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Abstract 

My PhD thesis focuses on the development of the through-bond and through-space 

correlation solid state NMR experiments involving half-integer quadrupolar nuclei in order to 

characterize chemical structure of inorganic material at atomic level. This thesis consists of two 

part. 

    First, we introduce two-dimensional (2D) 71Ga-77Se through-bond and through-space 

heteronuclear correlation (HETCOR) experiments. Such correlations are achieved using (i) the 

J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) 

method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as 

(ii) the J- or dipolar-mediated Heteronuclear Multiple-Quantum Correlation (J- or D-HMQC) 

schemes with 71Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are 

applied to the crystalline -Ga2Se3 and the 0.2Ga2Se3-0.8GeSe2 glass. We also report 2D 71Ga 

Satellite Transition Magic-Angle Spinning (STMAS) spectrum of -Ga2Se3 using QCPMG 

detection at high magnetic field, high Magic-Angle Spinning frequency, and high rf-field. 

   Second, we introduce novel sequences using indirect detection to correlate quadrupolar nuclei 

and spin-1/2 isotopes, other than 1H and 19F. These sequences use γ-encoded symmetry-based 

RNn
ν schemes that reintroduce the space component |m| = 1 of the heteronuclear dipolar 

coupling. These schemes can be applied to the indirectly detected spin in Dipolar-mediated 

Heteronuclear Multiple-Quantum Correlation (D-HMQC) sequence or to the detected isotope 

in a novel sequence, named Dipolar-mediated Heteronuclear Universal-Quantum Correlation 

(D-HUQC). The performance of the sequences have been compared to conventional D-HMQC 

with R3 and SFAM recoupling via SIMPSON simulations and NMR experiments, including 

13C-{15N} heteronuclear correlation on glycine and 31P-27Al ones on VPI-5 and 

Na7(AlP2O7)4PO4.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Chapter 1: General introduction 

This thesis focuses on the heteronuclear correlation NMR experiments involving half-integer 

quadrupolar nuclei. Hence, chapter 1 summarizes the important tool, concept and the state of 

the art in this field. The section 1.1 introduces the basic principles of solid-state NMR 

experiments. The section 1.2 describes the property of quadrupolar nuclei. The section 1.3 and 

1.4 summarizes sensitivity enhancement and high resolution methodology for quadrupolar 

nuclei. The section 1.5 describes the heteronuclear dipolar recoupling sequence applied to 

single channel in HETCOR sequence. The section 1.6 is the review of 2D HETCOR 

experiments between spin-1/2 and half-integer quadrupolar nuclei. 

1.1. Theoretical basis  

A brief description of the theoretical basis of solid-state NMR spectroscopy is provided here. 

More detailed description can be found in the references [1-5]. The dynamics of nuclear spins 

during NMR experiments is described by the Liouville-von Neuman equation: 

 
𝑑

𝑑𝑡
𝜌̂(𝑡) = −𝑖[𝐻̂(𝑡), 𝜌̂(𝑡)] (1.1) 

where 𝜌̂(𝑡) and 𝐻̂(𝑡) represent the density operator and the Hamiltonian, respectively. The 

formal solution of the time evolution of the density operator can be recast in Hilbert space as 

follow 

 𝜌̂(𝑡) = 𝑈̂(𝑡)𝜌̂(0)𝑈̂†(𝑡) (1.2) 

with   

 𝑈̂(𝑡) = 𝑇̂𝑒−i∫ 𝐻̂(𝑡)𝑑𝑡
𝑡
0  (1.3) 

where 𝑈̂(𝑡) is called propagator, and 𝑇̂ is the Dyson time-ordering operator. Signal detection 

can be performed as  

 𝑆(𝑡) = 〈𝑄̂〉(𝑡) = 𝑇𝑟{𝜌̂(𝑡)𝑄̂} (1.4) 

The Hamiltonian consists of external and internal terms 

 𝐻̂(𝑡)  =  𝐻̂𝑒𝑥𝑡 + 𝐻̂𝑖𝑛𝑡 (1.5) 

where the first term represents external interactions, including Zeeman and radiofrequency (rf) 

interaction, while the second one contains internal parts of the nuclear spin Hamiltonian. In the 

laboratory (LAB) frame, the external Hamiltonian takes the form 

 𝐻̂𝑒𝑥𝑡 = 𝐻̂0 + 𝐻̂1(𝑡)  = 𝜔0𝐼𝑧 + 2𝜔1cos(𝜔ref𝑡 + 𝜙)𝐼𝑧 (1.6) 
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with 𝜔1 = −𝛾𝐵1, 𝜔ref and 𝜙 denoting the rf nutation angular frequency, the angular carrier 

frequency and phase of the rf-field, respectively, and 𝐵1 the rf field amplitude and γ the 

gyromagnetic ratio. 

The internal components of the Hamiltonian may conveniently be expressed in an irreducible 

tensor representation 

 𝐻̂𝑖𝑛𝑡 =∑𝐻̂𝜆
𝜆

 ;           𝐻̂𝜆 = 𝐶
𝜆∑ ∑ (−1)𝑚

𝑗

𝑚=−𝑗

2

𝑗=0

[𝐴𝑗,−𝑚
𝜆 ]

𝐿
𝑇̂𝑗,𝑚
𝜆  (1.7) 

where 𝐴𝑗,𝑚
𝜆  and 𝑇̂𝑗,𝑚

𝜆  represents spatial and spin dependencies, respectively, and 𝐶𝜆  is a 

fundamental interaction dependent constant. j describe the rank of the tensor, while the 

superscript L designate that the description applies in LAB frame.  

The analytical procedure of NMR experiments is as follows: 

(i) Transformation into an appropriate interaction frame, 

(ii) The calculation of the effective Hamiltonian,  

(iii) The calculation of the response of the initial density operator to the effective Hamiltonian 

We need to introduce the concept of the rotations, average Hamiltonian (AH) and interaction 

frame to carry out those analytical calculations. 

1.1.1. Rotations 

Rotation of spin operators in cyclic 3D subspace 

Assume that 𝜌̂(0) = 𝐴̂, H(t) = ω(t)𝐵̂, and the operator 𝐴̂, 𝐵̂, and 𝐶̂ is cyclic commutative 

([[𝐴̂, 𝐵̂] = i𝐶̂, [𝐵̂, 𝐶̂] = i𝐴̂, [𝐶̂, 𝐴̂] = i𝐵̂), the time-evolution of the density operator is given by 

𝜌̂(𝑡) = 𝑒−𝑖𝜙𝐵̂𝐴̂𝑒𝑖𝜔𝜙𝐵̂ = cos(𝜙)𝐴̂ – sin(𝜙)𝑖[𝐵̂, 𝐴̂] = cos(𝜙)𝐴̂ − sin(𝜙)𝐶̂ (1.8) 

where 𝜙 = ∫ 𝜔(𝑡)𝑑𝑡
𝑡

0
 (e.g., 𝜙 = 𝜔1𝑡 for constant amplitude rf irradiation). The important things 

is to calculate the commutator [𝐵̂, 𝐴̂]. If the commutator can be calculated easily (for instance, 

typical sets of non-commuting operators are {𝐼𝑥, 𝐼𝑦, 𝐼𝑧}, {𝐼𝑥, 2𝐼𝑦𝑆̂𝑧, 2𝐼𝑧𝑆̂𝑧}, {2𝐼𝑥𝑆̂𝑧, 𝐼𝑦, 2𝐼𝑧𝑆̂𝑧 

}), this representation is preferable. 

Rotation of irreducible spherical tensor operators 

In irreducible spherical tensor representation, operator T of rank-j transforms as  

 [𝑇̂𝑗,𝑚
𝜆 ]

𝐹2
= ∑ [𝑇̂𝑗,𝑚′

𝜆 ]
𝐹1

𝑗

𝑚′=−𝑗

 𝐷
𝑚′,𝑚

(𝑗) (Ω) (1.9) 
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where 𝐷(𝑗) is a rank-j Wigner rotation matrix and 𝛺 = {𝛼, 𝛽, 𝛾} is the Euler angles separating 

the two frames F1 and F2. We consider here positive angles referring to counter-clockwise 

rotations, with the Wigner rotation being: a rotation by α around the original z-axis, rotation by 

β around the new y-axis, and finally rotation by γ around resulting z-axis. The Wigner matrix 

may be conveniently expressed in terms of reduced Wigner matrix (𝑑(𝑗)) elements 

 𝐷
𝑚′,𝑚

(𝑗) (Ω) = 𝑒−𝑖𝑚
′𝛼𝑑

𝑚′,𝑚

(𝑗) (𝛽)𝑒−𝑖𝑚𝛾 (1.10) 

First and second rank reduced Wigner matrix elements are given in Table.1.1. 

Table 1.1. Reduced Wigner matrix elements 𝑑
𝑚′,𝑚

(𝑗) (𝛽) for j = 1, 2  

j m’ \ m -2 -1 0 1 2 

1 

-1  
1

2
(1 + 𝑐𝛽) 

1

√2
𝑠𝛽 

1

2
(1 − 𝑐𝛽)  

0  −
1

√2
𝑠𝛽 𝑐𝛽  

1

√2
𝑠𝛽  

1  
1

2
(1 − 𝑐𝛽) −

1

√2
𝑠𝛽 

1

2
(1 + 𝑐𝛽)  

2 

-2 
1

4
(1 + 𝑐𝛽)

2
 

1

2
(1 + 𝑐𝛽)𝑠𝛽 √3/8 𝑠𝛽

2 
1

2
(1 − 𝑐𝛽)𝑠𝛽 

1

4
(1 − 𝑐𝛽)

2
 

-1 −
1

2
(1 + 𝑐𝛽)𝑠𝛽 𝑐𝛽

2 −
1

2
(1 − 𝑐𝛽) √3/8 𝑠2𝛽 

1

2
(1 + 𝑐𝛽) − 𝑐𝛽

2 
1

2
(1 − 𝑐𝛽)𝑠𝛽 

0 √3/8 𝑠𝛽
2 −√3/8 𝑠2𝛽 

1

2
(3𝑐𝛽

2 − 1) √3/8𝑠2𝛽 √3/8 𝑠𝛽
2 

1 −
1

2
(1 − 𝑐𝛽)𝑠𝛽 

1

2
(1 + 𝑐𝛽) − 𝑐𝛽

2 −√3/8 𝑠2𝛽 𝑐𝛽
2 −

1

2
(1 − 𝑐𝛽) 

1

2
(1 + 𝑐𝛽)𝑠𝛽 

2 
1

4
(1 − 𝑐𝛽)

2
 −

1

2
(1 − 𝑐𝛽)𝑠𝛽 √3/8 𝑠𝛽

2 −
1

2
(1 + 𝑐𝛽)𝑠𝛽 

1

4
(1 + 𝑐𝛽)

2
 

* 𝑠𝛽 and 𝑐𝛽 stand for sin 𝛽 and cos 𝛽 

1.1.2. Effective Hamiltonian 

In NMR theory, most Hamiltonian is time dependent. It is effective to obtain time 

independent Hamiltonian by approximation methods in order to calculate density operator. 

Typical approximative expression of the Hamiltonian series is as follow. 

 𝐻̂𝑒𝑓𝑓(𝑡) = 𝐻̅̂
(1) + 𝐻̅̂(2) + .  .  .  (1.11) 

There are some approximation procedure to drive this effective Hamiltonian. Most popular 

approximation theory is average Hamiltonian theory (AHT) [3,4] and Floquet theory.[6] AHT 

treatment is sufficient in this thesis. Advantage of Floquet theory is in the situation of 

asynchronous condition. In AHT, lowest order terms are defined as 

 𝐻̅̂(1) =
1

𝜏𝑐
∫ 𝐻̂(𝑡′)𝑑𝑡′
𝜏𝑐

0

 (1.12) 
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 𝐻̅̂(2) =
1

𝑖𝜏𝑐
∫ 𝑑𝑡"∫ [𝐻̂(𝑡"), 𝐻̂(𝑡′)]𝑑𝑡′

𝑡"

0

𝜏𝑐

0

 (1.13) 

where 𝜏c denoting the period over which the averaging is performed. This simple expansion 

and later variants have proven extremely useful for simplifying the description of NMR 

experiments, for example, using a first-order approximation of the Hamiltonian in an interaction 

frame parameterizing out the dependency on rf-fields. 

1.1.3. Interaction frame 

In the analysis of NMR experiments, it is useful to transform to interaction frame when 

considering only the effect of the interesting internal parts of the Hamiltonian, which truly 

affects the spin dynamics. Frequently, Zeeman interaction itself complicates the contribution 

of internal Hamiltonian to the evolution of the density operator. The transformation to the frame 

of Zeeman interaction permits to simplify the calculation of the evolution of the density 

operator. A typical Hamiltonian in NMR consists of large terms, such as Zeeman interaction 

and small ones, such as chemical shift, dipolar coupling and quadrupolar coupling etc. as 

follow. 

 𝐻̂(𝑡)  =  𝐻̂𝑏𝑖𝑔(𝑡) + 𝐻̂𝑠𝑚𝑎𝑙𝑙(𝑡) (1.14) 

Here, if we only want to discuss the effect of 𝐻̂𝑠𝑚𝑎𝑙𝑙 on the spin system, we decompose the 

propagator into 𝑈̂(𝑡) = 𝑈̂𝑏𝑖𝑔(𝑡)𝑈̃̂(𝑡)  and then by manipulating the density operator and 

Hamiltonian with 𝑈̂𝑏𝑖𝑔 as follows.  

                              𝜌̃̂(𝑡) =  𝑈̂𝑏𝑖𝑔
† 𝜌̂(𝑡)𝑈̂𝑏𝑖𝑔 (1.15) 

 𝐻̃̂(𝑡) = 𝑈̂𝑏𝑖𝑔
† 𝐻̂(𝑡)𝑈̂𝑏𝑖𝑔 − 𝑖𝑈̂𝑏𝑖𝑔

† 𝑑

𝑑𝑡
𝑈̂𝑏𝑖𝑔(𝑡) = 𝐻̃̂𝑠𝑚𝑎𝑙𝑙(𝑡) (1.16) 

𝐻𝑏𝑖𝑔  can be removed and converted to interaction frame. Eq.(1.15) and (1.16) fulfill the 

Liouville-von Neuman equation 
𝑑

𝑑𝑡
𝜌̃̂(𝑡) = −𝑖[𝐻̃̂(𝑡), 𝜌̃̂(𝑡)]. In the thesis, the interaction frame 

symbol “~” is abbreviated from below. 

Truncated Hamiltonian in high magnetic field can be derived from combination of AHT and 

Zeeman interaction frame: 

 𝐻̂𝜆
̅̅ ̅(1)  = 𝐶𝜆  {[𝐴0,0

𝜆 ]
𝐿
𝑇̂0,0
𝜆 + [𝐴2,0

𝜆 ]
𝐿
𝑇̂2,0
𝜆 } (1.17) 

Thus, all components with m ≠ 0 vanish in a first-order approximation and only the terms which 

commute with 𝐼𝑧 are remained. Truncated Hamiltonians of all internal interaction are given in 

Table.1.2 and 1.3. 
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Table.1.2. Construction of Truncated Hamiltonian [5]  

𝜆 𝐶𝜆 [𝐴0,0
𝜆 ]

𝐿
 𝑇̂0,0

𝜆  𝐻̂𝜆
𝑖𝑠𝑜 [𝐴2,0

𝜆 ]
𝐿
 [𝑇̂2,0

𝜆 ]
𝐿
 𝐻̂𝜆

𝑎𝑛𝑖𝑠𝑜 

CS −𝛾𝐼 −√3𝛿𝑖𝑠𝑜 −
1

√3
𝐵0𝐼𝑧 𝛿𝑖𝑠𝑜𝜔0𝐼𝑧 [𝐴2,0

𝐶𝑆 ]
𝐿
 −√

2

3
 𝐵0𝐼𝑧 √

2

3
 𝜔𝐶𝑆𝐴𝐼𝑧  

DII 1    [𝐴2,0
𝐷,𝐼𝐼]

𝐿
 

1

√6
(3𝐼𝑧

𝑗
𝐼𝑧
𝑘 − 𝐼𝑗

⋅ 𝐼𝑘) 

𝜔𝐷,𝐼𝐼(3𝐼𝑧
𝑗
𝐼𝑧
𝑘 − 𝐼𝑗

⋅ 𝐼𝑘) 

DIS 1    [𝐴2,0
𝐷,𝐼𝑆]

𝐿
 √

2

3
 𝐼𝑧𝑆̂𝑧  𝜔𝐷,𝐼𝑆 2𝐼𝑧𝑆̂𝑧 

JII 1 −2𝜋√3𝐽𝐼𝐼
𝑖𝑠𝑜 −

1

√3
𝐼𝑗 ⋅ 𝐼𝑘 2𝜋𝐽𝐼𝐼

𝑖𝑠𝑜𝐼𝑗 ⋅ 𝐼𝑘 [𝐴2,0
𝐽,𝐼𝐼]

𝐿
 

1

√6
(3𝐼𝑧

𝑗
𝐼𝑧
𝑘 − 𝐼𝑗

⋅ 𝐼𝑘) 

𝜔𝐽,𝐼𝐼
𝑎𝑛𝑖𝑠𝑜(3𝐼𝑧

𝑗
𝐼𝑧
𝑘 − 𝐼𝑗

⋅ 𝐼𝑘) 

JIS 1 −2𝜋√3𝐽𝐼𝑆
𝑖𝑠𝑜 −

1

√3
𝐼 ∙ 𝑆̂ 2𝜋𝐽𝐼𝑆

𝑖𝑠𝑜𝐼 ∙ 𝑆̂ [𝐴2,0
𝐽,𝐼𝑆]

𝐿
 √

2

3
 𝐼𝑧𝑆̂𝑧  𝜔𝐽,𝐼𝑆

𝑎𝑛𝑖𝑠𝑜  𝐼𝑧𝑆̂𝑧 

Q 

(1st) 

2𝜋𝐶𝑄
2𝐼(2𝐼 − 1)

 

  

 [𝐴2,0
𝑄 ]

𝐿
 

1

√6
(3𝐼𝑧

2 − 𝐼(𝐼

+ 1)) 

𝜔𝑄

3√6
[𝐴2,0
𝑄 ]

𝐿
(3𝐼𝑧

2

− 𝐼(𝐼 + 1)) 

 

Table.1.3. Second rank spatial tensor in the principal axis system [5]  

𝜆 [𝐴2,0
𝜆 ]

𝑃
 [𝐴2,±1

𝜆 ]
𝑃

 [𝐴2,±2
𝜆 ]

𝑃
 

CS √
3

2
 𝛿𝑎𝑛𝑖𝑠𝑜 0 −

1

2
𝜂𝛿𝑎𝑛𝑖𝑠𝑜 

DII √6 𝑏𝐼𝐼 0 0 

DIS √6 𝑏𝐼𝑆 0 0 

JII 2𝜋√
3

2
 𝐽𝐼𝐼
𝑎𝑛𝑖𝑠𝑜 0 −

1

2
𝜂 𝐽𝐼𝐼

𝑎𝑛𝑖𝑠𝑜 

JIS 2𝜋√
3

2
 𝐽𝐼𝑆
𝑎𝑛𝑖𝑠𝑜 0 −

1

2
𝜂 𝐽𝐼𝑆

𝑎𝑛𝑖𝑠𝑜 

Q 

(1st order) 
√
3

2
  0 −

1

2
𝜂𝑄 

 * Second rank spatial tensor in LAB frame, [𝐴2,0
𝜆 ]

𝐿
 is defined as [𝐴2,0

𝜆 ]
𝐿
=

∑ [𝐴2,𝑚
𝜆 ]

𝑃
𝐷𝑚,0
(2)2

𝑚=−2 (Ω𝑃𝐿) in the case of  static condition . [𝐴2,𝑚
𝜆 ]

𝑃
with 𝑚 = 0,±1,±2  is 

necessary in order to obtain [𝐴2,0
𝜆 ]

𝐿
. The anisotropies of the spatial tensors (e.g., 𝛿𝑎𝑛𝑖𝑠𝑜 and 𝐽𝐼𝐼

𝑎𝑛𝑖𝑠𝑜) 

are defined as 𝐴𝑎𝑛𝑖𝑠𝑜 = [𝐴𝑧𝑧]
𝑃 − 𝐴𝑖𝑠𝑜  with 𝐴𝑖𝑠𝑜 = 1 3⁄ ([𝐴𝑥𝑥]

𝑃 + [𝐴𝑦𝑦]
𝑃
+ [𝐴𝑧𝑧]

𝑃) . The 

asymmetry parameter is defined by 𝜂 = ([𝐴𝑦𝑦
𝜆
]
𝑃
− [𝐴𝑥𝑥

𝜆
]
𝑃
) ([𝐴𝑧𝑧

𝜆
]
𝑃
−𝐴𝑖𝑠𝑜) .⁄  The dipolar 

coupling constatnts are defined by  𝑏𝐼𝐼 = −(
𝛾𝐼
2

𝑟3
)
𝜇0ℏ

4𝜋
 and  𝑏𝐼𝑆 = −(

𝛾𝐼𝛾𝑆

𝑟3
)
𝜇0ℏ

4𝜋
 in rads−1 where 

𝜇0 = 4𝜋 ∙ 10
7 NC−2s2 is the permeability of a vacuum, 𝛾  is gyromagnetic ratio, 𝑟  is the 

internuclear distance. 𝐶𝑄 = (𝑒
2𝑞𝑄)/ℎ (see section. 1.2 in detail) with ℎ =  6.62608 ∙ 10−34 Js 

is Planck’s constant.  ℏ is Planck’s constant divided by 2π. 
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1.1.4. Magic angle spinning 

The sensitivity and resolution of NMR 

spectra of disordered solids may be improved 

significantly by rapidly rotating the sample 

about an axis at the “magic angle”, 𝛽𝑅𝐿 =

tan−1 √2 ≈ 54.74, with respect to the static 

magnetic field (Fig.1.1). This technique is 

called magic-angle spinning (MAS). The 

spatial rotation of the sample causes the 

orientation-dependent anisotropic spin 

interactions to become time-dependent and to be averaged out in the case of rapid sample 

spinning.  

Let us check how heteronuclear dipolar coupling is averaged out by MAS. The coefficient 

(including spatial part) of dipolar coupling is given by 

 𝜔𝐷,𝐼𝑆(𝑡) =
1

√6
𝐶𝜆[𝐴2,0

𝐷𝐼𝑆]
𝐿
 (1.18) 

In the static case of the powder sample, assuming Euler angle 𝛺𝑃𝐿 = {𝛼𝑃𝐿 , 𝛽𝑃𝐿,  𝛾𝑃𝐿} between 

principal axis system (PAS) frame and LAB frame, 

 𝜔𝐷,𝐼𝑆 =
1

√6
𝐶𝜆[𝐴2,0

𝐷𝐼𝑆]
𝑃
𝑑0,0
(2)(𝛽𝑃𝐿) =

1

2
𝑏𝐼𝑆(3 cos

2(𝛽𝑃𝐿)−1) (1.19) 

where the constant and the spatial tensor in PAS frame is shown in Table.1.2 and 1.3. In static 

condition of the powder sample, 𝜔𝐷,𝐼𝑆  only depend on βPL angle. 𝑏𝐼𝑆 = −(
𝛾𝐼𝛾𝑆

𝑟3
)
𝜇0

4𝜋
 is the 

dipolar coupling constant in rads−1. 

In the spinning case, LAB frame is associated with PAS frame via rotor-fixed (ROTOR) 

frame. Euler angle is defined as 𝛺𝑃𝑅 = {𝛼𝑃𝑅 , 𝛽𝑃𝑅,  𝛾𝑃𝑅}, 𝛺𝑃𝐿 = {𝜔𝑅, 𝛽𝑅𝐿,  𝛾𝑅𝐿}. 𝜔𝐷,𝐼𝑆(𝑡) under 

MAS is 

 𝜔𝐷,𝐼𝑆(𝑡) = ∑ 𝜔𝐷,𝐼𝑆
(𝑚)

2

𝑚=−2

𝑒𝑖𝑚𝜔𝑅𝑡 (1.20) 

 with 

 𝜔𝐷,𝐼𝑆
(𝑚) = 𝑏𝐼𝑆𝑒

𝑖𝑚𝛾𝑃𝑅𝑑0,−𝑚
(2) (𝛽𝑃𝑅)𝑑−𝑚,0

(2) (𝛽𝑅𝐿) (1.21) 

In MAS case, 𝜔𝐷,𝐼𝑆(𝑡) depends on not only 𝛽𝑃𝑅 angle but also  𝛾𝑃𝑅 angle unlike static case. 

Since 𝛾𝑅𝐿 angle is related to the rotation around MAS axis, 𝛾𝑅𝐿 angle is especially important in 

rotating solids. In MAS case, 𝜔𝐷,𝐼𝑆
(𝑚)

 for m = 0, ±1, ±2 are 

Fig.1.1. Definition of the 

frame in MAS experiments 

(adapted from [36]) 
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 𝜔𝐷,𝐼𝑆
(0)

=
1

4
𝑏𝐼𝑆(3cos

2(𝛽𝑃𝑅) − 1)(3cos
2(𝛽𝑅𝐿) − 1) = 0 (1.22) 

 𝜔𝐷,𝐼𝑆
(±1) = −

1

2√2
𝑏𝐼𝑆 sin(2𝛽𝑃𝑅) 𝑒

±𝑖𝛾𝑃𝑅  (1.23) 

 
𝜔𝐷,𝐼𝑆
(±2) =

1

4
𝑏𝐼𝑆 sin

2(𝛽𝑃𝑅) 𝑒
±𝑖2𝛾𝑃𝑅  

(1.24) 

Assuming sampling at rotor echo and magic angle 𝛽𝑅𝐿 = tan
−1 √2  

 𝜙 = ∑ ∫ 𝜔𝐷,𝐼𝑆
(𝑚)𝑒𝑖𝑚𝜔𝑅𝑡

𝑛𝜏𝑅

0

2

𝑚=−2

𝑑𝑡 = 𝜔𝐷,𝐼𝑆
(0) = 0 (1.25) 

Dipolar coupling is averaged out. As mentioned later, rotor synchronized t1 acquisition in 2D 

experiments is necessary for averaging dipolar coupling, CSA and quadrupolar interaction 

(especially, first-order terms). 

In infinite spinning case, by AHT treatment 

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) =

𝜔𝑅
2𝜋
∫ 𝐻̂𝐷,𝐼𝑆

2𝜋
𝜔𝑅

0

𝑑𝑡 = 𝜔𝐷,𝐼𝑆
(0)

2𝐼̂𝑧𝑆̂𝑧 = 0 (1.26) 

implying that the dipolar coupling does not affect the spin evolution. The above derivation is 

only valid for commuting dipolar interactions. However, in the case of non-commuting 

homonuclear dipolar interactions (homogeneous case), it is difficult to remove the dipolar 

coupling only by MAS. High resolution spectrum can be obtained by combination of MAS and 

decoupling sequence (which manipulate spin part in Hamiltonian). 

1.1.5. Cross polarization 

Cross polarization (CP) enhances the NMR signal of low-γ nuclei coupled through dipolar 

interaction with high-γ nuclei. The pulse sequence is shown in Fig.1.2. The cross polarization 

consists in 

 

 

 

 

 

 

(i) Generating transverse magnetization on the I channel by π/2 pulse and applying a rf-field 

𝜔1,𝐼, sufficient to lock it. 

Fig.1.2 schematic diagram of the 

basic IS cross polarization 

experiment. 
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(ii) Satisfying the Hartmann-Hahn (HH) matching condition with a suitable rf-field 𝜔1,𝑆. 

(iii) Adjusting the contact time for which two rf-fields are applied. The optimal contact time 

depends on 𝑏𝐼𝑆. 

Under MAS, it is complicated task to understand HH matching condition at quantum mechanics 

level.[7] Heteronuclear dipolar recoupled AH under MAS is 

0Q condition: 𝜔1,𝐼 − 𝜔1,𝑆 = 𝑛𝜔𝑅  

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) =

1

4
𝜔𝐷,𝐼𝑆
|𝑛| {cos(𝛾𝑃𝑅)(𝐼+𝑆̂− + 𝐼−𝑆̂+) ± sin(𝛾𝑃𝑅)(𝐼+𝑆̂− − 𝐼−𝑆̂+)} (1.27) 

2Q condition: 𝜔1,𝐼 + 𝜔1,𝑆 = 𝑛𝜔𝑅  

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) =

1

4
𝜔𝐷,𝐼𝑆
|𝑛| {cos(|𝑛|𝛾𝑃𝑅)(𝐼+𝑆̂+ + 𝐼−𝑆̂−) ± sin(|𝑛|𝛾𝑃𝑅)(𝐼+𝑆̂+ − 𝐼−𝑆̂−)} (1.28) 

with n = ±1, ±2 and 

 𝜔𝐷,𝐼𝑆
|𝑛|=1 = −

1

2√2
𝑏𝐼𝑆 sin(2𝛽𝑃𝑅) (1.29) 

 𝜔𝐷,𝐼𝑆
|𝑛|=2 =

1

4
𝑏𝐼𝑆 sin

2(𝛽𝑃𝑅) (1.30) 

𝜔1,𝐼 − 𝜔1,𝑆 = 𝑛𝜔𝑅  condition is called zero quantum (0Q) matching because of flip-flop 

transition. 𝜔1,𝐼 + 𝜔1,𝑆 = 𝑛𝜔𝑅 condition is called double quantum (2Q) matching because of 

flip-flip (or flop-flop) transition. 

Hence, HH matching condition under MAS is summarized as follow. 

 𝜔1,𝑆 = 𝜀𝜔1,𝐼 + 𝑛𝜔𝑅    (𝜀 = ±1; 𝑛 = ±1,±2) (1.31) 

From this results, in case of moderate spinning speed region (νR = 10 ~ 20 kHz) or large rf-

amplitude, 0Q condition (ε = +1) can be chosen. On the other hand, in case of very high spinning 

speed or low rf-amplitude, 2Q condition (ε = –1) can be better than 0Q condition.  

1.2. NMR of quadrupolar nuclei  

1.2.1. Quadrupolar interaction 

Around 75% of NMR-active nuclei are quadrupolar (i.e. have a spin quantum number I > 

1/2).[8-12] A quadrupolar nucleus possesses an electric quadrupolar moment, 𝑒𝑄 , which 

interacts with the electric field gradient (EFG) created by the charges (electrons, other nuclei). 

The EFG is defined by three components, 𝑉𝑥𝑥, 𝑉𝑦𝑦 and 𝑉𝑧𝑧, where 𝑉𝑧𝑧 = 𝑒𝑞, in its principal axis 

system. This interaction between 𝑒𝑄  and the EFG is generally described in terms of the 

quadrupolar coupling constant, 𝐶𝑄 = 𝑒
2𝑞𝑄/ℎ  and the asymmetry parameter, 𝜂𝑄 = (𝑉𝑥𝑥 −

𝑉𝑦𝑦)/𝑉𝑧𝑧. The quadrupolar Hamiltonian in the LAB frame can be written as 
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 𝐻̂𝑄 =
𝜔𝑄

3
∑ (−1)𝑚
2

𝑚=−2

[𝐴2,−𝑚
𝑄 ]

𝐿
𝑇̂2,𝑚 (1.32) 

 with 

 𝜔𝑄 = 2𝜋
3𝐶𝑄

2𝐼(2𝐼 − 1)
 (1.33) 

The quadrupolar Hamiltonian can then be approximated in the high field case using AHT and 

expressed with Clebsch-Gordan coefficients for second-order term. First- and second-order 

quadrupolar Hamiltonian under fast MAS speed are 

 𝐻̂𝑄
̅̅ ̅̅ 𝐼 =

𝜔𝑄

3√6
[𝐴2,0
𝑄 ]

𝑅
𝑑0,0
(2)(β𝑅𝐿) (3𝐼𝑧

2 − 𝐼(𝐼 + 1)) (1.34) 

 𝐻̂𝑄
̅̅ ̅̅ 𝐼𝐼 =

𝜔𝑄
2

9𝜔0
([𝐵0,0

𝑄 ]
𝑅
𝐾̂0 + [𝐵2,0

𝑄 ]
𝑅
𝑑0,0
(2)(β𝑅𝐿)𝐾̂2 + [𝐵4,0

𝑄 ]
𝑅
𝑑0,0
(2)(β𝑅𝐿)𝐾̂4) (1.35) 

Where 

 

𝐾̂0 =
1

√5
𝐼𝑧 (3𝐼𝑧

2 − 𝐼(𝐼 + 1)) , 𝐾̂2 = −
1

2√14
𝐼𝑧(12𝐼𝑧

2 − 8𝐼(𝐼 + 1) + 3),    

𝐾̂4 = −
1

2√70
𝐼𝑧(34𝐼𝑧

2 − 18𝐼(𝐼 + 1) + 5) 

(1.36) 

 [𝐵𝑙,0
𝑄 ]
𝑅
= ∑ [𝐵𝑙,𝑛

𝑄 ]
𝑝
𝐷𝑛,0
(2)(Ω𝑃𝑅)

𝑚

𝑛=−𝑚

 (1.37) 

 
[𝐵0,0
𝑄 ]

𝑝
=
3+𝜂𝑄

2

2√5
,    [𝐵2,0

𝑄 ]
𝑝
=
−3+𝜂𝑄

2

√14
,    [𝐵2,±2

𝑄 ]
𝑝
= √

3

7
𝜂𝑄, 

[𝐵4,0
𝑄 ]

𝑝
=
18+𝜂𝑄

2

2√70
,    [𝐵4,±2

𝑄 ]
𝑝
=
3𝜂𝑄

2√7
,    [𝐵4,±4

𝑄 ]
𝑝
=
𝜂𝑄
2

4
, 

(1.38) 

Transition frequency between eigenstates |𝑠⟩ and |𝑟⟩ can be derived from 

 𝜔𝑝,𝑞 = 𝜔𝑠⟶𝑟 = ⟨𝑟|𝐻̂𝑄
̅̅ ̅̅ |𝑟⟩ − ⟨𝑠|𝐻̂𝑄

̅̅ ̅̅ |𝑠⟩ (1.39) 

It is convenient to express transition frequency in terms of 𝑝 = 𝑟 − 𝑠 (coherence order) and 

𝑞 = 𝑟2 − 𝑠2 (satellite order).[2] 

For the first-order quadrupolar interaction, transition frequency is given by 

 𝜔𝑝,𝑞
𝐼 = 𝑞

𝜔𝑄

√6
[𝐴2,0
𝑄 ]

𝑅
𝑑0,0
(2)(β𝑅𝐿) (1.40) 

For half-integer spins, 1Q Central Transition (CT: -1/2 ↔ 1/2) and symmetric Multiple 

Quantum (MQ: − p/2 ↔ p/2) coherence (q = 0) are not affected by the first-order term. On the 

other hand, the Satellite transitions (STs: m−1 ↔ m) (q ≠ 0) are not strongly affected by the 

first-order quadrupolar interaction. 

For the second-order quadrupolar interaction, transition frequency is given by 
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 𝜔𝑝,𝑞
𝐼𝐼 = 𝜔𝑝,𝑞

(0)
+ 𝜔𝑝,𝑞

(2)
+ 𝜔𝑝,𝑞

(4)
 (1.41) 

 where 

 𝜔𝑝,𝑞
(0)
= −𝑝

(1 + 𝜂𝑄
2/3)

30

(𝜔𝑄)
2

𝜔0
(𝐼(𝐼 + 1) −

3

4
(𝑝2 + 3

𝑞2

𝑝2
)) (1.42) 

 𝜔𝑝,𝑞
(2)
= 𝐶2(Ω𝑃𝑅) (3(𝑝

2 +
3𝑞2

𝑝2
) − 𝑝(8𝐼(𝐼 + 1) − 3)) 𝑑0,0

(2)(β𝑅𝐿) (1.43) 

 𝜔𝑝,𝑞
(4)
= 𝐶4(Ω𝑃𝑅) (

17

2
(𝑝2 +

3𝑞2

𝑝2
) − 𝑝(18𝐼(𝐼 + 1) − 5)) 𝑑0,0

(4)(β𝑅𝐿) (1.44) 

 with  

 𝐶2(Ω𝑃𝑅) = −
1

9

𝜔𝑄
2

𝜔0

[𝐵2,0
𝑄 ]

𝑅

2√14
 (1.45) 

 𝐶4(Ω𝑃𝑅) = −
1

9

𝜔𝑄
2

𝜔0

[𝐵4,0
𝑄 ]

𝑅

2√70
 (1.46) 

 𝑑0,0
(4)(β𝑅𝐿) =

1

8
[35 cos4(β𝑅𝐿) − 30 cos

2(β𝑅𝐿) + 3] (1.47) 

𝜔𝑝,𝑞
(0)

 term is an isotropic quadrupolar-induced frequency which do not broaden the spectrum. 

𝜔𝑝,𝑞
(2)

 and 𝜔𝑝,𝑞
(4)

 terms are anisotropic and broaden the CT spectrum of powder samples. 

Especially, 𝜔𝑝,𝑞
(4)

 term cannot be removed completely by MAS owing to 𝑑0,0
(4)(β𝑅𝐿). Second-

order quadrupolar broadening is proportional to 1/𝜔0. Hence, the use of high magnetic fields 

improves the spectral resolution. The energy level diagram of I = 3/2 is shown in Fig.1.3. 

