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Development of multidimensional spectral data processing procedures for 

analysis of composition and mixing state of aerosol particles by Raman and FTIR 

spectroscopy  

Abstract 

Sufficiently adjusted, multivariate data processing methods and procedures can 

significantly improve the process for obtaining knowledge of a sample composition. 

Spectroscopic techniques have nowadays capabilities for fast analysis of various 

samples. Indeed, much type of measurements was developed for research and 

industrial purposes and offer a huge possibility for advanced molecular analysis of 

complex samples, where atmospheric aerosol particles are a perfect example. 

Airborne particles affect air quality and successively, human and ecosystem condition, 

playing an important role in the Earth’s climate system. The purpose of this thesis is 

twofold. On an analytical level, the functional algorithm for specification of 

quantitative composition of atmospheric particles by Raman microspectrocopy (RMS) 

from single particle analysis was established. On a constructive level, the readily 

accessible analytical system for Raman and FTIR data processing was developed. 

Considering these aims in more detail: Firstly, the potential of single particle analysis 

by RMS has been exploited by application of the designed analytical algorithm for an 

efficient description of chemical mixing of aerosol particles. The algorithm was 

applied to experimental data, exceeding the limitations in trace constituent detection 

and quantitative analysis, as well as providing a new way of sample description. 

Secondly, the new software which includes the described algorithm and several easy-

to access, powerful data processing techniques was developed. Moreover, the 

created software features were applied for some challenging aspects of pattern 

recognition in the scope of Raman and FTIR spectroscopy.  
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Élaboration de procédures de traitement des données spectrales 

multidimensionnelles pour l’analyse de la composition et de l'état de mélange 

d'aérosols atmosphériques par spectroscopie Raman et IFTR   

Résumé 

Les méthodologies de traitement de données multidimensionnelles peuvent 

considérablement améliorer la connaissance des échantillons. Les techniques 

spectroscopiques permettent l’analyse moléculaire avancée d’échantillons variés et 

complexes. La combinaison des techniques spectroscopiques aux méthodes de 

chimiométrie trouve des applications dans de nombreux domaines. Les particules 

atmosphériques affectent la qualité de l’air, la santé humaine, les écosystèmes et 

jouent un rôle important dans le processus de changement climatique. L’objectif de 

cette thèse a été de développer des outils de chimiométrie, simples d’utilisation, 

permettant de traiter un grand nombre de données spectrales provenant de l’analyse 

d’échantillons complexes par microspectrométrie Raman (RMS) et spectroscopie 

d’absorption IRTF. Dans un premier temps, nous avons développé une méthodologie 

combinant les méthodes de résolution de courbes et d’analyse multivariée afin de 

déterminer la composition chimique d’échantillons de particules analysées par RMS. 

Cette méthode appliquée à l’analyse de particules collectées dans les mines en 

Bolivie, a ouvert une nouvelle voie de description des échantillons. Dans un second 

temps, nous avons conçu un logiciel facilement accessible pour le traitement des 

données IRTF et Raman. Ce logiciel inclue plusieurs algorithmes de prétraitement 

ainsi que les méthodes d’analyse multivariées adaptées à la spectroscopie 

vibrationnelle. Il a été appliqué avec succès pour le traitement de données spectrales 

enregistrées pour divers échantillons (particules de mines de charbon, particules 

biogéniques, pigments organiques).   
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Abbreviations and symbols 

ALS   Alternating Least Square 

AsLS   Asymmetric Least Squares Baseline Correction  

CA   Cluster Analysis 

EPMA    Electron Probe X-ray Microanalysis  

EDS   Energy-Dispersive X-ray Spectroscopy  

FTIR   Fourier-Transform Infrared Spectroscopy 

HCA   Hierarchical Cluster Analysis 

MCR   Multivariate Curve Resolution 

MSC   Multiplicative Scatter Correction 

MLR   Multiple Linear Regression 

MR   Mixing Rank 

PARAFAC Parallel Factor Analysis 

PC   Principal Component 

PCA   Principal Component Analysis 

PCR   Principal Component Regression 

PLS   Partial Least Squares Regression 

RMS   Raman Microspectroscopy 

RRSSQ  Relative Root of Sum of Square Difference 

SEM    Scanning Electron Microscopy 

SERS   Surface-enhanced Raman Spectroscopy 

SIMPLISMA  Simple-to-use Interactive Self-Modelling Mixture Analysis 

SNV   Standard Normal Variate  

SOA   Secondary Organic Aerosol  

SPA   Single Particle Analysis 

TERS    Tip-enhanced Raman Spectroscopy  
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“It’s better to die than to live in the knowledge that you’ve done something that needs 

forgiveness.” The Witcher, Blood of Elves. 

Louis Pasteur 

"La science ne connaît pas de pays, parce que la connaissance appartient à l'humanité, 

et elle est la torche qui illumine le monde." 

Confucius 

"Our greatest glory is not in never falling, but in rising every time we fall." 

Carlos Ruíz Zafón 

“People tend to complicate their own lives, as if living wasn't already complicated 

enough.” The Shadow of the Wind 

Antoni Kępiński 

"Nauka jest przeciwstawna mądrości, mądrość bowiem nie dąży do władzy, ale do 

większego zbliżenia się i tym samym lepszego zrozumienia świata otaczającego, 

wczucia się w jego tajemny rytm."  
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The application of optimal mathematical and statistical data processing in 

chemistry is an integral part of chemometrics. Sufficiently adjusted chemometric 

methods and procedures can significantly improve the process of  resolving a sample 

composition (Geladi 2003a). The amount of data collected during chemical analyses 

has outgrown the prime conception of the analytical chemistry (Ziegel 2004). From a 

single run, it is now possible in even few seconds to obtain large amounts of data, 

which generally require further processing. Predominantly, those data can consist of 

two constituents: informative and non-informative data. The acquired data do not 

have any value without an appropriate processing,  only a prerequisite for 

information (Massart et al. 1997). Spectroscopic techniques have nowadays 

capabilities for fast analysis of various samples. Indeed, many types of measurements 

– including on line, in situ, spatially resolved, time resolved, imaging, portable, etc. –

were developed for research and industrial purposes and offer a huge possibility for 

advanced molecular analysis of complex samples, such as atmospheric aerosol 

particles (Ault & Axson 2017; Cochran et al. 2017; Sobanska et al. 2014), live cells 

(Smith et al. 2016; Bergholt et al. 2017; Li et al. 2015), food and pharmaceutical 

nanomaterials (Li & Church 2014; Zong et al. 2013; Hong et al. 2010), pharmaceutical 

products (Y. Li et al. 2016; Dymińska 2015; Craig et al. 2015), environmental 

nanoparticles (Guo et al. 2017; Alessi et al. 2013; Tang & Lo 2013), works of art and 

archeological artifacts (Bersani et al. 2016; Otero et al. 2014; Leona et al. 2011).  

Atmospheric aerosols affect air quality and – successively – humans and ecosystem,, 

playing an important role in the Earth’s climate system (Hartmann et al. 2013; Mcneill 

2017; IPCC 2014). Moreover, the European Commission's Thematic Strategy on Air 

Pollution (CEP Thematic Strategy on Air Pollution), which was developed as a long-

term, strategic and integrated policy, advises to protect against significant negative 

effects of atmospheric aerosol particles on human health and the environment 

(European·Union 2005). The long- and short-term exposure to ambient aerosol 

particles is associated with an increase in mortality. In addition, there is a strong 

evidence that ambient aerosol particles impact respiratory and cardiovascular health 



- 14 - 
 

and contribute to a lung cancer risk (Kim et al. 2015). Various satellite remote sensing 

instruments have been extensively used to study aerosol properties in global or 

regional coverage (Mcneill 2017). Despite  their global-scale impacts, there are still 

many analytical challenges towards understanding their molecular composition, 

surface chemistry, heterogeneous reactivity and optical properties (Buajarern et al. 

2007; Ault & Axson 2017).  Knowledge about the chemical composition, morphology, 

size and internal structure of the particles can provide insight into their physical, 

chemical and optical properties which, in turn, is crucial to evaluate their main 

adverse effects (Sobanska et al. 2012; Carvalho-Oliveira et al. 2015; Jimoda 2012). For 

this purpose, the laboratory analysis of collected particles was considered as 

appropriate (Laskin et al. 2016). 

The approved and well-received method for determination of chemical composition 

is bulk analysis of filter-collected particles (McMurry 2002; Kulkarni et al. 2011). The 

main advantages of this type of analysis are: identification of main components 

(chemical elements, compounds or ions), a fast and validated analysis, a user-friendly 

statistical data treatment, etc (Li et al. 2016). Many efforts have been made for 

determination of chemical mixing and internal structure composition of individual 

particles as recently reviewed by Ault & Axson (2017). Indeed, single particle analysis 

techniques were developed and introduced to study chemical mixing and surface 

properties of individual particles. These analytical methods specifically focus on 

compositions and sizes of single aerosol particles. For this purpose, offline 

spectroscopic techniques coupled with microscopy (optical or electronic), have a 

great potential (Li et al. 2016). The atmospheric aerosol is currently a subject of 

extensive research because unravelling physical and chemical properties of aerosols 

requires an advanced study at the individual particle scale (Krieger et al. 2012), 

although there are some meaningful limitations in the field of single particle analysis 

by microspectroscopic techniques (Laskin et al. 2016).  
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Much of the information acquired from the single particle analysis techniques is 

essential for the specification of the particle molecular composition, as well as 

processes where chemical mixing is important, such as heterogeneous reactivity, 

liquid-liquid phase separations, water uptake/hygroscopic growth and ice nucleation 

(Liu et al. 2008; Ciobanu et al. 2009; Baustian et al. 2012; Ault et al. 2014; Laskin et al. 

2015). However, due to a complex nature of aerosol particles, and an amount of 

acquired data, an advanced chemometric analysis is required (Ofner, Katharina A 

Kamilli, et al. 2015). The efficient quantitative analysis of atmospheric aerosol particles 

by vibrational microspectroscopic techniques is limited due to a lack of dedicated 

statistical tools. There is a significant scientific gap in the field of analytical algorithms 

dedicated to single particle analysis, which are able to exceed such limitations. In the 

field of SPA, there is a constant necessity for a readily accessible, open-source, 

integrated data analysis system composed of well-established chemometric methods 

for fast and reproducible processing, especially dedicated to single particle analysis. 

In this context, the purpose of this thesis is twofold. On an analytical level, the 

functional algorithm for specification of quantitative composition of atmospheric 

particles from single particle analysis was established. On a constructive level, the 

readily accessible analytical system for Raman and FTIR data processing was 

investigated. 

To discuss these aims in detail, it must be emphasized that:  

1) The potential of single particle analysis by Raman microspectroscopy has been 

exploited by application of the originally designed analytical algorithm for an efficient 

description of chemical mixing of aerosol particles. The algorithm was applied to 

experimental data, exceeding the limitations in trace constituent detection and 

quantitative analysis, as well as providing a new way of a sample description. 

Additionally, the important aspect of suitable measurement conditions, such as 

particle collecting substrate, was evaluated.  
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2) A software, which includes the described algorithm and several easy-to access, 

powerful chemometric techniques, was developed to facilitate a reproducibility of the 

data processing. Moreover, the methodology was applied to some aspects of pattern 

recognition in the scope of Raman and FTIR spectroscopy.  

The thesis outline is presented as follow:  

Chapter 1 gives a general background on particle in the atmosphere, single particle 

analysis with a special emphasis on multivariate statistics and a blind source 

separation problem in the analysis of individual aerosol particles. A brief review of 

chemometric methodology applied for spectroscopy is given.  

Chapter 2 is dedicated to the description of samples and analytical methods used in 

this work.  

Chapter 3 is focused on the characterization of individual particles by combination of 

Raman microspectrometry and chemometric methods including the evaluation of 

substrate for imaging of collected particles and the designed analytical algorithm for 

processing of Raman spectra collected by single particle analysis to recognize 

chemical mixing and quantitative results of aerosol particles. The analytical algorithm 

is applied to the analysis of aerosol particles collected in the mining environment. 

Chapter 4 provides a description of the integrated software system for processing, 

analyzing, and clustering of Raman and FTIR spectra, named Spectronomy. 

Chapter 5 is related to the application of Spectronomy system for data processing of 

Raman and FTIR spectra, especially in preprocessing, pattern recognition, sparsity 

boosting and dimensionality reduction. The focus of the application is on the 

noteworthy paradigms from the field of industrial and biogenic aerosol particle 

analysis, as well as non-destructive microanalysis of cultural heritage materials. 

Conclusions and perspectives are discussed in the last part.  
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This chapter is divided in two parts. In the first part, a brief overview about 

single particle analysis techniques is presented, while the second part is focused on 

common chemometric methods applied to a spectral data treatment.  

 

1.1. Particles in the atmosphere  

Atmospheric aerosols are generally considered to be particles that range in 

size from a few nanometers (nm) to tens of micrometers (μm) in diameter.  Particles  

may  be  either  directly  emitted  into  the  atmosphere  or  formed  there  by  the  

oxidation  of  precursor  gases,  such  as  sulphur  dioxide,  nitrogen  oxides  and  

volatile organic compounds (VOCs), where the resulting oxidation products nucleate 

to form new particles or condense on pre-existing ones. Particles formed through 

these two routes are referred to as primary and secondary particles, respectively 

(Finlayson-Pitts and Pitts, 1997; Seinfeld and Pandis, 1998). Particles in the  

atmosphere arise from natural sources as well as anthropogenic activities [Seinfeld  

and Pandis, 1998].  The  former  source  includes  windborne  dust,  sea  spray,  

volcanic  activities  and  biomass  burning,  while  emissions  of  particles  attributable  

to  the  activities  of  humans  arise  primarily   from   four   source   categories:   fuel   

combustion,   industrial   processes,   nonindustrial fugitive sources (e.g. construction 

work), and transportation sources (e.g. automobiles). Natural aerosols are usually 4 to 

5 times larger than anthropogenic ones on a global scale, but regional variations in 

man-made pollution may change this ratio significantly in certain areas, particularly in 

the industrialized Northern Hemisphere (Seinfeld and Pandis, 1998).   

The data on chemical composition, size, morphology, internal mixing and physical 

states of particles obtained by offline analytical methods are crucial for 

understanding aerosol formation and reaction mechanisms, their atmospheric 

evolution, their impacts and source apportionment (Prather et al. 2008; Claudio et al. 

2017; Mcneill 2017).  
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Aerosol particles cover a wide size range of more than five orders of magnitude, with 

diameters ranging from 5∙10−3 to 2.5 μm for fine particles and greater than 2.5 μm for 

coarse particles (Hinds 1999). The fine particles include both (i) the Aitken nuclei, 

mainly ranging from 5∙10−3 to 5 ∙ 10−2 μm, and (ii) the accumulation mode particles 

ranging from 5 ∙ 10−2 to about 2 μm. In this classification, it is worth mentioning that 

(i) the nuclei constitute the most important part of the ultrafine particles (<10−1 μm) 

and (ii) the accumulation mode particles are mainly generated through coagulation of 

small particles from the nuclei class and condensation of vapors on existing particles. 

Consequently, the number of particles within the presented size subrange increases, 

and the accumulation mode becomes gradually more evident (Fig. 1).  

 

Fig. 1. Size range of aerosol particles in the atmosphere and their role in atmospheric 

physics and chemistry. 
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Therefore, such particles have longer residence times than the nuclei, and their 

number concentration tends to increase (Claudio et al. 2017). It should be noted, that 

the particles which are formed in the secondary processes are in general smaller in 

size comparing to the primary emitted particles (Ault & Axson 2017). Different 

processes govern the behavior and fate of aerosol particles in the atmosphere and 

depend on their size and chemical composition. Contemporary research showed that 

the values of relative humidity (RH) associated with the hysteresis between 

deliquescence and efflorescence (dissolution and crystallization as a function of RH) 

are different for 100 nm versus 6 μm particles (Laskin et al. 2015). This example 

proves a necessity of studying composition of different fractions of aerosol particles 

with a special attention to a fine mode.  

All aerosol characteristics and aerosol effects are controlled by the properties of 

individual particles. A volume of air contains many particles in any given particle size 

interval, which can be expected to have individual properties, because of the 

multitude of possible source and transformation processes. The chemical 

composition is a major factor that controls the atmospheric effects of aerosol 

particles. The many possible source processes and source types coupled with physical 

and chemical atmospheric transformation processes lead to a large variability in 

aerosol composition. The connections between the microphysical state and chemical 

composition of a particle with the transformation processes are summarized in Fig. 2.  

The chemical composition and microphysical state influence the response of the 

particle to environmental changes.  
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Fig. 2. Scheme of chemical composition and microphysical state modification of 

aerosol particles (Adapted from Krieger et al., 2012) 

 

 

1.2. Single Particle Analysis of ambient aerosol particles 

Spectroscopic and microscopic analysis has a long history in the field of aerosol 

particles’ characterization. However, acquiring comprehensive information on a 

chemical composition of atmospheric particles is challenging because no single 

analytical chemistry technique can provide all the required information (Navel et al. 

2015; Jung et al. 2014; Sobanska et al. 2012; Stefaniak et al. 2009; Ault et al. 2010). 

Single particle analysis (SPA) approach is presently recognized as a powerful tool to 

reveal detailed information, inaccessible by bulk techniques, concerning the particle 

origin, formation, reactivity, transformation reactions and their environmental impact 

(Ebben et al. 2013; Fitzgerald et al. 2015; Craig et al. 2017; Bondy et al. 2017; Andrew 

P Ault et al. 2012; Sobanska et al. 2012; Sun et al. 2016; Li & Shao 2010b; Moffet et al. 

2016; Axson et al. 2016). Initially, SPA was commonly applied to an identification of 

the filter-collected particles and asbestos fibers, mostly determined by optical and 

electron microscopies (Fletcher et al. 2011). At an early stage of development, due to 
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technological limitations, both techniques were restricted in their ability to provide 

chemical information of a sample composition. A combination of microscopic and 

spectroscopic techniques into a unique system made a breakthrough in SPA, 

simultaneously enabling a chemical analysis and determination of morphological 

features within a single particle. For the last 20 years, a use of these microanalytical 

methods has dramatically increased, mostly owing to technical improvements in 

chemical information that can be obtained and a need, with respect to aerosols, to 

improve understanding of a mixing state (Fitzgerald et al. 2015; Li et al. 2010; Adachi 

et al. 2014; Moffet et al. 2016; Laskin et al. 2015; Sobanska et al. 2012). Coupling of 

spectroscopy and microscopy, particularly for the analysis of single particles, has 

facilitated a more thorough understanding of a physicochemical mixing state (Ault & 

Axson 2017). Currently, a variety of microscopy, microprobe, spectroscopy, and mass 

spectrometry techniques are commonly applied to a complex characterization of 

aerosol particles collected in field campaigns and laboratory studies (Jonić et al. 2008; 

Prather et al. 2008; Hartonen et al. 2011; Hoffmann et al. 2011; Bzdek et al. 2012; 

Krieger et al. 2012; Nozière et al. 2015; Laskin et al. 2016) 

In the literature, there are several important analytical instruments for single particle 

analysis, such as scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) with their equivalents within the coupled microanalytical systems, 

e.g. computer-controlled SEM (CCSEM)/energy- dispersed X-ray detector (EDS), 

environmental SEM(ESEM), focused ion beam (FIB)/SEM, high-resolution transmission 

electron microscopy (HRTEM)/electron energy loss spectroscopy (EELS), scanning 

transmission X-ray microscopy (STXM)/near edge X-ray absorption fine structure 

spectroscopy (NEXAFS). These techniques provide morphological features 

specification (diameter size, shape etc.), elemental composition and phase 

composition. However, the analysis of individual aerosol particles being complex 

environmental individuals is much broader in its scope and requires the use of 

techniques that provide complementary results. Therefore, other techniques were 

introduced in the field of SPA, such as atomic force microscopy (AFM) which enables 
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detailed morphological analysis of submicron particles, time of flight secondary ion 

mass spectrometer (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) for 

surface analysis (Song & Peng 2009), Raman microspectroscopy (RMS) and FTIR 

microscopectroscopy (μ-FTIR) for molecular composition (Ault et al. 2013; Cheng et 

al. 2013; Sobanska et al. 2014; Hritz et al. 2016). The general scheme of the above 

mentioned techniques is presented below (Fig. 3). 

 

Fig. 3. Main techniques for single particle analysis of individual aerosol particles. 

Historically, single particle analysis began with the electron microscopy-based 

techniques. For electron microscopy, a spatial resolutions is very high (<1−5 nm), 

which allows to obtain detailed morphology, even of fine aerosol particles (20-30 

nm). The weakness of high vacuum electron microscopy is the loss of semi-volatile 

components. However, through an application of the improved methods like 

environmental scanning electron microscopy (ESEM) this process can be limited. The 

second disadvantage is related to the high-energy electrons, which may damage 

sensitive material, such as particles composed of organic carbon and/or ammonium 

nitrate. The popular SEM/EDX and EPMA techniques detect elemental (qualitative) 

composition and morphology of analyzing objects, recognizing a signal from a small 
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interaction volume. The specialized software allows to create a semi-/fully-automated 

procedure dedicated to a rapid and nondestructive analysis of a large group of 

objects such as aerosol particles (Ro et al. 1999; Van Grieken et al. 2000; Osán et al. 

2000; Ro et al. 2004; De Hoog et al. 2005; Ebben et al. 2013). There are some 

limitations related to quantifying of elemental contents, which requires adapted 

methods for determining the chemical composition of individual particles. 

Quantification procedure based on Monte-Carlo simulations was developed for the 

suitable measurements of low-Z elements. On the other hand, the gunshot residue 

(GSR) software enables detection of particles with high-Z elements. Based on the 

elemental composition and morphology, the particles can be classified into different 

groups related to the chemical composition of the samples. A significant number of 

publications reporting a successful application of computer-controlled SEM/EPMA 

measurements of a large number of particles (Sobanska et al. 2000; De Bock et al. 

2000; Ro et al. 2001; Andrew P. Ault et al. 2012) followed by quantification and 

appropriate data classification, prove the need for fast and reliable tools in the field 

of SPA.  

In the case of optical microspectrometry, the size limit for individual particle analysis 

has typically been set at 1 μm, due to the Abbe diffraction limit. Many studies were 

focused on the analysis of larger aerosol particles (1-10 μm diameter) providing 

valuable information on internal particle processes (Ciobanu et al. 2009; Brunamonti 

et al. 2015; Dallemagne et al. 2016). With technological improvements, the lower 

limits of optical microscopy are approaching the diffraction limit allowing spectral 

analysis of fine aerosol particles, however resolving submicron particles still remains 

challenging (Offroy et al. 2015; Bzdek et al. 2012; Ault & Axson 2017; Sun et al. 2016; 

Brunamonti et al. 2015). 

A remarkable example of the techniques that are currently used in the analysis of fine 

aerosol particles is Raman microspectroscopy (RMS) and its complementary 

counterpart: Fourier Transform Infra-Red spectroscopy coupled with a microscope 
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(FTIR microspectroscopy), providing molecular information in response to a wide 

range of radiation wavelengths. Infrared (IR) absorption and Raman scattering are 

both commonly used to study and identify substances using the compounds 

characteristic internal vibrations. IR spectroscopy is an absorption process, measuring 

the fraction of the light absorbed as the wavelength of the light is varied. The incident 

light is absorbed when the energy of the light closely matches the energy of a 

vibrational transition in the sample. A tiny proportion (approximately 1 in 109) of 

the incident photons interacts with vibrations in a sample and is scattered at higher 

or lower energy (Raman scattering). Additionally, by using a microscopic tool in both 

cases it is possible to observe morphological features, i.e. to map a surface of 

individual particles. The ability of Raman spectrometers to employ visible laser 

excitation and high quality microscope objectives results in a diffraction-limited laser 

spot of < 1 μm. IR systems employ longer wavelengths and hence the theoretical 

diffraction limit is much larger - around 20 μm. Moreover, IR spectrometers also 

suffer from less efficient objectives, typically giving an illuminated spot of around 100 

μm. Apertures can be used to improve the resolution by spatially filtering the 

collected light, but  at the expense of lower signal intensity. These differences 

crucially affect an ability of the instrument to resolve the components of 

inhomogeneous mixtures. Vibrational spectroscopy can operate at ambient pressure, 

and thus ambient RH, which avoids a potential loss of water or semi-volatile 

compounds. The application of automated microanalytical techniques for RMS and 

FTIR microspectroscopy was used in analysis of atmospheric aerosols (Sobanska et al. 

2006; Song et al. 2010; Ivleva et al. 2013, Jentzsch et al. 2012, Jentzsch & Bolanz et al. 

2012). Moreover, a combination of Raman microscopy and diffuse reflectance Fourier 

transform infrared spectroscopy (FTIR) has been used  to characterize a micron-size  

tropospheric aerosols particles (Gaffney et al. 2015; Jung et al. 2014). By using the 

specially designed sample holders and flow reactor assemblies, a water uptake by 

particles and their subsequent phase transformations and ice nucleation can be 

quantified (Schill & Tolbert 2014; Laskin et al. 2015). In addition, some significant 
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improvements of Raman microspectroscopy can find a measurable impact on analysis 

of aerosol particles. Regardless the analytical mode used in Raman or FTIR 

microspectroscopy – point analysis or molecular imaging – the appropriate 

chemometrics tools can significantly improve the process of obtaining knowledge 

from the collected data. Moreover, such a complex multidimensional data require a 

general statistical approach to evaluate the obtained spectra and allocate spectral 

features to size- and time-dependent properties in the atmosphere (Gautam et al. 

2015). Moreover, pioneering work of Ofner research group (Ofner et al. 2016) show, 

that  SPA like tip-enhanced Raman spectroscopy (TERS) opens an access to a deeper 

understanding of aerosol nanoparticles, which play a major role in many atmospheric 

processes and in particular in the global climate system. Sustaining this scientific 

trend is also reflected in the work of Craig et al. (2015). The promising results of the 

first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to 

detect trace organic and inorganic species and probe intraparticle chemical variation 

in individual particles down to 150 nm was made (Craig et al. 2015, Bondy et al. 

2017). However, it should be emphasized that these techniques are still under 

development for single aerosol particles analysis. 

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) 

yield detailed images of a physical structure of individual particles. In TEM, a focused 

electron beam is transmitted through a specimen to form an image, while in SEM a 

focused electron beam scans a specimen’s surface to create an image. Coupling 

spectroscopic and microscopic methods provides elemental and molecular 

composition of individual particles. TEM and SEM coupled to Energy Dispersive X-ray 

(EDX) spectrometry are commonly used for decades  to analyze particle morphology, 

size, elemental composition, and internal structures with micrometer (SEM) and 

nanometer (TEM) lateral resolution (Pósfai & Buseck 2010; De Bock et al. 2000; 

Hoornaert et al. 2004; De Hoog et al. 2005; Stefaniak et al. 2006; Potgieter-Vermaak 

et al. 2005; Van Grieken et al. 2000; Worobiec et al. 2007; Darchuk et al. 2010; W. Li et 

al. 2016; Sun et al. 2016; Li & Shao 2010a). TEM is generally used for an analysis of an 
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internal composition and a mixing state of single aerosol particles in a non-automatic 

mode (Moffet et al. 2016; Laskin et al. 2016; Li et al. 2010; Fu et al. 2012; Adachi et al. 

2014). Electron Energy Loss Spectroscopy (EELS) coupled to TEM enables assessment 

of chemical bonding for selected elements within individual particles. A crystalline 

structure of particles can be determined through the analysis of the selected-area 

electron diffraction. In turn, SEM in a computer-controlled mode (CCSEM) permits a 

routine analysis of hundreds-to-thousands of particles deposited on substrates and 

provides statistically significant data on particle-type populations (Cprek et al. 2007; 

Yu et al. 2007; Bernstein et al. 2008; R.E. O’Brien et al. 2015; Laskin et al. 2016). 

Synchrotron-based X-ray microscopes enable chemical imaging of particles with an 

advanced speciation of carbon bonding and chemical characterization of different 

forms of carbon-rich particles (Shakya et al. 2013). Scanning transmission X-ray 

microscopy coupled with near edge X-ray fine structure spectroscopy 

(STXM/NEXAFS) has an advantage of providing quantitative measurements of low-Z 

(atomic number) elements (C, N, and O), as well as some heavier elements with L-

shell absorption edges in the same energy range,e.g. K and Ca (Fraund et al. 2017). 

Moreover, STXM has a lower lateral resolution (>20 nm) than SEM and TEM (Laskin et 

al. 2016), but its higher chemical specificity has made it an instrument of choice for 

analysis of carbon-rich and mixed carbonaceous/inorganic particles (Kelly et al. 2013; 

Moffet et al. 2016). 

Raman microscopectroscopy applied to individual aerosol particles has unique 

strengths and weaknesses in comparison with other vibrational techniques, such as 

Fourier transform infrared (FTIR) spectroscopy. Beside a different spatial resolution 

related to an irradiation wavelength, both Raman and FTIR microscopectroscopies 

provide complementary data. 
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1.3. Chemometrics methodology applied to Single Particle Analysis 

Over the past 40 years, a scope of chemometrics, across both academic research and 

industrial applications, has grown, evolved and been refined (Ziegel 2004). Nowadays, 

chemometric techniques, such as signal processing, multivariate data processing, 

pattern recognition, experimental design/optimization, have been widely investigated 

by scientists or adopted in industrial applications (Lavine & Workman 2013). This sub-

discipline is rather new, but it had already a huge impact on the field of microanalysis.  

For single particle analysis (SPA), a combination of analytical techniques and 

chemometrics has become an important challenge in the last few decades (Gautam et 

al. 2015; Krammer et al. 2016; Äijälä et al. 2016). Nowadays, a large variety of 

chemometric methods has been used for different purposes of data analysis. In 

general, chemometrics came out from chemistry and introduced new methods 

capable of dealing with the large amounts of chemical data by means of multivariate 

data analysis. This state of affairs is of particular importance in the data processing. 

To analyze and visualize large data sets, sophisticated multivariate statistical analysis 

tools are necessary to reduce the data and extract components of interest. The data 

processing applied prior to multivariate analysis is known as preprocessing. 

Preprocessing for spectroscopic data is required to eliminate effects of unwanted 

signals such as fluorescence, Mie scattering, detector noise, calibration errors, cosmic 

rays, laser power fluctuations, signals from the cell media or glass substrate, etc. The 

multivariate analysis methods are applied in order to obtain information about 

sample composition, intercorrelation between particles as well as specification of the 

main particle groups. The description of particles on the basis of just a few 

representatives facilitates a possibility of monitoring their chemical composition in 

relation to particular variables, i.e. meteorological conditions or aerodynamic 

diameter (Yotova et al. 2016). Moreover, in the field of molecular imaging, the 

chemometric methods are an integral part of an analytical protocol, even for pushing 

back the analytical limits (Offroy et al. 2015). Several important methods, widely used 
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in the data analysis, are presented below with examples in the field of the SPA for 

aerosol particles. 

 

1.3.1. Asymmetric Least Squares Baseline Correction (AsLS) 

Asymmetric least squares smoothing is attractive for baseline estimation of Raman 

and FTIR spectra, owing to few important advantages: 1) this way of a baseline 

correction is fast, even for large signals (large number of variables); 2) the flexibility in 

the baseline adaptation by only one parameter; 3) the flexibility in the position of the 

baseline adaptation by only one parameter. Given the two parameters, the 

computations are completely reproducible (Eilers & Boelens 2005). Unfortunately, 

there is no single, versatile recipe for an automatic choice of the parameters for 

arbitrary signals, so the judgment of a user is always needed. The asymmetric least 

squares method combines a smoother with an asymmetric weighting of deviations 

from a smooth trend to form an effective baseline estimation method (Eilers & 

Boelens 2005). However, the limitation of this algorithm is that only a smoothness 

constraint with a second derivative is considered. In practice, the method requires 

that the baseline fits the raw data well, and that the first derivative is very close. 

Based on the Whittaker smoother, the asymmetric least squares (AsLS) method was 

proposed for background removal by Eilers (Eilers & Boelens 2005). A given vector y 

= {y1, y2,..., yi} is defined as i, the observed frequency domain spectral intensities. The 

smoothing series z = {z1, z2,..., zi} is faithful to y. Then, the penalized least squares 

function is minimized: 

                                                                                (1) 

with ∆2zi = (zi – zi-1) - (zi-1 – zi-2) = zi - 2zi-1 + zi-2, i ˛ [1, 2, 3, ..., m], ∆ is a second-order 

differential operator. The parameter λ is introduced to tune the balance between the 
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smoothness and fitness. Finally, the vector w is defined as the weights of fitness and 

the minimized function is introduced as follows: 

                                                                              (2) 

The minimization of the equation above can lead to the following equation: 

                                                                                              (3) 

with W = diag(w), W is the diagonal matrix for vector w, T describes the transpose of 

a matrix, and D is the second order differential matrix: Dz = ∆2z. 

Generally, a lighter smoothing is capable of removing the noise, otherwise, a stronger 

smoothing can eliminate the true signal. In order to estimate the true background, 

much more attention should be paid to the deviations in the positive direction for the 

baseline correction. However, the weights of both negative and positive residuals y–z 

are the same when using the Whittaker smoother. Therefore, a key parameter of the 

asymmetric least squares for the baseline correction, p (0 < p < 1), is introduced and 

computed as follows: wi = p if yi > zi and wi = 1 - p otherwise. 

The AsLS background correction was used in estimation of fluorescence background 

from 32,718 Raman spectra in the automatic mode, which significantly improve a 

process of a semi-continuous automated detection of airborne bioagents based on 

the Raman spectra of single particles (Doughty & Hill 2017). 

 

1.3.2. Scatter corrections 

Under scatter-correction methods, three preprocessing concepts: Multi Scatter 

Correction (MSC), Standard Normal Variate (SNV) and normalization were considered. 

These techniques are designed to reduce the variability between samples. All three 

also adjust for baseline shifts between them.  
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Multiplicative Scatter (or, in general, Signal) Correction (MSC) is probably the most 

widely used preprocessing technique for IR spectra, closely followed by SNV (Rinnan 

et al. 2009). The concept behind MSC is that artifacts or imperfections (e.g. 

undesirable scatter effect) will be removed from a data matrix prior to a data 

modeling (Chen & Thennadil 2012). MSC comprises two steps: 

1. Estimation of correction coefficients (additive and multiplicative contributions). 

2. Correcting a recorded spectrum. 

In most applications, an average spectrum of a calibration set is used as a reference 

spectrum. However, a generic reference spectrum can also be applied. In the original 

paper about MSC (Geladi et al. 1985), it was suggested to use only those parts of the 

spectral axis that do not include relevant information (baseline). While this makes 

good spectroscopic sense, it is difficult to determine such spectral regions in practice. 

This is the reason why, in most cases, the entire spectrum is used to find the scalar 

correction parameters in MSC.  

The basic form of MSC has been expanded into more elaborate augmentations 

(Martens et al. 2003; Xu et al. 2008) commonly known as an extended multiplicative 

signal correction (EMSC). This expansion includes both a second-order polynomial 

fitting to the reference spectrum, a fitting of a baseline on a wavelength axis and a 

use of a priori knowledge from the spectra of interest or spectral interferents. The 

application of EMSC was evaluated in the field of the SPA for analysis of aeroallergens 

by FTIR spectroscopy (Zimmermann et al. 2015). The analysis of the EMSC parameters 

indicates that the FTIR methodology offers an indirect estimation of morphology of 

pollen and spores. Thus, the study has shown that identification of principal 

aeroallergen bioparticles can be based on FTIR methodology (Zimmermann et al. 

2015).  

Standard Normal Variate (SNV) preprocessing is probably the second most applied 

method for a scatter correction of spectral data (Barnes et al. 1989). The signal-
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correction concepts behind SNV and Normalization are the same as for MSC except 

that a common reference signal is not required. Instead, each observation is 

processed on its own, isolated from the remainder of the set. A lack of need for a 

common reference might be a practical advantage. Since SNV and normalization do 

not involve a least squares fitting in their parameter estimation, they can be sensitive 

to noisy entries in the spectrum (Bi et al. 2016). Instead of using an average and a 

standard deviation as the correction parameters, one might consider using more 

robust equivalents of these statistical moments. Guo et al. (Guo et al. 1999) suggested 

using a median or a mean of an inner quartile range and a standard deviation of an 

inner quartile as estimates. This would be especially appropriate for noisy spectra 

(e.g., in Near Infrared applications). As an example, the SNV correction was an 

important part of the data preprocessing in specification of the influence of optical 

substrates on micro-FTIR analysis of single mammalian cells (Wehbe et al. 2013).  

 

1.3.3. Savitzky-Golay smoothing and derivation 

Savtizky and Golay (SG) (Savitzky & Golay 1964) popularized a method for a 

numerical derivation of a vector that includes a smoothing step. In order to find a 

derivative at a center point i, a polynomial is fitted in a symmetric window on the raw 

data. When the parameters for this polynomial are calculated, the derivative of any 

order of this function can easily be found and this value is subsequently used as the 

derivative estimate for this center point. This operation is applied sequentially to all 

points in the spectra. The number of points used to calculate the polynomial (window 

size) and the degree of the fitted polynomial are both decisions that need to be 

made. The highest derivative that can be determined depends on the degree of the 

polynomial used during the fitting (i.e. a third-order polynomial can be used to 

estimate up to the third-order derivative). There is an intrinsic redundancy in the 

hierarchy of SG derivation. For each derivation, two subsequent polynomial fits will 

give the same estimate of the coefficients. For the first derivative, a first-degree 
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polynomial and a second-degree polynomial will give the same answer (as will the 

third and fourth degrees). For the second derivative, a second and third-degree 

polynomial will give the same answer (as will the fourth and fifth degrees), etc. When 

this method was first introduced by Savitzky and Golay (Savitzky & Golay 1964), it 

was still computationally cumbersome to calculate the parameters in estimating the 

derivative. For that reason, the authors reported a set of tabulated values for several 

different types of derivatives and polynomial combination. However, errors were 

introduced in their first article, Steinier et al. (Steinier et al. 1972) published a 

corrected and expanded version of the original tables. The tables were later even 

further expanded by Madden (Madden 1978). However, with modern computers, 

there is no longer any real need for these tables. The original forms of SG derivation 

use a symmetric window smoothing, requiring a number of data points on each side 

of a center point to be the same. Therefore, the technique neglects a number of 

points at each end of the spectrum during the preprocessing. For SG derivation, the 

number of points lost equals the number of points used for smoothing minus one. If 

the spectral vector is long (i.e. more than 500 points), this issue is not important, but, 

for shorter, this loss of wavelengths can be important. Proctor and Peter (Proctor & 

Peter 1980) and later, Gorry (Gorry 1990) suggested a solution that involves using a 

fitted polynomial based on an asymmetric window for the end-points. In practice, this 

means that the m first points of the spectra are estimated from the 2m+1 first points 

in the spectra, and a similar estimate for the last m points. However, such a solution 

will evidently introduce artifacts, as the accuracy of the derivative decreases with the 

distance from the center point (m+1). Furthermore, the estimation of the end-points 

does not possess the inherent redundancy mentioned for SG: no two subsequent 

polynomial order fittings will give the same estimates. In addition to this, the estimate 

of the dth derivative will be equal for all the end-points if the spectrum is smoothed 

by a dth-order polynomial. The SG derivation uses common filtering techniques to 

estimate the derivative spectra, and, instead of using the finite-difference approach, 

fits a polynomial through a number of points.  
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The application of the SG smoothing and derivatization was crucial to improve an 

identification of a single bacteria cell or strain by Raman microspectroscopy. More 

precisely, a smoothed signal and a first derivative were calculated by Savitzky-Golay 

polynomial filters, that constituted a powerful, simple and fast method to obtain the 

desired signal without loss of intensity (Strola et al. 2014). 

