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Introduction

When one quantizes the electromagnetic field, field variables are replaced by field operators;

see, e.g., Refs. [1–4]. The quantum nature of light is reflected in the non-commutative al-

gebra of these operators1. If explicitly time-dependent problems are considered, this gives

rise to non-zero non-equal-time commutators of time-dependent operators. Thus, temporal

correlations may arise that are not covered by Maxwells classical theory of light. A renowned

phenomenon of this category is the quantum effect of photon antibunching [6,7], whose exper-

imental verification in 1977 [8] may be considered as the final proof to Einsteins light quanta

Hypothesis [9] (see also Refs. [10, 11]). Often, the dynamics of such non-stationary systems

cannot be solved in terms of closed analytical expressions. In this case, one either has to revert

to a purely numerical treatment or to time-dependent perturbation theory (cf. [12–14]).

Time-dependent perturbation theory is usually presented in the form of a Dyson series [15].

Approximations to the evolution operators of the systems are given in terms of truncation of

such series. However, such approximations may violate certain symmetries of the underlying

systems, as unitarity of the evolution operators is not preserved by such approximations. Alter-

natively, another type of approximative description is possible by neglecting the time ordering

prescription of the Dyson series representation – the resulting approximated evolution opera-

tors will be unitary. Such an approximation is justified as long as non-equal-time commutators

of the time-dependent Hamiltonians are not relevant for the dynamics of the system, i.e., it

corresponds to neglecting these commutators. Consequently, we refer to all deviations – that

are due to non-zero non-equal-time commutators – from neglected time ordering as (time)

ordering effects. In Reference [16], such deviations were studied for the processes of sum fre-

quency generation and parametric down conversion. Recently, in studies of ordering effects

in dynamical systems, the Magnus expansion (ME) [17, 18] has been considered as a useful

representation of the corresponding evolution operators, cf. [19–24].

Remarkably, the ME – which will play a central role in this contribution – provides for an

alternative (exponential) representation of time-dependent perturbation theory [17, 18]. For

time-dependent quantum systems, the ME is given by linear combinations of ordered time

integrals over different orders of nested non-equal-time commutators of the time-dependent

1Let us note that, since non commutativity of quantum-mechanical operators is a pure quantum effect, it can

be used for quantitative measure of nonclassicality of a quantum state of light, as very recently proposed in

Ref. [5].
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Hamiltonian. As such, the ME always remains within the Lie algebra that can be constructed

from the time-dependent Hamiltonians. The exponent of the ME (and its truncations) corre-

sponds to the (approximated) evolution operator of the system and, due to this exponential

nature, important symmetries of the underlying system are usually not violated by approxima-

tions (cf. [18–21,24]).

From a fundamental standpoint, another feature of the ME can be considered most striking:

The lowest order of Magnus approximation (MA) corresponds exactly to the case of neglected

time ordering. All other terms of the ME are due to (time) ordering effects and will, therefore,

be referred to as (time) ordering corrections. Thus, the ME allows for a clear separation of

(time) ordering effects from the effective Hamiltonian description with neglected time order-

ing.

However, the methods of ME are also subject to some limitations. When approximations

of the evolution operator are formulated in terms of the ME, an increasing number of MA

orders leads to a stepwise inclusion of ordering effects. That is, with higher orders of ordering

correction, one moves closer to the correct dynamics of the system – i.e., the incorporation

of all ordering effects. However, this is limited by two factors; (i) the expressions for higher

order corrections can take quite complex forms (cf. [25]) which may make their evaluation

quite tedious, and (ii) the ME generally only works within a finite radius of convergence,

which means it may diverge at some point and the correct evolution of the system cannot be

recovered in terms of increasing orders of corrections.

In the case of divergence, a comparison of the cases of neglected ordering effects with

the approximations in terms of the ME will lead to misinterpretations. Admittedly, for small

scales, where neglecting ordering effects is most appropriate, the ME does always converge.

But significant deviations caused by the negligence of ordering effects may only arise after

sufficiently long times. Thus, precise knowledge of the limits of convergence is indispensable

in the study of (time) ordering effects in terms of the ME. Indeed, there exist sufficient upper

bounds for evolution periods where convergence occurs, but exact upper bounds can generally

only be found for generic cases [18].

In the present thesis we will analyze (time) ordering effects in the context of quantum opti-

cal systems. We consider two systems in particular, the process of single pass type-I parametric

down-conversion (PDC) (cf. [26,27]) and the classically driven Jaynes-Cummings dynamics of

an ion in a Paul trap [or classically driven Jaynes-Cummings dynamics (CJCD) for short] (cf.

[2, 23]). In the context of single pass type-I PDC2, two scenarios will be considered in par-

ticular; the scenario of a monochromatic pump where continuous-wave (cw) squeezed light

2In this context we will adopt the nonlinear optics standard, where the evolution of light is usually described with

respect to the distance covered rather than time. The perturbative formalism will be adjusted accordingly.
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is generated and the scenario of a broad(-band) spectral pump where pulses that contain a

multitude of squeezed field modes are generated.

The relevance of the PDC process stems from it being a main source of squeezed states

of light (four wave mixing being another one, cf. [28]). These states of light are nonclassical

states with unique features interesting from both fundamental and practical points of view [26,

29, 30] and they find numerous applications in laser interferometers, including gravitational

wave detectors [31, 32], in quantum metrology [33], and in various protocols of quantum

information, ranging from quantum teleportation to quantum computation [34, 35]. In the

latter area of research, multimode squeezed states are recognized as a key resource for the

measurement-based continuous-variable quantum computation [36–39], where they can be

employed for one-way quantum computation protocols [40,41].

The efficiency of employing squeezed states depends crucially on the degree of squeezing.

As a consequence, there is a high demand for squeezed states with the highest possible degree

of squeezing. The cw narrow-band squeezed light is perhaps the best-known realization of

squeezing in optics and experiments in this direction have reached the record values of 15 dB

squeezing in a band of about 100 MHz [42]. Broader bands (up to tens of THz) of squeezed

light can be obtained in cw or quasi-cw regimes of PDC with the use of aperiodically poled

quasi-phase-matched crystals [43–45]. On the other hand, PDC with pulsed broad spectral

pumps opens the possibility to generate pulses that contain multiple spectrally broad modes

of squeezed light at once. Such light, with quantum correlations between different parts of its

frequency spectrum, can be generated both in single-pass [46–51] or cavity-enhanced configu-

rations [52–55]. Tailoring the parametric interaction by pump shaping or crystal design allows

for engineering of the quantum correlations of the generated light [56, 57]. In any case, the

detection and implementation of squeezed states requires precise definition of the squeezing

eigenmodes (and their corresponding degree of squeezing) in order to use the squeezing most

efficiently. Analytical analysis of squeezing eigenmodes at high gain is complicated because

of the nonstationarity of the problem. Several contributions have defined squeezing eigen-

modes at high gain by neglecting (time) ordering effects [47,48,54]. Ordering effects in PDC

with broad spectral pumps have been discussed in Refs. [19,20], via higher orders of the MA.

This thesis adds to this discussion by explicitly analyzing the impact of ordering effect on the

squeezing eigenmodes via higher orders of MA in type-I PDC with a broad spectral pump. We

also consider bispectral pulse generation as an exemplary scenario for a tailored parametric

interaction. Before this, we perform a complete analysis of ordering effects in type-I PDC with

a monochromatic pump, that is the limit case of the broad spectral pump model for vanish-

ing pump widths and can be solved explicitly. We derive the corresponding eigenmodes of

squeezing for this model, benchmark the MAs with respect to the explicit solution, and give

further results and comparisons to Refs. [19, 20]. The presented work on type-I PDC with a

monochromatic pump has undergone peer review and was published in Refs. [24,58].
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The classically driven Jaynes-Cummings dynamics model is an extension of the Jaynes-

Cummings model. The latter describes an idealized scenario of the resonant interaction of

a two-level system with only one radiation mode [60, 61]. Despite its simplicity, the Jaynes-

Cummings model has proven to be applicable as a realistic model in experiments [62–65]

and a vast field of physical effects, and states can and have been studied at hands of this

model [65–80]. The Jaynes-Cummings model can also be adapted to describe the vibronic

dynamics of ions in Paul traps (cf. Ref. [81, 82]) – for the case of weak coupling between the

electronic two-level system of the atom and its motional states – by replacing the quantized

mode of the electromagnetic field with the quantized center-of-mass-motion of the ion [83–

85]. For the case of strong coupling, a nonlinear Jaynes-Cummings model was introduced [86],

which describes the dynamics of a trapped ion [87, 88]. In Reference [23], the model was

considered with a quantized pump field that is slightly detuned from resonance frequencies. If

the motional degrees of freedom are coupled to the electronic states of the ion by a classical

pump field, this yields the CJCD model. On the basis of this model, a plethora of motional

quantum states (e.g., squeezed states, Fock states, etc.) can be realized [87, 89–97]. For

the case where the pump field is slightly detuned from resonance frequencies, the system

becomes non-stationary [23] and time ordering effects become relevant. In this thesis we give

an explicit solution of the dynamics for this case and analyze how well time ordering effects

are described by different orders of MA by comparing them to this exact solution. This work

has been published in Ref. [59] and was not present in the literature before3.

The goal of this thesis is to contribute to the establishment of the notion of (time) ordering

effects as well as the methods of MA in the field of quantum optics. It is my hope that the

present contribution can also serve as a helpful introduction to the methods of ME from the

view point of quantum optics. To round of the discussion, we also give a extensive study of

convergence limits of the ME in the context of the considered physical systems. We derive exact

upper bounds of convergence that exceed known sufficient upper bounds for a wide range of

configurations of the systems. This work on convergence limits has been included in Ref. [24]

for the CJCD model, and in Ref. [58] for type-I PDC with a monochromatic pump and is, to

my best knowledge, the first analysis of such exact limits in the context of quantum optical

systems.

3Reference [59] also contains analysis (that are partially based on my explicit solution and and closed form MAs)

of the impact of time ordering effects on the nonclassicality and non-Gaussianity of states via regularized quasi-

probability distributions, which were performed by Fabian Krumm and which do thus not form part of the

present thesis.
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Elements of quantum optics
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1.2.2 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1.3.2 Passive Gaussian unitary transformation . . . . . . . . . . . . . . . . . 14

1.3.3 Mode-wise squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.4 Bloch-Messiah decomposition . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.5 Multimode squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.6 Displacement and seeding . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Time-dependent perturbation theory . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Dyson series and time-ordered exponential . . . . . . . . . . . . . . . 21

1.4.2 Magnus series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 Quadratic Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Studying the quantum properties of radiation fields that cannot be described by classical

electrodynamics is at the heart of quantum optics. The fundamental difference between the

classical theory of electrodynamics and quantum electrodynamics is the canonical quantization

of field variables. In the formalism of the description, this adds another layer of complexity as

scalar, and vectorial quantities of electrodynamics do no longer commute. In this chapter, we

recapitulate some well-established fundamentals of quantum optics (cf. [2]) that will lay the

groundwork for all further discussions.
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6 Elements of quantum optics

1.1 The quantized electromagnetic field

The classical electromagnetic field is described trough Maxwell’s equations1,

∇E(r, t) =
1

ε0
ρ(r, t), (1.1)

∇B(r, t) = 0, (1.2)

∇ × E(r, t) = −Ḃ(r, t), (1.3)

∇ × B(r, t) = µ0j(r, t) + µ0ε0Ė(r, t). (1.4)

Quantization is usually performed via the vector potential A. Together with the scalar potential

Φ, it can be used to define the electric and magnetic fields as

B(r, t) = ∇ × A(r, t), E(r, t) = −Ȧ(r, t) − ∇Φ(r, t). (1.5)

These fields allows us to reformulate the eight scalar equations (1.1), (1.2), (1.3), and (1.4)

in terms of the four scalar equations

∇ × ∇ × A(r, t) + µ0ǫ0Ä(r, t) + µ0ǫ0∇Φ̇(r, t) = µ0j(r, t), (1.6)

∆Φ(r, t) + ∇A(r, t) = − 1

ǫ0
ρ(r, t). (1.7)

Additionally, there is a gauge freedom as

A(r, t) �→ A(r, t) + ∇f(r, t), Φ(r, t) �→ Φ(r, t) − ḟ(r, t) (1.8)

fulfills the equations (1.6) and (1.7) identically. How the field is quantized can rely heavily on

the considered scenarios. Most scenarios in quantum optics do not consider reference frames

at relativistic speeds, and therefore the Coulomb gauge ∇A(r, t) ≡ 0 is usually chosen – this

implies that A(r, t) is a transverse vector field.

The most straight forward scenario of field quantization is given when we consider the free

electromagnetic field – i.e., where charges ρ and currents j are identical nil everywhere and at

all times. For this case and under the above mentioned Coulomb gauge, Eqs. (1.6) and (1.7)

reduce to the wave equation

∆A(r, t) − µ0ǫ0
︸︷︷︸

=c−2
0

Ä(r, t) = 0 (1.9)

1Here and throughout this work , we denote the scalar product of two vectors as ab, the vector product as a × b

and the operator ∇ = (∂x, ∂y, ∂z)T is applied in the same manner, yielding divergence and curl respectively.

Furthermore, ∇f denotes the gradient of the scalar quantity f .



1.1 The quantized electromagnetic field 7

and Φ(r, t) = 0. The parameter c0 is the speed of light in vacuum. Indeed, one may apply

in this case the mechanism of canonical field quantization by finding the Lagrangian density

for which the Euler-Lagrange equations yield (1.9), defining the canonical conjugate Π to A,

Legendre transforming the Lagrangian density to the Hamiltonian density, writing the Hamil-

tonian density in symmetric ordering of A and Π, and finally replacing A and Π with field

operators and their Poisson brackets by commutators divided by (i�) (cf. [2]).

The procedure of canonical field quantization will simply result in the quantized wave

equation

∆Â(r, t) − 1

c2
0

¨̂
A(r, t) = 0 (1.10)

and the Hamiltonian of the free field

Ĥ0(t) =
1

2

∫

V

[

ǫ0Ê2(r, t) + µ−1
0 B̂2(r, t)

]

, (1.11)

with the quantization Volume V and

Ê(r, t) = − ˙̂
A(r, t), B̂(r, t) = ∇ × Â(r, t). (1.12)

Equation (1.11) corresponds exactly to the classical expression for the energy of the free elec-

tromagnetic field. Through a separation of variables, Â(r, t) = 1√
ε0

∑

λ

cλAλ(r)q̂λ(t), the op-

erator,valued vector potential wave equation (1.10) can be separated into a time-dependent

operator valued harmonic oscillator equation,

¨̂qλ(t) + ω2
λq̂λ(t) = 0, (1.13)

and a Helmholtz equation in the spatial components

∆Aλ(r) +
ω2

λ

c2
0

Aλ(r) = 0. (1.14)

In the box-quantization approach a cubic box with volume V = L3 and side length L an

periodic boundary conditions is considered. The Helmholtz equation (1.14) is then solved

inside this box by plain waves. After defining annihilation and creation operators for the

harmonic oscillator equation (1.13) one can take the infinite space limit L → ∞ and obtains

the vector potential operator in the Heisenberg picture as [2]

Â(r, t) =
∑

σ

∫

d3k

√

�

2ε0ω(k)(2π)3
eσ(k)ei[kr−ω(k)t]âσ(k) + H.c.. (1.15)
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Here eσ(k) are polarization vectors such that keσ(k) = 0 and ω(k) = |k|c0. The annihila-

tion/creation operators fulfill bosonic commutator relations as

[

âσ(k), â†
σ′(k

′)
]

= δ(k − k′)δσ,σ′ ,
[
âσ(k), âσ′(k′)

]
= 0. (1.16)

As the operator part after separation of variables in (1.10) fulfills the Harmonic oscillator

equation (1.13), it is unsurprising that the Hamiltonian of this system takes the form

Ĥ0 =
∑

σ

∫

d3k �ω(k)

[

â†
σ(k)âσ(k) +

1

2
1̂

]

, (1.17)

i.e., it is a linear combination of harmonic oscillator Hamiltonians, Ĥσ(k) = �ω(k)[â†
σ(k)âσ(k)+

1
2 1̂], for each monochromatic frequency/polarization mode of the field. The relation Ê(r, t) =

−∂tÂ(r, t) yields

Ê(+)(r, t) = i
∑

σ

∫
d3k

(2π)3/2
eσ(k)ei[kr−ω(k)t]

√

�ω(k)

2ε0
âσ(k),

with

Ê(−)(r, t) =
(

Ê(+)(r, t)
)†

and Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t). (1.18)

1.2 Quantum states of bosonic systems

Naturally, we cannot discuss the quantum properties of light without referring to some fun-

damental states of the the electromagnetic field. As the process of quantization of the free

field has revealed, each of the Hamiltonians of each field mode takes a representation resem-

bling that of harmonic oscillators. Unsurprisingly, quantum states in quantum optics are thus

formally identical with those of the the quantized harmonic oscillator [cf. (1.17)].

Among the plethora of states that have been considered in the field of quantum optics, the

following four states will be of relevance for all below discussion; (i) the Fock state, which like

no other state underlines the particle nature of light; (ii) the coherent state, which emulates

the classical harmonic oscillator; (iii) the squeezed vacuum state, which for some linear com-

bination of its quadratures has less quantum mechanical standard deviation then the vacuum

state. The two latter states can be directly associated with unitary operators, i.e., the displace-

ment and squeezing operators, respectively. The combination of displacement and squeezing

operators results in squeezed coherent states.
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For a start, we limit our discussion to single modes of the light field. Mode indices are thus

omitted and we consider the Hamiltonian

Ĥ = �ω

(

n̂ +
1

2

)

, (1.19)

with the photon number operator n̂ = â†â and the bosonic annihilation/creation operators,

satisfying

[â, â†] = 1̂, [â, â] = [â†, â†] = 0̂. (1.20)

As mentioned above, this is the Hamiltonian of the quantized Harmonic oscillator. The states

discussed in the following thus apply also to other cases where a harmonic oscillator rep-

resentation is valid, e.g., ions in a Paul trap or molecular vibrations. In the following, we

list properties of these states. Derivations of these properties can be considered part of the

standard canon of quantum optics and may be found in similar forms in (among others)

Refs. [2,4,98,99].

1.2.1 Fock states

Fock states fulfill the eigenvalue equation

n̂|n〉 = n|n〉 for n = 0, 1, 2, . . . , ∞. (1.21)

For n = 0, we get the vacuum state as n̂|0〉 = 0, and all subsequent Fock states can be generated

from the vacuum state as

|n〉 =
â†n

√
n!

|0〉. (1.22)

Using the commutator relations and the condition â|0〉 = 0, one can show that they form an

orthonormal complete system

〈n|n′〉 = δn,n′ , 1̂ =
∞∑

n=0

|n〉〈n|. (1.23)

The property that essentially motivates the nomenclature of the annihilation/creation operator

is the effect of these operators on the Fock states,

â|n〉 =
√

n|n − 1〉, â†|n〉 =
√

n + 1|n + 1〉. (1.24)
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1.2.2 Coherent states

Coherent states are the solutions to the eigenvalue equation

â|α〉 = α|α〉. (1.25)

They posses the Fock basis representation

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 (1.26)

and are normalized to unity as 〈α|α〉 = 1. However, they are not orthogonal

〈α|β〉 = exp

(

−1

2

[

|α|2 + |β|2 − 2α∗β
])

(1.27)

but complete

1̂ =
1

π

∫

d2α |α〉〈α|. (1.28)

Indeed, this completeness also allows one to represent density operators of systems in terms of

coherent states, i.e., in terms of the famous Glauber Sudarshan P quasiprobability [100,101].

The coherent state can be generated by displacing the vacuum state

|α〉 = D̂(α)|0〉, (1.29)

with the displacement operator

D̂(α) = eαâ†−α∗â = e−|α|2/2eαâ†

e−α∗â = e|α|2/2e−α∗âeαâ†

, (1.30)

which imposes the linear shift

D̂†(α)âD̂(α) = â − α. (1.31)

1.2.3 Squeezed states

The squeezed vacuum state does not fulfill a straight forward eigenvalue equation [102] but

may – similarly to the coherent state – be generated from vacuum by a unitary transformation

Ŝ(ξ) = e
1
2 [ξ∗â2−ξâ†2] (1.32)
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as

|ξ〉 = Ŝ(ξ)|0〉. (1.33)

This unitary operator goes by the name of squeezing operator. Its Fock basis representation

reads as

|ξ〉 =
1

√

cosh(r)

∞∑

n=0

tanhn(r)

√

(2n)!

n!2n
|2n〉, (1.34)

where ξ = reiφ is the polar representation of the complex squeezing parameter ξ – the radial

component r is sometimes referred to as the gain exponent.

The maybe most astonishing property of squeezed vacuum states is the reduction of vac-

uum fluctuations in one quadrature. This is due to the fact, that the Squeezing operator causes

a Bogoliubov transformation [103] of the annihilation/creation operators,

Ŝ†(ξ)âŜ(ξ) = cosh(r)â + eiφsinh(r)â†,

Ŝ†(ξ)â†Ŝ(ξ) = cosh(r)â† + e−iφsinh(r)â. (1.35)

We may write a generalized quadrature as

x̂(θ) =
1√
2

[

eiθâ + e−iθâ†
]

, (1.36)

such that x̂ = x̂(θ = 0) and p̂ = x̂(θ = π/2). Furthermore, we have the Heisenberg uncertainty

principle,

〈∆x̂2(θ)〉〈∆x̂2(θ + π/2)〉 ≥ |
1

2i
〈[x̂(θ), x̂(θ + π/2)]〉|2 =

1

4
, (1.37)

where ∆x̂(θ) = x̂(θ) − 〈x̂(θ)〉. With the transformations (1.35), one can show that

〈ξ|x̂(θ)|ξ〉 = 0,

〈ξ|∆x̂2(θ)|ξ〉 =
e−2r

2
sin2 (θ + φ/2) +

e2r

2
cos2 (θ + φ/2) . (1.38)

So whilst the noise is suppressed maximally by e−2r in one quadrature, the uncertainty relation

remains valid as it is compensated by the maximal noise increase of e2r.
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1.3 Gaussian unitary transformations and multimode squeezing

Above, we discussed some states of light in a single-mode context. This was motivated by

the fact that we can represent the electric field in terms of monochromatic plane waves in

vacuum2. However, in the framework of this work we will also be interested in wave packages

of light, i.e., inherently non-monochromatic modes of light.

As seen above, monochromatic plane waves can serve as modal representations for the

description of the electric field in vacuum and transparent dielectric media. Naturally, as the

Fourier components form complete basis in the corresponding L2(C) spaces, we can equally

decompose the field into any other L2(C) basis, e.g., Hermite-Gauss functions. Thus, for a

component Ê(r, t) of the electric field Ê(r, t), we can always find a representation in terms of

a complete set of orthogonal L2(C) modal functions {fk(r, t)} as (cf. [2,3,104])

Ê(r, t) =
∑

k

âkf∗
k (r, t) + H.c., (1.39)

where ak(a†
k) are the annihilation(creation) operators for the mode with index k. To simplify

the following discussion, it is convenient to consider that the modal functions are normalized

to unity.

If we consider a finite number of n of optical modes k = 1, . . . , n, we can introduce a col-

umn vector of annihilation and creation operators ξ̂ = (â1, . . . , ân, â1, . . . , ân)T 3. The bosonic

commutator relations are then recovered as

ξ̂ξ̂
† − ξ̂

†T
ξ̂

T
= K =






I 0

0 −I




 , (1.40)

where I is the n×n identity matrix. Correspondingly, a vector of modal functions f(r, t) =

(f1(r, t), . . . , fn(r, t), f∗
1 (r, t), . . . , f∗

n(r, t))T may be defined, which allows us to write Ê(r, t) =

f †(r, t)ξ̂. In the remainder of this section, we adopt this notation of boldface variables for

2n×2n matrices and roman for n×n matrices.

2A similar representation is possible for dielectric media, i.e., in the absence of isolated sources [105–107].

However, its derivation requires a lot more effort.
3Note, that this notation has to be used with care as it includes transpositions (which act on vectors and matrices)

and adjungations (which additionally act on operators).
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1.3.1 General Gaussian operations on multimode fields

Unitary transformations of ξ̂ that preserve Gaussianity in the Wigner representation are called

a Gaussian unitary transformations and have the form

ξ̂
′
= Û†ξ̂Û , Û = exp

(

−iĤ
)

, (1.41)

where the generator Ĥ of the transformation is a second-order polynomial of annihilation and

creation operators. For the sake of simplicity, we omit the linear part of this polynomial which

describes displacements, i.e., we only consider generators of quadratic order which take form

Ĥ = ξ̂
†
Hξ̂, (1.42)

with the Hermitian matrix H that can be structured as

H =






H0 HI

H∗
I H∗

0




 , (1.43)

where H0 is Hermitian and HI is complex symmetric (i.e. HI ∈ C
n×n and HT

I = HI). This

implies symmetric ordering of Ĥ. Note that despite our matrix notation, Ĥ is a scalar operator

valued quantity

Ĥ =
N∑

n,m=1

{

(H0)m,nâ†
mân + (HI)m,nâ†

mâ†
n + (H∗

I )m,nâmân + (H∗
0 )m,nâmâ†

n

}

. (1.44)

In this notation, it is straightforward to show that

[iĤ, âk] = −2i
N∑

n=1

{

(H0)k,nân + (HI)k,nâ†
n

}

, (1.45)

which, by conjugation, also yields [iĤ, â†
k] = 2i

N∑

n=1
{(H∗

0 )k,nân + (H∗
I )k,nâ†

n}. In the matrix

notation, this implies (cf. [108])

[iĤ, ξ̂] = −2iKHξ̂. (1.46)

With the Hadamard Lemma,

eX̂ Ŷ e−X̂ =
∞∑

p=0

1

p!
adp

X̂
Ŷ , (1.47)



14 Elements of quantum optics

where we denote nested commutators by the adjoint ad as

adp+1

X̂
Ŷ = [X̂, adp

X̂
Ŷ ], ad0

X̂
Ŷ = Ŷ , (1.48)

and adp

iĤ
ξ̂ = (−2iKH)p

ξ̂, we get (cf. [108])

Û†ξ̂Û = eiHξ̂e−iĤ =
∞∑

p=0

1

p!
(−2iKH)p

ξ̂ = e−2iKHξ̂. (1.49)

The notation in terms of ad emphasizes that applying the nested commutators adX̂ is itself

a linear operation/map and is frequently used in Lie theory (see, e.g., the proof of Magnus

theorem in Ref. [18]). Thus, the transformation is equally representable in terms of a linear

matrix transform,

ξ̂
′
= Sξ̂, (1.50)

with S = e−2iKH. Consequently, the matrix and operator formalism are homomorph (cf. [108]):

Û = e−iξ̂
†
Hξ̂ ↔ S = e−2iKH. (1.51)

In order to fulfill bosonic commutator relations, S is required to fulfill the relation

SKS† = K. (1.52)

Matrices that are connected to purely quadratic Hamiltonians by the homomorphism (1.51)

fulfill this relation and will be referred to as complex symplectic and can be represented as [108,

109]

S =






A B

B∗ A∗




 , (1.53)

where the complex matrices A and B satisfy the relation AA† − BB† = I and the matrix ABT

is complex symmetric, i.e., ABT ∈ C
n×n and (ABT ) = ABT .

