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Abstract 

 
Understanding of the role that atmospheric aerosol play in the Earth-atmosphere 

system is limited by uncertainties in aerosol distribution, composition and sources. 

Thus, accurate chemical transport model simulation systems are crucial needed to 

analyse and predict atmospheric aerosols and their impacts on climate change and 

environment. Satellite observations have ability to provide an extensive spatial 

coverage and accurate aerosol products, however, are constrained by clear-sky 

condition, global coverage orbit cycle and information content. One of the most 

promising approaches is to reduce model uncertainty by improving the aerosol 

emission fields (i.e., model input) by means of inverse modeling relying on satellite 

observations as a constrain. In this study, we designed a method of simultaneous 

retrievals of desert dust, black carbon and organic carbon aerosol emission sources 

using aerosol data obtained from GRASP algorithm applied to POLDER/PARASOL 

satellite observations, and relying on the GEOS-Chem inverse modeling framework. 

Then, a satellite-based global aerosol emission database (2006-2011) has been 

developed. This aerosol emission database has been further evaluated by utilization in 

GEOS-Chem and GEOS-5/GOCART models. The model posterior simulation of 

aerosol properties employing the retrieved emissions shows a better agreement than 

the model prior simulation; it is true for not only fitted PARASOL products, but also 

for completely independent measurements from ground-based AERONET and 

satellites aerosol products (e.g., MODIS, MISR, OMI). The results suggest that the 

satellite-based aerosol emission database improves overall global aerosol modeling. 

 

 

Keywords: aerosol emissions; PARASOL/GRASP; adjoint GEOS-Chem; inverse 

modeling; desert dust; black carbon; organic carbon. 
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Résumé 

 
La compréhension du rôle des aérosols atmosphériques dans le fonctionnement du 

système terre-atmosphère est limitée par les incertitudes sur leur répartition spatiale, 

leur composition et leurs sources. Si leurs impacts sur le changement climatique et 

l’environnement peuvent être évalués grâce aux modèles de chimie-transport, ces 

incertitudes en limitent la précision. Les observations satellitaires ont la capacité de 

fournir à l’échelle globale des informations précises sur un certain nombre de 

paramètres « aérosols » mais elles sont limitées par les conditions nuageuses, la 

périodicité des orbites et par le contenu en information, c’est-à-dire le type de 

paramètres que l’on peut retrouver suivant la nature de ces observations. Une 

approche prometteuse consiste à améliorer les champs d’émission des modèles en 

utilisant le principe de la modélisation inverse. Dans cette étude, nous avons conçu 

une méthode de restitution simultanée des sources d’émission de poussières 

désertiques, de carbone suie et de carbone organique à partir des produits satellitaires 

(POLDER/PARASOL) dérivés en utilisant l’algorithme GRASP, conjointement à une 

modélisation inverse du modèle GEOS-Chem. Cela nous a permis de créer une base 

de données d’émissions globales d’aérosols sur la période 2006–2011. Des 

simulations réalisées avec les modèles directs GEOS-Chem et GEOS-5/GOCART 

utilisant cette base de données montrent bien entendu un bon accord avec des 

observations POLDER mais aussi une nette amélioration de la modélisation de 

l’aérosol à l’échelle globale lorsque l’on compare les sorties à des mesures 

indépendantes du réseau AERONET ou à d’autres mesures spatiales (MODIS, MISR, 

OMI). 

 

Mots clés: émissions d'aérosols; PARASOL/GRASP; adjoint GEOS-Chem; 

modélisation inverse; poussière du désert; carbone noir; carbone organique. 
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Chapter 1 

General introduction 
 

 

Even though the future seems far away, it 

is actually beginning right now. 

 

Mattie Stepanek 

 

 

The atmospheric aerosol is a complex and dynamic mixture of solid and liquid 

particles from natural and anthropogenic sources. The amount and properties of 

aerosols are extremely variable in space and time. The aerosol characteristics of high 

interest are the size distribution, chemical composition, and shape of the particles. It is 

useful to classify aerosols in different categories according to these properties. There 

are several possible classifications. 
 

Natural and Anthropogenic Aerosols 
Aerosols are produced from natural processes and anthropogenic activities. The 

natural sources include windborne dust, sea spray, volcanic activities and biomass 

burning etc., while emissions attributable to the anthropogenic activities arise 

primarily from fuel combustion, industrial processes, nonindustrial fugitive sources 

(e.g. construction work), and transportation sources (e.g. vehicles, ships). Natural 

aerosols are 4 to 5 times larger in amount than anthropogenic ones on a global scale, 

but regional variation in man-made pollution may change this ratio significantly in 

certain area, particularly in the industrialized Northern Hemisphere. 

 

Primary and Secondary Aerosols 
Aerosols also can be divided into two classes, namely primary and secondary 

aerosols, according to the mechanisms of their origination. Primary aerosol particles 
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are emitted into the air directly. This is the case of aerosols produced by the effect of 

the wind friction on an oceanic or terrestrial surface and aerosols produced during an 

incomplete combustion. While secondary aerosol particles designate those particles 

that have not been emitted directly in the particulate phase but formed in the 

atmosphere by gas-particle conversion such as nucleation, condensation, 

heterogeneous and multiphase chemical reactions. Anthropogenic aerosols include 

primary (directly emitted) particles and secondary particles that are formed in the 

atmosphere from aerosol precursor gases.  

 

Fine and Coarse Mode Aerosols 
The Nuclei Mode (particle diameter < 0.1µm) consists primarily of combustion 

particles emitted directly into the atmosphere and particles formed in the atmosphere 

by gas-to-particle conversion. They are usually found near highways and other 

sources of combustion. Because of their high number concentration, especially near 

their sources, these small particles coagulate rapidly. Consequently, nuclei particles 

have relatively short lifetimes in the atmosphere and end up in the accumulation mode.  

The Accumulation Mode (0.1µm < particle diameter < 2.0µm or 2.5µm) includes 

combustion particles, smoke particles and coagulated nuclei mode particles. Particles 

in this mode are small but they coagulated too slowly to reach the coarse mode. 

Hence, they have a relatively long lifetime in the atmosphere and they account for 

most the visibility effects of atmosphere. In general, the nuclei and accumulation 

modes together constitute “Fine Mode” aerosols. 

The Coarse Mode (particle diameter > 2.0µm or 2.5µm) consists of windblown 

dust, large sea salt particles from sea spray and mechanically generated anthropogenic 

particles such as those from agriculture and surface mining. Because of their large 

size, the coarse particles readily settle out or impact on surface, so their lifetime in the 

atmosphere is short. (http://aerosol.ees.ufl.edu/atmos_aerosol/section04-1.html) 
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Figure 1.1: Illustration of emission, growth and removal of atmospheric aerosols, referred to 

Jacob, (1999). 

 
Table 1.1: Estimated source strengths, lifetimes, and optical depth of major aerosol types. 

Statistics are based on results from 16 models examined by the Aerosol Comparisons between 

Observations and Models (AeroCom) projects (Kinne et al., 2006; Textor et al., 2006).  

Tg (teragram)=1012 gram or 1 million metric tons 

The sulfate aerosol source is mainly SO2 oxidation plus a small fraction of direct emission. The organic 

matter source includes direct emission and hydrocarbon oxidation 

 

Figure 1.1 illustrates the different processes involved in the aerosol emission, 

growth and eventual removal of different type and size of atmospheric aerosol 

particles. Aerosol simulation community commonly uses a discrimination of aerosol 

in five components: sulfate (SU), black carbon (BC), organic matter (OM), desert dust 

(DD) and sea salt (SS) for a better characterization of aerosol optical and 

microphysical properties. SS and DD contributions dominate the coarse size mode, 

while the fine mode is accumulated by SU, BC and OM. In addition, DD and OM 
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particles absorb most strongly in the UV and short wave visible channels, while BC 

particles are absorbing more ubiquitously (Kinne et al., 2006; Textor et al., 2006). 

Table 1.1 reproduced from Chin et al. (2009), presents the emissions, optical depth 

and life time of these five aerosol components, as represented by current aerosol 

transport models. 

1.1 Importance of atmospheric aerosols 
Atmospheric aerosols play a key role in many important environmental aspects 

including climate change, stratospheric ozone depletion and tropospheric air pollution. 

Atmospheric aerosols affect climate through three primary mechanisms (King et al., 

1999). First, direct radiative forcing results when radiation is scattered or absorbed by 

the aerosol itself. Scattering of shortwave radiation enhances the radiation reflected 

back to space, therefore increasing the reflectance (albedo) of the earth and cooling 

the climate system. Absorption of solar and long wave radiation alters the 

atmospheric heating rate, which in turn may result into changes to the atmospheric 

circulation. Second, indirect radiative forcing results to enhance concentrations of 

aerosol particles and modify cloud properties, resulting in more cloud droplets, albeit 

smaller in size, that generally increase the albedo of clouds in the earth’s atmosphere. 

The indirect effect could be subdivided in two different groups: Twomey effect 

(Twomey, 1974, 1977) and Albreicht effect (Albrecht, 1989). In Twomey effect, 

aerosol influences cloud formation by providing additional nuclei for droplet of ice 

crystals growth (Boucher, 1999). While in Albreicht effect, aerosol effects change 

cloud lifetime and other cloud properties like liquid water content and cloud top 

height. Finally, aerosol particles could modify the atmospheric temperature profile by 

absorbing aerosols, and then affecting the presence of clouds. Detailed description of 

definition of aerosol three climate effects can be found in Haywood and Boucher, 

(2000). 

The radiative forcing (RF) is one of the ways to quantify how aerosol contributes 

to climate change. Aerosol radiative forcing is the net change in the energy balance of 

the earth system due to the presence of atmospheric aerosols. It is usually expressed in 

watts per square meter (𝑤/𝑚! ) averaged over a particular period of time and 

quantifies the energy imbalance that occurs when the imposed change take place. In 

the Intergovernmental Panel on Climate Change (IPCC) reports, there are RF of 

aerosol-radiation interaction (direct effect), RF of the aerosol-cloud interaction 
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(indirect and semi-direct effect) and the impact of BC particles on snow and ice 

surface albedo. According to the latest IPCC (2013), the total aerosol-radiation and 

aerosol-cloud interaction (excluding BC on snow and ice) is estimated with a 5% to 

95% uncertainty between -1.9 and -0.1 𝑤/𝑚! with the best estimate value of -0.9 

𝑤/𝑚! (medium confidence). Table 1.2 lists the best estimates of RF due to aerosol-

radiation interaction for various aerosol components taken from four versions of IPCC 

reports. Because absorption by ice is very weak at visible and ultraviolet wavelengths, 

BC in snow makes the snow darker and increases absorption. The anthropogenic BC 

on snow/ice is assessed to have a positive global and annual mean RF of +0.04 𝑤/

𝑚!, with a 5% to 95% uncertainty from +0.02 to +0.09 𝑤/𝑚! (IPCC, 2013). Overall, 

aerosol RF can be compared in magnitude to a radiative forcing for well-mixed 

greenhouse gases, however the aerosol effects continue to represent one of the largest 

uncertainties in the detection and prediction of climate change study. 

 

Table 1.2: Summary of aerosol radiative forcing (w/m2) due to aerosol-radiation interaction 

of seven aerosol components and comparisons between four versions of IPCC assessment 

reports, taken from (IPCC), (2013). 

	
In the short term and regional scale, aerosol particles can degrade visibility and 

damage aviation and transport. The World Health Organization (WHO, 2016) has 

reported country estimates of air pollution exposure and its health impact, which 

suggests that 6.5 millions deaths (11.6% of all global deaths per year) may be 

associated with air pollution, and 92% of the world’s population lives in places where 

air quality levels do not meet the WHO ambient air quality guideline of an annual 

mean PM2.5 (particulate matter with a diameter of less than 2.5 microns) concentration 

of less than 10 𝜇𝑔/𝑚!. From this environment standpoint, aerosols still constitute an 
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important policy issue in air quality, and it is probably the most pressing issue in air 

quality regulation worldwide. Thus, knowledge of the global distribution of 

atmospheric aerosols is important for studying the effects of aerosols on global 

climate and air pollution. Thus, reliable observation and simulation systems are 

needed to be established to understand the role atmospheric aerosols play in earth-

atmosphere system (Bellouin et al., 2005). 

1.2 Challenges and opportunities 
At present, there are many well-established Global Circulation Models (GCMs) 

that simulate the global aerosol distributions by generating their own meteorology 

(e.g. models by Koch, 2001; Koch et al., 1999; Roeckner et al., 1996, 2003; Stevens 

et al., 2013; Tegen et al., 2000) and Chemical Transport Models (CTMs) that 

incorporate meteorological data from external sources into the model physics (e.g. 

models by Balkanski et al., 1993; Chin et al., 2000; Takemura et al., 2000; Ginoux et 

al., 2001; Bessagnet et al., 2004; Grell et al., 2005; Spracklen et al., 2005; Mann et al., 

2010). However, the CTMs simulation is limited by uncertainties in knowledge of 

aerosol emission source characteristics, knowledge of atmospheric processes and the 

meteorological field data used. The large model diversity in compositional aerosol 

emissions, shown in Table 1.1, affects the simulation of aerosol properties. As a result, 

even the most recent models are mainly expected to capture only the principal global 

features of aerosol. For example, among different models, quantitative estimates of 

average regional aerosol properties often disagree by amounts exceeding the 

uncertainty of remote sensing of aerosol observations (Chin et al., 2002, 2014, Kinne 

et al., 2003, 2006; Textor et al., 2006). Therefore, there are diverse and continuing 

efforts to harmonize and improve aerosol modeling by refining the meteorology, 

atmospheric process representations, emissions and other components (e.g. aerosol 

aging scheme, particle mixing state etc.) (Watson et al., 2002; Dabberdt et al., 2004; 

Generoso et al., 2007; Ghan et al., 2007; He et al., 2016; Wang et al., 2014a, 2016).  

Current aerosol emission estimation is largely based on the “bottom-up” method 

that integrates diverse information such as population, fuel consumption in various 

industries and corresponding measurements of emission rates for different species 

(Streets et al., 2003), economic growth, and the statistics of the land use and fire 

burned area (van der Werf et al., 2006). While significant progress has been made 
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(Streets et al., 2006), the “bottom-up” approach still has a number of limitations (Xu 

et al., 2013): 

(i) The bottom-up emission inventory usually has a temporal lag of at least 2 

to 3 years, because time is needed to aggregate information from different 

sources and format them into the emission inventories that are suitable for 

use in climate models.  

(ii) The temporal resolution of the current bottom-up aerosol emission 

inventories is usually on monthly to annual scale, which is not sufficient to 

capture the daily or diurnal variation of aerosol distributions.  

(iii) The spatial resolutions of the bottom-up emission inventories are usually 

limited by the availability of the external information, which often lack the 

spatial coverage for emission estimation in a uniformly fine resolution for 

regional modeling of aerosol transport.  

(iv) The bottom-up emission inventories may miss important emission sources 

that are not well documented including emission from wild fires, volcanic 

eruptions, and agricultural activities.  

All these limitations can be amplified in the chemical transport model simulation, 

because the uncertainty of aerosol emission can translate into a high uncertainty of 

aerosol simulation and a significant high uncertainty of aerosol climate effect 

evaluation.  

Space-borne remote sensing instruments offer an integrated atmospheric column 

measurement of the amount of light scattering by aerosols through modification of 

diffuse and direct solar radiation. Numerous satellite observations of the spatial and 

temporal distribution of aerosols have been conducted in the last two decades (King et 

al., 1999; Kaufman et al., 2002; Lenoble et al., 2013). The satellite retrievals of 

Aerosol Optical Depth (AOD) and Aerosol Absorption Optical Depth (AAOD) are 

directly related to light extinction and absorption due to the presence of aerosol 

particles. AOD is a basic optical property derived from many earth-observation 

satellite sensors, such as AVHRR (Advanced Very High Resolution Radiometer), 

MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angular 

Imaging SpectroRadiometer) and POLDER (Polarization and Directionality of the 

Earth’s Reflectances) (Goloub et al., 1999; Geogdzhayev et al., 2002; Kahn et al., 

2009; Tanré et al., 2011; Levy et al., 2013). AAOD is another valuable product to 

quantify the solar absorption potential of aerosol, however only a few satellite sensors 
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can provide retrieval of AAOD, and only with limited accuracy, for example OMI 

(Ozone Monitoring Instrument) on the Aura satellite (Torres et al., 2007; Veihelmann 

et al., 2007) and POLDER on PARASOL (Polarization & Anisotropy of Reflectances 

for Atmospheric Sciences coupled with Observations from a Lidar), because only 

ultraviolet (UV) and shortwave visible channels and polarimetric measurements are 

sensitive to aerosol absorption. 

Despite their ability to provide a high-degree of spatial coverage, satellite 

measurements alone are not sufficient for answering question regarding the 

distributions, magnitudes, and fates of aerosols in the atmosphere. These aspects can 

be studied using CTMs. Combination of aerosol satellite remote sensing and aerosol 

model simulation can be applied for interpretation of observed spatial distributions, as 

observed from the satellite, and vice verse. One of the most promising approaches for 

reducing model uncertainty is to improve the aerosol emission fields (that is input for 

the models) by inverse modeling, i.e. fitting satellite observations and model 

estimates and by adjusting aerosol emissions. For example, Dubovik et al. (2008) 

developed an algorithm for inverting MODIS data and implemented the approach to 

retrieve distributions of aerosol emissions. The algorithm was used to implement the 

first formal retrieval of global emission distributions of fine mode aerosol from the 

MODIS fine mode AOD data. Wang et al. (2012) and Xu et al. (2013) use MODIS 

radiances to constrain aerosol sources over China. Huneeus et al. (2012, 2013) 

optimize global aerosol emission source from MODIS AOD with a simplified aerosol 

model (Huneeus et al., 2009). However, as discussed in works such as Dubovik et al. 

(2008) and Meland et al. (2013), MODIS AOD (as well as currently available aerosol 

satellite data) contains only limited information to evaluate aerosol types, properties, 

or speciated emissions. Further, inconsistencies between representations of aerosol 

microphysics between the CTM and the aerosol retrieval algorithm can have 

significant influences on inverse modeling of aerosol sources (e.g. Drury et al., 2010; 

Wang et al., 2010). Therefore, the retrieval of aerosol emission sources from satellite 

observations remains very challenging. 

The recently generated PARASOL/GRASP (General Retrieval of Atmosphere and 

Surface Properties) spectral AOD and AAOD data (Dubovik et al., 2011, 2014; data 

available from ICARE data distribution portal: http://www.icare.univ-lille1.fr/) 

present new opportunities for constraining DD, BC and OC sources because their 

optical properties vary dramatically in the spectrum of short wave visible to near 
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infrared (VIS-NIR) viewed by PARASOL. Polarimetric remote sensing 

measurements such as those from PARASOL have been postulated to provide much 

greater constraints on speciated aerosol emissions and microphysical properties 

(Meland et al., 2013). DD aerosols are dominated by coarse mode particles, and their 

AOD varies slightly in the VIS-NIR spectral range; in contrast, the AOD of fine mode 

dominated BC and OC aerosols decrease sharply in this spectral range. In addition, 

DD and OC particles absorb most strongly in the UV and short wave visible channels, 

such as 443 nm, while BC particles are absorbing more ubiquitously (Sato et al., 

2003).  The GRASP retrieval overcomes the difficulty of deriving aerosol over bright 

surfaces in the shortwave visible wavelengths, which should help improve constraints 

of DD emissions over source regions, rather than having to rely on downwind 

observations (e.g., Wang et al., 2012). 

1.3 Research goals and thesis outline  
The main research goal of this PhD work is to explore the possibility of the 

retrieval of aerosol emission sources from recent aerosol data retrieved from the 

polarimetric POLDER/PARASOL produced with the GRASP algorithm. To achieve 

the objective, GEOS-Chem model (Bey et al., 2001) has been chosen for this study 

because it is the community model (http://acmg.seas.harvard.edu/geos/) with 

constantly maintained and improved adjoint module. The adjoint operator of GEOS-

Chem model is realized by Henze et al. (2007). However, the current aerosol emission 

retrievals are limited by the information from satellite observations. The approach 

proposed in this work is aimed to take advantage from aerosol spectral AOD and 

AAOD from PARASOL/GRASP to retrieve emissions of the major aerosol types by 

inverting GEOS-Chem model. In order to achieve this objective, several 

developments were realized. First, the modeling of AOD and AAOD consistent with 

PARASOL/GRASP forward model was implemented in adjoint GEOS-Chem model. 

Second, the retrieval procedure of aerosol emissions has been set up. The procedure 

was designed as simultaneous fitting of spectral aerosol extinction and absorption 

information by adjusting the emission of the aerosol. The study was relaying on the 

positive heritage of inverse modeling in the previous studies (Dubovik et al., 2008; 

Henze et al., 2007, 2009). 

This PhD thesis is structured into six logical parts, each describing a milestone in 

the aerosol emission retrieval method development. First chapter provides an 
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overview of the challenges and opportunities in the field of study followed by the 

description of research goals and structural outline of this study. Second chapter is 

dedicated to the atmospheric aerosols and their properties, as well as to the aerosol 

remote sensing techniques both from ground base and satellites and the introduction 

of aerosol simulation system. Third chapter contains detailed description of the 

proposed retrieval methods. The retrieval method was rigorously tested by a series of 

sensitivity experiments, for two scenarios when the retrieval is implemented over 

Africa and over entire Globe. Fourth chapter is an application of designed retrieval 

method over Africa. It contains the detailed description of the method application 

over Africa, the evaluation of input PARASOL/GRASP aerosol products over Africa, 

and the description of retrieved one-year DD, BC and organic carbon (OC) aerosol 

emission. Also, the results are also validated with independent measurements. Fifth 

chapter discusses the efforts on applying the developed method for the generation of a 

six-years (2006-2011) of global dataset of aerosol emission of DD, primary BC and 

OC. It contains the evaluation of this PARASOL/GRASP based aerosol emission 

dataset and analysis of the obtained datasets compare to the existent emission datasets. 

Specifically, the obtained emissions were implemented in GEOS-Chem and GEOS-

5/GOCART (Goddard Chemistry Aerosol Radiation and Transport) chemical 

transport models (Chin et al., 2002, 2009, 2014; Colarco et al., 2010) and the 

simulated aerosol properties are validated against independent measurements from 

ground-based AERONET and space-borne MODIS, MISR and OMI. Sixth chapter 

contains the conclusions and the discussions of algorithm potential and limitations. 
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Chapter 2 
 
	

Remote sensing and modeling of 

atmospheric aerosols 
	

	

Research is to see what everybody else has seen, 

and to think what nobody else has thought. 

	

Albert	Szent-Gyorgyi	

	

	

	

2.1 Aerosol optical and microphysical properties  
Aerosol particles can be described and characterized by optical and 

microphysical properties. The main optical and microphysical properties of aerosols 

required for determining their radiation effects include the aerosol optical depth, 

aerosol absorption optical depth, Ångström exponent (spectral dependence of optical 

depth), single scattering albedo, phase matrix, complex refractive index and particle 

size distribution. In this section, we will describe the different aerosol properties that 

are used in our study. 

2.1.1 Aerosol Optical Depth (AOD) 
The Aerosol Optical Depth (AOD or 𝜏) (also called aerosol optical thickness, 

AOT, in the literature) is the measure of aerosols distributed within an integrated 
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atmospheric column from the Earth’s surface to the top of atmosphere, and is an 

extensive state parameter associated with aerosol column amount. In general, most 

remote sensing methods retrieve AOD. According to the Bouguer-Lambert-Beer law, 

the sunlight traverses atmosphere by scattering and absorption: 

𝐼(𝜆) = 𝐼!(𝜆)exp [−𝑚 ∙ 𝜏!"# 𝜆 ]     (2.1) 

where 𝜆 stands for wavelength, 𝐼! is the intensity of sunlight at the upper limit of the 

atmosphere, 𝑚  is the optical air mass that can be approximated as 

𝑚 = 1 [𝑐𝑜𝑠𝜃! + 0.50572 ∙ 96.07995− 𝜃! !!.!"!#], here 𝜃! represents solar zenith 

angle (Kasten and Young, 1989). 𝜏!"# describes the total column optical depth and is 

the sum of aerosol and molecular (Rayleigh) optical depth under the cloud-free 

conditions: 

𝜏!"# 𝜆 = 𝜏!"# 𝜆 + 𝜏!"# 𝜆     (2.2) 

Meanwhile, optical depth of aerosols in the light path is referred to AOD and is 

also sum of depth of optical scattering and absorption. 

𝜏 𝜆 = 𝜏! 𝜆 + 𝜏!(𝜆)      (2.3) 

where 𝜏  represents optical depth of aerosols, 𝜏!  is optical depth due to aerosol 

absorption (also called aerosol absorption optical depth), and 𝜏! stands for aerosol 

scattering optical depth. 

2.1.2 Single Scattering Albedo (SSA) 
Aerosol scattering albedo (SSA or 𝜔!) is a measure of the fraction of aerosol 

total light extinction due to scattering, which also provides information about the 

absorption properties of the aerosols, and therefore it is of critical importance for 

quantifying the impact of aerosols on climate. The aerosol single scattering albedo is 

defined as the fraction of the aerosol light scattering in the total extinction: 

𝜔! = 𝜏! 𝜏 = 𝜎!
(𝜎! + 𝜎!)                                         (2.4) 

where 𝜏! and 𝜏 represent aerosol scattering optical depth and aerosol optical depth 

respectively; 𝜎!  and 𝜎!  are the aerosol scattering and absorption coefficients, 

respectively. SSA is one of the most relevant optical properties of aerosols, since their 

direct radiative effect is very sensitive to it. Values of SSA range from 0.0 for totally 

absorbing (dark) particles to 1.0 for purely scattering particles; in nature, SSA is 

rarely lower than about 0.70. 



