
SHANGHAI INSTITUTE OF OPTICS AND FINE

MECHANICS,
UNIVERSITY OF CHINESE ACADEMY OF SCIENCES

AND

LABORATOIRE PHLAM,
UNIVERSITÉ LILLE 1, FRANCE

DOCTORAL THESIS

Quantum Temporal Imaging

Author:
Junheng SHI

Supervisors:
Prof. Shensheng HAN

Prof. Mikhail I. KOLOBOV

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

August, 2018





iii

Declaration of Authorship
I, Junheng SHI, declare that this thesis titled, “Quantum Temporal Imaging” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:





v
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Quantum Temporal Imaging

by Junheng SHI

Temporal imaging, like its spatial counterpart, is rooted in the combination of a sim-
ple and universal concept - linear system, or even a shift-invariant linear system with
an useful tool - Fourier analysis. The first aim of this thesis to show this nature of
temporal imaging by the operator algebra we developed. That a variety of temporal
imaging systems are just combinations of a few operations.

However, as an imaging theory, gaining a perfect understanding of its nature is only
half of the journey, the final purpose should be to serve an application. For this
thesis, this purpose is to explore the application of temporal imaging in quantum
domains. Because despite the popularity of classical temporal imaging with various
applications such as in ultrafast signal processing, applying temporal imaging to
manipulate nonclassical light is far from being well-established. There are two major
jobs to be done.

First, to expand its territory such as finding new applications for existing techniques
or discovering new schemes with better performance for applications needed. For
this purpose, we try to use the existing four-wave mixing based time lenses on
nonclassical light such as broadband squeezed light to see whether the squeezing
property is still preserved. And we propose a new time lens based on counter-
propagating Bragg-scattering, we show that it has better performances than other
nonlinear process based time lenses.

Second, to establish an evaluation system to accurately, or even quantitatively assess
the performances of existing schemes, in this particular case, different types of time
lens and to study the aberrations that deteriorate the performances. For this purpose,
we use the impulse response of a linear system as a tool to evaluate the resolutions
of various time lenses for quantum temporal imaging and we study the restrictions
of quantum temporal imaging on resolution and quantum field of view due to the
preservation of quantum properties and phase matching conditions.
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Chapter 1

Introduction

1.1 Organization of the Thesis

In Chapter 2, we show mathematically the concept of space-time duality by deriv-
ing the equations for Fresnel diffraction and Group velocity dispersion. Then we
develop the operator algebra for temporal imaging. We define four operators and
derive the commutation relations between each other. After that, we use this ap-
proach to obtain various classical temporal imaging systems.

In chapter 3, we first give the quantum treatment of four-wave mixing (FWM) pro-
cesses including PC FWM and PP FWM and counter-propagating FWM. Then we
visit the multimode squeezing, starting by reviewing the concepts of single-mode
coherent state and squeezed state and by deriving the temporal fluctuation of light
we show the presence of shot noise and how to produce broadband squeezed light.
In the end, we combine all the preparations to calculate the effect of different FWM
time lenses on broadband squeezed light.

Chapter 4 is devoted to examine the resolution and field of view (FOV) in quan-
tum temporal imaging. We begin by obtaining the sum-frequency generation (SFG)
time lens because it’s the main tool to show the causes of aberrations. Based on the
concept of linear system, we derive the impulse response and the definition of reso-
lution for temporal imaging before we use them to evaluate a variety of time lenses
including a brand new scheme with a promise of better performance. Finally we
examine the restrictions on quantum temporal imaging including the restriction on
the pump bandwidth and on resolution and FOV.

Chapter 5 focuses on how quantum temporal imaging scheme would affect the non-
classical property of single photons produced by single-photo source by comparing
the normalized second order correlation function and squeezing spectrum.

1.2 Contributors of the Work

The work presented in this thesis is done by the author himself under the supervi-
sion of Prof. Mikhail I. Kolobov, Dr. Giuseppe Patera from PhLAM, Université Lille
1 and Prof. Shensheng Han from Shanghai Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences except for the topic on restrictions on quantum tem-
poral imaging which was done in collaboration also with Dr. Dmitri B. Horoshko.
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Chapter 2

Classical Temporal Imaging

2.1 Space-Time Duality

The development of optics goes through the development of physics itself. Start-
ing from Newton’s Corpuscular theory of light, to the wave theory by Huygens
and Fresnel, to electromagnetic theory which was inspired by Faraday and estab-
lished by Maxwell, reaching the land of wave-particle duality thanks to the early
founders of quantum mechanics, every time optics moves forward, it pushes for-
ward the boundary of physics. But it does not mean that the old territories should
be deserted and forgotten. The wave theory of light based on Fresnel’s works, shone
in the nineteenth century, even in the age when the kingdom of classical optics is
dominated by Maxwell’s equations, combined with Fourier analysis used for pos-
sessing signals, could sprout a new branch – Fourier optics[23]. That is because
unless the permittivity of the medium a wave passes depends on position or the size
of the confinement in space is comparable to the wavelength of a wave which induce
coupling between the various components of the electric field, otherwise what we
obtained from Maxwell’s equations remains a scalar theory, in other words, a linear
system. For a physical phenomena with the property of linearity, its physical quan-
tities could be modeled as system inputs (called stimuli) and system outputs (called
response) and the response resulted from many stimuli equals to the sum of the re-
sponses resulted from each individual stimuli. Needless to say, Fourier analysis is a
perfect tool to deal with linear system since complex-exponential functions are the
eigenfunctions for the Linear Shift-Invariant (LSI) system such as Fresnel diffraction.
It is thanks to this tool that enables the characterization and manipulation of spatial
wavefront and Fourier spectrum including scaling, Fourier transform and filtering
etc.

On the other side, the invention and development of laser in the late twentieth cen-
tury gave birth to the short and ultrashort pulse with many advantages such as high
peak power, short duration and long coherence time. Its wide ranges of applications
in physics pushes people to find better ways of processing it[11, 13, 22, 55, 60, 65, 67,
72, 73] .

The stage had been set and the story began with the discovery of space-time duality.

2.1.1 Fresnel Diffraction

We skip the derivation from Maxwell’s equations to Fresnel diffraction which con-
tains a series of approximations. The only approximation should not be neglected is
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the paraxial approximation.

When a light wave is traveling in free space (diffraction) and its frequency is inde-
pendent of its position, it satisfy the Helmholtz equation

(∇2 + k2)E(x, y, z) = 0 (2.1)

where the wavenumber k = 2π
λ , z axis is the direction of the propagation, λ is the

wavelength.

According to the paraxial approximation, we could separate the fast-varying expo-
nential factor

E(x, y, z) = E(x, y, z)eikz (2.2)

where E(x, y, z) is the slowly varying envelope respect to z axis.

Put Eq.(2.2) back to Eq.(2.1) and neglect the term ∂2

∂z2 E(x, y, z) according to the parax-
ial approximation, we could obtain

∂

∂z
E(x, y, z)− i

2k

(
∂2

∂x2 +
∂2

∂y2

)
E(x, y, z) = 0 (2.3)

which is called Paraxial Helmholtz equation.

Fourier transform Eq.(2.3) with respect to x and y (x → kx ; y→ ky) we obtain

Ẽ(ξ, kx, ky) = Ẽ(0, kx, ky)e−i ξ
2k (k

2
x+k2

y) (2.4)

where the propagation distance ξ = z− z0, z0 is the starting location of the propaga-
tion.

As you could see, Fresnel diffraction is equivalent to multiplying the initial angular
spectrum with a quadratic phase factor with respect to spatial frequency.

2.1.2 Group Velocity Dispersion

Now let’s turn to Group Velocity Dispersion(GVD) under the quasi-monochromatic
approximation.

A linear-polarized plane wave is presumed to pass through a dispersive medium
along z-axis. The electric field in x and y axes do not depend on z and t and therefore
could be neglected. It satisfies the wave function.

(
∂2

∂z2 −
1
c2

∂2

∂t2 )E(z, t) = µ0
∂2

∂t2 PL(z, t) (2.5)

PL(z, t) = ε0

∫ ∞

0
dt′ R(1)(t′)E(z, t− t′) (2.6)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, R(1)(t) is the
response function of the medium, so for t′ < 0, it equals to zero. Note on right of the
equal sign there is only the linear polarization term PL(z, t) in this case.

Fourier transform Eq.(2.5) and Eq.(2.6) combined with respect to t (t→ ω) we obtain

(
∂2

∂z2 +
ω2

c2 )Ẽ(z, ω) = −ω2

c2 χ(1)(ω)Ẽ(z, ω) (2.7)
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where the linear susceptibility

χ(1)(ω) =
∫ +∞

0
dt R(1)(t)eiωt (2.8)

In this way we obtain the Helmholtz equation(
∂2

∂z2 + k2(ω)

)
Ẽ(z, ω) = 0 (2.9)

where the wavenumber

k2(ω) =
ω2ε(ω)

c2 (2.10)

ε(ω) = 1 + χ(1)(ω) (2.11)

note that the imaginary part of ε(ω) is absorption coefficient which we do not take
into consideration now.

After we obtain the Helmholtz equation, there are two steps to take. The First step
is to separate the fast-varying exponential factor. Similar to the paraxial approxima-
tion, we presume that the frequency is narrowly distributed with its center at ω0.

E(z, t) =
1
2

[
E(z, t)e−iω0t+ik0z + c.c

]
(2.12)

where E(z, t) is the slowly varying envelope, k0 = k(ω0). For simplicity, we only
consider the positive frequency.

We also need the slowly varying envelope in frequency domain:

Ẽ(z, ω) =
∫ dt√

2π
E(z, t)eiωt

=
1
2

eik0z
∫ dt√

2π
E(z, t)eiΩt

=
1
2

eik0zẼ(z, Ω)

(2.13)

where Ω = ω−ω0.

Put Eq.(2.13) into Eq.(2.9) we obtain

∂2

∂z2 Ẽ(z, Ω) + 2ik0
∂

∂z
Ẽ(z, Ω) + (k2(ω)− k2

0)Ẽ(z, Ω) = 0 (2.14)

With the approximations that k2(ω) − k2
0 ≈ 2k0(k(ω) − k0) and

∣∣∣ ∂

∂z
Ẽ(z, Ω)

∣∣∣ �
|k0Ẽ(z, Ω)|, we neglect

∂2

∂z2 Ẽ(z, Ω) and obtain

∂

∂z
Ẽ(z, Ω)− i(k(ω)− k0)Ẽ(z, Ω) = 0 (2.15)
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The second step is to expand k(ω) with respect to ω0:

k(ω) = k0 + k′0Ω +
1
2

k′′0 Ω2 + ... (2.16)

where k′0 = ∂k(ω)
∂ω

∣∣∣
ω=ω0

, k′′0 = ∂2k(ω)
∂ω2

∣∣∣
ω=ω0

. Note we only expand k(ω) to the second

order here.

Put the expansion Eq.(2.16) into Eq.(2.15) we obtain

∂

∂z
Ẽ(z, Ω)− ik′0Ω Ẽ(z, Ω)− i

k′′0
2

Ω2 Ẽ(z, Ω) = 0 (2.17)

Using the inverse Fourier transform Eq.(2.17) (Ω→ t) we obtain

∂

∂z
E(z, t) + k′0

∂

∂t
E(z, t) + i

k′′0
2

∂2

∂t2 E(z, t) = 0 (2.18)

To get rid of the second term, we switch to the traveling-wave coordinate:

τ = (t− t0)− k′0(z− z0) (2.19)
ξ = z− z0 (2.20)

where t0 and z0 set the location of τ = 0 within a waveform, mostly, at the center of
a waveform.

Through the transformation of the coordinates:

∂

∂z
=

∂

∂τ
(−k′0) +

∂

∂ξ
(2.21)

∂

∂t
=

∂

∂τ
(2.22)

Eq.(2.18) becomes
∂

∂ξ
E(ξ, τ) +

ik′′0
2

∂2

∂τ2 E(ξ, τ) = 0 (2.23)

From the coordinate transformation (2.19) it is easy to see that k′0 is the reciprocal
of the group velocity. This is more evident when k(ω) is only expanded to the first
order, we could obtain

E(ξ, τ) = E(0, τ) (2.24)

under the traveling-wave coordinate, the waveform is not dependent on ξ because
it is propagating with the group velocity inside the medium.

Since k′0 is regarded as the reciprocal of the group velocity, k′′0 could be regarded
as the derivative of group velocity on ω, which is called GVD. Multiplying k′′0 with
the propagation distance we obtain the total delay of group velocity, which is called
Group Delay Dispersion (GDD), commonly denoted as D.

With these in mind, we Fourier transform Eq.(2.23) (τ → Ω) once more and obtain

∂

∂ξ
Ẽ(ξ, Ω)− ik′′0

2
Ω2Ẽ(ξ, τ) = 0 (2.25)
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whose solution is
Ẽ(ξ, Ω) = Ẽ(0, Ω)ei D

2 Ω2
(2.26)

2.1.3 Space-Time Duality

By comparing Eq.(2.3) and Eq.(2.23) we discover that the spatial diffraction equa-
tion under the paraxial approximation shares similar mathematical form with the
temporal dispersion equation under the quasi-monochromatic approximation. This
similarity opens the gate for connecting the manipulation of spatial wavefront which
is the surface of identical phase of a spatial wave and temporal waveform which is
the shape of a wave in temporal domain. Wavefront is a distribution over spatial
coordinates while waveform is a distribution over time. When the spatial wave-
front and the temporal waveform all propagate along the z-axis, the two degrees of
freedom in space x and y of the wavefront corresponds to the degree of freedom in
time t of the waveform, in other words, the wavefront is analogous to the waveform
while the angular spectrum is analogous to the spectrum. This is what is called the
space-time duality.

Space-time duality does not originate from Fourier optics, but a technique named
pulse compression which is commonly used in radar. In 1960, Klauder et al. pro-
posed the concept of chirp radar[30], which could be used to compress at the re-
ceiver a long-duration signal emitted, solving the problem that increasing the dura-
tion of the signal could increase the SNR, but decrease the resolution. The basic idea
behind pulse compression is to provide different frequency parts of the signal differ-
ent group velocity compensations according to its frequency so all frequency parts
could reach the receiver at the same time, thus obtaining a short-duration signal. It
was such a simple yet useful idea. People soon seek its application for compress-
ing light pulse. They tried many ways to achieve the dispersion, for example, the
LiNbO2 phase modulator [19] which was used in the beginning, a pair of diffraction
gratings [69] and a cell containing Rb vapor said to have group velocity dispersion
approximately 1000 times larger than the nonresonant methods [24], until fiber came
to use[25].

Nevertheless we know that Fresnel diffraction is not the only building block for
wavefront manipulation in Fourier optics, the other one is lens which provides a
quadratic phase modulation in real space. As we have found the temporal coun-
terpart for Fresnel diffraction, now we have to find or construct the counterpart for
spatial lens, so called time lens. We need this time lens to provide the waveform a
quadratic phase modulation in time. These two building blocks enable us to char-
acterize and manipulate waveform and spectrum of a light pulse–Temporal Imaging.

Spatial Imaging Temporal Imaging

Diffraction: e−i ξ
2k (k

2
x+k2

y) Dispersion: ei D
2 Ω2

Spatial Lens: e−i k
2ξ (x2+y2) Time Lens: ei 1

2D τ2

TABLE 2.1: Space-Time Duality
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2.2 Operator Algebra for Temporal Imaging

Before we look into how temporal imaging works, how dispersion and time lens
can build basic temporal imaging systems such as Fraunhofer dispersion, single lens
temporal imaging system etc, we develop a mathematic tool based on the operator
algebra for Fourier optics first proposed by Nazarathy and Shamir in 1980 [54] and
illustrated in detail by Goodman in his book Introduction to Fourier Optics [23].

The operator algebra does not only simplify, but also clarify the calculations in
Fourier optics. As we know, calculations like Fresnel diffraction and Fourier trans-
form include a lot of integrations. It’s quite easy to be lost in these back-and-forth
integrations, not easy to guess the functionality of the whole imaging system. Op-
erator algebra on the other hand, concludes all calculations to three basic operators,
each defined by its functionality, scaling, Fourier transform and multiplying by a
quadratic phase. So our job is merely reducing the number of the operators describ-
ing a system to the least by exchanging the positions of the operators to cancel each
other. Then the overall effect of the system is shown by the operators left.

As a matter of fact, operator algebra suits temporal imaging even better because
temporal imaging is one-dimensional and basically only deals with coherent light.
Also Gaussian shape is quite common in temporal light pulse. Gaussian shape could
be regarded as a special case of quadratic phase multiplication operator by letting
the coefficient be imaginary.

2.2.1 Definitions of Operators

First we have to define the operators. There are four in total, three of them are basic.
An operator could act on a waveform or a spectrum, so here we use general notations
such as f (x) and g(x) where x could be t or Ω. More often, they are denoted as f
and g for convenience.

Scaling operator V

The definition of scaling operator is

V [s]g(x) = g(sx) (2.27)

It serves the functionality of scaling a waveform or a spectrum without changing its
shape. It has following properties:

V [s1]V [s2] = V [s2]V [s1] = V [s1s2] (2.28)

V−1[s] = V [1
s
] (2.29)

V [s] f g = (V [s] f )V [s]g (2.30)
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Fourier transform operator F

As the name indicates, the functionality of this operator is to Fourier transform,
hence its definition:

Fg(x) =
∫ dx√

2π
eiyxg(x) (2.31)

And its inverse operator

F−1g(x) =
∫ dx√

2π
e−iyxg(x)

=
∫ dx√

2π
ei(−y)xg(x)

= V [−1]Fg(x)

(2.32)

which indicates the inverse Fourier transform operator could be decomposed into
scaling operator and Fourier transform operator.

It also has the property that

F ( f g) = (F f ) ∗ Fg (2.33)

according to the convolution theorem.

Here the convolution is defined as

f (x) ∗ g(x) =
∫ dx′√

2π
f (x− x′)g(x′) (2.34)

Quadratic phase multiplication operator Q

This operator is the essence of Fourier optics as well as in temporal imaging. As
could be seen in Table 2.1, Fresnel diffraction or lens, its true nature is to multiply a
quadratic phase in the corresponding domain. For this reason we define:

Q[a]g(x) = ei a
2 x2

g(x) (2.35)

And it has following properties:

Q[a1]Q[a2] = Q[a2]Q[a1] = Q[a1 + a2] (2.36)

Q−1[a] = Q[−a] (2.37)
Q[a] f g = fQ[a]g (2.38)

Propagation operator P

Except for these three basic operators, there is one more, in [54] it was named the
Fresnel free-space propagation operator, to describe Fresnel diffraction in free space.
In temporal imaging, light wave propagates in a dispersive medium instead. So it is
named propagation operator.

Nevertheless this operator has another function. As we know, the effect of free
space propagation, what we called Fresnel diffraction in real space, is just another
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quadratic phase multiplication in Fourier space. The effect of lens, what we consid-
ered quadratic phase multiplication in real space, could also be regarded as a Fresnel
diffraction in Fourier space. So this operator is merely the quadratic phase multipli-
cation operator in the conjugate domain, if we keep in mind the duality of real space
and Fourier space.

In spatial Fourier optics, however, the two effects described above can not be united
in one operator. The Fresnel free-space propagation operator can not be used to de-
scribe propagation in spatial lens in Fourier space. Fortunately for temporal imag-
ing, there is no such limitation. As we shall see, propagation operator works for
propagation in dispersive medium as well as in time lens. But first, they are defined
separately:

For propagation in dispersive medium in temporal domain:

P1[D] = F−1Q[D]F (2.39)

For propagation in time lens in frequency domain:

P2[D] = FQ[D]F−1 (2.40)

They are identical because

P2[D]

=FQ[D]F−1

=FQ[D]V [−1]F
=FV [−1]Q[D]F
=F−1Q[D]F
=P1[D]

(2.41)

which indicates the duality of time and frequency.

The other way to decompose propagation operator is use analogous form as Fresnel
diffraction. First we obtain the Fourier transform of quadratic phase exp{i D

2 Ω2}:
∫ dΩ√

2π
e−iΩteiDΩ2/2 =

eiπ/4
√

D
e−i t2

2D (2.42)

then use the convolution theorem:

P [D] f1(t1) =
eiπ/4
√

D

∫ dt1√
2π

e−i (t2−t1)
2

2D f1(t1)

=
eiπ/4
√

D
e−i

t22
2D

∫ dt1√
2π

ei t2
D t1{e−i

t21
2D f1(t1)}

=
eiπ/4
√

D
Q
[
− 1

D

]
V
[

1
D

]
FQ

[
− 1

D

]
f1(t1)

(2.43)

Propagation operator has the property that

P [D1]P [D2] = P [D2]P [D1] = P [D1 + D2] (2.44)
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because

P [D1]P [D2] = F−1Q[D1]FF−1Q[D2]F
= F−1Q[D1]Q[D2]F
= F−1Q[D1 + D2]F
= P [D1 + D2]

(2.45)

So its inverse operator is
P−1[D] = P [−D] (2.46)

2.2.2 Commutation Relations between the Operators

Since the basic idea of operator calculation is to commute operators so that we could
cancel them as much as possible, we need the commutation relations for all operators
as shown in Table 2.2. For convenience, F−1 is also included in the table.

