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Abstract 

Convection is a heat transfer process in which heat in the system is transmitted in a fluid 

like manner. It is widely accepted that the dissipation of heat from the core to the surface 

of the Earth through a thermally insulating mantle is only possible by a convective process. 

Mantle convection is responsible for a large number of geological activities that occur on 

the surface of the Earth such as plate tectonic, volcanism, etc. It involves plastic 

deformation of mantle minerals. Among the several layers of the Earth’s interior, the outer 

most layer beneath the thin crust is the upper mantle. One of the most common minerals 

found in the upper mantle is the olivine (Mg,Fe)2SiO4. Knowledge of the deformation 

mechanisms of olivine is important for the understanding of flow and seismic anisotropy in 

the Earth’s upper mantle. Plastic deformation of olivine has been the subject of numerous 

experimental studies highlighting the importance of dislocations of Burgers vector [100] 

and [001]. In this work, we report a numerical modelling at the atomic scale of dislocation 

core structures and slip system properties in Mg2SiO4 forsterite, at pressures relevant to 

upper mantle conditions. Computations are performed using the so-called THB1 empirical 

potential set for Mg2SiO4 and molecular statics. The energy landscape associated with the 

dislocation mobility are computed with the help of nudge elastic band calculations. 

Therefore, with this work, we were able to accurately predict the different possible 

dislocation core structures and some of their intrinsic properties. In particular, we show 

that at ambient pressure [100](010) and [001]{110} correspond to the primary slip systems 

of forsterite. Moreover, we propose an explanation for the so-called “pencil glide” 

mechanism based on the occurrence of several dislocation core configurations for the 

screw dislocation of [100] Burgers vector. Finally, the modelling of the intrinsic 

dislocation properties in a pressure range relevant of the Earth’s upper mantle allows to 

address the effect of high pressure on the primary slip systems of olivine.    

 

 

 

 



Résumé 

Il est aujourd’hui largement accepté que les mécanismes de convection mantellique dans le 

manteau supérieur sont reliés aux propriétés plastiques de l’olivine constituant principale 

du manteau supérieur. Ce minéral, un silicate de composition (Mg,Fe)2SiO4, se déforme 

essentiellement par glissement de dislocations de vecteurs de Burgers [100] et [001]. Dans 

le cadre de ce travail de thèse, nous avons donc choisi de modéliser les propriétés de ces 

dislocations ainsi que les systèmes de glissement potentiels de l’olivine à partir de calculs à 

l’échelle atomique. L’ensemble des calculs ont été effectués à l’aide du potentiel THB1. 

Une fois les structures de cœurs des défauts déterminées, les paysages énergétiques 

associés au glissement des dislocations ont été analysés par la méthode « Nudge Elastic 

Band ». A basse pression, la modélisation atomique montre que les systèmes [100](010) et 

[001]{110} correspondent aux systèmes de glissement primaires de l’olivine. L’étude des 

paysages énergétiques des dislocations nous permet de plus de rationaliser les observations 

expérimentales de « pencil glide » reportées dans l’olivine depuis les années 70 et de 

proposer un mécanisme original de blocage-déblocage pour le glissement des dislocations 

de vecteurs de Burgers [001]. Enfin, l’application de ce type de modélisation aux 

conditions de pression du manteau supérieur (0-10 GPa) confirme l’existence d’un effet de 

durcissement de la pression sur le glissement des dislocations de vecteur de Burgers [100]. 
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1. Introduction 

After 4.6 billion years since the formation of the Earth, its interior is still hot. The heat flux 

coming towards the Earth surface is measured to be about 46±3 TW for the whole planet 

(Jaupart and Mareschal 2015). How is this heat transferred to the surface? Since rocks are 

opaque and insulating, mantle convection is widely accepted to be the major contributor 

for the transfer of heat to the surface, and the Earth’s mantle can be considered to behave 

over geological timescales as a fluid endowed with a very high viscosity (1021-1022 Pa s) 

(Yokokura 1981). The convection movements occur by the plastic deformation of rocks, 

which is controlled by the plastic properties and chemical composition of their constituent 

minerals. Plastic deformation occurs through the deformation of the constituent crystals; 

this involves migration of defects such as point defects, dislocations, grain boundaries, etc. 

The knowledge on these defects helps us to link our understanding on the microscopic 

scale with the behaviours observed at macroscopic scale.    

1.1. Earth’s interior 

The mineral olivine forms a solid solution between forsterite (Mg2SiO4) and fayalite 

(Fe2SiO4). Being one of the most abundant mineral in the Earth’s upper mantle, olivine is a 

key mineral which controls the rheology of the upper mantle. The Earth’s interior is 

divided into several layers; the upper mantle corresponds to the first subdivision of it, as 

deduced from the analysis of the time travel of seismic waves. One of the standards among 

seismological models is the preliminary reference Earth model (PREM) proposed by 

Dziewonski and Anderson (1981) (Figure 1.1). This is one-dimensional model in which all 

the physical parameters are assumed to change with depth only. 

According to seismic information, several discontinuities are observed in the Earth’s 

interior. The crust is the upper most divided into oceanic and continental crust (~7 – 70 

km), below is the mantle divided into two layers, the upper mantle (~410 km) and the 

lower mantle (~670 – 2890 km), with a transition zone (~410 – 670 km) sandwiched 

between the two mantle layers and the Earth core (~2890 – 6370 km) subdivided into a 

liquid outer core and a solid inner core. 
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Figure 1.1. Preliminary reference Earth model (PREM) from Dziewonski and Anderson 

(1981). Density and seismic velocities plotted as a function of depth.  

 

The data available on seismic wave velocities are mostly influenced by the density and the 

elastic properties of the rock aggregates. For instance, the outer core is known to be made 

mainly of liquid, as the shear waves vanish and the compression waves are solely recorded. 

Therefore, the discontinuities in PREM model can be interpreted as transformation of rock 

aggregates or material. Such modifications being driven by thermodynamics stability of 

minerals as pressure and temperature increase with depth. 

Ringwood (1962; 1975) proposed a model on the chemical composition of the upper 

mantle known as the pyrolytic model.  Based on this model (Figure 1.2), the upper mantle 

is composed of olivine (Mg,Fe)2SiO4, pyroxene (Mg,Fe,Ca)2Si2O6 and garnets 

(Mg,Fe,Ca)3Al2Si3O12. At ~410 km, the pressure and temperature in the mantle reaches 13 

GPa and 1400 °C respectively, under these conditions olivine transforms into a high-

pressure polymorph named wadsleyite. Deeper into the transition zone (~520 km) 

wadsleyite transforms into ringwoodite, a denser high-pressure polymorph of olivine. At 

depths beyond ~670 km, (where the P, T conditions are 23 GPa, 1600 °C), ringwoodite and 

garnets decompose into a two-phases aggregate composed of a silicate with a perovskite 

structure now known as bridgmanite and ferropericlase (Fp) (Mg,Fe)O. 
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Figure 1.2. Simplified mineralogy of the pyrolytic mantle layers of the Earth as a function 

of depth, pressure and volume fraction (Brown and Shankland (1981)). 

 

1.2. Olivine crystal structure 

Olivine is an olive green mineral which exists as a solid solution of (Mg,Fe)2SiO4. In this 

thesis, we will focus on the magnesium-rich end-member forsterite (Mg2SiO4). It is close 

to the average composition of olivine in the upper mantle which contains a little bit less 

than 10% of iron. The melting point of forsterite and fayalite are 2163 K and 1473 K 

respectively (Bowen and Andersen 1914; Ohtani and Kumazawa 1981; Klein and Hurlbut 

1999). 

Forsterite corresponds to an orthorhombic crystal structure, which can be described within 

the Pbnm space group. The crystal structure which contains isolated SiO4 tetrahedra can be 

viewed as slightly distorted hexagonal close packed (hcp) lattice of oxygen anions (Poirier 

1975), with one eighth of the octahedral sites occupied by magnesium cations. In the Pbnm 

space group, the lattice constants (at ambient pressure and temperature) are a = 4.756 Å, b 

= 10.207 Å, c = 5.98 Å (Smyth and Hazen 1973).  
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Figure 1.3. The structure of orthorhombic forsterite, the Mg rich end-member of olivine 

described here with the Pbnm space group. The crystal structure projected along (a) [100] 

(b) [010] (c) [001] directions with unit cell marked with black line. Magnesium atoms are 

in yellow, oxygen is in red and silicon is in blue, located inside the SiO4 tetrahedral units. 

The isolated SiO4 tetrahedra are joined by Mg cations located in the M1 sites at the 

inversion centres. The Mg cations in the M2 site lie on a mirror plane. 

 

Figure 1.3 (a) shows the projection of forsterite unit cell SiO4 tetrahedra viewed along 

[100] direction. The isolated tetraheadra point alternatively up and down along rows 

parallel to [001]. Each level of isolated tetrahedra are connected via octahedra containing 
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metallic cations (Mg2+). The metal cations M1 lie in the inversion centres between two 

SiO4 tetrahedral units and M2 cations lie in the mirror plane (Deer et al. 1982). 

1.3. Elastic properties of olivine 

Based on the orthorhombic crystal symmetry, the elastic stiffness matrix, 𝐶𝑖𝑗, of olivine 

consists of nine independent elastic constants. 
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The nine elastic constant were initially determined by Isaak et al. (1989) at high 

temperature conditions. The effect of pressure on the elastic constants has been measured 

by Shimizu et al. (1982) and Zha et al. (1988) in a pressure range of 4 GPa and 16 GPa 

respectively (Table 1.1). The bulk modulus increases from 120 - 200 GPa and the shear 

modulus increases from 80 - 90 GPa at a pressure range of 0 – 16 GPa (Li et al. 1996; Zha 

et al. 1996; Yoneda and Morioka 1992) (Figure 1.4). 

 

Table 1.1. Single crystal elastic moduli of San Carlos Olivine (in GPa) as a function of 

pressure. The experimental results are gathered from Zha et al. (1996). 

Pressure 

(GPa) 
𝐶11 𝐶22 𝐶33 𝐶44 𝐶55 𝐶66 𝐶12 𝐶13 𝐶23 

2.5 332.5 209.4 251.4 68.7 80.1 82.7 80.7 80.2 84.4 

5.0 352.8 224.2 267.1 70.8 85.7 90.2 91.2 92.7 95.2 

8.1 378.9 244.0 283.5 77.6 91.9 96.3 100.8 102.3 104.7 

14.1 395.3 270.4 295.3 81.2 96.6 103.6 122.5 118.0 123.0 

18.8 424.1 270.4 326.8 86.3 99.8 112.8 129.2 133.2 138.2 
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Figure 1.4. Evolution of Bulk (K) and shear modulus (µ) as a function of pressure 

experimentally determined for single crystal San Carlos olivine (Zha et al. 1996). The data 

yields a pressure derivative of 𝐾0
′ = 4 and µ0

′ = 1.6 the values compares well with values of 

𝐾0
′ = 4.4 and µ0

′ = 1.3 (Li et al. 1996).  

 

1.4. Plastic properties of olivine 

For modelling the convection of the Earth’s mantle, one needs information on the plastic 

properties of the constitutive materials, starting with olivine. As the elastic energy of a 

dislocation is proportional to the square of Burgers vector (𝐸𝑒𝑙  ∝  𝑏2), this relation makes 

[010] dislocation energetically least favourable. Based on the hexagonal close packed 

arrangement of oxygen sub-lattice, Poirier (1975) further proposed the following slip 

systems: [001] dislocation gliding in (100), (010), {110} and [100] dislocation gliding in 

(010), (001), {011} and {031} (Figure 1.5). 
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Figure 1.5. Forsterite unit cell with possible slip planes of (a) [100] and (b) [001] 

dislocations. 

 

In natural samples, from the observations made with optical microscopy and transmission 

electron microscopy (TEM) techniques, one confirms that glide along [010] is 

unfavourable. Only dislocations with [100] and [001] Burgers vectors are commonly 

observed, whereas precise determination of slip systems is difficult and almost all the 

potential glides plane have been reported (Gueguen 1979; Kohlstedt et al. 1976).    

From the deformation experiment performed at ambient pressure on polycrystalline olivine 

Raleigh (1968) shows that the plastic deformation results from activation of [001] 

dislocations at low temperature and high stress condition, whereas at temperature above 

1000 °C Carter and Ave’Lallemant (1970) observed activation of [100] dislocations. At 

temperature greater than 1300 °C, only [100](010) seems to be activated. To proceed 

further, deformation experiments have been performed on single crystals. Based on the 
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orientation of the single crystals, the activation of preferential slip planes can be analysed. 

From the experimental results (Phakey et al. 1972, Durham et al. 1977, Evans and Goetze 

1979, Darot and Gueguen 1981, Gaboriaud et al. 1981, Gueguen and Darot 1982, Wang et 

al. 1988, Barber et al. 2010) [100] glide at high temperature and [001] glide at low 

temperature in various slip planes are observed. A composite non-crystallographic glide of 

[100] dislocation in {0kl} has long been reported (Raleigh 1968), such a mechanism is 

called the pencil glide.  

 

Figure 1.6. Summary of critical resolved shear stress values for [100] dislocation glide, 

obtained from various single crystal deformation experiments. (adapted from the PhD 

thesis of Durinck (2005c)).  

 

More importantly, deformation experiments performed on single crystals give access to 

quantitative information on the mechanical behaviour of slip systems. In particular, critical 

resolved shear stress have been reported for at least four slip systems: [100](010), 

[001](010), [001](100),[001]{110}. From Figure 1.7 it is visible that data are available for 

[001] glide at low temperature, unlike the case of [100] where the glide is observed only at 

high temperature experimental conditions Figure 1.6. 
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Figure 1.7. Summary of critical resolved shear stress values for [001] dislocation glide, 

obtained from various single crystal deformation experiments. (adapted from the PhD 

thesis of Durinck (2005c)).  

 

In the context of upper mantle, temperature is not the only factor that influences the plastic 

properties. At depth close to the transition zone, the pressure in the mantle rises to 13 GPa. 

Also incorporation of water in the mantle is reported to influence plasticity. Thus, over the 

past two decades, deformation experiments have been performed to study the influence on 

plasticity due to the effect of pressure and the effect of incorporation of water. The 

experiments were carried out using both polycrystals and single crystals. For experiments 

performed with polycrystals, the analysis in terms of slip system is often performed 

through the analysis of crystal preferred orientation (CPO). According to change in CPO, 

Jung and Karato (2001) show that water has an influence on the preferential slip systems in 

olivine by promoting dislocation with [001] Burgers vectors. On the other hand, Couvy et 

al. (2004) show that pressure also strongly enhances activation of [100] glide under Earth 

mantle conditions (11 GPa, 1400 °C). Using single crystal deformation experiments, 

Raterron et al. (2005, 2007, 2009, 2011) reaches, with a series of single crystals 

deformation experiments at mantle pressure conditions a similar kind of conclusion, with 

an inversion of preferential slip system from [001] to [100] at high pressure.  

Several explanations have been proposed to support one or the other conclusion, however a 

full theoretical understanding is still needed. For instance, either pressure or water has an 
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effect on dislocation activity, such effect may have its origin from the core structure of the 

defect. It is well known that fundamental properties of dislocations, such as lattice friction, 

glide velocity, and also in a lesser extent climb velocity, are directly related to the atomic 

arrangements within the vicinity of the dislocation core, or to impurities.  

Up to now, only a few works have been dedicated to study the atomic arrangement in the 

dislocation cores in olivine. The primary studies performed by Durinck and co-workers 

(2005a; 2005b; 2007) using Density Function Theory (DFT) calculations to compute 

generalised stacking fault (GSF) energies and to deduce the dislocation core configurations 

according to the Peierls Nabarro (PN) model. At the same period, Walker and co-workers 

(Walker et al. 2005a; Walker et al. 2005b; Carrez et al. 2008), used empirical potential 

models to compute dislocation core structures via atomistic simulations. However, due to 

the limitations in computational efficiency of the code existing at that time, mechanical 

properties have not been infered from the atomic core structure. The PN model is rather 

promising as it can provide some mechanical information through the computation of the 

Peierls stress, but has to be handled with great care while dealing with complex crystal 

structure. In general, the PN model gives satisfactory results in case of planar core 

configurations, it can also lead to several artefacts when the dislocations are non-planar or 

dissociated and computationally demanding (Schoeck 2005; 2006).  

