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Abstract 

In recent years, the number of studies devoted to the development of simple 

and inexpensive chemical sensors has significantly increased. The development of 

new approaches is mainly aimed at novel sensor signal transduction schemes and 

designing sensors with programmable properties. 

This thesis presents three new approaches to the analytical signal transduction 

in the polymeric membranes of potentiometric sensors. The first part of the study 

describes a novel technique for indirect metal cations detection with micro-Raman 

spectroscopy. The evolution of the Raman spectrum of the polymeric membrane, upon 

contact with the sample solution, is used as the analytical signal. Multivariate 

calibration methods were used to provide a quantitative estimation of the metal content 

in the aqueous solutions from the measured Raman spectra.   

The second part of the thesis reports on studying the feasibility of ionophore-

free sensor array with membranes based on various ion-exchangers and plasticizers 

only. The sensor performance in the analysis of Ca2+-Mg2+ mixtures was evaluated 

through a combination of multisensor approach and multivariate calibration and was 

compared to traditional ionophore-based selective sensors. 

The final part of the thesis is aimed at programmable modification of the sensor 

sensitivity patterns using the membranes containing several ionophores. Three 

ionophores, which were previously used for the determination of the lanthanide 

cations, were chosen for the membrane preparation. The performance of the 

corresponding multi-ionophore array was tested in the analysis of Ln3+ mixtures and 

compared to conventional mono-ionophore sensors. 

 

Keywords: potentiometric sensors, PVC-plasticized membranes, multisensory 

systems, Raman spectroscopy, multivariate calibration 
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Résumé 

Au cours des dernières années, le nombre de travaux scientifiques qui portent 

sur le développement de capteurs chimiques simples et moins chers a été 

significativement augmenté. Les études dans ce domaine sont principalement 

orientées vers la recherche de nouveaux schémas de transduction du signal du 

capteur et vers le développement de capteurs dont les propriétés peuvent être 

programmées. 

Trois approches originales pour la transduction du signal des membranes 

polymères des capteurs potentiométriques sont présentées dans la thèse. La première 

partie de l’étude est consacrée à la description d’une nouvelle technique pour la 

détection indirecte de cations métalliques au moyen de la spectrométrie micro-Raman. 

Le spectre Raman est mesuré à la surface de la membrane polymère au contact avec 

la solution échantillon. Ce spectre est converti en information analytique quantitative 

par le biais de méthodes d’étalonnage multivariée. Dans la deuxième partie, nous 

étudions la faisabilité de capteurs ne contenant pas d’ionophore, les membranes 

n’étant alors composées que des différents échangeurs d'ions et plastifiants. La 

performance de ces capteurs pour l’analyse quantitative de mélanges binaires de 

Ca2+-Mg2+ est évaluée en combinant une approche originale basée sur des capteurs 

multiples. Les résultats sont comparés à ceux obtenus avec des capteurs à base 

d’ionophores traditionnels. Enfin, la modification à façon des schémas de sensibilité 

des capteurs utilisant des membranes contenant plusieurs ionophores est présentée 

dans la dernière partie de la thèse. Trois ionophores (utilisés auparavant pour la 

détermination de cations des lanthanides) ont été choisis pour la préparation de la 

membrane. Les performances du réseau de capteurs ainsi créé sont testées sur 

l’analyse de mélanges de Ln3+ et les résultats sont comparés à ceux des capteurs 

mono-ionophores conventionnels. 

 

Mots-clés: capteurs potentiométriques, membranes PVC plastifiées, systèmes 

multicapteurs, spectroscopie Raman, calibration multivariée 
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Introduction  

According to the modern definition, a chemical sensor is a compact device that 

transforms chemical information into useful analytical signal [1]. With the development 

of chemical sensing, these devices became smaller, simpler and more widely available 

[2]. One can think of a traditional pH sensor converting the hydrogen ion activity in 

solution into electrical potential measured with an mV-meter. Chemical sensors 

normally have both recognition and transduction functions combined within one 

device. The recognition function is related to the chemical or physical changes of the 

sensing element, and its changes are proportional to the analyte concentration in the 

investigated object. Interaction of an analyte with recognition centers may consist of 

either a chemical reaction (e.g. affinity recognition in biosensors) or a physical sorption 

on a recognition site. The transduction function assumes the transformation of these 

changes into measurable values. The nature of a sensor output then defines the 

classification of chemical sensors into physical and chemical sensors. Chemical 

transduction consists of the quantification of changes in the chemical composition of 

the sensing element. If the analytical signal is not derived from the analyte itself but it 

is the product of an interaction with a secondary molecule, then the transduction is 

called indirect, or also labeled transduction. Physical transduction in its turn is derived 

from varying the physical properties and, therefore, physical transduction is usually 

label-free.  

 Electrochemical sensors are the largest and the oldest type of chemical 

sensors. Due to their simple and robust instrumentation, and relatively easy 
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production, electrochemical sensors are widely applied in different areas of industry 

and research. By now, it is the most widespread platform for routine analyses in clinical 

chemistry [3]. Progress in this area is mainly associated with the application of new 

chemical materials and optimization of sensor construction. Potentiometric membrane 

sensors are among the most popular research objects in the field, not only due to their 

simplicity and robustness, but also due to the variety of possibilities that exist for the 

modification of their sensing properties.   

One of the main challenges of sensor applications is the analysis of real objects. 

High content of various interfering components is the most common reason of 

inadequate sensor selectivity towards the target analyte. Also, the influence of the 

sample matrix on the sensor performance is hardly predictable as it is sample-

dependent. For example, limitations of the analysis would be drastically different for 

Mg2+ determination in seawater [4, 5], food products [6] and biological liquids [7]. For 

instance, in blood electrolytes determination, the sensor surface will be continuously 

altered due to the adsorption of blood plasma/serum proteins, resulting in a poor 

reproducibility of the analysis. 

 Although novel sensors appear regularly, their application is strictly specified by 

the objects of analysis [8, 9]. This extensive way of problem-solving requires a 

significant time and money investment, and the development of selective sensors for 

each type of sample is hardly possible. Regarding electrochemical sensors, one of the 

most successful ways to address this issue is the multisensor approach [10]. Instead 

of using one selective sensor, several cross-sensitive sensors are used 

simultaneously. Sensors of the array should be selected in relation to the type of object 

analyzed in order to compensate for interferences and sample matrix effects [11]. The 

multisensor approach is indispensable in cases where integral parameters are 

required instead of the information on the exact sample composition. For example, the 

concentration of individual toxicants in a given environmental sample may be below 

the threshold limit value, but the sample would still be classified as “toxic” in terms of 

bioassay evaluation. The assessment of such “integral toxicity” can be performed with 
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multisensor system as far as it is calibrated against the reference response (i.e. the 

one of the chosen bioassay), without a priori knowledge on the sample composition 

[12]. 

 Modern studies on sensor arrays are aiming at the development of a 

sensor array that can be easily adapted to an unpredictable environment. This task 

includes simplification of the measurement procedure, sensor construction [13] or data 

processing without losing the sensor performance [14]. More recently, attention has 

focused on multi-transduction platforms (e.g. opto-potentiometric [15] when both 

optical and electrochemical signals are registered simultaneously for one particular 

sensor), providing complementary information on a sample composition using the 

same polymeric membrane. It was shown that this approach can significantly improve 

sensor performance [16]. 

This thesis research is dedicated to the development of new approaches for the 

transduction of analytical signals in potentiometric sensor membranes. In Chapter 1 

the main aspects of electrochemical sensors and related techniques are given. At first, 

the different types of electrochemical sensors are discussed in general. The main 

focus is on potentiometric sensors, namely ion-selective membrane electrodes (ISE). 

Their working principle, construction, types of membranes and components are 

reviewed. In the end of the Chapter 1, the objectives of this study are described. The 

three following chapters then give the detailed description of the results of this study. 

Chapter 2 describes a new methodology for Raman signal transduction from 

potentiometric sensor membranes. This methodology is directed towards the above-

mentioned multi-transduction approach, e.g. the possibility of getting optical 

information from the membrane of an electrochemical sensor. The changes in the 

Raman spectrum of the membrane upon binding of the analyte by the ionophore are 

used as analytical signal. The first part is devoted to Raman spectroscopy with a focus 

on the micro-Raman technique. In addition, the basics of multivariate data analysis are 

given in this chapter. This includes the principal component analysis (PCA) and partial 

least squares regression (PLS). The feasibility of the approach is performed with Cd2+ 

cations binding with phenanthroline diamide ligand immobilized in a polymeric sensor 
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membrane and the study includes the optimization of the membrane composition (e.g. 

ligand concentration, polymer type, etc.). In the following chapters, two new 

modifications of the multisensor approach are described. Chapter 3 presents the 

application of ionophore-free sensors based on a polymer, plasticizer and a lipophilic 

additive only. The sensor membranes based on the combination of different 

plasticizers and lipophilic additives are used within a multisensor approach for ion 

mixtures analysis. Chapters 4 discusses the design and implementation of multi-

ionophore polymeric sensor membranes. Several kinds of sensors containing 2 or 3 

ligands within one membrane were united into the array and tested for the analysis of 

multicomponent solutions of lanthanide cations, demonstrating mutual interference in 

mixtures. Chapter 5 contains the summary of the main research findings and 

conclusions. 
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CHAPTER 1. Potentiometric sensors 

 Electrochemical sensors 

  The response of electrochemical sensors is in general governed by the 

processes of electronic and/or ionic transfer. There are different types of 

electrochemical sensors depending on the way the analytical signal is obtained. These 

types are amperometric (voltammetric), conductometric, impedimetric and 

potentiometric sensors. In amperometry, the potential of an electrochemical cell is 

measured while the current flowing through the cell is varied. By contrast, for 

voltammetry, a subclass of amperometry, the current is measured as a function of the 

potential variation. Voltammetric sensing is very popular for construction of biosensors, 

with mainly enzymatic applications, for the specific determination of biomolecules [17-

19]. Voltammetry can also be applied for qualitative analysis, because the 

voltammetric peak current values are associated with the potential of Red/Ox half-

reaction, making the recognition of different ions and functional groups of organic 

molecules possible. The most popular technique – cyclic voltammetry – is based on 

inverting the direction of the applied potential once the half-reaction point has been 

reached, so that the oxidized species get reduced and vice versa. Cyclic voltammetry 

can be used for the investigation of Red/Ox processes, e.g. reversibility, reaction 

speed, etc. [20]. Voltammetry is also extensively applied to study various fermentative 

reactions. One of the most popular devices are enzymatic biosensors which are used 

for the determination of glucose, and is based on glucose oxidase [21]. This kind of 

measurement can be performed not only in laboratory conditions but also on test strips 

and even as a component of implantable devices. This way, blood analysis became 

commercially available and simple enough for daily household use by untrained 

customers [22].  

Another parameter of the electrochemical cell that can give essential 

information about the analyzed substance is conductivity. Conductometric sensors rely 

on the measurement of the conductivity of electrolyte solutions, which is a function of 
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the total ion concentration with respect to individual constants ki’ for each of the 

components:  

'

i ik F k c=   (Eq.1) 

where ci is the concentration of individual ions, F is the Faraday constant. The constant 

ki’ is determined by the ion mobility, ion activity coefficients and the dissociation degree 

of the electrolyte. Since the difference between mobility values is quite small for most 

of the ions (except for H3O+ and OH-), classical conductometric sensors are only 

suitable for the determination of the total ion concentration (e.g. salinity of seawater), 

and not for the distinction between the concentrations of individual species [1]. 

However, a few types of selective layer-based conductometric devices have opened 

new fields of application. For example, there are many types of gas sensors based on 

the measurement of the conductivity variation of a sensitive layer due to the absorption 

of the volatile compounds [23].  

Electrochemical impedance spectroscopy (EIS) can be employed for the 

analysis of liquids [2]. The impedance of the electrochemical cell is evaluated under 

the application of a voltage of varying frequency. Electrochemical impedance (Z) is a 

complex multiparametric value that depends on double layer capacitance, electrolyte 

resistance, charge transfer resistance, Warburg impedance and some other 

parameters in complex systems. In practice, the equivalent electrical circuit 

considering all the contributions should be used for calculations. Considering the 

phase shift value φ and the Euler equation, the following expression is obtained, 

translating the dependence of electrochemical impedance on frequency: 

( ) 0  0   (cos   sin )iZ Z e Z i  = = +  (Eq.2) 

 The results of EIS measurements can be displayed by plotting |Z| as a function 

of the phase shift (Bode plot), or Re(Z) – the real part – as a function of Im(Z) – the 

imaginary part (Nyquist plot). One of the features of impedance spectroscopy is that 

the signal amplitude depends on the area of the working surface. The conductivity of 

the layer can also be influenced by selective interactions of analyte species with the 
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binding agents immobilized on the sensor surface. As one of the recent trends in EIS, 

these two features found an application for biosensing with interdigitated electrodes 

[24, 25]. 

In this thesis we will deal with potentiometric sensors. Their analytical signal is 

registered under zero-current conditions (without the current flowing through the 

electrochemical cell). The simplicity of potentiometric measurements together with the 

tendency to miniaturization brought up the concept of ion-selective electrodes (ISE). 

Starting from the glass membrane electrode that was originally used as ion-selective 

pH sensor [26], ISE became one of the most popular analytical instruments. Their 

analytical signal is the electromotive force (EMF) across the cell. It should be noted 

that unlike for voltammetric and conductometric sensors, the analytical signal for 

potentiometric systems does not depend on the surface area of the electrode. 

Techniques based on ISE have numerous applications (see 1.2.6) due to fast and 

inexpensive manufacturing procedures, low response times, wide working 

concentration ranges and the relatively low limit of detection. The detailed description 

of some fundamental aspects and the working principle of ISE, their analytical 

characteristics, and modern applications are given in the following sections. 

 

 Construction of ion-selective electrodes (ISE) 

Potentiometric measurements are typically performed in an electrochemical 

cell, made of two half-cells – a reference electrode and an ISE itself. The EMF of such 

cell is equal to the potential difference between two half-cells, according to Eq.3: 

ISEref.el.
EMF E E= −  (Eq.3) 

where Eref.el. and EISE are the potential values of the reference electrode and ion-

selective electrode, respectively. 

The potential of the system is determined by the EISE only if all other 

contributions are kept constant during the measurements. For this reason the 

reference electrode should be mechanically and chemically stable. The potential of the 
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reference electrode should be reproducible in time and at a given temperature, is 

reversible and sample-independent. Silver/silver chloride electrodes are the most 

widely applied reference electrode for electrochemical measurements (Fig. 1.1). This 

is a second-type electrode, based on two equilibrium reactions: a redox equilibrium at 

the Ag0/Ag+ interface, and a AgCl/Ag+ solubility equilibrium. Due to the low water 

solubility of AgCl, the concentration of Ag+ ([Ag+]) is considered to be constant in the 

inner KCl solution, whatever the sample is. 

 

 

Figure 1.1. Silver/silver chloride reference electrode construction. 

 

1.2.1. Solid membrane ISE 

The history of ISE started with solid-state sensing membranes. The first type of 

solid membrane for ISE sensors were the glass membranes. These membranes, 

developed by Haber and Klemensiewicz in 1909 [27], are made of silicate glass doped 

with metal oxides, in order to provide for Frenkel-type defects in the glass lattice. These 

defects are acting like binding sites for H+. In general, glass membrane electrodes 

demonstrate excellent selectivity to H+
 over a wide working range. As a consequence, 

these electrodes became the most widely employed chemical sensors. At high pH, 
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monovalent metal cations can interfere with the response, as [M+] becomes 

comparable with [H+] (alkaline error). This issue, however, can be fixed by doping the 

glass with e.g. Li+ ions. The development of glass membrane electrodes was followed 

by many others based on different membrane materials, such as chalcogenide 

glasses, polycrystalline metal sulphides etc. [23, 28]. One of the most remarkable 

examples of solid state ISE is monocrystalline LaF3 doped with Eu3+. This sensor is 

extremely selective to F-, with a detection limit as small as 10-10 mol/L [29]. 

The ISEs with solid state membranes are robust and convenient tools widely 

applied in routine laboratory practice. However, the number of analytes that can be 

detected with these sensors is quite limited. For example, in case of polycrystalline 

membranes, only simple inorganic anions (e.g. halides) and cations (copper, 

cadmium, lead) are usually detected. Moreover, the selectivity patterns of these 

sensors cannot be tailored to some particular analytical tasks as they are depending 

on the fundamental properties of the membrane materials – e.g. solubility of 

corresponding sulphides. Moreover, the difficulty of designing crystalline materials, 

selective for particular ions of interest, hinders their further development. Thus, many 

studies are devoted to the search of alternative materials for ISE membranes that 

could allow for selectivity tuning with a wide range of practical applications [30]. The 

use of organic ligands as ion binding sites became the most prominent strategy for the 

ISE technique development.  

 

1.2.2. Liquid membrane ISE 

In the 1970’s, liquid membrane ISEs with sensing components dissolved in 

organic solvent were developed [31]. In these membranes the sample-dependent 

changes in the EMF of the cell were generated by charge separation at the 

membrane/sample interface, once the analyte is extracted into the liquid membrane 

and complexed by an incorporated ligand. The main disadvantage of these 

membranes was that it requires handling liquid phases, which is not very convenient 

for routine laboratory use. Lately, the sensor configuration was optimized and relatively 
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big volumes of liquid organic matrices were transformed into thin liquid layers dwelling 

in thin pores of a special filter membrane. The most popular type of liquid membrane 

ISE was based on organophosphorus compounds (see e.g. reference [32]) (Fig. 1.2). 

Then the approach underwent further improvements [33] and liquid membranes of ISE 

were transformed in plasticized polymeric membranes [34],[35], which should be 

considered more as organic gels rather than liquids in the traditional sense. Nowadays 

this type of ISE membranes is the most widely spread one (see Fig. 1.3).  

 

Figure 1.2. Liquid membrane ISE construction illustrated with the example from [32]. 

Here, 2-ethylhexyl phosphoric acid is used as an ion exchanger and di(octyl) phenyl 

phosphonate acts as a solvent. 
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1.2.3. Polymeric membrane ISE 

Plasticized polymeric ISE membranes are composed of organic solvent-

plasticizers and polymers. The plasticizer is the media to dissolve active organic 

ligands and ion-exchangers. The polymer acts as an inert matrix to impart the desirable 

mechanical properties to the membrane. The mechanical and chemical stability of 

polymeric matrices, as well as their flexibility to experimental conditions, resulted in 

the dominance of ISE in some application fields, such as clinical determination of 

sodium, potassium, calcium and magnesium [36]. Thus, the main functional parts of 

these ISEs are more compact and easier to handle than those with liquid membranes 

discussed above. Nevertheless, as for liquid membranes, plasticized polymeric ISE 

membranes require the inner reference electrode to be immersed into the internal 

solution that acts as a liquid junction. The typical construction of the polymeric ISE is 

described in the Fig. 1.3. The membrane is in equilibrium with the liquid internal 

reference solution that basically contains low concentrations of the analyzed ion. 

Changes in the concentration of the analyzed ion in the membrane, caused by its 

migration from the sample solution, result in changes in the EMF value.  

The constituents of a conventional ISE membrane, along with the polymeric 

matrix, are the lipophilic additive and the complexing agent (ionophore). More detailed 

information on the function, properties and typical examples of each membrane 

component will be given in the following subsections. 
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Figure 1.3. The electrochemical cell for ISE measurements.  

Polymeric matrix 

The polymers considered as membrane matrices now include acrylates, 

cellulose triacetate (CTA) [37], polyurethanes (PU) [27, 38], silicon rubbers [39], 

polysiloxanes [40] or polystyrenes [41]. By now, among the huge variety of available 
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polymers, the most common is high-molecular weight poly (vinyl chloride)(PVC) [42]. 

This is due to its low price, its chemical inertness and stability.   

While for liquid membrane ISEs, the permeability of components of interest 

does not represent a problem, this issue is the key for the design of polymeric 

membranes. To obtain sufficient ion mobility in the membrane phase, the polymer 

should have a glass transition temperature (Tg) below ambient temperature. In case of 

PVC membrane (Tg=80 oC), it is essential to use plasticizers to decrease the Tg. 

Moreover, an additional advantage is that the plasticizer acts as a solvent for all the 

other components of the membrane. A wide range of compounds utilized in PVC 

processing industry was adopted as plasticizers for the adjustment of membrane 

mechanical properties. The structure of these compounds, their functional groups and, 

consequently, their physico-chemical properties may differ drastically. The majority of 

plasticizers are the molecules containing long alkyl chains, providing sufficient 

lipophilicity and polar or polarizable functional groups (e.g. phenyl, nitro- or carbonyl). 

This allows enhancing the interactions of the plasticizer with both hydrocarbon and 

polar groups of the polymer (C-Cl for PVC) and thus provides a minimal plasticizer 

leaching into a sample solution. The most common plasticizers for polymeric sensor 

membranes are: 2-nitrophenyl octyl ether, 2-fluoro-2'-nitrodiphenyl ether, bis-(2-

ethylhexyl) sebacate, bis(2-ethylhexyl) phthalate.  