V F F−1 Q P
V V [s1]V [s2] V [s]F V [s]F−1 V [s]Q[a] V [s]P [D]

= V [s1s2] =
1
|s| FV

[
1
s

]
=

1
|s| F

−1V
[

1
s

]
= Q[as2]V [s] = P

[
D
s2

]
V [s]

F FV [s] FF FQ[D] FP [D]

=
1
|s| V

[
1
s

]
F = V [−1] 1 = P [D]F = Q[D]F

F−1 F−1V [s] F−1F−1 F−1Q[D] F−1P [D]

=
1
|s| V

[
1
s

]
F−1 1 = V [−1] = P [D]F−1 = Q[D]F−1

Q Q[a]V [s] Q[D]F Q[D]F−1 Q[a1]Q[a2] Q[a]P [b] =

= V [s]Q
[ a

s2

]
= FP [D] = F−1P [D] = Q[a1 + a2]

√
1− abP

[
b

1− ab

]
Q[a− a2b]V [1− ab]

P P [D]V [s] P [D]F P [D]F−1 P [b]Q[a] = P [D1]P [D2]

= V [s]P [Ds2] = FQ[D] = F−1Q[D]

√
1

1− ab
Q
[

a
1− ab

]
= P [D1 + D2]

V
[

1
1− ab

]
P
[

b
1− ab

]
TABLE 2.2: Commutation relations between operators

In the following there are proofs for some major commutation relations, so the read-
ers could understand and familiarize themselves with rules for calculation.

Commutation relation between V and F

This derived from the similarity theorem for Fourier transform:

FV [s] = 1
|s|V

[
1
s

]
F (2.47)

Commutation relation between V and Q

V [s]Q[a] = Q[as2]V [s] (2.48)
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because

V [s]Q[a]g(x) =V [s]
(

ei a
2 x2

g(x)
)

=ei as2
2 x2

g(sx)

For the reverse situation, we have

Q[a]V [s] = V [s]Q
[ a

s2

]
(2.49)

because

Q[a]V [s]g(x) =ei a
2 x2

g(sx)

=ei 1
2 (a/s2)(sx)2

g(sx)

=V [s]ei 1
2 (a/s2)x2

g(x)

Commutation relation between V and P

The proof is

V [s]P [D] =V [s]F−1Q[D]F

=
1
|s|F

−1V
[

1
s

]
Q[D]F

=
1
|s|F

−1Q
[

D
s2

]
V
[

1
s

]
F

=
1
|s|F

−1Q
[

D
s2

]
|s|FV [s]

=P
[

D
s2

]
V [s]

(2.50)

Commutation relation between Q, F and P

Unfortunately there is no direct commutation relations between any two among
these three operators, and normally we don’t commute P directly, we decompose
it into the combination of three basic operators first.

It could be derived from Eq.(2.39) that:

P [D] = F−1Q[D]F
⇒FP [D] = FF−1Q[D]F
⇒FP [D] = Q[D]F

(2.51)

And from Eq.(2.40) that:

P [D] = FQ[D]F−1

⇒P [D]F = FQ[D]F−1F
⇒P [D]F = FQ[D]

(2.52)
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The commutation relation between Q and P (actually it would include a V on the
right side of the equal sign) is not apparent. To obtain it we need to use the result of
the single lens scaling system Eq. (2.58). Then by taking advantage of Eq. (2.46), the
propagation operator on the left or right side of such combination as PQP could be
canceled by adding an inverse propagation operator depending on what we want.

2.3 Classical Temporal Imaging Systems

After we learned about the operator algebra for temporal imaging, now we use it to
investigate specific classical temporal imaging systems, Fraunhofer dispersion sys-
tem, single-lens temporal imaging system and 2-f system. These three systems serve
as building blocks for compound temporal imaging systems.

2.3.1 Fraunhofer Dispersion System

Fresnel 
Diffraction

Fraunhofer
Diffraction

Δx

Δz>>kΔx2

(A) One-dimensional Fraunhofer diffraction system.
∆z is the propagation distance, k is the wavenumber, ∆x is the size of the

aperture

Δτ

|D|>>Δτ2τ τ

Fraunhofer
Dispersion

(B) Fraunhofer dispersion system.
D is the GDD introduced by the dispersive medium, ∆τ is the temporal width of

the input waveform.

FIGURE 2.1: Comparison between Fraunhofer diffraction and Fraun-
hofer dispersion.

Fraunhofer dispersion system could be the most simple temporal imaging system.
It only requires a dispersive medium and is capable of doing Fourier transform.

Apparently the counterpart for Fraunhofer dispersion system is Fraunhofer diffrac-
tion system, or far-field diffraction. It is an approximation of the Fresnel diffraction
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under the condition that the propagation distance of the wavefront is much larger
than the size of the transversal wavefront distribution squared and multiplied by
the wavenumber while mostly the size of transversal wavefront distribution is de-
termined by the aperture.

For temporal imaging, this condition means that the GDD introduced to the light
wave after the propagation inside the dispersive medium is much larger than the
width of the waveform squared. Because of that, the first operatorQ

[
− 1

D

]
in Eq.(2.43)

could be neglected.

Eout(τ) =
eiπ/4
√

D
Q
[
− 1

D

]
V
[

1
D

]
FQ

[
− 1

D

]
Ein(τ

′)

≈ eiπ/4
√

D
Q
[
− 1

D

]
V
[

1
D

]
FEin(τ

′)

=
eiπ/4
√

D
e−i τ2

2D Ẽin

( τ

D

) (2.53)

As you could see, the output waveform of the Fraunhofer dispersion system is the
Fourier transform of the input waveform.

2.3.2 Single-lens Temporal Imaging System

Different from Fraunhofer dispersion system, all other temporal imaging systems
include a time lens which is analogous to spatial lens. The most typical one is the
single-lens temporal imaging system consisting of two dispersive media and a time
lens as shown in Figure 2.2b.

zs

zi
f

(A) Single-lens spatial imaging system.
zs is the distance between the object and the lens, zi is the distance between

the lens and the image, f is the focal distance of the lens.

τ τDispersion Ds Dispersion Di
Time
Lens Df

(B) Single-lens temporal imaging system.
Ds is the GDD of the first dispersive medium, Di is the GDD of the second disper-

sive medium, D f is the focal GDD of the time lens.

FIGURE 2.2: Comparison between the single-lens spatial and tempo-
ral imaging systems
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This is undoubtedly analogous to the single-lens spatial imaging system shown in
Figure 2.2a, under the condition that

1
zs

+
1
zi

=
1
f

(2.54)

M = − zi

zs
(2.55)

the image is then a scaled and inverted version of the object with the scaling factor
M.

To accomplish the same scaling effect for temporal imaging, we need the time lens
to introduce a quadratic phase exp{i 1

D f
τ2}, where D f is called the focal GDD of time

lens, analogous to the focal distance of spatial lens. As a result, if the condition

1
Ds

+
1

Di
=

1
D f

(2.56)

M = −Di

Ds
(2.57)

is satisfied, we could calculate the total effect of such a system in temporal domain:

Ttemporal =P [Di]Q
[

1
D f

]
P [Ds]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
FQ

[
− 1

Di

]
Q
[

1
D f

]
Q
[
− 1

Ds

]
V
[

1
Ds

]
FQ

[
− 1

Ds

]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
FQ

[
1

D f
− 1

Ds
− 1

Di

]
V
[

1
Ds

]
FQ

[
− 1

Ds

]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
FV

[
1

Ds

]
FQ

[
− 1

Ds

]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
|Ds|V [Ds]FFQ

[
− 1

Ds

]

=

√
− D2

s
DsDi

Q
[
− 1

Di

]
V
[
−Ds

Di

]
Q
[
− 1

Ds

]
=

1√
M
Q
[
− 1

Di

]
V
[

1
M

]
Q
[
− 1

Ds

]
=

1√
M
Q
[
− 1

Di

]
Q
[
− 1

M2Ds

]
V
[

1
M

]
=

1√
M
Q
[

1
MD f

]
V
[

1
M

]
(2.58)
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The output waveform is

Eout(τ) =Ttemporal Ein(τ
′)

=
1√
M
Q
[

1
MD f

]
V
[

1
M

]
Ein(τ)

=
1√
M

e
i τ2

2MD f Ein

( τ

M

) (2.59)

By adjusting the scaling factor M we are now able to control the output waveform
as a magnification or compression of the input waveform.

There are three points to be further discussed.

First, in spatial imaging, since zs and zi are all positive, M is always negative, which
means that the real image is always the reversed version of the object. In temporal
imaging, however, such restriction does not exist. The GDD introduced by the dis-
persive medium could either be positive or negative, resulting in time inverting or
non-inverting responses of the input waveform. The system with inverting response
is named time reversal.

Second, except for the scaling effect that we desired, Eq.(2.59) shows that there is
an additional phase term exp{i 1

2MD f
τ2} which introduces unwanted aberration. It

could also be seen as the effect of a time lens with focal GDD equals to MD f . There
are several measures to get rid of this residual phase such as adding another time
lens [76]. Otherwise this temporal imaging system is only valid for magnification
where this residual phase could be neglected. Compression could be achieved by
combining two 2-f systems [17].

Ω Ω
Dispersion Df

Time
Lens Di

Time
Lens Ds

FIGURE 2.3: Spectral Imaging system.
Ds is the focal GDD of the first time lens, Di is the focal GDD of the

second time lens, D f is the GDD of the dispersive medium.

Third, due to the equivalence of time and frequency, shown in Eq.(2.41), we could
also build a spectral scaling system as in Figure 2.3 obtained by replacing dispersive
medium with time lens and vice versa. Since we only care about what happened in
the frequency domain, we use propagation operatorP [ 1

D ] instead of quadratic phase
multiplication operator Q[ 1

D ] to describe the effect of the time lens in this case.

Under the condition that

D f = Ds + Di (2.60)

M′ = − 1/Di

1/Ds
(2.61)



2.3. Classical Temporal Imaging Systems 17

we obtain

Tspectral =P
[

1
Di

]
Q[D f ]P

[
1

Ds

]
=
√
−DsDiQ [−Di]V [Di]FQ [−Di]Q

[
D f
]
Q [Ds]V [Ds]FQ [−Ds]

=
√
−DsDiQ [−Di]V [Di]FV [Ds]FQ [−Ds]

=
√
−DsDiQ [−Di]V [Di]

1
|Ds|
V
[

1
Ds

]
FFQ [−Ds]

=
1√
M′
Q [−Di]V

[
1

M′

]
Q [−Ds]

=
1√
M′
Q [−Di]Q

[
− Ds

M′2

]
V
[

1
M′

]
=

1√
M′
Q
[

D f

M′

]
V
[

1
M′

]

(2.62)

The output spectrum is

Ẽout(Ω) =Tspectral Ẽin(Ω)

=
1√
M′
Q
[

D f

M′

]
V
[

1
M′

]
Ẽin(Ω)

=
1√
M′

ei
D f

2M′Ω
2
Ẽin

(
Ω
M′

) (2.63)

similar to Eq.(2.59) that should only be used for spectral magnification.

2.3.3 Temporal 2-f system

f
f f

(A) Spatial 2-f system.

τ

Ω

τ

Ω

Dispersion D Dispersion D
Time
Lens D

(B) Temporal 2-f system.

FIGURE 2.4: Comparison between spatial and temporal 2-f systems
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If Ds, D f and Di are all set to be equal in the above single-lens temporal imaging sys-
tem, it becomes the temporal 2-f system, which serves the functionality of Fourier
transform. Unlike the Fraunhofer dispersion system which only Fourier transform
the waveform into spectrum, temporal 2-f system also Fourier transform the spec-
trum into the waveform.

Let’s first calculate its effect in frequency domain:

Tspectral =Q[D]P
[

1
D

]
Q[D]

=eiπ/4
√

D Q[D]Q[−D]V [D]FQ[−D]Q[D]

=eiπ/4
√

D V [D]F
=eiπ/4

√
D V [D]V [−1]F−1

=eiπ/4
√

D V [−D]F−1

(2.64)

So the output spectrum is

Ẽout(Ω) =Tspectral Ẽin(Ω′)

=eiπ/4
√

D V [−D]F−1Ẽin(Ω′)

=eiπ/4
√

DEin(−DΩ)

(2.65)

which carries the shape of the input waveform.

Then let’s check its effect in temporal domain:

Ttemporal =F−1TspectralF
=eiπ/4

√
D F−1V [−D]F−1F

=eiπ/4
√

D
1
|D|V

[
− 1

D

]
F−1

=eiπ/4 1√
D
V
[
− 1

D

]
V [−1]F

=eiπ/4 1√
D
V
[

1
D

]
F

(2.66)

So the output waveform is

Eout(τ) =TtemporalEin(τ
′)

=
eiπ/4
√

D
V
[

1
D

]
FEin(τ

′)

=
eiπ/4
√

D
Ẽin

( τ

D

) (2.67)

which carries the shape of the input spectrum.

Temporal 2-f system shows great prospect in ultrafast signal processing as it enables
the single-shot measurement of ultrafast, arbitrary-shaped waveforms of events which
are non-repetitive and may occur only once. The state-of-the-art silicon-chip-based
ultrafast optical oscilloscope is reported to have subpicosecond resolution [16]. By
adding a spectrometer, even higher resolution could be achieved, which enables the
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detection of optical events which requires single-shot measurement such as optical
rogue waves [66].

There are three points to be further discussed.

First, although temporal 2-f system is able to Fourier transform both the waveform
and the spectrum, they are not happening simultaneously. The spectrum is Fourier
transformed after the time lens and the waveform Fourier transformed after the sec-
ond dispersive medium. Therefore, if only the waveform or the spectrum needs
Fourier transform, there is not need to construct the whole temporal 2-f system. For
Fourier transform a spectrum, first a dispersive medium then a time lens is suffi-
cient. For a waveform, first a time lens then a dispersive medium is sufficient. As
a matter of fact, incomplete temporal 2-f system is similar to Fraunhofer dispersion
system, so the unwanted residual phase is inevitable.

f1f1

f1 f2

f2f2

(A) Spacial 4-f system.
f1 is the focal distance of the first spatial 2-f system, f2 is the focal distance

of the second spatial 2-f system.

τ

Ω

τ

Ω

τ

Ω

GDD D1 GDD D1 GDD D2 GDD D2

色散 D1

Time
Lens D1

Time
Lens D2

(B) Temporal 4-f system.
D1 is the focal GDD of the first temporal 2-f system, D2 is the focal GDD of the second

temporal 2-f system

FIGURE 2.5: Comparison between spatial and temporal 4-f systems.

Second, two temporal 2-f systems could be combined to do scaling, especially wave-
form compression [17]. As shown in last subsection, single-lens temporal imaging
system is not suitable for waveform compression because of the existence of the
residual phase that introduces aberration. Analogous to the spatial 4-f system shown
in Figure 2.5a, a temporal 4-f system as in Figure 2.5b is constructed by cascading
two temporal 2-f systems with focal GDDs D1 and D2. Under the condition that

M = −D2

D1
(2.68)
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using Eq.(2.66), we obtain its effect:

Ttemporal =T2,tempT1,temp

=

√
−1

D2D1
V
[

1
D2

]
FV

[
1

D1

]
F

=

√
−1

D2D1
V
[

1
D2

]
|D1|V [D1]FF

=

√
−D2

1
D2D1

V
[
−D1

D2

]
=

1√
M
V
[

1
M

]
(2.69)

as a perfect scaling without any residual phase. Meanwhile, its spectrum is also
perfectly scaled:

Tspectral =FTtemporalF−1

=
1√
M
FV

[
1
M

]
F−1

=
1√
M
FF−1|M|V [M]

=
√

MV [M]

(2.70)

Third, the temporal 2-f system could be combined with Fraunhofer dispersion sys-
tem to get ultralarge magnification. As could be seen in Figure 2.6, first the spectrum
is Fourier transformed by the temporal 2-f system to resemble the shape of the in-
put waveform. The following Fraunhofer dispersion transform this shape back to
the waveform. Because the GDD of Fraunhofer dispersive medium D2 is commonly
very large, propagation inside the Fraunhofer dispersive medium will greatly stretch
the waveform. Consequently the output waveform is the ultralarge magnification of
the input waveform. In 2009, Salem et al. achieved highest temporal magnification
reported , 520 times magnification, based on such system [60].

τ

Ω

τ

Ω

τ

Ω

Fraunhofer 
Dispersion D2

GDD D1 GDD D1
Time
Lens D1

FIGURE 2.6: Temporal ultralarge magnification system.
D1 is the focal GDD of the temporal 2-f system, D2 is the GDD of the

Fraunhofer dispersion system.
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By combing Eq.(2.53) and Eq.(2.66), the effect of such system is

Ttemporal =T2,tempT1,temp

=

√
−1

D2D1
Q
[
− 1

D2

]
V
[

1
D2

]
FV

[
1

D1

]
F

=

√
−1

D2D1
Q
[
− 1

D2

]
V
[

1
D2

]
|D1|V [D1]FF

=

√
−D2

1
D2D1

Q
[
− 1

D2

]
V
[
−D1

D2

]
=

1√
M
Q
[
− 1

D2

]
V
[

1
M

]
(2.71)

2.4 Summary of this chapter

In this chapter we revisit the classical temporal imaging starting from the space-time
duality. We develop an operator algebra system with a set of definitions and rules
and use it to understand various temporal imaging schemes including Fraunhofer
dispersion, single-lens imaging system and 2-f system and their functionalities such
as scaling and Fourier transform. We also discuss their advantages, drawbacks, lim-
itations such as the extra phase shared by the Frauhofer dispersion and single-lens
imaging system. This phase could be seen as an effect of an extra time lens. We
explore the combinations of these temporal imaging systems to serve larger variety
of applications such as spectral imaging, 4-f imaging system and etc.
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Chapter 3

Quantum Temporal Imaging with
Squeezed Light

For classical temporal imaging, the intensity of the signal field is high that quantum
fluctuations could be neglected. But such omission is no longer valid if the sig-
nal field for temporal imaging is switched from classical light to nonclassical light,
which is called Quantum Temporal Imaging. The influence of quantum fluctuations
inside the temporal imaging process must be considered now. It might deteriorate
the quantum property of the signal field. Such investigation is meaningful because
the application of temporal imaging on quantum light would be quite promising.
For example, when building a quantum network where quantum light would be
produced, manipulated and detected. For a large network we expect the coherence
time of all quantum lights in it to be identical to each other and to the response time
of the detector. Temporal imaging could play the part of manipulation to make this
come true. Certain attempts have been made for the single or entangled photons,
including temporal shaping [7, 49, 57], optical waveform conversion [29], spectral
compression [35], matching the characteristic time [76] etc.

Here we try to understand under what condition the quantum property such broad-
band squeezing would be preserved or destroyed in temporal imaging. Before that
we need to investigate the temporal imaging system especially the time lens quan-
tumly.

3.1 Quantum Treatment of Four-wave Mixing Processes

To investigate FWM time lens, we start with the quantum treatment of the FWM
processes. There are two configurations: one consists in four waves propagating
in the same directions. It is called Copropagating Four-Wave Mixing (CFWM). The
other one requires the four waves to be divided into two groups, the two waves in
every group are propagating in the opposite directions to each other, which is called
Counter-Propagating Four-Wave Mixing (CPFWM).

3.1.1 Quantum Treatment of Copropagating Four-wave Mixing

A nonlinear polarization term is added to Eq. (2.5) that it becomes[
∂2

∂z2 −
1
c2

∂2

∂t2

]
Ê(z, t) = µ0

∂2

∂t2

[
P̂L(z, t) + P̂NL(z, t)

]
(3.1)
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L

χ(3)
E1

E2

E4

E3

FIGURE 3.1: Configuration of copropagating four-wave mixing.

For FWM the nonlinear polarization is the third order polarization

P̂NL(z, t) = P̂(3)(z, t)

=ε0

∫ +∞

0
dt1

∫ +∞

0
dt2

∫ +∞

0
dt3 R(3)(t1, t2, t3)Ê(z, t− t1)Ê(z, t− t2)Ê(z, t− t3)

(3.2)

where R(3)(t1, t2, t3) is the third order response function. It equals to zero if any of
t1, t2 and t3 is negative.

The copropagating FWM configuration is shown in Figure 3.1, so the field operator
Ê(z, t) is a mixture of four fields linearly polarized in the same direction, Ê1(z, t),
Ê2(z, t), Ê3(z, t) and Ê4(z, t), with their corresponding carrier frequencies ω1, ω2, ω3,
ω4 which satisfy the energy conservation relation as shown in Figure 3.2. Among
them two are the pump fields, one is the signal field and one is the idler field. But
for now we don’t specify which is which. The full field is:

Ê(z, t) = ∑
j

Êj(z, t) (3.3)

where j ∈ {1, 2, 3, 4}.

ω3

ω4ω2

ω1

FIGURE 3.2: Energy conservation relation of copropagating four-
wave mixing. The lengths of the vectors are irrelevant to the frequen-

cies they denote.
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For each field we have

Êj(z, t) =
1
2
[Ê(+)

j (z, t) + Ê(−)
j (z, t)] (3.4)

where Ê(+)
j (z, t) is the positive frequency part of the electric field operators.