1.5. Plan of thesis 

In this work, we intent to revisit the dislocation core structures of olivine (Mg2SiO4). We 

investigate the two Burgers vector [100] and [001], over a pressure range 0-10 GPa 

corresponding to upper mantle conditions. This work only focuses on screw dislocations, 

since uncertainties remain on the slip systems. It is common to analysis the screw core 

configurations to infer the potential slip systems for the plane where the cores tend to 

spread. To avoid artefacts encountered in the past, approaches such as PN model or 

generalisation of PN model will not be used, and we will perform full atomistic 

calculations. But still Peierls stresses determination will be carried out directly from the 

atomic configuration.  Also as an advantage, full atomistic calculations give access to the 

energetic landscape around dislocation core. As described in the following chapter, the 

energy landscape along dislocation pathway will be computed using nudged elastic band 

(NEB) approach, a method used to investigate transition state paths. The results presented 
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in chapters 4 and 5 correspond to [100] and [001] dislocation cores respectively. Finally, a 

discussion chapter will summarize our results and put them in perspective with the current 

state of the art of olivine plastic properties. 

As described in the following pages, we have chosen to work with the open-source 

classical molecular mechanics code called the LAMMPS and the THB1 force field to 

describe forsterite. At the beginning of this work, THB1 potential was not available into 

LAMMPS, chapter 3 is thus a technical chapter dedicated to our implementation of THB1 

potential model to LAMMPS library and some important checkpoints computations 

performed before addressing the heart of this thesis.  
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2. Model and methodology 

Interatomic pair potentials play a significant role in performing molecular and materials 

simulation. In the process of modelling ionic or semi-ionic material like forsterite, various 

key parameters have to be considered. This chapter introduces basics of pairwise potential 

model; followed by the necessity of an interatomic potential library with core-shell 

approximation. The potential energy and its corresponding force fields are the basic input 

for the energy minimization and transition path algorithms. This chapter further introduces 

basic methodology of atomistic simulations that are performed in this work to the study the 

dislocation core structure and mobility of dislocation. 

2.1 Interatomic interactions 

Quantum mechanical methods can be used to predict mechanical behaviour and properties 

of materials accurately but are computationally expensive to model systems of large 

dimensions (i.e., having few thousand atoms). The task of modelling dislocations and 

defects in olivine involves systems too large to be solved quantum mechanically. The 

density function theory (DFT) provides amendable numerical solutions to Schrodinger’s 

equation. It is accepted as a strong method to solve bonding problems, whereas the 

expense of computational cost limits the simulation to few hundreds of atoms. 

Alternatively, tight-binding (TB) methods reduces the computational cost by 

parameterising many DFT integrals, whereas its description of electronic structure 

consisting of neutral atoms makes it difficult to model ionic systems. Force fields methods 

ignore the electron field and calculates energy (U) as an analytical/numerical function 

based on nuclear positions (equation 2.1). 

 𝑈 = 𝑈(𝑟1, 𝑟2, 𝑟3 … 𝑟𝑁) (2.1) 

 

𝑈 =  ∑ 𝑈𝑖

𝑁
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+
1
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𝑗

𝑁
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 (2.2) 

 

Here, the total energy of the system can be decomposed into interactions between different 

numbers of atoms or ions as in equation 2.2.  𝑈𝑖 represents the self-energy of the atoms. 

𝑈𝑖𝑗 is the pairwise potential energy term that can be written as a sum of interaction of two 
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atoms i and j separated by a distance 𝑟𝑖𝑗. When a triad of atoms is considered, their energy 

of interaction is given by 𝑈𝑖𝑗𝑘. For example, the Stillinger-Weber potential (Stillinger and 

Weber 1985) used for a system of silicon atoms, includes two-body and three-body 

interactions. The three-body term penalizes the deviation of bond angle from tetrahedral 

angle (109.47 degree). The above decomposition is more accurate when order of 

interaction increases, but it is important to truncate the order at some stage. 

This superposition of pairwise interactions works well to model ionic materials and 

semiconductor materials, as the bonds are well localised. Unlike for the case of metals the 

bonds are shared by many atoms. The embedded atom method (EAM) (Daw and Baskes 

1984) is a well-suited model for atomistic modelling of metals. The embedded function of 

the EAM function is non-linear, and the many-body term included in this approach cannot 

be reproduced by superposition of any order of pairwise interactions.  

In the following, we describe more precisely the modelling of ionic systems. Initially for 

modelling ionic or semi-ionic materials, only two body terms are considered. For a simple 

case, one can imagine an ionic solid being made of cations and anions, with frozen electron 

densities. In such cases the opposite charged ions attract each other due to Coulombic 

attraction and the like charged ions experience a similar repulsive force. The closest 

neighbour ions with opposite charges result in a strong net attractive force, which will tend 

to contract the system to arrive in a lower energy configuration. In order to bring the 

system in equilibrium a counter balancing repulsive force is required. This force can be 

obtained from the overlap of electron density of two ions, irrespective of the type of 

charge, which can be explained by Pauli repulsion between electrons. Thus the total energy 

of the system can be expressed as follows:    

 𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝑈𝑆ℎ𝑜𝑟𝑡 (2.3) 

Here in equation 2.3, the Coulomb energy, 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏, is obtained by the summation of 

interactions of all atomic charges in the system, and this is an important component of 

cohesive energy. The short range energy term, 𝑈𝑆ℎ𝑜𝑟𝑡, represents the rest of interactions in 

the system including Pauli repulsion, covalent and dispersive attractive terms.    
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2.1.1 Ionic polarisation 

From the above explanation, the ions have a frozen spherical electron density and are 

represented with a point charge. This gives a simple representation, whereas for better 

accuracy it is necessary to include the effect of polarisation. For instance, in the case of an 

oxide with anion O2-, first electron affinity of oxygen is favourable, while the second 

electron affinity is endothermic due to the Coulombic repulsion term which is strongly 

perturbed by the local environment (Gale 2005). Hence it is necessary to include a 

polarisation term to produce reliable results. 

An additional point dipole term can be added to the point charge representation of ion. 

With inclusion of dipole polarisability 𝛼𝑃𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛, in presence of an electric field E the 

dipole moment µ is given in equation 2.4 which results in polarisation energy UPC 

(equation 2.5), results in a total energy combination given in equation 2.6. 

    µ = 𝛼𝑃𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝐸 (2.4) 

    
𝑈𝑃𝐶 = −

1

2
𝛼𝑃𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝐸2 (2.5) 

 𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝑈𝑆ℎ𝑜𝑟𝑡 + 𝑈𝑃𝐶 (2.6) 

Hence it is straightforward to include this polarisation self-energy contribution of each ion 

to the total energy. Whereas assuming a constant value of 𝛼𝑃𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 prevents the system 

to polarise further beyond this value. It leads to imbalance in the ratio of increase in 

attractive term compared to the repulsive term, results in collision of ions during defect 

calculations. When the distance between two ions is zero the short range term (1/r) tends to 

infinity numerically. To avoid this adverse effect, the value of polarisation has to be 

iteratively solved.     

2.1.2 The core-shell model 

The above discussed collision of ions may lead to polarisation catastrophe (Catlow et al. 

1982; Gale 2005). This problem can be overcome by using the core-shell model, a 

mechanical description of ions proposed by Dick and Overhauser (1958).  This model 

describes each ion as two particles, a massive “core” which represents the nucleus and core 

electrons, and a massless “shell” which represents the polarisable valance shell electrons. 

The core and shell are connected using a spring with a spring constant K. The core is 
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positively charged and the shell is negatively charged. The sum of the charges gives the 

charge of the ion. Both core and shell holding a positive charge is common in 

representation of a cation. A schematic description of the core-shell model is given in 

figure 2.1. The dipole moment can be modelled by the displacement of shell with respect 

to the core. In such a description the 𝛼𝑃𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 can be related to the core-shell model 

parameters K and to the charge of the shell 𝑞𝑠ℎ𝑒𝑙𝑙 using a simple relation as follows:  

 
𝛼𝑃𝑜𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =

𝑞𝑠ℎ𝑒𝑙𝑙
2

𝐾
 (2.7) 

From this description the potential library will consists of a set of atoms with charges, 

analytical function to model Pauli’s repulsion and covalent terms and a representation of 

polarisation with core-shell model (Ucore-shell). Hence the split of energy is given as follows: 

 𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝑈𝑆ℎ𝑜𝑟𝑡 + 𝑈𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙 (2.8) 

In this work, we use the core-shell model potential library THB1 proposed by Price and 

Parker (1987) to model forsterite and its high-pressure polymorphs. This library 

supplements an additional three-body term, which helps to include the covalence of the 

bonding within the SiO4 tetrahedra.  

 

 

Figure 2.1. Schematic representation of an ion in the core-shell model. Each ion is made 

of two parts. The core represents the nucleus and the shell represents the electron cloud. 

These two parts are connected with each other using a harmonic spring.    
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The above mentioned core-shell approximation gives an effective solution to model ionic 

materials. However, the accuracy of core-shell methods suffers a drawback in computation 

of elastic constants and phonon dispersion curves in rock salts (like MgO, CaO, NaCl). In 

principle for centrosymmetric cubic crystals, the pairwise potential models obey Cauchy’s 

relation C44 = C12. But experimental results in rock salts suggests that C44/C12 > 1 (Matsui 

1998). In order to solve this problem, the “breathing shell” model (Schroder 1966; 

Sangster et al. 1970; Sangster 1973) is found to be more accurate than the normal shell 

model in modelling of rock salts (Sangster et al. 1970, Matsui 1998). In this work for the 

modelling of forsterite silicate we keep a normal core-shell model library with THB1 

parameterisation.  

   

 

Figure 2.2. Schematic representation of an ion using breathing shell model. The shell has 

a variable radius, which is allowed to deform isotropically due to the effect of 

neighbouring ions. The core and the shell are connected using a harmonic spring.      

 

2.1.3 THB1 Potential library 

The THB1 potential is fully ionic empirical potential for accurate modelling the properties 

of forsterite (Mg2SiO4) and its high-pressure polymorphs. The effort of modelling 

forsterite using atomic simulation has a long and continuous history (Price and Parker 

1984; Price et al. 1985 and Catlow et al. 1986). These models concentrated on the pairwise 

interactions but ignored the effect of many-body interactions. Whereas, the success of 

three-body interaction in modelling complex silicates (Matsui and Bushing 1984; Sanders 
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et al. 1984) using bond-bending term, lead to the development of potential model of THB1 

(Price and Parker 1987). The core-shell approximation enables every ion to polarize in 

response to an electric field due to the surrounding ions. Energy decomposition of THB1 

model can be described as a summation of four terms as follows, 

 𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝑈𝑆ℎ𝑜𝑟𝑡 + 𝑈𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙 + 𝑈𝑇𝐻𝐵 (2.9) 

𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 represents the long range electrostatic energy term, which arrives as a result of 

summation of charges of atomic species present in the system. It is given by energy of 

electron e, point charges 𝑞𝑖 and 𝑞𝑗 associated with ions i and j respectively and the distance 

of separation between them.  

 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = ∑ 𝑒2𝑞𝑖𝑞𝑗𝑟𝑖𝑗
−1

𝑖𝑗

 (2.10) 

The ionic materials pose additional challenge in computing the electrostatic term. 

Coulombic summation is a computationally expensive task due to the long-range character 

of the interaction. Traditionally the Coulomb summation results in converging of equations 

under specific conditions, particularly the Madelung problem (Madelung 1919; Gdoutos et 

al. 2010). The Madelung problem was solved with the Ewald summation (Ewald 1921), 

which through certain mathematical manipulations calculates the conditionally convergent 

𝑂(𝑟−1) Coulomb summation. The Ewald method assumes periodicity of the material. The 

result of this summation method is less reliable with non-periodic or quasi-periodic 

systems. Further, this method is computational expensive for large systems. To overcome 

these drawbacks, we replace the Coulomb term with a Wolf summation method (Wolf et 

al. 1999). The Wolf summation method for accumulation of electrostatic charges, involves 

a simple modification to the direct pairwise sum but scales approximately linearly with the 

system size (Fennel et al. 2006).  

 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = 𝑈𝑠ℎ − 𝑈𝑠𝑒𝑙𝑓 (2.11) 

 

𝑈𝑠ℎ ≈
1

2
∑ ∑ (

𝑞𝑖𝑞𝑗𝑒𝑟𝑓𝑐(𝛼𝑟𝑖𝑗)

𝑟𝑖𝑗
− lim

𝑟𝑖𝑗→𝑅𝑐

{
𝑞𝑖𝑞𝑗𝑒𝑟𝑓𝑐(𝛼𝑟𝑖𝑗)

𝑟𝑖𝑗
})

𝑗≠𝑖
(𝑟𝑖𝑗<𝑅𝑐)

𝑁

𝑖=1

 
(2.12) 

 

𝑈𝑠𝑒𝑙𝑓 = (
𝑒𝑟𝑓𝑐(𝛼𝑅𝑐)

2𝑅𝑐
+

𝛼

𝜋1/2
) ∑ 𝑞𝑖𝑜𝑛 𝑖

2

𝑁

𝑖=1

 (2.13) 
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where α is the damping factor and 𝑅𝑐 is the cut-off distance for Columbic term. The 

Coulomb term is split into a charge neutralized Ewald potential term 𝑈𝑠ℎ and a self-energy 

term for each ion 𝑈𝑠𝑒𝑙𝑓 . 

 

Figure 2.3. Schematic representation of interactions in the THB1 potential model.  

 

Each ion is constituted of a nucleus and an electron cloud. 𝑈𝑆ℎ𝑜𝑟𝑡 is the short-ranged 

Buckingham potential term used to describe the effect of an electron cloud on nearest 

neighbour ions. This term is parametrized by three constants 𝐴𝑖𝑗, 𝐵𝑖𝑗 and 𝐶𝑖𝑗 between ions 

i and j. 

 
𝑈𝑆ℎ𝑜𝑟𝑡 = ∑ 𝐴𝑖𝑗𝑒𝑥𝑝 (−

𝑟𝑖𝑗

𝐵𝑖𝑗
) −

𝑖𝑗

𝐶𝑖𝑗𝑟𝑖𝑗
−6 (2.14) 

In case of an ion, core and its shell are Coulombically screened from each other and only 

allowed to interact via the harmonic spring term 𝑈𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙. Coupling between the core 

and its shell is described by this term, which requires shell spring constants 𝐾1𝑖, 𝐾2𝑖 and 

the distance of separation between core and its corresponding shell 𝑟𝑖, 

 
𝑈𝑐𝑜𝑟𝑒−𝑠ℎ𝑒𝑙𝑙 =

𝐾1𝑖𝑟𝑖
2

2
+

𝐾2𝑖𝑟𝑖
4

24
 (2.15) 

 



Chapter 2                                  Model and methodology 
 

30 
 

Table 2.1. Parameters for the THB1 potential library proposed by Price and Parker 

(1987) to model forsterite.   

Charges (units of electronic charge) Core - shell spring 

constant (eV·Å-2) Ions Cores Shells 

Mg 2.0  

74.92038 

Si 4.0  

O 0.848190 -2.848190 

Short range term 

 A (eV) B (Å) C (eV·Å6) 

Si – O 1283.90734 0.32052 10.66158 

O – O 22764.0 0.149 27.88 

Mg – O 1428.5 0.29453 0.0 

Harmonic three body term 

 k (eV·rad-2) θ0 (degrees) 

O – Si - O 2.09724 109.47 

 

For accurate modelling of structure and properties of silicates, it is important to describe 

the directionality of Si-O bonding using a bond-bending term into the potential (Price and 

Parker 1987, Sanders et al 1984).  For that purpose, THB1 uses a harmonic three-body 

term, with 𝑘𝑖𝑗𝑘
𝐵  being a derivable spring constant, 𝜃𝑖𝑗𝑘 is the angle between the O-Si-O 

three-body term and 𝜃0 is the constant tetrahedral angle (109.47). 