One of the most essential requirements for ISE membranes is homogeneity of 

their chemical composition. All the components of the membrane should have a 

sufficient lipophilicity to prevent their leaching from the membrane into the sample, 

thus avoiding decomposition of the membrane [43]. The exact lipophilicity can be 

estimated by structural increments for each of membrane components with methods 

of Quantitative Structure-Activity Relationship [44]. However, a simple relation can be 

established by comparison of the dielectric constant values (ε), but the drastic 

difference of this value with respect to that one of the plasticized polymeric membrane 

should be taken into account. For instance, for PVC plasticized by NPOE (1:2 wt %), 

ε is 14,  while for the pure NPOE, ε is 21 [45]. It is also important to point out that the 
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terms “lipophilicity” and “hydrophobicity” do not mean the same – for example most of 

the fluorocarbons are hydrophobic but not lipophilic [23, 28]. Also, PVC-plasticized 

membranes may lose their mechanical properties within approximately 6 months, due 

to the gradual leakage of plasticizer and other components into the aqueous solution 

in contact with the membrane.  

Lipophilic additive 

In order to obtain stable analytical signals, ISE membranes should exhibit good 

ion exchanging properties. For this purpose, they contain an ionic additive which 

consists of a lipophilic ion-exchanging site (also called lipophilic ionic additive) and a 

counter-ion that can be easily substituted with the analyzed ion. The counter-ion 

should be relatively hydrophilic to allow fast ion exchange at the membrane surface. 

The typical lipophilic cation-exchangers are tetraphenyl borate derivatives [46] 

(Fig. 1.4 a). The alkyl substituted quaternary ammonium salts are examples of typical 

anion-exchanging lipophilic additives [47-49] (Fig. 1.4 b).  

 

 

Figure 1.4. a – Potassium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (KTTFPB);  

b –  tridodecylmethylammonium bromide (TDMABr). 

 The presence of a lipophilic additive lowers the electrical resistance of the 

membrane and facilitates ion transfer. This additive also acts as a counter-ion for the 

analyzed ionic species, and thus it compensates the charge excess in a membrane 

and prevents co-extraction of the interfering counter-ions from the sample solution. 
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Ionophore 

The main functional part of ISE membrane is the ionophore (ion-carrier). It is 

responsible for the selectivity of the plasticized polymeric ISE and is capable of 

reversible selective complexation with the target ion. Ionophores can be either neutral 

or charged molecules. The presence of ionophore molecules promotes permselective 

mass transfer across a phase boundary (see 1.2.4.) [50]. This lowers the energy 

required for transferring the ion of interest into the membrane. This turns into an 

increased selectivity compared to that of ion-exchanger-based ISE. One of the first 

substances that was used as an ionophore was an antibiotic, named valinomycin [51] 

(Fig. 1.5), which selectively binds potassium cations, discriminating sodium as its 

common interference. Valinomycin-based ISE is still a very common instrument in 

clinical analysis. 

 

Figure 1.5. The chemical structure of valinomycin, a widely employed potassium-

selective ionophore. 

The strategy to design an ionophore consists in creating a molecule having a 

required binding capability towards the analyzed species, but, also important, a 

sufficient affinity to the membrane matrix (e.g. solubility in the plasticizer). The latter 

requires a suitable lipophilicity, usually provided by the presence of long alkyl 

substituents or other hydrocarbon subunits. Advances in ionophore design resulted in 

the availability of a big range of organic compounds [52, 53] such as amides [54], 

polyethers, peptides, crown ethers [55], thiourea derivatives [56, 57], etc. The 

mechanism of formation of the complex between target ion and ionophore can be of 
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various natures, such as e.g. donor-acceptor interaction, hydrogen bonding or 

inclusion. 

The design of ligands relies on the concepts of Pearson acid-base, chelate 

effect, ligand conformation stability and other principles of ligand chemistry. The ligand 

selectivity can be influenced by incorporation of donor groups acting as binding sites. 

Depending on the number of binding sites involved into the formation of the complex, 

ligands are divided into mono- and polydentate. Ionophores for metal cations are 

mainly polydentate ligands, typically containing neutral oxygen or nitrogen donor 

groups [58-60]. The high affinity of these ligands to metal cations is driven by their 

lower energy of complex formation, compared to that of monodentate ligands (chelate 

effect, from greek “chela” - claw). The chelate effect is driven by the entropic 

contribution to complex stabilization which plays a bigger role for the preorganized 

polydentate ligands compared to monodentate ones. When the chelate ring size of the 

ligand molecule and the size of metal cation match well, it results in an enhanced 

selectivity of the complexation, which is typical for ligands with rigid structures (e.g. 

[61]). Introducing the different donor groups and substituents in the rigid backbone of 

the ligand may also affect the size-based selectivity of complexation [62]. For 

example, using diamide of dipicolinic acid A (Fig. 1.6) as an ionophore provides a two 

times higher sensitivity to Lu3+
 cations compared to diamide B [63]. This effect can be 

explained by delocalization of the electron density from the phenyl substituent to the 

amide group in diamide A. This leads to the strengthening of a ligand-ion complex (so-

called “effect of anomalous aryl strengthening” [64]).  

The concentration of the analyte in the membrane phase is restricted by the 

lipophilic additive concentration. The ligand concentration should be sufficiently higher 

than the one of the lipophilic additive. 
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Figure 1.6. Dipicoline diamide ligands with different substituents. 

 

1.2.4. Phase boundary potential model 

The analytical signal of ISE sensors is determined solely by the membrane 

potential. According to Bakker et al. [65], it is a function of the phase boundary potential 

across the membrane. Initially, the membrane potential is the sum of the interface 

potentials and the diffusion potential, as in Eq. 4. 

( )
*

. . / . .( /   )
membrane diff P B membrane sample P B membrane inner solution

E const E E E= + + +  (Eq.4) 

where Emembrane is the membrane potential, Ediff is the diffusion potential and EP.B. and 

E*
P.B  are the phase boundary potential across the membrane at the membrane/sample 

and membrane/inner solution interface, respectively. If there is no concentration 

gradient across the membrane, the diffusion potential Ediff can be omitted. The potential 

at the membrane/inner solution interface E*P.B. can be considered constant and is 

sample-independent if the membrane is quite thick. These two assumptions bring up 

the following expression for membrane potential Emembrane (Eq. 5): 
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. .membrane P BE const E= +  (Eq.5) 

where EP.B. is the phase boundary potential at the membrane/sample interface. The 

physical meaning of EP.B. is the difference of potential arising from the separation of 

charges across the electrolyte and membrane interface. The thermodynamical 

definition of the chemical potential is described by Eq. 6, 

( )( ) ( )( )
( )
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0 0
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 (Eq.6) 

where µ  is the electrochemical potential, 0μ  is a chemical potential under standard 

conditions, z is an ion charge, ai is the activity of the ion, R is the universal gas constant, 

T is the absolute temperature and F is the Faraday constant. “(org)” or “(aq)” indices 

denote the organic or aqueous phases, respectively. The phase boundary potential at 

the membrane/sample interface can be expressed through the difference of 

electrochemical potentials (Eq.7): 
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( )

0 0
 

. .

 

( )   ln
i aqaq org

P B aq org
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aµ µ RT
E

zF zF a
  

−
=  = − = +  (Eq.7) 

 Once the membrane/sample solution equilibrium is reached, the activity of the 

target ion in the membrane phase ai org is expected to be constant. This way, the phase 

boundary potential, and, therefore, the membrane potential, both depend linearly on 

the analyte activity ai aq in the sample solution. Merging all the sample-independent 

contributions into E0 value results in the expression for the potential of electrochemical 

cell (Eq.8), also known as Nernst equation, which describes the main principle of 

potentiometric measurements, i.e. linear dependence of the EMF on the logarithmic 

ion activity: 

( )
+= 0

 
ln

i aq

RT
E E a

zF
 (Eq.8) 
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1.2.5.  Analytical characteristics of ISEs 

The main characteristics of the sensor performance are well-established and 

are similar to those used for other analytical methods. Analytical characteristics of ISEs 

can be found in the reports of International Union of Pure and Applied Chemistry 

(IUPAC) [50, 66]. They are briefly recapped below.  

- The response time is determined as the time required for EMF/time slope to 

become equal to a limiting value selected on the basis of the experimental 

conditions and/or requirements concerning the accuracy. As a figure of merit for 

sensors the time taken to reach 95 % of the response value (t0.95) can be used.  

- Stability stands for the ability of the sensor to maintain its performance for a certain 

period of time. Stability can be assessed with a drift value (e.g. variation of the 

analytical signal in a solution of constant composition and temperature).  

- Repeatability can be described as the variability of the signal within a series of 

measurements performed under the same conditions by a given operator within a 

short period of time. 

- Sensitivity of the ISE is expressed as a slope of the calibration curve of an ISE 

toward a given ion. 

- Lower limit of detection (LOD, detection limit) is a concentration for which, under 

the specified conditions, the cell EMF, E, deviates from the average EMF in region 

I by a multiple of the standard error of a single measurement of the EMF in this 

region I The upper LOD is also observed for the ISE and denotes the analyte 

concentration, corresponding to the limiting high activity response and in practice 

is denoted as a plateau on the response curve.  The graphical representation of 

the LOD values is shown in the Fig. 1.7. 

- Selectivity is the ability of an ion-selective electrode to distinguish a particular ion 

from the others in a mixture, without generating false-positive or false-negative 

signals. Selectivity is determined by the value of potentiometric selectivity 

coefficient (kij). 



28 
 

 

 

 

According to the Nernst equation (Eq. 8), the ISE response curve can be 

represented as a dependent of the EMF of the electrochemical cell on the logarithm of 

activity of the analyzed ion (lgai). The typical calibration curve is represented in 

Fig. 1.7. 
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Figure 1.7. Graphical representation of the LOD values in the ISE calibration curve. 

 The sensitivity of ISEs can be determined graphically as the slope of the linear 

part of the calibration curve. Under standard conditions and switching to decimal 

logarithm, the Nernst equation (Eq. 8) turns into Eq. 9, 

( )
+= 0

i aq

0.059
E E lg 

z
a  (Eq.9) 

 The “ideal” sensitivity of ISE, expressed in mV/dec (unit of a logarithm of 

analyzed ion activity), is equal to 59/z mV/dec (25o C), (z is the charge of the analyzed 

ion). As follows from the phase boundary potential model, reversibility of the 

complexation of ionic species by the ionophore is required. If this condition is not met, 

non-Nernstian values can be observed for sensitivity. The reason of this may also be 
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related to a presence of interfering ionic species with charge values lower than the one 

of the target ion (e.g. formation of M(OH)+ in polyvalent metal salt solutions). For this 

reason, all the secondary processes like hydrolysis should be suppressed, and 

potentiometric measurements should be performed under controlled pH in order to get 

reliable results. It should be noted that the sensitivity value can be determined for the 

concentration range between lower and upper LOD in the so-called dynamic range 

(denoted in blue in Fig.1.7). 

The limit of detection (LOD, detection limit) for ISEs, considering the logarithmic 

nature of the response, is defined by IUPAC as the intersection of the extrapolated 

linear part of the calibration plot and the “final low concentration level segments” for 

lower LOD, and the “limiting high activity response” for upper LOD [50]. Both lower and 

upper LOD values may be observed experimentally and determined graphically from 

the calibration curve [67]. LODs of classical polymeric membrane ISEs are 

around 10-6 M. Several methods can be employed to decrease the lower LOD value, 

e.g. super-Nernstian sensitivity values can find their application in trace-level analysis 

[68]. The equilibrium shift leading to super-Nernstian response can be generated 

intentionally by creating a concentration polarization at the membrane interface with 

applying the current pulse (so-called pulstrodes [69]), or by using acidic ionophores 

[70]. Another way to decrease the LOD is bufferization of the ISE inner solution. The 

use of an ion buffer (e.g. EDTA) maintains the constant concentration of the primary 

ion in the inner solution, so its leaching toward the sample does not occur. This 

prevents biasing the analyzed ion activity at the corresponding membrane surface as 

it is not influenced by the inner solution anymore [71]. The upper LOD is related mainly 

to the influence of interfering counter-ions. At high concentration of an analyte in a 

sample solution, the concentration of the ionophore-analyte complex in the membrane 

significantly increases. As the membrane gets enriched with excessive charge, 

brought in by the complexed ions, it tends to possess ion-exchanging properties for 

the counter-ions, promoting their co-extraction into the membrane phase. This 

phenomenon, also known as Donnan exclusion failure [50], is the primary factor 

framing the upper LOD of ISEs. This may have significant influence on the sensor 
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performance when one has strong complexation of highly lipophilic target ions by an 

ionophore [72].  

The main contribution of interfering ions to the response is related to the ISE 

membrane permselectivity. Thus, one should have information about selectivity of the 

ISE prior to the analysis of real samples. Selectivity is driven mainly by ionophore-

analyte complex stability. In case of the presence of two interfering ions An+ and Bn+ in 

the solution at a time, for an ordinary ISE, two complex formation processes occur in 

the membrane media based on the neutral ionophore (I): 

A

B

kn n

kn n

A I AI

B I BI

+ +

+ +

+ ⎯⎯→

+ ⎯⎯→
 (Eq.10) 

If the stoichiometry is the same for AI+ and BI+, the selectivity of the ISE would depend 

on the ratio of the two complex formation constants, Ka and Kb. Within the dynamic 

range for both target and interfering ions determination, the influence of the interfering 

ions was described by Nikolsky and Eisenmann [26, 73], later expressed as the semi-

empirical Nikolsky-Eisenmann equation (Eq. 11):  
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where ap
mix

 and ai
mix

 are the primary and interfering ion activities in their mixture, 

respectively, Kpi is a potentiometric selectivity coefficient and zi is the charge of the 

analyzed ion. The Nikolsky selectivity coefficient is the most widely applied measure 

of selectivity. It is supposed to be independent of the experimental conditions and thus, 

it is the main value to be reported for the characterization of selectivity. IUPAC 

suggests two procedures for the determination of this selectivity coefficient in practice: 

the separate solution method and the fixed interference method [67]. In the separate 

solution method, the lga vs E relations of an ISE for the primary (P) and interfering (I) 

ions are obtained independently. Then, the activities that correspond to the same EMF 

are used to determine the Kpi value. From the Nernst equation (Eq. 8) and Nikolsky-
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Eisenmann equation (Eq. 11), the activity ap in a single-component solution can be 

expressed as (Eq.12): 

,
p

i

z
mix

zmix

p p pi ia a K a= +  (Eq.12) 

 In the limiting case where the primary and interfering ion activities induce the 

same EMF, the approximation of ap
mix = 0 can be taken. Therefore, ap

mix = ap, and the 

Kpi will be equal to the following ratio (Eq. 13):  
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 (Eq.13) 

As E0 values for both calibrations (on P and I, respectively), are considered as 

constant, the resulting selectivity coefficient can be calculated according to the 

equation: 
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 (Eq.14) 

 If the target and interfering ions have the same charge value, the second part 

in the right term is equal to zero. Thus, an estimation of selectivity can be done by 

comparison of the EMF values for both ions at the same concentration (Fig. 1.8.).  
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Figure 1.8. Graphical determination of the selectivity coefficient by the separate 

solutions method. 

The fixed interference method consists of the evaluation of the sensor sensitivity 

in the presence of a fixed concentration of the interfering ion [74]. The selectivity 

coefficient is then calculated according to the same approximation as for (Eq.12) (Fig. 

1.9.) and aP is determined from the intersection of the two linear parts of the calibration 

curve that correspond to the lower LOD for P and ai background value (Eq.15): 
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 (Eq.15) 
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Figure 1.9. Graphical determination of the selectivity coefficient by the fixed 

interference method. 

 Both the separate solution method and fixed interference method are based on 

the assumptions that the interfering ion only substitutes the target one at the ionic site, 

and that no “mixed ion response” is observed. Also, an equilibrium at the phase 

boundary is presumed. In case of deviations from a Nernstian response, it is 

recommended to use the matched potential method [75] instead. Unlike the two 

previous methods, the matched potential method is not bound by the limitations of the 

theoretical model. Within this method, a calibration for the target ion i is carried out by 

sequentially adding portions of Δi to the reference solution, containing known 

concentrations of i. Then the interfering ions j are added to an identical starting solution 

until the same potential change is observed [75]. As a figure of merit, the selectivity 

factor, ki,j is used. ki,j represents the ratio of Δi/Δj, that cause the same potential 

difference for both of the calibrations. The main disadvantage of the matched potential 

method is the dependence of ki,j on prescribed concentrations of the primary and 
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interfering ions, and thus reported values should be provided together with 

experimental conditions.  

 

1.2.6. Applications of ISEs and recent developments 

Clinical analysis is the main application domain for ISEs, mainly for the 

determination of electrolytes in biological liquids. Valinomycin-based ISEs have up to 

now been employed for the determination of K+ in blood. Other common application 

fields are soil analysis, plant analysis, quality control for food production, wastewater 

treatment or environmental monitoring [76-78]. The ease of operation, along with its 

reversibility and insusceptibility to the turbidity and color of the sample, allow ISEs to 

be used for online monitoring of technological processes [79]. Flow-injection systems 

were also successfully employed together with potentiometric detection for different 

analytical tasks [80]. The durability and long-term stability of polymeric membranes 

make ISE applicable even under extreme experimental conditions, such as in the 

analysis of soluble ionic species in Martian soils [81, 82] . 

The development of modern analytical methods is typically associated with the 

question of miniaturization [83]. Within the last 40 years, ISE membranes of 0.1–1 mm 

dimensions came into general use [84]. In some applications, even the sensors with 

the diameter in the order of 100 nm were reported [85]. Modern clinical analysis 

requires analyte volumes in the microliter scale. However, the analysis of 

microvolumes requires significant modifications of the technique. For instance, instead 

of the conventional reference electrode, another membrane ISE, highly selective to 

some ion of the background, can be used, as it is easier to miniaturize. Also, the 

concentration of the background ion should be kept constant in order to provide stable 

potential readings of the reference ISE [86, 87]. 

In the last decades, the construction of ion-selective field effect transistors 

(ISFET) revealed the possibility of reducing the scale of analytical instruments down 

to the micrometer size. One of the modifications of this technique consists of the 
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deposition of an ISE membrane on the transistor gate. For routine analysis, the 

durability of the system becomes especially important. Therefore, the range of possible 

membrane matrices significantly narrows, since, for example, a PVC matrix has a poor 

adhesion to the solid support of the ISFET [88], making this method very sensitive to 

the ambient conditions. A strategy for choosing the membrane composition should 

take into account the solubility of the components, adhesiveness of the polymeric 

matrix to the ISFET surface and membrane resistance, all at the same time. Recent 

studies are focused on ISFET geometry optimization [89, 90] using photopolymerized 

acrylic or polyurethane matrices [91]. Miniaturization of ISEs opened up the 

possibilities to integrate several technologies in one device, such as microfluidic 

platform [92]. 

An important problem in clinical analyses is the poor biocompatibility of ISE 

membranes that get in contact with biological liquids. For the majority of the 

membranes, an inflammatory effect on living tissues may be observed or the 

membrane may lose its functionality because of protein adsorption. Plasticizer 

leaching, inherent to PVC-plasticized membranes should be avoided, and for this 

reason, the membrane composition should be adjusted to the type of the biological 

object under analysis. This way, the requirement of haemocompatibility for medical 

applications brought cellulose triacetate and polyurethane into use for biocompatible 

membrane matrices [93]. For example, polyurethane-based membranes are widely 

applied for implantable devices [94]. 

A popular research direction is the development of disposable sensors for 

clinical analysis. A wide range of wearable electrochemical biosensors for online 

monitoring of electrophysiological parameters is available. For example, the 

concentration of glucose in saliva is found to be correlated with the blood glucose level, 

and saliva analysis can be used for indirect non-invasive monitoring of the glucose 

level in blood, lowering the requirements to biocompatibility [95]. By now, many types 

of compact devices have been constructed by immobilization of the sensing 
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compounds into various polymers [96, 97], on textile support [98], paper support [99] 

and even in a form of tattoo-based sensors [100].  

Another perspective for modern ISE is switching from traditional plasticized 

PVC membranes to plasticizer-free ones. This approach aims to eliminate the main 

problems of the plasticized PVC, i.e. plasticizer leaching and polymeric matrix 

degradation. The requirements the polymer should follow are in this case the same as 

those for the conventional membrane matrices: low Tg and resistance of the polymer 

and high solubility of the active sensing components in the membrane phase. In this 

area, remarkable results were demonstrated with various acrylate co-polymers by the 

group of Heng and Hall [101, 102]. They investigated the influence of the monomer 

content on the Tg and the influence of the molecular weight on the properties of the 

acrylate co-polymers. They could come up with sensor membranes that do not require 

the use of any plasticizer (or only at the low level of 10%). It was shown that 

copolymers containing more than 80%  wt of n-butyl acrylate yield membranes with Tg 

below −20◦ C and allow obviating the need of the plasticizer. 

 

1.2.7. Multisensor systems 

Conventional ISEs often exhibit a high sensitivity towards several species at a 

time. There is very little chance for absolute selective complexation of one particular 

type of ions. This property is called cross-sensitivity. Moreover, the analytical objects 

under study often contain neutral species that can influence the sensor response 

towards ionic species. When analyzing multicomponent samples with ISE, the 

response function cannot be modelled with satisfactory precision using the traditional 

Nikolsky-Eisenmann equation. The problem of poor selectivity of a single sensor can 

be potentially solved with the use of multisensor approach. It consists of merging 

several sensors into an array and processing the response of this array by means of 

multivariate data analysis tools. This way, the data – the electrochemical signal – 

represent a kind of “fingerprint” of the analyzed multicomponent solution. This 

fingerprint can be processed further with various chemometric tools in order to derive 
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qualitative and quantitative information about the sample. Another important idea 

behind the development of multisensor approaches can be formulated as follows. 