 

1.3.4. Principal Component Analysis 

One of the fundamental aspects to be considered in linear transformations is the 

correlations between variables. By using them, a transformation of an original set into 

another space can be made, in which new variables are uncorrelated or statistically 

independent. Principal component analysis (PCA) is a statistical method that defines a 

linear transformation which is able to support description of a stationary stochastic 

process given in the form of a set of N-dimensional vectors with reduced dimensions 

to lower K-dimensional set (N>K). This transformation takes place through the W 

matrix of dimensions K×N where in such a way; the output space y of the reduced 

dimension retains the most important information about the original process. In 

other words, PCA replaces a high amount of information contained in a mutually 

correlated input into a set of statistically independent components, according to their 

importance. PCA is a well-known chemometric method for a decomposition of two-

way matrices that are schemed in Fig. 4 (Bro & Smilde 2014). The steps in PCA are as 

follows: (i) the X-space (where X corresponds to the X data matrix) is given a 

coordinate system where each variable gets an axis which length corresponds to its 

scaling; (ii) each observation in this space is represented by a point; (iii) the average of 

each variable is then calculated and subtracted (mean centering) - this is equivalent 

to moving the swarm of points to the center of the coordinate system; (iv) a function 

is fitted to the data that describes as closely as possible the variance of the 

observations in the X-space. By projecting each point down to the line (Euclidian 

distance) and measuring the distance between the center point and the projection 
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point, the score value (t) of each observation is obtained. The angle between the line 

and each variable axis determines the influence of each variable, the loading value (p). 

One loading value is given for each variable in the data set. When the first Principal 

Component (PC) has been calculated, the remaining unexplained variance is left in 

the residual matrix, E: 

                                                        X = TP’ + E                                                          (4) 

where, T is score matrix and P’ is transposed loading matrix. 

The second PC is orthogonal to the first. More PCs can be calculated as long as 

unexplained information is left. The significant number of principal components can 

be estimated by different methods, of which cross validation is an often-used 

method. The variance of a principal component is described by the eigenvalue, which 

is proportional to the variance explained by a PC. Although PCA can be calculated 

using different algorithms, the two most common methods are non-linear iterative 

partial least squares (NIPALS) (Wold et al. 1987) and singular value decomposition 

(SVD) (Jackson 2005). A basic rationale in PCA is that the informative rank of the data 

is less than the number of original variables. Hence, it is possible to replace the 

original number of variables with principal components and gain a number of 

benefits. The influence of noise is minimized as the original variables are replaced 

with weighted averages, and the interpretation and visualization is greatly aided by 

having a simpler view to all the variations. Furthermore, the compression of the 

variation into fewer components can yield statistical benefits in further modeling with 

the data. In addition, it is quite common to use PCA as a preprocessing step in order 

to get a compact representation of a dataset. For example, the scores may be used 

for building a classification model using linear discriminant analysis (Hair et al. 2010). 

PCA is frequently used for identifying pollutant sources affecting the air quality 

(Adams 1994; Cusack et al. 2013; Genga et al. 2012). This procedure is advantageous 

because detailed information regarding atmospheric chemistry and meteorology is 

not required. The application of PCA for single particle analysis has a rich history. For 
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example, by  using PCA the variability of the concentrations of diversified sources of 

particles, such as: soil derived dust and particles related to biological processes 

(forest fires or agricultural burning) was discovered (Adams 1994). In another work, 

PCA was performed in order to study the correlation among the particles collected in 

yard, urban and rural sampling sites, to obtain information on the pollution sources 

and to investigate the differences among them (Genga et al. 2012). In the case of a 

large data set processing, PCA has been used for the results from both single particle 

(SEM/EDS) and bulk (X-ray fluorescence) analysis results of a combined set of 

approximately 25,000 individual particles collected over Lake Balaton in Hungary 

(Osán et al. 2001). Such data treatment was applied to determine potential sources of 

the collected aerosol particles. PCA is also an important element of many single 

particle analysis algorithms. A noticeable example is an automated data analysis 

method for atmospheric particles using scanning transmission X-ray microscopy 

coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This 

method was applied to solve a structure of complex internally mixed submicrometer 

particles containing organic and inorganic material (Moffet et al. 2010).  

 

Fig. 4. Principal component analysis (PCA) model approximates variation in data table 

by low dimensional model plane (Hair et al. 2010). 
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1.3.5. Cluster Analysis 

Clustering data into meaningful groups is an important task of chemometrics (Ziegel 

2004). Clustering is considered to be an unsupervised classification of data. A number 

of clustering algorithms have been described in the literature (Everitt et al. 2011). 

Some of them are capable of discovering proper clustering of data only when a 

number of clusters is known in advance. Other algorithms are capable of discovering 

clusters of particular shapes only. There are also algorithms that are able to identify 

noise data. In general terms, the task of clustering can be formulated as follows: given 

a set of N elements, find its partition into K clusters, such that the elements within 

groups are more similar to each other than the elements that belong to different 

groups. Such classes are meant to express the structure of the data, not given a priori. 

The choice of the clustering algorithm cannot be made separately from the context of 

a particular data set and expectations about the structure of clusters. When a given 

sample is taken as a point in the space defined by variables, the clustering algorithm 

can calculate the distance between this point and all the other points, thereby 

establishing a matrix that describes the proximity between all the samples studied. 

There are several ways of calculating the distance between two points, the best 

known and most often used is the Euclidean distance (da Silva Torres et al. 2006). 

Different clustering methods can be categorized into three types (Jain & Dubes 1988). 

The following list explains these categories: 

1) Agglomerative vs divisive. The former begin by treating each spectrum 

(sample) as a cluster and successively merge them until a stopping criterion is met 

(the bottom-up style); the latter begin by placing all spectra (samples) in a single 

group and perform splitting until a stopping criterion is met (the top-down style). The 

details about these methods can be found elsewhere (Everitt et al. 2011)  
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2) Hierarchical vs partitional. This aspect relates to the structure of the clusters 

that are produced. The former algorithms form a hierarchy of clusters: clusters at 

lower levels are nested to upper level clusters (Everitt et al. 2011).  

3) Hard vs fuzzy. This aspect concerns a cluster membership. The former 

method allocates each spectrum (sample) to a single cluster while the latter predicts 

its degree of membership for multiple clusters. A fuzzy method can be converted to a 

hard one by assigning a spectrum (sample) to a cluster that has the highest degree of 

membership. Details about the Hard and Fuzzy clustering can be found elsewhere 

(Gosain & Dahiya 2016; Pedrycz 2005). 

Although clustering algorithms are not the main focus of this thesis, they are 

important for a fair evaluation of different representation models and similarity 

measures. In order to compare the main concept-based spectral clustering methods, 

two popular clustering algorithms are briefly presented: the agglomerative 

hierarchical clustering algorithm (HCA) and the partitional k-means algorithm.  

In the agglomerative hierarchical clustering, the data are not partitioned into a 

particular number of clusters at a single step (Everitt et al. 2011). Instead, the 

clustering consists of a series of partitions, which run from n clusters containing a 

single individual, to single cluster containing all individuals. Since all agglomerative 

hierarchical techniques ultimately reduce the data to a single cluster containing all 

the individuals, an investigator wishes to have a solution with an optimal number of 

clusters specification. This problem of deciding on the correct number of clusters is 

discussed below. Hierarchical clustering may be represented by a two-dimensional 

diagram known as a dendrogram (Fig. 5), which illustrates the fusions made at each 

stage of the analysis. HCA has been demonstrated to be a powerful tool to classify 

aerosol particles (Gabey et al. 2011; Robinson et al. 2013; Crawford et al. 2015) 

however, the available toolkits are limited by heavy computational burdens, making 

the analysis of large data sets problematic (Crawford et al. 2015). In another work, the 

hierarchical cluster analysis in combination with principal component analysis of 
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fused hyperspectral data cubes allowed a detailed and well-grounded assignment of 

chemical species and their relationship to each other in ambient aerosol particles 

(Ofner, Katharina A. Kamilli, et al. 2015). 

 

 

Fig. 5. Dendrogram plot generated by Ward’s HCA algorithm (https://docs.scipy.org). 

Partitional clustering methods find clusters by optimizing a certain objective function 

that defines the optimal solution (Hartigan 1975). For instance, the k-means 

algorithm minimizes the squared error in the resulting cluster structure, by assigning 

each point to its closest cluster in each iteration. It must be noted that an exhaustive 

search through all possible partitions for the optimal solution is computationally 

prohibitive. It is common to approximate this by running the algorithms multiple 

times with different initialization, each time generating a different partition of the 

data set, and then use the best clustering result (Jain 2010). Due to this 

approximation, partitional methods are usually efficient, therefore they are favored 
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for handling large data sets (Butler et al. 2016). The k-means algorithm is one of the 

most commonly used partitional clustering methods in chemometrics. As an example, 

the k-means cluster analysis was performed for ~5000 individual aerosol particles 

analyzed by CCSEM/EDX and RMS techniques (Moffet et al. 2012). By application of 

k-means clustering, Fe2+ was found to be an insignificant enrichment in ambient 

anthropogenic particles beside to standard Asian mineral dust. In another work, k-

means clustering was applied to the relative atomic abundances from the CCSEM-

EDX spectra collected for the 0.7−5.0 μm size range of ambient and laboratory-

generated particles (Axson et al. 2016). This allowed mathematical grouping of 

spectra to determine the types of aerosols present in each sample without human 

bias during sorting. 

Different clustering algorithms usually lead to distinctive data partitioning. Even for 

the same algorithm, the selection of particular parameters may greatly affect the final 

clustering results (Charrad et al. 2014). Thus, effective evaluation standards and 

criteria are critically important in the cluster analysis. At the same time, these 

assessments also provide some meaningful insights on how many clusters are hidden 

in the data. As such, numerous indexes for determining the number of clusters in a 

data set have been proposed (Duda & Hart 1973; Hubert & Levin 1976; Krzanowski & 

Lai 1988). Moreover, Milligan and Cooper (Milligan & Cooper 1985) presented a 

complex work about a comparison of 30 internal validity indexes for hierarchical 

clustering algorithms, whereas a systematic study of 16 external validation measures 

for K-means clustering is given in the literature (Wu, Xiong, et al. 2009; Wu, Chen, et 

al. 2009). The external indexes are based mainly on prior information of the data. In 

practice, such information is often unavailable, and calculation of internal indexes is 

therefore more useful. In the case of individual aerosol particle analysis, the 

calculation of such indexes is not a common practice. This fact is dictated by a 

complex structure of data which processing is necessary to be supervised at each 

step. However, in the case of automatic data processing, the step of optimal 

clustering number specification may greatly improve the analytical protocol 
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effectiveness. In our work (see chapter 4), two internal indexes for specification of the 

main groups of aerosol particles was made. By application of the Dindex (Baccini 

2010) and Hubert’s index (Hubert & Levin 1976) the designation of an optimal 

number of clusters for HCA was possible and the calculated criteria were 

complementary with the standard dendrogram inspection methods. 

 

1.3.6. Multivariate Curve Resolution  

The large heterogeneity at the level of individual particles in environmental samples 

generates a severe overlap of spectral information to obtain pure component spectra 

and concentrations. For cases where spectral mixture data are available without either 

pure component spectra or concentration profiles of pure components, a wide variety 

of self-modeling mixture analysis tools is available in Multi Curve Resolution methods 

(Hamilton et al. 1990, Windig 1992).  

The Simplisma (Simple-to-use interactive self-modeling mixture analysis) approach is 

different in that it is not based on  PCA and it is interactive (Windig & Guilment 1991, 

Windig et al. 1992)  

The interactivity is important to resolve data sets dealing with environmental 

chemistry where it is not possible to obtain replicate samples when trouble-shooting: 

user interaction based on their spectroscopic knowledge is necessary to avoid 

meaningless problems. When highly overlapping spectral features and/or baselines 

are present in the spectra, second derivative spectra can be used to resolve the data 

properly (Windig & Stephenson 1992, Windig 1994, Windig & Merkel 1993, Guilment 

et al. 1994). 

This approach uses pure spectra as a first estimate and derives pure variables from 

the resolved contribution profiles.  

SIMPLISMA method (Windig & Guilment 1991; Windig 1997) is based on evaluating 

the relative standard deviation of the column n, pn, defined from equation: 
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                                                            𝑝𝑛 = 
𝑠𝑛

𝑋𝑛+𝛿
                                                         (5) 

where sn is the standard deviation of the column n, 𝑋  is the average of the column n 

and δ is a correction factor that is added to avoid columns with a low average value 

(generally associated with noise) being the purest variables. A large relative standard 

deviation (pn) indicates a high purity of the column. The process involves, in the first 

step, finding a column with the highest value of a relative standard deviation and 

then normalizing this column. The variable with the second highest purity, as well as 

having a high relative standard deviation, must have the least correlation with the first 

pure variable. A weight factor, wn, is therefore calculated as follows: 

                                                             𝑤𝑛 = det (𝑌𝑛𝑇𝑌𝑛)                                             (6) 

where Y is a matrix made up of the pure variables found and each nth column of the 

data matrix that has not yet been selected. The value calculated by the determinant 

will be proportional to the independence between the pure variables and the nth row, 

which has been used to build the matrix Yn.  

To calculate a new pure variable pi, therefore, the weight factor will be applied.   

                                                              𝑝𝑛 = 𝑤𝑛 (
𝑠𝑛

𝑋𝑛+𝛿
)                                               (7) 

The algorithm selects the maximum value of pi, which corresponds to the variable of 

the greatest purity, and so on until all the pure variables are found. With the purest 

variables, the columns (the purest spectra) are obtained. SIMPLISMA was 

implemented for Raman imaging as SIMPLISMAX by adding a derivative tool leading 

to  distinction between wide and narrow Raman bands and then extracting properly 

the fluorescence spectra from the Raman ones (Windig et al. 2002) 

Simplisma has been described for a variety of applications based on Raman and FTIR 

microspectroscopy (Windig 1994, Windig & Merkel 1993, Guilment et al. 1994, Smith 

& Kramer 1999). 
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Additionally, the alternative least square can be applied to Multi Curve Resolution 

method (MCR-ALS).  The aim of the alternating least squares (ALS) method (Tauler et 

al. 1993) is to obtain, from an initial estimate using e.g. SIMPLISMA, a result with a 

chemical significance that corresponds, in a satisfactory way, to the observed 

experimental behavior. ALS allows several constraints to be imposed (De Juan & 

Tauler 2003). This method imposes a linear model on experimental data and, when 

working with spectroscopic responses, transforms the spectral concentration values in 

the non-negative mode. 

In the first step of MCR-ALS process, PCA is applied to determine how many 

significant principal components or sources of variation are present in the matrix. In 

the second step, an initial estimation is calculated, of either the concentration profiles 

or the spectra of pure products, from the number of significant principal components 

previously found. This initial estimation can be made using  PCA, e.g. the evolving 

factor analysis (EFA) or by other techniques, such as independent component 

analysis, and simple‐to‐use interactive self‐modeling mixture analysis (SIMPLISMA), 

based on finding pure variables. From the initial estimation and the number of 

significant principal components selected in principal component analysis, alternating 

least squares (ALS) is applied to obtain a non-negative matrix of concentration 

profiles for instance (Fig. 6). This can also be powerful as a refinement method in the 

extraction process of very similar Raman spectra (Sobanska et al., 2006). 
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Fig. 6. Scheme of MCR‐ALS. 

 

There is a rich repertory of scientific publications about an application of the MCR 

methods (or MCR-ALS) in single particle analysis - usually for the mapping. The 

effectiveness of a combined use of a computer-controlled Raman microspectrometry 

mapping and MCR methods for  Raman images to determine chemical and 

heterogeneous characteristics of individual tropospheric aerosol particles was 

successfully presented in many publications (Batonneau et al. 2001; Batonneau et al. 

2003; Batonneau et al. 2006; Sobanska et al. 2006; Sobanska et al. 2014) 

In another work, the Raman mapping and multivariate curve resolution were applied 

to the  chemical changes occurring at the interface between single particles, creating 

the reactive interface (Falgayrac et al. 2006; 2012). The laboratory analysis using in 

situ Raman imaging combined with MCR-ALS approach indicated a fundamental role 



- 45 - 
 

of small amounts of liquid water in initiating the chemical reaction of ZnSO4·7H2O 

microparticles in contact with a CaCO3 surface (Falgayrac et al. 2014). The same 

group, based on the data from Raman microspectroscopy with MCR-ALS approach, 

as well as TOF-SIMS spectrometry, elaborated heterogeneous microchemistry 

between CdSO4 and CaCO3 particles under humidity and liquid water (Falgayrac et al. 

2013). 
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CHAPTER 2: MATERIALS AND METHODS 
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2.1. Description of the samples 

In this work, the results from the analysis of inorganic aerosol particles (coal mine 

dust), as well as organic (biogenic) particles in the form of pellets were presented. The 

results were supplemented by specification of the deposited organic pigments on the 

paper and characterization of inorganic aerosol particles deposited on various 

substrates. The selection and differentiation of the samples was intended to present 

various aspect of the use of multivariate statistics methods to noteworthy paradigms 

from the field of industrial and biogenic aerosol particle analysis, as well as non-

destructive microanalysis of cultural heritage materials and specification of suitable 

condition for Raman imaging of aerosol particles. 

 

2.1.1 Mining particles  

Oruro - Bolivia 

The southwest of Bolivia consists of the Altiplano, a longitudinal basin flanked on the 

west by the Cordillera Occidental and on the east by the Cordillera Oriental. In turn, 

the Oruro area located in the Altiplano basin is regularly rich in polymetallic deposits. 

Thus, the mining and metallurgical activity plays an important role in the economy of 

this region. The critical impact of mining caused a significant degradation of the local 

environment (Banks et al. 2002; Jacobsen 2011; Tapia et al. 2012; Rötting et al. 2014). 

One of the specific harmful factors is the inhalation of metal-rich particles that may 

cause serious health consequences to the exposed population (miners, inhabitants of 

the area) (Pavilonis et al. 2017). The particles were sampled in the galleries of San Jose 

Mine (150 m, underground), located in the Oruro area, Bolivia (17°46'0"S – 

67°28'60"W – 3,674 MAMSL). The particle collection was performed using a personal 

cascade impactor (SIOUTAS, 3 l.min-1), allowing simultaneous walking along 

underground passages and sampling of four size fractions of particles, i.e. PM 10, PM 

2.5 , PM 1 and PM 0.5 corresponding to 10-2.5μm, 2.5-1μm, 1-0.5μm and < 0.5μm 
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aerodynamic diameter, respectively. The particles were collected on TEM grids 

mounted in the impaction plates. 

 

Bogdanka coal mine 

The world leaders of hard coal productions are China and USA; according to the 

data published by International Energy Association IEA statistics (http://www.iea.org), 

Poland is within the top ten coal producers in the world, with its average annual 

production of ca 140 Mt. Most of the global production of coal is dedicated to the 

local state consumption; only around 15% is destined for the international coal 

market (http://www.worldcoal.org). Sampling of the coal dust was conducted in the 

Bogdanka - underground coal mine located in the Eastern Poland. Sampling sites 

were distributed near an outtake shaft with a diameter φ 7.5 m and 996 m depth, in 

the coal seam. According to Philpott (Philpott 2002), the coal from this seam shows 

the following parameters: the ash content 10.02% to 38.47% (the average 21.71%) 

and the sulphur content varies from 0.82% to 2.16% (the average 1.27%). The seam 

shows a changeable morphology because of the coalbed thickness and mullock 

interlayers. Variability of the ash content is strongly linked with the non-coal rock 

interlayers, since their presence causes a decrease of the coal calorific value and 

increase of after-burning residue. Sulphur content also varies quite substantially, but 

it is not related to the presence of worthless material (mullock); it is likely to 

originate from sulphides such as pyrite being present in the coal exploited in these 

coal mine (Sawlowicz et al. 2005). 

Dust samples were collected from gravitational deposition along the main gallery, 

beginning with a spot near the shaft exit and moving gradually closer to the 

longwall.  

 

 

http://www.iea.org/
http://www.worldcoal.org/
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2.1.2. Biogenic particles 

Pollen grains is the natural source of proteins, lipids,  vitamins and mineral salts for 

bees, being the only source  of  nitrogenated  food  available  for  bee  larvae,  and  

its  absence may result in the hive extinction. Pollen is stored in pollen baskets on 

posterior legs of the bees and brought to a hive. To make pollen stick together, the 

bees add some saliva and nectar. In the hive, it is stored in honey combs and used as 

food for the bees. The pollen pellets were collected directly from beehives. Pollen 

pellets were purchased from Percie du Sert (Saint-Hilaire de Lusignan, France).  For 

the purpose of this subsection, the two types of pollen pellets were analysed: (i) 

contaminated by pesticides (i.e. imidacloprid) and (ii) with pesticide traces (i.e. 

imidacloprid). Both two pollen pellets after collection were transferred to numbered 

plastic vials, which were hermetically closed and kept in a refrigerator at 4 °C until 

use. The pollen pellets without any preparation were analysed by means of a confocal 

Raman microspectrometer. 

 

2.1.3. Organic pigments 

The scientific study of artworks on paper shares common objectives with technical 

studies of any work of art. Artifacts are examined in order to answer historical 

questions about their origin, namely, where, when, and by whom the artwork was 

created. Scientific examinations seeking to answer these questions generally require 

identification of the materials and working methods used to craft the object. Other 

studies seek to answer basic questions about the care of the artifact: its physical and 

chemical condition, causes for deterioration, and vulnerability to storage or exhibition 

conditions. The most common investigation for paintings or colored prints on paper 

involves identification of the pigments. Due to this requirement, the set of 6 natural 

powder pigments: turmeric, dragon’s blood, indigo, safflower, cochineal, gamboge 

(Kremer Pigmente) and binding medium (rice starch) were prepared. As a deposition 

substrate, 4 different papers were tested i.e. Whatman, K14, K78 and M20. For the 
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purpose of the current methodology, the specification of each paper is not necessary. 

Pigments were mixed with water and then deposited by wooden spatula on the 

paper. Finally, the paper with deposited pigments was left to dry for at least 12 hours.  

 

2.2. Analysis of the samples 

The analysis of the above mentioned samples was made by application of the means 

of techniques enabling the analysis of individual particles in a statistically significant 

group, as well as bulk analysis. A brief description of the main techniques used in this 

work is outlined below. 

  

2.2.1. Raman microspectrometry 

The Raman effect has been known and exploited for many years, and the physics 

behind it is very well described (Ferraro et al. 2003). The first theoretical predictions of 

inelastic scattering light were made by Smekal (1923), followed by the first 

experimental observation in 1928 by Raman and Krishnan (Raman & Krishnan 1928) 

who observed a frequency shift in the spectrum of scattered light compared to 

incident light. This frequency shift is known today as the Raman shift and can be 

calculated by the formula:  

                                          ∆(𝑐𝑚−1) = 10−7 (
1

λ𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛
−

1

λ𝑅𝑎𝑚𝑎𝑛
)                               (8) 

Where ∆ is the Raman shift, λexcitation is the wavelength of the excitation source and 

λRaman is the corresponding Raman wavelength. In classical interpretation, Raman 

effect can be explained by the interaction of incident radiation of the electric field �⃗�  

with a molecule. The incident electromagnetic field induces an electric dipole 

moment �⃗� : 

                                                             �⃗� =  �̿� �⃗�                                                          (9) 
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Where �̿� is the polarizability tensor (matrix of 3rd order) of the molecule and  �⃗�  is the 

amplitude of electrical field corresponding to the incident electromagnetic wave. The 

polarizability represents an intrinsic property of the molecule and depends on the 

electronic structure and the nature of the chemical bonds. For non-isotropic 

molecules, the polarizability may vary with position and interatomic distances, and 

depends on the molecule symmetry.  

A simple qualitative description of the Raman scattering can be obtained using the 

classical electromagnetic theory. Consider an electromagnetic wave defined by the 

formula (10): 

                                                       𝐸 = 𝐸0cos (2𝜋𝜈0𝑡)                                               (10) 

Where ν0 is the frequency. From equations (8) and (9), the time dependent induced 

electric dipole moment is: 

                                                    𝑃 = 𝛼𝐸0cos (2𝜋𝜈0𝑡)                                               (11) 

For the next step the assumption of single model molecule that is free to vibrate, but 

not rotate is needed. The molecule is fixed in space in its equilibrium position and 

nuclei can vibrate around their equilibrium positions. Any disturbance in the 

electronic cloud caused by an incident electromagnetic wave will induce changes in 

the molecule polarizability. This variation of the polarizability during the vibrations of 

the molecule can be expressed by expanding the polarizability α in a Taylor series 

(Goodwillie 2003) with respect to the coordinates xi of vibration: 

                                                         𝛼 = 𝛼0 +
𝜕𝛼

𝜕𝑥𝑖
𝑥𝑖                                                   (12) 

The coordinate of vibration xi can be written as a sinusoidal function in terms of the 

frequency of the vibration νi ; the characteristic frequency of ith normal vibrational 

mode and time t: 

                                                       𝑥𝑖 = 𝑥𝑖
0cos (2𝜋𝜈𝑖𝑡)                                              (13) 

Combining equation (12) with equation (13) yields: 
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                                               𝛼 = 𝛼0 + 𝛼1𝑥1
0cos (2𝜋𝜈𝑖𝑡)                                           (14) 

Where 𝛼1 =
𝜕𝛼

𝜕𝑥𝑖
   and ⍺0 is the initial polarizability. 

The induced electric dipole moment can be expressed as: 

                         𝑃 = 𝛼0𝐸0𝑐𝑜 𝑠(2𝜋𝜈0𝑡) + 𝛼1𝐸0  𝑐𝑜 𝑠(2𝜋𝜈0𝑡)𝑐𝑜𝑠(2𝜋𝜈𝑖𝑡)                         (15) 

Equation 15 can be rearranged using the trigonometric identity: 

                                      cos 𝑎 cos 𝑏 =  
cos(𝑎+𝑏)+cos(𝑎−𝑏)

2
                                              (16) 

and: 

                       𝑃 = 𝛼0𝐸0𝑐𝑜 𝑠(2𝜋𝜈0𝑡) + 𝛼1𝐸0
𝑐𝑜𝑠2𝜋(𝜈0+𝜈𝑖)𝑡+𝑐𝑜𝑠2𝜋(𝜈0−𝜈𝑖)𝑡

2
                         (17) 

Although equation 17 was obtained using the classical electromagnetic theory, it 

describes several important properties of Raman scattering processes. First, the 

polarization and scattering intensity have linear dependence of the laser intensity. It is 

also apparent that only vibrations that change the polarizability of the molecule are 

Raman active 
𝜕𝛼

𝜕𝑥𝑖
≠ 0. The changes in frequency, also known as Raman shift can be 

positive or negative in respect to the laser frequency. Because𝛼1 ≪ 𝛼0, Raman 

scattering is much weaker than Rayleigh scattering. Equation 15 shows that light will 

be scattered by the molecule at three frequencies. The first term represents the 

Rayleigh scattering, the second term contains waves with frequencies ν0 +νi and is 

known as anti-Stokes Raman scattering (Ozaki & Šašić 2007) and relates the outgoing 

scattered photons with an increase in frequency by an amount νi and finally the third 

term ν0 -νi, called Stokes Raman scattering is associated with a decrease in frequency 

of the resulting scattered photon. 
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Fig. 7. Energy diagram for Raman scattering (Wikipedia 2016). 

 

The Stokes and anti-Stokes Raman scattering can also be explained using the energy 

diagram (Fig. 7). Only a small of part (10-6 of scattered photons) of incident of 

incident photon will suffer inelastic scattering. The origin of inelastic scattering can be 

explained in terms of energy transfer between incident radiation and scattering 

molecule. 

The ratio between intensities of the Stokes and anti-Stokes scattered light depends 

on the population of the vibrational ground and excited states and can be calculated 

using Boltzmann’s equation (McCreery 2000): 

                                             
𝐼𝑆𝑡𝑜𝑘𝑒𝑠

𝐼𝑎𝑛𝑡𝑖−𝑆𝑡𝑜𝑘𝑒𝑠
= (

𝜈0−𝜈1

𝜈0+𝜈1
)
4 ℎ𝜈1

𝑒𝑘𝑏𝑇                                              (18) 

Where T is the absolute temperature, kB is the Boltzmann constant. 

Equation 18 highlights the proportionality of the Raman intensity with fourth power 

of the frequency. In general the Raman scattering intensity can be expressed as 

(Jestel 2010): 

                                                  𝐼 = 𝐾𝐼0𝛼
2(𝜈0 ± 𝜈𝑖)

4                                                 (19) 
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Where K represents a series of constants, I0 is the intensity of the incident radiation. It 

should be noted, that for full explanation of Raman scattering the quantum theory of 

Raman scattering explains shortcomings of classical Raman scattering.  

A Raman microspectrometer (RMS) consists of a specially designed Raman 

spectrometer integrated with an optical microscope (Fig. 8). Confocal Raman 

microscopy was developed in 70’s by Delhaye and Dhamelincourt (Delhaye & 

Dhamelincourt 1975). 

This microanalytical technique allows acquiring Raman spectra of microscopic 

samples or microscopic areas of macroscopic samples. Raman microspectrometry 

combines capabilities of Raman scattering and the spatial resolution of optical 

microscopy is well adopted for obtaining direct molecular information on individual 

micron size aerosol particles under ambient conditions (Ault et al. 2014; Jung et al. 

2014; Offroy et al. 2015; Sobanska et al. 2014; Sobanska et al. 2012; Brunamonti et al. 

2015). Currently automated Raman systems are available for acquiring two-

dimensional molecular images with a lateral resolution limited by light diffraction.  

 

Fig. 8. Raman microspectrometer scheme. 
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2.2.2. FTIR  

Infrared spectroscopy is based on the interaction between matter and radiation in the 

IR range of the electromagnetic spectrum and is used to study fundamental 

vibrations and associated rotational-vibrational structure. A  vibrational  mode  is  

active  in  infrared  absorption   spectroscopy  if  the  derivative  of  the molecular 

dipole moment (p) with respect to the normal coordinate is nonzero: dp/dQ≠0.  

Fourier  transform  infrared  (FTIR)  spectroscopy  is  a  measurement  technique  for  

collecting infrared spectra using a Michelson’s interferometer.  The Fourier transform 

(FT) changes a signal (or any data) from the time domain to the frequency domain 

(and back again through the inverse FT) where f(t) is the signal in the time domain 

and F(ω) is the signal in the frequency domain: 

                                                 𝐹(𝜔) =  ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡∞

−∞
𝜕𝑡                                          (20) 

Any signal in the time domain is a sum of numbers at discrete points in time. Instead 

of summation, it is common to let the terms approach zero and do an integral to 

reveal a convolution of the delta function that returns f(t). 

                                   ∑𝑓(𝑡𝑛)𝜕(𝑡 − 𝑡𝑛) → ∫𝑓(𝑡𝑛)𝜕(𝑡 − 𝑡𝑛)                                       (21) 

As opposed to the summing up all these points, wave functions are used to cover all 

points in time using Euler’s formula. 

                                                   𝑒𝑖𝑥 = cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)                                            (22) 

Wave packets have magnitude M with an exponential term eiwt. Acos(ωt) is the real 

part; proportional to cosine with amplitude A and imaginary part proportional to the 

sin with amplitude Bsin (ωt). Any time domain signal can be represented by a sum of 

all possible combinations of sinusoidal waves with ωn, frequencies and An, Bn 

amplitudes that stretch over all time at the right magnitude. 

                                                        𝑀𝑒𝑖𝜔𝑡 = 𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝑖𝐵𝑠𝑖𝑛(𝜔𝑡)                         (23) 
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In simplistic terms, eq. 20 states the amount of signal with frequency (ω) in f(t) is 

equal to: 

                                                              
𝑓(𝑡)

𝑒𝑖𝑤𝑡 = 𝑓(𝑡)𝑒−𝑖𝑤𝑡                                            (24) 

The above equation states as f(t) is a single number and does not have frequency 

components. More correctly, the amount of signal F(ω) is calculated by integrating 

over all values of t: 

                                            𝐹(𝜔) =  
𝑓(𝑡)

𝑒𝑖𝑤𝑡 = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡∞

−∞
𝜕𝑡                                     (25) 

For each frequency, the amplitudes of the real and imaginary parts as a function of 

omega F(ω). The output from the Discrete Fourier transform (DFT) produces a 

complex number where the magnitude is the real part of the signal and the phase, 

which is the initial angle of the wave. In Fourier transform spectroscopy, all 

wavelengths of light enter in parallel, simultaneously producing interference patterns 

for each one. The multiplex (Fellgett) principle states this as an advantage of reduced 

measurement time in comparison with a continuous wave spectrometer that observes 

only a single wavelength at a time (Griffiths & De Haseth 2007). There are no 

requirements for entrance and exit slits as wavelengths are being measured in parallel 

so the interferometer’s output light intensity is almost equal to the input intensity, 

which makes signal detection easier (Griffiths & De Haseth 2007). 

For a given wavelength or frequencies of IR radiation striking a sample, these two 

interactions are inversely related through the following equation: 

                                                         𝐴 = 𝑙𝑜𝑔1/𝑇                                                       (26) 

Where: A= absorbance and T= transmittance (%T/100). 

IR spectral region of the electromagnetic spectrum extends from the red end of the 

visible spectrum to the microwave region; it includes radiation with wavenumbers 

ranging from about 14,000 to 20 cm-1, (wavelengths from 0.7 to 500 µm). Because of 
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application and instrumentation reasons, it is convenient to divide the IR region into 

the near (NIR), middle (mid-IR), and far (FIR) subregions. 

The near-IR (NIR, NIRS) domain extends from the visible region at 14,000 cm-1 (0.7 

µm) to the mid-IR region at 4000 cm-1 (2.5 µm). Spectra generated in the near-IR 

region consist of many overtones and combinations of the mid-IR region 

fundamental vibration modes. Since all organic species absorb in the NIR and 

produce many overlapping bands, single band spectroscopy and qualitative band 

assignments are nearly impossible. NIR is useful for quantitative work, including in 

situ monitoring of reactions (Fontalvo-Gómez et al. 2013). 

The spectral range of greatest use for chemical analysis is the mid-IR (MIR) region 

(Lewandowski et al. 2015). It covers the frequency range from 4000 to 500 cm-1 (2.5-

20 µm). This region can be subdivided into the group frequency region, 4000-1300 

cm-1 (2.5-8.0 µm) and the fingerprint region, 1300-500 cm-1 (8.0-20 µm). The 

absorption bands in the fingerprint region of the spectrum are the results of single-

bond as well as skeletal vibrations of polyatomic systems. Multiple absorptions in this 

region make it difficult to assign individual bands, but the overall combined pattern is 

very characteristic, reproducible, and useful for material identification when it is 

matched to reference spectra (Huber et al. 2007). 

The far-IR (FIR) region is generally designated as 500-20 cm-1 (20-500 µm). In this 

region, the entire molecule is involved in low frequency bending and torsional 

motions, such as lattice vibrations in crystals. These molecular vibrations are 

particularly sensitive to changes in the overall structure of the molecule that are 

difficult to detect in the mid-IR region. For example, the far-IR bands of amino acids 

can often be differentiated (Matei et al. 2005). FTIR is also useful in the identification 

and differentiation of minerals (Brusentsova et al. 2010). 
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2.2.3. Scanning electron microscope with energy dispersive X-ray spectroscopy 

(SEM/EDS) 

 

SEM/EDS provides an image with a high spatial resolution and a deep field of view 

owing to interaction of an electron beam with an observed object (surface). As a 

result of matter exposure to high-energy electrons, X-ray radiation is emitted and 

recorded by an X-ray detector (based on energy or wavelength dispersion – EDS or 

WDS, respectively) coupled with SEM. EDS detectors are more efficient an faster, 

compared to WDS, although at the expense of spectral resolution, mich more 

efficient in case of WDS  Over the past decades, EDS has become firmly established in 

the aerosol scientific community as a powerful technique for specification of the 

elemental composition of substrate-collected particles. Scanning electron microscopy 

coupled with energy dispersive spectroscopy (SEM/EDS) yields images with ≥3 µm 

lateral resolution where the EDS provides elemental analysis with an accuracy of 0.1 - 

1 at%. In most studies on atmospheric particles, the main objective is a general 

characterization of the aerosol. In the conventional system, the sample is measured in 

vacuum and thus dehydratation of particles occurs. In addition, the specimen 

morphology may change, what in conjunction with the previous assumption makes 

potentially difficult to observe the hygroscopic behaviour of the particles and analysis 

of semi-volatile compounds. These problems have been partly overcome by the 

recent developments of electron microscopes in which a sample can be studied in 

low-vacuum conditions. The environmental SEM (ESEM) is now an established tool in 

the study of atmospheric particles (Zimmermann et al. 2007; Rachel E. O’Brien et al. 

2015; Chen et al. 2013).  

Straightforwardly, when the electron beam hits a sample, there is a high probability 

that X-rays will be generated. The produced X-ray escapes the sample and reaches 

the detector generating a charge pulse. This short-lived current is then converted into 

a voltage pulse with amplitude reflecting the energy of the detected X-ray. Finally, 
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this voltage pulse is converted to a digital signal and one more count is added to the 

corresponding energy channel. Once the measurement is completed, the 

accumulated counts produce a typical X-ray spectrum with the major peaks 

superimposed on the background. However, high-energy electrons can interact with 

samples’ atoms in many different ways. Some signals are used for imaging (secondary 

electrons, BSEs, transmitted electrons, etc.), but the X-ray signal will be discussed 

here. In the case of the X-rays emission, an electron (from the beam) strikes an atom, 

which ejects an electron originally positioned in an inner shell (K shell) (Fig. 9). When 

an inner shell electron is displaced by collision with a primary electron, an outer shell 

electron may fall into the inner shell to re-establish the proper charge balance in its 

orbitals following an ionization event. Thus, by the emission of an X-ray photon, the 

ionized atom returns to ground state. Therefore, the energy released (expressed in 

eV) is exactly equal to the energy difference between the two levels (Fig. 9). In 

addition to the characteristic X-ray peaks, a continuous background is generated 

through the deceleration of high-energy electrons as they interact with the electron 

cloud and with the nuclei of atoms in the sample. This component refers to the 

Bremsstrahlung or Continuum X-ray signal. This constitutes a background noise and 

is usually stripped from the spectrum before analysis although it contains information 

that is essential to the proper understanding and quantification of the X-ray 

spectrum.  
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Fig. 9. X-ray generation in a sample from the interaction of high-energy electrons in 

an electron microscope.  

The basis for elemental analysis with EDS is the Moseley’s Law (Eq. 27).  

                                                    𝐸 =  𝐶1(𝑍 − 𝐶2)
2                                                   (27) 

Where: E = energy of the emission line for a given X-ray series (e.g. Kα), Z = atomic 

number of the emitter C1 and C2 are constants.  

The energy of the characteristic radiation within a given series of lines varies 

monotonically with the atomic number. 

In the SEM/EDS microanalysis the net peak intensity, that is, the intensity of the 

characteristic X-ray signal above the background signal is measured. However, it 

should be noted that counting error in any measurement of peak intensity might 

occur. In evaluating the intensity of a spectral peak, that is, the number of X-ray 

counts, a source of random error is current. More precisely, the emission and 

subsequent detection of a characteristic X-ray can be regarded as a statistically 

independent event, which has a fixed probability of occurring within each faint time 

interval δt. Under conditions such as these, the number n of X-rays detected during 

any finite time interval is governed by the Poisson law (Eq. 28):  
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                                                  𝑃(𝑛) =  
𝑒−�̅� �̅�𝑛

𝑛!
                                                           (28) 

Where P(n) is the probability of detecting exactly n X-rays and �̅� is the mean number 

of X-rays counted during a large number of such trials. The confidence in the 

accuracy can be no greater than that indicated by the extent of the Poisson 

distribution plot of P(n) versus n. This unavoidable error is called the counting error. 