 𝑈𝑇𝐻𝐵 = ∑ 𝑘𝑖𝑗𝑘
𝐵 (𝜃𝑖𝑗𝑘 − 𝜃0)

2

𝑖𝑗𝑘

 (2.16) 

We implemented the described inter-atomic potential library and the corresponding force 

fields to LAMMPS molecular mechanics code. A schematic representation of allowed 



Model and methodology   Chapter 2 

31 
 

interactions between ions are given in Figure 2.3. The THB1 parameterization used in this 

work (Table 2.1) was previously derived by Price and Parker (1987) for forsterite. 

2.2 Ground state properties 

Using DFT or pairwise potential library like THB1 we can compute the potential energy of 

a system. In either methods, for a system containing N atoms with atomic positions ri = (r1, 

… rN) known, the potential energy can be computed at a given position, 𝑈 = 𝑈(𝑟). The 

potential energy landscapes are useful to explain various phenomena in materials science. 

The important properties of the energy landscapes are the local minima and the transition 

paths between them. These properties can be computed using the molecular statics 

framework. 

2.2.1 Energy minimisation 

Finding minima in potential energy landscape is a key task in molecular statics. For an 

energy landscape analogous to terrestrial type landscape with mountains, valleys and 

passes it is relatively easy for the human brain and eye to find minimum locations and 

pathways. Whereas, to do the same automatically using a set of numerical functions in a 

computer is complex. The search of a global minimum quickly and confidently is still a 

very attractive and open topic of research. The search of a “local” minimum or a nearby 

minimum position in a system can be done using rather simple and quicker algorithms like 

the Steepest Descent (SD) or the Conjugate Gradient (CG) methods. 

The common terms used in the computation of local minima are “unrelaxed”, “relaxed” 

and “optimization”. Where the initial guess or starting position of the system is called the 

“unrelaxed” configuration. Running an algorithm to find an equilibrium structure is called 

the “optimisation” process. The output structure of this process it the “relaxed” structure at 

local minima. All the systems used in this work are optimized by using a conjugate 

gradient algorithm within the LAMMPS framework (Polak and Ribiere 1969). The 

minimization processes are carried out with a stopping tolerance force set at 10−12𝑒𝑉/Å.  
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2.2.2 Nudged elastic band approach 

The nudged elastic band (NEB) is an efficient static method (Jónsson et al. 1998; 

Henkelman et al. 2000), which helps to find the minimum energy path (MEP) between two 

configurations corresponding to basins in the energy landscape. In this work we will use 

the NEB method to compute the Peierls potential associated with a glide event (Figure 

2.4). For our case with large systems containing dislocations NEB saves computational 

time and resources in comparison with Hessian based methods. Since initial and final local 

minima are known in our case, the NEB is computationally efficient to trace the MEP. 

 

 

Figure 2.4. Schematic representation of nudged elastic band calculation. Solid white balls 

in the 3D energy landscape represent the replicas. The initial and final replicas in the 

local energy minimum connected with other replicas using springs, the dashed line shows 

the initial guess and the solid line represents the minimum energy path. 

 

The calculation of MEP using NEB method involves three major steps (Figure 2.5). 

Initially a discretised transition path is defined by creating R replicas, each replica 

representing a copy of the whole system. The replicas 1 and R are at initial and final local 

minima. In other words, they can be considered as reactant and product of a reaction 
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respectively. The remaining, intermediate R-2 replicas contain the process path of the 

reaction. To prevent the replicas in the middle to move towards local minima during force 

minimization they are connected to each other using “springs” of unstretched length and 

spring constant k. 

 

 

Figure 2.5. A simple flowchart to describe the shifting of initial guessed transition path 

towards MEP in a NEB calculation. 

 

Firstly, the initial guess of the replicas in the reaction path are created using linear 

interpolation between the reactant and the product. Further, to reduce the force in the 

system the initial path is moved towards convergence by estimating the tangent vector to 

the path at each replica. The tangent vectors are determined to ensure better convergence in 

complex landscapes. Finally, the transition path is optimized by running the algorithm to 

move the replicas until forces in the system are below an expected force tolerance. The 
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replicas in the middle are not to be moved to local minima (i.e., energy minimized) during 

optimization, so the default Conjugate gradient or Steepest-descent minimization 

algorithms cannot be used in this process. In this work we use Quickmin algorithm a 

damped dynamics based minimization algorithm implemented in LAMMPS (Sheppard 

2008).  

2.3 Dislocations modelling 

All real materials contain defects which may be classified as point, line, surface, and 

volume defects. These defects significantly alter the theoretical properties of crystalline 

solids. In this work, we focus on the type of line defect called dislocations which play a 

major role in the plastic deformation of solids. The concept of dislocation has been 

independently proposed by Orowan, Polanyi and Taylor in 1934.  

The discontinuity associated with a dislocation in a crystal can be well described using an 

atom to atom path drawn to form a closed loop around the defect, called the Burgers 

circuit. When the same loop is drawn in a perfect part of the same crystal, the circuit will 

not close. The closure vector is called the Burgers vector. Based on the Burgers vector 

direction respective to the dislocation line, dislocations can be classified in to two end-

member types as screw and edge dislocations. The Burgers vector is parallel to the 

dislocation line for screw dislocations and perpendicular to the dislocation line for edge 

dislocations.  

The long-range displacement fields associated with dislocations can be described using 

continuum mechanics, whereas the elastic theory associated with this method fails near the 

dislocation core since the dislocation line represents a discontinuity in the displacement 

field. Hence, atomistic modelling of dislocation cores became an attractive tool to model 

dislocation cores which is an important component to understand intrinsic dislocations 

properties in particular lattice friction. 

At the atomic scale, one can start from the solution provided by the isotropic elastic theory 

(Hirth and Lothe 1968) to introduce dislocations in a system. For screw dislocations, as 

mentioned earlier, the Burgers vector b is parallel to dislocation line ξ (Figure 2.6.a). There 

are no addition or removal of atoms in the case of screw dislocations, Figure 2.6.b and c 

shows a typical example for creation of edge dislocation that involves the removal of 
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atoms in a half plane. A displacement is applied to each atom along the z-direction. The 

magnitude of the displacement increases from zero to b based on the θ value of the 

displacement uz given as follows.   

 
𝑢𝑧 =

𝑏

2𝜋
𝜃 =

𝑏

2𝜋
[𝑡𝑎𝑛−1 (

𝑦

𝑥
)] (2.17) 

 𝑢𝑥 = 𝑢𝑦 = 0 (2.18) 

 

 

(a) 

 

(b) (c) 

Figure 2.6. (a) A simple screw dislocation in created by “cut and slip” procedure. The slip 

or Burgers vector and the dislocation line are parallel to each other. (b) A simple cubic 

system containing edge dislocation represented using a Burgers circuit and (c) the same 

circuit represented in a perfect crystal. 
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In case of an edge dislocation with a dislocation line ξ along the z-direction, the atoms are 

displaced along the x and y directions. For a material with a Poisson ratio 𝜈, the 

displacements applied to the atoms are as follows, 

 
𝑢𝑥 =

𝑏

2𝜋
[𝑡𝑎𝑛−1 (

𝑦

𝑥
) +

𝑥𝑦

2(1 − 𝜐)(𝑥2 + 𝑦2)
] (2.19) 

 
𝑢𝑦 = −

𝑏

2𝜋
[𝑡𝑎𝑛−1 (

𝑦

𝑥
) +

𝑥𝑦

2(1 − 𝜐)(𝑥2 + 𝑦2)
] (2.20) 

 

For simplicity, the isotropic expressions are given, however for the case of materials with 

lower symmetry in order to find the correct displacement field needed to move an atom 

from its position in the perfect crystal into its location in the dislocated crystal, we must 

turn to the anisotropic elastic theory. In general, for the case of more than two independent 

elastic constants, analytical solutions are not readily available and the displacement field 

must be found numerically (Steeds and Wills 1979). For a system containing straight 

dislocation analytical solutions equivalent to (2.18) – (2.20) are given by Steeds (Steeds 

1973; Walker et al. 2005).     

The only advantage of using anisotropic elastic theory to insert a screw dislocation is to 

have a better starting point for atomic positions far from the dislocation core. Irrespective 

of the chosen elastic theory, the final dislocation core with anisotropic effects can be 

obtained after minimization of energy and forces in the system using pairwise potential. 

Since, the force fields used are intrinsically anisotropic. In this thesis, we limit our 

discussion to modelling of screw dislocations in forsterite. These displacements are 

introduced into the atomic system using an open-source program called ATOMSK (Hirel 

2015). The ATOMSK code helps to create, modify and analyse the atomic systems.   

In case of screw dislocations, the major displacements are along the dislocation line (at 

least in the elastic theory description). Hence it is hard to visualize a screw dislocation, 

especially when viewed edge-on. For the purpose of visualizing screw dislocations, we use 

the differential displacement (DD) maps proposed by Vitek (1968). In this method, the 

relative displacements of neighbouring atoms due to the dislocation are represented using 
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arrows between them. The magnitude of an arrow is directly proportional to the magnitude 

of the difference in displacement between the two atoms. The magnitudes of the arrows are 

larger closer to the dislocation core centres. 

 

Figure 2.7. Differential displacement plot of ½<111> screw dislocation core in BCC 

tantalum single crystal, plotted with respect to the displacement of neighbouring atom in 

oxygen sub-lattice. This picture is taken from Yang and Moriarty (2006).  

 

2.4 Atomistic modelling 

The basic problem with modelling dislocations using atomistic systems it that these defects 

have the long range field which cannot be truncated. This drawback can be solved by 

keeping maximum possible periodicity of the system. Simulations carried out in this work 

are performed using two types of simulation cells, the quasi-periodic slab type and the 

fully periodic quadrupole type. Both systems are built with a thickness equal to the 

Burger’s vector length, to simulate a straight, infinite dislocation line using periodic 

boundary conditions along the dislocation line. 

2.4.1 Slab type system 

Hirel et al. (2014) proposed a slab type geometry with a quasi-periodic boundary condition 

explained as follows. The dislocation line is introduced along the z-direction, and the 

direction of glide along the x-direction. The system is considered to be quasi-periodic since 

the periodicity is maintained along x and z directions, whereas along the y-direction the 
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atoms at the top and bottom are frozen to replicate an infinite perfect crystal. The frozen 

zones help to prevent spurious elastic interaction between periodic replicas along y 

direction. With dislocation of Burgers vector b in the box, the periodic replicas along the x 

direction are matched by providing an additional tilt of b/2 along z as explained in Figure 

2.8. The supercell is maintained long enough along the x direction to prevent dislocations 

interacting with their own periodic replicas, and the frozen zones are maintained far from 

each other along y direction. To reduce the effect of spurious interaction between periodic 

replicas, the box dimension is gradually increased to 480 Å and 140 Å along x and y 

Cartesian directions, respectively.    

 

Figure 2.8. Schematic representation of “Slab” type geometry used in this work. The 

screw dislocation is introduced along the z Cartesian direction with glide plane along x 

direction. The b/2 tilt is added to the system to maintain the periodicity along x direction.   

 

2.4.2 Quadrupole system 

For ionic materials like forsterite, it is undesirable to have free surfaces, which can be 

charged. Hence, the periodic systems are preferred to model dislocations and their 

properties. The quadrupolar system is created by introducing four screw dislocations with 

two positive and two negative Burgers vectors along z-direction arranged simultaneously 

as shown in Figure 2.9. This alternate arrangement of dislocations of opposite Burgers 

vectors helps to lower the long-range elastic fields of the four dislocations (Lehto et al. 

1998; Cai et al. 2004). This method helps to extract the dislocation core energies, to 
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compute Peierls stresses and the energy barriers. The size effect due to the distance 

between dislocations can be reduced by increasing the box dimension proportionately 

along the x and y directions.  

 

Figure 2.9. Schematic illustration of a quadrupole simulation cell with two positive and 

two negative screw dislocation arranged alternatively. 

 

2.5 Dislocation motion 

Plastic deformation of a crystal can result from the motion of dislocations. Here we restrict 

ourselves to the conservative motion of dislocations in their glide planes. To move a 

dislocation from one position to another, it has to overcome a potential barrier. In absence 

of thermal vibrations, the dislocation needs an external stress to overcome the potential 

barrier. The critical stress required to move a dislocation without assistance of thermal 

activation is called the Peierls stress. To move a dislocation with a Burgers vector b, the 

force F acting on the dislocation line ξ due to a local stress field σ can be described using 

the Peach-Koehler equation.   

 𝐹 = (𝜎. 𝑏) × ξ (2.21) 

 

Based on the above relation, to trigger motion of a screw dislocation aligned with the z-

direction to move along x direction, the system is loaded with εyz shear strain increments of 

1%, ensuring quasi-static loading. After each increment the system is relaxed using a 
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conjugate gradient minimization scheme. As a result, the stress in the system increases 

linearly. The stress-strain curve deviates from linearity for a critical stress at which the 

dislocation starts to move, defining the onset of the plastic regime. The critical stress at 

which the dislocation motion is observed defines the Peierls stress. This calculation is 

carried out using both simulation cells of quadrupole and slab type geometries. The 

calculations are repeated with gradual increase in simulation cell sizes along x, y directions 

to ensure independence with system size effects.       

NEB calculations are used to determine the Peierls potential VP as soon as the MEP is 

plotted with respect to the good reaction co-ordinate so in this case the dislocation core 

position. The Peierls potential represents the energy barrier that the dislocation has to 

overcome to move from one stable position to another. The Peierls stress associated with 

the motion can be computed from the maximum slope of the energy barrier. 

 
(

𝑑𝑉𝑃

𝑑𝑥
)

𝑚𝑎𝑥
= 𝑏. σ𝑃 (2.22) 

In this work, the NEB calculations are performed using the THB1 pair potential via 

Quickmin damped dynamics minimization algorithm. The MEP are computed using 15 

and 23 replicas which are connected to each other with springs having a spring constant of 

0.1 eV/Å. To perform the damped dynamics minimization, shell model simulations are 

performed using adiabatic dynamics as suggested by Mitchell and Fincham (Mitchell and 

Fincham 1992). This involves allocating each shell a fraction of mass of its corresponding 

core and their motions integrated in the same way as that of the core, by integration of 

classical equations of motion. This method has been tested in simulations of various ionic 

materials and has been proved successful and computationally efficient (Mitchell and 

Fincham 1992; de Leeuw and Parker 1998; X.W. Sun et al. 2007, Yihui Zhang et al. 

2009). 
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3. Implementation and validation of THB1 potential library 

In the previous chapter we described the pairwise potential library with core-shell 

approximation used to model forsterite. In this chapter we will briefly discuss the 

implementation of a core-shell model potential library to a well parallelised open-source 

classical molecular mechanics package. After the algorithm for implementation, the energy 

and force fields implemented are validated by computing bulk properties of forsterite in 

comparison with first-principle calculations. The THB1 parametrisation is further validated 

by modeling non-equilibrium properties.  

3.1 LAMMPS dependencies 

LAMMPS is an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. 

LAMMPS is a classical molecular mechanics code (Plimpton 1995), developed at Scandia 

National Laboratory, a US Department of Energy Facility. It is an open-source code 

distributed under the GNU/GPL (General Public License). Initially the LAMMPS code 

was written in Fortran F77 and F90, whereas the present version of LAMMPS are 

developed in C++ with MPI message-passing library. Well optimized LAMMPS algorithm 

effectively runs simulations with systems containing few particles to millions. Hence, it 

can be used for model systems of various applications such as atomic, metallic, biological, 

granular and coarse-grained structures with the help of a variety of force fields and 

boundary conditions. 

To model dislocation core and its mobility with systems having few thousands of particles, 

a well parallelised and optimized code is necessary. We choose LAMMPS, because it is 

faster for large systems in comparison to the existing codes containing core-shell models 

(for instance GULP (Gale 1997)), thanks to effective neighbour list implemented in 

LAMMPS (Thompson et al. 2009; Plimpton and Thompson 2012) and the flexibility for 

developers to extend.   