	 13	

2.1.3 Ångström exponent (AExp) 
Ångström exponent (AExp or 𝛼) is a measure of differences of AOD at different 

wavelengths, which is also used to describe the dependency of the AOD, or aerosol 

extinction coefficient with wavelength. The AOD at two different wavelengths allows 

determination of Ångström exponent as follows (Ångström, (1929)): 

𝛼 = −ln [𝜏 𝜆! /𝜏(𝜆!)]/ln (𝜆! 𝜆!)      (2.5) 

Ångström exponent relates to the sizes of aerosol particles. Namely, 𝛼 tends to be 

inversely dependent on particle size; larger values are generally associated with 

smaller aerosol particles. Basically, the values of 𝛼  less than 0.6 indicate large 

particles like desert dust and the values greater than 1.0 indicate small particles like 

sulfate, black and organic carbon particles (Eck et al., 1999; Schuster et al., 2006). 

Ångström exponent with combination with other parameters such as AOD and SSA 

are widely used for aerosol classifications in various studies (e.g. Toledano et al., 

2007; Penning de Vries et al., 2015). 

2.1.4 Aerosol Absorption Optical Depth (AAOD) 
The aerosol absorption optical depth (AAOD or 𝜏!) is defined as integration of 

the aerosol absorption coefficient of the layers 𝜎!(𝑧) over a vertical path of a light 

beam from the ground to the top of the atmosphere (TOA): 

𝜏! = 𝜎! 𝑧 𝑑𝑧
!"#

!
                                                         (2.6) 

The aerosol absorption properties are directly related to its composition, for 

example, most of the absorption in aerosol compound is due to presence of black 

carbon, absorbing mineral dust and organic/brown carbon, whereas other species (sea 

salt and sulfate) are predominantly non-absorbing aerosols. However, the spectral 

range allows discrimination between absorbing species that absorb most strongly in 

the UV and short visible region, such as organic/brown carbon and mineral dust, and 

the more ubiquitously absorbing black carbon (Sato et al., 2003). 

2.1.5 Aerosol complex refractive index 
The real part of complex refractive index is the ratio of light velocity in a vacuum 

to light velocity in this substance, which is related to light scattering. Meanwhile, the 

aerosol absorbing ability is determined by the imaginary part of the complex 

refractive index. The complex refractive index (𝑚) is expressed as: 
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𝑚 = 𝑛 + 𝑖𝑘              (2.7) 

where 𝑛 and 𝑘 represent real and imaginary parts of refractive index, respectively. 

The aerosol refractive index depends on the chemical composition and the source of 

pollution. For example, the DD and SS aerosol, there is high spectral dependency of 

imaginary part. BC aerosol is the most strongly absorbers of solar radiation, 

furthermore the imaginary part of the complex refractive index, which is about 2 

orders of magnitude higher for BC aerosol than other aerosol species. For biomass 

burning aerosol, the real part is ranged from 1.47 to 1.52. The refractive index of 

hydrophilic aerosol also depends on relative humidity (RH) decreasing with its 

increase.  

2.1.5 Aerosol size distribution 
The distribution of aerosol particle size can be represented by differential radius 

number density distribution, which represents the number of particles with radius 

between 𝑟 and 𝑟 + 𝑑𝑟 per unit volume. Hence, the total number of particles per unit 

volume, 𝑁!, is given by 

𝑁! = 𝑛 𝑟 𝑑𝑟
!

!
                                                       (2.8) 

The particle size distribution can also be approximately described using a 

mathematical function, such as Junge power function distribution, gamma distribution, 

lognormal distribution etc. According to many studies (Deshler et al., 1993; Jäger and 

Hofmann, 1991), the lognormal size distribution can well characterize many observed 

real size distributions. Variation in the number of particles 𝑛 as a function of the 

natural logarithm of the radius 𝑟 can be written as 

𝑛 ln𝑟 =
𝑑𝑁
𝑑ln𝑟 =

𝑁!
2𝜋

1
ln𝜎!

exp −
ln𝑟 − ln𝑟! !

2ln!𝜎!
                          (2.9)	

where 𝑛 ln𝑟  is the number of particles with radius between ln𝑟 and ln𝑟 + 𝑑ln𝑟, 𝑟! is 

the mode radius, 𝜎! is the standard deviation of the natural logarithm of the radius 

(the width of the distribution) and 𝑁! is the total number of particles.  

Equivalent equation can be calculated for a log-normal volume density 

distribution, 𝑣 ln𝑟 , can be expressed as 

𝑣 ln𝑟 =
𝑑𝑉
𝑑ln𝑟 =

𝑉!
2𝜋

1
ln𝜎!

exp −
𝑙𝑛𝑟 − 𝑙𝑛𝑟! !

2𝑙𝑛!𝜎!
                         (2.10)	
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where 𝑉! is the total aerosol volume per unit volume of atmosphere, 𝑟! is the mode 

radius for the volume size distribution and 𝜎! is the geometric standard deviation.  

A multi-mode distribution is simply described by a sum of several lognormal 

distributions. For example, the bi-modal lognormal size distribution is widely used in 

aerosol remote sensing and modeling. In addition, sometimes aerosol size 

distributions are complex superposition of more than two modes, and modern 

retrieval methods that allow for arbitrary shaped size distributions do retrieve 

distributions that would not fit a lognormal. For example, in the AERONET retrieval, 

volume size distribution was represented by 22 radius bins of equidistant in 

logarithmic scale, covering the size range from 0.05 to 15𝜇𝑚 (Dubovik and King, 

2000). 

 

2.2 Aerosol remote sensing 
The global distribution of aerosols can be detected by remote sensing techniques 

from ground-based instruments and space-borne satellites. One of the reasons for 

applying remote sensing techniques to derive distribution of aerosol characteristics is 

to provide strong observational constrains on model depictions of global aerosol 

distribution (Chung et al., 2012; Sato et al., 2003).  

	

2.2.1 Ground-based remote sensing by AERONET 
The AERONET (AErosol RObotic NETwork) is a global collection of ground-

based sun photometers providing reliable and accurate aerosol measurements (Holben 

et al., 1998), and is federation of regional and national networks deployed in the 

1990s by collaboration of the National Aeronautics and Space Administration (NASA) 

with PHOTONS (Laboratoire d'Optique Atmosphérique-LOA, University of Lille1) 

in the form of automatic stations for monitoring atmospheric aerosols. The automatic 

sun and sky scanning radiometers are returned annually to calibration center in GSFC 

(Goddard Space Flight Center) and LOA for calibration against Langley calibrated 

reference instrument of AOD (±0.01) and a referenced integrating sphere for sky 

radiances (>5% absolute accuracy). 

For AERONET standard sun photometer (CIMEL 318), the direct sun 

measurements are made in several spectral channels (anywhere between 340nm and 
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1640nm; 440nm, 670nm, 870nm, 940nm and 1020nm are standard). Sky 

measurements are performed at 440nm, 670nm, 870nm and 1020nm. The latest 

AERONET inversion algorithm (Dubovik et al., 2006; Dubovik and King, 2000) 

provides improved aerosol retrievals by fitting the entire measured field of radiances 

(sun radiance and the angular distribution of sky radiances) at four wavelengths (440, 

670, 870 and 1020nm) to a radiative transfer model. Currently, the radiances 

measured by the almucantar sequence are used to make aerosol information retrieval. 

The radiation field is driven by the wavelength dependent aerosol complex index of 

refraction and the particle size distribution (in the range: 0.05 𝜇𝑚 ≤r≤15 𝜇𝑚) in the 

total atmospheric column. Using such a general aerosol model in the retrieval 

algorithm allows us to derive the aerosol properties with minimal assumptions. Only 

spectral and size smoothness constrains are used, preventing unrealistic oscillations in 

either parameter. Recent studies try to include polarimetric measurements from new 

CIMEL 318DP sun photometer into inversion algorithm (Fedarenka et al., 2016; Li et 

al., 2009b; Xu et al., 2015; Xu and Wang, 2015). 

	
Figure 2.1: Global map of AERONET sites used in this study; the total number of daily AOD 

observations of a single site from 2006 to 2011 determines the size of each cross over plotted; 

according to the data from AERONET website: https://aeronet.gsfc.nasa.gov/ 

 

AERONET measures clear sky spectral AOD with an accuracy of ±0.02 at 

wavelength 440nm and ±0.01 at wavelengths ≥ 440nm (Eck et al., 1999). In addition, 

a number of other tendencies useful for improving retrieved aerosol properties 

accuracies were identified in Dubovik et al. (2000, 2002b, 2006) and Dubovik and 



	 17	

King, (2000). For example, the accuracy of SSA is ±0.03 when AOD>0.2. Because of 

consistent calibration, cloud screening and retrieval methods, uniformly acquired and 

processed data are available from all stations, some of which have operated for over 

20 years. These data provide a high quality ground-based climatology and are suitable 

for long-term trend analysis over regions. For example, AERONET data have been 

widely used to evaluate satellite aerosol retrievals (Kahn et al., 2005; Levy et al., 

2007; Remer et al., 2005). Figure 2.1 shows the global map of AERONET sites used 

in this study, the total number of daily AOD observations of a single site from 2006 to 

2011 determines the size of each cross over plotted. Although AERONET 

measurements are of the highest quality to date and rapid development in last 2 

decades, they are only point measurements lucking global coverage. Therefore, 

accurate monitoring of aerosols on a global scale still requires improving current 

satellite remote sensing techniques, as well as extending the surface network. 

2.2.2 Space-borne satellite remote sensing 
While all types of observations provide important information and help to 

constrain models, only satellite remote sensing has the ability to observe and quantify 

the aerosol distribution on a global scale. Monitoring aerosols from space has been 

performed for over two decades (Deuzé et al., 1999, 2001, Dubovik et al., 2011, 2014; 

Goloub et al., 1999; Herman et al., 2005; Higurashi et al., 1999; Hsu et al., 2004; 

Husar et al., 1997; Ignatov et al., 2000; Kahn et al., 2005, 2009, Levy et al., 2007, 

2010, 2013, Martonchik et al., 1998, 2002, Mishchenko et al., 1999, 2007, Remer et 

al., 2002, 2005, Torres et al., 1998, 2007). A number of developed and launched 

space instruments provide global monitoring of aerosol properties. Table 2.1 

summaries major passive satellite measurements available for the tropospheric aerosol 

characterization. The Figure 2.2 illustrates the constellation of satellites known as the 

“A-Train”, which are making nearly contiguous observations of many facets of the 

Earth system.  
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Table 2.1: Summary of major satellite measurements currently available for the aerosol 

products 

   
Satellite aerosol retrievals have become increasingly sophisticated over the past 

decade. Now, satellites measure the angular dependence of radiance and polarization 

at multiple wavelengths from UV to the infrared (IR) at fine spatial resolution. From 

these observations, aerosol retrieval algorithm attempts to determine not only AOD at 

one wavelength, but also some information about particle size properties (size over 

both ocean and land). The accuracy for AOD measurements from these sensors is 

about 0.05 or 20% of AOD (Remer et al., 2005; Kahn et al., 2005) and somewhat 

better over dark water, but that for aerosol microphysical properties, which is useful 

for distinguishing aerosol mass types, is generally low.  
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Figure 2.2: The Afternoon Constellation, so-called A-Train consists of five satellites with 

another two failed (Glory and OCO), of spacecraft that overfly the Equator at about 1:30PM 

local time; adapted from https://atrain.gsfc.nasa.gov/ScienceFormationFlying.php 

	

The main satellites and passive sensors provide aerosol products including: 

Terra-MODIS, Terra-MISR, Aqua-MODIS, Aura-OMI and PARASOL-POLDER.  

 

• MODIS 

Each MODIS sensor obtains near global, daily observations of atmospheric 

aerosols with a swath width of 2330 km and 36 channels ranging from 410 to 15,000 

nm. Eight channels, nominally, 410, 470, 550, 660, 870, 1,240, 1,630 and 2,130 nm 

are adopted to retrieve aerosol properties in cloud-free pixels with appropriate surface 

features (Hsu et al., 2006; Li et al., 2005; Martins et al., 2002; Remer et al., 2005). 

Because of the simplicity of the dark ocean surface, and wide spectral range, MODIS 

has the capability of retrieving AOD with a relative high accuracy of ±0.03± 0.05𝜏 

according to evaluation with AERONET (Chu et al., 2002; Levy et al., 2010; Remer 

et al., 2002, 2005). The dark ocean surface conditions permit retrieval of information 

on particle size. Over vegetated land, the MODIS dark-target (DT) algorithm 

estimates surface reflectance in the blue and red channels based on an empirical 

relationship using the shortwave infrared (2,130 nm) radiance and retrieves AOD 

(Kaufman et al., 1997; Levy et al., 2007). AOD is retrieved at 550 nm with an 

accuracy of ±0.05± 0.15𝜏 and then extrapolated to 470 nm and 660 nm using the 
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selected aerosol model (Chu et al., 2002; Levy et al., 2010; Remer et al., 2005). 

Because of the complex spectral structure of the land surface (note that vegetation is 

bright, not dark in the near-IR), retrieval of aerosol information over bright surface 

(e.g. desert dust) is not possible. 

The Deep Blue (DB) (Hsu et al., 2004) and the MultiAngle Implementation of 

Atmospheric Correction (MAIAC) (Lyapustin et al., 2011a, 2011b, 2012) aerosol 

algorithms have been developed and applied to MODIS measurements. The DB and 

the MAIAC algorithm offer complementary and alternative products to the original 

DT algorithm described above. The Deep Blue algorithm makes use of the much 

darker surface reflectance in the blue than at red wavelengths (Hsu et al., 2004).  This 

is especially helpful for retrieving AOD over bright surfaces, although DB is not 

limited to desert dust regions. MAIAC retrieves aerosol information over land 

simultaneously with parameters of a surface bidirectional reflectance factor model 

using image-based processing applied to the time series of MODIS measurements at 

higher spatial resolution 1km in comparison to DT and DB 10km Level 2 aerosol 

products (Lyapustin et al., 2011a, 2011b, 2012).  

 

• MISR 

MISR, aboard the sun-synchronous polar orbiting Terra satellite, measures 

upwelling solar radiance in four spectral bands (at 446, 558, 672, and 866 nm) at each 

of nine view angles spread out in the forward and backward directions along the flight 

path (at nadir, ±70.5°, ±60.0°, ±45.6°, and ±26.1° of nadir) (Diner et al., 2002). It 

acquires global coverage about once per week, because a more narrow swath than 

MODIS, OMI and POLDER. Remote sensing of aerosol using a single view direction, 

as is common practice for the vast majority of satellite sensors, has limited 

information content even when a large number of spectral bands are available. 

MISR’s wide range of along-track view angles makes it feasible to more accurately 

evaluate the surface contribution to the TOA radiances and hence retrieve aerosols 

over both ocean and land surfaces, including bright desert aerosol source regions and 

ocean regions that are contaminated by sun glint for mono-directional instruments 

(Diner et al., 1998, 2002, Kahn et al., 2005, 2010, Kalashnikova and Kahn, 2006, 

2008, Martonchik et al., 1998, 2002). MISR limits on aerosol type to enhance MISR 

AOD accuracy compared to single-angle instruments in many circumstances. MISR 
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aerosol products provide particle type classification, based on particle size, shape and 

SSA constraints. These amount to distinguishing three-to-five particle size bins, two-

to-four bins in SSA, and spherical vs. non-spherical particles, provided the mid-

visible AOD exceeds 0.15 or 0.2, and the scene meets other basic retrieval-quality 

criteria (Kahn et al., 2001, 2010). More details about the MISR aerosol products are 

given in the references above and the MISR ATB (Algorithm Theoretical Basis) 

(https://eospso.gsfc.nasa.gov/atbd-category/45). 

 

• OMI 

OMI is aboard on the Aura satellite with a swath 2600 km that covers the Earth in 

one day.  OMI is a hyper-spectral instrument that measures from 270 to 500 nm. The 

Aerosol Index (AI; sometimes referred to as the UV Aerosol Index, UVAI; or the 

Absorbing Aerosol Index, AAI) provides a measure of absorbing aerosol and a simple 

index to distinguish between absorbing and non-absorbing aerosols. AAI is calculated 

without assuming aerosol particle properties. It has been frequently used to 

characterize aerosol transport (Li et al., 2009a; Moulin and Chiapello, 2004; Yu et al., 

2012, 2013).  

There are two operational aerosol retrieval algorithms taking advantage of OMI 

measurements, the OMAERUV and OMAERO. The OMAERUV algorithm uses the 

measured radiances at 354 and 388 nm to derive AOD and AAOD at 388 nm (Torres 

et al., 2007). The algorithm is based on the deviation of observed radiances from 

expected values from Rayleigh scattering and is sensitive to AOD, aerosol absorption 

and height of the aerosol layer. With only two pieces of information from the two 

measured channels, OMAERUV cannot retrieve all three unknowns.  The operational 

algorithm assumes aerosol layer height from climatology. The AOD is extrapolated to 

the visible regions using the selected aerosol spectral model (Torres et al., 2002, 

2007). The OMAERO algorithm uses up to 19 channels in the spectral range of 330 

nm to 500 nm to derive quantitative aerosol information. The oxygen absorption band 

at 477 nm is used to enhance the sensitivity to the aerosol layer height (Veihelmann et 

al., 2007) in a way similar to its use in the retrieval of cloud height (Acarreta et al., 

2004), and becomes one of the retrieved parameters. The primary retrieved 

parameters are AOD and the best fitting aerosol model. Both OMAERUV and 

OMAERO retrieve quantitative AOD. This is AOD of the entire column, including 

the surface layer. Due to its spatial resolution, i.e., 13 x 24 km2 at nadir, OMI AOD 
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retrievals are prone to sub-pixel cloud contamination. OMI AOD values are generally 

biased high with respect to MODIS measurements, likely as a result of a calibration 

offset and subpixel cloud contamination (Ahn et al., 2008). In comparison, OMI 

AAOD is less sensitive to the cloud contamination because of a partial cancellation of 

cloud contamination effects on AOD and SSA (Torres et al., 2007, 2013). 

 

• POLDER/PARASOL 

POLDER has multi-angular and polarimetric measurements. There have been 

three POLDER instruments launched into space ADEOS-POLDER (1996-1997), 

ADEOS2-POLDER (2003) and PARASOL-POLDER (2005–2013). The principle 

behind the use of polarization for the remote sensing of aerosol properties from space 

is the extreme sensitivity that polarization has to the microphysical properties of the 

aerosol particles. When used in combination with the total reflection function, either 

at one or multiple view angles, there is nearly a complete orthogonally in the 

simultaneous retrieval of extinction, absorption and particle size information, thereby 

leading to a much more accurate solution for both parameters. Further advantages of 

polarization include the fact that polarization radiance is less sensitive to surface 

reflection than total radiance alone (King et al., 1999). POLDER/PARASOL imager 

provides spectral information of angular distribution of both total and polarized 

components of solar radiation reflected to space. With the expectation of 3 gaseous 

absorption channels (763, 765 and 710 nm), the observations over each pixel include 

total radiance at 6 channels (443, 490, 565, 670, 865 and 1,020 nm) and linear 

polarization among 3 channels (490, 670 and 865 nm). The number of viewing angle 

is similar for all spectral channels and varies from 14 to 16 depending on solar zenith 

and geographical location. Meanwhile, PARASOL provides global coverage about 

every 2 days (Dubovik et al., 2011; Tanré et al., 2011). 

The observed multi-angular polarized radiances can be exploited to better 

separate atmospheric from surface contributions over both land and ocean (Deuzé et 

al., 2001). Over ocean, the total and polarized radiances at 670 and 865 nm are used 

to retrieve total AOD (Deuzé et al., 1999), with a typical accuracy of ±0.05±0.05τ 

(Goloub et al., 1999). When the geometrical conditions are optimal (scattering angle 

ranging between 90°-160°), POLDER can derive the shape of coarse-mode particles 

(Herman et al., 2005). Over land, the operational aerosol retrieval is based on 
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measurements using only polarized light at the two wavelengths (Deuzé et al., 2001; 

Herman et al., 1997), to capitalize on the small and fairly spectrally neutral polarized 

reflectance typical of land surfaces.  

Recently, advanced algorithms (GRASP, General Retrieval of Atmosphere and 

Surface Properties) has been developed to further exploit the aerosol information 

content of the POLDER measurements (Dubovik et al., 2011, 2014). The retrieval is 

designed as a statistically optimized multi-variable fitting of the complete PARASOL 

observation set: all wavelengths, all angles, and all states of polarization. The 

algorithm allows for a large number of unknown parameters and retrieves a set of 

parameters affecting measured radiation. The GRASP retrieval does not utilize 

precalculated look-up tables commonly used in satellite retrievals for fitting 

observations. Instead, GRASP retrievals searches in continuous space for the 

solutions and optimizes the statistical properties of the obtained retrieval. 

Comprehensive measurements (~144 independent measurements per pixel) from 

PARASOL allow GRASP to infer aerosol properties including spectral AOD and 

AAOD, the particle size distribution, single scattering albedo, spectral refractive 

index and the fraction of spherical particles (some description of the products can be 

found in papers of Kokhanovsky et al. (2015) and Popp et al. (2016)). Extensive 

information of aerosol distribution and their properties are contributed to look further 

into the aerosol types or compositions, which are vital to characterize the emissions 

from different aerosol species. 

 

2.3 Aerosol modeling 
Despite aerosol satellite remote sensing techniques having ability to provide a 

high-degree of spatial coverage aerosol products with a high accuracy, the drawbacks 

of the satellite observations is the lack of information on the chemical composition, 

the relatively large time span (usually more than 24 hours for polar orbiting satellites) 

between two successive overpasses over an area.  In these regards, three dimensional 

(3D) chemical transport models are being developed that can describe the global 

speciated aerosol fields in a time continuous scale (e.g. models by Balkanski et al., 

1993; Chin et al., 2000; Takemura et al., 2000; Ginoux et al., 2001; Bessagnet et al., 

2004; Grell et al., 2005; Spracklen et al., 2005; Mann et al., 2010). 
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2.3.1 General description 
Modeling of atmospheric aerosol is one useful way to understand the global 

distribution and transport of atmospheric aerosols. CTMs solve the continuity 

equation of the chemical species and each aerosol species for individual grid boxes 

defined in the Eulerian model (Seinfeld and Pandis, 2016). The major inputs needed 

for a CTM are the meteorological information and emission inventories of various 

species. These models generate aerosol from estimates of source emissions, then 

allow the particles to be transported by modeled meteorology, transformed from 

modeled chemical processes and removed from the atmosphere by modeled dry and 

wet deposition. A microphysics model is also needed to simulate the optical 

properties of aerosols. Hence, CTMs can simulate the temporal and spatial 

distribution of trace gases and aerosols (Jacob, 1999). A central goal of atmospheric 

modeling is to understand quantitatively how the concentrations or mass of species 

depend on controlling process: emissions, transport, chemistry and deposition. 

• Emissions. Chemical species are emitted to atmosphere by a variety of 

sources. Some of these sources, such as fossil fuel combustion, originate from 

human activity and are called anthropogenic. Others, such as photosynthesis 

of oxygen, originate from natural functions of biological organisms and are 

called biogenic. Still others, such as volcanoes, originate from bon-biogenic 

natural process. In general, the CTMs deal with the aerosol species emissions 

according to the wind speed, soil type, etc., such as mineral dust, sea salt; or 

obtain the emissions from emission inventories, such as carbonaceous aerosols. 

• Chemistry. Reactions in the atmosphere can lead to the formation and removal 

of species. 

• Transport. Winds transport atmospheric species away from their point of 

origin. 

• Deposition. All material in the atmosphere is eventually deposited back to the 

Earth’s surface. Escape from the atmosphere to outer space is negligible 

because of the Earth’s gravitational pull. Deposition takes two forms: “dry 

deposition” involving direct reaction or absorption at the Earth’s surface, such 

as the uptake of CO2 by photosynthesis; and “wet deposition” involving 

scavenging by precipitation. 
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Here we describe one simplest type of model used in atmospheric modeling 

research, one-box model. A one-box model for an atmospheric species X (e.g. sulfate 

aerosols) is show in Figure 2.3. Transport is treated as a flow of X into the box (𝐹!") 

and out of the box (𝐹!"#). If the box is the global atmosphere then 𝐹!" = 𝐹!"# = 0. 

The production and loss rates of X inside the box may include contributions from 

emissions (𝐸), chemical production (𝑃), chemical loss (𝐿) and deposition (𝐷). The 

terms 𝐹!", 𝐸 and 𝑃 are sources of X in the box; the terms 𝐹!"#, 𝐿 and 𝐷 are sinks of X 

in the box.  

	
Figure 2.3: One-box model for an atmospheric species X, refer to Jacob, (1999) 

	

By mass balance, the change with time in abundance of species X inside the box 

must be equal to the difference between sources and sinks: 

𝑑𝑚
𝑑𝑡 = 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 − 𝑠𝑖𝑛𝑘𝑠 = 𝐹!" + 𝐸 + 𝑃 − 𝐹!"# − 𝐿 − 𝐷     (2.11) 

This formula provides the foundation for all atmospheric modeling research. In 

real 3D earth system simulation, the spatial and temporal behavior of atmospheric 

species is simulated in CTMs by solving the continuity equation (Brasseur and Jacob, 

2017; Brasseur et al., 1999; Jacob, 1999): 
𝜕𝑚
𝜕𝑡 = −∇ ∙𝑚𝑼+ 𝑆 − 𝑅                                             (2.12) 

where ∇= (𝜕 𝜕𝑥 ,𝜕 𝜕𝑦 ,𝜕 𝜕𝑧) is the gradient vector, 𝑼 is the transport velocity 

vector, 𝑚  is mass. 𝑆  and 𝑅  stand for source and loss terms, respectively. The 

characteristics 𝑼, 𝑚, 𝑆 and 𝑅 in Eq. (2.12) are explicit functions of time 𝑡 and spatial 

coordinates 𝒙 = (𝑥,𝑦, 𝑧). Thus, the continuity equation is a first-order	 differential 

equation in space and time that relates the mass field of a species in the atmosphere to 

its sources and sinks and to the wind field. 
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The continuity equation is usually solved numerically using discrete analogues. 