 

 

 

 

 

 

 

 

 
Fig.1.3 schematic energy level diagram of a nucleus with I = 3/2. 
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1.2.2. CT selective pulse 

Another difficulty for quadrupolar nuclei is the manipulation of the magnetization using a 

rf-field since such field ranging from tens to hundreds kilohertz is typically weaker than the 

strength of the first-order quadrupolar interaction. In the limit case, where the rf-field is much 

smaller than the quadrupolar interaction, the CT is selectively excited and the general formula 

for rf nutation frequency is  

 𝜔𝑛𝑢𝑡 = (𝐼 +
1

2
)𝜔1 (1.48) 

An additional result of selective excitation is that it reduces the intensity of the resulting central 

transition signal. If the signal following a non-selective pulse of length can be described by 

 𝑆(𝜏𝑝) = 𝑆0 sin(𝜔1 𝜏𝑝) (1.49) 

then the signal following a CT selective pulse is 

 𝑆(𝜏𝑝) =
𝑆0

𝐼 + 1/2
sin ((𝐼 + 1/2)𝜔1𝜏𝑝) (1.50) 

The π/2 and π CT-selective pulses are employed in numerous pulse sequences described below. 

Therefore, setting up a spin echo experiment using π/2 and π CT-selective on a model sample 

or better on target sample is always useful.  

1.2.3. Non selective pulse 

The excitation pulses using larger rf-field yield more intense NMR signals than CT-selective 

ones. In general, the maximal possible rf-field remains smaller than or comparable to the 

strength of the quadrupolar interaction. In this intermediate regime, the spin dynamics of 

quadrupolar nuclei becomes complex and highly dependent on the strength of the quadrupolar 

interaction. These non-selective rf pulses are notably employed for the acquisition of 1D NMR 

spectra. Furthermore, for quantitative NMR spectra, the quadrupolar nuclei are excited by a 

single non-selective pulse producing small flip angle of the CT magnetization. Non-selective 

pulses are also employed to excite the STs as well as MQ transitions.  

1.3. Sensitivity enhancement methodology for half-quadrupolar nuclei 

1.3.1. Population transfer from satellite transitions  

The intensity enhancement of the CT of half-integer spin quadrupolar nuclei can be achieved 

via a change of the populations of the various energy levels.[13] Two limit cases are by 

saturation or inversion of the ST populations. Simultaneous saturation of the STs equalizes the 

populations of all the lower and upper energy levels and enhances CT signal intensity by a 
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factor of (I +1/2). On the other hand, population inversion enhance CT signal intensity by a 

factor of 2I. 

RAPT. In 1999, Madhu et al. used a phase-alternating pulse train (Fast Amplitude 

Modulation: FAM) to enhance MQ to 1Q coherence transfer in MQMAS experiment.[14] Yao 

et al. employed the same pulse train in 1D experiments to obtain enhancement and proposed 

Rotor Assisted Population Transfer (RAPT).[15] The RAPT pulse train with alternating phases 

creates sidebands generated from the carrier frequency, 𝜈ref, at frequency intervals of  

 𝜈𝜙 − 𝜈ref = (Δ𝜙/360°)𝜏p (1.51) 

where 𝜙 is the phase increment between the pulses in degree and 𝜏𝑝, which is equal to the sum 

of 𝑑𝑅𝐴𝑃𝑇 and 𝑃𝑅𝐴𝑃𝑇, is the RAPT time in seconds shown in Fig.1.4.  

 

 

 

Two parameters, the RAPT modulation frequency, 𝜈𝑚 = [2(𝑑𝑅𝐴𝑃𝑇 + 𝑃𝑅𝐴𝑃𝑇)]
−1, and the rf-

amplitude are expected to have a greater influence on the signal enhancement. Yao et al. 

observed maximum enhancement (I +1/2) around 𝜈𝑚 = 𝐶𝑄/4 for I = 3/2 nucleus. [15] 

DFS. Kentgens et al. proposed Double Frequency Sweep (DFS).[16] These pulses 

simultaneously sweep both the high- and low- frequency STs in a symmetric manner with the 

use of an amplitude-modulated pulse. A linear DFS is obtained if the rf-amplitude is varied 

smoothly from a start frequency (𝜔𝑠) to a final frequency (𝜔𝑓) in a cosinusoidal fashion as 

follows 

 𝜔1(𝑡) = 𝜔1
𝑚𝑎𝑥 cos (𝜔𝑠𝑡 − (𝜔𝑠 − 𝜔𝑓)

𝑡2

2𝜏𝑝
) (1.52) 

where 𝜔1
𝑚𝑎𝑥  is the maximum rf-amplitude and 𝜏𝑝 is the length of the DFS pulse. This generates 

rf carrier sidebands which are swept over the STs. The carrier sidebands are swept smoothly 

over the STs which yields a more complete ST population inversion. When a powdered sample 

is spun rapidly at the magic angle, different crystallites will experience largely different sweep 

rates, as well as a different number of sweeps. Different crystallites will experience different 

enhancements ranging from 1 to 2I. The effect of the DFS, when applied to spinning samples, 

is generally to saturate the STs.  

Fig.1.4. Schematic diagram of 

 RAPT pulse sequence 
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HS. Wasylishen and co-workers used hyperbolic secant (HS) inversion pulse to induce perfect 

inversion of spin population.[17] The pulse is smoothly turned on and off as the amplitude is 

modulated by a hyperbolic secant function, whereas the phase is modulated to induce a sweep 

with a hyperbolic tangent profile  

 𝜔1(𝑡) = 𝜔1
𝑚𝑎𝑥 sech (𝛽 (

2𝑡

𝜏p
− 1)) (1.53) 

 ϕ(𝑡) = (
𝜆

𝛽
) (
𝜏𝑝

2
) 𝑙𝑛 [sech(𝛽 (

2𝑡

𝜏p
− 1))] + Δ𝜔ref 𝑡 (1.54) 

where the parameters λ and β are associated with the maximum frequency and truncation of the 

sech function, respectively. Δ𝜔ref is a rf-offset. The amplitude may be further modulated with 

a cosine function so that the HS pulse affects both the high- and low-frequency STs. 

Under MAS conditions, it was possible to approach the theoretical maximum enhancements 

expected for complete inversion of the STs in spinning samples. A key aspect of their 

breakthrough was that the largest enhancements were obtained if the HS sweep width equaled 

the spinning frequency such that only a single ST sideband was targeted. Generally, HS 

outperform RAPT and DFS under MAS condition. 

1.3.2. (Q)CPMG acquisition  

The CPMG (Carr-Purcell-Meiboom-Gill) experiment is a very common technique in NMR 

spectroscopy.[18] The CPMG experiment consists of a π pulses as in Fig.1.4, refocusing the 

signal during acquisition. The Fourier transformed spectrum is composed of a series of regularly 

spaced sharp peaks (spikelet). CPMG is most successful on samples with long T2’ relaxation 

times, as the signal can be refocused multiple times. 

The CPMG experiment has been used to obtain signal enhancement for I = 1/2 nuclei as well 

as the measurement T2’ before being applied to quadrupolar nuclei.[19] CPMG experiments on 

quadrupolar nuclei are termed QCPMG, although the method is not fundamentally different 

from the conventional CPMG except for CT selective pulse. 

The condition. Under MAS, the CPMG echo period (te) is chosen to be rotor synchronized as 

illustrated in Fig.1.4.  

 𝑡𝑒 = 2𝑚𝜏𝑅 = 𝑡𝜋 + 𝑡𝑎 + 2𝑑𝑒 (1.55) 

with ta is the one echo acquisition period, and de the dead time during which the Free-Induction 

Decay (FID) is not recorded. A factor of 2 in 𝑡e = 2𝑚𝜏R  is originated from the rotor 

synchronization of the period between π /2 pulse and π pulse. NE is a number of echoes which 

is set to acquire as many echoes as possible. 



 

14 
 

 

 

 

 

The resolution of CPMG spectrum is determined by the spikelet spacing, 1/(𝑡𝑒), and the width 

of the spikelet is related to T2’. There is also the option to add all of the echoes together to form 

a full-echo, and to recover the original lineshape instead of spikelets. 

0Q coherence. If the refocusing pulse is not a perfect π pulse, some signal will be passed 

through 0Q coherence. This is so-called stimulated echoes. Modulation of the spikelet manifold 

arises due to the difference in time at which Hahn and stimulated echoes form. Hence, the 

severity of the spectral distortion is correlated to an increase in the magnitude of the 0Q 

coherences as the flip angle deviates from 180o. This 0Q coherence can be completely filtered 

by phase cycle (16 step phase cycle or PIETA method) after every π pulse keeping only the 

±1Q coherences.[19,20] However, if filtration of 0Q coherence is carried out, the first echo 

remains completely unperturbed, while a significant loss of intensity is observed for subsequent 

echoes. Thus, the first echo is a pure Hahn echo, while subsequent echoes are a combination of 

Hahn and stimulated echoes, i.e., echoes which form due to coherence transfer pathways that 

pass through 0Q order. Moreover, 0Q coherence can result in slower decay rates since it 

depends on the spin-lattice relaxation T1 which is larger than T2’ in solids. The amount of 

observable signal is therefore maximized by the use of a minimal phase cycling scheme.  

Modified CPMG. The CPMG can refocus the anisotropic interaction such as CSA, second-

order quadrupolar coupling and heteronuclear dipolar coupling. On the other hand, 

homonuclear dipolar coupling cannot be refocused by CPMG as Hahn echo and paramagnetic 

center affect T2’ to be short as known paramagnetic relaxation enhancement (PRE). Hence, T2’ 

will be shorter and the width of spikelets will be broadened in the presence of homonuclear 

dipolar couplings and paramagnetic substances. R. Siegel et al. proposed modified CPMG 

sequence in which π pulse is replaced into π/2 pulse except for first π pulse.[21] By this 

sequence, the property of homonuclear dipolar decoupling is more effective than regular CPMG 

and T2’ will be longer for non-dilute system without spectral distortion although second and 

third echo intensity of a modified CPMG is a less than that of regular CPMG. Consequently, 

Modified CPMG is 1.5 ~ 2 times efficient than regular CPMG in non-dilute system.[22] 

However, utilizing CPMG is basically preferable for dilute spin system and non-paramagnetic 

system. This CPMG with minimal phase cycling have been combined with CP, PRESTO and 

MQMAS so far and significant sensitivity enhancement have been observed.  

Fig.1.4 Schematic diagram of 

the CPMG pulse sequence  
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1.4. High resolution methodology for half-integer quadrupolar nuclei 

A major issue with half-integer quadrupolar nuclei (I > 1/2) is that even under MAS, the 

second-order quadrupolar broadening is not completely eliminated. As a consequence, 

overlapping of resonances with distinct isotropic chemical shifts, δiso, often occurs and a simple 

determination of the number of sites in a compound is rendered difficult. In order to overcome 

this problem, a few research groups have proposed in the late 80s, two methods where the 

sample is rotated at two different angles either simultaneously (DOuble Rotation, DOR) [23] 

or sequentially (Dynamic Angle Spinning, DAS).[24] The set of angles are chosen to cancel 

both first and second-order terms of the quadrupolar interaction. Even if the development of 

DOR and DAS methods has been very important in the beginning of the 90s, their use is 

nowadays limited to rare applications due to the obvious technical challenge that is associated 

to them. From 1995 on, two 2D pulse sequences, the Multiple-Quantum MAS (MQMAS)[25] 

and the Satellite Transition MAS (STMAS)[26] have been proposed to cancel out the 

broadening due to the whole quadrupolar interaction.  

1.4.1. MQMAS 

MQMAS is designed to remove the second-order broadening of the CT transition in NMR 

spectra of half-integer spin quadrupolar nuclei (I >1/2). From Eq.(1.40), the contribution from 

the 1st order quadrupolar perturbation for the symmetric transition vanishes. We then only 

consider the second order effect. In Eq.(1.41 – 1.47), The 𝑑0,0
(2)(β𝑅𝐿) terms vanishes owing to 

MAS and isotropic part can be ignored since it does not contribute to phase dispersion and only 

induce an isotropic quadrupolar induced shift. Therefore, only the rank-4 term in Eq.(1.44) 

remains. In conventional MQMAS sequence, first rf pulse excites symmetrical MQ coherence 

(–p/2 ↔ p/2), which evolve during t1 period, and then second rf pulse converts them to 1Q 

coherence which can be detected (Fig.1.5).  

 

 

 

 

 

 

The total evolution phase is given by 

 Φ(𝑡) = 𝜔𝑝,0
(4)(β𝑅𝐿)𝑡1 + 𝜔−1,0

(4) (β𝑅𝐿)𝑡2 (1.56) 

Fig.1.5. Schematic diagram of the original MQMAS experiment 
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From this equation, the isotropic echo can be observed by satisfying following condition 

 𝑡2 = −
𝜔𝑝,0
(4)(β𝑅𝐿)

𝜔−1,0
(4) (β𝑅𝐿)

𝑡1 =
1

9

𝑝(−17𝑝2 + 36𝐼(𝐼 + 1) − 10)

4𝐼(𝐼 + 1) − 3
= 𝑘𝑡1 (1.57) 

Thus, rank-4 terms are cancelled out. The values k for various spin I is shown in Table.1.4. 

Table.1.4. The value k for various half-integer quadrupolar spin. 

I \ p 3 5 7 9 

3/2 -7/9    

5/2 19/12 -25/12   

7/2 101/45 11/9 -161/45  

9/2 91/36 95/36 7/18 -31/6 

MQMAS spectra are presented after a shearing transformation to obtain pure absorption 2D 

spectrum [27]. However, the original MQMAS sequence does not give pure absorption 2D 

spectra. In order to overcome this problem, some modified MQMAS sequences have been 

proposed.  

Z filter method.[28] The z-filter approach was thus added to the original sequence in order to 

symmetrize the echo and anti-echo coherence transfer pathways. This method can be used on 

samples with both long and very short T2’. It needs shearing. 

Split-t1 method.[29] The split-t1 sequence divides the t1 time between MQ and 1Q evolution 

periods in a proportion k, that avoids the post-acquisition shearing procedure. The disadvantage 

is that the shifted-echo type pulse sequences depend on the decay rate, 1/T2', of transverse 

losses, which is not refocused by a CT-selective π pulse, and the z-filter should thus be preferred 

when facing short T2' relaxation values 

There are several approaches for sensitivity improvement approach. 

3Q to 1Q conversion. The main disadvantage of the MQMAS method lies in its lack of 

sensitivity that suffers from a very inefficient conversion rate from 3Q to 1Q (or 0Q for the z-

filter sequence) coherences. Therefore, several studies have been carried out to increase this 

conversion by modifying conversion pulse with FAM, DFS or HS. [30] 

MQMAS-QCPMG. Another sensitivity improvement approach is to combine MQMAS with 

QCPMG detection. F.H.Larsen et al. introduced QCPMG acquisition into MQMAS 

experiment.[31] This represents the amplitude-modulated split-t1 preparation for 3Q-QCPMG-

MAS sequence with z filter applied to spin I = 3/2.  
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1.4.2. STMAS 

The main limitation of MQMAS is its low sensitivity, which is due to the low efficiency in 

excitation and conversion of MQ transitions. STMAS 2D experiment, which correlates the 1Q 

ST and CT coherences, was proposed in 2000 by Gan as an alternative to MQMAS to obtain a 

high-resolution spectrum for half-integer quadrupolar nucleus, since ST excitation and 

conversion show superior efficiencies. Like MQMAS, the STMAS pulse sequence is based on 

a quadrupolar echo but with pulse conditions and phase cycling optimized to excite STs. 

Likewise, we assume the spin system at magic angle and ignore isotropic part. First rf pulse 

excite non-symmetrical (m−1 ↔ m) ST coherence, which evolve during t1 period, and then 

second rf pulse converts them to 1Q coherence which can be detected. The total evolution phase 

is given by 

 Φ(𝑡) = 𝜔−1,𝑞
(4) (β𝑅𝐿)𝑡1 + 𝜔−1,0

(4) (β𝑅𝐿)𝑡2 (1.58) 

From this equation, the isotropic echo can be observed by satisfying following condition 

 𝑡2 = −
𝜔−1,𝑞
(4) (β𝑅𝐿)

𝜔−1,0
(4) (β𝑅𝐿)

𝑡1 =
17

3

𝑞2

(4𝐼(𝐼 + 1) − 3)
− 1 = 𝑘′𝑡1 (1.59) 

Thus, rank-4 terms are cancelled out. The values k’ for various spin I is represented in 

Table.1.5. 

Table.1.5. The value k’ for various half-integer quadrupolar spin 

I \ m 3/2 5/2 7/2 9/2 

3/2 -8/9    

5/2 7/24 -11/6   

7/2 28/45 -23/45 -12/5  

9/2 55/72 1/18 -9/8 -25/9 

Disadvantage of STMAS.  

(i) Since those STs are affected by the first-order quadrupolar interaction, the STMAS 

experiment is extremely sensitive to a precise setting of the magic angle. STs evolve during 

t1 period and rotor-synchronization t1 acquisition is mandatory to eliminate the first-order 

quadrupolar broadening of STs. The required precision is about 0.002–0.005°.  

(ii) Even when taking all necessary precautions, STMAS spectra always contain an unwanted 

autocorrelation signal stemming from the CT evolution during t1 and t2 periods, which 

cannot be cancelled out by phase cycling. In order to avoid this problem, some approaches 

have been proposed so far. 
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DQF methods.[32] the transfer between 1Q and 2Q coherences is performed with an additional 

soft CT-selective π pulse just before 1Q conversion pulse, called Double Quantum Filter (DQF), 

which also inverts the CT magnetization (1Q ↔ −1Q), and does not affect outer satellite 1Q 

coherences of spin 5/2, 7/2, and 9/2. Since ±2Q is selected by phase cycle, CT-CT correlations 

are removed. 

Split-t1 method.[33] An additional soft CT-selective π pulse is placed on after t1 = n/9τR 

evolution. The magnetization spends 1/9th of the evolution time on ±1Q levels, and 8/9th on ±2Q 

levels. Likewise, since ±2Q is selected by phase cycle, CT-CT correlations are removed. The 

post-acquisition shearing procedure is not needed for split-t1 STMAS. Both DQF and split-t1 

have z filter duration after 1Q conversion pulse. 

1.5. Heteronuclear dipolar recoupling 

This thesis focuses on 2D HETCOR between spin-1/2 and half-integer quadrupolar nuclei. 

Under magic-angle spinning (MAS) for resolution purpose, these heteronuclear dipolar (DIS) 

couplings between two isotopes I and S are averaged out and their exploitation requires the use 

of DIS recoupling sequences. Here, we concentrate on recoupling schemes which can 

reintroduce dipolar interactions between spin-1/2 and quadrupolar nuclei. In that case, the DIS 

recoupling must be achieved without the application of rf-field to the quadrupolar nucleus 

because of the intricate spin dynamics of quadrupolar nuclei in the presence of rf-field. An ideal 

DIS recoupling method should have the following characteristics:  

(i) The spin interactions other than the desired DIS coupling must be suppressed from the 

average Hamiltonian (AH) or must have no influence on the time evolution of the density 

matrix; (these undesired interactions comprise homonuclear dipolar (DII) coupling, DIS 

coupling, isotropic chemical shift, chemical shift anisotropy (CSA), quadrupole 

interaction, and interaction between nuclei and unpaired electrons in the case of 

paramagnetic compounds);  

(ii) The magnitude of the scaled recoupled DIS coupling must be larger than the decay rate of 

the signal (due to effective T2′ or T1ρ under the recoupling if applied to the observed 

nucleus); 

(iii) The employed rf-field in the DIS recoupling must be compatible with the probe 

specifications; 

(iv) The DIS recoupling sequence must be robust to rf-inhomogeneities; 

(v) The DIS recoupling sequence must be robust to MAS frequency instabilities; 
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(vi) When the goal is to measure internuclear distances, the sampling frequency of the 

recoupling sequence must be faster than the signal dephasing produced by the recoupled 

dipolar interaction. 

However, there is no ideal DIS recoupling method possessing the properties (i) to (vi) and choice 

of the method thus depends on its application. 

γ encoding in heteronuclear case. The property of DIS recoupling methods depend on 𝛾𝑃𝑅 

Euler angle. The definition of γ encoding is that the norm of DIS recoupled average Hamiltonian 

does not depend on 𝛾𝑃𝑅  Euler angle.[34] This norm is equal to effective dipolar coupling 

(𝜔𝐷,𝐼𝑆). The property regarding γ encoding is as follow.  

(i) Non-γ encoding recoupling sequence is 25 % less efficient than γ encoding recoupling; 

(ii) Dipolar oscillation of build-up curve of non-γ encoding is less pronounced, compared to γ 

encoding sequence; 

(iii) γ encoding recoupling is more robust to MAS fluctuation, since γ encoding does not 

depend on 𝛾𝑃𝑅 angle around MAS axis; 

(iv) In case of DIS recoupling, dipolar truncation effect [𝐻̂(𝑖), 𝐻̂(𝑗)] ≠ 0 is linked to γ encoding. 

Non-γ encoded DIS recoupled AH is formed by longitudinal-two-order-spin (𝐼𝑧𝑆̂𝑧). On the 

other hand, γ encoded DIS recoupled AH contains 1Q terms which lead to dipolar 

truncation. 

(v) Also, γ encoded DIS recoupled AH does not commute with CSA recoupled AH. This lead 

to detrimental effect on the efficiency. On the other hand, non-γ encoded DIS recoupling 

sequence is not affected by CSA since DIS recouped AH commute with CSA recoupled 

AH. 

For instance, as already described in Eq.(1.27-1.30), CP is γ-encoded recoupling and dipolar 

truncated although CP is not a single channel recoupling. In the following, frequently used 

single channel DIS recoupling sequences are presented. 

1.5.1. R3  

Rotary-Resonance Recoupling (R3) [34, 35] consists in the rf irradiation of a single-spin 

system, the spin-1/2 here, with a rf-amplitude equal to a multiple (q = 1, 2) of the MAS 

frequency. The q = 1 condition recouples both DIS coupling and DII while the q = 2 recouples 

only DIS coupling. Therefore, the latter condition must be used in the presence of a strong DII 

coupling.  
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Under MAS, assuming rf irradiation of single channel 𝜔1𝑆̂𝑥 and S spin subject to CSA and DIS 

coupling with I spin, first order AH is 

 
𝐻̅̂(1) =

1

2
(𝜔𝐶𝑆𝐴,𝑆

(−𝑞) + 𝜔𝐶𝑆𝐴,𝑆
(𝑞) ) 𝑆̂𝑧 −

𝑖

2
(𝜔𝐶𝑆𝐴,𝑆

(−𝑞) − 𝜔𝐶𝑆𝐴,𝑆
(𝑞) ) 𝑆̂𝑦 

              + (𝜔𝐷,𝐼𝑆
(−𝑞) + 𝜔𝐷,𝐼𝑆

(𝑞) ) 𝐼𝑧𝑆̂𝑧 − 𝑖 (𝜔𝐷,𝐼𝑆
(−𝑞) − 𝜔𝐷,𝐼𝑆

(𝑞) ) 𝐼𝑧𝑆̂𝑦 + (𝜔1 − 𝑞𝜔𝑅)𝑆̂𝑥 

(1.60) 

where 𝜔𝐶𝑆𝐴,𝑆
(±𝑞)

 and 𝜔𝐷,𝐼𝑆
(±𝑞)

 are the complex amplitudes of the Hamiltonian. If not sup {|𝜔𝐶𝑆𝐴,𝑆
(−𝑞) ±

𝜔𝐶𝑆𝐴,𝑆
(𝑞) | , |𝜔𝐷,𝐼𝑆

(−𝑞) ± 𝜔𝐷,𝐼𝑆
(𝑞) |} ≫ |𝜔1 − 𝑞𝜔𝑅|, R

3 is strongly sensitive to rf-inhomogeneity. Hence, 

in the case of small CSA and small DIS coupling, R3 exhibits poor efficiency due to rf-

inhomogeneity inside the MAS rotor. Therefore, R3 often practically is not chosen. DIS 

recoupled AH of R3 (q = 1, 2) can be written as 

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆

|𝑚| [cos(𝑞𝜑)𝐼𝑧 𝑆̂𝑧 − sin(𝑞𝜑)𝐼𝑧 𝑆̂𝑦] (1.61) 

 with 

 𝜑 = 𝛾𝑃𝑅 + 𝛼𝑅𝐿
0 − 𝜔𝑅𝑡

0 (1.62) 

q = 1:  𝜔𝐷,𝐼𝑆
|𝑚|=1 = −

1

2√2
𝑏𝐼𝑆 sin(2𝛽𝑃𝑅) (1.63) 

q = 2:  𝜔𝐷,𝐼𝑆
|𝑚|=2 =

1

4
𝑏𝐼𝑆 sin

2(𝛽𝑃𝑅) (1.64) 

Since effective dipolar coupling (𝜔𝐷,𝐼𝑆 ) is independent of 𝛾𝑃𝑅  angle, R3 has γ encoding 

property. This means that R3 benefits from a good robustness to MAS fluctuations and dipolar 

truncation effect. Inverse supercycled R3 (SPI-R3) improve the robustness to rf-inhomogeneity, 

but γ encoding is lost. The setup of R3 consists in finding the optimal recoupling time as well 

as the optimum rf-field. Such setting must be precise in the case of small CSA. 

1.5.2. REDOR  

The REDOR scheme for DIS recoupling has been extensively used for distance 

measurements.[36, 37] It is constituted of π pulses applied every half rotor period under with a 

variety of rf phasing scheme 𝑥𝑥-4, 𝑥𝑥̅-4 and supercycles (xy-4, xy-8 or xy-16) designed to 

increase the robustness to rf-offset and rf-inhomogeneity. DIS recoupled AH of REDOR xy-4 

and xx-4 are  

REDOR xy-4  𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆𝐼𝑧𝑆̂𝑧 (1.65) 

with 𝜔𝐷,𝐼𝑆
|𝑚|=1 = −

√2

𝜋
𝜅𝑏𝐼𝑆 sin(2𝛽𝑃𝑅) cos(𝜑) (1.66) 

REDOR xx-4  𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 𝜔𝐷,𝐼𝑆[cos(𝜑)2𝐼𝑧𝑆̂𝑧 − 𝜓 sin(𝜑) 𝐼𝑧𝑆̂𝑦] (1.67) 
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with 𝜔𝐷,𝐼𝑆
|𝑚|=1 = −

√2

𝜋
𝜅𝑏𝐼𝑆 sin(2𝛽𝑃𝑅) (1.68) 

where 𝜅 =
cos(𝜓 𝜋/2)

1 − 𝜓2
 (1.69) 

 𝜓 =
2𝜏p

𝜏R
 (1.70) 

The factor 𝜅 describes the finite π pulse effect and 𝜓 is the fraction of the rotor period occupied 

by the pulses. In the case of infinite π pulse (i.e. 𝜓 = 0, 𝜅 =1), REDOR xy-4 and xx-4 have non-

γ encoding property and non-dipolar truncation effect. In case of windowless RF irradiation 

(i.e. 𝜓 = 1, 𝜅 = 𝜋/4 ), REDOR xx-4 and REDOR xy-4 are analogous to R3 (q = 1) and SPI-R3 

(q = 1) respectively. Thus, the factor 𝜅 decrease with increasing π pulse length. 

REDOR also recouples DII couplings, and the size of the recoupled terms depends on the 

ratio of pulse width with respect to the period of the sample rotation. Hence, only in the limit 

of short pulses with respect to the rotation period, DII decoupling is achieved, while under very 

fast MAS substantial recoupling of the DII occurs. 

Nevertheless, in the D-HMQC context, the REDOR scheme may be an interesting option as it 

is a well-established technique in the measurement of distances and because its setup is easy, 

as only rf-amplitude and the length of the π pulses must be determined.  

1.5.3. Symmetry based recoupling  

The symmetry-based rotor-synchronized pulse sequence C𝑁𝑛
𝜈 and R𝑁𝑛

𝜈 has been developed 

by M Levitt et al.[38, 39] They make use of symmetry properties of the spin interactions of 

quantum numbers l, m, λ, and μ (Table.1.6). The beauty of C𝑁𝑛
𝜈  and R𝑁𝑛

𝜈  is that they can 

remove those components of spin interaction we do not want and to keep those we do. Hundreds 

of composition can be useful for different type of dipolar coupling manipulation. Here we 

concentrate on DIS recoupled R𝑁𝑛
𝜈 sequence which is more restricted than C-type sequence. 

Table.1.6. Components of spin interactions in the interaction frame under MAS 

Interaction 
Space rank 

l 

Space component 

m 

Spin rank 

λ 

Spin component 

μ 

δiso 0 0 1 -1, 0, 1 

CSA 2 -2, -1, 1, 2 1 -1, 0, 1 

DII 2 -2, -1, 1, 2 2 -2, -1, 0, 1, 2 

DIS 2 -2, -1, 1, 2 1 -1, 0, 1 

JII 0 0 0 0 

JIS 0 0 1 -1, 0, 1 
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𝐑𝑵𝒏
𝝂  construction. R𝑁𝑛

𝜈 can be constructed by following procedures: 

(i) Determine the pulse sequence element R with duration 𝑛𝜏𝑅/𝑁. R must rotate 180o about 

the x-axis of the rotating frame. R may be a single π pulse of phase 𝜙 = 0 or a composite 

pulse (for example, 270o-90o). Note that scaling factor κ strongly depend on a basic element 

R. 

(ii) Derive a ‘mirror image’ element R’ from R by reversing the sign of all phases. 

(iii) Concatenate N/2 phase switched RR’ pairs, according to 

 R𝑁𝑛
𝜈 = {R𝜙R−𝜙

′ }
𝑁/2

 (1.71) 

where the phase shift 𝜙 is given by 𝜙 = 𝜋𝜈/𝑁. The complete R𝑁𝑛
𝜈 sequence spans n rotational 

periods which characterize the rf-amplitude of R element. rf-amplitude is given by 

 𝜔1 =
𝑁𝜔𝑅
2𝑛

 (1.72) 

This symmetry imposes the following selection rule on the components of the recoupled first 

order AH 

 𝐻̂𝑙𝑚𝜆𝜇
̅̅ ̅̅ ̅̅ ̅̅ (1) = 0    if  𝑚𝑛 − 𝜇𝑛 ≠

𝑁

2
∙ 𝑍𝜆 (1.73) 

Here l refers to the rank of the spin interaction with respect to spatial rotations, m refers to the 

spatial rotational component (m = −l, −l+1, , , +l); λ is the rank of the interaction with respect 

to rotations of resonant spins, and μ is the spin rotational component (μ = −λ, −λ+1, , , +λ). 

The symbol Zλ indicates an integer with the same parity as λ, e.g., if λ is even, then Zλ = 0, ±2, 

±4, . . , while if λ is odd, then Zλ = 1, ±3, ±5, . . To understand this selection rule for each 

interaction, space-spin-selection diagram (SSS) diagrams is useful (see [38]). 

𝐑𝟏𝟖𝟐
𝟓 symmetry. As an example, let us check R182

5 = {(180ο)50ο(180
ο)−50ο}

9 which is used 

in PRESTO transfer as mentioned later.[40] For DIS and CSA interaction {l, m, λ, μ} = {2, ±2, 

1, ∓1},  

 
𝑚𝑛 − 𝜇𝜈 = 2 ∙ 2 − 5 ∙ (−1) = 9 =

𝑁

2
𝑍𝜆  or 

𝑚𝑛 − 𝜇𝜈 = 2 ∙ (−2) − 5 ∙ 1 = −9 =
𝑁

2
𝑍𝜆   

(1.74) 

The recoupling for DIS and CSA interaction are performed. Here, the association of each m term 

with a single value of μ indicate that the recoupling is ‘γ-encoding’. In case of 0Q recoupling 

of DIS interaction {l, m, λ, μ} = {2, ±1 or ±2, 1, 0}, the recoupling should be non-γ encoding. 

For DII coupling, 𝑚𝑛 − 𝜇𝑛 ≠ 𝑁/2 ∙ 𝑍𝜆. R182
5 symmetry imposes DII decoupling at the same 

time as γ-encoded recoupling of CSA and DIS coupling. DIS recoupled AH of R182
5 is 
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 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆

|𝑚|=2[cos(2𝜑)𝐼𝑧 𝑆̂𝑥 − sin(2𝜑)𝐼𝑧 𝑆̂𝑦] (1.75) 

 with 

 𝜔𝐷,𝐼𝑆
|𝑚|=2 = 𝜅

3√2

4
𝑏𝐼𝑆 sin

2(𝛽𝑃𝑅) (1.76) 

where κ is equal to 0.1754 (for R182
5) in case of R element of an simple π pulse. R182

5 has 

dipolar truncation effect owing to 1Q DIS  recoupling. The Hamiltonian form of R182
5 bracketed 

by 𝜋/2 pulse will be identical to R3 (q = 2) except for scaling factor. 

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1)(R3)  =  

1

𝜅 3√2
exp (𝑖

𝜋

2
𝐼𝑦) ∙ 𝐻̂𝐷,𝐼𝑆

̅̅ ̅̅ ̅̅ (1)(R182
5) ∙ exp (−𝑖

𝜋

2
𝐼𝑦) (1.77) 

Relationship of the symmetry. R3 (q = 1, 2) corresponds to R21
0  (q = 1) and R41

0  (q = 2) 

symmetry, respectively. Note that R3 is the special case in view of γ encoding. The CSA and 

DIS interaction terms with quantum number {l, m, λ, ν} = {2, ±q, 1, 0}, {2, ±q, 1, 1} and {2, ±q, 

1, 1} are symmetry-allowed. Therefore, there is no bijection between symmetry-allowed {l, m} 

and {λ, ν} quantum numbers. However, R3 is categorized γ encoding as explained in 1.5.1. 

REDOR xy-4 corresponds to R42
1 symmetry. This symmetry implements selection of the {l, 

m, λ, μ} = {2, ±1, 1, 0} terms. However, the R42
1 symmetry also allows DII coupling terms of 

the form {2, ±2, 2, 0}, {2, ±1, 2, ±2} and {2, ±1, 2 ∓2}. These recoupled DII interactions 

interfere with the operation of REDOR in non-dilute spin systems. REDOR xy-8 and REDOR 

xy-16 correspond to supercycle version of  R42
1  symmetry which are R42

1R42
−1  and 

[R42
1R42

−1]0[R42
1R42

−1]180 respectively. 

Above discussion is only for first order AH. Second order AH is also important for 

characterizing detail performance of the recoupling sequence. 

1.5.4. 𝐒𝐑𝟒𝟏
𝟐 

The SR41
2 has been introduced by Brinkmann and Kentgens to measure 1H-17O distances. 

[41, 42] The method is based on the symmetry theory (R41
2 = {(180o)90o(180

o)−90o}2) with 

two additional supercycling: a phase inversion (R41
2R41

−2) to eliminate DII couplings and a 

threefold cycling (SR41
2 = [R41

2R41
−2]0[R41

2R41
−2]120[R41

2R41
−2]240) to improve the robustness 

to rf-offset. Moreover, it has a very good robustness to rf-inhomogeneities. The DIS recoupled 

AH is  

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆

|𝑚|=2𝐼𝑧𝑆̂𝑧 (1.78) 

 with 

 𝜔𝐷,𝐼𝑆
|𝑚|=2 =

1

4
𝑏𝐼𝑆 sin

2(𝛽𝑃𝑅) cos(2𝜑) (1.79) 
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SR41
2  is non-γ encoded and not dipolar truncated. SR41

2  is very well suited to recouple DIS 

coupling in the presence of strong 1H DII couplings.  

It is also very easy and fast to optimize. The only parameter to consider for optimization is 

the recoupling time. Indeed, the theoretical optimum rf-amplitude, 𝜔1 = 2𝜔R, shows a broad 

optimum and does not require further optimization. MAS frequency values used in the actual 

experiment lead to moderate rf-amplitude that do not represent technical limitation for 

probeheads. However, at slow spinning speeds, the theoretical rf-amplitude may not be large 

enough to properly eliminate 1H DII coupling.  

1.5.5. SFAM 

SFAM (Simultaneous Frequency and Amplitude Modulation) have been proposed to 

overcome REDOR limitation.[43] The rf-field is modulated in amplitude 𝜔1(𝑡) and carrier 

frequency, 𝜔ref + Δ𝜔ref(𝑡), according to the MAS frequency 𝜔𝑅:  

 𝜔1(𝑡) = 𝜔1
𝑚𝑎𝑥 sin(𝑁𝜔𝑅𝑡) (1.80) 

 Δ𝜔ref(𝑡) = Δ𝜔ref
𝑚𝑎𝑥 cos(𝑁𝜔𝑅𝑡) (1.81) 

where 𝜔1
𝑚𝑎𝑥 is the maximum of the rf-field amplitude modulation and Δ𝜔ref

𝑚𝑎𝑥 is the maximum 

amplitude of the rf-field frequency modulation around its average value. The modulation is 

done at N = 1 or 2 times the MAS frequency. According to the value of N, SFAM-N will behave 

differently. For each N, two regions of efficient DIS recoupling can be distinguished.[44] DIS 

recoupled AH is 

 Region 1:          𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆

|𝑚| [cos(𝜓)𝐼𝑧 𝑆̂𝑧 − sin(𝜓)𝐼𝑦 𝑆̂𝑧] (1.82) 

 Region 2:          𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆

|𝑚| 𝐼𝑧𝑆̂𝑧 (1.83) 

with 

                             𝜓 =
𝜔1
𝑚𝑎𝑥

𝑁𝜔𝑅
 (1.84) 

  N=1:                  𝜔𝐷,𝐼𝑆
|𝑚|=1 = 𝜅𝑏𝐼𝑆 sin(2𝛽𝑃𝑅) cos(𝜑) (1.85) 

  N=2:                  𝜔𝐷,𝐼𝑆
|𝑚|=2 = 𝜅𝑏𝐼𝑆 sin

2(𝛽𝑃𝑅) cos(2𝜑) (1.86) 

where κ depend on N and region, and 𝜓 is close to 90o. Therefore, SFAM-N is non-γ encoded 

recoupling and not dipolar truncated.[44] With N = 1, both DIS and DII coupling are recoupled 

(|m| = 1), while with N = 2, DIS coupling only is recoupled (|m| = 2). Therefore, when DII 

couplings are weak, the use of SFAM-1 recoupling is recommended since this |m| = 1 

recoupling method benefits from a √2 shorter recoupling time than the |m| = 2 recoupling 

methods.  
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SFAM setup requires three parameters to be optimized: recoupling time, 𝜔1
𝑚𝑎𝑥 and Δ𝜔ref

𝑚𝑎𝑥. 