The LAMMPS source code has been divided into various classes and the data are passed 

between them using pointers. The backbone of LAMMPS is constructed on a dozen of top-

level class, which are visible throughout the code (for example the atomic co-ordinates 

from Atom class). Next to these are a set of virtual parent classes, which LAMMPS defines 
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as “style”. The style classes contain the parameters and constraints that are imposed during 

a simulation. Each parent class holds a list of child classes, which the developers are 

expected to contribute to increase the capability of LAMMPS. In this work the THB1 

potential library is implemented as a child class under a parent class called “Pair style”. 

The layers of the LAMMPS code and their different classes are illustrated in Figure 3.1.    

 

Figure 3.1. Flowchart representation of structure of LAMMPS and classes in LAMMPS.  

 

3.2 Force fields 

This section explains about the implementation of core-shell library of inter-atomic 

potentials and their corresponding analytical forces into LAMMPS code. LAMMPS is 

designed in such a way to allow users to develop new potentials as class Pair styles without 

disturbing the core of the source code. The THB1 potential library consists of an 
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electrostatic term, a short-range Buckingham potential, a harmonic spring term and a three-

body term. The expressions required for calculating force fields acting on every ion can be 

calculated from the negative gradient of the potential energy in equation (2.10). In 

summary, the force is calculated as, 

 𝑓 = −𝛻𝑈𝑇𝑜𝑡𝑎𝑙 (3.1) 

 The force field of ions from Columbic interaction is computed using the Wolf 

summation method (Wolf et al. 1999), it is a spherically truncated, charge-neutralized pair 

potential which makes a 1 𝑟⁄  summation. A cautious implementation of a self-energy term 

is carried out, to ensure that 𝑞𝑖𝑜𝑛 is the total charge of ion (i.e., charge of core and shell are 

not separately added to the self-energy term). The first derivative calculation for the 

electrostatic term is well discussed by Wolf et al. (1999). In summary, the final form of the 

electrostatic force term implemented is as follows, 

 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝛼

= ∑ 𝑞𝑖𝑞𝑗

{
 
 

 
 (

𝑒𝑟𝑓𝑐(𝛼𝑅𝑐)

𝑟𝑖𝑗
2 +

2𝛼

𝜋1 2⁄

𝑒𝑥𝑝(−𝛼2𝑟𝑖𝑗
2)

𝑟𝑖𝑗
) ×

𝑟𝑖𝑗𝛼

𝑟𝑖𝑗

−(
𝑒𝑟𝑓𝑐(𝛼𝑅𝑐)

𝑅𝑐
2

+
2𝛼

𝜋1 2⁄

𝑒𝑥𝑝(−𝛼2𝑅𝑐
2)

𝑅𝑐
) ×

𝑟𝑖𝑗𝛼

𝑅𝑐
|
𝑟𝑖𝑗=𝑅𝑐}

 
 

 
 

𝑗≠𝑖

(𝑟𝑖𝑗<𝑅𝑐)

 
(3.2) 

 

Forces from short-range pair interaction between shells separated by a distance less than a 

user-defined cut-off of 𝑅𝐵, is described by first derivative of two-body Buckingham 

potential 𝑈𝑆ℎ𝑜𝑟𝑡 from equation (2.12) is as follows, 

 
𝑓𝑆ℎ𝑜𝑟𝑡 𝛼 = (−6𝐶𝑖𝑗𝑟𝑖𝑗

−6 +
𝐴𝑖𝑗

𝐵𝑖𝑗
𝑒𝑥𝑝 (−

𝑟𝑖𝑗

𝐵𝑖𝑗
) × 𝑟𝑖𝑗) ×

𝑟𝑖𝑗𝛼

𝑟𝑖𝑗
2  , 𝑟𝑖𝑗 < 𝑅𝐵 (3.3) 

 

The attraction force between the core and its corresponding shell is provided by the first 

derivative of the  harmonic spring term with respect to the distance of separation between 

them 𝑟𝑖, and the maximum distance between a core and its shell is given by a spring cut off 

term 𝑅𝑠𝑝𝑟𝑖𝑛𝑔. 

 
𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝛼 = −(𝐾1 +

𝐾2𝑟𝑖
2

6
) 𝑟𝑖𝛼 , 𝑟𝑖 < 𝑅𝑠𝑝𝑟𝑖𝑛𝑔 (3.4) 
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The force field from the covalent three-body term on ion i due to its neighbours j and k are 

given as a set of expressions as follows.  

 𝑓𝑇𝐻𝐵 𝑖𝛼 = −𝑓𝑇𝐻𝐵 𝑗𝛼 − 𝑓𝑇𝐻𝐵 𝑘𝛼 (3.5) 

 𝑓𝑇𝐻𝐵 𝑗𝛼 = 𝐴11𝑟𝑖𝑗𝛼 + 𝐴12𝑟𝑖𝑘𝛼 (3.6) 

 𝑓𝑇𝐻𝐵 𝑘𝛼 = 𝐴22𝑟𝑖𝑘𝛼 + 𝐴12𝑟𝑖𝑗𝛼 (3.7) 

 

where, 

 𝛥𝜃 = 𝑘𝑖𝑗𝑘
𝐵 ∙ (𝜃𝑖𝑗𝑘 − 𝜃0) (3.8) 

 𝐴 = −2 𝛥𝜃 sin 𝜃𝑖𝑗𝑘 (3.9) 

 
𝐴11 =

𝐴 cos 𝜃𝑖𝑗𝑘

𝑟𝑖𝑗
2  (3.10) 

 
𝐴12 =

𝐴

(𝑟𝑖𝑗 × 𝑟𝑖𝑘)
 (3.11) 

 
𝐴22 =

𝐴 cos 𝜃𝑖𝑗𝑘

𝑟𝑖𝑘
2  (3.12) 

 

3.3 Command description 

The execution in LAMMPS is by reading of an input script. The input script contains a 

collection of required predefined keywords. Each keyword has a syntax which makes 

LAMMPS to define an internal variable or to perform a task. The “pair_style” command 

contains a library of formulas that LAMMPS uses to compute pairwise interactions. The 

coefficients associated with the pair style to model an interaction between a pair of atoms 

are specified using “pair_coeff” command. The THB1 potential library has been 

implemented as a module under the “pair_style” class, respecting the constraints imposed 

in the parent code. Table 3.1 shows the “pair_style” command used in an input script with 

the THB1 parameters from Table 2.1. Figure 3.2 illustrates the algorithm of 

implementation of the THB1 potential library with help of a flow chart.  
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Table 3.1. Commands to cause LAMMPS to call core/shell sub-class implemented to 

model forsterite with THB1 parametrisation. The Mg, Si, O core and O shell are 

represented as atom types 1, 2, 3, 4 in the sample set of commands, which can be modified 

based on user preference.  

# THB1 Pair style arguments 

# Class 
Style Si type 𝑘𝑖𝑗𝑘

𝐵  
𝜃𝑜  

(radian) 
α 

Formal charge for ions  

𝑅𝐵 𝑅𝐶 

 1 2 3 4 

pair_style  core/shell 2  2.09  1.910612  0.2  2.0 4.0 -2.0  0.0 12  16 

 

# Coefficients of potential 

# 

Command 

Atom type 
𝐴𝑖𝑗 𝐵𝑖𝑗 𝐶𝑖𝑗 𝐾1 𝐾2 𝑅𝑆𝑝𝑟𝑖𝑛𝑔 𝑅𝑇𝐻𝐵 

i j 

pair_coeff 1 4 1428.5 0.2945 0.0 0.0 0.0 0.0 0.0 

pair_coeff 2 4 1283.9 0.3205 10.66 0.0 0.0 0.0 2.0 

pair_coeff 4 4 22764.3 0.1490 27.88 0.0 0.0 0.0 3.0 

pair_coeff 1 2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

pair_coeff 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

pair_coeff 2 2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

pair_coeff 1 3 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

pair_coeff 2 3 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

pair_coeff 3 3 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

pair_coeff 3 4 0.0 1.0 0.0 74.92 0.0 0.5 0.0 
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Figure 3.2. Algorithm of THB1 potential library implemented in LAMMPS as a sub-class 

under the main class Pairstyle. 

 

3.4 Validation of THB1 potential 

3.4.1 Lattice constants 

The evolution of the lattice constants of forsterite as a function of pressure is computed as 

primary test of validation. The lattice constants are optimised for an isostatic pressure 

ranging from 0 to 10 GPa. The optimisation is achieved by applying an external pressure to 

the simulation box during energy minimisation. During the iteration of the minimiser the 

shape and size of the simulation box are allowed to vary, to attain a final configuration that 

is energy minimised and the system pressure tensor is close to the specified external 

pressure tensor. The orthorhombic symmetry of forsterite is preserved during the 

minimisation process.  
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Table 3.2. Evolution of lattice constant as function of pressure. The lattice constants and 

volume of unit cell computed using THB1 semi-empirical potential is compared with the 

values estimated using DFT calculations (given within parenthesis) by Durinck et al. 

(2005a). 

Pressure (GPa) a (Å) b (Å) c (Å) V (Å3) 

0 
4.7874 

(4.7932) 

10.2717 

(10.2807) 

6.0227 

(6.0408) 

296.1646 

(297.6752) 

5 
4.7274 

(4.7467) 

10.1345 

(10.1243) 

5.9483 

(5.9511) 

284.9820 

(285.9921) 

10 
4.7009 

(4.7148) 

9.9928 

(9.9799) 

5.8994 

(5.8807) 

277.1252 

(276.7059) 

       

 

Figure 3.3. The compression data from the experiment performed on forsterite (Downs et 

al. 1996) is well reproduced by the calculations performed using THB1semi-emprical 

potential parameterisation. The calculated volume are well fitted with the Birch-

Murnaghan equation of state 𝑉(𝑃) = 𝑉0 (1 + 𝐾0
′(𝑃 𝐾0
⁄ ))

−1
𝐾0
′⁄
, where 𝑉0, 𝐾0, 𝐾0

′ are the 

equilibrium volume, Bulk modulus and pressure derivative of bulk modulus respectively (fit 

plotted as dashed lines).   
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The lattice constants computed at different isostatic pressure values are reproduced in 

Table 3.2 in comparison with the DTF result (Durinck et al. 2005). Figure 3.3 shows a 

comparison of our results with the first-principles calculations and experimental results 

from literature. From Table 3.2 it is clear that all the lattice parameters are in good 

agreement with the DFT values to a deviation less than 0.4 %. The cells are constructed for 

pressure between 0 to 10 GPa using the same procedure. This initial verification gives the 

confidence to perform calculations under pressure using this THB1 potential 

parametrisation. 

3.4.2 Elastic constants 

The elastic response of a crystal to an applied load is described by Hooke’s law: 

 𝜎 = 𝐶̿̿𝜀 ̿or 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 

 

(3.13) 

Where 𝜎 is the stress tensor, 𝜀 ̿is the strain tensor and 𝐶̿̿ is the elasticity tensor. In Voigt’s 

notation, the fourth rank elasticity tensor 𝐶̿̿ can be replaced by a 6x6 elastic tensor matrix 

[𝐶𝑖𝑗]. An anisotropic material has a maximum of 21 non-zero elastic components 𝐶𝑖𝑗 

(depending on the symmetry while in an isotropic crystal the number of independent 

components reduces to 2). In a crystal with orthorhombic symmetry like forsterite, 9 

independent elastic constants (C11, C22, C33, C44, C55, C66, C12, C13 and C23) must be taken 

into account.      

Computing elastic constants of a solid is important because they are directly linked to 

interatomic potentials. They can be written as the second derivatives of the potential 

energy of a system with volume V, as follows:  

 
𝐶𝑖𝑗𝑘𝑙 =

1

𝑉
[
𝜕2𝑈𝑇𝑜𝑡𝑎𝑙
𝜕𝜀𝑖𝑗𝜀𝑘𝑙

] (3.14) 

This expression can be simplified using Voigt notation, 

 
𝐶𝑖𝑗 =

1

𝑉
[
𝜕2𝑈𝑇𝑜𝑡𝑎𝑙
𝜕𝑒𝑖𝜕𝑒𝑗

] (3.15) 
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With a 3x3 strain tensor matrix  

 

𝜀 =

(

 
 
 
𝑒1

1

2
𝑒6

1

2
𝑒5

1

2
𝑒6 𝑒2

1

2
𝑒4

1

2
𝑒5

1

2
𝑒4 𝑒3 )

 
 
 

 (3.16) 

 

To calculate nine elastic constants for an orthorhombic crystal, nine independent applied 

strains must be considered. They are presented in Table 3.3. (Beckstein et al. 2001). So to 

compute each elastic constant, we strained the equilibrium cell with an adapted 

deformation at constant pressure. The applied stains are of magnitudes between -2 % to 2 

%. In those strained configurations the atoms are allowed to relax their positions to 

minimize energy using a conjugate gradient algorithm with a stopping tolerance for force 

set at 10-12 eV/Å (1.602x10-21 N). As a test of validation of force fields implemented with 

Wolf summation long-range term, our results of elastic constants are compared with an 

existing implementation of the THB1 potential library with Ewald long-range term in 

GULP code (Gale 1997). Based crystal symmetry it is also possible to run strain patterns 

of e1+e4, e2+e5 and e3+e6 as the stresses don’t mix for these pairs of strains. 

The elastic constants computed are listed in Table 3.4. From the results, it is clear that 

irrespective of the long-range summation technique (Wolf or Ewald), the elastic constants 

are in perfect agreement with a difference of less than 1%.  The elastic constants calculated 

for systems at 0, 5 and 10 GPa of pressure are compared with DFT results (Durinck et al. 

2005) in Table 3.5. In comparison with the first-principle calculations, all diagonal 

elements C11, C22 and C33 are 20 % stiffer. Components C44 and C55 of the elastic matrix 

are 45 % and 5 % softer respectively. As in many cases elastic constants computed using 

empirical potential does not exactly reproduce the first-principles values, but they 

correspond to the best compromise for forsterite (Price and Parker 1987).      
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Table 3.3. Parametrisation of nine strains used to compute nine independent elastic 

constants of orthorhombic forsterite crystal. 

Strain Parameters (unlisted ei = 0) ∆𝐸

𝑉
 

1 𝑒1 = 𝛾 1

2
𝐶11𝛾

2 

2 𝑒2 = 𝛾 1

2
𝐶22𝛾

2 

3 𝑒3 = 𝛾 1

2
𝐶33𝛾

2 

4 𝑒1 = 2𝛾, 𝑒2 = −𝛾, 𝑒3 = −𝛾 1

2
(4𝐶11 − 4𝐶12 − 4𝐶13 + 𝐶22 + 2𝐶23 + 𝐶33)𝛾

2 

5 𝑒1 = −𝛾, 𝑒2 = 2𝛾, 𝑒3 = −𝛾 1

2
(𝐶11 − 4𝐶12 + 2𝐶13 + 4𝐶22 − 4𝐶23 + 𝐶33)𝛾

2 

6 𝑒1 = −𝛾, 𝑒2 = −𝛾, 𝑒3 = 2𝛾 1

2
(𝐶11 + 2𝐶12 − 4𝐶13 + 𝐶22 − 4𝐶23 + 4𝐶33)𝛾

2 

7 𝑒4 = 𝛾 1

2
𝐶44𝛾

2 

8 𝑒5 = 𝛾 1

2
𝐶55𝛾

2 

9 𝑒6 = 𝛾 1

2
𝐶66𝛾

2 

 

 

Table 3.4. Elastic constants Cij (in GPa) computed at 0 GPa using either Wolf summation 

(implementation of this work in LAMMPS) or Ewald summation (Gale 1997).  The DFT 

results performed by Durinck et al. (2005) are provided for comparison to the THB1 

results. 

 C11 C22 C33 C44 C55 C66 C12 C13 C23 

Using Wolf summation 344.4 200.9 279.2 36.1 75.9 82.2 88.2 92.4 87.8 

Using Ewald summation 344.9 201.7 279.4 37.0 76.1 81.7 88.5 92.3 88.5 

DFT 300.7 195.7 224.1 65.8 78.3 77.3 61.1 62.3 64.7 
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Table 3.5. Comparison of elastic moduli (in GPa) as a function of pressure. The THB1 

results computed in this work are compared with the DFT results performed by Durinck et 

al. (2005).  

