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Abstract: This work deals with the investigation of the modulation instability pro-
cess in optical fibres and in particular its nonlinear stage. This process can induce
a complex coupling dynamics between the pump and sidebands waves, with a single
or multiple returns to the initial state if it is seeded. This phenomenon is referred as
Fermi-Pasta-Ulam-Tsingou recurrences. In this thesis, we describe the implemen-
tation of a novel experimental technique based on heterodyne optical time-domain
reflectometry and active compensation of losses. It allows fast and non-invasive
distributed characterisation along a fibre of the amplitude and phase of the main
frequency components of a pulse. Furthermore, we detail a simple post-processing
method which enable us to retrieve the complex field evolution in the time domain.
Using these tools, we reported the observation of two Fermi-Pasta-Ulam-Tsingou
recurrences and their symmetry-breaking nature, both in the frequency and time
domain. Then, we quantitatively studied the influence of the initial three-wave
input conditions on the recurrence positions, in regards with recent theoretical pre-
dictions. Finally, we investigated the dynamics of higher-order nonlinear structures,
namely second-order breathers.

Keywords: nonlinear fiber optics; modulation instability,
Fermi-Pasta-Ulam-Tsingou recurrences, breathers

Résumé: Ce travail porte sur l’étude du processus d’instabilité de modulation dans
les fibres optiques et notamment son étape nonlinéraire. Ce procesus peut induire
une dynamique complexe de couplage nonlinéaire entre une onde de pompe et des
bandes latérales, notamment un, voire de multiples, retours à l’état initial si il est
amorcé activement. Ce phénomène est connu sous le nom de récurrences de Fermi-
Pasta-Ulam-Tsingou. Dans cette thèse, nous décrivons la mise en place d’un mon-
tage expérimental se basant sur la déctection hétérodyne d’un signal rétrodiffusé et
une compensation active des pertes. Il permet une caractérisation distribuée rapide
et non-invasive tout le long d’une fibre de l’amplitude et la phase des principales
composantes spectrales d’une impulsion. En outre, nous détaillons une méthode de
post-traitement qui nous permet de retrouver l’évolution du champ complexe dans le
domaine temporel. Mettant en oeuvre ces outils, nous avons rapporté l’observation
de deux récurrences de Fermi-Pasta-Ulam-Tsingou et leur brisure de symétrie, à la
fois dans les domaines fréquentiel et temporel. Suite à cela, nous avons quantita-
tivement examiné l’influence des conditions initiales des trois ondes envoyées dans
la fibre sur la position des récurrences, en comparaison avec de récentes prédictions
théoriques. Finalement, nous avons étudié la dynamique de structures nonlinéraies
d’ordre supérieur, à savoir les breathers du deuxième ordre.

Mots-clés: optique nonlinéaire fibrée; instabilité de modulation; récurrences de
Fermi-Pasta-Ulam-Tsingou, breathers
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Introduction

Since 1960 and the pioneered work of Theodore Maiman [1] (following the develop-
ment of masers a few years earlier [2]) laser have revolutionised the field of nonlinear
optics. Indeed they are able to deliver coherent light intense enough to impact the
optical properties of the propagating medium, thus giving rise to nonlinear effects.
As soon as 1961, Franken et al [3] were then able to demonstrate second-harmonic
generation in a quartz crystal. Five years later, Kao and Hockam [4] highlighted the
potential of glass waveguides for telecommunication purposes. Based on this work,
physicists from Corning managed to fabricate “low-loss” optical fibres in 1970 [5].
Low-loss optical fibres were not only an interesting platform for telecommunica-
tion perspectives but also for nonlinear investigations. Indeed, they allow a high
confinement of intense light over long distances, which is suitable to trigger nonlin-
ear processes. The 70’s decade revealed then to be very rich for nonlinear optics,
with the observation by Stolen and coworkers of many fundamental nonlinear phe-
nomena, namely Raman [6] and Brillouin scattering [7], Kerr effect [8], four-wave
mixing [9, 10] and self-phase modulation [11].

During the 80’s, the first observation in optical fibres of soliton propagation
[12] and modulation instability [13] contributed to the development of ultra-sort
pulses generation. Modulation instability (MI) consists in the exponential growth
of spectral sidebands related to the perturbation on a continuous wave background
[14]. It is not restricted to optical fibres and can appear in many other physical
frameworks such as plasmas [15], Bose-Einstein condensates [16] or hydrodynamics
[17]. In fibre optics it has found many applications, among which is parametric
amplification [18]. MI can arise from noise but can also be coherently seeded. In
the latter case, it presents a very interesting dynamics, in particular in its nonlinear
stage. Indeed, it is accompanied by the amplification of multiple harmonics of the
modulation sidebands via four-wave mixing, leading eventually to a triangular shape
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Introduction

spectrum [19]. In the time domain, this corresponds to a train of high-amplitude
pulses. However, the process can further reverse, leading the system back to its
initial state. This phenomenon, which can be periodic or quasi-periodic is often
referred as Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence. To understand the origin
of this name, one has to go back to the mid 50’s. Back then, in Los Alamos, four
researchers, Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou were
aiming to numerically investigate the behaviour of a chain of mechanical oscillators
with nonlinear couplings between them. Little they knew that their work would
pave the way for a revolution of the broad field of nonlinear science [20]. Starting
their simulations with the excitation of a single mode of the system, they intended
to study how the energy would transfer from the initial mode to higher-order ones,
eventually reaching an equirepartition of the energy between all the possible modes.
However, they observed something completely different: “Let us say here that the
results of our computations show features which were, from the beginning, surprising
to us....Instead of gradual increase of all the higher modes, the energy is exchanged,
essentially, among only a certain few. It is, therefore, very hard to observe the
rate of "thermalization" or mixing in our problem, and this was the initial purpose
of the calculation.” [21]. Indeed, they observed after a short time that almost all
the energy flowed back into the initial mode, the system almost coming back to
its initial state. Published in an internal report in 1955 [21], their results would
acquire a great importance only ten years later. Indeed, in an extension of this
work and in an attempt to explain this recurrent process, Zabusky and Kruskal
introduced in 1965 [22] a solution of nonlinear equations that can maintain its form
along time, which they named “soliton”. Since then, the FPUT recurrence process
have especially been investigated for his role in chaos [23] and for its relation with
the nonlinear stage of MI, in the framework of nonlinear systems whose dynamics
can be described by the nonlinear Schrödinger equation. In particular, it led to the
development of breathers theory [24], which play an important role in the emergence
of rogue waves [25–29] and the generation of supercontinuum [30].

Although MI have been observed in optical fibres in the mid-80’s [13], the obser-
vation of FPUT recurrence in optics was only reported in 2001 by Van Simaeys and
coworkers [31]. In fact, observing such recurrence is not so easy. It has previously be
done in a few physical settings such as hydrodynamics [32] and electric transmission
line [33]. One of the most limiting factor is dissipation, which progressively kills
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the recurrent process, even in optical fibre with very low linear attenuation (<0.2
dB/km at 1.55 µm). Moreover, one has to propagate long enough for the recur-
rence to happen, but the propagation is often affected by detrimental effects such
as stimulated Brillouin scattering [34] in optical fibres. The solution found by Van
Simaeys was to launch at the input of a fibre an initial weakly modulated pump
wave (to seed the MI process and trigger FPUT recurrences, the optical Fourier
modes playing the same role than the mode of vibrations of the oscillators chain
from the original experiment) but to operate in a quasi-CW regime by using square
pulses, in order to mitigate SBS. Via an indirect measurement method they were
then able to characterise one recurrence, which attracted a lot of attention from the
nonlinear science community [35].

Nowadays, most experimental investigations on FPUT recurrences and breathers
occurs in hydrodynamics with experiments in water tank [36, 37] and nonlinear
optics [28,38–41], in particular in fibre optics experiments. Indeed, fibres constitute
a suitable testbed for the investigation of such processes as they offer an easy tuning
of initial conditions and control of fibre parameters. However, conversely to water
tank experiments for which there is no intrinsic difficulty to perform distributed
measurements of the complex amplitude of the field of the waves, it is far more
complicated to get insights on the dynamics taking place when light propagate along
a fibre, in particular on the phase. The work presented in this thesis focused then on
the implementation of a novel experimental setup allowing a non-invasive distributed
characterisation of the amplitude and phase of the main frequency components of a
pulse. Based on this, we report in particular the characterisation of multiple FPUT
recurrences and breather propagation in optical fibres.

The present manuscript is divided in 6 chapters, followed by two appendices.
Chapter 1 provides a brief overview of the main linear and nonlinear effects ex-
perienced by light along the propagation, ending up with the introduction of the
nonlinear Schrödinger equation. In Chapter 2, we discuss more in depth the original
Fermi-Pasta-Ulam-Tsingou problem and then the theory of modulation instability.
In particular, we consider two models to describe the nonlinear stage of MI, namely
the three-wave mixing model and the Akhmediev breather theory and introduce the
phase-plane configuration that we are going to use all along this thesis. Chapter 3 is
dedicated to the implementation and description of an experimental setup that al-
lows to characterise FPUT recurrences and breather propagation. Using this setup,
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we report in Chapter 4 the first experimental observation of two FPUT recurrences
in optical fibres, as well as their symmetry-breaking nature, both in the frequency
and time domain [42, 43]. We particularly emphasise the conditions inducing sep-
aratrix crossing. In Chapter 5, we characterise quantitatively the impact of the
input modulation sidebands amplitude and relative phase (compared to the pump)
on the first two recurrence positions [44]. The results are compared with recent
analytical predictions developed by Grinevich and Santini [45]. Whereas Chapter 4
and 5 were related to first-order breathers, we focused in Chapter 6 on second-order
breathers, their control, and their distributed characterisation. In Appendix A, we
recall the exact first-order breather solutions of the nonlinear Schrödinger equation
originally derived by Akhmediev et al [24]. Finally, we describe in Appendix B a
new experimental setup which enables the round-trip to round-trip characterisation
in amplitude and phase of seeded modulation instability in passive optical fibre-ring
cavities.
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Chapter 1

Generalities on light propagation
in optical fibres

Contents
1.1 Guiding mechanism in optical fibres . . . . . . . . . . . . 6

1.2 Linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Linear attenuation . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Chromatic dispersion . . . . . . . . . . . . . . . . . . . . . 7

1.3 Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The Kerr nonlinearity . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Raman scattering . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The nonlinear Schrödinger equation . . . . . . . . . . . . 9

The aim of this chapter is to list and describe briefly the main phenomena
involved in the propagation of light in an optical fibre and encountered during this
PhD thesis. In the first section, we will discuss the guiding mechanism. Then,
the second and third sections will introduce the main linear and nonlinear effects,
respectively, which affect the propagation of light waves. Finally, we will end up
in the last section with the equation allowing the description of the propagation
dynamics, namely the nonlinear Schrödinger equation.
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CHAPTER 1. GENERALITIES ON LIGHT PROPAGATION IN OPTICAL
FIBRES

1.1 Guiding mechanism in optical fibres

An optical fibre is a dielectric waveguide, usually made of fused silica and composed
of a core surrounded by a cladding. Thanks to the use of dopants, the refractive
index can be modified in order to get a refractive index of the core slightly higher
than the one of the cladding. Light can then propagate inside the core via total
internal reflection (TIR) [46]. This type of fibre, which presents cylindrical sym-
metry, is commonly referred as step-index fibres. Depending on the core diameter,
the wavelength of the light and the refractive index of the core and the cladding,
they can support one or several transverse modes [47]. In this manuscript the fibre
used for all the experiments is a standard SMF-28 fibre for which the propagation
is single-mode at 1.55 µm.

1.2 Linear effects

1.2.1 Linear attenuation

The losses that affect the propagation can mainly find their source in two phe-
nomena : molecular absorption, especially from OH ions [48] and Rayleigh scat-
tering. Rayleigh scattering results from small inhomogeneities in the propagating
medium. The propagating field can induce a polarisation of the electronic cloud of
these inhomogeneities by transferring some of its energy which is then retransmit-
ted isotropically. A part of the scattered waves co-propagates then with the original
propagating field while the other part is either not guided (as it does not fulfill the
condition for TIR) or contra-propagates, which explains the losses. Though it is at
first detrimental for almost all applications, the backscattering gives actually rise
to many interesting applications among which is optical time-domain reflectometry
(OTDR) [49]. OTDR will be the basis of the experimental setup described in Chap-
ter 3. Indeed, the analysis of the backscattered wave allows to perform distributed
characterisation of the propagating wave as their power are directly proportional so
one can write PBS = B×Pin where PBS is the power of the backscattered wave, Pin
is the input power and B is the Rayleigh backscattering factor. (see Ref. [50] for an
explicit relation between the parameter B and the parameters of the fibre and light).
For a SMF-28 from Corning [51], B = −82 dB at 1.55 µm for a 1 ns incident pulse.

6



1.2. LINEAR EFFECTS

To give a more precise illustration, in the experiments presented in this manuscript
we will use 50 ns pulses and Pin w 450mW , which gives PBS w 140 nW .

In a SMF-28 fibre, the minimum of losses is located around 1.55 μm. The global
losses of the fibre are usually expressed in the form of a coefficient α, called linear
attenuation and calculated using the following relation : Pout = Pinexp (−αL) with
Pout the output power, and L the length of the fiber. In our case α w 4.6×10−5m−1

or 0.2 dB/km (the lowest recorded linear attenuation in a single mode silica fibre is,
to date, 0.142 dB/km [52]).

1.2.2 Chromatic dispersion

When an electromagnetic wave propagates inside a dielectric medium, the refractive
index n usually depends on the angular frequency of the light ω. This effect is called
chromatic dispersion. As the different spectral components of a polychromatic wave
experience their own refractive index, they do not travel at the same velocity, which
leads to distortions of the wave shape. This effect is usually taken into account by
means of the propagation constant β(ω) expanded as a Taylor series around the
carrier angular frequency ω0:

β(ω) = ω

c
n(ω) = β0 + β1 (ω − ω0) + β2

2 (ω − ω0)2 + β3

3! (ω − ω0)3 + ... (1.1)

where
βk =

(
dkβ

dωk

)
ω=ω0

(k = 0, 1, 2, 3...) (1.2)

β1 corresponds to the inverse of the group velocity and β2 to the group velocity
dispersion (GVD). Two types of regimes can be defined in relation to the sign of
the GVD. If the GVD is positive, short wavelengths travel slower than long wave-
lengths and the dispersion regime is called normal while, if it is negative, short wave-
lengths travel faster than long wavelengths and the regime is called anomalous. The
wavelength for which the GVD is zero is referred as the zero-dispersion wavelength
(ZDW). In SMF-28 it is around 1.3 μm [51] but it can be tuned from the visible to
the infrared by using in particular different structures of fibres [53,54]. At 1.55 μm,
which is the wavelength around which we will work later on, β2 w −19× 10−27s2/m

so we are in the anomalous regime. The main impact of GVD is the temporal broad-
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ening or compression of optical pulses, which is for example used in chirped pulse
amplification [55].

1.3 Nonlinear effects

1.3.1 The Kerr nonlinearity

The interaction of light with the dielectric medium induces a polarisation described
by the polarisability vector P (bold letters refer to vectors) which can be expressed
as power series of the electric field E:

P = ε0(χ(1) · E + χ(2) · EE + χ(3) · EEE + ...) (1.3)

where ε0 is the vacuum permitivity and χ(k) is the k-th order susceptibility. The
first-order term is related to the refractive index of the medium via the relation
n(ω) =

√
1 +Re(χ(1)(ω)) and does account for the linear propagation. When the

light intensity is high enough, one has to take into account higher-order terms into
the polarisability expression. In optical fibres made of fused silica, the second-order
susceptibility χ(2) vanishes due to the centro-symmetry of the medium and the
expansion of the polarisabilty can be stopped at the third-order term, since higher-
order terms are usually negligible. The third-order susceptibility will in particular
induce a dependence of the refractive index on the light intensity such as n(ω) =
nL + n2 |E|2 with nL the linear refractive index introduced previously and n2 the

nonlinear refractive index which can be expressed as n2 = 3Re(χ(3)(ω))
8nL

. For silica
fibres n2 w 2.6× 10−20m2/W [47]. The intensity-dependence of the refractive index
is commonly referred as Kerr effect. In optical fibres, the strength of the Kerr effect
can be evaluated via the nonlinear coefficient defined as γ = n2ω0/cAeff where
c is the light velocity in vacuum and Aeff is the effective area of the transverse
mode. For SMF-28, γ = 1.3/W/km and Aeff = 80 µm2. Note that γ three-order
of magnitude higher can be obtained in microstructured fibres or fibres with other
types of materials [47]. Several phenomena result from Kerr effect such as self-
phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing
(FWM) [47]. These processes will be discussed in the next chapter.
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1.4. THE NONLINEAR SCHRÖDINGER EQUATION

1.3.2 Raman scattering

Raman scattering (from the name of Chandrashekhara Venkata Râman, who was
the first to highlight the process in 1928 [56]) is an inelastic scattering process which
results from the interaction of an electromagnetic wave and the vibration modes of
the molecules of the structure in which it propagates. Its first experimental obser-
vation in optical fibres was reported in 1972 by Stolen et al. [6]. To get a clear
understanding of the process one can look at it from a quantum mechanical point of
view, as illustrated in Fig. 1.1(a). First, a pump photon ωp excites a virtual state.
Then it decays to a vibrational state of silica by emitting a signal photon ωS and
the system goes back to the ground state by emitting a phonon ΩR. For energy
conservation, the signal photon has then a frequency ωs = ωp − ΩR lower than the
pump photon. It can extend over more than 40 THz (relatively to the pump photon
frequency) because of the amorphous nature of silica which leads to a continuum
of vibrational state rather than discrete levels of energy as usually encountered in
crystals, gazes or liquids. The gain associated to Raman scattering for amorphous
silica is displayed in Fig. 1.1(b) and presents a maximum for a frequency detuning
of -13.2 THz. Note that compared to the Kerr effect which is considered as instan-
taneous, Raman scattering is a retarded effect, with a typical timescale of 60 fs [47].
The use of Raman scattering to provide distributed amplification along an optical
fibre, a technique commonly used in telecommunication optics [57], will be discussed
in Chapter 3.

1.4 The nonlinear Schrödinger equation

Under the assumption of the slowly varying envelope (SVEA), which means that the
spectral bandwidth ∆ω of a signal is very small compared to the carrier frequency
ω0, one can derive from Maxwell equations an equation describing the propagation
evolution of the field envelope E which accounts for all the effects, linear and non-
linear, described previously. This equation is called extended nonlinear Schrödinger
equation and reads [47]:
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Figure 1.1: Raman scattering. (a) Energy diagram of the Raman scattering process.
(b) Gain (normalised to its maximum) associated to the process (from the data of
Ref. [58]).

∂E (z, T )
∂z

= i
∞∑
k>2

ik
βk
k!

(
∂kE (z, T ))

∂T k

)
−α2E(z, T )+iγE(z, T )

∫
R(T ′) |E(T − T ′)|2 dT ′

(1.4)

where T = t − β1z is the time defined in the reference frame traveling at the
group velocity 1/β1 of the carrier frequency, the time t being the reference frame of
the laboratory. The first term of the right-hand side of equation (1.4) corresponds
then to chromatic dispersion, the second one to the linear attenuation and the last
one to nonlinear effects, with R(T ) the nonlinear response of the fibre (it includes
both the Kerr and Raman effects). Note that others terms can still be added to
this equation to described effects such as self-steepening [47], which accounts for
the intensity dependence of the dispersion for ultra-short pulses. Equation (1.4) can
be reduced to a simpler form under several assumptions [47]. First, if the width of
the pulse is larger than 5 ps, Raman effect can be neglected. Secondly, if the pulse
does not propagate in the vicinity of the ZDW, higher-order dispersion terms can
be removed. Finally, for short propagation distance or if the losses are compensated
in a distributuve way (as we will see in Chapter 3) the linear attenuation can also
be removed. The propagation equation is then called the nonlinear Schrödinger
equation (NLSE) and only accounts for group velocity dispersion and Kerr effect :
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∂E

∂z
= −iβ2

2
∂2E

∂T 2 + iγ |E|2E (1.5)

Equation (1.5) is one of the most ubiquitous equation in physics as it models part
of the dynamics in many fields of physics such as plasma, cold atoms, hydrodynamics
or nonlinear optics (see Ref. [28] for the optical-ocean analogy). Although it presents
analytical solutions (which will be discussed in chapter 2), it is commonly solved
numerically using the split-step Fourier method, which is easy to implement [47].
It consists in solving the equation in different steps, one accounting only for the
linear effects in the frequency domain and the other one for the nonlinear effects in
the time domain. All the numerical integration of equation (1.5) reported in this
dissertation have been performed using this method.
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In this chapter we describe the process referred as Fermi-Pasta-Ulam-Tsingou
(FPUT) recurrences, from the names of its first investigators [59]. This process
depicts the ability of a multimodal nonlinear system to come back to its initial
state after experiencing complex coupling dynamics, exhibiting multiple recurrences
or a quasi-periodic behavior. In the first section we will briefly report the story
of the discovery of this famous effect and highlight its importance in nonlinear
physics. In optics, this recurrent process can be triggered by an ubiquitous nonlinear
phenomenon called modulation instability (MI) [14]. Hence, the second section of
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this chapter will introduce and discuss in the framework of the NLSE the theoretical
tools which allow to describe this MI process. Note that the formulas reported here
have already been reported in the literature and do not constitute an original study
from the author. Finally, we will discuss in the last section the impact of several
parameters on the recurrent process such as noise and linear attenuation.