Combine Eq. (3.1), Eq. (3.2), Eq. (3.3) and Eq. (3.4) we obtain

∂2

∂z2 Ê(+)
j (z, t)− 1

c2
∂2

∂t2 Ê(+)
j (z, t)− 1

c2
∂2

∂t2

∫ +∞

0
dt′ R(1)(t′)Ê(+)

j (z, t− t′)

= ∑
k,l,m

1
4c2

∂2

∂t2

∫ +∞

0
dt1

∫ +∞

0
dt2

∫ +∞

0
dt3 R(2)(t1, t2, t3)

× [Ê(+)
k (z, t− t1) + Ê(−)

k (z, t− t1)]

× [Ê(+)
l (z, t− t2) + Ê(−)

l (z, t− t2)]

× [Ê(+)
m (z, t− t3) + Ê(−)

m (z, t− t3)]

(3.5)

where k, l, m ∈ {1, 2, 3, 4}, for simplicity we only consider the positive frequency
component for Ej(z, t).

Using the Fourier transform that

Êj(z, t) =
1
2

∫ dω′√
2π

e−iω′jt [Ê(+)
j (z, ω′j) + Ê(−)

j (z,−ω′j)] (3.6)

and transform Eq. (3.5) into frequency domain

∂2

∂z2 Ê(+)
j (z, ω′j) +

ω′2j
c2 Ê(+)

j (z, ω′j) +
ω′2j
c2 χ(1)(ω′j)Ê(+)

j (z, ω′j)

=− ∑
k,l,m

ω′2j
4c2

∫ dω′k√
2π

[Ê(+)
k (z, ω′k) + Ê(−)

k (z,−ω′k)]

×
∫ dω′l√

2π
[Ê(+)

k (z, ω′l) + Ê(−)
k (z,−ω′l)]

×
∫ dω′m√

2π
[Ê(+)

k (z, ω′m) + Ê(−)
k (z,−ω′m)]

× χ(3)(ω′k + ω′l + ω′m; ω′k, ω′l , ω′m)
∫

dt ei(ω′j−ω′k−ω′l−ω′m)t

=− ∑
k,l,m

ω′2j
4c2

∫ dω′k√
2π

[Ê(+)
k (z, ω′k) + Ê(−)

k (z,−ω′k)]

×
∫ dω′l√

2π
[Ê(+)

k (z, ω′l) + Ê(−)
k (z,−ω′l)]

×
∫ dω′m√

2π
[Ê(+)

k (z, ω′m) + Ê(−)
k (z,−ω′m)]

× χ(3)(ω′k + ω′l + ω′m; ω′k, ω′l , ω′m)
√

2πδ(ω′j −ω′k −ω′l −ω′m)

(3.7)
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ω′k ω′l ω′m
ω′1 ω′2 −ω′3
ω′1 −ω′3 ω′2
ω′2 ω′1 −ω′3
ω′2 −ω′3 ω′1
−ω′3 ω′1 ω′2
−ω′3 ω′2 ω′1

TABLE 3.1: All combinations in the FWM category.

ω′k ω′l ω′m ω′k ω′l ω′m ω′k ω′l ω′m
ω′1 −ω′1 ω′4 ω′2 −ω′2 ω′4 ω′3 −ω′3 ω′4
ω′1 ω′4 −ω′1 ω′2 ω′4 −ω′2 ω′3 ω′4 −ω′3
−ω′1 ω′1 ω′4 −ω′2 ω′2 ω′4 −ω′3 ω′3 ω′4
−ω′1 ω′4 ω′1 −ω′2 ω′4 ω′2 −ω′3 ω′4 ω′3
ω′4 ω′1 −ω′1 ω′4 ω′2 −ω′2 ω′4 ω′3 −ω′3
ω′4 −ω′1 ω′1 ω′4 −ω′2 ω′2 ω′4 −ω′3 ω′3

TABLE 3.2: All combinations in the XPM category.

where the third order susceptibility equals to

χ(3)(ω′k + ω′l + ω′m; ω′k, ω′l , ω′m)

=
∫ +∞

0
dt1

∫ +∞

0
dt2

∫ +∞

0
dt3 R(3)(t1, t2, t3)ei(ω′kt1+ω′l t2+ω′mt3)

(3.8)

In principal for each ω′j there are twenty-seven different combinations of ω′k, ω′l
and ω′l , divided in three categories: FWM, Cross-Phase Modulation (XPM) and Self-
Phase Modulation (SPM).

Take ω′j = ω′4 as an example. Six are in the FWM category as shown in Table 3.1.
Eighteen are in the category of Cross-Phase Modulation (XPM) as shown in Table
3.2. Three are in the category of Self-Phase Modulation (SPM) as shown in Table 3.3

For simplicity here we only consider FWM category , which reduces Eq. (3.7) to

∂2

∂z2 Ê(+)
4 (z, ω′4) + k2(ω′4)Ê(+)

4 (z, ω′4)

=− 3ω′24 χ(3)

2c2

∫ dω′2√
2π

∫ dω′3√
2π

Ê(+)
1 (z, ω′4 + ω′3 −ω′2)Ê(+)

2 (z, ω′2)Ê(−)
3 (z,−ω′3)

(3.9)

It should be noted because of the intrinsic permutation symmetry of the nonlinear
tensor that the third-order susceptibilities for all six combinations are equivalent and
is denoted as χ(3).

ω′k ω′l ω′m
ω′4 −ω′4 ω′4
ω′4 ω′4 −ω′4
−ω′4 ω′4 ω′4

TABLE 3.3: All combinations in the SPM category.
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Under the quasi-monochromatic approximation, we decompose the positive fre-
quency field operators into slowly varying envelopes represented by annihilation
operators

Ê(+)
j (z, t) = Eje−iωjt+ik jz

∫ dΩj√
2π

ei(k(ωj+Ωj)−k j)z âj(z, Ωj)e−iΩjt (3.10)

where k j = k(ωj) and Ej =

√
h̄ω2

j

2ε0c2k j
and Ωj = ω′j − ωj is the deviation from the

carrier frequency.

It is easy to find that

Ê(+)
j (z, ω′j) = Ejeik(ωj+Ωj)z âj(z, Ωj) (3.11)

Note for the negative frequency component, we have Ωj = (−ω′j)− (−ωj):

Ê(−)
j (z,−ω′j) = Eje−ik(ωj+Ωj)z â†

j (z, Ωj) (3.12)

By using Eq. (3.11) and Eq. (3.12), Eq. (3.9) could be reduced to

∂2

∂z2 â4(z, Ω4) + 2ik(ω4 + Ω4)
∂

∂z
â4(z, Ω4)

=− 3(ω4 + Ω4)
2χ(3)

2c2
E1E2E3

E4

∫ dΩ2√
2π

∫ dΩ3√
2π

× â1(z, Ω4 + Ω3 −Ω2)â2(z, Ω2)â†
3(z, Ω3)e−i∆(Ω4,Ω3,Ω2)z

(3.13)

where the phase mismatch is

∆(Ω4, Ω3, Ω2) = k(ω4 + Ω4) + k(ω3 + Ω3)− k(ω2 + Ω2)− k(ω1 + Ω4 + Ω3 −Ω2)
(3.14)

Under the quasi-monochromatic approximation we adopt two approximations. The
first is due to the property of the slowly varying envelope∣∣∣〈 ∂

∂z
âj(z, Ωj)〉

∣∣∣� |k(ωj + Ωj)〈âj(z, Ωj)〉| (3.15)

that
∂2

∂z2 â4(z, Ω4) is neglected

The second one is because of the deviation is very small compared to the carrier
frequency

Ωj � ωj (3.16)

that
(ωj + Ωj)

2

k(ωj + Ωj)
≈

ω2
j

k j
(3.17)
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With these approximations, Eq. (3.13) becomes

∂

∂z
â4(z, Ω4) = ig

∫ dΩ2√
2π

∫ dΩ3√
2π

× â1(z, Ω4 + Ω3 −Ω2)â2(z, Ω2)â†
3(z, Ω3)e−i∆(Ω4,Ω3,Ω2)z

(3.18)

where the nonlinear coupling constant g = χ(3) 3ε2
0

h̄2 E1E2E3E4, proportional to the third
order susceptibility.

By applying this method to ω′j = ω′1, ω′j = ω′2 and ω′j = ω′3 we finally obtain the
coupled equations for FWM process

∂

∂z
â1(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â†
2(z, Ω′ + Ω′′ −Ω)â3(z, Ω′)â4(z, Ω′′)ei∆(Ω′′,Ω′,Ω′′+Ω′−Ω)z

(3.19a)
∂

∂z
â2(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â†
1(z, Ω′ + Ω′′ −Ω)â3(z, Ω′)â4(z, Ω′′)ei∆(Ω′′,Ω′,Ω)z

(3.19b)
∂

∂z
â3(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â1(z, Ω′′ + Ω−Ω′)â2(z, Ω′)â†
4(z, Ω′′)e−i∆(Ω′′,Ω,Ω′)z

(3.19c)
∂

∂z
â4(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â1(z, Ω + Ω′′ −Ω′)â2(z, Ω′)â†
3(z, Ω′′)e−i∆(Ω,Ω′′,Ω′)z

(3.19d)

The reason why we do not specify which of the four waves are the pumps, the signal
and idler is because there are actually two kinds of configurations which follow dif-
ferent energy conservation relations. One of the two configurations conjugates the
phase of the signal wave to that of the idler wave, so it is named Phase-Conjugating
(PC). The other one, however, does not conjugate the phase of the signal wave, hence
is named Phase-Preserving (PP). They shall be investigated in detail in the following
subsections.

Before we continue, there is an important approximation to emphasize. The phase
mismatch term Eq. (3.14) is usually expanded with respect to Ω4, Ω3 and Ω2

∆(Ω4, Ω3, Ω2) =∆0 + k′4Ω4 + k′3Ω3 − k′2Ω2 − k′1(Ω4 + Ω3 −Ω2)

+
1
2

k′′4 Ω2
4 +

1
2

k′′3 Ω2
3 −

1
2

k′′2 Ω2
2 −

1
2

k′′1 (Ω4 + Ω3 −Ω2)
2 + ...

(3.20)

where k(n)j = ∂n

∂Ωn
j
k(ωj + Ωj) and

∆0 = k4 + k3 − k2 − k1 (3.21)

The expansion terms of no less than the first order bring aberrations affecting the
resolution and field of view of a temporal imaging system which is the main topic
of our next chapter. Here we only presume that

∆(Ω4, Ω3, Ω2) ≈ ∆0 (3.22)
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Phase-conjugating copropagating four-wave mixing

For this configuration, we let E1(z, t) and E2(z, t) be the two pump fields, E3(z, t) be
the signal field and E4(z, t) be the idler field. The energy conservation relation for
their carrier frequencies is shown in Figure 3.3.

ωp2 ωi

ωsωp1

FIGURE 3.3: Energy conservation relation of phase-conjugating co-
propagating four-wave mixing.

We presume the pump waves are classical and undepleted, αp1(Ω1) and αp2(Ω2), as
a result equations (3.19) are reduced to two equations

∂

∂z
âs(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

αp1(Ω′′ + Ω−Ω′)αp2(Ω′)â†
i (z, Ω′′)e−i∆0z (3.23a)

∂

∂z
âi(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

αp1(Ω + Ω′′ −Ω′)αp2(Ω′)â†
s (z, Ω′′)e−i∆0z (3.23b)

It still looks unsolvable in frequency domain, so we transform it back to temporal
domain, take Eq. (3.23a) as an example

∂

∂z
âs(z, τ) =

∫ dΩ√
2π

e−iΩτ ∂

∂z
âs(z, Ω)

=
∫ dΩ√

2π
e−iΩτ ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

∫ dτ′√
2π

ei(Ω′′+Ω−Ω′)τ′αp1(τ
′)

×
∫ dτ′′√

2π
eiΩ′τ′′αp2(τ

′′)
∫ dτ′′′√

2π
eiΩ′′τ′′′ â†

i (z,−τ′′′)e−i∆0z

=ig e−i∆0z
∫ dτ′√

2π

∫ dτ′′√
2π

∫ dτ′′′√
2π

αp1(τ
′)αp2(τ

′′)â†
i (z,−τ′′′)

×
∫ dΩ√

2π
e−iΩ(τ−τ′)

∫ dΩ′√
2π

e−iΩ′(τ′−τ′′)
∫ dΩ′′√

2π
e−iΩ′′(−τ′′′−τ′)

=ig e−i∆0zαp1(τ)αp2(τ)â†
i (z, τ)

(3.24)

By Fourier transforming Eq. (3.23b) in the same way, we obtain the coupled equa-
tions in temporal domain

∂

∂z
âs(z, τ) = ig e−i∆0zαp1(τ)αp2(τ)â†

i (z, τ) (3.25a)

∂

∂z
âi(z, τ) = ig e−i∆0zαp1(τ)αp2(τ)â†

s (z, τ) (3.25b)
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The two pump waves could be written as

αp1(τ) = Ap1(τ)eiφp1(τ) (3.26a)

αp2(τ) = Ap2(τ)eiφp2(τ) (3.26b)

where Ap1(τ) and Ap2(τ) are the real modules, φp1(τ) and φp2(τ) are the real phases.

The solution to equations (3.25) describe the evolutions of the annihilation and cre-
ation operators of the signal and idler waves inside the nonlinear medium:

âs(z, τ) =

[
cosh(γz) +

i∆0

2γ
sinh(γz)

]
âs(0, τ)e−i∆0z/2

+
igαp1(τ)αp2(τ)

γ
sinh(γz)â†

i (0, τ)e−i∆0z/2 (3.27a)

âi(z, τ) =

[
cosh(γz) +

i∆0

2γ
sinh(γz)

]
âi(0, τ)e−i∆0z/2

+
igαp1(τ)αp2(τ)

γ
sinh(γz)â†

s (0, τ)e−i∆0z/2 (3.27b)

where γ =
√

g2 A2
p1(τ)A2

p2(τ)− ∆2
0/4

For a nonlinear medium of length L we obtain the relations of the annihilation
and creation operators of the signal and idler waves at the input of the nonlinear
medium, i.e. z = 0, and its output at z = L:

âs(L, τ) = u(τ)âs(0, τ) + ieiφp(τ)v(τ)â†
i (0, τ) (3.28a)

âi(L, τ) = ieiφp(τ)v(τ)â†
s (0, τ) + u(τ)âi(0, τ) (3.28b)

where φp(τ) = φp1(τ) + φp2(τ).

The coefficients u(τ) and v(τ) are related to the nonlinear coupling constant, the
amplitudes of the two pump waves and the length of the nonlinear medium:

u(τ) =
[

cosh(γL) +
i∆0

2γ
sinh(γL)

]
e−i∆0L/2 (3.29)

v(τ) =
gAp1(τ)Ap2(τ)

γ
sinh(γL)e−i∆0L/2 (3.30)

It is easy to see that these coefficients satisfy the relation |u(τ)|2− |v(τ)|2 = 1 which
shows the true nature of the PCFWM as a parametrically amplification process. This
process parametrically amplifies the signal and the idler waves at the output of the
nonlinear medium by the phase-insensitive parametric gain G = |v(τ)|2.

When the perfect phase-matching is achieved, i.e. ∆0 = 0, the coefficients could be
simplified to

u(τ) = cosh[gAp1(τ)Ap2(τ)L] (3.31)
v(τ) = sinh[gAp1(τ)Ap2(τ)L] (3.32)
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Phase-preserving copropagating four-wave mixing

Now we switch the second pump wave and the signal wave. E1(z, t) and E3(z, t) are
the two pump fields and E2(z, t) become the signal field. The energy conservation
relation for their carrier frequencies is shown in Figure 3.4. This configuration is also
known as Bragg-scattering. Since the distance between the carrier frequencies of
one pump wave and the signal wave is identical to the distance between the carrier
frequencies of the other pump wave and the idler wave, it is commonly used for
quantum state translation and frequency translation[40, 48, 52].

ωp2

ωiωs

ωp1

FIGURE 3.4: Energy conservation relation of phase-preserving co-
propagating four-wave mixing.

With the same classical and undepleted pump approximation, equations (3.19) are
also reduced to two coupled equations of signal and idler waves:

∂

∂z
âs(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

α∗p1(Ω
′′ + Ω−Ω′)αp2(Ω′)âi(z, Ω′′)ei∆0z (3.33a)

∂

∂z
âi(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

αp1(Ω + Ω′′ −Ω′)α∗p2(Ω
′′)âs(z, Ω′)e−i∆0z (3.33b)

Using the method shown in Eq. (3.24), we Fourier transform equations (3.33) into
temporal domain:

∂

∂z
âs(z, τ) = ig ei∆0zα∗p1(τ)αp2(τ)âi(z, τ) (3.34a)

∂

∂z
âi(z, τ) = ig e−i∆0zαp1(τ)α

∗
p2(τ)âs(z, τ) (3.34b)
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Its solution describe the evolution of the annihilation and creation operators of the
signal and idler waves inside the nonlinear medium:

âs(z, τ) =

[
cos(γz)− i∆0

2γ
sin(γz)

]
âs(0, τ)ei∆0z/2

+
igα∗p1(τ)αp2(τ)

γ
sin(γz)âi(0, τ)ei∆0z/2 (3.35a)

âi(z, τ) =

[
cos(γz) +

i∆0

2γ
sin(γz)

]
âi(0, τ)e−i∆0z/2

+
igαp1(τ)α

∗
p2(τ)

γ
sin(γz)âs(0, τ)e−i∆0z/2 (3.35b)

where γ =
√

g2 A2
p1(τ)A2

p2(τ) + ∆2
0/4.

Equations (3.35) could be used to obtain the relations of the annihilation operators
of the signal and idler waves at the input of the nonlinear medium and its output:

âs(L, τ) = c∗(τ)âs(0, τ) + ie−iφp(τ)s(τ)âi(0, τ) (3.36a)

âi(L, τ) = ieiφp(τ)s(τ)âs(0, τ) + c(τ)âi(0, τ) (3.36b)

where φp(τ) = φp1(τ)− φp2(τ).

The coefficients c(τ) and s(τ) depend on the nonlinear coupling constant, the am-
plitudes of the two pump waves and the length of the nonlinear medium:

c(τ) =
[

cos(γL) +
i∆0

2γ
sin(γL)

]
ei∆0L/2 (3.37)

s(τ) =
gAp1(τ)Ap2(τ)

γ
sinh(γL)e−i∆0L/2 (3.38)

These coefficients satisfy the relation of |c(τ)|2 + |s(τ)|2 = 1 which is equivalent
to a beam splitter that they could be understood as the reflection and transmission
coefficients. As a result we could define the transmission efficiency η = |s(τ)|2
which is also commonly referred to as conversion efficiency.

When perfect phase-matching is achieved, these coefficients could be simplified as

c(τ) = cos[gAp1(τ)Ap2(τ)L] (3.39)
s(τ) = sin[gAp1(τ)Ap2(τ)L] (3.40)

3.1.2 Quantum Treatment of Counter-Propagating Four-Wave Mixing

The configuration of CPFWM [2, 3, 8, 10, 68] is shown in Figure 3.5. Four waves
including two pump waves, a signal wave and an idler wave are divided into two
pairs. For each pair the two waves propagates in the opposite directions to each
other. But these pairs are not necessarily parallel to each other, there is a small angle
between them which is neglected for simplicity. The energy conservation relation
for the carrier frequencies of these four waves is shown in Figure 3.6.
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L

χ(3)

E1

E3
E4

E2

FIGURE 3.5: Configuration of counter-propagating four-wave mix-
ing.

The derivation for positive frequency operators of CPFWM is similar to that for
CFWM from Eq. (3.1) to Eq. (3.9) until when the positive frequency field operators
are decomposed into slowly varying envelopes represented by annihilation opera-
tors. Because of the counter-propagating geometry, the decompositions of the four
waves now become

Ê(+)
1 (z, t) = E1e−iω1t+ik1z

∫ dΩ1√
2π

ei(k(ω1+Ω1)−k1)z â1(z, Ω1)e−iΩ1t (3.41a)

Ê(+)
2 (z, t) = E2e−iω2t−ik2z

∫ dΩ2√
2π

e−i(k(ω2+Ω2)−k2)z â2(z, Ω2)e−iΩ2t (3.41b)

Ê(+)
3 (z, t) = E3e−iω3t+ik3z

∫ dΩ3√
2π

ei(k(ω3+Ω3)−k3)z â3(z, Ω3)e−iΩ3t (3.41c)

Ê(+)
4 (z, t) = E4e−iω4t−ik4z

∫ dΩ4√
2π

e−i(k(ω4+Ω4)−k4)z âj(z, Ω4)e−iΩ4t (3.41d)

Their differences with Eq.(3.10) are the wavenumbers of the two counter-propagating
waves E(+)

2 and E(+)
4 now carry an opposite sign.

For positive frequency field operators in frequency domain:

Ê1(z, ω′1) = E1eik(ω1+Ω1)z â1(z, Ωj) (3.42a)

Ê2(z, ω′2) = E2e−ik(ω2+Ω2)z â2(z, Ω2) (3.42b)

Ê3(z, ω′3) = E3eik(ω3+Ω3)z â3(z, Ω3) (3.42c)

Ê4(z, ω′4) = E4e−ik(ω4+Ω4)z â4(z, Ω4) (3.42d)
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We still take ω′4 as an example and put Eq. (3.42d) into Eq. (3.9):

∂2

∂z2 â4(z, Ω4)− 2ik(ω4 + Ω4)
∂

∂z
â4(z, Ω4)

=− 3(ω4 + Ω4)
2χ(3)

2c2
E1E2E3

E4

∫ dΩ2√
2π

∫ dΩ3√
2π

× â1(z, Ω4 + Ω3 −Ω2)â2(z, Ω2)â†
3(z, Ω3)e−i∆(Ω4,Ω3,Ω2)z

(3.43)

where the phase mismatch is

∆(Ω4, Ω3, Ω2) = −k(ω4 + Ω4) + k(ω3 + Ω3) + k(ω2 + Ω2)− k(ω1 + Ω4 + Ω3 −Ω2)
(3.44)

ω3

ω4ω2

ω1

FIGURE 3.6: Energy conservation relation of counter-propagating
four-wave mixing. The lengths of the vectors are irrelevant to the

frequencies they denote.