1.3.2 Passive Gaussian unitary transformation

The Gaussian unitary transformations can be categorized in some important subclasses. One

such subclass are the transformations for which the total number of photons remains pre-

served, i.e., ξ̂
†
ξ̂ = ξ̂

′†
ξ̂

′
. Such transformations are known as passive Gaussian unitary transfor-

mations [108,109] and correspond physically to mixing different modes on a multiport inter-

ferometer. In Eqs. (1.53) and (1.44), total photon-number conservation implies B = HI = 0
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and A takes unitary form with A = exp(−2iH0). Thus, the complex symplectic transform reads

S =






e−2iH0 0

0 e2iH∗

0




 (1.54)

and is in itself also unitary. Consequently, this subgroup has the same dimension, n2, as the

unitary group U(n).

Another important point is that the passive Gaussian transformations correspond to a

change of mode basis. This is because a unitary transformation preserves the field,

Ê(r, t)(r, t) = f †(r, t)ξ̂ = f ′†(r, t)ξ̂
′
, where f ′(r, t) =






e−2iH0 0

0 e2iH0




 f (r, t). (1.55)

Such a change of basis is possible, as the passive transformation preserves the orthogonality of

field modes as

∫

d3r f ′(r, t)f ′†(r, t) =

∫

d3r f (r, t)f †(r, t) = I, (1.56)

where I is the 2n×2n identity matrix.

1.3.3 Mode-wise squeezing

Another class of Gaussian unitary transformations is given by the transformations where H0 =

0 and HI = 1
2iR with the diagonal matrix R = diag{r1, ..., rn}, where r1, ..., rn ∈ R are squeez-

ing parameters4. This type of transformation is called mode-wise squeezing as each of the

field modes, described by the operators ξ̂, is squeezed according to the squeezing parame-

ters r1, . . . rn contained in R. The complex symplectic matrix for this class of transformations

consequently reads as

S = exp






0 R

R 0




 =






cosh(R) sinh(R)

sinh(R) cosh(R)




 . (1.57)

4We note here that if we would consider complex parameters ξ1, . . . ξn, with ξk = rkeiφk , this would also corre-

spond to mode-wise squeezing in terms of the complex squeezing parameters ξk. However, the phase eiφk in

terms of the argument φk of the complex parameter ξk acts as a passive Gaussian unitary transformation. For

the sake of distinguishing the two classes of transformations, it is thus convenient to consider real squeezing

parameters rk only to define the class of mode-wise squeezing. Furthermore, note that the sign of rk can also

be absorbed into the argument φk – i.e., into a passive Gaussian unitary transformation – and we will mostly

consider r1, . . . , rn ≥ 0 – i.e., R is positive semi-definite.
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The corresponding unitary operator can be written as

Û = exp







ξ̂
†






0 −1
2R

1
2R 0




 ξ̂







= e− r1
2

(
a†2

1 −a2
1

)

e− r2
2

(
a†2

2 −a2
2

)

· · · e− rn
2

(
a†2

n −a2
n

)

, (1.58)

i.e., it can be decomposed in terms of mode-wise single-mode squeezing. Naturally, this sub-

class has dimensionality of n.

1.3.4 Bloch-Messiah decomposition

The central mathematical procedure for defining the modes of squeezing of a multimode opti-

cal field is the decomposition of an arbitrary Gaussian unitary transformation into two passive

transformations and one mode-wise squeezing transformation:

S =






V 0

0 V ∗




 exp












0 R

R 0

















W 0

0 W ∗






†

, (1.59)

where the matrices V and W are unitary and the diagonal matrix R is positive semi-definite.

This decomposition is known as Bloch-Messiah reduction/decomposition. It was introduced

by Bloch and Messiah for fermions [110] and later generalized to bosons [111]. The physical

meaning of this procedure is the possibility of realizing any Gaussian unitary transformation

by means of two multiport interferometers and a number of single-mode squeezers [112]. A

schematic illustration of this concept is given in Fig. 1.1.

Figure 1.1: Illustration of the Bloch-Messiah decomposition. The input-output relation of a general Gaussian

unitary transformation can always be realized in terms of three separate transformations; firstly, a unitary

transform W that mixes modes of light; secondly, mode-wise single-mode squeezing R; thirdly, another uni-

tary transform V that again mixes modes of light.



1.3 Gaussian unitary transformations and multimode squeezing 17

The decomposition Eq. (1.59) can be written in the following form, used by Braunstein [112]:

A = V cosh(R)W †, B = V sinh(R)W T . (1.60)

Consequently, the full dimensionality of the symplectic group is that of the two passive trans-

forms plus the dimensionality of the mode-wise squeezing, i.e., 2n2 + n.

The Bloch-Messiah decomposition can be reduced to a Takagi decomposition (cf. [113,

114]). The Takagi decomposition is a symmetric singular-value decomposition of a complex

symmetric matrix M = MT ∈ C
n×n as [115]

M = PΞP T (1.61)

where Ξ is diagonal semi-definite and P is unitary. Indeed, if one, e.g., sets M = ABT , the

Takagi decomposition (1.61) yields the Bloch-Messiah decomposition as

R =
1

2
arcsinh (2Ξ) ,

V = P ,

W = A†Pf(Ξ), (1.62)

where the function f(z) = 1/cosh(arcsinh(2z)/2) is applied to the diagonal elements of Ξ. This

allows us to use a simple implementation for this decomposition; see appendix B.

1.3.5 Multimode squeezing

We are now equipped with the necessary tools to describe multimode squeezing in the context

of the symplectic matrix formalism. For the case of multimode squeezing H0 = 0 and HI = 1
2iZ

with a complex symmetric matrix Z = ZT which is not required to be diagonal, the Gaussian

unitary operator takes the form [116]

Û = exp

{
ˆ̄aT Z∗ˆ̄a

2
−

ˆ̄a†Z ˆ̄a†T

2

}

, (1.63)

where ˆ̄a = (â1, . . . , ân)T . Note the formal similarity of of the operator (1.63) to (1.32).

Naturally, if Z contains only diagonal elements, (1.63) describes mode wise squeezing (cf.

Sec. 1.3.3). However, when Z is a non-diagonal matrix, one can always recover a mode-wise

squeezing perspective with an appropriate choice of mode basis. This follows as the Bloch-
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Messiah decomposition for this class of operators is symmetric in the sense that

S =






Q 0

0 Q∗




 exp












0 R

R 0

















Q 0

0 Q∗






†

, (1.64)

with the Takagi decomposition of Z,

Z = QRQT , (1.65)

in terms of the unitary matrix Q.

A simple and illustrative example for multimode squeezing is the case of the two-mode-

squeezed vacuum state. To this end, we consider a field that can be described in terms of two

modes,

Ê(r, t) =
∑

k=1,2

âkf∗
k (r, t) + H.c.. (1.66)

Applying the operator

Ŝ1,2(ξ) = eξ∗â1â2−ξâ†
1â†

2 , (1.67)

which corresponds to

Z =
ξ

2i






0 1

1 0




 (1.68)

in Eq. (1.63), to vacuum yields the two-mode-squeezed vacuum state

Ŝ1,2(ξ)|0, 0〉 =
1

cosh(|ξ|)

∞∑

n=0

(

−ei arg(ξ)tanh(|ξ|)
)n

|n, n〉. (1.69)

It is of course possible to represent the two-mode field (1.66) in another mode basis,

Ê(r, t) =
∑

k=1,2

b̂kg∗
k(r, t) + H.c., (1.70)

where

g1(r, t) =
1√
2

[f1(r, t) + f2(r, t)] , b̂1 =
1√
2

[â1 + â2] , (1.71)

g1(r, t) =
1

i
√

2
[f1(r, t) − f2(r, t)] , b̂2 =

1

i
√

2
[â1 − â2] . (1.72)
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This corresponds to a passive Gaussian unitary transformation (cf. Sec. 1.3.2). In this basis,

the operator (1.69) is factorized in terms of single-mode squeezing operators, i.e.,

Ŝ1,2(ξ) = e
1
2

[ξ∗b̂2
1−ξb̂†2

1 ]
︸ ︷︷ ︸

=Ŝ1(ξ)

e
1
2

[ξ∗b̂2
2−ξb̂†2

2 ]
︸ ︷︷ ︸

=Ŝ2(ξ)

. (1.73)

Applying them to vacuum yields two squeezed states

Ŝ1(ξ)Ŝ2(ξ)|0, 0〉 = |ξ, ξ〉, (1.74)

where the squeezing parameter has multiplicity of two. So clearly there are quantum correla-

tions present in the two-mode squeezed vacuum state (1.69).

Let us now illustrate what would happen if an ill-suited mode basis is chosen in measure-

ments at hands of our two-mode squeezed vacuum state example (1.69). If a measurement

solely performed in one mode (without loss of generality, we consider f1), all measurement

outcomes are determined in terms of the reduced density operator

ρ̂1 = Tr2

{

Ŝ(ξ)|0, 0〉〈0, 0|Ŝ†(ξ)
}

=
1

cosh2(|ξ|)

∞∑

k=0

(

tanh2(|ξ|)
)k

|k〉〈k|, (1.75)

where the mode f2 has been traced out. Note that (1.75) is a thermal state with �βω =

−2 ln(tanh|ξ|). Thus, with this choice of measurement basis, only thermal noise can be re-

covered, i.e., all quantum correlations are destroyed. We can take this as an illustration for

the importance of choice of proper measurement basis when one aims at measuring quantum

correlations of multimode squeezed states.

Note that, whilst we can always reduce multimode squeezing to mode-wise squeezing by

choosing appropriate modes, such a choice of modes might not always be the most conve-

nient. Consider, e.g., the photon-pair generation in a type-II PDC process with a monochro-

matic pump where one generates pairwise photons of different polarization. Using a polarizing

beam splitter, two beams of different polarization can be spatially separated. In such a case,

the description in terms of the separate beam modes that are two-mode squeezing entangled

can be considered more intuitive than to consider single-mode squeezing eigenmodes in terms

of mixtures of beam modes (see. Ref. [117] for a thorough discussion of the connection be-

tween representations in terms of two-mode squeezing and in terms of single-mode squeezing.

Therein generalizations to more than two modes are also considered.).



20 Elements of quantum optics

1.3.6 Displacement and seeding

In the above discussion, we have neglected displacement. This is simply because generators of

the form

Ĥ = ξ̂
†
Hξ̂ − iβ†Kξ̂, (1.76)

where β = (β1, . . . , βn, β∗
1 , . . . , β∗

n)T ∈ C
2n, will not play a role in this manuscript. However in

the context of PDC that we will encounter below, one might be interested also in coherently

seeded PDC processes. Thus, it might be interesting to consider

|β〉 = D̂(β)|Vac.〉, D̂(β) = e−β†
Kξ̂. (1.77)

As there appear no quadratic terms, the mode-wise factorization of the displacement oper-

ator is always trivial as

D̂(β) = D̂(β1)D̂(β2) · · · D̂(βn), (1.78)

i.e., in terms of single-mode displacement operators. Moreover, it’s impact is simply linear in

the sense , that

D̂†(β)ξ̂D̂(β) = ξ̂ − β. (1.79)

Thus, when a Gaussian transformation Û (corresponding to the symplectic transform S) is

seeded, this can be expressed in terms of a modification of annihilation-creation operators as

D̂†(β)Û†ξ̂ÛD̂†(β) = D̂†(β)Sξ̂D̂†(β) = Sξ̂ + Sβ. (1.80)

We take this as a justification to neglect seeding in various parts of this contribution as the

seeded case can easily be constructed from the non-seeded case by linear transformations.

1.4 Time-dependent perturbation theory

Time-dependent perturbation theory in quantum mechanics may be applied when explicitly

time-dependent Hamiltonians are considered. In this section, we recall some fundamentals of

time-dependent perturbation theory. All content of this section may be found in introductions

to quantum mechanics, e.g., Refs. [12–14].
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For explicitly time-dependent Hamiltonians, it is often not possible to find analytical solu-

tions for a state |Ψ(t)〉 that fulfills the Schrödinger equation

i�∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (1.81)

or an operator Â(t) that fulfills the Heisenberg equation

i�∂tÂ(t) = [Â(t), Ĥ(t)], (1.82)

with initial conditions |Ψ(t = t0)〉 and Â(t = t0), respectively. Formally, solutions can be

formulated in terms of a evolution operators

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉, Â(t) = Û†(t, t0)Â(t0)Û(t, t0), (1.83)

which fulfill the Schrödinger equation

i�∂tÛ(t, t0) = Ĥ(t)Û(t, t0), (1.84)

with the initial condition Û(t = t0, t0) = 1̂. To discuss orders of perturbation, it is convenient

to adopt an alternative notation as Ĥ(t) = γ�Ĥ(t) with a expansion parameter γ > 0. The

evolution equation then rewrites as

∂tÛ(t, t0) = −iγĤ(t)Û(t, t0). (1.85)

1.4.1 Dyson series and time-ordered exponential

In what can be considered the standard approach to time-dependent perturbation theory, a

direct integration of (1.85) leads to the operator-valued integral equation

Û(t, t0) = 1̂ − iγ

t∫

t0

dt′ Ĥ(t′)Û(t′, t0) (1.86)

which has form of a Fredholm integral equation of the second kind (cf. [118]). By repeated

substitution of this equation into itself (i.e., fixpoint iteration) one obtains the Dyson series

representation of the evolution operator [15]

Û(t, t0) = 1̂ + (−iγ)

t∫

t0

dt1 Ĥ(t1) + (−iγ)2

t∫

t0

dt1

t1∫

t0

dt2 Ĥ(t1)Ĥ(t2)

+ (−iγ)3

t∫

t0

dt1

t1∫

t0

dt2

t2∫

t0

dt3 Ĥ(t1)Ĥ(t2)Ĥ(t3) + . . . . (1.87)



22 Elements of quantum optics

Reformulating the Dyson series in terms of the time ordering operator T that orders Ĥ(t)

with larger t to the right yields the time-ordered exponential representation of the evolution

operator

Û(t, t0) = 1̂ +
(−iγ)

1!

t∫

t0

dt1 Ĥ(t1) +
(−iγ)2

2!

t∫

t0

dt1

t∫

t0

dt2 T Ĥ(t1)Ĥ(t2)

+
(−iγ)3

3!

t∫

t0

dt1

t∫

t0

dt2

t∫

t0

dt3 T Ĥ(t1)Ĥ(t2)Ĥ(t3) + . . .

= T e
−iγ
∫ t

t0
dt′Ĥ(t′)

= T e
− i

�

∫ t

t0
dt′Ĥ(t′)

. (1.88)

Note that for constant Hamiltonians Ĥconst. – such that ∀t : ∂tĤconst. = 0 – the familiar expres-

sion Û(t, t0) = e− i
�

Hconst.(t−t0) for the evolution operator is recovered.

The solution of (1.85) in terms of the Dyson series and time-ordered exponential is, how-

ever, of a very formal nature and evaluation of these expressions is usually as hard as solving

the original problem directly. However, the series representations can be used to obtain ap-

proximations to the evolution operator by truncating the series in some order in terms of the

expansion parameter γ. The first three orders of Dyson series approximation do thus, e.g.,

read as

Û1(t, t0) = 1̂ +
(−iγ)

1!

t∫

t0

dt1 Ĥ(t1)

Û2(t, t0) = Û1(t, t0) +
(−iγ)2

2!

t∫

t0

dt1

t∫

t0

dt2 T Ĥ(t1)Ĥ(t2)

Û3(t, t0) = Û2(t, t0) +
(−iγ)3

3!

t∫

t0

dt1

t∫

t0

dt2

t∫

t0

dt3 T Ĥ(t1)Ĥ(t2)Ĥ(t3). (1.89)

Thus, as this does not have exponential form, we can see that unitarity of evolution operators

is not preserved by this approximation method.

1.4.2 Magnus series expansion

The Magnus expansion is an alternative representation of the time evolution operator. It is

essentially an exponential representation of the evolution operator as

Û(t, t0) = exp
(

−iM̂(t, t0)
)

. (1.90)
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It can be shown that the operator M̂(t, t0) fulfills the differential equation [17]

∂tM̂(t, t0) = γ
∞∑

ℓ=0

Bℓ

ℓ!
(−i)ℓadℓ

M̂(t,t0)
Ĥ(t), (1.91)

where Bℓ are the Bernoulli numbers B0 = 1, B1 = −1/2, B2 = 1/6,etc. The Magnus expansion

is the expansion of the exponent M̂(t, t0) in terms of the expansion parameter γ,

−iM̂(t, t0) =
∞∑

k=1

(−iγ)k M̂k(t, t0). (1.92)

Substituting the expansion into the Magnus differential equation (1.91), iteratively equating

powers of γ and integrating, yields expressions for the M̂k(t, t0) [18]. The first three orders

read, e.g., as [18]

M̂1(t, t0) =

t∫

t0

dt1 Ĥ(t1),

M̂2(t, t0) =
1

2

t∫

t0

dt1

t1∫

t0

dt2 [Ĥ(t1), Ĥ(t2)],

M̂3(t, t0) =
1

6

t∫

t0

dt1

t1∫

t0

dt2

t2∫

t0

dt3

{

[Ĥ(t1), [Ĥ(t2), Ĥ(t3)]] + [Ĥ(t3), [Ĥ(t2), Ĥ(t1)]]
}

. (1.93)

Likewise, higher order terms are equally given in terms of linear combinations of time-ordered

integrals of nested commutators in terms of the Hamiltonians Ĥ.

The first order approximation in terms of the ME – i.e., the first order MA – is given by the

first term of the series (1.92) as

Û1(t, t0) = e
−iγ
∫ t

t0
dt̃ Ĥ(t̃)

. (1.94)

This expression corresponds to (1.88) with neglected time ordering, cf. [16, 23, 24]. All other

terms, k > 1, of the ME are corrections in terms of time ordering and, therefore, account for

(time) ordering effects [16,19–24].

It should be mentioned that the ME is not guaranteed to converge. However, one can find

a sufficient criterion for the convergence: The Magnus expansion (1.92) converges if [18]

|γ|

t∫

t0

dt̃ ‖Ĥ(t̃)‖2 < π. (1.95)
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Here, ‖· · ·‖2 stands for the spectral norm. This norm can be calculated as the maximal singular

value of Ĥ, which for Hermitian Hamiltonians is given in terms of their maximum absolute

value eigenvalue. Let us emphasize that is a solely sufficient criterion and that for the physical

systems considered in the present manuscript, one may achieve convergence of the ME well

above this sufficient bound.

1.4.3 Quadratic Hamiltonians

For the annihilation creation operators, as represented in Sec. 1.3.1, the evolution is governed

as

∂tξ̂(t) =
γ

i
[ξ̂(t), Ĥ(t)]. (1.96)

Thus, if we consider quadratic Hamiltonians only [cf. (1.42)] this leads to

∂tξ̂(t) = −iγF(t)ξ̂(t). (1.97)

where F(t) = 2KH(t), cf. (1.46). The evolution in time can thus again be described in terms

of a symplectic linear transformation [cf. (1.41)] as ξ̂(t) = S(t, t0)ξ̂(t0) such that

∂tS(t, t0) = −iγF(t)S(t, t0). (1.98)

Due to the similarity of the matrix differential equation (1.98) to the evolution operator equa-

tion (1.85), the Dyson series and MAs can be equally reformulated in terms of matrices. In

the case of the MAs, equal orders of approximation in matrix and operator formulation yield

exactly the same results; see Appendix A. The corresponding sufficient convergence bound for

the ME,

−iM(t, t0) =
∞∑

k=1

(−iγ)k
Mk(t, t0). (1.99)

with, e.g.,

M1(t, t0) =

t∫

t0

dt1 F(t1) (1.100)

is again given in terms of

tmax∫

t0

dt ‖F(t)‖2 < π. (1.101)
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As F is matrix-valued, the spectral norm can be evaluated in terms of matrix singular value

decomposition.
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Chapter 2

Parametric down-conversion with a

monochromatic pump
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This chapter will concern our first application of the methods of ME and MA to a physical

system. To this end we will consider the process of collinear type-I PDC in a nonlinear χ(2)

crystal with a plane-wave monochromatic pump of frequency ωp [26]. Due to the χ(2) nonlin-

earity in the crystal a three-wave interaction takes place, in which a incoming pump photon of

frequency ωp is converted into two secondary photons, usually referred to as signal and idler

photons with frequencies ωs and ωi, respectively. Energy is conserved in this process such that

ωp = ωs + ωi. (2.1)

Furthermore, momentum conservation holds such that

kp = ks + ki, (2.2)

where kp, ks, and ki are the wave vectors of the pump, signal, and idler mode, respectively. It is

often convenient to describe frequencies in terms of sideband frequencies as ωs = ω0 +Ω, ωi =

ω0 − Ω around the carrier frequency ω0 = ωp/2 – a schematic illustration of the PDC process

with these sideband frequencies is given in Fig. 2.1. In the type-I configuration the signal and

27
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idler photons have the same polarization, i.e., they have ordinary polarization whilst the pump

has extraordinary polarization in the crystal. For simplicity, we will consider the collinear case

only, where all wave vectors are parallel and signal and idler photons are in the same mode.

We consider a coordinate system with the z-axis in the direction of the pump wave propagation

– i.e., kp = kpez – and the origin at the front edge of the crystal. The pump is considered to

be a classical monochromatic wave, E
(+)
p (t, z) = Epei(kpz−ωpt), with strong coherent amplitude

Ep ∈ C (such that quantum fluctuations of the pump field can be neglected). Momentum

conservation then implies that the wave vector of the down-converted light, k(Ω), of frequency

ω0 + Ω matches the wave vector at the pump frequency as k0 = k(0) = kp/2.

Figure 2.1: Schematic illustration of the type-I PDC process. The pump photon is down-converted into signal

and idler photons (solid arrows) of opposed radio-frequencies Ω and −Ω. In the degenerate case both photons

have carrier frequency (dashed arrow). Vertical arrows indicate photons.

It is often convenient to describe the evolution of the fields in nonlinear optics with respect

to the distance covered rather than time [26, 48, 119]. Such a description can be obtained in

the following representation: The down-converted wave is described by the positive-frequency

operator Ê(+)(t, z) normalized to photon-flux units, which can be decomposed into Fourier

components as [27]

Ê(+)(t, z) =

∫
dΩ√
2π

ei[k0z−(ω0+Ω)t]â(Ω, z), (2.3)

where â(Ω, z) is the photon annihilation operator with the frequency ω0 + Ω and the lon-

gitudinal coordinate z – also referred to as sideband operator below. It fulfills the bosonic

commutator relations [27]

[â(Ω, z), â†(Ω′, z)] = δ(Ω − Ω
′), [â(Ω, z), â(Ω′, z)] = 0. (2.4)
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The nonlinear interaction inside the χ(2) crystal leads to the following evolution equation for

the down converted light [26,27]

∂zâ(Ω, z) = i[k(Ω) − k0]â(Ω, z) + σâ†(−Ω, z), (2.5)

where |σ| is proportional to the length L of the crystal the χ(2) non linearity and the strength

of the pump. The argument arg(σ) of the coupling constant σ is determined via the phase of

the pump.

Note that the evolution equation (2.5) is formulated in terms of z rather than t. Indeed,

â(Ω, z) can be considered to be in the Heisenberg picture with respect to z as its spatial evolu-

tion can be obtained from a Heisenberg equation of motion as (cf. [48])

∂zâ(Ω, z) = i[Ĥ, â(Ω, z)], (2.6)

with the Hamiltonian (in the Schrödinger picture) Ĥ = Ĥ0 + Ĥint, where

Ĥ0 =
1

2

∫

dΩ [k(Ω) − k0]
{

â†(Ω)â(Ω) + â(Ω)â†(Ω)
}

,

Ĥint =
σ

2i

∫

dΩ â†(Ω)â†(−Ω) + H.c.. (2.7)

Here, H0 describes propagation, whilst Ĥint describes the effect of nonlinear interaction inside

the crystal. Thus, the roles of time t and distance covered z can be considered reversed in the

quantum description and we will apply the methods of ME as discussed in Sec. 1.4 to study

ordering effects in terms of z rather than t.