2.1 Historical context and universal nature of Fermi-
Pasta-Ulam-Tsingou recurrence process.

The study of FPUT recurrences finds its origin in a numerical experiment per-
formed by Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou in 1953
in Los Alamos, USA, for which results have been reported in 1955 in an internal
report [21, 60]. Using one of the first computer called MANIAC (for MAthematical
Numerical Integrator And Computer, originally designed for the H-bomb develop-
ment), the aim of their work was to investigate the long term evolution of a linear
system perturbed by a weak nonlinear perturbation with the expectation to observe
a progressive equirepartition of energy among the modes of the system. Note that
this equirepartition will also be referred later as thermalisation. As a system, they
choose a finite chain of 16, 32 or 64 elements linked by springs and fixed at its
extremities. The force between two neighbour elements consists in the classic force
linked to linear displacement and a weak higher-order term which could be quadratic,
cubic or take a more complex form (the equations can be found in Ref. [21]). The
initial condition for the simulation was either the first mode or a combination of a
few low-order modes, (note that the modes we referred to correspond to the base
of stationary solution of the linear problem thanks to which one can describe the
vibration of the string) and the computing time was chosen to be far greater than
the characteristic period of the first mode. If we look at the cubic problem (the
conclusions are similar for other types of nonlinearities), which implies a third-order
nonlinearity (such as the Kerr nonlinearity) the observations were the following. At
the beginning, the energy of the first mode gradually decreases while the energy of
higher-order modes increases, which was expected. But, after a certain time, the
energy of these higher-order modes is no longer increasing. Instead, it starts to flow
back into the first mode, which almost recover its initial energy. As stated by the
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2.2. THEORY OF THE LINEAR STAGE OF MODULATION INSTABILITY

authors, this phenomenon was “surprising”. Indeed, the dynamic involved only a
small number of modes and the system almost recover its initial state (which we
will call recurrence) instead of reaching thermalisation. This is the reason why this
phenomenon has been for a long time called a paradox. This original problem being
still investigated today, it was recently shown that the expectations of the authors
were not totally wrong, the system will experience recurrences or quasi-periodic
behaviour but will in fact reach thermalisation after a long time due to discrete
six-waves resonant interactions [61,62].

While the FPUT experiment confirmed the potential of numerical experiments,
it also has had a profound impact on nonlinear physics [20, 23]. Indeed it triggered
many works, the most famous being probably the theory of solitons in plasma by
Zabusky and Kruskal [22] which is one of the pillar of nonlinear science. Further-
more, analogs of FPUT recurrences can be observed in a large range of physical
frameworks and not only in mechanical systems, which explains why the process is
often described as universal. For example FPUT recurrences play a role in electric
transmission line [33], hydrodynamics [32,37], nematic liquid crystals [63], bulk pho-
torefractive crystals [64] and nonlinear optical fibres [31, 38, 65–67] to name a few.
In optics, which is our field of interest, its first experimental observation is quite
recent, as it was reported in 2001 by Van Simaeys et al [31,35,65] in the context of
modulation instability in optical fibres. In fact, when such an instability is seeded,
FPUT recurrence cycles of amplification and back-conversion can occur. In the next
section we will then focus on the theory of MI.

2.2 Theory of the linear stage of modulation in-
stability

Modulation instability (or Benjamin-Feir instability) is an ubiquitous phenomenon
which consists in the exponential growth of spectral sidebands related to the per-
turbation on a CW background [14]. This process has been studied and observed
in various physical frameworks such as plasma physics [15], hydrodynamics [17],
Bose-Einstein condensates [16], optics and many others, the first observation in fi-
bre optics being reported in 1986 [13]. In systems described by the NLSE, the MI
process can be investigated by performing a linear stability analysis of a perturbed
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steady-state solution of the NLSE such as :

E = (
√
Pp + ε)exp(iγPpz) (2.1)

where Pp is the input pump power and ε = ε1 + iε2 with |ε|2 � Pp. By injecting
(2.1) in (1.5), linearising in ε and identifying the real and the imaginary parts one
obtains the following system of two coupled equations :

∂ε1
∂z

= β2

2
∂2ε2
∂T 2 (2.2a)

∂ε2
∂z

= −β2

2
∂2ε1
∂T 2 + 2γPpε1 (2.2b)

In the frequency domain, this system can then be rewritten in the following
matrix form :

d

dz

ε̂1
ε̂2

 =

 0 −β2

2 Ω2

β2

2 Ω2 + 2γPp 0


ε̂1
ε̂2

 (2.3)

where ε̂1,2 correspond to the Fourier transforms of ε1,2 and Ω is the angular frequency
shift relative to the pump angular frequency. The eigenvalues of the matrix (2.3)
read as :

K = ±

√√√√β2

2 Ω2

(
β2

2 Ω2 + 2γPp
)

(2.4)

K is the propagation constant of the weak perturbation at angular frequency
±Ω such as

ε = A× exp[i(Kz − ΩT )] +B × exp[−i(Kz − ΩT )] (2.5)

where A and B are real constants. We then introduce the parametric gain g(Ω) =
2Im(K). Looking at equation (2.4) one can see thatK is always real for β2 > 0 which
means g(Ω) = 0. Thus, in the normal dispersion regime, a continuous wave is stable.
For β2 < 0 (anomalous regime), K is purely imaginary for Ω2 < Ω2

c = 4γPp/ |β2| and
a continuous wave is said to be modulationally unstable. Figure 2.1 shows the MI
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gain spectrum for Pp = 450mW , β2 = −19× 10−27s2/m and γ = 1.3× 10−3/W/m

(typical parameters of our experiments in a SMF-28 at 1.55 µm). This spectrum is
symmetric relatively to the pump frequency and reaches its maximum gmax = 2γPp
at Ωmax = ±

√
2γPp/ |β2| = ±Ωc/

√
2. The latter relation can also be written in the

form 1
2β2Ω2

max + 2γPp = 0 which corresponds to a phase-matching relation between
the linear phase due to dispersion and the nonlinear one due to the Kerr effect.
Thus, the maximum gain is obtained when the linear term is perfectly compensated
by the nonlinear one. Very high gain (up to 70 dB [68]) or very broadband gain
(more than 100 nm [18, 69, 70]) has been demonstrated in optical fibres using this
process (also called degenerate three modes parametric instability).
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Figure 2.1: Gain spectrum of modulation instability. Parameters: Pp = 450 mW ,
β2 = −19× 10−27s2/m and γ = 1.3× 10−3/W/m.

While we limited ourselves to the simple case of a system described by the pure
NLSE and in the anomalous dispersion regime, MI can also occur in different config-
urations, even in the normal dispersion regime. In this case, it is necessary to add a
degree of freedom in order to fulfill the phase-matching condition. This can be done
for example by operating near the ZDW and accounting for a negative fourth-order
dispersion [71], by using the birefringency of fibres [72], by modulating longitudi-
nally the dispersion profile of the fiber [73] or by using properties of multimode fibres
such as the self-imaging [74] or the dispersion of the waveguide modes [10].

We have detailed here the linear stage of MI where the pump wave is undepleted
and have shown that a seed at angular frequency |Ω| < Ωc will experience gain.
However, this growth cannot obviously be unlimited, the process starting to saturate
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when the seed power is no longer negligible compared to the pump power. The
process then enters its nonlinear stage.

2.3 Theory of the nonlinear stage of modulation
instability

The nonlinear stage of MI is illustrated by the false color plots in Figs. 2.2(a,b)
which represent the spatio-temporal [Fig. 2.2(a)] and spatio-spectral [Fig. 2.2(b)]
power evolutions of the field of a modulationally unstable wave for which the MI
process is seeded by symmetrical sidebands (called signal for the higher-frequency
one and idler for the lower-frequency one) set 20 dB below a 450 mW pump at
frequencies ±f = ±35GHz (note that f corresponds to the frequency detuning and
is simply related to Ω via the relation f = Ω/(2π)), which is slightly lower than the
maximum gain frequency fmax = 40GHz (note that the input phase of each of the
three spectral components is zero). Theses evolutions are obtained by numerically
integrating the NLSE with the method described in Chapter 1. We can clearly see
in the frequency domain that harmonics of the modulation sidebands (falling out
of the MI gain range) appear very early in the propagation due to degenerate four-
wave mixing (FWM) and that the pump power depletes, becoming even smaller
than the the first and second-order sidebands around about 5 km. This discrete
spectral broadening leads to a train of very short pulses in the time domain. By
further propagating, we observe a return to the initial state (i.e. three-wave in the
frequency domain and a weakly modulated pump wave in the time domain) before
the process starts to reiterate which confirms the previous stated fact that seeded
MI can induce several FPUT recurrence cycles. In this section, we will discuss
several models allowing the description of this behaviour. First, we will introduce a
truncated three-wave mixing (3WM) model [75,76].

2.3.1 The three-wave mixing model

Derivation of the model

If the MI process is seeded at an angular frequency Ω such as Ωc

2 < Ω < Ωc, only
the signal and idler sidebands will experience modulation instability gain, their
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Figure 2.2: (a) Spatio-temporal and (b) spatio-spectral evolution of a modulationally
unstable wave. Parameters: Pp = 450 mW , β2 = −19 × 10−27s2/m, γ = 1.3 ×
10−3/W/m, f = 35GHz and the initial signal/idler (symmetric sidebands) to pump
ratio is -20 dB.

harmonics (which appears because of subsequent FWM) falling out the MI gain
range. Hence, it is worth to derive a truncated model accounting only for the pump,
signal and idler waves such as the total electric field can be written as the following
ansatz :

E(z) = Ep(z) + Es(z)exp (iΩT ) + Ei(z)exp (−iΩT ) (2.6)

where the subscripts p, s, i denote for the pump, signal and idler, respectively, the
signal and idler waves being detuned by an angular frequency ±Ω compared to the
pump. By substituting equation (2.6) in the NLSE (1.5) one obtains a set of three
coupled equations :
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dEp
dz

= γ
[
|Ep|2 + 2

(
|Es|2 + |Ei|2

)]
Ep + 2γEsEiE∗p

dEs
dz

= i
β2

2 Ω2Es + γ
[
|Es|2 + 2

(
|Ep|2 + |Ei|2

)]
Es + 2γE2

pE
∗
i (2.7)

dEi
dz

= i
β2

2 Ω2Ei + γ
[
|Ei|2 + 2

(
|Ep|2 + |Es|2

)]
Ei + 2γE2

pE
∗
s

The first term on the right-hand side of the second and third equation of the system is
related to the GVD, the second term between square bracket is responsible for SPM
and XPM while the last term accounts for the exchange of energy between the waves.
By introducing the pump, seed and idler power Pp,s,i = |Ep,s,i|2and nonlinear phase
ϕp,s,i such as Ep(z) =

√
Pp(z)exp(iϕp(z)), Es(z) =

√
Ps(z)exp(iβ2

2 Ω2z + iϕs(z)),
Ei(z) =

√
Pi(z)exp(iβ2

2 Ω2z + iϕi(z)) the previous set of equations can be rewritten:

dPP
dz

= 4γPp
√
PsPisin(2∆Φ)

dPs
dz

=− 2γPp
√
PsPisin(2∆Φ) (2.8)

dPi
dz

=− 2γPp
√
PsPisin(2∆Φ)

d∆Φ
dz

=− 1
2

[
β2Ω2 + γ(2Pp − Ps − Pi) + γ

[
Pp

√
Pi
Ps

+ Pp

√
Ps
Pi
− 4

√
PsPi

]
cos(2∆Φ)

]

where the relative phase ∆Φ reads:

∆Φ = 1
2
[
2ϕp − ϕs − ϕi − β2Ω2z

]
(2.9)

If we consider symmetric sidebands initially then ∆Φ = ϕp − ϕs − 1
2β2Ω2z and

∆Φinit = ∆Φ(z = 0) = ϕp − ϕs. Furthermore, if necessary, the fibre losses can be
taken into account by including the terms −αPp, −αPs and −αPi in the right-hand
side of the first, second and third equation of the system (2.8), respectively. One
can clearly notice the crucial role played by ∆Φ, which is at the core of important
applications such as phase-sensitive parametric amplification [18, 77, 78]. Notewor-
thy, sin(2∆Φinit) < 0 implies that the system starts with parametric amplification
of the seeds and attenuation of the pump whereas sin(2∆Φinit) > 0 implies the
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opposite. Moreover, the second and third equations give that the maximum growth
rate of the seeds is obtained for ∆Φinit = −π/4. In this case, the last equation of
the system (2.8) reads:

∆Φ
dz

= −1
2
[
β2Ω2 + γ(2Pp − Ps − Pi)

]
≈ −1

2
[
β2Ω2 + 2γPp

]
(2.10)

by assuming Ps,i � Pp (which is a relevant assumption over a short distance if the
sidebands are initially weak compared to the pump). Hence, to keep a constant
∆Φ = −π/4, the angular frequency detuning has to be Ω = ±

√
2γPp/ |β2|, which

corresponds to Ωmax derived in the previous section (2.2), for which the modulation
instability gain is maximum.

This set of four coupled equations can easily be solved numerically. Examples of
the power and relative phase evolutions are displayed in Fig. 2.3, with the following
parameters (close to those used in experiments): Pp = 450 mW , β2 = −19 ×
10−27s2/m, γ = 1.3 × 10−3/W/m, initial signal/idler to pump ratio of -20 dB,
f = 35GHz and ∆Φinit = 0 for Figs. 2.3(a-d) and ∆Φinit = −π/2 for Figs. 2.3(e-h).
Figs. 2.3(a,e) show the relative (compared to the total power) pump (blue line) and
signal (red line) power evolutions and Figs. 2.3(c,g) their relative phase evolutions.
Moreover, the black lines and the right vertical axis in Figs. 2.3(c,g) correspond
to the sign of sin(2∆Φ). Looking at the power evolutions, we can clearly observe
the exchange of energy between the pump and the signal waves and the correlation
of the direction of this energy flow with the sign of sin(2∆Φ). Three recurrences
in power can be observed for the two cases but it is in particular interesting to
point out that, while the power evolutions seem very similar, their corresponding
relative phase evolutions are drastically different, the first one exhibiting growth
and decreasing in the range of [−π

4 ,−
π
4 ] while the second one is only increasing and

span the entire [0, 2π] range. This difference is outlined by looking at the evolution
in the phase plane (ηscos(∆Φ), ηssin(∆Φ)) where ηs = Ps/P0 with P0 = Pp+Ps+Pi

the total power. Thus, in the case where ∆Φinit = 0, we notice that the trajectory
stays on one side of the plane and presents a single loop orbit while for the other
case we observe a double loop orbit, the trajectory going on both sides of the phase-
plane. This difference in phase-plane trajectories can also be observed by plotting
the spatio-temporal evolution obtained by numerically integrating the NLSE [Fig.
2.3(d,h)]. We observe recurrences for both cases, the initially modulated continuous
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Figure 2.3: (a) Relative pump (blue) and signal (red) power evolutions for ∆Φinit =
0, (c) the corresponding relative phase evolution and (b) the associated phase-plane
evolution from the 3WM model. (d) Spatio-temporal evolution from the NLSE for
the same three-wave input. (e-h) Same but for ∆Φinit = −π

2 .

wave progressively transforming into a pulse train before almost returning to its
initial state. However, for ∆Φinit = −π/2 [Fig. 2.3(h)] it presents a temporal shift
of half a period between each recurrences, a feature which is not observed in the
case where ∆Φinit = 0 [Fig. 2.3(d)]. This illustrates what we will refer as the
symmetry breaking of modulation instability, which can be simply explained by an
Hamiltonian approach of the 3WM model.
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Hamiltonian approach of the 3WM model

Considering a symmetric input and the conservation of the total energy, the system
(2.8) can be reduced to a set of two equations involving the following Hamiltonian
[42,75,76]:

H = η(1− η)cos(2∆Φ) + (1− ω2/2)η − 3η2/4 (2.11)

where η = 2ηs is the power fraction of the first-order sidebands and ω = 2 Ω
Ωc

is a normalised frequency (i.e. ωmax =
√

2 and ωc = 2). H corresponds to the
Hamiltonian of a one-dimension oscillator and is similar to the one describing the
motion of a rigid pendulum [79]. While the potential V associated with this system
is a single well for ω > 2, the transition to ω < 2 induces this potential to undergo
a symmetry-breaking to a double-well (see Ref. [76] for the expression of V , which
is a quartic function of η). Evolution of the system can then be studied from
two equivalent approaches. Fig. 2.4(a) displays the phase portrait of the system
obtained by plotting the level curves of H in the plane (η × cos(∆Φ), η × sin(∆Φ))
and Fig. 2.4(b) shows a sketch of the double-well potential. We notice two types
of trajectories separated by a separatrix or homoclinic loop (magenta line). The
thick green line consists in inner trajectories (single-loop orbit) surrounding only
one of the stable points C0 or Cπ, which corresponds to an evolution confined into
only one of the well of the potential while the thick cyan curve consists in an outer
trajectory (double-loop orbit) surrounding both stable points and corresponding
to a double-well evolution. Note that these stables points correspond to invariant
modulated wave (in the 3WM model) with opposite sideband phase ∆Φ = 0 and
∆Φ = π relatively to the pump. Whereas maximum conversion is obtained for either
∆Φ = 0 or ∆Φ = π in the case of inner trajectories, it is obtained by alternation
between these two relative phases for outer trajectories, which correspond in the
time domain to maximum compression points shifted by half a period [see Fig.
2.3]. Note that the critical phase of the separatrix is frequency-dependent and
can be expressed as follows: ∆ΦC = cos−1(ω/2). An exhaustive discussion on the
conditions of separatrix crossing will be done in Chapter 4, where we report the
experimental observation of the symmetry-breaking of the nonlinear stage of MI.
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Figure 2.4: (a) Phase-plane evolutions in the plane (η × cos(∆Φ), η × sin(∆Φ)).
(b) Sketch of the equivalent double-well potential associated with the 3WM process
when ω < 2.

Relevance of the 3WM model

We discuss here the relevance of the 3WM model which is suitable to get a simple
qualitative description of the physics behind the nonlinear stage of MI but which
still presents limitations, due to the fact that higher-order modes are neglected. The
main discrepancy is related to the level of the local minima of the pump power as
shown in Fig. 2.5(a) which displays the pump and signal relative power (compared
to the total power) evolutions for Pp = 450 mW , β2 = −19 × 10−27s2/m, γ =
1.3 × 10−3/W/m, initial signal/idler to pump ratio of -20 dB, f = 35 GHz and
∆Φinit = −π/2 from the 3WM model (dashed lines) and from the NLSE (solid
lines). We observe a 95% depletion of the pump with the NLSE against a 70%
depletion with the 3WM model. The disagreement is due to energy transfer into
higher-order modes as illustrated by Fig. 2.5(c) which shows the spectrum at the
position for which the pump is minimal. As we can see from NLSE simulations
(solid blue lines), while more than 70% of the total energy is encompassed in the
pump and first-order sidebands, dozens of sidebands are involved in the process.
Moreover, we also observe in Fig. 2.5(a) discrepancies concerning the position of
these local minima (this particular subject will be discussed in Chapter 5 where we
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investigate the position of the recurrences). However, we see that the 3WM model
gives a good estimate of the local maxima of the signal power. The disagreement
between the 3WM model and the NLSE increases for stronger input modulation, as
illustrated by Figs. 2.5(b,d), which displays the level of the first local minimum of
the pump power [Fig. 2.5(b)] and maximum of the signal power [Fig. 2.5(d)] versus
the input signal to pump ratio (stars accounts for the 3WM model and diamonds
for the NLSE). Indeed, the NLSE serving as a reference, the accuracy of the 3WM
model is estimated by introducing the following relative error parameter:

error = |Pextremum,NLSE − P extremum,3WM |
Pextremum,NLSE

(2.12)

where extremum refers to the minimum of the pump or the maximum of the signal.
We observe a big increase of this error [crosses in Figs. 2.5(b,d)] when the input
modulation power increases, from 500% for a signal to pump ratio of −30 dB to
5600% for a ratio of −8 dB, which corresponds to a factor of more than 10. These
high values are due in particular to the large depletion of the pump predicted by
the NLSE. For example, for an signal/idler to pump ratio of −10 dB, the pump
power minima for the 3WM model is about 86 mW (16% of the the total power),
while it is about 5.4 mW (1% of the total power) for the NLSE, leading to an
error of ∼ 1500%. As explained previously, the error for the maximum of signal is
far smaller, ranging from about 0% to 18%. All this calls for another theoretical
approach which accounts for the higher-order modes.