For practical applications, 𝜔1
𝑚𝑎𝑥~1.5𝑁𝜔𝑅 and Δ𝜔ref

𝑚𝑎𝑥~ 0.5𝑁𝜔𝑅  should be used for region 1 

and 𝜔1
𝑚𝑎𝑥 = Δ𝜔ref

𝑚𝑎𝑥  ~ 𝑘𝑁𝜔𝑅 with k = 3, 5, 7… for region 2. These recoupling conditions will 

speed up the optimization of SFAM-N recoupling by reducing the number of adjustable 

parameters from three to one. The type of SFAM-N scheme and experimental parameters should 

be selected depending on DII coupling and CSA, the MAS frequency and the probe limitations. 

The parameter values present a broad optimum, and once N and Δ𝜔ref(𝑡) are chosen, the 

corresponding rf-amplitude barely needs adjustment.  
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1.6. 2D HETCOR between half-integer quadrupolar nuclei and spin-1/2 

Two-dimensional (2D) heteronuclear correlation (HETCOR) nuclear magnetic resonance 

(NMR) spectroscopy is a valuable tool for the characterization and structural investigation of 

solid state compounds under MAS. Two possible way exist for building up internuclear high 

resolution correlation spectra:  

(i) The first method makes use of the non-vanishing isotropic terms of J-coupling, which 

directly characteristic of the existence of a chemical bond like in liquid state NMR; 

(ii) The second method is to restore the through-space dipolar interaction. This interaction 

vanishes under MAS and need to be reintroduced using continuous wave or modulated rf 

irradiation dipolar recoupling methods. 

These methods facilitate spectral assignment owing to the improved resolution and extracted 

information. The HETCOR methods using coherence transfers via the J-coupling (J-HETCOR) 

or via the dipolar couplings (D-HETCOR) are complementary. The J-HETCOR techniques 

help in identifying the molecular entities in solid state compound, while the D-HETCOR 

techniques can be used to establish their 3 dimensional structures and to reveal the noncovalent 

intra- and intermolecular interaction. 

A variety of J-HETCOR and D-HETCOR pulse sequences have been proposed so far. 

Fig.1.6 is their classification.[42] The sequences are classified according to the mode of 

detection, direct or indirect, and the order of coherences during the t1 evolution period.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.6. Schematic classification of 2D HETCOR NMR experiments in solids (adapted 

from [42]) 
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1.6.1. Through-bond correlation 

One of the most informative classes of solution-state NMR experiments consists in 

correlating the signals of distinct isotopes through the use of heteronuclear multiple quantum 

coherences (HMQC) or using the Insensitive Nuclei Enhanced by Polarization Transfer 

(INEPT) pulse sequence. These methods have been adapted in the last decades for the study of 

solids under MAS conditions.[45,46] 

 

 

 

 

 

 

 

We start by considering the standard J-RINEPT experiment, shown in Fig.1.7(a), involving 

an isolated pair of chemically bonded I and S nuclei. Density operator evolution can be 

calculated and the signal intensity (build-up curve) observed in the S channel can be derived as  

 𝑆(𝑡1, 𝑡2)𝑅𝐼𝑁𝐸𝑃𝑇 ~ 𝛼 sin(𝜋𝐽𝐼𝑆𝜏
′) sin(𝜋𝐽𝐼𝑆𝜏) cos(𝜔𝐼𝑡1)exp(−

𝜏

𝑇2,𝐼
′ −

𝜏′

𝑇2,𝑆
′ ) (1.87) 

where 𝛼 = 𝛾𝐼𝛾𝑆
2exp(𝑖𝜔𝑆𝑡2), JIS is the scalar coupling, 𝛾𝐼 and 𝛾𝑆 are the nuclear gyromagnetic 

ratio, while τ and τ’ denote the defocusing and refocusing delays, respectively. 

  In the J-HMQC experiment (Fig.1.7(b)), similarly, density operator evolution can be 

calculated and the signal is observed as 

 𝑆(𝑡1, 𝑡2)𝐻𝑀𝑄𝐶  ~ 𝛽 sin
2(𝜋𝐽𝐼𝑆𝜏) cos(𝜔𝑆𝑡1)exp (−

2𝜏

𝑇2,𝐼
′ ) (1.88) 

where 𝛽 = 𝛾𝐼
3exp(𝑖𝜔𝐼𝑡2). When the experiments are optimized, i.e., 𝜏𝑜𝑝𝑡 = 𝜏𝑜𝑝𝑡

′ = 1/(2 𝐽𝐼𝑆) 

for an isolated spin pair. In addition, signal expression of many spin system given in [47]. 

The relative sensitivity of RINEPT (direct:DD) and HMQC(indirect:ID) per unit of time is 

derived from[48] 

 𝜉 =
(𝑆/𝑁)𝐼𝐷
(𝑆/𝑁)𝐷𝐷

≈
𝑓𝐼𝐷
2

𝑓𝐷𝐷
[
(𝐹𝑊𝐻𝑀)𝑆𝑄𝐼
(𝐹𝑊𝐻𝑀)𝐼𝑄𝑆

]

1
2

(
𝛾𝐼
𝛾𝑆
)

3
2 1

√2𝜋
 (1.89) 

where (FWHM)I(S) are full width at half maximum (in Hz), 𝑄𝐼(𝑆) are the quality factors of the 

sample coil, and 𝑓𝐼𝐷(𝐷𝐷) the polarization transfer efficiencies. There is only one transfer in the 

case of direct detection (𝑓𝐷𝐷), whereas two are required with indirect detection (𝑓𝐼𝐷). The direct 

Fig.1.7. Schematic diagram of (a) J-RINEPT and (b) J-HMQC 
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and indirect transfer efficiencies is assumed the same value, 𝑓𝐼𝐷 = 𝑓𝐷𝐷. From this equation, the 

gain increase when increasing 𝛾𝐼/𝛾𝑆, FWHMS/FWHMI and 𝑓𝐼𝐷. 

Both pulse sequence will be optimized in such way that 

(i) Under MAS, the delay in the experiments are performed with rotor synchronization.  

(ii) CT selective pulse must be sent on the quadrupolar nuclei channel. Therefore, CT selective 

pulse must be optimized on the sample prior to the experiments. 

(iii) The delay (τ and τ’) should be optimized on the sample. Theoretically set to 1/(2 𝐽𝐼𝑆) for 

an isolated spin pair, which may be of several ms if one wants to transfer coherence through 

small J-couplings. 

In addition, a quick determination of the T2' for a target sample using an echo sequence, is also 

a good option. If the T2' turns out to be short, for example in the presence of paramagnetic 

centers in the sample, or for amorphous samples, the J-RINEPT and J-HMQC build-up signal 

may be weak and it is difficult to obtain the 2D spectra. In the case of using 1H, DII decoupling 

sequence, such as FSLG, PMLG and DUMBO, should be applied on 1H channel since DII  

coupling significantly shorten T2’ decay.[46, 49] 

It is well known that the magnetization transfer in the J-HMQC experiment between spin-

1/2 and quadrupolar nuclei for solids is achieved not only through J coupling but also through 

residual dipolar splitting (RDS) resulting from the second-order cross-terms between the 

quadrupolar and dipolar interactions unlike in the solution.[50] In some case, RDS can be larger 

than J coupling. Nevertheless, regularly, RDS is still small and suffer from short T2’ decay in 

solids. The RDS is out of scope in this thesis. 

Even if the 2D J-RINEPT and J-HMQC experiment provides a more selective means of 

correlation than its dipolar counterpart, the D-RINEPT and D-HMQC experiment, which 

highlights proximities between close nuclei, should be an alternative.  

1.6.2. Through-space correlation 

Two type of experiments are described here to obtain 2D correlations using dipolar couplings 

to highlight proximities between two different nuclei, one of them being a quadrupolar one. 

First type of experiments are based on direct method, which is similar to J-RINEPT. This type 

of experiments are CP, TEDOR, D-RINEPT and PRESTO. Second type of experiments are 

based on indirect method, which corresponds to Double CP, D-HSQC and D-HMQC pulse 

sequences. In the case of solid state NMR, D-HSQC is less advantageous than D-HMQC.[42] 

Therefore, D-HMQC is only described and emphasized for indirect method.  
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1.6.2.1. The CP-HETCOR experiment 

CP-HETCOR between spin-1/2 and half-integer quadrupolar nuclei is identical to the 

familiar HETCOR scheme employed to correlate spin-1/2 isotopes.[51] However, CT selective 

rf-irradiation should be employed for the half-integer quadrupolar channel. 

CP dynamics between one spin-1/2 nucleus (I) and one half-integer (S = n/2, n > 1) nucleus 

presents a considerable challenge due to the very complex spin dynamics involved in both the 

spin-locking of S nucleus and the I → S CP transfer itself. The set up procedure is as follow. 

(i) The rf-amplitude on the quadrupolar channel during the CP transfer,𝜔1,𝑆 , must be 

optimized so that it achieves efficient spin-lock of the CT.  

The effect of MAS on spin-locking of S magnetization can be categorized based on the 

magnitude of the adiabaticity parameter:  

 𝛼𝑎𝑑 =
𝜔1,𝑆
2

𝜔𝑄𝜔𝑅
 (1.90) 

that is related to the speed at which the quadrupole interaction crosses zero as the sample 

rotates.[52] The efficiency of spin-locking increases when 𝛼𝑎𝑑 ≪ 1 or when 𝛼𝑎𝑑 ≫ 1, 

whereas the intermediate case 𝛼𝑎𝑑  ~ 1 results in a loss of spin-locked states. In case of 

strong quadrupole interaction and fast spinning speed, only the first case, called sudden 

passage, is most of the time accessible.  

Under typical conditions, in the sudden passage condition, selective manipulation of the 

CT requires rf-amplitudes in the order of a few kHz (ranging from 5 to 20 kHz), but must 

still be large enough so that nuclei resonating at different offsets are efficiently spin-locked. 

Furthermore, the detrimental R3 conditions where is multiple of MAS frequency, must be 

avoided. 

 (𝑆 +
1

2
)𝜔1,𝑆 = 𝑞𝜔𝑅  (q : integer) (1.91) 

(ii) In the case of weak 𝜔1,𝑆, the nutation frequency acting on the central-transition (CT) is 

multiplied by (S + 1/2), and the fast MAS previous Hartmann–Hahn matching condition 

between spin-1/2 nucleus translates into:  

 (𝑆 +
1

2
)𝜔1,𝑆 = 𝜀𝜔1,𝐼 + 𝑛𝜔𝑅     (ε = ±1 ;  n = ±1,±2)   (1.92) 

(iii) Finally CP contact time is optimized. Optimal values are on the order of a few 

milliseconds. 

As a conclusion, the CP method applied to quadrupolar nuclei is not an easy and not robust 

experiment. The efficiency of the CP transfer being CQ dependent, sites with very different CQ 
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may not be observable simultaneously. To be efficient, the rf-amplitude must be weak, which 

leads to a large sensitivity to off-resonance irradiation and rf-mismatch. In order to overcome 

the sensitivity to rf-offset, Multi Pulse (MP)-CP have been proposed.[53]  

1.6.2.2. D-RINEPT experiments 

D-RINEPT is an alternative to CP. This method derives from J-RINEPT[54] but R3 is 

applied on spin-1/2 channel during the defocusing, τ,  and refocusing delays, τ’,  of D-RINEPT 

sequence (Fig.1.8).  

 

 

 

 

 

 

 

 

 

Density operator evolution can be calculated. During the R3 (q = 1) recoupling applied on 

the S channel (observed channel), the density operator evolves under the effect of the AH given 

by Eq.(1.61) and assuming 𝜏 = 𝜏′:  

 

𝐼𝑥
𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅̅ (1)

→      cos(𝜔𝐷,𝐼𝑆
|𝑚|=1𝜏) 𝐼𝑥 + 2 sin(𝜔𝐷,𝐼𝑆

|𝑚|=1𝜏){cos(𝜑)𝐼𝑦𝑆̂𝑧 + sin(𝜑)𝐼𝑦𝑆̂𝑦}  

    

𝜋

2
𝐼𝑥,   

𝜋

2
𝑆̂𝑥,

→       2 sin(𝜔𝐷,𝐼𝑆
|𝑚|=1𝜏){cos(𝜑)𝐼𝑧𝑆̂𝑦 + sin(𝜑)𝐼𝑧𝑆̂𝑧}  

    
𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅̅ (1)

→      sin2(𝜔𝐷,𝐼𝑆
|𝑚|=1𝜏){cos2(𝜑) + sin2(𝜑)}𝑆̂𝑥 

(1.93) 

The first term in Eq.(1.93) is not transferred to the S nucleus and is discarded.  

In the D-RINEPT sequences,  

(i) CSA dephasing of spin-1/2 is refocused by a hard π pulse in the middle of a one-rotor 

period delay (Fig.1.8), whereas DIS refocusing is prevented by a CT selective π pulse on 

the quadrupolar nucleus; 

(ii) The spin-1/2 isotropic chemical shifts and JIS couplings, which are not modulated by MAS, 

have their dephasings canceled by R3-irradiation; 

Fig.1.8. Schematic diagram of D-RINEPT where R3 is sent to S channel and I channel 

is a half spin quadrupolar nuclei, in which CT selective pulse is applied. 



 

31 
 

(iii) To prevent any quadrupolar modulation, the delays in between the three CT-selective 

pulses must be rotor synchronized: 𝑝𝜏𝑅  and 𝑝′𝜏𝑅 . By also taking into account the gap 

delays (𝜏𝑅), each R3 period must therefore last (𝑝 − 1)𝜏𝑅 and (𝑝′ − 1)𝜏𝑅. DIS dephasings 

onto the spin-1/2 nucleus, related to other not manipulated active nuclei, are cancelled due 

to the π pulse in the middle of each echo period; 

(iv) For 2D correlation experiment, t1 evolution block is inserted after first π/2 pulse. 

The D-RINEPT is easier to optimize than CP-HETCOR and less dependent on the CQ value. 

Moreover, R3 methods are less sensitive to rf-offset. On the other hand, a disadvantage of R3 is 

poor efficiency owing to poor robustness to rf-inhomogeneity. Recently, Rossini et al reported 

D-RINEPT method using SR41
2 recoupling, instead of R3.[55] 

1.6.2.3. PRESTO experiments  

    Xin Zhao et al. proposed heteronuclear polarization transfer methods utilizing single channel 

recoupling based on symmetries R181
7  and R182

5  which produces 1Q Hamiltonian.[56] This 

class of methods was called PRESTO (Phase-shifted Recoupling Effects a Smooth Transfer of 

Order). PRESTO also has an advantage of no continuous irradiation to quadrupolar nuclei, 

compared to CP. There are three type of PRESTO (I, -II, -III) sequence (Fig.1.9).  

 

 

 

 

 

 

 

 

 

 

 If CSA is neglected, density operator evolution (𝜏 = 𝜏′) of PRESTO-I is calculated as 

 
𝐼𝑧

(𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅̅ (1))

0
→       𝑒(−𝑖2𝜑𝐼𝑧){cos(𝜔𝐷,𝐼𝑆

|𝑚|=2𝜏) 𝐼𝑧 − 2 sin(𝜔𝐷,𝐼𝑆
|𝑚|=2𝜏)𝐼𝑦 𝑆̂𝑧}𝑒

(𝑖2𝜑𝐼𝑧)  

    
  
𝜋

2
𝑆̂𝑥

→   𝑒(−𝑖2𝜑𝐼𝑧){−2 sin(𝜔𝐷,𝐼𝑆
|𝑚|=2𝜏)𝐼𝑦 𝑆̂𝑥}𝑒

(𝑖2𝜑𝐼𝑧)   

(1.94) 

Fig.1.9. Schematic diagram of (a) PRESTO-I, (b) PRESTO-II, (c) PRESTO-III where I and 

S channel are assumed to be spin-1/2 and half-integer quadrupolar nuclei, respectively. 
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(𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅̅ (1))

𝜋/2
→          sin2(𝜔𝐷,𝐼𝑆

|𝑚|=2𝜏)𝑆̂𝑦 

where 

 (𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1))

0
= 𝜔𝐷,𝐼𝑆

|𝑚|=2exp(−𝑖2𝜑𝐼𝑧)2𝐼𝑥𝑆̂𝑧exp(𝑖2𝜑𝐼𝑧) (1.95) 

 (𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1))

𝜋/2
= 𝜔𝐷,𝐼𝑆

|𝑚|=2exp(−𝑖2𝜑𝐼𝑧)2𝐼𝑦𝑆̂𝑧exp(𝑖2𝜑𝐼𝑧) (1.96) 

Thus, S-spin transverse magnetization is generated at the beginning of the acquisition period. 

The feature of each PRESTO sequence is below. 

PRESTO-I. S-spin isotropic chemical shift evolve during the refocusing delay. This is not 

preferable in the case of S spin with different chemical shifts.  

PRESTO-II. This sequence includes an additional spin echo element on the S-spin channel in 

order to refocus S-spin isotropic chemical shift, but PRESTO-II cannot refocus I-spin CSA 

which can interfere with the DIS recoupling since DIS recoupled AH generated by R181
7 and 

R182
5 does not commute with I-spin CSA recoupled AH. 

PRESTO-III. A π pulse on the S-spin channel is inserted at the exact center of the τ interval. 

The phase of the I-spin irradiation is shifted by π at the same instant. Such procedure refocuses 

S-spin isotropic chemical shift as well as the CSA of I-spin. A disadvantage of PRESTO-III is 

the larger step for the recoupling time, compared to PRESTO-II. In the case of the system with 

large heteronuclear dipolar coupling, such large steps can prevent the adjustment of the 

recoupling time to its value leading to maximal transfer efficiency. 

For 2D correlation experiment, t1 evolution period with π/2 bracket is inserted before the 

defocusing delay.[57] 

    The PRESTO is easier to optimize than CP-HETCOR. R181
7  and R182

5 , which have DII 

decoupling property, is suitable 1Q DIS recoupling for the nuclei subject to strong DII coupling, 

such as 1H. Furthermore, these symmetry-based recoupling are more robust to rf-mismatch and 

rf inhomogeneity than R3. So far, the PRESTO sequence has only been reported with recoupling 

applied to the non-observed channel. Recently, the usefulness of PRESTO sequence to transfer 

DNP-enhanced 1H polarization to quadrupolar nuclei has been demonstrated.[57] 

1.6.2.4. D-HMQC experiment.  

D-HMQC sequence with R3 

    In 2006, Z. Gan et al. and S. Cavadini et al. proposed D-HMQC with R3 recoupling.[50, 58] 

Although these experiments were initially proposed for the indirect observation of 14N via 1H 

or 13C, they can be also employed for half-integer quadrupolar nuclei. Fig.1.10(a) shows D-
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HMQC sequence, for which the recoupling is applied on the direct channel (denoted DR for 

direct recoupling hereafter) proposed by Z Gan.[58] The evolution of the density operator 

during D-HMQC sequence with R3 (q = 2)is as follow (assuming t1 = 0). 

𝐼𝑥
𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅̅ (1)

→     cos(𝜔𝐷,𝐼𝑆
|𝑚|=2𝜏) 𝐼𝑥 + sin(𝜔𝐷,𝐼𝑆

|𝑚|=2𝜏){cos(2𝜑) 2𝐼𝑦𝑆̂𝑧 + sin(2𝜑) 2𝐼𝑧𝑆̂𝑧}  

    
  
𝜋

2
𝑆̂𝑥  

→   sin(𝜔𝐷,𝐼𝑆
|𝑚|=2𝜏){−cos(2𝜑) 2𝐼𝑦𝑆̂𝑦 − sin(2𝜑) 2𝐼𝑧𝑆̂𝑦} 

    
  𝜋𝐼𝑦  
→   sin(𝜔𝐷,𝐼𝑆

|𝑚|=2𝜏){cos(2𝜑) 2𝐼𝑦𝑆̂𝑦 + sin(2𝜑) 2𝐼𝑧𝑆̂𝑦}  

     Second term can be removed by the phase cycle of 𝜋 pulse in I channel 

   
  
𝜋

2
𝑆̂𝑥  

→   sin(𝜔𝐷,𝐼𝑆
|𝑚|=2𝜏) cos(2𝜑) 2𝐼𝑦𝑆̂𝑧 

   
  𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅̅ (1)  
→      − sin2(𝜔𝐷,𝐼𝑆

|𝑚|=2𝜏) cos2(2𝜑) 𝐼𝑥 

(1.97) 

where 

 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1) = 2𝜔𝐷,𝐼𝑆

|𝑚|=2[cos(2𝜑)𝑆̂𝑧𝐼𝑧 − sin(2𝜑)𝑆̂𝑧𝐼𝑦] (1.98) 

It is noted that final result of the density operator evolution in this D-HMQC sequence depend 

on 𝛾𝑃𝑅 angle owing to selecting ±1 coherence on the I channel by the phase cycle. 

 

 

 

 

 

 

 

Although D-HMQC sequence looks similar to J-HMQC sequence, there are some important 

differences for the optimization of the pulse sequence: 

(i) Rotary-resonance has the specific property that a delay introduced during the R3 irradiation 

may change the AH acting on the spins. As an example, a gap in R3 irradiation of half (q 

= 1) or a quarter (q = 2) rotor period changes the sign of the CSA and DIS recoupled AH, 

as would do a π pulse in a Hahn echo experiment.[59, 60] This sign change create a rotary 

resonance echo for CSA and DIS. When a spin echo π pulse is added in the middle of the 

gap, the timing of the two R3 periods must be continuous in rotor position. The spin echo 

segment (between the end of defocusing and beginning of refocusing of R3 block) must be 

integer (q = 1) or half integer (q = 2) numbers of rotor period. In practical applications, 

Fig.1.10. Schematic diagram of 1H-{14N}D-HMQC presented by Z Gan 
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even numbers of rotor period (2𝑘𝜏𝑅) are often used to avoid any kind of modulation.  This 

rotary resonance concept is also applied to D-RINEPT sequence as seen in 1.6.2.2. 

(ii) The spin-echo segment increments 2𝜏𝑅  for every two t1 increments. However, this 

increment could lead to sidebands occurring at 𝜈𝑅/2 since detected signal decrease by the 

contribution from T2’ decay of 1H every 2𝜏𝑅. T2’ decay of 1H is relatively shorter owing to 

homonuclear dipolar coupling. Similarly, short T2’ decay of the observed nucleus broaden 

the resolution in the indirect dimension in 2D spectra of D-HMQC. 

(iii) R3 irradiation must be q = 2 condition (𝜔1 = 2𝜔𝑅) which include 𝐷𝐼𝐼 decoupling.  

(iv) Finite pulse length should be included in the rotor-synchronization conditions. Therefore, 

𝑡1 period set to 𝑡1 = 𝑛𝜏𝑅 (the pulse length on the 14N channel must be counted) in order to 

refocus first order quadrupolar interaction as well as the careful adjustment of the delay 

between the recoupling and π/2 pulse before t1 evolution.  

Thus, unlike J-HMQC, there are several careful set-up points owing to recoupling sequence, 

MAS and some kind of anisotropic interactions. After building the sequence, the D-HMQC is 

easier to optimize than CP-HETCOR. However, R3 is sensitive to rf maladjustement and 

inhomogeneity. 

Recoupling on direct channel and Indirect channel.  

    The recoupling sequence can only be efficiently applied to the spin-1/2 nucleus. The 

observed signal can either be that of the spin-1/2 nucleus (Fig.1.11(a)) or that of the quadrupolar 

nucleus (Fig.1.11(b)).[42, 44, 54] -DR and -IR stand for Direct (observed) channel Recoupling 

and Indirect (non-observed) channel Recoupling. 

As exhibited in Fig.1.11, the rotor synchronization in D-HMQC is redefined as follows.[44] 

 𝑇A + 𝜏 + 𝑇B +
𝑡1
2
= n𝜏R (1.99) 

 τ = kτR (1.100) 

 2𝑇A + 𝑡1 = p𝜏R (1.101) 

Eq.(1.99) insures that the observed spin anisotropy (quadrupolar or CSA) does not modulate 

the signal that could lead to sidebands occurring at 𝜈R/2 for example. Eq.(1.100) is required by 

the definition of rotor synchronized recoupling sequences.  Eq.(1.101) is critical for non-γ 

encoded recoupling. Delay 𝑇A  and 𝑇B  are recalculated every 𝑡1  increment based on the 

minimum delay required to fit 𝑡1and pulses between the recoupling pulses. If S spin is integer 

quadrupolar nucleus, as mentioned in D-HMQC-DR with R3, 𝑡1must be rotor synchronized 

(𝑡1 = 𝑗𝜏R) to refocus first order quadrupolar interaction. . In case of 1H-{X} D-HMQC-DR, 
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relation.(1.99) can be relaxed to 𝑇A + 𝜏 + 𝑇B +
𝑡1

2
=
1

2
n𝜏R since the main signal modulation 

originates from homonuclear dipolar coupling that has a 𝜏R/2 modulation. In that case, a 𝜏R t1 

increment can be fulfilled with TB = 0. Moreover it is important to have a steady increment of 

n with t1 in relation.(1.99) to remove a potential modulation induced by T2’ relaxation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most of the time, D-HMQC-IR benefits from higher sensitivity owing to the short 

quadrupolar longitudinal relaxation time and the possibility of using population transfer 

technique before first π/2 pulse, in order to enhance the population difference across the CT. 

Moreover, this version also leads to a better robustness with respect to spinning speed 

fluctuation since the DIS recoupling is sent on the non-observed channel and the CSA of the 

observed nucleus is not reintroduced.  

    Conversely, D-HMQC-DR can be frequently used in the case of the experiment involving 

integer quadrupolar, such as 14N, because of the absence of refocusing π pulse for such isotopes. 

In the case of quadrupolar nuclei subject to large quadrupolar interactions, D-HMQC-DR 

profits from the shorter maximum value of t1, owing to observation along F1 of a second-order 

line-width. Furthermore, for protonated compounds, D-HMQC-DR might benefit from higher 

sensitivity since the quadrupolar nuclei can be detected via 1H isotope or the sensitivity can be 

increased by replacing the first π/2 pulse by an initial 1H → I CP transfer. For 1H-{X} D-

HMQC-DR experiment, DII decoupling scheme can be applied during both t1 and t2 periods in 

order to enhance the spectral resolution.[61] However, D-HMQC-DR is more sensitive to MAS 

Fig.1.11. Schematic diagram of (a) D-HMQC-DR, (b) D-HMQC-IR 
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frequency instabilities since the CSA of the observed I nucleus (CSAI) is reintroduced and can 

only be refocused by the perfect rotor-synchronization of the two DIS recoupling periods. Such 

rotor-synchronization is more difficult to achieve for long t1 period. 

Comparison of several recoupling sequence in D-HMQC.  

The choice of the DIS recoupling influences the performances of D-HMQC experiment. 

Although D-HMQC-DR with R3 recoupling have been successfully applied to observe 14N 

nuclei indirectly via 1H, R3 is less robust to rf inhomogeneity and has the property of dipolar 

truncation effect (long range recoupling is not possible). 

Therefore several recoupling sequences have been explored and their performances have 

been compared. These methods can be classified in four different groups: R3, symmetry-based 

sequences (R123
5, R205

9 and SR41
2), REDOR, and SFAM.  

Except for R3 (q = 1, 2), these recouplings are non-γ-encoded and can accomplish a 

‘longitudinal two-spin-order’ (𝐼𝑧𝑆̂𝑧) recoupling of the dipolar interactions. Therefore, density 

operator evolution of D-HMQC is the same as that of J-HMQC. This DIS recoupled AH 

commutes across different spin pairs and therefore does not suffer from dipolar truncation and 

hence, both short- and long- range distance can be observed simultaneously. In non-γ encoded 

recoupling schemes, SR41
2 and SFAM recoupling show better performance than REDOR and 

other non-γ encoded symmetry based recoupling.[62] Moreover, X. Lu et al. further 

investigated the performance of SFAM and SR41
2  in D-HMQC-DR and –IR.[44] 

Recommended recouplings are shown in Table.1.7 with respect to the size of DII and CSA. 

Table.1.7. Recommended recouplings as function of the magnitude of DII and CSA or rf-offset. 

Channel D-HMQC-DR D-HMQC-IR 

DII large small large small 

CSA or  

rf-offset 
large small large small large small large small 

recoupling 

SR41
2 

or 

SFAM-

2reg2 

or 

R3(q=2) 

SR41
2 

SFAM-

1reg2 

or 

R3(q=1) 

SFAM-

1reg2 

SR41
2 

or 

SFAM-

2reg2 

SR41
2 

 
SFAM-1reg2 

In case of D-HMQC-IR, SR41
2  or SFAM recoupling schemes should be used for their 

robustness to rf inhomogeneity. Furthermore, the robustness to MAS fluctuation of these 

recoupling methods is generally sufficient. If DII coupling are small, SFAM-1reg2 scheme should 
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be selected since it results in shorter mixing time. This will limit the losses due to T2’ relaxation 

on the observed spin. Otherwise, SR41
2 or SFAM-2 can be employed but SR41

2 often outperform 

SFAM-2. If the spin-1/2 exhibits large CSA or rf-offsets, SFAM-2reg2 allows selecting a 

recoupling condition for larger rf-amplitude (𝜔1 = 3, 5, 9𝜔𝑅) than SR41
2 (𝜔1 = 2𝜔𝑅) that will 

increase the robustness with respect to these interactions. For D-HMQC-DR, the choice of the 

recoupling sequences is similar when the CSA is small. In the case of large CSA, R3 offers high 

robustness to MAS fluctuations and rf inhomogeneity. 

R3 and SR41
2 schemes only require the optimization of two parameters (recoupling time and 

rf-amplitude). In case of SFAM, a third parameter should be optimized, the frequency offset. 

Note that among these recoupling schemes, R3 (q = 1, 2) method is the only which is γ 

encoded. γ encoded recoupling are more robust to MAS fluctuation and exhibits 25 % higher 

efficiency than non-γ encoded ones. Furthermore, they are affected by dipolar truncation, which 

allows selecting correlation with 1st neighbors, thus facilitating the spectral assignment. 

Comparison of CP-HETCOR and D-HMQC 

    G Tricot et al. demonstrated the performance of D-HMQC compared to CP-HETCOR.[63] 

The performances of 27Al-{31P} D-HMQC-IR using SFAM-1 recoupling have been compared 

to those 31P-{27Al}CP-HETCOR for a potassium alumino-phosphate glass (with composition 

50K2O-10Al2O3-40P2O5). Fig.1.12 display the 27Al-{31P}D-HMQC and 31P-{27Al} CP-

HETCOR 2D spectra obtained at 18.8 T using the same MAS frequency of 20 kHz and the 

same sample volume (3.2 mm probe-head). The spectrum was acquired, setting the rf-offset on 

resonance for AlO5 species. Experimental time is 17 and 68 hours for D-HMQC and CP-

HETCOR respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.12. 31P/27Al correlation NME spectra of 50K2O-10Al2O3-40P2O5 glass acquired using (a) 
27Al-{31P}D-HMQC-IR and (b)31P-{27Al}CP-HETCOR at 18.8 T under MAS frequency of 20 

kHz. (Adapted from [63]) 
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The comparison of these two spectra clearly indicates the superiority of the D-HMQC 

technique at high field. Indeed, the D-HMQC spectrum shows a correlation scheme similar to 

that obtained at 9.4 T with an improved resolution in both dimensions, whereas the CP-

HETCOR spectrum only displays a weak correlation involving AlO5 species. The absence of 

cross-peaks for AlO6 and AlO4 environments illustrates the high sensitivity to rf-offset for CP 

transfer. The enhanced D-HMQC spectral resolution at 18.8 T allows improving the structural 

analysis by showing clear evidence of two P species in the vicinity of tetrahedral aluminium, 

whereas the experiment performed at 9.4 T only evidences a single P-AlO4 species.  

As mentioned in section D-HMQC with R3, the resolution in the indirect dimension of a 2D 

D-HMQC spectrum suffer from the T2’ decay of the observed nucleus during the echo. Hence, 

analysis of indirect linewidth must be done with care. On the other hand, for CP, only single-

quantum coherences are involved such that the resolution in the indirect dimension is the same 

as for one-dimensional experiment.  

The experiments with frequency splitter 

In the periodic table of elements, there are many NMR-active nuclei with small Larmor 

frequency difference. However, due to the limitation of commercial solid state-NMR probes, 

double-resonance experiment for 13C-27Al, 13C-51V, 27Al-51V, 23NA-27Al and 23Na-51V is hardly 

achieved. A solution consists in the use of an external frequency splitter (such as the REDOR-

box device commercialized by NMR Service GmbH) connected to a single rf channel of probe 

head. Such device enables double resonance experiments involving nuclei with close Larmor 

frequencies. The major limitation of the frequency splitter is the impossibility of simultaneous 

rf irradiation at both resonance frequencies, precluding some experiments, such as CP. D-

HMQC is compatible with frequency splitter since D-HMQC does not require simultaneous rf 

irradiation on the channels of correlated isotopes. Organoaluminium compounds have been 

analyzed by 13C-27Al J- and D-HMQC with frequency splitter.[64, 65] Recently, 2D 13C-27Al 

correlation spectra for Al-based MOFs have been acquired using a frequency splitter, 13C-

{27Al} CP-D-HMQC sequence, in which 13C transverse magnetization is created using 1H→13C 

CP transfer, the 1H magnetization being enhanced by Dynamic Nuclear Polarization.[66] 

t1 noise problem in 2D experiment 

One key drawback of the D-HMQC pulse sequence is that both the MAS frequency and 

spectrometer must be very stable to avoid excessive t1-noise because the signals from 

uncorrelated spins are imperfectly suppressed by phase cycling alone. Especially, in case of D-
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HMQC-DR, non-γ encoded recoupling is very sensitive to MAS fluctuation since each 

crystallite must have the same orientation at the beginnings of defocusing and refocusing 

periods. Such condition is especially difficult to achieve in D-HMQC-DR experiment when the 

t1 evolution time and recoupling time are long due to narrow peaks and weak dipolar 

interactions, respectively. Such MAS fluctuations lead to random change in the detected signal 

intensity and it is difficult to suppress the t1 noise by phase cycle.  

In the case of double CP, uncoupled spin magnetization is reduced by inserting purging (2Q 

filter) period into between t1 evolution and signal detection.[67] However, this purging period 

cannot be applied to D-HMQC sequence in principle. Therefore, it may be difficult to apply D-

HMQC-DR to the isotopes with very low abundance, when the heteronuclei are dilute or when 

there are multiple overlapping 1H signals.  

If completely uncoupled signal exist in the spectrum, the signal can be suppressed by 

inserting a single, long, low amplitude selective saturation pulse before the start of D-HMQC 

(Fig.1.13).[68] If completely uncoupled signal is removed, t1-noise from completely uncoupled 

signal is suppressed and this method cleans the 2D spectrum. However, this approach does not 

suppress the t1-noise for coupled nuclei. Hence, the t1-noise problem of 2D D-HMQC 

experiments still unsolved. 

 

 

 

 

 

Constant time D-HMQC approach 

Recently, A. Rossini. et al. proposed constant time D-HMQC approach to indirectly detect 

via spin-1/2 nuclei wideline spectrum which consists of many sidebands owing to large 

anisotropic interaction, such as CSA.[69] Fig.1.14 illustrates constant time D-HMQC pulse 

sequence. The spin echo block in the middle of the sequence is fixed to a constant duration 

(2𝑘𝜏𝑅 > 𝑡1,𝑚𝑎𝑥) and the θ pulses are stepped outwards to enable arbitrary, rotor asynchronous 

t1 increments. θ pulse should be optimized to achieve broadband excitation. Owing to constant 

time between recouplings, detected signal is not modulated with T2’ decay.  The sensitivity 

Fig.1.13. Schematic diagram of D-HMQC-DR with selective saturation pulse 
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gain, ξ, provided by the indirect detection of wideline spectrum using constant time D-HMQC 

experiment with respect to direct detection strongly depends on the investigated sample. 

They demonstrated that constant time D-HMQC-DR with SR41
2 enabled rapid acquisition of 

2D 1H-195Pt correlation of cis-platin and trans-platin in experimental time of 2 hours. This 

indirect detection strategy provides sensitivity gains between 1 to 2 orders of magnitude 

compared to direct detection. On the other hand, constant time 1H-71Ga D-HMQC-DR 

experiments required slightly longer experimental time than direct detection due to relatively 

low ξ. However, the advantage of this method is that overlapping sites could potentially be 

resolved by correlation to different 1H chemical shifts. This method also suffers from t1 noise. 

If large t1 noise appears in the 2D spectra, the sensitivity is significantly decreased.  

 

 

 

 

 

 

 

 

 

Indirect ST spectrum in D-HMQC 

In the case of integer quadrupolar nucleus, such as 14N, the spectrum does not exhibit central 

transition but only the transitions between energy levels 1 ↔ 0 and 0 ↔ −1. Hence, for the 

indirect observation of 14N spectrum, the complete rotor-synchronized t1 acquisition is required 

to average out first order quadrupolar interaction.  