Using the quasi-monochromatic approximations as Eq. (3.15) and Eq. (3.17).

∂

∂z
â1(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â†
2(z, Ω′ + Ω′′ −Ω)â3(z, Ω′)â4(z, Ω′′)ei∆(Ω′′,Ω′,Ω′′+Ω′−Ω)z

(3.45a)
∂

∂z
â2(z, Ω) = −ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â†
1(z, Ω′ + Ω′′ −Ω)â3(z, Ω′)â4(z, Ω′′)ei∆(Ω′′,Ω′,Ω)z

(3.45b)
∂

∂z
â3(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â1(z, Ω′′ + Ω−Ω′)â2(z, Ω′)â†
4(z, Ω′′)e−i∆(Ω′′,Ω,Ω′)z

(3.45c)
∂

∂z
â4(z, Ω) = −ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

â1(z, Ω + Ω′′ −Ω′)â2(z, Ω′)â†
3(z, Ω′′)e−i∆(Ω,Ω′′,Ω′)z

(3.45d)
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Phase-preserving counter-propagating four-wave mixing

Now we get down to the specific configuration where E2(z, t) and E3(z, t) are the
two pump fields, E1(z, t) is the signal field and E4(z, t) is the idler field. With the
classical and undepleted pump wave approximation, we reduce equations (3.45) to
two coupled equations:

∂

∂z
âs(z, Ω) = ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

α∗p1(Ω
′′ + Ω−Ω′)αp2(Ω′)âi(z, Ω′′)ei∆0z (3.46a)

∂

∂z
âi(z, Ω) = −ig

∫ dΩ′√
2π

∫ dΩ′′√
2π

αp1(Ω + Ω′′ −Ω′)α∗p2(Ω
′′)âs(z, Ω′)e−i∆0z (3.46b)

where the phase mismatch is approximated to the zero order:

∆0 = −k4 + k3 + k2 − k1 (3.47)

To solve equations (3.46) we transform them into frequency domain:

∂

∂z
âs(z, τ) = ig ei∆0zα∗p1(τ)αp2(τ)âi(z, τ) (3.48a)

∂

∂z
âi(z, τ) = −ig e−i∆0zαp1(τ)α

∗
p2(τ)âs(z, τ) (3.48b)

Note that due to the counter-propagating geometry, the input position of the annihi-
lation operator of the idler wave is no longer z = 0, but z = L. Consequently âi(L, t)
is the input idler wave and âi(0, τ) is the output idler wave.

In the case of perfect phase-matching, i.e. ∆0 = 0, we obtain the relation of the input
and output signal and idler waves:

âs(L, τ) = c(τ)âs(0, τ) + ie−iφp s(τ)âi(L, τ) (3.49a)

âi(0, τ) = ieiφp s(τ)âs(L, τ) + c(τ)âi(0, τ) (3.49b)

The coefficients c(τ) and s(τ) are in the form of hyperbolic functions:

c(τ) =
1

cosh(gAp1(τ)Ap2(τ)L)
(3.50)

s(τ) = tanh(gAp1(τ)Ap2(τ)L) (3.51)

Yet they satisfy the relation of |c(τ)|2 + |s(τ)|2 = 1 which means they also could be
understood as the reflection and transmission coefficients of a beam splitter.
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3.2 Multimode Squeezed States

3.2.1 Single-Mode Coherent State and Squeezed State

Coherent state

In quantum optics, the electromagnetic field is quantized based on the equivalence
between a mode of electromagnetic field and a mechanical harmonic oscillator. For
k, s mode of the electromagnetic field, the canonical variables qks(t) and pks(t) for
describing the classical field are now quantized to a pair of canonically conjugate
operators q̂ks(t) and p̂ks(t) which could be defined by the annihilation and creation
operators of k, s mode:

q̂ks(t) =

√
h̄

2ω
[âks(t) + â†

ks(t)] (3.52a)

p̂ks(t) = i

√
h̄ω

2
[â†

ks(t)− âks(t)] (3.52b)

where k is the wave vector of the electromagnetic field, s is the direction of the
polarization. For each k there are two independent polarization directions.

Due to the canonical commutation relation between the annihilation operator and
the creation operator, these two Hermitian operators qks(t) and p̂ks(t) also have
the nonzero commutator ih̄ which leads to an uncertainty relation between them
and also suggests that the wavefunction corresponds to the classical field must have
minimum uncertainty. The state vector corresponding to such a wave packet with
minimum uncertainty is called coherent state. It is corresponding to a classical field
in quantum treatment. This concept was first introduced by Shrödinger [62] and
elaborated later by Glauber [21].

For this subsection, we only deal with single-mode state.

The most basic coherent state is the vacuum state |0〉, a coherent state |α〉 could be
obtained by applying the displacement operator D̂(α) to the vacuum state:

|α〉 = D̂(α)|0〉 (3.53)

where the displacement operator is in the form of:

D̂(α) = e|α|
2/2e−α∗ âeαâ†

(3.54)

To show the minimum uncertainty property we discussed above, we introduce a
pair of canonically conjugate operators which are essentially dimensionless qks(t)
and p̂ks(t):

X̂1 =
1
2
[â + â†] (3.55a)

X̂2 =
1
2i
[â− â†] (3.55b)

Of course they are Hermitian operators corresponding to a pair of quadrature am-
plitudes of the field.
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Their commutation relation
[X̂1, X̂2] =

i
2

(3.56)

determines the minimum uncertainty

〈(∆X̂1)
2〉〈(∆X̂2)

2〉 ≥ 1
4

∣∣∣〈[X̂1, X̂2]〉
∣∣∣2 =

1
16

(3.57)

where the variance is defined as

〈(∆X̂1)
2〉 = 〈(X̂1 − 〈X̂1〉)2〉

= 〈X̂2
1〉 − 〈X̂1〉2

(3.58)

Since coherent state is the eigenstate of annihilation operator, it’s obvious that these
two amplitudes corresponds to the real and imaginary parts of the α:

〈α|X̂1|α〉 = Re α (3.59a)

〈α|X̂2|α〉 = Im α (3.59b)

and the variances of both amplitudes are

〈α|(∆X̂1)
2|α〉 = 〈α|(∆X̂2)

2|α〉 = 1
4

(3.60)

So the minimum uncertainty is achieved with the variances of both quadratures of
the field equal to each other. Its uncertainty region is then a circle in phase space as
shown in Figure 3.7.

X2

X10

FIGURE 3.7: Uncertainty region of a coherent state.
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Squeezed state

Since coherent state represents classical field in quantum domain, now it’s time for
us to meet some nonclassical members of the light, one of them is the squeezed state.

Squeezed state is a state that the minimum uncertainty Eq. (3.57) still holds yet the
variances of quadrature amplitudes no longer equal to each other. The variance of
one quadrature is reduced below 1

4 as if the uncertainty region corresponding to that
quadrature is squeezed. For this reason it is called squeezed state.

A squeezed state is obtained:

|α, z〉 = Ŝ(z)D̂(α)|0〉 (3.61)

by using the squeezing operator:

Ŝ(z) = exp
{
−1

2
(zâ†2 − z∗ â2)

}
(3.62)

where z = r e2iφ

To show clearly the squeezing effect, a new pair of quadratures is introduced by
rotating the original quadrature amplitudes by an angle φ:

Ŷ1 =
1
2

[
âe−iφ + â†eiφ

]
(3.63a)

Ŷ2 =
1
2i

[
âe−iφ − â†eiφ

]
(3.63b)

With the help from

Ŝ†(z)âŜ(z) = â cosh r− â†e2iφ sinh r (3.64a)

Ŝ†(z)â†Ŝ(z) = â† cosh r− âe−2iφ sinh r (3.64b)

We could obtain

Ŝ†(z)Ŷ1Ŝ(z) = Ŷ1er (3.65a)

Ŝ†(z)Ŷ2Ŝ(z) = Ŷ2e−r (3.65b)

and then their variances

〈α, z|(∆Ŷ1)
2|α, z〉 = 1

4
e−2r (3.66a)

〈α, z|(∆Ŷ2)
2|α, z〉 = 1

4
e2r (3.66b)

While the minimum uncertainty which is the multiplication of the variances of both
quadrature components still holds:

〈α, z|(∆Ŷ1)
2|α, z〉〈α, z|(∆Ŷ1)

2|α, z〉 = 1
16

(3.67)

the variance of one quadrature amplitude is squeezed, shown in Eq. (3.66a), at the
price of the amplification of the variance of the other quadrature amplitude, shown
in Eq. (3.66b). This effect is illustrated in Figure 3.8. For this reason, r is called the
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squeezing parameter as a measure of how much is uncertainty of one quadrature
component being squeezed.

X2Y2

X1

Y1

0
FIGURE 3.8: Uncertainty region of a squeezed state.

Since we have Ŝ−1(z) = Ŝ†(z), we could see the squeezing operator as a unitary op-
erator for Bogoliubov transformation such as equations (3.64) where the transformed
annihilation operator is the linear combination of the annihilation and creation op-
erators.

3.2.2 Multimode Squeezing

Temporal fluctuation of light

Before we proceed to investigate multimode squeezing, it is important to understand
the shot-noise limit of the photocurrent noise spectrum caused by the quantum fluc-
tuation of light in time.

Since most detections of the electromagnetic field, e.g. a photodetector, is achieved
by photoelectric effect which requires the absorption of photons. This process is de-
scribed by the positive frequency part of the field operator Ê(+)(z, t). Any spatial
effect in the transverse area of the light beam is neglected since we are only con-
cerned with temporal fluctuations of light.

According to quantum mechanics, the probability of finding a electromagnetic field
to be in a quantum state |ψ f 〉 after the detection is |〈ψ f |Ê(+)(z, t)|ψi〉|2, given its
initial quantum state is a pure state |ψi〉. So the probability of photodetection irre-
spective of the final state of the field is to sum over the detection probabilities of all
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final states:

P = ∑
|ψ f 〉
|〈ψ f |Ê(+)(z, t)|ψi〉|2

= ∑
|ψ f 〉
〈ψi|Ê(−)(z, t)|ψ f 〉〈ψ f |Ê(+)(z, t)|ψi〉

=〈ψi|Ê(−)(z, t)Ê(+)(z, t)|ψi〉

(3.68)

According to [33], for a quasimonochromatic plane wave traveling in positive z di-
rection:

Ê(+)(z, t) =

√
h̄ω0

2ε0cS
ei(k0z−ω0t) â(t) (3.69)

where ω0 is its carrier frequency, k0 is its wavenumber, S is the intersection area
of photodetector and the wave. The annihilation and creation operators satisfy the
commutation relations:

[â(t), â†(t′)] = δ(t− t′) (3.70)
[â(t), â(t′)] = 0 (3.71)

Since Ê(−)(z, t)Ê(+)(z, t) =
h̄ω0

2ε0cS
â†(t)â(t), it’s natural to define the photo flux oper-

ator
Î(t) = â†(t)â(t) (3.72)

and the photocurrent operator
î(t) = ηd Î(t) (3.73)

where ηd is the detection efficiency of the photodetector. For simplicity, we presume
it to be one.

Temporal fluctuation of light is then described by the deviation of photocurrent op-
erator from its mean value:

δî(t) = î(t)− 〈î(t)〉 (3.74)

Then we obtain the autocorrelation function of the photocurrent fluctuation:

〈δî(t)δî(t + τ)〉
=〈(â†(t)â(t)− 〈 Î(t)〉)(â†(t + τ)â(t + τ)− 〈 Î(t + τ)〉)〉
=〈â†(t)â(t)â†(t + τ)â(t + τ)〉 − 〈 Î(t)〉〈 Î(t + τ)〉
=G(2)(t; t + τ) + 〈â†(t)â(t + τ)〉δ(τ)− 〈 Î(t)〉〈 Î(t + τ)〉

(3.75)

where the second order correlation function is defined as

G(2)(t; t + τ) = 〈â†(t)â†(t + τ)â(t + τ)â(t)〉 (3.76)

Presume the light intensity is stationary in time so the second order correlation func-
tion only depends on the time difference G(2)(t; t + τ) = G(2)(τ).
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Also we define the average intensity as:

〈 Î(t)〉 = 〈 Î(t + τ)〉 =
√

G(2)(∞) (3.77)

denoted as 〈I〉 because the intensities become totally uncorrelated when they are
separated sufficiently far in time.

Then the autocorrelation function could be written as

〈δî(t)δî(t + τ)〉 = 〈I〉δ(τ) + G(2)(τ)− 〈I〉2 (3.78)

The normalized second order correlation function is

g(2)(τ) =
G(2)(τ)

〈I〉2 (3.79)

For classical fields, we always have

g(2)(τ) ≥ 1 (3.80)

which means G(2)(τ)− 〈I〉2 is no less than zero.

The photocurrent noise spectrum (δi)2
Ω is defined as the Fourier transform of the

autocorrelation function:

(δi)2
Ω =

∫
dτeiΩτ〈δî(t)δî(t + τ)〉

=
∫

dτeiΩτ[〈I〉δ(τ) + G(2)(τ)− 〈I〉2]

=〈I〉+ G̃(2)(Ω)− 〈I〉2δ(Ω)

≥〈I〉

(3.81)

where
G̃(2)(Ω) =

∫
dτeiΩτG(2)(τ) (3.82)

Therefore for classical electromagnetic fields, the noise spectrum always has a lowest
limit 〈I〉. This is called shot-noise limit.

Generation of multimode squeezed light

To help understanding multimode squeezing, we could have a look at an actual
example to generate multimode squeezed light. For the convenience of illustration,
here our derivations for the CFWM: equations (3.19) is used.

If we presume that â3 is the signal wave, â4 is the idler wave, â1 and â2 are the
identical undepleted, monochromatic pump wave which means for Eq. (3.19c) and
Eq. (3.19d) we have:

â1(z, Ω′′ + Ω−Ω′) ≈ αp
√

2πδ(Ω′′ + Ω−Ω′) (3.83a)

â2(z, Ω′) ≈ αp
√

2πδ(Ω′) (3.83b)
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Using this approximation we could reduce equations (3.19) to:

∂

∂z
âs(z, Ω) = igα2

p â†
i (z,−Ω)e−i∆(Ω)z (3.84a)

∂

∂z
âi(z, Ω) = igα2

p â†
s (z,−Ω)e−i∆(Ω)z (3.84b)

where
∆(Ω) = k(ωs + Ω) + k(ωi −Ω)− 2kp (3.85)

The solutions to the coupled equations (3.84) are

âs(l, Ω) = U(Ω)âs(0, Ω) + V(Ω)â†
i (0,−Ω) (3.86a)

âi(l, Ω) = U(Ω)âi(0, Ω) + V(Ω)â†
s (0,−Ω) (3.86b)

These coefficients are

U(Ω) =

[
cosh(Γ(Ω)l) +

i∆(Ω)

2Γ(Ω)
sinh(Γ(Ω)l)

]
e−i∆(Ω)l/2 (3.87a)

V(Ω) =
igα2

p

Γ(Ω)
sinh(Γ(Ω)l)e−i∆(Ω)l/2 (3.87b)

where Γ(Ω) =
√

g2|αp|4 − ∆(Ω)2/4

Then if we use a 50/50 beam splitter to mix the signal wave and idler wave:

âin(0, Ω) =
1√
2
[âs(0, Ω) + âi(0, Ω)] (3.88a)

âin(l, Ω) =
1√
2
[âs(l, Ω) + âi(l, Ω)] (3.88b)

The subscript of âin is to indicate that this is the input of a temporal imaging system.

Therefore the mixed wave satisfy the Bogoliubov transformation:

âin(l, Ω) = U(Ω)âin(0, Ω) + V(Ω)â†
in(0,−Ω) (3.89)

since from (3.87) we have the relation |U(Ω)|2 − |V(Ω)|2 = 1.

As would be seen in next subsection, such transformation indicates the presence of
multimode squeezing, and in this particular case, the compression of shot-noise.

In the following sections, however, we use a temporally broadband squeezed state of
light produced by a traveling-wave Optical Parametric Amplifier (OPA) as shown in
Figure 3.9 [33]. A monochromatic plane wave αp with its frequency ωp = 2ω0 and its
wavenumber kp pass through a second-order nonlinear crystal with length equals to
L. The direction of the pump wave is normal to the surface of the nonlinear crystal.
The signal wave and the idler are produced thanks to the parametric down conver-
sion. The frequencies of the two waves are ω0 + Ω and ω0 −Ω, their wave vectors
are k(q, Ω) and k(−q,−Ω) where q is the transverse component. For simplicity, we
presume q to be zero since it’s not of our concern in this case. As a result, we still get
the Bogolubov transformation relation from the input (ζ = 0) to the output (ζ = l) of
the OPA as Eq.(3.89). Nevertheless, the complex coefficients U(Ω) and V(Ω) have
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l

χ(2)
k(q,Ω)

k(-q,-Ω)

kp

FIGURE 3.9: An optical parametric amplifier in a second-order non-
linear crystal.

changed, they become

U(Ω) =

[
cosh(Γl) +

i∆(Ω)

2Γ
sinh(Γl)

]
e−i∆(Ω)l/2 (3.90a)

V(Ω) =
σ

Γ
sinh(Γl)e−i∆(Ω)l/2 (3.90b)

The phase mismatch term becomes

∆(Ω) = k(Ω) + k(−Ω)− kp (3.91)

where Γ =
√
|σ|2 − ∆(Ω)2/4 and σ = gαp. g is proportional to the second-order

susceptibility χ(2). It’s not hard to see that |U(Ω)|2 − |V(Ω)|2 = 1 still holds.

3.2.3 Squeezing Spectrum of Squeezed Vacuum

To obtain the noise spectrum of a squeezed state, one has to resort to a technique
called balanced homodyne detection first introduced by Yuen[75] and developed by
Mandel and Wolf [37]. Its configuration could be seen in Figure 3.10, a signal wave
is mixed with a very strong local oscillator β = |β|eiφβ in a 50/50 beam splitter. The
outputs of the beam splitter are measured by two photodetectors separately. The
difference current from two balanced photodetectors is the output.