2.3.2 Exact solutions of the nonlinear Schrödinger equation

In 1972, Zakharov and Shabat showed that the NLSE could be solved using the
inverse scattering transform (IST) method [80–82], which is often described as a
nonlinear equivalent of the Fourier Transform, and derived the well-known soliton
solution which consists in a pulse with a secant hyperbolic shape which preserves
its shape along the propagation, both in the time and frequency domains. Other
classes of exact solutions can be derived using the IST such as the so-called first-order
breathers or solitons on finite background (SFB) [83] which presents an interest in
our case as some of them are intrinsically related to the growth and decay dynamics
of the MI process [28].
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Figure 2.5: Comparisons between the 3WM model and NLSE simulations. (a)
Relative pump (blue line) and signal (red line) power evolutions from the 3WM
model (dashed lines) and NLSE simulations (solid lines) for Pp = 450 mW , β2 =
−19×10−27s2/m, γ = 1.3×10−3/W/m, initial signal/idler to pump ratio of -20 dB,
f = 35 GHz and ∆Φinit = −π/2. Pump and signal powers are normalised to the
total power in the system. (b) First local minimum of pump power versus initial
signal to pump ratio from the 3WM model (stars) and from the NLSE (diamonds)
and associated error defined by Eq. (2.12) (crosses). (d) Same than (b) but for the
first local maximum of signal power. (c) Optical spectrum when the pump power is
minimal, from the 3WM model (dashed red lines) and from the NLSE (solid lines).
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We introduce here the dimensionless NLSE which will be useful to discuss these
solutions :

i
∂Ψ
∂ξ

+ 1
2
∂2Ψ
∂τ 2 + |E|2E = 0 (2.13)

where ξ = z × L−1
NL [LNL = (γPp)−1 is called the nonlinear length] is the di-

mensionless distance, τ = T/T0 (with T0 =
√
|β2|LNL) the dimensionless time and

Ψ = E/
√
Pp the dimensionless envelope. .

First-order breathers: focus on the Akhmediev breather

Solitons on finite background correspond to solitonic structures traveling on and
interacting with a plane wave background. They are ruled by the following expres-
sion [84]:

Ψ(ξ, τ) = exp(iξ)
[
1 + 2(1− 2a)cosh(bξ) + ibsinh(bξ)√

2acos(ωτ)− cosh(bξ)

]
(2.14)

where a = 1
2(1−ω2/4) and b =

√
8a(1− 2a). Because of these relations, there is

only one governing parameter, let’s say a, whose value determines the behaviour of
the solution. Three qualitative types of evolution can then be distinguished by their
periodicity and localisation properties depending on the value of this parameter a:

- for 0 < a < 0.5 (which corresponds to 0 < |ω| < 2 the MI frequency range), b
is the growth rate of MI and the solution is periodic in time and localised in space,
experiencing growth and decay along ξ. This type of solution is known as Akhmediev
breather (AB) and was first derived in the middle of the 1980’s [84].

- for a = 0.5 the solution is localised both in time and space and is referred as
the Peregrine soliton (PS) [39,85].

- for 0.5 < a < ∞ the solution is periodic in space and localised in time and is
known as Kuznetsov-Ma breathers (KM) [40,86,87].

These solutions have attracted a great interest in the last decades as they play
a key role in many complex nonlinear phenomena such as supercontinuum genera-
tion [30] or are identified as potential analytical formulation for rogue wave descrip-
tion [27–29, 88]. Here, we will focus on the AB, for which 0 < a < 0.5, as it allows
to describe analytically the MI process. The AB represents a separatrix orbit ema-
nating and returning at infinite distance to the pump wave though experiencing a
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phase shift [89] (its equivalent in the 3WM model corresponds to the thick magenta
curve in Fig. 2.4). Experimentally, it is practical to study seeded MI by using a
weakly-modulated continuous pump wave (i.e. a three-wave input) and Erkintalo
et al. have shown [90] that the AB constitutes a good analytical framework to do
so as it can asymptotically be approximated by a pump wave with a weak (ideally
vanishing) cosine modulation (three-wave input with weak sidebands in the spectral
domain). In particular Ref. [90] gives the initial relative phase of the first-order
sidebands of the AB which can be expressed as ΦAB = tan−1(b/(2−4a)). Note that
simple trigonometric transformations allow to show that this formula is equivalent
to the one of the critical phase in the 3WM model (section 2.3.1). We illustrate the
performance of the AB framework by comparing in Fig. 2.6 to the AB the simu-
lated evolution from the NLSE of a three-wave input with the following parameters:
Pp = 450mW , β2 = −19× 10−27s2/m, γ = 1.3× 10−3/W/m, initial signal/idler to
pump ratio of -20 dB, ω = 1.25 (i.e. f = 35GHz) and ∆Φinit = −ΦAB ≈ −0.284π.
As we can see, the AB is periodic in time and presents a single growth and decay
cycle in space [Fig. 2.6(a)] with a maximum compression point around 4 km. Con-
versely, the simulation results in Fig. 2.6(c) shows the appearance of a second cycle
with a second maximum compression point at about 19 km. Despite the use of a
weak initial modulation, this is due to the deviation of the cosine input from the
asymptotic AB. However, Figs. 2.6(b,d) show that the agreement is almost perfect
for the first cycle. Indeed Fig. 2.6(b) displays the temporal profile at the maximum
compression point for the cosine input (cyan solid lines). We observe very sharp and
short structures with zero-point values on both sides, in almost perfect agreement
with the AB (black dashed lines). Concerning Fig. 2.6(d), it shows the longitudinal
evolution of the pump wave and the three first-order sidebands which present two
back and forth conversion cycles. Again, the agreement with AB is almost perfect
but it is limited to the first cycle. However, this agreement is obtained for relatively
weak modulation (the initial modulation sidebands contain only about 2% of the
total energy) and as the input modulation strength increases, discrepancies will ap-
pear. In Ref. [90] it is estimated that the agreement is relatively good up to initial
signal to pump ratio of -20 dB.

The black dashed curves in Fig. 2.6(d) were obtained via the following analytical
expressions of the AB spectral components [66]:
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Ψ0(ξ) =− 1 + ibsinh(bξ) + 2(1− 2a)cosh(bξ)√
cosh2(bξ)− 2a

(2.15)

Ψn(ξ) =ibsinh(bξ) + 2(1− 2a)cosh(bξ)√
cosh2(bξ)− 2a

cosh(bξ)−
√
cosh2(bξ)− 2a
√

2a

|n| (2.16)

where the subscript 0 corresponds to the pump and n to the nth − order sideband.
Taking ξ = 0, one obtains a simple logarithmic relation between the amplitude of the
sidebands which explains the triangular shape spectra which is universally observed
at maximum compression points in MI experiments [19] as shown in the simulation
displayed in Fig. 2.5(c).

As we have seen, the AB framework is suitable to describe the first cycle of MI
recurrence. However, it suffers from several limitations. In fact, it does not allow
to account for the initial relative phase between the pump and the sidebands, while
it can have a strong impact on the dynamics as shown previously with the 3WM
model and NLSE simulations. Moreover, recent experiments in bulk photorefractive
crystal [64], water tanks [37] and optical fibres [42–44] reported the observation of
two or more recurrence cycles. A broader and more insightful theoretical approach
is then required. One could then use general doubly periodic solutions of the NLSE
developed by Akhmediev et al. [24] which encompassed the previous breather solu-
tion. These complex solutions involve Jacobian elliptic functions and do not reduce
to simple formulas such as equation (2.14). They are divided into two types, one
corresponding to unshifted recurrences in the time domain and another correspond-
ing to shifted recurrences. Both types of solutions are reported in Appendix A.
In general, these solutions do not reduce to three waves, leading to discrepancies
with experiments for which a three-wave input is mostly used. Comparison between
numerical simulations and these analytical solutions is also discussed in Appendix
A. Recently, a significant step forward has been made by Grinevich and Santini [45]
which improved the matching theory with the AB. They derived simple formulas
depending on the three-wave input parameters to predict the position of the first
maximum compression point and the spatial recurrence period, which will be studied
in details in Chapter 5. Note that another theoretical approach using the finite-gap
theory of the NLSE was investigated by the same authors [91] but it reveals to be
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very challenging and not convenient to use.

Higher-order breathers

Other classes of solutions of the NLSE consist in higher-order breathers which cor-
respond to the nonlinear combination of first-order solutions described previously.
These higher-order solutions are of great interest to describe the nonlinear stage of
MI when the perturbation is more complex than a single set of sidebands, allowing
in particular a more thorough description of the origin of rogues waves [41, 92–96]
but they are often quite involved. Breather collisions and the second-order breather
formalism will be discussed in Chapter 6.

2.4 Impact of other parameters

We have considered until now FPUT recurrences in the context of the “pure” nonlin-
ear Schrödinger equation, thus accounting only for GVD and Kerr effects. Because
we work at 1.55µm which is far from the ZDW of the SMF-28 used in experiments,
higher-order terms do no affect the propagation. This has been checked numerically
by including a third and fourth-order dispersion terms: β3 = 1.2 × 10−40s3/m and
β4 = −1 × 10−55s4/m (note that, in the case of low-dispersion regime, it has been
shown that the third-order dispersion can cause the disappearance of FPUT recur-
rences due to irreversible losses related to Cherenkov radiations [38]). The linear
losses, however, have a strong influence as illustrated in Fig. 2.7, which displays
the pump and signal power evolutions for an initial signal to pump ratio of −10 dB
and for ∆Φinit = 0 (a) or ∆Φinit = −π/2 (b). In both cases, one can see that the
losses strongly influence the recurrences, by reducing the amplitude of both pump
and signal waves. Moreover, while we still distinguish two “pseudo-recurrences” in
the case of ∆Φinit = −π/2, we observe only one in the case of ∆Φinit = 0. Thus,
the impact of the attenuation on the recurrent process is more or less pronounced
depending on the initial relative phase, which is intrinsically linked to the complex
nonlinear dynamics of the system (see Eqs. 2.8). Note that losses also impact the
relative phase evolution, leading eventually to separatrix crossing [37]. This will be
discussed in Chapter 4.

Linear attenuation is not the only process which can lead to the disappearance
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Figure 2.7: Influence of the linear attenuation on the recurrent process. (a) Pump
(blue lines) and signal (red lines) power evolutions for ∆Φinit = 0. Solid lines
correspond to the case with losses (α = 0.2 dB/km) and dashed ones to the case
without losses. (b) Same for ∆Φinit = −π/2. Other parameters : Pp = 450 mW ,
β2 = −19 × 10−27s2/m, γ = 1.3 × 10−3/W/m, initial signal/idler to pump ratio of
-10 dB, f = 35GHz.

of the recurrences. Indeed, up to this point, we have considered noiseless three-wave
input which is not realistic in experiments, as there is always at least a quantum
level noise. The amplification of this noise due to MI will irreversibly lead to a
continuum, killing then the recurrences [97]. This noise-induced thermalisation of
the recurrences is illustrated in Fig. 2.8 for which we introduced a noise floor about
75 dB below the pump (note that this is higher than the quantum level noise). We
clearly notice the amplification of the noise in Figs. 2.8(c,d,e) and the killing of the
recurrence process after two recurrences in Fig. 2.8(b).

Note that many other physical effects can cause the break-up of FPUT recur-
rences but they were not an issue in our case. For instance, it has been shown
that non-instantaneous Kerr nonlinearity exhibited by some media can inhibit the
recurrent process [98].
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Summary

• We summarised briefly the origin of the FPUT recurrence problem and high-
lighted its universal character.

• We provided then the theoretical framework to describe the linear and non-
linear stage of seeded MI, FPUT recurrences being associated to the latter
in nonlinear optics. Several models were reported with an emphasis on the
truncated 3WM model which is suitable to describe the physics behind the
process investigated. Other models based on a class of exact solutions of the
NLSE were reported with a focus on the Akhmediev breather.

• We highlighted the importance of parameters which are not included in the
pure NLSE, in particular the linear attenuation, as well as the impact of noise
on the recurrence process.
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Distributed measurements of
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We focus in this chapter on the implementation of an experimental setup allowing
the non-invasive distributed characterisation in phase and in intensity of the main
discrete frequency components of a pulse (i.e the pump and signal/idler waves) in
order to observe at least two FPUT recurrences. In the first section we discuss
the state of the art about distributed measurements of modulation instability in
optical fibres. We then explain in details the novel experimental technique that
we developed, which consists in a heterodyne time-domain reflectometer (HOTDR)
associated to an active loss compensation scheme based on Raman amplification [42].
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3.1 State of the art on distributed measurements.

In optical fibre experiments, it is obvious to say that one can often access easily to
the input and the output of the fibre under test but it is much more complicated to
get insights on the dynamics inside the fiber. In this section we will list and detail
the pros and cons of several techniques which have already been used to perform
distributed characterisation of processes related to modulation instability and which
could be suitable for our measurements. We will talk about cut-back measurements,
scaling laws and scattering processes-related techniques.

Cut-back

In order to perform distributed measurements the easiest technique is to change
the length of fibre. To do that, one can either use fibres of different lengths or cut-
backs, which consists in cutting a piece of fibre to reduce its length, and then splice a
connector or use a rapid connector at its output in order to perform a measurement.
This technique was for example used by Hammani et al. [66] to perform distributed
characterisation of ABs (which are related to FPUT as explained in the previous
chapter) in the frequency domain or by Mussot etal. [38] to characterise the impact of
the third-order dispersion on the FPUT process. Despite the ease of implementation,
this technique suffers from several drawbacks. First, it is of course an invasive
technique, the fibre used being destroyed, which can be costly and which prevents
to redo the experiment in the same conditions. Furthermore, to get a good resolution
(which is required in our case to observe for example sharp phase jumps) the fibre
might have to be cut by very short steps, which is time consuming. This can be very
detrimental, as it increases the possibility that the input conditions change during
the process and we have seen in the previous chapter that a small change of ∆Φinit

can have a big impact on the dynamic. Nonetheless, it is worth mentioning that Xu
etal. [99] recently reported the distributed characterisation in intensity and phase of
Peregrine-like structures using a similar method (fibres of different lengths instead
of cut-backs).
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Scaling law

As we have seen in Chapter 2 with the normalised form of the NLSE, the dimension-
less distance reads ξ = γPpz. One can then use a fibre of fixed length and perform
indirect distributed measurements by varying Pp instead of the distance z. This
method was used for the first observation of Peregine soliton [39] and in particular
for the first observation of FPUT recurrence in optics by Van Simaeys et al. [31,65].
However, varying Pp also changes the MI frequency which scales in

√
Pp so the fre-

quency detuning of the seed has also to be varied to keep a normalised frequency
detuning constant, which is not really convenient.

Scattering processes

Another approach to perform distributed measurements is the use of scattering pro-
cesses, either elastic (Rayleigh) or inelastic (Raman and Brillouin), which present
the advantage of being non-invasive and offer a good resolution [100]. Although
they are mainly used to perform measurements of external parameters such as tem-
perature or distributed strain, these techniques revealed to be also useful for the
characterisation of nonlinear optical processes. As examples, Brillouin optical time-
domain reflectometry have been used [101, 102] to characterise fibre optical para-
metric amplifiers. Concerning OTDR based on Rayleigh scattering, it enabled for
example the distributed measurement of Raman gain spectrum [103], modulation
instability [104] or supercontinuum in highly-nonlinear fibres [105] and in particular
the observation of one FPUT recurrence via the distributed characterisation of the
pump and low-orders sidebands intensity, reported by Hu et al. [67].

Summary

While phase measurements could have been implemented in most of these tech-
niques, it has never been done in the context of FPUT recurrences. Moreover, in
these studies, the number of recurrences observed were limited to a single recur-
rence, due to the intrinsic losses of the fibre. Table 3.1 recaps the performances of
the main techniques mentioned and introduces the technique that we will implement
and describe thereafter which consists in a heterodyne optical time-domain reflec-
tometer (based on Rayleigh scattering) associated with a loss compensation scheme
based on Raman amplification.
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Paper/Technique Intensity Phase
Loss

compensation
Non-invasive Number of recurrences

Van Simaeys et al. Phys. Rev.
Lett. 87 (2001) / Scaling law

1

Hammani et al. Opt. Lett. 36
(2011) / Cut-back

1

Mussot et al. Phys. Rev. X 4
(2014) / Cut-back

1.5

Hu et al. IEE Phot. Tech. Lett.
30 (2018) / OTDR

1

Mussot et al. Nat. Phot. 12
(2018) / HOTDR + Raman

amplification
≥2

Table 3.1: Performances of the main experimental techniques used for the charac-
terisation of FPUT recurrences.

3.2 The experimental setup

As mentioned before, the setup that we implemented is based on a heterodyne op-
tical time-domain reflectometer. Here, we recall rapidly the principle of heterodyne
detection, which is a common technique used in particular to perform coherent de-
tection in optical fibre systems [106]. Indeed, this is the heterodyne nature of the
setup which allows us to perform phase measurements.

Let’s consider the following monochromatic signal of amplitude A1, frequency
Ω1 and phase Φ1:

E1(t) =A1cos[Ω1t+ Φ1] (3.1)

For a signal at 1550 nm, Ω1 w 193 THz which far exceeds the bandwidth of pho-
todetectors (a few dozens of GHz maximum). Thus, a photodetector would average
the signal and give an output signal with the following intensity:

I ∝ 1
2A

2
1 (3.2)

In this case I is not time-dependent and the information on the phase is then lost.
This issue can be fixed by mixing previously to the photodetector the signal we want
to measure with a reference signal called “local oscillator”:
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EOL(t) = AOLcos[ΩOLt+ ΦOL] (3.3)

The intensity I at the output of the photo-detector is then:

I(t) ∝ |E1(t) + EOL(t)|2 (3.4)

Developing Eq. (3.4) gives terms in Ω1, ΩOL, Ω1 + ΩOL and Ω1 − ΩOL. If ΩOL is
chosen close enough to Ω1, only the term Ω1−ΩOL can lie within the bandwidth of
the photodetector and the other terms are averaged so:

I(t) ∝ 1
2A

2
1 + 1

2A
2
OL + 1

2A1AOL + A1AOLcos[(Ω1 − ΩOL)t+ Φ1 − ΦOL] (3.5)

Using a simple high-pass filter, one can filter out the DC (direct current) terms, to
only keep the time-dependent term. One can then retrieve the variation of A1 and Φ1

if AOL is fixed, as well as ΦOL (this requires initial phase-locking). In this section,
we will then describe how we implemented this method to measure the intensity
and phase of Rayleigh backscattered signals. First we give a complete schematic
of the experimental setup. Secondly, we detail how we generate the suitable three-
wave input to trigger the MI and FPUT processes. Then we discuss about the
phase-locking of the local oscillator before describing the procedure implemented to
suppress a detrimental effect called fading phenomenon, which is linked to Rayleigh
backscattering. Next, we introduce the Raman amplification scheme used in order
to compensate for the intrinsic losses along the propagation. Finally, we discuss the
performance, stability and limitations of the setup.
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3.2.1 Implementation
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Figure 3.1: Experimental setup. Laser 1 is a narrow linewidth (100 Hz at FWHM)
CW laser and laser 2 is a continuous distributed feedback laser diode. IM(1,2):
intensity modulator, PM: phase modulator, PSG: pulse signal generator, AWG:
arbitrary waveform generator, EDFA(1,2): erbium-doped fibre amplifier, ISO: iso-
lator, AO: acousto-optic modulator, MUX: multiplexer or de-multiplexer, SOA :
semiconductor optical amplifier, PID: proportional, integral, derivative controller,
PD: photo-detector, PC: polarisation controller, PBS: polarisation beam splitter,
RF: radio frequency, LNA: low-noise radio frequency amplifier. All the instruments
of the setup (including the oscilloscope) are referenced to the same 10 MHz clock.
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3.2.2 Input generation

The first step to design and generate a suitable three-wave input consists in the
intensity modulation of the CW beam delivered by laser 1 in order to generate 50
ns square-shaped pulses [Fig.3.2(a)] at a 9.8 KHz (∼102 μs) repetition rate. To do
so, an arbitrary waveform generator generates a clock at 9.8 KHz to trigger a pulse
generator that delivers the RF signal driving the intensity modulator (IM1). Then,
the optical pulses pass through a phase modulator (PM) to generate a frequency
comb with a 35 GHz line spacing. A programmable optical filter (Waveshaper)
with a filter bandwidth of 10 GHz allows then to tailor the frequency comb to keep
only the pump, signal and idler waves and to control their relative phases. Figure
3.2(b) shows the spectrum at the output of the Waveshaper when we do not apply
any filters (blue line) and when a filter is applied to get a symmetric three waves
input. As can be seen, the unwanted harmonics are effectively filtered. Following
the Waveshaper, the pulses are amplified via an erbium-doped amplifier (EDFA 1)
to reach the desired peak power (usually around 450 mW) and goes through an
acousto-optic modulator with a high extinction ratio (typically superior to 50 dB)
to reduce the CW background between the pulses in order to mitigate stimulated
Brillouin scattering (SBS). Finally, a filter with a 1 nm bandwidth (Filter 1) removes
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Figure 3.2: (a) Temporal profile of the pulse. (b) Spectral profile of the pulses at
the output of the Waveshaper without any correction filter applied (blue) and with
a filter applied (red).

the amplified spontaneous emission in excess. For the 4 GHz OSA resolution (this
resolution is the same for all the optical spectra reported in this thesis) it allows to
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get a signal to noise ratio of about 50 dB for the pump and 40 dB for the signal and
idler [see Fig. 3.2(b)]. Note that because the pulses have a flat top whose duration
is far greater than the MI period (50 ns to be compared to about 30 ps) we can
consider that we operate in the CW regime of MI.