In the case of half-integer quadrupolar nucleus, first order quadrupolar interaction also affect 

the ST. Therefore, ST can be indirectly detected using complete rotor synchronized t1 

acquisition and hard π/2 pulse instead of CT selective pulse in indirect channel of half-integer 

quadrupolar nuclei.  

If only CT spectrum is required (sometimes, observation of ST spectrum contaminate CT 

spectrum), rotor-asynchronous t1 acquisition is preferable. On the other hand, the duration 

between two recoupling blocks should be rotor- synchronized.  

Recently, Y. Nishiyama and co-worker demonstrated that CT spectrum and ST spectrum 

(center band and spinning side band) can be indirectly detected using conventional and constant 

Fig.1.14. Schematic diagram of constant time D-HMQC-DR sequence 
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time D-HMQC-DR with various condition of t1 acquisition (synchronous or asynchronous) and 

the rf pulses (hard or soft pulse with appropriate rf-offset) of indirectly detected channel.[70, 

71] 

The observation of center band of ST1 spectrum has the benefit from a more accurate 

determination of quadrupolar coupling constant. Quadrupolar product 𝑃𝑄 = 𝐶𝑄(1 + 𝜂𝑄
2/3)

1/2
 

can be estimated from the frequency difference between CT and the center band of ST1. In the 

case of I = 5/2, the CT and the center band of ST1 are preferred since ST2 line-width is broader 

than the other two transition. However, sometimes CT and center band ST1 may not be resolved. 

This prevents the accurate determination of ST1 shift. They resolved this problem by measuring 

spinning sideband of ST1. 

1.6.3. More advanced 2D-HETCOR method 

MQ-HETCOR 

It has been shown by several groups that CP-HETCOR can be coupled with the MQMAS 

experiment.[72] Numerous applications of the so-called MQ-HETCOR have been published, 

many of them related to the characterization of the aluminophosphate molecular sieves. The 

3Q-HETCOR spectrum exhibits a better resolution in the 27Al dimension compared to the 27Al-

31P CP HETCOR spectrum.  

Alternatively, the MQMAS block was combined with a J-RINEPT sequence in order to 

avoid the complexity of spin locking the quadrupolar nucleus.[73] 

The MQMAS block has also been combined with D-RINEPT, for which the coherence of 

quadrupolar isotope is transferred to that of spin-1/2 nuclei via DIS couplings reintroduced by 

the application of DIS recoupling sequences, such as R3, to the spin-1/2 isotope during the 

defocusing and refocusing delays of the RINEPT block (Fig.1.15).[34] 

 

 

 

 

 

 

 

 
Fig.1.15. Schematic diagram of MQ-D-RINEPT sequence 
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HMQC-ST  

HMQC and HSQC sequences are fundamentally symmetrical with respect to time, and it is, 

therefore, difficult to introduce an unsymmetrical MQMAS or STMAS second order 

quadrupolar filter. For spin-3/2, this limitation can nevertheless be overcome by inserting 

during the t1 period a symmetrical t1 STMAS sequence on the non-observed channel [74]:  

0Q→±1Q (𝑛𝜏𝑅/18) → ± 2Q (8𝑛𝜏𝑅/9) → ±1Q (𝑛𝜏𝑅/18) → ±0Q (Fig.1.16). 

This symmetrical t1-split STMAS sequence was also used in STARTMAS experiment.[75] 

 

 

 

 

 

 

 

 

 

 

PT J/D-HMQC  

Q. Wang et al. have shown recently that for J- or D-HMQC experiments indirectly detecting 

half-integer spin quadrupolar nuclei, the population transfer can be accelerated by manipulating 

their satellite transition (Fig.1.17).[76] Such approach is notably useful to enhance the 

sensitivity of 27Al-17O J-HMQC experiments.  

 

 

 

 

 

 

Fig.1.16. Schematic diagram of HMQC-ST sequence. 

Fig.1.17. Schematic diagram of PT J/D-HMQC sequence. 
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1.7. Objectives of the thesis 

We have reviewed at solid-state NMR method for quadrupolar nuclei, including high-

resolution techniques, methods to enhance sensitivity as well as 2D HETCOR experiments. In 

the past, these techniques were only used by the experts, but today they have more and more 

often used for structural analysis of materials. In recent years, many improvements of these 

methods have been reported. In this thesis, we aim to further improve these methods. A 

disadvantage of these methods is often the lack of sensitivity. In recent years the sensitivity 

issue has been partially improved by the development of high field Dynamic Nuclear 

Polarization (DNP). Nevertheless, DNP is not a universal sensitivity improvement method since 

it requires the impregnation of radical solution to the sample and the use of specific equipment. 

In particular, DNP is difficult to apply for bulk samples, such as inorganic glass and crystals 

since it is impossible to impregnate radical solution. 

However, high resolution methods such as MQMAS and STMAS that analyze these 

materials are low sensitivity, and also for 2D HETCOR methods, there are systems that cannot 

be applied owing to low sensitivity problem at present. For these methods, the improvement in 

this thesis are two points of interest. 

In Chapter 2, we show how to analyze Gallium Selenide material which was difficult for 

MQ or STMAS and HETCOR experiment because of low sensitivity. Specifically, the pulse 

sequence of STMAS and various HETCOR method will be developed by adding the CPMG 

acquisition and population transfer irradiation. 

Chapter 3 presents a new D-HMQC sequence with γ encoded recoupling, which is 

experimentally demonstrated to acquire 27Al-31P 2D correlation on aluminophosphate material. 

As reviewed in section 1.5 and 1.6, R3 has low sensitivity due to poor robustness to rf-

inhomogeneity and is not used much in practice. Therefore, we investigated symmetry-based γ 

encoded recoupling techniques, which must be more robust to rf inhomogeneity than R3. 

Nevertheless, these methods should benefit from good robust to MAS fluctuations, thus limiting 

the magnitude of t1 noise. 
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Chapter 2: 71Ga-77Se connectivities and proximities in gallium 

selenide crystal and glass probed by solid-state NMR 

 

2.1. Introduction 

Chalcogenide glasses are technologically important materials that can be suitably designed 

to exhibit many interesting physical properties including high transparency in the infrared 

range, low phonon energy, high optical nonlinearity, large photo-sensitivity, and high ionic 

conductivity.[1–7] Beyond the usual systems based on Ge-Sb-Se or Ge-As-Se moieties, one of 

the pseudo-binary systems that display glass-forming ability over a significant composition 

range is Ga2Se3-GeSe2.[8] Previous studies using Raman, X-ray photo-electron (XPS), 

extended X-ray absorption fine-structure (EXAFS), as well as 77Se and 71Ga solid-state NMR 

(SS-NMR) spectroscopies, have shown that the structure of these gallium and germanium 

selenide glasses (denoted GGS hereafter) is composed predominantly of a network of corner-

sharing (CS) GaSe4 and/or GeSe4 tetrahedra and a small fraction of edge-shared (ES) GaSe4 

and/or GeSe4 tetrahedra, in which the Ga, Ge, and Se atoms are covalently bonded to 4, 4, and 

2 neighboring atoms, respectively.[9–13] The tetra-coordinated Ga and Ge sites as well as the 

di-coordinated Se ones are denoted GaIV, GeIV and SeII hereafter. XPS and 71Ga SS-NMR 

spectroscopy have demonstrated that the addition of Ga2Se3 increases the deficiency in Se and 

leads to the formation of Ge-Ge bonds and 3(SeII)-Ge-Ge-(SeII)3 units, which are distributed in 

such way that any clustering of these units is avoided.[11,12] Furthermore, Raman spectroscopy 

and 77Se SS-NMR studies, including two-dimensional (2D) 77Se MATPASS/CPMG (Magic-

Angle Turning-Phase Adjusted Spinning Sidebands with Carr-Purcell-Meiboon-Gill detection) 

experiments, have shown the formation of tri-coordinated Se atoms (SeIII) in GGS glasses with 

high content of Ga2Se3 (> 25 % mol).[12,13] The formation of these sites provides another 

mechanism to accommodate the deficiency in Se atoms. These SeIII atoms mainly replace the 

SeII ones in the CS GaSe4 and/or GeSe4 tetrahedra. 

As mentioned above, SS-NMR is a precious tool to characterize the local environment of 

atoms in GGS glasses. 77Se isotope possesses a nuclear spin of 1/2, a gyromagnetic ratio similar 

to that of 29Si nucleus (77Se  0.9629Si  0.7613C) and a low natural abundance, NA77Se  7.63 

%.[14] As 29Si nuclei, 77Se isotope exhibits long longitudinal relaxation times, T1, in solids. 

Furthermore, 77Se NMR resonances are often broad, notably for glasses. Such broadening 

further reduces the sensitivity since the total integrated intensity is spread over a broad spectral 

width. Ga element has two stable NMR-active isotopes, 69Ga and 71Ga, both with spin-3/2. 69Ga 
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is more abundant than 71Ga (NA69Ga  60.4 % and NA71Ga  39.6 %), but the latter possesses 

higher gyromagnetic ratio (69Ga  0.9613C and 71Ga  1.2213C) and smaller quadrupole 

moment (Q69Ga = 17.1 and Q71Ga = 10.7 fm2). Therefore, 71Ga NMR experiments are more 

sensitive than 69Ga ones. Nevertheless, even for 71Ga isotope, the quadrupole interaction 

broadens the NMR resonance over hundreds of kHz and the detection of these broad powder 

patterns is often challenging. Finally, the detection of 73Ge nuclei by SS-NMR spectroscopy 

remains extremely challenging owing to the unfavorable properties of this isotope: low 

gyromagnetic ratio (73Ge  0.1413C), low natural abundance (NA73Ge  7.76%) and large 

quadrupole moment (Q73Ge = −19.6 fm2). Nevertheless, 73Ge SS-NMR spectra of germanium 

selenide glasses have been reported.[15] 

A major limitation of this study is the lack of resolution of 1D NMR spectra of GGS glasses 

since the resonances are broaden by the distribution of local environments as well as the 

anisotropic interactions, such as Chemical Shift Anisotropy (CSA) for 77Se nuclei and 

quadrupole interaction for 71Ga and 73Ge isotopes. Recently, 2D 77Se CPMG experiments have 

allowed the measurement of one-bond J-coupling between 77Se nuclei in arsenic selenide 

glasses.[16] Furthermore, it has been shown that the 2D MATPASS/CPMG sequence can 

improve the resolution of 77Se signals for germanium selenide and GGS glasses by separating 

the isotropic chemical shift and the CSA in two distinct dimensions.[13,17] Nevertheless, to 

the best of our knowledge, the J-couplings between 77Se and 71Ga nuclei have not been 

measured so far. Similarly, neither through-bond nor through-space 77Se-71Ga hetero-nuclear 

correlation (J-HETCOR and D-HETCOR, respectively) 2D spectrum has been reported 

hitherto. 

In this article, we introduce 2D 77Se-71Ga J-HETCOR and D-HETCOR experiments. These 

sequences are first tested on -Ga2Se3 crystalline sample. Using high-magnetic field (21.1 T) 

and high Magic-Angle Spinning (MAS) frequency, R = 62.5 kHz, we observe for this sample, 

two distinct 71Ga NMR signals, a narrow peak, accounting for 12 % of the total intensity, and 

a broad one. The narrow peak is assigned to Quenched phase in -Ga2Se3 crystal. Previous SS-

NMR studies at lower field and MAS frequency have only reported the observation of the 

narrow peak.[12] We also report high-resolution 71Ga 2D spectrum of -Ga2Se3 acquired by 

introducing Satellite Transition MAS (STMAS) experiment [18,19] using quadrupolar CPMG 

(QCPMG) detection [20] at 21.1 T and  R = 62.5 kHz. The 2D 71Ga STMAS-QCPMG spectrum 

allows separating the NMR signals of the Quenched phase and Annealed phase, but not those 

of the two Ga sites in Annealed phase.[21]  
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The 2D 77Se-71Ga through-bond spectra are acquired by introducing (i) the Refocused 

Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) experiment [22] with 71Ga 

excitation and 77Se CPMG detection [16], called 77Se-{71Ga}, as well as (ii) the Hetero-nuclear 

Multiple-Quantum Correlation (J-HMQC) experiment [23] with 71Ga excitation and QCPMG 

detection, the 77Se signal being indirectly detected, called 71Ga-{77Se}. Both 77Se-{71Ga} J-

RINEPT-CPMG and 71Ga-{77Se} J-HMQC-QCPMG 2D spectra show the expected correlation 

between the broad 71Ga signal of -Ga2Se3 and the 77SeII and 77SeIII signals. Furthermore, those 

spectra also exhibit a cross-peak between the 71Ga narrow signal of the Quenched phase and 

the 77SeIII signals. Such observation indicates that the Quenched phase is composed of SeIII 

sites. In addition, by fitting the evolution of the 77Se-{71Ga} J-RINEPT-CPMG and 71Ga-{77Se} 

J-HMQC-QCPMG signals as function of the defocusing and/or refocusing delays, τ and τ’ (see 

Fig.2.1), we measure for the first time the one-bond and three-bonds J-couplings, denoted 1J 

and 3J, respectively, between 71Ga isotope and 77SeII as well as 77SeIII nuclei. The 2D 77Se-71Ga 

through-space spectrum is acquired by introducing the 71Ga-{77Se} dipolar-mediated HMQC 

experiment (D-HMQC) [24,25] with QCPMG detection. The 71Ga-77Se dipolar couplings are 

reintroduced under MAS conditions by applying the Simultaneous Frequency and Amplitude 

Modulation (SFAM1) recoupling [26–28] during the defocusing and refocusing delays. The 

sensitivity between through-space and through-bond correlation experiment is compared.  

These 2D 77Se-71Ga J- and D-HETCOR experiments are then applied to characterize the 

GGS glass xGa2Se3(1-x) GeSe2 with x = 0.2 (denoted GGS0.2 hereafter). The GGSx glass-

ceramics are a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for 

making lenses transparent in the IR range for thermal imaging applications. The GGS0.2 

composition leads to a homogeneous and reproducible glass-ceramic using suitable heat 

treatment over its glass transition temperature. For this sample, the controlled nucleation rate is 

assumed to be due to a specific phenomenon of phase separation.[8] The same behavior has 

been observed as well in sulfide based glasses of the same composition, highlighting the 

important role of gallium during the nucleation process.[11,29] The obtained glass-ceramics 

present enhanced mechanical properties, while keeping an excellent transparency in the mid-

infrared range. The 77Se-71Ga J- and D-HETCOR 2D spectra permit to resolve and identify 

molecular units containing Ga and Se atoms in GGS0.2 glass. Furthermore, the evolution of 

77Se-{71Ga} J-RINEPT-CPMG and 71Ga-{77Se} J-HMQC-QCPMG signals as function of the 

τ delay allows the estimate of the 1J71Ga-77Se couplings and indicates that the 71Ga-77Se covalent 

bonds in GGS0.2 glass are similar to those of -Ga2Se3. 
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2.2. Methods 

2.2.1. NMR methods 

2.2.1.1. Acquiring 71Ga 1D MAS spectra  

As seen below, 71Ga isotope in -Ga2Se3 crystal and GGS0.2 glass is subject to large 

quadrupole interactions. In order to improve the spectral resolution, 71Ga 1D spectra were 

acquired at high magnetic field, B0 = 21.1 T, and high MAS frequency, R = 62.5 kHz, since 

for quadrupolar nuclei the resolution is proportional to (B0)
2 and MAS can improve the spectral 

resolution by a factor of ca. 3 by partially averaging the second-order broadening, at least when 

the spinning sidebands are separated from the center-bands. As seen in Fig.2.5(b), (d), the MAS 

averaged line-width of the central transition (CT) between energy levels 1/2 of 71Ga nuclei 

extends over 60 kHz in -Ga2Se3 crystal and GGS0.2 glass, and hence a high MAS frequency 

of R ≥ 60 kHz is required. 

2.2.1.2 CPMG and QCPMG.  

As explained in the introduction, 71Ga and 77Se spectra of GGS glasses exhibit wide powder 

patterns, which result in low sensitivity. Nevertheless, for these isotopes, the decay of the 

maximum of the echo signal for increasing spin echo delay is often much slower than that the 

Free-Induction Decay. Consequently, the sensitivity can be enhanced by acquiring multiple 

rotor-synchronized echoes in the form of the CPMG scheme for 77Se nuclei [16] and QCPMG 

sequence for 71Ga one.[30]   

2.2.1.3. 71Ga STMAS-QCPMG.  

A high-resolution 71Ga spectrum was acquired by introducing the STMAS-QCPMG 

sequence. The STMAS method offers the advantage to be typically 2-8 times more sensitive 

than the Multiple-Quantum MAS (MQMAS) scheme. Another advantage of STMAS for the 

acquisition of high-resolution 71Ga spectra is that the sensitivity of this technique does not 

depend on the MAS frequency, and hence, STMAS-QCPMG spectra can be acquired at MAS 

frequency (R ≥ 60 kHz) sufficiently high to separate the spinning sidebands from the center-

bands. Conversely, for MQMAS, the sensitivity decreases with increasing MAS frequency.[31] 

The employed STMAS-QCPMG sequence is shown in Fig.2.1. A z-filter is used to produce 

pure absorption line-shapes.[18] Furthermore, the split-t1 approach is used so that the isotropic 

spectrum results from a projection onto the F1 dimension, without any shearing data 

treatment.[19] As 71Ga is a spin-3/2 isotope, the t1 period is partitioned into two delays t1/9 and 

8t1/9. The CT-selective pulse separating the two parts converts the 1Q single-quantum 
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coherences evolving during t1/9 into 2Q double-quantum coherences evolving during 8t1/9. 

The coherence pathways are selected using phase cycling. The selection of 2Q coherences 

eliminates the undesired CT-CT diagonal ridge. QCPMG recycling was applied during the 

acquisition period, t2. The delay between the QCPMG -pulses was long enough so that both 

echo and anti-echo signals could be detected without truncation. The quadrature along the 

indirect dimension was achieved using the States-TPPI procedure [32] by incrementing the 

phase of the initial /2-pulse. 

 

 

 

 

 

 

 

 

 

Fig.2.1. Employed pulse sequence and coherence pathways diagram for 2D 71Ga split-t1 

amplitude-modulated z-filter STMAS-QCPMG experiment. The first and third pulses are 

applied with high rf-fields to excite and reconvert both CT and satellite transition (ST) of 71Ga 

nuclei, whereas the other pulses are applied with low rf-field so that they are CT selective. 

 

2.2.1.4. 77Se-{71Ga} J-RINEPT-CPMG.  

    The 77Se-{71Ga} J-RINEPT-CPMG scheme is shown in Fig.2.2(a). It derives from the J-

RINEPT sequence [22] by applying the CPMG recycling of magnetization during the t2 period. 

The initial selective /2-pulse excites the 71Ga CT magnetization, which is encoded by 71Ga 

isotropic chemical shifts and second-order quadrupolar couplings as well as J71Ga-77Se couplings 

during the t1 period. During the defocusing period, τ, the simultaneous π-pulses on the 71Ga and 

77Se channels refocus the evolution under 71Ga isotropic shifts but not that under the J71Ga-77Se 

couplings and hence, the 71Ga in-phase CT with respect to 77Se is converted into antiphase CT. 

The simultaneous π/2-pulses on 71Ga and 77Se channels convert this antiphase CT of 71Ga nuclei 
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into antiphase 77Se 1Q coherences. During the refocusing period, τ’, 77Se isotropic shift is 

refocused and the antiphase 77Se 1Q coherences evolve under 71Ga-77Se J-couplings into in-

phase 77Se magnetization. Thus, the refocusing period yields in phase multiplets, for which the 

intensities of the different components add constructively, and hence, enhance signal intensity 

since the different components of the multiplets overlap and the decay of 77Se 1Q coherence 

during τ’ delay is slow.  

2.2.1.5. 71Ga-{77Se} J- or D-HMQC-QCPMG.  

    The 71Ga-{77Se} J-HMQC-QCPMG scheme is displayed in Fig.2.2(b). The sequence is 

similar to the J-HMQC scheme,[23] but the QCPMG recycling of magnetization is employed 

during the t2 period. During the defocusing delay, τ, the in-phase 71Ga CT evolves into antiphase 

one and is then converted into 71Ga-77Se multiple-quantum coherences by the π/2-pulse on 77Se 

channel. These coherences are encoded by the 77Se isotropic chemical shift before being 

converted back into anti-phase 71Ga CT by the second 77Se π/2-pulse. The 71Ga-{77Se} D-

HMQC-QCPMG sequence is similar to that shown in Fig.2.2(b), but SFAM1 recoupling is 

applied on the 77Se channel during the two delays  in order to refocus the evolution under J71Ga-

77Se couplings, while reintroducing the 71Ga-77Se dipolar couplings. 

2.2.1.6. Measurement of T’2,71Ga and T’2,77Se time constants.  

    The T’2 time constant characterizes the exponential decay of the maximum signal in spin-

echo experiments. As explained below, these time constants for 71Ga and 77Se nuclei appear in 

the analytical expression of 77Se-{71Ga} J-RINEPT-CPMG and 71Ga-{77Se} J-HMQC-

QCPMG experiments. Therefore, the independent measurement of these T’2 values yields more 

accurate 71Ga-77Se J-couplings by better constraining the fit of signals to the analytical 

expression. Here, the T’2,71Ga constant was measured using a spin echo experiment with 

QCPMG detection (see Fig.2.2(d)). The T’2,77Se constants were determined using a spin echo 

experiment with CPMG detection. However, the sensitivity was improved by replacing the 

initial π/2-pulse by a 71Ga  77Se J-RINEPT polarization transfer. Such transfer improves the 

sensitivity since the 71Ga gyromagnetic ratio is higher than that of 77Se isotope and the 

longitudinal relaxation times of 71Ga nuclei (about 0.6 s for the investigated samples) are much 

shorter than those of 77Se isotopes (larger than 100 s).   
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Fig.2.2. (a,b) Employed 2D 71Ga-77Se through-bond correlation sequences: (a) 77Se-{71Ga} J-

RINEPT-CPMG and (b) 71Ga-{77Se} J-HMQC-QCPMG. (c,d) Sequences used to measure the 

(c) 77Se and (d) 71Ga T’2 values. All sequences employ 71Ga excitation in order to improve the 

sensitivity since the longitudinal relaxation of 71Ga nuclei is much faster than that of 77Se. All 

pulses applied to the 71Ga nuclei in these sequences selectively excite the CT.  
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2.2.2. Analytical expression of  
                77Se-{71Ga} J-RINEPT and 71Ga-{77Se} J-HMQC 

The analytical expressions of 77Se-{71Ga} J-RINEPT-CPMG and 71Ga-{77Se} J-HMQC-

QCPMG transfer efficiencies are required for the determination of J71Ga-77Se couplings by the fit 

of the evolution of their experimental signals as function of the τ and τ’ delays.  

The global transfer efficiencies are the sum of those for the different spin systems in the 

sample, weighted by their abundance since the analytical expression of the transfer efficiency 

depends on the number of 71Ga and 77Se nuclei in the spin system. As seen below, the fit of the 

evolution of J-RINEPT and J-HMQC signals as function of the τ and τ’ delays only allows the 

determination of a limited number of adjustable parameters. In order to reduce this number, we 

assumed that the J-couplings through a given number of bonds between 71Ga isotope and 77Se 

nucleus occupying both sites, SeII or SeIII, are all identical. Such assumption is a simplification 

since for instance, the 3J71Ga-77Se coupling through the 71Ga-Se-Ga-77Se three bonds must depend 

a priori on the torsion angle around the Se-Ga middle bond. Furthermore, for -Ga2Se3, the 

1J71Ga-77Se couplings were not sufficient to describe the evolution of the J-RINEPT and J-HMQC 

signals and the contribution of coherence transfer through 3J71Ga-77Se couplings had to be 

included.  

Using the above assumption, it can be shown that the transfer efficiency, f, of 71Ga-{77Se} 

J-HMQC-QCPMG scheme is given by 

𝑓(𝜏) =

{
𝑚[∑ 𝑝𝛼𝑝

𝑚𝑚
𝑝=1 𝑠1𝐽

2 𝑐1𝐽
2𝑝−2

(𝛼0
𝑛 + ∑ 𝑞𝛼𝑞

𝑛𝑐3𝐽
2𝑞𝑛

𝑞=1 )]

+𝑛[∑ 𝑞𝛼𝑞
𝑛𝑛

𝑞=1 𝑠3𝐽
2 𝑐3𝐽

2𝑞−2
(𝛼0
𝑚 + ∑ 𝑝𝛼𝑝

𝑚𝑐1𝐽
2𝑝𝑚

𝑝=1 )]
} exp (−

2𝜏

T2,71Ga
′ )    (2.1) 

where m and n denotes the numbers of Se atoms connected to one 71Ga nucleus by one- and 

three-bonds, respectively, 𝛼𝑟
𝑙  with l = m or n and r = p or q denotes the fraction of r 77Se nuclei 

among the l Se atoms connected to the Ga atom, 𝑐𝑥𝐽
𝑦
= cos𝑦(𝜋 𝐽𝑥 𝜏) and 𝑠𝑥𝐽

𝑦
= sin𝑦(𝜋 𝐽𝑥 𝜏). In 

Eq.(2.1), the first and second terms correspond to 1J and 3J transfers, respectively. The 𝛼𝑟
𝑙  

fraction are given by 

𝛼𝑟
𝑙 = 𝐶𝑟

𝑙(1 − NA77Se)
𝑙−𝑟 . NA77Se

𝑟
                                      (2.2)                       
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where 𝐶𝑟
𝑙  denotes the r-combination of a set l. In -Ga2Se3, according to the crystal structure 

[21], we have m = 4 and n = 18.  

Similarly, it can be shown that the transfer efficiency of 77Se-{71Ga} J-RINEPT-CPMG 

scheme is given by 

𝑓(𝜏, 𝜏′) =  

{𝑚 [∑ 𝑝𝛼𝑝
𝑚𝑚

𝑝=1 [𝑚′ ∑ 𝑝′𝛼′𝑝′
𝑚′𝑚′

𝑝′=1 𝑠1𝐽𝑠1𝐽
′ 𝑐1𝐽

𝑝−1
𝑐′1𝐽
𝑝′−1

(𝛼0
𝑛 +

∑ 𝑞𝛼𝑞
𝑛𝑐3𝐽
𝑞𝑛

𝑞=1 )(𝛼′0
𝑛′ + ∑ 𝑞′𝛼′𝑞′

𝑛′𝑐3𝐽
𝑞′𝑛′

𝑞′=1 )]] +

 𝑛 [∑ 𝑞𝛼𝑞
𝑛𝑛

𝑞=1 [𝑛′ ∑ 𝑞′𝛼′𝑞′
𝑛′𝑛′

𝑞′=1 𝑠3𝐽𝑠3𝐽
′ 𝑐3𝐽

𝑞−1
𝑐′3𝐽
𝑞′−1

(𝛼0
𝑚 +

∑ 𝑝𝛼𝑝
𝑚𝑐1𝐽

𝑝𝑚
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𝜏

T2,71Ga
′ −

𝜏′

T2,77Se
′ )                      

(2.3) 

where m’ and n’ denotes the numbers of Ga atoms connected to a given 71Se site by one- and 

three-bonds, respectively. In -Ga2Se3, we have m’ = 2 and n’ = 11 for SeII sites, m’ = 3 and n’ 

= 13 for SeIII,1 sites and m’ = 3 and n’ = 11 for SeIII,2 sites. As the 77Se NMR signals of the two 

SeIII sites are not resolved (see Fig.2.5) and the unit cell contains identical number of SeIII,1 and 

SeIII,2 sites, we consider m’ = 3 and n’ = 12 for SeIII sites hereafter. The 𝛼′𝑟
𝑙  fraction are given 

by 

𝛼′𝑟
𝑙 = 𝐶𝑟

𝑙(1 − NA71Ga)
𝑙−𝑟  NA71Ga

𝑟
                                      (2.4)                       
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2.3. Experimental section 

2.3.1. Synthesis of crystalline -Ga2Se3 

    β-Ga2Se3 crystals were synthesized according to the already published process.[3,16] High 

purity raw elements Ga (5N purity), and Se (N purity) were weighted (5 g), transferred into a 9 

mm diameter silica tube, and sealed under a vacuum of 10-3 Pa. The ampoule was heated (+1.5 

°C/min) up to 1100 °C and maintained at this temperature for 10 hours. The temperature was 

then decreased down to 950 °C and maintained for 12 hours in order to promote the 

crystallization of the Ga2Se3 compound. Then, the temperature was decreased with a ramp of -

0.5 °C/min down to 880 °C. After 30 minutes at this temperature, the solid was quenched into 

water, then annealed at 550 °C for 840 hours, and finally removed out from the silica tube. The 

GGS0.2 glass has been prepared following the classical melt-quenching way used for making 

infrared chalcogenide glasses. Further details have been given previously.[8] 

2.3.2. Solid-state NMR 

    NMR spectra were recorded on Bruker BioSpin spectrometers operating either at B0 = 9.4 T 

(wide-bore magnet equipped with Avance-II console) or 21.1 T (narrow-bore magnet equipped 

with Avance-IV console). Samples were spun either at R = 20 kHz using 3.2 mm triple-

resonance HXY probes for the 9.4 T magnet or at R = 62.5 kHz using 1.3 mm double-resonance 

HX probe for the 21.1 T magnet. The 71Ga and 77Se isotropic chemical shifts were referenced 

to the resonance (0 ppm) of saturated aqueous solutions of Ga(NO3)3 and H2SeO3. 

    The 1D direct excitation 71Ga MAS spectra were acquired using spin echo experiments, in 

which the refocusing pulse is bracketed by TE delays. All other spectra were acquired using 

CPMG recycling in the case of 77Se detection or QCPMG one in the case of 71Ga detection. 

These schemes enhance the sensitivity by collecting a large number of echoes, NE. In the case 

of -Ga2Se3 1D spectra, we have always used trains of -pulses for the CPMG and QCPMG 

parts. However, 77Se and 71Ga spectra of GGS0.2 are ca. twice broader than those of -Ga2Se3. 

Therefore, (i) we have then used the maximum rf-fields available with our probes, and (ii) in 

the case of 1D spectra we have used trains of /2-pulses for the CPMG/QCPMG recycling to 

broaden the excitation rf-profiles. Indeed, it has been recently shown that ‘-pulses only provide 

a maximum intensity at the transmitter frequency’ and that one observes ‘only a slight loss in 

intensity at the transmitter frequency, accompanied by an increase in bandwidth, when the 

pulse-length of the train is shortened’.[33] Without the CPMG/QCPMG recycling, the RINEPT 

and HMQC sequences include two (Fig.2.2(a)) or one (Fig.2.2(b)) -pulses on the detected 
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nucleus. Therefore, the rf-profile cannot be broadened by the use of /2 pulses in the train of 

echoes, and hence we used -pulses in these trains to maximize the S/N. A delay of 2ms rotor-

periods between the CPMG or QCPMG pulses was used (Fig.2.2), leading to a total echo-time 

of TE = 2mTR. The amount of signal was maximized by using a minimal phase cycling of the 

(Q)CPMG scheme, i.e. a fixed phase of the pulses in the (Q)CPMG train. The phase of the 

(Q)CPMG pulses was shifted by 90° with respect to the preceding 90° pulse. This limited phase 

cycling avoids the destructive interferences between the two coherence pathways, and all 

possible coherence transfer pathways (i.e., 0Q and 1Q) form echoes simultaneously if the 

sequence is correctly rotor-synchronized.[33] After the CPMG/QCPMG recycling, all echoes 

can be added on top of each other’s with data processing and the spectra are then represented 

in a classical way, without any spikelet.  

    For split-t1 STMAS experiment, the lengths and the radiofrequency (rf) nutation frequencies 

were equal to 1.25/0.8 ms and 215 kHz, respectively, whereas 155 kHz was used for the CT 

selective pulse. 

    T’2,71Ga measurements were recorded with a spin-echo-QCPMG sequence (Fig.2.2(d)). 

T’2,77Se measurements were performed with the J-RINEPT spin-echo-CPMG sequence as 

mentioned above (Fig.2.2(c)). In both cases, the spin-echo block was phase-cycled with four 

steps and always rotor synchronized. 

    For -Ga2Se3, the separate evolutions for SeII and SeIII species of the J-HMQC-QCPMG 

signal as function of τ delay were acquired by recording twenty-nine 71Ga-{77Se} 2D spectra. 

The pulse programs are given in the Appendix. All experimental specifications corresponding 

to spectra are given in Table.2.1.  

 

 

 

 

 

 

 

 



 

59 
 

 

Table.2.1. Experimental parameters for the spectra 

Fig B0 

/T 
R 

/kHz 

1,77Se 

/kHz 

1,71Ga 

/kHz 

CPMG 

Tilt angle 

TE 

/ms 

NS NE RD 

/s 

Texp 

/h 

 

/ms 

2.5a 9.4 20 40 X 180 1 256 200 300 21.6 X 

2.5b 21.1 62.5 X 155 90 0.48 102400 X 0.5 14.2 X 

2.5c 9.4 20 63 X 90 0.2 72 1200 1200 24 X 

2.5d 21.1 62.5 X 155 90 0.48 102400 X 0.5 14.2 X 

2.6a,b 9.4 20 40 95  0.3 128 800 1.2 0.73 0.8 

2.6c,d 9.4 20 X 95  0.2 64 600 1.0 0.57 X 

2.7 21.1 62.5 X 215(1st,3rd) 

155 others 

180 1.09 3072 20 0.6 14.3 X 

2.8a 9.4 20 X 25  0.8 256 200 1 0.07 X 

2.8b 9.4 20 X 95 /2 0.8 256 200 1 0.07 X 

2.9a-f 9.4 20 40 95 180 0.3 128 800 1.2 5.6 X 

2.9g,h 9.4 20 40 95 180 0.1 128 600 1 17 X 

2.10a-d 9.4 20 40 95      0.3 128 800 1.2 5.6 X 

2.10e,f 9.4 20 40 95  0.1 128 600 1 17 X 

2.11a 9.4 20 40 95 180 0.4 128 800 1 4.6 0.7 

2.11b 9.4 20 40 95 180 0.1 128 600 1 1.2 0.8 

2.11c 9.4 20 40 95 180 0.1 256 600 1 2.3 4 

2.13 9.4 20 X 95 /2 0.5 4096 100 1 1.13 X 

2.14a 9.4 20 X 95  0.1 64 800 1.0 0.44 X 

2.14b 9.4 20 63 95  0.2 512 1200 1.2 2.73 0.8 

2.15a 9.4 20 40 

63 

95 180 0.3 

0.2 

128 

1024 

800 

1200 

1 

1.2 

4.6 

25.5 

X 

2.15b 9.4 20 40 

63 

95 180 0.1 32 

1024 

600 1 1.4 

20.6 

X 

2.16 9.4 20 63 95  0.4 30000 500 1.2 10 0.8 

2.17a 9.4 20 63 95 180 0.3 2048 800 1 9.9 0.8 

2.17b 9.4 20 63 95 180 0.1 512 500 1 10.7 0.8 

2.17c 9.4 20 63 95 180 0.1 1024 500 1 21.5 3 
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2.4. Results and discussion 

2.4.1. Crystalline -Ga2Se3 

   The crystal structure of -Ga2Se3 is composed of Annealed phase and Quenched phase 

according to this reference.[34] X-ray diffraction data of -Ga2Se3 is shown in Fig.2.3. 

   For Annealed phase, the crystal system is the monoclinic (space group: B11b). There are two 

types of 4 fold coordinated Ga sites which are called GaIV,2 and GaIV,2. There are one 2 fold 

coordinated Se (SeII) and two types of 3 fold coordinated Se site (SeIII,1 and SeIII,2).  

In Gallium environment, GaIV,1 is connected to SeII, SeIII,1 and two SeIII,2. On the other hand, 

GaIV,2 is connected to SeII, two SeIII,1 and SeIII,2
. GaIV,1 and GaIV,2 possess similar symmetry 

environment. In Selenium environment, SeII is connected to GaIV,1 and GaIV,2. SeIII,1 is 

connected to GaIV,1 and two GaIV,2. SeIII,2 is connected to two GaIV,1 and GaIV,2. SeIII,1 and SeIII,2 

possess similar symmetry environment. (see Fig.2.4). 

In addition, SeII – GaIV bond length is shorter than SeIII – GaIV bond length. This different bond 

length lead to distort the Ga tetrahedral environment. Each bond length value is represented in 

Table.2.2.  

Ga vacancy get organized. It can be described as a ABCA’B’C’ stacking (Fig.2.5). This 

ordering has effect on the cell 

   For Quenched phase, the crystal system is the cubic (Space group: F-43m) where all GaIV 

sites form regular tetrahedron with four Se. All Se are composed of SeIII. All SeIII – GaIV bond 

length is 2.358 (Å). Ga vacancy is random where Ga occupancy is 0.666 in the structure.  

 

 

 

 

 

 

 

                                        Fig.2.3. X-ray diffraction data of -Ga2Se3.   

    Table.2.2. Each bond length of SeII – GaIV in Annealed phase for -Ga2Se3. Each value is 

adopted from [34]. 

SeII – GaIV bond length (Å) SeIII – GaIV bond length (Å) 

SeII – GaIV,1 2.316 SeIII,1 – GaIV,1 2.466 

SeII – GaIV,2 2.338 SeIII,1 – GaIV,2 2.464 

  SeIII,1 – GaIV,2 2.468 

  SeIII,2 – GaIV,1 2.422 

  SeIII,2 – GaIV,1 2.477 

  SeIII,2 – GaIV,2 2.454 

0
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Fig.2.4. Representation of the three distinct selenium sites in Annealed phase of -Ga2Se3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.5. Organization of Ga vacancy in 

              Annealed phase of -Ga2Se3.   