Consider the problem of calculating 𝑚(𝒙, 𝑡! + Δ𝑡) from knowledge of 𝑚(𝒙, 𝑡!). The 

first step involves separation of the different terms in Eq. (2.12): 
𝜕𝑚
𝜕𝑡 = (

𝜕𝑚
𝜕𝑡 )!"#$%&'() + (

𝜕𝑚
𝜕𝑡 )!"#$%!&'"# −

𝜕𝑚
𝜕𝑡 !"#$%&'&$(

+ 𝑆          (2.13)	

Each term in Eq. (2.13) is integrated independently from others over finite time step 

Δ𝑡 using an advection operator 𝐴, a convection operator 𝐶, and a deposition operator 

𝐷. The formulation then can be expressed as 

 𝑚 𝒙, 𝑡! + Δ𝑡 = 𝑆 +𝑚 𝒙, 𝑡! 	

+
𝜕𝑚
𝜕𝑡 !"#$%&'!"

𝑑𝑡
!!!!!

!!
	

+
𝜕𝑚
𝜕𝑡 !"#$%!&'"#

𝑑𝑡
!!!!!

!!
	

+
𝜕𝑚
𝜕𝑡 !"#$%&'&$(

𝑑𝑡
!!!!!

!!
	

= S+ 𝐴 ∙ 𝐶 ∙ 𝐷 ∙𝑚 𝒙, 𝑡!                                              (2.14)	

This approach is called operator splitting. Separating the operators over large 

time steps makes the calculation tractable, but it is based on the assumption that 

advection, convection and deposition operators are independent of each other over the 

time step. To carry out the integration involved in each operator, one can discretize 

the spatial domain over a 3D grid (Figure 2.4). The continuous mass function 𝑚 𝒙, 𝑡  

then can be expressed by the discrete function 𝑚 𝑖, 𝑗, 𝑘, 𝑡  where 𝑖, 𝑗, 𝑘 are the indices 

of the grid elements in the 3D directions 𝑥,𝑦, 𝑧 respectively. The advection operator 

can be expressed algebraically: 

𝑚 𝑖, 𝑗, 𝑘, 𝑡! + Δ𝑡 = 𝐴 ∙𝑚 𝑖, 𝑗, 𝑘, 𝑡! = 𝑚 𝑖, 𝑗, 𝑘, 𝑡! 	

+
𝑢 𝑖 − 1, 𝑗, 𝑘, 𝑡! 𝑚 𝑖 − 1, 𝑗, 𝑘, 𝑡! − 𝑢 𝑖, 𝑗, 𝑘, 𝑡! 𝑚 𝑖, 𝑗, 𝑘, 𝑡!

∆𝑥 ∆𝑡	

+
𝑣 𝑖, 𝑗 − 1, 𝑘, 𝑡! 𝑚 𝑖, 𝑗 − 1, 𝑘, 𝑡! − 𝑣 𝑖, 𝑗, 𝑘, 𝑡! 𝑚 𝑖, 𝑗, 𝑘, 𝑡!

∆𝑦 ∆𝑡	

+
𝑤 𝑖, 𝑗, 𝑘 − 1, 𝑡! 𝑚 𝑖, 𝑗, 𝑘 − 1, 𝑡! − 𝑤 𝑖, 𝑗, 𝑘, 𝑡! 𝑚 𝑖, 𝑗, 𝑘, 𝑡!

∆𝑧 ∆𝑡      (2.15)	

𝑼 = (𝑢, 𝑣,𝑤)  is the local wind velocity vector. The convection and deposition 

operators are applied on the discrete grid in the same way as advection operator. 
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Figure 2.4: General concept illustration of spatial and temporal discretization of the 

continuity equation 

	

Basically, we have arrived at a numerical solution of the continuity equation. 

Then, the quality of aerosol simulation depends on the grid resolution, the time step, 

the aerosol emission inventories or models adopted in CTMs, and the algorithms used 

for these transport operators.  

	

GEOS-Chem model has been chosen for this study, because it is the community 

model (http://acmg.seas.harvard.edu/geos/) with constantly maintained and improved 

adjoint module. GEOS-Chem is a global 3D chemical transport model driven by 

assimilated meteorological data from the NASA Goddard Earth Observing System 

Data Assimilation System (GEOS-DAS) (Bey et al., 2001). We use the GEOS-Chem 

(v9-02) model for forward aerosol simulation with 47 layers vertical resolution and 2° 

(latitude) x 2.5° (longitude) horizontal resolution. The standard aerosol dry deposition 

in GEOS-Chem is described in (Wang et al., 1998; Wesely, 1989), and accounting for 

gravitational settling and turbulent mixing of particles to the surface (Pye et al., 2009; 

Zhang et al., 2001). Aerosol wet deposition is through wet scavenging in convective 
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updrafts as well as in- and below-cloud scavenging from convective and large scale 

precipitation (Liu et al., 2001). 

	

2.3.2 Aerosol emission sources 
Emissions of DD and SS aerosols are either prescribed in global models or 

interactively calculated as a function of wind speed, soil particle size distribution, 

vegetation cover, soil moisture and other local variables. For BC, OC and SU aerosols 

and/or their precursors, emissions are prescribed using global inventories exclusively 

based on bottom-up techniques, which integrate source information across different 

economical sectors.  

 

I. Dust aerosol emission 

In GEOS-Chem simulation, the DD aerosol emission is calculated from the 

mineral dust entrainment and deposition (DEAD) model (Zender et al., 2003) 

coupling with the GOCART dust source function (Ginoux et al., 2001), in order to 

have a good strength and spatial structure of DD emissions (Fairlie et al., 2007). The 

total horizontal saltation flux, Q!, based on the theory of White (1979): 

𝑄! = 𝐶!
𝜌!"#
𝑔 𝑈∗! 1−

𝑈!∗

𝑈∗ 1+
𝑈!∗

𝑈∗
!

                                  (2.16)	

where 𝑈∗ is the friction velocity, 𝑈!∗ is the threshold friction velocity, 𝜌!"# is the air 

density, 𝑔 is the acceleration of gravity, and 𝐶! is a global tuning factor. In reality, 

soil moisture, vegetation, rocks and stones, and snow cover inhibit dust mobilization 

by contribution to cohesion, and then impact the soil moisture and increase threshold 

friction 𝑈!∗ (Zender et al., 2003) (Here, we adopt 𝑔 = 9.80616𝑚 𝑠!; 𝐶! = 0.00049). 

The total vertical DD flux is combined the entrainment scheme in DEAD with the 

source function, 𝑆, in GOCART model. 

𝐹 = 1− 𝐴! 𝑆𝛼𝑄!                                                        (2.17)	

where the sandblasting mass efficiency, 𝛼, depends on the fraction 𝑀!"#$ of clay in 

the soil; 𝐴! is the snow- covered fractional area, (1− 𝐴!) retains suppression due to 

snow cover; 𝑆 stands for source function, which restricts dust emissions to persistent 

desert and semi-desert regions. Figure 2.5 compares the GOCART source function 

(Figure 2.5a) and the GEOS-Chem annual total DD emission (Figure 2.6b), and the 

similarity between the source distribution and the annual dust emission shows the 
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importance of the source function. However, the limitation of the usage of source 

function is the DD aerosol generation is constrained in the place where the source 

function 𝑆 is nonzero. 

	
Figure 2.5: Comparison between (a) the GOCART 2°x2.5° dust source function used in 

GEOS-Chem dust mobilization and (b) the GEOS-Chem annual total dust emission in 2006; 

Note 0.1 to 6.0µm (radius) dust particles are taken into account. 

	

II. Sea-salt aerosol emission 

The SS aerosols module in GEOS-Chem model was first implemented by 

(Alexander et al., 2005) using the source function described by (Monahan et al., 1986). 

And then it was updated to the formulation of Gong (2003), which improved the 

simulation of dry radius smaller than 0.1µm (Jaeglé et al., 2011). The main 

mechanism leading to SS emission is by air bubbles bursting at the surface of the 

ocean as a result of wind stress (Blanchard, 1985; Monahan et al., 1986). The 

expression of density function d𝐹 dr!" (in units of particles 𝑚!!𝑠!!𝜇𝑚!!): 
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𝑑𝐹
dr!"

= 1.373𝑢!"!!.!"𝑟!"!! 1+ 0.057𝑟!"!.!" ∙ 10!.!"#!!!
!

                    (2.18)	

where 𝐴 = 4.7(1+ Θ!!")
!!.!"#!!"!!.!! , 𝐵 = 0.433− log!" 𝑟!" /0.433 , 𝑟!"  is the 

particle radius at RH = 80% (with 𝑟!"~2𝑟!"#), and 𝑢!"! is the 10-meter wind speed. 

The parameter Θ!!" is an adjustable parameter, which controls the shape of the size 

distribution of submicron aerosols, which is recommended to Θ!!" = 30 in Gong, 

(2003). 

In the GEOS-Chem simulation, the sea salt aerosol is distributed in two modes, 

with radius varying from 0.1 to 0.5µm in fine mode, and 0.5 to 4.0µm for coarse 

mode. In each mode, the radius is divided into size bins by interval of 0.05µm. Figure 

2.6a shows an example of annual sea salt aerosol emissions for year 2006. 
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Figure 2.6: GEOS-Chem model annual aerosol emission sources in 2006, a. sea salt, b. black 

carbon, c. organic carbon, d. sulfate-nitrate-ammonium; note emissions of sea salt particles 

for radius from 0.1 to 4.0µm are calculated. Gg (gigagram)=109 gram. 

	

III. Carbonaceous aerosol emission 

Carbonaceous aerosol is one of the least understood components of fine mode 

aerosols. It is usually divided in two fractions, BC and OC. BC is the dominant 

component of the light-absorbing aerosol; meanwhile OC is one of the major 

abundant components of the aerosol over the globe. BC is a primary aerosol 

component emitted directly to the atmosphere by incomplete combustion process. The 

emission sources include fossil fuel combustion and biomass burning. OC aerosol can 

be emitted directly to the atmosphere (primary OC) and formed in situ by 

condensation of low-volatility products of the photo-oxidation of hydrocarbons 

(secondary OC). The major emission sources of OC include combustion of fossil fuels, 

biofuels and biomass.  

The model acquires the carbonaceous aerosol emission from bottom-up 

inventories. Figure 2.6b and Figure 2.6c shows the examples of GEOS-Chem BC and 

OC total annual emissions in 2006 respectively. Here, the carbonaceous aerosol 

emission inventory is combined Bond monthly anthropogenic inventory and version 3 

of daily global fire emissions database (GFED3). In our simulation of GEOS-Chem, 

the model resolves BC and OC, with a hydrophobic and a hydrophilic fraction for 

four aerosol types. The model assumes that 80% of black carbon and 50% of organic 

carbon from primary sources are hydrophobic. All secondary OC is assumed to be 

hydrophilic (Park et al., 2003). And we adopt BC aging process by assuming a fixed 

e-folding time of 1.2 days for the hydrophobic-to-hydrophilic BC conversion in the 

forms (Park et al., 2003).  

	

IV. Sulfate-nitrate-ammonium aerosol emission 

Sulfate aerosols are formed mainly by chemical reactions of SO2 and 

dimethylsulfide (DMS). DMS is emitted mainly from the oceanic phytoplankton and 

react with hydroxyl (OH) radical, so it is converted into SO2 and sulfate through 

intermediates. SO2, which is emitted from fossil fuel consumption and volcanic 

activities, is mainly oxidized by hydroxyl radical in the gas phase and H2O2 and O3 in 
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liquid phase, so it is converted into sulfate. Sources ammonium aerosols include 

biomass burning, biofuel, animals, fertilizers, human bodies, industry, fossil fuels, 

oceans, crops, soils and wild animals (Bouwman et al., 1997; Park et al., 2004). 

Meanwhile, the total inorganic nitrate aerosol in the model is computed from ozone-

NOx-hydrocarbon chemical mechanism. Details on their sources are described in Bey 

et al. (2001) and  Martin et al. (2002). Figure 2.7d shows an example of GEOS-Chem 

total annual sulfate- nitrate-ammonium aerosol emissions in 2006. 

	

2.3.4 Conversion of aerosol mass to optical properties 
The CTMs are simulating the aerosol mass or concentration distribution. In order 

to obtain the distribution of AOD and AAOD, we need to assume the aerosol optical 

properties to convert the aerosol mass to AOD and AAOD. The GEOS-Chem model 

assumes external mixing for all aerosol components with lognormal size distributions. 

The modal diameter and width for each dry aerosol species and their optical 

properties is specified. The extinction and scattering coefficients are calculated from 

size distribution and refractive index with spherical particle shape assumption. 

Different aerosol species are considered to have different degree of hydroscopic 

growth rate with ambient relative humidity. The simulated aerosol mass are then 

converted to AOD (𝜏) and AAOD (𝜏!) through the general relationship between 

aerosol optical depth and aerosol mass (Tegen and Lacis, 1996): 

𝜏 𝜆 =
3𝑄!"#,!(𝜆)
4𝜌!𝑟!,!

𝑚!

!

!!!

                                                    (2.19) 

𝜏! 𝜆 =
3𝑄!"#,!(𝜆)
4𝜌!𝑟!,!

𝑚!

!

!!!

                                                  (2.20)	

where 𝑛 is the total number of aerosol components, 𝑖 represents individual aerosol 

component, 𝑚 is the aerosol mass, 𝜆 is wavelength, 𝜌 is aerosol particle density, 𝑟! is 

the particle effective radius, and 𝑄!"#(𝜆)  and 𝑄!"#(𝜆)  are the aerosol particle 

extinction and absorption coefficients, respectively. The size distribution and the 

spectral aerosol refractive index used to calculate 𝑄!"#(𝜆) and 𝑄!"#(𝜆) are assumed 

based on Global Aerosol Data Set (Koepke et al., 1997), with modifications for dust 

particles by including a spectral dependence for the imaginary part based on analysis 

of AERONET measurements (Dubovik et al., 2002b). Further, the particle optical 
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properties 𝑄!"#(𝜆)  and 𝑄!"#(𝜆)  are calculated according to AERONET Kernel 

(Dubovik et al., 2002a). The particle density and hydroscopic growth rate are 

described in Chin et al. (2002) and Martin et al. (2003). Table 2.2 lists the detailed 

aerosol properties used in this study. Here we consider two cases of BC refractive 

index. Figure 2.7a demonstrates the relative humidity dependence of these two cases 

of BC aerosols extinction (𝑄!"#(𝜆)/𝑟! ) at 565nm, and Figure 2.7b presents the 

wavelength dependence of single scattering albedo (SSA) for these two cases. The 

Case 1 BC refractive index is based on Chin et al. (2002) and Martin et al. (2003). 

More recent studies have recommended a BC refractive index of 1.95-0.79i (Schuster 

et al., 2005; Bond and Bergstrom, 2006; Koch et al., 2009; Arola et al., 2011), which 

has higher absorption and scattering ability than Case 1. Figure 2.7a shows that the 

extinctions calculated from AERONET Kernel for Case 2 BC particle are about a 

factor 1.5 higher than for Case 1. The difference of SSA is small (Case 2 is about 2% 

higher at 565nm when RH=0%), however the difference increases when RH=95%, 

for which Case 2 is about 18% lower at 565nm. Since the particle absorption 

efficiency 𝑄!"# = (1− 𝑆𝑆𝐴) ∙ 𝑄!"#, the Case 2 BC particle shows a higher absorbing 

ability than Case 1. Sensitivity tests are conducted to evaluate how these two BC 

refractive indexes influence the total BC emissions retrieval in Section 3.3.1. 

 

Table 2.2: Aerosol refractive index, size distribution and particle density for DD, BC, OC, 

SU, SS and host water employed in this study 
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Figure 2.7: (a) The relative humidity dependence of BC particle extinction at 565nm; (b) 

Wavelength dependence of BC particle single scattering albedo at six PARASOL wavelengths 

 

 

Figure 2.8 shows an example of GEOS-Chem model simulated annual mean 

(2006) global AOD and AAOD at 550nm, and aerosol species-specified (DD, BC, 

OC, SU and SS) AOD and AAOD. Figure 2.9 shows a simple analysis of global 

aerosol types according to each component’s relative contribution to the annual total 

AOD and AAOD at 550nm. Figure 2.9a presents the 1st contributor to the total AOD, 

and Figure 2.9b shows the relative contribution of the 1st contributor to total AOD. 

Statistically, among the global 13,104 grid boxes, 6627 (51%) grid boxes are 

dominant by SS aerosol, 3574 (27%) grid boxes are dominant by SU, 1909 (15%) 

grid boxes are dominant by DD aerosol, 994 (7%) grid boxes are dominant by OC 

aerosol and 0 grid box is dominant by BC particle. In addition, Figure 2.9c presents 

the 1st contributor to the total AAOD, and Figure 2.9d shows the relative contribution 

of the 1st contributor to total AAOD. In terms of aerosol absorption, all the grid boxes 

are dominant by BC and DD aerosol particles, 11886 (91%) gird boxes are dominant 

by BC and 1218 (9%) grid boxes are dominant by DD particles.  
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Figure 2.8: Global distribution of column integrated aerosol optical depth and aerosol 

absorption optical depth simulated by GEOS-Chem model at 550nm for 2006. 
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Figure 2.9: Simply classify the global aerosol type according to each component relative 

contribution to the total AOD and AAOD at 550nm. a. Rank 1st contributor to total AOD; b. 

the relative contribution of the 1st contributor to total AOD; c. rank 1st contributor to total 

AAOD; d. the relative contribution of the 1st contributor to total AAOD. 
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Chapter 3 

 

 

Inverse modeling and numerical tests 
 

 

Everything is theoretically impossible, 

until it is done. 

 

Robert A. Heinlein 

 

 

 
 

3.1 General concept of inverse modeling 

Inverse modeling is an elaborated tool for combining observations of atmospheric 

composition with knowledge of atmospheric processes (transport chemistry) to derive 

quantitative estimates on emissions to the atmosphere. A chemical transport model 

(CTM), known as the forward model for inversion, solves the continuity equation to 

predict concentrations as a function of emissions. The inverse model then optimizes 

the emission estimates by fitting the CTM to the observed concentrations. This 

chapter explores the possibility of deriving aerosol emission distribution and strength 

from satellite observations by inverting GEOS-Chem model. Figure 3.1 illustrates the 

general concept of aerosol emission inverse modeling.  

Retrieval of aerosol emission source from satellite observations requires three 

distinct parts of efforts. First, enough information of observed atmospheric aerosols, 

is an essential component of the inverse modeling. As discussed in works such as 
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Dubovik et al. (2008) and Meland et al. (2013), AOD at one wavelength (as well as 

currently available aerosol satellite data) contains only limited information to evaluate 

aerosol types, properties, or speciated emissions. The second important component is 

a chemical transport model that has the capability to simulate the aerosol distribution 

according the input emission sources by modeling transport, chemistry, removal 

processes. Third, an inversion algorithm based on adjoint chemical transport model is 

necessary to allow to optimize a priori aerosol emission sources in the transport 

model and to improve the agreement between model simulations and observations. 

 
Figure 3.1: Flowchart of the general concept of inverse modeling 

 

Method proposed in this work is to develop GEOS-Chem based inverse modeling 

algorithm for simultaneous fitting spectral AOD and AAOD data from the 

polarimetric POLDER/PARASOL produced with the GRASP algorithm, and 

optimizing the speciated aerosol emissions. The PARASOL/GRASP AOD and 

AAOD are available at all six wavelengths (443, 490, 565, 670, 865 and 1020nm) in 

the spectrum of short wave visible to near infrared (VIS-NIR). Our method explores 

to determine DD, BC and OC sources simultaneously, because DD, BC and OC 

aerosol optical properties vary dramatically in the spectrum of VIS-NIR. For example, 

DD aerosols are dominated by coarse mode particles, and their AOD varies slightly in 

the VIS-NIR spectral range; in contrast, the AOD of fine mode dominated BC and OC 

aerosols decrease sharply in this spectral range. In addition, DD and OC particles 
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absorb most strongly in the UV and short wave visible channels, such as 443 nm, 

while BC particles are absorbing more ubiquitously (Sato et al., 2003).   

 

3.2 The methodology of inverse modeling 

3.2.1 Inversion using adjoint method 
In CTM system, the spatial and temporal behavior of aerosol is simulated by 

solving the continuity equation Eq. (2.12). The continuity equation does not yield 

general analytical solution and is usually solved numerically using discrete analogues, 

seen in Eq. (2.15). Each component process in numerical equivalent of Eq. (2.12) is 

isolated and treated sequentially at each time step Δ𝑡: 

𝑚 𝑡 + ∆𝑡 = 𝑇 𝑡,𝒙 𝑚 𝑡,𝒙 + 𝑠 𝑡,𝒙 ∆𝑡                                (3.1) 

where 𝑚 𝑡,𝒙  is aerosol mass, 𝑠 𝑡,𝒙  represents aerosol emission, 𝑇 𝑡,𝒙  represents 

transport operators, that can be approximated as: 

𝑇 𝑡,𝒙 = 𝑇!𝑇!!!…𝑇!𝑇!𝑇!                                              (3.2) 

and 𝑇!  (𝑘 = 1,… , 𝑖)  represents operators for isolated transport process such as 

advection, diffusion, convection and deposition (see in Eq. 2.14). Thus, the aerosol 

mass at any given time 𝑡 can be expressed to numerical integration of transport and 

source functions: 

𝑚 𝑡,𝒙 = 𝑇 𝑡!,𝒙 𝑚 𝑡!,𝒙 + 𝑠 𝑡!,𝒙 𝑑𝑡!                        (3.3)
!

!!
 

If the transport operator is linear, Eq. (3.1) can also be written in matrix form for a 

single time step: 

𝑴! = 𝐓!!!(𝑴!!! + 𝑺!!!)                                                (3.4) 

where the subscripts 𝑛 − 1 and 𝑛 are associated with time step 𝑡!!! and 𝑡! = 𝑡!!! +

∆𝑡, for the time steps 𝑡!, 𝑡!, 𝑡!,… , 𝑡!, the aerosol mass vector 𝑴! can be expressed as: 

𝑴! = 𝐓!

!!!!!

!!!

𝑴! + ( 𝐓!

!!!!!

!!!

)𝑺!

!!!!!

!!!

 

thus, Eq. (3.3) can be equivalently written in matrix form as: 

𝑴 = 𝐓𝑺+ 𝐓!𝑴!                                                           (3.5) 

where 𝑴! donates a vector of aerosol mass at all locations at time 𝑡!, 𝑴 and 𝑺 are the 

vectors of mass and emission at all locations and considered times 𝑡!, 𝑡!, 𝑡!,… , 𝑡! (i.e. 
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these vectors represents the 4D aerosol mass and emission variability), 𝐓 is the 

coefficient matrix define the mass transport to each locations 𝒙. Thus, the source 

vector 𝑺  can be derived by solving the matrix equation, if the aerosol mass 

observations are available ∆𝑴 = 𝑴!"# −𝑴. 

However, in a real global 4D chemical transport model simulation, the vectors 𝑴, 

𝑺 and matrix 𝐓 have extremely large dimensions; thus, direct implement of matrix 

operations can be very difficult. Therefore, emission estimation is achieved using 4D-

Variational (4D-Var) data assimilation adjoint techniques (Le Dimet and Talagrand, 

1986; Elbern et al., 2000; Elbern and Schmidt, 2001; Enting, 2002; Errico, 1997; 

Menut, 2003; Talagrand and Courtier, 1987; Vukićević and Hess, 2000). 

An adjoint model is a set of equations auxiliary to a forward model that are used 

to efficiently calculate the gradient of a scalar model response function with respect to 

all model parameters simultaneously. Adjoint methods were initially suggested as 

approaches to source analysis of atmospheric tracers several decades ago (Lions, 1971; 

Marchuk, 1974). By the late 1990s, the method was applied to chemical transport 

models of the stratosphere (Fisher and Lary, 1995) and troposphere (Elbern et al., 

1997). The method was used to constrain emissions in an Eulerian air quality model 

of chemically active species in the troposphere by Elbern et al. (2000). Subsequent 

investigations of emissions have been explored with adjoints of chemical transport 

models such as CHIMERE (Menut, 2003; Vautard et al., 2000), Polair (Quélo et al., 

2005), the CIT model (Martien et al., 2006; Philip T. Martien and Harley, 2006), 

STEM (Hakami et al., 2005; Sandu et al., 2005), DRAIS (Nester and Panitz, 2006), 

CMAQ (Hakami et al., 2007), IMAGES (Müller and Stavrakou, 2005), and GOCART 

(Dubovik, 2004; Dubovik et al., 2008). 

In this work, adjoint GEOS-Chem (v35i) is used in the inversion. The adjoint 

GEOS-Chem model was developed specifically for inverse modeling of aerosols or 

their precursors and gas emissions (Henze et al., 2007, 2009), with code updates 

following the relevant parts of the GEOS-Chem forward model. In the adjoint GEOS-

Chem framework, the inverse algorithm iteratively seeks the corrections that 

minimize the differences between observations and simulations; in general, the cost 

function 𝐽 is given by: 

𝐽 𝑺 =
1
2 𝑴 𝑺 −𝑴!"#

!𝐂!"#!! 𝑴 𝑺 −𝑴!"#
𝑴∈!

                      (3.6) 
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where 𝑴 is the vector of simulated aerosol mass in 4D spatial and temporal space Ω 

with emission sources 𝑺; 𝑴!"# is the vector of observed aerosol mass; 𝐂!"#!!  is the 

error covariance matrix of 𝑴!"#. 