3.2.3 Local oscillator and phase-locking

In order to perform phase measurements via heterodyning, the local oscillator (laser
2) has to be initially phase-locked with laser 1. To do so, we used the method
described in Ref. [107] based on laser difference-frequency. A 5 GHz bandwidth
photodiode receives the beat note of laser 1 and 2 which is then mixed with a 800
MHz RF reference signal provided by a stable synthesizer. In order to have a beat
note close to 800 MHz, the frequency of laser 2 can be coarsely tuned via its power
supply. The resulting intermediate frequency goes then through a PID controller
(with a response time less than 15 ns) which drives the phase of the local oscillator.
Efficiency of the phase-locking can be monitored by looking at the beat signal of
laser 1 and 2 on a signal analyser as shown in Figs. 3.3(a,b), which display the RF
spectrum (with a 100 Hz resolution) of the beat signal when the locking is turned
off and on, respectively. Once the lasers are phase-locked, the locking can last up
to several hours.

As we intend to perform measurements not only on the pump component but
also on the signal/idler one, laser 2 is modulated in intensity by IM2 to create
sidebands spaced by 35 GHz so that each frequency component of interest have its
own local oscillator. The RF signal driving IM2 is delivered by the same microwave
source driving the previous phase modulator in order to ensure a fixed phase relation
between them. The local oscillator is then amplified by a semiconductor optical
amplifier (SOA) and the amplitude of its three main sidebands are roughly equalised
by tuning the DC bias voltage of IM2 to get similar local oscillators, as can be seen
in Fig. 3.3(c), which shows the spectrum of the local oscillator after the SOA.

3.2.4 Fading suppression technique and signal processing

In optical time-domain reflectometry, it is known that a random noise in amplitude
and phase is superimposed on the backscattered signal [108]. This noise, which is
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Figure 3.3: RF spectra of the mixing of the beat signal of L1 and L2 with the 800
MHz reference when the system is (a) not phase-locked and (b) phase-locked. (c)
Optical spectrum of the local oscillator.

detrimental as it leads to jagged measurements, finds its origins in the random state
of polarisation of the backscattered light and a speckle-like phenomenon due to huge
number of scattered waves involved in the process and/or in the thermo-mechanical
fluctuations of the propagating medium. In order to avoid it, many techniques
have been developed such as averaging over a huge number of backscattered signal
and polarisation scrambling [109,110]. However, none of theses techniques have been
proven to be effective and compatible with accurate distributed phase measurements
in our case. Thus, we have developed a novel method which allows to remove
effectively this additional source of noise. In fact, we make the assumption that
the fading phenomenon is a purely linear effect and that the thermo-mechanical
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fluctuations have a characteristic time of a few milliseconds.
Therefore, we propose the following post-processing treatment to suppress the

fading. We first launch a strong 50 ns pulse (450 mW peak power) into the fibre
which will experience both linear and nonlinear dynamics. Then, 102 μs later, a weak
pulse, attenuated by 13 dB, follows and we assume that it experiences only linear
effects. The attenuation is obtained via the acousto-optic modulator which is driven
at half-rate clock (4.9 KHz) so that one pulse over two is attenuated as it is displayed
in the schematic in Fig. 3.4(a). Note that the 102 μs delay between two consecutive
pulses is long enough to avoid any overlapping between two backscattered signals
but very short compared to the response time of the thermo-mechanical fluctuations
which ensures that the linear fading effects experienced by both backscattered waves
(from the strong and weak pulses) are strongly correlated. To illustrate the difference
of dynamic experienced by the two types of pulses we create sequences of strong or
weak pulses only and look at their spectra at the input and output of the fibre as
displayed in Figs. 3.4(b,c). We observe that the strong pulses (magenta lines) at
the output of the fibre are not anymore composed of only three waves (the two very
weak harmonics in the input, 30 dB below the signal and idler waves, results from
residual four-wave mixing between the Waveshaper and the input of the fibre and are
considered as negligible) but of 11 waves in the 400 GHz spectral window analysed
in this typical example. These multiple harmonics are due to modulation instability
and four-waves mixing, which are nonlinear effects. At the opposite, we do not
observe this for the weak pulses (cyan lines). One can notice really small harmonics
of the signal/idler waves but more than 25 dB lower so they can be considered as
negligible. Moreover, the signal/idler to pump power ratio is conserved between
the input and output which is a signature that the weak pulses do not seem to
experience nonlinear effects whatsoever. In fact, for the weak pulses Pp ≈ 20 mW
which implies a cutting frequency of the MI gain range of Ωc ≈ 12 GHz. Thus,
the signal and idler at ±35 GHz fall out of the range of MI gain and, moreover,
the FWM efficiency is weak due to the large dispersion. Note that we analyse each
states of polarisation of every backscattered signal independently (which are later
recombined in post-processing) thanks to the use of polarisation beam splitters, thus
avoiding the need of polarisation scrambling.

Once the heterodyned signals are logged with the four channels of the oscilloscope
(two channels for each polarisation of the pump and two for those of the signal
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Figure 3.4: (a) Schematic of the sequence of pulses launch into the fibre. (b) Spec-
trum of the strong (magenta lines) and weak (cyan lines) pulses at the input of the
fibre and (c) at the output of the fibre.

sideband) the measurement construction operates as follows. We will refer to each
traces observed on the oscilloscope as EPow,Pol,Channel(z) with z being the distance
along the fibre (obtained simply by converting the time of flight of the backscattered
wave into a distance), Pow can either be Strong (for the nonlinear pulse) or Weak

(for the reference), Pol is either 1 or 2 for each polarisation state and Channel

refers to Pump or Signal. The ratios EStrong,1,Pump(z)
EWeak,1,Pump(z) and EStrong,2,Pump(z)

EWeak,2,Pump(z) are

calculated (the procedure is similar for the signal sideband) in order to remove all
linear contributions and to cancel the fading effect in amplitude and phase1. Then,
we perform demodulation with a short time fast Fourier transform (FFT). The

1Unfortunately, this removed also the linear phase due to the group velocity dispersion acquired
during the propagation, which cannot be neglected as it directly impacts the dynamics of the
system. The following phase term 1

2β2(2πf)2z is then added later on to the measured pump-signal
phase difference to get ∆Φ.
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vectors composed by the previous ratios are sliced into segments made of 512 or
1024 samples. Each segments has a 50% overlap with the previous one to optimise
the resolution. After application of a Hamming window, the power and the phase
at 600 MHz are evaluated with a FFT. The demodulation is performed at this
frequency and not 800 MHz because one has to take into account the 200 MHz shift
induced on laser 1 by the acousto-optic modulator. The pulse width being 50 ns,
the ultimate resolution achievable by our system is about 5 meters. However, due to
the 512/1024 points segments length and considering the 2500 MHz sampling rate
of the oscilloscope, the resolution is around 10 m/20 m. This is to be compared with
the 7.7 km fibre length and to the 2-3 km recurrence period. All the demodulated
traces are then averaged over at least one hundred shots to remove the noise and
filtered afterward, by two-types of filters : a median filter and a Savitzky-Golay filter.
Performance of our measurement technique is illustrated in Fig. 3.5. Fig. 3.5(a) and
(e) show a single-shot of the pump and signal power evolutions (normalised to their
respective maxima) and their relative phase without calibration with the reference
(weak pulse). One can distinguish the exchange of energy between the pump and the
signal but the measurement is very noisy and the relative phase evolution does not
agree at all with the one expected. Fig. 3.5(b) and (f) show the same measurements
but this time with the calibration (fading removed). Although the measurements
are still very noisy, one can notice almost two recurrences by looking at the power
evolutions and a specific relative phase evolution with jumps around 2 km and 6
km which are approximately the positions where the direction of the power flow
between the pump and the sideband reverses. After averaging over one hundred
shots, we observe an important reduction of the noise as displayed in Fig. 3.5(c)
and (g). We obtain then cleans traces after filtering as shown in Figs. 3.5(d) and
(h). Moreover we display in Figs. 3.5(i,j) the phase portraits of the signal filtered
and averaged over one hundred shots without (i) and with (j) the calibration. While
we observe a trajectory going on both sides of the phase-plane in Fig. 3.5(i), its
shape is not at all an “eight” shape as expected and as observed in Fig. 3.5(j). This
shows that averaging and filtering are not enough and illustrates the importance of
the calibration.
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Figure 3.5: (a) Single-shot of the pump (red line) and signal (blue line) power
evolutions along the fibre when the calibration is off and (b) when the calibration
is on. (c) Averaging over a hundred shots of the pump and signal power evolution
when the calibration is on and (d) same after filtering. (e,f,g,h) show the relative
phase evolutions corresponding to (a,b,c,d) respectively. (i) Filtered and averaged
phase portrait of the signal with the calibration off. (j) Same with the calibration
on. All powers plot are normalised to their respective maxima.

3.2.5 Loss compensation scheme : Raman amplifier

As explained in Chapter 2, the intrinsic linear losses of a fibre, even small, are detri-
mental as it kills the FPUT recurrences and affects the dynamics. The experimental
impact of the losses is illustrated in Figs. 3.6(a,c,e,g) which show the signal power
evolution without any compensation of the strong (a,c) and weak (e,g) pulse for two
different initial relative phase, ∆Φinit = −π/2 and ∆Φinit = 0. We observe a general
decreasing of the weak pulse of 3 to 5 dB which is to be compared to the 2.88 dB
(2 × 7.7 km × 0.2 dB/km) minimum intrinsic losses expected. This decreasing has
a direct impact on the measurements in Fig. 3.6(a) and (e) as we perform a ratio
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to get them (calibration procedure to remove the fading). This explains why the
second maximum (around z = 6 km) appears bigger than the first one (around z
= 2 km) in Fig. 3.6(a). Moreover we see that we are not able to observe a second
recurrence for the case where ∆Φinit = 0, which confirms the previously stated fact
in Chapter 2 that the power evolutions in this case are more sensitive to losses than
for ∆Φinit = −π/2.

Hence, we introduced a Raman amplification scheme in our system in order
to compensate for the linear attenuation of the SMF-28 fibre used in experiment.
This idea, borrowed from the telecommunication field where distributed Raman
amplification is commonly used [57], has been recently implemented successfully
in a handful of nonlinear fiber optics experiments [42, 43, 111, 112]. In our case,
the Raman laser source is located at 1480 nm and contra-propagates in order to
minimize the relative intensity noise transfer compared to the co-propagative case.
The ideal location of the Raman laser would be 1450 nm (i.e. -13.2 THz detuning)
in order to benefit from the maximum gain and “flatness” of the Raman response
as explained in Chapter 1. However, even at the maximum compression point, the
spectrum is not larger than about 1 THz so we can assume that every spectral
components experiences almost the same gain. This is verified by the fact that we
do not observe any asymmetry (relatively to the pump) on the spectrum at the
output of the fibre as displayed in Fig. 3.4(c) (magenta line) where the Raman
pump was on. A realistic simulation of this distributed Raman amplifier is very
complex as one has to take into account the depletion of the Raman pump, the
contra-propagation architecture and the polychromatic nature of the pulse we want
to amplify. Thus, the Raman pump power was set empirically as follows. We choose
the configuration where ∆Φinit = ±π/2 and increase the Raman pump power until
the level of signal sideband power at the second peak of conversion is similar to the
first one [Fig. 3.6(b)]. Note that the decreasing trend of the weak pulse is then
not observable anymore [Fig. 3.6(f,h)]. With this compensation, the second peak of
conversion for the case with ∆Φinit = 0 clearly appears and its amplitude is slightly
below the amplitude of the first peak [(Fig. 3.6(d)]. This is not detrimental as we
will point out in Chapter 4 that the recurrences with a three-wave input are not
perfect, especially for ∆Φinit 6= ±π

2 .
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Figure 3.6: Losses compensation via Raman amplification. Power evolution of the
signal component of the strong (a) and weak (e) pulse when the Raman amplification
scheme is off and for ∆Φinit = −π/2. (b,f) Same with the Raman amplification
turned on. The second panel shows similar figures but for ∆Φinit = 0.

3.2.6 Stability of the setup and noise limitations

The stability of the experimental setup is a key point to perform reproducible and
reliable measurements. As many parameters are involved, it is not easy to quan-
tify this stability. However, some systematic procedures or methods have been
implemented to ensure that key parameters such as the pump power do not vary
much. First, most of the setup is computer driven. That allows us to perform
a recording sequence (which corresponds to the averaging of at least one hundred
single-shot recordings) in less than two minutes, a duration that also includes the
post-processing time in order to display the power and relative phase evolutions and
the associated phase-plane structure. To be sure that the input pump and sidebands
powers stay the same during a sequence we use the following method. At the begin-
ning of each new acquisition, the sidebands generation (via the phase-modulator)
is first shut-off and a MI spectrum is recorded at the output of the fibre and com-
pared to a reference. This spectrum is indeed highly dependent on the pump power
as explained in section 2.2 (the cutoff frequency varies in

√
Pp and the maximum

gain varies exponentially with Pp). If needed, the power can be adjusted by tuning
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the current of EDFA1 or thanks to the Waveshaper (it has a 0.01 dB attenuation
resolution). Then, the sideband generation is switched-on and another spectrum is
recorded. The hundreds of recording are then performed before that, at the end of
the sequence, two other output spectra are recorded (sidebands on and off). This
allows us to check that no measurable drift occurred during the sequence by com-
paring the spectra obtained at the end and at the beginning of it. We estimate that
it allows a stabilisation of the input powers with a reproducibility of about 0.1 dB.
Concerning the input relative phase, it is considered as stable with a resolution of
less than 0.1 rad.

The backscattered signal being very weak (-82 dB for a 1 ns pulse according to
the datasheet from Corning [51] which gives a backscattered power of about 140nW
for a 50 ns pulse [see Chapter 1]), it is challenging to perform measurements with
a good signal to noise ratio. Indeed, in Fig. 3.7, the blue line corresponds to the
spectrum of a backscattered wave at the output of the circulator (with the Raman
pump switched off) and one can notice that it is in fact below -40 dBm, which is very
weak. With the detection scheme 2, we introduced an amplifier (EDFA 2) at the
output of the circulator which is specifically designed for the amplification of very
weak signal (typically around -40 dBm). The red dashed line in Fig. 3.7 corresponds
then to the spectrum of the backscattered wave at the output of this amplifier. While
this allows a gain of around 25 dB, we observe that the signal to noise ratio (SNR)
is degraded. However this reduction of SNR is not too detrimental. In fact one
has to remind that we perform heterodyne measurements. Without EDFA 2, the
local oscillator power is then very big compared to the one of the backscattered
signal and it seems to be the main contributor to the noise on our measurements
while with amplification the main source of noise comes from the backscattered
signal. Fig. 3.7 also shows the amplified backscattered signal (green line) when the
Raman amplification is switched on and one can see that it almost does not affect
the noise background, which increases by less than 1 dB. While we display in Fig.
3.7 the backscattered signal for a sequence of strong pulses only, the final SNR of
our measurements will depend on the weak pulses. Moreover, the bandwidth of our
detection at 600 MHz being around 10 MHz, it will further improves the SNR. For
an input composed of three waves (a 450 mW pump and a signal/idler -20 dB below
and detuned by 35 GHz from the pump) we achieve a SNR of about 25 dB for the
pump and 5 dB for the signal/idler.
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Figure 3.7: Spectrum of the backscattered signal at the output of the circulator with
the Raman pump switched off (solid blue line) and at the output of EDFA 2 with
the Raman pump switched off (red dashed line) and on (green line). Only strong
pulses are launched into the fibre.

The spectra in Fig. 3.7 allow us to characterize the presence or not of any SBS [7,
34]. Indeed, we observe on these spectra two sidebands detuned by 10.9 GHz around
each optical components involved in the FPUT process. These sidebands result
mainly from spontaneous Brillouin scattering. One can notice that the amplitude
of the Stokes sidebands is higher than the one of the anti-Stokes which is a sign of
SBS but the difference is small (less than 1 dB). Moreover, if we focus for instance
on the sidebands surrounding the pump, their level is about -16.5 dB lower, which
is very weak when we recall that the backscattered pump is already lower by dozens
of dB than the pump propagating forward. This means that SBS is negligible in
our experiment. This was also checked by looking at the evolution of these sideband
power when we increase the pump power, for which we get a linear relation, which
confirms the mainly spontaneous nature of the scattering process.

Summary

• We recalled the state of the art concerning distributed measurements of MI in
optical fibres and highlighted the advantages of OTDR-related techniques.

• We gave a general and detailed description of our experimental setup. We
explained how the fading suppression technique and signal processing enable
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clean measurements of the intensity and phase of the pump and signal com-
ponents of the backscattered wave.

• We introduced and described a loss compensation scheme based on Raman
amplification.
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In chapter 2 we pointed out that the rich dynamics related to multiple recurrence
cycles of MI such as spontaneous symmetry breaking is linked to separatrix (or
homoclinic) crossing [75, 113, 114]. Yet, so far, such symmetry breaking has never
been observed due to experimental limitations, the major one being the dissipation,
which prevents the observation of multiple recurrences in fibre optics and which can
also cause separatrix crossing, preventing the observation of both type of recurrences
(inner and outer orbits in phase-planes or unshifted and shifted recurrences in the
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time domain) as reported by Kimmoun etal. in a water tank experiment [37]. These
limitations were lifted by the experimental setup we developed (described in Chapter
3). It allows us to perform distributed characterization in phase and in intensity
of two FPUT recurrences thanks to an active compensation of the losses and to
an heterodyne optical time-domain reflectometer. Hence, we report in this chapter
the observation of symmetry-breaking of FPUT recurrences. In the first section
we detail the conditions for separatrix crossing. Then, we present in the second
section experimental results highlighting both types of recurrences through phase-
plane structures. We finally introduce in the last section a technique to reconstruct
the temporal evolution of the field intensity and phase, thus allowing the observation
of the symmetry-breaking in the time-domain.

