Université de Lille

Ecole Doctorale Sciences de la Matière, du Rayonnement et de

l'Environnement

Unité de Catalyse et Chimie du Solide, UMR 8181

THÈSE

présentée par

Tiphaine Dedours

Pour l'obtention du grade de **Docteur de l'Université de Lille**

Discipline : Molécules et Matière Condensée

Soutenance : le 11 Décembre 2020

Hydroboration d'énamides catalysée au cuivre

Application à la synthèse d'isoindolinones fonctionnalisées

Directeur de thèse : Pr. Eric Deniau

Composition du jury :

Rapporteurs	Isabelle Gillaizeau	Professeur – ICOA Orléans
	Agnès Labande	Chargé de recherches – ICT Toulouse
Examinateurs	Lydie Pélinski	Professeur – UCCS Lille
	Christophe Hoarau	Professeur – IRCOF Rouen
Directeur	Eric Deniau	Professeur – UCCS Lille
Co-directeur	Stéphane Lebrun	Maître de conférences – UCCS Lille

Remerciements

Cette thèse a été une expérience très enrichissante scientifiquement et humainement, et cela grâce à de nombreuses personnes que je tiens à remercier

Ce travail de Thèse a été réalisé à l'Unité de Catalyse et Chimie du Solide (UCCS). Ainsi, je souhaite remercier M. Franck Dumeignil (directeur de l'UCCS) de m'avoir permis de réaliser mes travaux au sein de son laboratoire.

Je tiens à remercier Monsieur Eric Deniau, professeur de l'université de Lille, de m'avoir permis d'effectuer ce travail au sein de son équipe de recherche. Je le remercie pour sa grande disponibilité et ses précieux conseils sans lesquels cette thèse n'aurait pas pu aboutir. Je le remercie également pour son approche positive et enthousiaste du projet.

J'adresse également mes remerciements au docteur Stéphane Lebrun pour son encadrement au quotidien. Je le remercie pour ses conseils constructifs et ses encouragements qui m'ont permis de progresser continuellement durant ces trois années de thèse.

J'exprime également ma gratitude à Madame Isabelle Gillaizeau, professeur de l'université d'Orléans, à Madame Agnès Labande, chargée de recherche à l'université de Toulouse d'avoir accepté de juger ce travail de thèse en qualité de rapporteurs. Je remercie également Monsieur Christophe Hoarau, professeur à l'université de Rouen de participer à ce jury en tant qu'examinateur.

Je tiens également à remercier le Docteur Iker Del Rosal, Maître de conférences à l'INSA à l'Université Paul Sabatier à Toulouse pour son aide précieuse lors de l'étude mécanistique de nos réactions.

Je remercie également Audrey Huret pour son soutien au quotidien, son aide précieuse pour les enseignements, les tests de recettes de chimie moléculaire, les nombreuses discussions du quotidien. Mon seul regret aura été son arrivée tardive dans le bureau des « filles ».

Merci également à Julie Meimoun pour sa présence, son aide, sa bonne humeur ainsi que les longues discussions que nous avons eu au cours de ces années.

Je souhaiterais également remercier les personnes qui m'ont aidé dans la réalisation de ce projet, Tracy Donne qui s'est régulièrement rendue disponible afin de me former et de me permettre de réaliser mes expériences micro-ondes et également Mathieu Sauthier pour m'avoir permis de réaliser certaines expériences dans son laboratoire. Merci pour ses conseils et sa disponibilité.

J'adresse également mes remerciements à l'ensemble de l'équipe CASECO ainsi que toutes les personnes côtoyées durant ces trois années, Clive, Florian, Vincent, Hamida, Robert, Kifah, Michael

Remerciements

Je remercie également les membres de la chimie itinérante qui donnent beaucoup de leur temps afin d'éveiller l'intérêt pour la chimie chez les collégiens et lycéens.

Pour finir, mes derniers remerciements iront à ma famille, mes parents, mes sœurs et Adrienne qui m'ont toujours soutenu pour que j'en arrive là aujourd'hui, avec une pensée particulière pour tous ceux qui nous ont quittés trop tôt. Je remercie également mes amis, Mathilde, Auriane, Constance, Anaïs, Malo, Aglaé, Camille, Céline, Emma, Eugénie, Loraine pour leur soutien moral et pour m'avoir aidé à décompresser en dehors de la thèse. Merci à mon conjoint Thomas pour son soutien au quotidien, pour avoir cru en moi et pour avoir toujours été là pour moi dans les bons moments comme dans les plus difficiles. Une part de ma réussite leur revient et pour cela je leur exprime toute ma gratitude.

Abréviations et acronymes

9-BBN : 9-borabicyclo[3.3.1]nonane

- A APTS : acide *para*-toluène sulfonique
 AE : acétate d'éthyle
- B B₂pin₂: bis(pinacol)diborane
 BINAP: 2,2'-bis(diphénylphosphino)-1,1'-binaphtyl
- CCM : chromatographie sur couche mince
 CuTC : thiophène carboxylate de cuire
 Cy : cyclohexyle
- D : doublet (RMN)
 DCM : dichlorométhane
 Dd : doublet dédoublé (RMN)
 DMF : diméthylformamide
 DMSO-d6 : diméthylsulfoxyde deutéré
- Ed : excès diastéréoisomérique
 EP : éther de pétrole
 Eq : équivalent
 Et : éthyle
- **G** GEA : groupement électroattracteur
- H H : heures

H_{arom}: proton aromatique (RMN) HBpin : pinacolborane

J J = constante de couplage

J : jours

- L L : Ligand
- M M : multiplet (RMN) Me : méthyle
- PCC : pyridinium chlorochromate
 Ph : phényle
 PMB : para-méthoxybenzyle
 PMP : para-méthoxyphényle
 Ppm : partie par million
- R r.d. : ratio diastéréoisomérique
 Rdt : rendement
 RMN : résonance magnétique nucléaire
- S : singulet (RMN)
 SAMP : (S)-aminométhylprolinol
 SMP : (S)-méthylprolinol
 Sia₂BH : disiamylborane
- T T : triplet (RMN)
 TBAF : tétra-*n*-butylammonium
 TFA : acide trifluoroacétique
 THF : tétrahydrofurane
 TMS : tétraméthylsilane

REN	ΛΕΙ	RCIEM	ENTS	. 1
ABF	RE/	/ΙΑΤΙΟ	NS ET ACRONYMES	. 3
INT	RO	DUCTI	ON GENERALE	11
١.		Introdu	JCTION GENERALE SUR LES DERIVES ORGANOBORES	12
	1.	Synt	hèse des dérivés organoborés	12
		1.1.	Les acides boroniques	12
		1.2.	Les esters boroniques	13
		1.3.	Les trifluoroborates	15
		1.4.	Les autres composés organoborés	16
	2.	Réad	tivité des composés organoborés	17
	3.	Prop	riétés biologiques	19
١١.		ETAT DE	L'ART SUR LES REACTIONS D'HYDROBORATION	21
	1.	Les a	alcènes	21
		1.1.	Catalyse par les métaux précieux (Rhodium, Iridium)	22
		1.2.	Catalyse au Cobalt	23
		1.3.	Catalyse au cuivre	24
		1.4.	Catalyse au fer	24
		1.5.	Catalyse au nickel	25
	2.	Les a	autres substrats	25
		2.1.	Les alcynes	25
		2.2.	Les allènes	26
		2.3.	Les dérivés carbonylés	26
		2.4.	Les imines et dérivés	26
		2.5.	Les énamines	27
Ш	۱.	CHOIX D	es cibles – Les isoindolinones	28
١v	<i>'</i> .	NOTRE F	ROJET	30
R	EFEF	RENCES BI	BLIOGRAPHIQUES RELATIVES A L'INTRODUCTION GENERALE	32
СНА	٩PI	TRE I		39
١.		Introdu	JCTION GENERALE	40
١١.		SYNTHES	e des 3-methylenes isoindolinones	42
	1.	Synt	hèse des 3-méthylène isoindolinones par méthylènation des imides et dérivés	43
	2.	Synt	hèse des 3-méthylène isoindolinones à partir des lactames par oléfination	47
	3.	Synt	hèse des 3-méthylène isoindolinones à partir des amides par hydroamination intramoléculaire	ē
	ď	alcynes.		48
	4.	Synt	hèse des 3-méthylène isoindolinones par carbonylation des cétimines	49

5.	Synthèse des 3-méthylène isoindolinones par amidation des cétoximes	50
6.	Synthèse des 3-méthylène isoindolinones par réaction de Heck réductrice intramoléculaire	
ďy	namides	51
7.	Synthèse des 3-méthylène isoindolinones par annélation des acides 2-acétylbenzoïques et dérivé	s 51
III.	PREMIERE APPROCHE SYNTHETIQUE: A PARTIR DE L'ANHYDRIDE PHTALIQUE	52
1.	Etape 1: Formation du phtalimide 1a-I	52
2.	Etapes 2 et 3 : addition d'un iodure d'alkylmagnésium suivie de la déshydratation des hémiamina	ls
int	ermédiaires	55
3.	Bilan	58
IV.	DEUXIEME APPROCHE SYNTHETIQUE : SYNTHESE EN UNE ETAPE A PARTIR D'ACIDE ORTHO-ACETYLBENZOÏQUE	59
1.	Activation thermique	59
2.	Activation micro-onde	60
3.	Bilan comparatif	61
V.	TROISIEME APPROCHE SYNTHETIQUE : PAR HYDROAMINATION INTRAMOLECULAIRE D'ALCYNES	63
1.	Synthèses préalables des acides <i>ortho</i> -iodobenzoïque 8, 9	63
2.	Synthèse des benzamides 10, 11	64
3.	Couplage pallado-catalysé de type Sonogashira à partir des benzamides 10, 11	64
4.	Hydroamination intramoléculaire des 2-aryléthynylbenzamides 12, 13 : accès aux 3-methylène	
iso	indolinones 6, 7	66
5.	Bilan de la synthèse par hydroamination intramoléculaire d'alcyne	67
VI.	STABILITE DES METHYLENES ISOINDOLINONES SYNTHETISEES	68
Conci	USIONS ET PERSPECTIVES	69
Refer	ENCES BIBLIOGRAPHIQUES RELATIVES AU CHAPITRE 1	71
		75
CHAPI	I RE 11	. /5
I.	INTRODUCTION GENERALE SUR LES REACTIONS D'HYDROBORATION D'ENAMIDES NON STEREOSELECTIVES	76
1.	Les différents agents d'hydroboration utilisés	76
2.	Réactions d'hydroboration d'énamides répertoriées dans la littérature	77
	2.1. Réactions non catalysées	77
	2.2. Réactions métallo-catalysées	79
١١.	ETUDE DE LA REACTION D'HYDROBORATION DES 3-METHYLENE ISOINDOLINONES CATALYSEE PAR LES COMPLEXES DE	
CUIVR	c(I)	80
1.	Généralités sur les complexes de cuivre(I)	80
2.	Structure et réactivité des complexes borés de cuivre(I)	83
3.	Hydroboration de la 3-méthylène isoindolinone 3a en présence de chlorure de cuivre	84
	3.1. Essais préliminaires	85
	3.2. Influence de la base	86
4.	Hydroboration des 3-méthylène isoindolinones en présence d'oxyde de cuivre (Cu $_2$ O)	88

	4.1.	Influence des différents paramètres sur la réaction d'hydroboration	88
	4.2.	Influence de l'agent de borylation sur la réaction d'hydroboration	89
	4.3.	Influence du ligand sur la réaction d'hydroboration	90
	4.4.	Influence du donneur de proton sur la réaction d'hydroboration	92
	4.5.	Influence du solvant sur la réaction d'hydroboration	92
	4.6.	Influence de la charge catalytique sur la réaction d'hydroboration	93
	4.7.	Bilan de l'optimisation de la réaction d'hydroboration	95
	4.8.	Application à l'hydroboration des méthylène isoindolinones 4b, 4g-l, 5, 6 et 7	95
	5. Hyd	lroboration des 3-méthylène isoindolinones en présence de thiophène carboxylate de	cuivre 97
	5.1.	Influence des différents paramètres sur la réaction d'hydroboration	97
	5.2.	Influence du ligand sur la réaction d'hydroboration	
	5.3.	Influence de la charge catalytique sur la réaction d'hydroboration	
	5.4.	Bilan de l'optimisation de la réaction d'hydroboration	100
	5.5.	Application à l'hydroboration des méthylène isoindolinones	101
	6. Syn	thèse des méthylène isoindolinones par hydroamination intramoléculaire d'un ortho-	
	alkynylbe	enzamide couplée à leurhydroboration	102
	6.1.	Synthèse des 2-aryléthynylbenzamides à partir des acides benzoïques ortho-iodés	103
	6.2.	Synthèse des boronates 18e-f , 18h par hydroamination / hydroboration	104
III.	ETUDE	MECANISTIQUE DE LA REACTION D'HYDROBORATION CATALYSEE PAR LES COMPLEXES DE CUIVRE(I)	104
Со	NCLUSION	ET PERSPECTIVES	111
Rei	FERENCES B	IBLIOGRAPHIQUES RELATIVES AU CHAPITRE 2	112
СНУ			11/
CIIA		1	
I.	Introd	UCTION GENERALE SUR LES REACTIONS D'HYDROBORATION STEREOSELECTIVES	115
	1. Hyd	lroboration asymétrique d'alcènes faisant appel à des réactifs chiraux	115
	2. Hyd	lroboration asymétrique d'alcènes métallo-catalysée	117
	3. Bila	n bibliographique sur les réactions d'hydroboration asymétriques métallo-catalysées	d'énamides
	et analog	ues	119
II.	ETUDE	DE LA REACTION D'HYDROBORATION ASYMETRIQUE DES 3 -METHYLENE ISOINDOLINONES CATALYSEE AU	CUIVRE 121
	1. Essa	ais préliminaires sur la réaction d'hydroboration énantiosélective des 3-méthylène iso	indolinones
			121
	2. Hyd	lroboration diastéréosélective des 3-méthylène isoindolinones	122
	2.1.	Hydroboration diastéréosélective en présence d'oxyde de cuivre (Cu ₂ O)	123
	2.1.	1. Influence du ligand sur la réaction d'hydroboration	123
	2.1.	2. Influence du donneur de proton sur la réaction d'hydroboration	124
	2.1.	3. Influence du solvant sur la réaction d'hydroboration	125
	2.1.	4. Bilan de l'optimisation de la réaction d'hydroboration diastéréosélective à l'oxyde	e de cuivre
			126

	2.1.5. Applicat	ion à l'hydroboration diastéréosélective des 3-méthylène isoindolinones 4	4i-l 127
	2.2. Hydrobora	tion diastéréosélectives des 3-méthylène isoindolinones catalysée à l'aide	e de
	complexes carbène	s N-hétérocycliques (NHCs) de cuivre	128
	2.2.1. Rappels	bibliographiques sur les carbènes N-hétérocycliques	129
	2.2.2. Descript	ion des carbènes N-hétérocyclique utilisés	132
	2.2.3. Synthèse d	es complexes [(Bn ₂ bimy)CuCl] et [(Bn ₂ imy)CuCl]	133
	2.2.4. Optimis	ation de la réaction d'hydroboration diastéréosélective de la 3-méthylène	:
	isoindolinone 3i	en présence descomplexes NHCS de cuivre	
III.	DETERMINATION DE LA	CONFIGURATION ABSOLUE DU CARBONE ASYMETRIQUE CREE LORS DE LA REACTION	
D'H	DROBORATION DIASTERE	OSELECTIVE	
Cor	ICLUSION ET PERSPECTIVE	S	
Ref	ERENCES BIBLIOGRAPHIQU	JES RELATIVES AU CHAPITRE 3	
~			
CHA	PITRE IV		148
I.	AMENAGEMENT FONC	FIONNEL DE L'ESTER BORONIQUE 18A	
-	. Oxydation de l'e	ster boronique 18a	149
2	2. Réactions à part	ir de l'alcool 38	150
١١.	REACTIONS DE COUPLA	GE METALLO-CATALYSEES	151
-	. Rappels bibliogr	aphiques sur la réaction de couplage croisé de type Suzuki-Miyaura	151
2	2. Synthèse du trifl	uoroborate de potassium 41	154
3	3. Synthèse de l'ac	ide boronique 42	155
2	I. Réaction de cou	plage à partir du trifluoroborate de potassium 41	156
	4.1. Activation	thermique	156
	4.2. Activation	sous micro-ondes	156
ŗ	5. Réaction de cou	plage à partir de l'acide boronique 42 par activation sous micro-ondes	158
	5.1. Mise au po	int et optimisation des conditions de couplage	159
	5.2. Application	à la synthèse de différentes isoindolinones	161
III.	REACTIONS DE COUPLA	GE PAR PHOTOCATALYSE	164
ź	. Rappels bibliogr	aphiques sur la photocatalyse	
2	2. Résultats de la r	éaction de couplage par photocatalyse à partir du trifluoroborate de pota	ssium 40
			165
3	 Mécanisme de la 	a réaction de couplage par photocatalyse	167
IV.	CLIVAGE DU GROUPEM	ENT P-METHOXYBENZYLE : ACCES AUX ISOINDOLINONES 54 ET 55	168
Cor	ICLUSIONS ET PERSPECTIV	ES	169
Ref	ERENCES BIBLIOGRAPHIQU	JES RELATIVES AU CHAPITRE 4	170
CON	CLUSION GENERA	LE	172
רסעם		IF	17/
		└└ ···································	

GEN	NERAL :	175
IV.	Synthese des methylene isoindolinones a partir de l'anhydride phtalique	176
1	. Synthèse des phtalimides 1a–1l	176
	1.1. Synthèse des phtalimides 1a–1k	176
	1.2. Synthèse du (<i>S</i>)-2-(2-(méthoxymethyl)pyrrolidin-1-yl)isoindoline-1,3-dione 1 I	181
	1.2.1. Synthèse de l'auxiliaire chiral SAMP 2	181
	1.2.2. Synthèse du (S)-2-(2-(méthoxymethyl)pyrrolidin-1-yl)isoindoline-1,3-dione 11	185
2	 Synthèse des 3-hydroxy-3-alkyl isoindolinones 3a-l 	186
3	 Synthèse des 3-méthylènes isoindolinones 4a-l, 5 	186
V.	Synthese des methylene isoindolinones a partir de l'acide <i>ortho</i> -acetyle benzoïque	193
1	Par activation thermique (accès aux composes 4a-b , 4e , 4i)	193
2	Par activation micro-onde (accès aux composés 4a-i)	194
VI.	Synthese des methylene isoindolinones (6, 7) par reaction d'hydroamination intramoleculaire d'alc	YNE 197
1	. Synthèse des alcools benzyliques ortho-iodés 16, 17	197
2	2. Oxydation des alcools <i>ortho</i> -iodo benzyliques 16 , 17 en acides carboxyliques 8 , 9	198
3	 Synthèse des benzamides (10, 11 et 22-24) 	199
4	Couplage pallado-catalysé de type Sonogashira : accès aux produits 12, 13 et 25–27	202
5	. Réaction d'hydroamination intramoléculaire : accès aux méthylène isoindolinones 6, 7	205
VII.	HYDROBORATION RACEMIQUE DES 3-METHYLENE ISOINDOLINONES	206
1	. Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a	-h, 19–
1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a 	- h, 19– 206
1 2 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- 	- h, 19– 206
1 2 2 a	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- lkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h 	- h, 19– 206
1 2 2 al VIII.	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h Hydroboration diastereoselective des 3-METHYLENE ISOINDOLINONES 	- h , 19 – 206 212 214
1 2 2 al VIII.	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h Hydroboration diastereoselective des 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l 	- h , 19 – 206 212 214 214
1 2 al VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- nikynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h Hydroboration DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 	- h , 19 – 206 212 214 214 cuivre .
1 2 2 3 VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h Hydroboration DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 	- h , 19 – 206 212 214 214 214 217
1 2 a VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h Hydroboration DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène N-hétérocyclique de 2.1. Synthèse des carbènes N-hétérocycliques de cuivre 30, 33 	-h, 19– 206 212 214 214 cuivre . 217 217
1 2 al VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- lkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HydroBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 2.1. Synthèse des carbènes <i>N</i>-hétérocycliques de cuivre 30, 33 	-h, 19– 206 212 214 214 cuivre . 217 217 217
1. 2. al VIII. 1 2.	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h Hydroboration DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 2.1. Synthèse des carbènes <i>N</i>-hétérocycliques de cuivre 30, 33 2.1.1. Synthèse du 1-benzyl-1<i>H</i>-benzo[d]imidazole 28	-h, 19– 206 212 214 214 cuivre . 217 217 217 218
1 2 al VIII. 1	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HydroBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 2.1. Synthèse des carbènes <i>N</i>-hétérocycliques de cuivre 30, 33 2.1.1. Synthèse du 1-benzyl-1<i>H</i>-benzo[d]imidazole 28 2.1.2. Synthèse du chlorure de 1,3-dibenzylbenzimidazolium 29 2.1.3. Synthèse du chlorure de (1,3-dibenzyl-2,3-dihydro-1<i>H</i>-benzo[d]imidazol-2-yl)copper 	-h, 19– 206 212 214 214 cuivre . 217 217 217 217 218 (II) 30
1 2 al VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HYDROBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES	-h, 19– 206 212 214 214 214 217 217 217 218 (II) 30 219
1 2 3 VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HYDROBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-i Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 2.1. Synthèse des carbènes <i>N</i>-hétérocycliques de cuivre 30, 33. 2.1.1. Synthèse du 1-benzyl-1<i>H</i>-benzo[d]imidazole 28. 2.1.2. Synthèse du chlorure de 1,3-dibenzylbenzimidazolium 29. 2.1.3. Synthèse du chlorure de (1,3-dibenzyl-2,3-dihydro-1<i>H</i>-benzo[d]imidazol-2-yl)copper 2.1.4. Synthèse du 1-benzyl-1<i>H</i>-imidazole 31. 	-h, 19– 206 212 214 214 214 217 217 217 217 218 (II) 30 219 219
1. 2. al VIII. 1 2.	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HYDROBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-I Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de 2.1. Synthèse des carbènes <i>N</i>-hétérocycliques de cuivre 30, 33 2.1.1. Synthèse du 1-benzyl-1<i>H</i>-benzo[d]imidazole 28	-h, 19– 206 212 214 214 cuivre . 217 217 217 217 218 (II) 30 (II) 30 219 219 220
1 2 al VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HYDROBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-I Hydroboration des 3-méthylène isoindolinones en présence de carbène <i>N</i>-hétérocyclique de Synthèse des carbènes <i>N</i>-hétérocycliques de cuivre 30, 33. Synthèse du 1-benzyl-1<i>H</i>-benzo[d]imidazole 28. Synthèse du chlorure de 1,3-dibenzylbenzimidazolium 29. Synthèse du chlorure de 1,3-dibenzyl-2,3-dihydro-1<i>H</i>-benzo[d]imidazol-2-yl)copper Synthèse du chlorure de 1,3-dibenzylimidazolium 32. Synthèse du chlorure de 1,3-dibenzylimidazolium 32. Synthèse du chlorure de 1,3-dibenzylimidazolium 32. 	-h, 19– 206 212 214 214 214 cuivre . 217 217 217 217 217 219 219 219 220 221
1 2 al VIII. 1 2	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- ilkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h	-h, 19– 206 212 214 214 214 217 217 217 217 217 219 219 219 219 220 221 ques de
1. 2. al VIII. 1. 2.	 Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un <i>ortho</i>- lkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h HyDROBORATION DIASTEREOSELECTIVE DES 3-METHYLENE ISOINDOLINONES Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l Hydroboration des 3-méthylène isoindolinones en présence de carbène N-hétérocyclique de Synthèse des carbènes N-hétérocycliques de cuivre 30, 33 Synthèse du 1-benzyl-1H-benzo[d]imidazole 28 Synthèse du chlorure de 1,3-dibenzylbenzimidazolium 29 Synthèse du chlorure de (1,3-dibenzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)copper Synthèse du chlorure de 1,3-dibenzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)copper(II) 33 Synthèse du chlorure de (1,3-dibenzyl-2,3-dihydro-1H-imidazol-2-yl)copper(II) 33 Hydroboration des 3-méthylène isoindolinones en présence des carbène N-hétérocycli 	-h, 19– 206 212 214 214 214 217 217 217 217 217 219 219 219 219 220 221 ques de 222

	3.1.	Oxydation de l'ester boronique 18I : accès aux alcools 34, 35	223
	3.2.	Formation du dérivé bromé 36	224
	3.3.	Réaction de déshalogénation du dérivé bromé 36 accès au composé 37	225
IX.	FONCTIC	NNALISATION DE L'ESTER BORONIQUE 18A	226
1.	Réad	tions d'aménagement fonctionnel	226
	1.1.	Oxydation de l'ester boronique 18a : accès à l'alcool 38	226
	1.2.	Réactions à partir de l'alcool 38	227
	1.2.1	L. Synthèse de l'amine 39	227
	1.2.2	2. Synthèse du dérivé bromé 40	228
	1.3.	Synthèse d'autres dérivés béta-aminoborés	229
	1.3.1	 Synthèse du trifluoroborate de potassium 41 	229
	1.3.2	2. Synthèse de l'acide boronique 42	230
2.	Réac	tion de couplage métallo-catalysée	231
	2.1.	Réaction de couplage par activation thermique et sous micro-ondes : accès a	ux composés 43 –
	52		
3.	Réac	tion de couplage par photocatalyse : accès aux composés 43 et 53	236
4.	Cliva	ge du groupement <i>para</i> -méthoxybenzyle : accès à l'isoindolinone 54 et 55	238
Refe	RENCES BI	BLIOGRAPHIQUES RELATIVES A LA PARTIE EXPERIMENTALE	

INTRODUCTION GENERALE

La chimie des composés organoborés a connu un essor considérable depuis les années 70 permettant notamment de nombreuses avancées dans les domaines de la synthèse organique, de la chimie des matériaux et de la chimie médicinale. Ces composés font partie de l'une des classes de réactifs les plus diversifiés donnant accès à de nombreuses transformations. Leur popularité découle également de leur nature non toxique, leur stabilité à l'air et l'eau ainsi que leur excellente tolérance à de nombreux groupements fonctionnels, avantages qui ne sont pas toujours partagés par d'autres membres de la famille des organométalliques tels que les organomagnésiens ou les organozinciques.

Nous nous proposons donc dans cette partie introductive de mettre en évidence le rôle majeur de ces composés organoborés en synthèse organique par une brève présentation des organoboranes les plus utilisés ainsi que leur synthèse. Puis nous présenterons leurs diverses transformations chimiques utilisées les plus couramment. Enfin, nous nous focaliserons sur l'hydroboration comme voie d'accès à ces composés, axe majeur qui sera étudié lors de ce projet.

I. Introduction générale sur les dérivés organoborés

1. Synthèse des dérivés organoborés

1.1. Les acides boroniques

Depuis leur découverte, les acides boroniques représentent une classe de réactifs particulièrement attractifs en raison de leur stabilité, de leur simplicité à être manipulé et de leur faible toxicité. Leur principale utilisation en synthèse organique consiste en la formation de liaisons carbone-carbone par l'intermédiaire du couplage de Suzuki-Miyaura qui sera évoqué plus tard dans ce chapitre.

Pour la synthèse directe de ces entités, une méthode similaire à la borylation de Miyaura a été développée.¹ Cette méthode utilise le tétrahydroxydiborane (BBA) comme agent de boration, permettant la conversion pallado-catalysée d'un halogénure d'aryle ou d'alkyle en acide boronique correspondant (schéma 1). Cette synthèse permet d'accéder à une grande variété d'acides boroniques à partir de nombreux dérivés halogénés commerciaux ou synthétiques. Il faut noter qu'un ajout d'un diol ou de difluorure de potassium (KHF₂) au milieu réactionnel permet d'accéder efficacement au boronates et aux trifluoroborates correspondants.

Schéma 1 : Synthèse des acides boroniques et dérivés à partir des dérivés halogénés

¹Molander G. A., Trice S. L. J., Dreher S. D. *J. Am. Chem. Soc.* **2010**, *132*, 17701–17703

D'autres méthodologies de synthèse permettent d'obtenir les acides boroniques à partir des réactifs de Grignard et à l'aide d'agents de boration tels que les organo(diisopropylamino)boranes. (Schéma 2).²

Schéma 2 : Synthèse d'acide boronique à partir de réactif de Grignard

Cependant, d'un point de vue expérimental, les esters boroniques sont souvent préférés aux acides boroniques. En effet, les acides boroniques sont des solides qui ont tendance à exister sous forme de mélanges d'anhydrides oligomériques, en particulier sous forme de boroxines cycliques à six membres³ ce qui oblige l'utilisateur à ajouter un large excès d'acide boronique lors de la manipulation, et complique la purification des produits obtenus (Schéma 3).

Schéma 3 : Formation des boroximes à partir des acides boroniques

1.2. Les esters boroniques

Les esters boroniques ou boronates (Figure 1) sont des intermédiaires de synthèse très polyvalents car ils peuvent être convertis en un large éventail de groupes fonctionnels souvent avec une stéréosélectivité quasi totale. Ils sont relativement faciles d'accès et suffisamment résistants à l'oxydation de l'air pour permettre une manipulation aisée. De plus, l'acide borique issu de leur dégradation oxydative n'a qu'une toxicité modérée.⁴

Figure 1 : Esters boroniques les plus courants

² Bakthan, S., Murphy C. L., Bailey C. L., Clary J. W., Eagon S., Gould N. Heterocycles 2012, 86, 331-342

³ Hall D. G.in *Boronic Acids*, ed. by Hall D. G. (Weinheim, FRG: Wiley-VCH Verlag GmbH &Co. KGaA, **2006**, pp. 1– 99

⁴ Matteson D. S. J. Org. Chem. **2013**, 78, 10009–10023

Historiquement, les esters boroniques ont d'abord été préparés à partir de composés organométalliques tels que les réactifs de Grignard ou les organolithiens (Schéma 4).^{5,6} Cependant cette méthodologie est rarement utilisée pour accéder à cette classe de réactifs en raison de la sensibilité des esters boroniques à l'hydrolyse.

Schéma 4 : Synthèse des esters boroniques à partir d'un composé organométallique

Depuis, de nombreuses méthodes ont été développées pour accéder aux esters boroniques. Depuis les travaux de pionniers d'H. C. Brown en 1956,⁷ l'hydroboration des alcènes ou des alcynes s'est avérée être une méthode de choix permettant d'accéder à une grande diversité de dérivés borés aliphatiques ou éthyléniques.

L'hydroboration des alcènes a dans un premier temps été effectuée à l'aide de borohydrure de sodium et de chlorure d'aluminium. Par la suite, d'autres méthodes ont été développées, utilisant principalement des complexes de métaux de transition comme catalyseurs. Plus récemment, l'accent a été mis sur l'utilisation des métaux du groupe principal comme alternative aux complexes de métaux précieux. De nombreuses avancées ont été faites sur la réaction d'hydroboration qui seront décrites plus tard dans cette introduction. Les esters boroniques peuvent aussi être préparés grâce à la borylation de Miyaura, une conversion pallado-catalysée d'un halogénure d'aryle en l'ester boronique correspondant.^{8,9} Cette synthèse, également utilisée pour la formation d'acides boroniques vue précédemment, utilise un agent de boration différent qui, dans la plupart des cas, est le bis(pinacol)diborane (B₂pin₂). Cette méthode permet d'accéder à une gamme très diversifiée d'esters boroniques en fonction des substrats utilisés (Schéma 5).

Schéma 5 : Borylation de Miyaura

Ces composés peuvent aussi être préparés par voie radicalaire à partir d'amines aromatiques (Schéma 6). La borylation s'effectue par ajout de bis(pinacol)diborane au sel de diazonium généré intermédiairement selon un mécanisme analogue à celui décrit pour la réaction de Sandmeyer impliquant un transfert monoélectronique et une recombinaison radicalaire.¹⁰

⁵ Brown H. C., Bhat N. G., Srebnik M. *Tetrahedron Lett.* **1988**, *29*, 2631–2634

⁶ Lappert M. F. *Chem. Rev.* **1956**, *56*, 959–1064

⁷ Brown H. C., Subba Rao B. C. J. Am. Chem. Soc. **1956**, 78, 2582-2588

⁸ Ishiyama T., Murata M., Miyaura N. J. Org. Chem. **1995**, 60, 7508–7510

⁹ Takagi J., Takahashi K., Ishiyama T., Miyaura N. J. Am. Chem. Soc. **2002**, 124, 8001–8006

¹⁰ Mo F., Jiang Y., Qiu D., Zhang Y., Wang J. Angew. Chem. Int. Ed. **2010**, 49, 1846–1849

Schéma 6 : Synthèse d'esters boroniques aromatiques à partir des amines primaires

Pour former des esters boroniques aromatiques, une borylation électrophile peut aussi être utilisée en utilisant une méthodologie similaire à la substitution électrophile aromatique.¹¹ La régiosélectivité est, dans ce cas, déterminée par des facteurs stéréo-électroniques (Schéma 7).

Schéma 7 : Synthèse d'esters boroniques par borylation électrophile

Les boronates peuvent également être synthétisés par estérification des acides boroniques en présence d'un alcool ou d'un diol. Cette réaction étant réversible, les acides boroniques peuvent donc à l'inverse être formés à partir de leurs esters, cependant ce procédé peut poser certains problèmes à cause de la tendance du diol libéré à régénérer l'ester boronique (Schéma 8).¹²

Schéma 8 : Synthèse des esters boroniques à partir des acides correspondants

1.3. Les trifluoroborates

Parmi les composés organoborés, les trifluoroborates de potassium sont aussi très utilisés en synthèse organique. Leur structure « salt-like » leur donne l'avantage d'être très stable à l'air et à l'humidité, ce qui en fait des réactifs faciles à manipuler et à purifier.¹³ De plus, les organotrifluoroborates sont compatibles avec de nombreuses transformations synthétiques courantes telles que les réactions d'oxydation, d'ozonolyse, d'oléfinations, etc.¹⁴

¹¹ Del Grosso A., Pritchard R. G., Muryn C. A., Ingleson M. J. Organometallics, **2010**, 29, 241–249

¹² Sun J., Perfetti M. T., Santos W. L. *J. Org. Chem.*, **2011**, *76*, 3571–3575

¹³ Darses S., Genet J.-P. *Chem. Rev.* **2008**, *108*, 288–325.

¹⁴ Molander G. A., Daniel E. Petrillo D. E. *J. Am. Chem. Soc.* **2006**, *128*, 9634–9635

La méthode de synthèse des trifluoroborates la plus utilisée consiste à traiter un acide boronique par une solution saturée de KHF₂.¹⁵ L'isolation du produit se fait très simplement par précipitation. Il faut cependant noter que KHF₂ est corrosif et attaque le verre, il est donc préférable d'utiliser de la vaisselle en plastique ou en téflon (PTFE). Cette méthodologie peut aussi être utilisée pour convertir les esters boroniques en trifluoroborates.^{16,17}

Une autre méthode permettant d'accéder aux trifluoroborates s'appuie sur l'utilisation du fluorure de potassium (KF) à partir des esters et ou des acides boroniques, ce qui permet d'éviter l'utilisation de KHF₂ et donc d'utiliser une verrerie normale (Schéma 9).¹⁸

 $\begin{array}{c} OH \\ R-B \\ OH \end{array} \xrightarrow{KHF_2} \\ R-BF_3K \\ R-BF_3K \end{array}$

Schéma 9 : Synthèse d'organotrifluoroborates de potassium

1.4. Les autres composés organoborés

La famille des composés organoborés est très vaste et il existe d'autres dérivés moins répandus tels que les boronates *N*-coordinnés, présentant des avantages intéressants par rapport aux acides boroniques et aux boronates précédemment décrits.

Ces composés sont caractérisés par un atome d'azote contenu dans l'ossature cyclique d'un ester boronique, ce qui crée une liaison dative entre les atomes d'azote et de bore. Ce sont des composés également stables à l'air et à l'humidité. Les ligands les plus utilisés sont la diéthanolamine, La *N*-phényldiéthanolamine ou encore l'acide *N*-méthyliminodiacétique (MIDA) (Figure 2).

Figure 2 : Exemple de composés borés N-coordonnés

Ils vont permettre une meilleure stabilité des composés borés formés, très souvent des solides qui peuvent être chromatographiés et conservés à l'air.^{19,20} Ces composés sont généralement formés à partir des acides boroniques, du ligand désiré, à reflux sur un montage de Dean-Stark afin d'éliminer l'eau formée. Parmi les composés moins répandus, on trouve également les boronamides, dans lesquels l'atome de bore est lié à deux atomes d'azote.²¹

¹⁵ Vedejs E., Chapman R. W., Fields S. C., Schrimpf M. R. J. Org. Chem. **1995**, 60, 3020–3027

¹⁶ Murphy J. M., Tzschucke C. C., Hartwig J. F. Org. Lett. **2007**, *9*, 757–760

¹⁷ DarsesS., Genet J.-P.*Eur. J. Org. Chem.* **2003**, 4313–4327

¹⁸ Lennox A. J. J., Lloyd-Jones G. C. *Angew. Chem. Int. Ed.* **2012**, *51*, 9385–9388

¹⁹ Lee S. J., Gray K. C., Paek J. S., Burke M. D. J. Am. Chem. Soc. **2008**, 130, 466–468

²⁰ Gillis E. P., Burke M. D.J. Am. Chem. Soc. **2008**, 130, 14084–14085

²¹ Lennox A. J. J., Lloyd-Jones G. C. Chem. Soc. Rev. **2014**, 43, 412–443

2. Réactivité des composés organoborés

L'avantage principal des composés organoborés vus précédemment est la très grande diversité de réactions possibles, pouvant être effectuées à partir de ces entités, qui permettent d'accéder à de nombreuses fonctions d'intérêt. Parmi ces réactions, on distingue les transformations chimiques et les couplages carbone-carbone ou carbone-hétéroatome. Les réactions les plus courantes sont représentées sur le schéma 10 ci-dessous.

Schéma 10 : Transformations possibles à partir de composés organoborés

Parmi les transformations classiques possibles, l'oxydation des acides ou des esters boroniques par des peroxydes peut conduire à la formation d'alcools,²²d'aldéhydes ou de cétones (Schéma 11).²³ II faut noter qu'à partir des boronates chiraux, la réaction procède avec rétention de configuration.²⁴ L'oxydation de ces entités est un processus très utile en synthèse organique permettant notamment d'accéder à de nombreux alcools aliphatiques chiraux *via* une réaction d'hydroboration asymétrique.

Schéma 11 : Oxydation des composés organoborés

Une amination directe des boronates via la réaction de couplage de Chan-Lam est également possible, en effet, les amines sont très utilisées dans la synthèse de produits naturels et pharmaceutiques ce qui rend cette transformation très attractive (Schéma 12).²⁵

$$\begin{array}{c} X \\ R-B \\ \times \end{array} \xrightarrow{\text{NH}_3, \text{H}_2\text{O}, \text{Cu}_2\text{O}} \\ \hline \text{MeOH} \end{array} R-\text{NH}_2$$

Schéma 12 : Amination de composés organoborés

²² Wagh R. B., Nagarkar J. M. *Tetrahedron Lett.* **2017**, *58*, 4572–4575

²³ Brown H. C., Basavaiah D., Kulkarni S. U. *J. Org. Chem.* **1982**, *47*, 3808–3810

²⁴ Tripathy P. B., Matteson D. S. *Synthesis* **1990**, 200-206

²⁵ Rao H., Fu H., Jiang Y., Zhao Y. Angew. Chem. Int. Ed. **2009**, 48, 1114–1116

De même que les amines, les acides carboxyliques sont des entités très utilisées dans la synthèse de produits naturels et pharmaceutiques. Leur synthèse est également possible à partir des composés organoborés par réaction avec le dioxyde de carbone en présence d'un catalyseur à base de nickel ou de cuivre (Schéma 13).²⁶

 $R-BX_{2} + CO_{2} \xrightarrow{[Ni(iPr)(allyl)CI]}{t-BuOK} R-CO_{2}H$ Schéma 13 : Carboxylation de composés organoborés

La principale utilisation des composés organoborés en synthèse organique est la réaction de couplage de type Suzuki-Miyaura (schéma 14). Cette réaction permet notamment de coupler des dérivés halogénés, des triflates ou des sels de diazoniums aromatiques ou aliphatiques avec des dérivés borés en présence d'un catalyseur métallique. C'est l'une des réactions de couplage les plus utilisées actuellement car elle présente de nombreux avantages sur ces concurrentes. Elle peut notamment être effectuée à partir d'une très grande diversité de composés organoborés tels que les acides boroniques, les boronates et les trifluoroborates.

De plus, ces dérivés, tout comme les sous-produits de la réaction, sont peu toxiques et facilement séparables. Enfin les conditions de réaction sont relativement douces, puisque certaines réactions peuvent être effectuées à température ambiante avec des charges catalytiques très basses.^{27,28}

La réaction de protodéboration a longtemps été considérée comme une réaction secondaire incontrôlable lors du couplage ou de la décomposition des réactifs organoborés (Schéma 15). Récemment, l'importance de cette réaction a été reconnue en synthèse organique comme étant une alternative à l'hydrogénation catalytique en permettant notamment la réduction d'alcènes et d'alcynes. Cette réaction peut aussi être utilisée pour la formation de centres chiraux ou encore pour la fonctionnalisation régiosélective de composés aromatiques.²⁹

 $\begin{array}{c} \mathsf{R}-\mathsf{BX}_2 & \xrightarrow{\mathsf{MeOH}} & \mathsf{R}-\mathsf{H} \\ & & \mathsf{CH}_2\mathsf{Cl}_2, \text{ reflux} \end{array}$

²⁶ Makida Y., Marelli E., Slawin A. M. Z., Nolan S. P. *Chem.Commun.* **2014**, *50*, 8010-8013

²⁷ Alonso F., Beletskaya I. P., Yus M. *Tetrahedron* **2008**, *64*, 3047–3101

²⁸ Doucet H. Eur. J.Org. Chem. **2008**, 2013–2030

²⁹ Lee C.-Y., Cheon C.-H. *ACS Symposium Series*, ed. by Adiel Coca (Washingyon, DC: American Chemical Society, **2016**), MCCXXXVI, 483–523

3. Propriétés biologiques

De récentes analyses ont montré que les molécules plus petites et plus lipophiles avaient de plus grandes chances de devenir des candidats médicaments efficaces. La solution aujourd'hui est donc d'introduire de nouveaux atomes dans les molécules médicamenteuses permettant d'accroître la diversité moléculaire tout en limitant le nombre d'atomes. L'incorporation d'un atome de bore dans de nombreuses molécules d'intérêt biologique ouvre de nouvelles perspectives pour la découverte de nouveaux médicaments.

En effet, des découvertes récentes de produits naturels contenant du bore ainsi que la découverte de plusieurs composés organoborés progressant dans la recherche clinique indiquent que l'atome de bore peut être librement utilisé en recherche thérapeutique. De plus, les propriétés physicochimiques du bore, notamment la présence d'une orbitale p vacante offre la possibilité de former des liaisons datives avec des nucléophiles dans les sites actifs des enzymes.³⁰

Certaines molécules organoborées ont déjà fait leurs preuves dans l'industrie pharmaceutique. C'est le cas du bortezomib, commercialisé sous le nom de Velcade[®], utilisé comme anticancéreux dans le traitement des myélomes multiples. Son activité anticancéreuse est due à son pouvoir d'inhibition de protéasome.³¹ L'ixazomib, commercialisé sous le nom de Ninlaro[®], similaire au bortezomib est également utilisé dans le traitement du myélome multiple et comme un inhibiteur de protéasome de seconde génération.³² D'autres acides boroniques ont reçu leur autorisation de mise sur le marché, c'est le cas du Tavaborole (Kerydin[®]) et du Crisaborole utilisés respectivement dans le traitement des mycoses³³ et de l'eczéma (Figure 3).³⁴

Figure 3 : Exemples de dérivés borés biologiquement actifs

³⁰ Baker S. J., Tomsho J. W., Benkovic S. J. *Chem. Soc. Rev.* **2011**, *40*, 4279-4285

³¹ Teicher B. A., Ara G., Herbst R., Palombella V. J., Adams J. Clin. Cancer Res. **1999**, *5*, 2638-2645

³² Muz B., Ghazarian R. N., Ou M., Luderer M. J., Kusdono H. D., Azab A. K. *Drug Des. Devel. Ther.* **2016**, 217-226

³³ Jinna S., Finch J. J. *Drug Des. Devel. Ther.* **2015**, 6185-6190

³⁴ Akama T., Baker S. J., Zhang Y.-K., Hernandez V., Zhou H., Sanders V., Freund Y., Kimura R., Mapless K. R., Plattner J. J. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 2129–2132

D'autres composés organoborés tels que les benzoxaboroles font actuellement l'objet d'études pharmacologiques. C'est le cas du composé GSK656 qui est actuellement en développement clinique pour ses propriétés antituberculeuses par inhibition de la synthétase LeuRS,³⁵ou encore du composé AN2728, qui a prouvé son efficacité anti-inflammatoire pour le traitement de psoriasis et de la dermatite atopique en étude *in vitro* et *in vivo* (Figure 4).³⁴

Figure 4 : Exemples de dérivés borés biologiquement actifs

Les acides et esters boroniques sont également utilisés comme promédicaments anticancéreux. En effet, certaines cellules cancéreuses possèdent des niveaux élevés de H_2O_2 , permettant ainsi l'oxydation des promédicaments et la libération de l'espèce active au sein de la cellule. C'est le cas de la Camptothécine B1 subtituée par un acide boronique utilisée comme promédicament du composé néoplasique SN-38 (Figure 5).³⁶

Figure 5 : Exemple d'utilisation d'un dérivé boré comme pro médicament

En plus de l'inclusion du bore dans des substances bioactives, la capacité des acides boroniques à se lier aux diols extracellulaires (par exemple les sucres) a été largement étudiée. Ces études visent à améliorer l'absorption cellulaire des liposomes et macromolécules au sein d'une cellule. En effet, les acides boroniques se lient spontanément et de façon réversible aux 1,2 et 1,3 diols pour former un ester boronique cyclique. L'insertion d'un acide boronique dans une macromolécule va donc permettre une absorption plus efficace de celle-ci.^{37,38}

³⁵ Li X., Hernandez V., Rock F. L., Choi W., Mak Y. S. L., Mohan M., Mao W., Zhou Y., Easom E. E., Plattner J. J., Zou W., Pérez-Herrán E., Giordano I., Mendoza-Losana A., Alemparte C., Rullas J., Angulo-Barturen I., Crouch S., Ortega F., Barros D., Alley M. R. K. *J. Med. Chem.* **2017**, *60*, 8011–8026

³⁶ Wang L., Xie S., Mia L., Chen Y., Lu W. Eur. J. Med. Chem. **2016**, 116, 84–89

³⁷ Andersen K. A., Smith T. P., Lomax J. E., Raines R. T. *ACS Chem. Biol.* **2016**, *11*, 319–323

³⁸ Zhang X., Alves D. S., Lou J., Hill S. D., Barrera F. N., Best M. D. Chem. Commun. **2018**, *54*, 6169–6172

II. Etat de l'art sur les réactions d'hydroboration

L'hydroboration de composés insaturés développée par H.C. Brown, qui a reçu le prix Nobel de chimie en 1979 pour son travail sur la chimie du bore, représente une méthodologie puissante en synthèse organique. Nous allons maintenant en détailler les différents aspects.

1. Les alcènes

L'évolution de la réaction d'hydroboration a permis son application à différents substrats organiques insaturés autres que les alcènes, tels que les alcynes, les allènes, les dérivés carbonylés ou encore les imines. Depuis sa première observation par Brown en 1956, l'hydroboration des alcènes a été reconnue comme l'un des moyens les plus puissants pour accéder à des molécules organiques borées.

Cette réaction a été réalisée avec des boranes hautement réactifs tels que le diborane (B_2H_6), le complexe tétrahydrofurane-borane (BH_3 -THF) ou le 9-borabiccyclo[3.3.1]nonane (9-BBN) qui ne nécessitent pas l'utilisation de catalyseurs. Cependant, les intermédiaires formés sont extrêmement sensibles à l'air et incompatibles avec des purifications chromatographiques.

D'autres boranes ont donc été privilégiés pour cette réaction, tels que le catécholborane (HBcat) et le pinacolborane (HBpin) permettant une meilleure stabilité et maniabilité des produits formés.

Lors de cette réaction l'atome de bore est dans un premier temps coordinné par l'alcène riche en électron via son orbitale *p* vacante. Le produit d'addition (*syn*) se forme ensuite via un état de transition cyclique à 4 chaînons. L'hydroboration des alcènes est régiosélective ; le bore se fixant préférentiellement sur le carbone le moins substitué pour conduire majoritairement au produit «anti-Markovnikov» (Schéma 16).³⁹

Schéma 16 : Mécanisme d'hydroboration des alcènes

Afin d'élargir le domaine d'application de l'hydroboration à d'autres substrats/réactifs, le développement d'une version catalysée de cette réaction a suscité de nombreux travaux. L'introduction d'un catalyseur métallique a notamment permis l'utilisation de dérivés borés moins réactifs, d'inverser la régiosélectivité et de contrôler la stéréosélectivité de la réaction.⁴⁰

³⁹ Geier S. J., Vogels C. M., Westcott S. A.*ACS Symposium Series*, ed. by Adiel Coca (Washingyon, DC: American Chemical Society, **2016**), MCCXXXVI, 209–225

⁴⁰ Beletskaya I., Pelter A. *Tetrahedron* **1997**, *53*, 4957–5026

1.1. Catalyse par les métaux précieux (Rhodium, Iridium)

Le développement de l'hydroboration catalysée a été facilité par l'observation de Kono et Ito en 1975 qui ont montré que le catalyseur de Wilkinson [Rh(PPh₃)₃Cl] subissait une addition oxydante lorsqu'il était traité avec du catécholborane (Schéma 17).

Schéma 17 : Addition oxydante du catalyseur de Wilkinson traité avec le catécholborane

Les premiers exemples d'hydroboration catalysée au Rhodium ont été reportés par Mannig et Nöth une décennie plus tard (Schéma 18). De plus, l'utilisation de ligands chiraux a permis le développement de nouvelles méthodes permettant de contrôler la stéréosélectivité de la réaction.⁴¹

Schéma 18 : Hydroboration catalysée au rhodium du cyclopentène

Suite aux nombreux travaux sur le Rhodium, divers métaux de transition tels que l'iridium ou le samarium ont également été utilisés avec succès pour catalyser la réaction d'hydroboration.⁴² Evans et Fu ont notamment montré que le catalyseur de Crabtree's $[Ir(COD)PCy_3(py)]^+PF_6^-$ était très efficace pour diriger l'hydroboration des alcènes intégrant une fonction amide (Schéma 19).⁴³

Schéma 19 : Hydroboration dirigée des alcènes

Peu de temps après les études portant sur le mécanisme de l'hydroboration catalysée par les complexes de rhodium, Marks a décrit une réaction d'hydroboration catalysée par les complexes de lanthanides tels que le samarium procédant par un mécanisme complètement différent (Schéma 20).⁴⁴

⁴¹ Carroll A.-M., O'Sullivan T. P., Guiry P. J. Adv. Synth. Catal. **2005**, 347, 609–631

⁴² CruddenC. M., EdwardsD. Eur. J. Org. Chem. 2003, 4695-4712

⁴³ Evans D. A., Fu G. C. J. Am. Chem. Soc. **1991**, 113, 4042-4043

⁴⁴ Harrison K. N., Marks T. J. J. Am. Chem. Soc. **1992**, 114, 9220-9221

Schéma 20 : Exemple d'hydroboration d'un alcène catalysée au samarium

D'autres métaux précieux comme le titane⁴⁵ ou le Zirconium⁴⁶ ont aussi été utilisés pour catalyser cette réaction. Cependant, l'utilisation de ces métaux pose problème en raison de leur coût élevé et de leur manque de disponibilité.

De plus, la toxicité de ces métaux pose problème dans l'industrie pharmaceutique, c'est pourquoi ces dernières années les métaux de transitions tels que le cuivre, le nickel, le cobalt ou le fer ont attiré une attention toute particulière pour remplacer ces métaux précieux en raison de leur abondance naturelle et leur biocompatibilité.⁴⁷

1.2. Catalyse au Cobalt

En 1997, le groupe de Zaidlewicz a décrit la première réaction d'hydroboration de diènes conjugués et d'oléfines catalysée par un complexe de cobalt effectuée en présence de catécholborane. Malgré un rendement et une sélectivité faible, ces travaux ont prouvé la possibilité d'utilisation du cobalt pour catalyser cette réaction.

Depuis, l'hydroboration d'alcènes catalysée au cobalt a été étudiée par les groupes de Chirik, Huang et Turculet.^{48,49} Dans chaque système l'addition anti-Markovnikov est favorisée. En 2017, Thomas et al. ont montré un système catalytique dans lequel le produit Markovnikov était obtenu avec des bons rendements (Schéma 21).⁵⁰

Schéma 21 : Formation du produit Markovnikov de l'hydroboration d'alcènes au cobalt

⁴⁵ He X., Hartwig J. F. J. Am. Chem. Soc. **1996**, 118, 1696-1702

⁴⁶ Pereira S., Srebnik M. *Organometallics* **1995**, *14*, 3127-3128

⁴⁷ Obligacion J. V., Chirik P. J. *Nat. Rev. Chem.* **2018**, *2*, 15–34

⁴⁸ Scheuermann M. L., Johnson E. J., Chirik P. J. Org. Lett. **2015**, *17*, 2716–2719

⁴⁹ Zhang L., Zuo Z., Wan X., Huang Z. J. Am. Chem. Soc. **2014**, 136, 15501–15504

⁵⁰ Tamang S. R., Bedi D., Shafiei-Haghighi S., Smith C. R., Crawford C., Findlater M. Org. Lett. 2018, 20, 6695-6700

1.3. Catalyse au cuivre

De nombreuses méthodologies impliquant des complexes de cuivre ont été développées ces dernières années pour l'hydroboration des alcènes offrant des rendements élevés et d'excellentes énantiosélectivités. La première hydroboration catalysée au cuivre a été développée par Yun en 2009 sur des styrènes avec du pinacolborane (HBpin) et a permis d'accéder efficacement à de nombreux composés borés. Cette réaction a été effectuée avec une excellente régiosélectivité (99 :1) et une énantiosélectivité élevée grâce à l'utilisation de ligands chiraux du cuivre à température ambiante (Schéma 22).⁵¹

Schéma 22 : Première hydroboration catalysée au cuivre réalisée par Yun

Plus tard, le même groupe a étendu sa méthodologie à l'hydroboration d'alcènes bicycliques ainsi qu'aux alcènes borés, permettant l'accès aux composés 1,1- ou 1,2-diborés avec une excellente énantiosélectivité. Plus récemment, Hartwig et al. ont étudié l'hydroboration énantiosélective catalysée au cuivre d'alcènes internes non conjugués et se sont également intéressés au mécanisme de la réaction, plus particulièrement sur l'effet des ligands et substrats sur le catalyseur ainsi qu'aux étapes du cycle catalytique qui influencent la régio- et stéréosélectivité.⁵²

1.4. Catalyse au fer

En 2009, Ritter et al. ont reporté la première hydroboration régio- et stéréosélective d'1,3diènes catalysée par un complexe de fer iminopyridine (Schéma 23).⁵³ Plus récemment, Huang et Chirik ont décrit l'hydroboration d'alcènes catalysée au fer en présence de pinacolborane.⁵⁴ Cependant, les complexes de fer restent eux aussi très peu utilisés pour catalyser l'hydroboration des alcènes.

Schéma 23 : Hydroboration catalysée au fer de 1,3-diènes par Ritter et al.

