soot sectional model [75] has been employed to model the centerline of the above-mentioned premixed flames. Predicted soot volume fractions using homomolecular and heteromolecular dimerization of PAHs and the measurements are shown in this section. The Laser-Induced Incandescence (LII) technique was employed to measure soot volume fractions in methane and n-butane flames, with an excitation wavelength of 1064 nm to detect soot particles. This technique is well suited because of its sensitivity and spatial resolution. More details on this technique can be found in Mouton et al. [85] paper. The laser-extinction technique was employed in soot volume fractions measurement for the ethylene flame [82].

It is worth noting that the investigated PAHs have not been experimentally quantified yet except pyrene molecule in low pressure methane premixed flame. Therefore, a particular attention should be given with respect to the present modeling results, due to the lack of experimental data. An initial constant value of α =0.05 is used to compute soot volume fractions in both homomolecular and heteromolecular dimerizations of PAHs considered. Then, α is varied in both homomolecular and heteromolecular dimerizations in order to better reproduce measurements.

Firstly, the contribution of each PAH (with α =0.05) in reproducing the soot volume fraction profiles is investigated to better understand the nucleation process (impact of precursors and measurement tendencies reproduction). Secondly, the nucleation processes (i.e homomolecular and heteromolecular dimerizations) are examined and compared. The results obtained for the following PAH molecules: benzo(e)pyrene, perylene, benzo(ghi)perylene and coronene have not been reported because of their very low computed gas-phase concentrations as well as nucleation, condensation and surface growth rates. Therefore, their impacts on the soot volume fraction profiles are insignificant even if they are associated with the other investigated PAHs. Results obtained for the investigated flames are presented in the next sections.

5.4.1. Methane flame

In Figure 94, the prediction of soot volume fraction in the case of exclusive homomolecular dimerization of each PAH from pyrene to corannulene is reported with a constant value of α that is set to 0.05. In Figure 95, the prediction in presence of heteromolecular dimerization consisting of the contribution of three PAHs pyrene, fluoranthene and benzo(a)pyrene is presented, compared to the contribution of pyrene alone. This reactive system (pyrene/fluoranthene/benzo(a)pyrene) is chosen since these three PAHs are mostly observed and exist at higher concentration (compared to the other ones) in combustion products. The comparison between experimental and predicted mole fraction of pyrene and fluoranthene in this flame is shown in Chapter 4 (section 4.4), where a fairly agreement between measurements and predictions was obtained.

Figure 94 : Low pressure (0.263 atm) methane premixed flame, φ =2.32: CH₄ (46.2% in mol.)/O₂ (39.8%)/N₂ (14.0%). Homomolecular dimerization of the investigated PAHs. The symbols represent experimental data from [85]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (α) is set to 0.05.

Figure 95 : Low pressure (0.26 atm) methane premixed flame, φ =2.32: CH₄ (46.2% in mol.)/O₂ (39.8%)/N₂ (14.0%). Heteromolecular dimerization of pyrene/fluoranthene/benzo(a)pyrene compared to pyrene dimerization. The symbols represent experimental data from [85]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (*a*) is set to 0.05.

As can be seen in Figure 94, the model only fairly captures the experimental trend in a given HAB range (linear zone) from pyrene and cyclopenta(cd)pyrene homomolecular dimerization, while assuming the dimerization to involve only benzo(ghi)fluoranthene results in a worse quantitative agreement with experiment. At higher HAB (~40 mm), measurements seem to change tendency while computations do not show this feature. That may indicate the oxidation process is very low to account for soot particles oxidation. The better prediction of soot volume fraction obtained by considering cyclopenta(cd)pyrene seems to be related to its predicted gas-phase concentration that is higher than that of pyrene (maximum values respectively of (~2.8 ppm and 1.8 ppm), impacting nucleation rate. Also, the collision efficiency value attributed to cyclopenta(cd)pyrene (8.5×10^{-3}) is slightly higher than that of pyrene (6.6×10^{-3}). However, the collision efficiency value cannot fully explain the results obtained. It is observed that benzo(a)pyrene dimerization assumption leads to the strong underprediction of measurements, while its collision efficiency is 1.5 times higher that of pyrene.

In Figure 95, the combination of contributions of three different PAHs to nucleation clearly results in an improved result with respect to the case of exclusive pyrene dimerization. According to the present model, pyrene appears to be the major precursor involved in soot nucleation. As can be seen in Figure 96, from the gas-phase to the heteromolecular dimerization process, the concentration of PAHs involved in the particles inception mechanism are affected at high HAB. That is understandable since they are consumed to create particles. The decrease of species concentration is more important for pyrene than for fluoranthene and benzo(a)pyrene, indicating that pyrene is more consumed and is the main contributor for particles generation. As expected from the heteromolecular dimerization, pyrene is more consumed (about 10%) than in homolecular dimerization case due to its collision with two more PAHs.

Figure 96 : Methane rich flame (φ =2.32): PAHs concentration in the gas-phase and after their dimerization to generate soot particles. Pyrene_gaz stands for pyrene concentration in the gas-phase; Homo_dim satnds for homomolecular dimerization (only pyrene); hetero_dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

As can be seen in Figure 97, the improved result obtained with the heteromolecular dimerization is due to its higher nucleation, condensation and surface growth rates than in the homomolecular dimerization case.

Figure 97 : Methane rich flame (φ =2.32): Comparison between nucleation, condensation and surface growth rates in both homomolecular and heteromolecular dimerization. Homo_dim satnds for homomolecular dimerization (only pyrene); hetero dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

The evolution of the main species which is acetylene involved in the surface growth process has been examined and is found unchanged due to the weak value attributed to α (0.05). As can be seen in Figure 95, both homo and heteromolecular dimerizations hypotheses lead to the underprediction of measurements. One of the reasons could be the weak value attributed to α . Thus, it is decided to modify α value in order to match experimental data. The optimum values of α obtained for both homo and heteromolecular dimerizations are presented in Figure 98. These values allow to better match the measured soot volume fractions.

Figure 98 : Methane rich flame (φ =2.32): Determination of the optimum values of α for both homo and heteromolecular dimerization. Homo_0.36 stands for: α =0.36 for homomolecular dimerization (if only pyrene is considered); hetero_0.2 stands for: α =0.2 for heteromolecular dimerization (if pyrene/fluoranthene/benzo(a)pyrene are considered).

If only pyrene is considered as the unique precursor for particles nucleation, the best agreement between prediction and measurements is obtained for α =0.36, while in the case of heteromolecular dimerization involving three precursors, the best agreement is obtained for α =0.2. As a result, α value is increased from 0.05 to 0.36 and 0.2 for respectively homo and heteromolecular dimerizations. Similar value of α was obtained previously in the work of Mouton et al. [85], where authors used a value of 0.35 in the pyrene homomolecular dimerization. Concerning the shape of predictions, the continuous growth is potentially due to the low oxidation process of soot particles in the burnt gas zone.

The evolution of the concentration profiles of the PAHs involved and the comparison between concentration profiles obtained for α =0.05 and the optimized ones in both homo and the heterodimerization cases are presented in Figure 99 and Figure 100.

Figure 99 : Methane rich flame (φ =2.32): PAHs mole fraction profiles with the homomolecular (only pyrene) dimerization with the optimized (0.36) and the initial (0.05) α values.

Figure 100: Methane rich flame (φ =2.32): PAHs mole fraction profiles with the heteromolecular (pyrene/fluoranthene/benzo(a)pyrene) dimerization with the optimized (0.2) and the initial (0.05) α values.

In the homomolecular dimerization case and as expected, pyrene is more consumed with the increase of α value from 0.05 to 0.36. With the heteromolecular dimerization, the same observations can be seen for pyrene, while the effect of α on fluoranthene and benzo(a)pyrene consumption is insignificant. The most consumed PAH is pyrene with respect to the two others and is likely the major contributor in soot particle inception in the reactive system considered.

As can be seen in Figure 101 and Figure 102, these assumptions are confirmed by the higher condensation and surface growth rates obtained with the optimized α values in both homo and heteromolecular dimerizations cases. A large gap between the optimized α values and α =0.05 in both dimerizations cases is observed for the surface growth rates, since this latter is highly dependent on the fraction of sites available for reactions on soot particles surface.

Figure 101 : Methane rich flame (φ =2.32): Comparison of nucleation, condensation and surface growth rates between the results obtained through only pyrene dimerization with the optimized α values and the initial α values.

Figure 102 : Methane rich flame (φ =2.32): Comparison of nucleation, condensation and surface growth rates between the results obtained through the heteromolecular dimerization with the optimized α values and the initial α values.

- Soot primary particle diameters prediction

As can be seen in Figure 103, the primary soot particle diameters measured in [85] with the LII technique were modeled using both nucleation processes. The effect of the change of α values was also examined.

Figure 103 : Methane rich flame (φ =2.32): Soot primary particles prediction in both homo and heteromolecular dimerization with the optimized and the initial α values. The symbols are experimental data from [85]. The lines and dashed lines represent modeling results from the present work.

In contrast with the measurements trend, the soot model shows nearly a constant evolution of particle diameters in both homo and heteromolecular dimerizations cases if α value is set to 0.05, indicating lower surface growth rates as discussed previously. With the optimized α values that allow to better match soot volume fraction profiles in both cases, they failed to reproduce experimental particle diameters. The soot model exhibits a peak at HAB=9 mm, followed by the decrease of particle diameters and then an increase of diameters. The homomolecular dimerization shows a rapid diameter evolution than in the heteromolecular case due to the higher value of α used (0.36 against 0.20).

5.4.2. Ethylene flame

In Figure 104, prediction with the homomolecular dimerization of each PAH from pyrene to coronene is reported with a constant value of α (0.05). In Figure 105, prediction with the heteromolecular dimerization consisting of the contribution of three PAHs pyrene, fluoranthene and benzo(a)pyrene is presented, compared to the only contribution of pyrene molecule.

Figure 104 : Atmospheric ethylene premixed flame, φ =2.34: C₂H₄ (14.08% in mol.)/O₂ (18.05%)/N₂ (67.87%). Homomolecular dimerization of the investigated PAHs. The symbols represent experimental data from [82]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (α) is set to 0.05.

It can be observed that the homomolecular dimerization of single PAH such as cyclopenta(cd)pyrene, corannulene and pyrene fairly reproduce measurements, while that of benzo(ghi)fluoranthene overpredicts experimental data. The contributions of benzo(a)pyrene and fluoranthene are not enough to account for soot volume fraction prediction. Coronene contribution is clearly insignificant due to its very low gas-phase concentration. As discussed previously, the better agreement obtained for the above-mentioned PAHs is related to their gas-phase concentration and the collision efficiencies. For example, the overprediction showed by benzo(ghi)fluoranthene is understandable since its maximum gas-phase concentration is close to 100 ppm, while that of cyclopenta(cd)pyrene, corannulene and pyrene are respectively 95 ppm, 23 ppm and 20 ppm. However, due to the lack of experimental data on PAH concentration profiles, results obtained from the present kinetic model clearly require more validation in order to fully consider the real contribution of each PAH.

Figure 105 : Atmospheric ethylene premixed flame, φ =2.34: C₂H₄ (14.08% in mol.)/O₂ (18.05%)/N₂ (67.87%). Heteromolecular dimerization of pyrene/fluoranthene/benzo(a)pyrene. The symbols represent experimental data from [82]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (α) is set to 0.05.

In Figure 105, soot volume fraction prediction is distinctly improved when adding the heteromolecular dimerization. The evolution of the involved PAHs concentration in both homo and heteromolecular dimerizations is presented in Figure 106. It can be seen that PAHs are drastically consumed to generate soot particles. It can also be observed that the prediction improvement is due to the contributions of the two PAHs (fluoranthene and benzo(a)pyrene) associated with pyrene, since they are clearly consumed to match experimental data. That result is confirmed by the higher nucleation and condensation rates obtained in the heteromolecular dimerization case as previously discussed in the methane rich flame. It is worth noting that this drastic consumption of PAHs with the present soot model is not physical since they are totally consumed to generate soot particles. Experimental measurements do not exhibit such behavior, where PAH mole fractions do not completely tend towards zero at higher HAB.

Figure 106: Ethylene rich flame (φ =2.34): PAHs concentration in the gas-phase and after their dimerization to generate soot particles. Pyrene_gaz stands for pyrene concentration in the gas-phase; Homo_dim satnds for homomolecular dimerization (only pyrene); hetero_dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

Figure 107 : Ethylene rich flame (φ =2.34): Comparison between nucleation, condensation and surface growth rates in both homomolecular and heteromolecular dimerization. Homo_dim satnds for homomolecular dimerization (only pyrene); hetero_dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

As can be seen in Figure 105, the exclusive dimerization of pyrene with a constant α value of 0.05 underpredicts measurements, while the heteromolecular dimerization fairly reproduces experimental soot volume fraction with this α value. Thus, it is decided to vary α value in order to match experimental data if only pyrene should be considered as a unique soot precursor. The optimum value of α obtained for the latter case is presented in Figure 108 and the best agreement is obtained for a α value of 1.0 (the maximum value that α can physically have). In the previous work of Chernov et al. [84] on ethylene flames in the case of homomolecular dimerization, authors found that α varies between 0.77 and 1.0 if the chemical mechanism from Appel et al. [11] is used, while Faeth et al. [192,193] found that α varies between 0.8 and 1.0. Thus, the value of α determined in the present work is consistent with that obtained in the previous works from other groups such as Chernov et al. [84].

Figure 108 : Ethylene rich flame (φ =2.34): Determination of the optimum value of α for the homomolecular dimerization. Homo_1.0 stands for: α =1.0 for homomolecular dimerization (if only pyrene is considered); hetero_0.05 stands for: α =0.05 for heteromolecular dimerization (if pyrene/fluoranthene/benzo(a)pyrene are considered).

The evolution of the involved PAHs concentrations remains nearly unchanged with the optimized α compared to that presented in Figure 106. In addition, in the homomolecular dimerization case, the effect of α (from 0.05 to 1) on pyrene consumption profile remains mostly negligible. However, according to the present model (Figure 109) by considering the homomoleuclar dimerization case, the surface growth rate is higher with the optimized α value (1.0) than with α =0.05. Indeed, this is due to the higher value (1.0) given to α if only pyrene is considered as the only monomer. One can also notice the higher condensation and nucleation rates are obtained with the lower α value (0.05).

Figure 109 : Ethylene rich flame (φ =2.32): Comparison between nucleation, condensation and surface growth rates in homomolecular dimerization (only pyrene) with the optimized and initial α values.

- Soot primary particle diameters prediction

In this rich ethylene premixed flame, the available particles mean diameters has been modeled as shown in Figure 110, for both α =0.05 and its optimized value for the homomolecular dimerization of pyrene and the heteromolecular dimerization case. These soot primary particles were obtained from Transmission Electronic Microscope (TEM) by thermophorectic sampling [82].

Figure 110 : Soot primary particles prediction in both homo and heteromolecular dimerization (α =0.05) and with the optimized α (α =1.0 for the homomolecular and α =0.05 for the heteromolecular dimerization). The symbols are experimental data from [82]. The lines and dashed lines represent modeling results from the present work.

According to the present soot model for both homo and heteromolecular dimerization cases, the mean particles diameter shows an increase as a function of the height above the burner, while the measurements nearly show a constant evolution of primary particle diameters. The increase of α value in the homomolecular dimerization case leads to match the prediction given by the heteromolecular dimerization with α =0.05 but the experimental diameters profile is not reproduced. As a reminder, these measurements represent a mean value of diameters obtained from a TEM and uncertainties for such particles diameter determination can be as high as 15% (95% confidence interval) by using thermophoretic sampling [194] and up to 50% for the LII method [195,196]. It is expected from the present soot model to obtain such particle diameter evolution, since condensation and surface growth phenomena occur with nearly no consumption of soot particles.

5.4.3. n-butane flames

Three n-butane premixed flames at various equivalence ratios φ =1.75; 1.95 and 2.32 were investigated in particles nucleation modeling. There is a major interest in modeling the leanest (φ =1.75) n-butane flame since it represents a nucleation flame, where the amount of soot formed is very low with a constant particles diameter [197,198]. In contrast with that flame, experimental data for the richest flame (φ =2.32) are available in order to investigate the behavior of α for the n-butane premixed flames.

5.4.3.1. <u>n-butane flame (φ=1.75)</u>

In Figure 111, soot volume fraction prediction with the homomolecular dimerization of each PAH from pyrene to corannulene is reported with a constant value of α (0.05). In Figure 112, soot volume fraction predictions accounting for heteromolecular dimerization contribution of three PAHs pyrene, fluoranthene and benzo(a)pyrene is presented and compared to pyrene homomolecular dimerization.

Figure 111 : Atmospheric n-butane premixed flame, φ =1.75: n-C₄H₁₀ (9.46% in mol.)/O₂ (35.22%)/N₂ (55.32%). Homomolecular dimerization of the investigated PAHs. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (*a*) is set to 0.05.

Figure 112 : Atmospheric n-butane premixed flame, φ =1.75: n-C₄H₁₀ (9.46% in mol.)/O₂ (35.22%)/N₂ (55.32%). Heteromolecular dimerization of pyrene/fluoranthene/benzo(a)pyrene. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (α) is set to 0.05.

As can be observed in Figure 111, considering the homomolecular dimerizations of cyclopenta(cd)pyrene (~0.8 ppm predicted maximum gas-phase concentration) and pyrene (~0.5 ppm) leads to an acceptable agreement with measurements (α =0.05), while dimerization of benzo(ghi)fluoranthene (~1.8 ppm) highly overpredicts and that of fluoranthene (~0.24 pmm) and benzo(a)pyrene (~0.12 ppm) and corannulene (~0.13 ppm) underpredict experimental measurements.

In Figure 112, soot volume fraction prediction is improved with the heteromolecular dimerization. However, an overprediction within a factor of about 3 can be observed in the higher HAB zone. The evolution of the involved PAHs concentration in both homo and heteromolecular dimerization remains nearly unchanged with respect to their gas-phase concentrations due to the low sooting tendency of this nucleation n-butane flame. As can be seen in Figure 113 and as previously discussed, the addition of fluoranthene and benzo(a)pyrene to pyrene contribution leads to higher nucleation and condensation rates, while the surface growth rate stays comparable.

Figure 113 : n-butane flame (φ =1.75): Comparison between nucleation, condensation and surface growth rates in both homomolecular and heteromolecular dimerization. Homo_dim satnds for homomolecular dimerization (only pyrene); hetero_dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

It was shown in Figure 112 that considering the exclusive dimerization slightly underpredicts measurements, while the heteromolecular one shows an overprediction within a factor of 3. Therefore, the optimized α values for this lean flame in both homo and heteromolecular conditions has been determined. Results obtained are presented in Figure 114.

Figure 114 : n-butane flame (φ =1.75): Determination of the optimum value of α for the homomolecular dimerization. Homo_0.36 stands for: α =0.36 for homomolecular dimerization (if only pyrene is considered); hetero_0.01 stands for: α =0.01 for heteromolecular dimerization (if pyrene/fluoranthene/benzo(a)pyrene are considered).

If only pyrene dimerization is considered, the best agreement is obtained for α =0.36 (against 0.05), while in the heteromolecular case, the best agreement is obtained for α =0.01 (against 0.05). In the latter case, the discrepancy between model and experiment was reduced from an overprediction of a factor of 3 to a factor of 2. The evolution of the involved PAHs concentrations remains nearly unchanged with the optimized α compared to the gas-phase ones. The comparison between nucleation, condensation and surface growth rates using the optimized and the initial α values in both homo and heteromolecular dimerization is presented in Figure 115 and Figure 116. In the homomolecular dimerization case, the increase of α from 0.05 to 0.36 leads as expected to higher surface growth rate, while the nucleation and condensation rates is more important with α =0.05 at higher HAB. In the heteromolecular dimerization, both α values give roughly the same nucleation and condensation rates, while the surface growth rate is slightly more important with α =0.05. These observations were expected because of the low values attributed to α .

Figure 115 : n-butane flame (φ =1.75): Comparison between nucleation, condensation and surface growth rates in homomolecular dimerization case with the optimized and the initial α values.

Figure 116 : n-butane flame (φ =1.75): Comparison between nucleation, condensation and surface growth rates in heteromolecular dimerization case with the optimized and the initial α values.

- Soot primary particle diameters prediction

In this flame, it is expected to observe a constant particle size since its sooting tendency is very low [149]. In Figure 117, the predicted soot particle diameters as a function of the height above the burner are presented for both α =0.05 and its optimized values in the pyrene (α =0.36) and heteromolecular (α =0.01) dimerizations.

Figure 117 : n-butane flame (ϕ =1.75): Soot primary particles prediction in both homo and heteromolecular dimerization (α =0.05) and with the optimized α (α =0.36 for the homomolecular and α =0.01 for the heteromolecular dimerization).

As expected, the model exhibits nearly a constant evolution of particles diameter for a weak value of α . For α =0.05, both pyrene and heteromolecular cases show the same results and the predicted particle diameters are around 1 nm. For the optimized α values, which is significantly increased in pyrene dimerization (from 0.05 to 0.36), particles diameter is no longer constant since a peak is observed with a maximum of 2 nm. The decrease of particles diameter is due to their oxidation process. That is understandable since the surface growth rate increases with α . In the heteromolecular case where the optimized α value is found to be 0.01, particles diameter is constant and is found to reach 1nm.

5.4.3.2. <u>n-butane flame (φ=1.95)</u>

In Figure 118, soot volume fraction predictions with the homomolecular dimerization of each PAH from pyrene to corannulene is reported with a constant value of α (0.05). In Figure 119, the prediction accounting for the heteromolecular dimerization contribution of three PAHs pyrene, fluoranthene and benzo(a)pyrene is presented and compared to pyrene homomolecular dimerization.

Figure 118 : Atmospheric n-butane premixed flame, φ =1.95: n-C₄H₁₀ (10.30% in mol.)/O₂ (34.31%)/N₂ (55.39%). Homomolecular dimerization of the investigated PAHs. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (*a*) is set to 0.05.

Figure 119 : Atmospheric n-butane premixed flame, φ =1.95: n-C₄H₁₀ (10.30% in mol.)/O₂ (34.31%)/N₂ (55.39%). Heteromolecular dimerization of pyrene/fluoranthene/benzo(a)pyrene. The symbols represent experimental data from [149]; the lines represent modeling results from the present work. Fraction of reactive surface sites available for reactions (a) is set to 0.05.

In Figure 118, the best agreement between measurements and prediction is observed for the homomolecular dimerization of cylopenta(cd)pyrene. Also, a fair agreement can be observed for benzo(ghi)fluoranthene and for pyrene (within a factor of 2). It would be expected from the computed PAH mole fractions that benzo(ghi)fluoranthene (~20 ppm gas-phase concentration) and

cyclopenta(cd)pyrene (~11 pmm) would lead to a larger amount of soot with respect to pyrene (~5 ppm) and the other PAHs (< 3 ppm).

In Figure 119, soot volume fraction prediction is improved by considering the heteromolecular dimerization for the reasons discussed in the previous sections. The evolution of the involved PAHs concentrations in both homo and heteromolecular dimerizations is shown in Figure 120. It can be seen that PAHs are massively consumed to generate soot particles. Pyrene is more consumed in the case of heteromolecular that in the homomolecular dimerization since its reacts with two more PAHs: fluoranthene and benzo(a)pyrene.

Figure 120 : n-butane flame (ϕ =1.95): PAHs concentration in the gas-phase and after their dimerization to generate soot particles. Pyrene_gaz stands for pyrene concentration in the gas-phase; Homo_dim satnds for homomolecular dimerization (only pyrene); hetero_dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

As can be seen in Figure 121 and as previously discussed, the addition of the dimerization of fluoranthene and benzo(a)pyrene to pyrene homolecular dimerization leads to higher nucleation, condensation and surface growth rates.

Figure 121: n-butane flame (φ =1.95; α =0.05): Comparison between nucleation, condensation and surface growth rates in both homomolecular and heteromolecular dimerization. Homo_dim satnds for homomolecular dimerization (only pyrene); hetero_dim stands for heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene).

As observed in Figure 119, the only pyrene dimerization underpredicts measurements within a factor of 2, while a better agreement can be obtained with the heteromolecular dimerization. Therefore, the optimized α values for this flame in both homo and heteromolecular conditions were determined. Results obtained are presented in Figure 122.

Figure 122 : n-butane flame (φ =1.95): Determination of the optimum value of α for the homomolecular dimerization. Homo_0.9 stands for: α =0.9 for homomolecular dimerization (if only pyrene is considered); hetero_0.5 stands for: α =0.5 for heteromolecular dimerization (if pyrene/fluoranthene/benzo(a)pyrene are considered).

If only pyrene dimerization is considered, the best agreement is obtained for α =0.9 (against 0.05 initially), while in the heteromolecular case, the best agreement is obtained by setting α =0.5 (against 0.05 initially). The effect of the change of α value on PAH concentration profiles as well as the nucleation, condensation and surface growth rates in both homo and heteromolecular dimerizations is presented from Figure 123 to Figure 126 . With the increase of α in both cases, PAHs are more consumed than in α =0.05, since the reactivity is increased. In the heteromolecular dimerization case, pyrene concentration is the most impacted with respect to the two other PAHs: benzo(a)pyrene and fluoranthene. As discussed in the previous sections, the PAH concentrations tend towards zero at higher HAB, indicating the limitations of the present soot model.

Figure 123 : n-butane flame (φ =1.95): pyrene concentration profiles in the gas-phase and after its homomolecular dimerization with the optimized and the initial α value.

Figure 124: n-butane flame (φ =1.95): PAH concentration profiles in the gas-phase and after its heteromolecular dimerization with the optimized and the initial α value.

This fast consumption of PAHs is confirmed as shown in Figure 125 and Figure 126, where the condensation and surface growth rates are significantly increased with respect to the case of α =0.05. The impact on the surface growth is more significant due to the higher value of α (0.9 against 0.05 and 0.5 against 0.05 for homo and heteromolecular dimerization respectively).

Figure 125 : n-butane flame (φ =1.95): Comparison between nucleation, condensation and surface growth rates in homomolecular dimerization with the optimized and the initial α values.

Figure 126 : n-butane flame (φ =1.95): Comparison between nucleation, condensation and surface growth rates in heteromolecular dimerization with the optimized and the initial α values.

5.4.3.3. <u>n-butane flame (φ=2.32)</u>

The richest n-butane (φ =2.32) flame [38] has been investigated in order to examine the behavior of α within pyrene and heteromolecular dimerizations. It was observed that α is increased for both homo and heteromolecular cases when the equivalence ratio is increased from 1.75 to 1.95. This flame is of high importance as it allows comparing three hydrocarbon premixed flames: methane, ethylene and n-butane at nearly the same equivalence ratio: 2.32; 2.34 and 2.32 respectively.

Soot volume fraction profile is highly underpredicted with the homomolecular dimerization (only pyrene) and the heteromolecular dimerization (pyrene/fluoranthene/benzo(a)pyrene) with a constant value of α (0.05). A higher α value is required to account for soot volume fraction prediction. In Figure 127, the optimized values of α that allow a better agreement between predictions and measurements is reported for both homo and heteromolecular dimerizations.

Figure 127 : n-butane flame (φ =2.32): Determination of the optimum value of α for the homomolecular dimerization. Homo_0.6 stands for: α =0.6 for homomolecular dimerization (if only pyrene is considered); hetero_0.5 stands for: α =0.5 for heteromolecular dimerization (if pyrene/fluoranthene/benzo(a)pyrene are considered). The symbols represent experimental data from [38].

The best agreement is obtained for α =0.6 in the homomolecular dimeriztation, while in the heteromolecular case, the best agreement is obtained by setting α =0.5. These values are similar to those obtained in the n-butane (φ =1.95) case. The evolutions of PAH concentration profiles in both homo and heteromolecular dimerization cases are presented in Figure 128 and Figure 129. As discussed previously, a significant increase of α value leads to a high consumption of precursors. In the heteromolecular dimerization case (Figure 129), this consumption is more important for pyrene than fluoranthene and benzo(a)pyrene, confirming pyrene as the major contributor.

Figure 128 : n-butane flame (φ =2.32): pyrene concentration profile in the gas-phase and after its dimerization with the optimized and initial α values.

Figure 129 : n-butane flame (φ =2.32): PAHs concentration profiles in the gas-phase and after their dimerization with the optimized and initial α values.

In Figure 130 and Figure 131, the evolutions of the nucleation, condensation and surface growth rates are presented. As expected, both cases exhibit higher condensation and surface growth rates due to the significant change of α . For example, in the homomolecular dimerization case, the increase of α from 0.05 to 0.6 leads to an increase of the maximum surface growth rate within a factor of 500 and a factor of about 300 for the heteromolecular dimerization in this rich n-butane flame.

Figure 130 : n-butane flame (φ =2.32): Comparison between nucleation, condensation and surface growth rates in homomolecular dimerization with the optimized and the initial α values.

Figure 131 : n-butane flame (φ =2.32): Comparison between nucleation, condensation and surface growth rates in heteromolecular dimerization with the optimized and the initial α values.

5.5. Comparison between investigated flames

The contribution of PAHs in term of soot particles inception was examined for three different hydrocarbon flames and at various equivalence ratios. Also, the particles nucleation pathways involving either only pyrene (homomolecular dimerization) or pyrene-fluoranthene-benzo(a)pyrene (heteromolecular dimerization) were investigated. It was found that the predicted soot volume fractions and diameters in light hydrocarbon flames depends highly on soot precursors considered as well as the value given to α .

Considering α =0.05 and the homomolecular dimerization of each PAH, it is observed that the best agreement between measured and predicted soot volume fractions is obtained with cyclopenta(cd)pyrene in all the investigated hydrocarbon flames. It is also observed that the dimerization of corannulene and pyrene for ethylene flame, pyrene for the n-butane nucleation flame (φ =1.75) and benzo(ghi)fluorathene for the rich n-butane flame (φ =1.95) shows an acceptable sooting tendency. One can note that in the low pressure methane and the atmospheric n-butane nucleation flames, the soot precursors are not drastically consumed as observed in the atmospheric rich ethylene and n-butane flames where the precursors are totally consumed from their dimerization. Table 16 summarizes the optimized values of α determined as a function of fuels, equivalence ratio (φ).

maximum flame temperature (T_{max}), pressure and the maximum soot volume fraction measured (Fv $_{max}$).

Fuel	φ	Pressure (atm)	T _{max} (K)	Fv _{max} (ppb)	α (only pyrene)	α (pyrene/fluoranthene/ benzo(a)pyrene+pyrene)	$\frac{\underset{\alpha_{homo}}{\alpha_{homo}}}{\alpha_{hetero} + \alpha_{homo}}$
Methane	2.32	0.263	1805	1.0	0.36	0.2	1.8
Ethylene	2.34	1	1644	171	1.0	0.05	20
n-butane	1.75	1	1740	0.14	0.36	0.01	36
n-butane	1.95	1	1720	20	0.9	0.5	1.8
n-butane	2.32	1	1880	50	0.6	0.5	1.2

Table 16 : Optimized values of α obtained from homomolecular and heteromolecular dimerizations in hydrocarbon premixed flames.

It can be observed that the value of α is higher in the case of a single soot precursor than for the heteromolecular dimerization which involves in addition to pyrene, two more PAHs: fluoranthene and benzo(a)pyrene. One can notice that the variation of α from one flame to another is more important with the heteromolecular than in the homomolecular dimerization. For example, between the methane flame ($\varphi=2.32$) and the other flames, a factor of about 3 with ethylene ($\varphi=2.34$) and n-butane ($\varphi=1.95$) flames is observed and a factor of about 2 with n-butane (φ =2.32). In the heteromolecular dimerization, the variation between methane and ethylene flames is about a factor of 4 and a factor of 20 between methane and the n-butane nucleation flames. A larger α ratio (defined as the value of α in the homomolecular dimerization over the value of α in the heteromolecular dimerization) is observed for the nucleation flame (n-butane flame at $\varphi = 1.75$). In the methane rich flame, α value that allows matching fairly the measurements is found to be 0.36 and 0.2 for respectively homo and heteromolecular dimerization. In the ethylene rich flame, a ratio of 20 over α value is obtained between both nucleation processes. In the n-butane flames, α value is increased from $\varphi = 1.75$ to $\varphi = 1.95$ and then decreased in φ =2.32 if only pyrene dimerization is considered. That might indicate that the error evolution induced by a homomolecular dimerization is non-linear with the equivalence ratio. Also, one can notice the same observation if the heteromolecular dimerization is considered, where a constant evolution of α seems to take place from $\varphi = 1.95$ to $\varphi = 2.32$. However, experimental

investigations are required to elucidate existing correlations between α and the nature of fuel in question as well as the impact of the temperature. Moreover, additional experimental concentrations of PAHs are also required for determining the deviation of the present soot model.

5.6. Conclusions

In this chapter, the contribution of a dozen of PAHs molecules from pyrene to coronene (mass ranging from 202 to 300 amu) and the nucleation processes both homomolecular and heteromolecular dimerizations of PAHs were investigated concerning particulate matter emissions. Particles nucleation was modeled based on the experimental results of soot volume fractions and soot primary particles diameters for premixed laminar flames of methane, ethylene and n-butane at different equivalence ratios and pressures. The effects of fuels, equivalence ratios and the temperature were quantified on particles nucleation process. Predictive capability of a sectional soot model coupled with a detailed chemical mechanism in calculating soot volume fractions and diameters was also been examined.

In the first instance, the homomolecular dimerization of individual PAH from pyrene to coronene by using a constant α value of 0.05 was examined. Computations show that for this value of α , the homomolecular dimerization of cyclopenta(cd)pyrene exhibits a good agreement with experimental soot volume fractions in the investigated hydrocarbon flames. It was clearly observed that pyrene likely plays a key role in the particles nucleation process, but its sole contribution and dimerization cannot allow predicting accurately soot formation for all the investigated flames. Also, the dimerization of species such as corannulene and benzo(ghi)fluoranthene shows a major interest in soot particles nucleation modeling, namely in ethylene (φ =2.34) and n-butane flame (φ =1.95). It is worth noting that the five-membered ring PAHs such cyclopenta(cd)pyrene, corannulene and benzo(ghi)fluoranthene seem to be widely involved in the nucleation process if this constant value of α =0.05 is used in the soot model. However, the predicted PAHs concentrations require further validations against experimental measurements. Also, experimental investigations are needed to elucidate existing correlations between α and the nature of fuels.

In the second phase, the focus was more on only pyrene dimerization, considered as the unique soot precursor. It is found that if only pyrene should be considered as soot precursor, α value is varied in

each of the above-mentioned flames in order to compensate the error induced by the heteromolecular dimerization simplification. Thus, the optimal value of α was determined in each investigated premixed flames, which varies as a function of fuels ranging from 0.36 for methane (φ =2.32) and the n-butane nucleation flame (φ =1.75) to 1.0 for ethylene flame (φ =2.34).

Finally, the concept of heteromolecular dimerization which involves two or more PAHs in predicting soot formation has been examined. In this study, the association of three PAHs: pyrene-fluoranthenebenzo(a)pyrene was investigated. This process was found to show a significant contribution for soot inception with the used α values. Since several PAHs that have different chemical structure were detected and quantified in hydrocarbon premixed flames, they can collide to generate particulate matter. In fact, the homomolecular dimerization which involves only one PAH having the same chemical structure is considered as a part of the heteromolecular dimerization. Computations show that with the heteromolecular dimerization, α value is varied as a function of fuels, ranging from 0.01 for the n-butane nucleation flame (φ =1.75) to 0.5 for the n-butane flames (φ =1.95 and φ =2.32). Although several PAHs are detected and quantified during hydrocarbons combustion, there is no experimental evidence identifying those widely involved in the particles nucleation process. From the present study, we found that the heteromolecular dimerization mechanism elucidation. More experimental data are required to clarify the particles nucleation process, namely the transition between the gas-phase and the solid phase.

Chapter 6: Conclusions and Future Work

This study aimed to investigate the major chemical species (PAHs) widely involved in the particles nucleation process using advanced computational approach such as sectional soot model. This thesis focused on two nucleation models: homomolecular and heteromolecular dimerizations through the physical agglomeration of Polycyclic Aromatic Hydrocarbons.

The first part of this work was focused on the development of a detailed chemical kinetic mechanism that served as input for the sectional soot model. A new detailed kinetic model containing 1014 species and 4550 most reversible reactions has been developed to describe accurately the combustion of liquid transportation fuels as well as single component fuels (ranging from methane to npropylbenzene) over an extended range of experimental conditions. The surrogate fuel used to build the present kinetic mechanism is composed of three components: n-decane/iso-octane/npropylbenzene. This ternary mixture has been chosen to represent liquid transportation fuels, based on their Cetane Number (CN) and Threshold Sooting Index (TSI). Several PAHs experimentally observed (detected and quantified) ranging from pyrene to coronene have been included in the current kinetic model in order to examine their contributions in the soot particles inception mechanism, when the kinetic model is coupled with a soot model. The robustness of the present mechanism has been investigated over a wide range of experimental conditions and it is found to simultaneously reproduce chemical species (including PAHs) mole fractions, ignition delay times and flame speeds for a variety of fuels. Based on this mechanism, the impacts of fuels composition and reaction progress (height above the burner) on the relative importance of the aromatics as well as some key intermediates such as acetylene, ethylene, propene, propyne, allene and but-1,3-diene have been characterized. An alternative pathway leading to aromatic production in liquid transportation fuels combustion has been highlighted. Oxygenated compound such as dibenzofuran is found to significantly contribute to naphthalene production during jet-A1 fuel combustion. In addition, three alternative naphthalene production paths, namely benzyl+propargyl, phenyl+vinylacetylene and dibenzofuran oxidation have

been simultaneously considered in the same detailed kinetic mechanism. The relative importance of each of these reactions has been examined in both practical and laboratory fuels combustion. The composition of fuel is found to significantly impact aromatics formation pathways. For example, predominant reactions involved in naphthalene formation in ethylene and jet-A1 surrogate fuel or n-propylbenzene premixed flames are found to differ completely. While phenyl+vinylacetylene is the predominant one in ethylene flame, benzyl+propargyl and dibenzofuran oxidation are found to be the major pathways in jet-A1 surrogate fuel.

The second part of this work was focused on the soot nucleation modeling. The capability in terms of particles inception of a dozen of PAH molecules that have been experimentally observed was investigated. A sectional soot model coupled with the kinetic mechanism developed in this study was employed to investigate particles inception mechanisms. Two nucleation models: homomolecular and heteromolecular dimerizations of PAHs were considered to quantify the impact of each of the examined PAHs as well as the way the nucleation is induced. A monodirectional nucleation model was considered in the present study.

While PAHs are considered as potential soot precursors within the combustion community and due to the lack of experimental evidence on particles nucleation mechanisms, the nature of gaseous species (PAHs) responsible of the first soot particles formation (smallest particles that turn into mature soot) remains elusive. Computational studies are required for such investigations. However, reliable detailed kinetic mechanism and soot model are needed to better understand soot formation mechanism. In the present work, particles nucleation is modeled based on experimental data over soot volume fractions obtained from different fuels combustion: methane (φ =2.32), ethylene (φ =2.34) and n-butane (φ =1.75; φ =1.95; φ =2.32). Computations show pyrene and pyrene based-products such as cyclopenta(cd)pyrene may play a key role in particles nucleation. However, the only contribution of pyrene dimerization cannot allow predicting accurately soot formation. The dimerization of pyrene is considered in most of soot models as the key of nucleation process. In this work, we carefully examined the pyrene dimerization in all the investigated flames and concluded that the role of pyrene is highly dependent on the value of α used, which varies as a function of the fuel type. The current study also reveals that

for a given value of α (α =0.05), the five-membered ring PAHs such as cyclopenta(cd)pyrene, corannulene and benzo(ghi)fluoranthene seem to be widely involved in nucleation since satisfactory agreement were obtained in some cases. Thus, it is worth noting that the five-membered ring PAHs may potentially play an important role in such process and devote further investigations. Since the nucleation rate is defined in terms of the collision frequency, collision efficiency and gas-phase concentrations of colliding species, according to our simulations results, the dimerization of the following PAHs: benzo(e)pyrene, perylene, benzo(ghi)perylene and coronene are found negligible due to their very low predicted concentrations (~1 ppb).

Finally, the concept of heteromolecular dimerization process has been explored. This process allows associating several PAHs in order to reproduce experimental measurements. It has been proposed based on the fact that the use of only pyrene dimerization as a key of particles inception is not adequate to predict soot formation in the investigated flames. Computations show that the heteromolecular dimerization can be an important process for soot formation modeling. We found this process more realistic since it allows filling the gap when the contribution of only one PAH is not sufficient to reproduce experimental data. Moreover, since several PAHs can exist during hydrocarbon fuels combustion, there is no evidence that excludes the collision between PAHs having different chemical structure to produce soot particles. On the contrary, this is more true than if only a precursor (PAH) is considered for soot formation modeling.

Results obtained from the present work provide a global overview on the soot nucleation process. They can be incorporated into current soot models for more results and details on soot formation process. Therefore, the post-nucleation steps can be improved to build more robust soot models. The nucleation and condensation steps were considered in this work as monodirectional (non-reversible). Recommendations for future work include:

- Develop more reliable detailed chemical mechanisms that can more accurately predict PAHs concentration profiles for a wide range of fuels and over extended experimental conditions.
- (2) Modeling of the concentration profiles of PAHs considered in this work for all the investigated flames.

- (3) Investigate the predictive capability of soot particle diameter profiles in n-butane flames.
- (4) Investigate experimentally the transition between gas-phase and soot particles inception step.
- (5) Investigate experimentally existing correlations between the fraction of surface sites available for reactions on soot particles (α) and the nature of fuels, in order to use potential α values in predicting soot concentrations.
- (6) Investigate the condensation as reversible process that can help to not completely consume PAHs as observed in this work.
- (7) Explore more experimental conditions that can help to better understand soot formation process.
References

- J. Warnatz, U. Maas, R.W. Dibble, Physical and Chemical Fundamentals, Modeling and Simulation Experiments, Pollutant Formation, Combustion, 2nd Edition 1996.
- [2] Ludovic Russier, IFP Training: Pollution atmosphérique et règlementations, CLM IFPEN 2015.
- [3] F. Pischinger, H. Schulte, and J. Hansen. Grundlagen und entwicklungslinien des dieselmotorischen brennverfahren. In VDI-Berichte, editor, Die Zukunft des Dieselmotors, pages 61–93, Düsseldorf, 1988.
- [4] M. Ba and J. Colosio, Qualité de l'air, une surveillance accrue des particules mais des concentrations à réduire. IFPEN, les données de l'environnement 58, 2000.
- [5] Dockery DW, Pope III CA, Xu X, Spengler JD, Ware JH, Fay ME An association between air pollution and mortality in six US cities N engl J. Med. 329 (1993) 1753-9.
- [6] J. Kaiser, Showdown over clean air science, Science 277 (1997) 466-469.
- [7] D.A. Kaden, R.A. Hites, W.G. Thilly, Mutagenicity of soot and associated polycyclic aromatic hydrocarbon to salmonella typhimurium, Cancer Res. 39 (1979) 4152-9.
- [8] H. Wang, Formation of nascent soot and other condensed-phase materials in flames, 33 rd symp. (Int.) Combust. (2010).
- [9] H. Bockhorn, A. D'Anna, A.F. Sarofim, H. Wang, Combustion Generated Fine Carbonaceous Particles, Karlsruhe University Press, 2009.
- [10] H. Wang, M. Frenklach, Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals, J. Phys. Chem. 98 (1994) 11465– 11489.
- [11] J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame 121 (2000) 122-136.
- [12] C.S. McEnally, L.D. Pfefferle, An Experimental Study in Non-Premixed Flames of Hydrocarbon Growth Processes that Involve Five-Membered Carbon Rings, Combust. Sci. Technol. 131 (1998) 323–344.

- [13] M. Commodo, G. Tessitore, G. de Falco, A. Bruno, P. Minutolo, A. D'Anna, Further details on particle inception and growth in premixed flames, Proc. Combust. Inst. 35 (2015) 1795–1802.
- [14] J.S. Lowe, J. Y.W. Lai, P. Elvati, A. Violi, Towards a predictive model for polycyclic aromatic hydrocarbon dimerization propensity, Proc. Combust. Inst. 35 (2015)1827–1832.
- [15] P. Elvati, A. Violi: Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains, Proc. Comb. Inst. 34 (2013) 1837-1843.
- [16] A. Violi, Modeling of soot particle inception in aromatic and aliphatic premixed flames, Combust. Flame 139 (2004) 279–287.
- [17] C.A. Schuetz, M. Frenklach, Nucleation of soot: Molecular dynamics simulations of pyrene dimerization, Proc. Combust. Inst., 29 (2002)2307–2314.
- [18] M. Frenklach, H. Wang, Detailed modeling of soot particle nucleation and growth. Symp.(Int.) Combust. 23 (1991) 1559-66.
- [19] M. Frenklach, D.W. Clary, J.W.C. Gardiner, S.E. Stein, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene, Symp. (Int.) Combust. 20 (1985) 887-901.
- [20] J.H. Miller, K.C. Smyth, W.G. Mallard, Calculations of the dimerization of aromatic hydrocarbons: Implications for soot formation. Symp. (Int.) Combust. 20 (1985)1139-47.
- [21] C.A. Schuetz, M. Frenklach. Nucleation of soot: Molecular dynamics simulations of pyrene dimerization. Proc. Combust. Inst. 29 (2002) 2307-14.
- [22] H. Sabbah, L. Biennier, S.J. Klippenstein, I.R. Sims, Rowe, Bertrand R. Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization, J. Phys. Chem. Lett. 1 (2010) 2962–2967.
- [23] S.M. Kathmann, G.K. Schenter, B.C. Garrett, Thermodynamics and kinetics of nanoclusters controlling gas-to particle nucleation, J. Phys. Chem. C 113 (2009) 10354-10370.
- [24] P.D. Teini, D.M. Karwat, A. Atreya, Observations of nascent soot: Molecular deposition and particle morphology, Combust. Flame 158 (2011) 2045-2055.
- [25] R.A. Dobbins, R.A. Fletcher, H.C. Chang, The evolution of soot precursor particles in a diffusion flame, Combust. Flame 115 (1998) 285-298.

- [26] M. Saffaripour, A. Veshkini, M. Kholghy, M.J. Thomson, Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane, Combust. Flame 161 (2014) 848–863.
- [27] S.-H. Chung, Computational Modeling of Soot Nucleation, PhD Thesis (2011), University of Michigan, USA.
- [28] A. D'Anna, M. Sirignano, J. Kent, A model of particle nucleation in premixed ethylene flames, Combust. Flame 157 (2010) 2106-2115.
- [29] R.L. Vander Wal, A. Yezerets, N.W. Currier, D.H. Kim, C.M. Wang, HRTEM Study of diesel soot collected from diesel particulate filters. Carbon. 45 (2007) 70-7.
- [30] R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons, Proc. R. Soc. Lond. A 209 (1951) 196.
- [31] S.-H. Chung, A. Violi, Peri-condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons. Proc. Combust. Inst. 33 (2011) 693-700.
- [32] J.A. Marr, PAH chemistry in a jet-stirred/plug-flow reactor system: Massachusetts Institute of Technology; 1985.
- [33] A. Raj, M. Sander, V. Janardhanan, M. Kraft, A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency, Combust. Flame 157(3) (2010) 523-34.
- [34] J.D. Herdman, J.H. Miller, Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters, J. phys. chem. A 112 (2008) 6249–6256.
- [35] H.R. Zhang, E.G. Eddings, A.F. Sarofim, C.K. Westbrook, Fuel dependence of benzene pathways, Proc. Combust. Inst. 32 (2009) 377–385.
- [36] M.J. Castaldi, N.M. Marinov, C.F. Melius, J. Huang, S.M. Senkan, W.J. Pit, C.K. Westbrook, Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame, Symp. (Int.) Combust. 26 (1996) 693–702.
- [37] S. Sharma, M.R. Harper, W.H. Green, Modeling of 1,3-hexadiene, 2,4-hexadiene and 1,4hexadiene-doped methane flames: Flame modeling, benzene and styrene formation, Combust. Flame 157 (2010) 1331–1345.

- [38] D. Boufflers, Etude expérimentale et Modélisation de la formation des suies et de leurs précurseurs en flamme de prémélange à différentes richesses (cas du n-C4H10), PhD Thesis (2014), University of Lille 1, France.
- [39] N.A. Slavinskaya, U. Riedel, S.B. Dworkin, M.J. Thomson, Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames, Combust. Flame 159 (2012) 979–995.
- [40] H. Wang, M. Yao, Z. Yue, M. Jia, R.D. Reitz, A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions, Combust. Flame 162 (2015) 2390–2404.
- [41] M.B. Colket, D.J. Seery, Reaction mechanisms for toluene pyrolysis, Symp. (Int.) Combust. 25 (1994) 883–891.
- [42] H. Anderson, C.S. McEnally, L.D. Pfefferle, Experimental study of naphthalene formation pathways in non-premixed methane flames doped with alkylbenzenes, Proc. Combust. Inst. 28 (2000) 2577–2583.
- [43] N.M. Marinov, W.J. Pitz, C.K. Westbrook, A.M. Vincitore, M.J. Castaldi, S.M. Senkan, C.F. Melius, Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame, Combust. Flame 114 (1998) 192–213.
- [44] B.V. Unterreiner, M. Sierka, R. Ahlrichs, Reaction pathways for growth of polycyclic aromatic hydrocarbons under combustion conditions, a DFT study, Phys. Chem. Chem. Phys., 6 (2004) 4377–4384.
- [45] B. Shukla, M. Koshi, A novel route for PAH growth in HACA based mechanisms, Combust. Flame 159 (2012) 3589-3596.
- [46] A. Kousoku, K. Norinaga and K. Miura, Extended Detailed Chemical Kinetic Model for Benzene Pyrolysis with New Reaction Pathways Including Oligomer Formation, Ind. Eng. Chem. Res. 53 (2014) 7956-7964.
- [47] H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways, Prog. in Energ. Combust. Sci. 26 (2000) 565–608.

- [48] D.S.N. Parker, R.I. Kaiser, B. Bandyopadhyay, O. Kostko, T.P. Troy, M. Ahmed, Unexpected Chemistry from the Reaction of Naphthyl and Acetylene at Combustion-Like Temperatures, Angew. Chem. 127 (2015) 5511–5514.
- [49] V. V. Kislov, N. I. Islamova, A. M. Kolker, S. H. Lin, A. M. Mebel, Hydrogen Abstraction Acetylene Addition and Diels- Alder Mechanisms of PAH Formation: A Detailed Study Using First Principles Calculations, J. Chem. Theory Comput. 1 (2005) 908–924.
- [50] C. F. Melius, M. E. Colvin, N. M. Marinov, W. J. Pitz and S. M. Senkan, Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety, Proc. Combust. Inst. 26 (1996) 685.
- [51] J.P. Hessler, Calculation of reactive cross sections and microcanonical rates from kinetic and thermochemical data, J. Phys. Chem. A 102 (1998) 4517.
- [52] B. Shukla and M. Koshi, Comparative study on the growth mechanisms of PAHs, Combust. Flame 158 (2011) 369–375.
- [53] Y. Li, L. Zhang, Z. Tian, T. Yuan, J. Wang, B. Yang, F. Qi, Experimental study of a fuel-rich premixed toluene flame at low pressure, Energy Fuels 23 (2009) 1473–1485.
- [54] M. Frenklach, S. Taki, M. B. Durgaprasad and R. A. Matula, Soot formation in shock-tube pyrolysis of acetylene, allene, and 1, 3-butadiene, Combust. Flame 54 (1983) 81.
- [55] C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap, Prog. Energ.Combust. Sci. 32 (2006) 247–294.
- [56] H. Bockhorn, (ed.), Soot Formation in Combustion: Mechanisms and Models, Springer-Verlag, Berlin, 1994.
- [57] S.E. Stein, A. Fahr, High-temperature stabilities of hydrocarbons. J. Phys. Chem. 89 (17) (1985) 3714-25.
- [58] M. Frenklach, Reaction mechanism of soot formation in flames, Phys. Chem. Chem. Phys. 4 (2002) 2028-2037.
- [59] M. Frenkalch, On surface growth mechanism of soot particles. Proc. Combust. Inst. (1996) 2285-2293.

- [60] M.V Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetic Kolloider Lösungen, 1916.
- [61] K.H. Homann, Fullerenes and Soot Formation-New Pathways to Large Particles in Flames Angew. Chem, Int Ed. 37 (1998) 2435-2451.
- [62] M. Frenklach, H. Wang, Detailed Mechanism and Modeling of Soot Particle Formation. In: Bockhorn H. (eds) Soot Formation in Combustion. Springer Series in Chem. Phys. 59 (1994) 162-190. Springer, Berlin, Heidelberg.
- [63] A. D'Anna, Combustion-formed nanoparticles, Proc. Combust. Inst. 32 (2009) 593-613.
- [64] P.S. Mehlta, S. Das, A correlation for soot concentration in diesel exhaust based on fuel-air mixing parameters, Fuel 71 (1996) 689-692.
- [65] J.B Moss, C.D. Stewart, and K.J. Young, Modeling soot formation and nurnout in a high temperature laminar flame burning under oxygen-enriched conditions, Combust. Flame 101 (1995) 491-500.
- [66] R. Said, A. Garo and R. Borgui, Soot formation modeling for turbulent flames Combust. Flame 108 (1997) 71-86.
- [67] F. Takahashi and I. Glassman, Sooting correlations for premixed flames. Combust. Sci.Technol. 37 (1984) 1–19.
- [68] C. Mc Enally, L. Pfefferle, Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways, Combust. Flame 148 (2007) 210–222.
- [69] M. Frenklach and H. Wang, Detailed mechanism and modeling of soot particle formation. In H.
 Bockhorn, editor, Soot Formation in Combustion: Mechanisms and Models, pages 165–192.
 Springer- Verlag, Heidelberg, Germany, 1994.
- [70] M. Frenklach, Method of moments with interpolative closure, Chem. Eng. Sci 57 (12) (2002) 2229-2239.
- [71] M. Frenklach, S.J. Harris, Aerosol dynamics modeling using the method of moments, J. Colloid and Interface Sci., 118 (1987) 252-261 1987.

- [72] C.J. Pope and J.B. Howard. Simultaneous particle and molecule modeling (SPAMM): An approach for combining sectional aerosol equations and elementary gas-phase reactions, Aerosol Sci. Technol., 27(1) (1997) 73–94.
- [73] H. Richter, S. Granata, W.H. Green, J.B. Howard, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proc. Combust. Inst. 30 (2005) 1397-1405.
- [74] A. D'Anna and J.H. Kent. Modeling of particulate carbon and species formation in coflowing diffusion flames of ethylene. Combust. Flame 144 (2006) 249–260.
- [75] D. Aubagnac-Karkar, J.-B. Michel, O. Colin, P.E. Vervisch-Kljakic, Darabiha, Nasser, Sectional soot model coupled to tabulated chemistry for Diesel RANS simulations, Combust.Flame 162 (2015) 3081–3099.
- [76] Reaction Design, Reaction Workbench 15131, Reaction Design: San Diego, USA, 2013.
- [77] D.G. Goodwin, H.K. Moffat, R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Version 2.2. 1 (2016).
- [78] K. Netzell, H. Lehtiniemi, F. Mauss, Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method, Proc. Combust. Inst. 31 (2007) 667–674.
- [79] D. Aubagnac-Karkar, A. El Bakali, P. Desgroux, Numerical Investigation on Pyrene Based Nucleation in Laminar Flames, Proceedings of the 8th European Combustion Meeting, 18-21 April 2017, Dubrovnik, Croatia.
- [80] D. Aubagnac-Karkar, A. El Bakali and P. Desgroux, Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method, Combust. Flame, article in press.
- [81] A. Kazakov, M. Frenklach, Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames, Combust. Flame 114 (1998) 484–501.
- [82] F. Xu, P.B. Sunderland, G.M. Faeth, Soot formation in laminar premixed ethylene/air flames at atmospheric pressure, Combust. Flame 108 (1997) 471–493.

- [83] F. Xu, K.C. Lin, and G.M. Faeth, Soot formation in laminar premixed methane/oxygen flames at atmospheric pressure, Combust. Flame 115 (1998) 195-209.
- [84] V. Chernov, M.J. Thomson, S.B. Dworkin, N.A. Slavinskaya, R. Uwe, Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth, Combust. Flame 161 (2014) 592–601.
- [85] T. Mouton, X. Mercier, M. Wartel, N. Lamoureux, P. Desgroux, Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames, Appl. Phys. B 112 (2013) 369–379.
- [86] M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lu[°]ckerath, W. Stricker, Experimental and numerical study on soot formation in laminar high pressure flames, Proc. Combust. Inst. 27(1) (1998) 1565.
- [87] A. Kazakov, H. Wang, M. Frenklach, Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar, Combust. Flame 100 (1995) 111-120.
- [88] S.B. Dworkin, Q. Zhang, M.J. Thomson, N.A. Slavinskaya, U. Riedel, Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame, Combust. Flame 158 (2011) 1682–1695.
- [89] N.A. Eaves, A. Veshkini, C. Riese, Q. Zhang, S.B. Dworkin, Murray John Thomson, A numerical study of high pressure, laminar, sooting, ethane–air coflow diffusion flames, Combust. Flame 159 (2012) 3179–3190.
- [90] C.H. Kim, F. Xu, G.M. Faeth, Soot surface growth and oxidation at pressures up to 8.0 atm in laminar nonpremixed and partially premixed flames, Combust. Flame 152 (3) (2008) 301–316.
- [91] W. Schulz, 12 components jet surrogate formulation, Jet surrogate fuels formulation, ACS Petrol. Chem. Div. Preprints 37 (1991) 383–392.
- [92] S. Dooley, S.H. Won, M. Chaos, J. Heyne, Y. Ju, F.L. Dryer, K. Kumar, C.-J. Sung, H. Wang, M.A. Oehlschlaeger, R.J. Santoro, T.A. Litzinger, A jet fuel surrogate formulated by real fuel properties, Combust. Flame 157 (2010) 2333–2339.
- [93] P. Dagaut, A. El Bakali, A. Ristori, The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels, Fuel 85 (2006) 944–956.

- [94] M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011) 193–200.
- [95] G. Kukkadapu, K. Kumar, C.-J. Sung, M. Mehl, W.J. Pitz, Autoignition of gasoline surrogates at low temperature combustion conditions, Combust. Flame 162 (2015) 2272–2285.
- [96] H. Ramirez Lancheros, Etude expérimentale et modélisation cinétique de l'oxydation, l'autoinflammation et la combustion de carburants Diesel et bio-Diesel, PhD Thesis (2012), University of Orleans, France.
- [97] Y. Yang, A.L. Boehman, R.J. Santoro, A study of jet fuel sooting tendency using the threshold sooting index (TSI) model, Combust. Flame 149 (2007) 191-205.
- [98] R. Lemaire, E. Therssen, P. Desgroux, Effect of ethanol addition in gasoline and gasolinesurrogate on soot formation in turbulent spray flames, Fuel 89 (2010) 3952–3959.
- [99] S. Dooley, S.H. Won, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C.-J. Sung, H. Wang, M.A. Oehlschlaeger, V. Iyer, S. Iyer, T.A. Litzinger, R.J. Santoro, T. Malewicki, K. Brezinsky, The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena, Combust. Flame 159 (2012) 1444–1466.
- [100] C. Betrancort, P. Desgroux, E. Therssen, Determination of the threshold sooting index in flames of liquid hydrocarbons by laser induced incandescence, Laboratoire PC2A, Lille, 2014, France.
- [101] J.C. Guibet, fuels and engines, Pub. IFP éditions Technip, Rueil-Malmaison, France, 1999.
- [102] P. Dagaut, A. El Bakali, A. Ristori, The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels, Fuel 85 (2006) 944–956.
- [103] N. Grumman, Diesel Fuel Oils 2003, Report NGMS-232 PPS, 2004., N. Grumman, Diesel Fuel Oils 2003,
- [104] W.J. Pitz, N.P. Cernansky, F.L. Dryer, F.N. Egolfopoulos, J.T. Farell, D.G. Friend, H. Pitsch, Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels, SAE Paper 2007-01-0175, 2007, USA.
- [105] A. Violi, S. Yan, E.G. Eddings, A.F. Sarofim, S. Granata, T. Faravelli, E. Ranzi, Experimental formulation and kinetic model for JP-8 surrogate mixtures, Combust. Sci. Technol. 174 (2002) 399-417.

- [106] J.T. Farell, N.P. Cernansky, F.L. Dryer, C.K. Law, D.G. Friend, C.A. Hergart, R.M. McDavid, A.K. Patel, C.J. Mueller, H. Pitsch, Development of an experimental database and kinetic models for surrogate diesel fuels, SAE Technical Paper 2007-01-0201, 2007, USA.
- [107] C.J. Mueller, W.J. Cannella, J.T. Bays, T.J. Bruno, K. DeFabio, D.H. Dettman, R.M. Gieleciak, L.M. Huber, C.B. Kweon, S.S. McConnell, W.J. Pitz, M.A. Ratcliff, Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties, Energy Fuels 30 (2016) 1445-1461.
- [108] J. Yu, Z. Wang, X. Zhuo, W. Wang, X. Gou, Surrogate Definition and Chemical Kinetic Modeling for Two Different Jet Aviation Fuels, Energy Fuels 30 (2016) 1375-1382.
- [109] C. Pera, V. Knop, Methodology to define gasoline surrogates dedicated to auto-ignition in engines, Fuel 96 (2012) 59–69.
- [110] Y.-z. An, Y.-q. Pei, J. Qin, H. Zhao, S.-p. Teng, B. Li, X. Li, Development of a PAH (polycyclic aromatic hydrocarbon) formation model for gasoline surrogates and its application for GDI (gasoline direct injection) engine CFD (computational fluid dynamics) simulation, Energy 94 (2016) 367–379.
- [111] L. Cai, H. Pitsch, Optimized chemical mechanism for combustion of gasoline surrogate fuels, Combust. Flame 162 (2015) 1623–1637.
- [112] E. Gianotti, M. Taillades-Jacquin, Á. Reyes-Carmona, G. Taillades, J. Rozière, D.J. Jones, Hydrogen generation via catalytic partial dehydrogenation of gasoline and diesel fuels, Appl. Catalysis B: Env. 185 (2016) 233–241.
- [113] M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011) 193–200.
- [114] D. Darcy, M. Mehl, J.M. Simmie, J. Würmel, W.K. Metcalfe, C.K. Westbrook, W.J. Pitz, H.J. Curran, An experimental and modeling study of the shock tube ignition of a mixture of nheptane and n-propylbenzene as a surrogate for a large alkyl benzene, Proc. Combust. Inst. 34 (2013) 411–418.

- [115] N.E. Sánchez, A. Callejas, Á. Millera, R. Bilbao, M.U. Alzueta, Influence of the Oxygen Presence on Polycyclic Aromatic Hydrocarbon (PAH) Formation from Acetylene Pyrolysis under Sooting Conditions, Energy Fuels 27 (2013) 7081–7088.
- [116] W.K. Metcalfe, S.M. Burke, S.S. Ahmed, H.J. Curran, A Hierarchical and Comparative Kinetic Modeling Study of C 1 – C 2 Hydrocarbon and Oxygenated Fuels, Int. J. Chem. Kinet. 45 (2013) 638–675.
- [117] N. Hansen, J.A. Miller, P.R. Westmoreland, T. Kasper, K. Kohse-Höinghaus, J. Wang, T.A. Cool, Isomer-specific combustion chemistry in allene and propyne flames, Combust. Flame 156 (2009) 2153–2164.
- [118] Z. Wang, Y. Li, F. Zhang, L. Zhang, W. Yuan, Y. Wang, F. Qi, An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure, Proc. Combust. Inst. 34 (2013) 1785–1793.
- [119] M. Zeng, W. Yuan, Y. Wang, W. Zhou, L. Zhang, F. Qi, Y. Li, Experimental and kinetic modeling study of pyrolysis and oxidation of n-decane, Combust. Flame 161 (2014) 1701–1715.
- [120] M.B. Colket, The pyrolysis of acetylene and vinylacetylene in a single-pulse shock tube, Symp.(Int.) Combust. 21 (1988) 851–864.
- [121] E. Ranzi, C. Cavallotti, A. Cuoci, A. Frassoldati, M. Pelucchi, T. Faravelli, New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes, Combust. Flame 162 (2015) 1679–1691.
- [122] W. Yuan, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions.I. Flow reactor pyrolysis and jet stirred reactor oxidation, Combust. Flame 162 (2015) 3–21.
- [123] N.A. Slavinskaya, P. Frank, A modelling study of aromatic soot precursors formation in laminar methane and ethene flames, Combust. Flame 156 (2009) 1705–1722.
- [124] A. Matsugi, A. Miyoshi, Modeling of two- and three-ring aromatics formation in the pyrolysis of toluene, Proc. Combust. Inst. 34 (2013) 269–277.
- [125] K. Norinaga, O. Deutschmann, Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons, Ind. Eng. Chem. Res. 46 (2007) 3547– 3557.

- [126] A. Kousoku, K. Norinaga and K. Miura, Extended Detailed Chemical Kinetic Model for Benzene Pyrolysis with New Reaction Pathways Including Oligomer Formation, Ind. Eng. Chem. Res. 53 (2014) 7956-7964.
- [127] M.R. Djokic, An experimental and kinetic modeling study of cyclopentadiene pyrolysis: First growth of polycyclic aromatic hydrocarbons, Combust. Flame 161 (2014) 2739–2751.
- [128] E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, T. Faravelli, Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels, Int. J. Chem. Kinet., 46 (2014) 512-542.
- [129] N. Sebbar, H. Bockhorn, J.W. Bozzelli, Thermochemical Similarities Among Three Reaction Systems: Vinyl + O2 – Phenyl + O2 – Dibenzofuranyl + O2, Combust. Sci. Technol. 180 (2008) 959-974.
- [130] B. Yang, Y. Li, L. Wei, C. Huang, J. Wang, Z. Tian, R. Yang, L. Sheng, Y. Zhang, F. Qi, An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization, Proc. Combust. Inst., 31 (2007) 555–563.
- [131] R. Asatryan, A. Davtyan, L. Khachatryan, B. Dellinger, Molecular modeling studies of the reactions of phenoxy radical dimers: pathways to dibenzofurans, J. Phys. Chem. A 109 (2005) 11198–11205.
- [132] H.H. Grotheer, R. Louw, The reaction of phenoxy radicals with mono-chlorobenzene and its meaning for gas-phase dioxin formation in incineration, Proc. Combust. Inst., 26 (1996) 2405-2411.
- [133] A. Tritz, I. Ziegler-Devin, C. Perrin, P.-M. Marquaire, Experimental study of the oxidation and pyrolysis of dibenzofuran at very low concentration, J. Env. Chem. Eng. 2 (2014) 143–153.
- [134] V.D. Knyazev, I.R. Slagle, Experimental and Theoretical Study of the C2H3

 H+ C2H2
 Reaction. Tunneling and the Shape of Falloff Curves, J. Phys. Chem. 100 (1996) 16899-16911.
- [135] A.M. Mebel, M.C. Lin, T. Yu, K. Morokuma, Theoretical study of potential energy surface and thermal rate constants for the C6H5+ H2 and C6H6+ H reactions, J. Phys. Chem. A 101 (1997) 3189-3196.

- [136] S.J. Klippenstein, L.B. Harding, Y. Georgievskii, On the formation and decomposition of C7H8, Proc. Combust. Inst. 31 (2007) 221-229.
- [137] R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Experimental and modeling study of the oxidation of toluene, Int. J. Chem. Kinet. 37 (2005) 25-49.
- [138] G. da Silva, J.W. Bozzelli, Kinetic modeling of the benzyl+HO2 reaction, Kinetic modeling of the benzyl+HO2 reaction, Proc. Combust. Inst. 32 (2009) 287–294.
- [139] D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, T. Just, J.A. Kerr, M.J. Pilling, D. Stocker, Evaluated Kinetic Data for Combustion Modeling: Supplement II, J. Phys. Chem. Ref. Data 34 (2005) 757.
- [140] J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, Reactions over Multiple, Interconnected Potential Wells: Unimolecular and Bimolecular Reactions on a C3H5 Potential, J. Phys. Chem. A 112 (2008) 9429-9438.
- [141] Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5, Phys. Chem. Chem. Phys. 9 (2007) 4259–4268.
- [142] J.A. Miller, S.J. Klippenstein, The recombination of propargyl radicals and other reactions on a C6H6 potential, J. Phys. Chem. A 107 (2003) 7783–7799.
- [143] A. Laskin, Thermal decomposition of indene. Experimental results and kinetic modeling, Proc. Combust. Inst. 27 (1998) 313-320.
- [144] K. Brezinski, T. A. Litzinger, I. Glassman, The high temperature oxidation of the methyl side chain of toluene, Int. J. Chem. Kinet. 16 (1984) 1053-1074.
- [145] G. Blanquart, P. Pepiot-Desjardins, H. Pitsch, Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combust. Flame 156 (2009) 588–607.
- [146] N.W. Moriarty, M. Frenklach, AB initio study of naphthalene formation by addition of vinylacetylene to phenyl, Proc. Combust. Inst. 28 (2000) 2563–2568.
- [147] A. Matsugi, A. Miyoshi, Computational study on the recombination reaction between benzyl and propargyl radicals, Int. J. Chem. Kinet. 44 (2012) 206–218.

- [148] A. El Bakali, X. Mercier, M. Wartel, F. Acevedo, I. Burns, L. Gasnot, J.-F. Pauwels, P. Desgroux, Modeling of PAHs in low pressure sooting premixed methane flame, Energy 43 (2012) 73–84.
- [149] C. Betrancourt, Experimental study of soot formation in laminar premixed flames of fuels of interest for automobile and aeronautics: a focus on the soot nucleation process. PhD Thesis (2017), University of Lille 1, France.
- [150] J. Yang, L. Zhao, W. Yuan, F. Qi, Y. Li, Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios, Proc. Combust. Inst. 35 (2015) 855-862.
- [151] A. El Bakali., J.L Delfau, C. Vovelle, Experimental Study of 1 Atmosphere, Rich, Premixed n heptane and iso-octane Flames, Combust. Sci. Technol. 140 (1998) 69–91.
- [152] C. Douté, J.L Delfau, R. Akrich, C. Vovelle, Chemical Structure of Atmospheric Pressure Premixed n -Decane and Kerosene Flames, Combust. Sci. Technol. 106 (1995) 327–344.
- [153] W. Yuan, Y. Li, P. Dagaut, J. Yang, F. Qi, Experimental and kinetic modeling study of styrene combustion, Combust. Flame 162 (2015) 1868–1883.
- [154] Y. Li, J. Cai, L. Zhang, J. Yang, Z. Wang, F. Qi, Experimental and modeling investigation on premixed ethylbenzene flames at low pressure, Proc. Combust. Inst. 33 (2011) 617-624.
- [155] Y. Li, C. Huang, L. Wei, B. Yang, J. Wang, Z. Tian, T. Zhang, L. Sheng, F. Qi, An Experimental Study of Rich Premixed Gasoline/O 2 /Ar Flame with Tunable Synchrotron Vacuum Ultraviolet Photoionization, Energy Fuels 21 (2007) 1931–1941.
- [156] G. Kukkadapu, K. Kumar, C.-J. Sung, M. Mehl, W.J. Pitz, Autoignition of gasoline and its surrogates in a rapid compression machine, Proc. Combust. Inst. 34 (2013) 345–352.
- [157] P. Dirrenberger, P.A. Glaude, R. Bounaceur, H. Le Gall, da Cruz, A. Pires, A.A. Konnov, F. Battin-Leclerc, Laminar burning velocity of gasolines with addition of ethanol, Fuel 115 (2014) 162–169.
- [158] P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Phys. Chem. Chem. Phys. 4 (2002) 2079–2094.

- [159] S.S. Vasu, D.F. Davidson, R.K. Hanson, Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions, Combust. Flame 152 (2008) 125–143.
- [160] X. Hui, C.-J. Sung, Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures, Fuel 109 (2013) 191–200.
- [161] D.R. Haylett, P.P. Lappas, D.F. Davidson, R.K. Hanson, Application of an aerosol shock tube to the measurement of diesel ignition delay times, Proc. Combust. Inst. 32 (2009) 477–484.
- [162] C.T. Chong, S. Hochgreb, Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV), Proc. Combust. Inst. 33 (2011) 979–986.
- [163] H. Wang, S.J. Warner, M.A. Oehlschlaeger, R. Bounaceur, J. Biet, P.-A. Glaude, F. Battin-Leclerc, An experimental and kinetic modeling study of the autoignition of αmethylnaphthalene/air and α-methylnaphthalene/n-decane/air mixtures at elevated pressures, Combust. Flame 157 (2010) 1976–1988.
- [164] A. Raj, I.D.C. Prada, A.A. Amer, S.H. Chung, A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons, Combust. Flame 159 (2012) 500–515.
- [165] Y. Pei, M. Mehl, W. Liu, T. Lu, W.J. Pitz, S. Som, A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications, J. Eng. Gas Turbines Power 137 (2015) 111502.
- [166] J. Yang, L. Zhao, W. Yuan, F. Qi, Y. Li, Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios, Proc. Combust. Inst. 35 (2015) 855–862.
- [167] Y. Li, J. Cai, L. Zhang, J. Yang, Z. Wang, F. Qi, Experimental and modeling investigation on premixed ethylbenzene flames at low pressure, Proc. Combust. Inst. 33 (2011) 617–624.
- [168] T. Mouton, X. Mercier, P. Desgroux, Isomer discrimination of PAHs formed in sooting flames by jet-cooled laser-induced fluorescence: application to the measurement of pyrene and fluoranthene, Appl. Phys.B (2016) 122: 123.
- [169] V.D. Knjazev, and I.R. Slagle, Kinetics of the reaction between propargyl radical and acetylene,J. Phys. Chem. A 106 (2002) 5613–5617.

- [170] S. Granata, T. Faravelli, E. Ranzi, N. Olten, S. Senkan, Kinetic modeling of counterflow diffusion flames of butadiene, Combust. Flame 131 (2002) 273–284.
- [171] J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combust. Flame 121 (2000) 122–136.
- [172] R.P. Lindstedt, Modeling of the chemical complexities of flames, Proc. Combust. Inst. 27 (1998) 269–285.
- [173] P. Lindstedt, L. Maurice, M. Meyer, Thermodynamic and kinetic issues in the formation and oxidation of aromatic species, Faraday Disc. 119 (2001) 409–432.
- [174] C.S. McEnally, L.D. Pfefferle, The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames, Proc. Combust. Inst. 28 (2000) 2569– 2576.
- [175] M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst. 33 (2011) 193–200.
- [176] K. Narayanaswamy, P. Pepiot, H. Pitsch, A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates, Combust. Flame 161 (2014) 866–884.
- [177] W. J. Grieco, A. L. Lafleur, K. C. Swallow, H. Richter, K.Taghizadeh, J. B. Howard, Fullerenes and PAH in low-pressure premixed benzene/oxygen flames, Twenty-Seventh Symposium (Int.) on Combustion, Combust. (1998) 1669–1675.
- [178] K. Norinaga, O. Deutschmann, N. Saegusa, J. Hayashi, Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry, J. Anal. Appl Pyrolysis, 86 (2009)148-160.
- [179] W. Hai, Formation of nascent soot and other condensed-phase materials in flames, Formation of nascent soot and other condensed-phase materials in flames, Proc. Combust. Inst. 33 (2011) 41–67.
- [180] I. Glassman, Combustion, Academic press, San Diego, 1996.

- [181] Y. Wang, A. Raj, S.H Chung, Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels, Combust. Flame 162 (2015) 586–596.
- [182] G. Blanquart, H. Pitsch, Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model, Combust. Flame 156 (2009) 1614–1626.
- [183] N.E. Sánchez, A. Callejas, Á. Millera, R. Bilbao, M.U. Alzueta, Influence of the Oxygen Presence on Polycyclic Aromatic Hydrocarbon (PAH) Formation from Acetylene Pyrolysis under Sooting Conditions, Energy Fuels 27 (2013) 7081–7088.
- [184] H. Bockhorn, F. Fetting, and H. W. Wenz: Investigation of the Formation of High Molecular Hydrocarbons and Soot in Premixed Hydrocarbon-Oxygen Flames, Ber. Bunsenges. Phys. Chem. 87 (1983), 1067-1073.
- [185] A. D'Alessio, A.C. barone, R. Cau, A. D'Anna, P. Minutolo, Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10nm, Proc. Combust Inst 30 (2005) 2595-2603.
- [186] T.S. Totton, A.J. Misquitta, M. Kraft, A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures, Phys. Chem. Chem. Phys. 14 (2012) 4081–4094.
- [187] J.H. Miller, Aromatic excimers: evidence for polynuclear aromatic hydrocarbon condensation in flames, Proc. Combust. Inst. 30 (2005) 1381-1388.
- [188] Happold, Karlsruhe University Press (2007) pp. 275–285.
- [189] G. Blanquart, Chemical and Statistical soot modeling, Ph.D Thesis (2008), Stanford University, USA.
- [190] J.N. Israelachvili Intermolecular and surface forces, Academic Press, London; San Diego, 1991.
- [191] A. Veshkini, N.A. Eaves, S.B. Dworkin, M.J. Thomson, Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames, Combust. Flame 167 (2016) 335-352.
- [192] F. Xu, A. El-Leathy, C. Kim, G. Faeth, Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure, Combust. Flame 132 (2003) 43–57.

- [193] A. El-Leathy, C. Kim, G. Faeth, Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames, AIAA J. 41 (2003) 856–865.
- [194] A.M. Vargas, Ö.L. Gülder, Pressure dependence of primary soot particle size determined using thermophoretic sampling in laminar methane-air diffusion flames, Proc. Combust. Inst. 36 (2017) 975-984.
- [195] G.B. Sarnacki, H.K. Chelliah, Uncertainties of Soot Measurement in Counterflow Flames using Laser Induced Incandescence: Soot Volume Fraction, Particle Size, and Number Density, Department of Mechanical and Aerospace Engineering, University of Virginia.
- [196] Emre Cenker. Imaging measurements of soot particle size and soot volume fraction with laserinduced incandescence at Diesel engine conditions. Engineering Sciences [physics]. Ecole Centrale Paris, 2014, France.
- [197] P. Desgroux, A. Faccinetto, X. Mercier, T. Mouton, D.A. Karkar, A. El Bakali, Comparative study of the soot formation process in a "nucleation" and a "sooting" low pressure premixed methane flame. Combust. Flame 184 (2017) 153-166.
- [198] T. Mouton, X. Mercier, M. Wartel, N. Lamoureux, P. Desgroux, Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames, Appl.Physics B 112 (2013) 369.
- [199] S. Gordon and B. J. McBride: Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks and Chapman-Jouguet detonations NASA SP-273, 1971.
- [200] I. Ziegler; R. Fournet; P.M. Marquaire, Pyrolysis of propane for CVI of pyrocarbon: Part I. Experimental and modeling study of the formation of toluene and aliphatic species, J. Anal. Appl. Pyrolysis 73 (2005) 212-230.
- [201] A. Laskin; H. Wang; C.K. Law, Detailed kinetic modeling of 1, 3-butadiene oxidation at high temperatures, Int. J. Chem. Kinet., 32 (2000) 589-614.
- [202] J.L. Emdee, K. Brezinsky, I. Glassman, A kinetic model for the oxidation of toluene near 1200K, J. Phys. Chem. 96 (1992) 2151-2161.

- [203] M.U. Alzueta; P. Glarborg, Experimental and kinetic modeling study of the oxidation of benzene, Int. J. Chem. Kinet. 32 (2000) 498-522.
- [204] C.-C. Chen, J.W. Bozzelli, J.T. Farrell, Thermochemical Properties, Pathway, and Kinetic Analysis on the Reactions of Benzene with OH, J. phys. chem. A 108 (2004) 4632–4652.
- [205] T. Seta, M. Nakajima, A. Miyoshi, High-temperature reactions of OH radicals with benzene and toluene, J. phys. chem. A 110 (2006) 5081–5090.
- [206] M. Chaos, Z. Zhao, A. Kazakov, P. Gokulakrisnan, M. Angioletti, F.L. Dryer, A PRF+toluene surrogate fuel model for simulating gasoline kinetics. In: Proc. of the fifth US Combust. Inst. meeting, San Diego, 2007.
- [207] I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Experimental and modeling study of the oxidation of benzene, Int. J. Chem. Kinet. 35 (2003) 503–524.
- [208] X. Zhong, J.W. Bozzelli, Thermochemical and kinetic analysis of the H, OH, HO2, O, and O2 association reactions with cyclopentadienyl radical, J. Phys. Chem. A 102 (1998) 3537–3555.
- [209] J. Park, G.J. Nam, I.V. Tokmakov, M.C. Lin, Experimental and theoretical studies of the phenyl radical reaction with propene, J. phys. chem. A 110 (2006) 8729–8735.
- [210] W.D. Clark, S.J. Price, Free-radical and molecular processes in the pyrolysis of ethylbenzene, Can. J. Chem. 48 (1970) 1059-1064.
- [211] Y. Wenhao, Y. Li, P. Dagaut, J. Yang, F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation, Combust. Flame 162 (2015) 3–21.
- [212] A. Comandini, T. Malewicki, K. Brezinsky, Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene, J. phys. chem. A 116 (2012) 2409–2434.
- [213] H. Wang, M. Frenklach, A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combust. Flame 110 (1997) 173-221.
- [214] C. Saggese, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, A wide range kinetic modeling study of pyrolysis and oxidation of benzene, Combust. Flame 160 (2013) 1168-1190.

- [215] A. Goldanigaa, T. Faravellia, E. Ranzi, The kinetic modeling of soot precursors in a butadiene flame, Combust. Flame 122 (2000) 350-358.
- [216] H.Y. Zhang, J.T. McKinnon, Elementary reaction modeling of high-temperature benzene combustion, Combust. Sci. Technol., 107 (1995) 261-300.
- [217] H. Kraus, C. Oehlers, F. Temps, H. G. Wagner, Kinetics of the reactions of carbene (CH2)(X3B1) with selected polycyclic aromatic hydrocarbons at temperatures between 296 and 690 K, J. Phys. Chem. 97 (1993) 10989-10995.

Appendices

A. Thermokinetic and transport formalism

1. The kinetic mechanism

The kinetic mechanism is an important input needed as it describes chemical species involved in flame chemistry and chemical reactions that occur. The size of the kinetic mechanism depends on fuel structure and the desired detailed level of the calculated flame structure. Complex fuels containing a lot of components will require more chemical reactions than a single component fuel. The kinetic mechanism consists of two parts: the first part lists all chemical species involved in the mechanism and the second part lists elementary chemical reactions that may occur. These reactions can be bidirectional or not and the kinetic parameter of each reaction follows the Arrhenius-Kooij law as follows:

$$k = A \cdot T^n \cdot exp\left(-\frac{E}{RT}\right)$$
 Equation 44

Where k is the rate constant, A the pre-exponential factor, T the temperature, n the temperature exponent, E the activation energy and R the ideal gas constant.

Bidirectional and elementary reactions are written in the general form as follows:

$$A + B \xrightarrow{k_{dir}} k_{rev} C + D$$
 Equation 45

Only the forward rate constant (k_{dir}) is introduced into the kinetic mechanism file, as the reverse rate constant (k_{rev}) can be calculated at each temperature as follows:

$$\frac{k_{dir}}{k_{rev}} = K_{eq} \left(\frac{P}{RT}\right)^{\sum \nu_{products} - \sum \nu_{reactants}} = e^{\frac{-\Delta H - T\Delta S}{RT}}$$
Equation 46

Where K_{eq} is the gas equilibrium constant and ν represents the stoichiometric coefficients. ΔH and ΔS are respectively the variation in enthalpy and entropy caused by the considered recation at the temperature *T*. K_{eq} can be expressed as follows:

$$K_{eq} = \frac{P_C P_D}{P_A P_B}$$
 and the partial pressures can be calculated as: $P_i = \frac{\rho_i}{M_i} RT$

The net formation rate of a compound i can be expressed by subtracting its consumption rate to its production rate.

3. Pressure dependent reactions

Unimolecular and recombination reactions are more or less complex since pressure dependency is implied. In fact, collisions are not sufficient in low pressure case, while in high pressure case, they are excessive. This phenomena leads to a competition between the product formation (favored at low pressure) and the reactant re-formation (favored at high pressure). These reactions involve collisions with a non-reactive third-body M. The rate of these reactions depends on the M concentration, which depends on the working pressure. A pressure dependent reaction is depicted as follows:

$$A + B + M \longrightarrow \frac{k_{dir}}{k_{rev}} C + M$$
 Equation 47

The collision efficiency of each compound M of the gas-phase is different and can be specified in the kinetic mechanism. For a pressure dependent reaction, 2 regimes can specified as depicted in Figure 132: low pressure limit and fall-off domain.

Figure 132: The fall-off phenomenon.

The pressure effect is described by two different fall-off forms: that of Lindemann and that of Troe.

- Lindemann formalism

In the case of unimolecular reactions, the main reactions are those of decomposition or isomerization. According to Lindeman theory, unimolecular reaction is decomposed into two steps by forming an activated intermediate product A^* due to the collision of M and the reactant and the A^* forms finally the product. These steps are shown as follows:

$$A + M \rightarrow A^* + M \quad (k_1)$$
$$A^* + M \rightarrow A + M \quad (k_2)$$
$$A^* \rightarrow P \quad (k_3)$$

By applying the QSSA (Quasi-Steady-State Approximation) to A^* , the following expression is obtained:

$$\frac{d[A^*]}{dt} = k_1[A][M] - k_2[A^*][M] - k_3[A^*] \approx 0$$
$$[A^*] = \frac{k_1[A][M]}{k_2[M] + k_3}$$

 $\frac{d[P]}{dt} = k_3[A^*] = \frac{k_3k_1[M]}{k_2[M] + k_3}[A] = k_{app}[A]$

- At low pressure: $k_2[M] \ll k_3$ $k_{app} \approx k_1[M] = k_0[M]$
- At higher pressure: $k_2[M] \gg k_3$ $k_{app} \approx \frac{k_1 k_3}{k_2}[A] = k_{\infty}[A]$
- At intermediary pressure: reaction order is between 1 and 2, and the rate constant is that of the fall-off zone. the rate constant in the fall-off zone can be expressed as follows:

$$k = k_{\infty} \left(\frac{P_r}{1 + P_r} \right) . F$$

Where: P_r is the reduced pressure and is expressed as $P_r = \frac{k_0[M]}{k_{\infty}}$, $[M] = \sum_i f_i[M]_i$ and f_i =efficiency coefficient of specie *i*. *F* is a corrector factor. One can note that F = 1 in the Lindemann's formalism. In the case of recombination reaction, the mechanism is described as follows:

$$A + B \rightarrow AB^* (k_1)$$
$$AB^* + M \rightarrow A + B (k_2)$$
$$AB^* + M \rightarrow P + M^* (k_3)$$

By applying the QSSA to AB^* , one obtains:

$$\frac{d[P]}{dt} = k_3[AB^*][M] = \frac{k_1k_3[M]}{k_2 + k_3[M]}[A][B] = k_{app}[A][B]$$

- Troe formalism

 $A + B(+M) \leftrightarrow AB(+M)$

The formalism of Troe indicates (with an uncertainty of about 20 %) the influence of pressure over rate constant and is more precised than the Lindemann's formalism. It takes into account the difference observed between experiments findings and Lindemann theory. Four more coefficients a, b, c and d called Troe's parameters, are used to calculate the correction factor *F* as expressed below: $k_{\text{Troe}} = F. k_{\text{Lindemann}}$ and the factor *F* is described as follows:

$$log F = [1 + (\frac{log P_r + C}{N - 0.14(log P_r + C)})^2 \log F_{cent}$$

$$F_{cent} = (1 - a)exp \left(-\frac{T}{b}\right) + a exp\left(-\frac{T}{c}\right) + exp\left(-\frac{d}{T}\right)$$

$$N = 0.75 - 1.27log F_{cent}$$

$$C = -0.40 - 0.67log F_{cent}$$

$$P_r = \frac{k_0[M]}{k_{\infty}}$$

 F_{cent} is centering parameter; N and C are other parameters and P_r is reduced pressure, T is temperature. In the kinetic code, the rate constants k_0 , k_{∞} and the four Troe's parameters a, b, c and d must be specified in order to account for pressure dependence of k_{dir} and k_{rev} .

2. Thermodynamic database

The thermodynamic data entered for species are those from NASA chemical equilibrium formalism [199]. The enthalpy and entropy are calculated from Kirchhoff relations. Thermodynamic properties are calculated using a polynomial curve fit that consists in two sets of 7 coefficients ($a_{1,k} - a_{7,k}$), corresponding to 2 ranges of temperature: 300 to 1000 K and 1000 to 5000 K. These two sets of coefficients (14 coefficients) allow to calculate specific heat $C_{p,k}$, enthalpy H_k^0 and entropy S_k^0 of a compound *i* at various temperatures using the following equations:

$$\frac{C_{p,k}}{R} = a_{1,k} + a_{2,k}T + a_{3,k}T^2 + a_{4,k}T^3 + a_{5,k}T^4$$
Equation 48

$$\frac{H_k^0}{RT} = a_{1,k} + a_{2,k}\frac{T}{2} + a_{3,k}\frac{T^2}{3} + a_{4,k}\frac{T^3}{4} + a_{5,k}\frac{T^4}{5} + \frac{a_{6,k}}{T}$$
Equation 49

$$\frac{S_k^0}{R} = a_{1,k}lnT + a_{2,k}T + a_{3,k}\frac{T^2}{2} + a_{4,k}\frac{T^3}{3} + a_{5,k}\frac{T^4}{4} + a_{7,k}$$
Equation 50

3. Transport database

The transport database gives information for calculation of the multicomponent diffusion coefficient D_{ij}^{T} , the thermal diffusion coefficient D_{i}^{T} and the heat conductivity of the mixture λ that are needed to determine the molecular diffusion $j_i \cdot D_{ij}$, D_i^{T} and λ can be calculated by kinetic solver by providing into transport database, six parameters for each chemical species that are: molecule geometry, Lennard-Jones potential $(\frac{\xi_k}{k_B})$, Lennard-Jones collision mean diameter (σ_k), dipole moment (μ_k), polarisability (α_k) and rotational relaxation collision number (Zrot_k). As an example, a binary diffusion coefficient D_{ij} in practical application is given by:

$$D_{ij} = \frac{3}{8} \frac{\sqrt{\pi . k_B . T . 2 \frac{m_i . m_j}{m_i + m_j}}}{\pi \sigma_{i,j}^2 \Omega^{(i,i)^*}(T_{i,j}^*)} \frac{1}{\rho} \qquad \left(\frac{m}{s^2}\right)$$
Equation 51

Where k_B is the Boltzmann constant, T the temperature, σ the molecular diameter, m the particle mass (atom, molecule), Ω the collision integral, T^* the reduced temperature.

B. The nomenclature of species used in the kinetic model

Benzofluorene (C13H9A1)

Dicyclopenta[cd,fg]pyre ne (DCPCDFG)

Binaphthyl 1-1 (A2A2 1 1)

Cyclopenta[cd]fluoranthe ne (CPCDFLTH)

Figure 133 : Molecular structures of some key species and major polycyclic aromatic hydrocarbons involved in the model.