4.1 Conditions for separatrix crossing

In chapter 2, we introduced in the framework of the 3WM model the Hamiltonian
which describes the evolution of the system. Similarly to Fig. 2.4 we plot in Fig. 4.1
the level curves of the Hamiltonian but this time in the polar coordinates (∆Φ, η)1

and for ω = 1.20 [Fig. 4.1(b)], close to the perfect phase-matching frequency (ω =
√

2). The separatrix is highlighted with a thick black solid line. Moreover the
dashed line corresponds to the projection of the trajectory of the AB [Eqs. (2.14)]
on this phase plane. We notice that for vanishing modulation (η → 0) both the
3WM separatrix and the AB emanate from the same value of ∆Φ = ±∆Φc '
±0.295π. ∆Φinit = −∆Φc corresponds to the unstable manifold (i.e. entailing
growing modulations) and ∆Φinit = ∆Φc constitutes the stable manifold (entailing
asymptotic conversion from the sidebands to the pump). Starting with a very weak
modulation, one can then expect to observe inner trajectories (unshifted recurrences)
for −∆Φc < ∆Φinit < ∆Φc or π−∆Φc < ∆Φinit < π+∆Φc and outer orbits (shifted
recurrences) for ∆Φc < ∆Φinit < π − ∆Φc or ∆Φc − π < ∆Φinit < −∆Φc. The
separatrix crossing can then be obtained by switching ∆Φinit. However, one has to
take into account that the value of ∆Φc depends on the modulation frequency ω.

1Note that the phase-plane configurations with the polar coordinates (∆Φ, η) and the cartesian
coordinates (η × cos(∆Φ), η × sin(∆Φ)) give similar information. However, when talking specifi-
cally about the separatrix, it is easier to operate with the polar coordinates to infer the crossing
conditions.
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breather theory.

In fact, as stated in Chapter 2 we have ∆Φc = cos−1(ω/2). Hence, for 0 < ω < 2
(i.e modulation in the MI gain curve) ∆Φc can range from 0 to π/2 as displayed in
Fig. 4.1(a). Note that in this section we focus only on standard MI (1 < ω < 2)
and not on higher-order MI, which involves more complex separatrices. This means
that, ∆Φinit = 0,±π always lead to inner orbits while ∆Φinit = ±π/2 always lead
to outer orbits, fact we will use in the next section. This is true even for non-weak
input modulation. In this case, the critical phase can only be obtained via numerical
integration of the NLSE. The stronger is the modulation, the further away it is from
analytical prediction. For instance, for the following parameters: Pp = 490 mW ,
β2 = −19 × 10−27s2/m, γ = 1.3 × 10−3/W/m, initial signal/idler to pump ratio of
-8.5 dB, ω = 1.20 (i.e. f = 35GHz), the critical phase is ∆Φc−NLS w 0.337π (to be
compared to 0.295π).

Instead of varying ∆Φinit, another possibility to cross the separatrix is to change
the initial sideband amplitude. Indeed, as can be seen in Fig. 4.1(b), at ∆Φ =
−∆Φc, the separatrix has a very high slope but which is not infinite. Thus, 3WM
integration shows that for ∆Φinit superior but very close to −∆Φc it is possible
to switch from inner to outer trajectories by increasing the initial sideband power
fraction ηinit. However, we notice that at the same point the slope of the AB has
an opposite sign, which means that, in order to cross the separatrix by increasing
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ηinit one has to set ∆Φinit below −∆Φc and can expect to switch from outer orbits
to inner orbits. Experimentally, this switching process is much more complicated
than the previous one (by varying only ∆Φinit) as it requires to be very close to the
separatrix and large variations of ηinit. Finally, we point out that the intrinsic losses
along the propagation can also cause separatrix crossing. This was observed for the
first time in a water tank experiment by Kimmoun et al [37]. Looking at multiple
FPUT recurrences, they were only able to observe a phase-shifted recurrence as the
attenuation strongly modifies the dynamics of the system, forcing the system to
cross the separatrix. All these cases are illustrated with numerical simulations from
the NLSE in Fig.4.2. Fig.4.2(a) shows a “reference” case of the spatio-temporal
evolution of the field power for ∆Φinit = −0.32π (we remind that the critical phase
in this case is ±0.337π). We clearly see that we observe unshifted recurrences is this
case, associated to an inner trajectory in the phase plane [Fig.4.2(b)]. Starting from
this reference we show that by varying ∆Φinit by a small amount (to −0.35π) we
observe now π-shifted recurrences and an outer trajectory [Fig.4.2(c,d)]. The same
observation can be made by decreasing ηinit from 0.22 to 0.12 (i.e. changing the
initial signal/idler to pump ratio from -8.5 dB to -11.5 dB) [Fig.4.2(e,f)]. Finally,
separatrix crossing can also be induced by adding linear attenuation α = 0.2dB/km
into the NLSE integrated numerically [Fig.4.2(g,h)]. In this case, the dissipation
strongly modifies the dynamics of the system. In particular, we have seen with
the 3WM model (see Eqs. 2.8) that the attenuation has a direct impact on the
pump and sidebands power evolutions and thus on the accumulated nonlinear phase
acquired by these waves.
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Figure 4.2: (a,b) Spatio-temporal evolution of the field power from numerical simula-
tions from the NLSE and corresponding phase-plane with the following parameters:
Pp = 490mW , β2 = −19× 10−27s2/m, γ = 1.3× 10−3/W/m, initial signal/idler to
pump ratio of -8.5 dB (η = 0.22), ω = 1.20 (i.e. f = 35 GHz), ∆Φinit = −0.32π.
(c,d) Same but with ∆Φinit = −0.35π. (e,f) Same than (a,b) but with an initial
signal/idler to pump ratio of −11.5 dB (η = 0.12). (g,h) Same than (a,b) but adding
the linear attenuation α = 0.2 dB/km.
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4.2 Observation of symmetry-breaking via phase-
plane structures

In this section we report the experimental observation of both type of recurrences
via phase-plane structures.

4.2.1 Far from the separatrix

In the previous section we outlined the fact that that ∆Φinit = 0,±π always lead to
inner orbits while ∆Φinit = ±π/2 always lead to outer orbits. Using the setup
described in Chapter 3 we launched into a 7.7 km SMF-28 fibre a three-wave
input with the following parameters : Pp = 490 mW , β2 = −19 × 10−27s2/m,
γ = 1.3 × 10−3/W/m, initial signal/idler to pump ratio of -8.5 dB, ω = 1.20 (side-
band detuning from the pump of 35 GHz) and ∆Φinit = 0 or ∆Φinit = −π/2. One
can wonder why we did not chose, ω = ωmax =

√
2, which corresponds to the perfect

phase-matching normalised frequency detuning. This is because the pump power
we use in experiments ranges usually between 450 mW and 500 mW (in order to
observe two FPUT recurrences in the 7.7 km fibre). This range of pump power
entitles fmax ranging from 40 GHz to 42 GHz. Yet we recall that, experimentally,
we generate the signal and idler sidebands via phase modulation [see Fig. 3.1]. The
RF signal driving the PM is provided by a synthesizer which can deliver RF signal
up to 20 GHz and is followed by a frequency doubler. Then, the maximum driving
frequency we can deliver to the PM is 40 GHz. Because this constitutes an upper
limit, we set f to 35 GHz to ensure a stable driving RF signal. Note that this is not
a drawback as the processes studied in this thesis do not require an initial perfect-
phase matching. Moreover, although one would ideally use very weak modulation,
it entitles large recurrence distances (about 20 km to observe two recurrences for the
previous parameters but with an initial signal/idler to noise ratio of -20 dB). This
is not compatible with a good compensation of losses via our Raman compensation
scheme which was designed for fibre length around 8 km which is the reason why
we operate with an initial signal/idler to pump ratio of -8.5 dB. Figure 4.3 then
displays the experimental recordings (solid lines) of the longitudinal pump, signal
power and relative phase evolutions as well as the corresponding phase-plane tra-
jectories for both value of ∆Φinit. Note that we do not measure the evolution of
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the idler component as it is similar to the signal one, the spectrum being symmetric
relatively to the pump. For ∆Φinit = 0, we observe more than two recurrences cycles
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Figure 4.3: (a,d) Longitudinal evolution of the pump (blues lines) and signal (red
lines) powers and (b,e) longitudinal evolution of the relative phase. (c,f) Projections
in the 3WM phase-plane. Solid lines correspond to experimental recordings and
dashed ones to numerical simulations from the NLSE. Initial conditions in (a-c)
and (d-f) differ only in the initial relative phase ∆Φinit = 0 or ∆Φinit = −π/2,
respectively.

in power [Fig. 4.3(a)] and almost two cycles for ∆Φinit = −π/2 [Fig. 4.3(d)]. Both
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cases show a good agreement with numerical simulations (dashed lines), with almost
perfect recurrences for ∆Φinit = −π/2. The discrepancies in the case ∆Φinit = 0 can
partly be attributed to the strong modulation used in the experiment. In particular,
this is because the doubly periodic analytical solution of the NLSE describing “per-
fect” multiple recurrences do not reduce to only three waves, especially in the case
∆Φinit = 0, thus leading to non-perfect recurrences in experiments and simulations
(see Appendix A for more details). The relative phase evolutions [Figs. 4.3(b,e)]
show also a good agreement with numerical simulation apart for the last hundred of
meters for ∆Φinit = 0. The phase-plane projections in Figs. 4.3(c,f) clearly reveal
the two types of orbits expected. For ∆Φinit = 0 [Fig. 4.3(c)] we observe an inner
trajectory confined in the right semi-plane (if we neglect the small discrepancy at
the end) while for ∆Φinit = −π/2 [Fig. 4.3(f)] we observe an eight trajectory go-
ing on both sides of the phase-plane. This illustrates the homoclinic crossing and
symmetry-breaking of the recurrence process.

4.2.2 Close to the separatrix

Here we give further evidence of homoclinic crossing by operating with the same
parameters than the previous ones but with an initial relative phase ∆Φinit very close
to the critical phase ∆Φc−NLS = 0.337π. Note that in this case the measurements
are very challenging, as the spatial period of the recurrences tends to diverge when
the critical phase is approached and the measurements become more sensitive to
the stability of the experiment. Nonetheless, we obtained very good results as
displayed in Figure 4.4 which shows the same kind of measurements than in Fig.
4.3 but with ∆Φinit = −0.32π [Figs. 4.3(a-c)], ∆Φinit = −0.34π [Figs. 4.3(d-f)]
and ∆Φinit = −0.37π [Figs. 4.3(g-i)]. For ∆Φinit = −0.32π we observe a bit more
than one recurrence and an inner trajectory in the phase-plane. By varying the
initial relative phase of only 0.05π to ∆Φinit = −0.37π we clearly observe one and
a half recurrence and an outer trajectory in the phase plane so the separatrix have
effectively be crossed. Concerning the intermediate case with ∆Φinit = −0.34π,
one can hardly identify the type of trajectory from the phase plane as the second
recurrence is almost out of the range of the fibre. This is because ∆Φinit is then
almost equal to ∆Φc−NLS.
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4.3 Observation of symmetry-breaking in the time
domain

Although we were able to observe the symmetry-breaking of the FPUT recur-
rences via phase-plane structures, we wondered if, with a similar setup, it would be
possible to do this observation in the time domain, which would be more meaningful.
This is not an easy task as it would require to perform distributed characterization
of structures which can be as short as a few picoseconds at the maximum com-
pression points. This rules out the possibility to use direct photo-detection which
is currently limited to intensity measurements with a resolution of tens of picosec-
onds. Nonetheless, numerous techniques have been developed in the last decades
in order to measure such short pulses, the more famous being frequency-resolved
optical gating [115] and spectral phase interferometry for direct-electric field recon-
struction [116] (a review can be found in Ref. [117]). Apart from these now conven-
tional techniques, new methods allowing real-time full-field characterisation have
recently be developed, based in particular on time lens and/or dispersive Fourier
transform [118–122]. For instance Tikan et al. [120] reported the full-field char-
acterisation of 80 fs Peregrine soliton-like structures. However, all these previous
techniques [115–117, 120–122] are limited to localised measurements and cannot be
then implemented in our case. Note that Xu et al. [99] reported recently the longi-
tudinal full-field characterisation of Peregrine-like structures using a combination of
temporal and spectral measurements and a reconstruction algorithm but this tech-
nique suffers from the same limitations than the cut-back one described in Chapter
3. Based on our HOTDR setup, we implemented a new method to perform fast
and non-invasive full-field characterisation of time-periodic pulses (i.e. with discrete
line spectra) along the whole length of an optical fibre. In this section, we present
the principle of this method and its setting up to observe the symmetry-breaking of
FPUT recurrences in the time domain. The same technique will be used in Chapter
6 to characterise higher-order breathers.

4.3.1 Principle of reconstruction of the spatio-temporal field
intensity and phase

We have shown previously that the HOTDR setup allows to perform a distributed
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characterisation in the frequency domain. Because we have both intensity and phase
measurements of frequency components, one could simply use the inverse Fourier
transform to get the temporal evolution. However, in our case, we only measure
a truncated spectrum as we focus on the three main spectral components (i.e the
pump and signal/idler). To understand the impact of this truncation on the recon-
struction we performed numerical simulations to get the full spectral evolution and
then we calculate the spatio-temporal field intensity and phase via inverse Fourier
Transform by taking into account a varying number of spectral components. In
order to compare these results, we defined the following relative least square error
parameter :

ε =

√√√√∑i,j |PFull(zi, Tj)− PTrunc(zi, Tj)|2∑
i,j |PFull(zi, Tj)|2

(4.1)

where PFull and PTrunc are the matrix of the spatio-temporal power with the full
spectrum accounted for or the truncation, respectively. Figure 4.5 shows then the
evolution of ε as well as the spatio-temporal power plots for different number of
waves accounted for in the reconstruction. As can be seen, ε follows an exponential
decreasing. Increasing the number of waves from three to five reduced the error by
a factor four. This has really a big impact on the spatio-temporal power profile
as displayed in Figs. 4.5 (b) and (c). In fact, with the three-wave reconstruction
we notice that we can observe the recurrence but it is of very poor quality, with
maximum compression points split into two parts longitudinally [to be compared
with the spatio-temporal power plot with the full spectrum accounted for in Fig.
4.5 (e)]. With five waves, the split disappears, and the reconstruction is far more
accurate. Increasing to seven waves, the error can also be reduced by another factor
four but we can see in Fig. 4.5 (d) that it makes less a difference.

4.3.2 Experimental implementation and results

We just saw that the distributed characterisation of at least fives waves (i.e. the
pump, signal/idler and their first harmonics) is necessary to get a relatively accurate
spatio-temporal profile. Hence, we had to modify our experimental setup which was
designed to measure only three waves. Most major changes consist in the implemen-
tation of a new detection scheme as displayed in Fig. 3.1 (detection scheme 2 instead
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of detection scheme 1). In particular, detection scheme 2 introduced a new EDFA
amplifier specifically designed to amplify very weak signals which is then suitable
for the amplification of the Rayleigh backscattered signal (note that several minor
changes on the setup are not reported in Fig. 3.1). These modifications have allowed
an improvement of the SNR of our measurements by more than 10 dB compared to
our first results on the symmetry-breaking reported in Ref. [42]. Thus, it enables
the detection of a supplemental set of sidebands, harmonics of the signal and idler
waves. However, in order to detect this supplemental set of sidebands we can no
longer use a three-wave input. In fact, we explained in Chapter 3 that we use a
sequence of strong and weak pulses to perform our measurements. Concerning the
strong ones, with a three-wave input, the harmonics would be generated through
nonlinear effects but for the weak pulses theses harmonics are not generated. Hence,
we could not perform the necessary calibration for these frequencies (to eliminate
the fading effect). To detect the spectral component it is then necessary that they
are already present in the input condition that we launch in the fibre. Because the
response time of the Waveshaper is too long compared to the duration between a
strong and a weak pulse (a few seconds compared to 102µs) we cannot design differ-
ent input profiles for the strong and weak pulses. Both have then to be constituted
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of five waves. The input parameters were then chosen as follows : Pp = 460 mW ,
β2 = −19 × 10−27s2/m, γ = 1.3 × 10−3/W/m, initial signal/idler to pump ratio of
-10 dB and harmonics to pump ratio of -20 dB, ω = 1.24 (signal/idler detuning from
the pump of 35 GHz and harmonics detuning from the pump of 70 GHz) and the
initial phase of the five waves is set to 0. Here, the power of the first harmonics of
signal/idler waves is chosen as small as possible in order to be the closest possible
to a three-wave input. Like previously, we assume that the behaviour of sidebands
symmetric to the pump is similar (the impact of odd-order dispersion terms and
Raman effect being negligible). Thus, we only record the evolution of the pump,
signal and its first harmonic as displayed in Fig. 4.6, which shows the simulated
input spectrum [Fig. 4.6(a)] and the longitudinal power [Fig. 4.6(b)] and phase
evolutions [Fig. 4.6(c)]. Note that the arbitrary phase of the local oscillator is set
here to zero (we checked numerically that this phase has no consequence on the
dynamics). As we can see in Fig. 4.6(b), the experimental power evolution exhibit
two recurrences, in good agreement with numerical simulations.
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Figure 4.6: (a) Simulated input spectrum. Longitudinal evolution of the power (b)
and phase (c). Blue, red and green correspond to the pump, signal and harmonic,
respectively. In (b,c) the solid lines correspond to experiments and the dashed
ones to numerical simulations from the NLSE. Parameters: Pp = 460 mW , β2 =
−19 × 10−27s2/m, γ = 1.3 × 10−3/W/m, initial signal/idler to pump ratio of -10
dB and harmonics to pump ratio of -20 dB, signal/idler detuning 35 GHz from the
pump, harmonics detuning 70 GHz from the pump.
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We then calculate the spatio-temporal evolution of the field via the inverse
Fourier transform from the five waves. The intensity plot is displayed in Fig. 4.7(b)
and exhibits two maximum compression points at about 1.5 km and 6 km, respec-
tively, which are in phase with each other, as expected (here ∆Φinit = 0). This
is in good overall agreement with the results obtained from numerical simulations
accounting for the full spectrum and displayed in Fig. 4.7(a). To get a more ac-
curate comparison we plotted the temporal and longitudinal evolutions along the
first maximum compression point [see magenta dashed lines in Fig. 4.7(a,b)] in Fig.
4.7(c) and 4.7(d), respectively. Experimental traces are displayed in red and numer-
ical ones in blue and look very similar. The latter only exhibits higher amplitude
and slightly sharper fronts (one can notice that the temporal profile is very similar
to the one of a maximally compressed AB as shown in Fig. 2.6). The main cause
for this discrepancy is the truncation which is confirmed by the black dashed lines
in Fig. 4.7(c,d). They are obtained by only accounting for five waves in the inverse
Fourier transform calculation in numerical simulations. We can clearly see that the
agreement with the experiments is then pretty good. The inverse Fourier transform
also gives us access to the spatio-temporal evolution of the phase of the field. They
are displayed in Fig. 4.7(e,f). Experimental evolution is in very good agreement
with numerical simulations, the impact of the truncation being less pronounced in
this case, as confirmed by the phase evolutions along the first maximum compression
point in Fig. 4.7(g,h). Noteworthy, in the temporal case [Fig. 4.7(g)], we observe a
phase jump close to π between the center of the pulses and their wings and equal
to π in simulations which is one of the characteristic feature of the AB and PS [28].
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Figure 4.7: Spatio-temporal evolution of power [(a) numerical simulations, (b) ex-
periments] and phase [(e) numerical simulations, (f) experiments)]. (d), (h) Longi-
tudinal evolution of power and phase at the first maximum compression point (along
the magenta dashed line). (c), (g) Temporal evolutions at this point. The red lines
correspond to experiments, the blue ones to numerical simulations with the full
spectrum accounted for in the inverse Fourier transform calculation and the black
ones to numerical simulations with a truncated spectrum (5 waves). Parameters are
similar to those in Fig. 4.6.
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In a second set of experiments, we reproduced the experiment with the same
five-wave input except for a phase of π (instead of zero) for the idler component
in order to induce the separatrix crossing. Indeed in this case Eq. (2.9) gives
∆Φinit = −π/2. Experimental results are displayed in Fig. 4.8(b,d). In this case,
we still observe two maximum compression points but with a π phase shift between
them, thus illustrating the symmetry-breaking of the recurrences in the time domain.
The agreement with numerical simulations [Fig. 4.8(a,c)] is good.
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Summary

• We discussed the conditions to observe the symmetry-breaking of the recur-
rences. We showed that separatrix crossing can be induced by varying the
initial relative phase between the modulation sidebands and the pump, by
varying the initial modulation amplitude and also by introducing dissipation.

• Using the setup described in the previous chapter we outlined the experimental
observation of two recurrences and in particular of two types of qualitatively
different phase-plane trajectories (inner and outer trajectories), thus illustrat-
ing experimentally the symmetry-breaking of FPUT recurrences.