While most of the complex quality parameters of a sample are not correlated with the 

content of a single chemical compound, a robust and reliable correlation with such 

parameters can still be found when multiple chemical compounds (groups of 

compounds) are being considered simultaneously. The elucidation of the detailed 

qualitative and/or quantitative composition of the sample may consume a lot of time 

and efforts and may still not produce the desired result. The multisensor arrays use 

the integral characteristics of the sample (e.g. its identity, such as belonging to a 

particular class of other samples, its taste attributes, toxicity (safety) or potential 

harmfulness of the sample for biota) as the output data instead of the information on 

the content or presence of a particular compound. The relative simplicity of the 

approach boosted numerous applications of sensor arrays in the food industry [103], 

manufacturing processes control [104], etc. When multisensor systems are aimed at 

evaluation of taste and quality parameters of food products, beverages and 

pharmaceuticals, the methodology is called “electronic tongue” (ET), and it has been 

a field under constant development since the mid 90’s [11, 105-108].  

The traditional way of assessing the quality of food products is organoleptic and 

it is performed by descriptive sensory panels. It is well-known that taste is not directly 

correlated with the chemical structure of the constituents, but it is based on five basic 

taste features: sweet (taste of sucrose), sour (flavor associated with citric acid), salty 

(taste associated with sodium chloride), bitter (taste elicited by caffeine). The fifth one, 

umami, represents “taste intensity”. Umami receptors can be stimulated by, for 

example, glutamic acid. The resulting taste of the product is not just a superposition of 

these parameters, and, for example, the bitter taste of certain substances can be 

sometimes masked by the presence of sucrose. The sensitivity of the receptors differs 

in a wide range from person to person and depends on external factors, such as 

temperature, health condition etc. These circumstances complicate the objective 

perception of taste even within a well-trained sensory panel, so the results of routine 

determination are often biased. The evaluation of the taste of pharmaceutical has even 
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more difficulties due to the ethical implications associated with a sensory panel test of 

the substances that may have various health effects. 

The concept of “electronic tongue” (ET) consists of the evaluation of taste 

descriptors through mathematical models relating the response of a sensor array with 

target sample quality parameters (e.g. taste descriptors). The cross-sensitive sensor 

array intends to mimic the global selectivity concept, which assumes that every single 

sensor is not required to have specific interactions with the analyte [109], but should 

have a response towards several components of the sample simultaneously. The 

analysis of real samples by means of multisensor system is preceded by a “training” 

step where a set of samples with known characteristics (e.g. available from traditional 

sensory panel) is analyzed [110-113] and a regression model relating sensor 

responses with these parameters is constructed. Once the calibration is done, the 

mathematical model can be employed further to predict the target parameters in new 

samples based on the response of the multisensor system. ET may act as a 

complementary instrument to sensory panels in order to minimize their work load in 

routine analysis. In case of pharmaceutical samples using the ET is aimed to substitute 

human sensory panels completely. At the moment, there are numerous applications 

of ET described in the literature for the analysis of food products, beverages and 

pharmaceuticals  [106, 112, 114, 115].  

In spite of the name “electronic tongue”, the concept of cross-sensitive sensor 

arrays has found many applications far beyond the taste evaluation task. The 

multisensor approach allows for an elegant handling of complex analytical problems, 

like e.g. circumventing selectivity limitations of individual sensors. As a nice example 

of such advantage, one can consider the work in references [63, 116] addressing the 

quantitative analysis of individual lanthanides in their mixtures in aqueous solutions. 

Being neighbors in the periodic system of elements, lanthanides have similar 

electronic structure and thus very similar chemical properties. The determination of 

one particular lanthanide in the presence of others is a challenge for certain industrial 

applications (like e.g. analysis of spent nuclear fuel) which is hardly addressable by 
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using a conventional potentiometric sensor with one ionophore. It was shown that 

sensor arrays based on potentiometric membrane electrodes containing various 

ligands adopted from liquid extraction can effectively resolve lanthanide mixtures 

providing information on individual metal contents.  

Another interesting application field for multisensor systems is the analysis of 

complex media where individual sensors fail due to the large number of interfering 

species. A very representative example [117] is the quantification of metal content in 

sea water, where a multisensor system allows simultaneous determination of Cu2+, 

Zn2+, Cd2+ and Pb2+ in mixed buffered solutions at nanomolar level. Another example 

is the monitoring of industrial fermentation processes where numerous factors 

(presence of microbial population, specialized conditions, large number of interferents) 

hinder the application of individual selective sensors. This task can also be 

successfully accomplished with various sensor arrays, e.g. potentiometric sensor array 

can be used for automated on-line control of a fermentation process in a flow-through 

mode [118]. 

Within the last decade, a number of authors have considered the integration of 

sensor arrays into miniaturized devices to supply the needs of clinical analysis. For 

example, in the study in reference [119], flow injection was complemented by a 

multisensor approach in a “lab-on-a-chip”  device. Also, the concept of sensor arrays 

as an alternative to more expensive instruments remains very popular for industrial 

process control. For instance, it can be advantageously used for waste water analysis 

or fermentation monitoring [104, 120]. Their low response time and the fast recovery 

of the sensor membranes make sensor arrays very useful for in-line monitoring 

procedures [121, 122]. 

Finally, the majority of the environmental applications of multisensor arrays is 

devoted to the analysis of natural waters [123, 124]. The main challenge today consists 

of the development of rapid test methods using compact devices for on-site 

measurements  [125, 126]. Integral quality parameters that cannot be directly related 

to the presence of a single particular chemical substance in a sample can also be 
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predicted from the multisensor system response, like e.g. chemical oxygen demand 

[127] or toxicity in terms of bioassay [128].  

 Statement of purpose 

Potentiometric analysis with polymeric membrane ISEs is a rapidly growing 

research field, due to the numerous advantages of this method. Most of the studies 

nowadays are focused on lowering LODs, improving robustness, lifetime, and 

optimizing sensor performance in complex solutions.  

This manuscript describes three novel approaches to the development of 

polymeric membrane sensors in order to extend the analytical capabilities of the 

method. In the first part, the possibility of Raman transduction of analytical signal for 

ISE membranes is studied. The second part is devoted to sensor arrays based on 

ionophore-free membranes and the third section is a feasibility study of a multi-

ionophore sensor array. 

 

1.3.1. Raman transduction for ISE membranes 

Raman spectroscopy can be employed for the analysis of aqueous solutions 

and for the determination of ionic species. There are numerous applications of this 

technique reported, ranging from the exploration of chemical reactions (e.g. 

disproportionation, hydration) to the monitoring of the content of ionic species [129-

131]. Obviously, some of the ions, e.g. monoatomic metal cations, have no vibrational 

modes and cannot be quantified with Raman directly. This issue can be circumvented 

using an indirect quantification procedure where the spectral signature of a reagent 

upon the interaction with the ion is registered [132],[133]. This approach, however, 

requires an additional step of preparation/titration of the sample solution. A possible 

way to simplify the analytical procedure is the micro-Raman investigation of a reagent 

immobilized in a solid matrix. The composition of a typical polymer plasticized ISE 

membrane not only allows traditional electrochemical transduction but also enables 

the readout of spectroscopic information. 
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In this thesis, we propose a novel technique for the ion quantification at the ISE 

polymeric membrane surface using micro-Raman spectroscopy. The idea behind 

Raman transduction is that the Raman spectrum of the ligand (ionophore) at the ISE 

surface will evolve upon the formation of a complex with the target analyte. This 

evolution could then be correlated with the analyte concentration. The advantage of 

micro-Raman is the possibility of analyzing micro volumes of liquid samples – 

something unusual for conventional ISEs. Taking into account all the benefits of 

polymeric potentiometric sensors, this combination of ISE membranes with micro-

Raman for the analysis of microliter sample could potentially be a very promising 

analytical approach.  

 

1.3.2. Ionophore-free sensors 

The main components of polymeric membranes are a polymer, a plasticizer, a 

lipophilic additive and an ionophore. Ionophores have always been developed to reach 

the highest possible selectivity [52]. The design of a new ligand, or its selection for the 

particular analytical task, requires significant time and efforts. Moreover, the 

characteristics of ionophores can hardly be predicted beforehand with theoretical 

calculations since they depend on a number of complex factors such as the 

composition of the membrane matrix and the stoichiometry of the ionophore-ion 

complex. The sensitivity and selectivity parameters of an ionophore and its behavior 

in the presence of interfering ionic background (or organic compounds, etc.) can only 

be analyzed in real-world conditions [53]. For this reason, apart from the synthesis 

itself, ionophore development includes the full cycle of fabrication of the ISE and the 

examination of the sensor performance.  

One of the possible answers to this challenge is a multisensor approach. An 

array of cross-sensitive sensors combined with multivariate calibration tools may, 

under certain conditions, compensate for the insufficient selectivity and interferences 

typical of individual sensors. It makes possible to get reasonable analytical information 

about multicomponent analytes [106, 134]. Cross-sensitivity effects can also provide 
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better selectivity and a lower LOD than individual selective sensors [135, 136]. 

Ultimately, this approach suggests that ionophore-free sensors can provide a way for 

selective ion determination. Traditionally, ionophore-free sensors were used for the 

determination of the complex formation constants [137] or the investigation of lipophilic 

additives performance [46, 48, 138]. However, ionophore-free sensors may act in the 

sensor arrays as part of these systems, facilitating the cation or anion content analysis 

[114, 139-141].  

In the absence of an ionophore in the membrane, the sensor selectivity is much 

more affected by the lipophilic additive and plasticizer. The contribution of plasticizers 

to the membrane selectivity is complex and not fully understood yet. A well-known 

influencing factor is the plasticizer polarity, usually described in terms of the influence 

of the medium with a certain dielectric constant value. Besides, some of the neutral 

donor groups in a plasticizer molecule may act as complex formation centers and thus 

compete with the ionophore [43]. The combination of plasticizer and lipophilic additive 

provides an individual response pattern for each membrane composition. However, 

these effects are usually masked in traditional ISEs by the overwhelming power of the 

ionophore. 

The idea of this part of the study is to explore whether or not it is possible to 

attain potentiometric selectivity without using an ionophore in sensor membranes. In 

this case, selectivity is governed by target ion hydrophobicity/lipophilicity, ion-

exchanger and solvent-plasticizer. A multisensor approach allows for the simultaneous 

application of sensors with different membrane compositions. This gives a good 

chance to reach a certain selectivity, even without special ligands, by means of a 

simple analytical procedure. Ca2+-Mg2+ solutions were selected as a case study to 

check the viability of the proposed approach, as the Mg2+ cation exhibits a strong 

interference by Ca2+ while being analyzed in mixtures [142]. The performance of the 

ionophore-free sensor array with varying cation-exchanger and plasticizer was 

explored in the determination of individual ion concentrations in mixed aqueous 

solutions containing both Ca2+ and Mg2+ cations. 
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1.3.3. Multi-ionophore ISE membranes 

Due to the similarity of the operating principle of liquid extraction and ISEs, the 

extracting agents were extensively used for liquid ion-exchanging membranes [143]. 

The essential process in these two analytical methods is the formation a complex 

between an ion and an ionophore/extracting agent. This similarity led to the fact that 

some extracting agents are employed as ionophores for polymeric plasticized ISEs 

[63, 144, 145]. This adoption of ligands from liquid extraction for sensor construction 

allows skipping the laborious procedure of choosing and designing an appropriate 

ionophore. The performance of the extraction criterion – the distribution ratio (D) – is 

equal to the ratio of the analyte concentration in each of the immiscible phases: organic 

(Corg) and aqueous (Caq) (Eq.16). 

org

aq

C
D = 

C
 (Eq.16) 

The efficiency of the extraction process, as well as the ISE response, strongly depends 

on the stability of the ligand-ion complex. That is why the distribution ratios are often 

in a good agreement with selectivity series of the corresponding ISEs [144]. 

Nevertheless, one should not make it a rule, since additional factors, such as ionic 

mobility in the membrane media, should be considered for ISE selectivity. 

The combination of several extracting agents may lead to synergetic effects, i.e. 

a non-additive increase in the performance of the system. This type of effect was 

successfully employed in the field of spent nuclear reprocessing, yielding simplified 

but effective extraction procedures [146-148]. One can assume that similar behavior 

with a significant deviation from single-ionophore selectivity/sensitivity patterns can be 

expected for polymeric sensor membranes containing a mixture of ionophores. The 

idea of the third part of this study is to check this assumption and to investigate sensor 

membranes combining two or more ionophores in order to compare them with single-

ionophore sensors. Introduction of several ionophores into sensor membranes is an 

interesting way to govern cross-sensitivity, which is needed for multisensor systems. 
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Until now, to our knowledge, no study was reported on polymeric membrane 

sensors with ionophore mixtures. However, a similar approach has been previously 

implemented in different studies, dealing with detector miniaturization for ion 

chromatography [149, 150], development of voltammetric sensors [151, 152], 

constructing a pseudo reference potentiometric sensor for mixture analysis and 

investigation of complex stability constants [153]. As a case study to test the suggested 

approach, mixtures of rare-earth elements were chosen since their chemical behavior 

is very similar. The selectivity issue is also very crucial for the determination of 

individual cations with a multisensor system.  
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CHAPTER 2. Feasibility study of Raman transduction 

for polymeric ISE membranes 

One of the perspective directions in sensor technology is presented by multi-

transduction platforms, i.e. combining several principles of the analytical signal 

transduction within one sensor membrane. This type of approach may – apart from 

obtaining the complementary quantitative information – contribute to a better 

understanding of the processes underlying the analyte detection.  

In this chapter, we propose Raman transduction of the analytical signal provided 

by the polymeric sensor membrane, which is normally used for potentiometric sensors. 

The goal is to relate the evolution of the Raman spectra acquired on the membrane of 

polymeric sensors in contact with sample solutions containing a given ion. The 

feasibility study of this approach was performed using the PVC-plasticized membrane 

containing N2,N2,N9,N9-tetrabutyl-1,10-phenanthroline-2,9-dicarboxamide as the 

ionophore and Cd2+ as the analyte cation. The procedure includes the selection of the 

membrane components and spectral acquisition parameters, spectral data 

preprocessing and interpretation of the membrane spectral signature upon the 

interaction with Cd2+ cations. The analysis of the membrane spectra was performed 

after interaction with the set of samples containing Cd2+ in the 10-4 – 10-2 M 

concentration range. PLS regression was used on the acquired data to provide a 

quantitative estimation of the metal content in the sample.  

 Raman spectroscopy 

In very broad terms, spectroscopy consists in the measurement of emission, 

absorption, fluorescence or scattering of electromagnetic radiation upon its interaction 

with matter. Vibrational spectroscopy considers the characteristic energy transitions 

which are associated with the nuclear motion of a molecule, namely vibrational or 

vibrational-rotational states for gases. The frequency of vibrational transitions (1011–

1014 Hz) corresponds to 20–4000 cm-1 range. Molecular vibrations can be related to 

the changes in the chemical bond length, corresponding to stretching modes (ν), 
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bending modes (δ), and torsional modes. The main types of molecular vibrations are 

depicted in Fig. 2.1. A vibrational spectrum is basically a combination of all vibrational 

modes of the functional groups of a molecule, and thus every molecule has its unique 

‘fingerprint’. This fact allows a qualitative analysis of various samples using extensive 

spectral databases [154-156].  

 

 

Figure 2.1. Types of fundamental vibrations exemplified with the -CH2- group. 

 

 Infrared and Raman vibrational spectroscopy are very popular analytical 

methods. These techniques are widely applied for studying chemical bonding, 

molecule geometry, kinetics of chemical reactions, complexation, etc. [157]. Infrared 

spectroscopy consists of the observation of molecular vibrational transitions, caused 

by absorption, reflection or emission of the resonant energy by the sample. Modes that 

are active in the IR spectrum correspond to changes in the dipole moment of the bond. 

Raman scattering is complementary to IR and it is associated with inelastic scattering 
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of light. The Raman-active modes involve a change in the polarizability of the molecule. 

In this section, we will first recap the principles of Raman scattering before introducing 

the Raman micro-spectrometer and discussing its applications in analytical chemistry. 

 

2.1.1. Principle of Raman scattering 

The scattering of the radiation almost completely occurs without any energy change 

when the particle radius is less than 1/10 of the radiation wavelength (which is true for 

most of the molecules). This type of scattering is called elastic or Rayleigh scattering. 

Only a very small part of radiation scatters in an inelastic way (about 1 x 10-7) and this 

phenomenon is called Raman scattering [158]. Depending on the vibrational energy 

state of the molecule, photons can either lose or acquire energy upon scattering. It is 

called Stokes and anti-Stokes scattering, respectively (Fig 2.2.). The Anti-Stokes 

scattering is weaker than its Stokes counter-part, since only a small fraction of the 

molecules are in the excited vibrational state. Nevertheless, in some cases, it may be 

also used for analytical purposes, for example, if the sample exhibits fluorescence 

[159]. In Raman spectroscopy the wavelength shift with respect to the monochromatic 

radiation of the source is studied and this energy shift provides information about the 

molecule structure. 

 



49 
 

 

 

 

Figure 2.2. Energy diagram showing the Rayleigh and Raman scattering processes. νi 

– incident light frequency, νs – scattered light frequency, hνt – transition energy, h – 

Planck constant. 

Unlike for IR radiation, the radiation energy in the visible range is potentially 

sufficient to induce deformation of an electron cloud, that is to say a deformation in the 

electronic density of the covalent bond. This leads to the selection rule for Raman 

vibrational transitions which refers to molecular polarizability change. For instance, 

molecules containing highly polarizable π-electrons (aromatic systems, groups with 

double and triple bonds) have very intense bands in Raman spectrum. Molecules 

possessing a center of symmetry are subjected to so-called rule of mutual exclusion, 

stating that, vibrational mode for the same group of atoms would be either Raman or 

IR active, but not both [160]. For example, ν8a and ν8b modes in centrosymmetric 

benzene at 1600 cm-1 are Raman active but not IR active, since displacements related 

to C…C stretching do not cause changes in the dipole moment. Introducing a 

substituent into the benzene ring destroys the symmetry of the aromatic system, and 

thus these modes become IR-active. 

Since the number of inelastically scattered photons is extremely small 

compared to Rayleigh scattering, cross-section of a non-resonant Raman scattering is 

for example 10 orders of magnitude smaller than that for fluorescence [161]. For this 

reason, in Raman spectroscopy, radiations emitted and detected are in the visible 

range and the incident light should be monochromatic and frequency-stabilized to 

allow for reliable quantification considering the low intensity of Raman-scattered 

radiation. For this reason, laser sources are used for Raman spectroscopy with the 

excitation wavelength (λ) ranging from UV to near-infrared. The intensity of Raman 

scattering is proportional to λ-4. Thus, all other conditions being equal, using an UV 

laser with λ = 325 nm is 7 times more efficient than using the green (λ = 532 nm) one. 

However, spectra acquisition with lasers of lower wavelength is often plagued by 

background fluorescence which imposes a compromise to be found for a particular 

task and experimental conditions.   
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2.1.2. Raman micro-spectroscopy 

The combination of Raman spectroscopy with confocal microscopy has 

significantly broadened the application range of the technique. Micro-Raman simplifies 

sample preparation and has now taken the lead in non-destructive analysis by means 

of vibrational spectroscopy [162]. There are two main types of detectors used in the 

analytical instruments: single-channel and multi-channel. Single-channel detectors 

allow acquiring one frequency at a time. Nowadays, mainly multichannel charge-

coupled devices (CCD detectors) are used in Raman spectrometers, allowing for 

simultaneous spectra acquisition at all the frequencies [159]. Typical dispersive micro-

Raman set-up is represented in Fig. 2.3. The sample, which is fixed to the scan table, 

is irradiated by a focused laser beam. The scattered light is collected through a lens 

before it passes through an optical filter to remove Rayleigh scattering. It may be an 

edge filter (filtering out all the frequencies below a certain wavelength) or a notch-filter 

(transmitting Raman signals while blocking the incident laser beam). The scattered 

beam passes through a confocal pinhole that restricts the beam diameter. Then, a set 

of mirrors drives the light onto a grating that diffracts the beam into multiple rays of 

different frequencies. These rays are oriented towards the multichannel detector for 

intensity measurement. The information received by the detector is transformed into 

spectral information, i.e. signal intensity (counts per second, or arbitrary units) as a 

function of wavenumber (cm-1).  

The acquisition of a Raman spectrum depends on several parameters. The 

acquisition time consists of the exposure time multiplied by a number of accumulations 

(scans). Increasing the exposure time leads to higher spectral intensity as more 

photons are detected. However, CCD detectors have a saturation level corresponding 

to the maximum number of photons that can be detected at the same time. The 

spectral quality can also be improved by accumulating a certain number of scans. 

Thus, the noise level can be significantly decreased by averaging over the several 
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scans. Signal to Noise Ratio (SNR), regarding the signal intensity and noise level, is 

increased by a factor n , with n the number of scans.   

 

Figure 2.3. Scheme of a confocal micro-Raman set-up. 