              Adopted from [34] 
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 2.4.1.1. 1D MAS spectra 

    77Se. The 77Se 1D MAS spectrum is shown in Fig.2.6(a). The SeII and SeIII resonances are 

resolved but not those of crystallographically inequivalent SeIII,1 and SeIII,2 sites (see Fig.2.4). 

A quantitative measurement of the relative amounts of the different selenium sites is precluded 

using a CPMG sequence since the T’2 values can differ between the SeII and SeIII environments. 

Here, the T’2 values of 77SeII and 77SeIII nuclei were measured using J-RINEPT-CPMG sequence 

(Fig.2.2(c)). The attenuation of the 77Se signals versus the echo-delay e is shown in 

Fig.2.7(a,b) and it provides T’2,Se = 21 and 24 ms for SeII and SeIII, respectively (Table.2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.6. 1D MAS spectra of (a,b) -Ga2Se3 and (c,d) GGS0.2. (a,c) 77Se CPMG spectra with B0 

= 9.4 T and R = 20 kHz. (b,d) 71Ga QCPMG spin echo spectra with B0 = 21.1 T and R = 62.5 

kHz.  

 

    71Ga. The MAS spectrum was recorded with a spin-echo at 21.1 T and R = 62.5 kHz. The 

spectrum shows two signals: one narrow resonance on the top of a broad 2nd-order quadrupolar 

spectrum with only one spinning sideband of the broad resonance on each side (Fig.2.6(b)). 

The sharp signal is probably due to Quenched phase, whereas the broad resonance is attributed 

to both GaIV,1 and GaIV,2 species of Annealed phase since these species has distorted tetrahedron.  

In an attempt to disentangle these two broad contributions, we have recorded at 21.1 T and 

R = 62.5 kHz a 2D high-resolution 71Ga STMAS spectrum with a full-echo detection and 

QCPMG recycling. The spectrum shown in Fig.2.8 displays two different contributions: one 

presenting a small CQ value with a large distribution of isotropic chemical shift, and another 

one exhibiting a large CQ value. These two signals correspond to the narrow and broad 
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resonances in Fig.2.6(b), respectively. The isotropic chemical shifts of both narrow and broad 

resonances correspond to GaSe4 environments. The smaller CQ value for the narrow resonance 

with respect to the broad one indicates that the GaSe4 environments are more symmetrical in 

the Quenched phase than in the Annealed phase of -Ga2Se3 crystal. Unfortunately, the 2D 

STMAS spectrum does not permit us to resolve the GaIV,1 and GaIV,2 sites in Annealed phase of 

-Ga2Se3 crystal, and the 1D spectrum was thus fitted assuming only two species (one narrow 

and one broad) with the DMfit software.[35] Such fit (not shown) provided the relative amounts 

of the two sites and their quadrupolar parameters (Conc (%), CQ (MHz), Q)  (88, 17.4, 0.5) 

and (12, 4.4, 0.3) for the broad and narrow resonances, respectively.  

Whereas at B0 = 21.1 T and R = 62.5 kHz, the sidebands are well resolved from the center-

band in the 1D 71Ga spectrum, at B0 = 9.4 T and R = 20 kHz, only the narrow resonance was 

detected for ν1,71Ga = 25 kHz (see  Fig.2.9(a)) as well as a part of the broad signal for ν1,71Ga = 

95 kHz (see Fig.2.9(b)). The first spectrum is rather similar to the one already published.[12] 

These results highlight the need of high magnetic field and high MAS frequency for the 

acquisition of 71Ga MAS spectra. T’2,71Ga measurements were performed at 9.4 T with R = 20 

kHz, and the evolutions are surprisingly identical for the narrow and broad resonances 

(Fig.2.7(c,d), Table.2.3): T’2,71Ga = 5.7 and 5.0 ms, respectively. It must be noted that those 

values are approximately four times smaller than the T’2,77Se ones (Fig.2.7(a,b), Table.2.3).  

 

 

 

 

 

 

 

 

Fig.2.7. -Ga2Se3: experimental decay of (a,b) 77Se signals in J-RINEPT-spin-echo-CPMG 

experiment and of (c,d) 71Ga signals in spin-echo-QCPMG sequence as function of the spin 

echo delay. The red continuous curves correspond to the best fit of experimental data points to 

a decaying mono-exponential function with T’2 = (a) 21, (b) 24, (c) 5.7, and (d) 5.0 ms.   
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Table.2.3. Experimental T’2 values of β-Ga2Se3 and GGS0.2. 

 T’2 /ms 

 β-Ga2Se3 GGS0.2 

SeII 21 
18 

SeIII 24 

Ga (Broad resonance) 5 
8 

Ga (Narrow resonance) 5.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.8. 2D 71Ga STMAS-QCPMG spectrum of -Ga2Se3 recorded at B0 = 21.1 T and R = 

62.5 kHz. 

 

 

 

 

 

Fig.2.9. 1D 71Ga QCPMG spectrum of -Ga2Se3 recorded at B0 = 9.4 T and R = 20 kHz using 

            (a) ν1,71Ga = 25 or (b) 95 kHz. 
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2.4.1.2. J-RINEPT and J-HMQC build-up curves 

J-RINEPT 

    The 77Se-{71Ga} J-RINEPT-CPMG build-up curves of SeII and SeIII signals for -Ga2Se3 are 

shown in Fig.2.10(a-f). They were obtained by acquiring 1D 77Se-{71Ga} J-RINEPT-CPMG 

spectra with t1 = 0. When  = ’ (Fig.2.10(a,b)), maximum transfer is achieved for  = ’  0.7 

ms. These values suggest that the one-bond 1J71Ga-77Se couplings are much larger than 100 Hz. 

Therefore, it is possible to keep fixed a recoupling time ( or ’) to this optimum value and to 

vary the other one (’ or  respectively) (Fig.2.10(c-f) and Fig.2.11(a-d)). The experimental 

points are normalized with respect to the maximum intensity observed with the SeIII site. The 

SeII signal maximum intensities are always equal to ca. 0.40 that for SeIII. This value is smaller 

than that (0.5) predicted from the crystal structure of Annealed phase, which contains two SeIII 

sites for one SeII site. This may be due to the shorter T’2, value for 77SeII nuclei with respect to 

77SeIII ones (Fig.2.7(a,b) and Table.2.3). 

    For the fit of the 77Se-{71Ga} J-RINEPT build-up curves to Eq. (2.3), we used the T’2 values 

of Table.2.3 and then the only adjustable parameters in Eq.(2.3) are 1J71Ga-77Se and 3J71Ga-77Se 

values. One additional parameter was the intensity of the signal. The best fits are displayed in 

Fig.2.10 as continuous red curves. The best fit 1J71Ga-77Se and 3J71Ga-77Se values as well as the 

ratio of the signal intensities of SeII and SeIII sites, III/IIII, are given in Table.2.4. As seen in that 

table and Table.2.4, we obtained similar J-coupling values and III/IIII ratios from the fit of build-

up curves with  = ’, ’ = 0.7 ms and  = 0.7 ms. The scalar couplings with the first neighbors 

are slightly larger for 77SeII nuclei with respect to SeIII ones 1J71Ga-77SeII  760  30 Hz and 1J71Ga-

77SeIII  530  20 Hz. This result is consistent with the shorter SeII-Ga distances with respect to 

SeIII-Ga ones, as seen in the crystal structure.[36] In addition, 3J71Ga-77Se couplings are much 

smaller than with the 1J(71Ga-77Se) ones: 3J(71Ga-77Se)  11  5 and 5  1 Hz, for SeII and SeIII 

sites, respectively. III/IIII ratios are slightly smaller than the ratio between the number of SeII 

and SeIII sites in the crystal structure, probably owing to the shorter T’2, value for 77SeII nuclei 

with respect to 77SeIII ones, as mentioned above. The best fit curves deviate from the 

experimental build-up curves. Such deviation stems from (i) the contribution of the Quenched 

phase signal to these curves and (ii) the distribution of 1J71Ga-77Se and 3J71Ga-77Se coupling values, 

whereas we assumed identical J-coupling values through a given number of bonds.  
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J-HMQC 

In 1D 71Ga-{77Se} J-HMQC-QCPMG experiments, the 77Se signal is encoded in the indirect 

dimension, and hence 1D experiments do not allow the separation of SeII and SeIII J-HMQC 

build-up curves. Such separation can only be achieved by recording a series of 2D experiments. 

These measurements require a long experimental time since many (29 here) 2D experiments 

had to be recorded. However, these 2D experiments permit us to separate the build-up curves 

for the broad 71Ga resonance of -Ga2Se3 (see Fig.2.10(g,h)) and the narrow one corresponding 

to the Quenched (Fig.2.11(e,f)). The fit of these curves to Eq.(2.1) yields 1J71Ga-77Se couplings 

and III/IIII ratio similar to those determined from 1D 77Se-{71Ga} J-RINEPT-CPMG build-up 

curves (see Table.2.5). It must be noted that the 3J71Ga-77Se values determined from the fit of 2D 

71Ga-{77Se}  J-HMQC-QCPMG build-up curves are much larger than those fitted from 1D  

77Se-{71Ga}   J-RINEPT-CPMG ones: 28 and 16 with respect to 11 and 5 Hz, for SeII and SeIII 

sites, respectively. 

The fit of the J-HMQC build-up curves for the 71Ga narrow resonance to Eq.(2.1) yields 

1J71Ga-77Se couplings for Quenched phase (see Table.2.5), which are similar to those measured 

for the broad resonance (Table.2.4). Hence, the 71Ga-77Se bonds are similar in Annealed phase 

and in Quenched phase. However, the III/IIII ratio is smaller for the Quenched phase than for 

Annealed phase. In the Annealed phase, the Ga sites are bonded to one SeII and three SeIII sites. 

The narrow resonance must correspond to Ga atoms attached to four SeIII sites. Thus, the lower 

amount of SeII sites in the Quenched phase is consistent with the more symmetrical environment 

of 71Ga nuclei, deduced from its lower CQ value.  
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Fig.2.10. (a-f) Evolution of 1D 77Se-{71Ga} J-RINEPT-CPMG SeII (left) and SeIII (right) signals 

of -Ga2Se3 versus either (a,b)  = ’, (c,d)  with ’ = 0.7 ms, or (e,f) ’ with  = 0.7 ms. (g,h) 

Evolution of 2D 71Ga-{77Se} J-HMQC-QCPMG signals of cross-peaks between  the broad 71Ga 

resonance and (g) SeII (left) or (h) SeIII (right) signals. The points are the experimental values, 

normalized to their maximum observed for SeIII, whereas the continuous curves correspond to 

the best fits with the parameters given in Table.2.4.  

 

Table.2.4. Best fit 1J(71Ga-77Se) and 3J(71Ga-77Se) values and III/IIII ratio for the fit of the 

experimental curves of Fig.2.10 to Eq.(2.3) for 1D 77Se{71Ga} J-RINEPT-CPMG build-up 

curves and to Eq.(2.1) for 71Ga{77Se} J-HMQC-QCPMG build-up curves. 

Fig   Se       Method III/IIII 1J71Ga-77Se /Hz 3J71Ga-77Se /Hz 

(a)  SeII     J-RINEPT 0.32 734 18 

(b)  SeIII  518 5 

(c)  SeII 0.40 752 8 

(d)  SeIII  528 5 

(e)  SeII 0.36 744 7 

(f)  SeIII  523 5 

(g) SeII    J-HMQC 0.35 801 28 

(h) SeIII  543 16 
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Fig.2.11. (a-d) Evolution of 1D 77Se-{71Ga} J-RINEPT-CPMG SeII (left) and SeIII (right) 

signals of -Ga2Se3 versus (a,b)  with ’ = 10 ms or (c,d) ’ with  = 10 ms. (e,f) Evolution 

versus τ of 2D 71Ga-{77Se} J-HMQC-QCPMG cross-peaks between  the narrow 71Ga resonance 

and (g) SeII (left) and (h) SeIII (right) signals. The points are the experimental values, normalized 

to their maximum observed for SeIII, whereas the continuous curves correspond to the best fits 

with the parameters given in Table.2.5. 

 

Table.2.5. Best 1J71Ga-77Se and 3J71Ga-77Se values and III/IIII ratio for the fit of the experimental 

curves of Fig.2.11 to Eq.(2.3) for 1D 77Se-{71Ga} J-RINEPT-CPMG build-up curves and to 

Eq.(2.1) for 71Ga-{77Se} J-HMQC-QCPMG build-up curves. 

Fig   Se       Method III/IIII 1J71Ga-77Se /Hz 3J71Ga-77Se /Hz 

(a)  SeII     J-RINEPT 0.55 755 10 

(b)  SeIII   565 8 

(c)  SeII  0.51 747 13 

(d)  SeIII   551 6 

(e) SeII      J-HMQC 0.11 773 22 

(f) SeIII   580 9 
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2.4.1.3. Comparison of the 2D J-RINEPT and D- or J-HMQC spectra  

The 2D spectra of the 77Se-{71Ga} J-RINEPT-CPMG and 71Ga-{77Se} J- and D-HMQC-

QCPMG experiments are displayed in Fig.2.12. The 77Se projections of these 2D spectra are 

shown in Fig.2.13. In agreement with the crystal structure of Annealed phase,[21], the 2D J-

RINEPT and J-HMQC spectra show cross-peaks between the broad 71Ga resonance and both 

77SeII and 77SeIII signals, indicating that the Ga atoms are bonded to both SeII and SeIII sites. The 

2D D-HMQC spectrum allows the observation of the through-space proximities between Ga 

atom and both SeII and SeIII sites. In the three 2D heteronuclear correlation spectra, the narrow 

71Ga resonance assigned to the Quenched phase correlates mainly with the SeIII signal. This 

observation is consistent with the low III/IIII ratio determined from the fit of the build-up curves 

of the narrow resonance in 2D 71Ga-{77Se} J-HMQC-QCPMG spectra (see Table.2.5). 

 

 

 

 

 

 

Fig.2.12. 2D spectra of -Ga2Se3 at B0 = 9.4 T and R = 20 kHz: (a) 77Se-{71Ga} J-RINEPT-

CPMG with  = ’ = 0.7 ms, (b) 71Ga-{77Se} J-HMQC-QCPMG with  = 0.8 ms, (c) 71Ga-

{77Se} D-HMQC-QCPMG with  = 4 ms. 

 

 

 

 

 

 

 

Fig.2.13.77Se projections of the 

2D spectra of -Ga2Se3 shown in 

Fig.2.12. The intensities are 

normalized so that SeIII signal has 

the same intensity in the three 

projections. 
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Table.2.6. S/N ratios in one hour for the SeII and SeIII signals of 2D 77Se-{71Ga} J-RINEPT-

CPMG and 71Ga-{77Se} J- and D-HMQC-QCPMG spectra of β-Ga2Se3. 

 S/N in one hour 

 SeII SeIII 

 71Ga{77Se} J-HMQC 139 307 

71Ga{77Se} D-HMQC 24 36 

 77Se{71Ga} J-RINEPT 20 47 

     

For the three experiments, the S/N ratios in one hour of experiment are reported in Table.2.6. 

71Ga-{77Se} J-HMQC-QCPMG experiment yields the highest S/N ratio since (i) the detected 

isotope is 71Ga, which has a higher gyromagnetic ratio than 77Se (71Ga  1.677Se) and (ii)  the 

1J71Ga-77Se couplings (760 and 530 Hz) greatly exceed the dipolar couplings (ca. 200 Hz) 

between the same nuclei and hence, the 71Ga-77Se coherence transfer is much faster through the 

J-couplings than through the dipolar couplings, i.e. optimal τ delay of 0.7-0.8 ms for J-HMQC 

experiment instead of 4 ms for D-HMQC one, which limits the signal losses.  

    Despite (i) the low natural abundance of 77Se, (ii) the broad line-shape of 71Ga spectra, and 

(iii) the relatively low Larmor frequency of 77Se, experimental times of these 2D experiments 

were always less than 5 hours. These preliminary encouraging results prove the high efficiency 

of the developed sequences and such methods were thus applied to characterize a non-

crystalline sample. 
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Fig.2.14. 71Ga spin-echo-QCPMG 

spectrum of GGS0.2 recorded at 9.4 T with 

R = 20 kHz and ν1,71Ga = 95 kHz. 

Spinning sidebands are indicated with *.  
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2.4.2. 71Ga-77Se correlations for 0.2Ga2Se3 - 0.8GeSe2 glass (GGS0.2) 

    The methods employed for the characterization of β-Ga2Se3 were applied to that of the binary 

glass system 0.2Ga2Se3-0.8GeSe2 (GGS0.2). The 77Se 1D spectrum of GGS0.2 exhibits only one 

resonance, as already reported for a similar glass composition (x = 0.3).[12,13] This resonance 

is ca. twice broader than the 77Se spectrum of β-Ga2Se3 (compare Fig.2.6(a,c)). Such 

broadening stems from the presence of additional molecular units with the incorporation of Ge 

element, such as CS and ES GaSe4 and GeSe4 tetrahedra and (SeII)3-Ge-Ge-(SeII)3 units, as well 

as the glass structural disorder producing a distribution in 77Se isotropic chemical shifts. The 

71Ga spectrum displays a broad resonance at B0 = 21.1 T and R = 62.5 kHz, as already observed 

for the crystalline β-Ga2Se3 (compare Fig.2.6(b,d)). At B0 = 9.4 T and R = 20 kHz, the 71Ga 

spectrum is broader (Fig.2.14) and it displays many spinning sidebands. T’2 constant times of 

71Ga and 77Se nuclei were measured in GGS0.2 using sequences in Fig.2.2(c,d), and we found 

T’2,71Ga  8 ms and T’2,77Se  18 ms (Fig.2.15). These values are similar to those found in β-

Ga2Se3 (Table.2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.15. Experimental decay of (a) 71Ga spin-echo-QCPMG signal and (b) 77Se-{71Ga} J-

RINEPT-spin-echo-CPMG signal of GGS0.2. The red continuous curves correspond to the best 

fit curves with T’2 = (a) 8 and (b) 18 ms.  
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        Fig.2.16 displays the build-up curves of 77Se-{71Ga} J-RINEPT experiments with  = ’ 

and 71Ga-{77Se} J-HMQC ones of crystalline β-Ga2Se3 and GGS0.2 glass. As SeII and SeIII 

resonances are not separated in the 1D spectra of GGS0.2, the build-up curves of the glass are 

compared to the sum of SeII and SeIII J-RINEPT build-up curves in crystalline β-Ga2Se3 

weighted by the fractions of the SeII and SeIII signals in the 1D 77Se-{71Ga} J-RINEPT-CPMG. 

Moreover, 71Ga-{77Se} J-HMQC spectra of GGS0.2 (see Fig.2.21(a) and (c)) are displayed for 

comparison purpose. Therefore, the oscillations are slightly smoothed as compared to Fig.2.10. 

At short defocusing and refocusing times ( < 1.2 ms), glass and crystal exhibit identical build-

up curves, which indicates that the 1J71Ga-77Se couplings, and hence Ga-Se bonds, are similar in 

both samples. However, for longer times ( > 1.2 ms), the curves of both materials deviate. 

Such difference stems notably from different 3J71Ga-77Se couplings since the torsion angles differ 

between the glass and the crystal. Similarly, the lack of signal oscillation for long  values in 

the case of the glass stems from the distribution of 3J71Ga-77Se coupling values.  

 

 

 

 

 

 

 

 

 

Fig.2.16. Evolution of (a) 1D 77Se-{71Ga} J-RINEPT-CPMG signals of -Ga2Se3 (black) and 

GGS0.2 (blue) versus  = ’ and (b) 1D 71Ga-{77Se} J-HMQC-QCPMG versus . To compare 

both materials, the weighted intensity of the two selenium resonances (Fig.2.10(a + b) and 

Fig.2.10( g + h)) were added for crystalline -Ga2Se3. 

 

 

To be sure that all 71Ga and 77Se sites are well excited, 1D 77Se-{71Ga} J-RINEPT and 2D 

71Ga-{77Se} J-HMQC spectra were recorded with different carrier frequencies. Fig.2.17 shows 

the 1D 77Se-{71Ga} J-RINEPT-CPMG spectra acquired with different carrier frequencies and 

it indicates that the total frequency range of 77Se spectrum of GGS0.2 glass is excited by J-

RINEPT sequence using centered carrier frequency. 
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Fig.2.17. 77Se-{71Ga} 1D J-RINEPT-CPMG spectra of GGS0.2 at B0 = 9.4 T and R = 20 

kHz, ν1,71Ga = 95, ν1,77Se = 63 kHz and various 77Se rf offsets indicated on the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.18 shows the 2D 77Se-{71Ga} J-RINEPT and 71Ga-{77Se} J- and D-HMQC spectra of 

GGS0.2 glass. The 77Se projections of these 2D spectra are shown in Fig.2.19. These projections 

exhibit higher resolution than the 1D 77Se CPMG spectrum shown in Fig.2.6(c). Furthermore, 

as seen in Fig.2.20, the 77Se nuclei connected or close to 71Ga isotopes resonate at lower 

isotropic chemical shifts than those that are only bonded to Ge atoms.  

 

 

 

 

 

 

 

 

 

 

Fig.2.18. 2D spectra of GGS0.2 at B0 = 9.4 T with R = 20 kHz: (a) 77Se-{71Ga} J-RINEPT-

CPMG with  = ’ = 0.8 ms, (b) 71Ga-{77Se} J-HMQC-QCPMG with  = 0.8 ms, (c) 71Ga-

{77Se} D-HMQC-QCPMG spectrum with  = 3 ms.  
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Fig.2.19. Comparison of the 77Se projections of the 71Ga-77Se HETCOR 2D spectra of GGS0.2 

shown in Fig.2.18. 

 

 

 

 

 

 

 

 

 

 

Fig.2.20. Comparison of 1D 77Se spectra of GGS0.2: CPMG (blue) and 77Se-{71Ga} J-RINEPT-

CPMG (black).  

 

Fig.2.21 shows the deconvolution of the 77Se projection of 2D 71Ga-77Se HETCOR spectra 

as well as the 1D 77Se CPMG spectrum of GGS0.2 glass. In a first step, the 77Se projections of 

J-RINEPT-CPMG and J-HMQC-QCPMG 2D spectra were simulated using the NMR 

parameters of already observed local environments of 77Se nuclei in GGSx glass, i.e. 77SeII sites 

of CS GeSe4 and GaSe4 tetrahedra resonating at 400 ppm and bonded to Ge-Ge bond resonating 

at 250 ppm as well as 77SeIII sites of these CS tetrahedra resonating at −20 ppm.[13] 

Nevertheless, additional signals resonating at 128, −144 and −250 ppm were required to 

simulate the 77Se projections of 2D J-RINEPT and J-HMQC spectra. The resonance at −144 

ppm can be assigned to SeIII nuclei bonded to Ga-Ga bond since the GaSe, which consists of 

layers of (SeIII)3-Ga-Ga-(SeIII)3, moieties exhibits a single resonance at -80 ppm. The 2D spectra 
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exhibit 71Ga signal at 1200 ppm characteristic of Ga nuclei in such environment.[37] The 

resonances at 128 and −250 ppm are tentatively assigned to SeIII sites of ES GeSe4 and GaSe4 

tetrahedra and bonded to Ge-Ge bond. Nevertheless, further studies, including Density 

Functional Theory (DFT) calculations, would be required to confirm this assignment. The 

simulation of the 77Se projection of 2D D-HMQC spectra includes the same contributions as 

those employed to simulate the 77Se projections of the 71Ga-77Se J-HETCOR 2D spectra. 

However, the signal of ES GeSe4 tetrahedra resonating at 600 ppm must also be included.[12] 

The absence of this signal for the through-bond correlations indicates that most of Se atoms in 

ES tetrahedra are bonded to Ge metal and the coherence transfer to 71Ga is achieved through 

the dipolar couplings. In the simulation of 1D 77Se CPMG spectrum, the relative integrated 

intensity of 77SeII sites of CS GeSe4 and GaSe4 tetrahedra and ES GeSe4 is larger than in the 

77Se projections of the 2D spectra since most ES tetrahedra and a large fraction of CS ones 

contain Ge metal. Additional contribution resonating at 850 ppm is also required to simulate 

the 1D 77Se CPMG spectrum. It is assigned to Se-SeII-Se environment.[38] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.21. Deconvolution of the 77Se projections of 2D spectra of GGS0.2: (a) 77Se-{71Ga} J-

RINEPT-CPMG, (b) 71Ga-{77Se} D-HMQC-QCPMG, (c) 71Ga-{77Se} J-HMQC-QCPMG, so 

that (d) the 1D 77Se CPMG spectrum.  
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Table.2.7. Simulation parameters for the deconvolution of 1D 77Se CPMG spectra of GGS0.2 

shown in Fig.2.21. -GeIV/3 = -GeSe3 and -GeIV/2- = -GeSe2- mean one Ge atom additionally 

bonded to 3 and 2 Se atoms. Ge/GaIV/3 = -GeSe3 or -GaSe3 means either a Ge or a Ga atom 

additionally bonded to 3 Se atoms. 

 diso /ppm daniso /ppm  FWHM /ppm Fraction /% 

GeIV/3-GeIV/2-SeIII-(Ge/GaIV/3)2 -250 -120 0 145 1.65 

GaIV/3-GaIV/2-SeIII-(Ge/GaIV/3)2 -144 -120 0 133 1.91 

SeIII-(Ge/GaIV/3)3 (CS) -20 -120 0 158 5.60 

SeIII-(Ge/GaIV/3)3 (ES) 128 -120 0 163 9.09 

GeIV/3-GeIV/2-SeII-(Ga/GeIV/3) 250 250 0.9 194 18.98 

SeII-(Ge/GaIV/3)2 (CS) 400 250 0.9 243 44.17 

SeII-(GeIV/3)2 (ES) 600 280 0.9 298 14.74 

Se-SeII-Se 850 -150 0.8 400 3.85 

 

 

2.5. Conclusion 

We have introduced 2D 71Ga-77Se through-bond and through-space correlation experiments, 

including 77Se-{71Ga} J-RINEPT-CPMG and 71Ga-{77Se} J- or D-HMQC-QCPMG methods. 

These experiments have been demonstrated experimentally on -Ga2Se3 crystal and GGS0.2 

glass. For the glass, these experiments improve the resolution of the 77Se signal by selecting the 

77Se nuclei connected or close to 71Ga nuclei. We show that the 71Ga-{77Se} J-HMQC-QCPMG 

experiment exhibit the highest sensitivity. Furthermore, the analysis of the build-up curves of 

the 71Ga-77Se through-bond correlation experiments allows the estimate of both 1J71Ga-77Se and 

3J71Ga-77Se couplings in -Ga2Se3 crystal. By introducing 71Ga STMAS-QCPMG experiment at 

high field and high MAS frequency, we also resolve the 71Ga signal of Annealed phase and that 

of Quenched phase. 71Ga-77Se correlation experiments identify Annealed phase and Quenched 

phase in -Ga2Se3 crystal. 
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Chapter 3: -independent through-space heteronuclear correlation 

between spin-1/2 and quadrupolar nuclei in solids 

 

3.1. Introduction 

Two-dimensional (2D) through-space dipolar heteronuclear correlation (D-HETCOR) NMR 

experiments allow in solids the unambiguous identification of proximities between sites 

occupied by different isotopes. Therefore, these methods are essential tools to facilitate the 

assignment of solid-state NMR spectra and to investigate the local atomic-level structures of 

materials. In this article, we focus on correlations between quadrupolar nuclei (e.g. 11B, 14N, 

17O, 27Al…) and spin-1/2 isotopes (e.g. 13C, 31P, 29Si…), other than 1H and 19F, which represent 

about 3/4 and 1/4 of stable NMR-active nuclei, respectively.[1–3] For instance, correlations 

between 31P nuclei and 27Al, 11B or 51V have been used to investigate the association between 

P2O5 and other glass-former oxides, such as Al2O3, B2O3 or V2O5.[4–6] 31P-27Al and 31P-51V 

correlations have also been used to investigate the structure of crystalline alumino- and vanado-

phosphate materials, respectively.[7–9] Similarly, correlations between 29Si and 27Al nuclei 

have been employed to study crystalline and amorphous silicate materials, such as zeolites, 

clays and glasses.[10–13] More recently, 13C-27Al proximities in organo-aluminum solids and 

zeolites have also been probed using D-HETCOR experiments.[14–17] 

These D-HETCOR experiments between spin-1/2 and quadrupolar nuclei should be efficient 

and robust to quadrupole interactions, electron shielding, inhomogeneity of the radiofrequency 

(rf) field, and instabilities of the Magic-Angle Spinning (MAS) frequency. Several pulse 

sequences have been proposed to correlate spin-1/2 and quadrupolar nuclei. Initially, such 

correlations have been achieved using cross-polarization (CP).[18] However, the efficiency and 

the robustness of CP transfers between spin-1/2 and quadrupolar nuclei are limited by the 

complex spin dynamics during spin locking, which depends on several factors, including (i) the 

amplitude and the orientation of the electric field gradient, (ii) the MAS frequency, νR, and (iii) 

the rf field amplitude, ν1.[19] These shortcomings can be alleviated by the use of other D-

HETCOR methods, such as the Dipolar-mediated Refocused Insensitive-Nuclei Enhanced by 

Polarization-Transfer (D-RINEPT) [8,9] and the Dipolar-mediated Heteronuclear Multiple 

Quantum Correlation (D-HMQC) experiments.[20,21] In these sequences, the heteronuclear 

dipolar couplings with the quadrupolar nuclei are reintroduced by irradiating only the spin-1/2 

isotope, hence limiting the interference of the quadrupole interaction with the recoupling 

sequence. The D-RINEPT and D-HMQC methods complement each other since the former 
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employs direct detection, i.e. the excited and detected isotopes differ, whereas the latter uses 

indirect detection, i.e. the detected isotope is the same as the excited one. The relative 

sensitivities of the direct and indirect detections depend on the gyromagnetic ratios, the 

longitudinal relaxation times, and the spectral widths of the correlated nuclei.[22] This work 

focuses on sequences based on indirect detection. 

In D-HMQC sequence, the dipolar couplings between spin-1/2, other than 1H and 19F, and 

quadrupolar nuclei have been reintroduced by applying to the spin-1/2 isotope heteronuclear 

dipolar schemes, such as Rotational-Echo DOuble Resonance (REDOR),[20] Simultaneous 

Frequency and Amplitude Modulation (SFAM1),[23–25] and the Rotary Resonance 

Recoupling, R3(q = 1), with ν1 = νR.[21] These recoupling schemes reintroduce the space 

component m = 1 for the dipolar coupling and the chemical shift anisotropy (CSA) of the 

spin-1/2 isotope. The m = 1 recoupling schemes benefit from larger scaling factors for the 

heteronuclear dipolar coupling than the m = 2 schemes and hence, require shorter recoupling 

periods in indirectly detected experiments, thus limiting the signal losses during coherence 

transfers.[25] Contrary to the m = 2 schemes, the m = 1 ones do not remove the 

homonuclear dipolar couplings between the irradiated spin-1/2 nuclei. Nevertheless, for nuclei 

other than 1H and 19F, the remaining homonuclear dipolar couplings are usually much smaller 

than the recoupled ones between spin-1/2 and quadrupolar nuclei, especially at high spinning 

speeds, and they lead to limited signal losses during the recoupling periods of indirectly 

detected D-HETCOR experiments. 

Among the existingm = 1 recoupling schemes, it has been shown that SFAM1 offers high 

robustness to rf inhomogeneity and resonance offset. In particular, it has been shown that when 

incorporated into the D-HMQC sequence, the SFAM1 recoupling provides higher efficiencies 

than REDOR and R3(q = 1) methods.[25] However, the SFAM1 recoupling is non-γ-encoded 

since the contribution of the heteronuclear dipolar coupling to the average Hamiltonian has a 

norm which depends on the Euler angle, 𝛾𝑃𝑅
𝐷,𝐼𝑆

, relating the internuclear vector between the 

coupled spins to the MAS rotor-fixed frame.[26] Because of this non-γ-encoding, each 

crystallite must have the same orientation at the beginnings of the two SFAM1 parts, i.e. at the 

beginnings of defocusing and refocusing periods.[25] In other words, the delay between the 

beginnings of the two SFAM1 parts must be rotor-synchronized, i.e. be an integer multiples of 

a rotor period, TR. Such condition is especially difficult to achieve in D-HETCOR experiments 

when the t1 evolution time is long due to weak dipolar interactions. Consequently, the D-HMQC 

sequence employing SFAM1 recoupling is sensitive to fluctuations of the MAS frequency. 
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On the contrary to the REDOR recoupling, the R3(q = 1) scheme is γ-encoded,[26] but this 

does not mean that when introduced in an NMR experiment the signal is independent on the 

𝛾𝑃𝑅
𝐷,𝐼𝑆

 angle. A sequence, the signal of which does not depend on this angle, will be termed γ-

independent hereafter. The γ-encoding of the recoupling scheme is a necessary, but not 

sufficient, condition for th e γ-independence of the whole sequence. D-HMQC sequences with 

R3(q = 1) recoupling have been reported but these sequences are not necessarily γ-

independent.[20,21] Furthermore, a major limitation of R3(q = 1) scheme is its sensitivity to rf 

inhomogeneity, especially when the irradiated spin is subject to small CSA.[23,26] The CSA 

of 13C and 15N nuclei have been reintroduced using γ-encoded m = 1 symmetry-based 

recoupling sequences, such as R81
3, R101

4, R121
5 or R142

5.[27,28] However, to the best of our 

knowledge, these sequences have not been used so far to reintroduce the heteronuclear dipolar 

coupling. 

In the present article, we introduce novel γ-independent D-HETCOR experiments to 

correlate spin-1/2 nuclei, other than 1H and 19F, and quadrupolar ones. To reintroduce the 

dipolar interaction under MAS, these experiments employ γ-encoded m = 1 𝑅𝑁𝑛
𝜈 schemes, 

which are applied either on the detected or the undetected channel.  

In the theoretical section, we explain how the 𝑅𝑁𝑛
𝜈  schemes are selected and give the 

expression of the contribution of the heteronuclear dipolar coupling to the first-order average 

Hamiltonian. We describe how these recoupling schemes have been incorporated into the D-

HETCOR sequences. In particular, how γ-independent D-HETCOR experiments with R𝑁𝑛
𝜈 

schemes on the detected spin are achieved by introducing a novel sequence, named Dipolar-

mediated Heteronuclear Universal-Quantum Correlation (D-HUQC). We then provide the 

analytical signal expressions for the various sequences.  

Numerical simulations are then employed to test the validity of these expressions and the 

robustness of the various recouplings to offset, CSA, rf-field inhomogeneity and MAS 

instabilities.  

The performances of the various recouplings and D-HMQC and D-HUQC sequences are 

finally compared between 13C and 15N nuclei in glycine and between 31P and 27Al in VPI-5 and  

Na7(AlP2O7)4PO4. 
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3.2. Theory 

    In the following, we will always assume that the recoupling is applied to I spin.  

3.2.1. Recoupling schemes 

    The heteronuclear dipolar interaction is characterized by a space rank l = 2 and a spin rank λ 

= 1. Hence, it can be regarded as the superposition of 15 components, with component indexes 

m = -2, -1, 0, +1 or +2 and μ = -1, 0 or +1. As mentioned in the introduction, the γ-encoding of 

the heteronuclear recoupling scheme is desirable in order to improve the robustness of the 

sequence to instabilities of the MAS frequency. It has been shown that a bijection between the 

m and μ indexes is a sufficient condition to achieve γ-encoded recoupling.[29,30] In other 

words, schemes reintroducing two components, {2, m, 1, μ} and {2, -m, 1, -μ}, of the 

heteronuclear dipolar interaction are γ-encoded. Furthermore, the scaling factor of the m = 1 

components is usually √2 higher than that of the m = 2 ones. High scaling factors limit the 

signal losses during the recoupling periods. Hence, γ-encoded m = 1 schemes require 

selecting the {2, 1, 1, μ} and {2, -1, 1, -μ} components of the heteronuclear dipolar interaction, 

with m = 1. 

Setting up periodic symmetry relationships between the space and spin rotations facilitates 

the design of heteronuclear dipolar recoupling since these symmetry arguments allow 

generating a first-order average Hamiltonian containing the desired rotational components, {2, 

1, 1, μ} and {2, -1, 1, -μ}, while other components are suppressed.[29,31] Among the 

symmetry-based recoupling sequences, the R𝑁𝑛
𝜈 class leads to selection rules on the first-order 

average Hamiltonian, which are more selective than the C𝑁𝑛
𝜈 class.[32,33] Consequently, the 

number of higher-order terms in the effective Hamiltonian tends to be larger for C𝑁𝑛
𝜈 schemes 

than for R𝑁𝑛
𝜈 ones, which are thus often more robust.  