• We described a method allowing the calculation of the spatio-temporal evolu-
tion (at the picosecond scale) of the field via measurements from our setup.
To illustrate its performance we reported the observation of the symmetry-
breaking of the recurrences in the time domain.
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Chapter 5

Impact of initial conditions on
Fermi-Pasta-Ulam-Tsingou
recurrences
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5.2.2 Impact of the initial modulation amplitude . . . . . . . . 77

In chapter 4, we focused on the impact of the initial three-wave input parameters
on the type of recurrence observed (unshifted or π-shifted recurrences). However,
the modulation sidebands initial parameters have also an important influence on
the position of these recurrences which we will describe in this chapter. In the first
section we introduce a recent analytical model by Grinevich and Santini [45] which
allows to estimate these positions. These predictions have recently been verified
successfully in a spatial MI experiment using a bulk photorefractive crystal [64]
but never in fibre optics. Then, in the second section we report the experimental
investigation (using the setup described previously) of the impact of the initial
conditions of the modulation sidebands, in comparison with the previous analytical
model and numerical simulations.

71



CHAPTER 5. IMPACT OF INITIAL CONDITIONS ON
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5.1 Grinevich and Santini model

In chapter 2 we discussed several approaches allowing to describe the nonlinear stage
of MI and the recurrences. Especially, we pointed out that the AB model is limited
as it depicts only a single recurrence and does not allow to account for the initial
relative phase. Recently, by applying asymptotic matching expansion techniques
(in the framework of the AB theory), Grinevich and Santini [45] managed to derive
simple formulas which allow to characterise the dependence of the first maximum
compression point as well as the spatial period of the recurrence on the parameters
of the three-wave input. In fact, considering a three-wave input as follow :

E(z = 0, T ) =
√
Pp
(
eiϕp + cse

iΩT + cie
−iΩT

)
(5.1)

where Pp is the pump power, Ω the angular frequency detuning, cs,i = |cs,i| eiϕs ,
where |cs,i| � 1 are the normalised amplitude of the signal and idler wave, re-
spectively, and ϕs their phase, they derived the position Z1 of the first maximum
compression point and the spatial period Zrec:

Z1 =2
g
ln

(
g2

2 |α|

)
× LNL (5.2)

Zrec =4
g
ln

 g2

2
√
|αβ|

× LNL (5.3)

where g = ω
√

4− ω2 (related to the parametric MI gain), α = c∗s − ei2Φωci and
β = c∗i − e−i2Φωcs with Φω = cos−1(ω/2) and LNL is the nonlinear length. Then
the position Zn of the n-th recurrence is given by Zn = Z1 + n × Zrec. Here, we
recognize that Φω corresponds to the critical phase of the 3WM model and phase
of the AB. Note that the formula of Z1 encompasses the one derived by Erkintalo
et al [90] (which corresponds to the case ∆Φinit = −Φω). In the following, the
position Zn of the recurrences will be deduced from those of the pump power min-
ima. In fact, as shown in Chapter 2, they nearly coincide with the position of the
maximum compression points. Compared to the 3WM model, these formulas offer
a better quantitative approximation of the recurrence positions, especially for weak
modulations. To justify this, we plot in Figure 5.1 the positions of the first two lo-
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5.1. GRINEVICH AND SANTINI MODEL

cal minima of the pump power (green for the first one and magenta for the second)
versus the initial signal/idler to pump ratio (varied from -30 dB to -5 dB) for the
typical parameters used in experiments: Pp = 470 mW , β2 = −19 × 10−27s2/m,
γ = 1.3 × 10−3/W/m, ω = 1.22 (sideband detuning from the pump of 35 GHz)
and ∆Φinit = 0. The positions were calculated using three different approaches.
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Figure 5.1: Position of the first (in green) and second (in magenta) pump minima
versus signal/idler to pump ratio. Dotted and dashed lines correspond to numer-
ical simulation from the 3WM model and the NLSE, respectively, and solid lines
correspond to the theoretical model of Santini and Grinevich [Eqs. (5.2) & (5.3)].

Here, the solid lines correspond to Eqs. (5.2) & (5.3) while the dotted and dashed
lines correspond to numerical simulations from the 3WM model (Eqs. 2.8) and the
NLSE, respectively. In every cases we observe a logarithmic or quasi-logarithmic
dependence of the position on the modulation intensity. Thus, the first and second
minima ranges from about 1 km to 7 km or 3 km to 20 km, respectively. In particu-
lar, we observe an “error” almost constant between the NLSE and the 3WM model,
the estimation from the latter on the first pump minima position being about 600
m larger for the whole range of signal to pump ratio considered. For the second
minima, the discrepancy is even higher, about 1.9 km. Conversely, Eqs. (5.2) &
(5.3) give very a good approximation of the positions with a maximum discrepancy
of about 200 m and 750 m for the first and second minima, respectively. We notice
a trend that the smaller the initial modulation, the better the estimate from (5.2)
& (5.3), with almost a perfect agreement when the signal to pump ratio is -30 dB.
This is consistent with the fact that the model of Grinevich and Santini have been
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derived assuming a weak modulation.

5.2 Experimental study of the impact of initial
conditions

5.2.1 Impact of the initial modulation phase

In order to characterise the impact of the initial relative phase on the recurrence
positions, we used the following symmetric three-wave input: Pp = 470 mW , β2 =
−19×10−27s2/m, γ = 1.3×10−3/W/m, ω = 1.22 (sideband detuning from the pump
of 35 GHz) and a signal/idler to pump ratio of -10.4 dB. ∆Φinit was varied from−π/2
to π/2. Compared to previous experiments, the fibre length has been increased to 9.2
km in order to investigate the dynamics over a larger fibre length range. The results
displayed in Fig. 5.2(a) show the positions of the first and second pump minima in
green and magenta, respectively. Crosses account for experimental recordings, solid
lines for the analytical predictions based on Eqs (5.2) & (5.3) and dashed ones to
numerical simulations from the NLSE. As we can see, Eqs (5.2) & (5.3) predict that
the positions Z1 and Z2 diverge both for ∆Φinit = Φω = 0.29π. As mentioned in
section 4.1 this is because this particular phase corresponds to the stable manifold of
the separatrix, which entails asymptotic conversion from the input sidebands to the
pump. Conversely, Z1 is minimum for ∆Φinit = −Φω, which entails the most rapid
growth of the sidebands to the apex. Note that Z2 still diverges for this phase value
since backconversion still occurs asymptotically along the separatrix. The phase
±Φω being the critical phase of the system, one could expect to observe transition
from inner to outer trajectory across this phase. However, as discussed previously
in Chapter 4, the relatively strong modulation used in our experiment and NLSE
simulations (the sidebands contains about 15% of the total power) induces a shift of
the critical phase which is here ∆Φc−NLSE = ±0.32π. The yellow and cyan shaded
areas correspond then to the range of ∆Φinit for which one could expect to observe
outer and inner trajectory, respectively. The measured values of Z1 are in excellent
agreement with the numerical simulations and three different recordings are reported
in Fig. 5.2(b-g) [solid lines correspond to experiments and dashed one to numerical
simulations] to illustrate the dynamics. For an input phase of ∆Φinit = −0.42π
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5.2. EXPERIMENTAL STUDY OF THE IMPACT OF INITIAL CONDITIONS

[Fig. 5.2(b,c)] we observe then an outer trajectory. On the contrary, for ∆Φinit =
−0.15π and ∆Φinit = 0.30π [Fig. 5.2(d,e) and (f,g), respectively], we observe inner
trajectories. Note that another general comment can be done on the early stage of
the propagation along the fibre. Indeed, initially, the power can either flow from
the pump to the sidebands or the opposite, leading to an initial amplification or
attenuation of the signal component. In Chapter 2 we stated that this is ruled by
the sign of sin(2∆Φinit). This is confirmed here in all our experimental recordings
and it can be observed in Fig. 5.2(b,d,f). In fact, for the cases shown in Fig.
5.2(b,d) (∆Φinit = −0.42π and ∆Φinit = −0.15π, respectively), sin(2∆Φinit) is
negative, leading to an initial amplification of the signal and an attenuation of
the pump. Conversely, for ∆Φinit = 0.30π [Fig. 5.2(f)] sin(2∆Φinit) is positive,
inducing an initial attenuation of the signal and amplification of the pump. Finally,
we notice that the measured values of Z1(about 2 km to 6 km) and Z2 (about 7 km
to 9 km) agree relatively well with the estimates of Eqs (5.2) & (5.3), especially for
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Figure 5.2: (a) Positions of the first (green) and second (magenta) pump minima.
The crosses correspond to experimental recordings, dashed lines to numerical simu-
lations from the NLSE and solid lines to the theoretical model [Eqs. (5.2) & (5.3)].
(b,d,f) Longitudinal evolution of the pump (blue) and signal (red) powers and (c,e,g)
their corresponding phase plane trajectories, for ∆Φinit = −0.42π, ∆Φinit = −0.15π
and ∆Φinit = 0.30π. Solid lines correspond to experiments and dashed ones to
numerical simulations. The grey line indicates the length of the fibre used in exper-
iments. All power plots are normalised to their maxima.
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the position of the first pump minima. Concerning the second pump minima, the
larger discrepancy between experiments and numerical simulations [magenta crosses
and dashed lines in Fig. 5.2(a)] can be attributed to an imperfect compensation of
the losses. Indeed, because the finite fibre length in our experiment fixes an upper
bound to measurable distances [see grey line in Fig. 5.2(a)], we increased it to 9.2
km (to be compared to 7.7 km previously) to be able to observe more dynamics, at
the expense of the compensation of the losses, which was designed and works better
for a length of 7.7 km. Generally, improving the resolution would require a more
complex loss compensation scheme, enabling in particular the use of longer fibre and
then a better characterisation close to the separatrix.
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5.2.2 Impact of the initial modulation amplitude

After investigating the influence of ∆Φinit on the recurrence positions, we set it to
∆Φinit = 0 and studied the influence of the input sidebands amplitude, first in the
symmetric case and then in the asymmetric one.

The symmetric case

In this case, the signal/idler to pump ratio was varied from -5 dB to -30 dB and we
recorded the positions of the first and second pump minima, which are displayed in
green and magenta in Fig. 5.3. Crosses accounts for experiments, dashed lines for
numerical simulations from the NLSE and solid ones for theoretical predictions from
Eqs (5.2) & (5.3). This figure is then similar to 5.1, except that the experimental
results are added. Experimental recordings of Z1 are found to be in very good
agreement with numerical simulations and a quasi-logarithmic dependence of the
position on the modulation intensity is indeed obtained. Note that, experimentally,
we could not go lower than a signal/idler to pump ratio of about -26 dB as it
constitutes the detection limit of our setup. Concerning Z2, only two experimental
points lied under the 9.2 km length of the fibre (marked by the grey line in Fig. 5.3)
and they are in excellent agreement with numerical simulations.
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Figure 5.3: Position of the first (in green) and second (in magenta) pump minima
versus signal/idler to pump ratio. Crosses correspond to experimental recordings,
dashed lines to numerical simulation the NLSE, and solid lines to the theoretical
model [Eqs. (5.2) & (5.3)]. The grey line indicates the fibre length used in experi-
ments.
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The asymmetric case

Secondly, the signal to pump ratio was set to -10.4 dB and the idler to pump
ratio was varied from -10.4 dB to -30.4 dB. This corresponds to a power imbalance
between the signal and idler ranging from 0 dB to 20 dB. The positions of the
first and second pump minima versus the power imbalance are then displayed in
Fig. 5.4(c) with crosses for experiments, dashed lines for numerical simulations
and solid ones for theoretical predictions. Here Z1 ranges from about 2 to 3 km
and Z2 from 6 to 9 km. We observe that the larger the asymmetry, the further
the pump minima, most of the variation occurring while the idler and signal power
are close (i.e. small imbalance), eventually reaching an asymptotic value for large
imbalances. The agreement between experiments and numerical simulations is good
for both Z1and Z2.

Moreover, we point out that this power imbalance between the signal and idler
also induces a time drift between successive maximum compression point [41]. It
differs from the symmetric case with equal sidebands power, for which one can
only obtain unshifted maximally compressed pulse trains or shifted of half a period,
depending on the the initial relative phase ∆Φinit, as studied previously (see Chapter
4). This temporal drift can be calculated via formulas provided by Santini and
Grinevich [45]:

T1 = arg(α)− Φω + π/2
ω

× T0 (5.4)

Trec = arg(αβ)
ω

× T0 (5.5)

where T0 =
√
|β2|LNL. The time-shift between the first and second maximum

compression points is then given by Trec − T1. The drift is illustrated in Figs.
5.4(a,b) which show the spatio-temporal evolution of the field power (from numerical
simulations) for a zero imbalance [Fig. 5.4(a)] and a 20 dB imbalance [Fig. 5.4(b)].
While there is no drift for the zero imbalance we notice a drift of about 5.5 ps for the
20 dB imbalance, in good agreement with the prediction from Eqs. (5.4) & (5.5),
which give 5.2 ps. Note that we were not able to measure accurately these drifts
experimentally. Indeed, it requires to reconstruct the spatio-temporal evolution
using the method described in Chapter 4 and we have seen that the reconstruction
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Figure 5.4: (a,b) Spatio-temporal evolution of the field power for a 0 dB and 20 dB
imbalance, respectively. (c) Position of the first (green) and second (magenta) pump
minima versus power imbalance between signal and idler. The crosses correspond
to experimental recordings, dashed lines to numerical simulations from the NLSE
and solid lines to theory [Eqs. (5.2) & (5.3)].

from only three waves does not give good results. One could suggest to add initially
a supplemental set of sidebands as done previously to perform reconstruction from
five waves. However this would be cumbersome to implement. Indeed, due to the
initial spectrum asymmetry, we could not infer the evolution of the Stokes sidebands
from the one of the anti-Stokes sidebands, doubling then the number of recordings
to perform. Moreover, it would also strongly impact the dynamics when the power
imbalance between the signal and idler is large. Indeed, the initial amplitude of
this additional set of sidebands would be then of the same order of magnitude than
the amplitude of the idler wave. Hence, the comparison with the predictions from
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Grinevich and Santini would not be valid.

Summary

• We reported the experimental quantitative characterisation of the impact of
the initial relative phase of the modulation sidebands on the first two recur-
rence cycles, in particular on the position of the first and second maximum
compression points, and outlined the change of dynamics due to separatrix
crossing.

• We also investigated the role of the modulation sidebands intensity, for equal
and asymmetric sidebands.

• We compared our results to analytical estimates from a recent model by
Grinevich and Santini [45], and found a good agreement despite the relatively
strong input modulation intensity used in our experiments.
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In the previous chapters, we focused exclusively on first-order breathers and
standard MI (i.e. 1 < ω < 2). However, as mentioned in Chapter 2, the nonlinear
combination of first-order breathers can lead to higher-order breathers, which can
present very high-amplitude peak at maximum compression point if the peaks of the
first-order breathers coincide in time and space [41]. These solutions do not reduce
to only three-waves asymptotically. In the first section we begin by describing the
formalism of such solutions. In the second section we detail how one can generate
these solutions experimentally. Finally we report the experimental characterisation
of such solutions, with comparison to numerical simulations, via the distributed
measurements in phase and intensity of their main frequency component and the
calculation of the spatio-temporal evolution via the method described in Chapter 4.

81



CHAPTER 6. BREATHERS COLLISIONS

6.1 Second-order breather formalism

Second-order breathers solutions (also called two breathers solution) describe the
propagation of two elementary first-order breathers which can interact [123]. Taken
independently, both of these breathers can be described by one governing parameter
a1,2 = 1

2(1 − ω2
1,2/4) as explained in Chapter 2 when we described the AB. The

formula for the field envelope of a second-order breather is reported in Ref. [93] and
reads:

Ψ(ξ, τ) = exp(iξ)
[
1 + G+ iH

D

]
(6.1)

where

G =− (ω2
1 − ω2

2)
ω2

1b2

ω2
cosh(b1ξc1)cos(ω2τc2)− ω2

2b1

ω1
cosh(b2ξc2)cos(ω1τc1)

− (ω2
1 − ω2

2)cosh(b1ξc1)cosh(b2ξc2)


H =− 2(ω2
1 − ω2

2)
b1b2

ω2
sinh(b1ξc1)cos(ω2τc2)− b2b1

ω1
cosh(b2ξc2)cos(ω1τc1)

− b1sinh(b1ξc1)cosh(b2ξc2) + b2sinh(b2ξc2)cosh(b1ξc1)


D =2(ω2
1 + ω2

2) b1b2

ω1ω2
cos(ω1τc1)cos(ω2τc2) + 4b1b2[sin(ω1τc1)sin(ω2τc2)

+ sinh(b1ξc1)sinh(b2ξc2)]− (2ω2
1 − ω2

1ω
2
2 + 2ω2

2)cosh(b1ξc1)cosh(b2ξc2)

− 2(ω2
1 − ω2

2)
[
b1

ω1
cos(ω1τc1)cosh(b2ξc2)− b2

ω2
cos(ω2τc2)cosh(b1ξc1)

]

where b1,2 =
√

8a1,2(1− 2a1,2), Here τc1 = τ − τ1 and ξc1 = ξ − ξ1 (same for the
subscript 2) correspond to shifted normalised time and distance, (ξ1, τ1) being the
space-time coordinate of the maximum compression point of the first-order breather.
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To get a synchronous nonlinear superposition of the two breathers it is then neces-
sary to have (ξ1, τ1) = (ξ2, τ2). Thanks to our experimental setup we decided then
to investigate how one can control the position of the highest-amplitude peak (or
collision point) along a fibre by tuning the parameters ξ1, ξ2.1

6.2 Design of the input conditions

In order to design the experimental initial conditions to study second-order breather
propagation we started from the previous analytical solution [Eq. (6.1)]. The side-
band frequencies ω1,2 could not be chosen randomly. In fact, we remind that our
inputs are obtained by tailoring a comb with equally spaced sidebands. Thus, it
requires that ω2 is a multiple of ω1. In our case we chose ω1 and ω2 so that side-
bands at these frequencies experience the same linear MI gain (b1 = b2). One can
easily calculate that this corresponds to ω1 = 2/

√
5 and ω2 =4/

√
5. For a total

power of P0 = 500 mW , β2 = −19 × 10−27s2/m and γ = 1.3 × 10−3/W/m this
corresponds to f1 = 26.6GHz and f2 = 53.2GHz. Then we chose ξ1 = ξ2 = −2.87
(and τ1 = τ2 = 0). The nonlinear length LNL being 1.54 km this gives in physical
units z1 = z2 = −4.41 km. The position of the collision can then be expected to
be z = 4.41 km which is in the range of our 7.7 km fibre. The Fourier transform of
Ψ(ξ = 0, τ) is then calculated in order to get the input spectrum. This spectrum is
displayed in red in Fig. 6.1. As we can see, it is composed of many sidebands but
only four falls within the MI gain band (the MI gain curve is superimposed in blue):
the signal and idler at frequencies ±f1 and their first harmonics at ±f2 = ±2f1.
Because these four sidebands and the pump are the most important components for
the dynamic, we wanted to know if the dynamic of the propagation would be the
same by launching a truncated five-wave input in the fibre (which is easier to do
experimentally) or the full spectrum. This was checked by numerically integrating
the NLSE for the truncated input and comparing the results to the calculation from
Eq. (6.1). The comparison can be observed in Fig. 6.2(a,c) where we display the
pump, signal and first harmonic (in blue, red and green respectively) power and
phase evolutions obtained by numerically integrating the NLSE with the five-wave
input and the dashed lines which correspond to the analytical solution. As we can

1Note that the first-order breather framework can still be valid for cases where there are more
than two unstable modes (i.e. 0 < ω < 1). This corresponds corresponds to a > 0.375.
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see, the agreement is almost perfect. This means that the higher-order solution
modeled in Fig. 6.2 is very robust and while the initial conditions are slightly dif-
ferent from the theoretical model, a sharp and powerful second-order breather [see
Fig. 6.2(e)] can be generated experimentally using a five-wave input.
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Figure 6.1: Spectrum at ξ = 0 from the Fourier transform of Eq. 6.1 for ξ1 = ξ2 =
−2.87 and Pp = 500mW , β2 = −19× 10−27s2/m, γ = 1.3× 10−3/W/m, ω1 = 2/

√
5

and ω2 =4/
√

5. The linear MI gain, normalised to its maximum, is superimposed
in blue.
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6.3. EXPERIMENTAL RESULTS

6.3 Experimental results

6.3.1 ξ1 = ξ2 = −2.87

We experimentally generated the truncated initial spectrum (5 waves) from Eq.
6.1 by using the Waveshaper to adjust the amplitude and phase of the waves. The
parameters of the input spectrum are then the following: Pp = 470mW , signal/idler
to pump ratio of −17.7 dB, harmonics to pump ratio of −18.7 dB, ϕp = −0.68 rad,
ϕs = 0.26 rad, ϕh = 2.82 rad (note that the spectrum is symmetric compared to
the pump so we state only the parameters of the signal and its harmonics and not
the idler and its harmonics). The results are displayed in Fig. 6.2. Figs.6.2(a,c)
show the power and phase evolutions of the pump (in blue), signal (in red) and
first harmonic (green), respectively, from numerical simulations (NLSE with initial
truncated spectrum). We observe an important pump power depletion of almost 20
dB around z = 4.4km, distance for which the first harmonic power is maximum and
the signal power has also a local minimum. This is the position where the maximum
compression point appears in the time domain as we can see in Fig. 6.2(e). Between
0 and about 4 km we observe two “arms” which collide at z = 4.4 km and give
rise to a high-amplitude pulse with a peak power of 6.5 W and then two “arms”
again. Note that the position of the maximum compression point is exactly equal
here to |ξ1| = |ξ2| which is the point where the two initial breathers are supposed
to nonlinearly superpose synchronously. As highlighted in Fig. 6.2(e), the period
between two maximum compression points is equal to 1/f1. Experimental recording
are displayed in Fig. 6.2(b,d,f,h). Parameters were the same than for the simulations
except for a slightly different signal and harmonic frequencies: f1 = 26.3 GHz and
f2 = 52.6 GHz (to be compared with 26.6 GHz and 53.2 GHz). 2 As we can
see, despite this slight change of initial conditions, the power and phase evolutions
[Figs. 6.2(b,d)] are in good agreement with numerical simulations except around
the end of the fibre, where the pump power decreases in experiment while it keeps
increasing in numerical simulations. Moreover, we notice that in experiments the
pump minimum appears around z = 3.7 km instead of z = 4.4 km in simulations.