Pressure (GPa) 
0 5 10 

THB1 DFT THB1 DFT THB1 DFT 

C11 344.4 300.7 367.5 332.8 389.7 375.5 

C22 200.9 195.7 221.0 215.8 235.2 231.7 

C33 279.2 224.1 308.3 242.1 330.9 277.1 

C44 36.1 65.8 51.8 73.6 61.3 82.9 

C55 75.9 78.3 83.4 86.7 87.8 94.1 

C66 82.2 77.3 95.2 85.8 103.3 97.6 

C12 88.2 61.1 110.5 83.0 127.8 95.3 

C13 92.4 62.2 109.8 79.5 123.3 96.0 

C23 87.8 64.7 221.0 85.1 235.2 97.7 

3.4.3 Generalised stacking fault energy 

Being able to reproduce the elastic properties satisfactorily is a first validation. It is 

however not sufficient to model dislocations since in the core, atomic positions which may 

differ significantly from equilibrium positions are to be expected (breakdown of linear 

elasticity). To further validate our implementation with a view to perform crystal defect 

calculations using THB1 potential library we calculate generalized stacking fault (GSF) 

energy surfaces as introduced by Vitek (1968). The GSF (or the γ-surface) energy can be 

computed by cutting a perfect crystal along a given crystallographic plane followed by a 

rigid body shear. The GSF energy in combination with continuum model of dislocation 

provides information on nature of dislocation (Durinck et al. 2007; Carrez et at. 2015). 

This GSF energy computation has been proved to be an effective approach for minerals 

with complex crystal structure to extract fundamental characteristics of the structure of 

dislocations (Gouriet et al. 2014; Goryaeva et al. 2015).  

A fully periodic system is used to calculate the excess energies associated with GSF. The 

super cells constructed of lattice vectors ax, ay and az, the stacking plane of interest is 

oriented normal to z Cartesian direction (Figure 3.4). The excess energies of GSF are 

calculated for [100] slip on (010), (001) and {021} planes and for [001] slip on (100), 
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(010) and {110} planes. For {021} and {110}, the GSF calculations are performed using 

monoclinic cells. Stacking faults are introduced to the system by shearing the upper block 

of the supercell and then the system is allowed to minimize. Crystal chemistry plays an 

important role in determining the cutting plane level. Shearing the Si-O bonds results in 

higher stacking fault energies. The planes containing magnesium atoms are more 

preferable to introduce stacking faults than planes containing atoms belonging to SiO4 

tetrahedra. An optimum size (~100 Å) of supercell is maintained along z Cartesian 

direction, long enough for the atoms close to the slip plane to relax, without causing any 

atomic distortion near the periodic boundary. Care has been taken to study the effect of 

atomic relaxations on energy barrier heights in 1D GSF energy calculations. Two types of 

relaxations schemes are compared in this work. In the first case (Case 1), one allows the 

atoms to relax normal to the plane of shear. In the second case (Case 2), as proposed by 

Durinck et al. (2005a), the Mg and O atoms are allowed to relax freely in every direction 

whereas the Si atoms are constrained to relax normal to the fault plane to preserve the SiO4 

tetrahedra.       

 

Figure 3.4. Schematic representation of 2D γ-surface calculation. The lattice vector az is 

given an additional component 𝑓 corresponding to the applied shear,  to maintain the 3D 

periodicity of the system. The periodicity is maintained to avoid any charged free surfaces 

containing ions 
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Further to determine the excess energies of the γ-surface, rigid body shear parallel to the 

shear plane is applied to the upper block of the structure with respect to the lower block. 

The displacement applied to the system is of magnitude 𝑓 = 𝑒𝑥�⃗�𝑥 + 𝑒𝑦�⃗�𝑦. 400 data points 

were calculated for each slip plane with 5 % increment of each displacement. The lattice 

vector az is tilted along 𝑓to maintain periodicity of the system.  After the displacement 

atoms are allowed to relax along z Cartesian direction, at constant volume minimization 

condition. 

 

 

 

Figure 3.5. Generalised stacking fault energy barriers computed for [100] rigid shear in 

(010) plane. Two different energy barriers corresponds to the shearing of different layers. 

 

The GSF gives the height of the energy barrier associated with the rigid shear along the 

selected slip plane. First step is to validate the hypothesis that shear in silicates occur 

whenever possible along cationic layers rather than the layers containing Si-O bonds. 

Figure 3.5 shows that the [100] shear along (010) requires less energy to shear along layers 

containing Mg atoms than shearing Si-O bonds. This also validates the efficiency of our 

three-body term to describe the covalency within SiO4 tetrahedra. Hence, care has been 

taken in this work to ensure that shearing of Si-O bonds is avoided during GSF energy 

calculations (Figure 3.6). For [001] slip in (100) a corrugated surface is used to create a 

fault plane (Figure 3.7). 
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Figure 3.6. Unsheared supercell used to calculate (010) stacking fault (where O and Mg 

ions are represented as red and yellow balls respectively and Si ions, trapped in the centre 

of the tetrahedron, are represented as small blue balls). The upper part of the supercell is 

moved with respect to the lower one. In this case, the fault vector is along [100] or [001]  

and the fault plane does not break Si-O bonds 
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Figure 3.7. Unsheared supercell used to calculate (100) stacking fault by [001] shear is 

given in the left. To prevent the shearing of Si-O bond in the fault plane a corrugated 

surface is used shown in the right.  

 

The γ-surfaces s for (100), (010) and (001) planes are calculated using Case 1 minimisation 

scheme (Figure 3.8). Calculation of shear along [010] in (100) is restricted to 

approximately 15 % (Figure 3.8.c), The maximum energy observed in the middle of the γ-

surface is a result of oxygen atoms of different tetrahedra that comes close to each other 

during rigid shear. The observation of maximum energy values for [010] slip in (001) 

shows that [010] dislocation is highly unfavourable. 
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(a) 

 

(b) 

 

(c) 

Figure 3.8. 2D γ-surface (in J/m2) computed using THB1 potential library associated with 

shearing of two layers located above and below the slip plane. The planes considered are 

(a) (001), (b) (010), and (c) (100). 
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For highly symmetric crystals with simple chemical compositions, the relaxation during 

GSF calculations have been traditionally restricted normal to the fault plane (Garvik et al. 

2014). In contrary additional degrees of freedom has to be allowed for forsterite due to 

complex crystal chemistry (Durinck et al. 2005a). In the Case 2 relaxation scheme, Mg and 

O are allowed to relax freely in all direction, this enables the SiO4 tetrahedra to tilt/deform 

during relaxation. We observe in Figure 3.9 the importance of this relaxation technique 

through significant reduction of barrier heights in comparison to the regular relaxation 

scheme (Case 1).  

The Case 2 relaxation scheme helps to reduce the barrier height yielding results closer to 

the first-principles calculations performed by Durinck et al. (2005a). The increase in 

degrees of freedom helps relax to lower energy values, but a less smooth GSF curve is 

expected (Figure 3.9). Case 1 regular relaxation scheme predicts slightly higher stacking 

fault energies due to insufficient relaxation of atomic positions. The increased barrier 

height is the drawback of semi-empirical potential parameters usage whereas they conserve 

the shape of the energy barriers for both stable and unstable GSF curves. With suitable 

relaxation conditions, for [100] shear in (010), (001) and {021} exhibit similar intrinsic 

resistance as predicted by earlier DFT calculations. Further, other than the [001](010) 

shear, the [001] shear exhibit lower barrier heights compared to [100] shear. Though the 

energy barrier comparison is not an accurate measurement of the plastic properties, 

shearing the forsterite structure along [001] seems intrinsically easier than along [100], 

which is in agreement with low temperature plasticity data (Phakey et al. 1972, Gaboriaud 

et al. 1982, Gaboriaud 1986). Thus, THB1 potential library parameters and the 

implementation are validated to explain the shear properties of forsterite.   
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.9. Generalised stacking fault energy barriers computed in this work using THB1 

potential library is compared with results of first principal calculation performed in 

earlier works (Durinck et al. 2005a). Case 1 represents the results from the minimization 

of atoms normal to the fault plane and Case 2 represents the relaxation scheme given by 

Durinck et al. (2005a), i.e. Mg and O atoms can relax freely in all directions whereas Si is 

constrained to relax only normal to the fault plane.   
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3.5 Summary 

The structure of the LAMMPS open-source molecular mechanics package is studied to 

understand the architecture of the code. Further the core-shell potential library is 

implemented to the software as an auxiliary module. The values of energy and the force 

fields implemented with Wolf summation electrostatic term to the module are compared 

with the exiting core-shell implementation with traditional Ewald summation term. Further 

the THB1 pair-potential parameters are validated by comparison of results from this work 

with existing first-principle results from literature (Durinck et al. 2005a). The results are 

found to be in good agreement. The elastic-constant tensor validates for a system in 

equilibrium and the second derivative of the potential energy terms implemented. For 

validating the parameters of THB1 for systems far from equilibrium, like system 

containing dislocations, the theoretical generalized stacking faults are computed. The 1D 

and 2D γ-surfaces results are calculated using THB1 parameters. The pair-potential from 

our implementation has well reproduced the shape of the stacking-fault curves. However, 

similar to the case of elastic constants the values of stacking fault energies are slightly 

higher than the DFT results.            
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4. [100] Screw dislocations 

This chapter deals with the theoretical modelling of dislocation core and slip system 

activities involving dislocations with [100] Burgers vector. The atomic systems are 

developed to analyse the dislocation core structure and to estimate lattice friction 

associated with different slip systems in the absence of thermal activation. The spreading 

of [100] dislocation cores and lattice friction are analysed at 0 GPa. Further, the effect of 

pressure (up to 10 GPa) on the dislocation core stability and mobility are investigated with 

the support of NEB calculations. 

4.1 Screw dislocation cores at 0 GPa 

4.1.1 Dislocation core structures 

The atomic systems used are designed to study dislocation core properties, and how they 

can glide in different planes. The simulations were performed using periodic systems, 

described in section (2.4.1). After the optimisation procedure, the dislocation core 

structures are analysed using differential displacement maps (Vítek 1968) and atomic 

disregistries. The spreading of the core in each plane is represented using a disregistry 

function S(r) by plotting the disregistries parallel to the dislocation line as a function of 

distance from the core. To plot the disregistry function along x-axis, we use an analytical 

solution as a sum of arctan written as follows, 

 

𝑆(𝑥) =
𝑏

2
+
𝑏

𝜋
∑𝛼𝑖𝑡𝑎𝑛

−1(
𝑥 − 𝑥𝑖
𝜁𝑖

)

𝑁

𝑖

 (4.1) 

 

Where b corresponds to the dislocation Burgers vector (i.e. [100] magnitude in this 

chapter), 𝑥𝑖 and 𝜁𝑖 correspond to the position of the fractional density i of the Burgers 

vector, and its half width respectively. In any case, the sum of 𝛼𝑖 is equal to one. The first 

derivative dS/dx, gives the density of Burgers vector from which one can define the width 

of the total dislocation core. In case of dissociated core, the distance between Burgers 

vector density peaks gives at first order the distance of separation between partial or 

fractional dislocations. 
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Figure 4.1 shows the differential displacements map around the core of a [100] screw 

dislocation. Based on neighbours’ cations analysis, the core of the [100] screw dislocation 

shows a clear tendency of spreading in (010) with a core centre located between SiO4 

tetrahedra at the M2 site (we used the classical distinction M1, M2 of cation sites in olivine 

group structure; Deer et al. 1982). To be quantitative, the spreading of the core is 

investigated by extraction of the disregistry functions within (010) from the atomic 

positions. Dissociation of the core into two strongly correlated Burgers vector density 

peaks is observed. The distance between these peaks, approximately 7 Å (Table 4.1), is 

close to one lattice parameter along the [001] direction.  

 

 

(a) (b) 

Figure 4.1. Screw dislocation core with [100] Burgers vector at 0 GPa (a) Atomic 

configuration of [100] screw dislocation core viewed along the line direction; the yellow, 

blue and red balls represent the Mg, Si and O ions and the SiO4 tetrahedra; the arrows 

represent the differential displacement between the neighbouring ions along [100] 

dislocation line; (b) Corresponding disregistry S(x) and the density of [100] burgers 

vector dS/dx for the cationic sub-lattice. The two distinct peaks show dissociation of the 

core.  

 

Details of the atomic arrangements around the line indicate that the core of [100] 

dislocations involves some local edge displacements in the vicinity of (010). These local 

displacements do not produce any edge component of the dislocation Burgers vector but 
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can be associated with a dilation state of the core. Following Sun et al. (2016), an 

atomistic-to-continuum cross over method is used to analyse the details of local non-screw 

displacements. The unrelaxed and relaxed configurations obtained during the atomistic 

calculations are used as the reference state and deformed state, respectively. The 

components of the displacement vector field, u, in the vicinity of the dislocation core are 

calculated for the three different sub-lattices. However, since the compact anionic sub-

lattice ensures continuity of the structure, only displacements corresponding to the oxygen 

sub-lattice are shown in what follows. The displacement vector field maps (Figure 4.2) 

clearly indicate that the edge components are restricted to the vicinity of (010), and 

correspond to outward displacements of atoms. Thus, from the computed gradient of the 

displacement vector, u, one can compute the corresponding strain tensor giving access to 

the local dilatation taken as the trace of the strain tensor. As shown in Figure 4.3, positive 

values for the trace of the strain tensor around the core validates the dilatation of the 

dislocation core.  

 

                                         (a)                             (b) 

Figure 4.2. Representation of edge displacement field (in Å) around the [100] dislocation 

core calculated using O sub-lattice at 0 GPa. Continuum displacement fields along (a) the 

[010] direction and (b) the [001] direction.  
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Figure 4.3. Trace of the strain tensor around [100] screw dislocation core calculated in 

the O sub-lattice. The positive value for the trace of strain tensor quantify the dilatation of 

the dislocation core. 

 

4.1.2. Lattice friction 

At 0 GPa, Figure 4.1 shows that the core of [100] dislocations is dissociated with spreading 

in (010) plane. So to study glide in (010), we computed the energy barrier associated with 

glide using NEB calculations. The Peierls potential in Figure 4.4.a shows a barrier with a 

metastable core in the middle. From disregistry of the metastable core, it turns out that the 

intermediate core becomes narrower and does not show any evidence of dissociation, while 

it is still spread in (010) (Figure 4.5.). To validate the existence of a metastable core, the 

NEB calculation for glide in (010) is repeated between two metastable cores separated by a 

distance of one lattice parameter along [001]. The result shows that the camel hump shape 

of the barrier is preserved (Figure 4.4.b), with the stable dissociated core observed in the 

middle.  
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(a) (b) 

Figure 4.4. The Peierls potential as a function of dislocation centres associated with the 

(010) glide [100] screw dislocation at 0 GPa. The NEB calculation performed between (a) 

two dissociated dislocation cores spread in (010), (b) two non-dissociated metastable 

dislocation cores spread in (010). 

 

 

Figure 4.5. Metastable [100] screw dislocation core observed at 0 GPa. The density of 

dislocation dS/dx does not show any evidence of dissociation.   

 

The presence of metastable core raises the question of a possible dependence of the Peierls 

potential on the applied stress. To address this issue, we use the same setup than for the 

previous NEB calculations and we add a constant strain component. The fixed stain 

component added is such that it induces a stress which promotes glide in (010). From the 

Peierls potential (Figure 4.6), the maximum slope of 𝑉𝑃(𝑥) is extracted and plotted it as a 
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function of the applied stress in Figure 4.7. The result shows that irrespective of the 

starting configuration of the dislocation, it starts to glide in (010) at a threshold stress of 

2.45 GPa.     

 

(a) 

 

(b) 

Figure 4.6. Minimum energy path plotted for straight screw dislocation with [100] 

Burgers vector plotted as a funtion of applied stress from 0 – 2.0 GPa at an isostatic 

pressure condition of 0 GPa. For (a) a dissociated stable core spread in (010) plane and 

(b) an non-dissociated metastable core spread in (010) plane.   
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Figure 4.7. Maximum slope of the MEP plotted against the applied shear stress during the 

NEB calculation for [100] screw dislocation glide in (010) at 0 GPa. The maximum slope 

corresponding to the dissociated stable core and non-dissociated metastable core are 

given in red and blue respectively. 