⁵¹ Noh D., Chea H., Ju J., Yun J. *Angew. Chem. Int. Ed.* **2009**, *48*, 6062-6064

⁵² Xi Y., Hartwig J. F. J. Am. Chem. Soc. **2017**, 139, 12758–12772

⁵³ Wu J. Y., Moreau B., Ritter T. J. Am. Chem. Soc. **2009**, 131, 12915–12917

⁵⁴ Wen H., Liu G., Huang Z. Coord. Chem. Rev. **2019**, 386, 138–153

1.5. Catalyse au nickel

Les réactions d'hydroboration catalysées par les complexes de Nickel sont assez rare. L'exemple le plus ancien a été reporté par le groupe d'Oshima pour son travail sur l'hydroboration des alcènes activés par des groupements électroattracteurs (Schéma 24).⁵⁵ Plus tard, Fernandez et al. ont effectué une hydroboration asymétrique d'acrylates catalysée au nickel avec un excès enantiomérique de plus de 98%.

Schéma 24 : Hydroboration catalysée au nickel d'alcènes activés

L'hydroboration d'alcènes simples grâce au bis(pinacol)diborane (B_2pin_2) catalysée au Nickel a quant à elle été mise au point très récemment par l'équipe de Shimada (Schéma 25).⁵⁶

2. Les autres substrats

2.1. Les alcynes

Comme dans le cas des alcènes, l'hydroboration des alcynes est très bien documentée et s'accompagne également de la formation du produit de syn addition. La double hydroboration des alcynes est également possible et permet l'obtention d'alcanes diborés (Schéma 26).⁵⁷

Schéma 26 : Hydroboration simple et double d'alcynes

⁵⁵ Hirano K., Yorimitsu H., Oshima K. Org. Lett. **2007**, *9*, 5031–5033

⁵⁶ Kamei T., Nishino S., Shimada T. *Tetrahedron Lett.* **2018**, *59*, 2896–2899

⁵⁷ Trost M., Ball Z. T. Synthesis 2005, 853-887

2.2. Les allènes

De récentes études sur les allènes ont montré leur intérêt dans la synthèse de molécules complexes grâce à leur accessibilité et leur réactivité. Contrairement aux alcènes et aux alcynes, le contrôle de la sélectivité de la réaction s'avère plus délicat à contrôler. En effet, l'hydroboration d'un allène peut conduire au borane allylique *Z* (produit cinétique) ou *E* (produit thermodynamique) (Schéma 27).⁵⁸

Schéma 27 : Hydroboration d'allènes

2.3. Les dérivés carbonylés

L'hydroboration des dérivés carbonylés représente une stratégie intéressante en synthèse organique, non seulement pour la synthèse d'intermédiaires de type borates, mais également pour l'obtention d'alcools, méthode très utilisée dans l'industrie. Cette réaction peut aussi être utilisée comme protection lors de certaines synthèses.⁵⁹ De nombreux complexes des métaux de transitions, des éléments du groupe principal ou des lanthanides ont été utilisés pour catalyser cette réaction (Schéma 28).

Schéma 28 : Hydroboration de dérivés carbonylés suivie d'une hydrolyse

2.4. Les imines et dérivés

La réduction des imines en amines est une réaction particulièrement utile en synthèse organique permettant d'accéder à de nombreux produits pharmaceutiques, agrochimiques, polymères ou colorants. Paradoxalement, peu d'exemples d'hydroboration des imines ont été reportés dans la littérature. L'équipe de Speed a notamment synthétisé la (*S*)-Fendiline par hydroboration stéréosélective d'une imine organocatalysée par un diazaphospholène chiral avec un très bon rendement et un bon excès énantiomérique (Schéma 29).⁶⁰

⁵⁸ Nagashima Y., Sasaki K., Suto T., Sato T., Chida N. *Chem. Asian J.* **2018**, *13*, 1024–1028

⁵⁹ Das U. K., Higman C. S., Gabidullin B., Hein J. E., Baker R. T. *ACS Catal.* **2018**, *8*, 1076–1081

⁶⁰ Adams M. R., Tien C.-H., McDonald R., Speed A. W. H. Angew. Chem. Int. Ed. **2017**, 56, 16660-16663

Schéma 29 : Synthèse de la (S)-Fendiline par hydroboration d'une imine

Une méthode efficace et générale pour la synthèse des esters α -aminoboroniques a été développée par Ellman et collaborateurs (Schéma 30).⁶¹ L'étape clé qui s'appuie sur l'hydroboration stéréosélective d'une sulfinylimine chirale catalysée par un complexe de cuivre(I) procède avec une diastéréosélectivité très élevée (>96 :2). Par rapport à l'hydroboration des imines « non activées » décrite dans le schéma 29, Il faut noter que la réaction s'accompagne d'une inversion de la régiosélectivité, l'atome de bore se fixant préférentiellement sur le carbone.

Schéma 30 : Hydroboration d'imines suivie d'une hydrolyse

2.5. Les énamines

Les énamines jouent un rôle important en tant qu'intermédiaires réactionnels, la réduction de ces composés fournit une méthodologie de synthèse précieuse permettant la synthèse d'amines trisubstituées. Une série de phényléthylamines, sous-structures importantes dans des molécules d'intérêt telles que la dopamine, l'amphétamine et l'adrénaline, ont été préparées par hydroboration des énamines à l'aide du 9-BBN.^{62,63} L'hydroboration est dans ce cas généralement suivie d'un couplage de type Suzuki-Miyaura afin d'accéder à une gamme importante d'amines trisubstituées. Cependant, ce type de substrat reste grandement sous-exploité dans le cadre des réactions d'hydroboration catalytiques (schéma 31).

Schéma 31 : Hydroboration des énamines suivie d'une réaction de couplage

⁶¹ Beenen M. A., An C., Ellman J. A. *J. Am. Chem. Soc.* **2008**, *130*, 6910-6911

⁶² MolanderG. A., Vargas F. Org. Lett. **2007**, *9*, 203–206

⁶³ Geier M. J., Vogels C. M., Decken A., Wescott S. A. J. Organomet. Chem. **2009**, 694, 3154–3159

Cette introduction bibliographique sur la synthèse et l'application des composés organoborés a permis de mettre en avant l'intérêt pour cette catégorie de molécules. L'hydroboration apparaît être l'une des réactions les plus appliquées et les plus variées permettant d'accéder à une très large gamme de composés.

Cependant, après un examen très poussé de la littérature, il apparaît que la réaction d'hydroboration sur des molécules intégrant une structure de type énamide a été très peu exploitée,⁶⁴ or, une telle réaction aurait un grand intérêt en synthèse organique et permettrait, sur la même base que l'hydroboration des énamines, d'accéder à de nombreuses molécules organiques naturelles ou biologiquement actives.

III. Choix des cibles – Les isoindolinones

Le noyau isoindolinone représente l'élément structural de base de très nombreux produits naturels et/ou biologiquement actifs appartenant à la famille des alcaloïdes possédant une architecture complexe tels que les isoindolobenzazépines I, les dihydroisoindoloisoquinolines II ou les aristolactames III (Figure 6).^{65,66}

Figure 6 : Structures des alcaloïdes possédant un noyau isoindolinone

Ce motif se retrouve également dans d'autres molécules aux propriétés biologiques variées. Parmi celles-ci, on retrouve notamment des composés possédant une activité herbicide comme pour la porritoxine, la zinnimidine et la cichorine (figure 7). Ces dernières ont été isolées à partir du fungus *Alternaria porri*, champignon responsable de la tache pourpre retrouvée principalement sur les oignons et poireaux.⁶⁷

Figure 7 : Structures des herbicides Porritoxine, Zinnimidine et Cichorine

⁶⁴ Bai X.-Y., Zhao W., Sun X., Li B.-J. J. Am. Chem. Soc. 2019, 141, 19870–19878

⁶⁵ Couture A., Deniau E., Grandclaudon P., Hoarau C. *J. Org. Chem.* **1998**, *63*, 3128–3132

⁶⁶ Kundu, N. G., Khan M. W., Mukhopadhyay R. *Tetrahedron* **1999**, *55*, 12361–12376

⁶⁷ Horiuchi M., Maoka T., Iwase N., Ohnishi K. J. Nat. Prod. **2002**, 65, 1204–1205

Cette classe d'alcaloïde comporte également de nombreux composés substitués en alpha de l'atome d'azote lactamique. On peut, à titre d'exemple, citer la Lennoxamine et la Chilenine, toutes deux extraites sous forme racémique des végétaux de la famille des *Berberis* (figure 8).⁶⁸

Figure 8 : Structure de la Lennoxamine et de la Chilenine

Les isoindolinones constituent également l'épine dorsale de molécules utilisées dans le domaine de la chimie thérapeutique, c'est le cas notamment de la pazinaclone (DN-2327), employée pour lutter contre l'anxiété.⁶⁹ Ce motif est également présent dans d'autres molécules biologiquement actives ayant une structure hautement condensée plus complexe comme la batracycline, un inhibiteur néoplasique (figure 9).⁷⁰

Figure 9 : Structure de la Pazinaclone et la Batracycline

Le motif isoindolinone a également été utilisé pour former des analogues rigidifiés de produits pharmacologiques. La présence du noyau phtalimide dans la structure rajoute une contrainte conformationnelle qui peut être mise à profit pour en augmenter l'activité biologique et permettre le développement nouveaux médicaments. C'est le cas du PD1172938 qui a montré une bonne activité en tant que mime du PD108635, utilisé comme anti-schizophrène. Par ailleurs, les tests biologiques ont montré une meilleure affinité du mime avec le récepteur D4 de la dopamine, cible pour le traitement de la schizophrénie (figure 10).⁷¹

⁶⁸ Moody C. J., Warrellow G. J. *Tetrahedron Lett.* **1987**, *28*, 6089–6092

⁶⁹ Goto, G., Fukuda, N., Eur. Pat. Appl., **1994**, 602, 814, *Chem. Abstr.*, **(1994**), 134102

⁷⁰ Plowman J., Paul K. D., Atassi G., Harrison Jr S. D., Dykes D. J., Kabbe H. J., Narayanan V. L., Yoder O. C. *Invest. New Drugs* **1988**, *6*, 147–153

⁷¹ BelliottiT. R., Brink W. A., Kesten S. R., Rubin J. R., Wustrow D. J., Zoski K. T., Whetzel S. Z., Corbin A. E., Pugsley T. A., Heffner T. G., Wise L. D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1499–1502

Figure 10 : Structure du PD108635 et de son analogue PD1172938

Pour conclure, les isoindolinones constituent l'unité structurale centrale de nombreux composés naturels, synthétiques ou à visée thérapeutique potentielle. Le développement de nouvelles voies d'accès à ces hétérocycles permettant notamment d'incorporer des substituants en position 3 du cycle lactamique de façon stéréosélective représente un défi synthétique majeur pour la communauté scientifique.

IV. Notre projet

Le travail qui m'a été confié dans le cadre de cette thèse avait pour objectif la mise au point d'une réaction d'hydroboration d'énamides (I) catalysée par les complexes de cuivre(I), qui devrait permettre la formation de divers composés organoborés (II) (de type boronates, acides boroniques ou trifluoroborates), qui sont, comme nous avons pu le constater lors de cette partie introductive, des intermédiaires réactionnels très prisés en synthèse organique. Ces composés organoborés pourront ensuite subir diverses transformations chimiques (aménagements fonctionnels, réactions de couplage) pour conduire à toute une gamme de lactames énantioenrichies polysubstituées (III) (Schéma 32).

R = Alkyl, Aryl, gr. protecteur, auxiliaire chiral R' = H, OH, NR₂, Aromatique, ...

GEA = Groupe Electro-Attracteur (Ar, CO, COOR, CN,...) = Ester boronique, acide boronique, trifluoroborate

Schéma 32 : Notre projet

De façon à accéder aux produits ciblés, nous avons focalisé notre attention sur les 3méthylène isoindolinones dont la structure est représentée sur la figure 11 ci-dessous. La première partie de ce travail, décrit dans le premier chapitre, sera donc consacrée au développement de voies de synthèses efficaces et complémentaires de 3-méthylène isoindolinone diversement substituées.

Figure 11 : Structure générale des 3-méthylène isoindolinones

La deuxième partie de ce projet fera l'objet des chapitres 2 et 3 et sera consacrée à l'étude de la réaction d'hydroboration catalysée au cuivre de ces 3-méthylène isoindolinones. Dans un premier temps (Chapitre 2), une optimisation des paramètres pouvant influencer le rendement de la réaction sera effectuée, en faisant varier la nature du catalyseur, du ligand, de la base, du solvant ou encore de la température. Dans un deuxième temps (Chapitre 3), une version stéréosélective de la réaction sera développée via l'utilisation d'un ligand ou d'un auxiliaire chiral (Schéma 34).

Schéma 34 : Synthèse générale de l'hydroboration catalysée au cuivre des énamides

Finalement, la dernière partie de ce manuscrit (chapitre 4) portera sur l'étude des diverses transformations chimiques possibles à partir des composés organoborés obtenus dans les chapitres 2 et 3. Une première étude sera faite sur les diverses réactions d'aménagement fonctionnel en vue d'introduire dans nos modèles une fonction alcool, amine ou encore un dérivé halogéné. Le point crucial de cette étude sera ensuite de développer une méthodologie de synthèse efficace permettant la formation de liaisons carbone-carbone via des réactions de couplage pallado-catalysées de type Suzuki-Miyaura. Pour atteindre cet objectif, la conversion des esters boroniques préalablement synthétisés en acides boroniques mais également en trifluoroborates combinée à plusieurs méthodes d'activation (voie thermique, micro-ondes ou catalyse photo-redox) fera l'objet d'une étude approfondie (Schéma 35).

Schéma 35 : Fonctionnalisation des composés organoborés

Références bibliographiques relatives à l'introduction générale

- Molander G. A., Trice S. L. J., Dreher S. D., 'Palladium-catalyzed, direct boronic acid synthesis from aryl chlorides : A simplified route to diverse boronate ester derivatives', *J. Am. Chem. Soc.* 2010, 132, 17701–17703
- 2) Bakthan, S., Murphy C. L., Bailey C. L., Clary J. W., Eagon S., Gould N., 'Reaction of Grignard reagents with diisopropylaminoborane. Synthesis of alkyl, aryl, heteroaryl and allyl boronic acids from organo(diisopropyl)aminoborane by a simple hydrolysis', *Heterocycles* **2012**, *86*, 331-342
- 3) Hall D. G. in *Boronic acids*, ed. by Hall D. G. (Weinheim, FRG: Wiley-VCH Verlag GmbH &Co. KGaA, **2006**, pp. 1-99
- 4) Matteson D. S., 'Boronic esters in asymmetric synthesis', J. Org. Chem. 2013, 78, 10009–10023
- 5) Brown H. C., Bhat N. G., Srebnik M., 'A simple, general synthesis of 1alkynyldiisopropoxyboranes', *Tetrahedron Lett.* **1988**, *29*, 2631–2634
- 6) Lappert M. F., 'Organic compounds of boron', Chem. Rev. 1956, 56, 959–1064
- 7) Brown H. C., Subba Rao B. C., 'A new technique for the conversion of olefins into organoboranes and related alcohols', *J. Am. Chem. Soc.* **1956**, *78*, 2582-2588
- Ishiyama T., Murata M., Miyaura N., 'Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes : A direct procedure for arylboronic esters', J. Org. Chem. 1995, 60, 7508–7510
- 9) Takagi J., Takahashi K., Ishiyama T., Miyaura N., 'Palladium-catalyzed cross-coupling reaction of bis(Pinacolato)diboron with 1-alkenyl halides or triflates : Convenient synthesis of unsymmetrical 1,3-dienes via the borylation-coupling sequence', J. Am. Chem. Soc. 2002, 124, 8001–8006
- 10) Mo F., Jiang Y., Qiu D., Zhang Y., Wang J., 'Direct conversion of arylamines to pinacol boronates : A metal-free borylation process', *Angew. Chem. Int. Ed.* **2010**, *49*, 1846–1849
- 11) Del Grosso A., Pritchard R. G., Muryn C. A., Ingleson M., 'Chelate restrained boron cations for intermolecular electrophilic arene borylation', *J. Organometallics* **2010**, *29*, 241–249
- 12) Sun J., Perfetti M. T., Santos W. L., 'A method for the deprotection of alkylpinacolyl boronate esters', *J. Org. Chem.* **2011**, *76*, 3571–3575
- 13) Darses S., Genet J.-P. 'Potassium organotrifluoroborates : New perspectives in organic synthesis', *Chem. Rev.* **2008**, *108*, 288–325.
- 14) Molander G. A., Daniel E. Petrillo D. E., 'Oxidation of hydroxyl-substituted organotrifluoroborates', J. Am. Chem. Soc. 2006, 128, 9634–9635
- 15) Vedejs E., Chapman R. W., Fields S. C., Schrimpf M. R. 'Conversion of arylboronic acids into potassium aryltrifluoroborates : Convenient precursors of arylboron difluoride Lewis acids', *J. Org. Chem.* **1995**, *60*, 3020–3027
- 16) Murphy J. M., Tzschucke C. C., Hartwig J. F., 'One-pot synthesis of arylboronic acids and aryl trifluoroborates by Ir-catalyzed borylation of arenes', *Org. Lett.* **2007**, *9*, 757–760
- 17) Darses S., Genet J.-P., 'Potassium trifluoro(organo)borates : New perspectives in organic chemistry', *Eur. J. Org. Chem.* **2003**, 4313–4327
- 18) Lennox A. J. J., Lloyd-Jones G. C., 'Preparation of organotrifluoroborate salts : Precipitationdriven equilibrium under non-etching conditions', *Angew. Chem. Int. Ed.* **2012**, *51*, 9385–9388
- 19) Lee S. J., Gray K. C., Paek J. S., Burke M. D., 'Simple, efficient, and modular syntheses of polyene natural products via iterative cross-coupling', *J. Am. Chem. Soc.* **2008**, *130*, 466–468
- 20) Gillis E. P., Burke M. D., 'Multistep synthesis of complex boronic acids from simple MIDA boronates', J. Am. Chem. Soc. 2008, 130, 14084–14085
- 21) Lennox A. J. J., Lloyd-Jones G. C., 'Selection of boron reagents for Suzuki–Miyaura coupling', *Chem. Soc. Rev.* **2014**, *43*, 412–443
- 22) Wagh R. B., Nagarkar J. M., 'Facile and effective approach for oxidation of boronic acids', *Tetrahedron Lett.* **2017**, *58*, 4572–4575
- 23) Brown H. C., Basavaiah D., Kulkarni S. U., 'A general and stereospecific synthesis of trans-alkenes and regiospecific synthesis of ketones via stepwise hydroboration', *J. Org. Chem.* **1982**, *47*, 3808–3810
- 24) Tripathy P. B., Matteson D. S., '1,2-Metallate rearrangement of boron ate-complexes', *Synthesis* **1990**, 200-206
- 25) Rao H., Fu H., Jiang Y., Zhao Y., 'Easy copper-catalyzed synthesis of primary aromatic amines by couplings aromatic boronic acids with aqueous ammonia at room temperature', *Angew. Chem. Int. Ed.* **2009**, *48*, 1114–1116
- 26) Makida Y., Marelli E., Slawin A. M. Z., Nolan S. P., 'Nickel-catalyzed carboxylation of organoboronates', *Chem. Commun.* **2014**, *50*, 8010-8013
- Alonso F., Beletskaya I. P., Yus M., 'Non-conventional methodologies for transition-metal catalyzed carbon–carbon coupling : A critical overview. Part 2: The Suzuki reaction', *Tetrahedron* 2008, 64, 3047–3101

- 28) Doucet H., 'Suzuki–Miyaura cross-coupling reactions of alkylboronic acid derivatives or alkyltrifluoroborates with aryl, alkenyl or alkyl halides and triflates', *Eur. J. Org. Chem.* **2008**, 2013–2030
- 29) Lee C.-Y., Cheon C.-H. *ACS Symposium Series*, ed. by Adiel Coca (Washingyon, DC: American Chemical Society, **2016**), MCCXXXVI, 483–523
- 30) Baker S. J., Tomsho J. W., Benkovic S. J., 'Boron-containing inhibitors of synthetases', *Chem. Soc. Rev.* **2011**, *40*, 4279-4285
- 31) Teicher B. A., Ara G., Herbst R., Palombella V. J., Adams J., 'The proteasome inhibitor PS-341 in cancer therapy', *Clin. Cancer Res.* **1999**, *5*, 2638-2645
- 32) Muz B., Ghazarian R. N., Ou M., Luderer M. J., Kusdono H. D., Azab A. K., 'Spotlight on Ixazomib : Potential in the treatment of multiple myeloma', *Drug Des. Devel. Ther.* **2016**, 217-226
- 33) Jinna S., Finch J. J., 'Spotlight on Tavaborole for the treatment of onychomycosis', *Drug Des. Devel. Ther.* **2015**, 6185- 6190
- 34) Akama T., Baker S. J., Zhang Y.-K., Hernandez V., Zhou H., Sanders V., Freund Y., Kimura R., Mapless K. R., Plattner J. J., 'Discovery and structure–activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis', *Bioorg. Med. Chem. Lett.* **2009**, *19*, 2129–2132
- 35) Li X., Hernandez V., Rock F. L., Choi W., Mak Y. S. L., Mohan M., Mao W., Zhou Y., Easom E. E., Plattner J. J., Zou W., Pérez-Herrán E., Giordano I., Mendoza-Losana A., Alemparte C., Rullas J., Angulo-Barturen I., Crouch S., Ortega F., Barros D., Alley M. R. K., 'Discovery of a potent and specific *M. Tuberculosis* Leucyl-TRNA synthetase inhibitor: (*S*)-3-(Aminomethyl)-4-chloro-7-(2hydroxyethoxy)benzo[*c*][1,2]oxaborol-1(3*H*)-OI (GSK656)', *J. Med. Chem.* **2017**, *60*, 8011–8026
- 36) Wang L., Xie S., Mia L., Chen Y., Lu W., '10-Boronic acid substituted Camptothecin as prodrug of SN-38', *Eur. J. Med. Chem.* **2016**, *116*, 84–89
- 37) Andersen K. A., Smith T. P., Lomax J. E., Raines R. T., 'Boronic acid for the traceless delivery of proteins into cells', *ACS Chem. Biol.* **2016**, *11*, 319–323
- 38) Zhang X., Alves D. S., Lou J., Hill S. D., Barrera F. N., Best M. D., 'Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding', *Chem. Commun.* 2018, 54, 6169–6172
- 39) Geier S. J., Vogels C. M., Westcott S. A. *ACS Symposium Series*, ed. by Adiel Coca (Washingyon, DC: American Chemical Society, **2016**), MCCXXXVI, 209–225
- 40) Beletskaya I., Pelter A., 'Hydroborations catalyzed by transition metal complexes', *Tetrahedron* **1997**, *53*, 4957–5026

- 41) Carroll A.-M., O'Sullivan T. P., Guiry P. J., 'The development of enantioselective rhodiumcatalyzed hydroboration of olefins', *Adv. Synth. Catal.* **2005**, *347*, 609–631
- 42) Crudden C. M., Edwards D., 'Catalytic asymmetric hydroboration : Recent advances and applications in carbon-carbon bond-forming reactions', *Eur. J. Org. Chem.* **2003**, 4695-4712
- 43) Evans D. A., Fu G. C. 'Amide-directed, iridium-catalyzed hydroboration of olefins : Documentation of regio- and stereochemical control in cyclic and acyclic systems', *J. Am. Chem. Soc.* **1991**, *113*, 4042-4043
- 44) Harrison K. N., Marks T. 'Organolanthanide-catalyzed hydroboration of olefins', *J. Am. Chem. Soc.* **1992**, *114*, 9220-9221
- 45) He X., Hartwig J. F. 'True metal-catalyzed hydroboration with titanium', *J. Am. Chem. Soc.* **1996**, *118*, 1696-1702
- 46) Pereira S., Srebnik M. 'Hydroboration of alkynes with pinacolborane catalyzed by HZrCp₂Cl', *Organometallics* **1995**, *14*, 3127-3128
- 47) Obligacion J. V., Chirik P. J., 'Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration', *Nat. Rev. Chem.* **2018**, *2*, 15–34
- 48) Scheuermann M. L., Johnson E. J., Chirik P. J., 'Alkene isomerization–hydroboration promoted by phosphine-ligated cobalt catalysts', *Org. Lett.* **2015**, *17*, 2716–2719
- 49) Zhang L., Zuo Z., Wan X., Huang Z., 'Cobalt-catalyzed enantioselective hydroboration of 1,1disubstituted aryl alkenes', J. Am. Chem. Soc. **2014**, 136, 15501–15504
- 50) Tamang S. R., Bedi D., Shafiei-Haghighi S., Smith C. R., Crawford C., Findlater M., 'Cobaltcatalyzed hydroboration of alkenes, aldehydes, and ketones', *Org. Lett.* **2018**, *20*, 6695-6700
- 51) Noh D., Chea H., Ju J., Yun J., 'Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes', *Angew. Chem. Int. Ed.* **2009**, *48*, 6062-6064
- 52) Xi Y., Hartwig J. F., 'Mechanistic studies of copper-catalyzed asymmetric hydroboration of alkenes', J. Am. Chem. Soc. **2017**, 139, 12758–12772
- 53) Wu J. Y., Moreau B., Ritter T., 'Iron-catalyzed 1,4-hydroboration of 1,3-dienes', J. Am. Chem. Soc. **2009**, *131*, 12915–12917
- 54) Wen H., Liu G., Huang Z., 'Recent advances in tridentate iron and cobalt complexes for alkene and alkyne hydrofunctionalizations', *Coord. Chem. Rev.* **2019**, *386*, 138–153
- 55) Hirano K., Yorimitsu H., Oshima K., 'Nickel-catalyzed β-boration of α,β-unsaturated esters and amides with bis(pinacolato)diboron', *Org. Lett.* **2007**, *9*, 5031–5033

- 56) Kamei T., Nishino S., Shimada T., 'Ni-catalyzed hydroboration and hydrosilylation of olefins with diboron and silylborane', *Tetrahedron Lett.* **2018**, *59*, 2896–2899
- 57) Trost M., Ball Z. T., 'Addition of metalloid hydrides to alkynes : Hydrometallation with boron, silicon, and tin', *Synthesis* **2005**, 853-887
- 58) Nagashima Y., Sasaki K., Suto T., Sato T., Chida N., 'Stereodivergent hydroboration of allenes', *Chem. Asian J.* **2018**, *13*, 1024–1028
- 59) Das U. K., Higman C. S., Gabidullin B., Hein J. E., Baker R. T. 'Efficient and selective iron-complexcatalyzed hydroboration of aldehydes', *ACS Catal.* **2018**, *8*, 1076–1081
- 60) Adams M. R., Tien C.-H., McDonald R., Speed A. W. H. 'Asymmetric imine hydroboration catalyzed by chiral diazaphospholenes', *Angew. Chem. Int. Ed.* **2017**, *56*, 16660-16663
- 61) Beenen M. A., An C., Ellman J. A. 'Asymmetric copper-catalyzed synthesis of α-amino boronate esters from *N-tert*-butanesulfinyl aldimines', *J. Am. Chem. Soc.* **2008**, *130*, 6910-6911
- 62) Molander G. A., Vargas F., 'β-Aminoethyltrifluoroborates : Efficient aminoethylations *via* Suzuki–Miyaura cross-coupling', *Org. Lett.* **2007**, *9*, 203–206
- 63) Geier M. J., Vogels C. M., Decken A., Wescott S. A., 'The transition metal catalyzed hydroboration of enamines', J. Organomet. Chem. **2009**, 694, 3154–3159
- 64) Bai X.-Y., Zhao W., Sun X., Li B.-J., 'Rhodium-catalyzed regiodivergent and enantioselective hydroboration of enamides', J. Am. Chem. Soc. **2019**, 141, 19870–19878
- 65) Couture A., Deniau E., Grandclaudon P., Hoarau C., 'Total syntheses of Taliscanine, Velutinam, and Enterocarpam II', J. Org. Chem. **1998**, 63, 3128–3132
- 66) Kundu, N. G., Khan M. W., Mukhopadhyay R., 'Heteroannulation through combined palladium catalyzed and Friedel-Crafts reactions strategy : Synthesis of 3-alkylidene isoindolin-1-ones', *Tetrahedron* **1999**, *55*, 12361–12376
- 67) Horiuchi M., Maoka T., Iwase N., Ohnishi K., 'Reinvestigation of structure of Porritoxin, a phytotoxin of *Alternaria Porri*', *J. Nat. Prod.* **2002**, *65*, 1204–1205
- 68) Moody C. J., Warrellow G. J., 'Synthesis of the isoindolobenzazepine alkaloid Lennoxamine', *Tetrahedron Lett.* **1987**, *28*, 6089–6092
- 69) Goto, G., Fukuda, N., 'Crystal forms of optically active isoindolines and their use for treatment of anxiety', Eur. Pat. Appl., **1994**, 602, 814, *Chem. Abstr.*, (**1994**), 134102

- Plowman J., Paul K. D., Atassi G., Harrison Jr S. D., Dykes D. J., Kabbe H. J., Narayanan V. L., Yoder
 O. C., 'Preclinical antitumor activity of Batracylin (NSC 320846)', *Invest. New Drugs* 1988, *6*, 147–153
- 71) Belliotti T. R., Brink W. A., Kesten S. R., Rubin J. R., Wustrow D. J., Zoski K. T., Whetzel S. Z., Corbin A. E., Pugsley T. A., Heffner T. G., Wise L. D., 'Isoindolinone enantiomers having affinity for the dopamine D4 receptor', *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1499–1502

CHAPITRE I

Synthèses des 3-méthylène isoindolinones

Les isoindolinones sont des hétérocycles importants qui possèdent de nombreuses activités biologiques. Plus particulièrement, les 3-méthylène isoindolinones ont suscité l'intérêt croissant de nombreux groupes de recherche ces dix dernières années et ont fait l'objet d'une attention toute particulière. La raison de l'engouement pour cette famille de composés hétérobicycliques bâtis autour d'un cycle lactamique à cinq chaînons, fusionné avec un noyau benzénique tient au fait qu'ils constituent la clef de voûte de nombreux alcaloïdes.

I. Introduction générale

La structure des 3-méthylène isoindolinones (Figure 1) est présente dans de nombreuses molécules naturelles de structures polycycliques complexes telles que les aristolactames (Figure 2), une famille très importante d'alcaloïdes structurellement et biogénétiquement liée aux aporphines. La source la plus importante de cette famille se trouve dans les feuilles et les racines des espèces d'*Aristolochia* qui ont été utilisées depuis l'antiquité en obstétrique et pour le traitement des piqûres de serpents. Ces plantes sont encore utilisées en médecine traditionnelle dans certaines régions de Turquie, d'Inde et d'Argentine.

Figure 1 : Structure des 3-méthylène isoindolinones

Ces énamides bicycliques ont également prouvé leur intérêt pharmacologique grâce à leurs nombreuses propriétés biologiques. Parmi elles, on trouve la Taliscanine (Figure 2), extraite de plantes de la famille des *Aristolochiaceae* qui possède des applications potentielles pour le traitement de la maladie d'Alzheimer, de l'impuissance ainsi que des accidents vasculaires cérébraux,⁷² ou encore l'Enterocarpam III (Figure 2) qui a prouvé son potentiel à inhiber la prolifération de cellules cancéreuse dans le foie et à induire leur mort apoptotique.⁷³

⁷² Priestap H. A. *Phytochemistry* **1985**, *24*, 849–852

⁷³ Banjerdpongchai R., Wudtiwai B., Pompimon W. Asian Pac. J. Cancer Prev. **2015**, 16, 1833–1837

Figure 2 : Exemples d'Aristolactames biologiquement actives

Parmi les 3-méthylène isoindolinones les plus communes, on trouve également la Fumaridine, la Fumaramidine, la Fumaramine ou encore la Narceine imide (Figure 3), isolées des plantes de la famille des *Fumariacées* et *Papavéracées*.⁷⁴ La Narceine imide a montré une puissante action inhibitrice sur l'aldéhyde réductase (ALR)⁷⁵ et sur l'alcool déshydrogénase du foie (LADH)⁷⁶ ainsi qu'un puissant pouvoir cytotoxique pour inhiber la cellule de leucémie murine.⁷⁷ Cette molécule a également servi d'intermédiaire clé pour l'élaboration d'une variété de substances biologiquement actives.

Figure 3 : Exemples de 3-méthylène isoindolinones d'origine naturelle

⁷⁴ Rys V., Couture A., Deniau E., Grandclaudon P. *Tetrahedron* **2003**, *59*, 6615–6619

⁷⁵ Paulová H., Kovář J., Plocek J., Slavík J. Collect. Czechoslov. Chem. Commun. **1987**, 52, 2338–2346

⁷⁶ Pavelka S., Kovář J. Collect. Czechoslov. Chem. Commun. **1975**, 40, 753–768

⁷⁷ Fuska J., Fuskova A., Proska B. *Neoplasma* **1985**, *32*, 407-414

On peut citer également la Magallanesine (Figure 4) isolée de la plante *Berberis Darwinii*, un arbuste originaire d'Amérique du sud⁷⁸ qui possède un squelette original très peu rependu dans le milieu naturel.

Figure 4 : Structure de la Magallanesine

Ces entités chimiques se retrouvent également au cœur de composés utilisés dans le domaine de la chimie thérapeutique comme par exemple l'AKS 186 (Figure 5) qui est un inhibiteur potentiel de la vasoconstriction induite par l'analogue A2 du thromboxane.⁷⁹

Figure 5 : Exemple de 3-méthylène isoindolinones biologiquement active

II. Synthèse des 3-méthylènes isoindolinones

Les 3-méthylène isoindolinones sont des structures centrales importantes retrouvées dans de nombreux produits naturels et pharmaceutiques comme vu précédemment. Par conséquent, une attention considérable a été dédiée au développement de nouvelles stratégies pour la construction de ce motif. Un examen bibliographique se révèle nécessaire afin de dresser un tableau des différentes voies d'accès développées pour obtenir ces composés. Le schéma suivant résume les principales voies de synthèse vers les 3-méthylène isoindolinones qui seront décrites par la suite (Schéma 1).

⁷⁸ Yoneda R., Sakamoto Y., Oketo Y., Harusawa S., Kurihara T. *Tetrahedron* **1996**, *52*, 14563–14576

⁷⁹ Kato Y., Takemoto M., Achiwa K. *Chem. Pharm. Bull.* **1999**, 47, 529–535

Ces espèces insaturées hautement réactives pourront être accessibles à partir de précurseurs présentant divers degrés de fonctionnalisations tels que les imides, les lactames, les amides, les cétimines, les cétoximes ou les céto-acides et dérivés (Schéma 1).

Schéma 1 : Principales voies de synthèse des 3-méthylène isoindolinones

1. Synthèse des 3-méthylène isoindolinones par méthylènation des imides et dérivés

La technique la plus couramment utilisée pour synthétiser les 3-méthylène isoindolinones s'appuie sur une réaction de méthylènation effectuée à partir d'un phtalimide poly-substitué (Schéma 2). Ces derniers peuvent être générés selon deux procédés: le premier met en œuvre la condensation d'une amine primaire sur un anhydride phtalique alors que le deuxième procédé préconise l'alkylation préalable du phtalimide.

Schéma 2 : Méthylènation des phtalimides N-substitués

Par la suite, l'addition d'un réactif de Grignard sur ces phtalimides *N*-substitués fournit une 3hydroxy isoindolinone qui est suivie d'une réaction de déshydratation afin de générer la double liaison exocyclique de l'alkyl ou arylméthylène isoindolinone (Schéma 3).^{80,81,82} Actuellement, les magnésiens sont concurrencés par d'autres réactifs tels que les zinciques ou les samariens.

Schéma 3 : Déshydratation des 3-hydroxy isoindolinones

Les 3-hydroxy isoindolinones sont également accessibles à partir des phtalimides via une réaction d'addition radicalaire photoinitiée entre un anion du phtalimide et un donneur d'hydrogène (RH) (Schéma 4).^{83,84}

Schéma 4 : Synthèse des 3-méthylène isoindolinones à partir de phtalimides par addition radicalaire

Une alternative à l'addition de réactifs de Grignard consiste à réaliser une addition photodécarboxylante d'alkyl ou arylcarboxylates sur des phtalimides *N*-substitués via un transfert d'électron photoinduit (Schéma 5).⁸⁵

⁸⁰ Araki S., Shimizu T., Johar P. S., Jin S. J., Butsugan Y. *J. Org. Chem.* **1991**, *56*, 2538–2542

⁸¹ Jeong I.-Y., Lee W. S., Goto S., Sano S., Shiro M., Nagao Y. *Tetrahedron* **1998**, *54*, 14437–14454

⁸² Griesbeck A. G., Warzecha K.-D., Neudörfl J. M., Görner H. Synlett **2004**, 2347–2350

⁸³ Sánchez-Sánchez C., Pérez-Inestrosa E., Garcia-Segura R., Suau R. Tetrahedron **2002**, 7267–7274

⁸⁴ Freccero M., Fasani E., AlbiniA. J. Org. Chem. **1993**, 58, 1740–1745

⁸⁵ Griesbeck A. G., Kramer W., Oelgemöller M. Synlett **1999**, 1169–1178

CHAPITRE I : Synthèse des 3-méthylène isoindolinones

Schéma 5 : Addition photodécarboxylante sur un phtalimide

Dans un autre registre, une voie de synthèse originale vers les 3-hydroxy isoindolinones s'appuie sur une cyclisation anionique de type Parham (Schéma 6).⁸⁶ Lors de cette réaction, une espèce lithiée aromatique va être générée à partir d'un *N*-acyl-2-bromobenzamide via une réaction d'échange halogène-lithium. Le carbanion ainsi formé va ensuite être engagé dans une cyclisation anionique intramoléculaire pour conduire à une 3-hydroxy isoindolinone qui pourra être finalement déshydratée en milieu acide pour conduire aux énamides ciblés.

Schéma 6 : Synthèse des 3-méthylène isoindolinones par cyclisation anionique

La très grande réactivité du carbonyle des phtalimides a également permis de les engager dans des réactions d'oléfination de type Wittig par réaction avec un ylure de phosphore (Schéma 7).⁸⁷ Cette réactivité propre aux imides permet de créer directement la double liaison carbone-carbone exocyclique avec une très bonne stéréosélectivité.

Schéma 7 : Réaction de Wittig sur les phtalimides

⁸⁶ Hendi M. S., Natalie K. J., Hendi S. B., Campbell J. A., Greenwood T. D., Wolfe J. F. *Tetrahedron Lett.* **1989**, *30*, 275–278

⁸⁷ Flitsch W., Peters H. Tetrahedron Lett. **1969**, 10, 1161–1162

Une alternative à l'utilisation des réactifs de Wittig a été développée par l'équipe de Petasis et s'appuie sur une réaction de méthylènation effectuée à l'aide de diméthyltitanocène (Schéma 8).⁸⁸

Schéma 8 : Méthylènation des phtalimides par réaction avec le diméthyltitanocène

Cependant, la principale limitation de ces différentes méthodes, malgré d'excellents rendements, repose sur le manque de régiosélectivité de l'addition sur un des carbonyles du phatalimide. En effet, dans le cas des modèles non symétriques, cette voie de synthèse conduira invariablement à des mélanges de composés difficilement séparables, mis à part les cas où un fort encombrement stérique généré par un substituant de la partie aromatique du phtalimide empêchera l'attaque du réactif. Cette possibilité relève de cas exceptionnels difficilement prévisibles.

Le carbone de la fonction imine étant plus réactif que celui du carbonyle, les 3-imino isoindolinones peuvent remplacer avantageusement les phtalimides correspondants. Ces 3-iminoisoindolinones peuvent être synthétisées via une réaction de cyclisation impliquant le traitement d'un ester *ortho*-cyanobenzoïque par de l'ammoniac ou une amine primaire et peuvent conduire aux ènelactames par traitement basique en présence d'un aldéhyde approprié (Schéma 9).⁸⁹

Schéma 9 : Synthèse des 3-méthylène isoindolinones à partir d'une 3-iminoisoindolinone

⁸⁸ Petasis N. A., Lu S.-P. *Tetrahedron Lett.* **1995**, *36*, 2393–2396

⁸⁹ Guillaumel J., Boccara N., Demerseman P., Royer R., Bideau J. P., Cotrait M., Platzer N. *J. Het. Chem.* **1990**, *27*, 605–614

2. Synthèse des 3-méthylène isoindolinones à partir des lactames par oléfination

Une stratégie complémentaire des précédentes consistant dans un premier temps à remplacer le groupement hydroxyle par un groupement benzotriazolyl a été développée au laboratoire (Schéma 10). L'introduction de ce groupement benzotriazolyl a ensuite permis d'effectuer une réaction d'alkylation en position 3 du cycle lactamique enchaînée avec une réaction d'élimination acido-catalysée pour former la double liaison carbone-carbone de l'énamide.⁹⁰

Schéma 10 : Synthèse des 3-méthylène isoindolinones par élimination de benzotriazole

Une autre stratégie développée il y a quelques années au laboratoire pour accéder aux 3méthylène isoindolinones poly-substituées s'appuie sur une réaction d'Horner-Wittig entre une lactame phosphorylée en position 3 et un aldéhyde (Schéma 11).^{91,92,93,94,95}

Schéma 11 : Synthèse des 3-méthylène isoindolinones par réaction d'Horner-Wittig

Il faut noter que dans cette séquence réactionnelle, l'ylure de phosphore nécessaire à la réaction d'oléfination peut être obtenu via une cyclisation anionique originale effectuée entre un α -

⁹⁰ Deniau E., Enders D. *Tetrahedron Lett.* **2002**, *43*, 8055–8058

⁹¹ Couture A., Deniau E., Grandclaudon P. *Tetrahedron* **1997**, *53*, 10313-10330

⁹² Couture A., Deniau E., Grandclaudon P., Lebrun S. Synlett **1997**, 1475-1477

⁹³ Couture A., Deniau E., Grandclaudon P., Hoarau C. *J. Org. Chem.* **1998**, *63*, 3128-3132

⁹⁴ Couture A., Deniau E., Grandclaudon P., Hoarau C. *Tetrahedron* **2000**, *56*, 1491-1499

⁹⁵ Moreau A., Couture A., Deniau E., Grandclaudon P. *J. Org. Chem.* **2004**, 69, 4527-4530

aminocarbanion et une entité électrophile de type aryne (X=CI) ou par substitution nucléophile aromatique intramoléculaire (X=OMe). Cette stratégie a notamment permis l'introduction de substituants sur le noyau aromatique mais reste cantonnée à la synthèse d'énamides substitués sur la double liaison carbone-carbone, la réaction d'Horner-Wittig ayant donné de très mauvais rendements avec le formaldéhyde.

3. Synthèse des 3-méthylène isoindolinones à partir des amides par hydroamination intramoléculaire d'alcynes

L'hydroamination intramoléculaire des alcynes qui, lorsqu'elle est effectuée à partir d'un ortho-alkynylbenzamide polysubstitué, a permis la synthèse de 3-méthylène isoindolinones polysubstituées (Schéma 12). Cette cyclisation anionique de type 5-exo-dig conduite en milieu basique ou en présence de fluorure de tétra-*n*-butylammonium (TBAF) pourra être effectuée indifféremment à partir d'un alcyne « vrai » ou d'un alcyne protégé par un groupement triméthylsilyle (TMS).^{96,97,98,99,100}

Schéma 12: Hydroamination intramoléculaire d'alcynes à partir d'un ortho-alkynylbenzamide

Alper et al ont montré qu'il était possible de générer les *ortho*-alkynylbenzamides nécessaires à la réaction d'hydroamination intramoléculaire à partir des dérivés halogénés aromatiques correspondants via une réaction d'amino-carbonylation pallado-catalysée effectuée en milieu basique sous une atmosphère de monoxyde de carbone (Schéma 13).¹⁰¹

Schéma 13 : Hydroamination intramoléculaire d'alcynes à partir d'un ortho-alkynylbenzamide généré in-situ

⁹⁶ Kundu N. G., Wahab Khan M. *Tetrahedron* **2000**, *56*, 4777-4792

⁹⁷ Kanazawa C., Terada M. *Chem. Asian. J.* **2009**, *4*, 1668-1672

⁹⁸ Bianchi G., Chiarini M., Marinelli F., Rossi L., *Adv. Synth. Catal.* **2010**, *352*, 136-142

⁹⁹ Bubar A., Estey P., Lawson M., Eisler S. J.Org. Chem. **2012**, 77, 1572-1578

¹⁰⁰ Mancuso R., Pomelli C. S., Raut D. S., Marino N., Giofre S. V., Romeo R., Sartini S., Chiappe C., Gabriele B. *Chemistry Select* **2017**, *2*, 894-899

¹⁰¹ Cao H., McNamee L., Alper H. Org. Lett. **2008**, 10, 5281-5284

4. Synthèse des 3-méthylène isoindolinones par carbonylation des cétimines

Plus récemment diverses méthodologies de synthèse basées sur l'utilisation de catalyseur métalliques homogènes ont été développées avec succès pour accéder aux 3-méthylène isoindolinones polysubstituées. On peut citer à titre d'exemple les travaux de Hua sur la cyclocarbonylation des *ortho*-chlorocétimines effectuée à l'aide d'un catalyseur au palladium en présence de monoxyde de carbone (Schéma 14).¹⁰²

Schéma 14: Cyclocarbonylation des ortho-chlorocétimines

Wu et al ont mis au point la cyclocarbonylation des cétimines pallado-catalysée par activation de liaison CH en utilisant le molybdène(0) hexacarbonyle comme source de monoxyde de carbone (Schéma 15).¹⁰³

Schéma 15 : Cyclocarbonylation des cétimines

¹⁰² Ju. J., Qi C., Zheng L., Hua R. *Tetrahedron Lett.* **2013**, *54*, 5159-5161

¹⁰³ Wang Z., Zhu F., Li Y., Wu X.-F. *ChemCatChem* **2017**, *9*, 94-98

Cho *et al* ont développé une réaction de cyclocarbonylation pallado-catalysée d'une cétimine générée in situ à partir d'une *ortho*-bromoacétophénone et d'une amine primaire sous pression de monoxyde de carbone (Schéma 16).¹⁰⁴

Schéma 16 : Cyclocarbonylation des cétimines générées in situ

5. Synthèse des 3-méthylène isoindolinones par amidation des cétoximes

Il est également possible de créer de façon concomitante le cycle lactamique et la double liaison carbone-carbone exocyclique des 3-méthylène isoindolinones via des réactions de cycloaminocarbonylation des cétoximes. La réaction pallado-catalysée développée par Wang et al représentée sur le schéma 17 ci-dessous s'appuie sur une *ortho*-amidation décarboxylante d'une *O*-méthyl cétoxime effectuée à l'aide d'un acide oxamique.¹⁰⁵

Schéma 17: Amidation des cétoximes pallado-catalysée

Li et al ont démontré qu'il était possible d'effectuer cette réaction de cycloamidation par activation de liaison CH en présence d'un isocyanate et d'un catalyseur au rhodium(III) (Schéma 18).¹⁰⁶

Schéma 18: Amidation des cétoximes catalysée au rhodium

¹⁰⁴ Cho C. S., Shim H. S., Choi H.-J., Kim T.-J., Shim S. C. Synth. Commun. **2002**, *32*, 1821–1827

¹⁰⁵ Jing K., Cui P.-C., Wang G.-W. *Chem.Commun.* **2019**, *55*, 12551-12554

¹⁰⁶ Zhou B., Hou W., Yang Y., Li Y. *Chem. Eur. J.* **2013**, *19*, 4701-4706

6. Synthèse des 3-méthylène isoindolinones par réaction de Heck réductrice intramoléculaire d'ynamides

Une voie de synthèse originale vers les 3-méthylène isoindolinones représentée sur le schéma 19 a été développée par J. Cossy *et al*. Elle s'appuie sur une réaction de Heck intramoléculaire effectuée en conditions réductrices à partir d'un ynamide.^{107,108}

Schéma 19 : Réaction de Heck réductrice d'ynamides

7. Synthèse des 3-méthylène isoindolinones par annélation des acides 2acétylbenzoïques et dérivés

Lors de cette réaction un acide ou un ester *ortho*-acétylbenzoïque va réagir avec une amine primaire pour conduire à la cétimine correspondante qui va ensuite se cycliser pour conduire aux 3-méthylène isoindolinones ciblées (Schéma 20).^{109,110,111,112} Il faut noter que cette réaction peut être activée thermiquement ou être effectuée sous irradiation micro-ondes. Cette voie de synthèse permettra d'accéder rapidement et efficacement aux produits ciblés mais sera difficilement compatible avec la synthèse de composés substitués sur le noyau benzénique.

Schéma 20 : Condensation d'un acide où d'un ester ortho-acétylbenzoïque avec une amine primaire

¹⁰⁷ Couty S., Liegault B., Meyer C., Cossy J. Org. Lett. **2004**, *6*, 2511-2514

¹⁰⁸ Couty S., Liegault B., Meyer C., Cossy J. *Tetrahedron* **2006**, *62*, 3882-3895

¹⁰⁹ Kim G., Kim J. H., Kim W.-J., Kim Y. A. *Tetrahedron Lett.* **2003**, 44, 8207-8209

¹¹⁰ Dai X.-J., Liu M., Zhang J.-Y., Xu X.-Y., Yuan W.-C., Zhang X.-M. ChemistrySelect **2019**, 4, 4458–4461

¹¹¹ El-Harairy A., Bingbing Lai Y., Vaccaro L., Li M., Gu Y. *Adv. Synth. Catal.* **2019**, *361*, 3342-3350

¹¹² Sharma S., Nayal O. S., Sharma A., Rana R., Maurya S. K. *ChemistrySelect* **2019**, *4*, 1985–1988

Cet examen de la littérature nous a permis de faire un bilan non-exhaustif des nombreuses méthodes d'accès aux 3-méthylène isoindolinones. Pour notre projet, trois synthèses complémentaires ont été choisies permettant ainsi de contourner les limites de chacune d'entre elles et d'accéder à une gamme la plus diversifiée possible de 3-méthylène isoindolinones à la fois sur le noyau aromatique et sur l'atome d'azote du cycle lactamique.

III. Première approche synthétique : à partir de l'anhydride phtalique

La première approche que nous avons développée au laboratoire a été réalisée à partir de l'anhydride phtalique. Cette méthodologie de synthèse a permis d'obtenir nos composés ciblés **4a-I**, **5** en trois étapes (Schéma 21).

Schéma 21 : Synthèse de nos modèles à partir de l'anhydride phtalique

1. Etape 1 : Formation du phtalimide 1a-l

La première étape de cette synthèse consiste en la condensation de l'anhydride phtalique et d'une amine primaire pour former le phtalimide correspondant. Cette réaction est effectuée dans le toluène à reflux avec un montage Dean-Stark permettant d'éliminer l'eau formée et ainsi déplacer l'équilibre de la réaction vers la formation du phtalimide (Schéma 22).¹¹³

Schéma 22 : Synthèse des phtalimides intermédiaires

¹¹³ Vasilevskaya T. N., Yakovleva O. D., Kobrin V. S. Synth. Commun. **1995**, 25, 2463–2465

Lors de cette synthèse, différentes amines et hydrazines primaires ont été utilisées permettant d'accéder à une gamme très diversifiée de 3-méthylène isoindolinones. Celles-ci sont répertoriées et numérotées dans la figure 6 ci-dessous.

Figure 6 : Amines et hydrazines utilisées pour la synthèse des phtalimides

La stratégie de synthèse envisagée ici permet l'incorporation d'amines aromatiques (composé **1c**), d'amines primaires aliphatiques linéaires et cycliques (composés **1e** et **1d**) et benzyliques (composés **1a** et **1b**), d'amines fonctionnalisées par divers groupements de type diméthylamino et diméthylacétal (composés **1f** et **1h**) mais également d'hydrazines (composé **1g** et **1i**). Cette technique nous a également permis d'introduire dans nos modèles des d'amines chirales (appelées par la suite auxiliaires chiraux) de type α -méthylbenzylamine et (*S*)-AminoMéthylProlinol (SAMP) (composés **1i-l**). Cette première étape de la synthèse nous a permis au final d'accéder à 12 phtalimides après purification sur colonne de silice avec de bons rendements allant de 68 à 99% (Tableau 1).

Tableau 1 : Synthèse des phtalimides 1a-l

Composé	R ₁	Rendement
1a	OMe	99%
1b		83%
1c	⋛ —∕́—∕ОМе	95%
1d	ξ<->	69%
1e	\$	68%
1f	₹N	70%
1g	ξ−N ́	84%
1h	OMe ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	88%
1i	ОМе	97%
1j	-OMe	83%
1k		68%
11	N OMe	76%

Contrairement à la synthèse des composés (**1i-k**) qui utilise des auxiliaires chiraux commerciaux et relativement bon marché, il est important de noter que la synthèse du composé **1** a nécessité dans un premier temps la préparation du (*S*)-AminoMéthylProlinol **2**. Bien que ce réactif soit commercial, il est nettement plus intéressant, d'un point de vue financier, de le synthétiser au laboratoire à grande échelle (**1** mol). Cette synthèse a été effectuée en six étapes à partir de la (*S*)-proline (Schéma 23).

Cette séquence réactionnelle a consisté à réaliser en trois étapes la *O*-alkylation du prolinol obtenu par réduction poussée de la proline. Une nitrosation opérée à l'aide du nitrite de *t*-butyle suivie de la réduction du groupement nitroso par le LiAlH₄ conduit finalement à l'hydrazine ciblée **2** (**SAMP**) avec un rendement global avoisinant les 60%. (*Schéma 23*). La mesure du pouvoir rotatoire permet de vérifier la pureté optique de notre copule ainsi synthétisée.

Schéma 23 : Synthèse du SAMP

2. Etapes 2 et 3 : addition d'un iodure d'alkylmagnésium suivie de la déshydratation des hémiaminals intermédiaires

La seconde étape de cette voie de synthèse utilise la réaction de Grignard qui est une addition entre un halogénure d'organomagnésien et une fonction carbonyle. Cette réaction connue depuis plus d'un siècle a été découverte par le chimiste français du même nom qui a reçu le prix Nobel de 1912 pour ce travail. Cette réaction est encore très utilisée en chimie organique pour la formation de liaison carbone-carbone. Ici, nous avons utilisé un iodure d'alkylmagnésium généré *in situ* qui s'additionne sur une des deux fonctions carbonyles des phtalimides (**1a-I)** conduisant ainsi aux hémiaminals. Ces composés intermédiaires n'ont pas été purifiés et ont directement été engagés dans la troisième étape de la synthèse à cause de leur faible stabilité (Schéma 24). La dernière étape de cette synthèse consiste en la déshydratation des hémiaminals permettant ainsi la formation de la double liaison exocyclique pour conduire aux composés ciblés. Les 3-hydroxy isoindolinones ont été déshydratées en utilisant une quantité catalytique d'acide *para*toluène sulfonique (APTS) afin de faciliter l'élimination de l'alcool. Cette réaction a été réalisée à l'aide d'un Dean-Stark permettant d'éliminer l'eau et de déplacer le sens de la réaction en faveur des composés ciblés (**4a-l** et **5**).

Schéma 24: Synthèse des 3-méthylène isoindolinones par déshydratation des hémaminals

L'iodure de méthylmagnésium a été utilisé avec les 12 phtalimides (**1a-l**) synthétisés précédemment afin d'accéder aux 3-méthylène isoindolinones non substituées sur la double liaison exocyclique (Tableau 2, composés **4a-l**). De bons rendements ont été observés pour 10 de ces composés allant de 41 à 70%. Cependant, en raison de problèmes liés à la purification des produits formés, les composés **4d** et **4e** n'ont pu être obtenus par cette méthode. Afin d'obtenir la 3-butylidène isoindolinone **5**, l'iodure de butylmagnésium a été additionné sur l'imide **1a** et a permis d'obtenir l'énamide désirée, après déshydratation de l'hémiaminal obtenu intermédiairement avec un très bon rendement de 95% et une très bonne stéréosélectivité (Tableau 2, composé **5**) (Schéma 25).