2This frequency difference is due to technical limitations. Indeed, for certain frequencies of RF
signal delivered to the PM by the association of the synthesizer and frequency doubler (see Fig.3.1),
the optical spectrum at the output of the PM was not symmetric even though it is supposed to
be. A slight change of frequency can fix the issue.
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The reason for this disagreement is not exactly known. In fact, it was checked
numerically that the structures generated should be robust to small perturbations
of the initial conditions, whether on the pump and sideband powers or phases. The
calculated (via the inverse Fourier transform from the five waves) spatio-temporal
evolution of the field intensity and phase [Fig. 6.2(f,h)] also shows a relatively good
agreement with simulations. We notice that the maximum compression points in
Fig. 6.2(f) are almost split into two parts longitudinally. It was checked numerically
that this is an effect of the truncation, such as explained in Chapter 4. Ideally, one
would need to perform the inverse Fourier transform from at least seven waves in
this case to avoid this kind of discrepancy but this requires improvements which
would greatly enhance the complexity of the experimental setup.

6.3.2 ξ1 = −3.87 & ξ2 = −2.87

We then reproduced similar experiments and numerical simulations for a different
set of (ξ1, ξ2): ξ1 = −3.87 and ξ2 = −2.87. Similarly to Fig. 6.1, we deduce from the
calculated analytical spectrum at ξ = 0 (see Fig. 6.3) the input truncated spectrum
that we are going to use in numerical simulations and experiments: Pp = 420mW ,
signal/idler to pump ratio of −10.4 dB, harmonics to pump ratio of −22.6 dB, ϕp =
−0.66 rad, ϕs = 0.33 rad, ϕh = 2.07 rad. As in the previous case f1 = 26.3GHz and
f2 = 52.6GHz in experiments (26.6GHz and 53.2GHz in numerical simulations).

The results are displayed in Fig. 6.4. In this case, we observe in simulations
[Fig. 6.4(a)] a pump minimum at z = 2.2 km and a maximum of the signal and
the harmonic around this point. Moreover, a small dip of the pump, associated to a
local maximum of the harmonic can also be noticed close to z = 5.8km. In the time
domain [Fig. 6.4(e)] we observe a maximum compression point around z = 2.2 km
followed by two “arms” with a local maxima around z = 5.8km. Note that because ξ2

has not been changed but ξ1 is smaller than in the previous case (−3.87 compared to
−2.87), it was expected that the maximum compression point would appear sooner
in the propagation, as observed here (2.2 km compared to 4.4 km). Moreover, one
can notice that the highest peak power achieved is this case is 5.5 W , smaller than
the 6.5 W observed in the previous case. This is because ξ1 differs from ξ2 so the
two breathers do not fully superpose synchronously. Concerning the experimental
results, they are displayed in Fig. 6.4(b,d,f,h). We get a relatively good agreement
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Figure 6.2: Relative pump, signal and harmonic power and phase evolutions, re-
spectively, from (a,c) numerical simulations with a five-wave input and (b,d) from
experiments. . Blue lines correspond to the pump, red ones to the signal and green
ones to the harmonic. Dashed black lines in (a,c) correspond to the analytical so-
lution from Eq. 6.1. Spatio-temporal evolution of the field power and phase (e,g)
from numerical simulations and (f,h) from experiments. The spatio-temporal plot of
(f,h) are obtained through the inverse Fourier transform of fives waves. Parameters:
Pp = 470 mW , signal/idler to pump ratio of −17.7 dB, harmonics to pump ratio
of −18.7 dB, ϕp = −0.68 rad, ϕs = 0.26 rad, ϕh = 2.82 rad, f1 = 26.6 GHz and
f2 = 53.2GHz (f1 = 26.3GHz and f2 = 52.6GHz in experiments)
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Figure 6.3: Same than Fig. 6.1 but with ξ1 = −3.87 and ξ2 = −2.87.

with numerical simulations despite some discrepancies at the end of the fibre and
local maxima/minima which appear a bit sooner in experiments. In particular the
pump minima is observed here at z = 1.9 km. This position corresponds to the
position of a longitudinally split pulse in the time domain [Fig. 6.4(g)]. While we
observe a separation in two arms as expected, those latter have an higher amplitude
than expected around z = 5 km. This can be attributed mainly to the harmonic
power and phase recordings. Indeed, we noticed that the small pulse used for the
calibration of the harmonics experiences an unusual drop around this point (not
shown here). Because we perform a ratio to correct the fading effect, this artificially
amplifies the harmonic power at this point and also impacts the phase. Note that
the experiment was repeated a few times and the drop was observed in every cases.

6.3.3 ξ1 = −1.87 & ξ2 = −2.87

Finally we set ξ1 = −1.87 and ξ2 = −2.87 and calculated the analytical spectrum at
ξ = 0 (see Fig. 6.5) which gives us the five-wave input with the following parameters:
Pp = 480 mW , signal/idler to pump ratio of −24.7 dB, harmonics to pump ratio
of −17.7 dB, ϕp = −0.69 rad, ϕs = 0.25 rad, ϕh = 2.89 rad. As in the previous
cases f1 = 26.3 GHz and f2 = 52.6 GHz in experiments (26.6 GHz and 53.2 GHz
in numerical simulations).

The results are displayed in Fig. 6.6. Numerical simulations show a pump min-
imum around z = 6.7 km [Fig. 6.6(a)]. In the time domain, one can notice two
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Figure 6.4: Same than Fig. 6.2 but with the following parameters: Pp = 420 mW ,
signal/idler to pump ratio of −10.4 dB, harmonics to pump ratio of −22.6 dB, ϕp =
−0.66 rad, ϕs = 0.33 rad, ϕh = 2.07 rad, f1 = 26.6 GHz and f2 = 53.2 GHz
(f1 = 26.3GHz and f2 = 52.6GHz in experiments).

“arms” colliding around this point [Fig. 6.6(e)] and the highest peak power is 5.3
W. Once again, it was expected that the maximum compression point would appear
later in the propagation than for the two previous cases because ξ2 is unchanged
but ξ1 is larger. The experimental results are in a relatively good agreements with
these simulations. As previously, the trend of the power evolutions of the pump,
signal and harmonics [Fig. 6.6(b)] is similar to the simulations, even if the local
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Figure 6.5: Same than Fig. 6.1 but with ξ1 = −1.87 and ξ2 = −2.87.

maxima/minima appear sooner (the minimum of the pump power is located around
z = 5.5 km). In the time domain [Fig. 6.6(f)] we also observe two “arms” with a
maximum compression point around z = 4.8km. One can distinguish that the max-
imum compression point is in fact still split (the position of the split corresponds to
the position of the pump minima) in two parts longitudinally but the “left part” is a
far bigger amplitude than the “right part”, which we attribute to the reconstruction.
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Figure 6.6: Same than Fig. 6.2 but with the following parameters: Pp = 480 mW ,
signal to pump ratio of −24.7 dB, harmonics to pump ratio of −17.7 dB, ϕp =
−0.69 rad, ϕs = 0.25 rad, ϕh = 2.89 rad, f1 = 26.6 GHz and f2 = 53.2 GHz
(f1 = 26.3GHz and f2 = 52.6GHz in experiments).
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Summary

• We reported the experimental characterisation of second-order breathers via
the intensity and phase measurements of their five main frequency components.

• The calculation of the spatio-temporal evolution of the field from the inverse
Fourier transform of the five waves is in good qualitative agreement with nu-
merical simulations, despite the truncation.
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In this thesis, we investigated nonlinear phenomena related to the nonlinear stage
of modulation instability in optical fibres, namely the Fermi-Pasta-Ulam-Tsingou
recurrence process and breather dynamics. In particular, we focused on their exper-
imental distributed characterisation along an optical fibre. In fact, we developed an
experimental setup enabling the non-invasive distributed characterisation in inten-
sity and phase of the main discrete frequency components of a pulse with a 20 m
longitudinal resolution. This setup consists in an heterodyne optical-time domain
reflectometer. It is associated to an active scheme based on Raman amplification
in order to compensate for the fibre losses. Moreover, we detailed a simple post-
processing method to retrieve the temporal evolution at the picosecond scale from
the measurements performed in the frequency domain. The main results obtained
thanks to this setup are summarised thereafter:

• Using carefully designed three-wave inputs (pump, signal and idler) with a pre-
cise control of intensity and phase, we were able to observe and characterise
two Fermi-Pasta-Ulam-Tsingou recurrences cycles in the frequency and time
domain. In particular, we outlined in the spectral domain two-types of qualita-
tively different phase-plane trajectories (inner and outer orbits) depending on
the initial relative phase between the signal/idler and pump waves [42]. This is
a signature of the symmetry-breaking of the recurrent process. In the time do-
main, we observed that this symmetry-breaking is characterised by unshifted
or π-shifted maximally compressed pulse trains [43]. Following these obser-
vations, the impact of the initial modulation sidebands phase and intensity
on the recurrent process was characterised quantitatively [44]. In particu-
lar, we focused on the positions of first two pump power minima/maximally
compressed pule trains. Our results were found to be in a good agreement
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with numerical simulations from the NLSE as well as with recent analytical
estimates from Grinevich and Santini [45].

• Using a carefully designed five-wave input based on the analytical formulas
describing second-order breathers, we showed that it was possible to generate
similar structures experimentally. In particular, we emphasised that second-
order breathers correspond to two first-order breathers nonlinearly interacting
and that it was possible to control the strength of this interaction via the initial
five-waves amplitude and phase. Three different cases were characterised in
the frequency and time domain and found in relatively good agreement with
numerical simulations and analytical predictions.

The work presented in this thesis paves the way for many future developments and
investigations

• An upgrade of the Raman compensation scheme would enable the use of longer
fibres, the length of about 8 km mostly used in this thesis being the optimal
trade-off to obtain a good compensation of the losses with the current scheme.
This would be useful as it would allow the observation of more recurrences and
the investigation of such phenomena such as the noise-induced thermalisation
of the recurrence process as discussed in Chapter 2 and in Ref. [97]. Investi-
gations on the possible improvement for the loss compensation scheme have
already begun with the recent internship of Guillaume Vanderhaegen (who will
start its PhD in September 2019 and will pursue the work presented in this the-
sis). Using complex numerical simulations taking into account the depletion of
the Raman pump [124,125], the potential of a bi-directional pumping scheme
rather than a contra-propagative one was highlighted for the observation of
recurrences in a 20 km long SMF-28 fibre with a typical three-wave input used
in experiments: Pp = 450mW , β2 = −19× 10−27s2/m, γ = 1.3× 10−3/W/m,
initial signal/idler to pump ratio of -8.5 dB, ω = 1.25 (sideband detuning
from the pump of 35 GHz) and ∆Φinit = π/2. This is illustrated by the
power plots (pump in blue, signal in red) displayed in Figs. 6.7(a,b). For
the same total Raman pump power (700 mW), two cases were considered, a
contra-propagative one [Fig. 6.7(a)] where the Raman pump is launched at
the output of the fibre and a bi-directional one [Fig. 6.7(b)] where 50% of the
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(solid lines) and in the ideal case without losses (dashed lines). A contra-propagative
Raman scheme was considered in (a) and a bi-directional one in (b).

Raman pump is launched at the input of the fibre and the other 50% at this
output. As we can see, up to five quasi-recurrences can be observed in both
cases but the agreement between the bi-directional and the ideal case is far
better than for the contra-propagative one.

• Another possible upgrade concerns the way the strong and weak pulse input
spectra are tailored by the Waveshaper. With the current setup both spectra
are identical except for a 13 dB attenuation on all components for the weak one
because the Waveshaper cannot switch rapidly enough between two different
designed filters. As we consider mostly triangular spectra, this means that we
are limited currently to five waves (pump, signal/idler, first-order harmonics)
because the higher-order harmonics of the weak pulse are too weak to be
detected. Yet, our post-processing calibration technique does not require the
weak pulse spectrum to have also a triangular shape. All its components have
just to be weak enough in order to assume that the weak pulse only experiences
linear effects. Hence, a solution could be to use two separates Waveshaper to
tailor the input spectra of the strong and weak pulse as illustrated by the
sketch in Fig. 6.8. Thanks to an optical switch one pulse over two could
be sent to Waveshaper 1 to get the desired three-wave input (or else) and the
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Figure 6.8: Sketch of a possible input spectrum tailoring scheme

following pulse would be sent to Waveshaper 2 to get a comb of equal sidebands
(and more importantly to attenuate the more powerful spectral components).
Then the two different paths would be recombined, the rest of the setup being
unchanged. Ideally this upgrade would induce a 13 dB improvement of the
SNR. That would potentially allow to detect seven waves or even nine and
then improve greatly the temporal evolutions retrieved via inverse Fourier
transform, which would be very useful for the study of higher-order breathers
in particular.

• An interesting topic would be the experimental study of FPUT recurrences in
the normal dispersion regime. Indeed, as mentioned in Chapter 2, MI can po-
tentially arise in this regime if a degree of freedom is added to fulfill the phase-
matching relation and if is seeded, FPUT recurrences can be triggered. For
instance, MI have been observed and recurrences have been predicted in dis-
persion oscillating fibres (DOFs) with a sinusoidal dispersion profile [126,127].
MI has also been experimentally demonstrated in the weak normal dispersion
regime of dispersion-shifted fibres thanks to the influence of the fourth-order
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dispersion [71] and preliminary simulations show the appearance of FPUT re-
currences in such system if the process is seeded. In experiment, the main
challenge to observe recurrences in the two previous cases consists in the gen-
eration of a suitable local oscillator. Indeed, the frequency detuning required
(compared to the pump frequency) are typically in the THz range, which is far
too large for a generation via a simple modulator. Yet, to perform our mea-
surements, we have to ensure a fixed phase relationship between the spectral
components of the local oscillator. Thus, a solution could be the generation of
a broad frequency comb via two steps. First, the generation of an electro-optic
(EO) comb via a an intensity modulator followed by a cascade of phase modu-
lators [128]. This EO comb would then be enlarged thanks to the propagation
in a highly nonlinear fibre.

• We draw the attention of the reader on the the work described in Appendix
B, which paves the way for the observation of Lorenz chaos in passive optical
fibre-ring cavities [129,130].
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Appendix A : First-order solutions
of the nonlinear Schrödinger
equation

We report here the expressions of exact first-order solutions of the NLSE first derived
by Akhmediev et al. in 1987 [24]. These solutions have been recently derived again
by Matteo Conforti, with some modifications.

The real and imaginary part of first-order solutions being linearly related this
implies the following form of the solution:

Ψ(ξ, τ) = [Q(ξ, τ) + iδ(ξ)] eiφ(ξ) (6.3)

Two classes of solution depending on three parameters appear. The first one
(type A), describes the standard recurrences and is controlled by three real param-
eters. The second one (type B) describes shifted recurrences and depends on a real
and two complex conjugate parameters.

Type A solution

The solution depends on three real parameters α3 > α2 > α1 > 0. The expression
for the δ function is the following:

δ(ξ) =
√
α1α3sn(µξ)√

α3 − α1cn2(µξ, k)
(6.4)

where the elliptic modulus is m = k2 = α1(α3−α2)
α2(α3−α1) and µ = 2

√
α2(α3 − α1).

For the φ function we have the following expression:
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φ(ξ) = (α1 + α2 − α3)ξ + 2α3

µ
Π(am(µξ), n, k) (6.5)

where n = α1
α1−α3

and Π(am(µξ), n, k) is the incomplete elliptic integral of the third
kind [131].

For the Q function we have the following expression:

Q(ξ, τ) = QA(QB −QD) +QD(QA −QB)sn2(pτ, kq)
(QB −QD) + (QA −QB)sn2(pτ, kq)

(6.6)

where the elliptic modulus ismq = k2
q = α2 − α1

α3 − α1
and p =

√
α3 − α1. The parameters

QA(ξ) > QB(ξ) > QC(ξ) > QD(ξ) have the following expressions:

QA = s
√
α1 − x+

√
α2 − x+

√
α3 − x (6.7)

QB =− s
√
α1 − x−

√
α2 − x+

√
α3 − x (6.8)

QC =− s
√
α1 − x−

√
α2 − x−

√
α3 − x (6.9)

QD =s
√
α1 − x−

√
α2 − x−

√
α3 − x (6.10)

with x(ξ) = δ2(ξ) and s(ξ) = sign(∂δ
∂ξ

) = sign(cn(µξ, k)). Note that the expressions
(6.7)-(6.10) differ from the original one reported in [24] due to the presence of the
sign function.

The period in ξ, let’s say L and the period in τ , let’s say Θ can be calculated as
follows :

L = 4K(k)
µ

, Θ = 2K(kq)
p

(6.11)

where K is the complete elliptic integral of the first kind.

Type B solution

The solution depends on three real parameters α3 > 0, ρ, κ (which amounts to define
α1 = α*

2 = ρ+ iκ). The expression for the δ function is the following:

δ(ξ) =

√√√√α3

2 (1− υ) 1 + dn(µξ, k)
1 + νcn(µξ, k)sn(µξ/2, k) (6.12)
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where

m = k2 = 1
2

(
1− κ2 + ρ(ρ− α3)

AB

)
(6.13)

A =
√

(α3 − ρ)2 + κ2 (6.14)

B =
√
ρ2 + κ2 (6.15)

ν = A−B
A+B

(6.16)

µ = 4
√
AB (6.17)

For the φ function we have the following expression:

φ(ξ) =
(

2ρ+ α3

ν

)
ξ − α3

µν

[
Π(am(µξ), n, k)− νσtan−1

(
sd(µξ, k)

σ

)]
(6.18)

where n = ν2

ν2 − 1 , σ =
√

1− ν2

k2 + (1− k2)ν2 and sd(µξ, k) = sn(µξ, k)
dn(µξ, k) .

Formula 6.18 is different from the one presented in [24].