The adjoint model offers a computationally efficient approach to calculate the 

sensitivity of a model scalar (e.g. aerosol mass concentration) with respect to model 

input parameters (e.g. emissions in all grid boxes) in a single time backward adjoint 

model run. In this study, the adjoint model computes the gradients of cost function 

with respect to aerosol emission corrections ∆𝑺! 𝒙 = ∇𝐽!(𝑡,𝒙) (see derivations by 

Dubovik et al. (2008)): 

∇𝐽! 𝑡,𝒙 = 𝑇#(𝑡!,𝒙)(∇𝐽! 𝑡!,𝒙 + 𝐶!"#!! ∆𝑚𝒑(𝑡!,𝒙))(−d𝑡!)
!!

!
           (3.7) 

where  𝐶!"#!! ∆𝑚𝒑  is the continuous analogue of the covariance matrix 𝐂!"#!! ∆𝑴! , 

𝑇#(𝑡!,𝒙)  is the transport adjoint operator 𝑇 𝑡,𝒙 , and is composed of adjoints 

𝑇!#(𝑡,𝒙) of the component processes 𝑇!(𝑡,𝒙): 

𝑇#(𝑡,𝒙) = 𝑇!#𝑇!#𝑇!#…𝑇!!!# 𝑇!#                                             (3.8) 

If the observation errors are uncorrelated, i.e. the covariance matrix of 

measurements 𝐂!"# is diagonal with the elements on diagonal equal to 𝜎! 𝑡,𝒙 , the 

element 𝐶!"#!! ∆𝑚𝒑  relate to the continuous function 𝜎!! 𝑡,𝒙 ∆𝑚𝒑 𝑡,𝒙  in a 

straightforward way. Then the Eq. (3.7) can be written as: 

∇𝐽! 𝑡,𝒙 = 𝑇#(𝑡!,𝒙)(∇𝐽! 𝑡!,𝒙 + 𝜎!! 𝑡!,𝒙 ∆𝑚𝒑(𝑡!,𝒙))(−d𝑡!)
!!

!
        (3.9) 

where ∆𝑚𝒑 𝑡,𝒙  can be expressed according to Eq. (3.3): 

∆𝑚𝒑 𝑡,𝒙 = 𝑚!"# 𝑡,𝒙 − 𝑇 𝑡!,𝒙 𝑚 𝑡!,𝒙 +  𝑠! 𝑡!,𝒙
!

!!
d𝑡!        (3.10) 

The symbols 𝑠! 𝑡,𝒙 , ∆𝑚𝒑 𝑡,𝒙  and 𝜎!! 𝑡,𝒙  denote function equivalents of vectors 

𝑺!, ∆𝑴! and matrix 𝐂!"#!! , respectively. Thus, the steepest descent iterative solution 

can be also written in matrix expression: 

∇𝐽! 𝑺! = 𝐓!𝐂!"#!! ∆𝑴!                                                  (3.11) 

This method uses the fact that the gradient ∇𝐽 𝑺  points in the direction of 

maximal local changes of the cost function 𝐽 𝑺 , and this direction can always be 

used to correct 𝑺!, so it moves toward the solution 𝑺! that minimize the cost function 

𝐽 𝑺 . 
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3.2.2 Implement a priori constrain on inversion 
Previous equations describe an approach to invert transport model based on the 

measurements of aerosol mass 𝑴!"#, which is the direct simulation parameter in the 

chemical transport model. In practice, satellite observations do not provide the same 

aerosol quantities, coverage, and sampling as model simulation. Accordingly, the 

inverse algorithm, as well as some aspects of inversion concept, need to be adjusted 

when invert real observations. Figure 3.2 show that aerosol emission sources have 

very high spatial and temporal variability. Although PARASOL/GRASP provides 

aerosol extinction and absorption information in spectrum VIS-NIR, it is still 

insufficient for unique retrieval of all parameters describing emissions. The problem 

is still ill-posed. Therefore, two methods are proposed to adjust inverse method, (i) 

implement a priori constrain on inversion; (ii) assume aerosol emission correction is 

constant in a time window to reduce the unknown parameters (see discussion in 

Section 3.3). 
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Figure 3.2: The concepts of constraining aerosol emission retrievals from satellite 

observations 

 

In real observations, the aerosol data fields may be available only in the form of 

optical depth and absorption optical depth from the satellite measurements: 

𝒇 = 𝝉 𝑡,𝒙 = 𝐹 𝑚 𝑡,𝒙 , 𝜆,𝑄!"# ,𝑄!"#,…                                    (3.12) 

where 𝐹 …  is a function converting aerosol mass 𝑚 𝑡,𝒙  to AOD and AAOD 

based on spectral characteristics 𝜆 , aerosol extinction 𝑄!"#  and absorption 𝑄!"# 

coefficients, etc, see in Eq (2.19-2.20). Here, 𝝉  represents PARASOL/GRASP 

spectral AOD and AAOD. Next, we will discuss about using a priori information to 

constrain the aerosol emission inversion from observed AOD and AAOD. In most 

applications “prior model” emission from bottom-up inventories 𝑺!  (i.e. standard 

model emissions) are used as a priori estimates of fundamentally unknown emissions. 

In such chases, instead of quadratic form of Eq. (3.6) the inversion minimizes the sum 

of following quadratic form: 

𝐽!"# 𝑺 + 𝐽! !"#$"# 𝑺 = 

1
2 𝒇 𝑺 − 𝒇!"# !𝐂!"#!! 𝒇 𝑺 − 𝒇!"# +

1
2 𝛾! 𝑺− 𝑺!

!𝐂!!! 𝑺! − 𝑺!  (3.13) 

Here, the first term characterizes the fitting of observation, where the vector 𝒇!"# 

represent observations used for inversion (e.g. spectral AOD and AAOD) and the 

vector 𝒇 𝑺  is simulated based on emission sources 𝑺 , while vectors S and 𝑺! 

describes generally 4D distribution of emissions. 𝐂!"#!!  is the error covariance matrix 

of 𝒇!"#. The second term is introduced to constrain retrieval and it indicates the 

agreement with a priori estimates 𝑺! of the emissions. 𝐂!!! is the error covariance 

estimate of a priori emissions. 𝛾! is a regularization parameter. 

The minimization of the quadratic form given by Eq. (3.13) can be obtained by 

steepest decent iterations: 

𝑺!!! = 𝑺! + ∆𝑺!, 
∆𝑺! = ∇𝐽!"#(𝑺!)+ ∇𝐽! !"#$"#(𝑺!) = 𝐊!"#! 𝐂!"#!! ∆𝑓! + 𝛾𝐂!!!(𝑺! − 𝑺!),               (3.14)  

where 𝐊!"#!  denotes matrix of Jacobeans of observation characteristics f.  Equations 

(3.13) and (3.14) are written using vectors and matrices, describing 4D geophysical 

fields that are generally are very large. However, in practice neither transport models 

nor inverse modeling algorithms (if emissions retrieved at high resolution) explicitly 
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utilize matrix and vectors. The transport models are generally organized as routines 

calculating continuous (i.e. with relatively small time step) time series of the geo 

characteristic resulted from time integration. For example, calculations of corrections 

∆𝑺! are obtained by running adjoint model that directly produces the product of 

𝐊!"#! 𝐂!"#!! ∆𝜏! without explicit calculation of Jacobeans. 

 

In this study, 𝒇 𝑺  is the vector of model simulated AOD and AAOD with 

emission sources 𝑺; Thus, the differences can be written as: 

∆𝝉 = 𝒇 𝑺 − 𝒇!"# = 𝝉− 𝝉!"#                                  (3.15) 

The correction ∆𝐒! 𝒙 = ∇𝐽!(𝑡,𝒙) minimizing the form of Eq. (3.13) that relates 

to fitting of AOD and AAOD under a priori constraints can be  defined as: 

∇𝐽! 𝑡,𝒙 = 

𝑇# 𝑡!,𝒙 𝐹# 𝑡!,𝒙 (∇𝐽! 𝑡!,𝒙 + 𝐶!"#!! ∆𝜏𝒑 𝑡!,𝒙 )(−d𝑡!)
!!

!
+ 𝛾!𝐶!!!(𝑠! − 𝑠!)  (3.16) 

here 𝐹# 𝑡!,𝒙  is adjoint operator corresponding to matrix operation 𝐅!, where matrix 

𝐅 contains first derivatives 𝑑𝜏/𝑑𝑚. It should be noted that GEOS-Chem adjoint 

model is developed for inversion of mass (or AOD at single wavelength), therefore 

the operator 𝐹# 𝑡!,𝒙  for inversion spectral AOD and AAOD was developed as a part 

of this work. The symbols 𝑠!, ∆𝜏𝒑 𝑡,𝒙 , 𝐶!"#!!  and 𝐶!!! denote function equivalents of 

vectors 𝑺!, ∆𝝉!, matrix 𝐂!"#!!  and 𝐂!!! respectively. Thus, the iterative solution can be 

also written in matrix expression: 

∇𝐽! 𝑺! = 𝐓!𝐅!𝐂!"#!! ∆𝝉! + 𝛾!𝐂!!! 𝑺! − 𝑺!                          (3.17) 

In principle, the methodology assumes that a priori information is available, i.e. 

before the inversion. However, in practice all available information is already 

accumulated in definitions of aerosol emissions used in the transport model. 

Therefore, usually the data sets that are adapted as “default” in the models are taken 

“a prior” emissions and as initial guess in iterative retrieval too. In present study we 

follow this strategy. Unfortunately the covariance matrix 𝐂! of a priori emissions is 

not known accurately. As a result, this matrix is often assumed diagonal, where the 

elements of diagonal are equal or defined using rather straightforward strategy. 

Therefore, in order to address this fundamental lack of the knowledge of 𝐂! the 

contribution of a priori term (second term) in Eq. (3.13) is weighted by a regulation 

parameter 𝛾!. This strategy is adapted for using GEOS-Chem adjoint. In addition, 
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GEOS-Chem setup of using gradient of Eq. (3.13) does not apply the gradient directly 

for adjusting emissions 𝑺. Instead, the emission sources are adjusted using a vector of 

scaling factors σ (𝐒! = 𝑺!𝛔!!!) that are scaling for initial emissions: 𝛔 = 𝑺/𝑺!, 

where 𝑺 and 𝑺! are optimized and initial aerosol emissions respectively (Henze et al., 

2007). This strategy was chosen probably to replace addition/subtraction correction of 

emission (that can generate negative unphysical values) by division/multiplication of 

initial positive and non-zero 𝑺. Specifically, from the gradients of cost function with 

respect to aerosol emission scaling factors ∇𝛔𝐽(𝑡,𝒙), the adjoint GEOS-Chem uses the 

L-BFGS-B optimization method (Byrd et al., 1995; Zhu et al., 1997), which affords 

bounded minimization of cost function, and ensuring positive values, to calculate the 

scaling factors for aerosol emissions. Figure 3.3 is the flowchart to illustrate the 

methodology. 

 
Figure 3.3: Diagram illustrating retrieval aerosol emission sources from satellite 

measurements 

 

In order to optimize the specification of a priori constrains and initial guess, a 

number of synthetic tests were done in Section 3.2. It should be noted that using a 

priori estimate of emission S! is not the only way of adding a priori constraints in the 

inverse modeling. For example, Dubovik et al. (2008) demonstrated used of a priori 

knowledge on spatial and temporal variability of emissions, i.e. a priori limitation on 

derivative of corresponding functions (smoothness constraints). The potential 

advantage of smoothness constraints is that these limitations are milder than direct 
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assumptions about values of emissions and therefore they introduce less systematic 

errors in the retrieval. However, such constraints are not used in this study. 

 

3.3 Numerical Test 
In this section, a series of numerical tests was performed to verify and illustrate 

how the algorithm inverts the synthetic measurements, and tune the algorithm settings 

(e.g. initial guess, emission correction time resolution and BC refractive index).  Two 

distinct experiments are conducted to test our retrieval over Africa (30°W-60°E, 

40°S-40°N) and the globe. We first test our algorithm over Africa, because aerosol 

over Africa is relatively uncomplicated, dominant by desert dust in Sahara and 

seasonal biomass burning aerosols. This simplicity structure makes it the ideal study 

area to perform our retrieval algorithm preliminarily to define the setting for retrievals 

and evaluate its performance. Then, the globe experiment is conducted based on the 

knowledge of results over Africa. In order to retrieve aerosol emission over globe 

from PARASOL/GRASP observations, we further set the retrieval experiment in 

global scale to find a suitable way to perform retrievals.  

 

3.3.1 Inverse algorithm test over Africa 
We tested the possibility of retrieving DD, BC and OC aerosol emissions 

simultaneously from PARASOL-like remote sensing data that contains the spectral 

information of AOD and AAOD, lack information about vertical distribution and 

aerosol type. These tests are used for evaluating the effects of reducing the number of 

aerosol types and temporal variability of emissions. 

Synthetic measurements are PARASOL-like spectral AOD and AAOD at six 

PARASOL wavelengths, simulated from 16 days of BC, OC and DD emissions, 

which, for simplicity, are specified to be constant over the 16 days, yet far from the 

prior model emissions in order to test the algorithm performance under the 

circumstances that a priori knowledge of the emission distribution is limited. Figure 

3.4 shows the design of inversion test from synthetic measurements. 
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Figure 3.4: Diagram illustrating the inversion test from synthetic measurements 

 

3.3.1.1 Spectrum weights 
In our inversion framework, the observed aerosol parameters contain AOD and 

AAOD at six PARASOL wavelengths. In principle, the weighting of observations of 

AOD and AAOD at these different wavelengths should be defined by the observation 

error covariance matrix 𝐂!"#. For example, usually AOD is about ten times higher 

than the AAOD at the same wavelength (SSA=1.0–AAOD/AOD) and therefore 

AAOD is expected to be retrieved and fitted more accurate on an absolute scale. 

However, at present knowledge of this matrix is uncertain, so we thus perform the 

following sets of tests to optimize the observational covariance weights. The spectral 

residual values are defined to characterize the quality of spectral AOD and AAOD fit: 

𝑅!"# λ =
1
𝑁!

[𝜏!,!"# 𝜆 − 𝜏!,!"#$%(𝜆)]!
!!!,…,!!

                             (3.17) 

𝑅!!"# λ =
1
𝑁!

[𝜏!,!,!"# 𝜆 − 𝜏!,!,!"#$%(𝜆)]!
!!!,…,!!

                      (3.18) 

The values of the spectral residuals 𝑅!"# λ  and 𝑅!!"# λ  are calculated after 

each iteration. The following options were tested using well-known qualitative 

tendencies. In sensitivity test, two scenarios of spectrum weights are analysed. Since, 

we are fitting absolute value of AOD and AAOD, and the relative accuracy of 
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retrieved AOD and AAOD (∆𝜏/𝜏 and ∆𝜏!/𝜏!) are expected the same. The spectrum 

weights are defined as follows: 

Option A: Unify weights for AOD and AAOD at 6 wavelengths, for AOD 

[1,1,1,1,1,1]! and for AAOD [1,1,1,1,1,1]! 

Option B: Unify weights for AOD, while put more weights on AAOD, for AOD 

[1,1,1,1,1,1]! and for AAOD [5,10,15,20,25,30]! 

The retrievals are conducted with option A and option B respectively, with other 

settings held constant. Comparison of spectral residuals after 20 iterations are shown 

in Figure 6, which indicates Option B can have a better fit for AAOD by increasing 

the weights for AAOD, although spectral AOD can be fitted comparably well using 

either option.  

 

Figure 3.5: Comparison of spectral AOD and AAOD residual iteratively with two spectrum 

weight options 

 

3.3.1.2 Effect of initial guess in emission retrieval 
As mentioned in section 3.2, the emission retrieval is ill-posed problem and 

utilization of a priori constraints and initial guesses are essential factors for the 

retrieval. In our retrieval framework, the emissions are adjusted using scaling factors 

that scaling for initial guess of emissions, 𝑺=𝑺!𝛔. In principle, if the inverse problem 

is well-constrained the solution should be independent of the initial guess. Therefore, 

we analyse the dependence on initial guess using different retrieval settings. The 

inversion is conducted with three different initial guess schemes that we describe in 

detail in the following sections. In each of these three schemes, the input synthetic 

measurements are 6 wavelengths AOD and AAOD, and the spectrum weights use the 
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“Option B” scenario, while the retrieved emission correction time variations are 

assumed to be daily constant for DD, and 4 day constant for BC and OC (note that we 

will separately test the assumption of emission correction time resolution in section 

3.3.1.3). Figure 3.6 shows the “True emissions” of DD, BC and OC and also the 

difference between true and retrieved emissions from three different initial guess 

schemes (Retrieval A, Retrieval B and Retrieval C). Figure 3.8 shows the scatter plots 

between BC, OC and DD emissions retrieved from “Retrieval A, B, C” versus true 

values. 

 

A. “Prior model”: Initial guess is equal to “Prior model” emissions 

In this method, the “prior model” emissions are directly used as initial guess, 

therefore the adjustments of emissions are limited to the pixels that prior model 

emissions 𝑺!>0. At the same time, the “True emissions” have difference with “prior 

model”. The upper panel in Figure 3.6 is assumed true BC, OC and DD emission 

distributions (units: kg/day) respectively. And the second panel “Retrieval A - True” 

shows the differences between retrieved and true emissions from Retrieval A. 
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Figure 3.6: Inversion test for retrieving BC, OC and DD emissions from synthetic 

measurements with three different initial guess schemes: (A) “prior model” emissions – 

“Retrieval A”; (B) Spatially uniform – “Retrieval B”; (C) Prior emission with spatially 

uniform background – “Retrieval C”; 

 

For “Retrieval A”, the retrieval highly relies on the accurate distribution of model 

prior emissions, because the retrieval only can adjust the emissions on the grid boxes 

that model prior emission is nonzero, and thus the retrieval couldn’t create new 

sources. In our inversion test, the model prior emissions are different from the truth 

both for distribution and strength (Figure 3.8 shows the difference between the initial 

guess and assumed true emissions for BC, OC and DD). Therefore, as shown in 

Figure 3.6, the Retrieval A produces overestimations over the grid boxes that 𝑺!>0, 
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while 𝑺!"#$=0, here 𝑺!"#$  represent true emissions, however the underestimations 

occur over the grid boxes that 𝑺!=0, while 𝑺!"#$>0. 

 
Figure 3.7: Scatter plots between BC, OC and DD emissions retrieved from “Retrieval A, B, 

C” versus true values 

 

 
Figure 3.8: The differences between initial guess (from prior model) and assumed true BC, 

OC and DD emissions 

 

B. Flat background everywhere 

For Retrieval B, we investigate the use of spatially uniform initial guess for the 

emissions. With this initialization, we allow BC, OC and DD emission to be 

generated everywhere over land and ocean, which is equivalent to not using a priori 

knowledge of model aerosol emissions as an initial guess. From the Figure 3.6 panel 

“Retrieval B – True”, the algorithm can determine the intensive aerosol emission grid 

boxes, where high aerosol loading is observed. However, the desert dust and 

carbonaceous aerosol sources were not correctly reproduced since a unify emission is 

used everywhere. The scatter plots between retrieved emissions from “Retrieval B” 

and true values are also shown in Figure 3.7. In this case, the retrieval could produce 

overestimations over some grid boxes where 𝑺!"#$=0. Although, the uniform emission 

assumption gives the algorithm more freedom to find new sources, our tests indicate 

the retrieval could produce false sources in this assumption when the algorithm tries 

to determine BC, OC and DD emissions simultaneously. This misrepresentation 
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indicates that the spectral AOD and AAOD are not sufficient enough to identify BC, 

OC and DD emission without any a priori knowledge. 

 

C. “Prior model” emission with flat background 

In retrieval C, the retrieval was initiated using “prior model” emission but 

including a spatially uniform value over the land pixels where 𝑺!=0. In this study, flat 

value equals to 10-4 Tg/day/pixel for DD; 10-6 Tg/day/pixel for BC; 5*10-6 

Tg/day/pixel for OC, the background value accounts for ~5% of the true emissions 

over entire area. This assumption allows retrieval of BC, OC and DD aerosol 

emissions everywhere over land (ship emissions over ocean are included in model 

prior emissions), and at the same time it uses prior emission constraints to prevent the 

false source generation. Figure 3.6 and 3.7 show that overall “Retrieval C” captures 

the emission distributions more accurately than “Retrieval A” and “Retrieval B”. The 

averaged ratio of retrieved emission to truth ( 𝐒!"#!$"%&'
𝐒!"#$!!"#$%& /𝑁!"#$%&) is 1.02± 1.05 

for BC, 0.87± 1.42 for OC and 1.24± 1.80 for DD. 

 

3.3.1.3 Assumption of emission correction temporal resolution 
Aerosol sources are known to have high temporal and spatial variability. 

However, because PARASOL observations have limited temporal coverage (e.g. ~2 

days global coverage, with observations once per day), the variability of aerosol 

emission at any given location can only be retrieved at a frequency no more than once 

per day. In order to investigate how assumptions regarding temporal variability of 

emission can affect the retrieval, we repeat the retrieval using two scenarios for 

emission correction: ET1, daily correction constant of DD, BC and OC emissions, and 

ET2, daily correction constant of DD emission and 4 days correction constant of BC 

and OC emissions. For each scenario, the input observations are 6 wavelengths of 

AOD and AAOD, and the retrieval is initialized by “prior model” emission with a 

uniform background emission (Retrieval C). Two scenarios are used. We test these 

two scenarios by conducting a 16-days retrieval, and Figure 3.9 shows the comparison 

between retrieved daily total DD, BC and OC emissions with the “True emissions”. 

Note that the ET1 scenario uses the same settings with “Retrieval C” in section 

3.3.1.2, and ET2 is named “Retrieval D”. 
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Figure 3.9: Sensitivity test for retrieving DD, BC and OC emissions over 16-days with two 

scenarios of assumption of emission correction temporal resolution 

 

Figure 3.9 shows the retrieval maximum uncertainty for total daily DD emission 

over study area is within 25.8% for Retrieval C, however this value reaches more than 

50% for Retrieval D. For BC, the maximum uncertainty is within 5.9% for total daily 

emission from Retrieval C, while up to 40.8% for Retrieval D. The uncertainty of 
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daily OC emission is within 26.9% for OC using Retrieval C, while about 38.6% for 

Retrieval D. Overall, from this sensitivity test, the “Retrieval C” shows a better 

capability to capture the spatial distribution of DD, BC and OC emissions than 

“Retrieval D”, and it does not introduce false temporal variability. 

 

3.3.1.4 Uncertainty in assumption of BC refractive index 
Aerosol particles’ light scattering and absorption efficiencies are determined by 

their complex refractive indices, expressed as m= n-ki, where n is the real part and k 

is the imaginary part. The real part of the complex refractive index defines the light 

scattering property of an aerosol species, whereas the imaginary part of the complex 

refractive index determines the absorbing ability. Black carbon aerosol is the 

strongest atmospheric absorber of solar radiation. Its imaginary refractive index is at 

least about two orders of magnitude higher than other aerosol species (see Table 2.2). 

To identify the impact of the uncertainties of BC refractive index in our results, we 

test another commonly used specification of 1.95-0.79i (Bond and Bergstrom, 2006) 

in our retrieval scheme (denoted as Retrieval E). Figure 10 compares the BC emission 

results from Retrieval E and Retrieval C (where the BC refractive index of 1.75-0.45i 

(Hess et al., 1998) was used), with the “true” BC emission. 
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Figure 3.10: Test of BC particle refractive index influence on the retrieval of BC emissions 

 

The synthetic measurements of AOD and AAOD are simulated with BC 

refractive index m=1.75-0.45i, and the scenario “Retrieval C” uses the retrieval with 

the same BC refractive index; the slope of linear regression between the resulting 

retrieved and true BC emissions is 0.83. In contrast, the “Retrieval E” scenario uses 

the retrieval with a higher BC absorption and scattering definition, m=1.95-0.79i, and 

as expected we get lower magnitudes of BC emissions (slope between retrieved and 

true BC emissions is about 0.5). This sensitivity test demonstrates that uncertainty in 

the BC refractive index can lead to a factor of about 1.6 in total BC emissions. 

Overall, these sensitivity tests show that our inversion scheme is capable of 

determining the strength and spatial distribution of BC, OC and DD emissions 

simultaneously from the multispectral PARASPL/GRASP AOD and AAOD products 

in the following manner: 

1. Six wavelengths (VIS-NIR) AOD and AAOD from PARASOL/GRASP are 

needed to retrieve BC, OC and DD emissions simultaneously. 
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2. The optimal spectral weighting factors for the PARASOL 6 wavelengths are 

[1,1,1,1,1,1]! for AOD and [5,10,15,20,25,30]!  for AAOD, since it can 

provide a better fit of spectral AAOD. 

3. The BC, OC and DD emissions are allowed everywhere over land. The 

retrieval is initialized by “prior model” emissions with a uniform background. 

The retrieval with this initialization could detect new sources and perform 

satisfactorily even when a priori knowledge of aerosol emission is not fully 

consistent with the assumed emissions.  

4. The emission corrections are assumed daily constant for DD and 4 days 

constant for BC and OC. Owing to the limited observations available for 

assimilation, this assumption helps to make the retrieval more stable and 

accurate. 

5. BC refractive index is sensitive to BC emission retrieval, which could produce 

a factor of 1.6 differences between the two sets of commonly used BC 

refractive index data for total BC emission. We will produce two BC emission 

datasets with two scenarios of BC refractive index, Case 1: m=1.75-0.45i and 

Case 2: m=1.95-0.79i. 