 

 

Figure 4.8. Calculation of the Peierls stress for a [100] dislocation gliding in (010) plane 

by quasi-static loading. The linear trend represents the elastic response of the cell to the 

applied load. The critical stress above which the dislocation move corresponds to the 

stress drop on the plot.  

 

 

Peierls stress 
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As mentioned in the methods section (Chapter 2, Section 2.5), a simple shear is applied to 

the stable core to determine at which critical stress the dislocation starts to move in a given 

glide plane. Two different critical stresses for glide in (010) and (001) are computed. For 

[100](010), the computed Peierls stress is 2.76 GPa (Figure 4.8). This value of Peierls 

stress is slightly higher than the value derived from the Peierls potential, but they are in 

good agreement with each other. The quasi static loading gives a good proxy of the Peierls 

stress. In contrast, when the [100] dislocation is forced to glide into (001), a higher value 

of the Peierls stress around 7 GPa is found. 

 

 

Figure 4.9. Super cell of forsterite (Mg2SiO4) crystal viewed along the [100] direction. 

The unit cell is shown in the lower right corner. The proposed dislocation core centres for 

[100] screw dislocations are labelled A, B and B’. The green and blue paths correspond to 

the minimum energy path computed for dislocation glide in {011}.  
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4.2 Effect of pressure on dislocation core 

4.2.1 Low pressure core configuration 

For pressures below 4 GPa, the [100] screw dislocations are fully spread in (010). A 

typical dislocation core configuration at 2 GPa is shown in Figure. 4.10. The analysis of 

the atomic disregistry across (010) reveals a tendency for planar dissociation with two 

fractional dislocations strongly overlapping. This is consistent with calculations performed 

at 0 GPa of isostatic pressure showing that [100] dislocation dissociates in (010) into two 

partials dislocation of 1/2[100] Burgers vector. Nevertheless, with increasing pressure, this 

dissociated state becomes metastable as confirmed by NEB calculations aiming to 

investigate the glide mechanism in (010) (Figure 4.12).  

 

 

(a) (b) 

Figure 4.10. Screw dislocation core with [100] Burgers vector at 2 GPa (a) Atomic 

configuration of [100] screw dislocation core viewed along the line direction; the yellow, 

blue and red balls represent the Mg, Si and O ions and the SiO4 tetrahedra ; the arrows 

represent the differential displacement between the neighbours along [100] dislocation 

line; the arrows show a clear planar spreading of the core in (010) plane (b) 

Corresponding disregistry S(x) and the density of [100] burgers vector dS/dx for the 

cationic sub-lattice. The peaks of the density of [100] dislocation are not distinct to show 

any evidence of dissociation. 
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The difference in core energy between stable and metastable configurations are below 0.1 

eV/Å. The non-screw displacements around the non-dissociated core spread in (010) are 

analysed and the corresponding displacement fields and the trace of the strain matrix for 

the oxygen sub-lattice are plotted in Figure 4.11. The positive values of the trace of the 

strain tensor shows that the stable core at 2 – 4 GPa is dilated. 

 

(a) (b) 

 

(c) 

Figure 4.11. Representation of edge displacement field around the [100] dislocation core 

calculated using O sub-lattice at 2 GPa. Continuum displacement fields (in Å) along (a) 

the [010] direction, (b) the [001] direction and (c) the trace of the strain tensor. 
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(a) 

  

(b) (c) 

Figure 4.12. (a) The minimum energy path corresponding to the [100] screw dislocation 

glide in (010) plane at the low pressure range (0 – 4 GPa) computed using NEB 

calculations. The MEP is plotted as a function of dislocation position and the Peierls 

potential in (010) plane. (b) Atomic screw disregistries S(x) and (c) dislocation density 

dS/dx plotted as function of distance to the core centre in (010). The disregistries are 

computed to the cationic sub-lattice. 

 

The Peierls potentials for glide in (010), defined as the minimum energy path, are shown 

Figure 4.12 for 0, 2 and 4 GPa of pressure. Whatever the isostatic pressure, all potentials 

show a camel hump shape, with a dissociated metastable configuration at halfway (Figure 

4.12. (b) and (c)). At 0 GPa, the stable dislocation is centred in a [B] labelled site (Figure 
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4.9) with the two partials exactly located in the adjacent [A] sites in (010). Increasing 

pressure, such dissociated state does not correspond to the most stable configuration but to 

a core state involved during the motion of the dislocation in (010). As the Peierls potentials 

are non-monotonic, we further performed NEB calculations under increasing applied shear 

strain components. A typical evolution of the minimum energy path as a function of the 

applied strain is shown Figure 4.13. From this kind of calculations, it is possible to extract 

the evolution of the maximum slope of the Peierls potential and plot the evolution of the 

slopes of the potential as a function of applied stress (Figure 4.14).  

For the three low pressure conditions considered here, we find a good linear scaling of the 

maximum slope of Peierls potential with respect to the applied stress suggesting that 

[100](010) Peierls potentials are rather insensitive to the applied stress (Rodney et al. 

2009, Kraych et al. 2016a). The Peierls stresses for [100](010) screw dislocations are 2.45 

GPa at 0 GPa, 3.45 GPa at 2 GPa and 3.8 GPa at 4 GPa. 

 

Figure 4.13. The minimum energy path corresponding to the glide of a [100] screw 

dislocation in (010) as a function of the applied stress. The MEP is computed at an 

isostatic pressure of 2 GPa. The MEP is plotted as a function of dislocation position and 

the Peierls potential in (010) plane. 
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As mentioned earlier, the Peierls stress values can also be computed using quasi-static 

loading. The stable dislocation core was thus subjected to simple shear ε𝑦𝑧 to calculate the 

critical stress and strain required to move the dislocation in the (010) plane. According to 

such calculations, the critical stresses are 2.76 GPa at 0 GPa, 3.91 GPa at 2 GPa, 4.36 GPa 

at 4 GPa. These critical stresses slightly overestimate the Peierls stress by less than 10% 

whatever the pressure investigated. It confirms that the Peierls stress is not strongly 

dependent on the applied stress as already shown by the linear trend in Figure 4.14. 

Finally, we also compute the corresponding stress for glide in (001). When the same 

dislocation core is quasi-statically loaded to make the [100] dislocation glide into (001) 

plane, a Peierls stress of approximately 7 GPa is necessary to move the dislocation at all 

isostatic pressures in the range 0-4 GPa. 

 

Figure 4.14. Maximum slope of MEP plotted against the applied shear stress during the 

NEB calculation. The results of low pressure range are plotted. The linear dependency of 

maximum slope with respect to the applied stress indicates the [100](010) Peierls barrier 

is independent of applied stress. 
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4.2.2 High pressure core configurations 

Above 4 GPa of isostatic pressure, the calculations of dislocation core structures show a 

strong modification of the dislocation core configurations. The stable core configuration, 

as depicted in Figure 4.15, shows a tendency to spread in {021} with a dislocation centre 

located in site labelled [B] or [B'] (see Figure. 4.9). Due to the Pbnm lattice, a high-

pressure dislocation core has two variants corresponding to either a spreading in (021) or a 

spreading in (02̅1), whereas the two configurations have exactly the same core width 

(Figure 4.15 (c)) and the same core energy. For pressure in the range 4-10 GPa, it is 

verified that the stable core configuration remains the one shown in Figure 4.15 (b) with no 

evidence of any fractional dissociation. Further the analysis of non-screw displacements 

around the core reveals an opposite tendency to previous cases. The negative regions 

around the core on trace of the strain tensor (Figure 4.16) shows the stable core is more 

contracted at higher pressure.  

The computation of MEP through NEB between several stable core configurations enables 

to investigate the glide properties in {011} planes. The MEP computed between two 

identical core configurations (located in site labelled B') in (01̅1) is shown Figure 4.17. 

Along the path, the dislocation goes through a core position denoted B in Figure 4.9. The 

dislocation in B and B' corresponds to the two equivalent variants with a spreading in 

(02̅1) at B' location and a spreading in (021̅) at B. Obviously, the minimum energy path 

is not symmetric and shows two distinguish slopes. The analysis of the core position along 

the MEP indicates that the core oscillates around {011}. Starting from a position B, the 

dislocation moves along [012] accordingly to its particular spreading. This process 

corresponds to the slowest slope on the MEP. The second part of the MEP is then 

dedicated to a rearrangement of the spreading in order to reach the proper core 

configuration in B'. The reverse situation is encountered when starting from B' location to 

reach B. Thus, glide in {011} involves the two variant of the high pressure cores whose are 

alternatively reached along the glide path as shown by the blue and green path drawn in 

Figure 4.9. 
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(a) (b) 

 

(c) 

Figure 4.15. Screw dislocation core with [100] Burgers vector at 6 GPa (a) Atomic 

configuration of [100] screw dislocation core viewed along the line direction; the yellow, 

blue and red balls represent the Mg, Si and O ions and the SiO4 tetrahedra ; the arrows 

represent the differential displacement between the neighbours along [100] dislocation 

line; the arrows show a clear planar spreading of the core in (02̅1)  plane (b) 

Corresponding disregistry S(x) and the density of [100] burgers vector dS/dx for the 

cationic sub-lattice. The peaks of the density of [100] dislocation are not distinct to show 

any evidence of dissociation. (c) The half-width of two variant of [100] dislocation spread 

in (021) and (02̅1) are compared. 
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(a) (b) 

 

(c) 

Figure 4.16. Representation of edge displacement field around the [100] dislocation core 

calculated using O sub-lattice at 10 GPa. Continuum displacement fields (in Å) along (a) 

the [010] direction, (b) the [001] direction and (c) the trace of the strain tensor. 
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Figure 4.17. MEP corresponding to glide in (01̅1) of a [100] screw dislocation with a 

core spread in (02̅1). The dislocation core present in B glide along blue path depicted in 

Figure 4.6. The dislocation moves from B to B’ and B’ to B, the MEP is mirrored. The 

calculation is performed at 6 GPa.  

 

The increase in height of the energy barriers as a function of pressure is plotted in Figure 

4.18. In the pressure range 4-10 GPa, the maximum of the Peierls potential evolves from 

1.2 eV/b to 2 eV/b. Computing the derivative of the MEP in {011} leads to an increase of 

Peierls stress in the range 9.3 GPa - 12.8 GPa. As for the computation performed at lower 

pressure, we further investigated the mobility of [100] dislocation in {011} by quasi static 

loading of the semi-periodic volume. However, as build, the simulated volume allows 

simple shear with maximum resolved shear stress in either (010) or (001). Nevertheless, by 

applying a simple shear to force the dislocation to glide in (001), we verified that above a 

critical stress, the dislocation glides in {011}. The Peierls stress computed from quasi-

static loading in (001) are 7.0 GPa at 4 GPa, 7.48 GPa at 6 GPa, 8.06 at 8 GPa and 7.82 

GPa at 10 GPa. Accounting for the angle of the glide in {011} with respect to the imposed 

shear strain in (001), these critical stresses computed from quasi-static loading conditions 

are in rather good agreement with the slopes of the MEP. 
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Figure 4.18. MEP corresponding to the glide of a straight screw dislocation line (length b) 

of Burgers vector [100] in (01̅1) at high pressure (from 4 GPa to 10 GPa). Plotting as a 

function of the dislocation core position projected in(01̅1), the MEP describes the 

evolution of the Peierls potential for [100](01̅1) screw dislocation. In the MEP for glide 

from B’ to B (Figure 4.9), at all pressure the barrier corresponding to the initiation of 

glide through (001) is steeper than the second half of the barrier corresponding to the 

(02̅1) glide to reach B.   

 

4.3 Transition path from low pressure core to high pressure core 

configurations 

As described in the previous section, the dislocation core configuration evolves with 

respect to the isostatic pressure from a core spread in (010) at low pressure to a core spread 

in {021} at high pressure. But both core configurations can be stabilized at any pressure. 

The two core centres [A] and [B] are distant from exactly 1/2[001]. Relaxing the two core 

configurations using a periodic system allows a precise determination of the core energy 

and also an investigation of the transition pathway from one configuration to the other. 

Figure 4.19 shows the minimum energy path resulting from a NEB calculation using the 

two cores as initial and final states. Below 4 GPa of pressure, spreading of the dislocation 

in (010) is energetically favourable, although the change in core energy is less than 0.5 

eV/b. On the contrary, the stability of the core spread in {021} is strongly enhanced by the 
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increase of pressure with a difference of core energy which reaches around 1 eV/b at the 

highest pressure investigated in this work: 10 GPa. For all pressures, the transition from 

the stable configuration to the metastable one is found to be associated with an energy 

barrier which increases with pressure from 1 eV/b to more than 1.5 eV/b (at least in the 

pressure range 2-10 GPa). 

 

Figure 4.19. Transition energy barrier from the low pressure stable core to high pressure 

stable core. 

 

At high pressure, introducing, as initial state, a metastable core spread in (010) and 

applying a quasi-static loading to enhance the glide in (010) leads to the computation of a 

threshold stress above which the metastable core transforms into the stable core spread in 

{021}. By performing these calculations 6, 8 and 10 GPa of pressure, ones can transform 

the transition energy barrier in terms of resolved stress (Figure. 4.20). Extrapolating the 

correspondence between stress and energy, we can deduce from Figure 4.15 at which stress 

a stable high pressure core “cross slips” into a (010) planar configuration. It is worth 

noticing that the similar procedure performed at low stress (i.e., below 4 GPa) never leads 

to the occurrence of the high pressure core configuration, the dislocation glide to next 

stable configuration with a barrier height of 0.5 or lower. This barrier height is lower than 

the energy barrier associated with the transition between two cores.  
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Figure 4.20. Cross-slip stress versus the height of energy barrier. The red dots correspond 

to the stress values computed for transition path using quasi-static loading. The triangles 

represent the extrapolated stress values based on the height of the energy barrier 

transition. 

 

4.4. Summary 

The dislocation core stability and the lattice friction associated with [100] screw 

dislocations are analysed in this chapter. Initially at 0 GPa the [100] screw dislocation 

forms a planar core with a strong spreading in (010) plane. The stable dislocation exhibits 

dissociation of the core as two strong partials of ½[100] separated by an approximate 

distance of one lattice parameter along [001] direction (i.e., ~7Å). The lattice friction 

against glide of this dislocation core in the absence of thermal activation (at 0 K) is 

estimated using the quasi-static loading. The Peierls stress estimated for glide in (010) and 

(001) are 2.76 GPa and 7 GPa respectively. The effect of pressure on the [100] dislocation 

core is studied leading to distinguish two domains, a low (0 – 4 GPa) and a high pressure 

range (4 – 10 GPa). Below 4 GPa, the most stable core has a planar configuration spread in 

(010), but increasing pressure tends to stabilize a more compact core (i.e., with no well-

developed dissociation into two partials). This is supported by the evolution of the camel 

hump shaped Peierls barrier computed using NEB calculations. Above 4 GPa, the 

dislocation core structure changes. A core spread in {021} core is identified to be 
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energetically more favourable than the other cores. This core spread in {021} plane has 

two variants due to the mirror symmetry of the Pbnm space group of forsterite. This 

dislocation core glides in {011} plane with Peierls stresses of 7 GPa (at P = 4 GPa) to 10 

GPa (at P = 10 GPa). These Peierls stress values are in good agreement with the results 

from quasi-static loading conditions. This change of stability of the dislocation core with 

pressure has strong implication on the slip system activities. Our calculations suggest that 

[100](010) slip would be the most favourable slip system below 4 GPa, [100]{011} slip 

becoming more favourable at higher pressures.   

Table 4.1. Dislocation disregistry analysis of dislocation with [100] Burgers vector. Half 

width 𝜉𝑖 of the dislocation core estimated from the fit of the atomic disregistries using 

equation (4.1).  