We shall use another operator, ǫ̂(Ω, z), defined by the relation [26]

â(Ω, z) = ǫ̂(Ω, z)ei(k(Ω)−k0)z,. (2.8)

The operator ǫ̂(Ω, z) is convenient for the description of the nonlinear interaction inside the

crystal and is a quantum-mechanical analog of the classical slowly-varying amplitude (cf. [120]).

The evolution of the down-converted wave in the crystal is described by the equation [26,120]

∂z ǫ̂(Ω, z) = σei∆(Ω)z ǫ̂†(−Ω, z), (2.9)

with the initial condition ǫ̂(Ω, 0). Here,

∆(Ω) = kp − k(Ω) − k(−Ω) (2.10)
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is the phase-mismatch function such that ∆(Ω = 0) = 0. The passage from â(Ω, z) to ǫ̂(Ω, z)

can be considered a passage to the interaction picture as

∂z ǫ̂(Ω, z) = i[ǫ̂(Ω, z), ˆ̃Hint(z)], (2.11)

where

ˆ̃Hint(z) =
σ

2i

∫

dΩ ei∆(Ω)z ǫ̂†(Ω)ǫ̂†(−Ω) + H.c.. (2.12)

Equation (2.9) describes a process of conversion of a pump photon with the frequency ωp into

signal and idler photons with opposite sideband frequencies Ω and −Ω. Note, that for Ω = 0

Eq. (2.9) becomes z-independent and is degenerate in terms of frequencies, as both operators

in the equation describe the same frequency mode – this case is also depicted in Fig. 2.1.

Indeed, closed form exact solutions to the above evolution equations are already known [26].

However, for the PDC process with non-monochromatic pumps – which we will treat in the sub-

sequent chapter – no analytical solutions are known and one is bound to revert to perturbative

approximations. Thus, we consider here the application of the ME and MAs for the case of a

monochromatic pump. This allows us to compare ordering effects obtained by MA with the

analytical solutions. The following analysis can thus be considered a benchmark of the utility

of the methods of ME in the context of PDC. The work we present in this chapter, for the ap-

plication of the Magnus expansion and Bloch Messiah decomposition to the PDC process with

a monochromatic pump, has also been published in Refs. [24,58].

2.1 Explicit solution of the dynamics

The solution of Eq. (2.9) has the form of a Bogoliubov transformation [26],

ǫ̂(Ω, L) = A(Ω)ǫ̂(Ω, 0) + B(Ω)ǫ̂†(−Ω, 0), (2.13)

with the complex coefficients A(Ω) and B(Ω) given by [26]

A(Ω) = ei∆L/2
[

cosh (ΓL) − i
∆

2Γ
sinh (ΓL)

]

,

B(Ω) = ei∆L/2 σ

Γ
sinh (ΓL) , (2.14)

where Γ =
√

|σ|2 − (∆/2)2. At perfect phase-matching, where ∆(Ω) = 0, and in the band of

frequencies around this frequency, Γ is real. Outside this band Γ is purely imaginary and the

hyperbolic functions in Eq. (2.14) become trigonometric. Thus, outside of this band of real

Γ we expect oscillatory behavior. Note, that the frequency detuning Ω enters Eq. (2.14) only
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through ∆(Ω) which is an even function. Therefore, the functions A(Ω) and B(Ω) are also

even.

The sideband operator undergoes a similar Bogoliubov transformation

â(Ω, L) = U(Ω)â(Ω, 0) + V (Ω)â†(−Ω, 0), (2.15)

where

U(Ω) = A(Ω)ei(k(Ω)−k0)L, V (Ω) = B(Ω)ei(k(Ω)−k0)L. (2.16)

The Bogoliubov transformation(2.15) is fully characterized by four real parameters. In-

deed, Eq. (2.15) together with its Hermite conjugate with opposite detuning −Ω is described

by four complex numbers U(±Ω), V (±Ω). The unitarity of the Bogoliubov transformation

imposes four real conditions |U(±Ω)|2 − |V (±Ω)|2 = 1, and U(Ω)/V (Ω) = U(−Ω)/V (−Ω)

(the last complex equation provides two real conditions), so that only four real parameters re-

main. These four real parameters can be defined through the squeezing parameter, and three

characteristic angles [26]

r(Ω) = ln (|U(Ω)| + |V (Ω)|) , (2.17)

ψL(Ω) =
1

2
arg [U(Ω)V (−Ω)] , (2.18)

ψ0(Ω) =
1

2
arg
[

U−1(Ω)V (Ω)
]

, (2.19)

κ(Ω) =
1

2
arg
[

U(Ω)U−1(−Ω)
]

, (2.20)

where the first three parameters are even functions of Ω, while the fourth one is odd.

To understand the physical meaning of these parameters we consider the eigenquadrature

operators for each pair of modes with opposite detunings [26]

X̂1(Ω, z) = â(Ω, z)e−iψz(Ω) + â†(−Ω, z)eiψz(Ω),

X̂2(Ω, z) = −i
[

â(Ω, z)e−iψz(Ω) − â†(−Ω, z)eiψz(Ω)
]

. (2.21)

For z = 0, Eq. (2.21) defines the eigenquadrature operators X̂j(Ω, 0), j = 1, 2 at the input of

the crystal, and for z = L it defines the eigenquadrature operators X̂j(Ω, L), j = 1, 2 at its

output. In terms of these eigenquadratures the transformation (2.15) can be rewritten in the

form

X̂j(Ω, L) = e±r(Ω)+iκ(Ω)X̂j(Ω, 0), (2.22)
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where the upper(lower) sign corresponds to j = 1(j = 2). It follows from Eq. (2.22) that

the quadrature X̂2(Ω, L) is squeezed below the standard quantum limit, while the conjugate

quadrature X̂1(Ω, L) is stretched above that limit. The squeezing parameter r(Ω) determines

the degree of squeezing at the output of the crystal. The angle of squeezing ψL(Ω) and the

seeding angle ψ0(Ω) are due to the nonlinear interaction and determine the choice of the

coordinate axes on the complex plane for the eigenquadrature components at the output and

input of the nonlinear crystal, respectively.

The last parameter κ(Ω) in our case of even A(Ω) and B(Ω) is independent of the nonlinear

properties of the crystal and is given by

κ(Ω) =
1

2
[k(Ω) − k(−Ω)] L ≈ τgΩ, (2.23)

where τg = L/vg is the characteristic time during which the down-converted wave travels

through the crystal at the group velocity vg = 1/k′(0). Thus, the angle κ(Ω) describes the

effect of the group delay due to crystal dispersion. Substituting Eq. (2.14) into Eqs. (2.16),

(2.18), and (2.19), and denoting ϕ = arg σ, we obtain

ψL(Ω) = ϕ − ψ0(Ω)

=
ϕ

2
+

1

2
arg

[

cosh (ΓL) − i∆

2Γ
sinh (ΓL)

]

+
1

2
arg

[
1

Γ
sinh (ΓL)

]

. (2.24)

This equation indicates that due to the symmetry of our system, two angles ψL(Ω) and ψ0(Ω)

are not independent. Therefore, in what follows we shall provide results only for the angle

ψL(Ω) at the output of the crystal. It is worth noting that this symmetry manifests itself due to

particular choice of our PDC scheme, and is not necessarily present in all PDC processes. For

example, for PDC in aperiodically poled quasi-phase-matched crystals this additional symmetry

is lifted, and the angles ψL(Ω) and ψ0(Ω) become independent [43,44].

In the case of vacuum input the correlation function of the squeezed quadrature component

X2(Ω, L) at the output of the crystal can be evaluated using Eqs. (2.15)-(2.22) and is given by

〈X̂2(Ω, L)X̂2(Ω′, L)〉 = s(Ω)δ(Ω + Ω
′), (2.25)

where

s(Ω) = exp[−2r(Ω)] (2.26)

is known as the spectrum of squeezing. The spectrum of squeezing together with the angle of

squeezing are shown in Fig. 2.2 as functions of the phase-mismatch angle θ(Ω) = ∆(Ω)L/2.

The amplitude of the pump is characterized by the parametric gain exponent g = |σ|L.
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Figure 2.2: Graphs of (a) the spectrum of squeezing s(Ω) and (b) the angle of squeezing ψL(Ω) as functions

of the phase mismatch angle θ(Ω) for the exact solution. The gain exponent is g = 1.84. The phase of the

pump is chosen so that ϕ = 0. The gray area indicates the band, where Γ is real. Figure as presented in

Ref. [24] with a modified plotrange.

The angle in Fig. 2.2b – and in all subsequent Figures of this chapter – is the continuous

version of the angle of squeezing ψL(Ω). The original angle of squeezing ψL(Ω) in Eq. (2.18)

experiences a jump of π/2 at the frequencies Ω where r(Ω) = 0. In Fig. 2.2b we have corrected

for this jump in order to make the ψL(Ω) a continuous function. In other words, the continuous

version of ψL(Ω) corresponds to the stretched quadrature between the odd and the even zeros

of r(Ω).

From Fig. 2.2a, we see that squeezing is maximal for perfect phase matching when the

phase-mismatch angle is zero, θ(Ω) = 0. For increasing mismatch it shows oscillations, de-

creasing in magnitude until disappearing completely for very large values of θ(Ω) (not shown in

Fig. 2.2a). The angle of squeezing decreases monotonously with θ(Ω) approaching its asymp-

totic value ψL(Ω) → −θ(Ω)/2.

2.2 Matrix formulation

The theory of PDC, as recapitulated in the previous section, can be formulated in a compact

matrix form which will allow us to perform the Bloch-Messiah decomposition and the ME. We

collect the slowly-varying operators ǫ̂(Ω) and ǫ̂(−Ω) as well as the sideband operators â(Ω, z)

and â(−Ω, z) in a column vector as

â(z) =












â(Ω, z)

â(−Ω, z)

â†(Ω, z)

â†(−Ω, z)












, ξ̂(z) =












ǫ̂(Ω, z)

ǫ̂(−Ω, z)

ǫ̂†(Ω, z)

ǫ̂†(−Ω, z)












, (2.27)
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which are connected according (2.8) to a(z) = Φzξ(z), where the unitary matrix Φz is defined

as follows

Φz = diag{eiδk(Ω)z, eiδk(−Ω)z, e−iδk(Ω)z, e−iδk(−Ω)z}, (2.28)

with δk(Ω) = k(Ω) − k0. Here and below, when it does not lead to ambiguity, we shall omit

the arguments Ω and −Ω in order to simplify the notations. This vector notation allows us to

rewrite Eq. (2.9) in a matrix form

∂z ξ̂(z) = −iF(z)ξ̂(z). (2.29)

The coupling matrix F is given by

F(z) =






0 iσei∆zP

iσ∗e−i∆zP 0




 , (2.30)

where

P =






0 1

1 0




 . (2.31)

The operators ξ̂
out

at the output of the crystal, z = L, are related with the operators ξ̂
in

at

its input, z = 0, by a linear matrix transformation, ξ̂
out

= Sξ̂
in

, with the matrix S given by

S =






A(Ω)I B(Ω)P

B(Ω)∗P A(Ω)∗I




 . (2.32)

This linear transformation preserves the commutator relations of the operators ξ̂
in

and, there-

fore, the matrix S is a complex symplectic matrix [109], satisfying the relation SKS† = K [see

also (1.52)], with

K =






I 0

0 −I




 . (2.33)

In terms of the sideband operators the exact solution is written as âout = S̃âin, where the

complex symplectic matrix S̃ = ΦLS is expressed through the four real parameters given by
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Eqs. (2.17)-(2.20) as

S̃ =






ei(ψL−ψ0) cosh(r)Λ ei(ψL+ψ0) sinh(r)ΛP

e−i(ψL+ψ0) sinh(r)Λ∗P ei(ψ0−ψL) cosh(r)Λ∗




 , (2.34)

where

Λ =






eiκ 0

0 e−iκ




 . (2.35)

Equation (2.34) is the complex symplectic representation of the Bogoliubov transformation

Eq. (2.15).

2.2.1 Bloch-Messiah decomposition

The Bloch-Messiah decomposition in our case consists in factorization of the symplectic matrix

S̃ in a product of three matrices [112],

S̃ = VD(r)W†, (2.36)

with the unitary 4 × 4 matrices V and W that have the following structure

V =






V 0

0 V ∗




 , W =






W 0

0 W ∗




 , (2.37)

where the 2 × 2 matrix blocks V and W are defined as

V =
eiψL

√
2






eiκ 0

0 e−iκ











1 i

1 −i




 , W =

eiψ0

√
2






1 i

1 −i




 . (2.38)

The three characteristic angles are taken at the detuning Ω. The real 4×4 matrix D(r) is given

by

D(r) =






cosh (r) I sinh (r) I

sinh (r) I cosh (r) I




 = exp






0 rI

rI 0




 , (2.39)

where again r is taken at detuning Ω.
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2.2.2 Squeezing eigenmodes

The Bloch-Messiah decomposition allows us to define the squeezing eigenmodes for the output

field by the relation1,






b̂c(Ω)

b̂s(Ω)




 = V †






â(Ω, L)

â(−Ω, L)




 =

e−iψL

√
2






â(Ω, L)e−iκ + â(−Ω, L)eiκ

−iâ(Ω, L)e−iκ + iâ(−Ω, L)eiκ




 . (2.40)

According to Eq. (2.36) the annihilation operators of these modes are expressed as

b̂c(Ω) = cosh(r)b̂in;c(Ω) + sinh(r)b̂†
in;c(Ω),

b̂s(Ω) = cosh(r)b̂in;s(Ω) + sinh(r)b̂†
in;s(Ω), (2.41)

via the input seed modes b̂in;c(Ω) and b̂in;s(Ω), defined as






b̂in;c(Ω)

b̂in;s(Ω)




 = W †






â(Ω, 0)

â(−Ω, 0)




 =

e−iψ0

√
2






â(Ω, 0) + â(−Ω, 0)

−iâ(Ω, 0) + iâ(−Ω, 0)




 . (2.42)

We can see from Eq. (2.41), that the eigenmodes described by b̂c,s(Ω) are squeezed along the

same direction in phase space with the same degree of squeezing r(Ω).

We can define the Hermitian operators for the generalized “position” and “momentum” of

the squeezing eigenmodes

q̂c,s(Ω) = b̂c,s(Ω) + b̂†
c,s(Ω), p̂c,s(Ω) = −ib̂c,s(Ω) + ib̂†

c,s(Ω),

q̂in;c,s(Ω) = b̂in;c,s(Ω) + b̂†
in;c,s(Ω), p̂in;c,s(Ω) = −ib̂in;c,s(Ω) + ib̂†

in;c,s(Ω). (2.43)

The transformation of the operators, defined by Eq. (2.41) in the nonlinear crystal, corresponds

to single-mode squeezing

q̂c,s(Ω) = er(Ω)q̂in;c,s(Ω), p̂c,s(Ω) = e−r(Ω)p̂in;c,s(Ω). (2.44)

Thus, the transformation of the operators, defined by Eq. (2.43) in the nonlinear crystal can

be interpreted as modulation of quantum fluctuations in the nonlinear interaction [26]. Using

the Hermitian operators (2.43) we can express the non-Hermitian quadrature operators in

1Note that b̂c,s(Ω) is defined for positive Ω only. Negative Ω < 0 should not be considered for these operators

as b̂c(Ω) = b̂c(−Ω) and b̂s(Ω) = −b̂s(−Ω), i.e., this would lead to a double coverage of the phase space. This

should be kept in mind in all following calculations
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Eq. (2.21) as

X̂1(Ω, L) = eiκ q̂c(Ω) + iq̂s(Ω)√
2

, X̂2(Ω, L) = eiκ p̂c(Ω) + ip̂s(Ω)√
2

,

X̂1(Ω, 0) =
q̂in;c(Ω) + iq̂in;s(Ω)√

2
, X̂2(Ω, 0) =

p̂in;c(Ω) + ip̂in;s(Ω)√
2

. (2.45)

We see that the quadrature operator X̂1(Ω, L) combines the position operators of two squeez-

ing eigenmodes, while the quadrature operator X̂2(Ω, L) combines their momentum operators.

If we consider a vacuum input we obtain2

〈∆p̂c,s(Ω)∆p̂c,s(Ω′)〉 = 〈p̂c,s(Ω)p̂c,s(Ω′)〉 = s(Ω)δ(Ω − Ω
′),

〈∆q̂c,s(Ω)∆q̂c,s(Ω′)〉 = 〈q̂c,s(Ω)q̂c,s(Ω′)〉 =
1

s(Ω)
δ(Ω − Ω

′). (2.46)

Let us stress the difference between the modes described by the operators â(Ω, L) and

â(−Ω, L) from the eigenmodes described by the operators b̂c(Ω) and b̂s(Ω): The first ones

are in a two-mode squeezed state and, therefore, entangled, while the second ones are each

in a single-mode squeezed state and therefore statistically independent (see also the discussion

of two-mode squeezing in Sec. 1.3.5). This is the reason why we call these modes squeezing

eigenmodes. The modal functions of the electric field operator corresponding to these squeezing

eigenmodes, fc(t, z|Ω) and fs(t, z|Ω), are given by






fc(t, z|Ω)

fs(t, z|Ω)




 = V †






eiΩt

e−iΩt






e−i(k0z−ω0t)

√
2π

=
e−i(k0z−ω0t+ψL)

√
π






cos [(Ω − κ)t]

sin [(Ω − κ)t]




 . (2.47)

The spectral profiles of these modes include two delta-functions at the frequencies ω0 − Ω and

ω0 + Ω. Thus, the squeezing eigenmodes are bichromatic. We note that the modal functions,

Eq. (2.47), are the functions of time t and the longitudinal coordinate z, while the frequency

Ω and the indices c, s serve as the mode markers, equivalent to an integer index in the case of

discrete modes.

In conclusion, we have defined the squeezing eigenmodes and demonstrated that the group

delay dispersion parameter κ(Ω) and the squeezing angle ψL(Ω) define the modal functions in

which single mode squeezing is present, while the squeezing parameter r(Ω) determines the

degree of squeezing. The last parameter ψ0(Ω) defines the modal functions of the input seed

modes






fin;c(t, z|Ω)

fin;s(t, z|Ω)




 = W †






eiΩt

e−iΩt






e−i(k0z−ω0t)

√
2π

=
e−i(k0z−ω0t+ψ0)

√
π






cos (Ωt)

sin (Ωt)




 . (2.48)

2Here, we use the standard notation ∆q̂c,s(Ω) = q̂c,s(Ω) − 〈q̂c,s(Ω)〉 and ∆p̂c,s(Ω) = p̂c,s(Ω) − 〈p̂c,s(Ω)〉.
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Seeding the PDC process with a quantum state in the fin;c(t, z|Ω)(fin;s(t, z|Ω)) field mode will

yield the corresponding squeezed sate in the fc(t, z|Ω)(fs(t, z|Ω)) field mode at the output of

the nonlinear crystal. Thus, knowledge of the modal functions of the input seed modes (2.48)

provides for the deliberate preparation of quantum states that are squeezed at the output of

the nonlinear crystal. In the following we will analyze how these parameters are affected by

ordering effects in different order of MA.

2.3 Approximations in terms of the Magnus expansion

The monochromatic pump case is the only case of pump configuration in PDC where we have

access to an analytical solution. Thus, it can serve as an important case to benchmark the

quality of approximation in PDC in terms of the ME. In analogy to (1.99) we can represent the

solution of (2.29) as

S = exp (−iM) , −iM =
∞∑

ℓ=1

(−i)ℓ
Mℓ, (2.49)

where the longitudinal coordinate z takes the role of the time parameter in the perturbative

expansion (cf. Sec.1.4.3). As the crystal length is usually a fixed parameter we also omit the

length L as a parameter. The first three terms in Eq. (2.49) are

M1 =

L∫

0

dz F(z), (2.50)

M2 =
1

2

L∫

0

dz1

z1∫

0

dz2 [F(z1), F(z2)], (2.51)

M3 =
1

6

L∫

0

dz1

z1∫

0

dz2

z2∫

0

dz3 {[F(z1), [F(z2), F(z3)]] + [F(z3), [F(z2), F(z1)]]} . (2.52)

By keeping the first k terms in the ME given by (2.49), we obtain an approximation, i.e., the

MA of the kth order

Sk = exp

{
k∑

ℓ=1

(−i)ℓ
Mℓ

}

. (2.53)

A remarkable property of this approximation in the context of PDC is the symplectic struc-

ture of the approximate transformation matrix Sk for any k. That the symplectic structure

remains preserved follows from the Lie algebra structure of operators quadratic in annihila-

tion creation operators. This property of Sk implies conservation of the commutation relations
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for the creation and annihilation operators of the field for each order k. This feature of the

MA represents a great advantage as compared to other approximate methods such as, e.g.,

the Dyson expansion (see also Sec. 1.4.1). In particular, it will guarantee that for a coherent

input state to the PDC process the output state for each order k of the MA will be a squeezed

coherent state with the respective four real parameters defined above.

Therefore, for each order k of the MA we shall define a respective symplectic matrix S̃k =

ΦLSk, for the transformation of the sideband operators, which can be parameterized by four

real parameters {rk(Ω), ψL,k(Ω), ψ0,k(Ω), κk(Ω)}, similarly to the parametrization of the exact

solution in Eq. (2.34).

By the sufficient criterion (1.101) in terms of the spectral norm ‖ · · · ‖2 we can guarantee

convergence as long as

L∫

0

dz‖F(z)‖2 < π. (2.54)

From Eq. (2.30), we find that the maximal eigenvalue of F(z)†F(z) is |σ|2 and, therefore,

‖F(z)‖2 = |σ|. This value provides the upper bound of Eq. (2.54) as g = π, corresponding

to 27 dB of maximum squeezing. In reality, such a degree of squeezing would require the

exceedingly high pump intensity and would invalidate the undepleted-pump approximation of

our model. The record value of squeezing in the cw regime at present is 15 dB [42]. Even

if the limit of 27 dB for squeezing does not seem to be attainable experimentally in the near

future, the theory allows us to use this value as the limit of convergence of the ME.

The first-order MA is obtained by keeping only the term M1 in Eq. (2.49), which is equiv-

alent to neglecting the z-ordering in the z-ordered exponent S = T exp
(

−i
∫ L

0 dz F(z)
)

. Sub-

stituting Eq. (2.30) into Eq. (2.50), and performing the integration we obtain

−iM1 =






0 b1ei(ϕ+θ)P

b1e−i(ϕ+θ)P 0




 , (2.55)

where b1 = g sinc(θ). Evaluating the exponent of Eq. (2.55) in terms of its power series and

summing up even and odd powers separately, we arrive at

S1 = e−iM1 =






I cosh(b1) Pei(ϕ+θ) sinh(b1)

Pe−i(ϕ+θ) sinh(b1) I cosh(b1)




 . (2.56)
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The symplectic matrix S1 determines the transformation of the slowly-varying amplitudes ξ̂(z).

Passing to the symplectic matrix S̃1 for the sideband operators â(z) yields

S̃1 =






e−iθ
Λ cosh(b1) ΛPeiϕ sinh(b1)

Λ
∗Pe−iϕ sinh(b1) eiθ

Λ
∗ cosh(b1)




 . (2.57)

Comparing Eq. (2.57) with Eq. (2.34), we conclude that in the first-order MA the parameter

κ(Ω) is the same as in the exact solution and that the relation ψ0,1(Ω) = ϕ − ψL,1(Ω) holds as

well. As for the other two parameters, characterizing the Bogoliubov transformation, they are

different,

r1(Ω) = g|sinc(θ)|, (2.58)

ψL,1(Ω) =
1

2
(ϕ − θ) +

1

2
arg[sinc(θ)]. (2.59)

We remind that the phase-mismatch angle θ(Ω) is a function of the frequency Ω, as defined in

Sec. 2.1.

In the second-order MA we keep the two first terms M1 and M2 in Eq. (2.49). For calcu-

lating the second term M2 we evaluate the commutator

[F(z1), F(z2)] = 2i|σ|2 sin (∆(Ω)(z2 − z1)) K. (2.60)

Subsequently integrating the commutator according to Eq. (2.51), we obtain

M2 =
g2

2i
[j0(θ) sin(θ) − j1(θ) cos(θ)] K. (2.61)

Here, jm(θ) are the spherical Bessel functions, i.e., j0(θ) = sinc(θ), j1(θ) = [sinc(θ)− cos(θ)]/θ,

etc.