 

3.3.2 Inverse algorithm test for global observations 
In this section, we will discuss the inversion approach used in the retrieval of 

global desert dust and primary carbonaceous aerosol emissions from 

PARASOL/GRASP spectral AOD and AAOD. The application of this method will be 

presented in Chapter 5. Here we will focus on the method description and why we 

explore a new approach to retrieve over globe. We first do a similar experiment as in 

section 3.3.1. Synthetic measurements are global PARASOL-like spectral AOD and 

AAOD at PARASOL 6 wavelengths, simulated from manual definition of 28 days BC, 

OC and DD emissions (“True or Assumed emissions”), we keep the GEOS-Chem 

model prior SU and SS aerosol emissions (Jaeglé et al., 2011; Park et al., 2004) in 

simulation of synthetic measurements. 
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3.3.2.1 Effect of SU and SS on DD, BC and OC emission retrieval 
In this study, we mainly focus on the aerosol emission of DD, BC and OC, while 

the retrieval of SU and SS aerosol emission is not included currently. In the sensitivity 

test over Africa, the test ignores the contribution of SU and SS. And in the retrieval of 

real data over Africa in Chapter 4, the algorithm optimizes DD, BC and OC aerosol 

emissions, while keep the standard SU and SS emissions as the GEOS-Chem model 

(Jaeglé et al., 2011; Park et al., 2004), because the SU and SS aerosol are not the 

major aerosol components over Africa, and the contribution to total AOD is less than 

10%, (see the simulation in Figure 2.9). Thus, our retrieval ignores the uncertainty of 

SU and SS emission that could also contribute to the difference between of model 

simulation and satellite observation.  

However, the SU aerosol is the leading component in the industry area, such as 

North America and East Asia. Figure 2.9 shows that the SU aerosol becomes the first 

contributor of total AOD in Southeast China and North America. Hence, the approach 

we did in the retrieval over Africa may be not applicable, since the uncertainty of SU 

emission can propagate to the retrieval of DD, BC and OC emissions. 

 
Figure 3.11: Inversion test for retrieving global BC, OC and DD emissions from synthetic 

measurements; (a) Assumed true dust emission; (b) Assumed true black carbon emission; (c) 

Assumed true organic carbon emission; (d-f) Retrieved global DD, BC and OC emissions if 

the retrieval ignore the contribution of sulfate and sea salt. 
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Figure 3.12: Scatter plots between retrieved global DD, BC and OC emissions versus true 

values, the color of the points present the assumed SU+SS AOD (550nm) of this grid box  

 

First, we use the same approach (Retrieval C) to retrieve global DD, BC and OC 

emissions that ignoring the contribution of SU and SS contribution (equivalent to 100% 

underestimation of SU and SS emissions). Figure 3.11 shows the inversion test for 

retrieving global BC, OC and DD emissions from synthetic PARASOL-like 

measurements with the “Retrieval C” settings. Figure 3.11a-c shows the assumed true 

DD, BC and OC aerosol emissions respectively, and Figure 3.11d-c presents the 

retrieval results of DD, BC and OC aerosol emissions, respectively. Here the 

algorithm still shows the good capability to determine spatial distribution and strength 

of DD emission. However, the retrieved BC and OC emissions obviously show 

overestimation in Southeast China and North America, where the SU particles are 

dominant. The inversion algorithm will propagate the underestimation of SU and SS 

to overestimation of BC and OC emissions. Figure 3.11 shows the comparison of 

retrieved global DD, BC and OC emissions with assumed values, color-coded with 

SU+SS AOD (550nm). In this inversion test, 100% underestimation of SU and SS 

emission result in a factor of 1.1 (Normalized Mean Bias, NMB=+8.0%) and a factor 

of 1.5 (NMB=50%) overestimation of BC and OC emissions respectively, while the 

influences on DD emission are less than 10% (NMB=-8%). 

 

3.3.2.2 Sequential approach 
To resolve the effect of SU and SS emissions on the retrieval of DD, BC and OC 

emissions, or reduce this impact on inversion, we design a sequential approach. 

Figure 3.13 shows the structure of the sequential approach. The idea is to divide the 

retrieval into two steps using the fact that carbonaceous is usually fine mode dominant 
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and BC particles are absorbing more ubiquitously from UV to near infrared 

wavelengths; while DD aerosol is usually coarse mode dominant and is also a major 

component contribute to aerosol absorption, however, the DD particles absorb most 

strongly in the UV and short wave visible channels. 

ü Step 1: Using PARASOL/GRASP spectral AAOD to optimize the global BC 

and OC aerosol emissions, keeping the DD, SU and SS aerosol as prior model; 

ü Step 2: Select the PARASOL/GRASP retrievals where the AExp<1.0 as 

inputting observations to optimize global DD aerosol emissions, with 

optimized BC and OC aerosol emissions from Step 1 and prior model SS and 

SS emissions constant; 

 

 
 

Figure 3.13: Design of a sequential approach to retrieve BC, OC and DD aerosol emission 

over globe; Step 1: Retrieval of BC and OC aerosol emissions from PARASOL/GRASP 

spectral AAOD; Step 2: Retrieval of DD aerosol emission from PARASOL/GRASP AOD 

(AExp<1.0) using optimized BC and OC emission from step 1 and SS and SU emission from 

prior model 

 

Next, we will test and evaluate the inversion performance of this sequential 

approach. First, we compare the initial guess of the retrieval with the true values (see 

Figure 3.15). In order to test the inversion algorithm, the first initial guess cannot be 
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very close to the true value, otherwise, the inversion test will become inconclusive. In 

the globe emission retrieval, we keep the initial guess as we did over Africa, that a 

prior model emission with a spatially unified background over land. Thus, Figure 3.14 

shows the comparison of AOD and AAOD simulated from initial guess with that 

simulated from assumed true values. Meanwhile, Figure 3.15 presents the assumed 

BC, OC and DD aerosol emission in comparison with that from the initial guess of the 

inversion. 

 
Figure 3.14: Distribution of assumed 28 days mean AOD and AAOD in comparison with 

AOD and AAOD at 550nm simulated from initial guess of aerosol emissions, and the 

differences of initial guess and assumption of AOD (c) and AAOD (f) are shown. 
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Figure 3.15: Distribution of assumed 28 days total DD, BC and OC aerosol emissions in 

comparison with the initial guess of DD, BC and OC emissions of our inversion 

 

Figure 3.15a, 3.15c and 3.15e show the assumed true total DD, BC and OC 

aerosol emissions over entire 28 days, respectively. The distributions of AOD and 

AAOD at 550nm in Figure 3.14a and Figure 3.14d show the synthetic measurements 

of AOD and AAOD from assumed aerosol emissions (the SU and SS emission are 

adopted from prior GEOS-Chem simulation). Figure 3.15b, 3.15d and 3.15f show the 

initial guess of total DD, BC and OC aerosol emissions over 28 days; here the initial 

guess is adopted from the prior GEOS-Chem emission with a spatially unified 

background value. Figure 3.14d and Figure 3.14e present the initial guess of the AOD 

and AAOD; meanwhile the differences between initial guess and assumed AOD and 

AAOD are also shown in Figure 3.14c and 3.14f, respectively.  

In order to test the inversion performance, the assumed true emission cannot be 

close to the initial guess of emissions. For example, the initial guess gives stronger 

DD emission in northwest Sahara where our assumption put a lower intensive value; 

in addition, the initial guess of global carbonaceous aerosol is broadly lower than our 

assumption and the spatial coverage has also some differences in particular areas, 

such as Northeast Asia, North America. However the spatial pattern is somewhat 

similar, because the emission assumption cannot be against our a priori knowledge of 

the distribution of industry, desert dust area.  
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Figure 3.16: Inversion test of using sequential approach to retrieve global DD, BC and OC 

aerosol emissions; a. Spatial distribution of differences between retrieval and assumed DD 

emission; b. Spatial distribution of differences between retrieval and assumed BC emission; c. 

Spatial distribution of differences between retrieval and assumed OC emission; d. Retrieved 

DD emission; e. Retrieved BC emission; f. Retrieved OC emission over entire 28 days;  

 

The spectrum weights and initial guess are used the same setting as we discussed 

in section 3.3. While we slight adjust the temporal resolution of emission corrections, 

we try to determine 2 days correction constant BC and OC aerosol emissions. Above 

all is the preparation of our inversion. Next the performance of our inversion will be 

analyzed. Figure 3.16d-f show the retrieval results of global distribution of DD, BC 

and OC aerosol emissions over 28 days from sequential approach; and the difference 

between retrieved emissions and assumed DD, BC and OC aerosol emissions are also 

shown in Figure 3.16a-c. The retrieval method can capture the spatial distribution and 

strength of global DD, BC and OC aerosol emissions. From the total global emission 

over entire 28 days, the retrieved DD emission is 57.38 Tg with the assumed value 

63.69 Tg; retrieved BC emission is 2.02 Tg with assumed 2.12 Tg BC; retrieved OC 

8.97 Tg with assumed 10.16 Tg OC emission. Hence, we diagnose for each 

component the normalized mean bias NMB = (𝑀! − 𝑂!)/ 𝑂! , where sums are 
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over the ensemble grid boxes 𝑖, and 𝑀! and 𝑂! are the retrieved and assumed values. 

NMB values are -9.9% for DD, -4.7% for BC, and -11.7% for OC.  

Besides, the daily relative difference of the retrieval and assumed DD, BC and 

OC emissions are investigated and shown in Figure 3.17. The mean absolute bias 

(MAB = |𝑀! − 𝑂!|/ 𝑂!) for retrieved daily global DD emission is 6.7%, and the 

maximum absolute bias is 48%; mean absolute bias for BC is 3.5% with the 

maximum to 18.3%; mean absolute bias for OC is 11.0% with the bias to 60.7%. 

 
Figure 3.17: Relative difference (%) of retrieval and assumed daily total (a) DD,  (b) BC and 

(c) OC emissions; The mean absolute difference and the max absolute difference during 28 

days are also provided in the top right of each figures. 

 

Another indicator of the inversion performance is the fitting of input observations. 

Figure 3.18 and 3.19 shows the fitting of input PARASOL-like six wavelengths 

AAOD and AOD, respectively. Meanwhile, the probability of the difference between 

fitted and assumed value at six wavelengths are also shown in Figures 3.18 and 3.19. 

From the fitting of spectral AAOD of Step 1 in Figure 3.18, the majority of the fitting 

differences of AAOD for all six wavelengths are located within ±0.01, which 

indicates that the model posterior running with retrieved emissions can reproduce 
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spectral AAOD with a good agreement with input synthetic measurements. 

Meanwhile, the fitting differences of AOD are mainly in ±0.05 range, which also 

indicates that the retrieved emissions can reproduce spectral AOD with good 

agreement with measurements. The agreements of fitted spectral AOD and AAOD 

with input synthetic measurements suggest the convergence of the inversions. 

 
Figure 3.18: Illustration of fitting input PARASOL-like six wavelengths spectral AAOD of 

Step 1 

 

 
Figure 3.19: Illustration of fitting of input PARASOL-like six wavelengths spectral AOD of 

Step 2 
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In this chapter, we introduce the general concept of the methodology that using 

satellite observations to retrieve distribution and strength of aerosol emissions. Then 

the inverse model using adjoint method is discussed. In order to deal with the 

unbalance of the input known parameters and retrieved parameters, the 

implementation of a priori constrain of the inverse model is presented. Finally, we 

proposed two approaches to retrieve real PARASOL/GRASP observations over 

Africa and over globe, respectively. The inversion test using synthetic PARASOL-

like measurements are performed; the performance of these two approaches are 

evaluated as well. Next, we will apply these two approaches to retrieve real 

PARASOL/GRASP aerosol data over Africa (Chapter 4) and over globe (Chapter 5). 
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Chapter 4  

 

Enhance/Optimized desert dust and 

carbonaceous aerosol emissions over Africa 
 

 

I didn’t fail the test, I just found 100 

ways to do it wrong. 

 

Benjamin Franklin 

 

 

 
 

4.1 Introduction 
Atmospheric aerosols have a variety of emission sources and complex chemical 

compositions. Desert dust (DD) aerosol is one of the most mass abundant types of 

aerosol emitted into atmosphere, while the range of global total dust emissions 

estimation spans a factor of about five (Huneeus et al., 2011). Primary carbonaceous 

aerosol, which consists of black carbon (BC) and organic carbon (OC) from 

combustion of fossil fuels, biofuels and biomass, has strong light absorbing that can 

affect the earth-atmosphere system energy balance. High uncertainty in carbonaceous 

aerosol emission sources (Bond et al., 2004) translates into a significant  high 

uncertainty in evaluating their climate effects. The Intergovernmental Panel on 

Climate Change estimates the global mean radiative forcing due to carbonaceous 

aerosol of -0.1 w/m2 in their 2001 report, in 2007 they raise it to 0.18 w/m2, in the 

latest report (IPCC, 2013) the value comes to 0.31 w/m2 (Myhre et al., 2013). 
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Furthermore, desert dust and carbonaceous aerosols can have deleterious impacts on 

regional air quality and public health (Chin et al., 2007; Monks et al., 2009; Li et al., 

2013). Thus, reliable observation and simulation systems are needed to accurately 

evaluate their emissions that are crucial to understand the role atmospheric aerosols 

play in earth-atmosphere system (Bellouin et al., 2005).  

In this chapter, I present the application of the aerosol emission inversion method 

for optimizing the desert dust and carbonaceous aerosol emissions over Africa. 

Section 4.2 describes the model and data used in this study. The aerosol model 

GEOS-Chem ajdoint of Henze et al. (2007) is fully conceptually consistent with the 

inversion developed by Dubovik et al. (2008) based on the GOCART model. The 

details of inverse modeling and performance evaluation of the inversion framework 

using numerical tests have been presented in the Section 3.2.  In order to interpret the 

retrieval results and improve our understanding of aerosol emissions, we retrieve one-

year of daily DD BC and OC emissions (see the Section 4.3). Evaluation of these 

inversion results using independent AERONET, MODIS and OMI observations, as 

well as implementation of the posterior emissions in the GEOS-5/GOCART model is 

presented in Section 4.4. Conclusions and discussion of the study’s merits and 

limitations are considered in the Section 4.5. 

 

4.2 Model and data description 

4.2.1 Study Area 
The study area (30°W-60°E, 40°S-40°N) is shown in Figure 4.1, which covers 

the whole of Africa and the Arabian Peninsula, comprising the largest dust source and 

biomass burning region of the globe. The spatial and temporal variability of DD, BC 

and OC aerosols in this area has drawn numerous research (Duncan et al., 2003; 

Prospero and Lamb, 2003; Engelstaedter et al., 2006; Liousse et al., 2010; Zhao et al., 

2010; Ginoux et al., 2012; Ealo et al., 2016). The number of PARASOL/GRASP 

retrievals per 0.1° x 0.1° grid box over a year (December 2007 to November 2008) 

and 28 AERONET(Holben et al., 1998) sites (Table 4.1) used to evaluate GEOS-

Chem model simulations and PARASOL/GRASP retrievals are shown in Figure 4.1. 

Note that the GRASP algorithm performs aerosol retrievals at PARASOL’s native 

resolution of 6~7 km; each 0.1° grid box could thus have more than one GRASP 
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retrieval, so the number of PARASOL/GRASP retrievals exceeds the number of days 

in some grid boxes of Figure 1. The amount of GRASP algorithm (see in section 2.3) 

retrievals over Northern Africa Sahara and the Arabian Peninsula desert region is 

relatively high, whereas other regions have a reduced number of retrievals due to the 

presence of clouds. 

 

Table 4.1: AERONET 28 sites used in this study for validation with model simulation and 

PARASOL/GRASP retrievals. 
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Figure 4.1: Distribution of PARASOL/GRASP AOD retrievals per 0.1° x 0.1° grid cell over a 

year (December 2007 to November 2008); the 28 AERONET sites used for validation are also 

shown with black cross.  

 

4.2.2 GEOS-Chem model and its adjoint 
GEOS-Chem is a global 3-dimensional chemical transport model driven by 

assimilated meteorological data from the NASA Goddard Earth Observing System 

Data Assimilation System (GEOS-DAS) (Bey et al., 2001). We use the GEOS-Chem 

(v9-02) model for forward aerosol simulation with 47 layers vertical resolution and 2° 

(latitude) x 2.5° (longitude) horizontal resolution. DD, BC and OC aerosols are 

simulated in our study, including 7 size bins for resolving dust (Fairle et al., 2007), 

and total aerosol mass of black and organic carbon (Park et al., 2003). Dust 

simulations in GEOS-Chem (Fairlie et al., 2007) consist of the mineral dust 
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entrainment and deposition (DEAD) model (Zender et al., 2003), which is coupled 

with the GOCART dust source function (Ginoux et al., 2001). The daily biomass 

burning sources are calculating from version 3 of Global Fire Emissions Database 

(GFED) inventory (van der Werf et al., 2006, 2010; Randerson et al., 2013). The 

monthly anthropogenic fossil fuel and biofuel BC and OC emissions are adpoted from 

Bond inventory with base year 2000 (Bond et al., 2007). The sulphate (SU) and sea 

salt (SS) aerosol simulation in GEOS-Chem is described in (Park et al., 2004; Jaeglé 

et al., 2011). The standard aerosol dry deposition in GEOS-Chem is described in 

(Wang et al., 1998; Wesely, 1989), and accounting for gravitational settling and 

turbulent mixing of particles to the surface (Pye et al., 2009; Zhang et al., 2001). 

Aerosol wet deposition is through wet scavenging in convective updrafts as well as 

in- and below-cloud scavenging from convective and large scale precipitation (Liu et 

al., 2001). 

The GEOS-Chem model assumes external mixing for all aerosol components 

with lognormal size distributions. The modal diameter and width for each dry aerosol 

species and their optical properties is specified. The extinction and scattering 

coefficients are calculated from size distribution and refractive index with spherical 

particle shape assumption. Different aerosol species are considered to have different 

degree of hydroscopic growth rate with ambient relative humidity (RH). The 

simulated aerosol mass are then converted to AOD (𝜏) and AAOD (𝜏!) through the 

general relationship between aerosol optical depth and aerosol mass (Tegen and Lacis, 

1996) (see in section 2.3.4). The detailed aerosol properties used in this study show in 

Table 2.2. 

The adjoint GEOS-Chem model was developed specifically for inverse modeling 

of aerosols or their precursors and gas emissions (Henze et al., 2007, 2009). The 4D-

Variational data assimilation technique is used to optimize aerosol emissions by 

combining observations and model simulations. The adjoint of GEOS-Chem has been 

widely used to constrain emission sources. For example, Kopacz et al. (2009) utilized 

MOPITT measurements of carbon monoxide (CO) columns to optimize Asian CO 

sources. Zhu et al. (2013) constrain ammonia emissions over U.S. by the means of 

TES (Tropospheric Emission Spectrometer) measurements. Zhang et al. (2015) use 

OMI AAOD to constrain anthropogenic BC emissions over East Asia. However, these 

studies have focused on a single aerosol or gas species and kept others constant 

during the inversion, since the satellites or other available observations of aerosols 
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generally did not provide enough accurate information to estimate contributions from 

different species. The recent development of the PARASOL/GRASP retrieval, which 

retrieves more detailed and accurate aerosol information (see in section 4.2.3), thus 

presents a new opportunity for constraining emissions from different aerosol species 

simultaneously. 

 

4.2.3 PARASOL/GRASP aerosol products evaluation 
GRASP is a highly versatile and accurate aerosol retrieval algorithm that 

processes properties of aerosol and land surface reflectance. The algorithm is 

developed for enhanced characterization of aerosol properties from spectral, multi-

angular polarimetric remote sensing observations (http://www.grasp-open.com/) 

(Dubovik et al., 2011, 2014; Lopatin et al., 2013). The POLDER/PARASOL imager 

provides spectral information of angular distribution of both total and polarized 

components of solar radiation reflected to space. With the expectation of 3 gaseous 

absorption channels (763, 765 and 710nm), the observations over each pixel include 

total radiance at 6 channels (443, 490, 565, 670, 865 and 1020nm) and linear 

polarization among 3 channels (490, 670 and 865nm). The number of viewing angle 

is similar for all spectral channels and varies from 14 to 16 depending on solar zenith 

and geographical location. Meanwhile, PARASOL provides global coverage about 

every 2 days. Comprehensive measurements (~144 independent measurements per 

pixel) from PARASOL allow GRASP to infer aerosol properties including spectral 

AOD and AAOD, the particle size distribution, single scattering albedo, spectral 

refractive index and the fraction of spherical particles (some description of GRASP 

aerosol products can be found in papers of Kokhanovsky et al. (2015) and Popp et al. 

(2016)). Extensive information of aerosol distribution and their properties provides a 

means to constrain specific aerosol types, which is vital to characterizing emissions 

from different aerosol species. 
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Figure 4.2: Validation of one-year PARASOL/GRASP spectral AOD and AAOD rescaled to 

2.0° x 2.5° horizontal resolution with AERONET 28 sites measurements at 440, 675, 870 and 

1020nm wavelengths over study area; The number of matched pairs (N), correlation 

coefficient (R), root mean square error (RMSE) and mean absolute error (MAE) are provided 

in the top left corner. 

 
In this study, we adopt one-year (December 2007 to November 2008) PARASOL 

products of spectral AOD and AAOD from GRASP to retrieve DD, BC and OC 

emission sources over study area in Section 4.3. In order to evaluate the reliability of 

PARASOL aerosol products from GRASP, we compared PARASOL/GRASP 

retrievals with AERONET measured AOD and AAOD at 4 Sun photometer channels 

(440, 670, 870 and 1020nm) in Figure 4.2. Here, we use level 2 AERONET data, 

which are cloud screened and quality assured (Smirnov et al., 2000). From all one-

year measurements collected from 28 sites, we extract data between 13:00PM and 

14:00PM local time. This provides a 60 minutes window centered at the PARASOL 

overpassing time of ~13:30PM. The averaged AERONET sun-direct AOD and 

AAOD by inversion of almucantar measurements (Dubovik et al., 2000; Dubovik and 

King, 2000) over this 60 minutes window are averaged for comparison with 

PARASOL/GRASP retrievals. We aggregate the PARASOL/GRASP products into 2 

° latitude x 2.5° longitude horizontal resolution to match the spatial resolution used by 

GEOS-Chem; any 2° x 2.5° grid box with less than 500 available PARASOL/GRASP 

retrievals for averaging is omitted. Depending on geographical location, the number 
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of GRASP retrievals in a single 2° x 2.5° grid box ranges from 500 to 1600. Figure 

4.2 presents the validation of retrieved PARASOL AOD and AAOD by GRASP 

algorithm against the AOD and AAOD measured by AERONET. There is a solid 

correlation between PARASOL/GRASP and AERONET for AOD as well as AAOD. 

For example, the correlation coefficients (R) are 0.85 and 0.84, and the root mean 

square errors (RMSE) are 0.16 and 0.032, and the mean absolute errors (MAE =
!
!

|(𝑀! − 𝑂!)|!
!!! ) are 0.11 and 0.024 for AOD and AAOD at 440nm respectively. 

 

4.3 Results 
In this section, we discuss retrieval of DD, BC and OC emission sources 

simultaneously from the actual PARASOL/GRASP spectral AOD and AAOD data 

from December 2007 to November 2008. The SU and SS aerosol simulations are kept 

as the prior model. PARASOL/GRASP retrievals were aggregated to the same 

horizontal resolution as the GEOS-Chem (2° x 2.5°) and averaged within the grid 

cells prior to assimilation. When iteratively minimizing Eq. (3.13), the maximum 

iteration number was chosen to be 40, which takes about 60 days to complete on a 

computer workstation with 32x3.3 GHz CPUs. 

4.3.1 Fitting of Aerosol Optical Depth 
One of the important indicators of our inversion performance is the fitting of 

PARASOL/GRASP spectral AOD and AAOD. We evaluate the GEOS-Chem 

simulated spectral AOD at 443, 490, 565, 670, 865 and 1020 nm using prior or 

posterior emissions against the corresponding PARASOL/GRASP retrieved AOD in 

Figure 4.3. The posterior GEOS-Chem spectral AOD are simulated using retrieved 

DD, BC and OC emissions, which will be presented in section 4.3.2. Figure 4.3a 

presents the annual average of the PARASOL spectral AOD from GRASP algorithm, 

whereas Figure 4.3b and 4.3c shows the same quantity from the GEOS-Chem 

simulations with prior and posterior emissions, respectively. Here we extract GEOS-

Chem hourly AOD with the same PARASOL orbit partition at 13:00 p.m. local time, 

which is approximately the PARASOL overpass time of 13:30 p.m. Figure 4.3d and 

4.3e display the grid-to-grid comparison between PARASOL/GRASP spectral AOD 

and prior and posterior GEOS-Chem simulation during one year, color-coded with the 
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PARASOL Ångström exponent 𝛼!!"!!"# =
𝑙𝑛 (𝜏!!"/𝜏!"#)

𝑙𝑛 (865/443) . The 

Ångström exponent α is often used as a qualitative indicator of aerosol particle size; 

the higher the α, the larger the particle size. For example, the α values for “pure” dust 

aerosols are usually near zero, whereas that for smoke or pollution aerosols are 

generally greater than 1 (Eck et al., 1999; Schuster et al., 2006). 

One of the major discrepancies between the prior GEOS-Chem simulation and 

PARASOL/GRASP observation is that the model produces the highest annual 

average AOD values over the major dust source region of Northern Africa; however, 

satellite data show the maxima AOD in Central and the Southern Africa, where 

carbonaceous aerosols usually dominate (although Central Africa may also be 

influenced by dust events). Hence, compared to PARASOL/GRASP observations, the 

prior GEOS-Chem AOD is overestimated in Northern Africa, while it is 

underestimated in the Southern Africa biomass burning and Arabian Peninsula 

regions. Some recent studies by Ridley et al. (2012, 2016) and Zhang et al. (2015) 

also indicate that the GEOS-Chem model overestimates dust AOD in Northern Africa. 

Meanwhile, Ridley et al. (2012) and Zhang et al. (2013) propose a new and realistic 

dust particle size distribution according to the measurements from Highwood et al. 