The background signal itself is responsive to counting error. Therefore, the 

confrontation with the problem of distinguishing between random fluctuations in the 

background and real peaks is needed. Furthermore, a confidence level must be 

established as well as maintained in any assertion that an element is present at the 

minimum detection limit. For example, a 95% confidence level would be consistent 

with the statement that, in a large number of observations, 95% of the observations 

indicating the presence of an element at the minimum detection limit reflect the 

actual presence of that element, whereas 5% of such observations reflect only 

random fluctuations in background counting rate. In practice, minimum detection 

limits are influenced by a number of experimental factors including instrument 

stability, spectral peak overlaps, and interactions within the sample matrix. For routine 

EDS analysis, the generic detection limit is about 1000 ppm or 0.1 wt%.  

An important aspect which  must be faced in the SEM/EDS analysis is the 

determination of low-Z elements such as carbon, nitrogen and oxygen, with 

comparable analytical abilities for heavier elements (Z≥11) observed by the 

conventional technique. The low-Z elements are very important because they form 

the major mass of aerosols (Prather et al. 2008; Bzdek et al. 2012; E A Stefaniak et al. 

2009). By the application of the SEM/EDS technique, which employs either a 

windowless or thin-window EDS detector (Van Grieken et al. 2000; Ro et al. 1999), 

chemical compositions, including the low-Z components, of individual particles can 

be at least semi-quantitatively elucidated. For the last two decades, there has been an 

extensive progress in the field of single particle analysis by SEM/EDS. It began with 

instrumental developments, followed by the design of computer software facilitating 
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an automated mode of particle detection based on backscattered electron images 

and then development of the software for estimation of element weight 

concentrations (based on CASINO simulations) in each recognized particle in semi-

quantitative analysis (Osán et al. 2000; Ro et al. 2004). The development in this matter 

was due mostly to the quantification methods in the EDS. The classical ZAF and 

φ(ρz)-based procedures aim to correct for matrix and geometric effects which are 

even more pronounced for light-element X-rays. The most reliable and widely used 

quantification method for microparticles is the so-called particle-ZAF algorithm 

developed by Armstrong et al. (Armstrong & Buseck 1985). The particle-ZAF methods 

based on bulk standards introduce large errors for the light elements, mostly because 

of the large absorption correction needed, and the difference between the behaviour 

of bulk samples and single particles under electron bombardment. Also, when the 

average atomic number of the substrate differs significantly from that of the particle, 

the side-scattering correction (Armstrong & Buseck 1985) of the φ(ρz) function is 

reasonable only if the electron excitation volume is smaller than the particle itself. The 

schematic illustration of interaction volumes for various electron-specimen 

interactions is presented on Fig. 10. 

 

Fig. 10. Schematic illustration of interaction volumes for various electron-specimen 

interactions (https://nau.edu/cefns/). 

https://nau.edu/cefns/
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The interaction volume is dependent on the mean atomic number of the sample and 

the operating conditions of the SEM. The quantification procedure for low-Z elements 

is based on a modified version of the single scattering CASINO Monte Carlo program 

(Gauvin et al. 1995; Hovington et al. 1997), which was designed for low-energy beam 

interaction to generate X-ray and electron signals. The modified version of the 

CASINO program allows the simulation of electron trajectories in spherical, 

hemispherical and hexahedral particles located on a flat substrate (Ro et al. 1999). 

The simulation procedure also determines the characteristic and continuous X-ray 

intensity emitted from the substrate material (Osán et al. 2000). Using a combination 

of simulations and successive approximation, a reverse Monte Carlo quantitative 

program was developed for standardless concentration determination from 

characteristic X-ray intensities obtained from SEM/EDS of individual particles (Ro et 

al. 2003). To sum up, by means of SEM/EDS it is possible to semi-quantitatively 

determine the concentrations of low-Z elements such as C, N and O by application of 

the quantitative programs based on Monte Carlo simulation, as well as higher-Z 

elements that can be analysed by conventional energy-dispersive electron probe X-

ray microanalysis (Maskey & Ro 2011). The morphology and the composition of 

environmental microparticles are heterogeneous, and therefore the detailed 

information about both major and trace constituent elements is required. Due to this 

assumption, SEM/EDS is an appropriate technique for aerosol particles analysis.  

 

2.3. Chemometric methods for spectral data treatment 

 

PCA 

In this work, PCA was performed in order to study the correlation among the mine 

dust particles, their composition and chemical mixing. In the case of a large data set 

processing, PCA  was used for the results from single particle (analysis (SEM/EDS and 
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Raman). Such data treatment was applied to determine pattern formation after 

application of the authorial algorithm for Raman spectra. PCA was also important  for 

separation of the FTIR spectra of organic pigments after preprocessing. PCA was also 

an element of exploratory data analysis in order to support specification of optimal 

number of clusters for clustering methods. 

 

Clustering 

The several clustering algorithms (HCA, k-means, fuzzy-c-means) were applied for the 

results from almost all samples presented in this work. The application of such a 

proceeding was made due to the specification of the main groups of objects (e.g. 

Raman spectra, chemical mixing membership) with relatively high similarity. The 

cluster analysis was intended to present the main groups of the aerosol particles and 

organic pigments (based on the collected spectra). 

 

 

MCR 

The large heterogeneity at the level of individual particles in environmental samples 

generates severe overlap of spectral information to obtain pure component spectra 

and concentrations. The application of multivariate curve resolution algorithm was 

made due to the specification of pure compounds from mixed Raman spectra. This 

algorithm is also an integral part of the authorial data analysis algorithm for 

specification of the chemical mixing of aerosol particles. Moreover, the results from 

the MCR procedure are the core of the results for the specification of the most 

suitable single aerosol particles imaging substrate for Raman microspectroscopy. 
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3.1. The evaluation of the influence of collecting substrate on the Raman 

mapping of aerosol particles 

Since SPA techniques are off-line techniques, particles must be collected on 

suitable substrates for analysis. Thus, the choice of an analytical substrate for single 

particle analysis has to be made wisely. Obviously, the substrate should be 

characterized by optimal contrast adjustment, if optical images are considered, and 

by chemical inertness, to avoid any modification of the chemical composition and 

morphology of the particles. The substrate may have a large signal contribution 

compared to the relevant information in the sample and thus impair final results. This 

is particularly crucial when the particle size is lower than the beam spot size that is 

typically encountered for atmospheric micron-sized particles. In this chapter, we 

present the evaluation of the common particle-collecting substrates in the context of 

the MCR approach application for Raman spectra.  Laboratory-generated single-

component particles of calcite (CaCO3) and mixed particles of calcite (CaCO3), 

nitratine (NaNO3), hematite (Fe2O3) and anglesite (PbSO4) were deposited by cascade 

impaction on: Ag, In, Si, SiO2, microscope slide and TEM-grid substrates and analysed 

by RMS. The evaluation of the spectral contribution exported by the MCR was made 

in reference to the specification of the optimal analytical substrate for the RMS 

mapping of aerosol particles. 
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a b s t r a c t

The influence of six common substrates on the Raman imaging of micron-sized inorganic aerosol par-
ticles was examined. Laboratory-generated single-component particles of calcite (CaCO3) and mixed
particles of calcite (CaCO3), nitratine (NaNO3), hematite (Fe2O3) and anglesite (PbSO4) were deposited by
cascade impaction on Ag, In, Si, SiO2, microscope slide and TEM-grid substrates. The spectral contribution
of substrates to Raman images of the deposited particles was evaluated by Multivariate Curve Resolution.
The shape and intensity of the substrate spectra affect the effectiveness capability of the spectral
deconvolution. The substrates were characterized and compared with respect to their effect on the
reconstruction of Raman images of aerosol particles. The TEM-grid substrate yielded spatially stable
sample measurements with a homogeneous spectral contribution, satisfactory Raman map reconstruc-
tion and the potential for application in other techniques (e.g., SEM-EDX).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Atmospheric aerosol particles suspended in the air, with their
wide variety of sources and physico-chemical properties, strongly
contribute to environmental quality [1]. They may scatter or absorb
light and may affect the radiative balance of the atmosphere [2]. It
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has been shown that selected aerosol particles act as cloud
condensation nuclei, affecting the lifetime of clouds [3]. Aerosol
particles might have a substantial impact on human health [4]. Both
the atmospheric and health-related impacts of aerosol particles are
related to their chemical composition, morphological features, size
and sources [5]. Furthermore, the chemical heterogeneity of
ambient aerosol particles is an essential parameter, as the particle
size and elemental concentration are not sufficient to properly es-
timate the environmental impact of aerosol particles, namely, bio-
accessibility [6], toxicological effects [7], reactivity [8] and optical
properties [9]. Several microanalytical techniques can be used to
determine chemical heterogeneity at the single-particle scale
because their lateral resolution is comparable to the size of particles
collected from ambient air [10]. Among the single-particle analysis
(SPA) techniques, Raman microspectroscopy (RMS) is a powerful
technique that provides both the molecular composition and im-
aging of micron-sized aerosol particles [11e13]. RMS has been used
to resolve the molecular composition and heterogeneity of indi-
vidual aerosol particles [12,14e17]. Raman spectra may be complex
due to the contribution of multiple compounds within one particle.
Thus, chemometric methods such as Multivariate Curve Resolution
(MCR) have found an application in the separation of spectral
contributions from chemical compounds within aerosol particles
and can significantly improve Raman images [13,14,17,18], even
beyond resolution limits [19]. Since SPA techniques are off-line
techniques, particles must be collected on suitable substrates for
analysis. Thus, the choice of an analytical substrate for single par-
ticle analysis has to bemadewisely. Obviously, the substrate should
be characterized by optimal contrast adjustment, if optical images
are considered, and by chemical inertness, to avoid any modifica-
tion of the chemical composition and morphology of the particles.
The substrate may have a large signal contribution compared to the
relevant information in the sample and thus impair final results.
This is particularly crucial when the particle size is lower than the
beam spot size that is typically encountered for atmospheric
micron-sized particles. The issue of substrate selection has already
been considered for several single particle analysis techniques
[20e22]. Only one publication has referred to the evaluation of
substrate for both RMS and sequential electron probe X-ray
microanalysis using thin-window energy-dispersive X ray detec-
tion (TW-EDX-EPMA) for analysis of aerosol particles [23]. Several
substrates were examined in the study: carbon tape, nucleopore
filter, silicon wafer, beryllium disc, TEM-grid, aluminiumwafer and
silver wafer. The study focuses on the features of the substrate, such
as roughness, as well as the influence of measurement parameters,
i.e., laser wavelength (514 nm and 785 nm), laser power density,
objective (� 100 or� 50) and finally the size of the single particle.
In this study, the effect of substrate contribution on spectral in-
tensity, and thus on Raman imaging, was not investigated.

One reason for the application of MCR methods is the ability to
separate the contribution of each compound and substrate, then
reconstruct their respective spatial distributions. The use of an
inadequate substrate may impair the accuracy of the calculated
spatial distribution. The use of a suitable substrate for Raman
microspectrometry imaging combined with MCR methods has not
yet been evaluated. Developing interest in molecular imaging in
nanoscience, including the environmental fate of produced micro-
and nano-objects, has necessitated improvements in sub-
micrometric analysis, including the selection of a suitable sub-
strate. The substrate's spectral contribution influences analysis, its
contribution might increase while the size of the object analysed
decreases. Therefore, the choice of substrate cannot be neglected
when MCR methodology is applied. This work concerns the eval-
uation of 6 substrates commonly used for particle collection: Si-
wafer, Ag layer, In layer, TEM-grid, SiO2 and microscope slide

(MS). We have investigated for the first time the influence of sub-
strate contribution on the spectral characterization of single-
component and mixed micro-sized particles by using both RMS
and MCR.

2. Material and methods

2.1. Substrates

Six substrates that fulfil the criteria for application in RMS
analysis were used: (i) silver (thickness ~ 1mm) (named Ag) and (ii)
indium (thickness ~ 1mm) layers (named In), each separately
sputtered on a microscope slide (10� 10mm); (iii) grid for trans-
mission electron microscopy (TEM-grid, AGAR Scientific F1 type
G2761C, diameter¼ 3.05mm), which was covered with a thin for-
mvar film and a nanometric layer of carbon (named TEM-grid); (iv)
Si-wafer (10� 10mm, Interuniversity Micro-electronic Centre,
Belgium) (named Si); (v) SiO2 (10� 10mm, silica slide, optical
quality, from Alfa Aesar) (named SiO2); and (vi) standard micro-
scope slide, 10� 10mm (named MS).

The selection criteria were as follows: chemical homogeneity
and inertness, substrates inert to laser excitation, a flat surface, and
compatibility with the impaction sampling system.

2.2. Materials

Calcite (CaCO3), hematite (Fe2O3), nitratine (NaNO3) and
anglesite (PbSO4), fine powders with a purity of 99.99%, were used
as model compounds usually found in natural and industrial
aerosols [24]. The particle size was below 10 mm.

2.3. Preparation of the samples

The substrates were first ultrasonically cleaned in a mixture of
ethanol and deionized water (50/50 vol) for 15min to remove po-
tential contamination by indoor particles. In this paper, “clean
substrates” refers to substrates without any impacted particles.
“Impacted substrates” refers to substrates with impacted particles.

Aerosolized calcite particles were generated in a homemade
turbulent airflow reactor [15]. A mass of 0.125 g of calcite powder
was introduced into the reactor to generate particles. The particles
were collected by an inertial cascade impactor (PM10 Dekati). The
substrates weremounted on one impaction plates corresponding to
particles with an aerodynamic diameter ranging from 10 to 2.5 mm.
The collection time was set for 3min to avoid substrate over-
loading. A similar protocol was used for mixed aerosol particles
composed of calcite, hematite, nitratine and anglesite. The content
of each compound was fixed to 25% (w/w) (0.125 g), and the
resulting mixture was then introduced into the airflow reactor. As
described previously, the particles were collected on the 10e2.5 mm
stage for 3min. This methodology allows the production of mixed
aggregates, as demonstrated in our previous work [15]. Both clean
and impacted substrates were analysed by Raman micro-
spectroscopy without further preparation. In this study, the stage
10e2.5 mm was used for the Raman analysis. Particles with a
diameter of 5 mm were selected for the sake of the comparison
between all substrates.

2.4. Raman microspectroscopy

Each substrate (with and without aerosol particles) was ana-
lysed by means of a Labram confocal Raman microspectrometer
(Horiba, Jobin-Yvon) equipped with a 100� , 0.9 numerical aper-
ture Olympus objective. Raman scattering was excited with the
632.8 nm wavelength of a HeeNe laser. Acquisitions were
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performed at 10mW. The spot diameter of the laser beam at the
sample was measured at 1 mm. The applied system uses a high-
precision piezo translator and feedback signal to automatically
track and adjust the laser focus on the sample to ensure a perfect
focus for each measurement. XYZ computer-controlled Raman
mapping recorded spectra in a point-by-point XY scanningmode (y
rows, x points per row) with a 1-mm step and 30-s integration time.
Raman mapping generates a three-dimensional data set
(X� Y� l), i.e., X� Y spectra, each containing l¼ 2040 spectral
elements, corresponding to a spectral window of 200e1200 cm�1

with a spectral resolution of 4 cm�1. Raman maps were acquired
successively on clean substrates, substrates impacted with calcite
and substrates impacted with a mixture of calcite, hematite,
nitratine and anglesite. For clean substrates, the size of the Raman
map was fixed at 3� 3 pixels, with a 1-mm step for all acquisitions,
i.e., a total of 9 spectra for one map and, thus, 9 spectra in the data
matrix. For substrates impacted with particles, large maps of
10� 10 pixels for the Ag, In, TEM-grid, SiO2 and MS substrates and
15� 15 pixels for the Si substrate were acquired with 1-mm steps.
For MCR data treatment and comparison with clean substrate re-
sults, an area of 3� 3 pixels, giving a total data matrix of 9 spectra,
was selected from the large maps at the centre of the particle (or
aggregate). The particles (or aggregates) were selected to have an
apparent geometric diameter of 5 mm, based on their optical image.
Ten maps were acquired for each sample to insure the reproduc-
ibility of the results. The results presented in this study are repre-
sentative of the results obtained for the 10 images per substrate and
per condition (clean and impacted substrates). The LABSPEC soft-
ware was used for spectral acquisition and cosmic spike removal,
while the data pre-processing and processing were performed us-
ing PLS-Toolbox (Eigenvector Research Inc.).

2.5. Data processing

The collected spectra in the Raman maps were normalized
(Block Variance Scaling), smoothed (Savitzky-Golay smoothing
with filter width¼ 5) and then decomposed by the SIMPLe-to-use
Interactive Self-modelling Mixture Analysis approach (PURITY in
PLS-Toolbox) [25]. Briefly, thematrix Dexp (experimental data set) is
decomposed into the product of three matrices: C, ST and E:

Dexp ¼ C$ST þ E

where matrix C contains the spectral contributions of the k
resolved pure compounds per pixel, ST is the transposed S matrix of
the pure compounds' Raman spectra and E represents the matrix of
the residuals not explained by the model.

The experimental data set Dexp and the calculated data set Dcalc
(¼ C$ST) should be very similar. The equation for the difference
between Dexp and Dcalc, i.e., the relative root sum of squares
(RRSSQ), is defined as follows:

RRSSQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP�
dexpi;j;l � dcalci;j;l

�2

PP�
dexpi;j;l

�2

vuuuut

where di,j,l is the i� jth row and lth column element of D and dcalc

i,j,l is the i� jth row and lth column element of Dcalc.
RRSSQ charts the relative difference between the original and

reconstructed data sets. The lower the RRSSQ, the closer the
reconstructed data set is to the experimental one. It should be
emphasized that an RRSSQ lower than 5% provides a realistic
overview of the components in the data set [26].

In practice, the application of PURITY begins with the selection

of a characteristic wavenumber of a pure compound. Then, the al-
gorithm extracts the spectral contribution from each pure com-
pound spectrum for each pixel. Wavenumber selection is obvious
for the data sets of clean substrates such as Si and Ag, due to their
thin and well-defined Raman bands. The wavenumber selection
from the data sets of In, MS, SiO2 and TEM-grid is less clear because
their Raman bands are broader. First, the optimal wavenumber was
identified by comparing the RRSSQs as a function of the wave-
number range. The optimal wavenumber in this paper is identified
as the wavenumber corresponding to the lowest RRSSQ for the
substrate.

Second, the homogeneity of the Raman signals of clean sub-
strates was estimated by comparing the spectral contributions for
each pixel. Ideally, the spectral contribution for each pixel should
be equal to 100%. However, this outcome was not observed due to
the residuals remaining after decomposition. The residuals repre-
sent spectral components that are not resolved into a pure spec-
trum by PURITY. These variations result from contributing factors
that influence the spectrum, such as focus volume, laser intensity
drift, instrument optics, and dark current. The residual value was
exported for each pixel in the map. The residual contribution was
calculated as the difference between the sum of the spectral con-
tributions of resolved compounds and a normalized value of 100%.

The same approach was performed for impacted substrates. The
residuals were exported for both clean and impacted substrates and
then compared among the different substrates. The abundance of
residuals was used as comparative parameter to evaluate the sub-
strates for Raman imaging combined with MCR analysis.

3. Results and discussion

3.1. Analysis of clean substrates

Raman spectral maps were acquired for each clean substrate as
described in the experimental section. Si and Ag are characterized
by thin bands at 520.7 cm�1 and 180 cm�1, respectively. The Raman
spectra of In, MS, SiO2 and TEM-grid have broad bands. In and SiO2
have a broad band in the 180-650 cm�1 region, whereas the mi-
croscope slide (MS) has a broad and low intense band in the 500-
650 cm�1 region. The TEM-grid has broad and intense bands at
1300 and 1600 cm�1, which are characteristic of its amorphous
carbon support membrane (Fig. 1).

Raman maps of clean substrates were acquired, then the data
were used for PURITY analysis. The first step was to identify the

Fig. 1. Reference Raman spectra of the 6 substrates: Si, Ag, In, MS (Microscope Slide),
SiO2 and TEM-grid.
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optimal wavenumber for pure variable selection. For this purpose,
the calculated RRSSQ values were plotted (Y variable) against the
wavenumber range (X variable) (Fig. S1 in SI). As expected, the
optimal wavenumbers are 180 and 520 cm�1 for Ag and Si sub-
strates, respectively, while the values for TEM-grid, In, SiO2 and MS
are 1200, 250, 256 and 551 cm�1, respectively. These wavenumbers
were chosen to have RRSSQ values less than 5%, except for SiO2, for
which the minimum RRSSQ was 6.4%.

The homogeneity of Raman spectra collected from clean sub-
strates was estimated by comparing the spectral contribution (C
matrix) of the analysed substrate with the remaining residuals
(Fig. 2). The spectral contribution values were normalized as a part
of the sum for each pixel, and thus the sum of normalized contri-
butions was equal to 100%. The spectral contributions of the sub-
strate and residuals were calculated by the procedure in the PLS-
Toolbox for collected Raman maps. The remaining residuals in all
Raman maps have a contribution lower than 1%, which indicates
the suitability of the decomposition process, due to the satisfactory
homogeneity of the data. The In, Si, and MS substrates have the
lowest residual contributions, not exceeding 0.05%. In the case of Ag
and SiO2, the residual values are also low: 0.1% and 0.08%, respec-
tively. The residual contribution for TEM-grid is approximately 1%
and represents the highest value in this comparison. This could be
explained by the variation in background among points analysed
on the amorphous carbon membrane. Moreover, the extracted
spectra are all correctly resolved and correspond to their reference
spectra (Fig. 3).

In this comparison, the results showed that except for TEM-grid,
all substrates are suitable for multivariate curve resolution due to
the small residual values relative to spectral contributions from
defined compounds.

3.2. Analysis of substrates with impacted CaCO3 particles

The analytical protocol described previously was applied to
substrates with impacted CaCO3 particles. An area of 3� 3 pixels
(1-mm step) was selected from the centre of the calcite particle. The
main goal of this process was to evaluate the spectral contributions
of the substrates and CaCO3, based on the residuals remaining after
PURITYanalysis. Asmentioned previously,10 imageswere recorded
for each substrate to evaluate reproducibility. MCR data treatment
was applied to each spectral data set, and the standard deviation

was calculated for each spectral contribution. For all substrates,
particles with a similar diameter size (~5 mm) were used to achieve
better comparative conditions. During this procedure, 3 spectra
were resolved for each data set, corresponding to the substrate,
CaCO3 and the residuals (Fig. 4). The RRSSQ was below 5%, attesting
to the correct extraction of pure spectra by MCR. The spectral
contributions were normalized. The quality of extracted spectra
from the PURITY approach was evaluated for all substrates. The
quality of extracted spectra in the ST matrix in this work refers to an
absence of signal from the substrate in the particle spectrum and
the apparent signal-to-noise ratio. A low-quality extracted calcite
spectrum is clearly observed in the case of the Si substrate (Fig. 4),
where an intense artefact peak at 520.7 cm�1 remains after the
extraction. As a consequence, the procedure did not resolve the
Raman spectrum of calcite properly due to the intense signal from
the Si substrate. For the other substrates, the quality of the
extracted spectra is satisfactory for Raman imaging (Fig. 4) because
there is no contribution from the substrate. Moreover, we noticed a
better signal-to-noise ratio in the extracted calcite spectrum for the
Ag, MS and TEM-grid substrates than for In.

The spectral contribution (C matrix) of calcite depends on the
substrate type (Fig. 5). The highest contribution from the calcite
particle signal was found for the Ag and Si substrates, while the
mean spectral contribution from CaCO3 was less than 0.1% for the
other substrates. An apparent subset distinction of substrates with
corresponding spectral contribution values can be observed. This
distinction is related to the pixel position, i.e., border versus centre
of the particle. The average contributions of the substrate, CaCO3
and residuals are reported in Table S1 (in SI files). The average
contribution of the In substrate was the highest (98.38%) compared
with the other substrates, with the lowest standard deviation
(0.94%). The contribution of the calcite particle was relatively low
(1.57%), with a low contribution of residuals (0.05%). This situation
is also observed in the case of TEM-grid, for which the contribution
of the substrate, calcite and residuals are 96.99%, 2.99% and 0.03%,
respectively. In the second subset, the SiO2 and MS substrates have
spectral contributions of 93.36% and 90.99%, respectively, while the
impacted CaCO3 particle has spectral contributions of 6.56% and
8.97%, respectively. The residual values for both SiO2 (0.08%) and
MS (0.04%) are low. The Ag and Si substrates were placed in the last
subset, due to their significantly lower mean spectral contribution
relative to an increased contribution from calcite. The spectral
contributions from Si and Ag were 28.67% and 35.88%, respectively,
whereas the calcite particle contributions were 70.41% and 64.07%.
Only for the Si and Ag substrates, their spectral contribution was
lower than that from the particle. However, the standard deviation
(SD) values calculated for the calcite particle spectral contributions
differed significantly among all substrates. The most noticeable
examplewas the standard deviations for In (0.94%) and Ag (22.47%).
The SDs for CaCO3 fell within a similar range, with values of 0.99%
and 22.47% for In and Ag, respectively. Such a difference in SD
values highlighted the variability of spectral contributions for each
pixel (Fig. 5). A significant variability in substrate contribution can
be observed for each pixel of the Ag layer and Si wafer, while for the
In layer, TEM-grid, MS and SiO2 substrates, values were more ho-
mogeneous. This variability was observed in all Raman images for
all substrates and reflects the non-reproducibility of the procedure
for Ag and Si substrates.

The raw Ramanmaps and reconstructed Ramanmapswere both
evaluated (Fig. S2 and Fig. S3). Raw Raman maps of calcite and
substrates were reconstructed from the total integrated area of
each typical bands. No pre-processing was applied on spectra. The
reconstructed Raman maps were reconstructed based on spectral
contributions as extracted by the PURITY approach (Fig. S3 in SI).
The reconstructed shape of the particle in the Raman map is

Fig. 2. Spectral contribution and residuals for each clean substrate as function of the
position of the pixel. Each column is divided into 9 bars corresponding to the 9 pixels.
Each bar represents the spectral contributions from the substrate and the residual
within a pixel.
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Fig. 3. Raman spectra of the substrate and residuals in ST matrix from PURITY processing. (a.u.: arbitrary units).
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Fig. 4. Raman spectra of the substrate, calcite and residuals in ST matrix from PURITY processing. (a.u.: arbitrary units).
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satisfactory in the case of In, Ag, Si and TEM-grid, whereas for MS
and SiO2, significant deviation from the optical image can be
observed. Deviation refers to a perturbation of the particle shape in
the reconstructed map compared with the optical image, which is
considered a benchmark. Such inconsistencies may be attributed to
the intensity of the measured calcite signal, as well as the shape of
the extracted Raman spectrum of the substrate itself. Due to the
noticeable deviation of their reconstructed Raman maps, MS and
SiO2 are not the most appropriate substrates for molecular image
reconstruction. However, the suitably resolved spectrum of CaCO3
obtained from the PURITY procedure allows the correct identifi-
cation of impacted particles on the substrates. In addition, the
quality of the substrate used for the analysis is crucial. Godoi et al.
[27] investigated different substrates while testing various energy
densities of 514 nm and 785 nm lasers. Their work revealed
oxidation of the Ag substrate, which should be evaluated before
using Ag as a substrate for aerosol particles. Under our experi-
mental conditions (laser wavelength 632.8 nm and maximal power
density), Ag was not oxidized during acquisition. Si remained stable
during the acquisitions, which is in agreement with Godoi et al.
[27]. However, Si is not suitable as a substrate due to its strong band
at 520.7 cm�1 which is still evident in the resolved CaCO3 spectrum.
MS and SiO2 are the most popular substrates employed for RMS
analysis of particles [14e17], since they are flat and chemically non-
reactive, but our results demonstrated that other than the robust
extraction of pure compounds, the reconstructed molecular images
from the MCR procedure reveal the under-evaluation of the spec-
tral contribution, which can induce image deformation. The TEM-
grid appears to be a valuable substrate for analysis and Raman
imaging of aerosol particles [13,28]. In this work, satisfactory image
reconstruction based on spectral contribution values is demon-
strated despite the poor spectral contribution obtained from the
clean substrate.

3.3. Analysis of substrates with impacted CaCO3, PbSO4, NaNO3 and
Fe2O3 particles

The Ag, Si, TEM-grid, In, SiO2 and MS substrates were impacted
with PbSO4, Fe2O3, NaNO3 and CaCO3 particles. Raman maps with a
dimension of 10� 10 pixels (1-mm step) and 15� 15 pixels (for Si)
were collected, but in order to compare the results with those for
clean substrates and substrates impacted with calcite particles,

smaller areas of the particle-impacted maps (3� 3 pixels) were
selected. The total size of each spot for each Raman map with
impacted mixed particles was equal to 9 pixels. The mixed particles
were an aggregate of the 4 compounds. Mixed particles used for
analysis were selected to have a similar shape and size to the
previously analysed CaCO3 particles for the sake of comparison.
Note that aggregate composition differs from one substrate to
another since it is difficult to produce exactly the same particle
type. During this procedure, 6 spectra were extracted, each of
which corresponds to a substrate, 4 compounds and residuals
(Fig. 6). Substrate spectral extraction was performed using optimal
wavenumbers, as defined in section 3.1. The resolved spectra of
individual particle species were obtained using their main Raman
bands, i.e., 1085 cm�1, 220 cm�1, 974 cm�1, and 1068 cm�1 for
CaCO3, Fe2O3, PbSO4, and NaNO3, respectively. In the case of the
multi-composition aggregate, the extraction of each pure Raman
spectrum was more complex, as is evident in the quality of the
resolved spectra.

We observed that the choice of substrate mainly influences the
noise level of resolved Raman spectra. This is apparent when
comparing the Si and SiO2 substrates. The Raman spectrum of Si has
a flat baseline with low background; thus, the resolved compound
spectra are characterized by a low signal-to-noise ratio. However,
SiO2 has a noisy, rough background, and hence the resolved spectra
also have a noisy backgroundwith rough baseline. In the case of the
heterogeneous aggregate, the amount of each compound within
the 9 mm2 area was very low. The PURITY procedure could not
readily resolve the spectra of pure compounds, consequently, pro-
duce the corresponding contribution. Finally, as observed previ-
ously, for Si, a band at 520.7 cm�1 appeared on the resolved Raman
spectrum of each species, which affected the real contribution of
species after MCR extraction (Fig. 6). The spectral contributions of
the signals were normalized and are presented in Fig. 7.

As observed in section 3.2, the spectral contributions of com-
pounds in mixed particles depend on the substrate (Fig. 7). Indeed,
the variation in the spectral contribution of each species observed
for each pixel reflects the heterogeneous composition of the
aggregate. The average contributions of the substrate, particle
compounds, and residuals, as well as the standard deviation (SD)
for the complete data set, are detailed in Table S2 (in SI files). The
average contribution of the SiO2 substrate was the highest (98.17%)
compared with the other substrates, with relatively low SD (1.06%).
As a consequence, the contribution of each compound was rela-
tively low, with values varying between 0.07 and 1.17%, and a low
contribution of the residual was observed (0.03%). For the In and
MS substrates, their signals accounted for 94.39% and 93.76%,
respectively. The spectral contribution of compounds for In was in
the range 1.09e2.51%, while for MS the values were 0.07e4.14%. In
the case of TEM-grid, a slightly greater compound contributionwas
observed, with spectral contributions from 0.23 to 7% and a
contribution of 85.23% for the substrate. In the last subset, the Ag
and Si substrates had significantly lower mean spectral contribu-
tions, with a larger contribution from the mixed particles. The
spectral contributions for Si and Ag were 28.71% and 43.11%,
respectively. The mixed particles' contributions ranged from 2.51 to
47.34% and 0.19e28.12% for Si and Ag, respectively. The values of the
remaining residuals for all substrates were less than 0.7%. Differ-
ences in standard deviation (SD) were observed. The SDs for the In,
MS and SiO2 substrates are 2.2%, 2.3% and 1.06%, respectively. The
SD of the TEM-grid substrate is 8.02%. The Si and Ag substrates
differ the most from the other substrates: the SD for Si is 35.18%,
and that for Ag is 40.18%. The high SD values for the Si and Ag
substrates result from substantial differences in spectral contribu-
tion for individual pixels (Fig. 7). For CaCO3 particles, significant
variability in substrate contribution can be observed among all

Fig. 5. Spectral contributions of CaCO3, the substrate and the residual as a function of
pixel position. Each column is divided into 9 bars, corresponding to the 9 pixels. Each
bar represents the spectral contribution from the CaCO3, substrate and the residual
within a pixel.
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pixels for Ag and Si, while for the In, MS and SiO2 substrates, values
are more homogeneous. This confirms that the heterogeneity is
mainly due to the substrate's contribution itself instead of the
spectral contribution from the particle, i.e., the particle

composition and thus Raman cross section of the species, or MCR
extraction. Whatever the substrate, the contributions of the com-
pounds are within the same order of magnitude compared to the
standard deviation. Surprisingly, the contributions of the Ag and Si
substrates are almost equal to their respective standard deviations,
even with a flat baseline and a thin Raman band. The contributions
of TEM-grid, SiO2, MS and In are more uniform in comparison with
Ag and Si.

Finally, raw Raman maps and reconstructed Raman maps were
evaluated (Fig. S4 and Fig S5 in SI). It should be noted that the
reconstructed shape of the particle in the Raman map corresponds
to the optical image in the case of Ag, Si and TEM-grid. For In, MS
and SiO2 notable deviation of the Raman maps from the optical
image can be observed, as was previously observed for CaCO3-only
particles.

4. Conclusions

Among six investigated substrates commonly used in Raman
imaging, four (In, SiO2, TEM-grid, and MS) show a significant signal
contribution in Raman images of deposited particles. Conversely,
the contribution from particles is low (inferior to 7%). The other two
substrates (Si and Ag) appear more useful because the spectral
contribution from the particles is higher than that from the sub-
strate. However, the high standard deviations indicate the non-
representativeness of the reconstructed image. The extracted
spectra of aerosol compounds showed that the Si wafer was

Fig. 6. Raman spectra of the substrate, calcite, hematite, nitratine, anglesite and residuals in ST matrix from PURITY processing. (a.u. arbitrary units).

Fig. 7. Spectral contributions of the substrate, PbSO4, Fe2O3, NaNO3, CaCO3 and the
residual, as a function of pixel position. Each column is divided into 9 bars, corre-
sponding to the 9 pixels. Each bar represents the spectral contribution of the CaCO3,
Fe2O3, PbSO4, NaNO3, substrate and residual within a pixel.
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unsuitable for Raman imaging of the particles, due to the presence
of a strong Raman band at 520.7 cm�1 in resolved spectra. Thus, an
Ag layer would be preferred, but special care should be taken
during application of an Ag substrate due to the oxidation process,
which can significantly affect the homogeneity of the substrate
surface. The extraction and identification of the aerosol compounds
for TEM-grid, SiO2, MS and Inwere satisfactory. However, the lower
spectral contribution of the compounds may affect the effective-
ness of the MCR (PURITY) method for extraction of particle com-
pounds. This is particularly critical for MS and SiO2, for which
Raman images may be deformed after MCR reconstruction. We
have demonstrated that this effect is worsened when the particle
composition is complex. Finally, an In-coated substrate compro-
mised reconstruction of the CaCO3 spectrum in the region 900-
1000 cm�1. The counterpoint for substrate selectionwould be TEM-
grid, which represents stable sample measurements with a ho-
mogeneous spectral contribution, satisfactory Raman map recon-
struction and the potential for application in other single particle
analysis techniques (e.g., SEM-EDX or TEM).
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Influence of Collecting Substrates on the Raman Imaging of Aerosol Particles   – 

Supporting Information 

The following supporting information contains 5 figures and 2 tables.  

Fig. S 1 represents the optimal wavenumber for the pure variable selection as function of the substrate. 

Fig. S 2 represents optical images and raw Raman maps of substrates with impacted CaCO3 particles 

based on the area of the peak of interest. Fig. S 3 represents optical images and reconstructed Raman 

maps of substrates with impacted CaCO3 particles based on spectral contribution C matrix after PURITY 

approach. Fig. S 4 represents optical images and raw Raman maps of substrates with impacted 

particles based on the area of the peak of interest. Fig. S 5 represents optical images and 

reconstructed Raman maps of substrates with impacted mixed particles based on spectral contribution 

matrix after Purity approach. Table S1 contains the average contribution (%) of a substrate, calcite, 

residuals, and RRSSQ after PURITY extraction. Table S2 contains average contribution (%) of a 

substrate, particles, residue and RRSSQ after PURITY extraction. 
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Fig. S 1. Relative Root Sum of Square (RRSSQ) as function of the wavenumber of extraction for 

the sixth clean substrates. The red dot corresponds to the lowest RRSSQ.  Abbreviation: MS = 

Microscope Slide 
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Fig. S 2: Optical images and raw Raman maps of substrates with impacted CaCO3 particles based on the area of the peak of interest CaCO3 1085 

cm-1. The peaks of interest chosen for the substrates are the same which were selected in the Fig. S 1.  (1 pixel=1 µm). No pre-processing is applied. 
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Fig. S 3. Optical images and reconstructed Raman maps of substrates with impacted CaCO3 particles based on spectral contribution C matrix after 

PURITY approach (1 pixel=1 µm). HQ map is the Pixel map after smoothing procedure. 

  



- 82 - 
 

 

Fig. S 4. Optical images and raw Raman maps of substrates with impacted particles based on the area of the peak of interest CaCO3 1085 cm-1, 

Fe2O3 220 cm-1, PbSO4 974 cm-1, NaNO3 1068 cm-1. The peaks of interest chosen for the substrates are the same which were found in the Fig. S 1.  

(1 pixel=1 µm). No pre-processing is applied. 

 



- 83 - 
 

 

 

 

Fig. S 5. Optical images and reconstructed Raman maps of substrates with impacted mixed particles based on spectral contribution matrix after 

Purity approach (1 pixel=1 µm). HQ map is the Pixel map after smoothing procedure. 
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Table S1. Average contribution (%) of a substrate, calcite, residuals, and RRSSQ after PURITY extraction 

Abbreviation: SD = standard deviation 

 

  

Name Substrate ±SD CaCO3 ±SD Residuals ±SD RRSSQ 

In 98.38 ± 0.94 1.57 ± 0.99 0.05 ± 0.09 0.03 

MS 90.99 ± 3.48 8.97 ± 3.49 0.04 ± 0.02 0.04 

SiO2 93.36 ± 2.99 6.56 ± 3.01 0.08 ± 0.02 0.05 

TEM-grid 96.99 ± 1.06 2.99 ± 1.06 0.03 ± 0.01 0.04 

Ag 35.88 ± 22.47 64.07 ± 22.47 0.05 ± 0.01 0.05 

Si 28.67 ± 15.41 70.41 ± 14.14 0.92 ± 2.04 0.03 
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Table S2. Average contribution (%) of a substrate, particles, residue and RRSSQ after PURITY extraction  

Abbreviations: SD = standard deviation. ND=Not Detected, Sub = Substrate, Res. = Residuals 

 

 

 

 

 

 

 

 

Name Sub.±SD Fe2O3 ±SD CaCO3  ±SD PbSO4 ±SD NaNO3 

±SD 

Res. ±SD RRSSQ 

In 94.39 ± 2.2 1.09 ± 1.29 2.51 ± 1.7 1.85 ± 2.87 0.14 ± 0.15 0.04 ± 0.06 0.02 

MS 93.76 ± 2.3 4.14 ± 1.69 0.07 ± 0.08 0.95 ± 0.51 1.03 ± 1.07 0.05 ± 0.01 0.05 

SiO2 98.17 ± 1.06 0.07 ± 0.05 1.17 ± 0.76 0.56 ± 0.8 ND 0.03 ± 0.01 0.03 

TEM-grid 85.23 ± 8.02 0.23 ± 0.17 2.1 ± 1.52 7.00 ± 4.94 5.35 ± 4.58 0.04 ± 0.02 0.05 

Ag 43.11 ± 40.18 11.86 ± 11.96 28.12 ± 25.41 16.66 ± 25.28 0.19 ± 0.38 0.06 ± 0.02 0.06 

Si 28.71 ± 35.18 47.34 ± 32.16 2.51 ± 2.07 20.8 ± 29.12 ND 0.65 ± 0.72 0.03 
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3.2. The analytical algorithm for designation of chemical mixing and 

quantitative results from RMS of aerosol particles.  