Evaluating the exponent of −iM1 − M2 and multiplying the result by ΦL we obtain the

second-order approximation of the symplectic matrix

S̃2 =






U2 V2

V ∗
2 U∗

2




 , (2.62)

where the 2 × 2 matrix blocks U2 and V2 are defined as

U2 = Λe−iθ
(

cosh(γ2) +
ia2

γ2
sinh(γ2)

)

, V2 = ΛPeiϕ b2

γ2
sinh(γ2), (2.63)
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with Λ as defined in Eq. (2.35) and

a2 =
g2

2
[j0(θ) sin(θ) − j1(θ) cos(θ)] , b2 = gj0(θ),

γ2 =
√

b2
2 − a2

2. (2.64)

We observe from Eq. (2.63) that the phase of V2 is equal to ϕ and that γ2 may become

imaginary if |a2| > |b2|, but sinh(γ2)/γ2 is always real. Therefore, the relation ψ0,2(Ω) =

ϕ − ψL,2(Ω) holds in the second-order approximation as well. Comparing Eq. (2.62) with

Eq. (2.34), we also conclude that the parameter κ in the second-order approximation is that

of the exact solution, κ2(Ω) = κ(Ω). The two remaining parameters read as

r2(Ω) = ln

{∣
∣
∣
∣cosh(γ2) +

ia2

γ2
sinh(γ2)

∣
∣
∣
∣+

∣
∣
∣
∣

b2

γ2
sinh(γ2)

∣
∣
∣
∣

}

,

ψL,2(Ω) =
ϕ

2
− θ

2
+

1

2
arg

[

cosh(γ2) +
ia2

γ2
sinh(γ2)

]

+
1

2
arg(b2) +

1

2
arg

[
sinh(γ2)

γ2

]

. (2.65)

In the third-order MA we keep the first three terms M1, M2, and M3 in Eq. (2.49). After

evaluating the corresponding commutators and performing the integration, we obtain

M3 =
g3

6i

[

j0(θ) + j2(θ) − j3
0(θ)

]






0 ei(ϕ+θ)P

e−i(ϕ+θ)P 0




 , (2.66)

and

S̃3 =






U3 V3

V ∗
3 U∗

3




 , (2.67)

with the 2 × 2 matrix blocks U3 and V3 defined as

U3 = Λe−iθ
(

cosh(γ3) +
ia3

γ3
sinh(γ3)

)

, V3 = ΛPeiϕ b3

γ3
sinh(γ3), (2.68)

where

a3 =
g2

2
[j0(θ) sin(θ) − j1(θ) cos(θ)] , b3 = gj0(θ) +

g3

6

[

j0(θ) + j2(θ) − j3
0(θ)

]

,

γ3 =
√

b2
3 − a2

3. (2.69)

We observe that the relations ψ0,3(Ω) = ϕ − ψL,3(Ω), κ3(Ω) = κ(Ω) hold in the third-order

approximation as well, and that the other two parameters are given by equations, similar to

Eqs. (2.65). We remind that the corrections of the MA higher than the first-order are due to
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non-zero commutators of the matrix F(z) with itself at different points z. Thus, deviations

from the first-order MA are the manifestations of this non-commutativity, i.e., ordering effects.

2.3.1 Comparison of Magnus approximations

With the closed form expressions for the MAs above, we can benchmark the quality of ap-

proximation with respect to the exact solution. This is of particular interest with respect to

the analysis in the subsequent chapter, where we allow for non-monochromatic pumps and no

such exact solution exists. The monochromatic pump model can be obtained as a limit case

of the broad spectral (i.e., non-monochromatic) pump model, in the limit of vanishing pump

widths. It can thus be expected, that observations made on the quality of approximation re-

main qualitatively valid for the case of broadband pumps. Moreover, as we have shown above,

do ordering effects manifest themselves in modifications of the spectrum of squeezing s(Ω)

and the angle of squeezing ψL(Ω). This allows for a convenient visualization of the quality of

MAs in terms of these two parameters.

In Fig. 2.3 we compare the frequency dependence of the spectrum of squeezing s(Ω) and

the angle of squeezing ψL(Ω) for the exact solution, obtained in Sec. 2.1, and the three first

orders of MA at three different orders of gain g = 0.7, 1.8, 3, corresponding to 6, 16, and 26

dB of maximum squeezing obtained for perfect phase matching, respectively. Since frequency

enters only via the phase-mismatch angle θ(Ω), we use this angle as abscissa for the figures.

We assume that the phase of the pump is chosen so that ϕ = 0. We remind the reader that

the angle in Figs. 2.3b, 2.3d, and 2.3f is the continuous version of the angle of squeezing, as

discussed in Sec. 2.1.

At the lowest considered gain (g = 0.7 =6 dB) in Fig. 2.3a and Fig. 2.3b all three approxi-

mations coincide and reproduce the exact behavior. Thus, here a first-order MA would suffice

and one can consider this a low-gain regime. However, note that with a maximum squeezing

of 6 dB we are already in a regime that exceeds a single photon interpretation .

Figure 2.3c illustrates that the first-order MA for the considered gain (g = 1.8 =16 dB)

gives rather poor approximation for the exact solution. Moreover, the second-order approxi-

mation does not improve this difference, and only in the third-order the approximate solution

approaches the exact one. With the angle of squeezing, shown in Fig. 2.3d, the situation is dif-

ferent: it is also rather far from the exact solution in the first approximation, but becomes much

closer to the exact one already in the second-order approximation. Thus, for a monochromatic

pump the even orders of the ME mainly correct the angle of squeezing, while the odd orders

mainly correct the degree of squeezing. We may conjecture that this behavior is applicable for

higher orders as well and generally for the non-monochromatic pump.
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Exact 1st MA 2nd MA 3rd MA

Figure 2.3: The squeezing spectrum sk (a,c,e) and the squeezing angle ψL,k (b,d,f) for the first order k = 1
(green, dashed), second order k = 2 (blue, dotted), and third order k = 3 (red, dot-dashed) MA compared to

the exact solution k = 0 (black, solid) at g = 0.7 = 6 dB (a&b), g = 1.8 = 16 dB (c&d), and g = 3 = 26 dB
(e&f). Figure as presented in Ref. [58]; here we have additionally illustrated the band where Γ by a gray area.

Lastly, we may turn our attention to the highest considered gain (g = 3 =26 dB) in Fig. 2.3e

and 2.3f. Here we can see that the first three orders of MA fail to reproduce the exact behavior.

However, the approximation seems to improve for larger phase-mismatch angles. Indeed, for

frequencies Ω where ∆(Ω) → ±∞, we can easily find r, rk → 0, ψL, ψL,k → ψL,1, i.e., these

parameters coincide with those of the exact solution at ∆(Ω) → ±∞. Correspondingly, for the

frequencies Ω of the perfect phase matching, where ∆(Ω) = 0, one can easily find rk = g = r

and ψL,k = ψL. This asymptotic behavior at Ω = 0 and Ω → ±∞ is illustrated in Fig. 2.4.

Thus, for PDC any order of approximation will yield the correct limiting behavior [24], which

can be considered an advantage of this approximation method.
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Exact 1st MA 2nd MA 3rd MA

Figure 2.4: The squeezing spectrum sk (a) and the squeezing angle ψL,k at g = 3 = 26 dB (b) for the first

order k = 1 (green, dashed), second order k = 2 (blue, dotted), and third order k = 3 (red, dot-dashed) MA

compared to the exact solution k = 0 (black, solid) for a wide range of the phase mismatch-angles θ. Figure

as presented in Ref. [58]; here we have additionally illustrated the band where Γ is real by a gray area.

2.3.2 Generic estimate for the applicability of the first-order approximation

It should be noted that a significant difference between the exact solution and the first-order

MA appears only for rather high values of the gain exponent g. For g < 1.15, corresponding

to squeezing below 10 dB, this difference is hardly visible. Thus, the first-order MA can be

effectively used in the regimes of the high-gain PDC where the maximal degree of squeezing is

below a certain value. Above this limit the first-order approximation is not valid, and the higher

orders of MA should be taken into account. We shall call a regime of PDC above this limit

of squeezing ultra-high-gain PDC. The boundary for this regime depends on the acceptable

error in the degree of squeezing. One possibility for giving such a definition is related to the

distance between the first zeros of the degree of squeezing in the exact solution r(Ω) and its

first-order approximation r1(Ω), corresponding to the points s(Ω) = 1 in Fig. 2.3. It follows

from Eq. (2.17) that the first zero of r(Ω) corresponds to the frequency where B(Ω) = 0. From

Eq. (2.14), we find that this is the frequency where ΓL = iπ or θ =
√

g2 + π2 = θ0. From

Eq. (2.58), we obtain the first zero of r1(Ω) as θ1 = π. The relative distance can be defined as

d = (θ0 − θ1)/θ1 =
√

(g/π)2 + 1 − 1. For tolerable relative distance of 10% we have g ≤ 1.44,

which corresponds to 12.5 dB of maximal squeezing. Thus, for PDC with a monochromatic

pump we can accept the value of 12.5 dB of maximal squeezing as the boundary between the

high-gain and the ultra-high-gain regimes. The numerical study of Ref. [16] shows that for

pulsed PDC this boundary is about 12 dB of squeezing, which is compatible with our analytical

result. In Chapter. 5 we will take a more detailed look at the convergence of the MA.
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2.3.3 Homodyne detection of down-converted light

To see the impact of time ordering corrections in a measurement context let us consider the

scenario in which broadband squeezed light from PDC is usually observed: Balanced homo-

dyne detection (cf. [2]). In this measurement scheme a strong local oscillator field E
(+)
LO (t, z) is

is mixed on a 50:50 beam splitter with the measured field Ê(+)(t, z). The corresponding beam

splitter transformation can be written as






Ê
(+)
1 (t)

Ê
(+)
2 (t)




 =

1√
2






1 1

−1 1











Ê(+)(t, L)

E
(+)
LO (t, L)




 . (2.70)

The intensity of the two output beams are detected by photodetectors of equal quantum ef-

ficiency, η, and the observed quantity is the difference photocurrent collected from two pho-

todetectors, which we simply call photocurrent and denote î(t). For simplicity we limit all our

studies to vacuum input, i.e., the measured state is a squeezed vacuum. In that case the mean

value 〈̂i(t)〉 is zero [26] and we write the experimentally observed quantity of photocurrent

fluctuation δî(t) = î(t) − 〈̂i(t)〉 as

δî(t) = η
[

Ê
(−)
1 (t)Ê

(+)
1 (t) − Ê

(−)
2 (t)Ê

(+)
2 (t)

]

= ηE
(−)
LO (t, L)Ê(+)(t, L) + H.c.. (2.71)

If we consider the local oscillator as as a monochromatic field at the carrier frequency of the

down-converted light E
(+)
LO (t, z) = E0ei[k0z−ω0t], with E0 = |E0|eiβ, the autocorrelation function

of photocurrent fluctuation for vacuum input reads as

1

η2
〈δî(t)δî(t − τ)〉 = |E0|2δ(t − t′) + |E0|2

∫
dΩ√
2π

e−iΩt
∫

dΩ
′

√
2π

e−iΩ′t′)τ 〈:X̂(Ω, L)X̂(Ω′, L):〉,

(2.72)

where colons : · · · : denote the normal ordering prescription and

X̂(Ω, L) = e−iβ â(Ω, L) + eiβ â†(−Ω, L)

= X̂1(Ω, L) cos[ψL(Ω) − β] − X̂2(Ω, L) cos[ψL(Ω) − β]. (2.73)

is the Fourier transform of the measured field quadrature. The first term on the right-hand side

of Eq. (2.72) represents the shot noise, while the second one is proportional to the autocorre-

lation function of the normally ordered measured field quadrature.

Note, that the down-converted field is stationary in time and thus the autocorrelation func-

tion 〈δî(t)̂i(t′)〉 only depends of the difference of times τ = t − t′. The Fourier transform over



46 Parametric down-conversion with a monochromatic pump

this time-difference τ defines the the photocurrent spectral density [98]

(δi)2
Ω =

∫

dτeiΩτ 〈δî(t)δî(t′)〉, (2.74)

which for the considered case of vacuum input evaluates to [24]

(δi)2
Ω = η2|E0|2

[

e2r(Ω) cos2(ψL(Ω) − β) + e−2r(Ω) sin2(ψL(Ω) − β)
]

, (2.75)

where β = arg(E0) is the phase of the local oscillator. The effect of squeezing manifests itself

as reduction of the fluctuations of photocurrent below the shot-noise level |E0|2 for particular

choice of the phase of the local oscillator. The photon flux of the strong local oscillator is

accepted to be much higher than that of the measured field, |E0|2 ≪ 〈Ê(−)(t, L)Ê(+)(t, L)〉
such that for unit quantum efficiency the shot noise level can be obtained from the mean sum

of photocurrents of the two detectors 〈i+〉 = η|E0|2.

Exact 1st MA 2nd MA 3rd MA

Figure 2.5: The normalized photocurrent noise spectrum for balanced homodyne detection of the down-

converted light obtained from exact solution and three first orders of the MA. The gain exponents are chosen

as (a) g = 0.7, corresponding to 6 dB of the maximal squeezing and (b) g = 1.84, corresponding to 16 dB of

the maximal squeezing. The gray area indicates the band, where Γ is real. Perfect quantum efficiency, η = 1,

is considered. Figure as presented in Ref. [24].

It is, very interesting to see the effect of different orders of the MA on the experimentally

observable quantity (2.75). We assume perfect quantum efficiency, such that 〈i+〉 = |E0|2.

Then, assuming that β can be chosen such that ψL(Ω) − β = π/2 for the frequency Ω of perfect

phase matching, where θ(Ω) = 0 and squeezing is maximal, we can obtain the normalized

photocurrent noise spectrum,

(δi)2
Ω/〈i+〉 =

[

e2r(Ω) sin2[ψL(Ω)] + e−2r(Ω) cos2[ψL(Ω)]
]

. (2.76)

In Fig. 2.5 we present the normalized photocurrent noise spectrum for two different values of

g, corresponding to moderate and high degree of squeezing. We can observe that for moderate

levels of squeezing shown in Fig. 2.5a the deviation of all three orders of MA from the exact

solution remains tolerable, while for the high level of squeezing in Fig. 2.5b only the third-
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order MA gives a tolerable approximation for the exact solution. The physical origin of this

effect can be explained as follows: For high level of squeezing the photocurrent noise spectrum

becomes much more sensitive to the errors in the squeezing angle in the corresponding order

of the MA. This errors are responsible for the contribution into the photocurrent noise from

the stretched component of the broadband squeezed state.

2.3.4 Dependence on the gain exponent

In the previous subsections we have considered the dependence of the degree of squeezing

r(Ω), the angle of squeezing ψL(Ω), and the photocurrent noise spectrum on the frequency Ω

for fixed gain exponent g. In this subsection we use a complementary approach and consider

the dependence of the degree of squeezing against the gain exponent g, r(g), for a fixed fre-

quency Ω. The simplest case is for the frequency of the perfect phase matching, ∆(Ω) = 0,

where we have for the exact solution and for all orders of MA, r(g) = g, i. e. a linear de-

pendence on g and, therefore, on the pump amplitude. It is remarkable, that this linearity is

preserved in the first-order MA, as follows from from Eq. (2.58).

In Fig. 2.6 we present the gain dependence of the degree of squeezing for non-zero phase

mismatch, ∆(Ω) �= 0. One can observe a nonlinear dependence of r(g) against g in the exact

solution and a linear one in the first-order MA. Since the difference between the first-order

MA and the exact solution is negligible for g below the boundary of the ultra-high-gain, we

conclude that deviations from linearity in the dependence of r(g) can serve as a signature

of the ultra-high-gain regime. One can also appreciate that the third-order MA improves the

conversion towards the exact solution as compared with the the second-order MA in the gray

area. Above the value of g = π the convergence of the ME is not guaranteed by the sufficient

criterion (2.54).

The dependence of the degree of squeezing on g shown in Fig. 2.6 can be easily measured

experimentally, since the gain exponent g is proportional to the amplitude of the pump wave.

A deviation from the linear dependence can be observed as difference of the parametric gain

for non-zero phase mismatch from the behavior given by µ sinh(νEp), where Ep is the pump

amplitude, and µ and ν are some fitting parameters. Let us mention here that for aperiodically

poled crystals this dependence is different even below the ultra-high-gain regime, and has been

recently observed in the experiment [45].

For better understanding the dependence of the degree of squeezing r(Ω) and its respective

ℓth order MAs rℓ(Ω) on g, we perform the Taylor expansions of rℓ(Ω) in g,

rℓ(Ω) =
∞∑

k=1

r
[k]
ℓ (Ω)

gk

k!
. (2.77)
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Figure 2.6: The degree of squeezing r(Ωc) as function of gain exponent g for ∆(Ω) �= 0. The frequency Ωc is

chosen so that ∆(Ωc)L = π. Four curves correspond to the exact solution r (black, solid), the first-order MA

r1 (green, solid), the second-order MA r2 (blue, dashed), and the third-order MA r3 (red, dotted). The gray

area indicates the region of the ultra-high gain, from g = 1.44 to g = π (12.5 to 27 dB of squeezing). Above

g = π the convergence of the ME is not guaranteed. Figure as presented in Ref. [24].

The analytical expressions for the Taylor coefficients in Eq. (2.77) up to the 4-th order are given

in Tab. 2.1. As follows from this Table, the correct value of the first-order Taylor coefficient

k r[k](Ω) r
[k]
1 (Ω) r

[k]
2 (Ω) r

[k]
3 (Ω)

1 j0(θ) j0(θ) j0(θ) j0(θ)

2 0 0 0 0

3 j0(θ) − j3
0(θ) + j2(θ) 0 0 j0(θ) − j3

0(θ) + j2(θ)

4 0 0 0 0

Table 2.1: The Taylor coefficients for the degree of squeezing r(Ω) and its MAs up to 4th order in the gain

exponent g. We remind that θ(Ω) = ∆(Ω)L/2.

r
[1]
1 (Ω) = r[1](Ω) appears in the first-order MA. The second-order Taylor coefficient for r(Ω)

vanishes, since the latter is an odd function of g. As a result, the second-order MA makes no

correction to the degree of squeezing in the second order of g. This observation corroborates

the result of Ref. [19], where the authors have predicted that for PDC with vacuum input the

second-order MA provides no correction in the second order in g. The third-order MA gives

the correct value of the third-order Taylor coefficient r
[3]
3 (Ω) = r[3](Ω). It can be speculated

that the correct value for the kth Taylor coefficient appears in the kth order of the ME.

A similar decomposition can be written for the angle of squeezing ψL(Ω),

ψL,ℓ(Ω) =
∞∑

k=0

ψ
[k]
L,ℓ(Ω)

gk

k!
, (2.78)

with the corresponding coefficients shown in Tab. 2.2.
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k ψ
[k]
L (Ω) ψ

[k]
L,1(Ω) ψ

[k]
L,2(Ω) ψ

[k]
L,3(Ω)

0 1
2 (ϕ − θ) 1

2 (ϕ − θ) 1
2 (ϕ − θ) 1

2 (ϕ − θ)

1 0 0 0 0

2 ζ(θ) 0 ζ(θ) ζ(θ)

3 0 0 0 0

Table 2.2: The Taylor coefficients for the angle of squeezing ψL(Ω) and its approximations up to 3-rd order

in the gain exponent g. We have introduced a shortcut ζ(θ) = 1
2

(sin(θ)j0(θ) − cos(θ)j1(θ)).

From Table 2.2, we conclude that for the angle of squeezing the correct value of the kth

Taylor coefficient is given by the kth and above orders of the MA, at least for the first 4 orders.

It can be speculated that this dependence holds as well for the higher orders of the ME.
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Chapter 3

Parametric down-conversion with a

non-monochromatic pump
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We now turn our attention to scenario of increased complexity compared to that of type-I

PDC with a monochromatic pump as discussed in chapter 2: The process of type-I PDC with

a broad spectral pump. As we will see, in the case where one considers a broad spectral (i.e.,

non-monochromatic) pump, we are no longer able to find analytical solutions to the evolution

equation within the χ(2) crystal. Thus, the ME becomes itself a tool for the description of the

system. For broad spectral pumps a multitude of frequencies couple in the interaction and thus,

eigenmodes of squeezing attain complex spectral structures, i.e., frequency eigenmodes [112].

The most exciting application of such pulses containing a multitude of squeezing eigenmodes

may be one-way quantum computation protocols (cf. [37]).

Here the ME can yield useful intuition on how the scenario changes at high gain. In

Ref. [16] it has been shown that for the process of broad spectral PDC ordering effect become

relevant at high pump gain and impact the shape of squeezing eigenmodes. In this reference

the first-order MA – in the form of a Dyson series with neglected ordering – has been compared

to numerical solutions of the evolution equations and ordering corrections have not been con-

sidered explicitly. In Ref. [19] the methods of MA have been applied to the type-II PDC process.
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However, the Bloch-Messiah decomposition and the resulting eigenmodes of squeezing where

not considered explicitly therein.

3.1 The model

Figure 3.1: Illustration of the PDC process with broad spectral pumps. The pump pulse (blue) enters the

crystal and the down converted light (red) is generated in a multitude of pulse modes Ψj . The spatial coordi-

nates are chosen such that the z-axis is taken along the propagation direction of the pump in the crystal. Two

different coordinate systems are considered, one where the input surface lays at z = 0 (a) and one where the

input surface lays at z = −L/2 (b).

We consider the scenario of the type-I PDC process with a non-monochromatic plane-wave

pump in a crystal of length L as illustrated in Fig. 3.1. As in the case of monochromatic PDC,

the positive-frequency operator Ê(+)(t, z) of the down converted light normalized to photon-

flux units can be decomposed into Fourier components as

Ê(+)(t, z) =

∫
dΩ√
2π

ei[k0z−(ω0+Ω)t]â(Ω, z), (3.1)

where again ω0 = ωp/2 is the central carrier frequency, k0 is the corresponding wave vector,

Ω is the radio frequency, and â(Ω, z) is the photon annihilation operator with the frequency

ω0 + Ω at position z in the crystal. We will also again make use of the operators [26]

ǫ̂(Ω, z) = e−i[k(Ω)−k0]zâ(Ω, z). (3.2)

We consider a coordinate system such that the input(output) face of the crystal lays at z =

0(z = L). The evolution of the bosonic operators – of the light collinear to the pump propaga-

tion direction in the ordinary mode – is then governed by the equation [27]

∂z ǫ̂(Ω, z) =
g

L

∫

dΩ
′ ei∆(Ω,Ω′)zα(Ω + Ω

′)ǫ̂†(Ω′, z), (3.3)

where α(Ω) is the frequency envelope function of the pump wave,

E(+)
p (t, z) =

1√
2π

∫

dΩ eikp(Ω)z−i(ωp+Ω)tα(Ω), (3.4)
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that is considered undepleted during the propagation though the crystal [i.e., ∀z : ∂zα(Ω) = 0].

The dimensionless gain parameter g depends on pump strength, crystal length, and nonlinear

susceptibility [27]. The pump envelope function α is normalized as

∫

dΩ|α(Ω)|2 = N 2
p = const. , (3.5)

such that the pump strength only enters the evolution equation (3.3) though the gain parame-

ter g. However, in the context of our analysis it will be beneficial to adjust the constant pump

normalization to the first-order MA – this will be specified further below. The spectral shape of

the pump can be engineered in order to modify the generated squeezing eigenmodes and the

degrees of squeezing – see, e.g., Refs. [56, 57]. Pump shape engineering exceeds the scope of

this contribution and we will limit our studies to Gaussian pump shapes.

The phase-mismatch function

∆(Ω, Ω
′) = kp(Ω + Ω

′) − k(Ω) − k(Ω′), (3.6)

determines the efficiency of the parametric process that is described by the integral kernel

f(Ω, Ω
′, z) =

1

L
ei∆(Ω,Ω′)zα(Ω + Ω

′). (3.7)

Note, that the pump-wave-vector dispersion relation depends on the angle θ of the extraordi-

nary pump wave to the optical axis of the crystal and that ∆ is symmetric in its arguments as

∆(Ω, Ω
′) = ∆(Ω′, Ω). Furthermore note that, for α(Ω) = δ(Ω)Lσ/g the evolution equation for

the monochromatic case, described in the preceding chapter, is recovered.

We now consider a change of coordinate system that will simplify later expressions. When

we perform the ME, e.g., in the first order we would perform the integral over the length of

the crystal of the coupling kernel f(Ω, Ω
′, z) such that

L∫

0

dz f(Ω, Ω
′, z) = α(Ω + Ω

′)ei∆(Ω,Ω′)L/2sinc(∆(Ω, Ω
′)L/2) (3.8)

where a phase of ei∆(Ω,Ω′)L/2 in terms of the phase-mismatch function ∆ appears. However, if

instead we could integrate symmetrically from −L/2 to L/2 this phase does not appear as

L/2∫

−L/2

dz f(Ω, Ω
′, z) = α(Ω + Ω

′)sinc(∆(Ω, Ω
′)L/2), (3.9)
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which would simplify the description. We can achieve such a description simply by noting that

we may perform the linear transform z �→ z + L/2 in Eq. (3.3) such that

∂z ǫ̂(Ω, z + L/2) =
g

L

∫

dΩ
′ ei∆(Ω,Ω′)(z+L/2)α(Ω + Ω

′)ǫ̂†(Ω′, z + L/2) (3.10)

and then introducing the new, phase modulated operators b̂(Ω, z) = eik(Ω)L/2ǫ(Ω, z + L/2) and

consider the pump envelope α to be obtained by phase modulation of another envelope β as

α(Ω) = e−ikp(Ω)L/2β(Ω), which then leads to

∂z b̂(Ω, z) =
g

L

∫

dΩ
′ ei∆(Ω,Ω′)zβ(Ω + Ω

′)b̂†(Ω′, z). (3.11)

The substitution b̂(Ω, z) = eik(Ω)L/2ǫ(Ω, z + L/2) assigns a change of coordinates such that

initial conditions at the input of the crystal and final transformations at the output are trans-

formed accordingly as b̂(Ω, −L/2) = eik(Ω)L/2ǫ(Ω, z) and b̂(Ω, L/2) = eik(Ω)L/2ǫ(Ω, L). The two

different coordinate systems are displayed in Fig. 3.1. Thus, by considering phase modulated

fields at the input and output faces of the crystal, symmetric integration from −L/2 to L/2

in the ME is achieved – this simplification has been considered by several authors (see, e.g.,

Refs. [16, 121, 122]). As this avoids the aforementioned phase-factors all further discussion

will center around the evolution equation (3.11).