(2003), which can partially adjust the misrepresentation of dust near the source and 

over transport areas. This new particle size distribution has been adopted in our prior 

and posterior GEOS-Chem simulation. In addition, the underestimation of model 

simulated AOD in biomass burning regions with the GFED emission database was 

also shown in other modeling studies (Chin et al., 2009; Johnson et al., 2016). The 

model simulated spectral AOD with the posterior emissions agree with the 

PARASOL observations much better, in spite of slight systematic overestimations 

from 565nm to 1020nm (about 13% on an annual average). This overestimation 

indicates some disagreement in modeling of AOD for these bands that needs to be 

investigated and addressed in future studies. 
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Figure 4.3: Comparison of the annual spatial distribution of prior (b) and posterior (c) 

GEOS-Chem simulated AOD at 443, 490, 565, 670 865 and 1020 nm with PARASOL/GRASP 

observations (a). The posterior spectral AOD are simulated using retrieved DD, BC and OC 

emissions. The scatter plots of grid-to-grid comparisons between PARASOL/GRASP spectral 

observations versus prior (d) and posterior (e) GEOS-Chem simulation during one year. The 

correlation coefficient (R) and root mean square error (RMSE) are provide in the top left 

corner. 

 

Figure 4.3d and 4.3e show the statistics of prior and posterior GEOS-Chem 

simulated AOD versus PARASOL/GRASP observed AOD at 6 wavelengths during 

the entire year. The number of matched pairs is 111,493. For GEOS-Chem simulation 

with the posterior emissions, all the statistics parameters between model and 

observation are improved at all 6 wavelengths from the simulation with prior 

emissions. For example, the correlation coefficient has increased from 0.49-0.51 to 

0.89-0.92 and the root mean square error has decreased from 0.27-0.34 to 0.10-0.13. 

Such improvements are expected as the posterior emissions are retrieved based on the 
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PARASOL/GRASP AOD data, so that a better agreement shown in Fig 4.3e does not 

represent an independent evaluation of improved emission sources. We will show 

further evaluations with other datasets in Section 4.4. 

 

4.3.2 Fitting of Aerosol Absorption Optical Depth 
Similar to the AOD analysis, here we evaluate the fitting of AAOD (Figure 4.4). 

From the annual-averaged spectral AAOD in Figure 4.4, the prior GEOS-Chem 

simulation (Figure 4.4b) shows significant underestimations of AAOD over the entire 

domain compared to PARASOL/GRASP observations (Figure 4.4a). On the other 

hand, the posterior GEOS-Chem simulation (Figure 4.4c) produces much better 

agreement with the PARASOL/GRASP data for all wavelengths, with a small 

overestimation of AAOD in the spectral range from 443nm to 565nm (about 6% on 

annual average) and a small underestimation at 865nm and 1020nm (about 9% on 

annual average). Linked with the ~13% overestimation of annual AOD from 565nm 

to 1020nm, this systematic phenomenon of fitting is likely due to the fact that the 

model relatively coarse resolution resulting to misrepresentations of DD, BC and OC 

emissions in some grid boxes. 
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Figure 4.4: Same as Figure 4.3 but for AAOD. 

 

Figures 4.4d and 4.4e show the comparisons of PARASOL/GRASP observed 

AAOD at 6 wavelengths with the corresponding GEOS-Chem simulated quantities 

using prior or posterior emissions. The very low linear regression slope between the 

model simulated AAOD using prior emissions with observations (less than 0.11 over 

all six wavelengths) indicates that the prior simulations significantly underestimate 

the AAOD. In contrast, model simulations with the posterior simulations improve the 

slope to 1.01 at 443 nm and 0.70 at 1020 nm. Similar to the case of AOD, the 

agreements between the PARASOL/GRASP AAOD data and the model simulations 

are much better using the posterior emissions than using the prior emissions, with the 

correlation coefficients increased from 0.14-0.33 to 0.90-0.92 and the root mean 

square error decreased from 0.022-0.044 to 0.008-0.023.  
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4.3.3 Emission sources 
The retrieved and prior monthly total DD, BC and OC emission variations over 

the study area are shown in Figure 4.5.  

 
Figure 4.5: Comparison of monthly total DD, BC and OC emissions (unit: Tg mon-1) over 

study area between prior model (GFED3 and Bond inventories for BC and OC, DEAD model 

for DD) and retrieved emissions, the annual values (unit: Tg yr-1) are provided in the top left 

corner. 

 

4.3.3.1 DD emissions 
Figure 4.5 shows that the retrieved annual total DD emission in the study area is 

701 Tg/yr (particle radius ranging from 0.1 to 6.0 microns, exclude super coarse mode 

dust particles), which is 45.7% smaller than the prior emissions of 1291 Tg/yr. 

Moreover, the retrieved total DD emissions show reduced emission amount from the 

prior values in every month, varying from 11.6% reduction in December to 68.5% in 

May. Figure 4.6 shows the comparison of the spatial distribution of seasonal DD 

emissions between the prior emissions (Figure 4.6a) and our retrievals (Figure 4.6b). 

As shown in Figure 4.6, the prior and the retrieved emissions show similar spatial and 

seasonal patterns; for example, the Bodélé Depression is the most active dust source 

area in DJF and SON and the Arabian Desert becomes active in MAM and JJA. One 

major discrepancy between the model and the retrieval is that the model has a much 
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stronger DD sources over Algeria and Morocco in MAM and JJA, which is even 

stronger than the Bodélé Depression and the Arabian Desert. However, the retrieval 

still shows the dust emissions there, while the strength reduces a factor of 5-6. 

 
Figure 4.6: Spatial distribution of seasonal desert dust aerosol emission sources: (a) “prior 

model” DD emissions from DEAD model and (b) retrieved DD emissions. 

 

4.3.3.2 BC emissions 
As mentioned earlier, we considered two cases of BC aerosol refractive index to 

perform the retrieval (Case 1: m=1.75-0.45i; Case 2: m=1.95-0.79i), since the 

retrieved total BC emissions is very sensitive to the BC refractive index (our 

sensitivity test shows a factor of ~1.8 differences between Case 1 and Case 2, see 

section 3.3.1.4). Figure 4.5 shows the retrievals increase BC emissions for every 

month from the prior emissions by factors ranging from 5.9 in March to 14.4 in 

November with an annual averaged increase of a factor of ~8 in Case 1. For Case 2, 

the retrieved BC emissions have similar monthly variation as in Case 1 with a smaller 

magnitude of increase from the prior emissions, from a factor of 3.3 in March to 4.7 

in November with an annual averaged increase of ~3.  

The spatial comparison of seasonal BC emission is summarized in Figure 4.7. We 

plot model prior BC emission from GFED3 and Bond anthropogenic inventories in 
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Figure 4.7a, retrieved BC emissions from Case 1 in Figure 4.7b, and Case 2 retrieved 

BC emissions in Figure 4.7c. Note that the color bar range in Figure 4.7b is 2.5 times 

larger than that of Figure 4.7a and Figure 4.7c. Not surprisingly, the patterns of model 

prior emission, Case 1 and Case 2 retrievals are similar, with the highest BC emission 

source areas located in biomass burning regions, such as Central Africa during DJF 

and Southern Africa JJA. The large increases in the BC emissions in the retrieval 

relative to the prior suggests that the current model simulated AAOD is much too low, 

which is consistent with the PARASOL/GRASP observations in Section 4.3.2. 

Retrieval Case 2 shows a large increase over the Arabian Peninsula, indicating there 

is an emission source ~5 times higher than the prior model in DJF, MAM and SON, 

where the latter shows only a small amount of carbonaceous fine particles. 

AERONET ground-based measurements indicate a moderate absorption phenomenon 

there (Seasonal AAOD at 550nm about ~0.05, see Figure 21), which corroborates the 

retrieved values from the inversion. 

 

4.3.3.3 OC emissions 
The annual total OC emissions in Figure 4.5 shows that the retrieved annual OC 

emissions are higher than the prior model by a factor of ~2, with a minimum monthly 

increase found in March (1.54) and a maximum in May (5.71). Combined with BC 

emission, the retrieved total carbonaceous aerosol emissions are 52.8Tg/yr (with Case 

1 BC) and 44.0Tg/yr (with Case 2 BC), which is 271.8% (Case 1) ~ 209.8% (Case 2) 

higher than prior model (14.2 Tg/yr). We compare the seasonal distribution of prior 

OC emissions with retrieved emissions in Figure 4.8. Both the retrieved and prior 

emissions have highest OC emission sources in Southern Africa in JJA and in Central 

Africa in DJF.  
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Figure 4.7: Spatial distribution of seasonal BC emissions: (a) prior model BC emissions from 

GFED3 and Bond inventories; (b) Case 1 retrieved BC emissions; (c) Case 2 retrieved BC 

emissions. Note that the color scale for (b) is different from (a) and (c) for better resolving the 

spatial contrasts. 
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Figure 4.8: Spatial distribution of seasonal OC emissions: (a) prior model OC emissions 

using GFED3 and Bond inventories and (b) retrieved OC emissions. 

 

4.3.3.4 Summary of retrieved emissions 
Comparison of retrieved DD, BC and OC aerosol emissions over the study area 

with GEOS-Chem prior model emission inventories show basically a consistent of 

spatial and temporal variation. However, the significant differences are in the 

emission strength. The PARASOL/GRASP based retrieval reduces the GEOS-Chem 

annual DD emission to 701 Tg/yr over study area. Recent study by Escribano et al. 

(2017) estimated the mineral dust flux for particle size less than 6.0 microns over 

northern Africa and the Arabian Peninsula is between 630 and 845 Tg/yr. Some other 

studies also show similar dust emission flux over Africa (Werner et al., 2002; Miller 

et al., 2004; Escribano et al., 2016, 2017). However, the overestimation of the prior 

model dust emission could also result from the error in particle size distribution, 

which is shown to biased toward smaller particle sizes compared to the observation in 

the atmosphere (Kok et al., 2017). Meanwhile, the retrieval increases the model 

annual carbonaceous aerosol emission by about 2.5 times. This value is close to the 

recommendation given in Bond et al. (2013) that increasing global BC absorption by 

a factor of 3 to fit the observation of columnar aerosol absorption. In addition, there 
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are many other efforts to improve the simulation of AAOD, e.g. treating hydrophilic 

BC as internal with other soluble hygroscopic aerosol species (Wang et al., 2016); 

including the light absorbing brown carbon in the simulation (Wang et al., 2014b). 

These studies are all crucial to improve current CTMs aerosol simulation, which 

should be adopted in our aerosol emission inversion framework in the future. 

 

4.4 Evaluation 

4.4.1 Evaluation with AERONET 
In order to objectively evaluate our retrieved aerosol emissions based on 

PARASOL/GRASP spectral AOD and AAOD, we made a series of evaluations using 

independent datasets and models not used by our inversion. First, the posterior 

simulated one-year AOD and AAOD are compared with the sun photometer measured 

AOD and AAOD at 28 AERONET sites (shown in Figure 4.1).  

 
Figure 4.9: Density scatter plots of one-year GEOS-Chem simulated AOD using the prior 

emissions (top row) or the posterior emissions (bottom row) versus AERONET measured 

AOD at 440, 675, 870 and 1020 nm at 28 sites. The number of matched pairs (N), correlation 

coefficient (R), root mean square error (RMSE) and mean absolute error (MAE) are shown 

on each panel. 

 

Figure 4.9 and 4.10 show the comparison of GEOS-Chem simulations using prior 

and posterior emissions with AERONET measurements of AOD and AAOD, 

respectively. The evaluation was conducted at 4 wavelengths (440, 675, 870 and 1020 
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nm) and GEOS-Chem hourly spectral AOD and AAOD are interpolated based on the 

Ångström exponent. AERONET AOD and AAOD averaged ±30 minutes centered by 

model output time are used to compare with the model simulations over the grid box 

containing the AERONET sites. Density scatter plots of 49,865 matched pairs of 

AOD are shown in Figure 4.9. The correlation coefficients between GEOS-Chem 

simulations with prior emissions and AERONET data (shown in upper four panels) 

are 0.62, 0.67, 0.66 and 0.66 for the four wavelengths respectively, and the 

corresponding root mean square errors are 0.28, 0.25, 0.24 and 0.24. Yet, the 

correlation coefficients are increased to 0.73, 0.75, 0.75 and 0.74 when the posterior 

emissions are used in GEOS-Chem simulation (shown in lower four panels), and 

meanwhile the root mean square errors are decreased to 0.20, 0.18 0.17 and 0.16, 

respectively. Meanwhile, the mean absolute errors are also decreased from prior (0.20, 

0.16, 0.15 and 0.15) to posterior (0.15, 0.13, 0.11 and 0.11). 

 
Figure 4.10: Same as Figure 4.9 but for AAOD. 

 

Figure 4.10 shows the density scatter plots of comparison of AAOD. However, 

unlike sun direct measurement of AOD, AERONET AAOD is inverted from 

almucantar measurements. To select sufficiently accurate retrievals, we applied 

quality-screening criteria (e.g. Dubovik et al., (2002b) and Holben et al., (2006)). 

Therefore, there are fewer AERONET AAOD that matched with GEOS-Chem 

simulations than for AOD. The number of matched pairs is 3,728. The low slope of 

the linear regression between prior model AAOD and AERONET (shown in upper 

four panels) indicates that the prior model significantly underestimates AAOD. The 
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posterior GEOS-Chem simulations using retrieved emissions (shown in the lower four 

panels) shows the improvements validating with AERONET, with the correlation 

coefficients come to 0.71, 0.64, 0.59 and 0.53. In addition, the root mean square 

errors are also improved for posterior simulations. 

Comparison between time series of AOD and AAOD at 440 nm from AERONET, 

PARASOL/GRASP, prior and posterior GEOS-Chem simulations, from December 

2007 to November 2008, are made in two AERONET sites (Mongu and Ilorin), and 

the results are shown in Figure 4.11 and Figure 4.12. The geo-locations of these two 

sites are already apparent in Table 4.1 and Figure 4.1. Ilorin is located close to the 

active dust sources in the Northern Africa, where are also influenced by seasonal 

biomass burning events, especially from November to February. Mongu is located 

close to the Southern Africa seasonal biomass burning sources. The posterior 

simulations better capture the time series variations and magnitude of AOD and 

AAOD from AERONET measurements. For example, in Mongu, the prior simulation 

underestimates AOD and AAOD significantly. In September, the underestimations 

are about 3 times (a bias of -0.56 for monthly average) for AOD and 4 times for 

AAOD (a bias -0.09). Such bias is significantly reduced to -0.22 for AOD and +0.01 

for AAOD in posterior simulation with retrieved emission sources. In terms of 

correlation coefficients, the prior GEOS-Chem simulation shows a solid correlation 

with measurements in Mongu, while the slope of linear regression (K) between prior 

simulation and AERONET (0.24 for AOD; 0.22 for AAOD) indicates that the model 

significantly underestimates the aerosol loading in Mongu. Furthermore, prior GEOS-

Chem simulation can capture the variation and magnitude of AOD (R=0.79 and 

K=0.79) in Ilorin. However, for AAOD, the simulation shows underestimation with 

slope K=0.40, which is an indicator of the model underestimation of the aerosol 

absorption species, such as BC. Overall, the posterior GEOS-Chem simulation with 

retrieved emission sources can better capture the time serial variation and magnitude 

of AOD and AAOD in both Mongu and Ilorin. 
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Figure 4.11: Time serial AOD (upper panel) and AAOD (lower pannel) from AERONET 

(blue crosses), PARASOL/GRASP (pink circles), Prior GEOS-Chem (black line) and 

Posterior (green line) GEOS-Chem simulations at Mongu (Zambia) site whose locations are 

given in Table 4.1. The statistic parameters between PARASPOL/GRASP, prior and posterior 

GEOS-Chem simulations with AERONET are also shown in the figure. 

 



	 88	

 
Figure 4.12: Time serial AOD (upper panel) and AAOD (lower pannel) from AERONET 

(blue crosses), PARASOL/GRASP (pink circles), Prior GEOS-Chem (black line) and 

Posterior (green line) GEOS-Chem simulations at Ilorin (Niger) site whose locations are 

given in Table 4.1. The statistic parameters between PARASPOL/GRASP, prior and posterior 

GEOS-Chem simulations with AERONET are also shown in the figure. 

 

4.4.2 Testing retrieved emission in the GEOS-5/GOCART model 
All the evaluations considered thus far are a based on simulations in the GEOS-

Chem model. To evaluate how such results may be impacted by model biases owing 

to factors other than BC, OC and DD emissions, here we ask - can aerosol emissions 

retrieved from the GEOS-Chem based inversion improve the aerosol simulation for 

another chemical transport model? To investigate this, we implement our 
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PARASOL/GRASP based aerosol emission database into the GEOS-5/GOCART 

model (Chin et al., 2002, 2009, 2014; Colarco et al., 2010). The prior and posterior 

GEOS-5/GOCART model simulated seasonal AOD are compared with MODIS 

observations in Figure 4.13. GEOS-5/GOCART uses similar meteorological fields as 

GEOS-Chem, with the prior anthropogenic emissions from the Hemispheric 

Transport of Atmospheric Pollution (HTAP) Phase 2, biomass burning emissions 

from the Fire Energetics and Emission Research (FEER) database (Ichoku and Ellison, 

2014), dust emission calculated as a function of 10-m winds and surface 

characteristics (Ginoux et al., 2001), and volcanic emissions from OMI-based 

estimates (Carn et al., 2015). The PARASOL/GRASP retrieved DD, BC, and OC 

emissions over the study domain are used in the “posterior” simulations while other 

sources remain unchanged. On an annual average, the DD, BC, and OC 

posterior/prior emission ratios in the study area are 0.53, 5.3, and 1.2, respectively. 
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Figure 4.13: Comparison of the seasonal spatial distribution of prior (b) and posterior (c) 

GEOS-5/GOCART simulated AOD at 550 nm with MODIS observations (a). The ground-

based measurements from AERONET (squares) are over plotted over figures a-c. The MODIS 

and GEOS-5/GOCART versus AERONET correlation coefficient (R) and root mean square 

error (RMSE) are provided in figures a-c. 

 

 
Figure 4.14: The scatter plots of grid-to-grid comparison between MODIS and prior GEOS-

5/GOCART AOD (a) and posterior GEOS-5/GOCART AOD (b) are also shown.  Meanwhile, 

the GEOS-5/GOCART versus MODIS R, RMSE and MAE are also provided in figures (a-b). 

 

Figure 4.13a shows the MODIS seasonal AOD at 550nm. In order to have a 

better coverage, we take MODIS collection 6 combined dark target and deep blue 

AOD products at the spatial resolution of 1° x 1° (Hsu et al., 2004; Levy et al., 2013). 

Figure 4.13b presents prior GEOS-5/GOCART simulated seasonal AOD, and Figure 

4.13c shows the posterior GEOS-5/GOCART simulation from our retrieved emissions 

(using Case 2 BC emission). In Figure 4.15a and 4.15b, we plot the grid-to-grid 

comparison between GEOS-5/GOCART prior and GEOS-5/GOCART posterior AOD 

with MODIS respectively; here the different color represents different seasons. In 

order to carry out this grid-to-grid comparison, MODIS 1° x 1° AOD is re-grided to 

the resolution 2.0° x 2.5°. The prior GEOS-5/GOCART simulate optical depth is 

comparable to MODIS observations with similar spatial pattern and correlation 

coefficient with MODIS R=~0.75 over a year. In addition, the simulation is better in 

DJF and MAM than in JJA and SON. The correlation coefficient with MODIS is 

about 0.82 and the root mean square error is about 0.12 in DJF and MAM, and it’s 



	 91	

relative low correlation in JJA and SON (~0.7), meanwhile the RMSE becomes high 

(~0.16). The prior GEOS-5/GOCART simulation somewhat overestimated 

observations over the Northern Africa dust region over 4 seasons, while it is 

underestimated in the southern Africa biomass burning area, especially in biomass 

burning seasons (JJA and SON), which can also be inferred from the validation with 

AERONET measurements (squares) over plotted in Figure 4.13a-c. With the posterior 

emissions, GEOS-5/GOCART simulation show improvements compared with 

AERONET and MODIS observations, with higher correlation coefficient and lower 

root mean square error in all 4 seasons than the prior GEOS-5/GOCART simulation. 

The posterior GEOS-5/GOCART simulated AOD is a little lower than MODIS on 

average 13% (Normalized Mean Bias, NMB=-13%, NMB= (𝑀! − 𝑂!)/ 𝑂!, where 

sums are over the ensemble of all data 𝑖, and 𝑀! and 𝑂! are the modeled and observed 

values), likely associated with that the MODIS AOD is observed at noon, however the 

GEOS-5/GOCART AOD is average over 24 hours during a day. 
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Figure 4.15: Comparison of the seasonal spatial distribution of prior (b) and posterior (c) 

GEOS-5/GOCART simulated AAOD at 550 nm with OMI observations (a). The ground-based 

measurements from AERONET (squares) are over plotted over figures a-c. The OMI and 

GEOS-5/GOCART versus AERONET correlation coefficient (R) and root mean square error 

(RMSE) are provided in figures a-c. 
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Figure 4.16: The scatter plots of grid-to-grid comparison between OMI and prior GEOS-

5/GOCART AAOD (a) and posterior GEOS-5/GOCART AAOD (b) are also shown.  

Meanwhile, the GEOS-5/GOCART versus OMI R, RMSE and MAE are also provided in 

figures (a-b). 

 

Because only ultraviolet and shortwave visible channels and polarimeter 

measurements are sensitive to aerosol absorption properties, long-term records of 

AAOD are limited to AERONET, PARASOL/GRASP and OMI. We use the latest 

OMI aerosol products (OMAERUV version 1.7.4) (Torres et al., 2007, 2013) to 

evaluate the GEOS-5/GOCART model simulated AAOD from prior aerosol emission 

inventories and our retrieved aerosol emission database. Meanwhile, collocated 

AERONET data over study area are also employed to the evaluation. Figure 4.15 

shows the validation results. Figure 4.15a presents the OMI seasonal mean AAOD 

with original OMAERUV version 1.7.4 spatial resolution 0.5° x 0.5°. We plot grid-to-

grid comparison between OMI and GEOS-5/GOCART AAOD in Figure 4.16a-b, 

here OMI AAOD are re-scaled to the same resolution with model simulation 2.0° x 

2.5°. Any 2.0° x 2.5° grid box with less than 10 OMI original AAODs (~50% 

coverage) for averaging is abandoned. This evaluation highlights the following major 

findings: 

1. The major discrepancy between OMI seasonal AAOD (Figure 4.15a) and the 

prior GEOS-5/GOCART simulated AAOD is that the simulated AAOD is 

higher than OMI values in the Northern Africa dust regions over all seasons, 

which can be attributed to the overestimation of dust particle absorption (Chin 

et al., 2009) and/or the total dust emissions. The posterior GEOS-5/GOCART 
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simulated AAOD shows similar spatial distribution and magnitude with OMI 

values over dust regions with reduced differences, although the model is still 

overall higher than OMI especially over the Southern Africa biomass regions 

in JJA.  

2. As shown in Figure 4.15a, the correlation coefficients of OMI seasonal AAOD 

with AERONET vary from 0.42 in JJA to 0.83 in SON, meanwhile the root 

mean square error is smallest in MAM ~0.012 and largest in DJF ~0.033. 

Detailed assessments of OMI aerosol products are described in publications 

(Torres et al., 2013; Ahn et al., 2014; Jethva et al., 2014). The preliminary 

evaluation shows posterior GEOS-5/GOCART simulated seasonal AAOD 

(Figure 4.15c) have a slightly better correlation with AERONET comparing 

with prior GEOS-5/GOCART simulation (Figure 4.15b), the mean correlation 

coefficient over entire year improves from ~0.36 to ~0.46, and mean RMSE 

decreases from ~0.027 to ~0.023. 

3. From the scatter plot of GEOS-5/GOCART simulated AAOD versus OMI 

AAOD in Figure 4.16a-b, the significant increase of correlation coefficient 

from prior to posterior simulations shows in summer (Prior: 0.54; Posterior: 

0.76) and the decrease of RMSE and MAE (Prior: RMSE=0.024, MAE=0.016; 

Posterior: RMSE=0.018, MAE=0.014), suggesting the reliability of posterior 

aerosol emission at high biomass burning aerosol loading season. 

4.5 Conclusion 
In this study, we designed a method to retrieve BC, OC and DD aerosol emission 

sources simultaneously from satellite observed spectral AOD and AAOD based on the 

PARASOL/GRASP retrievals and the adjoint of GEOS-Chem chemical transport 

model. This method uses prior BC, OC and DD emissions as weak constraint in the 

inversion by initializing the retrieval with prior emissions and uniform background 

values. A series of numerical tests were performed which show this assumption can 

provide a better fit to observations, meanwhile it allows the retrieval to produce rather 

good results even if a priori knowledge of emissions is poor. Admittedly, the satellite 

observations are sparse due to several factors, e.g., the clear-sky condition, global 

coverage orbit cycle. Nevertheless, the PARASOL 6 wavelengths AOD and AAOD 

from GRASP algorithm are shown to be sufficient to characterize the distribution and 

magnitude of BC, OC and DD aerosol emission sources simultaneously under the 
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assumption of DD emissions correction constant over 24h and 4 days correction 

constant carbonaceous aerosol emissions. The inversion test of synthetic PARASOL-

like measurements have shown about 25.8% uncertainty for daily total DD emission, 

5.9% for daily total BC emission and 26.9% for daily total OC emissions. In addition, 

it was shown that using two different assumptions for BC refractive indexes (Case 1: 

m=1.75-0.45i; Case 2: 1.95-0.79i) could lead to an additional factor of 1.8 differences 

in total BC emissions. 

We evaluated the GRASP retrieved one-year PARASOL spectral AOD and 

AAOD with AERONET ground-based observations/retrievals at 28 sites across study 

area (30°W-60°E, 40°S-40°N). Good agreements were found even using rescaling of 

the retrievals to the spatial resolution 2.0° x 2.5°. Derimian et al. (2016) and Popp et 

al. (2016) show similar validation results of PARASOL/GRASP with AERONET. 

Therefore, we used PARASOL/GRASP retrieved spectral AOD and AAOD to 

optimize BC, OC and DD aerosol emission sources in a year (December 2007 to 

November 2008) over the study area with horizontal resolution of 2.0° x 2.5° in order 

to match the adjoint GEOS-Chem spatial resolution. The retrieved emission sources 

are publically available at http://csuchencheng.wixsite.com/chencheng/research-blog; 

this dataset will be available soon at GEOS-Chem inventory finding website 

(http://wiki.seas.harvard.edu/geos-chem/index.php/Inventory_Findings). 