Schéma 25 : Synthèse de la 3-butylidène isoindolinone 5

CHAPITRE I : Synthèse des 3-méthylène isoindolinones

0 N-R ₁	$ \frac{\underset{k_{2}CH_{2}Mgl (in situ, 2 eq)}{Et_{2}O, THF, t.a., 3 h}}{\underset{sous Argon}{\text{Sous Argon}}} \qquad \qquad$	APTS (10 mol%)	R^2
1a-I			4a-I, 5
Composé	R ₁	R ₂	Rendement
4a	OMe	-H	70%
4b	w.	-H	55%
4c	ξ√-OMe	-H	51%
4d	₹-	-H	-
4e	₹	-H	-
4f	₹N	-H	41%
4g	ξ−N (-H	61%
4h	OMe 	-H	52%
4i	OMe	-H	64%
4j	OMe	-H	61%
4k		-H	46%
41	N OMe	-H	61%
5	OMe	-CH ₂ CH ₂ CH ₃	95%

Tableau 2 : Synthèse des 3-méthylènes isoindolinones

3. Bilan

Cette voie de synthèse a conduit à l'obtention de 11 énamides avec des rendements globaux variant de 29 à 94% (Figure 7).

Figure 7 : Résultats globaux de la synthèse des 3-méthylène isoindolinones

Cette première méthode s'est révélée très efficace pour la synthèse de nos composés et nous a permis d'accéder à une gamme très diversifiée de 3-méthylène isoindolinones (**4a-c, 4f-l, 5**) en faisant varier la nature des substituants se trouvant sur l'atome d'azote lactamique ou en ajoutant un substituant sur la double liaison méthylènique des isoindolinones. Cependant cette synthèse possède certaines limites, notamment le nombre d'étapes permettant d'accéder aux composés.

IV. Deuxième approche synthétique : synthèse en une étape à partir de l'acide *ortho*acétylbenzoïque

Une deuxième approche synthétique plus directe a donc été mise en œuvre pour accéder aux 3-méthylène isoindolinones, l'objectif étant de contourner les limites de la première méthode. Cette deuxième approche a consisté à condenser l'acide *ortho*-acétylbenzoïque avec une amine primaire sous activation thermique ou micro-ondes (Schéma 26).

Schéma 26 : Synthèse des 3-méthylène isoindolinones à partir de l'acide ortho-acétylbenzoïque

1. Activation thermique

Dans un premier temps, l'acide *ortho*-acétylbenzoïque et diverses amines primaires ont été chauffé à reflux dans le toluène pendant 12 heures. Cette opération a été effectuée à l'aide d'un Dean-Stark pour permettre l'élimination de l'eau formée et déplacer l'équilibre de la réaction vers la formation des énamides. Après chromatographie sur colonne de silice, les composés (**4a-b, 4e, 4i**) ont été obtenus avec des rendements variant de 31 à 66% (Tableau 3).

Bien qu'efficace pour la formation des composés **4a** et **4b**, les rendements s'avèrent beaucoup plus faibles pour les composés **4e** et **4i** (respectivement 33% et 31%). Cette réaction nécessite de plus un temps de chauffage très long. Nous avons donc décidé d'utiliser cette même méthode mais en utilisant une activation sous micro-ondes ce qui devrait permettre de raccourcir considérablement le temps de réaction.

2. Activation micro-ondes

Les micro-ondes ont été introduites comme force motrice dans le domaine de la réaction chimique à la fin des années 1980. Depuis, des milliers d'articles sont apparus concernant les synthèses organiques assistées par micro-ondes. En raison de la capacité de certains composés à transformer l'énergie électromagnétique en chaleur, le rayonnement micro-ondes a été largement utilisé en chimie comme source d'énergie. L'irradiation micro-ondes présente plusieurs avantages par rapport au chauffage conventionnel, notamment un chauffage homogène et rapide ainsi que des accélérations spectaculaires des réactions en raison de la vitesse de chauffage.^{114,115}

Tableau 4 : Résultats de la synthèse des 3-méthylène isoindolinones par activation micro-ondes

ОН	R ₁ -NH ₂ (1 eq) APTS (10 mol%)	
	micro-ondes 1 h, 150 °C	N-R1

Enamide	Substituant R ₁	Rendement	Rendement
		Sous micro-ondes	thermique
4a	OMe	88%	66%
4b		90%	58%
4e	€	89%	33%
4i	-OMe	98%	31%

¹¹⁴ Horikoshi S., Watanabe T., Narita A., Suzuki Y., Serpone N. Sci. Rep. **2018**, 4, 5151

¹¹⁵ De la Hoz A., Díaz-Ortiz A., Prieto P. in *Green Chemistry Series*, ed. by Georgios Stefanidis and Andrzej Stankiewicz, pp. 1–33

La même synthèse a donc été réalisée sous irradiation micro-ondes pendant une heure à 150 °C dans le toluène et nous a permis d'obtenir de biens meilleurs rendements allant de 89 à 98% pour les 4 composés (**4a-b, 4e, 4i**) après purification sur colonne de silice (Tableau 4). L'activation micro-onde s'étant révélée plus efficace que l'activation thermique, nous avons décidé de l'étendre à la synthèse de méthylène isoindolinones obtenues précédemment à partir des phtalimides. Cette synthèse nous a alors permis d'accéder à cinq méthylène isoindolinones (**4c,d, 4f-h**) avec des rendements allant de 32 à 88% (Tableau 5). La limite majeure de cette méthodologie de synthèse réside sur le fait qu'elle donne de faibles rendements avec les amines aromatiques peu nucléophiles et les hydrazines (composés **4c** et **4g**).

Tableau 5 : Résultats de la synthèse des 3-méthylène isoindolinones par activation micro-ondes

0	1 h, 150 °C	
Enamide	Substituant R_1	Rendement micro-ondes
4c	ξ√OMe	32%
4d	₹—	68%
4f	₹N	62%
4g	ξ− N	32%
4h	ξ →−OMe MeO	88%

OII R_1-NH_2 (1 eq) O

APTS (10 mol%)

3. Bilan comparatif

Cette deuxième voie de synthèse en une étape s'est avérée très efficace et a permis d'accéder aux 3-méthylène isoindolinones ciblées avec des rendements tout à fait corrects. Elle a notamment permis la synthèse des énamides **4d** et **4e** inaccessibles à partir des imides via la première voie de synthèse testée.

Cependant nous avons observé des rendements nettement inférieurs à ceux obtenus par la première méthode pour les composés **4c** et **4g**. Ces résultats montrent une belle complémentarité entre les deux méthodes utilisées pour la synthèse des 3-méthylène isoindolinones puisque les limites d'un point de vue du rendement d'une voie de synthèse sont corrigées par l'autre.

		1 ^{ère} approche	2 ^{ème} approche
4a	O N O Me	70%	88%
4b		50%	90%
4c	NOMe	49%	32%
4d		0%	68%
4e		0%	89%
4f	O N N N	29%	62%
4g	O N-N	51%	32%
4h	O OMe N OMe	46%	88%
4i		62%	98%

Tableau 6 : Comparaison des résultats des 2 voies de synthèse des 3-méthylène isoindolinones

La synthèse sous micro-ondes à partir de l'acide *ortho*-acétylbenzoïque reste à privilégier en raison de son nombre d'étapes très limité et des temps de réactions très courts pour la plupart des modèles. Bien que complémentaires, ces deux voies de synthèses ont une limite majeure. En effet, elles ne permettent pas d'accéder aux méthylène isoindolinones substituées sur le noyau aromatique. Afin de diversifier encore un peu plus notre gamme de 3-méthylène isoindolinones et nous permettre d'introduire divers substituants sur le noyau benzénique, une troisième voie de synthèse a été testée.

V. Troisième approche synthétique : par hydroamination intramoléculaire d'alcynes

Cette dernière approche synthétique qui devrait nous permettre d'accéder aux 3-méthylène isoindolinones **6**, **7** est illustrée sur le schéma de rétrosynthèse 26 ci-dessous. Elle repose sur une réaction d'hydroamination intramoléculaire de 2-aryléthynyl benzamides **12**, **13**. Ces derniers seront accessibles via une réaction pallado-catalysée de type Sonogashira à partir des benzamides *ortho* iodés **10**, **11** qui seront synthétisés quant à eux à partir des acides *ortho*-iodobenzoïques correspondants **8**, **9** (Schéma 27).

Schéma 27 : Schéma de rétrosynthèse des 3-méthylène isoindolinones par hydroamination intramoléculaire d'alcynes

1. Synthèses préalables des acides ortho-iodobenzoïque 8, 9

Les acides *ortho*-iodobenzoïque substitués **8**, **9** ont été synthétisés en 2 étapes à partir des alcools benzyliques correspondants **14**, **15**. Ces derniers ont tout d'abord été iodés en position *ortho* par une simple réaction d'halogénation électrophile aromatique en présence d'iode et d'acétate d'argent permettant ainsi d'accéder aux composés **16**, **17** avec de bons rendements respectivement de 84 et 94%. L'oxydation des alcools benzyliques **16**, **17** a quant à elle été effectuée en 2 temps. Dans un premier temps l'action de pyridinium chlorochromate (PCC) a permis d'accéder aux aldéhydes intermédiaires qui ont directement été engagés dans un second temps dans une réaction

d'oxydation de Pinnick en présence de chlorite de sodium et d'acide sulfamique afin d'obtenir les acides correspondant **8**, **9** avec de très bons rendements respectivement de 93 et 68 % (Schéma 28).

Schéma 28 : Synthèse des acides ortho-iodobenzoïques 8,9

2. Synthèse des benzamides 10, 11

Les acides *ortho*-iodobenzoïques **8**, **9** peuvent être convertis très facilement en chlorures d'acides par un simple traitement au chlorure de thionyle en présence d'une quantité catalytique de diméthylformamide. En raison de la grande réactivité des chlorures d'acides, ces composés sont utilisés directement dans l'étape suivante de condensation sans être préalablement purifiés. Les benzamides **10**, **11** sont alors préparés par une réaction d'acylation classique de type Schotten-Baumann par simple mise en contact des chlorures d'aroyle intermédiaires avec la *para*-méthoxybenzylamine. Ces 2 benzamides **10**, **11** ont été obtenus avec des rendements corrects de l'ordre de 50% après purification (Schéma 29). Le groupement *para*-méthoxybenzyle sera désormais représenté par le symbole PMB.

Schéma 29 : Synthèse des benzamides 10, 11

3. Couplage pallado-catalysé de type Sonogashira à partir des benzamides 10, 11

L'incorporation d'un alcyne dans nos molécules a été effectuée grâce à un couplage palladocatalysé de type Sonogashira. Dans notre cas, cette réaction a permis un couplage direct entre l'atome d'iode des benzamides **10**, **11** et un alcyne terminal, ici l'éthynyltriméthylsilane, en présence d'un complexe de palladium, d'iodure de cuivre et de triéthylamine. Cette synthèse a permis d'obtenir les 2-aryléthynyl benzamides **12**, **13** avec de bons rendements de 91 et 65% (Schéma 30).

Schéma 30 : Synthèse des 2-aryléthynyl benzamides 12, 13 par couplage de Sonogashira

Cette réaction de couplage pallado-catalysée a été publiée pour la première fois en 1975 par Sonogashira *et al* et est encore très utilisée de nos jours en chimie organique pour la formation de liaisons carbone-carbone.¹¹⁶ Cette réaction a dans un premier temps été réalisée dans des conditions dures avec de hautes températures de réactions en présence de palladium. Plus tard l'utilisation de catalyseurs au cuivre en plus des complexes de palladium a permis d'effectuer cette réaction dans des conditions plus douces et avec de meilleurs rendements.

Le mécanisme de la réaction de Sonogashira associe deux cycles catalytiques faisant intervenir des complexes de palladium et des complexes de cuivre (Schéma 31). Dans le cycle catalytique du cuivre, le proton de l'alcyne est rendu plus acide grâce à la liaison du cuivre sur celui-ci et permet, à l'aide d'une base, d'obtenir l'acétylure de cuivre. Dans le cycle du palladium, le précatalyseur de palladium est activé pour former un complexe catalytique réactif Pd(0) grâce aux ligands de la réaction, le plus souvent des phosphines. Le catalyseur Pd(0) actif est ensuite impliqué dans une étape d'addition oxydante avec l'halogénure d'aryle pour produire une espèce Pd(II), la structure de cette espèce dépendant des ligands utilisés. Le complexe réagit ensuite avec l'acétylure de cuivre. La dernière étape permet, grâce à une élimination réductrice, la régénération du palladium actif et la formation de l'alcyne.

¹¹⁶ Sonogashira K., Tohda Y., Hagihara N. Tetrahedron Lett. **1975**, *16*, 4467–4470

Schéma 31 : Mécanisme du couplage de Sonogashira

4. Hydroamination intramoléculaire des 2-aryléthynylbenzamides 12,13 : accès aux 3methylène isoindolinones 6,7

La dernière étape de cette voie de synthèse permet la formation concomitante du cycle lactamique et de la double liaison exocyclique en position 3 grâce à une réaction d'hydroamination intramoléculaire à partir des 2-aryléthynyl benzamides **12**, **13**. Cette réaction s'effectue en milieu basique en présence d'éthylate de sodium dans l'éthanol à reflux pendant 5 heures. Dans un premier temps la base va provoquer la déprotection de l'alcyne qui va ensuite être engagé dans une réaction d'hydroamination intramoléculaire permettant ainsi d'accéder aux 3-méthylène isoindolinones désirées **6**, **7** avec de bons rendements de 72 et 76% (Schéma 32).¹¹⁷

¹¹⁷ Li J., Zhang Z., Xu X., Shao X., Li Z. Aust. J. Chem. **2015**, 68, 1543-1549

Schéma 32 : Synthèse des 3-méthylène isoindolinones 6,7 par cyclisation des 2-aryléthynylbenzamides

5. Bilan de la synthèse par hydroamination intramoléculaire d'alcyne

Cette voie de synthèse en trois étapes nous a permis d'accéder aux deux méthylène isoindolinones **6** et **7** substituées sur le noyau aromatique avec des rendements globaux corrects de 35 et 29% (Figure 7). Cependant cette méthode reste assez longue et couteuse (notamment avec l'utilisation de complexes de palladium) c'est la raison pour laquelle elle n'a été utilisée que pour la synthèse des deux composés **6** et **7** permettant ainsi d'élargir notre gamme de méthylène isoindolinones avec des composés substitués sur l'unité aromatique.

Figure 8 : Résultats globaux de la synthèse des 3-méthylène isoindolinones par hydroamination intramoléculaire d'alcynes

VI. Stabilité des méthylènes isoindolinones synthétisées

Une fois les 3-méthylène isoindolinones synthétisées, nous avons observé une altération plus ou moins rapide de certains de nos modèles. En effet, l'isoindolinone **4e** a montré une dégradation très rapide de l'ordre de quelques jours alors qu'il a fallu plusieurs semaines au composé **4a** pour se dégrader dans les mêmes conditions.

Afin de mieux comprendre le mécanisme de cette dégradation, des analyses par Résonnance Magnétique Nucléaire (RMN) ont été réalisées au cours desquelles nous avons observé sur les spectres la présence de phtalimide et de formaldéhyde. Ces résultats nous ont permis d'émettre l'hypothèse que l'oxygène de l'air était responsable de la dégradation de nos énamides (Schéma 33).

Schéma 33 : Oxydation des 3-méthylène isoindolinones par l'oxygène de l'air

D'un examen approfondi de la littérature il ressort que les exemples d'oxydation des énamides par l'oxygène de l'air sont possibles dans certaines conditions, mais aucun mécanisme détaillé n'a été décrit à ce jour.¹¹⁸ Ceci nous a donc amené à proposer deux chemins réactionnels pour cette réaction d'oxydation qui sont représentés sur le schéma 33 en accord avec la formation de formaldéhyde, de la nucléophilie des énamides et de la chimie des dioxéthanes.¹¹⁹ Une première proposition, la plus probable, consiste en l'attaque du dioxygène à l'état triplet, que l'on peut considéré comme un biradical, sur l'énamide permettant ainsi la formation d'un dioxéthane via la formation d'un radical carboné intermédiaire stabilisé par effet capto-datif. Certains modèles étant très sensibles à l'oxydation, la stabilité de ce radical, qui dépend de la nature des substituants sur l'atome d'azote et sur le noyau benzénique, pourrait rendre compte des différences de réactivité observées. Une deuxième proposition, moins probable, réside sur le fait que les dioxéthanes dérivants des énamides peuvent également être formés par cycloaddition [2+2] en présence d'oxygène singulet, ce dernier pouvant être obtenu à partir de l'oxygène triplet par irradiation ultraviolette. Après réarrangement, via une rétro cyclisation [2+2] du dioxéthane formé, le phtalimide est obtenu avec libération de formaldéhyde (Schéma 34).

¹¹⁸ Kise N., Kawano Y., Sakurai T. J. Org. Chem. **2013**, 78, 12453–12459

¹¹⁹ Zhang X., Foote C. S. J. Org. Chem. **1993**, 58, 5524–5527

Schéma 34 : Mécanismes proposés pour l'oxydation des 3-méthylène isoindolinones en phtalimides

Conclusions et perspectives

Ce premier chapitre entièrement consacré à la synthèse des 3-méthylène isoindolinones nous a permis d'accéder à un large éventail de modèles (15 molécules synthétisées) où sont maîtrisés d'une part la substitution de l'azote lactamique et de la double liaison méthylénique et d'autre part le nombre et la répartition des substituants sur l'unité aromatique.

Afin d'y parvenir avec les meilleurs rendements possibles et en optimisant au maximum le nombre d'étapes, nous avons, après un examen minutieux de la littérature, utilisé et optimisé 3 voies de synthèse complémentaires.

La première approche utilisée, basée sur l'addition d'un réactif de Grignard sur un phtalimide *N*-substitué suivie d'une déshydratation, nous a permis d'accéder à 11 méthylène isoindolinones possédant divers groupements sur l'atome d'azote lactamique ainsi qu'un substituant sur la double liaison méthylénique.

La deuxième méthodologie de synthèse utilisée a consisté à mettre en contact un acide *ortho*acétylbenzoïque avec une amine primaire par activation sous micro-ondes, ce qui nous a permis d'accéder à 9 méthylène isoindolinones.

CHAPITRE I : Synthèse des 3-méthylène isoindolinones

Bien que complémentaires, ces deux premières voies de synthèse ne nous ont pas permis d'obtenir des molécules substituées sur le noyau aromatique. Pour pallier ce problème, une dernière méthodologie, basée sur l'hydroamination intramoléculaire de 2-aryléthynyl benzamides, a été mise en place ce qui nous a permis d'obtenir 2 méthylène isoindolinones supplémentaires substituées sur l'unité benzénique.

Maintenant que nous maitrisons parfaitement l'accès à une gamme très diversifiée de 3méthylène isoindolinones, nous avons cherché à engager ces molécules dans diverses réactions d'hydroboration. La mise au point de cette réaction fera l'objet du chapitre suivant et devrait nous permettre d'accéder à toute une série de composés organo-borés qui représentent une nouvelle classe de « briques moléculaires » dont le potentiel en synthèse organique a été très peu exploité jusqu'à présent.

Références bibliographiques relatives au chapitre 1

- 72) Priestap H. A. 'Seven aristolactams from Aristolochia argentina', Phytochemistry 1985, 24, 849-852
- 73) Banjerdpongchai R., Wudtiwai B., Pompimon W. 'Enterocarpam-III induces human liver and breast cancer cell apoptosis via mitochondrial and caspase-9 activation', *Asian Pac. J. Cancer Prev.* **2015**, *16*, 1833–1837
- 74) Rys V., Couture A., Deniau E., Grandclaudon P. 'First total synthesis of fumaridine', *Tetrahedron* **2003**, *59*, 6615–6619
- 75) Paulová H., Kovář J., Plocek J., Slavík J. 'Inhibition pf aldehyde reductase I by some isoquinoline alkaloids', *Collect. Czechoslov. Chem. Commun.* **1987**, *52*, 2338–2346
- 76) Pavelka S., Kovář J. 'Interaction of liver alcohol dehydrogenase with protoberberine alkaloids', *Collect. Czechoslov. Chem. Commun.* **1975**, *40*, 753–768
- 77) Fuska J., Fuskova A., Proksa B.'New cytotoxic and antitumor agents. VII. Derivatives of 1benzylidenisoindolin-3-one and 5,6-dihydro-8*H*-isoquinolo(2,3-a)phtalasin-5-one', *Neoplasma* 1985, 32, 407-414
- 78) Yoneda R., Sakamoto Y., Oketo Y., Harusawa S., Kurihara T. 'An efficient synthesis of magallanesine using [1,2]-Meisenheimer rearrangement and Heck cyclization', *Tetrahedron* **1996**, *52*, 14563–14576
- 79) Kato Y., Takemoto M., Achiwa K. 'Prostanoids and related compounds. VII. Synthesis and inhibitory activity of 1-isoindolinone derivatives possessing inhibitory activity against Thromboxane A2 analog (U-46619) induced vasoconstriction', *Chem. Pharm. Bull.* **1999**, *47*, 529–535
- 80) Araki S., Shimizu T., Johar P. S., Jin S. J., Butsugan Y. 'Preparation and some reactions of allylic indium reagents', *J. Org. Chem.* **1991**, *56*, 2538–2542
- 81) Jeong I.-Y., Lee W. S., Goto S., Sano S., Shiro M., Nagao Y. 'Novel heterocyclic ring-expansion and/or dehydratation-hydration reactions of propargylic and allenylic hydroxy γ-lactams in the presence of strong base or Lewis acid', *Tetrahedron* 1998, 54, 14437–14454
- 82) Griesbeck A. G., Warzecha K.-D., Neudörfl J. M., Görner H. 'Photodecarboxylative benzylation of *N*-Alkylphtalimides : A concise route to the aristolactam skeleton', *Synlett* **2004**, 2347–2350
- 83) Sánchez-Sánchez C., Pérez-Inestrosa E., Garcia-Segura R., Suau R.'SET photochemsitry of phtalimide anion and its reactivity with hydrogens donors', *Tetrahedron* **2002**, *58*, 7267–7274
- 84) Freccero M., FasaniE., AlbiniA. 'Photochemical reaction of phtalimides and dicyanophtalimides with benzylic donors', *J. Org. Chem.* **1993**, *58*, 1740–1745
- Griesbeck A. G., Kramer W., Oelgemöller M. 'Synthetic applications of photoinduces electron transfer decarboxylation reactions', Synlett 1999, 1169–1178

- 86) Hendi M. S., Natalie K. J., Hendi S. B., Campbell J. A., Greenwood T. D., Wolfe J. F. 'Aromatic heteroannulation via ortho lithiation-cyclization of *N*-acyl-2-bromobenzamides', *Tetrahedron Lett*. 1989, 30, 275–278
- 87) Flitsch W., Peters H., 'Wittig-reaktionen an imiden', Tetrahedron Lett. 1969, 10, 1161–1162
- Petasis N. A., Lu S.-P. 'Methylenations of heteroatom-substituted carbonyls with dimethyl titanocene', Tetrahedron Lett. 1995, 36, 2393–2396
- 89) Guillaumel J., Boccara N., Demerseman P., Royer R., Bideau J. P., Cotrait M., Platzer N. 'A new alkaline rearrangement of the benzofuran skeleton. One step transformation of 2-(2benzofuranyl)benzonitriles into (Z)-phenylmethyleneisoindolinones', J. Het. Chem. 1990, 27, 605–614
- 90) Deniau E., Enders D. 'A new and versatile synthetic route to 2-dimethylamino-3-alkyl and arylmethylene-2,3-dihydro-1*H*-isoindol-1-ones', *Tetrahedron Lett.* **2002**, *43*, 8055–8058
- 91) Couture A., Deniau E., Grandclaudon P. 'An efficient one-pot synthesis of 3-(aryl and alkyl)methylene-1*H*-isoindolin-1-ones via aryne cyclization and hroner reaction of *o*-(and *m*-)halogeno-*N*phosphorylmethylbenzamide derivatives', *Tetrahedron* **1997**, *53*, 10313–10330
- 92) Couture A., Deniau E., Grandclaudon P., Lebrun S. 'A new approach to the synthesis of Aristolactams. Total synthesis of cepharanone A and B', *Synlett* **1997**, 1475-1477
- 93) Couture A., Deniau E., Grandclaudon P., Hoarau C. 'Total Syntheses of Taliscanine, Velutinam, and Enterocarpam II', J. Org. Chem. **1998**, 63, 3128-3132
- 94) Couture A., Deniau E., Grandclaudon P., Hoarau C.'A new approach to isoindolobenzazepines. A simple synthesis of Lennoxamine', *Tetrahedron* **2000**, *56*, 1491-1499
- 95) Moreau A., Couture A., Deniau E., Grandclaudon P. 'A New Route to Aristocularine Alkaloids: Total Synthesis of Aristoyagonine', *J. Org. Chem.* **2004**, *69*, 4527-4530
- 96) Kundu N. G., Wahab Khan M. ,'Palladium-catalyzed heteroannulation with terminal alkynes: a highly regio- and stereoselective synthesis of (Z)-3-aryl(alkyl)idene isoindolin-1-ones', Tetrahedron 2000, 56, 4777-4792
- 97) Kanazawa C., Terada M. 'Dichotomous control of E/Z-geometry in intramolecular cyclization of *o*alkynylbenzamide derivatives catalyzed by organic superbase P4-tBu in the presence/absence of water', *Chem. Asian. J.* **2009**, *4*, 1668-1672
- 98) Bianchi G., Chiarini M., Marinelli F., Rossi L., 'Product selectivity control in the heteroannulation of *o*-(1-alkynyl)benzamides', *Adv. Synth. Catal.* **2010**, *352*, 136-142
- 99) Bubar A., Estey P., Lawson M., Eisler S. 'Synthesis of extended, p-conjugated isoindolin-1-ones', J. Org. Chem. 2012, 77, 1572-78
- Mancuso R., Pomelli C. S., Raut D. S., Marino N., Giofre S. V., Romeo R., Sartini S., Chiappe C., Gabriele B. 'Copper-catalyzed recyclable synthesis of (*Z*)-3-alkylideneisoindolinones by cycloisomerization of 2-alkynylbenzamides in ionic liquids', *ChemistrySelect* **2017**, *2*, 894-899

- 101) Cao H., McNamee L., Alper H. 'Syntheses of substituted 3-methyleneisoindolin-1-ones by a palladiumcatalyzed Sonogashira coupling-carbonylation-hydroamination sequence in phosphonium salt-based ionic liquids', Org. Lett. 2008, 10, 5281-5284
- 102) Ju. J., Qi C., Zheng L., Hua R. 'Synthesis of 3-methyleneisoindolin-1-ones via palladium-catalyzed C-Cl bond cleavage and cyclocarbonylation of *ortho*-chloroketimines', *Tetrahedron Lett.* **2013**, *54*, 5159-5161
- 103) Wang Z., Zhu F., Li Y., Wu X.-F. 'Palladium-catalyzed carbonylative synthesis of 3-methyleneisoindolin-1-ones from ketimines with hexacarbonylmolybdenum(0) as the carbon monoxide source', *ChemCatChem* **2017**, *9*, 94-98
- 104) Cho C. S., Shim H. S., Choi H.-J., Kim T.-J., Shim S. C. 'Palladium-catalyzed convenient synthesis of 3methyleneisoindolin-1-ones', *Synth. Commun.* **2002**, *32*, 1821–1827
- 105) Jing K., Cui P.-C., Wang G.-W.'Palladium-catalyzed decarboxylative *ortho*-amidation of *O*-methyl ketoximes with oxamic acids', *Chem. Commun.* **2019**, *55*, 12551-12554
- 106) Zhou B., Hou W., Yang Y., Li Y. 'Rhodium(III)-catalyzed amidation of aryl ketone *O*-methyl oximes with isocyanates by C-H activation : Convergent synthesis of 3-methyleneisoindolin-1-ones', *Chem. Eur. J.* 2013, 19, 4701-4706
- 107) Couty S., Liegault B., Meyer C., Cossy J. 'Heck-Suzuki-Miyaura domino reactions involving ynamides. An efficient access to 3-(arylmethylene)isoindolinones', *Org. Lett.* **2004**, *6*, 2511-2514
- 108) Couty S., Liegault B., Meyer C., Cossy J. 'Synthesis of 3-(arylmethylene)isoindolin-1-ones from ynamides by Heck-Suzuki-Miyaura domino reactions. Application to the synthesis of Lennoxamine', *Tetrahedron* 2006, 62, 3882-3895
- 109) Kim G., Kim J. H., Kim W.-J., Kim Y. A. 'Intramolecular Heck reaction of methylene phthalimidine derivatives: a simple route to Lennoxamine and Chilenine', *Tetrahedron Lett.* **2003**, 44, 8207-8209
- 110) Dai X.-J., Liu M., Zhang J.-Y., Xu X.-Y., Yuan W.-C., Zhang X.-M. 'A facile direct synthesis of 3methyleneisoindolin-1-ones by annulation of methyl 2-acylbenzoates with amines', *ChemistrySelect* **2019**, *4*, 4458–4461
- 111) El-Harairy A., Bingbing Lai Y., Vaccaro L., Li M., Gu Y. 'A sulfone-containing imidazolium-based Bronsted acid ionic liquid catalyst enables replacing dipolaraprotic solvents with butyl acetate', *Adv. Synth. Catal.* 2019, 361, 3342-3350
- 112) Sharma S., Nayal O. S., Sharma A., Rana R., Maurya S. K. 'Tin(II) triflate catalysed synthesis of 3methyleisoindolin-1-ones', *ChemistrySelect* **2019**, *4*, 1985–1988
- 113) Vasilevskaya T. N., Yakovleva O. D., Kobrin V. S. 'A convenient method of *N*-methylphtalimide synthesis', *Synth. Commun.* **1995**, *25*, 2463–2465

- 114) Horikoshi S., Watanabe T., Narita A., Suzuki Y., Serpone N. 'The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS)', *Sci. Rep.* **2018**, *4*, 5151
- 115) De la Hoz A., Díaz-Ortiz A., Prieto P. 'Chapter I. Microwave assisted green organic synthesis', in *Green Chemistry Series*, ed. by Georgios Stefanidis and Andrzej Stankiewicz, pp. 1–33
- 116) Sonogashira K., Tohda Y., Hagihara N. 'A convenient synthesis of acetylenes : catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines', *Tetrahedron Lett.* 1975, 16, 4467–4470
- 117) Li J., Zhang Z., Xu X., Shao X., Li Z. 'Nematicidal activities of diamides with diphenylacetylene scaffold against meloidogyne incognita', *Aust. J. Chem.* **2015**, *68*, 1543-1549
- 118) Kise N., Kawano Y., Sakurai T. 'Reductive coupling of phtalimides with ketones and aldehydes by lowvalent titanium : one-pot synthesis of alkylideneisoindolin-1-ones', *J. Org. Chem.* **2013**, *78*, 12453– 124459
- 119) Zhang X., Foote C. S. '1,2-dioxetane formation in photooxygenation of *N*-acylated indole derivatives', *J. Org. Chem.* **1993**, *58*, 5524–5527

CHAPITRE II : Hydroboration des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

CHAPITRE II

Hydroboration des

3-méthylène isoindolinones

catalysée par les complexes de cuivre(I)

CHAPITRE II : Hydroboration des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

Les 3-méthylène isoindolinones dans lesquelles on retrouve une fonction de type énamide très réactive constituent une classe d'intermédiaires très utiles en synthèse organique permettant d'accéder à de nombreuses structures hétérocycliques azotées variées. Depuis plusieurs années, le laboratoire dans lequel j'effectue ma thèse s'attache à développer de nouvelles méthodologies de synthèse permettant de les fonctionnaliser efficacement de manière régio- et stéréosélective en s'appuyant sur des réactions catalysées par les métaux de transition. Dans l'optique de développer une chimie plus durable et respectueuse de l'environnement, il est nécessaire de trouver des alternatives à l'utilisation des métaux rares et précieux et privilégier la catalyse par des métaux plus abondants et moins polluants tels que le cuivre. Avant de nous intéresser à l'hydroboration des énamides catalysée par les complexes de cuivre(I), nous allons faire un état de l'art des différentes stratégies existantes.

I. Introduction générale sur les réactions d'hydroboration d'énamides non stéréosélectives

1. Les différents agents d'hydroboration utilisés

Il existe de nombreux réactifs borés permettant l'hydroboration des énamides. La nature de ces composés est particulièrement importante et peut avoir une grande influence sur la réactivité et la sélectivité de la réaction. Ces composés sont divisés en trois catégories : les boranes, les alkylboranes et les alkoxyboranes.

Un borane est un composé constitué uniquement des éléments du bore et d'hydrogène, de formule générale B_xH_y . Le composé le plus simple de formule BH_3 a été le premier agent d'hydroboration utilisé par Brown en 1956. Le borane existe à l'état naturel sous forme d'un dimère de formule B_2H_6 , gaz incolore et toxique. La dimérisation du borane étant instantanée, l'isolation de borane pur est impossible, c'est pourquoi il se trouve dans le commerce sous une forme stabilisée avec des bases de Lewis tels que le THF, Et₂O, S(Me)₂ et N(Me)₃.

Par la suite, de nouveaux agents d'hydroboration ne contenant qu'un seul ou deux atomes d'hydrogènes sur l'atome de bore ont été développés tels que le 9-borabicyclo[3,3,1]nonane (9-BBN) et le disiamylborane (Sia₂BH), plus volumineux mais moins réactifs que les boranes appartenant à la catégorie des alkylboranes, ainsi que des alkoxyboranes, tels que le pinacolborane et le catécholborane. Ce sont les agents d'hydroboration les moins réactifs et nécessitent l'utilisation de catalyseur pour agir (Figure 1).

Figure 1 : Exemple de structure des différents agents d'hydroboration

2. Réactions d'hydroboration d'énamides répertoriées dans la littérature

2.1. Réactions non catalysées

L'hydroboration stœchiométrique des énamides a été grandement exploitée en synthèse organique pour accéder à de nombreuses molécules telles que des dérivés d'acides aminés ou des alcaloïdes. Cette réaction a également été très utilisée afin de synthétiser des trifluoroborates qui peuvent par la suite être engagés dans des réactions de couplage pallado-catalysées de type Suzuki-Miyaura.

La première réaction d'hydroboration d'énamide a été décrite en 1990 par G. De Martino et al. dont l'objectif était de synthétiser la 4-hydroxyproline. Le produit d'hydroboration n'a pas été isolé et a directement été engagé dans une réaction d'oxydation à l'aide de peroxyde d'hydrogène (Schéma 1).¹²⁰

Schéma 1 : Première réaction d'hydroboration d'énamide observée par G. De Martino

L'hydroboration des énamides enchaînée avec une réaction d'oxydation a été très utilisée afin d'accéder à de nombreux β -aminoalcools, très présents dans les molécules naturelles. C'est le cas par exemple de la β -hydroxypipéridine, motif présent dans de nombreux alcaloïdes tels que la pseudoconhydrine ou encore l'hydroxysédamine (Schéma 2).¹²¹

¹²⁰ De Martino G., De Caprariis P., Abignente E., Grazia Rimoli M. J. Het.Chem. **1990**, 27, 507–509

¹²¹ Plehiers M., Hootelé C. Can. J. Chem. **1996**, 74, 2444–2453.

Schéma 2 : Réaction d'hydroboration/oxydation d'une β -hydroxypipéridine

Cette réaction d'hydroboration/oxydation d'énamides a également été utilisée dans la synthèse d'analogues contraints de l'ornithine ou de l'arginine (Schéma 3) et d'un dérivé mimétique de l'arginine (Schéma 4).^{122,123}

Schéma 3 : Synthèse d'analogues contraints de l'ornithine et de l'arginine

Schéma 4 : Synthèse d'un dérivé mimétique de l'arginine

L'hydroboration des énamides a également été utilisée pour accéder à divers trifluoroborates de potassium qui ont ensuite été engagés dans des couplages croisés de type Suzuki-Miyaura (Schéma 5).¹²⁴

Schéma 5 : Réaction d'hydroboration enchaînée avec une réaction de couplage de type Suzuki-Miyaura

¹²² Le Corre L., Dhimane H. *Tetrahedron Lett.* **2005**, *46*, 7495–7497

¹²³ Le Corre L., Kizirian J.-C., Levraud C., Boucher J.-L., Bonnet V., Dhimane H. *Org. Biomol. Chem.* **2008**, *6*, 3388-3398

¹²⁴ Molander G. A., Vargas F.Org. Lett. **2007**, *9*, 203–206

2.2. Réactions métallo-catalysées

Le développement de méthodes catalytiques pour la formation de liaison carbone-bore représente un défi important en synthèse organique. Au cours de la dernière décennie, de nombreuses réactions d'hydroboration catalysées par les métaux de transition ont été développées et ont permis l'accès à une gamme très diversifiée d'acides boroniques, de boronates ou de trifluoroborates qui constituent de nouvelles briques moléculaires très intéressantes pour les chimistes organiciens. La première réaction d'hydroboration d'énamides catalysée a été décrite en 2009 par Geier et al. Elle consiste en l'hydroboration de la 1-vinylpyrrolidinone catalysée au rhodium en présence de pinacolborane. Elle a permis la synthèse de dérivés de boroproline qui peuvent être utilisés comme catalyseurs actifs dans la réaction d'aldolisation (Schéma 6).^{125,126}

Schéma 6 : Première réaction d'hydroboration catalysée développée par Geier et al.

L'utilisation de complexes du cuivre en catalyse homogène représente un enjeu majeur en synthèse organique ainsi qu'en chimie organométallique. Ce métal peu couteux par rapport à d'autres métaux plus nobles comme le rhodium ou l'iridium, plus abondant¹²⁷ et d'une faible toxicité, s'est imposé comme un acteur incontournable de la «chimie verte». Son utilisation, après les travaux de pionniers d'Ullman au début du XXème siècle, connait un regain d'intérêt depuis une quinzaine d'années. La première utilisation des complexes du cuivre(I) pour la formation de liaison carbonebore a été reportée indépendamment par Miyaura et Hosomi en 2000.^{128,129} Par la suite, d'autres équipes de recherche ont également étudié cette réaction d'hydroboration d'énamide en utilisant des catalyseurs à base de cuivre. C'est notamment le cas de Bartoccini et al., en 2015, qui ont été les premiers à utiliser la réaction d'hydroboration catalysée au cuivre sur des dérivés insaturés de l'alanine ou de différents peptides afin d'obtenir des peptides et acides aminés β -borés transformables en acides boroniques, très utilisés dans l'industrie pharmaceutique (Schéma 7).¹³⁰

¹²⁵ Geier M. J., Vogels C. M., Decken A. Westcott S. A. J. Organomet. Chem. **2009**, 694, 3154–3159

¹²⁶ Arnold K., Batsanov A. S., Davies B., Grosjean C., Schütz T., Whiting A., Zawatzky K. *Chem. Commun.* **2008**, 3879-3881

¹²⁷ Chirik P., Morris R. Acc. Chem. Res. **2015**, 48, 2495–2495

¹²⁸ Takahashi K., Ishiyama T., Miyaura N. Chem. Lett. **2000**, 29, 982–983

¹²⁹ Ito H., Yamanaka H., Tateiwa J.-I., Hosomi A., *Tetrahedron Lett.* **2000**, *41*, 6821–6825

¹³⁰ Bartoccini F., Bartolucci S., Lucarini S., Piersanti G. *Eur. J. Org. Chem.* **2015**, 3352–3360

Schéma 7 : Réaction d'hydroboration catalysée au cuivre sur des dérivés d'alanine et différents peptides

Ce même groupe a utilisé cette réaction d'hydroboration d'énamide catalysée au cuivre sur différents substrats permettant la fonctionnalisation de ceux-ci notamment avec une oxydation du composé organoborés formé (Schéma 8).¹³¹

Schéma 8 : Exemple de réaction d'hydroboration-oxydation catalysée au cuivre

II. Etude de la réaction d'hydroboration des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

1. Généralités sur les complexes de cuivre(I)

Le cuivre est un métal de transition de configuration électronique [Ar] 3d10 4s1 appartenant au même groupe du tableau périodique que l'or et l'argent. En solution, le cuivre se retrouve généralement à deux degrés d'oxydation : +1 et +2. La chimie de coordination du cuivre(I) est directement liée à sa configuration électronique *d*10 produisant une répartition symétrique de la charge électronique. Cette configuration favorise une disposition tétraédrique autour du centre métallique de sorte à localiser les ligands le plus loin les uns des autres et ainsi minimiser les répulsions électrostatiques. Le Cuivre(I) est défini comme ayant un caractère «mou» selon la théorie de Pearson et pour cette raison, cet ion métallique préfère les ligands avec des atomes donneurs mous tels que le soufre (dans la cystéine et la méthionine), l'azote aromatique (pyridine et histidine) ou le phosphore (phosphines tertiaires). Les complexes mononucléaires du cuivre(I), en général, sont diamagnétiques, incolores et peuvent adopter des géométries linéaires, trigonales planaires,

¹³¹ Bartoccini F., Maria Cannas D., Fini F., Piersanti G. Org. Lett. 2016, 18, 2762–2765

tétraédriques, bipyramidales trigonales ou pyramidales à base carrées, comme indiqué dans la Figure 2.

Le cuivre(I) préfère très largement être entouré par quatre ligands adoptant une géométrie tétraédrique. La stabilité relative des complexes de cuivre(I) en solution dépend très fortement des ligands présents et peut varier considérablement suivant le solvant. Il existe également de nombreux complexes polynucléaires du cuivre(I) dans lesquels le cuivre possède un environnement tétraédrique.

Figure 2 : Géométrie des complexes du cuivre(I)

Les ligands de type phosphine sont de loin les plus couramment utilisés et répondent à la formule générale PR₃ dans laquelle R est un groupement alkyle, aryle ou halogénure. Cette classe de ligands est facile à synthétiser et ils sont d'excellents ligands pour la chimie de coordination à base de métaux de transition sous forme de donneurs à deux électrons.

Il existe d'innombrables phosphines différentes connues pour se coordonner aux métaux de transition, présentant de nombreuses applications en catalyse homogène et hétérogène.¹³² Les phosphines acceptent des électrons d'orbitales p ou d d'un métal dans des orbitales anti-liantes σ^* de liaisons carbone–phosphore ayant une symétrie π . Lorsque des phosphines se lient à des atomes métalliques riches en électrons, les liaisons carbone–phosphore devraient s'allonger dans la mesure où les orbitales σ^* correspondantes se remplissent d'électrons.

Cet effet est cependant souvent masqué par le fait que le doublet non liant du phosphore est cédé au métal, ce qui réduit la répulsion provoquée par ce doublet et donc tend à raccourcir cette liaison. Ces deux effets peuvent être résolus en comparant la structure de complexes métal– phosphine ne différant que par un électron. L'oxydation de complexes M–PR₃ conduit à des liaisons

¹³²Hosseinzadeh Z., Ramazani A. Curr. Org. Chem. 2018, 22, 1589–1599

CHAPITRE II : Hydroboration des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

M–P plus longues et des liaisons P–C plus courtes, ce qui est cohérent avec la rétro-coordination π (Figure 3).

Les premiers travaux avaient conduit à penser que les ligands phosphine utilisent leurs orbitales 3d pour établir une rétro-coordination π métal-phosphine, mais il est désormais accepté que les orbitales d du phosphore ne sont pas impliquées dans cette liaison car leur énergie est trop élevée. La modification des substituants sur les atomes de phosphore peut entraîner des modifications substantielles des propriétés physiques et chimiques de leurs complexes (effets stériques et électroniques).

Figure 3 : Liaison Métal-Phosphore dans les complexes

D'autre part, les effets stériques dans les ligands phosphines sont très important ; ces ligands déterminent généralement la stéréochimie, la vitesse, et l'équilibre dans les réactions de dissociation. Tolman¹³³ a proposé que l'angle du cône (θ) peut être utilisé comme paramètre exprimant la demande stérique d'un ligand phosphine. Ce paramètre est défini comme l'angle au sommet d'un cône cylindrique centré à une distance de 2,28 A° du phosphore au métal, entourant les rayons de van der Waals (ou surfaces) de tous les substituants liés au phosphore sur toutes les orientations de rotation (Figure 4). Les phosphines avec de petits angles de cône seront de meilleurs ligands et sont plus basiques. Les phosphines avec des substituants plus gros ou avec des angles de cône plus grands ont tendance à former des complexes avec un nombre de coordination plus faible.

Figure 4 : Angle de Tolman

¹³³ Tolman C. A. Chem. Rev. **1977**, 77, 313-348

2. Structure et réactivité des complexes borés de cuivre(I)

Les premiers exemples reportés dans la littérature d'utilisation de complexes borés du cuivre(I) en synthèse organique concernaient des réactions d'addition conjuguées d'un groupement Bpin sur des énones décrits par Miyaura et Hosomi, qui ont utilisé respectivement un catalyseur CuCl / KOAc ou cuivre(I) phosphine et du bis(pinacol)diborane.^{9,10} Dans la majorité des réactions de borylation, les catalyseurs actifs sont généralement formés *in situ* par réaction d'un sel de cuivre(I) avec un alcoxyde. Une réaction de métathèse avec le bis(pinacol)diborane se produit alors, générant le complexe bore-cuivre (Schéma 9). Nous reviendrons plus en détail sur les aspects mécanistiques des réactions d'hydroboration catalysées par les complexes de cuivre(I) dans la suite de ce chapitre.

Schéma 9 : Formation d'un complexe bore-cuivre(I) par transmétallation

Depuis ces premiers travaux, le domaine d'application des complexes borés du cuivre(I) s'est rapidement développé et une gamme de transformations très diversifiée a été décrite dans la littérature.¹³⁴ Bien que les différents auteurs de ces réactions aient postulé que celles-ci procédaient par l'intermédiaire d'un complexe boré du cuivre(I), des exemples isolés de ces espèces sont relativement rares. C'est principalement pour les cuivre-boryls liés au carbènes *N*-hétérocycliques (NHCs) que des structures moléculaires ont été rapportées, bien qu'un rapport très récent décrit des complexes liés à la phosphine.^{135,136,137,138,139} Pour la plupart des complexes NHCs, un arrangement linéaire, avec le groupement Bpin lié directement à l'opposé du ligand NHC, a été observée (Figure 5).

¹³⁴ Hemming D., Fritzemeier R., Westcott S. A., Santos W. L., Steel P. G. Chem. Soc. Rev. **2018**, 47, 7477–7494

¹³⁵ Laitar, D. S., Müller P., Sadighi J. P. J. Am. Chem. Soc. **2005**, 127, 17196-17197

¹³⁶ Segawa Y., Yamashita M., Nozaki K. Angew. Chem. Int. Ed. **2007**, 46, 6710-6713

¹³⁷ Kajiwara T., Terabayashi T., Yamashita M., Nozaki K. Angew. Chem. Int. Ed. **2008**, 47, 6606-6610

¹³⁸ Borner, C., Anders L., Brandhorst K., Kleeberg C. Organometallics **2017**, *36*, 4687-4690

¹³⁹ Semba K., Shinomiya M., Fujihara T., Terao J., Tsuji Y. *Chem. Eur. J.* **2013**, *19*, 7125-7132

Figure 5 : Exemple de complexes borés du cuivre(I)

3. Hydroboration de la 3-méthylène isoindolinone 4a en présence de chlorure de cuivre

Nous nous proposons dans cette partie d'étudier la réaction d'hydroboration catalysée par des complexes de cuivre(I) des 3-méthylène isoindolinones synthétisées précédemment. Afin de mettre au point la réaction d'hydroboration et d'optimiser les différents paramètres, nous avons choisi de travailler sur la 3-méthylène isoindolinone **4a** qui nous servira de substrat modèle pour la suite de notre étude. Cette isoindolinone insaturée est dépouillée de tout substituant sur la partie aromatique et comporte un groupement *p*-méthoxybenzyle (PMB) sur l'atome d'azote (Schéma 10). Nous avons donc dans un premier temps cherché à optimiser la réaction d'hydroboration de nos substrats en termes de rendement et de régiosélectivité en faisant varier divers paramètres tels que le solvant, la température, la nature du catalyseur, du ligand ou de la base. Pour commencer nous nous sommes inspirés des travaux de Deng¹⁴⁰ qui a décrit en 2015, l'hydroboration de composés styréniques en présence de bis(pinacol)diborane (B₂pin₂) et d'un sel de cuivre(I) à température ambiante dans le méthanol.

Schéma 10 : Réaction d'hydroboration catalysée au cuivre de la méthylène isoindolinone 4a

¹⁴⁰ Hong, S.; Liu, M.; Zhang, W.; Zeng, Q.; Deng, W. *Tetrahedron Lett.* **2015**, *56*, 2297-2302

3.1. Essais préliminaires

Lors de l'examen de la littérature, il est apparu que les catalyseurs formés à partir des halogénures de cuivre étaient les plus utilisés. Nous nous sommes donc intéressés à la réaction d'hydroboration catalysée par des complexes formés à partir du chlorure de cuivre(I), le but étant dans un premier temps de définir les paramètres importants de la réaction. Parmi les différents agents d'hydroboration disponibles et inventoriés au début de ce chapitre, nous avons privilégié l'utilisation du bis(pinacol)diborane (B₂Pin₂) qui a l'avantage d'être très stable et manipulable à l'air et du pinacolborane (HBPin) qui est également très utilisé dans ce type de réaction mais qui a l'inconvénient de s'oxyder très rapidement. Concernant le ligand, nous avons utilisé la triphénylphosphine, qui est un ligand phosphoré monodentate faisant partie des ligands les plus utilisés lors de catalyse d'hydroboration. Pour la base nous avons utilisé le phosphate de potassium tribasique et pour finir comme donneur de proton, nous avons opté pour le méthanol qui va à la fois jouer le rôle de donneur de proton et de solvant. Les conditions réactionnelles utilisées pour débuter notre étude sont donc les suivantes : CuCl (10 mol%), PPh₃ (20 mol%), K₃PO₄ (2 équivalents) dans le méthanol à température ambiante.

Tableau 1 :	Essais	; prél	limin	aires
-------------	--------	--------	-------	-------

4a) N-PMB	B ₂ Pin ₂ CuCl (10 mol%) MeOH, K	(1.5 éq)), PPh ₃ (20 mo ₃ PO ₄ (2 éq)		N-PMB
Entrée	Cu(I)	Ligand	Base	Durée	Conversion
1	CuCl	PPh ₃	K_3PO_4	3 h	100%
2	CuCl	PPh ₃	-	3 j	20%
3	CuCl	-	K_3PO_4	3 j	-
4	CuCl	-	-	3 j	-
5	-	PPh ₃	K_3PO_4	3 j	-
6	-	PPh ₃	-	3 ј	-
7	-	-	K_3PO_4	3 j	-
8	-	-	-	3 ј	-

CHAPITRE II : Hydroboration des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

Les premiers résultats permettant de définir les paramètres importants de la réaction figurent dans le tableau 1 ci-dessus. Tout d'abord, nous observons une conversion complète en seulement 3 heures avec les paramètres utilisés (Entrée 1). Les différents tests à blanc réalisés en l'absence de catalyseur et/ou de ligand (Entrées 3 à 8) nous permettent également de valider la nécessité du catalyseur mais aussi du ligand. En effet, en l'absence de catalyseur ou de ligand, aucune conversion n'est observée même après 3 jours de réaction. La suppression de la base (Entrée 2) entraine une diminution importante de la conversion avec seulement 20% de rendement après 3 jours de réaction, ce qui nous laisse penser que celle-ci est un élément nécessaire mais que sa présence peut être éventuellement contournée.

3.2. Influence de la base

Le phosphate de potassium tribasique, qui fonctionne très bien dans notre premier essai, est une base faible facile à utiliser mais relativement peu soluble dans les solvants organiques. Nous nous sommes donc contentés de vérifier que d'autres bases plus fortes ne conduisaient pas à des réactions plus rapides. Les réactions ont donc été menées en utilisant une base plus forte, l'éthylate de sodium. Les autres conditions réactionnelles notamment le catalyseur, le ligand et le solvant restent inchangées par rapport aux résultats précédents.

Les résultats dans le tableau 2 ci-dessous montrent que l'utilisation d'une base plus forte, comme l'éthylate de sodium permet une accélération notable de la réaction en comparaison au phosphate de potassium tribasique en même quantité (Entrées 1 et 9). Nous avons donc décidé de diminuer la quantité de base afin de voir son influence sur le temps de réaction, en passant de 2 équivalents à 50 mol% puis 10 mol%. Malgré une quantité très faible de base, la conversion de la réaction est toujours totale en un temps très court, respectivement 1 et 2 heures (Entrées 10 et 11).

86

	О ∦ 4а	B ₂ F CuCl (10 mc Me	Pin₂ (1.5 éq) ⊳l%), PPh₃ (20 mol%) eOH, base	PinE	О И N-РМВ 18а
Entrée	Cu(l)	Ligand	Base	Durée	Conversion
1	CuCl	PPh₃	K₃PO₄ (2 éq)	3 h	100%
9	CuCl	PPh_3	EtONa (2 éq)	1 h	100%
10	CuCl	PPh_3	EtONa (50 mol%)	1 h	100%
11	CuCl	PPh_3	EtONa (10 mol%)	2 h	100%

Tableau 2 : Influence de la base

L'utilisation d'une base plus forte permet donc l'accélération de la réaction, néanmoins la première base utilisée reste très efficace avec une conversion totale en seulement 3 heures. L'éthylate de sodium nécessitant d'être fraîchement préparé et étant sensible à l'air et à l'humidité, le K₃PO₄ sera préféré lors des réactions suivantes.

4. Hydroboration des 3-méthylène isoindolinones en présence d'oxyde de cuivre (Cu₂O)

Afin de poursuivre l'optimisation de la réaction d'hydroboration, nous avons décidé de modifier la nature du catalyseur en remplaçant le chlorure de cuivre par de l'oxyde de cuivre. En effet l'oxyde de cuivre est connu pour ses propriétés légèrement basiques,¹⁴¹ ce qui permettrait de s'affranchir de l'ajout de base.

4.1. Influence des différents paramètres sur la réaction d'hydroboration

Dans un premier temps nous nous sommes intéressés à la validation de chacun des paramètres de la réaction d'hydroboration. Les conditions réactionnelles sont les suivantes : Cu_2O (10 mol%), PPh₃ (20 mol%), K₃PO₄ (2 équivalents) dans le méthanol à température ambiante.

	о N-РМВ 4а	B ₂ Pin ₂ Cu ₂ O (10 mol%) MeOH, K ₃	(1.5 éq) , PPh ₃ (20 mol%) PO₄ (2 éq)	O PinB	IPMB 18a
Entrée	Catalyseur	Ligand	Base	Durée	Conversion
1	Cu ₂ O	PPh ₃	K ₃ PO ₄	3 h	100%
2	Cu ₂ O	-	K ₃ PO ₄	3 ј	20%
3	Cu ₂ O	PPh_3	-	3 h	100%
4	Cu ₂ O	-	-	3 ј	-

Tableau 3 : Essais préliminaires

Les résultats rassemblés dans le tableau 3 montrent l'efficacité de l'oxyde de cuivre comme précurseur catalytique, en effet une conversion totale est à nouveau observée en 3 heures (Entrée 1). Nous observons également, de façon non surprenante, que l'absence de ligand entraine ici encore une chute importante de la réactivité (Entrée 2 et 4). En revanche, l'absence de base n'a aucune influence sur la conversion de la réaction qui reste totale après 3 heures de réaction. La légère basicité de l'oxyde de cuivre semble donc suffisante pour effectuer la réaction d'hydroboration (Entrée 3). Les essais suivants seront donc effectués sans base.

¹⁴¹ Habbache N., Alane N., Djerad S., Tifouti L. *Chem. Eng. J.* **2009**, *152*, 503–508

4.2. Influence de l'agent de borylation sur la réaction d'hydroboration

Nous avons ensuite souhaité étudier l'influence de l'agent de borylation sur la réaction, nous avons pour cela comparé la réaction effectuée en présence de bis(pinacol)diborane ou de pinacolborane, les autres paramètres restants inchangés.