The signal wave is a squeezed vacuum state:

âin(l, Ω) = U(Ω)âin(0, Ω) + V(Ω)â†
in(0,−Ω) (3.92)
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LO
BS

Signal
PD1

PD2

FIGURE 3.10: Configuration of balanced homodyne detection.
BS is the beam splitter, LO is the local oscillator, PD is the photode-

tector

With the signal wave and the local oscillator taken as inputs, we obtain the two
outputs from the beam splitter

b̂1(τ) =
1√
2
[β + âin(l, τ)] (3.93a)

b̂2(τ) =
1√
2
[β− âin(l, τ)] (3.93b)

Their difference current of these two photodetectors is

Î(τ) =b̂†
1(τ)b̂1(τ)− b̂†

2(τ)b̂2(τ)

=
1
2

[(
β∗ + â†

in(l, τ)
)(

β + âin(l, τ)
)
−
(

β∗ − â†
in(l, τ)

)(
β− âin(l, τ)

)]
=β∗ âin(l, τ) + βâ†

in(l, τ)

(3.94)

The variance of the difference current is then

〈∆ Î(τ)∆ Î(τ + t〉 =〈[ Î(τ)− 〈 Î(τ)〉][ Î(τ + t)− 〈 Î(τ + t)〉]
=〈 Î(τ) Î(τ + t)〉 − 〈 Î(τ)〉〈 Î(τ + t)〉

(3.95)

Since we deal with squeezed vacuum, we have

〈 Î(τ)〉 = 0 (3.96)
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Consequently what we need to calculate is the autocorrelation function of this dif-
ference current:

〈 Î(τ) Î(τ + t)〉

=〈
[

β∗ âin(l, τ) + βâ†
in(l, τ)

][
β∗ âin(l, τ + t) + βâ†

in(l, τ + t)
]
〉

=ββ∗〈â†
in(l, τ)âin(l, τ + t)〉

+ β∗β〈âin(l, τ)â†
in(l, τ + t)〉

+ β∗β∗〈âin(l, τ)âin(l, τ + t)〉
+ ββ〈â†

in(l, τ)â†
in(l, τ + t)〉

(3.97)

Before we proceed to calculate the noise spectrum which is the Fourier transform of
the autocorrelation function, we need to calculate

〈â†
in(l, τ)âin(l, τ + t)〉

=〈
∫ dΩ1√

2π
e−iΩ1τ â†

in(l,−Ω1)
∫ dΩ2√

2π
e−iΩ2(τ+t) âin(l, Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈â†
in(l,−Ω1)âin(l, Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈0|
[
U∗(−Ω1)â†

in(0,−Ω1) + V∗(−Ω1)âin(0, Ω1)
][

U(Ω2)âin(0, Ω2) + V(Ω2)â†
in(0,−Ω2)

]
|0〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τV∗(−Ω1)V(Ω2)δ(Ω1 + Ω2)

=
1√
2π

∫ dΩ2√
2π

e−iΩ2t|V(Ω2)|2

(3.98)

〈âin(l, τ)â†
in(l, τ + t)〉

=〈
∫ dΩ1√

2π
e−iΩ1τ âin(l, Ω1)

∫ dΩ2√
2π

e−iΩ2(τ+t) â†
in(l,−Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈âin(l, Ω1)â†
in(l,−Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈0|
[
U(Ω1)âin(0, Ω1) + V(Ω1)â†

in(0,−Ω1)
][

U∗(−Ω2)â†
in(0,−Ω2) + V∗(−Ω2)âin(0, Ω2)

]
|0〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τU(Ω1)U∗(−Ω2)δ(Ω1 + Ω2)

=
1√
2π

∫ dΩ2√
2π

e−iΩ2t|U(−Ω2)|2

(3.99)
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〈âin(l, τ)âin(l, τ + t)〉

=〈
∫ dΩ1√

2π
e−iΩ1τ âin(l, Ω1)

∫ dΩ2√
2π

e−iΩ2(τ+t) âin(l, Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈âin(l, Ω1)âin(l, Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈0|
[
U(Ω1)âin(0, Ω1) + V(Ω1)â†

in(0,−Ω1)
][

U(Ω2)âin(0, Ω2) + V(Ω2)â†
in(0,−Ω2)

]
|0〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τU(Ω1)V(Ω2)δ(Ω1 + Ω2)

=
1√
2π

∫ dΩ2√
2π

e−iΩ2tU(−Ω2)V(Ω2)

(3.100)

〈â†
in(l, τ)â†

in(l, τ + t)〉

=〈
∫ dΩ1√

2π
e−iΩ1τ â†

in(l,−Ω1)
∫ dΩ2√

2π
e−iΩ2(τ+t) â†

in(l,−Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈â†
in(l,−Ω1)â†

in(l,−Ω2)〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τ

× 〈0|
[
U∗(−Ω1)â†

in(0,−Ω1) + V∗(−Ω1)âin(0, Ω1)
][

U∗(−Ω2)â†
in(0,−Ω2) + V∗(−Ω2)âin(0, Ω2)

]
|0〉

=
∫ dΩ1√

2π

∫ dΩ2√
2π

e−iΩ2te−i(Ω2+Ω1)τV∗(−Ω1)U∗(−Ω2)δ(Ω1 + Ω2)

=
1√
2π

∫ dΩ2√
2π

e−iΩ2tU∗(−Ω2)V∗(Ω2)

(3.101)
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With the results of these calculations, we obtain the noise spectrum

(δi)2
Ω =

∫ dt√
2π

eiΩt〈 Î(τ) Î(τ + t)〉

=
∫ dt√

2π
eiΩt|β|2

[
〈â†

in(l, τ)âin(l, τ + t)〉

+ 〈âin(l, τ)â†
in(l, τ + t)〉

+ e−2iφβ〈âin(l, τ)âin(l, τ + t)〉

+ e2iφβ〈â†
in(l, τ)â†

in(l, τ + t)〉
]

=
|β|2√

2π

∫ dt√
2π

eiΩt
∫ dΩ2√

2π
e−iΩ2t

[
|V(Ω2)|2 + |U(−Ω2)|2

+ e−2iφβU(−Ω2)V(Ω2) + e2iφβU∗(−Ω2)V∗(Ω2)
]

=|β|2
∫ dΩ2√

2π
δ(Ω−Ω2)

[
|V(Ω2)|2 + |U(−Ω2)|2

+ e−2iφβU(−Ω2)V(Ω2) + e2iφβU∗(−Ω2)V∗(Ω2)
]

=
|β|2√

2π

[
|V(Ω)|2 + |U(−Ω)|2

+ e−2iφβU(−Ω)V(Ω) + e2iφβU∗(−Ω)V∗(Ω)
]

(3.102)

If we separate the phase out of the the coefficients

U(−Ω)V(Ω) = |U(−Ω)V(Ω)|e2iψ(Ω) (3.103)

and let
θ(Ω) = ψ(Ω)− φβ (3.104)

Then the noise spectrum in Eq. (3.102) could be written as

(δi)2
Ω

=
|β|2√

2π

[
|V(Ω)|2 + |U(−Ω)|2

+ e2iθ(Ω)|U(−Ω)||V(Ω)|+ e−2iθ(Ω)|U(−Ω)||V(Ω)|
]

=
|β|2√

2π

[[
cos2(θ(Ω)) + sin2(θ(Ω))

][
|V(Ω)|2 + |U(−Ω)|2

]
+ 2
[

cos2(θ(Ω))− sin2(θ(Ω))
]
|U(−Ω)||V(Ω)|

]

=
|β|2√

2π

[
cos2(θ(Ω))

[
|U(−Ω)|+ |V(Ω)|

]2

+ sin2(θ(Ω))
[
|U(−Ω)| − |V(Ω)|

]2
]

(3.105)

Since |U(−Ω)| = |U(Ω)|, and with the squeezing properties that |U(Ω)|± |V(Ω)| =
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e±r(Ω) where r(Ω) is the squeezing parameter. Normalizing the noise spectrum with
|β|2/

√
2π, we obtain the squeezing spectrum as

Sin(Ω) = cos2(θ(Ω))e2r(Ω) + sin2(θ(Ω))e−2r(Ω) (3.106)

The maximized squeezing is achieved by letting θ(0) = π/2 by adjusting the phase
of the local oscillator. And the maximum squeezing parameter is defined as

rm = r(0) (3.107)

FIGURE 3.11: Squeezing spectrum of broadband squeezed light.
The maximum squeezing parameter erm = 3. The ordinates are grad-

uated in shot-noise units.

The squeezing Spectrum is shown in Figure 3.11. The presence of broadband squeez-
ing is indicated by the fact that for Ω < Ωc, the squeezing spectrum is below shot
noise, in other words, the noise has been suppressed.

We could actually approximately evaluate the value of Ωc in this particular case.
According to equations (3.103) and (3.104), we could use the definitions of U(Ω)
and V(Ω) from equations (3.90) to obtain

ψ(Ω) = − l
4
(∆(Ω) + ∆(−Ω)) (3.108)

According to the definition of ∆(Ω) in Eq. (3.91), we could finally obtain θ(Ω) as

θ(Ω) = −1
2
[k(Ω) + k(−Ω)− kp]l − φβ (3.109)
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Expand it with respect to Ω to the second order (since the first-order terms would
cancel each other) we obtain

ψ(Ω) ≈ ψ(0)− Ω2

Ω2
c

(3.110)

where Ωc = (k′′l/2)−1/2

3.3 Four-Wave Mixing Time Lens with Squeezed Light

In the second chapter we concluded that the required functionality for a time lens is
to multiply the input waveform with a quadratic phase in time. And from Eq. (3.28b)
and (3.36b) we could see that such functionality could be provided by the FWM
process if we let the phase of the pump wave be the quadratic phase we wanted.

A pump wave with such phase is produced by passing an ultrashort pulse with
femtosecond plusewidth through a dispersive medium with large group velocity
dispersion. If the initial pump wave is

Ap,in(τ) = Ape−
τ2

2σ2 (3.111)

where σ is its temporal pulsewidth.

This field is assumed to be Fourier-limited that its bandwidth:

δωp =
1
σ

(3.112)

The GDD of this dispersive medium equals to D, then the amplitude of the pump
wave after the dispersion becomes

Ap,out(τ) = Ap exp

{
− τ2/2

σ2/( σ2

D )2 + σ2

}
≈ Ap exp

{
− τ2

2(D/σ)2

}
(3.113)

and its phase becomes

φp(τ) =
1

1 + (σ2/D)2
τ2

2D
≈ τ2

2D
(3.114)

Approximations made in (3.113) and (3.114) are under the assumption that σ2 �
D, in other words, this is the case of Fraunhofer dispersion which we discussed in
section 2.3.1. Through this method, we not only obtain the quadratic pump phase
as we wanted (3.114), but also transform the typical long bandwidth of femtosecond
pulse into long temporal duration which could be considered as the aperture of a
time lens. Two birds killed with one stone.

The pump wave could also be written as

Ap,out = Ap exp
{
− τ2

2(Dδωp)2

}
(3.115)
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3.3.1 Phase-Conjugating Four-Wave Mixing Time Lens with Squeezed Light

τ
τ

Dispersion
 2Df  

PC
FWM

τ

FIGURE 3.12: Configuration of phase-conjugating four-wave mixing
time lens.

The configuration of PCFWM time lens is shown in Figure 3.12. Two pump waves
with their carrier frequencies as ωp1 and ωp2, produced by passing femtosecond
pulses through a dispersive medium whose GDD equals to 2D f , converted a signal
wave with carrier frequency ωs into a idler wave with carrier frequency ωi in a non-
linear medium where PCFWM takes place. According to our derivations in section
3.1.1, if we presume a perfect phase-matching condition of this FWM process, from
Eq. (3.28b) we have the transformation relation between the input signal and the
output idler:

âout(τ) = ieiφp(τ)v(τ)â†
s,in(τ) + u(τ)âi,in(τ) (3.116)

where

u(τ) = cosh[gA2
p(τ)L] (3.117a)

v(τ) = sinh[gA2
p(τ)L] (3.117b)

Because of the parametric amplification relation between u(τ) and v(τ), we define
the parametric gain parameter G(τ) = |v(τ)|2.

The amplitude and the total phase of the pump waves are

Ap(τ) =Ap exp
{
− τ2

2(2D f δωp)2

}
(3.118)

φp(τ) =
τ2

2(2D f )
× 2 =

τ2

2D f
(3.119)

As could be seen in Eq. (3.116), the signal wave is not the only input, the input idler
should also be taken into consideration.

If we are only dealing with classical light that we replace the annihilation operator
with α, since the input idler wave is a vacuum, that it would not affect the output
wave:

αout(τ) = iv(τ)Q
[

1
D f

]
α∗s,in(τ) (3.120)
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From the quantum perspective, however, situations have changed. In order to show
that, we need to evaluate the effect of PCFWM time lens on broadband squeezed
light. We use the squeezed vacuum produced in section 3.2.2. Hence the notation of
âs,in(τ) is changed to âin(l, τ).

The method of evaluating the squeezing spectrum is what was illustrated in section
3.2.3 - balanced homodyne detection. This time, we use the pump wave adding an
additional phase φβ as the local oscillator so we could cancel out the quadratic phase
introduced by the pump wave in Eq. (3.116).

As shown in Figure 3.10, the output idler from the time lens is mixed with the local
oscillator, resulting in the difference current of the two photodetectors:

Î(τ) = β∗(τ)âout(τ) + β(τ)â†
out(τ) (3.121)

and its autocorrelation function

〈 Î(τ) Î(τ + t)〉
=β(τ)β∗(τ + t)〈â†

out(τ)âout(τ + t)〉
+ β∗(τ)β(τ + t)〈âout(τ)â†

out(τ + t)〉
+ β∗(τ)β∗(τ + t)〈âout(τ)âout(τ + t)〉
+ β(τ)β(τ + t)〈â†

out(τ)â†
out(τ + t)〉

(3.122)

We have to calculate each term first

〈â†
out(τ)âout(τ + t)〉

=〈[v(τ)âin(l, τ) + u(τ)â†
i,in(τ)][v(τ + t)â†

in(l, τ + t) + u(τ + t)âi,in(τ + t)]〉
=v(τ)v(τ + t)〈âin(l, τ)â†

in(l, τ + t)〉+ u(τ)u(τ + t)〈0|â†
i,in(τ)âi,in(τ + t)|0〉i

=v(τ)v(τ + t)〈âin(l, τ)â†
in(l, τ + t)〉

= ...

=v(τ)v(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2t|U(−Ω2)|2

(3.123)

〈âout(τ)â†
out(τ + t)〉

=〈[v(τ)â†
in(l, τ) + u(τ)âi,in(τ)][v(τ + t)âin(l, τ + t) + u(τ + t)â†

i,in(τ + t)]〉
=v(τ)v(τ + t)〈â†

in(l, τ)âin(l, τ + t)〉+ u(τ)u(τ + t)〈0|âi,in(τ)â†
i,in(τ + t)|0〉i

=u(τ)u(τ + t)δ(t) + v(τ)v(τ + t)〈â†
in(l, τ)âin(l, τ + t)〉

= ...

=u(τ)u(τ + t)δ(t) + v(τ)v(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2t|V(Ω2)|2

(3.124)
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〈âout(τ)âout(τ + t)〉
=〈[v(τ)â†

in(l, τ) + u(τ)âi,in(τ)][v(τ + t)â†
in(l, τ + t) + u(τ + t)âi,in(τ + t)]〉

=v(τ)v(τ + t)〈â†
in(l, τ)â†

in(l, τ + t)〉+ u(τ)u(τ + t)〈0|âi,in(τ)âi,in(τ + t)|0〉i
=v(τ)v(τ + t)〈â†

in(l, τ)â†
in(l, τ + t)〉

= ...

=v(τ)v(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2tU∗(−Ω2)V∗(Ω2)

(3.125)

〈â†
out(τ)â†

out(τ + t)〉
=〈[v(τ)âin(l, τ) + u(τ)â†

i,in(τ)][v(τ + t)â†
in(l, τ + t) + u(τ + t)â†

i,in(τ + t)]〉
=v(τ)v(τ + t)〈âin(l, τ)âin(l, τ + t)〉+ u(τ)u(τ + t)〈0|â†

i,in(τ)â†
i,in(τ + t)|0〉i

=v(τ)v(τ + t)〈âin(l, τ)âin(l, τ + t)〉
= ...

=v(τ)v(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2tU(−Ω2)V(Ω2)

(3.126)

The additional phase eiπ/2 in front of v(τ) is absorbed into the phase of local oscil-
lator so it now becomes φβ − π/2. The neglected parts in the calculations could be
found in equations (3.98), (3.99), (3.100) and (3.101).

Since |β(τ)|, u(τ) and v(τ) are all functions of Ap(τ) whose temporal duration is
considerably long compared to 1

Ω for typical Ω. They could be regarded as stationary
with respect to t:

|β(τ)β(τ + t)| ≈ |β(τ)|2 (3.127)
v(τ)v(τ + t) ≈ G(τ) (3.128)
u(τ)u(τ + t) ≈ 1 + G(τ) (3.129)
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The noise spectrum become

(δi)2
Ω =

∫ dt√
2π

eiΩt〈 Î(τ) Î(τ + t)〉

=
∫ dt√

2π
eiΩt|β(τ)|2

×
[
〈â†

out(τ)âout(τ + t)〉

+ 〈âout(τ)â†
out(τ + t)〉

+ e−2iφβ〈âout(τ)âout(τ + t)〉

+ e2iφβ〈â†
out(τ)â†

out(τ + t)〉
]

=|β(τ)|2
{ ∫ dt√

2π
eiΩt[1 + G(τ)]δ(t)

+
G(τ)√

2π

∫ dt√
2π

eiΩt
∫ dΩ2√

2π
e−iΩ2t

[
|V(Ω2)|2 + |U(−Ω2)|2

+ e−2iφβU∗(−Ω2)V∗(Ω2) + e2iφβU(−Ω2)V(Ω2)
]}

=
|β(τ)|2√

2π

{
1 + G(τ) + G(τ)

[
cos2(θ′(Ω))e2r(Ω) + sin2(θ′(Ω))e−2r(Ω)

]}
(3.130)

After normalization we obtain the squeezing spectrum as

Sout(Ω) = 1 + G(τ) + G(τ)
[

cos2(θ′(Ω))e2r(Ω) + sin2(θ′(Ω))e−2r(Ω)
]

(3.131)

where other parameters remain unchanged except

θ′(Ω) = ψ(Ω)− φ′β (3.132)

where φ′β(τ) = −φβ(τ)+π/2. The sign of the phase of the local oscillator is reversed
because of the phase-conjugating nature of the time lens being used.

If we also take the scaling effect of the whole temporal imaging system into consid-
eration, the squeezing spectrum becomes

Sout(Ω) = 1 + G + G
[

cos2(θ′(Ω̃))e2r(Ω̃) + sin2(θ′(Ω̃))e−2r(Ω̃)
]

(3.133)

where Ω̃ = MΩ and M is the magnification factor. G(τ) is approximated as constant
because Ap(τ) barely varies during the temporal imaging process.

As could be seen in Figure 3.13. The squeezing spectrum is no longer below the
shot-noise, even within the range of Ω < Ω̃c, and instead of approaching shot-
noise when Ω increases, it now approaches 1 + 2G. The broadband squeezing is
completely destroyed. This is due to the fact that the phase-conjugating nonlinear
processes is always accompanied with parametric amplification which deteriorates
any squeezing property the input signal happens to have.
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FIGURE 3.13: Squeezing spectrum of broadband squeezed light
(dashed-dotted) and after a phase-conjugating time lens based tem-

poral imaging system with magnification factor M = −3 (solid).
The parametric gain G = 1 and the maximum squeezing parameter
erm = 3. The ordinates are graduated in shot-noise units. Copyright
2017 Optical Society of America, reprinted with permission, from Jun-

heng et al., Optics Letters, 2017, 42(16): 3121-3124.
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Therefore, despite the popularity of PCFWM time lens based temporal imaging sys-
tem in classical temporal imaging [59], it is not appropriate for the quantum tempo-
ral imaging. We have to seek other possibilities in nonlinear process based time lens
to find an alternative solution suitable for quantum temporal imaging.

3.3.2 Phase-Preserving Four-Wave Mixing Time Lens with Squeezed Light

Luckily PCFWM is not the only FWM process we get. Another kind of FWM, of
which the input phase is not conjugated, but preserved. Such FWM process is also
named Bragg-scattering in literature [12, 28, 34, 38, 39, 41–47, 50, 51] and it has been
investigated in section 3.1.1. The configuration of PPFWM time lens is shown in Fig-
ure 3.14. Two pump waves with their carrier frequencies ωp1 and ωp2, produced by
separately passing two femtosecond pulses through two different dispersive media.
One dispersive medium is with positive group velocity dispersion, its GDD equals
to 2D f . The other one is with negative group velocity dispersion, its GDD equals to
−2D f . The reason behind such arrangement is that the total phase in PPFWM is not
the sum of the two pump phases, but their difference. Also, the two pumps need to
have equal temporal widths. That’s why they are chirped with 2D f and −2D f , not
other configurations, for an example, one is chirped with D f and the other one is not
chirped. Then the two pump pulses are mixed with the input signal wave inside a
nonlinear medium where FWM takes place. And a idler wave is produced.

τ
τ

τ
Dispersion 2Df  

Dispersion -2Df  

PP
FWM

τ

FIGURE 3.14: Configuration of phase-preserving four-wave mixing
time lens.

According to Eq. (3.36b) and with an assumption that the perfect phase matching
condition is satisfied. We obtain the transformation relation between the input signal
and the output idler:

âout(τ) = ieiφp(τ)s(τ)âs,in(τ) + c(τ)âi,in(τ) (3.134)

where

c(τ) = cos[gA2
p(τ)L] (3.135a)

s(τ) = sin[gA2
p(τ)L] (3.135b)

Due to the beam splitter relation between c(τ) and s(τ), we define the conversion
efficiency η(τ) = |s(τ)|2.
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The amplitude and the total phase of the pump waves are

Ap(τ) =Ap exp
{
− τ2

2(2D f δωp)2

}
(3.136)

φp(τ) =
τ2

2(2D f )
− τ2

2(−2D f )
=

τ2

2D f
(3.137)

Just like in PCFWM, the idler input needs to be considered and the phase of the
input signal is now preserved. For classical temporal imaging, the input idler could
be neglected as long as it’s vacuum:

αout(τ) = is(τ)Q
[

1
D f

]
αs,in(τ) (3.138)

Of course this is not enough, we need to investigate its effect on broadband squeezed
light produced by OPA in section 3.2.2. For the convenience of following calculation,
the notation of âs,in(τ) is changed to âin(l, τ).

Here again we consider the balanced homodyne detection technique with the pump
wave used as the local oscillator. As shown in Figure 3.10, the output idler from the
time lens is mixed with the local oscillator inside the beam splitter, we obtain the
same autocorrelation function of the difference current from the two photodetectors
as in Eq. (3.122). Nevertheless, the calculation for each term has changed:

〈â†
out(τ)âout(τ + t)〉

=〈[s(τ)â†
in(l, τ) + c(τ)â†

i,in(τ)][s(τ + t)âin(l, τ + t) + c(τ + t)âi,in(τ + t)]〉
=s(τ)s(τ + t)〈â†

in(l, τ)âin(l, τ + t)〉+ c(τ)c(τ + t)〈0|â†
i,in(τ)âi,in(τ + t)|0〉i

=s(τ)s(τ + t)〈â†
in(l, τ)âin(l, τ + t)〉

= ...

=s(τ)s(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2t|V(Ω2)|2

(3.139)

〈âout(τ)â†
out(τ + t)〉

=〈[s(τ)âin(l, τ) + c(τ)âi,in(τ)][s(τ + t)â†
in(l, τ + t) + c(τ + t)â†

i,in(τ + t)]〉
=s(τ)s(τ + t)〈âin(l, τ)â†

in(l, τ + t)〉+ c(τ)c(τ + t)〈0|âi,in(τ)â†
i,in(τ + t)|0〉i

=c(τ)c(τ + t)δ(t) + s(τ)s(τ + t)〈âin(l, τ)â†
in(l, τ + t)〉

= ...