 

 

2.1.3. Applications of Raman spectroscopy 

As mentioned above, IR and Raman are complementary techniques, and they 

can be used either alone or together in order to obtain a complete information about 

the sample. However, when it comes to aqueous solutions, Raman has a big 

advantage as it is not affected by H2O and CO2 that give very intense bands in IR 

spectrum. In addition, the relatively easy  Raman spectra acquisition procedure makes 

this technique especially useful for the analysis of polymers, composite materials [163] 
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and food products [164]. The non-destructive and robust spectra acquisition allows for 

detection of explosives [165], identification of drugs and counterfeit medicines [166], 

which can be performed even through the packaging of an analyzed object [167]. Many 

studies were devoted to the identification of cultural heritage artefacts, including 

analysis of pigments, authentication, ageing and degradation [168-170]. Beyond these 

applications, one should mention the fiber optics instrumentation, which came to the 

fore in 80’s, boosting the interest in spectroscopic “in field” and “in vivo” analysis [171-

174]. The main benefits of micro-Raman are exploited in cell culture analysis [175-

177]. Biological objects of different scales can be analyzed, from plant and mammal 

tissues [178-180] to single-cell and bacteria [181, 182]. Various imaging techniques, 

in combination with confocal Raman spectroscopy, yield depth-resolved biochemical 

information with sub-micron spatial resolution, and challenge microscopic techniques 

relying on fluorescent labeling. Broad possibilities of the method expanded further to 

in vivo analysis of living cells [183], forensic body fluids analysis [184, 185] and medical 

diagnostics [186-189].  

The intensity of Raman spectral bands is proportional to the counts of the 

number of scattered photons. Under good reproducibility for spectra acquisition, a 

reference band can be chosen for the calibration. However, these assumptions can be 

considered only for relatively simple cases, such as analysis of monocomponent 

solutions. The spectral signature of multicomponent samples may contain overlapping 

vibrational modes of several molecules. Besides, changes in dipole moment and 

polarizability of a molecule are affected by their chemical environment (e.g. by 

solvents), meaning that the corresponding band intensities may vary for different 

solvents and interferents [190]. To establish the correlation between sample spectral 

signature and analyte concentration, multivariate calibration should be used (see e.g. 

[191]).  

The main advances in Raman spectroscopy are towards sensitivity 

enhancement. The 70s marked a breakthrough in the history of the technique, as 

Surface-Enhanced Raman Spectroscopy (SERS) was developed [192, 193]. This 
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technique is based on the surface plasmon resonance phenomenon, for which the 

irradiation of roughened surfaces at certain frequencies causes the excitation of 

localized surface plasmons and, accordingly, enhancement of the electric field. Silver, 

gold, or copper substrates are basically used as plasmonic surfaces since their 

plasmonic frequencies are in the visible range. The enhancement mainly depends on 

the surface roughness and topography which may be achieved by mechanical or 

electrochemical roughening and nanolithography techniques [194, 195]. For 

nanostructured substrates, signal enhancement up to 1012 can be achieved.  

One of the most impressive technological achievements is Tip-Enhanced 

Raman Spectroscopy (TERS), which combines the benefits of Atomic Force 

Microscopy and SERS at a time [196, 197]. Additionally, techniques such as coherent 

anti-Stokes Raman spectroscopy (CARS)[198], spatially offset Raman spectroscopy 

(SORS)[199]  pushed the boundaries of resolution far beyond the diffraction limit.  

 

 Multivariate data analysis techniques 

In general, analytical measurements are aimed at revealing the functional 

properties of the system and are divided into two main groups: qualitative and 

quantitative analysis. The qualitative task in a common case is classification, e.g. 

assignment of the sample to one or more groups on the basis of its (spectral) 

properties. Quantitative analysis consists of the determination of the concentration or 

any other numerical property of a sample. In the univariate case it is performed by 

classical calibration, for which the measured signal x is related with the concentration 

or a functional property y. Direct calibration can be represented by (Eq.17):  

x = py + e  (Eq.17) 

where p defines the coefficients for y, and e represents the error. 

In practice, inverse calibration is usually performed, when the concentration y is 

defined as a function of the observation x, b is the coefficient vector for x and the error 

f is associated with the measurement of concentration (Eq.18): 
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y = bx + f  (Eq.18) 

The majority of analytical measurements in spectroscopy, chromatography, etc. 

characterizes each analyzed object by a large number of variables instead of only one. 

Such multivariate data, and multivariate calibration, allow solving most of the problems 

of univariate calibration, such as when the signal of the target analyte is overlapped 

by some interfering species. Multivariate data can be represented in a matrix. The 

values of the analytical signal from n samples at m variables comprise the elements of 

the data matrix X (n x m). Thus, each row corresponds to the 

spectrum/chromatogram/voltammogram of one particular sample (Fig. 2.3.) 

 

 

Figure 2.3. Representation of the spectral data in matrix form. 

 Processing the multivariate chemical data can be performed by means of 

various chemometric techniques. The term “chemometrics” was used for the first time 

in 1974 by S. Wold, by analogy with “econometrics” employed in the field of economy 

using multivariate statistics to derive descriptive and prognostic economical models. 

According to the IUPAC definition, chemometrics is “the science of relating 

measurements made on a chemical system or process to the state of the system via 

application of mathematical or statistical methods” [200] and it arose from the need to 
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explain the complex phenomena in chemistry. In analytical chemistry, the application 

of chemometric methods involves chemistry, mathematics and statistics for solving the 

problems of qualitative and quantitative analysis. Consequently, the goals of 

chemometrics include extracting the most relevant information from chemical data, 

appropriate representation of these multivariate data, as well as experimental design 

allowing yielding meaningful data. 

2.2.1. Principal component analysis (PCA) 

Dealing with multivariate data is often complicated by the fact that it cannot be 

presented visually in the 3-dimensional space without loss of useful information. 

However, reducing the dimensions of the initial dataset may help to understand the 

data structure and provide its visual representation. The basic technique employed for 

the visualization and exploration of multivariate data is Principal Component Analysis 

(PCA) [201, 202]. Principal Component Analysis aims at reducing the dimensionality 

of data. It is performed by calculating the new variables, principal components (PCs), 

which are the linear combinations of the initial variables. The PCs are basically the 

axes in the new latent variable (LV) space, to which the original data is projected. 

Considering the spectral data containing n samples and m variables (for example 

Raman shift), each sample can be represented as a point in m-dimensional space, 

with m being the number of variables of the spectra. As a result, m variables of the 

initial X matrix are projected into the space of k latent variables. For example, if the 

number of significant PCs is 2, each sample from the m-dimensional spectral dataset 

is projected onto 2-dimensional space (Fig. 2.4.). 
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Figure 2.4.. The illustration of the projection of multidimensional spectral data into the 

2-dimensional space. 

The first PC is drawn in the direction corresponding to the maximal variance in 

the initial dataset. The second PC is drawn in the next maximal variance direction 

which is orthogonal to the first PC. This procedure continues until a sufficient amount 

of variance in the data is “explained”. During PCA, the original data matrix X (n samples 

x m variables), is decomposed into the product of two new matrices: scores and 

loadings (Fig. 2.5.):  

  

Figure 2.5. The schematic representation of data decomposition with PCA.  

T (n x k) is the scores matrix, P (k x m) is the loadings matrix and E (n x m) is 

the residuals matrix. k is the number of PCs in decomposition. PCA decomposition of 

the X matrix can be represented as a sum of k sets of scores and loadings vectors:  

=T T T T

1 1 2 2 k kX = t p + t p + ... + t pTP  + E +E  (Eq.19) 
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The scores T contain the information about the coordinates of the samples in 

the new LV space (Fig 2.6). In scores plots, the samples are positioned according to 

their similarity/dissimilarity in the original space. Although samples of the same type 

may form clusters in scores plots, PCA is not a classification algorithm.   

 

Figure 2.6. The scores plot from the PCA model built from the data matrix. The samples 

formed 3 clusters (grey, blue and red colors in the graph and data matrix, respectively).  

 The loadings matrix P reflects the relationship between the latent LVs and the 

original X-variables (namely the “weight” of each variable in the LV space). It also 

reveals the correlation between the initial variables and their contribution to the PCA 

model. The loading values for each particular PC often resemble the spectra of the 

pure components and can be compared to the reference spectra. As the origin of the 

bands within the original spectra is usually available, the examination of the “loadings 

spectrum” (loadings vs. wavelength) may allow for the structural interpretation of the 

data (Fig. 2.7). 

The components can be calculated using the Nonlinear Iterative Partial Least 

Squares (NIPALS) algorithm [201]. In this algorithm, each component is defined by the 

couple of vectors t and p and is calculated one after the other. The first couple of t and 
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p vectors for the scores T and loadings P matrices are calculated using the entire X 

matrix. The details are represented in Annex 1. 

 

Figure 2.7. The (a) raw spectral data vs. (b) “loadings spectrum”. 

 As said before, the first PC explains the maximum variance of the data, the 

second one the second highest variance and so on. The optimal number of PCs is 

chosen out of the total percentage of explained X-variance (normally above 90 %, 

however this particular number depends strongly on the particular data processing 

task and may vary significantly).  

The PCA itself is employed for the decomposition multivariate data in many 

chemical analysis fields, mainly for spectroscopic data. Besides, PCA serves as a 

“building block” for other chemometric techniques, such as e.g. PCR (principal 

component regression), SIMCA (soft independent modeling of class analogy).  
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2.2.2. Partial Least Squares (PLS) 

Inverse calibration allows an estimation of the analyte concentration from a 

multivariate response. The most popular method for this purpose is Partial Least 

Squares (PLS) regression [203]. PLS is especially useful when there is a high 

collinearity in the X-variables and when the number of predictors largely exceeds the 

number of observations (e.g. for spectroscopic data). The idea of PLS consists of 

establishing the relation between the matrix of predictors, X (e.g. absorbance values) 

and the matrix Y of variables to be predicted (e.g. analyte concentration). In the first 

step, both X and Y are projected into a new variable spaces using latent variables. 

Then PLS components are calculated in a way that the X-variance is maximally 

correlated with the variance in Y. Due to this procedure, only the X-variables correlated 

with target property in Y will receive significant weights for modeling.  

For n observations and k latent variables, simultaneous decomposition of X (m 

predictors (response channels) x n samples) and Y (n x a, n x 1 for the single Y-

variable) matrices is performed in the following way (Fig. 2.8):   

 

Figure 2.8. Schematic representation of the PLS regression. T (n x k) and U (n x 1) are 

X- and Y- scores, P (k x m) and Q (1 x k) are X- and Y-loadings, E (n x m) and F (n x 

p) are X- and Y-residuals, respectively.  
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 The decomposition aims to represent the original data in the new space of k 

latent variables. Latent variables (which are technically the axes of the new space, to 

which X and Y values are projected) are chosen so that they provide the maximum 

covariance between T and U.  

The PLS regression can be performed by means of various algorithms and 

NIPALS is the most widely used one [204]. The detailed algorithm is described in 

Annex 2. The implementation of PLS regression for quantitative analysis is a two-step 

approach. The first is the calibration step, or training. Calibration consists of model 

construction which is done with known values of X and Y. The obtained model should 

be properly validated in order to determine the optimal number of latent variables. The 

best option to do this is using an independent set of samples – test set, but very often 

cross-validation procedures are implemented. The second step is prediction. The 

calculated calibration model is applied for the prediction of unknown Y values from 

new X observations (Xnew) (Eq.20): 

=ˆ   newY X B  (Eq.20) 

The validation process is very important and normally it is at this step when the 

model is optimized with respect to the employed variables, potential outliers, 

preprocessing, etc. The main parameter to estimate the PLS model quality is the root 

mean square error (RMSE). RMSE has the Y variable units and can be calculated 

using the following equation: 


n

2

i, pred i,ref

i=1

(y -y )

RMSE = 
n

 
(Eq.21) 

where yi,pred – y value predicted with a model, yi,ref – reference y value (known 

concentration of the analyte), n – is the number of samples in the selected test set. 

The PLS model calculation is aimed to reach the lowest possible RMSE value in 

validation. 
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Another important parameter giving the information about the agreement 

between the explained variance of the data is correlation coefficient (R). The coefficient 

of determination, R2 can be used as an additional quality criterion for the PLS model. 

It is function of residual sum of squares (RSS), describing the deviation of the predicted 

yi,pred values from the reference yi,ref, and the total sum of squares (TSS) (Eq.22). 





2

i, ref i,pred
2 i

2

i, ref

i

(y -y )
RSS

R =1- =1-
TSS (y -y)

 (Eq.22) 

The samples for the test set should not present in the calibration set and should be 

distributed continuously over the whole range of Y-values. 

If the number of samples is small and an independent validation test set cannot be 

employed, cross-validation can be as mentioned above considered. In this case a part 

of the calibration set is left out of the model and then this part is used to assess the 

validation error. This step is then repeated for another combination of samples in the 

calibration and validation sets and the parameters are averaged all over the 

repetitions. The splitting of the samples into calibration and validation subsets can be 

made in several different ways: randomly, one by one (full cross-validation), by certain 

systematic segments, etc. As the same sample may be present in the validation and 

calibration sets for different repetitions, the results of the prediction performance 

assessment obtained in cross-validation are often overoptimistic. Model validation with 

an external test set is preferable, but it requires more samples which is not always 

available/economically reasonable.  

Variables importance in projection (VIP) values [205, 206] can be used for the 

estimation of the contribution of particular variables to the model: 

2

mi i

i=1
m

total

VIP     =

k

w SSY M

SSY k

 




 

 

(Eq.23) 
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where m is the variable number, M is the total number of variables, w2 stands for the 

squared elements of X-weights matrix, i is the PLS component number, k is the total 

number of PLS components and SSYi is the sum of squares of explained variance for 

the ith  component. SSYi and SSYtotal  can be calculated with regression coefficients and 

X-scores (Eq.24): 

2

i i i

total

SSY= b

SSY = 

T

i

2 T

t t

b T T
 (Eq.24) 

If the VIPm value for mth variable is bigger than 1, the variable can be considered as 

important. The optimal number of PLS components is normally chosen to achieve the 

minimum at the “RMSE vs number of components” curve. The validation results, apart 

from the confirmation of the model relevance, can give information about the 

importance of variables, interrelations between variables, experimental errors etc.  

Nowadays PLS regression is a common tool in the arsenal of chemometrics 

and the variety of PLS applications described in literature is really huge. The data from 

electrochemical instruments, molecular and atomic spectrometers in various 

modalities and chromatographic separations with various detection types can be 

successfully processed with PLS. Many studies are aimed at a modification the data 

preprocessing and variable selection techniques in order to improve the predictive 

capabilities of the developed models [207, 208]. 

 

2.2.3. Data preprocessing 

Multivariate calibration model requires not only optimization of the model 

parameters, but also data preparation prior to building a model. Data preprocessing 

techniques are required to eliminate various undesirable features of the data: noise, 

baseline shift, unequal scaling, outliers, etc. 

In order to make the X and Y distributions symmetrical, the data should be 

centered prior to analysis. Mean-centering is performed by subtracting the column-
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mean value from each variable. Both Y- and X-variables are usually mean-centered 

prior to building a PLS model. Standardization, also known as scaling (dividing the 

values of each variable by the standard deviation for this variable) may be performed 

as well. It gives comparable variance to all the variables thus helping to avoid artificial 

highlighting of the variables with a larger numerical variance, which is not always 

associated with the modeled phenomena. Scaling is required when X-variables are 

measured in different units. Therefore, scaling is usually not recommended in the 

preprocessing of spectroscopic data. 

Many chemometric methods were mainly developed for spectral data treatment, 

and various preprocessing algorithms for baseline correction, smoothing and 

normalization exist for these data. Baseline curvature in the acquired spectra can be 

corrected, by for example the Asymmetric Least Squared algorithm (AsLS) [209, 210]. 

The elimination of the baseline shift effects can be also performed by taking derivatives 

of the acquired spectra, using the Savitzky-Golay algorithm [211].  

A typical problem for spectral data is light scattering related to the nature of the 

sample and the experimental set-up. Such factors as morphological nonuniformity of 

the sample (e.g. in the spectroscopy of fibers) often lead to the data distortion and low 

signal-to-noise ratio. To compensate for these external non-chemical factors 

deteriorating the analysis precision, various spectral correction techniques were 

developed. Scattering correction can be performed by various preprocessing 

procedures. The most common ones are multiplicative scatter correction (MSC) and 

standard normal variates (SNV) [212]. The MSC technique is based on building a linear 

model (least squares regression) for the calculation of the coefficient describing the 

relationship between the xi and a chosen reference spectrum (for example, averaged 

over the batch) (Eq.25). 

i = + +i i ix a b x e  (Eq.25) 
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where x  is the average spectrum, ai the linear model parameters and ei the residuals. 

Then all the spectra in the batch (X matrix) are corrected by means of these bi 

coefficients, according to (Eq.26): 

MSC i i
i

i

−
=

x a
X

b
 (Eq.26) 

The SNV normalization algorithm [213] consists in centering and scaling of each 

spectrum by dividing it by the standard deviation in the intensity over the batch (Eq.27)

: 

 

-SNV i i
i

x


=

x
x  (Eq.27) 

where 
ix  is the mean value of the spectra intensity at a chosen wavelength i, and σ is 

the standard deviation of the xi value within the batch  

The selection of the best data treatment methods should be driven by the sample 

nature, experimental set-up and the type of the acquired data. Optimization of the 

preprocessing algorithm is especially important for the PLS prediction performance, 

as the spectral intensity may vary drastically in the case of a non-uniform sample 

thickness.  
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 Experimental 

The main part of investigation of complexation-induced evolution of organic 

ligand Raman spectral signature was performed using N2,N2,N9,N9-tetrabutyl-1,10-

phenanthroline-2,9-dicarboxamide (PDAM) as a ligand. This ligand was previously 

shown to be capable of transition metal cations binding, and corresponding plasticized 

polymeric membranes yielded Nernstian sensitivity towards Cd2+ ions in aqueous 

solutions [214] (Fig. 2.9.):  

 

Figure 2.9. Schematic representation of the PDAM-Cd2+ complex (crystal structure), 

according to [214]. 

 

The PDAM-Cd2+ complex has 2:1 stoichiometry, and complexation involves 3 

out of the 4 available oxygen atoms of the carbonyl groups and 4 nitrogen atoms of 

PDAM [214]. However, one should expect that the described stoichiometry of the 

complex will be sterically hindered and not necessarily remain the same in the sensor 

membrane phase. 
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2.3.1.  Membrane preparation 

The conventional PVC-plasticized membranes contain the high molecular 

weight poly(vinyl chloride) (PVC) (33 wt%), a solvent-plasticizer (66 wt%), a lipophilic 

additive, and an ionophore (ligand). In this study, 2-nitrophenyl octyl ether (NPOE) was 

used as a plasticizer. Potassium tetrakis-(4-chlorophenyl)borate (KTClPB) in a 

concentration 10 mmol/kg was employed as a lipophilic additive and freshly distilled 

tetrahydrofuran (THF) was used as a solvent for the membrane components during 

the synthesis.  

All membranes were prepared using the standard procedure: all the weighed 

components were placed in a glass beaker filled with 5 mL of solvent and kept under 

stirring. After complete dissolution of the components, the mixture was poured into flat-

bottomed Teflon beaker and left for 24h until complete evaporation of the solvent. 

Then, disks of 7 mm diameter were cut from the obtained film.  

The membrane compositions in this study were different with respect to the 

polymeric matrix type, ionophore concentration and presence or absence of lipophilic 

additive. Three types of polymeric matrices were investigated: traditional PVC-based 

membranes (NPOE-1-3), the silicon rubber-based membrane (SR), and the 

plasticizer-free membranes prepared from acrylate copolymer (AC). Besides, three 

compositions containing only the polymeric matrix components (NPOE-0, SR-0 and 

AC-0, respectively) were employed as a reference for the estimation of the ionophore 

contribution to the sensor membrane spectra. The detailed membrane compositions 

are given in Table 2.1.  
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Table 2.1. Membrane composition. Mass of the components is given in wt%. 

Membrane type Polymer 
Plasticizer 

(NPOE) 

Lipophilic additive 

(KTCIPB) 
Ligand 

NPOE-0 33.5 66.5 - - 

NPOE-1 32 65 0.5 2.5 (PDAM) 

NPOE-2 29 59 2 10 (PDAM) 

NPOE-3 30 60 - 10 (PDAM-2) 

SR-0 85 15 - - 

SR 77 13 - 10 (PDAM) 

AC-0 100 - - - 

AC 90 - - 10 (PDAM-2) 

 

NPOE and KTClPB were purchased from Fluka (Switzerland). THF was 

purchased from Merck (Germany). The ionophores PDAM and PDAM-2 were 

synthesized by Prof. Dmitry Dar’in (Institute of Chemistry, Saint-Petersburg State 

University, Russia) according to the procedure described in [22].  

 

2.3.2. Spectra acquisition 

In order to record the Raman spectrum of the surface of the membrane, a 10 

μL drop of aqueous cadmium solution was placed on the membrane of 7 mm diameter 

and then covered with a coverslip glass (22 mm x 22 mm and thickness 0.13 mm), 

Menzel, Thermo Fisher Scientific). The overall scheme of the measurement set-up is 

given in Fig. 2.10. A fixed height of 1 mm was used to keep the optical path length 

constant. 