A total of 269 R𝑁𝑛
𝜈 schemes were found, with 2 ≤ N ≤ 30, 1 ≤ n ≤ 10 and 1 ≤ ν ≤ 21, which 

only recouple the two components of the heteronuclear dipolar coupling and CSA in the first-

order average Hamiltonian. Here, we only considered R𝑁𝑛
𝜈 schemes, where N must be even, 

built around π-pulses. These schemes result from the N/2-fold repetition of the pair - of 

pulses, involving the phase shift ϕ = πν/N. Each of the π-pulses has the same duration, nTR/N, 

and rf-field requirement, 1 = NνR/(2n). Fig.3.1(a) shows that the phase ϕ of the γ-encoded m 

= 1 recoupling scheme monotonically increases with rf-field when ν1 ≥ νR and asymptotically 

converges towards 90°. The scaling factor, κ, of the allowed components of the heteronuclear 

dipolar coupling was calculated by using the ‘C and R symmetries’ Mathematica package. [32–
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35] As seen in Fig.3.1(b), κ monotonically increases with rf-field and asymptotically converges 

towards 0.26. We also calculated the number, N(2), of symmetry-allowed 2nd-order cross-terms 

involving commutators of two CSA Hamiltonians, two offset ones, and between one CSA and 

one offset Hamiltonians.[35] Among the 269 R𝑁𝑛
𝜈 schemes mentioned above, the minimal N(2) 

value is 42. Therefore, a total of 51 R𝑁𝑛
𝜈 recoupling were pre-selected with κ > 0.24, ν1 < 3.6νR 

and N(2) = 42, and the properties of the finally chosen 4 schemes are listed in Table.3.1. The 

related D-HMQC and D-HUQC sequences were further investigated by numerical simulations 

and experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1. (a) Phase  (°) and (b) scaling factor  versus the ratio 1/R for γ-encoded m = 1 

R𝑁𝑛
𝜈 heteronuclear recoupling schemes with 2 ≤ N ≤ 30, 1 ≤ n ≤ 10 and 1 ≤ ν ≤ 21. It must be 

noted that for each 1/R ratio the complementary phase, 180 - , also works with the same  

scaling factor. 
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Table.3.1. Properties of the selected R𝑁𝑛
𝜈 heteronuclear schemes recoupling the {2, 1, 1, -1} 

and {2, -1, 1, 1} components.  

R𝑁𝑛
𝜈  ϕ ° ν1/νR κ 

R184
5 50.0 2.25 0.248 

R102
3 54.0 2.50 0.250 

R163
5 56.25 2.67 0.251 

R142
5 64.28 3.5 0.254 

 

The γ-encoded m = 1 R𝑁𝑛
𝜈 contribution of I-S dipolar interaction to the average Hamiltonian 

is equal to: 

𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1)(R𝑁𝑛

𝜈) = 𝜔𝐷,𝐼𝑆[𝑆̂𝑧𝐼
+exp(𝑖𝜑) + 𝑆̂𝑧𝐼

−exp(−𝑖𝜑)]                 

= 2𝜔𝐷,𝐼𝑆[𝑆̂𝑧𝐼𝑥cos(𝜑) − 𝑆̂𝑧𝐼𝑦sin(𝜑)]                               (3.1) 

where the magnitude, 𝜔𝐷,𝐼𝑆, and the phase, φ, of the recoupled I-S coupling are given by 

𝜔𝐷,𝐼𝑆 = 𝜅
√3

2
𝑏𝐼𝑆sin(2𝛽𝑃𝑅

𝐷,𝐼𝑆)                                             (3.2) 

and 

𝜑 = 𝛾𝑃𝑅
𝐷,𝐼𝑆 + 𝛼𝑅𝐿

0 −𝜔𝑅𝑡
0                                              (3.3) 

In Eqs.(3.2) and (3.3), (i) bIS is the dipolar coupling constant in rad.s-1, (ii) the Euler angles {0, 

𝛽𝑃𝑅
𝐷,𝐼𝑆

, 𝛾𝑃𝑅
𝐷,𝐼𝑆

} relate the internuclear direction to the MAS rotor-fixed frame, (iii) 𝜔𝑅 = 2𝜋𝜈𝑅, 

and (iv) t0 refers to the starting time of the R𝑁𝑛
𝜈 scheme. As seen in Eq.(3.1), the γ-encoded m 

= 1 R𝑁𝑛
𝜈 scheme reintroduces single-quantum (1Q) heteronuclear dipolar coupling terms. The 

evolutions of product operators for two coupled spin-1/2 nuclei I and S are given in Table.3.1. 

Under 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1)(R𝑁𝑛

𝜈) , the z-magnetization of the I-spin is converted into heteronuclear 

multiple-quantum (MQ) coherences described by 2𝑆̂𝑦𝐼𝑦 and 2𝑆̂𝑦𝐼𝑥 operators, whereas the x-

magnetization of the S-spin evolves into heteronuclear MQ coherences described by 2𝑆̂𝑦𝐼𝑥 and 

2𝑆̂𝑦𝐼𝑦 operators. In both cases, the phase of the heteronuclear MQ coherences depends on φ 

angle. 𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1)(R𝑁𝑛

𝜈) depends on φ phase, and hence 𝛾𝑃𝑅
𝐷,𝐼𝑆

 angle, but conversely its norm does 

not, which confirms the γ-encoding of these R𝑁𝑛
𝜈 sequences.[26] 

In the case of R3 scheme applied to I spin, the contribution of I-S dipolar interaction to the 

average Hamiltonian is tilted by -π/2 around 𝐼𝑦 with respect to Eq.(3.1): 
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𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1)(𝑅3) = exp (𝚤

𝜋

2
𝐼𝑦) ∙ 𝐻̂𝐷,𝐼𝑆

̅̅ ̅̅ ̅̅ (1)(R𝑁𝑛
𝜈) ∙ exp (−𝚤

𝜋

2
𝐼𝑦)                    (3.4) 

with κ = 1/√6 ≈ 0.408. Hence, the R3 scheme is also γ-encoded. 

The simultaneous frequency and amplitude modulation (SFAM1) scheme has been proposed to 

recouple the hetero-nuclear dipolar interactions.[36] The carrier frequency, 𝜈ref + Δ𝜈ref(𝑡), of 

the rf-field is modulated with a cosine, while its amplitude, 1 (t), is modulated with a sine, both 

in a rotor-synchronized way: 

                          𝜈1(𝑡)= 𝜈1
max sin(2𝜋𝜈R𝑡)           Δ𝜈ref(𝑡)= Δ𝜈ref

max cos(2𝜋𝜈R𝑡)                       (3.5) 

When the SFAM1 scheme in the region 2 is applied to the I spin, Δ𝜈ref
max ≈ 𝜈1

max ≈ 3𝜈R, the 

average Hamiltonian of the I-S dipolar interaction is 

𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ (1)(SFAM) = 2𝜔𝐷,𝐼𝑆𝑆̂𝑧𝐼𝑧                                                (3.6) 

where  

𝜔𝐷,𝐼𝑆 = 𝜅𝑏𝐼𝑆sin(2𝛽𝑃𝑅
𝐷,𝐼𝑆)cos(𝜑)                                         (3.7) 

with κ = −C1/(2√2) and C1  1 is the first coefficient of the Fourier series expansion of 

cos[θ(t)], where θ(t) is the tilt angle between B0 and the effective field.[25] As seen in Eq.(3.7), 

the SFAM1 scheme is non-γ-encoded since its norm depends on φ, and hence on 𝛾𝑃𝑅
𝐷,𝐼𝑆

 angle. 

R𝑁𝑛
𝜈 and R3 schemes are dipolar-truncated (single-quantum coherences 𝑆̂𝑧𝐼𝑥/𝑦  in Eq.(3.1 and 

3.4), whereas SFAM1 is not (two-spin-order coherences 𝑆̂𝑧𝐼𝑧 in Eq.(3.6)). In the first case, a 

small dipolar coupling between two spins is only weakly reintroduced if one or both spins are 

also strongly dipolar coupled to other spins. On the contrary, in the second case long distances 

correlations can be observed. 
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Table 3.2. Evolution of product operators for two coupled spin-1/2 nuclei, I and S, during γ-

encoded m = 1 R𝑁𝑛
𝜈 heteronuclear recoupling when such scheme is applied to the spin I. 

𝑶̂(0) 
exp (−𝑖𝐻̂𝐷,𝐼𝑆

̅̅ ̅̅ ̅̅ ̅(1)τ ) 𝑶̂(0)exp (𝑖𝐻̂𝐷,𝐼𝑆
̅̅ ̅̅ ̅̅ ̅(1)τ ) 

𝑆̂𝑥 𝑆̂𝑥cos(𝜔𝐷,𝐼𝑆𝜏) + 2𝑆̂𝑦{𝐼𝑥cos(𝜑) − 𝐼𝑦sin(𝜑)}sin(𝜔𝐷,𝐼𝑆𝜏) 

𝑆̂𝑦 𝑆̂𝑦cos(𝜔𝐷,𝐼𝑆𝜏) − 2𝑆̂𝑥{𝐼𝑥cos(𝜑) − 𝐼𝑦sin(𝜑)}sin(𝜔𝐷,𝐼𝑆𝜏) 

𝑆̂𝑧 𝑆̂𝑧 

2𝑆̂𝑥𝐼𝑧 2𝑆̂𝑥𝐼𝑧 

2𝑆̂𝑦𝐼𝑧 2𝑆̂𝑦𝐼𝑧 

2𝑆̂𝑧𝐼𝑧 2𝑆̂𝑧𝐼𝑧cos(𝜔𝐷,𝐼𝑆𝜏) − {𝐼𝑦cos(𝜑) + 𝐼𝑥sin(𝜑)}sin(𝜔𝐷,𝐼𝑆𝜏) 

𝐼𝑥 𝐼𝑥{cos
2(𝜑) + cos(𝜔𝐷,𝐼𝑆𝜏)sin

2(𝜑)} − 𝐼𝑦 sin
2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

+ 2𝑆̂𝑧𝐼𝑧cos(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

𝐼𝑦 𝐼𝑦{cos(𝜔𝐷,𝐼𝑆𝜏)cos
2(𝜑) + sin2(𝜑)} − 𝐼𝑥 sin

2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

+ 2𝑆̂𝑧𝐼𝑧cos(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

𝐼𝑧 𝐼𝑧cos(𝜔𝐷,𝐼𝑆𝜏) − 2𝑆̂𝑦{𝐼𝑦cos(𝜑) + 𝐼𝑥sin(𝜑)}sin(𝜔𝐷,𝐼𝑆𝜏) 

2𝑆̂𝑧𝐼𝑥 2𝑆̂𝑧𝐼𝑥{cos
2(𝜑) + cos(𝜔𝐷,𝐼𝑆𝜏)sin

2(𝜑)} − 2𝑆̂𝑧𝐼𝑦sin
2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

+ 𝐼𝑧sin(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

2𝑆̂𝑧𝐼𝑦 2𝑆̂𝑧𝐼𝑥{cos(𝜔𝐷,𝐼𝑆𝜏)cos
2(𝜑) + sin2(𝜑)} + 2𝑆̂𝑧𝐼𝑦sin

2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

+ 𝐼𝑧cos(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

2𝑆̂𝑥𝐼𝑥 2𝑆̂𝑥𝐼𝑥{cos(𝜔𝐷,𝐼𝑆𝜏)cos
2(𝜑) + sin2(𝜑)} + 2𝑆̂𝑦𝐼𝑥sin

2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

+ 𝑆̂𝑦cos(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

2𝑆̂𝑥𝐼𝑦 2𝑆̂𝑥𝐼𝑦{cos
2(𝜑) + cos(𝜔𝐷,𝐼𝑆𝜏)sin

2(𝜑)} + 2𝑆̂𝑥𝐼𝑥sin
2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

− 𝑆̂𝑦sin(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

2𝑆̂𝑦𝐼𝑥 2𝑆̂𝑦𝐼𝑥{cos(𝜔𝐷,𝐼𝑆𝜏)cos
2(𝜑) + sin2(𝜑)} + 2𝑆̂𝑦𝐼𝑦sin

2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

− 𝑆̂𝑥cos(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 

2𝑆̂𝑦𝐼𝑦 2𝑆̂𝑦𝐼𝑦{cos
2(𝜑) + cos(𝜔𝐷,𝐼𝑆𝜏)sin

2(𝜑)} + 2𝑆̂𝑥𝐼𝑦sin
2 (
𝜔𝐷,𝐼𝑆𝜏

2
)  sin(2𝜑)

+ 𝑆̂𝑥sin(𝜑)sin(𝜔𝐷,𝐼𝑆𝜏) 
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3.2.2. D-HETCOR sequences 

3.2.2.1. Recoupling applied to the indirectly detected isotope.  

    As said before, the dipolar recoupling is applied to I spin, which is indirectly detected in this 

part, whereas the S spin is detected. 

    Fig.3.2(b) displays the pulse sequence of D-HMQC experiments in which the SFAM1 

scheme is applied to the indirectly detected spin (denoted HMQC-I-SFAM1 hereafter). During 

the first SFAM1 defocusing period, the in-phase S-spin magnetization (𝑆̂𝑥) for a pair of coupled 

IS spins evolves into antiphase one (2𝑆̂𝑦𝐼𝑧 ), which is converted into heteronuclear MQ 

coherences (2𝑆̂𝑦𝐼𝑥) by the /2-pulse with phase y on the I channel (I-/2y pulse hereafter). The 

isotropic shift is then encoded by allowing these MQ coherences to evolve during the evolution 

time, t1. The S-y pulse applied in the middle of the t1 period refocuses the evolution of the S-

spin magnetization under isotropic shift during the τ and t1 delays as well as its evolution under 

JI-S coupling. At the end of t1, the MQ coherences are converted back into anti-phase S-spin 

magnetization by the I-/2-y pulse and these coherences evolve during the second SFAM1 

refocusing period, into observable transverse S-spin magnetization. On a powder sample, the 

NMR signal of this experiment is proportional to [25] 

𝑆(𝜏) ∝
1

2
{1 −

𝜋√2

4
𝐽1/4(𝜅𝑏𝐼𝑆𝜏)𝐽−1/4(𝜅𝑏𝐼𝑆𝜏)}                        (3.8) 

where J±1/4(x) denotes the Bessel functions of the first kind and ±1/4-order. In the absence of 

losses, the shorter τ value producing maximal S(τ) intensity is τopt = 2.36/(κ𝑏𝐼𝑆).  

Fig.3.2(a) displays the pulse sequence of D-HMQC-I experiments with the γ-encoded m 

= 1 R𝑁𝑛
𝜈 recoupling (denoted HMQC-I-R𝑁𝑛

𝜈 hereafter). During the defocusing delay, the in-

phase S-spin magnetization is converted into heteronuclear MQ coherences, 2𝑆̂𝑦𝐼−𝜑, where 

𝐼−𝜑 = 𝐼𝑥cos(𝜑) − 𝐼𝑦sin(𝜑). These coherences are encoded by isotropic shift during t1. As seen 

in Table.3.2, 2𝑆̂𝑦𝐼𝑥  and 2𝑆̂𝑦𝐼𝑦  operators are converted back into 𝑆̂𝑥  during the refocusing 

delay, with coefficients – cos(𝜑) and sin(𝜑), respectively. Hence, the NMR signal of this 

experiment is proportional to 

𝑆(𝜏) ∝ 〈{cos2(𝜑) + sin2(𝜑)}sin2(𝜔𝐷,𝐼𝑆𝜏)〉 =
1

2
[1 − 〈cos(2𝜔𝐷,𝐼𝑆𝜏)〉]      (3.9) 

where the angular bracket 〈… 〉 denotes the powder average over all orientations of the I-S inter-

nuclear vectors. As seen win Eq.(3.2), 𝜔𝐷,𝐼𝑆 does not depend on 𝛾𝑃𝑅
𝐷,𝐼𝑆

 angle and hence, the 

HMQC-I-R𝑁𝑛
𝜈 sequence is γ-independent. Using the closed analytical form for γ-encoded m 

= 1 recoupling sequence,[30] Eq.(3.9) can be recast as 



 

89 
 

    𝑆(𝜏) ∝
1

2
−

1

31/4
√

𝜋

8𝜅𝑏𝐼𝑆𝜏
{𝐹𝑐 (3

1/4√
2𝜅𝑏𝐼𝑆𝜏

𝜋
) cos(√3𝜅𝑏𝐼𝑆𝜏) +

                    𝐹𝑠 (3
1/4√

2𝜅𝑏𝐼𝑆𝜏

𝜋
) sin(√3𝜅𝑏𝐼𝑆𝜏)}                                                  (3.10) 

where Fc(x) and Fs(x) are the Fresnel cosine and sine integrals, respectively.[30] The shorter τ 

value producing maximal S(τ) intensity is τopt = 2.18/(κ𝑏𝐼𝑆).  

Given Eq.(3.4), the R𝑁𝑛
𝜈 recoupling can be replaced by a R3 one bracketed by /2-pulse with 

phases -y and y. Nevertheless, I-/2 pulses applied at the beginning of the defocusing period 

and the end of the refocusing one do not affect the signal intensity since at such times, the terms 

in the density matrix which contribute to the signal, are proportional to 𝑆̂𝑥 operator. Hence, 

these pulses can be removed and the sequence using R3 recoupling on the indirectly detected 

channel (denoted HMQC-I-R3 hereafter) is similar to that using SFAM1 scheme. This sequence 

is γ-independent and its NMR signal is given by Eq.(3.10). 

3.2.2.2. Recoupling applied to the detected isotope.  

    As said before, the dipolar recoupling is applied to I spin, which is detected in this part, 

whereas the S spin is indirectly detected. 

    Fig.3.2(c) displays the D-HMQC sequence using SFAM1 recoupling (denoted HMQC-D-

SFAM1 hereafter). The evolution of the density matrix during this sequence is identical to that 

during HMQC-I-SFAM1, and hence, the NMR signal is proportional to Eq.(3.8).  

Fig.3.2(d) shows the pulse sequence of a novel through-space HETCOR experiments, named 

HUQC-R𝑁𝑛
𝜈 hereafter, in which the γ-encoded m = 1 R𝑁𝑛

𝜈 heteronuclear dipolar recoupling 

is applied to the detected spin. During the defocusing delay, the longitudinal magnetization of 

the I spin (𝐼𝑧 ) is converted into antiphase 1Q I-spin coherences, 2𝐼𝜋
2
+𝜑𝑆̂𝑧 , where 𝐼𝜋

2
+𝜑 =

𝐼𝑥sin(𝜑) + 𝐼𝑦cos(𝜑). The simultaneous /2-pulses on I and S channels partly convert these 

antiphase 1Q coherences into heteronuclear MQ coherences, 2𝐼𝑦𝑆̂𝑦cos(𝜑), and antiphase 1Q 

S-spin coherences, 2𝐼𝑧𝑆̂𝑦sin(𝜑) . Therefore, this sequence is named D-HUQC since all 

coherences of the detected spin are allowed during the t1 period. The isotropic shift is encoded 

by the evolution of these coherences during t1 time. At the end of t1, these coherences are 

converted back into 2𝐼𝑥𝑆̂𝑧  and 2𝐼𝑦𝑆̂𝑧  operators, which evolve into 𝐼𝑧  one with coefficients 

sin(φ) and cos(φ), respectively. This longitudinal I-spin magnetization is converted into 

observable transverse I-spin magnetization by the last I-/2y pulse. Therefore, the NMR signal 
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of HUQC experiment is proportional to Eq.(3.9), and hence to Eq.(3.10). In particular, the 

HUQC experiment using γ-encoded m = 1 R𝑁𝑛
𝜈  heteronuclear dipolar recoupling is γ-

independent.  

As explained above, the R𝑁𝑛
𝜈 recoupling can be replaced by a R3 one bracketed by two /2 

pulses with phase -y and y. Hence, the sequence of HUQC experiment using R3 recoupling 

(denoted HUQC-R3 hereafter) is identical to the HMQC-D-SFAM1 sequence (Fig.3.2(c)), but 

both heteronuclear MQ coherences and 1Q S-spin coherences evolve during the t1 time. 

We also introduce experiments using R𝑁𝑛
𝜈 or R3 recoupling to correlate I-S MQ coherences 

with the I-spin 1Q ones. The pulse sequences of these variants of D-HMQC experiments 

(denoted HMQC-D-R𝑁𝑛
𝜈 and HMQC-D-R3 hereafter) are shown in Fig.3.3. These sequences 

require the application of four I- pulses during the t1 period. In principle, their signals are 

identical to that of HUQC experiments. However, we show below using spin dynamics 

simulations that the additional I- pulses decrease its robustness to CSA of the I spin (hereafter 

called CSAI). Furthermore, in order to refocus the CSAI, the four I- pulses must be rotor-

synchronized. Consequently, the period between defocusing and refocusing of the recouplings 

must be 4kTR, whereas that of HMQC-I and HUQC sequences is 2kTR, while the spectral width 

of the indirect dimension is equal to νR. The pulse programs corresponding to HMQC-I-R𝑁𝑛
𝜈 

and HUQC are given in the Appendix. 
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Fig.3.2. Pulse sequences and coherence transfer pathways of (a-b) HMQC-I experiment using 

(a) R𝑁𝑛
𝜈 and (b) R3 or SFAM1, (c) HMQC-D experiment using SFAM1 as well as HUQC with 

R3, and (d) HUQC using R𝑁𝑛
𝜈. In (a) the coherence orders pI = ± 1 during the t1 period are 

selected by a two-step phase cycling, in which the phase of the I- pulses during the defocusing 

period and the phase of the receiver are incremented by 180°. Similarly in (b) the phases of 

R3/SFAM1 irradiation, the first I-/2-y pulse and the receiver were incremented by 180° to select 

pI = ± 1 during t1. For (b,c), pS = ± 1 was selected during t1 by incrementing the phase of the 

first S-/2x pulse and the receiver by 180°. Quadrature detection along the indirect dimension 

was achieved using the States-TPPI procedure,[48] by incrementing the phase of the I-pulses 

following the t1 period. 
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Fig.3.3. Pulse sequences and coherence transfer pathways of HMQC-D experiment using (a) 

R𝑁𝑛
𝜈 or (b) R3 recoupling. The coherence orders of the S-spin, pS = ± 1, during the t1 period 

were selected by incrementing the phase of the first S-/2 pulse and the receiver by 180°. 

Quadrature detection along the indirect dimension was achieved using the States-TPPI 

procedure,[48] by incrementing the phase of the second S-/2 pulse. 
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3.3. Simulations and experimental section 

3.3.1. Numerical simulations for an isolated 13C-15N spin pair 

    All numerical simulations of spin dynamics were performed with the SIMPSON software 

(version 4.1.1).[36] The powder average was calculated using 168 {MR,MR} pairs and 13 MR 

angles. The 168 {MR,MR} Euler angles, which relate the molecular and rotor frames, were 

selected according to the REPULSION algorithm,[37] while MR angle was equally stepped 

from 0 to 360°. The spin system was an isolated 13C-15N spin pair. Simulations were performed 

for two spin-1/2 isotopes in order to limit the size of the density matrix and accelerate the 

simulations. The 13C-15N dipolar coupling constant was bIS/(2π) = 409 Hz, which corresponds 

to the typical 27Al-31P dipolar couplings for Al-O-P bonds found in alumino-phosphate 

materials. The CSAI value is indicated in the figure captions, its asymmetry parameter is null, 

and the orientation of its principal axis systems with respect to the 13C-15N vector is described 

by the Euler angles (0, 30°, 0).  

    For all simulations, the static magnetic field was fixed at B0 = 18.8 T (0,13C = 201.2, 0,15N = 

81.14 MHz). The MAS frequency was νR = 20 kHz, except in Figs.3.11 - 3.14. We simulated 

the powder averaged signal corresponding to HMQC-I sequence with 13C detection, 13C-{15N 

} hereafter, using SFAM1, R184
5 , R102

3 , R163
5 , R142

5  and R3 recoupling schemes. We also 

simulated 13C-{15N } HMQC-D sequences using the same recoupling schemes as well as 13C-

{15N } HUQC using R𝑁𝑛
𝜈 and R3 schemes. Except during the recoupling periods, the rf nutation 

frequencies were equal to 100 kHz during the pulses applied to 13C and 15N isotopes. The 

transfer efficiency is defined with respect to the 13C signal detected after a spin echo. The rf 

nutation frequencies during the recoupling period were fixed to their theoretical value (see 

Table 3.1) for R𝑁𝑛
𝜈 schemes and νR for R3 scheme, except in Figs.3.6 - 3.8. For SFAM1, the 

peak rf amplitude, ν1
max, and carrier frequency modulation, Δ𝜈ref

max, were fixed to 70 and 50 kHz 

at νR = 20 kHz and 210 and 150 kHz at νR = 60 kHz, except in Figs.3.6 - 3.8. The pulses on 

both channels were always applied on resonance, except in Figs.3.9 and 3.11.      
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3.3.2. NMR experiments 

    Experiments were performed on a wide-bore 9.4 T and a narrow-bore 18.8 T Bruker 

spectrometers equipped with Avance II and III consoles, respectively. Spectra were recorded 

with 3.2 mm triple resonance HXY MAS probes. Rotors were fully filled with the sample.  

3.3.2.1. 13C-{15N} correlations.  

    The 13C and 15N isotropic chemical shifts were directly referenced to 43.67 ppm and 32.3 

ppm for α -Glycine peaks, respectively. 13C-{15N} HMQC-I, HMQC-D and HUQC experiments 

were performed on a sample of 98% [2-13C,15N] glycine (C2H5NO2) containing a mixture of α 

and γ polymorphs. The sample was purchased from CortecNet and used without purification. 

The experiments were carried out at B0 = 9.4 T and R = 10 kHz except in Figs.3.17. The 

sequences of Figs.3.2 and 3.3 have been combined with a preliminary ramped 1H  13C CP 

transfer to create 13C transverse magnetization, which was converted into 13C longitudinal 

magnetization in the case of HMQC-I-R𝑁𝑛
𝜈 experiment (see Fig.3.2(d)). The CP contact time 

was 1.5 ms. The 13C nutation frequency during CP was 44 kHz, whereas the 1H nutation 

frequency was ramped from 54 to 77 kHz. During the remaining parts of the sequences, a 

SPINAL-64 decoupling with rf nutation frequency of 90 kHz was applied to the 1H channel.[38] 

Except during the recoupling, the rf nutation frequencies of the /2 and  pulses were 1,13C = 

42 and 1,15N = 32 kHz. The rf nutation frequencies during the recoupling periods were fixed to 

their theoretical value (Table.3.1) for R𝑁𝑛
𝜈 scheme and ν1 = νR = 10 kHz for R3 scheme. For 

SFAM1 recoupling, the ν1
max and Δ𝜈ref

max values were fixed to 16 or 26(for 15N indirect or 13C 

direct) and 40 kHz. The 13C-{15N} HMQC-I, HMQC-D and HUQC 1D and 2D spectra resulted 

from averaging 8 transients with a recycle delay of 3 s and 64 t1 increments for the 2D ones. 

The spectral intensities were normalized with respect to those observed after the same 1H  

13C CP 1D spectrum.  

3.3.2.1. 31P-{27Al} and 27Al-{31P} correlations.  

    The 31P and 27Al isotropic chemical shifts were referenced to 85% H3PO4 and a 1 M solution 

of Al(NO3)3, respectively. 27Al-{31P} HMQC-I, 31P-{27Al} HMQC-D and HUQC experiments 

were performed on two crystalline alumino-phosphate materials, VPI-5 (Al3(PO4)3(H2O)5) and 

Na7(AlP2O7)4PO4 (called (1) in the following) at R = 20 kHz and B0 = 9.4 T for VPI-5 and B0 

= 18.8 T for (1), which has been prepared according to the procedure previously reported.[39] 

Contrary to VPI-5, (1) contains 31P sites subject to large CSA31P (up to 85 ppm).[25] The 

heteronuclear dipolar recoupling was always applied on the 31P channel since the number of 
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pulses applied to the quadrupolar nucleus must be minimized. The rf nutation frequencies of 

/2 and  pulses were 1,31P = 74 and 1,27Al = 9.3 kHz (to achieve selective excitation of the 

central transition (CT)). For 27Al-{31P} experiments, a preliminary Hyper-Secant (HS) pulse 

lasting 3 ms was used to enhance the polarization of the 27Al CT by manipulating the population 

of satellite transitions.[40] The optimal HS enhancement was obtained with an rf field of 11 

kHz and a frequency sweep from 180 to 160 kHz during 3 ms. The nutation frequencies during 

the recoupling periods were fixed to their theoretical value (Table.3.1) for R𝑁𝑛
𝜈 scheme and ν1 

= νR = 20 kHz for R3. For SFAM1 recoupling, the ν1
max and Δνref

maxvalues were fixed to 42 and 

60 kHz. The 27Al-{31P} HMQC-I, 31P-{27Al} HMQC-D and HUQC 1D and 2D spectra result 

from averaging 8/16 transients with a recycle delay of 1/20 s and 200/90 t1 increments for the 

2D ones. The intensities have been normalized with respect to that of either the 31P signal after 

a /2 hard-pulse (Fig.3.18(b)), or the 27Al signal after a soft CT-selective /2 pulse 

(Fig.3.18(a)).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4. Crystal structure of (a) -Glycine, (b) -Glycine, (c) Na7(AlP2O7)4PO4 and (d) VPI-5 

(Al3(PO4)3(H2O)5). These figures are adopted from CIF files with Diamond software. 

 

 

(a) -Glycine (b) -Glycine 

(d) VPI-5 (Al3(PO4)3(H2O)5) (c) Na7(AlP2O7)4PO4 
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3.4. Results and discussion 

3.4.1. Numerical simulations 

3.4.1.1. Build up curves.  

    Fig.3.5 shows the simulated build-up curves of 13C-{15N} HMQC-I experiments for an 

isolated 13C-15N spin pair in the absence of any CSA. As expected, the reduced orientation 

dependence of γ-independent sequences, HMQC-I-R𝑁𝑛
𝜈 and -R3, leads to a stronger oscillation 

of signal intensity versus τ than for HMQC-I-SFAM1, the signal of which depends on 𝛾𝑃𝑅
𝐷,𝐼𝑆

 

angle. Furthermore, the maximal transfer efficiency of γ-independent sequences is about 25% 

higher than that of HMQC-I-SFAM1. These results are consistent with Eqs.(3.8) and (3.10). 

Furthermore, the optimal recoupling times agree with the τopt expressions and κ values given in 

the section II. Owing to its large scaling factor, R3 scheme produces the fastest transfer and 

hence must be advantageous in the case of fast signal decay. We checked [not shown] that the 

build-up curves of HMQC-D and HUQC sequences are identical to their HMQC-I counterpart 

using the same recoupling schemes.  

 

 

 

 

 

 

 

 

 

 

Fig.3.5. Simulated build-up curves of 13C-{15N} HMQC-I experiments of an isolated 13C-15N 

spin pair without any CSA, using SFAM1, R𝑁𝑛
𝜈 and R3 recoupling (see the labels of the curves 

on the right of the figure). 
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3.4.1.2. Robustness to rf inhomogeneity. 

    There exists an inherent distribution of rf field amplitudes in the sample coil of MAS probes, 

mostly along the axis of solenoid coil. Typically the rf field amplitude is maximal at the center 

of the coil and drops by about 50% near the edges.[41] The simulated signal intensity of 13C-

{15N} HMQC-I, HMQC-D-SFAM1 and HUQC experiments on an isolated 13C-15N spin pair is 

shown as function of 1I or 1
max shown either in absolute (Fig.3.6) or in relative (Fig.3.7) value. 

SFAM1 exhibits the highest robustness to rf inhomogeneity owing to the modulation of the rf-

field, whereas the R3 scheme is the least robust. The R𝑁𝑛
𝜈 schemes, which are γ-encoded as R3, 

are nevertheless more robust to rf-field variation. In the absence of CSAI (compare Fig.3.6(a) 

and (c) or 3.7(a) and (c)), the robustness of R𝑁𝑛
𝜈  recoupling to rf-field is higher when the 

recoupling is applied to the indirectly detected spin. For both R3 and R𝑁𝑛
𝜈  recoupling, the 

robustness to rf maladjustment or inhomogeneity increases when the irradiated spin is subject 

to CSAI. Such effect has already been reported for R3 irradiation.[23,26]  

Similar simulations for HMQC-D-R3 and -R𝑁𝑛
𝜈  experiments show that their efficiencies 

strongly decrease for CSAI = 10 kHz (Fig.3.8), and hence that the HUQC method should be 

preferred for direct recoupling. This limited efficiency of HMQC-D-R3 and -R𝑁𝑛
𝜈  has been 

confirmed experimentally (not shown), and hence these sequences will not be analyzed 

anymore. 
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Fig.3.6. Simulated 13C signal versus the applied rf field of the recoupling scheme, 1(R𝑁𝑛
𝜈 or 

R3) or 1
max for SFAM1, for 13C-{15N} experiments: (a,b) HMQC-I and (c,d) HMQC-D-SFAM1 

and HUQC using R𝑁𝑛
𝜈 and R3 recoupling. CSAI = 0 (a,c) and 10 kHz (b,d). Recoupling times 

were fixed to their optimal values (Figs.3.5). 
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Fig.3.7. Simulated 13C signal versus the ratio between the difference of the applied and nominal 

rf-fields and the nominal rf-field of the recoupling scheme for 13C-{15N} HMQC-I, HMQC-D-

SFAM1 and HUQC experiments for CSAI of (a,c) 0 and (b,d) 10 kHz. The recoupling times 

were fixed to their optimal values (Figs.3.5). 
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Fig.3.8. Simulated 13C signal versus the applied rf field, 1(R𝑁𝑛
𝜈 or R3) or 1

max for SFAM1, of 

the recoupling scheme for 13C-{15N} HMQC-D experiments for CSA15N = 0 (a) and 10 kHz (b). 

The recoupling times were fixed to their optimal values (Figs.3.5).  
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3.4.1.3. Robustness to offsets.  

    Fig.3.9 compares the robustness to offset of 13C-{15N} HMQC-I, HMQC-D-SFAM1 and 

HUQC sequences. SFAM1 recoupling is always the most robust sequence to resonance offset 

owing to the modulation of the carrier frequency position. Among the γ-encoded schemes, 

R142
5 and R3 benefit respectively from the highest and lowest robustness to offset owing to their 

largest (Table.3.1) and smallest nominal rf-fields. The robustness to offset is globally similar 

when the recoupling is applied to the indirectly detected or detected isotope. As these 

recoupling schemes are rotor-synchronized, the offset bandwidth increases for increasing MAS 

frequency (Fig.3.11). 

 

 

 

 

 

 

 

Fig.3.9. Simulated 13C signal versus the resonance offset on the recoupled I channel for 13C-

{15N} (a) HMQC-I experiments and (b) HMQC-D-SFAM1 and HUQC with R𝑁𝑛
𝜈  and R3 

recoupling and CSAI = 10 kHz. Recoupling times were fixed to their optimal values (Figs.3.5).  

 

3.4.1.4. Robustness to CSAI.  

    Fig.3.10 shows the variation of the signal intensity of 13C-{15N} HMQC-I, HMQC-D-

SFAM1 and HUQC sequences versus CSAI. SFAM1 scheme is the least robust since its 

modulation during the rotor period interferes with the modulation of the rf carrier frequency. 

R3 scheme benefits from the highest robustness to CSAI (see also Fig.3.6 and 3.7).  

The robustness to CSA of R𝑁𝑛
𝜈  schemes is lower than that of R3 since the CSAI results in 

imperfect -pulses. Nevertheless, the deviation from the -pulse is inverse proportional to 1I, 

and hence the robustness increases with the nominal rf-field. For the same reason, the 

robustness to CSAI increases with R since the recoupling schemes are rotor-synchronized 

(Fig.3.11(c) and (d)). 
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Fig.3.10. Simulated 13C signal intensity versus CSAI for 13C-{15N} experiments: (a) HMQC-I 

and (b) HMQC-D-SFAM1 and HUQC with R𝑁𝑛
𝜈 and R3 recoupling. Recoupling times were 

fixed to their optimal values (Figs.3.5). 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig.3.11. Simulated 13C signal intensity at R = 60 kHz versus (a,b) the resonance offset and 

(c,d) the CSAI of the irradiated isotope for 13C-{15N}: (a,c) HMQC-I experiments and (b,d) 

HMQC-D-SFAM1 and HUQC using R𝑁𝑛
𝜈 and R3 recoupling. In (a,b) CSAI = 10 kHz, whereas 

in (c,d), the recoupling is applied on resonance. 
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3.4.1.5. MAS frequency variations.  

    Fig.3.12 displays the variations of signal intensities of 13C-{15N} HMQC-I, HMQC-D-

SFAM1 and HUQC sequences versus νR. SFAM1 scheme is most sensitive to variation in R 

since it is non-γ-encoded. The sensitivity to MAS variations is especially high when the SFAM1 

recoupling is applied to the detected nucleus (Fig.3.12(b)) since in that case, the CSAI is 

imperfectly refocused when νR ≠ 20 kHz, which decreases the signal intensity. As expected the 

γ-encoded schemes exhibit better robustness to MAS fluctuations. Furthermore, for those 

recoupling methods, the robustness to νR is similar when the recoupling is applied to the 

detected or indirectly detected isotope (compare Fig.3.12(a) and (b)). As seen by comparing 

Fig.3.12 and 3.13, the tolerance to νR deviations does not depend on its value in Hz, and hence, 

the relative variations in MAS frequency must be smaller at high MAS frequency. In the case 

of larger CSA (29 kHz), R3, R142
5 and R163

5 schemes are more robust to the R fluctuations 

than the other sequences (Fig.3.14).   

 

 

 

 

 

 

 

 

Fig.3.12. Simulated 13C signal intensity versus R for 13C-{15N} experiments: (a) HMQC-I and 

(b) HMQC-D-SFAM1 and HUQC using R𝑁𝑛
𝜈  and R3 recoupling with CSAI = 10 kHz. 

Recoupling times were fixed to their optimal values (Figs.3.5).  
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Fig.3.13. Simulated 13C signal intensity around R = 60 kHz for 13C-{15N} experiments: (a) 

HMQC-I and (b) HMQC-D-SFAM1 and HUQC experiments using R𝑁𝑛
𝜈  and R3 recoupling 

with CSAI = 10 kHz. The recoupling times were fixed to their optimal values (Figs.3.5).  

