
 

 





 





ABSTRACT/RÉSUMÉ

Abstract: Modulation instability (MI) in optics is a nonlinear process where a
weak periodic perturbation exponentially grows at the expanse of a strong carrier
wave as a result of the perfect balance between dispersion and non-linearity. In pas-
sive optical cavities, the coherent superposition between the driving field and the
intra-cavity field adds a extra-degree of freedom to this mechanism that enriches its
dynamics. In this thesis, we mostly led experimental study of MI in such devices
made of optical fibers in unexplored regimes. In particular, we experimentally in-
vestigated this process in cavities that operate under weak normal dispersion. We
showed that the MI dynamics in such regime is strongly modified compared to stan-
dard MI in cavities. We also studied the real-time dynamics of MI in the temporal
domain highlighting that the generated temporal pattern can exhibit two distinct
behaviors. A part of this work is also dedicated to the experimental study of the
gain through loss mechanism. Under specific conditions this process can generate MI
and tunable optical frequency combs. These studies are in pretty good agreement
with theoretical models and numerical simulations. Finally, we explored analytically
the process of coherent seeded MI. We reported that the dynamics of the process
is phase-sensitive, which was confirmed experimentally by recording the power and
phase evolution of the waves involved in the process.

Keywords: Nonlinear optics; optical fiber; passive fiber cavities; modulation
instability

Résumé: L’instabilité de modulation (IM) en optique est un processus non-
linéaire responsable de l’amplification exponentielle d’une faible perturbation péri-
odique au dépend d’une onde porteuse de forte puissance, cela en raison du parfait
équilibre entre la dispersion et la non linéarité. Dans les cavités optiques passives, la
superposition entre le champ injecté dans le système et le champ intra-cavité ajoute
un degré de liberté supplémentaire à ce mécanisme, ce qui enrichit sa dynamique.
Dans cette thèse, nous avons principalement mené des études expérimentales de
l’IM dans de tels dispositifs faits de fibres optiques, dans des régimes inexplorés.
En particulier, nous avons étudié expérimentalement ce processus dans des cavités
fonctionnant en régime de dispersion faible. Nous avons montré que la dynamique
de l’IM dans un tel régime est fortement modifiée par rapport à celle de l’IM stan-
dard dans les cavités. Nous avons également étudié la dynamique temporelle de
l’IM montrant que le motif temporel généré peut présenter deux comportements
distincts. Une partie de ces travaux est également consacrée à l’étude expérimentale
du mécanisme de gain induit par les pertes. Dans des conditions spécifiques, ce pro-
cessus peut générer de l’IM ainsi que des peignes de fréquence ajustables. Ces études
sont en bon accord avec les modèles théoriques et les simulations numériques. Dans
la dernière partie de ce travail, nous avons exploré analytiquement le processus de
l’IM amorcée de façon cohérente. Nous avons montré que la dynamique du processus
est sensible à la phase, ce que nous confirmons expérimentalement en enregistrant
l’évolution de la puissance et de la phase des ondes impliquées dans le processus.

Mots clés: Optique non-linéaire ; fibres optiques ; cavités fibrées passives ;
instabilité de modulation
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Introduction

Through the long history of optics, it was commonly though that the interaction
between an electro-magnetic (EM) field and matter was linear. Such assumption im-
plies that part of the incident EM field on an optical medium cannot be converted to
other frequencies and that the refractive index of this medium is independent to an
EM field and its intensity. However, J. Kerr demonstrated in 1875 that this assump-
tion was wrong. He discovered that the application of an electric field on organic
liquids and glasses induces a change of the refractive index of the medium (birefrin-
gence). More than a half century latter, new nonlinear optical phenomena based
on direct light-matter interaction were predicted, such as two-photon absorption by
M. Göppert-Mayer [1] and the Raman effect [2] observed in 1928 [3]. Nonetheless,
the nonlinear response of a medium to light generally requires a high intensity and
during the following decades nonlinear optics, except some studies [4], remains an
unexplored curiosity. In 1960, the invention of the laser by T. Maiman [5] led to
significantly new possibilities in nonlinear optics, by providing sufficient photon den-
sity to explore new nonlinear effects. A year later, the second-harmonic generation
was observed for the first time by P.A. Franken [6] and two-photon absorption by
W. Kaiser [7]. That was soon followed by the discoveries of other nonlinear effects,
such as stimulated Raman scattering (SRS) [8], intensity dependent refractive in-
dex to light [9], stimulated Brillouin scattering (SBS) [10] and four-wave mixing
(FWM) [11].

The laser discovery did not only impact optical studies in bulk media, but also
paved the way to studies in optical fibers in the 1960’s [12–14]. Indeed, the laser
provides the potential to generate a large amount of light in a spot tiny enough to be
focused in the core of an optical fiber. In the early 1960’s, optical fibers were used as
gain medium to build lasers [12–14], but soon after, it was predicted that such optical
components could be used as potential transmission media for laser communication,
by keeping the loss under 20 dB/km [15]. However, it took until the early 1970’s
to see the emergence of such “low-loss” fibers [16], leading to the development of
optical communications and at the same time to the investigation of nonlinear fiber
optics. In these fibers, the high photon density provided by a laser can be confined
in a core of small diameter, over a long distance, which exacerbates the light-matter
interaction and therefore nonlinear effects. Soon after, various nonlinear optical
processes in such optical fibers were demonstrated by R. H. Stolen et al., including
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SBS [17], SRS [18], self-phase modulation [19], the optical Kerr effect [20], and
FWM [21, 22]. These works were followed by the generation of optical solitons in
optical fibers [23–25].

In 1966, V. I. Bespalov et al. and L. A. Ostrovskii the next year predicted that
one of the most ubiquitous nonlinear phenomenon observed in the nature [26], in
various fields of physics ranging from hydrodynamics [27] to plasma physics [28],
discrete nonlinear systems [29], and Fermi-resonant interface waves [30], could be
observed in optics in diffractive [31] and dispersive [32] media, respectively. This
phenomenon called Modulation instability (MI) was first observed in optical fibers
in the early 1980’s by A. Hasegawa et al. [33]. They showed that in the context of
optics, MI occurs when a weak periodic optical perturbation grows exponentially
at the expense of a strong carrier optical wave because of the interplay between
the chromatic dispersion and non-linearity. In the temporal domain, it results in
the formation of a periodic pattern and in the spectral domain to the birth of
symmetrical sidebands on both sides of the pump frequency. In 1985, this mechanism
was observed for the first time in optics, in a single-mode optical fiber [34,35] by using
a mode-locked laser. Then, MI in optics was intensively studied since it is known as
the main mechanism for the generation of optical solitons [23,24], supercontinuums
[36] and rogues waves [37, 38].

Over the same period, nonlinear optics in passive cavities attracted a lot of
attention because of the strong enhancement of nonlinear effects allowed by the
multiple passes in the nonlinear medium. First investigations demonstrated that
the coherent interaction between the input field and the circulating field inside the
cavity does not only enhance nonlinear effects but induces a more complex dynam-
ics such as optical multi-stability, instabilities, chaos and self-oscillations [39–50].
In the late 1980s, MI was observed for the first time in these devices made of fiber
by M. Nakazawa et al.. However, this experiment was performed without any sta-
bilization to external perturbations to which the system is highly sensitive due to
its interferometric nature. In the beginning of the following decade, M. Haelterman
et al. investigated theoretically MI in synchronously pumped passive cavities op-
erating under stable conditions. They highlighted that MI in such devices leads to
the formation of stationary dissipative self-oscillations, contrary to the single pass
configuration. Moreover, they demonstrated that the dynamics of this process was
strongly modified by the boundary conditions imposed by the periodicity of the sys-
tem. These theoretical predictions were first observed by S. Coen et al. [51,52], soon
followed by experimental evidences of new features of this process like the bistable
switching [53, 54] and the generation of ultra-high repetition rate pulse trains [55].

During the last years, passive nonlinear optical fiber-ring cavities were inten-
sively studied, mostly because they support temporal cavity solitons (CSs) [56]: an
optical structure that can persist indefinitely without any active gain. These CSs
can be independently addressed (turned on or off), thus attracting a lot of atten-
tion for generating bits in all optical buffers or optical array processors [57]. More
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recently, temporal CSs have also been widely studied in microresonators, especially
because their counterpart in the spectral domain corresponds to the the formation
of broad Kerr optical frequency combs (OFCs) thanks to the high confinement of
light. These OFCs, which can even reach an octave [58,59], found a wealth of appli-
cations ranging from metrology [60,61] with lidars [62], astrophysics for calibration
the astronomical spectrometers used to detect Earth-like extra-solar planets [63,64],
to ultra-precise spectroscopy and molecular fingerprinting [65–67]. The generating
mechanism of these OFCs (and CSs) relies on MI, which first initiates the expo-
nential growth of sidebands around the pump. Then, subsequent FWM processes
lead to the generation of additional lines. Characteristics of the generated OFCs
strongly depend on their early stage of formation and a perfect knowledge of MI dy-
namics is essential to optimize their performances (span, stability, spacing between
lines) [68–70]. However, in most of the cases, the fast dynamics of MI in microres-
onators cannot be experimentally recorded [71, 72]. Indeed, their round-trip time
is not compatible with state-of-the-art electronic equipment. Conversely, the study
of the formation of MI in passive fiber-ring cavities has many advantages. On the
one hand, they are straightforward to construct and can be easily stabilized to ex-
ternal perturbations. On the other hand, thanks to their long cavity length (large
round-trip time), the round-trip to round-trip MI dynamics can be recorded with
state-of-the-art electronic equipment. Note that both microresonators and passive
fiber-ring cavities are ruled by the same physics. Passive fiber cavities are thus the
perfect platform to understand the formation of MI in microresonators.

The present work focuses on the study of MI dynamics in passive fiber-ring
cavities. We studied this process in specific regimes that remain experimentally
unexplored. In particular, we focused our investigations on the observation of (i)
the MI process in the weak normal dispersion region, (ii) the real-time dynamics
of MI in the temporal domain as well as (iii) the real-time dynamics and phase-
sensitivity of coherent seeded MI and (iv) the generation of MI, based on the process
of gain-through-filtering (GTF). These experimental observations are compared to
theoretical investigations and numerical simulations with a pretty good agreement.
This fundamental work provides promising results for suitable applications related
to passive resonators, in particular for the generation of tunable OFCs.

The manuscript is organized as follows.

In chapter 1, we give an overview of the fundamental concepts by describing light
propagation in passive fiber cavities. In particular, we recall a simple mathematical
model that allows to describe the MI dynamics in such cavities. We end up this
chapter with the experimental implementation, by highlighting the techniques used
to drive and stabilize the cavity. Chapter 2 is dedicated to the experimental study
of MI in the weak normal dispersion region of passive fiber-ring cavities. We show
that under such condition, higher order dispersion terms must be taken into account
in order to accurately describe the whole dynamics of MI. In chapter 3, we study
experimentally the round-trip to round-trip dynamics of MI in the temporal domain.
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We show that MI can follow two distinct regimes: (i) the temporal pattern being
either in phase or, more surprisingly, (ii) out-of-phase round-trip to round-trip. In
chapter 4, we study experimentally the generation of a new kind of instability in
cavities triggered by the process of gain-through-filtering. Finally, in chapter 5 we
study theoretically the coherent seeded MI in passive cavities, by showing that the
dynamics is sensitive to the phase of the input components. We provide experimental
evidences of such phenomenon through heterodyne measurements of the process.
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CHAPTER 1. FUNDAMENTAL CONCEPTS

This first chapter is an overview of the fundamental concepts describing light
propagation in passive fiber cavities. The first section focuses on single pass configu-
rations and lists the main effects suffered by optical fields in an optical fiber. Then,
in a second section, we introduce the concept of passive cavities and we describe
field propagation in such architectures, which becomes more complex due to the
periodic feedback. The next section develops a mathematical approach to extract a
simple model that allows the characterization of the field dynamics in such a system.
Finally, we introduce the experimental setup already built at the beginning of this
thesis that has been up-graded along the way.

1.1 Light propagation in optical fibers

Optical fibers, in their most basic form, consist in a cylinder of glass of higher
refractive index surrounded by a cladding of lower refractive index. In such fibers,
called step-index fibers, the phenomenon of total internal reflection [73] confines
the light inside the core. In this thesis, we mainly used standard telecommunication
fibers and dispersion shifted fibers (DSF) supporting a single transverse mode. In the
following, we detail the main phenomena undergone by the light pulses propagating
in these fibers, and more specifically in passive fiber cavities.

1.1.1 Losses

When light propagates in an optical fiber, the signal experiences losses. They
come mainly from intrinsic absorption of the material: Rayleigh scattering, which
becomes important at short wavelengths, and infrared adsorptions at long wave-
lengths [74]. This attenuation is quantified by the attenuation constant αf (in
m−1), linking the input power P0 launched in a fiber to the transmitted power PT
over a propagation of length L, by the relation PT = P0 exp(−αfL) [75]. In silica
fibers, the minimum of losses is about 0.2 dB/km (4.5 × 10−5 m−1, record: 0.1419
dB/km in 2018 [76]) at 1.55 µm, the central wavelength of the telecommunication
C band.

1.1.2 Chromatic dispersion

Chromatic dispersion consists in the frequency dependence of the refractive
index n(ω) of dielectric media such as silica. Fundamentally, this dependence is
characterized by the resonance frequencies where the medium absorbs the electro-
magnetic wave. To describe this process we introduce the slowly varying envelope
approximation (SVEA), implying that the spectral width of the signal (∆ω) is really
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1.1. LIGHT PROPAGATION IN OPTICAL FIBERS

thin compared to the carrier frequency ω0 (∆ω ≪ ω0). Within the framework of
this assumption, we can expand the mode propagation constant β(ω) in a Taylor
series around ω0 such as [75]:

β(ω) =
n(ω)ω

c
= β0 + β1(ω − ω0) +

β2
2
(ω − ω0)

2 + High order terms (1.1)

High order terms =
∑
n>2

βn
n!

(ω − ω0)
n (1.2)

βn =

(
dnβ

dωn

)
ω=ω0

, (n = 0, 1, 2, ...) (1.3)

where βn are the dispersive constants of the material that can be calculated from
the Sellmeir formula [75]. The parameter β1 represents the inverse of the group-
velocity (expressed in ps/km), velocity at which the envelope of the wave propagates,
and β2 is the group-velocity dispersion (GVD expressed in ps2/km). This latter
term is responsible for the temporal broadening of pulses during the propagation,
since the different spectral components do not propagate at the same velocity. Two
cases can be distinguished depending on β2 sign: (i) the normal dispersion regime
(β2 > 0) where spectral components with the longest wavelengths propagate faster
than short wavelengths, and (ii) anomalous dispersion regime (β2 < 0) corresponding
to the opposite case. These two regimes can be observed in most silica fibers.
The transition between them is characterized by the vanishing of β2 at a peculiar
wavelength called zero-dispersion wavelength (λZDW ). Typically, in single mode
fibers (SMF) the group-velocity dispersion term vanishes at λZDW ≈ 1.3 µm. It is
worth mentioning that at the vicinity of the zero-dispersion wavelength, high-order
dispersion terms (β3,β4,...) become significant and must be taken into account in
Eq. (1.1) to describe the dispersion effects on pulse propagation.

1.1.3 Nonlinearity: Kerr effect

When light propagates in a dielectric medium, the electric polarization field−→
P depends on the strength of the electric field. The field, in the framework of
the SVEA can be written in the form −→

E = A(z, t) exp(ikz − iωt)u⃗z (u⃗z stands
for the polarization unit vector) where k = ω [n′ + iαc/ (2ω)] /c. In linear optics,
meaning for low optical intensity, this polarization field depends linearly on the
electric field such as −→

P =
−→
P L = ϵ0χ

(1)−→E , where ϵo is the vacuum permittivity and
χ(1) is the linear susceptibility. When the optical power becomes strong enough, the
optical response becomes nonlinear with respect to −→

E and a more general function
expressing the polarization must be expanded in a power series of the electric field.
In silica fibers, it results from the centro-symmetry nature of the medium that the
second order susceptibility χ(2) vanishes. Consequently, the first nonlinear term that
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CHAPTER 1. FUNDAMENTAL CONCEPTS

becomes significant is the third-order term such as [77]:

−→
P =

−→
P L +

−→
P NL = ϵ0(χ

(1).
−→
E + χ(3)...−→E−→

E
−→
E ) (1.4)

where χ(3) is the third-order susceptibility. For ℜ
(
χ(1)
)
≫ ℑ

(
χ(1)
)
,
∣∣χ(3)

∣∣, it can
be found from the Maxwell equation that the refractive index of the medium de-
pends linearly on the optical intensity [75]. This dependence is usually expressed
as n′(ω, |A|2) = n(ω) + n2|A|2 [78] where n(ω) = cβ (ω) /ω =

√
1 + ℜ (χ(1)) is the

linear and n2 = 3ℜ(χ(3))/ (8n) the nonlinear refractive index. Note that the losses
are given by a linear term that corresponds to αf = ℑ(χ(1))ω/ (2cn) and a nonlinear
term that corresponds to two-photon absorption. This latter term in silica fiber is
relatively small, and we neglect it in the following.

1.1.4 The nonlinear Schrödinger equation

Under the above assumptions it has been demonstrated that the propagation
of the field envelope A(z, t) of the optic field in an optical fiber can be described
by the nonlinear Schrödinger equation (NLSE) [75]. Note that A(z, t) is in units of
the electric field (V.m−1). For practical reasons, we introduce E = ϵ0nc |A|2 /2 such
that |E|2 represents the optical power (in W). In this way, E verifies the following
NLSE:

∂E(z, τ)

∂z
=

(
−αf

2
− i

β2
2

∂2

∂τ 2
+ iγ|E(z, τ)|2

)
E(z, τ) (1.5)

where τ = t − β1z is the time in a reference frame moving at the carrier wave
group velocity. The parameter γ(ω0) = 2ω0µ0n2/Aeff is the nonlinear coefficient,
where Aeff is the mode effective area of the fiber (≈ 80 µm2 at 1.55 µm for standard
single mode fibers). Typically, γ(ω0) varies between 1 and 10 W−1.km−1 in standard
fibers and can even be higher in silica micro-structured fibers [79] and chalcogenide
fibers [80]. This is the simplest equation describing the field propagation in optical
fibers including the third-order nonlinear effect, the GVD and losses. It exists more
complex and complete equations taking into account additional effects that could
occur simultaneously with Kerr effect. As an example, the generalized nonlinear
Schrodinger equation (GNLSE) [75] takes into-account high-order dispersion terms
and high order effects such as Raman scattering and self-steepening. The complex
mathematical structure of the GNLSE requires generally numerical simulations to
be solved and simple analytical solution cannot be found. We point out that we
neglected Raman scattering and self-steepening in all the investigations led in this
thesis. We used long and weak enough pulses (≈ 1 ns) to not trigger these high
order effects.
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1.2. LIGHT PROPAGATION IN PASSIVE FIBER CAVITIES

1.2 Light propagation in passive fiber cavities

1.2.1 Mathematical model

A schematic of the operating principle of passive fiber-ring cavities is depicted in
Fig. 1.1. These systems are basically a fiber loop where one of the tip is connected
to an input and the other to an output port of a star coupler. The coupler is
characterized by its reflection, transmission and excess loss coefficients respectively
ρ, θ and η, defined by ρ2 + θ2 = 1 − η2 = κ2. Through one of the input coupler
port (port on the top left in Fig. 1.1), a fraction (θκ = θ̃, transmitted light by
the coupler) of a monochromatic signal is injected inside the cavity. This signal
propagates over one round-trip of length L and undergoes chromatic dispersion,
Kerr non-linearity, and losses which are accounted by the NLSE (Eq. (1.5)). After
one round-trip, this signal coherently interacts with the input field Ein inside the
coupler. A significant part (ρκ = ρ′, reflected light by the coupler) recirculates in
the resonator while the other part is extracted through the cavity output (port on
the top right in Fig. 1.1). This coherent superposition is described by the boundary

θ

ρ

Pin Pout

Figure 1.1: Schematic of the operating principle of fiber-ring cavities.

condition equations coming from the coupler [81]:{
A(m+1)(z = 0, τ) = θ̃Ein(τ) + ρ′A(m)(z = L, τ) exp(iϕ0)

E
(m+1)
out (z = 0, τ) = iρ′Ein(τ)− iθ̃A(m)(z = L, τ) exp(iϕ0)

(1.6)
(1.7)

where the field at the end of round-trip m (A(m)(z = L, τ)) is linked to the field at
the beginning of the round-trip m+1 (A(m+1)(z = 0, τ)) and the cavity output signal
(E(m+1)

out (z = 0, τ)). The term ϕ0 = β0L = 2kπ−δ0 (k integer, β0 = ω0n/c) represents
the linear phase shift accumulated over one round-trip with δ0 the detuning of the
pump frequency from the closest resonance. We point out that optical fibers we
used in this thesis to build cavities are characterized by weak propagation losses
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CHAPTER 1. FUNDAMENTAL CONCEPTS

(αfL < 0.05 dB) relative to the coupling losses. Consequently, we can perform the
substitution A(m) (z, τ) → E(m) (z, τ) exp (−αfz/2) such as the full dynamics inside
the passive cavity can be described by the following finite-dimensional map:

∂E(m)(z, τ)

∂z
= i

(
−β2

2

∂2

∂τ 2
+ γ|E(m)(z, τ)|2

)
E(m)(z, τ)

E(m+1)(z = 0, τ) = θ̃Ein(τ) + ρ̃E(m)(z = L, τ) exp(iϕ0)

(1.8)

(1.9)

where ρ̃ = ρκ exp (−αfL/2). This equation system composed of the NLSE (Eq.
(1.5)) and the boundary conditions Eq. (1.7) is also referred to the Ikeda map model
[39]. We will see later (section 1.3) that Ikeda map, through some approximations,
can be reduced to a single propagation equation, referred to the Lugiato-Lefever
equation (LLE) [82].

1.2.2 Steady-state and system resonances

To study this system, the first step is to find steady-states. For this purpose,
we search the solution of Eq. (1.8-1.9) where the field is independent of time τ so
∂2E/∂τ 2 = 0. Thus, from Eq. (1.8), we search stationary field inside the fiber as:

E(m)(z) = E exp (iγPz) , P =
∣∣E∣∣2 (1.10)

The stationary field condition implied that E(m+1) = E(m) and E(m) (z = L) =
E(m) (z = 0). By inserting Eq. 1.10 into the boundary condition (Eq. (1.9)), the
relation between the field circulating into the cavity and the input pump is (complex
field and power):

E =
θ̃Ein

1− ρ̃eiϕ
(1.11)

P

Pin
=

θ̃2

1 + ρ̃2 − 2ρ̃ cos (ϕ) (1.12)

where ϕ = γLP +ϕ0 is the total phase shift imposed by the cavity and Pin = |Ein|2.
Similarly, by inserting Eq. (1.10) into the output boundary condition Eq. (1.7) and
by applying the substitution E(m) (z, τ) → E(m) (z, τ) exp (−αfz/2), we can express
the output stationary field (complex field and power):

Eout =
iEin

[
ρ̃eαfL/2 − κ4e−αfL/2+iϕ

]
1− ρ̃eiϕ

(1.13)

Pout
Pin

= κ4 −
[
1− κ4e−αfL

] P
Pin

(1.14)

where Pout = |Eout|2. Note that with those notations (θ̃ and ρ̃), that include excess
losses of the coupler and propagation losses, the steady-state equations (1.12-1.14)
are identical to those of standard Fabry-Pérot resonators [83].
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1.2. LIGHT PROPAGATION IN PASSIVE FIBER CAVITIES

1.2.2.1 Linear resonances

As a first step, we study the Fabry-Perot-like functions Eqs. (1.12-1.14), when
the cavity operates in the linear regime (ϕ =���HHHγLP +ϕ0). We report examples of the
cavity response function P/Pin versus ϕ0 for θ2 = 0.05 in Fig. 1.2(a) depicted with
a blue curve. We note that these curves correspond to 2π-periodic Airy functions of
ϕ0. The maxima of P/Pin = f (ϕ0) is obtained for ϕ0 = 2kπ (k ∈ Z), when the input
field and the recirculating field are in phase. These phase values, where the intra-
cavity power is maximum, defines the resonances of the system. From the previous
definition of the linear phase introduced in section 1.2.1, we note that the linear
phase is proportional to the pump frequency f0 (ϕ0 = 2πf0nL/c). Thus, resonances

P
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P
/P
in P
/P
in

P
ou
t/P
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2(k-1)π
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(a)
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Figure 1.2: Linear resonances of a passive cavity for (a) intra-cavity cavity response
(Eq. (1.12)) and (b) output cavity response (Eq. (1.14)). The red, green and
blue lines are obtained for L = 50 m, Pin = 1 W and θ =

√
0.2,

√
0.1,

√
0.05

(F ≈ 67, 44, 25), respectively.

of the system corresponds to specific frequencies that are spectrally equally spaced.
This frequency spacing is called the free spectral range (FSR) and is equal to c/(nL).
Then, we investigate how the value of θ affects this functions. For this purpose, we
superimposed the function P/Pin = f (ϕ0) obtained for θ2 = 0.1 and 0.2 in Fig.
1.2(a) with green and red curves, respectively. We observe that the resonances
become thinner and their amplitudes increase with decreasing losses. In the good
cavity limit (ρ̃ ≈ 1), and for δ0 = 2mπ − ϕ0 ≪ 1 (m = arg minn |2nπ − ϕ0|) we find
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CHAPTER 1. FUNDAMENTAL CONCEPTS

that Eq. (1.12) becomes:
P

Pin
=

θ̃2

α2 + δ20
(1.15)

where we introduce α = 1−ρ̃ that accounts for the overall losses over a cavity round-
trip. This approximation of Eq. (1.12) is really useful, it provides an estimation of
the overall losses α through parameters that can be recorded in experiments. Indeed,
the ratio between the FSR and the full width at half maximum of this lorentzian
function (of a resonance) called the cavity finesse is given by F ≈ π/α. In practice,
with such a cavity architecture, we cannot access to the intra-cavity field and record
the intra-cavity response function. However, we have a direct access to the field at
the cavity output, and its transfer function Pout/Pin = g (ϕ0) follows the opposite
evolution of the intra-cavity transfer function. We report examples of this cavity
response for θ2 = 0.05, 0.01 and 0.2 in Fig. 1.2(b), with blue, green, and red curves,
respectively. From an experimental point of view, we measure from this function
the cavity finesse that follows the same previous enunciated definition, and then
determinate the overall cavity losses.

1.2.2.2 Resonances in nonlinear regime: impact of Kerr effect

To go further, we investigate the impact of non-linearity on these resonances.
When the pump becomes strong enough, in Kerr nonlinear medium, the nonlinear

P
/P
ou
t

0

5

10

15

2(k-1)π 2kπ
Φ0

(2k-1)π 2kπ (2k+1)π
Φ0

(a) (b)

Figure 1.3: (a) Nonlinear resonances for three different input pump powers. Blue,
red and green lines are obtained for Pin = 0.01, 1, 2 W, respectively. Solid lines
and dashed lines stand for stable and unstable homogeneous solutions, respectively.
(b) Nonlinear resonances for Pin = 0.01 W. Gray area corresponds to multi-valued
domains. Red dots stands for steady-state values for ϕ0 = (2k−1/2)π (black dashed
line). Parameters: L = 50 m, θ =

√
0.1, γ = 1.2 W−1.km−1.

part in the phase term ϕ becomes significant with respect to the linear part and adds
an additional phase shift at each round-trip ϕNL = γLP . This term modifies the

12



1.3. LUGIATO-LEFEVER EQUATION

shape of the resonances and shifts their peaks to negative values (ϕNL,peaks = γLPin).
To illustrate this behavior, we plot in Fig. 1.3(a) the cavity response function (Eq.
(1.12)) versus the linear phase ϕ0 for three different values of Pin. Blue, green, and
red lines stand for Pin = 0.01, 1, 2 W, respectively. We note that resonances become
more and more tilted as the input power is increased. Moreover, for sufficiently
large shifts of the peak resonances, the response becomes multi-valued (green and
red curves) on certain domains of ϕ0. We plot in Fig. 1.3(b) an example of this case,
where three intra-cavity powers exist satisfying the steady-states equation 1.12 on
the gray domain (see red dots). We will see further that steady-states that belong
to the intermediate branch of the resonances (dashed lines) are unstable. Finally, if
the displacement of peak resonances exceeds the phase spacing between resonances,
the system can exhibit more than three steady-state solutions. Such cases present
a complex dynamics [84, 85] that was not investigated in this thesis.