Our analysis of the retrieved aerosol emissions indicates that the prior GEOS-

Chem model overestimates annual desert dust aerosol emissions by a factor of about 

1.8 (with the DEAD scheme) over the study area, similar to other previous modeling 

studies (Huneeus et al., 2012; Johnson et al., 2012; Ridley et al., 2012, 2016). The 

retrieved annual BC and OC emissions show a consistent seasonal variation with 

emission inventories (GFED3 for biomass burning and Bond for anthropogenic fossil 

fuel and biofuel combustions). However, we find these BC and OC emissions to have 

broad underestimations throughout the study area. For example, emissions from the 

emission inventories for BC are significant lower than our retrieved values up to 

823.5% (Case 1) and 305.9% (Case 2), and for OC they are about 196.8% lower. 

These results are reflected in the model bias of AOD and AAOD from the prior 

GEOS-Chem simulation, e.g. significant low bias over the biomass burning regions 

and high bias over the Sahara desert region. Underestimation of BC and OC 

emissions in chemical transport models have been suggested previously (Sato et al., 

2003; Zhang et al., 2015). However, we cannot rule-out the possibility that 
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differences between model and observations could also be attributed to the errors in 

removal processes and aerosol microphysical properties, in addition to the 

deficiencies in emissions (Bond et al., 2013). Nevertheless, the fidelity of our results 

is confirmed by comparison of posterior simulations with measurements from 

AERONET that are completely independent from and more temporally frequent than 

PARASOL observations. Specifically, to analyze the PARASOL/GRASP based 

aerosol emission database further, we implemented these emissions in the GEOS-

5/GOCART model and compared the resulting simulations of AOD and AAOD with 

independent MODIS and OMI observations. The comparisons show better 

agreements between model and observations with the posterior GEOS-5/GOCART 

results (lower biases and higher correlation coefficients) than prior simulations. In the 

future, we plan to apply our approach to longer records and global domain of 

observations and to further investigate the inter-annual variability of aerosol 

emissions on global scale and to test our retrieved emission database in other models. 
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Chapter 5 
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5.1 Introduction 
Atmospheric aerosols are related to the climate system intricately by scattering 

and absorbing solar and terrestrial radiation and by altering cloud properties and 

lifetimes (Kaufman et al., 2002). They are also known to cause extreme weather, air 

pollution events and adverse public health effects (e.g., Li et al., 2011; Ramanathan et 

al., 2001; Zhang et al., 2017). Aerosol radiative forcing of climate over the industrial 

period remains the largest forcing uncertainty through the Intergovernmental Panel on 

Climate Change (IPCC) assessments since 1996. Reliable assessments of aerosol 
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effects on climate changing and public health depend on the development of global 

models.  

One of the most important factors affecting the aerosol model simulation is 

adopted data for aerosol emissions (Kinne et al., 2003). Different climate models use 

differing aerosol emission databases or inventories, whose distribution and magnitude 

vary markedly from one model to next. Despite the general agreement in total AOD, 

there are significant model diversities at the individual component level for aerosol 

(Kinne et al., 2006). This indicates that uncertainties in assessing aerosol climate 

forcing are still large, because the aerosol climate forcing evaluation depends on not 

only total AOD but also on aerosol absorption (AAOD) and particle size (Ångström 

Exponent, AExp), which are determined by aerosol type and optical properties 

(Textor et al., 2006).  

To further reduce the impact of differences in aerosol emissions on aerosol 

distribution simulation, the availability of aerosol remote sensing products, especially 

global aerosol fields provided by space-borne satellite observations, is of critical 

importance for constrain and optimize the aerosol emission. In the last decade, many 

efforts have been made to use satellite observations to constrain or optimize aerosol 

emissions in climate model (Dubovik et al., 2008; Huneeus et al., 2012, 2013; Wang 

et al., 2012; Xu et al., 2013; Zhang et al., 2015; Escribano et al., 2016, 2017). 

However, these studies are mostly focused on the regional scale, or retrieving a single 

aerosol or gas species and keeping others constant, or to aggregating adjustments 

made to emissions to several pre-defined regions. The objective of these treatments is 

to reduce the number of unknown parameters describing the retrieved emissions. As 

discussed in works such as Dubovik et al. (2008) and Meland et al. (2013), AOD at 

one wavelength contains only limited information to evaluate aerosol types, properties, 

or speciated emissions. Thus, a long record of global aerosol emission based on 

satellite observations still remains a very challenging and underdeveloped task. 

In this chapter, we first develop a long record of desert dust and primary 

carbonaceous (including black and organic carbon) aerosol emissions using the 

advanced PARASOL/GRASP aerosol data (the data available from ICARE data 

distribution portal) and the GEOS-Chem inverse modeling framework. The 

methodology of the inversion has been discussed in Chapter 3. Here, we first present 

the evaluation of atmospheric aerosol properties from the free-running model (prior 

simulation) and PARASOL/GRASP with ground-based observations from 
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AERONET (section 5.2). After that in section 5.3, we describe the newly developed 

satellite-based aerosol emission database for 2006 to 2011, considering the emissions 

magnitude, distribution, trends and the comparison with other studies. The posterior 

atmospheric aerosol simulations (section 5.4) are evaluated using independent 

measurements from ground and space. In section 5.5, we test the satellite based 

aerosol emission database in the GEOS-5/GOCART model to evaluate how much 

results may be impacted by model bias owing to factors other than BC, OC and DD 

emissions. 

5.2 Prior GEOS-Chem simulation of atmospheric aerosols 
We evaluate the atmospheric aerosol properties from prior (free-running) GEOS-

Chem model simulation on daily and annual mean scale, respectively. Table 5.1 

shows a summary of physical processes, emission models and inventories used for the 

prior GEOS-Chem model simulation. The detailed aerosol properties used in this 

study are shown in Table 2.2. The global distribution of columnar AOD, AAOD, SSA 

and AExp are adopted from GEOS-Chem model simulation for evaluation. Global 

distributed ground-based AERONET (Holben et al., 1998) measurements of aerosol 

provide an opportunity to evaluate the model simulation of atmospheric aerosols. 

More than 400 AERONET sits (shown in Figure 2.1) are used for our evaluation. 

Here, we use level 2 AERONET data, which are cloud screened and quality assured 

(Smirnov et al., 2000). AERONET annual mean aerosol data is averaged based on 

their monthly aerosol products. Any site with less than 6 monthly values is omitted.  

Figure 5.1 shows the comparison of prior GEOS-Chem annual mean AOD, 

AAOD, SSA at 550 nm and AExp (440-870) with collocated AERONET 

observations between 2006 and 2011. There are ~450 grid boxes with AERONET 

annul AOD data covering ~3.5% of the 13,104 grid boxes in the global 2°x2.5° model 

domain. The prior GEOS-Chem annual mean AExp (Figure 5.1d) has a solid 

agreement with AERONET  (R=0.74). Meanwhile, the prior AOD (Figure 5.1a) and 

AAOD (Figure 5.1b) at 550 nm show correlation with AERONET measurements 

(AOD: R=0.42; AAOD: R=0.40), however the prior SSA (Figure 5.1c) has the lowest 

correlation coefficient with AERONET (R=0.21).  

 

Table 5.1: A summary of physical processes, emission models and inventories used in free-

running GEOS-Chem simulation 
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 Description References 
Emissions 
Anthropogenic Global: BOND monthly inventory for base 

year 2000 
(Bond et al., 2007) 

Biomass burning Version 3 Global Fire Emission Database 
(GFED3), daily 

(van der Werf et al., 2006, 2010; 
Randerson et al., 2013) 

Dust The mineral dust entrainment and 
deposition (DEAD) model coupled with the 
GOCART dust source function 

(Fairlie et al., 2007; Ginoux et 
al., 2001; Zender et al., 2003) 

Sea salt Sea salt emissions include both wind speed 
and sea surface temperature (SST) 
dependence. 

(Gong, 2003; Jaeglé et al., 2011; 
Monahan et al., 1986) 

Sulfate Natural Sulfur: DMS from oceanic 
phytoplankton; 
SO2 from volcanoes; 
SO2 from biomass burning 
Anthropogenic SO2: Gridded monthly 
aircraft emissions and biofuel use  
Ammonia: 1° x 1° GEIA inventory based 
on year 1990 

(Bouwman et al., 1997; Andres 
and Kasgnoc, 1998; Duncan et 
al., 2003; Kettle et al., 1999; 
Chin et al., 2000; Park et al., 
2004) 

Physical processes 
Wet deposition Parameterization for scavenging in 

convective updrafts as well as in- and 
below-cloud scavenging from convective 
and large scale precipitation for soluble 
gases and aerosols 

(Liu et al., 2001; Wang et al., 
2011) 

Dry deposition Accounting for gravitational settling (Wang et al., 1998; Wesely, 
1989) 

PBL mixing Non-local PBL mixing scheme (Lin and McElroy, 2010) 
 
 

 
Figure 5.1: Spatial distribution of AOD (a), AAOD (b), SSA (c) and AExp (d) simulated from 

the prior GEOS-Chem model; the ground-based measurements from AERONET (squares) are 

plotted over figures a-d. The root mean square error (RMSE), correlation coefficient (R) and 

slope of linear regression (Slope) versus AERONET are provided in figures. 
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Space-borne satellites offer a direct measure of the amount of light scattering or 

even polarized light through the integrated atmospheric column modifying the diffuse 

and direct solar radiation by the presence of atmospheric aerosols. The GRASP 

algorithm is developed for enhanced characterization of aerosol properties from 

spectral, multi-angular polarimetric measurements, such as PARASOL (Dubovik et 

al., 2011, 2014; data available from ICARE data distribution portal: 

http://www.icare.univ-lille1.fr/). The global PARASOL/GRASP daily aerosol 

products (AOD, AAOD, SSA and AExp) from 2006 to 2011 are also evaluated with 

AERONET daily dataset. In this validation, PARASOL/GRASP original retrievals 

(~0.1°) are aggregated to the same resolution as the GEOS-Chem model (2°x2.5°); 

any grid box with less than 500 available PARASOL/GRASP retrievals (fitting 

residual < 10%) for averaging is omitted. Depending on geographical location, the 

number of GRASP retrievals in a single 2° x 2.5° grid box ranges from 500 to 1600. 

This 2°x2.5° PARASOL/GRASP aerosol dataset will then be used to retrieve global 

aerosol emissions.  

Figure 5.2 shows the comparisons of PARASOL/GRASP 2° x 2.5° aerosol 

products with the corresponding AERONET daily aerosol products. 

PARASOL/GRASP AOD, AAOD and AExp show solid correlation with AERONET 

measurements. The correlation coefficient for SSA is somewhat lower (R=0.41), 

though the dynamic range of SSA is narrow (mainly located in 0.7 to 1.0). For each 

aerosol parameter, we calculate the mean bias (MB = !
!

𝑀! − 𝑂!!
!!! ). MB values 

are -0.03 for AOD, -0.013 for AAOD, 0.011 for SSA, and -0.11 for AExp. 

Underestimations of PARASOL/GRASP AOD, AAOD and AExp are likely 

associated with the aggregation of GRASP retrievals from 6 x 6 km pixels in one 2° x 

2.5° grid box. PARASOL/GRASP AExp shows solid correlation with AERONET 

measurements (R=0.79, MAE=0.27), which indicates the reliability of using 

PARASOL/GRASP 2°x2.5° spectral AOD. Note that we carried out the comparison 

of AAOD and SSA following the AERONET standard quality-screening criteria 

(Dubovik et al., 2002b; Holben et al., 2006) that AOD≥0.4, meanwhile the 

comparison of AExp was done with AOD≥0.2. The objective is to select sufficiently 

accurate retrievals for reference in the evaluation.  
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Figure 5.2: Density scatterplot (left panel) of daily PARASOL/GRASP 2°x2.5° aerosol 

products (AOD, AAOD, SSA and AExp) in comparison with AERONET; the correlation 

coefficient (R) and root mean square errors (RMSE), mean absolute error (MAE) are 

provided in the figures. The differences probability plots (right panel) are shown in the right 

column. The mean bias (MB) is provided in the top left of the figures. 
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Figure 5.3: Comparison of prior GEOS-Chem (GC) daily AOD with collocated AERONET 

(a) and PARASOL/GRASP (c) AOD at 550nm; and prior GEOS-Chem daily AAOD versus 

AERONET (b) and PARASOL/GRASP (d) AAOD at 550nm. The discriminated different 

aerosol types determined by the first contributor to the total AOD and AAOD are shown with 

color code (yellow – DD; green – OC; blue – BC; cyan – SU; purple – SS). 

 

In addition, the prior GEOS-Chem daily AOD and AAOD (averaged from 24 

hourly data) at 550nm are validated against collocated AERONET Level 2.0 and 

space-borne PARASOL/GRASP aerosol products. In order to quantify further the 

simulation of aerosol properties at the individual component level, each independent 

grid box aerosol type is determined by the first contributor of its total AOD and 

AAOD, respectively (the same method as shown in Figure 2.9). Note that the aerosol 

type for each independent grid box could be different in different days, and the 

aerosol type for one grid box at a particular day could be different from the aspects of 
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AOD and AAOD, respectively. For statistics, in terms of global daily AOD from 

2006 to 2011, all grid boxes can be divided into 49.4% DD, 0.0% BC, 13.5% OC, 

14.5% SU and 22.6% SS. For AAOD, there are 38.6% DD, 60.8% BC, 0.0% OC, 0.0% 

SU and 0.6% SS. 

The GEOS-Chem daily AOD from 2006 to 2011 is evaluated against AERONET 

(Figure 5.3a) and PARASOL/GRASP (Figure 5.3c). AOD in about 50.0% of the grid 

boxes is dominated by DD particles. However, the prior GEOS-Chem AODs over DD 

dominant (dusty) grid boxes are explicitly overestimated in comparison with both 

AERONET and PARASOL/GRASP (yellow crosses in Figure 5.3a and 5.3c). The 

comparison of GEOS-Chem daily AAOD with AERONET and PARASOL/GRASP 

are also shown in Figure 5.3b and Figure 5.3d, respectively. 99.4% grid boxes AAOD, 

with the exception 0.6% over oceans, are dominated by DD and BC particles. The DD 

AAOD dominant grid boxes consistently exhibit overestimation of total AAOD 

(yellow crosses in Figure 5.3b and 5.3d). However, BC dominant grid boxes generally 

underestimate total AAOD compared with both AERONET and PARASOL/GRASP 

(blue crosses in Figure 5.3b and 5.3d). Overall, the prior GEOS-Chem AAOD is 

broadly underestimated in comparison with measurements, with a linear regression 

slope of ~0.41 versus AERONET and ~0.24 versus PARASOL/GRASP. However, 

the simulation of aerosol total extinction and absorption over dusty areas are higher 

than observations. 

Satellite remote sensing of atmospheric aerosols show an extensive spatial 

coverage as well as good agreement with ground-based measurements (Bréon et al., 

2011; Kahn et al., 2005; Kleidman et al., 2005; Popp et al., 2016; Remer et al., 2002, 

2005; Smirnov et al., 2011; Torres et al., 2002). However, the satellite observations 

alone are not sufficient to fully constrain the emission, transport, removal and 

distribution of aerosols, since satellite observations are sparse and limited due to 

several factors, e.g., the clear-sky condition, and global coverage orbit cycle. There 

are limitations for chemical transport models that driven by modeling the physical and 

chemistry processes of atmospheric aerosols. Hence, combination of observation and 

simulation is crucial to understand the role of atmospheric aerosols play in earth-

atmosphere system.  
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5.3 Satellite-based emission database of BC, OC and DD 

5.3.1 Database description 
Since PARSOL/GRASP aerosol products provide an extensive and accurate 

record of information about aerosols, we use spectral AOD and AAOD from 

PARASOL/GRASP at 6 wavelengths (443, 490, 565, 670, 865 and 1020nm) to 

optimize global DD, BC and OC aerosol emissions using the GEOS-Chem based 

inversing modeling. Compared to previous studies discussing global emission 

retrievals (e.g. Dubovik et al., 2008), the present study is more advanced in the 

following ways: (i) we use the PARASOL/GRASP aerosol product, which is the first 

long-time record aerosol dataset retrieved from space-borne observation, providing 

wavelength dependence (VIS-NIR) aerosol scattering and absorption properties. (ii) 

different from many previous studies (Cohen and Wang, 2014; Escribano et al., 2016, 

2017; Huneeus et al., 2012), we estimate grid-box level BC, OC and DD contributions 

by spectral dependence of aerosol scattering and absorption. (iii) The present study 

uniquely uses observational information to determine speciated aerosol emissions and 

produce a global aerosol emission database, which provides the potential to improve 

the model simulation of aerosol properties simultaneously, i.e. AOD, AAOD, AExp. 

The main limitation of this study is that all the difference of modeled aerosols are 

attributed to emissions, however some of the difference could be coming from poorly 

modeled transport processes and aerosol microphysical properties assumed in the 

model instead of emissions. 

Figure 5.4a-c shows the global map of 2006-2011 retrieved annual BC, OC and 

DD aerosol emissions. The daily emissions are freely accessible from our website. 

The database includes primary carbonaceous (BC and OC) and DD aerosol emissions. 

However, due to the limited information content of satellite observation, the database 

does not currently distinguish between natural and anthropogenic aerosol sources. For 

DD emission, 0.1~6.0µm (particle radius) particles are considered, and super coarse 

DD particles are excluded. Figure 5.5a-c shows the monthly cycle of retrieved global 

BC, OC and DD aerosol emissions in contrast with the GEOS-Chem emission 

acquired from prior emission inventories. The prior GEOS-Chem DD emission 

module (Fairlie et al., 2007) is originated from the mineral dust entrainment and 

deposition (DEAD) model (Zender et al., 2003), which is coupled with the GOCART 

dust source function (Ginoux et al., 2001). The daily biomass burning sources are 
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calculating from version 3 of Global Fire Emissions Database (GFED) inventory (van 

der Werf et al., 2006, 2010; Randerson et al., 2013). The monthly anthropogenic 

fossil fuel and biofuel BC and OC emissions are adopted from Bond inventory with 

base year 2000 (Bond et al., 2007). 

 

I. Black Carbon 

Satellite-based aerosol emission database shows the annual global BC aerosol 

emission is 27.59 Tg/yr with an increasing trend +0.20 Tg/yr from 2006 to 2011 

(Figure 5.4a and 5.5a). It is 2.58 times higher than the GEOS-Chem BC emission 

inventory, in which the value is 10.71 Tg/yr. Furthermore the annual trend in the prior 

inventory (-0.10 Tg/yr) is the reverse of our database. Satellite-based BC emission 

(27.59 Tg/yr) is close to the upper limit (29.0 Tg/yr) given by Bond et al. (2013) using 

bottom-up methods for the base year 2000. Thus, findings suggest that there is more 

absorption BC aerosols emitted than has generally been realized, and the total aerosol 

absorbing due to BC will be enhanced 2~3 times using satellite-based BC emission 

database. 

II. Organic Carbon 

The seasonal cycle of satellite-based OC aerosol emission is shown in Figure 5.5b as 

the comparison between satellite-based emission database and prior GEOS-Chem 

emission. The annual OC emission (Figure 5.4b) in our database is 132.51 Tg/yr, 

which is 2.94 times higher than that of GEOS-Chem (45.09 Tg/yr). Meanwhile, the 

annual trend of OC emission from 2006 to 2011 is reversed from -0.70 Tg/yr in 

GEOS-Chem to +0.67 Tg/yr in satellite-based OC emission database. 

III. Desert Dust 

In addition to global 0.1~6.0µm DD aerosol emission (Figure 5.4c and 5.5c), satellite-

based emission database (831 Tg/yr) indicates a reduction about 41% to the GEOS-

Chem dust model (1409 Tg/yr). GEOS-Chem dust model shows a decreasing trend of 

annual dust emission -40.56 Tg/yr from 2006 to 2011, while satellite-based DD 

emission indicates an increasing trend about 1.62 Tg/yr. 
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Figure 5.4: Satellite-based global distribution aerosol emission database from 2006 to 2011, 

(a) black carbon, (b) organic carbon, and (c) desert dust; the annual BC, OC and DD aerosol 

emissions are also provided in the figure. 
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Figure 5.5: Monthly cycle of global BC (a), OC (b) and DD (c) aerosol emission from 

satellite-based emission database in contrast with the GEOS-Chem prior emission database; 

the annual trends of emissions are provided in top left of figure a-c. 

 

5.3.2 Database evaluation 
In this section, results of satellite-based aerosol emission database of DD, BC and 

OC are also compared to the bottom-up emission inventories and top-down retrievals 

from literatures. Table 5.2 shows a summary of the estimates of global annual DD, 

BC and OC emission flux from previous studies in comparison with those from this 

study. The emission of this study is averaged from 2006 to 2011. For the estimates 

from the IPCC (2013) report, we simply account 10% of biomass burning emission 

for BC and 90% for OC. Meanwhile, the value from the GEOS-Chem and GEOS-

5/GOCART models is also averaged from 2006 to 2011, and only 0.1~6.0µm dust 

particle emissions are considered.  

The IPCC report (IPCC, 2013) estimates DD emission from 1000 to 4000 Tg/yr, 

spanning a factor of 4. The annual mean DD emission in this study is 831 Tg/yr. The 

super coarse dust particles are not included, because the observed spectral AOD in the 

VIR-NIR wavelengths are not sensitive to super coarse particles. In addition, the 
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super coarse bin contributes about 721 Tg/yr emission flux in GEOS-5/GOCART 

model. 

The global BC emissions inferred from IPCC (2013) report, using an assumption 

that 10% BB emission accounting for BC, is 6.5 to 14.5 Tg/yr. Meanwhile, the 

estimation of OC emission is 30.6 to 87.7 Tg/yr. The bottom-up carbonaceous aerosol 

emission inventories (Bond et al., 2004; Chin et al., 2009; Cooke and Wilson, 1996; 

Kim et al., 2008; Liousse et al., 1996; Penner et al., 1993; Takemura et al., 2005) are 

estimated indirectly, the highest value is 24.0 Tg/yr, given by Penner et al. (1993) 

using measured ambient concentration ratio of BC and SO2 at locations throughout 

the world. The most common value used in current climate models is the central 

estimats of 8.0 Tg/yr by Bond et al. (2004). Meanwhile, the total uncertainties are at 

the order of factor 2, with uncertainty ranging from 4.3 to 22 Tg/yr. In addition, Bond 

et al. (2013) recommend to increase global absorption by a factor of 3 to match the 

observations of columar aerosol absorption. The top-down estimations from Cohen 

and Wang (2014) and Huneeus et al. (2012) give higher global BC emission than 

bottom-up methods. Cohen and Wang (2014) estimates global BC emissions using a 

top-down Kalman Filter approach from column AAOD from ground-based 112 

AERONET stations and 26 surface BC concertration measurement stations, with an 

optimized range from 14.6 Tg/yr to 22.2 Tg/yr. Huneeus et al. (2012) assimilated 

daily total AOD and Fine mode AOD at 550nm from MODIS to constrain global 

aerosol emissions, and the optimized BC emission is 15.0 Tg/yr. However, Cohen and 

Wang (2014) and Huneeus et al. (2012) all adopt simiplied models with predefined 

regions; thus, the emission correction over a predefined region is constant. In this 

study, we try to retrieve global grid box level BC emission, and our estimation of 

global annual BC emission is 27.6 Tg/yr. This result is esitimated based on space-

borne measurement of columar total aerosol absorption, which provides an 

opportunity to harmonize and improve the simulation of AAOD. However, satellite-

based BC emission database should be improved in future by considering the BC 

particles absorption enhancement by particle mixing state(Liu et al., 2017), treating 

hydrophilic BC as internal with other soluble hygroscopic aerosol species (Wang et 

al., 2016); including the light absorbing brown carbon in the simulation (Wang et al., 

2014b). 

Similar to the BC emission, the satellite-based OC emissions show a global 

annual flux of 132.5 Tg/yr. This value is close to the top-down estimate from 
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Huneeus et al. (2012) of 119.0 Tg/yr. Our value is still higher than other estimations 

based on bottom-up methods (Bond et al., 2004; Chin et al., 2009; IPCC, 2013; Kim 

et al., 2008; Liousse et al., 1996; Takemura et al., 2005).  

 
Table 5.2: A summary of the global annual DD, BC and OC aerosol emission flux from 

previous studies and that from this study. The unit is Tg/yr. Note that the value adopt from 

GEOS-Chem and GOCART model is also annual average from 2006-2011, and the dust 

particle size is considered from 0.1~6.0µm for GEOS-Chem and GOCART model. 

 
* The emission of this study is averaged from 2006 to 2011. + We simply account 10% biomass 

burning (BB) emission for BC and 90% BB emission for OC. 

5.4 Consistency with observations 

5.4.1 Evaluation of posterior GEOS-Chem model simulation 
The satellite-based aerosol emission database is firstly analyzed by evaluating 

output of posterior GEOS-Chem simulations obtained using satellite-based emission 

database. We evaluate the posterior GEOS-Chem AOD, AAOD, SSA and AExp with 

not only fitted observations of PARASOL/GRASP, but also against the completely 

independent and more time frequent measurements from (than those from PARASOL) 

ground-based AERONET. Figure 5.6 shows the comparison of posterior GEOS-Chem 

simulated annual mean (2006-2011) AOD, AAOD, SSA, AExp with collocated 

AERONET measurements (similar to Figure 5.1 but for posterior simulation). 