C. Heat of formation used of all species

Number	Name	H (298 K)	H (T_bath)	Cp (T_bath)	S (T_bath)	G (T_bath)
		kcal/mol		cal/(m	nol-K)	kcal/mol
1	NC10H22	-59.85	-59.85	56	130.45	-98.74
2	IC8H18	-53.44	-53.44	45.15	101.21	-83.61
3	PBZ	1.91	1.91	36.06	94.23	-26.18
4	02	0	0	7.01	49.01	-14.61
5	СО	-26.42	-26.42	6.95	47.22	-40.5
6	N2	0	0	6.95	45.77	-13.65
7	AR	0	0	4.97	37.01	-11.03
8	HE	0	0	4.97	30.15	-8.99
9	CO2	-94.06	-94.06	8.89	51.08	-109.29
10	H2O	-57.8	-57.8	7.99	45.1	-71.25
11	СН3СНОСНО	-31.24	-31.24	20.99	79.65	-54.99
12	НО2СНО	-90.21	-90.21	10.82	59.41	-107.92
13	O2CHO	-38.3	-38.3	9.52	58.82	-55.84
14	ОСНО	-38.3	-38.3	9.52	58.82	-55.84
15	СНЗО2Н	-31.8	-31.8	15.86	65.34	-51.28
16	СН	142.01	142.01	6.95	43.72	128.98
17	НССОН	20.43	20.43	13.19	58.71	2.93
18	СН3СО3Н	-80.49	-80.49	20.48	77.24	-103.52
19	CH3CO3	-42.35	-42.35	19.91	77.37	-65.42
20	CH3CO2	-51.39	-51.39	14.73	63.57	-70.34
21	О2С2Н4ОН	-41.29	-41.29	21.73	86.96	-67.22
22	С2Н5О2Н	-40.8	-40.8	20.66	76.4	-63.58
23	C2H4O2H	8.2	8.2	19.98	79.93	-15.63
24	C2H4O1-2	-12.58	-12.58	11.7	57.51	-29.73
25	CH3COCH2O2	-35.38	-35.38	25.6	92.65	-63.01
26	CH3COCH2O2H	-71.49	-71.49	27.63	92.43	-99.05
27	CH3COCH2O	-33.71	-33.71	21.16	80.46	-57.7
28	СНЗОСНЗ	-43.4	-43.4	15.68	63.77	-62.42
29	СНЗОСНО	-84.3	-84.3	16.97	71.34	-105.57

31 NC3H702H -45.73 -45.73 26.13 85.82 32 IC3H702H -50.01 -50.01 26.21 81.71 33 NC3H7O -9.17 -9.17 19.89 75.07 34 IC3H7O -13.54 -13.54 20.46 73.07 35 C3H6O1-2 -21.88 -21.88 17.97 66.31 36 C3H6OH -14.78 -14.78 19.27 80.97	-71.32 -74.37 -31.55
32 IC3H7O2H -50.01 -50.01 26.21 81.71 33 NC3H7O -9.17 -9.17 19.89 75.07 34 IC3H7O -13.54 -13.54 20.46 73.07 35 C3H6O1-2 -21.88 -21.88 17.97 66.31 36 C3H6OH -14.78 -14.78 19.27 80.97	-74.37 -31.55
33 NC3H7O -9.17 -9.17 19.89 75.07 34 IC3H7O -13.54 -13.54 20.46 73.07 35 C3H6O1-2 -21.88 -21.88 17.97 66.31 36 C3H6OH -14.78 -14.78 19.27 80.97	-31.55
34 IC3H7O -13.54 -13.54 20.46 73.07 35 C3H6O1-2 -21.88 -21.88 17.97 66.31 36 C3H6OH -14.78 -14.78 19.27 80.97	
35 C3H6O1-2 -21.88 -21.88 17.97 66.31 36 C3H6OH -14.78 -14.78 19.27 80.97	-35.33
36 C3H6OH -14.78 -14.78 19.27 80.97	-41.65
	-38.92
37 HOC3H6O2 -49.61 -49.61 27.36 94.95	-77.91
38 PC4H9O2H -50.67 -50.67 31.62 95.24	-79.06
39 PC4H9O2 -16.86 -16.86 29.55 94.11	-44.92
40 SC4H9O2 -21.13 -21.13 29.67 91.37	-48.37
41 PC4H9O -14.1 -14.1 25.37 84.49	-39.29
42 SC4H9O -18.47 -18.47 25.96 83.86	-43.47
43 C4H8O1-3 -27.66 -27.66 21.64 73.66	-49.62
44 C4H8O1-4 -43.63 -43.63 19.13 73.89	-65.66
45 C4H8OH-1O2 -54.62 -54.62 32.84 104.37	-85.73
46 C4H8OOH1-2 -4.31 -4.31 30.83 99.43	-33.96
47 C4H8OOH1-3 -4.31 -4.31 29.9 99.68	-34.03
48 C4H8OOH1-4 -1.66 -1.66 30.81 98.65	-31.07
49 C4H8OOH1-2O2 -41.53 -41.53 38.09 111.31	-74.72
50 C4H8OOH1-3O2 -41.53 -41.53 38.09 111.31	-74.72
51 NC4KET12 -72.57 -72.57 32.16 100.17 -	02.43
52 NC4KET13 -74.11 -74.11 33.22 99.36 -	03.73
53 C2H5COCH3 -56.89 -56.89 24.06 81.07	-81.06
54 CH2CH2COCH3 -8 -8 23.31 84.49	-33.19
55 CH2CH2CHO 4.5 4.5 18.53 77.53	-18.61
56 IC4H9O2H -52.91 -52.91 31.35 92.55	-80.5
57 TC4H9O2H -58.41 -58.41 32.2 86.31	-84.14
58 IO2C4H8OH -60.2 -60.2 33.45 100.05	-90.03
59 TC4H8OOH-IO2 -45 -45 38.59 107.29	-76.99
60 IC4H8OOH-IO2 -39.5 -39.5 37.67 111.36	-72.71
61 IC4H8OOH-TO2 -45 -45 38.59 107.29	-76.99
62 IC4KETII -71.61 -71.61 31.77 100.97 -	01.71
63 IC4KETIT -75.84 -75.84 32.36 93.28 -	03.65
64 TC3H6OCHO -39.04 -39.04 26.56 84.25	-64.16
65 TC3H6O2CHO -39.73 -39.73 30.34 93.5	-67.61
66 TC3H6O2HCO -38.93 -38.93 31.61 94.4	-67.08
67 IC3H5O2HCHO -26.83 -26.83 31.69 96.7	-55.66
68 TC4H8CHO -9.3 -9.3 28.7 89.66	-36.03
69 O2C4H8CHO -43.39 -43.39 35.75 104.72	-74.62
70 O2HC4H8CO -42.59 -42.59 36.86 105.62	-74.09
71 AC5H11 12.3 12.3 27.72 85.46	-13.18
72 DC5H11 12.3 12.3 27.72 85.46	-13.18
73 AC6H13 6.64 6.64 33.21 94.88	-21.65
74 BC6H13 1.84 1.84 33.1 95.32	-26.58
	-24.6

76	EC6H13	6.64	6.64	33.21	94.88	-21.65
77	IC4H9COCH3	-68.99	-68.99	34.67	97.23	-97.98
78	IC4H9COCH2	-26.68	-26.68	34.46	94.51	-54.86
79	IC3H6CH2COCH3	-19.98	-19.98	33.9	100.65	-49.99
80	ТСЗН6СН2СОСН3	-24.78	-24.78	33.85	101.09	-54.92
81	NC3H7COCH3	-61.82	-61.82	29.51	90.49	-88.8
82	NC3H7COCH2	-19.51	-19.51	29.28	87.77	-45.68
83	СЗН6СОСН3-2	-15.46	-15.46	27.88	94.93	-43.76
84	АСЗН5СНО	-18.05	-18.05	20.91	80.69	-42.11
85	C4H8CHO-1	-5.36	-5.36	29.44	94.99	-33.68
86	C2H5COC2H5	-62.21	-62.21	30.13	89.3	-88.83
87	C2H5COC2H4P	-13.2	-13.2	29.38	94.09	-41.25
88	C2H5COC2H3	-35.72	-35.72	27.32	86.43	-61.49
89	PC2H4COC2H3	13.28	13.28	26.54	89.84	-13.5
90	С7Н16-24	-49.54	-49.54	39.25	98.2	-78.81
91	ZC7H15O2	-40.4	-40.4	45.62	112.9	-74.07
92	YC7H15O	-40.17	-40.17	42.27	104.32	-71.28
93	ZC7H15O	-37.74	-37.74	41.67	105.39	-69.17
94	YC7H14OOH-X1	-26.43	-26.43	47.69	117.48	-61.46
95	YC7H14OOH-Z	-29.08	-29.08	46.73	118.51	-64.42
96	YC7H14OOH-X2	-26.43	-26.43	47.69	117.48	-61.46
97	ZC7H14OOH-Y	-29.8	-29.8	46.86	119.27	-65.36
98	YC7H14OOH-X1O2	-62.04	-62.04	54.52	134.24	-102.06
99	YC7H14OOH-X2O2	-62.04	-62.04	54.52	134.24	-102.06
100	YC7H14OOH-Y2O2	-67.54	-67.54	55.5	128.81	-105.94
101	YC7H14OOH-ZO2	-66.31	-66.31	54.69	130.14	-105.11
102	X-Y2C7H14O	-70.28	-70.28	35.25	93.48	-98.15
103	XC7H14OH	-40.79	-40.79	41.4	115.45	-75.22
104	ҮС7Н14ОН	-45.09	-45.09	42.03	110.71	-78.1
105	XO2C7H14OH	-77.3	-77.3	49.51	124.95	-114.55
106	ҮО2С7Н14ОН	-81.6	-81.6	49.98	122.96	-118.26
107	NEOC5H11O2H	-60.61	-60.61	37.38	95.57	-89.1
108	NEOC5H11O	-24.14	-24.14	31.05	84.82	-49.43
109	NEO-C5H10O	-35.01	-35.01	25.9	79.56	-58.73
110	NEOC5H10OOH-O2	-45.3	-45.3	41.88	116.55	-80.05
111	NEOC5H9Q2	-31.9	-31.9	42.9	121.1	-68.01
112	NEOC5H9Q2-N	-37	-37	45.9	121.5	-73.23
113	NEOC5KET	-78.61	-78.61	37.81	104.8	-109.85
114	NEOC5KETOX	-42.14	-42.14	31.53	94.05	-70.19
115	HC6H13	3.77	3.77	33.68	88.47	-22.61
116	ТС4Н9СНО	-58.31	-58.31	29.46	82.69	-82.96
117	ТС4Н9СО	-21.4	-21.4	28.64	83.81	-46.39
118	ІСЗН6СНСНО	-36.64	-36.64	28.28	83.54	-61.55
119	ІСЗН6СНСО	-5.74	-5.74	28.12	82.15	-30.23
120	РС7Н13О-О	-7.19	-7.19	39.59	100.87	-37.27
121	NC7H15O2	-36.76	-36.76	46.29	115.46	-71.19

122	PC7H15O2	-41.03	-41.03	46.42	110.55	-74
123	QC7H15O2	-36.76	-36.76	46.29	113.28	-70.54
124	NC7H14OOH-N2	-21.56	-21.56	47.54	120.01	-57.34
125	NC7H14OOH-O	-24.21	-24.21	46.61	121.03	-60.3
126	QC7H14OOH-O	-24.21	-24.21	46.61	121.03	-60.3
127	PC7H14OOH-N	-25.83	-25.83	47.7	117.27	-60.8
128	PC7H14OOH-O	-28.48	-28.48	46.75	116.12	-63.1
129	NC7H14OOH-OO2	-62.44	-62.44	55.17	155.58	-108.82
130	QC7H14OOH-OO2	-61.44	-61.44	54.45	130.48	-100.34
131	PC7H14OOH-NO2	-62.44	-62.44	55.17	155.58	-108.82
132	PC7H14OOH-OO2	-65.71	-65.71	54.63	127.75	-103.8
133	N-PC7H14O	-68.48	-68.48	35.64	94.38	-96.62
134	NEOC7KETPN	-97.31	-97.31	49.04	122.36	-133.79
135	NEOC7KETPO	-100.04	-100.04	48.05	118.26	-135.3
136	NEOC7KETQO	-94.01	-94.01	49.89	118.53	-129.35
137	CC8H17O2	-45.53	-45.53	52.44	115.95	-80.11
138	AC8H17O2H	-73.84	-73.84	53.58	123.33	-110.61
139	BC8H17O2H	-78.91	-78.91	53.72	118.41	-114.21
140	СС8Н17О2Н	-79.34	-79.34	54.51	117.08	-114.25
141	DC8H17O2H	-73.84	-73.84	53.58	121.15	-109.96
142	AC8H17O	-37.27	-37.27	47.2	112.58	-70.84
143	BC8H17O	-41.64	-41.64	47.89	109.77	-74.37
144	CC8H17O	-44.07	-44.07	48.25	107.33	-76.08
145	DC8H17O	-37.27	-37.27	47.2	111.77	-70.6
146	AC8H16OOH-D	-25.63	-25.63	52.82	126.74	-63.42
147	CC8H16OOH-D	-31.13	-31.13	53.71	120.5	-67.06
148	CC8H16OOH-B	-32.98	-32.98	52.73	121.52	-69.22
149	CC8H16OOH-A	-31.13	-31.13	53.71	122.68	-67.71
150	DC8H16OOH-D	-25.63	-25.63	52.82	124.56	-62.77
151	DC8H16OOH-A	-25.63	-25.63	52.82	126.74	-63.42
152	IC8ETERAD	-74.74	-74.74	40.1	93.77	-102.7
153	IC8ETERDD	-47.34	-47.34	42.06	101.59	-77.63
154	AC8H16OOH-AO2	-59.04	-59.04	58.96	138.47	-100.32
155	AC8H16OOH-BO2	-63.71	-63.71	59.39	137.81	-104.8
156	AC8H16OOH-CO2	-65.04	-65.04	59.95	134.5	-105.14
157	BC8H16OOH-CO2	-69.71	-69.71	60.35	131.65	-108.96
158	BC8H16OOH-AO2	-63.71	-63.71	59.39	137.81	-104.8
159	BC8H16OOH-DO2	-63.71	-63.71	59.39	135.63	-104.15
160	CC8H16OOH-BO2	-69.71	-69.71	60.35	131.65	-108.96
161	CC8H16OOH-AO2	-65.04	-65.04	59.95	134.5	-105.14
162	DC8H16OOH-CO2	-65.04	-65.04	59.95	133.69	-104.9
163	DC8H16OOH-DO2	-59.04	-59.04	58.96	137.66	-100.08
164	DC8H16OOH-BO2	-63.71	-63.71	59.39	135.63	-104.15
165	IC8KETAA	-94.14	-94.14	54.03	131.75	-133.42
166	IC8KETAB	-98.41	-98.41	54.17	127.65	-136.47
167	IC8KETAC	-99.64	-99.64	54.94	126.32	-137.3

168	IC8KETBA	-99.21	-99.21	52.77	129.67	-137.87
169	IC8KETBC	-103.44	-103.44	53.44	121.17	-139.57
170	IC8KETBD	-99.21	-99.21	52.77	128.86	-137.63
171	IC8KETDB	-99.11	-99.11	54.11	126.83	-136.93
172	IC8KETDC	-99.07	-99.07	54.61	123.25	-135.82
173	IC8KETDD	-94.84	-94.84	53.97	129.56	-133.47
174	CC8H16OH-B	-53.59	-53.59	47.55	113.23	-87.35
175	BC8H16OH-C	-53.11	-53.11	48.04	115.1	-87.42
176	CC8H16OH-BO2	-88.41	-88.41	55.74	127.21	-126.34
177	СС8Н16О-ВО2Н	-72.55	-72.55	56.79	125.53	-109.98
178	BC8H16OH-CO2	-87.21	-87.21	55.96	126.62	-124.96
179	BC8H16O-CO2H	-71.35	-71.35	57.03	124.94	-108.6
180	DC6H12CHO-D	-30.53	-30.53	40.24	104.9	-61.81
181	ІСЗН7СОСЗН6-Т	-37.9	-37.9	39.19	101.44	-68.15
182	ТС4Н9СОС2Н5	-76.01	-76.01	40.32	102.81	-106.66
183	TC4H9COC2H4S	-36.2	-36.2	39.07	100.44	-66.15
184	НС6Н12СНО	-29.53	-29.53	40.14	101.14	-59.69
185	OC7H13OOH-N	-43.13	-43.13	45.29	113.77	-77.06
186	OC7H13O-N	-5.78	-5.78	38.96	103.32	-36.59
187	РС7Н13ООН-О	-40.24	-40.24	45.49	110.4	-73.16
188	OC7H13OOH-Q	-42.52	-42.52	45.63	114.24	-76.59
189	OC7H13O-Q	-4.44	-4.44	38.99	101.14	-34.6
190	DC6H11-D	44.69	44.69	30.83	91.58	17.39
191	IC3H6CHCOCH2	-4.42	-4.42	32.17	90.25	-31.33
192	C4H8OH-1	-19.71	-19.71	24.71	90.39	-46.66
193	С5Н11О2-1	-21.79	-21.79	35.03	103.53	-52.66
194	С5Н11О2Н-1	-55.6	-55.6	37.06	104.66	-86.8
195	С5Н11О-1	-19.03	-19.03	30.85	93.91	-47.03
196	С5Н11О-2	-23.4	-23.4	31.44	93.28	-51.21
197	C5H10OOH1-2	-9.24	-9.24	35.43	109.1	-41.77
198	C5H10OOH1-3	-9.24	-9.24	35.43	109.1	-41.77
199	C5H10OOH1-4	-9.24	-9.24	35.43	109.1	-41.77
200	С5Н10ООН2-3	-13.51	-13.51	35.56	106.36	-45.22
201	C5H10OOH1-2O2	-46.46	-46.46	43.56	120.73	-82.46
202	C5H10OOH1-3O2	-46.46	-46.46	43.56	120.73	-82.46
203	C5H10OOH1-4O2	-46.46	-46.46	43.56	120.73	-82.46
204	C5H10OOH2-4O2	-50.74	-50.74	43.7	117.99	-85.91
205	С5Н10О1-3	-32.59	-32.59	26.77	81.71	-56.95
206	С5Н10О1-4	-52.94	-52.94	25.13	82.69	-77.59
207	NC5KET12	-77.5	-77.5	37.63	109.59	-110.17
208	NC5KET13	-79.04	-79.04	38.7	108.78	-111.47
209	NC5KET14	-79.04	-79.04	38.7	108.78	-111.47
210	NC5KET24	-86.49	-86.49	37.98	107.69	-118.6
211	NC3H7COC2H4P	-18.13	-18.13	34.83	103.51	-48.99
212	С6Н12О1-2	-36.67	-36.67	34.04	94.57	-64.87
213	С6Н12О1-3	-37.52	-37.52	32.24	92.5	-65.1

214	C6H13O2H-1	-60.53	-60.53	42.48	114.08	-94.54
215	С6Н13О2-1	-26.72	-26.72	40.52	112.95	-60.4
216	C6H12OOH1-2	-14.17	-14.17	40.9	118.52	-49.51
217	С6Н12ООН1-3	-14.17	-14.17	40.9	118.52	-49.51
218	C6H12OOH1-4	-14.17	-14.17	40.9	118.52	-49.51
219	C6H12OOH1-2O2	-51.4	-51.4	46.82	130.15	-90.2
220	C6H12OOH1-3O2	-51.4	-51.4	46.82	130.15	-90.2
221	C6H12OOH1-4O2	-51.4	-51.4	46.82	130.15	-90.2
222	NC6KET12	-76.43	-76.43	38.57	127.37	-114.4
223	NC6KET13	-83.97	-83.97	44.18	118.2	-119.21
224	NC6KET14	-83.97	-83.97	44.18	118.2	-119.21
225	С6Н13О-1	-23.96	-23.96	36.33	103.33	-54.77
226	С7Н14-2	-17.84	-17.84	36.56	101.04	-47.97
227	С7Н14-3	-17.67	-17.67	36.23	101.42	-47.91
228	С7Н15О2-4	-35.92	-35.92	46.08	118.26	-71.18
229	С7Н15О2Н-1	-65.46	-65.46	47.99	123.5	-102.28
230	С7Н15О-1	-28.89	-28.89	41.82	112.75	-62.51
231	С7Н14ООН4-2	-23.37	-23.37	46.5	123.83	-60.29
232	C7H14OOH1-2O2	-56.33	-56.33	54.1	139.57	-97.94
233	С7Н14ООН1-3О2	-56.33	-56.33	54.1	139.57	-97.94
234	C7H14OOH1-4O2	-56.33	-56.33	54.1	139.57	-97.94
235	С7Н14ООН4-2О2	-60.6	-60.6	54.31	136.83	-101.39
236	NC7KET12	-84.96	-84.96	49.1	126.54	-122.69
237	NC7KET13	-88.9	-88.9	49.66	127.62	-126.95
238	NC7KET14	-88.9	-88.9	49.66	127.62	-126.95
239	NC7KET42	-96.74	-96.74	49.55	126.71	-134.52
240	C5H10CHO-1	-10.29	-10.29	34.9	104.41	-41.42
241	C5H10CHO-2	-14.71	-14.71	32.76	105.13	-46.06
242	С5Н10СНО-3	-14.71	-14.71	32.76	105.13	-46.06
243	C5H10CHO-4	-14.71	-14.71	32.76	105.13	-46.06
244	C5H10CHO-5	-21.26	-21.26	33.1	98.32	-50.58
245	NC4H9COCH3	-66.75	-66.75	34.98	99.91	-96.54
246	С9Н19-3	-8.56	-8.56	48.99	126.84	-46.38
247	С9Н19-5	-8.56	-8.56	48.99	126.84	-46.38
248	С9Н18-2	-27.7	-27.7	47.49	120.69	-63.69
249	С9Н18-3	-27.53	-27.53	47.14	120.26	-63.39
250	C10H21O-1	-43.68	-43.68	58.28	141.01	-85.73
251	С10Н21О-2	-48.05	-48.05	58.79	139.01	-89.5
252	С10Н21О-3	-48.05	-48.05	58.79	139.01	-89.5
253	C10H21O-4	-48.05	-48.05	58.79	139.01	-89.5
254	С10Н21О-5	-48.05	-48.05	58.79	139.01	-89.5
255	С9Н19О-1	-38.75	-38.75	52.8	131.59	-77.99
256	C8H17O-1	-33.82	-33.82	47.31	122.17	-70.25
257	С9Н19О2-4	-46.16	-46.16	57.01	138.08	-87.33
258	С9Н19О2-5	-46.16	-46.16	57.01	138.08	-87.33
259	C10H21O2H-1	-81.04	-81.04	64.46	151.47	-126.2

260	C10H21O2H-2	-84.5	-84.5	64.61	148.66	-128.82
261	C10H21O2H-3	-84.5	-84.5	64.61	148.66	-128.82
262	C10H21O2H-4	-84.5	-84.5	64.61	148.66	-128.82
263	C10H21O2H-5	-84.5	-84.5	64.61	148.66	-128.82
264	С9Н19О2Н-1	-76.11	-76.11	58.98	142.04	-118.46
265	C8H17O2H-1	-71.18	-71.18	53.48	132.62	-110.72
266	С10ООН2-1	-35.49	-35.49	63.84	152.08	-80.84
267	С10ООН2-6	-38.14	-38.14	62.92	153.1	-83.79
268	С10ООНЗ-1	-35.49	-35.49	63.84	152.08	-80.84
269	С10ООНЗ-7	-38.14	-38.14	62.92	153.1	-83.79
270	С10ООН4-7	-38.14	-38.14	62.92	153.1	-83.79
271	С10ООН4-8	-38.14	-38.14	62.92	153.1	-83.79
272	С10ООН5-9	-38.14	-38.14	62.92	153.1	-83.79
273	С9ООН1-2	-29.75	-29.75	57.31	146.49	-73.43
274	С9ООН1-3	-29.75	-29.75	57.31	146.49	-73.43
275	С9ООН1-4	-29.75	-29.75	57.31	146.49	-73.43
276	С9ООН5-3	-33.21	-33.21	57.44	143.67	-76.05
277	C8OOH1-2	-24.82	-24.82	51.83	137.06	-65.69
278	С8ООН1-3	-24.82	-24.82	51.83	137.06	-65.69
279	C8OOH1-4	-24.82	-24.82	51.83	137.06	-65.69
280	С10ООН1-2О2	-72.29	-72.29	70.54	167.15	-122.12
281	С10ООН1-3О2	-72.29	-72.29	70.54	167.15	-122.12
282	C1000H1-402	-72.29	-72.29	70.54	167.15	-122.12
283	С10ООН2-1О2	-72.29	-72.29	70.54	167.15	-122.12
284	С10ООН2-3О2	-75.75	-75.75	70.75	164.34	-124.74
285	С10ООН2-4О2	-75.75	-75.75	70.75	164.34	-124.74
286	С10ООН2-5О2	-75.75	-75.75	70.75	164.34	-124.74
287	С10ООН3-1О2	-72.29	-72.29	70.54	167.15	-122.12
288	С10ООН3-2О2	-75.75	-75.75	70.75	164.34	-124.74
289	С10ООН3-4О2	-75.75	-75.75	70.75	164.34	-124.74
290	С10ООН3-5О2	-75.75	-75.75	70.75	164.34	-124.74
291	С10ООН3-6О2	-75.75	-75.75	70.75	164.34	-124.74
292	С10ООН4-1О2	-72.29	-72.29	70.54	167.15	-122.12
293	С10ООН4-2О2	-75.75	-75.75	70.75	164.34	-124.74
294	С10ООН4-3О2	-75.75	-75.75	70.75	164.34	-124.74
295	С10ООН4-5О2	-75.75	-75.75	70.75	164.34	-124.74
296	С10ООН4-6О2	-75.75	-75.75	70.75	164.34	-124.74
297	С10ООН4-7О2	-75.75	-75.75	70.75	164.34	-124.74
298	С10ООН5-2О2	-75.75	-75.75	70.75	164.34	-124.74
299	С10ООН5-3О2	-75.75	-75.75	70.75	164.34	-124.74
300	С1000Н5-402	-75.75	-75.75	70.75	164.34	-124.74
301	С10ООН5-6О2	-75.75	-75.75	70.75	164.34	-124.74
302	С1000Н5-702	-75.75	-75.75	70.75	164.34	-124.74
303	С1000Н5-802	-75.75	-75.75	70.75	164.34	-124.74
304	С9ООН1-2О2	-67.36	-67.36	65.08	157.73	-114.38
305	С9ООН1-3О2	-67.36	-67.36	65.08	157.73	-114.38
306	C800H1-202	-62.43	-62.43	59.62	148.31	-106.64
-----	------------	---------	---------	-------	--------	---------
307	C800H1-302	-62.43	-62.43	59.62	148.31	-106.64
308	C800H1-402	-62.43	-62.43	59.62	148.31	-106.64
309	C10O2-6	-86.79	-86.79	52.19	119.58	-122.44
310	C10O3-4	-60.76	-60.76	55.89	133.48	-100.55
311	C10O3-7	-86.79	-86.79	52.19	119.58	-122.44
312	C10O4-7	-82.53	-82.53	51.95	128.92	-120.97
313	C9O1-3	-53.2	-53.2	47.97	122.16	-89.62
314	C9O1-4	-73.23	-73.23	46.11	120.13	-109.05
315	C8O1-2	-46.52	-46.52	44.46	115.27	-80.89
316	C10KET1-2	-101.45	-101.45	65.55	154.44	-147.5
317	C10KET1-3	-103.67	-103.67	66.1	155.52	-150.04
318	C10KET1-4	-103.67	-103.67	66.1	155.52	-150.04
319	C10KET2-1	-104.66	-104.66	65.27	156.9	-151.44
320	C10KET2-3	-109.29	-109.29	65.44	153.53	-155.07
321	C10KET2-4	-111.51	-111.51	66.02	154.61	-157.61
322	C10KET2-5	-111.51	-111.51	66.02	154.61	-157.61
323	C10KET3-1	-108.05	-108.05	65.88	157.42	-154.98
324	C10KET3-2	-109.29	-109.29	65.44	153.53	-155.07
325	C10KET3-4	-109.29	-109.29	65.44	153.53	-155.07
326	C10KET3-5	-111.51	-111.51	66.02	154.61	-157.61
327	C10KET3-6	-111.51	-111.51	66.02	154.61	-157.61
328	C10KET4-1	-108.05	-108.05	65.88	157.42	-154.98
329	C10KET4-2	-111.51	-111.51	66.02	154.61	-157.61
330	C10KET4-3	-109.29	-109.29	65.44	153.53	-155.07
331	C10KET4-5	-109.29	-109.29	65.44	153.53	-155.07
332	C10KET4-6	-111.51	-111.51	66.02	154.61	-157.61
333	C10KET4-7	-111.51	-111.51	66.02	154.61	-157.61
334	C10KET5-2	-111.51	-111.51	66.02	154.61	-157.61
335	C10KET5-3	-111.51	-111.51	66.02	154.61	-157.61
336	C10KET5-4	-109.29	-109.29	65.44	153.53	-155.07
337	C10KET5-6	-109.29	-109.29	65.44	153.53	-155.07
338	C10KET5-7	-111.51	-111.51	66.02	154.61	-157.61
339	C10KET5-8	-111.51	-111.51	66.02	154.61	-157.61
340	C9KET1-2	-96.52	-96.52	60.07	145.02	-139.76
341	C9KET1-3	-98.74	-98.74	60.62	146.1	-142.3
342	C8KET1-2	-91.59	-91.59	54.58	135.59	-132.02
343	C8KET1-3	-93.81	-93.81	55.14	136.67	-134.56
344	C8KET1-4	-93.81	-93.81	55.14	136.67	-134.56
345	NC8H17CHO	-74.09	-74.09	52.1	129.26	-112.63
346	NC8H17CO	-37.18	-37.18	51.27	130.38	-76.06
347	C7H15COCH2	-37.85	-37.85	56.42	141.19	-79.95
348	C6COC2H4P	-32.92	-32.92	51.22	131.77	-72.21
349	C5COC2H4P	-27.99	-27.99	45.76	122.35	-64.47
350	C4COC2H4P	-23.06	-23.06	40.27	112.93	-56.73
351	С2Н2ОН	29.39	29.39	15.8	61.34	11.11

352	C2H3CHOCH2	2	2	19.77	71.82	-19.41
353	С4Н6О23	-17.3	-17.3	18.07	67.94	-37.55
354	СН3СНСНСНО	-25.7	-25.7	18.18	79.62	-49.44
355	CC3H4	66.2	66.2	12.67	58.23	48.84
356	СН3СНСО	-19.61	-19.61	17.87	67.8	-39.83
357	СН3СНСНО	-4.7	-4.7	18	70.37	-25.68
358	C2H5CHCO	-24.37	-24.37	22.94	77.6	-47.51
359	NC3H7CO	-12.53	-12.53	23.93	83.28	-37.36
360	Н	52.1	52.1	4.97	27.39	43.93
361	H2	0	0	6.9	31.21	-9.31
362	0	59.56	59.56	5.23	38.47	48.09
363	ОН	9.32	9.32	7.15	43.88	-3.77
364	HO2	2.5	2.5	8.32	54.73	-13.82
365	H2O2	-32.53	-32.53	10.4	55.66	-49.13
366	CH2O	-27.7	-27.7	8.38	52.25	-43.28
367	НСО	10.4	10.4	8.23	53.66	-5.6
368	HOCH2O	-43.43	-43.43	13.04	64.81	-62.76
369	СНЗОН	-48.06	-48.06	10.48	57.28	-65.14
370	СН2ОН	-4.1	-4.1	11.29	58.88	-21.66
371	CH3O	3.9	3.9	9.05	54.61	-12.39
372	CH3O2	2	2	13.89	64.21	-17.14
373	CH4	-17.9	-17.9	8.4	44.47	-31.16
374	CH3	34.82	34.82	9.21	46.38	21
375	CH2	92.49	92.49	8.24	46.72	78.56
376	CH2(S)	101.51	101.51	8.07	45.1	88.07
377	С2Н6	-20.04	-20.04	12.52	54.73	-36.36
378	C2H5	28.02	28.02	11.28	60.14	10.09
379	C2H4	12.54	12.54	10.18	52.38	-3.08
380	С2Н3	68.42	68.42	9.54	55.34	51.92
381	C2H2	54.2	54.2	10.59	48.02	39.88
382	C2H	135.02	135.02	8.89	49.56	120.24
383	СН3СНО	-39.18	-39.18	13.12	63.14	-58.01
384	СНЗСО	-5.4	-5.4	12.38	63.75	-24.41
385	CH2CHO	3.12	3.12	12.88	60.41	-14.89
386	CH2CO	-12.4	-12.4	12.4	57.79	-29.63
387	НССО	42.45	42.45	12.64	60.75	24.34
388	C2H5OH	-56.21	-56.21	15.39	67.11	-76.21
389	C2H5O	-4.24	-4.24	14.42	65.65	-23.81
390	РС2Н4ОН	-7.2	-7.2	14.63	70.52	-28.23
391	SC2H4OH	-14.09	-14.09	15.79	67.89	-34.33
392	C2H5O2	-7	-7	18.54	75.27	-29.44
393	C2H3O1-2	31.53	31.53	10.35	61.1	13.32
394	СН3СОСН3	-51.57	-51.57	17.84	70.1	-72.46
395	CH3COCH2	-7.26	-7.26	18.35	72.06	-28.74
396	С2Н3СНО	-20.32	-20.32	17	67.4	-40.42
397	C2H3CO	11.58	11.58	16.82	66.01	-8.1

398	С2Н5СНО	-44.5	-44.5	19.29	72.74	-66.19
399	C2H5CO	-7.6	-7.6	18.47	73.86	-29.62
400	С3Н8	-24.82	-24.82	17.58	64.57	-44.07
401	IC3H7	18.2	18.2	17.93	60.11	0.28
402	NC3H7	22.6	22.6	18.02	64.14	3.48
403	С3Н6	4.65	4.65	15.38	63.82	-14.38
404	С3Н5-А	40.75	40.75	14.81	62.06	22.25
405	C3H5-S	63.76	63.76	15.2	65.21	44.32
406	С3Н5-Т	61.56	61.56	15.04	65.63	41.99
407	СЗН4-Р	45.77	45.77	14.47	58.9	28.21
408	C3H4-A	47.64	47.64	14.2	57.95	30.36
409	С3Н3	83.05	83.05	15.8	61.49	64.71
410	C3H2	129.61	129.61	14.91	64.82	110.29
411	С3Н5О	22.15	22.15	17.54	73	0.39
412	C3H6OOH1-2	0.62	0.62	25.54	88.89	-25.88
413	С3Н6ООН1-3	3.27	3.27	25.36	89.23	-23.33
414	C3H6OOH2-1	-1	-1	25.59	85.28	-26.43
415	C3H6OOH1-2O2	-36.6	-36.6	32.58	101.89	-66.98
416	C3H6OOH1-3O2	-32.33	-32.33	32.45	104.62	-63.53
417	С3Н6ООН2-1О2	-36.6	-36.6	32.58	101.89	-66.98
418	NC3H7O2	-11.93	-11.93	24.05	84.69	-37.18
419	IC3H7O2	-16.2	-16.2	24.17	80.58	-40.23
420	С3Н6О1-3	-18.36	-18.36	15.59	64.86	-37.7
421	C3KET12	-67.64	-67.64	26.72	90.75	-94.69
422	C3KET13	-64.91	-64.91	27.61	92.67	-92.54
423	C3KET21	-71.32	-71.32	27.01	90.94	-98.43
424	С3Н51-2,3ООН	-20	-20	33.33	104.98	-51.3
425	С3Н52-1,3ООН	-17.98	-17.98	32.93	103.8	-48.93
426	АСЗН5ООН	-14.23	-14.23	24.03	82.92	-38.95
427	C4H10	-30.26	-30.26	23.25	73.93	-52.3
428	C4H8-1	-0.11	-0.11	20.48	73.62	-22.06
429	C4H8-2	-3.22	-3.22	20.57	71.03	-24.4
430	PC4H9	18.74	18.74	22.51	77.84	-4.47
431	SC4H9	16.09	16.09	21.69	79.74	-7.68
432	C4H71-1	59	59	20.31	75.01	36.63
433	С4Н71-2	56.8	56.8	20.14	75.43	34.31
434	С4Н71-3	33.39	33.39	18.95	69.81	12.58
435	C4H71-4	48.9	48.9	19.72	77.03	25.93
436	C4H6	26.08	26.08	19.13	66.61	6.22
437	С4Н7О	12.92	12.92	23.06	80.33	-11.03
438	C2H5COCH2	-14.58	-14.58	24.38	80.72	-38.65
439	CH3CHCOCH3	-17.08	-17.08	22.73	78.7	-40.55
440	C2H3COCH3	9.38	9.38	20.53	47.62	-4.82
441	NC3H7CHO	-49.44	-49.44	24.73	82.16	-73.93
442	СЗН6СНО-1	-0.43	-0.43	23.99	85.57	-25.94
443	СЗН6СНО-2	-3.08	-3.08	23.19	86.6	-28.9

444	СЗН6СНО-З	-9.63	-9.63	23.48	79.79	-33.42
445	SC3H5CHO	-28.19	-28.19	22.17	75.99	-50.85
446	SC3H5CO	2.71	2.71	22.03	74.6	-19.53
447	IC4H10	-32.5	-32.5	23.04	70.44	-53.5
448	IC4H9	16.5	16.5	22.28	75.16	-5.91
449	ТС4Н9	11.7	11.7	17.78	76.37	-11.07
450	IC4H8	-3.8	-3.8	21.48	70	-24.67
451	IC4H7	32.3	32.3	20.89	69.62	11.55
452	TC4H9O2	-24.6	-24.6	30.15	85.18	-50
453	IC4H9O2	-19.1	-19.1	29.23	91.42	-46.36
454	TC4H8O2H-I	-9.4	-9.4	31.77	92.45	-36.96
455	IC4H8O2H-I	-3.9	-3.9	30.56	95.97	-32.51
456	IC4H8O2H-T	-8.7	-8.7	30.27	95.77	-37.25
457	IC4H8O	-31.48	-31.48	23.25	71.25	-52.73
458	CC4H8O	-25.53	-25.53	20.33	69.91	-46.38
459	IC4H9O	-16.13	-16.13	25.07	81.8	-40.52
460	ТС4Н9О	-23.14	-23.14	25.65	75.42	-45.63
461	IC4H7O	13.7	13.7	23.67	80.56	-10.32
462	IC4H8OH	-24.1	-24.1	25.25	88.5	-50.49
463	ІСЗН7СНО	-51.21	-51.21	23.45	79.66	-74.96
464	ТСЗН6СНО	-13.5	-13.5	24.04	76.58	-36.33
465	IC3H7CO	-14.3	-14.3	22.63	81.59	-38.63
466	ІСЗН6СНО	-2.2	-2.2	22.7	83.08	-26.97
467	ІС4Н7ОН	-38.26	-38.26	24.62	82.02	-62.72
468	IC4H6OH	-2.16	-2.16	24.08	80.26	-26.09
469	ІСЗН5СНО	-27.34	-27.34	23.08	74.65	-49.6
470	IC3H5CO	4.56	4.56	22.92	73.26	-17.28
471	IC3H6CO	-28.06	-28.06	24.18	75.35	-50.53
472	IC4H7OOH	-24.38	-24.38	30.15	91.48	-51.66
473	ТСЗН6ОН	-23.8	-23.8	20.64	77.63	-46.95
474	ІСЗН5ОН	-38.81	-38.81	19.03	72.63	-60.47
475	CH2CCH2OH	27.09	27.09	18.17	76.27	4.35
476	BC5H11	7.7	7.7	27.58	85.9	-17.91
477	AC5H10	-8.56	-8.56	26.59	81.17	-32.76
478	BC5H10	-11.67	-11.67	26.68	79.96	-35.51
479	CC5H10	-7.03	-7.03	25.69	80.35	-30.99
480	AC5H9-A2	27.54	27.54	26	79.42	3.86
481	АС5Н9-С	24.94	24.94	25.05	77.36	1.88
482	СС5Н9-В	24.23	24.23	23.89	75.29	1.79
483	АС5Н9О-С	4.26	4.26	28.97	89.25	-22.35
484	СС5Н9О-В	2.08	2.08	29.4	87.09	-23.89
485	AC6H12	-13.49	-13.49	32.05	90.59	-40.5
486	BC6H12	-16.43	-16.43	31.79	89.76	-43.19
487	СС6Н12	-14.9	-14.9	31	88.94	-41.42
488	DC6H12	-12.21	-12.21	31.16	89.77	-38.98
489	AC6H11-A2	22.61	22.61	31.45	88.84	-3.88

490	AC6H11-C	20.01	20.01	30.51	86.78	-5.86
491	AC6H11-E	35.51	35.51	31.28	94.01	7.48
492	BC6H11-E	32.57	32.57	31.02	93.18	4.79
493	CC6H11-A	34.1	34.1	30.15	92.36	6.57
494	СС6Н11-В	16.4	16.4	29.19	85.25	-9.02
495	AC6H11O-C	-0.67	-0.67	34.43	98.67	-30.09
496	СС6Н11О-В	-5.96	-5.96	34.58	95.68	-34.49
497	C4H7CO1-4	12.69	12.69	26.58	91.01	-14.44
498	C5H10-1	-5.04	-5.04	25.94	83.04	-29.8
499	C5H10-2	-7.98	-7.98	25.68	82.2	-32.49
500	С5Н91-3	28.46	28.46	24.4	79.23	4.84
501	С5Н91-4	41.31	41.31	24.36	87.48	15.23
502	С5Н91-5	43.96	43.96	25.17	86.45	18.19
503	CC5H11	9.65	9.65	26.92	86.48	-16.13
504	С5Н92-4	25.52	25.52	24.14	78.39	2.15
505	С5Н92-5	41.02	41.02	24.91	85.62	15.5
506	С5Н9О1-3	7.78	7.78	28.38	91.12	-19.39
507	С5Н9О2-4	4.84	4.84	28.01	92.47	-22.73
508	С5Н11-2	11.16	11.16	27.14	89.16	-15.42
509	NC4H9CHO	-54.37	-54.37	30.18	91.58	-81.67
510	NC4H9CO	-17.46	-17.46	29.4	92.7	-45.1
511	С4Н8СНО-2	-8.01	-8.01	28.64	96.02	-36.64
512	С4Н8СНО-3	-8.01	-8.01	28.64	96.02	-36.64
513	C4H8CHO-4	-14.56	-14.56	28.96	89.21	-41.16
514	IC4H7-I1	55.31	55.31	21.31	72.76	33.61
515	С5Н81-3	16.4	16.4	24.66	74.99	-5.96
516	XC7H15	-0.53	-0.53	38.49	101.61	-30.83
517	YC7H15	-5.33	-5.33	38.3	102.06	-35.76
518	ZC7H15	-3.18	-3.18	37.63	102.64	-33.78
519	XC7H14	-20.66	-20.66	37.28	97.33	-49.68
520	YC7H14	-23.35	-23.35	37.06	96.5	-52.12
521	XC7H13-X1	15.4	15.4	36.69	95.58	-13.1
522	XC7H13-Z	12.8	12.8	35.74	93.52	-15.08
523	XC7H13-X2	28.3	28.3	36.5	100.75	-1.74
524	XC7H13-Y2	23.7	23.7	36.47	101.19	-6.47
525	YC7H13-Y2	7.91	7.91	35.28	91.43	-19.35
526	YC7H13-X2	25.61	25.61	36.29	99.91	-4.18
527	XC7H13O-Z	-7.84	-7.84	39.79	105.41	-39.27
528	YC7H13O-Y2	-14.41	-14.41	40.65	103.24	-45.19
529	YC7H15O2	-41.63	-41.63	46.41	112.94	-75.31
530	YC7H14OOH-Y2	-31.03	-31.03	47.62	119.31	-66.61
531	Y-YC7H14O	-57.05	-57.05	38.1	92.45	-84.61
532	NEOC5H12	-40.3	-40.3	28.99	72.88	-62.03
533	NEOC5H11	8.7	8.7	28.4	79.47	-14.99
534	NEOC5H11O2	-26.8	-26.8	35.29	94.44	-54.96
535	NEOC5H10OOH	-11.6	-11.6	36.57	101.17	-41.77

536	NEOC6H12	-14.07	-14.07	31.62	83.37	-38.93
537	NEOC6H11	42.83	42.83	31.28	85.18	17.44
538	NC7H15	-1.16	-1.16	39.14	100.07	-31
539	OC7H15	-3.81	-3.81	38.31	98.92	-33.3
540	PC7H15	-3.81	-3.81	38.31	98.92	-33.3
541	QC7H15	-1.16	-1.16	39.14	97.89	-30.35
542	OC7H14	-21.94	-21.94	36.81	91.96	-49.36
543	PC7H14	-20.01	-20.01	37.07	92.79	-47.68
544	OC7H13-N	26.98	26.98	36.05	97.55	-2.1
545	PC7H13-N	28.91	28.91	36.29	98.39	-0.42
546	РС7Н13-О	13.41	13.41	35.52	88.98	-13.12
547	AC8H17	-4.43	-4.43	44.4	106.81	-36.28
548	BC8H17	-7.08	-7.08	43.55	105.65	-38.58
549	CC8H17	-10.73	-10.73	44.34	105.08	-42.06
550	DC8H17	-5.23	-5.23	44.4	104.63	-36.43
551	IC8H16	-26.49	-26.49	42.92	99.51	-56.16
552	JC8H16	-26.86	-26.86	43.17	100.35	-56.78
553	IC8H15	9.61	9.61	42.32	99.14	-19.95
554	AC8H17O2	-40.03	-40.03	51.55	122.2	-76.47
555	BC8H17O2	-45.1	-45.1	51.69	117.28	-80.07
556	DC8H17O2	-40.03	-40.03	51.55	120.02	-75.82
557	AC8H16OOH-A	-25.63	-25.63	52.82	126.74	-63.42
558	AC8H16OOH-B	-27.48	-27.48	51.8	127.77	-65.58
559	AC8H16OOH-C	-30.93	-30.93	52.73	127.19	-68.86
560	BC8H16OOH-C	-36	-36	52.87	122.28	-72.46
561	BC8H16OOH-A	-29.9	-29.9	52.96	124.01	-66.88
562	BC8H16OOH-D	-29.9	-29.9	52.96	121.83	-66.23
563	DC8H16OOH-C	-30.93	-30.93	52.73	126.39	-68.62
564	DC8H16OOH-B	-27.48	-27.48	51.8	125.59	-64.93
565	IC8ETERAA	-46.4	-46.4	44.08	106.3	-78.1
566	IC8ETERAB	-52.52	-52.52	42.71	103.15	-83.27
567	IC8ETERAC	-76.58	-76.58	41.22	97.3	-105.59
568	IC8ETERBC	-57.58	-57.58	45.55	100.43	-87.52
569	IC8ETERBD	-52.52	-52.52	42.71	100.97	-82.62
570	CC8H16OH-D	-50.94	-50.94	48.46	112.21	-84.39
571	YC7H13OOH-X1	-43.93	-43.93	45.67	116.6	-78.7
572	YC7H13O-X1	-5.85	-5.85	39.2	105.68	-37.36
573	XC7H13OOH-Z	-44.23	-44.23	45.69	115.14	-78.56
574	YC7H13OOH-X2	-44.54	-44.54	45.32	119.68	-80.23
575	YC7H13O-X2	-7.19	-7.19	39.14	109.23	-39.76
576	CC6H11-D	42	42	30.57	90.75	14.95
577	C4H7	32.88	32.88	19.96	72.03	11.41
578	С5Н9	28.46	28.46	24.4	79.23	4.84
579	IC5H9	24.94	24.94	25.09	77.36	1.88
580	C5H11-1	13.81	13.81	27.88	87.26	-12.2
581	С5Н11О2-2	-26.06	-26.06	35.16	100.79	-56.11

582	С5Н10ООН2-4	-13.51	-13.51	35.56	106.36	-45.22
583	C5H10O2-4	-36.96	-36.96	27.38	82.45	-61.55
584	С6Н13-1	8.88	8.88	33.43	97.56	-20.21
585	С6Н13-2	6.23	6.23	32.59	98.58	-23.16
586	С6Н13-3	6.23	6.23	32.59	98.58	-23.16
587	C6H12-1	-9.97	-9.97	31.38	92.46	-37.54
588	С6Н12-2	-12.91	-12.91	31.12	91.62	-40.23
589	С6Н12-3	-12.74	-12.74	30.79	90.63	-39.76
590	C6H11	20.76	20.76	29.3	88.19	-5.53
591	C6H12O1-4	-57.87	-57.87	30.45	92.11	-85.33
592	C7H15-1	3.95	3.95	38.88	106.98	-27.95
593	С7Н15-2	1.3	1.3	38.05	108	-30.9
594	С7Н15-3	1.3	1.3	38.05	108	-30.9
595	С7Н15-4	1.3	1.3	38.05	106.63	-30.49
596	C7H14-1	-14.9	-14.9	36.82	101.88	-45.28
597	С7Н13	18.6	18.6	35.27	98.07	-10.64
598	С7Н15О2-1	-31.65	-31.65	45.92	122.37	-68.14
599	C7H14OOH1-2	-19.1	-19.1	46.36	127.94	-57.25
600	С7Н14ООН1-3	-19.1	-19.1	46.36	127.94	-57.25
601	C7H14OOH1-4	-19.1	-19.1	46.36	127.94	-57.25
602	С7Н14О1-3	-43.33	-43.33	36.92	103.32	-74.14
603	C7H14O1-4	-63.37	-63.37	35.38	101.29	-93.57
604	NC5H11CHO	-59.3	-59.3	35.66	101	-89.41
605	NC5H11CO	-22.39	-22.39	34.84	102.12	-52.84
606	NC4H9COCH2	-24.44	-24.44	34.71	97.19	-53.42
607	C4H7OOH1-4	-21.3	-21.3	28.8	93.25	-49.1
608	C4H7O1-4	16.05	16.05	22.56	82.8	-8.63
609	C10H21-1	-10.84	-10.84	55.24	135.24	-51.16
610	С10Н21-2	-13.49	-13.49	54.39	136.26	-54.12
611	С10Н21-3	-13.49	-13.49	54.39	136.26	-54.12
612	C10H21-4	-13.49	-13.49	54.39	136.26	-54.12
613	С10Н21-5	-13.49	-13.49	54.39	136.26	-54.12
614	С9Н19-1	-5.91	-5.91	49.78	125.82	-43.42
615	С9Н19-2	-8.56	-8.56	48.99	126.84	-46.38
616	С9Н19-4	-8.56	-8.56	48.99	126.84	-46.38
617	C8H17-1	-0.98	-0.98	44.33	116.4	-35.69
618	С8Н17-2	-3.63	-3.63	43.5	117.42	-38.64
619	С8Н17-3	-3.63	-3.63	43.5	117.42	-38.64
620	C8H17-4	-3.63	-3.63	43.5	117.42	-38.64
621	C10H20-1	-29.69	-29.69	53.2	130.14	-68.5
622	C10H20-2	-32.63	-32.63	52.94	130.11	-71.43
623	С10Н20-3	-32.46	-32.46	52.6	129.68	-71.13
624	C10H20-4	-32.46	-32.46	52.6	129.68	-71.13
625	С10Н20-5	-32.46	-32.46	52.6	129.68	-71.13
626	С9Н18-1	-24.76	-24.76	47.75	120.72	-60.76
627	C8H16-1	-19.83	-19.83	42.3	111.3	-53.02

628	C8H16-2	-22.77	-22.77	42.04	111.27	-55.95
629	С8Н16-3	-22.6	-22.6	41.67	110.84	-55.65
630	C8H16-4	-22.6	-22.6	41.67	110.84	-55.65
631	C10H21O2-1	-47.63	-47.63	62.35	150.32	-92.45
632	C10H21O2-2	-51.1	-51.1	62.51	147.51	-95.07
633	С10Н21О2-3	-51.1	-51.1	62.51	147.51	-95.07
634	C10H21O2-4	-51.1	-51.1	62.51	147.51	-95.07
635	С10Н21О2-5	-51.1	-51.1	62.51	147.51	-95.07
636	С9Н19О2-1	-42.7	-42.7	56.96	140.89	-84.71
637	C8H17O2-1	-37.77	-37.77	51.47	131.47	-76.97
638	С8Н17О2-4	-41.23	-41.23	51.51	128.66	-79.6
639	С10ООН1-2	-34.68	-34.68	62.78	155.91	-81.17
640	C1000H1-3	-34.68	-34.68	62.78	155.91	-81.17
641	C1000H1-4	-34.68	-34.68	62.78	155.91	-81.17
642	С10ООН2-3	-38.14	-38.14	62.92	153.1	-83.79
643	C1000H2-4	-38.14	-38.14	62.92	153.1	-83.79
644	C1000H2-5	-38.14	-38.14	62.92	153.1	-83.79
645	С10ООН3-2	-38.14	-38.14	62.92	153.1	-83.79
646	С10ООН3-4	-38.14	-38.14	62.92	153.1	-83.79
647	С10ООН3-5	-38.14	-38.14	62.92	153.1	-83.79
648	С10ООН3-6	-38.14	-38.14	62.92	153.1	-83.79
649	С10ООН4-1	-35.49	-35.49	63.84	152.08	-80.84
650	С10ООН4-2	-38.14	-38.14	62.92	153.1	-83.79
651	С10ООН4-3	-38.14	-38.14	62.92	153.1	-83.79
652	С10ООН4-5	-38.14	-38.14	62.92	153.1	-83.79
653	С10ООН4-6	-38.14	-38.14	62.92	153.1	-83.79
654	С10ООН5-2	-38.14	-38.14	62.92	153.1	-83.79
655	С10ООН5-3	-38.14	-38.14	62.92	153.1	-83.79
656	С10ООН5-4	-38.14	-38.14	62.92	153.1	-83.79
657	С10ООН5-6	-38.14	-38.14	62.92	153.1	-83.79
658	C1000H5-7	-38.14	-38.14	62.92	153.1	-83.79
659	С10ООН5-8	-38.14	-38.14	62.92	153.1	-83.79
660	С8ООН4-2	-28.28	-28.28	51.97	134.25	-68.31
661	С8ООН4-6	-28.28	-28.28	51.97	134.25	-68.31
662	C10O1-2	-56.39	-56.39	55.46	134.11	-96.37
663	C10O1-3	-58.13	-58.13	53.46	131.58	-97.36
664	C10O1-4	-78.16	-78.16	51.58	129.55	-116.78
665	C10O2-3	-60.76	-60.76	55.89	133.48	-100.55
666	C10O2-4	-62.5	-62.5	53.7	130.95	-101.54
667	C10O2-5	-82.53	-82.53	51.95	128.92	-120.97
668	C10O3-5	-62.5	-62.5	53.7	130.95	-101.54
669	C10O3-6	-82.53	-82.53	51.95	128.92	-120.97
670	C10O4-6	-62.5	-62.5	53.7	130.95	-101.54
671	C8O1-3	-48.27	-48.27	42.47	112.74	-81.88
672	C8O1-4	-68.3	-68.3	40.63	110.71	-101.31
673	NC7H15CHO	-69.16	-69.16	46.61	119.84	-104.89

674	NC6H13CHO	-64.23	-64.23	41.13	110.42	-97.15
675	NC7H15CO	-32.25	-32.25	45.79	120.96	-68.32
676	NC6H13CO	-27.32	-27.32	40.31	111.54	-60.58
677	C6H13COCH2	-32.92	-32.92	51.56	131.77	-72.21
678	C5H11COCH2	-27.99	-27.99	46.42	122.35	-64.47
679	C10H19	13.89	13.89	51	134.12	-26.1
680	С9Н17	18.82	18.82	45.55	124.7	-18.36
681	C8H15	23.75	23.75	40.1	115.28	-10.62
682	С6Н6	19.81	19.81	19.78	64.37	0.62
683	С6Н5	79.44	79.44	20.9	69.83	58.62
684	С6Н5ОО	31.52	31.52	26	86.21	5.82
685	С6Н5О	10.36	10.36	24.66	74.89	-11.97
686	С6Н5ОН	-25.01	-25.01	25.31	76.95	-47.95
687	С5Н6	32	32	16.54	64.46	12.78
688	С5Н5	63.85	63.85	19.55	68.15	43.53
689	С5Н4О	13.2	13.2	19.35	69.31	-7.46
690	С5Н5О	43.35	43.35	21.01	71.38	22.07
691	C4H5-I	77.4	77.4	18.03	68.47	56.99
692	C4H5-N	85.4	85.4	18.68	69.47	64.69
693	C4H4	68.19	68.19	17.41	66.79	48.27
694	C4H3-I	119.2	119.2	19.81	70.19	98.28
695	C4H3-N	127.11	127.11	17.68	67.99	106.83
696	C4H2	111.72	111.72	17.7	59.79	93.89
697	H2C4O	54.6	54.6	17.22	66.44	34.79
698	С5Н7	40.71	40.71	16.05	67.98	20.45
699	C*CCJC*C	49.32	49.32	21.05	75.94	26.67
700	C*CC*CCJ	49.12	49.12	22.45	77.21	26.1
701	C*CC*CC	18.21	18.21	24.32	76.58	-4.62
702	CJ*CC*CC*O	52.35	52.35	25.74	81.55	28.03
703	C*CC*CCJ*O	28.14	28.14	25.71	78.77	4.66
704	CJ*CC*O	38.78	38.78	17.39	69.25	18.14
705	C4H612	39.34	39.34	19.21	69.72	18.55
706	С4Н6-2	34.67	34.67	18.34	65.98	15
707	CH2CHCHCHO	9.4	9.4	16.78	73.04	-12.37
708	СНЗСНСНСО	9.4	9.4	16.78	73.04	-12.37
709	H2CC	99.14	99.14	10.18	52.83	83.39
710	C4H5-2	74.31	74.31	18.77	71.22	53.08
711	НСООН	-92.62	-92.62	10.67	59.28	-110.29
712	H2CCCH	83.05	83.05	15.8	61.49	64.71
713	C2O	68.51	68.51	10.3	55.68	51.91
714	TOLUEN	11.95	11.95	24.69	76.53	-10.87
715	PHC2H5	7.01	7.01	30.64	85.93	-18.61
716	STYREN	35.24	35.24	29.1	82.31	10.7
717	РННСО	-8.75	-8.75	25.81	83.34	-33.6
718	С5Н4ОН	12.31	12.31	22.04	74.13	-9.79
719	NAPHT	36	36	31.62	79.66	12.24

720	INDENE	39.08	39.08	30.56	80.5	15.08
721	РНС3Н5-1	32.57	32.57	32.71	95.75	4.03
722	C14H14	34.21	34.21	49.01	115.5	-0.22
723	HEX1245	94.45	94.45	26.78	78.43	71.07
724	С6Н615	98.95	98.95	26.66	81.13	74.76
725	MC6H6	80.35	80.35	25.33	71.53	59.02
726	FULVENE	53.45	53.45	25.36	71.53	32.12
727	С6Н4О2	-31.1	-31.1	25.93	78.32	-54.45
728	С6Н5О2	33.85	33.85	25.98	81.07	9.67
729	С6Н5О2Н	-0.64	-0.64	27.35	83.78	-25.62
730	C6H3O2	27.53	27.53	25.75	78.62	4.09
731	С6Н3О3	-41.61	-41.61	27.39	88.07	-67.87
732	С5Н4	111.08	111.08	20.9	70.9	89.94
733	С5Н3	135.43	135.43	21	70.55	114.4
734	PHCH2	50.31	50.31	26.08	76.75	27.43
735	РНСН2ОН	-24.05	-24.05	28.02	87.32	-50.09
736	РНСН2О	27.2	27.2	24.67	82.11	2.72
737	РНСО	26.05	26.05	25.65	84.74	0.79
738	PHCH2O2	28.98	28.98	31.25	95	0.66
739	APHC2H4	55.13	55.13	30.62	86.87	29.23
740	BPHC2H4	40.33	40.33	29.92	85.71	14.77
741	ASTYRYL	92.55	92.55	28.58	82.19	68.04
742	BSTYRYL	82.34	82.34	27.23	81.23	58.12
743	РНС2Н	78.27	78.27	27.49	79.44	54.58
744	С6Н4С2Н3	93.74	93.74	28.12	82.65	69.1
745	РНСН2НСО	-10.89	-10.89	30.47	95.07	-39.24
746	PHCH2CO	26.01	26.01	29.65	96.19	-2.67
747	PHCOCH2	88.82	88.82	31.01	94.61	60.61
748	C6H5CCO	55.42	55.42	32.4	96.08	26.77
749	РНСНСО	10.97	10.97	31.77	87.83	-15.22
750	PBZJA	50.02	50.02	36	96.33	21.3
751	PBZJB	48.92	48.92	35.86	96.49	20.15
752	PBZJC	35.21	35.21	35.45	94.92	6.91
753	BPHPROPY	46.14	46.14	36.16	94.97	17.82
754	РНСЗН5-2	27.36	27.36	34.42	94.62	-0.85
755	РНСЗН4	63.47	63.47	33.89	92.06	36.02
756	РНС2Н4НСО	-17.15	-17.15	37.64	102.43	-47.69
757	PHC2H4CO	19.75	19.75	36.81	103.55	-11.12
758	PHCH2COCH2	24.4	24.4	36.2	106.14	-7.24
759	PHCOC2H4	83.5	83.5	37.14	104.21	52.43
760	РНСОС2Н3	6.06	6.06	33.68	102.34	-24.45
761	ВРНСЗН5ОНА	12.68	12.68	39	109.05	-19.84
762	АРНСЗН5ОНВ	9.83	9.83	39.81	107.77	-22.3
763	СРНСЗН5ОНВ	-5.67	-5.67	39.31	106.77	-37.51
764	ВРНСЗН5ОНС	9.33	9.33	37.52	112.21	-24.12
765	PBZOHAQJB	-22.28	-22.28	45.64	123.77	-59.19

766	PBZOHBQJA	-22.28	-22.28	45.64	123.77	-59.19
767	PBZOHBQJC	-25.52	-25.52	45.44	123.94	-62.48
768	PBZOHCQJB	-25.52	-25.52	45.44	123.94	-62.48
769	СОРНСЗН4-1	44.92	44.92	35.45	102.06	14.5
770	АОРНСЗН4-2	44.27	44.27	35.17	97.71	15.14
771	PHCH2CHCO	8.31	8.31	35.22	99.73	-21.42
772	PHCOCH2CH2O2	-15.68	-15.68	44.88	114.97	-49.95
773	PHCOCH2CH2O2H	-50.78	-50.78	46.65	119.41	-86.38
774	PHCOCH2CH2O	-15.32	-15.32	40.35	106.76	-47.15
775	PHCH2COCH2O2	-6.41	-6.41	42.27	121.37	-42.6
776	PHCH2COCH2O2H	-42.51	-42.51	44.3	121.15	-78.64
777	PHCH2COCH2O	-6.12	-6.12	38.47	112.39	-39.63
778	СН3С6Н4С2Н3	27.55	27.55	34.56	92.86	-0.13
779	С10Н9	54.86	54.86	34.25	86.92	28.95
780	C10H10	28	28	34.41	85.89	2.39
781	С6Н4С2Н	133.61	133.61	26.83	78.83	110.1
782	С7Н5	112.29	112.29	26.55	78.54	88.87
783	С7Н6	85.2	85.2	24.89	75.8	62.6
784	c-C4H5	72	72	15.35	63.68	53.02
785	c-C5H4	131.13	131.13	17.22	66.69	111.24
786	A1C2HAC	146.53	146.53	36.44	94.86	118.24
787	A2O	34.8	34.8	20.18	102.8	4.15
788	А2ОН	-8.06	-8.06	37.84	90.3	-34.99
789	A1C2H3AC	105.17	105.17	36.97	104.07	74.14
790	INDENYL	68.38	68.38	29.51	79.68	44.63
791	INDENOXY	39.64	39.64	22.02	99.59	9.95
792	PHNTHRN	49.51	49.51	44.27	93.93	21.5
793	РНССН2	86.51	86.51	27.8	81.31	62.26
794	РНСНСН	96.46	96.46	30.34	83	71.71
795	С6Н4СН3	73.27	73.27	24.79	81.33	49.02
796	A2CH3-1	27.93	27.93	38.54	90.42	0.97
797	С6Н4ОН	38.1	38.1	25.2	75.06	15.73
798	РНСС	133.21	133.21	26.29	78.05	109.94
799	С9Н10	27	27	35.1	91.7	-0.34
800	С9Н9-1	12.47	12.47	10.55	52.45	-3.17
801	A2T2	120.58	120.58	31.88	81.88	96.17
802	A2T1	118	118	31.72	83.15	93.21
803	A2-1	94.7	94.7	30.18	83.15	69.91
804	A2-2	94.31	94.31	30.54	83.35	69.46
805	BIPHENYL	43.54	43.54	39.82	92.94	15.83
806	FLUORENE	41.83	41.83	41.73	92.52	14.25
807	A2C2H2	112.3	112.3	39.83	100.8	82.25
808	A2C2H	90.6	90.6	39.41	91.23	63.4
809	A2R5-	119.42	119.42	37.1	89.6	92.7
810	A2R5	62.1	62.1	36.36	86.36	36.35
811	P2-	102	102	36.79	96.72	73.16

812	C13H12	38.79	38.79	43.3	103.87	7.82
813	С13Н9	90.59	90.59	39.78	93.19	62.8
814	A3-1	108.51	108.51	42.59	97.32	79.49
815	A3-4	107.24	107.24	44.12	96.44	78.49
816	A2(C2H)2	176.23	176.23	48.89	102.69	145.61
817	ANTHRCN	55.18	55.18	44.76	93.87	27.19
818	C13H9CH2	90.22	90.22	47.87	104.28	59.13
819	C13H8CH2	65.45	65.45	45.39	96.8	36.59
820	C14H13	67.26	67.26	48.41	115.12	32.94
821	C14H11	90.05	90.05	48.54	108.51	57.7
822	РНС2Н-	132.71	132.71	26.3	78.07	109.43
823	C14H13OO	45.56	45.56	54.97	134.76	5.38
824	С14Н13ООН	11.36	11.36	57.07	134.54	-28.75
825	C14H13O	47.32	47.32	50.32	126.24	9.69
826	C14H12OOH	45.76	45.76	57.94	130.87	6.74
827	C14H12O2H-1O2	22.62	22.62	62.69	150.7	-22.31
828	С14Н11О-1О2Н	-16.5	-16.5	57.59	139.69	-58.15
829	o-C6H4	106.61	106.61	19.49	68.04	86.33
830	BICYCLO	85.46	85.46	37.74	87.32	59.42
831	DIBZFUR	13.19	13.19	39.09	89.69	-13.55
832	DIBZFURNYL	76.65	76.65	41.48	69.65	55.89
833	DIBZFURNOXY	13.19	13.19	39.09	89.69	-13.55
834	A3CH3	42.01	42.01	52.63	106.5	10.26
835	A3CH2	79.72	79.72	52.2	104.9	48.44
836	FLTHN	69.79	69.79	48.95	99.34	40.17
837	A3C2H2	130.34	130.34	51.69	112.86	96.69
838	АЗС2Н	109.1	109.1	51.85	105.31	77.7
839	PYRENE	53.9	53.9	48.39	95.81	25.33
840	A4-1	115.25	115.25	48.5	99.06	85.72
841	A4-2	115.16	115.16	48.77	97.8	86
842	A4-4	115.06	115.06	48.66	99.21	85.48
843	A2R5R5	100.28	100.28	40.43	86.17	74.59
844	C14H12	57.93	57.93	47.97	108.39	25.62
845	CHRYSEN	66.63	66.63	57.3	111.2	33.47
846	CHRYSEN-1	126.68	126.68	56.5	112.32	93.19
847	CHRYSEN-4	126.68	126.68	56.5	112.32	93.19
848	CHRYSEN-5	126.68	126.68	56.5	112.32	93.19
849	A3C2H-2	160.91	160.91	52.55	110.47	127.97
850	A3C2H-1	162.96	162.96	52.39	109.81	130.22
851	С6Н2	167.5	167.5	24.88	71.51	146.18
852	С6Н	248	248	22.95	74.68	225.73
853	C8H2	223.3	223.3	31.7	83.1	198.52
854	C8H	277.74	277.74	31.65	85.74	252.17
855	C4H	192	192	15.96	63.47	173.07
856	BGHIF	85.69	85.69	53.45	98.35	56.37
857	BAPYR	69.21	69.21	64.95	111.97	35.82

858	BAPYR*S	129.26	129.26	64.21	113.09	95.55
859	A4C2H*	169.26	169.26	58.11	111.83	135.91
860	A3C2H*	170.58	170.58	52.25	107.3	138.59
861	A2C2H*	150.32	150.32	39.34	91.9	122.92
862	A1C2H-	132.71	132.71	26.3	78.07	109.43
863	N-C8H7	93	93	30.46	82.31	68.46
864	С2Н5ОО	-4.53	-4.53	18.22	74.79	-26.83
865	СНЗООН	-31.65	-31.65	17.45	67.53	-51.78
866	CH3OO	4.3	4.3	13.89	66.56	-15.54
867	С2Н5ООН	-39.17	-39.17	19.95	73.74	-61.15
868	HCO3	-31.31	-31.31	13.24	74.08	-53.4
869	НСОЗН	-67.41	-67.41	15.18	73.87	-89.43
870	C2-QOOH	8.37	8.37	19.48	79.19	-15.24
871	CH2CHCH2	39.39	39.39	15.77	64.69	20.1
872	СНЗСНООСНО	-33.4	-33.4	26.26	86.17	-59.09
873	СН2СНООНСНО	-17.48	-17.48	26.1	90	-44.31
874	ETC3H4O2	-62.46	-62.46	20.94	73.71	-84.43
875	СН2ООСНООНСНО	-53.27	-53.27	32.97	100.9	-83.36
876	C5EN-OO	8.47	8.47	32.42	98.62	-20.93
877	C5EN-QOOH	18.73	18.73	33.82	101.48	-11.52
878	C5EN-OOQOOH-35	-15.46	-15.46	40.62	114.48	-49.59
879	C5EN-OQOOH-35	-54.09	-54.09	34.57	104	-85.1
880	С5Н8О	-2.32	-2.32	23.52	80.91	-26.45
881	С5Н8	18.05	18.05	25.17	70.87	-3.08
882	СҮС5Н8	7.82	7.82	19.43	69.61	-12.94
883	NEOC5-QOOH	-12.48	-12.48	36.81	101.3	-42.69
884	NEOC5-OOQOOH	-46.58	-46.58	41.91	117.31	-81.56
885	NEOC5-OQOOH	-79.49	-79.49	37.84	104.51	-110.65
886	NC5H12OO	-28.36	-28.36	35.39	97.3	-57.37
887	NC5-QOOH	-15.46	-15.46	36.65	101.71	-45.78
888	NC5-OOQOOH	-48.59	-48.59	43.31	117.49	-83.62
889	N1C4H9OH	-65.88	-65.88	26.35	85.83	-91.47
890	MEK	-57.37	-57.37	23.77	81.21	-81.58
891	C3H6O2	-80.31	-80.31	22.37	83.38	-105.17
892	СЗН7СНО	-50.34	-50.34	25.13	82.24	-74.86
893	NC7-QOOH	-21.41	-21.41	46.67	125.15	-58.72
894	NC7H14O	-62.78	-62.78	36.06	99.62	-92.48
895	NC7-OOQOOH	-69.4	-69.4	49.35	131.28	-108.54
896	NC7-OQOOH	-96.27	-96.27	48.93	129.41	-134.85
897	C3H4O2	-62.46	-62.46	20.94	73.71	-84.43
898	NC7H13OOH	-69.7	-69.7	48.2	121.77	-106.01
899	C7KETONE	-65.45	-65.45	40.21	110.25	-98.32
900	IC8-QOOH	-32.97	-32.97	53.01	132.4	-72.44
901	IC8T-QOOH	-32.97	-32.97	53.01	132.4	-72.44
902	IC8H17	-11.43	-11.43	44.62	102.5	-42
903	IC8H17-OO	-45.87	-45.87	51.72	130.01	-84.63

904	IC8H16O	-67.81	-67.81	41.7	105.49	-99.26
905	IC8-OOQOOH	-67.07	-67.07	59.85	146.08	-110.63
906	IC8-OQOOH	-105	-105	53.69	135.99	-145.55
907	NC10MOOH	-69.7	-69.7	48.2	121.77	-106.01
908	NC10-QOOH	-38.15	-38.15	62.9	156.09	-84.69
909	NC10-OQOOH	-111.5	-111.5	66.05	157.63	-158.49
910	NC10-OOQOOH	-73.06	-73.06	70.69	167.33	-122.95
911	NC3H7OO	-9.45	-9.45	23.73	84.22	-34.56
912	СН3СООН	-103.9	-103.9	15.9	67.43	-124.01
913	TERPHENYL	66.63	66.63	57.3	111.2	33.47
914	Р3-	126.68	126.68	56.5	112.32	93.19
915	QUATERPHENYL	89.16	89.16	74.49	148.81	44.79
916	P4-	150.06	150.06	74.07	153.05	104.43
917	TRIPHENYLEN	66.63	66.63	57.3	111.2	33.47
918	A4T-	126.68	126.68	56.5	112.32	93.19
919	QINQUEPHENYL	112.71	112.71	94.65	184.55	57.69
920	Р5-	173.72	173.72	94.59	190.9	116.81
921	BENZYLB	38.79	38.79	43.3	103.87	7.82
922	BENZYLBJ	74.14	74.14	44.17	102.95	43.44
923	A1A1CH2-1	71.84	71.84	45.37	103.11	41.1
924	PHCH2CH2	55.96	55.96	29.95	89.58	29.25
925	A1CCA1	99.96	99.96	46.32	106.6	68.18
926	A2C2H-2J3	150.87	150.87	40.79	95.08	122.53
927	A3LJX	116.17	116.17	44.43	96.58	87.37
928	A3LJ2	116.43	116.43	44.49	96.54	87.64
929	A3LJ9	116.31	116.31	44.27	95.36	87.88
930	A2R5YNE1	111.73	111.73	45.44	98.35	82.4
931	A2R5YNE3	113.77	113.77	45.9	99.87	83.99
932	A2R5YNE4	114.65	114.65	45.86	99.42	85.01
933	A2R5YNE5	113.76	113.76	45.65	98.42	84.42
934	A3CH2R	50.55	50.55	44.13	105.13	19.2
935	A3R5	76.94	76.94	49.31	101.12	46.79
936	A2R5YN4J5	177.2	177.2	45.36	99.74	147.46
937	A3R5J7	137.96	137.96	48.95	101.05	107.84
938	A2R5YN5J4	175.78	175.78	45.28	99.18	146.21
939	A3R5J10	137	137	48.9	101.01	106.88
940	A2R5YN3J4	175.86	175.86	45.68	99.47	146.21
941	A2R5YN4J3	176.56	176.56	45.18	98.83	147.09
942	A3LR5JS	142.84	142.84	49.23	106.3	111.15
943	A3LR5	75.23	75.23	49.35	101.23	45.05
944	HB	277.33	277.33	85.89	130.91	238.3
945	A2A1-1	59.12	59.12	52.11	109.71	26.41
946	A2A1-2	59.12	59.12	52.11	109.71	26.41
947	A21C6H4	106.96	106.96	50.38	104.9	75.69
948	A22C6H4	109.25	109.25	49.93	102.4	78.72
949	A2R5YN1J2	177.59	177.59	44.83	98.45	148.23

950	FLTHNJ7	130.74	130.74	48.59	100.96	100.64
951	FLTHNJ1	130.82	130.82	48.66	100.76	100.77
952	FLTHNJ3	131.33	131.33	48.58	100.78	101.28
953	BENZNAP	54.69	54.69	57.51	122.25	18.24
954	BENZNAPJP	116.24	116.24	56.74	123.37	79.46
955	BENZFLRN	58.01	58.01	57.6	81.91	33.59
956	A3LC2H-1	107.85	107.85	53.49	108.3	75.56
957	A3LC2H-1P	169.41	169.41	52.58	109.42	136.78
958	A3LC2H-2	107.68	107.68	53.53	108.69	75.27
959	A3LC2H-2P	169.24	169.24	52.73	109.81	136.5
960	A3LC2H-2S	167.74	167.74	52.73	109.81	135
961	A4LJS	135.8	135.8	56.5	112.57	102.24
962	A4L	75.75	75.75	57.3	108.7	43.34
963	A3A1-1	71.46	71.46	66.12	122.77	34.85
964	A3-9	109.23	109.23	43.96	96.52	80.45
965	A3A1-9	71.46	71.46	66.12	122.77	34.85
966	BBFLUOR	84.11	84.11	61.9	115.82	49.58
967	A2A2-12	75.33	75.33	66.12	122.77	38.72
968	BKFLUOR	86.05	86.05	61.89	114.3	51.97
969	FLRNA1-4	65.36	65.36	61.09	121.16	29.23
970	CPTRPHEN	62.35	62.35	57.83	118.19	27.11
971	A4C2H*S	169.26	169.26	58.11	111.83	135.91
972	BEPYREN	73.13	73.13	61.47	114.33	39.04
973	BEPYRENJS	133.18	133.18	60.65	115.45	98.76
974	A3A1-4	71.46	71.46	66.12	122.77	34.85
975	A2A2-11	75.33	75.33	66.12	122.77	38.72
976	PERYLEN	78.31	78.31	61.55	113.9	44.35
977	PERYLENJS	138.36	138.36	60.74	115.02	104.07
978	PYRNA1-1	77.03	77.03	70.39	126.37	39.35
979	PYRNA1-4	77.03	77.03	70.39	126.37	39.35
980	INPYR	91.51	91.51	64.4	114.07	57.5
981	BBFLUORJS	144.16	144.16	61.1	116.94	109.3
982	BGHIFJ	154.42	154.42	53.01	107.11	122.48
983	CPCDFLTH	110.13	110.13	54.79	105.86	78.57
984	CPCDFLTJS	170.19	170.19	54	106.98	138.29
985	BGHIFR	125.06	125.06	55.7	106.8	93.22
986	BGHIFRJS	185.12	185.12	54.92	109.3	152.53
987	COR1	155.82	155.82	64.39	113.91	121.85
988	CPCDPYR	87.27	87.27	54.19	104.98	55.97
989	DCPCDFG	118.47	118.47	59.2	108.49	86.13
990	COR	119.91	119.91	58.98	105.81	88.36
991	CPCDPYRJS	147.33	147.33	53.39	106.1	115.69
992	CORJ	179.92	179.92	58.13	110.11	147.09
993	COR1J	213.82	213.82	63.52	115.11	179.5
994	COR2	188.02	188.02	69.68	119.01	152.54
995	COR2J	246.13	246.13	68.81	120.11	210.31

996	COR3	219.72	219.72	75.27	124.01	182.75
997	COR3J	277.73	277.73	74.35	125.11	240.43
998	COR4	250.53	250.53	80.55	129.11	212.03
999	COR4J	308.63	308.63	79.64	130.21	269.81
1000	ANTHAN	74.41	74.41	70.18	112.82	40.77
1001	ANTHANJP	134.46	134.46	70.24	116.69	99.67
1002	ANTHANJS	134.46	134.46	70.24	116.69	99.67
1003	BGHIPER	72.21	72.21	70.18	115.57	37.75
1004	BGHIPEJP1	132.26	132.26	70.24	116.69	97.47
1005	CPBPER	112.59	112.59	70.13	125.39	75.21
1006	BGHIPEJS1	132.26	132.26	70.24	116.69	97.47
1007	CORONEN	77.41	77.41	71.73	114.23	43.35
1008	A3L-O	43.41	43.41	50.24	78.92	19.89
1009	A3O-4	43.02	43.02	50.58	74.95	20.68
1010	A4	68.21	68.21	57.21	111.85	34.86
1011	A3LA1-X	128.26	128.26	56.41	112.97	94.58
1012	A4-O	59.62	59.62	62.66	91.98	32.19
1013	С13Н9А1-	93.06	93.06	56.35	75.7	70.49
1014	C13H9A1	59.26	59.26	56.72	80.74	35.19
1015	CORONEN-O	71.21	71.21	71.37	125.46	33.8
1016	CORONENYL	138.31	138.31	67.28	120.67	102.33

Table 17 : Heat of formation used of all species at 298.15 K.

D. Mechanism Validation and Modeling Results

1. Methane premixed flame (φ =2.32): predicted mole fractions of acetylene and PAHs

Figure 134 : Low pressure (0.263 atm) methane premixed flame, φ =2.32: CH₄ (46.2% in mol.)/O₂ (39.8%)/N₂ (14.0%). Predicted Acetylene and PAHs mole fraction profiles not experimentally measured.

The maximum predicted concentration of fluoranthene, benzo(a)pyrene and corannulene are below 1 ppm, while that of benzo(ghi)fluoranthene and cyclopenta(cd)pyrene are found to be respectively 3.5 and 2.7 ppm, that are at least two times higher than that pyrene. The maximum computed concentrations of benzo(e)pyrene to coronene are below 1 pbb.

2. Ethylene premixed flame (φ =2.34): predicted mole fractions of PAHs

Figure 135 : Atmospheric ethylene premixed flame, φ =2.34: C₂H₄ (14.08% mol.)/O₂ (18.05%)/N₂ (67.87%). Predicted PAHs mole fraction profiles not experimentally measured.

The highest concentration is obtained for benzo(ghi)fluoranthene and cyclopenta(cd)pyrene (nearly 100 ppm), followed by benzo(a)pyrene, corannulene and pyrene (20-30 ppm) and then fluoranthene (9 ppm). From benzo(e)pyrene to coronene, the maximum predicted concentrations are closed the pbb (10⁻⁹) order.

3. N-butane premixed flame (φ =1.75): predicted mole fractions of PAHs

272

Figure 136 : Atmospheric n-butane premixed flame, φ =1.75: n-C₄H₁₀ (9.46% in mol.)/O₂ (35.22%)/N₂ (55.32%). Predicted PAHs mole fractions not experimentally measured.

The maximum predicted mole fraction of PAHs from pyrene to coronene are below 1 ppm, except that of benzo(ghi)fluoranthene (~1.7 ppm). It is worth noting that the maximum concentration of PAHs from benzo(e)pyrene to coronene are very low and are closed to the ppt (10^{-12}) order.

4. N-butane premixed flame (φ=1.95): predicted mole fractions of PAHs

Figure 137 : Atmospheric n-butane premixed flame, ϕ =1.95: n-C₄H₁₀ (10.30% mol.)/O₂ (34.31%)/N₂ (55.39%). Predicted PAHs mole fractions not experimentally measured.

The concentrations of PAHs are increased since the equivalence ratio is increased from 1.75 to 1.95. The maximum concentrations of benzo(ghi)fluoranthene and cyclopenta(cd)pyrene reached respectively 20 and 10 ppm, while that of pyrene, fluoranthene, benzo(a)pyrene, corannulene are only a few ppm (2-5 ppm). From benzo(e)pyrene to coronene, computations show low concentration profiles that are below the ppb (10⁻⁹) order.

5. Acetylene oxidation in a plug flow reactor configuration (φ =7.5)

Figure 138 : Acetylene oxidation in plug flow rector configuration : $C_2H_2/O_2/N_2$: 0.03/0.01/0.96 in volume fraction ; ϕ =7.5 ; P=1 atm ; τ = 1.5s ; Predicted and experimental mole fraction of a): carbon monoxide, b): carbon dioxide, c): ethylene, d): hydrogen, e): benzene, f): naphthalene, g): phenanthrene, h): anthracene, i): acenapthylene, j): fluorene, k): fluoranthene, l): pyrene, m): chrysene, n): benzo(a)pyrene, o): benzo(b) fluoranthene, p): benzo(ghi) perylene. The symbols represent experimental data from [115]; the continuous lines represent the modeling results from the present work; dashed lines: Slavinskaya et al. mechanism [123].

Predictive capability of the kinetic model is tested in the plug flow reactor condition for acetylene oxidation. Some key intermediate species mole fractions such as ethylene and aromatics such as benzene, naphthalene, anthracene, fluoranthene, pyrene and chrysene are satisfactorily reproduced. Large discrepancies are observed for larger PAHs such as benzo(a)pyrene and benzo(ghi)fluoranthene within an important factor (> 50). The improvement of the present kinetic model is needed to account for a better understanding of larger PAH molecules chemistry.

6. Styrene premixed laminar flame

Figure 139 : Styrene premixed laminar flame: Styrene/O₂/Ar: 0.073/0.427/0.500 in mole fraction; $\varphi = 1.70$; P=0.0395 atm ; V= 35 cm/s ; Predicted and experimental mole fraction of a): acetylene, b): benzene, c): naphthalene, d): biphenyl, e): phenanthrene, f): pyrene. The symbols represent experimental data from [153]; the continuous lines represent the modeling results from the present work; dashed lines: Yuan et al. mechanism for styrene combustion [153]; dotted lines: polimi mechanism [128].

The present mechanism has been tested in monoaromatic with unsaturated aliphatic chain fuel. As can be observed, a good agreement is obtained from acetylene to pyrene molecule. This kinetic is able to describe accurately the combustion of aromatic, monoaromatic with saturated aliphatic chain and monoaromatic with unsaturated aliphatic chain. Based on these results, the present detailed mechanism can be used with some confidence to analyze some key intermediate species as well as aromatics (PAHs) formation pathways.

E. Main benzene and naphthalene formation pathways

Figure 140 : Benzene production pathways as a function of HAB in ethylene flame [36] (φ =3.06; P= 1atm; HAB= 0.5-12 mm)) and in jet-A1 fuel premixed flame [152](φ =1.70; P= 1atm; HAB= 0.1-3.3 mm). Rates of production indicated correspond to the global contribution to benzene production in the given HAB range.

Figure 141 : Naphthalene production pathways as a function of HAB in ethylene flame [36] (φ =3.0; P= 1atm; HAB= 0.5-12 mm)) and in jet fuel premixed flame [152] (φ =1.70; P= 1atm; HAB= 0.1-3.3 mm). Rates of production indicated correspond to the global contribution to naphthalene production in the given HAB range.

F. Fit of Troe

The rate constant of the following bimolecular reaction has been obtained through the fit of Troe:

	P [atm]							
P [atm]	0.1	1.0	10.0					
А	4.60E+016	2.00E+018	4.90E+016					
n	-1.25	-1.68	-1.13					
E [cal /mol]	8400	10600	11800					

 $C_2H_3 + C_2H_2 <=> C_4H_4 + H$

Fable 18 : Data for	or different	constant	pressures.
---------------------	--------------	----------	------------

Figure 142 : Fit of the rate constant as a function of temperature.

The optimized fall-off parameters obtained are given as follows:

Т*	T**	T***	alpha	A ₀	n ₀	E ₀	A _{inf}	n _{inf}	E _{inf}
1.71x10 ²	1.07x10 ³	1.00x10 ⁻³⁰	1.00	5.0x10 ⁴	-0.75	$5.0 ext{ x10}^3$	$5 \text{ x}10^3$	-1.21	$1.2 \text{ x} 10^4$

Table 19: Fall-off parameters optimization (yellow) with the rate constant parameters in low pressure regime (orange) and high pressure regime (green).

Reactions	A (cm, mol, s)	n	E (kcal/mol)	Ref
	7 6 20			50007
C3H5-A+C3H3=C6H6+2H	5.6 ×10 ²⁰	-2.54	1.7	[200]
C3H4-A+C3H3=C6H6+H	1.4×10^{12}	0.00	9.9	[200]
2C3H3=C6H6	2.0×10^{12}	0.00	0.0	[201]
C4H6+C2H3=C6H6+H2+H	5.6×10 ¹¹	0.00	3.2	[201]
C4H5-N+C2H2=C6H6+H	1.6×10 ¹⁶	-1.33	5.4	[201]
C4H5-N+C2H3=C6H6+H2	1.8×10 ⁻¹³	7.07	-3.6	[201]
C4H5-2+C2H2=C6H6+H	5.0×10 ¹⁴	0.00	25.0	[201]
C6H5+H(+M)=C6H6(+M)	$A_{\infty} = 1.0 \times 10^{14}$	$n_{\infty} = 0.00$	$E_{\infty} = 0.0$	[202]
	$A_0 = 6.6 \times 10^{75}$	$n_0 = -16.30$	$E_0 = 7.0$	
C6H6+O2=C6H5+HO2	6.3×10 ¹³	0.00	60.0	[202]
С6H6+O=C6H5O+H	2.2×10 ¹³	0.00	4.5	[203]
C6H6+O=C6H5+OH	2.0×10 ¹³	0.00	14.7	[203]
C6H5+H2=C6H6+H	5.7×10 ⁴	2.43	6.3	[135]
C6H6+CH3=C6H5+CH4	7.3×10 ¹²	0.00	18.9	[202]
C6H6+HO2=C6H5+H2O2	5.5×10 ¹²	0.00	28.9	[202]
C6H6+OH=C6H5+H2O	1.2×10^{0}	4.10	-0.3	[204]
C6H6+OH=C6H5OH+H	1.3×10^{2}	3.25	5.6	[205]
C6H5+CH2O=C6H6+HCO	8.6×10 ⁴	2.19	0.04	[206]
C6H5+HCO=C6H6+CO	8.6×10 ⁴	2.19	0.04	[206]
C6H5OH+C6H5=C6H5O+C6H6	4.9×10 ¹²	0.00	4.4	[207]
C5H6+C6H5=C5H5+C6H6	1.0×10 ⁻¹	4.00	0.0	[208]
C5H6+C5H5=C6H6+C4H5-N	5.0×10 ⁹	0.00	0.0	[208]
C5H6+C2H3=C6H6+CH3	2.1×10^{67}	-16.08	42.4	[208]
MC6H6=C6H6	3.8×10 ¹³	0.00	22.0	[114]
C6H6+C2H3=C6H5+C2H4	$A_{\text{forward}} = 4.0 \times 10^{-1}$	$n_{\text{forward}} = 4.02$	$E_{\text{forward}} = 88.0$	[114]
	$E_{reverse} = 9.4 \times 10^{-3}$	n _{reverse} = 4.47	E _{reverse} =4.5	
C6H6+C4H5-N=C6H5+C4H6	4.1×10 ⁻¹	4.02	8.8	[114]
C6H6+C4H5-I=C6H5+C4H6	4.1×10 ⁻¹	4.02	8.8	[114]
C6H5+C3H6=C3H5-A+C6H6	1.3×10^{0}	3.82	1.4	[209]
TOLUEN+H=C6H6+CH3	2.4×10 ¹³	0.00	5.1	[114]
TOLUEN+C6H5=PHCH2+C6H6	2.1×10 ¹²	0.00	4.4	[114]
PHCH2OH+H=C6H6+CH2OH	1.2×10 ¹³	0.00	5.1	[114]
PHCH2OH+C6H5=>PHHCO+C6H6+H	1.4×10 ¹²	0.00	4.4	[114]
РННСО+Н=С6Н6+НСО	1.2×10^{13}	0.00	5.1	[114]
PHHCO+C6H5=PHCO+C6H6	7.0×10^{11}	0.00	4.4	[114]
PHC2H5=C6H6+C2H4	1.1×10^{9}	0.00	51.7	[210]
PHC2H5+H=C2H5+C6H6	2.4×10 ¹³	0.00	5.1	[114]
STYREN=C6H6+C2H2	1.6×10 ¹¹	0.00	58.4	[114]
STYREN+H=C6H6+C2H3	2.4×10 ¹³	0.00	5.1	[114]
PHCH2HCO+H=C6H6+CH2CHO	5.8×10 ¹³	0.00	8.0	[114]
PHC2H+OH=>C6H6+HCCO	1.0×10^{13}	0.00	0.0	[114]
PBZ+H=NC3H7+C6H6	5.8×10 ¹³	0.0 0	8.1	[139]
PBZ+C6H5=PBZJA+C6H6	7.8×10 ¹¹	0.00	20.5	[114]
PBZ+C6H5=PBZJB+C6H6	7.8×10 ¹¹	0.00	16.2	[114]
PBZ+C6H5=PBZJC+C6H6	7.8×10 ¹¹	0.00	16.2	[114]
PHC3H5-1+H=C6H6+C3H5-A	5.8×10 ¹³	0.00	5.1	[114]

G. Sub-mechanisms used for benzene, naphthalene and pyrene formation and consumption

PHC3H5-2+C6H5=PHC3H4+C6H6	2.8×10 ¹²	0.00	11.2	[114]
C4H4+C2H2=C6H6	4.4×10 ¹¹	0.00	30.0	[118]
H2CCCH+H2CCCH=C6H6	1.6×10 ⁶⁶	-15.9	27.5	[142]
H2CCCH+H2CCCH=C6H6	1.2×10 ³⁵	-7.40	5.0	[142]
FULVENE+H(+M)=C6H6+H(+M)	4.5×10 ⁸	1.16	12.5	[119]
C4H4+C6H5=C6H6+C4H3-N	1.0×10^{12}	0.00	0.0	[120]
C4H4+C6H5=C6H6+C4H3-I	1.0×10^{12}	0.00	0.0	[120]
C6H5+C2H2=C6H6+C2H	1.1×10^{12}	0.0 0	14.1	[120]
H+C14H14=>C6H6+H+STYREN	2.5×10 ¹²	0.00	5.0	[211]
PHCC+C6H6=PHNTHRN+H	5.6×10 ¹²	-0.07	7.6	[211]
C14H14+C6H5=C14H13+C6H6	1.0×10^{14}	0.00	9.9	[137]
o-C6H4+C6H6=>BICYCLO	1.1×10^4	2.52	5.9	[212]
BICYCLO=>o-C6H4+C6H6	4.9×10 ¹⁶	0.00	6.7	[212]
A2-1+C6H6=FLTHN+H+H2	8.5×10 ¹¹	0.00	3.9	[211]
C6H6+C2H = PHC2H+H	1.0×10^{12}	0.00	0.0	[123]
C4H5-I + C6H6 = INDENE+CH3	1.4×10^{13}	0.00	14.0	[123]
INDENE+H = C6H6+C3H3	2.0×10 ¹⁴	0.00	24.5	[123]
INDENE+C6H5 = INDENYL+C6H6	5.0×10 ¹¹	0.00	3.0	[143]
C4H5-I+C6H6 => NAPHT+H2+H	1.0×10^{12}	0.00	1.5	[123]
C6H5+C6H6 = BIPHENYL+H	1.1×10^{23}	-2.92	7.5	[213]
A2-1+C6H6 = PYRENE+H+H2	1.0×10^{12}	0.00	2.5	[41]
A2C2H*+C6H6 = CHRYSEN+H	1.1×10^{24}	-2.92	8.0	[123]
A2R5-+C6H6 => BGHIF+H2+H	1.1×10^{25}	-2.92	8.0	[123]
C6H6+C2H = N-C8H7	7.0×10 ³⁸	-8.02	8.2	[123]
C4H5-I+C2H2=C6H6+H	1.6×10^{15}	-1.33	5.3	[123]
P2-+C6H6=TERPHENYL+H	9.5×10 ⁷⁵	-18.90	39.4	[125]
P2-+C6H6=>TRIPHENYLEN+H2+H	8.5×10 ¹¹	0.00	3.9	[125]
P3-+C6H6=QUATERPHENYL+H	1.0×10^{83}	-18.90	39.5	[125]
P4-+C6H6=QINQUEPHENYL+H	1.0×10 ⁸³	-18.90	39.5	[125]
C6H5+C3H4-P=C6H6+C3H3	1.8×10^4	2.54	2.8	[124]
BENZYLB+H=C6H6+PHCH2	1.7×10^{8}	1.56	4.4	[124]
BENZYLB+C6H5=BENZYLBJ+C6H6	5.3×10 ¹³	0.00	11.9	[124]
C14H14+H=C6H6+PHCH2CH2	1.7×10^{8}	1.56	4.	[124]
STILBN+C6H5=STILBNJ+C6H6	2.6×10 ²	3.19	2.8	[124]
A2-1+C6H6=A2A1-1+H	9.5×10 ¹¹	0.00	4.3	[124]
A2-2+C6H6=A2A1-2+H	9.5×10 ¹¹	0.00	4.3	[124]
BENZNAP+C6H5=BENZNAPJP+C6H6	5.3×10 ¹³	0.00	11.9	[124]
A3-1+C6H6=A3A1-1+H	9.5×10 ¹¹	0.00	4.3	[124]
C13H9+C6H6=FLRNA1-4+H	9.5×10 ¹¹	0.00	4.3	[124]
A4-1+C6H6=PYRNA1-4+H	9.5×10 ¹¹	0.00	4.3	[124]

Table 20: Kinetic rate parameters ($k = A (T / 1 K)^n exp (- E / RT)$) of important reactions for benzene production/consumption.

Reactions	A (cm, mol, s)	n	E (kcal/mol)	Ref	
2C5H5=NAPHT+H2	1.0×10^{13}	0.00	7.0	[114]	
2C5H5=NAPHT+2H	5.0×10 ¹²	0.00	8.0	[114]	
A1C2H3AC=NAPHT+H	1.0×10^{10}	0.00	4.8	[114]	
NAPHT+H=C10H9	5.0×10 ¹⁴	0.00	5.0	[114]	
NAPHT=A2-1+H	4.5×10 ¹⁵	0.00	107.4	[114]	
NAPHT+H=A2-1+H2	2.5×10 ¹⁴	0.00	16.0	[114]	
NAPHT+OH=A2-1+H2O	1.6×10 ⁸	1.42	1.4	[114]	
NAPHT+CH3=A2-1+CH4	2.0×10 ¹²	0.00	15.0	[114]	
NAPHT+O=A2O+H	2.2×10 ¹³	0.00	4.5	[114]	
NAPHT+O=A2-1+OH	2.0×10 ¹³	0.00	14.7	[114]	
NAPHT+O2=A2-1+HO2	6.3×10 ¹³	0.00	60.0	[114]	
A2OH+H=NAPHT+OH	2.2×10 ¹³	0.00	7.9	[114]	
C3H3+C6H4CH3=>NAPHT+H+H	5.0×10 ¹²	0.00	3.0	[214]	
NAPHT+C4H3-N=>PHNTHRN+H	4.0×10 ¹³	0.00	15.9	[211]	
NAPHT+C4H3-N=ANTHRCN+H	1.0×10 ¹³	0.00	0.0	[211]	
BICYCLO=NAPHT+C2H2	7.4×10 ¹⁴	0.09	54.8	[212]	
DIBZFUR+OH=>CO+NAPHT+HCO	2.0×10 ¹³	0.00	0.0	[128]	
NAPHT+PHC2H-=CHRYSEN+H	8.5×10 ¹¹	0.00	3.9	[211]	
C4H5-I+C6H6 => NAPHT+H2+H	1.0×10 ¹²	0.00	1.5	[215]	
C4H6+C6H5 => NAPHT+H2+H	5.0×10 ¹¹	0.00	1.5	[215]	
C6H5+C4H3-N = NAPHT	3.2×10 ²³	-3.20	2.1	[216]	
C6H5+C4H4 = NAPHT+H	3.3×10 ³³	-5.70	12.8	[11]	
C6H4CH3+H2CCCH => NAPHT+2H	4.0×10 ¹¹	0.00	7.0	[123]	
INDENE+CH2 => NAPHT+2H	2.0×10 ¹³	0.00	4.4	[217]	
NAPHT+O = CH2CO+PHC2H	2.2×10 ¹³	0.00	2.2	[213]	
NAPHT+O => INDENYL+CO+H	3.6×10 ¹⁴	0.00	22.0	[123]	
NAPHT+OH => PHC2H+CH2CO+H	1.3×10 ¹³	0.00	5.3	[213]	
NAPHT+C2H = A2-1+C2H2	5.0×10 ¹³	0.00	8.0	[216]	
NAPHT+C2H = A2C2H+H	5.0×10 ¹³	0.00	0.0	[11]	
P2-+O2 = NAPHT+HCO+CO	2.0×10^{12}	0.00	3.7	[123]	
NAPHT+C4H2 => PHNTHRN	2.8×10 ⁴	2.45	14.6	[11]	
NAPHT+C6H = A4-1	7.0×10^{37}	-8.02	8.2	[213]	
NAPHT+C6H5 = PYRENE+H+H2	1.0×10 ¹¹	0.00	2.5	[41]	
PHC2H-+NAPHT => BGHIF+H2+H	2.1×10^{25}	-2.92	8.0	[123]	
N-C8H7+C2H2 = NAPHT+H	1.6×10^{16}	-1.33	2.7	[11]	
NAPHT+O = N-C8H7+HCCO	2.0×10^{13}	0.00	21.0	[123]	
INDENYL+CH3 = NAPHT+H+H	3.0×10^{18}	0.00	36.5	[143]	
PHCH2+C3H3 = NAPHT+H+H	2.0×10^{13}	0.35	50	[148]	
NAPHT+C6H5=A2A1-1+H	6.4×10^{11}	0.00	4.3	[124]	
NAPHT+C6H5=A $^{2}A1-^{2}H$	6.4×10^{11}	0.00	4.3	[124]	
BENZNAP+H=NAPHT+PHCH2	1.7×10^8	1.56	44	[124]	
NAPHT+PHC2H= $\Delta 4$ +H	8 5 ×10 ¹¹	0.00	3.9	[124]	
NAPHT+A 2 -1=A 2 A 2 -12+H	6.4×10 ¹¹	0.00	43	[124]	
NAPHT+ $A_{2-1}=A_{2}A_{2-1}I+H$	6.4×10 ¹¹	0.00	43	[124]	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1.10	0.00	1.5	I L⁺┹┱]	

Table 21 : Kinetic rate parameters ($k = A (T / 1 K)^n exp (- E / RT)$) of important reactions for naphthalene (NAPHT) production/consumption.

Reactions	A (cm, mol, s)	n	E (kcal/mol)	Ref
$\Delta 3_{-1}+C^{2}H^{2} = PVRENE+H$	6.6×10 ²⁴	-3.36	89	[11]
$A_{3-4+C2H2} = PVRENE+H$	1.0×10^7	1 79	33	[211]
C13H9+C3H3=PYRFNF+H2	1.5×10^{75}	-17.80	39.6	[211]
C13H9+C3H2=PYRENE+H	1.5×10^{75}	-17.80	39.6	[47]
FLUORENE+C3H2=PYRENE+H2	1.5×10^{12}	1 80	56.5	[211]
PHC2H-+PHC2H=PYRENE+H	1.3×10^{23}	-2.90	15.9	[62]
PHCC+PHCC=PYRENE	5.0×10^{12}	0.00	6.0	[211]
PHC2H-+PHC2H-=PYRENE	5.0×10^{12}	0.00	6.0	[211]
PHCC+PHC2H-=PYRENE	5.0×10^{12}	0.00	6.0	[211]
A3C2H+H=PYRENE+H	3.2×10^{09}	1.18	4.6	[33]
A3C2H2(+M)=PYRENE+H(+M)	4.0×10^{28}	-5.00	26.0	[211]
				[]
LOW / 1.00E+29 -4.4 8.00E+03/ TROE/ 1.0E-02 1.00E-30 2.0E+04 5.00E+01/				
PYRENE+H=A4-1+H2	2.5×10 ¹⁴	0.00	16.0	[211]
PYRENE+H=A4-2+H2	2.5×10 ¹⁴	0.00	16.0	[211]
PYRENE+H=A4-4+H2	2.5×10 ¹⁴	0.00	16.0	[211]
A4-1+CH4=>PYRENE+CH3	4.5×10 ⁻⁰²	4.25	4.3	[211]
PYRENE+CH3=>A4-2+CH4	8.0×10 ⁻⁰¹	3.93	11.8	[211]
A4-2+CH4=>PYRENE+CH3	4.5×10 ⁻⁰²	4.25	4.3	[211]
PYRENE+CH3=>A4-4+CH4	8.0×10 ⁻⁰¹	3.93	11.8	[211]
A4-4+CH4=>PYRENE+CH3	4.5×10 ⁻⁰²	4.25	4.3	[211]
A4-1+H(+M)=PYRENE(+M)	1.0×10 ¹⁴	0.00	0.0	[211]
LOW / 6.6E+75 -16.3 7000. / TROE/ 1.0 0.1 585 6113 /				
A4-2+H(+M)=PYRENE(+M)	1.0×10^{14}	0.00	0.0	[211]
LOW / 6.6e75 -16.3 7000 /				
$\frac{1}{100} \frac{1}{100} \frac{1}$	1.0.1014	0.00	0.0	[011]
A4-4+H(+M)=PYRENE(+M)	1.0×10 ¹⁴	0.00	0.0	[211]
LOW / 6 6e75 -16 3 7000/				
TROE/ 1.0 0.1 585 611 /				
PHNTHRN+C2H=PYRENE+H	1.0×10 ¹³	0.00	0.0	[213]
PYRENE+OH=A4-1+H2O	2.3×10 ⁰⁴	2.68	0.7	[211]
PYRENE+OH=A4-2+H2O	2.3×10 ⁰⁴	2.68	0.7	[211]
PYRENE+OH=A4-4+H2O	2.3×10 ⁰⁴	2.68	0.7	[211]
PYRENE+OH=>A3-4+CH2CO	1.3×10^{13}	0.00	10.6	[211]
PYRENE+OH=>PHNTHRN+HCCO	5.5×10 ⁰²	3.25	5.6	[211]
PYRENE+O=>A3-4+HCCO	2.2×10^{13}	0.00	4.5	[211]
A4-1+O2 => A3-4+CO+CO	2.1×10^{12}	0.00	7.5	[211]
A4-2+O2 > A3-4+CO+CO	2.1×10^{12}	0.00	7.5	[211]
A4-4+O2 => A3-4+CO+CO	2.1×10^{12}	0.00	7.5	[211]
A3CH2+CH2 = PVRFNF+H2+H	2.1×10^{14}	0.00	0.0	[123]
N_{C} H_{T} H_{C} H_{T} H_{C} H_{T} H_{T	1.1×10^{24}	_2 92	8.0	[123]
N-C8H7+A1C2H = PVRENE+H2	43×10^{37}	-6.30	22.5	[123]
N-Contractor = 1 TRENE $+ HZ$	4.3×10^{37}	-0.30	22.5	[123]
$\frac{110DE111E}{0014013} = 2$	H. J^10	-0.50	22.3	[123]
$\frac{11100100}{21100} = 2000000000000000000000000000000000$	4.3×10^{37}	-6.30	22.5	[123]
$N\Delta PHT+C6H = \Delta 4_{-1}$	7.0×10^{37}	-8.02	8 2	[213]
$\frac{11111}{1001} = A^{-1}$	1.0×10^{11}	0.02	2.5	[213]
1111 + COHJ = T I KENE + H + H2 $A = 1 + COHJ = 0 + H + H2$	1.0^{10} 1.0^{12}	0.00	2.5	[1]
A2-1+C0H0 = PIKENE+H+H2	1.0×10	0.00	2.3	[[+1]

A2-1+C6H5 => PYRENE+H2	4.3×10 ³⁷	-6.3	22.5	[123]
A2-1+C6H2 = A4-1	7.0×10 ³⁷	-8.02	8.2	[123]
$A2R5-+C4H2 \implies A4-1$	7.0×10 ³⁷	-8.02	8.2	[123]
A2R5-+C4H3-N = PYRENE	6.4×10 ²³	-3.20	2.1	[123]
A3C2H+H = PYRENE+H	9.0×10 ³⁸	-7.39	10.4	[11]
CHRYSEN-1+O2 =>	2.0×10 ¹³	0.00	3.7	[123]
HCO+CO+PYRENE				
C4H2+PYRENE => BAPYR	6.0×10 ⁰²	2.23	-0.6	[123]
N-C8H7+PHC2H- => PYRENE+2H	4.3×10 ¹⁴	0.00	4.9	[123]
PYRENE+C6H5=PYRNA1-1+H	1.3×10 ¹²	0.00	4.3	[124]
PYRENE+C6H5=PYRNA1-4+H	1.3×10 ¹²	0.00	4.3	[124]

Table 22: Kinetic rate parameters ($k = A (T / 1 K)^n exp (- E / RT)$) of important reactions for pyrene production/consumption.