Tableau 4 : Influence de l'agent de borylation

Dans le tableau 4 ci-dessus, nous n'observons aucune réaction avec le pinacolborane même après 24 heures (Entrée 5), le bis(pinacol)diborane sera donc privilégié pour la suite de l'optimisation.

4.3. Influence du ligand sur la réaction d'hydroboration

Afin d'aller plus loin dans la compréhension et l'optimisation de la réaction d'hydroboration, nous avons décidé d'observer l'influence de différents ligands sur celle-ci. Pour cette partie, nous avons utilisé différents types de ligands : des ligands phosphorés, azotés et oxygénés, mono et bidentates dans les mêmes quantités qu'utilisées précédemment (Tableau 5). Les différents ligands utilisés sont représentés dans la figure 6 ci-dessous.

Figure 6 : Structures des ligands utilisés lors de la réaction d'hydroboration

		B₂Pin₂ (1.5 éq) Cu₂O (10 mol%), Ligand (20 mol%)		0 / N-PMB
	\\ 4a	MeOH	PinB) 18a
Entrée	Cu(I)	Ligand	Durée	Conversion
1	Cu ₂ O	PPh ₃	3 h	100%
4	Cu ₂ O	-	3 ј	-
6	Cu ₂ O	PCy ₃	3 h	100%
7	Cu ₂ O	P(PhOMe) ₃	3 h	100%
8	Cu ₂ O	P(PhF) ₃	3 h	100%
9	Cu ₂ O	Xantphos	3 ј	100%
10	Cu ₂ O	BINAP	3 ј	80%
11	Cu ₂ O	Phénantroline	24 h	100%
12	Cu ₂ O	t-Bu-bispyridine	24 h	100%
13	Cu ₂ O	diaminocyclohexane	3 ј	100%
14	Cu ₂ O	diaminopyridine	3 j	100%
15	Cu ₂ O	Ethylène glycol	3 ј	0%
16	Cu ₂ O	Pinacol	3 ј	0%

Tableau 5 : Influence du ligand

Nous observons que les ligands phosphorés monodentates similaires à la triphénylphosphine permettent d'obtenir les mêmes résultats (Entrées 1 et 6 à 8). En revanche il apparaît que les ligands bidentates phosphorés bien qu'efficaces, nécessitent un temps de réaction bien plus long de l'ordre de plusieurs jours (Entrées 9 et 10). L'utilisation de ligands bidentates azotés permettent d'accéder aux esters boroniques avec une conversion totale entre 1 et 3 jours, bien qu'efficaces ils ralentissent la réaction (Entrées 11 à 14). Finalement, les ligands oxygénés bidentates sont inefficaces et ne permettent pas d'obtenir les composés organoborés désirés (Entrées 15 et 16) ce qui pourrait se traduire par un problème de coordination entre le Cu et ce type de ligands oxygénés. Nous observons donc que le changement de ligands peut avoir une grosse influence sur notre réaction, en effet il apparaît que plus les ligands sont volumineux (bidentates) plus la réaction est lente, les ligands phosphorés monodentates sont donc à privilégier.

4.4. Influence du donneur de proton sur la réaction d'hydroboration

L'influence du donneur de proton, qui est aussi le solvant dans notre réaction a également été étudiée. Nous avons donc effectué cette réaction dans différents alcools (Tableau 6).

	4a	I−PMB	B ₂ Pin ₂ (1.5 éq) Cu ₂ O (10 mol%), PPh ₃ (20 mol%) ROH	PinB 1	-PMB 8a
Entrée	Cu(I)	Ligand	Donneur de proton (Pka)	Durée	Conversion
1	Cu ₂ O	PPh_3	Méthanol (15.5)	3 h	100%
17	Cu_2O	PPh_3	Isopropanol (16.5)	3 h	100%
18	Cu ₂ O	PPh_3	Tertiobutanol (17)	3 h	100%

Tableau 6 : Influence du donneur de protons

L'isopropanol et le *tert*-butanol, un peu moins acides que le méthanol, ont été testés comme solvant afin d'étudier l'influence du donneur de protons sur la réaction (Tableau 6). Nous n'avons observé aucun changement en présence de ces différents alcools, en effet la conversion est toujours totale au bout de 3 heures de réaction (Entrées 17 et 18).

4.5. Influence du solvant sur la réaction d'hydroboration

Jusqu'ici, nous avons utilisé le méthanol à la fois comme solvant et comme donneur de proton. Nous avons décidé d'étudier l'effet de différents solvants en termes de polarité sur notre réaction tout en continuant à utiliser 2 équivalents de méthanol (Tableau 7, Entrées 19 à 21).

	О N-РМВ 4а	B ₂ Pir Cu ₂ O (10 mol MeOH (2	n₂ (1.5 éq) %), PPh₃ (20 mol%) 2 éq, solvant	PinB 1	-PMB
Entrée	Cu(I)	Ligand	Solvant	Durée	Conversion
1	Cu ₂ O	PPh₃	Méthanol	3 h	100%
19	Cu ₂ O	PPh_3	Acétone	24 h	22%
20	Cu ₂ O	PPh_3	THF	24 h	10%
21	Cu ₂ O	PPh_3	Chloroforme	24 h	15%

Tableau 7 : Influence du solvant

De ces expériences (Tableau 7), il ressort donc que la réaction d'hydroboration est hautement dépendante du solvant. Elle semble requérir l'utilisation d'un solvant polaire protique. L'utilisation de solvants polaire aprotique ou apolaire entraine en effet une baisse significative de la vitesse de la réaction même après 24 heures la conversion ne dépassant pas les 20% (Entrées 19 à 21). Les phosphines étant des ligands relativement labiles, il est également possible que la nature du solvant joue un rôle sur la stabilité des complexes de cuivres(I) formés lors de ces réactions.

4.6. Influence de la charge catalytique sur la réaction d'hydroboration

Pour finir, il nous a semblé qu'un point très important était de diminuer la quantité de catalyseur (charge catalytique) lors de la réaction. En effet, la charge de catalyseur est un paramètre important dans une réaction catalysée, plus la charge sera faible, plus la réaction sera économiquement viable et pourra ainsi être utilisée à grande échelle. Nous avons donc diminué la charge en oxyde de cuivre et en triphénylphosphine jusqu'à des seuils pratiques en termes de manipulation (Tableau 8). Jusqu'ici, les conditions réactionnelles étaient Cu₂O (10 mol%) et PPh₃ (20 mol%).

	О 	B ₂ Pin ₂ (1.5 éq) CuCl (x mol%), PPh ₃ (y mol%) MeOH		О N-РМВ В 18а
Entrée	Cu(I)	Ligand	Durée	Conversion
1	Cu ₂ O (10 mol%)	PPh₃ (20 mol%)	3 h	100%
22	Cu ₂ O (1 mol%)	PPh_3 (20 mol%)	3 h	100%
23	Cu ₂ O (10 mol%)	PPh ₃ (2 mol%)	3 h	100%
24	Cu ₂ O (1 mol%)	PPh ₃ (2 mol%)	3 h	100%

Tableau 8 : Influence de la charge catalytique

Les résultats rassemblés dans le tableau 8, montrent que la diminution de la quantité de catalyseur n'entraine aucune baisse du taux de conversion pour le même temps de réaction. La diminution par 10 de la quantité de catalyseur n'a en effet aucune influence sur la conversion et la vitesse de réaction (Entrée 22), de même pour la diminution par 10 de la quantité de ligand (Entrée 23). Finalement la réduction de la charge catalytique de ces 2 réactifs en même temps n'a toujours aucune influence sur les résultats de la réaction (Entrée 24).

4.7. Bilan de l'optimisation de la réaction d'hydroboration

Lors de l'optimisation des différents paramètres de la réaction, nous avons observé que la base n'est pas nécessaire lors de l'utilisation d'oxyde cuivre, celui-ci étant suffisamment basique pour déprotoner le méthanol. Les ligands phosphorés monodentates et les moins encombrés sont préférables pour cette réaction, de plus l'alcool utilisé lors de la réaction joue le rôle à la fois de solvant et de donneur de proton. Enfin, une quantité très faible d'oxyde de cuivre (1 mol%) est suffisante pour effectuer cette réaction avec de bons rendements et des temps de réactions raisonnables. Le catalyseur utilisé étant bon marché, pour des raisons pratiques, son utilisation à un taux de 10 mol% sera privilégiée. Les conditions optimales pour notre réaction d'hydroboration catalysée au cuivre sont donc les suivantes :

Dérivé boré	Bis(pinacol)diborane (1,5 équivalents))
Source de cuivre(I)	Cu ₂ O (10 mol%)
Ligand	PPh ₃ (20 mol%)
Solvant	Méthanol
Température	Température ambiante
Temps de réaction	3 heures

Tableau 9 : Conditions expérimentales optimisées (Cu₂O)

4.8. Application à l'hydroboration des méthylène isoindolinones 4b, 4g-l, 5, 6 et 7

La réaction d'hydroboration catalytique des énamides effectuée en présence d'oxyde de cuivre ayant été optimisée en termes de temps de réaction et de conversion sur le substrat modèle **4a**, nous avons souhaité explorer le potentiel de notre système catalytique en le testant sur une large gamme de méthylène isoindolinones synthétisées précédemment **4b**, **4g-l**, **5**, **6**, **7** (Schéma 11). Il est important de noter que les rendements affichés sur la figure 7 ci-dessous correspondent à ceux obtenus après isolation et purification sur colonne de silice.

Figure 7 : Rendements des boronates synthétisés

Les résultats obtenus montrent de bons rendements pour les composés **18b**, **18g** et **18h** supérieurs à 60% après purification. Les composés substitués sur le noyau aromatique **20** et **21** ont également été obtenus avec de très bons rendements respectivement de 99 et 82%. Cependant, nous observons des rendements beaucoup plus faibles pour les composés **18i-l** possédant sur l'atome d'azote une chaine fonctionnalisée de type pentyle, diméthylamino, diméthylamino éthyle ou 1,1-diméthoxy éthyle. Enfin, il faut également noter que nous n'avons pas réussi à obtenir le composé organoboré **19** substitué sur la double liaison éthylénique de l'isoindolinone. La réaction d'hydroboration des isoindolinones insaturées semble donc être limitée aux modèles non substitués sur la double liaison exocyclique (Figure 7).

5. Hydroboration des 3-méthylène isoindolinones en présence de thiophène carboxylate de cuivre

Les rendements de la réaction d'hydroboration des méthylène isoindolinones étant limités pour certains substrats, nous avons décidé de poursuivre l'optimisation de celle-ci en optant pour l'utilisation d'une autre source de cuivre(I), le thiophène carboxylate de cuivre (Figure 8).

Figure 8 : Structure du 2-thiophène carboxylate de cuivre

Une des particularités de ce sel de cuivre(I) est d'être plus soluble dans les solvants organiques que l'oxyde de cuivre ce qui pourrait permettre une amélioration des rendements et jouer sur la cinétique de la réaction d'hydroboration des méthylène isoindolinones.

De la même manière que l'oxyde de cuivre, le thiophène carboxylate de cuivre est légèrement basique et devrait nous permettre de nous affranchir de l'utilisation d'une base. L'étape d'optimisation avec ce nouveau catalyseur sera de nouveau réalisée sur le substrat modèle **4a**.

5.1. Influence des différents paramètres sur la réaction d'hydroboration

Dans un premier temps, nous avons décidé d'étudier l'influence de chacun des paramètres sur la réaction d'hydroboration catalysée au thiophène carboxylate de cuivre. Pour commencer, nous avons opté pour les mêmes conditions réactionnelles que celles utilisées précédemment : B₂pin₂ (1,5 eq), CuTC (10 mol%), PPh₃ (20 mol%), K₃PO₄ (2 équivalents) dans le méthanol à température ambiante (Tableau 10).

C	О 4а	B ₂ Pir CuTC (10 mol MeOH,	n₂ (1.5 éq) I%), PPh₃ (20 mol%) K₃PO₄ (2 éq)	Pin	О N-РМВ В 18а
Entrée	Catalyseur	Ligand	Base	Durée	Conversion
1	CuTC	PPh_3	K ₃ PO ₄	3 h	100%
2	CuTC	-	K ₃ PO ₄	3 ј	16%
3	CuTC	PPh_3	-	3 h	100%
4	CuTC	-	-	3 ј	-

Tableau 10 : Essais préliminaires

Les résultats rassemblés dans le tableau 10 ci-dessus, montrent que la réaction d'hydroboration effectuée sur la méthylène isoindolinone **4a** en présence de thiophène carboxylate de cuivre est également très efficace (Entrée 1) avec une conversion totale observée au bout de 3 heures. Comme nous l'avions prévu, nous pouvons à nouveau nous affranchir de la base (Entrée 3), la conversion étant totale dans le même temps de réaction. De la même façon qu'avec l'oxyde de cuivre, nous observons aussi que le ligand est nécessaire au bon déroulement de la réaction (Entrées 2 et 3).

5.2. Influence du ligand sur la réaction d'hydroboration

Nous avons ensuite cherché à étudier l'influence du ligand sur la réaction d'hydroboration. Comme précédemment avec l'utilisation d'oxyde de cuivre, des ligands phosphorés, azotés et oxygénés, mono et bidentates ont été testés pour cette réaction (Tableau 11).

	-PMB	B_2Pin_2 (1.5 éq)		
4a	CuTC	CuTC (10 mol%), ligand (20 mol% MeOH		PinB 18a
Entrée	Catalyseur	Ligand	Durée	Conversion
1	CuTC	PPh ₃	3 h	100%
5	CuTC	PCy ₃	3 h	100%
6	CuTC	P(PhOMe)₃	3 h	100%
7	CuTC	Xantphos	3 ј	100%
8	CuTC	Phénantroline	24 h	100%
9	CuTC	t-Bu-bispyridine	24 h	100%
10	CuTC	Ethylène glycol	3 ј	0%

Tableau 11 : Influence du ligand

Nous constatons que les ligands phosphorés monodentates (Entrées 5 et 6) sont de nouveau à privilégier et permettent la meilleure conversion dans le temps le plus faible. Les ligands phosphorés bidentates (Entrée 7) et azotés (Entrées 8 et 9) ralentissent la réaction et les ligands oxygénés (Entrée 10) n'ont aucun effet.

5.3. Influence de la charge catalytique sur la réaction d'hydroboration

Nous avons finalement souhaité définir l'influence de la charge catalytique sur cette réaction, de la même façon que précédemment en diminuant la quantité de cuivre et de ligand séparément, puis ensemble (Tableau 12).

	O ∦ ∬ CuTC ¶	B ₂ Pin ₂ (1.5 équ (x mol%), PPh ₃ (y mol% MeOH	b) Pinl	О N-РМВ В 18а
Entrée	Cu(l)	Ligand	Durée	Conversion
1	CuTC (10 mol%)	PPh ₃ (20 mol%)	3 h	100%
11	CuTC (1 mol%)	PPh_3 (20 mol%)	3 h	100%
12	CuTC (10 mol%)	PPh ₃ (2 mol%)	3 h	100%
13	CuTC (1 mol%)	PPh ₃ (2 mol%)	3 h	100%

Tableau 12 : Influence de la charge catalytique

Les résultats présentés dans le tableau 12 montrent les mêmes résultats que lors de l'utilisation de l'oxyde de cuivre, en effet lorsque la charge catalytique est divisée par 10, la réaction est tout aussi rapide et efficace avec une conversion totale. Cependant, comme précédemment, nous avons décidé de garder la charge catalytique plus élevée en raison des faibles quantités difficilement utilisables lors de la réaction.

5.4. Bilan de l'optimisation de la réaction d'hydroboration

Nous avons constaté lors de l'optimisation de la réaction d'hydroboration effectuée en présence de thiophène carboxylate de cuivre que le changement de source de cuivre(I) n'a aucune incidence sur le temps de réaction et la conversion des méthylène isoindolinones en esters boroniques. Les conditions optimales de notre nouveau système catalytique n'ont par conséquent guère évoluées (Tableau 13).

Dérivé boré	Bis(pinacol)diborane (1,5 eq)		
Cu(I)	CuTC (10 mol%)		
Ligand	PPh ₃ (20 mol%)		
Solvant	Méthanol		
Température	Température ambiante		
Temps de réaction	3 heures		

Tableau 13 :	Conditions	<i>expérimentales</i>	optimisées	(CuTC)
--------------	------------	-----------------------	------------	--------

5.5. Application à l'hydroboration des méthylène isoindolinones

Nous avons décidé d'étendre notre étude sur l'utilisation du thiophène carboxylate de cuivre comme catalyseur en l'appliquant à certaines méthylène isoindolinones. En effet, celui-ci étant plus soluble dans les solvants organiques, nous espérions pouvoir améliorer les rendements obtenus lors de l'utilisation d'oxyde de cuivre (Schéma 12 et Figure 9).

Schéma 12 : Réaction d'hydroboration effectuée en présence de CuTC

Figure 9 : Rendements des boronates synthétisés

Les différents rendements obtenus après purification par chromatographie sur colonne de silice avec ce nouveau système catalytique (méthode 2) sont rassemblés sur la figure 9 ci-dessus. Ils sont à comparer avec ceux obtenus précédemment lors de l'utilisation d'oxyde de cuivre (méthode 1). En ce qui concerne l'hydroboration de notre composé de référence **4a** (composé **18a**), nous n'observons aucune différence de rendements. Malheureusement, pour les composés **18g-j** pour lesquels nous espérions une amélioration significative du rendement, nous obtenons des résultats moins satisfaisants que lors de l'utilisation de l'oxyde de cuivre.

CHAPITRE II : Hydroboration des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

Même pour le composé **20** pour lequel nous avions obtenu avec un rendement quantitatif, nous observons une baisse très importante du rendement de l'ordre de 22%. Bien que plus soluble, le thiophène carboxylate de cuivre ne nous a pas permis d'améliorer les rendements obtenus avec l'oxyde de cuivre.

Au vu de ces résultats, l'hypothèse la plus probable est le problème de stabilité des méthylène isoindolinones, en effet certains composés se dégradent plus vite, notamment ceux possédant une chaine alkyle sur l'atome d'azote, les mauvais rendements peuvent en partie être dus à l'oxydation des isoindolinones en phtalimides.

6. Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un *ortho*-alkynylbenzamide couplée à leur hydroboration

Afin de contourner le problème de stabilité de certaines méthylène isoindolinones notamment lors de leur purification, nous avons alors décidé d'utiliser la stratégie développée dans le chapitre précédent qui consiste à former le squelette des méthylène isoindolinones par hydroamination intramoléculaire d'un *ortho*-alkynylbenzamide et de coupler cette réaction directement avec l'étape d'hydroboration. Nous avons en effet constaté que les conditions opératoires utilisées lors de la réaction d'hydroamination intramoléculaire des 3-méthylène isoindolinones. L'avantage majeur de cette nouvelle voie de synthèse réside sur le fait qu'elle devrait nous permettre d'assurer de manière concomitante la formation des 3-méthylène isoindolinones tout en procédant à leur hydroboration sans aucune isolation et purification de celles-ci (Schéma 13).

Schéma 13 : Synthèse des méthylène isoindolinone par hydroamination intramoléculaire d'alcyne couplée à leur hydroboration

6.1. Synthèse des 2-aryléthynylbenzamides à partir des acides benzoïques *ortho*-iodés

Les différents substrats **25-27** nécessaires à notre étude ont été synthétisés en s'appuyant sur la méthodologie de synthèse déjà décrite dans le chapitre I à savoir la formation initiale des benzamides *ortho* iodés **22-24** qui sont ensuite engagés dans une réaction pallado-catalysée de type Sonogashira pour former les 2-aryléthynylbenzamides **25-27** souhaités (Schéma 14).

Schéma 14 : Synthèse des 2-aryléthynylbenzamides 25-27

Ces 2 réactions nous ont permis d'obtenir les benzamides **22-24** et les 2aryléthynylbenzamides **25-27** avec de bons rendements allant de 61 à 87% (Tableau 14).

Tableau 14 : Rendements des benzamides et des 2-aryléthynylbenzamides correspondants

6.2. Synthèse des boronates 18e-f, 18h par hydroamination / hydroboration

Les 2-aryléthynylbenzamides **25-27** ayant été synthétisés avec succès, nous nous sommes par la suite concentrés sur leur cyclisation intramoléculaire puis sur l'hydroboration en « one-pot » des méthylène isoindolinones formée intermédiairement. Nous avons pour cela placé les composés **25-27** dans l'éthanol en présence d'éthanolate de sodium à reflux pendant 5 heures. Après vérification par chromatographie sur couche mince (CCM) de la bonne formation des 3-méthylène isoindolinones, le brut réactionnel obtenu a été refroidit à température ambiante, puis les réactifs nécessaires à la réaction d'hydroboration (Cu₂O, PPh₃ et B₂pin₂) ont été ajoutés. Après 3 heures de réaction et purification par chromatographie sur colonne de silice, les esters boroniques **18e**, **18f** et **18h** ont pu être isolés avec de bien meilleurs rendements allant de 53 à 63% (Figure 10).

Figure 10 : Rendements des différents esters boroniques synthétisés

Cette méthodologie de synthèse simple à mettre en œuvre s'avère être particulièrement efficace, en effet en appliquant ce nouveau protocole en «one-pot» il n'est plus nécessaire d'isoler les 3-méthylène isoindolinones intermédiaires ce qui permet de contourner les éventuels problèmes de stabilité de ces dernières et d'obtenir les composés organoborés désirés avec de meilleurs résultats.

III. Etude mécanistique de la réaction d'hydroboration catalysée par les complexes de cuivre(I)

Les résultats qui viennent d'être exposés dans ce chapitre ont démontré l'efficacité du système catalytique développé permettant d'effectuer l'hydroboration, rapide et avec d'excellents rendements, d'une grande diversité de méthylène isoindolinones. Cette méthode efficace et concise révèle un grand potentiel puisqu'elle devrait nous permettre par la suite d'accéder à un large éventail de composés organoborés, qui pourront être engagés dans de nombreuses réactions de couplages permettant ainsi de fonctionnaliser la position 3 des isoindolinones formées.
Afin de mieux comprendre le mode d'action de notre système catalytique sur la réaction d'hydroboration des 3-méthylène isoindolinones, nous avons cherché à en savoir un peu plus sur la détermination du mécanisme réactionnel, c'est-à-dire la description de toutes les étapes élémentaires ayant lieu au cours de la réaction en effectuant notamment une étude du profil énergétique de la formation de l'espèce catalytique formée précédant la réaction d'hydroboration. Ceci nous conduira à obtenir des informations précieuses sur les espèces-clés intervenant dans la réaction (intermédiaires réactionnels et état de transition). La combinaison d'études expérimentales et d'études théoriques, telle qu'illustrée dans cette partie, nous permettront également d'obtenir des informations à l'échelle moléculaire sur la géométrie des états de transition et sur les barrières énergétiques des différentes étapes.

Dans un premier temps, nous nous sommes intéressés au mécanisme de la réaction d'hydroboration des styrènes, catalysée par les complexes de cuivre(I), effectuée à l'aide du bis(pinacol)diborane en présence d'un halogénure de cuivre(I), d'un ligand, d'une base et du méthanol couramment décrit dans la littérature.¹⁴²

Dans le cycle catalytique proposé représenté sur le schéma 15, le méthylate de cuivre(I) est tout d'abord obtenu à partir d'un halogénure de cuivre(I) et du méthylate de sodium généré *in situ* par réaction d'une base avec le méthanol. Le méthylate de cuivre(I) subit ensuite une transmétallation (métathèse sigma) en présence de bis(pinacol)diborane pour conduire à la formation d'un complexe bore-cuivre (pinB-Cu-L_n). Ce complexe va dans un premier temps se coordiner à l'alcène puis subir une réaction d'insertion via un mécanisme concerté à quatre centres, sur lequel nous reviendrons dans la suite de ce chapitre, pour délivrer un complexe alkyl-cuivre(I). La protonation de cet intermédiaire à l'aide du méthanol conduira finalement à la formation du produit d'hydroboration désiré et du méthylate de cuivre(I) qui pourra poursuivre le cycle catalytique. La régiosélectivité du processus d'addition du complexe pinB-Cu-L_n sur l'alcène sera fortement dépendante des différents facteurs permettant la stabilisation du complexe alkyl-cuivre obtenu. La densité électronique accumulée sur le carbone benzylique peut être stabilisé par l'orbitale π^* du noyau aromatique.¹⁴²

¹⁴² Wen L., Cheng F., Li H., Zhang S., Hong X., Meng F. Asian J. Org. Chem. **2017**, 7, 103-106

Schéma 15 : Mécanisme postulé pour l'hydroboration des styrènes catalysée au cuivre en présence d'une base forte

Le mécanisme proposé ci-dessus (Schéma 15), permet la compréhension de la réaction effectuée en présence d'une base susceptible de déprotoner le méthanol, cependant, nous avons pu observer dans ce chapitre que cette réaction était également réalisable en présence d'une base faible ou sans base avec les espèces de cuivre utilisées (Cu₂O et CuTC). Nous nous proposons donc d'étudier la formation du complexe cuivre-bore dans les 3 conditions précédemment citées.

Comme nous l'avons évoqué dans la description du mécanisme général des réactions d'hydroboration des alcènes catalysées par les complexes borés du cuivre(I) effectuées en présence d'une base, le méthylate de cuivre(I) généré *in situ* subit une transmétallation (métathèse sigma) en présence de bis(pinacol)diborane pour conduire à la formation d'un complexe bore-cuivre (pinB-Cu- L_n) via un état de transition cyclique à quatre centres (Schéma 16).¹⁴³

Schéma 16 : Mécanisme de formation du complexe bore-cuivre en présence de méthylate de cuivre

¹⁴³ Kleeberg C., Dang L., Lin Z., Marder T. B., Angew. Chem. Int. Ed. 2009, 48, 5350–5354

Une étude du mécanisme effectuée par calculs DFT a montré qu'il pouvait y avoir dans un premier temps formation d'un complexe ate entre le bis(pinacol)diborane et le méthanol, ce qui a pour effet d'augmenter considérablement l'acidité du proton lié à l'oxygène. Ce proton peut par la suite être facilement arraché au moyen d'une base faible et provoquer la formation du complexe bore-cuivre impliqué dans la suite de la réaction (Schéma 17).¹⁴⁴

Schéma 17 : Mécanisme de formation du complexe cuivre-bore en présence d'une base faible

Finalement, il a été postulé que l'oxyde de cuivre(I) pouvait jouer le rôle de base selon un mécanisme identique à celui précédemment décrit (Schéma 18).¹⁴⁵

Schéma 18 : Mécanisme de formation du complexe cuivre-bore sans base

Afin d'appuyer ces hypothèses mécanistiques concernant notre réaction d'hydroboration, nous avons réalisé en partenariat avec le Docteur Iker Del Rosal, Maître de conférences à l'INSA à L'Université Paul Sabatier à Toulouse dans le laboratoire de Physique et Chimie des Nano-objets, une étude mécanistique basée sur des calculs DFT concernant la formation du complexe Cu-Bpin en absence de base. Cette étude s'est faite en se basant sur la présence de bis(pinacol)diborane, de thiophène carboxylate de cuivre (le mécanisme est supposé être le même pour l'oxyde de cuivre), de triphénylphosphine et de méthanol.

¹⁴⁴ Dang L., Lin Z., Marder T. B. *Organometallics* **2008**, *27*, 4443–4454

¹⁴⁵ Calow A. D. J., Solé C., Whiting A., Fernandez E. ChemCatChem **2013**, *5*, 2233-39

Schéma 19 : Etude mécanistique de la réaction d'hydroboration par calculs DFT

Pour plus de visibilité, nous avons simplifié les schémas suivants en enlevant les groupements méthyles du bis(pinacol)diborane et en ne développant pas la structure de la triphénylphospine.

Lors de l'approche des réactifs on peut observer une interaction entre le cuivre et un oxygène du bis(pinacol)diborane et une liaison hydrogène entre le méthanol et l'ion carboxylate, ce qui a pour effet d'orienter correctement les réactifs en vue de l'étape suivante (Schéma 20). Les calculs NBO confirment que pour le premier intermédiaire à 13.5 Kcal/mol la liaison entre le cuivre et l'oxygène du pinacolborane est une liaison dative. Plus exactement c'est principalement une donation de la paire libre de l'oxygène vers une orbitale s sur le Cu et un peu sur les p. Il y a également donation de la paire libre du deuxième oxygène du carboxylate vers le cuivre mais cette fois-ci principalement sur les p.

Schéma 20 : Etape 1 – Formation d'un complexe ate

A ce stade il y a formation d'un complexe entre le méthanol et le bis(pinacol)diborane, ce qui a pour effet d'augmenter l'acidité du proton lié à l'oxygène du méthanol et de faciliter son transfert sur l'ion carboxylate via une réaction acido-basique intramoléculaire pour conduire à la formation d'un complexe ate (Schéma 20).

Dans la suite du mécanisme nous pouvons observer un changement de ligands au niveau du cuivre(I) (Schéma 21) qui s'accompagne finalement d'une réaction de transmétallation *via* une métathèse sigma pour conduire à la formation du complexe Cu-Bpin et du méthylate de cuivre(I) *via* un état de transition cyclique à quatre centres conformément à ce qui a été décrit dans la littérature (Schéma 22).²⁵

Schéma 21 : Etape 2 – Changement de coordination du cuivre

En ce qui concerne le dernier état de transition, il est plus difficile à analyser car plusieurs liaisons se cassent et se forment. On peut cependant voir une forte donation de la liaison B-B vers des orbitales vides du Cuivre et une rétrodonatrion du Cuivre vers la B-B*. Le Cuivre est bien relié au Phosphore et à l'oxygène.

Schéma 22 : Etape 3 – Formation du complexe bore-cuivre

Cette étude mécanistique nous a permis d'affiner la compréhension du mécanisme de formation du complexe pinB-Cu-L_n à partir du thiophène carboxylate de cuivre et du bis(pinacol)diborane dans le méthanol et de proposer le cycle catalytique décrit sur le schéma 23 cidessous pour l'hydroboration des 3-méthylène isoindolinones.

Schéma 23 : Mécanisme proposé pour la réaction d'hydroboration des 3-méthylène isoindolinones

Afin de mettre en évidence la formation du complexe alkyl-cuivre(I) obtenu après la réaction d'insertion, une hydroboration a été effectuée en présence de méthanol deutéré (CD₃OD) et le spectre RMN ¹H du brut réactionnel a confirmé l'incorporation d'un atome de deutérium en position 3 du noyau isoindolinone (Figure 11).

Figure 11 : Structure de la méthylène isoindolinone 4a deutérée en position 3

Conclusion et perspectives

Dans ce second chapitre, nous avons étudié la réaction d'hydroboration catalysée au cuivre des 3-méthylène isoindolinones synthétisées dans le chapitre I.

Nous avons développé de nouveaux systèmes catalytiques performants à base respectivement d'halogénure de cuivre, d'oxyde de cuivre et de thiophène carboxylate de cuivre et une optimisation des différents paramètres (ligand, base, agent de borylation, donneur de proton) a été réalisée. Ceci nous a permis de préparer facilement, avec des temps de réaction très courts, d'excellents rendements et à moindre cout toute une large gamme d'esters boroniques dérivant de ces 3-méthylène isoindolinones.

Une des limites de la réaction d'hydroboration des méthylène isoindolinone réside sur la faible stabilité de ces dernières qui ont tendance à se dégrader plus ou moins rapidement via des processus d'oxydation. Afin de contourner ce problème, nous avons développé une méthodologie de synthèse qui nous a permis d'assurer de manière concomitante la formation des méthylène isoindolinones par hydroamination intramoléculaire d'un *ortho*-alkynylbenzamide tout en procédant dans la foulée à leur hydroboration. Cette méthodologie de synthèse en « one-pot » relativement simple à mettre en œuvre s'avère être particulièrement efficace. En effet, dans ce cas de figure, il n'est plus nécessaire d'isoler et de purifier les 3-méthylène isoindolinones formées intermédiairement ce qui permet d'une part de contourner les éventuels problèmes de stabilité de ces dernières et d'autre part, d'obtenir les composés organoborés désirés avec de meilleurs rendements.

Dans le chapitre suivant, nous nous intéresserons à l'hydroboration stéréosélective des 3méthylène isoindolinones *via* l'utilisation d'un ligand chiral ou l'incorporation d'un auxiliaire chiral sur l'atome d'azote lactamique. Les paramètres expérimentaux seront de nouveau optimisés en fonction des excès énantio- ou diastéréomériques mesurés.

111

Références bibliographiques relatives au chapitre 2

- 120) De Martino G., De Caprariis P., Abignente E., Grazia Rimoli M. 'New synthetic method for 4-hydroxyproline', J. Het. Chem. **1990**, *27*, 507–509
- 121) Plehiers M., Hootelé C. 'Synthesis of β-hydroxypiperidine alkaloids by anodic oxidation of carbamates and hydroboration', *Can. J. Chem.* **1996**, *74*, 2444–2453.
- 122) Le Corre L., Dhimane H. 'Synthesis of 5-substituted pipecolic acid derivatives as new conformationally constrained ornithine and arginine analogues', *Tetrahedron Lett.* **2005**, *46*, 7495–7497
- 123) Le Corre L., Kizirian J.-C., Levraud C., Boucher J.-L., Bonnet V., Dhimane H. 'Diastereoselective functionalizations of enecarbamates derived from pipecolic acid towards 5-guanidinopipecolates as arginine mimetics', *Org. Biomol. Chem.* **2008**, *6*, 3388-3398
- 124) Molander G. A., Vargas F. 'β-Aminoethyltrifluoroborates: Efficient aminoethylations via Suzuki–Miyaura cross-coupling', *Org. Lett.* **2007**, *9*, 203–206
- 125) Geier M. J., Vogels C. M., Decken A. Westcott S. A. 'The transition metal catalyzed hydroboration of enamines', *J. Organomet. Chem.* **2009**, *694*, 3154–3159
- 126) Arnold K., Batsanov A. S., Davies B., Grosjean C., Schütz T., Whiting A., Zawatzky K. 'The first example of enamine–Lewis acid cooperative bifunctional catalysis: application to the asymmetric aldol reaction', *Chem. Commun.* **2008**, 3879-3881
- 127) Chirik P., Morris R. 'Earth abundant metals in homogeneous catalysis', *Acc. Chem. Res* 2015, *48*, 2495–2495
- 128) Takahashi K., Ishiyama T., Miyaura N. 'Addition and coupling reactions of bis(pinacolato)diboron mediated by CuCl in the presence of potassium acetate', *Chem. Lett.* **2000**, *29*, 982–983
- 129) Ito H., Yamanaka H., Tateiwa J.-I., Hosomi A. 'Boration of an α,β-enone using a diboron promoted by a copper(I)–phosphine mixture catalyst', *Tetrahedron Lett.* **2000**, *41*, 6821–6825
- Bartoccini F., Bartolucci S., Lucarini S., Piersanti G. 'Synthesis of boron- and silicon-containing amino acids through copper-catalyzed conjugate additions to dehydroalanine derivatives', *Eur. J. Org. Chem.* 2015, 3352–3360
- 131) Bartoccini F., Maria Cannas D., Fini F., Piersanti G. 'Palladium(II)-catalyzed cross-dehydrogenative coupling (CDC) of *N*-phthaloyl dehydroalanine esters with simple arenes: Stereoselective synthesis of *Z*-dehydrophenylalanine derivatives', *Org. Lett.* 2016, *18*, 2762–2765
- 132) Hosseinzadeh Z., Ramazani A. 'An overview on catalytic importance of PPh₃', *Curr. Org. Chem.* **2018**, 22, 1589–1599
- 133) Tolman C. A. 'Steric effects of phosphorous ligands in organometallic chemistry and homogeneous chemistry', *Chem. Rev.* **1977**, *77*, 313-348

- 134) Hemming D., Fritzemeier R., Westcott S. A., Santos W. L., Steel P. G. 'Copper-boryl mediated organic synthesis', *Chem. Soc. Rev.* **2018**, *47*, 7477–7494
- 135) Laitar, D. S., Müller P., Sadighi J. P. 'Efficient homogeneous catalysis in the reduction of CO₂ to CO', *J. Am. Chem. Soc.* **2005**, *127*, 17196-17197
- 136) Segawa Y., Yamashita M., Nozaki K. 'Boryl anion attacks transition-metal chlorides to form boryl complexes: Syntheses, spectroscopic, and structural studies on group 11 borylmetal complexes', *Angew. Chem. Int. Ed.* **2007**, *46*, 6710-6713
- 137) Kajiwara T., Terabayashi T., Yamashita M., Nozaki K. 'Syntheses, structures, and reactivities of borylcopper and zinc compounds: 1,4-silaboration of an α , β -unsaturated ketone to form a γ -siloxyallylborane', *Angew. Chem. Int. Ed.* **2008**, *47*, 6606-6610
- 138) Borner, C., Anders L., Brandhorst K., Kleeberg C. 'Elusive phosphine copper(I) boryl complexes: Synthesis, structures and reactivity', *Organometallics* **2017**, *36*, 4687-4690
- 139) Semba K., Shinomiya M., Fujihara T., Terao J., Tsuji Y. 'Highly selective copper-catalyzed hydroboration of allenes and 1,3-dienes', *Chem. Eur. J.* **2013**, *19*, 7125-7132
- 140) Hong, S., Liu, M., Zhang, W., Zeng, Q.; Deng, W. 'Copper catalyzed hydroboration of alkylarenes at room temperature', *Tetrahedron Lett.* **2015**, *56*, 2297-2202
- 141) Habbache N., Alane N., Djerad S., Tifouti L. 'Leaching of copper oxide with different acid solutions', *Chem. Eng. J.* **2009**, *152*, 503–508
- 142) Wen L., Cheng F., Li H., Zhang S., Hong X., Meng F. 'Copper-catalyzed enantioselective hydroboration of 1,1-disubstituted alkenes: Method development, applications and mechanistic studies', *Asian J. Org. Chem.* **2017**, *7*, 103–106
- 143) Kleeberg C., Dang L., Lin Z., Marder T. B. 'A facile route to aryl boronates: room-temperature, coppercatalyzed borylation of aryl halides with alkoxy diboron reagents', *Angew. Chem. Int. Ed.* **2009**, *48*, 5350–5354
- 144) Dang L., Lin Z., Marder T. B., 'DFT studies on the borylation of α,β-unsaturated carbonyl compounds catalyzed by phosphine copper (I) boryl complexes and observations on the interconversions between O- and C-bound enolates of Cu, B and Si', Organometallics, 2008, 27, 4443–4454
- 145) Calow A. D. J., Solé C., Whiting A., Fernandez E., 'Base-free β -boration of α , β -unsaturated imines catalyzed by Cu₂O with concurrent enhancement of asymmetric induction' *ChemCatChem* **2013**, *5*, 2233-2239

CHAPITRE III

Hydroboration asymétrique des

3-méthylène isoindolinones

catalysée par les complexes de cuivre(I)

Au cours de ces dernières décennies, les composés organoborés énantioenrichis sont devenus significativement importants dans le domaine de la synthèse organique.¹⁴⁶ Compte tenu de leurs applications étendues en tant qu'intermédiaires de synthèse pour les produits pharmaceutiques chiraux et les molécules biologiquement actives,¹⁴⁷ de nombreuses méthodologies de synthèse sur la borylation asymétrique ont été développées.

Dans l'état actuel de nos connaissances, et après un examen minutieux de la littérature, il existe différentes méthodologies de synthèse efficaces permettant d'effectuer des réactions d'hydroborations stéréosélectives. Nous pouvons les classer en deux catégories différentes :

- les méthodes basées sur l'emploi d'un auxiliaire chiral.
- les méthodes reposant sur l'utilisation de réactifs (catalyseurs) chiraux

I. Introduction générale sur les réactions d'hydroboration stéréosélectives

La découverte des réactions d'hydroboration asymétriques ont marqué le début des synthèses asymétriques pratiques et efficaces et d'une nouvelle ère dans la chimie organique.

1. Hydroboration asymétrique d'alcènes faisant appel à des réactifs chiraux

La première réaction d'hydroboration asymétrique d'alcènes a été rapportée par Brown et Zweifel grâce à la synthèse du diisopinocampheylborane (Ipc₂BH), un dialkylborane obtenu par hydroboration de l' α -pinène. Grâce à cette méthode, ils ont permis l'hydroboration asymétrique d'alcènes 1,2-cis disubstitués. Les alcools obtenus après oxydation ont été obtenus avec des niveaux d'énantiosélectivité jamais obtenus jusqu'alors avec des excès énantiomériques allant de 88 à 91% (Schéma 1).^{148,149}

Schéma 1 : Hydroboration asymétrique d'alcène grâce au diisopinocampheylborane

¹⁴⁶ Matteson D. S.J. Organomet. Chem. **1999**, 581, 51–65

¹⁴⁷ Yang W., Gao X., Wang B. *Med. Res. Rev.* **2003**, *23*, 346–368

¹⁴⁸ KaurP., Khatik G. L., Kumar Nayak S. *Curr. Org. Synth.* **2017**, *14*, 665-682

¹⁴⁹ Brown H. C., Jadav P. K. *J. Org. Chem.* **1981**, *46*, 5047–5048

Malgré ces découvertes remarquables, l'extension de cette méthode aux alcènes 1,2-trans disubstitués, 1,1-disubstitués et trisubstitués a conduit à des niveaux d'induction asymétrique insatisfaisants. Les années suivantes, le groupe de Brown a découvert que le monoisopinocampheylborane (IpcBH₂) permettait de réaliser l'hydroboration de ces alcènes encombrés avec une induction asymétrique beaucoup plus élevée (Schéma 2).

Schéma 2 : Hydroboration asymétrique d'alcènes grâce au monoisopinocampheylborane

En 1985, Masamune et al. ont introduit un nouveau réactif boré chiral capable d'hydroborer toutes les classes d'alcènes citées précédemment avec des niveaux élevés d'énantiosélectivité. Malgré de meilleurs résultats que la méthode développée par Brown, la synthèse du réactif asymétrique étant très longue, cette méthode n'a pas réussi à rivaliser (Schéma 3).¹⁵⁰

Schéma 3 : Hydroboration asymétrique d'alcènes par le groupe de Masamune

Depuis les premières études de Brown portant sur l'hydroboration asymétrique des alcènes en 1961, il a fallu près de 50 ans pour trouver une méthode efficace transposable à toutes les catégories d'alcènes. En 2008, le groupe de Soderquist a décrit un nouveau réactif efficace pour l'hydroboration asymétrique des alcènes, le 9-borabicyclo[3,3,2]décane, un réactif facile à synthétiser et permettant d'obtenir de très bons excès énantiomériques (Schéma 4).¹⁵¹

¹⁵⁰ Masamune S., Kim B. M., Peterson J. S., Sato T., Veenstra S. J., Imai T. *J. Am. Chem. Soc.* **1985**, *107*, 4549–4551

¹⁵¹ Gonzalez A. Z., Romàn J. G., Gonzalez E., Martinez J., Medina J. R., Matos K., Soderquist J. A. J. Am. Chem. Soc. **2008**, 130, 9218–9219

Schéma 4 : Hydroboration asymétrique d'alcènes par le groupe de Soderquist

Malgré le développement impressionnant des réactions d'hydroboration asymétriques effectuées à l'aide d'un réactif chiral, certaines limitations sont apparues, notamment la non compatibilité avec certains groupements fonctionnels et la difficulté de contrôler la régiosélectivité de la réaction sur des alcènes faiblement dissymétriques.

2. Hydroboration asymétrique d'alcènes métallo-catalysée

En 1988, Burgess et Ohlmeyer ont rapporté la première hydroboration énantiosélective d'alcènes catalysée au rhodium grâce à l'introduction de ligands phosphorés chiraux DIOP et BINAP (Ligands déjà utilisés dans l'hydrogénation, l'hydroformylation et l'hydrosilylation d'alcènes catalysées au rhodium) (Schéma 5).¹⁵²

Schéma 5 : Première hydroboration asymétrique d'alcène catalysée au rhodium

Quelques années plus tard, le groupe de Hayashi et Ito a permis une grande avancée pour la réaction d'hydroboration asymétrique de styrènes catalysée au rhodium, permettant d'obtenir le produit d'addition Markovnikov avec des excès énantiomériques allant jusqu'à 96% (Schéma 6).¹⁵³

¹⁵² Burgess K., Ohlmeyer M. J. J. Org. Chem. **1988**, 53, 5178–5179

¹⁵³ Hayashi T., Matsumoto Y., Ito Y., J. Am. Chem. Soc. **1989**, 111, 3426–3428

Schéma 6 : Hydroboration asymétrique d'alcènes catalysée au rhodium

Bien que le rhodium ait dominé le domaine de l'hydroboration des alcènes catalysée par les métaux de transition ces dernières années, le cuivre a également montré une bonne aptitude pour catalyser efficacement l'hydroboration asymétrique des alcènes. La première hydroboration stéréosélective catalysée au cuivre a été rapportée par le groupe de Yun en 2009, où il a réalisé l'hydroboration de styrènes terminaux et substitués grâce à des ligands chiraux tels que le Tangphos et par la suite le Segphos (Schéma 7).^{154,155}

Schéma 7 : Première hydroboration asymétrique d'alcènes catalysée au cuivre

En 2016, Hartwig et al. ont décrit une réaction d'hydroboration asymétrique d'alcènes catalysée au cuivre en présence de Segphos. Ce travail marque une grande avancée par rapport aux méthodes précédemment développées en permettant l'hydroboration asymétrique d'alcènes aliphatiques internes.¹⁵⁶

Schéma 8 : Hydroboration asymétrique d'alcènes catalysée au cuivre

¹⁵⁴ Noh D., Chea H., Ju J., Yun J. *Angew. Chem. Int. Ed.* **2009**, *48*, 6062–6064

¹⁵⁵ Noh D., Yoon S. K., Won J., Lee J. Y., Yun J. *Chem. Asian J.* **2011**, *6*, 1967–1969

¹⁵⁶ Xi Y., Hartwig J. F. J. Am. Chem. Soc. **2016**, 138, 6703–6706

3. Bilan bibliographique sur les réactions d'hydroboration asymétriques métallocatalysées d'énamides et analogues

En 2015, Tang et al.¹⁵⁷ ont été les premiers à développer une synthèse énantiosélective d' α amino esters boroniques tertiaires par hydroboration d' α -arylénamides catalysée au rhodium effectuée en présence d'une phosphine chirale (schéma 9).

Schéma 9 : Hydroboration asymétrique d'a-arylénamides catalysée au rhodium

Plusieurs équipes de recherche et notamment celles de Ito¹⁵⁸ et de Xu¹⁵⁹ont par la suite travaillé sur l'hydroboration asymétrique d'indoles substitués en position 2 ou 3 par une fonction ester en utilisant cette fois un système catalytique à base de cuivre (Schéma 10).

Schéma 10 : Hydroboration asymétrique d'indoles catalysée au Cuivre

La toute première réaction d'hydroboration asymétrique d'énamides de type α amidoacrylates utilisant un système catalytique à base de cuivre a été publiée en 2014 par l'équipe de Lin¹⁶⁰ (Schéma 11).

¹⁵⁷ Hu N., Zhao G., Zhang Y., Liu X., Li G., Tang W. J. Am. Chem. Soc. **2015**, 137, 6746–6749

¹⁵⁸ Kubota K., Hayama K., Iwamoto H., Ito H. *Angew. Chem. Int. Ed.* **2015**, *54*, 8809-8813

¹⁵⁹ Chen L., Shen J.-J., Gao Q., Xu S. *Chem. Sci.* **2018**, *9*, 5855-5859

¹⁶⁰ He Z.-T., Zhao Y.-S., Tian P., Wang C.-C., Dong H.-Q., Lin G.-Q. Org. Lett. **2014**, *16*, 1426-1429

Schéma 11 : première réaction d'hydroboration asymétrique d'énamides de type α -amidoacrylates catalysée au cuivre

Quelques années plus tard, en 2017, les équipes de Parra¹⁶¹ et de Xu¹⁶² ont développé d'autres réactions d'hydroboration toujours catalysées au cuivre sur des composés analogues de type β -amidoacrylates et β -amidoacrylonitriles. Ces différents travaux ont permis d'accéder à toute une série d'esters β -aminés en incorporant avec de très bons rendements et une excellente énantiosélectivité un ester boronique en α de l'atome d'azote (Schéma 12)

Schéma 12 : Hydroboration asymétrique de β -amidoacrylates et acrylonitriles catalysée au Cuivre

¹⁶¹ Lopez A., Clark T. B., Parra A., Tortosa M. Org. Lett. **2017**, *19*, 6272-6275

¹⁶² Chen L., Xou X., Zhao H., Xu S. *Org. Lett.* **2017**, *19*, 3676-3679

II. Etude de la réaction d'hydroboration asymétrique des 3–méthylène isoindolinones catalysée au cuivre

1. Essais préliminaires sur la réaction d'hydroboration énantiosélective des 3méthylène isoindolinones

Afin de tester la réactivité des 3-méthylène isoindolinones vis-à-vis de la réaction d'hydroboration énantiosélective catalysée au cuivre, nous nous sommes, dans un premier temps, inspirés directement des conditions expérimentales utilisées par Lin.¹⁵ Ces premiers essais ont été réalisés sur la 3-méthylène isoindolinone **4a** (Schéma 13).

Schéma 13 : premiers essais d'hydroboration énantiosélective de la 3-méthylène isoindolinone **4a** catalysée au cuivre

Nous sommes partis d'un système catalytique à base de chlorure de cuivre(I) (CuCl) en présence de tertiobutylate de sodium, de bis(pinacol)diborane (B_2pin_2) et de méthanol (en tant que donneur de proton). La réaction s'effectue dans le toluène à température ambiante pendant 3 heures. Plusieurs ligands chiraux comme le (*S*,*S*p)-ipFOXAP, un carbène hétérocyclique dérivant d'un sel d'imidazolium ((*R*,*R*)-NHC)et le (*R*,*R*)-QUINOX ont été ajoutés au milieu réactionnel (Schéma 13).

Entrée	Ligand	L*(mol%)	Rendement isolé 18a L*(mol%) (%)	
1	а	10	92	2
2	b	10	83	2
3	С	10	90	3

Tableau 1 : résultats obtenus par hydroboration énantiosélective de la 3-méthylène isoindolinone 4a

Malgré de très bons rendements de conversion, l'utilisation de ces différents ligands s'est accompagnée d'une absence totale de stéréosélectivité (Tableau 1, Entrées 1 à 3). Devant les difficultés rencontrées lors de l'hydroboration énantiosélective de nos modèles, nous avons décidé de modifier notre stratégie de synthèse et avons cherché à développer une réaction d'hydroboration diastéréosélective en introduisant un auxiliaire chiral sur l'azote lactamique de nos modèles.

2. Hydroboration diastéréosélective des 3-méthylène isoindolinones

Suivant le même protocole que celui utilisé dans le chapitre II, nous avons décidé d'optimiser les différents paramètres de la réaction d'hydroboration en travaillant sur la 3-méthylène isoindolinone **4i** qui nous servira de substrat modèle pour la suite de notre étude. Dans un premier temps, nous avons opté pour l'incorporation d'un groupement α -méthyl(*para*-méthoxy)benzyle dans nos modèles qui présente l'avantage de pouvoir être clivé facilement sans racémisation (Schéma 14).

Schéma 14 : Réaction d'hydroboration diastéréosélective de notre substrat modèle 4i

Cette réaction a été optimisée en suivant le protocole décrit dans le chapitre précédent. Nous avons donc utilisé un sel de cuivre(I) associé à un ligand, un agent de borylation, un donneur de proton et un solvant. Les paramètres expérimentaux seront ajustés un à un afin d'obtenir les meilleurs résultats en termes de rendement et surtout de diastéréoséléctivité.

2.1. Hydroboration diastéréosélective en présence d'oxyde de cuivre (Cu₂O)

Lors de l'hydroboration racémique des 3-méthylène isoindolinones, l'utilisation d'oxyde de cuivre nous a permis, d'une part, d'obtenir des résultats très satisfaisants en termes de conversion et de vitesse de réaction et, d'autre part, de nous affranchir de la base. Nous avons donc décidé de commencer l'optimisation de la réaction d'hydroboration diastéréosélective de nos modèles avec ce précurseur en reprenant les meilleures conditions expérimentales obtenues précédemment (Schéma 15).

Schéma 15 : Conditions de la réaction d'hydroboration diastéréoséléctive de notre substrat modèle 4i

Ces conditions réactionnelles nous ont permis d'obtenir l'ester boronique **18i** dérivant de la 3-méthylène isoindolinone **4i** avec un rendement quasi quantitatif (Rdt = 98%) et un bon rapport diastéréoisomérique (r.d. = 78/22) déterminé par RMN ¹H du brut réactionnel. Au vu de ces résultats très encourageants, nous avons par la suite cherché à optimiser les différents paramètres pouvant influencer cette réaction.

2.1.1. Influence du ligand sur la réaction d'hydroboration

Dans un premier temps, nous nous sommes intéressés à l'influence du ligand sur l'excès diastéréoisomérique lors de la réaction d'hydroboration. Dans le chapitre II, nous avons observé de meilleurs résultats lors de l'utilisation de ligands phosphorés, c'est pourquoi nous avons décidé de nous focaliser sur ce type de ligands (Tableau 2).

Tableau 2 : Influence du ligand

		B ₂ Pin ₂ (1.5 e Cu ₂ O (10 mol%), ligan MeOH	éq) nd (20 mol%)		MP
Entrée	Cu(I)	Ligand	Durée	r.d.	Conversion
1	Cu ₂ O	PPh ₃	3 h	78/22	100%
2	Cu ₂ O	PCy ₃	3 h	78/22	100%
3	Cu ₂ O	P(PhOMe) ₃	3 h	75/25	100%
4	Cu ₂ O	P(PhF) ₃	3 h	79/21	100%
5	Cu ₂ O	Xantphos	3 ј	70/30	85%
6	Cu ₂ O	(<i>S</i>)-BINAP	3 ј	81/19	80%

A nouveau, nous observons que les ligands phosphorés monodentates similaires à la triphénylphosphine permettent d'obtenir les meilleurs résultats en termes de rendement et de temps de réaction (Entrées 1 à 4). Les ligands bidentates, bien qu'efficaces, nécessitent un temps de réaction bien plus long de l'ordre de plusieurs jours (Entrées 5 et 6). Nous observons également que le changement de phosphine a très peu d'incidence sur la valeur du ratio diastéréoisomérique après réaction (Entrées 1 à 6). Les ligands phosphorés monodentates sont donc à nouveau à privilégier pour cette réaction.

2.1.2. Influence du donneur de proton sur la réaction d'hydroboration

L'influence du donneur de proton, qui est aussi le solvant dans notre réaction a également été étudiée. Nous avons donc effectué cette réaction dans différents alcools (Tableau 3).

	0 N- 3i	PMP Cu ₂ O (B ₂ Pin ₂ (1.5 éq) (10 mol%), PPh ₃ (20 MeOH	mol%)	PinB 17i	ΙP
Entrée	Cu(I)	Ligand	Donneur de proton (Pka)	Durée	r.d.	Conversion
1	Cu ₂ O	PPh ₃	Méthanol (15.5)	3 h	78/22	100%
7	Cu₂O	PPh₃	Isopropanol (16.5)	3 h	60/40	100%
8	Cu ₂ O	PPh ₃	Tertiobutanol (17.0)	3 h	65/35	100%

Tableau 3 : Influence du donneur de proton

Bien qu'aucuns changements n'aient été observés en termes de conversion en modifiant la nature de l'alcool, la diastéréoséléctivité est quant à elle influencée par ce changement. Nous observons en effet une chute assez sensible du rapport diastéréoisomérique lors de l'utilisation d'isopropanol et de *tert*-butanol (Entrées 7 et 8). L'acidité de l'alcool utilisé pourrait jouer sur la vitesse de protonation du complexe alkyl-cuivre formé après addition du complexe bore-cuivre sur l'énamide et favorisé son épimérisation.

2.1.3. Influence du solvant sur la réaction d'hydroboration

Pour les réactions précédentes, nous avions décidé d'utiliser l'alcool comme solvant et comme donneur de proton. Nous avons donc ensuite étudié l'influence du changement de solvant sur la diastéréosélectivité de la réaction, tout en gardant 2 équivalents de méthanol comme donneur de proton (Tableau 4).