For the Q function we have the following expression:

Q(ξ, τ) = sb− c+
r + cn(pτ, kq)
1 + rcn(pτ, kq)

(6.19)

where
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s = sign(cn(µξ/2, k))

b =
√
α3 − x

r = M −N
M +N

p =
√
MN = 2 4

√
(α3 − ρ)2 + κ2

M2 = (2sb+ c+)2 + c2
−

N2 = (2sb− c+)2 + c2
−

c± =
√

2
[√

(x− ρ)2 + κ2 ± (ρ− x)
]

k2
q = 1

2 + 2ρ− α3

p2

The period in ξ (L) and τ (Θ) can be calculated as follows:

L = 8K(k)
µ

,Θ = 4K(kq)
p

(6.20)

We test how both types of solution match with a three-wave input evolution
by comparing them to numerical simulations of the NLSE with parameters similar
to the one used in Chapter 4 : Pp = 450 mW , β2 = −19 × 10−27s2/m, γ = 1.3 ×
10−3/W/m, signal/idler to pump ratio of -8.5 dB, f = 35GHz and ∆Φinit = 0 (type
A solution) or ∆Φinit = −π/2 (type B solution). In order to find the analytical
solution fitting the best with a three-wave input we use a Gauss-Newton algorithm
which gives us the set of three parameters ([α1 α2 α3]or [ρ κ α3]) for which the three
central waves of an analytical solution perfectly match with our three-wave input
as displayed in Fig. A.1(d,i). In the case with ∆Φinit = −π/2, we observe that
the analytical input spectrum [Fig. A.1(i)] contains only 6 sidebands. Noteworthy,
the even-th order sidebands have a zero amplitude. The harmonics sidebands are
then more than 30 dB lower than the signal and idler, giving an analytical temporal
input (dashed line) which matches almost perfectly with the cosine modulation (cyan
line) [see Fig. A.1(h)]. This leads to an almost perfect match between the simulated
and analytical evolution, as can be seen with the analytical and simulated spatio-
temporal evolution in Fig. A.1(f,g) and the longitudinal pump and signal power
evolution in Fig. A.1(j) (solid lines for simulation and dashed ones for theory). This
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closeness between the three-wave input and the type B solution explains why the
recurrence seems always “better” in simulation and experiments with a three-wave
input with ∆Φinit = ±π/2 even when the initial modulation is relatively strong. For
∆Φinit 6= ±π/2 the even-th order sidebands are not zero anymore and the initial
condition can differ strongly from the three-wave input. In fact, for ∆Φinit = 0,
we observe that the input analytical solution (black lines) consists in a triangular
spectrum involving many sidebands (22 in a 80 dB range). Hence, the analytical
temporal input (dashed line) strongly differs from the simulated cosine modulation
(cyan line) in Fig. A.1(c) and the evolution of the three-wave input does not consist
of perfect recurrences as we observe in Fig. A.1(a,e).
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Figure A.1: (a,b) Spatio-temporal evolution from numerical simulation of the NLSE
and from the type A solution, respectively. (c,d) Initial temporal and spectral profile,
respectively, with cyan lines for simulations and black ones for analytical formula.
(e) Evolution of the pump (blue line) and signal (red line) power along the fibre.
The dashed black lines correspond to type A solution. Parameters : Pp = 450mW ,
β2 = −19× 10−27s2/m, γ = 1.3× 10−3/W/m, signal/idler to pump ratio of -8.5 dB,
f = 35 GHz and ∆Φinit = 0.(f-j) Same than previously except for ∆Φinit = −π/2
and type B solution instead of type A.
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Appendix B : Phase-dependence
of seeded modulation instability in
passive optical fibre-ring cavities

The work presented in this appendix results from a collaboration with another PhD
student of the team, Florent Bessin, whose thesis focuses on passive optical fibre-ring
cavities. Thus, Florent Bessin took care of the theoretical and numerical aspects of
this work. Experiments were performed by both of us and data processing by myself.
Then, only the experimental setup implemented and its operation are described
here, with some results to highlight its performances. To know more about the
dynamics of passive optical fibre-ring resonators, in particular about the theoretical
and numerical aspects of the problem investigated here, we redirect then the reader
to the thesis of Florent Bessin (in writing).

Passive optical cavities are system of great interest which can exhibit very rich
nonlinear dynamics [132]. The boundary conditions can significantly impact the
dynamics. For instance, the conditions to observe MI in such systems [133, 134]
are not the same than in the single-pass configuration, as described previously in
this thesis (see Chapter 2). Moreover, it can also exhibit completely new features
such as bistability. The primary goal of this collaboration was to implement an
experimental setup allowing the round-trip to round-trip full-field characterisation
of the intra-cavity field in order to observe Lorenz chaos [129] in the bistable regime.
In fact, using a three-wave truncation of the Lugiato-Lefever equation (which is a
mean-field equation used to describe the dynamics in cavities, see Ref. [132] for more
details), Haelterman and coworkers [130] showed that it was in theory possible to
observe different attractor dynamics in a phase-plane configuration. In particular
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they showed the existence of regimes with the evolution towards a single attractor
(corresponding to a steady-state) or two attractors with the characteristic “butter-
fly” trajectory, in the phase-plane, of Lorenz chaos [129]. However, to characterise
such phenomenon, one has to be able to measure the round-trip to round-trip evo-
lution of the complex field, which is not easily accessible. Indeed the dynamics is
often too rapid (the picosecond typically) and the repetition rate too high (the MHz)
for direct photo-detection. Thus, most of the investigations rely on ultrafast tech-
niques such as time lens [119] to study the temporal dynamics or dispersive Fourier
transform for the spectral dynamics [118, 135, 136]. Taken apart, these techniques
only give information on the amplitude and not on the phase. One has to com-
bine both techniques and use reconstruction algorithm to retrieve the phase from
the temporal and spectral intensity [99, 121] or add supplemental method such as
spectral interferometry [137]. Another approach for phenomenon with discrete line
spectra (i.e time-periodic signals), as previously studied in this thesis, is hetero-
dyne detection in the frequency domain. Here, this is particularly suitable as the
characterisation of the pump and signal waves would be enough to characterise the
chaos in phase-planes [130]. Hence, this was the detection method chosen for our
experiment.

Although our goal is ultimately to observe chaos, it presents other challenges
than the detection, especially its generation. As a first step toward this objective, we
then focused on another process related to MI dynamics in passive cavities which is
phase-sensitive amplification. Using three-wave inputs (i.e a pump, signal and idler
waves), we investigated how the initial relative phase ∆Φinit between these waves
affects the MI process in the monostable regime. Indeed, theory and numerical
simulations show that the dynamics is very rich, with a gain highly-dependent on
the initial relative phase and in particular an absence of gain for discrete values of
∆Φinit. Note that, in this appendix, the relative phase ∆Φ is defined in the opposite
way than previously. Here, it reads ∆Φ = [ϕs + ϕi − 2ϕp + β2Ω2z] /2, which gives
for initial symmetric sidebands ∆Φinit = ϕs − ϕp.
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Experimental setup and data processing

The aim of this experimental setup [see Fig. B.1] is to perform round-trip to round-
trip intensity and phase measurements of the intra-cavity pump and signal compo-
nents. Because a heterodyne detection scheme is adequate to perform such mea-
surements we used parts of the HOTDR setup described previously in this thesis
(see Chapter 3). In particular, we used the same lasers as well as a similar detection
channel. The phase-locking scheme has also been unchanged, apart for a different
reference frequency which is here set at 1.7 GHz (compared to 800 MHz). This
is because we use 10 ns pulses in this experiment, shorter than the 50 ns pulses
previously used. The cavity used in this experiment is composed of a 170 m long
standard telecommunication fibre with a GVD of β2 = −19 × 10−27s2/m and a
nonlinear coefficient γ = 1.3× 10−3/W/m. It has a finesse of about 22.

Here we will focus first on the driving-field generation. Then we will detail how
the the cavity is stabilised thanks to a control beam. Finally we will describe how
the datas are processed.

Driving field generation

In order to generate a suitable three wave-input Laser 1 is phase modulated to
create a comb which is then tailored by a Waveshaper. An intermediate intensity
modulator (IM1), driven by a RF signal from a pulse generator, is used to create
sequence of 10 ns pulses at a repetition rate of about 1.2 MHz, which corresponds
to the free spectral range (FSR) of the 170 m long cavity. To observe the desired
nonlinear effects, it is indeed necessary for the cavity to be synchronously pumped.
Note that theses pulses are pre-amplified by SOA1 before the Waveshaper. 20% of
the output of the Waveshaper is then amplified by an EDFA before passing through
an acousto-optic modulator (AO1). The role of this AO, used as a temporal gate, is
two-fold. First, it allows to remove the excess noise of the CW background between
the pulses in order to mitigate SBS. Secondly, it periodically kills a certain number of
consecutive pulses, thus allowing the generation of bursts. These bursts are essential
to the experiment. Indeed, in the case of the dynamic we are going to investigate,
a steady-state is usually reached after a hundred round-trip. In order to repeat
the experiment, it is then necessary to empty the cavity, which can be done by not
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Figure B.1: The experimental setup. Laser 1 is a narrow linewidth (100 Hz at
FWHM) CW laser and laser 2 is a continuous distributed feedback laser diode.
IM: intensity modulator, PM: phase modulator, EDFA: erbium doped fibre am-
plifier, AO: acousto-optic modulator, SOA: semiconductor optical amplifier, PID:
proportional, integral, derivative controller, PD: photo-detector, PC: polarisation
controller; RF: radio frequency, LNA: low-noise radio frequency amplifier, EBPF:
electronic band-pass filter, PwM: powermeter. Courtesy of Florent Bessin
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Figure B.2: (a) Recording of two consecutive bursts. (b) Zoom on a burst. (c)
Temporal profile of an input pulse.

pumping the cavity for a certain amount of time. The bursts used in our experiment
consisted then in sequence of 210 consecutive pulses, followed by 120 “dead pulses”,
which refer to the input pulses suppressed by AO1, as displayed in B.2(a) which
shows two consecutive bursts. In the Fourier domain, the parameters of the three-
wave input generated are the following: Pp = 200 mW , signal/idler to pump ratio
of -20.5 dB, frequency detuning f = 54 GHz. Concerning ∆Φinit, it will be varied
in order to investigate its impact on the dynamics.

Stabilisation of the cavity

Due to the interferometric nature of driven optical cavities, it is necessary to be able
to control the linear phase φ0 accumulated by the wave every round-trips, which has
a big impact on the dynamics [132]. In order to maintain this parameter fixed, it is
necessary to isolate the cavity from external perturbations. Indeed, this linear phase
can be expressed as φ0 = 2πcnL/λP where c is the velocity of light, n the refractive
index of the propagating medium, L the length of the cavity and λP the pump
wavelength. Then, external sounds or thermal fluctuations can impact the length L
and hence φ0. However, although the isolation of cavity does help (it is placed in a
specific box in our case) it is usually not sufficient enough and an active stabilisation
scheme is required in order to finely tune either L or λP to adjust φ0. In our case this
is done by using a feedback loop, which works as follows. Before its amplification by
the EDFA, a fraction of Laser 1 is deducted. This is the control beam. The control
beam is then injected into the cavity but from the other input port compared to
the previous driving field. Thus, it contra-propagates but experiences the same
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linear phase accumulation. Note that due to the presence of AO1, the driving field
experiences a 200 MHz frequency shift. Hence, to ensure that the control beam has
the same frequency (or wavelength) than the driving field and experiences the same
linear phase accumulation, we introduced another acousto-optic (AO2) on the path
of the control beam before its entrance in the cavity. This acousto-optic is only
used to induce a 200 MHz frequency shift and not to perform any modulation of the
control beam. At the output of the cavity, the control beam is then detected by the
photo-detector PD1 and serve as a reference for PID1. This PID controls then the
integrated laser piezoelectric module of Laser 1, tuning the pump wavelength with
a larger bandwidth (16 kHz) than external perturbation frequencies. In particular,
this system allows to scan the pump wavelength in order to scan the resonances of
the cavity and to fix a setpoint (For more details on the principles of this stabilisation
scheme one can refer to Ref. [138]). Note that during this procedure, the sideband
generation (via the phase-modulator) is shut-off.

The linear phase is usually expressed via the detuning parameter which reads
as δ0 = 2kπ − φ0 (k integer). In our case, the chosen setpoint gives a detuning
of δ0 = 0.05, which is very small and ensures that we operate in the monostable
regime.

Data processing

Once the detuning is fixed and the pump power adjusted (Pp = 200 mW ), one can
notice MI sidelobes arising from noise on the optical spectrum of the output of the
cavity (OSA1), as displayed in Fig. B.3. Here the maximum of these lobes are
located at f = ±54GHz. The sidebands generation is then switched-on in order to
generate sidebands at these frequencies. Previously in section 4.7, we said that we
were limited to f = 40 GHz which is the maximum RF signal frequency that can
be provided by the association of the synthesizer and the frequency doubler. Thus
Laser 1 is modulated here at 27 GHz. Because the phase-modulation generates a
triangular comb, this generates in particular sidebands at ±2×27GHz = ±54GHz.
These sidebands have a weak amplitude compared to those at ±27 GHz and the
pump but this is not an issue as this experiment does not require an initial strong
signal/idler. Apart from the pump and the sidebands at f = ±54 GHz all others
sidebands are filtered out by the Waveshaper and the signal/idler to pump ratio
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Figure B.3: Optical spectrum of MI arising from noise once the setpoint is fixed in
experiments

is fixed at -20.5 dB. The data acquisition and processing can then start. Thanks
to a 99/1 coupler placed into the cavity 1% of the intra-cavity field is extracted
every round-trip and sent to the detection scheme where it is mixed with the local
oscillator and detected. Because we operate with train of pulses, we detect then
train of beatings on the oscilloscope. After the application of a 200 ns gaussian
window (with a 20 ns FWHM) on each of these beatings, the power and phase at
1.5 GHz are evaluated with a FFT. Once again, the demodulation is performed at
this frequency and not 1.7 GHz because one has to take into account the 200 MHz
frequency shift induced on the driving field by AO1. Fig. B.4(a) displays a typical
temporal trace of a beating between the signal component and the local oscillator.
Its FFT after the application of the gaussian window is shown in Fig. B.4(b). One
can clearly notice a periodic pattern on the temporal trace and peaks at ±1.5GHz
on the FFT spectrum.

The results for Φinit = π/2 are displayed in Fig. B.5. Fig. B.5(a) shows the
power evolutions (pump in blue and signal in red) over a single burst. As can
be seen, both powers increases strongly for about 20 round-trips at first. This is
because this is approximately the number of round-trips needed to “fill” the cavity
(we recall that its finesse is about 22). Both powers reach then a quasi steady-state
after about 40 round-trips. However one can notice important fluctuations of several
dB which are attributed to an imperfect stabilisation. A similar observation can be
made on the relative phase evolution in Fig. B.5(b) with important fluctuations
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Figure B.4: (a) Temporal trace of beating between the signal component and the
local oscillator (zoom). (b) FFT of this beating after application of the gaussian
window.

around the steady-state. Fig. B.5(c) shows then the associated phase plane which
corresponds to an attractor. However, due to the important fluctuations experienced
by the signal power and the relative phase, this attractor is rather big, whereas it
should ideally be a point. This issue is mainly solved by implementing averaging in
the data processing. Instead of recording and processing a single burst, we record
16 consecutive bursts and perform averaging. This clearly allows to reduce the
fluctuations as can be seen in Fig. B.5(d,e) so the attractor is more confined and
looks better [Fig. B.5(f)]. Note that we also measured the intracavity spectrum for
this case in order to calibrate the two detection channels (pump and signal). This
spectrum is shown in Fig. B.6. On this spectrum the signal/idler to pump ratio
is -6.5 dB. This was then used to roughly calibrate our system by stating that the
signal to pump ratio detected once the steady-state is reached is -6.5 dB.

Noteworthy, the acquisition and processing have been conceived to be short
(typically one or two seconds). This is very advantageous as it allows to continuously
displays the results while running the experiments. In particular it allows us to see
if an adjustment of the frequency detuning f is needed. Indeed, this frequency
detuning has to be set at a very precise level (a few hundreds of Hz) so the signal
component experiences exactly the same detuning than the pump. If it is not
done, the linear phase accumulated every round-trip by the pump and the signal
are different, which affects the dynamics. This is easily noticeable as it results in
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important linear evolutions of ∆Φ.
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Figure B.5: (a) Single-shot of the pump (blue) and signal (red) power evolutions and
(b) relative phase evolution for Φinit = π/2 and a single burst. (c) Corresponding
phase-plane. (d,e,f) Same but after averaging over 16 consecutives bursts.
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Figure B.6: Intra-cavity spectrum for ∆Φinit = π/2

Experimental Results

Using the same data processing technique than for the previous results, the exper-
iment was repeated 21 times with different values of ∆Φinit in the range of [0, 2π].
To illustrate our results, we display in Fig. B.7 the power evolution curves and
the associated phase-planes for three values of ∆Φinit: 0.95π, 0.85π and 0.70π. As
we can see with the power curves in Fig. B.7(a), the pump power evolutions are
rather similar for the three different values of ∆Φinit but this is not the case for the
signal power curves. First, the number of round-trips needed to reach the steady-
state varies. For ∆Φinit =0.70π (green line) it is around 30 round-trips, while it is
around 70 round-trips for ∆Φinit =0.85π (red line) and more than 100 round-trips
for ∆Φinit =0.95π (blue lines). This clearly shows that the initial relative phase have
a big impact on the transient stage of the MI process. Moreover, the steady-state
signal power are also different. Thus, in addition to having the longest transient
stage, the case with ∆Φinit =0.95π is characterised by a steady-state signal power
about 8 dB lower than for the case with ∆Φinit =0.70π. Concerning the phase-plane
trajectories [see Fig. B.7(b)], we observe that different values of ∆Φinit induce dif-
ferent attractor positions. Once again we redirect the reader to the thesis of Florent
Bessin for a detailed discussion on the physics involved with comparison to theory
and numerical simulations.

.
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Figure B.7: (a) Pump and signal power evolutions. (b) Corresponding phase-planes.

Summary

• We have adapted the experimental setup previously described in this thesis in
order to study the dynamics of seeded MI in a new system: a passive optical
fibre-ring cavity.

• Using this new setup, we were able to demonstrate the evolution of the intra-
cavity field towards an attractor in the phase-plane and to highlight the de-
pendence of the process on the initial relative phase of the three-wave input.

• This work paves the way for the experimental investigation of more complex
dynamics such as Lorenz chaos [129,130].
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Abstract: This work deals with the investigation of the modulation instability pro-
cess in optical fibres and in particular its nonlinear stage. This process can induce
a complex coupling dynamics between the pump and sidebands waves, with a single
or multiple returns to the initial state if it is seeded. This phenomenon is referred as
Fermi-Pasta-Ulam-Tsingou recurrences. In this thesis, we describe the implemen-
tation of a novel experimental technique based on heterodyne optical time-domain
reflectometry and active compensation of losses. It allows fast and non-invasive
distributed characterisation along a fibre of the amplitude and phase of the main
frequency components of a pulse. Furthermore, we detail a simple post-processing
method which enable us to retrieve the complex field evolution in the time domain.
Using these tools, we reported the observation of two Fermi-Pasta-Ulam-Tsingou
recurrences and their symmetry-breaking nature, both in the frequency and time
domain. Then, we quantitatively studied the influence of the initial three-wave
input conditions on the recurrence positions, in regards with recent theoretical pre-
dictions. Finally, we investigated the dynamics of higher-order nonlinear structures,
namely second-order breathers.

Keywords: nonlinear fiber optics; modulation instability,
Fermi-Pasta-Ulam-Tsingou recurrences, breathers

Résumé: Ce travail porte sur l’étude du processus d’instabilité de modulation dans
les fibres optiques et notamment son étape nonlinéraire. Ce procesus peut induire
une dynamique complexe de couplage nonlinéaire entre une onde de pompe et des
bandes latérales, notamment un, voire de multiples, retours à l’état initial si il est
amorcé activement. Ce phénomène est connu sous le nom de récurrences de Fermi-
Pasta-Ulam-Tsingou. Dans cette thèse, nous décrivons la mise en place d’un mon-
tage expérimental se basant sur la déctection hétérodyne d’un signal rétrodiffusé et
une compensation active des pertes. Il permet une caractérisation distribuée rapide
et non-invasive tout le long d’une fibre de l’amplitude et la phase des principales
composantes spectrales d’une impulsion. En outre, nous détaillons une méthode de
post-traitement qui nous permet de retrouver l’évolution du champ complexe dans le
domaine temporel. Mettant en oeuvre ces outils, nous avons rapporté l’observation
de deux récurrences de Fermi-Pasta-Ulam-Tsingou et leur brisure de symétrie, à la
fois dans les domaines fréquentiel et temporel. Suite à cela, nous avons quantita-
tivement examiné l’influence des conditions initiales des trois ondes envoyées dans
la fibre sur la position des récurrences, en comparaison avec de récentes prédictions
théoriques. Finalement, nous avons étudié la dynamique de structures nonlinéraies
d’orde supérieur, à savoir les breathers du deuxième ordre.

Mots-clés: optique nonlinéaire fibrée; instabilité de modulation; récurrences de
Fermi-Pasta-Ulam-Tsingou, breathers
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