H. List of species included in the kinetic model

	Species Considered	Phase	Charge	Molecular Weight	Tempe	erature	Element count					
					Low	High	C	Н	0	N	Ar	Не
1	NC10H22	G	0	1 42E+02	300	5000	10	22	0	0	0	0
2	IC8H18	G	0	1.12E+02	300	5000	8	18	0	0	0	0
3	PB7	G	0	1.110 ± 02 1 20E+02	300	3000	9	12	0	0	0	0
4	02	G	0	3 20E+01	300	5000	0	0	2	0	0	0
5	CO	G	0	2.80E+01	300	5000	1	0	1	0	0	0
6	N2	G	0	2.80E+01	300	5000	0	0	0	2	0	0
7	AR	G	0	3.99E+01	200	6000	0	0	0	0	1	0
8	HE	G	0	4.00E+00	200	6000	0	0	0	0	0	1
9	CO2	G	0	4.40E+01	300	5000	1	0	2	0	0	0
10	H2O	G	0	1.80E+01	300	5000	0	2	1	0	0	0
11	СНЗСНОСНО	G	0	7.31E+01	300	5000	3	5	2	0	0	0
12	НО2СНО	G	0	6.20E+01	300	5000	1	2	3	0	0	0
13	O2CHO	G	0	6.10E+01	300	5000	1	1	3	0	0	0
14	ОСНО	G	0	4.50E+01	300	5000	1	1	2	0	0	0
15	СНЗО2Н	G	0	4.80E+01	300	5000	1	4	2	0	0	0
16	СН	G	0	1.30E+01	300	5000	1	1	0	0	0	0
17	НССОН	G	0	4.20E+01	300	4000	2	2	1	0	0	0
18	СН3СОЗН	G	0	7.61E+01	300	5000	2	4	3	0	0	0
19	CH3CO3	G	0	7.50E+01	300	5000	2	3	3	0	0	0
20	CH3CO2	G	0	5.90E+01	300	5000	2	3	2	0	0	0
21	О2С2Н4ОН	G	0	7.71E+01	300	5000	2	5	3	0	0	0
22	С2Н5О2Н	G	0	6.21E+01	300	5000	2	6	2	0	0	0
23	C2H4O2H	G	0	6.11E+01	300	5000	2	5	2	0	0	0

24	C2H4O1-2	G	0	4.41E+01	300	5000	2	4	1	0	0	0
25	CH3COCH2O2	G	0	8.91E+01	300	5000	3	5	3	0	0	0
26	CH3COCH2O2H	G	0	9.01E+01	300	5000	3	6	3	0	0	0
27	CH3COCH2O	G	0	7.31E+01	300	5000	3	5	2	0	0	0
28	СНЗОСНЗ	G	0	4.61E+01	300	5000	2	6	1	0	0	0
29	СНЗОСНО	G	0	6.01E+01	300	5000	2	4	2	0	0	0
30	СНЗОСО	G	0	5.90E+01	300	5000	2	3	2	0	0	0
31	NC3H7O2H	G	0	7.61E+01	300	5000	3	8	2	0	0	0
32	ІСЗН7О2Н	G	0	7.61E+01	300	5000	3	8	2	0	0	0
33	NC3H7O	G	0	5.91E+01	300	5000	3	7	1	0	0	0
34	IC3H7O	G	0	5.91E+01	300	5000	3	7	1	0	0	0
35	С3Н6О1-2	G	0	5.81E+01	300	5000	3	6	1	0	0	0
36	СЗН6ОН	G	0	5.91E+01	300	5000	3	7	1	0	0	0
37	НОСЗН6О2	G	0	9.11E+01	300	5000	3	7	3	0	0	0
38	РС4Н9О2Н	G	0	9.01E+01	300	5000	4	10	2	0	0	0
39	PC4H9O2	G	0	8.91E+01	300	5000	4	9	2	0	0	0
40	SC4H9O2	G	0	8.91E+01	300	5000	4	9	2	0	0	0
41	PC4H9O	G	0	7.31E+01	300	5000	4	9	1	0	0	0
42	SC4H9O	G	0	7.31E+01	300	5000	4	9	1	0	0	0
43	C4H8O1-3	G	0	7.21E+01	300	5000	4	8	1	0	0	0
44	C4H8O1-4	G	0	7.21E+01	300	5000	4	8	1	0	0	0
45	C4H8OH-102	G	0	1.05E+02	300	5000	4	9	3	0	0	0
46	C4H8OOH1-2	G	0	8.91E+01	300	5000	4	9	2	0	0	0
47	C4H8OOH1-3	G	0	8.91E+01	300	5000	4	9	2	0	0	0
48	C4H8OOH1-4	G	0	8.91E+01	300	5000	4	9	2	0	0	0
40	C4H8OOH1-2O2	G	0	1.21E+01	300	5000	4	9	4	0	0	0
50	C4H8OOH1-3O2	G	0	1.21E+02	300	5000	4	9	4	0	0	0
51	NC4KET12	G	0	1.04E+02	300	5000	4	8	3	0	0	0
52	NC4KET13	G	0	1.04E+02	300	5000	4	8	3	0	0	0
53	C2H5COCH3	G	0	7.21E+01	300	5000	4	8	1	0	0	0
54	CH2CH2COCH3	G	0	7 11E+01	300	5000	4	7	1	0	0	0
55	СН2СН2СНО	G	0	5 71E+01	300	5000	3	5	1	0	0	0
56	IC4H9O2H	G	0	9.01E+01	300	5000	4	10	2	0	0	0
57	тс4н902н	G	0	9.01E+01	300	5000	4	10	2	0	0	0
58	102C4H8OH	G	0	1.05E+02	300	5000	4	9	3	0	0	0
59	TC4H800H-I02	G	0	1.03E+02 1.21E+02	300	5000	<u>т</u> Д	9	4	0	0	0
60	IC4H800H-IO2	G	0	1.21E+02 1 21E+02	300	5000	<u>т</u> Д	9	<u>т</u> 4	0	0	0
61	IC4H800H-T02	G	0	1.21E+02 1 21E+02	300	5000	<u>т</u> Д	9	<u>т</u> 4	0	0	0
62		G	0	1.21E+02 1.04E+02	300	5000		8	3	0	0	0
63	ICAKETIT	G	0	1.04E+02 1.04E+02	300	5000	<u>т</u> Л	8	2	0	0	0
64	ТС4КЕПТ	G	0	1.04L+02	300	5000	4	7	2	0	0	0
65	тезикозецо	G		0./1ETUI	200	5000	4	7	2	0	0	0
00		C		1.03E+02	200	5000	4	7	2		0	0
00		G		1.03E+02	200	5000	4	- /	3		0	0
0/		C		1.03E+02	200	5000	4	/	1		0	0
68			0	δ.31E+01	300	5000	5	9		0	0	0
69	02C4H8CHO	U	0	1.1/E+02	300	2000	5	9	3	0	0	0

70	O2HC4H8CO	G	0	1.17E+02	300	5000	5	9	3	0	0	0
71	AC5H11	G	0	7.11E+01	300	5000	5	11	0	0	0	0
72	DC5H11	G	0	7.11E+01	300	5000	5	11	0	0	0	0
73	AC6H13	G	0	8.52E+01	300	5000	6	13	0	0	0	0
74	BC6H13	G	0	8.52E+01	300	5000	6	13	0	0	0	0
75	DC6H13	G	0	8.52E+01	300	5000	6	13	0	0	0	0
76	EC6H13	G	0	8.52E+01	300	5000	6	13	0	0	0	0
77	IC4H9COCH3	G	0	1.00E+02	300	5000	6	12	1	0	0	0
78	IC4H9COCH2	G	0	9.92E+01	300	5000	6	11	1	0	0	0
79	IC3H6CH2COCH3	G	0	9.92E+01	300	5000	6	11	1	0	0	0
80	ТСЗН6СН2СОСН3	G	0	9.92E+01	300	5000	6	11	1	0	0	0
81	NC3H7COCH3	G	0	8.61E+01	300	5000	5	10	1	0	0	0
82	NC3H7COCH2	G	0	8.51E+01	300	5000	5	9	1	0	0	0
83	СЗН6СОСН3-2	G	0	8.51E+01	300	5000	5	9	1	0	0	0
84	АСЗН5СНО	G	0	7.01E+01	300	5000	4	6	1	0	0	0
85	C4H8CHO-1	G	0	8.51E+01	300	5000	5	9	1	0	0	0
86	C2H5COC2H5	G	0	8.61E+01	300	5000	5	10	1	0	0	0
87	C2H5COC2H4P	G	0	8.51E+01	300	5000	5	9	1	0	0	0
88	C2H5COC2H3	G	0	8.41E+01	300	5000	5	8	1	0	0	0
89	PC2H4COC2H3	G	0	8.31E+01	300	5000	5	7	1	0	0	0
90	C7H16-24	G	0	1.00E+02	300	5000	7	16	0	0	0	0
91	ZC7H15O2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
92	YC7H15O	G	0	1.15E+02	300	5000	7	15	1	0	0	0
93	ZC7H15O	G	0	1.15E+02	300	5000	7	15	1	0	0	0
94	YC7H14OOH-X1	G	0	1.31E+02	300	5000	7	15	2	0	0	0
95	YC7H14OOH-Z	G	0	1.31E+02	300	5000	7	15	2	0	0	0
96	YC7H14OOH-X2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
97	ZC7H14OOH-Y	G	0	1.31E+02	300	5000	7	15	2	0	0	0
	YC7H14OOH-			1 (25.02	•	-	_					0
98	X102 XC7H1400H-	G	0	1.63E+02	300	5000	1	15	4	0	0	0
99	X2O2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
100	YC7H14OOH-	~		1 (27 00	• • • •		_					
100	Y2O2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
101	YC/H1400H-Z02	G	0	1.63E+02	300	5000	7	15	4	0	0	0
102	X-Y2C/H14O	G	0	1.14E+02	300	5000	7	14	1	0	0	0
103	XC/HI4OH	G	0	1.15E+02	300	5000	7	15	1	0	0	0
104	YC/HI4OH	G	0	1.15E+02	300	5000	7	15	1	0	0	0
105	XO2C/HI4OH	G	0	1.47E+02	300	5000	7	15	3	0	0	0
106	YO2C7H14OH	G	0	1.47E+02	300	5000	7	15	3	0	0	0
107	NEOC5H11O2H	G	0	1.04E+02	300	5000	5	12	2	0	0	0
108	NEOC5H11O	G	0	8.71E+01	300	5000	5	11	1	0	0	0
109	NEO-C5H10O	G	0	8.61E+01	300	5000	5	10	1	0	0	0
110	02	G	0	1.35E+02	300	5000	5	11	4	0	0	0
111	NEOC5H9Q2	G	0	1.35E+02	300	5000	5	11	4	0	0	0
112	NEOC5H9Q2-N	G	0	1.35E+02	300	5000	5	11	4	0	0	0
113	NEOC5KET	G	0	1.18E+02	300	5000	5	10	3	0	0	0
L		·								<u>هــــــــــــــــــــــــــــــــــــ</u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	

114	NEOC5KETOX	G	0	1.01E+02	300	5000	5	9	2	0	0	0
115	HC6H13	G	0	8.52E+01	300	5000	6	13	0	0	0	0
116	ТС4Н9СНО	G	0	8.61E+01	300	5000	5	10	1	0	0	0
117	ТС4Н9СО	G	0	8.51E+01	300	5000	5	9	1	0	0	0
118	ІСЗН6СНСНО	G	0	8.41E+01	300	5000	5	8	1	0	0	0
119	IC3H6CHCO	G	0	8.31E+01	300	5000	5	7	1	0	0	0
120	РС7Н13О-О	G	0	1.13E+02	300	5000	7	13	1	0	0	0
121	NC7H15O2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
122	PC7H15O2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
123	QC7H15O2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
124	NC7H14OOH-N2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
125	NC7H14OOH-O	G	0	1.31E+02	300	5000	7	15	2	0	0	0
126	QC7H14OOH-O	G	0	1.31E+02	300	5000	7	15	2	0	0	0
127	PC7H14OOH-N	G	0	1.31E+02	300	5000	7	15	2	0	0	0
128	PC7H14OOH-O	G	0	1.31E+02	300	5000	7	15	2	0	0	0
129	NC7H14OOH-OO2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
130	QC7H14OOH-OO2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
131	PC7H14OOH-NO2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
132	PC7H14OOH-OO2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
133	N-PC7H14O	G	0	1.14E+02	300	5000	7	14	1	0	0	0
134	NEOC7KETPN	G	0	1.46E+02	300	5000	7	14	3	0	0	0
135	NEOC7KETPO	G	0	1.46E+02	300	5000	7	14	3	0	0	0
136	NEOC7KETOO	G	0	1.46E+02	300	5000	7	14	3	0	0	0
137	CC8H17O2	G	0	1.45E+02	300	5000	8	17	2	0	0	0
138	AC8H17O2H	G	0	1.46E+02	300	5000	8	18	2	0	0	0
139	BC8H17O2H	G	0	1.46E+02	300	5000	8	18	2	0	0	0
140	СС8Н17О2Н	G	0	1.46E+02	300	5000	8	18	2	0	0	0
141	DC8H17O2H	G	0	1.46E+02	300	5000	8	18	2	0	0	0
142	AC8H17O	G	0	1.29E+02	300	5000	8	17	1	0	0	0
143	BC8H17O	G	0	1.29E+02	300	5000	8	17	1	0	0	0
144	CC8H17O	G	0	1.29E+02	300	5000	8	17	1	0	0	0
145	DC8H17O	G	0	1.29E+02	300	5000	8	17	1	0	0	0
146	AC8H16OOH-D	G	0	1.45E+02	300	5000	8	17	2	0	0	0
147	CC8H16OOH-D	G	0	1.45E+02	300	5000	8	17	2	0	0	0
148	CC8H16OOH-B	G	0	1.45E+02	300	5000	8	17	2	0	0	0
149	CC8H16OOH-A	G	0	1.45E+02	300	5000	8	17	2	0	0	0
150	DC8H16OOH-D	G	0	1.45E+02	300	5000	8	17	2	0	0	0
151	DC8H16OOH-A	G	0	1.45E+02	300	5000	8	17	2	0	0	0
152	IC8ETERAD	G	0	1.28E+02	300	5000	8	16	1	0	0	0
153	IC8ETERDD	G	0	1.28E+02	300	5000	8	16	1	0	0	0
154	AC8H16OOH-AO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
155	AC8H16OOH-BO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
156	AC8H16OOH-CO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
157	BC8H16OOH-CO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
158	BC8H16OOH-AO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
159	BC8H16OOH-DO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
160	CC8H16OOH-BO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
-----	---------------	---	---	----------	-----	------	-----	----	----------	-----	-----	-----
161	CC8H16OOH-AO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
162	DC8H16OOH-CO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
163	DC8H16OOH-DO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
164	DC8H16OOH-BO2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
165	IC8KETAA	G	0	1.60E+02	300	5000	8	16	3	0	0	0
166	IC8KETAB	G	0	1.60E+02	300	5000	8	16	3	0	0	0
167	IC8KETAC	G	0	1.60E+02	300	5000	8	16	3	0	0	0
168	IC8KETBA	G	0	1.60E+02	300	5000	8	16	3	0	0	0
169	IC8KETBC	G	0	1.60E+02	300	5000	8	16	3	0	0	0
170	IC8KETBD	G	0	1.60E+02	300	5000	8	16	3	0	0	0
171	IC8KETDB	G	0	1.60E+02	300	5000	8	16	3	0	0	0
172	IC8KETDC	G	0	1.60E+02	300	5000	8	16	3	0	0	0
173	IC8KETDD	G	0	1.60E+02	300	5000	8	16	3	0	0	0
174	CC8H16OH-B	G	0	1.29E+02	300	5000	8	17	1	0	0	0
175	BC8H16OH-C	G	0	1.29E+02	300	5000	8	17	1	0	0	0
176	CC8H16OH-BO2	G	0	1.61E+02	300	5000	8	17	3	0	0	0
177	СС8Н16О-ВО2Н	G	0	1.61E+02	300	5000	8	17	3	0	0	0
178	BC8H16OH-CO2	G	0	1.61E+02	300	5000	8	17	3	0	0	0
179	BC8H16O-CO2H	G	0	1.61E+02	300	5000	8	17	3	0	0	0
180	DC6H12CHO-D	G	0	1.13E+02	300	5000	7	13	1	0	0	0
181	ІСЗН7СОСЗН6-Т	G	0	1.13E+02	300	5000	7	13	1	0	0	0
182	ТС4Н9СОС2Н5	G	0	1.14E+02	300	5000	7	14	1	0	0	0
183	TC4H9COC2H4S	G	0	1.13E+02	300	5000	7	13	1	0	0	0
184	НС6Н12СНО	G	0	1.13E+02	300	5000	7	13	1	0	0	0
185	OC7H13OOH-N	G	0	1.30E+02	300	5000	7	14	2	0	0	0
186	OC7H13O-N	G	0	1.13E+02	300	5000	7	13	1	0	0	0
187	PC7H13OOH-O	G	0	1.30E+02	300	5000	7	14	2	0	0	0
188	OC7H13OOH-Q	G	0	1.30E+02	300	5000	7	14	2	0	0	0
189	OC7H13O-Q	G	0	1.13E+02	300	5000	7	13	1	0	0	0
190	DC6H11-D	G	0	8.32E+01	300	5000	6	11	0	0	0	0
191	IC3H6CHCOCH2	G	0	9.71E+01	300	5000	6	9	1	0	0	0
192	C4H8OH-1	G	0	7.31E+01	300	5000	4	9	1	0	0	0
193	C5H11O2-1	G	0	1.03E+02	300	5000	5	11	2	0	0	0
194	C5H11O2H-1	G	0	1.04E+02	300	5000	5	12	2	0	0	0
195	C5H11O-1	G	0	8.71E+01	300	5000	5	11	1	0	0	0
196	C5H11O-2	G	0	8.71E+01	300	5000	5	11	1	0	0	0
197	C5H10OOH1-2	G	0	1.03E+02	300	5000	5	11	2	0	0	0
198	C5H10OOH1-3	G	0	1.03E+02	300	5000	5	11	2	0	0	0
199	C5H10OOH1-4	G	0	1.03E+02	300	5000	5	11	2	0	0	0
200	С5Н10ООН2-3	G	0	1.03E+02	300	5000	5	11	2	0	0	0
201	С5Н10ООН1-2О2	G	0	1.35E+02	300	5000	5	11	4	0	0	0
202	C5H10OOH1-3O2	G	0	1.35E+02	300	5000	5	11	4	0	0	0
203	C5H10OOH1-4O2	G	0	1.35E+02	300	5000	5	11	4	0	0	0
204	C5H10OOH2-4O2	G	0	1.35E+02	300	5000	5	11	4	0	0	0
205	C5H10O1-3	G	0	8.61E+01	300	5000	5	10	1	0	0	0
200			Ŭ	0.012 01	200		. J	10	<u> </u>	L Č	L ~	. J

	206	C5H10O1-4	G	0	8.61E+01	300	5000	5	10	1	0	0	0
	207	NC5KET12	G	0	1.18E+02	300	5000	5	10	3	0	0	0
	208	NC5KET13	G	0	1.18E+02	300	5000	5	10	3	0	0	0
	209	NC5KET14	G	0	1.18E+02	300	5000	5	10	3	0	0	0
	210	NC5KET24	G	0	1.18E+02	300	5000	5	10	3	0	0	0
	211	NC3H7COC2H4P	G	0	9.92E+01	300	5000	6	11	1	0	0	0
	212	С6Н12О1-2	G	0	1.00E+02	300	5000	6	12	1	0	0	0
	213	С6Н12О1-3	G	0	1.00E+02	300	5000	6	12	1	0	0	0
	214	С6Н13О2Н-1	G	0	1.18E+02	300	5000	6	14	2	0	0	0
	215	С6Н13О2-1	G	0	1.17E+02	300	5000	6	13	2	0	0	0
	216	C6H12OOH1-2	G	0	1.17E+02	300	5000	6	13	2	0	0	0
	217	С6Н12ООН1-3	G	0	1.17E+02	300	5000	6	13	2	0	0	0
	218	С6Н12ООН1-4	G	0	1.17E+02	300	5000	6	13	2	0	0	0
l	219	C6H12OOH1-2O2	G	0	1.49E+02	300	5000	6	13	4	0	0	0
l	220	C6H12OOH1-3O2	G	0	1.49E+02	300	5000	6	13	4	0	0	0
ĺ	221	C6H12OOH1-4O2	G	0	1.49E+02	300	5000	6	13	4	0	0	0
1	222	NC6KET12	G	0	1.32E+02	300	5000	6	12	3	0	0	0
1	223	NC6KET13	G	0	1.32E+02	300	5000	6	12	3	0	0	0
1	224	NC6KET14	G	0	1.32E+02	300	5000	6	12	3	0	0	0
1	225	С6Н13О-1	G	0	1.01E+02	300	5000	6	13	1	0	0	0
1	226	C7H14-2	G	0	9.82E+01	300	5000	7	14	0	0	0	0
Ì	227	C7H14-3	G	0	9.82E+01	300	5000	7	14	0	0	0	0
1	228	C7H15O2-4	G	0	1 31E+02	300	5000	7	15	2	0	0	0
1	229	C7H15O2H-1	G	0	1.31E+02	300	5000	7	16	2	0	0	0
1	230	C7H15O-1	G	0	1.15E+02	300	5000	7	15	1	0	0	0
Ì	231	С7Н14ООН4-2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
•	232	C7H14OOH1-2O2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
1	233	C7H14OOH1-3O2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
l	234	C7H14OOH1-4O2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
	235	С7Н14ООН4-2О2	G	0	1.63E+02	300	5000	7	15	4	0	0	0
	236	NC7KET12	G	0	1.46E+02	300	5000	7	14	3	0	0	0
	237	NC7KET13	G	0	1.46E+02	300	5000	7	14	3	0	0	0
	238	NC7KET14	G	0	1.46E+02	300	5000	7	14	3	0	0	0
	239	NC7KET42	G	0	1.46E+02	300	5000	7	14	3	0	0	0
	240	C5H10CHO-1	G	0	9.92E+01	300	5000	6	11	1	0	0	0
	241	C5H10CHO-2	G	0	9.92E+01	300	5000	6	11	1	0	0	0
l	242	C5H10CHO-3	G	0	9.92E+01	300	5000	6	11	1	0	0	0
l	243	C5H10CHO-4	G	0	9.92E+01	300	5000	6	11	1	0	0	0
1	244	C5H10CHO-5	G	0	9.92E+01	300	5000	6	11	1	0	0	0
	245	NC4H9COCH3	G	0	1.00E+02	300	5000	6	12	1	0	0	0
	246	С9Н19-3	G	0	1.27E+02	300	5000	9	19	0	0	0	0
	247	С9Н19-5	G	0	1.27E+02	300	5000	9	19	0	0	0	0
	248	С9Н18-2	G	0	1.26E+02	300	5000	9	18	0	0	0	0
	249	С9Н18-3	G	0	1.26E+02	300	5000	9	18	0	0	0	0
	250	C10H21O-1	G	0	1.57E+02	300	5000	10	21	1	0	0	0
	2.51	C10H21O-2	G	0	1.57E+02	300	5000	10	21	1	0	0	0
1		C	i	, j							L Ť	<u> </u>	-

	252	C10H21O-3	G	0	1.57E+02	300	5000	10	21	1	0	0	0
	253	C10H21O-4	G	0	1.57E+02	300	5000	10	21	1	0	0	0
	254	C10H21O-5	G	0	1.57E+02	300	5000	10	21	1	0	0	0
	255	С9Н19О-1	G	0	1.43E+02	300	5000	9	19	1	0	0	0
	256	C8H17O-1	G	0	1.29E+02	300	5000	8	17	1	0	0	0
	257	С9Н19О2-4	G	0	1.59E+02	300	5000	9	19	2	0	0	0
	258	С9Н19О2-5	G	0	1.59E+02	300	5000	9	19	2	0	0	0
	259	C10H21O2H-1	G	0	1.74E+02	300	5000	10	22	2	0	0	0
	260	C10H21O2H-2	G	0	1.74E+02	300	5000	10	22	2	0	0	0
	261	C10H21O2H-3	G	0	1.74E+02	300	5000	10	22	2	0	0	0
	262	C10H21O2H-4	G	0	1.74E+02	300	5000	10	22	2	0	0	0
	263	C10H21O2H-5	G	0	1.74E+02	300	5000	10	22	2	0	0	0
	264	С9Н19О2Н-1	G	0	1.60E+02	300	5000	9	20	2	0	0	0
	265	C8H17O2H-1	G	0	1.46E+02	300	5000	8	18	2	0	0	0
	266	C1000H2-1	G	0	1.73E+02	300	5000	10	21	2	0	0	0
l	267	C1000H2-6	G	0	1.73E+02	300	5000	10	21	2	0	0	0
1	268	C1000H3-1	G	0	1.73E+02	300	5000	10	21	2	0	0	0
•	269	С10ООН3-7	G	0	1.73E+02	300	5000	10	21	2	0	0	0
1	270	C1000H4-7	G	0	1.73E+02	300	5000	10	21	2	0	0	0
1	271	C1000H4-8	G	0	1.73E+02	300	5000	10	21	2	0	0	0
1	272	C1000H5-9	G	0	1.73E+02	300	5000	10	21	2	0	0	0
1	273	C900H1-2	G	0	1.79E+02	300	5000	9	19	2	0	0	0
•	273	C900H1-3	G	0	1.59E+02	300	5000	9	19	2	0	0	0
•	275	C900H1-4	G	0	1.59E+02	300	5000	9	19	2	0	0	0
1	276	С900Н5-3	G	0	1.59E+02	300	5000	9	19	2	0	0	0
•	270	C800H1-2	G	0	1.45E+02	300	5000	8	17	2	0	0	0
1	278	C800H1-3	G	0	1.45E+02	300	5000	8	17	2	0	0	0
Ì	279	C800H1-4	G	0	1.45E+02	300	5000	8	17	2	0	0	0
•	280	C1000H1-202	G	0	2.05E+02	300	5000	10	21	4	0	0	0
1	281	C1000H1-302	G	0	2.05E+02	300	5000	10	21	4	0	0	0
1	282	C1000H1-402	G	0	2.05E+02	300	5000	10	21	4	0	0	0
•	283	C1000H2-102	G	0	2.05E+02	300	5000	10	21	4	0	0	0
•	284	C1000H2-302	G	0	2.05E+02	300	5000	10	21	4	0	0	0
•	285	C1000H2-402	G	0	2.05E+02	300	5000	10	21	4	0	0	0
Ì	286	C1000H2-502	G	0	2.05E+02	300	5000	10	21	4	0	0	0
•	287	C1000H3-102	G	0	2.05E+02	300	5000	10	21		0	0	0
•	287	C1000H3-202	G	0	2.05E+02	300	5000	10	21	<u>т</u> 1	0	0	0
•	280	C1000H3-402	G	0	2.05E+02	300	5000	10	21		0	0	0
•	209	C1000H3 502	G	0	2.03E+02 2.05E±02	300	5000	10	21	4	0	0	0
•	290	C1000H3-502	C	0	2.03E+02	200	5000	10	21	4	0	0	0
•	291	C1000H4 102	G		2.03E+02	200	5000	10	21	4	0	0	0
	292	C1000H4-102	G		2.03E+02	200	5000	10	21	4	0	0	0
	293	C1000H4-202	C		2.03E+02	200	5000	10	21	4	0	0	0
	294	C1000H4-302	U C		2.05E+02	200	5000	10	21	4	0	0	0
•	293	C1000H4-502	C		2.03E+02	200	5000	10	21	4	0	0	0
	290	C1000H4-002	C		2.03E+02	200	5000	10	21	4	0	0	0
	297	C1000H4-702	U	0	2.05E+02	300	5000	10	21	4	0	0	0

1			1	I				1	1	1	1	1	
	298	C10OOH5-2O2	G	0	2.05E+02	300	5000	10	21	4	0	0	0
	299	C10OOH5-3O2	G	0	2.05E+02	300	5000	10	21	4	0	0	0
	300	C1000H5-402	G	0	2.05E+02	300	5000	10	21	4	0	0	0
	301	С10ООН5-6О2	G	0	2.05E+02	300	5000	10	21	4	0	0	0
	302	С10ООН5-7О2	G	0	2.05E+02	300	5000	10	21	4	0	0	0
	303	C10OOH5-8O2	G	0	2.05E+02	300	5000	10	21	4	0	0	0
	304	C9OOH1-2O2	G	0	1.91E+02	300	5000	9	19	4	0	0	0
	305	C9OOH1-3O2	G	0	1.91E+02	300	5000	9	19	4	0	0	0
	306	C800H1-2O2	G	0	1.77E+02	300	5000	8	17	4	0	0	0
	307	C800H1-302	G	0	1.77E+02	300	5000	8	17	4	0	0	0
	308	C800H1-402	G	0	1.77E+02	300	5000	8	17	4	0	0	0
	309	C10O2-6	G	0	1.56E+02	300	5000	10	20	1	0	0	0
	310	C10O3-4	G	0	1.56E+02	300	5000	10	20	1	0	0	0
	311	C10O3-7	G	0	1.56E+02	300	5000	10	20	1	0	0	0
l	312	C10O4-7	G	0	1.56E+02	300	5000	10	20	1	0	0	0
1	313	C9O1-3	G	0	1.42E+02	300	5000	9	18	1	0	0	0
•	314	C901-4	G	0	1 42E+02	300	5000	9	18	1	0	0	0
1	315	C801-2	G	0	1.12E+02	300	5000	8	16	1	0	0	0
	316	C10KET1-2	G	0	1.20E+02	300	5000	10	20	3	0	0	0
Ì	317	C10KET1-3	G	0	1.88E+02	300	5000	10	20	3	0	0	0
1	318	C10KET1-4	G	0	1.88E+02	300	5000	10	20	3	0	0	0
Ì	310	C10KET2-1	G	0	1.00E+02 1.88E+02	300	5000	10	20	3	0	0	0
	220	CIONET2 2	G	0	1.00E+02	200	5000	10	20	2	0	0	0
•	221	CIOKET2-3	G	0	1.00E+02	200	5000	10	20	2	0	0	0
•	222	CIOKET2-4	C	0	1.00L+02	200	5000	10	20	2	0	0	0
•	222	CIOKET2-3	G	0	1.00E+02	200	5000	10	20	2	0	0	0
	323	CIOKET3-1	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	324	CIOKET3-2	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	325	CIUKEI3-4	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	326	CIOKET3-5	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	327	CIUKET3-6	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	328	C10KET4-1	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	329	C10KET4-2	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	330	C10KET4-3	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	331	C10KET4-5	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	332	C10KET4-6	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	333	C10KET4-7	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	334	C10KET5-2	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	335	C10KET5-3	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	336	C10KET5-4	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	337	C10KET5-6	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	338	C10KET5-7	G	0	1.88E+02	300	5000	10	20	3	0	0	0
,	339	C10KET5-8	G	0	1.88E+02	300	5000	10	20	3	0	0	0
	340	C9KET1-2	G	0	1.74E+02	300	5000	9	18	3	0	0	0
	341	C9KET1-3	G	0	1.74E+02	300	5000	9	18	3	0	0	0
	342	C8KET1-2	G	0	1.60E+02	300	5000	8	16	3	0	0	0
	343	C8KET1-3	G	0	1.60E+02	300	5000	8	16	3	0	0	0

	344	C8KET1-4	G	0	1.60E+02	300	5000	8	16	3	0	0	0
	345	NC8H17CHO	G	0	1.42E+02	300	5000	9	18	1	0	0	0
	346	NC8H17CO	G	0	1.41E+02	300	5000	9	17	1	0	0	0
	347	C7H15COCH2	G	0	1.41E+02	300	5000	9	17	1	0	0	0
	348	C6COC2H4P	G	0	1.41E+02	300	5000	9	17	1	0	0	0
	349	C5COC2H4P	G	0	1.27E+02	300	5000	8	15	1	0	0	0
	350	C4COC2H4P	G	0	1.13E+02	300	5000	7	13	1	0	0	0
	351	C2H2OH	G	0	4.30E+01	300	5000	2	3	1	0	0	0
	352	C2H3CHOCH2	G	0	7.01E+01	300	3000	4	6	1	0	0	0
	353	C4H6O23	G	0	7.01E+01	200	5000	4	6	1	0	0	0
	354	СН3СНСНСНО	G	0	7.01E+01	298	3000	4	6	1	0	0	0
	355	CC3H4	G	0	4.01E+01	300	5000	3	4	0	0	0	0
	356	CH3CHCO	G	0	5.61E+01	300	5000	3	4	1	0	0	0
	357	СН3СНСНО	G	0	5.71E+01	300	5000	3	5	1	0	0	0
	358	C2H5CHCO	G	0	7.01E+01	300	5000	4	6	1	0	0	0
	359	NC3H7CO	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	360	Н	G	0	1.01E+00	300	5000	0	1	0	0	0	0
	361	H2	G	0	2.02E+00	300	5000	0	2	0	0	0	0
	362	0	G	0	1.60E+01	300	5000	0	0	1	0	0	0
	363	ОН	G	0	1.70E+01	300	5000	0	1	1	0	0	0
	364	НО2	G	0	3.30E+01	300	5000	0	1	2	0	0	0
	365	H2O2	G	0	3.40E+01	300	5000	0	2	2	0	0	0
	366	CH2O	G	0	3.00E+01	300	5000	1	2	1	0	0	0
	367	НСО	G	0	2.90E+01	300	5000	1	1	1	0	0	0
	368	HOCH2O	G	0	4.70E+01	300	5000	1	3	2	0	0	0
	369	СНЗОН	G	0	3.20E+01	300	5000	1	4	1	0	0	0
	370	СН2ОН	G	0	3.10E+01	250	4000	1	3	1	0	0	0
	371	CH3O	G	0	3.10E+01	300	3000	1	3	1	0	0	0
	372	CH3O2	G	0	4.70E+01	300	5000	1	3	2	0	0	0
	373	CH4	G	0	1.60E+01	300	5000	1	4	0	0	0	0
	374	CH3	G	0	1.50E+01	300	5000	1	3	0	0	0	0
	375	CH2	G	0	1.40E+01	250	4000	1	2	0	0	0	0
	376	CH2(S)	G	0	1.40E+01	300	4000	1	2	0	0	0	0
	377	С2Н6	G	0	3.01E+01	300	4000	2	6	0	0	0	0
	378	С2Н5	G	0	2.91E+01	300	5000	2	5	0	0	0	0
	379	C2H4	G	0	2.81E+01	300	5000	2	4	0	0	0	0
	380	C2H3	G	0	2.70E+01	300	5000	2	3	0	0	0	0
	381	C2H2	G	0	2.60E+01	300	5000	2	2	0	0	0	0
	382	C2H	G	0	2.50E+01	300	4000	2	1	0	0	0	0
	383	СН3СНО	G	0	4.41E+01	300	5000	2	4	1	0	0	0
	384	CH3CO	G	0	4.30E+01	300	5000	2	3	1	0	0	0
	385	CH2CHO	G	0	4.30E+01	300	5000	2	3	1	0	0	0
	386	CH2CO	G	0	4.20E+01	300	5000	2	2	1	0	0	0
	387	НССО	G	0	4.10E+01	300	4000	2	1	1	0	0	0
	388	C2H5OH	G	0	4.61E+01	300	5000	2	6	1	0	0	0
l	389	C2H5O	G	0	4.51E+01	300	5000	2	5	1	0	0	0
1													

390	РС2Н4ОН	G	0	4.51E+01	300	5000	2	5	1	0	0	0
391	SC2H4OH	G	0	4.51E+01	300	5000	2	5	1	0	0	0
392	C2H5O2	G	0	6.11E+01	300	5000	2	5	2	0	0	0
393	C2H3O1-2	G	0	4.30E+01	300	5000	2	3	1	0	0	0
394	СН3СОСН3	G	0	5.81E+01	300	5000	3	6	1	0	0	0
395	CH3COCH2	G	0	5.71E+01	300	5000	3	5	1	0	0	0
396	C2H3CHO	G	0	5.61E+01	300	5000	3	4	1	0	0	0
397	C2H3CO	G	0	5.51E+01	300	5000	3	3	1	0	0	0
398	С2Н5СНО	G	0	5.81E+01	300	5000	3	6	1	0	0	0
399	C2H5CO	G	0	5.71E+01	300	5000	3	5	1	0	0	0
400	С3Н8	G	0	4.41E+01	300	5000	3	8	0	0	0	0
401	IC3H7	G	0	4.31E+01	300	5000	3	7	0	0	0	0
402	NC3H7	G	0	4.31E+01	300	5000	3	7	0	0	0	0
403	С3Н6	G	0	4.21E+01	300	5000	3	6	0	0	0	0
404	С3Н5-А	G	0	4.11E+01	300	5000	3	5	0	0	0	0
405	C3H5-S	G	0	4.11E+01	300	5000	3	5	0	0	0	0
406	СЗН5-Т	G	0	4.11E+01	300	5000	3	5	0	0	0	0
407	СЗН4-Р	G	0	4.01E+01	300	4000	3	4	0	0	0	0
408	C3H4-A	G	0	4.01E+01	300	4000	3	4	0	0	0	0
409	СЗНЗ	G	0	3.91E+01	300	4000	3	3	0	0	0	0
410	C3H2	G	0	3.80E+01	150	4000	3	2	0	0	0	0
411	С3Н5О	G	0	5.71E+01	300	5000	3	5	1	0	0	0
412	С3Н6ООН1-2	G	0	7.51E+01	300	5000	3	7	2	0	0	0
413	С3Н6ООН1-3	G	0	7.51E+01	300	5000	3	7	2	0	0	0
414	С3Н6ООН2-1	G	0	7.51E+01	300	5000	3	7	2	0	0	0
415	C3H6OOH1-2O2	G	0	1.07E+02	300	5000	3	7	4	0	0	0
416	C3H6OOH1-3O2	G	0	1.07E+02	300	5000	3	7	4	0	0	0
417	C3H6OOH2-1O2	G	0	1.07E+02	300	5000	3	7	4	0	0	0
418	NC3H7O2	G	0	7.51E+01	300	5000	3	7	2	0	0	0
419	IC3H7O2	G	0	7.51E+01	300	5000	3	7	2	0	0	0
420	С3Н6О1-3	G	0	5.81E+01	300	5000	3	6	1	0	0	0
421	C3KET12	G	0	9.01E+01	300	5000	3	6	3	0	0	0
422	C3KET13	G	0	9.01E+01	300	5000	3	6	3	0	0	0
423	C3KET21	G	0	9.01E+01	300	5000	3	6	3	0	0	0
124	C2H51 2	2004	G	0	1.07E +02	200	5000	2	7	1	0	0
424	C5H51-2	3001	U	0	+02 1.07E	300	5000	3	/	4	0	0
425	С3Н52-1	300H	G	0	+02	300	5000	3	7	4	0	0
426	AC3H5OOH	G	0	7.41E+01	300	5000	3	6	2	0	0	0
427	C4H10	G	0	5.81E+01	300	5000	4	10	0	0	0	0
428	C4H8-1	G	0	5.61E+01	300	5000	4	8	0	0	0	0
429	C4H8-2	G	0	5.61E+01	300	5000	4	8	0	0	0	0
430	PC4H9	G	0	5.71E+01	300	5000	4	9	0	0	0	0
431	SC4H9	G	0	5.71E+01	300	5000	4	9	0	0	0	0
432	C4H71-1	G	0	5.51E+01	300	5000	4	7	0	0	0	0
433	C4H71-2	G	0	5.51E+01	300	5000	4	7	0	0	0	0
434	C4H71-3	G	0	5.51E+01	300	5000	4	7	0	0	0	0

	435	C4H71-4	G	0	5.51E+01	300	5000	4	7	0	0	0	0
	436	C4H6	G	0	5.41E+01	300	5000	4	6	0	0	0	0
	437	C4H7O	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	438	C2H5COCH2	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	439	CH3CHCOCH3	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	440	C2H3COCH3	G	0	7.01E+01	300	5000	4	6	1	0	0	0
	441	NC3H7CHO	G	0	7.21E+01	300	5000	4	8	1	0	0	0
	442	С3Н6СНО-1	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	443	СЗН6СНО-2	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	444	СЗН6СНО-З	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	445	SC3H5CHO	G	0	7.01E+01	300	5000	4	6	1	0	0	0
	446	SC3H5CO	G	0	6.91E+01	300	5000	4	5	1	0	0	0
	447	IC4H10	G	0	5.81E+01	300	5000	4	10	0	0	0	0
	448	IC4H9	G	0	5.71E+01	300	5000	4	9	0	0	0	0
	449	TC4H9	G	0	5.71E+01	300	5000	4	9	0	0	0	0
	450	IC4H8	G	0	5.61E+01	300	5000	4	8	0	0	0	0
	451	IC4H7	G	0	5.51E+01	300	5000	4	7	0	0	0	0
	452	TC4H9O2	G	0	8.91E+01	300	5000	4	9	2	0	0	0
	453	IC4H9O2	G	0	8.91E+01	300	5000	4	9	2	0	0	0
	454	TC4H8O2H-I	G	0	8.91E+01	300	5000	4	9	2	0	0	0
	455	IC4H8O2H-I	G	0	8.91E+01	300	5000	4	9	2	0	0	0
	456	IC4H8O2H-T	G	0	8.91E+01	300	5000	4	9	2	0	0	0
	457	IC4H8O	G	0	7.21E+01	300	5000	4	8	1	0	0	0
	458	CC4H8O	G	0	7.21E+01	300	5000	4	8	1	0	0	0
	459	IC4H9O	G	0	7.31E+01	300	5000	4	9	1	0	0	0
	460	ТС4Н9О	G	0	7.31E+01	300	5000	4	9	1	0	0	0
	461	IC4H7O	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	462	IC4H8OH	G	0	7.31E+01	300	5000	4	9	1	0	0	0
	463	ІСЗН7СНО	G	0	7.21E+01	300	5000	4	8	1	0	0	0
	464	ТСЗН6СНО	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	465	IC3H7CO	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	466	ІСЗН6СНО	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	467	IC4H7OH	G	0	7.21E+01	300	5000	4	8	1	0	0	0
	468	IC4H6OH	G	0	7.11E+01	300	5000	4	7	1	0	0	0
	469	ІСЗН5СНО	G	0	7.01E+01	300	5000	4	6	1	0	0	0
	470	IC3H5CO	G	0	6.91E+01	300	5000	4	5	1	0	0	0
	471	IC3H6CO	G	0	7.01E+01	300	5000	4	6	1	0	0	0
	472	IC4H7OOH	G	0	8.81E+01	300	5000	4	8	2	0	0	0
	473	ТСЗН6ОН	G	0	5.91E+01	300	5000	3	7	1	0	0	0
	474	ІСЗН5ОН	G	0	5.81E+01	300	5000	3	6	1	0	0	0
	475	CH2CCH2OH	G	0	5.71E+01	300	5000	3	5	1	0	0	0
	476	BC5H11	G	0	7.11E+01	300	5000	5	11	0	0	0	0
l	477	AC5H10	G	0	7.01E+01	300	5000	5	10	0	0	0	0
l	478	BC5H10	G	0	7.01E+01	300	5000	5	10	0	0	0	0
l	479	CC5H10	G	0	7.01E+01	300	5000	5	10	0	0	0	0
ļ	480	AC5H9-A2	G	0	6.91E+01	300	5000	5	9	0	0	0	0
ļ			•										

481	АС5Н9-С	G	0	6.91E+01	300	5000	5	9	0	0	0	0
482	СС5Н9-В	G	0	6.91E+01	300	5000	5	9	0	0	0	0
483	АС5Н9О-С	G	0	8.51E+01	300	5000	5	9	1	0	0	0
484	СС5Н9О-В	G	0	8.51E+01	300	5000	5	9	1	0	0	0
485	AC6H12	G	0	8.42E+01	300	5000	6	12	0	0	0	0
486	BC6H12	G	0	8.42E+01	300	5000	6	12	0	0	0	0
487	CC6H12	G	0	8.42E+01	300	5000	6	12	0	0	0	0
488	DC6H12	G	0	8.42E+01	300	5000	6	12	0	0	0	0
489	AC6H11-A2	G	0	8.32E+01	300	5000	6	11	0	0	0	0
490	AC6H11-C	G	0	8.32E+01	300	5000	6	11	0	0	0	0
491	AC6H11-E	G	0	8.32E+01	300	5000	6	11	0	0	0	0
492	ВС6Н11-Е	G	0	8.32E+01	300	5000	6	11	0	0	0	0
493	СС6Н11-А	G	0	8.32E+01	300	5000	6	11	0	0	0	0
494	СС6Н11-В	G	0	8.32E+01	300	5000	6	11	0	0	0	0
495	AC6H11O-C	G	0	9.92E+01	300	5000	6	11	1	0	0	0
496	СС6Н11О-В	G	0	9.92E+01	300	5000	6	11	1	0	0	0
497	C4H7CO1-4	G	0	8.31E+01	300	5000	5	7	1	0	0	0
498	C5H10-1	G	0	7.01E+01	300	5000	5	10	0	0	0	0
499	C5H10-2	G	0	7.01E+01	300	5000	5	10	0	0	0	0
500	С5Н91-3	G	0	6.91E+01	300	5000	5	9	0	0	0	0
501	С5Н91-4	G	0	6.91E+01	300	5000	5	9	0	0	0	0
502	С5Н91-5	G	0	6.91E+01	300	5000	5	9	0	0	0	0
503	CC5H11	G	0	7.11E+01	300	5000	5	11	0	0	0	0
504	С5Н92-4	G	0	6.91E+01	300	5000	5	9	0	0	0	0
505	С5Н92-5	G	0	6.91E+01	300	5000	5	9	0	0	0	0
506	С5Н9О1-3	G	0	8.51E+01	300	5000	5	9	1	0	0	0
507	С5Н9О2-4	G	0	8.51E+01	300	5000	5	9	1	0	0	0
508	C5H11-2	G	0	7.11E+01	300	5000	5	11	0	0	0	0
509	NC4H9CHO	G	0	8.61E+01	300	5000	5	10	1	0	0	0
510	NC4H9CO	G	0	8.51E+01	300	5000	5	9	1	0	0	0
511	C4H8CHO-2	G	0	8.51E+01	300	5000	5	9	1	0	0	0
512	C4H8CHO-3	G	0	8.51E+01	300	5000	5	9	1	0	0	0
513	C4H8CHO-4	G	0	8.51E+01	300	5000	5	9	1	0	0	0
514	IC4H7-I1	G	0	5.51E+01	300	5000	4	7	0	0	0	0
515	С5Н81-3	G	0	6.81E+01	300	5000	5	8	0	0	0	0
516	XC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
517	YC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
518	ZC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
519	XC7H14	G	0	9.82E+01	300	5000	7	14	0	0	0	0
520	YC7H14	G	0	9.82E+01	300	5000	7	14	0	0	0	0
521	XC7H13-X1	G	0	9.72E+01	300	5000	7	13	0	0	0	0
522	XC7H13-Z	G	0	9.72E+01	300	5000	7	13	0	0	0	0
523	XC7H13-X2	G	0	9.72E+01	300	5000	7	13	0	0	0	0
524	XC7H13-Y2	G	0	9.72E+01	300	5000	7	13	0	0	0	0
525	YC7H13-Y2	G	0	9.72E+01	300	5000	7	13	0	0	0	0
526	YC7H13-X2	G	0	9.72E+01	300	5000	7	13	0	0	0	0

	527	XC7H13O-Z	G	0	1.13E+02	300	5000	7	13	1	0	0	0
	528	YC7H13O-Y2	G	0	1.13E+02	300	5000	7	13	1	0	0	0
	529	YC7H15O2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
	530	YC7H14OOH-Y2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
	531	Y-YC7H14O	G	0	1.14E+02	300	5000	7	14	1	0	0	0
	532	NEOC5H12	G	0	7.22E+01	300	5000	5	12	0	0	0	0
I	533	NEOC5H11	G	0	7.11E+01	300	5000	5	11	0	0	0	0
Ī	534	NEOC5H11O2	G	0	1.03E+02	300	5000	5	11	2	0	0	0
I	535	NEOC5H10OOH	G	0	1.03E+02	300	5000	5	11	2	0	0	0
I	536	NEOC6H12	G	0	8.42E+01	300	5000	6	12	0	0	0	0
I	537	NEOC6H11	G	0	8.32E+01	300	5000	6	11	0	0	0	0
I	538	NC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
Ì	539	OC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
Ī	540	PC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
ĺ	541	OC7H15	G	0	9.92E+01	300	5000	7	15	0	0	0	0
l	542	OC7H14	G	0	9.82E+01	300	5000	7	14	0	0	0	0
l	543	PC7H14	G	0	9.82E+01	300	5000	7	14	0	0	0	0
Ī	544	OC7H13-N	G	0	9.72E+01	300	5000	7	13	0	0	0	0
Ī	545	PC7H13-N	G	0	9.72E+01	300	5000	7	13	0	0	0	0
l	546	PC7H13-0	G	0	9 72E+01	300	5000	7	13	0	0	0	0
l	547	AC8H17	G	0	1 13E+02	300	5000	8	17	0	0	0	0
l	548	BC8H17	G	0	1.13E+02	300	5000	8	17	0	0	0	0
Ì	549	CC8H17	G	0	1.13E+02	300	5000	8	17	0	0	0	0
Ì	550	DC8H17	G	0	1.13E+02	300	5000	8	17	0	0	0	0
Ī	551	IC8H16	G	0	1.13E+02 1.12E+02	300	5000	8	16	0	0	0	0
Ì	552	IC8H16	G	0	1.12E+02	300	5000	8	16	0	0	0	0
l	553	IC8H15	G	0	1.112E+02	300	5000	8	15	0	0	0	0
Ī	554	AC8H17O2	G	0	1.45E+02	300	5000	8	17	2	0	0	0
Ī	555	BC8H17O2	G	0	1.45E+02	300	5000	8	17	2	0	0	0
Ī	556	DC8H17O2	G	0	1.45E+02	300	5000	8	17	2	0	0	0
Ī	557	AC8H16OOH-A	G	0	1.45E+02	300	5000	8	17	2	0	0	0
l	558	AC8H16OOH-B	G	0	1.45E+02	300	5000	8	17	2	0	0	0
l	559	AC8H16OOH-C	G	0	1.45E+02	300	5000	8	17	2	0	0	0
l	560	BC8H16OOH-C	G	0	1.45E+02	300	5000	8	17	2	0	0	0
Ì	561	BC8H16OOH-A	G	0	1.45E+02	300	5000	8	17	2	0	0	0
l	562	BC8H16OOH-D	G	0	1.45E+02	300	5000	8	17	2	0	0	0
Ì	563	DC8H16OOH-C	G	0	1.15 ± 02 1.45E+02	300	5000	8	17	2	0	0	0
Ī	564	DC8H16OOH-B	G	0	1.45E+02 1.45E+02	300	5000	8	17	2	0	0	0
Ī	565	IC8FTFRAA	G	0	1.43E+02 1.28E+02	300	5000	8	16	1	0	0	0
	566	IC8ETERAR	G	0	1.20E+02	300	5000	Q Q	16	1	0	0	0
	567	ICSETERAC	G	0	1.20E+02	300	5000	<u></u>	16	1	0	0	0
	569	ICSETERRC	G		1.20E+02	300	5000	0 Q	10	1	0	0	0
	560		G		1.20L+02	200	5000	0	10	1	0	0	0
	570		G		1.20E+02	200	5000	0	10	1	0	0	0
	570	VC7H12OOU V1	G		1.29E+02	200	5000	0 7	1/	1 2	0	0	0
	570	VC7H12O V1	G		1.30E+02	200	5000	7	14	1	0	0	0
l	512	1C/1113U-AI	U	0	1.131702	500	2000	/	13	1	U	U	0

	573	XC7H13OOH-Z	G	0	1.30E+02	300	5000	7	14	2	0	0	0
	574	YC7H13OOH-X2	G	0	1.30E+02	300	5000	7	14	2	0	0	0
	575	YC7H13O-X2	G	0	1.13E+02	300	5000	7	13	1	0	0	0
	576	CC6H11-D	G	0	8.32E+01	300	5000	6	11	0	0	0	0
	577	C4H7	G	0	5.51E+01	300	5000	4	7	0	0	0	0
	578	С5Н9	G	0	6.91E+01	300	5000	5	9	0	0	0	0
	579	IC5H9	G	0	6.91E+01	300	5000	5	9	0	0	0	0
	580	C5H11-1	G	0	7.11E+01	300	5000	5	11	0	0	0	0
	581	С5Н11О2-2	G	0	1.03E+02	300	5000	5	11	2	0	0	0
	582	C5H10OOH2-4	G	0	1.03E+02	300	5000	5	11	2	0	0	0
	583	С5Н10О2-4	G	0	8.61E+01	300	5000	5	10	1	0	0	0
	584	С6Н13-1	G	0	8.52E+01	300	5000	6	13	0	0	0	0
	585	С6Н13-2	G	0	8.52E+01	300	5000	6	13	0	0	0	0
l	586	С6Н13-3	G	0	8.52E+01	300	5000	6	13	0	0	0	0
l	587	С6Н12-1	G	0	8.42E+01	300	5000	6	12	0	0	0	0
ĺ	588	С6Н12-2	G	0	8.42E+01	300	5000	6	12	0	0	0	0
1	589	С6Н12-3	G	0	8.42E+01	300	5000	6	12	0	0	0	0
•	590	С6Н11	G	0	8.32E+01	300	5000	6	11	0	0	0	0
1	591	С6Н12О1-4	G	0	1.00E+02	300	5000	6	12	1	0	0	0
1	592	C7H15-1	G	0	9 92E+01	300	5000	7	15	0	0	0	0
1	593	С7Н15-2	G	0	9.92E+01	300	5000	7	15	0	0	0	0
Ì	594	С7Н15-3	G	0	9.92E+01	300	5000	7	15	0	0	0	0
•	595	C7H15-4	G	0	9.92E+01	300	5000	7	15	0	0	0	0
•	596	C7H14-1	G	0	9.82E+01	300	5000	7	14	0	0	0	0
İ	597	С7Н13	G	0	9.72E+01	300	5000	7	13	0	0	0	0
1	598	C7H15O2-1	G	0	1 31E+02	300	5000	7	15	2	0	0	0
1	599	C7H14OOH1-2	G	0	1.31E+02	300	5000	7	15	2	0	0	0
Ì	600	C7H14OOH1-3	G	0	1.31E+02	300	5000	7	15	2	0	0	0
1	601	C7H14OOH1-4	G	0	1.31E+02	300	5000	7	15	2	0	0	0
Ì	602	C7H14O1-3	G	0	1.14E+02	300	5000	7	14	1	0	0	0
1	603	C7H14O1-4	G	0	1 14E+02	300	5000	7	14	1	0	0	0
1	604	NC5H11CHO	G	0	1.00E+02	300	5000	6	12	1	0	0	0
1	605	NC5H11CO	G	0	9.92E+01	300	5000	6	11	1	0	0	0
1	606	NC4H9COCH2	G	0	9.92E+01	300	5000	6	11	1	0	0	0
•	607	C4H7OOH1-4	G	0	8 81E+01	300	5000	4	8	2	0	0	0
•	608	C4H7O1-4	G	0	7.11E+01	300	5000	4	7	1	0	0	0
•	609	C10H21-1	G	0	1 41E+02	300	5000	10	21	0	0	0	0
Ì	610	C10H21-2	G	0	1.41E+02	300	5000	10	21	0	0	0	0
Ì	611	C10H21-3	G	0	1.41E+02	300	5000	10	21	0	0	0	0
•	612	C10H21-4	G	0	1.41E+02	300	5000	10	21	0	0	0	0
•	613	C10H21-5	G	0	1.41E+02	300	5000	10	21	0	0	0	0
•	614	C9H10.1	G		1.71E+02 $1.27E\pm02$	300	5000	0	10	0	0	0	0
	615	Сонто 2	G		$1.27E\pm02$	200	5000	9	19		0	0	0
	616	C0H10.4	G		$1.27E\pm02$	200	5000	9	19	0	0	0	0
	617	C8H17.1	G		$1.27E \pm 02$ $1.12E \pm 02$	200	5000	9	19	0	0	0	0
ļ	610	C9H17 2	G		1.13E+02	200	5000	0	17	0	0	0	0
	010	Con1/-2	U	0	1.13ET02	300	2000	ð	1/	U	U	U	U

619	C8H17-3	G	0	1.13E+02	300	5000	8	17	0	0	0	0
620	C8H17-4	G	0	1.13E+02	300	5000	8	17	0	0	0	0
621	C10H20-1	G	0	1.40E+02	300	5000	10	20	0	0	0	0
622	C10H20-2	G	0	1.40E+02	300	5000	10	20	0	0	0	0
623	С10Н20-3	G	0	1.40E+02	300	5000	10	20	0	0	0	0
624	C10H20-4	G	0	1.40E+02	300	5000	10	20	0	0	0	0
625	С10Н20-5	G	0	1.40E+02	300	5000	10	20	0	0	0	0
626	C9H18-1	G	0	1.26E+02	300	5000	9	18	0	0	0	0
627	C8H16-1	G	0	1.12E+02	300	5000	8	16	0	0	0	0
628	C8H16-2	G	0	1.12E+02	300	5000	8	16	0	0	0	0
629	C8H16-3	G	0	1.12E+02	300	5000	8	16	0	0	0	0
630	C8H16-4	G	0	1.12E+02	300	5000	8	16	0	0	0	0
631	C10H21O2-1	G	0	1.73E+02	300	5000	10	21	2	0	0	0
632	C10H21O2-2	G	0	1.73E+02	300	5000	10	21	2	0	0	0
633	C10H21O2-3	G	0	1.73E+02	300	5000	10	21	2	0	0	0
634	C10H21O2-4	G	0	1.73E+02	300	5000	10	21	2	0	0	0
635	C10H21O2-5	G	0	1.73E+02	300	5000	10	21	2	0	0	0
636	С9Н19О2-1	G	0	1.59E+02	300	5000	9	19	2	0	0	0
637	C8H17O2-1	G	0	1.45E+02	300	5000	8	17	2	0	0	0
638	C8H17O2-4	G	0	1.45E+02	300	5000	8	17	2	0	0	0
639	C1000H1-2	G	0	1.73E+02	300	5000	10	21	2	0	0	0
640	C1000H1-3	G	0	1.73E+02	300	5000	10	21	2	0	0	0
641	C1000H1-4	G	0	1.73E+02	300	5000	10	21	2	0	0	0
642	С10ООН2-3	G	0	1.73E+02	300	5000	10	21	2	0	0	0
643	С10ООН2-4	G	0	1.73E+02	300	5000	10	21	2	0	0	0
644	С10ООН2-5	G	0	1.73E+02	300	5000	10	21	2	0	0	0
645	С10ООНЗ-2	G	0	1.73E+02	300	5000	10	21	2	0	0	0
646	С10ООН3-4	G	0	1.73E+02	300	5000	10	21	2	0	0	0
647	С10ООН3-5	G	0	1.73E+02	300	5000	10	21	2	0	0	0
648	С10ООНЗ-6	G	0	1.73E+02	300	5000	10	21	2	0	0	0
649	C1000H4-1	G	0	1.73E+02	300	5000	10	21	2	0	0	0
650	С10ООН4-2	G	0	1.73E+02	300	5000	10	21	2	0	0	0
651	С10ООН4-3	G	0	1.73E+02	300	5000	10	21	2	0	0	0
652	С10ООН4-5	G	0	1.73E+02	300	5000	10	21	2	0	0	0
653	С10ООН4-6	G	0	1.73E+02	300	5000	10	21	2	0	0	0
654	С10ООН5-2	G	0	1.73E+02	300	5000	10	21	2	0	0	0
655	С10ООН5-3	G	0	1.73E+02	300	5000	10	21	2	0	0	0
656	C1000H5-4	G	0	1.73E+02	300	5000	10	21	2	0	0	0
657	С10ООН5-6	G	0	1.73E+02	300	5000	10	21	2	0	0	0
658	С10ООН5-7	G	0	1.73E+02	300	5000	10	21	2	0	0	0
659	C1000H5-8	G	0	1.73E+02	300	5000	10	21	2	0	0	0
660	С8ООН4-2	G	0	1.45E+02	300	5000	8	17	2	0	0	0
661	С8ООН4-6	G	0	1.45E+02	300	5000	8	17	2	0	0	0
662	C10O1-2	G	0	1.56E+02	300	5000	10	20	1	0	0	0
663	C10O1-3	G	0	1.56E+02	300	5000	10	20	1	0	0	0
664	C1001-4	G	0	1.56E+02	300	5000	10	20	1	0	0	0

1	1	1	1				1	1	1		1	1
665	C10O2-3	G	0	1.56E+02	300	5000	10	20	1	0	0	0
666	C10O2-4	G	0	1.56E+02	300	5000	10	20	1	0	0	0
667	C10O2-5	G	0	1.56E+02	300	5000	10	20	1	0	0	0
668	C10O3-5	G	0	1.56E+02	300	5000	10	20	1	0	0	0
669	C10O3-6	G	0	1.56E+02	300	5000	10	20	1	0	0	0
670	C10O4-6	G	0	1.56E+02	300	5000	10	20	1	0	0	0
671	C8O1-3	G	0	1.28E+02	300	5000	8	16	1	0	0	0
672	C8O1-4	G	0	1.28E+02	300	5000	8	16	1	0	0	0
673	NC7H15CHO	G	0	1.28E+02	300	5000	8	16	1	0	0	0
674	NC6H13CHO	G	0	1.14E+02	300	5000	7	14	1	0	0	0
675	NC7H15CO	G	0	1.27E+02	300	5000	8	15	1	0	0	0
676	NC6H13CO	G	0	1.13E+02	300	5000	7	13	1	0	0	0
677	C6H13COCH2	G	0	1.27E+02	300	5000	8	15	1	0	0	0
678	C5H11COCH2	G	0	1.13E+02	300	5000	7	13	1	0	0	0
679	C10H19	G	0	1.39E+02	300	5000	10	19	0	0	0	0
680	С9Н17	G	0	1.25E+02	300	5000	9	17	0	0	0	0
681	C8H15	G	0	1.11E+02	300	5000	8	15	0	0	0	0
682	СбНб	G	0	7 81E+01	300	5000	6	6	0	0	0	0
683	С6Н5	G	0	7 71E+01	300	4000	6	5	0	0	0	0
684	С6Н5ОО	G	0	1.09E+02	300	5000	6	5	2	0	0	0
685	С6Н5О	G	0	9.31E+01	300	4000	6	5	1	0	0	0
686	С6Н5ОН	G	0	9.41E+01	300	4000	6	6	1	0	0	0
687	C5H6	G	0	6.61E+01	300	5000	5	6	0	0	0	0
688	C5H5	G	0	6.51E+01	300	4000	5	5	0	0	0	0
680	C5H4O	G	0	8.01E+01	200	6000	5	3	1	0	0	0
600	C51150	C	0	0.01E+01 0.11E+01	200	5000	5	4	1	0	0	0
690	C3H5U	G	0	6.11E±01	200	2000	3	5	1	0	0	0
602	C4H5-I	C	0	5.21E+01	200	2000	4	5	0	0	0	0
(02	C4H3-N	C	0	5.31E+01	200	5000	4	3	0	0	0	0
695	С4П4	G	0	5.11E+01	200	2000	4	4	0	0	0	0
694	С4H3-I	G	0	5.11E+01	200	2000	4	2	0	0	0	0
695	C4H3-N	G	0	5.01E+01	300	5000	4	3	0	0	0	0
696	U2C4A2	G	0	5.01E+01	300	3000	4	2	1	0	0	0
697	H2C4O	G	0	6.61E+01	300	4000	4	2	1	0	0	0
698	C5H/	G	0	6./IE+01	300	5000	3	/	0	0	0	0
699	C*CCJC*C	G	0	6.71E+01	300	5000	5	7	0	0	0	0
700	C*CC*CCJ	G	0	6.71E+01	300	5000	5	7	0	0	0	0
701	C*CC*CC	G	0	6.81E+01	300	5000	5	8	0	0	0	0
702	CJ*CC*CC*O	G	0	8.11E+01	300	5000	5	5	1	0	0	0
703	C*CC*CCJ*O	G	0	8.11E+01	300	5000	5	5	1	0	0	0
704	CJ*CC*O	G	0	5.51E+01	300	5000	3	3	1	0	0	0
705	C4H612	G	0	5.41E+01	300	3000	4	6	0	0	0	0
706	C4H6-2	G	0	5.41E+01	300	3000	4	6	0	0	0	0
707	CH2CHCHCHO	G	0	6.91E+01	200	6000	4	5	1	0	0	0
708	СНЗСНСНСО	G	0	6.91E+01	200	6000	4	5	1	0	0	0
709	H2CC	G	0	2.60E+01	200	6000	2	2	0	0	0	0
710	C4H5-2	G	0	5.31E+01	300	3000	4	5	0	0	0	0

711	НСООН	G	0	4.60E+01	300	4000	1	2	2	0	0	0
712	H2CCCH	G	0	3.91E+01	300	4000	3	3	0	0	0	0
713	C2O	G	0	4.00E+01	300	5000	2	0	1	0	0	0
714	TOLUEN	G	0	9.21E+01	200	6000	7	8	0	0	0	0
715	PHC2H5	G	0	1.06E+02	300	3000	8	10	0	0	0	0
716	STYREN	G	0	1.04E+02	300	5000	8	8	0	0	0	0
717	РННСО	G	0	1.06E+02	300	5000	7	6	1	0	0	0
718	С5Н4ОН	G	0	8.11E+01	200	6000	5	5	1	0	0	0
719	NAPHT	G	0	1.28E+02	300	5000	10	8	0	0	0	0
720	INDENE	G	0	1.16E+02	300	5000	9	8	0	0	0	0
721	PHC3H5-1	G	0	1.18E+02	300	5000	9	10	0	0	0	0
722	C14H14	G	0	1.82E+02	300	3000	14	14	0	0	0	0
723	HEX1245	G	0	7.81E+01	300	5000	6	6	0	0	0	0
724	С6Н615	G	0	7.81E+01	300	5000	6	6	0	0	0	0
725	MC6H6	G	0	7.81E+01	300	5000	6	6	0	0	0	0
726	FULVENE	G	0	7.81E+01	300	5000	6	6	0	0	0	0
727	C6H4O2	G	0	1.08E+02	300	5000	6	4	2	0	0	0
728	C6H5O2	G	0	1.09E+02	200	6000	6	5	2	0	0	0
729	С6Н5О2Н	G	0	1.10E+02	200	6000	6	6	2	0	0	0
730	С6Н3О2	G	0	1.07E+02	300	5000	6	3	2	0	0	0
731	C6H3O3	G	0	1.23E+02	300	5000	6	3	3	0	0	0
732	C5H4	G	0	6.41E+01	300	5000	5	4	0	0	0	0
733	C5H3	G	0	6.31E+01	300	5000	5	3	0	0	0	0
734	PHCH2	G	0	9.11E+01	200	6000	7	7	0	0	0	0
735	РНСН2ОН	G	0	1.08E+02	300	5000	7	8	1	0	0	0
736	РНСН2О	G	0	1.07E+02	300	3000	7	7	1	0	0	0
737	РНСО	G	0	1.05E+02	300	5000	7	5	1	0	0	0
738	PHCH2O2	G	0	1.23E+02	300	5000	7	7	2	0	0	0
739	APHC2H4	G	0	1.05E+02	300	3000	8	9	0	0	0	0
740	BPHC2H4	G	0	1.05E+02	300	3000	8	9	0	0	0	0
741	РНС2Н	G	0	1.02E+02	300	3000	8	6	0	0	0	0
742	C6H4C2H3	G	0	1.03E+02	300	5000	8	7	0	0	0	0
743	РНСН2НСО	G	0	1.20E+02	300	5000	8	8	1	0	0	0
744	PHCH2CO	G	0	1.19E+02	300	5000	8	7	1	0	0	0
745	PHCOCH2	G	0	1.19E+02	300	5000	8	7	1	0	0	0
746	C6H5CCO	G	0	1.17E+02	300	5000	8	5	1	0	0	0
747	РНСНСО	G	0	1.18E+02	300	5000	8	6	1	0	0	0
748	PBZJA	G	0	1.19E+02	300	3000	9	11	0	0	0	0
749	PBZJB	G	0	1.19E+02	300	3000	9	11	0	0	0	0
750	PBZJC	G	0	1.19E+02	300	3000	9	11	0	0	0	0
751	BPHPROPY	G	0	1.19E+02	300	3000	9	11	0	0	0	0
752	РНС3Н5-2	G	0	1.18E+02	300	5000	9	10	0	0	0	0
753	РНСЗН4	G	0	1.17E+02	300	5000	9	9	0	0	0	0
754	РНС2Н4НСО	G	0	1.34E+02	300	5000	9	10	1	0	0	0
755	РНС2Н4СО	G	0	1.33E+02	300	5000	9	9	1	0	0	0
756	PHCH2COCH2	G	0	1.33E+02	300	5000	9	9	1	0	0	0

	757	PHCOC2H4	G	0	1.33E+02	300	5000	9	9	1	0	0	0
	758	РНСОС2Н3	G	0	1.32E+02	300	5000	9	8	1	0	0	0
	759	ВРНСЗН5ОНА	G	0	1.35E+02	300	5000	9	11	1	0	0	0
	760	АРНСЗН5ОНВ	G	0	1.35E+02	300	5000	9	11	1	0	0	0
	761	СРНСЗН5ОНВ	G	0	1.35E+02	300	5000	9	11	1	0	0	0
	762	BPHC3H5OHC	G	0	1.35E+02	300	5000	9	11	1	0	0	0
	763	PBZOHAQJB	G	0	1.67E+02	300	5000	9	11	3	0	0	0
	764	PBZOHBQJA	G	0	1.67E+02	300	5000	9	11	3	0	0	0
I	765	PBZOHBQJC	G	0	1.67E+02	300	5000	9	11	3	0	0	0
I	766	PBZOHCQJB	G	0	1.67E+02	300	5000	9	11	3	0	0	0
I	767	N-C8H7	G	0	1.03E+02	200	6000	8	7	0	0	0	0
I	768	BSTYRYL	G	0	1.03E+02	300	5000	8	7	0	0	0	0
Ì	769	COPHC3H4-1	G	0	1.33E+02	300	5000	9	9	1	0	0	0
Ì	770	AOPHC3H4-2	G	0	1.33E+02	300	5000	9	9	1	0	0	0
Ì	771	PHCH2CHCO	G	0	1.32E+02	300	5000	9	8	1	0	0	0
Ì	772	PHCOCH2CH2O2	G	0	1.65E+02	300	5000	9	9	3	0	0	0
Ì	773	PHCOCH2CH2O2H	G	0	1.66E+02	300	5000	9	10	3	0	0	0
l	774	PHCOCH2CH2O	G	0	1.49E+02	300	5000	9	9	2	0	0	0
l	775	PHCH2COCH2O2	G	0	1.65E+02	300	5000	9	9	3	0	0	0
İ	776	PHCH2COCH2O2H	G	0	1.66E+02	300	5000	9	10	3	0	0	0
Ī	777	PHCH2COCH2O	G	0	1.49E+02	300	5000	9	9	2	0	0	0
Ī	778	CH3C6H4C2H3	G	0	1.18E+02	300	5000	9	10	0	0	0	0
Ī	779	C10H9	G	0	1.29E+02	200	6000	10	9	0	0	0	0
İ	780	C10H10	G	0	1.30E+02	200	6000	10	10	0	0	0	0
ĺ	781	С6Н4С2Н	G	0	1.01E+02	300	3000	8	5	0	0	0	0
l	782	С7Н5	G	0	8.91E+01	300	5000	7	5	0	0	0	0
Ī	783	С7Н6	G	0	9.01E+01	300	3000	7	6	0	0	0	0
Ì	784	c-C4H5	G	0	5.31E+01	300	3000	4	5	0	0	0	0
Ī	785	c-C5H4	G	0	6.41E+01	200	6000	5	4	0	0	0	0
Ì	786	A1C2HAC	G	0	1.27E+02	300	5000	10	7	0	0	0	0
Ì	787	A2O	G	0	1.43E+02	300	5000	10	7	1	0	0	0
Ì	788	А2ОН	G	0	1.44E+02	300	5000	10	8	1	0	0	0
I	789	A1C2H3AC	G	0	1.29E+02	200	6000	10	9	0	0	0	0
Ì	790	INDENYL	G	0	1.15E+02	300	3000	9	7	0	0	0	0
Ì	791	INDENOXY	G	0	1.31E+02	298	5000	9	7	1	0	0	0
Ī	792	PHNTHRN	G	0	1.78E+02	300	5000	14	10	0	0	0	0
l	793	PHCCH2	G	0	1.03E+02	300	3000	8	7	0	0	0	0
l	794	РНСНСН	G	0	1.03E+02	300	5000	8	7	0	0	0	0
ĺ	795	С6Н4СН3	G	0	9.11E+01	300	3000	7	7	0	0	0	0
İ	796	A2CH3-1	G	0	1.42E+02	300	5000	11	10	0	0	0	0
	797	С6Н4ОН	G	0	9.31E+01	300	5000	6	5	1	0	0	0
	798	РНСС	G	0	1.01E+02	300	3000	8	5	0	0	0	0
	799	С9Н10	G	0	1.18E+02	298	5000	9	10	0	0	0	0
	800	С9Н9-1	G	0	1.17E+02	300	5000	9	9	0	0	0	0
	801	A2T2	G	0	1.26E+02	300	5000	10	6	0	0	0	0
	802	A2T1	G	0	1.26E+02	300	5000	10	6	0	0	0	0
l				Ŭ		200	2000	10		J	Ŭ	Ŷ	5

803	A2-1	G	0	1.27E+02	300	3000	10	7	0	0	0	0
804	A2-2	G	0	1.27E+02	300	3000	10	7	0	0	0	0
805	BIPHENYL	G	0	1.54E+02	300	5000	12	10	0	0	0	0
806	FLUORENE	G	0	1.66E+02	300	5000	13	10	0	0	0	0
807	A2C2H2	G	0	1.53E+02	300	3000	12	9	0	0	0	0
808	A2C2H	G	0	1.52E+02	300	3000	12	8	0	0	0	0
809	A2R5-	G	0	1.51E+02	300	3000	12	7	0	0	0	0
810	A2R5	G	0	1.52E+02	300	3000	12	8	0	0	0	0
811	Р2-	G	0	1.53E+02	300	3000	12	9	0	0	0	0
812	С13Н9	G	0	1.65E+02	300	5000	13	9	0	0	0	0
813	A3-1	G	0	1.77E+02	300	3000	14	9	0	0	0	0
814	A3-4	G	0	1.77E+02	300	5000	14	9	0	0	0	0
815	A2(C2H)2	G	0	1.76E+02	300	3000	14	8	0	0	0	0
816	ANTHRCN	G	0	1.78E+02	300	5000	14	10	0	0	0	0
817	С13Н9СН2	G	0	1.79E+02	300	5000	14	11	0	0	0	0
818	C13H8CH2	G	0	1.78E+02	300	5000	14	10	0	0	0	0
819	C14H13	G	0	1.81E+02	300	5000	14	13	0	0	0	0
820	C14H11	G	0	1.79E+02	300	5000	14	11	0	0	0	0
821	РНС2Н-	G	0	1.01E+02	300	3000	8	5	0	0	0	0
822	C14H13OO	G	0	2.13E+02	300	5000	14	13	2	0	0	0
823	С14Н13ООН	G	0	2.14E+02	300	5000	14	14	2	0	0	0
824	C14H13O	G	0	1.97E+02	300	5000	14	13	1	0	0	0
825	C14H12OOH	G	0	2.13E+02	300	5000	14	13	2	0	0	0
826	C14H12O2H-1O2	G	0	2.45E+02	300	5000	14	13	4	0	0	0
827	С14Н11О-1О2Н	G	0	2.28E+02	300	5000	14	12	3	0	0	0
828	o-C6H4	G	0	7.61E+01	300	5000	6	4	0	0	0	0
829	BICYCLO	G	0	1.54E+02	200	6000	12	10	0	0	0	0
830	DIBZFUR	G	0	1.68E+02	300	5000	12	8	1	0	0	0
831	DIBZFURNYL	G	0	1.67E+02	100	5000	12	7	1	0	0	0
832	DIBZFURNOXY	G	0	1.83E+02	300	5000	12	7	2	0	0	0
833	A3CH3	G	0	1.92E+02	300	5000	15	12	0	0	0	0
834	A3CH2	G	0	1.91E+02	300	5000	15	11	0	0	0	0
835	FLTHN	G	0	2.02E+02	300	5000	16	10	0	0	0	0
836	A3C2H2	G	0	2.03E+02	300	3000	16	11	0	0	0	0
837	АЗС2Н	G	0	2.02E+02	300	3000	16	10	0	0	0	0
838	PYRENE	G	0	2.02E+02	300	3000	16	10	0	0	0	0
839	A4-1	G	0	2.01E+02	300	5000	16	9	0	0	0	0
840	A4-2	G	0	2.01E+02	300	5000	16	9	0	0	0	0
841	A4-4	G	0	2.01E+02	300	5000	16	9	0	0	0	0
842	C14H12	G	0	1.80E+02	300	3000	14	12	0	0	0	0
843	CHRYSEN	G	0	2.28E+02	300	5000	18	12	0	0	0	0
844	CHRYSEN-1	G	0	2.27E+02	300	5000	18	11	0	0	0	0
845	CHRYSEN-4	G	0	2.27E+02	300	5000	18	11	0	0	0	0
846	CHRYSEN-5	G	0	2.27E+02	300	5000	18	11	0	0	0	0
847	A3C2H-2	G	0	2.01E+02	300	5000	16	9	0	0	0	0
848	A3C2H-1	G	0	2.01E+02	300	5000	16	9	0	0	0	0

849	A2R5R5	G	0	1.76E+02	300	5000	14	8	0	0	0	0
850	C6H2	G	0	7.41E+01	200	6000	6	2	0	0	0	0
851	С6Н	G	0	7.31E+01	200	6000	6	1	0	0	0	0
852	C8H2	G	0	9.81E+01	298	5000	8	2	0	0	0	0
853	C8H	G	0	9.71E+01	298	5000	8	1	0	0	0	0
854	C4H	G	0	4.91E+01	200	6000	4	1	0	0	0	0
855	BGHIF	G	0	2.26E+02	300	5000	18	10	0	0	0	0
856	BAPYR	G	0	2.52E+02	300	5000	20	12	0	0	0	0
857	BAPYR*S	G	0	2.51E+02	300	5000	20	11	0	0	0	0
858	A4C2H*	G	0	2.25E+02	300	5000	18	9	0	0	0	0
859	A3C2H*	G	0	2.01E+02	300	3000	16	9	0	0	0	0
860	A2C2H*	G	0	1.51E+02	300	3000	12	7	0	0	0	0
861	A1C2H-	G	0	1.01E+02	300	3000	8	5	0	0	0	0
862	C2H5OO	G	0	6.11E+01	300	3500	2	5	2	0	0	0
863	СНЗООН	G	0	4.80E+01	300	3500	1	4	2	0	0	0
864	CH3OO	G	0	4.70E+01	300	3500	1	3	2	0	0	0
865	С2Н5ООН	G	0	6.21E+01	300	3500	2	6	2	0	0	0
866	НСО3	G	0	6.10E+01	300	3500	1	1	3	0	0	0
867	НСОЗН	G	0	6.20E+01	300	3500	1	2	3	0	0	0
868	С2-QООН	G	0	6.11E+01	300	3500	2	5	2	0	0	0
869	CH2CHCH2	G	0	4.11E+01	300	3500	3	5	0	0	0	0
870	СН3СНООСНО	G	0	8.91E+01	300	3500	3	5	3	0	0	0
871	СН2СНООНСНО	G	0	8.91E+01	300	3500	3	5	3	0	0	0
872	ETC3H4O2	G	0	7.21E+01	300	3500	3	4	2	0	0	0
0.50	СН2ООСНООНСН			1.015.00	200	2.500		_	_			0
873	0	G	0	1.21E+02	300	3500	3	5	5	0	0	0
874	CSEN-OO	G	0	1.01E+02	300	3500	5	9	2	0	0	0
875	CSEN-QOOH	G	0	1.01E+02	300	3500	3	9	2	0	0	0
876	CSEN-OOQOOH-35	G	0	1.33E+02	300	3500	5	9	4	0	0	0
877	CSEN-OQOOH-35	G	0	1.16E+02	300	3500	5	8	3	0	0	0
878	C5H8O	G	0	8.41E+01	300	3500	5	8	1	0	0	0
879	C5H8	G	0	6.81E+01	300	3500	5	8	0	0	0	0
880	CYC5H8	G	0	6.81E+01	200	5000	3	8	0	0	0	0
881	NEOC5-QOOH	G	0	1.03E+02	300	3500	5	11	2	0	0	0
882	NEOC5-OOQOOH	G	0	1.35E+02	300	3500	5	11	4	0	0	0
883	NEOC5-OQOOH	G	0	1.18E+02	300	3500	5	10	3	0	0	0
884	NC5H12OO	G	0	1.03E+02	300	3500	5	11	2	0	0	0
885	NC5-QOOH	G	0	1.03E+02	300	3500	5	11	2	0	0	0
886	NC5-OOQOOH	G	0	1.35E+02	300	3500	5	11	4	0	0	0
887	N1C4H9OH	G	0	7.41E+01	300	3500	4	10	1	0	0	0
888	MEK	G	0	7.21E+01	300	3500	4	8	1	0	0	0
889	C3H6O2	G	0	7.41E+01	300	3500	3	6	2	0	0	0
890	СЗН7СНО	G	0	7.21E+01	300	3500	4	8	1	0	0	0
891	NC7-QOOH	G	0	1.31E+02	300	3500	7	15	2	0	0	0
892	NC7H14O	G	0	1.14E+02	300	3500	7	14	1	0	0	0
893	NC7-OOQOOH	G	0	1.63E+02	300	3500	7	15	4	0	0	0

894	NC7-OQOOH	G	0	1.46E+02	300	3500	7	14	3	0	0	0
895	C3H4O2	G	0	7.21E+01	300	3500	3	4	2	0	0	0
896	NC7H13OOH	G	0	1.30E+02	300	3500	7	14	2	0	0	0
897	C7KETONE	G	0	1.14E+02	300	3500	7	14	1	0	0	0
898	IC8-QOOH	G	0	1.45E+02	300	3500	8	17	2	0	0	0
899	IC8T-QOOH	G	0	1.45E+02	300	3500	8	17	2	0	0	0
900	IC8H17	G	0	1.13E+02	300	3500	8	17	0	0	0	0
901	IC8H17-OO	G	0	1.45E+02	300	3500	8	17	2	0	0	0
902	IC8H16O	G	0	1.28E+02	300	3500	8	16	1	0	0	0
903	IC8-OOQOOH	G	0	1.77E+02	300	3500	8	17	4	0	0	0
904	IC8-OQOOH	G	0	1.60E+02	300	3500	8	16	3	0	0	0
905	NC10MOOH	G	0	1.72E+02	300	3500	10	20	2	0	0	0
906	NC10-QOOH	G	0	1.73E+02	300	3500	10	21	2	0	0	0
907	NC10-OQOOH	G	0	1.88E+02	300	3500	10	20	3	0	0	0
908	NC10-OOQOOH	G	0	2.05E+02	300	3500	10	21	4	0	0	0
909	NC3H7OO	G	0	7.51E+01	300	3500	3	7	2	0	0	0
910	СНЗСООН	G	0	6.01E+01	300	3500	2	4	2	0	0	0
911	TERPHENYL	G	0	2.30E+02	300	5000	18	14	0	0	0	0
912	Р3-	G	0	2.29E+02	300	5000	18	13	0	0	0	0
913	QUATERPHENYL	G	0	3.06E+02	250	5000	24	18	0	0	0	0
914	P4-	G	0	3.05E+02	250	5000	24	17	0	0	0	0
915	TRIPHENYLEN	G	0	2.28E+02	300	5000	18	12	0	0	0	0
916	A4T-	G	0	2.27E+02	300	5000	18	11	0	0	0	0
917	QINQUEPHENYL	G	0	3.83E+02	250	5000	30	22	0	0	0	0
918	P5-	G	0	3.82E+02	250	5000	30	21	0	0	0	0
919	BENZYLB	G	0	1.68E+02	300	5000	13	12	0	0	0	0
920	BENZYLBJ	G	0	1.67E+02	300	5000	13	11	0	0	0	0
921	A1A1CH2-1	G	0	1.67E+02	300	5000	13	11	0	0	0	0
922	PHCH2CH2	G	0	1.05E+02	300	5000	8	9	0	0	0	0
923	A1CCA1	G	0	1.78E+02	300	5000	14	10	0	0	0	0
924	A2C2H-2J3	G	0	1.51E+02	300	5000	12	7	0	0	0	0
925	A3LJX	G	0	1.77E+02	300	5000	14	9	0	0	0	0
926	A3LJ2	G	0	1.77E+02	300	5000	14	9	0	0	0	0
927	A3LJ9	G	0	1.77E+02	300	5000	14	9	0	0	0	0
928	A2R5YNE1	G	0	1.76E+02	300	5000	14	8	0	0	0	0
929	A2R5YNE3	G	0	1.76E+02	300	5000	14	8	0	0	0	0
930	A2R5YNE4	G	0	1.76E+02	300	5000	14	8	0	0	0	0
931	A2R5YNE5	G	0	1.76E+02	300	5000	14	8	0	0	0	0
932	A3CH2R	G	0	1.90E+02	300	5000	15	10	0	0	0	0
933	A3R5	G	0	2.02E+02	300	5000	16	10	0	0	0	0
934	A2R5YN4J5	G	0	1.75E+02	300	5000	14	7	0	0	0	0
935	A3R5J7	G	0	2.01E+02	300	5000	16	9	0	0	0	0
936	A2R5YN5J4	G	0	1.75E+02	300	5000	14	7	0	0	0	0
937	A3R5J10	G	0	2.01E+02	300	5000	16	9	0	0	0	0
938	A2R5YN3J4	G	0	1.75E+02	300	5000	14	7	0	0	0	0
939	A2R5YN4J3	G	0	1.75E+02	300	5000	14	7	0	0	0	0

	940	A3LR5JS	G	0	2.01E+02	300	5000	16	9	0	0	0	0
	941	A3LR5	G	0	2.02E+02	300	5000	16	10	0	0	0	0
	942	HB	G	0	3.70E+02	300	5000	30	10	0	0	0	0
	943	A2A1-1	G	0	2.04E+02	300	5000	16	12	0	0	0	0
	944	A2A1-2	G	0	2.04E+02	300	5000	16	12	0	0	0	0
	945	A21C6H4	G	0	2.02E+02	300	5000	16	10	0	0	0	0
	946	A22C6H4	G	0	2.02E+02	300	5000	16	10	0	0	0	0
	947	A2R5YN1J2	G	0	1.75E+02	300	5000	14	7	0	0	0	0
	948	FLTHNJ7	G	0	2.01E+02	300	5000	16	9	0	0	0	0
	949	FLTHNJ1	G	0	2.01E+02	300	5000	16	9	0	0	0	0
	950	FLTHNJ3	G	0	2.01E+02	300	5000	16	9	0	0	0	0
	951	BENZNAP	G	0	2.18E+02	300	5000	17	14	0	0	0	0
	952	BENZNAPJP	G	0	2.17E+02	300	5000	17	13	0	0	0	0
	953	BENZFLRN	G	0	2.16E+02	300	5000	17	12	0	0	0	0
	954	A3LC2H-1	G	0	2.02E+02	300	5000	16	10	0	0	0	0
	955	A3LC2H-1P	G	0	2.01E+02	300	5000	16	9	0	0	0	0
	956	A3LC2H-2	G	0	2.02E+02	300	5000	16	10	0	0	0	0
	957	A3LC2H-2P	G	0	2.02E+02	300	5000	16	9	0	0	0	0
	958	A3LC2H-2S	G	0	2.01E+02	300	5000	16	9	0	0	0	0
	959	A4LIS	G	0	2.01E+02	300	5000	18	11	0	0	0	0
	960	A4L	G	0	2.27E+02	300	5000	18	12	0	0	0	0
	961	A3A1-1	G	0	2.54E+02	300	5000	20	12	0	0	0	0
	962	A3-9	G	0	1 77E+02	300	5000	14	9	0	0	0	0
	963	A3A1-9	G	0	2.54E+02	300	5000	20	14	0	0	0	0
	964	BBFLUOR	G	0	2.5 1E+02	300	5000	20	12	0	0	0	0
	965	A2A2-12	G	0	2.54E+02	300	5000	20	14	0	0	0	0
	966	BKFLUOR	G	0	2.52E+02	300	5000	20	12	0	0	0	0
	967	FLRNA1-4	G	0	2.42E+02	300	5000	19	14	0	0	0	0
	968	CPTRPHEN	G	0	2.40E+02	300	5000	19	12	0	0	0	0
	969	A4C2H*S	G	0	2.25E+02	300	5000	18	9	0	0	0	0
	970	BEPYREN	G	0	2.52E+02	300	5000	20	12	0	0	0	0
	971	BEPYRENJS	G	0	2.51E+02	300	5000	20	11	0	0	0	0
	972	A3A1-4	G	0	2.54E+02	300	5000	20	14	0	0	0	0
	973	A2A2-11	G	0	2.54E+02	300	5000	20	14	0	0	0	0
	974	PERYLEN	G	0	2.52E+02	300	5000	20	12	0	0	0	0
	975	PERYLENIS	G	0	2.52E+02	300	5000	20	11	0	0	0	0
	976	PYRNA1-1	G	0	2 78E+02	300	5000	22	14	0	0	0	0
	977	PYRNA1-4	G	0	2.78E+02	300	5000	22	14	0	0	0	0
	978	INPYR	G	0	2.76E+02	300	5000	22	12	0	0	0	0
	979	BBFLUORIS	G	0	2.70E+02	300	5000	20	11	0	0	0	0
	980	BGHIEJ	G	0	2.25E+02	300	5000	18	9	0	0	0	0
	981	CPCDFLTH	G	0	2.25E+02	300	5000	18	10	0	0	0	0
	982	CPCDFI TIS	G	0	2.20E+02	300	5000	18	0	0	0	0	0
ļ	983	BGHIFR	G	0	2.23E+02 2 50E+02	300	5000	20	10	0	0	0	0
ļ	984	BGHIFRIS	G	0	2.30E+02 2.49E+02	300	5000	20	0	0	0	0	0
	085	COR1	G	0	2.77E+02	300	5000	20	10	0	0	0	0
	105	CORT	0	0	2.7 4 E+02	500	5000	22	10	U	U	U	U

986	CPCDPYR	G	0	2.26E+02	300	5000	18	10	0	0	0	0
987	DCPCDFG	G	0	2.50E+02	300	5000	20	10	0	0	0	0
988	COR	G	0	2.50E+02	300	5000	20	10	0	0	0	0
989	CPCDPYRJS	G	0	2.25E+02	300	5000	18	9	0	0	0	0
990	CORJ	G	0	2.49E+02	300	5000	20	9	0	0	0	0
991	COR1J	G	0	2.73E+02	300	5000	22	9	0	0	0	0
992	COR2	G	0	2.98E+02	300	5000	24	10	0	0	0	0
993	COR2J	G	0	2.97E+02	300	5000	24	9	0	0	0	0
994	COR3	G	0	3.22E+02	300	5000	26	10	0	0	0	0
995	COR3J	G	0	3.21E+02	300	5000	26	9	0	0	0	0
996	COR4	G	0	3.46E+02	300	5000	28	10	0	0	0	0
997	COR4J	G	0	3.45E+02	300	5000	28	9	0	0	0	0
998	ANTHAN	G	0	2.76E+02	300	5000	22	12	0	0	0	0
999	ANTHANJP	G	0	2.75E+02	300	5000	22	11	0	0	0	0
1000	ANTHANJS	G	0	2.75E+02	300	5000	22	11	0	0	0	0
1001	BGHIPER	G	0	2.76E+02	300	5000	22	12	0	0	0	0
1002	BGHIPEJP1	G	0	2.75E+02	300	5000	22	11	0	0	0	0
1003	CPBPER	G	0	3.00E+02	300	5000	24	12	0	0	0	0
1004	BGHIPEJS1	G	0	2.75E+02	300	5000	22	11	0	0	0	0
1005	CORONEN	G	0	3.00E+02	300	5000	24	12	0	0	0	0
1006	A3L-O	G	0	1.93E+02	100	5000	14	9	1	0	0	0
1007	A3O-4	G	0	1.93E+02	100	5000	14	9	1	0	0	0
1008	A4	G	0	2.28E+02	300	5000	18	12	0	0	0	0
1009	A3LA1-X	G	0	2.27E+02	300	5000	18	11	0	0	0	0
1010	A4-O	G	0	2.43E+02	100	5000	18	11	1	0	0	0
1011	С13Н9А1-	G	0	2.15E+02	100	5000	17	11	0	0	0	0
1012	C13H9A1	G	0	2.16E+02	100	5000	17	12	0	0	0	0
1013	CORONEN-O	G	0	3.15E+02	100	5000	24	11	1	0	0	0
1014	CORONENYL	G	0	2.99E+02	100	5000	24	11	0	0	0	0

 Table 23 : List of species included in the kinetic model.