Tableau 4 : Influence du solvant

		, PMP Cu ₂ O (1	B ₂ Pin ₂ (1.5 éq) 0 mol%), PPh ₃ (20 MeOH, solvant	mol%)	PinB 17i	
Entrée	Cu(I)	Ligand	Solvant	Durée	r.d.	Conversion
1	Cu ₂ O	PPh_3	MeOH	3 h	78/22	100%
9	Cu ₂ O	PPh₃	Acétone	24 h	60/40	26%
10	Cu ₂ O	PPh_3	THF	24 h	63/37	13%
11	Cu ₂ O	PPh_3	Chloroforme	24 h	55/45	18%

Là encore nous observons que la réaction d'hydroboration dépend grandement de la nature du solvant. L'utilisation de solvant non protique tel que l'acétone, le THF ou le chloroforme entraine une chute de réactivité importante accompagnée d'une diminution du rapport diastéréoisomérique (Entrées 9 à 11).

2.1.4. Bilan de l'optimisation de la réaction d'hydroboration diastéréosélective à l'oxyde de cuivre

Lors de cette première série d'essais, nous avons observé que les meilleurs résultats en termes de rendements de conversion et de rapport diastéréoisomérique étaient obtenus en présence de ligands monodentates phosphorés. Les ligands bidentates phosphorés (en particulier le (*S*)-BINAP) nous ont permis d'obtenir un rapport diastéréoisomérique légèrement supérieur, mais avec une baisse sensible de la conversion. Le changement de solvant et de donneur de protons entraine une diminution de la réactivité de la réaction d'hydroboration avec une baisse sensible des rendements de conversion mais également une diminution du rapport diastéréoisomérique. Les conditions optimales pour notre réaction d'hydroboration diastéréosélective en présence d'oxyde de cuivre sont donc identiques à celles optimisées dans le chapitre précédent et sont les suivantes (Tableau 5) :

Dérivé boré	Bis(pinacol)diborane (1,5 équivalent)
Cu(I)	Cu ₂ O (10 mol%)
Ligand	PPh₃ (20 mol%)
Solvant	Méthanol
Température	Température ambiante
Temps de réaction	3 h
r.d.	78/22

 Tableau 5 : Meilleures conditions de réaction pour la réaction d'hydroboration diastéréosélective en présence

 d'oxyde de Cuivre

2.1.5. Application à l'hydroboration diastéréosélective des 3-méthylène isoindolinones 4j-l

La réaction d'hydroboration catalysée à l'oxyde de cuivre ayant été optimisée en terme temps de réaction, de conversion et de rapport diastéréoisomérique sur le substrat modèle **4i**, nous avons souhaité explorer le potentiel de notre système catalytique en le testant sur toute une gamme de méthylène isoindolinone **4j-l** incorporant sur l'atome d'azote lactamique divers auxiliaires chiraux. Les auxiliaires chiraux de prédilection au laboratoire et qui ont été utilisés lors de cette étude sont de type α -méthylbenzyle et SMP ((*S*)-méthylprolinol). Ce sont en effet des agents temporaires d'activation à haut degré d'induction asymétrique, facile à connecter et à éliminer. Nous avons notamment porté notre choix sur le groupe SMP car il a déjà largement fait ces preuves en tant qu'auxiliaire chiral de choix pour la synthèse d'isoindolinones.^{163,,164,165,166,167}

Les auxiliaires chiraux de type hydrazine se sont révélés très intéressants pour la synthèse de composés azotés énantio- ou diastéréo purs de par la combinaison d'une grande réactivité associée à une haute régio- et stéréo-sélectivité.^{168,169}De plus, ce type de substrats se caractérise par une grande stabilité qui permet notamment la purification des molécules synthétisés par chromatographie ou distillation.

¹⁶³ Deniau E., Enders D. Couture A. Grandclaudon P. *Tetrahedron: Asymmetry* **2003**, *14*, 2253-2258.

¹⁶⁴ Deniau E., Couture A., Grandclaudon P. *Tetrahedron: Asymmetry* **2008**, *19*, 2735-2740

¹⁶⁵ Deniau E., Enders D., Couture A., Grandclaudon P. *Tetrahedron: Asymmetry* **2005**, *16*, 875-881

¹⁶⁶ Enders D., Braig V., Boudou M., Raabe G. *Synthesis* **2004**, 2980-2990

¹⁶⁷ Grigg R., Dorrity M.J.R., Malone J.F. *Tetrahedron Lett.* **1990**, *31*, 3075-3076

¹⁶⁸ Corey E.J., Enders D. *Tetrahedron Lett.* **1976**, *17*, 3-6.

¹⁶⁹ Corey E.J. Enders D. *Tetrahedron Lett.* **1976**, *17*, 11-14

Enfin, un autre avantage de l'utilisation de ce type de copule réside dans les conditions de clivage qui s'avèrent être non racémisantes.¹⁷⁰ Pour l'ensemble de ces raisons, nous avons donc choisi d'utiliser le SMP comme auxiliaire chiral dans notre stratégie de synthèse.

Les rendements affichés ci-dessous ont été obtenus après isolation et purification des composés sur colonne de silice (Schéma 16).

Schéma 16 : hydroboration diastéréosélective des 3-méthylène isoindolinones 4j-l

A la lecture des résultats ci-dessus (Schéma 16), on constate toujours de très bons rendements de conversion supérieurs à 76% pour les 3 composés synthétisés après purification **(18j-I)**. Malheureusement, quel que soit l'auxiliaire chiral utilisé en particulier pour les composés possédant une copule chirale de type naphtalénique et SMP sur l'atome d'azote (composés **18k** et **18l**), nous n'avons observé aucune amélioration de l'excès diastéréoisomérique.

2.2. Hydroboration diastéréosélectives des 3-méthylène isoindolinones catalysée à l'aide de complexes carbènes *N*-hétérocycliques (NHCs) de cuivre

¹⁷⁰ Enders D., Peters R., Wortmann L. Acc. Chem. Res. **2000**, 33, 157-169

La modification de la nature de l'auxiliaire chiral ne permettant pas d'améliorer les excès diastéréoisomériques, nous avons décidé de modifier la nature des ligands utilisés et de nous tourner vers les carbènes *N*-hétérocycliques. Ces dernières années ont vu l'émergence d'un nombre considérable de carbènes *N*-hétérocycliques (NHCs).

Cet engouement est lié à la nécessité de développer des systèmes toujours plus performants dans le domaine de la synthèse organique et de la catalyse asymétrique.¹⁷¹ Contrairement aux ligands phosphines, les NHCs donnent des complexes très stables et donc plus faciles à préparer et à manipuler. De plus, leur caractère ambivalent en fait des catalyseurs performants aussi bien en catalyse organique qu'organométallique.¹⁷² Leurs performances en catalyse asymétrique sont également connues pour égaler ou dépasser celles des ligands phosphorés.

2.2.1. Rappels bibliographiques sur les carbènes N-hétérocycliques

Les carbènes sont des espèces neutres qui peuvent adopter dans leur état fondamental deux configurations électroniques différentes (Figure 1). Ces carbènes peuvent être dans un état singulet, les deux électrons se trouvant dans la même orbitale sp² avec des spins antiparallèles, laissant une orbitale p vide (carbènes de FISCHER). Les carbènes peuvent également adopter un état fondamental triplet dans lequel les deux électrons ont des spins parallèles et occupent respectivement une orbitale sp² et une orbitale p (carbènes de SCHROCK).

Figure 1 : Géométrie et configuration électronique des carbènes

Les carbènes N-hétérocycliques sont fondamentalement dans un état singulet, ce qui fait d'eux des ligands L avec un très fort caractère sigma-donneur.

La stabilité exceptionnelle des NHCs peut être expliquée par les facteurs suivants :

¹⁷¹ Fliedel C., Labande A., Manoury E., Poli R. *Coord. Chem. Rev.* **2019**, *394*, 65-103

¹⁷² Díez-González S., Marion N., Nolan S. P. *Chem. Rev.* **2009**, *109*, 3612–3676

- La densité électronique sur le centre carbénique est atténuée grâce à la délocalisation des paires libres des deux atomes d'azote vers l'orbitale p vacante du carbène (Figure 2) et, dans une moindre mesure, à l'effet inductif des atomes d'azote.
- L'aromaticité de ce type de structure à 6 électrons est présente dans un grand nombre de molécules appartenant à cette famille de composés.
- La présence de substituants volumineux au niveau des atomes d'azote permet d'éviter les réactions de dimérisation des NHCs.

Figure 2 : Formes mésomères limites et hybride de résonance des carbènes N-hétérocycliques

Bien que connu depuis les années 60, la chimie des carbènes *N*-hétérocycliques s'est réellement développée dans les années 90, notamment grâce à Arduengo qui a isolé le premier NHC libre stable et cristallin, suivi de ses analogues les années suivantes (Figure 3).^{173,174,175}

Figure 3 : Exemples de carbènes N-hétérocycliques libres isolés par Arduengo

Le premier exemple de NHC lié au cuivre a été observé par Arduengo sous la forme d'un dicarbène cationique. L'année suivante, Raubenheimera a décrit un mono carbène de cuivre neutre (Figure 4).^{176,177}

¹⁷³ Arduengo A. J., Harlow R. L., Kline M. J. Am. Chem. Soc. **1991**, *113*, 361–363

¹⁷⁴ Arduengo A. J., Rasika Dias H. V., Harlow R. L., Kline M. *J. Am. Chem. Soc.* **1992**, *114*, 5530–5534

¹⁷⁵ Arduengo A. J., Goerlich J. R., Marshall W. J. J. Am. Chem. Soc. **1995**, 117, 11027–11028

¹⁷⁶ Arduengo A. J., Rasika Dias H. V., Calabrese J. C., Davidson F. *Organometallics* **1993**, *12*, 3405–3409

¹⁷⁷ Raubenheimer H. G., Cronje S., Olivier P. J., Toerien J. G., van Rooyen P. H. *Angew. Chem. Int. Ed.* **1994**, *33*, 672–673

Figure 4 : Exemples de carbène N-hétérocyclique de cuivre

La première catalyse effectuée à l'aide d'un complexe NHC-Cu a été publiée en 2001, lorsque Woodward a rapporté qu'une solution de Cu(OTf)₂ de sel d'imidazolium et de *t*-BuOK a efficacement catalysé l'addition de diéthylzinc (Et₂Zn) sur des énones (Schéma 17).¹⁷⁸ D'autres rapports ont ensuite suivi, montrant que les catalyseurs à base de cuivre étaient plus efficaces en présence de ligands NHC.

Schéma 17 : Exemple de réaction catalysée par un carbène N-hétérocyclique de cuivre généré in situ

En 2003, Burchwald et Sadighi ont reporté la première utilisation d'un complexe NHC-Cu en catalyse en utilisant un dérivé du complexe de Raubenheimer (Schéma 18).¹⁷⁹

Schéma 18 : Exemple de réaction catalysée par un carbène N-hétérocyclique de cuivre

La catalyse à l'aide des complexes NHC-Cu a par la suite prouvé son efficacité dans de nombreux domaines et a notamment démontré une remarquable capacité à catalyser les réactions d'hydrométallation des alcènes. L'association du bis(pinacol)diborane avec un complexe NHH-Cu a

¹⁷⁸ Fraser P. K., Woodward S. *Tetrahedron Lett.* **2001**, *42*, 2747–2749

¹⁷⁹ Jurkauskas V., Sadighi J. P., Buchwald S. L. Org. Lett. **2003**, *5*, 2417–2420

par exemple été utilisée par l'équipe de Lee afin d'effectuer l'hydroboration de doubles liaisons styréniques (Schéma 19).¹⁸⁰

Schéma 19 : Exemple d'hydroboration catalysée par des carbènes N-hétérocyclique de cuivre

Au cours de cette dernière décennie, la catalyse faisant appel aux carbènes *N*-hétérocycliques de cuivre a connu un essor considérable et a permis la fonctionnalisation de nombreuses molécules.¹⁸¹ Nous avons donc décidé de les utiliser dans le cadre de la réaction d'hydroboration diastéréosélective des 3-méthylène isoindolinones, le but étant d'améliorer la diastéréosélectivité de cette réaction.

2.2.2. Description des carbènes N-hétérocyclique utilisés

Quatre carbènes *N*-hétérocycliques ont été sélectionnés pour cette nouvelle étude : un de type benzimidazol-2-ylidène et trois de type de imidazol-2-ylidène : les deux premiers qui porteront l'abréviation [(Bn₂bimy)CuCl] et [(Bn₂imy)CuCl] ont été synthétisés au laboratoire et les deux autres carbènes portant les abréviations [(IPr)CuCl] et [(IMes)CuCl] sont commerciaux. Les complexes obtenus par la complexation d'un NHC à un ion cuivre(I) ont le gros avantage d'être relativement stables à l'air, qu'il est possible de les stocker à température ambiante, qu'ils sont robustes et qu'ils sont faciles à purifier par chromatographie sur colonne de silice. L'optimisation des différents paramètres de ce nouveau système catalytique a été effectuée, dans un premier temps, à l'aide du complexe [(Bn₂bimy)CuCl] (Figure 5).

¹⁸⁰ Lee Y., Hoveyda A. H. J. Am. Chem. Soc. **2009**, 131, 3160–3161

¹⁸¹ Lazreg F., Nahra F., Cazin C. S. J. Coord. Chem. Rev. **2003**, 293-294, 48-79

Figure 3 : Structure des carbènes N-hétérocyclique de cuivre utilisés

2.2.3. Synthèse des complexes [(Bn₂bimy)CuCl] et [(Bn₂imy)CuCl]

La synthèse des complexes [(Bn₂bimy)CuCl] et [(Bn₂imy)CuCl] a été effectuée en 3 étapes. La première étape de cette réaction a consisté en l'addition de bromure de benzyle en milieu basique à reflux sur du benzimidazole ou de l'imidazole. Un premier produit d'addition a été isolé et purifié avec de très bons rendements respectivement de 90 et 83%. La deuxième étape a consisté en la condensation de chlorure de benzyle sur le produit obtenu précédemment à reflux dans le toluène. Le choix de l'halogénure de benzyle est important car l'halogène présent aura un rôle de ligand du cuivre dans le produit final. Le cation intermédiaire obtenu a été isolé et purifié avec des rendements très corrects de 92 et 60%. (Schéma 20).

Schéma 20 : Synthèse des complexes [(Bn₂bimy)CuCl] et [(Bn₂imy)CuCl]

Une fois les carbènes *N*-hétérocyclique formés, la dernière étape a consisté à les lier au métal choisi comme catalyseur, ici le cuivre. Ces intermédiaires ont donc été mis en présence d'oxyde de cuivre dans le toluène sous micro-ondes à 150 °C, permettant ainsi d'obtenir les deux complexes [NHC-Cu-Cl] ciblés avec des rendements de 96 et 80% après isolation des produits (schéma 20).

2.2.4. Optimisation de la réaction d'hydroboration diastéréosélective de la 3méthylène isoindolinone 3i en présence des complexes NHCs de cuivre

Les réactions d'optimisation seront de nouveau effectuées sur notre substrat modèle **4i**. Lors de cette réaction, nous utiliserons le bis(pinacol)diborane comme agent de boration, un solvant, un donneur de proton et une base afin de déprotoner le donneur de proton, les complexes NHC-Cu n'ayant aucune propriété basique (Schéma 21).

Schéma 21 : Réaction d'hydroboration diastéréosélective catalysée par les NHC de cuivre

a. Influence des différents paramètres sur la réaction

Dans un premier temps nous nous sommes intéressés à la validation de chacun des paramètres de la réaction d'hydroboration. Les conditions réactionnelles utilisées sont les suivantes : [(Bn₂bimy)CuCl] (10 mol%), K₃PO₄ (2 équivalents), B₂pin₂ (1,5 équivalents) dans le méthanol à température ambiante. Les résultats rassemblés dans le tableau 6 montrent la nécessité de travailler en présence d'une base (Entrée 2). En effet, sans ajout de base, après 3 jours de réaction, nous n'observons aucune conversion. Par contre, lorsque la réaction est effectuée en présence de 2 équivalents de K₃PO₄, la conversion est totale en à peine 15 minutes ce qui montre une réactivité beaucoup plus importante des complexes *N*-hétérocycliques du cuivre vis-à-vis de la réaction d'hydroboration par rapport aux complexes basés sur des ligands de type phosphines (Entrée 1). Pour ce premier essai d'hydroboration nous observons également un rapport diastéréoisomérique de 71/29, ce qui est proche des valeurs trouvées précédemment avec les complexes phosphine-cuivre.

Tableau 6 : Essais préliminaires

O N PMP 4i		B ₂ Pin ₂ (1. (Bn ₂ bimy)CuCl MeOH, K ₃ PC	5 éq)] (10 mol%) D ₄ (x éq)	PinB 18i	
Entrée	Cu(I)	Base	Durée	r.d.	Conversion
1	[(Bn ₂ bimy)CuCl]	K ₃ PO ₄	<15 min	71/29	100%
2	[(Bn ₂ bimy)CuCl]	-	3 J	-	0%

b. Influence de la quantité de base

La base étant un élément indispensable pour effectuer la réaction d'hydroboration catalysée par des complexes NHC-Cu, nous avons décidé d'étudier l'influence de la quantité de base sur la réaction. Pour cela nous avons progressivement baissé le nombre d'équivalent de K₃PO₄ jusqu'à des quantités catalytiques de l'ordre de 10 mol% (Tableau 7).

Tableau 7 : Influence de la quantité de base

		B ₂ Pin ₂ (1.5	éq)		_!
4i		[(Bn ₂ bimy)CuCl] (10 mol%) MeOH, K ₃ PO ₄ (x éq)		PinB 18i	
Entrée	Cu(l)	Quantité de base	Durée	r.d.	Conversion
1	[(Bn ₂ bimy)CuCl]	2 éq	<15 min	71/29	100%
3	[(Bn ₂ bimy)CuCl]	1 éq	<15 min	71/29	100%
4	[(Bn ₂ bimy)CuCl]	0,5 éq	<15 min	71/29	100%
5	[(Bn ₂ bimy)CuCl]	0,1 éq	<15 min	71/29	100%

Lors de ces essais, nous observons que la quantité de base n'a aucune influence sur le rapport diastéréoisomérique et sur la conversion de la réaction. En effet, nous observons une conversion totale en moins de 15 minutes malgré des quantités très faibles de base (jusqu'à 0,1 équivalents) (Entrée 5). Nous pourrons donc conserver cette quantité de base pour la suite de notre optimisation.

c. Influence de la base

Nous allons maintenant nous intéresser à l'influence de la base utilisée sur la réaction d'hydroboration catalysée par les carbènes *N*-hétérocycliques de cuivre des 3-méthylène isoindolinones. Dans le tableau 8 ci-dessous, nous observons que la nature de la base utilisée a une influence notable sur la diastéréosélectivité de la réaction. En effet des bases trop fortes font légèrement baisser le rapport diastéréoisomérique (Entrées 6 et 7), tout en gardant une conversion totale en 15 minutes.

Tableau 8 : Influence de la base

		B ₂ P [(Bn ₂ bimy MeOH,	in ₂ (1.5 éq))CuCl] (10 mol%) base (0.1 éq)	→ C Pi	0 N PMP 18i	
Entrée	Cu(l)	Base	Pka	Durée	r.d.	Conversion
1	[(Bn ₂ bimy)CuCl]	K ₃ PO ₄	12	<15 min	71/29	100%
6	[(Bn ₂ bimy)CuCl]	Ca(OH)₂	14	<15 min	69/31	100%
7	[(Bn ₂ bimy)CuCl]	Ba(OH) ₂	14	<15 min	69/31	100%
8	[(Bn ₂ bimy)CuCl]	Li_2CO_3	10	<15 min	72/28	100%
9	[(Bn ₂ bimy)CuCl]	Na_2CO_3	10	<15 min	72/28	100%
10	[(Bn ₂ bimy)CuCl]	K ₂ CO ₃	10	<15 min	72/28	100%
11	[(Bn ₂ bimy)CuCl]	Cs ₂ CO ₃	10	<15 min	74/26	100%
12	[(Bn ₂ bimy)CuCl]	Na_2HPO_4	7	<15 min	69/31	100%
13	[(Bn ₂ bimy)CuCl]	KH ₂ PO ₄	2	12 h	ND	0%

En présence d'une base un peu plus faible, nous observons une amélioration de la diastéréosélectivité de la réaction (Entrées 8 à 10), notamment pour le carbonate de césium qui nous a permis d'obtenir les meilleurs résultats (r.d. 74/26) (Entrée 11). En revanche, lorsque la base est trop faible, nous observons à nouveau une baisse du rapport diastéréoisomérique (Entrée 12) voire même un arrêt de la réaction avec le dihydrogénophosphate de potassium (Entrée 13). Nous avons donc décidé d'utiliser le carbonate de césium pour la suite de l'optimisation de la réaction d'hydroboration.

d. Influence du donneur de proton

L'influence du donneur de proton, qui est aussi le solvant dans notre réaction a également été étudié. Nous avons donc effectué cette réaction dans différents alcools (Tableau 9).

Tableau 9 : Influence du donneur de protons

De la même façon que pour l'hydroboration racémique des 3-méthylène isoindolinones, nous n'observons aucune influence sur le temps de réaction en changeant de donneur de protons. Cependant lors de l'utilisation de l'isopropanol, nous remarquons une légère baisse de la diastéréosélectivité de la réaction (Entrée 15). Nous décidons donc pour la suite de garder le méthanol comme donneur de proton.

e. Influence du solvant

Jusqu'ici le méthanol a été utilisé à la fois comme donneur de proton et comme solvant de la réaction, nous avons décidé d'observer l'influence d'un changement de solvant tout en gardant 2 équivalents de méthanol sur la réaction afin d'observer les changements de diastéréosélectivité (Tableau 10).

B₂Pin₂ (1.5 éq) [(Bn₂bimy)CuCl] (10 mol%) MeOH (2 équ), Cs₂CO₃ (0.1 éq) PinB 4i solvant 18i Entrée Cu(I) Solvant Durée r.d. Conversion Base 11 [(Bn₂bimy)CuCl] MeOH <15 min 74/26 100% Cs_2CO_3 16 [(Bn₂bimy)CuCl] THF 30 min 71/29 100% Cs_2CO_3 17 [(Bn₂bimy)CuCl] 2 h Cs_2CO_3 Et_2O 72/28 100% [(Bn₂bimy)CuCl] 18 Cs_2CO_3 Toluène 12 h 67/33 50% [(Bn₂bimy)CuCl] Dichlorométhane 19 Cs_2CO_3 2 h 61/39 100%

Tableau 10 : Influence du solvant

Nous observons une augmentation du temps de réaction lors de l'utilisation du toluène (Entrée 18). De plus, lors de l'utilisation des différents solvants nous remarquons une baisse de la diastéréosélectivité de la réaction (Entrées 16 à 19). Il apparait donc que l'utilisation d'un solvant en plus du donneur de proton ne permet pas d'améliorer la sélectivité de la réaction, le méthanol est donc la meilleure option comme solvant pour la réaction d'hydroboration.

f. Influence de la charge catalytique

Pour finir, il nous a semblé qu'un point très important était l'observation de l'influence de la charge catalytique sur la réaction. Nous avons donc fait varier la quantité de catalyseur dans notre réaction en la diminuant jusqu'à des seuils assez faibles (de l'ordre de 0.1 mol%) tout en restant suffisamment pratique en termes de manipulation (Tableau 11).

Tableau 11 : Influence de la charge catalytique

Entrée	Cu(I)	Charge catalytique	Base	Durée	r.d.	Conversion
11	[(Bn ₂ bimy)CuCl]	10 mol%	Cs ₂ CO ₃	<15 min	74/26	100%
20	[(Bn ₂ bimy)CuCl]	5 mol%	Cs ₂ CO ₃	<15 min	68/32	100%
21	[(Bn ₂ bimy)CuCl]	1 mol%	Cs ₂ CO ₃	<15 min	66/34	100%
22	[(Bn ₂ bimy)CuCl]	0.1 mol%	Cs ₂ CO ₃	<15 min	66/34	100%

Les résultats rassemblés dans le tableau 11 montrent qu'il n'y a aucune influence de la charge catalytique sur le temps de réaction, en effet la conversion est toujours totale en 15 minutes. Cependant, nous observons un changement important au niveau de la diastéréosélectivité, lorsque l'on diminue la quantité de catalyseur, le rapport diastéréoisomérique diminue également (Entrées 20 à 22). Afin d'obtenir des résultats intéressants en termes de sélectivité, nous devons donc conserver une certaine charge catalytique lors de notre réaction.

g. Influence du catalyseur

Le but de cette optimisation étant d'améliorer significativement la diastéréosélectivité de la réaction, le dernier paramètre à optimiser est le catalyseur. En effet précédemment nous avons utilisé le [(Bn₂bimy)CuCl], qui est un carbène *N*-hétérocyclique de cuivre synthétisé au laboratoire, nous voulons à présent observer l'influence du changement de catalyseur sur la réaction

139

d'hydroboration. Trois autres catalyseurs ont donc été utilisés dans les mêmes charges catalytiques (10 mol %) (Tableau 12).

Dans le tableau 12 ci-dessous, nous observons que le changement de catalyseur a une forte influence sur le temps de réaction. L'utilisation du complexe [(Bn₂imy)CuCl] ne modifie pas les résultats obtenus précédemment avec le complexe [(Bn₂bimy)CuCl], par contre lors de l'utilisation des deux catalyseurs commerciaux, nous obtenons une baisse de la réactivité avec une conversion totale en 2 heures (Entrées 24 et 25) ce qui est bien plus élevé que ce que nous avons observé lors de notre réaction de référence (Entrée 11).

Tableau 12 : Influence du catalyseur

		B ₂ Pin ₂ (1	.5 éq)		_!
		[(CNH)CuCl] MeOH, Cs ₂ C0	(10 mol%) D ₃ (0.1 éq)	PinB 17i	
Entrée	Catalyseur	Base	Durée	r.d.	Conversion
11	[(Bn ₂ bimy)CuCl]	Cs ₂ CO ₃	<15 minutes	74/26	100%
23	[(Bn₂imy)CuCl]	Cs_2CO_3	<15 minutes	72/28	100%
24	[(IPr)CuCl]	Cs_2CO_3	2 h	77/23	50%
25	[(IMes)CuCl]	Cs_2CO_3	2 h	79/21	50%

Malgré une augmentation substantielle du temps de réaction, nous remarquons néanmoins une légère amélioration de la diastéréosélectivité avec un excès diastéréoisomérique respectivement de 54 et de 58%.

h. Bilan de l'optimisation de la réaction d'hydroboration avec les NHC-Cu

Lors de l'optimisation de la réaction d'hydroboration diastéréosélective des 3-méthylène isoindolinones, nous avons fait varier différents paramètres afin d'observer leurs influences sur la stéréosélectivité de celle-ci. Les meilleurs résultats obtenus ont été rassemblés dans le tableau 13 cidessous. La comparaison de ces trois systèmes catalytiques montre des résultats comparables en termes de stéréosélectivité avec des excès diastéréoisomériques quasiment identiques (de l'ordre de 50 à 55%). Nous observons également une augmentation sensible de la réactivité dans le cas des carbènes [(Bn₂bimy)CuCl]et [(Bn₂imy)CuCl] avec des conversions totales en moins de 15 minutes.
		[/Pn himy)CuCl]	
Catalyseur	Cu₂O (10 mol%)	[(Bn₂imy)CuCl], [(Bn₂imy)CuCl] (10 mol %)	[(IMes)CuCl] (10 mol%)
Ligand	PPh₃ (20 mol%)	-	-
Base		Cs ₂ CO ₃ (0.1 eq)	Cs ₂ CO ₃ (0.1 eq)
Solvant	Méthanol	Méthanol	Méthanol
Température	Température ambiante	Température ambiante	Température ambiante
Durée	3h	<15 minutes	2h
r.d.	78/22	74/26	79/21

Tableau 13 : Comparaison des conditions optimales de la réaction d'hydroboration

III. Détermination de la configuration absolue du carbone asymétrique créé lors de la réaction d'hydroboration diastéréosélective

L'optimisation de la réaction d'hydroboration diastéréosélective de nos modèles possédant un auxiliaire chiral ayant été réalisée précédemment et nous ayant permis d'obtenir des rapports diastéréoisomériques corrects, il nous a semblé intéressant de déterminer la configuration absolue du carbone asymétrique du diastéréoisomère formé majoritairement (Schéma 22).

Schéma 22 : Hydroboration diastéréosélective catalysée au cuivre

Afin de déterminer cette configuration absolue, nous avons entrepris de dérivatiser le boronate **18I** afin d'obtenir une isoindolinone chirale non racémique décrite dans la littérature. La comparaison des données spectroscopiques du produit de synthèse et de l'isoindolinone de

CHAPITRE III : Hydroboration asymétrique des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

référence devrait nous permettre de remonter à la configuration absolue du carbone asymétrique créé lors de la réaction d'hydroboration diastéréosélective des 3-méthylène isoindolinones.

Nous avons procédé de la manière suivante : tout d'abord nous avons réalisé une réaction d'hydroboration catalysée au cuivre dans les conditions optimales sur la 3-méthylène isoindolinone **4I**, suivie de l'oxydation de l'ester boronique **18I** par action de perborate de sodium dans un mélange THF/H₂O.

Schéma 23 : Suites de réaction permettant de déterminer la configuration absolue du carbone

Ceci nous a permis d'obtenir les alcools **34** et **35** sous la forme d'un mélange de deux diastéréoisomères (r.d. = 70/30). Après séparation des 2 diastéréoisomères par chromatographie sur colonne de silice, nous avons formé les dérivés bromés correspondants **(36)** via une réaction d'Appel par action du tétrabromure de carbone (CBr₄) en présence de triphénylphosphine (PPh₃) puis nous avons effectué la déshalogénation de ces derniers par hydrogénation catalytique pour conduire aux 2 produits ciblés **(37)** (Schéma 23).

Après comparaison des spectres RMN ¹H et ¹³C du diastéréoisomère majoritaire **(37)** avec le produit décrit dans la littérature, ¹⁹ nous avons déterminé que le diastéréoisomère majoritairement formé lors de la réaction d'hydroboration est de configuration 3*R* (composé **37**). Suite à des travaux effectués au laboratoire sur la réduction diastéréosélective des ènehydrazides chiraux¹⁹ on peut supposer que le diastéréoisomère majoritairement formé lors de la réaction d'hydroboration résulte de l'attaque du complexe pinB-Cu-Ln sur la face la moins encombrée.

Schéma 24 : Modèle proposé pour la formation du diastéréoisomère majoritaire

Conclusion et Perspectives

Dans ce chapitre, nous avons étudié la réaction d'hydroboration diastéréosélective catalysée au cuivre des 3-méthylène isoindolinones **3i-l**synthétisées dans le chapitre I et possédant un auxiliaire chiral sur l'atome d'azote lactamique.

Les résultats qui viennent d'être exposés ont démontré l'efficacité de notre nouvelle voie de synthèse diastéréosélective d'isoindolinones substitutées en position 3 par un ester boronique. Cette stratégie repose sur une réaction d'hydroboration avec contrôle du centre stéréogénique en position 3 des isoindolinones formées par action d'une copule chirale de type α-méthylbenzyle ou SMP.

Cette méthode efficace et concise révèle un grand potentiel puisqu'elle nous permet d'accéder très facilement à une gamme diversifiée d'esters boroniques qui pourront ensuite être engagés dans un certain nombre de réactions d'oxydation ou pallado-catalysées de type Suzuki-Miyaura impliquant la formation de nouvelles liaisons carbone-carbone ou carbone-hétéroatome.

L'étude et la mise au point de ces diverses réactions fera l'objet du chapitre 4 de ce manuscrit.

Références bibliographiques relatives au chapitre 3

- 146) MattesonD. S. 'Functional group compatibilities in boronic ester chemistry', *J. Organomet. Chem.* **1999**, *581*, 51–65
- 147) Yang W., Gao X., Wang B. 'Boronic acid compounds as potential pharmaceutical agents', *Med. Res. Rev.* 2003, *23*, 346–368
- 148) KaurP., Khatik G. L., Kumar Nayak S. 'A review on advances in organoborane-chemistry: versatile tool in asymmetric synthesis', *Curr. Org. Synth.* **2017**, *14*, 665-682
- 149) Brown H. C., Jadav P. K. 'High asymmetric induction in the chiral hydroboration of trans-alkenes with isopinocampheylborane. Evidence for a strong steric dependence in such asymmetric hydroborations', *J. Org. Chem.* **1981**, *46*, 5047–5048
- 150) Masamune S., Kim B. M., Peterson J. S., Sato T., Veenstra S. J., Imai T. 'Organoboron compounds in organic synthesis. 1. Asymmetric hydroboration', *J. Am. Chem. Soc.* **1985**, *107*, 4549–4551
- 151) Gonzalez A. Z., Romàn J. G., Gonzalez E., Martinez J., Medina J. R., Matos K., Soderquist J. A. '9-Borabicyclo[3.3.2]decanes and the asymmetric hydroboration of 1,1-disubstituted alkenes', *J. Am. Chem. Soc.* **2008**, *130*, 9218–9219
- 152) Burgess K., Ohlmeyer M. J. 'Enantioselective hydroboration mediated by homochiral rhodium catalysts', *J. Org. Chem.* **1988**, *53*, 5178–5179
- 153) Hayashi T., Matsumoto Y., Ito Y., 'Catalytic asymmetric hydroboration of styrenes', J. Am. Chem. Soc. 1989, 111, 3426–3428
- 154) Noh D., Chea H., Ju J., Yun J. 'Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes', *Angew. Chem. Int. Ed.* **2009**, *48*, 6062–6064
- 155) Noh D., Yoon S. K., Won J., Lee J. Y., Yun J. 'An efficient copper(I)-catalyst system for the asymmetric hydroboration of β-substituted vinylarenes with pinacolborane', *Chem. Asian J.* **.2011**, *6*, 1967–1969
- 156) Xi Y., Hartwig J. F. 'Diverse asymmetric hydrofunctionalizations of aliphatic internal alkenes through catalytic regioselective hydroboration', *J. Am. Chem. Soc.* **2016**, *138*, 6703–6706
- 157) Hu N., Zhao G., Zhang Y., Liu X., Li G., Tang W. 'Synthesis of chiral α-amino tertiary boronic esters by enantioselective hydroboration of α-arylenamides', *J. Am. Chem. Soc.* **2015**, *137*, 6746–6749
- 158) Kubota K., Hayama K., Iwamoto H., Ito H., 'Enantioselective borylative dearomatization of indoles through copper(I) catalysis', *Angew. Chem. Int. Ed.* **2015**, *54*, 8809-8813
- 159) Chen L., Shen J.-J., Gao Q., Xu S. 'Synthesis of cyclic chiral α-amino boronates by copper-catalyzed asymmetric dearomative borylation of indoles', *Chem. Sci.* **2018**, *9*, 5855-5859
- 160) He Z.-T., Zhao Y.-S., Tian P., Wang C.-C., Dong H.-Q., LinG.-Q. 'Copper-catalyzed asymmetric hydroboration of α-dehydroamino acid derivatives: Facile synthesis of chiral β-hydroxy-α-amino acids', Org. Lett. 2014, 16, 1426-1429

CHAPITRE III : Hydroboration asymétrique des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

- 161) Lopez A., Clark T. B., Parra A., Tortosa M. 'Copper-catalyzed enantioselective synthesis of β-boron βamino esters', *Org. Lett.* **2017**, *19*, 6272-6275
- 162) Chen L., Xou X., Zhao H., Xu S. 'Copper-catalyzed asymmetric protoboration of β -amidoacrylonitriles and β -amidoacrylates esters: An efficient approach to functionalized chiral α -amino boronates esters', *Org. Lett.* **2017**, *19*, 3676-3679
- 163) Deniau E., Enders D. Couture A. Grandclaudon P. 'A new synthetic route to highly enantioenriched 3substituted -2,3-dihydro-1H-isoindol-1-ones', Tetrahedron: Asymmetry **2003**, 14, 2253-2258
- 164) Deniau E., Couture A., Grandclaudon P. 'A conceptually new approach to the asymmetric synthesis of 3-aryl and alkyl poly-substituted isoindolinones', *Tetrahedron: Asymmetry* **2008**, *19*, 2735-2740
- 165) Deniau E., Enders D., Couture A., Grandclaudon P. 'Asymmetric synthesis of 3-hetero-substituted 2,3dihydro-1H-isoindol-1-ones', Tetrahedron: Asymmetry **2005**, 16, 875-881
- 166) Enders D., Braig V., Boudou M., Raabe G. 'Asymmetric synthesis of 3-substituted dihydro-2*H*isoquinolin-1-ones, dihydro- and tetrahydroisoquinolines via 1,2-addition/ring closure', *Synthesis* **2004**, 2980-2990
- 167) Grigg R., Dorrity M. J. R., Malone J. F. 'Asymmetric induction in the creation of tri- and tetrasubstituted carbon stereocentres by the intramolecular Heck reaction', *Tetrahedron Lett.* **1990**, *31*, 3075-3076
- 168) Corey E. J., Enders D. 'Applications of *N*,*N*-dimethylhydrazones to synthesis. Use in efficient, positionally and stereochemically selective C-C bond formation; oxidative hydrolysis to carbonyl compounds', *Tetrahedron Lett.* **1976**, *17*, 3-6.
- 169) Corey E. J. Enders D. 'Synthetic routes to polyfunctional molecules via metallated *N,N*-dimethylhydrazones', *Tetrahedron Lett.* **1976**, *17*, 11-14
- 170) Enders D., Peters R., Wortmann L. 'Recovery of carbonyl compounds from *N*,*N*-dialkylhydrazones', *Acc. Chem. Res.* **2000**, *33*, 157-169
- 171) Fliedel C., Labande A., Manoury E., Poli R. 'Chiral N-heterocyclic carbene ligands with additional chelating group(s) applied to homogeneous metal-mediated asymmetric catalysis', *Coord. Chem. Rev.* 2019, 394, 65-103
- 172) Díez-González S., Marion N., Nolan S. P. 'N-heterocyclic carbenes in late transition metal catalysis', *Chem. Rev.* **2009**, *109*, 3612–3676
- 173) Arduengo A. J., Harlow R. L., Kline M. 'A stable crystalline carbene', J. Am. Chem. Soc. 1991, 113, 361– 363
- 174) Arduengo A. J., Rasika Dias H. V., Harlow R. L., Kline M. 'Electronic stabilization of nucleophilic carbenes', J. Am. Chem. Soc. 1992, 114, 5530–5534
- 175) Arduengo A. J., Goerlich J. R., Marshall W. J. 'A stable diaminocarbene', J. Am. Chem. Soc. 1995, 117, 11027–11028

CHAPITRE III : Hydroboration asymétrique des 3-méthylène isoindolinones catalysée par les complexes de cuivre(I)

- 176) Arduengo A. J., Rasika Dias H. V., Calabrese J. C., Davidson F. 'Homoleptic carbene-silver(I) and carbene-copper(I) complexes', *Organometallics* **1993**, *12*, 3405–3409
- 177) Raubenheimer H. G., Cronje S., Olivier P. J., Toerien J. G., van Rooyen P. H. 'Synthesis and crystal structure of a monocarbene complex of copper', *Angew. Chem. Int. Ed.* **1994**, *33*, 672–673
- 178) Fraser P. K., Woodward S. 'Strong ligand accelerated catalysis by an Arduengo-type carbene in coppercatalyzed conjugate addition', *Tetrahedron Lett.* **2001**, *42*, 2747–2749
- 179) Jurkauskas V., Sadighi J. P., Buchwald S. L. 'Conjugate reduction of α ,β-unsaturated carbonyl compounds catalyzed by a copper carbene complex', *Org. Lett.* **2003**, *5*, 2417–2420
- 180) Lee Y., Hoveyda A. H. 'Efficient boron-copper additions to aryl-substituted alkenes promoted by NHCbased catalysts. Enantioselective Cu-catalyzed hydroboration reactions', J. Am. Chem. Soc. 2009, 131, 3160–3161
- 181) Lazreg F., Nahra F., Cazin C. S. J.'Copper-NHC complex in catalysis', *Coord. Chem. Rev.* 2003, 293-294, 48-79

CHAPITRE IV

Réactivité des

esters boroniques.

Applications en synthèse organique

CHAPITRE IV : Réactivité des esters boroniques. Applications en synthèse organique

Les composés organoborés font partie d'une des classes de réactifs les plus utilisées en synthèse organique permettant l'accès à un ensemble de transformations indispensables en chimie organique. Depuis leur première application il y a plus de 60 ans,¹⁸² le développement de nouvelles méthodologies de synthèse impliquant des réactifs organoborés a augmenté de façon exponentielle. Leur popularité ne tient pas uniquement à leur profil de réactivité très diversifié mais surtout à leur nature non toxique et à leur excellente compatibilité avec la plupart des groupes fonctionnels, ce qui n'est pas le cas d'autres membres de la famille des organométalliques tels que les organomagnésiens ou les organozinciques.

Dans ce chapitre nous allons nous intéresser aux réactions d'aménagements fonctionnels et de couplages métallo-catalysés des esters boroniques synthétisés dans les chapitres précédents. Nous allons essentiellement nous focaliser sur le composé **18a** substitué par un groupement *p*-méthoxybenzyle sur l'atome d'azote lactamique qui nous servira de substrat modèle (Figure 1).

Figure 1 : ester boronique 18a

I. Aménagement fonctionnel de l'ester boronique 18a

Comme nous avons pu le voir dans l'introduction générale, de nombreuses transformations sont possibles à partir des composés organoborés, d'où leur grand intérêt en synthèse organique. Plusieurs réactions d'aménagements fonctionnels ont donc été testées dans la suite de ce chapitre à partir de l'ester boronique **18a** synthétisé dans le chapitre 2.

1. Oxydation de l'ester boronique 18a

La réaction la plus courante et la plus ancienne de transformation des composés organoborés est l'oxydation de ces derniers. Historiquement, les composés organoborés n'étaient pas isolés et directement oxydés afin d'obtenir les alcools correspondants permettant eux-mêmes d'accéder à de nombreuses fonctions d'intérêt en synthèse organique.

¹⁸² Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, ed. by Dennis G. Hall (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011)

La toute première réaction que nous avons réalisée a donc consisté à effectuer l'oxydation de l'ester boronique **18a** à l'aide de perborate de sodium hydraté (NaBO₃.4 H₂O) ce qui nous a permis d'obtenir l'alcool souhaité **38** avec un excellent rendement de 87% (Schéma 1).

Schéma 1 : Oxydation de l'ester boronique 18a

2. Réactions à partir de l'alcool 38

De nombreuses transformations sont envisageables à partir de l'alcool **38**, notamment la formation de l'amine correspondante. L'intérêt de cette transformation réside dans la possibilité de former à terme des amides permettant par exemple l'introduction d'acides aminés dans nos modèles afin de pouvoir cibler des molécules d'intérêt pharmacologique.

La synthèse de l'amine **39** à partir de l'alcool **38** a nécessité la formation initiale d'un azide par traitement en présence d'azodicarboxylate de diisopropyle (DIAD) et de d'azoture de diphénylphosphoryle (DPPA) via une réaction de type Mitsunobu, suivie de la réduction de ce dernier en amine primaire **39** par la triphénylphosphine selon une réaction de Staudinger. Nous avons obtenu l'amine souhaitée **39** avec un rendement modeste de 25% (Schéma 2).

Schéma 2 : Synthèse de l'amine 39 à partir de l'alcool 38

Nous nous sommes intéressés par la suite à l'insertion d'atome d'halogène toujours à partir de l'alcool **38**. L'objectif de cette fonctionnalisation était d'incorporer un bon nucléofuge dans la molécule de façon à envisager l'introduction ultérieure de divers nucléophiles. La formation du dérivé bromé **40** a été effectuée par le biais d'une réaction d'Appel en présence de tétrabromure de carbone et de triphénylphosphine ce qui nous a permis de le synthétiser avec succès avec un bon rendement de 82%. Le produit iodé n'a en revanche pas pu être obtenu (Schéma 3).

Schéma 3 : Synthèse des dérivés halogénés à partir de l'alcool 38

De nombreux autres aménagements fonctionnels sont possibles à partir des esters boroniques et naturellement nous nous sommes intéressés aux réactions de couplage métallocatalysées et en particulier la réaction de Suzuki-Miyaura qui permet de coupler des dérivés organoborés avec des électrophiles variés (dérivés halogénés, triflates ou diazoniums).

II. Réactions de couplage métallo-catalysées

Le domaine des réactions de couplage métallo-catalysées permettant la formation de nouvelles liaisons carbone-carbone s'est considérablement développé au cours de ces dernières décennies.¹⁸³ Il existe de très nombreuses méthodes impliquant des dérivés organométalliques et catalysées par des métaux de transition permettant de réaliser ce couplage, parmi lesquelles on trouve les réactions de Corriu-Kumada-Tamao (dérivés organomagnésiens), Negishi (dérivés organozinciques), Hiyama (organosilicones) ou encore Stille (dérivés organostannylés). La réaction de Suzuki-Miyaura permet, quant à elle, de coupler des dérivés halogénés, triflates ou diazoniums avec des dérivés organoborés en présence d'un catalyseur organométallique et d'une base.

1. Rappels bibliographiques sur la réaction de couplage croisé de type Suzuki-Miyaura

Parmi toutes les réactions citées précédemment, le couplage pallado-catalysé de Suzuki-Miyaura est l'une des réactions de couplage les plus utilisées actuellement car elle présente de nombreux avantages. Sa large application découle des conditions de réaction relativement douces et de sa grande tolérance à une large gamme de groupements fonctionnels. De plus, les composés organoborés (acide boroniques, esters boroniques, trifluoroborates de potassium...) utilisés comme partenaires de couplage sont plus facilement disponibles que les autres organométalliques,¹⁸⁴ sont faciles à préparer, stables et généralement respectueux de l'environnement.

¹⁸³ Jana R., Pathak T. P., Sigman M. S., Chem. Rev. **2011**, 111, 1417–1492

¹⁸⁴ Suzuki A. Chem. Comm. **2005**, 4759-4763

Depuis sa découverte en 1979 (Schéma 4),¹⁸⁵ la réaction de Suzuki-Miyaura a fait l'objet de très nombreuses améliorations au fil des années. De gros efforts ont notamment été fournis pour mettre au point des systèmes catalytiques performants, et de nombreux groupes ont travaillé au développement de catalyseurs polyvalents et extrêmement efficaces. La très grande diversité des réactifs borés permettant d'effectuer cette réaction a permis d'utiliser ce couplage dans la synthèse de nombreux produits naturels et pharmaceutiques et a également été appliqué à plus grande échelle pour des essais cliniques, le développement de procédés et même la synthèse à l'échelle industrielle.

Schéma 4 : Première réaction de couplage de type Suzuki-Miyaura

Le mécanisme de cette réaction, représenté par le cycle catalytique ci-dessous (Schéma 5), a été étudié par différents groupes de recherche et a été révisé récemment. Dans un premier temps un complexe du palladium(0) est formé *in situ* à partir d'un complexe de palladium(II). Le mécanisme de la réaction de Suzuki-Miyaura comporte quatre étapes distinctes détaillées ci-dessous :

- Une addition oxydante du dérivé halogéné au complexe de palladium(0) pour conduire à un complexe de palladium(II)
- Une métathèse anionique entre un halogénure et l'anion de la base utilisée
- Une transmétallation entre le complexe de palladium(II) et le complexe alkylborate obtenu par réaction de l'acide boronique avec la base
- Une élimination réductrice pour former la liaison sigma carbone-carbone et régénérer le complexe de palladium(0).^{186,187}

¹⁸⁵ Miyaura N., Yamada K., Suzuki A. *Tetrahedron Lett.* **1979**, *20*, 3437–3440

¹⁸⁶ Aliprantis A. O., Canary J. W. J. Am. Chem. Soc. **1994**, 116, 6985–6986

¹⁸⁷ Smith G. B., Dezeny G. C., Hughes D. L., King A. O., Verhoeven T. R. *J. Org. Chem.* **1994**, *59*, 8151–8156

Schéma 5 : Cycle catalytique du couplage de type Suzuki-Miyaura

La réaction de Suzuki-Miyaura permet de coupler des dérivés organoborés de type aryles, hétéroaryles, vinyles, voire même alkyles, avec tous types de dérivés halogénés, triflates ou diazoniums. Cette réaction permet donc d'obtenir une large gamme de produits avec des fonctionnalisations très variées. En effet, il est possible de synthétiser toutes sortes de dérivés : aryles-aryles, aryles-vinyles, aryles-alkyles, vinyles-vinyles, vinyles-alkyles, alkyles-alkyles. Pendant de nombreuses années, la réaction de Suzuki-Miyaura a été limitée aux couplages Csp²-Csp², tandis que les couplages avec les carbones de type sp³ sont relativement rares en raison de plusieurs problèmes liés notamment à l'étape de transmétallation qui est plus lente et aux réactions secondaires indésirables telles que la protodéshalogénation.¹⁸⁸

Dans ce manuscrit, nous nous limiterons au couplage des dérivés borés obtenus à partir de l'ester boronique **18a** avec divers groupements aryles ce qui devrait nous permettre d'accéder à toute une série d'isoindolinones fonctionnalisées. Afin d'optimiser les différents paramètres de cette réaction, Il est donc indispensable, pour la suite de notre étude, de pouvoir accéder à différents dérivés organoborés dérivant de l'ester boronique **18a** à savoir le trifluoroborate de potassium **41** et l'acide boronique **42**.

¹⁸⁸ Sun H.-Y., Dennis G. Hall D. G. '*Synthesis and Application of Organoboron Compounds*, ed. by Elena Fernández and Andrew Whiting, Topics in Organometallic Chemistry, XLIX, 221–242

2. Synthèse du trifluoroborate de potassium 41

Les trifluoroborates de potassium sont connus depuis les années 60. La synthèse de ces sels et surtout leur utilisation en synthèse organique ont fait l'objet de très nombreuses publications et revues ces dernières années. Ces espèces se sont révélées pratiques, économiques et très polyvalentes en synthèse organique pouvant être appliquée à la chimie médicinale ou encore à la chimie des matériaux.¹⁸⁹

Afin de former le trifluoroborate **41**, nous avons traité le boronate **18a**, solubilisé dans le tétrahydrofurane (THF), par une solution aqueuse de KHF₂ (4.5 M). Après 30 minutes de réaction nous avons obtenu le trifluoroborate de potassium ciblé **41** avec un rendement quasi quantitatif (Schéma 6).

Schéma 6 : Synthèse du trifluoroborate de potassium 41 à partir de l'ester boronique 18a

Cette synthèse présente tout de même deux inconvénients majeurs, qui sont :

- L'utilisation du KHF₂: en effet, ce composé n'est soluble que dans l'eau et libère de l'acide fluorhydrique corrosif lorsqu'il est en solution. Il est donc nécessaire de prendre des précautions et d'utiliser des équipements particuliers lors de son utilisation, ce qui rend délicate la production du trifluoroborate à grande échelle.
- Le traitement de la solution : en effet, afin d'obtenir le produit pur, la réaction d'hydrolyse étant réversible et en faveur de la formation de l'ester boronique, la solution doit être reprise plusieurs fois avec un mélange méthanol/eau (1 :1) puis évaporée pour éliminer le pinacol formé. Ce traitement est effectué jusqu'à disparition de l'ester boronique.

¹⁸⁹ Molander G. A. J. Org. Chem. **2015**, 80, 7837–7848

3. Synthèse de l'acide boronique 42

Plusieurs voies de synthèses sont envisageables pour accéder aux acides boroniques à partir des esters correspondants. Deux méthodes différentes ont été utilisées dans notre cas : la première consiste à mettre l'ester boronique **18a** en présence de périodate de sodium (NaIO₄) dans un mélange THF/eau puis d'acidifier le milieu.¹⁹⁰ Lors de cette réaction le périodate de sodium va oxyder le pinacol formé at ainsi déplacer l'équilibre vers la formation de l'acide boronique. Une hydrolyse du boronate **18a** effectuée à l'aide de l'hydroxyde de lithium dans le tétrahydrofurane a également été testée. Cependant, aucune de ces deux méthodes n'a permis d'accéder à l'acide boronique **42** souhaité (Schéma 7).

Schéma 7 : Tentative de synthèse de l'acide boronique 42 à partir de l'ester boronique 18a

Afin de contourner ce problème et d'obtenir l'acide boronique **42**, nous avons donc décidé de partir du trifluoroborate de potassium **41** synthétisé précédemment. Celui-ci a été mis en présence de chlorotriméthylsilane dans l'acétonitrile ce qui nous a permis dans ce cas d'obtenir très facilement l'acide boronique souhaité **42** avec un excellent rendement de 78% (Schéma 8).

Schéma 8 : Synthèse de l'acide boronique 42 à partir du trifluoroborate de potassium 41

Les différents dérivés borés **41** et **42** ainsi obtenus ont ensuite été engagés dans des réactions de couplages métallo-catalysées de type Suzuki-Miyaura ce qui devrait nous permettre d'accéder à toute une série d'isoindolinones fonctionnalisées en position 3 du cycle lactamique par des groupements arylméthyles.

¹⁹⁰ Ma Y., Reddy B. R. P., Bi X. *Org. Lett.* **2019**, *21*, 9860–9863

Afin de réaliser ces réactions de couplage, nous avons envisagé plusieurs méthodes d'activation : par voie thermique, sous micro-ondes et par photocatalyse.

4. Réaction de couplage à partir du trifluoroborate de potassium 41

4.1. Activation thermique

Afin de réaliser la création d'une liaison carbone-carbone dans nos modèles, nous avons envisagé d'utiliser la réaction de type Suzuki-Miyaura en partant, dans un premier temps, du trifluoroborate de potassium **41**. La réaction suivante (Schéma 9) a donc été utilisée comme réaction test pour la mise au point des conditions de couplage du trifluoroborate de potassium **41** sur un bromure d'aryle à savoir le 3-bromoanisole (1.1 équivalent) en suivant les conditions décrites par Hall¹⁹¹ : Pd(OAc)₂ (10 mol%), Xphos (20 mol%), Cs₂CO₃ (3 équivalents), THF/eau (1:1) à reflux pendant 72 heures.

Schéma 9 : Réaction de couplage de type Suzuki-Miyaura par activation thermique

Le premier essai réalisé dans ces conditions effectué en présence d'acétate de palladium et de xphos ne nous a pas permis d'obtenir le produit de couplage attendu **43**, en effet nous n'avons observé que quelques traces du produit désiré par analyse RMN ¹H. Ces conditions de couplages n'étant pas satisfaisantes, nous avons décidé de changer de système catalytique, en utilisant cette fois le [PdCl₂dppf], souvent utilisé pour le couplage d'alkyles trifluoroborates, ce qui nous a permis d'obtenir le produit de couplage souhaité **43** mais avec un rendement relativement faible de 26%.

4.2. Activation sous micro-ondes

Suite aux résultats modestes obtenus lors de la réaction de couplage par activation thermique, nous avons tenté de l'effectuer sous micro-ondes (Schéma 10 et Tableau 1). Les réactions sous micro-ondes sur l'appareil utilisé ne permettant pas un suivi en temps réel, il a été décidé d'arrêter arbitrairement la réaction au bout d'une heure et d'analyser le brut de réaction.

¹⁹¹ Lee J. C. H., Sun H.-Y., Hall D. G. *J. Org. Chem.* **2015**, *80*, 7134–7143

Schéma 10 : Réaction de couplage de type Suzuki-Miyaura sous micro-ondes

Entrée	Solvant (10:1)	т (°С)	Rdt
1	THF/H ₂ O	110	0%
2	MeCN/H ₂ O	130	0%
3	DMF/H ₂ O	170	9%

Tableau 1 : Résultats du couplage de type Suzuki-Miyaura sous micro-ondes

Les résultats obtenus par activation sous micro-ondes sont rassemblés dans le tableau 1 cidessus. Pour commencer, nous avons repris les conditions expérimentales utilisées lors du couplage par activation thermique (Entrée 1). Malheureusement, nous n'observons toujours aucune trace du produit souhaité. Nous avons donc décidé de changer de solvant afin d'augmenter la température de la réaction et faciliter ainsi le couplage (Entrées 2 et 3).