In this part, we present the effective analytical algorithm for processing of 

Raman spectra collected by single particle analysis in designation of chemical mixing 

and quantitative composition of aerosol particles. The focus of the application is the 

analysis of metal-rich, mine dust particles collected in the Oruro (Bolivia) mining 

environment. The particle collection was performed using a personal cascade 

impactor that allowed sampling of three particle size ranges (in µm), i.e. PM10-2.5 

(sample A), PM2.5-1 (sample B), PM1-0.5 (sample C) and additionally size fraction PM0.5 

(<0.5 µm) (sample D). In addition, particles from personal filters from the miner’s 

protection mask were also collected (sample FM). The optimization and verification 

of the algorithm were performed based on the analysis of sample B. The large 

number of spectra in this fraction dictated this approach. The results of this 

procedure appeared in the publication which is an integral part of this paragraph. We 

present the potential of single particle analysis by Raman microspectroscopy for an 

efficient description of chemical mixing of mine dust particles. The application of the 

algorithm for experimental data, proves the possibility of extending the limitations in 

trace component detection and quantitative analysis, as well as provides a new way 

of sample description. 

 

3.2.1. Combining Raman microspectrometry and chemometrics for determining 

quantitative molecular composition and mixing state of atmospheric aerosol 

particles 

The presented results give an opportunity to indicate the quantitative composition of 

particles by comparing their composition (with the level of mixing) with respect to 

the whole particle population. The methodology was published as a publication in 

Microchemical Journal and presented in the following subsection. 
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The proposed methodology consists of analysing of particles through automated 

RMS measurements. Structuration of the collected data from the single particle - 

RMS measurements is made by chemometrics methods. Through the application of 

the MCR approach on the Raman spectra data set, the designation of pure 

compounds was possible. The methodology is constructed for the purpose to 

distinguish particles composed of only one species (pure molecular compounds) 

from those which molecular composition is comprised of more than one species 

(mixed particles) and to define particle types according to their chemical similarity. 

Finally, quantification of each group of particles according to their composition and 

chemical mixing in order to describe the chemical composition and heterogeneity 

was presented. For that purpose, multivariate curve resolution and unsupervised 

multivariate analysis techniques were used in combination. This algorithm is an 

attempt to combine Raman spectroscopy with chemometric methods to obtain new 

information on molecular composition of particles as well as to obtain information 

on the level of mixing of aerosol particles.  
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Determining quantitativemolecular composition of atmospheric particles is required for assessing their environ-
mental and health impacts. The presented algorithmwas designed to analyse numerous Raman spectra ofmetal-
rich atmospheric particles. Multivariate curve resolution-alternating least squares procedure (MCR-ALS) has
been applied to resolve complex data from Raman microanalysis by means of a computer-assisted analytical
procedure called Single Particle Analysis (SPA). The SPA – contrary to Raman mapping – provides data in
which each single particle is assigned to a single spectrum, in the groupwith a statistically significant size. During
the procedure, the relative contributions of individual compounds in the recorded Raman spectra have been
specified. Grouping and relationship determination of the collected data have been performed by hierarchical
cluster analysis (HCA) andprincipal component analysis (PCA). A newmethodology is proposed to quantitatively
determine the molecular composition and chemical mixing of single airborne particles based on the data from
the automated Raman microspectrometry measurements.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Single Particle Analysis (SPA) applied to atmospheric aerosol com-
position is an approach to analyse particulatematter bymeasuring indi-
vidual particles [1–10]. Determining the composition of particles
collected in ambient air using SPA, as opposed to bulk analysis, presents
essential advantages that have been demonstrated in numerous works
[11]. The analytical techniques appropriate for SPA must show a lateral
resolution adapted to the particulate matter size. They must also show
sensitivity suitable to detect both major and minor compounds within
the particles. The SPA approach requires large quantities of data in
order to obtain statistical significance for the description of collected
particles. This assumption bears two major issues.First off, an automa-
tion of measurements is needed to achieve a sample size above the
level of statistical significance. The second issue concers development
of robust data treatment since the large data matrix entails reducing
the number of objects into the groups. In the case of atmospheric parti-
cles, it leads to detailed study of a few representatives only. It also helps
provide reliable spatial and temporal chemical evolution of particle
composition.

Among SPA techniques, Scanning Electron Microscopy (SEM)
equipped with an energy dispersive X-ray detection (EDX) and Raman
microspectrometry (RMS) have been recognized as powerful methods
for studying particulate matter of different origin (airborne particles,
sediments, soils, etc.) [3,6,7,9,12–21]. Both techniques belong to
micro-analytical methods where the source of information is a result
of a beam interaction (i.e. electrons or photons)withmicro-size objects,
producing elemental and molecular spectra, respectively. Automation
of SEM/EDX applied to particulate matter was implemented more
than twenty years ago and has been successfully developed ever since.
However,there are some limitations related to the elemental quantifica-
tion. Calculation of particle elemental composition requires a fit-for-
purpose quantificationmethodology based of X-ray spectra. Quantifica-
tion procedure based on Monte-Carlo simulations was developed for
suitable measurements of low-Z elements [3–9], while the gun-shot
residue (GSR) software enables detection of particles with high-Z ele-
ments [22]. Based on the elemental composition and morphology, the
particles can be classified into different groups related to their chemical
characteristics. Nevertheless, a significant number of publications
reporting a successful application of computer-controlled SEM/EDX
measurements of a large number of particles, followed by quantification
and appropriate data classification, prove the need for fast and reliable
tools in the field of SPA [3–9] [23–31].
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Confocal Ramanmicrospectrometry (RMS) is another SPA technique
providing molecular composition (speciation) of atmospheric particles,
with a capability for automation of measurements. A Raman spectrom-
eter coupled with an optical microscope and an automated XY stage, al-
lows for computer-controlled measurements. The manual spot mode
has been used for decades for characterizing themolecular composition
of individual particles collected in ambient air [33,34]. In an imaging
mode, RMS is able to describe chemical heterogeneity of micro-sized
aerosol particles [20–38]. Considering a complex molecular composi-
tion resulting from heterogeneity of airborne particles, a Raman spec-
trum of one particle often reflects a mixture of several compounds.
The multivariate curve resolution approach, such as SIMPLISMA, has
substantially improved chemical description of particles by resolving
the contribution of pure variables in the mixed spectra [13–21] [35–
37]. Confocal Ramanmicrospectroscopy has been considered as less ap-
propriate compared to SEM-EDX because of the three main issues: (i)
identification of molecular species can be assessed using RMS but quan-
titative data is not accessible; this is because the Raman band intensities
are not indicative for the proportion of species in solid and heteroge-
neous particles (ii) asmentioned previously, the analysis of particles re-
sults in a Raman spectrum of mixed species that requires automated
procedure for unmixing in order to analyse a large number of particles,
(iii) clustering of particles based on their Raman spectra requires auto-
mation of measurements and preprocessing of the Raman spectra. As a
consequence, an application of RMS has only recently been extended to
a large number of particles. Reisner et al. [39] described an integrated
software for processing, analyzing, and classifying of multiple Raman
spectra. The developed systemwas equippedwithmultiple preprocess-
ing methods, including: a median filter to reduce noise and remove
spikes due to cosmic rays, a wavelet filter for further noise reduction,
an automated background fluorescence subtraction [40], normalization
of spectra and subtraction of artifacts. Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) were implemented as
the two main multivariate analysis methods. Additionally, some classi-
fication methods, such as an artificial neural network classifier and a
support vector machine classifier were implemented. Another signifi-
cant feature was made by implementation of a relational model data-
base for storing of any kind of information about the spectra, such as a
date of data collection or a type of the specimen. Reisner et al. [39]
made a compelling step to integrate tools for multiple Raman spectra
processing, management and classification into a freely available,
cross-platform system. Despite the versatility of the described system,
there is a lack of spectral unmixing as well as clustering methods
which are crucial in handling of the data from the environmental sam-
ple analysis [39]. Finally, Reisner et al. [39] evaluated the described sys-
temusing the data from biological specimens. The results demonstrated
the vast potential of the system in processing and classification of the
spectra, based on well specified parameters. Ofner et al. [41] presented
multisensor hyperspectral images of atmospheric particulate matter
coupled with chemometrics analysis of an extensive chemical descrip-
tion of the collected particles. The authors provided a comprehensive
image-based analysis of aerosol particles with a sectional description
of samples. The combination of RMS and SEM-EDX used in multisensor
hyperspectral data analysis made a way for detailed andwell-grounded
assignment of chemical species in the sample and the relationships
among them. Notwithstanding, the describedmethodology is dedicated
to the data from hyperspectral imaging, which significantly reduces the
number of particles during a single run, compared to SPA. The structur-
ation of the data was based on the pixel relationship taken from
hyperspectral images which may not be directly translated into the de-
scription of the particle population. Additionally, operations on
hyperspectral images are less efficient due to a large number of spectra
collected during a single analysis, fromwhich only few correspond to at-
mospheric particles. Finally, themixing chemical state of particles is not
considered. Jentzsch et al. [42] studied classification of mean Raman
spectra of model particles composed of the most representative salts

expected to be produced in the atmosphere. The chemometrics data
analysis was used to distinguish the potential of the Raman spectra clas-
sification from a single particle analysis. Jentzsch et al. [42] did not in-
clude any spectral unmixing algorithm, which might be a limitation
for analysis of ambient aerosol particles [42]. Furthermore, Craig et al.
[43] applied computer controlled Raman microscpectroscopy (CC-
Raman) for a single particleanalysis of a large number of both laborato-
ry-generated and real-life particles. The authors conducted comprehen-
sive characterization and clustering of aerosol particles based on the
distinct features of their Raman spectra. Moreover, Craig et al. [43] jux-
taposed the results from Raman microspectroscopy with SEM/EDX and
a condensation particle counter (CPC), which equalled in similar cluster
formulation. Nonetheless, due to the lack of spectral unmixing algo-
rithm, the specification of particular compounds and their chemical
mixing in the ambient aerosol particles was limited.

Regarding the previous work, an application of RMS for a chemical
description of particles collected in ambient air is not complete yet,
since the quantitative composition of the samples, i.e. the relative abun-
dance of particle types defined from their molecular composition, has
not been provided. The multivariate curve resolution methods (MCR)
applied to a Raman data set offers a considerable advantage as men-
tioned above. The mathematical principle of MCR is based on the pres-
ence of pure variables. In terms of spectroscopy, a pure variable (e.g. a
wavenumber of a Raman spectrum) is a variable which has an intensity
contribution from only one component of a mixture. Once the pure var-
iables of every component are known, their content in themixture spec-
tra is calculated. Reliability of the contribution profiles may be used as
calibration process as previously demonstrated [15]. Alternatively, re-
solved contributions may be considered to be indicative for a presence
or an absence of chemical species within particles and used for deter-
mining a relative abundance of particle types. It should be noted that
the application of the multivariate analysis – mostly clustering – after
the matrix decomposition procedure, has already been described by
other authors [44,45]. For instance, Liu et al. 2003 [44] proposed to ini-
tially perform principal component analysis in order to obtain a matrix
of scores for further clustering. Furthermore, Tamayo et al. 2007 [45],
suggested to apply the matrix decomposition by the non-negative ma-
trix factorization on high-dimensional data for clustering of a basis ma-
trix only.

The present study aims to provide a quantitative chemical descrip-
tion of collected airborne particles. The proposed methodology consists
of analyzing a large number of particles through automated measure-
ments. Grouping of the collected data is made by chemometrics
methods through the application of the MCR approach on the Raman
spectra data matrix. Firstly, the methodology requires first to distin-
guish particles composed of only one species (pure molecular com-
pounds) from those with molecular composition comprised of more
than one species (mixed particles). The second step is to define particle
types according to their chemical similarity. The final part involves
quantification of each group of the particles according to their composi-
tion and chemical mixing in order to describe the chemical composition
and heterogeneity of the collected particles. For that purpose a multi-
variate curve resolution and an unsupervised multivariate analysis are
used in combination for description of real particle samples collected
in the mining environment.

2. Experimental

2.1. Sample description

The particles were sampled in the galleries of San JoseMine (150 m,
underground),located in the Oruro area, Bolivia (17°46′0″S – 67°28′60″
W – 3674 MAMSL). The particle collection was performed using a per-
sonal cascade impactor (SIOUTAS, 3 l.min-1), allowing simultaneous
walking along undergroundpassages and sampling of four size fractions
of particles, i.e. PM10, PM2.5, PM1 and PM0.5 corresponding to 10–2.5 μm,
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2.5-1 μm, 1–0.5 μm and b0.5 μm aerodynamic diameter, respectively.
The particles were collected on TEM grids mounted in the impaction
plates [46]. One stage of the impactor corresponding to the PM2.5 frac-
tion was selected for this methodological study. The elemental compo-
sition of this particulatematter fraction,measured by ICP-MS, is given in
the Appendix, Table A1. PM2.5 samplemainly contains Fe and secondary
metals as FeN N Sb = Pb N Cu N Sn N Zn.

2.2. Raman microspectrometry measurements

The particles were analyzed using a Labram confocal Raman
microspectrometer (HR800, Horiba, SA) equipped with a 100× (N.A.
0.9) Olympus objective. A video camera provided an optical image of
the samples. Raman scattering was excited along the optical axis of a
microscope objective (defined as Z-axis) with a 632.8 nm wavelength
He\\Cd laser beam. The Labram instrument was equipped with a
front-illuminated LN2-cooled charge-coupled device (CCD) detector.
The laser power delivered to the sample was about 8 mW and could
be attenuated by a set of neutral density filters. The substrateswith par-
ticles were mounted on the automated XY stages of the microscope
without further sample preparation. The XY computer-controlled
Raman mapping consists of recording one spectrum for each particle,
20 s of integration time and one accumulation. Raman automated spot
mode generates a two-dimensional data matrix D (n × λ), i.e. n spectra,
each containingλ=2040 spectral elements corresponding to a spectral
range of approximately 1000 cm−1with a spectral resolution of 4 cm−1.
In order to provide a statistical significance in this methodology, we ac-
quired 700 spectra (Fig. A1 in Appendix) from 700 individual particles
of PM2.5. LABSPEC 5.1 software (HORIBA) was used for spectral
acquisition.

3. Processing of Raman spectra data matrix

As mentioned above, the preprocessing step of a Raman data matrix
is crucial for suitable statistical treatment of the data. Current method-
ology for the data treatment is summarized in the Fig. A2 in the
Appendix.

3.1. Data normalization

The experimental data matrix (D) was filtered for cosmic spikes re-
moval in Labspec 5.1 software (HORIBA) and the data was normalized
by the intensity value, generating the D’ matrix.

3.2. Multi-Curve Resolution methodology (MCR-ALS)

Considering the complex sample composition resulting from parti-
cles heterogeneity, the procedure is affected by application of a pure
variable approach to resolve mixed spectra. Thus, in the first step, the
Multivariate Curve Resolution procedure was applied to the D’ Raman
data matrix. The methodology consists of (i) determining the number
of pure variables (components) and (ii) proceeding to the MCR
processing.

The determination of thenumber of components in terms of applica-
tion of the MCR-ALS approach is the first assignment. An incorrect
choice can lead to information loss (underestimation) or noise compo-
nent inclusion (overestimation) [47]. Many methods have been pro-
posed to determine the number of components [48–50]. Furthermore,
in the case of analysis of environmental particles no a priori knowledge
about the number of components is available. Due to that, singular value
decomposition (SVD) can be used as a first estimation [51].

The detailed description of the MCR procedure can be found else-
where [52,53], and is briefly described below.

The D’ matrix was decomposed using multivariate curve resolution
with an alternating least squares algorithm (MCR-ALS) in MCR-ALS
GUI 2.0 developed for Matlab computing environment [54]. From the

D’matrix, the extracted spectra and their spectral contributionwere ob-
tained, as:

D0 ¼ C0 � S0T þ E0 ð3Þ

where D’ is the data matrix of collected Raman spectra after normaliza-
tion; C′ is a spectral contribution matrix, S′T is a transposed matrix with
exported spectra and E’ is an error matrix including an apparatus
function.

The experimental data matrix D′ and the reconstructed data matrix
D'rec should be very similar when the quality of the model is high,
where:

D0rec ¼ C0 � S0T ð4Þ

For an equation of the difference, providing the general error value,
we used the relative root of sum of square differences (RRSSQ)
expressed as follows:

RRSSQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnspec
i¼1

Pnvar
j¼1 d0i; j;λdreci; j;λ

� �2

Pnspec
i¼1

Pnvar
j¼1 d02i; j;λ

vuuut ð5Þ

where d′i,j,λ is the i × jth row and ith column element ofD′, dreci,j,λ, the
i × jth row and ith column element ofDrec; nspec is the number of mixture
spectra; and nvar is the number of recorded intensities.

The resolved spectra show difference between original and recon-
structed data set lower than 5% RRSSQ.

Application of an alternating least squares algorithm for the initial
estimators allows to generate a non-negative spectral contribution ma-
trix (C′). The produced C′matrix does not contain any negative values of
spectral contributions which may be difficult to interpret.

As a result, the obtained pure spectra (S′T) and spectral contribution
profiles (C′) describe the sample as its variables. Chemical composition
of the sample is identified thanks to the extracted pure spectra (S′T)
when the matrix of spectral contributions (C′) is being used for quanti-
fication and characterization of particle chemical mixing (i.e. chemical
heterogeneity) through chemometrics methods.

3.3. Identification of compounds within particles

Identification of the components was performed through compari-
son between the extracted pure Raman spectra (S′T matrix) from
MCR-ALS procedure, with the Raman spectra (band positions and rela-
tive intensities) in thewell-establishedRaman databases [55–57]. In ad-
dition to these well-known Raman databases, we have also collected
reference Raman spectra of pure compounds relevant to the speciation
of metals in minerals and inorganic species with the same analytical
setup. The identified spectra from the S′T matrix were then classified
into two groups: (1) the Raman spectra and (2) the other signals, in-
cluding the non-Raman spectra (i.e. non-active Raman species) and a
broad signal obtained either from the substrate or a luminescence
background.

3.4. Determination and quantification of particle types within the sample

Calculating the number of particle types within the sample based on
their molecular composition is the final goal of this work. The spectral
contribution C′ is related to either the presence or the absence of the
species within the particle. The proposed methodology consists of an
application of the C′ matrix to determine species within the particles
followed by multivariate analysis. This methodology corresponds to
the previously published works [44,45]. Three steps involved in pre-
treatment of the C′matrix are required before the application of cluster-
ing and the classification of the particles: (i) removal of contribution
profiles related to non-Raman signals (ii) application of an automatic

121D. Siepka et al. / Microchemical Journal 137 (2018) 119–130



threshold for determination of spectral contribution limit values (iii) bi-
narization of spectral contributions for a principal component analysis
and hierarchical clustering.

(i) Based on an identification of the extracted pure Raman spectra,
theC′matrixwasfiltered to eliminate all data related to non-Raman sig-
nals, i.e. luminescence or signal from species which are not Raman ac-
tive. The columns corresponding to the spectral contribution of these
signals were removed from the C′ matrix. Then the remaining matrix
with only Raman spectra corresponds to the Ccomp matrix in this
methodology.

(ii) An application of the threshold resulted from the determination
of a boundary value which clearly proves that a compound occurs in a
particle. The threshold was implemented in Rstudio 0.99 (R program-
ming language) for spectral contributions of extracted Raman spectra
(Ccomp). The threshold was set for a value that satisfies the following
eq. (6):

xt ¼ μ−3σ ð6Þ

where xt is the filtering boundary value, μ is a mean of the spectral
contribution values, and 3σ is a three standard deviation value of the
spectral contributions.

(iii) The values below and above the threshold were replaced by 0
and 1, respectively. The matrix after binarization consists of a combina-
tion of the previously mentioned values 0 and 1 which correspond to
the absence or the presence of the identified compound, respectively.
The binarization was important due to the description of chemical
mixing of the particles in the sample.

All particles with the data corresponding to the following eq. (7)
were removed:

Xn
i¼1

ci ¼ 0 ð7Þ

where ci is the ith compound value from the Ccompmatrix after bina-
rization; n is the determined number of identified components in the
Ccompmatrix. Transformation of the Ccompmatrixwith the eq. (7) gener-
ates a new binary matrix Cfinal The procedure of the Cfinalmatrix extrac-
tion is presented in Fig. 1.

The dominant groups of the PM2.5 fractionwere distinguished by the
application of an unsupervised multivariate analysis (no prior knowl-
edge about composition is necessary). The essence of the appropriate
sample description in the current methodology is based on two as-
sumptions. The first one considers that it is possible to fully-describe
the sample only by a description of all existing combinations of the
specified compounds in thematrix. The combinations in this methodol-
ogy correspond to the possible chemical mixing of the compounds in
each particle. The second one assumes that the dominant group desig-
nation is needed for a general overview of the sample. This assumption
might be even more crucial for the comparison of particles collected
from different fractions, sampling sites, etc.

In the current methodology the implementation of PCA is caused by
the two main requirements. The first one was to reduce d-dimensional
space of the input data to a smaller k-dimensional subspace, which
helps to identify patterns, based on the correlations between features.
The second one was the presence of binary data in the Cfinal matrix,
which should be avoided in terms of application of an Euclidean dis-
tance during clustering. After the PCA approach, scores of the first
three principal components were used as new features, generating the
Cpca data matrix, in which the data was no longer binary. The PCA algo-
rithm used in this methodology can be found elsewhere [58]. The prin-
cipal component analysis was employed in Rstudio 0.99 (R
programming language). It needs to be highlighted that the Cpca matrix
was created only forHCA approach to obtain the clustering vectors, then
the resultswere specified based on the Cfinalmatrixwith the vectors ob-
tained from HCA.

Partitional clustering (e.g. k-means) used in this approach seems
more reliable because of the more efficient run-time wise as compared
to agglomerative clustering, such asWard's HCA. However, the k-means
clustering works well only for clusters which are round shaped and of
roughly equal sizes/density. It fails for clusters with non-convex shapes,
aswell as thosewith different densities. Thus, in thismethodology Hier-
archical Clustering Analysis was used.

The HCA approach was implemented in Rstudio 0.99 by application
of the Ward's algorithm [59] to the Cpca matrix. The chemical mixing of
the compounds in each particle in the sample was specified in the Cfinal
matrix, where clear information about either the presence or the ab-
sence of each compound was included. Therefore, PCA in this particular
case was implemented to prepare the data for HCA, but the clustering

Fig. 1. The general scheme of the procedure to obtain the Cfinal matrix.

122 D. Siepka et al. / Microchemical Journal 137 (2018) 119–130



results were transferred to the Cfinal matrix. Originally, the cut-off point
was distinguished based on a visual inspection of the dendrogram (Eu-
clidian distance method), as well as by calculation of Dindex by the
Nbclust package [60] in Rstudio 0.99. After the clustering process, the
clustering vector was obtained. Based on that, the particles were sorted
by the cluster index and then labelled. The labeling was based on the
identified compounds content in the Cfinal matrix.

4. Results and discussion

4.1. Identification of compounds within the sample

By application of SVD-based processing, the optimal number of com-
ponents in the D’ matrix for MCR-ALS approach was specified. The
starting value of the components (determined by SVD) was gradually
increased to the final stand of 14 compounds. The final balanced point
of this processing was based on the assumption that increasing the
number of compounds in the model does not provide any new Raman
spectrum in the ST’matrix [61]. From theMCR-ALS procedure, 14 signals
were extracted with a RRSSQ of 2.5%. After the examination of the S′T

matrix, only 6 pure components correspond to the Raman spectra
(Fig. A3 in the Appendix), where 5 of them refer to the pure spectra
and one to the spectrum of a mixture. Consequently, 9 components in
the S′T are related to the non-Raman signals, i.e. background, broad
bands due to substrate effect, luminescence signals, non-Raman active
species. The Raman spectra of the individual compounds were assigned
to Fe2O3, PbO, CuS, FeS2 andNa2SO4 (Fig. A3. in the Appendix).We char-
acterized the mixed spectrum as: Sn2+3O2(OH)2 + CuO + CaSO4, de-
scribed in this work as MS (Mixed Spectrum). The metal rich and the
sulfur rich species are typical for particulate matter from amining envi-
ronment [62]. Unsurprisingly, some mineral compounds related to the
soil composition were not identified since most of clay minerals gener-
ate strong fluorescence background [20], which by application of our
approach was removed during the identification process. The RMS re-
sults were in agreement with the particles' elemental composition
(ng·m−3) analized by ICP-MS (Appendix, Table A1). In fact, all specia-
tions identified by the RMS spectra were also identified as the main el-
ements by ICP-MS analysis. Very high levels of trace elements were
observed for sampling in the tunnels of amulti-elementalmine. Iron, al-
uminium and sodium, were the most abundant crustal elements.
Among trace elements, high levels of lead, copper, antimony and tin
were observed. Aluminium was not identified by RMS but could have
been segregated by clay minerals as already explained.

4.2. Evaluation of the C′ matrix processing

The C′ matrix after the identification step charts the contribution of
the extracted Raman spectra (S′Tmatrix) in the correspondingparticles.
The particles corresponding to the identified non-Raman signals were
removed from C′ to fix a new data matrix (Ccomp). From this step 188
spectra of the particles were removed from thematrix, which represent
22% of the sample particle population. At this point the compositionwas
specified for 78% of the sample population, i.e. 512 particles. To assess
the composition of the sample, a spectral contribution threshold and bi-
narization of the contribution matrix was necessary (see experimental
section). The principal advantage is an evidence about a compound
being present in a particle, which was listed in the Cfinal matrix.

4.3. Particles' heterogeneity description

The heterogeneity of the particles is defined here as the occurrence
of two or more species within the same particle. To determine the het-
erogeneity of the particles, the following eq. (10) was applied for each
particle in the Cfinal matrix:

MR ¼
Xn
i¼1

ci ð10Þ

Where MR is the particle mixing rank and ci is the ith component
from the Cfinal matrix; n is the total number of components in the Cfinal.

Based on the MR parameter, the heterogeneity of particles was de-
scribed, then the results were visualized in the Fig. 2, i.e. the particle
with MR= 1was characterized as a single-component particle (homo-
geneous), MR = 2 as a binary particle (two components, heteroge-
neous), MR = 3 as a ternary particle (three components,
heterogeneous), etc.

N59% of particles in the sample contain more than one component
and can be assigned asmixed particles, where the remaining 41% is cor-
responding to single-component particles. The majority of them are bi-
nary (30%) and ternary (19%). In addition, quaternary particles (9%)
were classified as a considerable part of the sample. The vast minority
is a group of quinary particles with a contribution of only 1% of the sam-
ple population. These results substantiate the application of MCR-ALS
processing to experimental data matrix D′. However, it should be em-
phasized, that themixed spectrum (MS)was treated as a single compo-
nent in the Cfinal matrix. Notwithstanding, despite that not all the
Raman spectra in the S′T matrix correspond to a single compound,

Fig. 2. Classification of the particles based on the MR parameter (with the particle number for each MR).
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chemical composition of the sample can be described. The combination
with the clustering procedure presented below will provide the chemi-
cal composition of mixed particle groups. This underlines the impor-
tance of experimental data matrix handling for current procedure.

4.4. Determination of particle groups

The determination of particle types based on theirmolecular compo-
sitionwas achieved usingWard's hierarchical cluster analysis (HCA) ap-
plied on the Cpca matrix. The specification of major clusters in the
sample was made as described in the experimental section.

However, initially we estimated the influence of the MCR-ALS ap-
proach on the data structure by the application of PCA and HCA (Fig.
A4 in the Appendix) to the experimental data matrix (D’). The principal
component analysis (PCA) was used to visualize two multidimensional
data sets Cfinal (6 variables) andD’ (1024 variables). The first three prin-
cipal components were used to generate the three-dimensional scatter
plots. The cumulative variance explained is around 77% and 75%, for D’
and Cfinal data matrix, respectively (Fig.3).

The most remarkable result of the PCA is pattern formation in the
Cfinal matrix, comparing to unstructured data in the D’ matrix. The

scores of D’matrix (Fig. 3. A) are cumulated around one corresponding
direction with some visible outliers. In the second scatterplot (Fig.3. B),
8 groups of scores are well recognizable, which may provide informa-
tion about the number of major clusters in the sample confirming the
necessity of MCR-ALS procedure for a better description of the sample.

TheWard's hierarchical clusteringwas applied to Cpcamatrix. By ex-
amination of the lowest level of the dendrogram, generated by the HCA,
the cut-off point of the dendrogram was set above the first agglomera-
tion level. Then the number of the branches below this point was used
as the number of all existing combinations in the Cfinal matrix (Fig. A5
in the Appendix). Subsequently, the data vector (column vector) with
all existing combinations was exported. Based on the exported cluster-
ing vector the values from Cfinalwere classified and listed (Table A1, the
Appendix). This stepwas testedmanually by examining of the Cfinalma-
trix and manual specification of the combinations.

The cluster-tree graph (dendrogram) generated from the Cpca ma-
trix is shown in the Fig.4.

As expected, the significant gap between the pelting nodes is notice-
able; it is due to the data structure after the PCA process. In addition, the
calculation of the dindex for an optimal number of clusterswasmade by
Nbclust package in Rstudio 0.99 (Fig. A6 in the Appendix).

Fig. 3. Three-dimensional scatter plots of D’ (A) and Cfinal (B) data matrices. PC – principal component.

Fig. 4. The dendrogram of Cfinal after the PCA data set with a marked cut-off point for major particle groups in the sample.
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Both, the dindex values and the visual inspection of the dendrogram
indicate the cut-off point of the main clusters in the sample for HCA of
the Cpca matrix above 8 clusters. This is consistent with the PCA results
shown in the Fig. 3B.

Based on the HCA, the particle number for each cluster and the com-
position of the cluster was assigned (Table 1). Thus, 8 particle types can
be distinguished in the PM2.5 sample with only three main clusters en-
countering for N10%. Each specified cluster contains Fe2O3. The major
particle type corresponds to the single-compound, Fe2O3 particles

(38% of the population). The second particle type (encountered for
18%) is related to Fe2O3 and FeS2. The next 3 groups (3rd, 4th and 5th)
correspond to the particles containing Fe2O3, FeS2 as well as MS or
CuS accounting for 9%, 8% and 5%, respectively. The 5th group represents
quaternary particles with all the previously mentioned compounds
(Fe2O3, FeS2, MS and CuS). The particles that contain both Fe2O3 and
FeS2 (as well as the other compounds such as MS, CuS) represent 40%
of the sample population. The groups 6th and 8th contain particles
with Fe2O3 and CuS, while the group 8th also contains MS. Those parti-
cles constitute 12% of the sample population. Domination of Fe2O3 is
correlated with elemental composition from ICP-MS, pointing out Fe
(31% of the total reconstructed mass) as the main component of this
sample after Al (44%). Al was not identified by RMS because it is mainly
included in clay minerals, which are known for the fluorescence signal
and organic matter presence in this phase. The mixed spectra (MS)
identified themain trace elements Pb and Cu (2.3% and 1%, respectiviely
of the total content). We can point out the complementarity of both
methods since ICP-MS brings quantification, whereas RMS allows a re-
markable identification of speciations.

Regarding the possible component combinations presented in Table
A1, it is clear that the HCA based on the Cpca analysis provided themains
groups of particles. The corrected number of particles corresponding to
all the types of existing chemical mixing combinations in the sample
was accounted.

The chemical mixing combinations with the same labels as the
groups specified by theHCAwere transferred to Table 2 in order to com-
pare the contribution of the particles with exactly the same chemical
mixing type as it was specified by cluster labeling, after the HCA. As it
can be noticed, the values of the particle quantity in the corresponding
clusters are slightly different. In our methodology the labeling proce-
dure was based on the overview of the chemical mixing combination
of the particles in the cluster. The most abundant chemical mixing
was selected as a label of the cluster. This fact is related to the nature
of the binary data in the Cfinal matrix. This incompatibility of particle
clustering was corrected based on searching of the analogous combina-
tionwith the same label as the cluster. Subsequently, the number of par-
ticles in the cluster was corrected by the number of particles found in
the combination.

Table 1
The main group of particles and their percentage in the sample.

Cluster number Type of particles No. Sample %

1 Fe2O3 197 38%
2 Fe2O3 + FeS2 91 18%
3 Fe2O3 + FeS2 + MS 46 9%
4 Fe2O3 + FeS2 + CuS 41 8%
5 Fe2O3 + FeS2 + CuS + MS 25 5%
6 Fe2O3 + CuS 48 9%
7 Fe2O3 + MS 50 10%
8 Fe2O3 + CuS + MS 14 3%

Abbreviations: No., number of particles;

Table 2
Comparision between the number of particles in the main HCA groups and selfsame
mixing combinations.

Cluster number Type of particles No. Corr. No. Contr.

1 Fe2O3 197 176 89%
2 Fe2O3 + FeS2 91 68 75%
3 Fe2O3 + FeS2 + MS 46 30 65%
4 Fe2O3 + FeS2 + CuS 41 29 71%
5 Fe2O3 + FeS2 + CuS + MS 25 19 76%
6 Fe2O3 + CuS 48 29 65%
7 Fe2O3 + MS 50 36 72%
8 Fe2O3 + CuS + MS 14 12 99%

Abbreviations: No., number of particles; Contr., Percentage contribution of cluster in the
sample; Corr. No., corrected number of particles;

Fig. 5. Contribution of particles containing identified compounds from MCR-ALS.
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Finally, the cluster analysis generally tends to characterize the sam-
ple under consideration. The HCA was applied for specification of the
major clusters, which gives the ability to compare different samples de-
pending on the same category (major groups of particles). Additionally,
it is the first factor to classify the sample, e.g. PM2.5 fraction can be relat-
ed to Fe2O3-only particles.

Due to the HCA procedure, only 8 main groups of particles were
specified for the general sample description. However, for a detailed
characterization of the particles based on the collected data, the crucial
step is to define all existing chemical mixing combinations in the sam-
ple. If the demonstration of the results is applied only on the HCA re-
sults, then the presence of other compounds existing in the sample
will be eclipsed. It should be noted that due to the results from the
MCR-ALS approach, the pure PbO spectrumwas extracted. In this exam-
ple the Pb- containing particles might be important for environmental
assessment and due to this fact, all existing combinations of the com-
pounds in the sample were specified. The characterization of the parti-
cle composition along with the identified compounds is presented in
Fig. 5.

Approximately 96% of theparticles contain Fe2O3, and almost 40% in-
clude FeS2. These are the twomajor compounds which are resent in the
sample composition. However, due to specific aspects of aerosol chem-
istry, the content of the secondary compounds such as PbO,may be even
more important, e.g. when considering a potential impact of the collect-
ed particles on the environment or human health. Slightly N11% of the
particles contain PbO. The importance of this informationmay be crucial
for further (more detailed) analysis. It should be emphasized that the
impact of Pb-rich airborne particles is broadly described in the litera-
ture. What is essentially important is that lead, even at a trace level,
can affect human health, e.g. a child's growth and intelligence [63].
The remaining groups are corresponding to CuS-containing (24%),
Na2SO4-containing (5%) and MS-containing (26%) particles. These re-
sults show that classification according to the specific chemical mixing
or components is possible.

The labels of clusters were conceptualized based on the most fre-
quently occurring compounds in the cluster. Notwithstanding, it does
not mean that all particles in the cluster have exactly the same compo-
sition as it was specified in the label and as explained previously (See
Table 2). Hierarchical Cluster Analysis (HCA) and Principal Component
Analysis (PCA) were chosen as the main data analysis algorithms to
identify the various particle types and groups [64]. Osan et al. [65]
have used PCA for the results from both single particle (SEM/EDX) and
bulk (X-ray fluorescence) analysis results of a combined set of approxi-
mately 25,000 individual particles collected over LakeBalaton inHunga-

ry. Such data treatment was applied to determine potential sources of
the collected aerosol particles.

5. Conclusions

This work provides an account of the data analysis procedure for nu-
merous Raman spectra collected in an automated single particle analy-
sis mode. We have applied an original approach based on MCR-ALS
treatment of the D′ matrix and multivariate analysis of the resulting
contribution matrix (C′). The clustering based on the data from MCR-
ALS can provide much more relevant information contrary to statistical
data treatment of rawRaman spectra. Moreover, multivariate data anal-
ysis on a spectral contribution matrix can provide all possible chemical
combinations of compounds in the particles. It gives an original and ef-
fective way to describe molecular composition of aerosol particles
which is complementary to elemental composition provided by ICP-
MS. The results obtained from the analysis of the collected particles sug-
gest that the following proceduremay have an application for obtaining
themolecular composition of particles analyzed by RMS in an automat-
ed mode. Moreover, sample characterization based on the results from
well-known unsupervised multivariate analysis methods may give a
general and detailed description of the collected samples. Almost 78%
of the particle population was taken under consideration in this meth-
odology which indicates that 22% of the particles were removed from
the data matrix. A major source of unreliability of the algorithm for
these particles is linked to the application of RMS, as a unique SPAmeth-
od. Due to the limitations of RMS the application of another, comple-
mentary analytical method for SPA might provide more reliable
results of particle composition (e.g. SEM-EDX\RMS system). The com-
position of the collected particles from Oruro mining environment cor-
responds to the characteristics of the area.We have obtained rewarding
results of the sample speciation and chemical mixing of the particles
which can be useful for assessing their environmental and health im-
pact. We believe it could be a starting point for coupling various SPA
methods into a unique system based on automatic data analysis.
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Appendix A. Appendix

Fig. A1. Raman spectra from the experimental data matrix D.
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Fig. A2. The flow graph of the data matrix during the data analysis.

Fig. A3. Raman spectra identified in the S′T matrix from MCR-ALS processing.
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Fig. A4. HCA dendrogram of the D’ spectral data matrix.

Fig. A5. The bottom-level of the dendrogram generated byWard's HCAon theCfinal datamatrix. The number of branches corresponds to the number of permutations in the datamatrix (34
branches = 34 combinations).

Fig. A6. The dindex (A) and the second differences dindex (B) values calculated for the Cpca data matrix.
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Table A1
Elemental composition of the PM2.5 sample from the San José Mine galleries. The accuracy of ICP-MS is around ±5%.

element Ag Al As Ba Ca Cd Co Cu Cr Fe Mn Mo Na Ni Pb Sb Sn Zn

ng.m-3 36.5 4864.0 60 25.4 141.0 2.5 0.9 116.8 22.2 3460.0 8.5 1.8 1451.0 2.2 250.0 245.7 98.7 73.4

Table A2
All the existing compounds combinations in the Cfinal data matrix.