I. Detailed chemical kinetic mechanism

	k=A.T ⁿ .exp(-E/RT))									
Reactions n°	Reactions considered	A (mole-cm-sec-K)	n	E (cal/mole)						
1	H+O2=O+OH	1.18E+16	-0.6	16198						
2	O+H2=H+OH	5.08E+04	2.7	6290						
3	H2+OH=H2O+H	2.16E+08	1.5	3430						
4	O+H2O=2OH	2.97E+06	2	13400						
5	H2+M=2H+M	4.58E+19	-1.4	104380						
	H2	Enhanced	by	2.50E+00						
	H2O	Enhanced	by	1.20E+01						

	СО	Enhanced	bv	1.90E+00		
	CO2	Enhanced	bv	3.80E+00		
6	2O+M=O2+M	6.16E+15	-0.5	0		
	H2	Enhanced	by	2.50E+00		
	Н2О	Enhanced	by	1.20E+01		
	СО	Enhanced	by	1.90E+00		
	CO2	Enhanced	by	3.80E+00		
7	O+H+M=OH+M	4.71E+18	-1	0		
	H2	Enhanced	by	2.50E+00		
	Н2О	Enhanced	by	1.20E+01		
	СО	Enhanced	by	1.90E+00		
	CO2	Enhanced	by	3.80E+00		
8	H+OH+M=H2O+M	3.80E+22	-2	0		
	H2	Enhanced	by	2.50E+00		
	Н2О	Enhanced	by	1.20E+01		
	СО	Enhanced	by	1.90E+00		
	CO2	Enhanced	by	3.80E+00		
9	H+O2(+M)=HO2(+M)	1.48E+12	0.6	0		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	1.10E+01		
	02	Enhanced	by	7.80E-01		
	СО	Enhanced	by	1.90E+00		
	CO2	Enhanced	by	3.80E+00		
	Low	pressure	limit:	6.37E+20	-1.72E+00	5.25E+02
	TROE	centering:	8.00E-01	1.00E-30	1.00E+30	
10	HO2+H=H2+O2	1.66E+13	0	823		
11	HO2+H=2OH	7.08E+13	0	295		
12	HO2+O=O2+OH	3.25E+13	0	0		
13	HO2+OH=H2O+O2	2.89E+13	0	-497		
14	2HO2=H2O2+O2	4.20E+14	0	11982		
	Declared	duplicate	reaction			
15	2HO2=H2O2+O2	1.30E+11	0	-1629.3		
	Declared	duplicate	reaction			
16	H2O2(+M)=2OH(+M)	2.95E+14	0	48430		
	H2	Enhanced	by	2.50E+00		
	Н2О	Enhanced	by	1.20E+01		
	СО	Enhanced	by	1.90E+00		
	CO2	Enhanced	by	3.80E+00		
	Low	pressure	limit:	1.20E+17	0.00E+00	4.55E+04
	TROE	centering:	5.00E-01	1.00E-30	1.00E+30	
17	H2O2+H=H2O+OH	2.41E+13	0	3970		
18	H2O2+H=HO2+H2	4.82E+13	0	7950		
19	H2O2+O=OH+HO2	9.55E+06	2	3970		
20	H2O2+OH=HO2+H2O	1.00E+12	0	0		
1						
	Declared	duplicate	reaction			

1			1.			
			reaction	2204		
22	CO+O(+M)=CO2(+M)	1.80E+10	0	2384		
	H2	Enhanced	by	2.50E+00		
	H20	Enhanced	by	1.20E+01		
	<u> </u>	Enhanced	by	1.90E+00		
	C02	Ennanced	by Linsite	5.60E⊤00	2 70E + 00	4.10E+02
22				1.55E+24	-2.79E+00	4.19E+05
23		2.33E+12	0	22000		
24		3.01E+15	1.0	1159.7		
25		2.25E+03	0.7	-1136./		
20		4.75E+11	0.7	2 50E±00		
	H2O	Enhanced	by	2.30E+00		
	60	Enhanced	by	1.00E+00		
	CO3	Enhanced	by	1.90E+00		
27			0	5.80E+00		
27		7.36E+12	0	410		
20		7.23E+13	0	0		
29		3.02E+13	0	0		
30		3.02E+13	0	0		
31		3.00E+13	0	0		
32		3.00E+13	0	0		
33	HCO+CH3=CO+CH4	2.65E+13	0	0		
34	2HCO=H2+2CO	3.00E+12	0	0		
35	2HCO=CH2O+CO	3.00E+13	0	0		
36		1.20E+11	0	-1100		
37		1.99E+12	0	11660		
38		5.01E+14	0	40150		
39	H+CO2+M=OCHO+M	7.50E+13	0	29000		
40	CH2O+M=HCO+H+M	3.30E+39	-6.3	99900 2.50E+00		
	H2	Enhanced	by	2.50E+00		
	H20	Enhanced	by	1.20E+01		
	<u> </u>	Enhanced	by	1.90E+00		
41	CU201M=C01U21M		o by	3.80E+00		
41		5.10E+45	-0	97310 2.50E±00		
	1120	Enhanced	by	2.30E+00		
	H20	Enhanced	by	1.20E+01		
	<u> </u>	Enhanced	by	1.90E+00		
42		5 74E+07	by 1.0	3.80E+00		
42		5./4E+U/	1.9	2/48.0		
43		1.81E+13	1.2	3080		
44		5.43E+09	1.2	-44/		
45		1.23E+06	3	52000		
46	CH20+H02=HC0+H202	4.11E+04	2.5	10210		
47	CH2O+CH3=HCO+CH4	3.64E-06	5.4	998		
48	CH3+O=CH2O+H	8.43E+13	0	0		
49	CH3+O2=CH3O+O	1.99E+18	-1.6	29230		

50	CH3+O2=CH2O+OH	3.51E-01	3.5	7380		
51	СН3+НО2=СН3О+ОН	2.41E+10	0.8	-2325		
52	2CH3(+M)=C2H6(+M)	2.28E+15	-0.7	174.9		
	Н2О	Enhanced	by	5.00E+00		
	СО	Enhanced	by	2.00E+00		
	CO2	Enhanced	by	3.00E+00		
	Low	pressure	limit:	8.05E+31	-3.75E+00	9.82E+02
	TROE	centering:	0.00E+00	5.70E+02	0.00E+00	1.00E+30
53	CH3+H(+M)=CH4(+M)	1.27E+16	-0.6	383		
	Low	pressure	limit:	2.48E+33	-4.76E+00	2.44E+03
	TROE	centering:	7.83E-01	7.40E+01	2.94E+03	6.96E+03
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	С2Н6	Enhanced	by	3.00E+00		
	AR	Enhanced	by	7.00E-01		
54	CH4+H=CH3+H2	5.47E+07	2	11210		
55	СН4+О=СН3+ОН	3.15E+12	0.5	10290		
56	CH4+OH=CH3+H2O	5.72E+06	2	2639		
57	CH3+HO2=CH4+O2	3.16E+12	0	0		
58	CH4+HO2=CH3+H2O2	1.81E+11	0	18580		
59	CH3+CH3OH=CH4+CH3O	1.44E+01	3.1	6935		
60	CH3O+CH3=CH2O+CH4	1.20E+13	0	0		
61	CH3O+H=CH2O+H2	2.00E+13	0	0		
62	CH3+O2(+M)=CH3O2(+M)	1.01E+08	1.6	0		
	Low	pressure	limit:	3.82E+31	-4.89E+00	3.43E+03
	TROE	centering:	4.50E-02	8.80E+02	2.50E+09	1.79E+09
63	CH3O2+CH2O=CH3O2H+HCO	1.99E+12	0	11660		
64	CH4+CH3O2=CH3+CH3O2H	1.81E+11	0	18480		
65	СНЗОН+СНЗО2=СН2ОН+СНЗО2Н	1.81E+12	0	13710		
66	CH3O2+CH3=2CH3O	5.08E+12	0	-1411		
67	CH3O2+HO2=CH3O2H+O2	2.47E+11	0	-1570		
68	2CH3O2=CH2O+CH3OH+O2	3.11E+14	-1.6	-1051		
69	2CH3O2=O2+2CH3O	1.40E+16	-1.6	1860		
70	CH3O2+H=CH3O+OH	9.60E+13	0	0		
71	CH3O2+O=CH3O+O2	3.60E+13	0	0		
72	CH3O2+OH=CH3OH+O2	6.00E+13	0	0		
73	CH3O2H=CH3O+OH	6.31E+14	0	42300		
74	CH2OH+M=CH2O+H+M	1.00E+14	0	25100		
75	CH2OH+H=CH2O+H2	6.00E+12	0	0		
76	CH2OH+H=CH3+OH	9.64E+13	0	0		
77	CH2OH+O=CH2O+OH	4.20E+13	0	0		
78	CH2OH+OH=CH2O+H2O	2.40E+13	0	0		
79	CH2OH+O2=CH2O+HO2	2.41E+14	0	5017		

	Declared	duplicate	reaction			
80	CH2OH+O2=CH2O+HO2	1.51E+15	-1	0		
	Declared	duplicate	reaction			
81	CH2OH+HO2=CH2O+H2O2	1.20E+13	0	0		
82	CH2OH+HCO=CH3OH+CO	1.00E+13	0	0		
83	CH2OH+HCO=2CH2O	1.50E+13	0	0		
84	2CH2OH=CH3OH+CH2O	3.00E+12	0	0		
85	CH2OH+CH3O=CH3OH+CH2O	2.40E+13	0	0		
86	CH2OH+HO2=HOCH2O+OH	1.00E+13	0	0		
87	CH3O+M=CH2O+H+M	8.30E+17	-1.2	15500		
88	СНЗО+Н=СНЗ+ОН	3.20E+13	0	0		
89	CH3O+O=CH2O+OH	6.00E+12	0	0		
90	CH3O+OH=CH2O+H2O	1.80E+13	0	0		
91	CH3O+O2=CH2O+HO2	9.03E+13	0	11980		
	Declared	duplicate	reaction			
92	CH3O+O2=CH2O+HO2	2.20E+10	0	1748		
	Declared	duplicate	reaction			
93	CH3O+HO2=CH2O+H2O2	3.00E+11	0	0		
94	CH3O+CO=CH3+CO2	1.60E+13	0	11800		
95	CH3O+HCO=CH3OH+CO	9.00E+13	0	0		
96	2CH3O=CH3OH+CH2O	6.00E+13	0	0		
97	OH+CH3(+M)=CH3OH(+M)	2.79E+18	-1.4	1330		
	Н2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	4.00E+36	-5.92E+00	3.14E+03
	TROE	centering:	4.12E-01	1.95E+02	5.90E+03	6.39E+03
98	H+CH2OH(+M)=CH3OH(+M)	1.06E+12	0.5	86		
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	4.36E+31	-4.65E+00	5.08E+03
	TROE	centering:	6.00E-01	1.00E+02	9.00E+04	1.00E+04
99	H+CH3O(+M)=CH3OH(+M)	2.43E+12	0.5	50		
	H2	Enhanced	by	2.00E+00		
-	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		

	Low	pressure	limit:	4.66E+41	-7.44E+00	1.41E+04
	TROE	centering:	7.00E-01	1.00E+02	9.00E+04	1.00E+04
100	CH3OH+H=CH2OH+H2	3.20E+13	0	6095		
101	CH3OH+H=CH3O+H2	8.00E+12	0	6095		
102	CH3OH+O=CH2OH+OH	3.88E+05	2.5	3080		
103	CH3OH+OH=CH3O+H2O	1.00E+06	2.1	496.7		
104	CH3OH+OH=CH2OH+H2O	7.10E+06	1.8	-596		
105	CH3OH+O2=CH2OH+HO2	2.05E+13	0	44900		
106	CH3OH+HCO=CH2OH+CH2O	9.64E+03	2.9	13110		
107	CH3OH+HO2=CH2OH+H2O2	3.98E+13	0	19400		
108	CH3OH+CH3=CH2OH+CH4	3.19E+01	3.2	7172		
109	CH3O+CH3OH=CH3OH+CH2OH	3.00E+11	0	4060		
110	2CH3=H+C2H5	4.99E+12	0.1	10600		
111	CH4+CH2=2CH3	2.46E+06	2	8270		
112	CH4+CH2(S)=2CH3	1.60E+13	0	-570		
113	CH3+OH=CH2+H2O	5.60E+07	1.6	5420		
114	CH3+OH=CH2(S)+H2O	2.50E+13	0	0		
115	CH3+CH2=C2H4+H	4.00E+13	0	0		
116	CH3+CH2(S)=C2H4+H	1.20E+13	0	-570		
117	CH3O+H=CH2(S)+H2O	1.60E+13	0	0		
118	CH2(S)+H2O(+M)=CH3OH(+M)	4.82E+17	-1.2	1145		
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	1.88E+38	-6.36E+00	5.04E+03
	TROE	centering:	6.03E-01	2.08E+02	3.92E+03	1.02E+04
119	CH2+H(+M)=CH3(+M)	2.50E+16	-0.8	0		
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	С2Н6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	3.20E+27	-3.14E+00	1.23E+03
	TROE	centering:	6.80E-01	7.80E+01	2.00E+03	5.59E+03
120	CH2+O=HCO+H	8.00E+13	0	0		
121	CH2+OH=CH2O+H	2.00E+13	0	0		
122	CH2+H2=H+CH3	5.00E+05	2	7230		
123	CH2+O2=HCO+OH	1.32E+13	0	1500		
124	CH2+HO2=CH2O+OH	2.00E+13	0	0		
125	CH2+CO(+M)=CH2CO(+M)	8.10E+11	0.5	4510		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		

	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	2.69E+33	-5.11E+00	7.10E+03
	TROE	centering:	5.91E-01	2.75E+02	1.23E+03	5.19E+03
126	2CH2=C2H2+H2	3.20E+13	0	0		
127	CH2(S)+M=CH2+M	9.00E+12	0	600		
	Н2О	Enhanced	by	0.00E+00		
	СО	Enhanced	by	0.00E+00		
	CO2	Enhanced	by	0.00E+00		
128	CH2(S)+H2O=CH2+H2O	3.00E+13	0	0		
129	CH2(S)+CO=CH2+CO	9.00E+12	0	0		
130	CH2(S)+CO2=CH2+CO2	7.00E+12	0	0		
131	CH2(S)+O=CO+H2	1.50E+13	0	0		
132	CH2(S)+O=HCO+H	1.50E+13	0	0		
133	CH2(S)+OH=CH2O+H	3.00E+13	0	0		
134	CH2(S)+H2=CH3+H	7.00E+13	0	0		
135	CH2(S)+O2=H+OH+CO	2.80E+13	0	0		
136	CH2(S)+O2=CO+H2O	1.20E+13	0	0		
137	CH2(S)+CO2=CH2O+CO	1.40E+13	0	0		
138	CH2(S)+H=CH+H2	3.00E+13	0	0		
139	CH2+H=CH+H2	1.00E+18	-1.6	0		
	Declared	duplicate	reaction			
140	CH2+OH=CH+H2O	1.13E+07	2	3000		
141	CH+O2=HCO+O	3.30E+13	0	0		
142	CH+O=CO+H	5.70E+13	0	0		
143	CH+OH=HCO+H	3.00E+13	0	0		
144	CH2+H=CH+H2	2.70E+11	0.7	25700		
	Declared	duplicate	reaction			
145	CH+H2O=H+CH2O	1.71E+13	0	-755		
146	CH+CO2=HCO+CO	1.70E+12	0	685		
147	HOCH2O=HCOOH+H	1.00E+14	0	14900		
148	CH2O+OH=HOCH2O	4.50E+15	-1.1	0		
149	HCOOH+M=CO+H2O+M	2.30E+13	0	50000		
150	HCOOH+M=CO2+H2+M	1.50E+16	0	57000		
151	HCOOH=HCO+OH	4.59E+18	-0.5	108300		
152	HCOOH+OH=H2O+CO2+H	2.62E+06	2.1	916		
153	HCOOH+OH=H2O+CO+OH	1.85E+07	1.5	-962		
154	HCOOH+H=H2+CO2+H	4.24E+06	2.1	4868		
155	HCOOH+H=H2+CO+OH	6.03E+13	-0.3	2988		
156	HCOOH+CH3=CH4+CO+OH	3.90E-07	5.8	2200		
157	HCOOH+HO2=H2O2+CO+OH	1.00E+12	0	11920		
158	HCOOH+O=CO+2OH	1.77E+18	-1.9	2975		
159	C2H5+H(+M)=C2H6(+M)	5.21E+17	-1	1580		
	H2	Enhanced	by	2.00E+00		

	Н2О	Enhanced	by	6.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	1.99E+41	-7.08E+00	6.69E+03
	TROE	centering:	8.42E-01	1.25E+02	2.22E+03	6.88E+03
160	C2H6+H=C2H5+H2	5.54E+02	3.5	5167		
161	C2H6+O=C2H5+OH	3.55E+06	2.4	5830		
162	C2H6+OH=C2H5+H2O	3.54E+06	2.1	870		
163	C2H6+O2=C2H5+HO2	6.03E+13	0	51870		
164	C2H6+CH3=C2H5+CH4	1.51E-07	6	6047		
165	C2H6+HO2=C2H5+H2O2	3.46E+01	3.6	16920		
166	C2H6+CH3O2=C2H5+CH3O2H	1.94E+01	3.6	17100		
167	C2H6+CH3O=C2H5+CH3OH	2.41E+11	0	7090		
168	C2H6+CH=C2H5+CH2	1.10E+14	0	-260		
169	CH2(S)+C2H6=CH3+C2H5	1.20E+14	0	0		
170	H+C2H4(+M)=C2H5(+M)	5.40E+11	0.5	1820		
	Low	pressure	limit:	6.00E+41	-7.62E+00	6.97E+03
	TROE	centering:	9.75E-01	2.10E+02	9.84E+02	4.37E+03
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	bv	6.00E+00		
	CH4	Enhanced	bv	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	AR	Enhanced	by	7.00E-01		
171	H2+CH3O2=H+CH3O2H	1.50E+14	0	26030		
172	H2+C2H5O2=H+C2H5O2H	1.50E+14	0	26030		
173	2C2H4=C2H5+C2H3	4.82E+14	0	71530		
174	CH3+C2H5=CH4+C2H4	1.18E+04	2.5	-2921		
175	C2H5+H=C2H4+H2	2.00E+12	0	0		
176	C2H5+O=CH3CHO+H	1.10E+14	0	0		
177	C2H5+HO2=C2H5O+OH	1.10E+13	0	0		
178	CH3O2+C2H5=CH3O+C2H5O	8.00E+12	0	-1000		
179	C2H5O+O2=CH3CHO+HO2	4.28E+10	0	1097		
180	CH3+CH2O=C2H5O	3.00E+11	0	6336		
181	CH3CHO+H=C2H5O	8.00E+12	0	6400		
182	C2H5+Q2=C2H5Q2	2.88E+56	-13.8	14620		
183	C2H5O2+CH2O=C2H5O2H+HCO	1.99E+12	0	11660		
184	CH4+C2H5O2=CH3+C2H5O2H	1,81E+11	0	18480		
185	CH30H+C2H502=CH20H+C2H502H	1.81E+12	0	13710		
186	C2H5O2+HO2=C2H5O2H+O2	1.75E+10	0	-3275		
187	C2H6+C2H5O2=C2H5+C2H5O2H	8 60F+00	3.8	17200		
182	C2H502H=C2H50+OH	6 31F+1/	0	42300		
180	C2H5+C2=C2H4C2H	1 81E+45	_11 5	1/600		
107	02113+02=0211 1 0211	1.016+40	-11.3	17000	1	L

1			1	1		1	
	190	C2H5+O2=C2H4+HO2	7.56E+14	-1	4749		
		Declared	duplicate	reaction			
	191	C2H5+O2=C2H4+HO2	4.00E-01	3.9	13620		
		Declared	duplicate	reaction			
	192	C2H5+O2=C2H4O1-2+OH	1.63E+11	-0.3	6150		
	193	C2H5+O2=CH3CHO+OH	8.26E+02	2.4	5285		
	194	C2H4O2H=C2H5O2	1.20E+36	-8.1	27020		
	195	C2H5O2=CH3CHO+OH	2.52E+41	-10.2	43710		
	196	C2H5O2=C2H4+HO2	1.82E+38	-8.4	37890		
	197	C2H5O2=C2H4O1-2+OH	4.00E+43	-10.5	45580		
	198	C2H4O2H=C2H4O1-2+OH	8.85E+30	-6.1	20660		
	199	C2H4O2H=C2H4+HO2	3.98E+34	-7.2	23250		
	200	C2H4O2H=CH3CHO+OH	1.19E+34	-9	29210		
	201	C2H4O1-2=CH3+HCO	3.63E+13	0	57200		
	202	C2H4O1-2=CH3CHO	7.41E+12	0	53800		
	203	C2H4O1-2+OH=C2H3O1-2+H2O	1.78E+13	0	3610		
	204	C2H4O1-2+H=C2H3O1-2+H2	8.00E+13	0	9680		
	205	C2H4O1-2+HO2=C2H3O1-2+H2O2	1.13E+13	0	30430		
	206	C2H4O1-2+CH3O2=C2H3O1-2+CH3O2H	1.13E+13	0	30430		
	207	C2H4O1-2+C2H5O2=C2H3O1-2+C2H5O2H	1.13E+13	0	30430		
	208	C2H4O1-2+CH3=C2H3O1-2+CH4	1.07E+12	0	11830		
	209	C2H4O1-2+CH3O=C2H3O1-2+CH3OH	1.20E+11	0	6750		
	210	C2H3O1-2=CH3CO	8.50E+14	0	14000		
	211	C2H3O1-2=CH2CHO	1.00E+14	0	14000		
	212	CH3+HCO=CH3CHO	1.75E+13	0	0		
	213	CH3CHO+H=CH3CO+H2	1.11E+13	0	3110		
	214	CH3CHO+O=CH3CO+OH	5.94E+12	0	1868		
	215	CH3CHO+OH=CH3CO+H2O	2.00E+06	1.8	1300		
	216	CH3CHO+O2=CH3CO+HO2	3.01E+13	0	39150		
	217	CH3CHO+CH3=CH3CO+CH4	1.76E+03	2.8	4950		
	218	CH3CHO+HO2=CH3CO+H2O2	3.01E+12	0	11920		
	219	CH3O2+CH3CHO=CH3O2H+CH3CO	3.01E+12	0	11920		
	220	CH3CHO+CH3CO3=CH3CO+CH3CO3H	3.01E+12	0	11920		
	221	СН3СНО+ОН=СН3+НСООН	3.00E+15	-1.1	0		
	222	CH3CHO+OH=CH2CHO+H2O	1.72E+05	2.4	815		
	223	CH3CO(+M)=CH3+CO(+M)	3.00E+12	0	16720		
		Low	pressure	limit:	1.20E+15	0.00E+00	1.25E+04
	224	CH3CO+H=CH2CO+H2	2.00E+13	0	0		
	225	CH3CO+O=CH2CO+OH	2.00E+13	0	0		
	226	CH3CO+CH3=CH2CO+CH4	5.00E+13	0	0		
	227	CH3CO+O2=CH3CO3	1.20E+11	0	-1100		
		Declared	duplicate	reaction			
	228	CH3CO3+HO2=CH3CO3H+O2	1.75E+10	0	-3275		
	229	H2O2+CH3CO3=HO2+CH3CO3H	2.41E+12	0	9936		
	230	СН4+СН3СО3=СН3+СН3СО3Н	1.81E+11	0	18480		
	231	CH2O+CH3CO3=HCO+CH3CO3H	1.99E+12	0	11660		
-		•					

232	C2H6+CH3CO3=C2H5+CH3CO3H	1.70E+13	0	20460		
233	CH3CO3H=CH3CO2+OH	5.01E+14	0	40150		
234	CH3CO2+M=CH3+CO2+M	4.40E+15	0	10500		
235	CH2CO+H=CH2CHO	5.00E+13	0	12300		
236	CH2CHO+O2=CH2O+CO+OH	2.00E+13	0	4200		
237	CH2CO+H=CH3+CO	1.10E+13	0	3400		
238	CH2CO+H=HCCO+H2	2.00E+14	0	8000		
239	CH2CO+O=CH2+CO2	1.75E+12	0	1350		
240	CH2CO+O=HCCO+OH	1.00E+13	0	8000		
241	CH2CO+OH=HCCO+H2O	1.00E+13	0	2000		
242	CH2CO+OH=CH2OH+CO	2.00E+12	0	-1010		
243	CH2(S)+CH2CO=C2H4+CO	1.60E+14	0	0		
244	HCCO+OH=H2+2CO	1.00E+14	0	0		
245	H+HCCO=CH2(S)+CO	1.10E+13	0	0		
246	HCCO+O=H+2CO	8.00E+13	0	0		
247	HCCO+O2=OH+2CO	4.20E+10	0	850		
248	HCCO+M=CH+CO+M	6.50E+15	0	58820		
249	CH+CH2O=H+CH2CO	9.46E+13	0	-515		
250	CH+HCCO=CO+C2H2	5.00E+13	0	0		
251	C2H3+H(+M)=C2H4(+M)	1.36E+14	0.2	660		
	Н2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	С2Н6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	1.40E+30	-3.86E+00	3.32E+03
	TROE	centering:	7.82E-01	2.08E+02	2.66E+03	6.10E+03
252	C2H4(+M)=C2H2+H2(+M)	8.00E+12	0.4	88770		
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	AR	Enhanced	by	7.00E-01		
	Low	pressure	limit:	1.58E+51	-9.30E+00	9.78E+04
	TROE	centering:	7.35E-01	1.80E+02	1.04E+03	5.42E+03
253	C2H4+H=C2H3+H2	1.33E+06	2.5	12241		
254	C2H4+O=CH3+HCO	8.56E+06	1.9	183		
255	C2H4+O=CH2CHO+H	4.99E+06	1.9	183		
256	C2H4+OH=C2H3+H2O	1.80E+06	2	2500		
257	C2H4+CH3=C2H3+CH4	6.62E+00	3.7	9500		
258	C2H4+O2=C2H3+HO2	4.00E+13	0	58200		
259	C2H4+CH3O=C2H3+CH3OH	1.20E+11	0	6750		
260	C2H4+CH3O2=C2H3+CH3O2H	2.23E+12	0	17190		

261	C2H4+C2H5O2=C2H3+C2H5O2H	2.23E+12	0	17190		
262	C2H4+CH3CO3=C2H3+CH3CO3H	1.13E+13	0	30430		
263	C2H4+CH3O2=C2H4O1-2+CH3O	2.82E+12	0	17110		
264	C2H4+C2H5O2=C2H4O1-2+C2H5O	2.82E+12	0	17110		
265	C2H4+HO2=C2H4O1-2+OH	2.23E+12	0	17190		
266	CH+CH4=C2H4+H	6.00E+13	0	0		
267	C2H3(+M)=C2H2+H(+M)	3.86E+08	1.6	37048.2		
	Low	pressure	limit:	2.57E+27	-3.40E+00	3.58E+04
	TROE	centering:	1.98E+00	5.38E+03	4.29E+00	-7.95E-02
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	AR	Enhanced	by	7.00E-01		
	C2H2	Enhanced	by	3.00E+00		
	C2H4	Enhanced	by	3.00E+00		
268	C2H3+O2=HCO+CH2O	4.58E+16	-1.4	1015		
269	C2H3+O2=HO2+C2H2	1.34E+06	1.6	-384		
270	C2H3+O2=O+CH2CHO	3.00E+11	0.3	11		
271	CH3+C2H3=CH4+C2H2	3.92E+11	0	0		
272	C2H3+H=C2H2+H2	9.63E+13	0	0		
273	C2H3+OH=C2H2+H2O	5.00E+12	0	0		
274	C2H+H(+M)=C2H2(+M)	1.00E+17	0	0		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	3.75E+33	-4.80E+00	1.90E+03
	TROE	centering:	6.46E-01	1.32E+02	1.32E+03	5.57E+03
275	C2H2+O2=HCCO+OH	2.00E+08	1.5	30100		
276	O+C2H2=C2H+OH	4.60E+19	-1.4	28950		
277	C2H2+O=CH2+CO	4.08E+06	2	1900		
278	C2H2+O=HCCO+H	1.35E+07	2	1900		
279	C2H2+OH=C2H+H2O	3.37E+07	2	14000		
280	C2H2+OH=CH2CO+H	3.24E+13	0	12000		
281	C2H2+OH=CH3+CO	4.83E-04	4	-2000		
282	OH+C2H2=H+HCCOH	5.04E+05	2.3	13500		
283	H+HCCOH=H+CH2CO	1.00E+13	0	0		
284	C2H5OH(+M)=CH2OH+CH3(+M)	5.71E+23	-1.7	94400		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	5.00E+00		
	СО	Enhanced	bv	2.00E+00		
L		1				1

	CO2	Enhanced	by	3.00E+00		
	Low	pressure	limit:	3.11E+85	-1.88E+01	1.13E+05
	TROE	centering:	5.00E-01	5.50E+02	8.25E+02	6.10E+03
285	C2H5OH(+M)=C2H5+OH(+M)	2.40E+23	-1.6	99540		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	5.00E+00		
	СО	Enhanced	by	2.00E+00		
	CO2	Enhanced	by	3.00E+00		
	Low	pressure	limit:	5.11E+85	-1.88E+01	1.19E+05
	TROE	centering:	5.00E-01	6.50E+02	8.00E+02	1.00E+15
286	C2H5OH(+M)=C2H4+H2O(+M)	2.79E+13	0.1	66140		
	Н2О	Enhanced	by	5.00E+00		
	Low	pressure	limit:	2.57E+83	-1.89E+01	8.65E+04
	TROE	centering:	7.00E-01	3.50E+02	8.00E+02	3.80E+03
287	C2H5OH(+M)=CH3CHO+H2(+M)	7.24E+11	0.1	91010		
	Н2О	Enhanced	by	5.00E+00		
	Low	pressure	limit:	4.46E+87	-1.94E+01	1.16E+05
	TROE	centering:	9.00E-01	9.00E+02	1.10E+03	3.50E+03
288	C2H5OH+O2=PC2H4OH+HO2	2.00E+13	0	52800		
289	C2H5OH+O2=SC2H4OH+HO2	1.50E+13	0	50150		
290	C2H5OH+OH=PC2H4OH+H2O	1.74E+11	0.3	600		
291	C2H5OH+OH=SC2H4OH+H2O	4.64E+11	0.1	0		
292	C2H5OH+OH=C2H5O+H2O	7.46E+11	0.3	1634		
293	C2H5OH+H=PC2H4OH+H2	1.23E+07	1.8	5098		
294	C2H5OH+H=SC2H4OH+H2	2.58E+07	1.6	2827		
295	C2H5OH+H=C2H5O+H2	1.50E+07	1.6	3038		
296	C2H5OH+HO2=PC2H4OH+H2O2	1.23E+04	2.5	15750		
297	C2H5OH+HO2=SC2H4OH+H2O2	8.20E+03	2.5	10750		
298	C2H5OH+HO2=C2H5O+H2O2	2.50E+12	0	24000		
299	C2H5OH+CH3O2=PC2H4OH+CH3O2H	1.23E+04	2.5	15750		
300	C2H5OH+CH3O2=SC2H4OH+CH3O2H	8.20E+03	2.5	10750		
301	C2H5OH+CH3O2=C2H5O+CH3O2H	2.50E+12	0	24000		
302	C2H5OH+O=PC2H4OH+OH	9.41E+07	1.7	5459		
303	C2H5OH+O=SC2H4OH+OH	1.88E+07	1.9	1824		
304	C2H5OH+O=C2H5O+OH	1.58E+07	2	4448		
305	C2H5OH+CH3=PC2H4OH+CH4	1.33E+02	3.2	9362		
306	C2H5OH+CH3=SC2H4OH+CH4	4.44E+02	2.9	7690		
307	C2H5OH+CH3=C2H5O+CH4	1.34E+02	2.9	7452		
308	C2H5OH+C2H5=PC2H4OH+C2H6	5.00E+10	0	13400		
309	C2H5OH+C2H5=SC2H4OH+C2H6	5.00E+10	0	10400		
310	C2H4+OH=PC2H4OH	4.17E+20	-2.8	1240		
311	SC2H4OH+M=CH3CHO+H+M	1.00E+14	0	25000		
312	O2C2H4OH=PC2H4OH+O2	3.90E+16	-1	30000		
313	O2C2H4OH=OH+2CH2O	3.12E+09	0	18900		
314	SC2H4OH+O2=CH3CHO+HO2	3.81E+06	2	1641		
315	CH3COCH3(+M)=CH3CO+CH3(+M)	7.11E+21	-1.6	84680		

	Low	pressure	limit:	7.01E+89	-2.04E+01	1.07E+05
	TROE	centering:	8.63E-01	1.00E+10	4.16E+02	3.29E+09
316	CH3COCH3+OH=CH3COCH2+H2O	1.25E+05	2.5	445		
317	CH3COCH3+H=CH3COCH2+H2	9.80E+05	2.4	5160		
318	CH3COCH3+O=CH3COCH2+OH	5.13E+11	0.2	4890		
319	CH3COCH3+CH3=CH3COCH2+CH4	3.96E+11	0	9784		
320	CH3COCH3+CH3O=CH3COCH2+CH3OH	4.34E+11	0	6460		
321	CH3COCH3+O2=CH3COCH2+HO2	6.03E+13	0	48500		
322	CH3COCH3+HO2=CH3COCH2+H2O2	1.70E+13	0	20460		
323	CH3COCH3+CH3O2=CH3COCH2+CH3O2H	1.70E+13	0	20460		
324	CH3COCH2=CH2CO+CH3	1.00E+14	0	31000		
325	CH3COCH2+O2=CH3COCH2O2	1.20E+11	0	-1100		
326	CH3COCH3+CH3COCH2O2=CH3COCH2+CH3 COCH2O2H	1.00E+11	0	5000		
327	CH2O+CH3COCH2O2=HCO+CH3COCH2O2H	1.29E+11	0	9000		
328	HO2+CH3COCH2O2=CH3COCH2O2H+O2	1.00E+12	0	0		
329	CH3COCH2O2H=CH3COCH2O+OH	1.00E+16	0	43000		
330	CH3CO+CH2O=CH3COCH2O	1.00E+11	0	11900		
331	C2H3+HCO=C2H3CHO	1.81E+13	0	0		
332	C2H3CHO+H=C2H3CO+H2	1.34E+13	0	3300		
333	C2H3CHO+O=C2H3CO+OH	5.94E+12	0	1868		
334	C2H3CHO+H=C2H4+HCO	2.00E+13	0	3500		
335	C2H3CHO+O=CH2CO+HCO+H	5.00E+07	1.8	76		
336	C2H3CHO+OH=C2H3CO+H2O	9.24E+06	1.5	-962		
337	C2H3CHO+O2=C2H3CO+HO2	1.00E+13	0	40700		
338	C2H3CHO+HO2=C2H3CO+H2O2	3.01E+12	0	11920		
339	C2H3CHO+CH3=C2H3CO+CH4	2.61E+06	1.8	5911		
340	C2H3CHO+C2H3=C2H3CO+C2H4	1.74E+12	0	8440		
341	C2H3CHO+CH3O=C2H3CO+CH3OH	1.00E+12	0	3300		
342	C2H3CHO+CH3O2=C2H3CO+CH3O2H	3.01E+12	0	11920		
343	C2H3+CO=C2H3CO	1.51E+11	0	4810		
344	C2H3CO+O2=CH2CHO+CO2	5.40E+20	-2.7	7000		
345	C2H3CO+O=C2H3+CO2	1.00E+14	0	0		
346	C2H5+HCO=C2H5CHO	1.81E+13	0	0		
347	C2H5CHO+H=C2H5CO+H2	4.00E+13	0	4200		
348	C2H5CHO+O=C2H5CO+OH	5.00E+12	0	1790		
349	C2H5CHO+OH=C2H5CO+H2O	2.69E+10	0.8	-340		
350	C2H5CHO+CH3=C2H5CO+CH4	2.61E+06	1.8	5911		
351	C2H5CHO+HO2=C2H5CO+H2O2	2.80E+12	0	13600		
352	С2Н5СНО+СН3О=С2Н5СО+СН3ОН	1.00E+12	0	3300		
353	C2H5CHO+CH3O2=C2H5CO+CH3O2H	3.01E+12	0	11920		
354	C2H5CHO+C2H5=C2H5CO+C2H6	1.00E+12	0	8000		
355	C2H5CHO+C2H5O=C2H5CO+C2H5OH	6.03E+11	0	3300		
356	C2H5CHO+C2H5O2=C2H5CO+C2H5O2H	3.01E+12	0	11920		
357	C2H5CHO+O2=C2H5CO+HO2	1.00E+13	0	40700		
358	C2H5CHO+CH3CO3=C2H5CO+CH3CO3H	3.01E+12	0	11920		

359	C2H5CHO+C2H3=C2H5CO+C2H4	1.70E+12	0	8440		
360	C2H5+CO=C2H5CO	1.51E+11	0	4810		
361	CH3OCH3(+M)=CH3+CH3O(+M)	4.85E+21	-1.6	83130		
	Low	pressure	limit:	1.12E+71	-1.45E+01	1.00E+05
	TROE	centering:	8.43E-01	9.49E+09	5.56E+02	6.71E+09
362	СНЗОСО+Н=СНЗОСНО	1.00E+14	0	0		
363	CH3OCHO(+M)=CH3OH+CO(+M)	1.00E+14	0	62500		
	Low	pressure	limit:	6.14E+60	-1.21E+01	7.54E+04
	TROE	centering:	7.80E-01	8.28E+09	4.39E+02	6.70E+08
364	СНЗО+НСО=СНЗОСНО	3.00E+13	0	0		
365	СН3+ОСНО=СН3ОСНО	1.00E+13	0	0		
366	CH3OCHO+O2=CH3OCO+HO2	1.00E+13	0	49700		
367	СНЗОСНО+ОН=СНЗОСО+Н2О	1.58E+07	1.8	934		
368	CH3OCHO+HO2=CH3OCO+H2O2	4.82E+03	2.6	13910		
369	СНЗОСНО+О=СНЗОСО+ОН	2.76E+05	2.5	2830		
370	CH3OCHO+H=CH3OCO+H2	6.50E+05	2.4	4471		
371	CH3OCHO+CH3=CH3OCO+CH4	7.55E-01	3.5	5481		
372	CH3OCHO+CH3O=CH3OCO+CH3OH	5.48E+11	0	5000		
373	CH3OCHO+CH3O2=CH3OCO+CH3O2H	4.82E+03	2.6	13910		
374	CH3OCHO+HCO=CH3OCO+CH2O	5.40E+06	1.9	17010		
375	CH3+CO2=CH3OCO	4.76E+07	1.5	34700		
376	CH3O+CO=CH3OCO	1.55E+06	2	5730		
377	C3H8(+M)=CH3+C2H5(+M)	1.29E+37	-5.8	97380		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	5.64E+74	-1.57E+01	9.87E+04
	TROE	centering:	3.10E-01	5.00E+01	3.00E+03	9.00E+03
378	NC3H7+H=C3H8	1.00E+14	0	0		
379	IC3H7+H=C3H8	1.00E+14	0	0		
380	C3H8+O2=IC3H7+HO2	2.00E+13	0	49640		
381	C3H8+O2=NC3H7+HO2	6.00E+13	0	52290		
382	H+C3H8=H2+IC3H7	1.30E+06	2.4	4471		
383	H+C3H8=H2+NC3H7	1.33E+06	2.5	6756		
384	C3H8+O=IC3H7+OH	5.49E+05	2.5	3140		
385	C3H8+O=NC3H7+OH	3.71E+06	2.4	5505		
386	C3H8+OH=NC3H7+H2O	1.05E+10	1	1586		
387	C3H8+OH=IC3H7+H2O	4.67E+07	1.6	-35		
388	C3H8+H02=IC3H7+H2O2	5.88E+04	2.5	14860		
389	C3H8+HO2=NC3H7+H2O2	8 10E+04	2.5	16690		
390	CH3+C3H8=CH4+IC3H7	6 40F+04	2.5	7520		
301	CH3+C3H8=CH4+NC3H7	9.04F-01	3.6	7154		
202	IC3H7+C3H9-NC2H7+C2H9	3 00E+10	0	12000		
392	IC311/ C3110-INC311/TC3118	5.00E+10	U	12900		

- 1			1	1	1		1
	393	C2H3+C3H8=C2H4+IC3H7	1.00E+11	0	10400		
	394	C2H3+C3H8=C2H4+NC3H7	1.00E+11	0	10400		
	395	C2H5+C3H8=C2H6+IC3H7	1.00E+11	0	10400		
	396	C2H5+C3H8=C2H6+NC3H7	1.00E+11	0	10400		
	397	C3H8+C3H5-A=NC3H7+C3H6	7.94E+11	0	20500		
	398	C3H8+C3H5-A=IC3H7+C3H6	7.94E+11	0	16200		
	399	C3H8+CH3O=NC3H7+CH3OH	3.00E+11	0	7000		
	400	C3H8+CH3O=IC3H7+CH3OH	3.00E+11	0	7000		
	401	CH3O2+C3H8=CH3O2H+NC3H7	8.10E+04	2.5	16690		
	402	CH3O2+C3H8=CH3O2H+IC3H7	5.88E+04	2.5	14860		
	403	C2H5O2+C3H8=C2H5O2H+NC3H7	8.10E+04	2.5	16690		
	404	C2H5O2+C3H8=C2H5O2H+IC3H7	5.88E+04	2.5	14860		
	405	NC3H7O2+C3H8=NC3H7O2H+NC3H7	1.70E+13	0	20460		
	406	NC3H7O2+C3H8=NC3H7O2H+IC3H7	2.00E+12	0	17000		
	407	IC3H7O2+C3H8=IC3H7O2H+NC3H7	1.70E+13	0	20460		
	408	IC3H7O2+C3H8=IC3H7O2H+IC3H7	2.00E+12	0	17000		
	409	C3H8+CH3CO3=IC3H7+CH3CO3H	2.00E+12	0	17000		
	410	C3H8+CH3CO3=NC3H7+CH3CO3H	1.70E+13	0	20460		
	411	C3H8+O2CHO=NC3H7+HO2CHO	5.52E+04	2.5	16480		
ſ	412	C3H8+O2CHO=IC3H7+HO2CHO	1.48E+04	2.6	13910		
	413	H+C3H6=IC3H7	2.64E+13	0	2160		
ſ	414	IC3H7+H=C2H5+CH3	2.00E+13	0	0		
ſ	415	IC3H7+O2=C3H6+HO2	4.50E-19	0	5020		
	416	IC3H7+OH=C3H6+H2O	2.41E+13	0	0		
ſ	417	IC3H7+O=CH3COCH3+H	4.82E+13	0	0		
ſ	418	IC3H7+O=CH3CHO+CH3	4.82E+13	0	0		
	419	NC3H7=CH3+C2H4	9.97E+40	-8.6	41430		
	420	NC3H7=H+C3H6	8.78E+39	-8.1	46580		
ſ	421	NC3H7+O2=C3H6+HO2	3.00E-19	0	3000		
ſ	422	C2H5CHO+NC3H7=C2H5CO+C3H8	1.70E+12	0	8440		
ſ	423	C2H5CHO+IC3H7=C2H5CO+C3H8	1.70E+12	0	8440		
	424	C2H5CHO+C3H5-A=C2H5CO+C3H6	1.70E+12	0	8440		
	425	C3H5-A+H(+M)=C3H6(+M)	2.00E+14	0	0		
		H2	Enhanced	by	2.00E+00		
		H2O	Enhanced	by	6.00E+00		
		CH4	Enhanced	by	2.00E+00		
		СО	Enhanced	by	1.50E+00		
		CO2	Enhanced	by	2.00E+00		
		C2H6	Enhanced	by	3.00E+00		
ſ		Low	pressure	limit:	1.33E+60	-1.20E+01	5.97E+03
ſ		TROE	centering:	2.00E-02	1.10E+03	1.10E+03	6.86E+03
ſ	426	C2H3+CH3(+M)=C3H6(+M)	2.50E+13	0	0		
ľ		H2	Enhanced	by	2.00E+00		
ľ		Н2О	Enhanced	by	6.00E+00		
ľ		CH4	Enhanced	by	2.00E+00		
ľ		СО	Enhanced	by	1.50E+00		
-							

	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	C2H4	Enhanced	bv	3.00E+00		
	Low	pressure	limit:	4.27E+58	-1.19E+01	9.77E+03
	TROE	centering:	1.75E-01	1.34E+03	6.00E+04	1.01E+04
427	C3H6=C3H5-S+H	7.71E+69	-16.1	140000		
428	C3H6=C3H5-T+H	5.62E+71	-16.6	139300		
429	C3H6+O=C2H5+HCO	1.58E+07	1.8	-1216		
430	C3H6+O=CH2CO+CH3+H	2.50E+07	1.8	76		
431	C3H6+O=CH3CHCO+2H	2.50E+07	1.8	76		
432	C3H6+O=C3H5-A+OH	5.24E+11	0.7	5884		
433	C3H6+O=C3H5-S+OH	1.20E+11	0.7	8959		
434	C3H6+O=C3H5-T+OH	6.03E+10	0.7	7632		
435	C3H6+OH=C3H5-A+H2O	3.12E+06	2	-298		
436	C3H6+OH=C3H5-S+H2O	2.11E+06	2	2778		
437	C3H6+OH=C3H5-T+H2O	1.11E+06	2	1451		
438	C3H6+HO2=C3H5-A+H2O2	2.70E+04	2.5	12340		
439	C3H6+HO2=C3H5-S+H2O2	1.80E+04	2.5	27620		
440	C3H6+HO2=C3H5-T+H2O2	9.00E+03	2.5	23590		
441	C3H6+H=C2H4+CH3	2.60E+08	1.5	2007		
442	C3H6+H=C3H5-A+H2	1.73E+05	2.5	2490		
443	C3H6+H=C3H5-T+H2	4.00E+05	2.5	9790		
444	C3H6+H=C3H5-S+H2	8.04E+05	2.5	12283		
445	C3H6+O2=C3H5-A+HO2	4.00E+12	0	39900		
446	C3H6+O2=C3H5-S+HO2	2.00E+12	0	62900		
447	C3H6+O2=C3H5-T+HO2	1.40E+12	0	60700		
448	C3H6+CH3=C3H5-A+CH4	1.00E+12	0	7989		
449	C3H6+CH3=C3H5-S+CH4	1.35E+00	3.5	12850		
450	C3H6+CH3=C3H5-T+CH4	8.40E-01	3.5	11660		
451	C3H6+C2H5=C3H5-A+C2H6	1.00E+11	0	9800		
452	C3H6+CH3CO3=C3H5-A+CH3CO3H	3.24E+11	0	14900		
453	C3H6+CH3O2=C3H5-A+CH3O2H	3.24E+11	0	14900		
454	C3H6+HO2=C3H6O1-2+OH	1.29E+12	0	14900		
455	C3H6+C2H5O2=C3H5-A+C2H5O2H	3.24E+11	0	14900		
456	C3H6+NC3H7O2=C3H5-A+NC3H7O2H	3.24E+11	0	14900		
457	C3H6+IC3H7O2=C3H5-A+IC3H7O2H	3.24E+11	0	14900		
458	С3Н6+ОН=С3Н6ОН	9.93E+11	0	-960		
459	C3H6OH+O2=HOC3H6O2	1.20E+11	0	-1100		
460	HOC3H6O2=CH3CHO+CH2O+OH	1.25E+10	0	18900		
461	C3H5-A+H=C3H4-A+H2	1.80E+13	0	0		
462	C3H5-A+O=C2H3CHO+H	6.00E+13	0	0		
463	C3H5-A+OH=C2H3CHO+2H	1.60E+20	-1.6	26330		
464	C3H5-A+OH=C3H4-A+H2O	6.00E+12	0	0		
465	C3H5-A+O2=C3H4-A+HO2	2.18E+21	-2.9	30755		
466	C3H5-A+O2=CH3CO+CH2O	7.14E+15	-1.2	21046		
467	C3H5-A+O2=C2H3CHO+OH	2.47E+13	-0.5	23017		

468	C3H5-A+HCO=C3H6+CO	6.00E+13	0	0		
469	C3H5-A+CH3(+M)=C4H8-1(+M)	1.00E+14	-0.3	-262.3		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	3.91E+60	-1.28E+01	6.25E+03
	TROE	centering:	1.04E-01	1.61E+03	6.00E+04	6.12E+03
470	C3H5-A+CH3=C3H4-A+CH4	3.00E+12	-0.3	-131		
471	C3H5-A=C3H5-T	4.86E+53	-12.8	75883		
472	C3H5-A=C3H5-S	9.70E+48	-11.7	73700		
473	C2H2+CH3=C3H5-A	1.04E+51	-11.9	36476		
474	C3H5-A+CH3O2=C3H5O+CH3O	7.00E+12	0	-1000		
475	C3H5-A+C2H5=C2H6+C3H4-A	4.00E+11	0	0		
476	C3H5-A+C2H5=C2H4+C3H6	4.00E+11	0	0		
477	C3H5-A+C2H3=C2H4+C3H4-A	1.00E+12	0	0		
478	2C3H5-A=C3H4-A+C3H6	8.43E+10	0	-262		
479	C3H5-A+C2H2=C*CCJC*C	1.00E+12	0	6883.4		
480	C3H5-A+C2H3=C5H6+2H	1.60E+35	-14	61137.7		
481	C3H5-A+C3H3=C6H6+2H	5.60E+20	-2.5	1696.9		
482	С3Н5-А+НО2=С3Н5О+ОН	7.00E+12	0	-1000		
483	C2H2+CH3=C3H5-S	2.40E+38	-8.2	17100		
484	C3H5-S+H=C3H4-P+H2	3.34E+12	0	0		
485	C3H5-S+O=C2H4+HCO	6.00E+13	0	0		
486	C3H5-S+OH=C2H4+HCO+H	5.00E+12	0	0		
487	C3H5-S+O2=CH3CHO+HCO	1.00E+11	0	0		
488	C3H5-S+HO2=C2H4+HCO+OH	2.00E+13	0	0		
489	C3H5-S+HCO=C3H6+CO	9.00E+13	0	0		
490	C3H5-S+CH3=C3H4-P+CH4	1.00E+11	0	0		
491	С2Н2+СН3=С3Н5-Т	7.31E+25	-5.1	21150		
492	C3H5-T=C3H5-S	5.10E+52	-13.4	57200		
493	C3H5-T+H=C3H4-P+H2	3.34E+12	0	0		
494	C3H5-T+O=CH3+CH2CO	6.00E+13	0	0		
495	C3H5-T+OH=CH3+CH2CO+H	5.00E+12	0	0		
496	C3H5-T+O2=CH3CO+CH2O	1.00E+11	0	0		
497	C3H5-T+HO2=CH3+CH2CO+OH	2.00E+13	0	0		
498	C3H5-T+HCO=C3H6+CO	9.00E+13	0	0		
499	C3H5-T+CH3=C3H4-P+CH4	1.00E+11	0	0		
500	C2H2+CH3=C3H4-A+H	9.20E+10	0.5	23950		
501	C3H4-A+H=C3H3+H2	1.30E+06	2	5500		
502	C3H4-A+H=C3H5-S	2.60E+31	-6.2	18700		
503	СЗН4-А+Н=СЗН5-Т	6.98E+44	-9.7	14032		
504	C3H4-A+H=C3H5-A	7.34E+54	-12.1	26187		
505	C3H4-A+O=C2H4+CO	2.00E+07	1.8	1000		

506	C3H4-A+OH=C3H3+H2O	5.30E+06	2	2000		
507	C3H4-A+CH3=C3H3+CH4	1.30E+12	0	7700		
508	C3H4-A+C2H=C2H2+C3H3	1.00E+13	0	0		
509	2C3H4-A=C3H5-A+C3H3	5.00E+14	0	64746.7		
510	C3H4-A+C3H5-A=C3H3+C3H6	2.00E+11	0	7700		
511	C3H4-A+C3H3=C6H6+H	1.40E+12	0	9990.4		
512	C3H4-P=CC3H4	3.92E+40	-8.7	68706		
513	C3H4-P=C3H4-A	3.12E+58	-13.1	92680		
514	C3H4-P+H=C3H4-A+H	1.93E+18	-1	11523		
515	С3Н4-Р+Н=С3Н5-Т	9.62E+47	-10.6	15910		
516	C3H4-P+H=C3H5-S	1.00E+34	-6.9	8900		
517	СЗН4-Р+Н=СЗН5-А	9.02E+59	-13.9	33953		
518	C3H4-P+H=C3H3+H2	1.30E+06	2	5500		
519	C3H4-P+C3H3=C3H4-A+C3H3	6.14E+06	1.7	10450		
520	C3H4-P+O=HCCO+CH3	7.30E+12	0	2250		
521	C3H4-P+O=C2H4+CO	1.00E+13	0	2250		
522	C3H4-P+OH=C3H3+H2O	1.00E+06	2	100		
523	C3H4-P+C2H=C2H2+C3H3	1.00E+13	0	0		
524	C3H4-P+CH3=C3H3+CH4	1.80E+12	0	7700		
525	C2H2+CH3=C3H4-P+H	2.51E+11	0.6	15453		
526	C3H4-P+C2H3=C3H3+C2H4	1.00E+12	0	7700		
527	C3H4-P+C3H5-A=C3H3+C3H6	1.00E+12	0	7700		
528	CC3H4=C3H4-A	4.33E+41	-8.9	50475		
529	СЗНЗ+Н=СЗН4-Р	6.45E+13	0.1	-31.1		
530	С3Н3+Н=С3Н4-А	2.00E+13	0.2	-172.1		
531	C3H3+H=C3H2+H2	1.00E+13	0	1000		
532	C3H3+O=CH2O+C2H	2.00E+13	0	0		
533	C3H3+OH=C3H2+H2O	2.00E+13	0	0		
534	C3H3+O2=CH2CO+HCO	3.00E+10	0	2868		
535	C3H3+HO2=OH+CO+C2H3	8.00E+11	0	0		
536	C3H3+HO2=C3H4-A+O2	3.00E+11	0	0		
537	C3H3+HO2=C3H4-P+O2	2.50E+12	0	0		
538	C3H3+HCO=C3H4-A+CO	2.50E+13	0	0		
539	C3H3+HCO=C3H4-P+CO	2.50E+13	0	0		
540	C3H3+HCCO=C4H4+CO	2.50E+13	0	0		
541	C3H3+CH=C4H3-I+H	5.00E+13	0	0		
542	C3H3+CH2=C4H4+H	5.00E+13	0	0		
543	C3H3+CH3(+M)=C4H612(+M)	1.50E+12	0	0		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
	Low	pressure	limit:	2.60E+57	-1.19E+01	9.77E+03
	TROE	centering:	1.75E-01	1.34E+03	6.00E+04	9.77E+03
544	2C3H3=C6H5+H	2.02E+33	-6	15940		
-----	---------------------------------	------------	----------	----------	-----------	----------
545	2C3H3=C6H6	2.00E+12	0	0		
546	C2H5+C2H=C3H3+CH3	1.81E+13	0	0		
547	C3H2+H(+M)=C3H3(+M)	1.02E+13	0.3	279.6		
	Low	pressure	limit:	2.80E+30	-3.86E+00	3.32E+03
	TROE	centering:	7.82E-01	2.08E+02	2.66E+03	6.10E+03
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	1.20E+01		
	CO2	Enhanced	by	3.60E+00		
	СО	Enhanced	by	1.75E+00		
	AR	Enhanced	by	7.00E-01		
	CH4	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
548	C3H2+O=C2H2+CO	6.80E+13	0	0		
549	C3H2+OH=HCO+C2H2	6.80E+13	0	0		
550	C3H2+O2=HCCO+H+CO	2.00E+12	0	1000		
551	C3H2+CH=C4H2+H	5.00E+13	0	0		
552	C3H2+CH2=C4H3-N+H	5.00E+13	0	0		
553	C3H2+CH3=C4H4+H	5.00E+12	0	0		
554	C3H2+HCCO=C4H3-N+CO	1.00E+13	0	0		
555	C3H2+C3H3=C6H5	7.00E+12	0	0		
556	C3H2+O2=HCO+HCCO	5.00E+13	0	0		
557	CH3CHCO+OH=C2H5+CO2	1.73E+12	0	-1010		
558	CH3CHCO+OH=SC2H4OH+CO	2.00E+12	0	-1010		
559	CH3CHCO+H=C2H5+CO	4.40E+12	0	1459		
560	CH3CHCO+O=CH3CHO+CO	3.20E+12	0	-437		
561	NC3H7+HO2=NC3H7O+OH	7.00E+12	0	-1000		
562	IC3H7+HO2=IC3H7O+OH	7.00E+12	0	-1000		
563	CH3O2+NC3H7=CH3O+NC3H7O	7.00E+12	0	-1000		
564	CH3O2+IC3H7=CH3O+IC3H7O	7.00E+12	0	-1000		
565	NC3H7+O2=NC3H7O2	4.52E+12	0	0		
566	IC3H7+O2=IC3H7O2	7.54E+12	0	0		
567	NC3H7O2+CH2O=NC3H7O2H+HCO	5.60E+12	0	13600		
568	NC3H7O2+CH3CHO=NC3H7O2H+CH3CO	2.80E+12	0	13600		
569	IC3H7O2+CH2O=IC3H7O2H+HCO	5.60E+12	0	13600		
570	IC3H7O2+CH3CHO=IC3H7O2H+CH3CO	2.80E+12	0	13600		
571	NC3H7O2+HO2=NC3H7O2H+O2	1.75E+10	0	-3275		
572	IC3H7O2+HO2=IC3H7O2H+O2	1.75E+10	0	-3275		
573	C2H4+NC3H7O2=C2H3+NC3H7O2H	1.13E+13	0	30430		
574	C2H4+IC3H7O2=C2H3+IC3H7O2H	1.13E+13	0	30430		
575	CH3OH+NC3H7O2=CH2OH+NC3H7O2H	6.30E+12	0	19360		
576	CH3OH+IC3H7O2=CH2OH+IC3H7O2H	6.30E+12	0	19360		
577	C2H3CHO+NC3H7O2=C2H3CO+NC3H7O2H	2.80E+12	0	13600		
578	C2H3CHO+IC3H7O2=C2H3CO+IC3H7O2H	2.80E+12	0	13600		
579	CH4+NC3H7O2=CH3+NC3H7O2H	1.12E+13	0	24640		
580	CH4+IC3H7O2=CH3+IC3H7O2H	1.12E+13	0	24640		

581	NC3H7O2+CH3O2=NC3H7O+CH3O+O2	1.40E+16	-1.6	1860		
582	IC3H7O2+CH3O2=IC3H7O+CH3O+O2	1.40E+16	-1.6	1860		
583	H2+NC3H7O2=H+NC3H7O2H	3.01E+13	0	26030		
584	H2+IC3H7O2=H+IC3H7O2H	3.01E+13	0	26030		
585	IC3H7O2+C2H6=IC3H7O2H+C2H5	1.70E+13	0	20460		
586	NC3H7O2+C2H6=NC3H7O2H+C2H5	1.70E+13	0	20460		
587	IC3H7O2+C2H5CHO=IC3H7O2H+C2H5CO	2.00E+11	0	9500		
588	NC3H7O2+C2H5CHO=NC3H7O2H+C2H5CO	2.00E+11	0	9500		
589	IC3H7O2+CH3CO3=IC3H7O+CH3CO2+O2	1.40E+16	-1.6	1860		
590	NC3H7O2+CH3CO3=NC3H7O+CH3CO2+O2	1.40E+16	-1.6	1860		
591	IC3H7O2+C2H5O2=IC3H7O+C2H5O+O2	1.40E+16	-1.6	1860		
592	NC3H7O2+C2H5O2=NC3H7O+C2H5O+O2	1.40E+16	-1.6	1860		
593	2IC3H7O2=O2+2IC3H7O	1.40E+16	-1.6	1860		
594	2NC3H7O2=O2+2NC3H7O	1.40E+16	-1.6	1860		
595	IC3H7O2+NC3H7O2=IC3H7O+NC3H7O+O2	1.40E+16	-1.6	1860		
596	IC3H7O2+CH3=IC3H7O+CH3O	7.00E+12	0	-1000		
597	IC3H7O2+C2H5=IC3H7O+C2H5O	7.00E+12	0	-1000		
598	IC3H7O2+IC3H7=2IC3H7O	7.00E+12	0	-1000		
599	IC3H7O2+NC3H7=IC3H7O+NC3H7O	7.00E+12	0	-1000		
600	IC3H7O2+C3H5-A=IC3H7O+C3H5O	7.00E+12	0	-1000		
601	NC3H7O2+CH3=NC3H7O+CH3O	7.00E+12	0	-1000		
602	NC3H7O2+C2H5=NC3H7O+C2H5O	7.00E+12	0	-1000		
603	NC3H7O2+IC3H7=NC3H7O+IC3H7O	7.00E+12	0	-1000		
604	NC3H7O2+NC3H7=2NC3H7O	7.00E+12	0	-1000		
605	NC3H7O2+C3H5-A=NC3H7O+C3H5O	7.00E+12	0	-1000		
606	NC3H7O2H=NC3H7O+OH	1.50E+16	0	42500		
607	IC3H7O2H=IC3H7O+OH	9.45E+15	0	42600		
608	C2H5+CH2O=NC3H7O	1.00E+11	0	3496		
609	C2H5CHO+H=NC3H7O	4.00E+12	0	6260		
610	CH3+CH3CHO=IC3H7O	1.00E+11	0	9256		
611	CH3COCH3+H=IC3H7O	2.00E+12	0	7270		
612	IC3H7O+O2=CH3COCH3+HO2	9.09E+09	0	390		
613	NC3H7O2=C3H6OOH1-2	6.00E+11	0	26850		
614	NC3H7O2=C3H6OOH1-3	1.12E+11	0	24400		
615	IC3H7O2=C3H6OOH2-1	1.80E+12	0	29400		
	Reverse	Arrhenius	coefficients:	1.12E+10	0.1	11810
616	C3H6OOH1-2=C3H6O1-2+OH	6.00E+11	0	22000		
617	C3H6OOH1-3=C3H6O1-3+OH	7.50E+10	0	15250		
618	C3H6OOH2-1=C3H6O1-2+OH	6.00E+11	0	22000		
619	C3H6+HO2=C3H6OOH1-2	1.00E+11	0	11000		
620	C3H6+HO2=C3H6OOH2-1	1.00E+11	0	11750		
621	C3H6OOH1-3=OH+CH2O+C2H4	3.04E+15	-0.8	27400		
622	C3H6OOH1-2=C2H4+CH2O+OH	1.31E+33	-7	48120		
623	C3H6OOH1-2+O2=C3H6OOH1-2O2	5.00E+12	0	0		
624	C3H6OOH1-3+O2=C3H6OOH1-3O2	4.52E+12	0	0		
625	C3H6OOH2-1+O2=C3H6OOH2-1O2	4.52E+12	0	0		

	626	C3H6OOH1-2O2=C3KET12+OH	6.00E+11	0	26400		
	627	C3H6OOH1-3O2=C3KET13+OH	7.50E+10	0	21400		
	628	C3H6OOH2-1O2=C3KET21+OH	3.00E+11	0	23850		
		Reverse	Arrhenius	coefficients:	1.40E+03	1.8	49750
	629	C3H6OOH2-1O2=C3H51-2	300Н	1.12E+11	0	24400	
	630	C3H6OOH1-2O2=C3H51-2	300Н	9.00E+11	0	29400	
	631	C3H51 2	300H=AC3H500	2 56E±13	0.5	17770	
	632	C3H51-2 C3H600H1 302-C3H52 1	300H	2.30E+13	-0.3	26850	
	032	C5H000H1-502=C5H52-1	300H=AC3H500	0.001+11	0	20830	
	633	C3H52-1	H+HO2	1.15E+14	-0.6	17250	
	634	C3KET12=CH3CHO+HCO+OH	9.45E+15	0	43000		
	635	C3KET13=CH2O+CH2CHO+OH	1.00E+16	0	43000		
	636	C3KET21=CH2O+CH3CO+OH	1.00E+16	0	43000		
	637	C3H5O+OH=AC3H5OOH	2.00E+13	0	0		
	638	С3Н5О=С2Н3СНО+Н	1.00E+14	0	29100		
	639	C3H5O+O2=C2H3CHO+HO2	1.00E+12	0	6000		
	640	C3H6O1-2=C2H4+CH2O	6.00E+14	0	60000		
	641	C3H6O1-2+OH=CH2O+C2H3+H2O	5.00E+12	0	0		
	642	C3H6O1-2+H=CH2O+C2H3+H2	2.63E+07	2	5000		
	643	C3H6O1-2+O=CH2O+C2H3+OH	8.43E+13	0	5200		
	644	C3H6O1-2+HO2=CH2O+C2H3+H2O2	1.00E+13	0	15000		
	645	C3H6O1-2+CH3O2=CH2O+C2H3+CH3O2H	1.00E+13	0	19000		
	646	C3H6O1-2+CH3=CH2O+C2H3+CH4	2.00E+11	0	10000		
	647	C3H6O1-3=C2H4+CH2O	6.00E+14	0	60000		
	648	C3H6O1-3+OH=CH2O+C2H3+H2O	5.00E+12	0	0		
	649	C3H6O1-3+O=CH2O+C2H3+OH	8.43E+13	0	5200		
	650	C3H6O1-3+H=CH2O+C2H3+H2	2.63E+07	2	5000		
	651	C3H6O1-3+CH3O2=CH2O+C2H3+CH3O2H	1.00E+13	0	19000		
	652	C3H6O1-3+HO2=CH2O+C2H3+H2O2	1.00E+13	0	15000		
	653	C3H6O1-3+CH3=CH2O+C2H3+CH4	2.00E+11	0	10000		
	654	IC3H7O2=C3H6+HO2	1.01E+43	-9.4	41490		
	655	NC3H7O2=C3H6+HO2	5.04E+38	-8.1	40490		
	656	C4H10(+M)=2C2H5(+M)	2.72E+15	0	75610		
		Low	pressure	limit:	4.72E+18	0.00E+00	4.96E+04
		TROE	centering:	7.20E-01	1.50E+03	1.00E-10	1.00E+10
	657	C4H10(+M)=NC3H7+CH3(+M)	4.28E+14	0	69900		
		Low	pressure	limit:	5.34E+17	0.00E+00	4.30E+04
		TROE	centering:	7.20E-01	1.50E+03	1.00E-10	1.00E+10
	658	PC4H9+H=C4H10	3.61E+13	0	0		
	659	SC4H9+H=C4H10	3.61E+13	0	0		
	660	C4H10+O2=PC4H9+HO2	6.00E+13	0	52340		
	661	C4H10+O2=SC4H9+HO2	4.00E+13	0	49800		
	662	C4H10+C3H5-A=PC4H9+C3H6	7.94E+11	0	20500		
	663	C4H10+C3H5-A=SC4H9+C3H6	3.16E+11	0	16400		
	664	C4H10+C2H5=PC4H9+C2H6	1.58E+11	0	12300		
	665	C4H10+C2H5=SC4H9+C2H6	1.00E+11	0	10400		
-		•				•	

666	C4H10+C2H3=PC4H9+C2H4	1.00E+12	0	18000	
667	C4H10+C2H3=SC4H9+C2H4	8.00E+11	0	16800	
668	C4H10+CH3=PC4H9+CH4	9.04E-01	3.6	7154	
669	C4H10+CH3=SC4H9+CH4	3.02E+00	3.5	5481	
670	C4H10+H=PC4H9+H2	1.88E+05	2.8	6280	
671	C4H10+H=SC4H9+H2	2.60E+06	2.4	4471	
672	C4H10+OH=PC4H9+H2O	1.05E+10	1	1586	
673	C4H10+OH=SC4H9+H2O	9.34E+07	1.6	-35	
674	C4H10+O=PC4H9+OH	1.13E+14	0	7850	
675	C4H10+O=SC4H9+OH	5.62E+13	0	5200	
676	C4H10+HO2=PC4H9+H2O2	8.10E+04	2.5	16690	
677	C4H10+HO2=SC4H9+H2O2	1.18E+05	2.5	14860	
678	C4H10+CH3O=PC4H9+CH3OH	3.00E+11	0	7000	
679	C4H10+CH3O=SC4H9+CH3OH	6.00E+11	0	7000	
680	C4H10+C2H5O=PC4H9+C2H5OH	3.00E+11	0	7000	
681	C4H10+C2H5O=SC4H9+C2H5OH	6.00E+11	0	7000	
682	C4H10+PC4H9=SC4H9+C4H10	1.00E+11	0	10400	
683	C4H10+CH3CO3=PC4H9+CH3CO3H	1.70E+13	0	20460	
684	C4H10+CH3CO3=SC4H9+CH3CO3H	1.12E+13	0	17700	
685	C4H10+O2CHO=PC4H9+HO2CHO	1.68E+13	0	20440	
686	C4H10+O2CHO=SC4H9+HO2CHO	1.12E+13	0	17690	
687	CH3O2+C4H10=CH3O2H+PC4H9	8.10E+04	2.5	16690	
688	CH3O2+C4H10=CH3O2H+SC4H9	1.18E+05	2.5	14860	
689	C2H5O2+C4H10=C2H5O2H+PC4H9	1.70E+13	0	20460	
690	C2H5O2+C4H10=C2H5O2H+SC4H9	1.12E+13	0	17700	
691	NC3H7O2+C4H10=NC3H7O2H+PC4H9	1.70E+13	0	20460	
692	NC3H7O2+C4H10=NC3H7O2H+SC4H9	1.12E+13	0	17700	
693	IC3H7O2+C4H10=IC3H7O2H+PC4H9	1.70E+13	0	20460	
694	IC3H7O2+C4H10=IC3H7O2H+SC4H9	1.12E+13	0	17700	
695	PC4H9O2+C3H8=PC4H9O2H+NC3H7	1.70E+13	0	20460	
696	PC4H9O2+C3H8=PC4H9O2H+IC3H7	2.00E+12	0	17000	
697	PC4H9O2+C4H10=PC4H9O2H+PC4H9	1.70E+13	0	20460	
698	PC4H9O2+C4H10=PC4H9O2H+SC4H9	1.12E+13	0	17700	
699	C2H5+C2H4=PC4H9	1.32E+04	2.5	6130	
700	C3H6+CH3=SC4H9	1.76E+04	2.5	6130	
701	C4H8-1+H=PC4H9	2.50E+11	0.5	2620	
702	C4H8-2+H=SC4H9	2.50E+11	0.5	2620	
703	C4H8-1+H=SC4H9	4.24E+11	0.5	1230	
704	PC4H9+O2=C4H8-1+HO2	2.00E-18	0	5000	
705	SC4H9+O2=C4H8-1+HO2	2.00E-18	0	5000	
706	SC4H9+O2=C4H8-2+HO2	2.00E-18	0	5000	
707	C2H3+C2H5=C4H8-1	9.00E+12	0	0	
708	H+C4H71-3=C4H8-1	5.00E+13	0	0	
709	C4H8-1+O2=C4H71-3+HO2	2.00E+13	0	37190	
710	C4H8-1+H=C4H71-1+H2	7.81E+05	2.5	12290	
711	C4H8-1+H=C4H71-2+H2	3.90E+05	2.5	5821	

712	C4H8-1+H=C4H71-3+H2	3.38E+05	2.4	207	
713	C4H8-1+H=C4H71-4+H2	6.65E+05	2.5	6756	
714	C4H8-1+OH=C4H71-1+H2O	2.14E+06	2	2778	
715	C4H8-1+OH=C4H71-2+H2O	2.22E+06	2	1451	
716	C4H8-1+OH=C4H71-3+H2O	2.76E+04	2.6	-1919	
717	C4H8-1+OH=C4H71-4+H2O	5.27E+09	1	1586	
718	C4H8-1+CH3=C4H71-3+CH4	3.69E+00	3.3	4002	
719	C4H8-1+CH3=C4H71-4+CH4	4.52E-01	3.6	7154	
720	C4H8-1+HO2=C4H71-3+H2O2	4.82E+03	2.5	10530	
721	C4H8-1+HO2=C4H71-4+H2O2	2.38E+03	2.5	16490	
722	C4H8-1+CH3O2=C4H71-3+CH3O2H	4.82E+03	2.5	10530	
723	C4H8-1+CH3O2=C4H71-4+CH3O2H	2.38E+03	2.5	16490	
724	C4H8-1+CH3O=C4H71-3+CH3OH	4.00E+01	2.9	8609	
725	C4H8-1+CH3O=C4H71-4+CH3OH	2.17E+11	0	6458	
726	C4H8-1+CH3CO3=C4H71-3+CH3CO3H	1.00E+11	0	8000	
727	C4H8-1+C3H5-A=C4H71-3+C3H6	7.90E+10	0	12400	
728	2C4H71-3=C4H8-1+C4H6	1.60E+12	0	0	
729	C4H8-1+C2H5O2=C4H71-3+C2H5O2H	1.40E+12	0	14900	
730	C4H8-1+NC3H7O2=C4H71-3+NC3H7O2H	1.40E+12	0	14900	
731	C4H8-1+IC3H7O2=C4H71-3+IC3H7O2H	1.40E+12	0	14900	
732	C4H8-1+PC4H9O2=C4H71-3+PC4H9O2H	1.40E+12	0	14900	
733	H+C4H71-3=C4H8-2	5.00E+13	0	0	
734	C4H8-2+O2=C4H71-3+HO2	4.00E+13	0	39390	
735	C4H8-2+H=C4H71-3+H2	3.46E+05	2.5	2492	
736	C4H8-2+OH=C4H71-3+H2O	6.24E+06	2	-298	
737	C4H8-2+CH3=C4H71-3+CH4	4.42E+00	3.5	5675	
738	C4H8-2+HO2=C4H71-3+H2O2	1.93E+04	2.6	13910	
739	C4H8-2+CH3O2=C4H71-3+CH3O2H	1.93E+04	2.6	13910	
740	C4H8-2+CH3O=C4H71-3+CH3OH	1.80E+01	3	11990	
741	C4H8-2+C2H5O2=C4H71-3+C2H5O2H	3.20E+12	0	14900	
742	C4H8-2+NC3H7O2=C4H71-3+NC3H7O2H	3.20E+12	0	14900	
743	C4H8-2+IC3H7O2=C4H71-3+IC3H7O2H	3.20E+12	0	14900	
744	C4H8-2+PC4H9O2=C4H71-3+PC4H9O2H	3.20E+12	0	14900	
745	C4H8-1+OH=C4H8OH-1	4.75E+12	0	-782	
746	C4H8OH-1+O2=C4H8OH-1O2	2.00E+12	0	0	
747	C4H8OH-1O2=C2H5CHO+CH2O+OH	1.00E+16	0	25000	
748	C2H2+C2H5=C4H71-1	2.00E+11	0	7800	
749	C3H4-A+CH3=C4H71-2	2.00E+11	0	7800	
750	C2H4+C2H3=C4H71-4	2.00E+11	0	7800	
751	C4H6+H=C4H71-3	4.00E+13	0	1300	
752	C4H71-3+C2H5=C4H8-1+C2H4	2.59E+12	0	-131	
753	C4H71-3+CH3O=C4H8-1+CH2O	2.41E+13	0	0	
754	C4H71-3+O=C2H3CHO+CH3	6.03E+13	0	0	
755	C4H71-3+HO2=C4H7O+OH	9.64E+12	0	0	
756	C4H71-3+CH3O2=C4H7O+CH3O	9.64E+12	0	0	
757	C3H5-A+C4H71-3=C3H6+C4H6	6.31E+12	0	0	

758	C4H71-3+O2=C4H6+HO2	1.00E+09	0	0	
759	H+C4H71-3=C4H6+H2	3.16E+13	0	0	
760	C2H5+C4H71-3=C4H6+C2H6	3.98E+12	0	0	
761	C2H3+C4H71-3=C2H4+C4H6	3.98E+12	0	0	
762	C4H71-3+C2H5O2=C4H7O+C2H5O	3.80E+12	0	-1200	
763	IC3H7O2+C4H71-3=IC3H7O+C4H7O	3.80E+12	0	-1200	
764	NC3H7O2+C4H71-3=NC3H7O+C4H7O	3.80E+12	0	-1200	
765	C4H7O=CH3CHO+C2H3	7.94E+14	0	19000	
766	C4H7O=C2H3CHO+CH3	7.94E+14	0	19000	
767	C4H6=C4H5-I+H	5.70E+36	-6.3	112353	
768	C4H6=C4H5-N+H	5.30E+44	-8.6	123608	
769	C4H6=C4H4+H2	2.50E+15	0	94700	
770	C4H6+H=C4H5-N+H2	1.33E+06	2.5	12240	
771	C4H6+H=C4H5-I+H2	6.65E+05	2.5	9240	
772	C4H6+H=C2H4+C2H3	5.45E+30	-4.5	21877	
773	C4H6+H=C3H4-P+CH3	7.00E+12	0	2000	
774	C4H6+H=C3H4-A+CH3	7.00E+12	0	2000	
775	C4H6+O=C4H5-N+OH	7.50E+06	1.9	3740	
776	C4H6+O=C4H5-I+OH	7.50E+06	1.9	3740	
777	C4H6+O=CH3CHCHCO+H	1.50E+08	1.4	-860	
778	C4H6+O=CH2CHCHCHO+H	4.50E+08	1.4	-860	
779	C4H6+OH=C4H5-N+H2O	6.20E+06	2	3430	
780	C4H6+OH=C4H5-I+H2O	3.10E+06	2	430	
781	C4H6+HO2=C2H3CHOCH2+OH	4.80E+12	0	14000	
782	C4H6+CH3=C4H5-N+CH4	2.00E+14	0	22800	
783	C4H6+CH3=C4H5-I+CH4	1.00E+14	0	19800	
784	C4H6+C2H3=C4H5-N+C2H4	5.00E+13	0	22800	
785	C4H6+C2H3=C4H5-I+C2H4	2.50E+13	0	19800	
786	C4H6+C3H3=C4H5-N+C3H4-A	1.00E+13	0	22500	
787	C4H6+C3H3=C4H5-I+C3H4-A	5.00E+12	0	19500	
788	C4H6+C3H5-A=C4H5-N+C3H6	1.00E+13	0	22500	
789	C4H6+C3H5-A=C4H5-I+C3H6	5.00E+12	0	19500	
790	C4H6+C2H3=C6H6+H2+H	5.62E+11	0	3240	
791	C4H71-4=C4H6+H	1.85E+48	-10.5	51770	
792	C4H5-N=C4H5-I	1.50E+67	-16.9	59100	
793	C4H5-N+H=C4H5-I+H	3.10E+26	-3.4	17423	
794	C4H5-N+H=C4H4+H2	1.50E+13	0	0	
795	C4H5-N+OH=C4H4+H2O	2.00E+12	0	0	
796	C4H5-N+HCO=C4H6+CO	5.00E+12	0	0	
797	C4H5-N+HO2=C2H3+CH2CO+OH	6.60E+12	0	0	
798	C4H5-N+H2O2=C4H6+HO2	1.21E+10	0	-596	
799	C4H5-N+HO2=C4H6+O2	6.00E+11	0	0	
800	C4H5-N+O2=CH2CHCHCHO+O	3.00E+11	0.3	11	
801	C4H5-N+O2=HCO+C2H3CHO	9.20E+16	-1.4	1010	
802	C4H5-N+C2H2=C6H6+H	1.60E+16	-1.3	5400	
803	C4H5-N+C2H3=C6H6+H2	1.84E-13	7.1	-3611	

804	C4H5-I+H=C4H4+H2	3.00E+13	0	0	
805	C4H5-I+H=C3H3+CH3	2.00E+13	0	2000	
806	C4H5-I+OH=C4H4+H2O	4.00E+12	0	0	
807	C4H5-I+HCO=C4H6+CO	5.00E+12	0	0	
808	C4H5-I+HO2=C4H6+O2	6.00E+11	0	0	
809	C4H5-I+HO2=C2H3+CH2CO+OH	6.60E+12	0	0	
810	C4H5-I+H2O2=C4H6+HO2	1.21E+10	0	-596	
811	C4H5-I+O2=CH2CO+CH2CHO	2.16E+10	0	2500	
812	C4H5-2=C4H5-I	1.50E+67	-16.9	59100	
813	C4H5-2+H=C4H5-I+H	3.10E+26	-3.4	17423	
814	C4H5-2+HO2=OH+C2H2+CH3CO	8.00E+11	0	0	
815	C4H5-2+O2=CH3CO+CH2CO	2.16E+10	0	2500	
816	C4H5-2+C2H2=C6H6+H	5.00E+14	0	25000	
817	C4H5-2+C2H4=C5H6+CH3	5.00E+14	0	25000	
818	C4H612=C4H5-I+H	4.20E+15	0	92600	
819	C4H612+H=C4H6+H	2.00E+13	0	4000	
820	C4H612+H=C4H5-I+H2	1.70E+05	2.5	2490	
821	C4H612+H=C3H4-A+CH3	2.00E+13	0	2000	
822	C4H612+H=C3H4-P+CH3	2.00E+13	0	2000	
823	C4H612+CH3=C4H5-I+CH4	7.00E+13	0	18500	
824	C4H612+O=CH2CO+C2H4	1.20E+08	1.6	327	
825	C4H612+O=C4H5-I+OH	1.80E+11	0.7	5880	
826	C4H612+OH=C4H5-I+H2O	3.10E+06	2	-298	
827	C4H612=C4H6	3.00E+13	0	65000	
828	C4H6-2=C4H6	3.00E+13	0	65000	
829	C4H6-2=C4H612	3.00E+13	0	67000	
830	C4H6-2+H=C4H612+H	2.00E+13	0	4000	
831	C4H6-2+H=C4H5-2+H2	3.40E+05	2.5	2490	
832	C4H6-2+H=CH3+C3H4-P	2.60E+05	2.5	1000	
833	C4H6-2=H+C4H5-2	5.00E+15	0	87300	
834	C4H6-2+CH3=C4H5-2+CH4	1.40E+14	0	18500	
835	C2H3CHOCH2=C4H6O23	2.00E+14	0	50600	
836	C4H6O23=CH3CHCHCHO	1.95E+13	0	49400	
837	C4H6O23=C2H4+CH2CO	5.75E+15	0	69300	
838	C4H6O23=C2H2+C2H4O1-2	1.00E+16	0	75800	
839	CH3CHCHCHO=C3H6+CO	3.90E+14	0	69000	
840	CH3CHCHCHO+H=CH2CHCHCHO+H2	1.70E+05	2.5	2490	
841	CH3CHCHCHO+H=CH3CHCHCO+H2	1.00E+05	2.5	2490	
842	СН3СНСНСНО+Н=СН3+С2Н3СНО	4.00E+21	-2.4	11180	
843	CH3CHCHCHO+H=C3H6+HCO	4.00E+21	-2.4	11180	
844	CH3CHCHCHO+CH3=CH2CHCHCHO+CH4	2.10E+00	3.5	5675	
845	CH3CHCHCHO+CH3=CH3CHCHCO+CH4	1.10E+00	3.5	5675	
846	CH3CHCHCHO+C2H3=CH2CHCHCHO+C2H4	2.21E+00	3.5	4682	
847	CH3CHCHCHO+C2H3=CH3CHCHCO+C2H4	1.11E+00	3.5	4682	
848	CH3CHCHCO=C3H5-S+CO	1.00E+14	0	30000	
849	CH3CHCHCO+H=CH3CHCHCHO	1.00E+14	0	0	

850	CH2CHCHCHO=C3H5-A+CO	1.00E+14	0	25000		
851	СН2СНСНСНО+Н=СН3СНСНСНО	1.00E+14	0	0		
852	C4H4+H=C4H5-N	1.30E+51	-11.9	16500		
853	C4H4+H=C4H5-I	4.90E+51	-11.9	17700		
854	C4H4+H=C4H3-N+H2	6.65E+05	2.5	12240		
855	C4H4+H=C4H3-I+H2	3.33E+05	2.5	9240		
856	C4H4+OH=C4H3-N+H2O	3.10E+07	2	3430		
857	C4H4+OH=C4H3-I+H2O	1.55E+07	2	430		
858	C4H4+O=C3H3+HCO	6.00E+08	1.4	-860		
859	C4H3-N=C4H3-I	4.10E+43	-9.5	53000		
860	C4H3-N+H=C4H3-I+H	2.50E+20	-1.7	10800		
861	C4H3-N+H=C2H2+H2CC	6.30E+25	-3.3	10014		
862	C4H3-N+H=C4H4	2.00E+47	-10.3	13070		
863	C4H3-N+H=C4H2+H2	3.00E+13	0	0		
864	C4H3-N+OH=C4H2+H2O	2.00E+12	0	0		
865	C4H3-N+C2H2=C6H5	9.60E+70	-17.8	31300		
866	C4H3-I+H=C2H2+H2CC	2.80E+23	-2.5	10780		
867	C4H3-I+H=C4H4	3.40E+43	-9	12120		
868	C4H3-I+H=C4H2+H2	6.00E+13	0	0		
869	C4H3-I+OH=C4H2+H2O	4.00E+12	0	0		
870	C4H3-I+O2=HCCO+CH2CO	7.86E+16	-1.8	0		
871	C4H3-I+CH2=C3H4-A+C2H	2.00E+13	0	0		
872	C4H3-I+CH3=C5H6	1.00E+12	0	0		
873	C4H2+H=C4H3-N	1.70E+49	-11.7	12804		
874	C4H2+H(+M)=C4H3-I(+M)	4.31E+10	1.2	1751.9		
	Low	pressure	limit:	2.30E+45	-8.10E+00	2.51E+03
	TROE	centering:	7.48E-02	1.00E+00	-4.22E+03	
	Н2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	1.20E+01		
	CO2	Enhanced	by	3.60E+00		
	СО	Enhanced	by	1.75E+00		
	AR	Enhanced	by	7.00E-01		
	C2H6	Enhanced	by	3.00E+00		
875	C4H2+O=C3H2+CO	2.70E+13	0	1720		
876	C4H2+OH=H2C4O+H	6.60E+12	0	-410		
877	H2C4O+H=C2H2+HCCO	5.00E+13	0	3000		
878	H2C4O+OH=CH2CO+HCCO	1.00E+07	2	2000		
879	H2CC+H=C2H2+H	1.00E+14	0	0		
880	H2CC+OH=CH2CO+H	2.00E+13	0	0		
881	H2CC+O2=2HCO	1.00E+13	0	0		
882	H2CC+C2H2(+M)=C4H4(+M)	3.50E+05	2.1	-2400		
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		

		C2H6	Enhanced	by	3.00E+00		
Ī		C2H2	Enhanced	by	3.00E+00		
ſ		C2H4	Enhanced	by	3.00E+00		
		Low	pressure	limit:	1.40E+60	-1.26E+01	7.42E+03
		TROE	centering:	9.80E-01	5.60E+01	5.80E+02	4.16E+03
	883	H2CC+C2H4=C4H6	1.00E+12	0	0		
	884	C4H8O1-3+OH=CH2O+C3H5-A+H2O	5.00E+12	0	0		
	885	C4H8O1-3+H=CH2O+C3H5-A+H2	5.00E+12	0	0		
	886	C4H8O1-3+O=CH2O+C3H5-A+OH	5.00E+12	0	0		
	887	C4H8O1-3+HO2=CH2O+C3H5-A+H2O2	1.00E+13	0	15000		
	888	C4H8O1-3+CH3O2=CH2O+C3H5-A+CH3O2H	1.00E+13	0	19000		
	889	C4H8O1-3+CH3=CH2O+C3H5-A+CH4	2.00E+11	0	10000		
	890	C4H8O1-4+OH=CH2O+C3H5-A+H2O	5.00E+12	0	0		
	891	C4H8O1-4+H=CH2O+C3H5-A+H2	5.00E+12	0	0		
	892	C4H8O1-4+O=CH2O+C3H5-A+OH	5.00E+12	0	0		
	893	C4H8O1-4+HO2=CH2O+C3H5-A+H2O2	1.00E+13	0	15000		
	894	C4H8O1-4+CH3O2=CH2O+C3H5-A+CH3O2H	1.00E+13	0	19000		
	895	C4H8O1-4+CH3=CH2O+C3H5-A+CH4	2.00E+11	0	10000		
	896	PC4H9+O2=PC4H9O2	4.52E+12	0	0		
	897	SC4H9+O2=SC4H9O2	7.54E+12	0	0		
	898	IC3H7O2+PC4H9=IC3H7O+PC4H9O	7.00E+12	0	-1000		
Ī	899	IC3H7O2+SC4H9=IC3H7O+SC4H9O	7.00E+12	0	-1000		
	900	NC3H7O2+PC4H9=NC3H7O+PC4H9O	7.00E+12	0	-1000		
	901	NC3H7O2+SC4H9=NC3H7O+SC4H9O	7.00E+12	0	-1000		
	902	2SC4H9O2=O2+2SC4H9O	1.40E+16	-1.6	1860		
	903	SC4H9O2+NC3H7O2=SC4H9O+NC3H7O+O2	1.40E+16	-1.6	1860		
	904	SC4H9O2+IC3H7O2=SC4H9O+IC3H7O+O2	1.40E+16	-1.6	1860		
	905	SC4H9O2+C2H5O2=SC4H9O+C2H5O+O2	1.40E+16	-1.6	1860		
	906	SC4H9O2+CH3O2=SC4H9O+CH3O+O2	1.40E+16	-1.6	1860		
	907	SC4H9O2+CH3CO3=SC4H9O+CH3CO2+O2	1.40E+16	-1.6	1860		
	908	PC4H9O2+HO2=PC4H9O+OH+O2	1.40E-14	-1.6	1860		
	909	SC4H9O2+HO2=SC4H9O+OH+O2	1.40E-14	-1.6	1860		
	910	H2+PC4H9O2=H+PC4H9O2H	3.01E+13	0	26030		
	911	C2H6+PC4H9O2=C2H5+PC4H9O2H	1.70E+13	0	20460		
	912	PC4H9O2+C2H5CHO=PC4H9O2H+C2H5CO	2.00E+11	0	9500		
	913	SC4H9O2+CH3=SC4H9O+CH3O	7.00E+12	0	-1000		
	914	SC4H9O2+C2H5=SC4H9O+C2H5O	7.00E+12	0	-1000		
	915	SC4H9O2+IC3H7=SC4H9O+IC3H7O	7.00E+12	0	-1000		
	916	SC4H9O2+NC3H7=SC4H9O+NC3H7O	7.00E+12	0	-1000		
	917	SC4H9O2+PC4H9=SC4H9O+PC4H9O	7.00E+12	0	-1000		
ĺ	918	SC4H9O2+SC4H9=2SC4H9O	7.00E+12	0	-1000		
ſ	919	SC4H9O2+C3H5-A=SC4H9O+C3H5O	7.00E+12	0	-1000		
ſ	920	PC4H9O2+CH2O=PC4H9O2H+HCO	5.60E+12	0	13600		
Ī	921	PC4H9O2+CH3CHO=PC4H9O2H+CH3CO	2.80E+12	0	13600		
ſ	922	PC4H9O2+HO2=PC4H9O2H+O2	1.75E+10	0	-3275		
ĺ	923	C3H6+PC4H9O2=C3H5-A+PC4H9O2H	3.24E+11	0	14900		
-							

924	C2H4+PC4H9O2=C2H3+PC4H9O2H	1.13E+13	0	30430	
925	CH3OH+PC4H9O2=CH2OH+PC4H9O2H	6.30E+12	0	19360	
926	C2H3CHO+PC4H9O2=C2H3CO+PC4H9O2H	2.80E+12	0	13600	
927	CH4+PC4H9O2=CH3+PC4H9O2H	1.12E+13	0	24640	
928	C4H71-3+PC4H9O2=C4H7O+PC4H9O	7.00E+12	0	-1000	
929	C4H71-3+SC4H9O2=C4H7O+SC4H9O	7.00E+12	0	-1000	
930	H2O2+PC4H9O2=HO2+PC4H9O2H	2.40E+12	0	10000	
931	2PC4H9O2=O2+2PC4H9O	1.40E+16	-1.6	1860	
932	PC4H9O2+SC4H9O2=PC4H9O+SC4H9O+O2	1.40E+16	-1.6	1860	
933	PC4H9O2+NC3H7O2=PC4H9O+NC3H7O+O2	1.40E+16	-1.6	1860	
934	PC4H9O2+IC3H7O2=PC4H9O+IC3H7O+O2	1.40E+16	-1.6	1860	
935	PC4H9O2+C2H5O2=PC4H9O+C2H5O+O2	1.40E+16	-1.6	1860	
936	PC4H9O2+CH3O2=PC4H9O+CH3O+O2	1.40E+16	-1.6	1860	
937	PC4H9O2+CH3CO3=PC4H9O+CH3CO2+O2	1.40E+16	-1.6	1860	
938	PC4H9O2+CH3=PC4H9O+CH3O	7.00E+12	0	-1000	
939	PC4H9O2+C2H5=PC4H9O+C2H5O	7.00E+12	0	-1000	
940	PC4H9O2+IC3H7=PC4H9O+IC3H7O	7.00E+12	0	-1000	
941	PC4H9O2+NC3H7=PC4H9O+NC3H7O	7.00E+12	0	-1000	
942	PC4H9O2+PC4H9=2PC4H9O	7.00E+12	0	-1000	
943	PC4H9O2+SC4H9=PC4H9O+SC4H9O	7.00E+12	0	-1000	
944	PC4H9O2+C3H5-A=PC4H9O+C3H5O	7.00E+12	0	-1000	
945	PC4H9+HO2=PC4H9O+OH	7.00E+12	0	-1000	
946	SC4H9+HO2=SC4H9O+OH	7.00E+12	0	-1000	
947	CH3O2+PC4H9=CH3O+PC4H9O	7.00E+12	0	-1000	
948	CH3O2+SC4H9=CH3O+SC4H9O	7.00E+12	0	-1000	
949	PC4H9O2H=PC4H9O+OH	1.50E+16	0	42500	
950	NC3H7+CH2O=PC4H9O	5.00E+10	0	3457	
951	CH3+C2H5CHO=SC4H9O	5.00E+10	0	9043	
952	C2H5+CH3CHO=SC4H9O	3.33E+10	0	6397	
953	PC4H9O2=C4H8OOH1-2	2.00E+11	0	26850	
954	PC4H9O2=C4H8OOH1-3	2.50E+10	0	20850	
955	PC4H9O2=C4H8OOH1-4	4.69E+09	0	22350	
956	PC4H9O2=C4H8-1+HO2	5.04E+38	-8.1	40490	
957	SC4H9O2=C4H8-1+HO2	5.07E+42	-9.4	41490	
958	SC4H9O2=C4H8-2+HO2	5.04E+38	-8.1	40490	
959	C4H8-1+HO2=C4H8OOH1-2	1.00E+11	0	11000	
960	C4H8OOH1-3=C4H8O1-3+OH	7.50E+10	0	15250	
961	C4H8OOH1-4=C4H8O1-4+OH	9.38E+09	0	6000	
962	C4H8OOH1-3=OH+CH2O+C3H6	6.64E+13	-0.2	29900	
963	C4H8OOH1-2+O2=C4H8OOH1-2O2	7.54E+12	0	0	
964	C4H8OOH1-3+O2=C4H8OOH1-3O2	7.54E+12	0	0	
965	C4H8OOH1-2O2=NC4KET12+OH	2.00E+11	0	26400	
966	C4H8OOH1-3O2=NC4KET13+OH	2.50E+10	0	21400	
967	NC4KET12=C2H5CHO+HCO+OH	1.05E+16	0	41600	
968	NC4KET13=CH3CHO+CH2CHO+OH	1.05E+16	0	41600	
969	C2H5COCH3+OH=CH2CH2COCH3+H2O	7.55E+09	1	1586	

970	C2H5COCH3+OH=CH3CHCOCH3+H2O	8.45E+11	0	-228	
971	C2H5COCH3+OH=C2H5COCH2+H2O	5.10E+11	0	1192	
972	C2H5COCH3+HO2=CH2CH2COCH3+H2O2	2.38E+04	2.5	16490	
973	C2H5COCH3+HO2=CH3CHCOCH3+H2O2	2.00E+11	0	8698	
974	C2H5COCH3+HO2=C2H5COCH2+H2O2	2.38E+04	2.5	14690	
975	C2H5COCH3+O=CH2CH2COCH3+OH	2.25E+13	0	7700	
976	C2H5COCH3+O=CH3CHCOCH3+OH	3.07E+13	0	3400	
977	C2H5COCH3+O=C2H5COCH2+OH	5.00E+12	0	5962	
978	C2H5COCH3+H=CH2CH2COCH3+H2	9.16E+06	2	7700	
979	C2H5COCH3+H=CH3CHCOCH3+H2	4.46E+06	2	3200	
980	C2H5COCH3+H=C2H5COCH2+H2	9.30E+12	0	6357	
981	C2H5COCH3+O2=CH2CH2COCH3+HO2	2.05E+13	0	51310	
982	C2H5COCH3+O2=CH3CHCOCH3+HO2	1.55E+13	0	41970	
983	C2H5COCH3+O2=C2H5COCH2+HO2	2.05E+13	0	49150	
984	C2H5COCH3+CH3=CH2CH2COCH3+CH4	3.19E+01	3.2	7172	
985	C2H5COCH3+CH3=CH3CHCOCH3+CH4	1.74E+00	3.5	3680	
986	C2H5COCH3+CH3=C2H5COCH2+CH4	1.62E+11	0	9630	
987	C2H5COCH3+CH3O=CH2CH2COCH3+CH3OH	2.17E+11	0	6460	
988	C2H5COCH3+CH3O=CH3CHCOCH3+CH3OH	1.45E+11	0	2771	
989	C2H5COCH3+CH3O=C2H5COCH2+CH3OH	2.17E+11	0	4660	
990	C2H5COCH3+CH3O2=CH2CH2COCH3+CH3O 2H	3.01E+12	0	19380	
991	C2H5COCH3+CH3O2=CH3CHCOCH3+CH3O2 H	2.00E+12	0	15250	
992	C2H5COCH3+CH3O2=C2H5COCH2+CH3O2H	3.01E+12	0	17580	
993	C2H5COCH3+C2H3=CH2CH2COCH3+C2H4	5.00E+11	0	10400	
994	C2H5COCH3+C2H3=CH3CHCOCH3+C2H4	3.00E+11	0	3400	
995	C2H5COCH3+C2H3=C2H5COCH2+C2H4	6.15E+10	0	4278	
996	C2H5COCH3+C2H5=CH2CH2COCH3+C2H6	5.00E+10	0	13400	
997	C2H5COCH3+C2H5=CH3CHCOCH3+C2H6	3.00E+10	0	8600	
998	C2H5COCH3+C2H5=C2H5COCH2+C2H6	5.00E+10	0	11600	
999	CH2CH2CHO=C2H4+HCO	3.13E+13	-0.5	24590	
1000	CH2CH2COCH3=C2H4+CH3CO	1.00E+14	0	18000	
1001	C2H5COCH2=CH2CO+C2H5	1.00E+14	0	35000	
1002	C2H3COCH3+H=CH3CHCOCH3	5.00E+12	0	1200	
1003	CH3CHCO+CH3=CH3CHCOCH3	1.23E+11	0	7800	
1004	NC3H7CHO+O2=NC3H7CO+HO2	1.20E+05	2.5	37560	
1005	NC3H7CHO+OH=NC3H7CO+H2O	2.00E+06	1.8	-1300	
1006	NC3H7CHO+H=NC3H7CO+H2	4.14E+09	1.1	2320	
1007	NC3H7CHO+O=NC3H7CO+OH	5.94E+12	0	1868	
1008	NC3H7CHO+HO2=NC3H7CO+H2O2	4.09E+04	2.5	10200	
1009	NC3H7CHO+CH3=NC3H7CO+CH4	2.89E-03	4.6	3210	
1010	NC3H7CHO+CH3O=NC3H7CO+CH3OH	1.00E+12	0	3300	
1011	NC3H7CHO+CH3O2=NC3H7CO+CH3O2H	4.09E+04	2.5	10200	
1012	NC3H7CHO+OH=C3H6CHO-1+H2O	5.28E+09	1	1586	
1013	NC3H7CHO+OH=C3H6CHO-2+H2O	4.68E+07	1.6	-35	
1014	NC3H7CHO+OH=C3H6CHO-3+H2O	5.52E+02	3.1	-1176	

1015	NC3H7CHO+HO2=C3H6CHO-1+H2O2	2.38E+04	2.5	16490		
1016	NC3H7CHO+HO2=C3H6CHO-2+H2O2	9.64E+03	2.6	13910		
1017	NC3H7CHO+HO2=C3H6CHO-3+H2O2	3.44E+12	0.1	17880		
1018	NC3H7CHO+CH3O2=C3H6CHO-1+CH3O2H	2.38E+04	2.5	16490		
1019	NC3H7CHO+CH3O2=C3H6CHO-2+CH3O2H	9.64E+03	2.6	13910		
1020	NC3H7CHO+CH3O2=C3H6CHO-3+CH3O2H	3.44E+12	0.1	17880		
1021	NC3H7CO=NC3H7+CO	1.00E+11	0	9600		
1022	C3H6CHO-1=C2H4+CH2CHO	7.40E+11	0	21970		
1023	C2H5CHCO+H=C3H6CHO-3	5.00E+12	0	1200		
1024	С2Н3СНО+СН3=С3Н6СНО-3	1.23E+11	0	7800		
1025	SC3H5CHO+H=C3H6CHO-2	5.00E+12	0	2900		
1026	С3H6+HCO=С3H6CHO-2	1.00E+11	0	6000		
1027	C2H5CHCO+OH=NC3H7+CO2	3.73E+12	0	-1010		
1028	C2H5CHCO+H=NC3H7+CO	4.40E+12	0	1459		
1029	C2H5CHCO+O=C3H6+CO2	3.20E+12	0	-437		
1030	SC3H5CHO+OH=SC3H5CO+H2O	2.69E+10	0.8	-340		
1031	SC3H5CO=C3H5-S+CO	8.60E+15	0	23000		
1032	SC3H5CHO+HO2=SC3H5CO+H2O2	1.00E+12	0	11920		
1033	SC3H5CHO+CH3=SC3H5CO+CH4	3.98E+12	0	8700		
1034	SC3H5CHO+O=SC3H5CO+OH	7.18E+12	0	1389		
1035	SC3H5CHO+O2=SC3H5CO+HO2	4.00E+13	0	37600		
1036	SC3H5CHO+H=SC3H5CO+H2	2.60E+12	0	2600		
1037	C2H3COCH3+OH=CH3CHO+CH3CO	1.00E+11	0	0		
1038	C2H3COCH3+OH=CH2CO+C2H3+H2O	5.10E+11	0	1192		
1039	C2H3COCH3+HO2=CH2CHO+CH3CO+OH	6.03E+09	0	7949		
1040	C2H3COCH3+HO2=CH2CO+C2H3+H2O2	8.50E+12	0	20460		
1041	C2H3COCH3+CH3O2=CH2CHO+CH3CO+CH3 O	3.97E+11	0	17050		
1011	C2H3COCH3+CH3O2=CH2CO+C2H3+CH3O2	0072711	Ŭ	1,000		
1042	Н	3.01E+12	0	17580		
1043	IC4H10(+M)=CH3+IC3H7(+M)	4.83E+16	0	79900		
	Low	pressure	limit:	2.41E+19	0.00E+00	5.26E+04
	TROE	centering:	2.50E-01	7.50E+02	1.00E-10	1.00E+10
1044	IC4H10=TC4H9+H	2.51E+98	-23.8	145300		
1045	IC4H10=IC4H9+H	9.85E+95	-23.1	147600		
1046	IC4H10+H=TC4H9+H2	1.81E+06	2.5	6756		
1047	IC4H10+H=IC4H9+H2	6.02E+05	2.4	2583		
1048	IC4H10+CH3=TC4H9+CH4	1.36E+00	3.6	7154		
1049	IC4H10+CH3=IC4H9+CH4	9.04E-01	3.5	4598		
1050	IC4H10+OH=TC4H9+H2O	5.73E+10	0.5	63		
1051	IC4H10+OH=IC4H9+H2O	2.29E+08	1.5	776		
1052	IC4H10+C2H5=IC4H9+C2H6	1.51E+12	0	10400		
1053	IC4H10+C2H5=TC4H9+C2H6	1.00E+11	0	7900		
1054	IC4H10+HO2=IC4H9+H2O2	1.22E+05	2.5	16690		
1055	IC4H10+HO2=TC4H9+H2O2	1.50E+04	2.5	12260		
1056	IC4H10+O=TC4H9+OH	1.97E+05	2.4	1150		
1057	IC4H10+O=IC4H9+OH	4.05E+07	2	5136		

		1	1	1	1	1
1058	IC4H10+CH3O=IC4H9+CH3OH	4.80E+11	0	7000		
1059	IC4H10+CH3O=TC4H9+CH3OH	1.90E+10	0	2800		
1060	IC4H10+O2=IC4H9+HO2	1.80E+14	0	46000		
1061	IC4H10+O2=TC4H9+HO2	2.04E+13	0	41350		
1062	IC4H10+CH3O2=IC4H9+CH3O2H	1.22E+05	2.5	16690		
1063	IC4H10+C2H5O2=IC4H9+C2H5O2H	2.55E+13	0	20460		
1064	IC4H10+CH3CO3=IC4H9+CH3CO3H	2.55E+13	0	20460		
1065	IC4H10+NC3H7O2=IC4H9+NC3H7O2H	2.55E+13	0	20460		
1066	IC4H10+IC3H7O2=IC4H9+IC3H7O2H	2.55E+13	0	20460		
1067	IC4H10+IC4H9O2=IC4H9+IC4H9O2H	2.55E+13	0	20460		
1068	IC4H10+TC4H9O2=IC4H9+TC4H9O2H	2.55E+13	0	20460		
1069	IC4H10+O2CHO=IC4H9+HO2CHO	2.52E+13	0	20440		
1070	IC4H10+O2CHO=TC4H9+HO2CHO	2.80E+12	0	16010		
1071	IC4H10+PC4H9O2=IC4H9+PC4H9O2H	2.25E+13	0	20460		
1072	IC4H10+PC4H9O2=TC4H9+PC4H9O2H	2.80E+12	0	16000		
1073	IC4H10+CH3O2=TC4H9+CH3O2H	1.50E+04	2.5	12260		
1074	IC4H10+C2H5O2=TC4H9+C2H5O2H	2.80E+12	0	16000		
1075	IC4H10+CH3CO3=TC4H9+CH3CO3H	2.80E+12	0	16000		
1076	IC4H10+NC3H7O2=TC4H9+NC3H7O2H	2.80E+12	0	16000		
1077	IC4H10+IC3H7O2=TC4H9+IC3H7O2H	2.80E+12	0	16000		
1078	IC4H10+IC4H9O2=TC4H9+IC4H9O2H	2.80E+12	0	16000		
1079	IC4H10+TC4H9O2=TC4H9+TC4H9O2H	2.80E+12	0	16000		
1080	IC4H10+IC4H9=TC4H9+IC4H10	2.50E+10	0	7900		
1081	IC4H9+HO2=IC4H9O+OH	7.00E+12	0	-1000		
1082	TC4H9+HO2=TC4H9O+OH	7.00E+12	0	-1000		
1083	CH3O2+IC4H9=CH3O+IC4H9O	7.00E+12	0	-1000		
1084	CH3O2+TC4H9=CH3O+TC4H9O	7.00E+12	0	-1000		
1085	IC4H9=IC4H8+H	4.98E+32	-6.2	40070		
1086	IC4H9=C3H6+CH3	1.64E+37	-7.4	38670		
1087	TC4H9=H+IC4H8	4.65E+46	-9.8	55080		
1088	TC4H9+O2=IC4H8+HO2	2.00E-18	0	5000		
1089	IC4H9+O2=IC4H8+HO2	2.00E-18	0	5000		
1090	NC3H7O2+IC4H9=NC3H7O+IC4H9O	7.00E+12	0	-1000		
1091	NC3H7O2+TC4H9=NC3H7O+TC4H9O	7.00E+12	0	-1000		
1092	NC3H7O2+IC4H7=NC3H7O+IC4H7O	7.00E+12	0	-1000		
1093	SC4H9O2+IC4H9=SC4H9O+IC4H9O	7.00E+12	0	-1000		
1094	SC4H9O2+TC4H9=SC4H9O+TC4H9O	7.00E+12	0	-1000		
1095	PC4H9O2+IC4H9=PC4H9O+IC4H9O	7.00E+12	0	-1000		
1096	PC4H9O2+TC4H9=PC4H9O+TC4H9O	7.00E+12	0	-1000		
1097	PC4H9O2+IC4H7=PC4H9O+IC4H7O	7.00E+12	0	-1000		
1098	SC4H9O2+IC4H7=SC4H9O+IC4H7O	7.00E+12	0	-1000		
1099	IC4H9+O2=IC4H9O2	2.26E+12	0	0		
1100	TC4H9+O2=TC4H9O2	1.41E+13	0	0		
1101	IC4H9O2+C4H10=IC4H9O2H+SC4H9	1.12E+13	0	17700		
1102	TC4H9O2+C4H10=TC4H9O2H+SC4H9	1.12E+13	0	17700		
1103	IC4H9O2+C4H10=IC4H9O2H+PC4H9	1.70E+13	0	20460		