 

 

Figure 2.10. Principal scheme of the experimental set-up.  
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 In order to standardize the measurement conditions and to avoid possible 

kinetic issues related to the formation of ligand-ion complexes, a fixed cut-off time of 

5 min contact between the sample drop and membrane was set before spectral 

analysis. The membrane with the sample was irradiated with a laser beam. The laser 

spot diameter is equal 1.22 λ / NA, where NA is numerical aperture of the objective 

(0.7 μm for the 515 nm laser, with an energy of 8 mW at the sample surface). After 

focusing on the membrane surface, the Raman spectra were obtained using 15 

accumulations (2 sec each) in the 1000 – 1700 cm-1 wavenumber region. The spectral 

range for membrane investigation was reduced in order to minimize the analysis time, 

while keeping all the characteristic bands of interest in the investigated range. Three 

spectra acquired at different points on the surface of the membrane were registered 

and averaged for further processing in order to decrease the effects caused by manual 

focusing namely the intensity variation, so that the standard deviation of spectral bands 

intensity values within this 3-points set did not exceed 0.5 %. 

Between the measurements, sensor membranes were washed in distilled water 

for 2 minutes. The washing efficiency test is shown in the Fig. 2.11. It can be clearly 

seen that the bands of interest do not evolve over time (within 2 days).  

The Raman spectra were acquired with LabRam HR visible micro-Raman 

spectrometer (HORIBA Jobin Yvon, France), equipped with a charge-coupled device 

(CCD) detector (1024×256 pixels), 600 gr/mm grating and using the 100x objective 

(NA = 0.9) (Olympus). A solid state laser operating at λ = 515 nm was used as an 

excitation source for the membrane analysis. The spectral resolution was 2 cm-1
. 
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Figure 2.11. Membrane spectra acquired during the analysis (dotted red), after 

washing (blue) and in 48 h soaking in distilled water (dashed black): a) in the 200–

3200 cm-1 range; b) 1300 – 1750 range 
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2.3.3. Raman spectra of membrane components.  

Raman spectra of the pure solid ionophores were collected by the KBr pellet 

method (10 wt% of ligand). The laser spot size at the sample was about 1.1 μm. The 

spectra of ligands were obtained using 4*30 sec accumulations in the 1000 – 1700 cm-

1 region. This particular acquisition time was chosen as it provided the biggest 

signal/noise value. Further increase in the acquisition time led to the saturation of the 

detector, while reducing the acquisition time resulted in very high noise level.  

Raman spectra of the plasticizer were taken with the immersion objective 

(Olympus, NA = 0.9) on a 20 μL drop deposited at the concave glass slide. 

In order to study the relation between the membrane spectra and metal content 

in the sample solution, the set of aqueous Cd(NO3)2 solutions was prepared by serial 

dilution of a 1 M Cd(NO3)2 (Vekton, Russia) stock solution. The studied concentration 

range was 10-5 – 10-2 M and all the measurements were carried out at room 

temperature. The calibration of the Raman spectrometer prior to measurements was 

performed with a silicon wafer (the band at 520 cm-1 in the spectrum). 

 

2.3.4. Quantum-chemical calculations 

In order to interpret more thoroughly the membrane and the ligand spectra, 

quantum-chemical calculations of the optimal structures followed by harmonic 

vibrational analysis were performed (provided by V.Koverga, University Lille 1). All the 

calculations reported here were conducted using density functional theory (DFT) with 

the Gaussian 09 program package [215]. The hybrid meta-exchange functional M06-

2X from Truhlar’s group [216, 217] was employed together with Pople-type split-

valence triple-ζ basis set augment with polarization function 6-311G (d,p). Optimal 

geometry of the studied structure obtained in the gas phase was tested to be true 

minima by the absence of imaginary frequencies. One conformation was used for the 

vibrational analysis. An empirical scaling factor of 0.954 corresponding to the 
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employed level of theory was applied to the calculations of the harmonic frequencies 

[218]. 

 

2.3.5. Data analysis 

The results of Raman spectral measurements were arranged into a data matrix 

having samples in the rows and variables (wavenumbers) in the columns. Prior to the 

data analysis, each spectrum was preprocessed with baseline subtraction (AsLS 

algorithm) [209, 210] and Savitzky-Golay smoothing (zero derivative order, 9-point 

window and second-order polynomial)  

Since a manual focusing of the measuring system was performed for each 

measurement, choosing a reference band intensity and the subsequent normalization 

was required. Otherwise, the differences observed in the intensity of the spectral bands 

refereed to the polymeric matrix components can be way larger than the evolution of 

the relevant spectral bands within the calibration range. This means that the area of 

the sample under study might be different for each measurement, and thus the 

different amount of scattered light can result in varying spectral intensity. The reference 

band should have a constant relative intensity and shape in all the membrane spectra, 

so one of the bands assigned to the membrane matrix compounds (different for each 

membrane) can be chosen for normalization, similar to the normalization along the 

solvent bands.  

Fig. 2.12 shows the effect of the normalization of 5 spectra of the membrane 

NPOE-2 upon the interaction with Cd2+solutions. The band at 1350 cm-1 (ν(NO2) mode 

of the membrane matrix) was chosen as a reference, as it is unaffected by Cd2+ 

presence. In the Fig. 2.12 (b) the evolution of the bands in the 1420–1480 cm-1 related 

to the interaction with Cd2+ can still be observed, while the intensity of the bands 

assigned to the membrane matrix remains constant. 
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Figure 2.12. The spectra of the NPOE-2 membrane upon the interaction with 5 Cd2+ 

solutions of different concentrations. The preprocessing procedure included: a) 

baseline correction (AsLS algorithm); b) baseline correction (AsLS algorithm), 

normalization along the intensity of the reference band at 1350 cm-1. 

 

Principal component analysis (PCA) and partial least squares (PLS) regression 

were employed in order to establish qualitative and quantitative relationships between 

the Raman spectra and metal content in the sample solution. Data preprocessing and 

PLS modelling were done in Matlab (The MathWorks, USA).  
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 Results and discussion 

2.4.1. Membrane components spectra 

In order to estimate the bands of interest appearing in the membrane spectral 

signature, the spectra of membrane components (ionophore (Fig. 2.13-14), plasticizer 

(Fig. 2.16), and a lipophilic additive (Fig. 2.17) were taken. The 1000 – 1700 cm-1 

spectral range (the group frequency and a part of fingerprint region) was chosen for 

this study. The spectral range of 2850 – 3150 cm-1 contains overlapping bands 

corresponding to the C-H stretching modes from all the membrane components. As it 

seems impossible to estimate the contribution of each component to the membrane 

spectrum, this range was not used for the calibration. The bands below 1000 cm-1 were 

excluded as well due to the uncertainty in the multi-component spectra interpretation 

for the “fingerprint” region.  

As a first step, the spectrum of PDAM in the KBr pellet was registered. The raw 

PDAM spectrum in the 250–3150 cm-1 range is shown on the Fig. 2.13. 
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Figure 2.13. PDAM Raman spectrum (250–3150 cm-1). 
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A high level of fluorescence can be observed. Besides, the 2750–3100 cm-1 

region contains overlapping bands that can be attributed either to C–H of PDAM, PVC 

and NPOE. The interpretation of the bands in the fingerprint area (below 1100 cm-1) is 

complicated for the same reasons. However, zoom-in in the 1000–1700 cm-1 range 

and baseline removal using AsLS algorithm [209, 210] yields the interpretable 

spectrum. The assignment of the PDAM vibrational modes [219-221] was performed 

for the interpretation of the potential changes in frequencies and the band intensity 

observed upon cadmium binding (Fig. 2.14).  
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Figure 2.14. PDAM Raman spectrum (1000–1700 cm-1). The preprocessing procedure 

included AsLS baseline removal. 
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The assignment was done using the information available in [219-221] and 

using simulated spectra obtained from quantum chemical calculations (Fig. 2.15). 
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Figure 2.15. PDAM simulated Raman spectrum vs. experimental spectrum. 

Spectral band shapes and relative intensities of experimental and calculated 

spectra are in a good agreement. However, bands in the calculated spectrum are 

shifted compared to the experimental, due to the obvious difference in the conditions 

between theoretical study (in vacuum) and experimental study (in KBr pellet).  

The band position for the calculated and experimental results of the assignment 

are reported in Table 2.1. PDAM is a tetradentate ligand, thus oxygen atoms from 

amide groups (Amide I, 1638 cm-1) and nitrogen atoms from the phenanthroline ring 

are expected to be involved in the complexation [214], giving the main contribution to 

the changes in the spectra [61, 222]. Additionally, changes in the C…N vibrational 

mode (1548 cm-1) can be caused by involving the electron lone pair of the nitrogen 

atom into the structure of the complex. Besides, chelate formation can affect the whole 

phenanthroline system, similarly to 6-membered heterocycles possessing low density 

of polarizable electrons [223].  
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Table 2.1. PDAM spectrum bands assignment (ν: stretching mode, δ: bending mode). 

Raman shift, cm-1 
Assignment 

Simulated Experimental 

1037 1053 ν (C-C) Csp

2
 

1091 1111 δ (Csp

2
-H) in-plane 

1109 1138 ν (C-C) Csp

2
 

1164 1189 ν (C-N)amide (Amide III) 

- 1231 δ (Csp

2
-H) 

1231 
1252 

1274 
δ (C-H) twist 

 
[1]  for (CH2)n, n >4, 

1280 1296 ν (C-H) symmetric (-CH3) 

1303 1308 δ (C-H) wagging for (CH2)n, n >4 

1379 1402 δ (C-H)+ ν (C-C), Csp

2
[219] 

1414 1414 δ (Csp

2
-H) 

1427 1424 δ (C-H) scissoring + ν (C--N) phenanthroline 

1436 1446 δ (C-H) scissoring + ν (C-C),  Csp

2
 [220] 

1456 1454 ν (C-H) antisymmetric (-CH3) 

1463 1473 ν (C--N) phenanthroline 

1492 1497 δ (C-H)+ ν (C-C), Csp

2
 

1553 1548 ν (C-C ) +ν (C-N)phenanthroline 

1595 1584 ν (C-C), Csp

2
 

1610 1603 ν (C-C), Csp

2
 

1620 1619 ν (C-C), Csp

2 
 [224] 

1669 1638 ν (C=O) (Amide I) 
 

The raw spectrum of the plasticizer (o-nitrophenyl octyl ether, NPOE) is shown 

in the Fig. 2.16 (a). Bands in the 2800–3150 cm-1 range can be attributed to the C-H 

modes of the phenyl ring (3150 cm-1) and various fragments of the octyl substituent of 

the aliphatic chain (2850 cm-1). The assignment of the most informative bands in the 

1000–1700 cm-1 range is shown in the Fig. 2.16 (b). The most intense band in the 
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spectrum is assigned to the -NO2 group in the NPOE molecule (1350 cm-1). 

Furthermore, the very intense bands corresponding to the phenyl ring stretching 

modes can be observed. 
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Figure 2.16. Raman spectrum of the plasticizer NPOE. (a) – raw spectrum, 

250–3250 cm-1 range; (b) – after baseline removal using AsLS algorithm and 11-point 

Savitzky-Golay smoothing, 1000–1700 cm-1 range,. 
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The spectrum of the lipophilic additive KTClPB is shown in the Fig. 2.17. All 

bands of high intensity in this spectrum correspond to the phenyl ring stretching modes 

[225], except for the band at 728 cm-1, which can be attributed to νC-B mode. 
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Figure 2.17. Spectrum of the potassium tetrakis-(4-chlorophenyl)borate (KTClPB): a) 

raw, 250–3250 cm-1;  b) 1000–1700 cm -1 (baseline removal using AsLS algorithm, 11-

point Savitzky-Golay smoothing). 
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 Then the spectra of the PVC-plasticized membrane having the standard 

composition were taken. Typical ligand content in ISE membranes is around 1-2 wt%. 

In spite of the high intensity of highly characteristic bands of the aromatic ring 

stretching modes of PDAM and KTClPB, they are not expected to appear in the 

NPOE-1 membrane spectrum due to overlapping with the corresponding bands of 

NPOE and their relatively low content in the membrane. However, in the spectrum of 

the standard ISE membrane (NPOE-1), only minor differences with the NPOE-0 

(membrane without ligand) were observed, and the spectra in general were similar to 

the one of the reference (NPOE-0) (Fig. 2.18). For further investigations, it was decided 

to increase ligand concentration in all the membranes up to 10 wt% in order to observe 

the changes of the ligand bands directly. It can be seen in the Fig. 2.18 (blue color) 

that in this case the differences with the reference NPOE-0 are much more 

pronounced. 
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Figure 2.18. Spectra of the standard sensor membrane NPOE-1, NPOE-2 and the 

reference membrane NPOE-0 (without ligand). 
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 Plasticizers, as a major membrane component, give the most noticeable 

contribution to the spectral signature of the membrane (Fig. 2.18). Since the nitro 

group is highly polarizable, it is not surprising that the -NO2symm mode of NPOE 

molecule at 1350 cm-1 has the highest intensity in the membrane spectrum. This fact 

allows for using it as a reference band for normalization of the intensity all over the 

spectral set.  
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Figure 2.19. PDAM spectrum vs. spectrum of the sensor membrane NPOE-2. The 

preprocessing included baseline removal using AsLS algorithm and 11-point Savitzky-

Golay smoothing. 

At the next step, the spectra of the ligand-containing membrane in contact with 

aqueous cadmium solutions of different concentrations were registered. The variations 

in the spectral signature of the membrane after interaction with 10-4, 10-3 and 10-2 M 

Cd2+ can be observed (Fig. 2.20). The complexation-induced evolution of the bands 

appears mainly in the 1380 – 1520 cm-1 range. It is important to mention, that spectral 
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reproducibility was quite good and the selected band intensity (1402 cm-1) in replicated 

measurements did not vary more than 0.5%.  
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Figure 2.20. NPOE-2 membrane spectra evolution upon the interaction with 

10-4, 10-3 and 10-2 M Cd(NO3)2 aqueous solutions.  

In order to evaluate the applicability of PVC-plasticized membranes for 

quantitative determination of metal cations by Raman spectroscopy, the analysis of 

membrane spectra after interaction with aqueous solutions with different Cd2+ 

concentration in the range 10-4 – 10-2 M was performed. Sample compositions are 

listed in Table 2.3.  

Table 2.3. Cd2+ sample solutions. 

Sample # 1 2 3 4 5 6 7 8 9 10 11 12 

[Cd2+], 

10-3 M 0,1 0,5 0,7 0,9 1,0 3,0 4,0 5,0 5,5 6,0 8,5 10 

 



82 
 

 

 

 

The spectra of the membrane corresponding to the composition in Table 2.3 are 

presented in the Fig. 2.21 in the range 1100 – 1650 cm-1. 
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Figure 2.21. NPOE-2 membrane spectra upon the interaction with Cd(NO3)2 aqueous 

solutions (*10-3 M).  

 

It can be seen from the Fig. 2.21 that only subtle changes in the 1380–1500 cm-1 range 

can be observed, and thus smoothing of the spectrum may have negative rather than 

beneficial effect on the multivariate calibration. Thus, the pre-processing routine 

consisted only in baseline correction (AsLS algorithm) and normalization along the 

intensity of 1350 cm-1 band (Fig. 2.22). 
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Figure 2.22. NPOE-2 membrane spectra upon the interaction with Cd(NO3)2 aqueous 

solutions (*10-3 M) (baseline correction, normalization): a) 1100–1700 cm-1  range; b) 

1380–1500 cm-1 range.  
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Then the spectral set was processed with PLS regression in order to establish a 

relation between spectral signatures and Cd concentrations. The model was optimized 

using full cross-validation and a three-component PLS model was retained resulting in 

the following metrics: validation R2 = 0.97 and root mean squared error of cross-

validation RMSECV =6.3*10-4 M.  

Since the number of samples was not that large, the predictive performance of the 

model could not be evaluated independently. Nevertheless the obtained model 

demonstrates that the observed spectral evolution is highly correlated to the Cd2+ 

concentration of the sample in contact with the membrane. The total variance 

explained by the 3 components of the model was 69 % in X-variables and 99 % in Y-

variables, which also confirms this correlation. It must be pointed out that the 

RMSECV, which is computed for the wide concentration range (10−4 – 10−2 mol/L), 

may provide a pessimistic error value, since it simultaneously takes into account 

concentration values that vary over two orders of magnitude.  

As an additional validation of the model, we applied permutation testing. The 

RMSECV values were compared over 50 different 3-component PLS models for 50 

different random permutations of the values in Y-vector (Cd concentrations) (Fig. 2.23). 

The average RMSECV was found to be 1.67*10-2 M, more than two orders of 

magnitude higher than the one obtained for the original model. Moreover, none of the 

permuted models had a better RMSECV than the original one. This confirms the 

relevance of the observed spectrum-concentration correlation.  
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Figure 2.23. The RMSECV values calculated for random permutations of Cd 

concentrations vs. RMSECV of the original PLS model. 

Evaluation of the VIP scores of the model (PC2) showed that the biggest 

contribution to the model is due to the spectral bands that referred to PDAM: δ (C-H) 

bending modes at 1402 cm-1, 1424 – 1440 cm-1 of the phenanthroline skeleton (Fig. 

2.24). 
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Figure 2.24. Comparison of a Raman spectrum of the NPOE-2 membrane with VIP 

scores. 

VIP values in the 1585 – 1640 cm-1 region have relatively low values due to 

overlapping with ν8a and ν8b aromatic ring stretching modes, corresponding to NPOE 

plasticizer. The observed congruence in VIP values of the PLS model and membrane 

spectra may serve as an additional proof of the validity for the established correlation. 

The “measured vs. predicted” plot for the PLS model is provided in Figure 2.25.  
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Figure 2.25. PLS regression model for the calibration in 10-4 – 10-2 M Cd(NO3)2 

solutions. 

 

As the most distinct changes in the membrane spectra are referred to the ligand, 

it was decided to investigate whether the proposed transduction principle could work 

for the membrane without the lipophilic additive as well. Within this assumption, the 

PVC-plasticized membrane without lipophilic additive was prepared (NPOE-3). It 

consisted of 30 wt% PVC, 60 wt% plasticizer (NPOE), and 10 wt% of ionophore. The 

ligand (ionophore) had a similar structure as the one in the PDAM-2 membrane but 

with ethyl- and (4-ethyl)phenyl substituents in the amide group instead of the butyl- 

one (Fig. 2.26). It was shown in [214] that these two ligands impart the same sensing 

properties of PVC-plasticized membranes (e.g. sensitivity towards Cd2+).  
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Figure 2.26. Structure of the N2,N9-diethyl- N2,N9-bis(4-ethylphenyl)-1,10-

phenanthroline-2,9-dicarboxamide ionophore. 

 At first, the preliminary test on the interaction of the NPOE-3 membrane with 

the aqueous cadmium solution was performed. The spectra of the membrane in 

contact with 0.1 M cadmium nitrate were compared with those of the membrane in 

contact with water. Similar to the NPOE-2 membrane with the lipophilic additive in its 

composition, the spectral signature of NPOE-3 demonstrates certain changes upon 

contact with the cadmium solution. Fig. 2.27 shows the raw spectrum of NPOE-3, and 

Fig. 2.28 shows the spectrum of the NPOE-3 membrane upon the interaction with Cd2+ 

solution, processed with AsLS baseline correction, Savitzky-Golay smoothing and 

normalization (against NO2 band of NPOE) algorithms. 
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Figure 2.27. Raw spectrum of NPOE-3 membrane. 
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Most of the spectral bands that are subjected to changes upon the interaction with 

Cd2+ are located in 1420–1500 cm-1 range. The shift of the bands position at 1437, 

1450, 1492 cm-1, together with their intensity changes could be attributed to the PDAM-

Cd2+ interaction. The detailed representation of the above-mentioned bands is shown 

in the Fig. 2.29. The evolution of the Raman bands at 1420–1460 cm-1 can be due to 

the redistribution of the electronic density in the aromatic phenanthroline system of the 

ligand. In classical ISE membranes, the main function of the lipophilic ionic additive is 

to promote the transfer of ions from the aqueous phase into the membrane phase. The 

observed effect in the spectrum of NPOE-3, that does not contain the lipophilic 

additive, confirms the well-known fact that the primary contribution to the sensor 

response is generated on the membrane surface. Thus, in case of the sensing with 

Raman transduction, the presence of ion-exchanging sites in the membrane is not a 

prerequisite.  
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Figure 2.29.  NPOE-3 membrane spectra evolution upon the interaction with a 0.1 M 

Cd(NO3)2 aqueous solution (1380–1550 cm-1 range). 
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The next step for testing our assumption was to estimate the changes in the 

membrane spectra upon the interaction with Cd2+ solutions of varying concentrations. 

The composition of the tested samples is given in Table 3.4.  

Table 2.4. The concentrations of the Cd2+ solutions for the calibration. 

Sample # 1 2 3 4 5 6 7 8 9 10 11 

[Cd2+], 10-4 M 9,2 8,9 8,5 7,8 7,2 6,7 6,0 4,8 4,0 2,5 1,0 

 

The obtained spectra (Fig. 2.30) were employed to construct PLS regression 

model relating the spectral signatures of the membrane with cadmium contents in the 

studied solutions.  
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Figure 2.30. NPOE-3 membrane spectra upon the interaction with Cd(NO3)2 aqueous 

solutions (10-4 – 10-3 M) 

The preprocessing procedure included a baseline correction (AsLS algorithm), 

smoothing (Savitzky-Golay algorithm, 7 points) and normalization by the intensity of 

the reference band (-NO2 mode of NPOE at 1350 cm-1). Smoothing with other number 
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of points in a window yielded poorer results in RMSECV just as with NPOE-2 

membranes. As the spectral changes upon the interaction of the membrane with low 

concentration of Cd2+ were not strongly pronounced, it was decided to process the 

derivative spectra as well. Since the number of samples was not very high, “leave-one-

out” validation procedure was employed. The parameters of the PLS models for two 

datasets (with and without derivatization) are provided in Table 2.5. 