Pressure  

(GPa) 

Type of core 

configuration 

Spreading  

plane 

Distance of 

separation (Å) 

Half width 

ξ1(Å) ξ2 (Å) 

0 Stable (010) 7.15 2.19 2.19 

0 Metastable (010) - 2.46 - 

0 Metastable {021} - 2.31 - 

2 Metastable (010) 6.73 2.14 2.14 

2 Stable (010) - 2.37 - 

2 Metastable {021} - 2.34  - 

4 Metastable (010) 6.43 2.07 2.07 

4 Stable (010) - 2.34 - 

4 Metastable {021} - 2.40 - 

6 Metastable (010) 6.09 2.02 2.03 

6 Metastable (010) - 2.30 - 

6 Stable {021} - 2.43 - 

8 Metastable (010) 5.85 1.99 1.98 

8 Metastable (010) - 2.27 - 

8 Stable {021} - 2.45 - 

10 Metastable (010) 5.60 1.96 1.96 

10 Metastable (010) - 2.25 - 

` Stable {021} - 2.48 - 
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5. [001] screw dislocations 

In this chapter we discuss the theoretical modelling of dislocation core and lattice friction 

associated with [001] Burgers vector. Initially at 0 GPa two possible [001] dislocation 

cores structures that can be stabilised are analysed. Then, dislocation core energies and 

lattice friction of both the dislocation core types are computed. Further, the effect of 

pressure on the core energies and mobility of the dislocation are investigated.    

5.1. Dislocation core structure at 0 GPa 

The [001] screw dislocation core structure is computed using a fully periodic quadrupole 

arrangement of dislocations (Chapter 2, Section 2.4.2). Inserting [001] dislocation into the 

structure leads to two possible dislocation core configurations depending on the exact 

position of the initial dislocation centre (Figure 5.1). The resulting core structures are 

labelled as “C” and “D”. At first the core configuration “C” is obtained by inserting the 

dislocation line with [001] Burgers vector centred on a Mg cation site between four SiO4 

tetrahedra (Figure 5.1).  

 

Figure 5.1. Forsterite supercell at 0 GPa, viewed along [001] axis. The signs C and D 

represent the possible locations in system to introduce [001] screw dislocation of type “C” 

and type “D” respectively.   
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After energy minimisation the core structure is analysed using the differential displacement 

maps. All significant displacement arrows around the dislocation line are restricted to a 

small area within one unit-cell (Figure 5.2). Thus, the core appeared to be compact with no 

particular evidence of spreading in any preferential plane.  

 

(a) 

 

(b) 

Figure 5.2. [001] screw dislocation of type “C”. (a) Atomic core configuration viewed 

along the dislocation line; yellow, blue, and red spheres represent Mg, Si, and O ions, 

respectively; SiO4 tetrahedron are shown in transparent blue; solid arrows describe the 

differential displacement along the [001] direction between two ions. (b) The same core 

described within the oxygen sub-lattice only. 
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(a)   

 

(b) 

 

(c) 

 

  

Figure 5.3. Disregistry function S(x) and the [001] Burger vector density dS/dx of the 

screw dislocation of type “C” (dotted lines) for the cationic sub-lattices in (010), (100), 

and {110}, respectively. These disregistries are calculated along the KK′, LL′, and MM′ 

profiles depicted in figure. 
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This is confirmed by computing the disregistry functions in (100), (010), and {110}, planes 

in zone axis with the Burgers vector (Figure 5.3). Independent of the plane, the core profile 

is narrow with a width smaller than 5Å, preserving the shape of the SiO4 tetrahedra. No 

edge displacements are observed around the [001] dislocation core of type “C”. Such a 

compact core configuration is consistent with previous attempts to model screw dislocation 

cores in forsterite using THB1 potential (Walker et al. 2005b; Carrez et al. 2008), although 

the geometry of the simulated volumes are different. Indeed, compared to the fully periodic 

system used here, the previous calculations of Walker and co-workers were performed 

using a “cluster” approach with fixed boundary shells of cylindrical symmetry around the 

dislocation line. 

The second core configuration “D” is achieved by inserting a [001] dislocation line in the 

plane containing Mg cations between three SiO4 tetrahera (Figure 5.1.). Energy 

minimisation of this dislocation core results in a clear spreading in {110} as shown by the 

differential displacement map, Figure 5.4. Further details on the core structure are revealed 

using the disregistry analysis (S(x)) in the cationic sub-lattice and its first derivative in the 

{110} plane (Figure 5.5.). The dislocation core structure “D” corresponds to a dissociation 

of the core into a set of two partial dislocations of almost equal partial Brugers vectors bp = 

1/2[001]. The core spreading of each partial is narrow with the half-width values of 1.4 Å 

and 1.5 Å, the minor variation in half width between the partials is associated with the 

quality of the fit. The derivative of the disregistry function 𝑑𝑆
𝑑𝑥⁄  highlights  the 

dissociation with two isolated peaks of Burgers vector density separated by a distance of R 

= 10.19 Å, it is estimated as the distance of separation between two partials. In case of 

dissociated dislocation, the dissociation width is influenced by the stacking fault energy 

(γ). For a separation distance of R, the stacking fault energy between two partial screw 

dislocations (with Burgers vectors �⃗� 𝑖 and dislocation line vectors 𝜉 𝑖) can be extracted using 

the elastic equilibrium equation (Hirth and Lothe 1982). 

 𝛾 =
𝜇

2𝜋𝑅
(�⃗� 1 ∙ 𝜉 1)(�⃗� 2 ∙ 𝜉 2) (5.1) 
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Figure 5.4. [001] screw dislocation of type “D”, atomic core configuration viewed along 

the dislocation line, solid arrows describe the differential displacement along the [001] 

direction between two ions. 

  

 

Figure 5.5. Disregistry function S(x) and the [001] Burger vector density dS/dx of the 

screw dislocation of type “D” (dotted lines) for the cationic sub-lattices in {110}. 

 

For the calculated dissociation distance of R = 10.19 Å, the stacking fault energy is thus 

expected to be of 0.0457 eV/Å2. One the other hand, from the [001]{110} GSF calculation 

performed by constraining the Si atoms to move perpendicular to the glide plane while Mg 

and O atoms are allowed to freely relax in all directions (Case 2), the γ energy associated 
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with the 
1

2
[001]{110} stacking fault is 0.042 eV/Å2 . The good agreement between the γ 

energies, derivated from the GSF calculations or the core configuration is noticeable. This 

emphasis that the stacking fault configuration within the dislocation core should be 

identical to the atomic configuration achieved using the maximum degree of freedom for 

GSF calculations. Similar to type “C”, no evidence of edge displacement components is 

observed around the dislocation core.       

5.2. Core energy comparison at 0 GPa 

For screw dislocations arranged in a quadrupole system, the energy of the dislocation core 

per unit Burgers vector length scales with the intrinsic lengths (d1, d2) of the dislocation 

arrangement according to the following relationship proposed by Ismail-Beigi and Arias 

(2000). 

 
𝐸 = 𝐸𝑐𝑜𝑟𝑒 + 𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐸𝑐𝑜𝑟𝑒 + 

𝜇𝑏3

4𝜋
{𝐿𝑛 (

𝑑1
𝑟𝑐⁄ ) + 𝐴 (

𝑑1
𝑑2

⁄ )} (5.2) 

 

In the above equation (5.2), E on the left corresponds to the energy difference between the 

energy of the quadrupole system and the defect free system. On the right, 𝐸𝑐𝑜𝑟𝑒 is the 

energy of the dislocation core, the rest corresponds to the energy due to the elastic 

interactions between the dislocations in the system. The elastic energy is computed using 

anisotropic elastic theory formulation implemented in BABEL code (Clouet 2017). In the 

elastic energy term d1 and d2 are the distances between the positive and negative 

dislocations along x and y directions respectively, µ is the anisotropic shear modulus and rc 

is the cut-off radius for the core energy.  

The energies for quadrupole system of dislocations are computed by varying the 

simulation box dimension from ~75 Å to ~200 Å along the x and y directions. The 

minimized energies from different dislocation box sizes are plotted as a function of elastic 

energy (Figure 5.6), the energies increase linearly with increase in box dimension. As per 

elastic theory the energy increases linearly, fitting of the values gives the dislocation core 

energy. The dislocation core energies for core configurations of types “C’’ and “D” are 

4.1036 eV/b (0.6813 eV/Å) and 3.2251 eV/b (0.5355 eV/Å) respectively. From the energy 

values the dislocation core with dissociated core of type “D” is more stable than the 
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compact core of type “C” . The linear fit also provides the anisotropic shear modulus µ = 

51.8 GPa. This compares well with the isotropic shear modulus µ = 65 GPa calculated 

from the elastic moduli.   

 

Figure 5.6. Evolution of the total energy of the dislocation (elastic energy and core 

energy) obtained from the atomistic calculation as a function of the elastic energy of the 

dislocation only depending on the distance between dislocations in the quadrupole 

configurations (see Eq. (5.1)). The solid circle (red) and solid square (blue) symbols 

correspond to the results from dissociated dislocation core (“D”) and compact non-planar 

core (“C”) respective. 

 

5.3. Lattice friction at 0 GPa 

The lattice friction associated with glide of [001] screw dislocation is computed using the 

fully-periodic quadrupole simulation cells. The critical stress required by the dislocation 

with [001] Burgers vector to promote glide in different slip systems are performed by 

quasi-static loading of the simulation cells. From the core energies, dissociated dislocation 

of type “D” is more stable than the compact non-planar dislocation of type “C”, the lattice 

friction associated with [001] screw dislocation glide of type “D” is therefore presented 

and analysed first.  
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For the [001] screw dislocation to glide in (010) plane, at critical stress value greater than 

6.10 GPa must be applied. At critical stress, an analysis of the conjugate gradient 

minimiser steps shows that once the dislocation is set into motion, it exhibits a different 

core structure (Figure 5.7.), entirely planar, spread in (010) with no evidence of 

dissociation (Figure 5.8). It is worth noting that such a planar configuration cannot be 

stabilised without applying strain (or stress) in the simulations. Indeed, we verified that 

without imposed strain such planar configuration always recombines into the core of type 

“D” (Figure 5.4). However, once this transient state (Figure 5.7) is reached, the dislocation 

core can travel over several lattice repeats before finally falling again into another stable 

core configuration (Figure 5.4).  

 

Figure 5.7. Unlocking mechanism of [001] screw dislocation in a super cell of forsterite 

crystal view along [001] direction. When the system with screw dislocation of stable core 

“D” is quasi-statically loaded to glide in (010) plane, beyond critical stress value the 

dislocation unlocks into a transient high-energy core and glide past several lattice repeats 

before again lock into a stable core configuration similar to the initial core.   

 



[001] screw dislocations                                                                                           Chapter 5 

91 
 

 

Figure 5.8. Disregistry function of the transient planar configuration of the [001] 

dislocation as it glides in (010) plane. 

 

Once the initial dislocation core is dissociated under resolved shear stress, the [001] 

dislocation glides as a single planar transient core of high energy. This explains the 

unstable stacking fault energy barrier (Figure 3.9. (d)). This glissile transient core of [001] 

dislocations forming a planar core spread in (010) plane matches well with the [001] planar 

screw dislocation computed using the PN model by Carrez et al. (2008). 

Now the quasi-static loading process is repeated to promote glide of [001] dislocation in 

(100). By progressively loading the simulation box the dislocation starts to glide at a 

resolved stress greater than 3.94 GPa. It is observed that under applied stress, the 

dislocation exhibits a glide in {110}. During the motion the two partials glide together 

while keeping the stacking fault width constant. The Schmid factor S, can be used to 

quantify the slip of [001] dislocation into (11̅0) for a shear stress applied to glide in (100). 

For an applied shear stress of 𝜎𝑎 the resolved shear stress 𝜎𝑅𝑆𝑆, i.e., the component of 

stress that actually acts on a given slip system can be computed from the following 

expressions. 

 𝜎𝑅𝑆𝑆 ≡  𝑆𝜎𝑎 (5.3) 

 𝑆 = 𝑐𝑜𝑠𝜓 ∙ 𝑐𝑜𝑠𝜆 (5.4) 
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Where cosψ is the direction cosine between the direction of the applied force and the slip 

direction and cosλ is the direction cosine between the direction of the applied force and the 

slip plane normal. For our case the Schmid factor is 0.382, and the corresponding 𝜎𝑅𝑆𝑆  is 

1.51 GPa. On the contrary, for gliding in (100), we expect a Peierls stress above 3.94 GPa 

although this cannot be verified numerically. 

Similar calculations have been repeated starting from a “C” dislocation core configuration, 

i.e. the metastable configuration of the screw dislocation. As previously described, the “C” 

dislocation core configuration has been subjected to quasi-static loading in simple shear. 

The metastable core configuration glides in (010) for a critical stress close to 5.64 GPa. On 

analysis of steps from conjugate minimiser, after the critical stress of 5.64 GPa, the 

dislocation starts to glide in (010) and minimises to a dislocation core similar to type “D”. 

For the case of promoting glide in (100) plane using quasi-static loading of type “C” 

dislocation core, after a critical stress of 6.68 GPa the compact dislocation core dissociates 

into two equal partials separated in {110} similar to the core of type “D”. This 

transformation of core configuration from “C” to “D” on application of stress further 

validates our understating of type “D” core being more stable than of type “C”. 

5.4. Effect of pressure on [001] dislocations     

Dislocation core energies are compared between type “C” and type “D” core configuration, 

over a pressure range of 0-10 GPa. At all pressures it is observed that the dislocation core 

of type “D” is more energy favourable, the values of core energies computed at different 

pressures are tabulated in Table 5.1. The stacking fault (γ) energy for [001] dislocation 

dissociation in {110} is estimated at higher pressure values are 0.0424 eV/Å2 at 4 GPa and 

0.0416 eV/Å2 at 10 GPa. It is worth noticing that from the core configuration analysis, the 

½[001]{110} stacking fault energy seems to be pressure insensitive. This trend is 

nevertheless fully consistent with Durinck et al. (2005) results on [001](110) stacking fault 

energies calculated using DFT simulations showing that for the same pressure range, the 

GSF energy corresponding to [001](110) remains rather constant.  
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Table 5.1. The dislocation core energies computed for [001] screw dislocations arranged 

in quadrupole configuration.  

Pressure (GPa) 
[001] screw dislocation core energy (eV/b) 

Compact core type “C” Dissociated core type “D” 

0 4.1036 3.2251 

2 4.0055 3.0765 

4 4.1164 3.1155 

6 4.2302 3.2958 

8 4.2604 3.4154 

10 4.2332 3.4203 

 

The effect of pressure on the glide of [001] dislocation of type “D” in (010) and {110} slip 

planes are analysed by repeating the quasi-static loading simulations over a pressure range 

of 0 – 10 GPa. Irrespective of the pressure the gliding mechanism remained the same for 

(010) glide, it occurs through the conversion of the dissociated core into a planar core at 

stress of 5.88 GPa at 2 GPa, 6.04 GPa at 4 GPa, 5.82 GPa at 6 GPa, 5.59 GPa at 8 GPa and 

5.32 GPa at 10 GPa. The decrease in critical stress values with increase in pressure exhibit 

a softening effect on [001](010) slip system. With increase in pressure the atoms in the 

system are expected to come closer, resulting in the barrier to transform between type D 

core and planar transient dislocation core decreases. For the case of glide in {110} plane 

the resolved shear stress values at different pressures are 1.6 GPa at 2 GPa, 1.63 GPa at 4 

GPa, 1.61 GPa at 6 GPa, 1.61 GPa at 8 GPa and 1.61 GPa at 10 GPa. This shows that the 

glide in {110} plane is less sensitive to an increase of pressure in the system.  

5.5. Summary 

In this chapter, we characterised the stable configuration for [001] screw dislocations. Two 

possible dislocation cores were proposed, the first type is of a compact non-planar core of 

type “C” and the second is of a dissociated core of two 1/2 [001] partials separated in 

{110} plane by a distance of 10.19 Å. Based on the dislocation separation distance the 

stacking fault energy is computed using equilibrium equation, it compares well with the 

stacking fault energy obtained from the GSF calculations. From the comparison core 
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energy between dislocations of type “C” and “D” extracted from quadrupole arrangement 

of [001] dislocation show that the dissociated core of type “D” exhibits a more stable core. 