	1104	TC4H9O2+C4H10=TC4H9O2H+PC4H9	1.70E+13	0	20460	
	1105	IC3H7O2+IC4H9=IC3H7O+IC4H9O	7.00E+12	0	-1000	
	1106	IC3H7O2+TC4H9=IC3H7O+TC4H9O	7.00E+12	0	-1000	
	1107	IC3H7O2+IC4H7=IC3H7O+IC4H7O	7.00E+12	0	-1000	
	1108	IC4H9O2+C3H6=IC4H9O2H+C3H5-A	3.24E+11	0	14900	
	1109	TC4H9O2+C3H6=TC4H9O2H+C3H5-A	3.24E+11	0	14900	
	1110	IC4H9O2+IC4H8=IC4H9O2H+IC4H7	1.40E+12	0	14900	
	1111	TC4H9O2+IC4H8=TC4H9O2H+IC4H7	1.40E+12	0	14900	
	1112	PC4H9O2+IC4H8=PC4H9O2H+IC4H7	1.40E+12	0	14900	
	1113	IC3H7O2+IC4H8=IC3H7O2H+IC4H7	1.40E+12	0	14900	
	1114	NC3H7O2+IC4H8=NC3H7O2H+IC4H7	1.40E+12	0	14900	
	1115	IC4H9O2+C4H8-1=IC4H9O2H+C4H71-3	1.40E+12	0	14900	
	1116	TC4H9O2+C4H8-1=TC4H9O2H+C4H71-3	1.40E+12	0	14900	
	1117	IC4H9O2+C4H8-2=IC4H9O2H+C4H71-3	1.40E+12	0	14900	
ĺ	1118	TC4H9O2+C4H8-2=TC4H9O2H+C4H71-3	1.40E+12	0	14900	
ĺ	1119	CC4H8O+OH=CH2O+C3H5-A+H2O	5.00E+12	0	0	
ĺ	1120	CC4H8O+H=CH2O+C3H5-A+H2	3.51E+07	2	5000	
ĺ	1121	CC4H8O+O=CH2O+C3H5-A+OH	1.12E+14	0	5200	
ĺ	1122	CC4H8O+HO2=CH2O+C3H5-A+H2O2	1.00E+13	0	15000	
ĺ	1123	CC4H8O+CH3O2=CH2O+C3H5-A+CH3O2H	1.00E+13	0	19000	
ĺ	1124	CC4H8O+CH3=CH2O+C3H5-A+CH4	2.00E+11	0	10000	
ĺ	1125	C2H4+TC4H9O2=C2H3+TC4H9O2H	7.00E+11	0	17110	
ĺ	1126	TC4H9O2+CH4=TC4H9O2H+CH3	1.13E+13	0	20460	
ĺ	1127	H2+TC4H9O2=H+TC4H9O2H	3.01E+13	0	26030	
ĺ	1128	TC4H9O2+C2H6=TC4H9O2H+C2H5	1.70E+13	0	20460	
ĺ	1129	TC4H9O2+C3H8=TC4H9O2H+IC3H7	2.00E+12	0	17000	
ĺ	1130	TC4H9O2+C3H8=TC4H9O2H+NC3H7	1.70E+13	0	20460	
ĺ	1131	TC4H9O2+CH3OH=TC4H9O2H+CH2OH	6.30E+12	0	19360	
	1132	TC4H9O2+C2H5OH=TC4H9O2H+PC2H4OH	6.30E+12	0	19360	
ĺ	1133	TC4H9O2+C2H5OH=TC4H9O2H+SC2H4OH	4.20E+12	0	15000	
	1134	IC4H9O2+CH3CHO=IC4H9O2H+CH3CO	2.80E+12	0	13600	
ĺ	1135	TC4H9O2+CH3CHO=TC4H9O2H+CH3CO	2.80E+12	0	13600	
ĺ	1136	IC4H9O2+C2H3CHO=IC4H9O2H+C2H3CO	2.80E+12	0	13600	
	1137	TC4H9O2+C2H3CHO=TC4H9O2H+C2H3CO	2.80E+12	0	13600	
	1138	IC4H9O2+C2H5CHO=IC4H9O2H+C2H5CO	2.80E+12	0	13600	
	1139	TC4H9O2+C2H5CHO=TC4H9O2H+C2H5CO	2.80E+12	0	13600	
	1140	IC4H9O2+HO2=IC4H9O2H+O2	1.75E+10	0	-3275	
ĺ	1141	TC4H9O2+HO2=TC4H9O2H+O2	1.75E+10	0	-3275	
ĺ	1142	IC4H9O2+H2O2=IC4H9O2H+HO2	2.40E+12	0	10000	
	1143	TC4H9O2+H2O2=TC4H9O2H+HO2	2.40E+12	0	10000	
ļ	1144	IC4H9O2+CH2O=IC4H9O2H+HCO	1.30E+11	0	9000	
ļ	1145	TC4H9O2+CH2O=TC4H9O2H+HCO	1.30E+11	0	9000	
ļ	1146	IC4H9O2+CH3O2=IC4H9O+CH3O+O2	1.40E+16	-1.6	1860	
ļ	1147	TC4H9O2+CH3O2=TC4H9O+CH3O+O2	1.40E+16	-1.6	1860	
ļ	1148	IC4H9O2+C2H5O2=IC4H9O+C2H5O+O2	1.40E+16	-1.6	1860	
ļ	1149	TC4H9O2+C2H5O2=TC4H9O+C2H5O+O2	1.40E+16	-1.6	1860	
- 4						

1150	IC4H9O2+CH3CO3=IC4H9O+CH3CO2+O2	1.40E+16	-1.6	1860	
1151	TC4H9O2+CH3CO3=TC4H9O+CH3CO2+O2	1.40E+16	-1.6	1860	
1152	2IC4H9O2=O2+2IC4H9O	1.40E+16	-1.6	1860	
1153	IC4H9O2+TC4H9O2=IC4H9O+TC4H9O+O2	1.40E+16	-1.6	1860	
1154	2TC4H9O2=O2+2TC4H9O	1.40E+16	-1.6	1860	
1155	IC4H9O2+PC4H9O2=IC4H9O+PC4H9O+O2	1.40E+16	-1.6	1860	
1156	TC4H9O2+PC4H9O2=TC4H9O+PC4H9O+O2	1.40E+16	-1.6	1860	
1157	IC4H9O2+SC4H9O2=IC4H9O+SC4H9O+O2	1.40E+16	-1.6	1860	
1158	TC4H9O2+SC4H9O2=TC4H9O+SC4H9O+O2	1.40E+16	-1.6	1860	
1159	IC4H9O2+NC3H7O2=IC4H9O+NC3H7O+O2	1.40E+16	-1.6	1860	
1160	TC4H9O2+NC3H7O2=TC4H9O+NC3H7O+O2	1.40E+16	-1.6	1860	
1161	IC4H9O2+IC3H7O2=IC4H9O+IC3H7O+O2	1.40E+16	-1.6	1860	
1162	TC4H9O2+IC3H7O2=TC4H9O+IC3H7O+O2	1.40E+16	-1.6	1860	
1163	IC4H9O2+HO2=IC4H9O+OH+O2	1.40E+16	-1.6	1860	
1164	TC4H9O2+HO2=TC4H9O+OH+O2	1.40E+16	-1.6	1860	
1165	IC4H9O2+CH3=IC4H9O+CH3O	7.00E+12	0	-1000	
1166	IC4H9O2+C2H5=IC4H9O+C2H5O	7.00E+12	0	-1000	
1167	IC4H9O2+IC3H7=IC4H9O+IC3H7O	7.00E+12	0	-1000	
1168	IC4H9O2+NC3H7=IC4H9O+NC3H7O	7.00E+12	0	-1000	
1169	IC4H9O2+PC4H9=IC4H9O+PC4H9O	7.00E+12	0	-1000	
1170	IC4H9O2+SC4H9=IC4H9O+SC4H9O	7.00E+12	0	-1000	
1171	IC4H9O2+IC4H9=2IC4H9O	7.00E+12	0	-1000	
1172	IC4H9O2+TC4H9=IC4H9O+TC4H9O	7.00E+12	0	-1000	
1173	IC4H9O2+C3H5-A=IC4H9O+C3H5O	7.00E+12	0	-1000	
1174	IC4H9O2+C4H71-3=IC4H9O+C4H7O	7.00E+12	0	-1000	
1175	IC4H9O2+IC4H7=IC4H9O+IC4H7O	7.00E+12	0	-1000	
1176	TC4H9O2+CH3=TC4H9O+CH3O	7.00E+12	0	-1000	
1177	TC4H9O2+C2H5=TC4H9O+C2H5O	7.00E+12	0	-1000	
1178	TC4H9O2+IC3H7=TC4H9O+IC3H7O	7.00E+12	0	-1000	
1179	TC4H9O2+NC3H7=TC4H9O+NC3H7O	7.00E+12	0	-1000	
1180	TC4H9O2+PC4H9=TC4H9O+PC4H9O	7.00E+12	0	-1000	
1181	TC4H9O2+SC4H9=TC4H9O+SC4H9O	7.00E+12	0	-1000	
1182	TC4H9O2+IC4H9=TC4H9O+IC4H9O	7.00E+12	0	-1000	
1183	TC4H9O2+TC4H9=2TC4H9O	7.00E+12	0	-1000	
1184	TC4H9O2+C3H5-A=TC4H9O+C3H5O	7.00E+12	0	-1000	
1185	TC4H9O2+C4H71-3=TC4H9O+C4H7O	7.00E+12	0	-1000	
1186	TC4H9O2+IC4H7=TC4H9O+IC4H7O	7.00E+12	0	-1000	
1187	IC4H9O2+C2H4=IC4H9O2H+C2H3	2.00E+11	0	6000	
1188	IC4H9O2+CH4=IC4H9O2H+CH3	1.13E+13	0	20460	
1189	H2+IC4H9O2=H+IC4H9O2H	3.01E+13	0	26030	
1190	IC4H9O2+C2H6=IC4H9O2H+C2H5	1.70E+13	0	20460	
1191	IC4H9O2+C3H8=IC4H9O2H+IC3H7	2.00E+12	0	17000	
1192	IC4H9O2+C3H8=IC4H9O2H+NC3H7	1.70E+13	0	20460	
1193	IC4H9O2+CH3OH=IC4H9O2H+CH2OH	6.30E+12	0	19360	
1194	IC4H9O2+C2H5OH=IC4H9O2H+PC2H4OH	6.30E+12	0	19360	
1195	IC4H9O2+C2H5OH=IC4H9O2H+SC2H4OH	4.20E+12	0	15000	

1196	IC4H9O2H=IC4H9O+OH	1.50E+16	0	42500	
1197	TC4H9O2H=TC4H9O+OH	5.95E+15	0	42540	
1198	IC4H9O+HO2=IC3H7CHO+H2O2	1.00E+12	0	0	
1199	IC4H9O+OH=IC3H7CHO+H2O	1.81E+13	0	0	
1200	IC4H9O+CH3=IC3H7CHO+CH4	2.40E+13	0	0	
1201	IC4H9O+O=IC3H7CHO+OH	6.00E+12	0	0	
1202	IC4H9O+H=IC3H7CHO+H2	1.99E+13	0	0	
1203	IC4H9O=IC3H7CHO+H	4.00E+14	0	21500	
1204	IC4H9O=CH2O+IC3H7	2.00E+14	0	17500	
1205	CH3COCH3+CH3=TC4H9O	1.50E+11	0	11900	
1206	IC4H9O+O2=IC3H7CHO+HO2	1.93E+11	0	1660	
1207	TC4H9O+O2=IC4H8O+HO2	8.10E+11	0	4700	
1208	IC4H8O=IC3H7CHO	4.18E+13	0	52720	
1209	IC4H8O+OH=IC3H6CHO+H2O	1.25E+12	0	0	
1210	IC4H8O+H=IC3H6CHO+H2	1.25E+12	0	0	
1211	IC4H8O+HO2=IC3H6CHO+H2O2	2.50E+12	0	15000	
1212	IC4H8O+CH3O2=IC3H6CHO+CH3O2H	2.50E+12	0	19000	
1213	IC4H8O+CH3=IC3H6CHO+CH4	5.00E+10	0	10000	
1214	IC4H8O+O=IC3H6CHO+OH	1.25E+12	0	0	
1215	ТСЗН6СНО+Н=ІСЗН7СНО	2.00E+14	0	0	
1216	IC3H7+HCO=IC3H7CHO	1.81E+13	0	0	
1217	IC3H7CHO+HO2=IC3H7CO+H2O2	3.00E+12	0	11920	
1218	IC3H7CHO+HO2=TC3H6CHO+H2O2	8.00E+10	0	11920	
1219	IC3H7CHO+CH3=IC3H7CO+CH4	3.98E+12	0	8700	
1220	IC3H7CHO+O=IC3H7CO+OH	7.18E+12	0	1389	
1221	IC3H7CHO+O2=IC3H7CO+HO2	4.00E+13	0	37600	
1222	IC3H7CHO+OH=IC3H7CO+H2O	2.69E+10	0.8	-340	
1223	ІСЗН7СНО+ОН=ТСЗН6СНО+Н2О	1.68E+12	0	-781	
1224	IC3H7CHO+H=IC3H7CO+H2	2.60E+12	0	2600	
1225	IC3H7CHO+OH=IC3H6CHO+H2O	3.12E+06	2	-298	
1226	IC3H7CHO+HO2=IC3H6CHO+H2O2	2.74E+04	2.5	15500	
1227	IC3H7CHO+CH3O2=IC3H6CHO+CH3O2H	4.76E+04	2.5	16490	
1228	IC3H7+CO=IC3H7CO	1.50E+11	0	4810	
1229	C3H6+HCO=IC3H6CHO	1.00E+11	0	7800	
1230	C2H3CHO+CH3=IC3H6CHO	1.00E+11	0	7800	
1231	IC4H8+OH=IC4H8OH	9.93E+11	0	-960	
1232	IC4H8OH+O2=IO2C4H8OH	1.20E+11	0	-1100	
1233	IO2C4H8OH=CH3COCH3+CH2O+OH	1.25E+10	0	18900	
1234	IC4H9O2=IC4H8O2H-I	7.50E+10	0	24400	
1235	TC4H9O2=TC4H8O2H-I	9.00E+11	0	29400	
1236	IC4H9O2=IC4H8O2H-T	1.00E+11	0	24100	
1237	IC4H9O2=IC4H8+HO2	4.53E+35	-7.2	39490	
1238	TC4H9O2=IC4H8+HO2	1.52E+43	-9.4	41490	
1239	IC4H8O2H-I+O2=IC4H8OOH-IO2	2.26E+12	0	0	
1240	TC4H8O2H-I+O2=TC4H8OOH-IO2	2.26E+12	0	0	
1241	IC4H8O2H-T+O2=IC4H8OOH-TO2	1.41E+13	0	0	

1242	IC4H8OOH-IO2=IC4KETII+OH	2.50E+10	0	21400	
1243	IC4H8OOH-TO2=IC4KETIT+OH	2.00E+11	0	26400	
1244	IC4KETII=CH2O+C2H5CO+OH	1.50E+16	0	42000	
1245	IC4KETIT=CH3COCH3+HCO+OH	9.50E+15	0	42540	
1246	IC4H8+HO2=TC4H8O2H-I	3.97E+11	0	12620	
1247	IC4H8+HO2=IC4H8O2H-T	3.97E+11	0	12620	
1248	IC4H8O2H-I=CC4H8O+OH	7.50E+10	0	15250	
1249	IC4H8O2H-T=IC4H8O+OH	6.00E+11	0	22000	
1250	TC4H8O2H-I=IC4H8O+OH	6.00E+11	0	22000	
1251	IC4H8O2H-I=OH+CH2O+C3H6	8.45E+15	-0.7	29170	
1252	IC4H8=C3H5-T+CH3	1.92E+66	-14.2	128100	
1253	IC4H8=IC4H7+H	3.07E+55	-11.5	114300	
1254	IC4H8+H=C3H6+CH3	5.68E+33	-5.7	20000	
1255	IC4H8+H=IC4H7+H2	3.40E+05	2.5	2492	
1256	IC4H8+O=CH2CO+2CH3	3.33E+07	1.8	76	
1257	IC4H8+O=IC3H6CO+2H	1.66E+07	1.8	76	
1258	IC4H8+O=IC4H7+OH	1.21E+11	0.7	7633	
1259	IC4H8+CH3=IC4H7+CH4	4.42E+00	3.5	5675	
1260	IC4H8+HO2=IC4H7+H2O2	1.93E+04	2.6	13910	
1261	IC4H8+O2CHO=IC4H7+HO2CHO	1.93E+04	2.6	13910	
1262	IC4H8+O2=IC4H7+HO2	6.00E+12	0	39900	
1263	IC4H8+C3H5-A=IC4H7+C3H6	7.94E+11	0	20500	
1264	IC4H8+C3H5-S=IC4H7+C3H6	7.94E+11	0	20500	
1265	IC4H8+C3H5-T=IC4H7+C3H6	7.94E+11	0	20500	
1266	IC4H8+OH=IC4H7+H2O	5.20E+06	2	-298	
1267	IC4H8+O=IC3H7+HCO	1.58E+07	1.8	-1216	
1268	IC4H8+CH3O2=IC4H7+CH3O2H	1.93E+04	2.6	13910	
1269	IC4H8+HO2=IC4H8O+OH	1.29E+12	0	13340	
1270	IC4H7+O2=IC3H5CHO+OH	2.47E+13	-0.5	23020	
1271	IC4H7+O2=CH3COCH2+CH2O	7.14E+15	-1.2	21050	
1272	IC4H7+O2=C3H4-A+CH2O+OH	7.29E+29	-5.7	21450	
1273	IC4H7+O=IC3H5CHO+H	6.03E+13	0	0	
1274	IC4H7=C3H4-A+CH3	7.09E+10	1.4	56360	
1275	CH3O2+IC4H7=CH3O+IC4H7O	7.00E+12	0	-1000	
1276	IC4H7+HO2=IC4H7O+OH	7.00E+12	0	-1000	
1277	C3H5-T+CH2O=IC4H7O	1.00E+11	0	12600	
1278	IC4H7O=IC4H6OH	1.39E+11	0	15600	
1279	IC4H7O=IC3H5CHO+H	5.00E+13	0	29100	
1280	IC4H6OH+H2=IC4H7OH+H	2.16E+04	2.4	18990	
1281	IC4H7OH+O2=IC4H6OH+HO2	6.00E+13	0	39900	
1282	IC4H6OH+CH2O=IC4H7OH+HCO	6.30E+08	1.9	18190	
1283	IC4H6OH+IC4H8=IC4H7OH+IC4H7	4.70E+02	3.3	19840	
1284	IC4H6OH+H=IC4H7OH	1.00E+14	0	0	
1285	IC4H6OH+H2O2=IC4H7OH+HO2	7.83E+05	2	13580	
1286	C3H4-A+CH2OH=IC4H6OH	1.00E+11	0	9200	
1287	IC4H7O+O2=IC3H5CHO+HO2	3.00E+10	0	1649	

1288	IC4H7O+HO2=IC3H5CHO+H2O2	3.00E+11	0	0	
1289	IC4H7O+CH3=IC3H5CHO+CH4	2.40E+13	0	0	
1290	IC4H7O+O=IC3H5CHO+OH	6.00E+12	0	0	
1291	IC4H7O+OH=IC3H5CHO+H2O	1.81E+13	0	0	
1292	IC4H7O+H=IC3H5CHO+H2	1.99E+13	0	0	
1293	IC3H5CHO+OH=IC3H5CO+H2O	2.69E+10	0.8	-340	
1294	IC3H5CHO+HO2=IC3H5CO+H2O2	1.00E+12	0	11920	
1295	IC3H5CHO+CH3=IC3H5CO+CH4	3.98E+12	0	8700	
1296	IC3H5CHO+O=IC3H5CO+OH	7.18E+12	0	1389	
1297	IC3H5CHO+O2=IC3H5CO+HO2	2.00E+13	0	40700	
1298	IC3H5CHO+H=IC3H5CO+H2	2.60E+12	0	2600	
1299	C3H5-T+CO=IC3H5CO	1.51E+11	0	4809	
1300	ТС3Н6СНО+НО2=ТС3Н6ОСНО+ОН	9.64E+12	0	0	
1301	ТС3Н6ОСНО=СН3СОСН3+НСО	3.98E+13	0	9700	
1302	IC3H5CHO+H=TC3H6CHO	1.30E+13	0	1200	
1303	ІСЗН6СО+Н=ТСЗН6СНО	1.30E+13	0	4800	
1304	ТС3Н6СНО+Н2=ІС3Н7СНО+Н	2.16E+05	2.4	18990	
1305	IC4H7OOH<=>IC4H7O+OH	6.40E+15	0	45550	
1306	IC4H7O+H=IC4H7OH	4.00E+13	0	0	
1307	IC4H7OH+H=IC4H8OH	1.00E+13	0	1200	
1308	IC4H7O+H2=IC4H7OH+H	9.05E+06	2	17830	
1309	IC4H7+OH=IC4H7OH	3.00E+13	0	0	
1310	IC4H7OH+HCO=IC4H7O+CH2O	3.02E+11	0	18160	
1311	TC3H6CHO+CH2O=IC3H7CHO+HCO	2.52E+08	1.9	18190	
1312	TC3H6CHO+IC4H8=IC3H7CHO+IC4H7	4.70E+02	3.3	19840	
1313	IC3H6CO+OH=IC3H7+CO2	1.73E+12	0	-1010	
1314	СН3СОСН3+Н=ТС3Н6ОН	1.00E+12	0	0	
1315	IC3H5OH+H=TC3H6OH	1.30E+13	0	1560	
1316	C3H5-T+OH=IC3H5OH	5.00E+13	0	0	
1317	ТС3Н6СНО+О2=ТС3Н6О2СНО	1.99E+17	-2.1	0	
1318	ТС3Н6О2СНО=ІС3Н5О2НСНО	6.00E+11	0	29880	
1319	TC3H6O2CHO=TC3H6O2HCO	1.00E+11	0	25750	
1320	IC3H5CHO+HO2=IC3H5O2HCHO	2.23E+11	0	10600	
1321	TC3H6O2HCO=CH3COCH3+CO+OH	4.24E+18	-1.4	4800	
1322	TC3H6OH+O2=CH3COCH3+HO2	2.23E+13	0	0	
1323	IC3H6CO+OH=TC3H6OH+CO	2.00E+12	0	-1010	
1324	TC3H6CHO+O2=IC3H5CHO+HO2	2.72E-19	0	7240	
1325	TC3H6CHO+O2=CH3COCH3+CO+OH	3.62E-20	0	0	
1326	TC3H6CHO+HO2=IC3H7CHO+O2	3.68E+12	0	1310	
1327	TC3H6CHO+CH3=IC3H5CHO+CH4	3.01E+12	-0.3	-131	
1328	TC4H8CHO=IC3H5CHO+CH3	1.00E+13	0	26290	
1329	TC4H8CHO=IC4H8+HCO	8.52E+12	0	20090	
1330	TC4H8CHO+O2=O2C4H8CHO	2.00E+12	0	0	
1331	O2C4H8CHO=O2HC4H8CO	2.16E+11	0	15360	
1332	IC4H8O2H-T+CO=O2HC4H8CO	1.50E+11	0	4809	
1333	IC4H7O+IC4H8=IC4H7OH+IC4H7	2.70E+11	0	4000	

1334	IC4H6OH+HO2=CH2CCH2OH+CH2O+OH	1.45E+13	0	0		
1335	CH2CCH2OH+CH3=IC4H7OH	3.00E+13	0	0		
1336	CH2CCH2OH+O2=CH2OH+CO+CH2O	4.34E+12	0	0		
1337	CH2CCH2OH=C2H2+CH2OH	2.16E+40	-8.3	45110		
1338	C3H4-A+OH=CH2CCH2OH	8.50E+12	0	2000		
1339	AC5H11=C3H6+C2H5	2.91E+13	0.4	29710		
	Reverse	Arrhenius	coefficients:	1.42E+03	2.7	6850
1340	AC5H11=C4H8-1+CH3	4.84E+11	0.8	30800		
	Reverse	Arrhenius	coefficients:	1.89E+03	2.7	6850
1341	AC5H11=AC5H10+H	1.89E+13	0.2	34220		
	Reverse	Arrhenius	coefficients:	6.25E+11	0.5	2620
1342	AC5H11=DC5H11	3.00E+11	0	21100		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	21100
1343	BC5H11=IC4H8+CH3	5.27E+10	1.2	30220		
	Reverse	Arrhenius	coefficients:	4.40E+04	2.5	6130
1344	BC5H11=AC5H10+H	3.66E+11	0.7	37150		
	Reverse	Arrhenius	coefficients:	1.06E+12	0.5	1230
1345	BC5H11=BC5H10+H	6.17E+11	0.5	35580		
	Reverse	Arrhenius	coefficients:	6.25E+11	0.5	2620
1346	CC5H11=C4H8-2+CH3	5.28E+10	0.9	30620		
	Reverse	Arrhenius	coefficients:	1.89E+03	2.7	6850
1347	CC5H11=BC5H10+H	1.48E+12	0.3	33780		
	Reverse	Arrhenius	coefficients:	2.50E+11	0.5	2620
1348	CC5H11=CC5H10+H	6.26E+11	0.6	38150		
	Reverse	Arrhenius	coefficients:	6.25E+11	0.5	2620
1349	DC5H11=C2H4+IC3H7	1.24E+14	0.1	28960		
	Reverse	Arrhenius	coefficients:	8.80E+03	2.5	6130
1350	DC5H11=CC5H10+H	3.66E+12	0.2	35630		
	Reverse	Arrhenius	coefficients:	2.50E+11	0.5	2620
1351	AC5H11+O2=AC5H10+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1352	BC5H11+O2=AC5H10+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1353	BC5H11+O2=BC5H10+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1354	CC5H11+O2=BC5H10+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1355	CC5H11+O2=CC5H10+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1356	DC5H11+O2=CC5H10+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1357	AC5H10=IC4H7+CH3	1.90E+20	-1.6	75930		
	Reverse	Arrhenius	coefficients:	2.55E+13	-0.3	-131
1358	AC5H10=C3H5-T+C2H5	8.92E+24	-2.4	100500		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1359	BC5H10=IC4H7+CH3	2.61E+19	-1	79020		

	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1360	CC5H10=C4H71-3+CH3	1.30E+21	-1.6	76140		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1361	AC5H10+OH=SC4H9+CH2O	2.00E+10	0	4000		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	20000
1362	BC5H10+OH=IC3H7+CH3CHO	2.00E+10	0	4000		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	20000
1363	CC5H10+OH=IC4H9+CH2O	2.00E+10	0	4000		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	20000
1364	AC5H10+O=SC4H9+HCO	7.23E+05	2.3	-1050		
	Reverse	Arrhenius	coefficients:	2.00E+05	2.3	80300
1365	AC5H10+O=IC3H7+CH3CO	7.23E+05	2.3	-1050		
	Reverse	Arrhenius	coefficients:	2.00E+05	2.3	80300
1366	AC5H10+O=IC4H9+HCO	7.23E+05	2.3	-1050		
	Reverse	Arrhenius	coefficients:	2.00E+05	2.3	80300
1367	AC5H10+H=AC5H9-A2+H2	1.73E+05	2.5	2492		
	Reverse	Arrhenius	coefficients:	6.95E+06	1.9	20100
1368	AC5H10+H=AC5H9-C+H2	3.38E+05	2.4	207		
	Reverse	Arrhenius	coefficients:	4.35E+06	2.1	20330
1369	AC5H10+OH=AC5H9-A2+H2O	3.12E+06	2	-298		
	Reverse	Arrhenius	coefficients:	5.43E+08	1.4	32470
1370	AC5H10+OH=AC5H9-C+H2O	2.76E+04	2.6	-1919		
	Reverse	Arrhenius	coefficients:	1.54E+06	2.4	33360
1371	AC5H10+CH3=AC5H9-A2+CH4	2.21E+00	3.5	5675		
	Reverse	Arrhenius	coefficients:	2.32E+03	2.9	23770
1372	AC5H10+CH3=AC5H9-C+CH4	3.69E+00	3.3	4002		
	Reverse	Arrhenius	coefficients:	1.24E+03	3	24600
1373	AC5H10+HO2=AC5H9-A2+H2O2	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	9.96E+06	1.7	15210
1374	AC5H10+HO2=AC5H9-C+H2O2	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	1.60E+06	2	14340
1375	AC5H10+CH3O2=AC5H9-A2+CH3O2H	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	2.07E+07	1.5	12190
1376	AC5H10+CH3O2=AC5H9-C+CH3O2H	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	3.33E+06	1.8	11320
1377	AC5H10+CH3O=AC5H9-A2+CH3OH	9.00E+01	3	11990		
	Reverse	Arrhenius	coefficients:	1.74E+03	2.4	27870
1378	AC5H10+CH3O=AC5H9-C+CH3OH	4.00E+01	2.9	8609		
	Reverse	Arrhenius	coefficients:	2.49E+02	2.7	27000
1379	BC5H10+H=AC5H9-C+H2	3.46E+05	2.5	2492		
	Reverse	Arrhenius	coefficients:	1.27E+07	2	19650
1380	BC5H10+H=CC5H9-B+H2	1.73E+05	2.5	2492		
	Reverse	Arrhenius	coefficients:	7.02E+06	2.2	20400
1381	BC5H10+OH=AC5H9-C+H2O	6.24E+06	2	-298		
	Reverse	Arrhenius	coefficients:	9.94E+08	1.5	32020
1382	BC5H10+OH=CC5H9-B+H2O	3.12E+06	2	-298		

	Reverse	Arrhenius	coefficients.	5 48F+08	17	32770
1383	BC5H10+CH3=AC5H9-C+CH4	4.42E+00	3.5	5675	1.7	32110
1000	Reverse	Arrhenius	coefficients.	4 25E+03	3	23320
1384	BC5H10+CH3=CC5H9-B+CH4	2.21E+00	3.5	5675		
	Reverse	Arrhenius	coefficients:	2.34E+03	3.2	24060
1385	BC5H10+HO2=AC5H9-C+H2O2	1.93E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.82E+07	1.8	14760
1386	BC5H10+HO2=CC5H9-B+H2O2	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.00E+07	1.9	15510
1387	BC5H10+CH3O2=AC5H9-C+CH3O2H	1.93E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	3.80E+07	1.6	11740
1388	BC5H10+CH3O2=CC5H9-B+CH3O2H	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	2.09E+07	1.8	12490
1389	BC5H10+CH3O=AC5H9-C+CH3OH	1.80E+02	3	11990		
	Reverse	Arrhenius	coefficients:	3.19E+03	2.5	27420
1390	BC5H10+CH3O=CC5H9-B+CH3OH	9.00E+01	3	11990		
	Reverse	Arrhenius	coefficients:	1.76E+03	2.6	28170
1391	CC5H10+H=CC5H9-B+H2	2.65E+06	2.2	0		
	Reverse	Arrhenius	coefficients:	1.82E+07	2.1	22280
1392	CC5H10+OH=CC5H9-B+H2O	6.14E+02	3.2	-3500		
	Reverse	Arrhenius	coefficients:	1.83E+04	3.1	33940
1393	CC5H10+CH3=CC5H9-B+CH4	4.61E+00	3.1	2330		
	Reverse	Arrhenius	coefficients:	8.28E+02	3	25090
1394	CC5H10+HO2=CC5H9-B+H2O2	1.81E+03	2.5	7154		
	Reverse	Arrhenius	coefficients:	3.20E+05	2.1	13130
1395	CC5H10+CH3O2=CC5H9-B+CH3O2H	1.81E+03	2.5	7154		
	Reverse	Arrhenius	coefficients:	6.66E+05	1.9	10110
1396	CC5H10+CH3O=CC5H9-B+CH3OH	1.00E+01	2.9	5231		
	Reverse	Arrhenius	coefficients:	3.31E+01	2.8	25790
1397	AC5H9-C+HO2=AC5H9O-C+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	2.73E+15	-1	15620
1398	AC5H9-C+CH3O2=AC5H9O-C+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	2.67E+17	-1.5	20380
1399	AC5H9-C+C2H5O2=AC5H9O-C+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.75E+14	-0.6	18220
1400	CC5H9-B+HO2=CC5H9O-B+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	2.94E+15	-1	16870
1401	CC5H9-B+CH3O2=CC5H9O-B+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	2.87E+17	-1.6	21640
1402		9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.88E+14	-0.7	19480
1403	AC5H9O-C=CH3CHO+C3H5-T	3.23E+22	-2.6	30310		44000
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1404	СС5Н9О-В=СН3СОСН3+С2Н3	7.81E+13	-0.2	22330		11000
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1405	CH3CHCHO=C2H3CHO+H	3.52E+15	-0.5	41060		

	Reverse	Arrhenius	coefficients:	6.50E+12	0	2900
1406	CH3CHCHO=CH3CHCO+H	1.14E+16	-0.7	40310		
	Reverse	Arrhenius	coefficients:	5.00E+12	0	1200
1407	CH3CHCHO+H2=C2H5CHO+H	2.16E+05	2.4	18990		
	Reverse	Arrhenius	coefficients:	4.31E+04	2.6	5265
1408	AC6H13=NC3H7+C3H6	1.82E+21	-2.2	32260		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	9200
1409	AC6H13=C5H10-1+CH3	2.12E+18	-1.4	33320		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	9200
1410	AC6H13=AC6H12+H	2.12E+14	-0.3	35160		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	3200
1411	BC6H13=IC4H8+C2H5	1.05E+19	-1.6	30790		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7200
1412	BC6H13=AC6H12+H	3.92E+12	0.3	37660		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	1200
1413	BC6H13=BC6H12+H	8.02E+12	0.1	36490		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
1414	DC6H13=IC3H7+C3H6	7.77E+20	-2.2	30830		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7800
1415	DC6H13=CC6H12+H	1.37E+13	-0.1	35920		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
1416	DC6H13=DC6H12+H	6.43E+12	0.1	36820		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	1200
1417	EC6H13=IC4H9+C2H4	2.15E+19	-1.9	30740		
	Reverse	Arrhenius	coefficients:	1.70E+11	0	7200
1418	EC6H13=DC6H12+H	9.53E+13	-0.3	36010		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
1419	AC6H13+O2=AC6H12+HO2	1.50E-19	0	2000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1420	BC6H13+O2=AC6H12+HO2	9.00E-19	0	5020		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1421	BC6H13+O2=BC6H12+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1422	DC6H13+O2=CC6H12+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1423	DC6H13+O2=DC6H12+HO2	4.50E-19	0	5020		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1424	EC6H13+O2=DC6H12+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1425	AC6H13=DC6H13	2.00E+11	0	18100		
	Reverse	Arrhenius	coefficients:	6.00E+11	0	21100
1426	AC6H13=EC6H13	3.00E+11	0	14100		
	Reverse	Arrhenius	coefficients:	6.00E+11	0	14100
1427	BC6H13=EC6H13	3.00E+11	0	21100		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	16100
1428	AC6H12+OH=>C5H11-2+CH2O	1.00E+11	0	-4000		

1429	BC6H12+OH=>CH3COCH3+NC3H7	1.00E+11	0	-4000		
1430	BC6H12+OH=>C2H5CHO+IC3H7	1.00E+11	0	-4000		
1431	CC6H12+OH=>IC4H9+CH3CHO	1.00E+11	0	-4000		
1432	DC6H12+OH=>DC5H11+CH2O	1.00E+11	0	-4000		
1433	AC6H12+O=>C5H11-2+HCO	1.00E+11	0	-1050		
1434	CC6H12+O=>IC4H9+CH3CO	1.00E+11	0	-1050		
1435	DC6H12+O=>DC5H11+HCO	1.00E+11	0	-1050		
1436	AC6H12=IC4H7+C2H5	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1437	ВС6Н12=СН3+СС5Н9-В	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1438	CC6H12=CH3+C5H92-4	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1439	DC6H12=IC3H7+C3H5-A	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1440	AC6H12+H=AC6H11-A2+H2	1.73E+05	2.5	2492		
	Reverse	Arrhenius	coefficients:	7.05E+06	1.9	20100
1441	AC6H12+H=AC6H11-C+H2	3.38E+05	2.4	207		
	Reverse	Arrhenius	coefficients:	4.37E+06	2.1	20330
1442	AC6H12+H=AC6H11-E+H2	6.65E+05	2.5	6756		
	Reverse	Arrhenius	coefficients:	3.08E+04	2.5	11040
1443	AC6H12+OH=AC6H11-A2+H2O	3.12E+06	2	-298		
	Reverse	Arrhenius	coefficients:	5.50E+08	1.4	32470
1444	AC6H12+OH=AC6H11-C+H2O	2.76E+04	2.6	-1919		
	Reverse	Arrhenius	coefficients:	1.55E+06	2.4	33360
1445	AC6H12+OH=AC6H11-E+H2O	5.27E+09	1	1586		
	Reverse	Arrhenius	coefficients:	1.06E+09	1	21020
1446	AC6H12+CH3=AC6H11-A2+CH4	2.21E+00	3.5	5675		
	Reverse	Arrhenius	coefficients:	2.35E+03	2.9	23760
1447	AC6H12+CH3=AC6H11-C+CH4	3.69E+00	3.3	4002		
	Reverse	Arrhenius	coefficients:	1.25E+03	3	24600
1448	AC6H12+CH3=AC6H11-E+CH4	4.52E-01	3.6	7154		
	Reverse	Arrhenius	coefficients:	5.46E-01	3.6	11910
1449	AC6H12+HO2=AC6H11-A2+H2O2	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.01E+07	1.7	15210
1450	AC6H12+HO2=AC6H11-C+H2O2	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	1.60E+06	2	14340
1451	AC6H12+HO2=AC6H11-E+H2O2	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	2.83E+04	2.2	4466
1452	AC6H12+CH3O2=AC6H11-A2+CH3O2H	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	2.10E+07	1.5	12190
1453	AC6H12+CH3O2=AC6H11-C+CH3O2H	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	3.34E+06	1.8	11320
1454	AC6H12+CH3O2=AC6H11-E+CH3O2H	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	5.89E+04	2	1446
1455	AC6H12+CH3O=AC6H11-A2+CH3OH	9.00E+01	3	11990		

	Reverse	Arrhenius	coefficients:	1.77E+03	2.4	27870
1456	AC6H12+CH3O=AC6H11-C+CH3OH	4.00E+01	2.9	8609		
	Reverse	Arrhenius	coefficients:	2.50E+02	2.7	27000
1457	AC6H12+CH3O=AC6H11-E+CH3OH	2.17E+11	0	6458		
	Reverse	Arrhenius	coefficients:	4.84E+09	0	9008
1458	BC6H12+H=AC6H11-C+H2	3.46E+05	2.5	2492		
	Reverse	Arrhenius	coefficients:	9.18E+06	2.1	19740
1459	BC6H12+H=CC6H11-B+H2	3.38E+05	2.4	207		
	Reverse	Arrhenius	coefficients:	2.50E+06	2.3	21040
1460	BC6H12+H=BC6H11-E+H2	6.65E+05	2.5	6756		
	Reverse	Arrhenius	coefficients:	3.09E+04	2.5	11040
1461	BC6H12+OH=AC6H11-C+H2O	6.24E+06	2	-298		
	Reverse	Arrhenius	coefficients:	7.17E+08	1.6	32110
1462	BC6H12+OH=CC6H11-B+H2O	2.76E+04	2.6	-1919		
	Reverse	Arrhenius	coefficients:	8.85E+05	2.5	34070
1463	BC6H12+OH=BC6H11-E+H2O	5.27E+09	1	1586		
	Reverse	Arrhenius	coefficients:	1.06E+09	1	21020
1464	BC6H12+CH3=AC6H11-C+CH4	4.42E+00	3.5	5675		
	Reverse	Arrhenius	coefficients:	3.06E+03	3.1	23410
1465	BC6H12+CH3=CC6H11-B+CH4	3.69E+00	3.3	4002		
	Reverse	Arrhenius	coefficients:	7.13E+02	3.2	25310
1466	BC6H12+CH3=BC6H11-E+CH4	4.52E-01	3.6	7154		
	Reverse	Arrhenius	coefficients:	5.49E-01	3.6	11910
1467	BC6H12+HO2=AC6H11-C+H2O2	1.93E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.32E+07	1.8	14850
1468	BC6H12+HO2=CC6H11-B+H2O2	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	9.16E+05	2.1	15050
1469	BC6H12+HO2=BC6H11-E+H2O2	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	2.84E+04	2.2	4466
1470	BC6H12+CH3O2=AC6H11-C+CH3O2H	1.93E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	2.74E+07	1.7	11830
1471	BC6H12+CH3O2=CC6H11-B+CH3O2H	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	1.91E+06	1.9	12030
1472	BC6H12+CH3O2=BC6H11-E+CH3O2H	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	5.92E+04	2	1446
1473	BC6H12+CH3O=AC6H11-C+CH3OH	1.80E+02	3	11990		
	Reverse	Arrhenius	coefficients:	2.30E+03	2.5	27510
1474	BC6H12+CH3O=CC6H11-B+CH3OH	4.00E+01	2.9	8609		
	Reverse	Arrhenius	coefficients:	1.43E+02	2.8	27710
1475	BC6H12+CH3O=BC6H11-E+CH3OH	2.17E+11	0	6458		
	Reverse	Arrhenius	coefficients:	4.86E+09	0	9008
1476	CC6H12+H=CC6H11-A+H2	1.33E+06	2.5	6756		
	Reverse	Arrhenius	coefficients:	6.09E+04	2.5	11050
1477	CC6H12+H=CC6H11-B+H2	2.65E+06	2.2	0		
	Reverse	Arrhenius	coefficients:	9.15E+06	2.1	22250
1478	CC6H12+OH=CC6H11-A+H2O	1.05E+10	1	1586		

	Reverse	Arrhenius	coefficients:	2.09E+09	1	21030
1479	CC6H12+OH=CC6H11-B+H2O	6.14E+02	3.2	-3500		
	Reverse	Arrhenius	coefficients:	9.18E+03	3.1	33910
1480	CC6H12+CH3=CC6H11-A+CH4	9.04E-01	3.6	7154		
	Reverse	Arrhenius	coefficients:	1.08E+00	3.6	11920
1481	CC6H12+CH3=CC6H11-B+CH4	4.61E+00	3.1	2330		
	Reverse	Arrhenius	coefficients:	4.16E+02	3	25060
1482	CC6H12+HO2=CC6H11-A+H2O2	4.76E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	5.60E+04	2.2	4476
1483	CC6H12+HO2=CC6H11-B+H2O2	1.81E+03	2.5	7154		
	Reverse	Arrhenius	coefficients:	1.61E+05	2.1	13100
1484	CC6H12+CH3O2=CC6H11-A+CH3O2H	4.76E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	1.17E+05	2	1456
1485	CC6H12+CH3O2=CC6H11-B+CH3O2H	1.81E+03	2.5	7154		
	Reverse	Arrhenius	coefficients:	3.35E+05	1.9	10080
1486	СС6Н12+СН3О=СС6Н11-А+СН3ОН	4.34E+11	0	6458		
	Reverse	Arrhenius	coefficients:	9.58E+09	0	9018
1487	СС6Н12+СН3О=СС6Н11-В+СН3ОН	1.00E+01	2.9	5231		
	Reverse	Arrhenius	coefficients:	1.66E+01	2.8	25750
1488	AC6H11-C+HO2=AC6H11O-C+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.77E+15	-0.9	15560
1489	AC6H11-C+CH3O2=AC6H11O-C+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.73E+17	-1.5	20330
1490	AC6H11-C+C2H5O2=AC6H11O-C+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.13E+14	-0.6	18170
1491	AC6H11-E=AC6H11-A2	4.17E+11	0	26400		
	Reverse	Arrhenius	coefficients:	3.67E+14	-0.6	39730
1492	CC6H11-B+HO2=CC6H11O-B+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	5.16E+15	-1	17070
1493	CC6H11-B+CH3O2=CC6H11O-B+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	5.04E+17	-1.6	21830
1494	CC6H11-B+C2H5O2=CC6H11O-B+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	3.30E+14	-0.7	19670
1495	AC6H11O-C=C2H5CHO+C3H5-T	3.24E+22	-2.6	30010		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1496	CC6H11O-B=CH3COCH3+C3H5-S	7.18E+17	-1.2	28370		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1497	AC6H11-A2=C3H4-A+NC3H7	1.28E+28	-4.4	72370		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
1498	AC6H11-E=C2H4+IC4H7	4.96E+23	-3.5	43590		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
1499	BC6H11-E=C2H4+IC4H7-I1	2.01E+17	-1.3	43260		
	Reverse	Arrhenius	coefficients:	2.00E+11	0	7800
1500	CC6H11-A=C5H81-3+CH3	2.46E+12	0	24210		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
1501	C4H7CO1-4=C4H71-4+CO	2.79E+09	0.5	-160		

	Reverse	Arrhenius	coefficients:	1.50E+11	0	4810
1502	IC4H9COCH3+OH=IC4H9COCH2+H2O	5.10E+11	0	1192		
	Reverse	Arrhenius	coefficients:	6.76E+13	-0.7	27670
1503	IC4H9COCH3+OH=IC3H6CH2COCH3+H2O	1.51E+10	1	1586		
	Reverse	Arrhenius	coefficients:	2.78E+09	1	21000
1504	IC4H9COCH3+OH=TC3H6CH2COCH3+H2O	5.73E+10	0.5	63		
	Reverse	Arrhenius	coefficients:	1.78E+08	1.1	23970
1505	IC4H9COCH3+HO2=IC4H9COCH2+H2O2	2.38E+04	2.5	14690		
	Reverse	Arrhenius	coefficients:	1.87E+07	1.5	9702
1506	IC4H9COCH3+HO2=IC3H6CH2COCH3+H2O2	4.76E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	5.20E+04	2.2	4442
1507	IC4H9COCH3+HO2=TC3H6CH2COCH3+H2O2	2.80E+12	0	16000		
	Reverse	Arrhenius	coefficients:	5.16E+10	0.3	8442
1509	IC4H9COCH3+CH3O2=IC4H9COCH2+CH3O2	2.01E+12	0	17590		
1308	n Poverse	3.01E+12	0	0.74E±15	1.2	11870
	IC4H9COCH3+CH3O2=IC3H6CH2COCH3+CH	Afficilius	coefficients.	9.74L+13	-1.2	110/0
1509	302H	6.02E+12	0	19380		
	Reverse	Arrhenius	coefficients:	2.70E+13	-0.5	6612
1510	1C4H9COCH3+CH3O2=1C3H6CH2COCH3+CH 3O2H	3.61E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	2.73E+02	2.6	2254
1511	IC4H9COCH2=IC4H9+CH2CO	8.29E+18	-1.5	44360		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12600
1512	IC3H6CH2COCH3=C3H6+CH3COCH2	3.61E+17	-1.2	30350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12600
1513	TC3H6CH2COCH3=IC4H8+CH3CO	6.15E+17	-1.4	31780		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12600
1514	NC3H7COCH3+OH=C3H6COCH3-2+H2O	3.62E+07	1.6	-247		
	Reverse	Arrhenius	coefficients:	3.67E+05	2	21660
1515	NC3H7COCH3+OH=NC3H7COCH2+H2O	5.10E+11	0	1192		
	Reverse	Arrhenius	coefficients:	9.29E+13	-0.7	27730
1516	NC3H7COCH3+HO2=C3H6COCH3-2+H2O2	5.60E+12	0	17700		
	Reverse	Arrhenius	coefficients:	3.37E+11	0.1	8142
1517	NC3H7COCH3+HO2=NC3H7COCH2+H2O2	2.38E+04	2.5	14690		
	Reverse	Arrhenius	coefficients:	2.57E+07	1.5	9762
1518	NC3H7COCH3+CH3O2=C3H6COCH3- 2+CH3O2H	1 99E+12	0	17050		
1010	Reverse	Arrhenius	coefficients:	4.93E+11	-0.1	6774
	NC3H7COCH3+CH3O2=NC3H7COCH2+CH3O					
1519	2H	3.01E+12	0	17580		
	Reverse	Arrhenius	coefficients:	1.34E+16	-1.2	11930
1520	C3H6COCH3-2=C3H6+CH3CO	2.72E+16	-1.1	25590		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
1521	NC3H7COCH2=NC3H7+CH2CO	1.23E+18	-1.4	43450		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11600
1522	AC3H5CHO=C3H5-A+HCO	1.81E+19	-1.1	68480		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1523	C5H10-1+OH=PC4H9+CH2O	2.00E+10	0	-4000	ļ	ļ

Reverse Arrhenius coefficients: $3.00E+11$ 1524 C5H10-2+OH=C2H5+C2H5CHO $1.00E+10$ 0 -4000 Reverse Arrhenius coefficients: $2.00E+13$ 1525 C5H10-2+OH=NC3H7+CH3CHO $2.00E+10$ 0 -4000 Reverse Arrhenius coefficients: $2.00E+13$ 1525 C5H10-2+O=C3H6+CH3CHO $1.00E+10$ 0 0 Reverse Arrhenius coefficients: $2.00E+13$ 1526 C5H10-2+O=C3H6+CH3CHO $1.00E+10$ 0 0 Reverse Arrhenius coefficients: $1.00E+12$ 1527 C5H10-1+O=>PC4H9+HCO $1.00E+11$ 0 0 1528 C5H10-1+O=>PC3H7+CH3CHO $1.00E+11$ 0 0 1529 C5H10-1+O=>NC3H7+CH3CHO $1.00E+11$ 0 0 1530 C5H10-1+H=C5H91-3+H2 $3.38E+05$ 2.4 207 Reverse Arrhenius coefficients: $3.10E+05$ 1531 C5H10-1+H=C5H91-4+H2	0 0 0 0 2.5 3.2 3	20400 20000 20000 81000 20320 11240
1524C5H10-2+OH=C2H5+C2H5CHO $1.00E+10$ 0 -4000 ReverseArrheniuscoefficients: $2.00E+13$ 1525C5H10-2+OH=NC3H7+CH3CHO $2.00E+10$ 0 -4000 ReverseArrheniuscoefficients: $2.00E+13$ 1526C5H10-2+O=C3H6+CH3CHO $1.00E+10$ 00ReverseArrheniuscoefficients: $1.00E+12$ 1527C5H10-1+O=>PC4H9+HCO $1.00E+11$ 001528C5H10-1+O=>PC4H9+HCO $1.00E+11$ 001529C5H10-1+O=>NC3H7+CH3CO $1.00E+11$ 001530C5H10-1+O=>NC3H7+CH3CHO $1.00E+11$ 001530C5H10-1+H=C5H91-3+H2 $3.38E+05$ 2.4 207 ReverseArrheniuscoefficients: $3.10E+05$ 1531C5H10-1+H=C5H91-4+H2 $1.30E+06$ 2.4 4471 ReverseArrheniuscoefficients: $2.78E+02$ 1532C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 ReverseArrheniuscoefficients: $2.19E+03$ 1532C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 ReverseArrheniuscoefficients: $2.19E+03$ 1532C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 ReverseArrheniuscoefficients: $2.19E+03$ 1532C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 ReverseArrheniuscoefficients: $2.19E+03$ 1533C5H10-1+G=C5H	0 0 0 2.5 3.2 3	20000 20000 81000 20320 11240
Reverse Arrhenius coefficients: $2.00E+13$ 1525 C5H10-2+OH=NC3H7+CH3CHO $2.00E+10$ 0 -4000 Reverse Arrhenius coefficients: $2.00E+13$ 1526 C5H10-2+O=C3H6+CH3CHO $1.00E+10$ 0 0 Reverse Arrhenius coefficients: $2.00E+13$ 1526 C5H10-2+O=C3H6+CH3CHO $1.00E+10$ 0 0 Reverse Arrhenius coefficients: $1.00E+12$ 1527 C5H10-1+O=>PC4H9+HCO $1.00E+11$ 0 0 1528 C5H10-1+O=>NC3H7+CH3CO $1.00E+11$ 0 0 1529 C5H10-1+O=>NC3H7+CH3CHO $1.00E+11$ 0 0 1530 C5H10-1+H=C5H91-3+H2 $3.38E+05$ 2.4 207 Reverse Arrhenius coefficients: $3.10E+05$ 1531 C5H10-1+H=C5H91-4+H2 $1.30E+06$ 2.4 4471 Reverse Arrhenius coefficients: $2.78E+02$ 1532 C5H10	0 0 0 2.5 3.2 3	20000 20000 81000 20320 11240
1525 C5H10-2+OH=NC3H7+CH3CHO 2.00E+10 0 -4000 Reverse Arrhenius coefficients: 2.00E+13 1526 C5H10-2+O=C3H6+CH3CHO $1.00E+10$ 0 0 Reverse Arrhenius coefficients: $1.00E+12$ 1527 C5H10-1+O=>PC4H9+HCO $1.00E+11$ 0 0 1528 C5H10-1+O=>PC4H9+HCO $1.00E+11$ 0 0 1529 C5H10-1+O=>NC3H7+CH3CO $1.00E+11$ 0 0 1529 C5H10-1+O=>NC3H7+CH3CHO $1.00E+11$ 0 0 1530 C5H10-1+H=C5H91-3+H2 $3.38E+05$ 2.4 207 Reverse Arrhenius coefficients: $3.10E+05$ 1531 C5H10-1+H=C5H91-3+H2 $1.30E+06$ 2.4 4471 Reverse Arrhenius coefficients: $2.78E+02$ 1532 C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 Reverse Arrhenius coefficients: $2.19E+03$ 1532 C5H10-1+H=C5H9	0 0 2.5 3.2 3	20000 81000 20320 11240
Reverse Arrhenius coefficients: 2.00E+13 1526 C5H10-2+O=C3H6+CH3CHO 1.00E+10 0 0 Reverse Arrhenius coefficients: 1.00E+12 1527 C5H10-1+O=>PC4H9+HCO 1.00E+11 0 0 1528 C5H10-1+O=>PC4H9+HCO 1.00E+11 0 0 1529 C5H10-1+O=>PC3H7+CH3CO 1.00E+11 0 0 1529 C5H10-1+O=>NC3H7+CH3CHO 1.00E+11 0 0 1529 C5H10-1+O=>NC3H7+CH3CHO 1.00E+11 0 0 1530 C5H10-1+H=C5H91-3+H2 3.38E+05 2.4 207 Reverse Arrhenius coefficients: 3.10E+05 1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius c	0 0 2.5 3.2 3	20000 81000 20320 11240
1526 C5H10-2+O=C3H6+CH3CHO 1.00E+10 0 0 Reverse Arrhenius coefficients: 1.00E+12 1527 C5H10-1+O=>PC4H9+HCO 1.00E+11 0 0 1528 C5H10-1+O=>PC4H9+HCO 1.00E+11 0 0 1529 C5H10-1+O=>NC3H7+CH3CO 1.00E+11 0 0 1529 C5H10-1+O=>NC3H7+CH3CHO 1.00E+11 0 0 1530 C5H10-1+H=>SNC3H7+CH3CHO 1.00E+11 0 0 1530 C5H10-1+H=C5H91-3+H2 3.38E+05 2.4 207 Reverse Arrhenius coefficients: 3.10E+05 1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.4 1210	0 2.5 3.2 3	81000 81000 20320 11240
Reverse Arrhenius coefficients: 1.00E+12 1527 C5H10-1+O=>PC4H9+HCO 1.00E+11 0 0 1528 C5H10-1+O=>PC4H9+HCO 1.00E+11 0 0 1529 C5H10-1+O=>NC3H7+CH3CO 1.00E+11 0 0 1529 C5H10-1+OH=>NC3H7+CH3CHO 1.00E+11 0 0 1530 C5H10-1+H=C5H91-3+H2 3.38E+05 2.4 207 Reverse Arrhenius coefficients: 3.10E+05 1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1533 C5H10-1+G=C5H91-5+H2 6.65E+05 2.4 1210	0	81000 20320 11240
1527 C5H10-1+O=>PC4H9+HCO $1.00E+11$ 0 0 1528 C5H10-1+O=>NC3H7+CH3CO $1.00E+11$ 0 0 1529 C5H10-1+OH=>NC3H7+CH3CHO $1.00E+11$ 0 0 1530 C5H10-1+H=C5H91-3+H2 $3.38E+05$ 2.4 207 Reverse Arrhenius coefficients: $3.10E+05$ 1531 C5H10-1+H=C5H91-4+H2 $1.30E+06$ 2.4 4471 Reverse Arrhenius coefficients: $2.78E+02$ 1532 C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 Reverse Arrhenius coefficients: $2.19E+03$ 1532 C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 Reverse Arrhenius coefficients: $2.19E+03$ 1533 C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.4 1210	2.5 3.2 3	20320
1528 C5H10-1+O=>NC3H7+CH3CO 1.00E+11 0 0 1529 C5H10-1+OH=>NC3H7+CH3CHO 1.00E+11 0 0 1530 C5H10-1+H=C5H91-3+H2 $3.38E+05$ 2.4 207 Reverse Arrhenius coefficients: $3.10E+05$ 1531 C5H10-1+H=C5H91-4+H2 $1.30E+06$ 2.4 4471 Reverse Arrhenius coefficients: $2.78E+02$ 1532 C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.5 6756 Reverse Arrhenius coefficients: $2.19E+03$ 1532 C5H10-1+H=C5H91-5+H2 $6.65E+05$ 2.4 1210	2.5 3.2 3	20320
1529 C5H10-1+OH=>NC3H7+CH3CHO 1.00E+11 0 0 1530 C5H10-1+H=C5H91-3+H2 3.38E+05 2.4 207 Reverse Arrhenius coefficients: 3.10E+05 1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1533 C5H10-1+Q=C5H91-3+QU 6.65E+05 2.4 1210	2.5 3.2 3	20320
1530 C5H10-1+H=C5H91-3+H2 3.38E+05 2.4 207 Reverse Arrhenius coefficients: 3.10E+05 1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1533 C5H10-1+Q=C5H91-3+QU 6.69E+05 2.4 1210	2.5 3.2 3	20320
Reverse Arrhenius coefficients: 3.10E+05 1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10-1+G5H91-5+H2 6.65E+05 2.4 1210	2.5 3.2 3	20320
1531 C5H10-1+H=C5H91-4+H2 1.30E+06 2.4 4471 Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10-1+Q=C5H91-2+QH 6.60E+05 2.4 1210	3.2	11240
Reverse Arrhenius coefficients: 2.78E+02 1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03	3.2	11240
1532 C5H10-1+H=C5H91-5+H2 6.65E+05 2.5 6756 Reverse Arrhenius coefficients: 2.19E+03 1532 C5H10_1+Q=C5H01_2+QH 6.60E+05 2.4 1210	3	
ReverseArrheniuscoefficients:2.19E+031522C51110.1+0=C51101.2+011C60E+052.41210	3	
1522 C5U10 1 C-C5U01 2 CU		11020
1555 C5H10-1+O-C5H91-5+OH 0.00E+05 2.4 1210		
Reverse Arrhenius coefficients: 2.66E+05	2.6	19230
1534 C5H10-1+O=C5H91-4+OH 5.51E+05 2.5 2830		
Reverse Arrhenius coefficients: 5.17E+01	3.2	7505
1535 C5H10-1+O=C5H91-5+OH 9.80E+05 2.4 4750		
Reverse Arrhenius coefficients: 1.42E+03	2.9	6915
1536 C5H10-1+OH=C5H91-3+H2O 2.76E+04 2.6 -1919		
Reverse Arrhenius coefficients: 1.10E+05	2.8	33350
1537 C5H10-1+OH=C5H91-4+H2O 4.67E+07 1.6 -35		
Reverse Arrhenius coefficients: 4.32E+04	2.4	21890
1538 C5H10-1+OH=C5H91-5+H2O 5.27E+09 1 1586		
Reverse Arrhenius coefficients: 7.52E+07	1.4	21000
1539 C5H10-1+CH3=C5H91-3+CH4 3.69E+00 3.3 4002		
Reverse Arrhenius coefficients: 8.84E+01	3.5	24590
1540 C5H10-1+CH3=C5H91-4+CH4 1.51E+00 3.5 5481		
Reverse Arrhenius coefficients: 8.43E-03	4.2	12730
1541 C5H10-1+CH3=C5H91-5+CH4 4.52E-01 3.6 7154		
Reverse Arrhenius coefficients: 3.89E-02	4.1	11890
1542 C5H10-1+O2=C5H91-3+HO2 2.20E+12 0 37220		
Reverse Arrhenius coefficients: 3.66E+10	0.5	-152
1543 C5H10-1+O2=C5H91-4+HO2 2.00E+13 0 49640		
Reverse Arrhenius coefficients: 7.76E+07	1.1	-1072
1544 C5H10-1+O2=C5H91-5+HO2 3.00E+13 0 52290		
Reverse Arrhenius coefficients: 1.80E+09	0.8	-932
1545 C5H10-1+HO2=C5H91-3+H2O2 4.82E+03 2.5 10530		
Reverse Arrhenius coefficients: 1.14E+05	2.4	14330
1546 C5H10-1+HO2=C5H91-4+H2O2 9.64E+03 2.6 13910		
Reverse Arrhenius coefficients: 5.29E+01	3	4372
1547 C5H10-1+HO2=C5H91-5+H2O2 2.38E+04 2.5 16490		
Reverse Arrhenius coefficients: 2.02E+03	26	4446

1548	C5H10-1+CH3O2=C5H91-3+CH3O2H	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	2.37E+05	2.2	11310
1549	C5H10-1+CH3O2=C5H91-4+CH3O2H	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.10E+02	2.9	1352
1550	C5H10-1+CH3O2=C5H91-5+CH3O2H	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	4.20E+03	2.5	1426
1551	C5H10-1+CH3O=C5H91-3+CH3OH	4.00E+01	2.9	8609		
	Reverse	Arrhenius	coefficients:	1.77E+01	3.1	26990
1552	C5H10-1+CH3O=C5H91-4+CH3OH	1.45E+11	0	4571		
	Reverse	Arrhenius	coefficients:	1.49E+07	0.8	9611
1553	C5H10-1+CH3O=C5H91-5+CH3OH	2.17E+11	0	6458		
	Reverse	Arrhenius	coefficients:	3.45E+08	0.5	8988
1554	C5H10-2+H=C5H91-3+H2	1.73E+05	2.5	2492		
	Reverse	Arrhenius	coefficients:	4.56E+06	2.1	19750
1555	C5H10-2+H=C5H92-4+H2	3.38E+05	2.4	207		
	Reverse	Arrhenius	coefficients:	4.36E+06	2.1	20330
1556	C5H10-2+H=C5H92-5+H2	6.65E+05	2.5	6756		
	Reverse	Arrhenius	coefficients:	3.08E+04	2.5	11030
1557	C5H10-2+O=C5H91-3+OH	4.41E+05	2.4	3150		
	Reverse	Arrhenius	coefficients:	5.11E+06	2	18310
1558	C5H10-2+O=C5H92-4+OH	9.90E+05	2.4	1210		
	Reverse	Arrhenius	coefficients:	5.62E+06	2.2	19240
1559	C5H10-2+O=C5H92-5+OH	9.80E+05	2.4	4750		
	Reverse	Arrhenius	coefficients:	2.00E+04	2.4	6931
1560	C5H10-2+OH=C5H91-3+H2O	3.12E+06	2	-298		
	Reverse	Arrhenius	coefficients:	3.56E+08	1.6	32110
1561	C5H10-2+OH=C5H92-4+H2O	2.76E+04	2.6	-1919		
	Reverse	Arrhenius	coefficients:	1.55E+06	2.4	33360
1562	C5H10-2+OH=C5H92-5+H2O	5.27E+09	1	1586		
	Reverse	Arrhenius	coefficients:	1.06E+09	1	21020
1563	C5H10-2+CH3=C5H91-3+CH4	2.21E+00	3.5	5675		
	Reverse	Arrhenius	coefficients:	1.52E+03	3.1	23410
1564	C5H10-2+CH3=C5H92-4+CH4	3.69E+00	3.3	4002		
	Reverse	Arrhenius	coefficients:	1.24E+03	3	24610
1565	C5H10-2+CH3=C5H92-5+CH4	4.52E-01	3.6	7154		
	Reverse	Arrhenius	coefficients:	5.48E-01	3.6	11910
1566	C5H10-2+O2=C5H91-3+HO2	3.30E+12	0	39900		
	Reverse	Arrhenius	coefficients:	1.58E+12	-0.1	-326
1567	C5H10-2+O2=C5H92-4+HO2	2.20E+12	0	37220		
	Reverse	Arrhenius	coefficients:	5.16E+11	0.1	-136
1568	C5H10-2+O2=C5H92-5+HO2	3.00E+13	0	52290		
	Reverse	Arrhenius	coefficients:	2.53E+10	0.3	-916
1569	C5H10-2+HO2=C5H91-3+H2O2	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	6.53E+06	1.8	14860
1570	C5H10-2+HO2=C5H92-4+H2O2	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	1.60E+06	2	14350

1571	C5H10-2+HO2=C5H92-5+H2O2	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	2.84E+04	2.2	4462
1572	C5H10-2+CH3O2=C5H91-3+CH3O2H	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.36E+07	1.7	11840
1573	C5H10-2+CH3O2=C5H92-4+CH3O2H	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	3.33E+06	1.8	11330
1574	C5H10-2+CH3O2=C5H92-5+CH3O2H	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	5.91E+04	2	1442
1575	C5H10-2+CH3O=C5H91-3+CH3OH	9.00E+01	3	11990		
	Reverse	Arrhenius	coefficients:	1.14E+03	2.5	27510
1576	C5H10-2+CH3O=C5H92-4+CH3OH	4.00E+01	2.9	8609		
	Reverse	Arrhenius	coefficients:	2.49E+02	2.7	27010
1577	C5H10-2+CH3O=C5H92-5+CH3OH	2.17E+11	0	6458		
	Reverse	Arrhenius	coefficients:	4.85E+09	0	9004
1578	C5H91-3+HO2=C5H9O1-3+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	6.09E+15	-1.1	15720
1579	C5H91-3+CH3O2=C5H9O1-3+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	5.95E+17	-1.6	20480
1580	C5H91-3+C2H5O2=C5H9O1-3+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	3.89E+14	-0.7	18330
1581	C5H92-4+HO2=C5H9O2-4+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	7.03E+15	-1.2	15890
1582	C5H92-4+CH3O2=C5H9O2-4+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	6.86E+17	-1.8	20650
1583	C5H92-4+C2H5O2=C5H9O2-4+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	4.49E+14	-0.9	18490
1584	C5H11-2=C3H6+C2H5	2.00E+13	0	29100		
	Reverse	Arrhenius	coefficients:	4.00E+10	0	7500
1585	C5H11-2=C5H10-1+H	5.00E+12	0	40400		
	Reverse	Arrhenius	coefficients:	7.90E+12	0	2900
1586	C5H11-2=C5H10-2+H	5.00E+12	0	37900		
	Reverse	Arrhenius	coefficients:	2.50E+12	0	1200
1587	NC4H9CHO+O2=NC4H9CO+HO2	2.00E+13	0.5	42200		
	Reverse	Arrhenius	coefficients:	1.00E+07	0	40000
1588	NC4H9CHO+OH=NC4H9CO+H2O	2.69E+10	0.8	-340		
	Reverse	Arrhenius	coefficients:	2.14E+10	0.7	31240
1589	NC4H9CHO+H=NC4H9CO+H2	4.00E+13	0	4200		
	Reverse	Arrhenius	coefficients:	1.80E+13	0	24000
1590	NC4H9CHO+O=NC4H9CO+OH	5.00E+12	0	1790		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	19000
1591	NC4H9CHO+HO2=NC4H9CO+H2O2	2.80E+12	0	13600		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	10000
1592	NC4H9CHO+CH3=NC4H9CO+CH4	1.70E+12	0	8440		
	Reverse	Arrhenius	coefficients:	1.50E+13	0	28000
1593	NC4H9CHO+CH3O=NC4H9CO+CH3OH	1.15E+11	0	1280		
1				2 00E ± 11	0	10000

1594	NC4H9CHO+CH3O2=NC4H9CO+CH3O2H	1.00E+12	0	9500		
	Reverse	Arrhenius	coefficients:	2.50E+10	0	10000
1595	NC4H9CHO+OH=C4H8CHO-1+H2O	5.27E+09	1	1586		
	Reverse	Arrhenius	coefficients:	1.23E+09	0.9	21040
1596	NC4H9CHO+OH=C4H8CHO-2+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.84E+05	1.9	21920
1597	NC4H9CHO+OH=C4H8CHO-3+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.84E+05	1.9	21920
1598	NC4H9CHO+OH=C4H8CHO-4+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	1.20E+09	1.3	28870
1599	NC4H9CO=PC4H9+CO	1.00E+11	0	9600		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	0
1600	NC4H9CHO+HO2=C4H8CHO-1+H2O2	2.76E+04	2.5	16480		
	Reverse	Arrhenius	coefficients:	3.83E+04	2.2	4471
1601	NC4H9CHO+HO2=C4H8CHO-2+H2O2	1.48E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.28E+03	2.6	4399
1602	NC4H9CHO+HO2=C4H8CHO-3+H2O2	1.48E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.28E+03	2.6	4399
1603	NC4H9CHO+HO2=C4H8CHO-4+H2O2	2.95E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	4.51E+06	2	11350
1604	NC4H9CHO+CH3O2=C4H8CHO-1+CH3O2H	6.03E+12	0	19380		
	Reverse	Arrhenius	coefficients:	3.44E+13	-0.5	6646
1605	NC4H9CHO+CH3O2=C4H8CHO-2+CH3O2H	1.99E+12	0	17050		
	Reverse	Arrhenius	coefficients:	7.11E+11	-0.2	6821
1606	NC4H9CHO+CH3O2=C4H8CHO-3+CH3O2H	1.99E+12	0	17050		
	Reverse	Arrhenius	coefficients:	7.11E+11	-0.2	6821
1607	NC4H9CHO+CH3O2=C4H8CHO-4+CH3O2H	3.98E+12	0	17050		
	Reverse	Arrhenius	coefficients:	2.50E+15	-0.8	13770
1608	C4H8CHO-1=C2H4+CH2CH2CHO	5.98E+18	-1.6	30430		
	Reverse	Arrhenius	coefficients:	2.50E+11	0	7800
1609	C4H8CHO-2=C3H6+CH2CHO	2.98E+14	-0.8	23320		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
1610	C4H8CHO-3=C4H8-1+HCO	4.80E+14	-0.7	24350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
1611	C4H8CHO-3=AC3H5CHO+CH3	3.64E+13	-0.4	30330		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
1612	C4H8CHO-4=C2H3CHO+C2H5	1.86E+18	-1.3	30830		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
1613	C2H5COC2H5+OH=C2H5COC2H4P+H2O	6.34E+10	1	1586		
	Reverse	Arrhenius	coefficients:	7.18E+09	0.9	21030
1614	C2H5COC2H5+HO2=C2H5COC2H4P+H2O2	2.86E+05	2.5	16490		
	Reverse	Arrhenius	coefficients:	1.92E+05	2.2	4472
1615	C2H5COC2H5+O2=C2H5COC2H4P+HO2	3.60E+14	0	52290		
	Reverse	Arrhenius	coefficients:	1.71E+11	0.3	-902
1616	C2H5COC2H5+H=C2H5COC2H4P+H2	7.99E+06	2.5	6756		
	Reverse	Arrhenius	coefficients:	2.09E+05	2.5	11050

1617	C2H5COC2H5+C2H3=C2H5COC2H4P+C2H4	1.00E+12	0	10400		
	Reverse	Arrhenius	coefficients:	3.85E+08	0.8	14040
1618	C2H5COC2H5+C2H5=C2H5COC2H4P+C2H6	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	1.07E+13	-0.6	14000
1619	C2H5COC2H5+CH3O=C2H5COC2H4P+CH3O H	4 34F+11	0	6458		
1015	Reverse	Arrhenius	coefficients:	7 18E+08	0.4	9013
1620	C2H5COC2H5+CH3O2=C2H5COC2H4P+CH3O 2H	2.86E+05	2.5	16490	0.1	7015
	Reverse	Arrhenius	coefficients:	3.87E+05	2	1244
1621	C2H5COC2H4P=C2H5CO+C2H4	1.77E+17	-1.5	29540		
	Reverse	Arrhenius	coefficients:	8.00E+10	0	11300
1622	C2H5COC2H3+OH=C2H5COCH2+CH2O	1.00E+10	0	0		
	Reverse	Arrhenius	coefficients:	1.67E+11	-0.4	18220
1623	C2H5COC2H3+OH=PC2H4COC2H3+H2O	7.55E+09	1	1586		
	Reverse	Arrhenius	coefficients:	1.28E+08	2.5	20210
1624	C2H5COC2H3+HO2=C2H5CO+CH2CHO+OH	6.03E+09	0	7949		
	Reverse	Arrhenius	coefficients:	1.00E+00	0	0
1625	C2H5COC2H3+HO2=PC2H4COC2H3+H2O2	2.38E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	2.40E+03	3.8	3652
1626	C2H5COC2H3+CH3O2=C2H5CO+CH2CHO+C H3O	3.97E+11	0	17050		
	Reverse	Arrhenius	coefficients:	1.00E+00	0	0
1627	C2H5COC2H3+CH3O2=PC2H4COC2H3+CH3O 2H	3.01E+12	0	19380		
	Reverse	Arrhenius	coefficients:	1.25E+12	1.1	5822
1628	PC2H4COC2H3=C2H3CO+C2H4	5.26E+14	0.4	21460		
	Reverse	Arrhenius	coefficients:	8.00E+10	0	11300
1629	C5H9O2-4=SC3H5CHO+CH3	5.98E+15	-1.1	9941		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
1630	C5H9O2-4=CH3CHO+C3H5-S	1.07E+22	-2.7	29650		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
1631	IC4H7-I1=C3H4-P+CH3	2.10E+12	0.1	29950		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
1632	C5H81-3+OH=CH2O+C4H71-3	1.00E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	15000
1633	C5H81-3+OH=C2H3CHO+C2H5	1.00E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	15000
1634	C5H81-3+OH=CH3CHO+C3H5-S	1.00E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	15000
1635	C7H16-24=XC7H15+H	6.73E+16	-0.4	101200		
	Reverse	Arrhenius	coefficients:	3.61E+13	0	0
1636	С7Н16-24=ҮС7Н15+Н	2.63E+18	-0.9	96690		
	Reverse	Arrhenius	coefficients:	3.61E+13	0	0
1637	C7H16-24=ZC7H15+H	9.93E+17	-0.7	98710		
	Reverse	Arrhenius	coefficients:	3.61E+13	0	0
1638	C7H16-24=DC6H13+CH3	2.33E+24	-2.2	89140		
	Reverse	Arrhenius	coefficients:	4.00E+12	0	-596

1639	C7H16-24=IC3H7+IC4H9	2.40E+25	-2.6	88320		
	Reverse	Arrhenius	coefficients:	4.00E+12	0	-596
1640	C7H16-24+H=XC7H15+H2	3.76E+05	2.8	6280		
	Reverse	Arrhenius	coefficients:	8.05E+01	3.4	8612
1641	C7H16-24+H=YC7H15+H2	1.20E+06	2.4	2583		
	Reverse	Arrhenius	coefficients:	6.60E+00	3.6	9453
1642	C7H16-24+H=ZC7H15+H2	1.30E+06	2.4	4471		
	Reverse	Arrhenius	coefficients:	1.89E+01	3.4	9324
1643	C7H16-24+CH3=XC7H15+CH4	1.81E+00	3.6	7154		
	Reverse	Arrhenius	coefficients:	3.54E-01	3.8	11030
1644	C7H16-24+CH3=YC7H15+CH4	1.20E-09	6.4	893		
	Reverse	Arrhenius	coefficients:	6.01E-12	7.1	9303
1645	C7H16-24+CH3=ZC7H15+CH4	8.40E+04	2.1	7574		
	Reverse	Arrhenius	coefficients:	1.11E+03	2.7	13970
1646	C7H16-24+C2H5=XC7H15+C2H6	2.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
1647	C7H16-24+C2H5=YC7H15+C2H6	2.00E+11	0	7900		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	21000
1648	C7H16-24+C2H5=ZC7H15+C2H6	5.00E+10	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
1649	C7H16-24+O=XC7H15+OH	5.39E+07	2	5136		
	Reverse	Arrhenius	coefficients:	6.06E+03	2.6	6056
1650	C7H16-24+O=YC7H15+OH	7.94E+05	2.4	1150		
	Reverse	Arrhenius	coefficients:	2.28E+00	3.5	6608
1651	C7H16-24+O=ZC7H15+OH	5.95E+05	2.4	2846		
	Reverse	Arrhenius	coefficients:	4.53E+00	3.4	6287
1652	C7H16-24+OH=XC7H15+H2O	2.11E+10	1	1586		
	Reverse	Arrhenius	coefficients:	4.80E+07	1.5	18810
1653	C7H16-24+OH=YC7H15+H2O	1.15E+10	0.5	63		
	Reverse	Arrhenius	coefficients:	1.17E+11	0.5	21600
1654	C7H16-24+OH=ZC7H15+H2O	4.68E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.40E+05	1.9	21910
1655	C7H16-24+HO2=XC7H15+H2O2	1.62E+05	2.5	16690		
	Reverse	Arrhenius	coefficients:	2.01E+04	2.4	3022
1656	C7H16-24+HO2=YC7H15+H2O2	1.50E+04	2.5	12260		
	Reverse	Arrhenius	coefficients:	4.76E+01	3	3129
1657	C7H16-24+HO2=ZC7H15+H2O2	5.88E+04	2.5	14860		
	Reverse	Arrhenius	coefficients:	4.94E+02	2.8	3715
1658	C7H16-24+CH3O=XC7H15+CH3OH	6.40E+11	0	7000		
	Reverse	Arrhenius	coefficients:	1.20E+10	0	9200
1659	C7H16-24+CH3O=YC7H15+CH3OH	3.80E+10	0	2800		
	Reverse	Arrhenius	coefficients:	1.00E+10	0	5200
1660	C7H16-24+CH3O=ZC7H15+CH3OH	1.10E+11	0	5000		
	Reverse	Arrhenius	coefficients:	8.90E+09	0	7200
1661	C7H16-24+O2=XC7H15+HO2	8.40E+13	0	52800		
	Reverse	Arrhenius	coefficients:	9.43E+10	0.3	448

1662	C7H16-24+O2=YC7H15+HO2	1.40E+13	0	48000		
	Reverse	Arrhenius	coefficients:	4.02E+08	0.8	186
1663	C7H16-24+O2=ZC7H15+HO2	1.40E+13	0	50160		
	Reverse	Arrhenius	coefficients:	1.07E+09	0.6	319
1664	C7H16-24+C2H3=XC7H15+C2H4	2.00E+12	0	18000		
	Reverse	Arrhenius	coefficients:	2.60E+12	0	25400
1665	C7H16-24+C2H3=YC7H15+C2H4	4.00E+11	0	14300		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	23000
1666	C7H16-24+C2H3=ZC7H15+C2H4	4.00E+11	0	16800		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	24200
1667	C7H16-24+CH3O2=XC7H15+CH3O2H	1.62E+05	2.5	16690		
	Reverse	Arrhenius	coefficients:	3.90E+05	2	1427
1668	C7H16-24+CH3O2=YC7H15+CH3O2H	1.50E+04	2.5	12260		
	Reverse	Arrhenius	coefficients:	9.26E+02	2.5	1534
1669	C7H16-24+CH3O2=ZC7H15+CH3O2H	5.88E+04	2.5	14860		
	Reverse	Arrhenius	coefficients:	9.62E+03	2.3	2120
1670	C7H16-24+XC7H15=YC7H15+C7H16-24	3.36E+13	0	7900		
	Reverse	Arrhenius	coefficients:	5.00E+12	0	12300
1671	C7H16-24+XC7H15=ZC7H15+C7H16-24	5.60E+12	0	10400		
	Reverse	Arrhenius	coefficients:	1.60E+11	0	12300
1672	C7H16-24+YC7H15=ZC7H15+C7H16-24	5.60E+12	0	10400		
	Reverse	Arrhenius	coefficients:	3.30E+11	0	7900
1673	C7H16-24+O2CHO=XC7H15+HO2CHO	3.36E+13	0	20440		
	Reverse	Arrhenius	coefficients:	2.29E+03	2.3	3057
1674	С7Н16-24+О2СНО=ҮС7Н15+НО2СНО	5.60E+12	0	16010		
	Reverse	Arrhenius	coefficients:	9.78E+00	2.8	3173
1675	C7H16-24+O2CHO=ZC7H15+HO2CHO	5.60E+12	0	17690		
	Reverse	Arrhenius	coefficients:	2.59E+01	2.6	2829
1676	XC7H15=C3H6+IC4H9	8.43E+20	-2.2	32420		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
1677	XC7H15=DC6H12+CH3	2.01E+19	-1.8	33330		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
1678	YC7H15=>IC3H7+IC4H8	3.64E+21	-2.3	33260		
1679	XC7H14+H=>C3H6+IC4H7+H2	1.98E+06	2.5	6760		
1680	XC7H14+CH3=>C3H6+IC4H7+CH4	9.00E+02	3.6	7150		
1681	XC7H14=>IC3H7+IC4H7	2.50E+16	0	71000		
1682	XC7H14+H=>XC7H15	1.00E+13	0	2900		
1683	XC7H14+H=>YC7H15	1.00E+13	0	1200		
1684	AC8H17=>XC7H14+CH3	3.38E+21	-2.4	29640		
1685	YC7H14+H=>YC7H15	1.00E+13	0	2900		
1686	YC7H14+H=>C3H6+IC4H7+H2	1.98E+06	2.5	6760		
1687	YC7H14+CH3=>C3H6+IC4H7+CH4	9.00E+02	3.6	7150		
1688	BC8H17=>YC7H14+CH3	1.38E+21	-2.2	29550		
1689	YC7H14=>CH3+CC6H11-B	2.50E+16	0	71000		
1690	ZC7H15=CC6H12+CH3	2.91E+18	-1.6	33250		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200

1691	ZC7H15=YC7H14+H	8.20E+13	-0.1	34370		
	Reverse	Arrhenius	coefficients:	2.60E+13	0	2500
1692	XC7H15+O2=XC7H14+HO2	1.50E-29	0	2000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1693	YC7H15+O2=XC7H14+HO2	6.00E-29	0	5020		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1694	YC7H15+O2=YC7H14+HO2	3.00E-29	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1695	ZC7H15+O2=YC7H14+HO2	3.00E-29	0	2000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1696	XC7H15=YC7H15	3.71E+11	0	23720		
	Reverse	Arrhenius	coefficients:	9.49E+09	0.5	28260
1697	YC7H15+HO2=YC7H15O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	2.41E+18	-1.3	28400
1698	ZC7H15+HO2=ZC7H15O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.78E+17	-1.2	28100
1699	YC7H15+CH3O2=YC7H15O+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.51E+17	-1	32640
1700	ZC7H15+CH3O2=ZC7H15O+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	4.86E+16	-0.9	32340
1701	XC7H14+OH=>CH2O+DC6H13	2.00E+10	0	-4000		
1702	XC7H14+OH=>CH3COCH3+IC4H9	2.00E+10	0	-4000		
1703	YC7H14+OH=>CH3COCH3+IC4H9	2.00E+10	0	-4000		
1704	XC7H14+O=>CH2O+CC6H12	2.00E+10	0	-1050		
1705	YC7H14+O=>CH3COCH3+IC4H8	2.00E+10	0	-1050		
1706	XC7H14+OH=XC7H13-X1+H2O	3.12E+06	2	-298		
	Reverse	Arrhenius	coefficients:	5.50E+08	1.4	32500
1707	XC7H14+OH=XC7H13-Z+H2O	2.76E+04	2.6	-1919		
	Reverse	Arrhenius	coefficients:	1.57E+06	2.4	33400
1708	XC7H14+OH=XC7H13-Y2+H2O	5.73E+10	0.5	63		
	Reverse	Arrhenius	coefficients:	1.95E+08	1.1	23820
1709	XC7H14+OH=XC7H13-X2+H2O	1.05E+10	1	1586		
	Reverse	Arrhenius	coefficients:	2.36E+09	0.9	21060
1710	XC7H14+HO2=XC7H13-X1+H2O2	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.01E+07	1.7	15240
1711	XC7H14+HO2=XC7H13-Z+H2O2	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	1.62E+06	2	14380
1712	XC7H14+HO2=XC7H13-Y2+H2O2	3.61E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	7.30E+01	2.8	2824
1713	XC7H14+HO2=XC7H13-X2+H2O2	4.76E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	6.33E+04	2.2	4506
1714	XC7H14+CH3O2=XC7H13-X1+CH3O2H	9.64E+03	2.6	13910		
	Reverse	Arrhenius	coefficients:	2.10E+07	1.5	12220
1715	XC7H14+CH3O2=XC7H13-Z+CH3O2H	4.82E+03	2.5	10530		
	Reverse	Arrhenius	coefficients:	3.38E+06	1.8	11360
1716	XC7H14+CH3O2=XC7H13-Y2+CH3O2H	3.61E+03	2.5	10530		

	Reverse	Arrhenius	coefficients:	1.52E+02	2.6	-196
1717	XC7H14+CH3O2=XC7H13-X2+CH3O2H	4.76E+04	2.5	16490		
	Reverse	Arrhenius	coefficients:	1.32E+05	2	1486
1718	XC7H14+CH3O=XC7H13-X1+CH3OH	9.00E+01	3	11990		
	Reverse	Arrhenius	coefficients:	1.77E+03	2.4	27900
1719	XC7H14+CH3O=XC7H13-Z+CH3OH	4.00E+01	2.9	8609		
	Reverse	Arrhenius	coefficients:	2.52E+02	2.7	27040
1720	XC7H14+CH3O=XC7H13-Y2+CH3OH	2.29E+10	0	2873		
	Reverse	Arrhenius	coefficients:	8.69E+06	0.6	9743
1721	XC7H14+CH3O=XC7H13-X2+CH3OH	4.34E+11	0	6458		
	Reverse	Arrhenius	coefficients:	1.08E+10	0	9048
1722	YC7H14+OH=XC7H13-Z+H2O	6.24E+06	2	-298		
	Reverse	Arrhenius	coefficients:	7.61E+08	1.6	32420
1723	YC7H14+OH=YC7H13-Y2+H2O	6.14E+02	3.2	-3500		
	Reverse	Arrhenius	coefficients:	1.84E+04	3.1	33940
1724	YC7H14+OH=YC7H13-X2+H2O	1.05E+10	1	1586		
	Reverse	Arrhenius	coefficients:	2.12E+09	1	21060
1725	XC7H13-Z+HO2=XC7H13O-Z+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	5.41E+14	-0.7	15380
1726	XC7H13-Z+CH3O2=XC7H13O-Z+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	5.28E+16	-1.3	20140
1727	XC7H13-Z+C2H5O2=XC7H13O-Z+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	3.46E+13	-0.4	17980
1728	YC7H13-Y2+HO2=YC7H13O-Y2+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	2.11E+15	-1	17000
1729	YC7H13-Y2+CH3O2=YC7H13O-Y2+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	2.06E+17	-1.6	21760
1730	YC7H13-Y2+C2H5O2=YC7H13O-Y2+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.35E+14	-0.6	19610
1731	YC7H13-X2=C3H6+IC4H7-I1	1.23E+18	-1.4	43840		
	Reverse	Arrhenius	coefficients:	7.50E+10	0	9200
1732	ХС7Н13О-Z=IC3H7CHO+C3H5-Т	7.52E+21	-2.4	30190		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1733	YC7H13O-Y2=CH3COCH3+IC4H7-I1	1.31E+18	-1.3	29420		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1734	YC7H15O2=YC7H15+O2	3.41E+23	-2.4	37210		
	Reverse	Arrhenius	coefficients:	3.00E+12	0	0
1735	ZC7H15O2=ZC7H15+O2	2.97E+22	-2.2	37940		
	Reverse	Arrhenius	coefficients:	2.25E+12	0	0
1736	YC7H15+YC7H15O2=2YC7H15O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	5.36E+16	-1	32910
1737	YC7H15+ZC7H15O2=YC7H15O+ZC7H15O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.49E+17	-1.1	31890
1738	ZC7H15+YC7H15O2=ZC7H15O+YC7H15O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.73E+16	-0.8	32620
1739	ZC7H15+ZC7H15O2=2ZC7H15O	7.00E+12	0	-1000		
			-		1	1

	Reverse	Arrhenius	coefficients:	4.79E+16	-0.9	31600
1740	YC7H15O2+CH3O2=>YC7H15O+CH3O+O2	1.40E+16	-1.6	1860		
1741	ZC7H15O2+CH3O2=>ZC7H15O+CH3O+O2	1.40E+16	-1.6	1860		
1742	2YC7H15O2=>O2+2YC7H15O	1.40E+16	-1.6	1860		
1742	YC7H15O2+ZC7H15O2=>YC7H15O+ZC7H15O	1.40E+16	1.6	1960		
1743	+02 27C7H15O2->O2+27C7H15O	1.40E+16	-1.0	1860		
1744	VC7H150-IC4H0+CH3C0CH3	8 10E+23	-1.0	18020		
1/45	Reverse	Arrhenius	-2.9	1 00E+11	0	11900
1746	7C7H150=IC3H7+IC3H7CH0	2 63E+24	-3	21010	0	11700
1740	Reverse	Arrhenius	coefficients:	1 00E+11	0	11900
1747	VC7H15O2=VC7H14OOH-X1	6 00E+11	0	29400	0	11900
1/4/	Reverse	Arrhenius	coefficients	1 46E+12	-0.5	13940
1748	VC7H15O2=VC7H14OOH-7	2 00F+11	0	26850	-0.5	13740
1740	Reverse	Arrhenius	coefficients	2 11E+10	-0.1	13840
1749	YC7H15O2=YC7H14OOH-Y2	1 25E+10	0	19100	0.1	15010
1715	Reverse	Arrhenius	coefficients:	2.79E+08	0.1	7940
1750	YC7H15O2=YC7H14OOH-X2	9 38E+09	0	22350	0.1	1,510
1750	Reverse	Arrhenius	coefficients:	2.28E+10	-0.5	6890
1751	ZC7H15O2=ZC7H14OOH-Y	2.00E+11	0	24100		
	Reverse	Arrhenius	coefficients:	8.11E+09	0	12990
1752	YC7H15O2=XC7H14+HO2	1.01E+43	-9.4	41490		
	Reverse	Arrhenius	coefficients:	3.39E+32	-7.3	16660
1753	YC7H15O2=YC7H14+HO2	5.04E+38	-8.1	40490		
	Reverse	Arrhenius	coefficients:	7.82E+27	-5.8	18260
1754	ZC7H15O2=YC7H14+HO2	9.06E+35	-7.2	39490		
	Reverse	Arrhenius	coefficients:	4.56E+25	-4.9	18550
1755	YC7H14OOH-Y2=>Y-YC7H14O+OH	7.50E+10	0	15250		
1756	YC7H14OOH-X2=>X-Y2C7H14O+OH	9.38E+09	0	7000		
1757	YC7H14OOH-X1=XC7H14+HO2	4.19E+22	-2.7	21270		
	Reverse	Arrhenius	coefficients:	5.75E+11	0	11900
1758	YC7H14OOH-Z=YC7H14+HO2	9.83E+20	-2.4	18730		
	Reverse	Arrhenius	coefficients:	1.44E+11	0	9512
1759	ZC7H14OOH-Y=YC7H14+HO2	1.16E+20	-2.3	19340		
	Reverse	Arrhenius	coefficients:	1.44E+11	0	9512
1760	YC7H14OOH-Y2=>OH+CH3COCH3+IC4H8	5.00E+13	0	25500		
1761	YC7H14OOH-X1O2=YC7H14OOH-X1+O2	1.61E+20	-1.6	35710		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
1762	YC7H14OOH-ZO2=YC7H14OOH-Z+O2	2.56E+22	-2.3	38020		
L	Reverse	Arrhenius	coefficients:	2.25E+12	0	0
1763	YC7H14OOH-Y2O2=YC7H14OOH-Y2+O2	1.20E+24	-2.5	37480		
L	Reverse	Arrhenius	coefficients:	3.00E+12	0	0
1764	YC7H14OOH-X2O2=YC7H14OOH-X2+O2	1.61E+20	-1.6	35710		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
1765	X-Y2C7H14O+OH=>IC4H8+CH3CHCHO+H2O	2.50E+12	0	0		
1766	Y-YC7H14O+OH=>CH3COCH3+IC4H7+H2O	2.50E+12	0	0		
1767	X-Y2C7H14O+OH=>CH3COCH3+IC4H7+H2O	2.50E+12	0	0		
------	---	-----------	---------------	----------	-----	-------
17(0	Y-YC7H14O+OH=>CH3COCH3+IC4H7-	2.505+12	0	0		
1/68	11+H2O X-	2.50E+12	0	0		
1769	Y2C7H14O+HO2=>IC4H8+CH3CHCHO+H2O2	5.00E+12	0	17700		
1770	YC7H14O+HO2=>CH3COCH3+IC4H7+H2O2	5.00E+12	0	17700		
1771	X- Y2C7H14O+HO2=>CH3COCH3+IC4H7+H2O2	5.00E+12	0	17700		
1772	Y-YC7H14O+HO2=>CH3COCH3+IC4H7- I1+H2O2	5.00E+12	0	17700		
1773	XC7H14OH=XC7H14+OH	6.82E+13	-0.3	28150		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	-1042
1774	XO2C7H14OH=XC7H14OH+O2	2.26E+22	-2.2	37130		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	0
1775	XO2C7H14OH=>IC4H9COCH3+CH2O+OH	2.50E+10	0	18860		
1776	YC7H14OH=YC7H14+OH	1.91E+16	-0.9	30050		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	-1042
1777	YO2C7H14OH=YC7H14OH+O2	4.84E+21	-2.1	37100		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	0
1778	YO2C7H14OH=>IC3H7CHO+CH3COCH3+OH	2.50E+10	0	18860		
1779	NEOC5H12+H=NEOC5H11+H2	9.79E+05	2.8	8147		
	Reverse	Arrhenius	coefficients:	4.42E-01	4	9641
1780	NEOC5H12+O=NEOC5H11+OH	1.14E+04	3	3123		
	Reverse	Arrhenius	coefficients:	2.67E-03	4.2	3205
1781	NEOC5H12+OH=NEOC5H11+H2O	3.16E+07	1.8	298.1		
	Reverse	Arrhenius	coefficients:	1.51E+02	2.9	16680
1782	NEOC5H12+CH3=NEOC5H11+CH4	5.68E-14	8.1	4150		
	Reverse	Arrhenius	coefficients:	2.34E-17	8.8	7184
1783	NEOC5H12+HO2=NEOC5H11+H2O2	8.16E+01	3.6	17160		
	Reverse	Arrhenius	coefficients:	2.13E-02	4.1	2654
1784	NEOC5H12+CH3O=NEOC5H11+CH3OH	6.40E+11	0	7000		
	Reverse	Arrhenius	coefficients:	1.20E+10	0	9200
1785	NEOC5H12+O2=NEOC5H11+HO2	4.95E+13	0	49000		
	Reverse	Arrhenius	coefficients:	1.17E+08	0.9	-4195
1786	NEOC5H12+C2H5=NEOC5H11+C2H6	2.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
1787	NEOC5H12+C2H3=NEOC5H11+C2H4	2.00E+12	0	18000		
	Reverse	Arrhenius	coefficients:	2.60E+12	0	25400
1788	NEOC5H12+O2CHO=NEOC5H11+HO2CHO	7.20E+04	2.5	16680		
	Reverse	Arrhenius	coefficients:	1.08E+03	2.5	3125
1789	NEOC5H12+CH3O2=NEOC5H11+CH3O2H	8.16E+01	3.6	17160		
	Reverse	Arrhenius	coefficients:	4.15E-01	3.7	1059
1790	IC4H6OH+NEOC5H12=IC4H7OH+NEOC5H11	9.40E+02	3.3	19840		
	Reverse	Arrhenius	coefficients:	5.08E-01	3.7	7668
1791	IC4H7O+NEOC5H12=IC4H7OH+NEOC5H11	5.40E+11	0	4000		
	Reverse	Arrhenius	coefficients:	1.00E+10	0	9000
1792	TC3H6CHO+NEOC5H12=IC3H7CHO+NEOC5 H11	9.40E+02	3.3	19840		

	Reverse	Arrhenius	coefficients:	7.16E+01	3.2	9819
1793	NEOC5H11=IC4H8+CH3	8.47E+17	-1.1	32930		
	Reverse	Arrhenius	coefficients:	1.30E+03	2.5	8520
1794	NEOC5H11+HO2=NEOC5H11O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.45E+11	0.8	24900
1795	NEOC5H11+CH3O2=NEOC5H11O+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	9.05E+09	1.1	29140
1796	NEOC5H11O2=NEOC5H11+O2	9.75E+20	-2.4	34530		
	Reverse	Arrhenius	coefficients:	1.99E+17	-2.1	0
	Declared	duplicate	reaction			
1797	NEOC5H11O2+NEOC5H12=NEOC5H11O2H+N EOC5H11	2.42E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1798	NEOC5H11+NEOC5H11O2=2NEOC5H11O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	4.47E+09	1.1	28610
1799	NEOC5H11O2+HO2=NEOC5H11O2H+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	3.84E+13	-0.8	33620
1800	NEOC5H11O2+H2O2=NEOC5H11O2H+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
1801	NEOC5H11O2+CH3O2=>NEOC5H11O+CH3O+	1 40E+16	-1.6	1860		
1802	2NF0C5H1102=>02+2NF0C5H110	1.40E+16	-1.6	1860		
1803	NFQC5H1102H=NFQC5H110+OH	1.10E+16	0	42500		
1005	Reverse	Arrhenius	coefficients.	2 88E+07	19	-3022
1804	NEOC5H11O=CH2O+TC4H9	2 65E+25	-3.2	23930	1.9	5022
1001	Reverse	Arrhenius	coefficients:	2.00E+11	0	11900
1805	NEOC5H11O2=NEOC5H10OOH	1.12E+11	0	24400	Ŭ	11900
1000	Reverse	Arrhenius	coefficients:	9.14E+10	-0.5	8950
1806	NEOC5H10OOH=>NEO-C5H10O+OH	2.50E+10	0	15250		
1807	NEOC5H10OOH=>OH+CH2O+IC4H8	3.01E+17	-1.2	29950		
1808	NEOC5H10OOH=IC4H7OOH+CH3	9.03E+21	-2.3	32830		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	10100
1809	NEOC5H10OOH-O2=NEOC5H10OOH+O2	1.37E+25	-3.7	35700		
	Reverse	Arrhenius	coefficients:	1.99E+17	-2.1	0
1810	NEOC5H10OOH-O2=NEOC5H9Q2	7.50E+10	0	24400		
	Reverse	Arrhenius	coefficients:	1.76E+11	-0.5	8940
1811	NEOC5H10OOH-O2=NEOC5H9Q2-N	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	4.44E+10	-0.5	10960
1812	NEOC5H9Q2-N=NEOC5KET+OH	9.00E+14	0	1500		
	Reverse	Arrhenius	coefficients:	1.67E+09	1.6	31880
1813	NEOC5KET=NEOC5KETOX+OH	1.50E+16	0	42000		
	Reverse	Arrhenius	coefficients:	2.01E+09	1.5	-4125
1814	NEOC5KETOX=TC3H6CHO+CH2O	2.48E+21	-2.5	15830		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
1815	NEO-C5H10O+OH=>TC4H8CHO+H2O	2.50E+12	0	0		
1816	NEO-C5H10O+OH=>IC4H7+CH2O+H2O	2.50E+12	0	0		
1817	NEO-C5H10O+HO2=>TC4H8CHO+H2O2	5.00E+12	0	17700		

1818	NEO-C5H10O+HO2=>IC4H7+CH2O+H2O2	5.00E+12	0	17700		
1819	NEO-C5H10O+H=>TC4H8CHO+H2	3.54E+07	2	5000		
1820	NEO-C5H10O+H=>IC4H7+CH2O+H2	1.33E+06	2.5	6756		
1821	NEO-C5H10O=IC4H8+CH2O	3.80E+15	0	60700		
	Reverse	Arrhenius	coefficients:	3.15E+04	2	59730
1822	HC6H13=C2H4+TC4H9	5.46E+23	-3	30610		
	Reverse	Arrhenius	coefficients:	1.70E+11	0	8300
1823	HC6H13=NEOC6H12+H	1.04E+14	-0.3	37030		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
1824	HC6H13+O2=NEOC6H12+HO2	3.00E-29	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1825	NEOC6H12=CH3+CC5H9-B	1.53E+23	-2.2	74190		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
1826	NEOC6H12+OH=NEOC6H11+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	9.80E+10	0.6	10480
1827	NEOC6H12+H=NEOC6H11+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	1.14E+10	0.7	-1740
1828	NEOC6H12+CH3=NEOC6H11+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	2.80E+11	0.2	3200
1829	NEOC6H12+O=NEOC6H11+OH	4.34E+15	-0.7	36950		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
1830	NEOC6H12+OH=>NEOC5H11+CH2O	1.00E+11	0	-4000		
1831	NEOC6H12+O=>NEOC5H11+HCO	1.00E+11	0	-1050		
1832	NEOC6H11=IC4H8+C2H3	4.79E+17	-1.2	29640		
	Reverse	Arrhenius	coefficients:	7.50E+10	0	10600
1833	TC4H9CHO+HO2=TC4H9CO+H2O2	1.00E+12	0	11920		
	Reverse	Arrhenius	coefficients:	3.85E+12	-0.3	12000
1834	ТС4Н9СНО+СН3=ТС4Н9СО+СН4	3.98E+12	0	8700		
	Reverse	Arrhenius	coefficients:	1.56E+13	0	25570
1835	ТС4Н9СНО+О=ТС4Н9СО+ОН	7.18E+12	0	1389		
	Reverse	Arrhenius	coefficients:	4.73E+11	0	15680
1836	ТС4Н9СНО+О2=ТС4Н9СО+НО2	4.00E+13	0	37600		
	Reverse	Arrhenius	coefficients:	1.09E+11	0.3	-3492
1837	ТС4Н9СНО+ОН=ТС4Н9СО+Н2О	2.69E+10	0.8	-340		
	Reverse	Arrhenius	coefficients:	1.75E+10	0.8	31200
1838	ТС4Н9СО=ТС4Н9+СО	2.52E+23	-2.9	13490		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	4810
1839	ТС4Н9СНО+ОН=ТС4Н8СНО+Н2О	2.29E+08	1.5	775		
	Reverse	Arrhenius	coefficients:	7.78E+06	1.5	20210
1840	ТС4Н9СНО+Н=ТС4Н8СНО+Н2	1.81E+06	2.5	6756		
	Reverse	Arrhenius	coefficients:	1.42E+04	2.5	11040
1841	TC4H9CHO+HO2=TC4H8CHO+H2O2	3.01E+04	2.5	15500		
	Reverse	Arrhenius	coefficients:	6.07E+03	2.2	3472
1842	ТС4Н9СНО+СН3=ТС4Н8СНО+СН4	1.36E+00	3.6	7154		
	Reverse	Arrhenius	coefficients:	2.79E-01	3.6	11910
1843	TC4H9CHO+CH3O=TC4H8CHO+CH3OH	4.82E+11	0	7313		