1.3 Lugiato-Lefever Equation

Due to the complex mathematical structure of the map system Eqs. (1.8-1.9),
it is difficult to find an analytical description to study the cavity dynamics. Never-
theless, it has been shown that for cavity with high finesse, the system of coupled
difference-differential equations Eqs. (1.8-1.9) can be reduced to a single partial dif-
ferential equation [86], which strongly simplifies analytic investigations of the system
dynamics. This equation called Lugiato-Lefever Equation (LLE) [82] is given by:

∂E(z, τ)

∂z
=

(
−α
L
− i

δ0
L

− i
β2
2

∂2

∂τ 2
+ iγ|E(z, τ)|

)
E(z, τ) +

θ̃

L
Ein (1.16)

It is obtained by assuming that only one longitudinal mode is excited in the frame-
work of the mean-field approximation, which implies that the intra-cavity field be-
tween two consecutive round-trips does not evolve significantly. Consequently, all
effects undergone by the intra-cavity field over one round-trip must be small. Thus,
the overall cavity phase detuning (which includes both linear and nonlinear phase
shifts) is of the order of θ2 or even smaller. Hence, δ0 ≪ 1, γLP ≪ 1, α ≪ 1 (high
finesse) and the cavity length must be shorter than the dispersion length such that
LD ≈ [(∆ω)2β2/2]

−1 ≫ L (where ∆ω is the total spectral width of the generated
spectrum).
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CHAPTER 1. FUNDAMENTAL CONCEPTS

1.3.1 Steady-states

We can express the steady-state solution (∂2E/∂2τ = ∂E/∂z = 0) of Eq. (1.16)
as follows:

E =
θ̃Ein

i (δ0 − γLP ) + α
(1.17)

P

Pin
=

θ̃2

(δ0 − γLP )2 + α2
(1.18)

To illustrate theses equations, we plotted in Fig. 1.4(a) with red curves the steady-
state solution P/Pin versus the detuning δ0 for three different values of Pin. We
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0 π/2 π0 2π-2π 3π/2
δ0

Figure 1.4: (a) Cavity response function from LLE model and Ikeda map model red
and blue curves, respectively. (b) Zoom on the central resonance. The corresponding
input powers from the less to the most tilted function are respectively Pin = 0.1, 3, 15
W. Solid lines and dashed lines stand for stable and unstable homogeneous solutions,
respectively. Parameters: γ = 1.2 .W−1.km−1, L = 50 m, θ =

√
0.1 (F ≈ 25).

note from Eq. (1.18) and from Fig. 1.4(a) that the cavity response is a lorentzian
function, which becomes more and more tilted as the input power is increased. Note
that the x-axis corresponds to the detuning δ0 = −ϕ0 + 2kπ (k ∈ Z), consequently,
the resonances are tilted on the opposite side of resonances depicted in Fig. 1.3,
where the x-axis is defined by ϕ0. To go further, we compared in Fig. 1.4(a) these
LLE steady-state solutions (Eq. (1.18)) to the full map steady-state solutions (Eq.
(1.12), depicted with blue curves). This LLE response function reproduces quite
well only one resonance, but is unable to represent the others. This comes from the
initial hypothesis used to derive the LLE model, where we assumed that only one
longitudinal mode propagates inside the cavity. Fig. 1.4(b) shows a zoom on Fig.
1.4(a) (delimited by gray dotted lines) that illustrates the limitation implied by this
hypothesis. For large enough detunings |δ0| > π (gray area), or for large enough
nonlinear phase shifts, the tilted resonance cover the next resonance (see most tilted
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function). Hence, LLE model fails to describe the dynamics since other modes are
implied.

1.3.2 Monostability, bistability and stability of cw solutions

By remaining within the validity domain of the LLE, we can go further and
study analytically the stability and multi-stability of these stationary states. Indeed,
we saw in section 1.2.2.2 that the system exhibits multiple steady-state values for
large detunings. However, due to the complex mathematical structure of the cavity
response (Eq. (1.12)), it is difficult to find a simple expression giving the range of
detunings for which the system is monostable or multi-stable. From this new simple
equation (Eq. (1.16)), we can analytically find this critical detuning δ0,c. By actually
looking another representation of this response function P = f(Pin), it can be easily
understood how to obtain this critical value. If the detuning is below δ0,c, the
system operates in a monostable regime and this curve is an increasing monotonous
function. This case is illustrated in Fig. 1.5(a) by the red curve obtained for δ0 = 0
rad. However, beyond the threshold δc, the system becomes multi-valued for a
certain range of input powers and the response function display an S-shape curve
with a negative slope branch connected to two positives ones. This can be seen
from the blue curve in Fig. 1.5(a) (δ0 = 0.5 rad). Consequently, we can easily find
this peculiar detuning by studying the slope of this function. Indeed, for δ0 = δc
there is only one solution where dPin/dP = 0 (see green solid curve in Fig. 1.5(a)).
Beyond it, there is two points where dPin/dP = 0, which correspond to the knees
of the S-shape curve (labeled P+and P− in Fig. 1.5(a)). For δ0 < δc the function
P = f(Pin) increases monotonously. The solutions of dPin/dP = 0 are given by:

P± =
2δ0 ±

√
δ20 − 3α2

3γL
(1.19)

where P± are the intra-cavity power from respectively the upper and lower knee
of the S-shape curve. Consequently, the critical detuning is obtained by imposing
P+ = P− which gives δ0,c =

√
3α (green curve δ0 = δ0,cin Fig. 1.5(a)). For the sake

of simplicity, we will introduce the normalized detuning ∆ = δ0/α that is commonly
used in the literature since it allows directly to identify the operating regime. Thus,
the critical value for bistable regimes is ∆c =

√
3 with this normalization.

In a second step, we will demonstrate that the negative slope of the response
function P = f(Pin) is unstable. This is performed by applying a linear stability
analysis of the LLE by adding a small perturbation to the steady-state solution
such as E = Es + a(0) exp (λz). After linearization around the stationary solutions
and straightforward calculations, one finds that homogeneous solutions are unstable
whenever the parameter [86, 87]:

λ = −α
L
±

√
4
δ0
L
γP −

(
δ0
L

)2

− 3 (γP )2 (1.20)

15



CHAPTER 1. FUNDAMENTAL CONCEPTS

is positive. By solving the inequality λ > 0, we find that unstable states exist
only in the multi-valued case and correspond exactly to the states belonging to
the negative slope of the S-shape curve in the interval [P−;P+] (and intermediate
branch of the resonance in Figs. 1.3-1.4). Therefore, when ∆ >

√
3 it is usual to

talk about a bistable cycle where in the multi-valued range [Pin−;Pin+] the system
presents two stable and one unstable solutions. Note that a similar analysis (details
in appendix A) can be performed to study the stability of the steady-states of the
Ikeda-map model. It shows that the cw states belonging to the negative slopes of
the steady-state curve (and intermediate branch of the resonances in Fig. 1.4) are
unstable.
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Figure 1.5: (a) Steady-states curves from LLE model (solid lines) and Ikeda map
model (shaded lines) for ∆ = 0,

√
3, 4, respectively red, green and blue curves. (b)

Zoom on gray inset from (a). Dashed lines stand for the cw unstable states.

In Fig. 1.5(a), we superimposed to the representations P = f(Pin) from LLE
model (calculated from Eq. (1.18)) those obtained from Ikeda map model (calculated
from Eq. (1.12)) for the same three detuning (shaded red curve δ0 = 0 rad, shaded
green curve δ0 = δ0,c, shaded blue curve δ0 = 0.5 rad). As we note, for low detunings
LLE model accurately reproduces the function P = f(Pin) from the Ikeda map
model (see red and green curves in 1.5(a)). However, for higher detunings (see blue
curve in Fig. 1.5(a)), especially in bistable regimes, we observe that LLE model fails
to describe the lower knee P−. Note that we also observe the discrepancy between
the LLE and the Ikeda map increases with the intra-cavity power. This is even more
evident in extreme nonlinear regimes. Fig. 1.5(b) represents the evolution of P for
huge values of Pin, more than three orders of magnitude of Pin in Fig. 1.5(b). We
observe that beyond an intra-cavity power threshold that depends on the detuning
(in Fig. 1.5(b) P ′

th ≈ 15, 18, 20 W for δ0 = 0, δ0,c, 0.5 rad respectively), the LLE
model is meaningless.
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1.4 Theory of modulation instability

In this section, we describe the process of modulation instability (MI), one of
the most ubiquitous nonlinear phenomena observed in the nature [26] in different
fields of physics ranging from hydrodynamics [27] to nonlinear optics [32] and plasma
physics [28]. In optics, it has been shown that this phenomenon can occur in self-
focusing Kerr media. MI originates from the exponential growth of a weak periodic
perturbation at the expense of a strong carrier wave, under the combined action
of chromatic dispersion and non-linearity. In the temporal domain, it results in
the formation of a periodic pattern and, in the spectral domain, in the birth of
symmetrical sidebands on both sides of the pump frequency. This effect has been
firstly observed in nonlinear fiber optics in 1986 by K. Tai et al. [34], in anomalous
dispersion region. In the case of normal dispersion, it has been demonstrated that
such phenomenon can be achieved only with the help of an extra degree of freedom
such as the coupling of two nonlinear orthogonally polarized waves [88], or the influ-
ence of additional dispersion terms [89]. MI has also been investigated in cavities,
where it has been firstly observed in 1988 by M. Nakazawa et al. [90]. It was latter
highlighted in 1997 by Coen et al. [51] that MI could be extended to normal disper-
sion region thanks to the extra-degree of freedom provided by boundary conditions
imposed by the cavity. MI in passive cavities has also been widely studied in anoma-
lous dispersion, since it operates at the early stage of higher nonlinear structures
such as temporal cavity solitons [56]), whose the spectral counterpart corresponds
to frequency combs [91]. In the following, we will focus on MI process in passive
fiber cavities and we will recall the investigations led in Ref. [86, 87].

1.4.1 Linear stability analysis

The formation of MI can be studied through a linear stability analysis of the
LLE. This is performed by looking at the evolution of a perturbed solution E(z, τ) =
E0 + a(z, τ) exp (iΩτ) + b(z, τ) exp (−iΩτ), where the steady state E0 previously
established (Eq. (1.18)) is perturbed by a combination of two weak symmetric
sidebands located at ±Ω = ±ω − ω0 (ω0 stands for the pulsation of the pump).
By linearizing the LLE with respect to a(z, τ) and b(z, τ), the Fourier transform of
[a(z, τ); b∗(z, τ)]T satisfies the following linear system:

∂

∂z

(
ã(z,Ω)

b̃∗(z,Ω)

)
=

 iψ2 − α

L
iγE2

0

−iγE∗2
0 −iω2 − α

L

( ã(z)

b̃∗(z)

)
(1.21)

where ψ =
√
β2Ω2/2 + 2γP − δ0/L and f̃ (Ω) denotes the Fourier transform of f (τ).

As a result, the stability of this system depends on eigenvalues of Eq. (1.21), which
are expressed as:

λ± = −α
L
±
√
γ2P 2 − ψ4 (1.22)

17



CHAPTER 1. FUNDAMENTAL CONCEPTS

When one of these eigenvalues has a positive real part, the steady-state cw solution
becomes unstable and perturbations grow exponentially with the parametric gain:

g(Ω) = −α
L
+
√
γ2P 2 − ψ4 (1.23)

In the spectral domain, it entails the emergence of bands on each side of the pump.
From Eq. (1.23), we find the most unstable frequencies and their corresponding
growth rates:

ΩT = ±

√
2

β2

(
δ0
L

− 2γP

)
, and g(ΩT ) =

−α
L

+ γP (1.24)

These unstable frequencies require specific conditions to exist, which will be de-
scribed in the next section.

1.4.2 Conditions for modulation instability and impact of
the group-velocity dispersion

Equations (1.22-1.24) give the conditions under which MI exists inside the cavity.
Indeed, MI arises if the parametric gain g(ΩT ) is positive and if the most unstable
frequencies ΩT are real. We can identify two cases depending on the dispersion sign
described in the following two points.

1.4.2.1 Normal dispersion regime (β2 > 0)

In the case of normal dispersion regime (β2 > 0), MI arises if:

β2 > 0, and Pth =
α

γL
< P < PΩ =

δ0
2γL

(1.25)

where Pth is the MI cavity threshold imposed by g(ΩT ) = 0 and PΩ is the threshold
above which the solutions ΩT are complex. We illustrate this case in Fig. 1.6(a) by
plotting the maximum of the gain (calculated from Eq. (2.3)) in the (∆, P ) plane.
The black horizontal line stands for the MI cavity threshold Pth and the red line for
the threshold PΩ. The gray area labeled ”cw unstable states” corresponds to the
homogeneous unstable states (negative slope branch of the bistable curve between
the knees P+ and P−), colored areas for the modulationally unstable regions and
blank areas for the stable domains. From this representation, we can see that MI
arises only if the system is bistable, on the lower-branch of the bistable cycle. More
precisely MI arises only if ∆>2, which is the detuning of the intersection between
the curve PΩ and P−.
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As an example we plot in Fig. 1.6(b) the steady-state curve for a detuning
∆ = 6.25 > 2 that corresponds to the red dotted vertical line in Fig. 1.6(a). The
black solid curves correspond to the stable states (blank area in Fig. 1.6(a)) and
black dotted line between the knees labeled P− and P+ (green dots in Fig. 1.6(a)-
(b)) to the homogeneous unstable states (gray area in Fig. 1.6(a)). The colored area
stands for the domain where MI can arise. It is worth noting that in the normal
dispersion region MI exist only on the lower-branch of the bistable cycle.
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Figure 1.6: (a) 2D-map of the maximum gain in the plane (∆, P ). (b) and (c)
are respectively the steady-state curve and the 2D map of MI gain in the plane
(Frequency, P ) for δ0 = π/4 rad (red vertical line (a)). Colored part of bistable cycle
stands for MI regimes. (d) Gain spectrum for δ0 = π/4 rad, Pin = 11 W (red dot
(a), (b)). (e) Gain 2D-map in the plane (∆, Frequency) for P = 2.7 W. Parameters:
γ = 1.2 .W−1.m−1, L = 50 m, β2 = 9 ps2.m−1, θ =

√
0.1, κe−αfL/2 ≈ 0.92 (F ≈ 25).

Fig. 1.6(c) shows for ∆ = 6.25 (red dotted vertical line in Fig. 1.6(a)) the
evolution of the gain spectrum calculated from Eq. (1.23) versus P as a 2D-color
plot. It displays two thin and weak symmetrical sidebands arising above the MI
cavity threshold Pth. The gain of these bands increases slowly and their frequencies
shift toward the central frequency with increasing intra-cavity power. Above the
gray dotted line (labeled P−) that corresponds to the lower knee of the bistable
cycle, MI no longer exists since it corresponds to homogeneous unstable states. In
Fig. 1.6(d) we give as an example the gain spectrum calculated for the peculiar
values P = 2.7 W, ∆ = 6.25 that corresponds to the red horizontal dotted line in
Fig. 1.6(b) (red dots in Fig. 1.6(a)-(b)).

Finally in Fig. 1.6(e) we show for P = 2.7 W above the cavity threshold (red
horizontal dotted line in Fig. 1.6(a)) the evolution of the gain spectrum calculated
from Eq. (1.23) versus ∆ as a 2D-color plot. The left gray vertical dotted line stands
for the threshold ∆ = 2 below which MI does not exist, the right one corresponds to
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the detuning threshold above which the system becomes modulationally unstable.
Above this value of the detuning, we observe two sidebands that shift away from
the central frequency and become thinner when the detuning increases.

1.4.2.2 Anomalous dispersion regime (β2 < 0)

In the case of anomalous dispersion regime (β2 < 0), MI arises if:

β2 < 0, P > Pth =
α

γL
and P > PΩ =

δ0
2γL

(1.26)

where Pth is the MI cavity threshold imposed from g(ΩT )=0 and PΩ is the threshold
below which the solutions ΩT are no longer real. We gave an overview of the MI
arising conditions following the same representation than Fig. 1.6 in Fig.1.7(a). We
note that, contrary to the previous case, that MI can arise whatever the detuning.
Moreover, two cases can be identified: (i) the monostable regime and (ii) the bistable
regime. These two cases are illustrated in Fig. 1.7 and in Fig. 1.8, respectively.

Monostable regime

In the monostable regime in Fig. 1.7(a), the system becomes modulationally
unstable above Pth. We highlighted this in the steady-state curve obtained for
∆ = 0.8 <

√
3 (red vertical line in Fig. 1.7(a)) in Fig. 1.7(b) by a transition from

a black curve to colored curve. We show in Fig. 1.7(c) the evolution of the gain
spectrum calculated from Eq. (1.23) versus P as a 2D-color plot. It displays two
weak sidebands at the MI cavity threshold of increasing amplitudes shifting away
from the central frequency. An example of a gain spectrum is shown in Fig. 1.7(d)
that corresponds to the red dot configuration in Fig. 1.7(a)-(b) and red dotted line
in Fig. 1.7(c) (∆ = 0.8, P = 5.9 W). Finally, we show in Fig. 1.7(e) the evolution of
the gain spectrum calculated from Eq. (1.23) versus ∆ as a 2D-color plot for P = 5.9
W (red horizontal line in Fig. 1.7(a)). It displays two sidebands shifting toward the
central frequency until the threshold labeled P+. Above it, the homogeneous states
are unstable.

Bistable regime

In the bistable regime in Fig. 1.8(a), the system becomes modulationally un-
stable above P+ on the upper-branch of the bistable cycle. We highlighted this in
the steady-state curve obtained for ∆ = 5.7 >

√
3 (blue vertical line in Fig. 1.8(a))

in Fig. 1.8(b) by a transition from black solid and dashed curves corresponding to
homogeneous stable and unstable states, respectively, to colored curve. We show
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Figure 1.7: (a) 2D-map of the maximum gain in the plane (∆, P ). (b) Steady-
states curve (red vertical line (a)) and (c) the gain spectrum versus P for ∆ = 0.8.
Colored part of the bistable cycle stands for MI regimes, and the black curve for
homogeneous stable states. (e) Gain spectrum for ∆ = 0.8 and P = 5.9 W (red
dot (a), (b)). (e) Gain spectrum versus ∆ for P = 5.9 W. Parameters: β2 = −20
ps2.km−1, and see caption’s Fig. 1.6.

in Fig. 1.7(c) the evolution of the gain spectrum calculated from Eq. (1.23) versus
P as a 2D-color plot. It displays two sidebands at the threshold labeled P+ of in-
creasing amplitudes shifting away from the central frequency. Below this threshold,
the homogeneous states are unstable. An example of a gain spectrum is shown in
Fig. 1.7(d), it corresponds to the blue dot configuration in Fig. 1.7(a)-(b) and blue
dotted line in Fig. 1.8(c) (∆ = 5.7, P = 15.5 W). Finally, we show in Fig. 1.8(e) the
evolution of the gain spectrum calculated from Eq. (1.23) versus ∆ as a 2D-color
plot for P = 15.5 W (blue horizontal line in Fig. 1.8(a)). It displays two sidebands
shifting toward the central frequency until the threshold labeled P+. Above it, the
homogeneous states are unstable.

To summarize, we identified two MI cases depending on the dispersion sign. In
the normal dispersion regime, MI exists only if ∆ > 2 on the lower-branch of the
bistable cavity response. In the anomalous dispersion regime, MI exists whatever the
detuning. In the monostable regime, MI arises when P is above the cavity threshold
Pth. In the bistable regime, MI arises only on the upper-branch of the bistable
cycle. We emphasize that contrary to MI in single pass in monomode isotropic
fiber, where the process is observed only in anomalous dispersion region, in passive
fiber cavities, this process is extended to normal dispersion region [51,86,87] thanks
to the contribution of the cavity detuning.

These figures have been obtained from a linear stability analysis of the LLE that
provides the gain spectrum and the conditions under which MI arises with respect
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to small perturbations. However, this analysis does not provide any information
on the dynamics of large amplitude modulated states. In the normal dispersion
regime, it has been demonstrated from the original study about such instabilities
by Lugiato and Lefever [82] that the system bifurcates subcritically for ∆ > 41/30.
Consequently, the system bifurcates from the steady-state branch to a MI branch
above the MI cavity threshold (Pth = α/(γL)). This means that the amplitude of
MI pattern is of the order of the homogeneous solution, even close to the vicinity of
the MI threshold Pth. Therefore, the linear stability of the LLE does not provide an
accurate description of the cavity dynamics. To overcome this limitation it has been
suggested by Coen et al. [53] to describe the system by means of a truncated Fourier
mode expansion of the field [92], by taking into account both the homogeneous
mode (Ω = 0) and modulated mode (±ΩT ). This analysis allows to calculate from
a numerical approach the new branch and its stability around the critical point Pth.
The main result of this study is that the system can experience MI stable patterns
only if ∆ > 4.25. To illustrate this study, we depicted this bifurcation for three
different values of the detuning in Fig. 1.9 in the case of bistable regimes. From left
to right, the three bifurcations correspond to ∆ = 4.0, 4.25, 4.5 respectively. Black
solid curves and black dashed curves stand for the stable and unstable homogeneous,
respectively. Red solid curves correspond to the stable portion of MI branch and red
dashed curves to its unstable states. We note that the MI branch connects the MI
threshold labeled A on the lower-branch to the negative slope of the bistable cycle
at the point B. For ∆ < 4.25, illustrated in Fig. 1.9 by the bifurcation on the left
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(∆ = 4.0), the stable portion of MI appears below the input power of the bifurcation
points A. This means that by increasing the input power above the bifurcation point
A, the system switches to the upper-branch of the bistable cycle, which is the only
stable state for this range of input powers. By increasing the detuning, the range
of input powers where the MI is stable increases and for ∆ ≥ 4.25 (see Fig. 1.9
middle and right bifurcations) this MI branch becomes accessible. This study shows
that in normal dispersion region, MI can be observed on a more constrained range
of detunings compared to the linear stability analysis that predicted MI on the
lower-branch since ∆ > 2 (see section 1.4.2.1).
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Figure 1.9: Bifurcation diagrams for three different values of ∆. From left to right
∆ = 4.0, 4.25, and 4.5, respectively. Homogeneous stable (unstable) states are
depicted with black solid (dashed) lines and MI stable (unstable) states with red
solid (dashed).

1.5 Experimental setup

In this section, we describe the experimental setup build by Fançois Copie during
his PhD thesis [93]. It allows to introduce and clearly identify the different parts
required to experimentally investigate MI in passive fiber cavities. This setup is
depicted in Fig. 1.10 where we identify three main lines: (i) the driving line (blue
fibers), (ii) the line to control and measure the cavity detuning (red fibers and
cables), and (iii) the detection line (green fibers and cables). These different lines
are described in the following sections.

1.5.1 Driving system

We start by describing the part of the system which allows to generate the
pump (identified by blue fibers). The driving field is a train of square pulses of
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Figure 1.10: Experimental setup. EOM, electro-optical modulator; PC1−3, polar-
ization controller; PD1−2, photodetector; OSA, optical spectrum analyzer; EDFA,
erbium-doped fiber amplifier; BPF, band-pass filter; Oscillo., oscilloscope; PID,
proportional-integrate-derivative controller; PWM, powermeter.

≈ 1 ns duration. It allows to prevent Stimulated Brillouin scattering1 and to get
high peak power to trig the MI process. These pulses are generated from a cw
laser with a thin spectral bandwidth (less than 100 Hz) chopped by an electro-optic
modulator (EOM) to generate a train of square nanosecond pulses. The repetition
rate, thanks to an arbitrary waveform generator driving the EOM, is set to match
with the repetition rate of the cavity, in order to drive synchronously the cavity and
get one pulse per round-trip. These pulses are then amplified through an erbium-
doped fiber amplifier (EDFA) and filtered through a thin filter (BPF, 100 GHz) to
remove amplified spontaneous emission (ASE) in excess. Finally, these pump pulses
are injected into the cavity through the right port of the cavity and propagate in
the anti-clockwise direction (blue arrow in Fig. 1.10). Note that we added a 99/1
coupler just before the input port of the cavity in order to measure the power of the
input pulses thanks to a powermeter (PWM).

1. Stimulated Brillouin Scattering (SBS) is a nonlinear process resulting from the interaction
between the pump, a Stokes field and an acoustic wave to generate new waves. From the momen-
tum and energy conservation this phenomenon has a strong angular dependence and it maximum
efficiency is obtained for backward scattering. The generation of this backward wave (whose the
frequency shift from the pump fSBS = 2nv/λ0 (v: sound velocity) is around 10 GHz in silica fiber
at λ0 = 1550 nm [94]) and depletes the pump power. To prevent this, different methods can be
used among which adding an isolator to stop the backward waves but with the disadvantage of
decreasing the cavity finesse due to its insertion loss. The other method we implemented in our
setup consists to use pulses shorter than the lifetime of an acoustic phonon (≈ 11 ns for silica [94])
where the threshold of SBS becomes significant is raised to high power.
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1.5.2 Cavity detuning control and measure

1.5.2.1 Stabilization and control of the detuning

The second line, identified by red fibers and cables in Fig. 1.10, allows to
stabilize the accumulated linear phase ϕ0 = 2πcnL/λ0 seen by the pump which is
essential owing to the interferometric nature of the system. Indeed, this parameter
is really sensitive to external perturbations such as the change in the pressure (with
the external sound) or even the change in the temperature, leading to a phase
sensitivity of −2.2 × 10−5π/Pa/m and −26 × 10−5π/°C/m, respectively [95]. For
our investigations, we want that this linear phase (and consequently the detuning)
remains constant during the experiments. The solution is to use a feedback loop
system to finely tune in real-time either the cavity length L as originally investigated
by Coen et al. [52] or the laser wavelength λ0 [93,96], to ensure that the linear phase
remains constant. For this purpose, two circulators at each output of the cavity are
implemented, which allow to use independently the two propagation directions of
the cavity. While the pump propagates in the anti-clockwise direction, a fraction of
the cw laser field (low power, linear regime) propagates in the clockwise direction
and undergoes the same perturbations as the pump. This field is then detected
at the cavity output by a photodetector (PD1) and a PID (proportional-integrate-
derivative) controller, providing an error signal between the current level of this
reference field and a setpoint value. The PID controller drives the integrated laser
piezoelectric module (PZT) and minimize the error signal by finely tuning the pump
wavelength. Its bandwidth of 16 kHz allows a sufficiently fast response of the loop
to compensate for the linear phase variations induced by the external perturbation
frequencies. We emphasize that the pump beam and reference beams are provided
by the same laser, which means that there is no drift of the linear phase between
the two fields. Consequently, when the linear phase seen by the reference field is
locked, the one seen by the pump is also locked.

1.5.2.2 Measure of the detuning

The experimental cavity transfer function Pout = f(ϕ0) (see Fig. 1.2(b)) of the
two fields (pump and reference fields) can be obtained by recording the evolution
of the cavity output powers by executing a linear phase scan. This scan is per-
formed by applying a linear variation of the laser PZT module voltage. Indeed, it
is proportional to the change in pump wavelength, and we checked that it induces
a linear variation of the linear phase ϕ0. Consequently, thanks to a photodetector
at each output of the cavity (PD1 and PD2 in Fig. 1.10) and an oscilloscope, by
scanning the cavity, we recorded and observed a set of equally spaced resonances.
An example of this transfer function is depicted by the red curve in Fig. 1.11(a),
where we normalized the detected power to its maximum value. The gray triangle
function corresponds to the normalized voltage applied to the laser PZT module.
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Note that for decreasing (increasing) voltage, the pump wavelength decreases (in-
creases) but the linear phase increases (decreases) since ϕ0 ∝ 1/λ0. We point out
that for non-PM fibers (that is the case in our work), fibers exhibits random residual
and stress-induced birefringence providing two orthogonal polarization eigenstates.
Since the refractive index is not the same on both states, each of them provides a
different set of resonances. As an example, we plot in Fig. 1.11(a) with the red and
blue curves standing for the two sets of resonances, one corresponding to the slow
mode and the other to the fast mode. Note that if the input field does not match
one of the polarization mode, we observe an overlapping between the two sets of
cavity resonances. For our experiments, we added two polarization controllers (PC1
on red line and PC2 on blue line in Fig. 1.10), which allow to propagate the pump
beam on one polarization mode and the reference field on the other. Such configura-
tion has two main benefits: (i) it minimizes the interaction between the pump and
reference beams inside the cavity (cross-phase modulation [75]) and (ii) it provides
a continuous tuning of the detuning as we will explain below.
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Figure 1.11: (a) Cavity complementary transmission functions. Blue and red curves
stand for the pump and reference response functions, respectively. Gray curve:
triangular tension applied on laser integrated PZT. (b) Zoom on red delimited part
in (a). Horizontal gray line: setpoint tension; black dot: draw tension setpoint, red
parts: available detuning range from their respective transmission function.