MC index Compounds Chemical mixing Particles no.

1 Fe2O3 single-compound 176
2 Fe2O3 + FeS2 binary 68
3 Fe2O3 + FeS2 + MS ternary 30
4 Fe2O3 + FeS2 + PbO ternary 7
5 Fe2O3 + FeS2 + CuS ternary 29
6 Fe2O3 + FeS2 + Na2SO4 ternary 2
7 Fe2O3 + FeS2 + PbO + MS quaternary 9
8 Fe2O3 + FeS2 + PbO + Na2SO4 quaternary 2
9 Fe2O3 + FeS2 + PbO + CuS quaternary 5
10 Fe2O3 + FeS2 + CuS + MS quaternary 19
11 Fe2O3 + FeS2 + Na2SO4 + MS quaternary 5
12 Fe2O3 + FeS2 + PbO + Na2SO4 + MS quinary 1
13 Fe2O3 + FeS2 + PbO + CuS + MS quinary 3
14 Fe2O3 + FeS2 + CuS + Na2SO4 + MS quinary 3
15 Fe2O3 + CuS binary 29
16 Fe2O3 + CuS + MS ternary 12
17 Fe2O3 + CuS + Na2SO4 ternary 2
18 Fe2O3 + CuS + Na2SO4 + MS quaternary 1
19 Fe2O3 + PbO binary 13
20 Fe2O3 + PbO + CuS ternary 3
21 Fe2O3 + PbO + MS ternary 5
22 Fe2O3 + PbO + CuS + MS quaternary 1
23 Fe2O3 + PbO + Na2SO4 + MS quaternary 2
24 Fe2O3 + Na2SO4 binary 4
25 Fe2O3 + Na2SO4 + MS ternary 3
26 Fe2O3 + MS binary 36
27 FeS2 single-compound 12
28 FeS2 + CuS binary 4
29 FeS2 + CuS + Na2SO4 ternary 1
30 FeS2 + MS binary 1
31 FeS2 + PbO + CuS ternary 2
32 CuS single-compound 14
33 PbO single-compound 4
34 MS single-compound 4

Abbreviations: MC index, mixing combination index; Particle no., number of particles;
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3.2.2. Chemical mixing and molecular composition of particles collected within 

a gallery of polymetallic ore extraction in the Oruro area  

The methodology developed previously has been applied for the characterization 

and the quantification of species within particle samples as well as the description of 

the chemical mixing. The aim of this study is to evaluate the chemical and mixing 

state evolution of the particles as function of the particle size in the context of 

mining environment. The detailed characterization of particles collected within a 

gallery of polymetallic ore extraction (Sn, Sb, Ag, Zn, Pb) located in the Oruro mine 

area., was investigated in regards to the relation between four samples (PM10-2.5 - 

sample A, PM2.5-1 - sample B, PM1-0.5 - sample C and PM0.5 - sample D) of collected 

particles. In addition, particles deposited on personal miner’s filters were collected 

and included as sample FM. This part of the work demonstrates the potential of the 

presented algorithm in providing a relevant information on atmospheric chemistry 

and environmental risk assessment. 

 

3.2.2.1. Sample description and analysis 

As described in the paragraph 3.1.1, the particles were sampled inside the gallery of a 

mine (200m depth) located in Oruro area (17°46'0"S - 67°28'60"W). The particle 

collection was performed using personal cascade impactor (SIOUTAS) allowing 

sampling four size fractions of particles i.e. PM10-2.5, PM2.5-1, PM1-0.5 and PM0.5 at 9 

L.min-1. In addition, personal filters from the miner’s protection mask were also 

collected. The particles were analysed using a confocal Raman microspectrometer as 

it was described previously. For each individual particle a spectrum was obtained. The 

numbers of collected spectra are as follows: sample A (PM10-2.5) – 204 spectra 

corresponding to 204 particles, sample B (PM2.5-1) – 700 spectra, sample C (PM1-0.5) – 

155 spectra, sample D (PM0.5) – 258 spectra and sample FM – 250 spectra.  
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3.2.2.2. Identification of species within each size fractions.  

The acquired spectra were gathered in the matrices, where each spectrum was 

located in the single row of the spreadsheet and wavenumbers were located in 

columns. Such a data structure was required both for MCR-ALS analysis and for the 

multivariate analysis. The collected spectra for each fraction are presented in Fig.  11. 

Considering the complex sample composition resulting from particles heterogeneity, 

the procedure is affected by application of a pure variable approach to resolve mixed 

spectra. Thus, in the first step, the Multivariate Curve Resolution procedure was 

applied for getting extracted spectrum and C matrix as described in the procedure 

shown in the paragraph 3.2.1.  

 

 

Fig. 11. Raman spectra of mine dust particles acquired from four different fractions: A 

(PM10-2.5), B (PM2.5-1), C (PM1), D (PM0.5) and FM (miner’s filter).  
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A unique C matrix was constructed from A, B, C, D and FM samples and used for 

extracting the pure spectra by MCR. The total number of extracted spectra was 23, 

where 56% of them (13 spectra) were classified as non-Raman spectra or/and signal 

from the background. The corresponding spectral contribution from the non-Raman 

spectra and signal from the background were removed from the C matrix.  

The mean value of the removed signals’ contribution was 62%. This value indicate 

that obtaining of all existing Raman spectra in the matrix requires the iterative 

approach of the MCR procedure, where the starting point is the value estimated by 

SVD (see the 3.2.1. subsection). For all MCR-ALS procedure, the RRSSQ value was 

found less than 5%.  

The Raman spectra extracted by MCR were assigned for each sample. The Raman 

spectra extracted by MCR procedure from sample A are presented below (Fig.  12). 
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Fig. 12. “Pure” spectra exported into ST matrix by MCR approach from PM10 fraction 

(sample A). M-Ox – metal oxide, M-S – metal sulphide. 

 

The number of the identified Raman spectra in sample A was 10, and they were: 

Fe2O3, M-Ox (metal oxide), SiO2, TiO2, ZnO, CaSO4, M-S (metal sulphide), PbO, FeSO4, 

KFe3+(OH)6(SO4)2 (Jarosite). The identification of the components was performed 

through comparison between the extracted pure Raman spectra from MCR 

procedure, with the Raman spectra (band positions and relative intensities) in the 

well-established Raman databases (more in subsection 3.2.1).  
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Similarly, the Raman spectra identified in sample B are presented below (Fig.  13). 

 

Fig. 13. “Pure” spectra exported into ST matrix by MCR approach from PM2.5 fraction 

(sample B).  

From the MCR procedure, 14 spectra were extracted from the data collected from 

sample B. After the examination of the ST matrix, only 6 pure components 

correspond to the Raman spectra (Fig. 13), where 5 of them refer to the pure spectra 

and one to the spectrum of a mixture. Consequently, 9 components are related to 

the non-Raman signals, i.e. background, broad bands caused by a substrate effect, 

luminescence signals, non-Raman active species, which in total is 64% of signals in 

the ST matrix. The Raman spectra of the individual compounds were assigned to 

Fe2O3, PbO, CuS, FeS2 and Na2SO4. We characterized the mixed spectrum as: 

Sn2+
3O2(OH)2 + CuO + CaSO4 (MS1 – mixed spectrum in this work).  

The MCR approach was performed on sample C and produced 16 spectra. After the 

examination of the exported ST matrix, only 6 was identified as Raman spectra, which 

is 38% of the exported signals. The Raman spectra were assigned to Fe2O3, Fe3O4, 

FeS2, SiO2, ZnS and mixed spectrum of CuO + CaSO4 (MS2) (Fig. 14).  

MS1 
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Fig. 14. “Pure” spectra exported into ST matrix by MCR approach from PM1 fraction 

(sample C).  

The extracted spectra represent mainly Fe-rich and S-rich compounds, which is 

consistent with the results from the previous samples.  

The Raman spectra from sample D are presented below (Fig. 15).  

 

MS2 
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Fig. 15. “Pure” spectra exported into ST matrix by MCR approach from PM0.1 fraction 

(sample D).  

By means of the MCR procedure, 18 spectra were extracted from sample D. After the 

examination of the ST matrix, only 6 pure components correspond to the Raman 

spectra (Fig. 15), where 5 of them refer to the pure spectra and one to the spectrum 

of a mixture. Consequently, 12 components are related to the non-Raman signals, i.e. 

background or broad bands, caused by substrate effect, luminescence signals, non-

Raman active species, which is 66% of the signals in the ST matrix. The Raman spectra 

of the individual compounds were assigned to Fe2O3, FeO, FeS2, Na2SO4 and SiO2. 

The mixed spectrum was identified as ZnO + CuO + CaSO4 (MS3).  

 

MS3 
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Fig. 16. “Pure” spectra exported into ST matrix by MCR approach from miner’s filter 

(sample FM).  

 

The Raman spectra extracted by MCR approach from the miner’s filter (sample FM) 

are: TiO2, Fe2O3, FeS2, KFe3+(OH)6(SO4)2, M-Ox (metal oxide) and SiO2 (Fig. 16). The 

total number of signals in the ST matrix was 16, where during identification 10 signals 

assigned to the non-Raman spectra and background signal were removed (63%).  

The presence of the individual compounds extracted by the MCR approach from all 

the fractions was summarized in the Table 5. 

Table 1. The presence of individual chemical compounds in the studied samples 

 

In the Table 1, the four main compounds are Fe2O3, FeS2, SiO2 and CaSO4. The 

collected particles are mainly containing Fe and S-rich compounds, which is 
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complementary to the specification of the Oruro mining environment (Banks et al. 

2002). The extracted compounds are expected for the dust particles collected in the 

polymetallic mining environment (U.S Department Of Health And Human Services 

2003). The metal rich and the sulfur rich species are typical for particulate matter 

from a polymetallic mining environment (Moricz et al. 2009).  

In addition, the common compound, which was identified in almost all fractions 

(except sample B), is SiO2. It should be noted, that crystalline silica particles could 

result in the initiation and progression of interstitial lung disease. Pathogenesis is the 

consequence of damage to lung cells and resulting lung scarring associated with 

activation of fibrotic processes (Castranova 2000). 

 

3.2.2.3. Relationships between the species in the samples 

Another issue taken into account in this work was the relationships among the 

specified compounds based on hierarchical clustering for evaluation of the mixing 

state for each sample. In addition to a classical Euclidean distance measurement 

method, Dindex calculations were initially used to determine the effectiveness of this 

procedure and the usefulness of the data for a further procedure. All calculations 

(Dindex, PCA and HCA) were performed on the C matrix as described in the 

subsection 3.2.1.  The results for Dindex calculation are presented in Fig. 17. 
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Fig. 17. Dindex values calculated for each fraction spectral contribution matrix 

exported from MCR-ALS approach. The optimal number of cluster (ONC) was 

specified for Ward’s HCA. The accuracy of the Dindex is given in the subsection 3.2.1.  

 

The calculated Dindex values indicate the optimal number of clusters (ONC) within 

the range 4-8 clusters. The lowest value among the main groups was calculated for 

sample A (4 clusters) where in turn the highest was specified for sample B (8 clusters). 

The consecutive fractions are as follows: sample C (5 clusters), sample D (6 clusters) 
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and sample FM (6 clusters). The calculated values were correlated with the PCA and 

Ward's HCA results for each fraction. 

 

Fig. 18. 3D PCA scatter plot of sample A spectral contribution matrix. 

The cumulative variance explained by 3 principal components is ~70%. In the 3D PCA 

scatterplot (Fig. 18), 9 groups can be specified. In comparison to the Dindex value (4 

clusters) the more detailed separation of the scores can be observed.  In order to 

specify the actual number of components in the data set, the Ward’s HCA 

dendrogram was generated (Fig. 19). 
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Fig. 19. Ward’s HCA dendrogram with specified cut-off point of sample A 

contribution matrix. 

 

The procedure of the Ward’s HCA processing was described in detail in subsection 

1.2.5., where the input matrix constitutes the PCA-reduced matrix generated by the 

algorithm to avoid operations on binary data. The number of 4 clusters was used for 

the data structuration. The cut-off point is corresponding to the Dindex value. The 

number of potential groups visible in the 3D scatter plot generated by PCA (Fig. 18) 

is not complementary with the data structure. The structuration based on the 

number of clusters specified by PCA causes an overestimation of the data where 

different clusters contain exactly the same particle types, what was tested manually 

during this procedure. In sample A (PM10-2.5) cluster 1 contains SiO2-rich particles and 

represents 28% of the particle population. Cluster 1 was placed in the separated 

node in the dendrogram (Fig. 19). Other clusters with a homogeneous particle 

composition are: cluster 3 (PbO-rich) and cluster 4 (Fe2O3-rich), which represent 24% 

and 17% of the particle population, respectively. The most abundant group of the 

particles is cluster 2 which contains mixed particles of compounds: M-Ox (metal 

oxide), SiO2, TiO2, ZnO, CaSO4, M-S (metal sulphide), FeSO4 and KFe3+(OH)6(SO4)2. 



- 112 - 
 

This cluster is the only heterogeneous group of particles in sample A and represents 

31% of the particle population. However, it should be noted that some 

homogeneous particles, which were not included in any other cluster, are a part of 

cluster 2.  

 

 

Fig. 20. 3D PCA scatter plot of sample B spectral contribution matrix. 

The cumulative variance explained by 3 principal components is ~70% for the 

spectral contribution matrix of sample B. In the 3D PCA scatterplot (Fig. 20), 8 groups 

can be specified. This value is complementary to the Dindex value (8 clusters). To 

confirm the actual number of the clusters in the data set, the Ward’s HCA 

dendrogram was generated (Fig. 21). 
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Fig. 21. Ward’s dendrogram with specified cut-off point of sample B contribution 

matrix. 

8 particle groups can be distinguished in the PM2.5 fraction (sample B) with only three 

main clusters encountering for ≥10%. Each specified cluster contains Fe2O3. The 

major particle type corresponds to the single-compound Fe2O3 particles (38% of the 

population). The second particle type (encountered for 18%) is related to Fe2O3 and 

FeS2. The next 3 groups (3rd, 4th and 5th) correspond to the particles containing Fe2O3, 

FeS2 as well as MS or CuS accounting for 9%, 8% and 5%, respectively. The 5th group 

represents quaternary particles with all the previously mentioned compounds (Fe2O3, 

FeS2, MS and CuS). The particles that contain both Fe2O3 and FeS2 (as well as the 

other compounds such as MS, CuS) represent 40% of the sample population. The 

groups 6th and 8th contain particles with Fe2O3 and CuS, while the group 8th also 

contains MS. Na2SO4 and PbO spectra were extracted during MCR-ALS approach, 

nonetheless only by specification of all existing chemical mixings it is possible to 

estimate the number of particles containing these compounds (see more in 3.2.1. 

subsection).  
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Fig. 22. 3D PCA scatter plot of sample C spectral contribution matrix. 

 

The cumulative variance explained by 3 principal components is ~60%. In the 3D PCA 

scatterplot (Fig. 22), 16 groups can be specified. However, the designated number of 

groups is questionable. In comparison to the Dindex value (5 clusters) the detailed 

separation of the scores can be observed. On order to specify the actual number of 

components in the data set, the Ward’s HCA dendrogram was generated (Fig. 23). 
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Fig. 23. Ward’s dendrogram with specified cut-off point of sample C contribution 

matrix. 

 

5 particle groups can be distinguished in the PM1 fraction (sample C). The 

dominating compounds are FeS2, ZnS and Fe2O3. It can therefore be assumed that 

sample C is rich in Fe-rich and S-rich compounds. The major particle type 

corresponds to the binary FeS2 + ZnS particles (30% of the population) and 

constitutes cluster 5. The second particle type (encountered for 27%) is related to 

ZnS-rich particles (cluster 2). The next 3 groups (1st cluster, 3rd cluster and 4th cluster) 

correspond to the particles containing Fe2O3+ SiO2 (12%), mixed particles (19%) 

andFeS2 (12%), respectively.  
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Fig. 24. 3D PCA scatter plot of sample D spectral contribution matrix. 

The cumulative variance explained by 3 principal components is ~90% for sample D. 

In the 3D PCA scatterplot (Fig. 24), 12 groups can be specified. However, the 

designated number of groups is questionable. In comparison to the Dindex value (6 

clusters) the detailed separation of the scores can be observed. In order to specify 

the actual number of components in the data set, the Ward’s HCA dendrogram was 

generated (Fig. 25). 
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Fig. 25. Ward’s dendrogram with specified cut-off point of sample D contribution 

matrix. 

 

The structuration based on the number of clusters specified by PCA causes the 

overestimation of the data where different clusters contain exactly the same particle 

types, which was tested manually during this procedure. In sample D (PM0.5) cluster 1 

contains SiO2-rich particles and represents 19% of the particle population. Cluster 1 

was placed in the separated node with cluster 2 (SiO2 + FeS2 particles) in the 

dendrogram (Fig. 25). Cluster 2 represents 17% of the population. The clusters that 

have a homogeneous particle composition are: cluster 3 (FeS2), cluster 5 (FeO) and 

cluster 6 (Fe2O3), which represent 15%, 14% and 13% of the particle population, 

respectively. The most abundant group of the particles is cluster 4, which contains 

FeS2 + FeO particles and represents 23% of particle population. In general, sample D 

can be described as Fe-rich and SiO2 rich particle fraction.  
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Fig. 26. 3D PCA scatter plot of sample FM spectral contribution matrix. 

 

The cumulative variance explained by 3 principal components is ~70% for sample 

FM. In the 3D PCA scatterplot (Fig. 26), only 2 groups can be specified. The scores of 

the scatter plot (Fig. 26) are randomly distributed, which makes the matrix 

structuration difficult. In comparison to the Dindex value (6 clusters) the detailed 

separation of the scores can be observed. In order to specify the actual number of 

components in the data set, the Ward’s HCA dendrogram was generated (Fig. 27). 
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Fig. 27. Ward’s dendrogram with specified cut-off point of sample FM contribution 

matrix. 

 

5 particle groups can be distinguished in sample FM. This value is smaller than 

estimated by the Dindex, and it is due to the observation of the results from two 

Ward’s HCA approaches. By specification of 6 clusters (calculated by Dindex), cluster 

2 was separated into 2 individual groups which have exactly the same particle 

composition. However, it should be noted that such a situation was observed only for 

sample FM. The dominating compounds are Fe2O3, SiO2 and KFe3+(OH)6(SO4)2. It can 

therefore be assumed that sample FM is rich in Fe and SiO2 compounds. The major 

particle type corresponds to the binary SiO2 + TiO2 particles (28% of the population) 

and constitutes cluster 2. The second particle type (encountered for 21%) is related 

to SiO2 particles (cluster 1). The next 3 groups (3rd cluster, 4th cluster and 5th cluster) 

correspond to the particles containing KFe3+(OH)6(SO4)2 (19%), metal oxides (13%) 

and Fe2O3 (20%) of particle population, respectively. The two groups, which can be 

distinguished in the 3D PCA, scatter plot (Fig. 26) are related to the SiO2-rich particles 

(1st group) and the others (2nd group).    

 



- 120 - 
 

3.2.2.4. Description of the mixing state of the particles 

The number of homogeneous and heterogeneous particles i.e. composed of one or 

several species was determined for each fraction (Fig. 28). The highest number of 

homogeneous particles was identified in the PM10-2.5 fraction. In sample A almost 

80% of the particles are homogeneous. In turn, the richest in heterogeneous particles 

is sample FM, where heterogeneous particles constitute ~75% of the particle 

population.  

 

Fig. 28. Classification of particles for homogeneous and heterogeneous based on MR 

parameter. 

The almost identical ratio of homogeneous to heterogeneous particles is observed 

for samples B and C. In these samples, the heterogeneous particles represent ~60% 

of the particle population. The small difference between these two classes of particles 

is observed in sample D. In the fraction PM0.5, 51% of the particle population is 

represented by homogeneous particles where 49% by heterogeneous. These results 

are surprising since heterogeneous particles as aggregates would be expected in the 

coarsest fractions.  
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The more specific mixing level i.e. mixing ratio (MR) is summarized in the Fig. 29, with 

MR1 related to single species, MR2 mixing of two compounds, MR3 mixing of 3 

components and MR4 and MR5 mixing to 4 and 5 compounds, respectively 

 

Fig. 29. Classification of particles based on MR parameter. 

 

It can be observed in Fig. 29, that the amount of particles representing the level 

decreases as the level of mixing increases. The smallest chemical mixing variation was 

identified for sample A, were sample FM is just the opposite and contains the most 

heterogeneous particles from all of the fractions, as mentioned previously. In sample 

C the numbers of homogeneous and binary particles are almost the same, 

corresponding to ~40% of particle population. The ternary particles were found in 

the PM2.5-1, PM1-0.5, PM0.5 and miner’s filter samples. In sample D the lower level of 

chemical mixing is observed, comparing to the C and B samples. In the PM0.5 no 

quaternary particles were found and almost 90% of the particle population can be 

described as homogeneous and binary particles. It can be explained by the size 

range of particles for which few aggregates can be observed. The classification of the 
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particles by main particle groups was made (Fig. 30). The specification of the groups 

was performed based on the extracted compounds using the MCR approach. The 

SiO2 group was formulated based only on the contribution from the SiO2 spectrum. 

The Fe-rich group was formulated based on the compounds: Fe2O3, FeSO4, FeS2, 

Fe3O4, FeO and KFe3+(OH)6(SO4)2. In turn, metal-rich groups were designated by: M-

Ox, TiO2, ZnO, PbO, CuO, MS, CuO_CaSO4 and ZnO_CuO_CaSO4. It should be noted, 

that some compounds are assigned to 2 different groups occasionally. Nonetheless, 

this situation is dictated by the mixed spectra where “pure” (single) compounds were 

unable to be extracted by MCR approach. Furthermore, the S-rich particles contain 

CaSO4, M-S, CuS, Na2SO4, MS, ZnS, CuO_CaSO4 and ZnO_CuO_CaSO4 compounds 
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3.2.2.5. Chemical composition and evolution of the particles in polymetallique 

mining environment 

 

 

Fig. 30. Classification of particles based on the specified groups. 

It can be seen in Fig. 30, that the Fe-rich particles  dominate in samples B, C, D and 

FM, where they represent ~96%, ~78%, ~79% and ~79% of the particle population. 

The most homogeneous structure of the particles due to a contribution of the 

specified groups is characteristic for sample A. SiO2 particles are located in the PM10-

2.5, PM0.5 and miner’s filter fractions. This type of particles was not found in samples B 

and C. The highest contribution of SiO2 particles is observed in sample FM (~57%). 

The abundance of S-rich particles increase for samples A, B and C, starting from 22%-

69%. The significant gap in the S-rich particles contribution can be observed in 

sample D, where in turn almost 38% particles containing SiO2 can be observed. The 

highest amount of Metal-rich particles was identified in sample FM (68%). 
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3.3. Conclusions  

By applying the presented previously algorithm, it was possible to determine the 

particles chemical mixing level and molecular composition. Calculation of the Dindex 

was an appropriate approach to specify the number of main particle groups. The 

compounds typical for the mining environment activity were present in the particles 

from all of the fractions. The most homogeneous fraction, in terms of the presented 

chemical mixing, is the PM10-2.5 fraction, where almost 80% of particles are 

homogeneous. The opposite situation is illustrated with sample FM (miner’s filter) 

where relatively high heterogeneity was observed. The particles were classified by 4 

main particle groups which was favourable for the specification of the changes in the 

composition of the particles via their size. The decreasing contribution of the Metal-

rich particles can be observed along with the decreasing particle size. In turn, the 

increasing contribution of the S-rich particles was demonstrated for the PM10-2.5, 

PM2.5-1 and PM1-0.5. These results confirm the usefulness of the presented algorithm 

to describe the chemical composition and chemical mixing of particles from different 

atmospheric aerosol fractions. 
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CHAPTER 4: SPECTRONOMY: 

A GRAPHICAL INTEGRATED SYSTEM FOR 

PROCESSING, ANALYZING, 

AND CLUSTERING OF RAMAN 
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In this chapter, we present an integrated, open-source software system for 

processing, analyzing, and clustering of Raman and FTIR spectral data sets. The 

Spectronomy graphical system was developed in collaboration with the Institute of 

Molecular Sciences (UMR CNRS 5255) from the University of Bordeaux.   

Spectronomy is an application of several algorithms for spectral pre-processing 

(scale-based normalization, automated baseline correction, extended multiplicative 

signal correction, standard normal variate correction, Savitzky-Golay filtering), cluster 

analysis (k-means, HCA, fuzzy-C-means), unsupervised multivariate analysis (PCA) 

and optimal number of cluster calculation (D-index, Hubert’s index) that are going to 

be described in detail in this chapter.  

 

4.1. Software specifications and system architecture 

The presenting system was built in the Python programming language on the 

Microsoft Windows operating system. The Spectronomy works in connection with 

the R language through an interface to benefit from optimal capabilities of the 

libraries of both languages. Python was chosen due to the open source license, which 

greatly facilitates the scientific community's active contribution to the development 

of the presented software. Despite the rich standard library, many specialized 

external packages have been used. Most of them are dedicated to scientific 

programming in which Python is particularly popular. Of particular note is the fact, 

that Python is easy to combine with other languages, such as Fortran, C++ or even 

MATLAB, which are widely used for scientific computations. However, the 

performance of interpreted languages, such as Python, for computation-intensive 

tasks are inferior in comparison to lower-level programming languages. Therefore, 

several external libraries were used in the Spectronomy to increase computational 

efficiency of the system. The external libraries such as NumPy and SciPy have been 

used for fast and vectorized operations on multidimensional arrays, where the 

Pandas library was applied for high-performance data structure analysis and 
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manipulation. In addition, selected features of the integrated Python module for 

machine learning problems (Scikit-learn) was used (Pedregosa & Varoquaux 2011). 

The highest level-interface for visualization of spectra and graph plotting is 

provided by the Seaborn visualization library. 

The system is implemented with a graphical user interface (GUI), shown in Fig. 31. 

Each menu item operates on a unique routine or toolset with integral subroutines for 

the data loaded in the system (e.g. FTIR dataset). The simple-to-use-graphical 

interface allows an effortless interaction with the features included in the 

system, with no need for any programming skills. The menu is designed for 

flexible feature operations with a very restricted data flow, designed only for 

subroutines (e.g. HCA). In that way, the trial and error method of solving the 

specific problem can be applied by casual users. Moreover, an instant 

observation of each step is available directly in the main window of the 

application, which allows to control each step of the spectra processing and 

analysis. The prime features are divided into separated groups in the menu by 

categories i.e. File, Factor Analysis, Clustering, Preprocessing, Matrix and 

Other. These features will be described in the following sections.  
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Fig. 31. Welcome page for primary graphical user interface of the developed 

Spectronomy system. 

 

4.2. Operating procedure 

4.2.1. Data description, input and management 

Data set description 

The data set used for this software demonstration is formed of Mid-IR spectra, 

recorded on a FTIR spectrometer (Alpha FTIR Spectrometer from Bruker optic), 

equipped with a deuterated triglycine sulphate (DTGS) detector and a germanium 

beam splitter, interfaced to a computer with a Windows-based operating system, and 

connected to the software of an OPUS operating system (Version 7.0 Bruker optic). 

FTIR spectra were collected at the frequency regions of 6000–400 cm−1 by recording 

10 scans with a resolution of 2 cm−1. All spectra were corrected by subtracting a 

background of air recorded in the same conditions. 16 spectra were collected in 

order to create a data matrix with a dimension of 2747 × 16 (wavenumbers × 

number of spectrum).  

Data structure 

The software is able to handle a 2-dimensional dataset, where each sample is defined 
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by a series of discrete or continuous measurements. As in the most programming 

languages, data are stored in the single structure called a programming variable. The 

main data structure used in Spectronomy and stored as a programming variable is 

pandas’ DataFrame. A DataFrame represents a tabular, spreadsheet-like data 

structure containing an ordered collection of columns, each of which can be a 

different value type – numeric, string, Boolean, etc. (Fig. 32). However, because of the 

purposes for which the program was designed (Raman and FTIR spectroscopy),  its 

functionality is most of the time limited to operations on the numeric data (integers, 

float-point number and complex numbers), where the string type (sequence of 

characters) is dedicated for data labeling and the Boolean type – for control flow. It 

should be noted that the Spectronomy system creates and manipulates a large 

amount of programming variables during utilization, and they belong only to 

pandas’ DataFrame structure. The variables contain multiple parameters of the 

system such as the information necessary for the exploratory analysis and clustering 

models, intermediate data, equation results, etc. The software is also equipped with a 

data serializing and deserializing system for saving the arbitrary data and then 

sending them to other processes to improve the software efficiency. The access to 

the program features is available through the graphical user interface menu. By 

clicking on the menu item, an associated routine or entire subroutine toolset is 

executed on a copy of the main data structure.  
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Fig. 32. Print-screen of data organization in the input file (spectral data matrix) for 

Spectronomy software in the form of table. 

 

Data input and management  

The Spectronomy system is based on the assumption that a whole spectral data set 

has been previously collected and calibrated for the typical wavenumber and 

intensity variations caused by a spectrometer. Therefore, the spectral data need to be 

placed in a Microsoft Excel file (.xlsx file extension) in a form of column mode profiles 

with instrumental responses (Jaumot et al. 2015). In other words, the spectra are 

stored in rows (each spectrum in a row), where in turn the wavenumbers are stored 

in columns. The desirable practice is to place the x-axis into the first row of the data 

matrix, which will help avoid potential identification errors. The Spectronomy system 

has an ability to load two types of data matrices. The first one is a two-dimensional 

data matrix with single or multiple spectra. The second type is a row mode profiles 

matrix (Fig. 34), e.g. C matrix from Multivariate Curve Resolution (Jaumot et al. 2015) 

(see Fig. 33) 
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Fig. 33. Load function of two different matrices – spectral matrix and C-matrix.  

 

Once the data are loaded, the system will ask about existing headers of the data 

matrix. The headers of the data frame are stored in the separate programming 

variables to avoid any errors during the analysis. Thus, exported headers can be used 

as a label of spectra for, e.g. hierarchical cluster analysis. One of the key applications 

of Raman and FTIR spectroscopy is to collect data from various sets or groups of 

samples to determine the similarities or differences among them. By specification of 

the row header (first column in the Excel file), the proper name of spectra will be 

used during the analysis. However, if a user does not specify the headers, then the 

program will automatically assign the numbers of each spectrum based on the order 

in which they are placed in the matrix. In addition, the system creates a copy of the 

loaded file in the temporary folder on the computer, which avoids a potential 

problem with a file overwrite. 

 



- 132 - 
 

 

Fig. 34. print-screen of data organization in the input file (C-matrix) for Spectronomy 

software in the form of table. 

 

4.2.2. Data visualization 

The system has a variety of features to enable the data visualization. Firstly, a specific 

function is dedicated to displaying a loaded matrix (Fig. 35). Regardless the matrix 

type (column or row mode profiles) the system will automatically recognize it by a 

dimension. In the case of a spectral matrix, the number of rows should be lower than 

the number of columns, where in the case of C-matrix the situation is opposite.  The 

data matrix structure should be properly defined for the purpose of an appropriate 

graph projection. The column mode profile matrix generates an individual XY graph 

with the imposed spectra, where the row mode profile matrix generates a stacked 

bar chart. The application of the data plotting function was implemented to examine 
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a compliance of the loaded matrix with the software requirements, by giving a 

preview of the data before further analysis. Secondly, the system is able to plot the 

specific type of graph depending on a function (e.g. PCA biplot, HCA dendrogram, 

etc.), with various parameters provided during the analysis. Such an example is the 

explained variance value of each principal component in PCA, which provides a visual 

representation of the model. In addition, the visual inspection of the generated 

graphs is supplemented with an interactive navigation toolbar for a simple-to use 

manipulation of the image and a cursor positioning. The features included in the 

toolbar are practical for a detailed examination (e.g. zooming, elongating, 

determination of the peak position, etc.) of the graphs. In addition, for differentiation 

of the qualitative data (e.g. clusters in the dendrogram) the color palette based on 

Kelly’s work (Christie et al. 2007) was implemented to obtain the best possible 

visualization of the data. 

 

Fig. 35. Data visualization feature applied for FTIR spectra data set.  

 

4.2.3. Spectral pre-processing 

Pre-processing of a spectral data set has become an integral part of chemometrics 

(Roussel et al. 2014). The objective of the pre-processing is to improve the 

subsequent multivariate analysis. Several widely used pre-processing algorithms were 

implemented in the Spectronomy software (Fig. 36 with the different pre-processing 
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choices visible).  

 

 

Fig. 36. Pre-processing functions included in the Spectronomy software. 

 

The automatic baseline correction with asymmetric least squares (Eilers & Boelens 

2005) was implemented to perform fast, simple and effective background 

subtraction. The algorithm elaborated by Eilers and Boelens (Eilers & Boelens 2005) 

was selected due to its uncomplicated adjustment of parameters for obtaining a 

satisfactory approximation to a real baseline. Another feature, which combines the 

advantages of spectra normalization and baseline correction is an extended 

multiplicative signal correction (EMSC). EMSC allows to separate and quantify the 

different types of chemical and physical variations in the spectra (Afseth & Kohler 

2012). EMSC has particular application in the field of FTIR spectroscopy, owing to an 

effortless and flexible parameter optimization for scattering effect correction (Afseth 

& Kohler 2012). EMSC is useful in the correction of additive baseline effects, 

multiplicative scaling effects and interference effects (Afseth & Kohler 2012). 

Standard normal variate (SNV) pre-processing is probably one of the most popular 

method for scatter correction of Near-IR spectra (Rinnan et al. 2009). This algorithm 

included in the Spectronomy system was elaborated for reducing spectral noise and 
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eliminating background effects mainly for the Near-IR spectroscopy data. The digital 

filter for smoothing and differentiation based on the Savitzky-Golay algorithm 

(Savitzky & Golay 1964) was implemented and represents the last pre-processing 

feature included in the system. Basically, this smoothing algorithm consists of an 

elimination of the noise from the signal with the lowest possible signal distortion. In 

the described software, the Savitzky-Golay filtering function is also assembled with a 

spectral derivative estimation. The normalization of spectra by an intensity scaling 

(Randolph 2006) is the most favorable for Raman and FTIR spectra with different 

intensity values. By application of an intensity scaling procedure, such a disparity is 

compensated across the spectra under the same experimental conditions, where at 

the same time, the algorithm preserves the relative intensities of peaks within each 

spectrum. The spectra with normalized intensities can provide better performance 

with some algorithms, e.g. hierarchical cluster analysis (HCA). 

In the presented software, a function for a matrix display is also included (Fig. 37). 

This feature is favorable for data monitoring after each step of the processing.  

In addition, three practical operations on the data matrix are accessible. These 

features include: matrix transposition, binarization and displaying (Fig. 37). A 

substantial part of the described system is an easy-to use, well-developed pattern 

recognition module based on Scikit-learn Python package (Pedregosa & Varoquaux 

2011). 
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Fig. 37. Print-screen of matrix manipulation features included in the Spectronomy 

software. 

 

4.2.4. Clustering 

Description of methods 

The most common method of an unsupervised pattern recognition is a cluster 

analysis (CA), widely used to describe the relationship within the dataset (Forina et al. 

2008). With Spectronomy, three types of clustering are possible i.e. Hierarchical 

Cluster Analysis, k-means and Fuzzy Clustering (Fig. 38). The k-means algorithm is 

one of the most commonly used partitional clustering methods in chemometrics and 

usually efficient for handling large datasets (Butler et al. 2016). In turn, the HCA 

clustering is an effective way of presenting the hierarchy of data in a readable 

graphical form called a dendrogram. Finally, by fuzzy clustering algorithm each data 

point can belong to more than one cluster, which can favors an association of 

samples within specified clusters.   
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Fig. 38. Clustering functions included in the Spectronomy software. 

 

Hierarchical cluster analysis (HCA) is an unsupervised pattern recognition technique 

that determines a grouping structure in a dataset by a nested tree graphical 

representation, called a dendrogram. In a dendrogram, the spectra are gradually 

associated according to their similarities. To build a dendrogram based on an 

agglomerative hierarchical cluster algorithm, at first each spectrum is considered as a 

cluster. At each agglomerative step, two clusters are merged with respect to a cluster 

distance until a final cluster is obtained (de Souza Lins Borba et al. 2015). The 

Spectronomy software includes several hierarchical clustering algorithms for 

computing a distance between clusters, such as the minimum variance algorithm 

(Ward), weighted center of mass distance (median), centroid distance (centroid), 

weighted average distance (weighted), shortest distance algorithm (single), 

unweighted average distance (average) and the furthest distance algorithm 

(complete) (Everitt et al. 2011). The elaborated system for a dendrogram projection 

was applied. Beyond a projection of a classical dendrogram, Spectronomy can 

generate a limited-type cluster-tree (a truncated dendrogram) based on the 

denotation of a nodes’ number of from a user. Furthermore, a cut-off point for a 

dendrogram is easy to specify based on the specification of a distance value by a 

user. The labeling of samples is also possible, if the proper text values were included 

in the loaded data matrix (see section 2.2.1.) (Fig. 39). 
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Fig. 39. Dendrogram generated by the Ward’s HCA function with sample labels. 

 

Another implementation is the k-means clustering, which represents a partitional 

clustering method. Partitioning clustering algorithms have widely been applied 

because of its effectiveness and applicability for the large data sets (Reddy & Jana 

2012). In the k-means clustering a membership of each spectrum is initially assigned 

randomly to an a priori specified number of clusters. Then, a centroid of each of 

these clusters is calculated, where for each spectrum, a distance to previously 

specified cluster centroids is determined. If a spectrum is not associated with the 

closest centroid, it will be transferred into the closest cluster. The centroid positions 

are recalculated every time the spectrum has changed its membership. In general, 

the k-means clustering represents a better calculation performance beside the HCA, 

but a number of clusters need to be specified before the clustering procedure. In the 

described software, the results can be exported in the form of the Voronoi diagram, 

cluster membership vector and centroid position vector (Fig. 40). 
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Fig. 40. Voronoi diagram generated by application of k-means clustering algorithm 

on PCA-reduced data with marked centroids. 

 

The Voronoi diagram of the points is calculated using the initially calculated 

centroids. Each segment in the Voronoi diagram is a separate cluster. The centroids 

are updated to the mean of each segment. The algorithm is then repeated until a 

stopping criterion is fulfilled. Usually, the algorithm stops when a relative decrease in 

the objective function between iterations is less than a given tolerance value. This is 

not the case in this implementation: the iterations stop when centroids move less 

than the tolerance. The Voronoi diagram visualizes the k-means partitioning with the 

borders of each cluster positioned on the PCA score plot plane (see section 2.5.). This 

type of a graph simplifies an identification of the cluster centroid distances, as well as 

the spectra, which lie between clusters.  
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The last, unsupervised pattern recognition method is fuzzy-C-means clustering. Fuzzy 

clustering was originally developed in 1969 by Ruspini based on a fuzzy set theory 

(Ruspini 1969). One of the major differences between fuzzy clustering and hard 

clustering (e.g. k-means, HCA) is that fuzzy clustering allows each pattern to belong 

to more than one cluster with varying degrees of certainty, based on their distance to 

the cluster centers. The fuzzy C-means algorithm is one of the most popular fuzzy 

clustering algorithms. It was first developed by Dunn in 1973 (Dunn 1973) and was 

subsequently improved by Bezdek research group (Khalilia et al. 2014). The 

Spectronomy system is equipped with a special function dedicated to specify the 

best value for fuzzy-C-means partitioning. The fuzzy partitioning coefficient (FPC) is 

defined in the range from 0 to 1. It is a metric, which determines clustering 

model conformity. When the FPC is maximized, then the data are described in the 

best way by fuzzy-C-means for the corresponding number of clusters. The 

Spectronomy system has a feature to export the fuzzy-C-means results in the 

form of an Excel spreadsheet file (Fig. 41). In each column, the values in 

percentage correspond to the cluster affiliation of each spectrum.  
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Fig. 41. Print-screen of results generated by fuzzy-c-means algorithm with a “save 

to file” button in the form of table. 