The stable core of type “D” was subjected to gradual shear loading to extract information 

on lattice friction in different slip systems. As first for the dislocation to glide in (010) 

plane, at stress values greater than 6.10 GPa the [001] glides as a transient planar core. The 

transient planar core compares well with the planar core of [001] dislocation spread in 

(010) predicted by the PN model (Carrez et al. 2008). With increase in pressure the critical 

stress required to promote glide in (010) plane decreases. This exhibits a softening of 

[001](010) slip system with pressure. For a shear of [001] dislocation in the (001) 

dislocation at stress value greater than 3.94 GPa, the dislocation starts to glide in {110} 

plane. Using the Schmid factor the resolved shear stress to glide in {110} is found to be 

1.51 GPa. The resolved stress required to promote is non-Schmid glide in {110} remains 

less sensitive to increase in pressure in the system.     
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6. Discussion 

6.1. Core configuration at 0 GPa  

At 0 GPa, we identify two stable core configurations for [100] and [001] dislocations both 

are slightly dissociated and planar. Therefore, one can assume some tendency for the 

primary slip systems to be [100](010) and [001](110). Others metastable core 

configurations, in particular for [100] dislocations are also found which may correspond to 

different slip systems. This might be linked to the richness of slip systems observed 

experimentally. It may be useful to add here that the difference in core energies are of a 

few eV/b or even less.   

Qualitatively our calculations are in agreement with experimental observations of 

dislocation slip systems at low pressure. The occurrence of a dissociated core state may 

also explain why [100](010) seems to be without ambiguity observed at high temperature, 

the temperature may stabilise or promote the dissociation although this conclusion has to 

be confirmed by further calculations. For [001] dislocations, recently at low temperature 

conditions using in situ TEM nanomechanical testing, Idrissi et al. (2016), captured the 

motion of [001] dislocations gliding in {110}. At the scales of the observation (timescale 

corresponding to the video capture, and length-scale corresponding to the spatial resolution 

in weak-beam dark-field) glide was observed to be smooth. This behaviour is in agreement 

with the planar configuration of the dislocation core we propose. Our results, show that 

[001] dislocations glide in {110} at low temperature (as our calculations are performed 

using molecular statics) can be activated with a low Peierls stress value of 1.51 GPa. More 

quantitatively, from Figure 1.7 for [001] dislocations, the Peierls stress value of 1.51 GPa 

compares well with the range of CRSS values in intermediate temperature range obtained 

experimentally. In comparison, glide of [100] dislocations in (010) requires a higher 

Peierls stress value of 2.45 GPa and one can imagine that such a slip system will be 

activated at higher temperature.     
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6.2. Locking-unlocking mechanism 

For [001] screw dislocation to glide in (010), our calculations suggest a glide path 

involving different core structures. In particular, we find the occurrence of an 

undissociated planar (010) core configurations. At stresses higher than the Peierls stress, 

the dissociated [001] core adopts some planar transient states (Figure 5.7 and Figure 5.8). 

Since it is impossible to preserve the atomic configurations of these transient planar 

configurations when minimising the energy of the system if no external strain/stress is 

applied, it is suggested that the planar core configurations for [001] dislocation are highly 

unstable. Since the glide may involve high-energy configurations, we confirm a clear 

tendency of the [001] core to glide through a so-called locking–unlocking mechanism 

(Couret and Caillard 1989), as recently described at the atomic scale in hpc metals (Clouet 

et al. 2015). 

Unlike the Peierls mechanism where dislocation jumps between adjacent Peierls valleys, 

this mechanism of locking-unlocking involves high energy, highly mobile, core 

configurations which may skip several Peierls valleys before locking itself back to a 

minimum energy core (Figure 6.1). This suggestion was initially proposed by Carrez et al. 

(2008) based on unrelaxed core energy calculations and the PN model of core spreading. 

One achievement of this work is to bring strong evidences that such a configuration is 

involved in the glide of a straight dislocation. Although a comparison with PN model 

calculations may not be straightforward, it is however interesting to note that the transient 

core of the [001] screw dislocation in (010) does not show any evidence of dissociation. 

Qualitatively, the transient cores are similar to those computed using the PN model 

(Durinck et al. 2007). This suggestion could be verified experimentally by recording a 

jerky motion of dislocations in transmission electron microscope (TEM) for example. A 

detailed study of the transition from the stable configuration to the transient state was 

unfortunately not performed during this work. The details of such a mechanism can be a 

future research direction. 
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Figure 6.1. Comparison of dislocation motion between (a) Peierls mechanism and (b)  

Locking – unlocking mechanism. 

 

6.3. Effects of pressure  

In the range of values encountered in the Earth’s mantle, pressure has a strong influence on 

the electronic structure and bonding of minerals. One could thus expect pressure to affect 

the structure of crystal defects and several examples, including olivine, are now well 

documented (Durinck et al. 2007; Carrez et al. 2015; Hirel et al. 2014; Kraych et al. 

2016b). From the experimental point of view, lattice preferred orientations (LPO) are 

commonly used as a marker for the activation of slip systems and the change of LPO with 

pressure reported (Couvy et al. 2004; Mainprice et al. 2005) is an indication of the 

importance of this effect. Our calculations shed new light on this phenomenon. 

Pressure has significant effects on the stability of the [100] dislocation cores. Below 4 

GPa, the stable core spread in (010) shows local edge displacement of atoms within the 

vicinity of the core perpendicular to (010). This confirms the report by Durinck et al. 

(2005a) of displacements of atoms outward from (010) during [100] rigid-body shear 

observed along the γ-surface energy path. The present calculations confirm the occurrence 

of the dilatation state within the [100] screw core. In the context of the upper Earth’s upper 

mantle, the dilatation state of the core may have strong implications on the activation of 

the [100] slip with respect to an increase in pressure. Indeed, as proposed by Durinck et al. 

(2005a), one effect of pressure is to work against this dilatation state, leading to an intrinsic 

hardening of the glide properties of [100](010). This is validated from the analysis of the 
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most favourable dislocation cores found at higher pressures (4 -10 GPa) conditions, where 

the stable core spread in {021} has a contracted core (Figure 4.16).  

It is useful to highlight that our calculations show that lattice friction for [001] is rather 

insensitive to pressure whereas pressure seems to intrinsically harden [100] slip. Thus we 

provide a further support to the experimental observations.  

6.4. Pencil glide for [100] dislocations 

The slip that occurs on several, potentially non-crystallographic planes is referred as the 

pencil glide. This type of glide mechanism is commonly observed in bcc metals (Taylor 

and Elam 1926; Ngan and Wen 2001) where it has originally been observed and reported 

from the occurrence of wavy slip traces which did not follow the expected dense planes. 

From deformation experiments performed at 1000°C with strain rates between 10-6 and 10-

3 s-1, a composite cross-slip of [100] dislocations on {0kl} has been reported (Raleigh 

1968; Poirier 1975). By computing the evolution of dislocation cores with pressure, we 

also find that [100] glide follow a zig zag path to glide in (01̅1), this glide is composed of 

glides in (001) and {021} (Figure 4.9). Being able to switch from different configurations, 

the screw dislocation in its glide may change glide plane at each step as a response to 

external loading. At a higher level the resulting motion may appear non-crystallographic 

although at the microscopic level it is always rigorously crystallographically controlled. 

As one of the possible mechanisms for the onset of plasticity in metals is the beginning of 

movement of straight screw dislocations by pencil glide, this leads to a possible process 

constraining the deformation process. The model also predicts that pressure should 

enhance cross slip as core does not spread in the slip plane. This can be compared with 

studies of the pencil glide of screw dislocations in bcc iron (Ngan and Wen 2001, Marian 

et al. 2004). In case of iron the pencil glide dominates the regular kink-pair glide 

mechanism at higher strain rates. The Peierls barrier reported in this work could be a 

starting point for future works on describing the complex kink-pair mechanism associated 

with pencil glide in olivine. 
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6.5. Summary 

Prior to this work, dislocation core structures in olivine have been modelled by Julien 

Durinck (Durinck et al. 2007) and Andrew Walker (Walker et al. 2005). The first work 

trying to link the dislocation core structure to the mechanical properties of olivine was the 

one of Durinck based on the PN model. It is obvious that the current work is in the 

continuity of this effort. One of our conclusions in front of the variety of core 

configurations computed here and the complexity of the energy landscape encountered by 

dislocation glide is that such a complexity cannot be captured by the PN approach. Such a 

complexity is challenging to understand the mechanical properties of olivine. An 

interesting hypothesis is to link the variety of core structures to the Si-O covalent bonds, 

qualitatively the spreading of the core is constrained by the tetrahedra, thus the SiO4 

network allows for different spreading. The situation is rather similar to what people 

computes for Si (Pizzagalli et al. 2018). 

In particular, during this work, we only performed static calculations. And the main results 

are limited to core configurations and computation of the amount of lattice friction through 

the evaluation of Peierls stresses. The glide of dislocations is nevertheless driven not only 

by stress but also thermally activated. Our calculations can be viewed as a starting point to 

infer the effect of temperature on kink pairs mechanism of cross slip in Olivine.  
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7. Conclusion 

The main aim of this work was to investigate the structure of dislocation cores, mobility 

and the associated energy landscapes of olivine (forsterite - Mg2SiO4), relying completely 

on atomistic simulations. The focus was on the modelling of [100] and [001] screw 

dislocation cores in Pbnm forsterite crystal structure for the upper mantle pressure range of 

0 - 10 GPa. To perform these simulations on dislocation cores, this work began with the 

implementation of the required force-field model to an open-source classical molecular 

mechanics package. The inference of the study are as follows, 

The core-shell potential library has been implemented to the LAMMPS molecular 

mechanics software as an auxiliary module to model the ionic and semi-ionic materials. 

The energy values and the force fields implemented with Wolf summation electrostatic 

term were compared to the existing core-shell implementation with traditional Ewald 

summation term. Further, the THB1 pair-potential parameters from the present work are 

validated by comparing the existing first-principle results from literature (Durinck et al. 

2005) and were found to be in good agreement. The elastic-constant tensor validates for a 

system in equilibrium and the second derivative of the potential energy terms 

implemented. For validating the parameters of THB1 for systems far from equilibrium, 

like system containing dislocations, the theoretically generalized stacking faults are 

computed. The 1D and 2D γ-surface results are calculated using THB1 parameters. The 

pair-potential from the present implementation showed a well reproduced shape of the 

stacking-fault curves through regular minimisation scheme Case 1. The height of the 

stacking fault energy barriers is reproduced by the minimisation scheme Case 2 where 

cations are allowed to relax freely. 

On successful validation of the implementation was established, the main focus was to 

model line defect properties. Initially, at a pressure of 0 GPa, [100] screw dislocations 

form a planar core with a strong spreading in (010) plane. The stable dislocation exhibits 

dissociation of the core as two strong ½[100] partial dislocations separated by an 

approximate distance of one lattice parameter along [001] direction (i.e., ~7Å). The lattice 

friction against glide of this dislocation in the absence of thermal activation (at 0 K) is 

estimated using quasi-static loading. The Peierls stresses estimated for glide in (010) and 
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(001) are 2.76 GPa and 7 GPa respectively. The effect of pressure on the [100] dislocation 

core is studied, leading to two distinct domains, a low (0 – 4 GPa) and a high-pressure 

range (4 – 10 GPa). Below 4 GPa, the most stable core has a planar configuration spread in 

(010), but increasing pressure tends to stabilize a more compact core (i.e. with no well-

developed dissociation into two partials). This is supported by the evolution of the camel 

hump shaped Peierls barrier computed using NEB calculations. Above 4 GPa, the 

dislocation core structure changes. A core spread in {021} core is identified to be 

energetically more favourable than the other cores and it has two variants due to the mirror 

symmetry of the Pbnm space group of forsterite. This dislocation core glides in {011} 

planes with Peierls stresses of 7 GPa (at P = 4 GPa) to 10 GPa (at P= 10 GPa). These 

Peierls stress values are in good agreement with the results from quasi-static loading 

conditions. From the path traced by the [100] screw dislocation to glide in {011}, we 

observed from the MEP, that the dislocation glides through (1001) and {021} but in the 

same direction. Such a glide of [100] dislocation through several planes has been reported 

experimentally by Raleigh (1968). It is usually called ‘pencil glide’. Our work supports the 

occurrence of pencil glide in olivine at high-pressure conditions.  

This change in stability of the dislocation core with pressure has strong implications on the 

slip system activities. Our calculations suggest that [100](010) is the most favourable slip 

system below 4 GPa, whereas at high pressures, [100]{011} is more favourable.   

For [001] dislocations, two possible dislocation cores are proposed: the first type is a 

compact non-planar type “C” and the second is a dissociated core involving two 1/2[001] 

partials separated, in {110}, by a distance of 10.19Å. Based on the dislocation separation 

distance, the stacking fault energy is computed using equilibrium equation. The results are 

in agreement with the stacking fault energy obtained from the GSF calculations. From the 

comparison of core energy between dislocations of type “C” and “D” extracted from 

quadrupole arrangement of [001] dislocations, we show that the dissociated core of type 

“D” is the most stable. The stability of the core “D” is further validated when a shear stress 

is applied on the core of type “C” to enhance glide in (010) or (100). At stress values 

greater than the critical stress, the dislocation transforms into dissociated core of type “D” 

planar in {110}.     
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The stable core of type “D” is subjected to gradual shear loading to extract information on 

lattice friction in different planes. For a shear promoting glide of [001] dislocation in 

(100), we find that the dislocation starts to glide in {110} at a stress value greater than 3.94 

GPa Based on Schmid’s law, the resolved shear stress to trigger glide in {110} is found to 

be 1.51 GPa. The values of resolved stress to glide in {110} remains insensitive to increase 

in hydrostatic pressure in the system.      

The [001] screw dislocation converts into a transient planar core at stress values greater 

than 6.10 GPa to glide in (010) plane.  

The dislocation motion is associated with a transformation from a stable, rather immobile, 

core to a glissile core of higher energy configuration. This high-energy core may glide over 

several Peierls valleys before locking itself back in a particular one transforming back to a 

stable core. Based on such a jerky motion, it is proposed that dislocation glide follows a 

locking-unlocking mechanism as reported in hcp crystals (Caillard et al. 1993; Clouet et al. 

2015). As predicted by the PN model (Carrez et al. 2008), the transient planar core 

compares well with the planar core of [001] dislocation spread in (010). The critical stress 

required to promote glide in (010) plane is indirectly proportional to pressure and further 

softens the [001](010) slip system.   

Thus in this work, a semi-empirical potential model to model forsterite and its other high 

pressure polymorphs is implemented. The THB1 force field parameters for forsterite are 

tested and validated with the implementation. The properties of [100] and [001] screw 

dislocation cores are analysed and the results were extended for a pressure range of 0 – 10 

GPa. An alternative to Peierls mechanism is proposed for glide of [001] screw dislocation 

in (010) via locking-unlocking mechanism. An experimental verification of such 

mechanism could be interesting. The effects of pressure and stress are studied in this work 

with the help of molecular static calculations. The understanding of the dislocation core 

structures computed in this work is intriguing and can be considered as a good starting 

point for future research. 
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bcc   Body centred cubic lattice 

CG    Conjugate Gradient  

CPO   Crystal Preferred Orientation 

DD map  Differential Displacement map 

DFT   Density Function Theory   

EAM    Embedded Atom Method   

Fp   Ferropericlase  

GSF   Generalized Stacking Fault  

GULP   General Utility Lattice Program 

hcp    Hexagonal close packed lattice 

LAMMPS  Large-scale Atomic/Molecular Massively Parallel Simulator.  

LPO   Lattice Preferred Orientation 

MEP    Minimum Energy Path  

NEB    Nudged Elastic Band method 

PN model  Peierls-Nabarro model  

VP    Peierls potential  

PREM   Preliminary Reference Earth Model   

Pv   Perovskite 

SD    Steepest Descent  

TB    Tight-Binding method 

TEM    Transmission Electron Microscopy  
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