=c(τ)c(τ + t)δ(t) + s(τ)s(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2t|U(−Ω2)|2

(3.140)
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〈âout(τ)âout(τ + t)〉
=〈[s(τ)âin(l, τ) + c(τ)âi,in(τ)][s(τ + t)âin(l, τ + t) + c(τ + t)âi,in(τ + t)]〉
=s(τ)s(τ + t)〈âin(l, τ)âin(l, τ + t)〉+ c(τ)c(τ + t)〈0|âi,in(τ)âi,in(τ + t)|0〉i
=s(τ)s(τ + t)〈âin(l, τ)âin(l, τ + t)〉
= ...

=s(τ)s(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2tU(−Ω2)V(Ω2)

(3.141)

〈â†
out(τ)â†

out(τ + t)〉
=〈[s(τ)â†

in(l, τ) + c(τ)â†
i,in(τ)][s(τ + t)â†

in(l, τ + t) + c(τ + t)â†
i,in(τ + t)]〉

=s(τ)s(τ + t)〈â†
in(l, τ)â†

in(l, τ + t)〉+ c(τ)c(τ + t)〈0|â†
i,in(τ)â†

i,in(τ + t)|0〉i
=s(τ)s(τ + t)〈â†

in(l, τ)â†
in(l, τ + t)〉

= ...

=s(τ)s(τ + t)
1√
2π

∫ dΩ2√
2π

e−iΩ2tU∗(−Ω2)V∗(Ω2)

(3.142)

The additional phase eiπ/2 in front of v(τ) is absorbed into the phase of local oscil-
lator so it now becomes φβ − π/2. The neglected parts in the calculations could be
found in equations (3.98), (3.99), (3.100) and (3.101).

Since |β(τ)|, c(τ) and s(τ) are all functions of Ap(τ) whose temporal duration is
considerably long compared to 1

Ω for typical Ω. They could be regarded as stationary
with respect to t:

|β(τ)β(τ + t)| ≈ |β(τ)|2 (3.143)
s(τ)s(τ + t) ≈ η(τ) (3.144)
c(τ)c(τ + t) ≈ 1− η(τ) (3.145)
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The noise spectrum become

(δi)2
Ω =

∫ dt√
2π

eiΩt〈 Î(τ) Î(τ + t)〉

=
∫ dt√

2π
eiΩt|β(τ)|2

×
[
〈â†

out(τ)âout(τ + t)〉

+ 〈âout(τ)â†
out(τ + t)〉

+ e−2iφβ〈âout(τ)âout(τ + t)〉

+ e2iφβ〈â†
out(τ)â†

out(τ + t)〉
]

=|β(τ)|2
{ ∫ dt√

2π
eiΩt[1− η(τ)]δ(t)

+
η(τ)√

2π

∫ dt√
2π

eiΩt
∫ dΩ2√

2π
e−iΩ2t

[
|V(Ω2)|2 + |U(−Ω2)|2

+ e−2iφβU∗(−Ω2)V∗(Ω2) + e2iφβU(−Ω2)V(Ω2)
]}

=
|β(τ)|2√

2π

{
1− η(τ) + η(τ)

[
cos2(θ′(Ω))e2r(Ω) + sin2(θ′(Ω))e−2r(Ω)

]}
(3.146)

After normalization we obtain the squeezing spectrum as

Sout(Ω) = 1− η(τ) + η(τ)
[

cos2(θ′(Ω))e2r(Ω) + sin2(θ′(Ω))e−2r(Ω)
]

(3.147)

where other parameters remain unchanged except

θ′(Ω) = ψ(Ω)− φ′β (3.148)

where φ′β(τ) = φβ(τ) − π/2. The sign of the phase of the local oscillator remains
unchanged thanks to the phase-preserving nature of the time lens being used. Just
an additional phase is added due to the i in front of s(τ) in Eq. (3.134).

If we also take the scaling effect of the whole temporal imaging system into consid-
eration, the squeezing spectrum becomes

Sout(Ω) = 1− η + η
[

cos2(θ′(Ω̃))e2r(Ω̃) + sin2(θ′(Ω̃))e−2r(Ω̃)
]

(3.149)

where Ω̃ = MΩ and M is the magnification factor. η(τ) is approximated as a con-
stant because Ap(τ) barely varies during the temporal imaging process.

From Figure 3.15 we could see that the squeezing spectrum is below the shot noise
for Ω < Ω̃ indicates the presence of broadband squeezing even after passing through
the temporal imaging system. That means the broadband squeezing of the input
signal is preserved, if not 100% preserved. By observing the squeezing spectrum at
Ω = 0, we could see that PPFWM time lens based temporal imaging system still in-
troduces noise from the input idler, but not strong enough to destroy the squeezing
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FIGURE 3.15: Squeezing spectrum of broadband squeezed light
(dashed-dotted) and after a phase-preserving time lens based tem-

poral imaging system with magnification factor M = −3 (solid).
The conversion efficiency η = 0.8 and the maximum squeezing pa-
rameter erm = 3. The ordinates are graduated in shot-noise units.
Copyright 2017 Optical Society of America, reprinted with permis-

sion, from Junheng et al., Optics Letters, 2017, 42(16): 3121-3124.
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completely. The amount of noise being introduced is determined by the conversion
efficiency. The lower the conversion efficiency is, the more noise it introduces. As
a result, PPFWM time lens based temporal imaging system is suitable for quantum
temporal imaging, but the conversion efficiency should be as high as possible.

Another important issue arises from Eq. (3.149) is that how much noise would be
introduced into the idler field is dependent on the conversion efficiency. So for one
object signal field, it is desirable that the conversion efficiency remain unchanged
during the whole duration when the signal wave is being processed by the imag-
ing system, otherwise the squeezing property at different moments of the signal
wave are preserved distinctively which is detrimental to broadband squeezed light.
To prevent this from happening, the most direct measure is to ensure the tempo-
ral width of the pump wave is much larger than the total duration of the signal
field. Here we define the field of view as the temporal duration of the signal field
to be "imaged". According to what we came up with, the FOV of the signal field
as broadband squeezed light should be much smaller than the temporal duration of
the pump wave:

TF � D f δωp (3.150)

This restriction only comes from the nonclassical light, so we could name it quantum
FOV.

3.4 Summary of this chapter

In this chapter we turn to quantum temporal imaging where the "object" is switched
from classical field to nonclassical field. As a result, everything should be treated
quantumly, for example, we develop the quantum treatment of the four-wave mix-
ing processes the time lenses are based on. We then visit the concept of broad-
band squeezing and investigate the influences of FWM time lenses on broadband
squeezed light. We find that the two types of FWM time lens behave distinctly in
terms of quantum temporal imaging. One type is actually not suitable for quantum
temporal imaging because of its destruction of the nonclassical property. The other
preserves the nonclassical property with a condition. From this condition we intro-
duce the concept of quantum FOV which only exists in quantum temporal imaging.
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Chapter 4

Resolution and Field of View in
Quantum Temporal Imaging

With "imaging" in its name, temporal im aging can not escape from the same suf-
fering that haunted his spatial brother - aberration. The basic idea behind spatial
or temporal imaging is simple and elegant, just two quadratic phases, each in one
of the two quadrature domains. But in reality these phase modulations could only
be provided imperfectly for various reasons. Such imperfections give birth to aber-
rations. Consequently the quality of the image is deteriorated, or the image we are
satisfied with could only be obtained under certain conditions, in other words, the
performance of a temporal imaging system is limited.

Thanks to spatial imaging, there are a set of parameters that could be applied anal-
ogously to evaluating the performance of a temporal imaging system: resolution,
field of View, aperture, figure of merit, etc. While the concept and purpose of each
parameter remains the same, their definitions are altered due to the different causes
of aberrations between spatial imaging and temporal imaging. Take a quick exam-
ple, for spatial imaging, the aperture of a lens is the actual size of a lens and its pupil
function could always be regarded as a rectangular function. In temporal imaging,
such rectangular shaped pupil function is not common, and there is no such thing
as the physical "size" of a time lens. As a result the definition of resolution needs to
be modified accordingly.

Pupil function is not the only feature that differs temporal imaging from its spatial
counterpart. For nonlinear process based time lens, we are also limited with the
presence of dispersion inside the time lens (mainly second order dispersion). In
terms of spatial imaging, it means one should be concerned with aberration brought
by the Fresnel diffraction taken place inside a lens, which is never considered.

For temporal imaging a good understanding of the cause of aberration is the key
to establish a fine evaluation system which includes giving appropriate definitions
to the parameters for evaluation. And this is the first objective of this chapter, to
investigate these two paramount aberrations mentioned above and their influences
on the system performances of quantum temporal imaging, mainly through SFG
time lens. Here SFG time lens is used as an example because the PP FWM time lens
is similar in terms of the "beam splitter"-like transformation.
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4.1 Sum-Frequency Generation Time Lens

SFG time lens is the most commonly used nonlinear process based time lens for
quantum temporal imaging. It preserves the squeezing property just like PPFWM
time lens [56].

The configuration of SFG process is shown in Figure 4.1. In a nonlinear medium with
second order susceptibility χ(2), a signal wave with carrier frequency ωs is mixed
with a strong classical pump wave with carrier frequency ωp and produces an idler
wave with carrier frequency ωi. They satisfy the energy conservation relation ωi =
ωs + ωp as in Figure 4.2.

L

χ(2)
Esignal

Eidler

Epump

FIGURE 4.1: Configuration of sum-frequency generation.

ωs
ωi

ωp

FIGURE 4.2: Energy conservation relation of sum-frequency genera-
tion.

As before, we begin by adding nonlinear polarization to Eq. (2.5) and obtain Eq.
(3.1), only the nonlinear polarization term is changed from third order polarization
to second order polarization for SFG process:

P̂NL(z, t) = P̂(2)(z, t) = ε0

∫ +∞

0
dt1

∫ +∞

0
dt2 R(2)(t1, t2)Ê(z, t− t1)Ê(z, t− t2) (4.1)

where R(2)(t1, t2) is the second order response function. It equals to zero for t1 < 0
or t2 < 0.

The field operator Ê(z, t) is a mixture of three fields: signal, pump and idler.

Ê(z, t) = ∑
j

Êj(z, t) (4.2)
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where j ∈ {s, p, i}.

Each field operator consists of positive and negative frequency components:

Êj(z, t) =
1
2
[Ê(+)

j (z, t) + Ê(−)
j (z, t)] (4.3)

Insert Eq. (4.1), Eq. (4.2) and Eq. (4.3) into Eq. (3.1) we obtain

∂2

∂z2 Ê(+)
j (z, t)− 1

c2
∂2

∂t2 Ê(+)
j (z, t)− 1

c2
∂2

∂t2

∫ +∞

0
dt′ R(1)(t′)Ê(+)

j (z, t− t′)

=∑
k,l

1
2c2

∂2

∂t2

∫ +∞

0
dt1

∫ +∞

0
dt2 R(2)(t1, t2)

× [Ê(+)
k (z, t− t1) + Ê(−)

k (z, t− t1)]

× [Ê(+)
l (z, t− t2) + Ê(−)

l (z, t− t2)]

(4.4)

where k, l ∈ {s, p, i}, for simplicity we only consider the positive frequency compo-
nent for Ej(z, t).

Using the Fourier transform Eq. (3.6), we transform Eq. (4.4) into frequency domain:

∂2

∂z2 Ê(+)
j (z, ωj) +

ω2
j

c2 Ê(+)
j (z, ωj) +

ω2
j

c2 χ(1)(ωj)Ê(+)
j (z, ωj)

=−∑
k,l

ω2
j

2c2

∫ dω′k√
2π

[Ê(+)
k (z, ω′k) + Ê(−)

k (z,−ω′k)]

×
∫ dω′l√

2π
[Ê(+)

k (z, ω′l) + Ê(−)
k (z,−ω′l)]

× χ(2)(ωk + ωl ; ωk, ωl)
∫

dt ei(ω′j−ω′k−ω′l)t

=−∑
k,l

ω2
j

2c2

∫ dω′k√
2π

[Ê(+)
k (z, ω′k) + Ê(−)

k (z,−ω′k)]

×
∫ dω′l√

2π
[Ê(+)

k (z, ω′l) + Ê(−)
k (z,−ω′l)]

× χ(2)(ωk + ωl ; ωk, ωl)
√

2πδ(ω′j −ω′k −ω′l)

(4.5)

where the second order susceptibility equals to

χ(2)(ωk + ωl ; ωk, ωl) =
∫ +∞

0
dt1

∫ +∞

0
dt2 R(2)(t1, t2)ei(ωkt1+ωl t2) (4.6)

All the combinations of ω′j, ω′k and ω′l could be found in Table 4.1.

Because of the intrinsic permutation symmetry of the nonlinear tensor, all the second
order susceptibilities in this case could be considered the same and is denoted as χ(2)

for convenience.
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ω′j ω′k ω′l
ω′i ω′s ω′p
ω′i ω′p ω′s
ω′s ω′i −ω′p
ω′s −ω′p ω′i
ω′p ω′i −ω′s
ω′p −ω′s ω′i

TABLE 4.1: All combinations of the SFG process.

According to Table 4.1, we write Eq. (4.5) into three coupled equations:

∂2

∂z2 Ê(+)
i (z, ω′i) + k2(ω′i)Ê(+)

i (z, ω′i) = −
ω′2i χ(2)

c2

∫ dω′s√
2π

Ê(+)
s (z, ω′s)Ê(+)

p (z, ω′i −ω′s)

(4.7a)

∂2

∂z2 Ê(+)
s (z, ω′s) + k2(ω′s)Ê(+)

s (z, ω′s) = −
ω′2s χ(2)

c2

∫ dω′i√
2π

Ê(+)
i (z, ω′i)Ê(−)

p (z, ω′s −ω′i)

(4.7b)

∂2

∂z2 Ê(+)
p (z, ω′p) + k2(ω′p)Ê(+)

p (z, ω′p) = −
ω′2p χ(2)

c2

∫ dω′i√
2π

Ê(+)
i (z, ω′i)Ê(−)

s (z, ω′p −ω′i)

(4.7c)

where k2(ωj) =
ω2

j

c2 (1 + χ(1)(ωj)).

Under the quasi-monochromatic approximation, following the same decomposition
as from Eq. (3.10) to Eq. (3.13) and approximations from Eq. (3.15) to Eq. (3.17),
equations (4.7) become

∂

∂z
âi(z, Ω) = ig

∫ dΩ′√
2π

âs(z, Ω′)âp(z, Ω−Ω′)e−i∆(Ω,Ω′)z (4.8a)

∂

∂z
âs(z, Ω) = ig

∫ dΩ′√
2π

âi(z, Ω′)â†
p(z, Ω′ −Ω)ei∆(Ω′,Ω)z (4.8b)

∂

∂z
âp(z, Ω) = ig

∫ dΩ′√
2π

âi(z, Ω′)â†
s (z, Ω′ −Ω)ei∆(Ω′,Ω)z (4.8c)

where g = χ(2) ε0

h̄
EsEpEi ∝ χ(2) and the phase mismatch term

∆(Ωi, Ωs) = k(ωi + Ωi)− k(ωs + Ωs)− k(ωp + Ωi −Ωs) (4.9)
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To be used for time lens, the pump wave could be approximated as undepleted
classical wave, reducing equations (4.8) to

∂

∂z
âs(z, Ω) = ig

∫ dΩ′√
2π

âi(z, Ω′)α∗p(Ω
′ −Ω)ei∆(Ω′,Ω)z (4.10a)

∂

∂z
âi(z, Ω) = ig

∫ dΩ′√
2π

âs(z, Ω′)αp(Ω−Ω′)e−i∆(Ω,Ω′)z (4.10b)

Equations (4.10) can not be solved directly because of the phase mismatch term in
the phase. A common practice to resolve it is to expand the wavenumber inside the
phase mismatch term with respect to Ω:

k(ωj + Ω) = k j + k′jΩ +
1
2

k′′j Ω2 + ... (4.11)

Solving coupled equations (4.10) with Eq. (4.11) services as a tool for our investiga-
tions on the two aberrations mentioned before. The order of the expansion deter-
mines the level of the exploration.

If k(ωj + Ω) is expanded only to k j that

∆(Ω, Ω′) ≈ ki − ks − kp (4.12)

denoted as ∆0. Though the phase-matching is frequency independent (the disper-
sion of the time lens is not considered), there is limitation to the performance of the
imaging scheme, brought by the pupil function. In this case, temporal imaging shall
be seen in the perspective of a linear system and we summon the key instrument for
analyzing it - impulse response, or point-spread function which is called in optics.

If k(ωj + Ω) is expanded to the first or second order. Then the dispersion inside the
time lens is considered which would affect the resolution and field of view.

4.2 Temporal Resolution Defined by Impulse Response

Now let’s take the approximation (4.12) and use the convolution theorem, equations
(4.10) become

∂

∂z
âs(z, τ) = igâi(z, τ)α∗p(τ)e

i∆0z (4.13a)

∂

∂z
âi(z, τ) = igâs(z, τ)αp(τ)e−i∆0z (4.13b)
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whose solutions are

âs(z, τ) =

[
cos(γz)− i∆0

2γ
sin(γz)

]
âs(0, τ)ei∆0z/2

+
igα∗p(τ)

γ
sin(γz)âi(0, τ)ei∆0z/2 (4.14a)

âi(z, τ) =

[
cos(γz) +

i∆0

2γ
sin(γz)

]
âi(0, τ)e−i∆0z/2

+
igαp(τ)

γ
sin(γz)âs(0, τ)e−i∆0z/2 (4.14b)

where γ =
√

g2|αp(τ)|2 + ∆2
0/4.

The pump is produced by passing a ultrashort pulse with bandwidth δωp through a
dispersive medium whose GDD equals to D f , so for αp(τ) = Ap(τ)eiφp(τ):

Ap(τ) = Ap exp
{
− τ2

2(Dδωp)2

}
(4.15)

φp(τ) =
τ2

2D f
(4.16)

For nonlinear medium whose length equals to L, the input signal and output idler
satisfy the relation:

âi(L, τ) = iQ
[

1
D f

]
s(τ)âs(0, τ) + c(τ)âi(0, τ) (4.17)

where

c(τ) =
[

cos(γL) +
i∆0

2γ
sin(γL)

]
ei∆0L/2 (4.18a)

s(τ) =
g|αp|

γ
sinh(γL)e−i∆0L/2 (4.18b)

When perfect phase-matching is achieved, these coefficients could be simplified as

c(τ) = cos[gAp(τ)L] (4.19a)
s(τ) = sin[gAp(τ)L] (4.19b)

For convenience, we make some changes to the notation and rewrite Eq. (4.17) as

âi(τ) = p(τ)Q
[

1
D f

]
âs(τ) + p′(τ)âi,in(τ) (4.20)

p(τ) could be interpreted as the pupil function and the relation (4.20) is now fitted
into a big picture of a linear system. p′(τ) is the pupil function of the temporal
imaging of the idler input. This was absent in the literature of classical temporal
imaging.
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4.2.1 Temporal Imaging System as a Linear System

The operator algebra developed in the second chapter is a good example revealing
the nature of temporal imaging system as a linear system. A system is a mapping
of input functions into output functions and being linear means the total outputs
of many inputs equals to the sum of each outputs resulting from every individual
inputs. So if we continuously decompose the input, we could get its smallest unit
- an impulse, or a point for spatial imaging. The output function for an impulse
is called impulse response, or Green’s function for mathematicians, or point-spread
function for spatial imaging.

According to the linearity property, any output function could be regarded as a su-
perposition of impulse responses just like its input function being decomposed into
a set of impulses. So if the effect of a temporal imaging system is T , we could write
the output function as the convolution of the impulse response and the input func-
tion:

fout(τ) =T fin(τ0)

=
∫ dτ0√

2π
h(τ; τ0) fin(τ0)

(4.21)

with h(τ; τ0) being the impulse response.

And if it is shift-invariant linear system, then h(τ; τ0) is in the form of h(τ − τ0)

Dispersion Ds Dispersion Di
Time
Lens Df

ain

as ai aout

ai,in

FIGURE 4.3: A single lens temporal imaging system.

With this principle in mind, let’s find out the impulse response for the single-lens
temporal imaging system shown in Figure 4.3. According to section 2.3.2, we have

âs = P [Ds]âin (4.22a)
âout = P [Di]âi (4.22b)

Combining them with Eq. (4.20) we obtain

âout(τ) = P [Di]p(τ′)Q
[

1
D f

]
P [Ds]âin(τ

′′) + P [Di]p′(τ′)âi,in(0, τ′) (4.23)

Note the initial field for âi,in is a vacuum which brings deterioration to the nonclas-
sical property of the signal such as the squeezing property. Its specific effect on the
noise spectrum is discussed in last chapter. And we know already the quantum
temporal imaging systems would preserve the nonclassical properties though the
degree of the preservation varies for different systems.
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Nevertheless, vacuum input does not affect the amplitude profile we are focus on in
this chapter because

〈âout(τ)〉 = P [Di]p(τ′)Q
[

1
D f

]
P [Ds]〈âin(τ

′′)〉+ P [Di]p′(τ′)〈âi,in(0, τ′)〉 (4.24)

and clearly 〈0|âi,in(0, τ′)|0〉 = 0.