L'utilisation d'acétonitrile, (à une température de 130 °C) ne s'est malheureusement pas accompagnée d'une augmentation du rendement (Entrée 2) alors que l'utilisation de DMF (à une température élevée de 170 °C) a permis d'obtenir le composé souhaité **43** mais avec un rendement très faible de 9% (Entrée 3). L'activation sous micro-ondes ne nous a donc pas permis d'améliorer les résultats obtenus par activation thermique.

Afin de comprendre les mauvais résultats de cette réaction de couplage nous nous sommes penchés plus précisément sur le mécanisme réactionnel. Ceci nous a permis de comprendre que le trifluoroborate de potassium utilisé ne réagit pas directement mais subit tout d'abord une hydrolyse pour former l'acide boronique en passant par toutes les formes intermédiaires (Schéma 11). C'est cet acide boronique qui va ensuite subir la réaction de couplage.¹⁹²

¹⁹² Lennox A. J. J., Lloyd-Jones G. C. Chem. Soc. Rev. **2014**, 43, 412–443

Schéma 11 : Différentes étapes de l'oxydation du trifluoroborate en acide boronique

Lors du chauffage prolongé du milieu réactionnel (72 heures par activation thermique) le temps de réaction est suffisamment long pour permettre l'hydrolyse du trifluoroborate de potassium **41** en acide boronique **42** alors que dans le cas des réactions sous-micro-ondes, le temps de réaction relativement court (1 heure) ne le permet pas. Ceci permet d'expliquer les taux de conversion quasiment nul observés lors du couplage sous micro-ondes. Pour la suite de notre étude sur les couplages pallado-catalysés de Suzuki-Miyaura, nous avons donc décidé de travailler avec l'acide boronique **42**.

5. Réaction de couplage à partir de l'acide boronique 42 par activation sous microondes

Dans un premier temps, nous avons reproduit la réaction de couplage sous micro-ondes à partir de l'acide boronique **42** en présence de 3-bromoanisole, à 110 °C pendant 1 heure. Cette étape de contrôle est nécessaire afin de confirmer notre hypothèse sur la nécessité d'utiliser l'acide boronique plutôt que le trifluoroborate de potassium (Schéma 12).

Schéma 12 : Réaction de couplage de type Suzuki-Miyaura à partir de l'acide boronique 42

Nous observons cette fois de bien meilleurs résultats, en effet l'isoindolinone **43** a été obtenue avec un rendement de 32% après purification. Afin d'améliorer ces résultats nous avons décidé d'effectuer une optimisation des différents paramètres de cette réaction.

5.1. Mise au point et optimisation des conditions de couplage

Schéma 13 : Optimisation de la réaction de couplage à partir de l'acide boronique 42

Nous avons testé différents catalyseurs et fait varier la nature de la base, du solvant, du dérivé halogéné et le temps de réaction. Les différents résultats obtenus sont décrits dans le tableau 2 ci-dessous.

Tableau 2 : Optimisation des conditions de réaction lors de la réaction de couplage de l'acide boronique 42 enprésence d'un halogénure d'aryle sous micro-ondes

Entrées	Dérivé halogéné (1.1 eq.)	Catalyseur (10 mol %)	Base (3 eq.)	Solvant (10/1)	Temps de réaction	Rdt (après purification)
1	3-bromoanisole	PdCl ₂ dppf	Cs ₂ CO ₃	THF/H₂O	1 h	32%
2	3-bromoanisole	PdCl₂dppf	K ₃ PO ₄	THF/H₂O	1 h	54%
3	3-bromoanisole	PdCl ₂ dppf	K ₃ PO ₄	DMF/H ₂ O	1 h	15%
4	3-bromoanisole	PdCl ₂ dppf	K ₃ PO ₄	Toluène/H ₂ O	1 h	27%
5	3-bromoanisole	Pd[P(Ph ₃) ₄]	K ₃ PO ₄	Toluène/H ₂ O	1 h	5%
6	3-bromoanisole	$PdCl_2dppf.CH_2Cl_2$	K ₃ PO ₄	Toluène/H ₂ O	1 h	44%
7	3-bromoanisole	PdCl₂dppf	K₃PO₄	THF/H₂O	30 min	39%
8	3-bromoanisole	PdCl ₂ dppf	K ₃ PO ₄	THF/H₂O	2 h	42%
9	3-chloroanisole	PdCl ₂ dppf	K ₃ PO ₄	THF/H₂O	1 h	0%
10	3- [(trifluorométhyl)sulfonyl]anisole	PdCl ₂ dppf	K ₃ PO ₄	THF/H ₂ O	1 h	50%

Note : L'eau étant nécessaire dans cette réaction, les différents solvants utilisés seront toujours mélangés à de l'eau à 10:1 en volume.

CHAPITRE IV : Réactivité des esters boroniques. Applications en synthèse organique

Les premières conditions testées avec le [PdCl₂PPh₃] comme catalyseur, en présence de K₃PO₄ dans un mélange THF/eau comme solvant (Entrée 1) ont permis d'obtenir un rendement de 32% en 1h. Le changement de base et l'utilisation de triphosphate de potassium (Entrée 2) a permis d'augmenter le rendement de réaction à 54% en une heure. Les autres changements effectués : changement de catalyseur et l'utilisation de [Pd(P(Ph₃)₄)] (Entrée 5), changement de solvant et l'utilisation d'un mélange DMF/H₂O et toluène/H₂O (Entrées 3 et 4) ainsi qu'une diminution ou une augmentation du temps de réaction (Entrées 7 et 8) entrainent systématiquement une diminution du rendement de réaction. Il faut également noter que les différentes modifications envisagées (solvant, catalyseur et augmentation du temps de réaction) provoquent l'apparition de nombreux sous-produits notamment issus de la réaction de protodéboration.

Le dernier paramètre que nous avons voulu modifier est la nature de l'halogène. Nous avons remplacé l'atome de brome par un chlore puis par un triflate. L'utilisation du dérivé chloré (Entrée 9) n'a pas permis d'obtenir le produit souhaité et le triflate (Entrée 10) donne quant à lui un rendement semblable au dérivé bromé de l'ordre de 50%. Etant donné la nature instable des triflates et la difficulté à synthétiser ces espèces, nous avons décidé de travailler principalement avec les dérivés borés.

Dans le tableau 3 ci-dessous, nous avons réuni les conditions optimales pour la réaction de couplage de Suzuki-Miyaura entre l'acide boronique **42** et l'halogénure de 3-méthoxyphényle.

Réactifs borés	Acide boronique	
Base	K ₃ PO ₄ (3 eq)	
Solvant	THF/H ₂ O (10 :1)	
Température	110 °C	
Catalyseur [PdCl ₂ dppf] (10 mol%)		
Dérivé halogéné	Dérivé bromé (1.1 eq)	
Temps	1 h	

Tableau 3 : Conditions optimales pour la réaction de couplage de type Suzuki-Miyaura

5.2. Application à la synthèse de différentes isoindolinones

Après avoir optimisé les différents paramètres de la réaction de Suzuki-Miyaura permettant d'accéder à l'isoindolinone **43**, nous avons souhaité explorer le potentiel de cette réaction en la testant sur une large gamme de dérivés halogénés. Pour cela, nous avons fait varier la nature des substituants se trouvant sur l'unité benzénique (Schéma 14). Les résultats de cette étude sont rassemblés dans le tableau 4 ci-dessous.

Schéma 14 : Réaction de couplage de type Suzuki-Miyaura

Afin de démontrer l'avantage de l'activation sous micro-ondes (réaction en 1 heure), nous avons décidé d'appliquer sur chaque substrat utilisé les mêmes conditions opératoires mais en effectuant une activation thermique (chauffage pendant 24 heures) afin de comparer les résultats obtenus. Les taux de conversion par voie thermique sont systématiquement inférieurs à ceux obtenus par activation sous micro-ondes, ce qui confirme bien l'intérêt majeur des micro-ondes lors de cette réaction de couplage de Suzuki-Miyaura.

Entrée	Dérivé halogéné	Isoindolinone formée	Rdt sous micro- ondes (méthode B)	Rdt sous condition thermique (méthode A)
1	Br OMe	O O Me 43	Rdt = 54%	Rdt = 26%
2	Br	O O Me 0Me 44	Rdt = 6%	Rdt = 0%
3	MeO OMe	MeO OMe 45	Rdt = 25%	Rdt = 8%
4	-N	O N OMe 46	Rdt = 12%	Rdt = 0%
5	Br Me	O N Me OMe	Rdt = 0%	Rdt = 0%
6	Me Me	Me 47	Rdt = 41%	Rdt = 20%
7	Br	O OMe 48	Rdt = 31%	Rdt = 15%

Tableau 4 : Rendements des différentes isoindolinones synthétisées

Lors de cette étude nous avons réalisé la synthèse de 10 isoindolinones **43-52** avec des rendements plus ou moins modestes allant de 22% à 54%. Différentes études ont montré que la réaction de couplage de Suzuki-Miyaura dépend énormément des effets électroniques des substituants présents sur l'unité benzénique et que les composés comportant des groupements électroattracteurs sont souvent plus réactifs que ceux possédant des groupes électrodonneurs.

Après analyse du tableau de résultats, il ressort que la présence de groupements électrodonneur (OMe, Me, *t*-Bu, N(Me)₂) en positions méta et/ou para des dérivés halogénés donnent les rendements les plus élevés (Entrées 1, 3, 4, 6 et 7). La présence de groupements électroattracteurs en position para (Entrées 8 et 9) semblent donner également des rendements de conversion corrects. Par contre, la présence de groupements à fort encombrement stérique en position *ortho* de l'atome d'halogène (Entrées 2, 5 et 10) ne permet pas d'accéder aux isoindolinones ciblées.

III. Réactions de couplage par photocatalyse

1. Rappels bibliographiques sur la photocatalyse

La photocatalyse peut être définie comme une réaction photo-induite qui est accélérée grâce à la présence d'un photocatalyseur. La particularité de ces réactions par rapport à une catalyse conventionnelle est la manière dont le catalyseur est activé. L'activation thermique est ici remplacée par une activation photonique. Le développement de la photocatalyse a reçu une attention considérable ces dernières années et son application peut être observée dans de nombreux domaines comme les énergies, l'environnement, et le médical.¹⁹³ Le terme de photocatalyse est apparu pour la première fois en 1911 quand Eigner a intégré ce concept à ses recherches sur l'effet de l'illumination de l'oxyde de zinc (ZnO) sur le blanchiment d'un pigment bleu foncé, le bleu de Prusse.¹⁹⁴ Simultanément, le terme de photocatalyse est apparu dans plusieurs articles traitant de la dégradation de l'acide oxalique sous illumination en présence d'uranyle.¹⁹⁵ Mais ce n'est qu'à partir des années 60 que la photocatalyse a connu un essor considérable, grâce à ses promesses de résoudre simultanément les problèmes énergétiques et environnementaux.¹⁹⁶

L'utilisation des réactions photochimiques permettent notamment la formation de liaisons carbone-carbone, cycliques ou non, tout en évitant dans de nombreux cas d'avoir recours à des groupements protecteurs ou activants et la formation de sous-produits. Elles sont le plus souvent régio- et stéréosélectives et tolèrent la présence de nombreux groupes fonctionnels. Ces divers avantages se traduisent en général par une diminution du nombre d'étapes par rapport aux stratégies plus conventionnelles. Les processus de transferts monoélectroniques (SET) induits par la lumière visible effectués en présence d'un photocatalyseur métallique (Ir, Ru) ou d'un organophotocatalyseur ont suscité un intérêt particulier de la part des chimistes organiciens.

L'irradiation d'un photocatalyseur, par exemple un complexe de ruthénium ou d'iridium, résulte en une espèce excitée qui peut accepter ou donner un électron, permettant la catalyse photoredox par un cycle d'oxydation ou de réduction. Un photocatalyseur excité peut également transférer son état excité à un substrat ou un réactif permettant d'induire des réactions chimiques (Schéma 15).¹⁹⁷

¹⁹³ Salgado B. C. B., Raphael A. Cardeal R. A., Valentini A., in *Nanomaterials Applications for Environmental Matrices* (Elsevier, **2019**), pp. 449–488

¹⁹⁴ Eibner A., *Chem. Ztg.* **1911**, 753-755

¹⁹⁵ Landau M. *Compt. Rend.* **1913**, 1894-1896

¹⁹⁶ Men Y.-L., Peng L., Xingcui P., Xiang P. Y. *Sci. China Chem.* **2020**, 1416–1427

¹⁹⁷ Gisbertz S., Pieber B. *ChemPhotoChem* **2020**, *4*, 456–475

PC = photocatalyseur

Schéma 15 : Cycle catalytique d'une réaction photoredox

2. Résultats de la réaction de couplage par photocatalyse à partir du trifluoroborate de potassium 40

Afin d'explorer cette branche de la chimie, nous avons décidé d'utiliser la photocatalyse sur nos modèles afin de réaliser des réactions de couplage et ainsi la création de nouvelles liaisons carbone-carbone. Après un examen minutieux de la littérature nous nous sommes intéressés aux travaux réalisés par Molander¹⁹⁸ dans lesquels il a réalisé le couplage croisé de chlorure d'acyle avec des trifluoroborates de potassium grâce à une catalyse duale synergique intégrant une catalyse photorédox et une catalyse au nickel (Schéma 16).

$$\begin{array}{c} O \\ R_1 \\ CI \end{array} + \begin{array}{c} KF_3B \\ R_3 \\ R_3 \end{array} + \begin{array}{c} O \\ Ir \\ R_1 \\ R_3 \end{array} + \begin{array}{c} O \\ R_1 \\ R_3 \\ R_3 \end{array}$$

Schéma 16 : Catalyse double : photoredox et catalyse au nickel réalisée par Molander

A partir de ces travaux, nous avons décidé de réaliser la fonctionnalisation du trifluoroborate de potassium **40** par cette même méthode. Afin de réaliser cette réaction, nous avons utilisé les conditions réactionnelles décrites par Molander à savoir un photocatalyseur à base d'iridium, le [Ir[dFCF₃ppy]₂(bpy)PF₆], un catalyseur au nickel, [NiCl₂dme] (5 mol%) avec comme ligand le dtbbpy (5 mol%). La réaction se déroule dans le dioxane préalablement distillé en présence d'une base KH₂PO₄ (2 équivalents) sous irradiation UV (Schéma 17).

¹⁹⁸ Amani J., Molander G. A. *J. Org. Chem.* **2017**, *82*, 1856–1863

Schéma 17 : Réaction de couplage par catalyse photo-rédox à partir du trifluoroborate 41

Entrées	Réactif	Irradiation	Temps	Rdt
1	3-bromoanisole	UV	2 h	8%
2	3-bromoanisole	UV	4 h	26%
3	3-bromoanisole	Bleu	24 h	Traces
4	chlorure de 2-furoyle	UV	24 h	10%

Tableau 4 : Résultats de la réaction de photocatalyse à partir du trifluoroborate 41

Dans le tableau 4 ci-dessus, sont rassemblés les différents résultats obtenus lors des réactions de couplage photoredox à partir du trifluoroborate de potassium **41**. Différentes conditions opératoires ont été utilisées. Dans un premier temps, la réaction de couplage a été effectuée en présence de 3-bromoanisole, sous irradiation UV. Le produit désiré a été obtenu avec des rendements de 8 et 26% pour des temps de réaction respectifs de 2 et 4 heures (Entrées 1 et 2). Lorsque nous avons réalisé cette réaction sous irradiation bleue, le catalyseur à l'iridium absorbant plus particulièrement dans le bleu, nous n'obtenons que quelques traces après 24 heures de réaction (Entrée 3). Finalement, nous avons réalisé cette réaction avec le chlorure de 2-furoyle (Entrée 4), nous permettant ainsi de fonctionnaliser l'isoindolinone en position 3 par un groupement acétylfurane, ce qui nous permet d'accéder facilement à des fonctions de types cétones. Cette réaction s'est cependant avérée beaucoup plus lente, avec un rendement de 10% après 24 heures de réaction (Tableau 4 et Figure 1).

Figure 1 : Isoindolinones **43** et **53** synthétisées lors de la réaction de couplage photoredox à partir du trifluoroborate de potassium **41**

Cette étude nécessite une plus grande investigation ainsi qu'une optimisation plus complète des différents paramètres afin d'obtenir de meilleurs résultats. Cependant, par manque de temps, cette investigation n'a pas pu être réalisée. Afin d'aller plus loin dans cette optimisation, différents complexes à base d'iridium ou de ruthénium pourront être utilisés ainsi que des photocatalyseurs complètement organique. Différents catalyseurs à base de nickel, ligands et bases pourront également être étudiés. Finalement des tests pourront être réalisés sur les produits chiraux synthétisés dans le chapitre 3 afin d'obtenir les produits fonctionnalisés sous formes énantiopures.

3. Mécanisme de la réaction de couplage par photocatalyse

La réaction étudiée ci-dessus, fait appel à une catalyse duale synergique, une première catalyse photoredox effectuée grâce à un photocatalyseur, ici un complexe d'iridium et une deuxième catalyse au nickel (Schéma 18).

Schéma 18 : Schéma général de la double catalyse

De façon générale, la première catalyse photoredox va permettre la formation d'un radical grâce au photocatalyseur et une irradiation. L'espèce radicalaire formée va être utilisée pour la formation de la nouvelle liaison carbone-carbone grâce à la catalyse au nickel.

Schéma 19 : Mécanisme de la réaction de couplage photocatalysée

Lors de cette réaction, la première étape de ce mécanisme (Schéma 19) consiste en l'addition oxydante de l'halogénure (2) sur le complexe nickel(0)-ligand permettant la formation du complexe catalytique au nickel (3). En parallèle, dans le cycle photoredox, le complexe d'iridium est irradié, provoquant le passage de l'iridium à l'état excité (5) grâce à l'absorption d'un photon, il y a alors oxydation de l'iridium permettant ainsi la formation de l'espèce radicalaire (7) à partir du trifluoroborate (6). Cette espèce radicalaire réagit alors avec le complexe catalytique au nickel formé précédemment, formant un complexe de Ni(III) (9). Une dernière étape d'élimination réductrice permet l'obtention du produit de couplage (10). Finalement le complexe de Ni(I) se régénère grâce au cycle photoredox permettant également la récupération de l'iridium (4).

IV. Clivage du groupement *p*-méthoxybenzyle : accès aux isoindolinones 54 et 55

Après être parvenu à synthétiser toute une série d'isoindolinone, nous nous sommes ensuite attelés à la déprotection de groupement *para*-méthoxybenzyle se trouvant sur l'atome d'azote lactamique. Pour cela nous sommes partis des isoindolinones **43** et **45** et nous les avons mises en présence d'acide trifluoroacétique et d'anisole à reflux pendant 5 heures ce qui nous a permis d'obtenir très facilement les isoindolinones déprotégées **54 et 55** avec de bons rendements respectivement de 75 et 83% (Schéma 20).

Schéma 20 : Clivage du groupement para-méthoxybenzyle

Conclusions et perspectives

Dans ce chapitre, nous avons étudié différentes fonctionnalisations possibles à partir de l'ester boronique **18a** synthétisé dans le chapitre 2. Elles ont permis d'intégrer sur le squelette de l'isoindolinone diverses fonctions telles que des alcools, des amines, ou encore des halogénures. La deuxième partie de ce chapitre a été consacré aux réactions de couplage pallado-catalysées de type Suzuki-Miyaura qui ont nécessitées la synthèse de deux autres dérivés organoborés : le trifluoroborate de potassium **41** et l'acide boronique **42.** L'optimisation des différents paramètres de cette réaction (utilisation préférentielle de l'acide boronique par activation sous micro-ondes), nous a permis d'accéder à toute une série d'isoindolinones fonctionnalisées.

Finalement nous avons étudié le comportement sous irradiation du trifluoroborate de potassium, permettant grâce à une catalyse duale synergique, la formation de liaison carbonecarbone. Les premiers résultats de ce procédé sont encourageants, cependant, une optimisation plus approfondie serait nécessaire afin d'en améliorer les résultats. D'un point de vue perspective, l'optimisation de cette dernière réaction avec un organophotocatalyseur serait très intéressante et permettrait de s'affranchir des métaux onéreux formant les complexes catalytiques utilisés en photocatalyse.

169

Références bibliographiques relatives au chapitre 4

- 182) Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, ed. by Dennis G. Hall (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, **2011**)
- 183) Jana R., Pathak T. P., Sigman M. S., 'Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners', *Chem. Rev.* **2011**, *111*, 1417–1492
- 184) Suzuki A. 'Carbon-carbon bonding made easy', Chem. Comm. 2005, 4759-4763
- 185) Miyaura N., Yamada K., Suzuki A. 'A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides', *Tetrahedron Lett.* 1979, 20, 3437– 3440
- 186) Aliprantis A. O., Canary J. W. 'Observation of catalytic intermediates in the Susuki reaction by electrospray mass spectrometry', *J. Am. Chem. Soc.* **1994**, *116*, 6985–6986
- 187) Smith G. B., Dezeny G. C., Hughes D. L., King A. O., Verhoeven T. R. 'Mechanistic studies of the Suzuki cross coupling reaction', *J. Org. Chem.* **1994**, *59*, 8151–8156
- 188) Sun H.-Y., Dennis G. Hall D. G. '*Synthesis and application of organoboron compounds*, ed. by Elena Fernández and Andrew Whiting, Topics in Organometallic Chemistry, XLIX, 221–242
- 189) Molander G. A. 'Organotrifluoroborates: Another branch of the mighty oak', J. Org. Chem. 2015, 80, 7837–48
- 190) Ma Y., Reddy B. R. P., Bi X. 'Coupling of trifluoroacetaldehyde *N*-triftosylhydrazone with organoboronic acids for the synthesis of gem-difluoroalkenes', *Org. Lett.* **2019**, *21*, 9860–9863
- 191) Lee J. C. H., Sun H.-Y., Hall D. G. 'Optimization of reaction and substrate activation in the stereoselective cross-coupling of chiral 3,3-diboronyl amides', *J. Org. Chem.* **2015**, *80*, 7134–7143
- 192) Lennox A. J. J., Lloyd-Jones G. C. 'Selection of boron reagents for Suzuki-Miyaura coupling', *Chem. Soc. Rev.* 2014, 43, 412–443
- 193) Salgado B. C. B., Raphael A. Cardeal R. A., Valentini A., in *Nanomaterials Applications for Environmental Matrices* (Elsevier, **2019**), pp. 449–488
- 194) Eibner A., 'Action of light on pigments I', Chem. Ztg. 1911, 753-755
- 195) Landau M. Compt. Rend. 1913, 1894-1896
- 196) Men Y.-L., Peng L., Xingcui P., Xiang P. Y. Sci. China Chem. 2020, 1416–1427
- 197) Gisbertz S., Pieber B. 'Heterogeneous photocatalysis in organic synthesis', *ChemPhotoChem* **2020**, *4*, 456–475
- 198) Amani J., Molander G. A. 'Synergistic photoredox/nickel coupling of acyl chlorides with secondary alkyltrifluoroborate s: Dialkyl ketones synthesis', J. Org. Chem. 2017, 82, 1856–1863

Conclusion Générale

Depuis plusieurs décennies, la chimie des composés organoborés s'est largement développée et a ainsi permis de nombreuses avancées dans les domaines de la synthèse organique, de la chimie des matériaux et de la chimie médicinale. Leur grand intérêt réside dans leurs propriétés pharmacologiques, ainsi que les nombreuses transformations possibles à partir de ces divers composés. Leur popularité découle également de leur nature non toxique, leur stabilité à l'air et l'eau ainsi que leur excellente tolérance à de nombreux groupements fonctionnels, avantages qui ne sont pas toujours partagés par d'autres membres de la famille des organométalliques tels que les organomagnésiens ou les organozinciques. Au cours des dernières années, de nombreuses voies de synthèses ont été développées, la plus courante étant l'hydroboration, permettant l'incorporation d'un atome de bore sur de nombreux substrats rendant possible l'accès à une grande diversité de composés organoborés. Dans le cadre de ces travaux de thèse, nous nous sommes plus particulièrement intéressés à la synthèse d'isoindolinones qui constituent l'épine dorsale de nombreux alcaloïdes et représentent des structures privilégiées en pharmacochimie en raison de leurs propriétés biologiques très diversifiées.

Le chapitre 1 de ce mémoire a été entièrement consacré à la synthèse des 3-méthylène isoindolinones sur lesquels seront effectuées les réactions d'hydroboration. Après un examen critique de la littérature, nous avons testé trois voies de synthèse différentes parfaitement complémentaires qui s'appuient respectivement sur la déshydratation en milieu acide de 3-hydroxy-3-alkylisoindolinones obtenues par addition d'un réactif de Grignard sur divers phtalimides *N*-substitués, sur la condensation de l'acide *ortho*-acétylbenzoïque avec une amine primaire ou sur une réaction d'hydroamination intramoléculaire d'alcynes effectuée à partir d'*ortho*-aryléthynyl benzamides. Ces trois voies de synthèses nous ont permis d'accéder à une gamme très diversifiée de 3-méthylène isoindolinones poly-substituées.

La synthèse des 3-méthylène isoindolinones étant maitrisée, nous avons cherché à engager ces molécules dans diverses réactions d'hydroborations catalysées par des complexes de cuivre(I). Dans cette seconde partie, nous avons testé plusieurs systèmes catalytiques impliquant une source de cuivre(I) (CuCl, Cu₂O, CuTC), un ligand de type phosphine ou carbène *N*-hétérocyclique, un agent de boration (B₂pin₂), une base et un donneur de protons. Après une phase très importante d'optimisation des différents paramètres pouvant influencer la réaction d'hydroboration, cette dernière a été appliquée avec succès à la synthèse d'une large gamme d'esters boroniques dérivant des 3-méthylène isoindolinones. En parallèle de cette étude, nous avons développé une réaction

172

tandem permettant d'accéder plus efficacement à nos esters boroniques en enchaînant une réaction d'hydroamination intramoléculaire d'alcynes avec une réaction d'hydroboration d'énamides catalysée au cuivre.

Dans la troisième partie de ce mémoire, nous avons mis au point une réaction d'hydroboration diastéréosélective d'énamides catalysée par les complexes de cuivre(I) de 3-méthylène isoindolinones possédant un auxiliaire chiral connecté à l'atome d'azote lactamique dont la synthèse a été décrite dans le premier chapitre. L'utilisation d'un auxiliaire chiral de type α -méthylbenzyle ou méthylprolinol a permis d'accéder aux isoindolinones substituées en position 3 du cycle lactamique par un groupement (1,3,2-dioxaborolan-2-yl)méthyl avec des rapports diastéréoisomériques allant jusqu'à 81/19.

Le chapitre 4 a été consacré à la valorisation de nos esters boroniques en synthèse organique en les engageant notamment dans diverses réactions d'aménagement fonctionnels ou de couplage métallo-catalysés. Ces réactions ont permis, dans un premier temps, d'intégrer dans nos isoindolinones des fonctions de type alcool, amine ou dérivé halogéné. Une deuxième partie a ensuite été consacrée aux réactions de couplage de type Suzuki-Miyaura, qui ont nécessité au préalable la synthèse du trifluoroborate de potassium et de l'acide boronique à partir du boronate correspondant. L'optimisation des différents paramètres de ces réactions nous a permis d'accéder à toute une gamme d'isoindolinones fonctionnalisées en position 3 du cycle lactamique. Une dernière partie nous a permis d'étudier le comportement sous irradiation du trifluoroborate de potassium, permettant grâce à une catalyse duale synergique combinant la photocatalyse à une réaction de couplage, la formation de liaisons carbone-carbone Csp³-Csp². Les premiers résultats ont été encourageants et une optimisation plus approfondie serait nécessaire afin d'améliorer les résultats. Des travaux sont actuellement en cours au laboratoire afin de procéder à l'optimisation de cette dernière réaction à l'aide d'un photocatalyseur organique ce qui serait particulièrement intéressant et permettrait de s'affranchir de l'utilisation des métaux précieux tels que l'iridium ou le ruthénium dont sont composés les photocatalyseurs les plus courants.

Les composés organoborés ayant prouvé depuis plusieurs années leur intérêt pharmacologique, il serait également intéressant de tester sur diverses cibles les composés formés dans les chapitres 2 et 3 ainsi que les acides boroniques dérivés des esters boroniques obtenus. Les isoindolinones obtenues par couplage métallo-catalysé pourront quant à elles servir de précurseurs en vue d'accéder à divers alcaloïdes d'origine naturelle et/ou biologiquement actifs.

173

Partie Expérimentale

PARTIE EXPERIMENTALE

GENERAL :

Les spectres de RMN du proton et du carbone ont été effectués sur un appareil BRUKER AM 300 WB (à 300 et 75 MHz respectivement) en utilisant le tétraméthylsilane comme référence interne (¹H et ¹³C).

La silice MERCK, Geduran SI 0.040-0.063 mm a été utilisée pour les chromatographies sur colonne sous pression d'argon (chromatographies "flash").

Les chromatographies sur couches minces ont été effectuées sur gels de silice MERCK, KIESELGEL 60 GF₂₅₄ et révélées sous rayonnement UV (254 nm et 365 nm).

Les points de fusion ont été déterminés au moyen d'un microscope à platine chauffante REICHERT THERMOPAN et n'ont pas été corrigés.

Les solvants anhydres ont été séchés selon de procédures standard. La verrerie sèche pour les réactions sensibles à l'humidité a été obtenue par séchage à l'étuve. La plupart des réactions ont été effectuées sous argon comme atmosphère inerte. Le transfert de réactif a été effectué par seringue.

IV. Synthèse des méthylène isoindolinones à partir de l'anhydride phtalique

1. Synthèse des phtalimides (1a-1l)

1.1. Synthèse des phtalimides (1a–1k)

Dans un ballon surmonté d'un montage Dean Stark sont ajoutés l'anhydride phtalique (6,8 mmol, 1 g, 1 eq), l'amine primaire (6,8 mmol, 1 eq) et l'APTS (0,68 mmol, 117 mg, 10 mol%) dissout dans du toluène (15 ml). La solution est agitée et portée à reflux pendant 3h. Le brut réactionnel est ensuite évaporé puis dissout dans du dichlorométhane (10 ml). La solution est alors lavée à l'eau (5 ml) puis extraite avec du dichlorométhane. La phase organique est séchée sur MgSO₄ puis évaporée. Le solide obtenu est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle.

2-(4-Méthoxybenzyl)isoindoline-1,3-dione 1a

Purification : EP/AE (70/30)

Solide blanc, Tf : 129-130 °C (lit.¹⁹⁹ 132 °C)

Rdt : 99%

¹H (300 MHz, CDCl₃) δ 3.73 (s, 3H, CH₃), 4.75 (s, 2H, CH₂), 6.78 (d, J = 8.7 Hz, 2H, H_{arom}), 7.36 (d, J = 8.7 Hz, 2H, H_{arom}), 7.65 (m, 2H, H_{arom}), 7.80 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 168.1 (2CO), 159.2 (C), 133.9 (2CH), 132.2 (2CH), 130.2 (C), 128.7 (2CH), 123.3 (2C), 114.0 (2CH), 55.3 (CH₃), 41.1 (CH₂)

¹⁹⁹ Rohmer T., Lang C., Bongards C., Gupta K. B., Neugebauer J., Hughes J., Gartner W., Matysik J., J. Am. Chem. Soc. **2010**, 132, 4431-4437
2-Benzylisoindoline-1,3-dione 1b

Purification : EP/AE (80/20)

Solide blanc, Tf : 116-117 °C (lit.²⁰⁰ 114-115 °C)

Rdt : 83%

¹H (300 MHz, CDCl₃) δ 4.83 (s, 2H, CH₂), 7.25 (t, J = 6 Hz, 1H, H_{arom}), 7.31 (t, J = 6 Hz, 2H, H_{arom}), 7.42 (d, J = 6 Hz, 2H, H_{arom}), 7.69 (dd, J = 6.0, 3.0 Hz, 2H, H_{arom}), 7.83 (dd, J = 6.0, 3.0 Hz, 2H, H_{arom}) ¹³C (75 MHz, CDCl₃): δ 168.1 (2CO), 134.0 (2CH), 136.3 (2CH), 132.1 (2CH), 128.7 (CH), 128.6 (2CH),

127.8 (C), 123.4 (2C), 41.6 (CH₂)

2-(4-Méthoxyphenyl)isoindoline-1,3-dione 1c

Purification : EP/AE (70/30)

Solide blanc, Tf : 148-149 °C (lit.²⁰¹ 150 °C)

Rdt : 95%

¹H NMR (300 MHz, CDCl₃) δ 4.77 (s, 3H, CH₃), 7.27 – 7.17 (d, *J* = 8.3, 2.1 Hz, 2H, H_{arom}), 7.39 – 7.32 (d, *J* = 8.3, 2.1 Hz, 2H, H_{arom}), 7.64 – 7.59 (d, *J* = 5.5, 3.0 Hz, 2H, H_{arom}), 7.78 – 7.74 (d, *J* = 5.5, 3.0 Hz, 2H, H_{arom}) H_{arom})

¹³C (75 MHz, CDCl₃) δ 167.6 (2CO), 159.2 (C), 134.3 (2C), 131.8 (2CH), 127.9 (2CH), 124.2 (2CH), 123.7 (C), 114.5 (2CH), 55.5 (CH₃)

2-Cyclohexylisoindoline-1,3-dione 1d

Purification : EP/AE (90/10)

Solide blanc, Tf : 167-168 °C (lit.² 171-173 °C)

Rdt : 69%

²⁰⁰ Patel K. P., Gayakwad E. M., Patil V. V., Shankarling G. S., *Adv. Synth. Catal.*, **2019**, *361*, 2107-2116

²⁰¹ Aliabadi A., Gholamine B., Karimi T., *Med. Chem. Res.*, **2014**, *23*, 2736-2743

¹H (300 MHz, CDCl₃) δ 1.23-1.39 (m, 3H, CH), 1.68 (d, *J* = 8 Hz, 3H, CH), 1.83 (d, *J* = 8 Hz, 2H, CH) , 2.18 (dq, *J* = 12.1, 3.2 Hz, 2H, CH), 4.08 (tt, *J* = 12.1, 3.5 Hz, 1H, CH), 7.66 (dd, *J* = 6.1, 3.2 Hz, 2H, H_{arom}), 7.79 (dd, *J* = 6.1, 3.1 Hz, 2H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.5 (2CO), 133.7 (2C), 132.0 (2CH), 123.0 (2CH), 50.9 (CH), 29.8 (2CH₂), 26.0 (2CH₂), 25.1 (CH₂)

2-Pentylisoindoline-1,3-dione 1e²⁰²

Purification : EP/AE (90/10)

Solide blanc, Tf < 50 °C

Rdt : 68%

¹H (300 MHz, CDCl₃) δ 0.83 (t, J = 6.6 Hz, 3H, CH₃), 1.57–1.67 (m, 2H, CH₂), 1.24–1.33 (m, 4H, CH₂), 3.62 (t, J = 7.5 Hz, 2H, CH₃), 7.62–7.80 (m, 4H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 168.4 (2CO), 133.8 (2C), 132.2 (2CH), 123.1 (2CH), 38.0 (CH₂), 29.0 (CH₂), 28.3 (CH₂), 22.3 (CH₂), 13.9 (CH₃)

2-(2-(Diméthylamino)éthyl)isoindoline-1,3-dione 1f²⁰³

Purification : EP/AE (80/20)

Solide blanc, Tf : 74-75 °C

Rdt : 70%

¹H (300 MHz, CDCl₃) δ 2,21 (s, 6H, CH₃), 2,6 (t, *J* = 7.1 Hz, 2H, CH₂), 3,59 (t, *J* = 7.1 Hz, 2H, CH₂), 7.72-7.84 (m, 4H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 167.9 (2CO), 133.7 (2C), 132.2 (2CH), 123.7 (2CH), 61.6 (CH₂), 49.2 (CH₂), 46.7 (2CH₃)

2-(Diméthylamino)isoindoline-1,3-dione 1g²⁰⁴

²⁰² Quinn R. K., Konst Z. A. , Michalak S. E., Schmidt Y., Szklarski A. R., Flores A. R., Nam S., Horne D. A., Vanderwal C. D., Alexanian E. J. *J. Am. Chem. Soc.*, **2016**, *138*, 696-702

²⁰³ Robert K. Y., Zee C., Cheng C. C., *J. Med. Chem.*, **1985**, *28*, 1216-1222

Purification : EP/AE (80/20)

Solide blanc, Tf : 120-121 °C

Rdt : 84%

¹H NMR (300 MHz, CDCl₃) δ 2.95 (s, 3H, CH₃), 7.68 – 7.63 (m, 1H, H_{arom}), 7.76 – 7.72 (m, 1H, H_{arom}) ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (2CO), 134.3 (2C), 130.3 (2CH), 123.2 (2CH), 44.8 (2CH₃)

2-(2,2-Diméthoxyethyl)isoindoline-1,3-dione 1h²⁰⁵

Purification : EP/AE (80/20)

Solide jaune, Tf : 108-109 °C

Rdt : 88%

¹H NMR (300 MHz, CDCl₃) δ 7.73 – 7.81 (m, 4H, H_{arom}), 4.83 (t, *J* = 7.1 Hz, 1H, CH), 3.95 (d, *J* = 7.0 Hz, 2H, CH₂), 3.46 (s, 6H, CH₃)

¹³C NMR (75 MHz, CDCl₃) δ 167.8 (2CO), 134.8 (2C), 130.7 (2CH), 124.1 (2CH), 110.6 (CH), 55.8 (2CH₃),
43.8 (CH₂)

 ²⁰⁴ Nguyen H. N., Cee V. J., Deak H. L., Du B., Faber K. P., Gunaydin H., Hodous B. L., Hollis S. L., Krolikowski P. H.,
Olivieri P. R., Patel V. F., Romero K., Schenkel L. B., Geuns-Meyer S. D. J. Org. Chem. 2012, 77, 3887-3906
²⁰⁵ Laurent S. A.-L., Boissier J., Coslédan F., Gornitzka H., Robert A., Meunier B. Eur. J. Org. Chem. 2008, 895-913

(S)-2-(1-(4-Méthoxyphényl)éthyl)isoindoline-1,3-dione 1i

Purification : EP/AE (70/30)

Solide blanc, Tf : 68-69 °C

Rdt : 97%

 $[\alpha]_{D}^{25}$ (c = 1.0, CHCl₃) = +47.0

¹H (300 MHz, CDCl₃) δ 1.90 (d, *J* = 7.3 Hz, 3H, CH₃), 3.77 (s, 3H, CH₃), 5.53 (d, *J* = 7.3 Hz, 1H, CH), 6.83-6.86 (m, 2H, H_{arom}), 7.43-7.46 (m, 2H, H_{arom}), 7.66-7.69 (m, 2H, H_{arom}), 7.78-7.80 (m, 2H, H_{arom}) ¹³C NMR (75 MHz, CDCl₃) δ 167.9 (CO), 158.8 (C), 132.8 (C), 132.3 (CH), 132.2 (CH), 132.0 (C), 131.9 (C), 126.6 (2CH), 123.9 (CH), 123.7 (CH), 114.5 (CH), 56.8 (CH), 55.2 (CH₃), 17.8 (CH₃)

(R)-2-(1-(4-Méthoxyphényl)éthyl)isoindoline-1,3-dione 1j

Purification : EP/AE (70/30) Solide blanc, Tf : 68-69 °C Rdt : 83% $[\alpha]_D^{25}$ (c = 1.5, CHCl₃) = -45.3 ¹H (300 MHz, CDCl₃) δ 1.90 (

¹H (300 MHz, CDCl₃) δ 1.90 (d, *J* = 7.3 Hz, 3H, CH₃), 3.77 (s, 3H, CH₃), 5.53 (dd, *J* = 7.3 Hz, 1H, CH), 6.83-6.86 (m, 2H, H_{arom}), 7.43-7.46 (m, 2H, H_{arom}), 7.66-7.69 (m, 2H, H_{arom}), 7.78-7.80 (m, 2H, H_{arom}) ¹³C NMR (75 MHz, CDCl₃) δ 167.7 (CO), 158.9 (C), 132.7 (C), 132.4 (CH), 132.1 (CH), 132.0 (C), 131.7 (C), 126.5 (2CH), 123.8 (CH), 123.8 (CH), 114.6 (CH), 56.6 (CH), 55.2 (CH₃), 17.7 (CH₃)

(S)-2-(1-(Naphthalén-1-yl)éthyl)isoindoline-1,3-dione 1k

Purification : EP/AE (70/30) Solide blanc, Tf : 61-62 °C Rdt : 68%

$[\alpha]_{D}^{25}$ (c = 2.0, CHCl₃) = +63.2

¹H (300 MHz, CDCl₃) δ 2.03 (d, J = 7 Hz, 3H, CH₃), 6.32 (d, J = 7 Hz, 1H, CH), 7.40-7.55 (m, 3H, H_{arom}), 7.61 - 7.62 (m, 2H, H_{arom}), 7.72 - 7.75 (m, 2H, H_{arom}), 7.82 (t, J = 8.2 Hz, 2H, H_{arom}), 8.00 (d, J = 7.3 Hz, 1H, H_{arom}), 8.20 (d, J = 8.5 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.1 (2CO), 134.6 (C), 133.9 (CH), 133.8 (CH), 131.9 (2C), 131.3 (2CH), 129.0 (CH), 128.7 (C), 126.65 (CH), 126.2 (CH), 125.5 (CH), 125.1 (CH), 123.1 (CH), 122.9 (C), 45.5 (CH), 18.0 (CH₃)

1.2. Synthèse de la (S)-2-(2-(méthoxyméthyl)pyrrolidin-1-yl)isoindoline-1,3dione 1l

1.2.1. Synthèse de l'auxiliaire chiral SAMP 2

• Synthèse de la (S)-pyrrolidin-2-ylméthanol

Dans un tricol de 4 litres équipé d'une enveloppe chauffante, d'un agitateur portant une hélice à deux pales, un réfrigérant avec un tube de séchage sont ajoutés de l'hydrure de lithium et d'aluminium (1.56 mol, 60 g, 1.5 eq) dans du THF anhydre (2.5 litres). La suspension est chauffée à reflux pendant 15 min. Le chauffage est éteint puis de la (*S*)-proline (1 mol, 115,1 g, 1 eq) est ajoutée par petite portion au mélange permettant de maintenir la solution à reflux. Le mélange réactionnel est maintenu à ébullition pendant 1 heure. Une solution aqueuse à 25% de KOH (115 ml) est ajoutée afin de décomposé l'excès de LiAlH₄. Le mélange est ensuite chauffé à reflux pendant 15 minutes et la solution chaude et ensuite filtrée. Le prolinol restant est extrait du précipité par reflux avec du THF suivi par une nouvelle filtration. Les filtrats sont concentrés sous pression réduite pour donner le produit brut sous forme d'huile jaune pâle. Le produit n'est pas purifié et directement engagé dans l'étape suivante.

(S)-Pyrrolidin-2-ylméthanol

Huile jaune pâle

Rdt = 96%

• Synthèse du (S)-2-(Hydroxyméthyl)pyrrolidine-1-carbaldehyde

Dans un ballon de 2 litres refroidi à 0 °C est ajouté la pyrrolidine (1 mol, 101 g, 1 eq) obtenue précédemment. Du formiate de méthyle (1,3 mol, 80 ml, 1,3 eq) est ensuite ajouté goutte à goutte à la solution sous agitation et l'agitation est poursuivie pendant 30 minutes à 0 °C. L'excès de formiate de méthyle est évaporé à 30 °C. Le résidu est ensuite repris dans du dichlorométhane (600 ml) et séchée deux fois par agitation sur MgSO₄. Après filtration le filtrat est concentré sous pression réduite. Le produit n'est pas purifié et directement engagé dans l'étape suivante.

(S)-2-(Hydroxyméthyl)pyrrolidine-1-carbaldéhyde

Rdt = quantitatif

• Synthèse du (S)-2-(méthoxyméthyl)pyrrolidine-1-carbaldéhyde

Dans un tricol de 4 litres est ajouté l'aldéhyde formé précédemment dans du THF sec (1,5 litres). Le montage est placé sous argon. La solution est refroidie entre -50 °C et -60 °C. Le bain froid est retiré et l'iodure de méthyle (1,3 mol, 81 ml, 1,3 eq) est ajouté. L'hydrure de sodium (NaH, 1,2 mol, 28,8 g, 1,2 eq) est ensuite ajouté en une seule portion.

Le montage est à nouveau placé sous argon et laissé réchauffer à température ambiante. La solution a été chauffée à reflux pendant 15 minutes. Une solution de HCl 6N (90 ml) a été ajoutée à la solution puis le THF a été éliminé sous pression réduite. Le produit n'est pas purifié et directement engagé dans l'étape suivante.

• Synthèse de la (S)-2-(méthoxyméthyl)pyrrolidine

Une solution d'hydroxyde de potassium (180 g dans 720 ml d'eau) a été ajouté au composé synthétisé précédemment et la solution est placée sous agitation à température ambiante et sous argon pendant une nuit. Du carbonate de potassium (500 g environ) est ensuite ajouté pour neutraliser la solution. La solution est filtrée puis lavée à l'éther diéthylique. Le filtrat est extrait avec de l'éther diéthylique. Les phases organiques sont séchées sur MgSO₄ puis évaporée. Le résidu est finalement purifié par distillation sous vide (Teb : 62 °C à 40 mm Hg)

(S)-2-(Méthoxyméthyl)pyrrolidine

Rdt = 87%

¹H (300 MHz, CDCl₃) δ 1.74-1.81 (m, 1H, CH₂), 1.98-2.16 (m, 3H, 2CH₂), 3.30 (t, *J* = 7.6 Hz, 2 H, CH₂), 3.40 (s, 3H, CH₃), 3.50 (dd, *J* = 10.6, 7.8 Hz, 1H, CH₂), 3.64 (dd, *J* = 10.6, 3.6 Hz, 1H, CH₂), 3.70 - 3.80 (m, 1H, CH)

¹³C (75 MHz, CDCl₃) δ 72.0 (CH₂), 60.7 (CH₃), 59.3 (CH), 46.6 (CH₂), 27.3 (CH₂), 24.8 (CH₂) $[\alpha]_{D}^{25}$ (c = 0.6, CHCl₃) = +2.8

• Synthèse de la (*S*)-2-(méthoxyméthyl)-1-nitrosopyrrolidine

Dans un ballon de 2 litres sont ajoutés le produit synthétisé précédemment (0,87 mol, 100 g, 1 eq) et le 2-méthyl-2-nitrosooxypropane (270 ml) dans du THF (1,5 litres). La solution est agitée à reflux pendant 12 heures. Après refroidissement, le solvant est évaporé pour donner le composé nitroso brut souhaité. Le produit n'est pas purifié et directement engagé dans l'étape suivante.

(S)-2-(Méthoxyméthyl)-1-nitrosopyrrolidine

Rdt = 69%

• Synthèse de la (S)-2-(méthoxyméthyl)pyrrolidin-1-amine 2

Dans un tricol de 4 litres équipé d'un agitateur à hélice à deux pales et d'un réfrigérant surmonté d'un tube de séchage est ajouté l'hydrure de lithium et d'aluminium (LiAlH₄, 1,26 mol, 58 g, 2,1 eq) dans du THF (2 litres). La solution est agitée et chauffée à reflux pendant 15 minutes. Le chauffage est ensuite éteint et le produit précédemment synthétisé (0,60 mol, 86,4 g, 1 eq) est ajouté par petite portion au mélange bouillant afin de maintenir l'ébullition. Une solution aqueuse à 25% de KOH (115 ml) est ensuite ajoutée afin de décomposer l'excès de LiAlH₄. Le mélange est à nouveau porté à reflux pendant 15 minutes. La solution est filtrée après refroidissement. Le SAMP restant est extrait du précipité par reflux pendant 1 heure dans du THF suivi à nouveau par une filtration. Les filtrats sont séchés sur MgSO₄ et concentrés sous pression réduite. Le composé brut est finalement distillé sous pression réduite (Teb : 56 °C à 3 mm Hg).

(S)-2-(Méthoxyméthyl)pyrrolidin-1-amine 2

Rdt = quantitatif

¹H (300 MHz, CDCl₃) δ 1.40-2.10 (m, 4H, 2CH₂), 2.11 - 2.59 (m, 2H, CH₂), 2.97 - 3.16 (m, 3H, NH₂ + CH), 3.30 (s, 3H, CH₃), 3.35 - 3.44 (m, 2H, CH₂) ¹³C (75 MHz, CDCl₃) δ 75.8 (CH₂), 68.4 (CH), 60.2 (CH₂), 59.2 (CH₃), 26.3 (CH₂), 21.0 (CH₂) [α]_D²⁵ (c = 0.9, CHCl₃) = -74.6 (lit.²⁰⁶ [α]_D²⁰ (neat) = -73.5)

1.2.2. Synthèse de la (*S*)-2-(2-(méthoxyméthyl)pyrrolidin-1-yl)isoindoline-1,3-dione (1l)

Le protocole utilisé pour la synthèse du phtalimide **1** est le même que pour les phtalimides **1a – 1k** (cf page 175)

(S)-2-(2-(Méthoxyméthyl)pyrrolidin-1-yl)isoindoline-1,3-dione 1

Purification : EP/AE (80/20)

Solide blanc, Tf < 40 °C

Rdt : 76%

 $[\alpha]_{D}^{20}$ (c = 1.12, CHCl₃) = +13.8 (lit.²⁰⁷ $[\alpha]_{D}^{28}$ (c = 1.00, CHCl₃) = +14.0)

¹H (300 MHz, CDCl₃) δ 1.64-1.75 (m, 1H, CH), 1.94-2.19 (m, 3H, CH), 3.19 (s, 3H, CH₃), 3.32-3.39 (m, 1H, CH), 3.42 (d, *J* = 4.4 Hz, 2H ; CH₂), 3.56 - 3.64 (m, 1H, CH), 3.82 - 3.91 (m, 1H, CH), 7.69 - 7.75 (m, 2H, H_{arom}), 7.80 - 7.86 (m, 2H, H_{arom}).

¹³C (75 MHz, CDCl₃) δ 164.7 (2CO), 133.9 (2C), 130.2 (2CH), 123.0 (2CH), 75.2 (CH₂), 67.1 (CH), 59.3 (CH₃), 53.2 (CH₂), 23.2 (CH₂), 22.1 (CH₂)

²⁰⁶ Enders, D., Eichenauer, H. *Chem. Ber.* **1979**, *112*, 2933-2960

²⁰⁷ Deniau E., Enders, D., Couture A., Grandclaudon P. *Tetrahedron: Asymmetry* **2003**, *14*, 2253-2258

2. Synthèse des 3-hydroxy-3-alkyl isoindolinones 3 a-l

Dans un bicol sont ajoutés la tournure de magnésium (8 mmol, 192 mg, 2 eq) et un cristal d'iode. Le bicol est surmonté d'un réfrigérant à eau et d'une ampoule à addition. Le montage est placé sous argon. L'éther diéthylique (20 ml) est ajouté et la solution mise sous agitation. Une solution d'iodométhane (8 mmol, 1,13 g, 2 eq) dans de l'éther diéthylique anhydre (20 ml) est ensuite ajoutée goutte à goutte. La solution est agitée à température ambiante pendant 30 min. Une solution du phtalimide **1a-I** (4mmol, 1 eq) dans du THF anhydre (15 ml) est ajouté goutte à goutte. La solution est agitée avec 100 ml d'eau puis avec 50 ml d'une solution aqueuse saturée de NH₄Cl. La solution est extraite avec du dichlorométhane (30 ml). La phase organique est séchée sur MgSO₄ et évaporée. Le brut réactionnel n'est pas purifié et directement engagé dans la réaction suivante.

3. Synthèse des 3-méthylènes isoindolinones 4a-l, 5

Dans un ballon surmonté d'un montage Dean Stark, sont ajoutés l'hydroxy isoindolinone **3a-I** (1 eq), l'APTS (10 mol%) dans du toluène (30 ml). La solution est chauffée à reflux pendant 3 h. Le toluène est évaporé, puis le résidu est repris dans le dichlorométhane (30 ml) et lavé à l'eau (20 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le brut réactionnel est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle.