	Reverse	Arrhenius	coefficients:	1.82E+09	0	9863
1844	ТС4Н9СНО+СН3О2=ТС4Н8СНО+СН3О2Н	3.01E+04	2.5	15500		
	Reverse	Arrhenius	coefficients:	2.49E+04	2	2752
1845	IC3H6CHCHO+OH=IC3H6CHCO+H2O	3.37E+12	0	-616		
	Reverse	Arrhenius	coefficients:	5.78E+12	0	36810
1846	IC3H6CHCHO+OH=TC3H6CHO+CH2O	1.00E+11	0	0		
	Reverse	Arrhenius	coefficients:	1.39E+11	0.1	16080
1847	NC7H15=IC4H8+NC3H7	7.64E+22	-2.6	32570		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	10600
1848	NC7H15=AC6H12+CH3	1.25E+21	-2.2	34280		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	10600
1849	OC7H15=BC6H12+CH3	4.96E+20	-2	33920		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	10600
1850	OC7H15=NEOC6H12+CH3	2.37E+17	-1.4	32500		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7200
1851	OC7H15=OC7H14+H	3.33E+13	-0.1	36260		
	Reverse	Arrhenius	coefficients:	2.60E+13	0	2500
1852	PC7H15=TC4H9+C3H6	2.31E+23	-2.8	29340		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7200
1853	PC7H15=PC7H14+H	1.53E+13	0.1	36810		
	Reverse	Arrhenius	coefficients:	2.60E+13	0	1200
1854	PC7H15=OC7H14+H	1.28E+13	-0.1	36260		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2500
1855	QC7H15=C2H4+NEOC5H11	4.06E+15	-0.6	29100		
	Reverse	Arrhenius	coefficients:	3.30E+11	0	7200
1856	QC7H15=PC7H14+H	2.36E+14	-0.2	35600		
	Reverse	Arrhenius	coefficients:	2.60E+13	0	2500
1857	OC7H15+O2=OC7H14+HO2	3.00E-29	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1858	PC7H15+O2=OC7H14+HO2	3.00E-29	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1859	PC7H15+O2=PC7H14+HO2	4.50E-29	0	5020		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1860	QC7H15+O2=PC7H14+HO2	3.00E-29	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-29	0	17500
1861	NC7H15=PC7H15	2.00E+11	0	18100		
	Reverse	Arrhenius	coefficients:	9.00E+11	0	21100
1862	NC7H15=QC7H15	3.00E+11	0	14100		
	Reverse	Arrhenius	coefficients:	9.00E+11	0	14100
1863	PC7H14=TC4H9+C3H5-A	1.86E+27	-3.4	74280		
	Reverse	Arrhenius	coefficients:	7.22E+14	-0.8	-131
1864	OC7H14=CC6H11-B+CH3	3.09E+24	-2.5	74100		
	Reverse	Arrhenius	coefficients:	1.02E+14	-0.3	-131
1865	OC7H14+OH=>C2H5CHO+TC4H9	2.00E+10	0	-4000		
1866	OC7H14+OH=>NEOC5H11+CH3CHO	2.00E+10	0	-4000		
1867	PC7H14+OH=>NEOC5H11+CH3CHO	2.00E+10	0	-4000		

1868	PC7H14+OH=>CH2O+HC6H13	2.00E+10	0	-4000		
1869	OC7H14+O=>TC4H9+HCO+C2H4	2.00E+10	0	-1050		
1870	PC7H14+O=>CH2O+NEOC6H12	2.00E+10	0	-1050		
1871	OC7H14+H=OC7H13-N+H2	2.00E+06	2.5	6756		
	Reverse	Arrhenius	coefficients:	3.10E+04	2.5	11120
1872	OC7H14+H=PC7H13-O+H2	1.73E+04	2.5	2492		
	Reverse	Arrhenius	coefficients:	4.86E+05	2.1	20850
1873	OC7H14+OH=OC7H13-N+H2O	1.58E+10	1	1586		
	Reverse	Arrhenius	coefficients:	1.06E+09	1	21100
1874	OC7H14+OH=PC7H13-O+H2O	3.12E+06	2	-298		
	Reverse	Arrhenius	coefficients:	3.80E+08	1.6	33220
1875	PC7H14+H=PC7H13-N+H2	2.00E+06	2.5	6756		
	Reverse	Arrhenius	coefficients:	3.09E+04	2.5	11120
1876	PC7H14+H=PC7H13-O+H2	3.38E+05	2.4	207		
	Reverse	Arrhenius	coefficients:	4.35E+06	2.1	20420
1877	PC7H14+OH=PC7H13-N+H2O	1.58E+10	1	1586		
	Reverse	Arrhenius	coefficients:	1.06E+09	1	21100
1878	PC7H14+OH=PC7H13-O+H2O	2.76E+04	2.6	-1919		
	Reverse	Arrhenius	coefficients:	1.54E+06	2.4	33450
1879	OC7H13-N=IC4H8+C3H5-S	3.48E+21	-2.4	44670		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	10600
1880	PC7H13-N=IC4H8+C3H5-A	4.89E+19	-2.1	19390		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	10600
1881	PC7H13-O=PC7H13-N	4.17E+11	0	26400		
	Reverse	Arrhenius	coefficients:	5.01E+08	0.2	10550
1882	РС7Н13-О+НО2=РС7Н13О-О+ОН	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	8.72E+15	-1.1	15690
1883	PC7H13-O+CH3O2=PC7H13O-O+CH3O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	8.52E+17	-1.7	20450
1884	PC7H13-O+C2H5O2=PC7H13O-O+C2H5O	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	5.58E+14	-0.8	18290
1885	PC7H13O-O=C2H3CHO+TC4H9	4.56E+21	-2.3	7565		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
1886	PC7H13O-O=TC4H9CHO+C2H3	8.53E+17	-1.5	24330		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
1887	NC7H15O2=NC7H15+O2	1.48E+20	-1.7	35790		
	Reverse	Arrhenius	coefficients:	1.24E+12	0	0
	Declared	duplicate	reaction			
1888	PC7H15O2=PC7H15+O2	2.76E+22	-2.4	38110		
	Reverse	Arrhenius	coefficients:	1.25E+12	0	0
1889	QC7H15O2=QC7H15+O2	5.41E+20	-1.7	35790		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
1890	NC7H15O2=NC7H14OOH-N2	7.50E+10	0	24400		
	Reverse	Arrhenius	coefficients:	1.83E+11	-0.5	8940
1891	NC7H15O2=NC7H14OOH-O	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.34E+09	-0.1	7830

1			1			
1892	PC7H15O2=PC7H14OOH-N	1.41E+10	0	22350		
	Reverse	Arrhenius	coefficients:	1.31E+10	-0.5	6910
1893	PC7H15O2=PC7H14OOH-O	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	1.46E+10	-0.1	13800
1894	QC7H15O2=QC7H14OOH-O	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.33E+09	-0.1	7830
1895	PC7H15O2=OC7H14+HO2	5.04E+38	-8.1	40490		
	Reverse	Arrhenius	coefficients:	3.74E+28	-5.7	17490
1896	PC7H15O2=PC7H14+HO2	5.07E+42	-9.4	41490		
	Reverse	Arrhenius	coefficients:	8.20E+32	-7.2	16640
1897	QC7H15O2=PC7H14+HO2	5.04E+38	-8.1	40490		
	Reverse	Arrhenius	coefficients:	9.71E+29	-6.2	20470
1898	PC7H14OOH-N=>N-PC7H14O+OH	9.38E+09	0	6000		
1899	PC7H14OOH-O=OC7H14+HO2	1.23E+20	-2.5	23350		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	13400
1900	NC7H14OOH-N2=>OH+CH2O+AC6H12	5.00E+13	0	25500		
1901	NC7H14OOH-O=>OH+CH2O+BC6H12	5.00E+13	0	25500		
1902	QC7H14OOH-O=>OH+CH2O+NEOC6H12	5.00E+13	0	25500		
1903	NC7H14OOH-OO2=NC7H14OOH-O+O2	2.80E+22	-2.3	38060		
	Reverse	Arrhenius	coefficients:	1.75E+12	0	0
1904	PC7H14OOH-NO2=PC7H14OOH-N+O2	5.58E+19	-1.6	35650		
	Reverse	Arrhenius	coefficients:	1.24E+12	0	0
1905	PC7H14OOH-OO2=PC7H14OOH-O+O2	2.10E+22	-2.3	38020		
	Reverse	Arrhenius	coefficients:	1.75E+12	0	0
1906	QC7H14OOH-OO2=QC7H14OOH-O+O2	2.80E+22	-2.3	38060		
	Reverse	Arrhenius	coefficients:	1.75E+12	0	0
1907	PC7H14OOH-NO2=NEOC7KETPN+OH	1.56E+09	0	16050		
	Reverse	Arrhenius	coefficients:	8.38E+00	1.9	42230
1908	PC7H14OOH-OO2=NEOC7KETPO+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.80E+03	1.7	49170
1909	QC7H14OOH-OO2=NEOC7KETQO+OH	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	9.34E+02	1.5	44680
1010	NEOC7KETPN=>CH2O+TC3H6CH2COCH3+O	1.005.14		20000		
1910	H	1.00E+16	0	39000		
1911	NEOC/KETPO=>TC4H9CHO+CH3CO+OH	1.00E+16	0	39000		
1912	NEOC/KETQO=>TC4H9CHO+CH2CHO+OH	1.00E+16	0	39000		
1913	N-PC7H14O+OH=>C3H6+TC3H6CHO+H2O	2.50E+12	0	0		
1914	N-PC7H14O+OH=>IC4H8+CH3COCH2+H2O	2.50E+12	0	0		
1915	N-PC7H14O+HO2=>C3H6+TC3H6CHO+H2O2	5.00E+12	0	17700		
1916	N-PC7H14O+HO2=>IC4H8+CH3COCH2+H2O2	5.00E+12	0	17700		
1917	IC8H18=AC8H17+H	5.75E+17	-0.4	101200		
	Reverse	Arrhenius	coefficients:	1.00E+14	0	0
1918	IC8H18=BC8H17+H	3.30E+18	-0.7	98730		
	Reverse	Arrhenius	coefficients:	1.00E+14	0	0
1919	IC8H18=CC8H17+H	1.15E+19	-0.9	95430		
	Reverse	Arrhenius	coefficients:	1.00E+14	0	0

1920	IC8H18=DC8H17+H	1.92E+17	-0.4	100400		
	Reverse	Arrhenius	coefficients:	1.00E+14	0	0
1921	IC8H18=YC7H15+CH3	1.64E+27	-2.8	83930		
	Reverse	Arrhenius	coefficients:	1.63E+13	0	-596
1922	IC8H18=PC7H15+CH3	1.38E+26	-2.6	85860		
	Reverse	Arrhenius	coefficients:	1.93E+14	-0.3	0
1923	IC8H18=TC4H9+IC4H9	7.83E+29	-3.9	84150		
	Reverse	Arrhenius	coefficients:	3.59E+14	-0.8	0
1924	IC8H18=NEOC5H11+IC3H7	2.45E+23	-2	83400		
	Reverse	Arrhenius	coefficients:	3.59E+14	-0.8	0
1925	IC8H18+H=AC8H17+H2	7.34E+05	2.8	8147		
	Reverse	Arrhenius	coefficients:	5.10E+01	3.4	10480
1926	IC8H18+H=BC8H17+H2	5.74E+05	2.5	4124		
	Reverse	Arrhenius	coefficients:	6.94E+00	3.5	8954
1927	IC8H18+H=CC8H17+H2	6.02E+05	2.4	2583		
	Reverse	Arrhenius	coefficients:	2.10E+00	3.6	10710
1928	IC8H18+H=DC8H17+H2	1 88E+05	2.8	6280		10/10
1,20	Reverse	Arrhenius	coefficients	3 91E+01	3.4	9417
1020	IC8H18+O=AC8H17+OH	8 55E+03	3	3123	5.4	7417
1929	Descent	0.55E+05	5	2 12E 01	2.7	40.49
1020		Arrhenius	coefficients:	3.12E-01	3./	4048
1930	IC8H18+O=BC8H1/+OH	4.//E+04	2.7	2106		
	Reverse	Arrhenius	coefficients:	3.03E-01	3.7	5524
1931	IC8H18+O=CC8H17+OH	3.83E+05	2.4	1140		
	Reverse	Arrhenius	coefficients:	7.00E-01	3.6	7858
1932	IC8H18+O=DC8H17+OH	2.85E+05	2.5	3645		
	Reverse	Arrhenius	coefficients:	3.12E+01	3.1	5370
1933	IC8H18+OH=AC8H17+H2O	2.63E+07	1.8	1431		
1934	IC8H18+OH=BC8H17+H2O	9.00E+05	2	-1133		
	Reverse	Arrhenius	coefficients:	1.16E+02	2.9	18590
1935	IC8H18+OH=CC8H17+H2O	1.70E+06	1.9	-1450		
	Reverse	Arrhenius	coefficients:	6.30E+01	3	21570
1936	IC8H18+OH=DC8H17+H2O	1.78E+07	1.8	1431		
	Reverse	Arrhenius	coefficients:	3.94E+04	2.3	19460
1937	IC8H18+CH3=AC8H17+CH4	4.26E-14	8.1	4154		
	Reverse	Arrhenius	coefficients:	2.70E-15	8.2	8031
1938	IC8H18+CH3=BC8H17+CH4	2.70E+04	2.3	7287		
	Reverse	Arrhenius	coefficients:	2.99E+02	2.8	13660
1939	IC8H18+CH3=CC8H17+CH4	6.01E-10	6.4	893		
	Reverse	Arrhenius	coefficients:	1.91E-12	7.1	10560
1940	IC8H18+CH3=DC8H17+CH4	1.47E-01	3.9	6808		
	Reverse	Arrhenius	coefficients.	2 79E-02	4 1	11480
1941	IC8H18+HO2=AC8H17+H2O2	7 29F+04	25	16680		11100
19/12	IC8H18+H02=BC8H17+H202	3 53E+04	2.5	14680		
10/2	IC8H18+H02=CC8H17+H202	0 00E±02	2.5	12260		
1943		1 96E-04	2.3	16600		
1944		4.00E+04	2.3	7000		
1945	IC8H18+CH3O=AC8H17+CH3OH	4./4E+11	0	/000	<u> </u>	

1						
	Reverse	Arrhenius	coefficients:	1.20E+10	0	9200
1946	IC8H18+CH3O=BC8H17+CH3OH	1.10E+11	0	5000		
	Reverse	Arrhenius	coefficients:	8.90E+09	0	7200
1947	IC8H18+CH3O=CC8H17+CH3OH	1.90E+10	0	2800		
	Reverse	Arrhenius	coefficients:	1.00E+10	0	5200
1948	IC8H18+CH3O=DC8H17+CH3OH	3.20E+11	0	7000		
	Reverse	Arrhenius	coefficients:	1.20E+10	0	9200
1949	IC8H18+O2=AC8H17+HO2	6.30E+13	0	50760		
	Reverse	Arrhenius	coefficients:	2.30E+10	0.3	-1592
1950	IC8H18+O2=BC8H17+HO2	1.40E+13	0	48210		
	Reverse	Arrhenius	coefficients:	8.89E+08	0.6	-1649
1951	IC8H18+O2=CC8H17+HO2	7.00E+12	0	46060		
	Reverse	Arrhenius	coefficients:	1.28E+08	0.9	-499
1952	IC8H18+O2=DC8H17+HO2	4.20E+13	0	50760		
	Reverse	Arrhenius	coefficients:	4.58E+10	0.3	-792
1953	IC8H18+C2H5=AC8H17+C2H6	1.50E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
1954	IC8H18+C2H5=BC8H17+C2H6	5.00E+10	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
1955	IC8H18+C2H5=CC8H17+C2H6	1.00E+11	0	7900		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	21000
1956	IC8H18+C2H5=DC8H17+C2H6	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
1957	IC8H18+C2H3=AC8H17+C2H4	1.50E+12	0	18000		
	Reverse	Arrhenius	coefficients:	2.57E+12	0	25400
1958	IC8H18+C2H3=BC8H17+C2H4	4.00E+11	0	16800		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	24200
1959	IC8H18+C2H3=CC8H17+C2H4	2.00E+11	0	14300		
	Reverse	Arrhenius	coefficients:	2.50E+12	0	23000
1960	IC8H18+C2H3=DC8H17+C2H4	1.00E+12	0	18000		
	Reverse	Arrhenius	coefficients:	2.57E+12	0	25400
1961	IC4H8+IC4H9=AC8H17	4.00E+02	2.5	8520		
1962	OC7H14+CH3=BC8H17	1.30E+03	2.5	8520		
1963	IC4H8+TC4H9=CC8H17	4.00E+02	2.5	6130		
1964	PC7H14+CH3=DC8H17	1.30E+03	2.5	8520		
1965	C3H6+NEOC5H11=DC8H17	4.00E+02	2.5	8520		
1966	BC8H17=IC8H16+H	1.84E+12	0.4	35240		
	Reverse	Arrhenius	coefficients:	6.25E+11	0.5	2620
1967	CC8H17=IC8H16+H	9.00E+11	0.6	37150		
	Reverse	Arrhenius	coefficients:	1.06E+12	0.5	1230
1968	CC8H17=JC8H16+H	4.21E+11	0.8	36690		
	Reverse	Arrhenius	coefficients:	1.06E+12	0.5	1230
1969	CC8H17+O2=IC8H16+HO2	3.00E-19	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1970	CC8H17+O2=JC8H16+HO2	1.50E-19	0	4000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500

1971	DC8H17=JC8H16+H	1.48E+13	0.2	33090		
	Reverse	Arrhenius	coefficients:	6.25E+11	0.5	2620
1972	AC8H17=DC8H17	1.39E+11	0	15400		
	Reverse	Arrhenius	coefficients:	4.16E+11	0	16200
1973	AC8H17=CC8H17	3.71E+11	0	20400		
	Reverse	Arrhenius	coefficients:	1.86E+10	0.6	26190
1974	DC8H17+O2=JC8H16+HO2	2.00E-18	0	5000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
1975	IC8H16+H=IC8H15+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	3.42E+12	0	19570
1976	JC8H16+H=IC8H15+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	1.60E+12	0.2	19110
1977	IC8H16+O=IC8H15+OH	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	1.80E+12	0	18160
1978	JC8H16+O=IC8H15+OH	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	8.42E+11	0.2	17700
1979	IC8H16+OH=IC8H15+H2O	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	3.64E+13	-0.1	34460
1980	JC8H16+OH=IC8H15+H2O	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	1.71E+13	0.1	34000
1981	IC8H15=IC4H8+IC4H7-I1	8.99E+24	-3	53600		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	10600
1982	IC8H16+CH3=IC8H15+CH4	2.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	1.69E+14	-0.4	24510
1983	JC8H16+CH3=IC8H15+CH4	2.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	7.91E+13	-0.2	24050
1984	IC8H16+OH=>CH3COCH3+NEOC5H11	1.00E+11	0	-4000		
1985	JC8H16+OH=>CH2O+PC7H15	1.00E+11	0	-4000		
1986	JC8H16+O=>CH2O+PC7H14	1.00E+11	0	-1050		
1987	IC8H18+CH3O2=AC8H17+CH3O2H	8.51E+04	2.5	16690		
1988	IC8H18+CH3O2=BC8H17+CH3O2H	4.12E+04	2.5	14680		
1989	IC8H18+CH3O2=CC8H17+CH3O2H	1.05E+04	2.5	12260		
1990	IC8H18+CH3O2=DC8H17+CH3O2H	5.67E+04	2.5	16690		
1991	IC8H18+AC8H17O2=AC8H17+AC8H17O2H	1.81E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1992	IC8H18+BC8H17O2=AC8H17+BC8H17O2H	1.81E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1993	IC8H18+CC8H17O2=AC8H17+CC8H17O2H	1.81E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1994	IC8H18+DC8H17O2=AC8H17+DC8H17O2H	1.81E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1995	IC8H18+AC8H17O2=BC8H17+AC8H17O2H	4.03E+12	0	17700		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1996	IC8H18+BC8H17O2=BC8H17+BC8H17O2H	4.03E+12	0	17700		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1997	IC8H18+CC8H17O2=BC8H17+CC8H17O2H	4.03E+12	0	17700		

	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1998	IC8H18+DC8H17O2=BC8H17+DC8H17O2H	4.03E+12	0	17700		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
1999	IC8H18+AC8H17O2=CC8H17+AC8H17O2H	2.00E+12	0	16000		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2000	IC8H18+BC8H17O2=CC8H17+BC8H17O2H	2.00E+12	0	16000		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2001	IC8H18+CC8H17O2=CC8H17+CC8H17O2H	2.00E+12	0	16000		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2002	IC8H18+DC8H17O2=CC8H17+DC8H17O2H	2.00E+12	0	16000		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2003	IC8H18+AC8H17O2=DC8H17+AC8H17O2H	1.21E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2004	IC8H18+BC8H17O2=DC8H17+BC8H17O2H	1.21E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2005	IC8H18+CC8H17O2=DC8H17+CC8H17O2H	1.21E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2006	IC8H18+DC8H17O2=DC8H17+DC8H17O2H	1.21E+13	0	20430		
	Reverse	Arrhenius	coefficients:	1.44E+10	0	15000
2007	IC8H18+O2CHO=AC8H17+HO2CHO	2.52E+13	0	20440		
	Reverse	Arrhenius	coefficients:	5.58E+02	2.3	3062
2008	IC8H18+O2CHO=BC8H17+HO2CHO	5.60E+12	0	17690		
	Reverse	Arrhenius	coefficients:	2.16E+01	2.7	2806
2009	IC8H18+O2CHO=CC8H17+HO2CHO	2.80E+12	0	16010		
	Reverse	Arrhenius	coefficients:	3.11E+00	2.9	4633
2010	IC8H18+O2CHO=DC8H17+HO2CHO	1.68E+13	0	20440		
	Reverse	Arrhenius	coefficients:	1.11E+03	2.3	3862
2011	IC8H18+IC4H6OH=AC8H17+IC4H7OH	7.05E+02	3.3	19840		
	Reverse	Arrhenius	coefficients:	2.77E-01	3.9	6526
2012	IC8H18+IC4H6OH=BC8H17+IC4H7OH	1.57E+02	3.3	18170		
	Reverse	Arrhenius	coefficients:	1.07E-02	4.3	7350
2013	IC8H18+IC4H6OH=CC8H17+IC4H7OH	8.44E+01	3.3	17170		
	Reverse	Arrhenius	coefficients:	1.66E-03	4.5	9648
2014	IC8H18+IC4H6OH=DC8H17+IC4H7OH	4.70E+02	3.3	19840		
	Reverse	Arrhenius	coefficients:	5.53E-01	3.9	7326
2015	AC8H17O2=AC8H17+O2	3.46E+20	-1.7	35720		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
2016	BC8H17O2=BC8H17+O2	1.05E+23	-2.3	38840		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2017	CC8H17O2=CC8H17+O2	3.62E+24	-2.6	36010		
	Reverse	Arrhenius	coefficients:	1.41E+13	0	0
2018	DC8H17O2=DC8H17+O2	3.46E+20	-1.7	34920		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
2019	AC8H17+AC8H17O2=2AC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	6.48E+13	-0.2	29360
2020	AC8H17+BC8H17O2=AC8H17O+BC8H17O	7.00E+12	0	-1000		

	Reverse	Arrhenius	coefficients:	4.99E+13	-0.1	28230
2021	AC8H17+CC8H17O2=AC8H17O+CC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	4.35E+13	-0.2	30170
2022	AC8H17+DC8H17O2=AC8H17O+DC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	3.25E+13	-0.2	29360
2023	BC8H17+AC8H17O2=BC8H17O+AC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	9.04E+15	-0.8	31350
2024	BC8H17+BC8H17O2=2BC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	6.96E+15	-0.8	30220
2025	BC8H17+CC8H17O2=BC8H17O+CC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	6.07E+15	-0.8	32160
2026	BC8H17+DC8H17O2=BC8H17O+DC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	4.54E+15	-0.8	31350
2027	CC8H17+AC8H17O2=CC8H17O+AC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.46E+17	-1.1	30460
2028	CC8H17+BC8H17O2=CC8H17O+BC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.12E+17	-1	29330
2029	CC8H17+CC8H17O2=2CC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	9.80E+16	-1.1	31270
2030	CC8H17+DC8H17O2=CC8H17O+DC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.32E+16	-1.1	30460
2031	DC8H17+AC8H17O2=DC8H17O+AC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	3.25E+13	-0.2	28560
2032	DC8H17+BC8H17O2=DC8H17O+BC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	2.50E+13	-0.1	27430
2033	DC8H17+CC8H17O2=DC8H17O+CC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	2.18E+13	-0.2	29370
2034	DC8H17+DC8H17O2=2DC8H17O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.63E+13	-0.2	28560
2035	AC8H17+HO2=AC8H17O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	2.18E+15	-0.5	25880
2036	BC8H17+HO2=BC8H17O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	3.04E+17	-1.1	27870
2037	CC8H17+HO2=CC8H17O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	4.91E+18	-1.4	26980
2038	DC8H17+HO2=DC8H17O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.09E+15	-0.5	25080
2039	AC8H17+CH3O2=AC8H17O+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.36E+14	-0.2	30120
2040	BC8H17+CH3O2=BC8H17O+CH3O	7.00E+12	0	-1000		
L	Reverse	Arrhenius	coefficients:	1.90E+16	-0.8	32110
2041	CC8H17+CH3O2=CC8H17O+CH3O	7.00E+12	0	-1000		
ļ	Reverse	Arrhenius	coefficients:	3.07E+17	-1.1	31220
2042	DC8H17+CH3O2=DC8H17O+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	6.84E+13	-0.2	29320
2042	AC8H17O2+HO2=AC8H17O2H+O2	1.75E+10	0	-3275		

	Reverse	Arrhenius	coefficients:	4.07E+13	-0.8	33620
2044	BC8H17O2+HO2=BC8H17O2H+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	3.75E+13	-0.8	33610
2045	CC8H17O2+HO2=CC8H17O2H+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	3.75E+13	-0.8	33610
2046	DC8H17O2+HO2=DC8H17O2H+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	4.07E+13	-0.8	33620
2047	H2O2+AC8H17O2=HO2+AC8H17O2H	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2048	H2O2+BC8H17O2=HO2+BC8H17O2H	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2049	H2O2+CC8H17O2=HO2+CC8H17O2H	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2050	H2O2+DC8H17O2=HO2+DC8H17O2H	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2051	AC8H17O2+CH3O2=>AC8H17O+CH3O+O2	1.40E+16	-1.6	1860		
2052	BC8H17O2+CH3O2=>BC8H17O+CH3O+O2	1.40E+16	-1.6	1860		
2053	CC8H17O2+CH3O2=>CC8H17O+CH3O+O2	1.40E+16	-1.6	1860		
2054	DC8H17O2+CH3O2=>DC8H17O+CH3O+O2	1.40E+16	-1.6	1860		
2055	2AC8H17O2=>O2+2AC8H17O	1.40E+16	-1.6	1860		
2056	AC8H17O2+BC8H17O2=>AC8H17O+BC8H17O +O2	1 40F+16	-1.6	1860		
2000	AC8H17O2+CC8H17O2=>AC8H17O+CC8H17O	11102 10	1.0	1000		
2057	+O2 AC8H17O2+DC8H17O2=>AC8H17O+DC8H17	1.40E+16	-1.6	1860		
2058	0+02	1.40E+16	-1.6	1860		
2059	2BC8H17O2=>O2+2BC8H17O	1.40E+16	-1.6	1860		
2060	BC8H17O2+CC8H17O2=>BC8H17O+CC8H17O +O2	1 40F+16	-1.6	1860		
2000	BC8H17O2+DC8H17O2=>BC8H17O+DC8H17O	11102 10	1.0	1000		
2061	+O2	1.40E+16	-1.6	1860		
2062	2CC8H17O2=>O2+2CC8H17O	1.40E+16	-1.6	1860		
2063	+02	1.40E+16	-1.6	1860		
2064	2DC8H17O2=>O2+2DC8H17O	1.40E+16	-1.6	1860		
2065	AC8H17O2H=AC8H17O+OH	1.00E+16	0	39000		
	Reverse	Arrhenius	coefficients:	1.75E+07	1.9	-6742
2066	BC8H17O2H=BC8H17O+OH	1.00E+16	0	39000		
	Reverse	Arrhenius	coefficients:	1.46E+07	2	-7862
2067	CC8H17O2H=CC8H17O+OH	1.00E+16	0	39000		
	Reverse	Arrhenius	coefficients:	1.27E+07	1.9	-5922
2068	DC8H17O2H=DC8H17O+OH	1.00E+16	0	39000		
	Reverse	Arrhenius	coefficients:	8.77E+06	1.9	-6742
2069	AC8H17O=YC7H15+CH2O	5.69E+24	-3.2	19140		
ļ	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2070	BC8H17O=TC4H9+IC3H7CHO	3.11E+26	-3.6	15980		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2071	ВС8Н17О=ІС3Н7+ТС4Н9СНО	3.33E+23	-2.9	18470		
	Reverse	Arrhenius	coefficients:	6.25E+10	0	12900

1			1	1	1	1	1
Ļ	2072	CC8H17O=NEOC5H11+CH3COCH3	1.21E+20	-1.7	12340		
		Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
	2073	DC8H17O=PC7H15+CH2O	6.08E+22	-2.7	20470		
ļ		Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
	2074	AC8H17O2=AC8H16OOH-A	7.50E+10	0	24000		
ļ	2075	AC8H17O2=AC8H16OOH-B	2.50E+10	0	20450		
	2076	AC8H17O2=AC8H16OOH-C	1.56E+09	0	16650		
	2077	AC8H17O2=AC8H16OOH-D	1.17E+09	0	25150		
	2078	BC8H17O2=BC8H16OOH-A	1.12E+11	0	24000		
	2079	BC8H17O2=BC8H16OOH-C	1.00E+11	0	23700		
	2080	BC8H17O2=BC8H16OOH-D	7.50E+10	0	24000		
	2081	CC8H17O2=CC8H16OOH-A	1.41E+10	0	21950		
	2082	CC8H17O2=CC8H16OOH-B	2.00E+11	0	26450		
	2083	CC8H17O2=CC8H16OOH-D	6.00E+11	0	29000		
	2084	DC8H17O2=DC8H16OOH-A	1.76E+09	0	25150		
	2085	DC8H17O2=DC8H16OOH-B	2.50E+10	0	20450		
	2086	DC8H17O2=DC8H16OOH-C	1.00E+11	0	23700		
	2087	DC8H17O2=DC8H16OOH-D	3.75E+10	0	24000		
	2088	BC8H17O2=IC8H16+HO2	1.25E+36	-7.2	41490		
ſ	2089	CC8H17O2=IC8H16+HO2	1.50E+39	-8.1	42490		
ſ	2090	CC8H17O2=JC8H16+HO2	3.02E+43	-9.4	43490		
ſ	2091	DC8H17O2=JC8H16+HO2	1.25E+36	-7.2	41490		
ſ	2092	AC8H16OOH-A=>IC8ETERAA+OH	3.00E+11	0	14250		
ſ	2093	AC8H16OOH-B=>IC8ETERAB+OH	3.00E+11	0	14250		
ſ	2094	AC8H16OOH-C=>IC8ETERAC+OH	2.74E+10	0	7000		
ſ	2095	AC8H16OOH-D=>IC8ETERAD+OH	2.17E+09	0	1800		
ſ	2096	BC8H16OOH-C=>IC8ETERBC+OH	1.80E+12	0	22000		
	2097	BC8H16OOH-A=>IC8ETERAB+OH	3.00E+11	0	14250		
ſ	2098	BC8H16OOH-D=>IC8ETERBD+OH	3.00E+11	0	14250		
ſ	2099	CC8H16OOH-B=>IC8ETERBC+OH	1.80E+12	0	22000		
ſ	2100	CC8H16OOH-A=>IC8ETERAC+OH	2.74E+10	0	7000		
ſ	2101	DC8H16OOH-D=>IC8ETERDD+OH	3.00E+11	0	14250		
	2102	DC8H16OOH-B=>IC8ETERBD+OH	3.00E+11	0	14250		
	2103	DC8H16OOH-A=>IC8ETERAD+OH	3.17E+09	0	1800		
	2104	BC8H16OOH-C=IC8H16+HO2	1.53E+20	-2.4	24400		
		Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
	2105	CC8H16OOH-D=JC8H16+HO2	1.17E+22	-2.7	16740		
		Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
	2106	CC8H16OOH-B=IC8H16+HO2	1.13E+21	-2.5	22960		
ſ		Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
ſ	2107	DC8H16OOH-C=JC8H16+HO2	1.88E+18	-1.8	14960		
Ī		Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
ľ	2108	AC8H16OOH-A=>OH+CH2O+XC7H14	9.09E+17	-1.3	28580		
ſ	2109	AC8H16OOH-B=>OH+CH2O+YC7H14	1.25E+17	-1.1	28210		
ľ	2110	BC8H16OOH-A=>OH+IC3H7CHO+IC4H8	3.12E+21	-2.4	26330		
ľ	2111	BC8H16OOH-D=>OH+TC4H9CHO+C3H6	1.29E+21	-2.2	32970		
L				•		•	•

2112	DC8H16OOH-B=>OH+CH2O+OC7H14	1.12E+15	-0.5	30930		
2113	DC8H16OOH-D=>OH+CH2O+PC7H14	8.01E+15	-0.7	30890		
2114	AC8H16OOH-A=IC4H7OOH+TC4H9	1.51E+24	-3.1	26840		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	12300
2115	AC8H16OOH-B=YC7H13OOH-X1+CH3	1.03E+16	-0.8	27450		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	10900
2116	AC8H16OOH-B=OC7H13OOH-N+CH3	3.76E+14	-0.6	27330		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	10200
2117	BC8H16OOH-A=XC7H13OOH-Z+CH3	2.14E+16	-0.8	29150		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	10600
2118	BC8H16OOH-D=PC7H13OOH-O+CH3	1.40E+15	-0.7	31780		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	9200
2119	DC8H16OOH-B=OC7H13OOH-Q+CH3	2.49E+14	-0.5	26930		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	9200
2120	DC8H16OOH-B=YC7H13OOH-X2+CH3	4.77E+17	-1	29600		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	13600
2121	DC8H16OOH-D=NEOC5H11+AC3H5OOH	2.01E+22	-2.4	30980		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	9200
2122	AC8H16OOH-C=IC4H8+IC4H8O2H-T	5.57E+21	-2.4	27120		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	7800
2123	СС8Н16ООН-А=ІС4Н8+ТС4Н8О2Н-І	1.73E+23	-2.8	29800		
	Reverse	Arrhenius	coefficients:	1.25E+11	0	10600
2124	AC8H16OOH-D=C3H6+NEOC5H10OOH	2.02E+19	-1.9	28830		
	Reverse	Arrhenius	coefficients:	1.42E+11	-0.3	9864
2125	Reverse AC8H16OOH-AO2=AC8H16OOH-A+O2	Arrhenius 3.25E+20	coefficients: -1.6	1.42E+11 34920	-0.3	9864
2125	Reverse AC8H16OOH-AO2=AC8H16OOH-A+O2 Reverse	Arrhenius 3.25E+20 Arrhenius	coefficients: -1.6 coefficients:	1.42E+11 34920 4.52E+12	-0.3	9864 0
2125	Reverse AC8H16OOH-AO2=AC8H16OOH-A+O2 Reverse AC8H16OOH-BO2=AC8H16OOH-B+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23	coefficients: -1.6 coefficients: -2.4	1.42E+11 34920 4.52E+12 37280	-0.3	9864 0
2125	Reverse AC8H16OOH-AO2=AC8H16OOH-A+O2 Reverse AC8H16OOH-BO2=AC8H16OOH-B+O2 Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius	coefficients: -1.6 coefficients: -2.4 coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12	-0.3 0	9864 0 0
2125 2126 2127	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700	-0.3 0	9864 0 0
2125 2126 2127	Reverse AC8H16OOH-AO2=AC8H16OOH-A+O2 Reverse AC8H16OOH-BO2=AC8H16OOH-B+O2 Reverse AC8H16OOH-CO2=AC8H16OOH-C+O2 Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13	-0.3 0 0	9864 0 0 0
2125 2126 2127 2128	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620	-0.3 0 0	9864 0 0 0
2125 2126 2127 2128	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -2.4 coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13	-0.3 0 0	9864 0 0 0
2125 2126 2127 2128 2128 2129	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -2.4 coefficients: -1.6	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900	-0.3 0 0 0	9864 0 0 0
2125 2126 2127 2128 2128 2129	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -2.4 coefficients: -1.6 coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12	-0.3 0 0 0	9864 0 0 0 0
2125 2126 2127 2128 2129 2130	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-D02=BC8H16OOH-D+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -1.6 coefficients: -1.6 coefficients: -1.6	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900	-0.3 0 0 0	9864 0 0 0 0
2125 2126 2127 2128 2129 2130	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-DO2=BC8H16OOH-D+O2ReverseBC8H16OOH-DO2=BC8H16OOH-D+O2Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20 Arrhenius	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -2.4 coefficients: -2.4 coefficients: -1.6 coefficients: -1.6 coefficients: -1.6 coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12	-0.3 0 0 0 0	9864 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-D02=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=CC8H16OOH-B+O2CC8H16OOH-BO2=CC8H16OOH-B+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20 Arrhenius 1.11E+23	-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060	-0.3 0 0 0 0	9864 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-DO2=BC8H16OOH-D+O2ReverseBC8H16OOH-DO2=BC8H16OOH-D+O2ReverseBC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20 Arrhenius 1.11E+23 Arrhenius	coefficients:-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12	-0.3 0 0 0 0 0	9864 0 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131 2132	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-DO2=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2	Arrhenius3.25E+20Arrhenius1.36E+23Arrhenius3.26E+24Arrhenius1.53E+24Arrhenius2.98E+20Arrhenius2.98E+20Arrhenius1.11E+23Arrhenius3.36E+20	-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:-1.6	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720	-0.3 0 0 0 0 0 0 0 0 0	9864 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131 2131 2132	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=BC8H16OOH-B+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2Reverse	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20 Arrhenius 1.11E+23 Arrhenius 3.36E+20 Arrhenius	coefficients: -1.6 coefficients: -2.4 coefficients: -2.5 coefficients: -2.4 coefficients: -2.4 coefficients: -2.4 coefficients: -1.6 coefficients: -1.6 coefficients: -2.3 coefficients: -1.6 coefficients: -2.3 coefficients: -1.6 coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720 4.52E+12	-0.3 0 0 0 0 0 0 0 0 0 0 0 0	9864 0 0 0 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131 2132 2133	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=C8H16OOH-D+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2	Arrhenius3.25E+20Arrhenius1.36E+23Arrhenius3.26E+24Arrhenius1.53E+24Arrhenius2.98E+20Arrhenius2.98E+20Arrhenius1.11E+23Arrhenius3.36E+20Arrhenius3.36E+20Arrhenius3.27E+24	-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:-1.6coefficients:-2.3coefficients:-2.3coefficients:-2.5	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720 4.52E+12 37500	-0.3 0 0 0 0 0 0 0 0 0 0 0	9864 0 0 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2130 2131 2132 2133	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-DO2=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseDC8H16OOH-AO2=DC8H16OOH-C+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2Reverse	Arrhenius3.25E+20Arrhenius1.36E+23Arrhenius3.26E+24Arrhenius1.53E+24Arrhenius2.98E+20Arrhenius2.98E+20Arrhenius1.11E+23Arrhenius3.36E+20Arrhenius3.36E+20Arrhenius3.27E+24Arrhenius	coefficients:-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:-1.6coefficients:-2.3coefficients:-2.5coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720 4.52E+12 37500 1.41E+13	-0.3 0 0 0 0 0 0 0 0 0 0 0 0 0	9864 0 0 0 0 0 0 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-DO2=BC8H16OOH-D+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20 Arrhenius 3.36E+20 Arrhenius 3.36E+20 Arrhenius 3.36E+20 Arrhenius 3.27E+24 Arrhenius 3.27E+24 Arrhenius 3.27E+24	-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:-1.6coefficients:-2.3coefficients:-2.5coefficients:-1.6	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720 4.52E+12 37500 1.41E+13 35720	-0.3 0 0 0 0 0 0 0 0 0 0 0 0 0	9864 0 0 0 0 0 0 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2130 2131 2132 2133 2134	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-DO2=BC8H16OOH-A+O2ReverseBC8H16OOH-BO2=C8H16OOH-D+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-AO2=C8H16OOH-A+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-D02=DC8H1	Arrhenius 3.25E+20 Arrhenius 1.36E+23 Arrhenius 3.26E+24 Arrhenius 1.53E+24 Arrhenius 2.98E+20 Arrhenius 2.98E+20 Arrhenius 3.36E+20 Arrhenius 3.36E+20 Arrhenius 3.36E+20 Arrhenius 3.27E+24 Arrhenius 3.27E+24 Arrhenius 3.27E+24 Arrhenius 3.27E+24 Arrhenius 3.27E+24 Arrhenius 1.63E+20 Arrhenius	-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:-2.3coefficients:-2.5coefficients:-1.6coefficients:-1.6coefficients:-1.6coefficients:-1.6coefficients:-1.6coefficients:	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720 4.52E+12 37500 1.41E+13 35720 4.52E+12 37500 1.41E+13 35720		9864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135	ReverseAC8H16OOH-AO2=AC8H16OOH-A+O2ReverseAC8H16OOH-BO2=AC8H16OOH-B+O2ReverseAC8H16OOH-CO2=AC8H16OOH-C+O2ReverseBC8H16OOH-CO2=BC8H16OOH-C+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-AO2=BC8H16OOH-A+O2ReverseBC8H16OOH-D02=BC8H16OOH-D+O2ReverseCC8H16OOH-BO2=CC8H16OOH-B+O2ReverseCC8H16OOH-AO2=CC8H16OOH-A+O2ReverseDC8H16OOH-CO2=DC8H16OOH-C+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-DO2=DC8H16OOH-D+O2ReverseDC8H16OOH-BO2=DC8H16OOH-B+O2ReverseDC8H16OOH-BO2=DC8H16OOH-B+O2ReverseDC8H16OOH-BO2=DC8H16OOH-B+O2	Arrhenius3.25E+20Arrhenius1.36E+23Arrhenius3.26E+24Arrhenius1.53E+24Arrhenius2.98E+20Arrhenius2.98E+20Arrhenius1.11E+23Arrhenius3.36E+20Arrhenius3.36E+20Arrhenius3.27E+24Arrhenius1.63E+20Arrhenius1.63E+20Arrhenius1.36E+23	coefficients:-1.6coefficients:-2.4coefficients:-2.5coefficients:-2.4coefficients:-1.6coefficients:-1.6coefficients:-2.3coefficients:-1.6coefficients:-2.3coefficients:-1.6coefficients:-1.6coefficients:-2.5coefficients:-1.6coefficients:-2.4	1.42E+11 34920 4.52E+12 37280 7.54E+12 36700 1.41E+13 36620 1.41E+13 34900 4.52E+12 34900 4.52E+12 38060 7.54E+12 35720 4.52E+12 37500 1.41E+13 35720 4.52E+12 37500 1.41E+13 35720 4.52E+12 38080		9864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2136	AC8H16OOH-AO2=IC8KETAA+OH	2.50E+10	0	21000	
2137	AC8H16OOH-BO2=IC8KETAB+OH	2.50E+10	0	21000	
2138	AC8H16OOH-CO2=IC8KETAC+OH	3.12E+09	0	18950	
2139	BC8H16OOH-CO2=IC8KETBC+OH	1.00E+11	0	23450	
2140	BC8H16OOH-AO2=IC8KETBA+OH	1.25E+10	0	17450	
2141	BC8H16OOH-DO2=IC8KETBD+OH	1.25E+10	0	17450	
2142	DC8H16OOH-CO2=IC8KETDC+OH	2.00E+11	0	26000	
2143	DC8H16OOH-DO2=IC8KETDD+OH	2.50E+10	0	21000	
2144	DC8H16OOH-BO2=IC8KETDB+OH	2.50E+10	0	21000	
2145	IC8ETERAA+OH=>XC7H14+HCO+H2O	1.25E+12	0	0	
2146	IC8ETERAB+OH=>YC7H14+HCO+H2O	1.25E+12	0	0	
2147	IC8ETERAC+OH=>IC4H8+TC3H6CHO+H2O	1.25E+12	0	0	
2148	IC8ETERAD+OH=>C3H6+TC4H8CHO+H2O	1.25E+12	0	0	
2149	IC8ETERBC+OH=>IC3H5CHO+TC4H9+H2O	1.25E+12	0	0	
2150	IC8ETERBD+OH=>OC7H14+HCO+H2O	1.25E+12	0	0	
2151	IC8ETERDD+OH=>C2H3CHO+NEOC5H11+H2	1.050+10	0	0	
2151		1.25E+12	0	0	
2152	IC8ETERAA+OH=>IC3H5CHO+IC4H9+H2O	1.25E+12	0	0	
2153	IC8ETERAB+OH=>IC4H8+IC3H/CO+H2O	1.25E+12	0	0	
2154	IC8ETERAC+OH=>CH2O+YC/H13-Y2+H2O	1.25E+12	0	0	
2155	IC8ETERRAD+OH=>IC2H(CO+TC4H0+H2O)	1.25E+12	0	0	
2156		1.25E+12	0	0	
2157	IC8ETERBD + OH > CU20 + PC7U12 + U20	1.25E+12	0	0	
2158	IC8ETERDD+OH=>CH2O+PC/H13-O+H2O	1.25E+12	0	17700	
2159	$\frac{1}{1} \frac{1}{1} 2.30E+12	0	17700		
2100	1C8ETERAB+H02=>1C/H14+HC0+H202	2.50E+12	0	17700	
2101	$C_{0}E_{1}E_{A}C_{1}O_{2} \rightarrow C_{4}O_{1}O_{1}O_{1}O_{1}O_{1}O_{2}O_{2}O_{2}O_{2}O_{1}O_{1}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	2.30E+12	0	17700	
2102	1C8ETERRAD+H02=>C3H0+TC4H3CH0+H2O2	2.50E+12	0	17700	
2105	$\frac{1}{1000} = \frac{1}{1000} = 1$	2.30E+12	0	17700	
2104	IC8ETERDD+H02=>C2H3CHO+NEOC5H11+H	2.30E+12	0	17700	
2165	202	2.50E+12	0	17700	
2166	IC8ETERAA+HO2=>IC3H5CHO+IC4H9+H2O2	2.50E+12	0	17700	
2167	IC8ETERAB+HO2=>IC4H8+IC3H7CO+H2O2	2.50E+12	0	17700	
2168	IC8ETERAC+HO2=>CH2O+YC7H13-Y2+H2O2	2.50E+12	0	17700	
2169	IC8ETERAD+HO2=>IC4H8+IC3H6CHO+H2O2	2.50E+12	0	17700	
2170	IC8ETERBC+HO2=>IC3H6CO+TC4H9+H2O2	2.50E+12	0	17700	
2171	IC8ETERBD+HO2=>C3H6+TC4H9CO+H2O2	2.50E+12	0	17700	
2172	IC8ETERDD+HO2=>CH2O+PC7H13-O+H2O2	2.50E+12	0	17700	
2173	IC8KETAA=>CH2O+DC6H12CHO-D+OH	1.00E+16	0	39000	
2174	IC8KETAB=>IC3H7CHO+TC3H6CHO+OH	1.00E+16	0	39000	
2175	IC8KETAC=>CH3COCH3+TC4H8CHO+OH	1.00E+16	0	39000	
2176	IC8KETBC=>CH3COCH3+TC4H9CO+OH	1.00E+16	0	39000	
2177	IC8KETBA=>CH2O+IC3H7COC3H6-T+OH	1.00E+16	0	39000	
2178	IC8KETBD=>CH2O+TC4H9COC2H4S+OH	1.00E+16	0	39000	
2179	IC8KETDD=>CH2O+HC6H12CHO+OH	1.00E+16	0	39000	
2180	IC8KETDB=>TC4H9CHO+CH3CHCHO+OH	1.00E+16	0	39000	

2181	CC8H16OH-B=IC8H16+OH	5.84E+16	-1	35400		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	-1042
2182	BC8H16OH-C=IC8H16+OH	6.33E+15	-0.8	34880		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	-1042
2183	CC8H16OH-D=JC8H16+OH	8.35E+17	-1.3	32550		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	-1042
2184	CC8H16OH-D=NEOC5H11+IC3H5OH	1.62E+22	-2.5	31020		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
2185	BC8H16OH-C=TC4H9+IC4H7OH	3.44E+22	-2.6	32690		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9200
2186	CC8H16OH-BO2=CC8H16OH-B+O2	7.68E+20	-2	35510		
	Reverse	Arrhenius	coefficients:	1.50E+12	0	0
2187	BC8H16OH-CO2=BC8H16OH-C+O2	1.03E+22	-2.2	34770		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	0
2188	CC8H16OH-BO2=CC8H16O-BO2H	1.20E+12	0	18900		
	Reverse	Arrhenius	coefficients:	1.42E+15	-0.9	3590
2189	BC8H16OH-CO2=BC8H16O-CO2H	1.20E+12	0	18900		
	Reverse	Arrhenius	coefficients:	1.38E+15	-0.9	3580
2190	CC8H16O- BO2H=>TC4H9CHO+CH3COCH3+OH	3.86E+23	-3.1	13000		
2191	CO2H=>TC4H9CHO+CH3COCH3+OH	1.61E+23	-2.9	15090		
2192	DC6H12CHO-D=IC3H5CHO+IC3H7	7.83E+15	-0.6	31510		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	8300
2193	IC3H7COC3H6-T=IC3H6CO+IC3H7	1.22E+17	-0.6	42050		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2194	TC4H9COC2H5+OH=TC4H9COC2H4S+H2O	8.95E+11	0	-228		
	Reverse	Arrhenius	coefficients:	1.59E+13	-0.2	28620
2195	TC4H9COC2H5+HO2=TC4H9COC2H4S+H2O2	2.00E+11	0	8698		
	Reverse	Arrhenius	coefficients:	2.11E+13	-0.6	6080
2196	TC4H9COC2H5+CH3O2=TC4H9COC2H4S+CH 3O2H	2.00E+12	0	15250		
	Reverse	Arrhenius	coefficients:	8.65E+14	-0.7	11910
2197	TC4H9COC2H4S=CH3CHCO+TC4H9	4.60E+20	-1.9	38250		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	10600
2198	HC6H12CHO=C2H3CHO+TC4H9	6.88E+19	-1.8	27690		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2199	YC7H13OOH-X1=YC7H13O-X1+OH	4.18E+20	-1.7	47810		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2200	XC7H13OOH-Z=XC7H13O-Z+OH	3.76E+21	-1.9	46430		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2201	YC7H13OOH-X2=YC7H13O-X2+OH	1.88E+20	-1.5	47030		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2202	OC7H13OOH-N=OC7H13O-N+OH	1.83E+20	-1.5	47020		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2203	OC7H13OOH-Q=OC7H13O-Q+OH	4.19E+20	-1.7	47840		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2204	РС7Н13ООН-О=РС7Н13О-О+ОН	8.22E+19	-1.2	42490		

	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2205	YC7H13O-X1=CH2O+CC6H11-D	2.66E+21	-2.4	34870		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2206	YC7H13O-X2=CH2O+CC6H11-D	7.56E+18	-2.2	10260		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2207	OC7H13O-N=CH2O+CC6H11-B	1.14E+18	-1.8	2305		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2208	OC7H13O-Q=CH2O+NEOC6H11	2.72E+16	-1	29510		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2209	CC6H11-D=C3H4-P+IC3H7	4.79E+12	0.3	28960		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2210	DC6H11-D=C3H4-A+IC3H7	2.69E+16	-0.9	30540		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2211	IC4H6OH+H2O=IC4H7OH+OH	5.88E+06	1.9	30240		
	Reverse	Arrhenius	coefficients:	3.12E+06	2	-298
2212	IC4H6OH+CH4=IC4H7OH+CH3	3.57E+02	3.1	22870		
	Reverse	Arrhenius	coefficients:	2.21E+00	3.5	5675
2213	IC4H6OH+C3H6=IC4H7OH+C3H5-A	2.51E+02	3.2	18640		
	Reverse	Arrhenius	coefficients:	5.75E+02	3.1	18660
2214	IC4H6OH+CH3CHO=IC4H7OH+CH3CO	1.36E+09	1.4	17940		
	Reverse	Arrhenius	coefficients:	5.30E+06	2	16240
2215	C3H5-A+CH2O=C3H6+HCO	6.30E+08	1.9	18190		
	Reverse	Arrhenius	coefficients:	9.16E+06	2.2	17700
2216	IC3H6CHCOCH2=IC4H7+CH2CO	1.40E+14	-1.6	50750		
	Reverse	Arrhenius	coefficients:	8.00E+10	0	11900
2217	CH3COCH3=CH3CO+CH3	1.22E+23	-2	83950		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2218	AC5H10+OH=IC5H9+H2O	1.00E+12	0	1230		
	Reverse	Arrhenius	coefficients:	5.00E+12	0	26500
2219	BC5H10+OH=IC5H9+H2O	1.00E+12	0	1230		
	Reverse	Arrhenius	coefficients:	5.00E+12	0	26500
2220	CC5H10+OH=IC5H9+H2O	1.00E+12	0	1230		
	Reverse	Arrhenius	coefficients:	5.00E+12	0	26500
2221	AC5H10+H=IC5H9+H2	1.00E+12	0	3800		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	25000
2222	BC5H10+H=IC5H9+H2	1.00E+12	0	3800		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	25000
2223	CC5H10+H=IC5H9+H2	1.00E+12	0	3800		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	25000
2224	AC5H10+CH3=IC5H9+CH4	5.00E+11	0	7300		
	Reverse	Arrhenius	coefficients:	6.00E+11	0	25000
2225	BC5H10+CH3=IC5H9+CH4	5.00E+11	0	7300		
	Reverse	Arrhenius	coefficients:	6.00E+11	0	25000
2226	CC5H10+CH3=IC5H9+CH4	5.00E+11	0	7300		
	Reverse	Arrhenius	coefficients:	6.00E+11	0	25000
2227	AC5H10+O=IC5H9+OH	3.70E+05	2.6	-1130		

	Reverse	Arrhenius	coefficients:	1.00E+12	0	25000
2228	BC5H10+O=IC5H9+OH	3.70E+05	2.6	-1130		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	25000
2229	CC5H10+O=IC5H9+OH	3.70E+05	2.6	-1130		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	25000
2230	IC5H9=C3H4-A+C2H5	1.98E+20	-1.6	59240		
	Reverse	Arrhenius	coefficients:	2.00E+11	0	8300
2231	C5H11-1=C2H4+NC3H7	7.97E+17	-1.4	29790		
	Reverse	Arrhenius	coefficients:	3.30E+11	0	7200
2232	C5H11-1=H+C5H10-1	3.48E+15	-0.7	37880		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2233	C5H11-1+O2=C5H10-1+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2234	C5H11-1=C5H11-2	3.88E+09	0.3	19760		
	Reverse	Arrhenius	coefficients:	1.83E+13	-0.6	24360
2235	C5H11-2+O2=C5H10-1+HO2	4.50E-19	0	5020		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2236	C5H11-2+O2=C5H10-2+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2237	C5H10-2=CH3+C4H7	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2238	C5H10-2+H=C5H9+H2	2.90E+13	0	4000		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	14000
2239	С5Н10-2+О=С5Н9+ОН	2.43E+05	2.6	-1130		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2240	C5H10-2+OH=C5H9+H2O	4.30E+13	0	3060		
	Reverse	Arrhenius	coefficients:	5.00E+12	0	26500
2241	C5H10-2+CH3=C5H9+CH4	1.00E+11	0	8200		
	Reverse	Arrhenius	coefficients:	6.00E+11	0	18800
2242	NEOC5H12=TC4H9+CH3	1.74E+22	-1.6	84020		
	Reverse	Arrhenius	coefficients:	4.00E+12	0	-596
2243	NEOC5H12=NEOC5H11+H	1.51E+19	-0.8	102000		
	Reverse	Arrhenius	coefficients:	1.00E+14	0	0
2244	C2H5O+M=CH3+CH2O+M	1.35E+38	-7	23800		
	Reverse	Arrhenius	coefficients:	6.44E+36	-7	16850
2245	C2H5O+M=CH3CHO+H+M	1.16E+35	-5.9	25270		
	Reverse	Arrhenius	coefficients:	3.06E+30	-4.8	6100
2246	IC3H7O2+C4H7=IC3H7O+C4H7O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.63E+08	0.8	19530
2247	NC3H7O2+C4H7=NC3H7O+C4H7O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	6.13E+08	0.8	19790
2248	C4H7+HO2=C4H7O+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.01E+11	0.3	16890
2249	C4H7+CH3O2=C4H7O+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	9.84E+12	-0.3	21650
2250	C4H7+C2H5O2=C4H7O+C2H5O	7.00E+12	0	-1000		

	Reverse	Arrhenius	coefficients:	6.95E+08	0.8	19810
2251	C4H7+PC4H9O2=C4H7O+PC4H9O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	5.78E+08	0.8	19780
2252	C4H7+SC4H9O2=C4H7O+SC4H9O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	6.76E+08	0.8	19510
2253	C4H8-2+CH3CO3=C4H7+CH3CO3H	1.00E+11	0	8000		
	Reverse	Arrhenius	coefficients:	2.00E+10	0	10000
2254	C4H8-2+CH3O2=C4H7+CH3O2H	3.20E+12	0	14900		
	Reverse	Arrhenius	coefficients:	1.58E+11	0	14700
2255	C4H8-2+C2H5O2=C4H7+C2H5O2H	3.20E+12	0	14900		
	Reverse	Arrhenius	coefficients:	1.58E+11	0	14700
2256	C4H8-2+NC3H7O2=C4H7+NC3H7O2H	3.20E+12	0	14900		
	Reverse	Arrhenius	coefficients:	1.58E+11	0	14700
2257	C4H8-2+IC3H7O2=C4H7+IC3H7O2H	3.20E+12	0	14900		
	Reverse	Arrhenius	coefficients:	1.58E+11	0	14700
2258	C4H8-2+PC4H9O2=C4H7+PC4H9O2H	3.20E+12	0	14900		
	Reverse	Arrhenius	coefficients:	1.58E+11	0	14700
2259	IC4H9O2+C4H8-2=IC4H9O2H+C4H7	1.40E+12	0	14900		
	Reverse	Arrhenius	coefficients:	3.16E+11	0	13000
2260	TC4H9O2+C4H8-2=TC4H9O2H+C4H7	1.40E+12	0	14900		
	Reverse	Arrhenius	coefficients:	3.16E+11	0	13000
2261	C4H8-1+OH=NC3H7+CH2O	1.00E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.62E+12	0	13230
2262	C4H8-1+O=C3H6+CH2O	7.23E+05	2.3	-1050		
	Reverse	Arrhenius	coefficients:	2.00E+05	2.3	80280
2263	C4H8-1+O=CH3CHO+C2H4	1.30E+13	0	850		
	Reverse	Arrhenius	coefficients:	2.07E+12	0	85100
2264	C4H8-1+O=CH3CO+C2H5	1.30E+13	0	850		
	Reverse	Arrhenius	coefficients:	2.35E+12	0	38150
2265	C4H8-1+OH=CH3CHO+C2H5	1.00E+12	0	0		
	Reverse	Arrhenius	coefficients:	9.33E+12	0	19930
2266	C4H8-1+OH=CH3CO+C2H6	5.00E+11	0	0		
	Reverse	Arrhenius	coefficients:	9.83E+12	0	32430
2267	C4H8-1+O=C2H5CHO+CH2	1.30E+13	0	850		
	Reverse	Arrhenius	coefficients:	5.71E+09	0	11000
2268	C4H8-1+O=C2H5CO+CH3	1.30E+13	0	850		
	Reverse	Arrhenius	coefficients:	4.80E+11	0	32550
2269	C4H8-1+OH=C2H5CHO+CH3	1.00E+12	0	0		
	Reverse	Arrhenius	coefficients:	4.95E+10	0	16940
2270	C4H8-1+OH=C2H5CO+CH4	5.00E+11	0	0		
L	Reverse	Arrhenius	coefficients:	2.20E+13	0	34270
2271	C4H8-1+CH3CO3=C4H7+CH3CO3H	1.00E+11	0	8000		
	Reverse	Arrhenius	coefficients:	2.00E+10	0	10000
2272	C4H8-1+CH3O2=C4H7+CH3O2H	1.40E+12	0	14900		
	Reverse	Arrhenius	coefficients:	3.16E+11	0	13000
2273	C4H8-1+C2H5O2=C4H7+C2H5O2H	1.40E+12	0	14900		

Reverse Arrhenius coefficients: 3.16E+11	0	13000
2274 C4H8-1+NC3H7O2=C4H7+NC3H7O2H 1.40E+12 0 14900		
Reverse Arrhenius coefficients: 3.16E+11	0	13000
2275 C4H8-1+IC3H7O2=C4H7+IC3H7O2H 1.40E+12 0 14900		
Reverse Arrhenius coefficients: 3.16E+11	0	13000
2276 C4H8-1+PC4H9O2=C4H7+PC4H9O2H 1.40E+12 0 14900		
Reverse Arrhenius coefficients: 3.16E+11	0	13000
2277 IC4H9O2+C4H8-1=IC4H9O2H+C4H7 1.40E+12 0 14900		
Reverse Arrhenius coefficients: 3.16E+11	0	13000
2278 TC4H9O2+C4H8-1=TC4H9O2H+C4H7 1.40E+12 0 14900		
Reverse Arrhenius coefficients: 3.16E+11	0	13000
2279 IC4H9O2+C4H7=IC4H9O+C4H7O 7.00E+12 0 -1000		
Reverse Arrhenius coefficients: 5.85E+08	0.8	19580
2280 TC4H9O2+C4H7=TC4H9O+C4H7O 7.00E+12 0 -1000		
Reverse Arrhenius coefficients: 2.62E+08	0.8	20600
2281 C2H5CHO+PC4H9=C2H5CO+C4H10 1.70E+12 0 8440		
Reverse Arrhenius coefficients: 9.70E+13	0	18820
2282 C2H5CHO+SC4H9=C2H5CO+C4H10 1.70E+12 0 8440		
Reverse Arrhenius coefficients: 9.70E+13	0	18820
2283 C2H5CHO+C4H7=C2H5CO+C4H8-1 1.70E+12 0 8440		
Reverse Arrhenius coefficients: 1.00E+13	0	28000
2284 C2H5CHO+C4H7=C2H5CO+C4H8-2 1.70E+12 0 8440		
Reverse Arrhenius coefficients: 1.00E+13	0	28000
2285 C5H11O2-1=C5H11-1+O2 1.96E+20 -1.5 35810		
Reverse Arrhenius coefficients: 4.52E+12	0	0
2286 C5H11-1+C5H11O2-1=2C5H11O-1 7.00E+12 0 -1000		
Reverse Arrhenius coefficients: 3.87E+13	0	29890
2287 C5H11-1+C5H11O2-2=C5H11O-1+C5H11O-2 7.00E+12 0 -1000		
Reverse Arrhenius coefficients: 3.44E+13	0	29580
2288 C5H11O2-2=C5H11-2+O2 5.19E+17 -0.8 35970		
Reverse Arrhenius coefficients: 7.54E+12	0	0
2289 C5H11-2+C5H11O2-1=C5H11O-2+C5H11O-1 7.00E+12 0 -1000		
Reverse Arrhenius coefficients: 5.47E+10	0.7	29740
2290 C5H11-2+C5H11O2-2=2C5H11O-2 7.00E+12 0 -1000		
Reverse Arrhenius coefficients: 4.87E+10	0.7	29430
2291 C5H11O2-1=C5H10OOH1-2 2.00E+11 0 26850		
Reverse Arrhenius coefficients: 2.08E+10	-0.1	13850
2292 C5H11O2-1=C5H10OOH1-3 2.50E+10 0 20850		
Reverse Arrhenius coefficients: 2.60E+09	-0.1	7850
2293 C5H11O2-1=C5H10OOH1-4 3.12E+09 0 19050		
Reverse Arrhenius coefficients: 3.26E+08	-0.1	6050
2294 C5H11O2-1+C5H11O2-2=>O2+C5H11O- 1+C5H11O-2 1.40E+16 -1.6 1860		
2295 C5H11O2-1+CH3O2=>O2+C5H11O-1+CH3O 1.40E+16 -1.6 1860		
2296 2C5H11O-1=>O2+2C5H11O-1 1.40E+16 -1.6 1860		
2297 H2O2+C5H11O2-1=HO2+C5H11O2H-1 2.40E+12 0 10000		

		Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
	2298	C5H11O2-1+HO2=C5H11O2H-1+O2	1.75E+10	0	-3275		
		Reverse	Arrhenius	coefficients:	4.98E+13	-0.8	34480
	2299	C5H11O2-2=C5H10OOH2-3	2.00E+11	0	26850		
		Reverse	Arrhenius	coefficients:	2.70E+10	-0.1	13900
	2300	C5H11O2-2=C5H10OOH2-4	2.50E+10	0	20850		
		Reverse	Arrhenius	coefficients:	3.37E+09	-0.1	7900
	2301	C5H11O2-2+CH3O2=>O2+C5H11O-2+CH3O	1.40E+16	-1.6	1860		
	2302	2C5H11O2-2=>O2+2C5H11O-2	1.40E+16	-1.6	1860		
	2303	C5H11O2H-1=C5H11O-1+OH	1.50E+16	0	42500		
		Reverse	Arrhenius	coefficients:	1.41E+08	1.8	-3055
	2304	C5H11O-1=CH2O+PC4H9	4.24E+16	-1	20010		
		Reverse	Arrhenius	coefficients:	6.25E+10	0	11900
	2305	C5H11O-2=CH3CHO+NC3H7	1.66E+21	-2.3	20880		
		Reverse	Arrhenius	coefficients:	7.50E+10	0	11900
	2306	C5H10OOH1-3=>C5H10O1-3+OH	5.00E+10	0	15250		
	2307	C5H10OOH1-4=>C5H10O1-4+OH	6.25E+09	0	6000		
	2308	C5H10OOH2-4=>C5H10O2-4+OH	5.00E+10	0	15250		
	2309	C5H10OOH1-2=C5H10-1+HO2	5.73E+17	-1.6	15900		
		Reverse	Arrhenius	coefficients:	1.25E+11	0	8070
	2310	C5H10OOH2-3=C5H10-2+HO2	1.60E+20	-2.5	17860		
		Reverse	Arrhenius	coefficients:	1.25E+11	0	8070
	2311	C5H10OOH1-3=>OH+CH2O+C4H8-1	8.28E+13	-0.2	30090		
	2312	C5H10OOH2-4=>OH+CH3CHO+C3H6	8.31E+17	-1.4	27170		
	2313	C5H10OOH1-2O2=C5H10OOH1-2+O2	8.04E+22	-2.3	37970		
		Reverse	Arrhenius	coefficients:	7.54E+12	0	0
	2314	C5H10OOH1-3O2=C5H10OOH1-3+O2	8.04E+22	-2.3	37970		
		Reverse	Arrhenius	coefficients:	7.54E+12	0	0
	2315	C5H10OOH1-4O2=C5H10OOH1-4+O2	8.04E+22	-2.3	37970		
		Reverse	Arrhenius	coefficients:	7.54E+12	0	0
	2316	C5H10OOH2-4O2=C5H10OOH2-4+O2	7.25E+22	-2.3	37910		
		Reverse	Arrhenius	coefficients:	7.54E+12	0	0
	2317	C5H10OOH1-2O2=NC5KET12+OH	2.00E+11	0	26400		
		Reverse	Arrhenius	coefficients:	1.34E+05	1.2	48910
	2318	C5H10OOH1-3O2=NC5KET13+OH	2.50E+10	0	21400		
		Reverse	Arrhenius	coefficients:	5.33E+03	1.4	44700
	2319	C5H10OOH1-4O2=NC5KET14+OH	3.12E+09	0	19350		
		Reverse	Arrhenius	coefficients:	6.66E+02	1.4	42650
	2320	C5H10OOH2-4O2=NC5KET24+OH	1.25E+10	0	17850		
		Reverse	Arrhenius	coefficients:	2.70E+02	1.8	43880
	2321	C5H10O1-3+OH=>C2H4+C2H5CO+H2O	2.50E+12	0	0		
	2322	C5H10O1-4+OH=>CH3COCH2+C2H4+H2O	2.50E+12	0	0		
	2323	C5H10O2-4+OH=>CH3CO+C3H6+H2O	2.50E+12	0	0		
	2324	C5H10O1-3+OH=>HCO+C4H8-1+H2O	2.50E+12	0	0		
	2325	C5H10O1-4+OH=>CH2CHO+C3H6+H2O	2.50E+12	0	0		
ſ	2326	C5H10O2-4+OH=>CH3CHO+C3H5-S+H2O	2.50E+12	0	0		

2327	C5H10O1-3+HO2=>C2H4+C2H5CO+H2O2	5.00E+12	0	17700		
2328	C5H10O1-4+HO2=>CH3COCH2+C2H4+H2O2	5.00E+12	0	17700		
2329	C5H10O2-4+HO2=>CH3CO+C3H6+H2O2	5.00E+12	0	17700		
2330	C5H10O1-3+HO2=>HCO+C4H8-1+H2O2	5.00E+12	0	17700		
2331	C5H10O1-4+HO2=>CH2CHO+C3H6+H2O2	5.00E+12	0	17700		
2332	C5H10O2-4+HO2=>CH3CHO+C3H5-S+H2O2	5.00E+12	0	17700		
2333	C3H5-A+HO2=C2H3+CH2O+OH	1.00E-18	0	0		
	Reverse	Arrhenius	coefficients:	1.00E-30	0	0
2334	C3H5-T+O2=CH3COCH2+O	3.81E+17	-1.4	5580		
	Reverse	Arrhenius	coefficients:	2.00E+11	0	17500
2335	NC5KET12=>NC3H7CHO+HCO+OH	1.05E+16	0	41600		
2336	NC5KET13=>C2H5CHO+CH2CHO+OH	1.05E+16	0	41600		
2337	NC5KET14=>CH3CHO+CH2CH2CHO+OH	1.05E+16	0	41600		
2338	NC5KET24=>CH3CHO+CH3COCH2+OH	1.50E+16	0	42000		
2339	HCCO+O2=CO2+HCO	2.40E+11	0	-854		
	Reverse	Arrhenius	coefficients:	1.47E+14	0	133600
2340	C2H4+H2=2CH3	3.77E+12	0.8	84710		
	Reverse	Arrhenius	coefficients:	1.00E+14	0	32000
2341	IC3H6CO+H=>IC3H7+CO	4.40E+12	0	1459		
2342	IC3H6CO+O=>CH3COCH3+CO	3.20E+12	0	-437		
2343	CH3CHCHO+HO2=C2H5CHO+O2	7.35E+12	0	1310		
	Reverse	Arrhenius	coefficients:	8.07E+13	-0.1	45070
2344	CH3CHCHO+HO2=CH3CHOCHO+OH	9.64E+12	0	0		
	Reverse	Arrhenius	coefficients:	1.55E+16	-1	21740
2345	СН3СНОСНО=СН3СНО+НСО	3.98E+13	0	9700		
	Reverse	Arrhenius	coefficients:	4.34E+05	1.7	8282
2346	C2H5CHO+HO2=CH3CHCHO+H2O2	8.00E+10	0	11920		
	Reverse	Arrhenius	coefficients:	1.03E+13	-0.6	9337
2347	CH3CHCHO+O2=CH3CHCO+HO2	1.81E+11	0	1840		
	Reverse	Arrhenius	coefficients:	2.73E+10	0	12690
2348	CH3CHCHO+O2=C2H3CHO+HO2	2.72E+11	0	7240		
	Reverse	Arrhenius	coefficients:	1.73E+11	-0.2	19040
2349	CH3CHCHO+O2=>CH3CHO+CO+OH	3.62E+10	0	0		
2350	NC3H7COC2H4P=NC3H7CO+C2H4	5.40E+17	-1.4	26040		
	Reverse	Arrhenius	coefficients:	2.50E+11	0	7800
2351	NEOC5H9Q2=>IC4H7OOH+CH2O+OH	3.42E+14	0.4	30920		
2352	C5H11-1+HO2=C5H11O-1+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	8.08E+15	-0.6	27010
2353	С5Н11-2+НО2=С5Н11О-2+ОН	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.14E+13	0.1	26860
2354	C5H11-1+CH3O2=C5H11O-1+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.89E+17	-1.2	31770
2355	C5H11-2+CH3O2=C5H11O-2+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.12E+15	-0.4	31620
2356	C6H13-1+O2=C6H12-1+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500

2357	C6H13-2+O2=C6H12-1+HO2	4.50E-19	0	5020		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2358	C6H13-2+O2=C6H12-2+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2359	C6H13-3+O2=C6H12-2+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2360	C6H13-3+O2=C6H12-3+HO2	3.00E-19	0	3000		
	Reverse	Arrhenius	coefficients:	2.00E-19	0	17500
2361	C6H13-1=C2H4+PC4H9	5.45E+17	-1.3	29580		
	Reverse	Arrhenius	coefficients:	3.30E+11	0	7200
2362	C6H13-1=C6H12-1+H	2.09E+16	-0.9	37940		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2363	C6H13-2=C3H6+NC3H7	2.08E+16	-0.9	29400		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7200
2364	C6H13-2=C6H12-1+H	1.36E+15	-0.6	38760		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	1200
2365	C6H13-2=C6H12-2+H	2.76E+15	-0.7	37590		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2366	C6H13-3=C4H8-1+C2H5	5.61E+17	-1.3	29600		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7200
2367	C6H13-3=C5H10-1+CH3	6.27E+12	0	28680		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	7200
2368	С6Н13-3=С6Н12-2+Н	2.76E+15	-0.7	37590		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2369	С6Н13-3=С6Н12-3+Н	1.01E+15	-0.7	37680		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2370	C6H13-1=C6H13-2	5.48E+08	1.6	38760		
	Reverse	Arrhenius	coefficients:	3.56E+07	2	41270
2371	C6H13-1=C6H13-3	1.50E+09	1	33760		
	Reverse	Arrhenius	coefficients:	9.71E+07	1.3	36270
2372	C6H12-1+OH=C6H11+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	9.76E+14	-0.1	39260
2373	C6H12-2+OH=C6H11+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	1.99E+15	-0.3	36380
2374	C6H12-3+OH=C6H11+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.28E+14	-0.2	36480
2375	C6H12-1+H=C6H11+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.78E+14	-0.1	26770
2376	C6H12-2+H=C6H11+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	5.66E+14	-0.3	23900
2377	C6H12-3+H=C6H11+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.07E+14	-0.2	23990
2378	C6H12-1+CH3=C6H11+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	1.96E+14	-0.1	30650
2379	C6H12-2+CH3=C6H11+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.99E+14	-0.3	27780

1		1	1	1	1	1
2380	C6H12-3+CH3=C6H11+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	1.46E+14	-0.2	27870
2381	C6H12-1+O=C6H11+OH	2.12E+11	0.1	9125		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2382	C6H12-2+O=C6H11+OH	1.04E+11	0.3	12000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2383	C6H12-3+O=C6H11+OH	2.84E+11	0.2	11900		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2384	C6H12-1+OH=>C5H11-1+CH2O	1.00E+11	0	-4000		
2385	C6H12-2+OH=>PC4H9+CH3CHO	1.00E+11	0	-4000		
2386	C6H12-3+OH=>PC4H9+CH3CHO	1.00E+11	0	-4000		
2387	C6H12-1+O=>C5H11-1+HCO	1.00E+11	0	-1050		
2388	C6H12-2+O=>PC4H9+CH3CO	1.00E+11	0	-1050		
2389	C6H11=C3H6+C3H5-A	2.50E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+10	0	17000
2390	C6H11=C4H8-1+C2H3	2.50E-17	0	45000		
	Reverse	Arrhenius	coefficients:	1.50E-20	0	7400
2391	C6H11=C4H7+C2H4	2.50E-17	0	45000		
	Reverse	Arrhenius	coefficients:	1.50E-20	0	7400
2392	C6H12-1=NC3H7+C3H5-A	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2393	C6H12-2=C2H5+C4H7	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2394	C6H12-3=CH3+C5H9	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2395	C6H13O2-1=C6H13-1+O2	5.15E+20	-1.7	35780		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
2396	C6H13-1+C6H13O2-1=2C6H13O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	9.78E+13	-0.2	29840
2397	C6H13O2-1=C6H12OOH1-2	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.40E+10	-0.1	13860
2398	C6H13O2-1=C6H12OOH1-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	3.00E+09	-0.1	7860
2399	C6H13O2-1=C6H12OOH1-4	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.75E+08	-0.1	6060
2400	C6H13O2-1+HO2=C6H13O2H-1+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	4.70E+13	-0.8	34460
2401	C6H13O2-1+H2O2=C6H13O2H-1+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2402	C6H13O2-1+CH3O2=>C6H13O-1+CH3O+O2	1.40E+16	-1.6	1860		
2403	2C6H13O2-1=>O2+2C6H13O-1	1.40E+16	-1.6	1860		
2404	С6Н13О2Н-1=С6Н13О-1+ОН	1.50E+16	0	42500		
	Reverse	Arrhenius	coefficients	1.46E+08	1.7	-3045
2405	C6H13O-1=C5H11-1+CH2O	1.81E+17	-1.1	20300		2010
2100	Reverse	Arrhenius	coefficients	1.00E+11	0	11900
2406	C6H12OOH1-2=>C6H12O1 2±OH	6 00E+11	0	22000	0	11700
2400	Сонт200н1-2-200н1201-2-0п	0.001 -11	U	22000	L	1

2407	C6H12OOH1-3=>C6H12O1-3+OH	7.50E+10	0	15250		
2408	C6H12OOH1-4=>C6H12O1-4+OH	9.38E+09	0	7000		
2409	C6H12OOH1-2=C6H12-1+HO2	1.35E+19	-2	20570		
	Reverse	Arrhenius	coefficients:	1.62E+11	0	12690
2410	C6H12OOH1-3=>OH+CH2O+C5H10-1	7.70E+13	-0.2	30090		
2411	C6H12OOH1-2O2=C6H12OOH1-2+O2	8.87E+22	-2.3	37980		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2412	C6H12OOH1-3O2=C6H12OOH1-3+O2	8.87E+22	-2.3	37980		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2413	C6H12OOH1-4O2=C6H12OOH1-4+O2	8.87E+22	-2.3	37980		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2414	C6H12OOH1-2O2=NC6KET12+OH	2.00E+11	0	26400		
	Reverse	Arrhenius	coefficients:	1.25E-11	6	39660
2415	C6H12OOH1-3O2=NC6KET13+OH	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	4.24E+03	1.4	44670
2416	C6H12OOH1-4O2=NC6KET14+OH	3.12E+09	0	19350		
	Reverse	Arrhenius	coefficients:	5.30E+02	1.4	42620
2417	NC6KET12=>NC4H9CHO+HCO+OH	1.05E+16	0	41600		
2418	NC6KET13=>NC3H7CHO+CH2CHO+OH	1.05E+16	0	41600		
2419	NC6KET14=>C2H5CHO+CH2CH2CHO+OH	1.05E+16	0	41600		
2420	C6H12O1-2+OH=>C2H3CHO+NC3H7+H2O	2.50E+12	0	0		
2421	C6H12O1-3+OH=>C5H10-1+HCO+H2O	2.50E+12	0	0		
2422	C6H12O1-4+OH=>C4H8-1+CH2CHO+H2O	2.50E+12	0	0		
2423	C6H12O1-2+OH=>CH2CO+PC4H9+H2O	2.50E+12	0	0		
2424	C6H12O1-3+OH=>C2H4+NC3H7CO+H2O	2.50E+12	0	0		
2425	C6H12O1-4+OH=>C2H4+C2H5COCH2+H2O	2.50E+12	0	0		
2426	C6H12O1-2+HO2=>C2H3CHO+NC3H7+H2O2	5.00E+12	0	17700		
2427	C6H12O1-3+HO2=>C5H10-1+HCO+H2O2	5.00E+12	0	17700		
2428	C6H12O1-4+HO2=>C4H8-1+CH2CHO+H2O2	5.00E+12	0	17700		
2429	C6H12O1-2+HO2=>CH2CO+PC4H9+H2O2	5.00E+12	0	17700		
2430	C6H12O1-3+HO2=>C2H4+NC3H7CO+H2O2	5.00E+12	0	17700		
2431	C6H12O1-4+HO2=>C2H4+C2H5COCH2+H2O2	5.00E+12	0	17700		
2432	C6H13-1+HO2=C6H13O-1+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	2.08E+16	-0.8	26970
2433	C6H13-1+CH3O2=C6H13O-1+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	2.04E+18	-1.4	31740
2434	C7H15-1=C5H11-1+C2H4	8.16E+17	-1.4	30840		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	8200
2435	C7H15-1=C7H14-1+H	4.20E+16	-0.9	37940		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2436	C7H15-2=PC4H9+C3H6	2.22E+16	-0.9	30130		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	8200
2437	C7H15-2=C7H14-1+H	1.34E+15	-0.6	38760		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	1200
2438	C7H15-2=C7H14-2+H	2.71E+15	-0.7	37590		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900

2439	C7H15-3=C4H8-1+NC3H7	9.63E+17	-1.4	30580		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7700
2440	C7H15-3=C6H12-1+CH3	1.03E+14	-0.4	28690		
	Reverse	Arrhenius	coefficients:	1.75E+11	0	7200
2441	C7H15-3=C7H14-2+H	2.71E+15	-0.7	37590		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2442	C7H15-3=C7H14-3+H	2.02E+15	-0.7	37680		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2443	C7H15-4=C2H5+C5H10-1	5.43E+16	-0.9	30590		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	8200
2444	C7H15-4=C7H14-3+H	4.02E+15	-0.7	37680		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	2900
2445	C7H15-1+O2=C7H14-1+HO2	3.00E-09	0	3000		
	Reverse	Arrhenius	coefficients:	2.44E-10	0.3	17920
2446	C7H15-2+O2=C7H14-1+HO2	4.50E-09	0	5020		
	Reverse	Arrhenius	coefficients:	1.15E-08	-0.1	17420
2447	C7H15-2+O2=C7H14-2+HO2	3.00E-09	0	3000		
	Reverse	Arrhenius	coefficients:	3.79E-09	0.1	18270
2448	C7H15-3+O2=C7H14-2+HO2	3.00E-09	0	3000		
	Reverse	Arrhenius	coefficients:	3.79E-09	0.1	18270
2449	C7H15-3+O2=C7H14-3+HO2	3.00E-09	0	3000		
	Reverse	Arrhenius	coefficients:	5.09E-09	0	18180
2450	C7H15-4+O2=C7H14-3+HO2	6.00E-09	0	3000		
	Reverse	Arrhenius	coefficients:	5.11E-09	0	18180
2451	C7H15-1=C7H15-3	1.39E+09	1	33760		
	Reverse	Arrhenius	coefficients:	4.41E+07	1.4	36280
2452	C7H15-1=C7H15-4	2.54E+09	0.3	19760		
	Reverse	Arrhenius	coefficients:	1.61E+08	0.7	22280
2453	C7H15-2=C7H15-3	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
2454	C7H15-1=C7H15-2	5.48E+08	1.6	38760		
	Reverse	Arrhenius	coefficients:	1.74E+07	2	41280
2455	C7H14-1+OH=C7H13+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2456	C7H14-2+OH=C7H13+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	1.60E+15	-0.6	33600
2457	C7H14-3+OH=C7H13+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	1.19E+15	-0.6	33700
2458	C7H14-1+H=C7H13+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2459	C7H14-2+H=C7H13+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	4.57E+14	-0.6	21120
2460	C7H14-3+H=C7H13+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	3.40E+14	-0.6	21210
2461	C7H14-1+CH3=C7H13+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	1.59E+14	-0.5	27870

2462	C7H14-2+CH3=C7H13+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2463	C7H14-3+CH3=C7H13+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	2.40E+14	-0.6	25090
2464	С7Н14-1+О=С7Н13+ОН	2.62E+11	0.5	11900		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2465	С7Н14-2+О=С7Н13+ОН	1.29E+11	0.6	14780		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2466	С7Н14-3+О=С7Н13+ОН	1.73E+11	0.6	14680		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2467	C7H14-1+OH=>CH2O+C6H13-1	1.00E+11	0	-4000		
2468	C7H14-1+OH=>CH3CHO+C5H11-1	1.00E+11	0	-4000		
2469	C7H14-2+OH=>CH3CHO+C5H11-1	1.00E+11	0	-4000		
2470	C7H14-2+OH=>C2H5CHO+PC4H9	1.00E+11	0	-4000		
2471	C7H14-3+OH=>C2H5CHO+PC4H9	1.00E+11	0	-4000		
2472	C7H14-1+O=>CH2CHO+C5H11-1	1.00E+11	0	-1050		
2473	C7H14-2+O=>CH3CHO+C5H10-1	1.00E+11	0	-1050		
2474	C7H14-3+O=>CH3CHO+C5H10-1	1.00E+11	0	-1050		
2475	C7H13=C3H5-A+C4H8-1	2.50E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	9600
2476	C7H13=C4H7+C3H6	2.50E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	9600
2477	C7H14-1=PC4H9+C3H5-A	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2478	C7H14-2=C4H7+NC3H7	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2479	C7H14-3=C4H7+NC3H7	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2480	C7H15O2-1=C7H15-1+O2	2.66E+20	-1.7	35400		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
2481	C7H15O2-4=C7H15-4+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2482	C7H15-1+C7H15O2-1=2C7H15O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	5.56E+13	-0.2	30260
2483	C7H15O2-1=C7H14OOH1-2	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.12E+10	-0.1	14240
2484	C7H15O2-1=C7H14OOH1-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2485	C7H15O2-1=C7H14OOH1-4	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2486	C7H15O2-4=C7H14OOH4-2	5.00E+10	0	20850		
	Reverse	Arrhenius	coefficients:	5.66E+09	-0.1	8270
2487	C7H15O2-1+HO2=C7H15O2H-1+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.02E+13	-0.8	34870
2488	H2O2+C7H15O2-1=HO2+C7H15O2H-1	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000

2489	C7H15O2-1+CH3O2=>C7H15O-1+CH3O+O2	1.40E+16	-1.6	1860		
2490	2C7H15O2-1=>O2+2C7H15O-1	1.40E+16	-1.6	1860		
2491	С7Н15О2Н-1=С7Н15О-1+ОН	1.50E+16	0	42500		
	Reverse	Arrhenius	coefficients:	1.43E+08	1.7	-3055
2492	C7H15O-1=CH2O+C6H13-1	4.68E+17	-1.3	20260		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2493	C7H14OOH1-2=C7H14-1+HO2	7.66E+18	-2	18400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	10530
2494	C7H14OOH1-3=>C7H14O1-3+OH	7.50E+10	0	15250		
2495	C7H14OOH1-4=>C7H14O1-4+OH	9.38E+09	0	7000		
2496	C7H14OOH1-3=>OH+CH2O+C6H12-1	8.12E+13	-0.1	31090		
2497	C7H14OOH4-2=>OH+NC3H7CHO+C3H6	1.30E+18	-1.5	26800		
2498	C7H14OOH1-2O2=C7H14OOH1-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2499	C7H14OOH1-3O2=C7H14OOH1-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2500	C7H14OOH1-4O2=C7H14OOH1-4+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2501	C7H14OOH4-2O2=C7H14OOH4-2+O2	6.97E+22	-2.4	37600		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2502	C7H14OOH1-2O2=NC7KET12+OH	2.00E+11	0	26400		
	Reverse	Arrhenius	coefficients:	1.38E+05	1.2	46790
2503	C7H14OOH1-3O2=NC7KET13+OH	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	3.30E+03	1.4	45040
2504	C7H14OOH1-4O2=NC7KET14+OH	3.12E+09	0	19350		
	Reverse	Arrhenius	coefficients:	4.13E+02	1.4	42990
2505	C7H14OOH4-2O2=NC7KET42+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
2506	NC7KET12=>NC5H11CHO+HCO+OH	1.05E+16	0	41600		
2507	NC7KET13=>NC4H9CHO+CH2CHO+OH	1.05E+16	0	41600		
2508	NC7KET14=>NC3H7CHO+CH2CH2CHO+OH	1.05E+16	0	41600		
2509	NC7KET42=>CH3CHO+NC3H7COCH2+OH	1.05E+16	0	41600		
2510	C7H14O1-3+OH=>C6H12-1+HCO+H2O	2.50E+12	0	0		
2511	C7H14O1-4+OH=>C5H10-1+CH2CHO+H2O	2.50E+12	0	0		
2512	C7H14O1-3+OH=>C2H4+NC4H9CO+H2O	2.50E+12	0	0		
2513	C7H14O1-4+OH=>C2H4+NC3H7COCH2+H2O	2.50E+12	0	0		
2514	C7H14O1-3+HO2=>C6H12-1+HCO+H2O2	5.00E+12	0	17700		
2515	C7H14O1-4+HO2=>C5H10-1+CH2CHO+H2O2	5.00E+12	0	17700		
2516	C7H14O1-3+HO2=>C2H4+NC4H9CO+H2O2	5.00E+12	0	17700		
2517	C7H14O1- 4+HO2=>C2H4+NC3H7COCH2+H2O2	5 00F+12	0	17700		
2517	NC5H11CHO+O2=NC5H11CO+HO2	2.00E+13	0.5	42200		
2010	Reverse	Arrhenius	coefficients.	1.00E+07	0	40000
2519	NC5H11CH0+0H=NC5H11C0+H20	2.69E+10	0.8	-340	Ŭ Ŭ	
2317	Reverse	Arrhenius	coefficients.	1.74E+10	0.8	31200
2520	NC5H11CHO+H=NC5H11CO+H2	4.00E+13	0	42.00	0.0	51200
			~	.200	L	1

	Reverse	Arrhenius	coefficients:	1.80E+13	0	24000
2521	NC5H11CHO+O=NC5H11CO+OH	5.00E+12	0	1790		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	19000
2522	NC5H11CHO+HO2=NC5H11CO+H2O2	2.80E+12	0	13600		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	10000
2523	NC5H11CHO+CH3=NC5H11CO+CH4	1.70E+12	0	8440		
	Reverse	Arrhenius	coefficients:	1.50E+13	0	28000
2524	NC5H11CHO+CH3O=NC5H11CO+CH3OH	1.15E+11	0	1280		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	18000
2525	NC5H11CHO+CH3O2=NC5H11CO+CH3O2H	1.00E+12	0	9500		
	Reverse	Arrhenius	coefficients:	2.50E+10	0	10000
2526	NC5H11CHO+OH=C5H10CHO-1+H2O	5.27E+09	1	1586		
	Reverse	Arrhenius	coefficients:	1.07E+09	1	21010
2527	NC5H11CHO+OH=C5H10CHO-2+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	1.75E+06	1.9	23880
2528	NC5H11CHO+OH=C5H10CHO-3+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	1.75E+06	1.9	23880
2529	NC5H11CHO+OH=C5H10CHO-4+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	1.75E+06	1.9	23880
2530	NC5H11CHO+OH=C5H10CHO-5+H2O	4.67E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	3.32E+09	1.2	30840
2531	NC5H11CO=C5H11-1+CO	1.00E+11	0	9600		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	0
2532	NC5H11CHO+HO2=C5H10CHO-1+H2O2	2.76E+04	2.5	16480		
	Reverse	Arrhenius	coefficients:	3.33E+04	2.2	4442
2533	NC5H11CHO+HO2=C5H10CHO-2+H2O2	1.48E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	3.28E+03	2.5	6362
2534	NC5H11CHO+HO2=C5H10CHO-3+H2O2	1.48E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	3.28E+03	2.5	6362
2535	NC5H11CHO+HO2=C5H10CHO-4+H2O2	1.48E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	3.28E+03	2.5	6362
2536	NC5H11CHO+HO2=C5H10CHO-5+H2O2	2.95E+04	2.6	13910		
	Reverse	Arrhenius	coefficients:	1.24E+07	1.9	13320
2537	NC5H11CHO+CH3O2=C5H10CHO-1+CH3O2H	6.03E+12	0	19380		
	Reverse	Arrhenius	coefficients:	2.99E+13	-0.5	6617
2538	NC5H11CHO+CH3O2=C5H10CHO-2+CH3O2H	1.99E+12	0	17050		
	Reverse	Arrhenius	coefficients:	1.82E+12	-0.3	8784
2539	NC5H11CHO+CH3O2=C5H10CHO-3+CH3O2H	1.99E+12	0	17050		
	Reverse	Arrhenius	coefficients:	1.82E+12	-0.3	8784
2540	NC5H11CHO+CH3O2=C5H10CHO-4+CH3O2H	1.99E+12	0	17050		
	Reverse	Arrhenius	coefficients:	1.82E+12	-0.3	8784
2541	NC5H11CHO+CH3O2=C5H10CHO-5+CH3O2H	3.98E+12	0	17050		
	Reverse	Arrhenius	coefficients:	6.90E+15	-0.9	15740
2542	C5H10CHO-1=C2H4+C3H6CHO-1	2.68E+18	-1.6	30410		
	Reverse	Arrhenius	coefficients:	2.50E+11	0	7800
2543	С5Н10СНО-2=С3Н6+СН2СН2СНО	9.38E+17	-1.3	31970		

	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2544	C5H10CHO-3=C4H8-1+CH2CHO	6.27E+16	-1.4	25990		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2545	C5H10CHO-4=AC3H5CHO+C2H5	7.19E+17	-1.4	33230		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2546	C5H10CHO-4=C5H10-1+HCO	1.06E+14	-0.4	26330		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2547	C5H10CHO-5=C2H3CHO+NC3H7	1.56E+19	-1.5	33310		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	7800
2548	C4H7CO1-4=C4H7+CO	2.79E+09	0.5	-160		
	Reverse	Arrhenius	coefficients:	1.50E+11	0	4810
2549	NC4H9COCH3+OH=NC4H9COCH2+H2O	5.10E+11	0	1192		
	Reverse	Arrhenius	coefficients:	6.79E+13	-0.7	27680
2550	NC4H9COCH3+HO2=NC4H9COCH2+H2O2	2.38E+04	2.5	14690		
	Reverse	Arrhenius	coefficients:	1.88E+07	1.5	9712
2551	NC4H9COCH3+CH3O2=NC4H9COCH2+CH3O 2H	3.01E+12	0	17580		
2331	Reverse	Arrhenius	coefficients:	9 77F+15	-1.2	11880
2552	NC4H9COCH2=PC4H9+CH2CO	1 55E+18	-1 4	43140	1.2	11000
2002	Reverse	Arrhenius	coefficients:	1.00E+11	0	11600
2553	C7H14OOH1-3=C4H7OOH1-4+NC3H7	3.82E+14	-0.7	27470	Ŭ	11000
	Reverse	Arrhenius	coefficients:	8.50E+10	0	7800
2554	C7H14OOH1-4=>C5H10-1+C2H4+HO2	2.44E+16	-1.1	29450	Ŭ	,000
2555	C7H15-1+HO2=C7H15O-1+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.13E+16	-0.8	26980
2556	C7H15-1+CH3O2=C7H15O-1+CH3O	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.10E+18	-1.3	31750
2557	C4H7OOH1-4=C4H7O1-4+OH	2.02E+20	-1.5	47040		
	Reverse	Arrhenius	coefficients:	2.00E+13	0	0
2558	C4H7O1-4=CH2O+C3H5-A	2.41E+16	-1.1	7550		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11900
2559	C10H21-1+H=NC10H22	1.00E+14	0	0		
2560	C10H21-2+H=NC10H22	1.00E+14	0	0		
2561	C10H21-3+H=NC10H22	1.00E+14	0	0		
2562	C10H21-4+H=NC10H22	1.00E+14	0	0		
2563	C10H21-5+H=NC10H22	1.00E+14	0	0		
2564	C9H19-1+CH3=NC10H22	1.00E+13	0	0		
2565	C8H17-1+C2H5=NC10H22	8.00E+12	0	0		
2566	C7H15-1+NC3H7=NC10H22	8.00E+12	0	0		
2567	C6H13-1+PC4H9=NC10H22	8.00E+12	0	0		
2568	2C5H11-1=NC10H22	8.00E+12	0	0		
2569	NC10H22+H=C10H21-1+H2	1.88E+05	2.8	6280		
	Reverse	Arrhenius	coefficients:	8.93E+03	2.7	10550
2570	NC10H22+H=C10H21-2+H2	2.60E+06	2.4	4471		
	Reverse	Arrhenius	coefficients:	3.93E+03	2.7	11260
2571	NC10H22+H=C10H21-3+H2	2.60E+06	2.4	4471		

	Reverse	Arrhenius	coefficients:	3.93E+03	2.7	11260
2572	NC10H22+H=C10H21-4+H2	2.60E+06	2.4	4471		
	Reverse	Arrhenius	coefficients:	3.93E+03	2.7	11260
2573	NC10H22+H=C10H21-5+H2	2.60E+06	2.4	4471		
	Reverse	Arrhenius	coefficients:	3.93E+03	2.7	11260
2574	NC10H22+OH=C10H21-1+H2O	1.05E+10	1	1590		
	Reverse	Arrhenius	coefficients:	1.50E+10	1.1	23330
2575	NC10H22+OH=C10H21-2+H2O	9.40E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.15E+05	1.9	21910
2576	NC10H22+OH=C10H21-3+H2O	9.40E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.15E+05	1.9	21910
2577	NC10H22+OH=C10H21-4+H2O	9.40E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.15E+05	1.9	21910
2578	NC10H22+OH=C10H21-5+H2O	9.40E+07	1.6	-35		
	Reverse	Arrhenius	coefficients:	6.15E+05	1.9	21910
2579	NC10H22+O=C10H21-1+OH	1.93E+05	2.7	3716		
	Reverse	Arrhenius	coefficients:	4.02E+03	2.6	5893
2580	NC10H22+O=C10H21-2+OH	9.54E+04	2.7	2106		
	Reverse	Arrhenius	coefficients:	6.33E+01	3	6798
2581	NC10H22+O=C10H21-3+OH	9.54E+04	2.7	2106		
	Reverse	Arrhenius	coefficients:	6.33E+01	3	6798
2582	NC10H22+O=C10H21-4+OH	9.54E+04	2.7	2106		
	Reverse	Arrhenius	coefficients:	6.33E+01	3	6798
2583	NC10H22+O=C10H21-5+OH	9.54E+04	2.7	2106		
	Reverse	Arrhenius	coefficients:	6.33E+01	3	6798
2584	NC10H22+HO2=C10H21-1+H2O2	1.68E+13	0	20440		
	Reverse	Arrhenius	coefficients:	2.05E+13	-0.4	8399
2585	NC10H22+HO2=C10H21-2+H2O2	1.12E+13	0	17690		
	Reverse	Arrhenius	coefficients:	4.35E+11	0	8165
2586	NC10H22+HO2=C10H21-3+H2O2	1.12E+13	0	17690		
	Reverse	Arrhenius	coefficients:	4.35E+11	0	8165
2587	NC10H22+HO2=C10H21-4+H2O2	1.12E+13	0	17690		
	Reverse	Arrhenius	coefficients:	4.35E+11	0	8165
2588	NC10H22+HO2=C10H21-5+H2O2	1.12E+13	0	17690		
	Reverse	Arrhenius	coefficients:	4.35E+11	0	8165
2589	NC10H22+CH3=C10H21-1+CH4	9.04E-01	3.6	7154		
	Reverse	Arrhenius	coefficients:	1.12E+00	3.6	11910
2590	NC10H22+CH3=C10H21-2+CH4	5.41E+04	2.3	7287		
	Reverse	Arrhenius	coefficients:	2.14E+03	2.6	14550
2591	NC10H22+CH3=C10H21-3+CH4	5.41E+04	2.3	7287		
	Reverse	Arrhenius	coefficients:	2.14E+03	2.6	14550
2592	NC10H22+CH3=C10H21-4+CH4	5.41E+04	2.3	7287		
	Reverse	Arrhenius	coefficients:	2.14E+03	2.6	14550
2593	NC10H22+CH3=C10H21-5+CH4	5.41E+04	2.3	7287		
	Reverse	Arrhenius	coefficients:	2.14E+03	2.6	14550
2594	NC10H22+O2=C10H21-1+HO2	6.00E+13	0	52800		