Table 2.5. Parameters of validation “measured vs. predicted” plot for PLS regression 

models. N − number of PLS factors. 

 Slope RMSECV, a R2 N 

Zero order-derivative 0.95 9.3*10-5 0.87 6 

1st order derivative 0.92 1.3*10-4 0.84 2 

 

In general, there is a reasonable correlation between the signals in the Raman 

spectra of the membrane and concentration of metal ion in contacting solution and this 

is an additional proof of validity of our assumptions. The PLS model for the zero order 

derivative spectra is characterized by RMSECV value close to 10-4 (in the “lg a” units). 

However, it is based on 6 latent variables and thus the model is most likely overfitting. 

On the other hand, the PLS model built on the derivative spectra is based on 2 latent 

variables only, and still yields reasonably low RMSECV value. This study may serve 

as an estimation of the lipophilic additive role in the membrane composition for Raman 

transduction of the analytical signal. First results show that the membrane spectral 

signature evolution upon the interaction with Cd2+ may be observed in a NPOE-3 

membrane, consisting of a polymer, plasticizer and ligand only. Thus, the whole 

polymeric membrane is acting like a support for the lipophilic ligand which is 

responsible for the analytical signal manifestation and the addition of ion-exchanging 

sites in the membrane is not required. 
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2.4.2.  Optimization of the membrane composition 

The proposed approach to the Raman transduction of the analytical signal from 

the ISE membranes was shown to be viable for PVC-plasticized membranes. 

Nevertheless, the composition of the studied polymeric membranes is not fully 

optimized from the point of view of Raman spectra registration. The polymeric matrix 

is expected to give the biggest contribution to the membrane spectral signature as it is 

a major component of the membrane. The high content of the plasticizer in traditional 

PVC-plasticized membranes leads to the overlap of ligand spectral bands with those 

of the plasticizer, hereby hindering the study of the evolution of the Raman bands of 

the ligand upon contact with the sample. Lowering the plasticizer content in the 

membrane may potentially lead to more a sensitive and more precise detection of 

metals through the suggested procedure. In order to study this, we have performed 

several additional experiments.  

 

 ISE membranes based on silicon rubber 

The next step of the investigation consisted of decreasing the plasticizer 

content, so that its contribution to the membrane spectral signature would be lower. 

For this purpose, poly(dimethylsiloxane), widely used for ISFET sensing elements was 

chosen. The plasticizer content was set at 15 %, as it was reported in [226], and a 

second membrane (SR-0) did not contain plasticizer at all, similar to ISFET matrices. 

The procedure of the membrane preparation was the same as for PVC-plasticized 

membranes, though the silicone rubber dissolution in THF takes much more time 

(about 1 h). The PDMS-based membrane composition was tested with PDAM 

ionophore and KTTClPB lipophilic additive.  

Silicon rubber is one of the most frequently employed alternatives to the 

traditional PVC-based ISE membranes. The plasticizer content in the membranes 

based on silicon rubber (SR) normally does not exceed 20 %, which is three times 

lower than that in PVC-plasticized sensors. Besides, the Raman spectrum of the silicon 
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rubber does not contain any bands of high intensity in the 1300 – 1700 cm-1 range, 

where most of the ligand bands are situated.  

We have studied the performance of the silicon rubber membrane (SR) 

containing 13 wt% of plasticizer (NPOE), 77 wt% silicon rubber and 10 wt% of the 

PDAM ionophore. The spectrum of the SR membrane was compared with that of the 

SR-0 membrane without ligand (Fig. 2.31). Except for the increase of the intensity of 

the band at 1400 cm-1 and appearance of the band at 1000 cm-1
 (both referred to the 

phenanthroline aromatic νC-C modes), no ligand contribution to the SR membrane 

spectrum is observed. However, the plasticizer content is still too high for a more 

detailed registration of a ligand spectrum. Nevertheless, in order to determine if it will 

be possible to track the evolution of the ligand spectral signature, the spectra of the 

membrane in contact with 0.01, 0.1 and 1 M Cd solution were acquired.  

 

500 1000 1500 2000 2500 3000

In
te

n
s
it
y
 (

a
.u

.)

Raman shift (cm-1)

 SR-0 "dummy" membrane

 SR membrane with ligand

1100 1200 1300 1400 1500 1600 1700

1350

1405

 

 

Figure 2.31. Spectrum of the SR-0 membrane and the SR membrane. 
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The main differences related to the presence of PDAM in the membrane are located 

in the 1400–1440 cm-1 region (δ(C-H) and ν(C-C) at 1405 cm-1 and ν (C--N) of the 

phenanthroline segment at 1424-1440 cm-1 region. 

At the preprocessing stage, the normalization of the spectra by the intensity of 

the -NO2 mode of NPOE (1350 cm-1) did not result in the constant relative intensity of 

the bands assigned to the membrane matrix (Fig. 2.32).   
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Figure 2.32. The fragment of the SR membrane spectra acquired in contact with 

0.01, 0.1 and 1 M Cd (normalized by the intensity of the NPOE band at 1350 cm-1). 

 

 The relative intensity values of the plasticizer and polymer bands are different 

in the spectra taken at the different points of the membrane under similar conditions. 

For example, the spectra of the membrane in contact with 1 M Cd have a very different 

intensity after normalization (red lines in Fig. 2.32). This can be due to the local 

inhomogeneity of the studied membrane. These local inhomogeneities hinder the 

quantitative analysis of the membrane spectra since the changes in the membrane 
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spectra can be due to both interaction with the analyte cation and non-uniformity of the 

membrane matrix. It was therefore decided that the silicon rubber-based membranes 

appear to be an inappropriate choice and their study was not further pursued. 

 

Methacrylic-acrylic copolymer membranes 

The previous sections have shown that the plasticizer may serve as the main 

factor hindering the application of the proposed approach to the detection of metal 

cations in the aqueous phase. At the same time, the preparation of the PVC-based 

ISE membranes without plasticizer is not possible, since the PVC glass transition 

temperature (Tg) is around 80 °C, and thus appropriate mechanical properties will not 

be achieved at room temperature without plasticizer. Some other polymers may 

contain the segments that act like a “built-in plasticizer”, providing a lower Tg. 

Polyurethanes and acrylate polymers were actively studied in the so-called plasticizer-

free membranes (see, e.g. [27, 38] ) (Fig. 2.33). The reason for this choice is the 

simplicity and flexibility of the synthesis procedure of both polymers that allows varying 

the Tg values in a wide range, depending on the molecular weight of the selected 

monomer.  

 

Figure 2.33. Schematic representations of polymeric structures: a – polyurethane; b – 

polyacrylate. 

The most significant criteria for our study were the Raman spectrum of the 

polymeric matrix. The acrylate copolymer appears to be a better option for our 

purposes as its spectra should contain only Csp
3–H, C=O and C–O modes referred to 

the aliphatic substituents, carbonyl and ester groups, respectively. Besides, the C=O 
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mode of acrylate compounds is located around 1730 cm-1 in Raman, and thus it would 

not overlap with the C=O mode of PDAM (1638 cm-1). 

During the next step of our study, the acrylate copolymer (AC) was employed. 

The copolymer AC was synthesized according to the procedure described in [101]. 

The molar ratio of methyl methacrylate and n-butyl acrylate was specified as 1:4 

(Fig. 2.34). The monomer ratio 21:79 was confirmed by 1H NMR spectroscopy 

(spectrum taken in CDCl3, provided by Prof. S. Delbaere, University Lille 2 (Annex 3). 

The AC membrane cocktails were prepared by the dissolution of 90 wt% of AC and 10 

wt% of PDAM ionophore in the dichloromethane under stirring. Then the mixture was 

poured in a glass Petri dish and left for 48 h for solvent evaporation. 

 

Figure 2.34. The schematic structure of the methacrylate – n-butyl acrylate copolymer 

(AC). 

The Raman spectrum of the AC membrane was compared to the one of AC-0 

(acrylate copolymer without a ligand added) (Fig. 2.35). 
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Figure 2.35. Spectra of the AC-0 and AC-based membranes (AC). 

 

The observed contribution of PDAM to the AC-PDAM membrane spectrum is 

due to the fragments of the aromatic system, namely νC-C at 1402, 1497, 1584, 

1603 cm-1 and νC-H at 1250 cm-1. The aliphatic vibrational modes give bands with a 

bigger intensity in the spectrum of AC, compared to the ones of AC-PDAM. This can 

be explained by the bigger proportion of the aliphatic groups in its composition 

compared to PDAM.   

Then, the spectra of the AC membrane in contact with Cd2+ solutions of 5 

concentrations with ten-fold difference (from 10-1 to 10-5 M) were taken. At each 

concentration, the spectra were acquired at 3 different points in the 1100 – 1650 cm-1 

range (Fig.2.36).  
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Figure 2.36. AC membranes spectra upon the interaction with Cd(NO3)2 

aqueous solutions (10-5 – 10-1 M). 

The preprocessing procedure included baseline correction (AsLS algorithm), 

15-point Savitzky-Golay smoothing filter and normalization along 1125 cm-1 (C-O 

stretching mode of AC) (Fig.2.37). The smoothing window width for these spectra was 

bigger than that for NPOE-2 and NPOE-3, as the noise level of the spectra of AC 

membranes was way higher that for NPOE membranes. 
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Figure 2.37. Spectra of AC-PDAM membrane in contact with 10-5 – 10-1 M 

Cd(NO3)2 aqueous solutions: a) 1100–1650 cm-1; b) zoom in to the 1380–1550 cm-1 

region.  
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The PCA model was then built on the resulting 15-points dataset. The results 

are presented in Fig. 2.33. 
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Figure 2.38. PCA scores plot for the set of AC membrane spectra in contact with Cd2+ 

solution (1 is for 10-1 M, 5 for 10-5 M Cd2+ concentration).  

The samples formed clusters in the scores plot according to the Cd2+ 

concentration. This can be related to the evolution of the spectra upon interaction of 

the membrane with Cd2+ cations. The concentration dependence of the AC-PDAM 

spectral signatures was estimated with PLS algorithm. The spectra from the dataset 

employed for PCA were averaged over replicated measurements in the same Cd2+ 

concentration. The predictive ability of the PLS model was assessed with “leave-one-

out” cross-validation. As the 10-fold Cd2+ concentration values were studied in this 

experiment, the log10[Cd2+] values were used for PLS modelling instead of [Cd2+] to 

avoid uneven distribution of the samples over the concentration range. 

The PLS model was based on 1 latent variable and the R2 value in cross-

validation was 0.98. The percentage of the explained X-variance for the 1st PLS-

component was 99 %, and 92 % for Y-variance. This can be considered as a proof of 
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correlation between the spectra and cadmium content in the contacting solution. 

However, in PLS regression, the use of 5 samples cannot ensure the reliable 

evaluation of the correlation and “leave-one-out” cross-validation most likely gave 

overoptimistic results. Further studies with extended set of samples are needed for the 

validation of the proposed approach with AC-PDAM membranes.  

 

 Conclusions 

A novel type of analytical signal transduction for polymeric sensor membranes 

is suggested. The evolution of the Raman spectra of the sensor membranes in con 

tact with aqueous solutions of metals can be employed for ion content quantification. 

The advantages of the suggested approach lie in the possibility of indirect Raman 

quantification of metal ions in microliter sample volumes. It must be pointed out that 

the selectivity issue of the suggested approach requires a further dedicated study. 

Similar ions may induce similar spectral changes upon binding with the ligand, thus 

hindering selective quantification of a particular ion, especially in complex samples. A 

possible way to address this problem can be in the employment of mixture of 

ionophores, possessing a high selectivity towards components of a sample and having 

non-overlapping characteristic spectral bands. Simultaneous introduction of several 

ionophores together with multivariate data processing of resulting spectra may allow 

for selective quantification of particular ions. 
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CHAPTER 3. Ionophore-free ISE membranes 

The ligand (ionophore) plays the most important role in the sensor membrane 

composition as it is the main responsible for the selective complexation of a target ion 

that provides sensor selectivity. Previously, the ionophores were always developed to 

reach the highest possible selective response in order to handle the analysis of 

complex multicomponent samples and even though there is huge variety of available 

ionophores, the number of unsolved analytical problems that these selective sensors 

were dedicated to still remains significant. Therefore, the design of new ligands that 

are selective for a particular analytical task remains an important research topic,but 

requires a significant amount of time and effort. In an attempt to overcome this 

limitation, we propose using ionophore-free sensor membranes. In these membranes, 

the selectivity of the sensor is regulated by the lipophilicity of the target ion, the ion-

exchanger and the solvent-plasticizer. To investigate the influence of the membrane 

components on the sensor sensitivity, we prepared sensors based on two different 

types of lipophilic additives and various plasticizers and then tested their performance 

in the analysis of mixtures. Additionally, ionophore-free sensors were combined into 

the array to compensate for the insufficient selectivity of the before mentioned sensors 

in the multicomponent environment. With this set-up, we want to investigate its 

potential to determine the individual ion content in Ca2+-Mg2+
 mixtures, in the presence 

of 10-3 M of either Na+ or K+ ions, compared the results to those for the conventional 

ionophore-based sensors.  

 

 Experimental 

3.1.1. Reagents 

High molecular weight poly(vinyl chloride) (PVC), 2-nitrophenyl octyl ether 

(NPOE), (bis-(2-ethylhexyl) sebacate (DOS), 2-fluorophenyl-2-nitrodiphenyl ether 

(FNDPE), tris-(2-ethylhexyl) phosphate (TOP), bis(2-ethylhexyl) phthalate (DOP), 

tetrakis-(trifluoromethyl)phenyl borate (KTTFMPB), Calcium ionophore I ([(−)-(R,R)-
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N,N′-bis-[11-(ethoxycarbonyl)undecyl]-N,N′-4,5-tetramethyl-3,6-dioxaoctanediamide]) 

and Magnesium ionophore I (N,N′-Diheptyl-N,N′-dimethyl-1,4-butanediamide)  were 

purchased from Fluka (Switzerland). Chlorinated cobalt dicarbollide (CCD) was 

obtained from Katchem (Czech Republic) as a cesium salt and was converted to the 

acidic (H+) form prior to the membrane preparation. NaCl, KCl, CaCl2, MgCl2 salts were 

purchased from Vekton (St. Petersburg, Russia) in an analytical grade. 

Tetrahydrofurane (THF) purchased from Merck (Germany) was freshly distilled before 

use. 

3.1.2. Membrane preparation and potentiometric measurements 

The ionophore-free polymeric membranes consisted of 33 wt% PVC, 66 % 

plasticizer and 1 % of a lipophilic additive. Ca2+- and Mg2+-selective sensor 

membranes were prepared using literature recipes [54, 227] based on corresponding 

ionophores (Fig. 3.1) and comprised 1.0 wt% of the ionophore, 0.5 wt% of KTFPB, 

65.5 wt% NPOE and 33 wt% of PVC for Ca2+-selective  sensor and 1.4 wt% of the 

ionophore, 1.0 wt% of KTFPB, 64.5 wt% NPOE and 33.1 wt% of PVC for Mg2+-

selective sensor, respectively. 

 

 

Figure 3.1. Structures of a) N,N-Dicyclohexyl-N′,N′-dioctadecyl-3-oxapentanediamide 

(Ca2+-selective ionophore) ; b) N,N′-Diheptyl-N,N′-dimethyl-1,4-butanediamide (Mg2+-

selective ionophore).  

 It was shown that certain solvent-plasticizers can have an influence on the 

complexation in the membrane [43]. Therefore, the differences in sensor sensitivity 

patterns depend on the polarity and structure of the plasticizer. In order to investigate 
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the contribution of these factors, along with the lipophilic additive influence, the 

combinations of five various plasticizers and two lipophilic additives (Fig. 3.2) were 

used for the preparation of the ionophore-free sensor membranes. The selection of 

these plasticizers is based on their structural differences and polarity (e.g. polar or 

non-polar, containing aliphatic or aromatic fragments). The final composition of the 

membranes is shown in Table 3.1. 

 

Figure 3.2. The structures of the ionophore-free membrane components; a – 

plasticizers and their dielectric constants (r)  [228], [229]; b – lipophilic additives. 
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Table 3.1. Ionophore-free sensor membrane compositions.  

Name Plasticizer Lipophilic additive 

1 
NPOE 

KTTFMPB 

2 CCD 

3 
DOS 

KTTFMPB 

4 CCD 

5 
FNDPE 

KTTFMPB 

6 CCD 

7 
TEHP 

KTTFMPB 

8 CCD 

9 
DOP 

KTTFMPB 

10 CCD 

 

For the preparation of the membrane, the components were weighed (300 mg 

in total) and dissolved under stirring in 3 mL THF. Then, the solution was poured into 

a Teflon cylindrical vessel and left to dry for 48 h, where after membranes of 7 mm in 

diameter (three of each composition) were cut from the resulting film. Solid inner 

contact made of copper wire in carbon paste was attached upon one side of each 

membrane. Finally, the resulting construction was glued into a PVC tube sensor body 

and conditioned by using a solution of 10-2 M sodium chloride (10-2 M calcium chloride 

for Ca2+-selective and 10-2 M magnesium chloride for Mg2+-selective sensors). 

 The electrochemical measurements were carried out in the following galvanic 

cell: 

Cu | Ag ⁞ AgCl, KClsat | sample solution | membrane | carbon paste solid contact | Cu 

The EMF measurements were performed against the standard reference 

Ag/AgCl (ZIP, Belorussia) electrode at room temperature (20 oC) using a multi-channel 

digital mV-meter with high input impedance (Sensor Systems LLC, St.Petersburg, 
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Russia). The electric potential was recorded with a 0.1 mV precision for 3 minutes in 

10 sec intervals. The results are presented as an average of the last 3 EMF values 

during these 3 minutes. The standard glass pH electrode (ZIP, Belorussia) was used 

for pH control. Cation activity coefficients were calculated according to Debye–Hükkel 

theory.  

Calibration of the sensors was performed in aqueous solutions of Ca2+, Mg2+, 

K+ and Na+ chloride salts in the concentration range between 10−7 and 10−2 M. The 

sensor sensitivity was calculated as the slope of the linear part of the electrode 

response function (mV per decade) according to the Nernst equation. The slope values 

were calculated for a metal ion concentration ranging between 10−4 and 10−2 M and 

were averaged over the three replica sensors of each composition and multiple 

replicated measurements.  

The sensor array is comprised of 34 electrodes: two Ca2+-selective sensors, two 

Mg2+-selective ones and 30 cross-sensitive cationic sensors (10 types, 3 of each kind). 

To assess the correlation between the array response and Ca2+ and Mg2+ 

concentrations, the measurements were performed on a sample set containing 40 

binary Ca-Mg mixtures (Table 3.2, Set 1). Additionally, the influence of the interfering 

ions K+ and Na+ was investigated, for which the same 40 samples were analyzed in 

the presence of 10-3 M of either Na+ or K+ (Table 3.2, Set 2 and 3, correspondingly). 

And lastly, the selectivity of the sensor to calcium and magnesium was determined in 

the presence of both monovalent cations. To do so, measurements were performed 

on a set of quaternary mixtures comprising Ca2+, Mg2+, K+ and Na+ ions (Table 3.2, 

Set 4). 
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Table 3.2. Mixtures composition (in logarithmic units).  p = –log10. 

№ Set 1 Set 2 Set 3 Set 4 

 
p 

аCa
2+ 

p 
aMg

2+ 
p 

аCa
2+ 

p 
aMg

2+ 
p аCa

2+ p aMg
2+ 

p 
aCa

2+ 
p 

aMg
2+ 

p 
aNa

+ 
p 

aK
+ 

1 3.94 3.57 3.32 3.65 3.32 3.65 3.58 3.18 3.94 2.72 

2 3.18 3.98 3.00 3.44 3.96 3.59 2.88 3.21 4.05 2.72 

3 2.35 4.20 2.36 4.20 3.20 4.00 2.98 2.39 3.88 2.82 

4 4.05 3.37 2.72 2.64 3.00 3.44 2.60 2.71 2.86 2.78 

5 3.97 3.88 3.99 3.90 2.36 4.20 3.31 3.73 3.69 3.03 

6 3.68 2.75 3.69 2.76 4.06 3.39 3.52 2.36 2.68 3.96 

7 2.36 3.45 2.36 3.46 2.72 2.64 4.10 3.12 2.24 2.33 

8 3.81 2.49 3.81 2.49 3.99 3.90 2.80 4.10 2.22 3.22 

9 3.04 3.87 3.60 3.70 3.69 2.76 3.86 4.00 3.88 3.90 

10 3.58 3.68 3.64 2.43 2.36 3.46 3.93 2.60 4.05 3.04 

11 2.34 2.31 3.33 2.65 3.60 3.70 2.36 2.55 3.99 2.21 

12 3.32 2.64 3.02 2.27 2.34 2.31 2.41 4.22 2.71 3.52 

13 4.09 2.59 2.82 3.45 3.33 2.65 2.28 3.09 3.23 4.01 

14 2.81 3.44 2.44 2.93 4.09 2.59 2.31 3.18 3.79 3.82 

15 3.37 3.20 3.89 2.64 2.82 3.45 2.54 3.19 3.87 2.13 

16 2.39 2.46 2.39 2.47 3.89 2.64 2.54 2.42 3.98 4.00 

17 2.50 3.79 2.50 3.80 2.39 2.47 3.69 3.23 3.21 3.99 

18 3.53 3.97 3.55 3.99 2.50 3.80 2.35 2.49 3.33 2.71 

19 3.06 3.03 3.06 3.04 2.52 4.11 2.75 3.74 2.82 3.43 

20 2.51 4.11 2.52 4.11 3.74 4.04 2.82 3.72 2.98 4.04 

21 3.71 4.02 3.74 4.04 2.93 3.75 2.82 2.32 2.53 3.44 

22 2.92 3.74 3.98 2.85 3.31 2.92 3.24 4.11 2.56 3.20 

23 3.49 3.04 3.31 2.92 3.50 3.05 2.65 3.90 2.46 3.90 

24 3.23 3.09 3.50 3.05 3.24 3.10 3.14 3.07 3.34 3.10 

25 3.19 3.42 3.24 3.10 3.21 3.43 2.97 4.03 3.25 3.65 
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Table 3.2 (Cont.) Mixture composition (in logarithmic units). p = -log10. 