2-(4-Méthoxybenzyl)-3-méthylèneisoindolin-1-one 4a²⁰⁸

Purification : EP/AE (70/30)

Solide blanc, Tf : 94-95 °C

Rdt : 70%

¹H (300 MHz, CDCl3) δ 3.76 (s, 3H, CH₃), 4.81 (d, *J* = 2.3 Hz, 1H, CH), 4.94 (s, 2H, CH₂), 5.14 (d, *J* = 2.3 Hz, 1H, CH), 6.82 - 6.86 (m, 2H, H_{arom}), 7.19 - 7.22 (m, 2H, H_{arom}), 7.50 - 7.57 (m, 2H, H_{arom}), 7.64 - 7.67 (m, 1H, H_{arom}), 7.86 - 7.89 (m, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 164.9 (CO), 158.5 (C), 143.5 (C), 133.3 (C), 132.2 (CH), 130.8 (C), 130.1 (2CH), 128.9 (CH), 128.2 (C), 127.8 (CH), 122.9 (CH), 114.5 (2CH), 106.3 (CH₂), 55.6 (CH₃), 47.7 (CH₂)

2-Benzyl-3-méthylèneisoindolin-1-one 4b²⁰⁹

Purification : EP/AE (70/30)

Solide blanc, Tf : 116-117 °C

Rdt : 55%

¹H (300 MHz, CDCl3) δ 4.45 (s, 2H, CH₂), 4.55 (d, J = 2.2 Hz, 1H, CH), 5.00 (d, J = 2.2 Hz, 1H, CH) 7.26 - 7.34 (m, 5H, H_{arom}), 7.56 - 7.62 (m, 2H, H_{arom}), 7.39 - 7.45 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 164.6 (CO), 144.3 (C), 136.4 (C), 133.2 (C), 130.6 (C), 131.9 (CH), 128.8 (2CH), 128.3 (CH), 128.0 (CH), 126.7 (2CH), 126.4 (CH), 123.4 (CH), 106.6 (CH₂), 48.2 (CH₂)

²⁰⁸ Li J., Zhang Z., Xu X., Shao X., Li Z., Aus. J. Chem **2015**, 68, 1543-1549

²⁰⁹ Cao H., McNamee L., Alper H., Org. Lett. **2008**, 10, 5281-5284

2-(4-Méthoxyphényl)-3-méthylèneisoindolin-1-one 4c²¹⁰

Purification : EP/AE (70/30)

Solide blanc, Tf = 115-116 °C

Rdt : 51%

¹H NMR (300 MHz, CDCl₃) δ 3.85 (s, 3H, CH₃), 4.75 (d, *J* = 2.0 Hz, 1H, CH), 5.20 (d, *J* = 2.0 Hz, 1H, CH), 7.03 (d, *J* = 9.0 Hz, 2H, H_{arom}), 7.28 (d, *J* = 9.0 Hz, 2H, H_{arom}), 7.55 (td, *J* = 7.4, 1.1 Hz, 1H, H_{arom}), 7.63 (td, *J* = 7.5, 1.2 Hz, 1H, H_{arom}), 7.75 (dt, *J* = 7.6, 0.9 Hz, 1H, H_{arom}), 7.92 (dt, J = 7.5, 0.9 Hz, 1H, H_{arom}) ¹³C NMR (75 MHz, CDCl₃) δ 167.0 (CO), 159.3 (C), 143.5 (C), 136.2 (C), 132.2 (C), 129.7 (CH), 129.3 (2CH), 129.1 (CH), 127.1 (C), 123.8 (CH), 120.0 (CH), 114.9 (2CH), 95.2 (CH₂), 55.5 (CH₃)

2-(2-(Diméthylamino)éthyl)-3-méthylèneisoindolin-1-one 4f

Purification : EP/AE (90/10)

Huile

Rdt : 41%

¹H NMR (300 MHz, CDCl₃) δ 2.25 (s, 6H, CH₃), 2.67 (t, *J* = 7.1 Hz, 2H, CH₂), 3.22 (t, *J* = 7.1 Hz, 2H, CH₂), 4.77 (d, *J* = 2.1 Hz, 1H, CH), 5.09 (d, *J* = 2.1 Hz, 1H, CH), 7.39 - 7.45 (m, 2H, H_{arom}), 7.55 - 7.61 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 163.2 (CO), 141.5 (C), 133.9 (C), 131.9 (CH), 131.2 (C), 128.5 (CH), 127.8 (CH), 123.2 (CH), 99.8 (CH₂), 65.6 (CH₂), 54.2 (CH₂), 45.4 (2CH₃)

²¹⁰ Sharma S., Nayal O. S., Sharma A., Rana R., Maurya S. K., Chem. Select., **2019**, *4*, 1985-1988

2-(Diméthylamino)-3-méthylèneisoindolin-1-one 4g²¹¹

Purification : EP/AE (90/10)

Huile

Rdt : 61%

¹H NMR (300 MHz, CDCl₃) δ 2.65 (s, 6H, CH₃), 4.81 (d, J = 2.0 Hz, 1H, CH), 5.1 (d, J = 2.0 Hz, 1H, CH), 7.35 - 7.42 (m, 2H, H_{arom}), 7.57 - 7.62 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 161.8 (CO), 144.2 (C), 133.8 (C), 132.9 (CH), 130.5 (C), 128.9 (CH), 123.7 (CH), 122.9 (CH), 101.2 (CH₂), 45.3 (2CH₃)

2-(2,2-Diméthoxyéthyl)-3-méthylèneisoindolin-1-one 4h

Purification : EP/AE (90/10)

Huile

Rdt : 52%

¹H NMR (300 MHz, CDCl₃) δ 3.2 (s, 6H, CH₃), 3.6 (d, *J* = 6.9 Hz, 2H, CH₂), 5.8 (t, *J* = 6.9 Hz, 1H, CH), 7.39 - 7.45 (m, 2H, H_{arom}), 7.55 - 7.61 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 162.3 (CO), 142.8 (C), 132.9 (C), 132.2 (CH), 130.9 (C), 128.5 (CH), 128.0, (CH), 123.6 (CH), 111.8 (CH), 98.2 (CH₂), 56.7 (2CH₃), 44.8 (CH₂)

²¹¹Deniau E., Enders D., *Tetrahedron Lett*. **2002**, *43*, 8055-8058

(S)-2-(1-(4-Méthoxyphényl)éthyl)-3-méthylèneisoindolin-1-one 4i²¹²

Purification : EP/AE (70/30)

Cristaux blancs, Tf: 119-120 °C

Rdt : 64%

 $[\alpha]_{D}^{20}$ (c = 1.2, CHCl₃) = +32.6

¹H (300 MHz, CDCl₃) δ 1.76 (d, *J* = 7.2 Hz, 3H, CH₃), 3.71 (s, 3H, CH₃), 4.55 (d, *J* = 2.1 Hz, 1H, CH), 5.00 (d, *J* = 2.1 Hz, 1H, CH), 5.80 (q, *J* = 7.2 Hz, 1H, CH), 6.76 - 6.81 (m, 2H, H_{arom}), 7.17 - 7.20 (m, 2H, H_{arom}), 7.40 - 7.56 (m, 3H, H_{arom}), 7.77 - 7.80 (m, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 164.3 (CO), 158.5 (C), 143.7 (C), 133.2 (C), 132.4 (C), 131.9 (CH), 130.8 (C), 128.3 (CH), 127.9 (CH), 126.5 (2CH), 123.2 (CH), 114.2 (2CH), 106.4 (CH₂), 60.8 (CH), 55.7 (CH₃), 18.6 (CH₃)

(R)-2-(1-(4-Méthoxyphényl)éthyl)-3-méthylèneisoindolin-1-one 4j²¹³

Purification : EP/AE (70/30)

Cristaux blancs, Tf : 119-120 °C

Rdt : 61%

 $[\alpha]_{D}^{20}$ (c = 1.4, CHCl₃) = -32.6

¹H (300 MHz, CDCl₃) δ 1.76 (d, *J* = 7.2 Hz, 3H, CH₃), 3.71 (s, 3H, CH₃), 4.55 (d, *J* = 2.1 Hz, 1H, CH), 5.00 (d, *J* = 2.1 Hz, 1H, CH), 5.80 (q, *J* = 7.2 Hz, 1H, CH), 6.76 - 6.81 (m, 2H, H_{arom}), 7.17 - 7.20 (m, 2H, H_{arom}), 7.40 - 7.56 (m, 3H, H_{arom}), 7.77 - 7.80 (m, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 164.6 (CO), 158.7 (C), 143.5 (C), 133.4 (C), 132.3 (C), 131.8 (CH), 130.6 (C), 128.1 (CH), 127.9 (CH), 126.4 (2CH), 123.4 (CH), 114.3 (2CH), 106.5 (CH₂), 60.7 (CH), 55.6 (CH₃), 18.5 (CH₃)

²¹² Sagirova Zh. R., Starodubtseva E. V., Turova O. V., Vinogra., ACS Med. Chem. Lett. 2016, 7, 1077-1037

 ²¹³ Wurtz N. R., Parkhurst B. L., Jiang W., DeLucca I., Zhang X., Ladziata V., Cheney D. L., Bozarth J. R., Rendina A. R., Wei A., Luettgen J. M., Wu Y., Wong P. C., Seiffert D. A., Wexler R. R., Priestley E. S., ACS Med. Chem. Lett.
2016, 7, 1077-1081

(S)-3-Méthylène-2-(1-(naphthalén-1-yl)éthyl)isoindolin-1-one 4k

Purification : EP/AE (70/30)

Huile orange

Rdt : 46%

 $[\alpha]_{D}^{20}$ (c = 1.0, CHCl₃) = +51.2

¹H (300 MHz, CDCl₃) δ 1.97 (d, *J* = 7 Hz, 3H), 4.72 (d, *J* = 2.1 Hz, 1H), 4.92 (d, *J* = 2.1 Hz, 1H), 6.50 (q, *J* = 7 Hz, 1H), 7.40 - 7.52 (m, 6H), 7.75 - 7.89 (m, 6H), 8.02 - 8.05 (m, 1H).

¹³C (75 MHz, CDCl₃) δ 163.8 (CO), 136.7 (C), 133.5 (C), 132.3 (C), 130.5 (CH), 128.5 (C), 128.3 (CH), 125.9 (C), 125.5 (CH), 125.4 (CH), 125.1 (CH), 123.4 (CH), 122.4 (C), 121.5 (CH), 121.3 (CH), 120.1 (CH), 119.8 (CH), 116.1 (CH), 88.3 (CH₂), 43.6 (CH), 14.0 (CH₃)

(S)-2-(2-(Méthoxyméthyl)pyrrolidin-1-yl)-3-méthylèneisoindolin-1-one 4l

Purification : EP/AE (80/20)

Huile orange

Rdt : 61%

[α]_D²⁰ (c = 15, CHCl₃) = +39.9

¹H (300 MHz, CDCl₃) δ 1.71-1.81 (m, 1H, CH), 1.84-1.96 (m, 1H, CH), 2.02-2.10 (m, 1H, CH), 2.17-2.28 (m, 1H, CH), 3.20-3.37 (m, 6H, CH, CH₃), 3.63 (q, J = 8.1 Hz, 1H, CH), 4.04-4.08 (m, 1H, CH), 5.17 (d, J = 2.1 Hz, 1H, CH), 5.36 (s, J = 2.1 Hz, 1H, CH), 7.41-7.80 (m, 4H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 161.3 (CO), 141.8 (C), 132.3 (C), 131.5 (CH), 130.2 (C), 127.3 (CH), 123.9 (CH), 122.5 (CH), 102.1 (CH₂), 72.6 (CH₂), 65.8 (CH), 56.7 (CH₃), 52.5 (CH₂), 25.2 (CH₂), 22.8 (CH₂)

(E)-3-Butylidène-2-(4-méthoxybenzyl)isoindolin-1-one 5²¹⁴

Purification : EP/AE (70/30)

Huile

Rdt : 95%

¹H NMR (300 MHz, CDCl₃) δ 0.92 (t, *J* = 7.5 Hz, 3H, CH₃), 1.53 (s, *J* = 7.5 Hz, 2H, CH₂), 2.55 (dt, *J* = 7.5, 7.5 Hz, 2H, CH₂), 3.77 (s, 3H, CH₃), 4.94 (s, 2H, CH₂), 5.42 (t, *J* = 7.5 Hz, 1H, CH), 6.80 - 6.85 (m, 2H), 7.15 - 7.21 (m, 2H), 7.49 (dd, *J* = 7.5, 7.5 Hz, 1H, H_{arom}), 7.58 (dd, *J* = 7.5, 7.5, 1H, H_{arom}), 7.81 (d, *J* = 7.5 Hz, 1H, H_{arom}), 7.93 (d, *J* = 7.5 Hz, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 166.3 (CO), 158.6 (C), 135.5 (C), 134.4 (C), 131.7 (CH), 130.3 (CH), 129.2 (C), 128.4, (2CH), 128.2 (C), 123.4 (CH), 123.2 (CH), 113.9 (CH), 113.5 (2CH), 55.2 (CH₃), 42.3 (CH₂), 29.3, (CH₂), 23.3 (CH₂), 13.8 (CH₃)

²¹⁴ Kanazawa, C., Terada M., *Chem. Asian J.* **2009**, *4*, 1668-1672

V. Synthèse des méthylène isoindolinones à partir de l'acide ortho-acétylbenzoïque

1. Par activation thermique (accès aux composes 4a-b, 4e, 4i)

Dans un ballon surmonté d'un montage Dean Stark, sont ajoutés l'acide orthoacétylbenzoïque (6,0 mmol, 984 mg, 1 eq), l'amine primaire (6,0 mmol, 1 eq) et l'APTS (0,6 mmol, 103 mg, 10 mol%) dans le toluène (20 ml). La solution est agitée et chauffée à reflux pendant 12 h. Le toluène est évaporé, puis le résidu est repris dans l'acétate d'éthyle (30 ml) et lavé avec de la soude 10 % (10 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le brut réactionnel est purifié sur colonne de silice avec de l'éther de pétrole, de l'acétate d'éthyle et du dichlorométhane.

2-(4-Méthoxybenzyl)-3-méthylèneisoindolin-1-one 4a

Rdt : 66% Analyses page 188

2-Benzyl-3-méthylèneisoindolin-1-one 4b

Rdt : 58%

Analyses page 188

3-Méthylène-2-pentylisoindolin-1-one 4e²¹⁵

Purification : EP/AE (90/10)

Huile

Rdt : 33%

¹H (300 MHz, CDCl₃) δ 1.09 (t, *J* = 7.9 Hz, 3H, CH₃), 1.25 - 1.31 (m, 4H, CH₂), 1.66 (m, 2H, CH₂), 3.67 (t, *J* = 7.1 Hz, 2H, CH₂), 4.67 (d, *J* = 2.1 Hz, 1H, CH), 4.77 (d, *J* = 2.1 Hz, 1H, CH), 7.39 - 7.45 (m, 2H, H_{arom}), 7.56 - 7.62 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 165.3 (CO), 143.5 (C), 132.6 (C), 131.8 (CH), 130.4 (C), 128.7 (CH), 127.6 (CH), 122.8 (CH), 104.3 (CH₂), 47.2 (CH₂), 31.6 (CH₂), 28.7 (CH₂), 23.4 (CH₂), 12.9 (CH₃)

(S)-2-(1-(4-Méthoxyphényl)éthyl)-3-méthylèneisoindolin-1-one 4i

Rdt : 31%

Analyses page 191

2. Par activation micro-onde (accès aux composés 4a-i)

Dans un tube pour micro-onde, sont ajoutés l'acide *ortho*-acétylbenzoïque (3,0 mmol, 492 mg, 1 eq), l'amine primaire (3,0 mmol, 1 eq) et l'APTS (0,3 mmol, 51 mg, 10 mol%) dans le toluène (8 ml). Le tube est placé sous irradiation micro-onde à 150°C pendant 1h. Le toluène est évaporé, puis le résidu est repris dans l'acétate d'éthyle (30 ml) et lavé avec de la soude 10% (10 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le brut réactionnel est purifié sur colonne de silice avec de l'éther de pétrole, de l'acétate d'éthyle et du dichlorométhane.

2-(4-Méthoxybenzyl)-3-méthylèneisoindolin-1-one 4a

²¹⁵ Zhou, B., Hou W., Yang Y., Li Y., Chem. Eur. J. **2013**, 19, 4701-4706

Rdt : 85%

Analyses page 188

2-Benzyl-3-méthylèneisoindolin-1-one 4b

Rdt : 90%

Analyses page 188

2-(4-Méthoxyphényl)-3-méthylèneisoindolin-1-one 4c

Rdt : 32%

Analyses page 189

2-Cyclohexyl-3-méthylèneisoindolin-1-one 4d²¹⁶

Purification : EP/AE (90/10)

Huile

Rdt : 68%

¹H NMR (300 MHz, CDCl₃) δ 1.11 - 1.21 (m, 4H, CH), 1.44 - 1.46 (m, 2H, CH), 1.52 - 1.72 (m, 4H, CH), 3.46 (q, J = 6.9 Hz, 1H, CH), 4.55 (d, J = 2.2 Hz, 1H, CH), 4.64 (d, J = 2.2 Hz, 1H, CH), 7.35 - 7.42 (m, 2H, H_{arom}), 7.58 - 7.63 (m, 2H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 164.3 (CO), 142.8 (C), 133.7 (C), 131.8 (C), 129.8 (C), 128.3 (CH), 123.4 (CH), 105.2 (CH₂), 63.6 (CH), 33.4 (2CH₂), 24.5 (CH₂), 22.7 (2CH₂)

²¹⁶ Jia. J., Chuanmei Q., Liyao Z., Ruimao H., *Tetrahedron Lett.* **2013**, *54*, 5159-5161

3-Méthylène-2-pentylisoindolin-1-one 4e

Rdt : 76%

Analyses page 195

2-(2-(Diméthylamino)éthyl)-3-méthylèneisoindolin-1-one 4f

Rdt : 62%

Analyses page 189

2-(Diméthylamino)-3-méthylèneisoindolin-1-one 4g

Rdt : 32%

Analyses page 190

2-(2,2-Diméthoxyéthyl)-3-méthylèneisoindolin-1-one 4h

Rdt : 88%

Analyses page 190

(S)-2-(1-(4-Méthoxyphényl)éthyl)-3-méthylèneisoindolin-1-one 4i

Rdt : 98%

Analyses page 191

VI. Synthèse des méthylène isoindolinones (6, 7) par réaction d'hydroamination intramoléculaire d'alcyne

1. Synthèse des alcools benzyliques ortho iodés (16, 17)

A une solution d'alcool benzylique substitué (25,2 mmol, 1 eq) dans le dichlorométhane (50 ml), est ajouté de l'acétate d'argent (25,2 mmol, 8,0 g, 1 eq) et de l'iode I_2 (25,2 mmol, 6,5 g, 1 eq). La solution est agitée 1 heure à température ambiante. La solution est filtrée puis lavée avec Na₂S₂O₃ saturé. La phase organique est séchée sur MgSO₄ puis évaporée. Le produit n'est pas purifié et directement engagé dans la réaction suivante.

(2-lodo-4,5-diméthoxyphényl)méthanol 16²¹⁷

Huile jaunâtre

Rdt : 84%

¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 1H, OH), 3.84 (s, 6H, 2CH₃), 4.56 (s, 2H, CH₂), 6.97 (s, 1H, H_{arom}), 7.18 (s, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 149.3 (C), 148.7 (C), 135.1 (C), 121.3 (CH), 111.4 (CH), 85.2 (C), 68.9 (CH₂), 56.1 (CH₃), 55.8 (CH₃)

(6-lodobenzo[d][1,3]dioxol-5-yl)méthanol 17²¹⁸

²¹⁷Arredonto V., Roa D. E., Yan S., Liu-Smith F., Van Vranken D. L. Org. Lett., **2019**, *21*, 1755-1759

Solide jaunâtre, Tf : 108-109 °C

Rdt : 94%

¹H NMR (300 MHz, CDCl₃) δ 2.31 (s, 1H, OH), 4.55 (s, 2H, CH₂), 5.96 (s, 2H, CH₂), 6.96 (s, 1H, H_{arom}), 7.21 (s, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 148.5 (C), 147.8 (C), 136.1 (C), 118.4 (CH), 109.0 (CH), 101.6 (CH₂), 85.3 (C), 69.1 (CH₂)

2. Oxydation des alcools ortho-iodo benzyliques (16, 17) en acide carboxyliques (8, 9)

A une solution de PCC (28,5 mmol, 6,1 g, 1.5 eq) et SiO₂ (0,19 mol, 11,4 g, 10 eq) dans 150 ml de dichlorométhane est ajouté l'alcool **16, 17** (19 mmol, 1 eq). La solution est agitée 1 h à température ambiante. La solution est filtrée, puis lavée avec 20 ml de saumure. La phase organique est séchée sur MgSO₄ puis évaporée. Le brut réactionnel est ajouté à une solution de NH₂SO₃H (19mmol, 1,84 g, 1 eq) et de THF (75/25). Une solution d'hypochlorite de sodium (NaClO₂, 24,7 mmol, 2,22 g, 1.3 eq) dans l'eau (5 ml) est ensuite ajoutée goutte à goutte et agitée pendant 24 h à température ambiante. La solution est filtrée. Le solide est solubilisé dans 10 ml de NaOH 10% puis la solution est acidifiée avec une solution d'acide chlorhydrique (HCl 2M) puis filtré. Le filtrat est extrait avec Et₂O, la phase organique est séchée sur MgSO₄ puis évaporée.

²¹⁸ Gutman E. S., Arredonto V., Van Vranken D. L., Org. Lett. **2014**, *16*, 5498-5501

Acide 2-iodo-4,5-diméthoxybenzoique 8²¹⁹

Solide jaunâtre, Tf = 206-207 °C

Rdt = 93%

 ^1H NMR (300 MHz, DMSO-d6) δ 3.78 (s, 3H, CH_3), 3.82 (s, 3H, CH_3), 7.37 (s, 1H, H_{arom}), 7.42 (s, 1H, H_{arom})

¹³C NMR (75 MHz, DMSO-d6) δ 166.9 (C), 151.3 (C), 148.2 (C), 127.1 (C), 123.1 (CH), 113.5 (CH), 84.7 (C), 55.9 (2CH₃)

Acide 6-iodobenzo[d][1,3]dioxole-5-carboxylique **9**²²⁰

Solide blanchâtre, Tf : 208-209°C

Rdt = 68%

¹H NMR (300 MHz, DMSO-d6) δ 6.13 (s, 2H, CH₂), 7.31 (s, 1H, H_{arom}), 7.50 (s, 1H, H_{arom})

¹³C NMR (75 MHz, DMSO-d6) δ 168.3 (CO), 155.2 (C), 146.3 (C), 128.1 (C), 122.2 (CH), 117.5 (CH), 101.6 (CH₂), 86.8 (C)

3. Synthèse des benzamides (10, 11 et 22-24)

Une solution d'acide *ortho*-iodobenzoïque (4,8 mmol, 1 eq) dans 20 ml de chlorure de thionyle (SOCl₂) est chauffée à reflux pendant 2 h. Le chlorure de thionyle est évaporé et le résidu est dissout dans 15 ml de dichlorométhane. A cette solution est ajoutée Et_3N (12 mmol, 1,2 g, 2.5 eq) et l'amine (4,8 mmol, 1 eq). La solution est agitée pendant 12 h à température ambiante. La solution est lavée à l'eau puis la phase organique est séchée sur MgSO₄ et évaporée. Le solide obtenu est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle.

²¹⁹ Venkataraman S., Venkateswara R. B., Deepak B., Manojit P. J. Org. Chem. **2005**, 70, 4778-4783

²²⁰ Cahiez G., Chaboche C., Mahuteau-Betzer F., Ahr M. *Org. Lett.* **2005**, *7*, 1943-1946

2-Iodo-4,5-diméthoxy-N-(4-méthoxybenzyl)benzamide 10²²¹

Purification : EP/AE (60/40)

Solide blanc, Tf : 159-160 °C

Rdt : 53%

¹H NMR (300 MHz, CDCl₃) δ 3.81 (s, 3H, CH₃), 3.87 (s, 6H, 2CH₃), 4.57 (d, *J* = 5.6 Hz, 2H, CH₂), 6.05 (t, J = 5.6 Hz, 1H, NH), 6.89 (d, *J* = 8.7 Hz, 2H, H_{arom}), 7.03 (s, 1H, H_{arom}), 7.21 (s, 1H, H_{arom}), 7.33 (d, *J* = 8.7 Hz, 2H, H_{arom})

¹³C (75 MHz, CHCl₃) δ 168.6 (CO), 159.1 (C), 150.6 (C), 149.3 (C), 134.3 (C), 129.7 (CH), 129.6 (CH), 122.1 (C), 114.1 (CH), 112.1 (CH), 80.9 (C), 77.5 (CH), 76.6 (CH), 56.3 (CH₃), 56.1 (CH₃), 55.3 (CH₃), 43.9 (CH₂)

6-Iodo-N-(4-méthoxybenzyl)benzo[d][1,3]dioxole-5-carboxamide 11

Purification : EP/AE (60/40)

Huile

Rdt : 49%

¹H NMR (300 MHz, CDCl₃) δ 3.83 (s, 3H, CH₃), 4.26 (d, *J* = 5.5 Hz, 2H, CH₂), 5.96 (d, *J* = 5.5 Hz, 1H, NH), 6.12 (s, 2H, CH₂), 6.88 (d, J = 8.6 Hz, 2H, H_{arom}), 7.09 (d, J = 8.6 Hz, 2H, H_{arom}), 7.26 (s, 1H, H_{arom}), 7.42 (s, 1H, H_{arom})

¹³C (75 MHz, CHCl₃) δ 167.8 (CO), 157.9 (C), 153.3 (C), 147.2 (C), 136.3 (C), 130.1 (2CH), 129.8 (C), 121.5 (CH), 115.2 (2CH), 101.6 (CH₂), 82.3 (C), 55.9 (CH₃), 44.2 (CH₂)

²²¹Mehta S., Yao T., Larock R. C. J. Org. Lett. **2012**, 77, 10938-10944

2-Iodo-N-pentylbenzamide 22

Purification : EP/AE (80/20)

Solide blanc, Tf = 108-109 °C

Rdt : 67%

¹H NMR (300 MHz, CDCl₃) δ 1.02 - 0.89 (m, 3H, CH), 1.52 - 1.36 (m, 4H, CH), 1.76 - 1.63 (m, 2H, CH), 3.49 (td, *J* = 7.1, 5.9 Hz, 2H, CH), 5.78 (s, 1H, NH), 7.13 (ddd, *J* = 7.9, 6.4, 2.7 Hz, 1H, H_{arom}), 7.46 - 7.37 (m, 2H, H_{arom}), 7.90 (dd, *J* = 7.8, 1.0 Hz, 1H, H_{arom})

¹³C (75 MHz, CHCl₃) δ 187.1 (CO), 144.3 (C), 142.4 (CH), 134.6 (CH), 132.5 (CH), 129.1 (CH), 92.3 (C), 42.3 (CH₂), 33.6 (CH₂), 29.2 (CH₂), 22.6 (CH₂)15.3 (CH₃)

N-(2-(Diméthylamino)éthyl)-2-iodobenzamide 23

Purification : EP/AE (80/20)

Huile

Rdt = 81%

¹H NMR (300 MHz, CDCl₃) δ 2.25 (s, 6H, CH₃), 2.43 (t, *J* = 7.0 Hz, 2H, CH₂), 3.56 (t, *J* = 7.0 Hz, 3H, CH₂), 5.64 (s, 1H, NH), 7.58 - 7.69 (m, 2H, H_{arom}), 7.76 - 7.85 (m, 2H, H_{arom})

¹³C (75 MHz, CHCl₃) δ 166.9 (CO), 143.5 (C), 141.9 (CH), 132.4 (CH), 131.2 (CH), 128.6 (CH), 91.2 (C), 58.2 (CH₂), 45.8 (2CH₃), 41.4 (CH₂)

N-(2,2-Diméthoxyéthyl)-2-iodobenzamide 24222

Purification : EP/AE (80/20)

Huile

Rdt : 87%

¹H NMR (300 MHz, CDCl₃) δ 3.43 (s, 6H, 2CH₃), 3.59 (t, *J* = 5.6 Hz, 2H, CH₂), 4.54 (t, *J* = 5.4 Hz, 1H, CH), 6.04 (s, 1H, NH), 7.15 - 7.05 (m, 1H, H_{arom}), 7.41 - 7.35 (m, 2H, H_{arom}), 7.86 (d, *J* = 7.8 Hz, 1H, H_{arom})

²²² Marques C. S., Peixoto D., Burke A. J. *RSC Adv.* **2015**, *5*, 20108-20114

¹³C (75 MHz, CHCl₃) δ 165.2 (CO), 143.8 (C), 141.9 (CH), 132.6 (CH), 130.5 (CH), 127.2 (CH), 108.6 (CH), 90.8 (C), 56.7 (2CH₃), 42.6 (CH₂)

4. Couplage pallado-catalysé de type Sonogashira : accès aux produits 12, 13 et 25–27

A une solution de benzamide **10, 11** et **22-24** (0,9 mmol, 1 eq) dans le THF (10 ml) maintenu sous argon sont ajoutés le triméthylsilyléthyne (1,35 mmol, 0,19 ml, 1.5 eq), l'iodure de cuivre Cul (0,045 mmol, 8 mg, 5 mol%), le PdCl₂(PPh₃)₂ (0,045 mmol, 30,6 mg, 5 mol%) et la triéthylamine Et₃N (2,6 mmol, 0,37 ml, 3 eq). La solution est agitée à température ambiante pendant 12 h. La solution est ensuite hydrolysée avec une solution de NH₄Cl (15 ml) puis extraite avec de l'acétate d'éthyle (30 ml). La phase organique est séchée sur MgSO₄ et évaporée. Le produit obtenu est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle.

4,5-Diméthoxy-N-(4-méthoxybenzyl)-2-((triméthylsilyl)éthynyl)benzamide 12²³

Purification : EP/AE (60/40)

Huile

Rdt : 91%

¹H NMR (300 MHz, CDCl₃) δ 0.00 (s, 9H, CH₃), 3.68 (s, 3H, CH₃), 3.80 (s, 3H, CH₃), 3.84 (s, 3H, CH₃), 4.49 (d, *J* = 5.5 Hz, 2H, CH₂), 6.75 (d, *J* = 8.7 Hz, 2H, H_{arom}), 6.81 (d, *J* = 5.5 Hz, 1H, NH), 7.18 (d, *J* = 8.8 Hz, 2H, H_{arom}), 7.66 (s, 1H, H_{arom}), 8.19 (t, *J* = 5.3 Hz, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 165.5 (CO), 159.5 (C), 150.9 (C), 150.1 (C), 130.8 (CH), 129.6 (CH), 128.8 (C), 116.1 (C), 114.6 (C), 113.5 (CH), 112.4 (CH), 104.4 (C), 101.1 (C), 77.9 (CH), 77.5 (CH), 56.6 (CH₃), 56.5 (CH₃), 55.7 (CH₃), 44.1 (CH₂), 0.0 (CH₃)

N-(4-Méthoxybenzyl)-6-((triméthylsilyl)éthynyl)benzo[d][1,3]dioxole-5-carboxamide 13

Purification : EP/AE (60/40)

Huile

Rdt : 65%

¹H (300 MHz, CDCl₃) δ 0.00 (s, 9H, CH₃), 3.91 (s, 3H, CH₃), 4.45 (d, *J* = 5.5 Hz, 2H, CH₂), 6.08 (s, 2H, CH₂), 6.72 (d, *J* = 5.5 Hz, 1H, NH), 6.86 (d, *J* = 8.6 Hz, 2H, CH), 7.15 (d, *J* = 8.6 Hz, 2H, CH), 7.52 (s, 1H, CH), 7.76 (s, 1H, CH)

¹³C (75 MHz, CDCl₃) δ_165.3 (CO),_159.5 (C), 149.8 (C), 149.2 (C), 131.2 (2CH), 130.7 (C), 129.7 (C), 114.6 (C), 114.2 (2CH), 113.4 (CH), 110.9 (C), 104.1 (CH), 102.6 (CH₂), 101.3 (C), 55.8 (CH₃), 44.2 (CH₂), 0.0 (3CH₃)

N-Pentyl-2-((triméthylsilyl)éthynyl)benzamide 25

Purification : EP/AE (80/20)

Huile

Rdt : 69%

¹H (300 MHz, CDCl₃) δ 0.13 - 0.06 (m, 9H, CH₃), 0.73 (t, *J* = 7.5 Hz, 3H, CH₃), 1.27 - 1.11 (m, 4H, CH), 1.53 - 1.38 (m, 2H, CH), 3.29 (dd, *J* = 7.2, 5.7 Hz, 2H, CH), 6.72 (s, 1H, NH), 7.27 - 7.16 (m, 2H, H_{arom}), 7.34 (ddd, *J* = 6.8, 2.2, 0.6 Hz, 1H, H_{arom}), 7.46 (d, *J* = 5.7 Hz, 1H, H_{arom}), 7.91 (ddd, *J* = 7.1, 2.6, 0.6 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 165.9 (CO), 135.8 (C), 134.2 (CH), 130.5 (CH), 130.4 (C), 129.3 (CH), 119.4 (CH), 103.9 (C), 101.7 (C), 40.4 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 22.6 (CH₂), 14.2 (CH₃), 0.0 (3CH₃)

N-(2-(Diméthylamino)éthyl)-2-((triméthylsilyl)éthynyl)benzamide 26

Purification : EP/AE (80/20)

Huile

Rdt : 72%

¹H (300 MHz, CDCl₃) δ 0.00 (s, 9H, CH₃), 2.23 (s, 6H, CH₃), 2.56 (t, *J* = 7.1 Hz, 2H, CH₂), 3.67 (t, *J* = 7.1 Hz, 2H, CH₂), 6.69 (s, 1H, NH), 7.18 – 7.31 (m, 2H, H_{arom}), 7.38 (dd, *J* = 6.9, 2.2, Hz, 1H, H_{arom}), 7.51 (d, *J* = 6.8 Hz, 1H, H_{arom}), 7.87 (dd, *J* = 6.9, 2.3 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 164.6 (CO), 136.4 (C), 135.6 (CH), 132.4 (CH), 129.4 (C), 127.6 (CH), 126.8 (CH), 105.2 (C), 98.7 (C), 56.7 (CH₂), 47.8 (2CH₃), 38.5 (CH₂), 0.0 (3CH₃)

N-(2,2-Diméthoxyéthyl)-2-((triméthylsilyl)éthynyl)benzamide 27

Purification : EP/AE (80/20)

Huile

Rdt : 61%

¹H (300 MHz, CDCl₃) δ 0.00 (s, 9H, CH₃), 3.36 (s, 6H, CH₃), 3.57 (d, *J* = 6.9 Hz, 2H, CH₂), 5.68 (t, *J* = 6.9 Hz, 1H, CH), 6.68 (s, 1H, NH), 7.45 (dd, *J* = 7.0, 2.5 Hz, 1H, H_{arom}), 7.69 - 7.74 (m, 2H, H_{arom}), 7.88 (dd, *J* = 7.1, 2.3 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 165.6 (CO), 137.6 (C), 135.4 (CH), 131.2 (CH), 130.5 (C), 129.2 (CH), 126.7 (CH), 11.1 (CH), 105.4 (C), 99.2 (C), 56.1 (2CH₃), 42.3 (CH₂), 0.0 (3CH₃)

5. Réaction d'hydroamination intramoléculaire : accès aux méthylène isoindolinones 6, 7

A une solution d'amide **12, 13** (0,6 mmol, 1 eq) dans 20 ml d'éthanol sous argon est ajouté de l'éthylate de sodium (EtONa, 1,0 mmol, 71 mg, 1.5 eq). La solution est agitée et portée à reflux pendant 2 h. L'éthanol est évaporé puis le résidu est repris dans 30 ml dichlorométhane et la phase organique est lavée avec une solution d'acide chlorhydrique 10% (10 ml). La phase organique est séchée sur MgSo₄ puis évaporée. Le brut réactionnel est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle.

5,6-Diméthoxy-2-(4-méthoxybenzyl)-3-méthyleneisoindolin-1-one 6

Purification : EP/AE (50/50)

Solide blanc, Tf : 136-137 °C

Rdt : 76%

¹H NMR (300 MHz, CDCl₃) δ 3.77 (s, 3H, CH₃), 3.97 (s, 6H, CH₃), 4.73 (d, *J* = 2.3 Hz, 1H, CH), 4.90 (s, 2H, CH₂), 5.01 (d, *J* = 2.3 Hz, 1H, CH), 6.83 (d, *J* = 8.7 Hz, 2H, H_{arom}), 7.09 (s, 1H, H_{arom}), 7.19 (d, *J* = 8.8 Hz, 2H, H_{arom}), 7.32 (s, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 158.9 (CO), 153.1 (C), 151.1 (C), 141.7 (C) , 130.2 (C), 129.3 (C), 128.4 (CH), 122.2 (C), 114.0 (CH), 104.9 (CH), 102.1 (CH), 88.8 (CH₂), 56.4 (CH₃), 56.3 (CH₃), 55.3 (CH₃), 42.7 (CH₂)

6-(4-Méthoxybenzyl)-7-méthylène-6,7-dihydro-5H-[1,3]dioxolo[4,5-f]isoindol-5-one 7

Purification : EP/AE (50/50)

Huile

Rdt : 76%

¹H (300 MHz, CDCl₃) δ 3.70 (d, *J* = 3.8 Hz, 3H, CH₃), 4.65 (d, *J* = 2.4 Hz, 1H, CH), 4.81 (s, 2H, CH₂), 4.89 (d, *J* = 2.4 Hz, 1H, CH), 6.00 (s, 2H, CH₂), 6.76 (d, *J* = 8.7 Hz, 2H, H_{arom}), 6.95 (d, *J* = 0.4 Hz, 1H, H_{arom}), 7.11 (d, *J* = 8.7 Hz, 2H, H_{arom}), 7.15 (d, *J* = 0.4 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ_166.8 (CO), 158.9 (C), 151.7 (C), 149.5 (C), 141.4 (C), 132.2 (2CH), 129.2 (CH), 128.6 (C), 124.1 (C), 114.0 (2CH), 102.9 (CH), 102.1 (CH₂), 100.3 (CH), 89.2 (CH₂), 55.2 (CH₃), 42.7 (CH₂)

VII. Hydroboration racémique des 3-méthylène isoindolinones

1. Hydroboration racémique des 3-méthylène isoindolinones : accès aux esters boroniques 18a-h, 19–21

Dans un tube Schlenk, sont ajoutés la méthylène isoindolinone (0,37 mmol, 1 eq), le B_2pin_2 (0, 56 mmol, 144 mg, 1.5 eq), le catalyseur (0,037 mmol, 10 mol%) et le ligand (0,074 mmol, 19,4 mg, 20 mol%). Le tube est placé sous argon et son contenu solubilisé dans 5 ml de méthanol. La solution est agitée à température ambiante pendant 3h. La solution est ensuite neutralisée avec de l'eau (10 ml) et extraite au dichlorométhane (20 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est finalement purifié sur colonne de silice avec de l'éther de pétrole et de l'acétate d'éthyle (90/10).

2-(4-Méthoxybenzyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18a

Huile

Méthode A : Rdt : 88%

Méthode B : Rdt : 85%

¹H (300 MHz, CDCl₃) δ 1.02 (s, 6H, CH₃), 1.04 (s, 6H, CH₃), 1.24 (dd, *J* = 15.8, 7.8 Hz, 1H, CH), 1.46 (dd, *J* = 15.8, 3.8 Hz, 1H, CH), 3.70 (s, 3H, CH₃), 4.11 (d, *J* = 15.2 Hz, 1H, CH), 4.45 (dd, *J* = 7.9, 3.8 Hz, 1H, CH), 5.23 (d, *J* = 15.2 Hz, 1H, CH), 6.76 (d, *J* = 8.7 Hz, 2H, H_{arom}), 7.16 (d, *J* = 8.7 Hz, 2H, H_{arom}), 7.44 - 7.31 (m, 3H, H_{arom}), 7.78 (dt, *J* = 7.2, 1.0 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.1 (CO), 158.9 (C), 147.1 (C), 132.2 (C), 131.3 (2CH), 129.5 (CH), 129.4 (CH), 127.9 (C), 123.5 (CH), 122.4 (CH), 114.3 (CH), 114.1 (CH), 83.5 (2C), 56.0 (CH₃), 55.3 (C), 42.9 (CH₂), 24.9 (CH₃), 24.7 (CH₃), 24.6 (2CH₃), 24.5 (CH₃)

2-Benzyl-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18b

Huile

Méthode A : Rdt = 85%

Méthode B : Rdt = ND

¹H (300 MHz, CDCl₃) δ 1.02 (s, 6H, CH₃), 1.04 (s, 6H, CH₃), 1.11 (dd, *J* = 15.6, 7.5 Hz, 1H, CH), 1.42 (dd, *J* = 15.7, 3.9 Hz, 1H, CH) 4.18 (d, *J* = 15.1 Hz, 1H, CH), 4.36 (d, *J* = 15.1 Hz, 1H, CH), 5.12 (dd, H = 7.5, 3.9 Hz, 1H, CH), 7.22 (dd, J = 7.5, 7.3 Hz, 1H, H_{arom}), 7.29 - 7.34 (m, 5H, H_{arom}), 7.42 (dd, J = 7.5, 1.7 Hz, 1H, H_{arom}), 7.58 - 7.65 (m, 2H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 167.9 (CO), 140.2 (C), 136.9 (C), 132.4 (C), 129.9 (CH), 129.6 (CH), 128.5 (CH), 128.2 (CH), 127.6 (CH), 127.9 (CH), 127.0 (CH), 126.8 (CH), 124.8 (CH), 88.6 (2C), 54.9 (C), 52.3 (CH₂), 39.8 (CH₂), 24.9 (CH₃), 24.7 (CH₃), 24.6 (2CH₃), 24.5 (CH₃)

2-(4-Méthoxyphényl)-3-((4,4,5,5-tétramethyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18c

Huile

Méthode A : Rdt : 60%

Méthode B : Rdt : 54%

¹H (300 MHz, CDCl₃) δ 1.02 (s, 6H, CH₃), 1.06 (s, 6H, CH₃), 1.14 (dd, *J* = 15.6, 7.5 Hz, 1H, CH), 1.43 (dd, *J* = 15.9, 3.9 Hz, 1H, CH), 5.16 (dd, *J* = 7.5, 3.9 Hz, 1H, CH), 6.91 (d, *J* = 9.0 Hz, 2H, H_{arom}), 7.36 (d, *J* = 9.0 Hz, 2H, H_{arom}), 7.54 – 7.38 (m, 3H, H_{arom}), 7.85 – 7.79 (m, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 167.1 (CO), 157.7 (C), 146.6 (C), 132.4 (CH), 131.6 (C), 129.9 (C), 128.7 (CH), 126.3 (CH), 123.8 (CH), 122.3 (2CH), 114.4 (2CH), 83.5 (2C), 56.9 (CH₃), 55.5 (CH), 36.2 (CH₂), 24.7 (4CH₃)

2-Cyclohexyl-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18d

Huile

Méthode A : Rdt : 66%

Méthode B : Rdt : 53%

¹H (300 MHz, CDCl₃) δ 1.18 (s, 6H, CH₃), 1.21 (s, 6H, CH₃), 1.49 - 1.27 (m, 4H, CH), 1.78 - 1.61 (m, 2H, CH), 2.02 - 1.79 (m, 5H, CH), 2.20 - 2.02 (m, 1H, CH), 3.90 - 3.73 (m, 1H, CH), 4.77 (dd, J = 8.3, 3.8 Hz, 1H, CH), 7.55 - 7.38 (m, 3H, H_{arom}), 7.80 (dd, J = 7.2, 0.9 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.1 (CO), 147.4 (C), 133.1 (C), 130.8 (CH), 127.7 (CH), 123.1 (CH), 122.0 (CH), 83.5 (C), 57.2 (CH), 53.6 (CH), 31.2 (CH₂), 30.7 (CH₂), 26.3 (CH₂), 26.2 (CH₂), 25.6 (CH₂), 24.8 (2CH₃), 24.7 (2CH₃)

Huile

Méthode A : Rdt : 38%

Méthode B : Rdt : 15%

¹H (300 MHz, CDCl₃) δ 0.87 (t, *J* = 7.9 Hz, 3H, CH₃), 1.02 (s, 6H, CH₃), 1.05 (s, 6H, CH₃), 1.12 (dd, *J* = 15.8, 7.6 Hz, 1H, CH), 1.25 - 1.29 (m, 5H, CH), 1.57 (m, 2H, CH₂), 3.16 (t, *J* = 6.9 Hz, 2H, CH₂), 5.09 (dd, *J* = 7.6, 3.8 Hz, 1H, CH), 7.18 (dd, *J* = 7.5, 7.2 Hz, 1H, H_{arom}), 7.44 (dd, *J* = 7.4, 1.6 Hz, 1H, H_{arom}), 7.62 - 7.73 (m, 2H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.2 (CO), 142.7 (C), 134.2 (C), 130.1 (CH), 129.8 (CH), 127.6 (CH), 125.8 (CH), 89.2 (C), 56.2 (CH), 48.9 (CH₂), 37.5 (CH₂), 29.7 (CH₂), 25.7 (CH₃), 22.7 (CH₂), 21.6 (CH₂), 12.8 (CH₃)

2-(2-(Diméthylamino)éthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one **18f**

Huile

Méthode A : Rdt = 36%

Méthode B : Rdt = 21%

¹H (300 MHz, CDCl₃) δ 1.03 (s, 6H, CH₃), 1.08 (s, 6H, CH₃), 1.19 (dd, J = 15.7, 7.8 Hz, 1H, CH), 1.25 (dd, J = 15.5, 3.8 Hz, 1H, CH), 2.16 (s, 6H, CH₃), 2.54 (t, J = 7.1 Hz, 2H, CH₂), 3.32 (t, J = 7.1 Hz, 2H, CH₂), 5.12 (dd, J = 7.8, 3.7 Hz, 1H, CH), 7.26 - 7.35 (m, 2H, H_{arom}), 7.62 - 7.71 (m, 2H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 164.6 (CO), 142.4 (C), 133.7 (C), 130.2 (CH), 129.6 (CH), 128.2 (CH), 125.7 (CH), 91.3 (2C), 62.1 (CH₂), 56.7 (CH), 48.3 (2CH₃), 45.8 (CH₂), 37.8 (CH₂), 22.8 (CH₃), 22.6 (2CH₃), 22.4 (CH₃)

2-(Diméthylamino)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18g

Huile

Méthode A : Rdt : 55%

Méthode B : Rdt = ND

¹H (300 MHz, CDCl₃) δ 1.02 (s, 6H, CH₃), 1.05 (s, 6H, CH₃), 1.16 (dd, *J* = 15.6, 7.9 Hz, 1H, CH), 1.22 (dd, *J* = 15.8, 3.9 Hz, 1H, CH), 2.76 (s, 6H, CH₃), 5.23 (dd, *J* = 7.9, 3.8 Hz, 1H, CH), 7.18 (dd, *J* = 7.5, 7.2 Hz, 1H, H_{arom}), 7.44 (dd, *J* = 7.4, 1.6 Hz, 1H, H_{arom}), 7.62 - 7.73 (m, 2H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 162.3 (CO), 148.2 (C), 133.1 (CH), 130.9 (C), 129.8 (CH), 129.2 (CH), 126.7 (CH), 92.2 (2C), 53.4 (CH), 49.1 (2CH₃), 37.2 (CH₂), 24.7(CH₃), 24.6 (2CH₃), 24.5 (CH₃)

2-(2,2-Diméthoxyéthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18h

Huile

Méthode A : Rdt : 42%

Méthode B : Rdt = ND

¹H (300 MHz, CDCl₃) δ 1.02 (s, 6H, CH₃), 1.06 (s, 6H, CH₃), 1.25 (dd, *J* = 15.8, 7.8 Hz, 1H, CH), 1.49 (dd, *J* = 15.8, 3.8 Hz, 1H, CH), 3.42 (s, 6H, CH₃), 3.61 (d, *J* = 7.0 Hz, 2H, CH₂), 5.16 (dd, *J* = 7.8, 3.8 Hz, 1H, CH), 5.72 (t, *J* = 6.9 Hz, 1H, CH), 7.18 (d, J = 7.5 Hz, 1H, H_{arom}), 7.46 - 7.54 (m, 2H, H_{arom}), 7.79 (d, *J* = 7.3 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 167.4 (CO), 142.3 (C), 134.6 (C), 131.2 (CH), 129.8 (CH), 128.5 (CH), 126.2 (CH), 115.6 (CH), 92.1 (2C), 57.4 (2CH₃), 55.4 (CH), 49.9 (CH₂), 38.9 (CH₂), 25.7(2CH₃), 25.4 (2CH₃)

5,6-Diméthoxy-2-(4-méthoxybenzyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-

yl)méthyl)isoindolin-1-one 20

Huile

Méthode A : Rdt : 99%

Méthode B : Rdt : 22%

¹H (300MHz, CDCl₃) δ 1.08 (s, 6H, CH₃), 1.10 (s, 6H, CH₃), 1.15 - 1.18 (m, 2H, CH), 1.47 (dd, *J* = 15.9, 3.6 Hz, 1H, CH), 3.70 (s, 3H, CH₃), 3.84 (s, 3H, CH₃), 3.87 (s, 3H, CH₃), 4.11 (d, *J* = 15.3 Hz, 1H, CH), 4.35 (dd, *J* = 8.8, 3.6 Hz, 1H, CH), 5.18 (d, *J* = 15.2 Hz, 1H, CH), 6.76 (d, *J* = 8.6 Hz, 2H, H_{arom}), 6.96 (s, 1H, H_{arom}), 7.14 (d, *J* = 8.6 Hz, 2H, H_{arom}), 7.27 (s, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) : 168.3 (CO), 158.9 (C), 152.4 (C), 149.6 (C), 140.9 (C), 129.8 (2CH), 129.2 (C), c124.5 (C), 114.0 (2CH), 105.2 (CH), 105.1 (CH), 85.5 (2C), 56.3 (CH₃), 56.2 (2CH₃), 55.7 (CH), 55.3 (CH₂), 42.9 (CH₂), 24.9 (2CH₃), 24.7 (2CH₃).

<u>6-(4-Méthoxybenzyl)-7-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)-6,7-dihydro-5H-</u> [1,3]dioxolo[4,5-f]isoindol-5-one **21**

Huile

Méthode A : Rdt = 82%

Méthode B : Rdt = ND

¹H (300 MHz, CDCl₃) δ 1.10 (s, 6H, CH₃), 1.12 (s, 6H, CH₃), 1.16 - 1.19 (m, 2H, CH), 1.39 (dd, *J* = 15.8, 3.4 Hz, 1H, CH), 3.84 (s, 3H, CH₃), 4.09 (d, *J* = 15.5 Hz, 1H, CH), 4.42 (dd, *J* = 8.7, 3.4 Hz, 1H, CH), 5.23 (d, *J* = 15.3 Hz, 1H, CH) 6.11 (s, 2H, CH₂), 6.84 (d, *J* = 8.4 Hz, 2H, H_{arom}), 7.01 (s, 1H, H_{arom}), 7.09 (d, *J* = 8.5 Hz, 2H, H_{arom}), 7.31 (s, 1H, H_{arom})

¹³C NMR (75 MHz, CDCl₃) δ 169.3 (CO), 158.8 (C), 149.6 (C), 146.8 (C), 133.2 (C), 131.5 (2CH), 128.6 (C), 125.6 (C), 114.3 (2CH), 112.6 (CH), 109.6 (CH), 101.4 (CH₂), 88.6 (2C), 55.7 (CH₃), 51.2 (CH), 48.9 (CH₂), 35.9 (CH₂), 25.1 (2CH₃), 24.8 (2CH₃)

2. Synthèse des méthylène isoindolinones par hydroamination intramoléculaire d'un ortho-alkynylbenzamide couplée à leur hydroboration : accès aux ester boroniques 18e-f, 18h

Dans un bicol, sont ajoutés sous argon l'*ortho*-alkynylbenzamide **25-27** (1,6 mmol, 1 eq) et l'éthylate de sodium (2,5 mmol, 0,167 mg, 1.5 eq) dans 5 ml d'éthanol. La solution est agitée et portée à reflux pendant 2 h. La solution est refroidie à température ambiante. Le B₂pin₂ (2,5 mmol, 632 mg, 1,5 eq), le Cu₂O (0,16 mmol, 2,3 mg, 10 mol%) et la PPh₃ (0,32 mmol, 86 mg, 20 mol%) sont ajoutés dans le bicol et la solution est agitée à température ambiante pendant 3h. La solution est ensuite neutralisée avec de l'eau (10 ml) et extraite avec du dicholorométhane (20 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est finalement purifié sur colonne de silice avec de l'éther de pétrole et de l'acétate d'éthyle.

2-Pentyl-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18e

Rdt = 58% Analyses page 208
$\underline{2-(2-(Diméthylamino)éthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl) isoindolin-1-one}$

<u>18f</u>

Rdt = 53%

Analyses page 210

2-(2,2-Diméthoxyéthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one 18h

Rdt = 63%

Analyses page 211

VIII. Hydroboration diastéréosélective des 3-méthylène isoindolinones

1. Hydroboration en présence d'oxyde de cuivre : accès aux esters boroniques 18i-l

Dans un tube Schlenk, sont ajoutés l'énamide chirale (0,35 mmol, 1 eq), le B_2pin_2 (0,53 mmol, 136,6 mg, 1.5 eq), le catalyseur (0,035 mmol, 5,1 mg, 10 mol%) et le ligand (0,07 mmol, 18,7 mg, 20 mol%). Le tube est placé sous argon et son contenu est solubilisé dans du méthanol (5 ml). La solution est agitée à température ambiante pendant 3h. La solution est ensuite neutralisée avec de l'eau (10 ml) puis extraite avec du dichlorométhane (20 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle (90/10).

$\underline{2-((S)-1-(4-M\acute{e}thoxyph\acute{e}nyl)\acute{e}thyl)-3-((4,4,5,5-t\acute{e}tram\acute{e}thyl-1,3,2-dioxaborolan-2-yl)m\acute{e}thyl) isoindolin-2-yl)m\acute{e}thyl)$

<u>1-one **18i**</u>

Huile

Rdt = 98%

r.d. 78/22

Diastéréoisomère majoritaire :

¹H (300 MHz, CDCl₃) δ 1.10 (s, 6H, CH₃), 1.12 (s, 6H, CH₃), 1.19 (dd, *J* = 15.6, 7.7 Hz, 1H, CH), 1.32 (dd, *J* = 15.6, 3.8 Hz, 1H, CH), 1.82 (d, *J* = 6.8 Hz, 3H, CH₃), 3.42 (s, 3H, CH₃), 5.11 (dd, *J* = 7.7, 3.8 Hz, 1H, CH), 5.19 (d, *J* = 6.8 Hz, 1H, CH), 6.92 (d, *J* = 7.5 Hz, 2H, H_{arom}), 7.18 - 7.24 (m, 3H, H_{arom}), 7.51 - 7.56 (m, 2H, H_{arom}), 7.84 (d, *J* = 7.5 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 167.8 (CO), 159.2 (C), 141.6 (C), 134.2 (C), 132.0 (C), 130.1 (CH), 128.7 (CH), 127.8 (2CH), 126.7 (CH), 126.1 (CH), 115.4 (2CH), 91.2 (2C), 68.9 (CH), 56.8 (CH3), 51.4 (CH), 34.9 (CH₂), 25.3 (2CH₃), 24.7 (2CH₃), 18.7 (CH₃)

2-((R)-1-(4-Méthoxyphényl)éthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one **18j**

Huile

Rdt = 98%

r.d. 76/24

Diastéréoisomère majoritaire :

¹H (300 MHz, CDCl₃) δ 1.12 (s, 6H, CH₃), 1.15 (s, 6H, CH₃), 1.22 (dd, *J* = 15.8, 7.6 Hz, 1H, CH), 1.36 (dd, *J* = 15.8, 3.8 Hz, 1H, CH), 1.92 (d, *J* = 6.7 Hz, 3H, CH₃), 3.46 (s, 3H, CH₃), 5.15 (dd, *J* = 7.6, 3.8 Hz, 1H, CH), 5.31 (q, *J* = 6.7 Hz, 1H, CH), 6.88 (d, *J* = 7.5 Hz, 2H, H_{arom}), 7.21 - 7.29 (m, 3H, H_{arom}), 7.55 - 7.62 (m, 2H, H_{arom}), 7.88 (d, *J* = 7.5 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.8 (CO), 160.1 (C), 142.2 (C), 134.9 (C), 132.4 (C), 130.8 (CH), 129.5 (CH), 128.28 (2CH), 127.3 (CH), 126.7 (CH), 116.2 (2CH), 92.2 (2C), 69.5 (CH), 56.4 (CH₃), 52.6 (CH), 35.3 (CH₂), 25.8 (2CH₃), 25.2 (2CH₃), 18.3 (CH₃)

<u>2-((S)-1-(Naphthalén-1-yl)éthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-</u> one **18k**

Huile

Rdt = 82%

r.d. 70/30

Diastéréoisomère majoritaire :

¹H (300 MHz, CDCl₃) δ 1.08 (s, 6H, CH₃), 1.11 (s, 6H, CH₃), 1.24 (dd, *J* = 15.7, 7.7 Hz, 1H, CH), 1.38 (dd, *J* = 15.7, 3.8 Hz, 1H, CH), 1.85 (d, *J* = 6.6 Hz, 3H, CH₃), 5.22 (dd, *J* = 7.7, 3.8 Hz, 1H, CH), 5.31 (q, *J* = 6.7

Hz, 1H, CH), 6.98 (dd, J = 7.5, 3.4 Hz, 1H, H_{arom}), 7.18 (d, J = 7.5 Hz, 1H, H_{arom}), 7.29 (d, J = 7.6 Hz, 1H, H_{arom}), 7.52 - 7.57 (m, 3H, H_{arom}), 7.86 (dd, J = 7.5, 3.4 Hz, 1H, H_{arom}), 7.97 - 8.01 (m, 3H, H_{arom}) ¹³C (75 MHz, CDCl₃) δ 169.0 (CO), 140.3 (C), 137.8 (C, 132.3 (C), 131.2 (CH), 130.6 (CH), 130.0 CH), 129.8 (CH), 128.9 (CH), 128.7 (CH), 127.3 (CH), 126.8 (CH), 125.9 (CH), 125.7 (CH), 125.4 (CH), 122.9 (CH), 88.9 (2C), 66.9 (CH), 49.2 (CH), 37.2 (CH₂), 24.5 (2CH₃), 25.1 (2CH₃), 19.8 (CH₃)

<u>2-((S)-2-(Méthoxyméthyl)pyrrolidin-1-yl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-1-one</u> **18**

Huile

Rdt = 76%

r.d. 60/40

Diastéréoisomère majoritaire :

¹H (300 MHz, CDCl₃) δ 1.09 (s, 6H, CH₃), 1.12 (s, 6H, CH₃), 1.21 (dd, *J* = 15.6, 7.6 Hz, 1H, CH), 1.36 (dd, *J* = 15.6, 3.7 Hz, 1H, CH), 1.56 - 1.67 (m, 4H, CH), 3.23 (s, 3H), 3.29 - 3.36 (m, 3H, CH), 4.26 - 4.38 (m, 2H, CH), 4.94 (dd, *J* = 7.6, 3.7 Hz, 1H, CH), 7.46 - 7.49 (m, 2H, H_{arom}), 7.58 (t, *J* = 7.4 Hz, 1H, H_{arom}), 7.80 (d, *J* = 7.4 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 162.5 (CO), 145.9 (C), 132.2 (CH), 130.3 (C), 129.8 (CH), 127.7 (CH), 124.6 (CH), 89.8 (2C), 75.6 (CH₂), 68.3 (CH), 59.5 (CH₃), 54.4 (CH₂), 51.5 (CH), 34.8 (CH₂), 24.8 (2CH₃), 24.5 (2CH₃), 23.6 (CH₂), 22.6 (CH₂)

2. Hydroboration des 3-méthylène isoindolinones en présence de carbènes *N*hétérocycliques de cuivre

- 2.1. Synthèse des carbènes N-hétérocycliques de cuivre 30, 33
 - 2.1.1. Synthèse du 1-benzyl-1H-benzo[d]imidazole 28

Dans un ballon sont ajoutés le benzimidazole (19,2 mmol, 2,26 g, 1 eq), NaOH (28,8 mmol, 1,15 g, 1,5 eq) dans de l'acétonitrile (40 ml). La solution est agitée à reflux pendant 1h. Le bromure de benzyle (19,2 mmol, 3,2 g, 1 eq) est ensuite ajouté et la solution est agitée à nouveau à reflux pendant 12h. Le milieu réactionnel est ensuite refroidi et lavé avec de l'eau (15 ml) et extrait avec du dichlorométhane (30 ml). Les phases organiques sont séchées sur MgSO₄ et évaporées. Le résidu est purifié sur colonne de silice avec un mélange éther de pétrole et acétate d'éthyle (80/20)

1-Benzyl-1H-benzo[d]imidazole 28²²³

Solide, Tf : 105-106 °C

Rdt = 90%

¹H (300 MHz, CDCl₃) δ 5.32 (s, 2H, CH₂), 7.11 - 7.87 (m, 10H, H_{arom} et H_{imidazole})

¹³C (75 MHz, CDCl₃) δ 144.4 (C), 143.2 (CH), 135.9 (C), 134.2 (C), 129.3 (2CH), 128.5 (2CH), 127.3 (CH), 123.3 (CH), 122.5 (CH), 120.9 (CH), 110.1 (CH), 49.07 (CH₂)

²²³Chakraborty A., Debnath S., Ghosh T., Maiti D., Majumdar S. *Tetrahedron* **2018**, *74*, 5932-5941

2.1.2. Synthèse du chlorure de 1,3-dibenzylbenzimidazolium 29

Dans un ballon sont placés le benzimidazole **28** (25,4 mmol, 5,3 g, 1 eq) et le chlorure de benzyle (27,9 mmol, 3,5 g, 1,1 eq) dans du toluène (50 ml). La solution est mise sous agitation et chauffée à reflux pendant 12 h. Après refroidissement, la solution est évaporée et le résidu est repris dans du THF (50 ml). Le précipité est filtré et séché sous pression réduite.