As a result, we could neglect it and Eq. (4.23) could be rewritten as

〈âout(τ)〉 = Ttemporal〈âin(τ
′′)〉 (4.25)

with

Ttemporal =P [Di]p(τ′)Q
[

1
D f

]
P [Ds]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
FQ

[
− 1

Di

]
p(τ′)Q

[
1

D f

]
Q
[
− 1

Ds

]
V
[

1
Ds

]
FQ

[
− 1

Ds

]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
F p(τ′)Q

[
1

D f
− 1

Di
− 1

Ds

]
V
[

1
Ds

]
FQ

[
− 1

Ds

]

=

√
−1

DsDi
Q
[
− 1

Di

]
V
[

1
Di

]
F p(τ′)V

[
1

Ds

]
FQ

[
− 1

Ds

]

=

√
−1

DsDi
Q
[
− 1

Di

]
|Di|FV [Di]p(τ′)V

[
1

Ds

]
FQ

[
− 1

Ds

]
=

√
−Di

Ds
Q
[
− 1

Di

]
F p(Diτ

′)V [Di]V
[

1
Ds

]
V [−1]F−1Q

[
− 1

Ds

]
=
√

MQ
[
− 1

Di

]
F p(Diτ

′)V [M]F−1Q
[
− 1

Ds

]
=
√

MQ
[
− 1

Di

]
F p(Diτ

′)
1
|M|F

−1V
[

1
M

]
Q
[
− 1

Ds

]
=

1√
M
Q
[
− 1

Di

]
F p(Diτ

′)F−1V
[

1
M

]
Q
[
− 1

Ds

]
(4.26)

There is one approximation to make. since by the definition of impulse response, the
range of input function that contributes is infinitely small. So we could replace τ′′ in
the last operatorQ[−1/Ds] with τ/M. So exp

[
−i τ′′2

2Ds

]
now becomes exp

[
−i τ2

2M2Ds

]
which is equivalent to moving Q[−1/(M2Ds)] to the left. Consequently

Ttemporal =
1√
M
Q
[
− 1

M2Ds

]
Q
[
− 1

Di

]
F p(Diτ

′)F−1V
[

1
M

]
=

1√
M
Q
[

1
MD f

] (
F p(Diτ

′)
)
∗
(
FF−1V

[
1
M

])
=

1√
M
Q
[

1
MD f

] (
F p(Diτ

′)
)
∗
(
V
[

1
M

]) (4.27)
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We obtain the specific form of Eq. (4.25)

âout(τ) =Ttemporal âin(τ
′′)

=
1√
M
Q
[

1
MD f

] (
F p(Diτ

′)
)
∗
(
V
[

1
M

]
âin(τ

′′)

)
=

1√
M

e
i τ2

2MD f

∫ dτ′′√
2π

(∫ dτ′√
2π

eiτ′(τ−τ′′)p(Diτ
′)

)
âin(τ

′′/M)

(4.28)

If we let τ0 = τ′′/M then

âout(τ) =
√

Me
i τ2

2MD f

∫ dτ0√
2π

(∫ dτ′√
2π

eiτ′(τ−Mτ0)p(Diτ
′)

)
âin(τ0) (4.29)

But a much meaningful treatment would be assuming a magnified replica of the
input waveform:

â′in(τ
′′) =

1√
M
V
[

1
M

]
âin(τ

′′) (4.30)

so it could be regarded as an impulse response of a shift-invariant system (we sepa-
rate the residual phase because it’s not of our concern):

âout(τ) = e
i τ2

2MD f

∫ dτ′′√
2π

h(τ − τ′′)â′in(τ
′′) (4.31)

Similar to the result of spatial imaging, impulse response function is the Fourier
transform of the pupil function:

h(τ) =FV [Di] p(τ′)

=
1
|Di|
V
[

1
Di

]
F p(τ′)

(4.32)

Once the impulse response is obtained, it’s time to define one of the main param-
eters of an imaging system - resolution. It is conventionally based on the concept
of two-point resolution, which means how close are two impulses with equal peak
amplitude located while they are still distinguishable. since what we could measure
is the output function which is the sum of two impulse responses, being distinguish-
able or not depends on whether this output function has a dip in the middle of the
two points. It is considered "barely resolved" when the dip reaches its limit, and the
output function becomes "flat" in the center. The distance of two "barely resolved"
points is defined as resolution.

This definition of resolution has many interpretations, in spatial imaging, it is com-
mon to use a so-called Rayleigh criterion, requires the center of the first impulse
response fall the first zero of the second impulse response. In temporal imaging,
the impulse response may never reaches zero, so we define the temporal resolution
as the FWHM width ∆ of the impulse response h(τ) divided by the magnification
factor:

R =
∆
|M| (4.33)

since ∆ is the shortest resolvable temporal duration of the image, dividing it by
the magnification factor we obtain the shortest resolvable temporal duration of the
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object.

4.2.2 Temporal Resolution of Sum-Frequency Generation Time Lens

Now we get the definition of temporal resolution, it’s time to explore different time
lenses, starting from SFG time lens.

From Eq. (4.15) and Eq. (4.19b) we obtain the pupil function for SFG time lens:

s(τ′) = sin
[

θ0 exp
{
− τ′2

2(D f δωp)2

}]
(4.34)

where we define θ0 = gApL, the temporal resolution depends on the value of θ0.

We choose to expand the sine function in its Taylor series:

s(τ′) =
∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
exp

{
− (2n− 1)τ′2

2(D f δωp)2

}

=
∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[√

2n− 1
D f δωp

]
exp

{
−τ′2

2

} (4.35)

and we define sN(τ
′) as

sN(τ
′) =

N

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[√

2n− 1
D f δωp

]
exp

{
−τ′2

2

}
(4.36)

Thanks to this expansion, we could analytically calculate the impulse response as
sum of series:

hSFG(τ) =
1
|Di|
V
[

1
Di

]
F s(τ′)

=
1
|Di|
V
[

1
Di

]
F

∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[√

2n− 1
D f δωp

]
exp

{
−τ′2

2

}

=
1
|Di|

∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[

1
Di

]
FV

[√
2n− 1

D f δωp

]
exp

{
−τ′2

2

}

=
1
|Di|

∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[

1
Di

] ∣∣∣ D f δω
√

2n− 1

∣∣∣V [ D f δω
√

2n− 1

]
F exp

{
−τ′2

2

}
=

∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!

∣∣∣ D f δω

Di
√

2n− 1

∣∣∣V [ D f δω

Di
√

2n− 1

]
exp

{
−τ2

2

}
(4.37)

For large magnification M� 1

hSFG(τ) =
∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!

∣∣∣ δω

M
√

2n− 1

∣∣∣V [ δω

|M|
√

2n− 1

]
exp

{
−τ2

2

}
(4.38)
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Unfortunately it’s impossible to get the FWHM of impulse response Eq. (4.38).
Therefore approximations of the pupil function must be made.

When θ0 �
π

2
:

This corresponds to the situation that the conversion efficiency is very low, i.e., η �
1. The pupil function is then approximated as the pump amplitude profile Ap(τ′) ,
in other words, s(τ′) is approximated to the first order of the expansion:

pSFG(τ
′) = s1(τ

′) (4.39)

According to Eq. (4.38), its corresponding impulse response is

hSFG(τ) ≈
∣∣∣δωp

M

∣∣∣V [δωp

|M|

]
exp

{
−τ2

2

}
(4.40)

Then its temporal resolution

RSFG = 2
√

2 ln 2
|M|
δωp

/|M| ≈ 2.35
δωp

(4.41)

When θ0 ≈
π

2
:

This is the situation when the peak conversion efficiency is near unity. As could
be seen in Figure 4.4, expanding s(τ′) to the third order is enough to achieve high
approximation:

pSFG(τ
′) = s3(τ

′) (4.42)

The corresponding impulse response is

hSFG(τ) ≈
δωpθ0

|M|

[
exp

{
−
(τδωp)2

2M2

}

− θ2
0

3!
√

3
exp

{
−
(τδωp)2

6M2

}

+
θ4

0

5!
√

5
exp

{
−
(τδωp)2

10M2

}]
.

(4.43)

To get the FWHM of Eq. (4.43), first we need to make it solvable. By defining a set
of the parameters and variable:

c =
δωpθ0

|M| (4.44a)

a =
θ2

0

3!
√

3
(4.44b)

b =
θ4

0

5!
√

5
(4.44c)

u0(∆/2) = exp

{
−
(δωp × ∆/2)2

30M2

}
(4.44d)
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FIGURE 4.4: Comparison of the exact pupil functions s(τ) and its ap-
proximation s3(τ) by the three first terms in the Taylor expansion.

The job has now become solving

u15
0 − au5

0 + bu3
0 =

1− a + b
2

(4.45)

whose solution is u0 ≈ 0.963

the FWHM is

∆ =2
√
−30 ln u0

|M|
δωp

=2.12
|M|
δωp

(4.46)

We obtain the temporal resolution

RSFG =
2.12
δωp

(4.47)

When θ0 >
π

2
:

If we continue increasing θ0 to θ0 > π/2, the peak conversion efficiency begin to
deteriorate since θ0 has past its critical value. The central amplitude of the pupil
function begins to oscillate, while the number of peaks starts increasing, which could
be seen in Figure 4.5.
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FIGURE 4.5: Pupil functions of sum-frequency generation time lens
when θ0 is larger than π/2.

Apparently, such pupil functions is less favorable for temporal imaging that these
values of θ0 are no longer worth consideration.

Now we can conclude all the temporal resolutions of SFG time lens whose pump
amplitude profile is Gaussian shaped into two, one for low conversion efficiency
domain Eq. (4.41), one for high conversion efficiency domain Eq. (4.47) which is
also the best temporal resolution such system could achieve. Please note the tempo-
ral resolution for low conversion efficiency is what Bennett and Kolner considered
"ideal resolution" for classical temporal imaging in [5].

But the definition Eq. (4.33) could also be used to evaluate nonlinear process based
time lens whose pump profile is of other shapes. Take a convenient example, if we
presume the pump amplitude is a rectangular function whose width is the FWHM
of the Gaussian pump when Eq. (4.15):

Ap(τ
′) =

π

2
V
[

1

2
√

2 ln 2D f δωp

]
Π
(
τ′
)

(4.48)

Its width is defined as FWHM of a Gaussian shaped pump with peak amplitude as
π is because such rectangular shaped pump wave is always obtained by reshaping
a Gaussian shaped pump wave.

So its pupil function is

pSFG(τ
′) = V

[
1

2
√

2 ln 2D f δωp

]
Π
(
τ′
)

(4.49)
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Its corresponding impulse response is

hSFG(τ) =
1
|Di|
V
[

1
Di

]
F pSFG(τ

′)

=
1
|Di|
V
[

1
Di

]
FV

[
1

2
√

2 ln 2D f δωp

]
Π
(
τ′
)

=
∣∣∣2√2 ln 2D f δωp

Di

∣∣∣V [2
√

2 ln 2D f δωp

Di

]
FΠ

(
τ′
)

=
∣∣∣2√2 ln 2D f δωp

Di
√

2π

∣∣∣V [2
√

2 ln 2D f δωp

Di

]
sinc(τ)

≈
∣∣∣2√2 ln 2δωp

M
√

2π

∣∣∣V [2
√

2 ln 2δωp

|M|

]
sinc(τ)

(4.50)

Because sinc(1.895) ≈ 0.5:

RSFG =
1.895× 2|M|

2.355δωp
/|M| ≈ 1.61

δωp
(4.51)

4.2.3 Temporal Resolution of Copropagating Bragg-Scattering Time Lens

The second time lens is based on PP copropagating FWM derived in section 3.1.1,
which is also named Copropagating Bragg-Scattering (CBS). Such time lens has
proven to be suitable for quantum temporal imaging. According to Eq. (3.135b)
and Eq. (3.136), we obtain its pupil function as

s′(τ′) = sin

[
θ′0 exp

{
− τ′2

2(
√

2D f δωp)2

}]
(4.52)

where we define θ′0 = gA2
pL.

This pupil function shares similar form to that of SFG time lens, therefore we adopt
the same method - expanding the sine function in its Taylor series:

s′(τ′) =
∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[ √

2n− 1√
2D f δωp

]
exp

{
−τ′2

2

}
(4.53)

and we define sN(τ
′) as

s′N(τ
′) =

N

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[ √

2n− 1√
2D f δωp

]
exp

{
−τ′2

2

}
(4.54)
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The analytical impulse response is then

hCBS(τ) =
1
|Di|
V
[

1
Di

]
F s′(τ′)

=
1
|Di|
V
[

1
Di

]
F

∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!
V
[ √

2n− 1√
2D f δωp

]
exp

{
−τ′2

2

}

=
∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!

∣∣∣ √2D f δω

Di
√

2n− 1

∣∣∣V [ √2D f δω

Di
√

2n− 1

]
exp

{
−τ2

2

} (4.55)

For large magnification M� 1

hCBS(τ) =
∞

∑
n=1

(−1)(n−1)θ2n−1
0

(2n− 1)!

∣∣∣ δω

M
√

n− 1/2

∣∣∣V [ δω

|M|
√

n− 1/2

]
exp

{
−τ2

2

}
(4.56)

Similar to SFG time lens, we need to make approximations depending on the value
of θ′0 in order to obtain the width of the impulse response.

When θ′0 �
π

2
:

This is the situation when the conversion efficiency is very low so the pupil function
is approximated with the pump profile squared. In order words, s′(τ′) is expanded
only to the first order:

pCBS(τ
′) = s′1(τ

′) (4.57)

According to Eq. (4.56), its corresponding impulse response is

hCBS(τ) ≈
∣∣∣√2δωp

M

∣∣∣V [√2δωp

|M|

]
exp

{
−τ2

2

}
(4.58)

Therefore its temporal resolution is

RCBS = 2
√

2 ln 2
|M|√
2δωp

/|M| ≈ 1.67
δωp

(4.59)

When θ′0 ≈
π

2
:

This is the situation when the peak conversion efficiency is near unity. For the same
reason as in SFG time lens, which could be seen in Figure 4.4, approximation of s(τ′)
with its expansion to the third order is already excellent:

pCBS(τ
′) = s′3(τ

′) (4.60)
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According to Eq. (4.56), the corresponding impulse response is

hCBS(τ) ≈
√

2δωpθ′0
|M|

[
exp

{
−
(τδωp)2

M2

}

− θ′20
3!
√

3
exp

{
−
(τδωp)2

3M2

}

+
θ′40

5!
√

5
exp

{
−
(τδωp)2

5M2

}]
.

(4.61)

With the same method as before, we obtain the FWHM of the impulse response:

∆ =2
√
−15 ln u0

|M|
δωp

=1.50
|M|
δωp

(4.62)

Hence its temporal resolution

RCBS =
1.50
δωp

(4.63)

When θ′0 >
π

2
:
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FIGURE 4.6: Pupil functions of copropagating bragg-scattering time
lens when θ′0 is larger than π/2.
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If we continue increasing θ′0 to θ′0 > π/2, the peak conversion efficiency begin to
deteriorate and the pupil function begins to oscillate for the same reason as in SFG
time lens, which could be seen in Figure 4.6. Therefore there is no need to consider
these values of θ′0.

By comparing the temporal resolution of SFG time lens and CBS time lens, one could
conclude that if the bandwidth of the initial Gaussian pump is the same, the tempo-
ral resolution of CBS time lens is better than that of SFG time lens. And we obtained
the resolution limits for both two time lenses. These limits could only only be broken
by perhaps reshaping the initial Gaussian shaped pump profile.

4.2.4 Temporal Resolution of Counter-Propagating Bragg-Scattering Time
Lens

Now let’s take a look at something different, there is another PPFWM configura-
tion developed in section 3.1.2, it is named Counter-Propagating Bragg-Scattering
(CPBS). Its transform coefficients also satisfy the relation as a beam splitter, that it
could be used for quantum temporal imaging. Yet instead of a sine function, it con-
sists of a hyperbolic tangent function which is not periodic function.

According to Eq. (3.51) and Eq. (3.136), we obtain its pupil function as

s′′(τ′) = tanh

[
θ′0 exp

{
− τ′2

2(
√

2D f δωp)2

}]
(4.64)

where θ′0 = gA2
pL.

When θ′0 � π/2, CPBS time lens behaves the same as the CBS time lens, because like
sine function, tanh(x) could also be approximated with x when x � 1. Therefore,
the temporal resolution is the same

RCPBS =
1.67
δωp

(4.65)

Nevertheless, when θ′0 is near π/2 or even larger. The situation becomes difficult
since there is no appropriate expansion of hyperbolic tangent function for those val-
ues. Consequently, there is no analytical solution to the Fourier transform of the
CPBS pupil function. It could be done numerically.

η

θ′0

ηCPBS

ηCBS

0.99

FIGURE 4.7: Comparison between the conversion efficiencies of the
copropagating Bragg-scattering time lens (dotted) and the counter-

propagating Bragg-scattering time lens (solid).
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Before we try to get the impulse response, let’s study the property of its pupil func-
tion. It is non-periodic unlike the other two time lenses. Take CBS time lens as an
example, the conversion efficiency oscillates with respect to θ′0, so the unity of con-
version efficiency could only be achieved at certain values of θ′0, fluctuations around
these values decrease the conversion efficiency. The conversion efficiency of CPBS
time lens, however, approaches the unity monotonously with θ′0 in non-oscillating
fashion. Such difference could be seen in Figure 4.7.

Another difference is that for SFG and CBS time lenses, if θ′0 is larger than π/2,
then their pupil functions become unsuitable for temporal imaging which could be
seen in Figure 4.6. CPBS time lens does not have such limit, on the contrary, when
θ′0 is larger than π/2, its pupil function begin to resemble the shape of rectangular
function, it acquires a flat-top plateau around its maximum. And its width grows
with the increasing θ′0. As could be seen in Figure 4.8, when θ′0 = π/2, pCPBS(τ

′) still
carries the Gaussian shape, when θ′0 is larger, it gains a flat-top whose width increase
with θ′0. since the impulse response is the Fourier transform of the pupil function,
consequently its width is decreasing with θ′0, thus improving the resolution.

This kind of pupil function also shed some light on the problem raised at the end
of chapter 3, Eq. (3.150). With such a plateau around its center, the restriction that
quantum FOV should be much smaller than the temporal width of the pump is no
longer so strict.
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τδω
p
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0.2

0.4

0.6

0.8

1

1.2

θ
′

0 = π/2

θ
′

0 = 5

θ
′

0 = 25

FIGURE 4.8: Pupil functions of counter-propagating Bragg-scattering
time lens for different values of θ′0.
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To obtain numerically the value of the resolution, we need to get the form of the
impulse response:

hCPBS(τ) =
1
|Di|
V
[

1
Di

]
F s′′(τ′)

=
1
|Di|
V
[

1
Di

]
FV

[
1√

2D f δωp

]
tanh

[
θ′0 exp

{
−τ′2

2

}]

=
∣∣∣√2D f δω

Di

∣∣∣V [√2D f δω

Di

]
F tanh

[
θ′0 exp

{
−τ′2

2

}] (4.66)

For large magnification M� 1

hCPBS(τ) =
∣∣∣√2δω

M

∣∣∣V [√2δω

|M|

]
F tanh

[
θ′0 exp

{
−τ′2

2

}]
(4.67)

Then we could use softwares such as Matlab to evaluate the FWHM ofF tanh
[

θ′0 exp
{
−τ′2

2

}]
for different θ′0. We take θ′0 = π/2 and θ′0 = 25 as two examples.

For the typical value of θ′0 = π/2, we could obtain the FWHM ofF tanh
[

π/2 exp
{
−τ′2

2

}]
equals to 2.08, so its temporal resolution is

RCPBS = 2.08
|M|√
2δωp

/|M| = 1.47
δωp

(4.68)

For the value of θ′0 = 25, we could obtain the FWHM of F tanh
[

25 exp
{
−τ′2

2

}]
equals to 1.32, so its temporal resolution is

RCPBS = 1.32
|M|√
2δωp

/|M| = 0.93
δωp

(4.69)

which shows 80% of improvement over the resolution for θ′0 � π/2 and 61% of
improvement over the best resolution for CBS time lens shown in Eq. (4.63).

More importantly, Eq. (4.69) is not the best resolution, even better resolution could
be achieved by increasing θ′0 which is proportional to the peak intensity of the pump
wave.

4.2.5 Resolution and Aperture of Electro-Optic Modulator Time Lens

EOM time lens is the first generation of time lens. The idea is simple, we need
phase modulation, they offer phase modulation. It is based on the phenomena that
certain crystal such as lithium niobate changes its refractive index when exposed
to an electric field. Consequently the length of time a light passing through it is
changed, introducing additional phase to the light.
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An EOM is given a sinusoidal radio-frequency (RF) signal, it introduce a phase:

φ(t) = A cos(ωmt) (4.70)

A =
πVm

Vπ
(4.71)

where Vm and ωm are the amplitude and frequency of the driving voltage and Vπ is
the voltage needed to have phase shift equals to π. Therefore A is the amplitude of
the phase-shift produced. In practice A is normally smaller than 2π because suffi-
ciently large Vm which requires a large-nonlinear-susceptibility medium is hard to
obtain.