№ Set 1 Set 2 Set 3 Set 4 

 p аCa
2+ p aMg

2+ p аCa
2+ p aMg

2+ p аCa
2+ p aMg

2+ p aCa
2+ p aMg

2+ p aNa
+ p aK

+ 

26 3.01 2.57 3.21 3.43 3.02 2.58 2.39 4.16 2.76 2.54 

27 3.53 3.29 3.55 3.30 3.55 3.30 2.92 2.32 3.89 3.48 

28 4.25 2.27 4.26 2.27 4.26 2.27 4.20 2.36 2.24 2.88 

29 2.89 2.73 2.89 2.73 2.89 2.73 3.16 2.41 3.41 2.48 

30 3.38 2.28 3.38 2.28 3.38 2.28 2.31 3.75 3.83 3.97 

31 3.31 3.63 3.96 3.59 3.81 2.49 3.82 3.77 4.02 2.51 

32 2.99 3.44 3.20 4.00 3.06 3.88 4.02 2.74 3.46 3.07 

33 2.72 2.64 4.06 3.39 3.60 3.70 3.60 2.89 2.34 2.58 

34 3.63 2.43 3.06 3.88 3.64 2.43 3.75 2.49 2.89 2.09 

35 3.01 2.27 2.34 2.31 2.34 2.31 3.67 3.81 3.08 3.10 

36 2.43 2.93 4.09 2.59 3.33 2.65 2.29 4.15 2.43 3.04 

37 3.88 2.64 3.38 3.21 4.09 2.59 3.69 3.23 3.21 3.99 

38 2.57 3.57 2.58 3.57 3.02 2.27 2.39 3.62 2.58 2.73 

39 3.97 2.84 2.93 3.75 2.82 3.45 2.58 3.33 3.56 2.63 

40 3.30 2.91 3.02 2.58 2.44 2.93 2.73 2.30 3.08 2.35 

 

3.1.3. Data processing 

Each dataset contains the responses of 10 types of sensors measured over 40 

samples. The composition of the solutions was determined according to the procedure 

described in reference [230] to ensure the uniform distribution of the calibration points 

in the chosen concentration space (10-4 – 10-2  M) defined by the content of two ions. 

In the absence of an ionophore, the response of the sensor is supposed to be non-

equilibrated, as the ion migration in the membrane is mainly driven by the hydrophilicity 

of the ions. To eliminate response fluctuations, the EMF value before calibration was 

measured in water and subtracted from the sample EMF value (ΔE = Esample – Ewater). 

The average value of three replicas was taken, forming a 40 x 10 matrix which was 

used for further processing. 
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The ability to quantify [Ca2+] and [Mg2+] was explored using PLS modelling. 

Regression models were based on 30 training samples (#1-30 in Table 3.2.) and 

validated with 10 independent test samples (samples #31-40 in Table 3.2.). The 

precision of the model was assessed with the Root Mean Square Error of prediction 

(RMSEP) value and R2
 parameter.  

Data from parallel measurements using Ca2+ and Mg2+-selective sensors were 

assessed with Ordinary Least Squares (OLS). The RMSEP and R2 values calculated 

by this model were compared to those derived from the data of ionophore-free sensor 

arrays. All calculations were performed in The Unscrambler 9.7 (CAMO, Norway).  

 

 Results and discussion 

3.2.1.  Sensitivity of ionophore-free sensors  

The results of the ionophore-free sensors’ sensitivity assessment in individual 

ion solutions are presented in Table 3.3. Two tendencies can be observed considering 

sensor sensitivities. Highly polar plasticizers (NPOE, FNDPE – compositions 1, 2, 5, 6) 

promote extraction of cations into the membrane of the sensor according to the 

lipophilicity series. The highest sensor sensitivity values can be observed in potassium 

solutions for all sensor compositions (besides 7 and 8) which is in a good agreement 

with lipophilicity series: K+ > Na+ > Ca2+ > Mg2+ [231].  
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Table 3.3. Sensitivity (±1 mV/dec) of the sensors towards individual ions.  

Ion /  

Sensor 

1 

NPOE / 

KTFPB 

2 

NPOE / 

CCD 

3 

DOS / 

KTFPB 

4 

DOS / 

CCD 

5 

FNDPE / 

KTFPB 

6 

FNDPE 

/ CCD 

7 

TEHP / 

KTFPB 

8 

TEHP / 

CCD 

9 

DOP / 

KTFPB 

10 

DOP / 

CCD 

Ca2+-

selective 

Mg2+-

selective 

K+ 46 35 47 43 46 41 24 25 46 46 1 11 

Na+ 20 14 44 42 20 14 46 46 42 35 2 5 

Ca2+ 18 10 14 28 18 19 19 18 15 7 28 29 

Mg2+ 16 6 25 21 19 19 24 24 15 15 18 22 

 

The deviation observed for the two TEHP-plasticized sensors can be explained 

by the fact that TEHP possesses its own complexing properties [232]. This may 

reverse the selectivity pattern from bigger to smaller ions as was reported for some 

compounds containing P=O groups [233]. Besides, the membranes containing non-

polar plasticizers demonstrate a sensitivity to Mg2+ which is equal or even surpasses 

the corresponding value for the standard Mg2+-selective sensor plasticized by NPOE. 

For the compositions 1, 2, 5, 6 (containing polar plasticizers) the KTFPB-based 

sensors demonstrate a higher sensitivity to potassium compared to the CCD-based 

ones. No significant difference between two lipophilic additives was found for the 

membranes containing non-polar plasticizers. Moreover, the long-term stability of 

sensor response was reasonable and sensitivity values remained constant within 3 

months of the study.  

In the absence of the ionophore, the sensor response is governed by ion 

interactions with the plasticizer, lipophilic additives and by the lipophilicity of the target 

ion itself. Therefore, it is normal that the sensitivity values decrease when the ion 

lipophilicity decreases. 

 

3.2.2. Mixture analysis 

In order to assess the performance of the ionophore-free sensor arrays for the 

quantification of individual ions in complex mixtures, potentiometric measurements 

were performed in sample sets 1-4 (Table 3.2.). The model parameters obtained for 

binary mixtures (Set 1) are given in Table 3.4.  
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Table 3.4. Parameters of “measured vs. predicted” plot for the test set validation of 

regression models for ionophore-free sensor array (PLS) and separate selective 

sensors (OLS) in Ca-Mg mixtures. N − number of PLS factors. 

 

Ca Mg 

Slope 
RMSEP, 

lg a 
R2 N Slope 

RMSEP, 

lg a 
R2 N 

Ionophore-free 

array (PLS) 
0.95 0.21 0.84 2 0.89 0.17 0.90 2 

Selective 

sensor (OLS) 
0.99 0.08 0.99 - 0.10 >180 9E-06 - 

 

The OLS model based on the selective Ca2+ sensor response allows for the 

reliable quantification of the calcium concentration in binary mixtures. At the same 

time, the Mg-selective sensor response shows poor sensitivity to the Mg2+ 

concentration in presence of Ca2+ ions in solution. On the other hand, the response of 

the ionophore-free array demonstrates a reasonable correlation with the 

concentration of both ions (R2 values were equal 0.84 for Ca and 0.90 for Mg). 

Measured vs predicted plots for these regression models are given in Fig. 3.3. The 

RMSEP value for Ca2+ determination with ionophore-free array was somewhat higher 

than that for the Ca-selective sensor (0.21 vs 0.08). By contrast to the Mg-selective 

sensors, the ionophore-free array allows to determine Mg2+ concentration in the 

presence of Ca2+.  
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Figure 3.3. PLS modelling results for the a) Ca2+ b) Mg2+ concentration prediction by 

ionophore-free sensors. 
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For the PLS model of Mg2+, we observe obvious deviations from linearity in the 

predicted-measured plot. This effect on the sensitivity of the ionophore-free sensors to 

Mg2+ may be caused by changing background of the more lipophilic Ca2+.  The non-

linear relations between X and Y can be modelled by X variable transformations. To 

consider non-linear contributions with the model, the matrix containing the transformed 

X variables is augmented to the original X matrix [234]. In our case, the correction for 

non-linearities was performed by augmentation of the X matrix with its squared 

elements, so the model was based on 20 predictor variables instead of 10. The 

predicted vs. measured plot for this PLS model is shown in Fig. 3.4. The bias at the 

edges of the concentration range, corresponding to the non-linear shape in the original 

model, is much lower for the model built on the transformed variables, while the 

RMSEP was comparable (0.15). 

 

Figure 3.4. PLS modelling results for the Mg2+ concentration prediction for the 

ionophore-free sensor data with the augmented second order term. 
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3.2.3. Results of calcium and magnesium quantification in sample 

sets 2-4. 

To assess the feasibility of a selective determination of Ca2+ and Mg2+, a series 

of additional measurements in the presence of constant concentrations of Na+ and K+ 

interfering ions were performed. Both Ca- and Mg-selective sensors demonstrate a 

higher sensitivity to calcium than to magnesium. The PLS model for the prediction of 

the calcium concentration in mixtures containing 10-3 M Na+ (Set 2) is characterized 

by the relatively low RMSEP = 0.15. In contrast, the analogous modelling for the Mg2+ 

failed (R2 = 0.09), due to the interference from Na+. As follows from the data presented 

in the Table 3.5, the measurements performed in the presence of potassium show a 

significant deterioration of model parameters for both calcium and magnesium due to 

the presence of these potassium ions. This can be explained by the fact that potassium 

is more lipophilic than both Ca2+ and Mg2+, and thus it will have a bigger contribution 

to the response of ionophore-free sensors.  

 

Table 3.5. Parameters of the test set validation of regression models for ionophore-

free sensor array (PLS) and separate selective sensors (OLS) in Ca-Mg mixtures with 

various interferences. (RMSEP – Root Mean Square Error of prediction, R2 – squared 

correlation coefficient, N – number of PLS factors). 

Set 

№ 

 

Mixture type 
Model 

type 

Ca Mg 

Slope 

RMSEP, 

lg a 
R2 N Slope 

RMSEP, 

lg a 
R2 N 

1 Ca-Mg 
OLS 0.99 0.08 0.99  

2 

0.10 >180 9E-06  

2 PLS 0.95 0.21 0.84 0.89 0.17 0.90 

2 Ca-Mg + Na 
OLS 0.99 0.04 0.99  

2 

0.01 10.7 0.01  

2 PLS 0.88 0.15 0.94 0.33 0.66 0.09 

3 Ca-Mg + K 
OLS 1.02 1.50 0.96  

1 

0.02 5.60 0.00  

1 PLS 0.87 0.00 0.72 0.13 0.00 0.02 

4 
Ca-Mg + Na 

+ K 

OLS 0.96 0.07 0.96  

1 

0.6 82.5 0.60  

1 PLS 0.09 0.63 0.06 0.68 0.35 0.69 
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 Conclusions 

Using PLS regression modelling, we have shown that the ionophore-free sensor 

array with polymeric sensor membranes based on various cation-exchangers and 

solvent-plasticizers allows for simultaneous quantification of both Ca and Mg in their 

aqueous mixtures. We observed a high correlation between Ca2+ concentration and 

ionophore-free sensor data, not only for binary mixtures, but also in the presence of 

the less lipophilic Na+ interference. For instance, the root mean squared error of 

prediction did not surpass 0.15 in lg a units for the Ca2+ determination. Besides, the 

combination of the proposed approach with PLS regression method can effectively 

compensate for the lack of selectivity in the case of the determination of Mg2+ 

concentration in mixtures by the conventional selective sensors. Therefore, we 

conclude that the potentiometric selectivity can be attained in principle without using 

selective ligands. Nevertheless, the presence of interfering cations (e.g. K+) reduces 

the reliable quantification of calcium and magnesium significantly. However, using a 

wider range of plasticizers and ion-exchangers seems to be the advantageous way to 

increase the variability of sensitivity patterns of the sensors, which should be further 

explored in future research. 
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CHAPTER 4. Multi-ionophore potentiometric sensor 

membranes 

The main idea of this part of the thesis is based on programming the sensor 

properties by mixing several ionophores within one sensor membrane. However, 

similarly to the extraction systems containing several extracting agents, it is expected 

that the sensor sensitivity patterns of multi-ionophore sensors are subjective to certain 

non-additive effects.  

Three ligands traditionally used in the rare earth element extraction procedure 

were employed as ionophores for the PVC-plasticized sensor membranes. Introducing 

several ionophores into the sensor membranes seems to be a feasible way of 

designing the sensor sensitivity patterns, and thus, this approach has the potential to 

be used in multisensor systems. Moreover, it was decided to evaluate the potential of 

this approach with the analysis of lanthanide cations, a series of cations that 

demonstrate a strong mutual interference when present in mixtures. A sensor array 

consisting of both mono- and multi-ionophore sensors was used for the analysis of 

two- and three component solutions and the results were compared to those obtained 

with conventional mono-ionophore sensors. Additionally, a multivariate data 

processing approach was used to selectively quantify particular lanthanide cations in 

the multisensory data. 

 Experimental 

4.1.1. Reagents 

Considering numerous cases where extraction agents were used as ionophores 

for ISE membranes, three compounds were selected for the analysis of rare earth 

metal cations. The chosen ionophores were: diphenyl-N,N-di-n-

butylcarbamoylmethylphoshine oxide (DPCMPO), 3-oxapentadicarbonic acid 

tetraoctyldiamide (TODGA) and N,N′-diethyl-N,N′-di(p)-fluorophenyl dipicolinamide 

(DPA) (Fig. 4.1. a, b and c, respectively). The sensor membranes were based on 33 

wt% PVC and 66 % NPOE with 10 mmol/kg of potassium 
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tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (KTTFPB) as a lipophilic additive, and 50 

mmol/kg of the ionophores in total. 

High-molecular weight polyvinyl chloride (PVC), o-nitrophenyloctyl ether 

(NPOE) and potassium tetrakis[3,5-bis(trifluormethyl)phenyl]borate (KTTFPB) were 

obtained from Fluka Chemical (Switzerland). DPCMPO was synthesized at the 

Institute of Chemical Reagents and Special Purity Chemical Substances (IREA, 

Moscow). TODGA was kindly provided by Dr. B. Casensky (Katchem, Czech Republic) 

and DPA was kindly provided by Khlopin Radium Institute. 

 

 

Figure 4.1. The structure of the ionophores used for the multi-ionophore sensor 

membranes. a – DPCMPO, b – TODGA, c – DPA. 
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4.1.2. Membrane composition and preparation 

The sensor array consisted of 21 sensors: 7 membrane compositions with 3 

pieces of each type. The membranes M1–M3 contained single ionophores, the 

membranes M5–M7 contained binary mixtures of ionophores, and the membrane M4 

simultaneously contained three ionophores. All the studied compositions are listed in 

Table 4.1. 

The sensor membranes were prepared according to the standard procedure. 

All the weighed components were dissolved in freshly distilled tetrahydrofuran (THF) 

under stirring. After complete dissolution of the components, the membrane cocktails 

were poured into 3 ml Teflon cylindrical vessels and left for 48h until THF was 

completely evaporated. Further, 7-mm diameter circles of the membranes (3 per 

composition) were cut and glued onto the sensor body using the mixture of PVC and 

cyclohexanone. All sensors were conditioned in 0.01 M NaCl prior to measurements. 

Table 4.1. Multi-ionophore sensor membrane compositions. 

 

 

 

 

 

# 
mionophore , mg (Cionophore , mmol/kg) 

mplasticizer mPVC  
mlipophilic 

 additive DPCMPO TODGA DPA 

1 5.6 (50) - - 194.5 97.2 1.5 

2 - 8.7 (50) - 192.4 96.2 1.5 

3 - - 6.1 (50) 194.1 97.1 1.5 

4 1.8 (16.67) 2.9 (16.67) 2.0 (16.67) 193.7 96.8 1.5 

5 2.8 (25) 4.4 (25) - 193.4 96.7 1.5 

6 2.8 (25) - 3.1 (25) 194.3 97.1 1.5 

7 - 4.4 (25) 3.1 (25) 193.2 96.6 1.5 
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4.1.3.  Potentiometric measurements and data processing 

Potentiometric measurements were performed using digital mV-meter HAN-11 

(Sensor Systems LLC, St. Petersburg, Russia) against standard Ag/AgCl reference 

electrode (Izmeritelnaya Tekhnika, Moscow, Russia) in the following galvanic cell: 

Ag | AgCl, KClsat| sample solution | membrane | NaCl, 0.01 M, AgCl | Ag 

The standard glass pH electrode (Izmeritelnaya Tekhnika, Moscow, Russia) 

was used for pH control during the measurements as the pH values were fixed at 2 

with nitric acid to suppress hydrolysis. The sensitivity of the sensors M1─M7 towards 

lanthanide and transition metal cations was investigated in 10-6 ─ 10-3 M aqueous 

solutions of the corresponding metal nitrates. Lanthanide nitrates were used as 1M 

stock solutions in 10-2 M HNO3. The sensitivity values (expressed as the slope of the 

linear part of the response function) were averaged over the three replica sensors of 

the same composition and three repeated measurements. The standard deviation did 

not exceed 1 mV/dec. In order to investigate the characteristics of the proposed array 

in the analysis of a mixture, two sets of lanthanide mixtures were analyzed: the binary 

set of the “light” La3+ and Nd3+, and the tertiary set containing “light” Nd3+, “heavy” Er3+ 

cations and Eu3+ from the middle segment of the lanthanide range. The experimental 

set contained 35  samples and was designed according to the procedure described in 

[230] for the 10-5 – 10-3 M  concentration range. It consisted of Calibration (points 1-25) 

and Validation (points 26-35) subsets for PLS regression modeling (Table 4.2.).  

Table 4.2. Compositions of the La-Nd and Nd-Eu-Er mixtures. 

 Binary mixtures Tertiary mixtures 

№ -lg 3+La
C , M -lg 3+Nd

C , M -lg 3+Nd
C , M -lg 3+Eu

C , M -lg 3+Er
C ,M 

1 4,45 4,97 4,83 3,34 4,32 

2 4,31 4,59 4,58 4,67 3,01 

3 3,87 4,78 3,57 3,06 3,08 

4 3,52 4,81 4,28 4,59 3,90 

5 3,17 4,80 5,00 4,65 5,00 
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Table 4.2 (Cont.). Compositions of the La-Nd and Nd-Eu-Er mixtures. 

 Binary mixtures Tertiary mixtures 

№ -lg 3+La
C , M -lg 3+Nd

C , M -lg 3+Nd
C , M -lg 3+Eu

C , M -lg 3+Er
C ,M 

6 4,97 4,51 4,95 4,67 3,65 

7 4,65 4,65 4,24 4,81 4,57 

8 3,87 4,43 3,77 4,48 3,03 

9 3,52 4,43 3,06 4,51 4,54 

10 3,16 4,39 4,49 5,00 3,49 

11 4,98 4,00 4,97 3,86 3,98 

12 4,30 3,84 3,81 3,25 4,19 

13 4,13 4,16 3,10 3,46 5,00 

14 3,71 3,91 4,84 5,00 4,55 

15 3,29 3,49 3,43 4,86 3,71 

16 4,92 3,60 3,12 4,04 4,89 

17 4,48 3,15 3,96 5,00 3,24 

18 4,00 3,47 4,47 3,01 4,64 

19 3,64 3,57 3,38 4,79 4,94 

20 3,04 4,06 4,78 4,52 4,21 

21 4,83 3,20 4,99 3,07 4,91 

22 4,45 3,50 3,03 3,15 3,31 

23 4,04 3,05 3,34 4,88 3,09 

24 3,64 3,22 4,42 3,42 3,25 

25 3,00 3,30 3,26 3,73 3,22 

26 3,25 3,37 4,73 3,61 4,86 

27 4,97 3,55 4,68 3,11 3,07 

28 4,99 4,93 3,58 3,98 3,11 

29 3,29 3,91 3,77 4,09 4,77 

30 3,31 4,85 3,04 4,98 4,64 

31 4,33 3,71 3,86 4,80 3,97 

32 3,67 4,35 4,98 4,94 4,17 

33 4,18 4,22 4,62 4,12 3,57 

34 3,92 3,37 4,27 4,97 3,00 

35 4,83 4,09 3,07 3,04 3,14 

 

The calibration and validation sets were designed independently so as lgC 

values would both have a uniform distribution in the given concentration range. To 

assess the model prediction performance, the RMSEP was calculated. 
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 Results and discussion 

4.2.1. Sensitivity of ionophore-free sensors to lanthanide cations 

The sensitivity of the sensors M1─M7 towards Ln3+ cations was determined for 

the 10-6 ─ 10-3 M range. The typical (theoretical) sensor calibration curve for Ln3+ cation 

analysis is presented in Fig. 4.2. This curve corresponds to a theoretical value of the 

Nernstian response to the trivalent lanthanide cations equal to 19 mV/dec. The 

experimentally observed sensor sensitivity values are reported in Fig. 4.3. and Fig. 4.4. 