3.1.1 Coarse graining and modes

Let us point out that Eq. (3.11) possesses no general analytical solution. In order to achieve

a more efficient description of the Eq. (3.11) – in particular with regards to numerical ap-

plications – a coarse grained description with discretized frequencies is considered. Such a

description is often also interesting for a practical description in measurements, e.g., in multi-

pixel homodyne detection [123, 124]. The real line – on which the frequencies Ω are defined

– is divided into pixel intervals Fk = [(k − 1/2)δΩ, (k + 1/2)δΩ). Such a basis is well suited if

the pixel width δΩ is much smaller than the characteristic structures of the kernel, i.e., if the

kernel function f(Ω, Ω
′, z) = 1

Lei∆(Ω,Ω′)zβ(Ω + Ω
′) is well approximated by a step function

f(Ω, Ω
′, z) ∼=

kmax∑

k,k′=−kmax

f(kδΩ, k′δΩ, z)1Fk
(Ω)1Fk′

(Ω′), (3.12)

with the indicator function

1Fk
(Ω) =







1 Ω ∈ Fk

0 else
. (3.13)
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The cutoff at kmax is motivated by the fact that very fast oscillations (i.e., where the phase-

mismatch function is very large) cancel to zero, this essentially corresponds to a rotating wave

approximation. Applying (3.12) in (3.11) and collecting bosonic operators

b̂k(z) =
1√
δΩ

∫

Fk

dΩ b̂(Ω, z), (3.14)

then yields the discretized differential equation

∂z b̂k(z) = g
kmax∑

k′=−kmax

fk,k′(z)b̂†
k′(z), (3.15)

where fk,k′(z) = δΩf(kδΩ, k′δΩ, z) are the coefficients of the symmetric matrix f(z) = fT (z).

Naturally the b̂k fulfill bosonic commutator relations

[b̂k(z), b̂†
k′(z)] = δk,k′ , [b̂k(z), b̂k′(z)] = 0. (3.16)

Note that a transition from (3.15) to (3.11) is possible by the Riemann integral limit δΩ → 0+

where the full frequency dependent operators are recovered by

b̂(Ω, z) ∼= 1√
δΩ

kmax∑

k=−kmax

1Fk
(Ω)b̂k(z). (3.17)

In the context of PDC with broad spectral pumps, considering (coarse grained) monochro-

matic modes may not be the most efficient of descriptions. Thus, let us consider the transfor-

mation to an alternative set of modes. We consider a orthonormal base of frequency envelope

functions Ψℓ(Ω) with ℓ = 0, 1, . . . that fulfill the completeness relation

δ(Ω − Ω
′) =

∞∑

ℓ=0

Ψℓ(Ω)Ψ∗
ℓ(Ω′) (3.18)

and are well approximated in the coarse grained representation with resolution δΩ as

Ψℓ,k =
1√
δΩ

∫

Fk

dΩ Ψℓ(Ω) ≈
√

δΩΨℓ(kδΩ), Ψℓ(Ω) ∼= 1√
δΩ

kmax∑

k=−kmax

Ψℓ,k1Fk
(Ω), (3.19)

such that orthonormality,

δℓ,ℓ′ =

∫

dΩ Ψ
∗
ℓ(Ω)Ψ∗

ℓ′(Ω) ∼=
kmax∑

k,k′=−kmax

Ψ
∗
ℓ,kΨℓ′,k

1

δΩ

∫

dΩ 1Fk
(Ω)1Fk′

(Ω)
︸ ︷︷ ︸

=δk,k′

=
kmax∑

k=−kmax

Ψ
∗
ℓ,kΨℓ′,k,

(3.20)
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remains preserved. Then the bosonic operators that govern excitations of these field modes

can be obtained as

ĉℓ(z) =

∫

dΩ Ψ
∗
ℓ(Ω)b̂(Ω, z) (3.21)

and the inversion of this transform reads as

b̂(Ω, z) =
∑

ℓ

Ψℓ(Ω)ĉℓ(z). (3.22)

By inserting the expression (3.17) into (3.21) we obtain

ĉℓ(z) =
kmax∑

k=−kmax

[
1√
δΩ

∫

dΩ Ψ
∗
ℓ (Ω)1Fk

(Ω)

]

︸ ︷︷ ︸

=Ψℓ,k

b̂k(z). (3.23)

For n = 2kmax + 1 the orthogonality (3.20) implies that the n×n matrix Vk,ℓ = Ψℓ,k with

k = −kmax . . . kmax and ℓ = 0, 1, . . . , 2kmax is unitary and thus follows that (3.23) is a unitary

transform

ĉℓ(z) =
kmax∑

k=−kmax

V †
ℓ,k b̂k(z), (3.24)

which contains information about the field modes Ψℓ corresponding to the operators ĉℓ as

V =
√

δΩ























Ψ0(−kmaxδΩ) Ψ1(−kmaxδΩ) . . . Ψ2kmax(−kmaxδΩ)
...

...
...

...

Ψ0(−δΩ) Ψ1(−δΩ) . . . Ψ2kmax(−δΩ)

Ψ0(0) Ψ1(0) . . . Ψ2kmax(0)

Ψ0(δΩ) Ψ1(δΩ) . . . Ψ2kmax(δΩ)
...

...
...

...

Ψ0(kmaxδΩ) Ψ1(kmaxδΩ) . . . Ψ2kmax(kmaxδΩ)























. (3.25)

This allows us to connect passive Gaussian unitary transformations V in the coarse grained

representation to frequency modes Ψℓ of the field [57]. Note however, that the number of field

modes described by invertible unitary matrix transformations of field operators is limited by

n = 2kmax + 1 which is a consequence of the coarse graining cutoff at kmax. The corresponding

modal functions of the electric field are then given as

fℓ(t, z) =

∫
dΩ√
2π

e−i{k(Ω)[z−L/2]−[ω0+Ω]t}
Ψ

∗
ℓ(Ω). (3.26)
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Naturally, a coarse grained description is only viable if the it approximates the continuous

modes well. Thus, we will use the two notations interchangeably in the following.

3.1.2 Matrix formulation

In order to further facilitate notation, we collect the bosonic operators as

ξ̂(z) = (b̂−kmax(z), . . . , b̂kmax(z), b̂†
−kmax

(z), . . . , b̂†
kmax

(z))T . (3.27)

In this notation Eq. (3.15) can be written as

∂z ξ̂(z) = −igF(z)ξ̂(z), (3.28)

with

F(z) =






0 F (z)

−F ∗(z) 0




 , [F (z)]kmax

k,k′=−kmax
= ifk,k′(z). (3.29)

This evolution equation can equally be obtained as

∂z ξ̂(z) = −iγ[Ĥ(z), ξ̂(z)] (3.30)

in terms of the quadratic Hamiltonian

Ĥ(z) = ξ̂
†
(z)






0 1
2F (z)

1
2F ∗(z) 0




 ξ̂(z). (3.31)

As pointed out in Sec. 1.4.3: The description of ordering effects in terms of the ME in the ma-

trix formalism is completely analogous to the operator formalism for quadratic Hamiltonians.

Thus, throughout the following we will focus on the matrix description (3.28) and only make

use of the operator formalism when it is more convenient.

Now let us consider a formal solution of (3.28) in terms of the symplectic transform S from

the input of the crystal at z = −L/2 to the output at z = L/2 as

ξ̂(L/2) = Sξ̂(−L/2). (3.32)
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The Bloch-Messiah decomposition of the symplectic transform S may be written as

S =






V 0

0 V ∗











cosh(R) sinh(R)

sinh(R) cosh(R)











W 0

0 W ∗






†

, (3.33)

where V and W describe passive Gaussian unitary transformations and the diagonal matrix

R contains the squeezing parameters R = diag{r0, r1, . . . , r2kmax} and describes mode-wise

single-mode squeezing (cf. Sec. 1.3.1) in terms of these squeezing parameters. Without loss

of generality and throughout the following, we consider the squeezing parameters rℓ to be

ordered in descending order of strength r0 ≥ r1 ≥ . . . .

We have previously seen that passive Gaussian unitary transformations can be associated

with field modes [cf. (3.25)]. This allows for a convenient interpretation of the Bloch-Messiah

decomposition: Consider that the columns of V and W define field modes, then

ξ̂
in

=






W 0

0 W ∗






†

ξ̂(−L/2), ξ̂
out

=






V 0

0 V ∗






†

ξ̂(L/2) (3.34)

contain the associated annihilation an creation operators. Thus, we can see that the PDC

process leads to a single-mode squeezing of the input field modes defined by W and transforms

them to the output field modes defined by V as

ξ̂
out

=






cosh(R) sinh(R)

sinh(R) cosh(R)




 ξ̂

in
(3.35)

Often one is solely interested in the case where the field in the ordinary polarization at the

input face of the crystal is in the vacuum state. In this case the choice of field modes at the

input face of the crystal is arbitrary (cf. Ref. [19]) and one may instead consider the polar

decomposition

S = exp












0 Z

Z∗ 0

















X 0

0 X∗






†

, (3.36)

where Z = V RV T is complex symmetric (the resulting exponential is Hermitian) and X =

WV † is unitary. By the matrix/operator homomorphism (1.51) we can associate the operators

exp






0 Z

Z∗ 0




 ↔ Ẑ,






X 0

0 X∗






†

↔ X̂, (3.37)
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such that

ξ̂(L/2) = X̂†Ẑ†ξ̂(−L/2)ẐX̂. (3.38)

If we consider an observable in terms of the field at the output face of the crystal Â[ξ̂(L/2)] we

can express it in terms of the input field as

Â[ξ̂(L/2)] = X̂†Ẑ†Â[ξ̂(−L/2)]ẐX̂. (3.39)

Thus, in the case of the vacuum input

〈Vac.|X̂†Ẑ†Â[ξ̂(−L/2)]ẐX̂|Vac.〉 = 〈Vac.|Ẑ†Â[ξ̂(−L/2)]Ẑ|Vac.〉, (3.40)

which is due to the fact that the unitary transform X̂ does not affect the vacuum state [X̂|Vac.〉
= |Vac.〉]. Thus, for PDC with vacuum input we can focus on the representation in terms of the

multimode squeezing operator Ẑ [19]. This justifies the nomenclature of squeezing eigenmodes

for the field modes defined by the unitary matrix V . The transition matrix X reveals how the

input seeding eigenmodes are connected to the squeezing eigenmodes, as W = RV .

3.1.3 Modes and measurements

Figure 3.2: The light of a strong coherent pump (blue) enters the scheme from the left. It enters the nonlinear

χ(2) crystal which generates a frequency multi mode Ψj(Ω) pulse of squeezed modes (red). The squeezing

of each of these modes can then, e.g., be accessed by shaping local oscillator (LO) pulses of a balanced

homodyne detection scheme (on the right) such that its spectrum corresponds to that of the frequency multi

mode squeezed modes.

In order to measure the squeezing in certain modes, the scenario of balanced homodyne

detection, as depicted in Fig. 3.2, of the down-converted light may be considered. After exiting

the crystal, the down converted light is entirely defined in terms of the field at the output face

of the crystal

Ê(+)(t, L) =

∫
dΩ√
2π

eik(Ω)L/2e−i(ω0+Ω)tb̂(Ω, L/2). (3.41)

Note here the connection between coordinate system (where input and output lay at z = 0, L)

where we have defined the Ê(+)(t, z) and the coordinate system in which b̂(Ω, z) is defined
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(where input and output lay at z = −L/2, L/2). In balanced homodyne detection this field is

superimposed with a strong coherent local oscillator field with envelope E ,

Ê
(+)
LO (t) =

∫
dΩ√
2π

eik(Ω)L/2e−i(ω0+Ω)tE(Ω), (3.42)

on a 50:50 beam splitter,






E+
1 (t)

E+
2 (t)




 =

1√
2






1 1

−1 1











Ê(+)(t, L)

Ê
(+)
LO (t)




 . (3.43)

The two output beams are detected by photo current detectors of equal efficiency over a suf-

ficiently long detection time and the difference of photo currents is considered, which reads

as

δî = η

∫

dt
[

Ê
(−)
1 (t)Ê

(+)
1 (t) − Ê

(−)
2 (t)Ê

(+)
2 (t)

]

= η

∫

dt Ê(−)(t, L)Ê
(+)
LO (t) + H.c.

= η

∫

dΩ b̂†(Ω, L/2)E(Ω) + H.c., (3.44)

with the quantum efficiency η. Representing the LO in terms of superpositions of squeezing

eigenmodes,

E(Ω) =
2n∑

ℓ=0

EℓΨℓ(Ω), (3.45)

yields

δî = η
2n∑

ℓ=0

[

ĉ†
ℓ(L/2)Eℓ + ĉℓ(L/2)E∗

ℓ

]

, (3.46)

where (3.21) has been applied. Here ĉℓ are the operators contained in ξ̂
out

defined in Eq. (3.34)

that correspond to the squeezing eigenmodes in V [cf. (3.25)] of the Bloch-Messiah decom-

position (3.33). The input seeding modes are defined in terms of the matrix W of the Bloch-

Messiah decomposition (3.33) and we denote the corresponding bosonic operators contained

in ξ̂
in

as d̂ℓ. Then then (3.35) allows us to express (3.46) in terms of the bosonic operators d̂ℓ

of the input field modes as

δî = η
2n∑

ℓ=0






Eℓ

E∗
ℓ






†




ĉℓ(L/2)

ĉ†
ℓ(L/2)




 = η

2n∑

ℓ=0






Eℓ

E∗
ℓ






†




cosh(rℓ) sinh(rℓ)

sinh(rℓ) cosh(rℓ)











d̂ℓ(−L/2)

d̂†
ℓ(−L/2)




 . (3.47)
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The photo current variance in the case of PDC with vacuum input then has expectation value

〈(∆δî)2〉 = 〈(δî)2〉 = 2η2|Eℓ|
2

2n∑

ℓ=0

[

e−2rℓ sin2[arg(Eℓ)] + e2rℓ cos2[arg(Eℓ)]
]

. (3.48)

Thus, single-mode squeezing can be measured if the LO is exactly matched (i.e., Eℓ = Eδℓ,s

with E ∈ C for some s ∈ N0) to one of the frequency modes. Alternatively E(Ω) can be

an arbitrary superposition of field modes Ψℓ which corresponds to unitary transformations by

LO shaping. In any case, a precise knowledge of the underlying field modes is desirable to

facilitate interpretation of experimental results. Thus, throughout the following we will focus

on the modification of squeezing eigenmodes in terms ordering effects.

3.2 Approximations in terms of the Magnus expansion

The symplectic transform S that solves Eq. (3.28) from z = −L/2 to z = L/2 can be repre-

sented in terms of the ME as (cf. Sec. 1.4.3)

S = e−iM, −iM =
∞∑

n=1

(−ig)n
Mn (3.49)

In the present case, due to the complexity of the coupling matrix F [cf. (3.29)], an analytical

expression for M cannot be found and we have to rely on approximations in terms of truncated

ME

Sm = exp

(
m∑

n=1

(−ig)n
Mn

)

(3.50)

up to order m. Here, as in the case of monochromatic PDC, the first oder approximation S1

corresponds to the negligence of ordering effects.

In view of the block anti-diagonal structure of the coupling matrix (3.29) and the fact

that the Magnus terms Mn are defined in terms of its nested commutators, odd and even

orders of ordering correction terms Mn have block anti-diagonal and block diagonal structure

respectively. Thus, if we furthermore take into account that Sm is complex symplectic, we see

that we can represent

for n odd : (−i)nMn =






0 −iMn

iM∗
n 0




 ,

for n even : (−i)nMn =






−iMn 0

0 iM∗
n




 . (3.51)
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The first-order term of the ME,

M1 =

L/2∫

−L/2

dz F(z), (3.52)

yields the matrix elements

M1 = iδΩβp,qsinc(θp,q), (3.53)

where p, q = −kmax, . . . , kmax. Furthermore, we have defined the phase-mismatch parameter

θp,q = ∆(pδΩ, qδΩ)L/2 and represented the coarse grained phase modulated pump envelope

as βp,q = β([p + q]δΩ).

From the definition of the phase-mismatch function, ∆, follows that θp,q are the coefficients

of a symmetric matrix. The same holds for the coefficients βp,q and thus M1 is itself a sym-

metric matrix. Thus follows, that M1 can be Takagi decomposed. However, note that in the

case where the phase modulated pump envelope βp,q is entirely real(imaginary) the resulting

matrix M1 is entirely imaginary(real) and the Takagi decomposition can be reduced to the

eigenvector decomposition of a real symmetric matrix (cf. Ref. [122]). The eigenvectors of

a real symmetric matrix are always real and thus, squeezing eigenmodes resulting from the

Takagi decomposition are either entirely real (for positive eigenvalues) or entirely imaginary

(for negative eigenvalues). This is a useful case for the visualization of the impact of ordering

effects on the squeezing eigenmodes, as deviations form entirely real or imaginary modes can

only be due to ordering corrections.

Let us now specify more precisely the normalization of the pump Np. We have already

stated that the pump is always normalized to a constant value such that a change in pump

gain enters the process through the gain parameter g. Usually it is convenient to normalize

functions to unity (i.e., Np = 1). However, we note that M1 is linear with respect to the

pump normalization (i.e., M1 ∝ Np) and consequently follows that ‖M1‖2 ∝ Np. In the

context of our analysis of MAs we thus choose the value of normalization such that ‖M1‖2 =

1. This implies, that for neglected ordering effects (i.e. m = 1), where the dependence of

the degree of squeezing on the gain exponent g is linear, the highest degree of squeezing,

r
[m=1]
0 = ‖gM1‖2 = g‖M1‖2, is identical to the gain parameter. This is a convenient choice of

normalization as this was also the case for the scenario of PDC with a monochromatic pump

as discussed in Chapter 21.

1There the degree of squeezing r(Ω) was maximal for Ω = 0 and r(0) = g.
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The second order term of the ME yields the matrix

(M2)p,q = δΩ
2
∑

r

αp,rα∗
r,qh2(θp,r, θr,q), (3.54)

where

h2(x, y) =
cos(x)sinc(y) − sinc(x) cos(y)

2(x − y)
,

h2(x, x) =
cos(x)j1(x) − sin(x)j0(x)

2
. (3.55)

Furthermore, the third order term yields the matrix

(M3)p,q = iδΩ
3
∑

r,s

αp,rα∗
r,sαs,qh3(θp,r, θr,s, θs,q), (3.56)

where

h3(x, y, z) =
(x + 2y + z)sinc(x)sinc(y)sinc(z) + 6 cos(x)h2(y, z) + 6h2(x, y) cos(z)

12(x − y + z)
,

h3(x, x + z, z) = −j0(x)j0(z) sin(x + z) + 3h2(x, x) + 3h3(z, z)

6(x + z)
,

h3(x, 0, −x) =
cos(x)j2(x) + cos(x)sinc(x) − sinc2(x)

6
. (3.57)

The non-singularity of h1 and h2 is obvious from the present representation in terms of the

holomorphic spherical Bessel functions j0, j1, j2 [where j0(x) = sinc(x)]. The mth order ex-

pansion then correspondingly takes the block structure

Sm = exp






−iH
[m]
0 −iH

[m]
I

i[H
[m]
I ]∗ i[H

[m]
0 ]∗




 , (3.58)

with (H
[1]
I , H

[1]
0 ) = (gM1, 0), (H

[2]
I , H

[2]
0 ) = (gM1, g2M2), and (H

[3]
I , H

[3]
0 ) = (gM1+g3M3, g2M2).

3.2.1 Gaussian pump

In order to illustrate the impact of ordering effects we consider a concrete scenario: A BBO

crystal of length L = 0.5 mm with Sellmeyer coefficients as given in Ref. [125] that is pumped

by a Gaussian pump with central wavelength λp = 397.5 nm. The refractive index of the pump

np(ωp + Ω) is determined by the birefringence relation

1

n2
p

=
sin2(θ)

n2
e

+
sin2(θ)

n2
0

, (3.59)
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where ne and no are the refractive indices of the extraordinary and ordinary axis respectively

and θ is the angle between the optical axis of the crystal and the normal vector of the fields.

The wave vectors are then determined in terms of

kp(Ω) = (ωp + Ω)np(ωp + Ω)/c0, k(Ω) = (ω0 + Ω)no(ω0 + Ω)/c0, (3.60)

which determines the phase matching function ∆(Ω, Ω
′). For θ = 29.4◦ perfect phase matching

is achieved at zero radio frequencies as

∆(0, 0) = 0. (3.61)

(a) (b) (c)

Figure 3.3: The factor sinc[∆(Ω, Ω
′)L/2] for the considered BBO scenario (a), the Gaussian pump envelope

β (b). Figure (c) illustrates how the direct product of the sinc function and the pump determine the coupling:

Shown are the pump maximum (blue, dashed) and its width-lines (blues, solid) as well as the sinc maximum

(red, dashed) and its effective width-lines (red, solid). Effectively, coupling does only take place in the region

encapsulated by the width-lines of pump and sinc.

We defined the linear frequency walk-off

Ω0 =
2π

L∂Ω∆(Ω/
√

2, Ω/
√

2)

∣
∣
∣
∣
∣
Ω=0

= 45.1 × 1012 rad

s
, (3.62)

which we will use as frequency unit throughout the following. We consider a real Gaussian

phase modulated pump envelope,

β(Ω) = e− 1
2 ( Ω

∆Ω
)

2

, (3.63)

of width ∆Ω = Ω0/4. Coarse graining is applied with a resolution of δΩ = Ω0/10 and we

consider a cutoff at kmax = 250 (i.e., Ω ∈ [−25Ω0, 25Ω0]). How the Gaussian pump affects

the coupling in PDC is best seen from the first-order Magnus term. The shape of the first-

order term is given by the direct product of the sinc[∆(Ω, Ω
′)L/2] and the Gaussian envelope
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β(Ω + Ω
′) such that coupling only takes place where both are non-zero, this is illustrated in

Fig. 3.3.

(a) (b) (c) (d)

Figure 3.4: The absolute value of the first (a), second (b), and third (c) order Magnus term matrix blocks

Mn as defined in (3.51). The resulting block structure of the Matrix valued Magnus terms Mn for the three

considered orders is illustrated in (d), where blocks are separated by white lines.

The Magnus terms for this exemplary scenario are displayed in Fig. 3.4. An interesting

observation from these Magnus terms is that the second and third order term go to zero in

the region of phase matching Ω = Ω
′ = 0. Thus, these terms will supposedly yield minimal

corrections of squeezing eigenmodes around the carrier frequency Ω = 0.
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Figure 3.5: The squeezing parameters r
[m]
ℓ of the squeezing eigenmodes Ψ

[m]
ℓ (Ω) obtained from the Bloch-

Messiah decomposition in first order m = 1 (green, circle), second order m = 2 (blue, square), and third

order m = 3 (red, diamond) MA. A horizontal gridline (dashed, gray) marks the value of gain g = 1.84.

As illustrated at hands of the formal solution, approximated squeezing eigenmodes, Ψ
[m]
ℓ ,

and parameters, r
[m]
ℓ , are obtained from the MA (3.58) in mth order via the Bloch-Messiah

decomposition (3.33). In Figure 3.5 the squeezing parameter spectrum is given for the example

of a gain of g = 1.84. At this regime of gain the squeezing spectrum is slightly modified for

a wide range of squeezing parameters by ordering corrections. However, it is notable that

the highest degree of squeezing still behaves linear with respect to the gain parameter g,

i.e., r
[m]
0 = g and lays in the order of 16 dB of squeezing. Based on our observations in the

case of a monochromatic pump in chapter 2 it may be hypothesized, that the third-order MA

yields reliable results as long as the maximum squeezing r
[m=3]
0 increases linear with the gain
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parameter g. For the considered configuration, the sufficient upper bound for gain where the

ME converges [cf. (1.101)] can be obtained numerically as gmax = 2.97. Thus, the considered

gain lays well below this bound. Moreover note that, the second-order MA yields a decrease

of squeezing value whilst the third order yields an increase in squeezing values.
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Figure 3.6: Real (red) and imaginary (blue) value of the orthonormal squeezing eigenmodes Ψ
[m]
ℓ (Ω) cor-

responding to the squeezing parameter rℓ for ℓ = 0, 1, . . . , 5 as obtained in first order m = 1 (first row),

second order m = 2 (second row), and third order m = 3 (third row) for the considered BBO scenario with

a Gaussian pump at gain g = 1.84. Note that the plotrange is smaller than then the coarse graining cutoff

|Ω| < 25Ω0.

The squeezing eigenfunctions for the six largest squeezing parameters obtained from the

first three orders of approximation are displayed in Fig. 3.6. As pointed out above, for the

displayed scenario of a real Gaussian pump envelope β the eigenmodes obtained from the

first-order MA are entirely real or imaginary. It can be seen, that the ordering corrections in

second and third-order MA modify this behavior, as the eigenmodes obtained in these orders

display both real and imaginary parts. Interestingly, corrections become minimal around the

carrier frequency of the down converted light, where Ω = 0, which supports the hypothesis we

drew from the corresponding Magnus terms displayed in Fig. 3.4.

What might strike as obvious at first sight is the similarity of the displayed eigenmodes

with Hermite Gauss functions that are defined in terms of Hermite polynomials (cf. [126]). Of

course the similarity only goes so far, but we can make an important analogy: For the Her-

mite Gauss functions the lowest order Hermite Gauss function (simply a Gaussian) defines the

weight function of the integral scalar product and thereby the orthogonal Hermite polynomials

that define all higher-order Hermite Gauss functions. Thus, the width of Hermite Gauss func-
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tions is determined in terms of the width of the lowest order Hermite Gauss function. With

this in mind we turn our attention to the width of the squeezing eigenfunction Ψ
[m]
0 (Ω) that

defines the maximally squeezed field mode: The ordering corrections yield a decrease in width

in the second-order MA and an increase in the third-order MA. Thus, it can be concluded that

even and odd order ordering corrections affect the width of eigenmodes differently.

3.3 Bispectral beams

For the case of a monochromatic pump as considered in Chapter 2, we saw that coupling

occurred for opposed radio frequencies Ω and −Ω and each radio frequency |Ω| could be asso-

ciated with two bichromatic field modes subject to the same degree of squeezing r(Ω). Here

we will consider a bispectral beam scenario, where a similar description as for monochromatic

pumps can be achieved. To this end we consider the same example scenario with a BBO crystal

and a real Gaussian pump as described in Sec. 3.2.1 but where the crystal is slightly turned,

such that θ = 28.5◦. This scenario also serves as an example for an engineered output state by

tailored parametric interaction (cf. [56]), as the output light will show a two-fold multiplicity

in squeezing parameter values (as we will be shown below).