Because the cosine function could be expanded as

φ(t) = A cos(ωmt) ≈ A(1− ω2
m

2
t2 +

ω4

4!
t4 − ...) (4.72)

which brings us the quadratic phase we desired if we could approximated the cosine
function to the second order:

φ(t) ≈ A(1− ω2
m

2
t2) (4.73)

To make this approximation valid, the duration should be limited which gives the
definition of aperture:

∆T =
1

ωm
(4.74)

And it’s natural to assume the pupil function of a EOM time lens is a rectangular
function whose width is ∆T:

pEOM(τ′) = V
[

1
∆T

]
Π(τ′) (4.75)

We also obtain the focal time of EOM time lens according to Eq. (4.73):

D f =
1

Aω2
m
=

∆T2

A
(4.76)
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So we obtain its impulse response

hSFG(τ) =
1
|Di|
V
[

1
Di

]
F pEOM(τ′)

=
1
|Di|
V
[

1
Di

]
FV

[
1

∆T

]
Π(τ′)

=
∆T
|Di|
V
[

∆T
Di

]
FΠ(τ′)

=
∆T

|Di|
√

2π
V
[

∆T
Di

]
sinc(τ)

≈ ∆T
|M|D f

√
2π
V
[

∆T
|M|D f

]
sinc(τ)

=
A

|M|∆T
√

2π
V
[

A
|M|∆T

]
sinc(τ)

(4.77)

Because sinc(1.895) ≈ 0.5, we obtain the resolution of EOM time lens:

REOM = 1.895
|M|∆T

A
/|M| = 1.895

∆T
A

(4.78)

As we could see, the resolution of EOM time lens is proportional to its aperture
which is not very desirable. Usually we want the aperture to be as large as possible
and the resolution to be as small as possible. But EOM time lens can not satisfy both.
The only solution is have a large A which is limited by the material.

4.3 Restrictions of Quantum Temporal Imaging

After we examined the resolutions of various quantum temporal imaging systems,
let’s return to where we started, the coupled equations (4.10). This time we do not
approximated it as in Eq. (4.12) and keep it as a function of Ωi and Ωs.

Then a common method to deal with equations (4.10), mainly Eq. (4.10b) is make an
assumption that g is small and âs(z, Ω′) remains unchanged during the process so
we could integrate Eq. (4.10b) over z, for convenience, from −L/2 to L/2:

âi(L/2, Ω)− âi(−L/2, Ω)

=ig
∫ dΩ′√

2π
âs(L/2, Ω′)αp(Ω−Ω′)

∫ L/2

−L/2
dz e−i∆(Ω,Ω′)z

=igL
∫ dΩ′√

2π
âs(L/2, Ω′)αp(Ω−Ω′)sinc

(
∆(Ω, Ω′)L

2

) (4.79)

since the idler input field is vacuum, we could write Eq. (4.79) in the form of a linear
system:

âi(Ωi) ∝
∫

dΩsK(Ωi, Ωs)âs(Ωs) (4.80)

So this kernel K(Ωi, Ωs) could be regarded as a linear filter which could provide a
restriction for Ωi and Ωs with a range of δωi and δωs. Only the signal field and idler
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field those within these ranges are imaged. Such restriction bring limitations to the
resolution and FOV of the temporal imaging system.

K(Ωi, Ωs) = αp(Ωi −Ωs)sinc
(

∆(Ωi, Ωs)L
2

)
(4.81)

From Eq. (4.81) we could see the main contribution to the restriction from the kernel
is the phase mismatch term ∆(Ωi, Ωs)L.

To evaluate these restrictions on quantum temporal imaging, we need to use the
pixel pulse model in which the input field is regarded as a train of pixel pulses with
identical spectrum but are separated in time.

This section includes three parts:

First, the evolution of the width and central displacement of the pixels in frequency
and temporal domain which give rise to the restrictions on the temporal width and
bandwidth of the pump wave;

Second, the restrictions on the FOV and resolution of signal field subsequent from
the phase-matching condition ∆(Ωi, Ωs);

Third, the concept of quantum FOV.

4.3.1 Restriction on the Pump Wave

In the pixel pulse model, if the resolution of an temporal imaging system is τ0, then
the signal input field to be imaged is made up of N temporal pixels assumed to
be a Gaussian function with temporal width τ0, the temporal distance between the
centers of adjacent pixels is also τ0, all pixels is assumed to have identical spectrum
with identical carrier frequency ωs, and their bandwidth equals to δωs. If all N pixels
are imaged, then obviously the FOV of such input field is

TF = Nτ0 (4.82)

On the other side, the pump wave is produced by passing a short pulse with tempo-
ral width δτp and bandwidth δωp through a dispersive medium whose GDD equals
to D f . Its temporal width becomes

∆τp = D f δωp (4.83)

Now let’s pass the signal field through the first dispersive medium. The temporal
distance between adjacent pixels remains τ0 because of their identical spectrum. But
each pixel is dispersed, its temporal width becomes Dsδωs. So the total duration of
the signal field is

Ts = Dsδωs + (N − 1)τ0 (4.84)
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For quantum temporal imaging, it is important that the temporal width of the pump
wave is much larger than the duration of the signal field:

∆τp � Ts

⇒D f δωp � Dsδωs + (N − 1)τ0

⇒δωp �
Ds

D f
δωs + (N − 1)

τ0

D f

⇒δωp �
(

1 +
1
|M|

)
δωs + (N − 1)

τ0

D f

(4.85)

From Eq. (4.85) we obtain the restriction on the bandwidth of the pump wave. We
define this limit as active pump bandwidth:

δωpa =

(
1 +

1
|M|

)
δωs + (N − 1)

τ0

D f
(4.86)

To understand this restriction better, we investigate the total spectral width of the
idler field. We obtain that the spectral distance between adjacent pixels is τ0/D f , the
bandwidth of the idler pixel equals to δωs/|M|. So the total spectral width is

δωi =
δωs

|M| + (N − 1)
τ0

D f
(4.87)

It’s not hard to find out that the restriction could be written as

ωpa = ωs + ωi (4.88)

That the bandwidth of the pump wave should be much larger than sum of the spec-
tral width of the signal wave and the idler wave.

4.3.2 Restrictions on the Resolution and Field of View

Now let’s finally take a look at this phase mismatch term. The easier way is to
expand it only to the first order

∆(Ωi, Ωs) ≈ (k′s − k′p)Ωs + (k′p − k′i)Ωi (4.89)

Or if we are dealing with second harmonic generation that k′s = k′p, we could expand
Ωs to the second order:

∆(Ωi, Ωs) ≈ k′′s Ω2
s + (k′p − k′i)Ωi (4.90)

But this does not matter, like what was said, the purpose is to get the filtering range
for Ωs and Ωi. Take Eq. (4.90) as an example.
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First we want to get the range for Ωs:

∆(δωs, 0)L� 1

⇒k′′s Lδω2
s � 1

⇒δωs �
1√
k′′s L

(4.91)

If we define τs =
√

k′′s L, since ωs is the Fourier transformed bandwidth of τ0, we
obtain the restriction on resolution:

τ0 =
1

δωs
� τs (4.92)

Now we seek the range for Ωi:

∆(0, δωs)L� 1
⇒|k′p − k′i|Lδωi � 1

⇒δωi �
1

|k′p − k′i|L

(4.93)

If we define τi = |k′p − k′i|L, then we could get the restriction for the FOV:

δωi =
δωs

|M| + (N − 1)
τ0

D f
� 1

τi

⇒TF ≈ (N − 1)τ0 �
D f

τi
−

D f

|M|τ0

⇒TF �
D f

τi

(4.94)

when |M| � τi/τ0.

This restriction on FOV, along with Eq. (3.150), are all associated with the signal field
being a nonclassical light. So they could be called as quantum FOV.

4.4 Summary of this chapter

In this chapter we try to establish an evaluation system for quantum temporal imag-
ing system to assess the performances of different quantum temporal imaging schemes
by understanding the limitations and aberrations. During the formalism of SFG time
lens, we find these limitations are the results of the finite temporal width of the pump
and the phase-matching condition. We first investigate the former limitation by re-
garding the pump profile as a pupil function and employ the linear system analysis
to define resolution and use it to evaluate various types of time lens. We then de-
velop a pixel pulse model where the signal field is decomposed into pixels-shortest
distinguishable temporal duration. Using this model we come up with the restric-
tions on the bandwidth of the pump and then on the resolution and quantum FOV
brought by the phase-matching conditions.
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Chapter 5

Quantum Temporal Imaging with
Single Photon Source

Single-photon source is a photon source which produces one and only one photon
at a time. Such source is essential to quantum information processing, for example
quantum cryptography [6, 20, 71], quantum teleportation [15] or optical quantum
computation [31, 32] which requires massive resources of indistinguishable photons
[1, 63]. Such indistinguishability are demonstrated with the help from Hong-Ou-
Mandel (HOM) interference [4, 26, 70].

One common way to generate single photon is based on parametric downconversion
in a nonlinear medium that two photons are produced simultaneously. One photon
is taken as the single photon and the other photon could be used to herald it. This
method is simple to realize yet it’s not technically a single-photon source because
the photons produced still follow the Poisson distribution that there is a possibility
of two photons being emitted at a time.

Another method is to use semiconductor quantum dots [9, 14, 18, 27, 36, 53, 58, 61,
64, 74] which are often regarded as "artificial atoms" that the rules for light-matter
interaction could be applied. Particularly it could be seen as a two level system that
it absorbs a photon to jump from the ground state with lower energy to the excited
state with higher energy level. It would also emit a photon when jumping from
the excited state to the ground state, such behavior is called spontaneous emission.
Clearly it wouldn’t emit two photons at a time otherwise the energy conservation
principle would be violated. This property makes it an ideal candidate for single-
photon source that we are going to investigate in this chapter.

In this chapter first we use the density operator approach to obtain the normalized
second correlation function and the squeezing spectrum of the single-photon source
based on quantum dot under pulsed excitation. Then we examine how quantum
temporal imaging scheme would affect its nonclassical property.

5.1 Quantum Dots under Pulsed Excitation

Pulsed excitation means that this two level system would go through a process of
going from the ground state to the excited state under the π pulse and then decay-
ing back to the ground state again while emitting a photon. The π pulse is given
periodically.
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Without broadening, the spectrum of the emitted photon has a Lorentzian shape
which corresponds to its waveform as g(t) = 1

2τr
e−|t|/τr , τr is the lifetime of sponta-

neous emission, T0 is the period of π pulse. With the assumption that τrad � T0, we
could approximate g(t) ≈ δ(t). As each photon produced are independent to each
other that we divide the whole time into time bin modes by the interval of T0. So
the density matrix of (2N+1) photon state is defined as the direct product of density
operator for each time bin mode:

ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρN =
N

∏
m=−N

ρm (5.1)

ρm =
∫

dtmdt′m f (tm, t′m)â†(tm)|0〉〈0|â(t′m) + (1− η0)|0〉〈0| (5.2)

f (tm, t′m) is normalized to the quantum efficiency of the source ηs and collection effi-
ciency ηc. In this particular case,

f (tm, tm) = η0g(t−mT0) (5.3)

where η0 = ηsηc.

Note tr(ρm) = 1 is satisfied for every ρm.

5.1.1 Normalized Second Order Correlation Function

Using the density operator we first evaluate

G̃(2)(t′; t′′) =tr
{

â†(t′)â†(t′′)â(t′′)â(t′)ρ
}

=tr
{

â(t′′)â(t′)
N

∏
m=−N

ρm â†(t′)â†(t′′)
}

=
N

∑
j=−N

tr

{
â(t′′)

[(∫
dtjdt′j f (tj, t′j)

[
â†(tj), â(t′)

]
|0〉〈0|

[
â†(t′j), â(t′)

]†
+ 0
)

∏
m 6=j

ρm

]
â(t′′)

}

=
N

∑
j=−N

tr

{
â(t′′)

[(∫
dtjdt′j f (tj, t′j)δ(t

′ − tj)|0〉〈0|δ(t′ − t′j) + 0
)

∏
m 6=j

ρm

]
â(t′′)

}

=η0

N

∑
j=−N

∑
j′ 6=j

g(t′ − jT0)

× tr

{(∫
dtj′dt′j′ f (tj′ , t′j′)

[
â†(tj′), â(t′′)

]
|0〉〈0|

[
â†(t′j′), â(t′′)

]†
+ 0
)

∏
m 6=j,j′

ρm

}

=η2
0

N

∑
j=−N

∑
j′ 6=j

g(t′ − jT0)g(t′′ − j′T0)

=η2
0

N

∑
j=−N

N

∑
j′=−N

g(t′ − jT0)g(t′′ − j′T0)− η2
0

N

∑
j=−N

g(t′ − jT0)g(t′′ − jT0)

(5.4)

G̃(2)(t′; t′′) is illustrated in Figure 5.1 where τ′ = t′′ − t′. We could spot the missing
peak at τ′ = 0 which is the characteristic of a single-photon source.
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FIGURE 5.1: Second-order correlation function of single-photon
source when τr = 0.1, T0 = 1, N = 10, t′ = 6

However, to understand better its property, we need to integrate over the second

order correlation function with help from a filter function F(t) =
1
T

e−
t
T θ(t), T could

be understood as the time of observation, and we could obtain the number of time
bin modes during this observation time

NT =
T
T0

(5.5)

As a result,

G(2)(t; τ) =
∫ +∞

−∞
dt′F(t− t′)

∫ +∞

−∞
dt′′F(t + τ − t′′)G̃(2)(t′; t′′)

=
η2

0
T2

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′e−

t−t′
T θ(t− t′)e−

t+τ−t′′
T θ(t + τ − t′′)

×
[

N

∑
j=−N

N

∑
j′=−N

g(t′ − jT0)g(t′′ − j′T0)− η2
0

N

∑
j=−N

gj(t′ − jT0)gj(t′′ − jT0)

]
(5.6)

Now let’s calculate Eq.(5.6) with the assumption that the duration of the pulsed ex-
citation is larger than the observation time:

First we denote the time bin t is in as k0 which satisfies k0T0 − T0
2 < t < k0T0 +

T0
2 .

Similarly we denote the time bin t + τ is in as k. So we have

k0 = bt + T0

2
c (5.7)

k = bt + τ +
T0

2
c (5.8)



88 Chapter 5. Quantum Temporal Imaging with Single Photon Source

So the first term of Eq.(5.6):

η2
0

T2

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′e−

t−t′
T θ(t− t′)e−

t+τ−t′′
T θ(t + τ − t′′)

+∞

∑
j=−∞

+∞

∑
j′=−∞

δ(t′ − jT0)δ(t′′ − j′T0)

=
η2

0
T2

k0

∑
j=−∞

k

∑
j′=−∞

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′e−

t−t′
T e−

t+τ−t′′
T δ(t′ − jT0)δ(t′′ − j′T0)

=
η2

0
T2

k0

∑
j=−∞

k

∑
j′=−∞

e−
t−jT0

T e−
t+τ−j′T0

T

=
η2

0
T2 e−

2t+τ
T

ek0T0/T

1− e−T0/T
ekT0/T

1− e−T0/T

=
η2

0
T2

[
1

1− e−T0/T

]2

exp
{
−
[

t− k0T0

T
+

t + τ − kT0

T

]}

≈ η2
0

T2

[
1

1− (1− T0
T )

]2

≈η2
0 N2

T
T2

(5.9)

During the process we take the assumption that

exp
{
−
[

t− k0T0

T
+

t + τ − kT0

T

]}
≈ 1 (5.10)

because according to (5.7) and (5.8), (t − k0T0) < T0 << T and (t + τ − kT0) <
T0 << T.

To evaluate the second term, we need to split into two conditions.
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First when τ < 0 i.e. k ≤ k0:

η2
0

T2

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′e−

t−t′
T θ(t− t′)e−

t+τ−t′′
T θ(t + τ − t′′)

+∞

∑
j=−∞

δ(t′ − jT0)δ(t′′ − jT0)

=
η2

0
T2

k

∑
j=−∞

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′e−

t−t′
T e−

t+τ−t′′
T δ(t′ − jT0)δ(t′′ − jT0)

=
η2

0
T2

k

∑
j=−∞

e−
t−jT0

T e−
t+τ−jT0

T

=
η2

0
T2 e−

2t+τ
T

e2kT0/T

1− e−2T0/T

=
η2

0
T2

1
1− e−2T0/T e−

−τ
T e−2 t+τ−kT0

T

≈ η2
0

T2
1

1− e−2T0/T e−
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Then when τ > 0 i.e. k0 ≤ k :
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Now we obtain the value of the second order correlation function:

G(2)(t; τ) ≈ η2
0 N2

T
T2 −

η2
0 NT

2T2 e−|τ|/T (5.11)

When the time delay approaches infinite, τ → ∞, any correlations would disappear,
hence we obtain the average intensity

〈I〉2 = G(2)(∞)

=
η2

0 N2
T

T2

(5.12)
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By normalizing it with 〈I〉2, we get the normalized second order correlation function:

g(2)(τ) = 1− 1
2NT

e−|τ|/T (5.13)

With g(2)(0) = 1− 1
2NT

.

Its shape could be seen in Figure 5.2.
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FIGURE 5.2: Normalized second-order correlation function of single-
photon source when T0 = 1, T = 20.

5.1.2 Squeezing Spectrum

Now we try to get the noise spectrum.

(δi)2
Ω =

∫
dτeiΩτ

[
ηd〈I〉δ(τ) + η2

d(G
(2)(τ)− 〈I〉2)

]
= ηd

η0NT

T

∫
dτeiΩτδ(τ)− η2

d
η2

0 NT

2T2

∫
dτeiΩτe−

|τ|
T

= ηd
η0NT

T
− η2

d
η2

0 NT

2
2/T2

(1/T)2 + Ω2

(5.14)

where ηd is the quantum efficiency of photon detector

We could also obtain the squeezing spectrum

S(Ω) =
(δi)2

Ω
〈i〉

= 1− η′0
1
2

2/T2

(1/T)2 + Ω2

= 1− η′0
1

1 + (ΩT)2

(5.15)
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where η′0 = ηdη0,
When Ω = 0, S(Ω) = 1− η′0. As could be seen in Figure 5.3, S(Ω) is below shot-
noise which indicates the presence of squeezing.
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FIGURE 5.3: Squeezing spectrum of single-photon source when η′0 =
0.9, T0 = 1, T = 20, the dashed line is the location of the characteristic

time,
1
T

.

5.2 Four-Wave Mixing Time Lens with Single-Photon Source

Now we pass the photons produced by the single-photon source through the FWM
time lens just like what we did with broadband squeezed light and check how it
would affect its nonlinear property.

First we need to expand the density operator by direct multiplication with the den-
sity operator for idler vacuum input:

ρ =
N

∏
m=−N

ρs,m ⊗ ρi (5.16)

ρs,m =
∫

dtmdt′m f (tm, t′m)â†
s,in(tm)|0〉〈0|s âs,in(t′m) + (1− η0)|0〉〈0|s (5.17)

ρi = |0〉〈0|i (5.18)

According to what we had obtained in Chapter 3, we already know that PC FWM
time lens would destroy the nonclassical property by introducing vacuum noise.

So here we are interested in how the other quantum temporal scheme - PP FWM
time lens would affect the nonclasscial property of single photons.
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According to Eq.(3.134), the transformation of the annihilation operator brought by
the PP FWM time lens is

âout(τ) = ieiφp(τ)√η âs,in(τ) +
√

1− η âi,in(τ) (5.19)

So the second order correlation function becomes
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(5.20)

Compared to Eq.(5.4), the result is not so much different from before, the only dif-
ference is that it is now multiplied by η2 which could be understood as conversion
efficiency.

As a result we could follow the same process and obtain the second-order correlation
function:

G(2)(t; τ) ≈ η2η2
0 N2

T
T2 − η2η2

0 NT

2T2 e−|τ|/T (5.21)

The normalized second order correlation function remains the same as Eq.(5.13)
however the squeezing spectrum is changed:

S(Ω) =
(δi)2

Ω
〈i〉

= 1− η′0η
1

1 + (ΩT)2

(5.22)

as could be seen in Figure 5.4.

5.3 Summary of this chapter

This chapter falls n the same category as Chapter 3 where we investigate the tem-
poral imaging of nonclassical field. We focus on its influence on the single-photon
source. We use the a simple and typical model of single-photon source in density
operator approach to calculate the second order correlation function and then the
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FIGURE 5.4: Squeezing spectrum of single-photon source after a four-
wave mixing time lens when η′0 = 0.9, η = 0.8 T0 = 1, T = 20.

squeezing spectrum. We then study the influence of FWM time lens on the squeez-
ing spectrum of such source and find the decrease of nonclassical property depend-
ing on the conversion efficiency of nonlinear-process based time lens.





95

Chapter 6

Prospects

Quantum temporal imaging has a variety of applications in quantum optics and
quantum information, especially serves as an efficient interface between physical
systems for transmitting information in a quantum network. Not only could it trans-
late the carrier frequency of the quantum optical signal, it could also modify its char-
acteristic time or bandwidth, in order to fit it into other part of the quantum network
such as a detector. Quantum temporal imaging could change the characteristic fre-
quency of a broadband squeezed light, such experiments has not been reported.

From theoretical point of view, quantum temporal imaging combines the studies on
linear system for the evaluation of the imaging system, on quantum optics for the
nonclassical light as the "object" and on nonlinear optics for the time lens. More re-
searches on how to achieve higher conversion efficiency for the time lens, especially
the PPFWM time lens are needed since the present focus of nonlinear-process based
time lens is on PCFWM time which is not suitable for quantum temporal imaging.
When near-unity conversion efficiency is achievable, mathematical studies on cou-
pled equations of the nonlinear equations should move forward, enabling first more
analytical analysis of the effect of e.g. phase-matching condition on the imaging
performance, second better understanding of the nonlinear transformation relations
and using different shapes of pump to improve the imaging performance.
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