Finally, we can measure the detuning by recording consecutive resonances from
both field in the linear regime. As an example, we show in Fig. 1.11(b) the sets
of resonances from the reference and pump beams with the solid red and solid
blue curves, respectively. Note that we directly scaled the x-axis with respect to
the detuning (ϕ0 = −δ0 + 2kπ, k integer) by taking the low extremity of a pump
resonances as a reference and by noting that the space between two resonances
corresponds to 2π. The chosen setpoint value fixed by the PID controller corresponds
to the gray line, consequently the detuning corresponds to the abscissa of the crossing
between setpoint curve and the reference beam resonances. In the depicted example
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in Fig. 1.11(b), we chose to stabilize the cavity on the black crossing point (on
the positive slope of the reference beam resonance) corresponding to the detuning
marked by the black dashed line. Obviously, it can be chosen to stabilize the cavity
on the other crossing point (negative slope of the reference beam resonance). We
point out that the cavity can be stabilized only on a limited range of detunings
that corresponds approximately to the width of the resonance (see red area in Fig.
1.11(b)). Indeed, beyond the wings of the resonance, a small derivation from the
setpoint induces a large variation of the detuning. To overcome this limitation, we
incorporate a polarization controller (PC3) inside the cavity [51, 52, 97]. It induces
a controllable additional birefringence and modified the optical path between the
polarization states. This allows to play between the spaces between the two sets of
resonances, and achieve any value of the detuning. As an example, we plot in Fig.
1.11(b) a new set of resonances. The blue curve stands for the resonances of the
pump field and green dashed curves for the resonances of the reference field. The
new available range of detuning corresponds to the green area. In this way, we can
measure the detuning with a precision estimated at 0.05 rad.

1.5.3 Detection system

The last part highlighted by green fibers and cables placed at the nonlinear
beam cavity output in Fig. 1.10 stands for the detection system. In the simplest
case, we use a photodetector with an oscilloscope to record the cavity response
function, and/or an optical spectrum analyzer (OSA) to record the MI output cavity
spectrum. Additional instruments can be added at this output to get a dynamical
characteristic of the cavity either in the spectral domain, by means of dispersive
Fourier transform (DFT) [98–100] or in the time domain, with a time-lens system
[101–103]. This latter equipment will be described in chapter 3 where it will be
used.

Summary

We first recalled the main linear effects (loss and dispersion) experienced by an
optical field during its propagation along a single mode fiber. Then we introduced
the nonlinear effects, more precisely the Kerr effect, which is a phenomenon where
the refractive index of the material becomes proportional to the intensity of the
applied field. We recalled the nonlinear Schrödinger equation that describes the
field propagation in a medium with these properties.

In a second step, we presented the cavity concept and the Ikeda model ruling
the field propagation along the multiple pass inside the cavity. We showed the
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interferometric nature of this system exhibits resonances as in Fabry-Perot systems.
Moreover, we pointed out the impact of the nonlinearity on such resonances.

We then introduced the Lugiato-Lefever model, which allows to derive a sim-
ple equation from the Ikeda map model assuming that the field is not significantly
modified from a round-trip to another. This equation called Lugiato-Lefever Equa-
tion (LLE) is really convenient as it allows to derive simple theoretical analysis to
describe MI close to the cavity threshold.

Finally, we described the experimental setup, the utility of each line that com-
posed it, and explained the necessity and the technique to control and measure the
detuning based on a PID feedback loop.
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CHAPTER 2. MI IN THE WEAK NORMAL DISPERSION REGION

Modulation instability in Kerr passive resonators has been widely studied during
the last decades as it is known as a precursor for frequency comb generation [91] and
ultrahigh repetition rate pulse trains [55]. We saw in the previous chapter that the
group-velocity dispersion (GVD) plays a significant role in the mechanism of MI.
Indeed, MI sideband position (see Eq. (2.1)) is inversely proportional to the square
root of β2. To date, most studies of MI in passive fiber cavities have been carried out
in large normal or anomalous dispersion regions, far away from the ZDW. In these
cases, expanding the propagation constant in Taylor series up to the second order
dispersion term (β2) is enough to capture the whole dynamics of the system [51,90].
However, close to the ZDW (weak dispersion regions), the MI spectrum becomes
wider (see Eq. (2.1)). Thus, high-order dispersion (HOD) terms must be considered
in order to take into account the variation of the propagation constant over the whole
spectrum and capture the MI dynamics. On the one hand, it has been shown theoret-
ically and experimentally that in passive cavities, the third order dispersion (TOD)
term: (i) was responsible for convective MI in weak dispersion regions [104, 105]
characterized by a spectral symmetry breaking, and (ii) for the generation of dis-
persive waves in the context of cavity solitons, which stabilize the underlying Kerr
frequency combs [106]. One the other hand, it has been demonstrated theoreti-
cally that fourth-order dispersion (FOD) term modifies strongly the dynamics of
the system: (i) it allows for new phase-matching frequencies, extends MI dynam-
ics in normal dispersion region, as in single pass configurations [89, 107, 108], (ii)
leads to the disappearance of MI when the pump exceeds a certain threshold [109],
and more surprisingly, (iii) to the generation of tens of quasi-phase-matched MI
sidebands in dispersion oscillating passive fiber cavities. Note that recent investiga-
tions showed that TOD and FOD were also responsible for the generation of widely
tunable parametric oscillation [58,110] (octave-spanning), particularly appealing for
spectroscopy, and ”clustered” OFC [111] in the context of Kerr microresonators.
In the following work, we present an experimental study of MI in the weak nor-
mal dispersion region of a passive fiber cavity, just above the MI cavity threshold
in both monostable and bistable regimes. We show that FOD leads to significant
modifications of MI features, namely the generation of new sidebands.

The chapter is organized as follows. In the first section, we recall the extended
LLE that allows to study the MI dynamics in such weak dispersion regime, by
taking into account HOD terms [97, 109, 112]. Then, in the second section, we
briefly describe the experimental setup which is similar to the one presented in the
previous chapter (see section 1.5) and we give the cavity parameters. Finally, in
the last section, we show our experimental results and compare them to theoretical
predictions and numerical simulations.
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HIGH-ORDER DISPERSION TERMS

2.1 Theory: extended Lugiato-Lefever equation
including high-order dispersion terms

In this section, we first recall the model that allows to describe the MI dynam-
ics in the vicinity of the ZDW of optical fibers, and we give the new MI phase-
matching relation. Then we study the extended MI occurrence conditions and we
focus particularly on the weak normal dispersion regime, where the FOD term leads
to significant modifications of MI dynamics, such as the generation of additional
bands.

2.1.1 Extended LLE and phase-matching relation

As shown in chapter 1, for low power and low detuning, the light propaga-
tion and modulation instability dynamics are well modeled by the Lugiato-Lefever
equation. However, in the low dispersion regime close to the vicinity of the fiber
zero-dispersion wavelength, high-order dispersion terms must be considered. This
leads to an extended version of the original LLE taking into account these terms
such as [109]:

∂E(z, τ)

∂z
=

(
−α
L
− i

δ0
L

+ i
n=4∑
n=2

in
βn
n!

∂n

∂τn
+ iγ|E(z, τ)|

)
E(z, τ) +

θ̃

L
Ein (2.1)

Note that we expand the dispersion only up to β4 since higher-order dispersion terms,
in realistic passive fiber cavities, are negligible. By proceeding to a linear stability
analysis in a similar way that was developed in section 1.4.1, it is straightforward
to find the parametric gain:

g(Ω) = −α
L
+
√
γ2P 2 − ψ4 (2.2)

where ψ =
√
β2Ω2/2 + β4Ω2/24 + 2γP − δ0/L. The most unstable frequencies and

their respective growth rates are given by:

ΩT± = ±

√√√√√√−6β2±6

√
β2
2 −

2

3
β4

(
2γP − δ0

L

)
β4

, and g (ΩT±) = −α
L
+ γP (2.3)

As it can be seen from these expressions, MI existence conditions are modified with
respect to standard MI. Note that only even dispersion terms (β2 and β4 in Eqs.
(2.2-2.3)) affect modulation instability, in particular odd dispersion terms β3 does
not enter into play.
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CHAPTER 2. MI IN THE WEAK NORMAL DISPERSION REGION

2.1.2 Extended MI occurrence conditions

MI exists when one or both unstable frequencies ΩT± are real and when g (ΩT±)
is (are) positive. MI can arise in multiple configurations depending on β2 and β4
relative signs. In the following, we will focus on configurations where β4 < 0, which
is the case in most optical fibers. We can identify two cases depending on the
dispersion sign described in the following two points.

2.1.2.1 Normal dispersion regime (β2 > 0)

In the case of normal dispersion regimes (β2 > 0), MI arises if:

β2 > 0 and ΩT− real : P > Pth, P > Pβ2 (2.4)
and ΩT+ real : P > Pth, Pβ2 < P < PΩ (2.5)

where Pth = α/(γL) is the MI cavity threshold imposed from g(ΩT±) = 0, PΩ =
δ0/ (2γL) the threshold above which the solution ΩT+ are complex, and Pβ2 = PΩ+
(3β2

2) / (4β4γ) the threshold below which the solutions ΩT+ and ΩT− are complex.
The map of the maximum of the gain (calculated from Eq. (2.3)) in the (∆, P )
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Figure 2.1: 2D-maps of the maximum gain (Eq. (2.3)) in the (∆, P ) plane in the case
of a normal dispersion regime, (a) with β4 and (b) without β4. Parameters: β2 = 0.08
ps2.km−1, F ≈ 26.5 (α = 0.118), L = 37.9 m, θ =

√
0.1, γ = 2.5 W−1.km−1, and

β4 = −6× 10-4 ps4.km−1.

plane corresponding to β2 > 0 and β4 < 0 is shown in Fig. 2.1(a), by using the same
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representation than in chapter 1 (see Fig. 1.6(b)). To make easier the comparison
between the case where β2 > 0 and β4 < 0 with the case where β2 > 0 and β4 = 0, we
report the latter in Fig. 2.1(b). The black horizontal line stands for the MI cavity
threshold Pth. The red and green lines correspond to the threshold PΩ and Pβ2 ,
respectively. The gray area labeled ”cw unstable states” stands for the homogeneous
unstable sates (negative slope branch of the bistable curve between the knees P+ and
P−), colored area for the modulationally unstable regions and blank areas for the
stable domains. [34, 53, 76]. We observe some differences between these two cases.
First, for β4 = 0 (see Fig. 2.1(b)) MI is restricted to bistable regime (∆ > 2), while
for β4 < 0 the MI domain is extended to monostable regimes and to the upper-
branch of bistable regimes. Second, for β4 < 0 the MI domain on the lower-branch
is restricted compared to the case where β4 = 0 1.

2.1.2.2 Anomalous dispersion regime (β2 < 0)

In the case of anomalous dispersion regimes (β2 < 0), MI arises if:
β2 < 0 and ΩT− real : P > Pth, P > PΩ (2.6)

and ΩT+ real : no solution (2.7)
where Pth = α/(γL) is the MI cavity threshold imposed from g(ΩT±)>0, and PΩ the
threshold above which the solution ΩT− is complex. Note that these conditions are
identical to those of the standard MI in anomalous dispersion regimes except that
the MI sidebands are located to ±ΩT− (Eq. (1.24)). In the following, we do not
investigate this case since only the position of MI sidebands are affected without
affecting the MI domains. We decided to focus on the normal dispersion regime
(β2 > 0) that exhibits a more complex dynamics. We point out that the specific
case, where β4 > 0 and β2 < 0, has been studied theoretically in Ref. [109], and
shows, in particular, that pairs of MI sidebands can arise at the MI cavity threshold.
When the input power increases, bands widen and merge in a pair of large bands
and disappear above a secondary threshold, and the system return to a stationary
state.

By looking at the position of the most unstable frequencies, we see that it
depends on β2. In experiments, it is possible to change this parameter by tuning
the pump wavelength2. Thus, by using a cavity made of fiber for which β4 < 0, it is
possible to investigate the position of the sidebands in both dispersion regimes in a
single experiment. This behavior is studied in the following section.

1. Note that the threshold Pβ2
depends on β2

2/β4 (green lines in Fig. 2.1(a)). This dispersion
term depends on the pump wavelength. This means that by changing the pump wavelength, the
line labeledPβ2 in Fig. 2.1(a) is shifted, on the left or right side restricting or extending the MI
domain on the lower branch of bistable cycle.

2.
β2 =

S0

8πc

(
λ4
ZDW

λpump
− λ3

pump

)
(2.8)

where S0 is the zero-dispersion slope specific to the fiber used.
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CHAPTER 2. MI IN THE WEAK NORMAL DISPERSION REGION

2.1.3 Evolution of MI bands with the pump wavelength

We investigate, in the configuration β4 < 0, the evolution of the most unstable
frequencies calculated from Eq. (2.3) for the three operating regimes of the cavity:
(i) the monostable regime, (ii) the lower-branch and (iii) the upper-branch of the
bistable regime. We represent this evolution across the normal dispersion (β2 > 0)
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Figure 2.2: Frequency shifts calculated from Eq. (2.3) with (blue lines) and without
(dashed black lines) β4 calculated from Eq. (1.24). (a) In the monostable case for
∆ = 1.1 and P = 1.58 W (green dots in Fig. 2.1, in the bistable case ∆ = 4.6,
(b) on the lower-branch for P = 1.83 W (black dots in Fig. 2.1), (c) on the upper-
branch for P = 7.86 W (red dots in Fig. 2.1). Red (blue) part: normal (anomalous)
dispersion regimes. Parameters: see caption of Fig. 2.1.

and anomalous dispersion (β2 < 0) regions in Fig. 2.2(a)-(b)-(c), respectively. The
black dashed lines stand for the standard MI case (without β4) and the blue lines for
the MI case with β4 < 0. The red dotted lines correspond to the ZDW and the blue
and red domains to anomalous and normal dispersion regions, respectively (see right
y-axis in Fig. 2.2(c)). The impact of β4 is similar in the monostable regime (Fig.
2.2(a)) and on the upper-branch of the bistable regime (Fig. 2.2(c)). In absence
of FOD (black dashed lines), MI only exists in the normal dispersion region with
two sidebands that shift towards infinity when moving closer to the ZDW, while
with β4, owing to its negative value, it exists a perfect phase-matching whatever
the dispersion region. The MI bands with β4 (blue curves) tend to merge with
standard MI bands (without β4) towards the long wavelengths whereas they shift
to high frequency shifts toward short wavelengths in the normal dispersion region.
The second category corresponds to the lower-branch of the bistable regime (Fig.
2.2(b)). In this regime, MI only exists in the normal dispersion region with and
without β4. In the case of standard MI (without β4), two sidebands exist, which
shift towards infinity while moving closer to the ZDW whereas in the case of MI
with β4 < 0, two pairs of sidebands exist simultaneously below a pump wavelength
threshold (λpump,th = 1551.1 nm, β2,th =0.046 ps2.km−1). One pair of sidebands
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2.2. EXPERIMENTAL SETUP

shifts toward large frequencies while the other one tends to merge with the standard
MI sidebands when the pump wavelength decreases.

2.2 Experimental setup

In order to check the theoretical predictions reported in the previous section, we
used the experimental setup described in the previous chapter and we implemented
a cavity built with a fiber whose group-velocity is slightly normal at the pump
wavelength (λpump ≈ 1550 nm). The cavity consists in a dispersion shifted fiber
(DSF) closed by a 90/10 coupler made of the same fiber to get a perfectly uniform
cavity and avoid parametric instabilities that might arise in dispersion managed
cavities [96,98]. The total cavity length is about 37.9 m corresponding to a repetition
rate of 5.4 MHz. The DSF has a nonlinear coefficient of γ = 2.5 W−1.km−1 and a
zero dispersion wavelength (ZDW) at 1551.6 nm. We investigated MI in this cavity
by using trains of 1.5 ns pulses whose wavelength is tunable between 1549.5 and
1550.5 nm, so that the group-velocity dispersion varies over a weak positive range,
between β2 = 0.20 and 0.11 ps2.km−1. TOD and FOD terms on this domain are
β3 = 0.12 ps3.km−1 and β4 = −6.0× 10−4 ps4.km−1, respectively.

2.3 Experimental results

In this section, we report our experimental results by illustrating the striking
contributions of β4 in normal dispersion regimes in three cases: monostable regimes,
and lower/upper-branch of bistable regimes. These results are compared to theoret-
ical predictions and numerical simulations. In addition, we investigated the peculiar
situation of bistable regimes versus the input power to capture the hysteresis cycle
followed by the MI.

2.3.1 Monostable case

As a first step, we extracted from the transmission function the cavity finesse
estimated to F= 26.5, corresponding to total cavity losses of α = 0.118. Then
we set the detuning to δ0 = 0.13 rad in order to work in the monostable regime
(normalized detuning is ∆ = δ0/α = 1.1 <

√
3). We increased the input power until

Pin = 0.23 W, just above the cavity MI threshold. This configuration is depicted
by green dots in Fig. 2.1 and in Fig. 2.3(a) showing the corresponding steady-
state curve. We initially set the pump wavelength to 1549.9 nm, 1.7 nm below the
ZDW, where β2 = 0.16 ps2.km−1. The output cavity spectra is depicted in Fig.
2.3(b). It exhibits two weak narrow symmetrical bands on both sides of the pump
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CHAPTER 2. MI IN THE WEAK NORMAL DISPERSION REGION

whose frequency shifts are ±9.28 THz. These results are in good agreement with the
theoretical gain spectrum (Fig. 2.3(d)) calculated from Eq. (2.2), the theoretical
predictions from the phase-matching equation (Eq. (2.3), bands at 9.25 THz, gray
dotted vertical lines) and numerical simulations from the LLE model (Fig. 2.3(c)).
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Figure 2.3: Experimental results in the monostable regime. (a) Steady-state curve,
solid blue lines: modulationally unstable states, green dot: investigated setpoint.
(b) Experimental output spectrum compared to (c) numerical simulations and (d)
gain spectrum (Eq. (2.2)). (e) Evolution of MI sideband positions versus the pump
wavelength. Solid blue lines stand for the theory (Eq. (2.3)) and red dots for
experimental measurements. Parameters: ∆ = 1.1 <

√
3, λpump = 1549.9 nm, and

Pin = 0.23 W.

To go further and validate the theoretical predictions regarding the evolution of
the sideband positions versus the pump wavelength, we recorded the output spectra
for a pump wavelength ranging from 1549.5 to 1550.5 nm. These experimental
results are displayed in Fig. 2.3(e) by red dots. As expected, by increasing the
pump wavelength leads to MI sidebands to get closer to the pump wavelength.
We obtain an excellent agreement between theoretical predictions from Eq. (2.3)
and experimental recordings, depicted by blue curves and red dots in Fig. 2.3(e),
respectively. Experimental dots looks quasi superimposed on the theoretical curves.
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2.3.2 Bistable case

In a second step, we focused on the bistable regime of the cavity by setting the
detuning to δ0 = 0.54 rad. The normalized detuning is ∆ = 4.6 >

√
3, which is

above the critical value of 4.25, where stable MI patterns arise on the lower-branch
of the bistable cycle (see section 1.4.2).

2.3.2.1 Lower-branch

We first gradually increased the input power until Pin = 2.69 W just above the
cavity MI threshold on the lower-branch switching on the additional branch (see
the black dot on the bistable cycle in Fig.2.4(a) and in Fig. 2.1). As it can be

1549

1550

1551

1552

1553

0.20
0.15
0.10
0.05
0
-0.05
-0.10

β
2 

(p
s2 .k

m
-1

)

λ p
um

p
 (

nm
)

ZDW

(e)

0-5-10 5 10

G
ai

n
 (

10
-3

 m
-1

/d
iv

) theo.

P
ow

er
 (

20
 d

B
/d

iv
)

sim
.

exp.

00

Pin (W)

P
 (

W
)

1 2 3 4 5

2

4

6

8
(a)

(c)

(d)

(b)

Frequency shift (THZ)

Figure 2.4: Experimental results from the lower-branch of the bistable regime. (a)
Steady-state curve. Solid blue/green lines: modulationally unstable states. Black
dot: investigated setpoint. (b) Experimental output cavity spectrum compared
to (c) numerical simulations and (d) gain spectrum (Eq. (2.2)). (e) Evolution of
MI sideband positions versus the pump wavelength. Solid blue lines stand for the
theory (Eq. (2.3)) and red/green dots for experimental measurements. Parameters:
∆ = 4.6, λpump = 1549.9 nm, and Pin = 2.69 W.
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seen from the experimental output spectrum depicted in Fig. 2.4(b), two pairs of
symmetric bands can be observed. The first pair is located at ±1.18 THz, while
the second pair exhibits a larger frequency shift and is located at ±9.19 THz from
the pump frequency. It is noteworthy that harmonics of the first sidebands are
also observed located at ±2.36 THz due to additional degenerated four-wave-mixing
between the pump and the sidebands. These results match very well with theoretical
predictions from Eq. (2.3) (±1.29 and ±9.09 THz) as well as the gain spectrum (Fig.
2.4(d)) and numerical simulations (Fig. 2.4(c)) from the LLE model. Particularly,
we note that numerical simulations exhibit the birth of harmonics from the first
pair of sidebands, as in experiments. In addition, the two new pairs of bands reach
quite similar amplitudes both in experiments and in numerical simulations. That
confirms the theoretical predictions from Eq. (2.2) (see Fig. 2.4(d)), where each
band experience the same gain.

Then, as previously, we investigated the evolution of MI sideband positions
versus the pump wavelength, whose results are displayed in Fig. 2.4(e). Green
dots and reds dots stand for the position of the first and second pair of MI bands,
respectively. As expected from theory (blue solid lines), by getting closer to the ZDW
the frequency shifts of the first pair of sidebands increases while it decreases for the
second pair. These bands seem to converge towards each other and should merge
from theoretical predictions for a specific (β2, λpump) threshold, above which we do
not expect to observe MI. This feature originates directly from the contribution of
β4 as we saw in section 2.1.2 from the gain mapping in the plane (∆, P ) in Fig.
2.1. Indeed, the MI states on the lower-branch can be extended (reduced) to high
(low) detuning by decreasing (increasing) the pump wavelength. The transition
corresponds to the case where the curve Pβ2 crosses the investigated point (black
dot) in Fig. 2.1(a). We found that this transition appears for λpump = 1551.1 nm
(β2 =0.046 ps2.km−1). Unfortunately, we were not able to record this transition due
to the limited tunable laser wavelength range preventing us to reach this specific
regime.

2.3.2.2 Upper-branch

We then studied the upper-branch of the bistable regime by increasing the input
power until Pin = 4.09 W (see red dots on steady-states curve in Fig. 2.5(a) and
in Fig. 2.1) to switch the system from the lower to the upper-branch, which is
well above the MI cavity threshold. Experimental results are reported in Fig. 2.5.
We can see from the experimental output cavity spectrum in Fig. 2.5(b) that two
broad asymmetric lobes with large frequency shifts are generated on both sides of
the pump at ±9.35 THz (±9.56 THz from theoretical predictions, see gray dotted
vertical lines and gain spectrum in Fig. 2.5(d)). This feature is in good agreement
with numerical simulations (c), which reproduce also the spectral asymmetry. We
checked numerically that it originates from the contribution of TOD term, which
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induces a nonlinear symmetry breaking of the MI process in fiber cavities [105]. The
evolution of MI sideband positions versus the pump wavelength is depicted in Fig.
2.5(e) and shows a similar behavior to the monostable case. We observe that by
increasing the pump wavelength, the sidebands gets closer to the pump, in excellent
agreement with theoretical predictions (blue in Fig. 2.5(e) from Eq. (2.3)).
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Figure 2.5: Experimental results from the upper-branch of the bistable regime. (a)
Steady-state curve, solid blue/green lines: modulationally unstable states, red dot:
investigated setpoint. (b) Experimental output cavity spectrum compared to (c)
numerical simulations and (d) theoretical gain spectrum (Eq. (2.2)). (e) Evolution
of MI sideband positions versus the pump wavelength. Solid blue lines stand for
the theory (Eq. (2.3)) and red dots for experimental measurements. Parameters:
∆ = 4.6, λpump = 1549.9 nm, and Pin = 4.09 W.

2.3.2.3 Hysteresis cycle

In order to get a deeper insight of this process, we analyzed the transition from
the lower-branch to the upper-branch of the bistable response of the cavity and
vice versa. This has been performed by gradually increasing/decreasing the input
power while recording the output cavity spectra. We set the pump wavelength at
λpump = 1549.7 nm and the cavity detuning to δ0 = 0.65 rad such as the normalized
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Figure 2.6: 2D-map of experimental output cavity spectrum versus the input power
in the bistable regime. (a) For increasing power from the lower-branch to the upper.
(b) For decreasing power from the upper-branch to the lower. (c)-(d) Steady-states
curve showing the increasing and decreasing power cases, respectively, where col-
ored part corresponds to domain investigated on 2D-map in (a)-(b), receptively and
highlighted by colored arrows and Y-axes. Parameters: ∆ = 5.5, λpump = 1549.7
nm.

detuning is set to ∆ = 5.5 > 4.25, allowing to observe MI on the lower-branch.
Fig. 2.5(a)-(b) shows our experimental results in a 2D-color plot of the evolution
of output spectra versus the input pump power from respectively lower/upper to
upper/lower branch. We can see that for an input power below Pin = 3.75 W (blue
line on steady-states curve in Fig. 2.6(c) and blue arrow in Fig. 2.6(a)), that the
cavity is stable and we do not observe MI bands. Then, from this threshold and up
to Pin = 4.15 W (green curve in Fig. 2.6(c)), two pairs of MI sidebands arise on the
lower-branch (green arrow in Fig. 2.6(a)). Above this threshold, the system abruptly
up-switches on the upper-branch (red curve in Fig. 2.6(c)), where the bands with
the smaller frequency shifts disappear, while the bands with highest one broadens
and slightly shift away from the pump frequency (red arrow in Fig. 2.6(a)). Then
we decreased the input power such as the system remains on the upper-branch until
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down-switching (red line on steady-states curve in Fig. 2.6(d) and red arrow in Fig.
2.6(b)). This transition appears for Pin = 2.96 W, below the MI cavity threshold
where the cavity is stable on the lower-branch (blue curve in Fig. 2.6(d), blue arrow
in Fig. 2.6(b)) and highlight in particular the hysteresis cycle of the cavity for such
high detuning.

Summary

We showed that it is necessary to consider HOD terms when the pump wave-
length is close to the ZDW of the fiber to accurately describe the full dynamics of
MI. The position of MI sidebands has been predicted by a linear stability analysis
from the extended LLE model developed in Ref. [97,109]. Many configurations can
be studied, however, we focused on passive fiber cavities for which the FOD term is
negative corresponding to the most common case. In particular, we showed that β4 is
responsible for extending the MI process to normal dispersion regimes: (i) in monos-
table regimes and (ii) on the upper-branch of bistable regimes compared to the basic
configuration for which β4 = 0. Moreover, we saw that for bistable regimes where
∆ > 4.25, allowing MI to arise on lower-branch, two pairs of sidebands are predicted
above a certain pump wavelength threshold. We checked experimentally this behav-
ior in a passive cavity made of a DSF, by pumping the system just above the ZDW
in the normal dispersion regime. We obtained a really good agreement with the-
oretical predictions and numerical simulations. Furthermore, we also investigated
experimentally the transition from the lower to the upper branch of bistable cycle
and vice-versa. We recorded the cavity output spectrum for increasing/decreasing
input power, pointing out the hysteresis cycle of the system. Our investigations
led in this chapter focus on the impact of the FOD term in the context of MI just
above the cavity threshold, but we expect that FOD term should also impact a wide
range of higher order nonlinear effects such as cavity solitons and frequency comb
generation as it was recently shown in Ref [111].
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CHAPTER 3. MI PERIOD-DOUBLING

Recent investigations of MI have been conducted in passive resonators, in the
weak dispersion region [113–115] (see chapter 2), under strong cavity driving regimes
to reach nonlinear shifts larger than 2π [58, 84, 85, 116], through polarization ef-
fects [117, 118], or even in dispersion oscillating cavities [96, 97, 119, 120]. The
common thread between these studies is that new parametric resonances are ex-
cited [58, 85, 96, 97, 113–117, 119–122] compared to the original studies of MI in
cavities [51, 90]. The striking feature is not limited to the generation of new modu-
lationally unstable frequencies but modifies also the behavior of the system. Indeed,
from a theoretical point of view, these parametric resonances correspond to new
eigenvalues of the system. These one can be positive or negative, leading to a tem-
poral shift of the output pattern round-trip to round-trip [116,120,123,124]. In the
context of MI [82, 125], the periodic temporal pattern from the cavity output can
be out-of-phase from round-trip to round-trip, which is denoted as P2 regime or,
conversely, in phase in the so-called P1 regime [120]. In particular, the P2 regime is
inherently associated to the parametric resonance that can originates from different
sources such as the intrinsic periodicity of the boundary conditions [51,52,126–128]
in uniform cavities, or modulation of one of the cavity parameters (e.g. disper-
sion [96, 98, 119, 120], nonlinearity [122], etc.). To our knowledge, the evidence of
such P1 and P2 MI regimes has been obtained only from indirect methods, through
the observation of the cavity output spectrum, where both regimes can be identified
from their sidebands frequency and/or spectral dynamics (see Ref. [52] for uniform
cavities and Refs. [96, 98] for dispersion oscillating cavities). The true assessment
of P1 and P2 regimes requires the direct temporal observation, which is extremely
challenging and has never been reported so far. The general importance of the P2
regime characterization is that it is a well known mechanism in nonlinear bistable
system. P2 regime has been first predicted by Ikeda et al. [39] and identified has the
first step on the route to chaos. It has been first observed indirectly in passive fiber
cavities [50, 90, 129], then in active lasers [130–134]. In this chapter, we investigate
experimentally the P1 and P2 regimes in the temporal domain of passive uniform
cavities. Such characterization remains extremely challenging, since standard tech-
niques to record the temporal domain does not provides at the same time: (i) a high
resolution to identify the MI periodic pattern that lies in the picosecond scale and
(ii) a round-trip to round-trip measurement. In order to satisfy both conditions, we
implemented in our setup a time-lens [102], a recent instrument based on the space-
time duality [101]. It allows to stretch in the temporal domain the signal to analyze
and then detect it with a fast photodiode and a broadband oscilloscope [135–137].
Thus, temporal shift experienced by the output pattern round-trip to round-trip
can be observed, and the nature of the MI regime identified.