	Reverse	Arrhenius	coefficients:	5.18E+10	0.3	-406
2595	NC10H22+O2=C10H21-2+HO2	4.00E+13	0	50150		
	Reverse	Arrhenius	coefficients:	1.10E+09	0.7	-541
2596	NC10H22+O2=C10H21-3+HO2	4.00E+13	0	50150		
	Reverse	Arrhenius	coefficients:	1.10E+09	0.7	-541
2597	NC10H22+O2=C10H21-4+HO2	4.00E+13	0	50150		
	Reverse	Arrhenius	coefficients:	1.10E+09	0.7	-541
2598	NC10H22+O2=C10H21-5+HO2	4.00E+13	0	50150		
	Reverse	Arrhenius	coefficients:	1.10E+09	0.7	-541
2599	NC10H22+C2H3=C10H21-1+C2H4	1.00E+12	0	18000		
	Reverse	Arrhenius	coefficients:	2.57E+12	0	25400
2600	NC10H22+C2H3=C10H21-2+C2H4	8.00E+11	0	16800		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	24200
2601	NC10H22+C2H3=C10H21-3+C2H4	8.00E+11	0	16800		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	24200
2602	NC10H22+C2H3=C10H21-4+C2H4	8.00E+11	0	16800		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	24200
2603	NC10H22+C2H3=C10H21-5+C2H4	8.00E+11	0	16800		
	Reverse	Arrhenius	coefficients:	2.00E+12	0	24200
2604	NC10H22+C2H5=C10H21-1+C2H6	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
2605	NC10H22+C2H5=C10H21-2+C2H6	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2606	NC10H22+C2H5=C10H21-3+C2H6	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2607	NC10H22+C2H5=C10H21-4+C2H6	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2608	NC10H22+C2H5=C10H21-5+C2H6	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2609	NC10H22+C10H21O2-1=C10H21- 1+C10H21O2H-1	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
2610	NC10H22+C10H21O2-1=C10H21- 2+C10H21O2H-1	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2611	NC10H22+C10H21O2-1=C10H21- 3+C10H21O2H_1	1.00E+11	0	10400		
2011	Reverse	Arrhenius	coefficients:	1 00F+11	0	12900
2612	NC10H22+C10H2102-1=C10H21-	1.00E+11	0	10400	0	12900
2012	4+C10H2102H-1		0	1.00E+11	0	12000
	NC10H22+C10H21O2-1=C10H21-	Armenius	coefficients:	1.00E+11	0	12900
2613	5+C10H21O2H-1	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2614	1+C10H21O2H-2	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
2615	2+C10H21O2H-2	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900

2616	NC10H22+C10H21O2-2=C10H21- 3+C10H21O2H 2	1 00E+11	0	10400		
2010	B			1.00E+11	0	12000
	NC10H22+C10H21O2-2=C10H21-	Arrnenius	coefficients:	1.00E+11	0	12900
2617	4+C10H2102H-2	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2618	NC10H22+C10H21O2-2=C10H21- 5+C10H21O2H-2	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2619	NC10H22+C10H21O2-3=C10H21- 1+C10H21O2H-3	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
2620	NC10H22+C10H21O2-3=C10H21- 2+C10H21O2H-3	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2621	NC10H22+C10H21O2-3=C10H21- 3+C10H21O2H-3	1.00F+11	0	10400		
2021	Reverse	Arrhenius	coefficients	1 00E+11	0	12900
2622	NC10H22+C10H21O2-3=C10H21- 4+C10H21O2H-3	1 00E+11	0	10400	0	12700
2022	Pavarsa	Arrhenius	coefficients:	1 00E+11	0	12000
	NC10H22+C10H21O2-3=C10H21-	Annenius	coefficients.	1.001+11	0	12,000
2623	5+C10H21O2H-3	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2624	NC10H22+C10H21O2-4=C10H21- 1+C10H21O2H-4	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
2625	NC10H22+C10H21O2-4=C10H21- 2+C10H21O2H-4	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2626	NC10H22+C10H21O2-4=C10H21- 3+C10H21O2H-4	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2627	NC10H22+C10H21O2-4=C10H21- 4+C10H21O2H 4	$1.00E \pm 11$	0	10400		
2027	8			1.00E+11	0	12000
	NC10H22+C10H21O2-4=C10H21-	Arrnenius	coefficients:	1.00E+11	0	12900
2628	5+C10H21O2H-4	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2629	NC10H22+C10H21O2-5=C10H21- 1+C10H21O2H-5	1.00E+11	0	13400		
	Reverse	Arrhenius	coefficients:	3.20E+11	0	12300
2630	NC10H22+C10H21O2-5=C10H21- 2+C10H21O2H-5	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2631	NC10H22+C10H21O2-5=C10H21- 3+C10H21O2H-5	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2632	NC10H22+C10H21O2-5=C10H21- 4+C10H21O2H-5	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	12900
2633	NC10H22+C10H21O2-5=C10H21- 5+C10H21O2H-5	1.00E+11	0	10400		
	Reverse	Arrhenius	coefficients	1.00E+11	0	12900
2634	C2H4+C8H17-1=C10H21-1	1 00F+11	0	8200		12,00
2635	H+C10H20_1=C10H21_1	1 00E+11	0	2900		
2033	C2H6+C7H15 1-C10H21 2	1.00E+13	0	2700		
2030	C3H0TC/H13-1=C10H21-2	1.00E+11	U	8200		

- 1		1	1	1	1	1	1
	2637	H+C10H20-1=C10H21-2	1.00E+13	0	1200		
ļ	2638	H+C10H20-2=C10H21-2	1.00E+13	0	2900		
ļ	2639	C4H8-1+C6H13-1=C10H21-3	1.00E+11	0	8200		
	2640	CH3+C9H18-1=C10H21-3	1.00E+11	0	8200		
	2641	H+C10H20-2=C10H21-3	1.00E+13	0	2900		
	2642	H+C10H20-3=C10H21-3	1.00E+13	0	2900		
	2643	C5H10-1+C5H11-1=C10H21-4	1.00E+11	0	8200		
	2644	C2H5+C8H16-1=C10H21-4	1.00E+11	0	8200		
	2645	H+C10H20-3=C10H21-4	1.00E+13	0	2900		
ĺ	2646	H+C10H20-4=C10H21-4	1.00E+13	0	2900		
	2647	C6H12-1+PC4H9=C10H21-5	1.00E+11	0	8200		
	2648	NC3H7+C7H14-1=C10H21-5	1.00E+11	0	8200		
	2649	H+C10H20-4=C10H21-5	1.00E+13	0	2900		
	2650	H+C10H20-5=C10H21-5	1.00E+13	0	2900		
ĺ	2651	C2H4+C7H15-1=C9H19-1	1.00E+11	0	8200		
ĺ	2652	H+C9H18-1=C9H19-1	1.00E+13	0	2900		
ĺ	2653	C3H6+C6H13-1=C9H19-2	1.00E+11	0	8200		
ĺ	2654	H+C9H18-1=C9H19-2	1.00E+13	0	1200		
ĺ	2655	H+C9H18-2=C9H19-2	1.00E+13	0	2900		
Ì	2656	C4H8-1+C5H11-1=C9H19-3	1.00E+11	0	8200		
Ì	2657	CH3+C8H16-1=C9H19-3	1.00E+11	0	8200		
ĺ	2658	H+C9H18-2=C9H19-3	1.00E+13	0	2900		
Ì	2659	H+C9H18-3=C9H19-3	1.00E+13	0	2900		
Ì	2660	C5H10-1+PC4H9=C9H19-4	1.00E+11	0	8200		
Ì	2661	C2H5+C7H14-1=C9H19-4	1.00E+11	0	8200		
Ì	2662	H+C9H18-3=C9H19-4	1.00E+13	0	2900		
ĺ	2663	C6H12-1+NC3H7=C9H19-5	1.00E+11	0	8200		
	2664	C2H4+C6H13-1=C8H17-1	1.00E+11	0	8200		
	2665	H+C8H16-1=C8H17-1	1.00E+13	0	2900		
	2666	C3H6+C5H11-1=C8H17-2	1.00E+11	0	8200		
	2667	H+C8H16-1=C8H17-2	1.00E+13	0	1200		
	2668	H+C8H16-2=C8H17-2	1.00E+13	0	2900		
	2669	C4H8-1+PC4H9=C8H17-3	1.00E+11	0	8200		
	2670	CH3+C7H14-1=C8H17-3	1.00E+11	0	8200		
	2671	H+C8H16-2=C8H17-3	1.00E+13	0	2900		
	2672	H+C8H16-3=C8H17-3	1.00E+13	0	2900		
	2673	C5H10-1+NC3H7=C8H17-4	1.00E+11	0	8200		
	2674	C2H5+C6H12-1=C8H17-4	1.00E+11	0	8200		
	2675	H+C8H16-3=C8H17-4	1.00E+13	0	2900		
	2676	H+C8H16-4=C8H17-4	1.00E+13	0	2900		
ļ	2677	C10H21-1+O2=C10H20-1+HO2	3.00E-09	0	3000		
	2678	C10H21-2+O2=C10H20-1+HO2	3.00E-09	0	3000		
	2679	C10H21-2+O2=C10H20-2+HO2	3.00E-09	0	3000		
	2680	C10H21-3+O2=C10H20-2+HO2	3.00E-09	0	3000		
	2681	C10H21-3+O2=C10H20-3+HO2	3.00E-09	0	3000		
	2682	C10H21-4+O2=C10H20-3+HO2	3.00E-09	0	3000		

1 .		1	1	1	1	1
2683	C10H21-4+O2=C10H20-4+HO2	3.00E-09	0	3000		
2684	C10H21-5+O2=C10H20-4+HO2	3.00E-09	0	3000		
2685	C10H21-5+O2=C10H20-5+HO2	3.00E-09	0	3000		
2686	C9H19-1+O2=C9H18-1+HO2	3.00E-09	0	3000		
2687	C9H19-2+O2=C9H18-1+HO2	3.00E-09	0	3000		
2688	C9H19-2+O2=C9H18-2+HO2	3.00E-09	0	3000		
2689	C9H19-3+O2=C9H18-2+HO2	3.00E-09	0	3000		
2690	C9H19-3+O2=C9H18-3+HO2	3.00E-09	0	3000		
2691	C9H19-4+O2=C9H18-3+HO2	3.00E-09	0	3000		
2692	C8H17-1+O2=C8H16-1+HO2	3.00E-09	0	3000		
2693	C8H17-2+O2=C8H16-1+HO2	3.00E-09	0	3000		
2694	C8H17-2+O2=C8H16-2+HO2	3.00E-09	0	3000		
2695	C8H17-3+O2=C8H16-2+HO2	3.00E-09	0	3000		
2696	C8H17-3+O2=C8H16-3+HO2	3.00E-09	0	3000		
2697	C8H17-4+O2=C8H16-3+HO2	3.00E-09	0	3000		
2698	C8H17-4+O2=C8H16-4+HO2	3.00E-09	0	3000		
2699	C10H21-1=C10H21-2	5.48E+08	1.6	38760		
	Reverse	Arrhenius	coefficients:	1.74E+07	2	41280
2700	C10H21-1=C10H21-3	1.39E+09	1	33760		
	Reverse	Arrhenius	coefficients:	4.41E+07	1.4	36280
2701	C10H21-1=C10H21-4	2.54E+09	0.3	19760		
	Reverse	Arrhenius	coefficients:	8.05E+07	0.7	22280
2702	C10H21-1=C10H21-5	4.28E+11	-1.1	11760		
	Reverse	Arrhenius	coefficients:	1.36E+10	-0.7	14280
2703	C10H21-2=C10H21-3	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
2704	C10H21-2=C10H21-4	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	1.76E+09	0.8	34700
2705	C10H21-2=C10H21-5	3.22E+09	0.1	20700		
	Reverse	Arrhenius	coefficients:	3.22E+09	0.1	20700
	Declared	duplicate	reaction			
2706	C10H21-2=C10H21-5	5.00E+11	-1.2	12760		
	Reverse	Arrhenius	coefficients:	1.60E+10	-0.9	15280
	Declared	duplicate	reaction			
2707	C10H21-3=C10H21-4	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
	Declared	duplicate	reaction			
2708	C10H21-3=C10H21-5	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	3.50E+09	0.8	34700
	Declared	duplicate	reaction			
2709	C10H21-3=C10H21-5	3.22E+09	0.1	20700		
	Reverse	Arrhenius	coefficients:	3.22E+09	0.1	20700
	Declared	duplicate	reaction			
2710	C10H21-3=C10H21-4	5.00E+11	-1.2	12760		
_,10	Reverse	Arrhenius	coefficients	1.60E+10	-0.9	15280
	Declared	dunlicate	reaction	1.002.10	0.9	10200
	Declared	aupiteate	reaction		1	1

2711	C10H21-4=C10H21-5	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
	Declared	duplicate	reaction			
2712	C10H21-4=C10H21-5	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	3.50E+09	0.8	34700
	Declared	duplicate	reaction			
2713	C9H19-1=C9H19-2	5.48E+08	1.6	38760		
	Reverse	Arrhenius	coefficients:	1.74E+07	2	41280
2714	C9H19-1=C9H19-3	1.39E+09	1	33760		
	Reverse	Arrhenius	coefficients:	4.41E+07	1.4	36280
2715	C9H19-1=C9H19-4	2.54E+09	0.3	19760		
	Reverse	Arrhenius	coefficients:	8.05E+07	0.7	22280
2716	C9H19-1=C9H19-5	4.28E+11	-1.1	11760		
	Reverse	Arrhenius	coefficients:	1.36E+10	-0.7	14280
2717	C9H19-2=C9H19-3	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
2718	C9H19-2=C9H19-4	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	1.76E+09	0.8	34700
	Declared	duplicate	reaction			
2719	C9H19-2=C9H19-5	3.22E+09	0.1	20700		
	Reverse	Arrhenius	coefficients:	3.22E+09	0.1	20700
2720	C9H19-2=C9H19-4	5.00E+11	-1.2	12760		
	Reverse	Arrhenius	coefficients:	1.60E+10	-0.9	15280
	Declared	duplicate	reaction			
2721	C9H19-3=C9H19-4	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
	Declared	duplicate	reaction			
2722	C9H19-3=C9H19-5	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	3.50E+09	0.8	34700
2723	C9H19-3=C9H19-4	3.22E+09	0.1	20700		
	Reverse	Arrhenius	coefficients:	3.22E+09	0.1	20700
	Declared	duplicate	reaction			
2724	C9H19-4=C9H19-5	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
2725	C8H17-1=C8H17-2	5.48E+08	1.6	38760		
	Reverse	Arrhenius	coefficients:	1.74E+07	2	41280
2726	C8H17-1=C8H17-3	1.39E+09	1	33760		
	Reverse	Arrhenius	coefficients:	4.41E+07	1.4	36280
2727	C8H17-1=C8H17-4	2.54E+09	0.3	19760		
	Reverse	Arrhenius	coefficients:	8.05E+07	0.7	22280
	Declared	duplicate	reaction			
2728	C8H17-1=C8H17-4	4.28E+11	-1.1	11760		
	Reverse	Arrhenius	coefficients:	1.36E+10	-0.7	14280
	Declared	duplicate	reaction			
2729	C8H17-2=C8H17-3	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
	Declared	duplicate	reaction			
------	-------------------------	-----------	---------------	----------	------	-------
2730	C8H17-2=C8H17-4	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	1.76E+09	0.8	34700
	Declared	duplicate	reaction			
2731	C8H17-2=C8H17-4	3.22E+09	0.1	20700		
	Reverse	Arrhenius	coefficients:	3.22E+09	0.1	20700
	Declared	duplicate	reaction			
2732	C8H17-2=C8H17-3	5.00E+11	-1.2	12760		
	Reverse	Arrhenius	coefficients:	1.60E+10	-0.9	15280
	Declared	duplicate	reaction			
2733	C8H17-3=C8H17-4	9.59E+08	1.4	39700		
	Reverse	Arrhenius	coefficients:	9.59E+08	1.4	39700
	Declared	duplicate	reaction			
2734	C8H17-3=C8H17-4	1.76E+09	0.8	34700		
	Reverse	Arrhenius	coefficients:	3.50E+09	0.8	34700
	Declared	duplicate	reaction			
2735	C10H20-1+OH=C10H19+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2736	C10H20-2+OH=C10H19+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2737	C10H20-3+OH=C10H19+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2738	C10H20-4+OH=C10H19+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2739	C10H20-5+OH=C10H19+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2740	C10H20-1+H=C10H19+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2741	C10H20-2+H=C10H19+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2742	C10H20-3+H=C10H19+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2743	C10H20-4+H=C10H19+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2744	C10H20-5+H=C10H19+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2745	C10H20-1+CH3=C10H19+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2746	C10H20-2+CH3=C10H19+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2747	C10H20-3+CH3=C10H19+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2748	C10H20-4+CH3=C10H19+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2749	C10H20-5+CH3=C10H19+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000

2750	C10H20-1+O=C10H19+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2751	C10H20-2+O=C10H19+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2752	C10H20-3+O=C10H19+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2753	C10H20-4+O=C10H19+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2754	C10H20-5+O=C10H19+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2755	C9H18-1+OH=C9H17+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2756	C9H18-2+OH=C9H17+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2757	C9H18-3+OH=C9H17+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2758	C9H18-1+H=C9H17+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2759	C9H18-2+H=C9H17+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2760	C9H18-3+H=C9H17+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2761	C9H18-1+CH3=C9H17+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2762	C9H18-2+CH3=C9H17+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2763	C9H18-3+CH3=C9H17+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2764	C9H18-1+O=C9H17+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2765	C9H18-2+O=C9H17+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2766	C9H18-3+O=C9H17+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2767	C8H16-1+OH=C8H15+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2768	C8H16-2+OH=C8H15+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2769	C8H16-3+OH=C8H15+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2770	C8H16-4+OH=C8H15+H2O	3.00E+13	0	1230		
	Reverse	Arrhenius	coefficients:	7.92E+14	-0.5	36480
2771	C8H16-1+H=C8H15+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2772	C8H16-2+H=C8H15+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990

2773	C8H16-3+H=C8H15+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2774	C8H16-4+H=C8H15+H2	3.70E+13	0	3900		
	Reverse	Arrhenius	coefficients:	2.26E+14	-0.5	23990
2775	C8H16-1+CH3=C8H15+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2776	C8H16-2+CH3=C8H15+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2777	C8H16-3+CH3=C8H15+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2778	C8H16-4+CH3=C8H15+CH4	1.00E+12	0	7300		
	Reverse	Arrhenius	coefficients:	3.23E+14	-0.6	25000
2779	C8H16-1+O=C8H15+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2780	C8H16-2+O=C8H15+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2781	C8H16-3+O=C8H15+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2782	C8H16-4+O=C8H15+OH	1.00E+12	0	4000		
	Reverse	Arrhenius	coefficients:	7.00E+11	0	29900
2783	C10H20-1+OH=>CH2O+C9H19-1	1.00E+11	0	-4000		
2784	C10H20-1+OH=>CH3CHO+C8H17-1	1.00E+11	0	-4000		
2785	C10H20-1+O=>CH2CHO+C8H17-1	1.00E+11	0	-1050		
2786	C10H20-2+OH=>CH3CHO+C8H17-1	1.00E+11	0	-4000		
2787	C10H20-2+OH=>C2H5CHO+C7H15-1	1.00E+11	0	-4000		
2788	C10H20-2+O=>CH3CHO+C8H16-1	1.00E+11	0	-1050		
2789	C10H20-3+OH=>C2H5CHO+C7H15-1	1.00E+11	0	-4000		
2790	C10H20-3+OH=>NC3H7CHO+C6H13-1	1.00E+11	0	-4000		
2791	C10H20-3+O=>C2H5CHO+C7H14-1	1.00E+11	0	-1050		
2792	C10H20-4+OH=>NC3H7CHO+C6H13-1	1.00E+11	0	-4000		
2793	C10H20-4+OH=>NC4H9CHO+C5H11-1	1.00E+11	0	-4000		
2794	C10H20-4+O=>NC3H7CHO+C6H12-1	1.00E+11	0	-1050		
2795	C10H20-5+OH=>NC4H9CHO+C5H11-1	1.00E+11	0	-4000		
2796	C10H20-5+O=>NC4H9CHO+C5H10-1	1.00E+11	0	-1050		
2797	C9H18-1+OH=>CH2O+C8H17-1	1.00E+11	0	-4000		
2798	C9H18-1+OH=>CH3CHO+C7H15-1	1.00E+11	0	-4000		
2799	C9H18-1+O=>CH2CHO+C7H15-1	1.00E+11	0	-1050		
2800	C9H18-2+OH=>CH3CHO+C7H15-1	1.00E+11	0	-4000		
2801	C9H18-2+OH=>C2H5CHO+C6H13-1	1.00E+11	0	-4000		
2802	C9H18-2+O=>CH3CHO+C7H14-1	1.00E+11	0	-1050		
2803	C9H18-3+OH=>C2H5CHO+C6H13-1	1.00E+11	0	-4000		
2804	C9H18-3+OH=>NC3H7CHO+C5H11-1	1.00E+11	0	-4000		
2805	C9H18-3+O=>C2H5CHO+C6H12-1	1.00E+11	0	-1050		
2806	C8H16-1+OH=>CH2O+C7H15-1	1.00E+11	0	-4000		
2807	C8H16-1+OH=>CH3CHO+C6H13-1	1.00E+11	0	-4000		
2808	C8H16-1+O=>CH2CHO+C6H13-1	1.00E+11	0	-1050		

2809	C8H16-2+OH=>CH3CHO+C6H13-1	1.00E+11	0	-4000		
2810	C8H16-2+OH=>C2H5CHO+C5H11-1	1.00E+11	0	-4000		
2811	C8H16-2+O=>CH3CHO+C6H12-1	1.00E+11	0	-1050		
2812	C8H16-3+OH=>C2H5CHO+C5H11-1	1.00E+11	0	-4000		
2813	C8H16-3+OH=>NC3H7CHO+PC4H9	1.00E+11	0	-4000		
2814	C8H16-3+O=>C2H5CHO+C5H10-1	1.00E+11	0	-1050		
2815	C8H16-4+OH=>NC3H7CHO+PC4H9	1.00E+11	0	-4000		
2816	C8H16-4+O=>NC3H7CHO+C4H8-1	1.00E+11	0	-1050		
2817	C10H19=C2H3+C8H16-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2818	C10H19=C3H5-A+C7H14-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2819	C10H19=C4H7+C6H12-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2820	C10H19=C5H9+C5H10-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2821	C10H19=C6H11+C4H8-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2822	C10H19=C7H13+C3H6	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2823	C10H19=C8H15+C2H4	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2824	C9H17=C2H3+C7H14-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2825	C9H17=C3H5-A+C6H12-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2826	C9H17=C4H7+C5H10-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2827	C9H17=C5H9+C4H8-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2828	C9H17=C6H11+C3H6	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2829	C9H17=C7H13+C2H4	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2830	C8H15=C2H3+C6H12-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2831	C8H15=C3H5-A+C5H10-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2832	C8H15=C4H7+C4H8-1	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2833	C8H15=C5H9+C3H6	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2834	C8H15=C6H11+C2H4	1.00E+13	0	45000		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	9600
2835	C10H20-1=C7H15-1+C3H5-A	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0

2836	C10H20-2=C4H7+C6H13-1	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2837	C10H20-3=C5H9+C5H11-1	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2838	C10H20-4=C6H11+PC4H9	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2839	C10H20-5=C7H13+NC3H7	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2840	C9H18-1=C6H13-1+C3H5-A	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2841	C9H18-2=C4H7+C5H11-1	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2842	C9H18-3=C5H9+PC4H9	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2843	C8H16-1=C5H11-1+C3H5-A	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2844	C8H16-2=C4H7+PC4H9	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2845	C8H16-3=C5H9+NC3H7	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2846	C8H16-4=C6H11+C2H5	1.00E+16	0	71000		
	Reverse	Arrhenius	coefficients:	1.00E+13	0	0
2847	C10H21O2-1=C10H21-1+O2	2.66E+20	-1.7	35400		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
	Declared	duplicate	reaction			
2848	C10H21O2-2=C10H21-2+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2849	C10H21O2-3=C10H21-3+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2850	C10H21O2-4=C10H21-4+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2851	C10H21O2-5=C10H21-5+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2852	C9H19O2-1=C9H19-1+O2	2.66E+20	-1.7	35400		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
2853	C9H19O2-4=C9H19-4+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2854	C9H19O2-5=C9H19-5+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2855	C8H17O2-1=C8H17-1+O2	2.66E+20	-1.7	35400		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
2856	C8H17O2-4=C8H17-4+O2	1.36E+23	-2.4	37670		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
2857	C10H21-1+C10H21O2-1=2C10H21O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2858	C10H21-1+C10H21O2-2=C10H21O-	7.00E+12	0	-1000		

	1+C10H21O-2					
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
	C10H21-1+C10H21O2-3=C10H21O-					
2859	1+C10H21O-3	7.00E+12	0	-1000		
	Reverse $C10H21_{-}1+C10H21O2_{-}4=C10H21O_{-}$	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2860	1+C10H21O-4	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2861	C10H21-1+C10H21O2-5=C10H21O- 1+C10H21O-5	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2862	C10H21-2+C10H21O2-1=C10H21O- 2+C10H21O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2863	C10H21-2+C10H21O2-2=2C10H21O-2	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2864	C10H21-2+C10H21O2-3=C10H21O- 2+C10H21O-3	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2865	C10H21-2+C10H21O2-4=C10H21O- 2+C10H21O-4	7.00E+12	0	-1000		
2000	Reverse	Arrhenius	coefficients.	7 57E+16	-11	31600
2866	C10H21-2+C10H21O2-5=C10H21O- 2+C10H21O-5	7.00E+12	0	-1000		21000
2000	Reverse	Arrhenius	coefficients.	7 57E+16	-11	31600
	C10H21-3+C10H21O2-1=C10H21O-			1.5712.10	111	51000
2867	3+C10H21O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2868	3+C10H210-2	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2869	C10H21-3+C10H21O2-3=2C10H21O-3	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2870	C10H21-3+C10H21O2-4=C10H21O- 3+C10H21O-4	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2871	C10H21-3+C10H21O2-5=C10H21O- 3+C10H21O-5	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2872	C10H21-4+C10H21O2-1=C10H21O- 4+C10H21O-1	7 00E+12	0	-1000		
2072	Reverse	Arrhenius	coefficients.	7 57E+16	-11	31600
2873	C10H21-4+C10H21O2-2=C10H21O- 4+C10H21O-2	7 00E+12	0	-1000		21000
	Reverse	Arrhenius	coefficients	7 57F+16	-11	31600
	C10H21-4+C10H21O2-3=C10H21O-			7.5712+10	1.1	51000
2874	4+C10H21O-3	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2875	C10H21-4+C10H21O2-4=2C10H21O-4	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2876	C10H21-4+C10H21O2-5=C10H21O- 4+C10H21O-5	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2877	C10H21-5+C10H21O2-1=C10H21O- 5+C10H21O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600

2979	C10H21-5+C10H21O2-2=C10H21O-	7.005+12		1000		
28/8	5+C10H210-2	7.00E+12	0	-1000	1.1	21.000
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2879	5+C10H21O-3	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2880	C10H21-5+C10H21O2-4=C10H21O- 5+C10H21O-4	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2881	C10H21-5+C10H21O2-5=2C10H21O-5	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2882	C9H19-1+C9H19O2-1=2C9H19O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2883	C8H17-1+C8H17O2-1=2C8H17O-1	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	7.57E+16	-1.1	31600
2884	C10H21-1+HO2=C10H21O-1+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.13E+16	-0.8	26980
2885	C10H21-2+HO2=C10H21O-2+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.97E+18	-1.4	28890
2886	C10H21-3+HO2=C10H21O-3+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.97E+18	-1.4	28890
2887	C10H21-4+HO2=C10H21O-4+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.97E+18	-1.4	28890
2888	C10H21-5+HO2=C10H21O-5+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.97E+18	-1.4	28890
2889	C9H19-1+HO2=C9H19O-1+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.13E+16	-0.8	26980
2890	C8H17-1+HO2=C8H17O-1+OH	7.00E+12	0	-1000		
	Reverse	Arrhenius	coefficients:	1.13E+16	-0.8	26980
2891	C10H21O2-1=C10OOH1-2	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.12E+10	-0.1	14240
2892	C10H21O2-1=C10OOH1-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2893	C10H21O2-1=C10OOH1-4	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2894	C10H21O2-2=C10OOH2-1	3.00E+11	0	29400		
	Reverse	Arrhenius	coefficients:	8.06E+11	-0.5	14360
2895	C10H21O2-2=C10OOH2-3	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2896	C10H21O2-2=C10OOH2-4	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2897	C10H21O2-2=C10OOH2-5	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2898	C10H21O2-2=C10OOH2-6	3.91E+08	0	22050		
	Reverse	Arrhenius	coefficients	4.15E+07	-0.1	9440
2899	C10H2102-3=C1000H3-1	3.75E+10	0	24400		
	Reverse	Arrhenius	coefficients	1.38E+12	-0.9	9170
2900	C10H2102-3=C1000H3-2	2 00E+11	0	26850	3.5	210
_,			v	20000	1	1

	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2901	C10H21O2-3=C10OOH3-4	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2902	C10H21O2-3=C10OOH3-5	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2903	C10H21O2-3=C10OOH3-6	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2904	C10H21O2-3=C10OOH3-7	3.91E+08	0	22050		
	Reverse	Arrhenius	coefficients:	4.15E+07	-0.1	9440
2905	C10H21O2-4=C10OOH4-1	9.38E+09	0	22350		
	Reverse	Arrhenius	coefficients:	2.52E+10	-0.5	7310
2906	C10H21O2-4=C10OOH4-2	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2907	C10H21O2-4=C10OOH4-3	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2908	C10H21O2-4=C10OOH4-5	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2909	C10H21O2-4=C10OOH4-6	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2910	C10H21O2-4=C10OOH4-7	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2911	C10H21O2-4=C10OOH4-8	3.91E+08	0	22050		
	Reverse	Arrhenius	coefficients:	4.15E+07	-0.1	9440
2912	C10H21O2-5=C10OOH5-2	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2913	C10H21O2-5=C10OOH5-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2914	C10H21O2-5=C10OOH5-4	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2915	C10H21O2-5=C10OOH5-6	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.26E+10	-0.1	14270
2916	C10H21O2-5=C10OOH5-7	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2917	C10H21O2-5=C10OOH5-8	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2918	C10H21O2-5=C10OOH5-9	3.91E+08	0	22050		
	Reverse	Arrhenius	coefficients:	4.15E+07	-0.1	9440
2919	C9H19O2-1=C9OOH1-2	2.00E+11	0	26850		
	Reverse	Arrhenius	coefficients:	2.12E+10	-0.1	14240
2920	C9H19O2-1=C9OOH1-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2921	C9H19O2-1=C9OOH1-4	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2922	С9Н19О2-5=С9ООН5-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2923	C8H17O2-1=C8OOH1-2	2.00E+11	0	26850		

	Reverse	Arrhenius	coefficients:	2.12E+10	-0.1	14240
2924	C8H17O2-1=C8OOH1-3	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2925	C8H17O2-1=C8OOH1-4	3.12E+09	0	19050		
	Reverse	Arrhenius	coefficients:	3.32E+08	-0.1	6440
2926	C8H17O2-4=C8OOH4-2	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2927	C8H17O2-4=C8OOH4-6	2.50E+10	0	20850		
	Reverse	Arrhenius	coefficients:	2.65E+09	-0.1	8240
2928	C10H21O2-1+HO2=C10H21O2H-1+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2929	C10H21O2-2+HO2=C10H21O2H-2+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2930	C10H21O2-3+HO2=C10H21O2H-3+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2931	C10H21O2-4+HO2=C10H21O2H-4+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2932	C10H21O2-5+HO2=C10H21O2H-5+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2933	C9H19O2-1+HO2=C9H19O2H-1+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2934	C8H17O2-1+HO2=C8H17O2H-1+O2	1.75E+10	0	-3275		
	Reverse	Arrhenius	coefficients:	5.97E+13	-0.8	34900
2935	C10H21O2-1+H2O2=C10H21O2H-1+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2936	C10H21O2-2+H2O2=C10H21O2H-2+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2937	C10H21O2-3+H2O2=C10H21O2H-3+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2938	C10H21O2-4+H2O2=C10H21O2H-4+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2939	C10H21O2-5+H2O2=C10H21O2H-5+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2940	C9H19O2-1+H2O2=C9H19O2H-1+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2941	C8H17O2-1+H2O2=C8H17O2H-1+HO2	2.40E+12	0	10000		
	Reverse	Arrhenius	coefficients:	2.40E+12	0	10000
2942	C10H21O2-1+CH3O2=>C10H21O-1+CH3O+O2	1.40E+16	-1.6	1860		
2943	C10H21O2-2+CH3O2=>C10H21O-2+CH3O+O2	1.40E+16	-1.6	1860		
2944	C10H21O2-3+CH3O2=>C10H21O-3+CH3O+O2	1.40E+16	-1.6	1860		
2945	C10H21O2-4+CH3O2=>C10H21O-4+CH3O+O2	1.40E+16	-1.6	1860		
2946	C10H21O2-5+CH3O2=>C10H21O-5+CH3O+O2	1.40E+16	-1.6	1860		
2947	C9H19O2-1+CH3O2=>C9H19O-1+CH3O+O2	1.40E+16	-1.6	1860		
2948	C8H17O2-1+CH3O2=>C8H17O-1+CH3O+O2	1.40E+16	-1.6	1860		
2949	2C10H21O2-1=>2C10H21O-1+O2	1.40E+16	-1.6	1860		
2950	C10H21O2-1+C10H21O2-2	1.40E+16	-1.6	1860		

	=>C10H21O-1+C10H21O-2+O2				
2951	C10H21O2-1+C10H21O2-3	1.40E+16	-1.6	1860	
	=>C10H21O-1+C10H21O-3+O2				
2952	C10H21O2-1+C10H21O2-4	1.40E+16	-1.6	1860	
	=>C10H21O-1+C10H21O-4+O2				
2953	C10H21O2-1+C10H21O2-5	1.40E+16	-1.6	1860	
	=>C10H21O-1+C10H21O-5+O2				
2954	2C10H21O2-2=>2C10H21O-2+O2	1.40E+16	-1.6	1860	
2955	C10H21O2-2+C10H21O2-3	1.40E+16	-1.6	1860	
	=>C10H21O-2+C10H21O-3+O2				
2956	C10H21O2-2+C10H21O2-4	1.40E+16	-1.6	1860	
	=>C10H21O-2+C10H21O-4+O2				
2957	C10H21O2-2+C10H21O2-5	1.40E+16	-1.6	1860	
	=>C10H21O-2+C10H21O-5+O2				
2958	2C10H21O2-3=>2C10H21O-3+O2	1.40E+16	-1.6	1860	
2959	C10H21O2-3+C10H21O2-4	1.40E+16	-1.6	1860	
	=>C10H21O-3+C10H21O-4+O2				
2960	C10H21O2-3+C10H21O2-5	1.40E+16	-1.6	1860	
	=>C10H21O-3+C10H21O-5+O2				
2961	2C10H21O2-4=>2C10H21O-4+O2	1.40E+16	-1.6	1860	
2962	C10H21O2-4+C10H21O2-5	1.40E+16	-1.6	1860	
	=>C10H21O-4+C10H21O-5+O2				
2963	2C10H21O2-5=>2C10H21O-5+O2	1.40E+16	-1.6	1860	
2964	2C9H19O2-1=>2C9H19O-1+O2	1.40E+16	-1.6	1860	
2965	2C8H17O2-1=>2C8H17O-1+O2	1.40E+16	-1.6	1860	
2966	C10H21O2H-1=C10H21O-1+OH	1.50E+16	0	42500	
2967	C10H21O2H-2=C10H21O-2+OH	1.25E+16	0	41600	
2968	C10H21O2H-3=C10H21O-3+OH	1.25E+16	0	41600	
2969	C10H21O2H-4=C10H21O-4+OH	1.25E+16	0	41600	
2970	C10H21O2H-5=C10H21O-5+OH	1.25E+16	0	41600	
2971	C9H19O2H-1=C9H19O-1+OH	1.50E+16	0	42500	
2972	C8H17O2H-1=C8H17O-1+OH	1.50E+16	0	42500	
2973	CH2O+C9H19-1=C10H21O-1	1.00E+11	0	11900	
2974	CH3CHO+C8H17-1=C10H21O-2	1.00E+11	0	12900	
2975	C2H5CHO+C7H15-1=C10H21O-3	1.00E+11	0	12900	
2976	NC3H7CHO+C6H13-1=C10H21O-4	1.00E+11	0	12900	
2977	NC4H9CHO+C5H11-1=C10H21O-5	1.00E+11	0	12900	
2978	CH2O+C8H17-1=C9H19O-1	1.00E+11	0	11900	
2979	CH2O+C7H15-1=C8H17O-1	1.00E+11	0	11900	
2980	C1000H1-2=>C1001-2+OH	6.00E+11	0	22000	
2981	C1000H2-1=>C1001-2+OH	6.00E+11	0	22000	
2982	C1000H2-3=>C10O2-3+OH	6.00E+11	0	22000	
2983	С10ООН3-2=>С10О2-3+ОН	6.00E+11	0	22000	
2984	C1000H3-4=>C10O3-4+OH	6.00E+11	0	22000	
2985	C1000H4-3=>C10O3-4+OH	6.00E+11	0	22000	
2986	C8OOH1-2=>C8O1-2+OH	6.00E+11	0	22000	

		1	1	1	1	1
2987	C1000H1-3=>C1001-3+OH	7.50E+10	0	15250		
2988	C1000H3-1=>C1001-3+OH	7.50E+10	0	15250		
2989	C1000H2-4=>C1002-4+OH	7.50E+10	0	15250		
2990	C1000H4-2=>C1002-4+OH	7.50E+10	0	15250		
2991	C10OOH3-5=>C10O3-5+OH	7.50E+10	0	15250		
2992	C1000H5-3=>C10O3-5+OH	7.50E+10	0	15250		
2993	C1000H4-6=>C1004-6+OH	7.50E+10	0	15250		
2994	C9OOH1-3=>C9O1-3+OH	7.50E+10	0	15250		
2995	C8OOH1-3=>C8O1-3+OH	7.50E+10	0	15250		
2996	C1000H1-4=>C1001-4+OH	9.38E+09	0	7000		
2997	C10OOH4-1=>C10O1-4+OH	9.38E+09	0	7000		
2998	C10OOH2-5=>C10O2-5+OH	9.38E+09	0	7000		
2999	C1000H5-2=>C1002-5+OH	9.38E+09	0	7000		
3000	C1000H3-6=>C10O3-6+OH	9.38E+09	0	7000		
3001	C10OOH5-8=>C10O3-6+OH	9.38E+09	0	7000		
3002	С10ООН4-7=>С10О4-7+ОН	9.38E+09	0	7000		
3003	C9OOH1-4=>C9O1-4+OH	9.38E+09	0	7000		
3004	C8OOH1-4=>C8O1-4+OH	9.38E+09	0	7000		
3005	C1000H2-6=>C1002-6+OH	1.17E+09	0	1800		
3006	C1000H5-9=>C1002-6+OH	1.17E+09	0	1800		
3007	С10ООН3-7=>С10О3-7+ОН	1.17E+09	0	1800		
3008	С10ООН4-8=>С10О3-7+ОН	1.17E+09	0	1800		
3009	C1000H1-2=C10H20-1+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3010	C1000H2-1=C10H20-1+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3011	C1000H2-3=C10H20-2+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3012	C1000H3-2=C10H20-2+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3013	C1000H3-4=C10H20-3+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3014	C1000H4-3=C10H20-3+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3015	C1000H4-5=C10H20-4+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3016	C1000H5-4=C10H20-4+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3017	C1000H5-6=C10H20-5+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3018	C9OOH1-2=C9H18-1+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3019	C8OOH1-2=C8H16-1+HO2	1.61E+20	-2.5	21350		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	11530
3020	C10OOH1-3=>OH+CH2O+C9H18-1	8.12E+13	-0.1	31090		
3021	C10OOH2-4=>OH+CH3CHO+C8H16-1	5.36E+17	-1.4	26750		

3022	C10OOH3-1=>OH+C2H4+NC7H15CHO	2.21E+19	-1.7	26980		
3023	C10OOH3-5=>OH+C2H5CHO+C7H14-1	2.47E+18	-1.6	27020		
3024	C1000H4-2=>OH+C3H6+NC6H13CHO	1.30E+18	-1.5	26800		
3025	C10OOH4-6=>OH+NC3H7CHO+C6H12-1	2.47E+18	-1.6	27020		
3026	C1000H5-3=>OH+C4H8-1+NC5H11CHO	2.47E+18	-1.6	27020		
3027	C10OOH5-7=>OH+NC4H9CHO+C5H10-1	2.47E+18	-1.6	27020		
3028	C9OOH1-3=>OH+CH2O+C8H16-1	8.12E+13	-0.1	31090		
3029	C9OOH5-3=>OH+C4H8-1+NC4H9CHO	2.47E+18	-1.6	27020		
3030	C8OOH1-3=>OH+CH2O+C7H14-1	8.12E+13	-0.1	31090		
3031	C8OOH4-2=>OH+C3H6+NC4H9CHO	1.30E+18	-1.5	26800		
3032	C8OOH4-6=>OH+NC3H7CHO+C4H8-1	2.47E+18	-1.6	27020		
3033	C1000H1-202=C1000H1-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3034	C1000H1-302=C1000H1-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3035	C1000H1-402=C1000H1-4+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3036	C1000H2-102=C1000H2-1+O2	1.67E+20	-1.6	35280		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
3037	C1000H2-302=C1000H2-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3038	C1000H2-402=C1000H2-4+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3039	C1000H2-502=C1000H2-5+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3040	C1000H3-102=C1000H3-1+O2	1.67E+20	-1.6	35280		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
3041	C1000H3-202=C1000H3-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3042	C1000H3-402=C1000H3-4+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3043	C1000H3-502=C1000H3-5+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3044	C1000H3-602=C1000H3-6+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3045	C1000H4-102=C1000H4-1+O2	1.67E+20	-1.6	35280		
	Reverse	Arrhenius	coefficients:	4.52E+12	0	0
3046	C1000H4-202=C1000H4-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3047	C1000H4-302=C1000H4-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3048	C1000H4-502=C1000H4-5+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3049	C1000H4-602=C1000H4-6+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3050	C1000H4-702=C1000H4-7+O2	1.37E+23	-2.4	37640		

	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3051	C1000H5-202=C1000H5-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3052	C1000H5-302=C1000H5-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3053	C1000H5-402=C1000H5-4+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3054	C1000H5-602=C1000H5-6+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3055	C1000H5-702=C1000H5-7+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3056	C1000H5-802=C1000H5-8+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3057	C9OOH1-2O2=C9OOH1-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3058	C9OOH1-3O2=C9OOH1-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3059	C800H1-202=C800H1-2+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3060	C800H1-302=C800H1-3+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3061	C8OOH1-4O2=C8OOH1-4+O2	1.37E+23	-2.4	37640		
	Reverse	Arrhenius	coefficients:	7.54E+12	0	0
3062	C100OH1-2O2=C10KET1-2+OH	2.00E+11	0	26400		
	Reverse	Arrhenius	coefficients:	1.38E+05	1.2	46790
3063	C100OH1-3O2=C10KET1-3+OH	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	3.30E+03	1.4	45040
3064	C100OH1-4O2=C10KET1-4+OH	3.12E+09	0	19350		
	Reverse	Arrhenius	coefficients:	4.13E+02	1.4	42990
3065	C100OH2-102=C10KET2-1+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3066	C1000H2-302=C10KET2-3+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3067	C1000H2-402=C10KET2-4+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3068	C1000H2-502=C10KET2-5+OH	1.56E+09	0	16050		
	Reverse	Arrhenius	coefficients:	2.02E+01	1.8	42400
3069	C1000H3-102=C10KET3-1+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3070	C1000H3-2O2=C10KET3-2+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3071	C1000H3-402=C10KET3-4+OH	1.00E+11	0	23850		
-	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3072	C1000H3-502=C10KET3-5+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3073	C100OH3-6O2=C10KET3-6+OH	1.56E+09	0	16050		

	Reverse	Arrhenius	coefficients:	2.02E+01	1.8	42400
3074	C1000H4-102=C10KET4-1+OH	1.56E+09	0	16050		
	Reverse	Arrhenius	coefficients:	2.02E+01	1.8	42400
3075	C1000H4-202=C10KET4-2+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3076	C1000H4-302=C10KET4-3+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3077	C1000H4-502=C10KET4-5+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3078	C1000H4-602=C10KET4-6+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3079	C1000H4-702=C10KET4-7+OH	1.56E+09	0	16050		
	Reverse	Arrhenius	coefficients:	2.02E+01	1.8	42400
3080	C100OH5-2O2=C10KET5-2+OH	1.56E+09	0	16050		
	Reverse	Arrhenius	coefficients:	2.02E+01	1.8	42400
3081	C100OH5-3O2=C10KET5-3+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3082	C1000H5-402=C10KET5-4+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3083	C1000H5-602=C10KET5-6+OH	1.00E+11	0	23850		
	Reverse	Arrhenius	coefficients:	1.18E+04	1.4	47350
3084	C100OH5-702=C10KET5-7+OH	1.25E+10	0	17850		
	Reverse	Arrhenius	coefficients:	1.62E+02	1.8	44200
3085	C1000H5-802=C10KET5-8+OH	1.56E+09	0	16050		
	Reverse	Arrhenius	coefficients:	2.02E+01	1.8	42400
3086	C9OOH1-2O2=C9KET1-2+OH	2.00E+11	0	26400		
	Reverse	Arrhenius	coefficients:	1.38E+05	1.2	46790
3087	C9OOH1-3O2=C9KET1-3+OH	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	3.30E+03	1.4	45040
3088	C800H1-202=C8KET1-2+OH	2.00E+11	0	26400		
	Reverse	Arrhenius	coefficients:	1.38E+05	1.2	46790
3089	C800H1-302=C8KET1-3+OH	2.50E+10	0	21400		
	Reverse	Arrhenius	coefficients:	3.30E+03	1.4	45040
3090	C800H1-402=C8KET1-4+OH	3.12E+09	0	19350		
	Reverse	Arrhenius	coefficients:	4.13E+02	1.4	42990
3091	C10KET1-2=>OH+HCO+NC8H17CHO	1.05E+16	0	41600		
3092	C10KET1-3=>OH+CH2CHO+NC7H15CHO	1.05E+16	0	41600		
3093	C10KET1-4=>OH+CH2CH2CHO+NC6H13CHO	1.05E+16	0	41600		
3094	C10KET2-1=>OH+CH2O+NC8H17CO	1.50E+16	0	42000		
3095	C10KET2-3=>OH+CH3CO+NC7H15CHO	1.05E+16	0	41600		
3096	C10KET2-4=>OH+CH3COCH2+NC6H13CHO	1.05E+16	0	41600		
3097	5=>OH+CH2CH2COCH3+NC5H11CHO	1.05E+16	0	41600		
3098	C10KET3-1=>OH+CH2O+C7H15COCH2	1.50E+16	0	42000		
3099	C10KET3-2=>OH+CH3CHO+NC7H15CO	1.05E+16	0	41600		
3100	C10KET3-4=>OH+C2H5CO+NC6H13CHO	1.05E+16	0	41600		

3101	C10KET3-5=>OH+C2H5COCH2+NC5H11CHO	1.05E+16	0	41600	
3102	C10KET3- 6=>OH+C2H5COC2H4P+NC4H9CHO	1.05E+16	0	41600	
3103	C10KET4-1=>OH+CH2O+C6COC2H4P	1 50E+16	0	42000	
3104	C10KET4-2=>OH+CH3CHO+C6H13COCH2	1.05E+16	0	41600	
3105	$C10KET4_2 \Rightarrow OH + C2H5CHO + NC6H13CO$	1.05E+16	0	41600	
3106	C10KET4-5 > OH+NC3H7CO+NC5H11CHO	1.05E+16	0	41600	
3107	C10KET4-6=>OH+NC3H7COCH2+NC4H9CHO	1.05E+16	0	41600	
3108	C10KET4- 7=>OH+NC3H7COC2H4P+NC3H7CHO	1.05E+16	0	41600	
3109	C10KET5-2=>OH+CH3CHO+C5COC2H4P	1.05E+16	0	41600	
3110	C10KET5-3=>OH+C2H5CHO+C5H11COCH2	1.05E+16	0	41600	
3111	C10KET5-4=>OH+NC3H7CHO+NC5H11CO	1.05E+16	0	41600	
3112	C10KET5-6=>OH+NC4H9CO+NC4H9CHO	1.05E+16	0	41600	
3112	C10KFT5-7=>OH+NC4H9COCH2+NC3H7CHO	1.05E+16	0	41600	
3114	C10KET5-8=>OH+C4COC2H4P+C2H5CHO	1.05E+16	0	41600	
3115	C9KET1-2=>OH+HCO+NC7H15CHO	1.05E+16	0	41600	
3116	C9KET1-3=>OH+CH2CHO+NC6H13CHO	1.05E+16	0	41600	
3117	C8KFT1-2=>OH+HCO+NC6H13CHO	1.05E+16	0	41600	
3118	C8KET1-3 => OH+CH2CHO+NC5H11CHO	1.05E+16	0	41600	
3110	C8KET1 4->OH+CH2CH2CHO+NC4H9CHO	1.05E+16	0	41600	
3120	C_{0}	2 50E+12	0	41000	
3120	C1001-2+0H=>CH2C0+C8H17 1+H2O	2.50E+12	0	0	
2122	(1001.2+01-)(1120)(1-1+1120)	2.50E+12	0	0	
2122	C1001-3+0H->C2H4+NC7H15C0+H20	2.30E+12	0	0	
2124	C1001-5+OH=>C12CHO+C2H16+1+H2O	2.30E+12	0	0	
2125	$C1001 + 4 + 0H \rightarrow C214 + C(112COCH2 + 112C)$	2.50E+12	0	0	
2120	C1001-4+0H=>C2H4+C6H13C0CH2+H20	2.50E+12	0	0	
2127	C1002-3+OH=>C12CUCO+C7U15-1+U2O	2.50E+12	0	0	
2129		2.50E+12	0	0	
3128	C1002-4+OH =>CH3CO+C8H16-1+H2O	2.50E+12	0	0	
3129	C1002-4+OH = >C3H6+NC6H13CO+H2O	2.50E+12	0	0	
3130	C1002-5+OH=>CH3COCH2+C/H14-1+H2O	2.50E+12	0	0	
3131	C1002-5+OH=>C3H6+C5H11C0CH2+H2O C1002-6+OH=>CH2CH2COCH3+C6H12-	2.50E+12	0	0	
3132	1+H2O	2.50E+12	0	0	
3133	C10O2-6+OH=>C3H6+C4COC2H4P+H2O	2.50E+12	0	0	
3134	C10O3-4+OH=>C2H5COC2H3+C5H11-1+H2O	2.50E+12	0	0	
3135	C10O3-4+OH=>C2H5CHCO+C6H13-1+H2O	2.50E+12	0	0	
3136	C10O3-5+OH=>C2H5CO+C7H14-1+H2O	2.50E+12	0	0	
3137	C10O3-5+OH=>C4H8-1+NC5H11CO+H2O	2.50E+12	0	0	
3138	C10O3-6+OH=>C2H5COCH2+C6H12-1+H2O	2.50E+12	0	0	
3139	C10O3-6+OH=>C4H8-1+NC4H9COCH2+H2O	2.50E+12	0	0	
3140	C10O3-7+OH=>C2H5COC2H4P+C5H10-1+H2O	2.50E+12	0	0	
21/1	C1003-7+OH=>C4H8- 1+NC2H7COC2H4P+U2O	2 50E±12	0	0	
21/2		2.30E+12	0	0	
21/2	C1004-0+0H=>C5H10_1+NC4H9C0+H20	2.30E+12	0	0	
2143		2.30ET12	0	0	
5144	C1004-/+0H=>NC3H/C0CH2+C3H10-1+H20	2.30E+12	U	U	

3145	C1001-2+HO2=>C2H3CHO+C7H15-1+H2O2	5.00E+12	0	17700	
3146	C10O1-2+HO2=>CH2CO+C8H17-1+H2O2	5.00E+12	0	17700	
3147	C10O1-3+HO2=>C9H18-1+HCO+H2O2	5.00E+12	0	17700	
3148	C1001-3+HO2=>C2H4+NC7H15CO+H2O2	5.00E+12	0	17700	
3149	C1001-4+HO2=>CH2CHO+C8H16-1+H2O2	5.00E+12	0	17700	
3150	C1001-4+HO2=>C2H4+C6H13COCH2+H2O2	5.00E+12	0	17700	
3151	C1002-3+HO2=>C2H3COCH3+C6H13-1+H2O2	5.00E+12	0	17700	
3152	C10O2-3+HO2=>CH3CHCO+C7H15-1+H2O2	5.00E+12	0	17700	
3153	C10O2-4+HO2=>CH3CO+C8H16-1+H2O2	5.00E+12	0	17700	
3154	C10O2-4+HO2=>C3H6+NC6H13CO+H2O2	5.00E+12	0	17700	
3155	C10O2-5+HO2=>CH3COCH2+C7H14-1+H2O2	5.00E+12	0	17700	
3156	C10O2-5+HO2=>C3H6+C5H11COCH2+H2O2	5.00E+12	0	17700	
3157	C1002-6+HO2=>CH2CH2COCH3+C6H12- 1+H2O2	5.00E+12	0	17700	
3158	C10O2-6+HO2=>C3H6+C4COC2H4P+H2O2	5.00E+12	0	17700	
3159	C10O3-4+HO2=>C2H5COC2H3+C5H11- 1+H2O2	5.00F+12	0	17700	
3160	C1003-4+H02 => C2H5CHC0+C6H13-1+H202	5.00E+12	0	17700	
3161	C1003-5+H02=>C2H5C0+C7H14-1+H202	5.00E+12	0	17700	
3162	C1003-5+H02 => C4H8-1+NC5H11C0+H202	5.00E+12	0	17700	
3163	C1003-6+H02 => C2H5C0CH2+C6H12-1+H2O2	5.00E+12	0	17700	
3164	C1003-6+H02=>C4H8- 1+NC4H9COCH2+H2O2	5.00E+12	0	17700	
3165	C10O3-7+HO2=>C2H5COC2H4P+C5H10- 1+H2O2	5.00E+12	0	17700	
3166	C10O3-7+HO2=>C4H8- 1+NC3H7COC2H4P+H2O2	5.00E+12	0	17700	
3167	C10O4-6+HO2=>NC3H7CO+C6H12-1+H2O2	5.00E+12	0	17700	
3168	C1004-6+H02=>C5H10-1+NC4H9CO+H2O2	5.00E+12	0	17700	
3169	C1004-7+HO2=>NC3H7COCH2+C5H10- 1+H2O2	5.00E+12	0	17700	
3170	C9O1-3+OH=>C8H16-1+HCO+H2O	2.50E+12	0	0	
3171	C9O1-3+OH=>C2H4+NC6H13CO+H2O	2.50E+12	0	0	
3172	C9O1-4+OH=>CH2CHO+C7H14-1+H2O	2.50E+12	0	0	
3173	C9O1-4+OH=>C2H4+C5H11COCH2+H2O	2.50E+12	0	0	
3174	C9O1-3+HO2=>C8H16-1+HCO+H2O2	5.00E+12	0	17700	
3175	C9O1-3+HO2=>C2H4+NC6H13CO+H2O2	5.00E+12	0	17700	
3176	C9O1-4+HO2=>CH2CHO+C7H14-1+H2O2	5.00E+12	0	17700	
3177	C9O1-4+HO2=>C2H4+C5H11COCH2+H2O2	5.00E+12	0	17700	
3178	C8O1-2+OH=>C2H3CHO+C5H11-1+H2O	2.50E+12	0	0	
3179	C8O1-2+OH=>CH2CO+C6H13-1+H2O	2.50E+12	0	0	
3180	C8O1-3+OH=>C7H14-1+HCO+H2O	2.50E+12	0	0	
3181	C8O1-3+OH=>C2H4+NC5H11CO+H2O	2.50E+12	0	0	
3182	C8O1-4+OH=>CH2CHO+C6H12-1+H2O	2.50E+12	0	0	
3183	C8O1-4+OH=>C2H4+NC4H9COCH2+H2O	2.50E+12	0	0	
3184	C8O1-2+HO2=>C2H3CHO+C5H11-1+H2O2	5.00E+12	0	17700	
3185	C8O1-2+HO2=>CH2CO+C6H13-1+H2O2	5.00E+12	0	17700	
3186	C8O1-3+HO2=>C7H14-1+HCO+H2O2	5.00E+12	0	17700	
3187	C8O1-3+HO2=>C2H4+NC5H11CO+H2O2	5.00E+12	0	17700	

3188	C8O1-4+HO2=>CH2CHO+C6H12-1+H2O2	5.00E+12	0	17700		
3189	C8O1-4+HO2=>C2H4+NC4H9COCH2+H2O2	5.00E+12	0	17700		
3190	NC8H17CHO+O2=NC8H17CO+HO2	2.00E+13	0.5	42200		
	Reverse	Arrhenius	coefficients:	1.00E+07	0	40000
3191	NC8H17CHO+OH=NC8H17CO+H2O	2.69E+10	0.8	-340		
	Reverse	Arrhenius	coefficients:	1.74E+10	0.8	31200
3192	NC8H17CHO+H=NC8H17CO+H2	4.00E+13	0	4200		
	Reverse	Arrhenius	coefficients:	1.80E+13	0	24000
3193	NC8H17CHO+O=NC8H17CO+OH	5.00E+12	0	1790		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	19000
3194	NC8H17CHO+HO2=NC8H17CO+H2O2	2.80E+12	0	13600		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	10000
3195	NC8H17CHO+CH3=NC8H17CO+CH4	1.70E+12	0	8440		
	Reverse	Arrhenius	coefficients:	1.50E+13	0	28000
3196	NC8H17CHO+CH3O=NC8H17CO+CH3OH	1.15E+11	0	1280		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	18000
3197	NC8H17CHO+CH3O2=NC8H17CO+CH3O2H	1.00E+12	0	9500		
	Reverse	Arrhenius	coefficients:	2.50E+10	0	10000
3198	NC8H17CO=C8H17-1+CO	1.00E+11	0	9600		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	0
3199	NC7H15CHO+O2=NC7H15CO+HO2	2.00E+13	0.5	42200		
	Reverse	Arrhenius	coefficients:	1.00E+07	0	40000
3200	NC7H15CHO+OH=NC7H15CO+H2O	2.69E+10	0.8	-340		
	Reverse	Arrhenius	coefficients:	1.74E+10	0.8	31200
3201	NC7H15CHO+H=NC7H15CO+H2	4.00E+13	0	4200		
	Reverse	Arrhenius	coefficients:	1.80E+13	0	24000
3202	NC7H15CHO+O=NC7H15CO+OH	5.00E+12	0	1790		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	19000
3203	NC7H15CHO+HO2=NC7H15CO+H2O2	2.80E+12	0	13600		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	10000
3204	NC7H15CHO+CH3=NC7H15CO+CH4	1.70E+12	0	8440		
	Reverse	Arrhenius	coefficients:	1.50E+13	0	28000
3205	NC7H15CHO+CH3O=NC7H15CO+CH3OH	1.15E+11	0	1280		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	18000
3206	NC7H15CHO+CH3O2=NC7H15CO+CH3O2H	1.00E+12	0	9500		
	Reverse	Arrhenius	coefficients:	2.50E+10	0	10000
3207	NC7H15CO=C7H15-1+CO	1.00E+11	0	9600		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	0
3208	NC6H13CHO+O2=NC6H13CO+HO2	2.00E+13	0.5	42200		
	Reverse	Arrhenius	coefficients:	1.00E+07	0	40000
3209	NC6H13CHO+OH=NC6H13CO+H2O	2.69E+10	0.8	-340		
	Reverse	Arrhenius	coefficients:	1.74E+10	0.8	31200
3210	NC6H13CHO+H=NC6H13CO+H2	4.00E+13	0	4200		
	Reverse	Arrhenius	coefficients:	1.80E+13	0	24000
3211	NC6H13CHO+O=NC6H13CO+OH	5.00E+12	0	1790		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	19000

3212	NC6H13CHO+HO2=NC6H13CO+H2O2	2.80E+12	0	13600		
	Reverse	Arrhenius	coefficients:	1.00E+12	0	10000
3213	NC6H13CHO+CH3=NC6H13CO+CH4	1.70E+12	0	8440		
	Reverse	Arrhenius	coefficients:	1.50E+13	0	28000
3214	NC6H13CHO+CH3O=NC6H13CO+CH3OH	1.15E+11	0	1280		
	Reverse	Arrhenius	coefficients:	3.00E+11	0	18000
3215	NC6H13CHO+CH3O2=NC6H13CO+CH3O2H	1.00E+12	0	9500		
	Reverse	Arrhenius	coefficients:	2.50E+10	0	10000
3216	NC6H13CO=C6H13-1+CO	1.00E+11	0	9600		
	Reverse	Arrhenius	coefficients:	1.00E+11	0	0
3217	C7H15COCH2=C7H15-1+CH2CO	2.00E+13	0	31000		
	Reverse	Arrhenius	coefficients:	2.00E+11	0	7350
3218	C6H13COCH2=C6H13-1+CH2CO	2.00E+13	0	31000		
	Reverse	Arrhenius	coefficients:	2.00E+11	0	7350
3219	C5H11COCH2=C5H11-1+CH2CO	2.00E+13	0	31000		
	Reverse	Arrhenius	coefficients:	2.00E+11	0	7350
3220	C6COC2H4P=NC6H13CO+C2H4	5.00E+17	-1.5	26000		
	Reverse	Arrhenius	coefficients:	2.50E+11	0	7800
3221	C5COC2H4P=NC5H11CO+C2H4	5.00E+17	-1.5	26000		
	Reverse	Arrhenius	coefficients:	2.50E+11	0	7800
3222	C4COC2H4P=NC4H9CO+C2H4	5.00E+17	-1.5	26000		
	Reverse	Arrhenius	coefficients:	2.50E+11	0	7800
3223	C6H5+H(+M)=C6H6(+M)	1.00E+14	0	0		
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
3224	C6H6+O2=C6H5+HO2	6.30E+13	0	60000		
3225	C6H6+O=C6H5O+H	2.20E+13	0	4530		
3226	C6H6+O=C6H5+OH	2.00E+13	0	14700		
3227	C6H5+H2=C6H6+H	5.71E+04	2.4	6277.6		
3228	C6H6+CH3=C6H5+CH4	7.32E+12	0	18920		
3229	C6H6+HO2=C6H5+H2O2	5.50E+12	0	28900		
3230	C6H6+OH=C6H5+H2O	1.20E+00	4.1	-301		
3231	C6H6+OH=C6H5OH+H	1.32E+02	3.2	5590		
3232	C6H5=>H+C4H2+C2H2	4.30E+12	0.6	77294		
3233	C6H5+CH2O=C6H6+HCO	8.55E+04	2.2	38		
3234	C6H5+HCO=C6H6+CO	8.55E+04	2.2	38		
3235	C6H5+HO2=C6H5O+OH	5.00E+12	0	0		
3236	C6H5+O2=C6H5O+O	2.60E+13	0	6120		
3237	C6H5+O2=C6H5OO	1.86E+13	-0.2	-711		
3238	C6H5OO=C6H5O+O	1.27E+15	-0.2	38536		
3239	C6H5OH+O2=C6H5O+HO2	1.00E+13	0	38800		

3240	C6H5OH+H=C6H5O+H2	1.20E+14	0	12400		
3241	С6Н5ОН+О=С6Н5О+ОН	1.30E+13	0	2900		
3242	C6H5OH+OH=C6H5O+H2O	1.40E+08	1.4	-960		
3243	C6H5OH+HO2=C6H5O+H2O2	1.00E+12	0	10000		
3244	C6H5OH+CH3=C6H5O+CH4	1.80E+11	0	7700		
3245	C6H5OH+C6H5=C6H5O+C6H6	4.90E+12	0	4400		
3246	C6H5OH+C3H5-A=C6H5O+C3H6	4.90E+11	0	9400		
3247	C6H5OH+C4H5-I=C6H5O+C4H6	4.90E+11	0	9400		
3248	C6H5O+H(+M)=C6H5OH(+M)	2.50E+14	0	0		
	Declared	duplicate	reaction			
	Low	pressure	limit:	1.00E+94	-2.18E+01	1.39E+04
	TROE	centering:	4.30E-02	3.04E+02	6.00E+04	5.90E+03
3249	C6H5OH=C5H6+CO	5.00E+11	0	60808		
	Declared	duplicate	reaction			
3250	C6H5O=CO+C5H5	2.00E+11	0	43900		
3251	C6H5O+H=CO+C5H6	1.00E+13	0	0		
3252	C6H5O+O=C5H5+CO2	1.00E+13	0	0		
3253	C5H5+H(+M)=C5H6(+M)	2.60E+14	0	0		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	H2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	Low	pressure	limit:	4.40E+80	-1.83E+01	1.30E+04
	TROE	centering:	6.80E-02	4.01E+02	4.14E+03	5.50E+03
3254	C5H6(+M)=C3H4-A+C2H2(+M)	3.80E+17	0	104000		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	H2	Enhanced	by	2.00E+00		
	CH4	Enhanced	by	2.00E+00		
	Low	pressure	limit:	1.00E+98	-2.23E+01	1.26E+05
	TROE	centering:	1.44E-01	5.36E+00	3.28E+03	6.71E+09
3255	C5H6+O2=C5H5+HO2	4.00E+13	0	37150		
3256	C5H6+HO2=C5H5+H2O2	1.10E+04	2.6	12900		
3257	C5H6+OH=C5H5+H2O	3.08E+06	2	0		
3258	C5H6+H=C5H5+H2	3.03E+08	1.7	5590		
3259	C5H6+H=C2H2+C3H5-A	7.74E+36	-6.2	32890		
3260	C5H6+O=C5H5+OH	4.80E+04	2.7	1100		
3261	C5H6+C2H3=C5H5+C2H4	1.20E-01	4	0		
3262	C5H6+C6H5O=C5H5+C6H5OH	3.16E+11	0	8000		
3263	C5H6+CH3=C5H5+CH4	1.80E-01	4	0		
3264	C5H6+C6H5=C5H5+C6H6	1.00E-01	4	0		
3265	C5H6+C5H5=C6H6+C4H5-N	5.00E+09	0	0		
3266	C5H5(+M)=C2H2+C3H3(+M)	6.31E+13	-0.1	62300		
	Low	pressure	limit:	1.00E+45	-8.40E+00	4.75E+04

3267	C5H5+O=C4H5-N+CO	3.20E+13	-0.2	440	
3268	C5H5+O=C5H4O+H	5.80E+13	0	20	
3269	C5H5+OH=C4H6+CO	4.00E+14	0	4500	
3270	C5H5+HO2=C5H5O+OH	6.30E+29	-4.7	11650	
3271	C5H5O=C5H4O+H	2.90E+32	-6.5	21220	
3272	C5H5O=C4H5-N+CO	1.10E+79	-19.6	66250	
3273	C5H5O=CJ*CC*CC*O	2.00E+13	0	14338	
3274	CJ*CC*CC*O=C*CC*CCJ*O	4.30E+11	-1.1	4118	
3275	C4H5-N+CO=C*CC*CCJ*O	1.51E+11	0	4810	
3276	CJ*CC*CC*O=C2H2+CJ*CC*O	3.00E+13	0	43710	
3277	CJ*CC*O=C2H3CO	1.40E+09	1	32100	
3278	C2H2+HCO=CJ*CC*O	7.77E+06	1.4	7755	
3279	C5H4O=CO+2C2H2	5.70E+32	-6.8	68500	
	Declared	duplicate	reaction		
3280	C5H4O=CO+2C2H2	6.20E+41	-7.9	98700	
	Declared	duplicate	reaction		
3281	C5H4O+H=C4H5-N+CO	2.10E+61	-13.3	40810	
3282	C5H4O+O=C4H4+CO2	1.00E+13	0	2000	
3283	C5H7=C*CCJC*C	3.20E+15	0	39500	
3284	C5H7+H=C5H6+H2	3.60E+12	0	0	
3285	С5Н7+О=С5Н6+ОН	1.00E+13	0	0	
3286	C5H7+OH=C5H6+H2O	2.40E+13	0	0	
3287	C5H6+H=C5H7	2.40E+73	-17.9	31500	
3288	C5H6+H=C*CCJC*C	1.10E+14	-0.2	3100	
3289	С5Н6+О=С5Н5О+Н	8.90E+12	-0.1	590	
	Declared	duplicate	reaction		
3290	С5Н6+О=С5Н5О+Н	5.60E+12	-0.1	200	
	Declared	duplicate	reaction		
3291	C5H6+HO2=C5H7+O2	1.30E+15	-1.1	9530	
3292	C5H6+HCO=C5H5+CH2O	1.08E+08	1.9	16000	
3293	C5H6+C2H3=C6H6+CH3	2.10E+67	-16.1	42460	
3294	C5H6+C4H5-I=C5H5+C4H6	6.00E+12	0	0	
3295	C*CCJC*C=C*CC*CCJ	5.40E+11	-0.7	60	
3296	C*CC*CCJ+H=C*CC*CC	2.30E+20	-1.6	3020	
3297	C*CC*CC+H=C4H6+CH3	5.20E+71	-16.4	51000	
3298	C*CC*CC+H=C*CC*CCJ+H2	7.00E+06	2	5000	
3299	C*CC*CC+OH=C*CC*CCJ+H2O	7.00E+06	2	0	
3300	C*CCJC*C+O2=C2H3CHO+CH2CHO	1.20E+36	-7.2	33600	
3301	C*CC*CCJ+H=C4H5-N+CH3	2.90E+26	-2.2	36770	
3302	C*CCJC*C+O=C2H3CHO+C2H3	2.00E+14	0	0	
3303	C2H2+OH=C2H2OH	9.93E+11	0	-960	
3304	C2H+O=CH+CO	5.00E+13	0	0	
3305	С2Н+ОН=НССО+Н	2.00E+13	0	0	
3306	C2H+O2=2CO+H	9.04E+12	0	-457	
3307	HCCO+C2H2=H2CCCH+CO	1.00E+11	0	3000	
3308	HCCO+O=CH+CO2	2.95E+13	0	1113	

3309	HCCO+O2=HCO+CO+O	9.78E+11	0	850		
3310	2HCCO=C2H2+2CO	1.00E+13	0	0		
3311	HCCO+OH=C2O+H2O	3.00E+13	0	0		
3312	C2O+H=CH+CO	1.00E+13	0	0		
3313	C2O+O=2CO	5.00E+13	0	0		
3314	C2O+OH=2CO+H	2.00E+13	0	0		
3315	C2O+O2=2CO+O	2.00E+13	0	0		
3316	CH2+HCCO=C2H3+CO	3.00E+13	0	0		
3317	C2H+H2=C2H2+H	4.09E+05	2.4	864.3		
3318	C2H+C2H2=C4H2+H	9.64E+13	0	0		
3319	C2H+C2H4=C4H4+H	1.20E+13	0	0		
3320	CH2+C2H2=H2CCCH+H	1.20E+13	0	6600		
3321	CH+C2H2=C3H2+H	1.00E+14	0	0		
3322	CH+CH2=C2H2+H	4.00E+13	0	0		
3323	CH+CH3=C2H3+H	3.00E+13	0	0		
3324	CH2(S)+C2H2=H2CCCH+H	1.50E+14	0	0		
3325	CH2(S)+C2H4=C3H5-A+H	1.30E+14	0	0		
3326	2C3H3=C6H615	4.00E+12	0	0		
3327	C6H615=HEX1245	1.80E+11	0	35804		
3328	HEX1245=MC6H6	5.00E+11	0	22081		
3329	MC6H6=FULVENE	4.26E+13	0	49282		
3330	MC6H6=C6H6	3.79E+13	0	22000		
3331	C5H6+H=C3H3+C2H4	2.00E+14	0	10000		
3332	C5H6+C2H5=C5H5+C2H6	3.11E+11	0	5500		
3333	C5H6+C4H5-N=C5H5+C4H6	3.11E+11	0	5500		
3334	С5Н5+ОН=С5Н4ОН+Н	9.00E+13	0	0		
3335	С5Н4ОН=С5Н4О+Н	2.10E+13	0	48000		
3336	C5H4O=>CO+C4H4	1.00E+12	0	53000		
3337	C5H4+H=C5H3+H2	1.00E+06	2.5	5000		
3338	С5Н4+О=С5Н3+ОН	1.00E+06	2.5	3000		
3339	C5H4+OH=C5H3+H2O	1.00E+07	2	0		
3340	C5H3+O2=C2H2+HCCO+CO	1.00E+12	0	0		
3341	C6H6+C2H5=C6H5+C2H6	6.31E+11	0	14864		
3342	C6H6+C2H3=C6H5+C2H4	4.08E-01	4	88023		
	Reverse	Arrhenius	coefficients:	9.44E-03	4.5	4470
3343	C6H6+C4H5-N=C6H5+C4H6	4.10E-01	4	8803		
3344	C6H6+C4H5-I=C6H5+C4H6	4.10E-01	4	8803		
3345	C6H5+O=C5H5+CO	9.00E+13	0	0		
3346	C6H5+OH=C6H5O+H	5.00E+13	0	0		
3347	C6H5+C2H=PHC2H	3.00E+08	0	1391		
3348	C6H5+C2H2=PHC2H+H	1.00E+13	0	7647		
	Declared	duplicate	reaction			
3349	C6H5+C4H2=PHC2H+C2H	2.00E+13	0	0		
3350	C6H5+C4H4=PHC2H+C2H3	1.00E+13	0	7647		
3351	C6H5+O2=C6H5O2	1.86E+13	-0.2	-711		
3352	C6H5O+O=C6H5O2	2.81E+13	-0.2	-1935		

		1	1	1		1
3353	C6H5+C3H6=C3H5-A+C6H6	1.36E+00	3.8	1437		
3354	C6H5OH+C4H5-N=C4H6+C6H5O	3.00E+02	3	7650		
	Declared	duplicate	reaction			
3355	C6H5OH+C2H5=C6H5O+C2H6	3.00E+02	3	7650		
3356	C6H5OH+C2H3=C6H5O+C2H4	3.00E+02	3	7650		
3357	C6H5O+O=C6H4O2+H	3.00E+13	0	0		
3358	C6H5O2=C6H4O2+H	4.00E+08	0	0		
3359	C6H5O2=C5H5+CO2	1.20E+08	0	0		
3360	C6H5O2+H=C6H5O2H	2.50E+14	0	0		
3361	C6H5O+OH=C6H5O2H	1.00E+12	0	0		
3362	C6H5O2+HO2=C6H5O2H+O2	1.87E+12	0	1540		
3363	C6H5O2+C6H5OH=C6H5O2H+C6H5O	1.00E+12	0	6961		
3364	C6H5O+HO2=C6H5O2+OH	1.50E+14	0	23650		
3365	C6H4O2=C5H4+CO2	3.50E+12	0	67000		
3366	C6H4O2+H=>C5H5O+CO	2.50E+13	0	4700		
3367	C6H4O2+H=>C6H3O2+H2	2.00E+12	0	8100		
3368	C6H4O2+OH=>C6H3O2+H2O	1.00E+06	2	4000		
3369	C6H4O2+O=>C6H3O3+H	1.50E+13	0	4530		
3370	C6H4O2+O=>C6H3O2+OH	1.40E+13	0	14700		
3371	C6H3O2+H=>2C2H2+2CO	1.00E+14	0	0		
3372	C6H3O2+O=>C2H2+HCCO+2CO	1.00E+14	0	0		
3373	C6H3O3=>C2H2+HCCO+2CO	1.00E+12	0	50000		
3374	C4H5-N+C3H4-A=TOLUEN+H	2.00E+11	0	3700		
3375	C4H5-N+C3H4-P=TOLUEN+H	6.32E+11	0	3700		
3376	TOLUEN+O2=PHCH2+HO2	3.00E+14	0	43062		
3377	TOLUEN+H=C6H6+CH3	2.40E+13	0	5123		
3378	TOLUEN+C2H5=PHCH2+C2H6	1.01E+11	0	9514		
3379	TOLUEN+C6H5=PHCH2+C6H6	2.10E+12	0	4400		
3380	TOLUEN+C4H5-N=PHCH2+C4H6	4.00E+12	0	7500		
3381	TOLUEN+C2H3=PHCH2+C2H4	4.00E+12	0	7500		
3382	TOLUEN(+M)=C6H5+CH3(+M)	1.95E+27	-3.2	107447		
	Low	pressure	limit:	1.00E+98	-2.30E+01	1.22E+05
	TROE	centering:	7.05E-01	1.00E+10	4.60E+02	8.21E+09
3383	PHCH2+H(+M)=TOLUEN(+M)	7.22E+13	0.1	-44		
	Low	pressure	limit:	0.30200+137	-3.34E+01	5.56E+04
	TROE	centering:	5.00E-01	6.00E+02	9.00E+02	5.50E+03
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	С2Н6	Enhanced	by	3.00E+00		
3384	TOLUEN+HO2=PHCH2+H2O2	1.02E+04	2.5	12340.5		
3385	TOLUEN+OH=PHCH2+H2O	1.77E+05	2.4	-602		
3386	TOLUEN+OH=C6H5OH+CH3	7.83E+02	2.9	3221		
3387	TOLUEN+O=PHCH2+OH	6.30E+11	0	0		

3388	TOLUEN+H=PHCH2+H2	6.47E+00	4	3384	
3389	TOLUEN+CH3=PHCH2+CH4	3.16E+11	0	9500	
3390	PHCH2=C4H4+C3H3	2.00E+14	0	83600	
3391	PHCH2=C5H5+C2H2	6.00E+13	0	70000	
3392	PHCH2+HO2=PHCH2O+OH	1.19E+09	1	-2250	
3393	PHCH2+O=C6H5+CH2O	1.00E+13	0	0	
3394	PHCH2+C3H3=TOLUEN+C3H2	1.00E+12	0	0	
3395	PHCH2+C6H5OH=TOLUEN+C6H5O	1.05E+11	0	9500	
3396	PHCH2+O2=PHCH2O+O	6.31E+12	0	42924	
3397	PHCH2+O2=PHCH2O2	8.28E+51	-12.6	14813	
3398	PHCH2O2=PHHCO+OH	3.88E+68	-17.7	58456	
3399	PHCH2OH+O2=>PHHCO+HO2+H	2.00E+14	0	41400	
3400	PHCH2OH+OH=>PHHCO+H2O+H	8.43E+12	0	2583	
3401	РНСН2ОН+Н=С6Н6+СН2ОН	1.20E+13	0	5148	
3402	PHCH2OH+PHCH2=>PHHCO+TOLUEN+H	2.11E+11	0	9500	
3403	PHCH2OH+C6H5=>PHHCO+C6H6+H	1.40E+12	0	4400	
3404	РНСН2О=РННСО+Н	1.27E+14	0	1103	
3405	РННСО=РНСО+Н	3.98E+15	0	83701	
3406	РННСО+О2=РНСО+НО2	1.02E+13	0	39000	
3407	PHHCO+HO2=PHCO+H2O2	2.00E+12	0	11665	
3408	РННСО+ОН=РНСО+Н2О	1.71E+09	1.2	-447	
3409	РННСО+ОН=С6Н5ОН+НСО	1.20E+13	0	5123	
3410	РННСО+О=РНСО+ОН	9.04E+12	0	3080	
3411	РННСО+Н=РНСО+Н2	5.00E+13	0	4928	
3412	РННСО+Н=С6Н6+НСО	1.20E+13	0	5148	
3413	PHHCO+CH3=PHCO+CH4	2.77E+03	2.8	5773	
3414	PHHCO+C6H5=PHCO+C6H6	7.01E+11	0	4400	
3415	PHCO=C6H5+CO	3.98E+14	0	29401	
3416	PHCO+O2=C6H5O+CO2	3.00E+10	0	2870	
3417	PHCO+HO2=>C6H5+CO2+OH	2.00E+13	0	0	
3418	PHC2H5=C6H6+C2H4	1.15E+09	0	51699	
3419	PHC2H5=STYREN+H2	5.01E+12	0	63988	
3420	РНС2Н5=РНСН2+СН3	8.91E+15	0	74720	
3421	PHC2H5=C6H5+C2H5	1.00E+16	0	100000	
3422	PHC2H5=BPHC2H4+H	2.51E+15	0	81262	
3423	PHC2H5+O2=>BPHC2H4+HO2	4.00E+13	0	38220	
3424	PHC2H5+H=C2H5+C6H6	2.40E+13	0	5123	
3425	PHC2H5+H=BPHC2H4+H2	2.65E+02	3.4	1003.5	
3426	PHC2H5+H=APHC2H4+H2	2.35E+02	1.9	6637.2	
3427	PHC2H5+OH=APHC2H4+H2O	1.99E+07	1.8	1133	
3428	PHC2H5+OH=BPHC2H4+H2O	4.80E+12	0	0	
3429	PHC2H5+O=APHC2H4+OH	5.00E+08	1.5	5802	
3430	PHC2H5+O=BPHC2H4+OH	2.23E+13	0	3795.5	
3431	PHC2H5+HO2=>APHC2H4+H2O2	1.80E+04	2.5	16792	
3432	PHC2H5+HO2=>BPHC2H4+H2O2	6.80E+03	2.5	10115	
3433	PHC2H5+CH3=APHC2H4+CH4	2.75E-01	4	8287	

		1	1	1	1	1	1
ļ	3434	PHC2H5+CH3=BPHC2H4+CH4	7.50E-01	3.5	4485		
ļ	3435	APHC2H4=STYREN+H	3.79E+06	2	32106		
ļ		Reverse	Arrhenius	coefficients:	1.63E+06	2.2	1994
ļ	3436	C6H5+C2H4=APHC2H4	4.04E+03	2.6	1459		
ļ		Reverse	Arrhenius	coefficients:	1.72E+11	0.8	38704
ļ	3437	BPHC2H4=STYREN+H	3.74E+08	1.6	44609		
		Reverse	Arrhenius	coefficients:	1.19E+07	1.9	-108
	3438	BPHC2H4+O2=STYREN+HO2	1.58E+12	0	15200		
	3439	BPHC2H4+O=C6H5+CH3CHO	1.60E+13	0	0		
	3440	BPHC2H4+O=PHHCO+CH3	1.60E+13	0	0		
ļ	3441	ВРНС2Н4+ОН=РННСО+СН4	1.60E+13	0	0		
	3442	BPHC2H4+HO2=>PHHCO+CH3+OH	5.00E+12	0	0		
	3443	APHC2H4=BPHC2H4	5.95E+05	2.1	29582		
		Reverse	Arrhenius	coefficients:	2.31E+07	1.7	44456
	3444	C4H5-N+C4H4=STYREN+H	3.16E+11	0	3700		
	3445	2C4H4=STYREN	1.48E+14	0	38003		
	3446	C6H5+C2H3=STYREN	1.00E+13	0	0		
	3447	C6H5+C2H4=STYREN+H	5.10E+12	0	6190		
	3448	STYREN=C6H6+C2H2	1.60E+11	0	58438		
	3449	STYREN=N-C8H7+H	5.00E+15	0	109400		
	3450	STYREN=BSTYRYL+H	5.00E+15	0	109400		
	3451	STYREN+O2=N-C8H7+HO2	4.00E+13	0	59800		
	3452	STYREN+O2=BSTYRYL+HO2	4.00E+13	0	59800		
	3453	STYREN+OH=N-C8H7+H2O	5.00E+12	0	6936		
ĺ	3454	STYREN+OH=BSTYRYL+H2O	5.00E+12	0	5936		
	3455	STYREN+H=N-C8H7+H2	5.00E+13	0	15009		
	3456	STYREN+H=BSTYRYL+H2	5.00E+13	0	14009		
	3457	STYREN+HO2=N-C8H7+H2O2	7.50E+10	0	14190		
	3458	STYREN+HO2=BSTYRYL+H2O2	7.50E+10	0	13190		
ſ	3459	STYREN+O=PHCH2+HCO	1.20E+08	1.4	530		
ĺ	3460	STYREN+O=C6H5+CH2CHO	6.00E+07	1.4	530		
ĺ	3461	STYREN+C6H5=N-C8H7+C6H6	2.00E+11	0	20000		
ĺ	3462	STYREN+C6H5=BSTYRYL+C6H6	2.00E+11	0	19000		
	3463	STYREN+C6H5O=N-C8H7+C6H5OH	2.00E+11	0	20000		
	3464	STYREN+C6H5O=BSTYRYL+C6H5OH	2.00E+11	0	19000		
ĺ	3465	STYREN+C5H5=N-C8H7+C5H6	2.00E+11	0	20000		
ĺ	3466	STYREN+C5H5=BSTYRYL+C5H6	2.00E+11	0	19000		
ĺ	3467	STYREN+OH=C6H4C2H3+H2O	1.63E+07	1.4	1454		
ĺ	3468	STYREN+H=>C6H4C2H3+H2	1.90E+07	2	9698		
ĺ	3469	STYREN+HO2=>PHCH2+HCO+OH	2.50E+12	1	25000		
ļ	3470	STYREN+HO2=>PHHCO+CH2+OH	2.50E+12	1	25000		
	3471	STYREN+H=C6H6+C2H3	2.40E+13	0	5123		
	3472	N-C8H7+H=BSTYRYL+H	1.00E+14	0	0		
ļ	3473	N-C8H7=C6H5+C2H2	1.00E+14	0	36850		
	3474	N-C8H7=PHC2H+H	3.00E+12	0	37830		
ļ	3475	N-C8H7+O2=PHHCO+HCO	2.00E+11	0	14000		
1		•					

	3476	N-C8H7+C6H5=PHC2H+C6H6	1.00E+13	0	0		
	3477	BSTYRYL+O2=PHCO+CH2O	2.00E+11	0	14000		
	3478	BSTYRYL+O=C6H5+CH2CO	1.60E+13	0	0		
	3479	BSTYRYL=PHC2H+H	3.00E+12	0	48030		
	3480	BSTYRYL+C6H5=PHC2H+C6H6	1.00E+13	0	0		
	3481	BSTYRYL+OH=PHC2H+H2O	2.00E+13	0	0		
	3482	BSTYRYL+H=PHC2H+H2	5.00E+13	0	0		
	3483	PHCH2HCO+O2=>PHCH2CO+HO2	2.00E+13	0.5	42200		
	3484	PHCH2HCO+HO2=>PHCH2CO+H2O2	4.10E+04	2.5	10204		
	3485	PHCH2HCO+OH=>PHCH2CO+H2O	2.69E+08	1.4	-1574		
	3486	PHCH2HCO+O=>PHCH2CO+OH	5.85E+12	0	1808		
	3487	PHCH2HCO+H=>PHCH2CO+H2	4.10E+09	1.2	2404		
	3488	PHCH2HCO+CH3=>PHCH2CO+CH4	3.50E-08	6.2	1639		
ſ	3489	PHCH2HCO=>PHCH2+HCO	5.00E+16	0	71600		
	3490	РНСН2НСО+Н=С6Н6+СН2СНО	5.78E+13	0	8088		
	3491	PHCH2CO=PHCH2+CO	3.98E+14	0	29401		
	3492	PHCH2CO+O2=PHCH2O+CO2	3.00E+10	0	2870		
ſ	3493	PHCH2CO+HO2=>PHCH2+CO2+OH	2.00E+13	0	0		
ſ	3494	C6H5+CH2CO=PHCH2CO	3.20E+04	2.4	489		
ſ	3495	C6H5+CH2CO=PHCOCH2	6.20E+19	-2.3	15083		
	3496	PHC2H+OH=>C6H6+HCCO	1.00E+13	0	0		
	3497	PHC2H+H=C6H4C2H+H2	5.00E+13	-0.5	1500		
ſ	3498	PHC2H+OH=C6H4C2H+H2O	1.05E+13	0	4565		
ſ	3499	PHC2H+C2H=C6H4C2H+C2H2	2.00E+13	0	0		
ſ	3500	РНС2Н+О=С6Н5ССО+Н	4.80E+09	1	0		
ſ	3501	PHC2H+CH3=C6H4C2H+CH4	1.67E+12	0	15057		
	3502	C6H4C2H+C2H2=A1C2HAC	1.90E+21	-2.9	8100		
	3503	C6H4C2H+C2H2=A2-1	5.10E+48	-10.5	28000		
ſ	3504	C6H4C2H+H=PHC2H	4.20E+11	0.5	-71.7		
ſ	3505	C6H5CCO+O2=PHCO+CO2	1.00E+12	0	0		
ſ	3506	PHCHCO+OH=PHCH2+CO2	3.73E+12	0	-1010		
ſ	3507	PHCHCO+H=PHCH2+CO	4.40E+12	0	1459		
	3508	РНСНСО+О=РННСО+СО	3.20E+12	0	-437		
	3509	PBZ(+M)=PHCH2+C2H5(+M)	2.30E+22	-1.6	77244		
		Low	pressure	limit:	1.00E+75	-1.72E+01	5.91E+04
		TROE	centering:	8.66E-05	2.14E+02	2.14E+02	3.57E+03
	3510	PBZ(+M)=APHC2H4+CH3(+M)	7.06E+20	-1.3	89013		
		Low	pressure	limit:	3.63E+47	-9.31E+00	6.87E+04
		TROE	centering:	7.99E-02	4.42E+02	1.55E+10	2.77E+03
Į	3511	PBZ(+M)=C6H5+NC3H7(+M)	1.26E+22	-1.3	102320		
ĺ		Low	pressure	limit:	6.71E+41	-7.34E+00	8.48E+04
ſ		TROE	centering:	2.57E-01	5.43E+02	3.93E+12	3.22E+03
ſ	3512	PBZ=PBZJA+H	9.00E+15	0	100210		
ľ	3513	PBZ=PBZJB+H	6.00E+15	0	99110		
ľ	3514	PBZ=PBZJC+H	6.00E+15	0	86210		
Ì	3515	PBZ+O2=PBZJA+HO2	4.00E+13	0	50600		

3516	PBZ+O2=PBZJB+HO2	4.00E+13	0	49500	
3517	PBZ+O2=PBZJC+HO2	4.00E+13	0	35800	
3518	PBZ+H=NC3H7+C6H6	5.78E+13	0	8087	
3519	PBZ+H=PBZJA+H2	5.75E+07	1.9	5599.2	
3520	PBZ+H=PBZJB+H2	7.97E+07	1.9	6819.3	
3521	PBZ+H=PBZJC+H2	6.31E+06	2.2	8640.7	
3522	PBZ+O=PBZJA+OH	1.93E+05	2.7	3716	
3523	PBZ+O=PBZJB+OH	4.77E+04	2.7	2106	
3524	PBZ+O=PBZJC+OH	4.77E+04	2.7	1106	
3525	PBZ+OH=PBZJA+H2O	3.16E+07	1.8	934	
3526	PBZ+OH=PBZJB+H2O	7.08E+06	1.9	-159	
3527	PBZ+OH=PBZJC+H2O	2.76E+04	2.6	-1919	
3528	PBZ+HO2=PBZJA+H2O2	4.76E+04	2.5	16494	
3529	PBZ+HO2=PBZJB+H2O2	9.64E+03	2.6	13910	
3530	PBZ+HO2=PBZJC+H2O2	4.82E+03	2.5	10530	
3531	PBZ+CH3=PBZJA+CH4	2.75E-01	3.6	7150	
3532	PBZ+CH3=PBZJB+CH4	6.00E+11	0	10120	
3533	PBZ+CH3=PBZJC+CH4	3.69E+00	3.3	4002	
3534	PBZ+C2H3=PBZJA+C2H4	6.00E+02	3.3	10502	
3535	PBZ+C2H3=PBZJB+C2H4	1.00E+03	3.1	8829	
3536	PBZ+C2H3=PBZJC+C2H4	1.00E+03	3.1	8829	
3537	PBZ+C2H5=PBZJA+C2H6	3.16E+11	0	12300	
3538	PBZ+C2H5=PBZJB+C2H6	5.01E+10	0	10400	
3539	PBZ+C2H5=PBZJC+C2H6	5.01E+10	0	10400	
3540	PBZ+C3H5-A=PBZJA+C3H6	7.94E+11	0	20500	
3541	PBZ+C3H5-A=PBZJB+C3H6	7.94E+11	0	16200	
3542	PBZ+C3H5-A=PBZJC+C3H6	7.94E+11	0	16200	
3543	PBZ+C3H5-T=PBZJA+C3H6	7.94E+11	0	20500	
3544	PBZ+C3H5-T=PBZJB+C3H6	7.94E+11	0	16200	
3545	PBZ+C3H5-T=PBZJC+C3H6	7.94E+11	0	16200	
3546	PBZ+C3H5-S=PBZJA+C3H6	7.94E+11	0	20500	
3547	PBZ+C3H5-S=PBZJB+C3H6	7.94E+11	0	16200	
3548	PBZ+C3H5-S=PBZJC+C3H6	7.94E+11	0	16200	
3549	PBZ+C6H5=PBZJA+C6H6	7.94E+11	0	20500	
3550	PBZ+C6H5=PBZJB+C6H6	7.94E+11	0	16200	
3551	PBZ+C6H5=PBZJC+C6H6	7.94E+11	0	16200	
3552	PBZ+PHCH2=PBZJA+TOLUEN	7.94E+11	0	20500	
3553	PBZ+PHCH2=PBZJB+TOLUEN	7.94E+11	0	16200	
3554	PBZ+PHCH2=PBZJC+TOLUEN	7.94E+11	0	16200	
3555	PBZ+BPHC2H4=PBZJA+PHC2H5	7.94E+11	0	20500	
3556	PBZ+BPHC2H4=PBZJB+PHC2H5	7.94E+11	0	16200	
3557	PBZ+BPHC2H4=PBZJC+PHC2H5	7.94E+11	0	16200	
3558	PBZ+CH3O=PBZJA+CH3OH	3.18E+11	0	7050	
3559	PBZ+CH3O=PBZJB+CH3OH	7.20E+10	0	4470	
3560	PBZ+CH3O=PBZJC+CH3OH	4.00E+01	2.9	8609	
3561	PBZJA=PHCH2+C2H4	2.00E+13	0	12836	

3562	PBZJB=C6H5+C3H6	2.00E+13	0	35390	
3563	PBZJC=STYREN+CH3	1.00E+14	0	34860	
3564	BPHPROPY=STYREN+CH3	1.00E+14	0	24000	
3565	PBZJB+O=PHCH2+CH3CHO	1.60E+13	0	0	
3566	PBZJB+OH=TOLUEN+CH3CHO	1.60E+13	0	0	
3567	PBZJB+HO2=>PHCH2+CH3CHO+OH	5.00E+12	0	0	
3568	PBZJC+O=PHHCO+C2H5	1.60E+13	0	0	
3569	PBZJC+OH=PHHCO+C2H6	1.60E+13	0	0	
3570	PBZJC+HO2=>PHHCO+C2H5+OH	5.00E+12	0	0	
3571	РНСЗН5-1=РНСН2+С2Н3	8.00E+15	0	88500	
3572	РНСЗН5-1=РНСЗН4+Н	1.40E+15	0	86250	
3573	РНС3Н5-1+Н=РНС3Н4+Н2	2.63E+14	0	8820	
3574	РНСЗН5-1+О=РНСЗН4+ОН	4.00E+11	0.7	-2100	
3575	PHC3H5-1+OH=PHC3H4+H2O	3.12E+06	2	-1300	
3576	PHC3H5-1+HO2=PHC3H4+H2O2	2.66E+11	0	11270	
3577	РНСЗН5-1+О2=РНСЗН4+НО2	1.95E+12	0	38000	
3578	РНС3Н5-1+СН3=РНС3Н4+СН4	1.90E+12	0	9010	
3579	PHC3H5-1+C6H5=PHC3H4+C6H6	2.80E+12	0	11220	
3580	PHC3H5-1+PHCH2=PHC3H4+TOLUEN	2.80E+12	0	11220	
3581	PHC3H5-1+APHC2H4=PHC3H4+PHC2H5	2.80E+12	0	11220	
3582	РНС3Н5-1+Н=С6Н6+С3Н5-А	5.80E+13	0	5123	
3583	PHC3H5-1+HO2=>APHC2H4+HCO+OH	2.50E+12	1	25000	
3584	PHC3H5-1+HO2=>PHCH2CO+CH3+OH	2.50E+12	1	25000	
3585	PHC3H5-1+O=STYREN+CH2O	7.02E+07	1.6	-1628	
3586	РНС3Н5-1+О=РННСО+С2Н4	4.69E+07	1.6	-1628	
3587	PHC3H5-1+OH=>APHC2H4+CH2O	1.00E+12	0	0	
3588	PHC3H5-1+OH=>PHCH2HCO+CH3	1.00E+12	0	0	
3589	PHC3H5-2=N-C8H7+CH3	3.00E+17	0	99000	
3590	PHC3H5-2=C6H5+C3H5-S	8.00E+15	0	163800	
3591	РНСЗН5-2=РНСЗН4+Н	2.10E+15	0	88230	
3592	PHC3H5-2+H=PHC3H4+H2	5.00E+13	0	3900	
3593	РНСЗН5-2+О=РНСЗН4+ОН	1.75E+11	0.7	5884	
3594	РНС3Н5-2+ОН=РНС3Н4+Н2О	2.25E+13	0	2217	
3595	PHC3H5-2+HO2=PHC3H4+H2O2	3.20E+12	0	14900	
3596	РНС3Н5-2+О2=РНС3Н4+НО2	1.95E+12	0	39000	
3597	PHC3H5-2+CH3=PHC3H4+CH4	1.00E+11	0	7300	
3598	PHC3H5-2+C6H5=PHC3H4+C6H6	2.80E+12	0	11220	
3599	PHC3H5-2+PHCH2=PHC3H4+TOLUEN	2.80E+12	0	11220	
3600	PHC3H5-2+APHC2H4=PHC3H4+PHC2H5	2.80E+12	0	11220	
3601	PHC3H5-2+O=PHHCO+C2H4	7.00E+07	1.6	-628	
3602	PHC3H5-2+O=STYREN+CH2O	4.70E+07	1.6	-628	
3603	PHC3H5-2+OH=>PHHCO+C2H5	2.60E+13	0	0	
3604	PHC3H5-2+OH=>PHCH2+CH3CHO	2.60E+13	0	0	
3605	РНС3Н5-2+ОН=СРНС3Н5ОНВ	4.75E+12	0	-782	
3606	РНС3Н5-2+ОН=ВРНС3Н5ОНС	4.75E+12	0	-782	
3607	РНС3Н4+НО2=СОРНС3Н4-1+ОН	1.90E+12	0	-1200	