(a) (b) (c)

Figure 3.7: The factor sinc[∆(Ω, Ω
′)L/2] for the considered BBO scenario with modified phase-mismatch

function (a), the Gaussian pump envelope β (b). Figure (c) illustrates how the direct product of the sinc
function and the pump determine the coupling: Shown are the pump maximum (blue, dashed) and its width-

lines (blues, solid) as well as the sinc maximum (red, dashed) and its effective width-lines (red, solid).

Effectively, coupling does only take place in the region encapsulated by the width-lines of pump and sinc.

The turning of the crystal leads to a shift of the phase-mismatch function ∆(Ω, Ω
′) which

modifies the frequency coupling inside the crystal as illustrated in Fig. 3.7 at hands of the

factors appearing in the first-order Magnus term. Effectively, by the shift of the phase-mismatch

function, the coupling is modified such that for neglected ordering effects no coupling takes

place at the carrier frequency Ω = Ω
′ = 0 and in the regions (Ω, Ω

′) ∈ [−25, 0]×[−25, 0] and

(Ω, Ω
′) ∈ [0, 25]×[0, 25]. Thus, in first-order MA coupling will only take place in terms of
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radio frequencies on opposite sides of the carrier frequency Ω = 0. As the regions (Ω, Ω
′) ∈

[−25, 0]×[−25, 0] and (Ω, Ω
′) ∈ [0, 25]×[0, 25] in Fig. 3.7c are empty, we can establish a block

structure for the first-order MA as [121]2

H
[1]
I =






0 J [1]

(J [1])T 0




 , H

[1]
0 =






0 0

0 0




 . (3.64)

where J is in general a complex valued matrix and does not fulfill any special symmetry.

(a) (b) (c)

Figure 3.8: The absolute value of the first (a), second (b), and third (c) order Magnus term matrix blocks Mn

as defined in (3.51). Grindlines (white, dashed) illustrate a possible block structure assignment.

In Figure 3.8, the kernels of the first three orders of approximation are displayed for the

bispectral beam scenario. We can see that in each order two opposed quadrants vanish. Ac-

cordingly, up to third order, the MA can be represented in terms of the block structure

H
[k]
I =






0 J [k]

(J [k])T 0




 , H

[k]
0 =






Φ
[k]
1 0

0 Φ
[k]
2




 , (3.65)

where Φ
[k]
1 and Φ

[k]
2 are Hermitian matrices that have no special symmetry relations to each

other. Thus, the resulting symplectic transform takes the form

Sm = exp












−iΦ
[m]
1 0 0 −iJ [m]

0 −iΦ
[m]
2 −i[J [m]]T 0

0 i[J [m]]∗ i[Φ
[m]
1 ]∗ 0

i[J [m]]† 0 0 i[Φ
[m]
2 ]∗












. (3.66)

2The intervals of course graining are modified as Fk = (kδΩ, [k + 1]δΩ] with k = −kmax, . . . , kmax − 1 such that

no frequency bin is allocated to the carrier frequency Ω = 0. This is justified as no interaction takes place along

Ω = 0 and Ω
′ = 0 and avoids to include additional superfluous nil-blocks in the block structure. The blocks are

determined in terms of the indices k = −kmax, . . . , −1 and k = 0, . . . , kmax − 1.
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It is then easy to show (cf. appendix. C), that the exponential Sm preserves the block structure

of the exponent such that the input output relation can be written as












b̂−(L/2)

b̂+(L/2)

b̂
†T
− (L/2)

b̂
†T
+ (L/2)












=












A1 0 0 B1

0 A2 B2 0

0 B∗
1 A∗

1 0

B∗
2 0 0 A∗

2












︸ ︷︷ ︸

=Sm












b̂−(−L/2)

b̂+(−L/2)

b̂
†T
− (−L/2)

b̂
†T
+ (−L/2)












, (3.67)

where

b̂−(z) =
(

b̂(−[kmax − 1/2]δΩ), . . . , b̂(−[2 − 1/2]δΩ, z), b̂(−[1 − 1/2]δΩ, z)
)T

and b̂+(z) =
(

b̂([1 − 1/2]δΩ, z), b̂([2 − 1/2]δΩ, z), . . . , b̂([kmax − 1/2]δΩ, z)
)T

(3.68)

contain the annihilation operators of negative and positive radio frequency respectively. Thus,

the transformation (3.67) can be considered as a multi-frequency generalization of the Bo-

goliubov transformation (2.32). Indeed, for a monochromatic pump the Blocks matrices in

Eq. (3.67) become diagonal.

3.3.1 Proof of twofold multiplicity

Whilst the structure of the first-order MA (3.64) suggests a two-fold multiplicity of squeezing

parameters for the modes of the generated light, it is not obvious from (3.66) that this multi-

plicity remains preserved when ordering effects are accounted for in terms of higher oder MAs.

We can however prove this by analyzing the structure of higher oder MAs for the bispectral

beam scenario. The transformations obtained by higher order MAs in this scenario have the

form

S =






A B

B∗ A∗




 , (3.69)

with the blocks

A =






A1 0

0 A2




 , B =






0 B1

B2 0




 . (3.70)
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As explained in Sec. 1.3.4, can the Bloch-Messiah decomposition be performed by performing

the Takagi decomposition of

ABT =






0 A1BT
2

A2BT
1 0




 , (3.71)

which takes the form

ABT =
1

2
V sinh






2R1 0

0 2R2




V T . (3.72)

This Takagi decomposition is sufficient to define the squeezing eigenmodes contained in V

and the squeezing parameters contained in R1 = diag{r0, r2, . . . } and R2 = diag{r1, r3, . . . }

– performing the remaining steps of the Bloch-Messiah decomposition described in Sec. 1.3.4

solely serves the purpose of determining the field modes by which the crystal input can be

seeded.

From the complex symplecticity [cf. (1.52)] of (3.69) we can deduce the condition

A1BT
2 = B1AT

2 , (3.73)

whereby follows, that ABT is a symmetric matrix.

ABT =






0 A1BT
2

B1AT
2 0




 =






0 A1BT
2

B1AT
2 0






T

, (3.74)

Using the singular value decomposition

A1BT
2 = CΞD†, (3.75)

with unitary matrices C, and D and diagonal matrix Ξ we can decompose ABT as

ABT =






0 CΞD†

D∗
ΞCT 0




 =






C 0

0 D∗











0 Ξ

Ξ 0











CT 0

0 D†






=






C 0

0 D∗






1√
2






I −iI

I iI











Ξ 0

0 Ξ






1√
2






I −iI

I iI






T 




CT 0

0 D†




 . (3.76)



3.3 Bispectral beams 71

This determines the Takagi decomposition (3.72) of ABT through

V =
1√
2






C 0

0 D∗











I −iI

I iI




 (3.77)

and

1

2
sinh(2R1) =

1

2
sinh(2R2) = Ξ. (3.78)

As the sinh function is uniquely invertible for all real values, we can see that the squeezing

values have a multiplicity of two for any symplectic transform (3.69) with the Block struc-

ture (3.70).

3.3.2 Bispectral modes

To illustrate the effect of ordering corrections in the bispectral beam scenario, we consider a

gain of g = 1.84. In Figure 3.9 the squeezing parameter spectrum for such a bispectral beam

scenario is displayed. Note that here the maximum squeezing parameters, r
[2]
0 , r

[2]
1 , r

[3]
0 , r

[3]
1 ,

already show nonlinear dependence on gain, despite the gain, g, being the same as in Fig. 3.5,

where no nonlinear dependency for the maximum squeezing value, r
[m]
0 , is visible by eye (i.e.,

there it is similar to g). For the considered scenario the sufficient upper bound for gain reads

gmax = 2.81. Thus, for the considered gain we are a bit closer to the sufficient upper bound.
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Figure 3.9: The squeezing parameters r
[m]
ℓ of the squeezing eigenmodes Ψ

[m]
ℓ (Ω) obtained from the Bloch-

Messiah decomposition in first order m = 1 (green, circle), second order m = 2 (blue, square), and third

order m = 3 (red, diamond). A dashed horizontal gridline marks the value of gain g = 1.84.

The corresponding down converted phase modulated envelope modes are displayed in

Fig. 3.10. We can observe that the modes have a bispectral structure, i.e., they are combina-

tions of well separated spectral modes in the positive and negative radio frequency domain
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respectively. If we analyze (3.77) with (3.25) in mind we can see that the columns of






C

0




 and






0

D∗




 (3.79)

contain modes Ψ−;ℓ(Ω) and Ψ+;ℓ(Ω), respectively, that are identical nil in the negative and

positive radio frequency domain, respectively, i.e.,

∀Ω > 0 : Ψ−;ℓ(Ω) = 0, ∀Ω < 0 : Ψ+;ℓ(Ω) = 0. (3.80)

The additional passive Gaussian unitary transformation in (3.77) combines those positive and

negative radio frequency field modes to the squeezing eigenmodes

Ψ2ℓ(Ω) =
1√
2

[Ψ−;ℓ(Ω) + Ψ+;ℓ(Ω)] , Ψ2ℓ+1(Ω) =
1

i
√

2
[Ψ−;ℓ(Ω) − Ψ+;ℓ(Ω)] , (3.81)

that are squeezed by r2ℓ = r2ℓ+1 (for ℓ = 0, 1, . . . ), i.e., squeezing parameters have two-fold

multiplicity. For all relevant modes of the considered example scenario [cf. Fig. 3.10] we can

find that

arg[Ψ2ℓ+1(Ω)] − arg[Ψ2ℓ(Ω)] =







−π/2 for Ω < 0

π/2 for Ω > 0
. (3.82)

This explains the bispectral-mode structure we see in Fig. 3.10. With regard to different orders

of ordering corrections we can see that those have quite an impact on the underlying field

modes. As in the previous scenario [cf. Fig. 3.6] we see clear deviation from the entirely real

or imaginary field modes for the case of neglected ordering effects m = 1. As discussed in

Sec. 1.3.5: Two mode squeezed states may be represented in terms two single-mode-squeezed

states with equal degree of squeezing and vice versa. Due to the two-fold multiplicity in

the present scenario and the bispectral structure of modes (3.81), the negative Ψ−;ℓ(Ω) and

positive Ψ+;ℓ(Ω) radio frequency modes can be considered entangled by two-mode squeezing

[cf. (1.72)].
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Figure 3.10: Real (red) and imaginary (blue) value of the orthonormal squeezing eigenmodes Ψ
[m]
ℓ (Ω) cor-

responding to the squeezing parameter rℓ for ℓ = 0, 1, . . . , 5 as obtained in first order m = 1 (first row),

second order m = 2 (second row), and third order m = 3 (third row) for the considered BBO scenario with a

Gaussian pump at gain g = 1.84 and bispectral beam phase-mismatch conditions.
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Chapter 4

Classically driven Jaynes-Cummings dynamics

of an ion in a Paul trap
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In this chapter we will consider another scenario where the methods of ME may be applied:

the CJCD model. In this system another layer of complexity is added as the interaction Hamil-

tonian exceeds quadratic order in annihilation/creation operators for the motional degrees of

freedom of the ion in the trap. To give some context, we first give a hands on derivation of

the standard Jaynes-Cummings model and then of the CJCD model. Subsequently, we will in-

troduce a spinor formalism that enables us to derive an analytical solution to this complicated

time dependent problem. Then we see how the spinor formalism designed for this purpose al-

lows us to obtain MAs and analyze time ordering effects by comparing the MAs to the derived

exact solution.

4.1 The standard Jaynes-Cummings model

The Jaynes-Cummings model describes the strong interaction of two-level atoms inside cavities

with single electromagnetic cavity field modes – for a comprehensive derivation see Ref. [2] or

75
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Ref. [4]. The Hamiltonian for the electronic levels of the atom can be described in terms of its

energy eigenstates

ĤA =
∑

j

Ej |j〉〈j|. (4.1)

Transition frequencies are necessarily given in terms of the energy differences as

ωjk =
1

�
[Ej − Ek] . (4.2)

When only two-levels of the atom are relevant for the interaction with the electromagnetic

field, other levels than the relevant can be neglected. Without loss of generality, let us consider

the levels j = 1, 2 such that j = 1(j = 2) is the ground(excited) state. Furthermore, gauging

energy to the ground level E1 �→ 0 then yields the two-level system Hamiltonian

ĤA = �ω21|2〉〈2| + 0|1〉〈1| = �ω21Â22, (4.3)

where we use the notation Âjk = |j〉〈k| to denote projectors in terms of the two-level system

states.

In the cavity, the quantized field is formulated in terms of

Ê(r) =
∑

γ

i

√

�ωγ

2ε0
eγ b̂γuγ(r) + H.c.. (4.4)

Here uγ(r) is the mode function of the γth cavity mode with frequency ωγ and polarization eγ ,

and the b̂γ(b̂†
γ) denote the annihilation(creation) operators of the modes. The mode functions

are normalized over the cavity volume V . We are only interested in the interaction of single

mode with the two-level atom where the frequency of the mode ωL is close to the transition

frequency ω21 of the two-level system. In that case, and if only one polarization is considered,

it is sufficient to reduce the description of the cavity field to that mode only as

Ê(r) = i

√

�ωL

2ε0
e b̂ u(r) + H.c.. (4.5)

The corresponding unperturbed Hamiltonian of the field then reads as

ĤF = �ωLb̂†b̂, (4.6)

where we also regauge to the vacuum energy level of the field, such that the term �ωL/2 does

not appear.

In the Jaynes-Cummings model the interaction between the atomic two-level system and

the cavity mode is described in terms of the dipole approximation. Let the atom be located at
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the position R and r̂ = (x̂, ŷ, ẑ)T be the vectorial position operator of the electron relative to

the position of the nucleus. Then we can define the electronic dipole moment operator as

d̂ = er̂, (4.7)

with the elementary charge e. We assume here that the atomic states carry no permanent

dipole moment. Whenever djk = 〈j|d̂|k〉 is non-zero, a dipole transition can occur. Let the

atom be located at R, then its interaction with the cavity field can be described in terms of the

dipole approximation by the interaction Hamiltonian [4]

Ĥint = −d̂Ê(R). (4.8)

For the two-level system the dipole operator may be expanded as

d̂ = d21Â21 + d12Â12. (4.9)

Thus, if we move to an interaction picture as Ĥint �→ ˆ̃Hint(t) = Û †(t)ĤintÛ(t), in terms of

Û = exp
(

− it
�

[

ĤF + ĤA

])

, we obtain the interaction picture Hamiltonian

ˆ̃Hint(t) = − Â21d21

(

i

√

�ωL

2ε0
ee−i∆ωtb̂u(R) − i

√

�ωL

2ε0
eei(ω21+ωL)tb̂†u∗(R)

)

− Â12d12

(

i

√

�ωL

2ε0
ee−it(ω21+ωL)b̂u(R) − i

√

�ωL

2ε0
eei∆ωtb̂†u∗(R)

)

, (4.10)

with ∆ω = ωL−ω21. As the electromagnetic field frequency ωL is considered close to resonance

with the dipole transition frequency ω21, we have ∆ω ≪ ωL + ω21. Thus, as on any consider-

able time scale the fast oscillations of counter propagating rotation eit(ωL+ω21) cancel to zero,

we can apply the rotating wave approximation and neglect these terms, i.e., eit(ωL+ω21) ≈ 0.

Subsequently moving back to the Schrödinger picture yields the interaction Hamiltonian in the

dipole and rotating wave approximation

Ĥint = κÂ21b̂ + κ∗Â12b̂†, (4.11)

where the coupling constant κ =
(

−i
√

�ωL
2ε0

d21eu(R)
)

is defined in terms of the projection of

the dipole matrix element of the transition on the electromagnetic field in the position of the

atom.
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Adding the unperturbed Hamiltonians and the interaction Hamiltonian then yields the

Jaynes-Cummings Hamiltonian for cavity quantum electro dynamics [60]

Ĥ = ĤA + ĤF + Ĥint

= �ω21Â22 + �ωLb̂†b̂ + κÂ21b̂ + κ∗Â12b̂†. (4.12)

This model is valid in a strong coupling regime (i.e., |κ| is much bigger than the leaking rate

and the spontaneous emission rate to other cavity modes). Thus, high-Q cavities are needed.

4.2 Jaynes-Cummings dynamics of an ion in a Paul trap

We now want to consider another model of Jaynes-Cummings type. If an ion is caught in a

Paul trap, its motion can be described in a quantized manner, see Refs. [83–85] or Chap. 13

of Ref. [2]. The resulting states of the ion are referred to as motional or vibrational states. Via

the interaction of the ion with optical radiation, e.g. a laser, the generation of a plethora of

motional states became feasible [87,89–97].

The full dynamics describing the interaction of an ion with a laser is rather complicated and

can in general only be solved numerically. However, under certain but realistic approximations

the interaction Hamiltonian of the system can be simplified to a nonlinear generalization of

the Jaynes-Cummings Hamiltonian [86]. In the following we will give the derivation of this

model. For the case of a strong coherent pump we will obtain a time dependent Hamiltonian

for the CJCD. The derivations in this section follow closely those in Ref. [2] and Ref. [23].

4.2.1 Harmonic quantization of effective ion dynamics in a Paul trap

In a Paul trap [81,82] single ions can be confined by an oscillating electromagnetic quadrupole

field. In the usual configuration for a three dimensional Paul trap a direct-current voltage and

a radio-frequency voltage with frequency ωrf are applied between a ring electrode and two

end-cap electrodes. A schematic illustration of the scenario under consideration is depicted

in Fig. 4.1. An ion in the trap will then be subject to a time dependent potential that can be

described in terms of Mathieu type equations. If the trap is configured such that the corre-

sponding Mathieu equations have stable solutions, one can separate the ion-motion into a fast

oscillating part of frequency ωrf and a slow oscillating part of frequency νℓ for each of the prin-

cipal axis xℓ with ℓ = 1, 2, 3 of the Paul trap geometry. Under the condition that νℓ ≪ ωrf one
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Figure 4.1: Draft scheme of a a Paul trap with a cavity. Between the end caps (C) and the ring electrode (R)

an alternating current is applied. A standing wave field is present in the trap, which is confined by an external

cavity that is formed by mirrors (M).

can average over the fast oscillations which then leads to the effective potential in the trap [2]

V (x1, x2, x3) =
3∑

ℓ=1

1

2
mν2

ℓ x2
ℓ . (4.13)

As this is essentially a harmonic oscillator potential, quantization is straight forwards and one

can introduce the canonical operators

x̂ℓ =

√

�

2mνℓ

[

â†
ℓ + âℓ

]

, p̂ℓ = i

√

�mνℓ

2

[

â†
ℓ − âℓ

]

, (4.14)

with the annihilation(creation) operators âk(â†
ℓ) that fulfill bosonic commutator relations

[âℓ, â†
ℓ′ ] = δℓ,ℓ′ 1̂, [âℓ, âℓ′ ] =[â†

ℓ, â†
ℓ′ ] = 0, (4.15)

such that

[x̂ℓ, p̂ℓ′ ] = δℓ,ℓ′i�1̂, [x̂ℓ, x̂ℓ′ ] =[p̂ℓ, p̂ℓ′ ] = 0. (4.16)

The free motion Hamiltonian for the center of mass of the ion in the Paul trap then takes the

form of a three dimensional harmonic oscillator [2]

ĤCM =
3∑

ℓ=1

�νℓ

(

â†
ℓâℓ +

1

2
1̂

)

. (4.17)
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4.2.2 Ion-standing wave interaction along a principal axis of the trap

We now consider the interaction of the ion with a standing wave optical field along one of the

principal axis k = 1, 2, 3 of the trap. As the effective trap potential yields harmonic oscillator

dynamics for the charged center of mass it can be resonantly driven by electromagnetic fields

close to the trap potential frequency – usually in the radio frequency range [2]. We are not

interested in this kind of interaction. Instead, as in the case of the standard Jaynes-Cummings

model we are interested in the two-level dipole interactions that take place at optical frequen-

cies. The two-level system is then again described as

ĤA = �ω21Â22 (4.18)

and we may again describe interaction in terms of the dipole approximation

Ĥint = −d̂Ê(R̂), (4.19)

where now however the center of mass position R̂ = (x̂1, x̂2, x̂3)T of the ion is also quantized.

Again, we consider only one resonant mode ωL of the electromagnetic field

Ê(R̂) = i

√

�ωL

2ε0
eb̂u(R̂) + H.c.. (4.20)

The frequency ωL will be specified further below. The corresponding unperturbed Hamiltonian

of the field

ĤF = �ωLb̂†b̂ (4.21)

remains unaffected by the quantization of the atom position.

As the operator R̂ appears in the mode function u(R̂) we need to specify the mode function.

For simplicity, we consider the scenario of a perfect coplanar cavity, where the mode function

takes form of a standing plane wave. This can be written as

u(R) =

√

2

V
cos(kLR + ∆φ), (4.22)

where ∆φ accounts for offset in the position of cavity field and Paul trap potential. The wave

vector is taken such that it points in direction of one of the principal axis of the trap. Without

loss of generality we set kL = kLe1 such that kLR = kLx̂1 and drop the index in the following.

The interaction Hamiltonian then takes the form

Ĥint = −
(

d21Â21 + d12Â12

)

cos(η(â + â†) + ∆φ)

√

�ωL

V ε0
ei
[

b̂ − b̂†
]

, (4.23)
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with the Lamb-Dicke parameter η = kL

√
�

2mν
(cf. [2]). We also drop the corresponding indices

and the vacuum contributions from the center of mass Hamiltonian, i.e.,

ĤCM = �νâ†â, (4.24)

as they are not relevant to the interaction.

Naturally, the trap frequencies ν are much smaller than the optical frequencies ν ≪ ω21.

We are interested in the scenario where vibrational bands can be resolved very well, such

that we can bring the laser in quasi resonance with the kth sideband kν, i.e., such that ωL =

ω21−kν+∆ω where the detuning ∆ω is only small compared to the vibrational band-separation

∆ω ≪ ν. Thus, if we apply the expansion [23]

cos(η(â + â†) + ∆φ) =
1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

â†lâm (4.25)

to (4.23), we can apply a rotating wave approximation – for details see Appendix D – which

yields

Ĥint =�κ̃f̂k(â†â; η)âk b̂Â21 + H.c., (4.26)

with the Hermitian operator [23]

f̂k(â†â; η) =
1

2
ei∆φ−η2/2

∞∑

l=0

â†lâl

(l + k)!l!
(iη)2l+k + H.c. (4.27)

and the coupling constant κ̃ = −i
√

ωL
�V ε0

(d21e).

4.2.3 Classically driven system

Above, the fully quantized Jaynes-Cummings dynamics of a trapped Ion model has been de-

rived. We now consider the scenario of strong coherent pump, i.e., a scenario where the

process is classically driven. To this purpose, we transform (4.26) to the interaction picture in

terms of Û = e− it
�
[ĤF+ĤA+ĤCM] which yields

ˆ̃Hint(t) = Û †(t)ĤintÛ(t) = �κ̃e−it∆ωf̂k(â†â; η)âk b̂Â21 + H.c.. (4.28)

Considering that the pump b̂ is in a coherent state of high amplitude allows us to replace b̂

by the constant coherent amplitude βcl in the interaction picture. This then yields the CJCD
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model [23]:

ˆ̃Hint(t) = �κ̃e−it∆ωf̂k(â†â; η)âkβclÂ21 + H.c.

= �|κ|e−i∆ωt+iθÂ21f̂k(â†â; η)âk + H.c., (4.29)

where we have defined κ = κ̃βcl and θ = arg(κ). The corresponding scheme is depicted

in Fig. 4.2. Note, that via f̂k(â†â; η) a nonlinear dependence of ˆ̃Hint – and thereby of the

dynamics – on the excitation of the vibrational mode is obtained [97]1.

The operator f̂k(â†â; η) can be represented in the Fock basis of motional states as [23]

f̂k(â†â; η) =
1

2
ei∆φ−η2/2

∞∑

n=0

|n〉〈n|
(iη)kn!

(n + k)!
L(k)

n (η2) + H.c., (4.30)

with L
(k)
n denoting the generalized Laguerre polynomials (cf. [126]). Additionally, the Hamil-

tonian of the free motion reads

Ĥ0 = �νâ†â + �ω21Â22. (4.31)

Summarized, the Hamiltonian in Eq. (4.29) describes the nonlinear kth sideband coupling

|1, n〉 ↔ |2, n − k〉.

Figure 4.2: Scheme of the physical system described by the interaction Hamiltonian in Eq. (4.29). The

electronic ground state, denoted with |1〉 and the corresponding excited state, labeled with |2〉, are separated

by the electronic transition frequency ω21 = ω2 − ω1. Due to the in good approximation harmonic trap

potential the vibrational levels are equidistantly separated by the trap frequency ν. The frequency of the

driving laser (red arrows) is detuned from the kth sideband by ∆ω. That is, ωL = ω21 − kν + ∆ω. Figure by

F. Krumm as presented in Ref. [59].

1Thus, the model is also referred to as nonlinear Jaynes-Cummings dynamics is the literature [23,59,86].
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4.2.4 Time evolution

The time-dependent dynamics of system is governed by the evolution operator Û(t, t0) which

fulfills the standard Schrödinger equation

∂

∂t
Û(t, t0) = − i

�
Ĥint(t)Û(t, t0). (4.32)

Note that in Eq. (4.32) the factor 1/� always compensates the factor � in the Hamiltonian Ĥ.