 

Optimal number of cluster calculation 

Various clustering algorithms commonly generate a distinctive set of groups. Even 

for the same algorithm, the modification of parameters or the data description order 

can significantly affect the final clustering results. Thus, an effective evaluation is 

crucial to provide relevant information about internal structures, which occur in the 

data. The Spectronomy system is equipped with two main features for a calculation 

of an optimal number of clusters for each data matrix. The Dindex is based on the 

clustering gain on intra-cluster inertia, which measures a degree of homogeneity 

between the data associated with a cluster (Charrad et al. 2014). It calculates their 

distances compared to a reference point representing a cluster profile. In turn, the 

Hubert’s index is a point serial correlation coefficient between two matrices. High 

values of the normalized Hubert’s index indicate an existence of compact clusters 

(Charrad et al. 2014). Both, the Dindex and Hubert’s indexes are delivered and 

visualized in the form of an XY plot by NbClust package (Charrad et al. 2014). In 
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these plots, the Dindex and the normalized Hubert’s index versus the number of 

clusters are presented. By designation of a distinctive knee, an optimal number of 

clusters can be specified. Both, the Dindex and Hubert’s indexes can be applied for k-

means clustering and HCA (Fig. 42). 

 

 

Fig. 42. Dindex and Hubert’s index graphs presenting calculated optimal number of 

cluster value marked by an arrow.  

 

4.2.5. Multivariate Data Analysis 

The Spectronomy system presently implements several multivariate data analysis and 

clustering techniques, such as principal component analysis (PCA), kernel principal 
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component analysis (kPCA) (Fig. 18), hierarchical cluster analysis (HCA), k-means 

clustering and fuzzy-C-means clustering (Fig. 43). 

 

 

Fig. 43. PCA procedures implemented in the Spectronomy software. 

 

Principal component analysis (PCA) is a multivariate technique that operates in an 

unsupervised manner and is used to analyze the inherent structure of the data. PCA 

is a widely used tool for dimensionality reduction, model building and data 

exploration with a huge potential for Raman and FTIR spectroscopy (Gautam et al. 

2015). Considering that only a few principal components are necessary to represent a 

majority of a total variance in the data set, PCA is a great way to reduce the 

dimensionality of data (Reisner et al. 2011). By analyzing multiple Raman or FTIR 

spectra by PCA, each spectrum can be represented in terms of the principal 

component variables as a small set of values, called scores. The graphical user 

interface implemented in the Spectronomy system has a feature for a flexible 

operation on the selected principal components to generate a score plot adapted for 

the purposes defined by a user. In addition, two types of a score plot can be 

generated: (i) two dimensional (Fig. 44) and (ii) three-dimensional (Fig. 45).  
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Fig. 44. Two-dimensional projection of the scores generated by PCA. 
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Fig. 45. Three-dimensional projection of the scores generated by PCA. 

 

Kernel principal component analysis (kPCA) (Fig. 46) is a nonlinear form of PCA, 

which better exploits a complicated spatial structure of high-dimensional features. If 

the original data exist with a complex nonlinear relationship, kPCA is more suitable 

for the feature extraction (Shao et al. 2014). 
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Fig. 46. Two-dimensional projection of the scores generated by kPCA. 

 

Both techniques are accessible in the Spectronomy system to further score labeling 

function (Fig. 47). 
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Fig. 47. Two-dimensional projection of the scores generated by PCA with score 

labels. 

 

 In addition, a possibility to display loading plots of the specified principal 

components (Fig. 48) and to export a PCA-reduced matrix is also available (Fig. 49). 
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Fig. 48. Loading plot of the first PC. 

 

 

 

Fig. 49. Export function of the reduced PCA matrix included in the Spectronomy 

software. 

 

Another novelty is a possibility to plot an average spectrum, which is associated with 

a specific cluster (Fig. 50).  
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Fig. 50. Mean spectrum of one cluster function accessible in the HCA clustering in the 

Spectronomy software. 

 

The clustering results in the form of a comma-separated file can be exported and 

saved on the hard drive and then used to assign different cluster colors to the PCA 

scatter plot (Fig. 51). This function is especially useful in a combination of cluster 

analysis (CA) with principal component analysis (PCA) to obtain and characterize any 

relationships between these techniques  
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Fig. 51. PCA score plot with cluster labeling feature. 

 

4.3. Evaluation of the system 

The software performance and effectiveness were evaluated using two different data 

sets from Raman and FTIR spectroscopy. The computer used for the evaluation was 

equipped with a 2.0 GHz Intel Core i7-4750HQ processor and 8 GB of DDR3-RAM 

memory. Since the purpose of this paper is to introduce the system rather than 

analyze a particular data set, the specifics of the specimens are not considered 

relevant. 

 

4.3.1 Evaluation of Raman data set 

The fine powders of CaCO3, NaNO3 and Na2SO4 in the weight ratio 1:1:1 were ground 

in a mortar in order to obtain micron-sized particles of a diameter range from 1 to 10 

micron. The particles were transferred to an Eppendorf tube with 5 ml of methanol. 
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The Eppendorf tube was spinned in the vortex. Then, after 30 seconds, 10 μl volume 

was transferred on a silver foil substrate. The sample was left for 12 hours in a 

laminar flow chamber to dry off. Thus, the Raman data set consisted of 978 spectra 

was collected by the inVia Raman microscope (Renishaw, Wotton-under-Edge, UK) 

equipped with 785 nm Near-Infrared Diode Laser lines as the excitation source with a 

spectral resolution of ~ 1.3 cm-1 and a 100× (N.A. 0.9) Olympus objective, WiRE 4 ™ 

acquisition software, and thermoelectrically cooled CCD (1024 × 256 pixels) detector. 

The laser power was set at 100%. The wavenumber scale was calibrated using Si as a 

standard. The time of acquisition was set for 3 seconds with a 1 acquisition approach. 

The data matrix with dimensions of 1015 × 978 (wavenumbers × number of spectra) 

was constructed.  

The evaluation of the first data set was dedicated to emphasize the software 

capabilities in the processing of a large number of Raman spectra. The system was 

first used to carry out the initial pre-processing of the raw spectra (Fig. 52). 

 

Fig. 52. Raw Raman spectra of CaCO3, NaNO3 and Na2SO4. 

 

The loading of the first data matrix (Raman spectra) took 9.24 seconds. In turn, the 

spectra intensity scaling took 7.10 seconds, where the automatic baseline correction 

with the asymmetric least squares option took 45.39 seconds (Fig. 28).  
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Fig. 53. Raman spectra after pre-processing of intensity autoscale and AsLS baseline 

correction (lambda = 107 and p=0.01). 

 

Afterwards, the spectra were used to generate a PCA model and then projected in 

the form of the PCA score plot (Fig. 54). 
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Fig. 54. 3-D PCA scatterplot of the Raman spectra data matrix. 

 

This process took only 0.52 s. The most remarkable result of the PCA is a pattern 

formation on a scatter plot. In the graph presented in Fig. 54, four groups of the 

scores are well recognizable, which provide a number of the major clusters in the 

sample. The number of four clusters was used in the clustering methods based on 

this result. 

 In the next step, all the included clustering techniques were tested. Construction of 

the Ward’s HCA model and the dendrogram projection took 5.56 seconds (Fig. 55). 
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Then, the projection of a truncated mode of the dendrogram was faster and took 

3.28 seconds. 

 

Fig. 55. Ward’s HCA dendrogram of Raman spectra with specified 4 clusters. 

 

Owing to the HCA results, the cluster 1 contains 516 spectra, which represents 52% 

of the sample. In turn, cluster 2 contains 168 spectra, which represents 17% of the 

sample. Finally, cluster 3 and cluster 4 represent 208 and 84 spectra respectively. 

Cluster 3 represent 22% of the sample population, where cluster 4 represents 9% of 

the population. For the specification of each cluster composition, the mean spectra 

of the clusters were generated which took only 1.42 second each (Fig. 56). 
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Fig. 56. Mean spectra of 4 clusters generated by Ward’s HCA algorithm. A – mean 

spectrum of cluster 1; B – mean spectrum of cluster 2; C – means spectrum of cluster 

3; D – mean spectrum of cluster 4. 

 

By identification of the mean cluster spectra, the cluster composition was given. The 

cluster 1 represents NaNO3 particles, the cluster 2 represents mixed, heterogeneous 

particles, which were developed by grinding the powders, and the cluster 3 

represents CaCO3 particles, where the cluster 4 represents Na2SO4 particles. 

In the case of the k-means clustering, the implemented system of a data validation 

was used. Due to the small distances between clusters, the Voronoi diagram was 

automatically replaced by the PCA score plot with points colored according to the 

cluster order (Fig. 57). This action may occur when the points in the Voronoi graph 

are closely accumulated. This type of clustering was relatively fast and took only 4.21 

s. However, due to a decision making of an appropriate graph application the 

process lasted 3.42 minutes.  
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Fig. 57. 2-D PCA scatterplot with four labeled clusters from k-means clustering –Cl1: 

NaNO3; Cl2: CaCO3; Cl3: Na2SO4 and Cl4: mixture. 

 

The clustering results generated by the k-means algorithm are complementary to the 

Ward’s HCA results. The projection of the labeled scores by the k-means cluster 

vector shows the mixed cluster Cl4 which is situated in the middle of the other 

clusters at the scatter plot. 

The final clustering task was done by fuzzy-C-means clustering. This task covers two 

steps: (i) calculation and visualization of the FPC values (Fig. 58); (ii) implementation 

of fuzzy-C-means clustering (Fig. 59). The first step took 8.54 seconds, where the 

second one was faster and took 2.35 seconds.  
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Fig. 58. Fuzzy partitioning coefficient calculated for Raman spectra data set. 

 

The FPC projection does not provide clear information about a number of clusters for 

fuzzy-C-means clustering. Due to the data compatibility, the number of four clusters 

was used for the calculations (Fig. 59). 

 

Fig. 59. Print-screen of tabulated results generated by fuzzy-C-means clustering 

algorithm with cluster membership (%) for each spectrum in the data set. 

 

For presented clustering results, correlation coefficients were calculated with the 

equation presented below (29): 
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                                        (29) 

  

Where: Correl – correlation coefficient, X – first numeric input (number, vector, etc.), Y 

– second numeric input (number, vector, etc.), �̅�– average of X, �̅�– average of Y. 

The numeric input in this case is a clustering vector obtained by each technique. The 

calculated correlation coefficient results are presented in Table 2. Fuzzy-C-means 

clustering has the smallest correlation coefficient (0.54) to both HCA and k-means 

techniques. This value is predictable because of the differences in the applied 

algorithms.  

 

Table 2. Correlation coefficient in the different clustering algorithms. 

Method/Correlation 

coefficient 

K-means HCA Fuzzy-C-means 

K-means - 1 0.54 

HCA 1 - 0.54 

Fuzzy-C-means 0.54 0.54 - 

 

4.3.2. Evaluation on FTIR data set 

The Fourier transform near-infrared (FT-NIR) spectral measurements were performed 

using a Perkin-Elmer (Waltham, MA) analytical system consisted of a Spectrum One 

FT-NIR spectrometer coupled to a Spectrum Spotlight 400 NIR microscope. An 

optical fiber was coupled with the system of a sample analysis. The described data 

set represents 14 spectra of 6 different organic pigments and 4 spectra of a binding 

medium (rice starch). The spectral range was set for 400-1100 cm-1 (Fig. 60). The data 

set dimension was 876 × 18 (wavenumbers × number of spectra). 
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Fig. 60. Near-IR spectra of pigments and binder medium (rice starch). 

 

Next, a series of tasks including the spectral pre-processing, principal component 

analysis and cluster analysis was applied for pattern recognition in the data set. The 

first step was an application of the 3rd polynomial EMSC for the pre-processing 

(Fig. 61).  

 

Fig. 61. Near-IR spectra after pre-processing step of 3rd EMSC and AsLS baseline 

correction (lambda = 105 and p = 0.1).  
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The second step was an application of the PCA for the exploratory data analysis 

(Fig. 62).  

 

Fig. 62. Three-dimensional scatter plot of Near-IR spectra after PCA. 

 

In the next step, all the three available clustering techniques were used to perform 

pattern recognition. The samples for the purpose of this evaluation were unmarked 

in the testing data set and then confronted with the labels determined during the 

spectra acquisition. The optimal number of clusters was calculated by the fuzzy 

coefficient and found 7 clusters (Fig. 63).  
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Fig. 63. Fuzzy partitioning coefficient calculated for NIR spectra data set. The black 

arrow shows the optimal number of clusters. 

 

The FPC is defined in the range from 0 to 1, with 1 being the best. It is a metric, 

which demonstrates how accurately the data is described by a certain model. When 

the FPC is maximized, the data is described in the best way. In fact, the best practice 

is to find a significant knee in the FPC plot and then test fuzzy c—mean clustering, 

based on a designated value of clusters. The cluster analysis: fuzzy-C-means (Fig. 64); 

k-means (Fig. 65) and HCA (Fig. 66) pointed out the separated 7 clusters. 
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Fig. 64. Print-screen of tabulated results generated by fuzzy-C-means clustering 

algorithm with cluster membership (%) for each spectrum in the data set. 
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Fig. 65. Voronoi diagram generated by application of k-means clustering (7 clusters 

specified a priori) algorithm on PCA-reduced data with marked centroids. 

 

Fig. 66. Ward’s HCA dendrogram of NIR-IR spectra of pigments and binding medium. 
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The combination of both PCA and HCA techniques included in the separated feature 

is presented in Fig. 67.  

 

Fig. 67. PCA score plot results with cluster designed by HCA. 

 

The accuracy of all techniques implemented in the software was 100%. The results 

show a great potential of the Spectronomy system for a fast and accurate pattern 

recognition applied to a spectral data matrix. However, it should be emphasized, that 

a quality of collected spectra and specification of appropriate pre-processing 

techniques is crucial for a success of such proceeding. Nevertheless, the 

Spectronomy system is flexible and adjusted for a trial and error method of solving 

problems, which significantly improves the effortlessness of a multivariate analysis for 

a user. 

The system processing algorithms (intensity scaling, background subtraction, 
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normalization, principal component analysis and cluster analysis) were previously 

used by our research group to help classify airborne aerosol particles and pigments. 

 

4.4. Conclusions  

The data analysis of multiple Raman and FTIR spectra is a complex process with no 

standard implementation of commonly executed methods. Therefore, the open-

source, freely available system that handles the pre-processing, principal component 

analysis and cluster analysis dedicated to spectral data was developed. The 

Spectronomy software includes many easy-to access, powerful algorithms coupled 

with a well-developed graphical user interface. Several implementations for Raman 

and IR spectral processing were performed. The optimal number of cluster 

calculation, average cluster spectrum projection, fuzzy-C-means clustering with the 

FPC parameter specification is a matter of concern. Furthermore, the system 

combines two programming languages, which significantly improve a potential 

application scope, owing to a huge number of available packages. The evaluation of 

the system showed fast and accurate analytical capabilities for Raman and IR spectra. 

However, it should be noted that the Spectronomy system is not a complex software 

and it needs a constant development. There are numerous areas that could be 

improved, such as a cosmic spike filter, spectral feature extraction, spectral database 

management, spectra classification and a calculation performance for big data 

analysis. Nevertheless, we are confident that making this program available to users 

will result in a faster and better-designed development. The ultimate purpose of this 

software development is to provide a powerful tool for any application of Raman and 

FTIR spectroscopy. 

The attributes included in the Spectronomy makes this software prominent. First, it is 

based only on the free, open-source and up-to-date packages, which significantly 

improves interoperability and consistency of the software with new operating 

systems. Second, the source code of the software is also made available.  It gives a 
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possibility to modify the system or to equip it with new features. Third, Spectronomy 

is based on a new release of Python 3 connected with the R programming language 

environment, which capabilities allow the implementation of almost any practicable 

feature. It should be emphasized, that a number of free, official packages for Python 

3 and R programming language is estimated for 116 387 and above 10 000, 

respectively. The fourth benefit of the system can be found in the diversity of 

features that are included in the software, such as scale-based normalization, 

automated baseline correction, extended multiplicative signal correction (EMSC), 

standard normal variate correction (SNV), Savitzky-Golay filtering, principal 

component analysis, k-means clustering, fuzzy c-means clustering, hierarchical 

cluster analysis (HCA) and optimal number of cluster calculation algorithms.  

Finally, in spite of the powerful techniques included in the Spectronomy software, it is 

still relatively easy to use. All features are accessible through a self-explanatory 

graphical user interface, which is supposed to facilitate an access to chemometric 

tools for researchers. However, it should be emphasized that Spectronomy is 

relatively small and designed for specific purposes and gives way to software such as 

SASIR (http://www.chimiometrie.fr/saisir_webpage.html). SASIR is a complete and 

universal package of command-line functions written for MATLAB, SCILAB and 

OCTAVE which can be used for research and routine works in chemometrics, which 

exceeds the capabilities and functions of the Spectronomy system. The Spectronomy 

software was created for relatively small datasets of special purpose in the field of 

Raman and FTIR spectroscopy, which at the moment does not translate into a 

development of a comprehensive chemometrics routine. Contrary to windowed 

environments such as Spectronomy, it has a great advantage to allow batch 

procedures. It also makes it possible to mix data of any origin (chemical and physical 

data, spectroscopic data, numeric images). In summary, the Spectronomy system is a 

development project that gives way to complete projects like SASIR.   

 

http://www.chimiometrie.fr/saisir_webpage.html
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4.5. Future works 

Several new algorithms are being developed for spectra pre-processing and analysis. 

Our intention is to add an ability to load files with other extensions – directly 

exported from the integral spectrometer software. The program will be 

supplemented with various classification methods, such as neural network classifier, 

support vector machine classifier, Naïve Bayes methods and stochastic gradient 

descent. An implementation of regression analysis and relational database 

framework is also planned. Moreover, our ambition is to adapt the program for a 

hyperspectral image analysis and an application of multivariate statistics for several 

matrices in a single run. 
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In this chapter, we present the Spectronomy system deployment, conducted 

for a multivariate data processing of experimental, spectral data sets. The focus of 

the application is based on the noteworthy paradigms from the field of industrial and 

biogenic aerosol particle analysis, likewise non-destructive microanalysis of cultural 

heritage materials. The initial part of this chapter demonstrates the results of the 

coalmine particle analysis by SEM/EDS and RMS with correspondence to the bulk 

analysis techniques including ATR-FTIR and XRD. Subsequently, the characterization 

of pollen grains (an important constituent of the biological aerosol) by RMS with 

specification of plant species and potential contamination was described. Finally, the 

results from the Near-FTIR and Mid-FTIR analysis of organic pigments have been 

presented. The methods for spectral data analysis elaborated in this chapter are 

subsumed in the Spectronomy system and can be easily re-established by a reader. 

 

5.1. SEM/EDS and RMS analysis of mining environment aerosol particles   

5.1.1. Context  

Global coal production is still is important to the economy of many countries. 

According to the World Coal Association (http://www.worldcoal.org), over 7 billion 

tonnes (Gt) of hard coal is currently produced worldwide, and around 800 million 

tonnes of brown coal/lignite. The world leaders of hard coal productions are China 

and USA; according to the data published by International Energy Association IEA 

statistics (http://www.iea.org), Poland is within the top ten coal producers in the 

world, with its average annual production of ca 140 Mt. Most of the global 

production of coal is dedicated to the local state consumption; only around 15% is 

destined for the international coal market (http://www.worldcoal.org). The 

contribution of the coal industry to ambient air pollution is a well-known issue, 

although it is mainly discussed with respect to coal-fired power plants due to 

emission of gaseous pollutants (such as SO2, NOx, CO2, hydrocarbons) as well as 

http://www.worldcoal.org/
http://www.iea.org/
http://www.worldcoal.org/
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particulate ones, e.g. coal dust and fly ash. There are also plentiful studies on the role 

of coal mining in increasing air pollution caused by particulate matter emission 

(Ghose & Majee 2007; Palmer et al. 2010; Aneja et al. 2012; Cvetković et al. 2013; 

Pandey et al. 2014; Roy et al. 2015; Kurth et al. 2015), but they are mainly related to 

opencast or surface mining, and to a lesser extent to underground mining. Elevated 

concentrations of suspended particulate matter (PM) caused by coal mining activity 

can pose an additional threat to human health due to its unusual chemical 

composition. Coal-derived suspended particulate matter is often rich in trace 

elements (Pandey et al. 2014; Finkelman 1999; Silva et al. 2009; Li et al. 2012; 

Smoliński et al. 2014) which may have adverse effect on human health, therefore 

monitoring of air quality and dust chemical composition in the coal mining sites or in 

their vicinity is required. 

It is noteworthy that publications about an impact of underground coalmines on 

ambient air quality are significantly less frequent than these about open-pit (surface) 

mines. Underground mining’s influence on the surrounding environment might 

appear less threatening with respect to air pollution, although it is necessary to 

recognize environmental cumulative effects, such as land subsidence, destruction of 

water resources, soil erosion, waste rock dumping etc. (Meng et al. 2009). Coal dust 

exposure among underground miners have already been investigating by a number 

of groups (Landen et al. 2011; Esch & Hendryx 2011; Hosgood et al. 2012) but mainly 

with respect to the risk assessment and epidemiological studies and not to the coal 

dust composition and morphology. Landen et al. (Landen et al. 2011) concluded that 

indeed there was an increased risk of mortality associated with cumulative exposure 

to coal dust, but also with coal rank, probably due to differences in the composition 

of coal mine particulates. 

Coal dust comprises nano- and micrometre sized particles resulting from various 

industrial processes, such as drilling and blasting, transport and transfer of coal. 

Particles sampled in the non-diesel coal mines showed bimodal size distributions – 
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one maximum around 17 to 20 μm and the other of about 5 to 8 μm (Burkhart et al. 

1987). Carbon-rich particles in the coal dust samples were classified as of diesel-

origin based on their diameter – diesel exhaust aerosol is mostly submicrometer in 

size, and coal dust aerosol is mostly greater than 1 μm in size (Cantrell & Rubow 

1991). It was later confirmed by Birch and Noll (Birch & Noll 2004) by selective 

collection of coal dust particles according to their size – the size fraction below 1 μm 

was much more abundant in diesel coal mine than in non-diesel mines. 

Measurements of elemental carbon (EC) is often used as a surrogate to evaluate a 

content of diesel particulate matter (DPM) in underground mines since diesel 

engines are the only source of submicrometer EC in underground mines (Noll et al. 

2007). The contribution of EC particles to the coal dust is not negligible, especially in 

the diesel-operated coalmines, which makes the composition of coal dust very 

complex. 

Dust control and monitoring of miners’ exposure is a routine practice in the mine 

shafts (Ren et al. 2011). According to Yan-qiang et al. (Yan-qiang et al. 2011),  the  

dust  concentration  in  the  caving  face  can  reach  even  3000 mg/m
3

, which is an 

alarming value. Therefore, research on coal dust – due to extreme risk of human 

exposure – needs to be carried out. The main directions of the coal dust research, as 

recognized by Yan-qiang et al. (Yan-qiang et al. 2011) are: (1) dust characterization, 

(2) the law regulation on coal  mine, (3) dust explosion, (4) technology and method 

of prevention and control of dust. The need for research on coalmine dust is on top 

of that list. Coal deposits in Poland are exploited mainly in the underground mines. 

Most of them are located in the southern or southwestern parts of Poland (Silesia 

region).  In this study, we focused on investigation the chemical composition of coal 

dust particles from the underground coalmine in this area. The particles were 

analysed individually by means of two microanalytical techniques: SEM/EDX and 

Raman microspectrometry (MRS). This approach, called single particle analysis (SPA), 

requires a large number of particles being measured, to ensure statistically reliable 
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results. Collected data were supplemented by statistical data treatment by means of 

Hierarchical Cluster Analysis (HCA). Bulk analysis by means of ATR-FTIR and XRD was 

made to complement microanalysis. The main objective was to determine the 

elemental and molecular composition of coal dust particles collected at 900 m depth 

with special attention to the carbonaceous particles of coal origin, their evolution 

and mixing state. Indeed, individual particle analysis may provide typical tracers 

related to the coalmine particles that could be used for air quality assessment in 

mining environment. 

 

5.1.2. Sampling description 

Sampling of the coal dust was conducted in the underground coalmine. Sampling 

sites were distributed near an outtake shaft with a diameter φ 7.5 m and 996 m 

depth, in the coal seam. According to Philpott (Philpott 2002), the coal from this 

seam shows the following parameters: the ash content 10.02% to 38.47% (the 

average 21.71%) and the sulphur content varies from 0.82% to 2.16% (the average 

1.27%). The seam shows a changeable morphology because of the coalbed 

thickness and mullock interlayers. Variability of the ash content is strongly linked 

with the non-coal rock interlayers, since their presence causes a decrease of the coal 

calorific value and increase of after-burning residue. Sulphur content varies also 

quite substantially, but it is not related to the presence of worthless material 

(mullock); it is likely to originate from sulphides such as pyrite being present in the 

coal exploited in these coal mine (Sawlowicz et al. 2005). 

Dust samples were collected from gravitational deposition along the main gallery, 

beginning with a spot near the shaft exit (Sample 1) and moving gradually closer to 

the longwall (Sample 4).  
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5.1.3. Single particle analysis   

For single particle analysis by SEM/EDX, the collected dust samples were suspended 

in hexane, shaken with vortex and deposited on a silver foil. Each sample was then 

measured with the SEM/EDS system (Tescan Vega 3 SB) in high vacuum with an 

acceleration voltage of 10 kV. X-ray spectra from individual particles were collected 

with an energy-dispersive silicon drift detector (SDD) (Oxford Instruments) in the 

automatic mode with a help of the INCA software (Oxford Instruments). About 300 

particles were analyzed per sample, based on the back scattered electron (BSE) 

image analysis, for 20 s of acquisition time and at magnification of 140x. Such 

measurement conditions are suitable for the determination of low-Z elements 

(starting from Z=6, carbon). Fitting of the spectra was made in Quantitative X-ray 

Analysis System (QXAS) by linear fitting with fitting model and an elemental library 

designed for each sample. 

The semi-quantitative elemental composition of each particle was calculated with an 

iterative approximation method based on Monte Carlo simulations with the home-

made software (Ro et al. 1999; Szaloki et al. 2000).  The semi-quantification 

procedure provides the results within 10% accuracy between the calculated and 

nominal elemental concentrations (Ro et al. 2001). The large data matrix containing 

the elemental composition of each of 300 particles from 4 collected dust samples 

was subjected to the exploratory and multivariate statistical data analysis. 

Single particle analysis was also performed by Raman microspectrometry (RMS). The 

Labram HR800 spectrometer (Horiba) was used in the experiments. Raman 

backscattering was excited with 473 nm wavelength laser beam, 5 s acquisition time, 

3 accumulations and 600 gr/mm grating (with the center at 1255 cm
-1

). The beam 

was focused on the sample surface through an optical objective (×50 Olympus 

objective with N.A 0.75). The diameter of the laser spot on the sample surface was 

~1 µm
2 for the fully focused laser beam. A total of 150 particles were measured for 
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each sample. The identification of molecular compounds was performed by 

comparing measured and reference spectra. Curve fitting of the first-order spectral 

region characteristic of carbonaceous species (1100– 1700 cm
−1

) was performed 

with the software program LabSpec 5 (Horiba Raman software). The  fitting of 

extracted spectra was made by Gauss-Lorentz function after a linear baseline 

correction following the procedure described by Sadezky et al. (Sadezky et al. 2005). 

The goodness-of-fit was indicated by the error value <5% between the calculated fit 

curve and the observed. 

 

5.1.4. Bulk analysis  

Bulk analysis of the coal dust was performed by means of attenuated total reflection 

Fourier- transform infrared spectroscopy (ATR-FTIR) using the pellets made of 

collected samples. The system used for measurements was the Thermo Nicolet 

FTIR/FT-Raman Spectrometer (model 670) equipped with Ever-Glo mid-IR source, 

KBr beam splitter and DTGS-KBr detector. The analysis was controlled by OMNIC 

spectroscopy software. Samples were measured via ATR on the diamond crystal. The 

240 scans of each sample were acquired at 4 cm
-1 spectral resolution. After 

acquisition the baseline correction and normalization of the spectra was applied. 

The mineral phase qualitative composition in the collected samples was determined 

by XRD using a Panalytical EMPYREAN X-ray diffractometer with CuKα radiation 

(λ=1.54128 Å), Ni Kβ filter and PIXcel3D detector. Data were collected in the 2θ 

angle range from 10 to 90
o with a step size 0.0130

o and generator settings 35 mA, 

40 kV. Phase identification was made by comparison with the ICDD Pdf-4 database. 

 

5.1.5. Statistical analysis  

Single particle data from SEM/EDX analysis were imported into The Spectronomy 

system. Particles were analyzed through queries on particle composition and 
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clustering using the Ward's hierarchical clustering algorithm. The optimal number of 

clusters (ONC) was set by calculation of Dindex. Hierarchical cluster analysis HCA 

(Ward's algorithm) was performed with cut-off labeling set by calculated ONC. HCA 

was also performed on the Raman spectra data set for each sample. The data pre-

treatment covering baseline correction (AsLS) and spectral normalization was made. 

The final number of clusters was determined gradually by comparing the mean 

spectra of the clusters via dissimilarity axis. 

 

5.1.6. Hierarchical Cluster Analysis from SEM/EDS 

Analysis of dust particles to determine the concentration of light elements, such as 

carbon, nitrogen and oxygen, is significant to study the chemical behavior of the 

atmospheric aerosol structure and properties (Osán et al. 2000). It has been 

confirmed that many environmental particles contain low-Z elements in the form of 

nitrates, sulfates, oxides, or mixtures including a carbon matrix (De Hoog et al. 2005; 

Worobiec et al. 2006). The reasoning behind single particle analysis supplementing 

bulk analysis is the new type of information we can draw from the matrix of a large 

number of particles characterized individually by their X-ray spectra. With suitable 

data treatment it  is possible to find correlations, groups (clusters) of particles with 

similar properties (E A Stefaniak et al. 2009). 

The semi-quantified spectra of individual particles within each sample were 

subjected to HCA. Cluster distribution, with a corresponding number of clusters, is 

presented in the Table 1. The cluster types show high similarity among the samples, 

although some distinction could be drawn. The most abundant cluster is that 

composed of a Ca-C-O compound (most likely: calcium carbonate). It is the main 

component of sample 1, 2 and 3, and it is often present as mixed with silicates (Si-O 

rich) and aluminosilicates (Si-Al-O rich). Carbon is present practically in every cluster, 

which proves high mixing ratios with other components, which is quite natural for 
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coalmine dust. In addition, there are clusters gathering carbonaceous particles, 

characterized by a high content of carbon and oxygen. These particles are – most 

likely – pure coal dust, sometimes with accessory minerals, such as silicates and 

aluminosilicates. The distinction between carbonaceous particles collected in the 

coal mine, including coal particles and diesel particulate matter (DPM), has already 

been discussed in the literature (Cantrell & Rubow 1991; Birch & Noll 2004; Noll et 

al. 2007) but only based on particle’s diameter. More conclusive results were derived 

from the Raman investigation of airborne carbonaceous particles (Escribano et al. 

2001; Sze et al. 2001) but it was related only to soot particles of various origins. It 

will be discussed in detail further in the text. The sulphur content found in the 

particles agrees with the low sulphur amount given by Philpott (Philpott 2002) for 

the coal exploited from the seam 388, where sample 1 was collected close to the 

elevator (shaft exit), where the air influx might influence the composition of dust 

particles. Ca-C-O rich particles are encountered for all clusters. The 80% of the total 

particle population in sample 2 belongs with the Ca-C-O–rich cluster (number 3 and 

4). Moreover, the low-populated cluster (number 1) containing iron (38% mass 

fraction) and traces of chromium (3.6%) agglomerated with carbon and oxygen 

(probably of coal origin). Sample 3 shows a bit stronger variety (minerals typical for 

the crust composition) and sample 4 is the most homogeneous with the presence of 

carbon in all clusters. It is practically pure carbon-rich coal dust, with some 

accessory minerals such as Ca-S rich particles (very likely calcium sulphate), silicates 

and aluminosilicates 
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Table 3. Clusters and their abundances in the four samples of the coal dust. 

 

 

High content of Ca-rich particles (most likely in the form of CaCO3) in samples 1 and 

2 is a result of technical operations in the mineshaft in order to minimize the 

negative influence of the acidified environment. The walls in the seams are coated 

with calcium carbonate suspension. In samples 1 and 3 we can observe Ca-S-O 

structures, which are related to the presence of calcium sulphate – oxidized sulphur 

from coal (most likely from pyrite) reacts with calcium carbonate forming calcium 

sulphate. Iron is also observed in both samples 2 and 3 – it is associated with carbon 

and oxygen, but also traces of other metals such as chromium and nickel. The origin 

of iron in coal dust particles is probably due to a presence of pyrite, that is very 

common in coal and is an important contributor to Black Lung Disease (Huang et al. 
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2005). The presence of pyrite in the coal (as well as in the waste dump rock) 

exploited in LWB has been confirmed (Sawlowicz et al. 2005). 

 

5.1.7. Raman microanalysis 

RMS has been shown to be a powerful and versatile technique for determining 

molecular composition of single particles and describing chemical heterogeneity 

(Sobanska et al. 2006; Sobanska et al. 2014). RMS spectra were processed for 

background correction and compared to the reference data. Fig. 4 contains the 

Raman spectra for the most abundant compounds recognized by RMS. Carbon, 

calcite and gypsum were typical for all the four examined samples, but their 

contribution to the coal dust molecular composition was different, which is 

consistent with the SEM/EDS results. As expected, the molecular species recognized 

by RMS were CaCO3 (calcite, based on the Raman band 1080 cm
-1

) and CaSO4∙2H20 

(gypsum, 1001 cm
-1

or 1007 cm
-1

). Supplementary compounds associated with EDS 

results such as hematite (Fe203), magnetite (Fe304), quartz (SiO2) were characterized 

by RMS in the collected samples. It is noteworthy that pyrite was not identified in 

the samples by RMS. The Fe-S association was not detected in the sample excluding 

the presence of pyrite in coal dust particles. This is a result of particle oxidation in 

air leading to transformation of pyrite to iron oxides and sulphate ions found in the 

collected particles. Weathering of pyrites in coal mines is a well-known process; in 

the presence of oxygen and humidity, pyrite is oxidized according to the equation 

(Singer & Stumm 1970): 

2FeS2 + 7O2 + 2H2O = 2Fe
2+ + 4SO4

2
- +4H

+  

This reaction is followed by further oxidation of Fe(II) to Fe(III) which in consequence 

accelerates further oxidation of pyrite with Fe(III) ions acting also as oxidants (Singer 

& Stumm 1970). Acidity generated in this reaction is very dangerous, especially in 
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the coalmine waste landfills, full of coal residue and accompanying pyrite, which is 

the cause for Acid Mine Drainage. Oxidation of pyrite takes place also in the 

underground mine shafts, therefore a need for applying calcium carbonate as 

neutralizing agent. As a result, calcium sulphate (gypsum) is formed; this is 

confirmed by SEM/EDS and RMS in the coal dust particles. 

RMS spectra revealed a high level of particles composed of amorphous carbon with 

its two typical D and G Raman bands. It is noteworthy, that silicon, aluminum and 

magnesium were also detected by SEM/EDS – they are likely to be components of 

silicate or aluminosilicates but their spectra were not detected by RMS. Indeed, 

silicate and aluminosilicates are detected by RMS with difficulties due to their low 

Raman cross section and the intense fluorescence signal that can be generated by 

clay minerals. 

A closer look to the Raman spectra (Fig. 68) let us observe the species that are not 

associated with the EDS results. The Raman band at 145 cm
-1 proves the presence of 

trace amounts of TiO2 polymorph, anatase (Eg mode), which is a common crust 

mineral. The other bands typical for anatase (B1g/395 cm
-1 and A1g/515 cm

-1

) are 

missing in the spectra, but their intensity ratio is very low (A1g/Eg=0.16 and 

B1g/Eg=0.16) (Yan et al. 2013). 

Taking into account the species correspondent to their Raman spectra in the coal 

dust particles, they were divided into clusters using HCA procedure. The results are 

presented in Table 4.  



- 180 - 
 

 

Fig. 68. Raman spectra of the most representative compounds detected in the coal 

dust samples. The numbers indicate the Raman shift position for the typical features 

in the Raman spectrum. 
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Table 4. Clusters and their abundances in the four samples of the coal dust-based on 

the Raman spectra. 

 

 

Cluster composition derived from RMS is consistent with the SEM/EDX results, even 

considering the limitations of both techniques. Calcium carbonate (calcite) and 

calcium sulphate (gypsum) are the main components encountered in samples 1, 2 

and 3 and they are mixed with coal in each of the four samples for 91 %, 94 % and 

49 % of particles, respectively. Sample 4 is mainly composed of coal-rich particles, 

but among them, it was possible to distinguish coal particles with sulphates (19%) 

and without (82%). SEM/EDX results showed also three clusters in the matrix of 

element abundances (Table 3). The major components of the element-rich clusters 

are carbon, oxygen (all three), sulphur (cluster 1 and 3) and trace elements from 

accessory clay minerals (Si, Al, and Mg). It should be pointed out that clustering 

based on RMS spectra revealed the structures with the strongest Raman scattering 

(carbon’s D and G bands, stretching vibration of sulphate and carbonate ions) while 
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clustering based on elemental composition divided the particles based on element’s 

abundances. Both of them evidenced the chemical mixing for all particles i.e. one 

particle containing several compounds. Considering that, SPA is more specific for 

dust characterization than bulk measurements. 

 

5.1.8. Carbonaceous particles 

Coal dust is significantly enriched with carbonaceous particles, both pure (cluster 

“C-O rich” in Table 2 or “coal” in Table 4) and associated with abundant minerals 

such as calcite, gypsum, aluminosilicates, or even iron compounds as main species. 