In this chapter, we recall in the first section the analysis of Ikeda map model
that predicts the parametric gain and P1 and P2 domains in uniform cavities. In
the next section we detail the different modifications brought to the setup to both
implement the time-lens system and improved the stabilization system. Finally, in
the last section, we report the direct observation in the time domain of P1 and P2
regimes that we compare to numerical simulations and theoretical predictions.
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3.1 Theory: Ikeda Map model

3.1.1 Linear stability analysis

The dynamics of the system can be analyzed by applying a Floquet analysis
[138] on the full Ikeda map system (Eqs. (1.8-1.9)) as detailed in Ref. [120] and
in Appendix A. These analysis provide the following eigenvalues describing the MI
dynamics:

λ± = (1− α)
[
Ψ±

√
Ψ2 − 1

]
(3.1)

with
Ψ = cos (µL) cos (ϕ)− ζsinc (µL) sin (ϕ) (3.2)

The parameter ϕ = ϕ0 + γLP corresponds to the total phase accumulated over a
cavity round-trip and:

µ =
√
β2
2Ω

4/4 + β2γPΩ2 (3.3)

is the standard MI gain with Ω the pulsation of the perturbation and ζ = β2Ω
2L/2+

γPL. It can be easily checked that unstable eigenvalues (|λ±|>1) appear only for
|Ψ| > (1− α + 1/ (1− α)) /2 and are always real such as these eigenvalues can be ex-
pressed as λ = |λ|eimπ withm integer. We introduce λ′ that corresponds to the eigen-
value λ± with the highest modulus, hence the unstable spectral components grow
from noise as exp (G (Ω)L) = [|λ′| exp (imπ)] at each round-trip. Consequently, the
gain can be expressed as G (Ω) = [ln (|λ′|) + imπ] /L and it follows two distinct cases
depending on m parity. In both cases, the initial perturbation grows exponentially
with the power growth rate g (Ω) = ln (|λ′|) /L (ℜ (G (Ω))) round-trip to round-
trip. This leads to a periodic modulation of the initial cw state. In the even case
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Figure 3.1: Cartoon of two temporal traces of consecutive round-trips for (a) P1
regime and (b) P2 regime. The dashed lines stand for the round-trip 1 and solid
lines for round-trip 2.

(i.e. λ′ > 1), the perturbation increases in phase (ℑ (nG(Ω)L) = 2nπ, n: round-trip
number) at every round-trip following a P1 regime (see Fig. 3.1(a) showing two con-
secutive round-trip temporal traces of this regime). However, for the odd case (i.e.
λ′ < 1), the perturbation changes of sign at every round-trip (ℑ (nG(Ω)L) = nπ)
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CHAPTER 3. MI PERIOD-DOUBLING

that is characteristic of P2 regimes. It results in a clear evidence of this regime in
the temporal domain, where the periodic pattern experiences an additional π phase
shift round-trip to round-trip (see Fig. 3.1(b)) contrary to the P1 regime.

3.1.2 P1 and P2 regimes occurrence conditions

As in the previous chapters, MI exists when the most unstable frequencies ±ΩT

are real and when g(ΩT ) is real and positive. Further developments of the linear
stability analysis of the full Ikeda map system has been proposed in Ref. [120], giv-
ing analytical solutions of ±ΩT and g(ΩT ). These solutions are obtained in the case
of a high cavity finesse and moderate power. It allows to predict analytically the
range of parameters where P1 and P2 regimes arise close to the MI cavity thresh-
old. Our experimental investigations of the P1 and P2 regimes were performed
in a cavity with a moderate finesse (F≈ 19). Moreover, we even study some con-
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Figure 3.2: (a) 2D-map of the maximum parametric gain in the plane (Φ0, P ) from
the Ikeda map model in the case of a normal dispersion regime. The green and red
vertical lines stand for δ0 = 1.44 rad and δ0 = −1.6 rad, respectively. (b) Steady-
state curves with the same color code. CW unstable states correspond to gray areas
in (a) and dashed curve in (b) while blue curves in (b) stand for the region where
P1 and P2 regimes can be excited in (a). Parameters: β2 = 9 ps2.km−1, L = 120.6
m, γ = 2.5 W−1.km−1, and α = 0.165.

figurations where P is one order of magnitude higher than the cavity threshold
preventing us from using this analytical approximation. Thus, we use numerical
analysis of Eq. (3.1) to get an accurate description of the MI dynamics. This pro-
cedure provides a clear overview of the behavior of the system in terms of P1/P2
regimes by looking at the maximum gain value calculated from the growth rate g
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in the (ϕ0, P ) plane (see Fig. 3.2(a) for normal dispersion regimes and Fig. 3.3(a)
for anomalous dispersion regime). This representation is relevant since it allows a
comprehensible description of the system and these parameters correspond to those
that are easily managed in experiments: ϕ0 = 2kπ − δ0 through the detuning δ0,
and P = θ̃2Pin/ [1 + ρ̃2 − 2ρ̃ cos (ϕ)] (steady-state Eq. (1.12)) through the input
power Pin. Let’s first analyze the case of the normal dispersion regime depicted in
Fig. 3.2(a). We observe two gray domains bounded by the curves Pk± (k ∈ Z) and
labeled ”CW unstable states”. They correspond to unstable regions with respect to
homogeneous perturbations (negative slopes of the steady-state curve Eq. (1.12)).
Beyond this observation, the system alternates between narrow instability tongues
emerging on the left side of ”CW unstable states” domains and broad instability
tongues. These tongues are associated to P1 and P2 regimes, respectively. Note
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Figure 3.3: 2D-map of the maximum parametric gain in the plane (Φ0, P ) from
the Ikeda map model in the case of an anomalous dispersion regime. Parameters:
β2 = −9 ps2.km−1, L = 120.6 m, γ = 2.5 W−1.km−1, α = 0.165.

that as soon as the pump power is above a certain threshold that depends on the
amount of losses, the system might enter in one of the unstable region. We can
point out that this mapping is necessarily 2π-periodic with respect to ϕ0, owing to
the periodicity of the linear resonances of the cavity. Then, we compared the case
of normal dispersion regimes to the anomalous ones, depicted in Fig. 3.3. Gray area
bounded by the curves Pk± (k ∈ Z) corresponds to unstable regions with respect
to homogeneous perturbations. We observe a 2π-periodic alternation with Φ0 of
P1 and P2 instability tongues. However, we note some differences with the previ-
ous case. First, the P1 and P2 tongues emerge respectively on the right side and
left side of ”CW unstable states” domains. Second, the domain of the P1 and P2
instability tongues are quite more important. Finally, the P1 and P2 instability
domains merge at some points. The latter difference is likely to hinder the distinct
observation of both regime dynamics in experiments, that’s why we focus our work
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and our experiments on cavities operating in the normal dispersion regime.

It has been highlighted in Ref. [51] that most of the features of the system can
be illustrated by considering only two scenarios at the MI cavity threshold: the first
one, where the nonlinear phase is close to 2kπ (k ∈ Z), and the second one where the
phase is close to (2k + 1)π (k ∈ Z). These two cases have been called resonant (P1
regime) and anti-resonant (P2 regime) cases in Ref. [51], respectively. Nevertheless,
well above this threshold this denomination is not relevant anymore. Indeed, the
nonlinear phase shift (ϕNL = γLP ) induces a displacement of resonances peaks of
several radians. Thus, we shall use the more relevant denomination of positive and
negative detuning (δ0) in order to correctly identify the different scenarios.

From this denomination we first consider the case of positive detuning as regards
the central resonance (ϕ0 = 0 rad, k = 0) and we set as an example the detuning to
δ0 = 1.44 rad (ϕ0 = −1.44 rad) indicated by the green vertical line in Fig. 3.2(a). As
we can see from the steady-state curve (Eq. (1.12)) depicted with the green line in
Fig. 3.2(b), the cavity operates in a bistable regime (∆ = 8.7). Dashed part stands
for cw unstable states (grayed part in Fig. 3.2(a)) belonging to negative slope of the
steady-state curve while blue lines indicate MI unstable states as regards unstable
domains in Fig. 3.2(a) (gray areas). By increasing the pump power above the first
instability threshold until P = 1.56 W (red dots in Fig. 3.2(a)-(b)), we expect
to observe a stable periodic pattern round-trip to round-trip that corresponds to
the P1 regime. Indeed, the lower-branch is known to be modulationally unstable
for a normalized detuning ∆ > 4.25 [55]. By increasing the intra-cavity power until
P = 6.44 W (black dots in Fig. 3.2(a)-(b)), the system switches on the upper-branch
of the steady-state curve and falls within another instability tongue associated to
a P2 regime. Then, by decreasing the intra-cavity power until P = 5.84 W (cyan
dots on Fig. 3.2(a)-(b)) we reach the left side limit of the P2 instability tongues and
the MI threshold of the upper-branch. Below this limit the system comes back to a
stationary steady-state and eventually switches on the lower-branch of the bistable
cycle below 4, 74 W.

Then, we set the detuning to the negative value δ0 = −1.6 rad (ϕ0 = 1.6 rad)
indicated by the red vertical line in Fig. 3.2(a). As we can see from steady-state
curves (Eq. (1.12)) depicted with the red line in Fig. 3.2(b), the cavity operates
in a monostable regime (∆ = −9.7). For such detuning by increasing the power
above the first instability threshold until P = 0.83 W (green dots in Fig. 3.2(a)-
(b)), we expect to observe a stable periodic pattern round-trip to round-trip that
corresponds to the P2 regime. As the previously studied positive detuning case,
it is also possible to switch to the next P1 tongues. However, it requires a huge
amount of power Pin ≈ 180 W, which is not easily accessible with experimental
setups, including the one we have built to investigate these different cases presented
here.
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3.2 Modified experimental setup and time-lens im-
plementation

The experimental setup is depicted in Fig. 3.4. It consists of a passive fiber cav-
ity built with a specially designed dispersion shifted fiber (DSF, βDSF2 = 9 ps2.km−1

at λpump = 1550.5 nm and γDSF = 2.5 W−1.km−1) and a 90/10 coupler made of the
same fiber to get a perfectly uniform cavity of 120.6 m long (coupler+fiber). The
operating principle of this device to stabilize and analyze the dynamics of the system
is similar to the one presented in chapter 1, but we added two major modifications.
The first one consists in implementing a time-lens system to record the MI temporal
pattern from the cavity output signal, and the second one to improve the cavity
stabilization, which has been necessary to observe P1 and P2 regimes.
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Figure 3.4: Experimental setup. EOM, electro-optical modulator; PC1−5, polar-
ization controller; PD1−2, photodetector; OSA, optical spectrum analyzer; EDFA,
erbium-doped fiber amplifier; BPF, band-pass filter; EBPF: electronic band-pass
filter; STR: fibre stretcher; Laser fs: femtosecond laser; Oscillo., oscilloscope; PID,
proportional-integrate-derivate controller; FBG, fiber Bragg grating; PWM, power-
meter.

3.2.1 Setup improvement

First, we wanted to be able to observe both P1 and P2 regimes at the MI cavity
threshold, but the latter requires more power than allowed by the initial setup.
Either we changed the pump beam line to reach these power or we used a longer
cavity to decrease the MI cavity threshold (Pth = α/(γL)). We chose the latter
solution but we faced a major problem. Indeed, by using longer cavity decreased at
the same time the MI and SBS thresholds. Consequently, the cw reference generates
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an additional Brillouin wave propagating in the anti-clockwise direction that affects
the pump beam. If we reduce the power of the cw reference to stay below this
SBS threshold, we obtain a too low signal to noise ratio to stabilize the cavity. To
prevent this, instead of using a fraction of the cw laser field for the reference, we take
a part of the EOM output power through a 80/20 coupler propagating a train of 1
ns pulses in the cavity, short enough to avoid Brillouin effects. Therefore, the cavity
output pulse train envelope from the reference carries the variations undergone by
the beam during its propagation inside the cavity. This signal is then detected from
the cavity output by a photodetector (PD1) and filtered through an electronic band-
pass filter (EBPF) to extract this envelope used as a reference signal by the PID
to stabilize the system. As an example, we show in Fig. 3.5(a) the cavity output
signal from the reference when we are performing a wavelength scan. The red curve
stands for reference pulse train recorded before the EBPF where we distinguish
each of the pulses only from the zoom on the resonance (b). The black curve
corresponds to the recorded signal of EBPF output giving the pulse train envelope
with a quite good accuracy. A strong noise is observed on the top level, but it
does not affect the stabilization since we stabilize on the response function slope.
Note that through this method we sample the perturbations experienced by the
pump beam. Nevertheless, the pulse repetition rate of the MHz order for cavities of
such length is significantly larger than the external perturbation frequencies, which
permits to obtain the stabilization.
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Figure 3.5: (a) Output cavity reference response function. Red lines, before the
electronic band-pass filter (EBPF), and black line after. (b) Zoom on a resonance.

3.2.2 Time-lens implementation

The second modification brought to this setup was to implement a device to
record the MI temporal pattern with a sub-picosecond resolution in real-time. In-
deed, even an ultra-broadband oscilloscope combined to a high-speed photodiode,
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providing single-shot recordings, does not allow to reach a sufficiently high resolution
to discern the temporal waveforms whose period lies in the picosecond scale (max
100 GHz of bandwidth). Obviously, multiple-shot sampling and auto-correlation
techniques [55, 56, 90] can achieve the required resolution, but these techniques do
not allow to record fast events such as MI process in real-time. We need a single-shot
measurement to observe the round-trip to round-trip dynamics. To fulfill both condi-
tions we used a time-lens system [102]. This recent instrument has attracted a lot of
attention and has been used to study, in real-time, optical rogues waves [135,136] and
breathers [136] as well as to characterize the transient dynamics in active lasers [137].
Time-lens relies on the fundamental concepts of time-imaging and space-time dual-
ity originally proposed by Kolner et al. in 1989 [101]. This concept implies that for
a spatial optical component such as a lens, it exists its temporal counterpart namely
a time-lens. A spatial optical lens magnify the image of an object in front of the
lens without distorsion, whereas a time-lens magnify the temporal waveform without
distortion. Note that spatial lens adds to the optical field a quadratic phase delay
in the spatial domain, so time-lens must also add a quadratic phase but in the time
domain. In our case, we implemented in our setup a commercial time-lens (Picoluz
ultra-fast temporal magnifier, Thorlabs) based on the results published in Ref. [102],
where the quadratic phase is ensured by a nonlinear process. A strong pump is lin-
early chirped in order to impose a temporally quadratic phase profile. Then, this
pump field (Ei) is mixed with the signal field (Es) to analyze in a device based on
silicon nano-waveguide. It generates an idler field (Ei) via four-wave mixing (FWM)
process on which the quadratic phase of the pump is imprinted (Ei ∝ E2

pE
∗
s ). Note

that we added polarization controllers on each path (PC4-5 in Fig. 3.4) in order
to optimize the FWM process efficiency. This idler wave is isolated from the pump
and the signal thanks to a highly selective band pass filter. This idler wave after
propagation in a fiber corresponds to the magnified signal that can be observed
thanks to a ultra-broadband sampling oscilloscope and a high-speed photodiode (70
GHz bandpass each). The pump used in this work is a femtosecond laser centered
at 1570 nm that provides pulses with a fixed repetition rate of about 100 MHz. This
laser serves as a reference clock for the EOM such as the repetition rate of pulses
sent to the cavity is an exact multiple of the femtosecond laser (typically 59 times
in our case). To drive coherently the cavity, we roughly adjusted the cavity length
by cutting or adding pieces of fiber with a precision of a few centimeters. We then
added a fiber stretcher (STR) to finely tune this length (range of 8 cm, ≈ 1 kHz)
in order to match the cavity repetition rate to the one of the pulse train sent to
pump the system. Thanks to this time-lens with a magnification factor of 57, we
were able to record the temporal pattern of the output pulses over a window of 50
ps. The resolution achieved with this time-lens is approximately of 300 fs, which is
short enough to resolve the MI temporal pattern (period as short as 3.7 ps as we
will see below) round-trip to round-trip.
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3.3 Experimental results

We investigated the different regimes identified by red, cyan, black and green
points in Fig. 3.2. We recorded, for each case, the output cavity spectra obtained
from an OSA as well as their consecutive temporal traces when the system has
reached a stationary regime. These experimental results have been compared to
numerical simulations of the Ikeda map model. They have been carried out by us-
ing square pulses of 1 ns as in experiments by adding a weak random noise. In
the case of P1 regime (Turing instability on the lower branch of the bistable cycle),
we used a cw pump including monochromatic signal located at the maximum gain
frequency (Eq. (3.1)) to seed the process. For such large detunings ∆ > 4.25 the
process can arise on the lower branch of the steady-states cycle. Nevertheless, the
area of instability is really restricted and the system is extremely sensitive to pertur-
bations. Consequently, by seeding the process in such cases with noise should lead
to unexpected switches over the upper-branch and avoid the observation of stable
temporal patterns over a large number of round-trips (typically 1000 in numerical
simulations).

3.3.1 Positive detuning

We first investigated the case of positive detuning by setting δ0 = 1.44 rad
(ϕ0 = −1.44 rad). It corresponds to the case of the bistable regime depicted by the
green lines in Fig. 3.2(a)-(b).

3.3.1.1 P1 regime

We first increased the input power to reach the first instability tongue corre-
sponding to P1 regime. It corresponds to the red point (see Fig. 3.2, P = 1.56 W)
located on the lower branch of the steady-state function as depicted in Fig. 3.6(a).
We note from the experimental output cavity spectrum displayed by an orange line
in Fig. 3.6(b) that a pair of sidebands located at ±140 GHz arises with amplitudes
of approximately 35 dB below the pump power. These results are in excellent agree-
ment with numerical simulations and theoretical predictions from Eq. (3.1) depicted
by blue and green dotted lines (±154 GHz), respectively. It is quite noteworthy that
numerical simulations and experiments give a very similar sidebands powers. How-
ever, we discern a spectrum asymmetry from experimental recording. In particular,
we observe a consistent first harmonic on the Stokes side of the spectrum, but these
first harmonic is almost indistinguishable from the noise on the Anti-Stokes side.
It has been demonstrated that third-order dispersion term could be responsible for
such behavior [105,114]. Indeed, by performing numerical simulations (not reported
here) by adding this term, we observed this symmetry breaking. Nevertheless, the
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Figure 3.6: (a) Steady-state curve, blue parts: instability domains, red dot: inves-
tigated configuration. (b) Output cavity spectra from experiments and numerical
simulations. 2D-color plot of 8 consecutive temporal traces from experiments (d)
and numerical simulations (e). (c) Last two consecutive traces from experiments (or-
ange lines) and simulations (blue lines), dotted and solid lines stand for round-trip
7 and 8, respectively. Parameters: see Fig. 3.2’s captions.

ratio between Stokes and Anti-Stokes harmonics is only a few decibels when it is
about 10 dB in experiments. Fig. 3.6(d) displays 8 consecutive temporal traces
recorded in a 2D-color plot when the system reached a stationary regime. Note
that we removed the cw component from this traces (since the pump wavelength
is filtered) and we normalized the traces such as the maximum and the minimum
of them correspond respectively to 1 and 0. This normalization allows for a clear
overview of the pattern and easily identify the type of MI regime. In Fig. 3.6(d)
we observe that a periodic pattern with a period of 6.93 ps settles down inside the
cavity, reproducing itself round-trip after round-trip. Moreover, the plot of the last
two consecutive temporal traces depicted with orange lines in Fig. 3.6(c) shows a
quasi-perfect overlap. Thus, it proves that the cavity operates in a P1 regime as pre-
dicted by the theory. These results are confirmed by numerical simulations1 whose

1. For a clear contrast of the modulation in the temporal domain, we prefer to show the intra-
cavity dynamics rather than the output-cavity dynamics. Indeed the latter one incorporates 90%
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temporal traces are depicted in Fig. 3.6(e) and in Fig. 3.6(c) by blue lines. They
correspond respectively to 2D-color plot of the intra-cavity temporal signals and
last two consecutive round-trip traces depicted in Fig. 3.6(e). Beyond the perfect
overlap between the last two consecutive traces from numerical simulation depicted
with blue lines in Fig. 3.6(e), the period pattern of 6.51 ps is in good agreement
with the experimental one.

3.3.1.2 Chaotic regime

We increased the input power to move on the second instability tongue cor-
responding to P2 regime meanwhile the system switches to the upper-branch (P2
regime) of the bistable cycle (see Fig. 3.7(a)). We increased the input power up
to the operating point identified by the black dot in Fig. 3.2 (P = 6.44 W). Fig.
3.7(b) depicts the recorded output cavity spectrum with an orange line. It exhibits
a background surrounded by two bands of instability. These bands, located at ±264
GHz, exhibit a discrepancy of about 10% with theory (calculated from Eq. (3.1)),
which predicts bands located at ±237 GHz, marked by green dotted lines in Fig.
3.7(b). The temporal traces recorded for 8 consecutive round-trips are shown in a
2D-color plot in Fig. 3.7(d). We note that the system does not follow neither a P1
nor a P2 regime. Actually, we excited a temporal chaotic regime, where temporal
traces exhibit a “random” pattern changing at each round-trip. This is particularly
visible in Fig. 3.7(c) that displays the last two recorded traces by orange lines. Such
a behavior has been predicted in spatially extended cavities and it resides in the
development of transverse MI for plane waves circulating in the resonator [126,139].
These results are confirmed by corresponding numerical simulations. The numerical
spectrum displayed in Fig. 3.7(b) (blue line) exhibits as well a background sur-
rounded by two bands of instability. The location and amplitudes of these bands,
as well as the level and width of the background are in good agreement. Fig. 3.7(e)
depicts the temporal traces from numerical simulations and shows exactly the same
chaotic behavior as in experiments. This is also visible in Fig. 3.7(c), which displays
with blue lines the last two traces. These results from experiments and numerical
simulations disagree with theory predicting a P2 regime for such configuration. The
theory developed to predict the different regimes of the cavity and their respective
operating domains is based on a linear stability analysis of the full map system (Eqs.
(1.8-1.9)) that takes into account only weak perturbations of the system. This ap-
proach is justified close to the cavity MI threshold. However, in this case we are
well above it, and the system enters a fully nonlinear regime, which is not captured
by our linear analysis.

of the input-pump (cw wave), decreasing the visibility of the generated patterns.
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Figure 3.7: (a) Steady-state curve, blue parts: instability domains, black dot: inves-
tigated configuration. (b) Output cavity spectra from experiments and numerical
simulations. 2D-color plot of 8 consecutive temporal traces from experiments (d)
and numerical simulations (e). (c) Last two consecutive traces from experiments (or-
ange lines) and simulations (blue lines), dotted and solid lines stand for round-trip
7 and 8, respectively. Parameters: see Fig. 3.2’s captions.

3.3.1.3 P2 regime

We slowly decreased the input power, in order to reach the configuration marked
by a cyan dot in Fig. 3.2 (P = 5.84 W), just above the lower limit of the upper-
branch instability domain (see steady-states cycle in Fig. 3.8(a)). This is the usual
technique to adiabatically reach a steady-state point close to the upper knee. The
temporal patterns depicted in Fig. 3.8(d) show that the system becomes again
periodic. The temporal traces prove unmistakably that the cavity operates in P2
regime, since traces alternate between two out-of-phase periodic patterns (period of
3.70 ps). It displays a characteristic chessboard pattern that is the clear signature
of this regime. Corresponding numerical simulations depicted in Fig. 3.8(e) are in
excellent agreement with the experiments (period of 3.63 ps). The period-doubling
is perfectly visible in Fig. 3.8(c), which depicts the last two consecutive traces from
experiments (orange lines), and numerical simulations (blue lines). The recorded
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output cavity spectrum displayed in Fig. 3.8(b) exhibits two instability bands lo-
cated at ±273 GHz, whose amplitude is about 35 dB below the pump power. This
is in excellent agreement with the theory predicting sidebands located at ±265 GHz,
indicated by the green vertical lines, and corresponding numerical simulations de-
picted by a blue line. It is noteworthy that P2 stable patterns are limited both in
experiments and in numerical simulations to a really restricted domain close to the
upper-branch MI threshold. By moving away from this threshold, new components
arise. First, they arise between the pump and bands frequencies and finally they
spread on a large frequency domain leading to a spectrum identified as a chaotic
spectrum (by checking the temporal domain). In the temporal domain we observed
that during this transition the system switches from periodic regimes P2 to chaotic
regimes. Numerical simulations of this transition to chaos show exactly the same
behavior. Such features are not specific to our case and were also observed in
Ref. [140].
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Figure 3.8: (a) Steady-state curve, blue parts: instability domains, cyan dot: inves-
tigated configuration. (b) Output cavity spectra from experiments and numerical
simulations. 2D-color plot of 8 consecutive temporal traces from experiments (d)
and numerical simulations (e). (c) Last two consecutive traces from experiments (or-
ange lines) and simulations (blue lines), dotted and solid lines stand for round-trip
7 and 8, respectively. Parameters: see Fig. 3.2’s captions.
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3.3.2 Negative detuning

Finally, we investigated the case of negative detuning by setting δ0 = −1.60 rad
(ϕ0 = 1.60 rad). It corresponds to the configuration identified by a red line in Fig.
3.2. P2 regime is reached by setting the pump power to Pin = 16.3 W (P = 0.83
W, green dot on the steady-state cycle in Fig. 3.9(b)) just above the MI threshold.
The cavity output spectrum is depicted by an orange line in Fig. 3.9(b). It exhibits
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Figure 3.9: (a) Steady-state curve, blue parts: instability domains, green dot: inves-
tigated configuration. (b) Output cavity spectra from experiments and numerical
simulations. 2D-color plot of 8 consecutive temporal traces from experiments (d)
and numerical simulations (e). (c) Last two consecutive traces from experiments (or-
ange lines) and simulations (blue lines), dotted and solid lines stand for round-trip
7 and 8, respectively. Parameters: see Fig. 3.2’s captions.

a pair of sidebands located at ±238 GHz in really good agreement with theory
predicting sidebands located at ±221 GHz (calculated from Eq. (3.1) and marked
by the green dotted lines in Fig. 3.9(b)) and with numerical simulations (blue line).
The normalized temporal pattern recorded for 8 consecutive round-trips is shown in
a 2D-color plot in Fig. 3.9(d). We note that traces exhibit an alternation between
two π-out-of-phase periodic patterns (period of 4.23 ns) with a singular form of
chessboard pattern. This behavior is also clear by looking at the last two round-

57



CHAPTER 3. MI PERIOD-DOUBLING

trips whose traces are depicted in Fig. 3.9(c) (orange lines). The system undergoes
a P2 regime as predicted by the theory. Experimental temporal recordings are also
in excellent agreement with numerical simulations (blue lines in Fig. 3.9(c) and in
Fig. 3.9(e) corresponding to the 2D-color plot from intra-cavity temporal signal).
Simulations show as in experiments the peculiar alternation between temporal traces
(period of 4.52 ns, see Fig. 3.9(e)). It is also clear by looking at the last two temporal
traces depicted by blue lines, where they almost perfectly overlap with experimental
traces (orange lines).

As in the previous positive detuning case, we could increase the power to switch
on the next upper tongue, where we expect that a P1 regime settle down inside the
cavity (Fig. 3.9 (a)). However, this requires a huge amount of input power to be
achieved of about Pin ≈ 180 W, too far from what we are able to generate with our
setup.