Posterior GEOS-Chem AOD have a better correlation (R=0.75), smaller root mean 

square error (RMSE=0.12) than the counterparts in Figure 5.1a using prior emissions 
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(R=0.42, RMSE=0.25); Posterior AAOD also shows a better agreement with 

AERONET; the correlation coefficient improves from R=0.40 (prior) to R=0.65 

(posterior), and the RMSE decreases from 0.029 (prior) to 0.018 (posterior). In 

addition, the improvements also show for SSA (Prior: R=0.21, RMSE=0.041; 

Posterior: R=0.63, RMSE=0.027) and AExp (Prior: R=0.74, RMSE=0.44; Posterior: 

R=0.80, RMSE=0.23). However, the posterior AAOD over North America in Figure 

5.6b is slightly higher than AERONET results, which lead to a smaller SSA than 

AERONET in Figure 5.6c. The overestimation of posterior AAOD over North 

America is likely associated with the high PARASOL/GRASP retrieval uncertainties 

there resulting from relative low absolute values. This overestimation needs to be 

investigated in the future by using slow version of PARASOL/GRASP aerosol 

products. Overall, the posterior GEOS-Chem aerosol simulation using satellite-based 

emission database shows a better agreement with ground-based AERONET 

measurements for annual mean AOD, AAOD, SSA and AExp. 

 
Figure 5.6: Comparison of annual mean AOD, AAOD, SSA and AExp from the posterior 

GEOS-Chem model with AERONET between 2006 and 2011 (similar to Figure 5.1, but for 

posterior GEOS-Chem simulation using satellite-based aerosol emission database); 

 

Figure 5.7 shows the improvement of the posterior GEOS-Chem model 

simulation using satellite-based aerosol emission database is further reflected in 

comparison of posterior daily AOD and AAOD with ground-based collocated 

AERONET measurements and PARASOL/GRASP retrievals. Similar to Figure 5.3, 

aerosol in each corresponding grid box is classified into five component groups. In 

comparison with the prior simulation (Figure 5.3), the improvements of agreement 



	 112	

with PARASOL/GRAP AOD and AAOD are not surprising, because the inverse 

model iteratively seeks the correction of aerosol emissions that minimizes the 

differences between the PARASOL/GRASP spectral AOD and AAOD with that from 

model simulation. Furthermore, the improved agreements found with AERONET 

aerosol data (AOD and AAOD) that are completely independent and more temporal 

frequent than PARASOL observations.  

 

 
Figure 5.7: Comparison of posterior GEOS-Chem daily AOD and AAOD with collocated 

AERONET and PARASOL/GRASP at 550nm (similar to Figure 5.2, but for posterior GEOS-

Chem simulation using satellite-based aerosol emission database). 
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5.4.2 Modeling applications 
All the evaluations considered above are a based on simulations in the GEOS-

Chem model. In order to evaluate how such results may be impacted by model biases 

owing to factors other than BC, OC and DD emissions, here we implement our 

satellite –based aerosol emission database into the GEOS-5/GOCART model (Chin et 

al., 2002, 2009, 2014; Colarco et al., 2010). The prior and posterior GEOS-

5/GOCART model AOD and AAOD are compared with independent space-borne 

MODIS, MISR and OMI operational aerosol products (https://disc.gsfc.nasa.gov/). 

Here we take MODIS collection 6 combined dark target and deep blue Level 3 AOD 

products at the spatial resolution of 1° x 1° (Hsu et al., 2004; Levy et al., 2013),  

MISR Level 3 AOD products at the spatial resolution 0.5° x 0.5° (Diner et al., 2005; 

Kahn et al., 2005) and the latest OMI Level 3 (OMAERUV version 1.7.4) (Torres et 

al., 2007, 2013) AAOD products at the spatial resolution 0.5° x 0.5°. These satellite 

aerosol retrievals are aggregated to the same model resolution of 2.0° x 2.5°, and any 

grid box with less than 50% coverage for averaging is omitted. GEOS-5/GOCART 

uses similar meteorological fields as GEOS-Chem, with the prior anthropogenic 

emissions from the Hemispheric Transport of Atmospheric Pollution (HTAP) Phase 2, 

biomass burning emissions from the Fire Energetics and Emission Research (FEER) 

database (Ichoku and Ellison, 2014), dust emission calculated as a function of 10-m 

winds and surface characteristics (Ginoux et al., 2001), and volcanic emissions from 

OMI-based estimates (Carn et al., 2015). The global satellite-based DD, BC, and OC 

emissions are used in the “posterior” simulations while other sources remain 

unchanged. On an annual average, the DD, BC, and OC posterior/prior emission 

ratios over globe are 0.40, 3.0, and 2.4, respectively. 

Figure 5.8 shows the comparison between the annual mean (2006-2011) AOD 

from prior and posterior GEOS-5/GOCART simulations with MODIS and MISR 

AOD products. Figures 5.8a and 5.8b present the spatial distribution of AOD 

difference between prior GEO-5/GOCART simulation and MODIS, MISR AOD, 

respectively. One of the major discrepancies between the prior model AOD and 

satellite observations is that the prior model AOD over desert dust regions (e.g. 

Sahara, Arabian Peninsula, Taklimakan etc.) is higher than that of satellite AOD 

products, which is likely associated with the overestimation of DD emissions. The 

posterior GEOS-5/GOCART simulation of AOD reduce this overestimation by 
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reducing global DD emission ~60%. However, this reduction of DD emission leads to 

slight underestimation of posterior GEOS-5/GOCART AOD (~0.1 at 550nm) over 

desert dust regions in comparison with MODIS and MISR, which is likely associated 

with the disagreement in modeling of DD AOD that needs to be investigated and 

addressed in future studies.  

 

Figure 5.8: Comparison of prior and posterior GEOS-5/GOCART annual mean (2006-2011) 

AOD at 550nm with AOD products from MODIS and MISR; (a) Prior GOCART minus 

MODIS AOD; (b) Prior GOCART minus MISR AOD; (c) Posterior GOCART minus MODIS 

AOD; (d) Posterior GOCART minus MISR AOD; 

 

Figure 5.9 shows the comparison of the collocated seasonal mean AOD at 550nm 

between prior and posterior GEOS-5/GOCART (red scatters) simulations and AOD 

from MODIS and MISR observations. The correlation coefficients between GEOS-

5/GOCART simulation with prior emissions and observation data (shown in upper 

two panels) are 0.65 and 0.71 for MODIS and MISR respectively, the corresponding 

root mean square errors are 0.11 and 0.10, and the corresponding mean absolute 

errors are 0.07 and 0.06. The correlation coefficients are increased to 0.79 and 0.80 

when the satellite-based emission database is used in the posterior GEOS-5/GOCART 

(shown in lower two panels), and meanwhile the root mean square errors are 

decreased to 0.08 and 0.07, and the absolute errors are also decreased to 0.05 and 0.04 

respectively. However, the posterior GEOS-5/GOCART AOD is explicitly lower than 

MODIS and MISR observations, with linear regression slopes equal to 0.55 and 0.66 

against MODIS and MISR respectively, and the corresponding mean biases are -0.03 

and -0.02. The underestimation of posterior AOD is likely associated with the fact 



	 115	

that MODIS and MISR AOD is observed at noon, however the GEOS-5/GOCART 

AOD is average over 24 hours during a day and some disagreements in modeling of 

aerosol particles that needs to be investigated in future studies. 

 
Figure 5.9: Scatter plots of prior/posterior GEOS-5/GOCART simulated AOD at 550nm in 

comparison with AOD from MODIS and MISR. The correlation coefficient (R), root mean 

square errors (RMSE), slope of linear regression (Slope), mean absolute error (MAE) and 

mean bias (MB) are provided in the top left of the figures. 

 

Because there are only ultraviolet and shortwave visible channels and polarimeter 

measurements that are sensitive to aerosol absorption properties, long-term records of 

global coverage AAOD are limited to PARASOL/GRASP and OMI. We use the latest 

OMI aerosol products (OMAERUV version 1.7.4) (Torres et al., 2007, 2013) to 

evaluate the prior and posterior GEOS-5/GOCART model simulation of AAOD at 

550nm. Figure 5.10a-b show the spatial distribution of AAOD differences between 
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prior and posterior GEO-5/GOCART AAOD and OMI AAOD. Figure 5.10c-d show 

the scatterplots of grid box level evaluation of prior/posterior GEOS-5/GOCART 

AAOD against OMI observations. The correlation coefficient between GEOS-

5/GOCART simulation with prior emissions and OMI data is 0.57 (shown in Figure 

5.10c), and the root mean square error is 0.016, and the corresponding mean absolute 

error is 0.11. Yet, the correlation coefficient is increased to 0.64 when the satellite-

based emission database is used in the posterior GEOS-5/GOCART simulation 

(shown in Figure 5.10d), and meanwhile the root mean square error is decreased to 

0.012, and the absolute error is also decreased to 0.008. However, the mean bias is 

increased from 0.001 (prior) to 0.003 (posterior). And the posterior GEOS-

5/GOCART AAOD shows overestimation of both AOD and AAOD over North 

America, reflecting overestimation of posterior carbonaceous aerosol emission in this 

area, which we need to be investigated in the future. 

 
Figure 5.10: Evaluation of prior and posterior GEOS-5/GOCART AAOD at 550nm against 

AAOD products from OMI (OMAERUV version 1.7.4). (a)) Prior GEOS-5/GOCART minus 

OMI AAOD; (b) Posterior GEOS-5/GOCART minus OMI AAOD; Scatter plots of prior (c) 

and posterior (d) GEOS-5/GOCART simulated AAOD at 550nm in comparison with AAOD 

from OMI. The correlation coefficient (R), root mean square errors (RMSE), slope of linear 

regression (Slope), mean absolute error (MAE) and mean bias (MB) are provided in the top 

left of the figures. 
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5.5 Summary and discussion 
The new recent PARASOL long record aerosol products processed with GRASP 

algorithm provide a potential of constraining the desert dust and primary 

carbonaceous aerosol emissions simultaneously. In this study, we first develop a 

global aerosol emission database of desert dust and primary carbonaceous aerosol, 

using PARASOL/GRASP spectral AOD and AAOD based on GEOS-Chem inverse 

modeling framework. The utilization of PARASOL/GRASP spectral AOD and 

AAOD allowed us to tune the model simulation in dimensions of aerosol extinction, 

absorption and spectrum. The preliminary analysis indicates that posterior GEOS-

Chem model simulation using satellite-based aerosol emission database shows a 

better agreement with independent ground-based AERONET measurements for 

aerosol properties including AOD, AAOD, SSA and AExp. 

Results from satellite-based aerosol emission database are also compared with 

previous studies using bottom-up and top-down methods. The satellite-based emission 

database shows lower DD emissions in amount (~-40%), while higher BC and OC 

emissions in amount (~+250%) than prior GEOS-Chem emissions. Huneeus et al. 

(2011) reported the model diversity of simulation of DD concentration and DD AOD, 

and the models overestimate the DD AOD. High biases of DD AOD and AAOD are 

improved or adjusted in this study by reducing total DD emissions ~40% over globe. 

However, the overestimation of the prior model DD AOD could also result from the 

error in particle size distribution, which is shown to biased toward smaller particle 

sizes compared to the observations in the atmosphere (Kok et al., 2017). Meanwhile, 

the satellite-based emission database increases the model annual carbonaceous aerosol 

emission by about 2.5 times. This value is close to the recommendation given in Bond 

et al. (2013) that increasing global BC absorption by a factor of 3 to fit the 

observation of columnar AAOD. It is also important to realize that BC from emission 

sources contains not only element and organic fractions but also brown carbon that 

have s significant absorbing contribution at short wavelengths (Feng et al., 2013; 

Lack et al., 2012). Several efforts have been done to include brown carbon in the 

model simulation (Jo et al., 2016; Wang et al., 2014b), however global brown carbon 

inventory is still not well developed. Satellite-based aerosol emission database should 

be improved in future at these points: (i) considering the BC particles absorption 

enhancement by particle mixing state (Liu et al., 2017); (ii) treating hydrophilic BC as 
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internal with other soluble hygroscopic aerosol species (Wang et al., 2016); (iii) 

including the light absorbing brown carbon in the simulation (Wang et al., 2014b); (iv) 

implementing the more realistic fine mode dust in the forward simulation (Kok et al., 

2017).  

Overall, the version 1.0 satellite-based aerosol emission database has been 

developed and tested in GEOS-5/GOCART model simulation. The posterior GEOS-

5/GOCART aerosol simulation shows improved agreement with independent 

measurements from MODIS, MISR and OMI. Further assessments of this emission 

database are still needed. Also, further model studies by refining the atmospheric 

process, aerosol chemical composition, microphysical properties, aging scheme and 

particle mixing state are crucial to improve the aerosol emission database 

representation.  
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Supplement  
A. Illustrations for implementation of satellite-based DD, BC and OC 

aerosol emission in GEOS-5/GOCART model 
While implementation of satellite-based aerosol emission database in GEOS-

5/GOCART, some adjustments are done for DD emissions. The retrieval is initialized 

by “prior model” emissions with a uniform background over land (except snow/ice 

coverer regions). The retrieval with this initialization could detect new sources and 

perform satisfactorily even when a priori knowledge of aerosol emission is not fully 

consistent with the assumed emissions (see discussion in section 3.3.1). However, this 

strategy may result in DD emission occurrences in grid boxes where the prior model 

DD emissions are zero. Thus, the satellite-based DD emission is adapted to scale of 

prior GEOS-5/GOCART DD emissions on monthly and regional base. The regional 

DD emission ratios Posterior/Prior is shown in Figure S5.1. Meanwhile, satellite-

based daily total gridded BC (including anthropogenic and biomass burning) and OC 

(including anthropogenic, biomass burning and biogenic) emissions are directly used 

as input for posterior GEOS-5/GOCART simulation. Figure S5.2 and S5.3 show the 

comparison of Prior and Posterior GEOS-5/GOCART monthly AOD and AAOD 

(January, April, July and October) in 2008, respectively.  

 
Figure S5.1: The regional DD emission ratios between satellite-based emission database and 

prior GEOS-5/GOCART DD emission model (adapted from Mian Chin) 
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Figure S5.2: Comparison of Prior and Posterior GEOS-5/GOCART simulated monthly AOD 

(January, April, July and October) in 2008 (adapted from Mian Chin) 
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Figure S5.3: Comparison of Prior and Posterior GEOS-5/GOCART monthly AAOD 

(January, April, July and October) in 2008 (adapted from Mian Chin) 
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The prior/posterior GEOS-5/GOCART simulation of aerosol properties (AOD, 

AAOD, SSA, AExp) are further evaluated with ground-based AERONET monthly 

dataset in Figure S5.4. Overall, the most obvious improvements by using satellite-

based emissions are the AExp, reflecting the decrease of coarse mode DD emissions 

and the increase of fine mode BC and OC emissions. In addition, the agreement of 

AAOD between model and AERONET retrieval is also slightly improved. However, 

the posterior AOD over North America is systematically higher than AERONET 

(green circles), which is likely associated with the high PARASOL/GRASP retrieval 

uncertainties there resulting from relative low absolute values. This overestimation 

needs to be investigated in the future by using the latest slow version of 

PARASOL/GRASP aerosol products. 

 
Figure S5.4. Scatter plots of prior/posterior GEOS-5/GOCART monthly mean AOD, AAOD, 

SSA and AExp in comparison with that from AERONET, color-coded with the predefined 

regions referred to Figure S5.1. (Adapted from Mian Chin) 
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Chapter 6  

 

Conclusions and outlook 
 

 

Finally, in conclusion, let me say just 

this. 

 

Peter Sellers 

 

 
 

6.1 Conclusion 

Atmospheric aerosols remain the largest source of uncertainty in global climate 

forcing evaluation. Understanding the role atmospheric aerosols play in the earth-

atmosphere system is limited by uncertainties in the knowledge of their distribution, 

composition and sources. Space-borne satellites offer a direct measure of the amount 

of light scattering or even polarized light through the integrated atmospheric column 

modifying the diffuse and direct solar radiation by the presence of atmospheric 

aerosols. However, the satellite observations alone are not sufficient for fully studying 

emission, transportation, removal and distribution of aerosols. Despite satellite 

observations having ability to provide extensive spatial coverage aerosol products 

with a high accuracy, the drawbacks of them are the lack of information on the 

chemical composition, the relatively large time span (usually more than 24 hours for 

polar orbiting satellites) between two successive overpasses over an area. There are 

no such limitations for chemical transport models (CTMs) that are driven by 

modeling the physical and chemistry processes of atmospheric aerosols. However, 

CTMs simulations are limited by uncertainties in knowledge of aerosol emission 
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source characteristics, knowledge of atmospheric processes and the meteorological 

data used. As a result, even the most recent models are found to capture only the 

principal global features of aerosol. For example, among different models, 

quantitative estimates of average regional aerosol properties often disagree by 

amounts exceeding the uncertainty of remote sensing of aerosol observations (Chin et 

al., 2002, 2014, Kinne et al., 2003, 2006; Textor et al., 2006). Therefore, combination 

of aerosol satellite remote sensing and aerosol model simulation is crucial to 

harmonize and improve aerosol modeling. 

In this study, we have developed the adjoint GEOS-Chem model for retrieving 

DD, BC and OC aerosol emission sources simultaneously from satellite observed 

spectral AOD and AAOD based on the PARASOL/GRASP retrievals. Previous 

studies (Dubovik et al., 2008; Escribano et al., 2016, 2017; Huneeus et al., 2012; 

Meland et al., 2013; Zhang et al., 2015) of constraining aerosol emission in chemical 

transport model are limited by the information content from the space-borne aerosol 

products (AOD or AAOD at one wavelength). PARASOL/GRASP spectral (VIS-

NIR) AOD and AAOD show sensitivity for optimizing DD, BC and OC sources 

simultaneously. For the inverse modeling, we use optimal spectral weighting factors 

for the PARASOL 6 wavelengths are [1,1,1,1,1,1]!for AOD and [5,10,15,20,25,30]! 

for AAOD, and we adopt “prior model” emissions with a uniform background for 

initial guess, and the emission corrections are assumed daily constant for DD and 4 

days constant for BC and OC. These strategies are designed to fit PARASOL/GRASP 

spectral AOD and AAOD, and determine the spatial distribution and temporal 

variation of DD, BC and OC aerosol emission simultaneously. In addition, BC 

refractive index is sensitive to BC emission retrieval, which could produce an 

additional about 1.8 times differences for total BC emission. 

The method was validated in series of numerical tests conducted with synthetic 

PARASOL-like data. The test results show that the approach allows for retrieval of 

the distribution and strength of aerosol emissions. The maximum uncertainty of 

sensitivity test for daily total emission is 25.8% for DD, 5.9% for BC and 26.9% for 

OC over Africa. Then the method was applied to one-year (December 2007 to 

November 2008) of data over the African and Arabian Peninsula region – the largest 

dust source and biomass burning region of the globe. The analysis of resulting 

retrieved emission sources (701 Tg/yr) indicates 1.8 times overestimation of the prior 

model DD emission obtained from online dust entrainment and mobilization module. 
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Some other studies also show similar dust emission flux over Africa (Werner et al., 

2002; Miller et al., 2004; Escribano et al., 2016, 2017). For total BC and OC the 

retrieved emissions show a significant increase of 209.9%~271.8% in comparison to 

prior GEOS-Chem inventory of carbonaceous aerosol emissions. Our results are close 

the recommendation given in Bond et al. (2013) that increasing global BC absorption 

by a factor of 3 to fit the observation of columnar aerosol absorption. The model 

posterior simulation with retrieved emission sources shows good agreement both with 

fitted AOD and AAOD PARASOL/GRASP products. The fidelity of the results was 

evaluated by comparison of posterior simulations with measurements from 

AERONET that are completely independent and more temporally frequent than 

PARASOL observations. To further test the robustness of our posterior emissions 

constrained using PARASOL/GRASP, the posterior emissions are implemented in the 

GEOS-5/GOCART model and the consistency of simulated AOD (prior: R=0.77, 

RMSE=0.14, MAE=0.09; posterior: R=0.81, RMSE=0.10, MAE=0.06) and AAOD 

(prior: R=0.65, RMSE=0.019, MAE=0.014; posterior: R=0.69, RMSE=0.015, 

MAE=0.011) with other independent measurements (MODIS and OMI) demonstrates 

promises in applying this database for modeling studies. 

The method was applied to global observations. Our analysis showed that the 

accuracy of SU aerosol emission could affect on the retrieval of OC emission in the 

industry area (e.g. North America and East China). Therefore, we slightly modified 

the inversion method by using a sequential approach by dividing the retrieval into two 

steps. Specifically, we used the fact that carbonaceous is usually fine mode dominant 

and BC particles are absorbing more ubiquitously from UV to near infrared 

wavelengths. The DD aerosol is usually coarse mode dominant and is also a major 

component contributed to aerosol absorption, while the DD particles absorb most 

strongly in the UV and short wave visible channels. The sensitivity test showed that 

the mean absolute difference for retrieved daily global DD emission is 6.7%, and the 

maximum absolute difference is 48%, and mean absolute difference for BC is 3.5%, 

maximum to 18.3%, and mean absolute difference for BC is 11.0%, maximum to 

60.7%. Then, a satellite-based global DD and primary BC and OC aerosol emission 

database (version 1.0) is developed. Results from satellite-based aerosol emission 

database are compared with previous studies using bottom-up and top-down methods. 

The satellite-based emission database showed lower DD emissions by ~-40%, while 

higher BC and OC emissions by ~+250% than prior GEOS-Chem emissions. The 
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version 1.0 satellite-based aerosol emission database was used in GEOS-5/GOCART 

model simulation. The preliminary analysis showed GEOS-5/GOCART aerosol 

simulation obtained using the posterior emissions has a better agreement with 

independent measurements from MODIS, MISR and OMI, which indicates the 

possibility to use this emission database for improving global aerosol modeling results. 

Further assessments of satellite-based aerosol emission database are still desirable. 

 

6.2 Outlook and future work 
Below, I list some specific directions that could be useful for improving our 

satellite-based aerosol emission database. 

 

ü Improve the CTMs simulation of aerosol absorption 

Brown carbon is one of the factors that cannot be ignored in the model simulation 

of aerosol absorption. Several efforts have been done to include brown carbon in the 

model simulation (Jo et al., 2016; Wang et al., 2014b). However, global brown carbon 

inventory is still not well developed. Zhang et al. (2015) simply performed an 

experiment by removing 30% of total absorption from observations since model does 

not include brown carbon. The optimized BC emissions are lower up to 30% 

compared to the standard results. Thus, to better characterize the BC aerosol emission, 

we should better characterize the brown carbon in the aerosol simulation. 

 

ü More representative dust particle size distribution 

Recent study by Kok et al. (2017) indicated that the dust found in the atmosphere 

is substantially coarser than represented in current global climate models. They report 

that the fine mode dust aerosol (radius: 0.1-1.0µm) accounts for 3.5%-5.7% of the 

total emitted mass (radius: 0.1-20.0µm). In GEOS-Chem dust simulation (Fairlie et al., 

2007), there are four dust size bins (0.1-1.0µm; 1.0-1.8µm; 1.8-3.0µm; 3.0-6.0µm). 

The contribution of fine dust (0.1-1.0µm) to total dust emission (0.1-6.0µm) is fixed 

at 12.23% (Fairlie et al., 2007). We perform an experiment by reducing the GEOS-

Chem fine mode dust fraction to 6.0%. The GEOS-Chem global mean DD AOD 

decreases 22.2% compared to the standard results. Hence, the overestimation of the 

prior model dust emission could also partially result from the error in particle size 
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distribution. In future study, the more representative dust particle size distribution 

should be adopted in the dust simulation. 

 

Last but not the least, the continuous efforts on improving CTMs simulation, 

inverse modeling framework, as well as, using more comprehensive observational 

data for data assimilation are crucial to characterize the atmospheric aerosols and their 

roles on climate change and regional air pollution. 
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Abbreviations and Acronyms 
AAOD Aerosol Absorption Optical Depth 

AEROCOM  Aerosol Comparisons between Observations and Models 

AERONET AErosol RObotic NETwork 

AExp Ångström exponent 

AOD Aerosol Optical Depth 

ASTER Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 

ATB Algorithm Theoretical Basis 

AVHRR  Advanced Very High Resolution Radiometer 

BC   Black Carbon 

BrC Brown Carbon 

CTM   Chemical Transport Model 

DB Deep Blue 

DD   Desert Dust 

DEAD   Dust Entrainment And Deposition 

DJF December-January-February 

DT Dark Target 

FEER Fire Energetics and Emission Research 

GCM   Global Circulation Model 

GEOS Goddard Earth Observing System 

GFED Global Fire Emissions Database 

GOCART Goddard Global Ozone Chemistry Aerosol Radiation and 

Transport model 

GRASP General Retrieval of Atmosphere and Surface Properties 

HTAP Hemispheric Transport of Atmospheric Pollution 

IPCC   Intergovernmental Panel on Climate Change 

JJA June-July-August 

MAE Mean Absolute Error 

MAIAC MultiAngle Implementation of Atmospheric Correction 

MAM Match-April-May 

MISR Multi-angle Imaging SpectroRadiometer 

MODIS  Moderate Resolution Imaging Spectroradiometer 
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MOPITT Measurements Of Pollution In The Troposphere sensor 

NASA National Aeronautics and Space Administration 

NMB Normalized Mean Bias 

OC   Organic Carbon 

OM   Organic Matter 

OMI Ozone Monitoring Instrument 

OPAC Optical Properties of Aerosols and Clouds 

PARASOL  Polarization & Anisotropy of Reflectances for 
Atmospheric Sciences coupled with Observations from a Lidar 

PBL Planetary Boundary Layer 

PM   Particulate Matter 

PSD Particle Size Distribution 

POLDER POLarization and Directionality of the Earth’s Reflectances 

RF   Radiative Forcing 

RH Relative Humidity 

RMSE Root Mean Square Error 

SON September-October-November 

SS   Sea Salt 

SSA Single Scattering Albedo 

SU    Sulfate 

TES Tropospheric Emission Spectrometer 

TOA Top of Atmosphere 

UV Ultraviolet 

WHO   World Health Organization 
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