Carbon-rich particles appeared in all four samples but their abundance is 

exceptionally high in the sample 4, which is collected at the closest spot to the 

longwall. Each of the carbonaceous particles exhibits the Raman spectrum with 

characteristic features in the region 1100-1700 cm
-1

. In the first order Raman  

spectrum of carbonaceous materials, the two bands: D (disordered) at around 1350 

cm
-1 and G (graphitic) at around 1580 cm

-1 are well represented (Fig. 69). These two 

wide and overlapping bands could be deconvoluted into five bands: D1, D2, D3, D4 

and G, each of them representing a different vibration mode (Sadezky et al. 2005; 

Catelani et al. 2014). According to the model presented by Sadezky et al. (Sadezky 

et al. 2005), G band corresponds to an ideal graphitic lattice vibration, D1 (denoted 

as “D” in older publications; main peak at ~1350 cm-1) and D2 (known also as D’; 

appears as a shoulder on the G band from the higher frequencies’ side at around 

1620 cm
-1

) are related to disordered graphitic structure and defects in the graphitic 

layers, D3 (also known as A band, at ~1500 cm
-1

) – presence of amorphous carbon 

and organic species, D4 (at ~1200 cm
-1

) presence of impurities, inorganics or poly-

enes (Sadezky et al. 2005; Catelani et al. 2014). The example of the D/G band 

deconvolution applied to the carbonaceous particles investigated in this work is 

shown in Fig. 69. 
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In order to characterize soot, carbon blacks, graphite and graphite-based materials, 

coals and other carbonaceous materials, different parameters calculated from the D-

G bands have been used so far. In the literature published before the paper of 

Sadezky’s (Sadezky et al. 2005), the authors used only D and G band intensity ratio, 

without deconvolution. Bacsa et al. (Beyssac et al. 2003) characterized high-

temperature treated carbon soot and glassy carbon (reference) with intensity ratio 

ID/IG. Jawhari (Jawhari et al. 1995) used that the dependence between the integrated 

intensity ratio ID/IG and its inversely proportional relationship to the microcrystalline 

planar size La to compare carbon blacks from different producers and 

microcrystalline graphite as a reference. Escribano (Escribano et al. 2001) and Sze 

(Sze et al. 2001) investigated carbonaceous aerosols and carbon-containing particles 

through the integrated intensity ratio D/G and D’/G. In 2003 Beyssac et al. (Beyssac 

et al. 2003) proposed three parameters for estimation of carbonaceous material 

degree of organization: D1 and G band positions (wavenumber at the peak center), 

R1 and R2 ratio, defined as D1/G intensity ratio  – R1, and D1/(G+D1+D2) area ratio 

– R2 and FWHM (Full Width Half   Maximum) of G and D1 bands. Sadezky (Sadezky 

et al. 2005) applied FWHM (full-width-half-maximum), band position and intensity 

(peak area) ratios of the deconvoluted bands, such as D1/G, D2/G, D3/G and D4/G. 

Antunes et al. (Antunes et al. 2006) performed a comparative study of first- and 

second-order Raman spectra of multi-walled carbon nanotubes (MWCNT) at visible 

and infrared laser excitation. As comparative materials the authors used carbon 

fibers, powdered graphite and highly ordered pyrolytic graphite (HOPG); the 

parameters applied for comparison were: relative band intensity ratios: D 

(nowadays: D1) to G and D’ to D (with the new symbols: D2/D1) and D, D’ and G 

band positions. They observed that D band downshifts with increasing wavelength 

and its relative intensity increases. D’ band positions is also slightly affected (small 

downshift) while G band remains practically at the same wavenumber, despite the 

laser wavelength. Moreover, ID/IG also increases with the wavelength, so does ID’/IG 
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but to a lesser extent.  

 

 

Fig. 69. Typical example for the deconvolution of a first order Raman spectrum of 

a carbonaceous particle from the investigated coal dust. 

 

To evaluate changes in the chemical structure and reactivity of soot, Ivleva et al. 

(Ivleva et al. 2007) used D1 FWHM and ID3/IG to characterize airborne soot and other 

carbonaceous particles of atmospheric aerosol samples collected in a rural region. 

On the other hand, to follow structural changes in spark discharge soot (GfG) and 

light-duty diesel vehicle (LDV) soot upon oxidation, the same group (Markus Knauer 

et al. 2009) applied the following parameters: D1 FWHM, D3 FWHM and ID3/IG ratio. 

In 2008 Rusciano et al. (Rusciano et al. 2008) published their research on SERS study 

of nano-sized organic carbon particles produced in combustion processes. Owing to 

the Raman signal enhancement (ca. five orders of magnitude), they characterized 

nano-carbonaceous particles with respect to Di (general symbol for D1, D2, D3 and 

D4) to G band area ratio. GfG and heavy duty engine (EURO IV) soot were 

investigated again by Knauer, Ivleva and others (Ivleva et al. 2007; M. Knauer et al. 
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2009) using – as before – D1 FWHM but also the area ratio of D3/(G+D2+D3), also 

called as R3 parameter. Soot reactivity was investigated by Schmid, Ivleva and others 

(Schmid et al. 2011) by means of RMS engaging three different laser wavelengths: 

785 nm, 633 nm and 532 nm. They confirmed the relationship described in earlier 

publications about the decrease of the peak position (frequency, wavenumber) and 

intensity of D1 band, with G band being fairly resistant (independent on a laser 

wavelength). Schuster et al. (Schuster et al. 2011) proved (with NEXAFS and XPS) 

that structural disorder on the surface of diesel soot (Euro IV and Euro VI) is 

accompanied by a higher amount of oxygen functional groups. Recently, Catelani et 

al. (Catelani et al. 2014) presented the results of airborne soot characterization via a 

set of histograms with D1 FWHM and G FWHM. The authors emphasized that 

among many studies on soot and carbonaceous particles there is a lack of direct 

comparison of parameters based on D and G bands due to a use of different laser 

source, which always affects the position and shape of the diffuse D band. 

Therefore, it was “not possible to make a direct comparison on the absolute FWHM 

values, but only on the relative ones”.  

Finally, first order Raman spectrum was also used to characterize high-rank coals, 

Pre- Cambrian and Carboniferous coal samples, and carbonized anthracites 

(Marques et al. 2009; Kwiecinska et al. 2010; Rodrigues et al. 2011). The authors 

used D1 FWHM vs. D1 position, G FWHM vs. G position, ID1/IG, and even “G/all” area 

ratio. Hu et al. (Hu et al. 2015) investigated structural changes along the thermal 

annealing pathway of nanoporous carbon (NPC) by the following parameters: D, D’, 

A (either known as D1, D2, D3) and G band positions, G band FWHM, IA/IG – which 

does not diverge from the parameters used before by other researchers. However, 

the position of TPA band (related to transpolyacetylene (TPA)-like structures, also 

known as D4) around 1150 cm
-1 was also discussed. 

According to the references listed above, the D1-FWHM and D1/G parameters are 

commonly used to characterize carbonaceous structure since they are strictly 
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correlated with the degree of crystallinity of the material, and are most sensitive to 

modifications. These two parameters were calculated from the Raman spectra for all 

particles in the four samples. The frequency patterns presented in Fig. 6 and Fig. 7 

give some clear differences related to the typology of the carbonaceous material. 

The FWHM values of D1 peaks show a distinct unimodal distribution pattern for the 

sample 4 with a main narrow peak between 130 cm
-1 and 160 cm

-1

. The frequency 

histogram plots for the other three samples exhibit a large distribution without any 

clear evidence of a bimodal distribution. The main D1-FWHM modes are about 160 

cm
-1 for samples 1 and 2, and 200 cm

-1 for sample 3. The distribution for sample 1 

shows a significant fraction of particles with D1 FWHM values lower than 150 cm
-1 

for sample 1 and 3 whereas modes above 200 cm
-1 prevailed in sample 2. The 

previous studies reported that the D1-FWHM band might be correlated with the 

degree of crystallinity of the material, the FWHM value increases in amorphous and 

microcrystalline carbon, due to the more disordered structure. Frequency histogram 

plots reported in Fig. 70 clearly suggest higher crystalline degree in sample 4 when 

less ordered graphitic structure is found for samples 1 to 3. Actually, the disordered 

structure may also occur at the microscopic scale when impurities are embedded 

within the graphitic structure. This probably results in variation for D1-FWHM that 

was observed for samples 1 and 3, which contain many mineral impurities. 

Fig. 71 presents the distribution of the D1/G band intensity ratio for carbonaceous 

particles in all the four coal dust samples. The distribution is unimodal for sample 2 

and 3, with the highest abundance of the particles with ID1/IG value around 0.8. 

Sample 1 exhibits a large distribution of ID1/IG values, from 0.6 to 0.9. For sample 4 

the maximum is shifted down to the lower values. 
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Fig. 70. D1 FWHM patterns for carbonaceous particles in all the four coal dust 

samples. 
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Fig. 71. Distribution of the D1/G area ratio for carbonaceous particles in all the four 

coal dust samples. 

 

Since the D4 band is linked to the amount of impurities, such as ions, metals, and 

polyenes in the BC (Sadezky et al. 2005), the parameter D4/G area ratio might be 

reasonably assumed as a distinctive marker. However, in coal dust samples it seems 

that no significant results can be extracted from D4/G frequency patterns. The 

mineral impurities modifying the graphitic structure mainly influence the degree of 

crystallinity of the material. Finally, internally mixing state is found in most of 

coalmine dust particles and was highlighted using the D1-FWHM and D1/G 

frequency patterns. The attempt of identifying possible tracer of coalmine dust 

particles from our data suffers of the lack of comparison with other coalmine samples 

from different source. The frequency histogram plots were successfully used for 
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tracing atmospheric carbonaceous particle aging (Catelani et al. 2014) and could be 

adapted for source identification of coal-mine particles. 

 

5.1.9. FTIR and XRD 

Fig. 72 shows ATR-FTIR spectra after baseline correction made in OMNIC software. 

The mixture of carbonate-rich particles with silicate minerals, sulphates and water 

was observed. The significant IR absorption bands referring to the carbonate group 

(CO3
2-

) were observed in spectra at ~1405 (ν3, asymmetric stretching), 871 (ν2, out-

of-plane bending), 1085 (ν1, symmetric stretching) and 712 cm
-1 (ν4, in-plane 

bending) which probably corresponds to CaCO3-rich particles. Such particles belong 

to the first three samples, where the presence of all bands is confirmed. However, in 

sample 3 due to the presence of strong C-H bending band (organic compound) at 

1455 cm
-1

, the ν3 mode of carbonate ion (with the strongest intensity) is barely 

noticeable. The IR absorption bands for sulphate group (SO4

2-

) were observed at 

~1115 (ν3, asymmetric stretching) and 613-675 cm
-1 (ν4, asymmetric bending) for 

sample 1 and sample 3. All spectra contain bands, which indicate the presence of 

silicate minerals (e.g. aluminosilicates, quartz). The bands at 779 and 797 cm
-1 are 

common for Si-O-Si stretching in quartz, and band at ~750 cm
-1 is corresponding to 

AlO4 group. Furthermore, the Al-OH bending, which is characteristic for clay 

minerals, is observed at ~910 cm
-1

. The other bands of silicate minerals are related 

to Si-O vibrations and they were observed at ~1005, 1034, 1085 cm
-1

. The presence 

of C=C and C-H stretching was observed at 1620 and 2860-2920 cm
-1 respectively. 

It is noteworthy that the presence of organic material on graphitic material was 

evidenced only using ATR-FTIR. This associated organic species may results either 

from the aging process of coal particles or from aggregation with soot particles 

emitted by the machine used for coal extraction. The low-intense water bands are 



- 190 - 
 

located within the 3300-3700 cm
-1 for all samples likely due either to the low water 

adsorption on hygroscopic species or to structural water (e.g. gypsum). 

The spectrum of sample 4 is significantly different from the others. The major 

species of sample 4 are silicate minerals, which are supported by their IR peaks at 

750, 833, 910 and 1003 cm
−1

, and low-intense OH stretching mode (3695 and 3691 

cm
−1

). 

 

Fig. 72. ATR-FTIR spectra of the coal dust samples. 

 

The results of XRD measurements are generally in compliance with the ones 

presented above. The software search through the XRD pdf-4 database revealed the 

presence of the following phases: sample 1: calcite CaCO3, gypsum CaSO4∙2H2O and 

quartz SiO2; sample 2: calcite CaCO3, low- magnesium calcite (Mg0.06 Ca0.94 )CO3 and 
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quartz SiO2; sample 3: calcite CaCO3, gypsum CaSO4∙2H2O, and quartz SiO2; sample 

4: quartz SiO2, aluminosilicate-type Al2Si2O5(OH)4, gypsum CaSO4∙2H2O. The XRD 

spectrum of sample 4 exhibits also a broad band in the 2θ range 20-25
o which can 

be attributed to d002 of coal particles, that are present as a majority in this sample 

(see Table 3 and Table 4). 

 

5.1.10. Conclusions 

The coal dust samples, collected in an underground coal mine (ca 900 m 

underground) were examined by means of four spectroscopic techniques in 

combination; two of them suitable for microanalysis such as SEM/EDS and RMS and 

the other two used for bulk analysis – ATR-FTIR and XRD. Four samples were 

collected in the main shaft at different distance from the elevator pitch (the exit). All 

four samples contained large quantity of carbonaceous particles, together with 

calcium carbonate, calcium sulphate, silicates, aluminosilicates and iron oxides. 

Carbonaceous particles were found to be both associated with minerals as internal 

or external mixture. Particles composed of carbon, oxygen and – in the minority – 

sulphur were attributed as “pure”, i.e. coal-originated carbonaceous material. They 

were characterized by the D1 and G bands in the Raman spectra, which revealed 

their similarity with respect to the D1/G band intensity ratio and D1-FWHM bands 

for moderately ordered graphitic structure. These values are characteristic for the 

coal type explored in this underground mine, therefore it can be used as a tracer for 

carbonaceous particles in further investigation of ambient aerosols. The distance 

from the exit was significant with respect to the sample composition and the mixing 

state – the abundance of coal-originated particles increased with the distance from 

the exit. Both microanalytical and bulk techniques appeared compatible and 

complementary, especially for the species detected by only one technique (titanium 

dioxide) or two (clay minerals). 
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5.2 Raman analysis of biogenic particles – pollen grains 

Primary biological aerosol particles (PBAP) are emitted from vegetation and by other 

living organisms. PBAP include pollen grains, fungal spores, bacteria, viruses, cell 

fragments, and protozoans (Després et al. 2012) and they are ubiquitous in the 

atmosphere (Gregory 1961, Womack et al. 2010). The main research interest involves 

PBAP effects on humans, animals and agriculture (Waggoner 1983, Burge 1990), the 

environmental processes they contribute to, e.g. ice and liquid water cloud droplet 

activation (Després et al. 2012, Morris et al. 2013), and atmospheric chemistry 

(Deguillaume et al. 2008, Vaitilingom et al. 2013). 

Pollen causes allergic symptoms in humans (Schappi et al. 1999, Barnes et al. 2000, 

Simon-Nobbe et al. 2008), in particular during spring, when pollen concentrations are 

typically the highest. Recently, there has been a growing interest in studying the 

impact of bioaerosols on cloud formation and precipitation (Möhler et al. 2007, 

Pöschl et al. 2010, DeMott et al. 2011, Morris et al. 2011). Pollen has been introduced 

to global climate models as sources of primary particles (Heald and Spracklen 2009, 

Hoose et al. 2010, Spracklen et al. 2010, Sesartic et al. 2013). Fungal spores, pollen 

grains, and their fragments have been shown to nucleate ice at relatively high 

temperatures in the laboratory, suggesting that these particle classes may contribute 

to atmospheric cloud formation and evolution if lofted in sufficient numbers (Diehl et 

al. 2001, Pummer et al. 2012, Haga et al. 2013), and in situ measurements at the 

ground level and in clouds at high altitude have corroborated this possibility (Prenni 

et al. 2009, DeLeonRodriguez et al. 2013, Huffman et al. 2013, Tobo et al. 2013). 

There are indications that biological particles could be important for the cloud water 

cycle, especially in a boreal forest region (Morris et al. 2013, Sesartic et al. 2013). It 

should be noted, that atmospheric pollutants may have a direct effects on pollen 

grains: (a) modifications of their biological and reproduction functions: decrease in 

viability and germination, (b) alteration of a physicochemical characteristics of a 

pollen surface, (c) change in the allergenic potential, and (d) adjuvant effect 
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increasing their potential health hazards. Moreover, several works indicate an impact 

of pollen contaminants on honeybees (genus Apis) (McArt et al. 2017; Di Pasquale et 

al. 2016; de Oliveira et al. 2016). It is generally assumed that bees are exposed to 

pesticides during crop pollination, yet surprisingly little is known regarding how a 

focal crop pollen collection is related to a pesticide exposure, how a landscape 

context influences a crop pollen collection, and whether a magnitude of pesticide risk 

to bees is at levels warranting concern (McArt et al. 2017).  

Pollen grains present several differences at its chemical composition level, for 

instance in a pollen wall (Duque et al. 2013), that can allow its identification. 

Therefore, during the last years, a chemical and spectroscopic examination of pollen 

has become increasingly important and improvements in the use of these techniques 

have resulted in a reduction of a sample consumption. Raman instrumentation has 

provided additional impulse for the adoption of Raman spectroscopic techniques in 

pollen identification, characterization and classification in situ without prior 

preparation (purification, extraction and contrast medium). Additionally, this 

technique offers high flexibility and good chemical and structural specificity, high 

spatial resolution, short acquisition times for analysis and can be used in a non-

destructive and minimally invasive manner on pollen. The chemical–structural 

characterization of several pollen grains by Raman spectroscopy has been carried by 

several authors (Ivleva et al. 2005; Laucks et al. 2000; Schulte et al. 2008), and the 

works include the vibrational assignments of signals frequently found in Raman 

spectra of pollen specimens. In addition a comprehensive library of Raman spectra of 

pollen, which can be regarded as a precursor of a larger pollen database was 

introduced (Guedes et al. 2014).  

In this subsection, in a brief form, we present a potential of the Spectronomy system 

for differentiation of pollen pellets Raman spectra and a potential impact of such a 

proceeding on a plant species identification and isolation of contaminated samples. 
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5.2.1. Sample description and analysis 

The pollen pellets were collected directly from the beehives. For the purpose of this 

subsection, two types of pollen pellets were analysed: (i) contaminated by pesticides 

(i.e. imidacloprid) and (ii) non-contaminated with pesticides. The pollen pellets 

without any preparation were analysed by means of the Labram confocal Raman 

microspectrometer (Horiba, Jobin-Yvon) equipped with a 100×, 0.9 numerical 

aperture Olympus objective. Raman scattering was excited with the 785 nm 

wavelength laser. The spot diameter of the laser beam at the sample was 1 µm. The 

applied system uses a high precision piezo translator and feedback signal to 

automatically track and adjust the laser focus on the sample - ensuring perfect focus 

for each measurement. The spectral range was 850 – 1800 cm-1, with spectral 

resolution ~ 0.4 cm-1. The spectra were acquired for several spots in the pollen 

pellets. The final data matrices contain: (i) 35 spectra of a pollen pellet with traces of 

pesticides and (ii) 42 spectra of a pollen pellet contaminated by pesticides. A single 

Raman spectrum of a pollen pellet spot contains 2476 variables. The pre-processing 

of Raman spectra was due to the application of AsLS background correction (λ = 10-6 

and p=0.001) and intensity scaling. 

 

5.2.2. Results 

The acquired spectra were gathered in the matrices, where each spectrum was 

located in the single row of the spreadsheet and wavenumbers were located in 

columns. Such a data structure was required for the Spectronomy system (see more 

in Chapter 4). The collected spectra are presented in Fig. 73. 
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Fig. 73. The Raman spectra of contaminated and non-contaminated pollen pellets.  

 

By visual inspection of the graphin Fig. 73, it is difficult to see the significant 

difference in some spectral range, which would give unmistakable information about 

the possibility of grouping the spectra. Thus, for  in order to specify an actual number 

of components in the data set, Ward’s HCA was used. 
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Non-contaminated pollen pellets 

The generated Ward’s HCA dendrogram is presented in Fig. 74. The cut-off point was 

designated by visual inspection of the dendrogram and was set for 3 clusters. 

 

Fig. 74. Ward’s dendrogram of non-contaminated pollen pellet spectra. 

 

The function of mean cluster spectra projection was used to visualize the main 

differences of the clusters and potential momentous areas of spectra for clustering 

algorithm (Fig. 75). 
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Fig. 75. Mean Raman spectra of Cl1, Cl2 and Cl3 from Ward’s HCA performed on the 

non-contaminated pollen pellets matrix. 
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In the mean spectrum of cluster 1 the two main peaks with the highest intensity 

value compared to the other peaks can be distinguished, i.e. ~1530 cm-1 and ~1156 

cm-1. These peaks also appear in the other mean spectra (Cl2 and Cl3). However, in 

the Cl3 the intensity value of these peaks is significantly lower than for the other 

clusters (Cl1 and Cl2). In turn, the higher horizontal level of the peaks intensity can be 

observed in the Cl2 and Cl3 – probably this is the main factor for the differentiation 

of the Cl1, which was placed in the separated node. The differentiation of the mean 

Cl2 and Cl3 spectra is due to the following peaks: ~1186 cm-1, ~1339 cm-1 and 

~1596 cm-1. The remaining peaks correspond to: carbohydrates (420-440 cm-1), S-S 

bond in amino acids (540 cm-1), C-O-C glycosidic bond (540 cm-1, 819 cm-1, 1079 cm-

1), phosphate (780 cm-1), C-O-P-O-C in RNA (860 cm-1) and C=O bond (stretching) 

(1650 cm-1). However, the main differentiation of the spectra is observed for the 

peaks ~1156 cm-1 and ~1530 cm-1, which can be assigned to pollen carotenoids 

(Schulte et al. 2009). Schulte et al. (2009) provides the first evidence of interspecies 

differences in pollen carotenoid content, structure, and/or assembly between plant 

species (Schulte et al. 2009). Therefore, it can be assumed that specified clusters are 

listed for different plant species. Unfortunately, the lack of the complex database of 

Raman spectra limits the possibility of plant species designation in the presented 

sample. Nonetheless, this lack of information in this area should be classified as 

another goal of this work, which should be achieved in the future.   

 

Contaminated pollen pellets 

The Ward’s HCA dendrogram was generated for the contaminated pollen pellets 

matrix (Fig. 76). The cut-off point was designated by a visual inspection of the 

dendrogram and was set for 2 clusters. 
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Fig. 76. Ward’s dendrogram of contaminated pollen pellet spectra. 

 

As in the case of the previous matrix, the function of mean cluster spectra projection 

was used to visualize the main differences between the clusters and potential 

momentous areas of the spectra for the clustering algorithm (Fig. 77). 
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Fig. 77. Mean Raman spectra of Cl1 and Cl2 from Ward’s HCA performed on 

contaminated pollen pellet spectra matrix. 

A significant difference between the mean spectrum of Cl1 and the mean spectrum 

of Cl2 can be observed. In the first example a broad band with its centre ~1340 cm-1 

(range 1250 – 1500 cm-1) is observed. This band can be characterized by the highest 

intensity in the Cl1 spectrum. The bands were assigned by the other authors to: ~ 

1366 cm−1 corresponded to the bending of C–H and O–H bonds in the honey sample 

(Paradkar & Irudayaraj 2002); ~1460 cm−1 was found the signal associated to a 

combination of the vibration of COO- group of the bending vibration of CH2 group 

(Kizil et al. 2002; Nickless et al. 2014). This region was attributed to the presence of 

flavanols and organic acids. Therefore, the spectrum of Cl1 was assigned to the 
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honey.  It should be noted, that pollen pellets collected by honeybees are complex 

mixtures of biochemical compounds including proteins, saccharides and lipids from 

the pollens and compounds produced by honeybees themselves (e.g. honey). In turn, 

the spectrum of Cl2 is similar to the spectra exported from non-contaminated pollen 

pellets matrix (Fig. 77) and it was assigned to the pollen spectrum.  

Differentiation between contaminated and non-contaminated pollen pellets 

The matrices of non-contaminated and contaminated pollen pellets were 

concatenated into the single matrix. This matrix contains 77 Raman spectra collected 

from the two samples. The spectral pre-processing used before the cluster analysis 

and multidimensional data analysis was exactly the same as in the case of the 

previous matrices. The clustering algorithm was Ward’s HCA, where the 

multidimensional data analysis was performed by PCA with a cluster labelling 

function included in the Spectronomy system. The generated dendrogram is 

presented in the Fig. 78.  

 

Fig. 78. Ward’s dendrogram of contaminated and non-contaminated pollen pellets 

spectra (single matrix). The red rectangle indicates 3 wrongly clustered spectra of 

non-contaminated pollen pellets. 
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The cut-off point was designated by visual inspection of the dendrogram and was set 

for 3 clusters. PCA was performed with cluster labels exported by Ward’s HCA (Fig. 

79).  

 

Fig. 79. 2D PCA scatter plot of pollen pellets spectral matrix. 

The cumulative variance explained by 2 principal components is ~80% for the 

spectral pollen pellets matrix. In the 2D PCA scatterplot (Fig. 79), 3 groups can be 

specified is shown in the dendrogram (Fig. 78). 3 components can be distinguished in 

the pollen pellets matrix. Each specified cluster reflects the proper matrix structure 

separated within individual clusters. Cl2 corresponds to the contaminated pollen and 

constitute 38% of spectra population, where Cl1 contains honey spectra (22%) and 
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Cl3 non-contaminated pollen spectra (40%). Only three spectra were wrongly 

clustered by the Ward’s HCA algorithm (marked by the red rectangle in Fig. 78).  

 

5.2.3. Conclusions 

The preliminary results obtained in this study showed the feasibility of the proposed 

methodology. We demonstrated that it was possible to differentiate the Raman 

pollen pellets spectra, which can be assigned to the grouping of the distinct plan 

species. Thus, the pollen origin in the beehives could be specified. However, this 

work needs a significant development of the presented methodology, mostly in the 

preparation of the pollen Raman spectra. In addition, the distinction between 

contaminated and non-contaminated pollen grains, as well as honey spectra was 

obtained. The results show a great potential of Raman microspectroscopy coupled 

with chemometric methods in rapid separation of pollen grains based on their origin 

and contamination content.  

 

5.3. FTIR analysis of colour organic pigments  

For the identification of the pure pigments or colorants - already separated from a 

binding medium - Fourier Transform Infrared (FTIR) spectroscopy has been 

established as a effective analytical technique, as such spectra are characterized by 

very sharp and characteristic multitude of absorptions in the fingerprint region 

(Lewandowski et al. 2015). Identification of pigments by FTIR spectroscopy is usually 

processed by comparing the spectrum of an unknown sample with the spectra 

present in a database, which has to be as accurate as possible. Interpretation of 

pigment spectra in terms of chemical structural units is rarely processed,  since 

organic molecules normally produce many overlaid vibrations, which can hardly be 

assigned to distinct molecular structures. Therefore, the spectra of unknown pigment 
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samples are difficult to be identified if they do not match any of the library spectra. In 

that case, even a class assignment can be performed only by an expert analysis. 

Identification of such unknowns might be facilitated by considering characteristic 

absorption bands; however, this task is rather time-consuming due to a high number 

of variables and pigments. In this field, a multivariate data analysis has a significant 

potential, which can improve the process of pigments’ recognition. Multivariate 

classification procedures can be categorized as supervised pattern recognition 

methods, whereas a variety of different approaches is known. In comparison, 

unsupervised pattern recognition methods refer mainly to cluster analysis methods, 

which were described previously. Relating to FTIR spectroscopy, the spectra consist 

often - depending on a range and resolution - of more than 3000 data points 

(absorption data per wavenumber). Thus, the specification of momentous variables is 

crucial for correct specification of a pigment in an unknown sample. It is even more 

complex to specify an unknown pigment type in mixtures. In addition, a huge 

limitation may be caused by a low contribution of a signal from the pigment in the 

FTIR spectrum, due to a background signal (from a deposition substrate or binding 

medium. It should be noted, that in the non-destructive methods of analysis there is 

no possibility to extract the pigment from the substrate. Thus, the main idea of the 

application of FTIR for such a purpose is to classify the signals from the samples 

based on the chemical composition of the pigments and then identify the average 

spectrum of the group. The momentous step of such a proceeding is an application 

of appropriate pre-processing methods before clustering. In that way, a clustering 

model of a high compliance can be build.  

Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that 

have attracted artists around the world. As a target of presenting approach, the 

differentiation of the pigments in the Sumi-e paintings is requested. Below we 

present the procedure for separation of the FTIR spectra from the joint data matrix 

based on the features included in the Spectronomy analytical system. 
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5.3.1. Samples description 

A set of 6 natural powder pigments: turmeric, dragon’s blood, indigo, safflower, 

cochineal, gamboge (Kremer Pigmente) and one binding medium (rice starch) were 

prepared. As a deposition substrate, 4 different papers were tested i.e. Whatman, 

K14, K78 and M20. For the purpose of the current methodology, the specification of 

each paper is not necessary. Pigments were mixed with water and then deposited 

with a wooden spatula on the paper. Finally, the paper with deposited pigments was 

left to dry for at least 12 hours.  

 

5.3.2. FTIR measurements 

Three different measurements were conducted on blank papers, pure pigments and 

pigments deposited on papers by Near FTIR, mid-FTIR and micro FTIR spectroscopy. 

In order to collect the spectra in the near infrared range, a portable ARCoptix FT-NIR 

Rocket equipped with a photodiode InGaAs detector with a working range of 11000 

– 4000 cm-1 (900 – 2500 nm) was used. The instrument is equipped with an HL2000 

halogen lamp (Ocean Optic, 20 watts). The spectra were collected with an optical 

fibre bundle (Y shaped) which is constituted of 7 optical fibres (fibre core size 400 µm 

- six illumination fibres around a collecting one). The measurement spot is of 

approximately 3 mm wide (diameter). The probe was positioned perpendicularly to 

the surface owing to a clamp standing at the end of an articulating arm, at a working 

distance ranging between 3 and 5 mm, in order to record the specular reflection 

component of the reflected light. The spectra were obtained by averaging 30 scans 

with an acquisition time about 20 seconds and at an 8 cm-1 spectral resolution. The 

instrument was calibrated using a white Spectralon® standard. The software used 

during the measurements was ARCspectro Rocket (ARCoptix S.A.).  
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Micro-FTIR spectra were recorded in the mid infrared range by use of a Spotlight 400 

Perkin-Elmer microspectrometer equipped with liquid nitrogen cooled mercury 

cadmium telluride (HgCdTe) detector. The spectra were collected over 200 scans, at a 

resolution of 4 cm-1 using the spectrum from a golden mirror plate for background 

acquisition. Spectra were collected in the range 500 – 6000 cm-1 and expressed as 

function of pseudo-absorbance (log(1/R)). The software used during the 

measurements was SpectrumIMAGE (Perkin-Elmer). 

Mid-FTIR spectra were recorded by use of an ALPHA FTIR Spectrometer (Bruker) 

equipped with a DTGS detector and an external reflection module. The spectra were 

collected over 128 scans, at a resolution of 4 cm-1 using the spectrum from a golden 

mirror plate for background acquisition. Spectra were collected in the range 6000 – 

400 cm-1 and expressed as function of pseudo-absorbance (log(1/R)). The software 

used during the measurements was OPUS 7 (Bruker Optik GmbH).  

The two instruments were used in the Mid-IR range to evaluate the difference of 

spectral data processing for FTIR spectra collected with different spot size 

(micro/macro differentiation). 

For optimization of the clustering model and to show its capabilities and limitations, 

five different types of data sets were collected: (i) near-IR spectra of papers, (ii) near-

IR spectra of separated pigments and separated binding, (iii) near-IR spectra of 

deposited pigments with binding medium on individual paper, (iv) mid-IR spectra 

(macro FTIR mode (~ 5mm spot size)) of deposited pigments with binding medium 

on individual paper, (v) mid-IR spectra (µFTIR mode (~0.01 mm2 spot area)) of 

deposited pigments with the binding medium on the unique paper.  

The applied pigments were supplied from a single provider. The binding medium is 

corresponding to rice starch in all the examples. Due to the content beyond the 

assumptions of the present work, pigments have not been mixed together, as well as 

they not have been mixed with the binding medium.  
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5.3.3. Results 

Distinction between different papers (Near-IR)  

The acquisition of 2 spectra of the M20, K14 and K78 was made, beside the Whatman 

paper where 4 spectra were collected. Spectra were obtained by averaging 30 scans 

with an acquisition time about 20 seconds and at an 8 cm-1 spectral resolution. The 

instrument was calibrated using a white Spectralon® standard. The several types of 

pre-processing procedures and their configuration were tested for optimization of 

the papers spectra separation in the clustering algorithms. The results presenting 

below are corresponding to the optimal procedure for the pre-processing of spectra, 

which includes the spectra scaling (intensity scaling) and application of the 3rd 

polynomial EMSC method for normalization (Fig. 80). 

 

Fig. 80. Near-IR spectra of different papers after pre-processing (spectral scaling and 

3rd polynomial of EMSC. (a.u. - arbitrary unit). The red rectangles represent potential 

momentous spectra areas (designated manually) for clustering. 

 

In Fig. 80, we can visually distinguish the possible momentous areas within several 

ranges, i.e. ~4250 cm-1, between 4500-5200 cm-1, ~ 6500 cm-1 and 7200 cm- 1 (see 

red marks in Fig. 80).   
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The two different types of clustering (fuzzy c-means and Ward’s HCA) as well as 

unsupervised multivariate data analysis (PCA) were applied as complementary 

techniques. 

 

Fig. 81. Fuzzy-c-means clustering table of near-IR spectra after pre-processing of 

different types of paper – in the left column the number indicates the number of 

spectrum and the first row C1 - C4 % indicates the cluster contribution. 

 

In fuzzy c-means clustering (Fig. 81) each cluster is associated with a membership 

function that expresses the degree to which individual data points (spectra) belong 

to the cluster. 4 different clusters (C1 to C4) were separated with a significant cluster 

affiliation of more than 80% for each cluster. The results demonstrate that the 

separation between the spectra related to the different paper types is substantial,  

meaning that C1 is clearly associated with paper 1, C2 with paper 2, C3 with paper 3 

and C4 with paper 4. However, it should be noted, that the Spectronomy software 

employs the random initialization seeding in fuzzy-c-means clustering which may 

change the results. Based on this assumption, another multivariate data analysis 

procedure in the form of PCA was used (Fig. 82). The results from fuzzy c-means 

clustering were exported in the form of clustering vector and then used in 

combination with PCA with a cluster labels function included in the Spectronomy 
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system. This step was important to demonstrate the accuracy of fuzzy-c-means 

clustering even for the random initialization seeding. 

 

 

Fig. 82.  PCA scatter plot of different papers near-IR spectra after pre-processing with 

labelled clusters from fuzzy c-means clustering. The papers are associated to the 

clusters as follows: Cl1 (K14), Cl2 (M2), Cl3 (Whatman), Cl4 (K78). 

 

Total variance explained by PC1 is around 90%. The scores on the scatter plot are 

well separated (Fig. 83). The separated scores on the scatter plot correspond to the 

data pattern formation which is consistent with the fuzzy-means clustering results 
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and thus demonstrates the effectiveness of spectra differentiating. By using the 

scores from two first PC (A matrix) Ward’s HCA was also  performed (Liu et al. 2003). 

 

Fig. 83. Ward’s HCA dendrogram of near-IR spectra of different papers after pre-

processing. 

 

A dendrogram based on hierarchical clustering analysis of the Near-IR spectral data 

was constructed (Fig. 83), which separated the paper spectra into 4 groups. However, 

it should be noted, that a more general clustering (into 3 clusters) could also be 

made, based on the Euclidean distance method of cut-off dendrogram point 

specification. The papers labelled as K14 and K78 are from the same supplier, despite 

the fact that their texture and composition differ from each other. Thus,  by applying 

Ward’s HCA, the structure and hierarchy of the data in the matrix can be visualized, 

which in this particular case was inaccessible by both fuzzy c-means clustering and 

PCA.  

The presented results are consistent with the fuzzy c-means clustering with cluster 

numbers (labels) set automatically during clustering procedure, which may differ. 

PCA enabled a display of the dissimilarity among papers without prior knowledge. 

Therefore, PCA and CA (fuzzy c-means and HCA) from the Near-IR spectral data of 
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papers could be used for rapid discrimination of a different paper type. In addition, 

Ward’s HCA can provide information about more general similarities among the 

papers, such as the same supplier.   

Despite the low number of spectra used in the processing, the separation of different 

papers is apparent. However, the same model rebuilt in the Spectronomy system 

may not be fitted ideally for larger matrices, especially with various types of papers, 

which significantly differ from the presented data. In such a case, a proper evaluation 

on the studied subject with modification of data analysis procedures (e.g. pre-

processing) is needed. However, Near-IR spectroscopy seems to be an appropriate 

analytical method for a paper comparison.  

Distinction between different pigments and binder (Near-IR) 

The acquisition of 2 spectra of safflower (carthamin pigment), cochineal (carmine 

pigment), turmeric (curcumine pigment), gamboge pigment, dragon’s blood pigment 

was made, beside the indigo pigment and rice starch where 4 spectra were collected 

for each component. Spectra were obtained by averaging 30 scans with an 

acquisition time about 20 seconds and at an 8 cm-1 spectral resolution. The several 

types of pre-processing procedures and their configuration were tested for 

optimization of the pigments and binding medium spectra separation in the 

clustering algorithms. The results presented below (Fig. 84) are corresponding to the 

optimal procedure for the pre-processing of spectra which include the application of 

the 3rd polynomial EMSC method for normalization and Asymmetric Least Squares 

Baseline Correction (AsLS) with lambda = 105 and p-value = 0.1 which constitute the 

optimal values for spectra separation. The optimal values were specified by iterative 

calculation of the clustering results with different baseline correction parameters 

starting from the default values parameters in presenting procedure (Baek et al. 

2015; Eilers & Boelens 2005) which are: lambda = 107 and p-value = 0.01. 
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Fig. 84. Near-IR spectra of different pigments and binding medium (rice starch) after 

pre-processing 3rd polynomial of EMSC and AsLS (lambda = 105; p-value = 0.1). 

 

The negative values of the relative intensity were created after 3rd polynomial of 

EMSC and AsLS baseline correction. These values have no legitimate physical 

counterpart. However, for the clustering purpose, the presented pre-processing 

procedure shows the best separation of the spectra. Moreover, after generating 

clustering vector, the raw Near-IR spectra or spectra after a distinct pre-processing 

step (intensity scaling only) can be sorted because of clustering results, which may 

help in identification of unknown samples.  

The complementary results of spectra separation in clustering algorithms have been 

achieved by the 3rd polynomial EMSC method for normalization and Savitzky-Golay 

1st derivative (Fig. 85). 
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Fig. 85. Near-IR spectra of different pigments and binding medium (rice starch) after 

pre-processing of 3rd polynomial of EMSC and Savitzky-Golay 1st derivative. 

 

As in the case of the 3rd polynomial of EMSC and AsLS baseline correction pre-

processing, the 3rd polynomial of EMSC and S-G 1st derivative pre-processing 

produced some negative values of the relative spectra intensity. This condition is due 

to the spectra transformation after the pre-processing procedure. Comparing the 

spectra after AsLS baseline correction (Fig. 84) with those after EMSC with S-G 

procedure (Fig. 85) the variety of different spectral ranges can be observed. In the 

first case, the most noticeable ranges are ~4200 – 4800 cm-1; ~5200 cm-1; 5400 – 

5800 cm-1 and 6200-6900 cm-1. In turn, in the second case the narrow spectral ranges 

may be specified, however, in a more complex way: ~4000 – 4300 cm-1; ~4400 cm-1; 

4600-4800 cm-1;  4900-5100 cm-1; ~5200 cm-1, 5600-6000 cm-1; ~6100 cm-1 and 

~7000 cm-1. Due to the simpler way of major spectral ranges determination, the first 

type of pre-processing is preferred. Following in this subsection, the results of the 

data processing are presented based on the spectral data matrix after 3rd polynomial 

of EMSC and AsLS baseline correction. The specification of the number of 

components in the data set was reached by calculation of the fuzzy partition 

coefficient, which indicates the correct number of clusters (Fig. 86). This parameter 
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was calculated for the spectral data set after 3rd polynomial of EMSC and AsLS 

baseline correction pre-processing. 

 

Fig. 86. Fuzzy partitioning coefficient calculated from the data set with pigments and 

binding medium (black arrow indicates the optimal cluster number value). 