3.3.3 Impact of the cavity synchronization mismatch on MI

To illustrate the impact of synchronization on MI we report in Fig. 3.10 an
example corresponding to the configuration of P1 regime (red dot in Fig. 3.2(a)).
We simultaneously recorded the temporal pattern and the cavity output spectrum
for three different values of synchronization, by changing the cavity length thanks
to the stretcher. Fig. 3.10(a)-(b)-(c) shows the temporal patterns in a 2D-color plot
on more than thirty round-trips for synchronization mismatches of ∆t/L ≈ −6, 0,
and 1.8 ps.km−1 (∆L ≈ −0.148, 0 and 0.044 mm), respectively. Fig. 3.10(d) de-
picts the recorded spectra. The blue, red, and green curves correspond to spectra
recorded simultaneously with temporal patterns of Fig 3.10(a)-(b)-(c), respectively.
We observe, for cases where the cavity is not synchronized (blue and green cases),
a drift of the MI temporal patterns to negative/positive temporal values for nega-
tive/positive synchronization mismatches (see Fig. 3.10(a)-(c)). These drifts are of
approximately 11 % and 3% of the pattern period per round-trip for ∆t/L = −6
and 1.8 ps.km−1, respectively. In the case of perfect synchronization depicted in Fig.
3.10(b), the temporal pattern reproduces to itself round-trip after round-trip. Then,
by looking at the corresponding output cavity spectra depicted in Fig. 3.10(d), the
synchronization seems not to affect the spectral domain. However, deepening our
study, we note from the zoom on the Anti-Stokes sidebands (see Fig. 3.10(e)) that
the synchronization impacts the peak power of MI sidebands. Indeed, it reaches a
maximum for a perfect synchronization (red curves in Fig. 3.10(e)) and decreases
with an increasing synchronization mismatch. For ∆t/L = −6, and 1.8 ps.km−1

the peak value of the sidebands power compared to the perfect case are decreased
by more than 6 dB (blue curves in Fig. 3.10(d)-(e)) and 3 dB (green curves in
Fig. 3.10(d)-(e)), respectively. For higher desynchronizations, we observed in ex-
periments that the sidebands quickly vanish, while in the temporal domain, we do
not any longer observe periodic patterns. This power dependence of MI sidebands
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was also observed in other cases investigated in this work. We have exploited this
property in a straightforward manner to perfectly synchronize the cavity.
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temporal traces recorded for synchronization mismatches of −6, ≈ 0, 1.8 ps2.km−1

respectively. (c) Corresponding cavity output spectra. Blue, red, green curves stand
for ∆t/L = −6, 0 and 1.8 ps.km−1, respectively. (b) Zoom on Anti-Stokes band.

Summary

We show that, thanks to a time-lens, the dynamics of MI in passive cavities
can be recorded. We demonstrate unambiguously that two different processes of MI
with period-1 and period-2 can arise in this kind of system. Moreover, our results
directly show the limit of the mean-field model (LLE), which is not able to predict
period-doubling behaviors coming mostly from the fact that this LLE takes into
account only one resonance. Indeed, P2 regime arises for high intra-cavity power
and/or large detuning, beyond the LLE domain of validity. To capture the whole
dynamics, we highlighted that it is necessary to use the full Ikeda-map model. By
applying a linear stability analysis and a Floquet analysis, we can predict exactly
the experimental observations. We set the detuning to a positive value such as
the system is bistable. As expected from the theory, we observed the P1 regime
on the lower-branch of the steady-states cycle. When we increased the power to
switch on the upper-branch, the system becomes chaotic, in good agreement with
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numerical simulations. The theory predicts P2 regime for such parameters, which is
in disagreement with observations. It comes from the fact that the linear stability
analysis used to describe MI dynamics works for small perturbations, which is not the
case when the cavity operates far from the MI cavity threshold. By decreasing the
power to reach the MI threshold on the upper-branch, we observed again a temporal
periodic signal periodic, and a P2 regime as expected from theory. Finally, we set
the detuning to a negative value, where the cavity operates in a monostable regime.
We increased the power just above the MI threshold and observed a P2 regime as
predicted by the theory.

We point out that we are not the firsts to use the high resolution provide by time-
lens to characterize the complex dynamics of fast events in cavities. Indeed, time-lens
have also been exploited for the characterization of cavity soliton dynamics in passive
resonators [72] and mode-locking laser dynamics in phase and intensity [137]. These
latter studies and our results anticipate that time-lens systems, or more recently,
dual-frequency combs systems [71] providing an high resolution in real-time, will
become a standard technique to characterize fast events in resonators, to improve
the understanding of the complex dynamics occurring in cavities.
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CHAPTER 4. GENERATION OF INSTABILITY THROUGH GTF

Optical frequency combs (OFC), consisting of a series of phase-locked equally
spaced laser frequency lines, have attracted a lot of attention in the last decades.
Indeed, they are extremely precise rulers that found a lot of outlets [70, 91], rang-
ing from metrology [60, 61] with Lidars [62], or astrophysics to calibrate the astro-
nomical spectrometers used for Earth-like extra-solar planets [63, 64] detection, to
ultra-precise spectroscopy and molecular fingerprinting [65–67]. Different techniques
have been developed to generate these OFCs such as mode-locking laser [141], spon-
taneous four-wave mixing in quantum cascade laser [142], parametric four-wave
mixing in highly nonlinear fibers [143], difference frequency generation [144] and
even externally driven passive resonators either with quadratic nonlinearity [145]
or Kerr nonlinearity in microresonators [146]. Microresonators provide today the
most ideal platform to generate these OFC in term of compactness and low energy
footprint for suitable applications in the fields listed above [58,147,148]. Moreover,
their high quality factors (Q = 106 − 109) confine strongly the light inside the de-
vice [149–151], which allows to generate broadband OFCs from a weak continuous
wave. These OFCs can eventually achieve an octave spanning required for specific
applications [60, 148, 152–154]. Such OFCs are linked to the formation of temporal
cavity solitons [56,72,155–157], which occurs only in anomalous dispersion. Due to
practical limitation in microresonator fabrication process, such dispersion regimes
are extremely challenging to achieve, in particular in the visible. Some solutions
have been proposed to overcome this limitation, such as producing OFCs through
Faraday instabilities [158] or with dark soliton in normal dispersion region [159,160].
However, it requires a careful design of the device, and the comb repetition rate can-
not be tuned in the latter solution since it depends on the fixed opto-geometrical
parameters of the microresonator.

In this chapter, we propose a new concept based on gain-through-filtering process
(GTF) to generate OFCs in normal dispersion regimes, and overcome the tunability
limitation. This mechanism is a generalization of the gain-through-losses (GTL)
concept, a parametric process that induces MI through unbalance losses for sig-
nal and idler waves [161, 162]. GTF generalizes the GTL mechanism by including
the contribution of dispersion naturally associated to the filter dissipation profile
through causality relation (Kramer-Kronig relation [163]). We demonstrate for the
first time that GTF can generate MI that leads to the formation of OFCs by subse-
quent FWM process between the pump and the MI sidebands. Moreover, we show
that OFCs repetition rate can be easily tuned, by simply modifying the detuning
between the pump frequency and the central frequency of the filter.

The chapter is organized as follows. In the first section, we recall the theoretical
development done by A. M. Perego and M. Conforti to describe the GTF process in
resonators. In particular, we show the derivation of a phase-matching equation that
predicts the repetition rate of generated OFCs. In the second section, we detail the
experimental setups used to record the spectra and to record the temporal traces.
In the last section, we report our experimental results. First, we show the OFCs
generation through GTF, then we demonstrate the tunability and finally we show
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the corresponding temporal traces recorded for these combs.

4.1 Theory of gain-through-filtering in passive fiber-
ring cavities

In this section we recall the theoretical development done by A. M. Perego and
M. Conforti to describe the GTF process. We start from the following Ikeda map
system: 

∂E(z, τ)

∂z
= i

(
−β2

2

∂2

∂τ 2
+ γ|E(z, τ)|2

)
E(z, τ)

E(m+1)(z = 0, τ) = θ̃Ein(τ) + ρ̃E(m)(z = L, τ) exp(iϕ0)

(4.1)

(4.2)
and we consider that the filter located at the position z = zF acts in the following
way:

E(m)
(
z+F , τ

)
= h (τ) ∗ E(m)

(
z−F , τ

)
(4.3)

Ẽ(m)
(
z+F ,Ω

)
= H (Ω) Ẽ(m)

(
z−F , ω

)
(4.4)

The parameter h(τ) is the filter response, where the causality imposes h(τ) = 0

if τ < 0, ∗ denotes the convolution, .̃ the Fourier transform and H (Ω) = h̃(ω) is
the filter transfer function. For the sake of simplicity, we assume that the filter is
located just before the coupler (zF = L). Consequently, the boundary conditions
are modified in such way that:

E(m+1) (z = 0, τ) = θ̃Ein + ρ̃h (τ) ∗ E(m)(z = L, τ) exp(iϕ0) (4.5)

E
(m+1)
out (z = 0, τ) = iρ̃e

αfL

2 Ein − iθ̃e−
αfL

2 E(m)(z = L, τ) exp(iϕ0) (4.6)

We remind that ρ̃ = ρκ exp (−αfL/2) and θ̃ = θκ, where κ accounts for the
excess loss (η) from the coupler insertion.

4.1.1 Steady-state solutions

We search the steady-state solutions of the extended Ikeda map system Eqs.
(4.1-4.5). These are obtained by following the same method we used in section 1.2.2
to find the steady-state solutions of the standard Ikeda map system (Eqs. (4.1-
4.2)). Through this analysis we find the following relation between the pump P and
intra-cavity power Pin:

P

Pin
=

θ̃2

1 + ρ̃2|H (0) |2 − 2ρ̃|H (0) | cos (ϕ+ arg [H (0)])
(4.7)
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where ϕ = ϕ0 + γLP . Note that owing to the filter implemented inside the cavity
the overall phase accumulated by the pump field over a round-trip is modified. The
nonlinear phase is not affected and is given by ϕNL = γLP . However, the linear
phase becomes ϕL = ϕ0 + arg [H (0)], where arg [H (0)] is the phase of the filter at
the pump frequency.

4.1.2 Linear stability analysis

The dynamics of the system can be analyzed by applying a Floquet analysis [138]
on the extended Ikeda map system (Eqs. (4.1-4.5)). This is performed following the
same method described in Ref. [120] including the filter response function h (τ).
From this analysis detailed in Appendix A, we get the following eigenvalues that
describe the system:

λ± = (1− α)

[
ΨGTF ±

√
Ψ2
GTF −W

]
(4.8)

with
ΨGTF = cos (µL) [He (Ω) cos (ϕ)−Ho (Ω) sin (ϕ)]

− ζsinc (µL) [Ho (Ω) cos (ϕ) +He (Ω) sin (ϕ)]
(4.9)

W = H2
e (Ω) +H2

o (Ω) (4.10)

The parameters He,o (Ω) = [H (Ω) +H∗ (−Ω)] /2 and Ho (Ω) =
[H (Ω)−H∗ (−Ω)] / (2i) are the even and odd part of the filter function H (Ω),
µ =

√
β2
2Ω

4/4 + β2γPΩ2 is the standard MI gain with Ω the pulsation of the
perturbation and ζ = β2Ω

2L/2 + γPL. It can be easily checked that unstable
eigenvalues (|λ±|>1) appear only for |ΨGTF | >

[
W (1− α)2 + 1

]
/ [2 (1− α)], where

α accounts for the overall losses except the filter losses over a cavity round-trip. As
a result, the perturbations grows as exp (g (Ω) z), where the gain is:

g (Ω) =
1

L
ln [max (|λ−|, |λ+|)] (4.11)

4.1.3 Phase-matching condition

In the following we study and illustrate this theory with a super-gaussian shape
filter (SGF) whose spectral response amplitude is given by:

|H (Ω) | = 1−R exp
[
− (Ω− Ωf )

4 /σ4
]

(4.12)

The amplitude profile |H (Ω) | of this filter is depicted in Fig. 4.1 with a blue line.
The depth, the central position, and the spectral width of the filter correspond to
the parameters R = 0.96, Ωf = 399 × 2π rad.ns−1, and σf = 160 × 2π rad.ns−1
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respectively. Note that the causality principle imposes, through Kramer-Kronig
relation [163], that the spectral response function of the filter contains a phase
term ψ (Ω) such as H (Ω) = |H (Ω) | exp (iψ (Ω)). We shows this filter phase profile
ψ (Ω) in Fig. 4.1 with a green line obtained by computing the Bode’s magnitude
phase relation: ψ (Ω) = arg [H (Ω)] = −H [ln (H (Ω))] [164], where H [.] denotes the
Hilbert transform [165].
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Figure 4.1: Amplitude and phase of the filter with super-gaussian shape. The blue
curve stands for the amplitude profile and green curve for the phase profile.

We study the GTF process with this filter implemented in a passive fiber-ring
cavity whose dispersion is normal at the pump wavelength. We set the total linear
phase to ϕL = ϕ0+ arg[H (0)] = 0. The corresponding steady-state curve calculated
from Eq. (4.7) is depicted in Fig. 4.2(a). The red line stands for cw stable states and
blue line for modulationally unstable states. We fixed the input power to Pin = 6.6
W (P = 2.2 W, red dot), in order to pump the cavity above the MI cavity threshold
and we plotted the corresponding parametric gain (calculated from Eqs. (4.8-4.11))
in Fig. 4.2(b) by the red curves. It predicts bands located at ±586 GHz. However, it
does not allow to dissociate the relative impact of both parts of the filter (dissipation
part (|H (Ω) |) and dispersive part (arg (H (Ω)))) on the parametric gain and position
of the band. For this purpose, in Fig. 4.2(b) we superimposed the parametric gain to
the gain obtained for a purely dissipative filter and purely dispersive filter depicted
with the blue line and green line, respectively. In the case of a purely dissipative
filter, we observe two pairs of bands that do not exceed the threshold of GTF. The
band located at ≈ 400 GHz mimics the shape of the filter and the other bands
located at ≈ 1400 GHz correspond to boundary conditions induced MI [51]. In
the case of a purely dispersive filter depicted with green curves in Fig. 4.2(b), we
observe a pair of bands whose amplitude is slightly above that of the gain provided
by the full filter (red curves in Fig. 4.2(b)). Moreover, we note that each band
consists of two peaks, where the most detuned peaks from the central frequency
give a reasonable prediction of the most unstable frequencies provided by the full
filter (vertical black dotted lines).

From the last observations, we note that it does not require to take into account
the amplitude profile of the filter to determine the position of the most unstable
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Figure 4.2: (a) Steady-state curve for ΦL = 0 rad (Φ0 = −0.509 rad). The red
and blue curve depicted the cw stable states and unstable states with respect to
GTF process. (b) GTF gain 2g (f) calculated from Eq. (4.11) versus the frequency
shift. The red curve correspond to the GTF gain obtained with the filter H (Ω) =
|H (Ω) | exp (iψ (Ω)). The blue and red curves show the effect of magnitude and
phase of the filter transfer function on the gain, respectively. Parameters: β2 = 0.5
ps2.km−1, β2 = 0.12 ps3.km−1, L = 104.2 m, γ = 2.5 W−1.km−1, ΦL = 0, Φ0 =
− arg [H (0)] = −0.509 rad, and α = 0.22.

bands. Consequently, we can find the phase-matching relation that rules the position
of the sidebands by assuming that the filter response function is:

H (Ω) = exp (iψ (Ω)) (4.13)

The even and odd part of the filter transfer function are given by:

He (Ω) = eiψo(Ω) cos (ψe (Ω)) (4.14)
Ho (Ω) = eiψo(Ω) sin (ψo (Ω)) (4.15)

where the ψo (Ω) and ψe (Ω) denote the odd and even part of the filter phase, re-
spectively:

ψe (Ω) =
ψ (Ω) + ψ (−Ω)

2
(4.16)

ψo (Ω) =
ψ (Ω)− ψ (−Ω)

2
(4.17)

Consequently, Eq. (4.8) is greatly simplified as follows:

W = e2iψo (4.18)
ΨGTF = eiψo [cos (µL) cos (ϕ+ ψe)− ζsinc (µL) sin (ϕ+ ψe)] = eiψoΨ̃GTF (4.19)

and gives the following new eigenvalues:

λ± = (1− α)eiψo

[
Ψ̃GTF ±

√
Ψ̃2
GTF − 1

]
(4.20)
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These eigenvalues, excepting the exponential term, are identical to those that de-
scribe the dynamics of MI in standard cavities (see Eq. (3.1) and [51, 120]). The
exponential term does not change the modulus of eigenvalues and consequently it
does not affect the MI gain. The dynamics of the system becomes unstable when
|Ψ̃GTF | >

[
(1− α)2 + 1

]
/ [2 (1− α)]. In the good cavity limit (α → 0), the thresh-

old for instability occurs for |Ψ̃GTF | = 1. By assuming moderate powers such that
µ ≈ β2Ω

2/2 + γP , we find that Ψ̃GTF ≈ cos (µL+ ϕ+ ψe). Consequently, we get
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Figure 4.3: (a) Amplitude and phase profile of the SGF. (b) Phase-matching curve
calculated from Eq. (4.21) (dashed red curve). The blue curve stands for the cavity
induced phase and green cuve for the even part of filter phase. (c) Gain spectrum
after 50 round-trip calculated from Eqs. (4.8-4.10).

the following simple phase-matching relation:

β2Ω
2L

2
+ 2γLP + ϕ0 + ψe (Ω) = mπ (m ∈ Z) (4.21)

The solutions of this equation for m ̸= 0 correspond to parametric resonances (PRs)
induced by the periodic injection of the pump at each round-trip (see chapter 3).
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For the parameters we set in this study, these PRs appear, if they exist, at much
higher frequency with respect to GTF band. That is why we focus on the m = 0
bands in the following. In that case, parametric amplification can be observed only
if the left term of Eq. (4.21) that consists in: (i) the phase induced by the dispersion
µL, (ii) the phase shift of the cavity ϕ = ϕ0 + γLP , and (iii) the even part of the
phase of the filter, is equal to zero. The phase-matching curve from Eq. (4.21) is
depicted in Fig. 4.3(b) with dashed red curve. To clearly identify the relative impact
of each term composing the phase-matching equation, we plotted the cavity induced
phase with a blue curve and even part of the phase of the filter with a green curve.
We note that phase-matching curve cross the x axis in ±448 GHz and ±583 GHz.
By looking at the gain spectrum in Fig. 4.3(b), we can see that Eq. (4.21) gives
a very good approximation of the most unstable frequencies ±586 GHz. Moreover,
we can note from Fig. 4.3(a) showing the phase and amplitude of the filter that the
phase-matching frequency is significantly different from the center of the filter, as
it is the case for gain-through-losses, where only the dissipative part of the filter is
taken into account [161].

4.2 Experimental setup

In order to validate the theoretical predictions, we built a passive fiber cavity
that consists of 102 m long of a specially designed dispersion shifted fiber (DSF,
β2 = 0.5 ps2.km−1 at the pump wavelength, γ = 2.5 W−1.km−1 and β3 = 0.12
ps3.km−1), an isolator, a fiber Bragg grating (FBG1) used in transmission and a
90/10 coupler made of the same DSF. The total cavity length is about 104.2 m (102
m account for the DSF and 2.2 m for the FGB and isolator). The light reflected in
the clockwise direction inside the cavity is blocked by the isolator in order to avoid
detrimental interactions with the pump field, which propagates in the anti-clockwise
direction. The FBG1 implemented inside the cavity has been designed in such way
that its phase and amplitude profile match with the SGF studied theoretically. We
checked this by recording the loss profile of FBG1 |H (Ω) | thanks to an optical
spectrum analyzer (OSA). This profile of the filter is shown in Fig. 4.4(a) with
the solid blue line and it reproduces accurately the amplitude profile of the SGF
depicted with the dotted blue line. Then we retrieved the phase profile of FBG1
depicted by a solid green line in Fig. 4.4(a) from the measured filter attenuation
profile by computing the Bode’s magnitude phase relation. Once again, the FBG1
phase profile reproduces accurately the phase profile of the SGF depicted with dotted
green line except at Ω ≈ 500 GHz, where we observe a small discrepancy.

In order to stabilize and analyze the dynamics of the system, the operating
principle is similar to the one presented in chapter 3. We drove the cavity with
a train of square shaped pulses of 1.5 ns, which are generated from a cw laser at
1545 nm chopped by an electro-optical modulator (EOM1). The repetition rate,
thanks to an arbitrary waveform generator driving the EOM1, is set to match with
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the repetition rate of the cavity (1.96 MHz), in order to drive synchronously the
system and get one pulse per round-trip. These pulses are then amplified by an
erbium-dope fiber amplifier (see EDFA1 on the blue line in Fig. 4.5) and filtered
through a thin filter (BPF1, 100 GHz) to remove the spontaneous emission (ASE)
in excess.
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Figure 4.4: (a) Amplitude and phase of the FBG filter (solid lines) and of the filter
with the super-gaussian shape (dotted lines). (b) Loss profile of the FBG filter
depicted with a logarithmic scale.

We emphasize that in such cavity configuration, we cannot stabilize the system
with a reference field that propagates inside the cavity in the opposite direction of
the pump signal (clockwise direction). Indeed, this reference field would be blocked
by the isolator implemented in the cavity. To prevent this, we implemented the
cavity in the experimental setup depicted in Fig. 4.5 that use a reference pulse
train propagating in the same direction of the pump pulse train. This is performed
by sampling a weak part of the EOM1 output signal thanks to a 80/20 coupler.
Then, this weak field is slightly amplified by an EDFA (EDFA2 on the red line in
Fig. 4.5) and then combined with the powerful pump pulse train by using a 50/50
polarization maintaining coupler. The reference and pump pulse trains are cross-
polarized thanks to polarization controllers added on each path (PC1−2, on the red
and blue line in Fig. 4.5, respectively) and interleaved in the time domain in order
to not interact. Finally, both pulse trains are injected into the cavity through the
right input port of the cavity and propagate in the anti-clockwise direction inside
the cavity (blue arrow in Fig. 4.5). Note that we added a 99/1 coupler on the pump
line just before the 50/50 coupler in order to measure the power of the pump input
pulses thanks to a powermeter (PWM).

At the cavity output we added a 90/10 coupler. The signal from the 10%
output port of the coupler is used to record the output cavity spectrum with an
OSA while the signal from the 90% output port of the coupler has been used to
supply two different configurations. The first configuration described in section
4.2.1 has been used to record the output cavity spectra. This configuration provides
an accurate measurement of the cavity detuning (δ0) and allows easy comparisons
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with theoretical predictions and numerical simulations. In the following, we will call
this configuration setup ”A”. We also planed to record the temporal pattern from
the cavity output. However, this first setup does not provide a sufficient stabilization
for such recording. Consequently, we built a second setup by modifying slightly the
fist setup to improve the cavity stabilization at the expense of a precise detuning
measurement. In the following, we call this setup setup ”B” that is described in
section 4.2.2.

4.2.1 Setup for the measurement of the detuning: setup
”A”

Let’s first describe the setup ”A”, which is depicted in Fig 4.5. In this configu-
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Figure 4.5: Experimental setup, ”Setup A”. EOM1, electro-optical modulator;
PC1−4, polarization controller; PD1−2, photodetector; OSA, optical spectrum an-
alyzer; EDFA1−2, erbium-doped fiber amplifier; BPF1, band-pass filter; EBPF, elec-
tronic band-pass filter; Oscillo. 1, oscilloscope; PID, proportional-integrate-derivate
controller; FBG1, fiber Bragg grating; PWM, powermeter; PBS, polarization beam
splitter; , polarization states.

ration the weak reference signal from the 90% output port of the coupler is isolated
from the strong one in two steps. First, by using a polarization beam splitter (PBS),
and then with an EOM (EOM2) that is synchronized with EOM1. Note that we
added a polarization controller just before the PBS (PC4) to ensure that the ref-
erence and strong fields match the polarization axes labeled and in Fig. 4.5,
respectively. Finally, the reference field experiences an isolation of more than 60
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dB from the strong one. This signal is then detected by a photodetector (PD1) and
filtered through an electronic band-pass filter (EBPF) to sample its envelope, which
is used as a reference signal by a PID to stabilize the system (by finely tuning the
pump wavelength). This configuration has been used to record all the spectra shown
in the following and particularly to determinate the comb repetition rate.

4.2.2 Setup for temporal recording with improved stability:
setup ”B”

We recall that an optical frequency comb consists of a series of phase-locked
equally spaced laser frequency lines. The previous configuration allows to determine
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Figure 4.6: Experimental setup, ”Setup B”. EOM1, electro-optical modulator;
PC1−2,5−6, polarization controller; PD3−4, photodetector; OSA, optical spectrum
analyzer; EDFA1−2, erbium-doped fiber amplifier; BPF1−2, band-pass filter; EBPF,
electronic band-pass filter; Laser fs, femtosecond laser; Oscillo. 2, oscilloscope; PID,
proportional-integrate-derivate controller; FBG1−2, fiber Bragg grating; PWM, pow-
ermeter.

the repetition rate (teeth spacing) of the comb, but it gives no information about
the phase locking between the lines. Different complex experimental measurements
can be performed to characterize this phase locking [166], however for the sake of
simplicity we focused on the temporal traces, which provide a very good insight
into the spectral lines’ coherence. From the theory and the parameters of our cav-
ity, we expected to generate frequency comb whose repetition rate lies on the ps
scale, well above the bandpass of our detection system (Oscillo. 1 and PD2 in Fig.
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4.5). In order to solve this problem, we modified our experimental setup to imple-
ment at the cavity output a time-lens system (Picoluz ultrafast temporal magnifier,
Thorlabs [102]) connected to a fast photodiode (PD4) and a high band-pass oscil-
loscope (Oscillo. 2, 70 GHz bandpass each). This new configuration (setup ”B”),
depicted in Fig. 4.6, allows to magnify the bandpass of our detection system about
57 times, providing a temporal resolution of 300 fs over 50 ps. The time-lens effect
is obtained via FWM process between the signal to analyze and a ( linearly chirped)
pump provided by an ultra-fast laser (Laser fs, repetition rate: 100 MHz). We added
polarization controllers on the pump and signal path (PC5-6), since FWM process is
very sensitive to the relative polarization between these two beams. The fiber Bragg
grating (FBG2) added before the time-lens on the signal path and used in transmis-
sion allows to diminish the power of the central component. Given the importance
of the cw component with respect to the harmonics, this filtering is necessary, in
order to record the temporal pattern. Note that, it does not require to synchronize
the time-lens pump with the repetition rate of the cavity like in the previous chapter
since we do not aim to performing round-trip to round-trip measurements. We ana-
lyze cavity output traces when the system achieves a stationary regime by recording
a large set of data and by selecting those for which time-lens pump pulses and sig-
nal pulses temporally overlaps. In order to record clean temporal traces from the
time-lens, an excellent stabilization is required. The stabilization provided by the
”setup A” is not good enough for such recording. That is why in the ”setup B” we
developed a more efficient stabilization system. Rather than using a reference signal
co-propagating with the pump inside the cavity for the feedback loop system, we
maximized the power of one of the parametric bands generated as in Ref. [55]. For
this purpose we sampled a part of the FBG2 (filter the central component) output
signal thanks to 50/50 coupler, then filtered (BPF2, 1 nm bandpass at FWHM) to
isolate a parametric sideband. This field is then detected by a photodetector (PD3)
and used as a power error signal by a feedback loop system (PID) to stabilize the
cavity. Note that we obtained a better stabilization from this new system but it
does not provide a detuning measure.

4.3 Experimental results

We investigated experimentally the regime identified by the red dot in Fig. 4.2(a)
by using the ”setup A”. We set the total cavity detuning measured in experiments
to zero (δ = δ0 − arg [H (0)] = 0) and we increased the input power until Pin = 6.6
W (P = 2.2 W) above the instability threshold. We observe, from the experimental
output cavity spectrum displayed by red line in Fig. 4.7(a), that a pair of sidebands
located at ±588 GHz arises with amplitudes of approximately 26 dB below the pump
power. Moreover, an harmonic frequency comb that consists of more that 10 lines is
generated through subsequent FWM process between the pump and these sidebands
triggered by GTF process. Note that the maximum efficiency of GTF process does
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not arise at the position of the maximum loss of the filter (see blue curve in Fig. 4.7
that depicts the modulus squared of the FBG transfer function) as expected from a
purely dissipative filter (H (Ω) = |H (Ω) |). Indeed, as we mentioned the causality
imposes through Kramer-Kronig relation, that the spectral response function of the
filter contains a phase term ψ (Ω). It modifies the position of the perfect phase-
matching. Consequently, this sidebands, rather than being located at the frequency
most attenuated by the filter (399 GHz), they arise on the high frequency edge
of the filter at 588 GHz. These results are in excellent agreement with theoretical
predictions from Eq. (4.21) that predicts bands located at ±580 GHz. We compared
this recording to the cavity output spectrum obtained from numerical integration of
the full Ikeda map equations (Eq. (4.1) and Eqs. (4.5-4.6)) by using the SGF. This
spectrum is depicted in Fig. 4.7(b) with a red line. Green dotted line stands for the
square modulus of the SGF transfer function. We obtain a good agreement between
both spectra where sidebands of the numerical spectrum are located really close to
the experimental one at ±590 GHz. It even reproduces the spectrum asymmetry
coming from the dispersion slope (contribution of third-order dispersion from both
fiber and filter) that has already been reported in [113,114]. We underline that in the
peculiar case we have investigated (monostable regime, normal dispersion region)
without the filter inside the cavity, the cw solutions are modulationally stable (see
Fig. 1.6(a) in chapter 1) and consequently, the observed GTF sidebands cannot be
confused with standard MI sidebands.
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Figure 4.7: Cavity output spectrum for λpump = 1544.66 nm from (a) experiments
an (b) numerical simulations. The blue dashed line in (a) and green dashed line in
(b) correspond to the square modulus of the FBG transfer function and the square
modulus of the SGF transfer function (|H (Ω) |2), respectively.