To ovoid superfluous coefficients we introduce the notation

Ĥint(t) = |κ|�Ĥ(t), (4.33)

in terms of the dimensionless Hamiltonian Ĥ [cf. Eq. (4.29)] which also enables us to track

the dependencies on the coupling strength |κ| throughout the following. The reformulated

evolution equation,

∂tÛ(t, t0) = −i|κ|Ĥ(t)Û(t, t0), (4.34)

corresponds to (1.85) with γ = |κ| and thus the ME can be applied as described in Sec. 1.4.2.

4.3 Exact solution of the dynamics

In the case of type-I PDC with a monochromatic pump treated in Chapter 2, the analytical so-

lution for the dynamics has been known for quite a while, cf. [26]. As of recently, an analytical

solution for the time evolution of the nonstationary CJCD with detuning – as also considered

in Ref. [23] – was not known. As part of the work leading to the present contribution I was

able to derive such an analytical solution, which has been subsequently presented in Ref. [59].

In the following we demonstrate how to derive this solution to Eq. (4.34), i.e., a time integral

free representation of (1.88) for the Hamiltonian (4.29) that includes all time ordering effects.

4.3.1 Decoupling the evolution equation

From the dimensionless Fock basis representation of the Hamiltonian (4.29)

Ĥ(t) =
∞∑

n=0

ωn

[

e−i∆ωteiθ|2, n〉〈1, n + k| + H.c
]

,

with wn = cos

(

∆φ +
π

2
k

)

ηke−η2/2

√

n!

(n + k)!
L(k)

n (η2), (4.35)
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we can see, that the interaction is entirely described in terms of projectors constructed from

the states |2, n〉 and |1, n + k〉 with equal n = 0, 1, . . . .

A compact notation for such projectors can be formulated in terms of the spinors

Ψn =






〈2, n|e−iθ/2

〈1, n + k|eiθ/2




 ⇔ Ψ

†
n =






eiθ/2|2, n〉

e−iθ/2|1, n + k〉






T

. (4.36)

These spinors fulfill a orthogonality relation

ΨnΨ
†
n′ = δn,n′I, with I =






1 0

0 1




 (4.37)

and allow us to formulate a completeness relation as, cf. [23]

1̂ =
∞∑

n=0

Ψ
†
nIΨn +

k−1∑

q=0

|1, q〉〈1, q|. (4.38)

By applying this completeness relation, the Hamiltonian (4.35) can be written in the compact

form

Ĥ(t) =
∞∑

n=0

Ψ
†
nHn(t)Ψn, (4.39)

with

Hn(t) =






0 wne−i∆ωt

wnei∆ωt 0




 . (4.40)

From the quasi-diagonal form of the Hamiltonian in the spinor basis it may be hypothesized

that any evolution of the system will also be representable in this basis. Thus, a similarity

ansatz for the evolution operator,

Û(t, t0) =
∞∑

n=0

Ψ
†
nUn(t, t0)Ψn +

k−1∑

q=0

|1, q〉〈1, q|, (4.41)

with Un(t, t0) ∈ C
2×2 and initial condition Un(t, t0)|t=t0

= I, is suitable. Substituting (4.39)

and (4.41) into (4.34) decouples the evolution equation in terms of the 2×2 matrix differential

equations

∂tUn(t, t0) = −i|κ|Hn(t)Un(t, t0), (4.42)
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for n = 0, 1, . . . .

4.3.2 Solving the evolution equation

The time-dependent coefficient matrix (4.40) is representable as linear combination of Pauli

matrices that (multiplied by the imaginary unit i) generate the Lie-group SU(2). Thus, solu-

tions to (4.42) are always representable as

Un(t, t0) =






an(t, t0) bn(t, t0)

−b∗
n(t, t0) a∗

n(t, t0)




 , (4.43)

where

|an(t, t0)|2 + |bn(t, t0)|2 = 1. (4.44)

Note, that in the treatment of parametric down conversion with monochromatic pumps, the

solutions to matrix differential equations with parameter dependent coefficients of similar form

are known [24,26] – see also chapter 2.

To solve the matrix differential equations

∂tUn(t, t0) = −i






0 |κ|wne−i∆ωt

|κ|wnei∆ωt 0




Un(t, t0), (4.45)

with initial condition Un(t, t0)|t=t0
= I we write






0 |κ|wne−i∆ωt

|κ|wnei∆ωt 0




 = S†(t)






0 |κ|wn

|κ|wn 0




S(t), with S(t) =






ei∆ωt/2 0

0 e−i∆ωt/2




 ,

(4.46)

such that

S(t)∂tUn(t, t0) = −i






0 |κ|wn

|κ|wn 0




S(t)Un(t, t0). (4.47)
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Adding the term [∂tS(t)] Un(t, t0) on both sides of the equation, applying the product rule on

the left hand side, and executing the derivative

∂tS(t) = −i






−∆ω/2 0

0 ∆ω/2




S(t) (4.48)

on the right hand side yields the constant parameter differential equation

∂t [S(t)Un(t, t0)] = −i






−∆ω/2 |κ|wn

|κ|wn ∆ω/2




 [S(t)Un(t, t0)] , (4.49)

with initial condition [S(t)Un(t, t0)]|t=t0
= S(t0). The solution is easily found as

[S(t)Un(t, t0)] = exp







−i(t − t0)






−∆ω/2 |κ|wn

|κ|wn ∆ω/2












S(t0), (4.50)

which leads to

Un(t, t0) = S†(t) exp







−i(t − t0)






−∆ω/2 |κ|wn

|κ|wn ∆ω/2












S(t0) =






an(t, t0) bn(t, t0)

−b∗
n(t, t0) a∗

n(t, t0)




 ,

(4.51)

with

an(t, t0) = e−i∆ω[t−t0]/2
[

cos(Γn[t − t0]) +
i∆ω

2Γn
sin(Γn[t − t0])

]

bn(t, t0) = e−i∆ω[t+t0]/2 |κ|wn

iΓn
sin(Γn[t − t0]), (4.52)

for n = 0, 1, . . . and Γn =

√
(

∆ω
2

)2
+ w2

n|κ|2. In Ref. [23] an approximated solution was

found in terms of neglected time ordering – i.e., in terms of (1.94). Here, we have found

an analytic expression that incorporates all time ordering corrections, i.e., an explicit repre-

sentation of the time ordered exponential (1.88) for the Hamiltonian (4.29) (cf. [59]), with

Γn =

√
(

∆ω
2

)2
+ w2

n|κ|2.

These analytic expression allows us, e.g., to obtain the dynamics of the population proba-

bility of the excited electronic state,

σ22(t, t0) =
∞∑

n=0

〈2, n|Û(t, t0)e− i
�

Ĥ0(t−t0)ρ̂(t0)e
i
�

Ĥ0(t−t0)Û†(t, t0)|2, n〉, (4.53)
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and to compare it to the dynamics with neglected time ordering. This is illustrated in Fig. 4.3.

Note that this is a reproduction of results that have been obtained numerically in Ref. [23].

Here however all results for the exact dynamics are based on analytical expressions. The dis-

crepancy between the dynamics with neglected time ordering and exact dynamics was already

pointed out in Ref. [23].
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Figure 4.3: The population probability of the excited electronic state σ22(t, t0) as given in Eq. (4.53) obtained

from the exact analytical solution for Û (red, solid) and for neglected time ordering (black, dashed) with the

initial state ρ̂(1)(t0 = 0) = |1, α0〉〈1, α0|. Here, parameters have been chosen as, ∆ω/|κ| = 0.005, ∆φ = 0,

k = 2, and η = 0.2. The displayed result is a reproduction (and verification) of Fig.2 in Ref. [23] – where

results of the exact dynamics were obtained numerically – by means of the analytical expression (4.53). In

this form it has also been presented in Ref. [59].

4.4 Time-ordering corrections

One may now be interested in how different orders of time ordering affect the temporal evolu-

tion of the system under study. Using the orthogonality (4.37) of our spinor formalism (4.36)

it is easy to show that the non-equal time commutators of (4.39) fulfill

[Ĥ(t), Ĥ(t′)] =
∞∑

n=0

Ψ
†
n[Hn(t), Hn(t′)]Ψn. (4.54)

Consequently, there is a one-to-one correspondence to the non-equal time commutators of the

matrices Hn. Thus it follows, that the ℓth order MA to the solution of (4.34) corresponds

exactly to the result one obtains by evaluating the ℓth order MA to the solution of Eq. (4.42).

Due to the one-to-one correspondence (4.54), the Magnus terms take the same form as in

the operator formulation [cf. (1.93)] such that, e.g., the first-order terms read as

M[1]
n (t, t0) =

t∫

t0

dt1 Hn(t1). (4.55)
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As in the case of type-I PDC with a monochromatic pump, the anti-diagonal coupling ma-

trix (4.40) leads to a different structure in odd and even orders of MA, i.e.,

ℓ odd : M[ℓ]
n (t, t0) = wℓ

n[t − t0]ℓfℓ

(
∆ω[t − t0]

2

)






0 e−i∆ω[t+t0]/2

ei∆ω[r+r0]/2 0




 ,

ℓ even : M[ℓ]
n (t, t0) = iwℓ

n[t − t0]ℓfℓ

(
∆ω[t − t0]

2

)






1 0

0 −1




 . (4.56)

Evaluating the first three order terms according to (1.93) yields the functions

f1(z) = j0(z), f2(z) =
1

2
[j1(z) cos(z) − j0(z) sin(z)] ,

and f3(z) =
1

6

[

−j3
0(z) + j0(z) + j2(z)

]

, (4.57)

that are defined in terms of the pole-free spherical Bessel functions j0(z) = sinc(z). Addition-

ally, the 4th order Magnus term

f4(z) =
1

12

[
1

2
j2

0(z) sin(2z) − 1

2
j0(z) sin(z) − 1

2
j2

1(z) sin(2z) − 1

2
j2(z) sin(z)

−j1(z)j0(z) cos(2z) +
3

10
j1(z) cos(z) +

3

10
j3(z) cos(z)

]

, (4.58)

and the 5th order Magnus term

f5(z) =
1

60

[
j0(z)

2
+

5j2(z)

7
+

3j4(z)

14
+ 2j2

1(z)j0(z) sin2(z) − 13

6
j1(z)j0(z) sin(z)

− 1

2
j3(z)j0(z) sin(z) − 5

3
j1(z)j2(z) sin(z) + 2j3

0(z) cos2(z) − 5

2
j2

0(z) cos(z)

−5

2
j2(z)j0(z) cos(z) + 4j1(z)j2

0(z) sin(z) cos(z)

]

, (4.59)

have been evaluated in terms of the corresponding expressions given in Refs. [18] and [25]

respectively. Evaluating the matrix exponentials, e.g., in second order,

U[2]
n (t, t0) = e−i|κ|M

[1]
n (t,t0)−|κ|2M

[2]
n (t,t0), (4.60)

yields the MAs for an(t, t0) and bn(t, t0), i.e., a
[ℓ]
n (t, t0) and b

[ℓ]
n (t, t0).

Let us once again emphasize, that the ME series (4.64) may not always converge [18].

However, one can show that the ME (4.64) converges for [18]

|κ|

t∫

t0

dt̃ ||Hn(t̃)||2 = |κwn|[t − t0] < π, (4.61)



4.4 Time-ordering corrections 89

where || · · · ||2 denotes the spectral norm [127]. In terms of the full operator (4.41) this means,

we can guarantee convergence, as long as wmax|κ|[t − t0] < π with wmax = max
n=0,1,...

|wn| [also cf.

Eq. (4.35)].
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Figure 4.4: The population probability of the excited electronic state σ22(t, t0) as given in Eq. (4.53) obtained

from the exact solution for Û (black, solid), from the first-order approximation , i.e., neglected time ordering

(green, dashed), from the second order approximation (blue, dotted), and from the fifth order approximation

(red, dot-dashed) with the initial state ρ̂(2)(t0 = 0) = |2, α0〉〈2, α0| in the range 0 ≤ t|κ| < 17.4. Here,

parameters have been chosen as, ∆ω/|κ| = 0.224, ∆φ = π/4, k = 3, and η = 0.4. This implies, that

wmax = 0.307. A vertical gridline (grey dashed) at t|κ| = π/wmax marks the region in which the sufficient

condition [Eq. (4.61)] guarantees the convergence of the time ordering corrections. In Section 5.1 we develop

criteria that allow us to state that the time ordering corrections converge in the full displayed range. Figure

as presented in Ref. [59].

The upper bound (4.61) is nonetheless only a sufficient criterion for convergence. In

Fig. 4.4 we give an illustrative example of convergence well above this upper bound. Here

we compare the population probability of the excited electronic state (4.53) in different orders

of time ordering corrections to the exact solution. The quality of approximation seemingly also

improves above the bound (4.61). In Chapter 5 we will show that the ME indeed converges

for all values of time displayed in this figure. Moreover the displayed timerange corresponds

to the exact upper limit of convergence of time ordering corrections.

4.4.1 Generating function

The analytic solutions in Eq. (4.52) allow for the explicit formulation of the full ME. This

means, we can bring (4.43) in exponential form as

Un(|κ|) = exp {−iMn(|κ|)} . (4.62)

Here and in the following we drop the time-dependence of the matrices from our notation and

consider the appearing parameters as functions of the coupling parameter |κ|.
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Evaluating the matrix exponential under application of the unitary condition (4.44) shows

that the matrix-exponent can be chosen in the form

Mn(|κ|) =
arccos(Re(an(|κ|)))
√

1 − Re2(an(|κ|))






−Im(an(|κ|)) ibn(|κ|)

−ib∗
n(|κ|) Im(an(|κ|))




 . (4.63)

This matrix can now serve as a generating function for the different orders of time ordering

corrections, i.e., a Taylor series expansion of Mn(|κ|) in terms of |κ| around |κ| = 0 yields the

ME as

Mn(|κ|) = i
∞∑

ℓ=1

(−i|κ|)ℓM[ℓ]
n , (4.64)

where

M[ℓ]
n =

iℓ−1

ℓ!

dℓMn(|κ|)

d|κ|ℓ

∣
∣
∣
∣
∣
|κ|=0

. (4.65)

The equivalence of these expressions with those obtained from nested commutators, has been

verified up to 5th order. The generating function allows us to obtain arbitrary-order time

ordering corrections (in terms of arbitrary-order MAs).
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Convergence analysis of ordering corrections
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In the preceding chapters we have analyzed (time) ordering effects in different quantum

optical systems by applying the ME and MA. As pointed out at several occasions above, the

ME neatly separates the part with neglected (time) ordering effects from the time ordering

corrections. However, we have also noted that the application of the ME has several limitations.

In the case of PDC the spatial coordinate z took the role of the time parameter in the

perturbative treatment. Consequently, the crystal length corresponds to the total evolution

time. Usually the crystal length is a fixed experimental parameter Thus, sufficient criteria for

the convergence of MAs for PDC where given in terms of the (maximal) gain parameter [cf.

(2.54)]. A similar sufficient upper bound was formulated for the CJCD model in Chapter 4. In

this case we considered the pump strength fixed and an upper bound was given in terms of the

maximal time for which time ordering corrections converge.

Admittedly, for small scales – i.e., small gain or small times – the ME does always converge

but significant deviations caused by the negligence of ordering effects may only arise when

one moves to sufficiently large scales where divergence may occur. Thus, the exact knowledge

of boundaries for the analysis of ordering effects is imperative. In the case of divergence a

comparison of the cases of neglected time ordering with the case of time ordering in terms

of the ME will lead to misinterpretations, i.e., unphysical results. In this context, sufficient

bounds can be considered non-satisfactory, as the ME series may converge way above these

bounds. However, exact upper bounds can generally only be found for cases that have been

explicitly constructed to demonstrate this fact (cf. [18]).

91
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In this chapter we will demonstrate how one can obtain exact upper bounds that exceed

the sufficient bounds for the two systems considered in this contribution where analytical so-

lutions are at hand. The main idea behind this analysis is to interpret the ME series as a Taylor

series in terms of the expansion parameter. If one can associate an analytical continuation of

the exponent of the analytical solution, this allows one to determine the radius of convergence

of the complex Taylor series in terms of singularities of the exponent. This will first be demon-

strated at hands of the Jaynes-Cummings model – this result has been published in Ref. [59].

The analysis for the PDC model will be given subsequently, as it is analogous in many steps –

this result has been published in Ref. [58]. These analysis are, to my best knowledge, the first

analysis of such exact limits in the context of quantum optical systems.

5.1 Classically driven Jaynes-Cummings dynamics of an ion in a

Paul trap

As mentioned above; the sufficient convergence criterion (4.61) for the CJCD may underesti-

mate the actual limits of convergence of ME approximations. As we have treated the CJCD with

detuning ∆ω, one may wonder why the detuning ∆ω makes no appearance in the sufficient

upper bound criterion (4.61). Sharper bounds seem desirable in the treatment of time order-

ing corrections and knowing the analytic expression for the exponents (4.63) indeed allows us

to perform a more sophisticated analysis.

For these purposes we may substitute wn �→ τn/(|κ|[t − t0]) and ∆ω �→ 2Λ/[t − t0] with the

dimensionless parameters τn and Λ into (4.63). In this manner we find expressions of the form

an(|κ|) �→ ãΛ(τn) bn(|κ|) �→ b̃Λ(τn),

Mn(|κ|) �→ M̃Λ(τn),. (5.1)

Applying the chain rule, it is now easy to show that

M[ℓ]
n =

τ ℓ
n

|κ|ℓ
M̃

[ℓ]
Λ

, (5.2)

with the partial derivatives at τn = 0

M̃
[ℓ]
Λ

=
iℓ−1

ℓ!

∂ℓM̃Λ(τn)

∂τ ℓ
n

∣
∣
∣
∣
∣
τn=0

. (5.3)
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Thus follows, that the ME series (4.64) only converges if the Maclaurin series

M̃Λ(τn) = i
∞∑

ℓ=1

(−iτn)ℓM̃
[ℓ]
Λ

(5.4)

converges. To analyze the convergence of the series (5.4) we consider the matrix elements of

M̃Λ(τn) as complex functions by replacing τn �→ z. It is then possible to determine the radii of

convergence, |z| < rΛ, of these series (cf. [128]) in terms of the singularities of the analytical

expressions M̃λ(z) in the complex plane [18].

5.1.1 Analytic continuation and convergence radius

The analytic continuation of the matrix exponent to the complex plane has to be carried out

with a great deal of care. The replacement τn �→ z in the matrix elements of M̃Λ(τn) [cf. (5.1)]

is performed after the conjugations in (4.63), i.e., z itself is not conjugated. In this manner we

get the representations as

M̃Λ(z) =
arccos(AR,Λ(z))
√

1 − A2
R,Λ(z)






−AI,Λ(z) e−i∆ω[t+t0]/2BΛ(z)

ei∆ω[t+t0]/2BΛ(z) AI,Λ(z)




 , (5.5)

with

AR,Λ(z) = cos (Λ) cos (γΛ(z)) + Λ sin (Λ) sinc (γΛ(z)) ,

AI,Λ(z) = − sin (Λ) cos (γΛ(z)) + Λ cos (Λ) sinc (γΛ(z)) ,

and Bn(z) = z sinc (γn(z)) , (5.6)

where γΛ(z) =
√

Λ2 + z2. Replacing z �→ τn in (5.5) yields (4.63). Thus, (5.5) is a continuation

of (4.63). It remains to be shown that this is not only any continuation but an analytical

continuation.

First, let us note that there is no branching in the functions (5.6) as the square root γΛ(z)

only appears in the even cos- and sinc-functions. Furthermore, let us note that with the gener-

ating function [129]

1

Z
cos
(√

Z2 − 2ZT
)

=
∞∑

p=0

T p

p!
jp−1(Z) (5.7)
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of the spherical Bessel functions,

j−1(Z) =
cos(Z)

Z
,

jp(Z) = (−Z)p
(

1

Z

d

dZ

)p sin(Z)

Z
for p = 0, 1, . . . (5.8)

and its derivative in terms of T , we can find the Maclaurin series representations

cos (γΛ(z)) = Λ

∞∑

p=0

1

p!

(

−z2

2Λ

)p

jp−1(Λ),

sinc (γΛ(z)) =
∞∑

p=0

1

p!

(

−z2

2Λ

)p

jp(Λ), (5.9)

where we have associated Z = Λ and −2ZT = z2. We can see that the series are entirely

independent of the conjugated complex variable z∗.

With help of |jp(Z)| ≤ 1 for p = 0, 1, . . . and Z ∈ [0, ∞) we can show absolute convergence

of these series with upper bounds

| cos (γΛ(z)) | ≤ | cos(Λ)| + Λ

(

exp

[

|z|2

2|Λ|

]

− 1

)

,

and |sinc (γ(z)) | ≤ exp

[

|z|2

2|Λ|

]

. (5.10)

Thus, the functions AI,Λ(z), AR,Λ(z), and BΛ(z), defined in (5.6), are analytical functions in

the full complex plane z ∈ C. Thus, singularities of M̃Λ(z) can only stem from the factor

f(AR,Λ(z)) =
arccos(AR,Λ(z))
√

1 − A2
R,Λ(z)

. (5.11)

Note that

f(z) =
dF (z)

dz
, with F (z) = −1

2
arccos2(z). (5.12)

It can be shown that the function F (z) has a branch point at z = −1 (but unlike arccos(z)

not at z = 1) – a very visual introduction to the concepts of branch points and analytic many-

valued functions can be found in Ref. [128]. Consequently f(z) has the same branch point

as F (z). Thus, the function f(AR,Λ(z)) has branch points wherever AR,Λ(z) = −1, i.e., the

branch points of f(AR,Λ(z)) correspond to the zeros of the analytic function

gΛ(z) = AR,Λ(z) + 1. (5.13)
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As we have shown that all other functions appearing in (5.5) are analytic, M̃Λ(z) has branch

points, where, and only where, gΛ(z) = 0. It is well known that, a Taylor expansion of a ana-

lytic function will converge to said function within the disc in the complex plane, centered at

the point of expansion, whose radius is the distance from the point of expansion to the nearest

singularity or branch point; see the formulation of Taylors theorem in Chapter 9, Section II.2

of Ref. [128]. Thus, a series expansion of M̃Λ(z) around z = 0 will converge for |z| < rΛ ,

where

rΛ = min
z0∈C:gΛ(z0)=0

|z0|. (5.14)

This concept is illustrated in Fig. 5.1.
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Figure 5.1: The contours Re[gλ(z)] = 0 (red) and Im[gλ(z)] = 0 (blue) for different Λ. A circle (gray, dashed)

marks out the radius rΛ as defined in (5.14) and crosses the minimal absolute value root – where the contours

Re[gλ(z)] = 0 and Im[gλ(z)] = 0 intersect – of gΛ(z).

We have evaluated rΛ in a range of Λ going from Λ = 0.005π to Λ = 200π in steps of

0.005π. This was achieved by extracting the line data from the ContourPlot function (Con-

tours: Re(gΛ(z)) = 0, Im(gΛ(z)) = 0) in Mathematica to get estimates for the location of the

minimal absolute value roots of g(z) which where then refined by the FindRoot function in

Mathematica.

5.1.2 Exact upper bound for the evolution operator

By determining the radii of convergence [128] rΛ of these series |z| < rΛ in terms of the

singularities of the analytical expressions M̃λ(z) in the complex plane [18] we have obtained

the exact criterion of convergence (cf. (5.14))

|τn| = |κwn|[t − t0] < rΛ = r∆ω[t−t0]/2, (5.15)
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in terms of time. Note that again wn appears only as a factor here, thus for the full ME of the

full operator (4.41) we may define wmax = max
n=0,1,...

|wn|. Then the MA for (4.41) converges for

0 ≤ [t − t0] < tmax(∆ω) = min
t̃∈R+:|κwmax t̃|=r

∆ωt̃/2

t̃, (5.16)

where tmax(∆ω) is a function of the detuning. This exact upper bound of convergence is

displayed in Fig. 5.2.

Note that it may happen that the series becomes again convergent for t > tmax(∆ω) in

regions of t where Eq. (5.15) is fulfilled. However, tmax(∆ω) is the exact upper limit of contin-

uous convergence. Judging from the display of these regions in Fig. 5.2 they do not increase

the range of convergence significantly. For large detunings the convergence time increases in

a linear fashion. Note that too large detunings may undermine the validity of the model in

Eq. (4.29).

Based on this analysis, the detuning ∆ω in Fig. 4.4 has been chosen such that the maximal

displayed value t corresponds to the first local maximum of tmax(∆ω) in Fig. 5.2. Thus, we can

guarantee convergence of the time ordering correction to the exact solution for all ranges of t

displayed in Fig. 4.4.

Figure 5.2: The upper bound (black) tmax(∆ω) as a function of the phase-mismatch ∆ω as defined in (5.16) –

an inset illustrates its global behavior. The constant upper bound estimate (gray, dashed) as defined in (4.61).

In the displayed regions (yellow, blue dashed boundary) the ME also converges, however the expansion will

diverge in between these times (t − t0) > tmax(∆ω) and the initial time t0. A vertical gridline (red) and a

point (red) mark the position of the first local maximum of tmax(∆ω). Figure as presented in Ref. [59].

5.2 Parametric down-conversion with a monochromatic pump

As for the CJCD model, we have exact analytical solutions for the evolution of light in the

PDC process with a monochromatic pump. The corresponding exponential representation S =
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exp(−iM) of the analytic solution (2.32) reads as

Mθ(g) =
arccosh (AR,θ(g))

√

AR,θ(g) − 1
√

AR,θ(g) + 1






−AI,θ(g)I ieiθei arg(σ)Bθ(g)P

ie−iθe−i arg(σ)Bθ(g)P AI,θ(g)I




 , (5.17)

where we denote explicitly the dependency on the gain exponent g and the phase-mismatch

angle θ. The appearing functions in terms of g read as

AR,θ(g) =

[

cos(θ)cosh

(√

g2 − θ2

)

+
θ

√

g2 − θ2
sin(θ)sinh

(√

g2 − θ2

)]

,

AI,θ(g) =

[

sin(θ)cosh

(√

g2 − θ2

)

− θ
√

g2 − θ2
cos(θ)sinh

(√

g2 − θ2

)]

,

B(g) =
g

√

g2 − θ2
sinh

(√

g2 − θ2

)

. (5.18)

Note the similarity between (5.17) and (5.5). They differ as θ takes the role of Λ and g

takes the role of τn. Moreover we have here hyperbolic functions instead of the trigonometric

functions in (5.6) and a sign change in the appearing square roots.