 

 

 

 

 

 

 

 

 

 

 

Fig.3.14. Simulated 13C signal intensity around R = 20 kHz for 13C-{15N} HMQC-D-SFAM1 

and HUQC experiments when CSA13C = 27.5 kHz, which is the shielding value of P1 in sample 

(1) at 18.8 T. 
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3.4.2. Experimental verifications 

3.4.2.1. 13C-{15N} D-HETCOR  

    Fig.3.15(a) displays the experimental build-up curves of the 13Cα signal of [2-13C,15N] 

glycine in 1D 13C-{15N} HMQC-I spectra. The CSA15N of the NH3
+ group is equal to 9.7 ppm, 

i.e. 400 Hz at B0 = 9.4 T.[42] The experimental build-up curves agree well with the simulated 

ones shown in Fig.3.5 with null CSA15N. The major difference is the lower transfer efficiency 

for HMQC-I-R3 sequence, which stems from its poor robustness to rf field inhomogeneity. For 

HMQC-I experiments, the highest signal intensity is achieved using R𝑁𝑛
𝜈 recoupling since these 

methods combine γ-encoding and higher robustness to rf-field than R3 scheme.  

    Nevertheless, when the recoupling is applied to the detected 13C nucleus, subject to  CSA13C 

= 19.43 ppm, i.e. 1.95 kHz at B0 = 9.4 T,[43] SFAM1, R184
5, R102

3 and R163
5 schemes produce 

similar intensities (Fig.3.15(b)) since the R𝑁𝑛
𝜈  recoupling techniques are less robust to rf 

inhomogeneity when applied to the detected spin (Table.3.3). Fig.3.16(a),(b) and (c),(d) show 

respectively the 13C-{15N} HMQC-I and HMQC-D/HUQC 2D spectra of glycine, which exhibit 

two cross-peaks, one correlating the de-shielded 13C signal to the shielded 15N one, assigned to 

α-glycine and the other one to γ-glycine.[44] As seen in 13C slices of these 2D spectra, R𝑁𝑛
𝜈 

recoupling schemes always produce higher signal intensity than SFAM1 and R3 schemes.     

    We measured experimentally the robustness to rf-field inhomogeneity and offset of the 

various recouplings and the results are given in Table.3.3. As already observed in numerical 

simulations, SFAM1 recoupling exhibits the highest robustness to rf-field inhomogeneity and 

offset and R𝑁𝑛
𝜈 schemes are more robust to offset and rf inhomogeneity than R3. Furthermore, 

the R𝑁𝑛
𝜈 recoupling schemes are more sensitive to the offset and rf field when they are applied 

to the detected isotope. Experiments also confirm that the non-γ-encoded SFAM1 sequence is 

the least robust to variation in MAS frequency (Fig.3.17).   
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Table.3.3. Experimental robustness to rf-inhomogeneity, Rrf, and offsets, ∆𝜈ref, for the 13Cα 

signal of [2-13C,15N] glycine in 13C-{15N} HMQC-I, HMQC-D-SFAM1 and HUQC 1D 

experiments.  

Scheme HMQC-I HMQC-D/HUQC 

 

a Rrf b ∆𝜈ref/kHz a Rrf b ∆𝜈ref/kHz 

R185
4 0.29 9.8 0.20 7.5 

R103
2 0.30 9.8 0.21 7.3 

R165
3 0.28 9.8 0.23 7.0 

R145
2 0.31 9.0 0.25 7.5 

R3 0.14 7.0 0.09 7.0 

SFAM1 1.01 35 1.46 20 

a Rrf, is defined as the ratio between the total rf-range where the signal is larger than half its 

maximum and the nominal nutation frequency. b ∆𝜈ref is defined as the frequency offset range 

on the recoupled channel, for which the signal intensity is larger than the half maximum of the 

signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.15. Experimental build-up curves of 13Cα signal of [2-13C,15N] α-glycine for 13C-{15N} 

1D experiments: (a) HMQC-I, (b) HMQC-D-SFAM1 and HUQC using R𝑁𝑛
𝜈 and R3 recoupling.  
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Fig.3.16. Experimental 13C-{15N} (a,b) HMQC-I and (c,d) HMQC-D-SFAM1 and HUQC with 

R𝑁𝑛
𝜈  and R3 recoupling 2D spectra of [2-13C,15N] glycine containing a mixture of α and γ 

polymorphs. The recoupling times were fixed to their optimal values determined from Fig.3.15.  

 

  

 

 

 

 

 

 

 

 

 

Fig.3.17. Experimental 13Cα signal versus R for 13C-{15N} experiments: (a) HMQC-I and (b) 

HMQC-D-SFAM1 and HUQC experiments using R𝑁𝑛
𝜈  and R3 recoupling. The recoupling 

times were fixed to their optimal values determined from Fig.3.15.  
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3.4.2.2. 27Al-31P D-HETCOR on VPI-5 at 9.4 T.  

    Hydrated VPI-5 contains three equally populated sites for Al and P, which are coordinated 

with each other through one bridging oxygen. Under MAS at 9.4 T, the 31P resonances are well 

resolved, but only two 27Al peaks are observable (Al1 and Al2,3). The resonance labeled Al1 at 

 -20 ppm represents a site between the fused four-membered rings. Two water molecules 

complete an octahedral coordination sphere for Al1 and render inequivalent the tetrahedrally 

coordinated Al2 and Al3 sites at  40 ppm, as well as the phosphorus sites P2 and P3 in the six-

membered rings. The  CSA31P are equal to 26.3, 33.7 and 34.6 ppm, i.e. 4.26, 5.46 and 5.60 kHz 

for P1, P2 and P3 sites, respectively at B0 = 9.4 T. 27Al quadrupolar parameters are equal to (CQ 

(MHz), Q) = (3.5,0.91), (1.1,0.3) and (2.2,0.8) for Al1, Al2 and Al3, respectively [46]. The 

specific connectivities between various nuclei are as follows: Al1 (2P1, P2, P3), Al2 (P1, 2P2, P3) 

and Al3 (P1, P2, 2P3).  

    Fig.3.18 shows the build-up curves of 27Al2,3 signal in 
27Al-{31P} HMQC-I and 31P2 signal in 

31P-{27Al} HMQC-D-SFAM1 and HUQC spectra of VPI-5, and Fig.3.19 the corresponding 2D 

spectra and 1D slices. SFAM1 recoupling always results in the fastest build-up (Fig.3.18). For 

HMQC-I experiments, the highest intensity is achieved using SFAM1 (Figs.3.18(a) and 

3.19(a)-(c)). Conversely HMQC-D-SFAM1 and HUQC-RN𝑛
  sequences produce similar cross-

peak intensities (Fig.3.18(b) and 3.19(d)). 

    Table.3.4 compares the robustness to rf inhomogeneity and offset of the various recouplings 

in VPI-5. As already observed for 13C-{15N} D-HETCORs, SFAM1 recoupling exhibits the 

highest robustness to offset and rf inhomogeneity. The R𝑁𝑛
𝜈 schemes are more robust to rf field 

variation than R3. For R𝑁𝑛
𝜈 and R3 methods, the robustness to rf inhomogeneity and offset is 

higher when the recoupling is applied to the indirectly detected spin. 

Fig.3.20 compares the robustness to MAS frequency of all HMQC and HUQC sequences. For 

HMQC-I experiment, R𝑁𝑛
𝜈 and R3 techniques benefit from the highest robustness to variations 

in MAS frequency (Fig.3.20(a)). In the case of recoupling schemes applied to the detected spin 

(Fig.3.20(b)), the highest robustness is achieved by R3 scheme but R𝑁𝑛
𝜈 ones are also much 

more robust to MAS frequency fluctuations than SFAM1.  
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Table. 3.4. Experimental robustness to rf-inhomogeneity, Rrf, and offsets, ∆𝜈ref, observed in 

1D experiments of VPI-5 for the 27Al2,3 signal in 27Al-{31P} HMQC-I and for the 31P2 signal 

of 31P-{27Al} HMQC-D-SFAM1 and HUQC. 

Scheme HMQC-I HMQC-D/HUQC 

Rrf ∆𝜈ref/kHz Rrf ∆𝜈ref/kHz 

R185
4 0.41 22.3 0.33 16.7 

R103
2 0.42 24.2 0.26 16.2 

R165
3 0.45 22.6 0.27 16.2 

R145
2 0.39 22.9 0.30 16.2 

R3 0.28 23.7 0.18 16.0 

SFAM1 1.15 27.5 1.61 25.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.18. Experimental build-up curves observed with 1D experiments for VPI-5. (a) 27Al2,3 

signal with 27Al-{31P} HMQC-I and (b) 31P2 signal with 31P-{27Al} HMQC-D-SFAM1 and 

HUQC with R𝑁𝑛
𝜈 and R3 recoupling. 
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Fig.3.19. Experimental (a-c) 27Al-{31P} D-HMQC-I and (d) 31P-{27Al} HMQC-D-SFAM1 and 

HUQC (R3 and R103
2) 2D spectra and 1D slices of VPI-5 at B0 = 9.4 T with νR = 20 kHz. The 

recoupling times were fixed to their optimal values (Fig.3.18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.20. Experimental signal observed with 1D experiments of VPI-5 versus R of (a) 27Al2,3 

for 27Al-{31P} HMQC-I and (b) 31P2 for HMQC-D-SFAM1 and HUQC with R𝑁𝑛
𝜈  and R3 

recoupling.  
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Fig.3.21. 31P and 27Al single hard-pulse spectra of Na7(AlP2O7)4PO4 at B0 = 9.4 T and νR = 20 

kHz. 

 

3.4.2.3. 31P-{27Al} HMQC-D-SFAM1 and HUQC on Na7(AlP2O7)4PO4 at 18.8 T.  

    Numerical simulations have shown that R𝑁𝑛
𝜈 schemes are more robust to CSAI than SFAM1 

recoupling. Therefore, the 31P-{27Al} sequences were tested with direct recoupling on 

Na7(AlP2O7)4PO4 sample, called (1) hereafter, which contains three P sites with two of them 

subject to large CSA (Fig.3.21). Their CSA parameters are (δaniso (ppm),  ηCSA) = (85, 0.6),  

(10.5, 0.85) and (75.7, 0.3) for P1, P2 and P3 sites, respectively,[25] which is equivalent to  

CSA31P = 27.5, 3.4 and 24.5 kHz at 18.8 T. This sample also contains one 27Al site with CQ = 

5.3 MHz and Q = 0.46. 

Fig.3.22 compares the F1 slices of P1 in sample (1), which presents the largest CSA31P, for 2D 

spectra recorded with 31P-{27Al} HMQC-D-SFAM1 and HUQC with 𝑅𝑁𝑛
𝜈 and R3 recoupling. 

R3 and 𝑅102 
3  schemes produce the smallest and largest signal intensities, respectively. 

However, one notices the very large differences in the t1-noise, lower for R3,  R163
5 and R142

5 

schemes than for R102
3 and SFAM1 since the former recouplings are more robust to R than the 

latter ones. As a result, the S/N ratios are in the order: 𝑅163
5 > 𝑅142

5  > 𝑅102
3 >> 𝑅184

5 . It must 

be noted that the order of the S/N is fully correlated to the robustness to spinning speed 

fluctuations (Fig.3.13), except for R3 which is very sensitive to rf-inhomogeneity.  

It has recently been shown that the t1-noise is mainly related to the 2nd-order dipolar-CSA cross-

terms, and that one way to decrease this noise is to slightly de-synchronize the sequence [47]. 

We have used this trick with the HUQC-R102
3 experiment by slightly increasing the spinning 

speed to R = 20.1 kHz, without changing the pulse timing based on R = 20 kHz. The 

corresponding F1 slices are shown in Fig.3.23. This de-synchronization slightly decreases the 

efficiency, but as expected largely improves the S/N ratio of the P1 cross-peak. However, it 

introduces one additional parameter, the spinning speed which must be slightly optimized with 

respect to its theoretical value. 
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Fig.3.22. Na7(AlP2O7)4PO4: experimental F1 slices observed for P1, which presents the largest 

CSA31P = 27.5 kHz, at B0 = 18.8 T and R = 20 kHz with HMQC-D-SFAM1 and HUQC with 

R102
3, R163

5, R142
5 and R3 recoupling. One observes very large differences in sensitivity, with 

HUQC-R102
3 and -R163

5 providing the largest and the smallest S/N, respectively.  

 

 

 

 

 

 

 

Fig.3.23. Experimental F1 slices of 31P-{27Al} HUQC-R102
3 of Na7(AlP2O7)4PO4 at B0 = 18.8 T, 

either synchronized or unsynchronized with R = 20 or 20.1 kHz, respectively, both with the 

same  values based on R = 20 kHz 
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3.5. Conclusion  

    We have introduced symmetry-based heteronuclear dipolar recoupling schemes, which are 

γ-encoded and result in rapid dipolar dephasing by reintroducing the space component m = 1 

for the heteronuclear dipolar coupling. These recoupling schemes have been incorporated into 

novel sequences to correlate half-integer spin quadrupolar nuclei and spin-1/2 isotopes, other 

than 1H and 19F. These heteronuclear correlation sequences are γ-independent and hence their 

signal is in principle 25% higher than that of their counterparts using non-γ-encoded recoupling 

schemes, such as SFAM1. Furthermore, they are more robust to the CSA of the irradiated spin 

and the fluctuations of the MAS frequency. Such improved robustness reduces the t1-noise in 

the case of spin-1/2 nuclei subject to large CSA. In addition, the γ-encoded m = 1 R𝑁𝑛
𝜈 

recoupling techniques, such as R184
5, R102

3 , R163
5  and R142

5 , are more robust to rf 

inhomogeneity than their R3(q = 1) cousin. Nevertheless, the γ-encoded m = 1 recoupling 

techniques are less robust to rf inhomogeneity and offset than SFAM1 method. 31P-27Al 

heteronuclear correlation experiments show that (i) SFAM1 recoupling leads to higher transfer 

efficiency when the spin-1/2 nucleus is indirectly detected and subject to small CSA, whereas 

(ii) R163
5 scheme produces the highest S/N ratio in the case of detection via spin-1/2 nuclei 

subject to large CSA. 
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Chapter 4: General conclusion and perspectives 

4.1. General conclusion 

This thesis has focused on the development and application of novel through-bond and 

through-space correlation solid-state NMR experiments involving half-integer quadrupolar 

nuclei. We have notably improved the sensitivity of the correlation experiment and extended 

the application range of the correlation experiment involving half integer spin quadrupolar 

nuclei. In main two part, main achievement and new insights are as follow: 

(1) 77Se{71Ga} J-RINEPT-CPMG, 71Ga{77Se} J- and D-HMQC-QCPMG and 71Ga split-t1 

z-filter STMAS-QCPMG sequences were developed and applied to investigate the structure of 

gallium selenide materials. As a result, 77Se-71Ga HETCOR and 71Ga STMAS experiments 

were acquired within reasonable experimental time using the developed sequences. The 

analytical expressions for heteronuclear J coupling estimation were extended to inorganic 

materials with 3D bond connectivity. 77Se-71Ga HETCOR experiment indicates that the sample 

of 𝛽-Ga2Se3 crystal is composed of Annealed phase and Quenched phase. This Quenched phase 

only contains SeIII sites and 71Ga nuclei located in symmetrical environment but exhibiting a 

large distribution of isotropic chemical shifts. In the case of 20Ga2Se3-80GeSe2 glass sample, 

2D HETCOR 77Se projection spectra was deconvoluted into 6 distinct Se sites bonded to Ga 

atom. These results have never been reported previously, notably because of the lack of 

sensitivity of HETCOR experiment. The combination with CPMG acquisition can open the 

door to the new application for HETCOR and STMAS experiments. 

(2) Novel Dipolar-Heteronuclear Universal Quantum Correlation with 𝛾 encoded 

heteronuclear dipolar recoupling on direct channel (D-HUQC-DR) was developed in order to 

increase the sensitivity, compared to conventional D-HMQC with R3. MAS fluctuation cause 

t1 noise for 2D experiment in solid and t1 noise reduces the sensitivity of 2D experiment. D-

HUQC experiment with 𝛾 encoded R symmetry-based recoupling reintroducing m = 1 spatial 

component of heteronuclear dipolar couplings has similar robustness to MAS fluctuation than 

the one using R3 recoupling. Hence, this method overcomes the t1 noise problem for the 

aluminophosphate materials with large CSA. Furthermore, R symmetry recoupling with m = 1 

spatial component has much better robustness to RF inhomogeneiy than R3 recoupling which 

lead to 3 times higher efficiency. This new pulse sequence partially solves the t1 noise issue and 

will be useful for the condition of ultra-high field (> 18.8 T), in which CSA could be very large, 

and unstable MAS frequency (such as very fast MAS and DNP experiment). 
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4.2. Perspectives 

4.2.1. Correlation experiment for Gallium Selenide material 

DFT calculation of 𝛽-Ga2Se3 crystal and Ga2Se3-GeSe2 glass 

It is revealed that the structure of 𝛽-Ga2Se3 crystal possesses complicated structure including 

Quenched phase. It may be possible to reveal the detailed structure by performing DFT 

calculation using the information of 71Ga and 77Se chemical shifts, 71Ga-77Se J coupling 

constants, 71Ga quadrupolar parameters (CQ and η𝑄) and 77Se CSA. Similarly, DFT calculation 

will be useful to support the assignment of 77Se signals for 2D HETCOR 77Se projection 

spectrum in glass sample. 

HETCOR experiment with population transfer at higher field  

Further sensitivity improvement of 71Ga-77Se HETCOR can be performed at higher magnetic 

field. The CT spectrum of half-integer quadrupolar nuclei will be narrowed and population 

transfer pulse could be applied at the beginning of HETCOR sequence. Population transfer 

pulse was not applied to the present experiment in the thesis because of too broad 71Ga line 

width at 9.4 T. If the combination population transfer and high field is possible, the sensitivity 

could be further increased, even if CSA and chemical shift distribution, which broaden the 77Se 

spectrum, is also increased. The improved resolution and sensitivity at high magnetic field can 

provide additional details on the nature of molecular patterns in gallium selenide materials. 

Application to Ga2Se3-GeSe2 glass-ceramics  

Ga2Se3-GeSe2 glass-ceramics material benefits from higher mechanical strength than the 

glass sample, while keeping IR transparency. Moreover, the lens made of glass-ceramics can 

be molded as those made of glass material. For a glass-ceramics sample, narrow peak occurs in 

71Ga 1D MAS spectra. This narrow peak is similar to that of 𝛽-Ga2Se3 crystal. The chemical 

structure and the mechanism of the nucleation could be clarified by using 71Ga-77Se HETCOR 

experiment and DFT calculation. 

Application to other system 

Present proposed J-RINEPT-CPMG and J/D-HMQC-QCPMG sequence could be applied 

not only to gallium selenide materials but also other difficult system exhibiting broad NMR 

spectra. Here, CPMG acquisition enhances sensitivity when the observed nuclei possess the 

property of (i) low natural abundance, (ii) short FID, (iii) long T2’. Nevertheless, as mentioned 

in the introduction part, modified CPMG protocol proposed by R. Siegel et al may make the 

CPMG acquisition more efficient in non-dilute system. Similarly to J-RINEPT sequence, D-

RINEPT sequence could be combined with CPMG acquisition as well as PRESTO-III-QCPMG 
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sequence. D-RINEPT sequence is complementary to J-RINEPT for extracting both through 

space and through bond information in the material. In D-RINEPT sequence, appropriate 

heteronuclear dipolar recoupling sequence could be chosen depending on the application (e.g. 

SR41
2  and SFAM instead of R3). 

4.2.2. 𝜸 independent D-HMQC pulse sequence 

Utilization of dipolar truncation effect 

As mentioned in the introduction, the recoupling method used in D-HMQC was mostly non-

 𝛾 encoded recoupling except for R3. Since these method enables long-range correlation, it is 

effective for observing the correlation between all spins. On the other hand, 𝛾 -encoded 

recoupling has a dipolar truncation effect. Therefore, in principle it is possible to obtain the 

correlation of only the nearest neighbor nucleus. By employing the two types of recoupling 

complementarily, it will be useful for editing the correlation spectrum and it will be possible to 

obtain more detailed material structure. 

The correlation experiment at very high field and with DNP 

NMR magnet with very high magnetic fields are being developed. They will notably 

improve the resolution of half-integer quadrupole nuclei. In the Lille, 1.2 GHz NMR 

spectrometer is planned to be installed in 2020. On the other hand, a high magnetic field 

increases the CSA. For non- 𝛾-encoded recoupling, larger CSA decreases the robustness to 

MAS frequency fluctuations, thus generating larger t1 noise. The 𝛾 -encoded recoupling 

proposed in this thesis should allow the suppression of t1 noise even under high magnetic field 

conditions. In the experiment of DNP, usually carried out at 100 K, MAS fluctuation are also 

significantly larger than for conventional NMR experiments. DNP-enhanced D-HUQC spectra 

can be acquired, for instance by initially transferring the DNP-enhanced 1H polarization to the 

detected isotope using CP. The use of D-HUQC method under DNP conditions will reduce the 

t1 noise and thus improve the sensitivity, allowing the observation of small correlation peaks. 

HUQC m = 2 recoupling 

D-HMQC-DR sequence has been used for the indirect detection of quadrupolar nuclei, such 

as 14N, or spin-1/2 isotope exhibiting wide NMR signal, such as 195Pt, via 1H nuclei. 

Heteronuclear dipolar recoupling used here must have the property of homonuclear dipolar 

decoupling, and SR41
2 recoupling is often chosen. However, again, high t1 noise occurs since 

this recoupling is non-γ-encoded. For these systems, it is expected that this t1 noise could be 

suppressed by applying R symmetry recoupling with m = 2 component having the property of 

homonuclear dipolar decoupling.  
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Appendix: Bruker Pulse Program 

A.1. D, J-HMQC (with indirect recoupling)-QCPMG pulse sequence 
This sequence was used on AV-II Bruker console driven by topspin2.1. 
 

;hmqcIR-CPMG.jt 

; hmqc with indirect dipolar recoupling and CPMG detection 

; Reference sequence : hmqcIR.jt 

; CPMG works on Avance-II. It need to modify for Avance-III 

; version 1.0 (published online XXX) 

; ---------------- 

; DESCRIPTION : 

; hmqc experiment using SFAM (simultaneous frequency and  

; amplitude modulation) or SR4 to generate heteronuclear multiple 

; quantum correlation spectra 

; you need to run SFAM AU program to generate correct shape pulse 

; 

;AUTHOR 

; Julien TREBOSC / Hiroki NAGASHIMA 

;$COMMENT=HMQC with dipolar recoupling on indirect channel 

;$CLASS=Solids 

;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$OWNER=Trebosc 

 

;*********************** Parameters ***************** 

;ns : 64*n min, 128*n  max 

;d1 : recycle delay 

;pl1 : =119 dB, not used 

;pl21 : RF power level p3/p4 

;pl3 : RF power level p1 

;pl23 : SFAM/SR4 power level 

;p3 : 90 degree pulse @ pl21 

;p4 : 180 degree pulse @ pl21 

;p1 : 90 degree pulse @pl3 

;p16 : SFAM/SR4 dipolar recoupling time 

;cnst3 : shape pulse resolution in ns (300ns) 

;cnst30 : SFAM offset amplitude 

;cnst31 : =MAS spin rate 

;cnst0 : factor for second pulse 

;l3 : SFAM mode (l3=1 or 2 for homo dipol decoupl) 

;l22 : # of echos to be acquired 

;d3 : time to allow pulse ringdown, 10 to 100 us 

;d6 : enter duration of FID 

;FnMODE : States or States-TPPI 

;l0 : set to 0 automatrically 

;ZGOPTNS : -DPRESAT -DdecF3 -DdecF2t1 -DdecF2aq -D_DFS -Dopt1D 

; -DPRESAT : send presaturation pulses on F1 can be replaced with DS=1 or 2 

; -DdecF3 : applyies decoupling during aq on F3 

; -DdecF2aq : applyies decoupling during aq on F2 (1H) 

; -DdecF2t1 : applyies decoupling during t1 on F2 (1H) 

; -D_SR4 : use SR4 recoupling 

; -D_SFAM : use SFAM recoupling (default) 

; -D_DFS : add DFS enhancement pre-pulse 

; -Dopt1D : select only +1 pathway : 1D only, not to be used for 2D 

 

#include <Avancesolids.incl> 

 

;*********************** PRESAT ***************** 

#ifdef PRESAT  

#include "presat.incl" 

#else 

#define PRESAT1(f1) 

#define presatPH 
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#endif 

 

;*********************** Decoupling ***************** 

 

#ifdef decF3 

#define dec 

#define decF3on cpds3:f3 

#define decF3off do:f3 

#else 

#define decF3on 

#define decF3off 

#endif 

 

#ifdef decF2t1 

#define decF2 

#define decF2t1on cpds2:f2 

#else 

#define decF2t1on 

#endif 

 

#ifdef decF2aq 

#define decF2 

#define decF2aqon cpds2:f2 

#else 

#define decF2aqon 

#endif 

 

#ifdef decF2 

#define dec 

#define tppm 

#define decF2off do:f2 

#else  

#define decF2off 

#endif 

 

#ifdef dec 

#include "decouple.incl" 

#endif 

 

;*********************** DFS ***************** 

#ifdef _DFS 

;p2 DFS/HS pulse 

;cnst1 : (kHz) Start DFS sweep freq.  

;cnst2 : (kHz) End DFS sweep freq.  

;cnst3 : (ns) time resolution of shape sp1 

;spoffs1 HS offset (spoffs1 < 1/cnst3) 

;spnam1 DFS/HS shape : use HS.jt of DFS.jt to regenerate 

;sp1 DFS/HS shape power 

define delay showInASED 

"showInASED=cnst1+cnst2+cnst3" 

#define DFSpulse (5u p2:sp1 ph0 5u):f1  

#else 

#define DFSpulse 

#endif 

 

;*********************** CPMG delays calculation ***************** 

define delay del3 

"del3=d3-2u" 

define loopcounter tmpD3 

define delay d3best 

define delay cycle 

define loopcounter tmpTD 

define loopcounter TDtot 

define delay rest 

define delay Spik_int  

define delay showInASED2 

define delay ratioOK 
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; Calculate best d3 for rotor synchronisation 

"tmpD3=(d6+p4/2)*cnst31" 

"d3best=(1s*(tmpD3+1)/cnst31)-d6-(p4/2.0)" 

 

;calculate minimum TD to set 

"tmpTD=0.5*(((d6*2+d3*2+p4)*l22)+d6+d3)/dw" 

"TDtot=(tmpTD+1)*2" 

 

"rest=abs(aq-(TDtot*dw))" 

"Spik_int=1s/(d6*2+d3*2+p4)" 

"cycle=d6*2+d3*2+p4" 

"ratioOK=cycle/(2*dw)" 

; to make TDtot, etc. show up in ased 

"showInASED2=TDtot+d3best+Spik_int+cycle+ratioOK" 

 

;**************** calculation of t1 delays ****************** 

define delay Dmin 

define loopcounter lmin 

define delay delA 

define delay delAa 

define delay delAb 

define delay delB 

"Dmin=(2*p1+d0+2u)+0.4u" 

"lmin=(Dmin*cnst31)+1" 

"delA=(((1s*lmin)/cnst31)-2u-p4)/2.0" 

"delB=(((1s*lmin)/cnst31)-2u-d0-p1*2.0)/2.0" 

"delAa=1s/cnst31+0.5s*(lmin%2)/cnst31-p3/2" 

"delAb=1s/cnst31+0.5s*(lmin%2)/cnst31" 

 

define loopcounter LCounter 

define delay dummy 

 

#ifndef _SR4 

#define _SFAM 

#endif 

 

#ifdef _SFAM 

"p6=1s/cnst31" 

"LCounter=(p16*cnst31/1e6+0.5)" 

"p17=LCounter*p6" 

"dummy=cnst31+cnst30+cnst3+l3+p17" 

#endif 

 

#ifdef _SR4 

"p6=(0.25s/cnst31)" 

"LCounter=(p16*cnst31/1e6+0.5)" 

"p17=LCounter*p6*4" 

"dummy=p17" 

#endif 

 

; counter for cycling SR4 

"l0=0" 

 

;topspin 2.1 only 

"in0=inf1" 

 

;duty cycle 

define delay pulsef1 

define delay scandelay 

"pulsef1=p2*2+p3+p4*(l22+2)" 

"scandelay=d1+p16+aq+100m" 

"cnst60=pulsef1/scandelay" 

 

;*************** experiment block ******************** 

1 ze 

2 100m decF2off decF3off 
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"Dmin=(2*p1+d0+2u)+0.4u" 

"lmin=(Dmin*cnst31)+1" 

"delA=(((1s*lmin)/cnst31)-2u-p4)/2.0" 

"delAa=1s/cnst31+0.5s*(lmin%2)/cnst31-p3/2" 

"delAb=1s/cnst31+0.5s*(lmin%2)/cnst31" 

"delB=(((1s*lmin)/cnst31)-2u-d0-p1*2.0)/2.0" 

 

;SR4 manual cycling 

10u iu0 

 

#ifdef _SR4 

#ifndef opt1D 

"cnst47=180*(((l0-1)/4)%2)" 

"cnst46=180*(((l0-1)/16)%2)" 

#else 

"cnst47=180*(((l0-1)/8)%2)" 

"cnst46=180*(((l0-1)/32)%2)" 

#endif 

10u ip16+cnst46 

10u ip17+cnst47 

#endif 

  PRESAT1(f1) 

 

  d1 

  STARTADC 

  RESETPHASE 

  1u REC_BLK 

  1u SGU3_pulse 

 

  DFSpulse 

  5u pl21:f1 pl23:f3 

  (p3 ph1):f1 

  delAa decF2t1on  

 

;----------- D,J-HMQC ----------------- 

#ifdef _SFAM 

SFAMl1, (p6:spf5 ph4):f3 

lo to SFAMl1 times LCounter 

#endif 

#ifdef _SR4 

sr4_1, (p6 ph16^):f3 

       (p6 ph16^):f3 

       (p6 ph16^):f3 

       (p6 ph16^):f3 

  lo to sr4_1 times LCounter 

#endif 

 

  1u  

  (delB pl3 p1 ph11 d0 p1 ph12 delB):f3 (delA p4 ph2  delA ):f1 

  1u pl23:f3  

 

#ifdef _SFAM 

SFAMl2, (p6:spf5 ph5):f3 

lo to SFAMl2 times LCounter 

#endif 

#ifdef _SR4 

sr4_2, (p6 ph17^):f3 

       (p6 ph17^):f3 

       (p6 ph17^):f3 

       (p6 ph17^):f3 

  lo to sr4_2 times LCounter 

#endif 

 

  delAb decF2off 

;----------- CPMG acq ----------------- 

  d6 decF2aqon decF3on 

  2u 

  del3 
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  (p4 ph7):f1 

  del3 

  1u DWL_CLK_ON 

  1u SGU3_observe 

  d6 REC_UNBLK 

3 d6 REC_UNBLK 

  1u REC_BLK 

  1u 

  del3 SGU3_pulse 

  (p4 pl21 ph8):f1 

  2u  

  del3 SGU3_observe 

  d6 REC_UNBLK 

  lo to 3 times l22 

  d6 

  del3 REC_BLK 

 

  rest decF3off decF2off 

  1u DWL_CLK_OFF 

  rcyc=2 

 ; go=2 ph31 decF2aqon decF3on  

 

  1u decF3off decF2off 

 

  100m mc #0 to 2 F1PH(ip11,id0)  

exit 

 

 

#ifndef opt1D 

;phase cycling for 2D  

ph0=0 

;ph1={0 0 2 2}*2  

ph1=0 

;ph2=1 

ph2={0 0}^2^1^3 

ph4={0}*16 {2}*16 

ph5={0}*8 {2}*8 

ph7=1 

ph8=1 

;ph7={1}*16 {3}*16  

;ph8={1}*32 {3}*32 

ph11=0 

ph12=0 2 

;ph12=0 0 

ph30=0 

;ph31={{{{0 2 2 0}*2}*2}^2}^2 ; over 64 phases 

ph31={0 2}^0^2^2; over 64 phases ph31=ph12+2*ph2+0*ph4+0*ph5 

;ph31={0 0 2 2}*2 {3 1 1 3}*2 

ph16=(360) 90 270 90 270 270 90 270 90 210 30 210 30 30 210 30 210 330 150 330 150 

150 330 150 330 

ph17=(360) 90 270 90 270 270 90 270 90 210 30 210 30 30 210 30 210 330 150 330 150 

150 330 150 330 

#else 

; phase cycling for 1D optimization 

ph0=0 

ph1={0 0 0 0 2 2 2 2}*2  

ph2=1  

ph4={0}*16 {2}*16 

ph5={0}*8 {2}*8 

ph7={1}*32 {3}*32 

ph8={1}*64 {3}*64 

ph11=0 

ph12=0 2 1 3 

ph30=0 

ph31={{{{0 2 1 3 2 0 3 1}*2}*2}^2}^2 

ph16=(360) 90 270 90 270 270 90 270 90 210 30 210 30 30 210 30 210 330 150 330 150 

150 330 150 330 
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ph17=(360) 90 270 90 270 270 90 270 90 210 30 210 30 30 210 30 210 330 150 330 150 

150 330 150 330 

#endif 

 

; set phases for presat : ph19 and ph20 

presatPH 

 

 

 

A.2. J-RINEPT-CPMG pulse sequence 
This sequence was used on AV-II Bruker console driven by topspin2.1. 
 