Then, we investigated the tunability of the GTF process. For this purpose we
kept the central frequency of the filter unchanged and we tuned the pump wavelength
from λpump = 1544.06 nm to 1545.18 nm. This leads to a frequency shift between
the pump and the position of the maximum loss of the filter from 323 GHz to
464 GHz. The recorded cavity output spectra are depicted in Fig. 4.8(a), where
the central components correspond to the pump. We note that the position of the
first anti-Stokes sidebands triggered by the GTF process remains located at the
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same position λA−S = 1539.93 nm (fA−S = 194.679 THz), set by the filter position
(see blue dotted curve in Fig. 4.8, λFBG = 1541.50 nm, fFBG = 194.482 THz).
Through FWM process between the pump and this first anti-Stokes sideband, a
Stokes sideband is symmetrically generated on the other side of the pump. For the
sake of clarity, we do not show other bands of the combs since it is not required to
determine the comb repetition rate. However, we stress that all spectra, whose three
main components are depicted in Fig. 4.8(a), are really similar to the one shown in
Fig. 4.7(a) corresponding to λpump = 1544.06 nm (bold red curve in Fig. 4.8(a)). In
Fig. 4.8(b) we show the measured repetition rate versus the frequency shift between
the pump and the filter with colored dots. These results are in excellent agreement
with theoretical predictions from the linear stability analysis (Eq. (4.11)), from
which the position of the most unstable band is depicted by a blue line. Note that
the comb repetition rate is different from the frequency shift between the pump
and filter since the maximum of GTF process occurs at a frequency shifted from
the maximum loss frequency of the filter on the anti-Stokes side. Consequently,
by tuning the frequency shift between the pump and the filter from 323 GHz to
464 GHz, we can tune the comb repetition rate quite linearly from 533 GHz to
653 GHz in this peculiar case. The comb repetition rate could eventually be tuned
over a wider range however the tunability of the laser used in experiments to pump
the cavity was limited to the range investigated here preventing us to observe such
combs.
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spectrum depicted in red in (a) and in Fig. 4.7(a). The blue line corresponds to the
position of the most unstable frequency calculated from Eq. (4.11).

Finally, we investigated the phase locking of the comb lines. This has been
performed by using the ”setup B” to record the temporal traces thanks to a time-lens
system when the system achieves a stationary regime. Fig. 4.9(a) shows an example
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of recorded temporal traces. For the sake of simplicity, we normalized the trace such
as its maximum and its minimum correspond to 1 and 0, respectively. We observe
temporal periodic structures with a period of ≈ 1.7 ps that corresponds almost to
1/(588 GHz). These results are in good agreement with the corresponding numerical
simulation depicted on Fig. 4.9(b), which shows temporal structures whose period
is also equal to 1.7 ps. The localized temporal periodic structures we observe in
the time domain confirm that the comb lines are indeed locked. To go further,
we recorded the temporal trace several times with a time lapse of several seconds
between two recordings. We obtained every time the same periodic pattern with
the same periodicity of 1.7 ps, which demonstrated the stability of the generated
structures.
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Figure 4.9: (a) Temporal trace recorded from the cavity output signal. (b) Temporal
trace from the corresponding numerical simulation. Note that in experiments we
used a filter to attenuate the pump component before sending to the time-lens, this
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Summary

By implementing a FBG whose amplitude profile was a quasi super-gaussian
shape in a passive fiber cavity that operates in normal dispersion regimes, we were
able to generate an OFC that consists of more than 10 thin lines through GTF
mechanism. Moreover, we demonstrated that the repetition rate can be tuned quasi
linearly between 323 GHz and 424 GHz by simply adjusting the pump-filter fre-
quency detuning without requiring additional devices [167, 168]. The small num-
ber of comb lines observed in experiments is due to the low finesse of the cavity
(F = 12). However, such process in microresonators where the cavity confinement
is really high would improve strongly the efficiency of GTF process and consequently,
would provide broader OFCs. Our fundamental results give a proof of concept of
OFC generation through GTF process and highlight the flexibility of this process.
Indeed, it does not require any dispersion management contrary to other tunable
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OFCs in Kerr resonators [58, 158] and can even arise in normal dispersion regimes.
In addition, at variance with OFCs generated through dark and bright cavity soli-
tons, which require the cavity to operate in bistable regimes, GTF process can arise
in monostable regimes requiring less input power. These results open the way for
really promising future applications in particular for OFC generation in the visible
part of the spectrum, where the material dispersion is normal.
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CHAPTER 5. PHASE-SENSITIVITY OF SEEDED MI

Modulation instability in passive cavities has been mostly studied in the case of
a monochromatic pumping (cw or quasi-cw pump), where the MI process is initiated
from noise [51–53]. Few studies investigate MI in passive cavities for a polychromatic
driving of the system. We note a theoretical study of the nonlinear stage of MI for
dual pumping in Ref. [169] and experimental studies of primary parametric seeding of
Kerr OFC in microresonators [170–172], dual pumping of Kerr OFC [173] and seeded
MI [174]. However, none of these studies focus on the sensitivity of the intra-cavity
field dynamics to the phase of the input components, which is expected, due to the
parametric nature of the MI process. We found only one study that investigated in
the case of a tri-chromatic pump (same amplitude of the three spectral components)
the phase-sensitivity of the parametric process, but it focuses on the first harmonics
and on FWM and not on MI [175]. In this chapter, we investigate the phase-
sensitivity of MI in passive cavities driven by a pump weakly modulated which,
to our knowledge, has never be done. Thus, in the spectral domain, the electrical
field consists in three components: a strong central one that corresponds to the
carrier frequency, and two weak symmetric sidebands that we used to seed the MI
process at the most unstable frequencies. In this work, we investigate the phase-
sensitivity of the sidebands. For this purpose, we first led in section 5.1, theoretical
investigations based on an extension of the LLE and an appropriate three wave
truncation. We highlight that the gain of the sidebands vanishes for peculiar phases
of the input components. In a second step, we built an experimental setup in
collaboration with Corentin Naveau, in order to observe and validate our theoretical
predictions. This setup implements an heterodyne measurement technique inspired
from Ref. [176], which allows to record the power dynamics round-trip to round-
trip of the intra-cavity pump and sidebands components. Experimental results are
reported in section 5.3. Note that the heterodyne technique implemented in our
setup allows to record the phase dynamics of each components. However, at the
time of writing, the numerical process to record the phase is still under development.
Nevertheless, we present preliminary results of this phase recordings, that provide
first physical insights of the sidebands and pump phase dynamics.

5.1 Modeling of seeded MI process

5.1.1 Lugiato-Lefever Equation with a modulated pump

To model passive cavities driven by a modulated pump, we follow the procedure
described in Refs. [169, 177] by applying a mean field approximation of the finite-
dimensional map Eqs. (1.8-1.9). This leads to the following extended version of the
LLE:

∂E(z, t)

∂z
=

(
−α
L
− i

δ0
L

− β1
∂

∂t
− i

β2
2

∂2

∂t2
+ iγ|E(z, t)|

)
E(z, t) +

θ̃

L
Ein (t) (5.1)
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where t is the time in the laboratory reference frame and β1 the first order dispersion
term. The modulated input field is time-dependent and is given by:

Ein = Ein,0 + (σie
iΩt + σse

−iΩt) (5.2)

where Ein,0 =
√
Pine

iϕ0,in is the electric field of the carrier wave and σi =
√
Sie

iϕi,in

and σs =
√
Sse

iϕs,in are the electric fields of the sidebands (seeds) at respectively
the angular frequencies +/−Ω. Pin, Pi,in,Ps,in and ϕ0,in, ϕi,in, ϕs,in denote the pump,
idler, and signal input power and input phase, respectively. We point out that we
do not use a reference frame moving at the group velocity of the pump by making
the transformation τ = t − β1z as it is done to obtain standard LLE (to remove
the β1 term). Indeed, this transformation is not relevant because the pump is time
dependent, which consequently, does not allow to eliminate the β1 term from the
equation.

5.1.2 Three wave model

In the following, we analyze seeded MI in the case of weak seeds relative to
the pump (Pin ≫ Pi/s,in). For this purpose, we expand the electric field circulating
within the cavity (E (z, t) in Eq. (5.1)) in Fourier modes En exp (inΩt) where n is
the number of the considered mode. Then, we assume that the dynamics of the
system is contained in the three main modes (n = 0,±1) of the electric field, the
pump and its first contiguous sidebands such as:

E(z,Ω) = E0(z,Ω) + Ei(z,Ω)e
iΩt + Es(z,Ω)e

−iΩt (5.3)

The parameters E0 =
√
P0(z,Ω)e

iφ0(z,Ω), Ei =
√
Pi(z,Ω)e

iφi(z,Ω), and Es =√
Ps(z,Ω)e

iφs(z,Ω) are the pump, idler, and signal components of the intra-cavity
field, respectively. P0,i,s denote the pump, idler and signal power and ϕ0,i,s their
phase, respectively. Then, by introducing this Ansatz (Eq. (5.3)) into the extended
LLE (Eq. (5.1)) and by equating terms oscillating at the same frequency, we obtain
the following three wave model (TWM):

∂E0

∂z
=

(
−α
L
− i

δ0
L

)
E0 + iγ

(
|E0|2 + 2|Ei|2 + 2|Es|2

)
E0 + 2iγEiEsE

∗
0 +

θ̃

L
Ein,0

(5.4)
∂Ei
∂z

=

(
−α
L
− i

L
δi + i

β2
2
Ω2

)
Ei + iγ

[(
2|E0|2 + |Ei|2 + |Es|2

)
Ei + E2

0E
∗
s

]
+
θ̃

L
σi

(5.5)
∂Es
∂z

=

(
−α
L
− i

L
δs + i

β2
2
Ω2

)
Es + iγ

[(
2|E0|2 + 2|Ei|2 + |Es|2

)
Es + E2

0E
∗
i

]
+
θ̃

L
σs

(5.6)
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The parameters δi = δ0 − 2lπ + β1ΩL and δs = δ0 + 2lπ − β1ΩL with l =
arg [minl |δ0 + 2lπ − β1ΩL|] define the cavity detuning of the idler and signal com-
ponents from their closest resonances which implies δi/s ∈ [−π, π].

In order to justify the exactness of our treatment and the accuracy of Eqs. (5.4-
5.6), we report an example in Fig. 5.1(a)-(b). We seed the MI at the most unstable
frequencies ΩT = ±

√
2 (δ0/L− 2γP ) /β2 (P = θ̃2Pin/

[
(δ0 − γLP )2 + (α)2

]
, see

chapter 1), just above the MI cavity threshold Pth > α/ (γL), from an initially
empty (only noise) cavity. From an experimental point of view, this is the easiest
way to generate seeded MI. For the sake of simplicity, we seed the system such as
the cavity detunings δ0 = δs = δi (β1ΩTL = 2kπ, k ∈ Z). We show the signal,
pump and idler power and phase evolutions calculated from the TWM (by using an
ordinary differential equation (ODE) solver) in Fig. 5.1(a)-(b), respectively, for an
arbitrarily set value of ϕi,in − ϕ0,in = π/3 and ϕs,in − ϕ0,in = −π/2. The dashed
red, green and blue curves in Fig. 5.1(a) account for the idler (Pi), signal (Ps) and
pump (P0) power evolutions, respectively, whereas in Fig. 5.1(b) they account for
the idler (φi), signal (φs), and pump (φ0) phase evolutions, respectively. We observe
that the power of the pump increases quickly and reaches a stationary regime after
25 round-trips, while the power of the idler and signal increases slowly and reaches
a stationary regime after more than 150 round-trips. In the same way, the pump
phase evolves quickly and reaches the stationary state 0.2π, whereas idler and signal
phase reach the stationary states −0.1π and −0.9π, respectively, after more than 150
round-trips. We compared these results to corresponding numerical simulations of
the extended LLE (Eq. (5.1)). The dotted red, green and blue curves in Fig. 5.1(a)
account for the idler, signal and pump power evolutions, respectively, and in Fig.
5.1(b) they account for the idler, signal, and pump phase evolutions, respectively.
We can see that the TWM accurately reproduces the power and phase evolutions
predicted by the extended LLE. Note that we just observe small discrepancies for
the final idler and signal stationary regime powers(< 1 dB). The reason for this,
is that the TWM (Eq. (5.4-5.6)) only takes into account the contribution of the
three main modes (n = 0,±1, pump and sidebands, respectively) and neglects the
weak contribution of other modes (in numerical simulations of the extended LLE,
amplitudes of modes n = ±2,±3, ... (harmonics) are more than 16 dB below that
of modes n = ±1). We numerically checked that we obtain similar agreement with
other input phase values, which confirms that the truncated TWM (Eqs. (5.4-5.6))
can be used to accurately study the dynamics of seeded MI.

In Fig. 5.1(c)-(d), we report a second example obtained for the same parameters
as the first example, except that we modified the phase of the input components such
as ϕi,in−ϕ0,in = −π/6 and ϕs,in−ϕ0,in = −π. In this second example, the idler and
signal components reach a stationary regime after only 25 round-trips. Moreover,
their final stationary regime is modified. In particular, their power reaches a higher
level compared to the first example (≈ +5 dB). These observations suggest that the
energy-transfer between the pump and sidebands is sensitive to the relative phase
between the input components. In the following, we investigate the phase-sensitivity
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Figure 5.1: (a) Power and (b) phase evolutions of idler, signal and pump fields
versus the round-trip number. Dotted lines stand for numerical simulations of the
extended LLE (Eq. (5.1)) and dashed lines for solutions of the TWM (Eqs. (5.4-
5.6)). Parameters: δ0 = δi = δs = 0.05 rad, α = 0.14, L = 169 m, γ = 1.2
W−1.km−1, Pin = 0.2 W, (a)-(b) ((c)-(d)) ϕi,in−ϕ0,in = π/3 (−π/6) rad and ϕs,in−
ϕ0,in = −π/2 (−π) rad, β2 = −20 ps2.km−1, Si/s = 1.10−2 × Pin (20 dB), θ =

√
0.1,

fT = ±59 GHz.

of the transient and stationary regimes of seeded MI, regarding the relative phase
of the input components. The stationary regime is investigated in the following
section, while the transient regime is investigated in section 5.1.2.2.

5.1.2.1 Phase-sensitivity of the stationary regimes of seeded MI

The stationary regimes correspond to stable steady-states of the extended LLE
(Eq. (5.1)). In general, Eq. (5.1) does not have simple analytical solutions, and
one has to resort to numerical simulations. However, under certain conditions,
approximate solutions providing a good physical insight can be easily found from
the truncated TWM (Eqs. (5.4-5.6)). These solutions are calculated in two steps,
following the method used to find the stationary regimes of standard MI in the
chapter 7 of Ref. [178]. This development can be summarized as follows. First, we
assume that the sidebands and seeds amplitudes are equal. Consequently, the model
(Eq. (5.4-5.6)) becomes a system of two coupled ordinary differential equations.
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Then, we solve these equations when ∂z = 0 and we express the solutions (steady-
states) and input field components by their polar form E0 =

√
Qeiφ

′
0 , Es = Ei =√

Ueiφ
′
s1, Ein,0 =

√
Pine

iϕ0,in , σs = σi =
√
Seiϕs,in (S = Si = Ss). We then obtained

the following set of four equations at the most unstable frequency ΩT :

γ (2U cos (∆ψ) +Q+ 4U)− δ

L
= −

√
Pin sin (∆ψ0) θ̃

L
√
Q

(5.7)

2γU sin (∆ψ) +
α

L
=

√
Pin cos (∆ψ0) θ̃

L
√
Q

(5.8)

γ (Q cos (∆ψ) + 2Q+ 3U) = −
√
S sin (∆ψs) θ̃√

UL
+
δ0
L

− β2
2
Ω2
T (5.9)

− γQ sin (∆ψ) +
α

L
=

√
S cos (∆ψs) θ̃√

UL
(5.10)

We here introduced ∆ψ = 2 (φ′
s − φ′

0), that measures the phase difference between
the intra-cavity sidebands and pump. In the same way, we define ∆ψ0 = ϕ0,in −
φ′
0 that characterizes the phase difference between the input and the intra-cavity

pump, and ∆ψs = ϕs,in − φ′
s, which is the phase difference between the input seeds

and the intra-cavity sidebands. We can calculate Q, U, φ′
0 and φ′

s by solving the
above equations by using a numerical approach (e.g. nonlinear system solver), and
consequently express the steady-state solutions E0 and Es/i. Finally, the linear
stability of these solutions is obtained by calculating the eigenvalues of the Jacobian
matrix of Eqs. (5.7-5.10) and of their complex conjugates. Thus, stable steady-states
solutions E0 and Es correspond to the stationary regimes of the pump and signal
fields. In order to give a physical insight of the phase-sensitivity of the stationary
regimes, we solve the system of Eqs. (5.7-5.10) for different values of relative input
phases ϕi,in − ϕ0,in = ϕs,in − ϕ0,in = ∆ξ, by finding the stable and unstable steady-
states. We depicted in Fig. 5.2(a) the calculated solutions in the polar coordinate
system (Pi/s, φs/i−φ0). The solid colored lines correspond to the the stable steady-
state points (stationary regimes), and dashed colored lines to the unstable steady-
state points 2 . Each case of ∆ξ can be identified by a color indexed in the legend
of Fig. 5.2. We observe that by changing ∆ξ the steady-states form an “aircraft
propeller” in the phase plane. Steady-states that belong to the “blades” are stable
(stationary regimes, solid lines) and the others close to the “rotor” are unstable (see
the zoom on the initial stage in Fig. 5.2(b), dashed lines). We superimposed some
examples of trajectories calculated from the TWM (by using an ODE solver) for ∆ξ
ranging from 0 to 2π and depicted with colored dotted lines. We note that their final
states marked with colored dots match perfectly with the predicted stable steady-
states. Finally, we compared these results to corresponding numerical simulations
of the extended LLE (Eq. (5.1)). They are depicted in Fig. 5.2(c) through their
trajectories in the phase plane (Pi/s, φs/i − φ0). As predicted by our analysis, the

1. φ′
0, φ

′
i, and φ′

0 correspond to steady-states of φ0, φi, and φ0 calculated from the TWM
2. These lines have been obtained by fitting the solutions Eqs. (5.7-5.10) calculated for 16000

different values of ∆ξ ranging from 0 to 2π
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Figure 5.2: (a) Position of the steady-states predicted from numerical analysis of
the truncated TWM Eqs. (5.4-5.6) in the phase plane (Pi/s, φs/i − φ0). Solid
colored lines stand for the stable states and dashed lines for unstable states. Dotted
curves correspond to some examples of trajectories for ∆ξ ranging from 0 to 2π.
(b) Zoom on the initial stage of Fig. 5.2(a). (c) Example of trajectories calculated
from numerical simulations of the extended LLE (Eq. (5.1)). In all cases, colored
dots stand for the final states of the calculated trajectories and black dots to the
predicted saddle points (Eqs. (5.21-5.22)).

system converges toward attractors (marked by colored dots), whose position is in
good qualitative agreement with theoretical predictions depicted in Fig. 5.2(a) by
the solid lines. Note that both numerical simulations of the extended LLE and TWM
show that the trajectories bifurcate either to one blade or to the other “blade” of the
“propeller” in the transient regime, depending on the phase of the input component.
The change in the bifurcation happened close to two points that we identify by black
dots in Fig. 5.2(a-c). In the following section, we investigate this phase-sensitivity
of the transient regime. In particular, we identify the origin and the nature of these
observed bifurcations.

5.1.2.2 Phase-sensitivity of the transient regime of seeded MI

In this section, we focus on the transient dynamics of seeded MI and identify the
origin of its phase-sensitivity to input conditions. In order to give an analytical de-
scription of this regime, we derived a simplified version of the TWM. This derivation
is obtained by noting that in the transient regime P0 ≫ Pi/s (see Fig. 5.1(a)-(c)).

83



CHAPTER 5. PHASE-SENSITIVITY OF SEEDED MI

Consequently, we can derive the following simplified version of the truncated TWM
Eqs. (5.4-5.6), by linearizing in signal and sidebands fields:

∂E0

∂z
=

(
−α
L
− i

δ0
L

)
E0 + iγ|E0|2E0 +

θ̃

L
Ein,0 (5.11)

∂Ei
∂z

=

(
−α
L
− i

L
δi + i

β2
2
Ω2

)
Ei + iγ

[
2|E0|2Ei + E2

0E
∗
s

]
+
θ̃

L
σi (5.12)

∂Es
∂z

=

(
−α
L
− i

L
δs + i

β2
2
Ω2

)
Es + iγ

[
2|E0|2Es + E2

0E
∗
i

]
+
θ̃

L
σs (5.13)

We justify the exactness of our treatment and the validity of Eqs. (5.11-5.13), by
reporting the same two examples used to validate the TWM. In these examples,
depicted in Fig. 5.3, we compared the pump and idler power and phase evolutions
predicted by this simplified model to numerical simulations of the extended LLE.
The signal and pump power and phase evolutions of the first (second) example are
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Figure 5.3: (a) and (b) Power and phase evolutions of idler, signal and pump fields
versus the round-trip number, respectively. Dotted lines stand for numerical sim-
ulations of the extended LLE (Eq. (5.1)) and dashed lines for solutions of Eqs.
(5.11-5.13). Blue, red, and green correspond to the pump, signal and idler, respec-
tively. Parameters: δ0 = δi = δs = 0.05 rad, α = 0.14, L = 169 m, γ = 1.2
W−1.km−1, Pin = 0.2 W, (a)-(b) ((c)-(d)) ϕi,in − ϕ0,in = π/3 (−π/6) rad and
ϕs,in − ϕ0,in = −π/2 (−π) rad, β2 = −20 ps2.km−1, Si/s = 1.10−2 × Pin (20 dB),
θ =

√
0.1, fT = ±59 GHz.
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depicted in Fig. 5.3(a) and (b) (Fig. 5.3(c) and (d)), respectively. The red, green
and blue curves in Fig. 5.3(a) and (c) account for the idler, signal and pump power
evolutions, respectively, and in Fig. 5.3(b) and (d) to the idler, signal, and pump
phase evolutions, respectively. Dotted lines corresponds to numerical simulations of
the extended LLE and dashed lines to solutions of the simplified TWM calculated
with an ODE solver. We observe that the solutions of the simplified TWM when
Pi/s are 20 dB below P0, accurately reproduce the transient dynamics of seeded
MI predicted by numerical simulations of the extended LLE (Eq. (5.1)). Thus, it
confirms that the simplified TWM (Eqs. (5.11-5.13)) can be used to describe the
transient regime of seeded MI. By using this model, we can determine the input
phase conditions for which the gain is minimum. This is performed by finding the
analytical solutions of the simplified TWM (Eqs. (5.11-5.13)). For this purpose,
we assume that the intra-cavity pump is initially in a steady-state (E0 = E0).
It allows to simplify the system of three coupled differential equations (5.11-5.13)
into an algebraic equation (∂zE0 = 0 for Eq. (5.11)) and two coupled differential
equations (Eqs. (5.12-5.13)). Then, as we did in our analysis of the stationary
regimes, we focus our investigation on (i) the most unstable frequencies (ΩT ), (ii)
cases where δ0 = δi = δs (β1ΩTL = 0 [2π]), and additionally (iii) monostable
regimes (δ0/α <

√
3). Consequently, we find from Eq. (5.11) (∂z = 0) that:

E0 =
√
Peiϕ0 =

iθ̃
√
Pine

iϕ0,in

γLP − δ0 + iα
(5.14)

where P and ϕ0 are the power and the phase of the steady-state pump, and from
Eqs. (5.12-5.13) that:

[
Ei(z,ΩT )
E∗
s (z,ΩT )

]
= C1 exp (λ+z)

vλ+︷ ︸︸ ︷[
1

−iP
E

2
0

]
+C2 exp (λ−z)

vλ−︷ ︸︸ ︷[
1

+iP

E
2
0

]
+

[
Ei

E
∗
s

]
(5.15)

λ± = − α

L
± γP (5.16)

where λ± and vλ± correspond to the eigenvalues and eigenvectors of the system of
the coupled differential equations (Eqs. (5.12-5.13)), respectively. The last term in
Eq. (5.15) correspond to the steady-state solutions of Eqs. (5.12-5.13) (∂z = 0),
and are defined by:

Ei/s =
√
Feiϕi/s =

θ̃
√
Seiϕi,in/s,in

[
α + iγLPe−i∆η

]
α2 − γ2L2P 2

(5.17)

where ∆η = ϕs,in + ϕi,in − 2ϕ0. The parameters F and ϕi/s denote the power and
the phase of the steady-state idler and signal, respectively. C1 and C2 are constants
that can be determinated from the initial conditions (at z = 0). For an initially
empty cavity Ei/s(z = 0,ΩT ) = θ̃σi/s = θ̃

√
Seiϕi/s,in . Substituting the left term of
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Eq. (5.15) by these initial condition and by solving this system we find that:

C1 =
−i
2

θ√Sei(2ϕ0−ϕs,in)
ei

(π
2
+∆η

)
− 1

−
√
Fei(2ϕ0−ϕs)

ei
(π
2
+ϕs+ϕi−2ϕ0

)
− 1


(5.18)

C2 =
−i
2

θ√Sei(2ϕ0−ϕs,in)
ei

(π
2
+∆η

)
+ 1

−
√
Fei(2ϕ0−ϕs)

ei
(π
2
+ϕs+ϕi−2ϕ0

)
+ 1


(5.19)

By analyzing these solutions, we note that above the MI cavity threshold P >
α/ (γL) , the eigenvalues λ± of the system (Eq. (5.15)) are always real and of
opposite signs. Thus, the solutions Ei/s grow exponentially and decay exponentially
following the direction vλ+ and vλ− , respectively. The crossing of these two lines
that satisfy C1 = C2 = 0 correspond to a saddle point [179]. To get a deeper
physical insight of the dynamics of the system, we provide a schematic example in
Fig. 5.4 of the idler and signal field evolutions in the coordinate system defined by
the axes (vλ+ ;vλ−) (green and red axis, respectively). For the sake of simplicity, we
consider that C1 and C2 are real, such as we can plot the evolution of the system in
two-dimensions. In this representation, we describe the evolution of the system for
different initial conditions depicted by black dots, whose coordinates correspond to
C1 (on vλ+ axis) and C2 (on vλ− axis). These evolutions are represented by black
curves in Fig. 5.4. The positive exponential term is dominant in Eq. (5.15) for large
value of z. Consequently, all solutions that are depicted by black curves in Fig.
5.4 tends asymptotically to the line defines by the eigenvector vλ+ . Depending on
the sign of C1 (vλ+ coordinate of the initial condition), they tend either to positive
coordinates or to negative coordinates along the vλ+ axis. In the peculiar case where
the initial state belongs to the vλ− axis (C2 = 0), for example the green dot in Fig.
5.4, the system evolves asymptotically toward a saddle point identified by a red dot
in Fig. 5.4. Note that in this case, the system does not experiment gain since the
term that contains the “positive” exponential is equal to zero.

v λ+

v
λ-

saddle point

Figure 5.4: Saddle point. Black and red dots stand for the initial states and the
saddle point respectively. vλ± correspond to the eigenvectors of the system and the
red and green axes define their direction, respectively.