Chlorure de 1,3-dibenzylbenzimidazolium 29

Solide blanc, Tf = 211-212 °C

Rdt = 92%

¹H (300 MHz, CD₃OD) δ 4.87 (s, 4H, CH₂), 7.48-7.38 (m, 10H, H_{arom}), 7.64-7.61 (m, 2H, H_{arom}), 7.87 - 7.84 (m, 2H, H_{arom}), 9.73 (s, 1H, H_{imidazole})

¹³C (75 MHz, CD₃OD) δ 142.0 (2C), 133.3 (2C), 131.7 (4CH), 129.1 (4CH), 129.0 (2CH), 128.1 (2CH), 127.1 (2CH), 113.7 (CH), 50.7 (2CH₂)

Dans un tube micro-ondes sont ajoutés le chlorure de benzimidazolium **29** (1 mmol, 700 mg, 1 eq), le Cu₂O (1 mmol, 143 mg, 1 eq) dans du toluène (10 ml). Le tube est placé sous agitation et sous activation micro-ondes pendant 1 h à 110 °C. La solution est ensuite filtrée sur silice puis évaporée.

Chlorure de (1,3-dibenzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)cuivre(I) 30

Solide vert

Rdt = 96%

2.1.4. Synthèse du 1-benzyl-1H-imidazole 31

Dans un ballon sont ajoutés l'imidazole (58,8 mmol, 4 g, 1 eq), K_2CO_3 (88,3 mmol, 12,2 g, 1,5 eq) dans l'acétonitrile (100 ml). La solution est agitée à température ambiante pendant 1 h. Le bromure de benzyle (58,8 mmol, 10 g, 1 eq) est ensuite ajouté et la solution est agitée à nouveau à température ambiante pendant 4 jours. Le milieu réactionnel est ensuite refroidi et lavé avec de l'eau (100 ml) et extrait avec du dichlorométhane. Les phases organiques sont séchées sur MgSO₄ et

évaporées. Le résidu est purifié sur colonne de silice avec un mélange éther de pétrole et acétate d'éthyle (70 /30).

1-Benzyl-1H-imidazole **31**²²⁴

Solide blanc, Tf : 72-73 °C

Rdt = 83%

¹H (300 MHz, CDCl₃) δ 5.02 (s, 2H, CH₂), 6.94 (d, *J* = 7.5 Hz, 1H, H_{imidazole}), 7.06 (d, *J* = 7.5 Hz, 1H, H_{imidazole}), 7.14 (d, *J* = 6.5 Hz, 2H, H_{arom}), 7.22 - 7.31 (m, 3H, H_{arom}), 7.63 (s, 1H, H_{imidazole}),

¹³C (75 MHz, CDCl₃) δ 137.3 (C), 136.4 (CH), 130.9 (2CH), 130.4 (CH), 129.9 (2CH), 125.8 (CH), 120.1 (CH), 51.6 (CH₂)

2.1.5. Synthèse du chlorure de 1,3-dibenzylimidazolium (32

Dans un ballon sont placés l'imidazole **31** (12,6 mmol, 2 g, 1 eq) et le chlorure de benzyle (13,9 mmol, 1,75 g, 1,1 eq) dans du toluène (50 ml). La solution est mise sous agitation et chauffée à reflux pendant 12 h. Après refroidissement, la solution est évaporée et le résidu est repris dans du THF (30 ml). Le précipité est filtré et séché sous pression réduite.

²²⁴ Lee H. M., Lu C. Y., Chen C. Y., Chen W. L., Lin H. C., Chiu P. L., Cheng P. H. *Tetrahedron* **2004**, *60*, 5807-5825

Chlorure de 1,3-dibenzylimidazolium 32

Solide blanc, Tf = 85-86 °C

Rdt = 60%

¹H (300 MHz, CDCl₃) δ 5.5 (s, 4H, CH₂), 7.21-7.32 (m, 2H, H_{arom}), 7.33-7.41 (m, 10H, H_{arom}), 10.5 (s, 1H, H_{imidazole})

¹³C (75 MHz, CDCl₃) δ 136.6 (2C), 132.7 (CH), 129.3 (4CH), 129.2 (4CH), 128.9 (CH), 121.8 (2CH), 53.2 (2CH₂)

2.1.6. Synthèse du chlorure de (1,3-dibenzyl-2,3-dihydro-*1H*-imidazol-2-yl)cuivre(I) 33

Dans un tube micro-onde sont ajoutés le chlorure d'imidazolium **32** (1 mmol, 284 mg, 1 eq), le Cu_2O (1 mmol, 143 mg, 1 eq) dans du toluène (5 ml). Le tube est placé sous agitation et sous micro-ondes pendant 1 h à 110 °C. La solution est ensuite filtrée sur silice puis évaporée.

Chlorure de (1,3-dibenzyl-2,3-dihydro-1H-imidazol-2-yl)cuivre(I) 33

Solide

Rdt = 80%

Dans un tube Schlenk, sont ajoutés la méthylène isoindolinone **4i** (0,4 mmol, 111 mg, 1 eq), le B_2pin_2 (0,6 mmol, 152 mg, 1.5 eq), le catalyseur NHC-Cu **30** ou **33** (0,04 mmol, 10 mol%) et le Cs_2CO_3 (0,8 mmol, 260 mg, 2eq). Le tube est placé sous argon et son contenu est solubilisé dans du méthanol (2 ml). La solution est agitée à température ambiante pendant 3 h. La solution est ensuite neutralisée avec de l'eau (5 ml) puis extraite avec du dichlorométhane (10 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est purifié sur colonne de silice avec éther de pétrole et acétate d'éthyle (90/10).

<u>2-((S)-1-(4-Méthoxyphényl)éthyl)-3-((4,4,5,5-tétraméthyl-1,3,2-dioxaborolan-2-yl)méthyl)isoindolin-</u> <u>1-one **18i**</u>

Rdt = 96% r.d. 74/26

3. Détermination de la configuration absolue du carbone

3.1. Oxydation de l'ester boronique 18I : accès aux alcools 34, 35

Dans un ballon, est ajouté l'ester boronique **18** (1 mmol, 386 mg, 1eq) solubilisé dans un mélange THF/H₂O (1 :1, 20 ml). Le NaBO₃.4H₂O (4 mmol, 616 mg, 4 eq) est ensuite ajouté au milieu réactionnel. La solution est agitée à température ambiante pendant 2 h. La solution est ensuite neutralisée avec de l'eau (20 ml) et extraite avec du dichlorométhane (30 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Les deux diastéréoisomères obtenus sont séparés sur colonne de silice avec un mélange éther diéthylique/éther de pétrole/dichlorométhane (20/30/50)

Diastéréoisomère majoritaire :

(S)-3-(Hydroxyméthyl)-2-((S)-2-(méthoxyméthyl)pyrrolidin-1-yl)isoindolin-1-one 34

Huile jaune

¹H (300 MHz, CDCl₃) δ 1.53 - 1.62 (m, 1H), 1.75 - 1.84 (m, 1H), 1.99 - 2.05 (m, 1H), 2.19 - 2.29 (m, 1H), 3.34-3.47 (m, 7H), 3.84-3.91 (m, 1H), 4.25-4.33 (m, 1H), 4.43-4.55 (m, 3H), 7.41-7.47 (m, 2H), 7.53-7.58 (m, 1H), 7.77-7.79 (m, 1H).

¹³C (75 MHz, CDCl₃) δ 167.7 (CO), 141.3 (C), 132.7 (C), 131.8 (CH), 128.2 (CH), 123.2 (CH), 122.1 (CH), 76.6 (CH2), 63.6 (CH), 62.2 (CH₂), 60.0 (CH₃), 58.8 (CH), 53.1 (CH₂), 27.0 (CH₂), 23.0 (CH₂)

Le diastéréoisomère minoritaire **35** n'a pas été utilisé pour les réactions suivantes.

3.2. Formation du dérivé bromé 36

Dans un ballon, est ajouté l'alcool **34** (1mmol, 276 mg, 1 eq) solubilisé dans du THF (15 ml). Le mélange est placé sous agitation et sous argon. Le tétrabromure de carbone CBr₄ (3 mmol, 993 mg, 3 eq) et la triphénylphosphine PPh₃ (3 mmol, 786 mg, 3 eq) dissout dans du THF (10 ml) sont ensuite ajoutés au milieu réactionnel. La solution est agitée à 50 °C pendant 3 h. La solution est ensuite neutralisée avec une solution saturée d'hydrogénocarbonate de sodium (NaHCO₃, 20 ml) puis extraite au dichlorométhane (40 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est purifié sur colonne de silice avec un mélange éther de pétrole / acétate d'éthyle (60/40)

(S)-3-(Bromométhyl)-2-((S)-2-(méthoxyméthyl)pyrrolidin-1-yl)isoindolin-1-one 36

Huile incolore

¹H (300 MHz, CDCl₃) δ 1.70-2.21 (m, 6H), 3.24 (s, 3H), 3.30-3.38 (m, 3H), 3.82-3.90 (m, 1H), 4.26-4.54 (m, 3H), 7.46-7.47 (m, 2H), 7.56 (td, *J* = 7.4, 1.1 Hz, 1H), 7.80 (d, *J* = 7.4 Hz, 1H).

¹³C (75 MHz, CDCl₃) δ 160.5 (CO), 145.6 (C), 131.8 (CH), 130.0 (C), 129.6 (CH), 127.3 (CH), 124.3 (CH), 75.5 (CH₂), 68.6 (CH), 68.1 (CH), 59.5 (CH₃), 53.8 (CH₂), 36.8 (CH₂), 23.6 (CH₂), 22.1 (CH₂)

3.3. Réaction de déshalogénation du dérivé bromé 36, accès au composé 37

Dans un ballon est ajouté le dérivé bromé **35** (0,5 mmol, 120 mg, 1 eq) dans de l'éthanol (10 ml) avec quelques gouttes de dichlorométhane. Une pointe de spatule de palladium sur charbon (10%) est ajoutée à la solution. Du dihydrogène est mis à buller dans la solution sous agitation puis la solution est mise sous pression de dihydrogène (1 atm) pendant 24 h à température ambiante. La solution est ensuite filtrée sur célite puis l'éthanol du filtrat est évaporé. Le milieu réactionnel est dissout dans du DCM (20 ml) et la phase organique est lavée à l'eau (10 ml). Les phases organiques sont séchées sur MgSO₄ puis évaporées. Le résidu est purifié sur colonne de silice avec un mélange éther de pétrole/acétate d'éthyle (60/40)

(R)-2-((S)-2-(Méthoxyméthyl)pyrrolidin-1-yl)-3-méthylisoindolin-1-one 37²²⁵

Solide blanc, Tf : 96-97 °C

 $[\alpha]_{D}^{25} (c = 1.2, CHCl_{3}) = -16.0 (lit^{172} [\alpha]_{D}^{28} (c = 0.9, CHCl_{3}) = -16.4)$ ¹H (300 MHz, CDCl_{3}) δ 1.43 (d, *J* = 6.8 Hz, 3H), 1.47-1.58 (m, 1H), 1.65-1.80 (m, 1H), 1.93-2.00 (m, 1H), 2.05-2.14 (m, 1H), 3.10-3.16 (m, 1H), 3.18 (s, 3H), 3.23-3.30 (m, 2H), 3.66 (q, *J* = 8.3 Hz, 1H), 3.99-4.08 (m, 1H), 4.48 (q, *J* = 6.8 Hz, 1H), 7.26-7.37 (m, 2H), 7.43-7.48 (m, 1H), 7.69-7.72 (m, 1H).
¹³C (75 MHz, CDCl) δ 1.66 1 (c) 1.45 0 (c) 1.21 0 (c) 1.21 4 (cH) 1.27 8 (cH) 1.22 1 (cH) 1.21 0 (cH) 1.22 1 (cH

¹³C (75 MHz, CDCl₃) δ 166.1 (C), 145.9 (C), 131.9 (C), 131.4 (CH), 127.8 (CH), 123.1 (CH), 121.9 (CH), 76.3 (CH₂), 60.2 (CH), 69.3 (CH₃), 58.8 (CH), 53.5 (CH₂), 27.2 (CH₂), 23.0 (CH₂), 18.0 (CH₃)

²²⁵Deniau E., Couture A., Grandclaudon P. *Tetrahedron :Asymmetry.* **2003**, *14*, 2253-2258

IX. Fonctionnalisation de l'ester boronique 18a

1. Réactions d'aménagement fonctionnel

1.1. Oxydation de l'ester boronique 18a : accès à l'alcool 38

Dans un ballon, est ajouté l'ester boronique **18a** (1 mmol, 400 mg, 1 eq) solubilisé dans un mélange THF/H₂O (1 :1, 20 ml). Le NaBO₃.4 H₂O (4 mmol, 616 mg, 4 eq) est ensuite ajouté au milieu réactionnel. La solution est agitée à température ambiante pendant 2 h. La solution est ensuite neutralisée avec de l'eau (20 ml) et extraite avec du dichlorométhane (30 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est purifié sur colonne de silice avec un mélange éther de pétrole/acétate d'éthyle (70/30)

3-(Hydroxyméthyl)-2-(4-méthoxybenzyl)isoindolin-1-one 38

Huile

Rdt = 87%

¹H (300 MHz, CDCl₃) δ 3.48 (dd, *J* = 14.0, 7.8 Hz, 1H, CH), 3.73 (dd, *J* = 14.0, 4.9 Hz, 1H, CH), 3.81 (s, 3H, CH₃), 4.21 (d, *J* = 15.0 Hz, 1H, CH), 4.88 (dd, *J* = 7.8, 4.9 Hz, 1H, CH), 5.21 (d, *J* = 15.0 Hz, 1H, CH), 6.89 (d, *J* = 7.4 Hz, 2H, H_{arom}), 7.12 (d, *J* = 7.4 Hz, 2H, H_{arom}), 7.18 (dd, *J* = 7.4, 7.2 Hz, 1H, H_{arom}), 7.46 (d, *J* = 7.3 Hz, 1H, H_{arom}), 7.58 (dd, *J* = 7.4, 7.3 Hz, 1H, H_{arom}), 7.84 (d, *J* = 7.2 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 169.3 (CO), 158.9 (C), 140,1 (C), 132.0 (C), 131.5 (2CH), 129.7 (CH), 129.5 (CH), 128.3 (C), 127.0 (CH), 125.0 (CH), 114.2 (CH), 76.8 (CH), 62.5 (CH₂), 55.8 (CH₃), 50.3 (CH₂)

1.2. Réactions à partir de l'alcool 38

1.2.1. Synthèse de l'amine 39

Dans un ballon est ajouté l'alcool **38** (1 mmol, 300 mg, 1 eq), la triphénylphosphine (1,5 mmol, 393 mg, 1,5 eq) et le THF (20 ml). Le milieu réactionnel est refroidi à 0 °C et le DIAD (1,5 mmol, 303 mg, 1,5 eq) est ajouté en une seule fois. La solution est ensuite agitée pendant 15 minutes à température ambiante. Le diphénylphosphorylazide (1,5 mmol, 412 mg, 1,5 eq) est ensuite ajouté goutte à goutte pendant 30 minutes, puis la solution est chauffée à 50 °C pendant 2 h. Une seconde portion de triphénylphosphine (2,5 mmol, 655 mg, 2,5 eq) est alors ajoutée et la solution est agitée sous chauffage jusqu'à l'arrêt du dégagement gazeux (2 h). Le milieu réactionnel est refroidi à température ambiante, et 1 ml d'eau est ajouté. La solution est agitée pendant 18 h à température ambiante. Le milieu réactionnel est évaporé puis reprit dans du DCM (20 ml) et une solution d'HCl à 10% (10 ml). La phase aqueuse est extraite avec du DCM (20 ml) et les phases organiques sont rassemblées. La phase aqueuse est basifiée avec de l'ammoniaque et extraite avec du DCM (10 ml). Les phases organiques sont rassemblées et séchées sur MgSO₄ puis évaporées. Le résidu est purifié par chromatographie sur colonne de silice avec un mélange acétate d'éthyle/méthanol/NH₄OH aq (50/50/1).

3-(Aminométhyl)-2-(4-méthoxybenzyl)isoindolin-1-one 39

Huile orange

Rdt = 25%

¹H (300 MHz, CDCl₃) δ 3.19 - 3.21 (m, 2H), 3.78 (s, 3H, CH₃), 4.32 (d, *J* = 15 Hz, 1H, CH), 4.40 (t, *J* = 3.2 Hz, 1H, CH), 5.15 (d, *J* = 15 Hz, 1H, CH), 6.85 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.26 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.41 - 7.56 (m, 3H, H_{arom}), 7.91 (d, *J* = 7 Hz, 2H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 168.0 (C), 159.1 (C), 143.3(C), 131.7 (CH), 129.4 (2CH), 129.2 (C), 128.5 (CH), 123.9 (CH), 123.5 (C), 122.0 (CH), 114.2 (2CH), 61.4 (CH), 55.3 (CH3), 43.7 (CH₂), 41.8 (CH₂)

1.2.2. Synthèse du dérivé bromé 40

Dans un ballon, est ajouté l'alcool **38** (1 mmol, 283 mg, 1 eq) solubilisé dans du THF (15 ml). Le mélange est placé sous agitation et sous argon. Le tétrabromure de carbone CBr₄ (3 mmol, 993 mg, 3 eq) et la triphénylphosphine PPh₃ (3 mmol, 786 mg, 3 eq) dissout dans du THF (10 ml) sont ensuite ajoutés au milieu réactionnel. La solution est agitée à 50 °C pendant 3 h. La solution est ensuite neutralisée avec une solution saturée d'hydrogénocarbonate de sodium (NaHCO₃, 20 ml) puis extraite au dichlorométhane (40 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est purifié sur colonne de silice avec un mélange acétate d'éthyle/éther de pétrole (70/30)

3-(Bromométhyl)-2-(4-méthoxybenzyl)isoindolin-1-one 40

Solide blanc, Tf° = 96-97 °C

Rdt = 82%

¹H (300 MHz, CDCl₃) δ 3.69 - 3.81 (m, 5H), 4.12 (d, *J* = 15.2 Hz, 1H, CH), 4.59 (t, *J* = 3 Hz, 1H, CH), 5.37 (d, *J* = 15.2 Hz, 1H, CH), 6.85 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.22 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.47-7.54 (m, 3H, H_{arom}), 7.90 (d, *J* = 6.4 Hz, 1H, H_{arom}).

¹³C (75 MHz, CDCl₃) δ 168.0 (C), 159.2 (C), 143.3 (C), 131.8 (CH), 129.5 (CH), 129.2 (C), 128.5 (CH), 124.0 (CH), 123.6 (C), 122.0 (CH), 114.2 (2CH), 61.4 (CH), 55.3 (CH₃), 43.7 (CH₂), 41.8 (CH₂)

1.3. Synthèse d'autres dérivés béta-aminoborés

1.3.1. Synthèse du trifluoroborate de potassium 41

Dans un ballon, l'ester boronique **18a** (3,8 mmol, 1,5 g, 1 eq) est ajouté dans du méthanol (50 ml), puis une solution de KHF₂ (6 eq à 4,5M) fraichement préparée est ajoutée. La solution est agitée à température ambiante pendant 30 min. Le brut réactionnel est évaporé puis repris dans un mélange méthanol/eau (1 :1, 40 ml) et évaporé à nouveau. Cette opération est répétée 16 fois afin d'éliminer les traces de pinacol dans le milieu et d'obtenir un sel de trifluoroborate **41** propre. Le brut est ensuite repris dans de l'acétone chaud (40 ml) et filtré afin d'en retirer les sels inorganiques. Le produit est à nouveau évaporé et obtenu sous forme d'un solide cristallin.

Trifluoro((2-(4-méthoxybenzyl)-3-oxoisoindolin-1-yl)méthyl)borate de potassium 41

Solide blanc, Tf° = 135-136 °C

Rdt = quantitatif

¹H (300 MHz, CO(CD₃)₂) δ 0.30 - 0.40 (m, 1H), 1.03 - 1.11 (m, 1H), 3.74 (s, 3H, CH₃), 4.34 (d, *J* = 14.8 Hz, 1H, CH), 4.45 (dd, *J* = 10.0, 3.8 Hz, 1H, CH), 5.11 (d, *J* = 14.8 Hz, 1H, CH), 6.82 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.27 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.34 (d, *J* = 7.4 Hz, 1H, H_{arom}), 7.42 (td, *J* = 7.4, 1.3 Hz, 1H, H_{arom}), 7.65 (d, *J* = 7.2 Hz, 1H, H_{arom}), 7.88 (d, *J* = 7.2 Hz, 1H, H_{arom})

¹³C (75 MHz, CDCl₃) δ 169.2 (CO), 158.8 (C), 140.3 (C), 132.2 (C), 131.5 (2CH), 129.5 (CH), 129.8 (CH), 128.7 (C), 126.8 (CH), 125.2 (CH), 114.4 (2CH), 55.7 (CH₃), 49.8 (CH₂), 40.4 (CH), 36.1 (CH), 31.2 (CH₂)
 ¹¹B (77 MHz, CO(CD₃)₂) δ 5.05

1.3.2. Synthèse de l'acide boronique 42

Dans un ballon, est ajouté le trifluoroborate de potassium **41** (2,7 mmol, 1 g, 1 eq) dissout dans un mélange acétonitrile/eau (10 :3, 30 ml). Le chlorotriméthylsilane (8,1 mmol, 875 mg, 3 eq) est ajouté et la solution est agitée à température ambiante pendant 30 min. Le brut réactionnel est évaporé et reprit dans de l'eau (20 ml) et de l'acétate d'éthyle (30 ml). La phase organique est séchée sur MgSO₄ st évaporée. Le produit est obtenu sous forme d'un solide cristallin.

Acide ((2-(4-méthoxybenzyl)-3-oxoisoindolin-1-yl)méthyl)boronique 42

Solide blanc, Tf°: 154-155 °C

Rdt = 78%

¹H (300 MHz, CO(CD₃)₂) δ 0.74 (dd, *J* = 15.2, 10.1 Hz, 1H, CH), 1.53 (dd, *J* = 15.2, 4.5 Hz, 1H, CH), 3.63 (s, 3H, CH₃), 4.17 (d, *J* = 5.1 Hz, 1H, CH), 4.50 (dd, *J* = 10.1, 4.5 Hz, 1H, CH), 4.99 (d, *J* = 5.1 Hz, 1H, CH), 6.73 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.12 (dt, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 7.33 (t, *J* = 7.3 Hz, 1H, H_{arom}), 7.41 (td, *J* = 7.3, 1.3 Hz, 1H, H_{arom}), 7.51 (d, *J* = 7.5 Hz, 1H, H_{arom}), 7.58 (d, *J* = 7.5 Hz, 1H, H_{arom}). ¹³C (75 MHz, CDCl₃) δ 169.3 (CO), 158.7 (C), 140.6 (C), 132.4 (C), 131.9 (2CH), 130.2 (CH), 129.7 (CH), 128.4 (C), 127.4 (CH), 124.8 (CH), 114.6 (2CH), 55.8 (CH₃), 50.9 (CH₂), 49.9 (CH), 40.8 (CH₂) ¹¹B (77 MHz, CO(CD₃)₂) δ 31.26

2. Réaction de couplage métallo-catalysée

2.1. Réaction de couplage par activation thermique et sous micro-ondes : accès aux composés 43–52

Dans un tube Schlenk ou un tube micro-onde, sont ajoutés l'acide boronique **42** (0,3 mmol, 100 mg, 1 eq), le catalyseur (0,03 mmol, 23,5 mg, 10 mol%), le K_3PO_4 (0,9 mmol, 191 mg, 3 eq) et le dérivé halogéné (0,33 mmol, 1.1 eq). Le tube est fermé puis plusieurs fois purgé à l'argon. Un mélange de THF /eau (1 :1, 5 ml) est ajouté. Le tube est placé sous agitation à reflux pendant 24 h (méthode A) ou sous micro-ondes pendant 1 heure à 110 °C (méthode B). Le brut est filtré sur Célite puis évaporé. Le résidu est repris dans de l'eau (5 ml) et de l'acétate d'éthyle (10 ml). La phase organique est séchée sur MgSO₄ puis évaporée. Le résidu est purifié sur colonne de silice avec un mélange éther de pétrole/acétate d'éthyle.

3-(3-Méthoxybenzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 43

Purification : EP/AE (70/30)

Huile

Méthode A : Rdt = 26%

Méthode B : Rdt = 54%

¹H (300 MHz, CDCl₃) δ 2.72 (dd, *J* = 13.6, 7.8 Hz, 1H, CH), 3.33 (dd, *J* = 13.6, 4.7 Hz, 1H, CH), 3.70 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 4.13 (d, *J* = 15 Hz, 1H, CH), 4.56 (dd, *J* = 7.8, 4.7 Hz, 1H, CH), 5.43 (d, *J* = 15 Hz, 1H, CH), 6.50 (s, 1H, H_{arom}), 6.61 (d, *J* = 7.6 Hz, 1H, H_{arom}), 6.77 (dd, *J* = 8.3, 2.5 Hz, 1H, H_{arom}), 6.83 (td, *J* = 8.7, 2.9 Hz, 2H, H_{arom}), 6.90 - 6.93 (m, 1H, H_{arom}), 7.14 - 7.19 (m, 3H, H_{arom}), 7.35 - 7.44 (m, 2H, H_{arom}), 7.82 - 7.85 (m, 1H, H_{arom}).

¹³C (75 MHz, CDCl₃) δ 169.3 (CO), 160.5 (C, 158.9 (C), 141.6 (C), 140.1 (C), 132.0 (C), 131.5 (2CH), 129.8 (CH), 129.7 (CH), 129.5 (CH), 127.0 (CH), 125.2 (CH), 120.4 (CH), 114.2 (CH), 114.0 (2CH), 65.9 (CH), 55.8 (CH₃), 55.4 (CH₃), 50.3 (CH₂), 39.8 (CH₂)

3-(2-Méthoxybenzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 44

Purification : EP/AE (70/30)

Huile

Méthode A : Rdt = 0%

Méthode B : Rdt = 6%

¹H (300 MHz, CDCl₃) δ 2.98 (dd, *J* = 14.3, 7.9 Hz, 1h, CH), 3.41 (d, *J* = 14.3, 4.8 Hz, 1H, CH), 3.75 (s, 3H, CH₃), 3.82 (s, 3H, CH₃), 4.48 (d, *J* = 15.0 Hz, 1H, CH), 4.61 (dd, *J* = 7.9, 4.8 Hz, 1H, CH), 5.36 (d, *J* = 15.1 Hz, 1H, CH), 6.85 - 6.94 (m, 5H, H_{arom}), 7.19 - 7.23 (m, 4H, H_{arom}), 7.46 (dd, *J* = 7.6, 2.1 Hz, 1H, H_{arom}), 7.65 (dd, *J* = 7.6, 7.4 Hz, 1H, H_{arom}), 7.92 (d, *J* = 7.4 Hz, 1H, H_{arom})

3-(3,4-Diméthoxybenzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 45

Purification : EP/AE (80/20)

Huile

Méthode A : Rdt = 8%

Méthode B : Rdt = 25%

¹H (300 MHz, CDCl₃) δ 2.95 (dd, *J* = 14.2, 7.8 Hz, 1H, CH), 3.42 (dd, *J* = 14.2, 4.9 Hz, 1H, CH), 3.75 (s, 3H, CH₃), 3.79 (s, 3H, CH₃), 3.83 (s, 3H, CH₃), 4.46 (d, *J* = 15.1 Hz, 1H, CH), 4.63 (dd, *J* = 7.8, 4.9 Hz, 1H, CH), 5.25 (d, *J* = 15.1 Hz, 1H, CH), 6.83 - 6.87 (m, 3H, H_{arom}), 7.18 - 7.23 (m, 3H, H_{arom}), 7.48 (dd, *J* = 7.4, 2.3 Hz, 1H, H_{arom}), 7.69 (dd, *J* = 7.4, 7.3 Hz, 1H, H_{arom}), 7.35 (d, *J* = 7.3 Hz, 1H, H_{arom})

3-(4-(Diméthylamino)benzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 46

Purification : EP/AE (80/20)

Huile

Méthode A : Rdt = 0%

Méthode B : Rdt = 12%

¹H (300 MHz, CDCl₃) δ 2.95 (dd, *J* = 14.2, 7.8 Hz, 1H, CH), 3.42 (dd, *J* = 14.2, 4.9 Hz, 1H, CH), 3.06 (s, 6H, CH₃), 3.83 (s, 3H, CH₃), 4.15 (d, *J* = 15.1 Hz, 1H, CH), 4.62 (dd, *J* = 7.8, 4.9 Hz, 1H, CH), 5.39 (d, *J* = 15.1 Hz, 1H, CH), 6.72 (d, *J* = 7.5 Hz, 2H, H_{arom}), 6.85 (d, *J* = 7.6 Hz, 2H, H_{arom}), 7.11 - 7.22 (m, 5H, H_{arom}), 7.42 (dd, *J* = 7.1, 2.3 Hz, 1H, H_{arom}), 7.68 (dd, *J* = 7.3, 7.1 Hz, 1H, H_{arom}), 7.92 (d, *J* = 7.9 Hz, 1H, H_{arom})

3-(3,4-Diméthylbenzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 47

Purification : EP/AE (70/30)

Huile

Méthode A : Rdt = 20%

Méthode B : Rdt = 41%

¹H (300 MHz, CDCl₃) δ 2.33 (s, 6H, CH₃), 2.94 (dd, *J* = 14.4, 7.9 Hz, 1H, CH), 3.42 (dd, *J* = 14.4, 4.9 Hz, 1H, CH), 3.79 (s, 3H, CH₃), 4.49 (d, *J* = 15.1 Hz, 1H, CH), 4.70 (dd, *J* = 7.9, 4.9 Hz, 1H, CH), 5.21 (d, 15.1 Hz, 1H, CH), 6.78 (d, *J* = 7.5 Hz, 1H, H_{arom}), 6. 88 (d, *J* = 7.5 Hz, 2H, H_{arom}), 7.04 - 7.07 (m, 2H, H_{arom}), 7.21 - 7.24 (m, 3H, H_{arom}), 7.48 (dd, *J* = 7.6, 2.3 Hz, 1H, H_{arom}), 7.65 (dd, *J* = 7.5, 7.4 Hz, 1H, H_{arom}), 7.98 (d, *J* = 7.4 Hz, 1H, H_{arom})

3-(4-(tert-Butyl)benzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 48

Purification : EP/AE (70/30)

Huile

Méthode A : Rdt = 15%

Méthode B : Rdt = 31%

¹H (300 MHz, CDCl₃) δ 1.35 (s, 9H, CH₃), 2.96 (dd, *J* = 14.2, 7.8 Hz, 1H, CH), 3.39 (dd, *J* = 14.2, 4.8 Hz, 1H, CH), 3.85 (s, 3H, CH₃), 4.47 (d, *J* = 15.1 Hz, 1H, CH), 4.68 (dd, *J* = 7.8, 4.8 Hz, 1H, CH), 5.19 (d, *J* = 15.1 Hz, 1H, CH), 6.85 (d, *J* = 7.5 Hz, 2H, H_{arom}), 7.04 (d, *J* = 7.4 Hz, 2H, H_{arom}), 7.17 - 7.22 (m, 3H, H_{arom}), 7.42 - 7.45 (m, 3H, H_{arom}), 7.68 (dd, *J* = 7.5, 7.3 Hz, 1H, H_{arom}), 7.97 (d, *J* = 7.5 Hz, 1H, H_{arom})

Acide 2-(4-((2-(4-méthoxybenzyl)-3-oxoisoindolin-1-yl)méthyl)phényl)acetique 49

Purification : EP/AE (80/20)

Huile

Méthode A : Rdt = 10%

Méthode B : Rdt = 22%

¹H (300 MHz, CDCl₃) δ 2.95 (dd, *J* = 14.2, 7.9 Hz, 1H, CH), 3.42 (dd, *J* = 14.2, 4.9 Hz, 1H, CH), 3.71 (s, 2H, CH₂), 3.36 (s, 3H, CH₃), 4.48 (d, 15.2 Hz, 1H, CH), 4.69 (dd, *J* = 7.9, 4.9 Hz, 1H, CH), 5.21 (d, *J* = 15.2 Hz, 1H, CH), 6. 89 (d, *J* = 7.5 Hz, 2H, H_{arom}), 6.99 (d, *J* = 7.4 Hz, 2H, H_{arom}), 7.18 - 7.24 (m, 5H, H_{arom}), 7.45 (dd, *J* = 7.6, 2.4 Hz, 1H, H_{arom}), 7.65 (dd, *J* = 7.4 Hz, 1H, H_{arom}), 7.95 (d, *J* = 7.5 Hz, 1H, H_{arom})

4-((2-(4-Méthoxybenzyl)-3-oxoisoindolin-1-yl)méthyl)benzaldéhyde 50

Purification : EP/AE (80/20)

Huile

Méthode A : Rdt = 11%

Méthode B : Rdt = 43%

¹H (300 MHz, CDCl₃) δ 2.98 (dd, *J* = 14.0, 7.6 Hz, 1H, CH), 3.42 (dd, *J* = 14.0, 4.6 Hz, 1H, CH), 3.80 (s, 3H, CH₃), 4.17 (d, *J* = 15 Hz, 1H, CH), 4.62 (dd, *J* = 7.6, 4.6 Hz, 1H, CH), 5.42 (d, *J* = 15 Hz, 1H, CH), 6.86 (dt, *J* = 8.7, 2.0 Hz, 2H, H_{arom}), 6.89 - 6.92 (m, 1H, CH, H_{arom}), 7.12 (d, *J* = 8.0 Hz, 2H, H_{arom}), 7.17 (dt, *J* = 8.7, 2.0 Hz, 2H, H_{arom}), 7.39 - 7.43 (m, 2H, H_{arom}), 7.73 (td, *J* = 8.0 Hz, 2H, H_{arom}), 7.80 - 7.83 (m, 1H, H_{arom}), 9.96 (s, 1H, CH)

2-((2-(4-Méthoxybenzyl)-3-oxoisoindolin-1-yl)méthyl)benzaldéhyde 51

Purification : EP/AE (80/20)

Huile

Méthode A : Rdt = 0%

Méthode B : Rdt = 4%

¹H (300 MHz, $CDCI_3$) δ 2.94 (dd, J = 14.4, 7.8 Hz, 1H, CH), 3.41 (dd, J = 14.4, 4.9 Hz, 1H, CH), 3.85 (s, 3H, CH₃), 4.45 (d, J = 15.1 Hz, 1H, CH), 4.65 (dd, J = 7.8, 4.9 Hz, 1H, CH), 5.21 (d, J = 15.1 Hz, 1H, CH), 6.87 (d, J = 7.4 Hz, 2H, H_{arom}), 7.19 - 7.25 (m, 3H, H_{arom}), 7.46 - 7.48 (m, 3H, H_{arom}), 7.65 - 7.69 (m, 2H, H_{arom}), 7.84 (dd, J = 7.5, 2.3 Hz, 1H, H_{arom}), 7.96 (d, J = 7.4 Hz, 1H, H_{arom}), 10.36 (s, 1H, CH)

2-(4-Méthoxybenzyl)-3-(2-(trifluorométhyl)benzyl)isoindolin-1-one 52

Purification : EP/AE (80/20)

Huile

Méthode A : Rdt = 15%

Méthode B : Rdt = 42%

¹H (300 MHz, CDCl₃) δ 2.96 (dd, *J* = 14.3, 7.8 Hz, 1H, CH), 3.45 (dd, *J* = 14.3, 4.7 Hz, 1H, CH), 3.89 (s, 3H, CH₃), 4.48 (d, *J* = 15.0 Hz, 1H, CH), 4.67 (dd, *J* = 7.8, 4.7 Hz, 1H, CH), 5.23 (d, *J* = 15.0 Hz, 1H, CH), 6.89 (d, *J* = 7.4 Hz, 2H, H_{arom}), 7.19 - 7.26 (m, 5H, H_{arom}), 7.42 - 7.45 (m, 2H, H_{arom}), 7.57 - 7.62 (m, 2H, H_{arom}), 7.97 (dd, *J* = 7.5, 2.5 Hz, 1H, H_{arom})

3. Réaction de couplage par photocatalyse : accès aux composés 43 et 53

Dans un tube scellé, sont ajoutés le trifluoroborate de potassium **41** (0,27 mmol, 100 mg, 1 eq), les catalyseurs ([Ir] = 0,007 mmol, 6,8 mg, 2.5 mol%, [Ni] = 0,013 mmol, 2,9 mg, 5 mol%), le ligand (0,013 mmol, 3,6 mg, 5 mol%), la base (0,54 mmol, 73 mg, 2 eq) et le dérivé halogéné ou le chlorure d'acyle (0,30 mmol, 1.1 eq). Le tube est purgé plusieurs fois à l'argon, puis le solvant préalablement dégazé est ajouté. Le tube est placé devant une lampe ultraviolette (8 cm) et placé sous agitation. Après réaction, de l'eau (5 ml) est ajouté et la solution est extraite avec du dichlorométhane (10 ml). Les phases organiques sont séchées sur MgSO₄ puis évaporées. Le brut réactionnel est ensuite purifié sur colonne de silice avec un mélange éther de pétrole/acétate d'éthyle.

3-(3-Méthoxybenzyl)-2-(4-méthoxybenzyl)isoindolin-1-one 43

Rdt = 26%

Analyses page 232

3-(2-(Furan-2-yl)-2-oxoéthyl)-2-(4-méthoxybenzyl)isoindolin-1-one 53

Purification : EP/AE (80/20)

Huile

Rdt = 10%

¹H (300 MHz, CDCl₃) δ 3.17 (dd, *J* = 13.9, 7.8 Hz, 1H, CH), 3.42 (dd, *J* = 13.9, 4.8 Hz, 1H, CH), 3.84 (s, 3H, CH₃), 4.46 (d, *J* = 15.1 Hz, 1H, CH), 5.12 (d, *J* = 15.1 Hz, 1H, CH), 5.12 (dd, *J* = 7.8, 4.8 Hz, 1H, CH), 6.76 (t, *J* = 7.5 Hz, 1H, H_{furane}), 6.89 (d, *J* = 7.3 Hz, 1H, H_{arom}), 7.12 - 7.17 (m, 3H, H_{arom}), 7.35 (d, *J* = 7.5 Hz, 1H, H_{furane}), 7.46 (d, *J* = 7.5 Hz, 1H, H_{arom}), 7.58 - 7.62 (m, 2H, H_{arom}, H_{furane}), 7.85 (d, *J* = 7.5 Hz, 1H, H_{arom})

4. Clivage du groupement para-méthoxybenzyle : accès à l'isoindolinone 54 et 55

Dans un ballon, sont ajoutés l'isoindolinone **43**, **45** (0,5 mmol, 200 mg, 1 eq), l'acide trifluoroacétique TFA (5 mmol, 570 mg, 10 eq) dans l'anisole (5 mmol, 540 mg, 10 eq). La solution est chauffée à reflux pendant 48 heures. Après refroidissement, le mélange est concentré sous pression réduite. Le résidu obtenu est dissout dans du DCM (10 ml) et quelques gouttes de triéthylamine sont ajoutées. La solution est agitée pendant 1 heure puis la phase organique est lavée à l'eau, séchée sur MgSO₄ puis évaporée pour permettre l'accès aux isoindolinones **54** et **55**.

3-(3-Méthoxybenzyl)isoindolin-1-one 54

Huile

Rdt = 75%

¹H (300 MHz, CDCl₃) δ 2.78 (dd, *J* = 13.8, 8.0 Hz, 1H, CH), 3.21 (dd, *J* = 13.8, 4.9 Hz, 1H, CH), 3.79 (s, 3H, CH₃), 4.80 (dd, *J* = 8.0, 4.9 Hz, 1H, CH), 6.68 (s, 1H, NH), 6.77 (s, 1H, H_{arom}), 6.82 (dd, *J* = 7.9, 3.0 Hz, 2H, H_{arom}), 7.25 (t, *J* = 7.9 Hz, 1H, H_{arom}), 7.34 (d, *J* = 6.9 Hz, 1H, H_{arom}), 7.47 (t, *J* = 7.4 Hz, 1H, H_{arom}), 7.55 (td, *J* = 7.4, 1.3 Hz, 1H, H_{arom}), 7.84 (d, *J* = 7.3 Hz, 1H, H_{arom}).

¹³C (75 MHz, CDCl₃) δ 170.3 (C), 159.9 (C), 146.8 (C), 138.5 (C), 131.9 (C), 131.7 (CH), 129.9 (CH), 128.4 (CH), 123.9 (CH), 122.7 (CH), 121.4 (CH), 114.9 (CH), 112.5 (CH), 57.9 (CH), 55.1 (CH₃), 41.4 (CH₂).

3-(3,4-Diméthoxybenzyl)isoindolin-1-one 55

Solide blanc, Tf° = 75-76 °C

Rdt = 83%

¹H (300 MHz, CDCl₃) δ 2.94 (dd, *J* = 13.7-7.5 Hz, 1H), 3.09 (dd, *J* = 13.7-5.9 Hz, 1H), 3.78 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.82 (dd, *J* = 7.5-5.9 Hz, 1H), 6.70-6.79 (m, 3H, H_{arom}), 7.23 (d, *J* = 7.4 Hz, 1H, H_{arom}), 7.43-7.55 (m, 2H, H_{arom}), 7.81 (d, *J* = 7.2 Hz, 1H, H_{arom}), 7.98 (brs, 1H, NH).

¹³C (75 MHz, CDCl₃) δ C 170.7 (C), 148.9 (C), 148.0 (C), 146.9 (C), 132.1 (C), 131.6 (CH), 129.2 (C), 128.3 (CH), 123.8 (CH), 122.8 (CH), 121.4 (CH), 112.3 (CH), 111.2 (CH), 58.2 (CH), 55.7 (2 x OCH₃), 40.8 (CH₂).

Références bibliographiques relatives à la partie expérimentale

- 199) Rohmer T., Lang C., Bongards C., Gupta K. B., Neugebauer J., Hughes J., Gartner W. and Matysik J., 'Phytochrome as Molecular Machine: Revealing Chromophore Action during the Pfr → Pr Photoconversion by Magic-Angle Spinning NMR Spectroscopy', J. Am. Chem. Soc. 2010, 132, 4431-4437
- 200) Patel K. P., Gayakwad E. M., Patil V. V. and Shankarling G. S., 'Graphene Oxide: A Metal-Free Carbocatalyst for the Synthesis of Diverse Amides under Solvent-Free Conditions', *Adv. Synth. Catal.* **2019**, *361*, 2107-2116
- 201) Aliabadi A., Gholamine B. and Karimi T., 'Synthesis and antiseizure evaluation of isoindoline-1,3-dione derivatives in mice', *Med. Chem. Res.* **2014**, *23*, 2736-2743
- 202) Quinn R. K., Konst Z. A., Michalak S. E., Schmidt Y., Szklarski A. R., Flores A. R., Nam S., Horne D. A., Vanderwal C. D. and Alexanian E. J., 'Site-Selective Aliphatic C–H Chlorination Using *N*-Chloroamides Enables a Synthesis of Chlorolissoclimide', *J. Am. Chem. Soc.* 2016, 138, 696-702
- 203) Robert K. Y., Zee C. and Chenq C. C., 'N-(Aminoalkyl)imide antineoplastic agents. Synthesis and biological activity', J. Med. Chem. **1985**, 28, 1216-1222
- 204) Nguyen H. N., Cee V. J., Deak H. L., Du B., Faber K. P., Gunaydin H., Hodous B. L., Hollis S. L., Krolikowski P. H., Olivieri P. R., Patel V. F., Romero K., Schenkel L. B. and Geuns-Meyer S. D, 'Synthesis of 4-Substituted Chlorophthalazines, Dihydrobenzoazepinediones, 2-Pyrazolylbenzoic Acid, and 2-Pyrazolylbenzohydrazide via 3-Substituted 3-Hydroxyisoindolin-1ones', J. Org. Chem. 2012, 77, 3887-3906
- 205) Laurent S. A.-L., Boissier J., Coslédan F., Gornitzka H., Robert A. and Meunier B., 'Synthesis of "Trioxaquantel"^{*} Derivatives as Potential New Antischistosomal Drugs', *Eur. J. Org. Chem.* 2008, 895-913
- 206) Enders, D. and Eichenauer, H., 'Asymmetrische synthesen via metallierte chirale Hydrazone.
 Enantioselektive alkylierung von cyclischen ketonen und aldehyden', Chem. Ber. 1979, 112, 2933-2960
- 207) Deniau E., Enders, D., Couture A. and Grandclaudon P., 'A new synthetic route to highly enantioenriched 3-substituted-2,3-dihydro-1*H*-isoindol-1-ones', *Tetrahedron: Asymmetry* **2003**, *14*, 2253-2258
- 208) Li J., Zhang Z., Xu X., Shao X. and Li Z., 'Nematicidal Activities of Diamides with Diphenylacetylene Scaffold Against *Meloidogyne Incognita'*, *Aust. J. Chem.* **2015**, *68*, 1543-1549

- 209) Cao H., McNamee L. and Alper H., 'Syntheses of Substituted 3-Methyleneisoindolin-1-ones By a Palladium-Catalyzed Sonogashira Coupling–Carbonylation–Hydroamination Sequence in Phosphonium Salt-Based Ionic liquids', Org. Lett. 2008, 10, 5281-5284
- 210) Sharma S., Nayal O. S., Sharma A., Rana R. and Maurya S. K., 'Tin(II) triflate Catalyzed Synthesis of 3-Methyleneisoindolin-1-ones', *Chemistry Select*. **2019**, *4*, 1985-1988
- 211) Deniau E. and Enders D., 'A new and versatile synthetic route to 2-dimethylamino-3-alkyl and arylmethylene-2,3-dihydro-1*H*-isoindol-1-ones', *Tetrahedon Lett*. **2002**, *43*, 8055-8058
- 212) Sagirova Zh. R., Starodubtseva E. V., Turova O. V. and Vinogra., 'Hydrogenolysis of the C-O bond of hydroxylactams as a convenient method for the synthesis of substituted isoindolin-1-ones', *Russ. Chem. Bull.* **2013**, 1032-1037
- 213) Wurtz N. R., Parkhurst B. L., Jiang W., DeLucca I., Zhang X., Ladziata V., Cheney D. L., Bozarth J. R., Rendina A. R., Wei A., Luettgen J. M., Wu Y., Wong P. C., Seiffert D. A., Wexler R. R. and Priestley E. S., 'Discovery of Phenylglycine Lactams as Potent Neutral Factor VIIa Inhibitors', ACS Med. Chem. Lett. 2016, 7, 1077-1081
- 214) Kanazawa, C. and Terada M., 'Dichotomous Control of *E/Z*-Geometry in Intramolecular Cyclization of *o*-Alkynylbenzamide Derivatives Catalyzed by Organic Superbase P4-*t*Bu in the Presence/Absence of Water', *Chem. Asian J.* **2009**, *4*, 1668-1672
- 215) Zhou, B., Hou W., Yang Y. and Li Y., 'Rhodium(III)-Catalyzed Amidation of Aryl Ketone O-Methyl Oximes with Isocyanates by C-H Activation: Convergent Synthesis of 3-Methyleneisoindolin-1-ones', Chem. Eur. J. 2013, 19, 4701-4706
- 216) Jia. J., Chuanmei Q., Liyao Z. and Ruimao H., 'Synthesis of 3-methyleneisoindolin-1-ones via palladium-catalyzed C–Cl bond cleavage and cyclocarbonylation of *ortho*-chloro ketimines', *Tetrahedron Lett.* **2013**, *54*, 5159-5161
- 217) Arredonto V., Roa D. E., Yan S., Liu-Smith F. and Van Vranken D. L., 'Total Synthesis of (±)-Pestalachloride C and (±)-Pestalachloride D through a Biomimetic Knoevenagel/Hetero-Diels– Alder Cascade', *Org. Lett.* **2019**, *21*, 1755-1759
- 218) Gutman E. S., Arredonto V. and Van Vranken D. L., 'Cyclization of η³-Benzylpalladium Intermediates Derived from Carbene Insertion', *Org. Lett.* **2014**, *16*, 5498-5501
- 219) Venkataraman S., Venkateswara R. B., Deepak B. and Manojit P., 'Synthesis of Isocoumarins via Pd/C-Mediated Reactions of *o*-Iodobenzoic Acid with Terminal Alkynes', *J. Org. Chem.* **2005**, *70*, 4778-4783

- 220) Cahiez G., Chaboche C., Mahuteau-Betzer F. and Ahr M., 'Iron-catalyzed homo-coupling of simple and functionalized arylmagnesium reagents', *Org. Lett.* **2005**, *7*, 1943-1946
- 221) Mehta S., Yao T. and Larock R. C., 'Regio- and Stereoselective Synthesis of Cyclic Imidates via Electrophilic Cyclization of 2-(1-Alkynyl)benzamides. A Correction.', Org. Lett. 2012, 77, 10938-10944
- 222) Marques C. S., Peixoto D. and Burke A. J., 'Transition-metal-catalyzed intramolecular cyclization of amido(hetero)arylboronic acid aldehydes to isoquinolinones and derivatives', *RSC Adv.* **2015**, *5*, 20108-20114
- 223) Chakraborty A., Debnath S., Ghosh T., Maiti D. and Majumdar S., 'An efficient strategy for *N*-alkylation of benzimidazoles/imidazoles in SDS-aqueous basic medium and *N*-alkylation induced ring opening of benzimidazoles', *Tetrahedron* **2018**, *74*, 5932-5941
- 224) Lee H. M., Lu C. Y., Chen C. Y., Chen W. L., Lin H. C., Chiu P. L. and Cheng P. H., 'Palladium complexes with ethylene-bridged bis(*N*-heterocyclic carbene) for C–C coupling reactions', *Tetrahedron* **2004**, *60*, 5807-5825
- 225) E. Deniau, D. Enders, A. Couture and P. Grandclaudon, 'A new synthetic route to highly enantioenriched 3-substituted-2,3-dihydro-1*H*-isoindol-1-ones', *Tetrahedron : asymmetry* **2003**, *14*, 2253-2258

Hydroboration catalysée au cuivre d'énamides. Application à la synthèse d'isoindolinones fonctionnalisées.

La chimie des composés organoborés a connu un essor considérable depuis les années 1970 et a permis de nombreuses avancées dans le domaine de la synthèse organique, de la chimie médicinale ou de la chimie des matériaux. Ces composés ont notamment été impliqués dans le développement de nouvelles réactions permettant la création de liaisons carbone-carbone ou de liaisons carbonehétéroatome. Dans le cadre de cette thèse, nous nous proposons dans un premier temps de mettre au point l'hydroboration catalysée au cuivre d'énamides intégrant un groupement fonctionnel électroattracteur qui nous a permis de contrôler la régiosélectivité de la réaction. Cette réaction d'hydroboration a été optimisée sur un substrat modèle puis rendue diastéréosélective grâce à l'utilisation d'un auxiliaire chiral. Cette réaction d'hydroboration régio et stéréosélective nous a permis d'accéder à toute une gamme de composés organoborés qui ont dans un second temps été engagés dans diverses réactions d'aménagement fonctionnel et de couplage. Les paramètres expérimentaux de cette réaction de couplage croisé de type Suzuki-Miyaura ont été optimisés à partir de deux familles de composés organoborés. La première voie de synthèse nous a permis la formation de liaisons carbone-carbone Csp3-Csp2 à partir d'acides boroniques sous activation thermique ou micro-onde. Dans un deuxième temps, cette réaction de couplage a été effectuée à partir de trifluoroborates via une réaction de photocatalyse. Ces diverses réactions nous ont permis d'accéder à toute une gamme d'isoindolinones hautement fonctionnalisées.

Mots clés : hydroboration, catalyse, cuivre, énamide, isoindolinone, fonctionnalisation

Copper catalyzed hydroboration of enamides. Application to the synthesis of functionalized isoindolinones.

Organoboron chemistry compounds has grown considerably since the 1970s and has led to many advances in organic synthesis, medicinal chemistry and materials chemistry fields. These compounds have been particularly involved in the development of new reactions allowing the creation of carbon-carbon bonds or carbon-heteroatom bonds. In this work, we first propose to develop the copper-catalyzed hydroboration reaction of enamides integrating an electron-withdrawing group which allows us to control the regioselectivity of the reaction. This hydroboration reaction was optimized on a model substrate and then, made diastereoselective by using a chiral auxiliary. This regio and stereoselective hydroboration reaction gave us access to a whole range of organoboron compounds which were subsequently involved in various functional development and coupling reactions. The experimental parameters of this Suzuki-Miyaura-type cross-coupling reaction were optimized using two families of organoboron compounds. The first synthetic route allowed us to form carbon-carbon Csp3-Csp2 bonds from boronic acids under thermal or microwave activation. Secondly, this coupling reaction was carried out using trifluoroborates via a photocatalysis reaction. These various reactions have given us access to a whole range of highly functionalized isoindolinones.

Key words : hydroboration, catalysis, copper, énamide, isoindolinone, functionalization