3608	PHC3H4+HO2=AOPHC3H4-2+OH	1.90E+12	0	-1200	
3609	PHC3H4+CH3O2=COPHC3H4-1+CH3O	1.90E+12	0	-1200	
3610	PHC3H4+CH3O2=AOPHC3H4-2+CH3O	1.90E+12	0	-1200	
3611	PHC3H4+C2H5O2=COPHC3H4-1+C2H5O	1.90E+12	0	-1200	
3612	PHC3H4+C2H5O2=AOPHC3H4-2+C2H5O	1.90E+12	0	-1200	
3613	PHC3H4+NC3H7O2=COPHC3H4-1+NC3H7O	1.90E+12	0	-1200	
3614	PHC3H4+NC3H7O2=AOPHC3H4-2+NC3H7O	1.90E+12	0	-1200	
3615	PHC3H4+IC3H7O2=COPHC3H4-1+IC3H7O	1.90E+12	0	-1200	
3616	PHC3H4+IC3H7O2=AOPHC3H4-2+IC3H7O	1.90E+12	0	-1200	
3617	PHC3H4+O2=PHHCO+CH2CHO	1.06E+10	0.3	12838	
3618	СОРНСЗН4-1=РННСО+С2Н3	7.94E+14	0	19000	
3619	AOPHC3H4-2=CH2O+N-C8H7	7.94E+14	0	19000	
3620	CPHC3H5OHB+O2=PBZOHBQJC	4.58E+11	0	-378	
3621	BPHC3H5OHC+O2=PBZOHCQJB	2.00E+12	0	0	
3622	BPHC3H5OHA+O2=PBZOHAQJB	2.00E+12	0	0	
3623	APHC3H5OHB+O2=PBZOHBQJA	2.00E+12	0	0	
3624	PBZOHBQJC=PHHCO+CH3CHO+OH	1.00E+16	0	25000	
3625	PBZOHCQJB=PHHCO+CH3CHO+OH	1.00E+16	0	25000	
3626	PBZOHAQJB=PHCH2HCO+CH2O+OH	1.00E+16	0	25000	
3627	PBZOHBQJA=PHCH2HCO+CH2O+OH	1.00E+16	0	25000	
3628	PHC2H4HCO+O2=>PHC2H4CO+HO2	2.00E+13	0.5	42200	
3629	PHC2H4HCO+HO2=>PHC2H4CO+H2O2	1.70E+12	0	10700	
3630	PHC2H4HCO+OH=>PHC2H4CO+H2O	2.35E+10	0.7	-1113	
3631	PHC2H4HCO+O=>PHC2H4CO+OH	5.85E+12	0	1808	
3632	PHC2H4HCO+H=>PHC2H4CO+H2	5.54E+02	3.5	5167	
3633	PHC2H4HCO+CH3=>PHC2H4CO+CH4	2.25E+00	4	8285	
3634	PHC2H4HCO=>APHC2H4+HCO	5.00E+16	0	72250	
3635	PHC2H4CO=APHC2H4+CO	8.00E+13	0	30000	
3636	PHC2H4CO+HO2=>APHC2H4+CO2+OH	2.00E+13	0	0	
3637	PHCH2COCH2=PHCH2+CH2CO	4.00E+13	0	13500	
3638	PHCH2COCH2+O2=PHCH2COCH2O2	9.00E+18	-2.5	0	
2620	PHCH2COCH2O2+HO2=PHCH2COCH2O2H+O	2 20E+11	0	1700	
3640		2.29E+11	0	42500	
3641	PHCH2CO+CH2O=PHCH2COCH2O	1.50E+11	0	11000	
3642	PHCOC2H4=PHCO+C2H4	4 00E+13	0	27870	
3643	PHCOC2H4+O2=PHCOC2H3+HO2	5.00E+12	0	5000	
3644	PHCOC2H4+O2=PHCOCH2CH2O2	9.00E+18	-2.5	0	
5011	PHCOCH2CH2O2+HO2=PHCOCH2CH2O2H+O	9100E 10	2.0	0	
3645	2	2.29E+11	0	-1790	
3646	PHCOCH2CH2O2H=PHCOCH2CH2O+OH	1.50E+16	0	42500	
3647	PHCOCH2+CH2O=PHCOCH2CH2O	1.50E+11	0	11900	
3648	PHCOC2H3=>PHCO+C2H3	1.22E+23	-2	83950	
3649	PHCOC2H3=>C6H5+C2H3CO	1.22E+23	-2	83950	
3650	PHCH2CHCO+OH=APHC2H4+CO2	3.73E+12	0	-1010	
3651	PHCH2CHCO+H=APHC2H4+CO	4.40E+12	0	1459	
3652	PHCH2CHCO+O=PHCH2HCO+CO	3.20E+12	0	-437	

	3653	2PHCH2=C14H14	2.51E+11	0.4	0		
	3654	2C5H5=NAPHT+H2	1.00E+13	0	7000		
ſ	3655	2C5H5=NAPHT+2H	5.00E+12	0	8000		
	3656	A1C2H3AC=NAPHT+H	1.00E+10	0	4780.1		
ſ	3657	PHCH2+C3H3=C10H10	1.00E+10	0	0		
ſ	3658	NAPHT+H=C10H9	5.00E+14	0	5000		
ſ	3659	NAPHT=A2-1+H	4.50E+15	0	107433.1		
Ī	3660	NAPHT+H=A2-1+H2	2.50E+14	0	15999		
ſ	3661	NAPHT+OH=A2-1+H2O	1.63E+08	1.4	1450.8		
	3662	NAPHT+CH3=A2-1+CH4	2.00E+12	0	15060		
ſ	3663	NAPHT+O=A2O+H	2.23E+13	0	4530.7		
ſ	3664	NAPHT+O=A2-1+OH	2.00E+13	0	14704		
ſ	3665	NAPHT+O2=A2-1+HO2	6.30E+13	0	60000		
ſ	3666	A2-1+HO2=A2O+OH	5.00E+13	0	999		
ſ	3667	A2-1+O2=A2O+O	2.09E+12	0	7468.9		
ſ	3668	A2-1+OH=A2O+H	5.00E+13	0	0		
Ī	3669	A2O+H=A2OH	5.06E+14	0	0		
Ī	3670	A2O=>INDENYL+CO	7.40E+11	0	43853		
ſ	3671	A2OH+OH=A2O+H2O	3.00E+13	0	0		
Ī	3672	A2OH+H=A2O+H2	1.15E+14	0	12399.6		
Ī	3673	A2OH+H=NAPHT+OH	2.23E+13	0	7927.8		
Ī	3674	A2OH+O=A2O+OH	1.26E+13	0	2899.1		
Ī	3675	C10H10+OH=C10H9+H2O	5.00E+06	2	0		
Ī	3676	C10H10+O=C10H9+OH	7.00E+11	0.7	6000		
Ī	3677	C10H10+H=C10H9+H2	2.00E+05	2.5	2500		
Ī	3678	C10H9+H=C10H10	1.00E+14	0	0		
Ī	3679	C6H4C2H3+C2H2=A1C2H3AC	5.00E+12	0	0		
Ī	3680	PHCH2+C2H2=INDENE+H	3.20E+11	0	7000		
Ī	3681	C6H4C2H3+CH3=INDENE+2H	5.00E+13	0	0		
ſ	3682	CH3C6H4C2H3+OH=INDENE+H+H2O	1.26E+13	0	2583		
Ī	3683	CH3C6H4C2H3+H=INDENE+H+H2	3.98E+02	3.4	3120		
Ī	3684	INDENE+H=INDENYL+H2	4.38E+08	1.8	2999.5		
ſ	3685	INDENE+O=INDENYL+OH	1.81E+13	0	3080.8		
Ī	3686	INDENE+OH=INDENYL+H2O	6.86E+09	1.2	-446.9		
ſ	3687	INDENE+HO2=INDENYL+H2O2	1.99E+12	0	11658.7		
ſ	3688	INDENE+O2=INDENYL+HO2	2.00E+13	0	25000		
Ī	3689	INDENE+O2=INDENOXY+OH	1.00E+13	0	20712.2		
Ī	3690	INDENYL+O=N-C8H7+CO	1.00E+14	0	0		
Ī	3691	INDENYL+HO2=N-C8H7+CO+OH	1.00E+13	0	0		
ľ	3692	INDENYL+C5H5=PHNTHRN+2H	1.00E+13	0	4000		
	3693	INDENYL+CO=>A2O	9.50E+03	1.4	26555.9		
	3694	INDENYL+H(+M)=INDENE(+M)	1.00E+14	0	0		
ľ		Low	pressure	limit:	4.40E+81	-1.83E+01	1.30E+04
ľ		TROE	centering:	6.80E-02	4.01E+02	4.14E+03	5.50E+03
ľ		H2	Enhanced	by	2.00E+00		
ľ		Н2О	Enhanced	bv	6.00E+00		
L .						<u>.</u>	

	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
3695	INDENYL+O=BSTYRYL+CO	1.00E+14	0	0		
3696	INDENYL+O=INDENOXY	1.00E+13	0	0		
3697	INDENYL+HO2=INDENOXY+OH	1.50E+13	0	0		
3698	INDENOXY=BSTYRYL+CO	2.51E+11	0	43900.6		
3699	CH2+CH2=C2H2+H+H	4.00E+13	0	0		
3700	C2H3+C2H=C2H2+C2H2	3.00E+13	0	0		
3701	C2H3+HCO=C2H4+CO	9.00E+13	0	0		
3702	C2H3+C2H3=H2CCCH+CH3	1.80E+13	0	0		
3703	C2H3+C2H3=C2H4+C2H2	6.30E+13	0	0		
3704	C2H3+CH=CH2+C2H2	5.00E+13	0	0		
3705	C2H+CH4=CH3+C2H2	7.23E+12	0	976		
3706	C2H3+C2H2(+M)<=>C4H4+H(+M)	5.00E+13	-1.2	11800		
	Low	pressure	limit:	5.00E+14	-7.50E-01	5.00E+03
	TROE	centering:	1.00E+00	1.00E-30	1.71E+02	1.07E+03
3707	C2H3+C2H2(+M)<=>C4H5-N(+M)	1.00E+30	-5.7	8700		
	Low	pressure	limit:	1.00E+30	-4.80E+00	-5.90E+01
	TROE	centering:	1.00E-02	1.00E-30	3.00E+02	1.00E+03
3708	C2H3+C2H2(+M)<=>C4H5-I(+M)	1.00E+28	-5.1	12000		
	Low	pressure	limit:	1.00E+30	-5.10E+00	-9.50E+02
	TROE	centering:	1.00E-01	1.00E-30	3.50E+03	1.50E+03
3709	C2H3+C2H3(+M)<=>C4H5-I+H(+M)	1.20E+14	-1.5	11900		
	Low	pressure	limit:	4.00E+20	-2.26E+00	5.06E+03
	TROE	centering:	1.00E+00	1.00E-30	1.00E+02	3.00E+03
3710	C2H3+C2H3(+M)<=>C4H5-N+H(+M)	2.00E+12	-0.7	14200		
	Low	pressure	limit:	1.00E+19	-1.95E+00	6.00E+03
	TROE	centering:	1.00E+00	1.00E-30	4.00E-01	1.00E+03
3711	c-C4H5=C4H4+H	3.00E+12	0	52000		
3712	C4H4+C2H2=C6H6	4.47E+11	0	30010		
3713	C2H2+CH2=C3H3+H	1.20E+13	0	6620		
3714	C2H2+CH2(S)=C3H3+H	2.00E+13	0	0		
3715	C7H6+H=>C5H5+C2H2	7.00E+12	0	0		
3716	C7H6=C7H5+H	1.02+116	-28.5	157860		
3717	C7H6=c-C5H4+C2H2	1.26+130	-32.2	173970		
3718	C7H6+CH3=C7H5+CH4	1.87E+04	2.7	6008		
3719	C7H5(+M)=C4H2+C3H3(+M)	3.00E+12	-0.1	62300		
	Low	pressure	limit:	1.00E+45	8.40E+00	4.75E+04
3720	C7H6+H=C7H5+H2	1.90E+08	1.8	4965		
3721	C7H5(+M)=C2H2+C5H3(+M)	2.00E+11	-0.1	62300		
	Low	pressure	limit:	1.00E+45	8.40E+00	4.75E+04
3722	C6H5O+H=C5H5+HCO	1.00E+13	0	12000		
3723	C5H6=C5H5+H	2.50E+15	0	82000		
3724	CH3+HCCO=C2H4+CO	5.00E+13	0	0		
3725	STYREN+H=PHCCH2+H2	3.33E+05	2.5	9240		

	3726	C6H5+C2H3=PHCCH2+H	1.80E+31	-4.6	31652		
	3727	C6H5+C2H3=PHCHCH+H	1.50E+32	-4.9	35504		
ĺ	3728	РНСНСН+Н=РНССН2+Н	2.30E+37	-6	35164		
	3729	C6H5+C2H2=PHCHCH	7.70E+40	-9.2	13400		
	3730	РНС2Н+Н=РНСНСН	5.00E+54	-12.8	17185		
	3731	PHC2H+H=PHCCH2	5.00E+54	-12.8	17185		
	3732	РНСНСН+Н=РНС2Н+Н2	1.50E+13	0	0		
	3733	PHCCH2+H=PHC2H+H2	3.00E+13	0	0		
	3734	PHCHCH+O2=PHHCO+HCO	4.60E+16	-1.4	1010		
	3735	PHCCH2+O2=PHCO+CH2O	4.60E+16	-1.4	1010		
	3736	РНССН2+ОН=РННСО+СН2	4.00E+07	1.8	220		
	3737	PHCHCH+OH=PHC2H+H2O	2.50E+12	0	0		
	3738	PHCCH2+OH=PHC2H+H2O	5.00E+12	0	0		
	3739	PHCCH2+O=CH2CO+C6H5	4.80E+13	0	0		
	3740	STYREN=PHCCH2+H	6.00E+46	-9.1	118323		
	3741	STYREN+OH=PHCCH2+H2O	1.55E+06	2	430		
	3742	STYREN+O2=PHCCH2+HO2	2.00E+13	0	57900		
	3743	STYREN+H=PHCHCH+H2	6.65E+05	2.5	12240		
	3744	C6H5+C3H3=INDENE	1.50E+75	-17.8	39600		
		Declared	duplicate	reaction			
	3745	H2CCCH+H2CCCH=FULVENE	7.25E+65	-16	25035		
		Declared	duplicate	reaction			
	3746	H2CCCH+H2CCCH=FULVENE	4.19E+39	-9	6098		
		Declared	duplicate	reaction			
	3747	H2CCCH+OH=C2H3+HCO	5.00E+13	0	0		
	3748	H2CCCH+OH=C2H4+CO	3.00E+13	0	0		
	3749	C3H4-A+H=H2CCCH+H2	6.60E+03	3.1	5522		
	3750	C3H4-A+OH=H2CCCH+H2O	2.00E+07	2	5000		
	3751	C3H4-A+OH=CH2O+C2H3	1.00E+12	0	-198.7		
	3752	C3H4-A+OH=CH2CO+CH3	3.04E+12	0	-198.7		
	3753	C3H4-P+H=H2CCCH+H2	3.57E+04	2.8	4821		
	3754	H2CCCH+H2CCCH=C6H6	1.64E+66	-15.9	27529		
		Declared	duplicate	reaction			
	3755	H2CCCH+H2CCCH=C6H6	1.20E+35	-7.4	5058		
		Declared	duplicate	reaction			
	3756	C3H3+C3H5-A=FULVENE+H+H	3.26E+29	-5.4	3390		
	3757	FULVENE+H(+M)=C6H6+H(+M)	4.50E+08	1.2	12500		
		Low	pressure	limit:	4.26E+17	-9.71E-01	6.00E+03
		TROE	centering:	-3.74E-01	6.90E+02	1.00E+01	1.51E+03
	3758	C2H2+C4H5-I(+M)=H+FULVENE(+M)	1.00E+40	-7.9	39600		
		Low	pressure	limit:	2.00E+24	-3.45E+00	1.40E+04
ľ		TROE	centering:	5.00E-01	2.00E+00	1.00E+00	1.63E+03
ľ	3759	C4H3-I+H2=C2H2+C2H3	5.01E+10	0	20000		
ľ	3760	C2H+C4H4=C2H2+C4H3-I	4.00E+13	0	0		
Ī	3761	C4H4+C6H5=C6H6+C4H3-N	1.00E+12	0	0		
ľ	3762	C4H4+C6H5=C6H6+C4H3-I	1.00E+12	0	0		
-						,	

3763	C6H5+C2H2=C6H6+C2H	1.13E+12	0	14100		
3764	C2H3+C4H2=C4H4+C2H	3.01E+13	0	23000		
3765	C2H3+C4H4=C2H4+C4H3-N	5.00E+11	0	16300		
3766	C2H3+C4H4=C2H4+C4H3-I	5.00E+11	0	16300		
3767	C4H4=C2H+C2H3	1.00E+16	0	105000		
3768	H+C2H2=C2H3	5.50E+12	0	2500		
3769	C6H4CH3+H(+M)=TOLUEN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
3770	TOLUEN+H=C6H4CH3+H2	3.91E+08	1.8	16352.8		
3771	TOLUEN+CH3=C6H4CH3+CH4	1.79E-02	4.5	13637.7		
3772	TOLUEN+OH=C6H4CH3+H2O	1.36E+04	2.7	620		
3773	TOLUEN+O=C6H4CH3+OH	2.00E+14	0	14700		
3774	TOLUEN+HO2=C6H4CH3+H2O2	3.61E+12	0	30982		
3775	TOLUEN+O2=>C6H4CH3+HO2	1.70E+07	2	51633.9		
3776	C4H3-N+C3H4-P=>C6H4CH3	2.40E+10	0	0		
3777	C6H4CH3=>C4H3-N+C3H4-P	4.50E+13	0	72500		
3778	C3H3+C6H4CH3=>NAPHT+H+H	5.00E+12	0	3000		
3779	C4H5-N+C6H4CH3=>A2CH3-1+H+H	5.00E+13	0	1000		
3780	C6H4CH3+H=PHCH2+H	1.00E+13	0	0		
3781	C6H4CH3+C2H2=INDENE+H	1.00E+12	0	5000		
3782	O+C6H5O=>HCO+C2H2+C2H2+CO	6.00E+12	0	0		
3783	C6H5O+H(+M)=C6H5OH(+M)	5.00E+13	0	0		
	Declared	duplicate	reaction			
	Low	pressure	limit:	1.00E+94	-2.18E+01	1.39E+04
	TROE	centering:	4.30E-02	3.40E+02	6.00E+04	5.90E+03
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
3784	C6H5OH=C5H6+CO	5.02E+15	-0.6	74115		
	Declared	duplicate	reaction			
3785	C6H5OH+C4H5-N=C6H5O+C4H6	6.00E+12	0	0		
	Declared	duplicate	reaction			
3786	C6H4OH+H=C6H5OH	1.00E+14	0	0		
3787	C6H5OH+H=C6H4OH+H2	1.70E+14	0	16000		
3788	C6H5OH+O=C6H4OH+OH	2.00E+13	0	14700		
3789	C6H5OH+OH=C6H4OH+H2O	1.40E+13	0	4600		
3790	C6H5OH+HO2=C6H4OH+H2O2	4.00E+11	0	28900		

3791	C6H5OH+CH3=C6H4OH+CH4	2.00E+12	0	15000		
3792	H+C14H14=TOLUEN+C6H4CH3	2.50E+12	0	15000		
3793	H+C14H14=>C6H6+H+STYREN	2.50E+12	0	5000		
3794	A3-1+H(+M)=PHNTHRN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	0.40000+149	-3.75E+01	2.06E+04
	TROE	centering:	1.00E+00	5.36E+02	1.45E+02	5.63E+03
	H2	Enhanced	by	2.00E+00		
	H2O	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	С2Н6	Enhanced	by	3.00E+00		
3795	A3-4+H(+M)=PHNTHRN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	0.21000+140	-3.48E+01	1.84E+04
	TROE	centering:	1.00E-03	1.71E+02	1.71E+02	4.99E+03
	H2	Enhanced	by	2.00E+00		
	Н2О	Enhanced	by	6.00E+00		
	CH4	Enhanced	by	2.00E+00		
	СО	Enhanced	by	1.50E+00		
	CO2	Enhanced	by	2.00E+00		
	C2H6	Enhanced	by	3.00E+00		
3796	A2C2H*+C2H2=A2(C2H)2+H	5.50E+32	-5.5	27600		
3797	A2C2H+C2H=A2(C2H)2+H	5.00E+13	0	0		
3798	PHNTHRN+H=A3-1+H2	2.50E+14	0	16000		
3799	PHNTHRN+H=A3-4+H2	2.50E+14	0	16000		
3800	A3-1+H=A3-4+H	1.70E+72	-15.2	77175		
3801	NAPHT+C4H3-N=>PHNTHRN+H	4.00E+13	0	15976		
3802	A2-1+C4H3-N=>PHNTHRN	1.50E+75	-17.8	39600		
3803	A2-2+C4H3-N=>PHNTHRN	1.50E+75	-17.8	39600		
3804	A2-1+C4H4=PHNTHRN+H	3.30E+33	-5.7	25500		
3805	A2-2+C4H4=PHNTHRN+H	3.30E+33	-5.7	25500		
3806	A2R5-+C2H2=A3-4	2.00E+13	0	55000		
3807	PHCC+C6H6=PHNTHRN+H	5.60E+12	-0.1	7550		
3808	C6H5+PHC2H=PHNTHRN+H	1.00E+13	0	2430		
3809	A2-2+C4H4=ANTHRCN+H	1.26E+04	2.6	1434		
3810	NAPHT+C4H3-N=ANTHRCN+H	1.00E+13	0	0		
3811	ANTHRCN=PHNTHRN	7.94E+12	0	65000		
3812	РНСН2+С7Н5=С13Н9СН2+Н	1.56E+13	-1	-3266.5		
3813	C13H8CH2+H=PHNTHRN+H	5.35E+11	0.6	2422.4		
3814	A2(C2H)2+H=A3-1	1.50E+51	-10.8	25500		
3815	A2C2H*+C2H2(+M)=A3-4(+M)	1.00E+33	-5.9	20000		
	Low	pressure	limit:	2.00E+33	-5.40E+00	-5.00E+03
	TROE	centering:	1.00E-05	1.00E-28	1.00E+02	1.00E+03
3816	A2(C2H)2+H(+M)=A3-4(+M)	1.30E+42	-7.8	23000		
	Low	pressure	limit:	3.70E+49	-9.40E+00	0.00E+00
	TROE	centering.	6.84E-01	5.00E+03	1.00E+01	2.00E+04
L	INCL	contering.	0.012.01	0.001.00	1.001.01	

3817	C13H9CH2(+M)=C13H8CH2+H(+M)	1.00E+45	-5	70000		
	Low	pressure	limit:	2.10E+34	-4.90E+00	5.40E+04
	TROE	centering:	5.00E-01	1.00E+03	1.50E+04	2.00E+04
3818	C13H9CH2(+M)=PHNTHRN+H(+M)	1.00E+45	-5	70000		
	Low	pressure	limit:	2.00E+36	-5.40E+00	5.00E+04
	TROE	centering:	1.00E-03	1.00E-30	7.00E+03	2.00E+04
3819	C13H9+CH3(+M)=>C13H9CH2+H(+M)	1.00E+52	-11	52000		
	Low	pressure	limit:	1.30E+28	-4.00E+00	2.20E+04
	TROE	centering:	1.00E+00	1.00E+01	1.00E+01	3.15E+02
3820	C2H5OO=>O2+C2H5	1.00E+14	0	30000		
3821	CH3OOH=OH+CH3O	2.00E+15	0	42500		
3822	СНЗОО+Н=СНЗООН	5.00E+13	0	0		
3823	CH3OO=CH2O+OH	1.50E+13	0	47000		
3824	HO2+C2H5=C2H5OOH	3.00E+12	0	0		
3825	C2H5OOH=>CH2O+CH3+OH	1.00E+15	0	40000		
3826	C2-QOOH=>CH2OH+CH2O	2.00E+13	0	27500		
3827	C2-QOOH=>C2H4+HO2	1.50E+13	0	24000		
3828	C2-QOOH=>C2H5OO	1.00E+11	0	18100		
3829	HO2+C2H4=>C2-QOOH	5.00E+11	0	14000		
3830	CH3OO+OH=>CH3O+HO2	3.00E+12	0	0		
3831	CH3OO+CH3=>CH3O+CH3O	3.00E+13	0	-1200		
3832	CH3OO+HO2=CH3OOH+O2	4.00E+10	0	-2600		
3833	CH3OO+HO2=>O2+CH2O+H2O	5.00E+10	0	0		
3834	CH3OO+CH3O=>CH3OOH+CH2O	6.00E+11	0	0		
3835	CH3OO+CH3OO=>O2+CH3O+CH3O	2.00E+11	0	0		
3836	CH3OO+CH3OO=>O2+CH3OH+CH2O	1.00E+10	0	0		
3837	CH3OO+CH2CHCH2=>O2+C4H8-1	1.50E+11	0	0		
3838	CH3OO+CH2CHCH2=>CH3O+C2H3+CH2O	7.50E+10	0	0		
3839	C2H5OO+HO2=C2H5OOH+O2	1.00E+11	0	-2600		
3840	C2H5OO+CH3=>CH3+CH2O+CH3O	2.00E+12	0	-1200		
3841	C2H5OO+CH3OO=>O2+CH3O+CH3+CH2O	2.00E+11	0	0		
3842	C2H5OO+C2H5OO=>O2+CH3+CH2O+CH3+C H2O	2.00E+11	0	0		
3843	CH3O+CH3OOH=>CH3OH+OH+CH2O	1.50E+11	0	6500		
3844	CH3OO+CH2O=>CO+H2+CH2O+OH	2.00E+11	0	11000		
3845	CH3OO+CO=>CO2+CH3O	1.00E+14	0	24000		
3846	C2H5OO+CO=>CO2+CH3+CH2O	1.00E+14	0	24000		
3847	O2+HCO=>HCO3	2.00E+11	0	0		
3848	HCO3=>O2+HCO	7.00E+12	0	34000		
3849	HCO3+HO2=>O2+HCO3H	2.00E+11	0	0		
3850	HCO3+CH3OO=>O2+CO+CH3O+OH	2.00E+11	0	0		
3851	HCO3H=>OH+OH+CO	2.00E+14	0	38000		
3852	CH3CO3H=>CH3+CO2+OH	1.00E+15	0	37400		
3853	CH3CO3=>CH3CO+O2	2.50E+12	0	32000		
	Declared	duplicate	reaction	1		
3854	CH3CO3+HO2=>CH3+CO2+O2+OH	1.00E+12	0	0		

3855	CH3CO3+CH3OO=>O2+CH3+CO2+CH3O	9.00E+11	0	0	
3856	CH3CO3+CH3CO3=>2CO2+2CH3+O2	2.50E+12	0	0	
3857	CH2CHCH2+HO2=>AC3H5OOH	7.00E+12	-0.8	0	
3858	AC3H5OOH=>OH+CH2O+C2H3	1.00E+15	0	45000	
3859	CH3CHOOCHO=>CO+CH3CHO+OH	6.00E+11	0	24500	
3860	CH2CHOOHCHO=C2H3CHO+HO2	1.00E+14	0	23000	
3861	CH2CHOOHCHO=OH+ETC3H4O2	1.00E+12	0	18000	
3862	O2+CH2CHOOHCHO=>CH2OOCHOOHCHO	2.00E+12	0	0	
3863	CH2OOCHOOHCHO=>O2+CH2CHOOHCHO	3.00E+13	0	31000	
3864	O2+C5H11-1=>NC5H12OO	2.00E+12	0	0	
3865	NC5H12OO=>C5H11-1+O2	3.00E+13	0	30000	
3866	NC5H12OO=>NC5-QOOH	3.00E+12	0	24100	
3867	NC5-QOOH=>NC5H12OO	9.00E+10	0	16100	
3868	NC5-QOOH=>HO2+C5H10-1	2.00E+13	0	23500	
3869	NC5-QOOH=>OH+CH3CHO+C3H6	3.00E+13	0	24000	
3870	NC5-QOOH	2.00E+13	0	24000	
	=>OH+.625CH2O+.625C4H8- 1+.375C2H5CHO+.375C2H4				
3871	O2+NC5-QOOH=>NC5-OOQOOH	2.00E+12	0	0	
3872	NC5-OOQOOH=>NC5-QOOH+O2	1.00E+14	0	29000	
3873	NC5H12OO+HO2=>C5H11O2H-1+O2	1.00E+11	0	-1200	
3874	C5H11O2H-1	2.00E+14	0	44000	
	=>OH+.5C2H5+.5PC4H9+.5C2H5CHO+.5CH2O				
3875	C5H11O2H-1=>OH+NC3H7+CH3CHO	2.00E+14	0	44000	
3876	NC5H12OO+CH3OO=>O2+CH3CHO+N1C4H9 OH	5.00E+10	0	-1200	
3877	NC5H12OO+CH3OO=>O2+C2H5OH+MEK	5.00E+10	0	-1200	
3878	NC5H12OO+NC5H12OO	1.00E+11	0	-1200	
	=>O2+1.6CH3CHO+1.6NC3H7+.4CH2O+.4PC4 H9				
3879	NC5H12OO+NC5H12OO	5.00E+10	0	-1200	
	=>O2+NC4H9CHO+N1C4H9OH+.5C2H4				
3880	NC5-OOQOOH+HO2	1.00E+11	0	-1200	
	=>02+H2O2+.5CH2O+.5CH3CHO+.5C2H5CHO +.5C3H7CHO				
3881	NC5-OOQOOH+CH3OO	1.00E+11	0	-1200	
	=>02+CH3OOH+.5CH2O+.5CH3CHO+.5C2H5 CHO+.5C3H7CHO				
3882	HO2+C5H10-1=>NC5-QOOH	1.00E+12	0	13000	
3883	C5H91-3+O2=>C5EN-OO	1.00E+12	0	0	
3884	C5EN-OO=>C5H91-3+O2	5.00E+13	0	30000	
3885	C5EN-OO=>C5EN-QOOH	2.50E+10	0	20000	
3886	C5EN-QOOH=>C5EN-OO	2.00E+10	0	12000	
3887	C5EN-QOOH+O2=>C5EN-OOQOOH-35	1.00E+12	0	0	
3888	C5EN-OOQOOH-35=>C5EN-QOOH+O2	5.00E+13	0	30000	
3889	C5EN-OOQOOH-35=>C5EN-OQOOH-35+OH	2.50E+10	0	16000	
3890	C5EN-OQOOH-35=>OH+C2H3+CH2CO+CH2O	5.00E+14	0	42000	
3891	C5EN-OQOOH-35=>OH+C2H3CHO+CH2CHO	5.00E+14	0	42000	
3892	C5EN-QOOH=>OH+C2H3CHO+C2H4	5.00E+11	0	16000	

3893	C5EN-QOOH=>.5C5H8+.5CYC5H8+HO2	2.00E+12	0	18000	
3894	C5EN-QOOH=>C5H8O+OH	2.50E+11	0	17000	
3895	O2+NEOC5H11=>NEOC5H11O2	1.50E+12	0	0	
	Declared	duplicate	reaction		
3896	NEOC5H11O2=>NEOC5-QOOH	2.00E+12	0	22800	
3897	NEOC5-QOOH=>NEOC5H11O2	3.00E+10	0	12500	
3898	NEOC5-QOOH=>NEO-C5H10O+OH	1.60E+11	0	15000	
3899	NEOC5-QOOH=>CH2O+IC4H8+OH	3.00E+13	0	24000	
3900	NEOC5-QOOH+O2=>NEOC5-OOQOOH	1.50E+12	0	0	
3901	NEOC5-OOQOOH=>NEOC5-QOOH+O2	3.00E+13	0	31000	
3902	NEOC5- OOQOOH=>CH2O+CH2O+CH3COCH3+OH	5.00E+11	0	23500	
3903	NEOC5-OOQOOH=>NEOC5-OQOOH+OH	6.50E+10	0	20500	
3904	NEOC5-OQOOH=>OH+CH2O+IC3H5CHO+H	4.00E+14	0	43300	
3905	NEOC5- OQOOH=>OH+CH3COCH3+.25IC4H8+H+CO	2.00E+14	0	42300	
3906	NEOC5-OQOOH=>20H+IC4H8+CO	8.00E+13	0	41000	
3907	MEK=CH3COCH2+CH3	2.00E+16	0	84000	
3908	MEK=CH3CO+C2H5	2.00E+16	0	80000	
3909	HO2+C7H14-1=>NC7-QOOH	8.00E+11	0	15000	
3910	O2+NC7H15=>NC7H15O2	2.00E+12	0	0	
	Declared	duplicate	reaction		
3911	NC7H15O2=>NC7-QOOH	3.00E+12	0	25100	
3912	NC7-QOOH=>NC7H15O2	2.00E+10	0	16100	
3913	NC7-QOOH=>NC7H14O+OH	1.00E+10	0	14100	
3914	NC7-QOOH=>HO2+C7H14-1	2.00E+12	0	24000	
3915	NC7-QOOH=>OH+CH2O+C4H8-1+C2H4	3.00E+11	0	22500	
3916	NC7-QOOH	5.00E+11	0	22500	
	=>OH+CH3CHO+.75C5H10- 1+.1C2H4+.15C7H14-1				
3917	NC7-QOOH=>OH+NC3H7CHO+C3H6	2.50E+11	0	22500	
3918	NC7-QOOH=>OH+NC4H9CHO+C2H4	5.00E+10	0	22500	
3919	NC7-QOOH	3.00E+11	0	22500	
	=>OH+.5CH3CHO+.5C2H5CHO+C3H6+.25C4H 8-1+.25C2H4				
3920	NC7- QOOH=>OH+C2H5CHO+.9C3H6+.25C2H4+.2C 4H8-1	6.00E+11	0	22500	
3921	NC7-QOOH+O2=>NC7-OOQOOH	2.00E+12	0	0	
3922	NC7-OOQOOH=>NC7-QOOH+O2	2.00E+14	0	28500	
3923	NC7-OOQOOH=>NC7-OQOOH+OH	1.00E+12	0	25000	
3924	NC7-OQOOH=>OH+NC3H7CHO+CH3COCH2	7.50E+14	0	42000	
3925	NC7- OQOOH=>OH+CH3CHO+1.5C2H4+CH3CO	1.80E+15	0	42000	
3926	NC7-OQOOH=>OH+C3H4O2+PC4H9	4.00E+14	0	42000	
3927	NC7-OQOOH=>OH+NC4H9CHO+CH2CHO	3.00E+14	0	42000	
3928	NC7-OQOOH=>OH+C2H5CHO+CH2CO+C2H5	6.00E+14	0	42000	
3929	NC7-OQOOH=>OH+CH2O+CH2CO+PC4H9	4.00E+14	0	42000	
3930	C7H15O2H-1=>OH+C2H5+C2H5CHO+.2C4H8- 1+.4C3H6	1.40E+14	0	42000	
	С7Н15О2Н-				
------	--	----------	-----	-------	--
3931	1=>OH+NC3H7+CH3CHO+.7C2H4+.2C3H6	1.20E+14	0	42000	
3932	C7H15O2H-1=>OH+PC4H9+CH2O+.4C5H10-1	1.40E+14	0	42000	
3933	NC7-OOQOOH+HO2=>NC7-OQOOH+H2O+O2	1.00E+11	0	-1200	
3934	NC7H15O2+HO2=>C7H15O2H-1+O2	1.00E+11	0	-1200	
3935	NC/H1502+NC/H1502=>C/H1502H- 1+02+C7H14-1	1.00E+11	0	-1200	
3936	NC7H15O2+NC7- OOQOOH=>NC7H13OOH+C7H15O2H-1+O2	1.00E+11	0	-1200	
3937	NC7-OOQOOH+NC7-OOQOOH	1.00E+11	0	-1200	
	=>NC7H13OOH+C7H15O2H-1+2O2				
3938	C7H13=>C4H6+NC3H7	1.25E+13	0	31000	
3939	C7H13=>C5H8+C2H5	2.50E+12	0	31000	
3940	NC7H13OOH=>C2H3CHO+OH+PC4H9	2.00E+14	0	46000	
3941	NC7H15O2+HO2=>H2O+C7KETONE+O2	5.00E+10	0	-1200	
3942	NC7H15O2+CH3OO=>CH3OH+C7KETONE+O 2	2.50E+10	0	-1200	
2042	NC7H15O2+NC7H15O2=>N1C4H9OH+C3H6+	2.50E+10	0	1200	
2044		2.30E+10		-1200	
3944	NC7-0000H=>HC00H+MEK+C2H4	1.70E+05	1.1	26100	
3945		3.10E+05	1.1	26100	
3946		3.40E+05	1.1	26100	
3947		1./0E+05	1.1	12000	
3948	H02+IC8H16=>.4IC8-Q00H+.6IC81-Q00H	5.00E+11	0	12000	
3949	02+IC8H1/=>IC8H1/-00	1.60E+12	0	20500	
3950		3.00E+13	0	30500	
3951	IC8H17-00=>IC81-Q00H	1.10E+12	0	26000	
3952	IC8H17-00=>IC8-QOOH	9.00E+11	0	26000	
3953		3.00E+11	0	18650	
3954		3.00E+11	0	18650	
3955	IC8-QOOH=>IC8H16O+OH	4.00E+10	0	14000	
3956	IC8-QOOH=>HO2+IC8H16	2.00E+12	0	21500	
3957	IC8-QOOH=>OH+CH2O+C3H6+IC4H8 IC8-	1.75E+13	0	25600	
3958	QOOH=>OH+IC3H7CHO+.4IC8H16+.4C2H4	1.75E+13	0	25600	
3959	IC8T-QOOH=>IC8H16O+OH	6.00E+10	0	14000	
3960	IC8T-QOOH=>HO2+IC8H16	1.20E+12	0	21500	
3961	IC8-QOOH+O2=>IC8-OOQOOH	1.60E+12	0	0	
3962	IC8-OOQOOH=>IC8-QOOH+O2	3.00E+13	0	30500	
3963	IC8-OQOOH	1.50E+16	0	43000	
	=>OH+CH2CHO+.5CH3CHO+.5C2H5CHO+.5I C4H8+.5C3H6				
3964	IC8-OQOOH	1.50E+16	0	43000	
	=>OH+CH3COCH2+.5CH2O+.5IC3H7CHO+.62 5IC4H8				
3965	IC8-OOQOOH=>IC8-OQOOH+OH	9.00E+09	0	18000	
3966	IC8-OOQOOH	1.50E+11	0	22600	
	=>OH+CH2O+CH3COCH3+.79IC3H7CHO+.21 C2H5CHO+.0525IC4H8				
	IC8- 00000H=>H02+IC3H7CH0+ 25IC4H8+CH3C				
3967	OCH3	2.50E+08	0	16500	

	3968	IC8H17-OO+HO2	1.00E+11	0	-2600		
		=>OH+O2+.5CH3COCH3+.5NEOC5H11+.5IC3 H7CHO+.5IC4H9					
	3969	C10H19+HO2=>NC10MOOH	1.00E+13	0	0		
	3970	NC10MOOH=>C2H3CHO+OH+NC7H15	1.00E+16	0	52000		
ſ	3971	O2+C10H21-1=>C10H21O2-1	2.00E+12	0	0		
ſ		Declared	duplicate	reaction			
Γ	3972	O2+NC10-QOOH=>NC10-OOQOOH	2.00E+12	0	0		
ſ	3973	NC10-OOQOOH=>OH+NC10-OQOOH	1.50E+12	0	24500		
Ī	3974	NC10-OQOOH	1.50E+15	0	42000		
ſ		=>OH+CH3CO+CH2O+.45C10H20-1+.5C5H10-					
F	2075		1.505+15	0	42000		
-	3975	NC10-OQOOH =>OH+CH3CO+C2H5CHO+.31C10H20-	1.50E+15	0	42000		
		1+.1C5H10-1+.2C7H14-1					
	3976	NC10-OQOOH	2.00E+15	0	42000		
		=>OH+CO+C2H5+CH3CHO+.65C7H14- 1+.09C5H10-1					
ſ	3977	NC10-OQOOH	2.00E+15	0	42000		
		=>OH+CO+C2H5+CH2O+.65C7H14- 1+.29C5H10-1					
ſ	3978	NC10-OQOOH	1.00E+15	0	42000		
Ī		=>OH+CH3COCH2+.5C3H7CHO+.5CH2O+.706 666667C3H6+.34C7H14-1					
ſ	3979	O2+NC3H7=>NC3H7OO	1.50E+12	0	0		
ſ	3980	H+C14H14=BENZYLB+CH3	6.00E+12	0	5000		
ſ	3981	C14H13+H(+M)=C14H14(+M)	5.21E+17	-1	1580		
ſ		Low	pressure	limit:	1.99E+41	-7.08E+00	6.69E+03
Ī		TROE	centering:	8.42E-01	1.25E+02	2.22E+03	6.88E+03
ſ		H2	Enhanced	by	2.00E+00		
Ī		H2O	Enhanced	by	6.00E+00		
ſ		CH4	Enhanced	by	2.00E+00		
Ī		СО	Enhanced	by	1.50E+00		
Ī		CO2	Enhanced	by	2.00E+00		
		C2H6	Enhanced	by	3.00E+00		
Ī		AR	Enhanced	by	7.00E-01		
ſ	3982	C14H14+H=C14H13+H2	3.16E+12	0	0		
ſ	3983	C14H14+O2=C14H13+HO2	2.80E+12	0	35000		
ſ	3984	C14H14+O=C14H13+OH	8.40E+11	0	-2000		
ſ	3985	C14H14+OH=C14H13+H2O	7.00E+09	1	-1100		
Ī	3986	C14H14+HO2=C14H13+H2O2	5.40E+11	0	12000		
ſ	3987	C14H14+CH3=C14H13+CH4	2.20E+12	0	9100		
	3988	C14H14+C3H5-A=C14H13+C3H6	2.20E+12	0	9100		
	3989	C14H14+C6H5=C14H13+C6H6	1.06E+14	0	9949		
ſ	3990	C14H14+C6H5O=C14H13+C6H5OH	5.43E+12	0	20923		
ſ	3991	C14H13+O2=PHHCO+PHCH2O	3.94E+50	-11.5	42250		
ſ	3992	C14H13+HO2=PHCH2+PHHCO+OH	1.92E+13	0	0		
ſ	3993	C14H12+O2=HO2+C14H11	4.00E+13	0	58200		
ſ	<u>3</u> 994	C14H12+H=C14H11+H2	8.42E-03	4.6	2583		
-							

3995	C14H12+OH=C14H11+H2O	2.02E+13	0	5955		
3996	C14H12+O=PHCO+PHCH2	7.95E+03	1.7	657.4		
3997	C14H11=>C6H5+C2H+C6H5	1.07E+25	-2.2	88474.6		
3998	C14H11+O2=PHCO+PHHCO	1.70E+29	-5.3	6500		
3999	C14H12+O=C14H11+OH	4.20E+11	0	-1940		
4000	C14H12+HO2=C14H11+H2O2	2.70E+11	0	11640		
4001	C14H12+CH3=C14H11+CH4	1.10E+12	0	8827		
4002	C14H12+C3H5-A=C14H11+C3H6	1.10E+12	0	8827		
4003	C14H12+C6H5O=C14H11+C6H5OH	5.43E+12	0	20923		
4004	C14H12+PHCH2=C14H11+TOLUEN	1.10E+11	0	8827		
4005	РНСН2+РНСН2=С14Н13+Н	3.36E+38	-6.9	47618.9		
4006	STYREN+C6H5=C14H12+H	1.86E+13	-0.4	4163.4		
4007	C14H13(+M)=C14H12+H(+M)	1.00E+45	-9	60000		
	Low	pressure	limit:	1.00E+35	-5.30E+00	1.90E+03
	TROE	centering:	1.00E-02	1.00E-30	2.30E+02	4.00E+04
4008	C14H12(+M)=C14H11+H(+M)	1.00E+35	-5.9	100000		
	Low	pressure	limit:	1.00E+34	-5.00E+00	2.00E+03
	TROE	centering:	1.00E-04	1.00E-30	7.00E+03	7.00E+04
4009	C14H11(+M)=PHNTHRN+H(+M)	5.00E+15	0	41000		
	Low	pressure	limit:	9.00E+19	-1.80E+00	1.20E+04
	TROE	centering:	5.00E-01	1.93E+01	1.80E+01	3.11E+03
4010	C14H11(+M)=PHC2H+C6H5(+M)	1.70E+41	-7.8	59000		
	Low	pressure	limit:	4.00E+98	-2.30E+01	8.50E+04
	TROE	centering:	5.00E-01	1.00E+02	2.00E+03	1.00E+03
4011	C7H5+C7H5=PHNTHRN	6.39E+29	-4	35205.5		
4012	PHCC+C6H5=PHNTHRN	5.00E+12	0	6000		
4013	PHC2H-+C6H5=PHNTHRN	5.00E+12	0	6000		
4014	PHC2H-+C6H6=PHNTHRN+H	1.00E+13	0	6000		
4015	P2-+C2H2=PHNTHRN+H	4.60E+06	2	7300		
4016	BIPHENYL+C2H=PHNTHRN+H	1.00E+13	0	0		
4017	PHNTHRN+OH=A3-1+H2O	2.34E+04	2.7	733.2		
4018	PHNTHRN+OH=A3-4+H2O	2.34E+04	2.7	733.2		
4019	PHNTHRN+O=A2C2H+CH2CO	2.20E+13	0	4530		
4020	PHNTHRN+OH=>A2C2H+CH3+CO	1.10E+02	3.2	5590.3		
4021	A3-1+O2=>A2C2H2+2CO	8.57E+20	-2.3	7189.3		
4022	A3-4+O2=>A2C2H2+2CO	8.57E+20	-2.3	7189.3		
4023	C14H13+O2=C14H13OO	8.00E+12	0	0		
4024	C14H13+HO2=C14H13O+OH	7.00E+12	0	-1000		
4025	PHCH2+PHHCO=C14H13O	1.00E+11	0	12900		
4026	C14H13OOH+PHCH2=C14H13OO+TOLUEN	1.44E+10	0	17700		
4027	C14H13OO+HO2=C14H13OOH+O2	1.75E+10	0	-3275		
4028	C14H13OO+H2O2=C14H13OOH+HO2	2.40E+12	0	10000		
4029	C14H13O+OH=C14H13OOH	2.00E+13	0	0		
4030	C14H13OO=C14H12OOH	2.59E+12	0	21374		
4031	C14H12+HO2=C14H12OOH	1.00E+11	0	10530		
4032	C14H12OOH+O2=C14H12O2H-1O2	8.00E+12	0	0		

4033	C14H12O2H-1O2=C14H11O-1O2H+OH	1.30E+12	0	18374		
4034	C14H11O-1O2H=PHHCO+PHCO+OH	1.00E+16	0	43000		
4035	o-C6H4+C6H6=>BICYCLO	1.16E+04	2.5	5915.9		
4036	BICYCLO=>o-C6H4+C6H6	4.91E+16	0	66811		
4037	BICYCLO=NAPHT+C2H2	7.46E+14	0.1	54780.1		
4038	C6H5O+C6H5O=>DIBZFUR+H2O	4.00E+13	0	11000		
4039	DIBZFUR+OH=>CO+NAPHT+HCO	2.00E+13	0	0		
4040	DIBZFUR+H=DIBZFURNYL+H2	2.50E+14	0	15999		
4041	DIBZFURNYL+O2=DIBZFURNOXY+O	1.46E+19	-0.9	18104		
4042	BIPHENYL+C3H3=A3CH3+H	3.00E+13	0	16000		
4043	A3CH3(+M)=A3-1+CH3(+M)	1.00E+40	-5	10000		
	Low	pressure	limit:	1.00E+43	-6.00E+00	1.20E+05
	TROE	centering:	1.00E-01	1.00E-28	1.00E+03	5.00E+03
4044	A3CH3(+M)=A3-4+CH3(+M)	1.00E+40	-5	10000		
	Low	pressure	limit:	1.00E+43	-6.00E+00	1.20E+05
	TROE	centering:	1.00E-01	1.00E-28	1.00E+03	5.00E+03
4045	A3CH3+H=A3CH2+H2	3.98E+02	3.4	3120		
4046	A3CH3+H=PHNTHRN+CH3	5.78E+13	0	8090		
4047	A2T2+C6H5=FLTHN+H	5.00E+12	0	0		
4048	A2-1+C6H5=FLTHN+H+H	1.39E+13	0	111		
4049	A2-1+C6H6=FLTHN+H+H2	8.51E+11	0	3986		
4050	A2T2+o-C6H4=FLTHN	6.50E+39	-7.6	27260		
4051	A2T1+o-C6H4=FLTHN	6.50E+39	-7.6	27260		
4052	PHNTHRN+C2H=A3C2H+H	5.00E+13	0	0		
4053	A3-4+C2H2(+M)=A3C2H2(+M)	1.00E+27	-3.1	26000		
	Low	pressure	limit:	1.00E+29	-3.80E+00	6.50E+03
	TROE	centering:	1.00E-04	1.00E+03	8.00E+03	9.00E+03
4054	A3-4+C2H2=A3C2H+H	8.00E+17	-1.2	22600		
4055	A3-4+C2H2=PYRENE+H	1.87E+07	1.8	3262		
4056	C13H9+C3H3=PYRENE+H2	1.50E+75	-17.8	39600		
4057	C13H9+C3H2=PYRENE+H	1.50E+75	-17.8	39600		
4058	FLUORENE+C3H2=PYRENE+H2	1.50E+12	1.8	56500		
4059	PHC2H-+PHC2H=PYRENE+H	1.10E+23	-2.9	15890		
4060	PHCC+PHCC=PYRENE	5.00E+12	0	6000		
4061	PHC2H-+PHC2H-=PYRENE	5.00E+12	0	6000		
4062	PHCC+PHC2H-=PYRENE	5.00E+12	0	6000		
4063	A3C2H+H(+M)=A3C2H2(+M)	1.00E+30	-2.8	26000		
	Low	pressure	limit:	2.00E+40	-7.00E+00	7.10E+03
	TROE	centering:	1.00E-02	1.00E-30	2.00E+00	1.19E+03
4064	A3C2H+H=PYRENE+H	3.18E+09	1.2	4580		
	Declared	duplicate	reaction			
4065	A3C2H2(+M)=PYRENE+H(+M)	4.00E+28	-5	26000		
	Low	pressure	limit:	1.00E+29	-4.40E+00	8.00E+03
	TROE	centering:	1.00E-02	1.00E-30	2.00E+04	5.00E+01
4066	PYRENE+H=A4-1+H2	2.50E+14	0	16000		-
4067	PYRENE+H=A4-2+H2	2.50E+14	0	16000		

4068	PYRENE+H=A4-4+H2	2.50E+14	0	16000		
4069	A4-1+CH4=>PYRENE+CH3	4.48E-02	4.2	4277		
4070	PYRENE+CH3=>A4-2+CH4	7.98E-01	3.9	11771		
4071	A4-2+CH4=>PYRENE+CH3	4.48E-02	4.2	4277		
4072	PYRENE+CH3=>A4-4+CH4	7.98E-01	3.9	11771		
4073	A4-4+CH4=>PYRENE+CH3	4.48E-02	4.2	4277		
4074	A4-1+H(+M)=PYRENE(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4075	A4-2+H(+M)=PYRENE(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4076	A4-4+H(+M)=PYRENE(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4077	PHNTHRN+C2H=PYRENE+H	1.00E+13	0	0		
4078	A2R5-+C2H2=A2R5R5+H	8.20E+30	-5.4	16900		
4079	A2R5+C2H=A2R5R5+H	8.20E+30	-5.4	16900		
4080	PYRENE+OH=A4-1+H2O	2.34E+04	2.7	733.2		
4081	PYRENE+OH=A4-2+H2O	2.34E+04	2.7	733.2		
4082	PYRENE+OH=A4-4+H2O	2.34E+04	2.7	733.2		
4083	PYRENE+OH=>A3-4+CH2CO	1.30E+13	0	10600		
4084	PYRENE+OH=>PHNTHRN+HCCO	5.50E+02	3.2	5590.3		
4085	PYRENE+O=>A3-4+HCCO	2.20E+13	0	4530		
4086	A4-1+O2=>A3-4+CO+CO	2.10E+12	0	7470		
4087	A4-2+O2=>A3-4+CO+CO	2.10E+12	0	7470		
4088	A4-4+O2=>A3-4+CO+CO	2.10E+12	0	7470		
4089	A3C2H-2+C2H2=CHRYSEN-1	5.60E+05	2.3	3261		
4090	A3C2H-1+C2H2=CHRYSEN-4	1.87E+07	1.8	3262		
4091	A2-2+PHC2H=CHRYSEN+H	8.51E+11	0	3986		
4092	NAPHT+PHC2H-=CHRYSEN+H	8.51E+11	0	3986		
4093	CHRYSEN+H=CHRYSEN-4+H2	6.67E+11	-0.7	20011.2		
4094	CHRYSEN+H=CHRYSEN-5+H2	6.67E+11	-0.7	20011.2		
4095	CHRYSEN-1+H(+M)=CHRYSEN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4096	CHRYSEN-4+H(+M)=CHRYSEN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4097	CHRYSEN-5+H(+M)=CHRYSEN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4098	P2-+C6H5=CHRYSEN+H2	1.00E+13	0	0		
4099	INDENYL+INDENYL=CHRYSEN+2H	1.00E+12	0	6000		
	Declared	duplicate	reaction			
4100	C4H5-I+C4H2=PHC2H+H	3.16E+11	0	900		

1		1	1	1	1	1
4101	C6H5+C2H3=PHC2H+H2	7.90E+12	0	3200		
4102	C6H6+C2H=PHC2H+H	1.00E+12	0	0		
4103	PHC2H+O=PHC2H-+OH	1.10E+13	0	4100		
4104	PHC2H+O=C6H5+HCCO	2.10E+07	2	950		
4105	PHC2H+O=C6H5O+C2H	2.20E+13	0	2260		
4106	PHC2H+H=PHC2H-+H2	2.70E+13	0	4882		
4107	PHC2H+H=C6H5+C2H2	2.00E+14	0	4882		
	Declared	duplicate	reaction			
4108	PHC2H+OH=C6H5+CH2CO	2.18E-04	4.5	-500		
4109	C5H5+C4H4=INDENE+H	6.00E+11	0	5030		
4110	C5H5+C4H3-N=INDENE	3.00E+36	-7.2	4234		
4111	C6H5+C3H3=INDENE	3.86E+11	0	6850.5		
	Declared	duplicate	reaction			
4112	C4H6+C6H5=INDENE+CH3	1.42E+13	0	14000		
4113	C4H5-I+C6H6=INDENE+CH3	1.42E+13	0	14000		
4114	C6H5+C3H4-P=INDENE+H	1.00E+16	0	16600		
4115	C6H5+C3H4-A=INDENE+H	1.00E+16	0	16600		
4116	INDENE+H=PHC2H+CH3	4.00E+14	0	23000		
4117	INDENE+H=C6H6+C3H3	2.00E+14	0	24500		
4118	INDENE+OH=C6H4CH3+CH2CO	1.00E+13	0	5000		
4119	INDENE+C3H3=INDENYL+C3H4-P	7.80E+10	0	2770.2		
4120	INDENE+H2CCCH=INDENYL+C3H4-P	7.80E+10	0	2770.2		
4121	INDENE+H2CCCH=INDENYL+C3H4-A	7.80E+10	0	2770.2		
4122	INDENE+C3H3=INDENYL+C3H4-A	7.80E+10	0	2770.2		
4123	INDENE+C6H5=INDENYL+C6H6	5.00E+11	0	3000		
4124	C5H5+C4H2=INDENYL	1.20E+12	0	5030		
4125	INDENYL=>C2H2+C4H2+H2CCCH	1.00E+14	0	37500		
4126	INDENYL+HO2=>PHC2H+CO+H2O	1.00E+13	0	0		
4127	C4H5-I+C6H6=>NAPHT+H2+H	1.00E+12	0	1503.5		
4128	C4H6+C6H5=>NAPHT+H2+H	5.00E+11	0	1503.5		
4129	C6H5+C4H3-N=NAPHT	3.18E+23	-3.2	2130		
4130	C6H5+C4H4=NAPHT+H	3.30E+33	-5.7	12750		
4131	C6H4CH3+H2CCCH=>NAPHT+2H	4.00E+11	0	7000		
4132	PHC2H-+C2H2=A2-1	4.00E+13	0	5100		
4133	N-C8H7+C2H2=NAPHT+H	1.60E+16	-1.3	3300		
4134	INDENE+CH2=>NAPHT+2H	2.00E+13	0	4370		
4135	INDENE+CH2(S)=NAPHT+2H	4.00E+13	0	4370		
4136	NAPHT+O=CH2CO+PHC2H	2.20E+13	0	2265		
4137	NAPHT+O=>INDENYL+CO+H	3.60E+14	0	22093		
4138	NAPHT+O=N-C8H7+HCCO	2.00E+13	0	21000		
4139	NAPHT+OH=>PHC2H+CH2CO+H	1.30E+13	0	5300		
4140	NAPHT+C2H=A2-1+C2H2	5.00E+13	0	8000		
4141	NAPHT+C2H=A2C2H+H	5.00E+13	0	0		
4142	A2-1+O2=>PHC2H+HCO+CO	2.00E+13	0	3700		
4143	A2-1+O=>INDENYL+CO	1.00E+14	0	0		
4144	A2-1+HO2=>INDENYL+CO+OH	1.00E+13	0	0		

4145	A2-1+C2H2=A2C2H+H	1.30E+24	-3.1	11300	
4146	A2C2H+H=A2C2H*+H2	2.50E+14	0	8000	
4147	A2C2H+OH=A2-1+CH2CO	2.18E-04	4.5	-500	
4148	A2C2H+OH=A2C2H*+H2O	2.10E+13	0	2300	
4149	INDENYL+H2CCCH=>A2C2H+2H	6.00E+11	0	0	
4150	C4H+C2H2=C6H2+H	2.30E+13	0.3	-37	
4151	2C3H2=>C6H2+H2	2.00E+13	0	42500	
4152	C6H+C2H2=C8H2+H	2.30E+13	0.3	-37	
4153	C2H+C6H2=C8H2+H	2.30E+13	0.3	-37	
4154	C4H2+C2H=C4H+C2H2	2.00E+13	0	0	
4155	C4H2+C2H=H+C6H2	2.30E+13	0.3	-37	
4156	2C4H2=>C8H2+2H	1.51E+14	0	28000	
4157	2C4H2=C8H2+H2	1.51E+13	0	21000	
4158	C6H2+M=C6H+H+M	1.14E+17	0	68000	
	AR	Enhanced	by	3.50E-01	
	02	Enhanced	by	4.00E-01	
	СО	Enhanced	by	7.50E-01	
	CO2	Enhanced	by	1.50E+00	
	H2O	Enhanced	by	6.50E+00	
	CH4	Enhanced	by	3.00E+00	
	С2Н6	Enhanced	by	3.00E+00	
4159	C6H2+H=C6H+H2	7.70E+14	0	20000	
4160	C6H2+OH=C6H+H2O	6.00E+13	0	7499.9	
4161	C6H2+C2H=C4H+C4H2	1.00E+13	0	0	
4162	C8H2+M=C8H+H+M	1.14E+17	0	68000	
	AR	Enhanced	by	3.50E-01	
	02	Enhanced	by	4.00E-01	
	СО	Enhanced	by	7.50E-01	
	CO2	Enhanced	by	1.50E+00	
	H2O	Enhanced	by	6.50E+00	
	CH4	Enhanced	by	3.00E+00	
	C2H6	Enhanced	by	3.00E+00	
4163	C8H2+H=C8H+H2	7.70E+14	0	13000	
4164	C8H2+OH=C8H+H2O	6.00E+13	0	6499.9	
4165	C6H5+C6H6=BIPHENYL+H	1.10E+23	-2.9	7450	
4166	INDENYL+H2CCCH=>BIPHENYL	4.00E+11	0	7000	
4167	INDENE+H2CCCH=>BIPHENYL+H	1.55E+14	0	25912.2	
4168	2C6H5=BIPHENYL	2.00E+19	-2	1450	
4169	2C6H5=P2-+H	2.30E-01	4.6	14500	
4170	BIPHENYL=P2-+H	1.10E+19	-2.7	57300	
4171	P2-+O2=NAPHT+HCO+CO	2.00E+12	0	3700	
4172	BIPHENYL+H=P2-+H2	2.50E+14	0	8000	
4173	BIPHENYL+OH=P2-+H2O	1.60E+08	1.4	770	
4174	PHC2H-+C4H4=A2R5+H	1.60E+16	-1.3	3300	
4175	N-C8H7+C4H2=A2R5+H	1.60E+16	-1.3	2700	
4176	INDENYL+H2CCCH=>A2R5+2H	8.30E+13	0	4888.3	

	4177	INDENE+H2CCCH=>A2R5+H+H2	1.55E+14	0	25912.2		
	4178	INDENYL+H2CCCH=A2R5+H2	9.50E+12	0	0		
	4179	A2-1+C2H2=A2R5+H	1.90E+31	-5.3	10500		
	4180	A2C2H*+H=A2R5	5.00E+13	0	0		
	4181	A2C2H+H=A2R5+H	4.60E+37	-7	11550		
	4182	A2R5-+H(+M)=A2R5(+M)	1.00E+14	0	0		
		02	Enhanced	by	4.00E-01		
		СО	Enhanced	by	7.50E-01		
		CO2	Enhanced	by	1.50E+00		
		Н2О	Enhanced	by	6.50E+00		
		CH4	Enhanced	by	3.00E+00		
		C2H6	Enhanced	by	3.00E+00		
		AR	Enhanced	by	2.00E-01		
		Low	pressure	limit:	6.60E+75	-1.63E+01	3.50E+00
		TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
	4183	A2R5+O=A2R5-+OH	2.00E+13	0	7400		
	4184	A2R5+O=>A2-1+HCCO	2.00E+13	0	7400		
F	4185	A2R5+H=A2R5-+H2	2.50E+14	0	8000		
F	4186	A2R5+OH=A2R5-+H2O	1.60E+08	1.4	725		
	4187	A2R5+OH=A2-1+CH2CO	1.00E+13	0	5000		
	4188	INDENYL+C5H5=>PHNTHRN+H2	4.30E+36	-6.3	22530		
	4189	A2-1+C4H2=A3-1	3.30E+33	-5.7	25337		
F	4190	A2C2H*+C2H2=A3-1	1.10E+62	-14.6	16550		
	4191	A2R5-+C2H2=A3-1	7.00E+37	-8	8200		
	4192	NAPHT+C4H2=>PHNTHRN	2.77E+04	2.5	14635.8		
	4193	PHNTHRN+O=>HCCO+P2-	2.00E+13	0	21000		
F	4194	PHNTHRN+OH=CH2CO+P2-	4.00E+13	0	16000		
	4195	PHNTHRN+CH3=A3-1+CH4	2.00E+12	0	7530		
F	4196	A3C2H+OH=A3-1+CH2CO	2.18E-04	4.5	-500		
F	4197	A3-1+O2=>CO+HCO+A2R5	2.00E+12	0	3700		
	4198	A3-1+C2H2=A3C2H+H	1.20E+26	-3.4	15100		
	4199	PHNTHRN+CH2=A3CH3	2.20E+13	0	3596		
	4200	PHNTHRN+CH2(S)=A3CH3	4.20E+13	0	3596		
F	4201	A3CH2+CH2=PYRENE+H2+H	2.40E+14	0	0		
	4202	N-C8H7+PHC2H=>PYRENE+H2+H	1.10E+24	-2.9	8010		
F	4203	N-C8H7+A1C2H-=PYRENE+H2	4.30E+37	-6.3	22530		
	4204	INDENYL+C6H4CH3=>PYRENE+2H2	4.30E+37	-6.3	22530		
	4205	2INDENYL=>PYRENE+C2H2+H2	4.30E+36	-6.3	22530		
F	42.06	NAPHT+C6H=A4-1	7.00E+37	-8	8200		
	4207	NAPHT+C6H5=PYRENE+H+H2	1.00E+11	0	2500		
	42.08	A2-1+C6H6=PYRENE+H+H2	1.00E+12	0	2500		
F	4209	A2-1+C6H5=>PYRFNF+H2	4 30E+37	-63	22530		
┢	4210	$A2-1+C6H2=\Delta A-1$	7 00F+37		8200		
┢	4210	$\Delta 2P5 + C4H2 = > A4 - 1$	7.00E+37	-0	8200		
┢	4211 4212	$\frac{A2NJ^{-1}C4\Pi 2^{-2}A4^{-1}}{A2P5_{-}+C4\Pi 2}$	6 40E±22	2 2	2120		
$\left \right $	4212	A2R3- CHIJ-NEFTRENE	6 40E+24	-3.2	2130		
	4213	$A3-1+C2\Pi Z=P$ i kene+H	0.00E+24	-3.4	0900		

4214	A3C2H+H=PYRENE+H	9.00E+38	-7.4	10400		
	Declared	duplicate	reaction			
4215	A4C2H*+H=BGHIF	5.00E+13	0	0		
4216	BIPHENYL+C6H=CHRYSEN-1	7.00E+37	-8	8200		
4217	P2-+C6H2=BGHIF+H	1.10E+24	-2.9	8010		
4218	P2-+C6H2=CHRYSEN-1	7.00E+37	-8	8200		
4219	A3-1+C4H4=CHRYSEN+H	3.30E+33	-5.7	12750		
4220	A2R5+C6H2=>BGHIF	2.41E+02	2.2	-569.2		
4221	PHC2H-+NAPHT=>BGHIF+H2+H	2.10E+25	-2.9	8010		
4222	PHC2H+A2-1=>BGHIF+H2+H	2.10E+25	-2.9	8010		
4223	INDENE+INDENYL=>CHRYSEN+H2+H	1.10E+24	-2.9	8010		
4224	INDENYL+INDENYL=>CHRYSEN+2H	4.30E+14	0	4888.3		
	Declared	duplicate	reaction			
4225	2INDENYL=>BGHIF+2H2	8.30E+38	-6.3	22530		
4226	A2C2H+C6H5=CHRYSEN+H	1.10E+24	-2.9	8010		
4227	A2C2H*+C6H6=CHRYSEN+H	1.10E+24	-2.9	8010		
4228	A2R5-+C6H5=>BGHIF+2H	4.30E+15	0	4888.3		
4229	A2R5-+C6H6=>BGHIF+H2+H	1.10E+25	-2.9	8010		
4230	A3C2H*+C4H4=BAPYR+H	3.30E+33	-5.7	12750		
4231	A4-1+C4H4=BAPYR+H	3.30E+33	-5.7	12750		
4232	A4C2H*+C2H2=BAPYR*S	7.00E+37	-8	8200		
4233	BAPYR*S+H=BAPYR	1.00E+14	0	0		
4234	P2-+PHC2H-=>BAPYR+2H	4.30E+15	0	4888.3		
4235	P2-+PHC2H-=>BAPYR+H2	8.30E+38	-6.3	22530		
4236	BIPHENYL+PHC2H-=>BAPYR+H2+H	1.10E+24	-2.9	8010		
4237	P2-+N-C8H7=>BAPYR+2H2	8.30E+38	-6.3	22530		
4238	A2R5-+PHC2H-=BAPYR	8.30E+38	-6.3	22530		
4239	A2R5+PHC2H-=BAPYR+H	2.10E+25	-2.9	8010		
4240	A2R5-+PHC2H=BAPYR+H	2.10E+25	-2.9	8010		
4241	CHRYSEN-1+O2=>HCO+CO+PYRENE	2.00E+13	0	3700		
4242	CHRYSEN-1+H=BGHIF+H2	1.00E+14	0	0		
4243	CHRYSEN-1+C2H=>BAPYR	5.24E+14	-0.5	350		
4244	CHRYSEN-1+C2H2=BAPYR+H	2.10E+24	-3.4	8900		
4245	CHRYSEN+O=CHRYSEN-1+OH	2.00E+13	0	7400		
4246	CHRYSEN+H=CHRYSEN-1+H2	3.03E+02	3.3	2870		
4247	CHRYSEN+OH=CHRYSEN-1+H2O	1.70E+08	1.4	732.8		
4248	BGHIF+O=HCCO+A4-1	2.00E+13	0	7400		
4249	BGHIF+OH=CH2CO+A4-1	1.30E+13	0	5300		
4250	BAPYR*S+O2=>HCO+CO+BGHIF	2.00E+13	0	3700		
4251	C4H2+PYRENE=>BAPYR	6.00E+02	2.2	-569.2		
4252	BAPYR+O=HCCO+CHRYSEN-1	2.00E+13	0	21000	<u> </u>	
4253	BAPYR+OH=>CH2CO+CHRYSEN-1	1.30E+13	0	5300		
4254	STYREN+O=N-C8H7+OH	7.55E+06	1.9	1880	<u> </u>	
4255	C5H5+H2CCCH=N-C8H7+H	1.50E+35	-7.2	4234		
4256	C6H6+C2H=N-C8H7	7.00E+38	-8	8200		
4257	C6H5+C2H3=N-C8H7+H	9.40E+00	4.1	11617		

4258	N-C8H7+M=PHC2H+H+M	2.00E+17	0	20000	
4259	N-C8H7+H=PHC2H+H2	1.00E+13	0	0	
4260	N-C8H7+OH=PHC2H+H2O	1.00E+13	0	0	
4261	N-C8H7+PHC2H-=>PYRENE+2H	4.30E+14	0	4888.3	
4262	A2C2H*+N-C8H7=BAPYR+H2	8.30E+38	-6.3	22530	
4263	C4H5-I+C2H2=C6H6+H	1.60E+15	-1.3	5365	
4264	INDENYL+CH3=NAPHT+H+H	3.00E+18	0	36500	
4265	PHCH2+C3H3=NAPHT+H+H	2.00E+13	0.3	5000	
4266	P2-+C6H5=TERPHENYL	5.94E+42	-8.8	13822	
4267	P2-+C6H5=P3-+H	8.60E+13	0.5	34797.5	
4268	BIPHENYL+C6H5=TERPHENYL+H	9.50E+75	-18.9	39445.4	
4269	P2-+C6H6=TERPHENYL+H	9.50E+75	-18.9	39445.4	
4270	TERPHENYL+H=P3-+H2	3.23E+07	2.1	15833.1	
4271	P3-+H=TERPHENYL	1.17E+33	-5.6	8753.7	
4272	TERPHENYL+CH3=P3-+CH4	2.00E+12	0	14975.6	
4273	TERPHENYL+C2H3=P3-+C2H4	6.00E+11	0	12969.3	
4274	P2-+C6H6=>TRIPHENYLEN+H2+H	8.51E+11	0	3983.9	
4275	BIPHENYL+C6H5=>TRIPHENYLEN+H2+H	8.51E+11	0	3983.9	
4276	P2-+C6H5=>TRIPHENYLEN+H+H	1.39E+13	0	109.9	
4277	P3-=TRIPHENYLEN+H	9.50E+75	-18.9	39445.4	
4278	TRIPHENYLEN+CH3=A4T-+CH4	2.00E+12	0	14975.6	
4279	TRIPHENYLEN+C2H3=A4T-+C2H4	6.00E+11	0	12969.3	
4280	A4T-+H=TRIPHENYLEN	5.00E+13	0	0	
4281	A4T-+C2H2=>BEPYREN+H	1.87E+07	1.8	3260.2	
4282	TRIPHENYLEN+H=A4T-+H2	3.23E+07	2.1	15833.1	
4283	P3-+C6H5=QUATERPHENYL	5.94E+48	-8.8	13829.2	
4284	P3-+C6H5=P4-+H	8.60E+19	0.5	34799.8	
4285	TERPHENYL+C6H5=QUATERPHENYL+H	1.00E+83	-18.9	39529	
4286	P3-+C6H6=QUATERPHENYL+H	1.00E+83	-18.9	39529	
4287	BIPHENYL+P2-=QUATERPHENYL+H	1.80E+83	-18.9	39529	
4288	QUATERPHENYL+H=P4-+H2	3.53E+13	2.1	15835.5	
4289	P4-+H=QUATERPHENYL	1.17E+39	-5.6	8765.6	
4290	P2-+P2-=QUATERPHENYL	3.56E+49	-8.8	13829.2	
4291	P2-+P2-=P4-+H	5.16E+20	0.5	34799.8	
4292	P4-+C6H5=QINQUEPHENYL	5.94E+48	-8.8	13829.2	
4293	P4-+C6H5=P5-+H	8.60E+19	0.5	34799.8	
4204	QUATERPHENYL+C6H5=QINQUEPHENYL+	1.00E+92	18.0	20520	
4294	Π $D4 \pm C6H6 - OINOU IEDHENIVI \pm H$	1.00E+83	-18.9	39329	
4295		1.00E+83	-10.9	12820.2	
4290	$13 - 112 - QINQUET TENTL$ $D2 \pm D2 - D5 \pm U$	2 58E±10	-0.0	34700.9	
4297	$\frac{\Gamma 3 - \tau \Gamma 2\Gamma 3 - \tau \Pi}{TERDHENVI \pm D2 OINOLIEDUENIVI \pm U}$	2.JOE+19 3.00E+02	.18.0	30/57 2	
4270		3.00E+03	-10.9	30/157 2	
4299		5.00ET05	-10.9	15925 5	
4300		0.40E+13	5.6	13033.3 8765.6	
4301		2.34ET39	-3.0	0/03.0	
4302	しッロシー1⊤ロ−しりП10	2.00E+13	U	U	

4303	C9H10+H=C9H9-1+H2	3.90E+06	2.4	4471		
4304	C9H10+CH3=C9H9-1+CH4	4.53E+00	3.5	5481		
4305	INDENE+H=C9H9-1	1.30E+13	0	1560		
4306	BSTYRYL+CH3=C9H9-1+H	1.00E+13	0	0		
4307	C5H5+C4H3-I=INDENE	1.00E+13	0	0		
4308	C6H5+C3H4-A=PHCH2+C2H2	5.13E+01	3.2	2787.8		
4309	C6H5+C3H4-A=PHC2H+CH3	2.56E+01	3.2	2787.8		
4310	C6H5+C3H4-P=C6H6+C3H3	1.79E+04	2.5	2759.1		
4311	C6H5+C3H4-P=PHC2H+CH3	7.18E+03	2.5	2759.1		
4312	o-C6H4+C3H3=INDENYL	7.46+100	-25	61541.8		
	Reverse	Arrhenius	coefficients:	1.53+108	-26	180368.9
4313	PHCH2+C2H4=C9H10+H	2.81E-06	4.7	1417.5		
4314	o-C6H4+C3H5-A=INDENE+H	1.52E+09	1	-1035.5		
4315	o-C6H4+C3H4-A=INDENE	1.00E+13	0	10000		
4316	o-C6H4+C3H4-P=INDENE	1.00E+13	0	10000		
4317	BENZYLB+H=C6H6+PHCH2	1.69E+08	1.6	4448.3		
4318	C6H5+PHCH2=BENZYLBJ+H	2.47E+50	-10.1	43638.8		
4319	C6H5+PHCH2=BENZYLB	4.42E+49	-11.1	14751.9		
	Reverse	Arrhenius	coefficients:	4.33+127	-31.9	158358.6
4320	BENZYLB=BENZYLBJ+H	2.25+123	-30.9	153559.2		
4321	BENZYLB+H=BENZYLBJ+H2	4.31E+00	4	3384		
4322	BENZYLB+CH3=BENZYLBJ+CH4	2.67E-05	5.6	9000		
4323	BENZYLB+C6H5=BENZYLBJ+C6H6	5.29E+13	0	11935		
4324	BENZYLBJ=FLUORENE+H	7.65+107	-26.9	126128.4		
4325	FLUORENE+H=C13H9+H2	2.80E+13	0	2259		
	Declared	duplicate	reaction			
4326	FLUORENE+CH3=C13H9+CH4	1.80E-01	4	0		
	Declared	duplicate	reaction			
4327	C13H9+H=FLUORENE	1.08E+63	-14.8	21050		
4328	FLUORENE+H=C13H9+H2	4.34E+16	-0.7	20011.2		
	Declared	duplicate	reaction			
4329	FLUORENE+CH3=C13H9+CH4	6.65E+11	0	15060		
	Declared	duplicate	reaction			
4330	C13H9+H(+M)=FLUORENE(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4331	o-C6H4+PHCH2=FLUORENE+H	5.12E+12	0	2416.2		
4332	A1A1CH2-1=FLUORENE+H	7.65+107	-26.9	128628.4		
4333	C14H14=C14H13+H	6.25+174	-46.9	171781.4		
4334	C14H14+H=C6H6+PHCH2CH2	1.69E+08	1.6	4448.3		
4335	C14H13=C14H12+H	1.80E+85	-22.4	66243.9		
4336	C14H13=STYREN+C6H5	1.69E+88	-22.8	67565.8		
4337	C14H12+C6H5=C14H11+C6H6	2.56E+02	3.2	2787.8		
4338	C14H11=PHC2H+C6H5	6.47E+89	-23.3	73055.8		
4339	PHC2H+C6H5=A1CCA1+H	1.63E+23	-2.8	12667.1		
4340	A1CCA1+H=PHNTHRN+H	4.34E+30	-4.9	13387.3		

4341	A2C2H-2J3+C2H2=A3LJX	4.67E+06	1.8	3262		
4342	ANTHRCN+H=A3LJX+H2	8.67E+16	-0.7	20011.2		
4343	A3LJX+H(+M)=ANTHRCN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4344	A2R5-+C2H2=A2R5YNE1+H	1.12E+26	-3.4	20870		
4345	A2R5-+C2H2=A2R5YNE3+H	1.12E+26	-3.4	20870		
4346	A2R5-+C2H2=A2R5YNE4+H	1.12E+26	-3.4	20870		
4347	A2R5-+C2H2=A2R5YNE5+H	2.50E-09	6.6	8850		
4348	A3CH2=A3CH2R+H	7.65+107	-26.9	128628.4		
4349	C13H9+C2H2=A3CH2R+H	3.59E+22	-2.5	16160		
4350	A3-1+C2H2=A3R5+H	3.59E+22	-2.5	16160		
4351	A2T1+o-C6H4=A3R5	5.12E+60	-13.1	48980		
4352	A2T2+o-C6H4=A3R5	5.12E+60	-13.1	48980		
4353	A2R5YNE4+H=A2R5YN4J5+H2	2.17E+16	-0.7	20011.2		
4354	A2R5YN4J5+C2H2=A3R5J7	1.87E+07	1.8	3262		
4355	A2R5YNE5+H=A2R5YN5J4+H2	2.17E+16	-0.7	20011.2		
4356	A2R5YN5J4+C2H2=A3R5J10	1.87E+07	1.8	3262		
4357	A3R5J7+H(+M)=A3R5(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4358	A3R5J10+H(+M)=A3R5(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4359	A3LJX+C2H2=A3LR5+H	3.59E+22	-2.5	16160		
4360	A2T1+o-C6H4=A3LR5	7.85E+55	-12	43790		
4361	A2T2+o-C6H4=A3LR5	7.85E+55	-12	43790		
4362	A2R5YNE3+H=A2R5YN3J4+H2	2.17E+16	-0.7	20011.2		
4363	A2R5YNE4+H=A2R5YN4J3+H2	2.17E+16	-0.7	20011.2		
4364	A2R5YN3J4+C2H2=A3LR5JS	1.87E+07	1.8	3262		
4365	A2R5YN4J3+C2H2=A3LR5JS	1.87E+07	1.8	3262		
4366	A3LR5JS+H(+M)=A3LR5(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4367	A2-1+C6H5=A2A1-1	1.66E+64	-14.7	33265.8		
4368	A2-1+C6H6=A2A1-1+H	9.55E+11	0	4308.3		
4369	NAPHT+C6H5=A2A1-1+H	6.37E+11	0	4308.3		
4370	A2-2+C6H5=A2A1-2	1.66E+64	-14.7	33265.8		
4371	A2-2+C6H6=A2A1-2+H	9.55E+11	0	4308.3		
4372	NAPHT+C6H5=A2A1-2+H	6.37E+11	0	4308.3		
4373	A2A1-1+H=FLTHN+H2+H	4.34E+16	-0.7	20011.2		
4374	A2A1-1+CH3=FLTHN+CH4+H	6.67E+11	0	15060		
4375	A2A1-2+H=A21C6H4+H2+H	4.34E+16	-0.7	20011.2		
4376	A2A1-2+CH3=A21C6H4+CH4+H	6.67E+11	0	15060		
4377	A2A1-2+H=A22C6H4+H2+H	4.34E+16	-0.7	20011.2		
4378	A2A1-2+CH3=A22C6H4+CH4+H	6.67E+11	0	15060		

	4379	A2R5YNE1+H=A2R5YN1J2+H2	2.17E+16	-0.7	20011.2		
	4380	A2R5YN1J2+C2H2=FLTHNJ7	1.87E+07	1.8	3262		
	4381	FLTHN+H=FLTHNJ1+H2	4.34E+16	-0.7	20011.2		
	4382	FLTHN+H=FLTHNJ3+H2	4.34E+16	-0.7	20011.2		
	4383	FLTHN+H=FLTHNJ7+H2	4.34E+16	-0.7	20011.2		
	4384	FLTHNJ1+H(+M)=FLTHN(+M)	1.00E+14	0	0		
		Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
		TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
	4385	FLTHNJ3+H(+M)=FLTHN(+M)	1.00E+14	0	0		
		Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
		TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
	4386	FLTHNJ7+H(+M)=FLTHN(+M)	1.00E+14	0	0		
		Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	4387	A21C6H4=FLTHN	8.51E+12	0	62860		
	4388	A22C6H4=A3LR5	8.51E+12	0	62860		
	4389	A3R5=FLTHN	8.51E+12	0	62860		
	4390	A3LR5=A3R5	8.51E+12	0	62860		
	4391	A3LR5=FLTHN	8.51E+12	0	62860		
	4392	BENZNAP+H=NAPHT+PHCH2	1.69E+08	1.6	4448.3		
	4393	A2-2+PHCH2=BENZNAP	4.42E+49	-11.1	14751.9		
	4394	BENZNAP+H=BENZNAPJP+H2	4.31E+00	4	3384		
	4395	BENZNAP+CH3=BENZNAPJP+CH4	2.67E-05	5.6	9000		
	4396	BENZNAP+C6H5=BENZNAPJP+C6H6	5.29E+13	0	11935		
	4397	BENZNAPJP=BENZFLRN+H	7.20E+79	-20.4	62809.9		
	4398	A3LJX+C2H2=A3LC2H-1+H	1.01E-10	7.1	9210		
	4399	A3LC2H-1+H=A3LC2H-1P+H2	2.17E+16	-0.7	20011.2		
	4400	A3LC2H-1P+C2H2=A3LA1-X	1.87E+07	1.8	3262		
	4401	A3LC2H-2+H=A3LC2H-2S+H2	2.17E+16	-0.7	20011.2		
	4402	A3LC2H-2S+C2H2=A3LA1-X	1.87E+07	1.8	3262		
	4403	A2-2+PHC2H=A4+H	8.51E+11	0	3986		
ſ	4404	NAPHT+PHC2H-=A4+H	8.51E+11	0	3986		
	4405	A4+H=A3LA1-X+H2	2.17E+16	-0.7	20011.2		
	4406	A3LA1-X+H(+M)=A4(+M)	1.00E+14	0	0		
		Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
		TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
	4407	A3LC2H-2+H=A3LC2H-2P+H2	2.17E+16	-0.7	20011.2		
	4408	A3LC2H-2P+C2H2=A4LJS	1.87E+07	1.8	3262		
	4409	A4LJS+H(+M)=A4L(+M)	1.00E+14	0	0		
		Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
ſ		TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
ſ	4410	A3-1+C6H5=A3A1-1	1.66E+64	-14.7	33265.8		
ſ	4411	A3-9+C6H5=A3A1-9	1.66E+64	-14.7	33265.8		
ľ	4412	PHNTHRN+C6H5=A3A1-1+H	3.18E+11	0	4308.3		
ľ	4413	PHNTHRN+C6H5=A3A1-9+H	3.18E+11	0	4308.3		
ľ	4414	A3-1+C6H6=A3A1-1+H	9.55E+11	0	4308.3		
Ì	4415	A3-1+C6H6=A3A1-9+H	9.55E+11	0	4308.3		
-							

4416				•		
	A3A1-1+H=BBFLUOR+H2+H	2.17E+16	-0.7	20011.2		
4417	A3A1-9+H=BBFLUOR+H2+H	2.17E+16	-0.7	20011.2		
4418	A3A1-1+CH3=BBFLUOR+CH4+H	6.67E+11	0	15060		
4419	A3A1-9+CH3=BBFLUOR+CH4+H	6.67E+11	0	15060		
4420	A2-2+A2-1=A2A2-12	1.66E+64	-14.7	33265.8		
4421	NAPHT+A2-2=A2A2-12+H	6.37E+11	0	4308.3		
4422	NAPHT+A2-1=A2A2-12+H	6.37E+11	0	4308.3		
4423	A2A2-12+H=BKFLUOR+H2+H	2.17E+16	-0.7	20011.2		
4424	A2A2-12+CH3=BKFLUOR+CH4+H	6.67E+11	0	15060		
4425	C13H9+C6H5=FLRNA1-4	1.66E+64	-14.7	33265.8		
4426	FLUORENE+C6H5=FLRNA1-4+H	3.18E+11	0	4308.3		
4427	C13H9+C6H6=FLRNA1-4+H	9.55E+11	0	4308.3		
4428	FLRNA1-4+H=CPTRPHEN+H2+H	4.34E+16	-0.7	20011.2		
4429	FLRNA1-4+CH3=CPTRPHEN+CH4+H	6.67E+11	0	15060		
4430	CHRYSEN-4+C2H2=BAPYR+H	1.87E+07	1.8	3262		
4431	CHRYSEN-5+C2H2=BAPYR+H	1.87E+07	1.8	3262		
4432	BAPYR+H=BAPYR*S+H2	4.34E+16	-0.7	20011.2		
4433	BAPYR*S+H(+M)=BAPYR(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4434	A4C2H*S+C2H2=BEPYRENJS	1.87E+07	1.8	3262		
4435	BEPYREN+H=BEPYRENJS+H2	8.67E+16	-0.7	20011.2		
4436	BEPYRENJS+H(+M)=BEPYREN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4437	TROE A3-4+C6H5=A3A1-4	centering: 1.66E+64	1.00E+00 -14.7	1.00E-01 33265.8	5.85E+02	6.11E+03
4437 4438	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H	centering: 1.66E+64 3.18E+11	1.00E+00 -14.7 0	1.00E-01 33265.8 4308.3	5.85E+02	6.11E+03
4437 4438 4439	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H	centering: 1.66E+64 3.18E+11 9.55E+11	1.00E+00 -14.7 0 0	1.00E-01 33265.8 4308.3 4308.3	5.85E+02	6.11E+03
4437 4438 4439 4440	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16	1.00E+00 -14.7 0 0 -0.7	1.00E-01 33265.8 4308.3 4308.3 20011.2	5.85E+02	6.11E+03
4437 4438 4439 4440 4441	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11	1.00E+00 -14.7 0 0 -0.7 0	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64	1.00E+00 -14.7 0 0 -0.7 0 -14.7	1.00E-01 33265.8 4308.3 20011.2 15060 33265.8	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4442 4443	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4442 4443 4444	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -0.7 0 -14.7 0 -0.7	1.00E-01 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4442 4443 4444 4445	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -0.7 0 -14.7 0 -0.7 0 -14.7 0 -0.7 0 -0.7	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.7E+16 6.67E+11 2.17E+16 1.74E+17	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -0.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7	1.00E-01 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4442 4443 4444 4445 4444 4445 4446 4447	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.7E+16 6.67E+11 1.7E+16 6.67E+11 1.7E+16 1.7E+16 6.67E+11 1.74E+17 1.00E+14	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 0	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H PERYLEN+H=PERYLEN(+M) Low	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.7E+16 6.67E+11 1.74E+17 1.00E+14 pressure	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -10.7	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 32265.8 4308.3 20011.2 15060 20011.2 0 6.60E+75	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4443 4445 4446 4447	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLENS+H2 PERYLEN+H=PERYLENJS+H2 PERYLENJS+H(+M)=PERYLEN(+M) Low TROE	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering:	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 limit: 1.00E+00	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H PERYLEN+H=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.7E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -10.7 0 -14.7	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8	5.85E+02 -1.63E+01 5.85E+02	6.11E+03 7.00E+03 6.11E+03
4437 4438 4439 4440 4441 4442 4443 4443 4445 4445 4446 4447 4448 4449	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLENS+H2 PERYLEN+H=PERYLENJS+H2 PERYLENJS+H(+M)=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1 A4-4+C6H5=PYRNA1-4	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.67E+11 1.7E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64 1.66E+64	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -14.7 0 -14.7 -14.7	1.00E-01 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 33265.8	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4442 4443 4445 4445 4446 4447 4448 4449 4450	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+H2+H PERYLEN+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1 A4-4+C6H5=PYRNA1-4 PYRENE+C6H5=PYRNA1-1+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64 1.66E+64 1.27E+12	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -14.7 0 1.00E+00 -14.7 0	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 4308.3	5.85E+02	6.11E+03 7.00E+03 6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H PERYLEN+H=PERYLENJS+H2 PERYLENS+H(+M)=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1 A4-4+C6H5=PYRNA1-4 PYRENE+C6H5=PYRNA1-4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.67E+11 1.7E+16 6.67E+11 1.7E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64 1.66E+64 1.27E+12 1.27E+12	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -14.7 0 1.00E+00 -14.7 0 0 0 0 0 0 0	1.00E-01 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 4308.3 4308.3	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4445 4445 4446 4447 4448 4449 4450 4451 4452	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLENJS+H2 PERYLENJS+H(+M)=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1 A4-4+C6H5=PYRNA1-4 PYRENE+C6H5=PYRNA1-4+H PYRENE+C6H5=PYRNA1-4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64 1.66E+64 1.27E+12 1.27E+12 9.55E+11	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -10.7 0 -10.7 0 -10.7 0 -14.7 0 -14.7 0 0 0 0 0 0 0 0 0	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 4308.3 4308.3 4308.3	5.85E+02	6.11E+03 7.00E+03 6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4445 4445 4446 4447 4448 4449 4450 4451 4452 4453	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+CH4+H PERYLEN+H=PERYLEN+CH4+H PERYLEN+H=PERYLENS+H2 PERYLENS+H(+M)=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1 A4-4+C6H5=PYRNA1-4 PYRENE+C6H5=PYRNA1-4+H A4-1+C6H6=PYRNA1-4+H A4-1+C6H6=PYRNA1-4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64 1.66E+64 1.27E+12 9.55E+11 9.55E+11	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -14.7 0 1.00E+00 -14.7 0 <td>1.00E-01 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 4308.3 4308.3 4308.3 4308.3</td> <td>5.85E+02</td> <td>6.11E+03</td>	1.00E-01 33265.8 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 4308.3 4308.3 4308.3 4308.3	5.85E+02	6.11E+03
4437 4438 4439 4440 4441 4442 4443 4444 4444 4445 4445 4446 4447 4448 4449 44450 44451 4452 4453 4454	TROE A3-4+C6H5=A3A1-4 PHNTHRN+C6H5=A3A1-4+H A3-4+C6H6=A3A1-4+H A3-4+C6H6=A3A1-4+H A3A1-4+H=BEPYREN+H2+H A3A1-4+CH3=BEPYREN+CH4+H A2-1+A2-1=A2A2-11 NAPHT+A2-1=A2A2-11+H A2A2-11+H=PERYLEN+H2+H A2A2-11+CH3=PERYLEN+H2+H PERYLEN+H=PERYLENS+H2 PERYLENS+H(+M)=PERYLEN(+M) Low TROE A4-1+C6H5=PYRNA1-1 A4-4+C6H5=PYRNA1-4 PYRENE+C6H5=PYRNA1-4+H PYRENE+C6H5=PYRNA1-4+H A4-1+C6H6=PYRNA1-4+H PYRENE+C6H5=PYRNA1-4+H PYRENE+C6H5=PYRNA1-4+H PYRENE+C6H5=PYRNA1-4+H PYRENE+C6H5=PYRNA1-4+H	centering: 1.66E+64 3.18E+11 9.55E+11 2.17E+16 6.67E+11 1.66E+64 6.37E+11 2.17E+16 6.67E+11 1.66E+64 6.67E+11 1.7E+16 6.67E+11 1.74E+17 1.00E+14 pressure centering: 1.66E+64 1.66E+64 1.27E+12 1.27E+12 9.55E+11 9.55E+11 9.55E+11 2.17E+16	1.00E+00 -14.7 0 0 -0.7 0 -14.7 0 -14.7 0 -14.7 0 -0.7 0 -0.7 0 -0.7 0 -14.7 0 -14.7 -14.7 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.00E-01 33265.8 4308.3 4308.3 20011.2 15060 33265.8 4308.3 20011.2 15060 20011.2 15060 20011.2 15060 20011.2 0 6.60E+75 1.00E-01 33265.8 4308.3 4308.3 4308.3 4308.3 20011.2	5.85E+02	6.11E+03 7.00E+03 6.11E+03

4456	PYRNA1-1+CH3=INPYR+CH4+H	6.67E+11	0	15060		
4457	PYRNA1-4+CH3=INPYR+CH4+H	6.67E+11	0	15060		
4458	BBFLUOR+H=BBFLUORJS+H2	4.34E+16	-0.7	20011.2		
4459	BBFLUORJS+H(+M)=BBFLUOR(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4460	BBFLUORJS+C2H2=INPYR+H	1.87E+07	1.8	3262		
4461	FLTHNJ1+C2H2=BGHIF+H	1.87E+07	1.8	3262		
4462	FLTHNJ7+C2H2=BGHIF+H	1.87E+07	1.8	3262		
4463	BGHIF+H=BGHIFJ+H2	8.67E+16	-0.7	20011.2		
4464	BGHIFJ+H(+M)=BGHIF(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4465	FLTHNJ3+C2H2=CPCDFLTH+H	3.80E+22	-2.5	16880		
4466	CPCDFLTH+H=CPCDFLTJS+H2	4.34E+16	-0.7	20011.2		
4467	CPCDFLTJS+H(+M)=CPCDFLTH(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4468	CPCDFLTJS+C2H2=BGHIFR+H	1.87E+07	1.8	3262		
4469	BGHIFJ+C2H2=BGHIFR+H	3.80E+22	-2.5	16880		
4470	BGHIFR+H=BGHIFRJS+H2	4.34E+16	-0.7	20011.2		
4471	BGHIFRJS+H(+M)=BGHIFR(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4472	BGHIFRJS+C2H2=COR1+H	1.87E+07	1.8	3262		
4473	A4-1+C2H2=CPCDPYR+H	3.80E+22	-2.5	16880		
4474	A4-4+C2H2=CPCDPYR+H	3.80E+22	-2.5	16880		
4475	CPCDPYR+H=CPCDPYRJS+H2	1.30E+17	-0.7	20011.2		
4476	CPCDPYRJS+H(+M)=CPCDPYR(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4477	CPCDPYRJS+C2H2=DCPCDFG+H	3.80E+22	-2.5	16880		
4478	BGHIFJ+C2H2=COR+H	1.87E+07	1.8	3262		
4479	CPCDPYRJS+C2H2=COR+H	3.80E+22	-2.5	16880		
4480	COR+H=CORJ+H2	2.17E+17	-0.7	20011.2		
4481	CORJ+H(+M)=COR(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4482	CORJ+C2H2=COR1+H	3.80E+22	-2.5	16880		
4483	COR1+H=COR1J+H2	1.74E+17	-0.7	20011.2		
4484	COR1J+H(+M)=COR1(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4485	COR1J+C2H2=COR2+H	1.87E+07	1.8	3262		
4486	COR2+H=COR2J+H2	1.30E+17	-0.7	20011.2		
4487	COR2J+H(+M)=COR2(+M)	1.00E+14	0	0		
1107			, v		1	1

	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4488	COR2J+C2H2=COR3+H	1.87E+07	1.8	3262		
4489	COR3+H=COR3J+H2	8.67E+16	-0.7	20011.2		
4490	COR3J+H(+M)=COR3(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4491	COR3J+C2H2=COR4+H	1.87E+07	1.8	3262		
4492	COR4+H=COR4J+H2	4.34E+16	-0.7	20011.2		
4493	COR4J+H(+M)=COR4(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4494	COR4J+C2H2=HB+H	1.87E+07	1.8	3262		
4495	BAPYR*S+C2H2=ANTHAN+H	1.87E+07	1.8	3262		
4496	ANTHAN+H=ANTHANJP+H2	1.74E+17	-0.7	20011.2		
4497	ANTHAN+H=ANTHANJS+H2	8.67E+16	-0.7	20011.2		
4498	ANTHANJP+H(+M)=ANTHAN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4499	ANTHANJS+H(+M)=ANTHAN(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4500	BEPYRENJS+C2H2=BGHIPER+H	1.87E+07	1.8	3262		
4501	PERYLENJS+C2H2=BGHIPER+H	1.87E+07	1.8	3262		
4502	BGHIPER+H=BGHIPEJP1+H2	1.74E+17	-0.7	20011.2		
4503	BGHIPEJP1+H(+M)=BGHIPER(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4504	BGHIPEJP1+C2H2=CPBPER+H	3.80E+22	-2.5	16880		
4505	BGHIPER+H=BGHIPEJS1+H2	4.34E+16	-0.7	20011.2		
4506	BGHIPEJS1+H(+M)=BGHIPER(+M)	1.00E+14	0	0		
	Low	pressure	limit:	6.60E+75	-1.63E+01	7.00E+03
	TROE	centering:	1.00E+00	1.00E-01	5.85E+02	6.11E+03
4507	BGHIPEJS1+C2H2=CORONEN+H	1.87E+07	1.8	3262		
4508	C5H5+C5H6=>INDENE+CH3	1.30E+28	-3.9	23108.3		
4509	C5H5+C5H6=>STYREN+C2H3	4.00E+15	0	25556.5		
4510	C5H5+TOLUEN=>BIPHENYL+H+H2	4.00E+14	0	19107.7		
4511	C5H5+PHC2H=FLUORENE+H	4.00E+14	0	19107.7		
4512	C5H5+STYREN=FLUORENE+H+H2	1.00E+14	0	19107.7		
4513	C5H5+PHC2H5=>BIPHENYL+H2+CH3	4.00E+14	0	19107.7		
4514	C5H5+PHCH2=>BIPHENYL+H+H	5.00E+14	0	5971.1		
4515	C5H5+C3H3=>STYREN	5.00E+15	0	5971.1		
4516	C5H5+PHC2H-=>FLUORENE	2.00E+15	0	3009.5		
4517	C5H5+N-C8H7=>FLUORENE+H+H	2.00E+15	0	3009.5		
4518	A3-4+O2=A3O-4+O	4.00E+03	2.4	41320.3		
4519	A3O-4=C13H9+CO	6.42E+10	1	242627.5		

4520	A3LJX+O2=A3L-O+O	7.30E+03	2.4	37260	
4521	A3L-O=C13H9+CO	6.42E+10	1	242627.5	
4522	A3LA1-X+O2=A4-O+O	7.30E+03	2.4	37260	
4523	A4-O=C13H9A1-+CO	6.42E+10	1	242627.5	
4524	C13H9A1-+H=C13H9A1	1.00E+14	0	0	
4525	ANTHAN+OH=ANTHANJS+H2O	2.10E+13	0	4600	
4526	ANTHAN+OH=ANTHANJP+H2O	2.10E+13	0	4600	
4527	ANTHAN+OH=BAPYR*S+CH2CO	1.30E+13	0	10600	
4528	ANTHAN+O=BAPYR*S+HCCO	2.20E+13	0	4530	
4529	ANTHANJS+O2=BAPYR*S+2CO	2.10E+12	0	7470	
4530	ANTHANJP+O2=BAPYR*S+2CO	2.10E+12	0	7470	
4531	BGHIPER+OH=BGHIPEJP1+H2O	2.10E+13	0	4600	
4532	BGHIPEJP1+O2=PERYLENJS+2CO	2.10E+12	0	7470	
4533	PERYLEN+OH=PERYLENJS+H2O	2.10E+13	0	4600	
4534	BEPYREN+OH=BEPYRENJS+H2O	2.10E+13	0	4600	
4535	BAPYR*S+O2=A3LA1-X+2CO	2.10E+12	0	7470	
4536	COR+OH=CORJ+H2O	2.10E+13	0	4600	
4537	COR1+OH=COR1J+H2O	2.10E+13	0	4600	
4538	COR2+OH=COR2J+H2O	2.10E+13	0	4600	
4539	COR3+OH=COR3J+H2O	2.10E+13	0	4600	
4540	COR4+OH=COR4J+H2O	2.10E+13	0	4600	
4541	CPCDPYR+OH=CPCDPYRJS+H2O	2.10E+13	0	4600	
4542	BGHIF+OH=BGHIFJ+H2O	2.10E+13	0	4600	
4543	BGHIFR+OH=BGHIFRJS+H2O	2.10E+13	0	4600	
4544	CPCDFLTH+OH=CPCDFLTJS+H2O	2.10E+13	0	4600	
4545	FLTHN+OH=FLTHNJ1+H2O	2.10E+13	0	4600	
4546	FLTHN+OH=FLTHNJ3+H2O	2.10E+13	0	4600	
4547	CORONENYL+O2=BGHIPEJS1+2CO	2.10E+12	0	7470	
4548	CORONEN+H=CORONENYL+H2	2.62E+07	2.1	15842	
4549	CORONEN+OH=CORONENYL+H2O	1.71E+13	0	4571	
4550	CORONENYL+H=CORONEN	7.83E+13	0	0	

Table 24 : List of reactions considered in the present detailed kinetic mechanism.