86



5.1. MODELING OF SEEDED MI PROCESS

By looking again at Fig. 5.2 that depicts the dynamics of MI in the phase plane
(Pi/s, φs/i − φ0), we observe the same kind of behavior of the different trajectories,
and the black dots we previously identified should correspond at first sight to saddle
points. In the following, we check this hypothesis by calculating the coordinates
of these saddle points from Eq. (5.15) for which the system does not experiment
gain. This can be performed by analyzing the constants C1(Eq. (5.18)) and C2 (Eq.
(5.19)) that define the initial coordinates in the

(
vλ+ ; vλ−

)
base. For C1 = 0 (term

with the positive exponential in Eq. (5.15)), for instance the green dot in Fig. 5.4
the system converge toward the saddle point. Thus, the solutions Ei/s of Eq. (5.15)
that corresponds to a saddle point are obtained for C1 = 0 and z → +∞. The
latter condition (C1=0) implies in the case where S ̸= 0 that on the saddle point
the following relation are satisfied (see Appendix B):

∆η = ϕs,in + ϕi,in − 2ϕ0 = −π
2

[2π] (5.20)

ϕs + ϕi − 2ϕ0 = −π
2

[2π] (5.21)

Equation (5.21) provides the phase coordinates of the saddle points. The power of
the saddle points are found by substituting in the square modulus of Eq. (5.17) the
parameter ∆η by Eq. (5.20) such as:

Fsaddle point =
θ2S

L2
(α
L
+ γP

)2 (5.22)

In the case depicted in Fig. 5.2, where we assume that the idler and signal field
were equal (ϕs = ϕi), we find from Eqs. (5.21-5.22) that the coordinates of the
saddle points in the phase plane (Pi/s, φs/i − φ0) are (2.2× 10−3 W,−π/4 rad) and
(2.2 × 10−3 W,3π/4 rad). These coordinates correspond exactly to the black dots
identified in Fig. 5.2 and confirm that the observed bifurcations derive from saddle
points. Finally, from Eq. (5.20) (∆η) and Eq. (5.14) (steady-state of the pump E0),
we can express, the relation between the phase of the input components for which
the system tend asymptotically towards a saddle point and does not experiment
gain (see Appendix B):

ϕi,in + ϕs,in − 2ϕ0,in = 2 arctan
(

−α
γLP − δ0

)
+
π

2
[2π] (5.23)

This condition depends on the overall losses over a cavity round-trip, which are
fixed by the cavity design, on the detuning (δ0), and on the intra-cavity pump power
(P ) that can be tuned in experiments. In order to check that a minimum of gain is
observed for the phase condition Eq. (5.23), we plot the signal (or idler) power as
a function of ∆ξ = ϕs,in − ϕ0,in = ϕi,in − ϕ0,in, for different propagation lengths. In-
deed, the signal (idler) power |Es|2 (|Ei|2) diverges except in the case where C1 = 0,
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Figure 5.5: (a) Signal power at n = 25, 50, 75 and 210 round-trips versus ∆ξ = ϕs,in−
ϕ0,in = ϕi,in − ϕ0,in obtained of numerical simulations from the extended LLE, Eq.
(5.1) (green,blue, magenta and red curves, respectively). Each dot corresponds to a
numerical simulation and the black dotted lines stand for the theoretical predictions
from Eq. (5.23). (b) Zoom on the first minima. Parameters: δ0 = 0.05 rad,
α = 0.14, L = 169 m, γ = 1.2 W−1.km−1, Pin = 0.2 W, β2 = −20 ps2.km−1,
Si/s = 1.10−2 × Pin, θ =

√
0.1, fT = ±59 GHz.

where the system evolves toward a saddle point. Thus, the signal (idler) power
versus ∆ξ corresponds to a function with two minima that according to Eq. (5.23)
are located at ∆ξ = arctan (−α/ (γLP − δ0)) + π/4 [π]. To plot this function, we
performed numerical simulations of the extended LLE (Eq. (5.1)) from an initially
empty cavity. We set ∆ξ = ϕs,in − ϕ0,in = ϕi,in − ϕ0,in such as the left term of Eq.
(5.23) is equal to 2∆ξ and we performed numerical simulations for 200 values of
∆ξ ranging from 0 to 2π. When 2∆ξ comes close to the value of the right term of
Eq. (5.23) (saddle point) we expect that the transient regime of idler/signal com-
ponents becomes longer (lower gain). Consequently, by recording the idler/signal
power at a given round-trip n versus ∆ξ, the minima of the obtained function should
correspond to the input phase condition required to “reach” the saddle point. Fig.
5.5(a) illustrates this function for n = 25, 50, 75 and 210 round-trips, with green,
blue, magenta and red curves, respectively (each dot corresponds to a numerical
simulation). We observe that these functions are π-periodic with two minima as ex-
pected from Eq. (5.23). The position of these minima are in really good agreement
with theoretical predictions from Eq. (5.23) marked by black dotted lines in Fig.
5.5(a)-(b). Note that by looking at the zoom on the first minima (see Fig. 5.5(b)),
we observe that when n increases: (i) the width of the function decreases and (ii)
the position of the minima tends towards the theoretical predictions. The disagree-
ment of the minima positions of the function obtained for n = 25, 50, 75 and 210
round-trips with theoretical predictions is about 0.092, 0.039, 0.025 and 0.008 rad,
respectively. These small discrepancies originate from two facts. First, in numerical
simulations we assume an empty cavity as initial condition, whereas analytically it

88



5.2. EXPERIMENTAL SETUP: CAVITY IMPLEMENTATION IN A
HETERODYNE MEASUREMENT SETUP

was necessary to assume that it is filled by the pump value corresponding to the
stationary regime (E0 = E0, Eq. (5.14)). Second, the minima calculated from the
theory (Eq. (5.23)) are obtained for z → +∞.

5.2 Experimental setup: cavity implementation
in a heterodyne measurement setup

To investigate the dynamics of seeded MI in passive fiber cavities, we built in
collaboration with Corentin Naveau, the experimental setup depicted in Fig. 5.6.
The studied cavity is made of a standard single mode fiber (βSMF

2 = −20 ps2.km−1
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Figure 5.6: Experimental setup. Laser 1, cw laser implied in the to stabilize
and pump the cavity. Laser 2, cw laser implied to produce the local oscillators.
EOM1−2, electro-optical modulator; PM, phase modulator. AO1−2, acousto-optic
modulator; WS1−2, Waveshaper; PWM, powermeter; PC1−4, polarization controller;
PD1−5, photodetector; OSA1−2, optical spectrum analyzer; EDFA, erbium-doped
fiber amplifier; SOA1−2, semiconductor optical amplifier; LNA, low noise radio-
frequency amplifier; RF filter, radio-frequency filter; EBPF: electronic band-pass
filter; Oscillo.1−2, oscilloscope; PID1−2, proportional-integrate-derivative controller;
Pulse Gen., pulse generator; Synth.1−2, synthesizer; RFA, radio-frequency amplifier.

at 1554 nm, and γSMF = 1.2 W−1.km−1) closed by a 90/10 coupler that allows to
pump the system. We added a 99/1 coupler placed just before the 90/10 coupler
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CHAPTER 5. PHASE-SENSITIVITY OF SEEDED MI

to extract and analyze directly a small fraction of the intra-cavity field. To avoid
parametric instabilities that might arise in dispersion managed cavities [96,98], both
couplers are made of the same fiber that constitutes the cavity, in order to get a
perfectly uniform cavity with a total length of 169.8 m.

5.2.1 Input field generation and cavity detuning stabiliza-
tion

In order to pump and stabilize the cavity, we use a continuous wave from laser
1 (Fig. 5.6) centered at 1554 nm and passing through a phase modulator (PM)
to generate two symmetric sidebands around the central wave. Then, an electro-
optical modulator (EOM1) supplied by a pulse generator chops the wave to produce
a train of 10 ns square shaped pulses (to avoid SBS as in previous experiments),
whose repetition rate matches that of the cavity. Finally, this field is amplified by
a semiconductor optical amplifier (SOA1) and tailored by a programmable optical
filter (Waveshaper, WS1), providing a fine control of the relative phase (ϕs,in−ϕ0,in

and ϕi,in − ϕ0,in) and intensity of the sidebands with respect to the carrier wave
(pump). A 80/20 coupler placed just after the WS1 allows to divide the signal in
two lines.

The first line identified by blue color allows to produce the pump field by ampli-
fying the WS1 output signal with an EDFA then chopped by an acousto-optic mod-
ulator (AO1). This AO1 is supplied by a radio frequency (RF) signal of fAO = 200
MHz that can be switched on/off thanks to an RF switch. This AO1 has two main
functions. First, it can produce bursts of 210 pulses to trigger the MI process. Each
burst is separated by the equivalent in time of 120 pulses from the next (see Fig.
5.7(a)). This ratio of 210/120 pulses between these two-levels pump patterns both
ensures to observe the birth of MI until a stationary state is reached, and to perfectly
empty the cavity before the next burst. Second, it increases the extinction ratio of
pulses up to 50 dB such as the power of the weak continuous background does no
trigger the SBS effect (see Fig. 5.7(b)). These bursts are injected through the right
port of the cavity and propagate in the anti-clockwise direction. We assume that
the phase variation between the input field components induced by the dispersion
during the propagation between the WS1 and the cavity input (Lp ≈ 10 m of SMF-
28 mainly) is not significant. We checked it, for frequency spacing between pump
and seeds of the order of fT = 60 GHz (typical value in our following experiments),
this phase variation (∆ϕ = 2π2βSMF

2 f 2
TLp) is less than 1.2× 10−2 rad. Note that we

also added a 99/1 coupler just before the input port of the cavity in order to check
the input field characteristics: spectrum, temporal profile, and power thanks to an
OSA, a photodetector, and a powermeter, respectively.

The second line identified by red lines produces the reference field used to sta-
bilize the cavity against external perturbations. As in previous chapters, thanks
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Figure 5.7: (a) Experimental cavity input burst of 210 pulses and 120 dead pulses.
(b) Zoom on a pulse.

to two circulators placed at each output of the cavity and polarization controllers
(PC1−3), we can use independently both propagation directions of the cavity. As
usual, while the pump field propagates in the anti-clockwise direction on a polar-
ization eigenstate, the reference field propagates in the clockwise direction, on the
other polarization eigenstate. The latter one is then detected from the right cavity
output with a photodetector (PD1), and filtered by the electronic band pass filter
(EBPF) to obtain the pulse train envelope. The feedback loop system is ensured by
the PID1 by using this field envelope as a reference to finely tune the wavelength
of laser 1 and to stabilize the linear phase of the system. Note that, even if this
reference field contains sidebands (idler and signal) in addition to the pump wave,
these ones are really weak relatively to the pump (≈ 20 dB below the pump power).
They are not detected and thus do not affect the cavity stabilization. The detuning
is measured thanks to an oscilloscope (Oscillo. 1) by recording both cavity outputs,
when the cavity operates in the linear regime and by disabling the burst mode on
the pump field. Note that the pump beam suffers a frequency shift induced by AO1
of fAO = 200 MHz implying an additional linear phase difference between the pump
field and reference field when we stabilize the cavity. That means that the measured
detuning δ0 from experiments by using the same method explained in section 1.5.2
does not correspond to the real detuning. Indeed, it incorporates a second term de-
pending on fAO. For the sake of simplicity and set easily the detuning to the right
expected value, we added a second acousto-optic modulator (AO2) on the reference
beam line, supplied by the same carrier wave than AO1. In this way, the pump
and reference fields suffer now the same frequency shift of 200 MHz, removing this
inconvenient additional linear phase difference.
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5.2.2 Recording system, detection line

The detection line identified by green fibers allows to analyze a small fraction
of the intra-cavity field, extracted thanks to a 99/1 coupler placed just before the
coupler that closed the cavity. This one is then mixed via a 90/10 coupler with
a local oscillator (heterodyne signal) phase locked on laser 1 and detuned from its
frequency by ∆f = 1.7 GHz to perform a coherent heterodyne detection. Note
that because of the 200 MHz shift induced later by the AO1 on laser 1, the beating
frequency between the local oscillator and the extracted intra-cavity signal is at 1.5
GHz and not at 1.7 GHz. Thus, it provides about 15 periods of heterodyne beating
over one pulse of 10 ns.

The phase locking of the local oscillator provided by the cw laser 2 (see Fig. 5.6)
with respect to laser 1 is ensured following the procedure described in Ref. [180]. A
part of laser 1 and 2 emissions (extracted with 90/10 couplers) are combined with a
50/50 coupler, and their beating is detected with a photodiode (PD3). This detected
signal is used as a reference signal for a feedback loop system by mixing it with a
stable RF signal at 1.7 GHz. As soon as this beating deviates from this setpoint (1.7
GHz), the retro-action loop system based on a PID (PID2) adjusts the wavelength of
the slave laser 2. Consequently, the slave laser 2 follows the wavelength fluctuations
of the master laser 1. Obviously, this stabilization requires a fast control of the
master laser 2 wavelength, which is performed by a high bandwidth PID (100 MHz).
As we plan to perform heterodyne measurements not only on the pump components
but also on the signal and idler components, the phase-locked field from laser 2 is
modulated by an EOM (EOM2) to generate sidebands spaced by 54 GHz. Thus, it
provides for each components of interest its own local oscillator. Note that the RF
signal driving the EOM2 is delivered by the same source (Synth. 1) than the PM.
signal. This ensures a fixed phase relation between them.

The beating between the components of interest (pump and signal waves) and
their respective local oscillator (see small spectra in Fig. 5.6) are selected thanks to
a highly selective programmable filter (WS2). They are then sent to the photode-
tectors of detection channels 1 and 2 (details on the inset in Fig. 5.6), respectively.
The intensities at the output of the photodetector include a DC (direct current) sig-
nal that is filtered out by using a bias-tees and RF filters. Time-dependant signals
are then amplified by passing through a low noise amplifier (LNA), recorded by an
oscilloscope (Oscillo. 2) and demodulated with a short time Fast-Fourier Transform
(FFT). Finally, further numerical treatments of the recorded data following a sim-
ilar method that the one used in Ref. [176] allow to retrieve the power and phase
evolutions. These numerical treatments were performed by Corentin Naveau. Note
that because of the optical path length difference between the two detection lines,
the relative phase between pump and sidebands we measure corresponds to φs−φ0

up to an additive constant. This constant can be determined indirectly as we will
show it in section 5.3.2.
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5.3 Experimental results

In order to observe the phase-sensitivity properties of seeded MI and in partic-
ular, to observe saddle points, we set the system in the same configuration inves-
tigated in sections 5.1.2.1-5.1.2.2 (see caption of Fig. 5.5). We set the detuning
to δ0 = 0.05 rad, we increased the input power until Pin = 0.2 W just above the
MI cavity threshold and we switched off the seeds via the WS1. Consequently, the
MI is triggered by the noise and we can determine the position of the most unsta-
ble frequencies from the cavity output spectrum (see Fig. 5.8(a)). In our case, we
find that fT = ΩT/ (2π) = ±54 GHz, which is in good agreement with theoretical
predictions (see section 5.1.2, fT = ±59 GHz). Then, we set the frequency of the
seeds at these values and we switched on their power such as the seeds power is 20
dB below the input pump power. Additionally, for the sake of simplicity, we set
the detuning of the seeds such as δi = δs = δ0 (following the method described in
Appendix C), and the relative phase between signal/idler and pump input fields to
ϕi,in−ϕ0,in = ϕs,in−ϕ0,in = ∆ξ. An example of intra-cavity spectrum in the case of
seeded MI is depicted in Fig. 5.8(b). We observe two narrow symmetrical sidebands
located at fT = ±54 GHz, whose peaks power is about 7 dB below the pump power.
Thus, it confirms that the system perfectly triggers the MI at the most unstable fre-
quencies since sidebands experience a gain of approximately 13 dB. Note that when
we switch from MI triggered by noise to seeded MI, we observe strong amplification
of the harmonics located at ±108 GHz (see Fig. 5.8(a)-(b)).
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Figure 5.8: (a) Output cavity spectrum from seeded noise MI. Sidebands are located
at ±54 GHz. (b) Example of intra-cavity spectrum from seeded MI at ±54 GHz.

Next, we recorded the signal/pump power and signal/pump phase over 16 con-
secutive bursts for a given value of ∆ξ. We report an example of such recordings in
Fig. 5.9 for ∆ξ = 0.7π rad. Fig. 5.9(a-c) depicts raw data obtained for each burst
(gray curves) for the pump and signal power and for the relative phase evolution,
respectively. From these results, we observe that in the transient regime, the mea-
sures have very weak fluctuations, whereas in the stationary regime they become
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larger. In order to reduce this measurement uncertainty, we performed an averaging
of the raw data of the 16 consecutive recorded bursts. These averages are depicted
in Fig. 5.9(a-c) by solid purple curves, whereas the additional dashed purple curves
delimit the confidence intervals of the average curves for a confidence level of 95%.
In this example, the maximum width of the confidence intervals is 0.11 W, and 0.032
W (±10% and ±12% of the mean value of the stationary regime) for the pump and
seed power, respectively, and is 0.06π for the relative phase.3.
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Figure 5.9: (a)-(b) Evolution of the pump and signal power, respectively for ∆ξ =
0.7π rad. (c) Evolution of the relative phase between signal and pump. The gray
curves stand for raw data. The solid violet curves correspond to the average of raw
data and the dashed violet curves delimit the confidence interval of the averages
(confidence level of 95%).

Finally, we performed the same recordings for 20 other different initial phase
values (∆ξ) from 0 to 2π. The power evolutions are depicted in Fig. 5.10(a) and in
Fig. 5.16 (Appendix C) and their relative phase in Fig. 5.11(a). Each case of ∆ξ
investigated is associated to a color identified in the legend of Fig. 5.10 and Fig.
5.11.

5.3.1 Power evolution

We looked at the pump and signal power evolutions in Fig. 5.10(a) for ∆ξ ∈
[0; π]. In almost all cases, we observe that the pump power increases quickly and
reaches a maximum at about 20 round-trips. Then, it decreases to reach a stationary
regime after a certain round-trip number depending of ∆ξ. By looking at the signal
power evolutions in Fig. 5.10(a), we observe that whatever the input phases, the

3. The confidence intervals are determined from the experimental standard deviation of the mean
that is defined at the round-trip n by s (n) =

√
1

N(N−1)

∑N
j=1 (xj(n)− x̄(n)). {x1 (n) , ..., xN (n)}

and x̄(n) are the observed values and the mean value of these observations at the round-trip n,
respectively, whereas N = 16 is the number of observations. The confidence interval by using
t-Student distribution is defined by [x̄(n)− ts (n) ; x̄(n) + ts (n)] at the round-trip n. The factor t
is obtained by using t-Student distribution table. In our case t = 2.131 for an confidence level of
95% and N = 16.
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signal power follows always the same evolution during the first fifteen round-trips.
Beyond, the signal power evolves toward a stationary regime with a growth rate
that depends on the input phases. For some cases, we even observe that the signal
power first decreases of a few decibel (< 4 dB) beyond the 15th round-trip and finally
increases before the 30th round-trip. Thus, the transient regime is phase-sensitive.
For the extreme cases, the signal power for ∆ξ = 0.95π rad reaches a stationary
regime after about 100 round-trips (see curves labeled ”slow critical case”), whereas
for ∆ξ = 0.7π the stationary regime is achieved after only 40 round-trips (see curves
labeled ”fast critical case”). We compared these results with the corresponding
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Figure 5.10: Signal and intra-cavity pump power versus round-trip number for
different values of ∆ξ between 0 and π. (a) stand for experimental results, (b)
for numerical simulations of the extended LLE (Eq. (5.1)). (c) Comparison of
the pump and signal evolutions from experiments and numerical simulations for
∆ξ = 0.15π, 0.7π, 0.95π rad in (c).

numerical simulations of the extended LLE (Eq. (5.6), see Fig. 5.10 (b)). We observe
that the MI dynamics is qualitatively similar to the one observed in experiments.
Nevertheless, we note discrepancies. For the sake of clarity and highlight them, we
superimpose in Fig. 5.10(c) experimental recordings and numerical simulations for
the three following cases: ∆ξ = 0.15, 0.7π and 0.95π rad (the pink, violet and blue
curves, respectively). The solid curves stand for the experiments and the dashed
curved for the numerical simulations. From this figure, we first discern that the
amplitude variation of the pump power seems to be less important in numerical
simulations than in experiments. Second, the signal power of the stationary regime
observe in experiments is shifted down of approximately 4 dB relative to stationary
regimes of numerical simulations. The reason for such shift should results from small
imperfections during the calibration between the detection channels 1 and 2 (see Fig.
5.6) to determine the relative power level between the pump and signal. We also
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note some differences for cases with long transient regimes (curves labeled ”slow
critical cases”). The transient regime in numerical analysis is significantly longer
than in experiments. The reason for this behavior is that for these cases, the system
is pumped near the vλ− axis, which leads the system to converge toward a saddle
point. In numerical simulations, at this perfect value, we should stay “indefinitely”
in the transient regime, but in experiments this cannot be observed since random
noise, external perturbations, etc., quickly force the system to jump from this saddle
point which is an unstable equilibrium to a stationary regime. Note that for the sake
of clarity, we did not show the pump and signal power evolution for ∆ξ ∈ [π; 2π] since
their behavior is π−periodic. This has been verified experimentally and recordings
are depicted in (Appendix C).

5.3.2 Physical insight of the phase evolution: preliminary
results

We looked at the relative phase between the pump and signal, that provides
a first physical insight of the phase dynamics. These experimental measurements
correspond to φs − φ0 up to an additive constant as mentioned in section 5.2.2.
In order to determine this constant, we assume that the phase variation between
signal and pump components after the first cavity round-trip is not significant. We
checked it from numerical simulations of the extended LLE (Eq. (5.1)), and we note
that this phase variation is always below 0.13 rad. Thus, we find that the relative
phase between pump and signal at the first round-trip corresponds to the relative
phase between input components (φs − φ0 ≈ ϕs,in − ϕ0,in). These measurements
with this phase correction are depicted in Fig. 5.11(a). As previously observed for
the power evolution, the transient regime of the phase depends on ∆ξ. For the cases
labeled ”slow critical cases”, the system reaches a stationary regime after about 100
round-trips, while the stationary regimes is achieved after only 40 round-trips in
cases labeled ”fast critical cases”. Before we complete our investigation, we would
like to draw attention on the phase recordings of the ”slow critical cases”. They are
depicted in Fig. 5.12 for ∆ξ = 0.95π (blue dotted curve in Fig. 5.11(a)) in a similar
way that Fig. 5.9(c). Fig. 5.12 depicts in gray curves raw data of the relative phase
evolution obtained for each burst. The averages of the data are represented by solid
blue curves in these figures, whereas the additional dashed purple curves delimite
the confidence intervals of the average curves for a confidence level of 95%. In this
”slow critical cases”, we can see that the first round-trips are well described by the
averaging (maximum width of the interval of confidence is 0.1π rad). However,
beyond the 25th round-trip, the phase tends toward two different stationary regimes
(φs − φ0 = 0.5π or φs − φ0 = 2.5π). Consequently, performing an averaging of
the data is not really relevant. We observe that most of the cases recorded follow
a similar trajectory and tends toward the stationary regime φs − φ0 = 0.5π, while
three cases tend toward the stationary regime φs−φ0 = 2.5π. The fact that there is
exactly a phase shift of 2π between the two final stationary regimes suggests that the
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Figure 5.11: Relative phase between idler and intra-cavity pump versus round-trip
number for different values of ∆ξ. (a) stands for experimental results, and (c) for
numerical simulations from the extended LLE (Eq. (5.1)).

reason for this behavior is not a physical phenomenon. At the time of writing, we are
analyzing our numerical treatments, that we remind is still in progress, that could be
probably responsible of this jump of 2π. We point out that the same behavior was
observed for the case ”slow critical cases” ∆ξ = 1.95π (orange dotted curve in Fig.
5.11(a)) but was never observe for other cases. Thus, by omitting in Fig. 5.11(a)
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Figure 5.12: Evolution of the relative phase between signal and pump. The gray
curves stand for raw data. The solid blue curves corresponds to the average of
raw data and the dashed blue curves delimit the confidence interval of the averages
(confidence level of 95%).

and in the following, the average curves of the ”slow critical cases”, we observe that
the relative phase between the signal and pump reaches stationary regimes that
always belongs on the approximated intervals [2π/6; 3π/4] and [5π/4; 10π/6] (green
and red segments on the right y-axis in Fig. 5.11(a), respectively). We compared
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these results with the corresponding numerical simulations of the extended LLE
(Eq. (5.6) that are depicted in Fig. 5.11(b). We observe that the dynamics between
the numerical simulations and experiments is qualitative. As in experiments, the
relative phase between signal and pump converges toward phase intervals. These
intervals [π/6; 2π/6] and [7π/6; 8π/6] are depicted in Fig. 5.11(b) by the green and
red segments on the right y-axis, respectively. We note that these intervals are
narrower compared to those obtained in experiments (factor 2.5 between intervals
in experiments and in numerical simulations) and shifted of approximately π/4.
To conclude, these phase recordings give a first insight of the phase dynamics, that
should be confirmed by further investigations, in particular concerning the numerical
treatments.

5.3.3 Observation of the phase-sensitivity of the gain

In a first step, we checked from these measurements the conditions set by Eq.
(5.23) to “reach” a saddle point. For this purpose, we plotted in Fig. 5.13 (a-d)
the signal and pump power versus ∆ξ at the 25th, 50th, 75th and 210th round-trip,
respectively (green, blue, magenta, and red dotted lines in Fig. 5.10, respectively).
The square colored markers stand for the pump power and colored dots for the signal
power recorded in experiments. In all cases, we observe that the signal power and
pump power are π-periodic relative to ∆ξ and evolve in an opposite way due to the
energy transfer between pump and sidebands. The minimum energy-transfer from
pump to signal is always observed at about ∆ξ =0.95π rad and ∆ξ = 1.95π rad. It
corresponds to minima for the signal power and maxima for the pump. The positions
of these minima are in quite good agreement with the phase-matching relation Eq.
(5.23) that predicts the minimum energy-transfer at ∆ξ =0.94π rad and ∆ξ = 1.94π
rad (black dotted lines in Fig. 5.13 (a-d)). Then, we compared the experimental
recordings to numerical simulations of the extended LLE (Eq. (5.1)). They are
depicted in Fig. 5.13(a-d) by the blue curves and the red curves for the pump and
signal power, respectively. We can see that, in all cases the pump power calculated
from numerical simulations follows the same evolution than in experiments with an
amplitude variation of approximately 4 dB. Concerning the signal power evolution,
we observe that by increasing the round-trip number, the width of the two “hole”
formed by the function obtained from numerical simulations decreases. In exper-
iments, this behavior is not as clear. We observe that between Fig. 5.13(a) and
(b), (25thand 50th round-trip) the width of the function decreases as in numerical
simulations, but at the same time, the minima of the signal power increases. The
reason for this behavior is that the minima we measure in experiments might not
correspond exactly to the perfect minima. Thus, this small shift of this measure
induces an overestimation of the signal power of the minima that increases with the
round-trip number. Note that, as we show previously in section 5.1.2.2, the minima
of the signal power function calculated from numerical simulations tend to the value
predicted by the perfect phase-matching relation Eq. (5.23) for an increasing num-
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ber of round-trips. This behavior is not highlighted by the experiments because the
∆ξ resolution (0.05π close to the minima)) of our measurement is too weak to see
this small shift, which is of the order of 0.025π at the 25th round-trip. To conclude,
we report the first observation of phase-sensitivity of seeded MI with the striking
feature representation of two saddle points.
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Figure 5.13: (a), (b), (c) and (d) Signal and intra-cavity pump power at the
25th,50th,75th and 210th round-trip versus ∆ξ, respectively. The colored dots and
square markers stands for the signal and pump power from experiments, respec-
tively. The solid red lines and solid blue lines correspond to numerical simulations
of the extended LLE (Eq. (5.1)). The black dotted lines marks the theoretical
predictions of Eq. (5.23).

5.3.4 Physical insight of the attractors formation: prelimi-
nary results

In a second step, we studied the formation of attractors as a function of the rel-
ative phase between input components. For this purpose we depicted the acquired
data in the polar phase plane (Ps, φs − φ0) in Fig. 5.14(a) which is an other way
to show the previous results (both the power and the phase evolution). We remind
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that the following outcome are only preliminary results that provide nonetheless
first physical insights and a proof that in near future, our setup could be used for
further investigations concerning the phase recording. By looking at Fig. 5.14(a)
again, each colored curve corresponds to an investigated case of ∆ξ (see legend in
Fig. 5.14), and the dots that compose them correspond to the performed measure-
ments by our system at each round-trip. The black circular markers at the zero level
stand for the initial states and the other black circular markers for the final states.
We observe that the system converges to attractors whose phase belongs to the in-
tervals we previously found in section 5.3.2 ([2π/6; 3π/4] and [5π/4; 10π/6]). These
attractors exhibit a “aircraft propeller” shape in really good agreement with theo-
retical predictions (see section 5.1.2.1). We compared these results to corresponding
numerical simulations of the extended LLE (Eq. (5.1)). It is depicted in the polar
phase plane (Ps, φs − φ0) in Fig. 5.14(b). As in experiments, the system converges
to attractors whose the phase can only reach certain intervals that we previously
find in section 5.3.2 ([π/6; 2π/6] and [−5π/6;−4π/6]). These attractors exhibit also
a shape of “aircraft propeller”, however the blades of the propeller are thinner and
shifted of approximately π/4 in the phase plane. Such disagreement could originate
from the fact that numerical simulations and theoretical development in this work
are performed with modulated cw pump, whereas in experiments we use pulses of
10 ns. The second explanation to this disagreement, which is more relevant is that
the cavity is not pumped perfectly synchronously (cavity round-trip time slightly
different from the pulse repetition rate). In this case, the delay between the input
pulse and the recirculating pulse induces an additional phase shift [181].