-6 -5 -4 -3 -2

100

150

E
 (

m
V

)

lg aLn3+

19 mV/dec

 

Figure 4.2. The typical calibration curve for the Ln3+ for 3 replicate sensors with the 

same composition. 

 Sensors M4, M5 and M7 containing TODGA in mixture with other ligands 

demonstrate a sensitivity pattern identical to the M2 sensor that only contains TODGA. 

This pattern is characterized with an increase in sensitivity from «light» to «heavy» 

lanthanides, in line with the growth of the atomic number of the element (Fig. 4.3). 

Besides, TODGA-based sensors have the highest sensitivity values towards “heavy” 
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lanthanides over the whole sensor array. According to reference [235], in which 

TODGA is used as an extracting agent, TODGA tends to extract heavier lanthanides 

rather than the “light” ones. Moreover, regarding the “heavy” lanthanides, its 

distribution ratio (D) is several orders larger than the one of DPCMPO [7] and DPA 

[236, 237] under similar experimental conditions. This fact explains the prevalence of 

the TODGA sensitivity pattern over the sensitivity patterns of DPCMPO and DPA. 
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Figure 4.3. Sensor sensitivity patterns for TODGA-containing sensors, ± 1 mV/dec.  

 Concerning the DPCMPO-based sensors, its sensitivity values decrease with 

the atomic number of the lanthanide. For instance, the sensitivity pattern for the sensor 

M6, containing DPCMPO and DPA, is similar to the pattern of the DPCMPO-based 

sensor M1 but not to the DPA-based sensor M3. The similarities in the sensitivity 

patterns within the DPCMPO-based sensor membranes are shown in Fig. 4.4.  

It is known that DLn3+ distribution ratios for extraction with carbamoyl phosphine 

oxides decrease from “light” to “heavy” lanthanides [238, 239], whereas 

Dipicolinamides demonstrate moderate sensitivity over the whole lanthanide range 

[240, 241]. In general, the D values are normally proportional to the stability constants 
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of “ionophore-Ln3+” complex. As they decrease in the TODGA >> DPCMPO > DPA 

series, one can expect similar tendencies for the sensor sensitivity patterns. In 

practice, the sensitivity pattern of TODGA being mixed with either DPCMPO or DPA 

prevails over two other ones. In its turn, sensors containing both DPCMPO and DPA 

tend to have the DPCMPO sensitivity pattern. Therefore, we can conclude that the 

DPA-sensitivity pattern can only be observed for the mono-ionophore membrane 

without additional ligands.  
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Figure 4.4. The sensitivity patterns for the sensors M1, M3, M6 (DPCMPO-based 

membranes).  

 Moreover, the selectivity characteristics of the sensors were evaluated using 

the fixed interference method [74]. Selectivity coefficients were calculated from the 

calibration measurements in lanthanide solutions with the presence of 10-5 M La3+ and 

are reported in Table 4.3. 
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Table 4.3. The selectivity coefficients KLn/La determined in the 10-5 M Ln3+ solutions. 

Primary Ln3+ 

ion/sensor # 
M1 M2 M3 M4 M5 M6 M7 

Ce 0.4 3.2 0.4 0.8 1.6 0.4 0.4 

Pr 0.8 >>10 1.6 >>10 >>10 3.2 10.0 

Nd 0.3 0.2 0.6 0.3 0.5 0.5 0.3 

Sm 1.6 0.3 1.0 0.6 0.6 1.3 0.6 

Eu 0.5 0.1 0.2 0.1 0.1 1.0 0.1 

Gd 1.0 0.3 0.3 0.2 0.2 1.0 0.2 

Er 3.9 0.4 1.0 0.4 0.2 5.0 0.1 

 

As expected, TODGA-based sensors (M4, M5, M7) demonstrate a higher 

selectivity towards the “heavy” lanthanides. For instance, the KLn/La < 1 in case of 

lanthanides “heavier” than Nd3+. Sensors M1 and M6 with a more pronounced “light” 

lanthanide sensitivity have KLn/La > 1, which confirms the fact that they prefer the 

“lighter” lanthanum over the “heavier” lanthanides. In case of Ce3+, the preference to 

“lighter” ions is clear (KCe/La < 1). These interesting results are demonstrated by the 

DPA-based M3 sensor. In most cases the KLn/La value is about 1, which is in agreement 

with its moderate sensitivity to the whole range of the lanthanide cations observed 

before.  

It is clear that some of the lanthanide cations will demonstrate a strong mutual 

interference in their mixtures. For instance, both “light”- and “heavy”-sensitive sensors 

demonstrate a high sensitivity to neodymium in the presence of Ln3+. To analyze the 

impact of the multi-ionophore sensor membrane composition on the lanthanide mixture 

analysis, a set of La-Nd binary mixtures was analyzed. 

 

4.2.2. Mixture analysis 

The ability of the sensor array to quantify individual lanthanides in mixtures was 

first studied for La-Nd binary mixtures. A set of 35 La-Nd solutions was analyzed and 
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the acquired data were analyzed with PLS regression to relate the sensor responses 

with the metal content. The resulting PLS models demonstrated a sufficient precision 

in prediction for both Nd3+ and La3+ concentrations (RMSEP = 0.15 and 0.12, 

respectively).  

As the sensors of the array formed groups according to their sensitivity patterns, 

the additional PLS regression models were built based on the following subsets of the 

sensor array: “light Ln”-sensitive (M1, M3, M6), and “heavy Ln”-sensitive (M2, M4, M5, 

M7). The parameters of the models were compared to those for the complete array 

(M1–M7) (Table 4.4). 

 

Table 4.4. Comparison of PLS models based on the complete sensor array data and 

partial data from sensor subsets for La-Nd binary mixtures analysis. RMSEP – Root 

Mean Square Error of prediction, R2 – squared correlation coefficient, N – number of 

PLS factors. 

 

Sensor set 

La3+ Nd3+ 

Slope 
RMSEP, 

lgC 
R2 N Slope 

RMSEP, 

lgC 
R2 N 

Complete array (M1-M7) 0.69 0.12 0.85 4 1.14 0.15 0.89 2 

M1 + M3 + M6  
(“light” - sensitive set)  

0.84 0.09 0.90 3 0.31 0.35 0.40 3 

M2 + M4 + M5 + M7  
(“heavy” - sensitive set)  

0.37 0.24 0.55 2 1.06 0.13 0.91 2 

 

The PLS model built by using the “light”-sensitive sensor subset for the 

prediction of the neodymium concentration demonstrated a higher RMSEP value 

compared to the one obtained by using the complete array (0.29 and 0.15 lgC, 

respectively). The dominance of the TODGA sensitivity pattern for most of the sensors 

resulted in comparable RMSEP values for both the “heavy”-sensitive set and the 

complete array (0.13 and 0.15 lgC, respectively). For the determination of the “lighter” 

La3+, TODGA-based sensors do not demonstrate a high precision (RMSEP = 0.24) 
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and the RMSEP obtained when using the full array is two times lower (0.12). However, 

the model is based on 4 latent variables, which may cause overfitting of the signal by 

the model. As a conclusion, the “light”-sensitive part of the array is best suited for the 

La3+ determination, as this is the subset of sensors for which the PLS model gives the 

lowest RMSEP values (i.e. 0.09 lgC). 

VIP values of the PLS regression model based on the complete array were 

compared for the variables M1–M7 (Fig. 4.5). Indeed, as shown before, the most 

significant variables for the Nd determination correspond to the sensors M2, M4, M5, 

M7. Similarly, the biggest VIP values for the PLS model for the La3+ determination 

correspond to the “light-sensitive” sensors M1, M3, M6. Thus, the complete array (M1-

M7) provides reliable estimation of both ions concentration and the analysis precision 

may be further improved by excluding “non-sensitive” variables from the model, as 

shown in Table 5.4. 
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Figure 4.5. VIP values for the La3+ and Nd3+ mixture analysis. 

 In the next step of the study, a multi-ionophore sensor array was applied for the 

analysis of ternary Ln3+ mixtures. Three metals were chosen: one in the beginning 

(Nd3+), one in the middle (Eu3+) and one in the end of the lanthanide series (Er3+). The 

results of the PLS regression modelling of the sensor responses in the studied 

mixtures are given in Table 4.5. 
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Table 4.5. PLS results for Nd-Eu-Er mixtures analysis. RMSEP – Root Mean Square 

Error of prediction, R2 – squared correlation coefficient, N – number of PLS factors. 

Ion Slope RMSEP, lg C R2 N 

Nd3+ 0.09 0.29 0.26 1 

Eu3+ 0.39 0.46 0.50 3 

Er3+ 1.01 0.08 0.97 2 

 

From the results shown in this table, it is clear that only the Er3+ determination 

can be performed with a sufficient precision (RMSEP = 0.08 lgC). This can be 

explained by the prevalence of the TODGA sensitivity pattern over the other ligands. 

In order to confirm this, the VIP scores for the 1st latent variable of the PLS model were 

determined (shown in Fig. 4.6). The highest VIP values correspond to the sensors M2, 

M4, M5, M7 – namely TODGA-based sensors – exhibiting a high sensitivity towards 

“heavy” lanthanide cations. 

0,53

1,3

0,86

1,1
1,2

0,46

1,2

1 2 3 4 5 6 7

1

 "heavy"-sensitive sensors

V
IP

 o
n
 P

C
1

Variable

 "light"-sensitive sensors

 

Figure 4.6. The VIP scores of the PLS model built on data Er3+ analysis in tertiary Nd-

Eu-Er mixtures. 
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 Conclusions 

This study contributes to the understanding of sensitivity patterns of sensor 

membranes containing multiple ionophores. The proposed multi-ionophore membrane 

compositions do not provide new sensitivity patterns compared to the mono-ionophore 

sensors. However, the slight differences in the sensors performance, depending on 

the membrane composition, are still sufficient for a multisensory analysis of mixtures. 

For instance, the analysis of binary La3+ and Nd3+ mixtures yielded a reasonable 

precision. 

The analysis of ternary lanthanide mixtures is not possible with the suggested 

sensor array due to the fact that TODGA-based sensors are highly selective to the 

“heavy” lanthanides. This will therefore provide a dominating sensitivity pattern for four 

(M2, M4, M5, M7) sensors out of seven, since TODGA has a very strong complexation 

ability compared to the other two ligands, DPCMPO and DPA. In the future, this new 

understanding should help to improve the polymeric membrane compositions (e.g. use 

alternative ionophores) in order to perform the analysis of mixtures in a more flexible 

way.  
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CHAPTER 5. Conclusion 

Nowadays, there is an ongoing process of switching to the paradigm of so-called 

“Industry 4.0” or the fourth industrial revolution. The main concept of this process is an 

ever-increasing automation associated with information technologies in all fields of 

human activities. This process has already led to the Internet of things, cloud 

computing and cyber-physical systems. The implementation of these concepts in the 

industry requires the development of advanced monitoring and control systems, that 

could operate continuously in an on-line mode, yield reliable data, exchange these 

data through the networks, and all of this being done without human input.  

The development of such systems would allow monitoring chemical parameters 

in various industrial processes, environmental samples or biological systems, and is 

therefore of special importance. Throughout the last decades, there was a tremendous 

growth of process analytical technology (PAT) and multivariate statistical process 

control (MSPC) in all industrial fields. These techniques are aimed at the substitution 

of traditional sampling-based control which is not capable of yielding timely chemical 

information in an express way. Application of modern spectroscopic tools with 

appropriate data processing algorithms allows reliable estimation of chemical 

composition of industrial streams in on-line mode. This automation trend is also clearly 

seen in modern analytical chemistry: more and more studies are aiming at the 

development of analytical methods suitable for fast and simple measurements of 

several key quality parameters instead of research on traditional “heavy” analytical 

tools providing super-selective and super-sensitive but super-expensive information 

on the exhaustive chemical composition of a sample. The development of such 

chemical monitoring systems is closely associated with data analysis and machine 

learning (chemometrics in the context of chemical studies). Application of 

chemometrics enables deriving reliable chemical information from noisy and poorly 

resolved analytical signals which are typical for simple instruments, and since “math is 

cheaper than physics”, this paradigm appears to be very powerful and effective. 
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Due to the above mentioned trends, the number of studies devoted to the 

development of various chemical sensors and sensor systems has grown 

exponentially over the last decade. A very representative example where simplicity of 

the device still allows very effective performance is the multisensor approach. 

Multisensor systems are made of a set of cross-sensitive chemical sensors combined 

with chemometrics. This concept proved to be very powerful in various real-life 

applications, where the evaluation of global quality parameters is often needed instead 

of the information on the precise composition of the sample. For example, arrays of 

cross-sensitive sensors may be used for the estimation of the water toxicity in 

ecological monitoring, while the content of the individual toxicants in water is not 

directly correlated with the reaction and survival rate of biological objects. Some of 

these quality parameters, such as taste for food products, do not even have a clearly 

defined measurement unit. Taste is correlated with multivariate data from sensor 

arrays rather than with concentrations of individual constituents. In industrial 

processes monitoring, along with the determination of key components, compliance of 

general process quality to appropriate standards is checked.  

Further successful developments of multisensor approaches and their 

implementation into good industrial practices require addressing several important 

issues such as: 1) novel sensor signal transduction schemes to produce more 

informative sensor response; 2) novel approaches for programmable sensor 

properties. 

The present thesis was devoted to the developing of new approaches to signal 

transduction in potentiometric sensors. This type of sensors is the most popular and 

widely applied due to very simple construction and measurement process, yet very 

prominent analytical performance in terms of selectivity and detection limits. The 

manuscript consists of three parts each one addressing particular issues in modern 

potentiometric sensor technology.  

The first part proposed a new way of analytical signal transduction from 

potentiometric sensor membranes. The aim of the present research was to examine 
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the evolution of the Raman spectral signature of a polymeric sensor membrane upon 

contact with the sample solution. The feasibility study was performed using a ligand 

(PDAM) immobilized in the plasticized PVC sensor membrane. As a model analyte, 

Cd2+ was chosen since metal cations do not inherently have vibrational modes and 

therefore no Raman spectral signature. It was found that the formation of the complex 

between Cd2+ in sample solution and PDAM induces quantitative changes in the 

Raman spectrum of the membrane. Multivariate regression applied to membrane 

spectra in contact with Cd2+ solutions allowed the estimation of the metal content in a 

sample. The main advantage of the proposed approach is the possibility of working 

with very small sample volumes, in the order of microliter. Further perspectives of this 

research could be devoted to the adaptation of the membrane composition for the 

determination of other analytes, e.g. using new polymers and ligands. Besides, an 

additional study could assess the selectivity of the PDAM-Cd2+ complex formation, as 

the presence of other transition metal cations may induce similar changes in the 

spectrum. 

Both the second and the third part of the thesis were aimed at developing sensor 

arrays with programmable cross-sensitivity properties, providing easy adaptation of 

the array to a particular analytical task, by changing the composition of the sensor 

membrane.  

The second part of the study was focused on ionophore-free sensor array 

applications, where sensor membranes were based on the polymer, plasticizer and 

lipophilic additive only. As the cross-sensitivity of these sensors is defined by the 

combination of the plasticizer and the lipophilic additive in the membrane, the 

ionophore-free approach may eventually circumvent the tedious and cumbersome 

procedure of ionophore selection. The proposed array was tested in the analysis of 

Ca2+ and Mg2+ cations demonstrating high mutual interference in mixtures, and the 

results were compared with characteristics of individual selective sensors with 

conventional membrane compositions. It was found that the proposed procedure 

yields reasonable precision in the quantification of both calcium and magnesium in 
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double mixtures even without ionophores. Application of PLS regression can 

effectively compensate for the lack of selectivity in case of Mg2+ determination in 

mixtures, by contrast to the use of selective sensors. Nevertheless, since selectivity of 

the ionophore-free sensors is governed by the lipophilicity of target ions, in more 

complex mixtures containing sodium and potassium interfering background, reliable 

quantification of calcium and magnesium is still not possible. A way to circumvent this 

limitation could be to apply a wider range of plasticizers and ion-exchangers in order 

to increase the variability of sensitivity patterns of the sensors. In general, the 

suggested approach of attaining potentiometric selectivity without ionophores should 

be studied further.  

The third part introduced multi-ionophore sensors, containing several 

ionophores in one PVC-plasticized membrane. The goal was to assess the effect of 

the presence of several ionophores on the sensor sensitivity patterns. This multi-

ionophore approach was tested in the analysis of rare earth element cations mixtures 

and compared to the results of conventional mono-ionophore sensor. It was shown 

that even slight differences in sensitivity patterns for the mono-and multi-ionophore 

sensors result in a significant increase in the sensor performance, as shown for the 

analysis of La3+ and Nd3+ mixtures. The main limitation of the designed sensors was 

related to the dominance of the sensitivity patterns of one of the chosen ionophores 

(TODGA), providing the selectivity towards “heavy” lanthanide cations rather than 

“light” ones in their mixtures. Further studies with other ligands should be carried out 

in order to determine whether a bigger diversity of the sensitivity patterns – and thus a 

better performance of the sensor array – can be achieved. 

These approaches being combined with multivariate data analysis techniques 

may become competitive with the traditional ISE applications. Further development 

may allow achieving wide range programmable sensitivity patterns in an array, 

allowing a more flexible adaptation to particular analytical tasks. 
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Annex 1. The NIPALS algorithm (PCA). 

1) Initialize the scores vector t1;  

2) Obtain the loading vector p1 regressing the X on the scores vector t1 and 

normalize the result  (Eq.28):  

T

1
1 T

1

X t
p =

X t
 (Eq.28) 

3) Recalculate t1 by the projection of X on p1 (Eq.28): 

1new 1t = Xp  (Eq.29) 

4) Check if the convergence achieved, e.g. the difference between the recalculated 

tnew and the initial one is below some threshold value (most often ε = 0.00001) 

(Eq.30): 

1 1newt - t < ε  (Eq.30) 

5) remove the first PC from the initial X matrix  (Eq.31):  

T

1 1E = X - t p  (Eq.31) 

The ti and pi for the next principal component are estimated basing on the 

residuals matrix E from the previous iteration.  
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Annex 2. NIPALS algorithm (PLS regression) 

1) Choose a starting vector ui, (one of the Y columns)  

2) Estimate the X-weights, w: 

= /T T

i i iw X u X u  (Eq.32) 

3) Calculate X-scores, t: 

=i it Xw  (Eq.33) 

4) Estimate the Y-loadings, qi: 

= /T T

i i i i iq u t u t  (Eq.34) 

5) Estimate the Y-scores, qi: 

=i iu Yq  (Eq.35) 

6) Check if the convergence of t is achieved (difference between two consecutive 

iterations is below selected threshold value ): 


−

1 – /i i it t t  (Eq.36) 

If t has not converged, then return to 1) 

if t has converged, then  

7) compute the loadings for X:  

=  /
T T

i i i ip X t t t  (Eq.37) 

8) remove the resulting component from X, so the residuals can be used: 

+
= – T

ii i 1 iE X t p  

+
= – TYi i 1 i iF u q  

(Eq.38) 

repeat with the next component until Fi is below a certain pre-determined threshold, 

which would mean that sufficient percentage of Y-variance is explained. 

The regression coefficient vector B is calculated according to: 

( )
−

=ib
1

T

i i i iW P W q  (Eq.39) 
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Annex 3. NMR spectrum of the acrylate copolymer  

 



137 
 

 

 

 

 

Annex 4. Original contributions 
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1. M. Alyapyshev, J. Ashina, D. Dar'in, E. Kenf, D. Kirsanov, L. Tkachenko, A. Legin, 

G. Starova, V. Babain, 1,10-Phenanthroline-2,9-dicarboxamides as ligands for 

separation and sensing of hazardous metals, RSC Advances, 6 (2016) 68642-68652 

2. J. Ashina, D. Kirsanov, M. Moreau, V. Koverga, K. Mikhelson, C. Ruckebusch, A. 

Legin, Raman transduction for polymeric ion-selective sensor membranes: Proof of 

concept study, Sensors and Actuators, B: Chemical, 253 (2017) 697-702 

Conference abstracts: 

3. J. Ashina, D. Kirsanov, M. Moreau, C. Ruckebusch, A. Legin. «Raman transduction 

for ISE polymeric membranes: feasibility study». Book of abstracts of Matrafured 2017 

Conference On Electrochemical Sensors. June 11-16, 2017, Budapest, Hungary. 

4. J. Ashina, D. Kirsanov, V.Babain, C. Ruckebusch, A. Legin. «Polymeric Membrane 

Sensors with Two Ionophores: Case Study in Lanthanide Mixtures Analysis». Book of 

abstracts of Matrafured 2017 Conference On Electrochemical Sensors. June 11-16, 

2017, Budapest, Hungary. 
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