;ineptrd_cpmg.jt 

; J-RINEPT with cpmg detection 

; CPMG works on Avance-II. It need to modify for Avance-III 

; with decoupling during acquisition 

; AUTHOR 

; Julien TREBOSC / Hiroki NAGASHIMA 

 

;*********************** Parameters ***************** 

;pl1 : power level for p1,p2 

;pl21 :  power level for p3,p4 

;pl22 :  power level for p5 (CPMG) 

;pl12: f2 channel - power level for CPD/BB decoupling 

;pl13: f2 channel - power level for CPD/BB decoupling 

;p1 : 90 degree @ pl1 

;p2 : 180 degree @ pl1 

;p3 : 90 degree @ pl21 

;p4 : 180 degree @ pl22 for CPMG 

;p5 : 180 degree @ pl21  

;d1 : relaxation delay; 1-5 * T1 

;d4 : J-inept mixing delay/2 

;d44 : J-inept mixing delay 

;     1/(6J(XH))  XH, XH2, XH3 positive 

;     1/(4J(XH))  XH only 

;     1/(3J(XH))  XH, XH3 positive, XH2 negative 

;d5 : J-inept refocusing delay/2 

;d55: J-inept refocusing delay 

;     1/(4J(XH)) 

;d6 FID decay time for CPMG 

;d3 dead time for CPMG 

;l22 number of CPMG echoes 

;cnst31 : spinning speed (Hz) 

;ZGOPTNS : -DPRESATf3 -DPRESATf1 -DdecF2aq -DdecF2mix -DdecF2t1 -D_DFS -DnoDelSync 

;NS: 32 * n, total number of scans: NS * TD0 

;DS: 16 

;cpdprg1: decoupling during mix 

;cpdprg2: decoupling during t1/AQ 

;cpdprg3: decoupling during AQ 

;pcpd2: cpd pulse on channel f2 

 

 

;duty cycle 

define delay pulsef1 

define delay pulsef3 

define delay scandelay 

"pulsef1=p2*2+p1+p4*(l22+1)" 

"pulsef3=(p3+p5)*2" 

"scandelay=d1+d4+d5+aq+3m+30m" 

"cnst63=pulsef1/scandelay" 

 

#include <Avancesolids.incl> 

 

;*********************** PRESAT ***************** 

#include "presat.incl" 

#ifndef PRESATf3 

#undef PRESAT2(f3) 
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#define PRESAT2(f3) 

#endif 

 

#ifndef PRESATf1 

#undef PRESAT1(f1) 

#define PRESAT1(f1) 

#endif 

 

;*********************** Decoupling ***************** 

#include "decouple.incl" 

#ifdef decF3aq 

#define decF3on cpds3:f3 

#define decF3off do:f3 

#else 

#define decF3on 

#define decF3off 

#endif 

 

#ifdef decF2all 

#define decF2mix 

#define decF2t1 

#define decF2AQ 

#endif 

 

#ifdef decF2mix 

#define decF2 

#define decF2mixon cpds1:f2 

#else 

#define decF2mixon 

#endif 

 

#ifdef decF2t1 

#define decF2 

#define decF2t1on cpds2:f2 

#else 

#define decF2t1on 

#endif 

 

#ifdef decF2aq 

#define decF2 

#define decF2aqon cpds2:f2 

#else 

#define decF2aqon 

#endif 

 

#ifdef decF2 

#define decF2off do:f2 

#else 

#define decF2off 

#endif 

 

;**************** DFS of HS ***************** 

#ifdef _DFS 

;p10 DFS/HS pulse 

;spname0 DFS/HS shape pulse 

;sp0 DFS/HS shape power 

#define DFSpulse (5u p10:sp0 ph10 5u):f3  

#else 

#define DFSpulse 

#endif 

 

;*********************** CPMG delays calculation ***************** 

 

define delay del3 

"del3=d3-2u" 

define loopcounter tmpD3 

define delay d3best 

define delay cycle 
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define loopcounter tmpTD 

define loopcounter TDtot 

define delay rest 

define delay Spik_int  

define delay showInASED2 

define delay ratioOK 

define delay t1delay 

; Calculate best d3 for rotor synchronisation 

"tmpD3=(d6+p4/2)*cnst31" 

"d3best=(1s*(tmpD3+1)/cnst31)-d6-(p4/2.0)" 

 

;calculate minimum TD to set 

"tmpTD=0.5*(((d6*2+d3*2+p4)*l22)+d6+d3)/dw" 

"TDtot=(tmpTD+1)*2" 

 

"rest=abs(aq-(TDtot*dw))" 

"Spik_int=1s/(d6*2+d3*2+p4)" 

"cycle=d6*2+d3*2+p4" 

"ratioOK=cycle/(2*dw)" 

; to make TDtot, etc. show up in ased 

"showInASED2=TDtot+d3best+Spik_int+cycle+ratioOK+cnst63" 

 

;*********************** Mixing time calculation ***************** 

"p5=p3*2" 

 

"d0=0" 

#ifdef _synct1 

"t1delay=d0+(1s/cnst31)-p3/2" 

#else 

"t1delay=d0" 

#endif 

 

 

#ifndef noDelSync 

"l4=d4*cnst31" 

"d14=(1s*l4/cnst31)-p3/2.0-larger(p2,p5)/2.0-1u" 

"d24=(1s*l4/cnst31)-larger(p3,p1)/2.0-larger(p2,p5)/2.0" 

#else 

"d14=d4" 

"d24=d4" 

#endif 

"d44=2.0s*l4/cnst31" 

 

#ifndef noDelSync 

"l5=d5*cnst31" 

"d15=(1s*l5/cnst31)-larger(p3,p1)/2.0-larger(p2,p5)/2.0" 

"d25=(1s*l5/cnst31)-larger(p2,p5)/2.0-1u" 

"d55=2.0s*l5/cnst31" 

#else 

"d15=d5" 

"d25=d5" 

#endif 

 

"in0=inf1" 

 

;*************** experiment block ******************** 

1 ze  

2 30m decF3off decF2off 

#ifdef _synct1 

"t1delay=d0+(1s/cnst31)-p3/2" 

#else 

"t1delay=d0" 

#endif 

  PRESAT2(f3) 

  d1 

  STARTADC 

  RESETPHASE 

  1u REC_BLK 
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  1u SGU1_pulse 

 

  PRESAT1(f1)  

  DFSpulse 

 

; ----------- INEPT part ------------- 

  10u pl21:f3 pl1:f1 

  0.1u decF2t1on 

  (p3 ph1):f3  

  t1delay 

  1u decF2off 

  d14 decF2mixon 

  (center (p5 ph2):f3 (p2 ph4):f1 ) 

  d24 

  (center (p3 ph3):f3 (p1 ph5):f1 ) 

  d15 

  (center (p5 ph2):f3 (p2 ph6):f1 ) 

  d25  

  1u decF2off 

 

; ----------- CPMG acq --------------- 

  d6 decF2aqon 

  2u 

  del3 

  (p4 pl22 ph7):f1 

  del3 

  1u DWL_CLK_ON 

  1u SGU1_observe 

  d6 REC_UNBLK 

3 d6 REC_UNBLK 

  1u REC_BLK 

  1u 

  del3 SGU1_pulse 

  (p4 pl22 ph7):f1 

  2u  

  del3 SGU1_observe 

  d6 REC_UNBLK 

  lo to 3 times l22 

  d6 

  del3 REC_BLK 

  d6 decF2off 

  rest decF2off 

 

  1u DWL_CLK_OFF 

  rcyc=2 

  30m mc #0 to 2 F1PH(ip1,id0)  

exit 

 

 

;Phase cycling  

ph1 = 0 2  

ph2=0 

ph3=1 

ph4={{0}*2}^2 

ph5={{0}*4}^2 

ph6={{0}*8}^2^1^3 

ph7=0 

ph31= {{{0 2}^0}^2}^0^2^2 

ph30=0 

ph10=0 

 

; set phases for presat : ph19 and ph20 

presatPH 
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A.3. Split-t1 STMAS with z filter and QCPMG pulse sequence 
This sequence was used on AV-III Bruker console 
 

;stmas_split_t1_Zcpmg.jt  

; pulse sequence for (satellite transition) STMAS spectroscopy 

; on 3/2 nuclei only 

; with coherence transfer pathway 0 -> +1/-1 -> +2/-2 -> 0 -> -1/+1 

; uses split t1 technique and z-filter 

;then a cpmg train is added 

; see J. Trebosc, J.-P. Amoureux, and Zhehong Gan, SSNMR 31 (2007) 1-9 

; see  JP Amoureux et al JMR 175,285 (2005)  

; written by julien trebosc 

; CHANGES : 

 

;*************** parameters ******************** 

;ns : 16 * n 

;p1 : excitation pulse 

;p2 : mixing pulse 

;p3 : selective  90 degree pulse 

;p4 : selective 180 degree pulse 

;p7 : set delay such that delB>0.3u and delA>0 

;pl1 : =119 dB, not used 

;pl11 : power for hard pules 

;pl21 : power for selective pulse 

;l1 : first d0 span l1 Tr 

;l7 : run time test counter 

;d1 : recycle delay 

;d4 : z-filter delay, typ. 20 us 

;d23 : offset for d10/d11 calculation not being negative 

;d6 : cpmg half echo delay 

;d3 : for dead time 

;p60:  storage of cpmg cycle time 

;cnst31 : spinning frequency 

;in0 : =1/spinning frequency for rotor synchronisation, 

; or half of it for half rotor synchronisation 

;FnMode : States or States-TPPI 

 

;$COMMENT=stmas for 3/2 spins with t1 split and cpmg acquisition 

;$CLASS=Solids 

;$DIM=2D 

;$TYPE=half integer quadrupoles 

;$SUBTYPE=STMAS 

;$OWNER=Trebosc 

 

#include <Avancesolids.inc> 

 

;*************** PRESAT ******************** 

#ifdef PRESAT 

#include "presat.incl" 

#else 

#define PRESAT1(f1) 

#define presatPH 

#endif 

 

;*************** Decoupling ******************** 

#ifdef decF2 

#define decF2on cpds2:f2 

#define decF2off do:f2 

#include "decouple.incl" 

#else 

#define decF2on 

#define decF2off 

#endif 

 

;*************** QCPMG delay ******************** 

"p4=2*p3" 

define delay del1 
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define delay del3 

"del3=d3-2u" 

"del1=del3+2u-((p3)/2)" 

 

define loopcounter tmpD3 

define delay d3best 

;d3best set d3 to this value for rotr synchronized echoes 

define loopcounter tmpTD 

define loopcounter TDtot 

;TDtot set TD to this value + dig filter to record all echoes 

define delay rest 

define delay Spik_int  

define delay showInASED 

define delay cycle 

define delay PTSperCycle 

 

; Calculate best d3 for rotor synchronisation 

"tmpD3=(d6+p4/2)*cnst31" 

"d3best=(1s*(tmpD3+1)/cnst31)-d6-(p4/2.0)" 

;"d3=d3best" 

;calculate minimum TD to set 

"tmpTD=0.5*(((d6*2+d3*2+p4)*l22)+2*d6+2*d3+p4+4u)/dw" 

"TDtot=(tmpTD+1)*2" 

"cycle=(d6*2+d3*2+p4)" 

"p60=cycle" 

"PTSperCycle=cycle/(2*dw)" 

"rest=aq-(TDtot*dw)" 

"Spik_int=1s/(d6*2+d3*2+p4)" 

; to make TDtot, etc. show up in ased 

"showInASED=TDtot+d3best+Spik_int+p60+PTSperCycle" 

 

;*************** Split-t1 STMAS delay ******************** 

#ifdef Sync 

#define SyncP1   0.3u trigpe4 \n\ 

                 delA 

#define SyncP2     if "d11-halfTr <= 0" goto 72419 \n\ 

                   0.3u trigpe4  

#else 

#define SyncP1 

#define SyncP2 

#endif 

 

define delay halfTr 

define delay delA 

define delay delB 

"halfTr=0.5s/cnst31" 

"delB=p7" 

"delA=delB+(p2-p1)/2.0" 

 

"d0=1s*(l1*1/cnst31)" 

"d10=d0/9.0 -p1/2 -p4/2 +d23" 

"d11=8*d0/9.0 - p2/2 - p4/2 -d23 -delB" 

 

"in0=inf1" 

"in11=8.0*in0/9.0" 

"in10=in0/9.0" 

 

dwellmode auto 

 

;*************** Experimental block ******************** 

1 ze 

"showInASED=1us" 

2 100m 

"d10=d0/9.0 -p1/2 -p4/2 +d23" 

"d11=8*d0/9.0 - p2/2 - p4/2 -d23 -delB" 

 

#ifdef Sync 

if "d11-halfTr <= 0" goto skipSync 
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;/* redefine d11 for allowing rotor syncing when d11 is longer than half rotor 

period. Else syncing is skipped */ 

"d11=8*d0/9.0 - p2/2 - p4/2 -d23 -delB -halfTr" 

skipSync, 1u 

#endif 

 

;presaturation only if -DPRESAT in ZGOPTNS 

 PRESAT1(f1) 

  d1  

  (1u pl11 ph1):f1 

  

  STARTADC 

  RESETPHASE 

  

  SyncP1 

 

  (p1 ph1):f1         ; first pulse 

 

  d10 decF2on         ; ST1Q evol 

 

  (p4 pl21 ph2):f1    ; DQ filter 

 

  d11                 ; ST2Q evol 

  SyncP2 

72419 (delB pl11 ph3):f1 

 

  (p2 pl11 ph3):f1   ; reconversion pulse 

  50u  ; Z filter delay 

  (p3 pl21 ph4):f1   ; SPAM pulse 

  d6                 ; +1/-1 evolution for echo creation 

  del1 

  (p4 pl21 ph5):f1  

  del3 START_NEXT_SCAN 

  1u 

  1u  

  d6 RG_ON 

3 d6 RG_ON 

  2u  

  del3 RG_OFF 

  (p4 pl21 ph6):f1 

  del3  

  2u  

  d6 RG_ON 

  lo to 3 times l22 

  d6 

  del3 RG_OFF 

  rest decF2off 

  1u  

  rcyc=2 

 

  100m mc #0 to 2 F1PH(ip1,id0)  

exit 

 

ph30=0 

ph1= 0 2 

ph2= {{0}*2}^2 

ph3= {{0}*4}^1^2^3 

ph4={{0}*16}^2 

ph5= 1 

ph6= 1 

ph31={{{0 2}^2}^2^0^2}^2 ; cycling of 32 

;ph31=-ph1-ph2+2*ph3+ph4 for +1 +2 +1 -1 pathway 

; phase of presat 

presatPH 
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A.4. D-HUQC (with 𝐑𝑵𝒏
𝝂  recoupling) pulse sequence 

;huqcDR-m1.jt 

;for topspin 1 and 2 

;for topspin 3 and more check for trunc function in lmin calculation 

 

; huqc with direct dipolar recoupling 

; version 1.0 (published online XXX) 

; ---------------- 

; DESCRIPTION : 

; huqc experiment using m = 1 gamma-encoded pulse sequences 

;AUTHOR 

; Olivier Lafon, Julien Trebosc, Hiroki Nagashima 

;MODIFICATIONS : 

;$COMMENT=HMQC with dipolar recoupling on direct channel 

;$CLASS=Solids 

;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$OWNER=Trebosc 

 

; ------------ 

;PARAMETERS: 

;ns... see below in phase cycling section 

;d1 : recycle delay 

;d4 : z-filter delay 

;pl1 : RF power level p4/p5 

;pl3 : RF power level p7 

;pl23 : recoupling power level 

;p4 : 90 degree pulse @ pl1 

;p5 : 180 degree pulse @ pl1 

;p6 : 180 degree pulse  @ pl23 

;p7 : 90 degree pulse @ pl3 

;p16 : dipolar recoupling time [in us] 

;cnst31 : =MAS spin rate 

;FnMODE : States or States-TPPI 

; 

;ZGOPTNS : PRESATf1 PRESATf3 decF3 decF2t1 decF2aq 

; PRESAT : send presaturation pulses on F1 can be replaced with DS=1 or 2 

; decF3 : applyies decoupling during aq on F3 

; decF2aq : applyies decoupling during aq on F2 (1H) 

; decF2t1 : applyies decoupling during t1 on F2 (1H) 

 

;*********************** PRESAT ***************** 

#include "presat.incl" 

#ifndef PRESAT  

#undef PRESAT1(f2) 

#define PRESAT1(f2) 

#endif 

 

#ifndef PRESATf1  

#undef PRESAT2(f1) 

#define PRESAT2(f1) 

#endif 

 

;********************* Decoupling ***************** 

#ifdef decF3 

#define dec 

#define decF3on cpds3:f3 

#define decF3off do:f3 

#else 

#define decF3on 

#define decF3off 

#endif 

 

#ifdef decF2t1 

#define decF2 

#define decF2t1on cpds2:f2 



 

138 
 

#else 

#define decF2t1on 

#endif 

 

#ifdef decF2aq 

#define decF2 

#define decF2aqon cpds3:f2 

#else 

#define decF2aqon 

#endif 

 

#ifdef decF2 

#define dec 

#define tppm 

#define decF2off do:f2 

#else  

#define decF2off 

#endif 

 

#ifdef dec 

#include "decouple.incl" 

#endif 

 

 

;**************** calculation of R symmetry ****************** 

 

define delay dummy 

 

#define ZGOPNTS_ERROR 

 

#ifndef _R1425 

#ifndef _R1635 

#ifndef _R1845 

#ifndef _R1023 

#ifndef _R3 

#undef ZGOPTNS_ERROR 

#define ZGOPTNS_ERROR you must use ZGOPTNS -D_R1425 or -D_R1635 or -D_R1845 or -

D_R1023 or -D_R3 

#endif 

#endif 

#endif 

#endif 

#endif 

ZGOPNTS_ERROR 

 

#ifdef _R1023 

;this is R1023 symmetry 

"p6=(2.0/10)*1s/cnst31" 

"l23=trunc(p16/((2.0e6/cnst31)/5)+0.5)" 

#define RNphase1 23400 

#define RNphase2 12600 

#define RNphase3 5400 

#define RNphase4 30600 

#endif 

 

#ifdef _R1425 

;this is R1425 symmetry 

"p6=(2.0/14)*1s/cnst31" 

"l23=trunc(p16/((2.0e6/cnst31)/7)+0.5)" 

#define RNphase1 24429 

#define RNphase2 11571 

#define RNphase3 6429 

#define RNphase4 29571 

#endif 

 

#ifdef _R1635 

;this is R1635 symmetry 

"p6=(3.0/16)*1s/cnst31" 
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"l23=trunc(p16/((3.0e6/cnst31)/8)+0.5)" 

#define RNphase1 23625 

#define RNphase2 12375 

#define RNphase3 5625 

#define RNphase4 30375 

#endif 

 

#ifdef _R1845 

;this is R1845 symmetry 

"p6=(4.0/18)*1s/cnst31" 

"l23=trunc(p16/((4.0e6/cnst31)/9)+0.5)" 

#define RNphase1 23000 

#define RNphase2 13000 

#define RNphase3 5000 

#define RNphase4 31000 

#endif 

 

#ifdef _R3 

;this is R3 symmetry 

"p6=(1.0/4.0)*1s/cnst31" 

"l23=trunc(p16/((1e6/cnst31)/2)+0.5)" 

#define RNphase1 18000 

#define RNphase2 18000 

#define RNphase3 0 

#define RNphase4 0 

#endif 

 

;**************** calculation of delay ****************** 

"p5=2*p4" 

"p17=(l23)*p6*2" 

"dummy=p17" 

define delay Dmin 

define loopcounter lmin 

 

#ifdef d0sync 

"d0=1.0s/cnst31-p7" 

#endif 

 

"Dmin=(2.0*p7+d0+0.1u)/2.0" 

"lmin=trunc(Dmin*cnst31)+1" 

"d62=((1s/cnst31)*lmin-p7-d0/2.0)" 

"d63=((1s/cnst31)*lmin-p4-p5/2.0)" 

 

;topspin 2.1 and more only 

"in0=inf1" 

 

"dummy=p17+l23" 

 

;*************** experiment block ******************** 

 

1 ze 

 

#ifdef optMAS 

; just for VCLIST to appear in ASED and saved with status acq params 

12435 1u 

lo to 12435  times c 

#endif 

 

2 100m decF2off decF3off 

 

"Dmin=(2.0*p7+d0+0.1u)/2.0" 

"lmin=trunc(Dmin*cnst31)+1" 

"d62=((1s/cnst31)*lmin-p7-d0/2.0)" 

"d63=((1s/cnst31)*lmin-p4-p5/2.0)" 

  

PRESAT2(f1) 

d1 
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  10u pl23:f1 pl3:f3  

 

  0.5u fq=cnst29:f1 

  0.5u decF2t1on  

RN_1, (p6 pl23 ph21):f1 

         (p6 pl23 ph22):f1 

  lo to RN_1 times l23 

 

  (d62 p7 pl3 ph6 d0 p7 pl3 ph7 d62):f3 (p4 pl1 ph14 d63 p5 pl1 ph4 d63 p4 pl1 

ph15):f1 

 

RN_2, (p6 pl23 ph23):f1 

         (p6 pl23 ph24):f1 

  lo to RN_2 times l23 

(p4 pl1 ph8):f1 

 

   0.5u decF2off 

 

  go=2 ph31  decF3on decF2aqon 

  6.35u decF3off decF2off 

  100m mc #0 to 2 F1PH(ip6, id0)  

exit 

 

 

#ifdef opt1D 

;phase cycling for 1D  

;ns : 8 * n 

ph4={{1}*4}^2 

ph6=0 2 1 3; use to select p= -1 between the two p7 pulses 

ph7=0 

ph8=1 

ph14=3 

ph15=3 

ph21=(36000) RNphase1   

ph22=(36000) RNphase2 

ph23=(36000) RNphase3 

ph24=(36000) RNphase4 

ph31=0 2 1 3 

#else 

;phase cycling for 2D  

;ns : 4 * n 

ph4={{1}*2}^2 

ph6=0 2 ; use to select p= 1 or -1 between the two p7 pulses 

ph7=0 

ph8=1 

ph14=3 

ph15=3 

ph21=(36000) RNphase1  

ph22=(36000) RNphase2 

ph23=(36000) RNphase3 

ph24=(36000) RNphase4 

ph31={0 2} 

#endif 

 

ph0=0 

; set phases for presat : ph19 and ph20 

presatPH 

 

 

A.5. D-HUQC (with R3 recoupling) pulse sequence 
 

;huqcDR-R3.jt 

; version 1.0 (published online XXX) 

; ---------------- 

; DESCRIPTION : 

; huqc experiment using R3  

; 
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;AUTHOR 

; Julien TREBOSC, Olivier Lafon, Hiroki Nagashima 

; MODIFICATIONS : 

;$COMMENT=HUQC with R3 

;$CLASS=Solids 

;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$OWNER=Trebosc 

 

; ------------ 

;PARAMETERS: 

;ns : 4 * n 

;d1 : recycle delay 

;pl1 : RF power level p1/p2 

;pl3 : RF power level p3 

;pl23 : SFAM power level 

;p1 90 degree pulse @ pl1 

;p2 180 degree pulse @ pl1 

;p3 90 degree pulse @pl3 

;p16 : R3 dipolar recoupling time 

;cnst31 : =MAS spin rate 

;cnst0 : factor for second pulse 

;FnMODE : States or States-TPPI 

;ZGOPTNS : PRESATf1 PRESATf3 decF3 decF2t1 decF2aq 

; PRESAT : send presaturation pulses on F1 can be replaced with DS=1 or 2 

; decF3 : applyies decoupling during aq on F3 

; decF2aq : applyies decoupling during aq on F2 (1H) 

; decF2t1 : applyies decoupling during t1 on F2 (1H) 

 

;*********************** PRESAT ***************** 

#include "presat.incl" 

#ifndef PRESAT  

#undef PRESAT1(f2) 

#define PRESAT1(f2) 

#endif 

 

#ifndef PRESATf1  

#undef PRESAT2(f1) 

#define PRESAT2(f1) 

#endif 

 

;********************* DECOUPLING ***************** 

#ifdef decF3 

#define dec 

#define decF3on cpds3:f3 

#define decF3off do:f3 

#else 

#define decF3on 

#define decF3off 

#endif 

 

#ifdef decF2t1 

#define decF2 

#define decF2t1on cpds2:f2 

#else 

#define decF2t1on 

#endif 

 

#ifdef decF2aq 

#define decF2 

#define decF2aqon cpds2:f2 

#else 

#define decF2aqon 

#endif 

 

#ifdef decF2 

#define dec 
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#define decF2off do:f2 

#else  

#define decF2off 

#endif 

 

#ifdef dec 

#include "decouple.incl" 

#endif 

 

;**************** calculation of delays ****************** 

#ifdef d0sync 

"d0=1s*l1/cnst31-p3" 

#endif 

 

define delay Dmin 

define loopcounter lmin 

define delay delA 

define delay delB 

"Dmin=(2*p3+d0+2u)" 

"lmin=(Dmin*cnst31/2.0)+1" 

"delA=((1s*lmin)/cnst31)-1u - p2/2.0" 

"delB=(((2s*lmin)/cnst31)-2u-d0-p3*2.0)/2.0" 

 

define delay RF 

define loopcounter LCounter 

define delay dummy 

 

"cnst0=2.0" 

"p2=p1*cnst0" 

 

;**************** calculation of R3 ****************** 

#ifdef _R3 

"p6=1s/cnst31" 

"l11=p16/(p6)" 

"p17=p6*l11" 

"RF=l3*500000/p6" 

"dummy=RF+p17" 

#endif 

 

"in0=inf1" 

 

;**************** experiment block ****************** 

 

1 ze 

 

#ifdef optMAS 

; just for VCLIST to appear in ASED and saved with status acq params 

12435 1u 

lo to 12435  times c 

#endif 

 

2 100m decF2off decF3off 

 

"Dmin=(2*p3+d0+2u)" 

"lmin=(Dmin*cnst31/2.0)+1" 

"delA=((1s*lmin)/cnst31)-1u - p2/2.0" 

"delB=(((2s*lmin)/cnst31)-2u-d0-p3*2.0)/2.0" 

 

  PRESAT2(f1) 

 

  d1  

  1u rpp3 rpp6 

  10u pl1:f1 pl3:f3 

  (p1 ph1):f1 

  0.5u fq=cnst29:f1 

  1u pl23:f1 decF2t1on 

 

#ifdef _R3 



 

143 
 

R3_1, (p6 ph4):f1 

  lo to R3_1 times l11 

#endif 

 

  1u 

  (delB pl3 p3 ph11 d0 p3 ph12):f3 (delA pl1 p2 ph2  delA ):f1 

  1u pl23:f1 

 

#ifdef _R3 

R3_2, (p6 ph5):f1 

  lo to R3_2 times l11 

#endif 

 

  1u decF2off 

 

  go=2 ph31 decF2aqon decF3on 

  1u decF3off decF2off 

  100m mc #0 to 2 F1PH(ip11,id0)  

exit 

 

;phase cycling 

ph0=0 

ph1=3 

ph4=2 

ph5=0  

ph12=0 

#ifdef opt1D 

ph2={{1}*4}^2  

ph11=0 2 1 3 

ph31={0 2 1 3} 

#else 

ph2={{1}*2}^2 

ph11=0 2 

ph31=0 2 

#endif 

ph30=0 

ph3=0 

ph6=0 

; set phases for presat : ph19 and ph20 

presatPH 

 

 

A.6. Including file (preset.incl) and AU program (for DFS and SFAM) 

Include file presat.incl  
;$COMMENT=presaturation loops  

;$CLASS=Solids INCL  

;$DIM=  

;$TYPE=presaturation  

;$SUBTYPE=  

;$OWNER=Trebosc  

;Presat include file ***************************************  

;d20 : delai between Presat pulses (p20)  

;pl20 : power of Presat pulses (p20)  

;l20 : number of Presat pulses (p20)  

;p20 : Presat pulses  

;ph20 : phase of Presat pulses (p20)  

; second presat parameters  

;d19 : delai between Presat2 pulses (p21)  

;pl19 : power of Presat2 pulses (p19)  

;l19 : number of Presat2 pulses (p19)  

;p19 : Presat2 pulses  

;ph19 : phase of Presat2 pulses (p19)  

#define PRESAT1(ch) 983547 d20 pl20:ch \n\  

(p20 ph20^):ch \n\  

lo to 983547 times l20  
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#define PRESAT2(ch) 9835472 d19 pl19:ch \n\  

(p19 ph19^):ch \n\  

lo to 9835472 times l19  

#define PRESAT11(ch) 9835479 d20 pl20:ch \n\  

(p20 ph20^):ch \n\  

lo to 9835479 times l20  

#define PRESAT22(ch) 98354729 d19 pl19:ch \n\  

(p19 ph19^):ch \n\  

lo to 98354729 times l19  

#define presatPH ph19= 0 \n ph20= 0 

  

DFS generator AU program 

/****************************************************************/ 

/* dfs.jt   16.11.2011                      */ 

/****************************************************************/ 

/* Short Description :     */ 

/* Program to calculate shape file for double frequency */ 

/* sweep and subsequent data-acquisition   */ 

/****************************************************************/ 

/* Keywords :      */ 

/* adiabatic sweep, shaped pulse, MQMAS   */ 

/****************************************************************/ 

/* Description/Usage:     */ 

/* This program runs with xaua from within poptau or */ 

/* paropt etc.      */ 

/* This means it can be used to optimise the parameters */ 

/* for the sweep in an automatic way.   */ 

/* Do ased first to make sure that the parameters listed */ 

/* below are set appropriately:    */ 

/*        */ 

/* p2 : duration of the sweep    */ 

/* sp1 : power level of the sweep    */ 

/* spnam1 : DFSjt is always used as default name  */ 

/* cnst1 : (in kHz) Startfrequency of the sweep  */ 

/* cnst2 : (in kHz) Endfrequency of the sweep  */ 

/* cnst3 : (in ns) currently used to define the timing */ 

/*        resolution of the sweep    */ 

/* Make sure that a customer-made pulse program uses */ 

/* these parameters for the same purpose!   */ 

/* The file which is created contains a comment line like: */ 

/* ##USAGE= Frequency sweep of 100 kHz in 100 usec  */ 

/* to be able to remember what sweep had been used  */ 

/* This AU program is suitable to be used with the  */  

/* following library pulse programs:   */ 

/* dfs90sel : sweep followed by 90 degree sel. pulse */ 

/****************************************************************/ 

/* Author(s) :      */ 

/* Name  : Stefan Steuernagel   */ 

/* Organisation : Bruker Analytik   */ 

/* Email  : stefan.steuernagel@bruker.de  */ 

/****************************************************************/ 

/* Name  Date Modification:   */ 

/* ste  000817 created    */ 

/* ste  031128 changed to allow sweep of  */ 

/*    fractions of rotor periods */ 

/*    by setting l0 = 1, 2, or 4 */ 

/*    blank character included for */ 

/*    npoints in parameter part */ 

/* jt  111116  modification to match JT syntax */ 

/****************************************************************/ 

/* 

$Id: zg_dfs,v 1.4 2003/12/03 10:05:07 es Exp $ 

*/ 

 

FILE *fwave; 

char outfile[256],outputfile[256],filename[256]; 
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double PI=3.14159265359; 

double amplitude, t, Startfreq, Endfreq; 

float Anfang, Ende; 

float phase=0; 

int npoints; 

 

GETCURDATA 

 

/* read parameters for sweep calculation from acqu-file */ 

/* and store filename for shaped pulse    */ 

 

(void)strcpy(outfile,"DFSjt"); 

STOREPAR("SPNAM1",outfile); 

 

// pulse length in us 

FETCHPAR("P 2",&f1); 

//printf("p2=%f",f1); 

 

/* used for timing resolution of sweep in ns*/ 

/* must not be less than 50 ns */ 

FETCHPAR("CNST 3",&f2); 

 

/* get start- and end-frequencies in kHz*/ 

FETCHPAR("CNST 1",&Anfang); 

FETCHPAR("CNST 2",&Ende); 

Startfreq=(double)Anfang; 

Endfreq=(double)Ende; 

 

/* calculate number points in the file */ 

npoints=round(f1/(f2*1e-3)); 

f2=f1/npoints*1000; 

 

/* open outputfile for shaped pulse   */ 

(void)sprintf(outputfile,"%s%s",getstan(0,"lists/wave/user/"),outfile); 

if ((fwave=fopen(outputfile, "w+")) == NULL ) { 

 Perror(DEF_ERR_OPT,outfile); 

 ABORT; 

 } 

 

/* store amplitude values in shaped pulse file  */ 

 

fprintf(fwave,"##TITLE= %s\n",outputfile); 

fprintf(fwave,"##USAGE= Frequency sweep from %4.1f kHz to %4.1f kHz in %4.1f usec 

with resolution %4.1f ns\n",Startfreq,Endfreq,f1,f2); 

fprintf(fwave,"##JCAMP-DX= 5.00 $$ Bruker JCAMP library\n"); 

fprintf(fwave,"##DATA TYPE= Shape Data\n"); 

fprintf(fwave,"##ORIGIN= Bruker BioSpin GmbH\n"); 

fprintf(fwave,"##DATE= 00/01/20\n"); 

fprintf(fwave,"##TIME= 08:15:00\n"); 

fprintf(fwave,"##MINX= -1.000000e+02\n"); 

fprintf(fwave,"##MAXX= 1.000000e+02\n"); 

fprintf(fwave,"##MINY= 0.000000e+00\n"); 

fprintf(fwave,"##MAXY= 0.000000e+00\n"); 

fprintf(fwave,"##$SHAPE_EXMODE= None\n"); 

fprintf(fwave,"##$SHAPE_TOTROT= 0.000000e+00\n"); 

fprintf(fwave,"##$SHAPE_BWFAC= 0.000000e+00\n"); 

fprintf(fwave,"##$SHAPE_INTEGFAC= 7.460936e-01\n"); 

fprintf(fwave,"##$SHAPE_MODE= 1\n"); 

fprintf(fwave,"##NPOINTS= %d\n",npoints); 

fprintf(fwave,"##XYPOINTS= (XY..YX)\n"); 

TIMES(npoints) 

 t=(loopcount1*f1*1e-6)/npoints; 

 d1=2*PI*Startfreq*1000*t; 

 d2=(2*PI*((Startfreq*1000)-(Endfreq*1000))*t*t)/(2*f1*1e-6*(npoints-

1)/npoints); 

 amplitude=cos( d1 - d2 ); 

 if (amplitude<0) { 

  amplitude*=-1; 
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  phase=180.0; 

 } else { phase=0.0;} 

 fprintf(fwave,"%3.6f, %3.6f\n",amplitude*100,phase); 

END 

fprintf(fwave,"##END\n"); 

fclose(fwave); 

(void) sprintf(text,"parameters and waveform file stored!"); 

Show_status(text); 

 

QUIT 

 

 

SFAM generator AU program 

/************************************************************** 

parameters: 

cnst0: max offset  

cnst31: approximate spinning speed (rounded to match shape requirements) 

cnst3:  resolution 

l3: n=1 or 2  

***************************************************************/ 

FILE *fwave; 

char outfile[256],outputfile[256],filename[256]; 

double PI=3.14159265359; 

int points=0; 

int ph=0; 

int n=1; 

float off,spin,step; 

float plength; 

int n50,n350,max; 

/********* 

CNST: float 

L int1 

********/ 

 

GETCURDATA 

FETCHPAR("CNST 30",&off); 

FETCHPAR("CNST 31",&spin); 

FETCHPAR("L 3",&n); 

FETCHPAR("CNST 3",&step); 

 

// interval must be at least 350ns 

// interval must be a multiple of 50ns 

// pulse length must be a multiple of interval 

// thus pulse length must be a multiple of 50ns 

 

//calculate plength depending on spinning speed 

plength=1e9/spin; 

// we want to split plength in at least 20 steps 

max=(int) (plength/20/50+0.5); 

 

n50=(int) (plength/50.0+0.5); 

// 

printf("plengthini=%f,n50i=%f,rn50=%d,plength=%f\n",plength,plength/50.,n50,n50*50.

); 

// find closed n50 that is multiple of at least 7 (so that step=n350*50>=350) 

n50=findclosest(n50,max); 

// plength is now a multiple of 50ns 

plength=n50*50; 

// step is a multiple of 50ns and is greater or equal than 350ns 

n350=mult(n50,max); 

step=n350*50; 

// number of points is plength/step=n50/350 

points=n50/n350; 

 

//recalculate the spinning speed after rounded plength : 

spin=1e9/plength; 
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// printf("\npulse de %fns decoupe en %d intervales de 

%fns\n",plength,points,step); 

 

//store back possibly modified spinning speed and step 

STOREPAR("CNST 31",spin); 

STOREPAR("CNST 3",step); 

 

/* read parameters for sweep calculation from acqu-file */ 

/* and store filename for shaped pulse    */ 

 

(void)strcpy(outfile,"sfam2"); 

STOREPAR("SPNAM5",outfile);  

 

/* open outputfile for shaped pulse   */ 

(void)sprintf(outputfile,"%s%s",getstan(0,"lists/wave/"),outfile); 

if ((fwave=fopen(outputfile, "w+")) == NULL ) { 

 Perror(DEF_ERR_OPT,outfile); 

 ABORT; 

 } 

 

/* store amplitude values in shaped pulse file  */ 

 

fprintf(fwave,"##TITLE= %s\n",outputfile); 

fprintf(fwave,"##USAGE=SFAM\n"); 

fprintf(fwave,"##CNST31=%f\n",spin); 

fprintf(fwave,"##CNST30=%f\n",off); 

fprintf(fwave,"##CNST3=%f\n",step); 

fprintf(fwave,"##L3=%d\n",n); 

fprintf(fwave,"##JCAMP-DX= 5.00 $$ Bruker JCAMP library\n"); 

fprintf(fwave,"##DATA TYPE= Shape Data\n"); 

fprintf(fwave,"##ORIGIN= Bruker BioSpin GmbH\n"); 

fprintf(fwave,"##DATE= 00/01/20\n"); 

fprintf(fwave,"##TIME= 08:15:00\n"); 

fprintf(fwave,"##MINX= -1.000000e+02\n"); 

fprintf(fwave,"##MAXX= 1.000000e+02\n"); 

fprintf(fwave,"##MINY= 0.000000e+00\n"); 

fprintf(fwave,"##MAXY= 0.000000e+00\n"); 

fprintf(fwave,"##$SHAPE_EXMODE= None\n"); 

fprintf(fwave,"##$SHAPE_TOTROT= 0.000000e+00\n"); 

fprintf(fwave,"##$SHAPE_BWFAC= 0.000000e+00\n"); 

fprintf(fwave,"##$SHAPE_INTEGFAC= 7.460936e-01\n"); 

fprintf(fwave,"##$SHAPE_MODE= 1\n"); 

fprintf(fwave,"##NPOINTS= %d\n",points); 

fprintf(fwave,"##XYPOINTS= (XY..YX)\n"); 

 

int i; 

double amp1,ph1,z; 

for (i=0;i<points;i++){ 

 amp1=sin(n*(i*1.0)/((points)*1.0)*2*PI)*100; 

 ph1=sin(n*(i*1.0)/((points)*1.0)*2*PI)*off/(n*spin)*360/2/PI; 

 if (amp1<0) { amp1=-amp1;ph1=ph1+180;} 

 fprintf(fwave,"%12.6f, %12.6f\n",amp1,ph1); 

} 

fprintf(fwave,"##END\n"); 

fclose(fwave); 

 

(void) sprintf(text,"%s file stored!offset=%3.6f spin=%3.6f points=%i 

step=%f",outfile,off,spin,points,step); 

Show_status(text); 

sleep(1); 

 

 

/* start acquisition */ 

QUIT 

 

// function that returns the first multiple of n50 greater or equal than 7 

// but lower than max 
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int mult(int n50,int max) { 

int i=7; 

while ((n50%i)!=0) { i++;if (i>max) {i=0;break;}} 

// printf("pour n50=%d n350=%d",n50,i); 

return i; 

} 

 

int findclosest(int n50,int max) { 

int i,j; 

 for (i=0; i<n50 ; i++) { 

  for (j=-1;j<=1;j+=2) { 

//     printf("fc : n50=%d j=%d,i=%d\n",n50+j*i,j,i); 

     if (mult(n50+j*i,max)!=0) {return n50+j*i;} 

   } 

 } 

} 

 

 

 

 

 

 

 

  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

My PhD thesis focuses on the development of the through-bond and through-space 

correlation solid state NMR experiments involving half-integer quadrupolar nuclei in order to 

characterize chemical structure of inorganic material at atomic level. This thesis consists of two 

part. 

    First, we introduce two-dimensional (2D) 71Ga-77Se through-bond and through-space 

heteronuclear correlation (HETCOR) experiments. Such correlations are achieved using (i) the 

J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) 

method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as 

(ii) the J- or dipolar-mediated Heteronuclear Multiple-Quantum Correlation (J- or D-HMQC) 

schemes with 71Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are 

applied to the crystalline -Ga2Se3 and the 0.2Ga2Se3-0.8GeSe2 glass. We also report 2D 71Ga 

Satellite Transition Magic-Angle Spinning (STMAS) spectrum of -Ga2Se3 using QCPMG 

detection at high magnetic field, high Magic-Angle Spinning frequency, and high rf-field. 

   Second, we introduce novel sequences using indirect detection to correlate quadrupolar nuclei 

and spin-1/2 isotopes, other than 1H and 19F. These sequences use γ-encoded symmetry-based 

RNn
ν schemes that reintroduce the space component |m| = 1 of the heteronuclear dipolar 

coupling. These schemes can be applied to the indirectly detected spin in Dipolar-mediated 

Heteronuclear Multiple-Quantum Correlation (D-HMQC) sequence or to the detected isotope 

in a novel sequence, named Dipolar-mediated Heteronuclear Universal-Quantum Correlation 

(D-HUQC). The performance of the sequences have been compared to conventional D-HMQC 

with R3 and SFAM recoupling via SIMPSON simulations and NMR experiments, including 

13C-{15N} heteronuclear correlation on glycine and 31P-27Al ones on VPI-5 and 

Na7(AlP2O7)4PO4.  
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