Finally, we focus on the initial stage of the seeded MI process in experiments
by looking at the zoom on Fig. 5.14(a) depicted in Fig. 5.14(c). We see that the
trajectories bifurcate close to two areas identified by gray color in Fig. 5.14(b).
These regions correspond to the estimated positions of two saddle points. Their
location at approximately −π/4 [π] is in perfect agreement with theoretical predic-
tions from Eq. (5.21) and numerical simulations (see zoom on Fig. 5.14(d)) that
predicts saddle points located at −π/4 [π] (black dots in Fig. 5.14(d), calculated
from Eqs. (5.21-5.22)). Note also that we obtained a quite good agreement between
the normalized power of the saddle points from theoretical predictions (Eq. (5.22),
see black dots in Fig. 5.14(d)) and the estimated normalized power of the saddle
points from experiments (gray area in Fig. 5.14(c)). To conclude, the experimental
results are in qualitative agreement with numerical simulations of the extended LLE
(Eq. (5.1)), and give a first insight of the formation of attractors. However, further
numerical investigations should be necessary to fully unveil the phase dynamics of
MI and the trajectory in the phase plane, in particular concerning the numerical
treatments.
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Figure 5.14: Normalized attractors for different input values of ∆ξ from experimental
recordings (a), and numerical simulations of the extended LLE (Eq. (5.1)). (b)-
(c), zooms on the initial stage of (a) and (b), respectively. Dots surrounded by
black circles show the first dot (close to zero level) and the last dot for each of
the recordings. Gray areas stand for the estimated position of the saddle points in
experiments.

Summary

We investigated the dynamics of seeded modulation instability theoretically, nu-
merically and finally in experiments. We predicted that both the transient regime
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and the stationary regime (attractors) of seeded MI are sensitive to the phase of
the input components. This behavior has been observed in experiments in good
agreement with theoretical predictions and numerical simulations of the extended
LLE. In particular, we highlighted the existence of two saddle points that can be
“reached” only for specific phase of the input components. These phase conditions
have been checked in experiments by recording the sidebands power as a function of
the relative phase between input seeds and pump for different propagation lengths.
We also showed from theoretical development that for peculiar input phases, the tra-
jectory of the system in the phase plane comes close to these saddle point, leading
to a longer transient regime. Moreover, we predicted that the phase of stationary
regime is always within two specific intervals in phase opposition. These behaviors
were also observed in experiments from our preliminary results with a qualitative
agreement with the theoretical predictions. However, further investigations are re-
quired to fully unveil the phase evolution, in particular concerning the numerical
treatment of the phase recordings.
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In this thesis, we investigated the generation of modulation instability in passive
optical fiber-ring cavities. In particular, we focused on its experimental dynamics in
unexplored regimes. The mains results we obtained can be summarized as follows:

• We demonstrated that higher order dispersion terms must be considered to
accurately describe the dynamics of modulation instability operating in the
weak normal dispersion regime. In particular, we showed that the FOD term
is responsible for extending the MI process to the normal dispersion region:
(i) in monostable regimes and (ii) on the upper-branch of bistable regimes
compared to the basic configuration for which β4 = 0. We also highlighted
that for bistable regimes for which ∆ > 4.25, two pairs of MI sidebands can
be generated above a certain pump wavelength threshold.

• We reported the first real-time observation of modulation instability in passive
cavities thanks to a time-lens system. We demonstrated unambiguously that
two different temporal behaviors of modulation instability can be observed in
uniform cavities: the period-one and the period-two regimes. More precisely,
the periodic temporal pattern generated at the cavity output can be in phase
from round-trip to round-trip (period-one), or out-of-phase (period-two). Ex-
perimental observations are in good agreement with theoretical predictions
and numerical simulations.

• We reported the first observation of gain-through-filtering process. We demon-
strated theoretically and observed experimentally that the inclusion of unbal-
anced spectral losses compared to the pump wave lead to the generation of
unstable modulation instability sidebands. We showed that an accurate de-
scription of the modulation instability dynamics requires to include the con-
tribution of the dispersion of the filter, not only the absorption. Indeed, the
dispersion of the filter is naturally associated to its dissipation profile through
the causality principle (Kramer-Kronig relation [163]), and consequently can-
not be neglected. We showed that this process can be used to generate OFCs
whose repetition rate can be easily tuned by simply adjusting the pump-filter
frequency detuning without requiring additional devices. This property is of
high interest for applications, for instance in spectroscopy.
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• We demonstrated both theoretically and experimentally, that coherent seeded
MI in passive fiber cavities is sensitive to the phase of the components of
the driving field. In particular, we showed that the parametric gain in this
dissipative systems is phase sensitive ans has a minimum value. In order to
understand this behavior, we derived a truncated three wave model based on
the LLE equation describing the intra-cavity field dynamics. We demonstrated
from this model that two saddle points exist in this system and are at the origin
of this gain lowering for a specific phase value. An experimental setup had
been designed and build to confirm these theoretical predictions. It consists
in real-time recordings of the phase and intensity of the waves thanks to a
multi-heterodyne detection scheme. We obtained preliminary results which
confirm our theoretical findings but which must be improved to get a better
quantitative agreement with theoretical predictions, in particular concerning
the numerical treatment of the phase recordings.

The work described in this thesis paved the way for new fundamental observations:

• An interesting topic that could be investigated experimentally is the study of
real-time dynamics, both in the spectral and temporal domain, of noise sedded
MI . In particular, in the normal dispersion region of passive fiber cavities that
operate in the bistable regime. Indeed, for ∆ > 4.25, we could observed the
real-time dynamics of the transition between P1 MI regime on the lower-branch
and P2 MI regime on the upper-branch. It could be performed with some up-
grades of our experimental setup developed in chapter 3 that can record the
temporal dynamics of MI, thanks to a time-lens. Indeed, by using a time-
stretch dispersive Fourier transform [99] of the cavity output signal we could
access simultaneously to the temporal dynamics and the spectral dynamics
of MI. It could be performed by implementing a specially designed highly
dispersive fiber that would operates a frequency-to-time mapping. Note that
by both recording the temporal and spectral real-time dynamics we should be
able to retrieved the phase dynamics, by using post-processing [182].

• We should also mentioned one of our studies which appears in Appendix D,
where we investigate numerically the nonlinear stage of coherent seeded MI in
passive fiber cavities. In particular we focus on the Lorenz chaos that is known
to arise in cavities that operate in anomalous dispersion region, in particular
for bistable regime. We show that our experimental setup developed in chapter
5, that implements an heterodyne measurement technique, should be a suitable
platform in near future to report the first observation of this highly nonlinear
regime in passive cavities. However, further theoretical investigations should
be required to clearly characterize the phase-sensitivity to the components of
the input field of such specific chaos.

In addition, this work is also of interest for the development of suitable applications:
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• Our fundamental results reported in chapter 4 give a proof of concept of OFC
generation through GTF mechanism. It could be interesting to study this
process in resonators with higher field confinements. Indeed, it would im-
proved strongly the efficiency of GTF process, and consequently would pro-
vide broader tunable OFCs that could be used for applications. As a first
step, GTF could be studied in short Fabry-Perots made of FBG. The short
length of such system (few centimeters) does not require active stabilization of
the linear phase and consequently, we don’t have to add an isolator inside the
cavity that decreases strongly the cavity confinement. Generation of OFCs
through GTF mechanism could be eventually developed for microresonator
that should increase drastically the number of comb lines due to the high
quality factor of such devices.
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Appendix A: Ikeda map model, Floquet analysis

Uniform cavity

The starting point of this analysis is the following Ikeda map system [39]:
∂E(z, τ)

∂z
=

(
−iβ2

2

∂2

∂τ 2
+ iγ|E(z, τ)|2

)
E(z, τ)

E(m+1)(z = 0, τ) = θ̃Ein(τ) + ρ̃E(m)(z = L, τ) exp(iϕ0)

(5.24)

(5.25)

Following the method described in [51, 120, 126], we then consider a steady-
state continuous wave, solution of Eq. (5.24) En(z, t) =

√
P exp(iγPz) where

P is related to the input power Pin through the steady-state cavity response
θ̃2Pin = [P (1 + ρ̃2 − 2ρ̃ cos (ϕ))] (see Eq. (1.12)). The stability of this solution is an-
alyzed by introducing the Antsatz: En(z, t) = (

√
P + an(z, τ) + bn(z, τ)) exp(iγPz)

in Eq. (5.24), where an(z), and bn(z) are small perturbations. After linearization
around the stationary solution at the first order of an(z), and bn(z), the Fourier trans-
form of [an, bn]T satisfies the linear system d/dz[ãn(Ω), b̃n(Ω)]

T = M [ãn(Ω), b̃n(Ω)]
T

(̃.denotes the Fourier transform) which describes the evolution of the perturbations
over one round-trip where:

M =

[
iβ2
2
Ω2 + iγP iγP

−iγP −iβ2
2
Ω2 − iγP

]
(5.26)

The eigenvalues of this matrix give the standard MI gain such as µ =√
β2
2Ω

4

4
+ β2γPΩ2. Then we can express the solutions of this system over one cavity

round-trip by [ãn(Ω, L), b̃n(Ω, L)]
T = Φ[ãn(Ω, 0), b̃n(Ω, 0)]

T where the fundamental
matrix Φ is: [

(cos(µL) + iκ sin(µL)) −γP
µ

cos(µL)
γP
µ

cos(µL) (cos(µL)− iκ sin(µL))

]
(5.27)

with ζ = β2
2
LΩ2 + γPL. The relation between the initial perturbations and pertur-

bations at n-th round-trip can be found by applying boundary conditions Γ:

ρ̃

[
eiϕ 0
0 e−iϕ

]
(5.28)

with ϕ = γLP + ϕ0, on solutions of this system such as [ãn(Ω, 0), b̃n(Ω, 0)]
T =

Θn[ã0(Ω, 0), b̃0(Ω, 0)]
T . As a result, the stability of this system depends on eigen-

values of Θ = ΦΓ. For modulus of eigenvalues larger than unit, the steady-state
cw solution is unstable and perturbations grow exponentially. By assuming fiber
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propagation losses are negligible relative to the output coupling, cavity losses are
defined by α = π/F = 1− ρ̃ and consequently these eigenvalues are expressed as:

λ± = (1− α)[Ψ±
√
Ψ2 − 1] (5.29)

where
Ψ = cos (µL) cos (ϕ)− ζ sinh (µL) sin (ϕ) (5.30)

The parameter ϕ = ϕ0 + γLP corresponds to the total phase accumulated over a
cavity round-trip and:

µ =
√
β2
2Ω

4/4 + β2γPΩ2 (5.31)

is the standard MI gain with Ω the pulsation of the perturbation and ζ = β2Ω
2L/2+

γPL. It can be easily checked that unstable eigenvalues (|λ±|>1) appear only for
|Ψ| > (1− α + 1/ (1− α))/2 and are always real such as these eigenvalues can be
expressed as λ = |λ|eimπ with m integer.

Cavity including a filter

When passive resonator includes a spectral filter, the stability of the steady-
state can be analyzed following the same method detailed in the previous section.
However, the action of the filter must be take into account. This is performed by
including the action of the filter in the boundary conditions such as Eq. (5.28)
becomes:

ρ̃

[
eiϕ 0
0 e−iϕ

]
︸ ︷︷ ︸

coupler

[
H (Ω) 0

0 H∗ (−Ω)

]
︸ ︷︷ ︸

filter

(5.32)

where H (ω) is the filter transfer function of the filter in the spectral domain. Note
that the filter and coupler matrices commutes. Consequently, for the stability anal-
ysis it does not matter if we place the filter just before or just after the coupler.
By using these new boundary conditions in the linear stability analysis developed
in the previous section, we get the following eigenvalues that describe the dynamics
of the system:

λ,± = (1− α)

[
ΨGTF ±

√
Ψ2
GTF −W

]
(5.33)

with
ΨGTF = cos (µL) [He (Ω) cos (ϕ)−H0 (Ω) sin (ϕ)]

− ζsinc (µL) [Ho (Ω) cos (ϕ) +He (Ω) sin (ϕ)]
(5.34)

W = H2
e (Ω) +H2

o (Ω) (5.35)

The parameters He,o (Ω) = [H (Ω) +H∗ (−Ω)] /2 and Ho (Ω) =
[H (Ω)−H∗ (−Ω)] / (2i) are the even and odd part of the filter function H (Ω),
µ =

√
β2
2Ω

4/4 + β2γPΩ2 is the standard MI gain with Ω the pulsation of the
perturbation and ζ = β2Ω

2L/2 + γPL.
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Stability of the cw states

Note that these analysis does not only provide the stability of perturbed so-
lutions but also provides the stability of the homogeneous states (uniform cavity:
Eq. (1.12), GTF: Eq. (4.7)). Indeed, the stability analysis of these states follows
the same theoretical development except that we initially consider that ∂/∂τ = 0
(steady-state condition). This is equivalent in the previous development to consider
β2 = 0, Ω = 0, and thus µ = 0, Ψ = cos(ϕ)−γLP sin(ϕ) in the case of uniform cavi-
ties and ΨGTF = [He (0) cos (ϕ)−Ho (0) sin (ϕ)]−γLP [Ho (0) cos (ϕ) +He (0) sin (ϕ)]
in the case of GTF. As a result, cw states become unstable when |λ(β2 = 0)| >
1. This appears when |Ψ| >

[
(1− α)2 + 1

]
/ [2 (1− α)] (uniform cavities) and

|ΨGTF | >
[
|H (0) |2 (1− α)2 + 1

]
/ [2|H (0) | (1− α)] (GTF) and it corresponds ex-

actly to the negative slopes of the steady-state curve (Eq. (1.12) and Eq. (4.7),
respectively) whose the knees (Pm,±) are defined by the relation:

ϕ0 =± arccos

 1 + (1− α)2

2 (1− α)
√

1 + (γLPm,±)
2

− γLPm,± (5.36)

− arctan (γLPm,±) + 2mπ (m ∈ Z) (5.37)

in the case of uniform cavities and by:

ϕ0 + arg [H (0)] =± arccos

 1 + (1− α)2 |H (0) |2

2 (1− α) |H (0) |
√
1 + (γLPm,±)

2

− γLPm,±

(5.38)
− arctan (γLPm,±) + 2mπ (m ∈ Z) (5.39)

in the case of cavities that include a spectral filter.

Appendix B: determination of the saddle point con-
ditions

We look for the conditions for which:

C1 =
−i
2

θ√Sei(2ϕ0−ϕs,in)
ei

(π
2
+∆η

)
− 1

−
√
Fei(2ϕ0−ϕs)

ei
(π
2
+ϕs+ϕi−2ϕ0

)
− 1


(5.40)

where ∆η = ϕs,in+ϕi,in−2ϕ0, is equal to zero. In the following, we will demonstrate
that these conditions are given by the phase-matching relation:

ϕs + ϕi − 2ϕ0 = −π
2

[2π] (5.41)
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In Eq. (5.40) that defines the coefficient C1, the above relation means that the left
term proportional to

√
F is equal to zero. Thus, the right term of Eq. (5.18) that

is proportional to
√
S must also be equal to zero to satisfy C1 = 0. To check this,

we need to express ∆η = ϕs,in + ϕi,in − 2ϕ0 as a function of ϕ0, ϕs, and ϕi. For this
purpose we remind that:

Ēi/s =
√
Feiϕi/s =

θ̃
√
Seiϕi,in/s,in

[
α + iγLPe−i∆η

]
α2 − γ2L2P 2

(5.42)

This equation can be used to express ϕs,in and ϕi,in as a function of ϕs and ϕi. We
find that:

ϕi,in/s,in = − arctan

 γP cos(∆η)
γP sin(∆η) + α

L

+ ϕi/s − pπ [2π] (5.43)



p = 0 if ∆η ∈
]
− arcsin

(
Pth
P

)
; arcsin

(
Pth
P

)
+ π

[
[2π] ∨∆η = −π

2
[2π]

p = 1 if ∆η ∈
[
− arcsin

(
Pth
P

)
;−π

2

[
[2π]

p = −1 if ∆η ∈
]
−π
2
; arcsin

(
Pth
P

)
− π

]
[2π]

(5.44)

Consequently by substituting ϕi,in/s,in by Eq. (5.43) in ∆η we obtain:

∆η = ϕs + ϕi − 2ϕ0︸ ︷︷ ︸
−π

2
Eq.5.41

−2 arctan

 γP cos(∆η)
γP sin(∆η) + α

L

 [2π] (5.45)

The only solutions that satisfy this equation are ∆η = ϕs,in+ϕi,in−2ϕ0 = −π/2 [2π]
for which the arc tangent term is equal to zero. Thus, the left term of C1 in Eq.
(5.17) is also equal to zero, hence C1 = 0 for ϕs + ϕi − 2ϕ0 = −π/2 [2π] (QED).
We have just determinated the phase relation satisfied by the saddle points, in the
following we want to determinate their power coordinate. This is performed by
looking for the steady-states define by Eq. (5.42) that satisfy the phase-matching
relation Eq. (5.41) (for which ∆η = −π/2 [2π]) and correspond to saddle points.
We find taking the square modulus of Eq. (5.42) that this power coordinate is given
by:

Fsaddle point =
θ2S

L2
(α
L
+ γP

)2 (5.46)

Finally, we can calculate a phase-matching relation that must satisfy the phase
of the input components to reach asymptotically a saddle point and for which there
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is no gain. For this purpose, we use the relation ∆η = ϕs,in+ϕi,in−2ϕ0 = −π/2 [2π]
and we express ϕ0 as a function of ϕ0,in. By reminding that:

Ē0 =
√
Peiϕ0 =

iθ̃
√
Pine

iϕ0,in

γLP − δ0 + iα
(5.47)

We find that:

ϕ0 = arctan( −α
γLP − δ0

) + ϕ0,in + r
π

2
[2π] (5.48){

r = 1 if P ≥ δ0/(γL) else r = −1 (5.49)

Thus, by substituting ϕ0 by Eq. (5.48) in ∆η = ϕs,in + ϕi,in − 2ϕ0 = −π/2 [2π] we
obtain the following relation:

ϕi,in + ϕs,in − 2ϕ0,in = 2 arctan
(

−α
γLP − δ0

)
+
π

2
[2π] (5.50)

that must be satisfied by the phase of the input components to “reach” asymptoti-
cally a saddle point.

Appendix C

detuning adjustement

The detuning of idler and signal components are defined by δi = δ0−2lπ+β1ΩL
and δs = δ0 + 2lπ − β1ΩL with l = arg [minl |δ0 + 2lπ − β1ΩL|] as mentioned in
section 5.1.2. Thus, the detuning of the pump, idler and signal are equal if β1ΩL =
2kπ (k ∈ Z). This condition is satisfied for specific frequencies that are equally
spaced. So, in order to set the detunings such as δ0 = δs = δi, we must determinate
the seeds frequencies that satisfy the relation β1ΩL = 2kπ (k ∈ Z). For this purpose,
we record the evolution of the relative phase between signal (idler) and pump. By
reminding that the linear phase shift accumulated by a component of frequency
Ω = ±ω − ω0 (ω0 stands for the angular frequency of the pump) along a cavity
round-trip is given by:

ϕL = β0L+ β1ΩL+
β2
2
Ω2L+ HOT (5.51)

where HOT stand for High-order terms. We find that the total phase shift accumu-
lated between signal (idler) and pump along the propagation are given by:

φs − φ0 = ϕs,L − ϕ0,L + ϕNL (z = nL) = ϕNL (z = nL)− β1ΩL+ 2nπ + HOT
(5.52)

φi − φ0 = ϕi,L − ϕ0,L + ϕNL (z = nL) = ϕNL (z = nL) + β1ΩL− 2nπ + HOT
(5.53)
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where ϕNL (z = nL) corresponds to the nonlinear phase shift between signal (idler)
and pump accumulated along the nth round-trip. The parameters ϕs/i,L and ϕ0,L

denote the linear phases accumulated along a cavity round-trip by the signal/idler
and pump, respectively. Based on the theoretical and the numerical observations
we made in section 5.1, we can assume that just above the MI cavity threshold,
ϕNL (z = nL) converges toward a stationary regime. Moreover, the high-order terms
in Eqs. (5.52-5.53) are weak relative to other terms. Hence, for z → +∞, the terms
±β1ΩL∓ 2nπ in Eqs. (5.52-5.53) become dominant and φs − φ0 and φi − φ0 tends
asymptotically to a linear function with a slope of −/+β1ΩL [2π] , respectively. Thus,
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Figure 5.15: Relative phase between the signal and pump field versus the round-trip
number for different seed frequencies.

by tuning the seeds frequencies, we should observe for specific frequency that the
slope of φs − φ0 is equal to zero, meaning that our system satisfies the condition
δ0 = δs = δi. Note that, we also should observe that this specific frequencies
are equally spaced, and by reminding that β1 is the inverse of the group velocity
(β1 = c/ng where ng is the group index), this frequency spacing is given by:

fβ1 =
c

ngL
(5.54)

In our case, our cavity is made of standard silica SMF where ng ≈ n (refractive
index). Thus, for a seed frequency that satisfies the condition β1ΩL = 2kπ (k ∈ Z),
by tuning the seed frequency of the free spectral range (c/ (nL)), the new seed
frequency should satisfies also this condition.

We checked experimentally this behavior during a preliminary work to the in-
vestigations led in chapter 5. For this purpose, we recorded in a cavity made of 257
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m of SMF the evolution of the relative phase between signal and pump for different
frequencies. This recordings depicted in Fig. 5.15 have been performed in a range
corresponding approximately to the FSR of this cavity (791, 68 kHz). We first set
the seeds frequencies such as the slope of φs−φ0 is equal to zero. This recording is
depicted by the curve labeled +0 kHz. Then, we increased the seeds frequency by
step of 100 kHz until ∆f = +800 kHz. We observe that the slope of φs−φ0 increases
until ∆f = +400 kHz. Finally, by increasing again ∆f the slope of φs−φ0 becomes
negative, increases and becomes quasi-equal to zero for approximately ∆f = +800
kHz. Indeed, in this case, ∆f = +800 kHz is close to the FSR (791, 68 kHz), and
the condition β1ΩL = 2kπ (k ∈ Z) is almost satisfied.

Pump and seeds power evolutions for ∆ξ ∈ [π; 2π]
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Figure 5.16: Signal and intra-cavity pump power versus round-trip number for
different value of ∆ξ between π and 2π. (a) stand for experimental results, (b)
for numerical simulations of the extended LLE (Eq. (5.1)). (c) Comparison of
the pump and signal evolutions from experiments and numerical simulations for
∆ξ = 1.2π, 1.7π, 1.95π rad in (c).
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Appendix D: toward a precise observation of spa-
tially coherent chaos in passive resonators, the Lorenz
chaos

Short state of the art

In 1963, Lorenz derived a simplified model of three coupled differential equations
to describe the dynamics of the coupling between the atmosphere and ocean (convec-
tion). He discovered from his numerical investigations that, beyond to be sensitive
to the initial conditions (characteristic of chaos), the system follows in the phase
plane (described by the three degrees of freedom of the system: three main modes,
pump, signal and idler fields) unpredictable non-periodic trajectories that oscillate
from an attractor to another, and form a so-called ”butterfly” [183]. Such peculiar
chaotic regimes was also predicted in optics through the direct analogy between the
equations that describe fluid and light dynamics [184]. It was even experimentally
highlighted in laser through heterodyne measurements [185] and in diode laser [186]
by using specific chaos identification techniques (Grassberger-Procaccia algorithm).
These regimes were also predicted in passive resonators by Haelterman et al. [187],
showing that the system can be modeled by a similar TWM to the one described
by Lorenz. These authors highlighted the route to this chaos, where by increasing
the power the trajectory in the phase plane describing the dynamics of the system
spirals toward an attractor, then towards a second attractor and finally oscillates in
a non-periodic way between these two attractors that is the clear signature of Lorenz
chaos. We point out that the TWM we develop in chapter 5 to describe coherent
seeded MI was derived using the same method than Haelterman et al., except that
our pump consist in three components. Hence, we expect to observe in a similar
way to seeded noise MI the Lorenz chaos for seeded MI.

Numerical investigations of the Lorenz chaos

In this section, we investigate the Lorenz chaos in seeded passive resonators,
as a preliminary step for an experimental observation. In particular, we look for
configurations that should allow experimental observations of such chaotic regime
in the experimental setup developed in chapter 5. As observed by Haelterman et
al. in Ref. [187], numerical simulations of the extended LLE (Eq. (5.1)), performed
with experimental parameters of our setup, show that the Lorenz chaos can only be
observed above a certain detuning threshold where the system is bistable, on the
upper-branch of the bistable cycle. In experiments, we are limited to observe the
regimes of the upper-branch for an input power higher than the input power of the
lower-knee of the bistable cycle. Indeed, in experiments, the cavity is initially empty,
meaning that if we want to observe a peculiar regime, for example the Lorenz chaos
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on the upper-branch close to the upper-knee of the bistable cycle, we must pump the
cavity following the scheme of Fig. 5.17(a). First, we must pump the cavity above
the input power of the lower-knee to switch the system on the upper-branch (green
vertical arrow, green dot in Fig. 5.17(a)), and then decrease the power adiabatically
until we reach the configuration we want to investigate (black dot in Fig. 5.17(a)).
This is really tricky to do in experiments and requires to manage the input power.
Consequently, if we want to observe the Lorenz chaos, we must find a configuration
where it appears for an input power higher than the input power of the lower-knee
of the bistable cycle. We observed such a behavior in numerical simulations of the
extended LLE (Eq. (5.1)), by seeding the system at the most unstable frequencies
(ΩT , calculated from Eq. (5.1)) for ∆ = 3 and Pin = 0.7 W(see red dot in Fig.
5.17(a)). We depicted the dynamics of the system in the phase plane (Ps/i, φs−φ0)
in Fig. 5.17(b). The trajectory follows an unpredictable non-periodic trajectory in
the phase that oscillates from an attractor to another. This trajectory looks-like a
”butterfly”, the clear signature of Lorenz chaos. The main difference we observed
with Ref. [187] in numerical simulations of the extended LLE is that the position
of these attractors depends on the phase of the input components, resulting in a
rotation of their position in the phase plane. Obviously, further investigations are
required to understand the impact of the initial input phases on the Lorenz chaos.
However, numerical and primary experimental results of chapter 5 demonstrate that
our setup is the suitable platform to investigate in near future this Lorenz chaos by
recording the phase and intensity evolution of the waves.
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blue curves stand for the cw unstable, stable states and modulationally unstable
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Abstract: Modulation instability (MI) in optics is a nonlinear process where a
weak periodic perturbation exponentially grows at the expanse of a strong carrier
wave as a result of the perfect balance between dispersion and non-linearity. In pas-
sive optical cavities, the coherent superposition between the driving field and the
intra-cavity field adds a extra-degree of freedom to this mechanism that enriches its
dynamics. In this thesis, we mostly led experimental study of MI in such devices
made of optical fibers in unexplored regimes. In particular, we experimentally in-
vestigated this process in cavities that operate under weak normal dispersion. We
showed that the MI dynamics in such regime is strongly modified compared to stan-
dard MI in cavities. We also studied the real-time dynamics of MI in the temporal
domain highlighting that the generated temporal pattern can exhibit two distinct
behaviors. A part of this work is also dedicated to the experimental study of the
gain through loss mechanism. Under specific conditions this process can generate MI
and tunable optical frequency combs. These studies are in pretty good agreement
with theoretical models and numerical simulations. Finally, we explored analytically
the process of coherent seeded MI. We reported that the dynamics of the process
is phase-sensitive, which was confirmed experimentally by recording the power and
phase evolution of the waves involved in the process.

Keywords: Nonlinear optics; optical fiber; passive fiber cavities; modulation
instability

Résumé: L’instabilité de modulation (IM) en optique est un processus non-
linéaire responsable de l’amplification exponentielle d’une faible perturbation péri-
odique au dépend d’une onde porteuse de forte puissance, cela en raison du parfait
équilibre entre la dispersion et la non linéarité. Dans les cavités optiques passives, la
superposition entre le champ injecté dans le système et le champ intra-cavité ajoute
un degré de liberté supplémentaire à ce mécanisme, ce qui enrichit sa dynamique.
Dans cette thèse, nous avons principalement mené des études expérimentales de
l’IM dans de tels dispositifs faits de fibres optiques, dans des régimes inexplorés.
En particulier, nous avons étudié expérimentalement ce processus dans des cavités
fonctionnant en régime de dispersion faible. Nous avons montré que la dynamique
de l’IM dans un tel régime est fortement modifiée par rapport à celle de l’IM stan-
dard dans les cavités. Nous avons également étudié la dynamique temporelle de
l’IM montrant que le motif temporel généré peut présenter deux comportements
distincts. Une partie de ces travaux est également consacrée à l’étude expérimentale
du mécanisme de gain induit par les pertes. Dans des conditions spécifiques, ce pro-
cessus peut générer de l’IM ainsi que des peignes de fréquence ajustables. Ces études
sont en bon accord avec les modèles théoriques et les simulations numériques. Dans
la dernière partie de ce travail, nous avons exploré analytiquement le processus de
l’IM amorcée de façon cohérente. Nous avons montré que la dynamique du processus
est sensible à la phase, ce que nous confirmons expérimentalement en enregistrant
l’évolution de la puissance et de la phase des ondes impliquées dans le processus.

Mots clés: Optique non-linéaire ; fibres optiques ; cavités fibrées passives ;
instabilité de modulation
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