Again, it can be shown that the Magnus terms correspond to the terms of the Maclaurin

series of Mθ(g) in g. Thus, the singularities of an analytical continuation Mθ(g) �→ Mθ(z) with

z ∈ C, determine the radius of convergence of the Maclaurin series. Thereby we can determine

the exact upper bound for g up to which the ME will converge.
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Figure 5.3: The exact upper bound gmax for the convergence of the MA to the exact solution as a function of

the phase mismatch angle θ (dark red). A gridline (gray, dashed) illustrates the level gmax = π to which the

sufficient norm criterion guarantees convergence. Figure as presented in Ref. [58].

Finding the locations of singularities of the analytic continuation Mθ(g) �→ Mθ(z) is com-

pletely analogous to the methods discussed in the previous section for the Jaynes-Cummings

dynamics. However, some modifications have to be made in the proof of holomorphicity of

the functions (5.18) as they are now to be carried out in terms of hyperbolic rather then

trigonometric functions. The limited radius of convergence is however again given in term of
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branch points of the prefactor function f(z) = arccosh(z)√
z−1

√
z+1

which is the derivative of F (z) =
1
2 arccosh2 (z) which has a branch point at z = −1. Thus, the radius of convergence of the ME

series in the case of PDC is again given by the minimal absolute value root of the holomorphic

function gθ(z) = AR,θ(z) + 1.

The exact upper bound in terms of gain obtained by this analysis is displayed in Fig. 5.3.

We can see that the MA converges to the exact solution well beyond the limit g < π for a

wide range of θ. We can also observe that the limit of convergence increases with increasing

phase-mismatch. Thus, this might explain the quality of approximation in this limit, cf. Fig.2.4.

After all, quality of approximation by MA should improve as one moves further away from a

divergent regime.



Conclusion

In summary, we have analyzed (time) ordering effects in the context of dynamic quantum opti-

cal systems. To this end, we have considered the exponential representation of time-dependent

perturbation theory, i.e., the ME [17]. Truncating the ME leads to approximations of the evolu-

tion operators for dynamic systems. Increasing the orders of approximation includes increased

orders of (time) ordering corrections which improve the description of the systems dynamics

by the approximation. The first-order approximation corresponds to the negligence of (time)

ordering corrections. Thus, this expansion allows for the clear identification of (time) ordering

effects. However, (time) ordering corrections in terms of the ME may not always converge to

the exact dynamics (cf. [18]) which can lead to misinterpretations and nonphysical results.

Firstly, we have applied these methods in the process of type-I PDC in a second-order non-

linear crystal with a monochromatic pump. This system is particularly suited for an analysis

of ME methods in the context of quantum optical systems, as we have access to a closed form

exact analytical solution to the non-stationary dynamics (cf. [26]), which served as reference

for comparisons. We have applied the Bloch-Messiah decomposition to the process. Using the

exact solution for the dynamics, we have evaluated the four real parameter characterizing the

Bloch-Messiah decomposition and have introduced the squeezing eigenmodes which are in a

single-mode squeezed state and, therefore, are statistically independent. We have shown that

for the monochromatic pump wave, the eigenmodes are bichromatic and are parameterized

by two angles. Next, we have applied the ME to the quantum-mechanical evolution operator

of this system and obtained analytic expressions for the first three orders of the MA. We have

shown that above certain degree of squeezing corrections to the first-order MA are necessary,

and have introduced a boundary value of the parametric gain exponent g = π, correspond-

ing to 12.5 dB of squeezing, as a boundary for the ultra-high-gain regime of PDC. We have

demonstrated that for squeezing as high as 16 dB the third-order MA provides a very good

approximation of the broadband squeezed squeezed light generated in this process. We have

shown that a nonlinear dependence of the degree of squeezing r(g) for non-zero phase mis-

match can serve as a signature of the ultra-high-gain regime of PDC, a result which can be

verified experimentally. We have also demonstrated that the photocurrent noise spectrum in

the balanced homodyne detection of broadband squeezed light is very sensitive to the errors

in the angle of squeezing in the respective MAs for ultra-high-gain regime. Our results con-

firm that the first-order MA, used in several previous publications, can be trusted for moderate
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squeezing, and provides the level of squeezing for which the higher-orders corrections are nec-

essary. We have discussed how the quality of the MA depends on the regime of gain and seen

that the quality equally depends on the phase mismatch. We have furthermore seen that MAs

yield the correct asymptotic behavior in terms of phase-mismatching angles for every order of

approximation.

Secondly, we have considered the type-I PDC process with a broad spectral pump pulse in

a single pass configuration. In this case, no closed-form analytical solution to the dynamics is

available and analysis of ordering effects was carried out in terms of the MAs. The second-

and third-order MA include ordering corrections, which were compared to the first-order MA,

which corresponds to the case of neglected ordering. An example scenario of a BBO crystal

and a pump pulse with phase-modulated Gaussian envelope function was considered, where

perfect phase-matching conditions were achieved at the central carrier frequency. A sufficient

upper bound was evaluated for this example and MAs up to third order were considered below

this bound. The ordering corrections showed a modification of squeezing eigenmodes, both in

terms of phase modulation and width. The corresponding squeezing parameters were also af-

fected by the ordering corrections. However, for the maximally squeezed mode, the squeezing

parameter showed linear dependency to the gain parameter up to 16 dB squeezing, and it was

hypothesized that the third-order expansion may give useful descriptions of the eigenmodes of

squeezing as long as this relation to the gain parameter remains valid. Additionally, a scenario

of off-center phase matching was considered as an exemplary scenario scenario for an engi-

neered source – to this end, a slight turn of the BBO crystal was considered whilst the the rest

of the configuration remained unchanged. This led to the notion of bispectral beams. Here the

transformation from the input to the output of the crystal have a structure that resembles that

of a the type-I PDC with a monochromatic pump, i.e., instead of bichromatic squeezing eigen-

modes, we have bispectral eigenmodes. We have proven the two-fold multiplicity of squeezing

parameters in such bispectral beam scenarios.

Thirdly, the CJCD model was considered. We derived an exact solution for such a dynamics

for the first time. The solution was formulated by applying a spinor formalism which decoupled

the dynamics in terms of 2 × 2 matrix differential equations, which were subsequently solved.

Thus, as in the case of type-I PDC with a monochromatic pump, we were able to compare MAs

to the exact dynamics of the system. The decoupling in terms of the spinor formalism allowed

for an efficient investigation of time-ordering effects. The latter were considered with respect

to the excitation probability of the electronic state of the two-level ion. Magnus approximations

up to 5th order were considered. Furthermore, based on the analytical solution, a closed form

generating function for the time-ordering corrections was derived.

Lastly, we have considered the question of convergence of MAs in more detail. To this end,

we first focused on the classically driven Jaynes-Cummings dynamics of an ion in a Paul trap.

By extending the generating function of time-ordering corrections – obtained from the analyt-
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ical solution of the Jaynes-Cummings Dynamics – to the complex plane, we could determine

the exact limits of convergence of time-ordering corrections by locating the singularities of the

former in the complex plane. It was shown that these exact upper bounds depend on the detun-

ing and exceed known sufficient upper bounds over a wide range of detunings. Additionally,

we have observed isolated regions of convergence above these upper bounds. Subsequently,

a similar analysis was performed for the type-I PDC process with a monochromatic pump for

which an analytical solution was also available. Here the sufficient upper bound in terms of

the gain parameter was exceeded for a wide range of phase mismatch angles. For large phase

mismatch angles, the exact upper bound increased in a quasi-linear fashion. This was taken

as an explanation as to why all orders of MA show the correct asymptotic behavior in this

limit. The analysis of the exact upper limits of convergence for the two systems are, to my best

knowledge, the first in the context of quantum optical systems.

In conclusion, we have shown that the ME can serve as a useful tool in order to analyze

(time) ordering effects in quantum optical systems. The MA, as all approximative methods,

comes with a trade off and we have seen that this trade off is, e.g., the limitations in terms

of (sufficient) upper bounds of convergence. What we could also see throughout our employ-

ment of MAs was that we did not need to worry about the preservation of symmetries in our

treatment. The ME itself preserved all relevant symmetries. This allowed us, e.g., to adopt the

notion of squeezing operators in the context of PDC instead of having to speak of two-photon

generation and the-like – as one would do in a perturbative Dyson series treatment. The accu-

racy of low-order MAs in the context of PDC also underlies its utility as an approximative tool.

We were able to show that exact upper bounds of convergence may exceed those obtained by

sufficient criteria by quite a margin for a wide range of configurations, which also underlies

the power of this representation of time-dependent perturbation theory.

It is my sincerest hope that the presented body of work yields useful intuitions and vocabu-

lary to researchers, theoreticians and experimenters alike, that wish to apply methods resulting

from the ME, treat non stationary systems, or discuss quantum (time) ordering effects.
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Appendix A

Equivalence of Magnus expansion in operator

and matrix formulation

We consider purely quadratic symmetrically ordered hermitian operators

f̂(A) = ξ̂
†
Aξ̂, (A.1)

with

ξ̂ = (â1, . . . , ân, â†
1, . . . , â†

n)T , (A.2)

that are defined in terms of the Hermitian 2n×2n matrices A with block structure

A =






A0 AI

A∗
I A∗

0




 , (A.3)

where A0 ∈ C
n×n is Hermitian and AI ∈ C

n×n is complex symmetric. This implies, that

AT = A∗ = PAP with P =






0 I

I 0




 . (A.4)

Note, that this representation is linear in the Hermitian matrices

f̂(A + B) = f̂(A) + f̂(B). (A.5)

Furthermore, we write ξ̂k = âk for k ≤ n and ξ̂k = â†
k−n for k > n by which

f̂(A) = ξ̂
†
kAk,lξ̂l, (A.6)
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where we have adopted the Einstein sum convention in the sense that repeated indices are

summed over the range 1, . . . , 2n. The bosonic commutator relations can be formulated as

[ξ̂p, ξ̂†
q ] = Kp,q with K =






I 0

0 −I




 . (A.7)

Furthermore, note that

ξ̂†
p = Pp,q ξ̂q, (A.8)

by which also follows, that

[ξ̂p, ξ̂q] = (KP)p,q [ξ̂†
p, ξ̂†

q ] = (PK)p,q. (A.9)

We will furthermore make use of the properties P2 = K2 = I, (PK)T = −PK, and

PK = −KP. We may write

After clarifying the notation, it is straight forward to show that

[f̂(A), f̂(B)] = Ak,lBp,q[ξ̂†
kξ̂l, ξ†

pξ̂q] = Ak,lBp,q ξ̂
†
k[ξ̂l, ξ†

pξ̂q] + Ak,lBp,q[ξ̂†
k, ξ†

pξ̂q]ξ̂l

=Ak,lBp,q ξ̂
†
kξ†

p[ξ̂l, ξ̂q] + Ak,lBp,q ξ̂†
p[ξ̂†

k, ξ̂q]ξ̂l + Ak,lBp,q ξ̂
†
k[ξ̂l, ξ̂†

p]ξ̂q + Ak,lBp,q[ξ̂†
k, ξ̂†

p]ξ̂q ξ̂l

=ξ̂
†
kAk,l(KP)l,qBp,q ξ̂†

p − ξ̂†
pBp,qKq,kAk,lξ̂l + ξ̂

†
kAk,lKl,pBp,q ξ̂q + ξ̂qBp,q(PK)k,pAk,lξ̂l

=ξ̂
†
kAk,l(KP)l,q(PBP)q,pPp,r ξ̂r − ξ̂†

pBp,qKq,kAk,lξ̂l + ξ̂
†
kAk,lKl,pBp,q ξ̂q

− ξ̂†
rPr,q(PBP)q,p(PK)p,kAk,lξ̂l

=ξ̂
†
AKPPBPPξ̂ − ξ̂

†
BKAξ̂ + ξ̂

†
AKBξ̂ − ξ̂

†
PPBPPKAξ̂

=2ξ̂
†
KKAKBξ̂ − 2ξ̂

†
KKBKAξ̂

=2ξ̂
†
K[KA, KB]ξ̂

=f̂(2K[KA, KB]). (A.10)

Nesting is also obvious as

[f̂(A), [f̂(B), f̂(C)]] = [f̂(A), f̂(2K[KB, KC])] = f̂(4K[KA, [KB, KC]]) (A.11)

Consider now the quadratic Hamiltonian Ĥ(z) = f̂(H(z))

∂tÛ(z, z0) = −iγĤ(z)Û(z, z0), (A.12)
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with The corresponding matrix differential equation – cf. (1.51) reads as

∂zS(z, z0) = −iγF(z)S(z, z0), (A.13)

where F(z) = 2KH(z). The one can easily see that there is a one-to one correspondence for

nested commutators of unequal position Hamiltonians as

Ĥ(z1) = ξ̂
† 1

2
KF(z1)ξ̂

[Ĥ(z1), Ĥ(z2)] = ξ̂
† 1

2
K[F(z1), F(z2)]ξ̂

[Ĥ(z1), [Ĥ(z2), Ĥ(z3)]] = ξ̂
† 1

2
K[F(z1), [F(z2), F(z3)]]ξ̂

.... (A.14)

Thus, considering that the Magnus terms correspond time ordered integrals of nested commu-

tators, the kth order Magnus expansion approximation in operator formulation yields exactly

the same transformation as the kth order Magnus expansion approximation in matrix formu-

lation.
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Appendix B

Mathematica implementation of the

Bloch-Messiah decompositon

Implementations of the Bloch-Messiah decomposition have been discussed in the literature

– see Refs. [113, 114]. See also the proof of a symplectic singular value decomposition in

Ref. [130], for a related result that can be adapted into a decomposition algorithm. Here we

give a simple Mathematica implementation of the decomposition that has been employed in

this mansucript to derive Bloch-Messiah decompositions. In Ref. [115] the following Mathe-

matica implementation of the Takagi (labled TD) decompostion (1.61) was given:

TD[M ] :=

{

#[[2]], #[[1]].MatrixPower

[

CT[#[[3]]].CO[#[[1]]],
1

2

]}

&@SVD[M ]; ,

where CO, CT, and SVD are abbreviations for the Mathematica functions Conjugate,

ConjugateTranspose, and SingularValueDecomposition respectivley. The returned format

is {Ξ, P}, i.e., two matrices for a decomposition M = PΞP T .

Likewise the Bloch-Messiah decompositon (1.60) can be implemented in Mathematica as

BMD[A , B ] :=

{

#[[2]], DM[#[[1]]], CT[A].#[[2]].DM

[
1

Cosh[#[[1]]]

]}

&@

{
ArcSinh[2DI[#[[1]]]]

2
, #[[2]]

}

&@TD[A.TR[B]]; ,

where TR, DI, and DM are abbreviations for the Mathematica functions Transpose, Diagonal,

and DiagonalMatrix respectivley. The output format is {V, R, W}. These are the matrices of

the Bloch-Messiah decomposition

A = V cosh(R)W † B = V sinh(R)W T . (B.1)

107



108



Appendix C

Bispectral beam exponent

For two matrices with block structure

X =












X1,1 0 0 X1,4

0 X2,2 X2,3 0

0 X3,2 X3,3 0

X4,1 0 0 X4,4












Y =












Y1,1 0 0 Y1,4

0 Y2,2 Y2,3 0

0 Y3,2 Y3,3 0

Y4,1 0 0 Y4,4












, (C.1)

with arbitrary blocks Xp,q and Yp,q, we can see that the block structure remains preserved

under matrix multiplication:

XY =












X1,1Y1,1 + X1,4Y4,1 0 0 X1,1Y1,4 + X1,4Y4,4

0 X2,2Y2,2 + X2,3Y3,2 X2,2Y2,3 + X2,3Y3,3 0

0 X3,2Y2,2 + X3,3Y3,2 X3,2Y2,3 + X3,3Y3,3 0

X4,1Y1,1 + X4,4Y4,1 0 0 X4,1Y1,4 + X4,4Y4,4












.

(C.2)

Thus, we can see that the matrix powers [cf. (3.66)]

P(ℓ) =












−iΦ1 0 0 −iJ

0 −iΦ2 −iJT 0

0 iJ∗ iΦ∗
1 0

iJ† 0 0 iΦ∗
2












ℓ

(C.3)
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for ℓ = 0, 1, 2, . . . always have a block structure of

P(ℓ) =












P
(ℓ)
1,1 0 0 P

(ℓ)
1,4

0 P
(ℓ)
2,2 P

(ℓ)
2,3 0

0 P
(ℓ)
3,2 P

(ℓ)
3,3 0

P
(ℓ)
4,1 0 0 P

(ℓ)
4,4












. (C.4)

Note that this also holds true for P(0) = I. Then, for the symplectic transform S = exp(P(1))

we have

S =
∞∑

ℓ=0

1

ℓ!
P(ℓ) =















∞∑

ℓ=0

1
ℓ!P

(ℓ)
1,1 0 0

∞∑

ℓ=0

1
ℓ!P

(ℓ)
1,4

0
∞∑

ℓ=0

1
ℓ!P

(ℓ)
2,2

∞∑

ℓ=0

1
ℓ!P

(ℓ)
2,3 0

0
∞∑

ℓ=0

1
ℓ!P

(ℓ)
3,2

∞∑

ℓ=0

1
ℓ!P

(ℓ)
3,3 0

∞∑

ℓ=0

1
ℓ!P

(ℓ)
4,1 0 0

∞∑

ℓ=0

1
ℓ!P

(ℓ)
4,4















. (C.5)

Taking into account that S is symplectic, it follows that S preserves the strcuture of the expo-

nent (C.3) as

S =












A1 0 0 B1

0 A2 B1 0

0 B∗
1 A∗

1 0

B∗
2 0 0 A∗

1












. (C.6)



Appendix D

Rotating wave approximation

Here the explicit application off the rotating wave approximation in Sec. 4.2.2 is given. Apply-

ing the expansion [23]

cos(η(â + â†) + ∆φ) =
1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

â†lâm (D.1)

to (4.23) yields

Ĥint = − i

√

�ωL

V ε0
(d21e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

â†lâmÂ21b̂

+ i

√

�ωL

V ε0
(d21e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

â†lâmÂ21b̂†

− i

√

�ωL

V ε0
(d12e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

â†lâmÂ12b̂

+ i

√

�ωL

V ε0
(d12e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

â†lâmÂ12b̂†. (D.2)
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Moving to the interaction picture as ˆ̃Hint(t) = Û †(t)ĤI Û(t) in terms of Û = e− it
�
[ĤF +ĤA+ĤCM]

we obtain the interaction picture Hamiltonian

ˆ̃Hint(t) = − i

√

�ωL

V ε0
(d21e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ21b̂eit[ω21+[l−m]ν−ωL]

+ i

√

�ωL

V ε0
(d21e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ21b̂†eit[ω21+[l−m]ν+ωL]

− i

√

�ωL

V ε0
(d12e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ12b̂eit[−ω21+[l−m]ν−ωL]

+ i

√

�ωL

V ε0
(d12e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ12b̂†eit[−ω21+[l−m]ν+ωL]. (D.3)

Considering ∆ω ≪ ν ≪ ω21 we may rewrite this in terms of ωL = ω21 − kν + ∆ω as

ˆ̃Hint(t) = − i

√

�ωL

V ε0
(d21e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ21b̂e−it[∆ω−[(l+k)−m]ν]

+ i

√

�ωL

V ε0
(d21e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ21b̂†eit[∆ω+2ω21+[l−(m+k)]ν]

− i

√

�ωL

V ε0
(d12e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ12b̂e−it[∆ω+2ω21−[(l+k)−m]ν]

+ i

√

�ωL

V ε0
(d12e)

1

2
e−η2/2

∞∑

l,m=0

1

l!m!

[

ei∆φ(iη)l+m + e−i∆φ(−iη)m+l
]

× â†lâmÂ12b̂†eit[∆ω+[l−(m+k)]ν]. (D.4)

Here can apply the rotating wave approximation as

e−it[∆ω−[(l+k)−m]ν] ≈ δl+k,me−it∆ω eit[∆ω+2ω21+[l−(m+k)]ν] ≈ 0

e−it[∆ω+2ω21−[(l+k)−m]ν] ≈ 0 eit[∆ω+[l−(m+k)]ν] ≈ δl,m+keit∆ω, (D.5)
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which yields

ˆ̃Hint(t) =�κe−it∆ωf̂k(â†â; η)âk b̂Â21 + H.c., (D.6)

with the Hermitian operator

f̂k(â†â; η) =
1

2
ei∆φ−η2/2

∞∑

l=0

â†lâl

(l + k)!l!
(iη)2l+k + H.c. (D.7)

and the coupling constant κ = −i
√

ωL
�V ε0

(d21e). Moving back to the Schrödinger picture yields

Ĥint =�κf̂k(â†â; η)âk b̂Â21 + H.c.. (D.8)
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Abstract

In quantum optics the electromagnetic field, contrary to classical optics, is described by a Hermitian
operator. The quantum nature of the electromagnetic field manifests itself in operator ordering effects,
nonexistent in classical optics. This thesis is devoted to a detailed study of such operator ordering
effects that are due to the dynamics in physical systems. We consider two systems in particular, 1)
traveling-wave parametric down-conversion in a nonlinear medium of the second order, and 2) an ion
in a Paul trap driven by a classical field and described by the so-called nonlinear Jaynes-Cummings
model. The ordering effects in both dynamical systems are studied via the mathematical technique of
the Magnus expansion and approximations defined in terms of the latter. The first part of the thesis is
devoted to parametric down-conversion. We consider two cases: (i) a monochromatic pump wave, and
(ii) a spectrally broad pump wave. It is well known that in both cases this system is capable of gener-
ating spectrally broadband squeezed light. However, the detailed description of the properties of such
squeezed light is still not available. For the monochromatic pump, where an exact solution of the dy-
namics is known, we write explicitly the Bloch-Messiah decomposition of the squeezing transformation
and obtain the squeezing eigenmodes and the corresponding squeezing parameters. Next, we compare
these exact results with the approximations that contain some or no ordering effects. We evaluate the
degree of squeezing for which the ordering effects start to play an important role. Our predictions al-
low for direct experimental verification. We perform similar analysis for the non-monochromatic pump
when the squeezing eigenmodes can only be evaluated numerically. For the nonlinear Jaynes-Cummings
model with a classical pump we obtain explicitly an exact solution of the dynamics which has not been
published in the literature before. Next, we compare this solution with the approximations that contain
some or no ordering effects. Lastly, we evaluate the exact upper bounds of convergence for the Mag-
nus expansion for the nonlinear Jaynes-Cummings model and for parametric down-conversion with the
monochromatic pump. These bounds have not been known so far and exceed known sufficient upper
bounds for a wide range of configurations.

Résumé

En optique quantique, contrairement à l’optique classique, le champ électromagnétique est décrit par
un opérateur hermitien. La nature quantique du champ électromagnétique se manifeste dans les effets
d’ordonnement d’opérateurs, inexistants dans l’optique classique. Cette thèse est consacrée à une étude
détaillée de ce type d’effets d’ordonnement d’opérateurs dus à la dynamique de systèmes physiques.
Nous considerons deux systemes en particulier, 1) la conversion paramétrique descendante d’une onde
progressive dans un milieu non linéaire du deuxième ordre, et 2) un ion dans un piège de Paul en-
traîné par un champ classique et décrit par le-dit modèle de Jaynes-Cummings non linéaire. Les effets
d’ordonnement sont étudiés dans les deux systèmes dynamiques via la technique mathématique du
développement de Magnus et des approximations définies par ce dernier. La première partie de la thèse
est consacrée à la conversion paramétrique descendante. Nous considérons deux cas: (i) une onde de
pompe monochromatique et (ii) une onde de pompe spectralement large. Il est bien connu que dans
les deux cas, ce système est capable de générer une lumière comprimée à large bande spectrale. Cepen-
dant, la description détaillée des propriétés d’une telle lumière comprimée n’est toujours pas disponible.
Pour la pompe monochromatique, où une solution exacte de la dynamique est connue, nous écrivons
explicitement la décomposition de Bloch-Messiah de la transformation de compression et obtenons les
modes propres de compression et les paramètres de compression correspondants. Ensuite, nous com-
parons ces résultats exacts avec des approximations en incluant certains ou aucun effets d’ordonnement.
Nous évaluons le degré de compression pour lequel les effets d’ordonnement commencent à jouer un
rôle important. Nos prévisions permettent une vérification expérimentale directe. Nous effectuons une
analyse similaire pour la pompe non monochromatique lorsque les modes propres de compression ne
peuvent être évalués que numériquement. Pour le modèle de Jaynes-Cummings non linéaire avec une
pompe classique, nous obtenons explicitement une solution exacte de la dynamique qui n’avait pas
été publiée dans la littérature auparavant. Ensuite, nous comparons cette solution avec des approxi-
mations en incluant certains ou aucun effets d’ordonnement. Enfin, nous évaluons les limites exactes
supérieures de convergence du développement de Magnus pour le modèle de Jaynes-Cummings non
linéaire et pour la conversion paramétrique descendante avec la pompe monochromatique. Ces limites
n’étaient pas connues à ce jour et dépassent les limites suffisantes supérieures connues pour un large
éventail de configurations.
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