 

The fuzzy partitioning coefficient  indicates the correct number of components in the 

data set corresponding to 6 pigments (safflower, gamboge, Dragon’s blood, turmeric, 

indigo, cochineal) and 1 binding medium (rice starch). In the results from fuzzy c-

means clustering, each from 7 clusters was associated with a membership function of 

the spectra (Fig. 87). 
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Fig. 87. Fuzzy c-means clustering table of Near-IR spectra after pre-processing of 

different types of pigments and binding medium. 

 

7 different clusters of spectra were separated with a diverse cluster affiliation of 

spectra (in the range of 21-85%) (Fig. 87). Complementary multivariate data 

processing algorithms were used: (i) Ward’s HCA; (ii) k-means clustering and (iii) 

principal component analysis with score labelling based on k-means clustering 

results. The corresponding parameters for specification of intrinsic component 

number, beside the fuzzy partitioning coefficient are Dindex and Hubert’s index. Both 

parameters were calculated for both the Ward’s HCA and k-means clustering 

algorithms. The Dindex value for Ward’s HCA was set for 4 clusters where Hubert’s 

index determines 6 clusters as an optimal value (Fig. 88). In the case of k-means 

clustering,the Dindex value is corresponding to the value of 7 clusters, as in the case 

of the fuzzy partitioning coefficient (Fig. 89), anyhow the Hubert’s index indicates the 

5 clusters as the optimal number.  
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Fig. 88. Dindex and Hubert’s index values for the HCA algorithm calculated from the 

data set with pigments and binding medium data set after pre-processing (black 

arrow indicates the optimal cluster number value). 

 



- 217 - 
 

 

Fig. 89. Plot of Dindex and Hubert’s index values for k-means clustering algorithm 

calculated from the data set with pigments and binding medium data set after pre-

processing (black arrow indicates the optimal cluster number value). 

 

The differences in the calculated values of the optimal number of clusters can be 

observed. The fuzzy partitioning coefficient and the Dindex of k-means clustering 

was set for 7 clusters, which corresponds to the actual data structure. However, the 

other calculated parameters (Dindex and Hubert’s index for Ward’s HCA; Hubert’s 

index for k-means clustering) are different from the actual data structure, which in 

the presenting results are known a priori. This discrepancy is due to the difference in 

the clustering algorithms (Charrad et al. 2014) for which the grouping of data may 



- 218 - 
 

differ. In addition, the specification of optimal clustering number may be problematic 

for these data sets where a number of variables is much higher than a number of 

samples (spectra) (Everitt et al. 2011). A dendrogram based on the hierarchical 

clustering analysis of the Near-IR spectral after pre-processing was constructed (Fig. 

90). The spectra of pigments and binding medium were separated into 6 groups. The 

optimal number of clusters in this case was set based on the Dindex, which value was 

4 clusters and it was marked on the dendrogram (Fig. 90). In turn, the Hubert’s index 

value was calculated for 6 clusters. By a visual inspection of the dendrogram (Fig. 90) 

the application of the Dindex does not produce the desire results (underestimation 

of the data) in the case of HCA. However, it should be noted, that a more general 

clustering (into 2 clusters) could also be made, based on the Euclidean distance 

method of cut-off dendrogram point specification.  

 

 

Fig. 90. Ward’s HCA dendrogram of near-IR spectra of different pigments and rice 

starch (binding medium) after pre-processing with indicated Dindex and Hubert’s 

index values. The red frame marked the wrongly clustered turmeric pigment, which 

was grouped with the binding medium (rice starch). 
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The k-means clustering was performed for 7 clusters (Fig. 91). This procedure was 

performed due to the calculated Dindex for k-means clustering, as well as the fuzzy 

partitioning coefficient, which were set for 7 clusters.  

 

Fig. 91. Voronoi diagram of Near-IR spectra of pigments and binding medium 

projected on the PCA scatter plot plane. 

 

In the Voronoi diagram (Fig. 91) the scores of the spectra are well separated and do 

not overlap with each other. However, green, orange and brown clusters are closely 

located on the diagram. PCA with scores labelling from k-means clustering was used 

to demonstrate the location of the matrix components in the scatter plot (Fig. 92). 
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Fig. 92. PCA scatter plot of different pigments and rice starch (binding medium) 

Near-IR spectra after pre-processing. Scores are labelled based on the k-means 

clustering. 

 

Total variance explained by two principal components is around 90%. After robust 

pre-processing the PCA scores corresponding to the rice starch, turmeric, and 

cochineal are located close to each other. Notwithstanding, separation of the 

pigments and rice starch is possible. 

Unfortunately, the results from complementary clustering algorithms (fuzzy c-means 

and Ward’s HCA) are not identical. In fact, fuzzy c-means clustering –due to the 
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random initialization seeding used in the Spectronomy system – is not fully 

reproducible as Ward’s HCA (Stetco et al. 2015). Here the grouping of spectra will be 

exactly the same for the same data matrix regardless the number of runs of Ward’s 

HCA, where in the case of fuzzy c-means the spectra separation may slightly differ. 

Therefore, the pigments separation cannot be based only on fuzzy c-means 

clustering included in the Spectronomy system. The HCA dendrogram shows that 

only turmeric pigment is wrongly clustered (Fig. 89). Another problem is the 

specification of an actual number of components in the data set, which was 

previously discussed and presented (Fig. 87, Fig. 88 and Fig. 89).  The results of the 

cluster analysis are summarized in Table 5. 

Table 5. Clusters designated by different clustering techniques and components 

linked with these groups. 

 

Component Fuzzy 

clustering 

K-means HCA 

Rice_Starch 7 2 1 

Safflower 4 7 3 

Cochineal 3 5 2 

Turmeric 5 6 1 

Indigo 2 4 4 

Gamboge 1 3 5 

Dragon's_blood 6 1 6 

 

Fuzzy-c-means clustering and k-means clustering, produce the same partitioning, 

based on the numbers of groups calculated by the fuzzy partitioning coefficient 
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(Fig. 86) and Dindex (Fig. 88), respectively. As mentioned previously, for Ward’s HCA 

only turmeric pigment was wrongly clustered. Moreover, the specification of the 

optimal cut-off point of the dendrogram may be problematic The Dindex and 

Hubert’s parameters are not corresponding to the actual number of components. In 

addition, the cut-off point set by a visual inspection (Euclidean distance method) 

leads to an underestimation of the data. To solve this problem, the detailed visual 

inspection of the 3D PCA scatterplot was made (Fig. 93). 

 

Fig. 93. 3D PCA scatter plot with marked groups of spectra. 

 

The cumulative variance explained by 3 principal components is ~90%. At the 3D 

PCA scatterplot (Fig. 93), the 7 groups can be specified, what may play an important 

role in a process of specifying a number of components. In comparison to the 2D 

scatter plot, (Fig. 92) the pattern formation is more visible. For specification of the 

actual number of components in the data set, the two types of results were 

generated: internal parameters calculation (fuzzy partitioning coefficient, Dindex 
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value, Hubert’s index value) and 3D PCA scatter plot. The results of Dindex calculated 

for k-means clustering, fuzzy partitioning coefficient and 3D PCA scatter plot 

examination indicate the correct number of components in the data set. However, 

other internal parameters may mislead the specification of the optimal number of 

clusters. Thus, the application of many complementary techniques in this case is 

justified. Near-IR spectroscopy seems to be an appropriate technique for pigments 

separation, but specification of a number of components in the data set may be 

difficult, mostly for mixed pigments. 

Homogeneity of the pigment (Near-IR)  

The acquisition of 10 spectra of the dragon’s blood pigment deposited on the paper 

was made in two contrasting areas – the homogeneous area, which by visual 

inspection was precisely covered by the pigment (5 spectra) and heterogeneous area 

with unequally deposited pigment on the paper (5 spectra). Spectra were obtained 

by averaging 30 scans with an acquisition time about 20 seconds and at an 8 cm-1 

spectral resolution. The picture of the sample with the marked spot of analysis is 

presented below (Fig. 94). 
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Fig. 94. The deposited dragon’s blood pigment with marked spots of analysis 

(heterogeneous area – green and homogeneous area – yellow). 

 

The several types of pre-processing procedures and their configuration were tested 

for optimization of the dragon’s blood spectra separation from the homogeneous 

and heterogeneous areas in the clustering algorithms. The results presented below 

(Fig. 95) are corresponding to the optimal procedure for the pre-processing of 

spectra which includes the 3rd polynomial EMSC method for normalization and 

Asymmetric Least Squares Baseline Correction (AsLS) with lambda = 105 and p-value 

= 0.1. 
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 Fig. 95. Near-IR spectra of dragon’s blood pigment spectra from homogeneous and 

heterogeneous areas after pre-processing 3rd polynomial of EMSC and AsLS (lambda 

= 105; p-value = 0.1). 

 

In Fig. 95, the possible momentous spectral areas are hardly distinguished. However, 

presumably the important variation can be observed in the range ~4700 cm-1 and 

between 5700-6000 cm-1.  

The fuzzy partitioning coefficient (FPC) indicates a favorable separation of the data 

based on two clusters (Fig. 96). 
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Fig. 96. Fuzzy partitioning coefficient calculated from the data set with spectra of 

dragon’s blood pigment deposited on paper, collected from homogeneous and 

heterogeneous areas. 

 

Based on the FPC results, fuzzy c-means clustering was performed for 2 clusters (Fig. 

97). 
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Fig. 97. Fuzzy c-means clustering table of Near-IR spectra after pre-processing of 

dragon’s blood pigment deposited on paper, collected from homogeneous and 

heterogeneous areas. 

 

2 different clusters were separated with the cluster affiliation of the spectra between 

53-68% (Fig. 97). Complementary multivariate data processing algorithms were used: 

PCA with score labelling based on the fuzzy c-means results and Ward’s HCA. PCA 

with scores labelling from fuzzy c-means clustering was used to demonstrate the 

location of the matrix components in the scatter plot (Fig. 98). 
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Fig. 98. PCA scatter plot of dragon’s blood spectra collected from homogeneous and 

heterogeneous areas. Scores are labelled based on fuzzy c-means clustering. 

 

Total variance explained by two principal components is ~ 90%. After robust pre-

processing the PCA scores corresponding to two separated groups of the data can 

be distinguished. These groups, as previously assumed, are corresponding to the 

homogeneous and heterogeneous areas of the deposited pigment.  

In turn, Ward’s HCA indicates favourable separation of the data based on two 

clusters (complementary to PCA and fuzzy c-means clustering) (Fig. 99).  
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Fig. 99. Ward’s HCA dendrogram of Near-IR spectra of dragon’s blood pigments 

collected from homogeneous and heterogeneous areas. The red frame marked the 

wrongly clustered inhomogeneous spot. 

 

The results from the presented techniques (PCA, fuzzy c-means and Ward’s HCA) 

show the separation of the spectra into two groups. However, one spot which was 

designated as inhomogeneous is wrongly clustered (Fig. 100).  
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Fig. 100. Inhomogeneous spot incorrectly clustered to homogeneous areas' group by 

fuzzy c-means and Ward’s HCA techniques. 

 

This state of affairs is probably due to the degree of pigment coverage. The 

assumption of this process is outlined below (Fig. 101). 

 

Fig. 101. The estimated threshold occurrence based on pigment coverage on paper. 

 

The description of the spots collected from the samples was important to determine 

the effectiveness of separation of homogeneous and heterogeneous areas. However, 

the bias in the specification of area labels by an investigator cannot be excluded. 

Based on fuzzy c-means clustering, PCA and HCA, the differentiation of two main 

groups was possible. One inhomogeneous spot was wrongly clustered in relation to 

the labels designated by the investigator. These results indicate that there is a 

requirement to compromise suggestive observations (by the investigator) and 

objective results (clustering results). 



- 231 - 
 

 

Clustering of pigment deposits on two different papers (Near-IR) 

The acquisition of 2 Near-IR spectra of the safflower (carthamin pigment), cochineal 

(carmine pigment), turmeric (curcumine pigment), gamboge pigment, dragon’s 

blood pigment, indigo pigment and rice starch was made. The pigments were 

deposited on the two papers (Whatman and K17) from different suppliers. In order to 

compare the variability of the substrate, the spectrum of each paper was also 

measured (2 spectra). The total number of collected spectra in the data matrix was 28 

(14 spectra for each paper). The spectra were obtained by averaging 30 scans with an 

acquisition time about 20 seconds and at a 8 cm-1 spectral resolution. 

The several types of pre-processing procedures and their configuration were tested 

for optimization of the pigments and binding medium spectra separation in the 

clustering algorithms. The results presented below are corresponding to the optimal 

procedure for the pre-processing which includes the application of the 3rd 

polynomial EMSC method for normalization and Asymmetric Least Squares Baseline 

Correction (AsLS) with lambda = 105 and p-value = 0.1 (Fig. 102).  
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Fig. 102. Near-IR spectra of different pigments and binding medium (rice starch) 

deposited on two papers (Whatman and K17) after pre-processing 3rd polynomial of 

EMSC and AsLS (lambda = 105; p-value = 0.1). 

By examination of the paper spectra after pre-processing (3rd EMSC and AsLS 

baseline correction) a small difference between spectra is observed (Fig. 103).  

 

Fig. 103. Near-IR spectra after pre-processing 3rd polynomial of EMSC and AsLS 

(lambda = 105; p-value = 0.1) of two papers (Whatman and K17) used as substrates 

for pigment deposition. 

The fuzzy partitioning coefficient indicates favorable separation of the Near-IR 

spectra from the pigments and binding medium (rice starch) deposited on two 

papers, into two clusters (Fig. 104). 
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Fig. 104. Fuzzy partitioning coefficient calculated for the data set with spectra of 6 

pigments and binding medium (rice starch) deposited on two different papers. 

Based on the FPC results, fuzzy c-means clustering was performed for 2 clusters  
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Fig. 105. Fuzzy c-means clustering table of Near-IR spectra after pre-processing of 

the 6 pigments and binding medium (rice starch) deposited on the two different 

papers. 

2 different clusters of spectra were separated with the weak cluster affiliation of 

spectra between 50-53% (Fig. 105). Complementary multivariate data processing 

algorithms were used: PCA with score labelling based on fuzzy c-means results and 

Ward’s HCA. PCA with scores labelling from fuzzy c-means clustering was used to 

demonstrate the location of the matrix components in the scatter plot (Fig. 85). 
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Fig. 105. PCA scatter plot of Near-IR spectra from 6 pigments and rice starch (binding 

medium) deposited on two different papers, after pre-processing.  

Total variance explained by two principal components is around 40%. After the 

robust pre-processing, two separated groups from the data can be distinguished. 

These groups correspond to the pigments deposited on the different paper (yellow – 

Whatman and purple – K17). The same separation of the spectra can be observed on 

the generated dendrogram  by Ward’s HCA (Fig. 106). 
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Fig. 106. Ward’s HCA dendrogram of Near-IR spectra of 6 pigments and rice starch 

(binding medium) deposited on two different papers after pre-processing  

Ward’s HCA indicates favourable separation of the data based on two clusters 

(complementary to PCA and fuzzy c-means clustering). These clusters are 

corresponding to the pigments and binding medium deposited on the Whatman 

paper (cluster 1) and the K17 paper (cluster 2). However, the spectra of the matrix 

components (pigments and binding medium) in the lower branches of the 

dendrogram are not correctly separated (Fig. 107). 

 

Fig. 107. Enlargement of the Ward’s HCA dendrogram with mixed structure of 

pigments and binding medium. 

In the graph presented above (Fig. 107), even pigments with contrasting colours, e.g. 

indigo and cochineal, are included in the same cluster. Moreover, the rice starch 
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(binding medium) was not classified in the disconnected group, with respect to the 

pigments.  

This situation is also reflected in PCA and fuzzy c-means clustering, where exactly the 

same groups were created. In view of the above, the featured data set was divided 

into two smaller data sets with the spectra corresponding to the pigments and rice 

starch deposited on each paper independently.  

Clustering of the pigment deposits on the Whatman paper (Near-IR) 

The acquisition of 2 Near-IR spectra of the safflower (carthamin pigment), cochineal 

(carmine pigment), turmeric (curcumine pigment), gamboge pigment, dragon’s 

blood pigment, indigo pigment and rise starch was made. The pigments were 

deposited on the Whatman paper. The total number of collected spectra in the data 

matrix was 14. The several types of pre-processing procedures and their 

configuration were tested for optimization of the pigments and binding medium 

spectra separation in the clustering algorithms. The results presented below are 

corresponding to the optimal procedure for the pre-processing of spectra, which 

includes only the 3rd polynomial EMSC method for normalization only (Fig. 108). The 

pre-processing step was reduced to highlight the differences between the spectra.  
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Fig. 108. Near-IR spectra of different pigments and binding medium (rice starch) 

deposited on Whatman paper after pre-processing 3rd polynomial of EMSC.   

The exploratory data analysis was performed by the 3D PCA (Fig. 109). 

 

Fig. 109. 3D PCA scatter plot of the data set containing spectra of 6 pigments and 

binding medium (rice starch) deposited on Whatman paper. 

 

Total cumulative variance explained by three first principal components is around 

80%. In the scatter plot shown above (Fig. 109), no unquestionable group formation 

can be observed. The scores are distributed in a way that prevents a user from clearly 
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identifying a number of groups (clusters) in the matrix. However, some of the scores 

transparently form pairs, what was marked by the red circles in the scatter plot (Fig. 

109). Ward’s HCA was performed as another multivariate data processing technique. 

The generated dendrogram is presented below (Fig. 110). 

 

Fig. 110. Ward’s HCA dendrogram of Near-IR spectra of different pigments and rice 

starch (binding medium) deposited on Whatman paper. The wrongly clustered 

components are marked by red circles. 

In the generated dendrogram (Fig. 110) the weak differentiation of the spectra in the 

distinct dendrogram structure can be observed. The spectra of cochineal pigment are 

unpaired: (i) distributed in the separated node and (ii) in the safflower pigment 

cluster. The placement of the cochineal spectrum with the safflowers’ makes a good 

sense due to the similar colours of these pigments. Unfortunately, the dendrogram 

structure does not create the coherent unity. The rice starch (binding medium) 

spectra occurred in the note with the safflower pigment and a single cochineal 

spectrum. The turmeric pigments were placed in the same node with contrasting 

indigo. The chemical structure of these pigments are also not complementary, which 

was also described elsewhere (Pozzi 2011).   
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The calculated fuzzy partitioning coefficient shows the correct number of 

components in the data matrix (Fig. 111), where in turn the fuzzy c-means clustering 

algorithm (Fig. 112) produced an unclear form of the results, as in the case of PCA.  

 

Fig. 111. Fuzzy partitioning coefficient calculated for the data set with spectra of 6 

pigments and binding medium (rice starch) deposited on Whatman paper.  

The black arrow in the FPC plot (Fig. 111) indicated the correct number  of 

components in the data matrix (6 pigments and 1 binding medium). Nonetheless, the 

fuzzy c-means clustering results calculated for 7 clusters demonstrates very weak 

spectra separation (Fig. 112). 
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Fig. 112. Fuzzy c-means clustering table of Near-IR spectra after pre-processing of 6 

pigments and binding medium (rice starch) deposited on Whatman paper. 

The cluster membership was almost equally divided between the number of groups 

(~15%), beside one exception, where this value was calculated for 94%. This visible 

outlier is one of the cochineal spectrums and is corresponding to the results from 

Ward’s HCA where this spectrum was placed in the separated node. 

Clustering of the pigment deposits on the K17 paper (Near-IR) 

The acquisition of 2 Near-IR spectra of the safflower (carthamin pigment), cochineal 

(carmine pigment), turmeric (curcumine pigment), gamboge pigment, dragon’s 

blood pigment, indigo pigment and rise starch was made. The pigments were 

deposited on the K17 paper. The total number of collected spectra in the data matrix 

was 14. The pre-processing procedure was identical as in the case of the pigments 

deposited on the Whatman paper and included only the 3rd polynomial EMSC 

method for normalization only (Fig. 113). 
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Fig. 113. Near-IR spectra of different pigments and binding medium (rice starch) 

deposited on K17 paper after pre-processing 3rd polynomial of EMSC.   

The exploratory data analysis was performed by PCA (Fig. 114). 
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Fig. 114. 3D PCA scatter plot of the data set containing spectra of 6 pigments and 

binding medium (rice starch) deposited on K17 paper. 

Total cumulative variance explained by three first principal components is around 

80%. In the scatter plot shown above (Fig. 114), no unquestionable group formation 

can be observed as in the case of the pigments deposited on the Whatman paper. 

The scores are distributed in a way that prevents a user from clearly identifying the 

number of groups (clusters) in the matrix. However, some of the scores transparently 

form pairs, what was marked by the red circles on the scatter plot (Fig. 114). Ward’s 

HCA was performed as another multivariate data processing technique. The 

generated dendrogram is presented below (Fig. 115).  
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Fig. 115. Ward’s HCA dendrogram of Near-IR spectra of different pigments and rice 

starch (binding medium) deposited on K17 paper. The wrongly clustered 

components are marked with the red circles. 

In the generated dendrogram (Fig. 115), the differentiation of the spectra into two 

main groups can be observed. The spectra of the turmeric pigment are paired with 

the rice starch spectra and distributed in the separated nodes. The cochineal spectra 

are placed with the safflowers’ spectra in the same node. However, the detailed node 

is a combination of the turmeric with rice starch pair and safflower pigment, which 

does not make a logical completeness. In the second main node, the dragon’s blood 

pigment was placed in the same node with contrasting indigo and the poorly 

correlated gamboge pigment. The calculated fuzzy partitioning coefficient shows the 

incorrect number of components (5 components) in the data matrix (Fig. 116). The 

fuzzy c-means clustering algorithm (Fig. 117) also produced an unclear form of the 

results, as in the case of PCA.  
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Fig. 116. Fuzzy partitioning coefficient calculated for spectra of 6 pigments and 

binding medium (rice starch) deposited on K17 paper.  

The black arrow at the FPC plot (Fig. 116) indicated the incorrect number of the 

components in the data matrix (5 components). Not surprisingly, the fuzzy c-means 

clustering results calculated for 5 clusters demonstrate a weak spectra separation 

with no logical structure (Fig. 117). 
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Fig. 117. Fuzzy c-means clustering table of Near-IR spectra after pre-processing of 

spectra from 6 pigments and binding medium (rice starch) deposited on K17 paper. 

The weak cluster membership from the range of 20-24% can be observed, beside the 

one visible outlier of the 4th spectrum in the table, which has a membership of 78%. 

PCA and fuzzy c-means clustering were not useful in the pattern recognition of the 

deposited pigments on the K17 paper. Ward’s HCA generates a weak separation of 

the pigments, which might be a problem while analysing the unknown samples. 

In conclusion, based on these two examples, the Near-IR spectroscopy seems to be 

inappropriate for a separation of deposited pigments. Such a proceeding should be 

unambiguous and reproducible. In the case of real samples, a separation of pigments 

will be even more complicated due to their mixing and inhomogeneous paper 

structure. 

Clustering of the pigment deposits on the paper (Mid-IR with spot diameter ~ 5mm) 

The acquisition of 2 Mid-IR spectra of the deposited safflower (carthamin pigment), 

cochineal (carmine pigment), turmeric (curcumine pigment), gamboge pigment, 

dragon’s blood pigment, indigo pigment and rise starch was made. The pigments 
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were deposited on the absorbent Joseph paper. In addition, the single spectrum of 

the pure paper was recorded. The total number of collected spectra in the data 

matrix was 15 (12 spectra of pigments, 2 spectra of rice starch and 1 spectrum of 

Joseph paper). The total reflectivity was collected over 128 scans, at a resolution of 4 

cm-1 using the spectrum from a golden mirror plate for a background acquisition. 

The spectra were collected in the range 6000 – 400 cm-1. 

The pre-processing procedure included only the spectra intensity scaling (Fig. 118). 

 

 

Fig. 118. Mid-IR spectra of different pigments and binding medium (rice starch) 

deposited on Joseph paper after intensity scaling.   

By examination of the paper spectrum (Fig. 119) after the intensity scaling, the 

different variation of the spectral ranges in comparison to the pigments spectra is 

hardly observed (Fig. 118).  
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Fig. 119. Mid-IR spectrum after intensity scaling of the Joseph paper used as 

substrates for pigment deposition. 

The fuzzy partitioning coefficient indicates a favourable separation of the Mid-IR 

spectra from the pigments, the binding medium (rice starch) and the substrate 

(Joseph paper), after intensity scaling (8 clusters) (Fig. 120). 

 

Fig. 120. Fuzzy partitioning coefficient calculated for the spectra of 6 pigments, 

binding medium (rice starch) and Joseph paper. 



- 249 - 
 

Based on the FPC results, fuzzy c-means clustering was performed for 8 clusters (Fig. 

121). 

 

Fig. 121. Fuzzy c-means clustering table of the Mid-IR spectra after intensity scaling 

of 6 pigments, binding medium (rice starch) and Joseph paper. 

The spectra in the featured data matrix are not properly grouped. The 7th cluster 

contains safflower and cochineal pigments spectra, which are of the same colour 

range. In the 3rd cluster, the Joseph paper was clustered with one spectrum of rice 

starch. The dragon’s blood pigment and turmeric are grouped in the 6th cluster, 

where the gamboge pigment and turmeric are located in the 8th cluster. Moreover, 

most of the spectra were separated with a weak cluster affiliation, between 14-17%, 

beside some exceptions for the spectra number 11 and 12 that are corresponding to 

rice starch. Complementary multivariate data processing algorithms were used: 

Ward’s HCA and PCA with score labelling based on the Ward’s HCA results. For the 

specification of the number of components in the data matrix, the Hubert’s index was 

calculated and positioned in the dendrogram (Fig. 122). 
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Fig. 122. Ward’s HCA dendrogram of Mid-IR spectra of 6 pigments, rice starch 

(binding medium) and Joseph paper with specified threshold of optimal number of 

clusters calculated by via Hubert’s index.  

The Huber’s index indicates the grouping of the matrix components into 8 clusters, 

which is complementary to the FPC (Fig. 121) and corresponds to the actual number 

of components. The Ward’s HCA dendrogram demonstrates the logical separation of 

the spectra where the Joseph paper spectrum and the rice starch spectra are 

separated in the specific node of the dendrogram, disjointing these spectra from the 

pigments. The dragon’s blood, turmeric and gamboge pigments are located in the 

same cluster (when a cut-off point is set for 4 clusters). These pigments are in the 

complementary range of colour, where gamboge and turmeric are more closely 

correlated and located in the descending node. In turn, to the right of the 

dendrogram the indigo pigments were disjoint from the cochineal and safflower 

pigments.  

PCA with scores labelling from Ward’s HCA clustering was used to demonstrate the 

location of the matrix components in the scatter plot (Fig. 123). 
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Fig. 123. PCA scatter plot of Mid-IR spectra from 6 pigments, rice starch (binding 

medium) and Joseph paper, after intensity scaling. 

Total variance explained by two principal components is around 90%. After only 

intensity scaling, the separated pairs of pigments and rice starch can be 

distinguished. The disjoint spectra sets of pigments and rice starch with paper can be 

observed via first PC axis. This situation is also reflected in the Ward’s HCA 

dendrogram. Fuzzy c-means clustering failed in the specification of the factual 

structure of the data matrix. However, the FPC calculation was indicative for the 

specification of the number of components in the data matrix. In view of the above, 

the featured data set was correctly grouped by two complementary techniques: PCA 
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and Ward’s HCA, where a number of components was specified by two parameters 

such Hubert’s index and FPC. 

The problem of clustering observations using a potentially large set of features may 

occur when the momentous variables need to be specified. The Witten and Tibshirani 

(Witten & Tibshirani 2010) proposed a novel framework for sparse clustering, in 

which one clusters the observations using an adaptively chosen subset of the 

features. In the case of the featured data set, the clustered features are 

corresponding to the momentous variables (wavenumbers) for spectra separation. 

The calculation was made by sparcl R package (Witten & Tibshirani 2010) which was 

coupled with the Spectronomy system. The sparse HCA clustering was used for the 

specification of the momentous variables during the pattern recognition. The p-value 

of feature weights was plotted on the spectra after intensity scaling (Fig. 124). 

 

Fig. 124. Mid-IR spectra of deposited pigments and rice starch on Joseph paper. The 

p-value weights of features were plotted. 6 momentous spectral range were marked 

and labelled from Z1-Z6. 

Mid-FTIR seems to be appropriate for distinguishing pigments deposited on one 

specific paper. The presented results of the automatic specification of the 

p-value 
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momentous variables may be significant. The „sparse” variables may be meaningful 

in terms of an identification of different pigments also with a support of a visual 

inspection of the spectra and spectral databases.  

Clustering of the pigment deposits on the paper (µFTIR with spot area ~ 0.01 mm2) 

Reflection mid-FTIR spectra were also recorded in situ by use of an ALPHA micro FTIR 

spectrometer (Bruker) equipped with a DTGS detector and an external reflection 

module. The acquisition of the Mid-IR spectra of safflower (carthamin pigment) (3 

spectra), cochineal (carmine pigment) (3 spectra), turmeric (curcumine pigment) (2 

spectra), gamboge pigment (3 spectra), dragon’s blood pigment (3 spectra), indigo 

pigment (3 spectra), rice starch (2 spectra) and a deposition substrate (Whatman 

paper) (2 spectra) was performed. The total number of collected spectra in the data 

matrix was 21. Total reflectivity was collected over 128 scans, at a resolution of 4 cm-1 

using the spectrum from a golden mirror plate for background acquisition. The 

spectra were collected in the range 6000 – 400 cm-1. The several types of pre-

processing procedures and their configuration were tested for optimization of the 

spectra separation in the clustering algorithms. The results presenting below are 

corresponding to the optimal procedure for the pre-processing of spectra, which 

includes the spectra intensity scaling and the S-G derivatization (1st derivative of 2nd 

polynomial) (Fig. 125).  
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Fig. 125. Mid-IR spectra collected by µFTIR of 6 pigments and rice starch (binding 

medium) deposited on Whatman paper. Pre-processing step was conducted by 

spectra intensity scaling and S-G derivatization (1st derivative; 2nd polynomial). 

Firstly, the exploratory data analysis was made by PCA (Fig. 126). 
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Fig. 126. 3D PCA scatter plot of Mid-IR spectra collected by µFTIR of 6 pigments, rice 

starch (binding medium) and Whatman paper (deposition substrate). 

The cumulative variance explained by the 3 principal components is around 80%. The 

pattern formation in the scatter plot is hardly to distinguish. However, some of the 

scores are paired which was marked by red circles in the scatter plot (Fig. 126).  The 

fuzzy partitioning coefficient indicates a favourable separation of the pigments, the 

binding medium (rice starch) and the substrate (Whatman paper) Mid-IR spectra 

after intensity scaling and S-G derivatization (8 clusters) (Fig. 127). 
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Fig. 127. Fuzzy partitioning coefficient calculated for the data set with spectra of 6 

pigments, binding medium (rice starch) and Whatman paper. 

Based on the FPC results, fuzzy c-means clustering was performed for 8 clusters (Fig. 

128). 

 

Fig. 128. Fuzzy c-means clustering table of Mid-IR spectra from 6 pigments, binding 

medium (rice starch) and Whatman paper, after intensity scaling. 
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The spectra in the featured data matrix are not properly grouped. The 3rd cluster 

contains dragon’s blood, gamboge and safflower, which are not categorically in the 

same colour range. In the 1st cluster, there are both spectra of pigments, i.e. dragon’s 

blood, as well as spectra of Whatman paper and rice starch. In the 4th cluster, all 

spectra of indigo pigment with a single spectrum of turmeric and cochineal are 

located. In the 6th cluster, only one single spectrum of dragon’s blood is located. The 

fuzzy c-means clustering algorithm did not classify the spectra based on the cluster 

affiliation to the clusters number 5, 7 and 8. This fact is caused by significant 

similarities between the spectra which are unable to be properly separated by fuzzy 

c-means clustering (Stetco et al. 2015). Moreover, most of the spectra were 

separated with the weak cluster affiliation between 13-16%, beside one exception for 

spectrum number 3, which is corresponding to dragon’s blood. Complementary 

multivariate data processing algorithms were used: Ward’s HCA and PCA with score 

labelling based on the Ward’s HCA results. For the specification of the number of 

components in the data matrix, the Hubert’s index was calculated and positioned on 

the dendrogram (Fig. 129). 

 

Fig. 129. Ward’s HCA dendrogram of the Mid-IR spectra corresponding to 6 

pigments, rice starch (binding medium) and Whatman paper, with specified 

threshold of the optimal cluster number of calculated via Hubert’s index.  
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The Huber’s index indicates the grouping of the matrix components into 8 clusters, 

which is complementary to FPC (Fig. 127) and corresponds to the actual number of 

components. The Ward’s HCA dendrogram demonstrates the logical separation of 

the spectra where the Whatman paper spectrum and the rice starch spectra are 

separated in the specific node of the dendrogram, disjointing these spectra from the 

pigments. Nonetheless, it should be highlighted that one by one spectrum of the 

gamboge pigment and cochineal pigment was wrongly clustered which was marked 

by the red circles. The first spectrum (gamboge) was grouped with the one from 

turmeric pigment, where the cochineal spectrum was located in the node with the 

rice starch spectra. The dragon’s blood, turmeric and cochineal pigments are located 

in the same cluster (when the cut-off point is set for 5 clusters). These pigments are 

in the complementary range of colour (mostly dragon’s blood and cochineal). In turn, 

to the left of the dendrogram, the indigo pigment was disjoint from the gamboge 

and safflower pigments.  

PCA with scores labelling from Ward’s HCA clustering was used to demonstrate the 

location of the matrix components in the scatter plot (Fig. 130). 
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Fig. 130. PCA scatter plot of Mid-IR spectra from 6 pigments, rice starch (binding 

medium) and Whatman paper, after intensity scaling and S-G derivatization. 

Total variance explained by two principal components is around 70%. After pre-

processing, the grouping of spectra corrsponding to cochineal and indigo, rice starch 

and Whatman paper can be observed. However, the other pigment scores, i.e. 

dragon’s blood, gamboge, turmeric and safflower are closely located in one area of 

the scatter plot (Fig. 130), what was marked by the red circle.  It should be noted that 

the PCA with Ward’s HCA labelling is not corresponding to the results presented in 

the dendrogram (Fig. 129). The degree of similarity of the spectra is close, which 

probably is reflected in the PCA scatter plot. In addition, the 3D PCA scatter plot did 
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not visualize the group formation in more dimensions. Fuzzy c-means clustering 

algorithm also failed in the specification of the actual structure of the data matrix. 

However, the FPC calculation was indicative for the specification of the number of 

components in the data matrix. In view of the above, the featured data set was 

correctly grouped by only Ward’s HCA, where the number of components was 

specified by two parameters such as Hubert’s index and FPC. 

Sparse HCA clustering was used for the specification of the momentous variables 

during the pattern recognition. The p-value of feature weights was plotted on the 

spectra after the pre-processing step (Fig. 131). 

 

Fig. 131. Mid-IR spectra of deposited pigments and rice starch on Whatman paper. 

The p-value weights of features was plotted (red).  

The significant variation of the p-value of the variables weight can be observed 

(Fig. 131). This variation is characterized by a large accumulation of variables of 

similar weight what in the case of sparse clustering is undesirable. This situation is 

probably due to the applied pre-processing method, which provides the best 

separation of the spectra in the Ward’s HCA algorithm but limits the specification of 

the momentous variables for the featured data set.  
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Mid-IR spectroscopy seems to be more appropriate for deposited pigments 

separation. For a spectrometer with a larger spot size (~ 5 mm), such proceeding is 

unambiguous. In the case of the analysis of the second data set by µFTIR (~0.01 

mm2), only two spectra were incorrectly clustered.  

5.3.4. Conclusions 

FTIR spectroscopy is a powerful analytical technique to study organic materials. 

However, in cultural heritage, since the sample under analysis is always a complicated 

matrix of several materials, a data analysis performed through peak-by-peak 

comparisons of the sample spectra with  the standard ones is a tedious method that 

does not always provide good results (Sarmiento et al. 2011). To overcome this 

problem, a chemometric model based on PCA was developed to classify and identify 

pigments and binding media in artworks (Capobianco et al. 2017; Sessa et al. 2014; 

Carlesi et al. 2016). The independent problem is a classification of paper types based 

on their different properties.  

In our work, we developed an innovative combination of cluster analysis methods 

combined with PCA to obtain the information about a number of pigments in the 

data matrix, as well as to separate the pigments’ spectra based on their colour range 

and chemical structure. Near-IR spectroscopy was successfully applied to a 

differentiation of papers; moreover, a designation of distinctive papers with 

deposited pigments was also possible. In addition, a pigment coverage issue was 

taken under consideration with prospective results about a threshold presence. This 

might be a crucial aspect of clustering the spectra from real samples of Sumi-e art. 

The Mid-IR spectra of the deposited pigments were profitably grouped by the 

Ward’s HCA method after the suitable pre-processing. It should be emphasized that 

an enormous contribution of the signal from the paper in the deposited pigments 

spectra was observed. This issue was solved owing to the optimized pre-processing 

and application of complementary multivariate data analysis techniques. Moreover, 
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by application of the sparse clustering (sparse HCA), the designation of the 

momentous variables via the automatic mode was possible. The generated 

meaningful information about spectral ranges, which are important in the spectra 

classification, may have a crucial perspective in the identification of the spectra, 

which are covered by a signal from a substrate. We have obtained satisfactory results 

for pattern recognition based on the application of well-known pre-processing and 

multivariate data analysis techniques included in the Spectronomy system. 

 

5.3.5. Future works 

The development of the presented issue can take place through application of the 

classification models, such as a support vector machine classifier. In the future, a 

separation and classification of the mixed pigments will be taken under 

consideration. The blind source separation methods for a curve resolution, such as 

MCR-ALS will be used to specify pure components in the data matrix. The final step 

will be an application of the created model for real samples of the Sumi-e artwork for 

identification and classification of the pigments, binder and paper impurities. The 

presented methodology has a potential application for the analysis of aerosol 

particles, mostly where the differences of the spectra are inconsiderable. 
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The objective of the present thesis was the development of multidimensional 

data analysis procedures dedicated to processing of Raman and FTIR spectra. We 

considered our main goals and presented several novel features of such a 

proceeding. Our results were adjusted to the major aspects of the Raman and FTIR 

analysis of the substrate-collected airborne aerosol particles. The potential of a single 

particle analysis by Raman microspectroscopy has been exploited by application of 

the originally designed analytical algorithm for an efficient description of chemical 

mixing of aerosol particles. The application of the algorithm to experimental data 

confirmed the potential in exceeding the limitations in trace component detection 

and quantitative analysis. Therefore, the new way of a sample description was 

presented. Due to this work, the new software that includes the described algorithm 

and several easy-to access, powerful chemometric techniques was provided. The 

developed data analysis system facilitates the reproducibility of the data processing 

applied to challenging aspects of pattern recognition in the scope of Raman and FTIR 

spectroscopy. The obtained results highlighted the potential of the presented system 

and aspects of its operation for data processing. Additionally, the important role of 

the suitable measurement conditions, such as particle collecting substrate, was 

evaluated. The work fulfills the set objectives and allows developing them in the 

future. A further development of the Spectronomy system and its application is 

planned. Several new algorithms are being developed for spectra pre-processing and 

analysis. Our intention is to add an ability to load files with other extensions – directly 

exported from an integral spectrometer software. The program will be supplemented 

with various classification methods, such as neural network classifier, support vector 

machine classifier, Naïve Bayes methods and stochastic gradient descent. An 

implementation of a regression analysis and relational database framework is also 

planned. Moreover, our hope is to adapt the program for a hyperspectral image 

analysis and an application of multivariate statistics for several matrices in a single 

run. The new features will be applied for the more complex matrices and big data. 
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